Journal of Function Spaces

Convex Geometry in Orlicz Space

Lead Guest Editor: Chang Jian Zhao
Guest Editors: Binwu HE




Convex Geometry in Orlicz Space



Journal of Function Spaces

Convex Geometry in Orlicz Space

Lead Guest Editor: Chang Jian Zhao
Guest Editors: Binwu HE



Copyright © 2021 Hindawi Limited. All rights reserved.

This is a special issue published in “Journal of Function Spaces” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.



Chief Editor

Maria Alessandra Ragusa, Italy

Associate Editors

Ismat Beg(2), Pakistan
Alberto Fiorenza (), Italy
Adrian Petrusel (©), Romania

Academic Editors

Mohammed S. Abdo (%), Yemen
John R. Akeroyd (), USA

Shrideh Al-Omari(, Jordan
Richard I. Avery (), USA

Bilal Bilalov, Azerbaijan

Salah Boulaaras, Saudi Arabia
Raul E. Curto (), USA

Giovanni Di Fratta , Austria
Konstantin M. Dyakonov (), Spain
Hans G. Feichtinger (i), Austria
Baowei Feng (), China

Aurelian Gheondea (), Turkey
Xian-Ming Gu, China

Emanuel Guariglia, Italy

Yusuf Gurefe, Turkey

Yongsheng S. Han, USA

Seppo Hassi, Finland

Kwok-Pun Ho (%), Hong Kong
Gennaro Infante (), Italy

Abdul Rauf Khan (%), Pakistan
Nikhil Khanna (%), Oman
Sebastian Krol, Poland

Yuri Latushkin (), USA

Young Joo Lee (), Republic of Korea
Guozhen Lu (), USA

Giuseppe Marino (19, Italy

Mark A. McKibben (), USA
Alexander Meskhi (), Georgia
Feliz Minhos (%), Portugal

Alfonso Montes-Rodriguez (2, Spain
Gisele Mophou (2, France
Dumitru Motreanu(2), France
Sivaram K. Narayan, USA

Samuel Nicolay (%), Belgium

Kasso Okoudjou (), USA

Gestur Olafsson (), USA

Gelu Popescu, USA

Humberto Rafeiro, United Arab Emirates

Paola Rubbioni (), Italy
Natasha Samko (1), Portugal
Yoshihiro Sawano (), Japan
Simone Secchi ("), Italy
Mitsuru Sugimoto (i), Japan
Wenchang Sun, China
Tomonari Suzuki (), Japan
Wilfredo Urbina (), USA
Calogero Vetro (), Italy
Pasquale Vetro (), Italy
Shanhe Wu (), China

Kehe Zhu (), USA



https://orcid.org/0000-0002-4191-1498
https://orcid.org/0000-0003-2240-5423
https://orcid.org/0000-0002-5629-5667
https://orcid.org/0000-0001-9085-324X
https://orcid.org/0000-0003-1472-0757
https://orcid.org/0000-0001-8955-5552
https://orcid.org/0000-0002-2270-2527
https://orcid.org/0000-0002-1776-5080
https://orcid.org/0000-0002-9232-6264
https://orcid.org/0000-0002-9927-0742
https://orcid.org/0000-0003-4507-8170
https://orcid.org/0000-0002-9096-5927
https://orcid.org/0000-0003-0966-5984
https://orcid.org/0000-0003-1270-6177
https://orcid.org/0000-0002-4709-3860
https://orcid.org/0000-0001-8973-469X
https://orcid.org/0000-0002-8259-5655
https://orcid.org/0000-0002-3511-5241
https://orcid.org/0000-0003-0935-5003
https://orcid.org/0000-0001-9381-9338
https://orcid.org/0000-0001-8175-7408
https://orcid.org/0000-0001-7984-4019
https://orcid.org/0000-0002-7485-2500
https://orcid.org/0000-0002-7328-4812
https://orcid.org/0000-0001-7949-8152
https://orcid.org/0000-0001-7391-9534
https://orcid.org/0000-0003-0549-0566
https://orcid.org/0000-0003-4679-5534
https://orcid.org/0000-0001-8287-6943
https://orcid.org/0000-0002-9433-345X
https://orcid.org/0000-0002-8595-4326
https://orcid.org/0000-0003-2844-8053
https://orcid.org/0000-0002-9307-1347
https://orcid.org/0000-0001-6626-9289
https://orcid.org/0000-0002-2524-6045
https://orcid.org/0000-0002-4829-0444
https://orcid.org/0000-0001-5836-6847
https://orcid.org/0000-0003-1777-3731
https://orcid.org/0000-0002-8772-8170
https://orcid.org/0000-0002-7498-7077

Contents

Some Integral Inequalities for n-Polynomial {-Preinvex Functions
Shanhe Wu (), Muhammad Uzair Awan (), Muhammad Ubaid Ullah, Sadia Talib, and Artion Kashuri
Research Article (9 pages), Article ID 6697729, Volume 2021 (2021)

Multiplication Operators on Orlicz Generalized Difference (sss)
Awad A. Bakery () and OM Kalthum S. K. Mohamed
Research Article (7 pages), Article ID 6627966, Volume 2020 (2020)

On Mixed Quermassintegral for Log-Concave Functions
Fangwei Chen (), Jianbo Fang, Miao Luo, and Congli Yang
Research Article (9 pages), Article ID 8811566, Volume 2020 (2020)

The Functional Orlicz Brunn-Minkowski Inequality for 4-Capacity
Wei Wang (), Juan Li, Rigao He, and Lijuan Liu
Research Article (8 pages), Article ID 1670617, Volume 2020 (2020)

On the Discrete Orlicz Electrostatic 4-Capacitary Minkowski Problem
Yibin Feng and Yanping Zhou
Research Article (10 pages), Article ID 3067985, Volume 2020 (2020)

Functional Geominimal Surface Area and Its Related Affine Isoperimetric Inequality
Niufa Fang (") and Jin Yang
Research Article (8 pages), Article ID 3039598, Volume 2020 (2020)


https://orcid.org/0000-0002-7413-6563
https://orcid.org/0000-0002-1019-9485
https://orcid.org/0000-0003-0115-3079
https://orcid.org/0000-0001-6709-8012
https://orcid.org/0000-0002-6777-3943
https://orcid.org/0000-0002-7128-1458
https://orcid.org/0000-0001-9170-8271
https://orcid.org/0000-0002-2645-7864
https://orcid.org/0000-0002-5710-1035

Hindawi

Journal of Function Spaces

Volume 2021, Article ID 6697729, 9 pages
https://doi.org/10.1155/2021/6697729

Research Article

Hindawi

Some Integral Inequalities for n-Polynomial {-Preinvex Functions

Shanhe Wu (@, Muhammad Uzair Awan (»,> Muhammad Ubaid Ullah,> Sadia Talib,>

and Artion Kashuri®?®

"Department of Mathematics, Longyan University, Longyan 364012, China
Department of Mathematics, Government College University, Faisalabad 38000, Pakistan
*Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, Vlora 9400, Albania

Correspondence should be addressed to Shanhe Wu; shanhewu@gmail.com

Received 19 October 2020; Revised 9 December 2020; Accepted 14 December 2020; Published 6 January 2021

Academic Editor: Chang Jian Zhao

Copyright © 2021 Shanhe Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study the properties of n-polynomial {-preinvex functions and establish some integral inequalities of Hermite-
Hadamard type via this class of convex functions. Moreover, we discuss some special cases which provide a significant
complement to the integral estimations of preinvex functions. Applications of the obtained results to the inequalities for special

means are also considered.

1. Introduction and Preliminaries

The geometric inequalities involving volume, surface area,
mean width, etc. in the Orlicz space have attracted consider-
able attention of researchers, and the convexity properties of
functions have been a powerful tool for dealing with various
problems of convex geometry (see [1, 2]). This suggests that it
is a significant work to develop new inequalities for general-
ized convex functions. For this purpose, let us start with
recalling some concepts and notations on the convexity of
functions.
A set € C R is said to be convex if

(I1-t)x+tye®, (1)

for any x,y € € and t € [0, 1].
A function & : € — R is said to be convex if the inequality

F(1-t)x+ty) < (1-t)F(x) +tF(y) (2)

holds for any x, y € € and ¢ € [0, 1].

In recent years, the classical concept of convexity has been
extended and generalized in different directions. Mititelu [3]
introduced the notion of invex set, as follows.

Definition 1 [3]. Let & ¢ R be a nonempty set and # : R x
R — R be a real-valued function. A set  is said to be invex
with respect to 7 if

x+tmy,x) e, (3)

forall x,y € 2 and t € [0, 1].

The invexity would reduce to the classical convexity if
7(y, x) = y — x. Weir and Mond [4] defined the class of prein-
vex functions as follows.

Definition 2 [4]. Let &’ CR be a nonempty invex set with
respect to 7 : Rx R+ R. A function & : X — R is said to
be preinvex with respect to # if the inequality

Flormp ) <(1-0F@) +1F0) (@)

holds for all x,y € 2 and ¢ € [0, 1].
As a generalization of convex functions, Gordji et al. [5]
introduced the notion of {-convex function.

Definition 3 [5]. A function ¥ : ¥ cR+— R is said to be
{-convex function with respect to {: RxR+— R if the
inequality
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Ftx+ (1=1)y) < F(y) + 10(F(x), (7)) ()
holds for all x,y € ¥ and t € [0, 1].

The properties of convexity have numerous applications
in different fields of pure and applied mathematics; espe-
cially, the concept of convexity has close relation with the
theory of inequalities. Many inequalities are direct conse-
quences of the applications of classical convexity. As is
known to us, the Hermite-Hadamard inequality is one of
the most significant result associated with convex functions,
it reads as follows.

Let F : [a, b] C R — R be a convex function, then

9(“?’) < biarg(x)dxs w (6)

a

Noor [6] obtained a generalization of classical Hermite-
Hadamard’s inequality using the class of preinvex functions,
as follows.

Let & : [a,a+n(b, a)] — R be a preinvex function, then

S(2atnba) _ 1 e o F(a)+ F(b)
() [ 750

a

(7)

The result of Noor has inspired a lot of investigators to
deal with new generalizations and refinements of Hermite-
Hadamard’s inequality via preinvexity. For example, Barani
et al. [7] obtained the generalizations of Hermite-
Hadamard’s inequality for functions whose derivative abso-
lute values are preinvex. Du et al. [8] and Noor et al. [9]
obtained several generalizations of Hermite-Hadamard’s
inequality via (s, m)-preinvex functions and h-preinvex func-
tions, respectively. Park [10, 11] derived several variations of
Hermite-Hadamard’s inequality from differentiable preinvex
functions. Sarikaya et al. [12] and Wu et al. [13] established
the Hermite-Hadamard-like type inequalities via log-prein-
vex functions and harmonically (p, h, m)-preinvex functions,
respectively. Wang and Liu [14] and Li [15] obtained differ-
ent refinements of Hermite-Hadamard’s inequality using s
-preinvex functions. Deng et al. [16, 17] and Wu et al. [18]
deduced some quantum Hermite-Hadamard-type inequal-
ities by using generalized (s,m)-preinvex functions and
strongly preinvex functions, respectively.

Recently, Toplu et al. [19] proposed the concept of n
-polynomial convex functions and investigated their
properties.

In this paper, we shall introduce a new class of n-poly-
nomial convex functions based on a different form of
inequality in the definition compared with [19], which is con-
venient to the generalizations and applications of #n-polyno-
mial convexity. More specifically, we will define a class of
convex functions called as n-polynomial {-preinvex func-
tions. We then show that this class of convex functions con-
tains a number of other classes of convex functions.
Furthermore, we establish some new integral inequalities of
Hermite-Hadamard type for n-polynomial {-preinvex func-
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tions. Finally, we apply the obtained inequalities to establish
two inequalities for special means.

Firstly, we introduce the notion of #n-polynomial {-pre-
invex functions.

Definition 4. Let n € N. A nonnegative function & : ' — R

is said to be n-polynomial {-preinvex with respect to bifunc-
tions 7, { : R x R — R if the inequality

Fla+tn(b,a)) <F(a) + 1-(1-t)|{(F(b), F(a))

(8)

E
1=

s=1

holds for all a, b€ £ and t € [0, 1].

Note that if we take #n = 1, then we have 1-polynomial {
-preinvexity, which is just the {-preinvex functions defined
by the inequality

F(a+tn(b,a)) < F(a) +t{(F(b), F(a)), Va,beI,te|0,1].

)
If we take {(F(b), F(a)) = F(b) — F(a), then we obtain

the class of n-polynomial preinvex functions, which is
defined by the inequality

Fla+tn(b,a)) < (1-1t)°'F(a)

M=

[1-(1-t))F(b), Yabed, te0,1].

(10)

If we take #(b,a) =b—a, then we get the class of n
-polynomial {-convex functions, which is defined by the
inequality

S|~
i
21~ M=

P
I
—_

F(a+t(b—a)) < F(a) + ;le — (1= t)*|{(F(b), F(a)),

Va,be X, te|0,1].
(11)

If we take n =1 in inequality (11), then we have the class
of {-convex functions. Furthermore, we obtain the classical
convex functions by setting {(F(b), F(a)) = F(b) — F(a).

If we take n = 2 in Definition 4, then we have the class of 2
-polynomial {-preinvex functions, which is defined by the
following inequality:

3t—1*

F(a+tn(b,a)) < F(a) + {(F(b), F(a)), VYabel, te[o,1).

(12)

Note that 0 < t < 3t — t2/2, this shows that, for every non-
negative bifunction (, the {-preinvex function is also the 2
-polynomial {-preinvex functions. More generally, we have
the following result.
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Proposition 5. For every nonnegative bifunction { and n > 2,
if F: R is a (n—1)-polynomial {-preinvex function,
then F is a n-polynomial {-preinvex function.

To verify the validity of Proposition 5, it is enough to show
that

-(-r  (13)

1
~
I
—
~
|
=
._‘."
:I~
M=

“
Il
—
“
Il
—

foranyn>2andte€|0, 1.
Direct computation gives

1 n-1 1n
1- I—t — l—t
n_15:1[ nSZZI
1=\ [1-(-t" 1-(1-1)"!
- t n n-—1

[(1-t)" +nt(1-1)"" - 1]

I n(n—1)

[(1-t)" +nt(1-1)"" -

(1-1t)+ t)”]

n(n—1)
- (1 - t) lcﬁtz(l — )" 2+ OB 1) kOl
t n(n-1)
<0,
(14)

which implies the required inequality (13).
As a consequence, we obtain the following.

Proposition 6. For every nonnegative bifunction {, if ¥ : I
— R is a {-preinvex function, then F is a n-polynomial
-preinvex function.

Choosing {(F(b), F(a)) =
gives the following.

F(b) — F(a) in Proposition 6

Proposition 7. If & : [a,a + n(b, a)] > R is a preinvex func-

tion with F(b) — F(a) > 0, then F is a n-polynomial preinvex
function.
2. Main Results

In this section, we establish some new Hermite-Hadamard-
type inequalities using the class of n-polynomial {-preinvex
functions. We first need to introduce the notation called
Condition C, which was presented by Mohan and Neogy in
[20].

Condition C. Let &’ CR be an invex set with respect to
bifunction #(.,.), we say that the bifunction #(.,.) satisfies
the Condition C, if for any x, y € 2 and ¢ € [0, 1], we have

n(xx +t(y, x)) = -tn(y, x),

(15)
N> x + 1ty x)) = (L= t)n(y x).

Note that for any x,y € X, t,, t, €
tion C, we can deduce

[0, 1] and from Condi-

N+ 60,2, x + 1 (%)) = (B = t)n(> %) (16)

Throughout the paper we assume that Condition C is sat-
isfied for the domain with respect to bifunction #(.,.) as a
precondition.

Theorem 8. Let & : [a,a +#(b, a)] = R be a n-polynomial {
-preinvex function. If n(b,a) >0 and F € L[a,a+n(b,a)),
then we have

2 b’ 2n_ ] 1 a+n(b,a)
97< a+;;( a)) _nt M, < J F(x)dx
n

—_{(F(b), F(a)),

S+

S|~
M=

I
—

< F(a) +
(17)

where M is the upper bound of bifunction (.

Proof. Using the definition of n-polynomial {-preinvex func-
tion and Condition C, we have

g<2u++(b,a)) :97<u+ (1-tn(b,a)+ %(t— (1=1))n(b, a))
:9<a+ (1-t)n(b,a)+ %q(a+ tn(b,a),a

+ (L= 01(b.0)) < Fla+ (1= 01(5.0)
. %Zl <1 - G)) {(F(a+tn(ba)),

Fla+(1-t)n(b,a))) <F(a+ (1-t)n(b,a))

n+27"-1
+ 7M{.
n
(18)
Hence, we obtain
2 N 27" -1
9(a+(1—t)q(b,a))zg< ‘”Z(b “)) - M.
n
(19)

Integrating both sides of the above inequality with
respect to t on [0, 1], it follows that

Jlg(cw (1-t)n(b, a))dtgfﬁ<2a+ Z(h’ a)) Cneao

0



that is,

a+r(b,a)
;J F(x)dx>F 2a+n(b.a))
n(b; a) 2

n+2™"-1

The left-hand side inequality of (17) is proved.
On the other hand, from the definition of #-polynomial {
-preinvex function, one has

n

Fa+ tn(b,a)) < F(a) + =y (1~ (1~ 1 }(F(b), F(a)).

s=1

(22)

Integrating both sides of the above inequality with
respect to ¢ on [0, 1], we obtain

a+1(b,a) 1
q(bl, a)J F(x)dx = Lfi(a+t;1(b a))dt

a

(23)

This proves the right-hand side inequality of (17). The
proof of Theorem 8 is complete.

Before we put forward another kind of integral inequality
of Hermite-Hadamard type, we need to prove an auxiliary
result, which will play a key role in deducing subsequent
results. For the sake of simplicity, we let .7 = [a,a + (b, a)]
and let .7° be the interior of .7.

Lemma 9. Let # : .7 — R be a differentiable function on J°
with 7(b,a) > 0, min {A, u} >t > 0. If ' € L[.7], then

uF@a)+AFa+nb,a) 1 a+n(ba)
Atu J

—t
”ﬂ(b, a)) dt (24)

Proof. Let
¢ -
I= n(b.a) J(—t)?i' av B0 t11
A+’ Lo Aty

A
ut+t
‘971
+J0t <a+—A+”n

(25)
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Integrating by parts yields

(A+w)” Lo
Y g - [ Far P ) a6
—m uF(a) L a 1 n(b, a) (26)
a+-n(b,a)
u 1 Aw(
= F —_ g d .
T ), ()
Similarly,
L= saeneay- ™" s
)= a+r] a J xX)ax
1(bsa) ) urnem) (ba)
(27)

Substituting the formulations of I; and I, in (25) leads
to the desired identity (24). The proof of Lemma 9 is
complete.

We shall now give some estimations of bounds for
Hermite-Hadamard-type inequalities.

Theorem 10. Let  : ¥ — R be a differentiable function on
I withn(b,a) >0, 1> 0, u> 0, andlet F' € L[.7). If | F" | is
n-polynomial {-preinvex function, then

uF(@)+ AF(a+n(ba)) 1 (e
‘ /\+‘u ?](b,a) ju J‘(X)dx
Tl(b,ll) A +‘L£ 1
T +pl| 2 |+;S=ZIK1C( ||9()|)
e ZKC( B @1,
(28)
where
Ko A - (L) A
1 2 (S+1)(S+2)</\+‘M>s > (29)
AZ /\s+2
Ky=5- (s+1)(s+2)(A+p)

Proof. Using Lemma 9 and the assumption that |#' | is n
-polynomial {-preinvex function, we have
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|pF(a)+ A F(atnb.a) 1 ) J " ey

dr+ JA < g a>) M

| A+p n(b,a) )
o [ fant$ (-(-252) ) ww)}

IN

B[ )

+'I3t{\9,(u)|+%si (1 - (1 - g:;) )((L{?’(b)l,l?'(a) I)}dt}
:%Tgt"@( 'd” ( (::;)) b)||9(a)|)

A 1
+J r|9’(a>|dr+
0

< (i53) )l @
- o Pt i S (l-<::’>s>

-G e oyl

||9()|>dt

(30)
which implies the desired inequality (28) since

~ M(S+2)(A+‘M)S+l _(A+M)s+2+/\s+2
(s+1)(s+2)(A+p)

Jzt(l_ (%)S)dtz %2 "ot 1)(:;2)@“,)5 -K,.
61)

This completes the proof of Theorem 10.
Next, we discuss some special cases of Theorem 10.

(I) If we consider A = =1 in Theorem 10, then we have

F(a)+ F(a+n(b,a)) )
I 2 ~n(ba) J Flx)dx
) [ o 1S 2(s+1)(s+2) —2(1+27s)
< 4 |=/’ (ﬂ)l‘*‘—szzl 25+1(S+ 1)(S+2)
! Z! I 2°(s+1)(s+2) =2,/ !
(o @)y FE e (7 o (a)|)}
(32)

(IT) If we take (b, a) = b — a in Theorem 10, then we get

A b
‘yff(a) LU J Py

A+p
b—a M+ 1¢ ! /
= rny [T | F <f1)|+;S:Z1 KI((IJ (b)L|F (a)|)

+ %;ch(ﬁ’(b) F'(a

(33)

5
(IT) If we choose ((|F (b)|F'(a)])=|F'(b) |- | F'
(a)| in Theorem 10, then we obtain
uF(a)+ A F(a+n(b,a)) 1 (oriba)
‘ Xru “awal, T
(b ﬂ) A +}4 If?( )| i(K +K)(|f¥,(h)|—|9:l(u)|>
Srw| 2 = '
(34)

Theorem 11. Let F : ¥ — R be a differentiable function on
I° with n(b,a) >0, A> 0, u>0, and let F' € L[.7), (1/p) +
(1ig)=1, p>1,q>1. If |F'|" is n-polynomial {-preinvex
function, then

|4 F(a)+AF(a+n(ba) 1 a+ii(b.a) F(x)dx
| At (b, a) J 2

b prin 1p ) 1 ) , 1iq
< o | (15) " (W orr 1S (o i)

pradl 1p , 4 1 , . . . 1igq
+(P+1) (A\g (a) +;; 19((}37 ®)|%|# (@) )> }

(35)
where
(/\-f- ”)S+1 —ASH
K3=#_4 >
s+ DA +p)
G+ D) )
/\s+1
K4_)‘_(s+1)(A+M)S'

Proof. Using Lemma 9, Holder’s inequality, and the fact that
|Z'|" is n-polynomial {-preinvex function, it follows that

pF@) +A Fa+nb.a) 1 Jwg)%)dx

| Atu b

o
oot
()" (e )
)" (B
e ) (o330 Gia) e
(17w |9’<a>\q))dt> +<f+1> ! ([ (1w
(- (55) JiF o= @l )) w]
- L2 [(P%) ! (ulg’w)(q Y (COT I%’(a>lq))”q

AP+l Up AR B 1/q
+<p+1> <A\g(a)| +;;K4C<}9(b)‘,|97(a)‘>> }

(37)

q g
dt)
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where Theorem 12. Let & : ¥ — R be a differentiable function on
. . I° with n(b,a) >0, A>0, u>0, and let F' € L[.7], q= 1. If
S S+ S+
K= J# (1 - (_/\ Al t) >dt R U O s _ |F' |1 is n-polynomial {-preinvex function, then
0 A+u (s+1)(A+p)
A A, —t s AH—I
K,= 1-(——) |dt=A- —————. |uF(a)+ A F(a+nba) 1 (o)
! JO( <A+M> > (S+ 1)(A+/’l)$ | Atp N r](b,u),[a Fx)dx
(38) n(b,a) (o 13 o il (o "
The proof of Theorem 11 is complete. 2\ 7y Lo 11q
) e g
We now discuss some special cases of Theorem 11. o
(42)
(I) If we choose A =y =1 in Theorem 11, then
‘9(")+9(“+’1(b, a) 1 r“ﬂb‘a) F(x)dx where K, and K, are the expressions as described in
2 n(bsa) J, Theorem 10.
< (b, a) |c~f q+li 2(s+1) (25*1_1)
4(p+1)'° n& 25(s+1) .
g 641) Proof. Note that |#'|" is n-polynomial {-preinvex function,
) N TP o, Iy 2ls+1) -1 by using the power mean inequality, we have
(7 o0 # @)} +{|w @13 X
1/q
.((,9’(1;) 1 9;’(a)|‘1)} }

|4 F(a) +AF(a+nba) 1 J’”’?(l’“)
! At u n(b a)

F(x)dx

(39) < (Z(i’:))z :'[:I—tl < A’?(b a) | |dt
+ Jz [t] | <a + %ﬂq(b, a)> M
(IT) If we take #(b, a) = b — a in Theorem 11, then S % :(J:l—f | dt> 1-(1/g) <[:t o <a+ ;:;;n(b,@) th> g
‘ug(a)z :ig(b) ) ﬁ r’ S +<j: |t|dt>17(”q> (Jzt 7 <a+ i‘jq(h a)> th) UT
< f;:)z [(;‘il)/P <u}:’7'(a){" . z k(|7 ) (g’(a)r’)) : (A(i :)) o < () "t + "l J':t(l - (j%;))f

1 1/p n 1/q 1-(1/q)
(;P1> (W’(aﬂﬂ,ﬁZK4c(|9’<h>|‘i|g’<a>q)> } (17" @) |7 @)]")d ) <>

(40) < {5 (a) qd”;sn ( (Aw))
(7ol 7 @) ) }

an 1f we put (F ) |F ()

! q
= |‘/ (b)| - n(b.a) [ [ 1-(1/q 2 i 1/q
|%'(a)|" in Theorem 11, then ey {<2> < | (a ;ZKI(OE ) |F (a)] ))
¥ 1-(1/q) v, Lo ’ ’ 1q
|//l F(a)+AF(a+n(b,a) atn(ba) +<2> <2|‘Gi (“)‘q+ZZK2(<|g (b)|q’|g (“)q)> :
| Trp - J F(x)dx s=1
b Pl 1/p n , (43)
Sy
1 LN Up "
+ 72 K| 7' ( )q> q+</\P 1) <<,\_ lz K4> |7 (@) Here, K, and K, are formulated as that of Theorem 10.
= p+l = This completes the proof of Theorem 12.
1/q
IS g
+;S; K4|"' (b)‘ > ]

We now discuss some special cases of Theorem 12.

(I) Choosing A =y =1 in Theorem 12, we get
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F(a)+ F(a+n(b,a)) 1 atn(ba) _
e[ s

aba) [(1F @] 18 [(s+1)(s+2)2 =252\, 7, _, o 1
< S [(f ) (W>((V @)% @]")

(\g’(b)\q,|g’(a)|q)> q]

|F' (a |" (s+1)(s+2)2° —
+< 2 le (s+1)(s+2)25!

(44)

(I) Choosing #(b,a) =b —a in Theorem 12, we have

n 1/q
T 32 &¢(17 o) \%’w)\q))
1/q
Z KL (|7 )" |f7’<a>|q)) }

(45)

(I1I) Taking {(|F' (b)|", | (a)|") = |F' (b)|" -
in Theorem 12, we obtain

7' (a)"

uF(a) + A F(a+n(b,a)) 1 (ernea)
P L e
n(b, a)

’iz 1-(1/q) e B lzn:
2 2 nH

! q
(s Kl) -
n 1/q 2 1-(1/q) 2 n
+%g KI%'(b)}q> +<%> ((’\7—%2 K2>|9'(a)|q

(46)

Theorem 13. Let ¥ : ¥ — R be a differentiable function on
I° with n(b.a)A >0, A>0, u>0, and let F' € L[.7), 1ip + 1

Iq=1, p>1,q> L If |F'|" is n-polynomial {-preinvex func-
tion, then

uF(a)+ A F(a+n(b,a)) 1 [eba)
B T R

Wb [T @ NP e
= vy [ﬁ{(wmma) ( [ @[+ 5 2 KL (17 @) | <“>V)>
w2\ 1Ip [ 2 n 11q
+<;iz> (’%\g'@l“é;Ks<(}9’<b>}”>|9’<a)\‘i)> }
pe2 p 2 n 11
(o) = (Ferors i aa(eorin)

A2 p 2 , n , . , liq
+<p+2) (7|?(a)‘qu%;KgC(‘g(h)",‘g(a)|q)> }],

(47)

where
O S
T2 (s+2)(A+p)”
K - [iz B #5+2
T2 (s+D)(s+2)A+p)
Koo Ao+ A =2 = As + 2) !
772 (s+D(s+2)A+p)°
e X )T - A+ ) (A + )
572 (s+1)(s+2)(A+p) '
(48)

Proof. Note that |%'|? is n-polynomial {-preinvex function,
by using the refined Holder inequality (see [19]), we
obtain

|4 F(a)+A Fla+nba) 1 J'“*'l(b'“)
} Atp b)),

U < A;1(19 a)) dt+J
o o
o ([peear)” ([ (o o)
x{ (A= o)t W(I(A*t) (o ha
([ o o)) )] <
B @,J‘P{;z W(ﬁ”*”(‘w“)“*ii
(G o onal ()"
(Hlree50 Gmnac))
() (fer-250- ()
(O @) )™ + (ﬁiz) “q
J/\ Og @[+ Z( (ﬁ:ﬂ))(g {‘{|%’(a)‘q>>dt>”q}]
(A(b:)) {1 {((p+;14§(+;+2>> P(f‘;w’(a);‘u%gxsc(}g’(bﬂq,\g’(a)V))”q
(2 2)”(" '@ %ini(\%’(b)lq,!ff’(a)lq))w}

1 plas v "
() < G CEIR)
()" (o destorion) |

< ba)
B (/\ * #)2

F(x)dx

(

o
o))

?

" ))’ dt)

(49)

A direct computation gives

0o (5 o



|

(%))dt 5 <s+1><slf+zz><k+m“
o)

N (@A) - A+ 2t
(s+1)(s+2)(A+p)

p+t\*
(57) )
A (AT - As+ 2) (A )
(s+1)(s+2)(A+p) '

>

(50)

This completes the proof of Theorem 13.
Let us now discuss some special cases of Theorem 13.

(I) If we take A = =1 in Theorem 13, we get

Fa)+ Fa+nba)) 1
2 T nba) ),

Up
3"4 [((P+1)p+2>
q 1 1 o "
Z; 2 (s+2 )((|g )% |F ()] ))
il S g
+<L+ Z (% ﬁ) (‘g |q,‘97,(u){q)> }
9

1
1 ’(u)|" 1 2% -5-3
<p+ 2

P n s+1
+(\J(a)l *12 <;+ + 525
n= \2 s+1)(s+2)2

a+1(b,a)
[ F(x)dx

)(I% \q>|9’<a)\q)>w}1.

(51)

(1) If we put #(b, a) = b — a in Theorem 13, then

uF(a)+ A F(b 1o
7(;+‘M ()_T—aj F(x)dx

#p+2

e B{ ((P+1)(p+2)>w <M72‘g’<“>’q* a5 (o lg/(a)‘q»
()" (S xsterorin) )
(i) (3o xsteonszen)
(k) et s satonan)

1/q

1q

(52)

(D) If we choose ((|F (b)|%,|F (a)|")=|F (b)|"-
|%' (a)|" in Theorem 13, then

_ 1/q
G-crmeram)(7or WW))
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|uF (@) +AF(a+nyba) 1 “*”(b'“)g i
| A+ p n(b,a) J i

n(b,a) |1 s 1p R o
< (/\+[4)2 p{((p+1)(p+2)> ((7_;; K5>|J' (a)|
n 1/q9 ! 5 ;
o) () (5 e)rer
1& P2 lp
+;Z K |q> } {<(P+1>(p+2)>
AZ 1 / 1/q
(( ;Z ) Z K;|F'(b )

P2 n g
+Qn)(@@kﬁf@“nzw¢@ﬁ fl

(53)
3. Application to Special Means

Let us recall the definitions of the arithmetic mean, weighted
arithmetic mean, and the mean for functions, as follows:

(1) The arithmetic mean

a, + a,+--++a,

d(ay,a,, -, a,)= (54)

n

(2) The weighted arithmetic mean

D6y + pyar+---tp,a,

A,y Ay 315 Pas 5 Py) =
(a> a PrsPys o5 D) Pt Pyt D,
(55)
(3) The mean of the function @ on [a, )
1 b
A y(a,b) = - aJ D(x)dx (56)

We establish the following inequalities for special means.

Proposition 14. Let @ : [a,a+14(b,a)] > R be a preinvex
function with ®(b) — ®(a) = 0. If §(b,a) >0 and ® € L[a,a
+7(b, a)], then we have the following inequality

Ay (a,a+n(b,a)) <O(a) + (P(b) - D(a)) L C i ﬁ)

(57)

Proof. Taking F(x) = ®(x),x € [a,a+n(b,a)] and {(F(b),
F(a)) = F(b) — F(a). Since @(x) is a preinvex function with
@(b) - O(a) >0, we deduce from Proposition 7 that O(x) is a
n-polynomial preinvex function. Using Theorem 8, we
obtain the desired inequality (57).
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Proposition 15. Let O be a differentiable function, and let
|@'|: [a,a+#(b,a)] — R be a preinvex function with |®' (b) |
—| @' (a) | 20. If y(b,a) >0, A> 0, u>0, and |®' | €L[a, a +
#(b, a)], then we have the following inequality

| (P(a), P(a+n(ba)); i, A) = dog(aa+n(b,a))|

M=

A (K Ky) |

1(b, a) / 2 2 2 l i
T @' (a) | (A2, 4%) + ;(|q> )] - |@ (u)})s

I/
—

(58)

where K, and K, are the expressions as that described in
Theorem 10.

Proof. Choosing F(x) = ®(x),x € [a,a+ (b, a)] and {(F(b
), F(a)) = F(b) — F(a). Since |®'(x)| is a preinvex func-
tion with |®'(b) | - | @ (a) | 20, it follows from Proposition
7 that |®'(x) | is a n-polynomial preinvex function. Using
Theorem 10 leads to the desired inequality (58).
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In this article, we inspect the sufficient conditions on the Orlicz generalized difference sequence space to be premodular Banach
(sss). We look at some topological and geometrical structures of the multiplication operators described on Orlicz generalized

difference prequasi normed (sss).

1. Introduction

The multiplication operators have a large subject of mathe-
matics in functional analysis, namely, in eigenvalue distribu-
tion theorem, geometric structure of Banach spaces, and
theory of fixed point. For more technicalities (see [1-6]), by
CN, ¢, ¢, ¢, and c,, we mean the spaces of each, convergent,
bounded, r-absolutely summable and convergent to zero
sequences of complex numbers. IN displays the set of non-
negative integers. Tripathy et al. [7] popularized and mea-
sured the forward and backward generalized difference
sequence spaces:

( ) {woee™: (A( i) €6 (1)

)= {(wy) €CN : (ATw,) € G},

where m,n e N, G=4_,, ¢, or ¢,, with

Agm)wk = Z (_1)vczlwk+vn’ andA:lnwk = z (_I)VCT Wi_yn>
v=0 v=0

(2)

successively. When # = 1, the generalized difference sequence
spaces concentrated to G(A"™)) defined and examined by Et

and Colak [8]. If m = 1, the generalized difference sequence
spaces diminished to G(4,) constructed and studied by
Tripathy and Esi [9]. While if n=1 and m = 1, the general-
ized difference sequence spaces reduced to G(A) defined
and investigated by Kizmaz [10].

An Orlicz function [11] is a function v : [0,00) — [0,00),
which is convex, continuous, and nondecreasing with v
(0)=0, y(u)>0, for u>0 and yw(u) > oo, as u— co.
In [12], an Orlicz function y is called to satisty the &,
-condition for each values of x > 0, if there is k > 0, such that
y(2x) < ky(x). The 8,-condition is equivalent to y/(lx) <kl
y(x), for every values of x and I>1. Lindentrauss and
Tzafriri [13] used the idea of an Olicz function to construct
the Orlicz sequence space:

e, = {ueCN : p(Bu)<co, forsome >0}, where p(u)

- kfw(luk B
)

(€, [I-I1) is a Banach space with the Luxemburg norm:

||u||=inf{[3>0:p<%>£l}. (4)
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Every Orlicz sequence space includes a subspace that is
isomorphic to ¢, or ¢4, for some 1 < g < co.

Recently, different classes of sequences have been exam-
ined the usage of Orlicz functions via Et et al. [14], Mursaleen
et al. [15-17], and Alotaibi et al. [18].

Let r=(r;) € RN, where R™™ denotes the space of

sequences with positive reals, and we define the Orlicz back-
ward generalized difference sequence space as follows:

(fW(ATH))T = {w = (wj) e CN : 3o > 0 with T(ow)<oo},

()

where 7(w) =Y 5y (A7, [w)l), w;=0, for j<0, Ay,

n+11%j
-1 -1 0 :
| w; | =A" | w; | A" ij_ll, and A w;=w;, for all j, n,

m € N. It is a Banach space, with
Jwll =inf {o>0:7(2) <1}. (6)

When y(w) =w', then €,(47,) =¢,(4},,) investigated
via many authors (see [19-21]). By B(W, Z), we will denote
the set of every operators which are linear and bounded
between Banach spaces W and Z, and if W = Z, we write B
(W). On sequence spaces, Basarir and Kara examined the
compact operators on some Euler B(m)-difference sequence
spaces [22], some difference sequence spaces of weighted
means [23], the Riesz B(m)-difference sequence space [24],
the B-difference sequence space derived by weighted mean
[25], and the m"™ order difference sequence space of general-
ized weighted mean [26]. Mursaleen and Noman [27, 28]
investigated the compact operators on some difference
sequence spaces. The multiplication operators on (ces(r), ||.||)
with the Luxemburg norm ||.|| elaborated by Komal et al.
[29]. Ilkhan et al. [30] studied the multiplication operators
on Cesiro second order function spaces. Bakery et al. [31]
examined the multiplication operators on weighted Nakano
(sss). The aim of this article is to explain some results of
(¢, (A%41)), equipped with the prequasi norm 7. Firstly, we
accord the sufficient conditions on the Orlicz generalized dif-
ference sequence space to become premodular Banach (sss).
Secondly, we provide with the necessity and sufficient condi-
tions on the Orlicz generalized difference sequence space
provided with the prequasi norm so that the multiplication
operator defined on it is bounded, approximable, invertible,
Fredholm, and closed range operator.

2. Preliminaries and Definitions

Definition 1 [32]. An operator V € B(W) is known as
approximable if there are D, € F(W), for every r € N and
hmr~>00HV - Dr” =0.

By Y (W, Z), we will denote the space of all approximable
operators from W to Z.
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Theorem 2 [32]. Let W be a Banach space with dim (W
then,

) =00

Definition 3 [33]. An operator V € B(W) is named Fredholm
if dim (R(V))‘ < 0o, dim (kerV) < co, and R(V) are closed,
where (R(V)) indicates the complement of range V.

The sequence e;=(0,0,...,1,0,0, ) with 1 in the jh
coordinate, for all j € IN, will be used in the sequel.

Definition 4 [34]. The space of linear sequence spaces Y is
called (sss) if

(1) e, € YwithreN

(2) Let u=(u,)eC™, v=(v,) €V, and |u,|<|v,|, for
every r € IN, then u € Y. This means Y be solid

(3) If (u,),, €Y, then (uy,5)) € Y, wherever [r/2] indi-

cates the integral part of r/2

Definition 5 [35]. A subspace of the (sss) Y, is named a pre-
modular (sss) if there is a function 7 : Y — [0,00) confirming
the conditions:

(i) 7(y) =0 for each y € Y and 7(y) =0 & y =0, where
0 is the zero element of Y

(ii) There exists a > 1 such that 7(yy) < a|y|t(y), for all
yeY,andneC

(iii) For some b>1, 7(y +z) <b(r(y) + 7(2)), for every
y,z€Y

(i) Iy, | <[z, with r € N implies ((,)) < 7((z,))
(v) For some by = 1, 7((y,)) £ 7((y,5)) < bor((3,)

(vi) If y=(y,):2, € Y and d > 0, then there is 7, € N with
() ) <d

(vii) There is t >0 with 7(v,0,0,0, --) >t | v | 7(1,0,0,0,
--+), foranyve C

The (sss) Y, is known as prequasi normed (sss) if 7
administers the parts (i)-(iii) of Definition 5 and when the
space Y is complete under 7, then Y, is named a prequasi
Banach (sss).

Theorem 6 [35]. A prequasi norm (sss) Y, if it is premodular
(sss).

The inequality [36], |a; + b;|" < H(|a,|" + |b;|"), where
;>0 for all i € N, H=max {1,2"'} and h = sup,q,, will be
used in the sequel.
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3. Main Results

3.1. Prequasi Norm on €, (A", ). In this section, we explain
the conditions on the Orhcz backward generalized difference
sequence space to form premodular Banach (sss).

Definition 7. The backward generalized difference A, is
named an absolute nondecreasing, if |x; | < |y, |, forall i € N,
then |An+1|x ||<|An+1 |ylH

Theorem 8. Let y be an Orlicz function fulfilling the &, -con-
dition and A}, be an absolute nondecreasing, then the space

(¢,(A%;)), can be a premodular Banach (sss), where

0
Z n+1

Proof. (1-i) Assume v, w € €, (A7,

n+1

y(Ara)- (8)

). Since ¥ can be nonde-

creasing, convex, agreeable 8 -condition, and A, can be
an absolute nondecreasing, then there is b > 0 such that

(vw) = Y y(|Ar v+ wi)

i=0
< 2 V(AL + 147w
©)
1 00 (o)

= 5 le/ 2|An+1|v || + ZV/ 2|An+1|w H

i=0 i=0
< g(‘r(v) +7(w)) <B(7(v) + 7(w)) < 00,

for some B=max {1, (b/2)}. Then, v+w € ¢, (A7)

(1) (1-ii) Suppose A € C and v € €, (A}.). Since y is ful-
filling the §,-condition, we obtam

ZV’ |An+1|Aer <d|MZV/ |An+l|vr||)

< D[A|7(v) < o0,

(10)

where D =max {1,d}. Then, Ave¢,(A},). So, from parts
(1-i) and (1-ii), the space ¢ (Am ) is linear. Since e, € e

n+1

e, ce, (A7), forevery r e ]N and g > 1, hence, e, € £ (An+1)

for each r € N.
(2) Let |x;[<|y;|, for every ieN and yet, ar.

Since y is nondecreasing and A}, is an absolute non-
decreasing, therefore, we get

[ee]

T(x) = ZV/ n+1|xt||

i=0

2w Arlyill) =7(y) < o0, (11)
i=0

hence x € ¢, (47.))

(3) Suppose (v,) € £, (A},), one has

()= (1

)<sz AT 7, 1) =27 (v),
(12)

n+1

then (vi,;) €, (A7)

(i) Evidently, 7(w) >0 and 7(w) =0 w=0

(ii) There is D> 1 where 7(qw) <D |# | 7(w), for every
wee,(4),)andneC

(iii) For some B>1, we obtain 7(v+w)<B(r(v)+7
(w)), for all v,wee, (A7)

(iv) Plainly from (2).
(v) From (3), we have that by=2>1
(vi) It is apparent that F = ¢, (A7)

(vii) Since y is verifying the §,-condition, there is {
with 0<¢<y(lnl)/In] such that 7(#,0,0,0, )
>{|n]7(1,0,0,0,---), for each ##0 and >0, if

n=0

Therefore, the space (£,(A}};)) is premodular (sss).
To show that (€,(A};)) is a premodular Banach (sss),
Suppose x' = (x{),°, is a Cauchy sequence in (€, (A%1))

0
then for all € € (0, 1), there is i, € N such that for all 4, j > i,
we get

x—x] Zl//(

=) <ve.  (13)

n+1

Since v is nondecreasing; hence, for i, j > i, and k € N, we
obtain

x/H<8 (14)

n+1 }xk| n+1

Hence, (A7, Ix’ | ) is a Cauchy sequence in C for fixed
keN, so hm]HOOAon] A X} for fixed k € N. Therefore,

7(x' = x") < y(e), for each i>i,. Finally, to explain that x°
€¢,(Ay,,), we have

T(x%) =7 (x" - x" +x") < B(r(x" - x°) + 7(x")) <00.

(15)

So, x” € £, (Ay,,). This implies that (€, (A nv1))_ is a pre-
modular Banach (sss).
Taking into consideration (Theorem 6), we be over the

following theorem.



Theorem 9. If y is an Orlicz function satisfying the §, -condi-
tion and A, is an absolute nondecreasing, then the space
(€,(A%,)), is prequasi Banach (sss), where

[ee]

7(x) = Z (14071

=0

), forallx € €, (A, ). (16)

Corollary 10. If 0< p < oo and A}, is an absolute nonde-
creasing, then (€,(A},))_is a premodular Banach (sss), where

( )‘Zi: n+1|pr foralle(’,( n+1>

4. Bounded Multiplication Operator on ¢, (A7) ))

Here and after, we explain some geometric and topological
structures of the multiplication operator reserve on ¢ ( U

Definition 11. Let k € CN N ¢, and W be a prequasi normed
(sss). An operator V,: W_— W_ is named multiplication
operator if V, w=xw = (k,w, ), € W, for everywe W.If V,
€ B(W), we call it a multiplication operator generated by .

Theorem 12. If k € CN, y is an Orlicz function verifying the
0,-condition, and A, is an absolute nondecreasing, then x
€ty if and only if, V., € B(E, (A2,,).), where T(x) = Y2y

(145 1|, 11), for each x € € (AZ'L)

Proof. Assume the conditions can be satisfied. Let x € £_,. So,

there is € > 0 with |«, | <e, for each r € N, for x € (¢, (A;"H)

Since A7, is an absolute nondecreasing and y is nondecreas-
ing verifying the &,-condition, then

T(ka) = T(Kx) ZV/ |An+1 |Kr|‘xr|)|)
< D WA (elx,) <d£Zw (147 %,1]) < Dz(x),
r=0

(17)

where D=max {1,de}. This implies V, €3B(¢,(4},),).
Inversely, suppose that V, € B(¢, (4}},),). Let us suppose k
¢ £, hence, forall j € N, there is i; € N so as to K;, > j. Since

A7, is an absolute nondecreasing and v is nondecreasing,
one has

(Vi) =r(e,) =((5() )"
= S vl (1 (o) )) = (|2} )

> (1 lil) = v (A5 bl (e )-

(18)

This proves that V, ¢ B(¢,(A7.,),). Therefore, « € £,.
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Theorem 13. Let k€ CN and (€ v(A541)), be a prequasi
normed (sss), with T(x):zr_ol//(|An+1|xr||), for all xet,
(A7 ). Then, |k, | =1, for every reN, if and only if,

V. is an isometry.

Proof. Presume |k, | =1, for each r € N, we have

T(Vx)=r1

—~

Kx) = 7((K,%,)2)

RZAR ) (19)

v([Analx ) = 7(x),

I
Mg

-
Il

I
Mg

0

<
Il

for each xe(t,(Ay,)) . Therefore, V
Inversely, suppose that |1c | <1, for some i=i,, given that
A}, is an absolute nondecreasing and y is nondecreasing,
we get

« 18 an 1sometry.

= 21//( A:‘+1<|Kr| (eio)r )D (20)
< 21//( AT | (&), ) =7(e;)

While [«; | > 1, we can show that 7(Vie; ) > 7(e; ). As a
result, in both cases, we obtain a contradiction. Therefore,
|x,| =1, for all re N.

5. Approximable Multiplication Operator

on ¢ (Azqﬂ)

In this section, we investigate the sufficient conditions
on the Orlicz backward generalized difference sequence
space equipped with prequasi norm 7 so that the multi-
plication operator acting on ¢, (A7) is an approximable

n+1
and compact.
By card(A), we denote the cardinality of the set A.

Theorem 14. If x € CN and (¢ y(A541))_ is a prequasi normed

(s5), where 7(x) = S w405 ), for all x€e,(aT,),
then V€ Y((¢,(47%,)).) if and only if (x,)%%, € ¢,

Proof. Let V, € Y'((£,(4}%1)) )- So, V. € B.((£,(4};)) ) to

n+1
show that (k, )72, € ¢o- Assume (k,)12p ¢ co» therefore there is
8>0 so that Ag={reN: |x,|>} has card(A;) = co. Sup-
pose a; € Ag, for each i € N, then {e, : a; € A} is an infinite
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bounded set in (€, (4}},))_. Suppose

(raa=re) el o) e (el ()
, w( % (@), = () )]])
v(janalo((e), = () )]])

8ea, - 6eaj>,

/N

Am

n+1

I
D18

0

Am

n+1

Y
18

i
o

T

/N

(21)

: a; € By} € £, which
cannot have a convergent subsequence under V. This gives
that V, ¢ B.((€,(4}})),)- Then, V, ¢ Y'((¢ (A’” )),), and

n+1
isooki = 0. Contrarily,
assume lim, ,x; =0, then for all >0, the set A;={ieN
: |x;]=0} has card (Ag) < 00. So, for all & > 0, the space

((ew(ATH))T)Aa ={x=(x)€

is finite dimensional. Then, V| (£, (4},

n+1

for every a;, a; € As. This proves {e,

this gives a contradlctlon So, lim;

ch) (22)

) )A is a finite
S

rank operator. For all i € N, illustrate x; € CN by

Kj’ jGAl_
(Ki)j: Y . (23)
0, otherwise.
Evidently, V. has rank (V. ) < coas dim ((¢€,(47},)) )A _

< 00, for all i € N. Hence, since A}, is an absolute nondecreas-
ing and v is convex and nondecreasing, we obtain

(V= V) = T(((Kj - (Ki)j)xj)zo)

X CA(CRONE])
PRI CA(CRONE])
e 2 w(jana(](s=0,)5)])
= S w(an ) < %f (1475
J0.j¢Ay j= 0,]$A%
<1 Zw (A2 ) = 2o,
(24)

This gives that ||V, - V, || < 1/i, and that V is a limit of
finite rank operators. So, V, is an approximable operator.

Theorem 15. Pick up x € CN and (¢ v(A%11)), be a prequasi

normed (sss), where T(x) = 0 01//(|An+1|x,|\), for every x €

5
e, (4,). Therefore, V, €B.((¢,(4%,)) ), if and only if,
(k)i € <o

Proof. Clearly, since every approximable operator is compact.

Corollary 16. If k € CN, v is an Orlicz function satisfying the
0,-condition, and A, is an absolute nondecreasing, then

B,((8,(47,)), )< B((e, (A7), ). where 7(x) = X2y (147,
b 1), for all x € €, (A7 ).

Proof. In view of I that is a multiplication operator on
(€,(4%1)), generated by x=(1,1,). So, I¢ B.((€,(4%)),)
and T < B((¢, (A7) ).

6. Fredholm Multiplication Operator
on £, (Al)

In this section, we introduce the sufficient conditions on the
sequence space ¢, (A},,) equipped with prequasi norm 7 so

n+1
that the multiplicatlon operator acting on it has closed range,
invertible, and Fredholm.

Theorem 17. Let x € CY, (¢, (4%41)) » be prequasi Banach

r= 01//(|An+1|x H) fOT all xet ( n+1)
and V, € B((¢,(4}},)) )- Then, k be bounded awayfrom zero

on (ker (x))", if and only if, R(V

(sss), where 7(x)=

) is closed.

Proof. Suppose the sufficient condition be satisfied, so, there is
€ >0 with |x;| > &, for every i € (ker (x))", to prove that R(V,)
is closed. Let d be a limit point of R(V, ). Hence, there is V x;
in (¢, (A7,,)) » for each i € N'so thatlim;_,V,x; = d. Clearly,
(Vex;) is a Cauchy sequence. As A}, is an absolute nonde-
creasing and vy is nondecreasing, we  have

(VX - VKxj) = Ozo:t//(

Il
|
Mg
<
~

[\
Mg ¢
"<
~—

:1"+1(|Kr|

0=, 1))

1]
Mg ]
<

(25)



6
where

(x;),, 1€ (ker (k))°

i), = ' . (26)
0, r¢ (ker (x))
This gives that (y;) is a Cauchy sequence in (£, (A7) -

As (€,(47;)), is complete, there is x € (EW(AZ’H))T s0 that
lim,_, .y, = x. As V., is continuous, then lim; , V., y;, =
Although lim; ,  V x; =lim; , V. y, =d, therefore, V. .x =d.
So, d € R(V,). This 1mphes that R(V,) is closed. Inversely,

assume R(V,) be closed, hence, V, be bounded away

m .
from zero on ((¢,(4,)) )(ker W So, there is €>0 so

that 7(V, x) >er(x), for every x e ((QV,(A,[’”H))T)O(er )

Let B={re (ker (x))" : |x,|<e} as A", is an absolute
nondecreasing and y is nondecreasing verifying the §,-con-
dition, if B # ¢; then for i, € B, one has

(@),)7) = 2 v(]a
”0>rH) <det(e, ),

(en,),

)

n+1

(27)

for some d > 1. This implies a contradiction. Therefore, B = ¢
so that |k,| > ¢, for each r € (ker (x))“. This completes the
proof of the theorem.

Theorem 18. Let x € CN and (¢,(A%,,)), be a prequasi
Banach (sss), with T(w) =2 01//(|An+1|w [|), for every we
€, (Ay, ). There are b>0 and B>0 so that b<x, <B, for
every r €N, if and only if, V., € B((€,(4};)) ) be invertible.

n+1

Proof. Assume the conditions be established, define y € CN
by y,=1/x,, from Theorem 12, we obtain V,,V, €B
((e,(4%1)),) and V.V, =V, .V, =1 Therefore, V, is the
inverse of V Conversely, let V. be invertible. Hence, R(V,)

= ((&,(4741)),) - This gives R(V
Theorem 17, there is b>0 so that |k, |>b, for each re
(ker (x))". Now, ker (k) =g, else x, =0, for several r, €N,
we have e, €ker (V,). This implies a contradiction, as
ker (V) is trivial. Therefore, |x,|>a, for every reIN.
Because V, is bounded, so from Theorem 12, there is B

>0 so that |k, | <B, for each r € N. Hence, we have proved
that b<|x, | <B, for every r e N.

) which is closed. From

Theorem 19. Pick up x € CN and (£ v(A%41)), be a prequasi
Banach (sss), where T(w) = Y12, 0w(|A L), for every w e
e, (A%). Then, V€ B((€,(4}.,))_) be the Fredholm opera-

n+1

tor, if and only if, (i) card (ker (k)) < 0o and (ii) |x, | ¢, for
each r € (ker (x))".

Journal of Function Spaces

Proof. Assume V,_ be Fredholm, Let card (ker (x)) = co.
Therefore, e, € ker (V,), for every n € ker (k). As e,’s is line-
arly independent, this implies card (ker (V) = co. This gives
a contradiction. Hence, card (ker (x)) < co. From Theorem
17, condition (ii) is verified. Next, if the necessary conditions
are satisfied, to prove that V_ is Fredholm, from Theorem 17,
condition (ii) implies that R(V, ) is closed. Condition (i) gives
that dim (ker (V,)) < 0o and dim ((R(V,))‘) < 00. So, V, is
Fredholm.
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In this paper, the functional Quermassintegral of log-concave functions in R" is discussed. We obtain the integral expression of the
ith functional mixed Quermassintegral, which is similar to the integral expression of the ith mixed Quermassintegral of convex

bodies.

1. Introduction

Let #" be the set of convex bodies (compact convex subsets
with nonempty interiors) in R", the fundamental Brunn-
Minkowski inequality for convex bodies states that for K, L
€ #", the volume of the bodies and of their Minkowski
sum K+L={x+y:x€K,yeL} is given by

V(K +L)" > V(K" + V(L)' (1)

with equality if and only if K and L are homothetic; namely,
they agree up to a translation and a dilation. Another geo-
metric quantity related to the convex bodies K and L is the
mixed volume. The most important result concerning the
mixed volume is Minkwoski’s first inequality:

VKoL) = L lim V(K +tL) - V(K)

> K (n=1)/n L I/n,
nt—0* t _V( ) V( )

(2)

for K, L € Z". In particular, when choosing L to be a unit
ball, up to a factor, V,(K, L) is exactly the perimeter of K,
and inequality (2) turns out to be the isoperimetric inequality
in the class of convex bodies. The mixed volume V,(K, L)
admits a simple integral representation (see [1, 2]):

1

ViD= | mse 3)
Sn—l

where h; is the support function of L and Sy is the area mea-
sure of K.

The Quermassintegrals W;(K)(i=0, 1,---,n) of K, which
are defined by letting W,(K) =V ,(K), the volume of K;
W, (K) = w,,, the volume of the unit ball B in R" and for
general i=1,2,---,n—1,

W)= 22| vl (K JauE), @)

in

where &;, is the Grassmannian manifold of i-dimensional
linear subspaces of R”, du(¢;) is the normalized Haar mea-
sureon ¥, ,, K| denotes the orthogonal projection of K onto
the i-dimensional subspaces &,, and vol, is the i-dimensional
volume on space &;.

In the 1930s, Aleksandrov and Fenchel and Jessen (see [3,
4]) proved that for a convex body K in R", there exists a reg-
ular Borel measure S, ; ;(K) (i=0,1,---,n—1) on §", the
unit sphere in R", for K, L € %", the following representa-
tion holds

WK, L) = — i Wi D) = Wi(K)
n—1t-0* & (5)
1

ijwmwmw
n Na!



https://orcid.org/0000-0002-7128-1458
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8811566

The quantity W,(K, L) is called the ith mixed Quermas-
sintegral of K and L.

In the 1960s, the Minkowski addition was extended to the
L*(p=1) Minkowski sum K oL = hb + thf. The extension

of the mixed Quermassintegral to the L mixed Quermassin-
tegral due to Lutwak [1], the L mixed Quermassintegral
inequalities, and the L Minkowski problem are established.
(See [2, 5-13] for more about the L’ Minkowski theory.)
The LP mixed Quermassintegrals are defined by

for i=0,1,---,n—1. In particular, for p=1 in (6), it is
W;(K, L), and W,,(K, L) is denoted by V (K, L), which is
called the L, mixed volume of K and L. Similarly, the L?

mixed Quermassintegral has the following integral represen-
tation (see [1]):

W,(K,L)= %Lﬂilhi(u)dsp,i(K, u). (7)

The measure S,;(K,-) is absolutely continuous with
respect to S;(K,-) and has Radon-Nikodym derivative
ds,;(K,)/dS;(K, ") =he()". In particular, p=1 in (7)
yields the representation (5).

Most recently, the interest in the log-concave functions
has been considerably increasing, motivated by the analogy
properties between the log-concave functions and the vol-
ume convex bodies in F#". The classical Prékopa-Leindler
inequality (see [14-18]) firstly shows the connections of the
volume of convex bodies and log-concave functions. The
Blaschke-Santalé inequality for even log-concave functions
is established in [19, 20] by Ball (for the general case, see
[21-24]). The mean width for log-concave function is intro-
duced by Klartag and Milman and Rotem [25-27]. The affine
isoperimetric inequality for log-concave functions is proved
by Avidan et al. [28]. The John ellipsoid for log-concave
functions has been establish by Alonso-Gutiérrez et al. [29];
the LYZ ellipsoid for log-concave functions is established
by Fang and Zhou [30]. (See [31-37] for more about the per-
tinent results.)

Let f =e™, g =e™" be log-concave functions, «, > 0, the
“sum” and “scalar multiplication” of log-concave functions
are defined as

a-fof-g=ev, w'=au"+pv, (8)

where w* denotes as usual the Fenchel conjugate of the
convex function w. The total mass integral J(f) of f is
defined by J(f) = [.f(x)dx. In paper [38] of Colesanti and
Fragala, the quantity 87 (f, g), which is called as the first var-
iation of J at f along g, 8J(f, g) = }Lrg(](f@t~g) -J(H))It
is discussed. It has been shown that 8J(f, g) is finite and has
the following integral expression:
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where p(f) is the measure of f on R”.

Inspired by the paper [38] of Colesanti and Fragala, in
this paper, we define the ith functional Quermassintegrals
W,(f) as the i-dimensional average total mass of f:

Wi(f) =

[ ), =0t
(10)

where J,(f) denotes the i-dimensional total mass of f
defined in Section 4, ¥, is the Grassmannian manifold of
R", and du(¢, ;) is the normalized measure on &,,. More-
over, we define the first variation of W; at f along g, which is

Wi(f, g) = lim Wifet-g)- Wi(f).

t—0" t

w

n—in

(11)

It is a natural extension of the Quermassintegral of con-
vex bodies in R"; we call it the ith functional mixed Quer-
massintegral. In fact, if one takes f=yx,, and
dom (f) =K € R", then W,(f) turns out to be W,(K), and
Wi(xx> x1) equals to W;(K, L). The main result in this paper
is to show that the ith functional mixed Quermassintegral has
the following integral expressions.

Theorem 1. Let f, g€ &', be integrable functions, u,(f) be
the i-dimensional measure of f, and W,(f, g) be the ith func-
tional mixed Quermassintegral of f and g. Then,

1 .
Wi(f.9) = ﬁj nhﬂ\zn,id””*i(f)’ i=0,1,--,n—1,
R
(12)

where h ale, is the support function of g|€m'

The paper is organized as follows: In Section 2, we intro-
duce some notations about the log-concave functions. In Sec-
tion 3, the projection of a log-concave function onto subspace
is discussed. In Section 4, we focus on how we can represent
the ith functional mixed Quermassintegral W;(f, g) similar
as W,(K,L). Owing to the Blaschke-Petkantschin formula
and the similar definition of the support function of f, we
obtain the integral representation of the ith functional mixed
Quermassintegral W,(f, g).

2. Preliminaries

Let u:Q— (—00,+00] be a convex function; that is,
u((l-t)x+ty) < (1 —-t)u(x) + tu(y) for te(0,1), where
O={x€eR": u(x) € R} is the domain of u. By the convexity
of u, Qis a convex set in R”. We say that u is proper if Q + &,
and u is of class €~ if it is twice differentiable on int (Q), with
a positive definite Hessian matrix. In the following, we define
the subclass of u:
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<= {u : 2 — (—00,+00]: u is convex, low semicontinuous, H Il‘im u(x) = +oo}.
x| —+00

Recall that the Fenchel conjugate of u is the convex func-
tion defined by

u'(y) = sup {(x,y) — u(x)}. (14)

x€R”

It is obvious that u(x) + u*(y) = (x, y) forall x, y € O, and
there is an equality if and only if x € Q and y is in the subdif-
ferential of u at x, which means

u* (Vu(x)) +u(x) = (x,Vu(x)). (15)

Moreover, if u is a lower semicontinuous convex func-
tion, then also u™* is a lower semicontinuous convex function,
and u** = u.

The infimal convolution of u and v from Q to (—c0, + 0]
is defined by

uEv(x) = inf {u(x - ) + ()} (16)

The right scalar multiplication by a nonnegative real
number « is

() () = au (&)’ ifa>0, (17)

I{O} N lf oax= 0.

The following proposition below gathers some elemen-
tary properties of the Fenchel conjugate and the infimal con-
volution of u and v, which can be found in [38, 39].

Proposition 2. Let u, v : Q — (—00,+00] be convex functions.
Then,

(wOv)* =u* +v* (18)

(1) (ua)" =au*,a>0
(2) dom (udv) = dom (u) + dom (v)

(3) it holds u*(0) = —inf (u); in particular, if u is proper,
then u*(y) > —o0; inf (u) > —co implies u* is proper

The following proposition about the Fenchel and Legen-
dre conjugates is obtained in [39].

Proposition 3 (see [39]). Let u : Q — (—00,+00| be a closed
convex function, and set € = int (), €" :=int (dom (u*)).
Then, (€, u) is a convex function of Legendre type if and only
if €%, u* is. In this case, (€, u*) is the Legendre conjugate of
(€, u) (and conversely). Moreover, Vu =€ — € is a contin-
uous bijection, and the inverse map of Vu is precisely Vu*.

A function f : R" — (—00,+00] is called log-concave if for
all x,y € R" and 0< t < 1, we have f((1-t)x+ty) > f""(x)
f (). If f is a strictly positive log-concave function on R",
then there exists a convex function u : Q — (—00,+00]| such
that f = e™*. The log-concave function is closely related to the
convex geometry of R". An example of a log-concave function
is the characteristic function x, of a convex body K in R",
which is defined by

1, ifxek,

x) = e k) = 19
X (%) {0, Frek, (19)

where I is a lower semicontinuous convex function, and the
indicator function of K is

0, ifxek,

Ig(x) = 20
() {00) rer (20)

In the later sections, we also use f to denote f being
extended to R":

f, xeQ,
= R" (21)
0, x€ —.
0

Let o/ ={f : R" - (0,+00]: f=e",ue L} be the sub-
class of f in R". The addition and multiplication by nonnega-
tive scalars in of are defined by the following (see [38]).

Definition 4. Let f=¢™, g=¢" €, and «, > 0. The sum
and multiplication of f and g are defined as

o .f [<3) ﬂ . g = e_[(ua)‘:‘(vﬂﬂ . (22)
That means,

<a~fe>ﬂ-g><x>=supf(x‘y)“g(l)ﬁ. 23)

JeR? o B

In particular, when a=0 and $>0, we have (a-f®
B-9)(x) = g(x/B)F; when a>0 and f=0, then (a-fe&f-
g)(x) = f(x/a)"; finally, when a = =0, we have (a-f®f3-

9) = Iy
The following lemma is obtained in [38].

Lemma 5 (see [38]). Let u € &, then there exist constants a
and b, with a > 0, such that, for x € Q,

u(x) = allx|+b. (24)

Moreover, u* is proper and satisfies u*(y) > —co, Vy € Q.

Lemma 5 grants that £ is closed under the operations of
infimal convolution and right scalar multiplication defined
in (16) and (17) which are closed.



Proposition 6 (see [38]). Let u and v belong both to the same
class &, and a, 3= 0. Then, ualvf3 belongs to the same class
as u and v.

Let f € o, according to papers of [26, 40], the support
function of f = e is defined as

hy(x) = (log f(x))" = " (x), (25)
where u* is the Legendre transform of u. The definition of hy is
a proper generalization of the support function hy. In fact, one
can easily check th = hy. Obviously, the support function hf

share the most of the important properties of support functions
h. Specifically, it is easy to check that the functionh : o — &£
has the following properties [27]:

(1) h is a bijective map from of — £
(2) his order preserving: f < g if and only if hy <h,

(3) h is additive: for every f, g € o, we have hf@g = hf +

hy

The following proposition shows that h, is GL(n)
covariant.

Proposition 7 (see [30]). Let f € of, A € GL(n) and x e R".
Then,

hroa(x) =he(Ax). (26)

Let u,v e %, denote by u, =ulvt(t>0), and f,=e™".
The following lemmas describe the monotonicity and con-
vergence of u, and f,, respectively.

Lemma 8 (see [38]). Let f=¢e", g=g " ed. For t >0, set
u, =u0(vt) and f, = e™*. Assume that v(0) = 0, then for every
fixed xeR", u,(x) and f,(x) are, respectively, pointwise
decreasing and increasing with respect to t; in particular, it
holds

uy(x) < ug(x) <u(x), f(x) < fi(x) < f,(x)
(27)

Lemma 9 (see [38]). Let u and v belong both to the same class
& and, for any t > 0, set u, = u0(vt). Assume that v(0) = 0,
then

(1) Vx e Q, lirgl u,(x) = u(x)
t—0*

(2) VEc cQ, lir}? Vu,(x) = Vu uniformly on E
t—0*

Lemma 10 (see [38]). Let u and v belong both to the same
class & and for any t >0, let u,==ud(vt). Then, Vx € int
(0,), and ¥t >0,

Vx e R"Vt e |0, I].
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= —y(Vuy(x), (28)

where v :=v*.
3. Projection of Functions onto Linear Subspace

Let ©,,(0<i<n) be the Grassmannian manifold of i
-dimensional linear subspace of R". The elements of &, , will
usually be denoted by &;, and & stands for the orthogonal
complement of &, which is a (n —i)-dimensional subspace
of R". Let§; € G;, and f : R" — R. The projection of f onto
&, is defined by (see [25, 41])

(29)

fle,(x) = max {f(y): y ex+ &},

where & is the orthogonal complement of §; in R” and Q| g is

the projection of Q onto &;. By the definition of the log-
concave function f =e™, for every x € Q] , one can rewrite

(29) as

g (x) =exp {max {-u(y): yex+&}} = el (x). (30)

Regarding the “sum” and “multiplication” of f, we say
that the projection keeps the structure on R”. In other words,
we have the following proposition.

Proposition 11. Let f,ge o/, &, €9, ,, and &, 3> 0. Then,
(fop gl =aflgof-gl,. (1)

Proof. Let f, g e o, let x,, x,,x €&, such that x = ax; + fx,,
then we have

(@ f@B-g)e (x) 2 (a-f®pg)(ax, + pr, + &)

(32)
> f(x +E) g(x, + 8P

Taking the supremum of the second right-hand inequal-
ity over all &, we obtain (a-fof-g)lg2a flgop- g|E‘.
On the other hand, for x € £, x;, x, € &; such that x, + x, =
x, then

(a.f|§[e;ﬁ.g§)(x): sup {max {f"‘(%1 +Ef)} max

X +x,=X

P e

{5 }}
xl
E

—max{ sup (

=(a-fep-g)lg ().
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Since f,g>0, the inequality max {f-g} <max {f}-
max {g} holds. So, we complete the proof.

Proposition 12. Let §; € G, , f and g are functions on R",

such that f(x) < g(x) holds. Then,

holds for any x € &,.

Proof. For yex+&;, since f(y)<g(y), then f(y)<max

{9(): yex+&}. So, max {f(y): yex+Li} <max {g(y)
: y €x+&}. By the definition of the projection, we com-
plete the proof.

For the convergence of f, we have the following.

Proposition 13. Let {f,} be functions such that lim f, = f,,
n—00

§i €, then ,}L‘E‘O(fnf,) :fo‘i,»'
Proof. Since lim f.=fo it means that Ve > 0, there exist N,
Vn > N, suc’il i[)?mt fo—€<f, <f,+e By the monotonicity
of the projection, we have f0|E[ —e<f,le Sf0|£i +&. Hence,
each {f,|; } has a convergent subsequence; we denote it also
by {fn|£,.}’ converging to some f’0|5i. Then, for x €&;, we
have

fole () = e <ol ()= lim (£, ) () < fyle () +2. (35)

n—-o00

By the arbitrary of &, we have | &, = fol g SOwWe complete

the proof.
Combining with Proposition 13 and Lemma 9, it is easy
to obtain the following proposition.

Proposition 14. Let u and v belong both to the same class &
and Q € R" be the domain of u, for any t > 0, set u, = ud(vt).
Assume that v(0) =0 and &, € &, ,, then

in

(1) Vx € Qlg, limu]e (x) = ul, (x)

Vx € int (Q|E,>, lim Vu, | =V, (36)
i (0" i i

Now, let us introduce some facts about the functions u,
= ul(vt) with respect to the parameter t.
Lemma 15. Let &; € G, ,, u and v belong both to the same class
&, u, =ul(vt) and Q, be the domain of u, (t > 0). Then, for
x €,

%(”t|5,~)(x) = —‘I/(V(”zki)(x))’ (37)

where y=v"| .

Proof. Set D, :=(|; &, for fixed x €int (D,), the map ¢
— V(u|¢ )(x) is differentiable on (0, +c0). Indeed, by the
definition of Fenchel conjugate and the definition of projec-
tion u, it is easy to see that (u; )" = u*|€i and (uOut)|; =u

|e Olut| E,- hold. Proposition 6 and the property of the projec-
tion grant the differentiability. Set ¢ :=u"[; and y:=v"|,
and @, = ¢ + ty, then @, belongs to the class - on &,. Then,
V2@, = V2 + tV*y is nonsingular on &;. So, the equation

Vo(y) +tVy(y) —x=0 (38)

locally defines a map y = y(x, t) which is of class €". By Prop-
osition 3, we have V(u,[; ) is the inverse map of V,, that is,

Vo, (V(ug (x)) = x, which means that for every x € int (D,)
and every t > 0, t — V(u,[; ) is differentiable. Using equation
(15) again, we have

uz|z,. (x)= <x,V (ut|E,) (x)> -, (V (“t|£,-) (x)), Vx €int (D,).
(39)

Moreover, note that ¢, = ¢ + ty, we have

(1= (<3 (1)) (7)) 103 ()10
(o)) (7o )

Differential the above formal we obtain, d/dt(u|; )(x)
=-y(V(u¢ ) (x)). Then, we complete the proof of the result.

U

(40)

=u,

4. Functional Quermassintegrals of Log-
Concave Function

A function f € ¢ is nondegenerate and integrable if and only

if | %im u(x)/lxll = +co. Let &' ={ueZ:ueB(R"),
x[|—+00

lim wu(x)/|x]| =+oo}, and &' ={f:R"— (0,+c0]: f =

[lxll—+0co

e, ue ?'}. Now, we define the ith total mass of f.

Definition 16. Let fed', & €%, (i=1,2,--n-1), and
x € Q¢ . The ith total mass of f is defined as

Mﬂ=Lf<mm, (41)

i

&

where f|; is the projection of f onto §; defined by (29) and dx
is the i-dimensional volume element in &,.



Remark 17.

(1) The definition of J,(f) follows the i-dimensional vol-
ume of the projection a convex body. If i=0, we
defined J,(f) = w,, the volume of the unit ball in
R", for the completeness

(2) When taking f = y,, the characteristic function of a
convex body K, one has J;(f) = V;(K), the i-dimen-
sional volume in &;

Definition 18. Let f e of'. Set £, € &, be a linear subspace
and for x € Q] , the ith functional Quermassintegrals of f

(or the i-dimensional mean projection mass of f) are defined
as

w.

Woilf) =2 | OdeE). i=12m (@
where J;(f) is the ith total mass of f defined by (41) and du
(€;) is the normalized Haar measure on &, .

Remark 19.

(1) The definition of W,(f) follows the definition of the i
th Quermassintegrals W,(K), that is, the ith mean
total mass of f on &, ,. Also, in a recent paper [42],
the authors give the same definition by defining the
Quermassintegral of the support set for the quasicon-
cave functions

(2) When i equals to n in (42), we have W(f) = LR“
f(x)dx=](f), the total mass function of f defined
by Colesanti and Fragald [38]. Then, we can say
that our definition of W,(f) is a natural extension
of the total mass function of J(f)

(3) From the definition of the Quermassintegrals W,(f),
the following properties are obtained (see also [42]):

Positivity::0 < W,(f) < +00 (43)

(i) Monotonicity: W,(f) < W(g),iff<g

(i) Generally speaking, W;(f) has no homogeneity
under dilations. That is, W,(A-f)=A"W,(f),
where A - f(x) = Af (x/A), A >0

Definition 20. Let f, g€ o', @, and - denote the operations of
“sum” and “multiplication” in o/'. W,(f) and W,(g) are,
respectively, the ith Quermassintegrals of f and g. Whenever
the following limit exists,

(I’l - l) t—0* t ’ (44)
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we denote it by W,(f, g) and call it as the first variation of W,
at f along g, or the ith functional mixed Quermassintegrals of

fandg.

Remark 21. Let f =y, and g = x;, with K, L € Z". In this
case W,(fet-g)=W,(K+tL), then W,(f,g)=W,K,L).
In general, W,(f, g) has no analog properties of W,(K, L);
for example, W,(f, g) is not always nonnegative and finite.

The following is devoted to proving that W,(f, g) exists
under the fairly weak hypothesis. First, we prove that the first
i-dimensional total mass of f is translation invariant.

Lemma 22. Let §€9,, f=e' g=e'ed . Let
c=inf uly = u(0), d=inf v|; :=v(0), and set u;(x) = ul; (x)
=6 V(%) =Vl () = d §i0) = (@) (), 3 0) = (7)"0), f,
=e g;=¢" and f |;=fot-g Then, if lim ((J;(f,) - J;
()10 = [ i) holds, then we have lim (,(f,) ~J,(f
DI = [ i ().

Proof. By the construction, we have #,(0) =0, 7,(0) =0, and

7,20,$,20,%,20. Further, y,(y) = ,(y) + d, and f, = ¢f ..
So,

(45)

On the other hand, since f,®t-g,=e ) (f, @t-7,),
we have, J;(f@t-g)=e ¥ ](f,®t-3,). By derivation of
both sides of the above formula, we obtain

Lo Lot 9) - 1(f)

t—0* t

—_ *610 ) ~‘ o 751.
deli (018, )+ iy

. {M} =-ae (1))

t

o wnir) | ani)

- | v
(46)
So, we complete the proof.
Theorem 23. Let f, g € o', with —co < inf (log g) < +00 and
W.(f) > 0. Then, W(f, g) is differentiable at f along g, and it
holds
W;(f, g) € [-k+oo], (47)

where k=max {d, 0} W,(f).
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Proof. Let §; € G, ,, since ul; :=—log (f ) = —(10gf)|€i and v
|¢. == log (g¢ ) = —(log f) |5," By the definition of f, and Prop-
osition 11, we obtain f,[; = (f@t-g)\si =fle eat-g|€i.
Notice that v|; (0) =v(0), set d:=v(0), V[¢ (x) = v|£i (x)-d,
Gl (x) = eVs™ and ft|§_ =fle ot g|€,-' Up to a translation

of coordinates, we may assume inf (v) =v(0). Lemma 8 says
that for every x € §,,

f\gigjz

SN
& fl{

, VxeR"Wte|0,1]. (48)

i

Then, there exists f| g (x)= lir%)qf’t| (x). Moreover, it
' =07 g
holds f| g (%) > f] E_(x) and f,| ¢, is pointwise decreasing as ¢

— 0*. Lemma 5 and Proposition 6 show that f| g @t g|£
ed', vte[0,1]. Then, Ji(f) <Ji(f,) <Ti(f)), 00 <Ti(f)
,J;(f,)<oo. Hence, by monotonicity and convergence, we
have lim, . W;(f,) = W,(f). In fact, by definition, we
have ]th|5_(x) - eﬂnf (g, (x=p)tv], (y/t)}’

—inf {u|5i(x—y) + tv’Ei <}—t})} < —inf u}fl(x—y) —tinf V|£’ (%)

(49)
Note that -oco<inf (v[;)<+0o, then —infu
e (x—y) —tinf v| : (y/t) is a continuous function of variable

t, then

Fl, ()= lim f [ (x) =l (%)- (50)

& t—0"

Moreover, W,(f,) is a continuous function of (¢ € [0, 1]);
then, lirgl W,(f,) = W,(f). Since f | = e‘dtf\g (x), we have
t—0* ! i

o1 Will) Wi

=W;(f) ; te ;

Wilf) - Wilf)

t

(51)

Notice that, ft| g 2 fl g We have the following two cases,
that is, 3ty >0 : W,(f, ) = Wi(f~) or W,(f,)=W,(f), Vt>0.

For the first case, since W;(f,) is a monotone increasing
function of ¢, it must hold W,(f,) = W;(f) for every t € [0,
t,]. Hence, we have lirgl (Wi(f,) = Wi(f))/t =—dW,(f); the

t—0"

statement of the theorem holds true.

In the latter case, since f,|; is an increasing nonnegative

function, it means that log (W,(f,)) is an increasing concave

function of t. Then, 3(log (W,(f,)) —log (W;(f)))/t € [0,+
00]. On the other hand, since

7
o g (Wi(f)) ~log Wi(f)
log (Wl( t)) =0 - rlg(rJl+ W, (ﬂ) — Wl(f) ) W,(f) .
(52)
Then,
lim W (~ft) ~ W) “W,(f)>0. (53)
“log (W(J,) ) ~log (Wi(f))

From above, we infer that 3lim, . (W;(f,) - W,(f))/t
€ [0,+00]. Combining the above formulas, we obtain

W) - W)
t—0* t

€ [-max {d, 0} W;(f),+c0].  (54)

So, we complete the proof.

In view of the example of the mixed Quermassintegral, it
is natural to ask whether, in general, W,(f, g) has some kind
of integral representation.

Definition 24. Let §;€ %, and f=e"¢ o', Consider the
gradient map Vu : R" — R”, the Borel measure p,(f) on &;
is defined by

[l

wi(f) =

f,)' (55)

Recall that the following Blaschke-Petkantschin formula
is useful.

Proposition 25 (see [43]). Let§; € G, (i = 1, 2,-+,n) be linear
subspace of R" and f be a nonnegative bounded Borel func-
tion on R", then

Lﬁw“:%LJf®MWMW@» (56)

i1g,, )¢
Now, we give a proof of Theorem 1.

Proof of Theorem 1. By the definition of the ith Quermassin-
tegral of f, we have

t w

Wilf)-Wilf) _ @ J Jacilf) = Juilh) g
Z, t o

(57)

n—i

n—in

Let t>0 be fixed, take CccQl; , and by reduction
0 €int (Q)[; ,we have CccQ|; , by Lemma 15, we obtain



}llg(l) ]nfi(fmh)(x)h_ ]nfi(ft(x)) _ [ V/(Vut | - (x))fz (x)dx,
oo Snei
(58)
wherey =hy, = v|;7i. Then, we have
. v(Vu, | &0 (x))ft’,g ) (%)
lim -t et i

Wifin) = Wilfy) _ @, J J
7

h—0 h w,_;

i € (B
Nxl" dxdu(E,_),
J V’(v”t | &, (x))ft|; 7(")
i dx
R*

flxel™

= | v, (1)

(59)

SO’ we have Wi(ft+h) - Wi(ft) = jg{jRnwd#n—iUs)}ds'
The continuity of y implies lir(r)1 Jrevau, (f)ds= [p.yd

t,,_;(f)ds. Therefore,

o d
=0+ = Sli%} IT: Wi(f,)

-t ] {J v}
= | v, ).

lim
t—0*

Wilf)-Wilf)_ 4
f‘ awl( t)

t=s

(60)

Since y = hﬁ\s’ we have

So, we complete the proof.

Remark 26. From the integral representation (12), the ith
functional mixed Quermassintegral is linear in its second

argument, with the sum in &', for f, g, h € o', then we have
Wi(f,g@h)=W(f,g)+ W,(f,h).
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In this paper, we establish functional forms of the Orlicz Brunn-Minkowski inequality and the Orlicz-Minkowski inequality for the
electrostatic g-capacity, which generalize previous results by Zou and Xiong. We also show that these two inequalities are

equivalent.

1. Introduction

The classical Brunn-Minkowski inequality was inspired by
questions around the isoperimetric problem. It is viewed as
one of cornerstones of the Brunn-Minkowski theory, which
is a beautiful and powerful tool to conquer all sorts of geo-
metrical problems involving metric quantities such as vol-
ume, surface area, and mean width.

An excellent reference on this inequality is provided by
Gardner [1].

In 2015, Colesanti, Nystrom, Salani, Xiao, Yang, and
Zhang (CNSXYZ) [2] introduced the electrostatic g-capac-
ity. Let K be a compact set in the n-dimensional Euclidean
space R". For 1 <q<n, the electrostatic g-capacity, C,(K),

of K is defined by
C,(K) =inf {LK|Vu|qu cueCP(R" andu > XK}’ (1)

where C®°(R") denotes the set of functions from C*(R")
with compact supports and y, is the characteristic function
of K. If g=2, then C,(K) is the classical electrostatic (or
Newtonian) capacity of K. The Minkowski-type problems
for the electrostatic g-capacity have attracted increasing
attention [2-10]. The electrostatic g-capacity also has appli-
cations in analysis, mathematical physics, and partial differ-
ential equations (see [11-13]).

The electrostatic g-capacity can be extended on function
spaces. Let C(S"™") denote the set of continuous functions
defined on "', which is equipped with the metric induced
by the maximal norm. Write C, (S*™!) for the set of strictly
positive functions in C($"™!). For L <q<nand f € C,(S"?),
define the electrostatic g-capacity C,(f) by

Cy(f) = Cy(fD); (2)

where [f] denotes the Aleksandrov body (also known as the
Wulff shape) associated with f. For nonnegative f € C(S"™),
the Aleksandrov body [f] is defined by

[fl=_n

Eesnfl

{xeR":x-E<f(§)}. (3)

Obviously, [ f] is a compact convex set containing the origin
and ks < f, where hy s denotes the support function of [f].

Moreover,
K= [hg]s (4)

for every compact convex set K containing the origin. If f €
C,(8"™"), then[f] is a convex body in R” containing the origin
in its interior. The Aleksandrov convergence lemma reads: if the
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sequence {f; }j C C,(S"") converges uniformly to feC,

(5"1), then, lim;_.,[f,] = /.
Suppose a, b >0 (not both zero). If f, g € C,(S""), then,
the L, Minkowski sum a - g+,b - f is defined by

a-f+,b-g=(af’ +bg")", (5)

where the L, scalar multiplication a- f is defined by a*?f.
By the definition of the Aleksandrov body (3), we have
[a-hg+,b-h]=a-K+,b-L for convex bodies K and L
containing the origin in their interiors. Here, a-K+pb-L
denotes the L, Minkowski sum of K and L, ie,

ha~K+pb~LP = ahy’ + bh,?, (6)

for every u € §"!, which was defined by Firey [14]. In the
mid 1990s, it was shown in [15, 16] that when L, Min-
kowski sum is combined with volume the result is an
embryonic L,-Brunn-Minkowski theory. Zou and Xiong
([7], Theorem 3.11) established the functional form of
the L, Brunn-Minkowski inequality for the electrostatic
g-capacity. Suppose 1<p<oo and 1<g<n.
Iff,geC,(S""), then

Cq (f_’_Pg)P/(an) > Cq(f)p/(n—q) n Cq(g)p/(n—q)’ (7)

with equality if and only if [f] and [g] are dilates.

The Orlicz Brunn-Minkowski theory which was
launched by Lutwak et al. in a series of papers [17-19]
is an extension of the L, Brunn-Minkowski theory. This
theory has been considerably developed in the recent
years. The Orlicz sum was introduced by Gardner et al.
[20]. Let @ be the class of convex, strictly increasing func-
tions, ¢ : [0,00) — [0,00) with ¢(0)=0. Suppose ¢ €@
and a, b >0 (not both zero). If K and L are convex bodies
that contain the origin in their interiors in R", then, the
Orlicz sum a-K+,b- L is the convex body defined by

=it {r20: (") (09 ).
(8)

for every ueS"!. Gardner et al. ([20], Corollary 7.5)
established the Orlicz Brunn-Minkowski inequality (see
also ([21], Theorem 1). Same as the Orlicz sum of convex
bodies, we extend the L, Minkowski sum of functions to

the Orlicz sum. For ¢ €@, f,geC,(S""), and a,b>0
(not both zero), the Orlicz sum a-f+4b- g is defined by

a-ftsb-g=inf {T>o : aq.‘)(f) +b¢(§) g¢(1)}. (9)

T

If we take ¢(t) =t#(p>1) in (9), then it, induces the L,
Minkowski sum (5). By the definition of the Aleksandrov body
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(3), (8), (9), and (4), we have [a - hy+gb- hl=a- K+4b- L for
convex bodies K and L containing the origin in their interiors.

The main aim of this paper is to establish the functional
form of the Orlicz Brunn-Minkowski inequality for the elec-
trostatic g-capacity.

Theorem 1. Suppose ¢ € @ and 1 <q<n. If f,ge C,(S""),
then,

¢, " @ )" L
“5((7@ <f+¢g>> ) *“’((mw =0
(10)

If ¢ is strictly convex, equality holds if and only if [f] and
[g] are dilates.

2. Notation and Preliminary Results

For excellent references on convex bodies, we recommend
the books by Gardner [22], Gruber [23], and Schneider [24].

We will work in R” equipped with the standard Euclidean
norm. Let x - y denote the standard inner product of x, y € R".
For x € R", |x| = \/x - x denotes the Euclidean norm of x. We
write B={x € R" : |x| <1} and "' for the standard unit ball
of R" and its surface, respectively. Each compact convex set K
is uniquely determined by its support function by : R" — R,
which is defined by hy (x) =max {x-y : y € R"}, for x € R".
Obviously, the support function is positively homogeneous
of order 1.

The class of compact convex sets in R” is often equipped
with the Hausdorff metric §,;, which is defined for compact
convex sets K and L by

8y(K, L) = max {|hy(u) = hy(u)|: ueS"'}. (11)

Denote by K" the set of convex bodies in R” and by K,
the set of convex bodies which contain the origin in their
interiors. For s > 0, the set sK = {sx : x € K} is called a dilate
of convex body K. Convex bodies K and L are said to be
homothetic, provided K = sL + x for some s >0 and x € R".
Let K, L € K", the Minkowski sum of K and L is the convex
body

K+L={x,y:xeK,yeL}. (12)

Some properties of the electrostatic g-capacitary measure
are required [2, 3, 7, 8, 11]. The electrostatic g-capacitary
measure, yq(E, -), of a bounded open convex set E in R"is
the measure on the unit sphere $"! defined for w c §"!
and 1 <g<nby

p(Ew)=| oy, (13)
g7 (@)

where g7! : §""! — OE (the set of boundary points of E)

denotes the inverse Gauss map, H"! the (n — 1)-dimensional
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Hausdorff measure, and U the g-equilibrium potential of E. If
K e K", then the electrostatic g-capacitary measure (,tq(K, )

has the following properties. First, it is positively homogeneous
—qg- 1 ) = 91 .

of degreé (.n q 1)', ie, ‘uq(.sK, ) =s""p (K, ) for s> 0.
Second, it is translation invariant, ie., (K +x,-) = p, (K, )
for x € R". Third, its centroid is at the origin, ie., fsﬂ,ludptq
(K, u) = 0. Moreover, it is absolutely continuous with respect
to the surface area measure S(K, -). The weak convergence of
the electrostatic g-capacitary measure is proved by CNSXYZ
([2], Lemma 4.1): if {K]} c K" converges to K e€K",
theny, (K, ) converges weakly to y, (K, ).

CNSXYZ [2] showed the Hadamard variational formula
for the electrostatic g-capacity: for K,L € K" and 1 <g < n,

dC, (K +1tL)
dt

=@ 1) m@ds 0. (09

t=0"

And variational formula (14) leads to the following
Poincare g-capacity formula:

C,(K) = Z - ; anilhK(u)dyq(K, ). (15)

The electrostatic g-capacity C,(K) has the following prop-
erties. First, it is increasing with respect to set inclusion; that is,
if K; €K,, then C,(K;) < C,(K;). Second, it is positively
homogeneous of degree (n—g), ie., C,(sK)=s""1C,(K) for
s> 0. Third, it is a rigid motion invariant, i.e.,

C, (K +x)=C,(K) for xeR" and ¢ €O(n). If g=2,
then (15) induces the Poincare capacity formula

CK)= 5 | mwdi®n. a6)

Let C(S"!) denote the set of continuous functions
defined on $"!, which is equipped with the metric induced
by the maximal norm. Write C, (S"!) for the set of strictly
positive functions in C(S"™'). Let K € K” and g e C(S*™").
There is a t, >0 such that hy +tge C,(S"") for |t] <t,.
The Aleksandrov body [k + tg] is continuous in t € (—t, t,).
The Hadamard variational formula for the electrostatic
g-capacity [2] states the following:

dC,(hg +1tg)
dt

=(a-1)| g, (Kw). (17

t=0*

For feC,(S""), define

Cq(f) = Co(Lf)- (18)

Obviously, C,(hg)=C,(K) for every K€Kj. By the
Aleksandrov convergence lemma and the continuity of
C, on K", the functional Cq:C+(S"‘1)—>(O,oo) is
continuous. For K € K" and ge C(S""), the mixed elec-

3
trostatic g-capacity C,(K,g) is defined by
1 dC,(hg +tg)
K,g)= i 19
CKg)= = )

Applying the Hadamard variational formula for the
electrostatic g-capacity, the mixed electrostatic g-capacity
C,(K,g) has the following integral representation:

-1
C,(K.g)= 1= J g(u)du, (K. u). (20)
n—gq)g-1
Let LeK" If g=h;, then, Cq(K,g) is the mixed
electrostatic g-capacity C,(K,L), which has the following
integral representation:

C,(K.L)= Z - ;Lnith(u)d‘uq(K, u). (21)

The Minkowski inequality for the electrostatic g-capacity
([2], Theorem 3.6) states the following: letl < g < n.
If K, L € K", then,

Cq(K, L)> Cq(K)(n*qfl)/(n*q)C (L)l/(n—q), (22)

q
with equality if and only if K and L are homothetic.

Let1<p<ooand1<q<n. ForKeK"and geC(S""),
the L, Hadamard variational formula for the electrostatic
q-capacity [7] states the following:

dc, (hK+pt . g)
dt

=2 ot P (<.

(23)

The L, mixed electrostatic g-capacity Cp,q(K, g) is
defined by

1 dC,(hg+,t-g)

Ca®9)=

=] ot ()
(24)

Take g =hy in (24), and combine C, (K, g) = C,(K) to
obtain the Poincare g-capacity formula (15). Zou and
Xiong ([7], Theorem 3.9) established the L, Minkowski
inequality for the L, electrostatic g-capacity: let 1<p<oo
and 1<q<n. If KeK" and ge C(S""), then,

Cq(K, E Cq(K)(”_q_P)/<”_q>Cq(L)P/(”_Q), (25)

with equality if and only if K and [g] are dilates.

Based on the Orlicz sum (9), we define the Orlicz
mixed electrostatic g-capacity as follows. For K € K/ and
g€ C(S""), the Orlicz mixed electrostatic g-capacity Coq
(K, g) is defined by



1 dC, (hx+gt - 9)
-q dt

CpalKog)= - (26)

t=0*

Indeed, the Orlicz mixed electrostatic g-capacity can be
extended on function spaces. Let ¢ € @ and 1< g <n. For
feC,(S"") and g € C(S*"), the Orlicz mixed electrostatic

q-capacity Cy,([f], g) is defined by

1 dC,(f+st-9)
n—gq dt

Coq(lf]: 9) = (27)

t=0"

If f=hg with K€K}, then, Cy,([h], g) = Cy,(K, g).
If g=h, with LeK], then, Cy ([f],h;) is the Orlicz
mixed electrostatic g-capacity Cy,([f],L). In particular,
Cyq([hx)s hy) = ¢(1)Cy(K) for every K € K.

3. Main Results

The following variational formula of electrostatic g-capacity
plays a crucial role in our proof.

Lemma 2 ([2], Lemma 5.1). Let I C R be an interval contain-
ing 0 in its interior, and let h,(u) = h(t, u): I x $"1 — [0,00)
be continuous such that the convergence in

B (0, ) = lim ") = (0. 4) (28)
t—0 t
is uniformly on S""1. Then,

dCy([h:))
dt

=] Fewdde. 09

Suppose ¢ D, f,ge Cq(S’H), and a,b>0 (not both

zero). For every given u € S"1, the function t — a¢(f(u)/t) +
bp(g(u)/t) is strictly decreasing. By the definition of the
Orlicz sum (9), we have (a-f+,b-g)(u)=t and only if a¢

(f(u)it) + bp(g(u)/t) = $(1).

for every ue S

The continuity properties of the Orlicz sum were estab-
lished by Xi et al. [21].

Lemma 3 ([21], Lemma 3.1). Suppose,¢ € Of € C,(S*),
g€ C(S"1), and a, b >0 (not both zero).

(i) Let  {f}.{g;} cC.(S"") and {g;}cC(S"")
such that f,—f and g,— g, respectively.
Then, a-f+yb-g;—a-f+,b-g

(i) Let {¢;} CD such that ¢, — ¢. Then, a-f+,b-g
—>a .f+¢b . g

(iii) Let a;, b; > 0 (not both zero) such that a; — a and
b,—b. Then
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a;-f+obi-g—a-f+4b-g (30)

Due to Lemma 2, the integral representation of the Orlicz
mixed electrostatic g-capacity is given.

Lemma 4. Suppose ¢ € @ and 1 <q<n. If f € C,(S"") and
geC(S"1), then

Coallh )= 20| o5 st () o)

Proof. Take an interval I=][0,¢,] for 0<t,<co. Denote
h(u): Ix 8" — (0,00) by

h(u)=h(t,u) = (f+¢t . g) (u). (32)
Then, the definition of the Orlicz sum (9) and Lemma

3 imply that the function h,(u): I x $"' — (0,00) is con-
tinuous. By (9), we have

(i) (i) o0 @

for every u e S"'. Since ¢ € ¢, we obtain

% _ hi$(glh,)
dt — f¢'(fIh,)+tf¢' (fih,)

Note that (f/h) — 1~ ast — 0* and the fact that b, = f.
Thus,

(34)

h—hy _ f9(glf)
0 E g

> (35)

uniformly on $"°!, where ¢,(1) denotes the left derivative of
¢(t) at t = 1. Apply Lemma 2 and (35) to get

_q-1 g(u)
o 9 J, (e (- 26

dc, (f+¢t . g)
dt

Thus, (27) and (36) yield the desired lemma.

Indeed, (36) can be considered as the Orlicz Hadamard
variational formula for the electrostatic g-capacity. If we take
¢(t) =t (1 < p<oo) and f = hy with K € K in (36), then, we
obtain the L, Hadamard variational formula (23).

Note that [hg|=K for every K €K). Take f=hy in
Lemma 4 to get

Lemma 5. Suppose p € @ and 1 <q<n. IfKe K} and ge C
(8"1), then,

Calko9)= 0| o[ ey (37
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A direct consequence of Lemma 4 and the homogeneity of
the electrostatic q-capacitary measure can be obtained.

Corollary 6. Suppose ¢ €@ and 1<q<n. If f€C,(S""),
then

for every ¢> 0.

Let € @, 1<g<n,and K, L € K} Note that K+4¢-L =
[hg+gt - ], and apply (18) and (36) to obtain

q-1 Lnlqs(hL(u)) hy (u)dpy (K, ).

qu (K+¢t . L) ~
e o) hic(u)

dt

(39)

Based on (39), one can define the Orlicz mixed electro-
static g-capacity C, (K, L) of convex bodies K and L as fol-

lows:

Cuatko )= 20| (e (i (K, (a0

which was first defined by Hong et al. ([10], Definition 3.1).

Lemma 7. Suppose ¢p €@, feC,(S""), geC(S"), and
I<g<n.

(i) Let ¢, ¢, € D. If ¢, < §,, then C¢i,q([f], 9)—Cs,q
(/1. 9)

(ii) Let {f;} cC,(S"") and {g;} < C(S*™") such that
fi—f and g, — g, respectively. Then, CM([fi],

9:) — Cy,([f, 9)
(iii) Let {¢;} C @ such that ¢; — ¢. Then, Cy ,([f], g)
— Cyy([fl9)

Proof. It follows from (31) that (i) holds if ¢, < ¢,.

Since f>0,f;>0,920,9,20 and f,—f, g,—g
uniformly on $*'; it follows that g,/f, — g/f uniformly
on §"~!. Note that ¢ € @, we have ¢(g,/f;)f; — ¢(g/f)f uni-
formly on §"'. The Aleksandrov convergence lemma implies
that [f,] — [f] uniformly on $""'. Meanwhile, the con-
vergencelf,] — [f] implies that 1 ([f}) — ty([/])
weakly. Applying Lemma 4, one concludes that (ii) holds.

Clearly, there exists a compact interval I C (0,00) such
that g/f €1 for all u € S"".

(i) directly follows from Lemma 4 and the fact that the
sequence {¢,(t)} converges uniformly to ¢(t) on I.

Next, we show that there is a natural Orlicz extension of
the Minkowski inequality for the electrostatic g-capacity.

Theorem 8. Suppose p € @ and 1< q<n. If f,ge C,(S""),

then,
Coall/]:(9) | ¢ Cy(9) ) )
an  \\ewm) )

If @ is strictly convex, then equality holds if and only if [ f]
and [g] are dilates.

Proof. By the definition of the mixed electrostatic g-capacity
(20) and the fact that hy; < g, we have

Cy(Uf1 ) =Co(Iflhg) < C(Ifh g (42)

for every f, g € C,(S""). From (31), Jensen’s inequality, (20),
(42), (22), and (18), it follows that

CoalIf1:9) _ (0= 1)/(n =) 5--¢(g(0)f () (w)dpy([f], )
Cy(f) Cy(F)
o Cll19)) , ,(CulI-la)
Uam )T e

(43)

It remains to prove the equality condition. Now, suppose
¢ is strictly convex. If equality in (41) holds, then, by the
equality condition of Jensen’s inequality, there exists an s >
0 such that g=sf for almost every u € S" 'with respect to
the measure (f(-)du,([f],-))/(Cy(f)). Then, we have

(9= 1)/(n=q)[gs (g(w)/(f ())f W)y ([f] )

Ss=

0 "
_C([fb9) _ ClIf) L9
¢ o

where the last step is from the equality condition of (42).
The definition of Aleksandrov body implies that h, =

shyy for almost every u € $"! with respect to the measure

(FC)dpy (1) IC,(F)). Thus,
Co([f1: (gD by () = Cy(f) g (w), (45)

for almost every u € S"' with respect to the measure (f
()du,([f],-))/(Cy(f)). By the equality condition of the
Minkowski inequality for the electrostatic g-capacity,
there exists x € R” such that [g] =s[f] +x.



Hence, for almost every u € $"! with respect to the mea-

sure £ ()dp,([f],-)

(qu(f) + Z:;x . Libud,uq([f], u)> gy (1)

= Cy(f) (shy () + - ).

(46)

Since the centroid of y,([f],-) is at the origin, we have

that x-u=0 for almost every u € S"! with respect to the
measure (f(-)du,([f],-))/(C,4(f))- Note that the electrostatic
q-capacitary measure ¢, ([f],-) is not concentrated on any
great subsphere of $""!. Hence, x = 0, which in turn implies
that [f] and [g] are dilates.

Conversely, assume that [f] and [g] are dilates, say,
[f]=clg] for some c¢>0. From our assumption, Corollary
6, (18), and the fact that C,(c[g]) = ¢"™1C,([g]), it follows that

Collf)0) _
¢,

Coqlclglg) _ ¢(L/c)c™1C,((g))

Cy(clgl) c"1C,(1g))
ORIIECAN. w
) e |

This completes the proof.

By using the Orlicz-Minkowski inequality for the electro-
static g-capacity, we establish the following Orlicz Brunn-
Minkowski inequality for the electrostatic g-capacity which
is the general version of Theorem 1.

Theorem 9. Suppose ¢p € @ and 1 <q<n. If f,ge C,(S")
and a, b= 0 (not both zero); then,

C,(f) 1n-q) 0 1/(n—q)
‘b((W) \eErea) )

(48)

If ¢ is strictly convex, then equality holds if and only if [ f]
and [g] are dilates.

Proof. By (31), (9), and the Orlicz-Minkowski inequality for
the electrostatic g-capacity (41), we have

Cw([“'f+¢b'9}“’f+¢b'9)
Cyla-f+sb-9)
Y ([ ftob-g.f) +bc¢,q([“'f+¢b’g}>9)
q f+¢b g) q(“'f+¢b'g)

/(n-q) (49)
((C f+¢b 9) ) )
1/(n-q)
+ b .
(i) )

¢(1)=
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By the equality condition of the Orlicz-Minkowski
inequality for the electrostatic g-capacity, we have that if
¢ is strictly convex, then equality in (48) holds if and only
if [f] and [g] are dilates of [a-f+,b-g].

Remark 1. The case ¢(t) =t?(1 < p<co) of Theorem 9 was
established by Zou and Xiong [7].

For K,L € K, take f = hy and g=h; in Theorem 9 to
obtain the following Orlicz-Brunn-Minkowski inequality
for the electrostatic g-capacity, which was established by
Hong et al. [10].

Corollary 10 ([10], Theorem 4.2). Suppose ¢ € @ and 1< q
<n. IfK, L € K}, then

a(/) Cq (K) 1/(n—q)
C,(a-K+sb-L)
c.n) 1(n-q)
+b¢(<Cq(a.Iq<+¢b.L)> )SW)'

If @ is strictly convex, then equality holds if and only if K
and L are dilates.

(50)

Remark 2. The case ¢(t) =t of Corollary 10 was obtained by
Colesanti and Salani [25]. Borell [26] first established the
Brunn-Minkowski inequality for the classical electrostatic
capacity, while its equality condition was shown by Caffarelli
et al. [4].

Theorem 11. Suppose ¢ € D, 1< q<n, and f,ge C,(S"").
Then, the Orlicz-Brunn-Minkowski inequality for the electro-
static q-capacity implies the Orlicz-Minkowski inequality for

the electrostatic g-capacity.

Proof. For t >0 and f, g € C,(S""), define the function G(t)

by
1/(n—q)
G(1) = p(1) - ¢ ( <7C (;i(ft). g)> )
q

ca \'"
_t¢(<( st g)> )

The Orlicz-Brunn-Minkowski inequality for the electro-
static g-capacity implies that G(t) is nonnegative. Obviously,
G(0) =0. Thus,

(51)

G(1) - G(0) > 0. (52)

t—0* t
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On the other hand, by (51) and the continuity of C, we
have
66090 -9((CNIG Tt 9) ") - 9((CNI(G et 9) ")
t—0" t t—0* t
I (G S BN A LT
o t Cy(f)
(53)
B () ) B (1) ARt
1= (GG (Frot-9)) " t

Let s = ((C,())/(Cy(f+4t - 9)))"" . Note that s — 1

as t — 0*. Consequently,

lim ‘b(l)—‘/’(((Cq(f))/(cq(f+¢t'9) )" q)) — o)
SO L (UG (fret-9))) T
(54)

The continuity of C, and (27) imply

L= (GG, (F+t-9)) """

t—0* t

Cy(f+t-9) - (Cq(f))1/<n_q)

t—07" t

lim (C, (f+4t-9))” V(n=q)

_ 1 (Cq(f))(l/(”*q))*l - lim (Cq(f+¢t'g)) 0 -G ()

n—q t—0* t

-(C ‘“<”“DZM'
(&) $(1)C,(f)

From (53), (54), (55

lim G(t) - 6(0) _ Cgb,q([f]’g) o Cq(g) 1/(n-q) N
t—0* t Cq (f) Cq (f)

(56)

), and (52), it follows that

which implies the Orlicz-Minkowski inequality for the elec-
trostatic g-capacity (41).

Finally, we show an immediate application of the Orlicz-
Minkowski inequality for the electrostatic g-capacity.

Lemma 12. Suppose ¢ € @ and 1<q<n. If f,ge C, (")
and C is a subset of C,(S"™") such that f, g € C, then the fol-
lowing assertions hold:

(i) Cyq([h), f) = Cy4([h], g) for all h € C; then [f] = [g]

(i) (Cyq([f1, 1)/(Cy(f)) = (Cy4([g]s 1))I(Cy(f)) for all
heC; then [f] = [ ]

Proof. We first show that (i) holds. Since Cy,([f], ) = ¢(1)

C,(f), it follows that ¢(1)=(Cy,([f],9))/(C,(g)) by the
assumption. By the Orlicz-Minkowski inequality for the electro-

static g-capacity, we have ¢(1) = ¢(((ng))/(cq(g)))lln_q)-
The monotonicity of ¢ and 1 < g < n imply that

<1, (57)

with equality if and only if [ f] and [g] are dilates. This inequality
is reversed if interchanging f and g. So,C,(f) = C,(g) and [f]

and [g] are dilates. Assume that s[f] = s[g] for some s> 0. The
homogeneity of C, implies s = 1. Thus, [f] = [g].
Then, we can prove (ii) with the similar arguments in (i).

If the Orlicz mixed electrostatic g-capacity Cj, is
restricted on convex bodies, then we obtain the following
characterizations for identity of convex bodies, which were
proved by Hong et al. [13].

Corollary 13 ([10], Theorem 3.3). Suppose ¢ € @ and 1< q
<n. IfK,L €K} and C is a subset of K}, such that K,L € C,
then the following assertions hold:

(i) Cyq(Q K)=Cy,(Q,L) forall Qe C; then K =L
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(i) (Cyy(Ks Q))/(Cy(K)) = (Cy (L QUC,(L))for all
QeC;thenK=L
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We establish the existence of solutions to the Orlicz electrostatic q-capacitary Minkowski problem for polytopes. This contains a

new result of the discrete L, electrostatic g-capacitary Minkowski problem for p <0and 1 <g < n.

1. Introduction

The Orlicz Brunn-Minkowski theory was originated from the
works of Ludwig [1], Ludwig and Reitzner [2], and Lutwak
et al. [3, 4]. Hereafter, the new theory has quickly become
an important branch of convex geometry (see, e.g., [5-10]).
A special case of the theory is the L, Brunn-Minkowski
theory which is credited to Lutwak [11, 12] and attracted
increasing interest in recent years (see, e.g., [13-20].

It is well known that the L, Brunn-Minkowski theory is
the classical Brunn-Minkowski theory. One of the corner-
stones of the classical Brunn-Minkowski theory is the Min-
kowski problem. More than a century ago, Minkowski
himself solved the Minkowski problem for discrete measures
[21]. The complete solution for arbitrary measures was given
by Aleksandrov [22] and Fenchel and Jessen [23]. The
regularity was studied by, e.g., Lewy [24], Nirenberg [25],
Pogorelov [26], Cheng and Yau [27], and Caffarelli et al. [28].

A generalization of the Minkowski problem is the L,
Minkowski problem in the L, Brunn-Minkowski theory,

which has been extensively studied (see, e.g., [29-49]. Natu-
rally, the corresponding Minkowski problem in the Orlicz
Brunn-Minkowski theory is called the Orlicz Minkowski
problem which was first investigated by Haberl et al. [50]
for even measures. Today, great progress has been made on

it (see, e.g., [51-60]). The present paper is aimed at dealing
with the Orlicz capacitary Minkowski problem.
The electrostatic g-capacitary measure p, (€, -) (see [61])

of a bounded open convex set (2 in R” is the measure on the
unit sphere $"! defined for w ¢ "' and 1 < g < n by

Uy (Q, w) =J |VU|1dge" ", (1)
g ' (w)

where g7!: §"! - 90 (the boundary of Q) denotes the

inverse Gauss map, """ the (n — 1)-dimensional Hausdorff

measure, and U the g-equilibrium potential of Q.

A convex body K is a compact convex set with nonempty
interior in the n-dimensional Euclidean space R”. Let #™
denote the set of convex bodies in R”, and let %, denote
the set of convex bodies with the origin in their interiors.
The support function (see [62, 63]) of K € Z" is defined for
ue S by

hy(u) =h(K,u) =max {x-u:x €K}, (2)

where x - u denotes the standard inner product of x and u.
Note that h(cK, u) = ch(K, u) for ¢ > 0.

Let ¢ : (0,00) — (0,00) be a given continuous function.
For 1<gq<n and KeX%7, the Orlicz electrostatic ¢
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-capacitary measure, p4,, . (K,), of K is defined by

a4 (K ) = @(hy)dp,y (K, - ). (3)

When ¢(s) =s'"? with p € R, the Orlicz electrostatic g
-capacitary measure becomes the following L, electrostatic
g-capacitary measure introduced by Zou and Xiong [64]:

du, (K, ) = h P du, (K, ). (4)

The Minkowski problem characterizing the Orlicz
electrostatic g-capacitary measure, proposed in [65], is the
following.

L.1. The Orlicz Electrostatic q-Capacitary Minkowski Problem.
Let 1 <g<n. Given a continuous function ¢ : (0,00) — (0,
00) and a finite Borel measure y on "1, what are the neces-
sary and sufficient conditions so that y = cu,, . (K, - ) for some

convex body K and constant ¢ > 0?

Let ¢ be a constant function. When g =2, the Orlicz
Minkowski-type problem is the classical electrostatic capaci-
tary Minkowski problem. In the paper [66], Jerison estab-
lished the existence of a solution to the electrostatic
capacitary Minkowski problem. In a subsequent paper [67],
he gave a new proof of the existence using a variational
approach. The uniqueness was proved by Caffarelli et al.
[68], and the regularity was given in [66]. When 1 < g <n,
the Orlicz Minkowski-type problem is the electrostatic g
-capacitary Minkowski problem posed in [61]. The existence
and regularity for 1 < g <2 and the uniqueness for 1 <g<n
of its solutions were proved in [61], and the existence for 2
< g < n was very recently solved in [69].

Let ¢(s) = s'? with p € R. Then, the Orlicz Minkowski-
type problem is the L, electrostatic g-capacitary Minkowski
problem introduced by Zou and Xiong [64]. In [64], they
completely solved the L, electrostatic g-capacitary Min-
kowski problem for the case p > 1 and 1 < g < n. It is generally
known that when p < 1, the L, Minkowski problem becomes
much harder. Actually, the L, electrostatic g-capacitary Min-
kowski problem for the case p <1 and 1 < g < is also very
difficult. Therefore, it is worth mentioning that an important
breakthrough of the problem for the case 0 <p<1and 1<
q < 2 was made by Xiong et al. [70] for discrete measures.

The existence of the Orlicz electrostatic g-capacitary
Minkowski problem was first investigated by Hong et al.
[65]. As a consequence, in [65], they obtained a complete
solution (including both existence and uniqueness) to the
L, electrostatic g-capacitary Minkowski problem for the case
p>1and 1< g < n, which was independently solved by Zou
and Xiong [64].

We observe the statement above. At present, there is no
result about the L, electrostatic g-capacitary Minkowski
problem for the case p <0 and 1 < g <n. In this paper, we
study the Orlicz electrostatic g-capacitary Minkowski prob-
lem including it.

Journal of Function Spaces

A finite set E of $""! is said to be in general position if E is
not contained in a closed hemisphere of $""' and any n ele-
ments of E are linearly independent.

A polytope in R" is the convex hull of a finite set of points
in R" provided that it has positive n-dimensional volume.
The convex hull of a subset of these points is called a facet
of the polytope if it lies entirely on the boundary of the poly-
tope and has positive (n — 1)-dimensional volume.

Our main theorem is stated as follows.

Theorem 1. Suppose ¢ : (0,00) — (0,00) is continuously dif-

ferentiable and strictly increasing with ¢(s) — 0o as s — 0o

such that ¢(t) = [7°(1/¢(s))ds exists for t > 0 and lir(r)l o(t) =
t—0*

00 . Let u=YyN a0, , where a, -, ay >0, the unit vectors
Uy, -+ uy €S are in general position, and 8, is the Dirac

delta. Then, for 1< q<n, there exist a polytope P and con-
stant ¢ > 0 such that

p=cpiyo(P). (5)

When ¢(s) =s'"? with p <0, and ¢(t) = —(1/p)t?, which
satisfy the assumptions of Theorem 1, we obtain the
following.

Corollary 2. Let p <0 and 1< q < n. Suppose y is a discrete
measure on S"!, and its supports are in general position. If
P+ q#n, then there exists a polytope P, such that y= ‘up’q(
Py, -); if p+ q = n, then there exist a polytope P and constant
¢> 0 such that p=cu, (P, ).

Obviously, this corollary makes up for the existing results
for the L, electrostatic g-capacitary Minkowski problem, to
some extent.

The rest of this paper is organized as follows. In Sec-
tion 2, some of the necessary facts about convex bodies
and capacity are presented. In Section 3, a maximizing
problem related to the Orlicz electrostatic g-capacitary
Minkowski problem is considered and its corresponding
solution is given. In Section 4, we give the proofs of The-
orem 1 and Corollary 2.

2. Preliminaries

2.1. Basics regarding Convex Bodies. For quick later reference,
we list some basic facts about convex bodies. Good general
references are the books of Gardner [62] and Schneider [63].

The boundary and interior of K € %" will be denoted by
0K and int K, respectively. B={x € R" : \/x-x <1} denotes
the unit ball. The volume, the n-dimensional Lebesgue mea-
sure, of a convex body K € K" is denoted by V(K), and the
volume of B is denoted by w,. We will write C(S"™!) for the
set of continuous functions on $"! and C*(S"!) for the set
of positive functions in C(S").

For x € 0K with K € K", g (x) is the Gauss map of K
which is the family of all unit exterior normal vectors at x.
In particular, g (x) consists of a unique vector for H"



Journal of Function Spaces

-almost all x € 0K. The surface area measure of K is a Borel
measure on S"! defined for a Borel set w ¢ S*! by

dH" (x). (6)
xegy! (@)

S(K,a)):J

For f € C*(S"!), the Aleksandrov body associated with f
, denoted by [f], is the convex body defined by

[fl= n {§eR":§-u<f(u)}. (7)

ues"
It is easy to see that hj ) < f and [hg] = K for K € K.

The Hausdorff distance of two convex bodies K, L € K" is
defined by

O(K, L) = max, g1

hy (1) = hy (). (8)

For a sequence of convex bodies K; € K" and a convex
body K € K", we have lim K; = K provided that

O(KK) =0, ©)

as i — 00.
For K € K" and u € $""!, the support hyperplane H(K, u)
of K at u is defined by

H(K,u)={xeR" : x-u=h(K,u)}, (10)
the half-space H™ (K, u) at u is defined by
H (K,u)={xeR" : x-u<h(K,u)}, (11)
and the support set F(K, u) at u is defined by
F(K, u) =K n H(K, u). (12)

Suppose that P is the set of polytopes in R” and the unit
vectors uy, --+, uy are in general position. Let P(uy, -+, uy) be
the subset of P. If P € P with

N
P= N H (P,uy), (13)
=1

then P € P(u,, --+, uy). Obviously, if P, € P(uy, --+, uy) and P,
converges to a polytope P, then P € P(uy, -+, uy). Let Py (144
, -+, uy) be the subset of P(uy, -+, uy) that any polytope in
Py (uy, -+, uy) has exactly N facets.

2.2. Electrostatic g-Capacity and q-Capacitary Measure. Here,
we collect some notion and basic facts on electrostatic ¢
-capacity and g-capacitary measure (see [61, 64, 70]).

Let E be a compact set in n-dimensional Euclidean space
R". For 1 < q <n, the electrostatic g-capacity, C,(E), of E is

defined (see [61]) by

C,(E) =inf {Jw|Vu|qu tueCP(R")andu> lonE},
(14)

where C2°(IR") is the set of smooth functions with compact
supports. When g =2, the electrostatic g-capacity becomes
the classical electrostatic capacity C,(E).

For K € K" and 1 < g < n, we need the following isocapa-
citary inequality which is due to Mazya [71]:

V(K)ma < (Z%;) q_l(nwz’")’lcq(K). (15)

The following lemma (see [64, 70]) gives some basic
properties of the electrostatic g-capacity.

Lemma 3. Let E and F be two compact sets in R" and 1< q
<n.

(i) IfECF, then

Cq(E) < Cq(F) (16)
(ii) For A >0,
Cq(AE) = /\’H’Cq(E) (17)
(iii) For x, € R",
Cq(E+x0) = Cq(E) (18)

(iv) The functional C,(-) is continuous on K" with respect
to the Hausdorff metric

The following lemma is some basic properties of the elec-
trostatic g-capacitary measure (compare [64, 70]).

Lemma4. Let Ke K" and 1 < q<n.

(i) For A >0,

g (AK, ) = Ny

(ii) For x, € R",



Hq(K 20 ) = py(Ks ) (20)

(iii) For K;, K € A if K; > K, then

1y (K ) = 1y (Ko (1)
weakly as j — +00

(iv) The measure p (K, -) is absolutely continuous with
respect to the surface area measure S(K, -)

The following variational formula given in [61] of elec-
trostatic g-capacity is critical.

Lemma 5. Let I C RR be an interval containing 0 in its interior,
and let h,(u) = h(t,u): Ix S"! — (0,00) be continuous such
that the convergence in

B (0, u) =lim M0 4) =0 1) (22)
t—0 t
is uniform on S""!. Then,

dCy([h.])
dt

~(q- 1)L’Hh’(o, wdp, (o w).  (23)

t=0

3. An Associated Maximization Problem

In this section, we solve a maximization problem, and its
solution is exactly the solution in Theorem 1.

Suppose ¢ satisfies the assumptions of Theorem 1 and the
unit vectors u,, --+, Uy are in general position. For a;, ---, ay
>0and P e P(u,, -, uy), define the function, @, : int P —
R, by

Dp(§) = Y app(h(Pyuy) & - uy). (24)
k=1

Let 1 <g<n. We consider the following maximization
problem:

sup {mingeiy oPo(E): C,(Q) =1, Qe P(uy, - uy)}. (25)

The solution to problem (25) is given in Theorem 9. Its
proof requires the following three lemmas which are similar
to those in [58].

Lemma 6. Suppose ¢ : (0,00) — (0,00) is continuously differ-
entiable and strictly increasing with ¢(s) — 0o as s — 0o such
that (t) = [°(1/9(s))ds exists for t>0 and %irr(}(p(t) =00.

For a,, -+, ay > 0, if the unit vectors u,, -+, uy € S"! are in
general position, then there exists a unique §,(P) € int P such
that
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Dy (E¢ (P)) = mingey, pPp (&)- (26)

Proof. Since ¢ : (0,00) — (0,00) is continuously differentia-
ble and strictly increasing, we have for ¢ > 0,

¢ (t)= AU (27)

Therefore, ¢ is strictly convex on (0, c0).
Let 0<A<1and¢&,&, eint P. Then,

ADp(E)) + (1= 1) Pp(&,) = A Y ey p(h(Py ) — &, - 4y
k=1

+(1-4) Z ap(h(P,wy) =&, - uy)

P
= Y aAG(h(Pwy) — & - uy)
k=1
+ (1= )(h(P,uy) =& - w)] = Y ad(h(P, uy)
k=1
= (A& + (1-2)&) ) = Pp(AG; + (1= 1)E,).

(28)

Equality holds if and only if &, - u, =&, - uy for all k=1,
.-+, N. Since uy, -+, uy are in general position, R" = lin{u,,
---, uy } which is the smallest linear subspace of R" contain-
ing {u,, .-+, uy }. Thus, &, =&,. Namely, @, is strictly convex
on int P.

Since P € P(uy, -+, uy), it follows that for any x € dP,
there exists a u; € {uy, -+, uy} such that

h(Pyu; ) =x-u;. (29)

lo
Note that ¢ is strictly decreasing on (0, co) and ltirr(}gb(t)
= 00. Then, ®@p(&) — co whenever £ € int P and £ — x. This

together with the strict convexity of @, means that there
exists a unique interior point &,(P) of P such that

®p (E¢(P)) = ming,, pP@p(§)- (30)

Lemma 7. Suppose o, -+, oy > 0, the unit vectors u,, --+, Uy

€ §"! are in general position, and ¢ : (0,00) — (0,00) is con-

tinuously differentiable and strictly increasing with ¢(s) — co
_ [0 :

as s — 0o such that §(t) = [[”(1/¢(s))ds exists for t >0 and

ltir%</>(t) =00. If P, € P(u,, -+, uy) converges to a polytope P,

then lim &, (P;) =&, (P) and

lim @, (£4(P;)) = Pp(84(P))- (31)

Proof. Since P; — P and §,(P;) € int P;, it follows that £,(P;)
is bounded. Let &4 (Pij) be a subsequence of §,(P;) with lim
j—0o

& (P,.j) =¢&,. We first show that &, € int P by contradiction.
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Assume &, € OP. Then, lim®, (&, (Pij)) =00, which
jmoo T
contradicts the fact that

lim @y, (£(P,)) < lim @ (£,(P)) = @p(§y(P)) < 0.

]4»00

(32)

We next show that §, =&,(P). Let &, # §,(P). Then,

Jj—oo

(33)

This contradicts the fact that

lim @, (&,(P, ))<hm® (E(P). (39

Jj—00

This means that lim &, (P;) = &§,(P) and

lim @p, (Efp( )) = (DP(g(b(P))' (35)

1—00

Lemma 8. Suppose a,, --+, ay > 0, the unit vectors uy, ---, uy
€ $""! are in general position, and ¢ : (0,00) — (0,00) is con-
tinuously differentiable and strictly increasing with ¢(s) — co
as s — 0o such that ¢(t) = [ (1/¢(s))ds exists for t >0 and
%1_1}13(/5( )=00. Let P € P(u,, -+, uy) and 8 > 0 be small enough

such that for k, e {1,---,N},

Py=Pn{x:x-u <h(P,u )-8} €P(uy - uy). (36)

If the continuous function A : [0,00) — (0,00) is continu-
ously differentiable on (0, co) and (lsing)t'(é) exists, then &(&
) =&s(A(8)Ps) has a right derivative, denoted by £1(0), at 0.

Proof. The proof is based on the ideas of Wu et al. [58]. Let
& > 0 be small enough and

N

) Z ap(A(8)h(Ps, uy) = & uy)

k=1

= Y a$(A(O)h(Ps, )
i1

D(0) = mingy (A(8)P,
(37)

—&(0) - uy)-

From this and the fact that £(8) is an interior point of A
(8)Ps, it follows that fori=1, ---, n,

N
. 48 (AO)h(Py, ) = §(8) - u)ug; =0, (38)
k=1

where uy = (4, -+, uk)n)T.

lim @, (£(P,)) = @p(Eo) > Pp(E,(P)) = im Py (£4(P)).

Let

Fi(8,&, & Z‘W Va(Psy ) =& - up)uy,;  (39)

fori=1,---,n, where £ =(&;,---,&,). Then,

(Ps> ) = & w)ug g, (40)

oF, N
3, - ;«w (A(®)h

) y '
O 3 0 (AO)h(Py 1) ~E- )i, N (O)h(Py 1)
k=1
— o 8" (MO (P ) = SMS) — & g )uy, A(D).
(41)
Let F=(F,,---, F,). Then,

Py, uy) = &(0) - wy)

oF
aE(

where wu] is an n x n matrix.
Since uy, -+, uy are in general position, R” =lin{u, ---,
uy}. Thus, for any x € R” with x # 0, there exists a u; € {y,

-x#0.Note that ¢" > 0. Then, we have

N
) ==Y " (A(8)h(
88 (0)8u(0) ) k=

(42)

» o+ Uy} such that u;

(43)

Therefore, (aF/aELS,EI(

OF
det (af

8).--£,(6)) is negative definite. Thus,

);eo. (44)
8,81(8),+£,(5)

From this, the fact that for i=1,---,n, F,(5,&(5), -,
£,(8)) =0 follows by (38), the fact that F;/d¢; is contin-
uous on & and & for all 1<4,j<n, and the implicit func-
tion theorem, it follows that &(8)=§,(A(8)Ps) is
continuously differentiable on a neighbourhood of § small
enough. Thus, &(8) is continuously differentiable for small
enough 6 >0, and




dé, OF, 0F, 9F\"' 5p
as 08, 0&, 9%, 25
dt, o0F, 0F,  0F, oF,
s | =-| 9, 0, o¢,, ED
dg, oF, OF, oF, oF,
a5 o€, oF, ' @&,/ \oo

(45)

This together with (40) and (41) implies (Slin(} &' (8) exists.

From the Lagrange mean value theorem, we obtain that
for >0 and i=1, -, n, there exists a §,(5) with 0 < §;(3)
< 8 such that

SO SO _gis,6)). (46)
Thus,
dEi((S) T 5;’(8) - 51’(0) = lim &/
5 = slg{)l* — s gg{){ £(0:(9)) (47)

6=0"

exists. Namely, £(0) exists.
We are ready to show the existence of a maximizer to
problem (25).

Theorem 9. Suppose a,, -+, ay > 0 and the unit vectors u,,
-, uy € S" are in general position. Let ¢ : (0,00) — (0,00)
be continuously differentiable and strictly increasing with ¢(
s) — 00 as s — 00 such that ¢(t) = [[°(1/9(s))ds exists for t
>0 and 1&13(/)(1‘) =00. Then, there exists a polytope P € Py(

Uy, -+, uy) such that &4(P) = o, C,(P) = 1, and

@, (0) = sup {minfEirlt oPo(§): C(Q) =1,QeP(uy, -+, uN)}

(48)
Proof. For x € R" and P € P(uy, --+, uy), we first show
(Dp+x(£¢(P+x)) :‘DP(E¢(P))~ (49)
From Lemma 6 and definition (24), we have
Dpo (5 (P +x)) = miNgein (pry Ppi(§)
= Milggine (pi) kil e b(h(P+x, u) = & )

N
=ming e p Y. S(A(P; 1) = (E—x) - 1)
Pt

N

=ming g, p Z “k‘/’(h(R ) =& “k)
k=1

=0y (§4(P))-

Journal of Function Spaces

Therefore, by (49) and (iii) of Lemma 2.1, we can choose
a sequence P; € P(uy, -+, uy) with §4(P;) =0 and C,(P;) =1
such that

lim @, (0) = sup {mingy (P(E): C,(Q)=1,Q e P(uy, vty ).
(51)

We next prove that P; is bounded. Assume that P; is not
bounded. Since the unit vectors u,, --+, uy are in general posi-
tion, from the proof of ([45], Theorem 4.3), we see V(P,) is
not bounded. However, from (15), and noting that C,(P;)
=1, we have

— 1\ Ma-D/(n-q) o
V(P < (q ) (na?™) ™0 (52)
n-q

which is a contradiction. Therefore, P; is bounded.

By the Blaschke selection theorem, we can assume that a
subsequence of P; converges to a polytope P € P(u, -+, uy).
Thus, from (iv) of Lemma 3 and Lemma 7, it follows that
C,(P)=1,§,(P) =0, and

@, (0) = sup {mingeint oPo(§): C,(Q) =1,QeP(uy, -+, uN)}.
(53)

We now prove that P € Py(uy, -+, uy), i.e., F(P,u;) are
facets for all i=1, ---, N. If not, there exists an i, € {1,---,N
} such that F(P,u; ) is not a facet of P. Choose § >0 small

enough so that the polytope

Py=Pn{x:x-u <h(P,u;) =38} €P(uy, - uy). (54)

Let A(8) = C,(P5)" """ Then, A(8)Ps € P(u}, -+, uy),
C,(A(8)Ps) =1 follows by (ii) of Lemma 3, and A(8) is con-
tinuous in [0, 00). Since for any §; — 0, there is that A(J;)
Ps — P, it follows from Lemma 7 that §;(A(5;)Ps,) — &4(P)
= 0. This implies

limE,(A(8)Ps) =o. (55)
Let
L u=u,
ri () = { 0, utu (56)

for u € $""'. Then, from Lemma 5, we have for small enough
620,

4,(Py) _dCy([mn])) _ Cyllhu, +1r,]) - Cy([hn))

dé dé t—0 t
=@ 1) it (Po )= (4= Dy (P )

(57)
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Thus, from (iii) and (iv) of Lemma 4, it follows that C q(
Py) is continuously differentiable for every § > 0, and

dC,y(Ps)
: q -
fip g5 =0 s
These imply that
dC,(Ps)
"(8) = — (L/(n-q)) "9
N (8)=-——C,(Py) w00 (59)
is continuous for every § > 0, and
lim A" (8) = 0. (60)

5—-0%

Therefore, A(5) = Cq(P(;)_(” "9 satisfies the conditions
of Lemma 8. Noting that §(5) =§,(A(5)Ps), we see £:(0)
exists.

Recall
D(8) = ) ap(AO)h(Ps ) —E(8) - wy).  (61)
k=1

From this and (38), we have

Z “k¢

Thus, it follows from (60), (61), and (62) that

P uk uk—() (62)

dD(8)

B |y (h(Pow))
- Z"‘k‘/’ (P ) (‘c» (© )'”k)
= _“iu‘/s’ (h(P’ ”io)) - Ei(O) ) Z “k‘ls,(h(P’ Ui) )k
k=1

= —(xio(/ﬁ, (h(P, uio)) > 0.

(63)
This means
. D(6)-D(0)

81%1* — 0. (64)

Therefore, there exists a §, > 0 small enough such that
D(5y) > D(0). (65)
This together with (61) has

(DA(SU)P% (E‘/’ (A(SO)P%)) >Dp (Eqﬁ (P)) = (DP(O)' (66)

Note that A(8,) = C,(Ps, )" Let Py =A(8,)Ps,
E¢(/\(80)P60)- Then, Py € P(uy, -+, uy), Cq(Po) =1 Eqs(Po) =
0, and

Py, (0) > Py (o). (67)
This contradicts (53). Thus, P € Py (uy, -+, uy).

4. Solving the Orlicz Electrostatic g-Capacitary
Minkowski Problem

Proof of Theorem 1. By Theorem 9, there exists a polytope

P ePy(uy, -+ uy) with §(P) = 0 and C,(P) =1 such that
®@p(0) = sup {minseint Q(DQ(E): Cq(Q) =1 Q€eP(uy, -, ”N)}-
(68)

For y,, -+, yy € R, choose || small enough so that the
polytope P, defined by

P, = E\II{x tx-u; <h(P,u) +ty;} (69)

has exactly N facets. Then, h(P,, u;) =
, -+, N.Let

h(P, u;) + ty, for i=1

B(t)=C,y (P~ (70)

Then, p(t)P, € Py(uy, -+ uy) and C,(B(t)P,)=1. By
Lemma 5 and (iv) of Lemma 4, we obtain

d
po)--— 2l _a71S ey o

n—q =0 "4

Define &(t) =&, (B(t)P,) and

(D(t) mln{emt B(t)P;) Z ak¢

N
z h(Py, uy) -

()h(Ppui) = & wy)
(72)

&(t) - ur)-

Since &(t) is an interior point of 5(¢)P,, this has

Z “k¢

h(P,, u) = &(t) - wy)uy; =0, (73)

for i=1,---,n, where u; = (1, -+, uk)n)T. Note that £(0) is
the origin. Then, letting t = 0 in (73), we have

Z “k¢

Puk ukl—O (74)



8
fori=1,---, n. Hence,
Z acd (h(P, uy))u = 0. (75)
Let
(68 z “k¢ h(Pp ue) = (Sythger e+t ) )i
(76)
fori=1,---,n. Then,
dF, il
a_tl (k) = > g (B(t)h(P, uy)
k=1

(B +8,) [ (4B ) B

:—Z“k‘l’

(tE180)
h(Pp w) = (§yuger oo +8, i ) e ity -

(77)

Thus,

oF
(

where wu] is an n x n matrix.

Since uy, -+, uy are in general position, R" =lin{u, ---,
uy}. Thus, for any x € R” with x # 0, there exists a u; € {y,
-x# 0. Note that ¢" > 0. Then, we have

) ——Z“k‘/’ (P, ) Jugt» (78)
)0) nxn

>+ uy } such that u;

( Z(xkc/) h(P, uy) ukuk>x

:‘Z‘W/’
S_ain¢ ( ( ’

(P, ) (x - 1y)?
uin)) (X' uio)2 <0.

Hence, (0F/0|,,...q)) is negative definite. This implies
det (0F/0¢]y,...0)) # 0 By this, the facts that for all i=1, -
n, F,(0, --- ) 0 follows by (74) and 0F,;/0¢; is continuous

ontand& for all 1 <1, j < n, and for the implicit function the-
orem, it follows that

£'(0) = (£(0), - £,(0)) (80)

exists.
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Since @(0) is a maximizer of @(t), from (71), (72), and
(75), we get

0=0'(0)= Y o' (h(P, ug)) (B'(O)h(P.1w) + 7, ~ &' (0) - )
k=1
N -1 N
Z h(P, w) { s <Z Vithg(Ps “i)) h(P, w) +Yk:|
N
0) - Z“k¢,(h(P) we) ) uy = Z"‘k‘l”(h
-1 ;(Zl:yyq (P, u;) ) (;akqﬁ' (P, u))h(P, uk)>
N
)

(P> 1))y

1

N
ZDCJ¢,

n-
[“k‘lf”(h(P U)) -

k=1 n=q\j=
(81)
Since y,, -+, yy are arbitrary,
=L (St (P o) ) o)
SEETAV- A ¢ (h(Pug) 1
(82)
fork=1,---,N. Let

(z o’ ( )h(P, u; )) (83)

Then, for k=1, ---,N,
oy = cp(h(P, uy) )ty (P, ) (84)
ie,
= cpiyq(P). (85)
This completes the proof.

Proof of Corollary 2. Let ¢(s) = s'* with p < 0 in Theorem 1.
Then, ¢(t) =—(1/p)t* for t > 0 and lilgl ¢(t) = 0o. Therefore,
t—0*

we see ¢ and ¢ satisfy the conditions of Theorem 1. Thus,
from the theorem, (3), and (4), we obtain

w=chy? (Vg (P ) = e, (P,-). (86)

If p + q # n, then from (i) of Lemma 4, we have
u= ypq<1/”P4)P ) (87)

Let P, = c"/("P=9P. Then, our desired result is given. If
P+ q=n, then (86) is just the desired result.
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The first variation of the total mass of log-concave functions was studied by Colesanti and Fragala, which includes the L, mixed

P

volume of convex bodies. Using Colesanti and Fragald’s first variation formula, we define the geominimal surface area for log-
concave functions, and its related affine isoperimetric inequality is also established.

1. Introduction

As we have known, Minkowski addition (the vector addition
of convex bodies) is the cornerstone in the classical Brunn-
Minkowski theory. Combining with volume, it leads to the
Brunn-Minkowski inequality that is one of the most impor-
tant results in convex geometry. The first variation of volume
with respect to Minkowski addition is named the first mixed
volume, and its related inequality is the Minkowski inequal-
ity. For more history and developments of the Brunn-
Minkowski inequality, one may refer to the excellent survey
[1]. For instance, the Prékopa-Leindler inequality [2-8] is
known as the functional version of the Brunn-Minkowski
inequality. In recent years, finding the functional counter-
parts of existing geometric results, especially for log-
concave functions, has been receiving intensive attentions
(see, e.g., [9-34]).

In 2013, Colesanti and Fragala [35] introduced the “Min-
kowski addition” and “scalar multiplication,” a-f®f-g
(where a, 8> 0), of log-concave functions f and g as

wsop-a s (“ ()

yeR" ﬁ

We remark that a function f:R"— [0,00) is log-
concave if it has the form f(x) = e “%), where u : R" — R

U {+00} is convex. The total mass of f is defined as

f(x)dx. (2)

=]
R®

Similar to the case of convex bodies, Colesanti and
Fragala [35] considered the following variational

51(f. g) = lim , (3)

J(fet-g)-J(f)
t—0* t

and it is called the first variation of J at f along g. The
first variation,8J(f, g), includes themeixed volume when
it restrictedfandgto the subclass of log-concave functions
(see [35], Proposition 3.12).

Colesanti and Fragala’s work inspired us a natural way to
extend the L, geominimal surface area for convex bodies to
the class of log-concave functions. For convenience, we recall
the definition of L, geominimal surface area. For a convex
body K containing the origin in its interior, its L, geominimal
surface area, G,(K), is defined as (the case p=1, see Petty

P
[36], and p > 1, see Lutwak [37])

W"G,(K)=inf {nV,(K,QV(Q )" : Qe Z}}, (4)
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where w, is the volume of the unit ball in n-dimensional
Euclidean space R", Q° is the polar body of Q defined by
Q={xeR": (x,y) <1,VyeQ}, H, denotes the class of
convex bodies in R” that contain the origin in their interiors,
and V, (K, Q) is the L, mixed volume (for detailed definition,
see Section 2). The fundamental inequality for L, geomini-
mal surface area is the following affine isoperimetric inequal-
ity (see, e.g., [37], Theorem 3.12):

G,(K)" < n"@h V(K)"?, (5)

with equality if and only if K is an ellipsoid.

The L, geominimal surface area, G,(K), is an important

notation in the L, Brunn-Minkowski theory, which serves
as a bridge connecting affine differential geometry, relative
differential geometry, and Minkowski geometry. In the past
three decades, the L, geominimal surface area has developed
rapidly (see [25, 38-42] for some of the pertinent results).

Since 8/(f, g) includes the L, mixed volume, we extend
the L, geominimal surface area to the functional version as
follows.

Definition 1. Let f : R" — [0,00) be an integral log-concave
function and p > 0. The L, geominimal surface area of f is
defined as

"G, (f) =inf {8](f, g)](g")"" : gisa log-concave function},
(6)

where ¢, = (21)"?, and g°(x) = inf e ™ /g(y) is the polar
function of g.

In Lemma 5, we prove that the above definition includes
the L, geominimal surface area (4) when p > 1 and restricted
f> g to the subclass of log-concave functions.

In order to study the functional geominimal surface area,
we need the integral formula of §J(-, - ). Hence, we need
some notations. We write (x, ) for the usual inner product
of x,y € R", and |x|| denotes the Euclidean normal of x €
R". We say that g=¢" is an admissible perturbation for
f=e¢e" if there exists a constant ¢>0 such that u* —cv*
is convex, where u*(y)=sup, g:{(x,y)—u(x)} is the
Legendre conjugate of u. Let o/’ denote the set of log-
concave functions given by function f such that u = -log
f belongs to

' = {u €% :dom (u)=R", ue €:(R"), " %im % = +oo}.
(7)
Here, dom (u) = {x € R" : u(x)<+oco} and

P= { u: R" — RU{+00}| uisconvex,dom (u) + &, ” %im u(x) = +00 }
| X[| —+00

(®)
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Colesanti and Fragala ([35], Theorem 4.5) provided an
integral formula for the first variation 8J(f,g) when f, g

€' and g is an admissible perturbation for f. For our
aims, we consider the following optimization problem:

inf {SI(f, NI(G )" : f,ged',p>0and gisanadmissible perturbationforf}
©)

If the extremum in (9) exists, then it is denoted by
/n ~(1
&G (f).
In Section 3, we prove that for p >0 and f € o', if J(f) is

finite, then there exists a unique log-concave function f € o/’
such that

Gy (f) =081 (f.f)andJ (F') =¢,. (10)

Similar to the geometric case, the unique log-concave
function f is called p -Petty functions of f and denoted by
T,f

Using p-Petty functions, we obtain the following analytic
inequality with equality conditions involving G1<71> ().

Theorem 2. Suppose f € o' and p > 0. If f has its barycenter
at 0 (i.e, [, xf(x)dx=0), then

1P s (win+ | floggas),

with equality if T,f (x) = f(x) and f(x) = ce"(145I12) for A ¢
SL(n) and ¢ > 0.

2. Background

2.1.  Functional Setting. Letu : R" — RU{+oco}if for
everyx, y € R"andA € [0, 1]it satisfies

u((1=Mx+Ay) <(1-2A)u(x) + Au(y), (12)
we say u is a convex function; let
dom (u) = {x e R" : u(x) € R}. (13)

By the convexity of u, dom (u) is a convex set. We say
that u is proper if dom (u) # &. The Legendre conjugate of
u is the convex function defined by

u'(y) =sup{({x,y) —u(x)} VyeR" (14)

xeR"
Clearly, u(x) + u*(y) = (x, y) for all x, y € R"; there is an
equality if and only if x € dom () and y is in the subdifferen-
tial of u at x. Hence, it can be checked that

u* (Vu(x)) + u(x) = (x,Vu(x)). (15)

On the class of convex functions from R” to RU {+00},
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the infimal convolution is defined by

ulv(x) :Jiglé{u(x -y)+v(y)} VxeR", (16)

and the right scalar multiplication by a nonnegative real
number «a > 0,

(ua)(x) = cxu(%). (17)

It was proved in [21] (Proposition 2.1) that if u,v: R"
—> R U {+00} are convex functions and « > 0, then

(udv)* =u" +v",
(18)

(ua)™ = au™.
The following result will be used later.

Theorem 3 ([43], Theorem 10.9). Let C be a relatively open
convex set, and let f,, f,, -+ be a sequence of finite convex
functions on C. Suppose that the real number f,(x), f,(x), ---
is bounded for each x € C. It is then possible to select a subse-
quence of f,,f,, -+, which converges uniformly on closed
bounded subsets of C to some finite convex function f.

The functional Blaschke-Santald inequality states that let
f> g be nonnegative integrable functions on R" satisfying

flx)g(y) < e ), Vx,y e R". (19)

If f has its barycenter at 0, which means that [, xf(x)

dx =0, then
(o) ([ o)< o

with equality if and only if there exists a positive definite
matrix A and C > 0 such that, a.e. in R”,

)

flx)=Ce

2.2. The First Variation of the Total Mass of Log-Concave
Functions. In this paper, we set

g =Cle = (21)

F= { u: R" — RU{+00}| uproper,convex, lim u(x)=+00 }’

llx|—=+00

d={f:R"—R| f=e"ueZ}.

(22)
The total mass functional of f is defined as
10=] feos (23)
The Gaussian function
V=t (24)

plays within class o/ the role of the ball in the set of convex
bodies, and J(y) = (271)" = c,,. For every A € GL(n), we write

_lax)?
2 .

Yalx)=e (25)

From the definition of polar function and Legendre con-
jugate of function, we note that if f € &/, then

f=e?. (26)

The support function of log-concave function f =¢e™? is
(see [44])

he(x) = 9" (x)- (27)

This is a proper generalization, in the sense that b, = h.
K
Let f=e" g=¢",and let a, f >0, then

o f 23} ﬁ -g= e*[(ua)D(vﬁ)]’ (28)

which in explicit form reads

wropow=smr(* (). o9

yeR" ﬁ
The support function of a- f @ 8- g satisfies
Bagopg(x) = ahy () + B, (x). (30)

In particular,

R (x) = ahy(x). (31)
Let f, g € of. The first variation of ] at f along g is defined
as
Df- —
8J(f.g) = lim Ifet-g) () f) Id). (32)

The existence of the above limit was proved by Colesanti
and Fragala [35], and 6J(f, g) € [-k,+00] with k = max {inf
(-log g), 0}J(f). In particular, for every f € & with J(f) >
0, then

IH=nI()+ | Flogfar. ()

The functional version of Minkowski first inequality
reads as follows (see, e.g., [35], Theorem 5.1): let f,ge o
and assume that J(f) > 0. Then,

SI(f.9)=7(f) [log%+n] +J]Rnflogfdx, (34)

with equality if and only if there exists x, € R" such that
g(x) =f(x—x,) for Vx e R".



Let Z" denote the set of convex bodies (compact, convex
subsets with nonempty interiors) in the Euclidean space R”".
We write 7 for the set of convex bodies that contain the
origin in their interiors. Let V(K) denote the n-dimensional
volume of convex body K. The volume of the standard unit
ball in R” is denoted by w, =n"?/I'((n/2) +1). A convex
body K € #" is uniquely determined by its support function,
which is defined as hy (x) = max {(x, y): y € K}, where (-, -)
denotes the usual inner product in R". The polar body of K is
defined by K° = {x e R" : (x,y) <1,Vy € K}.

For real p>1, K, L € %", and real € > 0, the Minkowski-
Firey L, combination K+,¢- L is a convex body whose sup-

port function is given by
h(K+ye- L)' =h(K, )P +eh(L,-)". (35)

The L, mixed volume V,(K, L) of convex bodies K and L
is defined by

P V(K+e L) -V(E)

36
N e—0* & ( )

V,(K,L)=

The existence of this limit is showed in [45].
The following result show that §J(f, g) includes the L,

mixed volume for convex bodies.
Proposition 4 ([35], Proposition 3.12). Let g € (1,4+00),p =
q/(q-1) and K,Le K" . Let u=(hg(x)")/q, v(x) = (h;.

(x)1)/q, and f = e, g=e". Then, there exists a positive con-
stant ¢ = c¢(n, q) such that

J(f) =¢(n q)V(K), (37)

with c(n,q) = ¢ ((n + q)/q), and
P81(1.9)=ctna)V,(K.L). (38)

We sete/'as the subclasses ofg/given by the functionf
such that u =log f belongs to

3’:{ue3:dom(u):w, ue B2 (R"),  Jim %:+oo}.
x[|—+00

(39)

For log-concave function f = e, the Borel measure
on R” is defined by (see [35])

by = (V) ,(f7). (40)

Here, " is the n-dimensional Hausdorff measure. We
need the fact that the barycenter of 4, is the origin; ie,

J]Rn xps(x) =0. (41)

We recall that the log-concave function g=e™ is an

Journal of Function Spaces
admissible perturbation for log-concave function f =e™ if
Ja>0:u" —av* (42)

is convex.

Colesanti and Fragala [35] provided an integral represen-
tation of the first variation 8J(-, - ) (see, e.g., [35], Theorem
4.5): let f=e™ and g=e" €' and assume that g is an
admissible perturbation for f. Then, 8J(f, g) is finite and is
given by

81(f. g) =j By () (3): (43)

dom (u)

3. Functional Lp Geominimal Surface Areas

Analogy to convex bodies, for f € o/ and p € R, we consider
the following optimization problem:

&"G(f) =inf {8](f,9))(g')" - ged}.  (44)

The following result shows that the above optimization
problem includes Lutwak’s L, geominimal surface areas for

convex bodies (4) when p>1 (up to a constant which is
dependent onnandp). This is one of the reasons why G, (f)

is called the L, geominimal surface area for log-concave func-
tion f.

Lemma5. Letp>1,q=p/(p—1),andK e X . If f = ¢
then

G,(f) = a(n, p)G,(K), (45)

with a(n, p) = (1/p)c(n, q)c(n,p)P/"wf,/"c;(pm) for c(n,q)=
g ((n+q)/q).

Proof. Let K, L € ", u(x) = hy-(x)1/q, v(x) = h;-(x)/g, and
f=e" g=e". Itis not hard to see that

vi(x) = . (46)

Then, Proposition 4 tells us that

J(g") =c(mp)V(L),

Lsi(r.9)=cma)v, (K. 1),

with ¢(n, q) = ¢"1I'((n + )/q).



Journal of Function Spaces

From the definitions of L, geominimal surface area of
convex bodies (4) and log-concave functions (44), we have

&G, (f) =inf {8](f, 9)](g")"" : g A}

= inf {;c(n, q)c(n p)!"V, (K, L)V(L')"" : K, L e %g}

1
S a)en pP "Gy (K).
(48)
Since we need the integral representation of the first var-
iation 8J(f, g) in dealing the problem (44), we focus on
c{’l’”GI(,I)(f) =inf {8](f, 9)J(g°)!" : g € ' and gis an admissible perturbation for f}
(49)

for f € o' and p € R. Trivially, G,(f) < Gl()l)(f).
We need the next lemma.

Lemma 6. Let f, g€ o' and assume that g is an admissible
perturbation for f . If A € SL(n), then

0J(feA, goA)=0d](f. 9)- (50)

Proof. Let f(x) = ¢ “*) and g(x) = e"*). We note that
(veA)"(x) = sup{(x,y) - v(Ay)}
yeR"

= yseung {<A’tx, Ay> - V(Ay)} =" (Aftx).

(51)

Since V(1o A) = A’V u, we have

S (feAgeA)=| (veA) (V(ueA)(x))f o A(x)dx

R"
. (veA)" (A'V 4 u(Ax))f(Ax)dx
[ v (Taan)siand

R"

=| v(Vu(2))f(2)dz=0](f. 9)-

R"

(52)

The following result shows that the functional geomini-
mal surface area is affine invariant.

Lemma 7. Suppose f € &/’ and p> 0. If A € SL(n), then

Gy (f o A) =Gy (f). (53)

Proof. By (51) and the definition of polar function (26), we
have

J((geA))=J(g = A™)=](g") (54)

5
for A € SL(n). Combing with Lemma 6, we have
81(f oA g)I(g" V" =01 (frg°A™)I(((9°47))""
(55)
Therefore, we obtain
G (f24)=G" () (56)

for A € SL(n).

The following lemma was proved by Cordero-Erausquin
and Klartag ([46], Lemma 16).

Lemma 8. Let y be a finite Borel measure in R", and let K be

the interior of conv(Supp(u)). If x, € K and the barycenter of
y lies at the origin, then there exists a constant C,,, > 0 with

the following property: for any nonnegative, y -integrable,
convex function ¢ : R" — R U {+c0},

P(xp) < CMJ pdy. (57)
.

The next proposition shows that the infimum in the def-
inition of the p-geominimal surface area of log-concave func-
tion is a minimum.

Proposition 9. Let p>0 and fe o' . If J(f) is finite, then
there exists a unique log-concave function f € o such that

Gy (f) =) (f.f) and ] (") =<, (58)

Proof. From the definition of GI(,I) (f), there exists a sequence

g; € o' such that J(g;) = c,, with 8J(f, y) = 8J(f, g;) for all i,
and

8J(f, g,) — Gy (f)- (59)

Let g,(x) = ¢, then

2000 = | Vi ()

First, we assume that v; are nonnegative and v;(0) = 0 for
all i. In this case, from (14), we have

vi (%) =yseuﬂg{<% x) = vi(0)} 2 (0,x) =vi(0) =0, (61)

and

v; (0) =sup{(y,0) - v,(y)} = —yinfv-(y) =0. (62)

yeR" eR" '

LetKbe the interior ofconv(Supp(y;)). By Lemma 8 and
((59)), we conclude thatv; are uniformly upper bound which



is dependent only onf. According to Theorem 3, there exists
a subsequence {v;} - that converges pointwise in K to a
J J=12,0

convex function v* : K — R. We extend the definition of v*

by setting v*(x) = +o0 for xeK and for x € 9K,
v (x) = )}inil, v (Ax). (63)

This limit always exists in [0, +00], since the function A
— v*(Ax) is nondecreasing for A € (0, 1) following from the
convexity of v* and v*(0) = 0. Moreover, we have that v*(A
x)Zv*(x) as A— 1" for any x € K. Because vi — v* is
equivalent to v, — v (here, v = (v*)"), hence, there exits a
log-concave function f = e™” which satisfies the claim.

In the general case, there exist x(()i> € R" and inf , gnv;(x)

=d, € R such that v,(x) =v,(x - x(()i>) -
and v;(0)=0forall i=1,2,---.
€ o' ensures the finiteness of d; i.e.,|d; | <k for some k > 0.
Similar to the first case, we have

d; are nonnegative
The convexity of v; and e™

SN 200(9)= [ iy, (o0

where g; = ™. Lemma 8 deduces that

1

SN 201(F3)= | Ty ()2 i) (69

HpXo
holds for x,, € K. Moreover,
v; (x) = sup {(y,x) = ¥;(»)}
yeR”
Vi ()’ - x(()l)) } +d;

= sup{(% x) =
| (66)
= sup{<y+x(()l),x> - Vi()’)} +d,

yeR"
yeR”

=v;‘(x)+<x,x0 >+d

Therefore,
Cope ST ) 27 (%) = 7] (%) + (%0, x3 )+ (67)
ie.
Vi (%) £C, 1 81(f,7) - <x0,x0)> d, (68)

for any x, € K. Then, along the same line of the first case, we
conclude that the claim of this proposition holds.

The uniqueness of the minimizing function is demon-
strated as follows. Suppose h;, h, € &/, such that J(h;) = J(
k) =c,, and
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I b1 = inf {B1(F.0)I (g7} g’}

(69)
= 8J(f> hy)J ()™,
ie,
OJ(f> 1) =8I (f hy)- (70)
Let h, =e™ and h, = e™. Define h € o/, by
h= 1 ho® 1 = e (12)8v,(172) (71)
2 T2 7 '
Then, from (18) and (70), we have
SI(f h)—J (v IDV 1)*(x)d (x)
=)L (1272 Ky
1 . 1 .
= 5| vitoduy+ 5| vieody o
R R
1 1
= 381 )+ 301 hy) = 8T(f. ) = 8T(f ),
(72)

and by the basic inequality v/ab < (a + b)/2 for a,b> 0 and
(18), we have

](ho):J e [0 (12)]" gy = J e 1(172)v] (x)+(112)v; (x)]
R" R

(IR B
~dx< S () + 5T (),
(73)

with equality if and only if 4] = k5. Therefore,

SJ(f W) (K™ < 8] (f, )T (Hy)"" (74)

is the contradiction that would arise if it was the case that
hy # h,.

The unique function whose existence is guaranteed by
Proposition 9 will be denoted by T,f, and will be called the

p-Petty body of log-concave function f (or the A -Petty func-
tion). The polar function of T,f will be denoted by T,f,

rather than (T,f)". For f € o/ and p>0, the log-concave
function T ,f is defined by

GV (f) =8I (£, T,f),

(75)
](T;f) =c,.
Lemma 10. If p > 0 and f € o/, then for A € SL(n),
Tp(fOA)ZTPfOA. (76)
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Proof. From the definition of T, and Lemma 7,
SI(1:Tf) =G (1) = Gy (f o A) =0 (F e A, T, (f = 4)),
(77)
Lemma 6 deduces

SJ(fs Tof) =8I (f oA T,(foA)) =0](f, T,(foA)oA").
(78)

The uniqueness of Proposition 9 ensures that T,f =
T,(feA)oA™

By the Blaschke-Santal6 inequality, we obtain the follow-
ing affine isoperimetric inequality for the functional geomini-
mal surface area.

Theorem 11. Let f € /' and p > 0. If f has its barycenter at 0,
then

P s (win+ | flogfas),  09)

with equality if T,f(x) = f(x) and f(x) = ce” A1) for A ¢
SL(n) and ¢ > 0.

Proof. Taking g = f in (49), together with (33), we have,

&G (F) <81, I (F)P" = (nl(f) o] 5 logfdx)](f°)"’">

(80)

R”

ie.,

. < Gy (f)"
"\ (n+ (UI(f)) o f log fdx)" I (f)

Up
np> <JNHI)-
(81)

By Blaschke-Santalé inequality (20) and the above
inequality, we have

( 6ty )P |
(TP fye Flog F) TG =

(82)

This is the desired inequality.
To obtain the equality condition, first assume that
T,f =f. Formula (77) tells us that

Gy (f)=8](f.f)and J(f") =<, (83)

This shows that there is equality in (81). From the
condition of Blaschke-Santald inequality, we known that
there exists a positive definite matrix A and ¢>0 such

that, a.e. in R”,

flx)=ce =" (84)

Therefore, we obtain the equality condition, namely,
T,f =f and f(x) = ce (4I72),
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