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In this paper, we study the properties of n-polynomial ζ-preinvex functions and establish some integral inequalities of Hermite-
Hadamard type via this class of convex functions. Moreover, we discuss some special cases which provide a significant
complement to the integral estimations of preinvex functions. Applications of the obtained results to the inequalities for special
means are also considered.

1. Introduction and Preliminaries

The geometric inequalities involving volume, surface area,
mean width, etc. in the Orlicz space have attracted consider-
able attention of researchers, and the convexity properties of
functions have been a powerful tool for dealing with various
problems of convex geometry (see [1, 2]). This suggests that it
is a significant work to develop new inequalities for general-
ized convex functions. For this purpose, let us start with
recalling some concepts and notations on the convexity of
functions.

A set C ⊂ℝ is said to be convex if

1 − tð Þx + ty ∈C , ð1Þ

for any x, y ∈C and t ∈ ½0, 1�.
A functionF : C ↦ℝ is said to be convex if the inequality

F 1 − tð Þx + tyð Þ ≤ 1 − tð ÞF xð Þ + tF yð Þ ð2Þ

holds for any x, y ∈C and t ∈ ½0, 1�.
In recent years, the classical concept of convexity has been

extended and generalized in different directions. Mititelu [3]
introduced the notion of invex set, as follows.

Definition 1 [3]. Let X ⊂ℝ be a nonempty set and η : ℝ ×
ℝ↦ℝ be a real-valued function. A set X is said to be invex
with respect to η if

x + tη y, xð Þ ∈X , ð3Þ

for all x, y ∈X and t ∈ ½0, 1�.

The invexity would reduce to the classical convexity if
ηðy, xÞ = y − x. Weir andMond [4] defined the class of prein-
vex functions as follows.

Definition 2 [4]. Let X ⊂ℝ be a nonempty invex set with
respect to η : ℝ ×ℝ↦ℝ. A function F : X ↦ℝ is said to
be preinvex with respect to η if the inequality

F x + tη y, xð Þð Þ ≤ 1 − tð ÞF xð Þ + tF yð Þ ð4Þ

holds for all x, y ∈X and t ∈ ½0, 1�.
As a generalization of convex functions, Gordji et al. [5]

introduced the notion of ζ-convex function.

Definition 3 [5]. A function F : I ⊂ℝ↦ℝ is said to be
ζ-convex function with respect to ζ : ℝ ×ℝ↦ℝ if the
inequality
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F tx + 1 − tð Þyð Þ ≤F yð Þ + tζ F xð Þ,F yð Þð Þ ð5Þ

holds for all x, y ∈I and t ∈ ½0, 1�.

The properties of convexity have numerous applications
in different fields of pure and applied mathematics; espe-
cially, the concept of convexity has close relation with the
theory of inequalities. Many inequalities are direct conse-
quences of the applications of classical convexity. As is
known to us, the Hermite-Hadamard inequality is one of
the most significant result associated with convex functions,
it reads as follows.

Let F : ½a, b� ⊂ℝ→ℝ be a convex function, then

F
a + b
2

� �
≤

1
b − a

ðb
a
F xð Þdx ≤ F að Þ +F bð Þ

2 : ð6Þ

Noor [6] obtained a generalization of classical Hermite-
Hadamard’s inequality using the class of preinvex functions,
as follows.

Let F : ½a, a + ηðb, aÞ�→ℝ be a preinvex function, then

F
2a + η b, að Þ

2

� �
≤

1
η b, að Þ

ða+η b,að Þ

a
F xð Þdx ≤ F að Þ +F bð Þ

2 :

ð7Þ

The result of Noor has inspired a lot of investigators to
deal with new generalizations and refinements of Hermite-
Hadamard’s inequality via preinvexity. For example, Barani
et al. [7] obtained the generalizations of Hermite-
Hadamard’s inequality for functions whose derivative abso-
lute values are preinvex. Du et al. [8] and Noor et al. [9]
obtained several generalizations of Hermite-Hadamard’s
inequality via ðs,mÞ-preinvex functions and h-preinvex func-
tions, respectively. Park [10, 11] derived several variations of
Hermite-Hadamard’s inequality from differentiable preinvex
functions. Sarikaya et al. [12] and Wu et al. [13] established
the Hermite-Hadamard-like type inequalities via log-prein-
vex functions and harmonically ðp, h,mÞ-preinvex functions,
respectively. Wang and Liu [14] and Li [15] obtained differ-
ent refinements of Hermite-Hadamard’s inequality using s
-preinvex functions. Deng et al. [16, 17] and Wu et al. [18]
deduced some quantum Hermite-Hadamard-type inequal-
ities by using generalized ðs,mÞ-preinvex functions and
strongly preinvex functions, respectively.

Recently, Toplu et al. [19] proposed the concept of n
-polynomial convex functions and investigated their
properties.

In this paper, we shall introduce a new class of n-poly-
nomial convex functions based on a different form of
inequality in the definition compared with [19], which is con-
venient to the generalizations and applications of n-polyno-
mial convexity. More specifically, we will define a class of
convex functions called as n-polynomial ζ-preinvex func-
tions. We then show that this class of convex functions con-
tains a number of other classes of convex functions.
Furthermore, we establish some new integral inequalities of
Hermite-Hadamard type for n-polynomial ζ-preinvex func-

tions. Finally, we apply the obtained inequalities to establish
two inequalities for special means.

Firstly, we introduce the notion of n-polynomial ζ-pre-
invex functions.

Definition 4. Let n ∈ℕ. A nonnegative function F : X ↦ℝ
is said to be n-polynomial ζ-preinvex with respect to bifunc-
tions η, ζ : ℝ ×ℝ↦ℝ if the inequality

F a + tη b, að Þð Þ ≤F að Þ + 1
n
〠
n

s=1
1 − 1 − tð Þs½ �ζ F bð Þ,F að Þð Þ

ð8Þ

holds for all a, b ∈X and t ∈ ½0, 1�.
Note that if we take n = 1, then we have 1-polynomial ζ

-preinvexity, which is just the ζ-preinvex functions defined
by the inequality

F a + tη b, að Þð Þ ≤F að Þ + tζ F bð Þ,F að Þð Þ, ∀a, b ∈X , t ∈ 0, 1½ �:
ð9Þ

If we take ζðFðbÞ,FðaÞÞ =FðbÞ −FðaÞ, then we obtain
the class of n-polynomial preinvex functions, which is
defined by the inequality

F a + tη b, að Þð Þ ≤ 1
n
〠
n

s=1
1 − tð ÞsF að Þ

+ 1
n
〠
n

s=1
1 − 1 − tð Þs½ �F bð Þ, ∀a, b ∈X , t ∈ 0, 1½ �:

ð10Þ

If we take ηðb, aÞ = b − a, then we get the class of n
-polynomial ζ-convex functions, which is defined by the
inequality

F a + t b − að Þð Þ ≤F að Þ + 1
n
〠
n

s=1
1 − 1 − tð Þs½ �ζ F bð Þ,F að Þð Þ, 

∀a, b ∈X , t ∈ 0, 1½ �:
ð11Þ

If we take n = 1 in inequality (11), then we have the class
of ζ-convex functions. Furthermore, we obtain the classical
convex functions by setting ζðFðbÞ,FðaÞÞ =FðbÞ −FðaÞ.

If we take n = 2 in Definition 4, then we have the class of 2
-polynomial ζ-preinvex functions, which is defined by the
following inequality:

F a + tη b, að Þð Þ ≤F að Þ + 3t − t2

2 ζ F bð Þ,F að Þð Þ, ∀a, b ∈X , t ∈ 0, 1½ �:
ð12Þ

Note that 0 ≤ t ≤ 3t − t2/2, this shows that, for every non-
negative bifunction ζ, the ζ-preinvex function is also the 2
-polynomial ζ-preinvex functions. More generally, we have
the following result.
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Proposition 5. For every nonnegative bifunction ζ and n ≥ 2,
if F : X ↦ℝ is a ðn − 1Þ-polynomial ζ-preinvex function,
then F is a n-polynomial ζ-preinvex function.

To verify the validity of Proposition 5, it is enough to show
that

1
n − 1

〠
n−1

s=1
1 − 1 − tð Þs½ � ≤ 1

n
〠
n

s=1
1 − 1 − tð Þs½ �, ð13Þ

for any n ≥ 2 and t ∈ ½0, 1�.
Direct computation gives

1
n − 1

〠
n−1

s=1
1 − 1 − tð Þs½ � − 1

n
〠
n

s=1
1 − 1 − tð Þs½ �

= 1 − t
t

� �
1 − 1 − tð Þn

n
−
1 − 1 − tð Þn−1

n − 1

" #

= 1 − t
t

� �
1 − tð Þn + nt 1 − tð Þn−1 − 1

n n − 1ð Þ

" #

= 1 − t
t

� �
1 − tð Þn + nt 1 − tð Þn−1 − 1 − tð Þ + tð Þn

n n − 1ð Þ

" #

= −
1 − t
t

� �
C2
nt

2 1 − tð Þn−2 + C3
nt

3 1 − tð Þn−3+⋯+Cn
nt

n

n n − 1ð Þ

" #

≤ 0,
ð14Þ

which implies the required inequality (13).

As a consequence, we obtain the following.

Proposition 6. For every nonnegative bifunction ζ, if F : X
↦ℝ is a ζ-preinvex function, then F is a n-polynomial ζ
-preinvex function.

Choosing ζðFðbÞ,FðaÞÞ =FðbÞ −FðaÞ in Proposition 6
gives the following.

Proposition 7. If F : ½a, a + ηðb, aÞ�→ℝ is a preinvex func-
tion withFðbÞ −FðaÞ ≥ 0, thenF is a n-polynomial preinvex
function.

2. Main Results

In this section, we establish some new Hermite-Hadamard-
type inequalities using the class of n-polynomial ζ-preinvex
functions. We first need to introduce the notation called
Condition C, which was presented by Mohan and Neogy in
[20].

Condition C. Let X ⊂ℝ be an invex set with respect to
bifunction ηð:, :Þ, we say that the bifunction ηð:, :Þ satisfies
the Condition C, if for any x, y ∈X and t ∈ ½0, 1�, we have

η x, x + tη y, xð Þð Þ = −tη y, xð Þ,
η y, x + tη y, xð Þð Þ = 1 − tð Þη y, xð Þ:

ð15Þ

Note that for any x, y ∈X , t1, t2 ∈ ½0, 1� and from Condi-
tion C, we can deduce

η x + t2η y, xð Þ, x + t1η y, xð Þð Þ = t2 − t1ð Þη y, xð Þ: ð16Þ

Throughout the paper we assume that Condition C is sat-
isfied for the domain with respect to bifunction ηð:, :Þ as a
precondition.

Theorem 8. Let F : ½a, a + ηðb, aÞ�→ℝ be a n-polynomial ζ
-preinvex function. If ηðb, aÞ > 0 and F ∈ L½a, a + ηðb, aÞ�,
then we have

F
2a + η b, að Þ

2

� �
−
n + 2−n − 1

n
Mζ ≤

1
η b, að Þ

ða+η b,að Þ

a
F xð Þdx

≤F að Þ + 1
n
〠
n

s=1

s
s + 1

ζ F bð Þ,F að Þð Þ,

ð17Þ

where Mζ is the upper bound of bifunction ζ.

Proof. Using the definition of n-polynomial ζ-preinvex func-
tion and Condition C, we have

F
2a + η b, að Þ

2

� �
=F a + 1 − tð Þη b, að Þ + 1

2 t − 1 − tð Þð Þη b, að Þ
� �

=F a + 1 − tð Þη b, að Þ + 1
2 η a + tη b, að Þ, að

�

+ 1 − tð Þη b, að ÞÞ
�
≤F a + 1 − tð Þη b, að Þð Þ

+ 1
n
〠
n

s=1
1 − 1

2

� �s� �
ζ F a + tη b, að Þð Þ,ð

F a + 1 − tð Þη b, að Þð ÞÞ ≤F a + 1 − tð Þη b, að Þð Þ
+ n + 2−n − 1

n
Mζ:

ð18Þ

Hence, we obtain

F a + 1 − tð Þη b, að Þð Þ ≥F
2a + η b, að Þ

2

� �
−
n + 2−n − 1

n
Mζ:

ð19Þ

Integrating both sides of the above inequality with
respect to t on ½0, 1�, it follows that
ð1
0
F a + 1 − tð Þη b, að Þð Þdt ≥F

2a + η b, að Þ
2

� �
−
n + 2−n − 1

n
Mζ,

ð20Þ
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that is,

1
η b, að Þ

ða+η b,að Þ

a
F xð Þdx ≥F

2a + η b, að Þ
2

� �
−
n + 2−n − 1

n
Mζ:

ð21Þ

The left-hand side inequality of (17) is proved.
On the other hand, from the definition of n-polynomial ζ

-preinvex function, one has

F a + tη b, að Þð Þ ≤F að Þ + 1
n
〠
n

s=1
1 − 1 − tð Þsð Þζ F bð Þ,F að Þð Þ:

ð22Þ

Integrating both sides of the above inequality with
respect to t on ½0, 1�, we obtain

1
η b, að Þ

ða+η b,að Þ

a
F xð Þdx =

ð1
0
F a + tη b, að Þð Þdt

≤
ð1
0

F að Þ + 1
n
〠
n

s=1
1 − 1 − tð Þsð Þζ F bð Þ,F að Þð Þ

 !
dt

=F að Þ + 1
n
〠
n

s=1

s
s + 1 ζ F bð Þ,F að Þð Þ:

ð23Þ

This proves the right-hand side inequality of (17). The
proof of Theorem 8 is complete.

Before we put forward another kind of integral inequality
of Hermite-Hadamard type, we need to prove an auxiliary
result, which will play a key role in deducing subsequent
results. For the sake of simplicity, we let I = ½a, a + ηðb, aÞ�
and let I ∘ be the interior of I .

Lemma 9. Let F : I ↦ℝ be a differentiable function on I ∘

with ηðb, aÞ > 0, min fλ, μg ≥ t > 0. If F ′ ∈ L½I �, then

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

= η b, að Þ
λ + μð Þ2

ðμ
0
−tð ÞF ′ a + μ − t

λ + μ
η b, að Þ

� �
dt

�

+
ðλ
0
tF ′ a + μ + t

λ + μ
η b, að Þ

� �
dt
�
:

ð24Þ

Proof. Let

I = η b, að Þ
λ + μð Þ2

ðμ
0
−tð ÞF ′ a + μ − t

λ + μ
η b, að Þ

� �
dt

�

+
ðλ
0
tF ′ a + μ + t

λ + μ
η b, að Þ

� �
dt
�
= I1 + I2:

ð25Þ

Integrating by parts yields

I1 =
η b, að Þ
λ + μð Þ2

ðμ
0
−tð ÞF ′ a + μ − t

λ + μ
η b, að Þ

� �
dt

� �

= 1
λ + μ

μF að Þ −
ðμ
0
F a + μ − t

λ + μ
η b, að Þ

� �
dt

�

= μ

λ + μ
F að Þ − 1

η b, að Þ
ða+ μ

λ+μη b,að Þ

a
F xð Þdx:

ð26Þ

Similarly,

I2 =
λ

λ + μ
F a + η b, að Þð Þ − 1

η b, að Þ
ða+η b,að Þ

a+ μ/ λ+μð Þð Þη b,að Þ
F xð Þdx:

ð27Þ

Substituting the formulations of I1 and I2 in (25) leads
to the desired identity (24). The proof of Lemma 9 is
complete.

We shall now give some estimations of bounds for
Hermite-Hadamard-type inequalities.

Theorem 10. LetF : I ⟶ℝ be a differentiable function on
I ∘ with ηðb, aÞ > 0, λ > 0, μ > 0, and letF ′ ∈ L½I �. If ∣F ′ ∣ is
n-polynomial ζ-preinvex function, then

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

λ2 + μ2

2
∣F ′ að Þ∣+ 1

n
〠
n

s=1
K1 ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣

� �"

+ 1
n
〠
n

s=1
K2 ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣

� �#
,

ð28Þ

where

K1 =
μ2

2
−
μ s + 2ð Þ λ + μð Þs+1 − λ + μð Þs+2 + λs+2

s + 1ð Þ s + 2ð Þ λ + μð Þs ,

K2 =
λ2

2
−

λs+2

s + 1ð Þ s + 2ð Þ λ + μð Þs :
ð29Þ

Proof. Using Lemma 9 and the assumption that ∣F ′ ∣ is n
-polynomial ζ-preinvex function, we have
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μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

ðμ
0
∣−t ∣ F ′ a + μ − t

μ + λ
η b, að Þ

� �����
����dt +

ðλ
0
∣ t ∣ F ′ a + μ + t

λ + μ
η b, að Þ

� �����
����dt

� �

≤
η b, að Þ
λ + μð Þ2

ðμ
0
t ∣F ′ að Þ∣+ 1

n
〠
n

s=1
1 − 1 − μ − t

μ + λ

� �s� �
ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣
� �( )

dt

"

+
ðλ
0
t ∣F ′ að Þ∣+ 1

n
〠
n

s=1
1 − 1 − μ + t

μ + λ

� �s� �
ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣
� �( )

dt

#

= η b, að Þ
λ + μð Þ2

ðμ
0
t ∣F ′ að Þ ∣ dt + 1

n
〠
n

s=1

ðμ
0
t 1 − λ + t

λ + μ

� �s� �
ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣
� �

dt

"

+
ðλ
0
t ∣F ′ að Þ ∣ dt + 1

n
〠
n

s=1

ðλ
0
t 1 − λ − t

λ + μ

� �s� �
ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣
� �

dt

#

= η b, að Þ
λ + μð Þ2

λ2 + μ2

2 ∣F ′ að Þ∣+ 1
n
〠
n

s=1

ðμ
0
t 1 − λ + t

λ + μ

� �s� �
ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣
� �

dt

"

+ 1
n
〠
n

s=1

ðλ
0
t 1 − λ − t

λ + μ

� �s� �
ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣
� �

dt

#
,

ð30Þ

which implies the desired inequality (28) since

ðμ
0
t 1 − λ + t

λ + μ

� �s� �
dt = μ2

2 −
μ s + 2ð Þ λ + μð Þs+1 − λ + μð Þs+2 + λs+2

s + 1ð Þ s + 2ð Þ λ + μð Þs
= K1,

ðλ
0
t 1 − λ − t

λ + μ

� �s� �
dt = λ2

2 −
λs+2

s + 1ð Þ s + 2ð Þ λ + μð Þs = K2:

ð31Þ

This completes the proof of Theorem 10.

Next, we discuss some special cases of Theorem 10.

(I) If we consider λ = μ = 1 in Theorem 10, then we have

F að Þ +F a + η b, að Þð Þ
2 −

1
η b, að Þ

ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ

4 ∣F ′ að Þ∣+ 1
n
〠
n

s=1

2s s + 1ð Þ s + 2ð Þ − 2 1 + 2s+1s
	 


2s+1 s + 1ð Þ s + 2ð Þ ζ

"

� ∣F ′ bð Þ∣,∣F ′ að Þ ∣
� �

+ 1
n
〠
n

s=1

2s s + 1ð Þ s + 2ð Þ − 2
s + 1ð Þ s + 2ð Þ2s+1 ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣

� �#
:

ð32Þ

(II) If we take ηðb, aÞ = b − a in Theorem 10, then we get

μF að Þ + λF bð Þ
λ + μ

−
1

b − a

ðb
a
F xð Þdx

����
����

≤
b − a

λ + μð Þ2
λ2 + μ2

2 ∣F ′ að Þ∣+ 1
n
〠
n

s=1
K1ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣
� �"

+ 1
n
〠
n

s=1
K2ζ ∣F ′ bð Þ∣,∣F ′ að Þ ∣
� �#

:

ð33Þ

(III) If we choose ζð∣F ′ðbÞ∣,∣F ′ðaÞ ∣ Þ = ∣F ′ðbÞ ∣ − ∣F ′
ðaÞ ∣ in Theorem 10, then we obtain

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

λ2 + μ2

2 ∣F ′ að Þ∣+ 1
n
〠
n

s=1
K1 + K2ð Þ ∣F ′ bð Þ∣−∣F ′ að Þ ∣

� �" #
:

ð34Þ

Theorem 11. Let F : I →ℝ be a differentiable function on
I ∘ with ηðb, aÞ > 0, λ > 0, μ > 0, and let F ′ ∈ L½I �, ð1/pÞ +
ð1/qÞ = 1, p > 1, q > 1. If jF ′jq is n-polynomial ζ-preinvex
function, then

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

μp+1

p + 1

� �1/p
μ F ′ að Þ�� ��q + 1

n
〠
n

s=1
K3ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q"

+ λp+1

p + 1

 !1/p

λ F ′ að Þ�� ��q + 1
n
〠
n

s=1
K4ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q#

,

ð35Þ

where

K3 = μ −
λ + μð Þs+1 − λs+1

s + 1ð Þ λ + μð Þs ,

K4 = λ −
λs+1

s + 1ð Þ λ + μð Þs :
ð36Þ

Proof. Using Lemma 9, Hölder’s inequality, and the fact that
jF ′jq is n-polynomial ζ-preinvex function, it follows that

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

ðμ
0
∣−t ∣ F ′ a + μ − t

μ + λ
η b, að Þ

� �����
����dt

�

+
ðλ
0
∣ t ∣ F ′ a + μ + t

λ + μ
η b, að Þ

� �����
����dt
#

≤
η b, að Þ
λ + μð Þ2

ðμ
0
−tj jpdt

� �1/p ðμ
0
F ′ a + μ − t

λ + μ
η b, að Þ

� �����
����
q

dt
� �1/q"

+
ðλ
0
tj jpdt

� �1/p ðλ
0
F ′ a + μ + t

λ + μ
η b, að Þ

� �����
����
q

dt
� �1/q#

≤
η b, að Þ
λ + μð Þ2

μp+1

p + 1

� �1/p ðμ
0

F ′ að Þ�� ��q + 1
n
〠
n

s=1
1 − λ + t

λ + μ

� �s� �
ζ

  "

� F ′ bð Þ�� ��q, F ′ að Þ�� ��q� �!
dt

!1/q

+ λp+1

p + 1

 !1/p ðλ
0

F ′ að Þ�� ��q��

+ 1
n
〠
n

s=1
1 − λ − t

λ + μ

� �s� �
ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� �

Þdt
�1/q#

= η b, að Þ
λ + μð Þ2

μp+1

p + 1

� �1/p
μ F ′ að Þ�� ��q + 1

n
〠
n

s=1
K3ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q"

+ λp+1

p + 1

 !1/p

λ F ′ að Þ�� ��q + 1
n
〠
n

s=1
K4ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q#

,

ð37Þ
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where

K3 =
ðμ
0

1 − λ + t
λ + μ

� �s� �
dt = μ −

λ + μð Þs+1 − λs+1

s + 1ð Þ λ + μð Þs ,

K4 =
ðλ
0

1 − λ − t
λ + μ

� �s� �
dt = λ −

λs+1

s + 1ð Þ λ + μð Þs :

ð38Þ

The proof of Theorem 11 is complete.

We now discuss some special cases of Theorem 11.

(I) If we choose λ = μ = 1 in Theorem 11, then

F að Þ +F a + η b, að Þð Þ
2 −

1
η b, að Þ

ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ

4 p + 1ð Þ1/p F ′ að Þ�� ��q + 1
n
〠
n

s=1

2s s + 1ð Þ − 2s+1 − 1
	 


2s s + 1ð Þ

("

� ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� ��1/q
+ F ′ að Þ�� ��q + 1

n
〠
n

s=1

2s s + 1ð Þ − 1
2s s + 1ð Þ

(

� ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� ��1/q#
:

ð39Þ

(II) If we take ηðb, aÞ = b − a in Theorem 11, then

μF að Þ + λF bð Þ
λ + μ

−
1

b − a

ðb
a
F xð Þdx

����
����

≤
b − a

λ + μð Þ2
μp+1

p + 1

� �1/p
μ F ′ að Þ�� ��q + 1

n
〠
n

s=1
K3ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q"

+ λp+1

p + 1

 !1/p

λ F ′ að Þ�� ��q + 1
n
〠
n

s=1
K4ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q#

:

ð40Þ

(III) If we put ζðjF ′ðbÞjq, jF ′ðaÞjqÞ = jF ′ðbÞjq −
jF ′ðaÞjq in Theorem 11, then

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

μp+1

p + 1

� �1/p
μ −

1
n
〠
n

s=1
K3

 !
F ′ að Þ�� ��q "

+ 1
n
〠
n

s=1
K3 F ′ bð Þ�� ��q!1/q

+ λp+1

p + 1

 !1/p

λ −
1
n
〠
n

s=1
K4

 !
F ′ að Þ�� ��q 

+ 1
n
〠
n

s=1
K4 F ′ bð Þ�� ��q!1/q#

:

ð41Þ

Theorem 12. Let F : I →ℝ be a differentiable function on
I ∘ with ηðb, aÞ > 0, λ > 0, μ > 0, and let F ′ ∈ L½I �, q ≥ 1. If
jF ′jq is n-polynomial ζ-preinvex function, then

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

μ2

2

� �1− 1/qð Þ μ2

2
F ′ að Þ�� ��q + 1

n
〠
n

s=1
K1ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q"

+ λ2

2

 !1− 1/qð Þ
λ2

2
F ′ að Þ�� ��q + 1

n
〠
n

s=1
K2ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q35,

ð42Þ

where K1 and K2 are the expressions as described in
Theorem 10.

Proof. Note that jF ′jq is n-polynomial ζ-preinvex function,
by using the power mean inequality, we have

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

ðμ
0
∣−t ∣ F ′ a + μ − t

μ + λ
η b, að Þ

� �����
����dt

�

+
ðλ
0
∣ t ∣ F ′ a + μ + t

λ + μ
η b, að Þ

� �����
����dt
�

≤
η b, að Þ
λ + μð Þ2

ðμ
0
∣−t ∣ dt

� �1− 1/qð Þ ðμ
0
t F ′ a + μ − t

μ + λ
η b, að Þ

� �����
����
q

dt
� �1/q"

+
ðλ
0
∣ t ∣ dt

� �1− 1/qð Þ ðλ
0
t F ′ a + μ + t

λ + μ
η b, að Þ

� �����
����
q

dt
� �1/q#

≤
η b, að Þ
λ + μð Þ2

μ2

2

� �1− 1/qð Þ ðμ
0
t F ′ að Þ�� ��qdt + 1

n
〠
n

s=1

ðμ
0
t 1 − λ + t

λ + μ

� �s� �
ζ

 "

· F ′ bð Þ�� ��q, F ′ að Þ�� ��q� �
dt
�1/q

+ λ2

2

 !1− 1/qð Þ

·
ðλ
0
t F ′ að Þ�� ��qdt + 1

n
〠
n

s=1

ðλ
0
t 1 − λ − t

λ + μ

� �s� �
ζ

 

· F ′ bð Þ�� ��q, F ′ að Þ�� ��q� �
dt

!1/q#

= η b, að Þ
λ + μð Þ2

μ2

2

� �1− 1/qð Þ μ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K1ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q"

+ λ2

2

 !1− 1/qð Þ
λ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K2ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q35:

ð43Þ

Here, K1 and K2 are formulated as that of Theorem 10.
This completes the proof of Theorem 12.

We now discuss some special cases of Theorem 12.

(I) Choosing λ = μ = 1 in Theorem 12, we get
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F að Þ +F a + η b, að Þð Þ
2 −

1
η b, að Þ

ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
23−1/q

F ′ að Þ�� ��q
2 + 1

n
〠
n

s=1

s + 1ð Þ s + 2ð Þ2s − 2s+2s − 2
2s+1 s + 1ð Þ s + 2ð Þ

� �
ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q"

+ F ′ að Þ�� ��q
2 + 1

n
〠
n

s=1

s + 1ð Þ s + 2ð Þ2s − 2
s + 1ð Þ s + 2ð Þ2s+1 ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q#

:

ð44Þ

(II) Choosing ηðb, aÞ = b − a in Theorem 12, we have

μF að Þ + λF bð Þ
λ + μ

−
1

b − a

ðb
a
F xð Þdx

����
����

≤
b − a

λ + μð Þ2
μ2

2

� �1− 1/qð Þ μ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K1ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q"

+ λ2

2

 !1− 1/qð Þ
λ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K2ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q35:

ð45Þ

(III) Taking ζðjF ′ðbÞjq, jF ′ðaÞjqÞ = jF ′ðbÞjq − jF ′ðaÞjq
in Theorem 12, we obtain

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

μ2

2

� �1− 1/qð Þ μ2

2 −
1
n
〠
n

s=1
K1

 !
F ′ að Þ�� ��q "

+ 1
n
〠
n

s=1
K1 F ′ bð Þ�� ��q!1/q

+ λ2

2

 !1− 1/qð Þ
λ2

2 −
1
n
〠
n

s=1
K2

 !
F ′ að Þ�� ��q 

+ 1
n
〠
n

s=1
K2 F ′ bð Þ�� ��q!1/q#

:

ð46Þ

Theorem 13. Let F : I →ℝ be a differentiable function on
I ∘ with ηðb:aÞλ > 0, λ > 0, μ > 0, and let F ′ ∈ L½I �, 1/p + 1
/q = 1, p > 1, q > 1. If jF ′jq is n-polynomial ζ-preinvex func-
tion, then

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

1
μ

μp+2

p + 1ð Þ p + 2ð Þ
� �1/p μ2

2
F ′ að Þ�� ��q + 1

n
〠
n

s=1
K5ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q("

+ μp+2

p + 2

� �1/p
μ2

2
F ′ að Þ�� ��q + 1

n
〠
n

s=1
K6ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q)

+ 1
λ

λp+2

p + 1ð Þ p + 2ð Þ

 !1/p(
× λ2

2
F ′ að Þ�� ��q + 1

n
〠
n

s=1
K7ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q

+ λp+2

p + 2

 !1/p
λ2

2
F ′ að Þ�� ��q + 1

n
〠
n

s=1
K8ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q)

�,

ð47Þ

where

K5 =
μ2

2
−

μs+2

s + 2ð Þ λ + μð Þs ,

K6 =
μ2

2
−

μs+2

s + 1ð Þ s + 2ð Þ λ + μð Þs ,

K7 =
λ2

2
−

μ + λð Þs+2 − μs+2 − λ s + 2ð Þμs+1
s + 1ð Þ s + 2ð Þ λ + μð Þs ,

K8 =
λ2

2
−

μ + λð Þs+2 − μs+2 − λ s + 2ð Þ λ + μð Þs+1
s + 1ð Þ s + 2ð Þ λ + μð Þs :

ð48Þ

Proof.Note that jF ′jq is n-polynomial ζ-preinvex function,
by using the refined Hölder inequality (see [19]), we
obtain

μ F að Þ + λ F a + η b, að Þð Þ
λ + μ

� 1
η b, að Þ

ða+η b,að Þ

a
F xð Þdx

����
���� ≤

η b, að Þ
λ + μð Þ2

·
ðμ
0
�tj j F ′ a + μ� t

μ + λ
η b, að Þ

� �����
����dt +

ðλ
0
tj j F ′ a + μ + t

λ + μ
η b, að Þ

� �����
����dt

� �

≤
η b, að Þ
λ + μð Þ2

1
μ

ðμ
0
μ� tð Þ �tj jpdt

� �1/p ðμ
0
μ� tð Þ F ′ a + μ� t

λ + μ
η b, að Þ

� �����
����
q

dt
� �1/q("

+
ðμ
0
t �tj jpdt

� �1/p ðμ
0
t F ′ a + μ� t

λ + μ
η b, að Þ

� �����
����
q

dt
� �1/q)

+ 1
λ

ðλ
0
λ� tð Þ tj jpdt

� �1/p ðλ
0
λ� tð Þ F ′ a + μ� t

λ + μ
η b, að Þ

� �����
����
q

dt
� �1/q(

+
ðλ
0
t F ′ a + μ� t

λ + μ
η b, að Þ

� �����
����
q

dt
� �1/q)#

≤
η b, að Þ
λ + μð Þ2

· 1
μ

μp+2

p + 1ð Þ p + 2ð Þ
� �1/p ðμ

0
μ� tñ F ′ að Þ�� ��q + 1

n
〠
n

s=1

  ("

· 1� μ� t
λ + μ

� �s� �
ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� ��

dtÞ
1/q

+ μp+2

p + 2

� �1/q

·
ðμ
0
t F ′ að Þ�� ��q + 1

n
〠
n

s=1
1� μ� t

λ + μ

� �s� �
ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !

dt

 !1/q)

+ 1
λ

λp+2

p + 1ð Þ p + 2ð Þ

 !1/p ðλ
0
λ� tñ F ′ að Þ�� ��q + 1

n
〠
n

s=1
1� μ� t

λ + μ

� �s� �  (

·ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� ��
dtÞ1/q + λp+2

p + 2

 !1/q

·
ðλ
0
t F ′ að Þ�� ��q + 1

n
〠
n

s=1
1� μ� t

λ + μ

� �s� �
ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !

dt

 !1/q)
�

= η b, að Þ
λ + μð Þ2

1
μ

μp+2

p + 1ð Þ p + 2ð Þ
� �1/p

μ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K5ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q("

+ μp+2

p + 2

� �1/p
μ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K6ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q)

+ 1
λ

λp+2

p + 1ð Þ p + 2ð Þ

 !1/p
λ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K7ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q(

+ μp+2

p + 2

� �1/p λ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K8ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q)#

ð49Þ

A direct computation gives

K5 =
ðμ
0
μ − tð Þ 1 − μ − t

λ + μ

� �s� �
dt = μ2

2 −
μs+2

s + 2ð Þ λ + μð Þs ,
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K6 =
ðμ
0
t 1 − μ − t

λ + μ

� �s� �
dt = μ2

2 −
μs+2

s + 1ð Þ s + 2ð Þ λ + μð Þs ,

K7 =
ðλ
0
λ − tð Þ 1 − μ + t

λ + μ

� �s� �
dt

= λ2

2 −
μ + λð Þs+2 − μs+2 − λ s + 2ð Þμs+1

s + 1ð Þ s + 2ð Þ λ + μð Þs ,

K8 =
ðλ
0
t 1 − μ + t

λ + μ

� �s� �
dt

= λ2

2 −
μ + λð Þs+2 − μs+2 − λ s + 2ð Þ λ + μð Þs+1

s + 1ð Þ s + 2ð Þ λ + μð Þs :

ð50Þ

This completes the proof of Theorem 13.

Let us now discuss some special cases of Theorem 13.

(I) If we take λ = μ = 1 in Theorem 13, we get

F að Þ +F a + η b, að Þð Þ
2 −

1
η b, að Þ

ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ

4
1

p + 1ð Þ p + 2ð Þ
� �1/p
"

� F ′ að Þ�� ��q
2 + 1

n
〠
n

s=1

1
2 −

1
s + 2ð Þ2s

� �
ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q(

+ F ′ að Þ�� ��q
2 + 1

n
〠
n

s=1

1
2 −

1
s + 1ð Þ s + 2ð Þ2s

� �
ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q)

+ 1
p + 2

� �1/p F ′ að Þ�� ��q
2 + 1

n
〠
n

s=1

1
2 −

2s+2 − s − 3
s + 1ð Þ s + 2ð Þ2s

� �
ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q(

+ F ′ að Þ�� ��q
2 + 1

n
〠
n

s=1

1
2 + 1 + s2s+1

s + 1ð Þ s + 2ð Þ2s
� �

ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q)
�:

ð51Þ

(II) If we put ηðb, aÞ = b − a in Theorem 13, then

μF að Þ + λF bð Þ
λ + μ

−
1

b − a

ðb
a
F xð Þdx

����
����

≤
b − a

λ + μð Þ2
1
μ

μp+2

p + 1ð Þ p + 2ð Þ
� �1/p μ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K5ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q("

+ μp+2

p + 2

� �1/p
μ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K6ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q)

+ 1
λ

λp+2

p + 1ð Þ p + 2ð Þ

 !1/p
λ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K7ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q(

+ λp+2

p + 2

 !1/p
λ2

2 F ′ að Þ�� ��q + 1
n
〠
n

s=1
K8ζ F ′ bð Þ�� ��q, F ′ að Þ�� ��q� � !1/q)

�:

ð52Þ

(III) If we choose ζðjF ′ðbÞjq, jF ′ðaÞjqÞ = jF ′ðbÞjq −
jF ′ðaÞjq in Theorem 13, then

μF að Þ + λF a + η b, að Þð Þ
λ + μ

−
1

η b, að Þ
ða+η b,að Þ

a
F xð Þdx

����
����

≤
η b, að Þ
λ + μð Þ2

1
μ

μp+2

p + 1ð Þ p + 2ð Þ
� �1/p

μ2

2 −
1
n
〠
s

s=1
K5

 !
F ′ að Þ�� ��q ("

+ 1
n
〠
n

s=1
K5 F ′ bð Þ�� ��q!1/q

+ μp+2

p + 2

� �1/p μ2

2 −
1
n
〠
n

s=1
K6

 !
F ′ að Þ�� ��q 

+ 1
n
〠
n

s=1
K6 F ′ bð Þ�� ��q!1/q)

+ 1
λ

λp+2

p + 1ð Þ p + 2ð Þ

 !1/p(

·
λ2

2 −
1
n
〠
n

s=1
K7

 !
F ′ að Þ�� ��q 

+ 1
n
〠
n

s=1
K7 F ′ bð Þ�� ��q!1/q

+ λp+2

p + 2

 !1/p
λ2

2 −
1
n
〠
n

s=1
K8

 !
F ′ að Þ�� ��q + 1

n
〠
n

s=1
K8 F ′ bð Þ�� ��q !1/q)#

:

ð53Þ

3. Application to Special Means

Let us recall the definitions of the arithmetic mean, weighted
arithmetic mean, and the mean for functions, as follows:

(1) The arithmetic mean

A a1, a2,⋯, anð Þ = a1 + a2+⋯+an
n

: ð54Þ

(2) The weighted arithmetic mean

A a1, a2,⋯, an ; p1, p2,⋯, pnð Þ = p1a1 + p2a2+⋯+pnan
p1 + p2+⋯+pn

:

ð55Þ

(3) The mean of the function Φ on ½a, b�

AΦ a, bð Þ = 1
b − a

ðb
a
Φ xð Þdx: ð56Þ

We establish the following inequalities for special means.

Proposition 14. Let Φ : ½a, a + ηðb, aÞ�→ℝ be a preinvex
function with ΦðbÞ −ΦðaÞ ≥ 0. If ηðb, aÞ > 0 and Φ ∈ L½a, a
+ ηðb, aÞ�, then we have the following inequality

AΦ a, a + η b, að Þð Þ ≤Φ að Þ + Φ bð Þ −Φ að Þð ÞA 1
2
, 2
3
,⋯, n

n + 1

� �
:

ð57Þ

Proof. Taking FðxÞ =ΦðxÞ, x ∈ ½a, a + ηðb, aÞ� and ζðFðbÞ,
FðaÞÞ =FðbÞ −FðaÞ. SinceΦðxÞ is a preinvex function with
ΦðbÞ −ΦðaÞ ≥ 0, we deduce from Proposition 7 thatΦðxÞ is a
n-polynomial preinvex function. Using Theorem 8, we
obtain the desired inequality (57).
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Proposition 15. Let Φ be a differentiable function, and let
jΦ′j: ½a, a + ηðb, aÞ�→ℝ be a preinvex function with ∣Φ′ðbÞ ∣
− ∣Φ′ðaÞ ∣ ≥0. If ηðb, aÞ > 0, λ > 0, μ > 0, and ∣Φ′ ∣ ∈L½a, a +
ηðb, aÞ�, then we have the following inequality

A Φ að Þ,Φ a + η b, að Þð Þ ; μ, λð Þ −AΦ a, a + η b, að Þð Þj j

≤
η b, að Þ
λ + μð Þ2 Φ′ að Þ�� ��A λ2, μ2

	 

+ 2
n

Φ′ bð Þ�� �� − Φ′ að Þ�� ��� �
〠
n

s=1
A K1, K2ð Þ

" #
,

ð58Þ

where K1 and K2 are the expressions as that described in
Theorem 10.

Proof. Choosing FðxÞ =ΦðxÞ, x ∈ ½a, a + ηðb, aÞ� and ζðFðb
Þ,FðaÞÞ =FðbÞ −FðaÞ. Since ∣Φ′ðxÞ ∣ is a preinvex func-
tion with ∣Φ′ðbÞ ∣ − ∣Φ′ðaÞ ∣ ≥0, it follows from Proposition
7 that ∣Φ′ðxÞ ∣ is a n-polynomial preinvex function. Using
Theorem 10 leads to the desired inequality (58).
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In this article, we inspect the sufficient conditions on the Orlicz generalized difference sequence space to be premodular Banach
(sss). We look at some topological and geometrical structures of the multiplication operators described on Orlicz generalized
difference prequasi normed (sss).

1. Introduction

The multiplication operators have a large subject of mathe-
matics in functional analysis, namely, in eigenvalue distribu-
tion theorem, geometric structure of Banach spaces, and
theory of fixed point. For more technicalities (see [1–6]), by
ℂℕ, c, ℓ∞, ℓr , and c0, we mean the spaces of each, convergent,
bounded, r-absolutely summable and convergent to zero
sequences of complex numbers. ℕ displays the set of non-
negative integers. Tripathy et al. [7] popularized and mea-
sured the forward and backward generalized difference
sequence spaces:

G Δ mð Þ
n

� �
= wkð Þ ∈ℂℕ : Δ mð Þ

n wk

� �
∈G

n o
,

G Δm
nð Þ = wkð Þ ∈ℂℕ : Δm

n wkð Þ ∈G� �
,

ð1Þ

where m, n ∈ℕ, G = ℓ∞, c, or c0, with

Δ mð Þ
n wk = 〠

m

ν=0
−1ð ÞνCm

ν wk+νn, andΔm
n wk = 〠

m

ν=0
−1ð ÞνCm

ν wk−νn,

ð2Þ

successively. When n = 1, the generalized difference sequence
spaces concentrated to GðΔðmÞÞ defined and examined by Et

and Çolak [8]. If m = 1, the generalized difference sequence
spaces diminished to GðΔnÞ constructed and studied by
Tripathy and Esi [9]. While if n = 1 and m = 1, the general-
ized difference sequence spaces reduced to GðΔÞ defined
and investigated by Kizmaz [10].

An Orlicz function [11] is a function ψ : ½0,∞Þ→ ½0,∞Þ,
which is convex, continuous, and nondecreasing with ψ
ð0Þ = 0, ψðuÞ > 0, for u > 0 and ψðuÞ→∞, as u→∞.
In [12], an Orlicz function ψ is called to satisfy the δ2
-condition for each values of x ≥ 0, if there is k > 0, such that
ψð2xÞ ≤ kψðxÞ. The δ2-condition is equivalent to ψðlxÞ ≤ kl
ψðxÞ, for every values of x and l > 1. Lindentrauss and
Tzafriri [13] used the idea of an Olicz function to construct
the Orlicz sequence space:

ℓψ = u ∈ℂℕ : ρ βuð Þ<∞, for someβ > 0
� �

, where ρ uð Þ

= 〠
∞

k=0
ψ ∣uk ∣ð Þ,

ð3Þ

ðℓψ, k:kÞ is a Banach space with the Luxemburg norm:

uk k = inf β > 0 : ρ
u
β

� �
≤ 1

� 	
: ð4Þ
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Every Orlicz sequence space includes a subspace that is
isomorphic to c0 or ℓ

q, for some 1 ≤ q <∞.
Recently, different classes of sequences have been exam-

ined the usage of Orlicz functions via Et et al. [14], Mursaleen
et al. [15–17], and Alotaibi et al. [18].

Let r = ðr jÞ ∈ℝ+ℕ, where ℝ+ℕ denotes the space of
sequences with positive reals, and we define the Orlicz back-
ward generalized difference sequence space as follows:

ℓψ Δm
n+1ð Þ
 �

τ
= w = wj


 �
∈ℂℕ : ∃σ > 0with τ σwð Þ<∞� �

,
ð5Þ

where τðwÞ =∑∞
j=0ψðjΔm

n+1jwjjjÞ, wj = 0, for j < 0, Δm
n+1

∣wj ∣ = Δm−1
n+1 ∣wj ∣ −Δ

m−1
n+1 ∣wj−1∣, and Δ0wj =wj, for all j, n,

m ∈ℕ. It is a Banach space, with

wk k = inf σ > 0 : τ
w
σ

� �
≤ 1

n o
: ð6Þ

When ψðwÞ =wr , then ℓψðΔm
n+1Þ = ℓrðΔm

n+1Þ investigated
via many authors (see [19–21]). By BðW, ZÞ, we will denote
the set of every operators which are linear and bounded
between Banach spaces W and Z, and if W = Z, we write B
ðWÞ. On sequence spaces, Basarir and Kara examined the
compact operators on some Euler BðmÞ-difference sequence
spaces [22], some difference sequence spaces of weighted
means [23], the Riesz BðmÞ-difference sequence space [24],
the B-difference sequence space derived by weighted mean
[25], and the mth order difference sequence space of general-
ized weighted mean [26]. Mursaleen and Noman [27, 28]
investigated the compact operators on some difference
sequence spaces. The multiplication operators on ðcesðrÞ, k:kÞ
with the Luxemburg norm k:k elaborated by Komal et al.
[29]. _Ilkhan et al. [30] studied the multiplication operators
on Cesáro second order function spaces. Bakery et al. [31]
examined the multiplication operators on weighted Nakano
(sss). The aim of this article is to explain some results of
ðℓψðΔm

n+1ÞÞτ equipped with the prequasi norm τ. Firstly, we
accord the sufficient conditions on the Orlicz generalized dif-
ference sequence space to become premodular Banach (sss).
Secondly, we provide with the necessity and sufficient condi-
tions on the Orlicz generalized difference sequence space
provided with the prequasi norm so that the multiplication
operator defined on it is bounded, approximable, invertible,
Fredholm, and closed range operator.

2. Preliminaries and Definitions

Definition 1 [32]. An operator V ∈BðWÞ is known as
approximable if there are Dr ∈ FðWÞ, for every r ∈ℕ and
limr→∞kV −Drk = 0.

By ϒðW, ZÞ, we will denote the space of all approximable
operators from W to Z.

Theorem 2 [32]. LetW be a Banach space with dim ðWÞ =∞;
then,

F Wð Þ⊂
≠
ϒ Wð Þ⊂

≠
Bc Wð Þ⊂

≠
B Wð Þ: ð7Þ

Definition 3 [33]. An operator V ∈BðWÞ is named Fredholm
if dim ðRðVÞÞc <∞, dim ðkerVÞ <∞, and RðVÞ are closed,
where ðRðVÞÞc indicates the complement of range V .

The sequence ej = ð0, 0, :::,1,0,0,⋯Þ with 1 in the jth

coordinate, for all j ∈ℕ, will be used in the sequel.

Definition 4 [34]. The space of linear sequence spaces Y is
called (sss) if

(1) er ∈ Y with r ∈ℕ

(2) Let u = ðurÞ ∈ℂℕ, v = ðvrÞ ∈ Y , and ∣ur ∣ ≤ ∣ vr ∣ , for
every r ∈ℕ, then u ∈ Y . This means Y be solid

(3) If ðurÞ∞r=0 ∈ Y , then ðu½r/2�Þ∞r=0 ∈ Y , wherever ½r/2� indi-
cates the integral part of r/2

Definition 5 [35]. A subspace of the (sss) Y τ is named a pre-
modular (sss) if there is a function τ : Y → ½0,∞Þ confirming
the conditions:

(i) τðyÞ ≥ 0 for each y ∈ Y and τðyÞ = 0⇔ y = θ, where
θ is the zero element of Y

(ii) There exists a ≥ 1 such that τðηyÞ ≤ ajηjτðyÞ, for all
y ∈ Y , and η ∈ℂ

(iii) For some b ≥ 1, τðy + zÞ ≤ bðτðyÞ + τðzÞÞ, for every
y, z ∈ Y

(iv) jyrj ≤ jzrj with r ∈ℕ implies τððyrÞÞ ≤ τððzrÞÞ
(v) For some b0 ≥ 1, τððyrÞÞ ≤ τððy½r/2�ÞÞ ≤ b0τððyiÞÞ
(vi) If y = ðyrÞ∞r=o ∈ Y and d > 0, then there is r0 ∈ℕ with

τððyrÞ∞r=r0Þ < d

(vii) There is t > 0 with τðν, 0,0,0,⋯Þ ≥ t ∣ ν ∣ τð1,0,0,0,
⋯Þ, for any ν ∈ℂ

The (sss) Y τ is known as prequasi normed (sss) if τ
administers the parts (i)-(iii) of Definition 5 and when the
space Y is complete under τ, then Y τ is named a prequasi
Banach (sss).

Theorem 6 [35]. A prequasi norm (sss) Y τ if it is premodular
(sss).

The inequality [36], jai + bijqi ≤Hðjaijqi + jbijqiÞ, where
qi ≥ 0 for all i ∈ℕ, H =max f1, 2h−1g and h = supiqi, will be
used in the sequel.
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3. Main Results

3.1. Prequasi Norm on ℓψðΔm
n+1Þ. In this section, we explain

the conditions on the Orlicz backward generalized difference
sequence space to form premodular Banach (sss).

Definition 7. The backward generalized difference Δm
n+1 is

named an absolute nondecreasing, if ∣xi ∣ ≤ ∣ yi ∣ , for all i ∈ℕ,
then jΔm

n+1jxik≤jΔm
n+1jyik.

Theorem 8. Let ψ be an Orlicz function fulfilling the δ2 -con-
dition and Δm

n+1 be an absolute nondecreasing, then the space
ðℓψðΔm

n+1ÞÞτ can be a premodular Banach (sss), where

τ wð Þ = 〠
∞

j=0
ψ Δm

n+1 wj

�� ���� ��
 �
, for all w ∈ ℓψ Δm

n+1ð Þ: ð8Þ

Proof. (1-i) Assume v,w ∈ ℓψðΔm
n+1Þ. Since ψ can be nonde-

creasing, convex, agreeable δ2-condition, and Δm
n+1 can be

an absolute nondecreasing, then there is b > 0 such that

τ v +wð Þ = 〠
∞

i=0
ψ Δm

n+1 vi +wij jj jð Þ

≤ 〠
∞

i=0
ψ Δm

n+1 vij jj j + Δm
n+1 wij jj jð Þ

≤
1
2 〠

∞

i=0
ψ 2 Δm

n+1 vij jj jð Þ
 

+ 〠
∞

i=0
ψ 2 Δm

n+1 wij jj jð Þ

≤
b
2 τ vð Þ + τ wð Þð Þ ≤ B τ vð Þ + τ wð Þð Þ <∞,

ð9Þ

for some B =max f1, ðb/2Þg. Then, v +w ∈ ℓψðΔm
n+1Þ.

(1) (1-ii) Suppose λ ∈ℂ and v ∈ ℓψðΔm
n+1Þ. Since ψ is ful-

filling the δ2-condition, we obtain

τ λvð Þ = 〠
∞

r=0
ψ Δm

n+1 λvrj jj jð Þ ≤ d∣λ∣〠
∞

r=0
ψ Δm

n+1 vrj jj jð Þ

≤D λj jτ vð Þ <∞,
ð10Þ

where D =max f1, dg. Then, λv ∈ ℓψðΔm
n+1Þ. So, from parts

(1-i) and (1-ii), the space ℓψðΔm
n+1Þ is linear. Since er ∈ ℓq ⊆

ℓψ ⊆ ℓψðΔm
n+1Þ, for every r ∈ℕ and q ≥ 1, hence, er ∈ ℓψðΔm

n+1Þ,
for each r ∈ℕ.

(2) Let ∣xi ∣ ≤ ∣ yi ∣ , for every i ∈ℕ and y ∈ ℓψðΔm
n+1Þ.

Since ψ is nondecreasing and Δm
n+1 is an absolute non-

decreasing, therefore, we get

τ xð Þ = 〠
∞

i=0
ψ Δm

n+1 xij jj jð Þ ≤ 〠
∞

i=0
ψ Δm

n+1 yij jj jð Þ = τ yð Þ <∞, ð11Þ

hence x ∈ ℓψðΔm
n+1Þ

(3) Suppose ðvrÞ ∈ ℓψðΔm
n+1Þ, one has

τ v r
2½ �

� �� �
= 〠

∞

r=0
ψ Δm

n+1 v r
2½ �

��� ������ ���� �
≤ 2〠

∞

r=0
ψ Δm

n+1 vrj jj jð Þ = 2τ vð Þ,

ð12Þ

then ðv½r/2�Þ ∈ ℓψðΔm
n+1Þ

(i) Evidently, τðwÞ ≥ 0 and τðwÞ = 0⇔w = θ

(ii) There is D ≥ 1 where τðηwÞ ≤D ∣ η ∣ τðwÞ, for every
w ∈ ℓψðΔm

n+1Þ and η ∈ℂ

(iii) For some B ≥ 1, we obtain τðv +wÞ ≤ BðτðvÞ + τ
ðwÞÞ, for all v,w ∈ ℓψðΔm

n+1Þ
(iv) Plainly from (2).

(v) From (3), we have that b0 = 2 ≥ 1
(vi) It is apparent that �F = ℓψðΔm

n+1Þ
(vii) Since ψ is verifying the δ2-condition, there is ζ

with 0 < ζ ≤ ψð∣η ∣ Þ/∣η ∣ such that τðη, 0,0,0,⋯Þ
≥ ζ ∣ η ∣ τð1,0,0,0,⋯Þ, for each η ≠ 0 and ζ > 0, if
η = 0

Therefore, the space ðℓψðΔm
n+1ÞÞτ is premodular (sss).

To show that ðℓψðΔm
n+1ÞÞτ is a premodular Banach (sss),

Suppose xi = ðxikÞ∞k=0 is a Cauchy sequence in ðℓψðΔm
n+1ÞÞτ,

then for all ε ∈ ð0, 1Þ, there is i0 ∈ℕ such that for all i, j ≥ i0,
we get

τ xi − xj

 �

= 〠
∞

k=0
ψ Δm

n+1 x
i
k − xjk

��� ������ ���� �
< ψ εð Þ: ð13Þ

Since ψ is nondecreasing; hence, for i, j ≥ i0 and k ∈ℕ, we
obtain

Δm
n+1 xik
�� �� − Δm

n+1 x
j
k

��� ������ ��� < ε: ð14Þ

Hence, ðΔm
n+1 ∣ x

j
k ∣ Þ is a Cauchy sequence in ℂ for fixed

k ∈ℕ, so lim j→∞Δm
n+1x

j
k = Δm

n+1x
0
k for fixed k ∈ℕ. Therefore,

τðxi − x0Þ < ψðεÞ, for each i ≥ i0. Finally, to explain that x0

∈ ℓψðΔm
n+1Þ, we have

τ x0

 �

= τ x0 − xn + xn

 �

≤ B τ xn − x0

 �

+ τ xnð Þ
 �
<∞:

ð15Þ

So, x0 ∈ ℓψðΔm
n+1Þ. This implies that ðℓψðΔm

n+1ÞÞτ is a pre-
modular Banach (sss).

Taking into consideration (Theorem 6), we be over the
following theorem.
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Theorem 9. If ψ is an Orlicz function satisfying the δ2 -condi-
tion and Δm

n+1 is an absolute nondecreasing, then the space
ðℓψðΔm

n+1ÞÞτ is prequasi Banach (sss), where

τ xð Þ = 〠
∞

j=0
ψ ∣Δm

n+1 xj
�� 


 �

, for all x ∈ ℓψ Δm
n+1ð Þ: ð16Þ

Corollary 10. If 0 < p <∞ and Δm
n+1 is an absolute nonde-

creasing, then ðℓpðΔm
n+1ÞÞτ is a premodular Banach (sss), where

τðxÞ =∑∞
i=0 ∣ Δ

m
n+1 ∣ xikp, for all x ∈ ℓpðΔm

n+1Þ.

4. Bounded Multiplication Operator on ℓψðΔm
n+1Þ

Here and after, we explain some geometric and topological
structures of the multiplication operator reserve on ℓψðΔm

n+1Þ.

Definition 11. Let κ ∈ℂℕ ∩ ℓ∞ and Wτ be a prequasi normed
(sss). An operator Vκ : Wτ →Wτ is named multiplication
operator if Vκw = κw = ðκrwrÞ∞r=0 ∈W, for every w ∈W. If Vκ

∈BðWÞ, we call it a multiplication operator generated by κ.

Theorem 12. If κ ∈ℂℕ, ψ is an Orlicz function verifying the
δ2-condition, and Δm

n+1 is an absolute nondecreasing, then κ
∈ ℓ∞, if and only if, Vκ ∈BðℓψðΔm

n+1ÞτÞ, where τðxÞ =∑∞
r=0ψ

ðjΔm
n+1jxrjjÞ, for each x ∈ ℓψðΔm

n+1Þ.

Proof. Assume the conditions can be satisfied. Let κ ∈ ℓ∞. So,
there is ε > 0 with ∣κr ∣ ≤ε, for each r ∈ℕ, for x ∈ ðℓψðΔm

n+1Þτ.
Since Δm

n+1 is an absolute nondecreasing and ψ is nondecreas-
ing verifying the δ2-condition, then

τ Vκxð Þ = τ κxð Þ = τ κrxrð Þ∞r=0

 �

= 〠
∞

r=0
ψ Δm

n+1 κrj j xrj jð Þj jð Þ

≤ 〠
∞

r=0
ψ Δm

n+1 ε xrj jð Þj jð Þ ≤ dε〠
∞

r=0
ψ Δm

n+1 xrj jj jð Þ ≤Dτ xð Þ,

ð17Þ

where D =max f1, dεg. This implies Vκ ∈BðℓψðΔm
n+1ÞτÞ.

Inversely, suppose that Vκ ∈BðℓψðΔm
n+1ÞτÞ. Let us suppose κ

∉ ℓ∞, hence, for all j ∈ℕ, there is ij ∈ℕ so as to κi j > j. Since

Δm
n+1 is an absolute nondecreasing and ψ is nondecreasing,

one has

τ Vκeij

� �
= τ κeij

� �
= τ κr eij

� �
r

� �∞
r=0

� �

= 〠
∞

r=0
ψ Δm

n+1 κrj j eij

� �
r

��� ���� ���� ���� �
= ψ Δm

n+1 κi j

��� ������ ���� �
> ψ Δm

n+1 jj jj jð Þ = ψ Δm
n+1 jj jj jð Þτ eij

� �
:

ð18Þ

This proves that Vκ ∉BðℓψðΔm
n+1ÞτÞ. Therefore, κ ∈ ℓ∞.

Theorem 13. Let κ ∈ℂℕ and ðℓψðΔm
n+1ÞÞτ be a prequasi

normed (sss), with τðxÞ =∑∞
r=0ψðjΔm

n+1jxrjjÞ, for all x ∈ ℓψ
ðΔm

n+1Þ. Then, ∣κr ∣ = 1, for every r ∈ℕ, if and only if,
Vκ is an isometry.

Proof. Presume ∣κr ∣ = 1, for each r ∈ℕ, we have

τ Vκxð Þ = τ κxð Þ = τ κrxrð Þ∞r=0

 �

= 〠
∞

r=0
ψ Δm

n+1 κrj j xrj jð Þj jð Þ

= 〠
∞

r=0
ψ Δm

n+1 xrj jj jð Þ = τ xð Þ,

ð19Þ

for each x ∈ ðℓψðΔm
n+1ÞÞτ. Therefore, Vκ is an isometry.

Inversely, suppose that ∣κi ∣ <1, for some i = i0, given that
Δm
n+1 is an absolute nondecreasing and ψ is nondecreasing,

we get

τ Vκei0

 �

= τ κei0

 �

= τ κr ei0

 �

r

� �∞
r=0

� �
= 〠

∞

r=0
ψ Δm

n+1 κrj j ei0

 �

r

��� ���� ���� ���� �

< 〠
∞

r=0
ψ Δm

n+1 ei0

 �

r

��� ������ ���� �
= τ ei0

 �

:

ð20Þ

While jκi0 j > 1, we can show that τðVκei0Þ > τðei0Þ. As a
result, in both cases, we obtain a contradiction. Therefore,
jκrj = 1, for all r ∈ℕ.

5. Approximable Multiplication Operator
on ℓψðΔm

n+1Þ
In this section, we investigate the sufficient conditions
on the Orlicz backward generalized difference sequence
space equipped with prequasi norm τ so that the multi-
plication operator acting on ℓψðΔm

n+1Þ is an approximable
and compact.

By cardðAÞ, we denote the cardinality of the set A.

Theorem 14. If κ ∈ℂℕ and ðℓψðΔm
n+1ÞÞτ is a prequasi normed

(sss), where τðxÞ =∑∞
r=0ψðjΔm

n+1jxrjjÞ, for all x ∈ ℓψðΔm
n+1Þ,

then Vκ ∈ϒððℓψðΔm
n+1ÞÞτÞ if and only if ðκrÞ∞r=0 ∈ c0.

Proof. Let Vκ ∈ϒððℓψðΔm
n+1ÞÞτÞ. So, Vκ ∈ BcððℓψðΔm

n+1ÞÞτÞ, to
show that ðκrÞ∞r=0 ∈ c0. Assume ðκrÞ∞r=0 ∉ c0, therefore there is
δ > 0 so that Aδ = fr ∈ℕ : ∣κr∣≥δg has cardðAδÞ =∞. Sup-
pose ai ∈ Aδ, for each i ∈ℕ, then feai : ai ∈ Aδg is an infinite
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bounded set in ðℓψðΔm
n+1ÞÞτ. Suppose

τ Vκeai − Vκeaj

� �
= τ κeai − κeaj

� �
= τ κr eai


 �
r
− eaj

� �
r

� �� �∞
r=0

� �

= 〠
∞

r=0
ψ Δm

n+1 κr eai

 �

r
− eaj

� �
r

� ���� ������ ���� �

≥ 〠
∞

r=0
ψ Δm

n+1 δ eai

 �

r
− eaj

� �
r

� ���� ������ ���� �
= τ δeai − δeaj

� �
,

ð21Þ

for every ai, aj ∈ Aδ. This proves feai : ai ∈ Bδg ∈ ℓ∞ which
cannot have a convergent subsequence under Vκ. This gives
that Vκ ∉ BcððℓψðΔm

n+1ÞÞτÞ. Then, Vκ ∉ϒððℓψðΔm
n+1ÞÞτÞ, and

this gives a contradiction. So, limi→∞κi = 0. Contrarily,
assume limi→∞κi = 0, then for all δ > 0, the set Aδ = fi ∈ℕ
: ∣κi∣≥δg has card ðAδÞ <∞. So, for all δ > 0, the space

ℓψ Δm
n+1ð Þ
 �

τ

� �
Aδ

= x = xið Þ ∈ℂAδ
� � ð22Þ

is finite dimensional. Then, Vκ ∣ ððℓψðΔm
n+1ÞÞτÞAδ

is a finite

rank operator. For all i ∈ℕ, illustrate κi ∈ℂℕ by

κið Þj =
κj, j ∈ A1

i

0, otherwise:

(
ð23Þ

Evidently, Vκi
has rank ðVκi

Þ <∞ as dim ððℓψðΔm
n+1ÞÞτÞA1/i

<∞, for all i ∈ℕ. Hence, sinceΔm
n+1 is an absolute nondecreas-

ing and ψ is convex and nondecreasing, we obtain

τ Vκ − Vκi


 �
x


 �
= τ κj − κið Þj

� �
xj

� �∞
j=0

� �

= 〠
∞

j=0
ψ Δm

n+1 κj − κið Þj
� �

xj
��� ���� ���� ���� �

= 〠
∞

j=0,j∈A1
i

ψ Δm
n+1 κj − κið Þj

� �
xj

��� ���� ���� ���� �

+ 〠
∞

j=0,j∉A1
i

ψ Δm
n+1 κj − κið Þj

� �
xj

��� ���� ���� ���� �

= 〠
∞

j=0,j∉A1
i

ψ Δm
n+1 κjxj
�� ���� ��
 �

≤
1
i

〠
∞

j=0,j∉A1
i

ψ Δm
n+1 xj
�� ���� ��
 �

< 1
i
〠
∞

j=0
ψ Δm

n+1 xj
�� ���� ��
 �

= 1
i
τ xð Þ:

ð24Þ

This gives that kVκ −Vκi
k ≤ 1/i, and that Vκ is a limit of

finite rank operators. So, Vκ is an approximable operator.

Theorem 15. Pick up κ ∈ℂℕ and ðℓψðΔm
n+1ÞÞτ be a prequasi

normed (sss), where τðxÞ =∑∞
r=0ψðjΔm

n+1jxrjjÞ, for every x ∈

ℓψðΔm
n+1Þ. Therefore, Vκ ∈ BcððℓψðΔm

n+1ÞÞτÞ, if and only if,

ðκiÞ∞i=0 ∈ c0.

Proof. Clearly, since every approximable operator is compact.

Corollary 16. If κ ∈ℂℕ, ψ is an Orlicz function satisfying the
δ2-condition, and Δm

n+1 is an absolute nondecreasing, then
BcððℓψðΔm

n+1ÞÞτÞ⊂≠BððℓψðΔm
n+1ÞÞτÞ, where τðxÞ =∑∞

r=0ψðjΔm
n+1

jxrjjÞ, for all x ∈ ℓψðΔm
n+1Þ.

Proof. In view of I that is a multiplication operator on
ðℓψðΔm

n+1ÞÞτ generated by κ = ð1, 1,Þ. So, I ∉ BcððℓψðΔm
n+1ÞÞτÞ

and I ∈ BððℓψðΔm
n+1ÞÞτÞ.

6. Fredholm Multiplication Operator
on ℓψðΔm

n+1Þ
In this section, we introduce the sufficient conditions on the
sequence space ℓψðΔm

n+1Þ equipped with prequasi norm τ so
that the multiplication operator acting on it has closed range,
invertible, and Fredholm.

Theorem 17. Let κ ∈ℂℕ, ðℓψðΔm
n+1ÞÞτ, be prequasi Banach

(sss), where τðxÞ =∑∞
r=0ψðjΔm

n+1jxrjjÞ, for all x ∈ ℓψðΔm
n+1Þ,

and Vκ ∈ BððℓψðΔm
n+1ÞÞτÞ. Then, κ be bounded away from zero

on ðker ðκÞÞc, if and only if, RðVκÞ is closed.

Proof. Suppose the sufficient condition be satisfied, so, there is
ε > 0 with jκij ≥ ε, for every i ∈ ðker ðκÞÞc, to prove that RðVκÞ
is closed. Let d be a limit point of RðVκÞ. Hence, there is Vκxi
in ðℓψðΔm

n+1ÞÞτ, for each i ∈ℕ so that limi→∞Vκxi = d. Clearly,
ðVκxiÞ is a Cauchy sequence. As Δm

n+1 is an absolute nonde-
creasing and ψ is nondecreasing, we have

τ Vκxi − Vκxj

 �

= 〠
∞

r=0
ψ Δm

n+1 κr xið Þr − κr xj

 �

r

��� ������ ���� �

= 〠
∞

r=0,r∈ ker κð Þð Þc
ψ Δm

n+1 κr xið Þr − κr xj

 �

r

��� ������ ���� �

+ 〠
∞

r=0,r∉ ker κð Þð Þc
ψ Δm

n+1 κr xið Þr − κr xj

 �

r

��� ������ ���� �

≥ 〠
∞

r=0,r∈ ker κð Þð Þc
ψ Δm

n+1 κrj j xið Þr − xj

 �

r

��� ���� ���� ���� �

= 〠
∞

r=0
ψ Δm

n+1 κrj j yið Þr − yj
� �

r

��� ���� ���� ���� �

> 〠
∞

r=0
ψ Δm

n+1 ε yið Þr − yj
� �

r

��� ������ ���� �
= τ ε yn − ymð Þð Þ,

ð25Þ
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where

yið Þr =
xið Þr , r ∈ ker κð Þð Þc

0, r ∉ ker κð Þð Þc
(

: ð26Þ

This gives that ðyiÞ is a Cauchy sequence in ðℓψðΔm
n+1ÞÞτ.

As ðℓψðΔm
n+1ÞÞτ is complete, there is x ∈ ðℓψðΔm

n+1ÞÞτ so that
limi→∞yi = x. As Vκ is continuous, then limi→∞Vκyi =Vκx.
Although limi→∞Vκxi = limi→∞Vκyi = d, therefore, Vκx = d.
So, d ∈ RðVκÞ. This implies that RðVκÞ is closed. Inversely,
assume RðVκÞ be closed, hence, Vκ be bounded away
from zero on ððℓψðΔm

n+1ÞÞτÞðker ðκÞÞc . So, there is ε > 0 so

that τðVκxÞ ≥ ετðxÞ, for every x ∈ ððℓψðΔm
n+1ÞÞτÞðker ðκÞÞc .

Let B = fr ∈ ðker ðκÞÞc : ∣κr∣<εg as Δm
n+1 is an absolute

nondecreasing and ψ is nondecreasing verifying the δ2-con-
dition, if B ≠ φ; then for i0 ∈ B, one has

τ Vκei0

 �

= τ κr ei0

 �

r

� �∞
r=0

� �
= 〠

∞

r=0
ψ Δm

n+1 κr en0

 �

r

��� ������ ���� �

< 〠
∞

r=0
ψ Δm

n+1 ε en0

 �

r

��� ������ ���� �
≤ dετ en0


 �
,

ð27Þ

for some d ≥ 1. This implies a contradiction. Therefore, B = φ
so that jκrj ≥ ε, for each r ∈ ðker ðκÞÞc. This completes the
proof of the theorem.

Theorem 18. Let κ ∈ℂℕ and ðℓψðΔm
n+1ÞÞτ be a prequasi

Banach (sss), with τðwÞ =∑∞
r=0ψðjΔm

n+1jwrjjÞ, for every w ∈
ℓψðΔm

n+1Þ. There are b > 0 and B > 0 so that b < κr < B, for
every r ∈ℕ, if and only if, Vκ ∈ BððℓψðΔm

n+1ÞÞτÞ be invertible.

Proof. Assume the conditions be established, define γ ∈ℂℕ

by γr = 1/κr , from Theorem 12, we obtain Vκ,Vγ ∈ B
ððℓψðΔm

n+1ÞÞτÞ and Vκ:Vγ =Vγ:Vκ = I. Therefore, Vγ is the
inverse of Vκ. Conversely, let Vκ be invertible. Hence, RðVκÞ
= ððℓψðΔm

n+1ÞÞτÞℕ. This gives RðVκÞ which is closed. From

Theorem 17, there is b > 0 so that ∣κr ∣ ≥b, for each r ∈
ðker ðκÞÞc. Now, ker ðκÞ = φ, else κr0 = 0, for several r0 ∈ℕ,
we have er0 ∈ ker ðVκÞ. This implies a contradiction, as
ker ðVκÞ is trivial. Therefore, ∣κr ∣ ≥a, for every r ∈ℕ.
Because Vκ is bounded, so from Theorem 12, there is B
> 0 so that ∣κr ∣ ≤B, for each r ∈ℕ. Hence, we have proved
that b ≤ ∣κr ∣ ≤B, for every r ∈ℕ.

Theorem 19. Pick up κ ∈ℂℕ and ðℓψðΔm
n+1ÞÞτ be a prequasi

Banach (sss), where τðwÞ =∑∞
r=0ψðjΔm

n+1jwrjjÞ, for every w ∈
ℓψðΔm

n+1Þ. Then, Vκ ∈ BððℓψðΔm
n+1ÞÞτÞ be the Fredholm opera-

tor, if and only if, (i) card ðker ðκÞÞ <∞ and (ii) ∣κr ∣ ≥ε, for
each r ∈ ðker ðκÞÞc.

Proof. Assume Vκ be Fredholm, Let card ðker ðκÞÞ =∞.
Therefore, en ∈ ker ðVκÞ, for every n ∈ ker ðκÞ. As en’s is line-
arly independent, this implies card ðker ðVκÞ =∞. This gives
a contradiction. Hence, card ðker ðκÞÞ <∞. From Theorem
17, condition (ii) is verified. Next, if the necessary conditions
are satisfied, to prove that Vκ is Fredholm, from Theorem 17,
condition (ii) implies that RðVκÞ is closed. Condition (i) gives
that dim ðker ðVκÞÞ <∞ and dim ððRðVκÞÞcÞ <∞. So, Vκ is
Fredholm.
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In this paper, the functional Quermassintegral of log-concave functions inℝn is discussed. We obtain the integral expression of the
ith functional mixed Quermassintegral, which is similar to the integral expression of the ith mixed Quermassintegral of convex
bodies.

1. Introduction

Let Kn be the set of convex bodies (compact convex subsets
with nonempty interiors) in ℝn, the fundamental Brunn-
Minkowski inequality for convex bodies states that for K , L
∈Kn, the volume of the bodies and of their Minkowski
sum K + L = fx + y : x ∈ K , y ∈ Lg is given by

V K + Lð Þ1/n ≥V Kð Þ1/n +V Lð Þ1/n, ð1Þ

with equality if and only if K and L are homothetic; namely,
they agree up to a translation and a dilation. Another geo-
metric quantity related to the convex bodies K and L is the
mixed volume. The most important result concerning the
mixed volume is Minkwoski’s first inequality:

V1 K , Lð Þ≔ 1
n
lim
t→0+

V K + tLð Þ − V Kð Þ
t

≥V Kð Þ n−1ð Þ/nV Lð Þ1/n,
ð2Þ

for K , L ∈Kn. In particular, when choosing L to be a unit
ball, up to a factor, V1ðK , LÞ is exactly the perimeter of K ,
and inequality (2) turns out to be the isoperimetric inequality
in the class of convex bodies. The mixed volume V1ðK , LÞ
admits a simple integral representation (see [1, 2]):

V1 K , Lð Þ = 1
n

ð
Sn−1

hLdSK , ð3Þ

where hL is the support function of L and SK is the area mea-
sure of K .

The Quermassintegrals WiðKÞði = 0, 1,⋯,nÞ of K , which
are defined by letting W0ðKÞ =VnðKÞ, the volume of K ;
WnðKÞ = ωn, the volume of the unit ball Bn

2 in ℝn and for
general i = 1, 2,⋯, n − 1,

Wn−i Kð Þ = ωn

ωi

ð
G i,n

voli Kjξi
� �

dμ ξið Þ, ð4Þ

where G i,n is the Grassmannian manifold of i-dimensional
linear subspaces of ℝn, dμðξiÞ is the normalized Haar mea-
sure onG i,n, Kjξi denotes the orthogonal projection of K onto
the i-dimensional subspaces ξi, and voli is the i-dimensional
volume on space ξi.

In the 1930s, Aleksandrov and Fenchel and Jessen (see [3,
4]) proved that for a convex body K in ℝn, there exists a reg-
ular Borel measure Sn−1−iðKÞ (i = 0, 1,⋯, n − 1) on Sn−1, the
unit sphere in ℝn, for K , L ∈Kn, the following representa-
tion holds

Wi K , Lð Þ = 1
n − i

lim
t→0+

Wi K + tLð Þ −Wi Kð Þ
ε

= 1
n

ð
Sn−1

hL uð ÞdSn−1−i K , uð Þ:
ð5Þ
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The quantity WiðK , LÞ is called the ith mixed Quermas-
sintegral of K and L.

In the 1960s, the Minkowski addition was extended to the
Lpðp ≥ 1Þ Minkowski sum hpK+pt·L = hpK + thpL: The extension

of the mixed Quermassintegral to the Lp mixed Quermassin-
tegral due to Lutwak [1], the Lp mixed Quermassintegral
inequalities, and the Lp Minkowski problem are established.
(See [2, 5–13] for more about the Lp Minkowski theory.)
The Lp mixed Quermassintegrals are defined by

Wp,i K , Lð Þ≔ p
n − i

lim
t→0+

Wi K+pt · L
� �

−Wi Lð Þ
t

, ð6Þ

for i = 0, 1,⋯, n − 1. In particular, for p = 1 in (6), it is
WiðK , LÞ, and Wp,0ðK , LÞ is denoted by VpðK , LÞ, which is
called the Lp mixed volume of K and L. Similarly, the Lp

mixed Quermassintegral has the following integral represen-
tation (see [1]):

Wp,i K , Lð Þ = 1
n

ð
Sn−1

hpL uð ÞdSp,i K , uð Þ: ð7Þ

The measure Sp,iðK , ·Þ is absolutely continuous with
respect to SiðK , ·Þ and has Radon-Nikodym derivative
dSp,iðK , ·Þ/dSiðK , ·Þ = hKð·Þ1−p: In particular, p = 1 in (7)
yields the representation (5).

Most recently, the interest in the log-concave functions
has been considerably increasing, motivated by the analogy
properties between the log-concave functions and the vol-
ume convex bodies in Kn. The classical Prékopa-Leindler
inequality (see [14–18]) firstly shows the connections of the
volume of convex bodies and log-concave functions. The
Blaschke-Santaló inequality for even log-concave functions
is established in [19, 20] by Ball (for the general case, see
[21–24]). The mean width for log-concave function is intro-
duced by Klartag and Milman and Rotem [25–27]. The affine
isoperimetric inequality for log-concave functions is proved
by Avidan et al. [28]. The John ellipsoid for log-concave
functions has been establish by Alonso-Gutiérrez et al. [29];
the LYZ ellipsoid for log-concave functions is established
by Fang and Zhou [30]. (See [31–37] for more about the per-
tinent results.)

Let f = e−u, g = e−v be log-concave functions, α, β > 0, the
“sum” and “scalar multiplication” of log-concave functions
are defined as

α · f ⊕ β · g≔ e−w, w∗ = αu∗ + βv∗, ð8Þ

where w∗ denotes as usual the Fenchel conjugate of the
convex function ω. The total mass integral Jð f Þ of f is
defined by Jð f Þ = Ð

ℝn f ðxÞdx: In paper [38] of Colesanti and
Fragalà, the quantity δJð f , gÞ, which is called as the first var-
iation of J at f along g, δJð f , gÞ = lim

t→0+
ðJð f ⊕ t · gÞ − Jð f ÞÞ/t,

is discussed. It has been shown that δJð f , gÞ is finite and has
the following integral expression:

δJ f , gð Þ =
ð
ℝn
v∗dμ fð Þ, ð9Þ

where μð f Þ is the measure of f on ℝn.
Inspired by the paper [38] of Colesanti and Fragalà, in

this paper, we define the ith functional Quermassintegrals
Wið f Þ as the i-dimensional average total mass of f :

Wi fð Þ≔ ωn

ωn−i

ð
Gn−i,n

Jn−i fð Þdμ ξn−ið Þ, i = 0, 1,⋯, n − 1,

ð10Þ

where Jið f Þ denotes the i-dimensional total mass of f
defined in Section 4, G i,n is the Grassmannian manifold of
ℝn, and dμðξn−iÞ is the normalized measure on G i,n. More-
over, we define the first variation ofWi at f along g, which is

Wi f , gð Þ = lim
t→0+

Wi f ⊕ t · gð Þ −Wi fð Þ
t

: ð11Þ

It is a natural extension of the Quermassintegral of con-
vex bodies in ℝn; we call it the ith functional mixed Quer-
massintegral. In fact, if one takes f = χK , and
dom ð f Þ = K ∈ℝn, then Wið f Þ turns out to be WiðKÞ, and
WiðχK , χLÞ equals toWiðK , LÞ. The main result in this paper
is to show that the ith functional mixed Quermassintegral has
the following integral expressions.

Theorem 1. Let f , g ∈A ′, be integrable functions, μið f Þ be
the i-dimensional measure of f , andWið f , gÞ be the ith func-
tional mixed Quermassintegral of f and g. Then,

Wi f , gð Þ = 1
n − i

ð
ℝn
hgjξn−i

dμn−i fð Þ, i = 0, 1,⋯, n − 1,

ð12Þ

where hgj∈n−i
is the support function of gj∈n−i .

The paper is organized as follows: In Section 2, we intro-
duce some notations about the log-concave functions. In Sec-
tion 3, the projection of a log-concave function onto subspace
is discussed. In Section 4, we focus on how we can represent
the ith functional mixed Quermassintegral Wið f , gÞ similar
as WiðK , LÞ. Owing to the Blaschke-Petkantschin formula
and the similar definition of the support function of f , we
obtain the integral representation of the ith functional mixed
Quermassintegral Wið f , gÞ.

2. Preliminaries

Let u : Ω→ ð−∞,+∞� be a convex function; that is,
uðð1 − tÞx + tyÞ ≤ ð1 − tÞuðxÞ + tuðyÞ for t ∈ ð0, 1Þ, where
Ω = fx ∈ℝn : uðxÞ ∈ℝg is the domain of u. By the convexity
of u,Ω is a convex set inℝn. We say that u is proper ifΩ ≠∅,
and u is of classC2

+ if it is twice differentiable on int ðΩÞ, with
a positive definite Hessian matrix. In the following, we define
the subclass of u:
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L = u : Ω→ −∞,+∞ð �: u is convex, low semicontinuous, lim
∥x∥→+∞

u xð Þ = +∞
� �

:

ð13Þ

Recall that the Fenchel conjugate of u is the convex func-
tion defined by

u∗ yð Þ = sup
x∈ℝn

x, yh i − u xð Þf g: ð14Þ

It is obvious that uðxÞ + u∗ðyÞ ≥ hx, yi for all x, y ∈Ω, and
there is an equality if and only if x ∈Ω and y is in the subdif-
ferential of u at x, which means

u∗ ∇u xð Þð Þ + u xð Þ = x,∇u xð Þh i: ð15Þ

Moreover, if u is a lower semicontinuous convex func-
tion, then also u∗ is a lower semicontinuous convex function,
and u∗∗ = u.

The infimal convolution of u and v fromΩ to ð−∞, +∞�
is defined by

u□v xð Þ = inf
y∈Ω

u x − yð Þ + v yð Þf g: ð16Þ

The right scalar multiplication by a nonnegative real
number α is

uαð Þ xð Þ≔
αu

x
α

� �
, if α > 0,

I 0f g, if α = 0:

8<
: ð17Þ

The following proposition below gathers some elemen-
tary properties of the Fenchel conjugate and the infimal con-
volution of u and v, which can be found in [38, 39].

Proposition 2. Let u, v : Ω→ ð−∞,+∞� be convex functions.
Then,

u□vð Þ∗ = u∗ + v∗ ð18Þ

(1) ðuαÞ∗ = αu∗, α > 0

(2) dom ðu□vÞ = dom ðuÞ + dom ðvÞ
(3) it holds u∗ð0Þ = −inf ðuÞ; in particular, if u is proper,

then u∗ðyÞ > −∞; inf ðuÞ > −∞ implies u∗ is proper

The following proposition about the Fenchel and Legen-
dre conjugates is obtained in [39].

Proposition 3 (see [39]). Let u : Ω→ ð−∞,+∞� be a closed
convex function, and set C ≔ int ðΩÞ, C∗ ≔ int ðdom ðu∗ÞÞ.
Then, ðC , uÞ is a convex function of Legendre type if and only
if C∗, u∗ is. In this case, ðC∗, u∗Þ is the Legendre conjugate of
ðC , uÞ (and conversely). Moreover, ∇u≔C →C∗ is a contin-
uous bijection, and the inverse map of ∇u is precisely ∇u∗.

A function f : ℝn → ð−∞,+∞� is called log-concave if for
all x, y ∈ℝn and 0 < t < 1, we have f ðð1 − tÞx + tyÞ ≥ f 1−tðxÞ
f tðyÞ: If f is a strictly positive log-concave function on ℝn,
then there exists a convex function u : Ω→ ð−∞,+∞� such
that f = e−u. The log-concave function is closely related to the
convex geometry of ℝn. An example of a log-concave function
is the characteristic function χK of a convex body K in ℝn,
which is defined by

χK xð Þ = e−IK xð Þ =
1, if x ∈ K ,
0, if x ∉ K ,

(
ð19Þ

where IK is a lower semicontinuous convex function, and the
indicator function of K is

IK xð Þ =
0, if x ∈ K ,
∞, if x ∉ K:

(
ð20Þ

In the later sections, we also use f to denote f being
extended to ℝn:

�f =
f , x ∈Ω,

0, x ∈
Rn

Ω
:

8<
: ð21Þ

Let A = f f : ℝn → ð0,+∞�: f = e−u, u ∈Lg be the sub-
class of f in ℝn. The addition and multiplication by nonnega-
tive scalars in A are defined by the following (see [38]).

Definition 4. Let f = e−u, g = e−v ∈A , and α, β ≥ 0. The sum
and multiplication of f and g are defined as

α · f ⊕ β · g = e− uαð Þ□ vβð Þ½ �: ð22Þ

That means,

α · f ⊕ β · gð Þ xð Þ = sup
y∈ℝn

f
x − y
α

� �α
g

y
β

� 	β

: ð23Þ

In particular, when α = 0 and β > 0, we have ðα · f ⊕
β · gÞðxÞ = gðx/βÞβ; when α > 0 and β = 0, then ðα · f ⊕ β ·
gÞðxÞ = f ðx/αÞα; finally, when α = β = 0, we have ðα · f ⊕ β ·
gÞ = If0g.

The following lemma is obtained in [38].

Lemma 5 (see [38]). Let u ∈L , then there exist constants a
and b, with a > 0, such that, for x ∈Ω,

u xð Þ ≥ a∥x∥+b: ð24Þ

Moreover, u∗ is proper and satisfies u∗ðyÞ > −∞, ∀y ∈Ω.
Lemma 5 grants that L is closed under the operations of

infimal convolution and right scalar multiplication defined
in (16) and (17) which are closed.
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Proposition 6 (see [38]). Let u and v belong both to the same
class L , and α, β ≥ 0. Then, uα□vβ belongs to the same class
as u and v.

Let f ∈A , according to papers of [26, 40], the support
function of f = e−u is defined as

hf xð Þ = −log f xð Þð Þ∗ = u∗ xð Þ, ð25Þ

where u∗ is the Legendre transform of u. The definition of hf is
a proper generalization of the support function hK . In fact, one
can easily check hχK = hK . Obviously, the support function hf
share the most of the important properties of support functions
hK . Specifically, it is easy to check that the function h : A →L

has the following properties [27]:

(1) h is a bijective map from A →L

(2) h is order preserving: f ≤ g if and only if hf ≤ hg

(3) h is additive: for every f , g ∈A , we have hf⊕g = hf +
hg

The following proposition shows that hf is GLðnÞ
covariant.

Proposition 7 (see [30]). Let f ∈A , A ∈ GLðnÞ and x ∈ℝn.
Then,

hf ∘A xð Þ = hf A−tx
� �

: ð26Þ

Let u, v ∈L , denote by ut = u□vtðt > 0Þ, and f t = e−ut .
The following lemmas describe the monotonicity and con-
vergence of ut and f t , respectively.

Lemma 8 (see [38]). Let f = e−u, g = g−v ∈A . For t > 0, set
ut = u□ðvtÞ and f t = e−ut . Assume that vð0Þ = 0, then for every
fixed x ∈ℝn, utðxÞ and f tðxÞ are, respectively, pointwise
decreasing and increasing with respect to t; in particular, it
holds

u1 xð Þ ≤ ut xð Þ ≤ u xð Þ, f xð Þ ≤ f t xð Þ ≤ f1 xð Þ ∀x ∈ℝn,∀t ∈ 0, 1½ �:
ð27Þ

Lemma 9 (see [38]). Let u and v belong both to the same class
L and, for any t > 0, set ut ≔ u□ðvtÞ. Assume that vð0Þ = 0,
then

(1) ∀x ∈Ω, lim
t→0+

utðxÞ = uðxÞ

(2) ∀E ⊂ ⊂Ω, lim
t→0+

∇utðxÞ = ∇u uniformly on E

Lemma 10 (see [38]). Let u and v belong both to the same
class L and for any t > 0, let ut ≔ u□ðvtÞ. Then, ∀x ∈ int
ðΩtÞ, and ∀t > 0,

d
dt

ut xð Þð Þ = −ψ ∇ut xð Þð Þ, ð28Þ

where ψ≔ v∗.

3. Projection of Functions onto Linear Subspace

Let G i,nð0 ≤ i ≤ nÞ be the Grassmannian manifold of i
-dimensional linear subspace of ℝn. The elements of G i,n will
usually be denoted by ξi, and ξ⊥i stands for the orthogonal
complement of ξi which is a ðn − iÞ-dimensional subspace
of ℝn. Let ξi ∈ G i,n and f : ℝn →ℝ. The projection of f onto
ξi is defined by (see [25, 41])

f ξi
xð Þ≔max f yð Þ: y ∈ x + ξi

⊥
 �
, ∀x ∈Ω

�� ��
ξi
, ð29Þ

where ξ⊥i is the orthogonal complement of ξi inℝ
n andΩjξi is

the projection of Ω onto ξi. By the definition of the log-
concave function f = e−u, for every x ∈Ωjξi , one can rewrite
(29) as

f jξi xð Þ = exp max −u yð Þ: y ∈ x + ξ⊥i

 �
 �

= e−ujξi xð Þ: ð30Þ

Regarding the “sum” and “multiplication” of f , we say
that the projection keeps the structure onℝn. In other words,
we have the following proposition.

Proposition 11. Let f , g ∈A , ξi ∈ G i,n, and α, β > 0. Then,

α · f ⊕ β · gð Þjξi = α · f ξi
⊕ β · g

�� ��
ξi
: ð31Þ

Proof. Let f , g ∈A , let x1, x2, x ∈ ξi such that x = αx1 + βx2,
then we have

α · f ⊕ β · gð Þjξi xð Þ ≥ α · f ⊕ β · gð Þ αx1 + βx2 + ξ⊥i
� �

≥ f x1 + ξ⊥i
� �α

g x2 + ξ⊥i
� �β

:
ð32Þ

Taking the supremum of the second right-hand inequal-
ity over all ξ⊥i , we obtain ðα · f ⊕ β · gÞjξi ≥ α · f jξi ⊕ β · gj

ξi
:

On the other hand, for x ∈ ξi, x1, x2 ∈ ξi such that x1 + x2 =
x, then

α · f ∣ ξi ⊕ β · gξi
� �

xð Þ = sup
x1+x2=x

max f α
x1
α

+ ξ⊥i

� �n o
max

�

� gβ
x2
β

+ ξ⊥i

� 	� ��

≥ sup
x1+x2=x

max f α
x1
α

+ ξ⊥i

� �
gβ x2

β
+ ξ⊥i

� 	� 	� �

=max sup
x1+x2=x

f α
x1
α

+ ξ⊥i

� �
gβ x2

β
+ ξ⊥i

� 	� 	( )

= α · f ⊕ β · gð Þjξi xð Þ:
ð33Þ
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Since f , g ≥ 0, the inequality max f f · gg ≤max f f g ·
max fgg holds. So, we complete the proof.

Proposition 12. Let ξi ∈ G i,n, f and g are functions on ℝn,
such that f ðxÞ ≤ gðxÞ holds. Then,

f ξi
≤ g

�� ��
ξi

ð34Þ

holds for any x ∈ ξi.

Proof. For y ∈ x + ξ⊥i , since f ðyÞ ≤ gðyÞ, then f ðyÞ ≤max
fgðyÞ: y ∈ x + ξ⊥i g. So, max f f ðyÞ: y ∈ x + L⊥i g ≤max fgðyÞ
: y ∈ x + ξ⊥i g. By the definition of the projection, we com-
plete the proof.

For the convergence of f , we have the following.

Proposition 13. Let f f ig be functions such that lim
n→∞

f n = f0,

ξi ∈ G i,n, then lim
n→∞

ð f nξiÞ = f0j
ξi
.

Proof. Since lim
n→∞

f n = f0, it means that ∀ε > 0, there exist N0,

∀n >N0, such that f0 − ε ≤ f n ≤ f0 + ε. By the monotonicity
of the projection, we have f0jξi − ε ≤ f njξi ≤ f0jξi + ε. Hence,

each f f njξig has a convergent subsequence; we denote it also
by f f njξig, converging to some f ′0jξi . Then, for x ∈ ξi, we
have

f0jξi xð Þ − ε ≤ f ′0
��
ξi
xð Þ = lim

n→∞
f njξi

� �
xð Þ ≤ f0jξi xð Þ + ε: ð35Þ

By the arbitrary of ε, we have f ′0jξi = f0jξi , so we complete

the proof.
Combining with Proposition 13 and Lemma 9, it is easy

to obtain the following proposition.

Proposition 14. Let u and v belong both to the same class L
and Ω ∈ℝn be the domain of u, for any t > 0, set ut = u□ðvtÞ.
Assume that vð0Þ = 0 and ξi ∈ G i,n, then

(1) ∀x ∈Ωjξi , limt→0+
utjξiðxÞ = uj

ξi
ðxÞ

∀x ∈ int Ωjξi
� �

, lim
t→0+

∇ut ξi
= ∇u

�� ��
ξi

ð36Þ

Now, let us introduce some facts about the functions ut
= u□ðvtÞ with respect to the parameter t.

Lemma 15. Let ξi ∈ G i,n, u and v belong both to the same class
L , ut ≔ u□ðvtÞ and Ωt be the domain of ut ( t > 0). Then, for
x ∈Ωtjξi ,

d
dt

utjξi
� �

xð Þ = −ψ ∇ ut jξi
� �

xð Þ
� �

, ð37Þ

where ψ≔ v∗jξi .

Proof. Set Dt ≔Ωtjξi ⊂ ξi, for fixed x ∈ int ðDtÞ, the map t
→ ∇ðut jξiÞðxÞ is differentiable on ð0, +∞Þ. Indeed, by the
definition of Fenchel conjugate and the definition of projec-
tion u, it is easy to see that ðuξiÞ

∗ = u∗j
ξi
and ðu□utÞjξi = u

jξi□utjξi hold. Proposition 6 and the property of the projec-

tion grant the differentiability. Set φ≔ u∗jξi and ψ≔ v∗jξi ,
and φt = φ + tψ, then φt belongs to the class C2

+ on ξi. Then,
∇2φt = ∇2φ + t∇2ψ is nonsingular on ξi. So, the equation

∇φ yð Þ + t∇ψ yð Þ − x = 0 ð38Þ

locally defines a map y = yðx, tÞwhich is of classC1. By Prop-
osition 3, we have ∇ðutjξiÞ is the inverse map of ∇φt , that is,
∇φtð∇ðutjξiðxÞÞ = x, which means that for every x ∈ int ðDtÞ
and every t > 0, t→ ∇ðutjξiÞ is differentiable. Using equation
(15) again, we have

utjξi xð Þ = x,∇ utjξi
� �

xð Þ
D E

− φt ∇ ut jξi
� �

xð Þ
� �

, ∀x ∈ int Dtð Þ:
ð39Þ

Moreover, note that φt = φ + tψ, we have

ut ξi
xð Þ = x,∇ utξi

� �
xð Þ

D E
− φ ∇ utξi

� �
xð Þ

� �
− tψ ∇ utξi

� �
xð Þ

� ����
= ut

���
ξi

∇ utjξi
� �

xð Þ
� �

− tψ ∇ utjξi
� �

xð Þ
� �

:
ð40Þ

Differential the above formal we obtain, d/dtðutjξiÞðxÞ
= −ψð∇ðutjξiÞðxÞÞ: Then, we complete the proof of the result.

4. Functional Quermassintegrals of Log-
Concave Function

A function f ∈A is nondegenerate and integrable if and only
if lim

∥x∥→+∞
uðxÞ/∥x∥ = +∞: Let L ′ = fu ∈L : u ∈C2

+ðℝnÞ,
lim

∥x∥→+∞
uðxÞ/∥x∥ = +∞g, and A ′ = f f : ℝn → ð0,+∞�: f =

e−u, u ∈L ′g: Now, we define the ith total mass of f .

Definition 16. Let f ∈A ′, ξi ∈ G i,nði = 1, 2,⋯,n − 1Þ, and
x ∈Ωjξi . The ith total mass of f is defined as

Ji fð Þ≔
ð
ξi

f

�����
ξi

xð Þdx, ð41Þ

where f jξi is the projection of f onto ξi defined by (29) and dx
is the i-dimensional volume element in ξi.
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Remark 17.

(1) The definition of Jið f Þ follows the i-dimensional vol-
ume of the projection a convex body. If i = 0, we
defined J0ð f Þ≔ ωn, the volume of the unit ball in
ℝn, for the completeness

(2) When taking f = χK , the characteristic function of a
convex body K , one has Jið f Þ =ViðKÞ, the i-dimen-
sional volume in ξi

Definition 18. Let f ∈A ′. Set ξi ∈ G i,n be a linear subspace
and for x ∈Ωjξi , the ith functional Quermassintegrals of f
(or the i-dimensional mean projection mass of f ) are defined
as

Wn−i fð Þ≔ ωn

ωi

ð
G i,n

J i fð Þdμ ξið Þ, i = 1, 2,⋯, n, ð42Þ

where Jið f Þ is the ith total mass of f defined by (41) and dμ
ðξiÞ is the normalized Haar measure on G i,n.

Remark 19.

(1) The definition ofWið f Þ follows the definition of the i
th Quermassintegrals WiðKÞ, that is, the ith mean
total mass of f on G i,n. Also, in a recent paper [42],
the authors give the same definition by defining the
Quermassintegral of the support set for the quasicon-
cave functions

(2) When i equals to n in (42), we have W0ð f Þ =
Ð
ℝn

f ðxÞdx = Jð f Þ, the total mass function of f defined
by Colesanti and Fragalá [38]. Then, we can say
that our definition of Wið f Þ is a natural extension
of the total mass function of Jð f Þ

(3) From the definition of the QuermassintegralsWið f Þ,
the following properties are obtained (see also [42]):

Positivity::0 ≤Wi fð Þ ≤ +∞ ð43Þ

(i) Monotonicity: Wið f Þ ≤WiðgÞ, if f ≤ g

(ii) Generally speaking, Wið f Þ has no homogeneity
under dilations. That is, Wiðλ · f Þ = λn−iWið f λÞ,
where λ · f ðxÞ = λf ðx/λÞ, λ > 0

Definition 20. Let f , g ∈A ′, ⊕ , and · denote the operations of
“sum” and “multiplication” in A ′. Wið f Þ and WiðgÞ are,
respectively, the ith Quermassintegrals of f and g. Whenever
the following limit exists,

Wi f , gð Þ = 1
n − ið Þ limt→0+

Wi f ⊕ t · gð Þ −Wi fð Þ
t

, ð44Þ

we denote it byWið f , gÞ and call it as the first variation ofWi
at f along g, or the ith functional mixed Quermassintegrals of
f and g.

Remark 21. Let f = χK and g = χL, with K , L ∈Kn. In this
case Wið f ⊕ t · gÞ =WiðK + tLÞ, then Wið f , gÞ =WiðK , LÞ.
In general, Wið f , gÞ has no analog properties of WiðK , LÞ;
for example, Wið f , gÞ is not always nonnegative and finite.

The following is devoted to proving that Wið f , gÞ exists
under the fairly weak hypothesis. First, we prove that the first
i-dimensional total mass of f is translation invariant.

Lemma 22. Let ξi ∈ G i,n, f = e−u, g = e−v ∈A ′. Let
c = inf ujξi ≕ uð0Þ, d = inf vjξi ≔ vð0Þ, and set ~uiðxÞ = ujξiðxÞ
− c, ~viðxÞ = vjξiðxÞ − d, ~φiðyÞ = ð~uiÞ∗ðyÞ, ~ψiðyÞ = ð~viÞ∗ðyÞ, ~f i
= e−~ui , ~gi = e−~vi , and ~f tji = ~f ⊕ t · ~g. Then, if lim

t→0+
ððJið~f tÞ − Ji

ð~f ÞÞ/tÞ = Ð
ξi
~ψidμið~f Þ holds, then we have lim

t→0+
ððJið f tÞ − Jið f

ÞÞ/tÞ = Ð
ξi
ψidμið f Þ:

Proof. By the construction, we have ~uið0Þ = 0, ~við0Þ = 0, and
~vi ≥ 0, ~φi ≥ 0, ~ψi ≥ 0. Further, ~ψiðyÞ = ψiðyÞ + d, and ~f i = ec f i.
So,

lim
t→0+

J i ~f t
� �

− Ji ~f
� �

t
=
ð
ξi

~ψidμi
~f

� �
= ec

ð
ξi

ψidμi fð Þ + dec
ð
ξi

dμi fð Þ:

ð45Þ

On the other hand, since f i ⊕ t · gi = e−ðc+dtÞð~f i ⊕ t · ~giÞ,
we have, Jið f ⊕ t · gÞ = e−ðc+dtÞ Jið~f i ⊕ t · ~giÞ: By derivation of
both sides of the above formula, we obtain

lim
t→0+

J i f ⊕ t · gð Þ − Ji fð Þ
t

= −de−c lim
t→0+

J i ~f i ⊕ t~gi
� �

dx + e−c lim
t→0+

�
J i ~f t
� �

− J i ~f
� �

t

2
4

3
5 = −de−c Ji ~f i

� �

+
ð
ξi

ψidμi fð Þ + d
ð
ξi

dμi fð Þ

=
ð
ξi

ψidμi fð Þ:

ð46Þ

So, we complete the proof.

Theorem 23. Let f , g ∈A ′, with −∞≤ inf ðlog gÞ ≤ +∞ and
Wið f Þ > 0. Then,Wjð f , gÞ is differentiable at f along g, and it
holds

Wj f , gð Þ ∈ −k,+∞½ �, ð47Þ

where k =max fd, 0gWið f Þ.

6 Journal of Function Spaces



Proof. Let ξi ∈ G i,n, since ujξi≔− log ð f ξiÞ = −ðlog f Þj
ξi
and v

jξi≔− log ðgξiÞ = −ðlog f Þj
ξi
: By the definition of f t and Prop-

osition 11, we obtain f tjξi = ð f ⊕ t · gÞj
ξi
= f jξi ⊕ t · gj

ξi
:

Notice that vjξið0Þ = vð0Þ, set d ≔ vð0Þ, ~vjξiðxÞ≔ vj
ξi
ðxÞ − d,

~gjξiðxÞ≔ e−~vjξi ðxÞ, and ~f tjξi ≔ f jξi ⊕ t · ~gj
ξi
: Up to a translation

of coordinates, we may assume inf ðvÞ = vð0Þ: Lemma 8 says
that for every x ∈ ξi,

f jξi ≤ ~f t ξi
≤ ~f 1

��� ���
ξi
, ∀x ∈ℝn,∀t ∈ 0, 1½ �: ð48Þ

Then, there exists ~f jξiðxÞ≔ lim
t→0+

~f tj
ξi

ðxÞ. Moreover, it

holds ~f jξiðxÞ ≥ f j
ξi
ðxÞ and ~f tjξi is pointwise decreasing as t

→ 0+. Lemma 5 and Proposition 6 show that f jξi ⊕ t · ~gj
ξi

∈A ′, ∀t ∈ ½0, 1�: Then, Jið f Þ ≤ Jið~f tÞ ≤ Jið~f 1Þ, −∞≤ Jið f Þ
, Jið~f 1Þ<∞. Hence, by monotonicity and convergence, we
have limt→0+Wið~f tÞ =Wið~f Þ: In fact, by definition, we

have ~f tjξiðxÞ = e
−inf fujξi ðx−yÞ+tvjξi ðy/tÞg,

−inf u ξi
x − yð Þ + tv

�� ��
ξi

y
t

� �n o
≤ − inf u ξi

x − yð Þ − t inf v
�� ��

ξi

y
t

� �
:

ð49Þ

Note that −∞≤ inf ðvjξiÞ ≤ +∞, then −inf u
jξiðx − yÞ − t inf vj

ξi
ðy/tÞ is a continuous function of variable

t, then

~f
���
ξi
xð Þ≔ lim

t→0+
~f t ξi

xð Þ = f
�� ��

ξi
xð Þ: ð50Þ

Moreover, Wið~f tÞ is a continuous function of ðt ∈ ½0, 1�Þ;
then, lim

t→0+
Wið~f tÞ =Wið f Þ: Since f tjξi = e−dt~f j

ξi
ðxÞ, we have

Wi f tð Þ −Wi fð Þ
t

=Wi fð Þ e
−dt − 1
t

+ e−dt
Wi

~f t
� �

−Wi fð Þ
t

:

ð51Þ

Notice that, ~f t jξi ≥ f j
ξi
, we have the following two cases,

that is, ∃t0 > 0 : Wið~f t0Þ =Wið f Þ or Wið~f tÞ =Wið f Þ, ∀t > 0:
For the first case, since Wið~f tÞ is a monotone increasing

function of t, it must hold Wið~f tÞ =Wið f Þ for every t ∈ ½0,
t0�. Hence, we have lim

t→0+
ðWið f tÞ −Wið f ÞÞ/t = −dWið f Þ; the

statement of the theorem holds true.
In the latter case, since ~f t jξi is an increasing nonnegative

function, it means that log ðWið~f tÞÞ is an increasing concave
function of t. Then, ∃ðlog ðWið~f tÞÞ − log ðWið f ÞÞÞ/t ∈ ½0,+
∞�: On the other hand, since

log′ Wi
~f t

� �� ����
t=0

= lim
t→0+

log Wi
~f t

� �� �
− log Wi fð Þð Þ

Wi
~f t

� �
−Wi fð Þ

= 1
Wi fð Þ :

ð52Þ

Then,

lim
t→0+

Wi
~f t

� �
−Wi fð Þ

log Wi
~f t

� �� �
− log Wi fð Þð Þ

=Wi fð Þ > 0: ð53Þ

From above, we infer that ∃limt→0+ðWið~f tÞ −Wið f ÞÞ/t
∈ ½0,+∞�: Combining the above formulas, we obtain

lim
t→0+

Wi f tð Þ −Wi fð Þ
t

∈ −max d, 0f gWi fð Þ,+∞½ �: ð54Þ

So, we complete the proof.

In view of the example of the mixed Quermassintegral, it
is natural to ask whether, in general,Wið f , gÞ has some kind
of integral representation.

Definition 24. Let ξi ∈ G i,n and f = e−u ∈A ′. Consider the
gradient map ∇u : ℝn →ℝn, the Borel measure μið f Þ on ξi
is defined by

μi fð Þ≔
∇ujξi

� �
#

∥x∥n−i
f jξi

� �
: ð55Þ

Recall that the following Blaschke-Petkantschin formula
is useful.

Proposition 25 (see [43]). Let ξi ∈ G i,nði = 1, 2,⋯,nÞ be linear
subspace of ℝn and f be a nonnegative bounded Borel func-
tion on ℝn, then

ð
ℝn
f xð Þdx = ωn

ωi

ð
G i,n

ð
ξi

f xð Þ∥x∥n−idxdμ ξið Þ: ð56Þ

Now, we give a proof of Theorem 1.

Proof of Theorem 1. By the definition of the ith Quermassin-
tegral of f , we have

Wi f tð Þ −Wi fð Þ
t

= ωn

ωn−i

ð
Gn−i,n

Jn−i f tð Þ − Jn−i fð Þ
t

dμ ξn−ið Þ:

ð57Þ

Let t > 0 be fixed, take C⊂⊂Ωjξn−i , and by reduction
0 ∈ int ðΩÞjξn−i , we have C⊂⊂Ωjξn−i , by Lemma 15, we obtain
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lim
h→0

Jn−i f t+hð Þ xð Þ − Jn−i f t xð Þð Þ
h

=
ð
ξn−i

ψ ∇ut ∣ ξn−i xð Þ� �
f t

�����
ξn−i

xð Þdx,

ð58Þ

where ψ = hgjξn−i
= vj∗

ξn−i
. Then, we have

lim
h→0

Wi f t+hð Þ −Wi f tð Þ
h

= ωn

ωn−i

ð
Gn−i,n

ð
ξn−i

ψ ∇ut ∣ ξn−i xð Þ� �
f t
��
ξn−i

xð Þ
∥x∥n−i

� ∥x∥n−idxdμ ξn−ið Þ,

=
ð
ℝn

ψ ∇ut ∣ ξn−i xð Þ� �
f t
��
ξn−i

xð Þ
∥x∥n−i

dx

=
ð
ℝn
ψdμn−i f tð Þ:

ð59Þ

So, we have Wið f t+hÞ −Wið f tÞ =
Ð t
0f
Ð
ℝnψdμn−ið f sÞgds:

The continuity of ψ implies lim
s→0+

Ð
ℝnψdμn−ið f sÞds =

Ð
ℝnψd

μn−ið f Þds: Therefore,

lim
t→0+

Wi f tð Þ −Wi fð Þ
t

= d
dt

Wi f tð Þ t=0+ = lim
s→0+

d
dt

Wi f tð Þ
����

����
t=s

= lim
s→0+

d
dt

ðt
0

ð
ℝn
ψdμn−i f sð Þ

� �
ds

=
ð
ℝn
ψdμn−i fð Þ:

ð60Þ

Since ψ = hgjξ , we have

Wi f , gð Þ = 1
n − i

lim
t→0+

Wi f tð Þ −Wi fð Þ
t

= 1
n − i

ð
ℝn
hgjξn−i

dμn−i fð Þ:

ð61Þ

So, we complete the proof.

Remark 26. From the integral representation (12), the ith
functional mixed Quermassintegral is linear in its second
argument, with the sum in A ′, for f , g, h ∈A ′, then we have
Wið f , g ⊕ hÞ =Wið f , gÞ +Wið f , hÞ:
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In this paper, we establish functional forms of the Orlicz Brunn-Minkowski inequality and the Orlicz-Minkowski inequality for the
electrostatic q-capacity, which generalize previous results by Zou and Xiong. We also show that these two inequalities are
equivalent.

1. Introduction

The classical Brunn-Minkowski inequality was inspired by
questions around the isoperimetric problem. It is viewed as
one of cornerstones of the Brunn-Minkowski theory, which
is a beautiful and powerful tool to conquer all sorts of geo-
metrical problems involving metric quantities such as vol-
ume, surface area, and mean width.

An excellent reference on this inequality is provided by
Gardner [1].

In 2015, Colesanti, Nyström, Salani, Xiao, Yang, and
Zhang (CNSXYZ) [2] introduced the electrostatic q-capac-
ity. Let K be a compact set in the n-dimensional Euclidean
space Rn. For 1 < q < n, the electrostatic q-capacity, CqðKÞ,
of K is defined by

Cq Kð Þ = inf
ð
Rn

∇uj jqdx : u ∈ C∞
c Rnð Þ and u ≥ χK

� �
, ð1Þ

where C∞
c ðRnÞ denotes the set of functions from C∞ðRnÞ

with compact supports and χK is the characteristic function
of K . If q = 2, then C2ðKÞ is the classical electrostatic (or
Newtonian) capacity of K . The Minkowski-type problems
for the electrostatic q-capacity have attracted increasing
attention [2–10]. The electrostatic q-capacity also has appli-
cations in analysis, mathematical physics, and partial differ-
ential equations (see [11–13]).

The electrostatic q-capacity can be extended on function
spaces. Let CðSn−1Þ denote the set of continuous functions
defined on Sn−1, which is equipped with the metric induced
by the maximal norm. Write C+ðSn−1Þ for the set of strictly
positive functions in CðSn−1Þ. For 1 < q < n and f ∈ C+ðSn−1Þ,
define the electrostatic q-capacity Cqð f Þ by

Cq fð Þ = Cq f½ �ð Þ, ð2Þ

where ½ f � denotes the Aleksandrov body (also known as the
Wulff shape) associated with f . For nonnegative f ∈ CðSn−1Þ,
the Aleksandrov body ½ f � is defined by

f½ � = ∩
ξ∈Sn−1

x ∈ Rn : x ⋅ ξ ≤ f ξð Þf g: ð3Þ

Obviously, ½ f � is a compact convex set containing the origin
and h½ f � ≤ f , where h½ f � denotes the support function of ½ f �.
Moreover,

K = hK½ �, ð4Þ

for every compact convex set K containing the origin. If f ∈
C+ðSn−1Þ, then½ f � is a convex body in Rn containing the origin
in its interior. The Aleksandrov convergence lemma reads: if the
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sequence f f jgj ⊂ C+ðSn−1Þ converges uniformly to f ∈ C+

ðSn−1Þ, then, limj→∞½ f j� = ½ f �.
Suppose a, b ≥ 0 (not both zero). If f , g ∈ C+ðSn−1Þ, then,

the Lp Minkowski sum a ⋅ g+pb ⋅ f is defined by

a ⋅ f+pb ⋅ g = af p + bgp� �1/p, ð5Þ

where the Lp scalar multiplication a ⋅ f is defined by aa/p f .
By the definition of the Aleksandrov body (3), we have
½a ⋅ hK+pb ⋅ hL� = a ⋅ K+pb ⋅ L for convex bodies K and L
containing the origin in their interiors. Here, a ⋅ K+pb ⋅ L
denotes the Lp Minkowski sum of K and L, i.e.,

ha⋅K+pb⋅L
p = ahK

p + bhL
p, ð6Þ

for every u ∈ Sn−1, which was defined by Firey [14]. In the
mid 1990s, it was shown in [15, 16] that when Lp Min-
kowski sum is combined with volume the result is an
embryonic Lp-Brunn-Minkowski theory. Zou and Xiong
([7], Theorem 3.11) established the functional form of
the Lp Brunn-Minkowski inequality for the electrostatic
q-capacity. Suppose 1 < p <∞ and 1 < q < n.

If f , g ∈ C+ðSn−1Þ, then

Cq f+pg
� �p/ n−qð Þ ≥ Cq fð Þp/ n−qð Þ + Cq gð Þp/ n−qð Þ, ð7Þ

with equality if and only if ½ f � and ½g� are dilates.
The Orlicz Brunn-Minkowski theory which was

launched by Lutwak et al. in a series of papers [17–19]
is an extension of the Lp Brunn-Minkowski theory. This
theory has been considerably developed in the recent
years. The Orlicz sum was introduced by Gardner et al.
[20]. Let Φ be the class of convex, strictly increasing func-
tions, ϕ : ½0,∞Þ⟶ ½0,∞Þ with ϕð0Þ = 0. Suppose ϕ ∈Φ
and a, b ≥ 0 (not both zero). If K and L are convex bodies
that contain the origin in their interiors in Rn, then, the
Orlicz sum a ⋅ K+ϕb ⋅ L is the convex body defined by

ha⋅K+ϕb⋅L uð Þ = inf τ > 0 : aϕ
hK uð Þ
τ

� �
+ bϕ

hL uð Þ
τ

� �
≤ ϕ 1ð Þ

� �
,

ð8Þ

for every u ∈ Sn−1. Gardner et al. ([20], Corollary 7.5)
established the Orlicz Brunn-Minkowski inequality (see
also ([21], Theorem 1). Same as the Orlicz sum of convex
bodies, we extend the Lp Minkowski sum of functions to

the Orlicz sum. For ϕ ∈Φ, f , g ∈ C+ðSn−1Þ, and a, b ≥ 0
(not both zero), the Orlicz sum a ⋅ f+ϕb ⋅ g is defined by

a ⋅ f+ϕb ⋅ g = inf τ > 0 : aϕ
f
τ

� �
+ bϕ

g
τ

� 	
≤ ϕ 1ð Þ

� �
: ð9Þ

If we take ϕðtÞ = tpðp ≥ 1Þ in (9), then it, induces the Lp
Minkowski sum (5). By the definition of the Aleksandrov body

(3), (8), (9), and (4), we have ½a ⋅ hK+ϕb ⋅ hL� = a ⋅ K+ϕb ⋅ L for
convex bodies K and L containing the origin in their interiors.

The main aim of this paper is to establish the functional
form of the Orlicz Brunn-Minkowski inequality for the elec-
trostatic q-capacity.

Theorem 1. Suppose ϕ ∈Φ and 1 < q < n. If f , g ∈ C+ðSn−1Þ,
then,

ϕ
Cq fð Þ

Cq f+ϕg
� �

 !1/ n−qð Þ0
@

1
A + ϕ

Cq gð Þ
Cq f+ϕg
� �

 !1/ n−qð Þ0
@

1
A ≤ ϕ 1ð Þ:

ð10Þ

If ϕ is strictly convex, equality holds if and only if ½ f � and
½g� are dilates.

2. Notation and Preliminary Results

For excellent references on convex bodies, we recommend
the books by Gardner [22], Gruber [23], and Schneider [24].

We will work in Rn equipped with the standard Euclidean
norm. Let x ⋅ y denote the standard inner product of x, y ∈ Rn.
For x ∈ Rn, jxj = ffiffiffiffiffiffiffiffi

x ⋅ x
p

denotes the Euclidean norm of x. We
write B = fx ∈ Rn : jxj ≤ 1g and Sn−1 for the standard unit ball
of Rn and its surface, respectively. Each compact convex set K
is uniquely determined by its support function hK : Rn ⟶ R,
which is defined by hKðxÞ =max fx ⋅ y : y ∈ Rng, for x ∈ Rn.
Obviously, the support function is positively homogeneous
of order 1.

The class of compact convex sets in Rn is often equipped
with the Hausdorff metric δH , which is defined for compact
convex sets K and L by

δH K , Lð Þ =max hK uð Þ − hL uð Þj j: u ∈ Sn−1� �
: ð11Þ

Denote by Kn the set of convex bodies in Rn and by Kn
o

the set of convex bodies which contain the origin in their
interiors. For s > 0, the set sK = fsx : x ∈ Kg is called a dilate
of convex body K . Convex bodies K and L are said to be
homothetic, provided K = sL + x for some s > 0 and x ∈ Rn.
Let K , L ∈ Kn, the Minkowski sum of K and L is the convex
body

K + L = x, y : x ∈ K , y ∈ Lf g: ð12Þ

Some properties of the electrostatic q-capacitary measure
are required [2, 3, 7, 8, 11]. The electrostatic q-capacitary
measure, μqðE, ⋅Þ, of a bounded open convex set E in Rnis

the measure on the unit sphere Sn−1 defined for ω ⊂ Sn−1

and 1 < q < n by

μq E, ωð Þ =
ð
g−1 ωð Þ

∇Uj jqdHn−1, ð13Þ

where g−1 : Sn−1 ⟶ ∂E (the set of boundary points of E)
denotes the inverse Gauss map, Hn−1 the ðn − 1Þ-dimensional
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Hausdorff measure, and U the q-equilibrium potential of E. If
K ∈ Kn, then the electrostatic q-capacitary measure μqðK , ⋅Þ
has the following properties. First, it is positively homogeneous
of degree ðn − q − 1Þ, i.e., μqðsK , ⋅ Þ = sn−q−1μqðK , ⋅ Þ for s > 0.
Second, it is translation invariant, i.e., μqðK + x, ⋅ Þ = μqðK , ⋅ Þ
for x ∈ Rn. Third, its centroid is at the origin, i.e.,

Ð
Sn−1udμq

ðK , uÞ = 0. Moreover, it is absolutely continuous with respect
to the surface area measure SðK , ⋅Þ. The weak convergence of
the electrostatic q-capacitary measure is proved by CNSXYZ
([2], Lemma 4.1): if fKjg ⊂ Kn converges to K ∈ Kn,
thenμqðK j, ⋅Þ converges weakly to μqðK , ⋅Þ.

CNSXYZ [2] showed the Hadamard variational formula
for the electrostatic q-capacity: for K , L ∈ Kn and 1 < q < n,

dCq K + tLð Þ
dt






t=0+

= q − 1ð Þ
ð
Sn−1

hL uð Þdμq K , uð Þ: ð14Þ

And variational formula (14) leads to the following
Poincare q-capacity formula:

Cq Kð Þ = q − 1
n − q

ð
Sn−1

hK uð Þdμq K , uð Þ: ð15Þ

The electrostatic q-capacity CqðKÞ has the following prop-
erties. First, it is increasing with respect to set inclusion; that is,
if K1 ⊆ K2, then CqðK1Þ ≤ CqðK2Þ. Second, it is positively
homogeneous of degree ðn − qÞ, i.e., CqðsKÞ = sn−qCqðKÞ for
s > 0. Third, it is a rigid motion invariant, i.e.,

CqðφK + xÞ = CqðKÞ for x ∈ Rn and φ ∈OðnÞ. If q = 2,
then (15) induces the Poincare capacity formula

C2 Kð Þ = 1
n − 2

ð
Sn−1

hK uð Þdμ2 K , uð Þ: ð16Þ

Let CðSn−1Þ denote the set of continuous functions
defined on Sn−1, which is equipped with the metric induced
by the maximal norm. Write C+ðSn−1Þ for the set of strictly
positive functions in CðSn−1Þ. Let K ∈ Kn

o and g ∈ CðSn−1Þ.
There is a t0 > 0 such that hK + tg ∈ C+ðSn−1Þ for jtj < t0.
The Aleksandrov body ½hK + tg� is continuous in t ∈ ð−t0, t0Þ.
The Hadamard variational formula for the electrostatic
q-capacity [2] states the following:

dCq hK + tgð Þ
dt






t=0+

= q − 1ð Þ
ð
Sn−1

g uð Þdμq K , uð Þ: ð17Þ

For f ∈ C+ðSn−1Þ, define

Cq fð Þ = Cq f½ �ð Þ: ð18Þ

Obviously, CqðhKÞ = CqðKÞ for every K ∈ Kn
o . By the

Aleksandrov convergence lemma and the continuity of
Cq on Kn, the functional Cq : C+ðSn−1Þ⟶ ð0,∞Þ is

continuous. For K ∈ Kn
o and g ∈ CðSn−1Þ, the mixed elec-

trostatic q-capacity CqðK , gÞ is defined by

Cq K , gð Þ = 1
n − q

dCq hK + tgð Þ
dt






t=0+

: ð19Þ

Applying the Hadamard variational formula for the
electrostatic q-capacity, the mixed electrostatic q-capacity
CqðK , gÞ has the following integral representation:

Cq K , gð Þ = q − 1
n − q

ð
Sn−1

g uð Þdμq K , uð Þ: ð20Þ

Let L ∈ Kn. If g = hL, then, CqðK , gÞ is the mixed
electrostatic q-capacity CqðK , LÞ, which has the following
integral representation:

Cq K , Lð Þ = q − 1
n − q

ð
Sn−1

hL uð Þdμq K , uð Þ: ð21Þ

The Minkowski inequality for the electrostatic q-capacity
([2], Theorem 3.6) states the following: let1 < q < n.

If K , L ∈ Kn, then,

Cq K , Lð Þ ≥ Cq Kð Þ n−q−1ð Þ/ n−qð ÞCq Lð Þ1/ n−qð Þ, ð22Þ

with equality if and only if K and L are homothetic.
Let 1 ≤ p <∞ and 1 < q < n. For K ∈ Kn

o and g ∈ CðSn−1Þ,
the Lp Hadamard variational formula for the electrostatic
q-capacity [7] states the following:

dCq hK+pt ⋅ g
� �

dt







t=0+

= q − 1
p

ð
Sn−1

g uð ÞphK uð Þ1−pdμq K , uð Þ:

ð23Þ

The Lp mixed electrostatic q-capacity Cp,qðK , gÞ is
defined by

Cp,q K , gð Þ = 1
n − q

dCq hK+pt ⋅ g
� �

dt







t=0+

= q − 1
n − q

ð
Sn−1

g uð ÞphK uð Þ1−pdμq K , uð Þ:

ð24Þ

Take g = hK in (24), and combine CqðK , gÞ = CqðKÞ to
obtain the Poincare q-capacity formula (15). Zou and
Xiong ([7], Theorem 3.9) established the Lp Minkowski
inequality for the Lp electrostatic q-capacity: let 1 < p <∞
and 1 < q < n. If K ∈ Kn

o and g ∈ CðSn−1Þ, then,

Cq K , gð Þ ≥ Cq Kð Þ n−q−pð Þ/ n−qð ÞCq Lð Þp/ n−qð Þ, ð25Þ

with equality if and only if K and ½g� are dilates.
Based on the Orlicz sum (9), we define the Orlicz

mixed electrostatic q-capacity as follows. For K ∈ Kn
o and

g ∈ CðSn−1Þ, the Orlicz mixed electrostatic q-capacity Cϕ,q
ðK , gÞ is defined by
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Cϕ,q K , gð Þ = 1
n − q

dCq hK+ϕt ⋅ g
� �

dt







t=0+

: ð26Þ

Indeed, the Orlicz mixed electrostatic q-capacity can be
extended on function spaces. Let ϕ ∈Φ and 1 < q < n. For
f ∈ C+ðSn−1Þ and g ∈ CðSn−1Þ, the Orlicz mixed electrostatic
q-capacity Cϕ,qð½ f �, gÞ is defined by

Cϕ,q f½ �, gð Þ = 1
n − q

dCq f+ϕt ⋅ g
� �
dt







t=0+

: ð27Þ

If f = hK with K ∈ Kn
o , then, Cϕ,qð½hK �, gÞ = Cϕ,qðK , gÞ.

If g = hL with L ∈ Kn
o , then, Cϕ,qð½ f �, hLÞ is the Orlicz

mixed electrostatic q-capacity Cϕ,qð½ f �, LÞ. In particular,
Cϕ,qð½hK �, hKÞ = ϕð1ÞCqðKÞ for every K ∈ Kn

o .

3. Main Results

The following variational formula of electrostatic q-capacity
plays a crucial role in our proof.

Lemma 2 ([2], Lemma 5.1). Let I ⊂ R be an interval contain-
ing 0 in its interior, and let htðuÞ = hðt, uÞ: I × Sn−1 ⟶ ½0,∞Þ
be continuous such that the convergence in

h′ 0, uð Þ = lim
t→0

h t, uð Þ − h 0, uð Þ
t

ð28Þ

is uniformly on Sn−1. Then,

dCq ht½ �ð Þ
dt






t=0+

= q − 1ð Þ
ð
Sn−1

h′ 0, uð Þdμq h0½ �, uð Þ: ð29Þ

Suppose ϕ ∈Φ, f , g ∈ CqðSn−1Þ, and a, b ≥ 0 (not both

zero). For every given u ∈ Sn−1, the function t↦ aϕð f ðuÞ/tÞ +
bϕðgðuÞ/tÞ is strictly decreasing. By the definition of the
Orlicz sum (9), we have ða ⋅ f+ϕb ⋅ gÞðuÞ = t and only if aϕ
ð f ðuÞ/tÞ + bϕðgðuÞ/tÞ = ϕð1Þ.

for every u ∈ Sn−1.

The continuity properties of the Orlicz sum were estab-
lished by Xi et al. [21].

Lemma 3 ([21], Lemma 3.1). Suppose,ϕ ∈Φf ∈ C+ðSn−1Þ,
g ∈ CðSn−1Þ, and a, b ≥ 0 (not both zero).

(i) Let f f ig, fgig ⊂ C+ðSn−1Þ and fgig ⊂ CðSn−1Þ
such that f i ⟶ f and gi ⟶ g, respectively.
Then, a ⋅ f i+ϕb ⋅ gi ⟶ a ⋅ f+ϕb ⋅ g

(ii) Let fϕig ⊂Φ such that ϕi → ϕ. Then, a ⋅ f+ϕi
b ⋅ g

⟶ a ⋅ f+ϕb ⋅ g

(iii) Let ai, bi ≥ 0 (not both zero) such that ai ⟶ a and
bi ⟶ b. Then

ai ⋅ f+ϕbi ⋅ g⟶ a ⋅ f+ϕb ⋅ g ð30Þ

Due to Lemma 2, the integral representation of the Orlicz
mixed electrostatic q-capacity is given.

Lemma 4. Suppose ϕ ∈Φ and 1 < q < n. If f ∈ C+ðSn−1Þ and
g ∈ CðSn−1Þ, then

Cφ,q f½ �, gð Þ = q − 1
n − q

ð
Sn−1

φ
g uð Þ
f uð Þ

� �
f uð Þdμq f½ �, uð Þ: ð31Þ

Proof. Take an interval I = ½0, t0� for 0 < t0 <∞. Denote
htðuÞ: I × Sn−1 ⟶ ð0,∞Þ by

ht uð Þ = h t, uð Þ = f+ϕt ⋅ g
� �

uð Þ: ð32Þ

Then, the definition of the Orlicz sum (9) and Lemma
3 imply that the function htðuÞ: I × Sn−1 ⟶ ð0,∞Þ is con-
tinuous. By (9), we have

ϕ
f uð Þ
ht uð Þ
� �

+ tϕ
g uð Þ
ht uð Þ
� �

= ϕ 1ð Þ, ð33Þ

for every u ∈ Sn−1. Since φ ∈ ϕ, we obtain

dht
dt

= h2t ϕ g/htð Þ
f ϕ′ f /htð Þ + t f ϕ′ f /htð Þ

: ð34Þ

Note that ð f /hÞ⟶ 1− as t⟶ 0+ and the fact that h0 = f .
Thus,

lim
t→0+

ht − h0
t

= f ϕ g/fð Þ
ϕl′ 1ð Þ

, ð35Þ

uniformly on Sn−1, where ϕl′ð1Þ denotes the left derivative of
ϕðtÞ at t = 1. Apply Lemma 2 and (35) to get

dCq f+ϕt ⋅ g
� �
dt







t=0+

= q − 1
φl
′ 1ð Þ

ð
Sn−1

ϕ
g uð Þ
f uð Þ

� �
dμq f½ �, uð Þ: ð36Þ

Thus, (27) and (36) yield the desired lemma.

Indeed, (36) can be considered as the Orlicz Hadamard
variational formula for the electrostatic q-capacity. If we take
ϕðtÞ = tpð1 ≤ p<∞Þ and f = hK with K ∈ Kn

o in (36), then, we
obtain the Lp Hadamard variational formula (23).

Note that ½hK � = K for every K ∈ Kn
o . Take f = hK in

Lemma 4 to get

Lemma 5. Suppose ϕ ∈Φ and 1 < q < n. If K ∈ Kn
o and g ∈ C

ðSn−1Þ, then,

Cϕ,q K , gð Þ = q − 1
n − q

ð
Sn−1

ϕ
g uð Þ
hK uð Þ
� �

hK uð Þdμq K , uð Þ: ð37Þ
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A direct consequence of Lemma 4 and the homogeneity of
the electrostatic q-capacitary measure can be obtained.

Corollary 6. Suppose ϕ ∈Φ and 1 < q < n. If f ∈ C+ðSn−1Þ,
then

Cφ,q c f½ �, fð Þ = φ
1
c

� �
cn−qCq f½ �ð Þ = φ

1
c

� �
cn−qCq fð Þ, ð38Þ

for every c > 0.

Let ϕ ∈Φ, 1 < q < n, and K , L ∈ Kn
o . Note that K+ϕt ⋅ L =

½hK+ϕt ⋅ hL�, and apply (18) and (36) to obtain

dCq K+ϕt ⋅ L
� �
dt







t=0+

= q − 1
ϕl′ 1ð Þ

ð
Sn−1

ϕ
hL uð Þ
hK uð Þ
� �

hK uð Þdμq K , uð Þ:

ð39Þ

Based on (39), one can define the Orlicz mixed electro-
static q-capacity Cϕ,qðK , LÞ of convex bodies K and L as fol-
lows:

Cϕ,q K , Lð Þ = q − 1
n − q

ð
Sn−1

ϕ
hL uð Þ
hK uð Þ
� �

hK uð Þdμq K , uð Þ, ð40Þ

which was first defined by Hong et al. ([10], Definition 3.1).

Lemma 7. Suppose ϕ ∈Φ, f ∈ C+ðSn−1Þ, g ∈ CðSn−1Þ, and
1 < q < n.

(i) Let ϕ1, ϕ2 ∈Φ. If ϕ1 ≤ ϕ2, then Cϕi ,qð½ f �, gÞ⟶ Cϕ2 ,q
ð½ f �, gÞ

(ii) Let f f ig ⊂ C+ðSn−1Þ and fgig ⊂ CðSn−1Þ such that
f i ⟶ f and gi ⟶ g, respectively. Then, Cϕ,qð½ f i�,
giÞ⟶ Cϕ,qð½ f �, gÞ

(iii) Let fϕig ⊂Φ such that ϕi ⟶ ϕ. Then, Cϕi ,qð½ f �, gÞ
⟶ Cϕ,qð½ f �, gÞ

Proof. It follows from (31) that (i) holds if ϕ1 ≤ ϕ2.
Since f > 0, f i > 0, g ≥ 0, gi ≥ 0 and f i ⟶ f , gi ⟶ g

uniformly on Sn−1; it follows that gi/f i ⟶ g/f uniformly
on Sn−1. Note that ϕ ∈Φ, we have ϕðgi/f iÞf i ⟶ ϕðg/f Þf uni-
formly on Sn−1. The Aleksandrov convergence lemma implies
that ½ f i�⟶ ½ f � uniformly on Sn−1. Meanwhile, the con-
vergence½ f i�⟶ ½ f � implies that μqð½ f i�, ⋅ Þ⟶ μqð½ f �, ⋅ Þ
weakly. Applying Lemma 4, one concludes that (ii) holds.

Clearly, there exists a compact interval I ⊂ ð0,∞Þ such
that g/f ∈ I for all u ∈ Sn−1.

(iii) directly follows from Lemma 4 and the fact that the
sequence fϕiðtÞg converges uniformly to ϕðtÞ on I.

Next, we show that there is a natural Orlicz extension of
the Minkowski inequality for the electrostatic q-capacity.

Theorem 8. Suppose ϕ ∈Φ and 1 < q < n. If f , g ∈ C+ðSn−1Þ,
then,

Cϕ,q f½ �, gð Þð Þ
Cq fð Þ ≥ ϕ

Cq gð Þ
Cq fð Þ

 !1/ n−qð Þ0
@

1
A: ð41Þ

If φ is strictly convex, then equality holds if and only if ½ f �
and ½g� are dilates.

Proof. By the definition of the mixed electrostatic q-capacity
(20) and the fact that h½g� ≤ g, we have

Cq f½ �, g½ �ð Þ = Cq f½ �, h g½ �
� 	

≤ Cq f½ �, gð Þ: ð42Þ

for every f , g ∈ C+ðSn−1Þ. From (31), Jensen’s inequality, (20),
(42), (22), and (18), it follows that

Cϕ,q f½ �, gð Þ
Cq fð Þ =

q − 1ð Þ/ n − qð Þð ÞÐ Sn−1ϕ g uð Þ/f uð Þð Þf uð Þdμq f½ �, uð Þ
Cq fð Þ

≥ ϕ
Cq f½ �, gð Þ
Cq fð Þ

 !
≥ ϕ

Cq f½ �, g½ �ð Þ
Cq fð Þ

 !

≥ ϕ
Cq gð Þ1/ n−qð Þ

Cq fð Þ1/ n−qð Þ

 !
= ϕ

Cq gð Þ
Cq fð Þ

 !1/ n−qð Þ0
@

1
A:

ð43Þ

It remains to prove the equality condition. Now, suppose
ϕ is strictly convex. If equality in (41) holds, then, by the
equality condition of Jensen’s inequality, there exists an s >
0 such that g = sf for almost every u ∈ Sn−1with respect to
the measure ð f ð⋅Þdμqð½ f �, ⋅ ÞÞ/ðCqð f ÞÞ. Then, we have

s =
q − 1ð Þ/ n − qð ÞÐ Sn−1 g uð Þð Þ/ f uð Þð Þf uð Þdμq f½ �, uð Þ

Cq fð Þ

=
Cq f½ �, gð Þ
Cq fð Þ =

Cq f½ �, g½ �ð Þ
Cq fð Þ ,

ð44Þ

where the last step is from the equality condition of (42).
The definition of Aleksandrov body implies that h½g� =
sh½ f � for almost every u ∈ Sn−1 with respect to the measure
ð f ð⋅Þdμqð½ f �, ⋅ ÞÞ/ðCqð f ÞÞ. Thus,

Cq f½ �, g½ �ð Þh f½ � uð Þ = Cq fð Þh g½ � uð Þ, ð45Þ

for almost every u ∈ Sn−1 with respect to the measure ð f
ð⋅Þdμqð½ f �, ⋅ ÞÞ/ðCqð f ÞÞ. By the equality condition of the
Minkowski inequality for the electrostatic q-capacity,
there exists x ∈ Rn such that ½g� = s½ f � + x.
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Hence, for almost every u ∈ Sn−1 with respect to the mea-
sure f ð⋅Þdμqð½ f �, ⋅ Þ,

sCq fð Þ + q − 1
n − q

x ⋅
ð
sn−1⋅

udμq f½ �, uð Þ
� �

h f½ � uð Þ

= Cq fð Þ sh f½ � uð Þ + x ⋅ u
� 	

:

ð46Þ

Since the centroid of μqð½ f �, ⋅Þ is at the origin, we have

that x ⋅ u = 0 for almost every u ∈ Sn−1 with respect to the
measure ð f ð⋅Þdμqð½ f �, ⋅ ÞÞ/ðCqð f ÞÞ. Note that the electrostatic
q-capacitary measure μqð½ f �, ⋅Þ is not concentrated on any

great subsphere of Sn−1. Hence, x = 0, which in turn implies
that ½ f � and ½g� are dilates.

Conversely, assume that ½ f � and ½g� are dilates, say,
½ f � = c½g� for some c > 0. From our assumption, Corollary
6, (18), and the fact that Cqðc½g�Þ = cn−qCqð½g�Þ, it follows that

Cϕ,q f½ �, gð Þ
Cq fð Þ =

Cϕ,q c g½ �, gð Þ
Cq c g½ �ð Þ =

ϕ 1/cð Þcn−qCq g½ �ð Þ
cn−qCq g½ �ð Þ

= ϕ
1
c

� �
= ϕ

Cq gð Þ
Cq fð Þ

 !1/ n−qð Þ0
@

1
A:

ð47Þ

This completes the proof.

By using the Orlicz-Minkowski inequality for the electro-
static q-capacity, we establish the following Orlicz Brunn-
Minkowski inequality for the electrostatic q-capacity which
is the general version of Theorem 1.

Theorem 9. Suppose ϕ ∈Φ and 1 < q < n. If f , g ∈ C+ðSn−1Þ
and a, b ≥ 0 (not both zero); then,

aϕ
Cq fð Þ

Cq a ⋅ f+ϕb ⋅ g
� �

 !1/ n−qð Þ0
@

1
A + bϕ

Cq fð Þ
Cq a ⋅ f+ϕb ⋅ g
� �

 !1/ n−qð Þ0
@

1
A ≤ ϕ 1ð Þ:

ð48Þ

If ϕ is strictly convex, then equality holds if and only if ½ f �
and ½g� are dilates.

Proof. By (31), (9), and the Orlicz-Minkowski inequality for
the electrostatic q-capacity (41), we have

ϕ 1ð Þ = Cϕ,q a ⋅ f+ϕb ⋅ g
� �

, a ⋅ f+ϕb ⋅ g
� �

Cq a ⋅ f+ϕb ⋅ g
� �

= a
Cϕ,q a ⋅ f+ϕb ⋅ g

� �
, f

� �
Cq a ⋅ f+ϕb ⋅ g
� � + b

Cϕ,q a ⋅ f+ϕb ⋅ g
� �

, g
� �
Cq a ⋅ f+ϕb ⋅ g
� �

≥ aϕ
Cq fð Þ

Cq a ⋅ f+ϕb ⋅ g
� �

 !1/ n−qð Þ0
@

1
A

+ bϕ
Cq gð Þ

Cq a ⋅ f+ϕb ⋅ g
� �

 !1/ n−qð Þ0
@

1
A:

ð49Þ

By the equality condition of the Orlicz-Minkowski
inequality for the electrostatic q-capacity, we have that if
ϕ is strictly convex, then equality in (48) holds if and only
if ½ f � and ½g� are dilates of ½a ⋅ f+φb ⋅ g�.

Remark 1. The case ϕðtÞ = tpð1 ≤ p<∞Þ of Theorem 9 was
established by Zou and Xiong [7].

For K , L ∈ Kn
o , take f = hK and g = hL in Theorem 9 to

obtain the following Orlicz-Brunn-Minkowski inequality
for the electrostatic q-capacity, which was established by
Hong et al. [10].

Corollary 10 ([10], Theorem 4.2). Suppose ϕ ∈Φ and 1 < q
< n. IfK , L ∈ Kn

o , then

aϕ
Cq Kð Þ

Cq a ⋅ K+ϕb ⋅ L
� �

 !1/ n−qð Þ0
@

1
A

+ bϕ
Cq Lð Þ

Cq a ⋅ K+ϕb ⋅ L
� �

 !1/ n−qð Þ0
@

1
A ≤ ϕ 1ð Þ:

ð50Þ

If φ is strictly convex, then equality holds if and only if K
and L are dilates.

Remark 2. The case φðtÞ = t of Corollary 10 was obtained by
Colesanti and Salani [25]. Borell [26] first established the
Brunn-Minkowski inequality for the classical electrostatic
capacity, while its equality condition was shown by Caffarelli
et al. [4].

Theorem 11. Suppose ϕ ∈Φ, 1 < q < n, and f , g ∈ C+ðSn−1Þ.
Then, the Orlicz-Brunn-Minkowski inequality for the electro-
static q-capacity implies the Orlicz-Minkowski inequality for
the electrostatic q-capacity.

Proof. For t ≥ 0 and f , g ∈ C+ðSn−1Þ, define the function GðtÞ
by

G tð Þ = ϕ 1ð Þ − ϕ
Cq fð Þ

Cq f+ϕt ⋅ g
� �

 !1/ n−qð Þ0
@

1
A

− tϕ
Cq gð Þ

Cq f+ϕt ⋅ g
� �

 !1/ n−qð Þ0
@

1
A:

ð51Þ

The Orlicz-Brunn-Minkowski inequality for the electro-
static q-capacity implies that GðtÞ is nonnegative. Obviously,
Gð0Þ = 0. Thus,

lim
t→0+

G tð Þ − G 0ð Þ
t

≥ 0: ð52Þ
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On the other hand, by (51) and the continuity of Cq, we
have

Let s = ððCqð f ÞÞ/ðCqð f+ϕt ⋅ gÞÞÞ1/ðn−qÞ. Note that s⟶ 1−
as t⟶ 0+. Consequently,

lim
t→0+

ϕ 1ð Þ − ϕ Cq fð Þ� �
/ Cq f+ϕt ⋅ g

� �� �� �1/ n−qð Þ� 	
1 − Cq fð Þ� �

/ Cq f+ϕt ⋅ g
� �� �� �1/ n−qð Þ = ϕl′ 1ð Þ:

ð54Þ

The continuity of Cq and (27) imply

lim
t→0+

1 − Cq fð Þ� �
/ Cq f+ϕt ⋅ g

� �� �� �1/ n−qð Þ

t

= lim
t→0+

Cq f+φt ⋅ g
� �

− Cq fð Þ� �1/ n−qð Þ

t

⋅ lim
t→0+

Cq f+ϕt ⋅ g
� �� �−1/ n−qð Þ

= 1
n − q

Cq fð Þ� � 1/ n−qð Þð Þ−1 ⋅ lim
t→0+

Cq f+ϕt ⋅ g
� �� �1/ n−qð Þ − Cq fð Þ

t

⋅ Cq fð Þ� �−1/ n−qð Þ =
Cϕ,q f½ �, gð Þ
ϕl′ 1ð ÞCq fð Þ

:

ð55Þ

From (53), (54), (55), and (52), it follows that

lim
t→0+

G tð Þ −G 0ð Þ
t

=
Cϕ,q f½ �, gð Þ

Cq fð Þ

 !
− ϕ

Cq gð Þ
Cq fð Þ

 !1/ n−qð Þ0
@

1
A ≥ 0,

ð56Þ

which implies the Orlicz-Minkowski inequality for the elec-
trostatic q-capacity (41).

Finally, we show an immediate application of the Orlicz-
Minkowski inequality for the electrostatic q-capacity.

Lemma 12. Suppose ϕ ∈Φ and 1 < q < n. If f , g ∈ C+ðSn−1Þ
and C is a subset of C+ðSn−1Þ such that f , g ∈ C, then the fol-
lowing assertions hold:

(i) Cϕ,qð½h�, f Þ = Cϕ,qð½h�, gÞ for all h ∈ C; then ½ f � = ½g�
(ii) ðCϕ,qð½ f �, hÞÞ/ðCqð f ÞÞ = ðCϕ,qð½g�, hÞÞ/ðCqð f ÞÞ for all

h ∈ C; then ½ f � = ½g�

Proof. We first show that (i) holds. Since Cϕ,qð½ f �, f Þ = ϕð1Þ
Cqð f Þ, it follows that ϕð1Þ = ðCϕ,qð½ f �, gÞÞ/ðCqðgÞÞ by the
assumption. By theOrlicz-Minkowski inequality for the electro-
static q-capacity, we have ϕð1Þ ≥ ϕðððCqð f ÞÞ/ðCqðgÞÞÞ1/n−qÞ.
The monotonicity of ϕ and 1 < q < n imply that

Cq fð Þ
Cq gð Þ < 1, ð57Þ

with equality if and only if ½ f � and ½g� are dilates. This inequality
is reversed if interchanging f and g. So,Cqð f Þ = CqðgÞ and ½ f �
and ½g� are dilates. Assume that s½ f � = s½g� for some s > 0. The
homogeneity of Cq implies s = 1. Thus, ½ f � = ½g�.

Then, we can prove (ii) with the similar arguments in (i).

If the Orlicz mixed electrostatic q-capacity Cϕ,q is
restricted on convex bodies, then we obtain the following
characterizations for identity of convex bodies, which were
proved by Hong et al. [13].

Corollary 13 ([10], Theorem 3.3). Suppose ϕ ∈Φ and 1 < q
< n. If K , L ∈ Kn

o and C is a subset of Kn
o such that K , L ∈ C,

then the following assertions hold:

(i) Cϕ,qðQ, KÞ = Cϕ,qðQ, LÞ for all Q ∈ C; then K = L

lim
t→0+

G tð Þ −G 0ð Þ
t

= lim
t→0+

ϕ 1ð Þ − ϕ Cq fð Þ� �
/ Cq f+ϕt ⋅ g

� �� �� �1/ n−qð Þ� 	
− tϕ Cq fð Þ� �

/ Cq f+ϕt ⋅ g
� �� �� �1/ n−qð Þ� 	

t

= lim
t→0+

ϕ 1ð Þ − ϕ Cq fð Þ� �
/ Cq f+ϕt ⋅ g

� �� �� �1/ n−qð Þ� 	
t

− ϕ
Cq gð Þ
Cq fð Þ

 !1/ n−qð Þ0
@

1
A

= lim
t→0+

ϕ 1ð Þ − ϕ Cq fð Þ� �
/ Cq f+ϕt ⋅ g

� �� �� �1/ n−qð Þ� 	
1 − Cq fð Þ� �

/ Cq f+ϕt ⋅ g
� �� �� �1/ n−qð Þ ⋅

1 − Cq fð Þ� �
/ Cq f+ϕt ⋅ g

� �� �� �1/ n−qð Þ

t

− ϕ
Cq gð Þ
Cq fð Þ

 !1/ n−qð Þ0
@

1
A:

ð53Þ
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(ii) ðCϕ,qðK ,QÞÞ/ðCqðKÞÞ = ðCϕ,qðL,QÞÞ/ðCqðLÞÞfor all
Q ∈ C; then K = L
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We establish the existence of solutions to the Orlicz electrostatic q-capacitary Minkowski problem for polytopes. This contains a
new result of the discrete Lp electrostatic q-capacitary Minkowski problem for p < 0and 1 < q < n.

1. Introduction

The Orlicz Brunn-Minkowski theory was originated from the
works of Ludwig [1], Ludwig and Reitzner [2], and Lutwak
et al. [3, 4]. Hereafter, the new theory has quickly become
an important branch of convex geometry (see, e.g., [5–10]).
A special case of the theory is the Lp Brunn-Minkowski
theory which is credited to Lutwak [11, 12] and attracted
increasing interest in recent years (see, e.g., [13–20].

It is well known that the L1 Brunn-Minkowski theory is
the classical Brunn-Minkowski theory. One of the corner-
stones of the classical Brunn-Minkowski theory is the Min-
kowski problem. More than a century ago, Minkowski
himself solved the Minkowski problem for discrete measures
[21]. The complete solution for arbitrary measures was given
by Aleksandrov [22] and Fenchel and Jessen [23]. The
regularity was studied by, e.g., Lewy [24], Nirenberg [25],
Pogorelov [26], Cheng and Yau [27], and Caffarelli et al. [28].

A generalization of the Minkowski problem is the Lp
Minkowski problem in the Lp Brunn-Minkowski theory,
which has been extensively studied (see, e.g., [29–49]. Natu-
rally, the corresponding Minkowski problem in the Orlicz
Brunn-Minkowski theory is called the Orlicz Minkowski
problem which was first investigated by Haberl et al. [50]
for even measures. Today, great progress has been made on

it (see, e.g., [51–60]). The present paper is aimed at dealing
with the Orlicz capacitary Minkowski problem.

The electrostatic q-capacitary measure μqðΩ, ⋅Þ (see [61])
of a bounded open convex set Ω in ℝn is the measure on the
unit sphere Sn−1 defined for ω ⊂ Sn−1 and 1 < q < n by

μq Ω, ωð Þ =
ð
g−1 ωð Þ

∇Uj jqdHn−1, ð1Þ

where g−1 : Sn−1 → ∂Ω (the boundary of Ω) denotes the
inverse Gauss map,Hn−1 the ðn − 1Þ-dimensional Hausdorff
measure, and U the q-equilibrium potential of Ω.

A convex body K is a compact convex set with nonempty
interior in the n-dimensional Euclidean space ℝn. Let Kn

denote the set of convex bodies in ℝn, and let Kn
o denote

the set of convex bodies with the origin in their interiors.
The support function (see [62, 63]) of K ∈Kn is defined for
u ∈ Sn−1 by

hK uð Þ = h K , uð Þ =max x ⋅ u : x ∈ Kf g, ð2Þ

where x ⋅ u denotes the standard inner product of x and u.
Note that hðcK , uÞ = chðK , uÞ for c > 0.

Let φ : ð0,∞Þ→ ð0,∞Þ be a given continuous function.
For 1 < q < n and K ∈Kn

o , the Orlicz electrostatic q
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-capacitary measure, μφ,qðK , ⋅ Þ, of K is defined by

dμφ,q K , ⋅ð Þ = φ hKð Þdμq K , ⋅ð Þ: ð3Þ

When φðsÞ = s1−p with p ∈ℝ, the Orlicz electrostatic q
-capacitary measure becomes the following Lp electrostatic
q-capacitary measure introduced by Zou and Xiong [64]:

dμp,q K , ⋅ð Þ = h1−pK dμq K , ⋅ð Þ: ð4Þ

The Minkowski problem characterizing the Orlicz
electrostatic q-capacitary measure, proposed in [65], is the
following.

1.1. The Orlicz Electrostatic q-Capacitary Minkowski Problem.
Let 1 < q < n. Given a continuous function φ : ð0,∞Þ→ ð0,
∞Þ and a finite Borel measure μ on Sn−1, what are the neces-
sary and sufficient conditions so that μ = cμφ,qðK , ⋅ Þ for some
convex body K and constant c > 0?

Let φ be a constant function. When q = 2, the Orlicz
Minkowski-type problem is the classical electrostatic capaci-
tary Minkowski problem. In the paper [66], Jerison estab-
lished the existence of a solution to the electrostatic
capacitary Minkowski problem. In a subsequent paper [67],
he gave a new proof of the existence using a variational
approach. The uniqueness was proved by Caffarelli et al.
[68], and the regularity was given in [66]. When 1 < q < n,
the Orlicz Minkowski-type problem is the electrostatic q
-capacitary Minkowski problem posed in [61]. The existence
and regularity for 1 < q < 2 and the uniqueness for 1 < q < n
of its solutions were proved in [61], and the existence for 2
< q < n was very recently solved in [69].

Let φðsÞ = s1−p with p ∈ℝ. Then, the Orlicz Minkowski-
type problem is the Lp electrostatic q-capacitary Minkowski
problem introduced by Zou and Xiong [64]. In [64], they
completely solved the Lp electrostatic q-capacitary Min-
kowski problem for the case p > 1 and 1 < q < n. It is generally
known that when p < 1, the Lp Minkowski problem becomes
much harder. Actually, the Lp electrostatic q-capacitary Min-
kowski problem for the case p < 1 and 1 < q < n is also very
difficult. Therefore, it is worth mentioning that an important
breakthrough of the problem for the case 0 < p < 1 and 1 <
q < 2 was made by Xiong et al. [70] for discrete measures.

The existence of the Orlicz electrostatic q-capacitary
Minkowski problem was first investigated by Hong et al.
[65]. As a consequence, in [65], they obtained a complete
solution (including both existence and uniqueness) to the
Lp electrostatic q-capacitary Minkowski problem for the case
p > 1 and 1 < q < n, which was independently solved by Zou
and Xiong [64].

We observe the statement above. At present, there is no
result about the Lp electrostatic q-capacitary Minkowski
problem for the case p < 0 and 1 < q < n. In this paper, we
study the Orlicz electrostatic q-capacitary Minkowski prob-
lem including it.

A finite set E of Sn−1 is said to be in general position if E is
not contained in a closed hemisphere of Sn−1 and any n ele-
ments of E are linearly independent.

A polytope inℝn is the convex hull of a finite set of points
in ℝn provided that it has positive n-dimensional volume.
The convex hull of a subset of these points is called a facet
of the polytope if it lies entirely on the boundary of the poly-
tope and has positive ðn − 1Þ-dimensional volume.

Our main theorem is stated as follows.

Theorem 1. Suppose φ : ð0,∞Þ→ ð0,∞Þ is continuously dif-
ferentiable and strictly increasing with φðsÞ→∞ as s→∞
such that ϕðtÞ = Ð∞t ð1/φðsÞÞds exists for t > 0 and lim

t→0+
ϕðtÞ =

∞ . Let μ =∑N
i=1αiδui , where α1,⋯, αN > 0 , the unit vectors

u1,⋯, uN ∈ Sn−1 are in general position, and δui is the Dirac
delta. Then, for 1 < q < n , there exist a polytope P and con-
stant c > 0 such that

μ = cμφ,q P, ⋅ð Þ: ð5Þ

When φðsÞ = s1−p with p < 0, and ϕðtÞ = −ð1/pÞtp, which
satisfy the assumptions of Theorem 1, we obtain the
following.

Corollary 2. Let p < 0 and 1 < q < n. Suppose μ is a discrete
measure on Sn−1, and its supports are in general position. If
p + q ≠ n, then there exists a polytope P0 such that μ = μp,qð
P0, ⋅ Þ; if p + q = n, then there exist a polytope P and constant
c > 0 such that μ = cμp,qðP, ⋅ Þ.

Obviously, this corollary makes up for the existing results
for the Lp electrostatic q-capacitary Minkowski problem, to
some extent.

The rest of this paper is organized as follows. In Sec-
tion 2, some of the necessary facts about convex bodies
and capacity are presented. In Section 3, a maximizing
problem related to the Orlicz electrostatic q-capacitary
Minkowski problem is considered and its corresponding
solution is given. In Section 4, we give the proofs of The-
orem 1 and Corollary 2.

2. Preliminaries

2.1. Basics regarding Convex Bodies. For quick later reference,
we list some basic facts about convex bodies. Good general
references are the books of Gardner [62] and Schneider [63].

The boundary and interior of K ∈Kn will be denoted by
∂K and int K , respectively. B = fx ∈ℝn :

ffiffiffiffiffiffiffiffi
x ⋅ x

p
≤ 1g denotes

the unit ball. The volume, the n-dimensional Lebesgue mea-
sure, of a convex body K ∈ Kn is denoted by VðKÞ, and the
volume of B is denoted by ωn. We will write CðSn−1Þ for the
set of continuous functions on Sn−1 and C+ðSn−1Þ for the set
of positive functions in CðSn−1Þ.

For x ∈ ∂K with K ∈ Kn, gKðxÞ is the Gauss map of K
which is the family of all unit exterior normal vectors at x.
In particular, gKðxÞ consists of a unique vector for Hn−1
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-almost all x ∈ ∂K . The surface area measure of K is a Borel
measure on Sn−1 defined for a Borel set ω ⊂ Sn−1 by

S K , ωð Þ =
ð
x∈g−1K ωð Þ

dHn−1 xð Þ: ð6Þ

For f ∈ C+ðSn−1Þ, the Aleksandrov body associated with f
, denoted by ½ f �, is the convex body defined by

f½ � = ∩
u∈Sn−1

ξ ∈ℝn : ξ ⋅ u ≤ f uð Þf g: ð7Þ

It is easy to see that h½ f � ≤ f and ½hK � = K for K ∈ Kn
o .

The Hausdorff distance of two convex bodies K , L ∈ Kn is
defined by

δ K , Lð Þ =maxu∈Sn−1 hK uð Þ − hL uð Þj j: ð8Þ

For a sequence of convex bodies Ki ∈ Kn and a convex
body K ∈ Kn, we have lim

i→∞
Ki = K provided that

δ Ki, Kð Þ→ 0, ð9Þ

as i→∞.
For K ∈ Kn and u ∈ Sn−1, the support hyperplane HðK , uÞ

of K at u is defined by

H K , uð Þ = x ∈ℝn : x ⋅ u = h K , uð Þf g, ð10Þ

the half-space H−ðK , uÞ at u is defined by

H− K , uð Þ = x ∈ℝn : x ⋅ u ≤ h K , uð Þf g, ð11Þ

and the support set FðK , uÞ at u is defined by

F K , uð Þ = K ∩H K , uð Þ: ð12Þ

Suppose that P is the set of polytopes in ℝn and the unit
vectors u1,⋯, uN are in general position. Let Pðu1,⋯, uNÞ be
the subset of P. If P ∈ P with

P = ∩
N

k=1
H− P, ukð Þ, ð13Þ

then P ∈ Pðu1,⋯, uNÞ. Obviously, if Pi ∈ Pðu1,⋯, uNÞ and Pi
converges to a polytope P, then P ∈ Pðu1,⋯, uNÞ. Let PNðu1
,⋯, uNÞ be the subset of Pðu1,⋯, uNÞ that any polytope in
PNðu1,⋯, uNÞ has exactly N facets.

2.2. Electrostatic q-Capacity and q-Capacitary Measure.Here,
we collect some notion and basic facts on electrostatic q
-capacity and q-capacitary measure (see [61, 64, 70]).

Let E be a compact set in n-dimensional Euclidean space
ℝn. For 1 < q < n, the electrostatic q-capacity, CqðEÞ, of E is
defined (see [61]) by

Cq Eð Þ = inf
ð
ℝn

∇uj jqdx : u ∈ C∞
c ℝnð Þ and u ≥ 1 on E

� �
,

ð14Þ

where C∞
c ðℝnÞ is the set of smooth functions with compact

supports. When q = 2, the electrostatic q-capacity becomes
the classical electrostatic capacity C2ðEÞ.

For K ∈ Kn and 1 < q < n, we need the following isocapa-
citary inequality which is due to Maźya [71]:

V Kð Þ n−qð Þ/n ≤
q − 1
n − q

� �q−1
nωq/n

n

� �−1
Cq Kð Þ: ð15Þ

The following lemma (see [64, 70]) gives some basic
properties of the electrostatic q-capacity.

Lemma 3. Let E and F be two compact sets in ℝn and 1 < q
< n.

(i) If E ⊂ F, then

Cq Eð Þ ≤ Cq Fð Þ ð16Þ

(ii) For λ > 0,

Cq λEð Þ = λn−qCq Eð Þ ð17Þ

(iii) For x0 ∈ℝn,

Cq E + x0ð Þ = Cq Eð Þ ð18Þ

(iv) The functional Cqð⋅Þ is continuous on Kn with respect
to the Hausdorff metric

The following lemma is some basic properties of the elec-
trostatic q-capacitary measure (compare [64, 70]).

Lemma 4. Let K ∈ Kn and 1 < q < n.

(i) For λ > 0,

μq λK , ⋅ð Þ = λn−q−1μq K , ⋅ð Þ ð19Þ

(ii) For x0 ∈ℝn,
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μq K + x0, ⋅ð Þ = μq K , ⋅ð Þ ð20Þ

(iii) For K j, K ∈Kn, if K j → K , then

μq K j, ⋅
� �

→ μq K , ⋅ð Þ ð21Þ

weakly as j→ +∞

(iv) The measure μqðK , ⋅Þ is absolutely continuous with
respect to the surface area measure SðK , ⋅Þ

The following variational formula given in [61] of elec-
trostatic q-capacity is critical.

Lemma 5. Let I ⊂ℝ be an interval containing 0 in its interior,
and let htðuÞ = hðt, uÞ: I × Sn−1 → ð0,∞Þ be continuous such
that the convergence in

h′ 0, uð Þ = lim
t→0

h t, uð Þ − h 0, uð Þ
t

ð22Þ

is uniform on Sn−1. Then,

dCq ht½ �ð Þ
dt

				
t=0

= q − 1ð Þ
ð
Sn−1

h′ 0, uð Þdμq h0½ �, uð Þ: ð23Þ

3. An Associated Maximization Problem

In this section, we solve a maximization problem, and its
solution is exactly the solution in Theorem 1.

Suppose ϕ satisfies the assumptions of Theorem 1 and the
unit vectors u1,⋯, uN are in general position. For α1,⋯, αN
> 0 and P ∈ Pðu1,⋯, uNÞ, define the function, ΦP : int P→
ℝ, by

ΦP ξð Þ = 〠
N

k=1
αkϕ h P, ukð Þ − ξ ⋅ ukð Þ: ð24Þ

Let 1 < q < n. We consider the following maximization
problem:

sup minξ∈int QΦQ ξð Þ: Cq Qð Þ = 1,Q ∈ P u1,⋯, uNð Þ
 �
: ð25Þ

The solution to problem (25) is given in Theorem 9. Its
proof requires the following three lemmas which are similar
to those in [58].

Lemma 6. Suppose φ : ð0,∞Þ→ ð0,∞Þ is continuously differ-
entiable and strictly increasing with φðsÞ→∞ as s→∞ such
that ϕðtÞ = Ð∞t ð1/φðsÞÞds exists for t > 0 and lim

t→0
ϕðtÞ =∞.

For α1,⋯, αN > 0, if the unit vectors u1,⋯, uN ∈ Sn−1 are in
general position, then there exists a unique ξϕðPÞ ∈ int P such
that

ΦP ξϕ Pð Þ� �
=minξ∈int PΦP ξð Þ: ð26Þ

Proof. Since φ : ð0,∞Þ→ ð0,∞Þ is continuously differentia-
ble and strictly increasing, we have for t > 0,

ϕ′′ tð Þ = φ′ tð Þ
φ2 tð Þ > 0: ð27Þ

Therefore, ϕ is strictly convex on ð0,∞Þ.
Let 0 < λ < 1 and ξ1, ξ2 ∈ int P. Then,

λΦP ξ1ð Þ + 1 − λð ÞΦP ξ2ð Þ = λ〠
N

k=1
αkϕ h P, ukð Þ − ξ1 ⋅ ukð Þ

+ 1 − λð Þ〠
N

k=1
αkϕ h P, ukð Þ − ξ2 ⋅ ukð Þ

= 〠
N

k=1
αk λϕ h P, ukð Þ − ξ1 ⋅ ukð Þ½

+ 1 − λð Þϕ h P, ukð Þ − ξ2 ⋅ ukð Þ� ≥ 〠
N

k=1
αkϕ h P, ukð Þð

− λξ1 + 1 − λð Þξ2ð Þ ⋅ ukÞ =ΦP λξ1 + 1 − λð Þξ2ð Þ:
ð28Þ

Equality holds if and only if ξ1 ⋅ uk = ξ2 ⋅ uk for all k = 1,
⋯,N . Since u1,⋯, uN are in general position, ℝn = linfu1,
⋯, uNg which is the smallest linear subspace of ℝn contain-
ing fu1,⋯, uNg. Thus, ξ1 = ξ2. Namely, ΦP is strictly convex
on int P.

Since P ∈ Pðu1,⋯, uNÞ, it follows that for any x ∈ ∂P,
there exists a ui0 ∈ fu1,⋯, uNg such that

h P, ui0
� �

= x ⋅ ui0 : ð29Þ

Note that ϕ is strictly decreasing on ð0,∞Þ and lim
t→0

ϕðtÞ
=∞. Then, ΦPðξÞ→∞ whenever ξ ∈ int P and ξ→ x. This
together with the strict convexity of Φp means that there
exists a unique interior point ξϕðPÞ of P such that

ΦP ξϕ Pð Þ� �
=minξ∈int PΦP ξð Þ: ð30Þ

Lemma 7. Suppose α1,⋯, αN > 0, the unit vectors u1,⋯, uN
∈ Sn−1 are in general position, and φ : ð0,∞Þ→ ð0,∞Þ is con-
tinuously differentiable and strictly increasing with φðsÞ→∞
as s→∞ such that ϕðtÞ = Ð∞t ð1/φðsÞÞds exists for t > 0 and
lim
t→0

ϕðtÞ =∞. If Pi ∈ Pðu1,⋯, uNÞ converges to a polytope P,

then lim
i→∞

ξϕðPiÞ = ξϕðPÞ and

lim
i→∞

ΦPi
ξϕ Pið Þ� �

=ΦP ξϕ Pð Þ� �
: ð31Þ

Proof. Since Pi → P and ξϕðPiÞ ∈ int Pi, it follows that ξϕðPiÞ
is bounded. Let ξϕðPij

Þ be a subsequence of ξϕðPiÞ with lim
j→∞

ξϕðPij
Þ = ξ0. We first show that ξ0 ∈ int P by contradiction.
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Assume ξ0 ∈ ∂P. Then, lim
j→∞

ΦPij
ðξϕðPij

ÞÞ =∞, which

contradicts the fact that

lim
j→∞

ΦPij
ξϕ Pij

� 
� 

≤ lim

j→∞
ΦPij

ξϕ Pð Þ� �
=ΦP ξϕ Pð Þ� �

<∞:

ð32Þ

We next show that ξ0 = ξϕðPÞ. Let ξ0 ≠ ξϕðPÞ. Then,

lim
j→∞

ΦPij
ξϕ Pij

� 
� 

=ΦP ξ0ð Þ >ΦP ξϕ Pð Þ� �

= lim
j→∞

ΦPij
ξϕ Pð Þ� �

:

ð33Þ

This contradicts the fact that

lim
j→∞

ΦPij
ξϕ Pij

� 
� 

≤ lim

j→∞
ΦPij

ξϕ Pð Þ� �
: ð34Þ

This means that lim
i→∞

ξϕðPiÞ = ξϕðPÞ and

lim
i→∞

ΦPi
ξϕ Pið Þ� �

=ΦP ξϕ Pð Þ� �
: ð35Þ

Lemma 8. Suppose α1,⋯, αN > 0, the unit vectors u1,⋯, uN
∈ Sn−1 are in general position, and φ : ð0,∞Þ→ ð0,∞Þ is con-
tinuously differentiable and strictly increasing with φðsÞ→∞
as s→∞ such that ϕðtÞ = Ð∞t ð1/φðsÞÞds exists for t > 0 and
lim
t→0

ϕðtÞ =∞. Let P ∈ Pðu1,⋯, uNÞ and δ ≥ 0 be small enough

such that for k0 ∈ f1,⋯,Ng,

Pδ = P ∩ x : x ⋅ uk0 ≤ h P, uk0
� �

− δ

 �

∈ P u1,⋯, uNð Þ: ð36Þ

If the continuous function λ : ½0,∞Þ→ ð0,∞Þ is continu-
ously differentiable on ð0,∞Þ and lim

δ→0
λ′ðδÞ exists, then ξðδ

Þ≔ ξϕðλðδÞPδÞ has a right derivative, denoted by ξ+′ð0Þ, at 0.

Proof. The proof is based on the ideas of Wu et al. [58]. Let
δ ≥ 0 be small enough and

Φ δð Þ =minξ∈int λ δð ÞPδð Þ 〠
N

k=1
αkϕ λ δð Þh Pδ, ukð Þ − ξ ⋅ ukð Þ

= 〠
N

k=1
αkϕ λ δð Þh Pδ, ukð Þ − ξ δð Þ ⋅ ukð Þ:

ð37Þ

From this and the fact that ξðδÞ is an interior point of λ
ðδÞPδ, it follows that for i = 1,⋯, n,

〠
N

k=1
αkϕ′ λ δð Þh Pδ, ukð Þ − ξ δð Þ ⋅ ukð Þuk,i = 0, ð38Þ

where uk = ðuk,1,⋯, uk,nÞT .

Let

Fi δ, ξ1,⋯, ξnð Þ = 〠
N

k=1
αkϕ′ λ δð Þh Pδ, ukð Þ − ξ ⋅ ukð Þuk,i ð39Þ

for i = 1,⋯, n, where ξ = ðξ1,⋯, ξnÞ. Then,

∂Fi

∂ξj
= −〠

N

k=1
αkϕ′′ λ δð Þh Pδ, ukð Þ − ξ ⋅ ukð Þuk,iuk,j, ð40Þ

∂Fi

∂δ
= 〠

N

k=1
αkϕ′′ λ δð Þh Pδ, ukð Þ − ξ ⋅ ukð Þuk,iλ′ δð Þh Pδ, ukð Þ

− αk0ϕ′
′ λ δð Þh P, uk0

� �
− δλ δð Þ − ξ ⋅ uk0

� �
uk0,iλ δð Þ:

ð41Þ

Let F = ðF1,⋯, FnÞ. Then,

∂F
∂ξ

				
δ,ξ1 δð Þ,⋯,ξn δð Þð Þ

 !
n×n

= −〠
N

k=1
αkϕ′′ λ δð Þh Pδ, ukð Þ − ξ δð Þ ⋅ ukð ÞukuTk ,

ð42Þ

where uku
T
k is an n × n matrix.

Since u1,⋯, uN are in general position, ℝn = linfu1,⋯,
uNg. Thus, for any x ∈ℝn with x ≠ 0, there exists a ui0 ∈ fu1
,⋯, uNg such that ui0 ⋅ x ≠ 0. Note that ϕ′′ > 0. Then, we have

xT −〠
N

k=1
αkϕ′′ λ δð Þh Pδ, ukð Þ − ξ δð Þ ⋅ ukð ÞukuTk

 !
x

= −〠
N

k=1
αkϕ′′ λ δð Þh Pδ, ukð Þ − ξ δð Þ ⋅ ukð Þ x ⋅ ukð Þ2

≤ −αi0ϕ′
′ λ δð Þh Pδ, ui0

� �
− ξ δð Þ ⋅ ui0

� �
x ⋅ ui0
� �2 < 0:

ð43Þ

Therefore, ð∂F/∂ξjδ,ξ1ðδÞ,⋯,ξnðδÞÞ is negative definite. Thus,

det ∂F
∂ξ

				
δ,ξ1 δð Þ,⋯,ξn δð Þ

 !
≠ 0: ð44Þ

From this, the fact that for i = 1,⋯, n, Fiðδ, ξ1ðδÞ,⋯,
ξnðδÞÞ = 0 follows by (38), the fact that ∂Fi/∂ξj is contin-
uous on ξ and δ for all 1 ≤ i, j ≤ n, and the implicit func-
tion theorem, it follows that ξðδÞ = ξϕðλðδÞPδÞ is
continuously differentiable on a neighbourhood of δ small
enough. Thus, ξðδÞ is continuously differentiable for small
enough δ > 0, and
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dξ1
dδ

dξ2
dδ
⋮
dξn
dδ

0
BBBBBBBBB@

1
CCCCCCCCCA

= −

∂F1
∂ξ1

∂F1
∂ξ2

⋯
∂F1
∂ξn

∂F2
∂ξ1

∂F2
∂ξ2

⋯
∂F2
∂ξn

⋮ ⋮ ⋯ ⋮
∂Fn

∂ξ1

∂Fn

∂ξ2
⋯

∂Fn

∂ξn

0
BBBBBBBBBB@

1
CCCCCCCCCCA

−1
∂F1
∂δ
∂F2
∂δ
⋮
∂Fn

∂δ

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð45Þ

This together with (40) and (41) implies lim
δ→0+

ξ′ðδÞ exists.
From the Lagrange mean value theorem, we obtain that

for δ > 0 and i = 1,⋯, n, there exists a δiðδÞ with 0 < δiðδÞ
< δ such that

ξi δð Þ − ξi 0ð Þ
δ

= ξi′ δi δð Þð Þ: ð46Þ

Thus,

dξi δð Þ
dδ

				
δ=0+

= lim
δ→0+

ξi δð Þ − ξi 0ð Þ
δ

= lim
δ→0+

ξi′ δi δð Þð Þ ð47Þ

exists. Namely, ξ+′ð0Þ exists.
We are ready to show the existence of a maximizer to

problem (25).

Theorem 9. Suppose α1,⋯, αN > 0 and the unit vectors u1,
⋯, uN ∈ Sn−1 are in general position. Let φ : ð0,∞Þ→ ð0,∞Þ
be continuously differentiable and strictly increasing with φð
sÞ→∞ as s→∞ such that ϕðtÞ = Ð∞t ð1/φðsÞÞds exists for t
> 0 and lim

t→0
ϕðtÞ =∞. Then, there exists a polytope P ∈ PNð

u1,⋯, uNÞ such that ξϕðPÞ = o, CqðPÞ = 1, and

ΦP oð Þ = sup minξ∈int QΦQ ξð Þ: Cq Qð Þ = 1,Q ∈ P u1,⋯, uNð Þ
 �
:

ð48Þ

Proof. For x ∈ℝn and P ∈ Pðu1,⋯, uNÞ, we first show

ΦP+x ξϕ P + xð Þ� �
=ΦP ξϕ Pð Þ� �

: ð49Þ

From Lemma 6 and definition (24), we have

ΦP+x ξϕ P + xð Þ� �
=minξ∈int P+xð ÞΦP+x ξð Þ

=minξ∈int P+xð Þ 〠
N

k=1
αkϕ h P + x, ukð Þ − ξ ⋅ ukð Þ

=minξ−x∈int P 〠
N

k=1
αkϕ h P, ukð Þ − ξ − xð Þ ⋅ ukð Þ

=minξ′∈int P 〠
N

k=1
αkϕ h P, ukð Þ − ξ′ ⋅ uk
� 


=ΦP ξϕ Pð Þ� �
:

ð50Þ

Therefore, by (49) and (iii) of Lemma 2.1, we can choose
a sequence Pi ∈ Pðu1,⋯, uNÞ with ξϕðPiÞ = o and CqðPiÞ = 1
such that

lim
i→∞

ΦPi
oð Þ = sup minξ∈int QΦQ ξð Þ: Cq Qð Þ = 1,Q ∈ P u1,⋯, uNð Þ
 �

:

ð51Þ

We next prove that Pi is bounded. Assume that Pi is not
bounded. Since the unit vectors u1,⋯, uN are in general posi-
tion, from the proof of ([45], Theorem 4.3), we see VðPiÞ is
not bounded. However, from (15), and noting that CqðPiÞ
= 1, we have

V Pið Þ ≤ q − 1
n − q

� �n q−1ð Þ/ n−qð Þ
nωq/n

n

� �−n/ n−qð Þ, ð52Þ

which is a contradiction. Therefore, Pi is bounded.

By the Blaschke selection theorem, we can assume that a
subsequence of Pi converges to a polytope P ∈ Pðu1,⋯, uNÞ.
Thus, from (iv) of Lemma 3 and Lemma 7, it follows that
CqðPÞ = 1, ξϕðPÞ = o, and

ΦP oð Þ = sup minξ∈int QΦQ ξð Þ: Cq Qð Þ = 1,Q ∈ P u1,⋯, uNð Þ
 �
:

ð53Þ

We now prove that P ∈ PNðu1,⋯, uNÞ, i.e., FðP, uiÞ are
facets for all i = 1,⋯,N . If not, there exists an i0 ∈ f1,⋯,N
g such that FðP, ui0Þ is not a facet of P. Choose δ ≥ 0 small
enough so that the polytope

Pδ = P ∩ x : x ⋅ ui0 ≤ h P, ui0
� �

− δ

 �

∈ P u1,⋯, uNð Þ: ð54Þ

Let λðδÞ = CqðPδÞ−ð1/ðn−qÞÞ. Then, λðδÞPδ ∈ Pðu1,⋯, uNÞ,
CqðλðδÞPδÞ = 1 follows by (ii) of Lemma 3, and λðδÞ is con-
tinuous in ½0,∞Þ. Since for any δi → 0, there is that λðδiÞ
Pδi

→ P, it follows from Lemma 7 that ξϕðλðδiÞPδi
Þ→ ξϕðPÞ

= o. This implies

lim
δ→0

ξϕ λ δð ÞPδð Þ = o: ð55Þ

Let

ri0 uð Þ =
1, u = ui0 ,
0, u ≠ ui0

(
ð56Þ

for u ∈ Sn−1. Then, from Lemma 5, we have for small enough
δ ≥ 0,

dCq Pδð Þ
dδ

=
dCq hPδ

� �� �
dδ

= lim
t→0

Cq hPδ + tri0
� �� �

− Cq hPδ

� �� �
t

= q − 1ð Þ
ð
Sn−1

ri0 uð Þdμq Pδ, uð Þ = q − 1ð Þμq Pδ, ui0
� �

:

ð57Þ
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Thus, from (iii) and (iv) of Lemma 4, it follows that Cqð
PδÞ is continuously differentiable for every δ > 0, and

lim
δ→0+

dCq Pδð Þ
dδ

= 0: ð58Þ

These imply that

λ′ δð Þ = −
1

n − q
Cq Pδð Þ− 1/ n−qð Þð Þ−1 dCq Pδð Þ

dδ
ð59Þ

is continuous for every δ > 0, and

lim
δ→0+

λ′ δð Þ = 0: ð60Þ

Therefore, λðδÞ = CqðPδÞ−ð1/n−qÞ satisfies the conditions

of Lemma 8. Noting that ξðδÞ = ξϕðλðδÞPδÞ, we see ξ+′ð0Þ
exists.

Recall

Φ δð Þ = 〠
N

k=1
αkϕ λ δð Þh Pδ, ukð Þ − ξ δð Þ ⋅ ukð Þ: ð61Þ

From this and (38), we have

〠
N

k=1
αkϕ′ h P, ukð Þð Þuk = 0: ð62Þ

Thus, it follows from (60), (61), and (62) that

dΦ δð Þ
dδ

				
δ=0+

= −αi0ϕ′ h P, ui0
� �� �

− 〠
N

k=1
αkϕ′ h P, ukð Þð Þ ξ+′ 0ð Þ ⋅ uk

� 


= −αi0ϕ′ h P, ui0
� �� �

− ξ+′ 0ð Þ ⋅ 〠
N

k=1
αkϕ′ h P, ukð Þð Þuk

= −αi0ϕ′ h P, ui0
� �� �

> 0:
ð63Þ

This means

lim
δ→0+

Φ δð Þ −Φ 0ð Þ
δ

> 0: ð64Þ

Therefore, there exists a δ0 > 0 small enough such that

Φ δ0ð Þ >Φ 0ð Þ: ð65Þ

This together with (61) has

Φλ δ0ð ÞPδ0
ξϕ λ δ0ð ÞPδ0

� �� �
>ΦP ξϕ Pð Þ� �

=ΦP oð Þ: ð66Þ

Note that λðδ0Þ = CqðPδ0
Þ−ð1/ðn−qÞÞ. Let P0 = λðδ0ÞPδ0

−
ξϕðλðδ0ÞPδ0

Þ. Then, P0 ∈ Pðu1,⋯, uNÞ, CqðP0Þ = 1, ξϕðP0Þ =
o, and

ΦP0
oð Þ >ΦP oð Þ: ð67Þ

This contradicts (53). Thus, P ∈ PNðu1,⋯, uNÞ.

4. Solving the Orlicz Electrostatic q-Capacitary
Minkowski Problem

Proof of Theorem 1. By Theorem 9, there exists a polytope
P ∈ PNðu1,⋯, uNÞ with ξϕðPÞ = o and CqðPÞ = 1 such that

ΦP oð Þ = sup minξ∈int QΦQ ξð Þ: Cq Qð Þ = 1,Q ∈ P u1,⋯, uNð Þ
 �
:

ð68Þ

For γ1,⋯, γN ∈ℝ, choose ∣t ∣ small enough so that the
polytope Pt defined by

Pt = ∩
N

i=1
x : x ⋅ ui ≤ h P, uið Þ + tγif g ð69Þ

has exactly N facets. Then, hðPt , uiÞ = hðP, uiÞ + tγi for i = 1
,⋯,N .Let

β tð Þ = Cq Ptð Þ− 1/n−qð Þ: ð70Þ

Then, βðtÞPt ∈ PNðu1,⋯, uNÞ and CqðβðtÞPtÞ = 1. By
Lemma 5 and (iv) of Lemma 4, we obtain

β′ 0ð Þ = −
1

n − q

dCq Ptð Þ
dt

				
t=0

= −
q − 1
n − q

〠
N

i=1
γiμq P, uið Þ: ð71Þ

Define ξðtÞ = ξϕðβðtÞPtÞ and

Φ tð Þ =minξ∈int β tð ÞPtð Þ 〠
N

k=1
αkϕ β tð Þh Pt , ukð Þ − ξ ⋅ ukð Þ

= 〠
N

k=1
αkϕ β tð Þh Pt , ukð Þ − ξ tð Þ ⋅ ukð Þ:

ð72Þ

Since ξðtÞ is an interior point of βðtÞPt , this has

〠
N

k=1
αkϕ′ β tð Þh Pt , ukð Þ − ξ tð Þ ⋅ ukð Þuk,i = 0, ð73Þ

for i = 1,⋯, n, where uk = ðuk,1,⋯, uk,nÞT . Note that ξð0Þ is
the origin. Then, letting t = 0 in (73), we have

〠
N

k=1
αkϕ′ h P, ukð Þð Þuk,i = 0, ð74Þ
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for i = 1,⋯, n. Hence,

〠
N

k=1
αkϕ′ h P, ukð Þð Þuk = 0: ð75Þ

Let

Fi t, ξ1,⋯, ξnð Þ = 〠
N

k=1
αkϕ′ β tð Þh Pt , ukð Þ − ξ1uk,1+⋯+ξnuk,nð Þð Þuk,i

ð76Þ

for i = 1,⋯, n. Then,

∂Fi

∂t t,ξ1,⋯,ξnð Þ = 〠
N

k=1
αkϕ′′ β tð Þh Pt , ukð Þð

					
− ξ1uk,1+⋯+ξnuk,nð ÞÞ β′ tð Þh Pt , ukð Þ + β tð Þγk

h i
uk,i,

∂Fi

∂ξ j
j
t,ξ1,⋯,ξnð Þ

= −〠
N

k=1
αkϕ′′ β tð Þh Pt , ukð Þ − ξ1uk,1+⋯+ξnuk,nð Þð Þuk,iuk,j:

ð77Þ

Thus,

∂F
∂ξ

				
0,⋯,0ð Þ

 !
n×n

= −〠
N

k=1
αkϕ′′ h P, ukð Þð ÞukuTk , ð78Þ

where uku
T
k is an n × n matrix.

Since u1,⋯, uN are in general position, ℝn = linfu1,⋯,
uNg. Thus, for any x ∈ℝn with x ≠ 0, there exists a ui0 ∈ fu1
,⋯, uNg such that ui0 ⋅ x ≠ 0. Note that ϕ′′ > 0. Then, we have

xT −〠
N

k=1
αkϕ′′ h P, ukð Þð ÞukuTk

 !
x

= −〠
N

k=1
αkϕ′′ h P, ukð Þð Þ x ⋅ ukð Þ2

≤ −αi0ϕ′
′ h P, ui0
� �� �

x ⋅ ui0
� �2 < 0:

ð79Þ

Hence, ð∂F/∂ξjð0,⋯,0ÞÞ is negative definite. This implies
det ð∂F/∂ξjð0,⋯,0ÞÞ ≠ 0. By this, the facts that for all i = 1,⋯,
n, Fið0,⋯, 0Þ = 0 follows by (74) and ∂Fi/∂ξj is continuous
on t and ξ for all 1 ≤ i, j ≤ n, and for the implicit function the-
orem, it follows that

ξ′ 0ð Þ = ξ1′ 0ð Þ,⋯, ξn′ 0ð Þ
� 


ð80Þ

exists.

Since Φð0Þ is a maximizer of ΦðtÞ, from (71), (72), and
(75), we get

0 =Φ′ 0ð Þ = 〠
N

k=1
αkϕ′ h P, ukð Þð Þ β′ 0ð Þh P, ukð Þ + γk − ξ′ 0ð Þ ⋅ uk

� 


= 〠
N

k=1
αkϕ′ h P, ukð Þð Þ −

q − 1
n − q

〠
N

i=1
γiμq P, uið Þ

 !
h P, ukð Þ + γk

" #

− ξ′ 0ð Þ ⋅ 〠
N

k=1
αkϕ′ h P, ukð Þð Þuk = 〠

N

k=1
αkϕ′ h P, ukð Þð Þγk

−
q − 1
n − q

〠
N

i=1
γiμq P, uið Þ

 !
〠
N

k=1
αkϕ′ h P, ukð Þð Þh P, ukð Þ

 !

= 〠
N

k=1
αkϕ′ h P, ukð Þð Þ − q − 1

n − q
〠
N

j=1
αjϕ′ h P, uj

� �� �
h P, uj

� � !
μq P, ukð Þ

" #
γk:

ð81Þ

Since γ1,⋯, γN are arbitrary,

αk = −
q − 1
n − q

〠
N

j=1
αjϕ′ h P, uj

� �� �
h P, uj

� � !
1

ϕ′ h P, ukð Þð Þ
μq P, ukð Þ,

ð82Þ

for k = 1,⋯,N . Let

c = q − 1
n − q

〠
N

j=1
αjϕ′ h P, uj

� �� �
h P, uj

� � !
: ð83Þ

Then, for k = 1,⋯,N ,

αk = cφ h P, ukð Þð Þμq P, ukð Þ, ð84Þ

i.e.,

μ = cμφ,q P, ⋅ð Þ: ð85Þ

This completes the proof.

Proof of Corollary 2. Let φðsÞ = s1−p with p < 0 in Theorem 1.
Then, ϕðtÞ = −ð1/pÞtp for t > 0 and lim

t→0+
ϕðtÞ =∞. Therefore,

we see φ and ϕ satisfy the conditions of Theorem 1. Thus,
from the theorem, (3), and (4), we obtain

μ = ch1−pP ⋅ð Þμq P, ⋅ð Þ = cμp,q P, ⋅ð Þ: ð86Þ

If p + q ≠ n, then from (i) of Lemma 4, we have

μ = μp,q c1/ n−p−qð ÞP, ⋅
� 


: ð87Þ

Let P0 = c1/ðn−p−qÞP. Then, our desired result is given. If
p + q = n, then (86) is just the desired result.

8 Journal of Function Spaces



Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

All authors contributed equally to this work. All authors have
read and approved the final manuscript.

Acknowledgments

Y. Zhou was supported by the National Natural Science
Foundation of China (Grant No.11901346). Y. Feng was sup-
ported by the Innovation Foundation of Institutions of
Higher Learning of Gansu (Grant No.2020A-108).

References

[1] M. Ludwig, “General affine surface areas,” Advances in Math-
ematics, vol. 224, no. 6, pp. 2346–2360, 2010.

[2] M. Ludwig and M. Reitzner, “A classification of SL(n) invari-
ant valuations,” Annals of Mathematics, vol. 172, no. 2,
pp. 1219–1267, 2010.

[3] E. Lutwak, D. Yang, and G. Zhang, “Orlicz centroid bodies,”
Journal of Differential Geometry, vol. 84, no. 2, pp. 365–387,
2010.

[4] E. Lutwak, D. Yang, and G. Zhang, “Orlicz projection bodies,”
Advances in Mathematics, vol. 223, no. 1, pp. 220–242, 2010.

[5] R. J. Gardner, D. Hug, and W. Weil, “The Orlicz-Brunn-
Minkowski theory: a general framework, additions, and
inequalities,” Journal of Differential Geometry, vol. 97, no. 3,
pp. 427–476, 2014.

[6] R. J. Gardner, D. Hug, W. Weil, and D. Ye, “The dual Orlicz-
Brunn-Minkowski theory,” Journal of Mathematical Analysis
and Applications, vol. 430, no. 2, pp. 810–829, 2015.

[7] D. Xi, H. Jin, and G. Leng, “The Orlicz Brunn-Minkowski
inequality,” Advances in Mathematics, vol. 260, pp. 350–374,
2014.

[8] B. Zhu, J. Zhou, and W. Xu, “Dual Orlicz-Brunn-Minkowski
theory,” Advances in Mathematics, vol. 264, pp. 700–725,
2014.

[9] D. Zou and G. Xiong, “Orlicz-John ellipsoids,” Advances in
Mathematics, vol. 265, pp. 132–168, 2014.

[10] D. Zou and G. Xiong, “Orlicz-Legendre ellipsoids,” Journal of
Geometric Analysis, vol. 26, no. 3, pp. 2474–2502, 2016.

[11] E. Lutwak, “The Brunn-Minkowski-Firey theory. I. Mixed vol-
umes and the Minkowski problem,” Journal of Differential
Geometry, vol. 38, no. 1, pp. 131–150, 1993.

[12] E. Lutwak, “The Brunn-Minkowski-Firey Theory II,”
Advances in Mathematics, vol. 118, no. 2, pp. 244–294, 1996.

[13] K. J. Böröczky, E. Lutwak, D. Yang, and G. Zhang, “The log-
Brunn-Minkowski inequality,” Advances in Mathematics,
vol. 231, no. 3-4, pp. 1974–1997, 2012.

[14] S. Campi and P. Gronchi, “The cc Busemann-Petty centroid
inequality,” Advances in Mathematics, vol. 167, pp. 128–142,
2002.

[15] S. Campi and P. Gronchi, “On the reverse Lp Busemann-Petty
centroid inequality,” Mathematika, vol. 49, pp. 1–11, 2002.

[16] C. Haberl and F. Schuster, “General Lp affine isoperimetric
inequalities,” Journal of Differential Geometry, vol. 83, pp. 1–
26, 2009.

[17] C. Haberl and F. E. Schuster, “Asymmetric affine Lp Sobolev
inequalities,” Journal of Functional Analysis, vol. 257, no. 3,
pp. 641–658, 2009.

[18] E. Lutwak, D. Yang, and G. Zhang, “Lp Affine Isoperimetric
Inequalities,” Journal of Differential Geometry, vol. 56, no. 1,
pp. 111–132, 2000.

[19] E. Lutwak, D. Yang, and G. Zhang, “Lp John Ellipsoids,” Pro-
ceedings of the London Mathematical Society, vol. 90, no. 2,
pp. 497–520, 2005.

[20] E. Werner and D. Ye, “New Lp affine isoperimetric inequal-
ities,” Advances in Mathematics, vol. 218, no. 3, pp. 762–780,
2008.

[21] H. Minkowski, “Allgemeine Lehrsätze über die konvexen Poly-
eder,” Nachrichten von der Königlichen Gesellschaft der Wis-
senschaften, vol. 1897, pp. 198–219, 1897.

[22] A. D. Aleksandrov, “On the theory of mixed volumes. III.
Extension of two theorems of Minkowski on convex polyhedra
to arbitrary convex bodies,” Matematicheskii Sbornik, vol. 3,
pp. 27–46, 1938.

[23] W. Fenchel and B. Jessen, “Mengenfunktionen und konvexe
Körper,” Danske Videnskabernes Selskab Mathematisk-fysiske
Meddelelser, vol. 16, pp. 1–31, 1938.

[24] H. Lewy, “On differential geometry in the large, I (Minkowski's
problem),” Transactions of the American Mathematical Soci-
ety, vol. 43, no. 2, pp. 258–270, 1938.

[25] L. Nirenberg, “TheWeyl and Minkowski problems in differen-
tial geometry in the large,” Communications on Pure and
Applied Mathematics, vol. 6, no. 3, pp. 337–394, 1953.

[26] A. V. Pogorelov, The Minkowski Multidimensional Problem,
V. H. Winston & Sons, Washington, D.C., 1978.

[27] S. Y. Cheng and S. T. Yau, “On the regularity of the solution of
then-dimensional Minkowski problem,” Communications on
Pure and Applied Mathematics, vol. 29, no. 5, pp. 495–516,
1976.

[28] L. Caffarelli, L. Nirenberg, and J. Spruck, “The Dirichlet prob-
lem for nonlinear second-order elliptic equations I. Monge-
ampégre equation,” Communications on Pure and Applied
Mathematics, vol. 37, no. 3, pp. 369–402, 1984.

[29] G. Bianchi, K. J. Böröczky, A. Colesanti, and D. Yang, “The Lp
-Minkowski problem for −n < p < 1,” Advances in Mathemat-
ics, vol. 341, pp. 493–535, 2019.

[30] K. J. Böröczky and F. Fodor, “The Lp dual Minkowski problem
for p > 1 and q > 0,” Journal of Differential Equations, vol. 266,
no. 12, pp. 7980–8033, 2019.

[31] K. J. Böröczky and H. T. Trinh, “The planar Lp-Minkowski
problem for 0 < p < 1,” Advances in Applied Mathematics,
vol. 87, pp. 58–81, 2017.

[32] K. J. Böröczky, P. Hegedüs, and G. Zhu, “On the discrete log-
arithmic Minkowski problem,” International Mathematics
Research Notices, vol. 2016, no. 6, pp. 1807–1838, 2016.

[33] K. J. Böröczky, E. Lutwak, D. Yang, and G. Zhang, “The loga-
rithmic Minkowski problem,” Journal of the American Mathe-
matical Society, vol. 26, no. 3, pp. 831–852, 2013.

[34] W. Chen, “Lp Minkowski problem with not necessarily posi-
tive data,” Advances in Mathematics, vol. 201, no. 1, pp. 77–
89, 2006.

9Journal of Function Spaces



[35] S. Chen, Q.-R. Li, and G. Zhu, “On the Lp Monge-Ampère
equation,” Journal of Differential Equations, vol. 263,
pp. 4997–5011, 2017.

[36] K. S. Chou and X. J. Wang, “The Lp-Minkowski problem and
the Minkowski problem in centroaffine geometry,” Advances
in Mathematics, vol. 205, no. 1, pp. 33–83, 2006.

[37] P. Guan and C. Lin, “On equation det ðuij + δijuÞ = up f on Sn,”
preprint.

[38] Y. Huang and Q. Lu, “On the regularity of the Lp Minkowski
problem,” Advances in Applied Mathematics, vol. 50,
pp. 268–280, 2013.

[39] Y. Huang and Y. Zhao, “On the Lp dual Minkowski problem,”
Advances in Mathematics, vol. 332, pp. 57–84, 2018.

[40] D. Hug, E. Lutwak, D. Yang, and G. Zhang, “On the Lp Min-
kowski Problem for Polytopes,” Discrete & Computational
Geometry, vol. 33, no. 4, pp. 699–715, 2005.

[41] H. Jian, J. Lu, and X. J. Wang, “Nonuniqueness of solutions to
the Lp-Minkowski problem,” Advances in Mathematics,
vol. 281, pp. 845–856, 2015.

[42] J. Lu and X.-J. Wang, “Rotationally symmetric solution to the
Lp Minkowski problem,” Journal of Differential Equations,
vol. 254, pp. 983–1005, 2013.

[43] E. Lutwak, D. Yang, and G. Zhang, “On the Lp-Minkowski
problem,” Transactions of the American Mathematical Society,
vol. 356, no. 11, pp. 4359–4370, 2004.

[44] E. Lutwak, D. Yang, and G. Zhang, “Lp dual curvature mea-
sures,” Advances in Mathematics, vol. 329, pp. 85–132, 2018.

[45] G. Zhu, “The logarithmic Minkowski problem for polytopes,”
Advances in Mathematics, vol. 262, pp. 909–931, 2014.

[46] G. Zhu, “The centro-affineMinkowski problem for polytopes,”
Journal of Differential Geometry, vol. 101, no. 1, pp. 159–174,
2015.

[47] G. Zhu, “The Lp Minkowski problem for polytopes for 0 < p
< 1,” Journal of Functional Analysis, vol. 269, no. 4,
pp. 1070–1094, 2015.

[48] G. Zhu, “The Lp Minkowski problem for polytopes for p < 0,”
Indiana University Mathematics Journal, vol. 66, no. 4,
pp. 1333–1350, 2017.

[49] G. Zhu, “Continuity of the solution to the Lp Minkowski prob-
lem,” Proceedings of the American Mathematical Society,
vol. 145, no. 1, pp. 379–386, 2017.

[50] C. Haberl, E. Lutwak, D. Yang, and G. Zhang, “The even Orlicz
Minkowski problem,” Adv. Math., vol. 224, no. 6, pp. 2485–
2510, 2010.

[51] G. Bianchi, K. J. Böröczky, and A. Colesanti, “The Orlicz ver-
sion of the Lp Minkowski problem on Sn−1 for −n < p < 1,”
Advances in AppliedMathematics, vol. 111, article 101937, 2019.

[52] R. J. Gardner, D. Hug, S. Xing, and D. Ye, “General volumes in
the Orlicz–Brunn–Minkowski theory and a related Minkowski
problem II,” Calculus of Variations and Partial Differential
Equations, vol. 59, no. 1, p. 15, 2020.

[53] R. J. Gardner, D. Hug, W. Weil, S. Xing, and D. Ye, “General
volumes in the Orlicz–Brunn–Minkowski theory and a related
Minkowski problem I,” Calculus of Variations and Partial Dif-
ferential Equations, vol. 58, no. 1, p. 12, 2019.

[54] Q. Huang and B. He, “On the Orlicz Minkowski problem for
polytopes,” Discrete & Computational Geometry, vol. 48,
no. 2, pp. 281–297, 2012.

[55] H. Jian and J. Lu, “Existence of solutions to the Orlicz-
Minkowski problem,” Advances in Mathematics, vol. 344,
pp. 262–288, 2019.

[56] S. Yijing, “Existence and uniqueness of solutions to Orlicz
Minkowski problems involving 0 < p < 1,” Advances in Applied
Mathematics, vol. 101, pp. 184–214, 2018.

[57] Y. Wu, D. Xi, and G. Leng, “On the discrete Orlicz Minkowski
problem,” Transactions of the American Mathematical Society,
vol. 371, no. 3, pp. 1795–1814, 2019.

[58] Y. Wu, D. Xi, and G. Leng, “On the discrete Orlicz Minkowski
problem II,”Geometriae Dedicata, vol. 205, no. 1, pp. 177–190,
2020.

[59] S. Xing and D. Ye, “On the general dual Orlicz Minkowski
problem,” Indiana University Mathematics Journalin press.

[60] B. Zhu, S. Xing, and D. Ye, “The dual Orlicz Minkowski prob-
lem,” Journal of Geometric Analysis, vol. 28, no. 4, pp. 3829–
3855, 2018.

[61] A. Colesanti, K. Nyström, P. Salani, J. Xiao, D. Yang, and
G. Zhang, “The Hadamard variational formula and the Min-
kowski problem for p-capacity,” Advances in Mathematics,
vol. 285, pp. 1511–1588, 2015.

[62] R. J. Gardner, Geometric Tomography, Cambridge Univ. Press,
New York, Second edition, 2006.

[63] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory,
Cambridge Univ. . Press, New York, Second edition, 2014.

[64] D. Zou and G. Xiong, “The Lp Minkowski problem for the
electrostatic p-capacity,” Journal of Differential Geometryin
press.

[65] H. Hong, D. Ye, and N. Zhang, “The p-capacitary Orlicz Hada-
mard variational formula and Orlicz Minkowski problems,”
Calculus of Variations and Partial Differential Equations,
vol. 57, pp. 1–31, 2018.

[66] D. Jerison, “A Minkowski problem for electrostatic capacity,”
Acta Mathematica, vol. 176, no. 1, pp. 1–47, 1996.

[67] D. Jerison, “The direct method in the calculus of variations for
convex bodies,” Advances in Mathematics, vol. 122, no. 2,
pp. 262–279, 1996.

[68] L. A. Caffarelli, D. Jerison, and E. H. Lieb, “On the case of
equality in the Brunn-Minkowski inequality for capacity,”
Advances in Mathematics, vol. 117, no. 2, pp. 193–207, 1996.

[69] M. Akman, J. Gong, J. Hineman, J. Lewis, and A. Vogel, “The
Brunn-Minkowski inequality and a Minkowski problem for
nonlinear capacity,” preprint.

[70] G. Xiong, J. Xiong, and L. Xu, “The Lp capacitary Minkowski
problem for polytopes,” Journal of Functional Analysis,
vol. 277, no. 9, pp. 3131–3155, 2019.

[71] V. Maz’ya, “Conductor and capacitary inequalities for func-
tions on topological spaces and their applications to Sobolev-
type imbeddings,” Journal of Functional Analysis, vol. 224,
no. 2, pp. 408–430, 2005.

10 Journal of Function Spaces



Research Article
Functional Geominimal Surface Area and Its Related Affine
Isoperimetric Inequality

Niufa Fang 1 and Jin Yang2

1Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
2Department of Mathematics, Hubei Minzu University, Enshi, Hubei 445000, China

Correspondence should be addressed to Niufa Fang; fangniufa@nankai.edu.cn

Received 13 June 2020; Accepted 29 June 2020; Published 13 July 2020

Academic Editor: Chang-Jian Zhao

Copyright © 2020 Niufa Fang and Jin Yang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The first variation of the total mass of log-concave functions was studied by Colesanti and Fragalà, which includes the Lp mixed
volume of convex bodies. Using Colesanti and Fragalà’s first variation formula, we define the geominimal surface area for log-
concave functions, and its related affine isoperimetric inequality is also established.

1. Introduction

As we have known, Minkowski addition (the vector addition
of convex bodies) is the cornerstone in the classical Brunn-
Minkowski theory. Combining with volume, it leads to the
Brunn-Minkowski inequality that is one of the most impor-
tant results in convex geometry. The first variation of volume
with respect to Minkowski addition is named the first mixed
volume, and its related inequality is the Minkowski inequal-
ity. For more history and developments of the Brunn-
Minkowski inequality, one may refer to the excellent survey
[1]. For instance, the Prékopa-Leindler inequality [2–8] is
known as the functional version of the Brunn-Minkowski
inequality. In recent years, finding the functional counter-
parts of existing geometric results, especially for log-
concave functions, has been receiving intensive attentions
(see, e.g., [9–34]).

In 2013, Colesanti and Fragalà [35] introduced the “Min-
kowski addition” and “scalar multiplication,” α · f ⊕ β · g
(where α, β > 0), of log-concave functions f and g as

α · f ⊕ β · g xð Þ = sup
y∈ℝn

f
x − y
α

� �α
g

y
β

� �β

: ð1Þ

We remark that a function f : ℝn ⟶ ½0,∞Þ is log-
concave if it has the form f ðxÞ = e−uðxÞ, where u : ℝn ⟶ℝ

∪ f+∞g is convex. The total mass of f is defined as

J fð Þ =
ð
ℝn

f xð Þdx: ð2Þ

Similar to the case of convex bodies, Colesanti and
Fragalà [35] considered the following variational

δJ f , gð Þ = lim
t→0+

J f ⊕ t · gð Þ − J fð Þ
t

, ð3Þ

and it is called the first variation of J at f along g. The
first variation,δJð f , gÞ, includes theLpmixed volume when
it restrictedf andgto the subclass of log-concave functions
(see [35], Proposition 3.12).

Colesanti and Fragalà’s work inspired us a natural way to
extend the Lp geominimal surface area for convex bodies to
the class of log-concave functions. For convenience, we recall
the definition of Lp geominimal surface area. For a convex
body K containing the origin in its interior, its Lp geominimal
surface area, GpðKÞ, is defined as (the case p = 1, see Petty
[36], and p > 1, see Lutwak [37])

ωp/n
n Gp Kð Þ = inf nVp K ,Qð ÞV Q∘ð Þp/n : Q ∈Kn

o

� �
, ð4Þ
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where ωn is the volume of the unit ball in n-dimensional
Euclidean space ℝn, Q∘ is the polar body of Q defined by
Q∘ = fx ∈ℝn : hx, yi ≤ 1,∀y ∈Qg, Kn

o denotes the class of
convex bodies in ℝn that contain the origin in their interiors,
and VpðK ,QÞ is the Lp mixed volume (for detailed definition,
see Section 2). The fundamental inequality for Lp geomini-
mal surface area is the following affine isoperimetric inequal-
ity (see, e.g., [37], Theorem 3.12):

Gp Kð Þn ≤ nnωp
nV Kð Þn−p, ð5Þ

with equality if and only if K is an ellipsoid.
The Lp geominimal surface area, GpðKÞ, is an important

notation in the Lp Brunn-Minkowski theory, which serves
as a bridge connecting affine differential geometry, relative
differential geometry, and Minkowski geometry. In the past
three decades, the Lp geominimal surface area has developed
rapidly (see [25, 38–42] for some of the pertinent results).

Since δJð f , gÞ includes the Lp mixed volume, we extend
the Lp geominimal surface area to the functional version as
follows.

Definition 1. Let f : ℝn ⟶ ½0,∞Þ be an integral log-concave
function and p > 0. The Lp geominimal surface area of f is
defined as

cp/nn Gp fð Þ = inf δJ f , gð ÞJ g∘ð Þp/n : g is a log‐concave function
� �

,
ð6Þ

where cn = ð2πÞn/2, and g∘ðxÞ = inf y∈ℝne−hx,yi/gðyÞ is the polar
function of g.

In Lemma 5, we prove that the above definition includes
the Lp geominimal surface area (4) when p ≥ 1 and restricted
f , g to the subclass of log-concave functions.

In order to study the functional geominimal surface area,
we need the integral formula of δJð·, · Þ. Hence, we need
some notations. We write hx, yi for the usual inner product
of x, y ∈ℝn, and ∥x∥ denotes the Euclidean normal of x ∈
ℝn. We say that g = e−v is an admissible perturbation for
f = e−u if there exists a constant c > 0 such that u∗ − cv∗

is convex, where u∗ðyÞ = supx∈ℝnfhx, yi − uðxÞg is the
Legendre conjugate of u. Let A ′ denote the set of log-
concave functions given by function f such that u = −log
f belongs to

L ′ = u ∈L : dom uð Þ =ℝn, u ∈C2
+ ℝnð Þ, lim

∥x∥→+∞

u xð Þ
∥x∥

= +∞
� 	

:

ð7Þ

Here, dom ðuÞ = fx ∈ℝn : uðxÞ<+∞g and

L = u : ℝn ⟶ℝ∪ +∞f g∣ u is convex, dom uð Þ ≠∅, lim
∥x∥→+∞

u xð Þ = +∞
n o

:

ð8Þ

Colesanti and Fragalà ([35], Theorem 4.5) provided an
integral formula for the first variation δJð f , gÞ when f , g
∈A ′ and g is an admissible perturbation for f . For our
aims, we consider the following optimization problem:

inf δJ f , gð ÞJ g∘ð Þp/n : f , g ∈A ′, p > 0 and g is an admissible perturbation for f
n o

:

ð9Þ

If the extremum in (9) exists, then it is denoted by

cp/nn Gð1Þ
p ð f Þ.

In Section 3, we prove that for p > 0 and f ∈A ′, if Jð f Þ is
finite, then there exists a unique log-concave function �f ∈A ′
such that

G 1ð Þ
p fð Þ = δJ f , �f


 �
andJ �f

∘
 �
= cn: ð10Þ

Similar to the geometric case, the unique log-concave
function �f is called p -Petty functions of f and denoted by
Tpf .

Using p-Petty functions, we obtain the following analytic

inequality with equality conditions involving Gð1Þ
p ð f Þ.

Theorem 2. Suppose f ∈A ′ and p > 0. If f has its barycenter
at 0 (i.e.,

Ð
ℝn xf ðxÞdx = 0), then

J fð Þp/nG 1ð Þ
p fð Þ ≤ cp/nn nJ fð Þ +

ð
ℝn

f log f dx
� �

, ð11Þ

with equality if Tpf ðxÞ = f ðxÞ and f ðxÞ = ce−ð∥Ax∥
2/2Þ for A ∈

SLðnÞ and c > 0.

2. Background

2.1. Functional Setting. Letu : ℝn ⟶ℝ∪f+∞gif for
everyx, y ∈ℝnandλ ∈ ½0, 1�it satisfies

u 1 − λð Þx + λyð Þ ≤ 1 − λð Þu xð Þ + λu yð Þ, ð12Þ

we say u is a convex function; let

dom uð Þ = x ∈ℝn : u xð Þ ∈ℝf g: ð13Þ

By the convexity of u, dom ðuÞ is a convex set. We say
that u is proper if dom ðuÞ ≠∅. The Legendre conjugate of
u is the convex function defined by

u∗ yð Þ = sup
x∈ℝn

x, yh i − u xð Þf g ∀y ∈ℝn: ð14Þ

Clearly, uðxÞ + u∗ðyÞ ≥ hx, yi for all x, y ∈ℝn; there is an
equality if and only if x ∈ dom ðuÞ and y is in the subdifferen-
tial of u at x. Hence, it can be checked that

u∗ ∇u xð Þð Þ + u xð Þ = x,∇u xð Þh i: ð15Þ

On the class of convex functions from ℝn to ℝ ∪ f+∞g,
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the infimal convolution is defined by

u□v xð Þ = inf
y∈ℝn

u x − yð Þ + v yð Þf g ∀x ∈ℝn, ð16Þ

and the right scalar multiplication by a nonnegative real
number α > 0,

uαð Þ xð Þ = αu
x
α

� �
: ð17Þ

It was proved in [21] (Proposition 2.1) that if u, v : ℝn

⟶ℝ ∪ f+∞g are convex functions and α > 0, then

u□vð Þ∗ = u∗ + v∗,
uαð Þ∗ = αu∗:

ð18Þ

The following result will be used later.

Theorem 3 ([43], Theorem 10.9). Let C be a relatively open
convex set, and let f1, f2,⋯ be a sequence of finite convex
functions on C. Suppose that the real number f1ðxÞ, f2ðxÞ,⋯
is bounded for each x ∈ C. It is then possible to select a subse-
quence of f1, f2,⋯, which converges uniformly on closed
bounded subsets of C to some finite convex function f .

The functional Blaschke-Santaló inequality states that let
f , g be nonnegative integrable functions on ℝn satisfying

f xð Þg yð Þ ≤ e− x,yh i, ∀x, y ∈ℝn: ð19Þ

If f has its barycenter at 0, which means that
Ð
ℝn xf ðxÞ

dx = 0, then
ð
ℝn

f xð Þdx
� � ð

ℝn
g xð Þdx

� �
≤ c2n, ð20Þ

with equality if and only if there exists a positive definite
matrix A and C > 0 such that, a.e. in ℝn,

f xð Þ = Ce−
Ax,xh i
2 , g yð Þ = C−1e−

A−1x,xh i
2 : ð21Þ

2.2. The First Variation of the Total Mass of Log-Concave
Functions. In this paper, we set

L = u : ℝn ⟶ℝ∪ +∞f g∣ u proper, convex, lim
∥x∥→+∞

u xð Þ = +∞
n o

,

A = f : ℝn ⟶ℝ∣ f = e−u, u ∈Lf g:
ð22Þ

The total mass functional of f is defined as

J fð Þ =
ð
ℝn

f xð Þdx: ð23Þ

The Gaussian function

γ xð Þ = e−
∥x∥2
2 ð24Þ

plays within class A the role of the ball in the set of convex
bodies, and JðγÞ = ð2πÞn/2 = cn. For everyA ∈GLðnÞ, we write

γA xð Þ = e−
∥Ax∥2

2 : ð25Þ

From the definition of polar function and Legendre con-
jugate of function, we note that if f ∈A , then

f ∘ = e−φ
∗
: ð26Þ

The support function of log-concave function f = e−φ is
(see [44])

hf xð Þ = φ∗ xð Þ: ð27Þ

This is a proper generalization, in the sense that hχK
= hK .

Let f = e−u, g = e−v, and let α, β > 0, then

α · f ⊕ β · g = e− uαð Þ□ vβð Þ½ �, ð28Þ

which in explicit form reads

α · f ⊕ β · gð Þ xð Þ = sup
y∈ℝn

f
x − y
α

� �α
g

y
β

� �β

: ð29Þ

The support function of α · f ⊕ β · g satisfies

hα·f⊕β·g xð Þ = αhf xð Þ + βhg xð Þ: ð30Þ

In particular,

hα·f xð Þ = αhf xð Þ: ð31Þ

Let f , g ∈A . The first variation of J at f along g is defined
as

δJ f , gð Þ = lim
t→0+

J f ⊕ t · gð Þ − J fð Þ
t

: ð32Þ

The existence of the above limit was proved by Colesanti
and Fragalà [35], and δJð f , gÞ ∈ ½−k,+∞� with k =max finf
ð−log gÞ, 0gJð f Þ. In particular, for every f ∈A with Jð f Þ >
0, then

δJ f , fð Þ = nJ fð Þ +
ð
ℝn

f log f dx: ð33Þ

The functional version of Minkowski first inequality
reads as follows (see, e.g., [35], Theorem 5.1): let f , g ∈A
and assume that Jð f Þ > 0. Then,

δJ f , gð Þ ≥ J fð Þ log J gð Þ
J fð Þ + n

� 

+
ð
ℝn

f log f dx, ð34Þ

with equality if and only if there exists x0 ∈ℝn such that
gðxÞ = f ðx − x0Þ for ∀x ∈ℝn.
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LetKn denote the set of convex bodies (compact, convex
subsets with nonempty interiors) in the Euclidean space ℝn.
We write Kn

o for the set of convex bodies that contain the
origin in their interiors. Let VðKÞ denote the n-dimensional
volume of convex body K . The volume of the standard unit
ball in ℝn is denoted by ωn = πn/2/Γððn/2Þ + 1Þ. A convex
body K ∈Kn is uniquely determined by its support function,
which is defined as hKðxÞ =max fhx, yi: y ∈ Kg, where h·, · i
denotes the usual inner product inℝn. The polar body of K is
defined by K∘ = fx ∈ℝn : hx, yi ≤ 1,∀y ∈ Kg.

For real p ≥ 1, K , L ∈Kn, and real ε > 0, the Minkowski-
Firey Lp combination K+pε · L is a convex body whose sup-
port function is given by

h K+pε · L, ·

 �p = h K , ·ð Þp + εh L, ·ð Þp: ð35Þ

The Lp mixed volume VpðK , LÞ of convex bodies K and L
is defined by

Vp K , Lð Þ = p
n
lim
ε→0+

V K+pε · L

 �

−V Kð Þ
ε

: ð36Þ

The existence of this limit is showed in [45].
The following result show that δJð f , gÞ includes the Lp

mixed volume for convex bodies.

Proposition 4 ([35], Proposition 3.12). Let q ∈ ð1,+∞Þ, p =
q/ðq − 1Þ and K , L ∈Kn

o . Let u = ðhK∘ðxÞqÞ/q, vðxÞ = ðhL∘
ðxÞqÞ/q, and f = e−u, g = e−v. Then, there exists a positive con-
stant c = cðn, qÞ such that

J fð Þ = c n, qð ÞV Kð Þ, ð37Þ

with cðn, qÞ = qn/qΓððn + qÞ/qÞ, and
p
n
δJ f , gð Þ = c n, qð ÞVp K , Lð Þ: ð38Þ

We setA ′as the subclasses ofAgiven by the functionf
such that u = log f belongs to

L ′ = u ∈L : dom uð Þ =ℝn, u ∈C2
+ ℝnð Þ,  lim

∥x∥→+∞

u xð Þ
∥x∥

= +∞
� 	

:

ð39Þ

For log-concave function f = e−u, the Borel measure μf

on ℝn is defined by (see [35])

μf = ∇uð Þ# fHnð Þ: ð40Þ

Here, Hn is the n-dimensional Hausdorff measure. We
need the fact that the barycenter of μf is the origin; i.e.,ð

ℝn
xμf xð Þ = 0: ð41Þ

We recall that the log-concave function g = e−v is an

admissible perturbation for log-concave function f = e−u if

∃a > 0 : u∗ − av∗ ð42Þ

is convex.
Colesanti and Fragalà [35] provided an integral represen-

tation of the first variation δJð·, · Þ (see, e.g., [35], Theorem
4.5): let f = e−u and g = e−v ∈A ′ and assume that g is an
admissible perturbation for f . Then, δJð f , gÞ is finite and is
given by

δJ f , gð Þ =
ð
dom uð Þ

hg xð Þdμf xð Þ: ð43Þ

3. Functional Lp Geominimal Surface Areas

Analogy to convex bodies, for f ∈A and p ∈ℝ, we consider
the following optimization problem:

cp/nn Gλ fð Þ = inf δJ f , gð ÞJ g∘ð Þp/n : g ∈A
� �

: ð44Þ

The following result shows that the above optimization
problem includes Lutwak’s Lp geominimal surface areas for
convex bodies (4) when p > 1 (up to a constant which is
dependent onnandp). This is one of the reasons why Gpð f Þ
is called the Lp geominimal surface area for log-concave func-
tion f .

Lemma 5. Let p > 1, q = p/ðp − 1Þ, andK ∈Kn
o . If f = e−h

q
K∘ðxÞ/q,

then

Gp fð Þ = α n, pð ÞGp Kð Þ, ð45Þ

with αðn, pÞ = ð1/pÞcðn, qÞcðn, pÞp/nωp/n
n c−ðp/nÞn for cðn, qÞ =

qn/qΓððn + qÞ/qÞ.

Proof. Let K , L ∈Kn
o , uðxÞ = hK∘ðxÞq/q, vðxÞ = hL∘ðxÞq/q, and

f = e−u, g = e−v. It is not hard to see that

v∗ xð Þ = hL xð Þp
p

: ð46Þ

Then, Proposition 4 tells us that

J g∘ð Þ = c n, pð ÞV L∘ð Þ,
p
n
δJ f , gð Þ = c n, qð ÞVp K , Lð Þ,

ð47Þ

with cðn, qÞ = qn/qΓððn + qÞ/qÞ.
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From the definitions of Lp geominimal surface area of
convex bodies (4) and log-concave functions (44), we have

cp/nn Gp fð Þ = inf δJ f , gð ÞJ g∘ð Þp/n : g ∈A
� �

= inf n
p
c n, qð Þc n, pð Þp/nVp K , Lð ÞV L∘ð Þp/n : K , L ∈Kn

o

� 	

= 1
p
c n, qð Þc n, pð Þp/nωp/n

n Gp Kð Þ:

ð48Þ

Since we need the integral representation of the first var-
iation δJð f , gÞ in dealing the problem (44), we focus on

cp/nn G 1ð Þ
p fð Þ = inf δJ f , gð ÞJ g∘ð Þp/n : g ∈A ′ and g is an admissible perturbation for f

n o
ð49Þ

for f ∈A ′ and p ∈ℝ. Trivially, Gpð f Þ ≤Gð1Þ
p ð f Þ.

We need the next lemma.

Lemma 6. Let f , g ∈A ′ and assume that g is an admissible
perturbation for f . If A ∈ SLðnÞ, then

δJ f ∘ A, g ∘ Að Þ = δJ f , gð Þ: ð50Þ

Proof. Let f ðxÞ = e−uðxÞ and gðxÞ = e−vðxÞ. We note that

v ∘ Að Þ∗ xð Þ = sup
y∈ℝn

x, yh i − v Ayð Þf g

= sup
y∈ℝn

A−tx, Ay
� �

− v Ayð Þ� �
= v∗ A−tx


 �
:

ð51Þ

Since ∇xðu ∘ AÞ = At∇Axu, we have

δJ f ∘ A, g ∘ Að Þ =
ð
ℝn

v ∘ Að Þ∗ ∇ u ∘Að Þ xð Þð Þf ∘ A xð Þdx

=
ð
ℝn

v ∘ Að Þ∗ At∇Axu Axð Þ
 �
f Axð Þdx

=
ð
ℝn

v∗ ∇Axu Axð Þð Þf Axð Þd

=
ð
ℝn

v∗ ∇u zð Þð Þf zð Þdz = δJ f , gð Þ:

ð52Þ

The following result shows that the functional geomini-
mal surface area is affine invariant.

Lemma 7. Suppose f ∈A ′ and p > 0 . If A ∈ SLðnÞ, then

G 1ð Þ
p f ∘ Að Þ = G 1ð Þ

p fð Þ: ð53Þ

Proof. By (51) and the definition of polar function (26), we
have

J g ∘ Að Þ∘ð Þ = J g∘ ∘ A−t
 �
= J g∘ð Þ, ð54Þ

for A ∈ SLðnÞ. Combing with Lemma 6, we have

δJ f ∘ A, gð ÞJ g∘ð Þp/n = δJ f , g ∘ A−1
 �
J g ∘ A−1
 �∘
 �
 �p/n

:

ð55Þ

Therefore, we obtain

G 1ð Þ
p f ∘ Að Þ = G 1ð Þ

p fð Þ, ð56Þ

for A ∈ SLðnÞ.

The following lemma was proved by Cordero-Erausquin
and Klartag ([46], Lemma 16).

Lemma 8. Let μ be a finite Borel measure in ℝn, and let K be
the interior of convðSuppðμÞÞ. If x0 ∈ K and the barycenter of
μ lies at the origin, then there exists a constant Cμ,x0 > 0 with
the following property: for any nonnegative, μ -integrable,
convex function φ : ℝn ⟶ℝ ∪ f+∞g,

φ x0ð Þ ≤ Cμ,x0

ð
ℝn

φdμ: ð57Þ

The next proposition shows that the infimum in the def-
inition of the p-geominimal surface area of log-concave func-
tion is a minimum.

Proposition 9. Let p > 0 and f ∈A ′ . If Jð f Þ is finite, then
there exists a unique log-concave function �f ∈A such that

G 1ð Þ
p fð Þ = δJ f , �f


 �
and J �f

∘
 �
= cn: ð58Þ

Proof. From the definition of Gð1Þ
p ð f Þ, there exists a sequence

gi ∈A ′ such that Jðg∘i Þ = cn, with δJð f , γÞ ≥ δJð f , giÞ for all i,
and

δJ f , gið Þ⟶G 1ð Þ
p fð Þ: ð59Þ

Let giðxÞ = e−viðxÞ, then

δJ f , γð Þ ≥ δJ f , gið Þ =
ð
ℝn

v∗i xð Þdμf xð Þ: ð60Þ

First, we assume that vi are nonnegative and við0Þ = 0 for
all i. In this case, from (14), we have

v∗i xð Þ = sup
y∈ℝn

y, xh i − vi yð Þf g ≥ 0, xh i − vi 0ð Þ = 0, ð61Þ

and

v∗i 0ð Þ = sup
y∈ℝn

y, 0h i − vi yð Þf g = − inf
y∈ℝn

vi yð Þ = 0: ð62Þ

LetKbe the interior ofconvðSuppðμf ÞÞ. By Lemma 8 and
((59)), we conclude thatv∗i are uniformly upper bound which
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is dependent only onf . According to Theorem 3, there exists
a subsequence fv∗i jgj=1,2,⋯ that converges pointwise in K to a

convex function v∗ : K ⟶ℝ. We extend the definition of v∗

by setting v∗ðxÞ = +∞ for x∈�K and for x ∈ ∂K ,

v∗ xð Þ = lim
λ→1−

v∗ λxð Þ: ð63Þ

This limit always exists in ½0, +∞�, since the function λ
↦ v∗ðλxÞ is nondecreasing for λ ∈ ð0, 1Þ following from the
convexity of v∗ and v∗ð0Þ = 0. Moreover, we have that v∗ðλ
xÞZv∗ðxÞ as λ⟶ 1− for any x ∈ �K . Because v∗i ⟶ v∗ is
equivalent to vi ⟶ v (here, v = ðv∗Þ∗), hence, there exits a
log-concave function �f = e−v which satisfies the claim.

In the general case, there exist xðiÞ0 ∈ℝn and inf x∈ℝnviðxÞ
= di ∈ℝ such that �viðxÞ = viðx − xðiÞ0 Þ − di are nonnegative
and �við0Þ = 0 for all i = 1, 2,⋯. The convexity of vi and e−vi

∈A ′ ensures the finiteness of di; i.e.,∣di ∣ <k for some k > 0.
Similar to the first case, we have

δJ f , γð Þ ≥ δJ f , �gið Þ =
ð
ℝn

�v∗i xð Þdμf xð Þ, ð64Þ

where �gi = e−vi . Lemma 8 deduces that

δJ f , γð Þ ≥ δJ f , �gið Þ =
ð
ℝn

�v∗i xð Þdμf xð Þ ≥ 1
Cμ f ,x0

�v∗i x0ð Þ ð65Þ

holds for x0 ∈ K . Moreover,

�v∗i xð Þ = sup
y∈ℝn

y, xh i − �vi yð Þf g

= sup
y∈ℝn

y, xh i − vi y − x ið Þ
0

� �n o
+ di

= sup
y∈ℝn

y + x ið Þ
0 , x

D E
− vi yð Þ

n o
+ di

= v∗i xð Þ + x, x ið Þ
0

D E
+ di:

ð66Þ

Therefore,

Cμ f ,x0δJ f , γð Þ ≥ �v∗i x0ð Þ = v∗i x0ð Þ + x0, x
ið Þ
0

D E
+ di, ð67Þ

i.e.,

v∗i x0ð Þ ≤ Cμ f ,x0δJ f , γð Þ − x0, x
ið Þ
0

D E
− di, ð68Þ

for any x0 ∈ K . Then, along the same line of the first case, we
conclude that the claim of this proposition holds.

The uniqueness of the minimizing function is demon-
strated as follows. Suppose h1, h2 ∈A , such that Jðh∘1Þ = Jð
h∘2Þ = cn, and

δJ f , h1ð ÞJ h∘1ð Þp/n = inf δJ f , gð ÞJ g∘ð Þp/n : g ∈A ′
n o

= δJ f , h2ð ÞJ h∘2ð Þp/n,
ð69Þ

i.e.,

δJ f , h1ð Þ = δJ f , h2ð Þ: ð70Þ

Let h1 = e−v1 and h2 = e−v2 . Define h ∈A ′, by

h = 1
2 · h1 ⊕

1
2 · h2 = e−v1 1/2ð Þ□v2 1/2ð Þ: ð71Þ

Then, from (18) and (70), we have

δJ f , hð Þ =
ð
ℝn

v1
1
2□v2

1
2

� �∗
xð Þdμf xð Þ

= 1
2

ð
ℝn

v∗1 xð Þdμf xð Þ + 1
2

ð
ℝn

v∗2 xð Þdμf xð Þ

= 1
2 δJ f , h1ð Þ + 1

2 δJ f , h2ð Þ = δJ f , h1ð Þ = δJ f , h2ð Þ,
ð72Þ

and by the basic inequality
ffiffiffiffiffi
ab

p
≤ ða + bÞ/2 for a, b > 0 and

(18), we have

J h∘ð Þ =
ð
ℝn

e− v11/2ð Þ□ v2 1/2ð Þð Þ½ �∗dx =
ð
ℝn

e− 1/2ð Þv∗1 xð Þ+ 1/2ð Þv∗2 xð Þ½ �

� dx ≤ 1
2 J h∘1ð Þ + 1

2 J h∘2ð Þ,
ð73Þ

with equality if and only if h∘1 = h∘2. Therefore,

δJ f , hð ÞJ h∘ð Þp/n ≤ δJ f , h1ð ÞJ h∘1ð Þp/n ð74Þ

is the contradiction that would arise if it was the case that
h1 ≠ h2.

The unique function whose existence is guaranteed by
Proposition 9 will be denoted by Tpf , and will be called the
p-Petty body of log-concave function f (or the λ -Petty func-
tion). The polar function of Tpf will be denoted by T∘

p f ,
rather than ðTpf Þ∘. For f ∈A and p > 0, the log-concave
function Tpf is defined by

G 1ð Þ
p fð Þ = δJ f , Tpf


 �
,

J T∘
p f

� �
= cn:

ð75Þ

Lemma 10. If p > 0 and f ∈A , then for A ∈ SLðnÞ,

Tp f ∘ Að Þ = Tpf ∘ A: ð76Þ
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Proof. From the definition of Tp and Lemma 7,

δJ f , Tpf

 �

=G 1ð Þ
p fð Þ =G 1ð Þ

p f ∘ Að Þ = δJ f ∘ A, Tp f ∘ Að Þ
 �
,

ð77Þ

Lemma 6 deduces

δJ f , Tpf

 �

= δJ f ∘ A, Tp f ∘ Að Þ
 �
= δJ f , Tp f ∘ Að Þ ∘ A−1
 �

:

ð78Þ

The uniqueness of Proposition 9 ensures that Tpf =
Tpð f ∘ AÞ ∘ A−1.

By the Blaschke-Santaló inequality, we obtain the follow-
ing affine isoperimetric inequality for the functional geomini-
mal surface area.

Theorem 11. Let f ∈A ′ and p > 0. If f has its barycenter at 0,
then

J fð Þp/nG 1ð Þ
p fð Þ ≤ cp/nn nJ fð Þ +

ð
ℝn

f log f dx
� �

, ð79Þ

with equality if Tpf ðxÞ = f ðxÞ and f ðxÞ = ce−ð∥Ax∥
2/2Þ for A ∈

SLðnÞ and c > 0.

Proof. Taking g = f in (49), together with (33), we have,

cp/nn G 1ð Þ
p fð Þ ≤ δJ f , fð ÞJ f ∘ð Þp/n = nJ fð Þ +

ð
ℝn

f log f dx
� �

J f ∘ð Þp/n,

ð80Þ

i.e.,

cn
G 1ð Þ
p fð Þn

n + 1/J fð Þð ÞÐℝn f log f dx

 �nJ fð Þn−p

 !1/p

≤ J fð ÞJ f ∘ð Þ:

ð81Þ

By Blaschke-Santaló inequality (20) and the above
inequality, we have

G 1ð Þ
p fð Þn

n + 1/J fð Þð ÞÐℝn f log f dx

 �nJ fð Þn−p

 !1/p

≤ cn: ð82Þ

This is the desired inequality.
To obtain the equality condition, first assume that

Tpf = f . Formula (77) tells us that

G 1ð Þ
p fð Þ = δJ f , fð Þ and J f ∘ð Þ = cn: ð83Þ

This shows that there is equality in (81). From the
condition of Blaschke-Santaló inequality, we known that
there exists a positive definite matrix A and c > 0 such

that, a.e. in ℝn,

f xð Þ = ce−
∥Ax∥2

2 : ð84Þ

Therefore, we obtain the equality condition, namely,
Tpf = f and f ðxÞ = ce−ð∥Ax∥

2/2Þ.
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