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)is article aims to investigate the points of equilibrium and the associated convergence basins in a seventh-order generalized
Hénon–Heiles potential. Using the well-known Newton–Raphson iterator, we numerically locate the positions of the points of
equilibrium, while we also obtain their linear stability. Furthermore, we demonstrate how the two variable parameters, entering
the generalized Hénon–Heiles potential, affect the convergence dynamics of the system as well as the fractal degree of the basin
diagrams. )e fractal degree is derived by computing the (boundary) basin entropy as well as the uncertainty dimension.

1. Introduction

It is well known that every differentiable symmetry of the
action of a physical system has a corresponding conser-
vation law. )erefore, by Noether’s theorem in every
stationary axisymmetric system, the energy and the an-
gular momentum along the symmetry axis are conserved.
However, at the end of the XIX 19th century, it was shown
that in some cases there existed an additional hidden
conserved quantity (see, e.g., [1, 2]), the so-called third
integral of motion. )is discovery increased the interest of
researchers who initiated systematic studies in this topic,
among whom Contopoulos stands out by his studies on
the existence of the third integral of motion in galactic
dynamics [3–7].

An important landmark on the existence of the third
integral of motion in axisymmetric potentials is pro-
vided by the work of Hénon and Heiles [8], who per-
formed a systematic and complete numerical
investigation on this topic and found that the third
integral exists for only a limited range of initial con-
ditions. )e potential selected for the study in [8] can be
considered a particular case of the general Hamiltonian
found by Contopoulos in [3]:

H �
1
2

_x + _y + ω2
1x

2
+ ω2

2y
2

+ εxy
2

+ ε′x3
􏼐 􏼑. (1)

Set ω1 � ω2 � ε � 1 and ε′ � − 1/3, and swap variables
(x, y)⟶ (y, x).

)e Hamiltonian presented above (1) (and consequently
the Hénon–Heiles potential) can be derived as a series ex-
pansion up to the third order of the effective potential for
stationary axisymmetric systems with reflection symmetry
V(r, z) � V(r, − z) (see [9]).

V(r, z) � U(r, z) +
L
2

2r
2.

(2)

Since then, some efforts have beenmade to generalize the
Hénon–Heiles potential. Around 1980, Verhulst [10] ex-
panded the potential (2) up to the fourth order seeking to
study resonances 1 :1, 1 : 2, 1 : 3, and 2 :1. Some years ago, a
generalized Hénon–Heiles potential was derived by
expanding the effective potential up to the fifth order, aiming
to study the equilibrium points and basins of convergence of
the new potential [11] and to analyze the dynamical effect on
bounded and unbounded orbits of including higher-order
terms in the series expansion [12]. More recently, a seventh-
order version of the stationary axisymmetric potential was
presented [13], and it was found that when higher-order
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contributions of the potential are taken into account, the
chaoticity of the system is reduced in comparison with the
lower-order version of the Hénon–Heiles system.

)e practical importance of the Hénon–Heiles-like
potentials lies in its applications to the stellar kinematics and
velocity ellipsoid in our galaxy, where the observed distri-
bution of star’s velocities near the Sun can be explained if a
third integral exists [14]. Also, these potentials have been
used to investigate quantum manifestations of chaos and
level repulsion in classical chaotic Hamiltonians [15] and to
calculate the lifetimes and energies for metastable states
exploiting the property that the dynamics of this potential
change from quasiperiodic to chaotic for higher energies
[16]. In the context of general relativity, these potentials have
been used to analyze the emission of gravitational waves and
to show the differences among wave emissions from regular
and chaotic motion [17], to study the geodesic motion of test
particles in vacuum gravitational pp-wave spacetimes [18],
or to perform numerical investigations related to the inte-
grability of orbits of test particles moving around a black
hole representing the galactic center [19], just to name some
examples.

In this paper, we rewrite the general form of the seventh-
order potential [13] in terms of two arbitrary parameters α
and δ denoting the contributions of the fifth-order and
seventh-order terms, in which the constants are set in such a
form that the new potential exhibits an increasing number of
fixed points for some values of the free parameters (note that
in [13] the number of fixed points is always four). Aiming to
perform a full numerical analysis of the new potential, we
shall investigate the existence of equilibrium points using the
standard Newton–Raphson iterative scheme. In particular,
we will use the so-called basins of convergence [20] to ex-
plore the optimal initial conditions for which the numerical
method is faster and accurate (see, e.g., [21–24]). Moreover,
using the probability density function, we shall analyze the
influence of the free parameters on the convergence of the
Newton–Raphson scheme. )e fractal degree of the basin
diagram will be investigated through the basin entropy and
the boundary basin entropy introduced recently by Daza
et al. [25–27].

)e remainder of this paper is organized as follows. In
Section 2, the derivation of the generalized potential along
with the new approximate potential is presented. Applying
the standard linear stability analysis, in Section 3, the ex-
istence and stability of the libration points of the system are
calculated as a function of two parameters α and δ related to
the contribution of higher-order terms. In Section 4, the
Newton–Raphson basins of convergence are presented using
color code diagrams. Also, we show the biparametric evo-
lution of the basin entropy, the boundary basin entropy, and
the uncertainty dimension as a function of α and δ. Finally,
in Section 5, we present the main conclusions of our nu-
merical study.

2. The Model Potential

As already pointed out in the Introduction, in a previous
paper [13], we derived a generalization of the Hénon–Heiles

potential through a Taylor series expansion up to the seventh
order of a generic potential with axial and reflection sym-
metries. )e effective potential is of the form
V(r, z) � U(r, z) + L2/2r2, where r and z denote the radial
distance and height of the usual cylindrical coordinates, with
V(r, z) � V(r, − z). )e seventh-order approximate poten-
tial can be written as

V(ξ, z) ≈ a1ξ
4

+ z
4

a2 + b2ξ + c3ξ
2

+ d4ξ
3

􏼐 􏼑 + z
2

× a3ξ
2

+ b3ξ
3

+ c4ξ
4

+ d3ξ
5

+ ω2
2 + ξε􏼐 􏼑

+ βξ3 + b1ξ
5

+ c1ξ
6

+ z
6

c2 + d2ξ( 􏼁

+ d1ξ
7

+ ξ2ω2
1,

(3)

with

ξ � r − r0,

ω2
1 �

3L
2
z

2r
4
0

+
1
2

z2Veff

zr2
|∗,

ω2
2 �

1
2

z2Veff

zz2 |∗,

ε � −
1
2

z3Veff

zrzz2 |∗,

β � −
2L

2
z

r
5
0

+
1
6

z3Veff

zr3
|∗,

a1 �
5L

2
z

2r
6
0

+
1
24

z4Veff

zr4
|∗,

a2 �
1
24

z4Veff

zz4 |∗,

a3 �
1
4

z4Veff

zr2zz2|∗,

b1 � −
3L

2
z

r
7
0

+
1
120

z5Veff

zr5
|∗,

b2 �
1
24

z5Veff

zrzz4 |∗,

b3 �
1
12

z5Veff

zr3zz2|∗.

c1 �
7L2

z

12r80
+

1
720

z6Veff

zr6
|∗,

c2 �
1
720

z6Veff

zz6 |∗,

c3 �
1
48

z6Veff

zr2zz4|∗,
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c4 �
1
48

z6Veff

zr4zz2|∗,

d1 � −
4L2

z

r90
+

1
5040

z7Veff

zr7
|∗,

d2 �
1
720

z7Veff

zrzz6 |∗,

d3 �
1
240

z7Veff

zr5zz2|∗,

d4 �
1
144

z7Veff

zr3zz4|∗,

(4)

where |∗ denotes evaluation at (r0, 0).
It should be pointed out that, unlike our previous study,

in the present paper, we redefine the constant factors of the
polynomial with two main objectives: first, we introduce two
arbitrary parameters α and β, such that, setting α � δ � 0, the
new potential reduces to the well-known classical
Hénon–Heiles potential, and, second, we aim to obtain a
large spectrum of fixed points. )is last process was carried
out numerically by varying each coefficient and observing
the total number of fixed points until obtaining the com-
bination that exhibits the richest dynamics for the system.
)e specific replacements are as follows: z⟶ x, ξ⟶ y,
a1 � a2 � b1 � − b2 � − b3 � − δ, a3 � − 2δ, c1 � c2 � d1 �

d2 � d3 � d4 � 2α, c3 � c4 � α, ω1 � ω2 � 1/
�
2

√
, β � − 1/3,

and ε � 1.
)erefore, after applying the previous replacements into

equation (3), the final potential reads

V(x, y) �
1
6

3x
2

+ 3y
2

+ 6x
2
y − 2y

3
􏼐 􏼑

+ α 2x
6
(y + 1) + x

4
y
2
(2y + 1) + x

2
y
4

×(2y + 1) + 2y
6
(y + 1)􏽨 􏽩

+ δ x
4
(y − 1) + x

2
(y − 2)y

2
− y

4
(y + 1)􏽨 􏽩.

(5)

In the next sections, the main properties and charac-
teristics of the new seventh-order potential are analyzed.

3. Equilibrium Points

)e number of points of equilibrium is a function of the
values of the parameters α and δ. Our analysis suggests that
when α ∈ [0, 10] and δ ∈ [0, 10], we have six cases,
depending on the total number of libration points. In
Figure 1, we present the color basins on the (α, δ)-plane
which correspond to a different number of points of
equilibrium. It is interesting to note that in all cases the
system has always an even number of libration points.
Moreover, it is observed that the number of equilibria be-
comes mainly affected by the two parameters (α, δ) since the
basins do not form vertical or horizontal bands.

Figure 2 shows the equilibrium positions, for eight
cases, with values of α and δ, corresponding to all
possible combinations of libration points. )e coordi-
nates of the libration points are presented as the inter-
section points of the curves Vx � 0 (green lines) and

Vy � 0 (blue lines). We should note that in Figure 1 we
have seen that there exist two basins corresponding to 12
points of equilibrium. It turns out that the geometry of
the curves Vx � 0 and Vy � 0, as well as the locations of
the equilibrium points, is different in each case. )ere-
fore, we have eight different cases (counting also the
classical HH system with α � δ � 0), regarding the total
number of libration points.

Once the coordinates of the equilibrium conditions
(x0, y0) are determined, one can also study their linear
stability. )e linear stability or instability of a libration point
is obtained through the following characteristic equation:

λ4 + Vxx + Vyy􏼐 􏼑λ2 + VxxVyy − V
2
xy � 0, (6)

where Vxx, Vyy, and Vxy denote the second-order partial
differentials of the potential V(x, y) with respect to the
subindex variable.

When the quartic equation (6) has four pure imaginary
roots, the respective point of equilibrium is linearly stable.
)e existence of four pure imaginary roots is secured by the
three following conditions:

10

8

6

4

2

0
0 2 4 6 8 10

α

δ

Figure 1: Color basins on the (α, δ)-plane, corresponding to
different number of equilibrium points. 4 points (green); 6 points
(purple); 8 points (red); 10 points (orange); 12 points (blue); 14
points (cyan).
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Figure 2: Contours of the equations Vx � 0 (green) and Vy � 0 (blue). )e intersection points (red dots) designate the positions of the
equilibrium points (Li, i � 1, . . . , 14), for different values of α and δ, corresponding to the eight different cases.
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Vxx + Vyy > 0,

VxxVyy − V
2
xy > 0,

Vxx + Vyy􏼐 􏼑
2

− 4 VxxVyy − V
2
xy􏼐 􏼑≥ 0,

(7)

which must simultaneously be fulfilled.
Our computations indicate the following:

(i) When 4 equilibria exist, only L1 is linearly stable,
while the rest of them are linearly unstable

(ii) When 6 equilibria exist, only L1 and L5 are linearly
stable, while the rest of them are linearly unstable

(iii) When 8 equilibria exist, only L1, L7, and L8 are
linearly stable, while the rest of them are linearly
unstable

(iv) When 10 equilibria exist, only L1 and L5 are linearly
stable, while the rest of them are linearly unstable

(v) When 12 equilibria exist (the case with the middle
blue basin in Figure 1), only L1, L11, and L12 are
linearly stable, while the rest of them are linearly
unstable

(vi) When 12 equilibria exist (the case with the upper
blue basin in Figure 1), only L1 and L5 are linearly
stable, while the rest of them are linearly unstable

(vii) When 14 equilibria exist, only L1, L11, and L12 are
linearly stable, while the rest of them are linearly
unstable

)e general conclusion is that the point equilibrium
located at the origin with x � y � 0 is always linearly stable,
regardless of the particular values of the parameters α and δ.

4. TheNewton–RaphsonBasins of Convergence

Knowing the equilibrium positions of a dynamical system is
very important. However, in many cases (including our
modified HH system), the coordinates of the libration points
cannot be derived analytically. )en, the equilibrium so-
lutions can be derived only by employing numerical
methods. One of the easiest ways of solving numerically a
system of equations (in our case the coupled system
Vx � Vy � 0) is by using the Newton–Raphson (NR) iter-
ative scheme.

xn+1 � xn −
VxVyy − VyVxy

VyyVxx − V2
xy

⎛⎝ ⎞⎠

xn,yn( )

,

yn+1 � yn +
VxVyx − VyVxx

VyyVxx − V2
xy

⎛⎝ ⎞⎠

xn,yn( )

.

(8)

It is a well-known fact that the outcomes of any nu-
merical method are influenced by the choice of the starting
conditions. In particular, both the speed and the accuracy of
any numerical scheme fully depend on the chosen initial
conditions. )ere exist starting conditions for which the
iterator diverges, while there also exist starting conditions
leading to one of the roots of the system. )e ideal initial

conditions (regarding fast convergence and accuracy) form
the so-called NR basins of convergence (NR-BoC). )is is
exactly the importance of identifying the location of the NR-
BoC of a dynamical system.

In Figures 3(a)–3(h), we present the structure of the NR-
BoC on the configuration (x, y)-plane, for the eight different
cases, classified in terms of the number of equilibrium
points. In all cases, the values of the parameters α and δ are
the same as those of the panels of Figure 2. For our com-
putations, the NR scheme was allowed to perform up to 500
iterations, while the desired accuracy, regarding the (x, y)

equilibrium positions, was set to 10− 16.
From the basin diagrams of Figure 3, it is observed that

many structures on the configuration (x, y)-plane are very
complicated. Moreover, some of the NR-BoC have a finite
domain, while others extend to infinity. Nevertheless, in all
cases, there exist well-defined structures containing ideal
starting conditions for the numerical scheme. In Figure 4, we
display color maps showing how the required number of
iterations N is distributed on the (x, y)-plane. Furthermore,
in Figure 5, we provide the probability distributions.

)e histograms displayed in Figure 5 with the probability
distributions may provide additional information about the
properties of the modified NR method. For example, the
right-hand side of the histograms can be fitted by using the
well-known Laplace distribution or double exponential
distribution, which is the simplest and most suitable choice
[28–30].

)e probability density function (PDF) for the double
exponential distribution reads

P(N|l, d) �
1
2d

exp −
l − N

d
􏼠 􏼡, if N< l,

exp −
N − l

d
􏼠 􏼡, if N≥ l,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where the quantities d> 0 and l are known as the diversity
and the location parameter, respectively. Since we are in-
terested only in the probability tails for the histograms, we
need only the N≥ l part of the PDF.

We aim to understand how the parameters α and δ
influence the convergence properties of the NR scheme. To
this end, we defined a 1024 × 1024 grid of (α, δ) values and,
for each pair, we used the NR scheme for classifying a set of
300 × 300(x0, y0) initial conditions, on the configuration
plane and in particular inside the squared region
− 5≤x, y≤ +5.

In Figure 6(a), we present the evolution of the average
number of iterations 〈N〉, needed by the NR method for
providing the coordinates of the equilibria with the desired
accuracy. Figures 6(b) and 6(c) depict the distributions of the
location parameter (l) and the diversity (d) of the Laplace
PDF. Our results strongly indicate that the Laplace PDF is an
excellent candidate for fitting the probability histograms, if
we take into account the fact that the numerical values of
〈N〉 and l are very close: |l − 〈N〉|≤ 2). Additionally, from
the distribution of the diversity d, shown in Figure 6(d), we
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can conclude that the probability histograms are very well
organized around the average value 〈N〉, since in most of
the cases the numerical value of the diversity is relatively low
(d< 5). Finally, Figure 6(d), we show how the differential
entropy, defined as h � 1 + ln(2d), evolves as a function of
the values (α, δ). It is seen that both quantities d and h have
very similar parametric evolutions. If we take into consid-
eration the combined information from all four panels of
Figure 6, we can argue that the NR method works faster
when the system has either 4, 10, 12, or 14 points of
equilibrium, while when 6 or 8 libration points exist, the
convergence of the NR scheme is considerably slower.

Previously, in Figure 3, we have seen that there are
certain regions on the (x, y)-plane, where using the cor-
responding starting conditions it is very difficult to know
beforehand to which point of equilibrium they are going to
converge.)ese regions are composed of a fractal mixture of
final states (equilibria), and they are of course the exact
opposite of the basins of convergence. In order to obtain
quantitative information about the fractal degree of the BCs
on the (x, y)-plane, we shall compute the basin entropy Sb

[25, 27]. )is modern tool indicates the fractal degree of a
basin diagram by examining its topological properties. In
Figure 7(a), we show the distribution of the numerical values
of Sb, as a function of (α, δ). Now we can conclude, without
any doubt, that when the system has eight points of equi-
librium, we encounter the most fractal NR-BoC, while the
fractal degree is considerably lower for a higher number of
libration points.

Unfortunately, the transition between smooth and
fractal boundaries cannot be determined by the basin en-
tropy Sb. )e main reason for this drawback is that the basin
entropy addresses the uncertainty to link a set of initial
conditions to their corresponding final states. )erefore, if
we are interested in detecting small variations in the basin
boundary, we must use another indicator, the boundary
basin entropy Sbb, which was introduced for the first time in
2016 by Daza et al. [25]. For obtaining the boundary basin
entropy, all we have to do is to divide the total entropy
between the number of cells that fall in the boundaries of the
convergence basins.)is tool gives us the possibility to safely
conclude that if the basin boundary is fractal or not, by using
the so-called “log 2 criterion,” with the sufficient condition,
if Sbb > ln 2, then the boundary is certainly fractal. )e
distribution of the values of Sbb, as a function of (α, δ), is
given in Figure 7(b). We see that when eight points of
equilibrium exist, the basin boundaries on the (x, y)-plane
are always fractal, while on the other hand when the system
has only 4 libration points, the basin boundary entropy
exhibits the smaller values when compared to the other
cases.

Finally, another standard way to measure the level of
fractality of a basin diagram is by computing the fractal
dimension [31]. At this point, it is important to emphasize
that the results obtained with the basin boundary entropy Sbb

and the fractal dimension D0 are related but they do not
necessarily have to be the same because the first numerical
tool allows us to assess easily that some boundaries are
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Figure 6: Biparametric evolution of (a) 〈N〉, (b) l, (c) d, (d) and h, as a function of (α, δ).
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fractal, while the second one provides information about the
whole basin, since the fractal dimension is an intrinsic
property of the system [32, 33]. In Figure 8, we present the
dependence of the uncertainty dimension D0 with the pa-
rameters α and δ. As usual, when the fractal dimension
equals one, the fractality is zero, while if its value tends to 2, it
suggests complete fractality of the respective basin diagram.
It is seen that D0 displays the highest values when eight
points of equilibrium exist, while the lowest values are
observed for the cases with 10, 12, and 14 libration points.
One should certainly note the large similarity on the
parametric evolutionary pattern of D0 with respect to that of
the basin entropy Sb. )is similarity can be explained by
considering that these two computer-based analysis tech-
niques are grounded on box-counting methodologies.

5. Discussion

In this work, we explored, using numerical techniques, the
equilibrium points and the convergence properties of the
associated basins of convergence of a seventh-order gen-
eralized Hénon–Heiles potential. )e Newton–Raphson
root method was used for locating the (x, y) coordinates of
the points of equilibrium, while their linear stability was also
revealed as a function of both parameters α and δ. Modern
color-coded plots were deployed for illustrating the

convergence basins on the (x, y)-plane. Finally, wemanaged
to determine how the parameters α and δ affect both the
accuracy and speed of the NR method, while the fractal
degree of the respective basin diagrams was estimated by
computing the (boundary) basin entropy and the uncer-
tainty dimension.

)e routine of the bivariate NR scheme was coded in
FORTRAN 77 (see, e.g., [34]). For the taxonomy of the
starting points on the (x, y)-plane, we needed, per grid,
roughly 3 minutes using a Quad-Core i7 4.0GHz CPU. All
the plots of the paper have been developed using the software
Mathematica ® [35].
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M. A. F. Sanjuán, “Chaotic dynamics and fractal structures in

experiments with cold atoms,” Physical Review A, vol. 95,
Article ID 13629, 2017.

[27] A. Daza, A. Wagemakers, B. Georgeot, D. Guéry-Odelin, and
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)is work aims to study the stability of certain motions of a rigid body rotating about its fixed point and carrying a rotor that
rotates with constant angular velocity about an axis parallel to one of the principal axes.)is motion is presumed to take place due
to the combined influence of the magnetic field and the Newtonian force field. )e equations of motion are deduced, and
moreover, they are expressed as a Lie–Poisson Hamilton system. )e permanent rotations are calculated and interpreted
mechanically. )e sufficient conditions for instability are presented employing the linear approximation method. )e energy-
Casimir method is applied to gain sufficient conditions for stability. )e regions of linear stability and Lyapunov stability are
illustrated graphically for certain values of the parameters.

1. Introduction

A gyrostat is a simple multibody which consists of a rigid
body and other bodies which are usually called rotors
moving in such a way that their motion does not change the
distribution of mass for the gyrostat [1]. )e gyrostat is also
well known in the literature as a dual-spin body due to the
motion of the two bodies which compose the gyrostat.
Volterra [2] had first introduced the notions of gyrostat
when he strived to study the motion of the Earth’s polar axis
and interpret variations in the Earth’s latitude by means of
the internal motion which keeps the mass distribution of the
planet fixed. )is model is used in a variety of numerous
applications in different branches of physics besides their
classical applications in astronomy and mechanics. For
example, the gyrostat was utilized as a model of the Earth
that takes into account some stationary transport processes
on it [2], as a model of the atmosphere and of rotating fluid
(e.g., [3]) and as a controlling device in satellite dynamics
(e.g., [4]).

Most of the works related to the rigid body and its
extension to gyrostat can be assorted into three categories.
)e first is the integrability problem and the searching for the
complete set of the first integrals of the motions. Borisov and
Mamaev [5] contain most of those integrable problems up to
2001, and some cases were presented by several authors (see,
e.g., [6–10]). )e second category regards the problem of
study periodic solutions, bifurcation, and chaos in some
problems of rigid body-gyrostat (see, e.g., [11–14]).)e third
one is the stability problem of the equilibria in the dynamics
of a rigid body-gyrostat moving in an orbit or about its fixed
point (see, e.g., [15–23]).

)e current work is interested in studying the stability of
permanent rotations for the motion of a charged gyrostat
moving due to the combined influence of the magnetic field
and Newtonian force field. )is work is regarded as an
extension of some previous works. In [17], Iñarrea et al.
examined the stability of permanent rotations of a heavy
rigid body carrying a rotor that rotates about one of the
principal axes by a constant angular velocity. )is study was
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followed by Elmandouh who studied this problem in the
case of a charged heavy gyrostat [20]. Vera studied the
stability of relative equilibrium for a gyrostat in Newtonian
force field [19].

)is work is organized as follows: in Section 2, we deduce
equations of the motion and rewrite them as a Lie–Poisson
Hamilton system. Section 3 contains the permanent rota-
tions and their interpretation mechanically. In Section 4, we
study the stability of those permanent rotations by applying
both methods linear approximation method and energy-
Casimir method. Section 5 involves the results found.

2. Equations of Motion

We consider the rotation of a charged rigid body about its
fixed point and assume this body carries an axisymmetric
rotor aligning along one of the principal axes of the body and
rotating with a constant angular velocity. )is motion is
assumed to happen due to the combined influence of a
homogeneous magnetic field H

�→
and Newtonian forces field.

For motion description, we choose two frames Oξ1ζ1η1 and
Oξ2ζ2η2 fixed in the space and in the body, respectively (see
Figure 1). Furthermore, the body frame Oξ2ζ2η2 is assumed
to be the principal axes of the inertia at the fixed point O, and
consequently, the principal inertia matrix of the gyrostat is
I � diag(A, B, C). Let c

→
� (c1, c2, c3) and ω→ � (ω1,ω2,ω3)

are the unit vector along Oη1-axis and the angular velocity of
the gyrostat, respectively. )e two vectors ω→ and c

→ are
referred to the body frame.

)e vector c
→ is written in terms of Eulerian angle as

illustrated in [1]:

c
→

� c1, c2, c3( 􏼁 � (sin θ sinφ, sin θ cosφ, cos θ), (1)

where θ,ψ, and φ indicate the angle of nutation between the
two axes Oη2 andOη1, the precession angle about the Oη2
axis, and the angle of proper rotation, respectively. )e
homogeneous magnetic field N

�→
is presumed to be a con-

stant and influences in the direction of the Oη1-axis, and
therefore, it can be written as

N
�→

� β c
→

, (2)

where β denotes the magnitude of the magnetic field. Now,
we are going to introduce the equations of the motion. )e
whole angular momentum of the gyrostat is

G
→

� π→ + K
�→

, (3)

where π→ � Iω→ is the angular momentum of the gyrostat
when the rotor is relatively at rest and K

�→
� (0, 0, k) is the

gyrostatic momentum, that is, the relative angular mo-
mentum of the rotor with respect to the body. Following the
theorem of angular momentum about the point O, fixed
point, we obtain

dG
→

dt
� M

�→
0,

(4)

where M
�→

0 indicates the total torque of the external forces
about the fixed point O.

According to [1], the potential function for the New-
tonian forces field takes the following form:

U c1, c2, c3( 􏼁 � mgr0
→

· c
→

+
n

2
c
→

· I c
→

, (5)

where r0
→

� (x0, y0, z0) is the center of mass vector, and for
simplicity, we assume the center of mass lies on Oη2 and
n � (3g/R), where R is the distance between the center of the
attraction and the fixed point O (R is assumed very large
compared with the dimensions of the body). )e torque due
to the potential forces derived from the potential function
(5) is given as follows [24]:

M
�→1

0 � c
→

×
zU

z c
→ � mg c

→
× r0

→
+ n c

→
× I c

→
. (6)

Now, we calculate the torque appearing due to the
magnetic field about the fixed point O. Let p be any point
from the body which moves with velocity u

→
(p), carry a

charge dq, and its position vector r
→with respect to the fixed

point O. )is point is influenced by Lorentz forces dF
→

�

dq( u
→

×H
�→

) � βρdV[(ω→ × r
→

) × c
→

] � βρdV [(ω→ · c
→

) r
→

−

( r
→

· c
→

)ω→], where ρ is the charge density and dV is the
element’s volume from the body. Hence, the torque arising
due to the magnetic field takes the following form:

M
�→2

0 � 􏽚
V

r
→

× dF
→

� ω→ × βρ􏽚
V

r
→

( r
→

· c
→

)dV � ω→ × A c
→

,

(7)

where A is the 3 × 3 constant matrix which is assumed to be
A � diag(a, b, d) for simplicity. )us, the total torque about
the fixed point O is

η1

η2 g

H

G

e

O

γ

ζ1

ζ2

ξ1 ξ2

r0

Figure 1: References frames and gyrostat.
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M
�→

0 � M
�→1

0 + M
�→2

0

� mg c
→

× r
→

0 + n c
→

× I c
→

+ ω→ × A c
→

.
(8)

Taking into account the two equations (4) and (8), the
equations of motion in the body frame take the following
form:

_π→ � − ω→ ×( π→ + μ→) + mg c
→

× r
→

0 + n c
→

× I c
→

, (9)

where

μ→ � K
�→

+ A c
→

. (10)

Notably, the expression (10) represents the torque of the
gyroscopic forces (forces rely on the velocity). Because c

→ is a
unit vector fixed in the space, we obtain

_c
→

� c
→

× ω→. (11)

Despite the variables utilized in two equations (9) and
(11) are not canonical, we can describe this motion by means
of a Hamiltonian function in the framework of Lie–Poisson
systems.)eHamiltonian function takes the following form:

H �
1
2

π21
A

+
π2
2

B
+
π2
3

C
􏼠 􏼡 + mgz0c3 +

n

2
Ac

2
1 + Bc

2
2 + Cc

2
3􏼐 􏼑.

(12)
According to [25], we write the equations of the motion

(9) and (11) as a Hamiltonian–Poisson system that is
spanned by the matrix Π μ→:

Π μ→ �

0 − π3 − μ3 π2 + μ2 0 − c3 c2

π3 + μ3 0 − π1 − μ1 c3 0 − c1

− π2 − μ2 π1 + μ1 0 − c2 c1 0

0 − c3 c2 0 0 0

c3 0 − c1 0 0 0

− c2 c1 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)

as long as the Jacobi identity is verified, i.e.,

Πli

μ→zlΠ
jk

μ→
+Πlj

μ→
zlΠ

ki

μ→ +Πlk

μ→zlΠ
ij

μ→
� 0,

i, j, k � 1, 2, . . . , 6.

(14)

Alternatively, the condition (14) is equivalently verified if
the equation

c
→

· ∇
c

→ × μ→ � 0, (15)

is satisfied. By direct calculations, we can prove that vector
μ→, shown in (10), satisfied the condition (15), and conse-
quently, the equations of motion (9) and (11) are rewritten as

_
Y
→

� Π μ→∇
→

H, (16)

where Y � (π1, π2, π3, c1, c2, c3) and ∇
→

H is the naive gra-
dient of H. In addition to the Hamilton (12), this system
admits two Casimirs:

C1 ≔ c
2
1 + c

2
2 + c

2
3 � 1, geometric integral,

C2 ≔ π1c1 + π2c2 + π3c3 +
1
2

ac
2
1 + bc

2
2 + dc

2
3􏼐 􏼑 + kc3 � α0, area integral,

(17)

where α0 is a constant.

3. Permanent Rotations

To find the permanent rotations, we place _π→ � _c
→

� 0
→

into
the two equations of motion (9) and (11); we obtain

ω→ ×( π→ + K
�→

+ A c
→

) − mg c
→

× r
→

0 − n c
→

× I c
→

� 0,

(18)

c
→

× ω→ � 0. (19)

Equation (19) implies the two vectors ω→ and c
→ are

parallel, and consequently, ω→ � ω c
→, where ω is the mag-

nitude of angular velocity of the gyrostat in the body frame.
)us, equation (18) becomes

c
→

× ω2
− n􏼐 􏼑I c

→
+ ω(K

�→
+ A c

→
) − mg r

→
0􏼔 􏼕 � 0. (20)

)e scalar form for equation (20) is

c1 c3(C − A) ω2
− n􏼐 􏼑 + ω k + c3(d − a)( 􏼁 − mgz0􏽨 􏽩 � 0,

(21)

c2 c3(C − B) ω2
− n􏼐 􏼑 + ω k + c3(d − b)( 􏼁 − mgz0􏽨 􏽩 � 0,

(22)

c1c2 (B − A) ω2
− n􏼐 􏼑 + ω(b − a)􏽨 􏽩 � 0.

(23)

From equation (23), we have three possibilities
c1 � c2 � 0, c1 � 0, c2 ≠ 0, and c1 ≠ 0, c2 � 0. We study these
cases one by one. Hereinafter, the permanent rotation is
written in the form E � (Aωc10, Bωc20, Cωc30, c10, c20, c30).

(i) When c1 � c2 � 0, equations (21)–(23) are satisfied,
identically. Using the geometric integral (2), we get
c3 � ±1. )e permanent rotation is
E ±1 � (0, 0, ±Cω, 0, 0, ±1). E+

1 characterizes the
rotation of the gyrostat about the vertical axis in the
upward direction. )is means the angle θ between
the two axes Oη1 and Oη2 is zero; i.e., the fixed point
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O lies down the center of the mass of the gyrostat. In
a similitude way, the permanent rotation E−

1 is
explained as the rotation of the gyrostat in the down
direction; i.e., the fixed point O lies above the center
of mass of the gyrostat.

(ii) When c1 � 0 and c2 ≠ 0, the geometric integral (2)
reduces to c2

2 + c2
3 � 1, which has a parametric so-

lution c2 � sin θ and c3 � cos θ. Taking into account
the obtained results, equations (21)–(23) become

(B − C) n − ω2
􏼐 􏼑 +(d − b)ω + Cn􏽨 􏽩cos θ + kω − mgz0 � 0,

(24)

which represents the existence condition for a
family of the permanent rotations taking the form
E2 � (0, Bω sin θ, Cω cos θ, 0, sin θ, cos θ). It rep-
resents a rotation of a gyrostat with a constant
angular velocity about an axis having a direction
cosine (0, sin θ, cos θ).

(iii) When c1 ≠ 0 and c2 � 0, the geometric integral
becomes c2

1 + c2
3 � 1, which admits the parametric

solution c1 � sin θ and c3 � cos θ. Regarding the
obtained results, equations (21)–(23) reduce to

(A − C) n − ω2
􏼐 􏼑 + ω(d − a)􏽨 􏽩cos θ + kω − mgz0 � 0,

(25)

that is, the condition for the existence of the family of the
permanent rotations E3 � (Aω sin θ, 0, Cω cos θ, sin θ, 0,

cos θ). E3 is explained as the rotation of a gyrostat with a
constant angular velocity about an axis with direction co-
sines (sin θ, 0, cos θ).

Collecting the obtained results, we introduce down the
following.

Theorem 1. ;e mechanical system (9) and (11) charac-
terizing the rotations of a charged gyrostat in Newtonian field
has four permanent rotations. ;ey are as follows:

(i) E ±1 � (0, 0, ±Cω, 0, 0, ±1).
(ii) E2 � (0, Bω sin θ, Cω cos θ, 0, sin θ, cos θ) provided

that [(B − C)(n − ω2) + (d − b)ω + Cn] cos θ + kω−

mgz0 � 0 is satisfied.
(iii) E3 � (Aω sin θ, 0, Cω cos θ, sin θ, 0, cos θ) if the

condition [(A − C)(n − ω2) + ω(d − a)]cos θ+ kω −

mgz0 � 0 is verified.

4. Stability Analysis

)is section aims to examine the stability of the permanent
rotations introduced in )eorem 1. We apply a linear ap-
proximation method to determine the sufficient conditions
for instability that are also necessary conditions for the

stability. We evaluate the tangent flow for the equations of
the motion at the permanent rotation E, and we get

dy
dt

� J(Ε)y, (26)

whereJ(E) is the Jacobi matrix calculated at the permanent
rotation E. To examine the linear stability, we find the ei-
genvalues of the Jacobi matrix and those eigenvalues are the
roots of the characteristic equation

det J(E) − λI6􏼂 􏼃 � 0, (27)

where I6 refers the 6 × 6 identity matrix.
)e energy-Casimir method is utilized to find sufficient

conditions for stability. )is method was employed in
several works such as [15–23]. )e energy-Casimir method
is briefly presented in the following.

Theorem 2. Assuming (M, ·, ·{ },N) is a Poisson system and
E ∈M is an equilibrium point for the Hamiltonian vector
XN. If there is a set of Casimirs Ci ∈ C∞, i � 1, 2, . . . , n

satisfies

d N + 􏽘
n

i�1
Ci

⎛⎝ ⎞⎠(∈) � 0,

d2 N + 􏽘
n

i�1
Ci

⎛⎝ ⎞⎠(∈)|W×W,

(28)

is definite for W that is defined by

W � ∩
n

i�1
kerdCi(E). (29)

)en, E is stable and E is usually stable if W � 0{ }.

4.1. Stability of E ±1 . )is section aims to examine the sta-
bility of the permanent rotation E ±1 which describes the
rotation about the vertical axis with a constant angular
velocity in two cases characterized by whether the fixed point
O is above or down the gyrostat center of mass.

To obtain the necessary conditions for the stability, we
compute the tangent flow of the equations of the motion (9)
and (11) in the permanent rotation E ±1 , and we obtain an
equation in the form (26) and its characteristic equation (27)
admits the following form:

λ2 λ4 + P1λ
2

+ Q1􏼐 􏼑 � 0, (30)

where

4 Advances in Astronomy



P1 �
1

AB
(A(A − C) + B(B − C))n +(C(C − A) + B(2A − C))ω2

− mgz0(A + B) +(d + k)
2

􏽨

∓ω[Aa + Bb +(d + k)(A + B − 2C)]],

Q1 �
1

AB
±(B − C) ω2

− n􏼐 􏼑 +(b − d − k)ω ± mgz0􏽨 􏽩 ±(A − C) ω2
− n􏼐 􏼑 +(a − d − k)ω ± mgz0􏽨 􏽩.

(31)

)us, we can formulate the following.

Theorem 3. Let a charged gyrostat move about its fixed point
O due to the Newtonian force field, then the necessary con-
dition for its rotation about the vertical axis up or down is
linearly stable if P1 ≥ 0, Q1 ≥ 0, and P2

1 − 4Q1 ≥ 0. Or,

equivalently, this motion is Lyapunov unstable if at least one
of these conditions is not satisfied.

Now, we are going to determine the sufficient conditions
for the stability by employing the energy-Casimir method
that is presented in)eorem 2.We introduce the augmented
Hamilton in the following form:

N �
1
2

π21
A

+
π22
B

+
π2
3

C
􏼠 􏼡 + mgz0c3 +

n

2
Ac

2
1 + Bc

2
2 + Cc

2
3􏼐 􏼑 + ]1 c

2
1 + c

2
2 + c

2
3􏽨 􏽩

+ ]2 π1c1 + π2c2 + π3c3 +
1
2

ac
2
1 + bc

2
2 + dc

2
3􏼐 􏼑 + kc3􏼔 􏼕,

(32)

where ]1 and ]2 are arbitrary constants which are deter-
mined by taking into account and E ±1 is a critical point for
the augmented Hamilton N, i.e.,

zN

zπi

|E ±1 � 0,

zN

zci

|E ±1 � 0,

i � 1, 2, 3.

(33)

Equation (33) implies

]1 �
C

2
ω2

− n􏼐 􏼑 ±
1
2

ω(k ± d) − mgz0􏼂 􏼃, ]2 � − ω.

(34)

)e subspace W is determined by

W � kerdC1 E
±
1( 􏼁∩ kerdC2 E

±
1( 􏼁, (35)

where

dC1 Ε
±
1( 􏼁 � ±2dc3,

dC2 Ε
±
1( 􏼁 � ±dπ3 +(k ± d ± Cω)dc3.

(36)

After some calculation, the basis of the subspace W is

BW � e
→

1, e
→

2, e
→

4, e
→

5􏼈 􏼉, (37)

where e
→

i are the canonical basis of R6. )e Hessian matrix
for the augmented Hamilton (32) in the reduced subspace
W is

Hess|W×W �

1
A

0 0 − ω

0
1
B

− ω 0

0 − ω x 0

− ω 0 0 y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (38)

where

x � Cω2
+ n(B − C)∓mgz0 + ω(d ± k − b),

y � Cω2
+ n(A − C)∓mgz0 + ω(d ± k − a).

(39)

We investigate the definiteness of the Hessian matrix
(38) by applying the Sylvester criterion and so we evaluate its
principal minors:

Δ1 �
1
A

,

Δ2 �
1

AB
,

Δ3 �
1

AB
(C − B) ω2

− n􏼐 􏼑 + ω(d ± k − b)∓mgz0􏽨 􏽩,

Δ4 � Δ3 (C − A) ω2
− n􏼐 􏼑 + ω(d ± k − a)∓mgz0􏽨 􏽩.

(40)

It is obvious that Δ1 > 0 and Δ2 > 0 while Δ3 > 0 if
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±mgz0 <(C − B) ω2
− n􏼐 􏼑 + ω(k + d − b) � χ1, (41)

and Δ4 > 0 if

±mgz0 <(C − A) ω2
− n􏼐 􏼑 + ω(k + d − a) � χ2. (42)

)e two inequalities (41) and (42) verify together if

±mgz0 <min χ1, χ2( 􏼁. (43)

)us, we can formulate the theorem.

Theorem 4. ;e sufficient condition of the stability for the
permanent rotation E ±1 to be Lyapunov stable is (43).

Figure 2 determines the regions of linear stability and
Lyapunov stability for E ±1 . In Figure 2(a), the regions in
pink determine the linear stability, while the white zones
represent the instability. Notably, the solid lines in Figure 2
are determined by P10, Q1 � 0, P2

1 − 4Q1 � 0. Figure 2(b)

specifies the regions of Lyapunov stability in yellow, and the
dash lines are specified by mgz0 � min(χ1, χ2). Figure 3(c)
clarifies the regions of Lyapunov stability appears as a
portion from the regions of linear stability.

Similar figures can be used to describe the zones of the
stability and instability for the permanent rotation E−

1 .

4.2. Stability of E2. We endeavor to find the necessary and
sufficient conditions for a family of the permanent rotation
E2 by utilizing the linear approximation and energy-Casimir
method, respectively.

Calculating the tangent flow of the equations of the
motion (9) and (11) in the equilibrium positionE2, we get an
equation in the form (26) and its characteristic equation (27)
takes the following form:

λ2 λ4 + P2λ
2

+ Q2􏼐 􏼑 � 0, (44)

where

P2 �
ω(2bB − Aa)sin2 θ

AC
+

(A + C)

AC
(B − A)n +(B − C)ω2

+ bω􏽨 􏽩cos2 θ − B ω2
+ n􏼐 􏼑 − bω􏽮 􏽯

+
2k cos θ

AB
×[d − (A + B − C)ω]

−
cos2 θ
ABC

(B − C) B
2

+ C
2

− 2AC􏼐 􏼑ω2
+ Cω[dB − 2(C − A)d + A(d − a)] − Cd

2
+ Bb

2
− nC A

2
− BC􏼐 􏼑􏽮 􏽯

+
k
2

AB
+

1
AC

ω2
B
2

+ 2AC􏼐 􏼑 + b
2

+ n A
2

+ C
2

􏼐 􏼑􏽨 􏽩 −
dω
A

,

Q2 �
sin2 θ
ABC

(B − A) ω2
− n􏼐 􏼑 − ω(a − b)􏽨 􏽩 (B − C) n + 3ω2

􏼐 􏼑(B − C) + 3ω(b − d)􏼐 􏼑 +(b − d)
2

􏼐 􏼑cos2 θ􏽨

+ 2(2k(B − C)ω + b − d)cos θ + n − ω2
􏼐 􏼑(C − B) − ω(d − b)􏼐 􏼑B + k

2
􏽩.

(45)

Notice that we use the existence condition (24) to
eliminate the weight of the gyrostat mg. Now, we can write
down the following.

Theorem 5. ;e family of permanent rotation E2 is linearly
stable if the conditions P2 ≥ 0, Q2 ≥ 0, and P2

2 − 4Q2 ≥ 0 are
met. Or, equivalently, it is Lyapunov instable if at least one of
these conditions is not satisfied.

To complete our study about the stability of E2, we
apply the energy-Casimir method to find the stability’s
sufficient conditions. We utilize the same augmented
Hamilton (34) and determine the values the two constants
]1 and ]2 leading to E2 becomes a critical point for this
augmented Hamilton, i.e.,

zN

zπi

􏼌􏼌􏼌􏼌􏼌􏼌E2
� 0,

zL

zci

􏼌􏼌􏼌􏼌􏼌􏼌E2
� 0,

i � 1, 2, 3.

(46)

Equation (46) leads to

]1 �
1
2

B ω2
− n􏼐 􏼑 + bω􏽨 􏽩,

]2 � − ω.

(47)

Following )eorem 2, the subspace W is specified by

W � kerdC1 E2( 􏼁∩ kerdC2 E2( 􏼁, (48)
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where

dC1 E2( 􏼁 � dc3 +
sin θ
cos θ

dc2,

dC2 E2( 􏼁 �
sin θ
cos θ

dπ2 + dπ3 +
sin θ
cos2 θ

[((B − C)ω + b − d)cos θ − k]dc2.

(49)

After some manipulations, we show that the subspaceW
is spanned by the vectors

e
→

1, cos θ e
→

2 − sin θ e
→

3, e
→

4, sin θ[cos(θ)((B − C)ω + b − d) − k] e
→

3 − cos2 θ e
→

5 + sin θ cos θ e
→

6, (50)
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Figure 3: Regions of stability and instability for the permanent rotation E2 in the plane of the two parameters k and ω and
A � 3, B � 4, C � 5, d � 5, b � 10, a � 15, g � 9.8, m � 1, z0 � 1.
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Figure 2: Regions of stability and instability for the permanent rotation E+
1 in the plane of the two parameters k and ω and

A � 3, B � 4, C � 5, d � 5, b � 10, a � 15, g � 9.8, m � 1, z0 � 1.
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where e
→

i are the canonical basis of R6. )e Hessian matrix
corresponding to the Hamiltonian (32) with (47) takes the
following form:

Hess|W×W �

1
A

0 0 − ω

0
cos2 θ

B
+
sin2 θ

C
δ1 0

0 δ1 δ2 0

− ω 0 0 Bω2
+(b − a)ω + n(A − B)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (51)

where

δ1 �
1
C

((B − C)ω + b − d)cos3 θ − k cos2 θ +((2C − B)ω − b + d)cos θ + k􏽨 􏽩,

δ2 � Bω2cos4 θ +
sin2 θ cos2 θ

C
ω2

B
2

− 3BC + 3C
2

􏼐 􏼑 +(b − d)(2B − 3C)ω + Cn(C − B) +(b − d)
2

􏽨 􏽩

−
2k sin2 θ cos θ

C
[(B − 2C)ω + b − d] + k

2sin2 θ.

(52)

To investigate the definiteness of Hessian matrix (51), we
utilize the Sylvester criterion and so we compute the
principal minors. )ey take the following form:

Δ1 �
1
A

,

Δ2 �
1
A

cos2 θ
B

+
sin2 θ

C
􏼢 􏼣,

Δ3 �
sin2 θ cos2 θ

ABC
(B − C)

2 3ω2
+ n􏼐 􏼑 + 3ω(b − d)(B − C) − (b − d)

2
􏽨 􏽩cos2 θ − 2k[2ω(B − C) + b − d]cos θ􏽮

+ B(B − C) ω2
− n􏼐 􏼑 + Bω(b − d) − k

2
􏽯,

Δ4 � (B − A) ω2
− n􏼐 􏼑 +(b − a)ω􏽨 􏽩Δ3.

(53)

It is clear that Δ1 and Δ2 are always positive, whereas Δ3
and Δ4 are positive if

sin2 θ cos2 θ
ABC

(B − C)
2 3ω2

+ n􏼐 􏼑 + 3ω(b − d)(B − C) − (b − d)
2

􏽨 􏽩cos2 θ􏽮

− 2k[2ω(B − C) + b − d]cos θ + B(B − C) ω2
− n􏼐 􏼑 + Bω(b − d) − k

2
􏽯> 0,

(54)

Φ(ω) ≔ (B − A) ω2
− n􏼐 􏼑 +(b − a)ω> 0. (55)
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Φ(ω) is a quadratic polynomial in ω, and its discriminant is
always positive and so it has two real roots (say) ω1,ω2.)us,
we have two cases: (1) when B>A, the condition (55) is
satisfied ifω ∈]− ∞,ω1[⋃]ω2,∞[ ; (2) if B<A, the condition
(55) is verified if ω ∈ ]ω1,ω2[ . Notice that if A � B and b � a,

the energy-Casimir does not furnish any information about
the sufficient conditions of the stability.

Theorem 6. ;e sufficient condition for the stability of the
equilibrium position E2 is

(B − C)
2 3ω2

+ n􏼐 􏼑 + 3ω(b − d)(B − C) − (b − d)
2

􏽨 􏽩cos2 θ

− 2k[2ω(B − C) + b − d]cos θ + B(B − C) ω2
− n􏼐 􏼑 + Bω(b − d) − k

2 > 0,
(56)

with one of the two conditions B>A, ω ∈ ]− ∞,ω1[⋃]ω2,

∞[or B<A, ω ∈ ]ω1,ω2[ is verified.

)e regions of linear and nonlinear (Lyapunov) stability
are clarified by Figure 3. Figure 3(a) delimits the regions of
linear stability in pink color, while as the white regions
display the sufficient conditions for the instability of the
permanent rotation E2. Notably, the solid lines which are
the boundary of those regions are characterized by the
equations P2 � 0, Q2 � 0, P2

2 − 4Q2 � 0. )e regions in yel-
low appear in Figure 3(b) represent the regions of Lyapunov
stability for E2. Figure 3(c) illustrates that the regions of
Lyapunov stability appear as a part of the regions of linear
stability. Notably, on the boundary of linear stability regions

(solid lines in Figure 3(a) and also in Figure 3(c)), the
permanent rotation E2 is unstable.

4.3. Stability ofE3. )e stability analysis for the family of the
permanent rotations E3 is done by applying similar pro-
cedures to E2 stability study. )e necessary and sufficient
conditions for the stability of E3 can be obtained by
replacing A↔B and a↔b in the )eorems 5 and 6, re-
spectively. )us, we can formulate the following two
theorems.

Theorem 7. ;e family of permanent rotationsE3 is linearly
stable if

P3 �
ω(2aA − Bb)sin2 θ

BC
+

(B + C)

BC
(A − B)n +(A − C)ω2

+ aω􏽨 􏽩cos2 θ − A ω2
+ n􏼐 􏼑 − aω􏽮 􏽯 +

2k cos θ
AB

× [d − (A + B − C)ω] −
cos2 θ
ABC

(A − C) A
2

+ C
2

− 2BC􏼐 􏼑ω2
+ Cω[dA − 2(C − B)d + B(d − b)]􏽮

− Cd
2

+ Aa
2

− nC B
2

− AC􏼐 􏼑􏽯 +
k
2

AB
+

1
BC

ω2
A
2

+ 2BC􏼐 􏼑 + a
2

+ n B
2

+ C
2

􏼐 􏼑􏽨 􏽩 −
dω
B
≥ 0,

Q3 �
sin2 θ
ABC

(A − B) ω2
− n􏼐 􏼑 − ω(b − a)􏽨 􏽩 (A − C) n + 3ω2

􏼐 􏼑(A − C) + 3ω(a − d)􏼐 􏼑 +(a − d)
2

􏼐 􏼑cos2 θ􏽨

+ 2(2(A − C)ω + a − d)k cos θ + n − ω2
􏼐 􏼑(C − A) − ω(d − a)􏼐 􏼑A + k

2
􏽩≥ 0,

P
2
3 − 4Q

2
3 ≥ 0.

(57)

Or, equivalently, it is unstable if at least one of the
conditions (57) is verified.

Theorem 8. ;e sufficient condition for the stability of the
equilibrium position E3 is

(A − C)
2 3ω2

+ n􏼐 􏼑 + 3ω(a − d)(A − C) − (a − d)
2

􏽨 􏽩cos2 θ

− 2k[2ω(A − C) + a − d]cos θ + A(A − C) ω2
− n􏼐 􏼑 + Aω(a − d) − k

2 > 0,
(58)

where one of the two conditions B>A, ω ∈ ]− ∞,ω1[⋃]ω1,

∞[ or A<B, ω ∈ ]ω1,ω2[ is verified.

Figure 4 displays the regions of sufficient and necessary
conditions for the family of permanent rotations E3.

Figure 4(a) illustrates the regions on linear stability in pink,
while the zones of Lyapunov instability delimit in white and
the solid lines which separate these zones are determined by
P3 � 0, Q3 � 0, P2

3 − 4Q3 � 0. Figure 4(b) determines the
region of Lyapunov stability in yellow. Figure 4(c) clarifies
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the zones of Lyapunov stability appear as a portion of linear
stability.

5. Conclusions

In this work, we have considered the motion of a charged
rigid body carrying a rotor rotating about an axis which is
parallel to one of the principal axes with a constant velocity.
We have assumed the motion happens due to the com-
bination influence of a uniform constant magnetic field and
Newtonian force field. )e equations of the motion have
been constructed and rewritten as a Lie–Poisson Hamilton
system. )e permanent rotations E1 have been obtained
and collected in )eorem 1. )e first two permanent ro-
tations E ±1 are mechanically interpreted as the rotation of
the gyrostat about the vertical up or down with a constant
angular velocity. )e permanent rotationE2 is explained as
the rotation of a gyrostat with a constant angular velocity
about an axis having a direction cosine (0, sin θ, cos θ). )e
permanent rotation E3 is interpreted as the rotation of the
gyrostat with a constant angular velocity about an axis
having a direction cosine (sin θ, 0, cos θ). )e linear sta-
bility of those equilibrium positions has been studied by
applying the linear approximation method, and the ob-
tained results have been collected in )eorems 3, 5, and 7.
However, the Lyapunov stability of those permanent ro-
tations have been examined by utilizing the energy-Casimir
method, and the finding results have been presented in
)eorems 4, 6, and 8. In the plane of the two variables k and
ω, the regions of linear stability have been clarified in pink
(see Figures 2(a), 3(a), and 4(a)), while the regions of
Lyapunov stability have been illustrated in yellow (see
Figures 2(b), 3(b), and 4(b)). Moreover, we illustrate the
regions of Lyapunov stability appear as a part of the regions
of linear stability.
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Using an analytical and numerical study, this paper investigates the equilibrium state of the triangular equilibrium points L4, 5 of
the Sun-Earth system in the frame of the elliptic restricted problem of three bodies subject to the radial component of
Poynting–Robertson (P–R) drag and radiation pressure factor of the bigger primary as well as dynamical flattening parameters of
both primary bodies (i.e., Sun and Earth). 'e equations of motion are presented in a dimensionless-pulsating coordinate system
(ξ − η), and the positions of the triangular equilibrium points are found to depend on the mass ratio (μ) and the perturbing forces
involved in the equations of motion. A numerical analysis of the positions and stability of the triangular equilibrium points of the
Sun-Earth system shows that the perturbing forces have no significant effect on the positions of the triangular equilibrium points
and their stability. Hence, this research work concludes that the motion of an infinitesimal mass near the triangular equilibrium
points of the Sun-Earth system remains linearly stable in the presence of the perturbing forces.

1. Introduction

'e study of the equilibrium state of an infinitesimal mass (a
test particle) with regard to the dynamical system of the
restricted three-body problem (R3BP) remains one of the
most important and interesting aspects in the study of celestial
mechanics and dynamical astronomy. 'e elliptic restricted
three-body problem (ER3BP) deals with the description-study
of the motion of an infinitesimal mass (m3), in the vicinity of
the gravitational fields of two dominant bodies m1 and m2
which are called the primaries (bigger primary and smaller
primary, respectively), where m1 ≥m2≫m3. 'ese primary
bodies revolve about their common centre of mass in elliptic
orbits, under the influence of their mutual gravitational at-
traction. 'e ER3BP admits five equilibrium points at which
the test particle (infinitesimal mass) would remain fixed if
placed there. 'ree of such points lie on the line joining the
two dominant bodies m1 and m2, called the collinear equi-
librium points Li(i � 1, 2, 3), and are unstable, while the other
two points form equilateral triangles with the two dominant

bodies, called the triangular equilibrium points L4 and L5, and
are stable for 0< μ< μc, where μ is the mass ratio defined by
μ � (m2/(m1 + m2)) and μc is the critical mass parameter [1].

In an attempt to have a much more realistic description
of the motion of an infinitesimal mass over the decades, the
classical R3BP has been modified in the sense that additional
dynamical potentials of the system were considered in
different approaches [2–8] and others.

Abouelmagd [9] in his study of the R3BP found out
that the locations of the triangular points and their linear
stability are affected by the oblateness of the more
massive primary, up to the second zonal harmonic J4. In
his numerical study, he concluded that the existence of J4
sometimes does not affect the stability of the equilibrium
points as in the Earth-Moon, Saturn-Phoebe, and Ura-
nus-Caliban systems. Also, Abouelmagd et al. [10] ex-
amined the effects of oblateness of the three participating
bodies together with small perturbations in Coriolis and
centrifugal forces. Afterwards, Abouelmagd et al. [11]
studied the effect of the first two even zonal harmonic
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coefficients of both the primaries as well as the periodic
orbits around the equilibrium points. 'ey found out that
the triangular equilibrium points are linearly stable for
0< μ< μC and unstable for μC ≤ μ≤ 0.5, while the collinear
equilibrium points remain linearly unstable.

Singh and Tyokyaa [12] examined the stability of the
triangular points in the ER3BP with oblateness up to the
second zonal harmonic J4 of both primaries.'ey concluded
that the location and linear stability of the triangular points
are affected by the oblateness of the primary bodies, ec-
centricity of the orbits of the primaries, and the semi-major
axis of the system and both destabilized the system. In the
same year, Singh et al. [13] investigated the influence of the
zonal harmonics (J2 and J4) of the primary and the radiation
pressure of the secondary on the locations and linear sta-
bility of the triangular points. 'ey however claimed that the
parameters involved in the system affect the positions of the
equilibrium points and destabilize the system as well.

'e Doppler shift and absorptions and subsequent re-
emission of incident radiation, that is, the so-called Poyn-
ting–Robertson’s (P–R) drag, are often neglected by many
researchers in the estimation of light radiation force. Poynting
[14] while studying radiation in the Solar System stated that
radiation affects temperature and small bodies. He asserted that
particles such as cosmic dust grain or smallmeteors are affected
considerably by gravitational and light radiation force as they
approach luminous celestial bodies. Furthermore, infinitesimal
bodies in solar orbits suffer a gradual loss of angular mo-
mentum and ultimately spiral into the Sun. Later, Robertson
[15] in a modified theory of Poynting considered only terms of
the first order in the ratio of velocity of the particles to that of
light. He investigated the dynamical effects of drag in the Solar
System and derived the expression for the times of fall from
circular orbits. 'us at a cosmically rapid rate, the P–R effect
sweeps small particles of the Solar System into the sun.

Researchers like Burns et al. [16], Murray [17], Singh and
Simeon [18], Alhussain [19], Chakraborty and Narayan [20],
Amuda et al. [21], and others studied the R3BP by taking into
account the P–R drag in different views. Mishra et al. [22]
examined the stability of triangular points under the assump-
tion that the bigger primary is a source of radiation with the
incident P–R drag while the smaller is an oblate spheroid in the
frame of the ER3BP. 'ey concluded that the triangular points
are unstable. In a recent study, Singh and Amuda [23] inves-
tigated the linear stability around L4, 5 of a test particle in the
field of post-AGB binary system with the effective P–R drag
force. 'ey asserted that P–R drag and the mass parameter μ
contribute in shifting the locations of the triangular points and
the triangular points are unstable in the linear sense due to the
presence of complex conjugate roots.

'e aim of the present paper is to further investigate the
effects of radiation pressure and P–R drag of the bigger
primary on L4, 5 in the ER3BP, taking into account the effects
of dynamical flattening parameters of the primary bodies.

2. Equations of Motion

Letm1, m2, andm3 be the threemasses,m1 andm2 being the
dominant bodies having an elliptic orbit about their

common centre of mass, while m3 being the infinitesimal
mass which moves in the same plane with the dominant
bodies under the influence of their force-field without
influencing their motion. Let (x1, y1, z1), (x2, y2, z2), and
(x3, y3, z3) denote the coordinates of m1, m2, and m3, re-
spectively, in the sidereal coordinates. Using Newton’s law,
the equations of motion of an infinitesimal mass m3 in the
sidereal coordinates system can be represented as

m3€x3 �
zV

zx3
,

m3€y3 �
zV

zy3

m3€z3 �
zV

zz3
,

, (1)

where V � m3k
2((m1/R1) + (m2/R2)); R1 and R2 are the

distances of an infinitesimalmass fromm1 andm2, respectively,
and are defined asR2

i � (x − xi)
2 + (y − yi)

2 + (z − zi)
2; k2 is

the Gaussian constant of gravitation and the dot indicates
differentiation with respect to time t.

Equations (1) can be rewritten as [3]

€x3 �
zW

zx3
,

€y3 �
zW

zy3
,

€z3 �
zW

zz3
,

(2)

where W � (V/m3).
Now, we choose and rotate the synodic coordinates

uniformly with a positive unit rate, which has the same origin
at the centre of mass of the two dominant bodies with the
sidereal coordinates. 'e direction of the x− axis is chosen
such that the two dominant bodies always lie on it. 'erefore,
the equations of motion in sidereal coordinates are related to
the equations of motion in synodic coordinates with respect
to the true anomaly. By transforming the equations of motion
from true anomaly to eccentric anomaly in a dimensionless-
pulsating (rotating) coordinate system (ξ, η, ζ), we have

ξ″ +
eξ′ sinE

ρ
−
2 1 − e

2
􏼐 􏼑

(1/2)
η′

ρ
�

zΩ
zξ

,

η″ +
eη′ sinE

ρ
+
2 1 − e

2
􏼐 􏼑

(1/2)
ξ′

ρ
�

zΩ
zη

,

ζ″ +
eζ′ sinE

ρ
�

zΩ
zζ

,

(3)

where the prime (′) represents differentiation with respect
to eccentric anomaly (E) and Ω(ξ, η, ζ) � (1/(n2ρ))[(n2 /2)

(ξ2 + η2) − ((en2)/(2ρ))(cosE − e)ζ2 + W], ρ � (1 − e cos
E), e and n are the eccentricity of the orbits andmeanmotion
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of the dominant bodies, while
W � − (V/m3), V � − k2m3((m1/r1) + (m2/r2)), ri(i � 1, 2)

are the distances of an infinitesimal mass from the bigger
primary and smaller primary, respectively, and are defined
as r2i � (ξ − ξi)

2 + η2 + ζ2, (i � 1, 2)., ξ1 � − ((m2a)/ (m1
+m2)), ξ2 � ((m1a)/(m1 + m2)), and a is the semi-major axis
of m2 around m1. See [3, 24, 25].

Now, integrating equations (3) with respect to the ec-
centric anomaly (E) and averaging, we get

ξ″ − 2η′ �
zΩ
zξ

,

η″ + 2ξ′ �
zΩ
zη

,

ζ″ �
zΩ
zζ

,

(4)

where Ω is the potential-like function defined by
Ω(ξ, η, ζ) � (1 − e2)− (1/2)[(1/2)(ξ2 + η2) + (W/n2)].

'us, the defined dynamical system in equations (4) is
the required equations of motion for the ER3BP.

Let q be the radiation pressure factor of the bigger
primary which is given by

Fg1 − Fp1 � Fg1 1 −
Fp1

Fg1
􏼠 􏼡 � qFg1. (5)

'is implies that q � 1 − (Fp1/Fg1) such that 0< 1 − q �

α≪ 1 [26], where Fg1 is the gravitational force of m1 and Fp1
is the radiation pressure of m1.

Considering the potential theory, the external gravi-
tational potential due to a body that has axial symmetry
can be written in terms of Legendre polynomials as V0 �

− ((k2m0)/r0)[1 − 􏽐
∞
n�2 JnPn(cos θ)(R0/r0)

n] (see de Pater
and Lissauer [27] for more details), where m0 denotes the
mass of the body; r0 denotes the radial distance from the
centre of the particle to the centre of any other body; θ
denotes the angle between the body’s symmetry axis and
vector to the particle; R0 denotes the mean radius of the
body; Jn denotes the dimensionless coefficient that
characterizes the degree of nonspherical components of
the potential, Jn is zero for odd n, and when n is even, Jn is
called a zonal harmonic coefficient; and the term
Pn(cos θ) denotes the Legendre polynomials of degree n

and is defined by Pn(x) � (1/(2nn!))(dn/dxn)(x2 − 1)n. We
assume that the infinitesimal mass moves in the same
plane of motion as the dominant bodies and this plane
coincides with the equatorial plane (i.e. θ � 900). 'ere-
fore, the potential energy of the infinitesimal mass under
the effects of the dynamical flattening parameters of both
dominant bodies can be written as

V � − k
2
m3 m1

1
r1

+
A1

2r
3
1

−
3A2

8r
5
1

􏼠 􏼡 + m2
1
r2

+
B1

2r
3
2

−
3B2

8r
5
2

􏼠 􏼡􏼢 􏼣,

(6)

where Ai � JA
2iR

2i

1 and Bi � JB
2iR

2i

2 (i � 1, 2) represent the
dynamical flattening parameters of the bigger and smaller

primaries, respectively, JA
2i and JB

2i(i � 1, 2) are the zonal
harmonics coefficients; ri(i � 1, 2) is defined as in equation
(3); and R1 andR2 are themean radii of the dominant masses
m1 and m2, respectively.

'e distance between the dominant bodies is
r � a(1 − e cos E) in the elliptic orbit, where a, e , and E

are semi-major axis between the dominant bodies,
common eccentricity of the dominant bodies, and ec-
centric anomaly, respectively.

And the mean distance between them is as follows:

1
2π

􏽚
2π

0
r dE � a. (7)

Assuming that the dominant bodies are in elliptical
motion with constant angular velocity n(meanmotion), then
the orbits of m1 and m2 with respect to the centre of mass,
with semi-major axes, would be a1 � (m2/(m1 + m2))a and
a2 � (m1/(m1 + m2))a, respectively, having the same ec-
centricity; thus, the motion of the bigger and smaller pri-
mary can be written as [1, 28]

m1n
2
a1 �

k
2
m1m2

r
2 1 +

3A1

2r
2 +

3B1

2r
2 −

15A2

8r
4 −

15B2

8r
4􏼢 􏼣,

m2n
2
a2 �

k
2
m1m2

r
2 1 +

3A1

2r
2 +

3B1

2r
2 −

15A2

8r
4 −

15B2

8r
4􏼢 􏼣,

(8)

where n, r, and k are the mean motion, distance between the
dominant bodies, and Gaussian constant of gravitation, re-
spectively. 'e distance between the dominant bodies r is
defined to be the semi-major axis a of the orbit (i.e., r � a),
since the dominant bodies are in elliptic orbits.

Hence, adding equations (8) together, we obtain

n
2

a1 + a2( 􏼁 �
k
2

m1 + m2( 􏼁

a
2 1 +

3A1

2a
2 +

3B1

2a
2 −

15A2

8a
4 −

15B2

8a
4􏼢 􏼣.

(9)

Assume that the sum of the masses of the dominant
bodies and the semi-major axis between them are the units
of mass and length, respectively; i.e., m1 + m2 � 1, and
a1 + a2 � a � 1. Also, the unit of time is chosen so as tomake
the Gaussian constant, k2 � 1. Hence, equation (9) becomes

n
2

� 1 +
3A1

2
+
3B1

2
−
15A2

8
−
15B2

8
. (10)

Using equations (4), (5), (6), and (10), the equations
of motion of an infinitesimal mass in the frame of the
ER3BP can be modified, taking into account the dy-
namical flattening parameters of both dominant bodies
together with the radiation pressure as well as P–R drag
due to the bigger primary in a dimensionless-pulsating
(rotating) coordinate system (ξ, η) as

ξ″ − 2η′ � Uξ ,

η″ + 2ξ′ � Uη,
(11)

where
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Uξ �
zΩ
zξ

−
1 − e

2
􏼐 􏼑

− (1/2)
W1N1

n
2
r
2
1

,

Uη �
zΩ
zη

−
1 − e

2
􏼐 􏼑

− (1/2)
W1N2

n
2
r
2
1

,

Ω � 1 − e
2

􏼐 􏼑
(− 1/2) ξ2 + η2

2
+

1
n
2

(1 − μ)q

r1
+

(1 − μ)A1q

2r
3
1

−
3(1 − μ)A2q

8r
5
1

+
μ
r2

+
μB1

2r
3
2

−
3μB2

8r
5
2

􏼨 􏼩􏼢 􏼣,

N1 �
(ξ + μ) (ξ + μ)ξ′ + ηη′􏼂 􏼃

r
2
1

+ ξ′ − nη,

N2 �
η (ξ + μ)ξ′ + ηη′􏼂 􏼃

r
2
1

+ η′ + n(ξ + μ),

W1 �
(1 − μ)(1 − q)

cd

,

(12)

and cd is the dimensionless speed of light [18, 22, 29].

3. Locations of the Triangular Equilibrium
Points L4, 5

To obtain the equilibrium positions of an infinitesimal mass,
the equations ξ′ � η′ � ξ″ � η″ � 0 must be satisfied in the

equations of motion (11); i.e., they are the solutions of the
equations Uξ � Uη � 0, and thus resulting in

ξn
2

−
(1 − μ)(ξ + μ)q

r
3
1

−
3(1 − μ)(ξ + μ)qA1

2r
5
1

+
15(1 − μ)(ξ + μ)qA2

8r
7
1

−
μ(ξ + μ − 1)

r
3
2

−
3μ(ξ + μ − 1)B1

2r
5
2

+
15μ(ξ + μ − 1)B2

8r
7
2

+
Wnη

r
2
1

� 0,

(13)

n
2η −

(1 − μ)qη
r
3
1

−
3(1 − μ)qηA1

2r
5
1

+
15(1 − μ)qηA2

8r
7
1

−
μη
r
3
2

−
3μηB1

2r
5
2

+
15μηB2

8r
7
2

−
Wn(ξ + μ)

r
2
1

� 0,

(14)

which can be rewritten as

n
2

−
(1 − μ)q

r
3
1

−
3(1 − μ)qA1

2r
5
1

+
15(1 − μ)qA2

8r
7
1

−
μ
r
3
2

−
3μB1

2r
5
2

+
15μB2

8r
7
2

􏼢 􏼣η �
Wn(ξ + μ)

r
2
1

. (15)
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Multiplying equations (13) and (14) by η and (ξ + μ),
respectively, we obtain

ξηn
2

−
(1 − μ)(ξ + μ)ηq

r
3
1

−
3(1 − μ)(ξ + μ)ηqA1

2r
5
1

+
15(1 − μ)(ξ + μ)ηqA2

8r
7
1

−
μ(ξ + μ − 1)η

r
3
2

−
3μ(ξ + μ − 1)ηB1

2r
5
2

+
15μ(ξ + μ − 1)ηB2

8r
7
2

+
Wnη2

r
2
1

� 0,

(16)

n
2
(ξ + μ)η −

(1 − μ)(ξ + μ)qη
r
3
1

−
3(1 − μ)(ξ + μ)qηA1

2r
5
1

+
15(1 − μ)(ξ + μ)qηA2

8r
7
1

−
μ(ξ + μ)η

r
3
2

−
3μ(ξ + μ)ηB1

2r
5
2

+
15μ(ξ + μ)ηB2

8r
7
2

−
Wn(ξ + μ)

2

r
2
1

� 0.

(17)

Subtracting equation (17) from equation (16), we obtain

n
2

�
Wn

μη
+
1
r
3
2

+
3B1

2r
5
2

−
15B2

8r
7
2

� 0. (18)

Using equation (18) in equation (15), we have

n
2

�
q

r
3
1

+
3qA1

2r
5
1

−
15qA2

8r
7
1

+
Wn(ξ + μ)

r
2
1η(1 − μ)

−
Wn

η(1 − μ)
. (19)

In the absence of the dynamical flattening parameters
(Ai � Bi � 0, i � 1, 2) and P–R drag (i.e., W � 0), the solu-
tions of equations (18) and (19) are r1 � r2 � 1. 'en,
considering the above parameters, the solutions of equations
(18) and (19) would change slightly by

r1 � 1 + ε1,

r2 � 1 + ε2,
(20)

where εi(i � 1, 2)≪ 1.
Substituting equations (20) in equations (18) and (19)

together with help of equation (10), we obtain the series
equations in terms of εi(i � 1, 2)≪ 1. Solving these equa-
tions by holding the expressions which contain
Ai, Bi, A2

1, B2
1, A1B1(i � 1, 2) (since Ai � JA

2iR
2i

1 and
Bi � JB

2iR
2i

2 i � 1, 2, then A2
1, B2

1, A1B1, A2, and B2 have the
same powers of mean radii of the dominant bodies), α
(where α � 1 − q) and W also by restricting ourselves only to
the quadratic terms in εi(i � 1, 2)≪ 1, we have

ε1 � −
α
3

−
B1

2
+
5B2

8
+
5A1B1

4
+

B
2
1
2

−
W

3
�
3

√
(1 − μ)

,

ε2 � −
A1

2
+
5A2

8
+
5A1B1

4
+

A
2
1
2

+
2W

3
�
3

√
μ

.

(21)

Substituting equations (21) in equations (20), we have

r1 � 1 −
α
3

−
B1

2
+
5B2

8
+
5A1B1

4
+

B
2
1
2

−
W

3
�
3

√
(1 − μ)

,

r2 � 1 −
A1

2
+
5A2

8
+
5A1B1

4
+

A
2
1
2

+
2W

3
�
3

√
μ

.

(22)

Using r21 � (ξ + μ)2 + η2 & r22 � (ξ + μ − 1)2 + η2 defined
in equations (3), then the exact solutions of the triangular
points L4, 5 are

ξ �
1
2

− μ +
1
2

r
2
1 − r

2
2􏼐 􏼑,

η � ±

�������������������

r
2
1 + r

2
2

2
−

r22 − r21
2

􏼠 􏼡

2

−
1
4

􏽶
􏽴

.

(23)

Substituting equation (22) in (23), we obtain

ξ �
1
2

− μ −
α
3

+
1
2

A1 − B1( 􏼁 −
5
8

A2 − B2( 􏼁 −
5
8

A
2
1 − B

2
1􏼐 􏼑

−
W(2 − μ)

3
�
3

√
μ(1 − μ)

,

η � ±
�
3

√

2
1 −

2α
9

−
1
3

A1 + B1( 􏼁 +
5
12

A2 + B2( 􏼁􏼔

+
7
36

A
2
1 + B

2
1􏼐 􏼑 +

17A1B1

9
+

2W(2 − 3μ)

9
�
3

√
μ(1 − μ)

􏼣.

(24)

Hence, equations (24) are the required locations of the
triangular equilibrium points L4, 5 denoted by (ξ, ±η).

4. Stabilityof theTriangularEquilibriumPoints

To examine the stability of the triangular equilibrium points,
we place the infinitesimal mass at one of the equilibrium
points and give it a small velocity. 'e point is stable for the
oscillatory solutions with small amplitude and unstable for
exponentially diverging solutions.

Assume that (ξ0, η0) are the coordinates of the equi-
librium points under consideration and let (x, y) be the
small displacements from these coordinates of the equilib-
rium points.

'ese can be written as
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ξ � ξ0 + x,

η � η0 + y.
(25)

Now, using equations (25) and holding only the linear
terms of Taylor’s theorem as the second and higher power of
x andy being very small, equation (11) become

x″ − 2y′ � U
0
ξ + xU

0
ξξ + yU

0
ξη + x′U0

ξξ′ + y′U0
ξη′ ,

y″ + 2x′ � U
0
η + xU

0
ηξ + yU

0
ηη + x′U0

ηξ′ + y′U0
ηη′ ,

(26)

where the superscript 0 of equations (26) indicates that the
partial derivatives are evaluated at the equilibrium points
(ξ0, η0). At equilibrium points, U0

ξ � U0
η � 0. Hence, equa-

tions (26) become

x″ − 2y′ � xU
0
ξξ + yU

0
ξη + x′U0

ξξ′ + y′U0
ξη′ ,

y″ + 2x′ � xU
0
ηξ + yU

0
ηη + x′U0

ηξ′ + y′U0
ηη′ .

(27)

Suppose x � Aeλt and y � Beλt are the trial solution of
equations (27) (variational equations). 'en, by using these
values of the trial solutions in equations (27), we get

λ2 − U
0
ξξ − λU

0
ξξ′􏼐 􏼑A + − 2λ − U

0
ξη − λU

0
ξη′􏼐 􏼑B � 0,

λ2 − U
0
ηη − λU

0
ηη′􏼐 􏼑B + 2λ − U

0
ηξ − λU

0
ηξ′􏼐 􏼑A � 0.

(28)

Equations (28) have a nontrivial solution if

λ2 − U
0
ξξ − λU

0
ξξ′ − 2λ − U

0
ξη − λU

0
ξη′

2λ − U
0
ηξ − λU

0
ηξ′ λ2 − U

0
ηη − λU

0
ηη′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0. (29)

Hence, the required characteristic equation of this dy-
namical system is given by [3, 22]

λ4 + a0λ
3

+ a1λ
2

+ a2λ + a3 � 0, (30)

where

a0 � − U
0
ξξ′ + U

0
ηη′􏼐 􏼑,

a1 � 4 − U
0
ξξ + U

0
ηη􏼐 􏼑 + 2 U

0
ξη′ + U

0
ηξ′􏼐 􏼑 + U

0
ξξ′U

0
ηη′ − U

0
ξη′U

0
ηξ′ ,

a2 � U
0
ξξU

0
ηη′ + U

0
ξξ′U

0
ηη + 2 U

0
ξη − U

0
ηξ􏼐 􏼑 − U

0
ξη′U

0
ηξ − U

0
ξηU

0
ηξ′ ,

a3 � U
0
ξξU

0
ηη − U

0
ξηU

0
ηξ .

(31)

Now, the second partial derivatives of the modified
potential-like functionU at triangular equilibrium points are

U
0
ξξ �

3
4

+
3e

2

8
−

1
2

−
3μ
2

􏼒 􏼓α +
9
4

− 3μ􏼒 􏼓A1 −
15
4

−
75μ
16

􏼒 􏼓A2 −
3
4

− 3μ􏼒 􏼓B1 +
15
16

−
75μ
16

􏼒 􏼓B2

−
3
4

−
27μ
16

􏼒 􏼓A
2
1 +

45
16

−
27μ
16

􏼒 􏼓B
2
1 −

15A1B1

8
−

W μ2 − 13μ + 8􏼐 􏼑

4
�
3

√
μ(1 − μ)

,

U
0
ηη �

9
4

+
9e

2

8
+

1
2

−
3μ
2

􏼒 􏼓α +
3A1

4
−

15
4

−
45μ
16

􏼒 􏼓A2 +
3B1

4
−

15
16

+
45μ
16

􏼒 􏼓B2

−
15
4

−
45μ
16

􏼒 􏼓A
2
1 −

15
16

+
45μ
16

􏼒 􏼓B
2
1 +

39A1B1

8
+

W 5μ2 − 17μ + 8􏼐 􏼑
�
3

√
μ(1 − μ)

,

U
0
ξη �

3
�
3

√

2
1
2

− μ􏼒 􏼓 +
1
2

− μ􏼒 􏼓
e
2

2
−

1
9

+
μ
9

􏼒 􏼓α +
5(1 − μ)

6
+
μ
6

􏼠 􏼡A1 −
5(1 − μ)

3
+
5μ
24

􏼠 􏼡A2􏼢

−
(1 − μ)

6
+
5μ
6

􏼠 􏼡B1 +
5(1 − μ)

24
+
5μ
3

􏼠 􏼡B2 −
10
9

−
73μ
72

􏼒 􏼓A
2
1 +

7
72

+
73μ
72

􏼒 􏼓B
2
1

+
13(1 − μ)

36
−
13μ
36

􏼠 􏼡A1B1 −
W 27μ2 − 31μ + 8􏼐 􏼑

18
�
3

√
μ(1 − μ)

,

Ω0ηξ � Ω0ξη, U
0
ξξ′ � −

5W

4
, U

0
ηη′ � −

7W

4
U

0
ξη′ � U

0
ηξ′ � −

�
3

√
W

4
, U

0
ξη′􏼐 􏼑

2
� 0.

(32)
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Hence, the general expressions for the roots of the
characteristic equation (30) are

λ1⟶ −
1
2

��������������������

a
2
0
2

−
4a1

3
−

M

4
��
R

√ − P − Q

􏽳

−
a0

4
−

��
R

√

2
,

λ2⟶
1
2

��������������������

a
2
0
2

−
4a1

3
−

M

4
��
R

√ − P − Q

􏽳

−
a0

4
−

��
R

√

2
,

λ3⟶ −
1
2

��������������������

a
2
0
2

−
4a1

3
+

M

4
��
R

√ − P − Q

􏽳

−
a0

4
+

��
R

√

2
,

λ4⟶
1
2

��������������������

a
2
0
2

−
4a1

3
+

M

4
��
R

√ − P − Q

􏽳

−
a0

4
+

��
R

√

2
,

(33)

where

K � a
2
1 − 3a0a2 + 12a3,

L � 2a
3
1 − 9a0a1a2 + 27a

2
2 + 27a

2
0a3 − 72a1a3,

M � − a
3
0 + 4a0a1 − 8a2,

p �
L +

��������
L2 − 4K3

√
􏼐 􏼑

(1/3)

3 × 2(1/3)
,

Q �
2(1/3)

K

3 L +
��������
L2 − 4K3

√
􏼐 􏼑

(1/3)
,

R � P +
a
2
0
4

−
2a1

3
Q.

(34)

5. Numerical Application

In this section, we study numerically the locations and
stability of the triangular equilibrium points L4, 5 of the Sun-
Earth system, by taking into account the dynamical flat-
tening parameters of both the Sun (m1) and Earth (m2), the
radiation pressure factor, and P–R drag of the Sun.

For the purpose of computation in this paper, the as-
trophysical data of the Sun-Earth system are borrowed from
NASA ADS, Ragos et al. [29], Mecheri et al. [30], and Singh
and Umar [31].

'e first two even zonal harmonics of the Sun are
JA
2 ∼ 2.2 × 10− 7 & JA

4 ∼ − 4.5 × 10− 9 and those of the Earth
are JB

2 ∼ 1.0 × 10− 3 & JB
4 ∼ − 1.6 × 10− 6. Also, the orbital

eccentricity of the Earth is e∼0.0167. Now, the dynamical
flattening parameters of the primary bodies are given by

A1 ∼ 5.0 × 10− 12, A2 ∼ − 2.0 × 10− 18, B1 ∼ 2.0 × 10− 12,

and B2 ∼ − 5.2 × 10− 24.
'e radiation pressure factor of the Sun q is defined as

q � 1 − α such that α can be expressed as
α � (L⊙/(2πGm1cκ)) [28], where L⊙ is the luminosity of the
Sun, G is the gravitational constant, c is the speed of light,
and κ is the mass per unit area. By using Stefan–Boltzmann’s
law, the luminosity of the primary can be expressed as
L⊙ � 4πR

2
⊙ σT4
⊙ , where σ is the Stefan–Boltzmann’s constant

(see [28]). Also, the dimensionless velocity of light and the
mass ratio of the Sun-Earth system are given by
cd ∼ 10064.84 and μ ∼ 3.0035 × 10− 6, respectively [29].

6. Discussion

'emodified equations of motion of an infinitesimal mass in
the framework of the elliptic restricted three-body problem
under the effects of dynamical flattening parameters of both
primaries, radiation pressure factor, and P–R drag of the
bigger primary (i.e., the Sun) are given in equations (11),
while the locations and characteristic equation of the tri-
angular points L4, 5 are given in equations (24) and (34),
respectively.

Figure 1 shows the effects of the perturbing forces in-
volved in the problem under consideration for the three
different cases and classical case as well on the locations of
triangular equilibrium points L4, 5. Graph (a) is the classical
case, graph (b) shows the effects of radiation pressure factor
together with P–R drag, and graph (c) shows the effects of
dynamical flattening parameters while graph (d) shows the
combine effects of radiation pressure factor, P–R drag, and
dynamical flattening parameters. 'is clearly shows that the
perturbing forces under consideration have no significant
effect on the locations of the triangular equilibrium points
L4, 5 in the vicinity of the Sun-Earth system.'ese effects can
only be seen in the table (see Table 1).

Table 2 shows numerical roots of the characteristic
equation (30) for the classical case, as well as three other
cases. In all cases, the characteristic roots reveal that all the
roots are purely imaginary. 'is shows that the perturbing
forces under consideration have no significant effect on the
stability of the triangular equilibrium points L4, 5. Hence, the
motion of an infinitesimal mass near the triangular equi-
librium points L4, 5 of the Sun-Earth system is stable in the
linear sense under the influence of these perturbations.

For A2
1 � B2

1 � A1B1 � 0 and W � 0, the present results
of the triangular points in the circular case are in conformity
with Singh and Taura [5] for p2 � Mb � 0 in their results and
for α � W � 0, which also agrees with those of Abouelmagd
et al. [11]; the difference in configuration of the primary
bodies is responsible for the difference in sign.

'eir results are [5, 11]
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r
2
1 � (x + μ)

2
+ y

2
,

r
2
2 � (x + μ − 1)

2
+ y

2
,

ξ �
1
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Figure 1: Effects of radiation pressure factor, P–R drag, and dynamical flattening parameters on the locations of triangular equilibrium points L4, 5
of the Sun-Earth system. (a) Blue triangle is for the classical case. (b) Purple triangle is for Ai � Bi � 0, W≠ 0, α≠ 0 case. (c) Brown triangle is for
Ai ≠ 0, Bi ≠ 0, W � α � 0 case. (d) Turquoise triangle is for Ai ≠ 0, Bi ≠ 0, W≠ 0, α≠ 0 case.

Table 1: Effects of radiation pressure factor, P–R drag, and dynamical flattening parameters on the locations of triangular equilibrium points
L4, 5 of the Sun-Earth system.

Case (i � 1, 2) ξ ±η
1 Classical 0.4999969965000000 0.866025403784439
2 Ai � Bi � 0, W≠ 0, α≠ 0 0.4999969964999347 0.866025403784474
3 Ai ≠ 0, Bi ≠ 0, W � α � 0 0.4999969965015000 0.866025403782418
4 Ai ≠ 0, Bi ≠ 0, W≠ 0, α≠ 0 0.4999969965014348 0.866025403782454

Table 2: Effects of radiation pressure factor, P–R drag, and dynamical flattening parameters on the stability of triangular equilibrium points
L4, 5 of the Sun-Earth system.

Case (i � 1, 2) λ1, 2 λ3, 4 Remark

1 Classical ±0.004504233279349719i ±0.999780664387228i Stable
2 Ai � Bi � 0, W≠ 0, α≠ 0 ±0.004504233327067630i ±0.999780664386725i Stable
3 Ai ≠ 0, Bi ≠ 0, W � α � 0 ±0.004504233279348517i ±0.999780664379725i Stable
4 Ai ≠ 0, Bi ≠ 0, W≠ 0, α≠ 0 ±0.004504233327101427i ±0.999780664379223i Stable
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In the case Ai � Bi � 0(i � 1, 2) in the present work, the
obtained results of the triangular points in the circular case
are in agreement with those of Singh and Simeon [18] by

taking σi � σi
′ � δ2 � W2 � 0(i � 1, 2), andW1⟶W in

their results.
'eir results are
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Our results for the second partial derivatives and the
characteristic equation differ from those of Singh and Taura
[5], Abouelmagd et al. [11], and Singh and Simeon [18] due
to the elliptic nature of our potential-like function. However,

the P–R drag parts of the partial derivatives coincide with
those of Singh and Simeon [18], that is, for
δ2 � W2 � 0, W⟶W1, and α⟶ δ1. 'eir results for the
second partial derivatives are
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'us, for A2 � B2 � W � 0 in the elliptic case of the
triangular points, the obtained results coincide with those of
Narayan and Shrivastava [6]; that is, for α⟶∈(1),

A1⟶ A1, B1⟶ A2, A1∈(1) � 0& ∈(2) � 0. 'eir results
are
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In the elliptic case, the obtained results do not agree with
those of Singh and Umar [4] and Singh and Tyokyaa [12].
'is is because we have used the modified mean motion
(n)(equation (10)) which does not contain the eccentricity
(e) and semi-major axis (a). However, by substituting e � 0

and a � 1, their results in the triangular case coincide fully
with ours upon relaxing some parameters in our problem.
'e same applies to the second partial derivatives.

'eir results are [12, 14]
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'eP–R drag finds importance in the investigation of the
stability of zodiacal cloud, orbital evolution of cometary
meteor steams, asteroidal particles, and dust rings around
planets. 'is model is applicable not only to the Sun-Earth
system but also to other systems in both the solar and stellar
systems as well.
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*is study presents the chaotic oscillation of the satellite around the Earth due to aerodynamic torque. *e orbital plane of the
satellite concurs is same as the tropical plane of Earth.*e half-width of riotous separatrix is assessed utilizing Chirikov’s measure.
Variety of boundary techniques shows that streamlined force boundary (ε), unpredictability of circle (e), and mass-proportion
(ω0) convert normal wavering to the disorganized one. We studied the behavior of trajectories due to change in parameters with
Lyapunov exponents and time series plots. *e theory is applied to Resourcesat-1, an artificial satellite of the Earth.

1. Introduction

Artificial satellites are widely used in telecommunication,
mass media and weather forecast, agriculture, and naviga-
tion. Satellites are widely used in agriculture and forestry for
crop inventory, yield prediction, and soil/crop condition
monitoring. Resourcesat-1 (also known as IRS-P6) is an
advanced remote sensing satellite built by the Indian Space
Research Organization (ISRO).*e tenth satellite of ISRO in
IRS series, Resourcesat-1, is intended to not only continue
the remote sensing data services provided by IRS-1C and
IRS-1D, both of which have far outlived their designed
mission lives, but also vastly enhance the data quality. *e
major objectives of Resourcesat-1 are to provide continued
remote sensing data services on operational basis for inte-
grated land and water resources management with enhanced
multispectral/spatial coverage and stereo imaging and also
to develop new areas of applications to take full advantages
of increased spatial and spectral resolutions. For a country
like India, with populations separated by rough terrain and
different languages, communications satellites provide re-
mote populations access to education and to medical ex-
pertise that would otherwise not reach them [1].

Satellite exhibits chaotic motion under the influence of
different torques and, for the low-thrust tug-debris tethered
system in a Keplerian orbit, experiences chaotic attitude
motion. Aslanov et al. [2] introduced steady and insecure
fixed answers for the in-plane movement of the framework
in a roundabout circle, which rely upon the estimation of the
pull’s pushed. Bhardwaj and Kaur [3] studied the satellite
motion under the effect of aerodynamic torque and
explained in detail about the nonresonance oscillation. Also,
they discussed that under the influence of magnetic torque
for different mass parameters, tumbling of satellite experi-
ences shows the chaotic signal [4]. Bhardwaj and Sethi [5]
discussed that air drag exhibits resonance criteria for
nonlinear motion. Rotational nonlinear oscillation of the
satellite under the influence of combined aerodynamic and
magnetic torque was discussed by Bhardwaj et al. [6], and
they concluded that with the change in mass parameter, the
dynamics of the satellite altered. Bhardwaj and Tuli [7]
discussed the nonlinear planar oscillation of a satellite under
the influence of third-body torque, and it is concluded that
Hyperion tumbled more chaotically with the change in the
third body torque parameter. Planar oscillation of a satellite
in an elliptic orbit for magnetic torque was studied by
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Bhardwaj and Kaur [8], and they observed that as eccen-
tricity changed, the oscillation of satellite exhibits chaotic
motion which increases with the increase in eccentricity.
Bhardwaj and Bhatnagar [9–12] studied the nonlinear planar
rotational oscillation of the satellite in circular orbit for
magnetic torque and for third-body torque in elliptic orbit,
and it is concluded that the mass parameter and torque
parameter play an important role in changing the motion
from regular to the chaotic one.

Chegini et al. [13, 14] explored mathematically turmoil
in demeanor elements of an adaptable satellite made out of
an inflexible body and two indistinguishable unbending
boards connected to the fundamental body with springs
using analytical and numerical methods. Clemson and
Stefanovska [15] discussed the analysis of nonautonomous
dynamics for extracting properties of interactions and the
direction of couplings for chaotic, stochastic, and nonau-
tonomous behaviour. For the chaotic class, the Lorenz
system; for the stochastic class, the noise forced Duffing
system; and for the nonautonomous class, the Poincare
oscillator with quasiperiodic forcing discussed and gave a
good review to distinguish nonautonomous dynamics from
chaos or stochasticity. Doroshin [16] got altered numerical
models and dynamical frameworks to give an idea of het-
eroclinic chaos and its local suppression in attitude dy-
namics for dual spin spacecraft and gyrostat satellites.
Gutnik and Sarychev [17] mathematically simulated the
motion of the satellite under aerodynamic torque for the
control system influenced by the active dumping torques.
Inarrea and Lanchares [18] examined the pitch movement
elements of an awry rocket in round circle affected by a
gravity inclination force and accepted that shuttle is irritated
by a little streamlined drag force corresponding to the
precise speed of the body about its mass community.
Koupriano and Shevchenko [19] considered the issue of
recognizability of clamorous systems in turn of planetary
satellites utilizing Jacobian assessment approach. Kuptsov
and Kuznets [20] discussed the Lyapunov analysis of strange
pseudohyperbolic attractors and briefly analyzed about the
angles between tangent subspaces, local volume expansion,
and contraction.

*e phenomenon of chaos is generally related to the field
of dynamical systems, and it can be characterized in the
dynamics by sensitive dependence on the initial conditions.
Chaos is a fascinating mathematical and physical phenom-
enon. *e study of chaos shows that simple systems can
exhibit a complex and unpredictable behaviour. *e chaos in
the dynamics can be identified and quantified by several
techniques. A positive value of the Lyapunov exponent
provides chaos in the dynamics which is discussed by Letellier
[21]. Liu and Cui [22] analyzed the nonlinear model which
should be adopted for the sailcraft in long duration missions,
and the restricted position of the sliding mass could be se-
lected elaborately to utilize the resultant torque by the
gravitational and center-of-mass or center-of-pressure tor-
ques. Melnikov and Shevchenko [23] considered the issue of
figuring the Lyapunov season of the disorganized movement
region for resonances in satellite movement. Pritykin et al.

[24] discussed the long-term evolution of attitude motion for
defunct satellites in nearly polar orbits. Rosengren et al. [25]
indicated that the sporadic and random characters of the
Global Navigation Satellite Systems’ circles mirror a com-
parative inconsistency in the circles of numerous divine
bodies in our solar framework. Rawashdeh [26] studied the
attitude analysis of small satellites using model-based simu-
lation. Efimov et al. [27] discussed about long-term attitude
dynamics of space debris for sun-synchronous orbits and
studied about Cassini cycles and chaotic stabilization. Chang
[28] gave an idea of stability, chaos detection, and quenching
chaos for the swing equation system. Wang et al. [29] de-
veloped the six-dimensional hyperchaotic system and applied
for secure communication circuit implementation. Wolf et al.
[30] introduced the main calculations that permit the as-
sessment of nonnegative Lyapunov types from an exploratory
time arrangement.

Apparently, none of the creators have contemplated the
bedlam affected by the streamlined force in an elliptic circle.
In the current examination, we contemplated the tumul-
tuous movement of a satellite affected by a streamlined force
in an elliptic circle. In this study, the condition of movement
for the framework is inferred. Utilizing variety of boundaries
techniques, the unrest, libration, and endless period sepa-
ratrix are examined. *e mathematical recreation of tu-
multuous movement affected by the streamlined force is
examined for Earth-Resourcesat-1 satellite.

2. Mathematical Model

Let an inflexible satellite S revolve in elliptic circle around
Earth E with the end goal that orbital plane concurs with
central plane of Earth. S is thought a trihub body with head
snapshots of inactivity A<B<C at its focal point of mass,
and C is the snapshot of idleness about turn hub which is
opposite to the orbital plane. Let r

→ be the sweep vector of
focal point of mass of S, ] be the true anomaly, θ be the point
that the long hub of S makes with fixed line EF lying in the
orbital plane, and (η/2) be the point between the span vector
and long pivot as shown in Figure 1.

Equation of motion for the system, see details as given in
[3], is obtained as

d2η
d]2

+ n
2η � − e cos ]

d2η
d]2

+ 2e sin ]
dη
d]

+ 4e sin ] + n
2
(η − sin η)

+ ε A∗]
2 sin ] + B∗] sin ] + C∗ sin ] + D∗] + E∗􏼐 􏼑,

(1)

where n2 � ((3(B − A))/C) � mass parameter; ε � ((ρSCd

l2)/(CΩ2)) � aerodynamic torque parameter; A∗ � ((

a2(1 − e))/Ω2l) � constant; B∗ � (((ωa(2e − 1))/Ω) cos i+

((2V1a(1 − 2e))/Ωl)) � constant; C∗ � (ωV1(2e − 1)cos i +

((V2
1(1 − 2e))/l) +((ωae)/2Ω)sin i) � constant; D∗ � (((ω

a(2e − 1))/Ω)sin i) � constant; E∗ � ωV1(2e − 1)sin i � con
stant; and
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d2θ
dt

2 �
μ
r
3 − 2e sin ] − e sin ]

dη
d]

+
1
2

(1 + e cos ])
d2η
d]2

􏼠 􏼡.

(2)

From equations (1) and (2), we get

d2θ
dt

2 � −
μ
2r

3 n
2 sin δ − ε1􏼐

· A∗]
2 sin ] + B∗] sin ] + C∗ sin ] + D∗] + E∗􏼐 􏼑􏼑.

(3)

Taking n2 � ω2
0 � ((3(B − A))/C); θ � ] + (δ/2)⇒

δ � 2(θ − ]), equation (3) becomes

d2θ
dt

2 � −
μ
2r

3 ω2
0 sin(2(θ − ])) − ε1􏼐

· A∗ sin ]3 + B∗ sin ]2 + C∗ sin ] + D∗] + E∗􏼐 􏼑􏼑.

(4)

In condition (4), if units are picked to the point that
orbital time of S is 2π and its semisignificant pivot is 1, at
that point dimensionless, time is equivalent to mean
longitude or genuine inconsistency which is 2π intermit-
tent and μ� 1. As r and ] are 2π occasional as expected,
utilizing Fourier-like Poisson series (Wisdom et al. [31]),
equation (4) becomes

d2θ
dt

2 +
ω2
0
2

􏽘 H
m

2
, e􏼒 􏼓 sin(2θ − mt)

−
ε
2

A∗ sin ]3 + B∗ sin ]2 + C∗ sin ] + D∗] + E∗􏼐 􏼑 � 0,

(5)
H((m/2), e) corresponds to e2|(m/2)− 1| and is given by Cayley
[32] and Goldreich and Peale [33]. At the point, if e is little,
H((m/2), e) � − (e/2). *e half whole number (m/2) is
signified by the image p. Resonances happen at whatever
point one of the contentions of the sine or cosine capacities is
almost fixed, for example, at whatever point
|(dθ/dt) − p|≪ (1/2). In such cases, it is to rework the
condition of movement as far as the gradually changing
reverberation variable vp � θ − pt ⇒((d2vp)/dt2) �

((d2θ)/dt2)⟹ 2vp � 2θ − mt. Equation (5) can be written
as

d2vp

dt
2 +

ω2
0
2

H(p, e)sin 2vp

−
ε
2

A∗ sin ]3 + B∗ sin ]2 + C∗ sin ] + D∗] + E∗􏼐 􏼑 � 0.

(6)

*is is pendulum perturbed by (ε/2)(A∗ sin ]3+
B∗ sin ]2 + C∗ sin ] + D∗] + E∗). When ε≠ 0, condition (6)
speaks to the condition of movement of upset pendulum
given by

d2xp/dt
2

􏼐 􏼑 + f′ xp􏼐 􏼑 � mpg′ xp, t􏼐 􏼑, (7)

where xp � 2vp ; f′ (xp) � k2
1p sin xp ; k2

1p � ω2
0H(p, e) ;

mp � ε ; and g′(xp, t) � A∗ sin t3 + B∗ sin t2 + C∗ sin t +

D∗t + E∗. *e unperturbed piece of condition (7) is
((d2xp)/dt2) + f′(xp) � 0 ⇒(dxp/dt)2 � 2k2

1p cos xp + c1p.

*e integration constant is defined as c1p. If c1p + 2k21p ≥ 0,
then motion is said to be real. *ree kinds of motions are
defined based on the conditions c1p > 2k21p, c1p < 2k21p, and
c1p � 2k2

1p.

2.1. Category-I. We consider c1p > 2k21p. Forc1p > 2k21p, the
value of (dxp/dt) never vanishes; it is either certain or
negative, and the pendulum is seeming well and good or the
other. For this situation, the unperturbed arrangement is

xp � lp + c1p sin lp + o c
2
1p􏼐 􏼑,

lp � npt + ε1,

c1p �
k
2
1p

n
2
p

;

1
np

�
1
2π

􏽚
2π

0

dxp

c1p + 2k
2
1p cos xp􏼐 􏼑

(1/2)
,

(8)

ν 

S 

F E 
θ

r

n/2

Figure 1: S revolving around Earth E.
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where c1p and ε1 are the discretionary constants, and lp is a
contention. Intermittent segment of this arrangement can be
viewed as swaying about the mean condition of movement
which is unrest with a period (2π/np). Half plentifulness of
wavering is clearly not exactly π, and it diminishes as np

increments. Here, we may see that (dxp/dt)≠ 0, and the
movement is supposed to be of type I, for example, upheaval.
Brown and Shook [34] proposed the theory of variation of
parameters for the perturbed pendulum which gives

dc1p

dt
�

m

kp

zx

zl
g′,

dlp

dt
� n −

m

kp

zx

zc1
g′,

kp �
z

zc1p

np

zx

zl
􏼠 􏼡

zx

zl
− np

z
2
x

zl
2

zx

zc1p

,

(9)

Table 1: Earth-Resourcesat-1 system for fixed values of A∗ � 3.36E + 09, B∗ � 1596.387, C∗ � − 103631, D∗ � −

4E + 08, E∗ � 200.1022, e � 0.001, ε, and variation in n.

Figure no. n ε Graphical behaviour of Poincare map Graphical behaviour of Lyapunov exponent
2 0.0001 0.000000000000000001

Regular curves disintegrate as ε increases

Chaotic
3 0.00000000000001 Chaotic
4 0.9 0.000000000000000001 Periodic
5 0.00000000000001 Periodic and chaotic
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Figure 2: For n � 0.0001, ε � 0.000000000000000001, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631, E∗ � 200.1022,

and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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since c1p � (k2
1p/n2p). *erefore,

znp

zc1p

� −
np

2c1p

,

zxp

zlp
� 1 + c1p cos lp,

z
2
xp

zlp
2 � − c1p sin lp,

zxp

zc1p

� sin lp,

z
2
xp

zc1pzlp
� cos lp.

(10)

Putting the above values and writing kp � k1p, equation
(9) can be written as

k1p � −
np

2c1p

−
npc1pcos

2
lp

2

+ npc1p � −
np

2c1p

.

(11)

Hence, (dc1p/dt) � 0; so, c1p is the second order ap-
proximation constant. Second equation of (9) gives

dlp

dt
� np +

2mpc1p

np

sin lp

· A∗ sin t
3

+ B∗ sin t
2

+ C∗ sin t + D∗t + E∗􏼐 􏼑.

(12)

Rejecting second or higher order terms, we get
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Figure 3: For n � 0.0001, ε � 0.00000000000001, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631, E∗ � 200.1022,

and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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d2lp
dt

2 �
2C∗mpc1p

np

+
2D∗mpc1p

np

−
6E

2
∗m

2
pc1p

n
2
p

+
4E

2
∗m

2
pc

2
1p

np

⎛⎝ ⎞⎠

· sin lp + 1 + 2c1p􏼐 􏼑 C∗mp sin t + D∗mpt + E∗mp􏼐 􏼑,

d2lp
dt

2 + k
2
2p sin lp � mp 1 + 2c1p􏼐 􏼑 C∗ sin t + D∗t + E∗( 􏼁.

(13)

Let l p � x p, (d2xp/dt2) + k2
2p sin xp � mpg″(xp, t),

where g″(xp, t) � (1 + 2c1p)(C∗ sin t + D∗t + E∗), and
k2
2p � − (((2C∗mpc1p)/np) + ((2D∗mpc1p) /np) − ((6E2

∗m
2
pc

1p)/np) + ((4E2
∗m

2
pc21p)/np)). *e unperturbed part of the

above equation is (d2xp/dt2) + k2
2p sin xp � 0⇒(dxp/dt)2 �

2k22p cos xp + c2p, where c2p is a constant of integration.
*ree types of motions are obtained for the motion of
pendulum.

(1) If (dxp/dt)≠ 0, then motion of type 1 exists. For type
1, the solution is xp � Npt + ε2p + (k2

2p/N
2
p)

sin(Npt + ε2p) + · · ·; (1/Np) � (1/2π) 􏽒
2π
0 (dxp/(c2p

+2k2
2p cos xp)(1/2)), where c2p and ε2p are the arbi-

trary constants. For first approximation, Np � N0p;
so, xp � x0p + (k2

2p/N
2
0p)sin(x0p), where x 0p � N0p

t + ε2p. *is is situation of unrest.
(2) If (dxp/dt) � 0 at 0 or π, then motion of type 2

exists. For type 2, solution is xp � λp sin(p′t + λ0),
where p′ �

�����
((2m

􏽰
pω2

0H(p, e))/n3
p)(C∗ + D∗ + (

(E2
∗mp)/np)(− 3 + 2((2ω2

0H(p, e))/n2
p))), λp, λ0 are

defined as the constants of integration. *is is sit-
uation of libration.

(3) Type 3 when c2p � 2k22p � − ((4ω2
0mpH(p, e))/n3

p)

(C∗ + D∗ + ((E2
∗mp)/np)(2((ω2

0H(p, e))/n2
p) − 3)).

Solution is x p + π � 4 tan− 1 exp(k 2pt + α 0). *e
arbitrary constant is defined as α0. It is observed that
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Figure 4: For n � 0.9, ε � 0.000000000000000001, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631, E∗ � 200.1022,

and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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as t⟶ ±∞, (dxp/dt) � 0 as x p⟶ ±π are
consequently higher subsidiaries of x p way to deal
with zero. As x p ways to deal with ± π, t watches out
for uncertain capacity of x p.*is is case of boundless
period separatrix.

We presumed that because of the aftereffects of type 1,
type 2, and type 3, the streamlined force assumes a huge part
in changing the movement of upset to libration or to
boundless period separatrix.

2.2. Category-II: c1p < 2k21p. For this situation, unperturbed
arrangement is xp � c1p sin lp + o(c31p) , lp � npt + ε1 , and
np � k1p(1 − (1/16)c21p + · · ·), where c1p and ε1 are the
discretionary constants, and lp is a contention. If there
should arise an occurrence of bothered pendulum by uti-
lizing the hypothesis of variety of boundaries, we get
kp � (z/zc1p)(np(zx/zl))(zx/zl) − np(z2x/zl2)(zx/zc1p),
kp � k1pc1p,
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Figure 5: For n � 0.9, ε � 0.00000000000001, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631, E∗ � 200.1022, and e �

0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.

Table 2: Earth-Resourcesat-1 system for fixed values of A∗ � 3.36E + 09, B∗ � 1596.387, C∗ � − 103631, D∗ � − 4E + 08, E∗
� 200.1022, e � 0.001, n, and variation in ε.

Figure
no. ε n Graphical behaviour of Poincare map Graphical behaviour of Lyapunov exponent

6 0.0000000000000000000000005 0.00001
Curves behave chaotically but

remains almost same

Chaotic
7

0.000000000000000000005
0.005 Chaotic

8 0.4 Periodic and chaotic
9 0.8 Periodic
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d2lp
dt

2 �
mp

k1pc1p

− C∗ − D∗ +
mpE

2
∗

k1pc
2
1p

⎛⎝ ⎞⎠sin lp

−
mp

c1p

C∗ sin t + D∗t + E∗( 􏼁

+
m

2
p

k
2
1pc

2
1p

C∗E∗ sin t + D∗E∗t + E
2
∗􏼐 􏼑,

⇒
d2lp
dt

2 + k
2
3p sin lp � −

mp

c1p

C∗ sin t + D∗t + E∗( 􏼁

+
m

2
p

k
2
1pc

2
1p

C∗E∗ sin t + D∗E∗t + E
2
∗􏼐 􏼑,

(14)

where k2
3p � − (mp/k1pc1p)(− C∗ − D∗ + (mpE2

∗/k1pc21p)).

*e unperturbed part of the equation is
((d2lp)/dt2) + k2

3p sin lp � 0, where lp is little, and the ar-
rangement of above condition is lp � e k 3pt + e − k 3pt. It is
again a condition of a pendulum, and as in a prior case, the
movement is alluded as upset, libration, and boundless
period separatrix.

2.3. Category-III: c1p � 2k21p. *e unperturbed arrangement
is

xp + π � 4 tan− 1 exp k1pt + α0􏼐 􏼑, (15)

where α0 is a discretionary steady. *is is the situation of
endless period separatrix as asymptotic forward and in re-
verse so as to insecure harmony. In this class, the idea of
unperturbed arrangement does not change by considering
the streamlined force. Close to the endless period, separatrix
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Figure 6: For n � 0.00001, ε � 0.0000000000000000000000005, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631,

E∗ � 200.1022, and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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widened by high recurrence term into tight clamorous band
for little n, and half width of disordered separatrix is given by

ωp �
Ip − I

s
p

I
s
p

� 4πε1λ
3
e

− (πλ/2)
, (16)

where ε1 is the proportion of coefficient of closest annoying
high-recurrence term to coefficient of perturbed term, and
λ�Ω/ω is the proportion of recurrence distinction between
full term and closest nonfull term (Ω) to recurrence of little
sufficiency freedoms (ω).

3. Spin-Orbit Phase Space

Utilizing Poincare surface of the segment by taking a gander
at directions stroboscopically with period 2π, the segment is
drawn with (dη/d]) versus v at each periapse section. On
account of semi-intermittent direction, focuses are con-
tained in smooth bends, while for clamorous directions, they
seem to the top off region in the stage space in an arbitrary
way. Since direction indicated by η is identical to the di-
rection signified by π + η, we have, consequently, confined
the span from 0 to π.
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Figure 7: For n � 0.005, ε � 0.000000000000000000005, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631,

E∗ � 200.1022, and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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4. Results and Discussion

Poincare map, surface of section, and Lyapunov exponents
have been plotted for Earth’s artificial satellite Resourcesat-1.
For the satellite, it is assumed that semimajor
axis� a� 7.195∗103 km, flightiness� e� 0.001, tendency
� i� 98.69°, and angular velocity�Ω� 1.034∗10− 3 rad/sec. *e
effect of mass parameter (n) and aerodynamic torque pa-
rameter (ε) is studied on the nonstraight wavering of a satellite

in an elliptic circle. Poincare maps, surface of section, Lya-
punov exponents, and time series for different values of mass
parameter and aerodynamic toque parameter are plotted as
described in tables and figures. Table 1 gives the details of
figures for Earth − Resourcesat − 1 for fixed values of A∗,

B∗, C∗, D∗, E∗, ε, and e, and the variation of values of n from
0≤ n≤ 1 is shown in Figures 2–5. Table 2 gives description of
figures for the Earth-Resourcesat-1 system at fixed values of
parameters, n, and e, and the variation of values of ε from
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Figure 8: For n � 0.4, ε � 0.000000000000000000005, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631,

E∗ � 200.1022, and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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0≤ ε≤ 0.5 which are plotted is shown in Figures 6–9. From the
plots, it is observed that regular curves disintegrate, and this
disintegration increases as ε increases and curves behaves
chaotically but remains almost same.

5. Conclusion

From these investigations, we conclude that the stream-
lined force assumes an extremely huge function in
changing the movement of insurgency into movement of
libration or endless period separatrix. Likewise, we see that
standard movement changes into a turbulent one for
certain estimations of the streamlined force boundary and
mass boundary n. Half width of disordered separatrices
assessed by Chirikov’s basis is not influenced by the
streamlined force. It was seen that counterfeit satellite’s
turn circle stage space is overwhelmed by a chaotic zone
which increments further because of the streamlined force.
It is additionally seen that normal bends begin breaking
down because of the streamlined force and mass boundary,
and this deterioration increments as the streamlined force

and mass boundary increments. It is concluded that
aerodynamic torque and n change regular movement to the
chaotic motion.

Data Availability

No data were used to support this study.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] https://www.isro.gov.in/Spacecraft/irs-p6-resourcesat-1 - 14
May 2020.

[2] V. S. Aslanov, A. K. Misra, and V. V. Yudintsev, “Chaotic
attitudemotion of a low-thrust tug-debris tethered system in a
Keplerian orbit,” Acta Astronautica, vol. 139, pp. 419–427,
2017.

[3] R. Bhardwaj and M. Kaur, “Aerodynamic Torque exhibits
non-resonance oscillation in satellite motion,” Mathematica

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5

–1.0

–0.5

0.0

0.5

1.0

Poincare map

(a)

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5

–1.0

–0.5

0.0

0.5

1.0

Poincare surface of section

(b)

0 20 40 60 80 100 120 140 160 180 200
Time

–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

Ly
ap

un
ov

 ex
po

ne
nt

s

Lyapunov exponents

(c)

v
0 100 200 300 400 500 600 700 800 900 1000

–1.5

–1

–0.5

0

0.5

1

1.5

η,
dη

/d
v

Time series

(d)

Figure 9: For n � 0.8, ε � 0.000000000000000000005, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631,

E∗ � 200.1022, and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.

Advances in Astronomy 11

https://www.isro.gov.in/Spacecraft/irs-p6-resourcesat-1 - 14 May 2020
https://www.isro.gov.in/Spacecraft/irs-p6-resourcesat-1 - 14 May 2020


Applicanda (Applied Mathematics), vol. 44, no. 2, pp. 247–
262, 2016.

[4] R. Bhardwaj and P. Kaur, “Chaotic attitude tumbling of
satellite in magnetic field,” American Journal of Applied
Sciences, vol. 3, no. 10, pp. 2037–2041, 2006.

[5] R. Bhardwaj and M. Sethi, “Resonance in satelliteâ€s motion
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In the framework of formation satellites, the periodic orbits of deputy satellite are analyzed when the chief satellite is moving in an
elliptical orbit. &is analysis is developed on 1- to 10-loop periodic orbits of the deputy satellite. &ese orbits along with their
associated loops are discussed under some specific initial position sets. &e effects of different initial velocities, initial true
anomalies, and eccentricities on the initial position and orbital period of periodic orbits of deputy satellite are investigated.

1. Introduction

&e periodic orbits have substantial and leading role in
exploring and understanding the behavior of dynamical
systems. At most, they define strange attractors, which lead
to chaotic dynamical systems. &e special solution of a
dynamical system, which repeats and generates itself in time,
is called periodic orbit. From the mathematical point of view,
the orbit is a set of points associated by the evolution
function of the proposed dynamical system.&ese points are
considered as a subset from the phase space, which are
covered by the dynamical system trajectory within frame of a
particular set from the initial conditions. Some recent works,
analyzing the periodic orbits, are addressed in [1–4].

&e sufficient condition for the existence of periodic
orbits is given when the Hamilton system is a function in the
action-angle variables; further, these obtained results are
applied to Hamiltonian of the perturbed Kepler problem in
[5]. Also, a geometric approach to asymptotically stabilize
with a phase of fixed periodic orbits for global Hamiltonian
dynamical system is established in [6]. While in [7], the new
families of periodic orbits analytically for the Hamilton
system are found, which characterize the local motion in the
region around the galaxy center. Furthermore, in [8], the

theory of averaging is applied to prove the existence of
twelve families of periodic orbits in a 3-dimension for a
galactic Hamiltonian dynamical system. Since we are in-
terested to evaluate the periodic orbits within frame of
formation satellites, we will give also an overview about the
literatures and importance of formation satellites in the
following paragraphs.

&e formation flying of small multiple satellites as a re-
placement of using single large satellite has shown great in-
terest for different defense- and science-based space missions.
Formation flying consists of a set of satellites, which have the
same dynamic state and governed by one control law.
Abundance and precision of the proposed system in terms of
formation satellites are more effective tools, which give a job
more accuracy than using a conventional large single satellite.
It also reduces themaintenance and launching costs, extremely
expands the surveillance area, and gives more resilience into
the design of space mission. For example, a sensor of ground
observation can be loaded on bunch of satellites flying in a
specified formation for increasing aperture size instead of
constructing a large single satellite with more expense. &ere
are chances of aborting the whole mission in the event of
satellite failure. Proper management of satellites cluster with
special planning and scheduling reduces the chances of failure.
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Using formation satellite in space-based missions has
many advantages, but at the expense of increased complexity
and different challenges like high-precision relative navi-
gation [9], distributed communication [10], stable formation
design [11], trajectory optimization and control [12], and
attitude synchronization [13]. In formation satellite, tra-
jectory optimization and control problem are two important
tasks to achieve a successful launching of satellites set in the
space. &ese tasks comprise maintaining the small satellites
in a stable formation within frame of enough accuracy
against different perturbations of orbit and maneuvering of
formation for guiding and performing control command for
reconfiguring from perturbed satellite formation to one
stable formation.

&e precise model of relative motion in order to analyze
satellites formation flying is a basic need which covers ac-
curate linear and nonlinear satellites models of relative
motion taking into account J2 perturbations. Different
relative dynamic models are proposed in the literature using
different assumptions with many methodologies. It is nec-
essary to make a comparative study to choose appropriate
models for specified missions with perturbation that should
be considered for definite applications.

A considerable work is accomplished into satellite for-
mation flying for libration point mission with different
models that characterize the relative motion satellites be-
tween two or more in low Earth orbit (LEO). &e major
fundamental of this work is carried out by Hill in [14]. While
the relative motion within frame of Clohessy–Wiltshire
equations is written in terms of a Cartesian or curvilinear
coordinates tracing a circular reference orbit around the
Earth and models by using orbit elements differences to
characterize relative orbits [15]. &e extended version of the
Hill equations was given in [16] that involves the influent of
the zonal harmonic parameter J2 using a force gradient
method to time-varying form. It was verified and applied to
linear quadratic regulator design and evaluated for the
station-keeping task in [17].

In [18], the force gradient modelling approach for sat-
ellite formation flying around the libration point L2 using
periodic halo motion as a reference is investigated. &e
optimal maneuver problem can be characterized as a state
transition problem based on Hill’s system and maximum
principle of Pontryagin. &e optimal solution can be ob-
tained by solving the state transition equations and per-
forming the simulation study [19]. In a formation satellite, a
magnetic field approach helps a large number of closely
located satellites in tracking each other in six degrees of
freedom without disturbing their positions and orientation
relative to each other (see [20, 21] for details).

&e relative motion control is an important task required
in the formation of the flying missions. Different control
methods without fuel consumption are of a specific interest. A
number of these methods based on atmosphere drag effects,
electrostatic magnetic field, and the Lorentz force have been
proposed, but exchanging mass between satellites is a novel
technique for formation flying relative motion control [22].

&is paper is organized into four sections. &e impor-
tance and applications of formation satellites are discussed

in Section 1 as a part of literature review. Model description
and derived governing equations of motion are covered in
Section 2. Analysis of the given sets of initial positions for
deputy satellite, which generate periodic orbits, is investi-
gated in Section 3.While in Section 4, we compare the effect
of variation in eccentricity of chief satellite’s orbit on pe-
riodic orbits of deputy satellite with number of loops. Fi-
nally, conclusion is drawn from the analysis becomes the
part of Section 5.

2. Model Description

Consider two spacecrafts orbiting a common primary and its
mass is m. Mainly, the motion of these two spacecrafts is
governed by the Kepler model or the dynamical system of two
bodies [23–26]. One of the spacecraft is termed as a chief
satellite, and the second is referred as a deputy satellite, where
their masses are m0 and m1, respectively. &en, the equations
of relative motion of deputy satellite with respect to chief
satellite under the setup of the Keplerian two-body problem
are obtained as follows: we consider a chief-fixed, local vertical
local horizontal (LVLH) rotating frame, also known as
EulerHill frame. Here, the origin is located at the position of
chief satellite, as shown in Figure 1.

From two-body problem, the motion of the chief and
deputy satellites around the primary (Earth or any planet) in
inertial frame of reference are given by

€r0 � −μ0
r0
r
3
0
,

€r1 � −μ1
r1
r
3
1
,

(1)

where μ0 � m + m0 and μ1 � m + m1, but m0, m1≪m; then,
we can approximate μ0 ≈ μ1 � μ. &ereby, the solutions of
equation (1) are controlled by

r0 �
a0 1 − e

2
0􏼐 􏼑

1 + e0 cosf0( 􏼁
,

r1 �
a1 1 − e

2
1􏼐 􏼑

1 + e1 cosf1( 􏼁
,

(2)

where a0(a1), e0(e1), and f0(f1) are the semimajor axis,
eccentricity, and true anomaly of chief (deputy) satellite’s
orbit, respectively.

Now, we assume that ρ is the position vector of deputy
satellite relative to chief satellite; hence, ρ � r1 − r0, and the
relative motion of deputy satellite is

€ρ � −μ
r0 + ρ
r0 + ρ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
3 + μ

r0
r
3
0
, (3)

where r0 � [r0, 0, 0]T, ρ � [x, y, z]T, f0 � θ0 − ω, and ω is
the argument of periapsis. But ω is a constant. &ereby, we
can define the angular velocity vector Ω � [0, 0, θ0

.

]T.
&e general relation between the velocity and acceleration

in the inertial frame and the rotating by the angular velocityΩ
is controlled by
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_ρI � _ρR + Ω ∧ ρ,

€ρI � €ρR + 2 Ω ∧ _ρR + Ω ∧ (Ω ∧ ρ) + Ω
.

∧ ρ,
(4)

where

_ρR � _xir + _yiθ + _zih,

€ρR � €xir + €yiθ + €zih.
(5)

Utilizing equations (3)–(5) componentwise equations of
relative motion are given by

€x − 2θ
.

0 _y − θ
..

0y − _θ
2
0x � − r0 + x( 􏼁F x, y, z, r0( 􏼁 + G r0( 􏼁,

€y + 2θ
.

0 _x + θ
..

0x − _θ
2
0y � −yF x, y, z, r0( 􏼁, €z, � −zF x, y, z, r0( 􏼁,

(6)

where

F x, y, z, r0( 􏼁 �
μ

r0 + x( 􏼁
2

+ y
2

+ z
2

􏽨 􏽩
3/2,

G r0( 􏼁 �
μ
r
2
0
.

(7)

&e system of equation (6) represents the general rel-
ative motion with respect to independent time variable. In
order to have docile analysis for these equations, we will
change the independent time variable by the true anomaly
and scale the relative positions by the chief satellite radius.
&ereby, we take x � x/r0, y � y/r0, z � z/r0; since v �

���
r
.
.r

.√

is the velocity, h � r20θ
.

0 � r20
_f0 and P � h2/μ is the semilatus

rectum; then with help of equation (2), the velocity and
accelerations components are controlled by

_x �
h0

P0
1 + e0 cosf0( 􏼁

dx

df0
+ x e0 sinf0( 􏼁􏼢 􏼣,

_y �
h0

P0
1 + e0 cosf0( 􏼁

dy

df0
+ y e0 sinf0( 􏼁􏼢 􏼣,

_z �
h0

P0
1 + e0 cosf0( 􏼁

dz

df0
+ z e0 sinf0( 􏼁􏼢 􏼣,

(8)

€x �
h
2
0

P
3
0
Υ2 f0( 􏼁 Υ f0( 􏼁

d2x
df

2
0

+ x e0 cosf0( 􏼁􏼢 􏼣, €y

�
h
2
0
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0
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d2y
df

2
0

+ y e0 cosf0( 􏼁􏼢 􏼣, €z

�
h
2
0

P
3
0
Υ2 f0( 􏼁 Υ f0( 􏼁

d2z
df

2
0

+ z e0 cosf0( 􏼁􏼢 􏼣, (9)

where

Υ f0( 􏼁 � 1 + e0 cosf0( 􏼁. (10)

Substituting equations (8) and (9) into equation (6), we
get

d2x
df

2
0

− 2
dy

df0
�

1 + x

1 + e0 cosf0( 􏼁
[1 − Γ(x

d2y
df

2
0

+ 2
dx

df0
�

y

1 + e0 cosf0( 􏼁
[1 − Γ(x

d2z
df

2
0

�
−z

1 + e0 cosf0( 􏼁
e0 cosf0 + Γ(x, tyn, qz)􏼂 􏼃,

(11)

Deputy
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Figure 1: Configuration of the LVLH frame.
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where

Γ(x, tyn, qz) �
1

(1 + x)
2

+ y
2

+ z
2

􏽨 􏽩
3/2. (12)

We will drop the subscript zero and bar for simplicity,
thereby equation (11) can be rewritten with a simple form as

d2x
df

2 − 2
dy

df
�

zW

zx
,

d2y
df

2 + 2
dx

df
�

zW

zy
,

d2z
df
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zW

zz
,

(13)

where

W �
1

1 + e cosf

1
2

x
2

+ y
2

− ez
2 cosf􏼐 􏼑 − U􏼔 􏼕,

U � 1 − x −
1

(1 + x)
2

+ y
2

+ z
2

􏽨 􏽩
3/2.

(14)

Equations (13) and (14) are the governing equations of
motion of deputy satellite with respect to chief satellite in the
LVLH frame.

3. Analysis of Periodic Orbits

Since the trajectory of phase space is defined uniquely for any
provided set of specified conditions, we will analyze the initial
position of deputy satellite, which provides periodic orbits
under different values for initial true anomalies and eccen-
tricities of chief satellite. In this context, System (11) can be
used to accomplish our goal. &is system consists of second-
order nonlinear differential equations, which can be con-
verted into system of first-order differential equations and
then integrated with the Runge–Kutta fourth-order method.

&e numerical integration will be developed with a step
size of 0.001 during each iteration. It is important that,
during simulation, true anomaly f is considered as a var-
iable. Notation f0 stands for initial value of true anomaly.
During each iteration of simulation, true anomaly f varies
between f0 and f0 + 4π. Software MATLAB is used to
perform the simulation. In this study, the periodic orbits up
to ten loops are obtained for different values of f0 and e,
where f0 is referred as the initial true anomaly while e is the
eccentricity of the orbit of chief satellite. &e initial position
of the deputy satellite is given as (x0, 0, z0) and initial ve-
locity is taken as (0, y0

.

, 0).&e orbital period and number of
loops are denoted as T and NL, respectively.

3.1. Periodic Orbits When e � 0.1. In this section, we analyze
periodic orbits of deputy satellite with 1–10 loops when ec-
centricity e of chief satellite’s orbit is taken in to account as 0.1.
During this analysis, the effect of initial velocity of deputy
satellite in the y direction and initial true anomaly of deputy

satellite are considered. &us, two different sets of initial
velocities of deputy satellite (0, 0.002, 0) and (0, 0.005, 0) are
taken into account. Also, three different values of initial true
anomaly f0 of deputy satellites are taken as π/6, π/3, and π/2.
&is analysis will be investigated numerically and graphically
through Figures 2–6 and Table 1. &e initial position of
deputy satellite and orbital period of the periodic orbits is
obtained for each set of orbits with 1–10 loops. It is observed
that the orbital period decreases as velocity increases for given
number of loops, eccentricity, and initial true anomaly.

Figures 2(a)–2(f) show the two-dimensional view of the
periodic orbits with the number of loops 1 to 6 with a given
value of x0. &ese orbits are obtained when the initial true
anomaly and initial velocities are π/6 and (0, 0.002, 0),
respectively.

Figures 3(a)–3(f) cover the three-dimensional view of
the periodic orbits with the number of loops from 1 to 6 with
a given value of x0.&ese orbits are obtained when the initial
true anomaly and initial velocity are π/3 and (0, 0.002, 0),
respectively.

Figures 4(a)–4(f) show the three-dimensional view of
periodic orbits with the number of loops from 5 to 10 with
given value of x0. &ese orbits are obtained when initial true
anomaly and initial velocity are π/3 and (0, 0.005, 0), re-
spectively. All the orbits are plotted in the same dimensions
so that the comparative study can be possible. &e com-
parative study of periodic orbits for different initial values of
velocities depicts that shape and geometric parameters of
orbits are same though the values of initial velocities are
different.

Figures 5(a)–5(f) show the periodic orbits with the
number of loops 3 to 8 with a given value of x0. &ese orbits
are obtained when the initial true anomaly and initial ve-
locity are π/2 and (0, 0.002, 0), respectively.

&e analysis of the periodic orbits for three different
initial true anomalies π/6, π/3, and π/2 are observed in
Table 1. Two different sets of initial velocities (0, 0.002, 0)
and (0, 0.005, 0) are considered for the study when e � 0.1.
&e initial position of deputy satellite and orbital period of
the periodic orbits are obtained for each set of orbits with
1–10 loops. &e orbital period is conserved as the velocity
increases for given number of loops, eccentricity, and initial
true anomaly.

&e variation in initial position and period of the pe-
riodic orbits is given in Figures 6(a) and 6(b) for initial
velocities (0, 0.002, 0) and (0, 0.005, 0), respectively. From
these graphs, it can be observed that, as the number of loops
in the given orbit increases, the initial position of the pe-
riodic orbit moves towards the origin (the initial position of
chief satellite) irrespective of the initial value of the true
anomaly. From these graphs, it can also be observed that, as
number of loops in the given orbit increases, the period of
the periodic orbit increases irrespective of the initial true
anomaly.

3.2. Periodic Orbits When e � 0.2. Now, we have considered
the eccentricity of chief satellite’s orbit as 0.2 to analyze the
effect of eccentricity of chief satellite’s orbit, on periodic

4 Advances in Astronomy



orbits of deputy satellite with 1–10 loops. Here, we have
considered the proposed values of initial velocity of deputy
satellite and initial true anomaly of deputy satellite with

e � 0.1. So that the comparative study is possible and effect
of individual parameter and combination of more than one
parameter can be investigated. &is analysis will be
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Figure 2: Periodic orbits when e � 0.1, f0 � π/6, and velocity _y0 � 0.002. (a) Single-loop orbit, when x0 � 0.097990643050. (b) Two-loop
orbit, when x0 � 0.060941913025. (c) &ree-loop orbit, when x0 � 0.0442639955. (d) Four-loop orbit, when x0 � 0.03469385. (e) Five-loop
orbit, when x0 � 0.02847325. (f ) Six-loop orbit, when x0 � 0.02410242.
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investigated numerically and graphically through
Figures 7–10 and Table 2.

Figures 7(a)–7(f) show the periodic orbits with 1 to 6
number of loops with initial true anomaly and velocity of π/6
and (0, 0.002, 0), w/ respectively.

Figures 8(a)–8(f) show the periodic orbits with 3 to 8
number of loops with an initial true anomaly and velocity of
π/3 with (0, 0.002, 0), respectively.

Figures 9(a)–9(f) show the periodic orbits with the
number of loops 5 to 10 with a given value of x0.&ese orbits
are obtained when the initial true anomaly and initial ve-
locities are π/2 and (0, 0.002, 0), respectively.

&e analysis of periodic orbits for three initial values of
true anomalies π/6, π/3, and π/2 with eccentricity e � 0.2 is
given in Table 2. &e entire study has been performed by
considering two different sets of initial velocities as (0, 0.002, 0)
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Figure 3: Periodic orbits when e � 0.1, f0 � π/3, and velocity _y0 � 0.002. (a) Single-loop orbit, when x0 � 0.093525298500. (b) Two-loop
orbit, when x0 � 0.059057635000. (c) &ree-loop orbit, when x0 � 0.043092145000. (d) Four-loop orbit, when x0 � 0.033847995000. (e) Five-
loop orbit, when x0 � 0.027812858705. (f ) Six-loop orbit, when x0 � 0.0235613.

6 Advances in Astronomy



and (0, 0.005, 0).&e initial position and period of the periodic
orbits are obtained for each set of orbits with 1–10 loops.

Figures 10(a) and 10(b) indicates the variation in the
initial position and period of the periodic orbits for initial
velocities (0, 0.002, 0) and (0, 0.005, 0), respectively. Here,
eccentricity of chief satellite’s orbit is considered 0.2. From
these graphs, it can be observed that, as number of loops in
the given orbit increases, the initial position of the periodic
orbit moves towards the origin (the initial position of chief
satellite) irrespective of the initial value of true anomaly.

From these graphs, it can also be observed that, as number of
loops in the given orbit increases, the period of the periodic
orbit increases irrespective of the initial true anomaly.

4. Effect of Eccentricity of Chief Satellite’s Orbit

In the previous section, we have considered that the ec-
centricity e of chief satellite’s orbit is 0.1 and 0.2, respectively.
But, in the current section, we compare the effect of variation
in eccentricity of chief satellite’s orbit on periodic orbits of

–2

–1

0

×10–4

z

1

2

2
2

y
0 0

x–2
–2 –4

(a)

×10–4

–2

–1

0z

1

2

2
2

y
0 0

x–2
–2 –4

(b)

×10–4

–2

–1

0z

1

2

2
2

y
0 0

x–2
–2 –4

(c)

×10–4

–2

–1

0z

1

2

2
2

y
0 0

x–2
–2 –4

(d)

×10–4

–2

–1

0z

1

2

2
2

y
0 0

x–2
–2 –4

(e)

×10–4

–2

–1

0z

1

2

2
2

y
0 0

x–2
–2 –4

(f )

Figure 4: Periodic orbits when e � 0.1 and f0 � π/3 and velocity _y0 � 0.005. (a) Five-loop orbit, when x0 � 0.026250375000. (b) Six-loop
orbit, when x0 � 0.022008125000. (c) Seven-loop orbit, when x0 � 0.018857650000. (d) Eight-loop orbit, when x0 � 0.016425375000. (e) Nine-
loop orbit, when x0 � 0.01449068105. (f ) Ten-loop orbit, when x0 � 0.012915.
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deputy satellite with the number of loops 1–10.&is effect on
initial position and orbital period of periodic orbits of
deputy satellite with 1–10 number of loops will be shown in
Figures 11–13.

Figures 11(a) and 11(b) give the relation between the
initial position and orbital period and number of loops with
consideration of three different values of true anomaly as
π/6, π/3, and π/2. &e velocity is taken in magnitude as (0,
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Figure 5: Periodic orbits when e � 0.1, f0 � π/2, and velocity _y0 � 0.002. (a) &ree-loop orbit, when x0 � 0.041398075500. (b) Four-loop
orbit, when x0 � 0.032620475000. (c) Five-loop orbit, when x0 � 0.0268523875. (d) Six-loop orbit, when x0 � 0.0227732155. (e) Seven-loop
orbit, when x0 � 0.0197361. (f ) Eight-loop orbit, when x0 � 0.017387015.
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Figure 6: Variation in the initial position of deputy satellite and orbital period when e � 0.1. (a) Velocity _y0 � 0.002. (b) Velocity _y0 � 0.005.

Table 1: Analysis of periodic orbits with e � 0.1.

f0 _y0 z0 x0 T NL

π/6 0.002 0.0001

0.097990643050 1.250 01
0.060941913025 1.885 02
0.044263995500 2.520 03
0.034693850000 3.140 04
0.028473250000 3.765 05
0.024102420000 4.400 06
0.020861979500 5.020 07
0.018363295500 5.650 08
0.016377575000 6.275 09
0.014761465000 6.900 10

π/6 0.005 0.0001

0.096286152500 1.250 01
0.059311045000 1.885 02
0.042667625000 2.520 03
0.033117650000 3.140 04
0.026910306500 3.765 05
0.022548855000 4.400 06
0.019315450000 5.020 07
0.016822145000 5.650 08
0.014840725000 6.275 09
0.013228150000 6.900 10

π/3 0.002 0.0001

0.093525298500 1.260 01
0.059057635000 1.885 02
0.043092145000 2.520 03
0.033847995000 3.140 04
0.027812858705 3.770 05
0.023561300000 4.400 06
0.020403925000 5.030 07
0.017966250000 5.655 08
0.016027250000 6.285 09
0.014448085000 6.950 10

Table 1: Continued.

f0 _y0 z0 x0 T NL

π/3 0.005 0.0001

0.091825025000 1.260 01
0.057428285000 1.885 02
0.041496687050 2.520 03
0.032272425000 3.140 04
0.026250375000 3.770 05
0.022008125000 4.400 06
0.018857650000 5.030 07
0.016425375000 5.655 08
0.014490681050 6.285 09
0.012915000000 6.950 10

π/2 0.002 0.0001

0.087338089500 1.276 01
0.056357275000 1.907 02
0.041398075500 2.540 03
0.032620475000 3.170 04
0.026852387500 3.803 05
0.022773215500 4.450 06
0.019736100000 5.070 07
0.017387015000 5.700 08
0.015515950000 6.334 09
0.013990535000 6.960 10

π/2 0.005 0.0001

0.085643905000 1.276 01
0.054730207500 1.907 02
0.039803926500 2.540 03
0.031045825000 3.170 04
0.025290650000 3.803 05
0.021220605000 4.450 06
0.018190250000 5.070 07
0.015846495000 5.700 08
0.013979735000 6.334 09
0.012457750000 6.960 10
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0.002, 0). It has been observed from the Figure 11(a) for
single-loop orbit that, as the true anomaly increases, the
initial position of the periodic orbit moves towards zero.
&us, it has been observed from the comparative study that,
in both the cases of initial velocities and eccentricities, as true

anomaly increases, the initial position of periodic orbit
moves towards zero. Also, it can be seen that, as we shift
towards 1- to 10-loop periodic orbit, the difference in the
initial position due to the true anomaly decreases. &us,
initial locations of periodic orbits for three different values of
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Figure 7: Periodic orbits when e � 0.2, f0 � π/6, and velocity _y0 � 0.002. (a) One-loop orbit, when x0 � 0.088265415. (b) Two-loop orbit,
when x0 � 0.0567688625. (c)&ree-loop orbit, when x0 � 0.041657425. (d) Four-loop orbit, when x0 � 0.032808755. (e) Five-loop orbit, when
x0 � 0.026999870500. (f ) Six-loop orbit, when x0 � 0.022894322500.
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true anomaly come closer to each other as the number of
loops increases from 1 to 10. Variation in periods of periodic
orbits with respect to the number of loops for three different
values of true anomaly as π/6, π/3, and π/2 is shown in
Figure 11(b) with a velocity (0, 0.002, 0). It has been seen in

both cases of initial velocities and eccentricities that orbital
period increases with the increasing number of loops.

Figures 12(a) and 12(b) give the relation between the
initial position and orbital period and number of loops with
consideration of three different values of true anomaly as
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Figure 8: Periodic orbits when e � 0.2, f0 � π/3 and velocity _y0 � 0.002. (a) &ree loops orbit, when x0 � 0.0396983975. (b) Four loops
orbit, when x0 � 0.031383115. (c) Five loops orbit, when x0 � 0.0258816925. (d) Six loops orbit, when x0 � 0.02197541025. (e) Seven loops
orbit, when x0 � 0.019059245000. (f ) Eight loops orbit, when x0 � 0.016799437500.
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π/6, π/3, and π/2. &e velocity is taken in magnitude as (0,
0.005, 0). It has been observed from the Figure 12(a) for
single-loop orbit that, as the true anomaly increases, the
initial position of periodic orbit moves towards zero.&us, it
has been observed from the comparative study that, in both

the cases of initial velocities and eccentricities, as true
anomaly increases, the initial position of periodic orbit
moves towards zero. Also, it can be seen that, as we shift
towards 1- to 10-loop periodic orbit, the difference in the
initial position due to the true anomaly decreases. &us, the
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Figure 9: Periodic orbits when e � 0.2, f0 � π/2, and velocity _y0 � 0.002. (a) Five-loop orbit, when x0 � 0.024156265. (b) Six-loop orbit,
when x0 � 0.020553885. (c) Seven-loop orbit, when x0 � 0.01785125. (d) Eight-loop orbit, when x0 � 0.0157495245. (e) Nine-loop orbit, when
x0 � 0.029191930500. (f ) Ten-loop orbit, when x0 � 0.027620026500.
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Figure 10: Variation in the initial position of deputy satellite and orbital period when e � 0.2. (a) Velocity _y0 � 0.002. (b) Velocity
_y0 � 0.005.

Table 2: Analysis of periodic orbits with e � 0.2.

f0 _y0 z0 x0 T NL

π/6 0.002 0.0001

0.088265415000 1.272 01
0.056768862500 1.910 02
0.041657425000 2.533 03
0.032808755000 3.165 04
0.026999870500 3.797 05
0.022894322500 4.450 06
0.019838765000 5.062 07
0.017476085000 5.700 08
0.015594612750 6.325 09
0.014060927500 6.956 10

π/6 0.005 0.0001

0.086570301500 1.272 01
0.055141436550 1.910 02
0.040063075000 2.533 03
0.031233975000 3.165 04
0.025437996500 3.797 05
0.021341635000 4.450 06
0.018292920100 5.062 07
0.015935540000 5.700 08
0.014058295500 6.325 09
0.012528082500 6.956 10

π/3 0.002 0.0001

0.081430725000 1.293 01
0.053676025000 1.926 02
0.039698397500 2.600 03
0.031383115000 3.200 04
0.025881692500 3.837 05
0.021975410250 4.474 06
0.019059245000 5.115 07
0.016799437500 5.748 08
0.014996967500 6.386 09
0.013525826550 7.025 10

Table 2: Continued.

f0 _y0 z0 x0 T NL

π/3 0.005 0.0001

0.079742645000 1.293 01
0.052051320000 1.926 02
0.038105645000 2.600 03
0.029809435000 3.200 04
0.024320665000 3.837 05
0.020423376500 4.474 06
0.017513965000 5.115 07
0.015259385000 5.748 08
0.013461085000 6.386 09
0.011993350000 7.025 10

π/2 0.002 0.0001

0.071713530000 1.328 01
0.049027550000 1.968 02
0.036708365000 2.612 03
0.029191930500 3.257 04
0.024156265000 3.903 05
0.020553885000 4.550 06
0.017851250000 5.195 07
0.015749524500 5.843 08
0.014068710500 6.488 09
0.012694067500 7.135 10

π/2 0.005 0.0001

0.070036225000 1.328 01
0.047407175000 1.968 02
0.035118165000 2.612 03
0.027620026500 3.257 04
0.022596595500 3.903 05
0.019002955000 4.550 06
0.016306865000 5.195 07
0.014210250000 5.843 08
0.012533505000 6.488 09
0.011162205000 7.135 10

Advances in Astronomy 13



initial locations of periodic orbits for three different values of
true anomaly come closer to each other as the number of
loops increases from 1 to 10. &e variation in periods of
periodic orbits with respect to the number of loops for three
different values of true anomaly as π/6, π/3, and π/2 is shown
in Figure 12(b) with a velocity (0, 0.005, 0). It has been seen
in both cases of initial velocities and eccentricities that
orbital period increases with increasing number of loops.

Figures 13(a)–13(c) show the variation in the initial
position and period with respect to number of loops for two
different eccentricities 0.1 and 0.2 with given initial true
anomalies π/6, π/3, and π/2, respectively. In these three
figures, the velocity is considered as (0, 0.002, 0). &is gives

information about the variation in the initial position and
orbital period when the values of eccentricity are changed as
shown in all figures. &e sharp observation for the single-
loop orbit depicts that, for the given value of true anomaly, as
the eccentricity goes on increasing and the initial position of
periodic orbit shifts towards x0 � 0. It has also been ob-
served that, moving in the direction from 1- to 10-loop orbit,
differences in the initial position for a given value of true
anomaly decreases with increasing eccentricity. &e orbital
period is conserved as the velocity increases for a given
number of loops, eccentricity, and initial true anomaly.

It is observed that, with the ascending number of loops,
the initial position of periodic orbits approaches to the origin
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Figure 11: Variation in (a) the initial position of periodic orbits and (b) orbital period when _y0 � 0.002.
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Figure 12: Variation in the (a) initial position of periodic orbits and (b) orbital period when _y0 � 0.005.
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with an increasing value of orbital periods. When the ec-
centricity is 0.1, for all the true anomalies, we get two-di-
mensional periodic orbits, but especially when true anomaly
approaches to π/3, the orbits becomes three-dimensional
periodic and then again, as true anomaly approaches π/2, the
three-dimensional orbits becomes quasi in nature. Whereas
when the eccentricity is 0.2, we get two-dimensional periodic
orbits for all the true anomalies. &e nature of three di-
mensional orbits becomes highly quasi with an increasing
value of the true anomaly.&us, as the eccentricity increases,
the nature of periodic orbits becomes more chaotic with an
increasing value of true anomaly.

&e periodic solution plays a vital role in the field of
celestial mechanics. However, a solution feature in the form
of mathematical expression for the behavior of the trajectory
does not directly appear, but these features can be clearly
shown when the solution is graphically represented. It also
identifies the orbit whether it is loop or without loop. In case

an orbit is having loops, the number of loops with internal
position or external position can be determined easily with
the same solution too. An orbital period of the orbit is the
most important parameter that gives information about the
time required to complete one revolution by the deputy
satellite. &e value of this parameter is determined easily by
the periodic solution. It is evident from this study that, as the
number of loops increases, the period of the periodic orbit
increases. Periodic orbits with a lower number of orbital
periods have been more emphasized in celestial mechanics.
In this regard, the main focus of this study is 1- to 10-loop
periodic orbit with a value of period less than 7. In formation
satellites, the initial true anomaly and initial velocity of
deputy satellite play an important role which affects the
initial position of periodic orbits of deputy satellite. Also, in
the LVLH frame, the origin is located at the position of chief
satellite, so the eccentricity of the orbit of chief satellite also
affects the initial position and orbital period of deputy
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Figure 13: Variation in the initial position and orbital period, when velocity is (0, 0.002, 0). (a) f0 � π/6. (b) f0 � π/3. (c) f0 � π/2.
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satellite. &us, it is important to study the effect of these
parameters on periodic orbit of deputy satellite.

5. Conclusion

&e main focus of this work is on periodic orbit of deputy
satellite in the elliptical case of formation satellites. &e
analysis of 1- to 10-loop periodic orbits with different values
of initial true anomaly f0 and eccentricity e of the orbit of
chief satellite has been performed by considering the initial
position (x0, 0, 0.0001) and initial velocity (0, _y0, 0). It has
been observed that, as the number of loops ascends from 1 to
10, there is an increment in the orbital period, and the initial
position of periodic orbits approaches to origin. For a given
number of loops, eccentricity, and initial true anomaly, the
orbital period is conserved with regard as velocity ascends.

It is noticed that the effect of eccentricity and initial true
anomaly on orbital period is negligible. For the given ec-
centricity e and initial velocity (0, _y0, 0), as number of loops
increases, the initial position (x0, 0, 0.0001) shifts towards
zero. It has also been concluded that, for the given number of
loops, the effect of eccentricity and initial true anomaly on
orbital period is negligible. Furthermore, with the given
value of initial true anomaly f0 and initial velocity (0, _y0, 0),
the number of loops and increment in eccentricity e and
initial position (x0, 0, 0.0001) approach the origin. &us, to
conclude with that for given value of true anomaly and
eccentricity, there is a decrement in the value between the
differences in initial position vectors with the ascending
number of loops. In other words, for a given value of true
anomaly and eccentricity, the difference in the initial po-
sition (Δx, 0, 0.0001) decreases as the number of loops
increases.

Finally, we summarize and state that, in the frame work
of formation satellite, 1–10 loop periodic orbits of deputy
satellite are analyzed. In this analysis, there are three pa-
rameters, namely, initial true anomaly, initial velocity of
deputy satellite, and eccentricity of orbit of chief satellite.
&e initial position and orbital period are investigated for
these orbits.

It is observed that, with the ascending number of loops,
the initial position of periodic orbits approaches to origin
with an increasing value of orbital periods. When the ec-
centricity is 0.1, for all the true anomalies, we get two-di-
mensional periodic orbits, but especially when true anomaly
approaches to π/3, the orbits become three-dimensional
periodic and then, again as true anomaly approaches π/2, the
three-dimensional orbits becomes quasi in nature. Whereas
when eccentricity is 0.2, we get two-dimensional periodic
orbits for all the true anomalies. &e nature of three-di-
mensional orbits becomes highly quasi with an increasing
value of true anomaly.&us, as the eccentricity increases, the
nature of periodic orbits becomes more chaotic with an
increasing value of true anomaly.

It is remarkable that the orbital period remains un-
changed for the given initial true anomaly, eccentricity, and
number of loops with ascending velocity. &us, the orbital
period and nature of the periodic orbits are conserved with a
negligible displacement in the initial position of the orbits

with increasing velocity. It has also been observed that, for a
given number of loops, eccentricity, and initial true anomaly
with the increment in velocity, there is a decrement in the
value of the initial position of the orbit. &us, to conclude
with that for a given value of true anomaly and eccentricity,
there is a decrement in the value between the differences in
initial position vectors with the ascending number of loops.
Also, with the rise in velocity, there is negligible change in
the value of differences in the initial position (Δx, 0, 0.0001)
corresponding to each loop.
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*e present paper deals with the study of the motion’s properties of the infinitesimal variable mass body moving in the same orbital
plan as two massive bodies (considered as primaries). It is assumed that the massive bodies have radiating effects, have oblate shapes,
and are moving in circular orbits around their common center of mass. Using the procedures established by Singh and Abouelmagd,
we determined the equations of motion of the infinitesimal body for which we assumed that under the effects of radiation and
oblateness of the primaries, its mass varies following Jean’s law. We evaluated analytically and numerically the locations of
equilibrium points and examined the stability of these equilibrium points. Finally, we found that all the points are unstable.

1. Introduction

During the last decades, in celestial mechanics and dynamical
astronomy, the most studied problem was and remains the
restricted three-body problem that we denote in the sequel by
R3BP. *e problem has been investigated when the orbits of
the primaries are either circular or elliptic. One of the reasons
that make the problem very attracting is that it represents a
general applicable model that can be also endowed with some
types of perturbations. By perturbation, wemean the deviations
of the body from its normal states due to some outer forces
(perturbing effects). Perturbing effects can be in any form, such
as Coriolis and centrifugal forces, different shapes of the pri-
maries (as Roche ellipsoid, spherical shell filled with or without
fluid, heterogeneous body, homogeneous body, triaxial, oblate,
cylindrical, and finite straight segments), zonal harmonic ef-
fects, drag forces (P-R drag and strokes drag), resonances (high
or low), solar radiation pressure, variable mass, asteroids belt,
magnetic dipoles, charged bodies, Yarkovaskii effects, albedo
effects, and viscous forces.

Many research studies have been devoted to this problem
with different above cited perturbations. Our references are

not exhaustive; however, in this introduction, we essentially
cite the references that have been used to accomplish this
work.

Bhatnagar and Hallan [1] introduced a new type of
perturbations in the classical R3BP (i.e., under Coriolis and
centrifugal forces), and they have shown that their problem
has five libration points out of which three are unstable and
two are stable. In their studies, Khanna and Bhatnagar [2]
have been concerned by the existence and stability of
equilibrium points in the circular R3BP, both with the
triaxial shape and with the combination of the triaxial shape
and the oblateness of the primaries. More exactly, they
assumed that themoremassive primary is an oblate spheroid
in the first study, and in the second one, they combined the
triaxial shape and the oblateness of the primaries. With
similar hypothesis of the oblate spheroid shape of the more
massive primary, Sharma and Subba Rao [3] investigated the
stationary solutions and their characteristic exponents in the
classical circular R3BP. Subba Rao and Sharma [4] studied
the effect of this type of shape in the classical circular re-
stricted three-body problem and found that the collinear
stationary solutions are always unstable, while the nearly
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equilateral triangular stationary solutions are stable in some
interval depending also on the oblateness factor. In the same
topic of shape, Abouelmagd et al. [5] studied the effect of the
oblateness associated to small perturbations in the Coriolis
and centrifugal forces in R3BP. In particular, they found that
the positions of the collinear points and y-coordinate of the
triangular points are not affected by the small perturbations
in the Coriolis force.

*e case where both the primaries are assumed to be
triaxial rigid bodies with one of their respective axes as-
sumed to be an axis of symmetry has been investigated by
Sharma et al. [6]. *e authors supposed that the equatorial
plane coincides with the orbital plane of motion. In these
conditions, they found three collinear libration points
which are always unstable and two triangular libration
points which are stable in some intervals like it has been
shown by Szebehely [7] for the classical restricted three-
body problem. In this study, they also observed that there
are long and short periodic elliptical orbits for the trian-
gular libration points within the interval they considered.
In the studies by Abouelmagd et al. [8], Ansari et al. [9],
Ansari et al. [10], Ansari et al. [11], Ansari et al. [12], Ansari
et al. [13], Ansari et al. [14], Ansari [15], and Ansari [16],
the authors studied the models of restricted problems both
in three-body, four-body, five-body, and six-body by
considering various types of perturbations, especially with
variable of mass. For Robe’s problem, in the study by
Ansari [17], the author investigated the motion of the test
particle in restricted body problem having heterogeneous
irregular primary filled with the viscous fluid, and in the
study by Ansari et al. [10], the authors studied Robe’s
problem in the R3BP subject to viscous force. For the same
topic, Abouelmagd et al. [18] studied Robe’s problem for
which they suppose that the Newton potential is subject to
some modification.

On the other hand, Kushvah [19] investigated different
mathematical properties due to the asteroids belts for the
classical R3BP. *e equilibrium points and their stability
have been studied numerically. He also showed that the
collinear points are unstable and the triangular points are
stable in the sense of Lyapunov stability.

For the questions related to the resonance, in the study
by Pathak et al. [20], the authors, in both the unperturbed
and perturbed cases, investigated the location, the eccen-
tricity, and the period of the first order exterior resonant
orbits. *ey also analyzed the first, third, and fifth order
interior resonant periodic orbits. On the other hand, the
same team [21] studied resonant orbits in the framework of
photogravitational planar restricted three-body problem
with oblateness. It is observed that there exist periodic orbits
for seventh and ninth order resonance which are passing
around the Earth.

In the isotropic radiation case, the mathematical model
is governed by the following data:

If F1 and F2 are the gravitational forces exerted on m due
to m1 and m2 and if Fp1

and Fp2
are the solar radiation

pressure exerted on m due to m1 and m2, respectively, then
the total force exerted on m due to mi is given by

Fi − Fpi
� Fi 1 −

Fpi

Fi

􏼠 􏼡 � Fi 1 − pi( 􏼁 � qiFi, (i � 1, 2),

(1)

where pi � (radiation pressure due to primary/gravitational
force due to primary) and qi � (1 − pi), 0<pi ≤ 1.

Oblate body is a type of triaxial body.
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� 1. (2)

When a1 � b1, it will become an oblate body, and A1 �

(a2
1 − c21)/5 is the oblateness factor, where a1, b1, and c1 are

the semiaxes of the triaxial body [22].
Ishwar and Elipe [23] studied the generalized photo-

gravitational R3BP where they assumed that the smaller
primary is an oblate body and the massive one is the source of
radiation pressure. *ey found secular solutions at the tri-
angular equilibrium points, and each of these points has either
a long or short periodic retrograde elliptical orbits. Singh and
Taura [24] devoted their paper to the motion of an infini-
tesimal body in the generalized R3BP. *e authors assumed
that both primaries have oblate shapes, radiating and sub-
mitted to the effect of gravitational potential from a belt. *ey
determined equations of the motion, located positions of the
equilibrium points, and examined their linear stability. To the
usual five equilibrium points, they showed that the corre-
sponding problem has additional two new collinear points
generated by the potential induced by the belt. *ey noticed
that collinear points are always unstable, while triangular
points are stable for certain interval of the mass ratio.
Abouelmagd and Ansari [25] studied numerically the bicir-
cular Sun perturbed Earth-Moon-satellite system and illus-
trated the equilibrium points, Poincaré’s surfaces sections,
and basins of attracting domain.

In different investigations, it is always supposed that the
masses of celestial bodies do not vary with time during the
motion, but in reality, many celestial bodies have a variable
mass with respect to the time as in the isotropic radiation or
the absorption in stars. *e isotropic radiation or the ab-
sorption in stars generate in general a variation of masses of
these celestial bodies and constitute an interesting research
topic in the celestial mechanics and dynamical astronomy.
*ese particular last cases have been studied by many re-
searchers in the restricted problem (two-body, three-body,
four-body, five-body, and six-body).

Singh and Ishwar [26] and Lukyanov [27] investigated
the effect of variable mass in the frame of circular R3BP. For
their contribution, Abouelmagd and Mostafa [28] investi-
gated the out-of-plane equilibrium points, the regions of
possible motion, and the region of forbidden motion of an
infinitesimal body supposed to have a variable mass rela-
tively to Jean’s law [29]. Also in R3BP, Zhang et al. [30]
investigated the triangular equilibrium points when both the
primaries are radiating, and the infinitesimal body has a
variable mass according to Jean’s law. *ey used Mesh-
cherskii space-time inverse transformation [31] to test the
linear stability of the equilibrium points.
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*e present study can be applied to study the motion of
dust particle, mass of which varies near radiating oblate
binary systems surrounded by an asteroids belt.

*e asteroid belts having ring shape (Figure 1) can be
found in our solar system between the planets. *ese rings
contain many bodies with irregular shapes but are always
smaller than the planets themselves. In general, these as-
teroid belts region lies between the inner boundary (radial
distance around 2.06AU) and outer boundary (the radial
distance around 3.27AU). Systems with asteroid belts were
for the first time introduced by Miyamoto and Nagai [32].
*is model is known as flattened potential given by the
following mathematical formula:

Vb(r, z) �
Mb

r
2

+ a +
������
z2 + b2

√
􏼐 􏼑

2
􏼒 􏼓

1/2 ,
(3)

where Mb is the averagedmass of disc, r is the radial distance
of the asteroids belt from the infinitesimal body, and a and b

are the flatness and density parameters of the asteroids belt,
respectively.

Now, let us describe the organization of our paper.
Section 1 presents a nonexhaustive literature review. Section
2 presents the equations of motion, while Sections 3 and 4
contain the investigations of the equilibrium points and of
their stability both analytically and numerically. Finally,
Section 5 represents our conclusion.

2. Equations of Motion

As it is commonly known, the classical R3BP is a system of
three bodies of masses m1, m2, and m, where m1 and m2
represent the masses of the primaries of the system and that
move in circular orbits around their common center of mass
representing the origin. In our study, the primaries are
assumed to be radiating with the radiation factor qi (i � 1, 2)

and oblate in shape with the oblateness factor Ai (i � 1, 2),
respectively. In the synodic coordinate system xyz, the line
joining both primaries are taken as the x-axis, while the line
perpendicular to this line is known as the y-axis. *e mean
motion n of the system is considered around z-axis, which is
perpendicular to the orbital plane of the primaries. *e third

body is assumed to have an infinitesimal variable mass m(t))
and moves under the influence of the primaries and the
asteroids belt of mass Mb. We also assume that this infin-
itesimal body does not affect the behavior of the primaries as
well as the asteroids belt.

Let r1, r2, and r be the distances from the infinitesimal
body to the primaries m1, m2, and the asteroids belt, re-
spectively. *e coordinates of the infinitesimal body and the
primaries m1 andm2 are denoted by (x, y), (−μ, 0), and
(1 − μ, 0), respectively (Figure 1). Following the procedures
given by Abouelmagd and Mostafa [28] and by Singh and
Taura [24] and by assuming that the variation of mass of the
test particle originates from one point having zero mo-
mentum, the equations of motion of the third infinitesimal
variable mass m(t) body with dimensionless variables in the
synodic coordinate system are as follows.

_m

m
( _x − ny) +(€x − 2n _y) � Ux,

_m

m
( _y + nx) +(€y + 2n _x) � Uy,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where

U �
n
2

2
x
2

+ y
2

􏼐 􏼑 +
(1 − μ)q1

r1
+
μq2

r2
+

(1 − μ)A1q1

2r
3
1

+
μA2q2

2r
3
2

+
Mb������

r
2

+ T
2

􏽰 ,

n
2

� 1 +
3
2

A1 + A2( 􏼁 +
2Mbrc

r
2
c + T

2
􏼐 􏼑

3/2,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

with

r
2
1 � (x + μ)

2
+ y

2
,

r
2
2 � (x + μ − 1)

2
+ y

2
,

r
2

� x
2

+ y
2
,

r
2
c � 1 − μ + μ2,

T � a + b.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

.

In this case, Jean’s law reduces to m � m0e
− αt, where α is

the constant coefficient; therefore, the mass of the body
varies exponentially. Ofcourse, m0 is the mass of the test
particle at the initial time. By using the Meshcherskii space-
time transformations to preserve both space dimension and
time, we get

y-axis

O m2

r2r1

FP2

FP1

m P

m1

Asteroid belt

x-axis

z-axis

Figure 1: Geometric configuration of the problem with asteroid
belt.
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x � β− 1/2
x
1
,

y � β− 1/2
y
1
,

⎧⎨

⎩ (6)

where β � m/m0. *en, the velocity and acceleration com-
ponents are as follows:

_x � β− 1/2
_x
1

+
1
2
αx

1
􏼒 􏼓,

_y � β− 1/2
_y
1

+
1
2
αy

1
􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

€x � β− 1/2
€x
1

+ α _x
1

+
1
4
α2x1

􏼒 􏼓,

€y � β− 1/2
€y
1

+ α _y
1

+
1
4
α2y1

􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

After using equations 6–8, equation (4) becomes

€x
1

− 2n _y
1

� Vx1 ,

€y
1

+ 2n _x
1

� Vy1 ,

⎧⎨

⎩ (9)

where

V �
n
2

2
+
α2

8
􏼠 􏼡 x

1
􏼐 􏼑

2
+ y

1
􏼐 􏼑

2
􏼒 􏼓

+ β3/2
(1 − μ)q1

ρ1
+
μq2
ρ2

+
(1 − μ)q1A1β

2ρ31
+
μq2A2β
2ρ32

+
Mb�������

ρ2 + T
2β

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(10)

ρ1, ρ2, and ρ are defined by

ρ21 � x
1

+

��

β
􏽱

μ􏼒 􏼓
2

+ y
1

􏼐 􏼑
2
,

ρ22 � x
1

+

��

β
􏽱

μ −

��

β
􏽱

􏼒 􏼓
2

+ y
1

􏼐 􏼑
2
,

ρ2 � x
1

􏼐 􏼑
2

+ y
1

􏼐 􏼑
2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

3. Analysis of Equilibrium Points

If we replace the derivative with respect to time on the left
hand side of system (9) by zero, we get

x
1 α2

4
+ n

2
􏼠 􏼡 + β3/2 −

q1(1 − μ) x
1

+

��

β
􏽱

μ􏼒 􏼓

ρ31
−

q2 x
1

+

��

β
􏽱

(−1 + μ)􏼒 􏼓μ

ρ32
−
3A1q1β(1 − μ) x

1
+

��

β
􏽱

μ􏼒 􏼓

2ρ51

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−
3A2q2β x

1
+

��

β
􏽱

(−1 + μ)􏼒 􏼓μ

2ρ52
−

Mbx
1

ρ2 + T
2β􏼐 􏼑

3/2
⎞⎟⎟⎟⎟⎟⎟⎟⎠ � 0,

(12)

y
1 α2

4
+ n

2
􏼠 􏼡 + y

1β3/2 −
q1(1 − μ)

ρ31
−

q2μ
ρ32

−
3A1q1β(1 − μ)

2ρ51
−
3A2q2βμ

2ρ52
−

Mb

ρ2 + T
2β􏼐 􏼑

3/2
⎛⎜⎝ ⎞⎟⎠ � 0. (13)

3.1. Triangular Equilibrium Points. From equations (12) and
(13), we deduce

q1

ρ31
+
3A1q1β
2ρ51

�
q2

ρ32
+
3A2q2β
2ρ52

. (14)

Taking in account equation (14), equations (12) and (13)
can be written, respectively, as

α2

4
+ n

2
− β3/2

q1

ρ31
+
3A1q1β
2ρ51

+
Mb

ρ2 + T
2β􏼐 􏼑

3/2
⎛⎜⎝ ⎞⎟⎠ � 0, (15)

α2

4
+ n

2
− β3/2

q2

ρ32
+
3A2q2β
2ρ52

+
Mb

ρ2 + T
2β􏼐 􏼑

3/2
⎛⎜⎝ ⎞⎟⎠ � 0. (16)

In the classical R3BP (i.e., when α � 0, β � 1, qi � 0, and
Ai � 0), the solution is (ρ1 � 1, ρ2 � 1). *erefore, let us con-
sider that the solution in our problem is (ρ1 � 1 + c1, ρ2 �

1 + c2), where c1≪ 1 and c2≪ 1. From (15) and (16), we get

c1 �
1
3

−
p1

3
1 +

α2

4
􏼠 􏼡β(− 3/2)

+
A1

2
1 +

α2

4
􏼠 􏼡β(− 1/2)

−
1
3

n
2

+
α2

4
􏼠 􏼡β(− 3/2)

+
Mb

3 ρ2 + T
2β􏼐 􏼑

3/2 (17)

c2 �
1
3

−
p2

3
1 +

α2

4
􏼠 􏼡β(− 3/2)

+
A2

2
1 +

α2

4
􏼠 􏼡β(− 1/2)

−
1
3

n
2

+
α2

4
􏼠 􏼡β(− 3/2)

+
Mb

3 ρ2 + T
2β􏼐 􏼑

3/2. (18)
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And from system (11), we get

x
1

�

��

β
􏽱 1

2
− μ􏼒 􏼓 +

1
��
β

􏽰 c1 − c2( 􏼁,

y
1

� ±
�����
4 − β

􏽰

2
1 +

2
(4 − β)

c1 + c2( 􏼁􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

By combining equations (15–19), we obtain

x
1

�

��

β
􏽱 1

2
− μ􏼒 􏼓 −

1
β

1 +
α2

4
􏼠 􏼡

p1 − p2

3β
−

A1 − A2

2
􏼠 􏼡,

y
1

� ±
�����
4 − β

􏽰

2
1 +

2
(4 − β)

2
3

−
p1 + p2

3
1 +

α2

4
􏼠 􏼡β(−3/2)

+
A1 + A2

2
1 +

α2

4
􏼠 􏼡β(− 1/2)

−
2
3

n
2

+
α2

4
􏼠 􏼡β(− 3/2)

+
2Mb

3 ρ2 + T
2β􏼐 􏼑

(3/2)
⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Notice that equation (20) represents the coordinates of
triangular equilibrium points.

3.2. Collinear Equilibrium Points. In this subsection and
from equation (12), we will determine the collinear equi-
librium points. By replacing y1 by 0 in equation (12), we get

f x
1
, y

1
􏼐 􏼑 � x

1 α2

4
+ n

2
􏼠 􏼡 + β3/2 −

q1(1 − μ) x
1

+

��

β
􏽱

μ􏼒 􏼓

ρ31
−

q2 x
1

+

��

β
􏽱

(−1 + μ)􏼒 􏼓μ

ρ32
−
3A1q1β(1 − μ) x

1
+

��

β
􏽱

μ􏼒 􏼓

2ρ51

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−
3A2q2β x

1
+

��

β
􏽱

(−1 + μ)􏼒 􏼓μ

2ρ52
−

Mbx
1

ρ2 + T
2β􏼐 􏼑

3/2
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

(21)

and therefore,

f x
1
, 0􏼐 􏼑 � s1 x

1
􏼐 􏼑 + s2 x

1
􏼐 􏼑, (22)

where

s1 x
1

􏼐 􏼑 � x
1 α2

4
+ n

2
􏼠 􏼡 + β3/2 −

q1(1 − μ) x
1

+

��

β
􏽱

μ􏼒 􏼓

x
1

+

��

β
􏽱

μ3
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

−
q2 x

1
+

��

β
􏽱

(−1 + μ)􏼒 􏼓μ

x
1

+

��

β
􏽱

(− 1 + μ)
3

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

−
3A1q1β(1 − μ) x

1
+

��

β
􏽱

μ􏼒 􏼓

2 x
1

+

��

β
􏽱

μ
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

5
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
3A2q2β x

1
+

��

β
􏽱

(−1 + μ)􏼒 􏼓μ

2 x
1

+

��

β
􏽱

(− 1 + μ)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

5
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

s2 x
1

􏼐 􏼑 � −
Mbx

1β3/2

ρ2 + T
2β􏼐 􏼑

3/2.

(23)

To determine the locations of collinear equilibrium
points, we divide the x-axis in three different
subintervals, that is, x1 ∈ (−∞, −μ

��
β

􏽰
), x1 ∈

(−μ
��
β

􏽰
, (1 − μ)

��
β

􏽰
), and x1 ∈ ((1− μ)

��
β

􏽰
,∞), and we will

specify our approach in each case separately. Notice that
the endpoints of the above intervals correspond to the
situations where the infinitesimal body coincides with
one of the primaries.
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3.2.1. First Case. For the interval x1 ∈ (−∞, −μ
��
β

􏽰
),

s1 x
1

􏼐 􏼑 � x
1 α2

4
+ n

2
􏼠 􏼡 + β3/2

q1(1 − μ)

x
1

+

��

β
􏽱

μ􏼒 􏼓
2 +

q2μ

x
1

+

��

β
􏽱

(− 1 + μ)􏼒 􏼓
2 +

3A1q1β(1 − μ)

2 x
1

+

��

β
􏽱

μ􏼒 􏼓
4 +

3A2q2βμ

2 x
1

+

��

β
􏽱

(− 1 + μ)􏼒 􏼓
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

s1′ x
1

􏼐 􏼑 � n
2

+
α2

4
+ β(3/2)

−
2q1(1 − μ)

x
1

+

��

β
􏽱

μ􏼒 􏼓
3 −

2q2μ

x
1

+

��

β
􏽱

(− 1 + μ)􏼒 􏼓
3 −

6A1q1β(1 − μ)

x
1

+

��

β
􏽱

μ􏼒 􏼓
5 −

6A2q2βμ

x
1

+

��

β
􏽱

(− 1 + μ)􏼒 􏼓
5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� n
2

+
α2

4
+ β(3/2) 2q1(1 − μ)

x
1

+

��

β
􏽱

μ
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

3 +
2q2μ

x
1

+

��

β
􏽱

(− 1 + μ)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

3 +
6A1q1β(1 − μ)

x
1

+

��

β
􏽱

μ
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

5 +
6A2q2βμ

x
1

+

��

β
􏽱

(− 1 + μ)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

5
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(24)

It is clear that s1′(x1)> 0 for x1 ∈ (−∞, −μ
��
β

􏽰
), and

s1(x1) is then a monotonically increasing function and
limx1⟶−∞s1(x1) � −∞, and limx1⟶−

�
β

√
μ− s1(x1) �∞.

We also have s2(x1) � Mb|x1|β3/2/((x1)2 + T2β)3/2, and
s2′(x1) � Mbβ

(3/2)/ ((x1)2 + T2β)(3/2) − 3Mb(x1)2β(3/2)/
((x1)2 + T2β)(5/2) < 0. limx1⟶−∞s2(x1) � 0, and
limx1⟶−

�
β

√
μ− s2(x1) > 0, s2(x1) is a monotonically in-

creasing function.
As limx1⟶ −∞f(x1, 0) < 0 and limx1⟶ −

�
β

√
μ−

f(x1, 0) > 0, we can conclude that there exists a unique real
in the interval x1 ∈ (−∞, −μ

��
β

􏽰
) for which f(x1, 0) � 0,

and the corresponding point will be denoted in the sequel
by L3.

3.2.2. Second Case. For the case where
x1 ∈ (−μ

��
β

􏽰
, (1 − μ)

��
β

􏽰
) � (−μ

��
β

􏽰
, 0)∪ (0, (1 − μ)

��
β

􏽰
), we

will treat in the first step the subcase when
x1 ∈ (−μ

��
β

􏽰
, 0) � (−μ

��
β

􏽰
, −T

��
β

􏽰
/

�
2

√
)∪ ((−T

��
β

􏽰
)/

�
2

√
, 0).

Let x1 ∈ (−μ
��
β

􏽰
, −T

��
β

􏽰
/

�
2

√
). Since limx1⟶−

�
β

√
μ+

s1(x1) � −∞ and limx1⟶−
�
β

√
μ+ s2(x1)> 0, we get

limx1⟶−
�
β

√
μ+ f(x1, 0)< 0, and s1((−T

��
β

􏽰
)/

�
2

√
)+

s2((−T
��
β

􏽰
)/

�
2

√
)> 0. Consequently, f((−T

��
β

􏽰
)/

�
2

√
, 0)> 0,

which means there is a unique point for which f(x1, 0) � 0.
*is point will be denoted in the sequel by Lb1.

In the case where x1 ∈ ((−T
��
β

􏽰
)/

�
2

√
, 0), we have

s1((−T
��
β

􏽰
)/

�
2

√
) + s2((−T

��
β

􏽰
)/

�
2

√
)> 0, which implies that

f((−T
��
β

􏽰
)/

�
2

√
, 0)> 0 and f(0, 0) � β3/2(−q1(1 − μ)

(
��
β

􏽰
μ)/(

��
β

􏽰
μ)3− q2(

��
β

􏽰
(−1 + μ))μ/(

��
β

􏽰
(−1 + μ))3 − 3A1q1

β(1 − μ)(
��
β

􏽰
μ)/2(

��
β

􏽰
μ)5 − 3A2q2β(

��
β

􏽰
(−1 + μ))μ/2(

��
β

􏽰

(−1 + μ))5)< 0

We can interpret as above that there exists a unique point
for which f(x1, 0) � 0. Let us denote this point by Lb2.

To complete the study of this second case, let
x1 ∈ (0, (1 − μ)

��
β

􏽰
).

Since f(0, 0)< 0 and limx1⟶
�
β

√
(1− μ)− f(x1, 0)> 0, we

can conclude that there exists a unique point for which
f(x1, 0) � 0. Let L2 be this point.

3.2.3. -ird Case. Let x1 ∈ ((1 − μ)
��
β

􏽰
,∞). Since

limx1⟶
�
β

√
(1− μ)+ s1(x1) � −∞, limx1⟶∞s1(x1) �∞,

s2(
��
β

􏽰
(1 − μ))< 0, and limx1⟶∞s2(x1) � 0, we can con-

clude that limx1⟶
�
β

√
(1− μ)+ f(x1, 0)< 0 and

limx1⟶∞f(x1, 0)> 0, and then, we conclude that there is a
unique real in this interval for which f(x1, 0) � 0. *e
corresponding point will be denoted by L1.

*e above points L1, L2, L3, Lb1, and Lb2 are called
collinear equilibrium points (Figure 2 and 3). *ese points
are similar to points determined in the study by Singh and
Taura [24]. Notice that in the classical R3BP, there are only
three collinear equilibrium points.

*e locations of these equilibrium points are determined
numerically and depicted in Figure 4. From analyzing this
figure, we can observe that as we increase the value of β, all
the equilibrium points are moving away from the origin
except Lb2 (Figure 5).

4. Stability of Equilibrium Points

In this section, let us investigate the stability properties of the
small body’s motion in its vicinity (x10 + x11, y10 + y11)

under the effect of the oblate radiating primaries and the
asteroids dust belt, where (x11, y11) are the small dis-
placements from the equilibrium points (x10, y10). To do
this, we can write the variational equations for system (9) as

€x
11

− 2n _y
11

� V
0
x1x1x

11
+ V

0
x1y1y

11
,

€y
11

+ 2n _x
11

� V
0
y1x1x

11
+ V

0
y1x1y

11
.

⎧⎪⎨

⎪⎩
(25)
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*e superscript 0 denotes the value at the corresponding
equilibrium point.

In the phase space, the above system (25) can be re-
written as

_x � x
12

,

_y
11

� y
12

,

_x
12

� 2ny
12

+ V
0
x1x1x

11
+ V

0
x1y1y

11
,

_y
12

� −2nx
12

+ V
0
y1x1x

11
+ V

0
y1y1y

11
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(26)

Due to the variation of themass and of the distance of the
small particle, by using Meshcherskii space-time inverse
transformations to examine the stability of the equilibrium
points, we then get

x
13

� β− 1/2
x
11

, y
13

� β− 1/2
y
11

,

x
14

� β− 1/2
x
12

, y
14

� β− 1/2
y
12

.

⎧⎨

⎩ (27)

Taking in account equation (26), system (27) can be
written as follows:

Y
.

� BY, (28)

where

Y �

x
13

y
13

x
14

y
14

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

30

20

10

0

–10

–20

–30

–2 –1 0
x1

L3 L2

Lb2

Lb1 L1

1 2

y1

Figure 2: Locations of collinear equilibrium points.
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Table 1: All the equilibrium points depicted are unstable and determined for T � 0.02, q1 � 0.90, q2 � 0.85, A1 � 0.03, A2 � 0.02,
Mb � 0.01, μ � 0.4, and α � 0.2.

Equilibrium points
Roots

β x1 − C0 y1 − C0

0.40

0.7482467178 0.0000000000
0.1 ± 1.46479i

1.6105
–1.4105

0.1051524050 0.0000000000
0.1 ± 3.25487i

−4.46466
4.66466

–0.7099161991 0.0000000000
0.1 ± 1.30658i

–1.08426
1.28426

–0.0274388781 0.000000000
0.1 ± 10.4769i

−13.2108
13.4108

−0.0002097310 0.0000000000 0.1 ± 36.3091i

0.1 ± 34.1204i

0.0766012649 ±0.5044421565 −0.610786 ± 0.997642i

0.810786 ± 0.997642i

0.90

1.1223700767 0.0000000000
0.1 ± 1.46479i

−1.4105
1.6105

0.1577286075 0.0000000000 0.1 ± 3.25487i

±4.46466

−1.0648742987 0.0000000000
0.1 ± 1.30658i

−1.08426
1.28426

−0.0411583172 0.0000000000
0.1 ± 10.4769i

−13.2108
13.4108

−0.0003146670 0.0000000000 0.1 ± 34.1204i

0.1 ± 36.3091i

0.1149018973 ±0.7566632347 −0.610786 ± 0.997642i

0.810786 ± 0.997642i

1.40

1.3998414294 0.0000000000
0.1 ± 1.46479i

−1.4105
1.6105

0.1967221364 0.0000000000
0.1 ± 3.25487i

−4.46466
4.66466

−1.3281315953 0.0000000000
0.1 ± 1.30658i

−1.08426
1.28426

−0.0513334406 0.0000000000
0.1 ± 10.4769i

−13.2108
13.4108

−0.0003923708 0.0000000000 0.1 ± 34.1204i

0.1 ± 36.3091i

0.1433078443 ±0.9437248605 0.610786 ± 0.997642i

0.810786 ± 0.997642i
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B �

1
2
α 0 1 0

0
1
2
α 0 1

V
0
x1x1 V

0
x1y1

1
2
α 2n

V
0
y1x1 V

0
y1y1 −2n

1
2
α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

*e characteristic equation for the matrix B is then

λ4 + α3 λ
3

+ α2 λ
2

+ α1 λ + α0 � 0, (30)

where

α0 �
1
16
α4 +

1
4
α2 4n

2
− Vx1x1 − Vy1y1􏼐 􏼑 + Vx1x1Vy1y1 − V

2
x1y1􏼐 􏼑,

α1 � α Vx1x1 + Vy1y1 − 4n
2

−
α2

2
􏼠 􏼡,

α2 � − Vx1x1 + Vy1y1 − 4n
2

−
3α2

2
􏼠 􏼡,

α3 � −2α.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

Table 1 represents the numerical solutions of equation
(30), for the values T � 0.02, q1 � 0.90, q2 � 0.85, A1 � 0.03,
A2 � 0.02, Mb � 0.01, μ � 0.4, and α � 0.2 (Singh and Taura
[24] and Ansari [16]) and three different values of parameter.
*is table represents also the roots corresponding to each
equilibrium points. From a simple interpretation of the
results of the table, we can deduce that equilibrium points
are unstable because at least one characteristic root is either a
positive real number or positive real part of the complex
characteristic root. While in the study by Singh and Taura
[24], it is shown that some equilibrium points are stable in
some intervals; therefore, in our case due to the impact of the
variation parameters, all the equilibrium points obtained are
unstable.

5. Conclusion

In this paper, we studied the effects of the variation pa-
rameters α and β on the behavior of motion of the infini-
tesimal body in the restricted 3-body problem and also when
the mass of this infinitesimal body varies according to Jean’s
law. We assumed that the primaries have both radiating as
well as oblateness effects, and the whole system has an effect
of an asteroids belt. Using the Meshcherskii space-time
transformation, we have evaluated the equations of motion.
From the obtained system of equations of motion, we nu-
merically illustrated the seven equilibrium points where five
equilibrium points are collinear and two are noncollinear
(i.e., triangular equilibrium points). *is conclusion is
similar to that made by Singh and Taura [24] but more

different from the classical R3BP [7]. Figure 4 shows the
location of the seven equilibrium points and their move-
ments for three values of β (0.4, 0.9, and 1.4). Figure 5 is the
zoomed part of Figure 4 near the equilibrium point Lb2.
From these figures, we noticed that as we increase the value
of the variation parameter β, all the equilibrium points are
moving away from the origin except Lb2. Furthermore, we
examined the stability of equilibrium points numerically,
and Table 1 represents the roots of the characteristic
polynomial that shows that at least one of the roots has either
positive real part of the complex roots or only a positive real
root. *ese facts confirm that all the equilibrium points are
unstable. As a second remark, we deduced that this result is
different from the result obtained by Singh and Taura [24]
where they have shown that the triangular points are stable
for 0< μ< μc, where μc is the critical mass ratio influenced by
the oblateness and radiation parameters of the primaries and
potential from the belt. We can then conclude that the
variation of parameters has a great impact on the dynamical
behavior of the motion of the infinitesimal body.
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In this work, we investigate the problem of constructing new integrable problems in the dynamics of the rigid body rotating about
its fixed point as results of the effect of a combination of potential and gyroscopic forces possessing a common symmetry axis. We
introduce two new integrable problems in a rigid body dynamics that generalize some integrable problems in this field, known by
names of Chaplygin and Yehia–Elmandouh.

1. Introduction

One of the classical problems manifesting in mathematical
physics is the issue of determining whether a dynamical
system, especially a mechanical one, is integrable or not.
Integrability in this context often points out to Liouville
integrability. (e Liouville integrability concept is defined as
the Hamiltonian system with n degrees of freedom that is
completely integrable if it has n independent integrals of
motion which are in involution, i.e., their Poisson brackets
are zero [1]. (e integrable systems possess miscellaneous
properties such as their behavior that can be globally tested
in an infinite interval of time, gratitude to the theories of
perturbation, those systems that can be applied to give an
appointed inference about the nonintegrable systems nearby
them, and in general, the motion equations can be solved by
quadratures [2].(e problem of integrability is split into two
categories. (e first one is finding the sufficient conditions
for the integrability, and this requires the construction of a
sufficient number of first integrals of motion. Numerous
methods can be utilized to construct the first integrals of
motion such as the direct method, Darboux method, and
Yehia method (see, e.g., [3–13]). (e second one deals with
obtaining the necessary conditions of the integrability (see,

e.g., [14–20]), but we must introduce the required number of
the integrals to confirm the integrability.

One of the significant issues in applications in assorted
branches of science such as physics and astronomy is the
problem of a rigid body and its extension to a gyrostat (see,
e.g., [21–23]). So, it is a beneficial model for research from
different points of view [24–29]. Consequently, the present
work interested in analyzing the general motion of a rigid
body about its fixed point that happens under the effect of a
combination of potential (velocity-independent) forces and
gyroscopic (velocity-dependent) forces. (e gyroscopic
forces are specified by l � (0, 0, l3), while the potential forces
are characterized by V(γ). As it outlined in [30], this motion
can be characterized by the Lagrangian:

L �
1
2
ω · ωI + l · ω − V, (1)

where ω � (p, q, r) is the angular velocity, and
I � diag(A, B, C) is the inertia matrix of the body. (e
equations of motion corresponding Lagrangian (1) are
[30–32]

ω
.
I + ω ×(ωI + μ) � c ×

zV

zγ
, c

.
+ ω × c � 0, (2)
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where c � (c1, c2, c3) is the unit vector which is fixed up-
ward in space, and μ is expressed as

μ c1, c2, c3( 􏼁 �
z

zγ
(l · c) −

z

zγ
· l􏼠 􏼡γ. (3)

It is well-known that the Euler-Poisson equation (2) has
three classical integrals of motion. (ey are as follows:

(1) Area integral:

I1 � (ωI + l) · c � f, (4)

where the arbitrary constant f denotes the value of
area integral. (is integral is sometimes named as a
cyclic integral due to it correspondences the cyclic
variable ψ, the angle of precession.

(2) Jacobi integral:

I2 �
1
2
ω · ωI + V � h, (5)

where the arbitrary constant h identifies the value of
the Jacobi integral.

(3) Geometric integral:

I3 � c · c � 1. (6)

Taking into account the Jacobi theorem on the last in-
tegrating multiplier [33], four integrals of motion are needed
to confirm the integrability of the equation of motion (2).
(ence, the existence of a fourth integral independent of
those (4), (5), and (6) is sufficient to prove the integrability. It
is worth noticing that the integrable case either generally
integrable or conditionally integrable according to the fourth
integral is either valid on an arbitrary level of the cyclic
integral I1 or valid on a single level of cyclic integral I1 which
is usually zero.

(e problem of a rigid body which is described by the
equation of motion (2) was studied in diverse posterior
works from the point of view of the integrability. (ose
works include three types of problems.

(e first problem deals with the problem of the motion
of a rigid body about a fixed point under the action of its
weight. It is characterized byV � r0 · c, and μ � 0, where r0 is
a constant vector that represents the center of the mass
vector. It attracted the attention of the researchers for a long
time, nearly two and a half centuries, and thus, it has a great
history. It includes three (no more) general integrable
problems bearing the names of who discovered them, Euler,
Lagrange, and Kowalevski, and one conditional integrable
problem of Goriatchev–Chaplygin (see, e.g., [34]).

(e second problem concerns the motion of a rigid body
about its fixed point under the effect of its weight, and
moreover, there is a rotor spinning about its axis of sym-
metry which is fixed in the body with a constant angular

velocity. It is worth mentioning that it is a simple multibody
that consists of the main body and the rotor, and it is termed
in literatures a gyrostat. (e second problem regards as a
generalization to the first problem, and it is determined by
V � r0 · c and μ � k, where k is a constant vector charac-
terizing the gyroscopic moment due to the existence of the
rotor. It contains three general and one conditional inte-
grable problems generalizing those in the first problem by
adding the gyrostatic moment. (e general cases are
Lagrange, Joukovsky [34], and Yehia [35], while the con-
ditional case is the Sretensky case which generalizes the
Goriatchev–Chaplygin case in the first problem. In [36], the
author proved that the equations of the motion for the
current problem does not own more than the three men-
tioned cases.

(e third problem studies the problem of the motion of a
rigid body in an incompressible ideal fluid, infinitely
extending and at rest at infinity. (e simple connected body
is either described by the traditional Kirchoff equations [37]
or by their Hamiltonian [38] form, while the body bounded
by a multiconnected surface is described either by Lamb
equations [39] or by its equivalent Hamiltonian form (see,
e.g., [34]). (e utilization of the equations of Kirchhoff and
Lamb to describe this problem lacks to demonstrate the link
between this problem and the other problems of rigid body
dynamics. (e link between both problems is proved by
Yehia who introduced the equations of motion for a rigid
body in a liquid by removing the translation motion that
appears as cyclic variables (see, [40]), and the reduced
problem is described by V � r0 · c + (1/2)γJ · c and
μ � k − 2cK, where J andK are the constant 3 × 3 matrices.
(e integrable cases for the third problem have been in-
troduced in [34, 40].

To dodge the ambiguity, we summarize those problems
in Table 1. Obviously, each problem is a generalization of the
previous one by inserting some of the additional parameters,
which represented terms having certain physical
interpretations.

According to the methodology used, this work deals only
with two-dimensional mechanical systems, as it is outlined
down in section two. It is obvious that this problem has three
degrees of freedom in which one of them can be ignored due
to the presence of a cyclic variable, precession angle, by
utilizing the Routh procedure. (ence, the current problem
can be characterized by Routhian (see, [41]).

R �
1
2

_c
2

1 − c
2
3

+
C 1 − c

2
3􏼐 􏼑φ

. 2

A − (A − C)c
2
3

⎡⎢⎣ ⎤⎥⎦ +
f Cc3 + Al3 1 − c

2
3􏼐 􏼑􏼐 􏼑

A A − (A − C)c
2
3􏽨 􏽩

φ
.

−
1
A

V +
f − l3c3( 􏼁

2

2 A − (A − C)c
2
3􏽨 􏽩

⎛⎝ ⎞⎠.

(7)

One can do the transformation,

dt �
C 1 − c

2
3􏼐 􏼑

A − (A − C)c
2
3
dτ, (8)
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to Routhian (7), and we get

R0 �
A

2
φ�2 +

A − (A − C)c
2
3

C 1 − c
2
3􏼐 􏼑

2 c�
2
3

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ +
fCc3 + Al3 1 − c

2
3􏼐 􏼑

A − (A − C)c
2
3􏽨 􏽩

φ�

−
C 1 − c

2
3􏼐 􏼑

A − (A − C)c
2
3􏽨 􏽩

V +
f − l3c3( 􏼁

2

2 A − (A − C)c
2
3􏽨 􏽩

⎡⎢⎣ ⎤⎥⎦,

(9)

where τ is the fictitious time, and dash refers to the derivative
with respect to τ.

2. Basic Equations

A method for constructing the two-dimensional integrable
mechanical systems in which the additional integral is a
polynomial in velocities has been presented by Yehia in [42],
and it has been developed in [43]. (is method has been
successfully applied to construct new integrable problems
(not necessarily plane) whose complementary integral is a
polynomial in velocities up to degree four (e.g.,
[4–6, 44–49]). (is method is restrictively employed for two
mechanical systems. (ere are a wide class of beforemen-
tioned systems such as the n-dimensional mechanical sys-
tems admitting (n − 2) cyclic variables and the particle
motion on a smooth surface under the influence of distinct
types of forces. A further example is a present problem
which describes the rotation of a rigid body about a fixed
point under the effect of potential and gyroscopic forces
possessing a common axis of symmetry, so the motion has a
cyclic variable, and this enables us to apply Routh procedure
to lessen the degrees of freedom from three to two [32, 33].

(e two-dimensional mechanical systems are described
by Lagrangian equation.

L �
1
2

b11q1
. 2

+ 2b12q1
.
q2

.
+ b22q2

. 2
􏼐 􏼑 + b1q1

.
+ b2q2

.
− V,

(10)

where the functions bij, bi, and V rely on the generalized
coordinates q1andq2, and dots refer to the derivatives with
respect to the time t. Birkhoff theorem [50] guarantees the
existence of a certain canonical transformation which is
applied to turn Lagrangian (10) into

L �
Λ
2

_ξ
2

+ _η2􏼒 􏼓 + l1
_ξ + l2 _η − V, (11)

where Λ, l1, l2, andV are the functions in the two variables
xandy. (e usefulness of this step is to diminish the number
of functions from six to four. It is obvious that the La-
grangian (10) has a Jacobi integral in the form

I1 �
Λ
2

_ξ
2

+ _η2􏼒 􏼓 + V � h, (12)

where h is an arbitrary constant. According to Liouville
theorem for the equivalent Hamiltonian system, system (11)
is completely integrable if it has another first integral in-
dependent on the Jacobi integral (12).

Executing the time transformation (see Appendix A for
more details about time transformation),

dt � Λdτ, (13)

to Lagrangian (11), we get

L0 �
1
2

ξ′
2

+ η′
2

􏼒 􏼓 + l1ξ′ + l2η′ − U, (14)

where U � Λ(h − V), and ′ refers to the derivative with
respect to τ. (e Lagrangian equations corresponding to
Lagrangian (14) are

ξ″ +Ωη′ �
zU

zξ
,

η″ +Ωξ′ �
zU

zη
,

(15)

where Ω � zl1/zη − zl2/zξ. (is system has a Jacobi integral
in the form

I1 �
1
2

ξ′
2

+ η′
2

􏼒 􏼓 + U � 0. (16)

Now, we are going to find an additional first integral that
is independent on the Jacobi integral (16). Based on [42], the
complementary integral that is assumed to be quartic in
velocities can be expressed as

I2 � ξ′
4

+ P3ξ′
3

+ Q3ξ′
2

η′ + P2ξ′
2

+ Q2ξ′η′ + P1ξ′ + Q1η′ + R,

(17)

where the functions Pj, Qj, andR depend on the two vari-
ables ξ and η. Calculating the derivative of (17) with respect
to τ and using the Jacobi integral (16) to remove all the even
powers of η′ as in [42], we get the following nonlinear system
of partial differential equations:

M.DξX + N.DηX � B, (18)

where X � (P1 P2 P3 Q1 Q2 Q3 R U Ω)T is
the vector of the unknown functions. DξX and DηX are
partial derivatives according to the variables ξ and η of the
vector X. M and N are the matrices and given as follows:

Table 1: Different problems in a rigid body dynamics.

No. Problem Potential function V
Vector

function μ
1 Heavy rigid body V � r0 · c μ � 0
2 Heavy gyrostat V � r0 · c μ � k
3 Rigid body in a liquid V � r0 · c + (1/2)cJ · c μ � k − 2cK
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M �

1 0 0 0 0 0 0 3P3 0
1 0 0 0 0 0 0 2Q3 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 2P1 0
1 0 0 0 0 0 1 P1 0
1 0 0 0 0 0 1 Q2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

N �

0 0 0 − 1 0 2U 0 Q3 0
0 0 0 1 0 0 0 0 0
0 0 0 0 − 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 − 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 2U 0 1 Q2 0
0 0 0 2U 0 0 1 Q1 0
0 0 0 0 0 0 1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

(e right-side vector B is given by B �

− 2ΩQ2 2ΩP2 − 3ΩQ3 − 4U 3ΩP3 0 4Ω − ΩQ1 + 4ΩUQ3 2ΩQ2U ΩP1( )T.
System (18) composed of nine nonlinear partial differ-

ential equations with nine unknown functions is not easy to
solve exactly. Notice that the solution of this system de-
termines a two-dimensional integrable system with an ad-
ditional quartic integral in the velocities which is valid on a
zero level of Jacobi integral.

(e sixth equation in (18), which is zP3/zξ+

zQ3/zη � 4Ω, and the definition of Ω, allow us to write
Lagrangian (14) in the form

L0 �
1
2

ξ′
2

+ η′
2

􏼒 􏼓 +
1
4

P3ξ′ − Q3η′( 􏼁 − U. (21)

3. Applications to Rigid Body Dynamics

In the present section, we investigate the construction of new
integrable systems with a quartic integral in the dynamics of a
rigid body movement. Seeing that the metric corresponding
to Lagrangian (9) is ds2 � dφ2 + g(c3)dc2

3, it is more suitable
to use the variable p instead of η through the relation

η � 􏽚
dp

f(p)
, (22)

where

f(p) �

������������������������������������

p − p1( 􏼁 p − p2( 􏼁 p − p3( 􏼁 p + p1 + p2 + p3( 􏼁

􏽱

,

(23)

where p1, p2, andp3 are the arbitrary parameters. We con-
sider a certain class of problems in a rigid body dynamics in
which the gyroscopic forces are determined by

Ω(ξ, p) � a1Ω1(p)cos ξ + a2Ω0(p), (24)

and the potential forces are characterized by

U(ξ, p) � u(p) + a3v(p)sin ξ −
a1a2

8
f0(p)cos ξ

+ a
2
1m(p)cos 2 ξ,

(25)

where a1, a2, anda3 are the arbitrary constants. (e moti-
vation for the choice of the two functions (24) and (25) is
that they represent a large class of problems in the dynamics
of a rigid body. Certain clarifications should be made for two
particular cases.

(1) Time-reversible case: this case is characterized by
the absence of gyroscopic forces, i.e., Ω � 0. (is
happens if a1 � 0anda2 � 0, (e potential function
(25) reduces to U � u(p) + a3v(p)sin ξ which is a
Kowalevski-type potential. Furthermore, if we
change ξ⟶ 2ξ, the potential function takes the
form U � u(p) + a3v(p)sin 2 ξ which is a Chap-
lygin-type potential. (e previous studies con-
cerning those types of potentials lead to several
generalizations for integrable problems in the rigid
body dynamics in which the additional integral is a
quartic polynomial in the velocities (e.g., [51–53]).
(is type of problem is referred in literatures as
time-reversible systems.

(2) Time-irreversible case: this case involves a gyro-
scopic forces acting on the motion besides the po-
tential forces. We can split it into two subcases.

(a) When setting a1 � 0, the gyroscopic forces is
characterized by Ω � a2Ω0(p), and the potential
function (25) becomes U � u(p) + a3v(p)sin ξ.
(e potential function is a type of Kowalevski-
gyrostat type potential or Chaplygin-gyrostat
type potential (if ξ⟶ 2ξ ). (is problem has
been studied in several works such as [51, 52].
(ese studies lead to a generalization of a
Kowalevski case and Chaplygin case by adding a
constant gyrostatic moment.

(b) When a1a2 ≠ 0, the full structure of Ω and U is
considered in [49], but the authors solved the
basic equations for a special cases leading to the
Kowalevski case, and they introduced two in-
tegrable problems generalize Kowalevski case
and Sokolov case.

Inserting the expressions (22), (24), and (25) into the
equations (18)–(21), we have
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L �
1
2

η′
2

+
p′

2

f(p)
⎛⎝ ⎞⎠ + a1J1(p)cos ξ + a2J0(p)( 􏼁ξ′ + u(p)

+ a3v(p)sin ξ −
a1a2

8
f0(p)v(p)cos ξ + a

2
1m(p)cos(2ξ),

(26)

I � ξ′
4

+ P3ξ′
3

+ Q3ξ′
2

p′ + P2ξ′
2

+ Q2ξ′p′ + P1ξ′ + Q1p′
+ R � ε0,

(27)

where Qj � (Qj/
�����
f(p)

􏽰
). In what follows, we inscribe Q

instead of Q for simplicity. Taking into account the trans-
formation (22) and inserting the two expressions (24) and
(25) into the basic equation (18), we get the following
nonlinear system of partial differential equations in the
following form:

Q3
df

dp
+ 2f

zQ3

zp
− 2

zP3

zξ
� 0, (28)

zP3

zp
+

zQ3

zξ
− 4a2Ω0 − 4a1Ω1 cos ξ � 0, (29)

8a3v + 6a1fQ3Ω1( 􏼁cos ξ − 16a
2
1m sin 2 ξ − 2f

zQ2

zp
+ 2

zP2

zξ
+ a1a2f0v sin ξ − Q2

df

dp
+ 6a2fQ3Ω0 � 0, (30)

zQ2

zξ
+

zP2

zp
− 3P3 a1Ω1 cos ξ + a2Ω0( 􏼁 � 0, (31)

8a
2
1 Q3f

dm

dp
+ 2fm

zQ3

zp
+ Q3m

df

dp
􏼨 􏼩cos 2 ξ − a1a2f0v

df0

dp
Q3 − 24a3vP3 + 2a1a2ff0v

zQ3

zp
􏼨

+ a1a2ff0Q3
dv

dp
− 16a1fQ2Ω1 + a1a2Q3vf

df0

dp
􏼩

cos ξ + 3a1a2vf0Q3 + 8a3vQ3
df

dp
+ 16a3fv

zQ3

zp
+ 8a3Q3f

dv

dp
􏼨 􏼩sin ξ + 8Q3f

×
du

dp
− 48a

2
1P3m sin 2 ξ − 8f

zQ1

zp
− 4Q1

df

dp
+ 8

zP1

zξ

+ 8Q3u
df

dp
+ 16fu

zQ3

zp
+ 16fa2Q2Ω0 � 0,

(32)

a1a2f0vQ3 sin ξ + 8 a3vQ3 − a1Ω1P2( 􏼁cos ξ + 4
zQ1

zξ
+ 4

zP1

zp
− 8a2P2Ω0 − 16a

2
1mQ3 sin 2 ξ � 0, (33)

zR

zξ
� 2a

3
3fQ3mΩ1 −

a
2
2a1

2
f0fvQ3Ω0 − a1fQ1Ω1 + 4a1Q3uΩ1f +

a1a2

8
Q2vf

df0

dp
+

a1a2

4
ff0v

zQ2

zp
􏼨

− 2a3vP2 +
a1a2

8
Q2ff0

dv

dp
+

a1a2

8
f0vQ2

df

dp
􏼩cos ξ

+ − a
2
1mQ2

df

dp
−

a2a
2
1

4
ff0vQ3Ω1 − 2a

2
1mf

zQ2

zp
+ 4a2a

2
1fQ3m ×Ω0 + 2a

3
1fQ3mΩ1􏼨 􏼩cos 3 ξ

− a
2
1fQ2

dm

dp
cos 2 ξ + − 2a3fv

zQ2

zp
−

a1a2

4
f0vP2 × Q2 + 4a2a3fQ3Ω0 − a3fQ2

dv

dp
􏼨 􏼩sin ξ

+ 4a
2
1P2m + 2a1a3fvQ3Ω1􏼨 􏼩sin 2 ξ − a2fQ1Ω0 − Q2f

du

dp
− Q2u

df

dp
− a3v

df

dp
− Q2u

df

dp

−
a
2
1a2

4
ff0Q3Ω1 + 4a2fQ3uΩ0 − 2fu

zQ2

zp
,

(34)
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zR

zp
� 2a

2
1mQ2 sin 2 ξ −

a1a2

8
Q2f0v sin ξ + a1P1Ω1 cos ξ −

a1a2

8
Q2f0v sin 3 ξ + a2P1Ω0

a
2
1 16fm

zQ1

zp
+ a2ff0vQ2Ω1 − 16a2fmQ2Ω0 + 8Q1m

df

dp
+ 8Q1f

dm

dp
􏼨 􏼩cos 2 ξ − 8a

3
1fQ2mΩ1 cos 3 ξ

+ − a1a2f0vQ1
df

dp
+ 2a1a

2
2ff0Q2Ω0 − a1a2Q1ff0

dv

dp
− 16a1fuQ2Ω1 − 8a

3
1fmQ2Ω1 − a1a2vfQ1

df0

dp
􏼨

+ 8a
3
1vP1 − 2a1a2f0fv

zQ1

zp
􏼩cos ξ + 16a3fv

zQ1

zp
+ 8a3vQ1

df

dp
− 16a2a3fQ2vΩ0 + a1a2P1f0v + 8a3fQ1

dv

dp
􏼨 􏼩sin ξ

− 8a1 2a1mP1 + a3vfQ2Ω1( 􏼁sin 2 ξ + 8Q1u
df

dp
+ a

2
1a2fQ2f0v − 16a2fQ2uΩ0 + 16fu

zQ1

zp
+ 8Q1f

du

dp
� 0,

(35)

where

Ω0 �
dJ0

dp
,

Ω1 �
dJ1

dp
.

(36)

It is obvious that systems (28)–(35) are a nonlinear
system of partial differential equations, and so in general,
their solution is somewhat difficult. For simplicity, we turn
these equations to the system of ordinary differential
equations by setting the integral coefficients in a more
suitable form. After some trials, the integral coefficients can
be expressed as follows:

P3(ξ, p) � a1f0(p) + a1f1(p)cos ξ,

Q3(ξ, p) � 8a1 sin ξ,

P2(ξ, p) � P0(p) + 16a3p sin ξ + a1a2G(p)cos ξ + a
2
1T(p)cos 2 ξ,

Q2(ξ, p) � a3q1(p)cos ξ + a1a2q2(p)sin ξ + a
2
1q3(p)sin 2 ξ,

P1(ξ, p) � f3(p)cos ξ + a
2
1a2f4(p)cos 2 ξ + a

3
1f5(p)cos 3 ξ + a1a3f6(p)sin 2 ξ + a2a3f7(p)sin ξ + f8(p),

Q1(ξ, p) � a2a3f9(p)cos ξ + a1a3f10(p)(cos 2 ξ + 1) + a1f11(p)sin ξ + a2a
2
1f12(p)sin 2 ξ + a

3
1f13(p)sin 3 ξ.

(37)

Inserting the expressions of the integral’s coefficients
(37) into the equations (28)–(35) and equating the

coefficients of trigonometric functions to zero, we obtain the
following system of ordinary differential equations:

a1 f1 + 4
df

dp
􏼠 􏼡 � 0, (38)

a2f
df0

dp
− 4Ω0􏼠 􏼡 � 0, (39)

a1 4Ω1 −
df1

dp
− 8􏼠 􏼡 � 0, (40)

a3 q1
df

dp
+ 2f

dq1

dp
− 32p − 8v􏼠 􏼡 � 0, (41)
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a1a2 q2
df

dp
+ 2f

dq2

dp
+ 2G − f0v − 48fΩ0􏼠 􏼡 � 0, (42)

a
2
1 q3

df

dp
+ 2f

dq3

dp
+ 4T + 16m − 24fΩ1􏼠 􏼡 � 0, (43)

a1a2
dG

dp
− 3f0Ω1 − 3f1Ω0 − q2􏼠 􏼡 � 0, (44)

a
2
1 2

dT

dp
− 3f1Ω1 + 4q3􏼠 􏼡 � 0, (45)

a3 q1 − 16( 􏼁 � 0, (46)

dP0

dp
− 3a

2
2f0Ω0 −

3
2
a
2
1f1Ω1 � 0, (47)

a2a3 f9
df

dp
+ 2f

df9

dp
− 2f7 − 6f0v − 4fq1Ω0􏼠 􏼡 � 0, (48)

a1a3 f10
df

dp
+ 2f

df10

dp
+ 8

d
dp

(vp) − 4f6 − 3f1v − 2q1fΩ1􏼠 􏼡 � 0, (49)

f3 + a1 f
df11

dp
+
1
2
f11

df

dp
− 8f

du

dp
− 8u

df

dp
􏼠 􏼡 + a

3
1 4m

df

dp
+ 3mf1􏼠 􏼡 + a1a

2
2
3
8
f0v − 2fq2Ω0􏼒 􏼓 � 0, (50)

a2a
2
1 8f12

df

dp
+ 16f

df12

dp
+ 8

d
dp

f0vf( 􏼁 + 32f4 + 96f0m − 32fq3Ω0 − 32fq3Ω0 − 16q2fΩ1􏼠 􏼡 � 0, (51)

a
3
1 2f

df13

dp
+ f13

df

dp
+ 6f5 − 8

d
dp

(mf) − 2q3fΩ1 + 6mf1􏼠 􏼡 � 0, (52)

a1a3 f10
df

dp
+ 2f

df10

dp
− 8

d
dp

(vf) − 2q1fΩ1 − 3f1v􏼠 􏼡 � 0, (53)

a1 2P0Ω1 − f11( 􏼁 + 2a1a
2
2GΩ0 + a

3
1 16m + TΩ1( 􏼁 −

df3

dp
� 0, (54)

a
2
1a2 2TΩ0 − 2f12 + f0v + GΩ1 −

df4

dp
􏼠 􏼡 � 0, (55)

a
3
1 TΩ1 − 3f13 − 16m −

df5

dp
􏼠 􏼡 � 0, (56)

a2a3
df7

dp
− f9 − 32pΩ0􏼠 􏼡 � 0, (57)
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a1a3
df6

dp
− 2f10 − 16pΩ1 + 8v􏼠 􏼡 � 0, (58)

a
2
1a2 GΩ1 − f0v( 􏼁 + 2a2P0Ω0 −

df8

dp
� 0, (59)

zR

zξ
� F0(p) + F1(p)cos ξ + F2(p)cos 2 ξ + F3(p)cos 3 ξ + F4(p)sin ξ + F5(p)sin 2 ξ + F6(p)sin 3 ξ, (60)

zR

zp
� F7(p)cos ξ + F8(p)cos 2 ξ + F9(p)cos 3 ξ

− a
4
1 q3m −

Ω1f5

2
􏼨 􏼩cos 4 ξ + a3 a

2
2f7Ω0 + a

2
1

f6Ω1
2

+ mq1 −
1
2

vq3􏼠 􏼡􏼨 􏼩

sin ξ −
a1a2a3

16
v q1f0 + 8q2( 􏼁 − 8f7Ω1 − 16f6Ω0􏼈 􏼉sin 2 ξ +

a3a
2
1

2
f6Ω1 + 2mq1 − vq3􏼈 􏼉

sin 3 ξ +
a1

2
f3Ω1 −

a
2
3
2

q1v + a2f8Ω0 + a
4
1q3m −

a
2
1a

2
2

16
q2f0v,

(61)

a
4
1a2 f0f5v − 8fq2mΩ1 − vff13

df0

dp
− f0f13v

df

dp
− 16fq3mΩ0 − 16f4m + fq3Ω1f0v + vf0f5􏼨

− 2ff0v
df13

dp
+ 8ff12

dm

dp
+ 8f12m

df

dp
− f13f0f

dv

dp
+ 16fm

df12

dp
􏼩 � 0,

(62)

a3a
3
1 vf13

df

dp
+ ff13

dv

dp
− ff10

dm

dp
− 2fm

df10

dp
− 2f6m − f10m

df

dp
− vf5 − fq3Ω1v + 2fv

df13

dp
+ fq1Ω1m􏼨 􏼩 � 0, (63)

a1 − 16a1mf3 + a
2
1 16f13f

du

dp
+ 16fm

df11

dp
+ 8f11f

dm

dp
+ 8f11m

df

dp
− 16fq3uΩ1 + 16uf13

df

dp
+ 32fu

df13

dp
􏼠 􏼡􏼨

+ a
2
1a

2
2 − ff0f12

dv

dp
+ fq2f0Ω1v + f4vf0 − 2ff0v

df12

dp
+ 2fq3f0Ω0v − vff12

df0

dp
− 16fq2Ω0m − f12f0v

df

dp
􏼠 􏼡

+ a
2
3 8ff10

dv

dp
+ 8f10v

df

dp
+ 16fv

df10

dp
+ 8f6v − 8fq1Ω1v􏼠 􏼡 − 8a

4
1q3fΩ1m􏼩 � 0,

(64)

a
2
1a2a3 f10f0v

df

dp
+ 16fq1mΩ0 − 16mf7 + f0f6v + f0f10f

dv

dp
− 16fq3vΩ0 + 8ff12

dv

dp
+ 8vf12

df

dp
− 8fq2vΩ1􏼨

− 8f4v + ff10v
df10

dp
− 16fm

df9

dp
− 8ff9

dm

dp
+ 16fv

df12

dp
− 8f9m

df

dp
− fq1Ω1f0v + 2ff0v

df10

dp
� 0,

(65)

− 2a
2
1f8m +

a1a2

16
f0f3v +

a2a
4
1

16
− ff13v

dv

dp
− ff13

dv

dp
− 2ff0v

df13

dp
− f0vf13

df

dp
− f0f5v + 2fq3Ω1f0v􏼨 􏼩

+ a2a
2
1 ff12

du

dp
−

1
16

ff11v
df

dp
+ 2fu

df12

dp
− fq2uΩ1 + f12u

df

dp
−

1
16

ff11f0
dv

dp
−

1
16

ff11v
df0

dp
− 2fq3uΩ0 −

1
8

ff0v
df11

dp
􏼠 􏼡

+
a2a

2
3

2
f7v + 2fv

df9

dp
− 2fq1Ω0v + f9f

dv

dp
+ f9v

df

dp
􏼨 􏼩 +

a
2
1a

3
2

8
fq2Ω0f0v􏼩 � 0,

(66)
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a38f3v + a1 32fu
df10

dp
− 16fq1Ω1u − 8f11v

df

dp
− 8ff11

dv

dp
+ 16f10u

df

dp
+ 16ff10

du

dp
− 16vf

df11

dp
􏼠 􏼡

+ a
3
1 8f13v

df

dp
+ 16vf

df13

dp
+ 32fm

df10

dp
+ 16mf10

df

dp
+ 8f5v + 16ff10

dm

dp
− 16fq1mΩ1 + 8f13f

dv

dp
􏼠 􏼡

+ a1a
2
2 2ff0q1Ω0v − ff0f9

dv

dp
− f0f7v − f9fv

df0

dp
− 2f0fv

df9

dp
+ 16fq2Ω0v􏼠 􏼡􏼩 � 0,

(67)

a3 16f8v + a2 16f9u
df

dp
+ 16f9f

du

dp
− 32fq1Ω0u + 32fu

df9

dp
􏼠 􏼡 + a2a

2
1 − 8fq2vΩ1 − 3f10vf

df0

dp
+ 8f9f

dm

dp
+ 8f4v􏼠􏼨

− 6ff0v
df10

dp
− 16fq1Ω0m − 3f0f10f

dv

dp
+ 16fv

df12

dp
− 3f10f0v

df

dp
+ 3fq1Ω1f0v + 8f12f

dv

dp
+ f6f0v + 8f9m

df

dp

− 16fq3Ω0v + 8f12v
df

dp
+ 16fm

df9

dp
− 16f7m􏼡􏼩 � 0,

(68)

a1 16f11u
df

dp
+ 16f11f

du

dp
+ 32fu

df11

dp
− 16a1f3m + 2a2f0f8v + a

2
1 − 8f11m

df

dp
− 16fq3uΩ1 − 16fm

df11

dp
− 8f11f

dm

dp
􏼠 􏼡􏼨

+ a
4
1 8ff13

df

dp
+ 8f13m

df

dp
+ 16fm

df13

dp
􏼠 􏼡 − 32a

2
2fq2Ω0u + a

2
3 − 8fq1Ω1v + 8f6v + 16fv

df10

dp
+ 8f10v

df

dp
+ 8ff10

dv

dp
􏼠 􏼡

+ a
2
1a

2
2 − f0f12f

dv

dp
+ fq2Ω1f0v + 16fq2Ω0m − f0vf12

df

dp
− f4f0v − vff12

df0

dp
− 2ff0v

df12

dp
+ 2fq3Ω0f0v􏼠 􏼡􏼩 � 0,

(69)

a3 a
3
1 f10m

df

dp
+ 8f10f

dm

dp
− 8fq1Ω1m + 16fm

df10

dp
− 8fq3Ω1v − 16f6m􏼠 􏼡 + a1 a

2
2 f7f0v − 2ff0v

df9

dp
− f0ff9

dv

dp
􏼠􏼨􏼨

+ 2fq1f0vΩ0 − 16fq2Ω0v − f9fv
df0

dp
− f9f0v

df

dp
􏼡 + 32fu

df10

dp
+ 8f11v

df

dp
+ 16fv

df11

dp
+ 16f10 × u

df

dp

− 16fq1Ω1u + 8f11f
dv

dp
+ 16ff10

du

dp
􏼩 + 8vf3􏼩 � 0,

(70)

where Fi(p), i � 0, 1, . . . , 9 is given in Appendix
B. Systems (38)–(68) consist of thirty-two nonlinear or-
dinary differential equations in nineteen unknown func-
tions.(e solution to this system is somewhat intricate, and
we cannot generally solve it as in the reversible case for
arbitrary values of the parameters. But we solve it for
certain values of the parameters leading to rigid body
dynamics.

3.1.TwoNewIntegrableProblems. (emetric corresponding
to the Lagrangian (9) that describes themetric of a rigid body
matches with the Lagrangian (26) if we set

ξ � 2 φ − φ0( 􏼁,

p1 � p2 � p3 � 1,

p � 1 +
c
4
3

1 − c
2
3
.

(71)

We are going to solve equation (70) taking into ac-
count condition (71). As a result of the complexity of those
equations, we utilize the Maple program. We consider
separately the two cases that are a1a2 ≠ 0 and a2 � 0. Let us
illustrate the causes of choosing those cases. In our works
for constructing integrable systems with quartic integrals,
it seems that some potentials are appropriate, with the
attendance of a constant gyrostatic moment, while others
are not. For more elucidation, we admit the Chaplygin
case describing the motion of a rigid body in an in-
compressible ideal fluid and its generalization as an
example:

V1 � a c
2
1 − c

2
2􏼐 􏼑 + 2bc1c2 +

λ
2c

2
3
, μ � (0, 0, k), (72)

V2 � a c
2
1 − c

2
2􏼐 􏼑 + 2bc1c2 +

λ
2c

2
3

+ ρ
1
c
4
3

−
1
c
6
3

􏼠 􏼡, μ � (0, 0, 0),

(73)

Advances in Astronomy 9



where a, b, λ, andρ are the arbitrary parameters, while k is a
constant characterizing the gyrostatic moment. (ese two
cases were previously introduced in [53, 54], respectively. It
is worth noticing that the singular term ρ((1/c4

3) − (1/c6
3)) is

not compatible with the existence of the gyrostatic moment
as it is outlined in (72), but in the absence of a gyrostatic
moment, this term appears. As we see later, this situation
appears, and it is followed by the discovery of two new cases.
(e new cases will be directly announced without any details
due to most of the calculations cannot be displayed in a
suitable size.

3.1.1. First New Integrable Case. We first consider the case in
which a2a1 ≠ 0; taking into account the condition (71) and

using the Maple program, we obtain a new integrable
problem in a rigid body dynamic after tedious manipula-
tions which are not writable in a suitable size in the gen-
eralized coordinates θ and φ. (erefore, we introduce it in
the traditional Euler-Poisson variables for the sake of
simplicity and to make the comparison clear with previous
results.

Theorem 1. Let the principal inertia matrix for a rigid body
satisfy the condition A � B � 2C, and the potential and gy-
roscopic forces characterized by Vandμ, respectively, are given
by

V � κ c c
2
2 − c

2
1􏼐 􏼑 − 2 dc1c2􏽨 􏽩 +

λ
c
2
3

+ K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏽨 􏽩 k − ]

c
2
1 + c

2
3

c
2
1

􏼠 􏼡 −
k]c

2
3

c
2
1

−
]2c2

3 c
2
3 + 2c

2
2􏼐 􏼑

2c
4
1

+ K
2 d

2

2
c
4
3 + 4c

2
1c

2
2􏼐 􏼑 − c

2
c
2
3 c

2
1 + c

2
2􏼐 􏼑 + 2c

2
1c

2
2􏼐 􏼑2 + c dc1c2 c

2
1 − c

2
2􏼐 􏼑􏼢 􏼣,

(74)

μ � 2Kc3 cc2 − dc1( 􏼁 −
2]c3 1 + c

2
2􏼐 􏼑

c
3
1

, 2Kc3 cc1 + dc2( 􏼁 +
2]c2c3

c
2
1

, k + K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏽨 􏽩 +

] 1 + c
2
2􏼐 􏼑

c
2
1

⎛⎝ ⎞⎠, (75)

or, equivalently,

l � 0, 0, k + K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏽨 􏽩 +

ν 1 + c
2
2􏼐 􏼑

c
2
1

⎛⎝ ⎞⎠,

(76)

where k, κ, c, d, λ, K, and] are the arbitrary parameters. Cen,
the Euler-Poisson equation 2) with (74) and (76) is integrable
on a zero level of the area integral:

I1 � 2pc1 + 2qc2 + r + k + K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏼐 􏼑􏼐

+
] 1 + c

2
2􏼐 􏼑

c
2
1

⎞⎠c3.

(77)

(e additional integral admits the form

I2 � p
2

− q
2

+ cκc
2
3 + cK

2
c
2
3 c c

2
1 − c

2
2􏼐 􏼑 + 2 dc1c2􏼐 􏼑 − K d 2] + 2k + c

2
3(3k − 3] − r) −

λ c2
1 − c2

2( 􏼁

c2
3

􏼠 􏼡􏼢 􏼣

2

+ 2pq + dκ c
2
3 + dK

2
c
2
3 c

2
1 − c

2
2􏼐 􏼑 + 2 dc1c2􏼐 􏼑 + cK c

2
3(3k − 3] − r) −

2λc1c2

c2
3

􏼠 􏼡􏼢 􏼣

2

+(k − ])(r − k + ])

− K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏼐 􏼑 2 p

2
+ q

2
􏼐 􏼑􏽨 􏽩 + 2λ 1 +

1
c
2
3

􏼠 􏼡 + 2c
2
3 c

2
3 − 1􏼐 􏼑 c

2
+ d

2
􏼐 􏼑K

2
− 2 d(k − ])K + cκ􏼐 􏼑

− 4c3(k − ]) 2K(k − ]) cc1 + 2 dc2( 􏼁 + κ dc1 − 2cc2( 􏼁􏼂 􏼃q + c2p(2c(k − ])K + dκ)( 􏼁
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− 8(k − ]) Kc
2
((k − ])) × c

4
3 − c

2
3 −

1
4

􏼒 􏼓K − κc1c2c
2
3􏼔 + c 2(k − ])dK

2
c1c2c

2
3􏽨

+ K
dκ
2

c
2
3 + dκ c

2
3 c

2
1 −

1
2

􏼒 􏼓 − 2λc1c2􏼠 􏼡 −
κ(k − ])

2
c
2
3 −

(k − ])d
2
K

2 16c
2
1c

2
3 + 1􏼐 􏼑

8
+ d (k − ])

2
+ λ􏼐 􏼑c

2
3 − 2 dλ

1
4

− c
2
1􏼒 􏼓􏼒 􏼓K

+
K

2]c
4
3

c
2
1

c
2

+ d
2

􏼐 􏼑
]
c
2
1

􏼢 􏼣 c
2
3 2c

2
1 + c

2
3􏼐 􏼑􏼐 􏼑 − 2 c

2
1 + c

2
2􏼐 􏼑 − 2K c

2
1 + c

2
2􏼐 􏼑 2cc1c2 + d c

2
2 − c

2
1􏼐 􏼑 + 2 2c

2
3 − 1􏼐 􏼑r􏼐 􏼑

+
2]2 4c

4
1 − c

2
3􏼐 􏼑

c
4
1

p
2

− q
2

􏼐 􏼑 −
2k]c

2
3r

2

c
2
1

+
2]c

2
3 p

2
+ q

2
􏼐 􏼑

c
2
1

2K cc2 − dc1( 􏼁c1 − r􏼂 􏼃

−
4]4c2

3

4c
8
1

c
6
1 − 1 + c

2
2􏼐 􏼑c

4
4 + 2 c

2
2 + 1􏼐 􏼑

2
c
2
1 + c

2
2c

2
3 c

2
2 + 2􏼐 􏼑􏼔 􏼕 +

]
c
6
1

r

× − 2]2 c
2
1 c

2
1 + 3c

2
2􏼐 􏼑 + c

2
3 c

2
1 + c

2
2􏼐 􏼑􏼐 􏼑 − 2k]c

2
3c

2
1 c

2
1 − c

2
2 + 2􏼐 􏼑 − c

4
1 2λ c

2
3 − 1􏼐 􏼑 + 4kKc

2
3 2cc1c2 + d c

2
1 + c

2
2􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽨

−
2]3c2

3

c
6
1

k c
2
1 5c

2
1 + 4c

2
3 − 6􏼐 􏼑 + c

2
3 2 − c

2
3􏼐 􏼑􏼐 􏼑 + K c2 2cc1 c

2
1 − c

2
2􏼐 􏼑 − dc

3
2􏼐 􏼑 c

2
1 + c

2
3􏼐 􏼑 + dc

2
1 c

2
1 + 2c

2
2􏼐 􏼑 3c

2
1 + c

2
3􏼐 􏼑􏼐 􏼑􏽨

+
2]λ
c
4
1

] c
2
2 − c

2
1􏼐 􏼑 + c

2
1 k + K 2c dc1c2 + d c

2
2 − c

2
1􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽨 􏽩 −

2]c
2
3κ

c
4
1

]c2 c2 4c
4
1 + c

2
3􏼐 􏼑􏼐 􏼑 − 2 dc1 2c

2
1 + c

2
3􏼐 􏼑 + c

2
1 2c3( 􏼁􏽨

× cc2 − dc1( 􏼁q − 2c3 cc1 + dc2( 􏼁p + k 4 dc1c2 − 4( 􏼁 c
2
3 + 4c

2
2􏼐 􏼑 + 2]2 − 5K dk c

6
3 − 4 2cq −

1
2

dp􏼒 􏼓c1 + c2 cp +
3
2

dq􏼒 􏼓􏼒 􏼓􏼔

× Kc
5
3 + 2 k 5 − 8c

2
1􏼐 􏼑d + 5cc1c2􏼐 􏼑K − k

2
− 2q

2
􏼐 􏼑c

2
3 − 4 5cc

3
1q + c2(cp + 4 dq)c

2
1 + c1

dp

2
− 2cq􏼠 􏼡 − c2 cp +

3 dq

2
􏼠 􏼡􏼠 􏼡

× Kc
3
3 + c

2
3 k 16c

2
1 − 8c

−
1 5􏼐 􏼑d + 2c1c2 6c

2
1 − 5􏼐 􏼑c􏼐 􏼑K + c

2
1 2p

2
− 6q

2
− 4k

2
􏼐 􏼑 + 4c1c2pq + k

2
􏼐 􏼑 + 8K (− cq − dp)c

3
1􏼐 􏼑

c2(cp − dq)c
2
1 +

3
2

cqc1 +
c2

2
(cp + 2 dq)c3c

2
1 + 4qc

2
1 2c1c2p + q( 􏼁􏼃 +

4]
c
2
1

−
1
2

kK
2
c
2
3 c

2
+ 2d

2
􏼐 􏼑 + c

4
3 2ckc1( 􏼁( 􏼁􏼔

× cc1 + dc2( 􏼁 + d
2
kK

2
+ 3k

2
+ p

2
− 2q

2
􏼐 􏼑d − 3pqc􏼐 􏼑K + 2k 3qc2 − pc1( 􏼁( 􏼁d + c 2qc1 + c2q( 􏼁Kc

3
3 + 2k c

4
1􏼐 􏼑􏼐 􏼑􏼐 􏼑

− c dc1c2 − c
2
c
2
1 c

2
2 + c

2
3􏼐 􏼑K

2
+ c

2
3 2k

2
c
2
1 − 2􏼐 􏼑 −

1
2
p
2

+
3
2
q
2

􏼒 􏼓d + 2c pq − 2k
2
c
2
1c

2
2􏼐 􏼑􏼒 􏼓K +

k
3

2

− 4Kk dq c2 + c c
2
1 c2p − c1q( 􏼁 +

1
2

c2p + 3c1q( 􏼁􏼒 􏼓c3􏼒 􏼓.

(78)

(eorem 1 characterizes a new integrable problem in a
rigid body dynamics. (e present case generalizes a special
version of the case introduced by Yehia and Elmandouh in
2016 by adding a new parameter ] [48]. Also, it includes the
case announced by Elmandouh in 2015 (K � 0) [3]. More-
over, it generalizes the case presented by Yehia and Elman-
douh in 2013 by inserting two arbitrary constants (k � ] � 0)
[6]. It generalizes the integrable case which was introduced by
Goriatchev in 1916 by adding four arbitrary parameters

], k, K, and ρ [55]. It also contains five arbitrary parameters,
], k, K, λ, and ρ, more than the case introduced by Chaplygin
in 1903 [56]. To avoid confusion, we summed up the com-
parisons between this case and the related earlier cases in
Table 2.

Regrettably, the physical interpretation for the whole
system with the full set of all associated parameters is un-
known. Disregarding the singular terms in both potential
and vector functions, the problem describes physically the
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motion of an electrically charged heavy rigid body about a
fixed point under the action of potential and gyroscopic
forces admitting a common axis of symmetry [6].

3.2. Second New Integrable Problem. In this subsection, we
solve the basic equations in the case in which a2 � 0 taking
into account the conditions.

Theorem 2. Let the inertia matrix of a rigid body be
I � diag(2C, 2C, C), and assume this body be in motion
under the action of a combination of following potential and
gyroscopic forces which are characterized by Vandμ,
respectively,

V � κ 2dc1c2 + c c
2
1 − c

2
2􏼐 􏼑􏽨 􏽩 +

λ
c
2
3

+ ρ
1
c
4
3

−
1
c
6
3

􏼠 􏼡 −
K]c

2
3

c
2
1

2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑􏽨 􏽩 +

]2c2
3 c

2
3 − 2􏼐 􏼑

2c
2
1

+ K
2 2 dc c1c2 c

2
1 − c

2
2􏼐 􏼑 +

d
2

2
c
2
3 + 4c

2
1c

2
2􏼐 􏼑 − c

2
c
2
3 c

2
1 + c

2
2􏼐 􏼑 + 2c

2
1c

2
2􏼐 􏼑􏼢 􏼣,

(79)

μ � 2c3( 􏼁 K cc2 − dc1( 􏼁 −
] 1 + c

2
2􏼐 􏼑

g
3
1

⎛⎝ ⎞⎠, 2c3 K cc1 + dc2( 􏼁 +
]c

2
2

c
2
1

􏼠 􏼡, K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏼑 + ]

2 − c
2
3􏼐 􏼑

c
2
1

⎛⎝ ⎞⎠, (80)

or, equivalently,

l � 0, 0, K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏽩 + ]

2 − c
2
3􏼐 􏼑

c
2
1

⎡⎣ ⎞⎠⎛⎝ ⎞⎠, (81)

where c, d, κ, K, λ, ρ, and] are the arbitrary parameters. Cen,
the Euler-Poisson equation (2) with the two expressions (79)
and (80) is completely integrable on a zero level of the cyclic
integral:

I1 � 2 pc1 + qc2( 􏼁 + r + K 2cc1c2 + d c
2
2 − c

2
1􏼐 􏽩 + ]

2 − c
2
3􏼐 􏼑

c
2
1

⎡⎣ c3
⎛⎝ ⎤⎦.

(82)

Its additional integral takes the form

I2 � p
2

− q
2

+ c
2
3(K dr + cκ) + cK

2
c
2
3 c c

2
1 − c

2
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2( 􏼁
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3
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2

+ 2pq + dκ c
2
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2
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2
c c

2
1 − c

2
2􏼐 􏼑 + 2 dc1c2􏼐 􏼑 −

2λc2
1c

2
2

c2
3

− dK
2

c c
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2

−
]2 c

2
1 + c

2
2􏼐 􏼑

2

c
8
1c

4
3

2c
4
1 ρ + λc

4
3􏼐 􏼑 − ]2c2

3􏽨 􏽩 +
4] pc1 + qc2( 􏼁

c
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1

×
]2c3

3 c
2
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2
1􏼐 􏼑

c
4
1

+
c
2
3 − 1􏼐 􏼑 c

4
3λ + ρ􏼐 􏼑

c
5
3

− 2K
2

c
2
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􏼐 􏼑 2c
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3
3
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2
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2
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Table 2: Comparison the first integrable case with previous results.

No. Authors Conditions of the parameters References
1 Yehia and Elmandouh [48] ] � 0 [48]
2 Elmandouh [3] K � 0 [3]
3 Yehia and Elmandouh [6] k � ] � 0 [6]
4 Goriatchev [55] ] � K � ρ � k � 0 [55]
5 Chaplygin [56] ] � K � ρ � k � λ � 0 [56]
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2
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2
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− 2c
2
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− p

2
􏼐 􏼑 − c

2
1 + c

2
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2
+ 3q

2
􏼐 􏼑 − 4pqc1c2􏽨 􏽩􏽩
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2]c

2
3

c
4
1

Kc
2
3 6cpq + d 5q

2
− p

2
􏼐 􏼑􏼐 􏼑 + 2(cp + dq) κc1c3 + 2Kq( 􏼁(cp + dq) − 4κc2c3(cq − dp)􏽨 􏽩. (83)

(eorem 2 introduces a new integrable problem in the
dynamics of a rigid body. Furthermore, it represents an
extension for the related previous results. It adds to the case
that was discovered by Yehia and Elmandouh in 2013, one
arbitrary parameter ] [6]. It modifies the case introduced by
Goriatchev in 1916 by inserting three parameters K, ], andρ
[55]. It generalizes the Chaplygin case that was found in 1903
by entering four arbitrary parameters ], ρ, λ, andK [56]. (e
comparisons with previous results are summarized in
Table 3.

4. Conclusion

In the current work, we had interest in studying the inte-
grability issue of the motion of a rigid body about a fixed
point under the action of potential and gyroscopic forces
having a common axis of symmetry. We have assumed this
problem has a complementary quartic integral in the ve-
locities. We have applied the method by Yehia. (e basic
equations have been formulated and introduced in a general
setting. But as it is outlined in the literature, in the case of the
existence of gyroscopic forces, the basic equations have not
been solved in a general setting, but it is usually solved for
certain values of the parameters leading to the metric of a
rigid body dynamics which are valuable and significant
problems. We have announced two new integrable problems
generalizing the Chaplygin case in a rigid body and its
subsequent works by different authors such as Goriatchev,
Yehia and Elmandouh, and Elmandouh. (e comparison of
new results with previous ones is summarized and collected
in Tables 2 and 3.

Appendix

A. Time Transformation

Consider Lagrangian in the form

L ≔
Λ
2

_x
2

+ _y
2

􏼐 􏼑 + l1 _x + l2 _y − V, (A.1)

where Λ, l1, l2, and V are the functions in x and y variables.
Lagrangian (A.1) has a Jacobi integral in the form

I1 �
Λ
2

_x
2

+ _y
2

􏼐 􏼑 + V � h, (A.2)

where h is the value of the Jacobi integral. Performing the
time transformation,

dt � Λdτ, (A.3)

to the Lagrangian (A.1), we obtain

L0 �
1
2

x′
2

+ y′
2

􏼒 􏼓 + l1x′ + l2y′ + Λ(h − V), (A.4)

where dash refers to the derivative with respect to the fic-
titious time τ. (e Lagrangian (A.4) has a Jacobi integral in
the form

I2 �
1
2

x′
2

+ y′
2

􏼒 􏼓 − Λ(h − V) � h′, (A.5)

where h′ is the value of the Jacobi integral for Lagrangian
(A.5). Doing the inverse of the time transformation (A.2) to
the Jacobi integral (A.5), we get

Table 3: Comparison the second new integrable case with previous results.

No. Authors Conditions of the parameters References
1 Yehia and Elmandouh [6] ] � 0 [6]
2 Goriatchev [55] K � ] � ρ � 0 [55]
3 Chaplygin [56] K � ] � λ � ρ � 0 [56]
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I3 �
Λ
2

_x
2

+ _y
2

􏼐 􏼑 + V �
h′
V

+ h. (A.6)

(e two integrals of the motion (A.3) and (A.6) are
identical if h′ � 0. (us, the two Lagrangian L and L0 are

equivalent on the zero level of the Jacobi integral for the
second one.

B. Coefficients of Equations (60) and (61)

F0(p) � −
1
2
a
4
1 f13fΩ1 + q3m

df

dp
+ 2fq3m − 4Tm + q3f

dm

dp
− 16fmΩ1􏼨 􏼩sin 4 ξ

+
a1a2a3

16
2ff0v

dq1

dp
+ q1f0f

dv

dp
− 16ff10Ω0 − 16Gv − 8q2f

dv

dp
+ 256fvΩ0 − 8ff9Ω1 − 16fv

dq2

dp
− 8q2v

df

dp
􏼨

+ q1vf
df0

dp
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df

dp
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F1(p) �
1
2
a3 − 4fu

dq1
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(B.1)

14 Advances in Astronomy



Data Availability

No data were used to support this study.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(e authors acknowledge the Deanship of Scientific Re-
search at King Faisal University for the financial support
under the annual research project (Grant No. 180100).

References

[1] O. Babelon, D. Bernard, and M. Talon, Introduction to
Classical Integrable Systems, Cambridge University Press,
Cambridge, UK, 2003.

[2] M. . Tabor, Chaos and Integrability in Nonlinear Dynamics,
Wiley, NewYork, NY, USA, 1988.

[3] A. A. Elmandouh, “New integrable problems in rigid body
dynamics with quartic integrals,” Acta Mechancia, vol. 226,
Article ID 246172, 2015.

[4] A. A. Elmandouh, “New integrable problems in the dynamics
of particle and rigid body,” Acta Mechancia, vol. 226,
pp. 2461–2472, Article ID 374962, 2015.

[5] H. M. Yehia, “Atlas of two-dimensional irreversible conser-
vative lagrangian mechanical systems with a second quadratic
integral,” Journal of Mathematical Physics, vol. 48, Article ID
082902, 2007.

[6] H. M. Yehia and A. A. Elmandouh, “A new integrable
problem with a quartic integral in the Dynamics of a rigid
body,” Journal of Physics A: Mathematical and Ceoretical,
vol. 46, no. 14, Article ID 142001, 2013.

[7] M. Karlovini, G. Pucacco, K. Rosquist, and L. Samuelsson, “A
unified treatment of quartic invariants at fixed and arbitrary
energy,” Journal of Mathematical Physics, vol. 43, Article ID
404159, 2002.

[8] Z. Hu, M. Aldazharova, T. M. Aldibekov, and
V. G. Romanovski, “Integrability of 3-dim polynomial sys-
tems with three invariant planes,” Nonlinear Dynamics,
vol. 74, Article ID 107792, 2013.

[9] J. Llibre, R. Ramirez, and N. Sadovskaia, “Integrability of the
constrained rigid body,” Nonlinear Dynamics, vol. 73, Article
ID 227390, 2013.

[10] J. Llibre, R. D. Oliveira, and C. Valls, “On the integrability and
the zero-hopf bifurcation of a Chen-Wang differential sys-
tem,” Nonlinear Dynamics, vol. 80, p. 35361, 2015.

[11] J. Bao and Q. Yang, “Darboux integrability of the stretch-
twistfold flow,” Nonlinear Dynamics, vol. 76, Article ID
797807, 2014.

[12] M. F. Lima, J. Llibre, and C. Valls, “Integrability of the
rucklidge system,” Nonlinear Dynamics, vol. 77, Article ID
144153, 2014.

[13] A. A. Elmandouh, “First integrals of motion for two di-
mensional weight-homogeneous Hamiltonian systems in
curved spaces,” Communications in Nonlinear Science and
Numerical Simulation, vol. 75, pp. 220–235, 2019.

[14] T. Bountis, H. Segur, and F. Vivaldi, “Integrable hamiltonian
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In this paper, the problem of the motion of a rigid body about a fixed point under the action of a Newtonian force field is studied
when the natural frequency ω � 0.5. (is case of singularity appears in the previous works and deals with different bodies which
are classified according to the moments of inertia. Using the large parameter method, the periodic solutions for the equations of
motion of this problem are obtained in terms of a large parameter, which will be defined later. (e geometric interpretation of the
considered motion will be given in terms of Euler’s angles. (e numerical solutions for the system of equations of motion are
obtained by one of the well-known numerical methods. (e comparison between the obtained numerical solutions and analytical
ones is carried out to show the errors between them and to prove the accuracy of both used techniques. In the end, we obtain the
case of the regular precession type as a special case. (e stability of the motion is considered by the phase diagram procedures.

1. Introduction

Consider a rigid body of massMmoves in an asymmetric field
around a fixed pointO [1]. Let us assume that the surface of its
ellipsoid of inertia is optional, as well as the mass center. Let
the frame OX, OY, and OZ be a fixed system in space, and the
frame Ox, Oy, and Oz is the main axes frame for the surface
of the ellipsoid of inertia of the body which moves with the it.
Initially, we consider the main axis z for the surface of the
ellipsoid of inertia that makes an angle ξ0 ≠ (kπ/2);

k � 0, 1, and 2 with the fixed axis Z in space. Let the body
spins with small speed angular velocity r0 about the axis z.
Suppose that p, q, and r represent the components of the
angular velocity vector of the body about the main axes of the
ellipsoid of the inertia surface; c, c′, and c″ are the directional
cosines vector of the axis Z; g is the acceleration of gravity;
A, B, and C are the principal moments of inertia. (e point
(x0, y0, z0) is the center of mass in the moving coordinate
system;R is the position vector of the center of attraction 01 on
the fixed downward coordinate Z axis, and ρ is the position
vector of the element dm. Let􏽢i , 􏽢j , 􏽢k , and 􏽢Z be the unit vectors
in the shown directions (Figure 1). Consider dF is the

attraction force element due to the attracting center and acted
on the element dm at the point p(x, y, z).

2. Formulation of the Problem

Without a loss of generality, we choose the positive direction
of both the axis z and the axis x that do not make an obtuse
angle ξ0 with the direction of axis Z. Under the restriction on
ξ0 and the choice of the coordinate system, we get [2]

c0 ≥ 0, 0< c0″ < 1. (1)

(edifferential equations of motion can be reduced to an
autonomous system of two degrees of freedom and one first
integral as follows [3]:

4€p2 + p2 � 4ε− 2
F p2, _p2, c2, _c2, ε( 􏼁,

€c2 + c2 � ε− 2Φ p2, _p2, c2, _c2, ε( 􏼁,
(2)

c
2
2 + _c

2
2 + 2ε− 1 ]p2c2 + ]2 _p2 _c2 + s21( 􏼁 + ε− 2

(. . .) � c
″−2
0 − 1 ,

(3)
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where

F � C1A
−1
1 p2 _p

2
2 + x0′ _p2 _c2 − y0′a

− 1
p2 _c2

− y0′A
−1
1 A1 + a

− 1
􏼐 􏼑c2 _p2 − z0′a

− 1
p2

− 0.75]e1p2 − 0.25p2s11 + A1b
− 1

x0′s21 + O ε− 1
􏼐 􏼑 + · · · ,

Φ � − 1 − C1( 􏼁A
−1
1 p2 _p2 _c2 + x0′ _c

2
2 − y0′c2 _c2 − z0′b

− 1
c2

+ x0′b
− 1

− A
−2
1 c2 _p

2
2

+ 0.75] e + e1c2( 􏼁 − c2s11

+ 1 + B1( 􏼁p2s21 + O ε− 1
􏼐 􏼑 + · · · ,

(4)

p2 � p1 − ε− 1
e + e1c2( 􏼁,

c2 � c1 − ε− 1]p2,

q1 � −A
−1
1 _p2 + ε− 1

A
−1
1 y0′a

− 1
− e2 _c2􏼐 􏼑 + · · · ,

r1 � 1 + 0.5ε− 2
s11 + · · · ,

c1′ � _c2 + ε− 1]2 _p2 + · · · ,

c1″ � 1 + ε− 1
s21 + ε− 2

s22 − 0.5s11( 􏼁 + · · · ,

(5)

p1 �
p

c

��

c0″
􏽱

,

· (pq),

r1 �
r

r0
,

c1 �
c

c0″
,

· cc′c″( 􏼁,

τ � r
−1
0 t,

· . ≡
d
dτ

􏼠 􏼡;

(6)

s11 �
a p

2
20 − p

2
2􏼐 􏼑 + b _p

2
20 − _p

2
2􏼐 􏼑

A
2
1 − 2 x0′ c20 − c2( 􏼁 + y0′ _c20 − _c2( 􏼁􏼂 􏼃

,

s21 � a p20c20 − p2c2( 􏼁 − bA
−1
1 _p20 _c20 − _p2 _c2( 􏼁,

s22 � a ] p
2
20 − p

2
2􏼐 􏼑 + e c20 − c2( 􏼁 + e1 c

2
20 − c

2
2􏼐 􏼑􏽨 􏽩

+ bA
−1
1 −]2 _p

2
20 − _p

2
2􏼐 􏼑 + a

− 1
y0′ _c20 − _c2( 􏼁 − e2 _c

2
20 − _c

2
2􏼐 􏼑􏽨 􏽩,

(7)

A1 �
C − B

A
,

(ABC),

a �
A

C
,

(ab),

c
2

�
Mgl

C
,

ε �
c

��

c0″
􏽱

r0
,

x0 � lx0′,

(xyz),

l
2

� x
2
0 + y

2
0 + z

2
0,

4A1B1 � −1,

eb � 4x0′A1,

3] � 4 1 + B1( 􏼁,

3e1 � 4z0′ A1b
− 1

− a
− 1

􏼐 􏼑,

e2 � e1 + a
− 1

z0′,

]2 � ] − A
−1
1 .

(8)

(e symbols like ABC are abbreviated equations.

3. ConstructionofPeriodicSolutionswithZeros
Basic Amplitudes

In this section, we use the suggestedmethod for constructing
the aimed solutions for the autonomous system (2). Con-
sider the condition [4]

p2(0, 0) � _p2(0, 0) � _c2(0, ε) � 0. (9)

(e generating system for (2) is obtained when ε⟶∞
as follows:

4€p
(0)
2 + p

(0)
2 � 0,

€c
(0)
2 + c

(0)
2 � 0.

(10)

(e solutions for system (10) with a period T0 � 4π are

p
(0)
2 � a

∗
0 cos(0.5τ),

c
(0)
2 � b

∗
0 cos τ,

(11)

where a∗0 and b∗0 are constants.

y

Y
0 Mĵ–

Ẑ ˆ
ˆ– –
–

k
i

x

z

R

Z

X

r

–

–

01

ρ–

–dF

dm
p (x, y, z)

Figure 1: Description of motion in terms of moving and fixed
frames.
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Let system (2) has periodic solutions with a periodT0 + α
in the form [5]

p2 � a
∗ cosψ + 􏽘

N

n�1
ε− n

p
∗
n a
∗
,ψ( 􏼁 + O ε− N− 1

􏼐 􏼑,

c2 � b
∗ cos ϕ + 􏽘

N

n�1
ε− n

c
∗
n a
∗
, ϕ( 􏼁 + O ε− N− 1

􏼐 􏼑.

(12)

For these solutions, we let the initial conditions

p2(0, ε) � a
∗

� a
∗
0 + a
∗
(ε),

c2(0, ε) � b
∗

� b
∗
0 + b
∗
(ε),

_c2(0, ε) � 0.

(13)

Here, a∗(ε), b∗(ε)⟶ 0 at ε⟶∞. Considering first
integral (3) with conditions (13), we get

0< b
∗
0 � 1 − c

″2
0􏼒 􏼓

1/2
c0″( 􏼁

− 1 <∞,

b
∗
(ε) � −ε− 1] a

∗
0 + a
∗
(ε)􏼂 􏼃 + · · · .

(14)

Let a∗, ψ, and ϕ are changed with time according to

_a
∗

� 􏽘
N

n�1
ε− n

A
∗
n a
∗

( 􏼁 + O ε− N− 1
􏼐 􏼑, (15)

_ψ � 0.5 + 􏽘
N

n�1
ε− nψn a

∗
( 􏼁 + O ε− N− 1

􏼐 􏼑, (16)

_ϕ � 1 + 􏽘
N

n�1
ε− nϕn a

∗
( 􏼁 + O ε− N− 1

􏼐 􏼑. (17)

(e following derivatives are obtained:

_p2 � −0.5a
∗ sinψ + O ε− 1

􏼐 􏼑,

_c2 � −b
∗ sinϕ + O ε− 1

􏼐 􏼑,

€p2 � −0.25a
∗ cosψ + ε− 1 0.25

z
2
p
∗
1

zψ2 − a
∗ψ1 cosψ − A

∗
1 sinψ􏼢 􏼣

+ ε− 2
A
∗
1

z
2
p
∗
1

za
∗
zψ

− A
∗
2 + 2A

∗
1ψ1( 􏼁sinψ + A

∗
1
dA
∗
1

da
∗ cosψ + 0.25

z
2
p
∗
2

zψ2 + ψ1
z
2
p
∗
1

zψ2 − a
∗ ψ2

1 + 2ψ2􏼐 􏼑cosψ − a
∗
A
∗
1 sinψ

dψ1

da
∗􏼢 􏼣 + O ε− 3

􏼐 􏼑,

€c2 � −b
∗ cosϕ + ε− 1 z

2
c
∗
1

zϕ2
− 2b
∗ϕ1 cosϕ􏼢 􏼣

+ ε− 2 z
2
c
∗
2

zϕ2
+ 2ϕ1

z
2
c
∗
1

zϕ2
− b
∗ ϕ21 + 2ϕ2􏼐 􏼑cos ϕ + 2A

∗
1

z
2
c
∗
1

za
∗
zϕ

− b
∗
A
∗
1
dϕ1
da
∗ sinϕ􏼢 􏼣 + O ε− 3

􏼐 􏼑.

(18)

Using equations (7), (12), and (18), we get

s
(0)
11 � aa

∗2
0 cos2ψ0 − cos2 ψ􏼐 􏼑 − 0.25bA

−2
1 a
∗2
0 sin2 ψ

− 2b
∗
0 x0′ cos ϕ0 − cosϕ( 􏼁 + y0′ sinϕ􏼂 􏼃,

s
(0)
21 � a

∗
0b
∗
0 a cosψ0 cos ϕ0 − cosψ cos ϕ( 􏼁 + 0.5bA

−1
1 sinψ sinϕ􏽨 􏽩,

s
(0)
22 � a ]a

∗2
0 cos2ψ0 − cos2 ψ􏼐 􏼑 + eb

∗
0 cos ϕ0 − cosϕ( 􏼁 + e1b

∗2
0 cos2ϕ0 − cos2 ϕ􏼐 􏼑􏽨 􏽩

+ bA
−1
1 0.25]2a

∗2
0 sin2 ψ + a

− 1
y0′b
∗
0 sinϕ + e2b

∗2
0 sin2 ϕ􏽨 􏽩,

(19)

where ψ0 and ϕ0 are the initial values of the corresponding
functions.

Using (4), (12), (18), and (19), we obtain
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F
(0)

� 0.25C1A
−1
1 a
∗3
0 cosψsin2 ψ + 0.5a

∗
0b
∗
0x0′ sinψ sinϕ

+ a
− 1

a
∗
0b
∗
0y0′ cosψ sinϕ + 0.5A

−1
1 A1 + a

− 1
􏼐 􏼑a

∗
0b
∗
0y0′ sinψ cos ϕ

− z0′a
− 1

a
∗
0 cosψ − 0.75]e1a

∗
0 cosψ

− 0.25a
∗
0 cosψ aa

∗2
0 cos2ψ0 − cos2 ψ􏼐 􏼑 − 0.25bA

−2
1 a
∗2
0 sin2 ψ − 2b

∗
0 x0′ cosϕ0 − cos ϕ( 􏼁 + y0′ sinϕ􏼂 􏼃􏽮 􏽯

+ A1b
− 1

x0′a
∗
0b
∗
0 a cosψ0 cos ϕ0 − cosψ cos ϕ( 􏼁 + 0.5bA

−1
1 sinψ sinϕ􏽨 􏽩,

Φ(0)
� 0.25 C1 − 1( 􏼁A

−1
1 a
∗2
0 b
∗
0 sin 2ψ sinϕ + 0.5x0′b

∗2
0 (1 − cos 2 ϕ)

+ 0.5y0′b
∗2
0 sin 2 ϕ − z0′b

− 1
b
∗
0 cosϕ + x0′b

− 1

− 0.125A
−2
1 a
∗2
0 b
∗
0(1 − cos 2ψ)cosϕ + 0.75]e + 0.75]e1b

∗
0 cos ϕ

− aa
∗2
0 b
∗
0 cos

2ψ0 cosϕ + 0.5aa
∗2
0 b
∗
0(1 + cos 2ψ)cosϕ

+ 0.125bA
−2
1 a
∗2
0 b
∗
0(1 − cos 2ψ)cosϕ + 2x0′b

∗2
0 cosϕ0 cos ϕ

− x0′b
∗2
0 (1 + cos 2 ϕ) + y0′b

∗2
0 sin 2ϕ

+ a
∗2
0 b
∗
0 1 + B1( 􏼁 0.5bA

−1
1 sinψ sinϕ + a cosψ0 cosϕ0 − cosψ cos ϕ( 􏼁􏽨 􏽩cosψ.

(20)

Substituting from (12), (18), and (20) into (2) and
equating coefficients of ε− 1 in both sides, we get

z
2
p
∗
1

zψ2 + p
∗
1 � 4a

∗
0ψ1 cosψ + 4A

∗
1 sinψ,

z
2
c
∗
1

zϕ2
+ c
∗
1 � 2b

∗
0ϕ1 cosϕ,

z
2
p
∗
2

zψ2 + p
∗
2 � 4A

∗
2 sinψ + a

∗
0 4ψ2 + 0.25C1A

−1
1 a
∗2
0 − 3.25aa

∗2
0 − 4z0′a

− 1
− 3]e1 + 0.125bA

−2
1 a
∗2
0 + 2x0′b

∗
0 cos ϕ0􏽨 􏽩cosψ

+ 0.25a
∗3
0 a − C1A

−1
1 − 0.25bA

−2
1􏼐 􏼑cos 3ψ + 4aa

∗
0x0′A1b

− 1
b
∗
0 cosψ0 cos ϕ0

+ x0′a
∗
0b
∗
0 1 − 2aA1b

− 1
􏼐 􏼑cos(ϕ − ψ) − x0′a

∗
0b
∗
0 3 + 2aA1b

− 1
􏼐 􏼑cos(ϕ + ψ)

+ y0′a
∗
0b
∗
0 2a

− 1
− A

−1
1 a

− 1
􏼐 􏼑sin(ϕ − ψ) + y0′a

∗
0b
∗
0 2 + 2a

− 1
+ A

−1
1 a

− 1
􏼐 􏼑sin(ϕ + ψ),

z
2
c
∗
2

zϕ2
+ c
∗
2 � 2ϕ2 − z0′b

− 1
+ 0.125A

−2
1 a
∗2
0 (b − 1) + 0.75]e1 − aa

∗2
0 cos2ψ0 − 0.5aB1a

∗2
0 + 2x0′b

∗
0 cos ϕ0􏽨 􏽩b

∗
0 cos ϕ

− 0.5x0′b
∗2
0 + x0′b

− 1
+ 0.75]e + 1 + B1( 􏼁aa

∗2
0 b
∗
0 cosψ0 cos ϕ0 cosψ − 0.67x0′b

∗2
0 cos 2 ϕ + 1.5y0′b

∗2
0 sin 2 ϕ

+ 0.5a
∗2
0 0.25A

−2
1 (1 − b) − aB1 + A

−1
1 b
∗
0(b − 1)􏽨 􏽩cos(2ψ − ϕ)􏽮

+ 0.25A
−2
1 (1 − b) − aB1 − A

−1
1 b
∗
0(b − 1)􏽨 􏽩cos(2ψ + ϕ)􏽯.

(21)

Canceling singular terms from (21) as in [6], we get
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ψ1 � A
∗
1 � ϕ1 � A

∗
2 � 0,

ψ2 � −0.06C1A
−1
1 a
∗2
0 + 0.81aa

∗2
0 + z0′a

− 1
+ 0.75]e1 − 0.02bA

−2
1 a
∗2
0 − 0.5x0′b

∗
0 cos ϕ0􏽨 􏽩,

ϕ2 � 0.5 z0′b
− 1

− 0.125A
−2
1 a
∗2
0 (b − 1) − 0.75]e1 + aa

∗2
0 0.5B1 + cos2ψ0􏼐 􏼑 − 2x0′b

∗
0 cosϕ0􏽨 􏽩.

(22)

Substituting from (22) into (15)–(17) and integrating, we
obtain

a
∗

� a
∗
0(arbitrary const.),

ψ � 0.5τ + 0.5ε− 2
−0.125C1A

−1
1 a
∗2
0 − 0.375aa

∗2
0 + 2aa

∗2
0 + 2z0′a

− 1
+ 1.5]e1 − 0.31bA

−2
1 a
∗2
0 − x0′b

∗
0 cos ϕ0􏽨 􏽩τ,

ϕ � τ + 0.5ε− 2
z0′b

− 1
− 0.125A

−2
1 a
∗2
0 (b − 1) − 0.75]e1 + aa

∗2
0 1 + 0.5B1( 􏼁 − 2x0′b

∗
0􏽨 􏽩τ.

(23)

From the previous results, we get

ψ(0) � ψ0 � 0,

ϕ(0) � ϕ0 � 0.
(24)

From (13) and (23), we obtain a∗ from the order greater
than O(ε− 2).

(e periodic solutions p2 and c2 are obtained by
substituting (22) and (23) into (21) and using (12) and (14).
Finally, the periodic solutions p1, q1, r1, c1, c1′, and c1″ are
obtained from (5), (19), (23), and (24).

4. Construction of Periodic Solutions with
Nonzeros Basic Amplitudes

We use the large parameter method [7] for constructing the
periodic solutions with nonzeros basic amplitudes for sys-
tem (2) when A<B<C or A>B>C. Consider generating
system (10) has periodic solutions with a period T0 � 2πn as
follows:

p
(0)
2 (τ) � E cos(0.5τ − μ),

c
(0)
2 (τ) � M3 cos τ,

(25)

where E �

��������

M2
1 + M2

2

􏽱

, μ � tan− 1(M2/M1), and M1, M2,

andM3 are constants.
Let system (2) has periodic solutions with a periodT0 + α

that reduces to generating solutions (21) when ε⟶∞,
where α is a function of ε such that α(∞) � 0. Consider the
following initial conditions:

p2(0, ε) � 􏽥M1,

_p2(0, ε) � 00.5 􏽥M2,

c2(0, ε) � 􏽥M3,

_c2(0, ε) � 0.

(26)

(e notation ∼ denotes the following substitution:

Mi⟶ 􏽥Mi � Mi + βi, i � 1, 2, 3, (27)

where β1, 0.5β2, and β3 represent the deviations of the initial
values of the required solutions from their values of the
generating ones M1, M2, and M3, respectively. (ese de-
viations are functions of ε and vanish when ε⟶∞. Now,
we construct the required solutions in the following forms
[8]:

p2 � 􏽥E cos(ψ − μ) + 􏽘
N

n�1
ε− n

p
∗
n (􏽥E,ψ) + O ε− N− 1

􏼐 􏼑,

c2 � 􏽥M3 cosϕ + 􏽘
N

n�1
ε− n

c
∗
n (􏽥E, ϕ) + O ε− N− 1

􏼐 􏼑,

(28)

wherep∗n and c∗n are periodic functions inψ andϕ, respectively.
(e quantity 􏽥M3 is determined from the first integral (3). Let
􏽥E,ψ, and ϕ are changed with time according to

d􏽥E

dτ
� 􏽘

N

n�1
ε− n

En(􏽥E) + O ε− N− 1
􏼐 􏼑, (29)

dψ
dτ

� 0.5 + 􏽘
N

n�1
ε− nψn(􏽥E) + O ε− N− 1

􏼐 􏼑, (30)
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dϕ
dτ

� 1 + 􏽘
N

n�1
ε− nϕn(􏽥E) + O ε− N− 1

􏼐 􏼑. (31)

Substituting initial conditions (26) into integral (3),
when τ � 0, we deduce that

0<M3 �

������

1 − c
″2
0

􏽱

c0″
<∞,

β3 � −ε− 1] 􏽥M1 + · · · .

(32)

(e derivatives become

_p2 �
d􏽥E

dτ
zp2

z􏽥E
+
dψ
dτ

zp2

zψ
,

_c2 �
d􏽥E

dτ
zc2

z􏽥E
+
dϕ
dτ

zc2

zϕ
,

€p2 �
d􏽥E

dτ
􏼠 􏼡

2
z
2
p2

z􏽥E
2 +

d2􏽥E

dτ2
zp2

z􏽥E
+ 2

d􏽥E

dτ
dψ
dτ

z
2
p2

z􏽥Ezψ
+

dψ
dτ

􏼠 􏼡

2
z
2
p2

zψ2 +
d2ψ
dτ2

zp2

zψ
,

€c2 �
d􏽥E

dτ
􏼠 􏼡

2
z
2
c2

z􏽥E
2 +

d2􏽥E

dτ2
zc2

z􏽥E
+ 2

d􏽥E

dτ
dϕ
dτ

z
2
c2

z􏽥Ezϕ
+

dϕ
dτ

􏼠 􏼡

2
z
2
c2

zϕ2 +
d2ϕ
dτ2

zc2

zϕ
.

(33)

Using equations (7), (28), and (33), we get

s
(0)
11 � E

2
a cos2 μ − 0.5􏼐 􏼑 + 0.25bA

−2
1 sin2 μ − 0.5􏼐 􏼑 + 0.5 0.25bA

−2
1 − a􏼐 􏼑cos(τ − 2μ)􏽨 􏽩 − 2M3 x0′(1 − cos τ) + y0′ sin τ􏼂 􏼃,

s
(0)
21 � M3E a cos μ + 0.5 0.5bA

−1
1 − a􏼐 􏼑cos(0.5τ + μ) − 0.5 0.5bA

−1
1 + a􏼐 􏼑cos(1.5τ − μ)􏽨 􏽩,

s
(0)
22 � E

2 ]a cos2 μ − 0.5􏼐 􏼑 − 0.25bA
−1
1 ]2 sin2 μ − 0.5􏼐 􏼑 − 0.5 ]a + 0.25bA

−1
1 ]2􏼐 􏼑cos(τ − 2μ)􏽨 􏽩

+ 0.5M
2
3 e1a + bA

−1
1 e2􏼐 􏼑(1 − cos 2 τ) + M3 ae(1 − cos τ) + by0′a

− 1
A

−1
1 sin τ􏽨 􏽩.

(34)

Using (4), (28), (33), and (34), we obtain

F
(0)

� 0.25C1A
−1
1 E

3 cos(0.5τ − μ)sin2(0.5τ − μ) + EM3 sin τ 0.5x0′ sin(0.5τ − μ) + y0′a
− 1 cos(0.5τ − μ)􏽨 􏽩

+ 0.5y0′A
−1
1 A1 + a

− 1
􏼐 􏼑M3E cos τ sin(0.5τ − μ) − E z0′a

− 1
+ 0.75]e1􏼐 􏼑cos(0.5τ − μ)

− 0.25E cos(0.5τ − μ) E
2

a cos2 μ − 0.5 + 0.25bA
−2
1 sin2 μ − 0.5􏼐 􏼑 + 0.5 0.25bA

−2
1 − a􏼐 􏼑cos(τ − 2μ)􏽨 􏽩􏽮

− 2M3 x0′(1 − cos τ) + y0′ sin τ􏼂 􏼃􏼉

+ A1b
− 1

x0′M3E a cos μ + 0.5 0.5bA
−1
1 − a􏼐 􏼑cos(0.5τ + μ) − 0.5 0.5bA

−1
1 + a􏼐 􏼑cos(1.5τ − μ)􏽨 􏽩,

Φ(0)
� b

− 1
x0′ − 0.5M

2
3x0′ + 0.75]e − z0′b

− 1
M3 + 0.125A

−2
1 M3E

2
− 0.75]e1M3􏽮

+ M3E
2

a cos2 μ − 0.5􏼐 􏼑 + 0.25bA
−2
1 sin2 μ − 0.5􏼐 􏼑􏽨 􏽩 − 2M

2
3x0′ + 0.5a 1 + B1( 􏼁M3E

2
􏽯cos τ

− 1.5M
2
3 x0′ cos 2 τ − y0′ sin 2 τ( 􏼁 + 1 + B1( 􏼁M3E

2
a cos μ(cos 0.5 τ cos μ + sin 0.5 τ sin μ)

+ 0.25E
2
M3 0.5 1 − C1( 􏼁A

−1
1 + 0.25A

−2
1 (1 − b) + a − 1 + B1( 􏼁 0.5A

−1
1 + a􏼐 􏼑􏽨 􏽩cos2(μ − τ)

+ 0.25M3E
2

× 0.5A
−1
1 C1 − 1( 􏼁 + 0.25A

−2
1 (1 − b) + a + 1 + B1( 􏼁 0.5bA

−1
1 − a􏼐 􏼑􏽨 􏽩cos 2 μ.

(35)
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Substituting from (28), (33), and (35) into initial system
(2) and equating coefficients of ε− 1 and ε− 2 in both sides, we
obtain the following:

Coefficients of ε− 1:

z
2
p
∗
1

zψ2 + p
∗
1 � 4 Eψ1 cos μ − E1 sin μ( 􏼁cosψ

+ 4 Eψ1 sin μ + E1 cos μ( 􏼁sinψ,

z
2
c
∗
1

zϕ2 + c
∗
1 � 2ϕ1M3 cosϕ.

(36)

We neglect the singular terms [4] to get

Eψ1 cos μ − E1 sin μ � 0,

Eψ1 sin μ + E1 cos μ � 0,
(37)

ϕ1 � 0, (38)

such that determinant (37) becomes

Δ � E
cos μ −sin μ

sin μ cos μ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� E cos2 μ + sin2 μ􏼐 􏼑 � E≠ 0. (39)

For this case, the solution of (37) becomes

ψ1 � E1 � 0. (40)

(e particular solutions for (36) become

p
∗
1 � c
∗
1 � 0. (41)

Coefficients of ε− 2:

d2p∗2
dτ2

+ 0.25p
∗
2 � E2 cos μ + Eψ2 sin μ􏼂 􏼃sin 0.5 τ

− E2 sin μ − Eψ2 + 0.06C1A
−1
1 E

3
− z0′a

− 1
E − 0.75]e1E − 0.25E

3
a cos2 μ − 0.5􏼐 􏼑 − 0.06E

3
bA

−2
1 sin2 μ − 0.5􏼐 􏼑􏽨􏽮

− 0.06E
3 0.25bA

−2
1 − a􏼐 􏼑 + 0.5M3x0′E􏽩cos μ􏽯cos 0.5 τ

+ A1b
− 1

x0′M3Ea cos μ − 0.06E
3

C1A
−1
1 + 0.25bA

−2
1 − a􏼐 􏼑(cos 3 μ cos 1.5 τ + sin 3 μ sin 1.5 τ)

+ M3E 0.5A1b
− 1 0.5bA

−1
1 − a􏼐 􏼑􏽨 􏽩x0′ cos μ + 0.5 a

− 1
− 0.5A

−1
1 A1 + a

− 1
􏼐 􏼑 + 0.5􏽨 􏽩y0′ sin μ􏽮 􏽯cos 0.5 τ

− 0.5M3E A1b
− 1 0.5bA

−1
1 − a􏼐 􏼑􏽨 􏽩x0′ sin μ − a

− 1
− 1 + A

−1
1 a

− 1
􏼐 􏼑 + 0.5􏽨 􏽩y0′ cos μ􏽮 􏽯sin 0.5 τ

− 0.5M3E 0.25 + 0.5 + A1b
− 1

a􏼐 􏼑􏽨 􏽩x0′ cos μ + a
− 1

+ 1 + A
−1
1 a

− 1
􏼐 􏼑 + 0.5􏽨 􏽩y0′ sin μ􏽮 􏽯cos 1.5 τ

− 0.5M3E 1.5A1b
− 1

ax0′ sin μ − a
− 1

+ 1 + A
−1
1 a

− 1
􏼐 􏼑 + 0.5􏽨 􏽩y0′ cos μ􏽮 􏽯sin 1.5 τ,

(42)

d2c∗2
dτ2

+ c
∗
2 � x0′ b

− 1
− 0.5M

2
3􏼐 􏼑 + 0.75]e

+ M3 2ϕ2 − z0′b
− 1

− 0.125A
−2
1 E

2
+ 0.75]e1 − E

2
a cos2 μ − 0.5􏼐 􏼑 + 0.25bA

−2
1 sin2 μ − 0.5􏼐 􏼑􏽨 􏽩􏽮

+ 2M3x0′ − 0.5aE
2 1 + B1( 􏼁}cos τ

+ 1.5M
2
3 y0′ sin 2 τ − x0′ cos 2 τ( 􏼁 + 1 + B1( 􏼁M3E

2
a(cos μ cos 0.5 τ + sin μ sin 0.5 τ)cos μ

+ 0.125M3E
2 1 − C1( 􏼁A

−1
1 + 0.5A

−2
1 − 0.5bA

−2
1 − 2a􏼐 􏼑 − 1 + B1( 􏼁 bA

−1
1 + 2a􏼐 􏼑􏽨 􏽩(cos 2 μ cos 2 τ + sin 2 μ sin 2 τ)

+ 0.125M3E
2

C1 − 1( 􏼁A
−1
1 + 0.5A

−2
1 − 0.5bA

−2
1 − 2a􏼐 􏼑 + 1 + B1( 􏼁 bA

−1
1 − 2a􏼐 􏼑􏽨 􏽩cos 2 μ.

(43)

Neglecting singular terms from (42) and (43) yields [4]

E2 � 0.125E sin 2 μ 0.25C1A
−1
1 E

2
− 4z0′a

− 1
− 3]e1 − E

2
a cos2 μ − 0.5􏼐 􏼑 − 0.25E

2
bA

−2
1 sin2 μ − 0.5􏼐 􏼑 − 0.25E

2 0.25bA
−2
1 − a􏼐 􏼑 + 2M3x0′􏽨 􏽩,

ψ2 � 0.25cos2 μ −0.25C1A
−1
1 E

2
+ 4z0′a

− 1
+ 3]e1 + E

2
a cos2 μ − 0.5􏼐 􏼑 + 0.25bE

2
A

−2
1 sin2 μ − 0.5􏼐 􏼑 + 0.25E

2 0.25bA
−2
1 − a􏼐 􏼑 − 2M3x0′􏽨 􏽩,

ϕ2 � 0.5 z0′b
− 1

+ 0.125A
−2
1 E

2
− 0.75]e1 + E

2
a cos2 μ − 0.5􏼐 􏼑 + 0.25bA

−2
1 sin2 μ − 0.5􏼐 􏼑􏽨 􏽩 − 2M3x0′ + 0.5a 1 + B1( 􏼁E

2
􏽮 􏽯.

(44)
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Substituting from (38), (40), and (44) into (29) and (30)
and integrating, we get

2􏽥E � 2E − ε− 2
E sin 2 μ −0.25C1A

−1
1 E

2
+ 4z0′a

− 1
+ 3]e1 + E

2
a cos2 μ − 0.5􏼐 􏼑􏽨

+ 0.25bE
2
A

−2
1 sin2 μ − 0.5􏼐 􏼑 + 0.25E

2 0.25bA
−2
1 − a􏼐 􏼑 − 2M3x0′􏽩τ + · · · ,

2ψ � τ + 0.5ε− 2
−0.25C1A

−1
1 E

2
+ 4z0′a

− 1
+ 3]e1 + E

2
a cos2 μ − 0.5􏼐 􏼑􏽨

+ 0.25b · E
2
A

−2
1 sin2 μ − 0.5􏼐 􏼑 + 0.25E

2 0.25bA
−2
1 − a􏼐 􏼑 − 2M3x0′􏽩cos

2 μτ + · · · ,

ϕ � τ + 0.25ε− 2 2z0′b
− 1

+ 0.25A
−2
1 E

2
− 1.5]e1 + E

2 2a cos2 μ − 0.5􏼐 􏼑 + 0.5bA
−2
1 sin2 μ − 0.5􏼐 􏼑􏽨 􏽩􏽮

− 4M3x0′ + a 1 + B1( 􏼁E
2
􏽯τ + · · · .

(45)

Substituting (44) into (42) and (43) and solving the
resulted equations, we get p∗2 and c∗2 . (e periodic solutions

p2 and c2 are constructed using (28), (32), (41), and (45).
Using (5) and (34), we get the first terms of the required
solutions as follows:

p1 � M1 cos 0.5 τ + M2 sin 0.5 τ − ε− 1 x0′

bB1
− e1M3 cos τ􏼠 􏼡 + · · · ,

q1 � 0.5A
−1
1 M1 sin 0.5 τ − M2 cos 0.5 τ( 􏼁 + ε− 1 y0′

aA1
+ e2A

−1
1 M3 sin τ􏼠 􏼡 + · · · ,

r1 � 1 + 0.25ε− 2 2aM
2
1 − E

2
+ 0.5bA

−2
1 M

2
2 − 0.5E

2
􏼐 􏼑 + 0.25bA

−2
1 − a􏼐 􏼑 M

2
1 − M

2
2􏼐 􏼑cos τ + 2M1M2 sin τ􏽨 􏽩􏽮

− 4M3 x0′(1 − cos τ) + y0′ sin τ􏼂 􏼃􏼉 + · · · ,

c1 � M3 cos τ + ε− 1] −M1 cos τ + M1 cos 0.5 τ + M2 sin 0.5 τ( 􏼁 + · · · ,

c1′ � −M3 sin τ + ε− 1 ]M1 sin τ + 0.5]2 −M1 sin 0.5 τ + M2 cos 0.5 τ( 􏼁􏼂 􏼃 + · · · ,

c1″ � 1 + ε− 1
M3E a cos μ + 0.5 bωA

−1
1 − a􏼐 􏼑cos(0.5τ − μ) − 0.25 bA

−1
1 + 2a􏼐 􏼑cos(1.5τ − μ)􏽨 􏽩

+ ε− 2
M3(1 − a)

− 1
x0′ +

0.5M
2
3z0′(a − b)

(a + b − 1)
+ M3(1 − b)

− 1
y0′ sin τ − M3(1 − a)

− 1
x0′ cos τ −

0.5M
2
3z0′(a − b)cos 2 τ
(a + b − 1)

􏼨

+ E
2 ]a cos2 μ − 0.5􏼐 􏼑 − 0.25bA

−1
1 ]2 sin2 μ − 0.5􏼐 􏼑 − 0.125 4]a + bA

−1
1 ]2􏼐 􏼑cos 2(0.5τ − μ)􏽨 􏽩

− 0.5E
2

a cos2 μ − 0.5􏼐 􏼑 + 0.25bA
−2
1 sin2 μ − 0.5􏼐 􏼑 + 0.125 bA

−2
1 − 4􏼐 􏼑cos 2(0.5τ − μ)􏽨 􏽩􏽯 + · · · .

(46)

(e correction of the period is

α(ε) � ε− 2πn 2M3x0′ − 2z0′ − 0.125A
−2
1 E

2
− E

2
a cos2 μ − 0.5􏼐 􏼑 + 0.25bA

−2
1 sin2 μ − 0.5􏼐 􏼑􏽨 􏽩 − 0.5aE

2 1 + B1( 􏼁􏽮 􏽯 + · · · . (47)

5. Geometric Interpretation of Motion

In this section, we describe the body motion using Euler’s
angles ξ, ζ, and η which come from the obtained solutions
(Figure 2). Replacing the time t by t + t0 where t0 is an
arbitrary interval, the periodic solutions remain periodic
since the initial system is autonomous [9]. For this case, we
obtain from (32),

η0 � 0.5π + r
−1
0 t0 + · · · , (48)

ξ0 � tan− 1
M3, (49)

where η0 are ξ0 are arbitrary initial angles.
Making use of (46) and (49) when τ � r−1

0 t, we find
Euler’s angles as follows:
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ξ � ξ0 − ε− 1
E ξ1 t + t0( 􏼁 − ξ1 t0( 􏼁􏼂 􏼃 − ε− 2 ξ2 t + t0( 􏼁 − ξ2 t0( 􏼁􏼂 􏼃 + · · · ,

ζ � ζ0 + 0.5MgℓC− 1
r0cos

2ξ0Q10t + 0.5ε− 1sec ξ0 ζ1 t + t0( 􏼁 − ζ1 t0( 􏼁􏼂 􏼃 + 0.5ε− 2 cos ξ0 ζ2 t + t0( 􏼁 − ζ2 t0( 􏼁􏼂 􏼃 + · · · ,

η � η0 + r
−1
0 − 0.5MgℓC− 1

r0cos
3ξ0h10􏼐 􏼑t − 0.5ε− 1 cot ξ0 η1 t + t0( 􏼁 − η1 t0( 􏼁􏼂 􏼃 − 0.5ε− 2cos2ξ0 η2 t + t0( 􏼁 − η2 t0( 􏼁􏼂 􏼃 + · · · ,

(50)

where

ξ1(t) � 0.5 0.5bA
−1
1 − a􏼐 􏼑cos

t

2r0
+ μ􏼠 􏼡 − 0.5 0.5bA

−1
1 + a􏼐 􏼑cos

3t

2r0
− μ􏼠 􏼡,

ξ2(t) � y0′a
− 1

A
−1
1 sin

t

r0
+ b

− 1
B

−1
1 x0′ cos

t

r0
− 0.5 tan ξ0z0′

a − b

a + b − 1
􏼠 􏼡cos 2

t

r0

− 0.5E
2 cot ξ0 a(] − 0.5) + 0.25bA

−1
1 ]2 + 0.5A

−1
1􏼐 􏼑􏽨 􏽩cos

t

r0
− 2μ􏼠 􏼡,

ζ1(t) � η1(t) � 0.67 1 + 0.5A
−1
1􏼐 􏼑 M1 sin

3t

2r0
− M2 cos

3t

2r0
􏼠 􏼡 + 2 − A

−1
1􏼐 􏼑 M2 cos

t

2r0
+ M1 sin

t

2r0
􏼠 􏼡,

ζ2(t) � Q11 + Q13 + Q16( 􏼁sin
t

r0
− Q11′ + Q13′ − Q16′( 􏼁cos

t

r0

+ 0.5 Q12 sin
2t

r0
− Q12′ cos

2t

r0
􏼠 􏼡 + 2 Q14 sin

t

2r0
+ Q14′ cos

t

2r0
􏼠 􏼡 + 0.67 Q15 sin

3t

2r0
− Q15′ cos

3t

2r0
􏼠 􏼡,

η2(t) � h11 sin
t

r0
− h11′ cos

t

r0
+ 0.5 h12 sin

2t

r0
− h12′ cos

2t

r0
􏼠 􏼡 + h13 sin

t

r0
− h13′ cos

t

r0
􏼠 􏼡 + 2 h14 sin

t

2r0
+ h14′ cos

t

2r0
􏼠 􏼡

+ 0.67 h15 sin
3t

2r0
− h15′ cos

3t

2r0
􏼠 􏼡 + h16 sin

t

r0
+ h16′ cos

t

r0
􏼠 􏼡 + 0.34 h17 sin

3t

r0
− h17′ cos

3t

r0
􏼠 􏼡.

(51)

y x

O X

Y

Z

z
O1

ξ
ξ

ξ

ζ

ζ

η

η

i

Figure 2: (e rotational planes in terms of Euler’s angles.
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Table 1: (e analytical solutions p2, c2, and their derivatives.

t p2 c2 _p2 _c2

0 1.5 11.06602 0.8164966 8.60977E− 05
10 2.018443 8.279188 0.6022027 −7.342405
20 2.361099 1.322297 0.3354627 −10.98657
30 2.498126 −6.300518 0.03950729 −9.096887
40 2.417591 −10.74971 −0.259889 −2.625185
50 2.126507 −9.784271 −0.5366514 5.168785
60 1.650225 −3.890493 −0.7666767 10.35926
70 1.030224 3.962964 −0.9299318 10.33185
80 0.3205004 9.82036 −1.012199 5.10033
90 −0.4171353 10.73134 −1.006313 −2.700216
100 −1.118443 6.237032 −0.9127875 −9.140733
110 −1.722344 −1.398863 −0.7397668 −10.97719
120 −2.176246 −8.330236 −0.5023198 −7.284575
130 −2.440619 −11.06585 −0.2211253 0.07719428
140 −2.492437 −8.227805 0.07932674 7.400064
150 −2.327188 −1.245598 0.3728705 10.9956
160 −1.959263 6.363904 0.6339409 9.052767
170 −1.420706 10.76787 0.839801 2.550172
180 −0.7584189 9.748108 0.9725226 −5.236892
190 −0.0300812 3.818282 1.020547 −10.38613
200 0.7008771 −4.034786 0.9796914 −10.30393
210 1.370795 −9.855532 0.8535145 −5.031701
220 1.921331 −10.71208 0.6530044 2.774997
230 2.304537 −6.172976 0.3956243 9.183975
240 2.48704 1.475497 0.1037893 10.9671
250 2.452946 8.380901 −0.1970856 7.226189
260 2.205224 11.06502 −0.4807954 −0.1544821
270 1.765449 8.175891 −0.7226327 −7.457364
280 1.171921 1.168729 −0.9015357 −11.00408
290 0.4763283 −6.427075 −1.001924 −9.008176
300 −0.2607465 −10.78558 −1.015054 −2.474989

Table 2: (e numerical solutions p2, c2, and their derivatives.

t p2 c2 _p2 _c2

0 1.5 11.06602 0.8164966 8.60977E− 05
10 2.018441 8.279626 0.6022035 −7.341455
20 2.361096 1.324263 0.3354649 −10.9858
30 2.498125 −6.297489 0.03951085 −9.098105
40 2.417592 −10.74771 −0.2598841 −2.629244
50 2.126513 −9.78573 −0.5366458 5.163152
60 1.650237 −3.896276 −0.7666712 10.3552
70 1.030242 3.954753 −0.9299275 10.33263
80 0.3205241 9.813907 −1.012197 5.107155
90 −0.4171081 10.73098 −1.006314 −2.68967
100 −1.118414 6.244486 −0.9127917 −9.131646
110 −1.722318 −1.38609 −0.739775 −10.97505
120 −2.176226 −8.318236 −0.5023316 −7.291935
130 −2.440607 −11.06137 −0.2211403 0.06275124
140 −2.492436 −8.234457 0.07930994 7.385382
150 −2.3272 −1.261325 0.372853 10.9887
160 −1.959289 6.346504 0.6339244 9.058519
170 −1.420744 10.75812 0.8397874 2.567106
180 −0.7584675 9.752295 0.9725135 −5.216549
190 −0.03013661 3.835833 1.020544 −10.37296
200 0.7008187 −4.011765 0.9796954 −10.30583
210 1.37074 −9.83878 0.8535257 −5.049277
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6. The Numerical Solutions

In this section, we assume numerical values data for the pa-
rameters of a rigid body, and we achieve a computer program
to solve the quasilinear system using the fourth order Run-
ge–Kutta method [7]. We make another program to represent
the analytical solutions numerically in a period t between 0 and

300 (Table 1). We use the initial values from Table 1 for
obtaining the numerical solutions represented in Table 2. (e
comparison between the obtained numerical solutions and
analytical ones is presented to know the difference between
them. (e numerical and analytical solutions are in good
agreement with others which proves the accuracy of used
methods and obtained results.

Table 2: Continued.

t p2 c2 _p2 _c2

220 1.921283 −10.71119 0.6530228 2.749476
230 2.304503 −6.190003 0.3956484 9.163264
240 2.487025 1.44783 0.1038172 10.96256
250 2.452952 8.356145 −0.1970554 7.24163
260 2.205252 11.05635 −0.4807664 −0.1255394
270 1.765499 8.189053 −0.7226074 −7.429035
280 1.171988 1.198392 −0.9015169 −10.99124
290 0.4764102 −6.395274 −1.001913 −9.018668
300 −0.2606581 −10.76818 −1.015054 −2.504935

1.5

0.75

0

–0.75

–1.5
0 3–3 –1.5 1.5

p2

p2

Figure 3: (e stability of the analytical and numerical solutions _p2andp2.
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Figure 4: (e stability of the analytical and numerical solutions _c2 andc2.
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7. Conclusion

(e solutions (46) and the correction of the period (47) are
obtained using the large parameter method, which had never
been used for solving this kind of problem in the presence of
the new assumptions for motion (the weak oscillations of the
body about the minor or the major axis of the ellipsoid of
inertia instead of the strong oscillations in the previous
works). (e advantage of this method is that the energy
motion of the body is assumed to be sufficiently small in-
stead of sufficiently large with other techniques [10–12].
Also, the obtained solutions treat a singular situation for the
natural frequency which was excluded from previous works
[13, 14].

Equations (50) and (51) describe the rotation of the body
at any time and show that this motion depends on four
arbitrary constants ξ0, ζ0, η0, andr0, such that r0 is suffi-
ciently small. (e obtained solutions give special cases of
motions when (M1 � M2 � 0) and when M1 � 0, M2 ≠ 0,
or M2 � 0, M1 ≠ 0. Also, the obtained solutions give many
gyroscopic motions, which depend on the values of the
moments of inertia and the initial position of the body center
of gravity. In the end, we obtain the case of regular pre-
cession [10] as a special case.

(e analytical solutions (46) are represented indefinite
intervals of time through computer programs (Table 1). (e
numerical solutions are obtained using the fourth order
Runge–Kutta method in terms of another program (Table 2).
Tables 1 and 2 give in detail the obtained results of both the
analytical solutions and numerical ones. (ese results show
that the analytical solutions are in full agreement with the
numerical ones which proves the accuracy of the considered
techniques and results. (is case of study is considered as a
general case of such ones studied in [5]. (e stability phase
diagrams of the solutions p2 and c2 are given (Figures 3 and
4). From these diagrams, we note that the stability for both
the analytical and the numerical solutions in full agreement.
(is gives the validity of the obtained solutions and the
considered procedures. (e considered procedures and
results are very useful for the general reader’s concern with
the new applications dealing with the use of functionally
graded materials in such structures based on the recent
works [15].
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We illustrate the chaotic nature of the circular restricted three-body problem from the perspective of the bifurcation diagram with
respect to the mass ratio parameter. Moreover, it is shown that when the frequency ratio in different directions of the classical
problem is irrational, it has the quasiperiodic characteristics. In addition, a three-dimensional approximate solution to this
problem under two time scales is proposed by using the multiple time scales method.

1. Introduction

As early as the 19th century, plenty of mathematicians, such
as Dirichlet and Weierstrass, et al. [1], expected to obtain a
series solution of the three-body problem in the following
form:

􏽘

∞

j�1
Aj cos 􏽘

k

i�1
jiωi( 􏼁⎛⎝ ⎞⎠t + Bj sin 􏽘

k

i�1
jiωi( 􏼁⎛⎝ ⎞⎠t⎡⎢⎢⎣ ⎤⎥⎥⎦. (1)

*e rate of change of the solution with respect to time t

in equation (1) appears as a combination of many incom-
mensurable frequencies, ωii � 1, 2, . . . , k, often called qua-
siperiodic solution.

Almost half a century ago, Farquhar and Kamel [2]
proposed an approximation to construct the periodic orbits
described above. A few years later, Richardson [3, 4] de-
veloped third-order analytic solutions to collinear libration
points (CLP) for a class of circular restricted three-body
problem (CRTBP) based on a method similar to
Lindstedt–Poincaré and successive approximation. *e
constructed solutions are the basis of determining halo
orbits around these points, and they can provide approxi-
mate initial values of halo orbits. Furthermore, the solutions

can also be developed to investigate spacecraft formation
flying. *e more accurate the approximate analytical solu-
tions, the less fuel in the system will be consumed. Ruijgrok
[5] solved a planar three-body problem for equal mass
particles under a particular class of three-body forces.
Zagouras and Markellos [6] studied a periodic spatial so-
lution to Hill’s problem, which is the limiting case of a
restricted three-body problem (R3BP). Papadakis et al. [7]
considered the periodic orbits of the three-body problem
generated by CLP and provided the second-order approx-
imate analytic expressions of such orbits. Gómez et al. [8]
computed quasihalo orbits in CRTBP semianalytically
through the Lindstedt–Poincaré technique. Ten years ago,
Lu and Zhao [9] proposed an improved and more precise
third-order analytic solution than Richardson’s classical
analytic solution. Gidea and Deppe [10] numerically studied
the influence of small perturbations on the dynamics of an
infinitesimal third body. *ey investigated the chaotic orbits
in an RTBP, which also indicated the complexity and dif-
ficulty of obtaining approximate analytic solutions to the
problem.

In recent years, Šuvakov and Dmitrašinovic [11]
presented some creative results for the periodic orbits of
the three-body problem. *irteen new, zero-angular-
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momentum, distinct equal mass, planar collisionless
periodic orbits are displayed in three new categories.
When the two primaries are both oblate spheres, Mittal
et al. [12] used the predictor-corrector algorithm to
construct periodic orbits. *ey showed the corresponding
periodic orbits under different energy constants, mass
ratios, and oblateness factors of the two primaries. Based
on photogravitational planar RTBP with oblateness,
Pathak et al. [13] studied the seventh-, ninth-, and
eleventh-order internal resonance periodic orbits of the
Sun-Earth system by using Runge–Kutta–Gill method.
For a generalized photogravitational RTBP model, the
two primaries are oblate spheroid and are under the
gravity of an asteroid belt. Abouelmagd et al. [14] found a
secular solution that can be reduced to a periodic one
near the triangular libration points when the mass ratio is
equal to the critical mass value. Similar results can also be
found in [15]. Selim et al. [16] analyzed the stable motion
solutions of long-period orbits and short-period orbits
when the primary is a triaxial rigid body and the Euler
angle of rotation satisfies certain conditions. Besides, for
two types of the perturbed RTBP, Gao et al. [17, 18]
utilized the Lindstedt–Poincaré perturbation method to
give an approximate analytical solution to the periodic
orbits near the CLP.

Considering that the dynamical equation of the third
body in CR3BP is a time-varying high-dimensional non-
linear system in the inertial frame, it can hardly be solved by
using analytical approaches. However, this case will be better
in the rotating coordinate system, for the aforementioned
governing equations are time-independent, and there is an
integrable motion. Using the method of multiple time scales,
Nayfeh [19, 20] studied the 3 :1 and 2 :1 small-amplitude
resonances near the triangular libration points in the plane
when the potential function was expanded to the second-
and third-order terms of a small parameter, respectively.

Based on the number of terms expanded by the potential
function of the problem, the existing time-scale solutions
mainly include the three-dimensional single time-scale solution
when the potential function expands to the third-order, the
three-dimensional (3D) double time-scale solution when the
potential function expands to the second-order, and the planar
approximate analytic solution. Accordingly, when the third
body is also considered to vibrate with a small amplitude in
space, the multiple time scales method [21] will be used to
construct the approximate 3D CR3BP solution in this paper.
*e 3D multiple time scales solution has the following form:

u � 􏽘
2

l�1
εlul(t, εt), (2)

where u � (x, y, z), ul � (x1, y1, z1), l � 1, 2, and ε is a small,
dimensionless parameter.

2. Dynamic Equations of Classical CRTBP

In this section, the dynamic equations of classical CRTBP in
three-dimensional space will be described.

In a rotating framework, it is well known that the
governing equations of the classical CRTBP can be char-
acterized by the following set of differential equations:

€x − 2 _y � x − Ux,

€y
+ 2 _x � y − Uy, €z � −UZ, (3)

where the potential function

U(x, y, z) � −
1 − μ

(x + μ)
2

+ y
2

+ z
2

􏽨 􏽩
(1/2)

−
μ

(x − 1 + μ)
2

+ y
2

+ z
2

􏽨 􏽩
(1/2)

.

(4)

For more details on the establishment of equation (3),
please refer to [22].

It is easy to find that μ in equation (4) is the only pa-
rameter in the classical CRTBP. In this paper, we define it as
the ratio of the mass of one primary to the mass sum of the
two primaries, so it is called the mass ratio parameter, and its
value range is between 0 and 1. Under the initial conditions
[−0.001, 0.2, 0.1, −0.3, 0.87, 0.01], we divide the range of μ
into 1000 equal parts, and then, respectively, return its
corresponding coordinates of three different planes (x-y, x-z,
y-z) for each value of μ, and the bifurcation diagram with
respect to the parameter μ based on ode45 algorithm shows
that any small change of μ will lead to the third body’s
apparent chaotic dynamic behavior (see Figure 1). We find
that any value of μ corresponds to an infinite number of
points rather than a single point, which means that the
probability of obtaining periodic solutions of the three-body
problem by numerical simulation is almost zero. Moreover,
even if there are some results that are seem to be periodic,
part of the existing conclusions based on numerical simu-
lation will no longer hold when the step size continues to
shrink.When the iteration accuracy is gradually improved, it
is difficult for the orbit of the three-body system with chaotic
characteristics to come back after iteration from a particular
initial point, and researchers do not even know what will
happen when the accuracy is less than 10−16. *erefore, we
expect that the periodic solution which is beneficial to the
actual mission can be realized by “construction.”

Next, we first deal with the complex potential function
U(x, y, z) by introducing Legendre polynomials Pn, which
satisfies Rodrigues formula:

Pn(x) �
1

2n
n!

dn

dx
n x

2
− 1􏼐 􏼑

n
, n � 0, 1, 2, 3, . . . . (5)

*en, we have [22]
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1

(x − A)
2

+(y − B)
2

+(z − C)
2

􏽨 􏽩
(1/2)

�
1
D

􏽘

∞

n�0

ρ
D

􏼒 􏼓
n

Pn

Ax + By + Cz

Dρ
􏼠 􏼡, (6)

where D2 � A2 + B2 + C2 and ρ � x2 + y2 + z2. Substituting equations (4) and (6) into equation (3), it
yields

€x − 2 _y − 1 + 2c2( 􏼁x �
z

zx
􏽘
n≥ 3

cnρ
n
Pn

x

ρ
􏼠 􏼡,

€y

+ 2 _x + c2 − 1( 􏼁y �
z

zy
􏽘
n≥ 3

cnρ
n
Pn

x

ρ
􏼠 􏼡, €z + c2z �

z

zz
􏽘
n≥ 3

cnρ
n
Pn

x

ρ
􏼠 􏼡, (7)

where
cn � (1/c3

L)[( ± 1)nμ + (−1)n((1 − μ)cn+1
L /(1∓cL)n+1)], for

libration points L1 and L2 and cn � (1/c3
L)

[1 − μ + (μcn+1
L /(1 + cL)n+1)], for libration point L3,

cL � n
(2/3)
1 , where n1 represents the angular velocity of

relative motion between the two primaries.
*en, equation (7), up to the third approximation, can be

written in the following form:
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Figure 1: (a–c) Bifurcation diagrams of mass ratio parameters in µ-x-y, µ-x-z, and µ-y-z frames, respectively.
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€x − 2 _y − 1 + 2c2( 􏼁x �
3
2

c3 2x
2

− y
2

− z
2

􏼐 􏼑 + 2c4 2x
2

− 3y
2

− 3z
2

􏼐 􏼑,

€y

+ 2 _x + c2 − 1( 􏼁y � −3c3xy −
3
2

c4y 4x
2

− y
2

− z
2

􏼐 􏼑, €z

+ c2z

� −3c3xz −
3
2
c4z 4x

2
− y

2
− z

2
􏼐 􏼑.

(8)

3. Construction of Approximate 3D Multiple
Time Scales Solution

Consider the small amplitude of nonhomogeneous terms of
equation (8). *en,

€x − 2 _y − 1 + 2c2( 􏼁x �
3
2
εc3 2x

2
− y

2
− z

2
􏼐 􏼑 + 2εc4 2x

2
− 3y

2
− 3z

2
􏼐 􏼑,

€y

+ 2 _x + c2 − 1( 􏼁y � −3εc3xy −
3
2
εc4y 4x

2
− y

2
− z

2
􏼐 􏼑, €z

+ c2z

� −3εc3xz −
3
2
εc4z 4x

2
− y

2
− z

2
􏼐 􏼑.

(9)

We write the solution of equation (9) as follows:

x � 􏽘
2

l�1
εl

xl T0, T1( 􏼁,

y � 􏽘
2

l�1
εl

yl T0, T1( 􏼁,

z � 􏽘
2

l�1
εl

zl T0, T1( 􏼁,

(10)

where T0 � t andT1 � εt.

*en, time derivatives become

d
dt

�
z

zT0

dT0

dt
+

z

zT1

dT1

dt
+ · · · � D0 + εD1 + · · · , (11)

d2

dt
2 � D0 + εD1 + · · ·( 􏼁

2
� D

2
0 + 2εD0D1 + · · · , (12)

where Dk � (z/zTk), k � 0, 1, . . ..
Substituting equations (10)–(12) into equation (9), we

find

D
2
0x1 − 2D0y1 − 1 + 2c2( 􏼁x1􏽨 􏽩ε + D

2
0x2 + 2D0D1x1 − 2D0y2 − 2D1y1 − 1 + 2c2( 􏼁x2􏽨 􏽩ε2 + 2 D0D1x2 − D1y2( 􏼁ε3

�
3
2

c3 2x
2
1 − y

2
1 − z

2
1􏼐 􏼑ε3 + 2c4 2x

2
1 − 3y

2
1 − 3z

2
1􏼐 􏼑x1 + 3c3 2x1x2 − y1y2 − z1z2( 􏼁􏽨 􏽩ε4 + Ο ε5􏼐 􏼑,

(13a)

D
2
0y1 + 2D0x1 + c2 − 1( 􏼁y1􏽨 􏽩ε + D

2
0y2 + 2D0D1y1 + 2D0x2 + 2D1x1 + c2 − 1( 􏼁y2􏽨 􏽩ε2 + 2 D0D1y2 + D1x2( 􏼁ε3

� −3c3x1y1ε
3

− 3 c3 x1y2 + x2y1( 􏼁 +
1
2

c4 4x
2
1 − y

2
1 − z

2
1􏼐 􏼑y1􏼔 􏼕ε4 + Ο ε5􏼐 􏼑,

(13b)

D
2
0z1 + c2z1􏼐 􏼑ε + D

2
0z2 + 2D0D1z1 + c2z2􏼐 􏼑ε2 + 2D0D1z2ε

3

� −3c3x1z1ε
3

− 3 c3 x1z2 + x2z1( 􏼁 +
1
2
c4 4x

2
1 − y

2
1 − z

2
1􏼐 􏼑z1􏼔 􏼕ε4 +Ο ε5􏼐 􏼑.

(13c)
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Now, from equations (13a)–(13c), equating the coeffi-
cients of ε, ε2, and ε3 to zero, it leads to the following three
sets of equations.

Order ε:

D
2
0x1 − 2D0y1 − 1 + 2c2( 􏼁x1 � 0,

D
2
0y1 + 2D0x1 + c2 − 1( 􏼁y1 � 0,

D
2
0z1 + c2z1 � 0.

(14)

Order ε2:

D
2
0x2 + 2D0D1x1 − 2D0y2 − 2D1y1 − 1 + 2c2( 􏼁x2 � 0,

D
2
0y2 + 2D0D1y1 + 2D0x2 + 2D1x1 + c2 − 1( 􏼁y2 � 0,

D
2
0z2 + 2D0D1z1 + c2z2 � 0.

(15)

Order ε3:

2D0D1x2 − 2D1y2 �
3
2

c3 2x
2
1 − y

2
1 − z

2
1􏼐 􏼑,

2D0D1y2 + 2D1x2 � −3c3x1y1,

2D0D1z2 � −3c3x1z1.

(16)

Consider that the last equation of (14) is decoupled from
the first two equations of (14). We employ the following
transformations:

x1 � ω1,

_ω1 � ω2,

y1 � ω3,

_ω3 � ω4.

(17)

*en, the first two equations of (14) can be represented
by the following equivalent form:

_ω1 � ω2,

_ω2 � 1 + 2c2( 􏼁ω1 + 2ω4,

_ω3 � ω4,

_ω4 � −2ω2 + 1 − c2( 􏼁ω3.

(18)

*us, the coefficient matrix of equation (18) can be
denoted as

0 1 0 0

1 + 2c2 0 0 2

0 0 0 1

0 −2 1 − c2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

*erefore, the characteristic equation can be obtained as

􏽢λ
4

+ 2 − c2( 􏼁􏽢λ
2

+ 1 + 2c2( 􏼁 1 − c2( 􏼁 � 0, (20)

where

􏽢λ1 �
1
2

−4 + 2c2 + 2 9c
2
2 − 8c2􏼐 􏼑

(1/2)
􏼔 􏼕

(1/2)

,

􏽢λ2 � −
1
2

−4 + 2c2 + 2 9c
2
2 − 8c2􏼐 􏼑

(1/2)
􏼔 􏼕

(1/2)

,

􏽢λ3 �
1
2

−4 + 2c2 − 2 9c
2
2 − 8c2􏼐 􏼑

(1/2)
􏼔 􏼕

(1/2)

,

􏽢λ4 � −
1
2

−4 + 2c2 − 2 9c
2
2 − 8c2􏼐 􏼑

(1/2)
􏼔 􏼕

(1/2)

.

(21)

It is noticed that 􏽢λ1 and 􏽢λ2 are two equal and opposite
real roots, and 􏽢λ3 and 􏽢λ4 are a pair of pure imaginary roots.
Hence, the general solution of equation (14) assumes the
following form:

x1 � I1e
􏽢λ1t

+ I2e
−􏽢λ2t

+ I3 cos(λt) + I4 sin(λt),

y1 � −k1I1e
􏽢λ1t

+ k1I2e
−􏽢λ2t

− k2I3 sin(λt) + k2I4 cos(λt),

z1 � J1 cos(ωt) + J2 sin(ωt),

(22)

where coefficients I1, . . . , I4, k1, k2, J1 and J2 are all constants
and λ is the mould of 􏽢λ3 and 􏽢λ4.

Since the motion of the third body may be unbounded
due to the influence of exponential terms, appropriate initial
conditions are selected such that I1 � I2 � 0, which implies
that

x1 � I3 cos(λt) + I4 sin(λt),

y1 � −k2I3 sin(λt) + k2I4 cos(λt),

z1 � J1 cos(ωt) + J2 sin(ωt),

(23)

i.e.,
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x1 � −Ax cos(λt + ϕ),

y1 � k2Ax sin(λt + ϕ),

z1 � Az sin(ωt + ψ),

(24)

where

Ax �

������

I
2
3 + I

2
4

􏽱

,

AZ �

������

J
2
1 + J

2
2

􏽱

,

k2 �
1 + 2c2 + λ2

2λ
�

2λ
λ2 − c2 + 1

,

cos ϕ � −
I3

Ax

,

sinϕ �
I4

Ax

,

cosψ � −
J2

AZ

,

sinψ �
J1

AZ

.

(25)

If the value of (λ/ω) in equation (24) is an irrational
number, according to the time history diagrams in Figure 2,
this linearization motion of the system appears to make the

periodic motion in the x and y components, respectively.
However, it is not periodic but Lissajous-type quasiperiodic
in the x-y plane, and this fact can be verified by the integral
curves with respect to x and y (see Figure 3) and its pro-
jections in the x-y plane, as well as the portraits in the frame
of x-y-z (see Figure 4). *e significance of Figures 2–4 is that
if the frequency of the third body in all directions is not
commensurable, it will exhibit a quasiperiodic motion.
*erefore, the value of (λ/ω) is a rational number that
performs a critical role in the motion law of the system. In
general, if the value of (λ/ω) is an irrational number, the
time history diagram can only serve as a reference but a
standard to judge if the systemmakes the periodic motion or
not. On the contrary, the motion law of the system can be
judged by phase portraits and time history diagrams.

In addition, note that the halo-type periodic orbits play
particular importance in the actual mission ACE, ISEE-3/
ICE, MAP, SOHO, Genesis, etc., that is, the in-plane and
out-of-plane motion makes those characteristic frequencies
equal within the sufficiently large motion region. *erefore,
without loss of generality, we consider here the case of λ � ω.
*en, equation (24) can be represented as

x1 � A1 T1( 􏼁e
iλT0 + A1 T1( 􏼁e

− iλT0 ,

y1 � ik2A1 T1( 􏼁e
iλT0 − ik2A1 T1( 􏼁e

− iλT0 ,

z1 � A2 T1( 􏼁e
iλT0 + A2 T1( 􏼁e

− iλT0 .

(26)

Substituting equation (26) into equation (15), it yields

D
2
0x2 − 2D0y2 − 1 + 2c2( 􏼁x2 + 2iλD1A1e

iλT0 − 2iλD1A1e
− iλT0 − 2ik2D1A1e

iλT0 + 2ik2D1A1e
− iλT0 � 0,

D
2
0y2 + 2D0x2 + c2 − 1( 􏼁y2 − 2λk2D1A1e

iλT0 − 2λk2D1A1e
− iλT0 + 2D1A1e

iλT0 + 2D1A1e
− iλT0 � 0,

D
2
0z2 + c2z2 + 2iλD1A2e

iλT0 − 2iλD1A2e
− iλT0 � 0.

(27)

Let the secular term be equal to zero, and we find that

D1A1 λ − k2( 􏼁 � 0,

D1A1 k2 − 1( 􏼁 � 0,

D1A2 � 0.

(28)

Hence,

A1 �
ρ1
2

,

A2 �
ρ2
2

,

(29)

where ρ1 and ρ2 are constants.
Substituting equation (29) into equation (26), and set

constant k2 � δ, we obtain

x1 � ρ1 cos(λt),

y1 � −δρ1 sin(λt),

z1 � ρ2 cos(λt).

(30)

*en, equation (27) can be expressed as

D
2
0x2 − 2D0y2 − 1 + 2c2( 􏼁x2 � 0,

D
2
0y2 + 2D0x2 + c2 − 1( 􏼁y2 � 0,

D
2
0z2 + c2z2 � 0.

(31)

Similarly, solutions to equation (31) can be denoted as

x2 � B1 T1( 􏼁e
iλT0 + B1 T1( 􏼁e

− iλT0 ,

y2 � iδB1 T1( 􏼁e
iλT0 − iδB1 T1( 􏼁e

− iλT0 ,

z2 � B2 T1( 􏼁e
iλT0 + B2 T1( 􏼁e

− iλT0 .

(32)
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Substituting equations (26) and (32) into equation (16),
it yields

2i(λ − δ)D1B1e
iλT0 + 2i(δ − λ)D1B1e

− iλT0 �
3
4
c3 2 + δ2􏼐 􏼑ρ21 − ρ22􏼐 􏼑cos 2λT0( 􏼁 + 2 − δ2􏼐 􏼑ρ21 − ρ22􏽨 􏽩,

2(1 − λδ)D1B1e
iλT0 + 2(1 − λδ)D1B1e

− iλT0 � −3c3iδA
2
1e

i2λT0 + 3c3iδA
2
1e

− i2λT0 ,

2iλD1B2e
iλT0 − 2iλD1B2e

− iλT0 � −3c3A1A2e
i2λT0 − 3c3A1A2e

− i2λT0 − 3c3 A1A2 + A1A2( 􏼁.

(33)

We define
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Figure 2: Time history diagrams with respect to (a) x and (b) y, respectively, when μ � 0.0123.
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Figure 3: Quasiperiodic orbit of Lissajous type in x-y-t space for μ � 0.0123.
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B1 T1( 􏼁 �
1
2
α1 T1( 􏼁e

iβ1 T1( ),

B2 T1( 􏼁 �
1
2
α2 T1( 􏼁e

iβ2 T1( ).

(34)

*us,

D1B1 �
1
2
α1′e

iβ1 +
1
2
α1e

iβ1 iβ1′( 􏼁,

D1B1 �
1
2
α1′e

− iβ1 +
1
2
α1e

− iβ1 −iβ1′( 􏼁,

D1B2 �
1
2
α2′e

iβ2 +
1
2
α1e

iβ2 iβ2′( 􏼁,

D1B2 �
1
2
α2′e

− iβ2 +
1
2
α2e

iβ2 −iβ2′( 􏼁.

(35)

Substituting equations (35) and (30) into equation (33),
we get

2(λ − δ) α1′ sin λT0 + β1( 􏼁 + α1β1′ cos λT0 + β1( 􏼁􏼂 􏼃 �
3
4
c3 2 + δ2􏼐 􏼑ρ21 − ρ22􏼐 􏼑cos 2λT0( 􏼁 + 2 − δ2􏼐 􏼑ρ21 − ρ22􏽨 􏽩,

2(1 − λδ) α1′ cos λT0 + β1( 􏼁 − α1β1′ sin λT0 + β1( 􏼁􏼂 􏼃 �
3
2
c3δρ

2
1 sin 2λT0( 􏼁,

−2λ α2′ sin λT0 + β2( 􏼁 + α2β2′ cos λT0 + β2( 􏼁􏼂 􏼃 � −
3
2
c3δρ1ρ2 cos 2λT0( 􏼁 + 1􏼂 􏼃.

(36)
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Figure 4: Quasiperiodic orbit of Lissajous type in the (a) x-y plane and (b) x-y-z space, respectively, when μ � 0.0123.
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*en, it can be followed from equation (36) that

α1′ T1( 􏼁 �
3

8(δ − λ)
c3 2 + δ2􏼐 􏼑ρ21 − ρ22􏼐 􏼑cos(2λt) + 2 − δ2􏼐 􏼑ρ21 − ρ22􏽨 􏽩sin λt + β1 T1( 􏼁( 􏼁 +

3
4(1 − λδ)

c3δρ
2
1 sin(2λt)cos λt + β1 T1( 􏼁( 􏼁,

α1β1′ T1( 􏼁 �
3

8(δ − λ)
c3 2 + δ2􏼐 􏼑ρ21 − ρ22􏼐 􏼑cos(2λt) + 2 − δ2􏼐 􏼑ρ21 − ρ22􏽨 􏽩cos λt + β1 T1( 􏼁( 􏼁 −

3
4(1 − λδ)

c3δρ
2
1 sin(2λt)sin λt + β1 T1( 􏼁( 􏼁.

(37)

Substituting equation (34) into equation (32), we arrive
at

x1 � α1 T1( 􏼁cos λt + β1 T1( 􏼁( 􏼁,

y1 � −δα1 T1( 􏼁sin λt + β1 T1( 􏼁( 􏼁,

z1 � α2 T1( 􏼁cos λt + β2 T1( 􏼁( 􏼁.

(38)

Combining equations (10), (30), and (38), an approxi-
mate 3D multiple time scales solution to equation (9) can be
represented as

x � ερ1 cos(λt) + ε2 cos λt + β1(εt)( 􏼁,

y � −εδρ1 sin(λt) − ε2δα1(εt)sin λt + β1(εt)( 􏼁,

z � ερ2 cos(λt) + ε2α2(εt)cos λt + β2(εt)( 􏼁.

(39)

where α1 and β1 satisfy equation (37) and α2 and β2 satisfy
the third equation of (36).

4. Conclusions

In this paper, we first show the chaotic characteristics of the
classical CRTBP through the bifurcation diagram con-
cerning the mass parameter μ, which indicates that it is
challenging to find the periodic orbit by adjusting the initial
conditions of the problem.*e astronomer Poincaré has also
shown that the probability of the event is zero. Secondly, we
also show that even though sometimes the third body may
exhibit corresponding periodic motions in different direc-
tions in space, the incommensurability of their frequencies
will cause the third body to have quasiperiodic
characteristics.

When the third body moves with a small amplitude, we
construct a kind of approximate 3D multiscale solution by
decomposing the conventional time contained in the so-
lution of the CRTBP into the coupling effect of multiple time
scales. *e shortcoming of this type of solution is that, like
other known approximate solutions (such as those based on
the Lindstedt–Poincaré method), the result of error analysis
is not satisfactory because of the chaotic nature of the
problem. In theory, we need more infinite terms in solution
series and time scales to make it approach the exact solution
of the problem, but this is worthless, and the analytical
calculation under the current technological level is almost
impossible to achieve. *erefore, we only need the series
approximation of two or three terms, so that the multiple
time scales solution can be used as an initial guess or ap-
proximation of the low-energy transfer orbital mission (such

as Genesis discovery mission), and then generate spacecraft
orbit through some differential correction procedures. In
addition, the classic ISEE-3 mission actually used a similarly
constructed approximate solution as the initial solution for
orbit design.
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In this paper, the problem of the slow spinning motion of a rigid body about a point O, being fixed in space, in the presence of the
Newtonian force field and external torque is considered. We achieve the slow spin by giving the body slow rotation with a
sufficiently small angular velocity component r0 about the moving z-axis. We obtain the periodic solutions in a new domain of the
angular velocity vector component r0⟶ 0, define a large parameter proportional to 1/r0, and use the technique of the large
parameter for solving this problem. Geometric interpretations of motions will be illustrated. Comparison of the results with the
previous works is considered. A discussion of obtained solutions and results is presented.

1. Introduction

In [1], the problem of rigid body dynamics is considered.
&e author in [2] gave important space applications to this
problem. In [3], the authors presented valuable and im-
portant studies for the evolution of motions of a rigid body
about its mass center. In [4], the authors introduced a new
procedure for solving Euler–Poisson equations (of a ro-
tatory rigid body over a fixed point). &e author in [5]
constructed periodic solutions for Euler–Poisson equations
utilizing power series expansion containing a small pa-
rameter proportional to the inverse of sufficiently high
angular velocity component. In [6], the author studied
many perturbation techniques for solving the linear and
nonlinear systems of ordinary and partial differential
equations such as Poincare’s method, KBM method,
Poincaré–Lindstedt method, and multiple scales method.
&e authors in [7] studied new types of integrable two-
variable systems with quartic second integrals. &e study in
[8] presented the motion for the rigid body in the presence
of a gyrostatic momentum in cases of external effects and
without external effects.&e author considered the fast spin

motion of a rigid body and achieved a small parameter
proportional to the inverse of high angular components
about the z-axis. &e author applies the small parameter of
Poincare’s method for solving this problem. In [9], the
author investigated the motion over the fixed point O of a
fast spinning heavy solid in a uniform gravity field (the
classical problem). He assumed fast spinning of the body,
achieved a small parameter, and used Poincare’s method
for the solution. In all previous works, the rotary motion for
a fast-spinning body with gyro moments was studied.
Initially, the authors assumed that the body rotates with a
sufficiently large angular velocity component ro about the
moving z-axis which moves with the body. &e authors
achieved a small parameter proportional to 1/r0 and used
the small parameter technique to solve the considered
problems in the domain (t, ro⟶∞, ε⟶ 0). &e fact of
slow motion of that body which must be achieved on a new
parameter named the large parameter and must be solved
using a new procedure named the large parameter tech-
nique was not considered, although this motion saves high
energy given at the initial moment of the body and can
solve the problem in a new domain (t, ro⟶ 0, ε⟶∞).
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2. Equations ofMotion andChange of Variables

Consider a rigid body of massM [10], with arbitrary ellipsoid
of inertia surface, rotating about a fixed point O in the
presence of the Newtonian force field O1 under the influence
of the external torque vector about the moving axes
ℓ � ℓ1􏽢i + ℓ2 􏽢j + ℓ3 􏽢k . Let the attracting center O1 lie on the
Z-axis which is fixed in space. Let the element dm lie on the
body at the point p (x, y, z) and have a position vector ρ from
O and a position vector r from O1. Equations of motion and
their first integrals are achieved and solved with a sufficiently
large parameter proportional to 1/r0, where r0 is sufficiently
small. We deduce the system of equations of motion and
their first integrals of the considered problem and use the
large parameter method for solving it.

&e differential equations of motion and their first in-
tegrals are obtained [10]. Let ho be the angular momentum
vector which rotates in space at the same angular velocity ω
of the rigid body and 􏽢k � (c, c′, c″) be the unit vector fixed
in space in the direction of the downward Z-axis, so

ho � Ap + ℓ1( 􏼁􏽢i + Bq + ℓ2( 􏼁 􏽢j + Cr + ℓ3( 􏼁 􏽢k , (1)

ω � p􏽢i + q 􏽢j + r 􏽢k , (2)

where A, B, andC are the body’s principal moments of
inertia in the moving frame. &e six nonlinear equations of
motion for this case are obtained in the following form:

dho

dt
� A

zp

zt
+(C − B)qr􏼢 􏼣􏽢i + B

zq

zt
+(A − C)pr􏼢 􏼣 􏽢j

+ C
zr

zt
+(B − A)pq􏼢 􏼣 􏽢k ,

(3)

d 􏽢K

dt
�

z 􏽢K

zt
+ ω∧ 􏽢K � 0 . (4)

&ese equations have three first integrals named as
follows:

(a) &e Jacobi-integral

T + V � const, (5)

where T is the kinetic energy of the body and V is the
potential one.

(b) &e angular momentum integral

ho. 􏽢K � const. (6)

(c) &e geometric integral
􏽢K . 􏽢K � 1. (7)

Equations (3) and (4) are nonlinear differential equa-
tions for the motion of a rigid body around a fixed point in
the field of Newtonian force with the presence of rotary

torque vector ℓ(ℓ1, ℓ2, ℓ3), around the x-axis, the y-axis, and
the z-axis, respectively.

&ese equations are of first order in unknown variables
p, q, r, c, c′, and c″. &e quantities A, B, C, ℓ1, ℓ2, and ℓ3 are
constants. &e integration of such equations gives the so-
lutions p, q, r, c, c′, and c″ as functions in time t and the
rigid body parameters.

&e equations of motion for a coherent object around a
fixed point in the asymmetric attraction field [5, 9] and their
three initial integrals result as special cases from equations
(3), (4), (5), (6), and (7).

Let (x0, y0, z0) be the center of mass in the moving
coordinate system (Oxyz); R is the distance from the fixed
point O to the attracting center O1; p0, q0, r0, c0, c0′, and c0″
are the initial values of the corresponding variables. Initially,
let the body rotate about the z-axis with a sufficiently small
angular velocity component r0 such that the z-axis makes an
angle θ0 ≠ 0.5nπ(n � 0, 1, 2, . . .) with Z-axis being fixed in
space.

Without a loss of generality, we choose the positive z-
axis, and the x-axis does not make an obtuse angle with Z-
axis. According to this restriction, we obtain [9]

c0 ≥ 0, 0< c0″ < 1. (8)

Assume the parameters as follows:

a �
A

C
, (ab),

c
2

�
Mgℓ

C
,

ε �
c

��

c0″
􏽱

r0
,

x0 � ℓx0′, xoyozo( 􏼁,

ℓ2 � x
2
0 + y

2
0 + z

2
0,

(9)

where ε is large since r0 is small and symbols such as (abc)
mean cyclic permutations and indicate equations which are
omitted.

Introducing new variables as follows:

p � c

��

c0″
􏽱

p1,

r � r0r1,

c � c0″c1, pq, cc′c″( 􏼁,

k �
3g

R
c

− 2
,

t �
τ
r0

.

(10)
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Substituting equation (10) into equations (3) to (7) when
ℓ1 � ℓ2 � 0, we obtain

_p1 + A1q1r1 + A
− 1

r
− 1
0 q1ℓ3 � ε− 1

a
− 1

y0′c1″ − z0′c1′+ kaA1c1′c1″( 􏼁,

(11)

_q1 + B1p1r1 − B
− 1

r
− 1
0 p1ℓ3 � ε− 1

b
− 1

z0′c1 − x0′c1″+ kbB1c1c1″( 􏼁,

(12)

_r1 � ε− 2
− C1p1q1 + x0′c1′ − y0′c1 + kC1c1c1′( 􏼁, (13)

_c1 � r1c1′ − ε− 1
q1c1″, (14)

_c1′� ε− 1
p1c1″ − r1c1, (15)

_c1″� ε− 1
q1c1 − p1c1′( 􏼁, .≡

d
dτ

􏼠 􏼡, (16)

r
2
1 � 1+ ε− 2

S1, (17)

r1c1″� 1+ ε− 1
S2, (18)

c
2
1 + c
′2
1 + c
″2
1 � c0″( 􏼁

− 2
, (19)

where

S1 � a p
2
10 − p

2
1􏼐 􏼑 + b q

2
10 − q

2
1􏼐 􏼑

− 2 x0′ c10 − c1( 􏼁 + y0′ c10′ − c1′( 􏼁 + z0′ 1 − c1″( 􏼁􏼂 􏼃

+ k a c
2
10 − c

2
1􏼐 􏼑 + b c

′2
10 − c

′2
1􏼒 􏼓 + 1 − c

″2
1􏼒 􏼓􏼔 􏼕,

S2 � a p10c10 − p1c1( 􏼁 + b q10c10′ − q1c1′( 􏼁 +
1 − c1″( 􏼁ℓ3
Cc

��

c0″
􏽱

􏼒 􏼓

.

(20)

3. Reduction of the Equations of Motion to a
Quasi-Linear Autonomous System

In this section, we reduce the equations of motion to a quasi-
linear autonomous system [11]. From equations (17) and
(18), we obtain

r1 � 1 + 0.5ε− 2
S1 + 2z0′ 1 − c1″( 􏼁 − k 1 − c

″2
1􏼒 􏼓􏼔 􏼕 + · · · ,

c1″ � 1 + ε− 1
S2 − 0.5ε− 2

S1 + 2z0′ 1 − c1″( 􏼁 − k 1 − c
″2
1􏼒 􏼓􏼔 􏼕 + · · · .

(21)

Differentiating equations (11) and (14) and using (21),
one obtains

p1 + ω′2p1 � ε− 1
z0′ a

− 1
− A1b

− 1
􏼐 􏼑c1 + A1b

− 1
x0′ + k ω2

− A1􏼐 􏼑c1 + b
− 1

x0′ − z0′c1( 􏼁 − kB1c1􏽨 􏽩A
− 1

r
− 1
0 ℓ3􏽮 􏽯

+ ε− 2
􏼚 − ω2

p1S1 + A1b
− 1

x0′S2 + A1C1p1q
2
1 − A1q1x0′c1′ − y0′c1 + a

− 1
y0′ q1c1 − p1c1′( 􏼁 − a

− 1
z0′p1􏽨 􏽩

+ A1k p1 1 − c
′2
1􏼒 􏼓 + q1 1 − C1( 􏼁c1c1′ − S2 1 + B1( 􏼁c1􏼔 􏼕 + 0.5r

− 1
0 ℓ3p1 A

− 1
B1 − A1B

− 1
􏼐 􏼑

× S1 + 2z0′ 1 − c1″( 􏼁 − k 1 − c
″2
1􏼒 􏼓􏼔 􏼕 + A

− 1
r

− 1
0 ℓ3 b

− 1
x0′ − kb1c1􏼐 􏼑S2􏼛

+ ε− 3 0.5z0′ a
− 1

− A1b
− 1

􏼐 􏼑c1 S1 + 2z0′ 1 − c1″( 􏼁 − k 1 − c
″2
1􏼒 􏼓􏼔 􏼕􏼚

+ 0.5A
− 1

r
− 1
0 ℓ3 kB1c1 − b

− 1
x0′􏼐 􏼑 S1 + 2z0′ 1 − c1″( 􏼁 − k 1 − c

″2
1􏼒 􏼓􏼔 􏼕 + p1S2 2kA1 − a

− 1
z0′􏼐 􏼑􏼛 + · · · ,

(22)

c1 + c1 � ε− 1 1 + B1( 􏼁 − B
− 1

r
− 1
0 ℓ3􏽨 􏽩p1

+ ε− 2
− S1c1 + 1 + B1( 􏼁p1S2 + 1 − C1( 􏼁p1q1c1′ + x0′c

′2
1 + x0′b

− 1
− c1 y0′c1′ + z0′b

− 1
+ q

2
1􏼐 􏼑 + k C1c

′2
1 − B1􏼒 􏼓c1′􏼔 􏼕

+ ε− 3 2b
− 1

x0′ − c1 b
− 1

z0′ + 2kB1􏼐 􏼑􏽨 􏽩S2 + · · · ,

(23)

where

ω2
� − A1B1 �

(A − C)(B − C)

AB
�

(a − 1)(b − 1)

ab
,

ω′2 � ω2
− A

− 1
B1 − A1B

− 1
􏼐 􏼑r

− 1
0 ℓ3.

(24)

We note that ω2 > 0 when A<B<C or A>B>C but
ω′2 > 0 when A<B<C only.

In caseA>B>C, we find that the term (A− 1B1 − A1B
− 1)

is positive and since ro is sufficiently small; that is, the term
(A− 1B1 − A1B

− 1)r− 1
0 ℓ3 tends to infinity, and ω′2 is negative.

Solving equation (11) for q1 and equation (14) for c1′, we
obtain
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q1 � A
− 1
1 r

− 1
1 1 − A

− 1
A

− 1
1 r

− 1
0 ℓ3r

− 1
1 + · · ·􏼐 􏼑

· − _p1 + ε− 1
a

− 1
y0′c1″ − z0′c1′ + kaA1c1′c″( 􏼁􏽨 􏽩,

(25)

c1′ � r
− 1
1 _c1 + +ε− 1

q1c1″􏼐 􏼑. (26)

Making use of equations (21) and (26) into equations
(22) and (23), we obtain a quasi-linear autonomous system
with two degrees of freedom and depend on
p1, _p1, c1, _c1, p10, _p10, c10, and _c10.

Introducing the new variables as follows:

p2 � p1 − ε− 1 χ + χ1c2( 􏼁,

c2 � c1 − ε− 1]p2,
(27)

where

χ � x0′ bω′2􏼒 􏼓
− 1

A1 + A
− 1

r
− 1
0 ℓ3􏼐 􏼑,

] � 1 − ω′2􏼒 􏼓
− 1

1 + B1 − B
− 1

r
− 1
0 ℓ3􏽨 􏽩,

χ1 � 1 − ω′2􏼒 􏼓
− 1

− z0′ a
− 1

− A1b
− 1

􏼐 􏼑 + k A1 − ω2
􏼐 􏼑􏽨

+ A
− 1

r
− 1
0 ℓ3 b

− 1
z0′ + kB1􏼐 􏼑􏽩.

(28)

Using equations (27), (21), and (26), we obtain

Si � Si1 + 22− iε− 1
Si2 + · · · , (i � 1, 2), (29)

where

S11 � a p
2
20 − p

2
2􏼐 􏼑 + bχ23 _p

2
20 − _p

2
2􏼒 􏼓 − 2x0′ c20 − c2( 􏼁 − 2y0′ _c20 − _c2􏼐 􏼑 + k a c

2
20 − c

2
2􏼐 􏼑 + b _c

2
20 − _c

2
2􏼒 􏼓􏼔 􏼕,

S12 � a χ p20 − p2( 􏼁 + χ1 p20c20 − p2c2( 􏼁􏼂 􏼃 − bχ23 a
− 1

y0′ _p20 − _p2􏼐 􏼑 − χ2 _p20 _c20 − _p2 _c2􏼐 􏼑􏽨 􏽩 − ]x0′ p20 − p2( 􏼁

− y0′]1 _p20 − _p2􏼐 􏼑 + z0′ − k( 􏼁S21 + k ]a p20c20 − p2c2( 􏼁 + ]1b _p20 _c20 − _p2 _c2􏼐 􏼑􏽨 􏽩,

S21 � a p20c20 − p2c2( 􏼁 − bχ3 _p20 _c20 − _p2 _c2􏼐 􏼑,

S22 � a ] p
2
20 − p

2
2􏼐 􏼑 + χ c20 − c2( 􏼁 + χ1 c

2
20 − c

2
2􏼐 􏼑􏽨 􏽩 + bχ3 − ]1 _p

2
20 − _p

2
2􏼒 􏼓 + a

− 1
y0′ _c20 − _c2􏼐 􏼑 − χ2 _c

2
20 − _c

2
2􏼒 􏼓􏼔 􏼕 −

S21ℓ3
Cc

��

c0″
􏽱

􏼒 􏼓

,

(30)

where

χ3 � A
− 1
1 1 − A

− 1
A

− 1
1 r

− 1
0 ℓ3􏼐 􏼑,

χ2 � χ1 + a
− 1

z0′ − kA1,

]1 � ] − χ3.

(31)

Formulas (21) and (29) lead to

r1 � 1 + 0.5ε− 2
S11 + ε− 3

S12 − z0′S21 + kS21( 􏼁 + · · · ,

c1″ � 1 + ε− 1
S21 + ε− 2

S22 − 0.5S11( 􏼁

− ε− 3
S12 − z0′S21 + kS21( 􏼁 + · · · .

(32)

In terms of p2 · c2, and the rigid body parameters, we
find that

q1 � − χ3 _p2 + ε− 1χ3 a
− 1

y0′ − χ2 _c2􏼐 􏼑 + ε− 2 χ3]1 _p2 kA1 − a
− 1

z0′􏼐 􏼑 + S11 _p2 χ3 − 0.5A
− 1
1􏼐 􏼑􏽨 +χ3S21 kA1 _c2 + a

− 1
y0′􏼐 􏼑􏽩 + · · · ,

c1′ � _c2 + ε− 1]1 _p2 + ε− 2 χ3 a
− 1

y0′ − χ2 _c2 − S21 _p2􏼐 􏼑 − 0.5S11 _c2􏽨 􏽩 + · · · .
(33)

Substituting equations (27), (29), (30), (32), and (33) into
equations (23) and (24), we obtain a quasi-linear autono-
mous system of two degrees of freedom in the following
form:

€p2 + ω′2p2 � ε− 2
F p2, _p2, c2, _c2, ε

− 1
􏼐 􏼑,

€c2 + c2 � ε− 2ϕ p2, _p2, c2, _c2, ε
− 1

􏼐 􏼑,
(34)

where
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F � F2 + ε− 1
F3 + . . . , ϕ � ϕ2 + ε− 1ϕ3 + . . . ,

F2 � f2 − ]χ1 1 − ω′2􏼒 􏼓p2, ϕ2 � φ2 + ] 1 − ω′2􏼒 􏼓 χ + χ1c2( 􏼁,

F3 � f2 − χ1φ2 − ]χ1 1 − ω′2􏼒 􏼓 χ + χ1c2( 􏼁, ϕ3 � φ3 − ]f2 + ]2χ1 1 − ω′2􏼒 􏼓p2,

f2 � − ω2
S11p2 + A1x0′ b

− 1
S21 + χ3 _c2 _p2􏼐 􏼑 + A1C1χ

2
3p2 _p

2
2

− y0′χ3c2 _p2 A1 + a
− 1

􏼐 􏼑 − a
− 1

p2 z0′ + y0′ _c2( 􏼁 + A1k 1 − _c
2
2􏼐 􏼑p2 + C1 − 1( 􏼁χ3c2 _c2 _p2

− 1 + B1( 􏼁S21c2 + 0.5r
− 1
0 ℓ3 2p2 A

− 1
B1 − A1B

− 1
􏼐 􏼑S11 + A

− 1
b

− 1
x0′ − kB1c2􏼐 􏼑S21􏽨 􏽩,

f3 � − 2ω2
p2S12 + χ + χ1c2( 􏼁 − ω2

S11 − a
− 1

z0′ + y0′ _c2( 􏼁􏽮 + A1 C1χ
2
3 _p

2
2 + k 1 − _c

2
2􏼐 􏼑􏽨 􏽩􏽯 + A1b

− 1
x0′S22

+ A1χ3 _p2 x0′]1 _p2 − y0′]p2( 􏼁 − p2 _p2 a
− 1

y0′ ]1 + ]χ( 􏼁 + 2A1k]1 _c2􏽨 􏽩

+ χ3 _p2 ]1c2 _p2 + ] _c2p2( 􏼁 C1 − 1( 􏼁 − 1 − B1( 􏼁 ]S21p2 + S22c2( 􏼁

+ 0.5z0′ a
− 1

− A1b
− 1

􏼐 􏼑c2S11 + 2kA1 − a
− 1

z0′􏼐 􏼑p2S21 + χ3 a
− 1

y0′ − χ2 _c2􏼐 􏼑

× − A1 2C1χ3p2 _p2 + x0′ _c2( 􏼁 + y0′c2 A1 + a
− 1

􏼐 􏼑 + c2 _c
2
2 1 − C1( 􏼁􏽨 􏽩

+ 0.5r
− 1
0 ℓ3 A

− 1
B1 − A1B

− 1
􏼐 􏼑 2p2 S12 − z0′S21 + kS21( 􏼁 + χ + χ1c2( 􏼁S11􏼂 􏼃 + 2A

− 1
b

− 1
x0′ − kB1c2􏼐 􏼑S22 − kB1]S21p2􏽨 􏽩􏽨􏽮

+ A
− 1

kB1c2 − b
− 1

x0′􏼐 􏼑S11􏽩􏽯,

φ2 � 1 + B1( 􏼁S21 − 1 − C1( 􏼁χ3 _c2 _p2􏼂 􏼃p2 + x0′ b
− 1

+ _c
2
2􏼐 􏼑 + k C1 _c

2
2 − B1􏼐 􏼑 − y0′ _c2 − z0′b

− 1
− χ23 _p

2
2 − S11􏽨 􏽩c2,

φ3 � 1 + B1( 􏼁 p2S22 + χ + χ1c2( 􏼁S21􏼂 􏼃 + χ3 1 − C1( 􏼁 × a
− 1

y0′ − χ2 _c2􏼐 􏼑 _c2p2 − _p0 ]1p2 _p2 + χ + χ1c2( 􏼁 _c2􏼂 􏼃􏽮 􏽯

− 2c2S12 − ]p2S11 + 2x0′]1 _c2 _p2 − y0′ ]1c2 _p2 + ] _c2p2( 􏼁 − ]p2 b
− 1

z0′ + χ23 _p
2
2􏼐 􏼑 + 2χ23 a

− 1
y0′ − χ2 _c2􏼐 􏼑 × c2 _p2

+ k 2C1]1c2 _c2 _p2 + ] C1 _c
2
2 − B1􏼐 􏼑p2􏽨 􏽩 + 2b

− 1
x0′ − b

− 1
z0′ + 2kB1􏼐 􏼑c2􏽨 􏽩S21.

(35)

System (34) has the first integral obtained from equa-
tions (17)–(19) as follows:

c
2
2 + _c

2
2 + 2ε− 1 ]c2p2 + ]1 _c2 _p2 + S21􏼐 􏼑 + ε− 2 ]2p2

2 + 2χ3 _c2 a
− 1

y0′ − χ2 _c2 − S21 _p2􏼐 􏼑 − 1 + _c
2
2􏼒 􏼓S11 + 2S22􏼔 􏼕 + · · · � c0″( 􏼁

− 2
− 1.

(36)

We aim to find the periodic solutions for system (36)
under the condition A<B<C (ω′2 is positive) [12]. In this
case, the body rotates about the minor axis of the ellipsoid of
inertia surface [13] with initial sufficiently small angular
velocity r0.

4. Formal Construction of the
Periodic Solutions

Without a loss of generality, since the system (34) is au-
tonomous, we assume that [14]

p2(0, 0) � 0,

_p2(0, 0) � 0,

_c2 0, ε− 1
􏼐 􏼑 � 0.

(37)

&e generating system of equation (34) is

€p
(0)

2 + ω′2p(0)
2 � 0,

€c
(0)

2 + c
(0)
2 � 0,

(38)

which has periodic solutions as follows:
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p
(0)
2 � M1 cosω′τ + M2 sinω′τ,

c
(0)
2 � M3 cos τ,

(39)

with a period T0 � 2πn, where Mi, i � (1, 2, 3), are constants
to be determined. Consider the required periodic solutions
of system (34) in the following form:

p2 τ, ε− 1
􏼐 􏼑 � M1 + β1( 􏼁cosω′τ + M2 + β2( 􏼁sinω′τ

+ 􏽘

∞

k�2
ε− k

Gk(τ),

c2 τ, ε− 1
􏼐 􏼑 � M3 + β3( 􏼁cos τ + 􏽘

∞

k�2
ε− k

Hk(τ),

(40)

with a period T(ε− 1) � T0 + α(ε− 1). &e quantities
β1,ω′β2, and β3 represent the deviations of solutions
p2, _p2, and c2 at any ε from their initial values when
ε⟶∞. Let the initial condition of system (40) be of the
following form:

p2 0, ε− 1
􏼐 􏼑 � M1 + β1,

_p2 0, ε− 1
􏼐 􏼑 � ω′ M2 + β2( 􏼁,

c2 0, ε− 1
􏼐 􏼑 � M3 + β3,

_c2 0, ε− 1
􏼐 􏼑 � 0.

(41)

Consider the new function as follows:

U � u +
zu

zM1
β1 +

zu

zM2
β2 +

zu

zM3
β3 + 0.5

z
2
u

zM
2
1
β21 + · · · ,

U � Gk, Hk

u � gk, hk

⎛⎝ ⎞⎠,

(42)

such that

gk(τ) �
1
ω′

􏽚
τ

0
Fk
′ t1( 􏼁sinω′ τ − t1( 􏼁dt1,

hk(τ) � 􏽚
τ

0
ϕk
′ t1( 􏼁sin τ − t1( 􏼁dt1 (k � 2, 3),

(43)

where

Fk
′(τ) �

1
(k − 2)!

dk− 2F

dε2− k
􏼠 􏼡

β�ε− 1�0
,

ϕk
′(τ) �

1
(k − 2)!

dk− 2ϕ
dε2− k

􏼠 􏼡
β�ε− 1�0

.

(44)

We note that the right-hand sides of (34) begin with
terms of order ε− 2 and so

Fk
′(τ) � Fk p

(0)
2 , _p

(0)
2 , c

(0)
2 , _c

(0)
2􏼐 􏼑 ≡ F

(0)
k ,

ϕk
′(τ) � ϕk p

(0)
2 , _p

(0)
2 , c

(0)
2 , _c

(0)
2􏼐 􏼑 ≡ ϕ(0)

k , k � 2, 3.
(45)

Now, we find the expressions of ϕ(0)
k and F

(0)
k . Periodic

solutions (39) are reformulated in the following form:

p
(0)
2 � E cos ω′τ − η( 􏼁,

c
(0)
2 � M3 cos τ,

(46)

where E �

���������

M 2
1 + M 2

2

􏽱

and η � tan− 1(M2/M1).
Using equations (29) and (39), we obtain

S
(0)
ij � S

(0)
ij p

(0)
2 , _p

(0)
2 , c

(0)
2 , _c

(0)
2􏼐 􏼑 (i, j � 1, 2),

S
(0)
11 � E

2
a cos2 η − 0.5􏼐 􏼑 + bχ23ω′

2 sin2 η − 0.5􏼐 􏼑 + 0.5 bχ23ω′
2

− a􏼒 􏼓cos 2 ω′τ − η( 􏼁􏼔 􏼕

− 2M3 x0′(1 − cos τ) + y0′ sin τ􏼂 􏼃 − 0.5kM
2
3C1(1 − cos 2 τ),

S
(0)
21 � M3E a cos2 η + 0.5 bω′χ3 − a( 􏼁cos ω′ − 1( 􏼁τ − η􏼂 􏼃 − 0.5 bω′χ3 + a( 􏼁cos ω′ + 1( 􏼁τ − η􏼂 􏼃􏽮 􏽯,

S
(0)
12 � aE χ3 cos η − cos ω′τ − η( 􏼁􏼂 􏼃 + χ1M3 cos η − cos τ cos ω′τ − η( 􏼁􏼂 􏼃􏼈 􏼉 − bχ23E cos η − cos ω′τ − η( 􏼁􏼂 􏼃

+ χ2M3 sin τ sin ω′τ − η( 􏼁

− ]x0′E cos η − cos ω′τ − η( 􏼁􏼂 􏼃 + kEM3 ]a cos η − cos τ cos ω′τ − η( 􏼁􏼂 􏼃 − ]1b sin τ sin ω′τ − η( 􏼁􏼈 􏼉 + z0′ − k( 􏼁S
(0)
21 ,

S
(0)
22 � a ]E

2 cos2 η − cos2 ω′τ − η( 􏼁􏽨 􏽩 + χM3(1 − cos τ) + χ1M
2
3sin

2 τ􏽮 􏽯

+ bχ3 a
− 1

y0′M3 sin τ − ]1E
2ω′2 sin2 η − sin2 ω′τ − η( 􏼁􏽨 􏽩 + χ2M

2
3sin

2 τ􏼚 􏼛 − S
(0)
21 ℓ3/ Cc

��

c0″
􏽱

􏼒 􏼓.

(47)
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Substituting equations (46) and (47) into equation (35),
we obtain

F
(0)
2 � M1L ω′( 􏼁cosω′τ + M2L ω′( 􏼁sinω′τ + · · · ,

ϕ(0)
2 � M3N ω′( 􏼁cos τ + · · · ,

(48)

L ω′( 􏼁 � ω2
− aM

2
1 + bω′2χ23M

2
2􏼒 􏼓 + bω′2χ23 M

2
1 + M

2
2􏼐 􏼑􏼔 􏼕

+ A1C1ω′
2χ23 M

2
1 + M

2
2􏼐 􏼑 + 2M3x0′ω

2
+ k A1 + 0.5M

2
3ω

2
C1􏼐 􏼑 − z0′a

− 1
+ ]χ1 1 − ω′2􏼒 􏼓􏼔 􏼕

+ 0.5r
− 1
0 ℓ3 A

− 1
B1 − A1B

− 1
􏼐 􏼑 aM

2
1 + bω′2χ23M

2
2 − bω′2χ23 M

2
1 + M

2
2􏼐 􏼑􏼔 − 2M3x0′ − 0.5kM

2
3C1􏽩,

(49)

N ω′( 􏼁 � − aM
2
1 + bω′2χ23M

2
2􏼒 􏼓 − M

2
1 + M

2
2􏼐 􏼑 aB1 + ω′2χ23(1 − b)􏼔 􏼕

+ 2M3x0′ − z0′b
− 1

− ]χ1 1 − ω′2􏼒 􏼓􏼔 􏼕 +k M
2
3C1 − B1􏼐 􏼑􏽩.

(50)

From equations (33), (49), and (50), we obtain

g2 T0( 􏼁 � − πn ω′( 􏼁
− 1

M2L ω′( 􏼁, _g2 T0( 􏼁 � πnM1L ω′( 􏼁,

h2 T0( 􏼁 � 0, _h2 T0( 􏼁 � πnM3N ω′( 􏼁,

(51)

where the constants M1,ω′M2, andM3, the deviations
β1(ε− 1),ω′β2(ε− 1), and β3(ε− 1), and the correction of the
period α are determined from the periodicity conditions and
their derivatives:

ψ1 � p2 T0 + α, ε− 1
􏼐 􏼑 − p2 0, ε− 1

􏼐 􏼑 � 0,

ψ2 � _p2 T0 + α, ε− 1
􏼐 􏼑 − _p2 0, ε− 1

􏼐 􏼑 � 0,

ψ3 � c2 T0 + α, ε− 1
􏼐 􏼑 − c2 0, ε− 1

􏼐 􏼑 � 0,

ψ4 � _c2 T0 + α, ε− 1
􏼐 􏼑 − _c2 0, ε− 1

􏼐 􏼑 � 0.

(52)

Due to the existence of first integral (36) for system (34),
the condition ψ3 � 0 is not independent [15]; then, integral
(36) becomes

c
2
2 T0 + α, ε− 1
􏼐 􏼑 + _c

2
2 T0 + α, ε− 1
􏼐 􏼑 + 2ε− 1 ]c2 T0 + α, ε− 1

􏼐 􏼑p2 T0 + α, ε− 1
􏼐 􏼑 + ]1 _c2 T0 + α, ε− 1

􏼐 􏼑 × _p2 T0 + α, ε− 1
􏼐 􏼑 + S21 T0 + α, ε− 1

􏼐 􏼑􏽨 􏽩

+ ε− 2 ]2p2
2 T0 + α, ε− 1
􏼐 􏼑 + 2χ3 _c2 T0 + α, ε− 1

􏼐 􏼑 a
− 1

y0′ − χ2 _c2 T0 + α, ε− 1
􏼐 􏼑 − S21 T0 + α, ε− 1

􏼐 􏼑 _p2 T0 + α, ε− 1
􏼐 􏼑􏽨 􏽩􏽮

− S11 T0 + α, ε− 1
􏼐 􏼑 1 + _c

2
2 T0 + α, ε− 1
􏼐 􏼑􏼔 􏼕􏼛 +2S22 T0 + α, ε− 1

􏼐 􏼑􏽯 + . . .

� c
2
2 0, ε− 1
􏼐 􏼑 + _c

2
2 0, ε− 1
􏼐 􏼑 + 2ε− 1 ]c2 0, ε− 1

􏼐 􏼑p2 0, ε− 1
􏼐 􏼑 + ]1 _c2 0, ε− 1

􏼐 􏼑 _p2 0, ε− 1
􏼐 􏼑 + S21 0, ε− 1

􏼐 􏼑􏽨 􏽩

+ ε− 2 ]2p2
2 0, ε− 1
􏼐 􏼑 + 2χ3 _c2 0, ε− 1

􏼐 􏼑 a
− 1

y0′ − χ2 _c2 0, ε− 1
􏼐 􏼑 − S21 0, ε− 1

􏼐 􏼑 _p2 0, ε− 1
􏼐 􏼑􏽨 􏽩 − S11 0, ε− 1

􏼐 􏼑􏽮

· 1 + _c
2
2 0, ε− 1
􏼐 􏼑􏼔 􏼕 + 2S22 0, ε− 1

􏼐 􏼑􏼛 + . . . .

(53)

Using condition (41) and equation (52), we obtain

ψ2
3 + 2 M3 + β3( 􏼁ψ3 + ε− 1φ1 ψ1,ψ2,ψ4, ε

− 1
􏼐 􏼑 � 0, (54)

where φ1 is an entire function in their variables and
φ1(0, 0, 0, ε− 1) � 0; then if M3 ≠ 0, form (54) gives

ψ3 � f1 ψ1,ψ2,ψ4, ε
− 1

􏼐 􏼑, (55)

where f1 is an entire function in all their arguments and
f1(0, 0, 0, ε− 1) � 0; then, the condition ψ3 � 0 in (52) is
satisfied with the following condition:

ψ1 � ψ2 � ψ4 � 0. (56)

Substituting initial conditions (41) into equation (56)
with τ � 0, we obtain

M
2
3 + 2M3β3 + β23 + 2ε− 1]M3 M1 + β1( 􏼁 + · · · � c0″( 􏼁

− 2
− 1.

(57)

Assume that c0″ does not depend on ε; we obtain that

M
2
3 � c0″( 􏼁

− 2
− 1,

β23 + 2M3β3 + 2ε− 1]M3 M1 + β1( 􏼁 + · · · � 0.
(58)
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From (58) and (8), we obtain

M3 �

���������

1 − c″20􏼠 􏼡

􏽳

c0″
, 0<M3 <∞,

β3 � − ε− 1] M1 + β1( 􏼁 + · · · ,

(59)

where c0″ is an arbitrary parameter and M3 is the arbitrary
constant.

&is means that periodic solutions (40) depend on ar-
bitrary constant M3 and the function β3(ε− 1) which is equal
to 0 when ε⟶∞. Independent periodic solutions (52) are
expanded in a power series of α (neglecting terms of ε− 2α);
then, we obtain

p2 T0, ε
− 1

􏼐 􏼑 + α _p2 T0, ε
− 1

􏼐 􏼑 + . . . � p2 0, ε− 1
􏼐 􏼑,

_p2 T0, ε
− 1

􏼐 􏼑 + α€p2 T0, ε
− 1

􏼐 􏼑 + . . . � _p2 0, ε− 1
􏼐 􏼑,

_c2 T0, ε
− 1

􏼐 􏼑 + α€c2 T0, ε
− 1

􏼐 􏼑 + . . . � _c2 0, ε− 1
􏼐 􏼑.

(60)

Using initial values (41) in the above relations, we put
independent periodicity conditions (56) in the following
form:

p2 T0, ε
− 1

􏼐 􏼑 + αω′ M2 + β2( 􏼁 � M1 + β1( 􏼁,

_p2 T0, ε
− 1

􏼐 􏼑 − ω′ M2 + β2( 􏼁 � αω′ M1 + β1( 􏼁,

_c2 T0, ε
− 1

􏼐 􏼑 � α M3 + β3( 􏼁.

(61)

Using equations (40), (59), and the last equation of (61),
we obtain the following function:

α ε− 1
􏼐 􏼑 � ε− 2

M3 + β3( 􏼁
− 1 _H2 T0( 􏼁 + ε _H3 T0( 􏼁 + . . .􏽨 􏽩.

(62)

&us, neglecting the terms of order α2 and ε− 2α in (61),
we find that the terms of the order ε− 4 are neglected. Using
equations (37) and (41), we obtain the periodic solutions
with basic amplitudes equal to zero, that is [16],

M1 � M2 � 0. (63)

Substituting equations (62), (63), and (40) into the first
two equations from (61), we obtain the following system for
determining β1 and β2:

G2 T0( 􏼁 + ε− 1
G3 T0( 􏼁 + ω′β2 M3 + β3( 􏼁

− 1 _H2 T0( 􏼁 + ε− 1 _H3 T0( 􏼁􏽨 􏽩 + ε− 2
(. . .) � 0,

_G2 T0( 􏼁 + ε− 1 _G3 T0( 􏼁 − ω′2β1 M3 + β3( 􏼁
− 1 _H2 T0( 􏼁 + ε− 1 _H3 T0( 􏼁􏽨 􏽩 + ε− 2

(. . .) � 0.
(64)

Due to (51), the above system becomes

− πnβ2 ω′( 􏼁
− 1

L1 ω′( 􏼁 − ω′2N1 ω′( 􏼁􏼔 􏼕 + ε− 1
G3 T0( 􏼁 + . . .􏼂 􏼃 � 0,

πnβ1 L1 ω′( 􏼁 − ω′2N1 ω′( 􏼁􏼔 􏼕 + ε− 1 _G3 T0( 􏼁 + . . .􏽨 􏽩 � 0,

(65)

where L1(ω′) and N1(ω′) are obtained from (50) replacing
M1, M2, M3 by β1, β2, andM3 + β3. Making use of equations
(24), (28), (31), and (49), we obtain

L1 ω′( 􏼁 − ω′2N1 ω′( 􏼁 � β21 +β22􏼐 􏼑W1 ω′( 􏼁 + z0′W2 ω′( 􏼁

+ kW3 ω′( 􏼁 + W4 ω′( 􏼁,
(66)

where

W1 ω′( 􏼁 � d1 + d2 + d3( 􏼁r
− 1
0 ℓ3,

W2 ω′( 􏼁 � d4 − d5d6d7( 􏼁 + r
− 1
0 ℓ3 d5d6 d8 + d9( 􏼁 + B

− 1
d7 − d10 1 + a

− 1
d6d7􏼐 􏼑􏽨 􏽩,

W3 ω′( 􏼁 � d5d6d11 + d12( 􏼁 + r
− 1
0 ℓ3 d5 d13 − d14( 􏼁 − B

− 1
d11􏽨 􏽩+b

− 1
d10 a

− 1
d6d11 + d15􏼐 􏼑􏽩􏽮 􏽯r

− 1
0 ℓ3,

W4 ω′( 􏼁 � − 0.5ad10 β21 +
a − 1
b − 1

􏼒 􏼓β22􏼔 􏼕r
− 1
0 ℓ3,

d1 � b
− 1

(a − 1)(2a − b − 1),

d2 � b
− 2

[b(a − b) +(a − 1)] aA
− 1

(a − 1)(1 − b)
− 1

+ bB
− 1

􏽨 􏽩,
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d3 � 0.5A
− 1

(1 − A) ab
− 1

(1 − a)(1 − b)
− 1

+ AB
− 1

􏽨 􏽩,

d4 � a
− 1 1 − b

− 2
(a − 1)(b − 1)􏽨 􏽩,

d5 � (ab)
− 2

[ab +(a − 1)(b − 1)],

d6 � b
− 1

(a + b − 1),

d7 � (ab)
− 1

(2b − 1)[ab +(a − 1)(b − 1)],

d8 � (Ab)
− 1

[ab +(a − 1)(b − 1)],

d9 � (ab)
− 1

(2b − 1) A
− 1

a(a − 1) + B
− 1

b(b − 1)􏽨 􏽩,

d10 � (Ab)
− 1

(a − 1) +(aB)
− 1

(b − 1),

d11 � (ab)
− 1

(1 − b)(a + b − 1)[ab +(a − 1)(b − 1)],

d12 � ab
2

􏼐 􏼑
− 1

(1 − b) b
2

− (a − 1)
2

+ 0.05b(a − 1)(b − a)M
2
3􏽨 􏽩,

d13 � (Ab)
− 1

(a − 1)[ab +(a − 1)(b − 1)],
(67)

d14 � (ab)
− 1

(1 − b)(a + b − 1) aA
− 1

(a − 1) + bB
− 1

(b − 1)􏽨 􏽩,

d15 � 0.75b(b − a)M
2
3 − (a − 1).

(68)

Since the z-axis is oriented towards the minor axis of the
ellipsoid of inertia for the body, then W1(ω′)> 0 for all ω′
under consideration. Assume that [17]

z0′W2 ω′( 􏼁 + kW3 ω′( 􏼁≠ 0. (69)

Using (65), the expressions for β1 and β2 are obtained in
the form of power series expansions beginning with terms of
order greater than ε− 2. So, we obtain the first terms of the
required periodic solutions and the correction of the period
α(ε− 1) in the following forms:

p1 � ε− 1
− x0′(a − 1)

− 1 1+ bB
− 1

(a − 1)
− 1

r
− 1
0 ℓ3􏽨 􏽩 + χ1M3 cosτ􏽮 􏽯 + · · · , (70)

q1 � ε− 1
a(1 − b)

− 1
y0′a

− 1
+ χ2M3 sinτ − A

− 1
(1 − b)

− 1
r

− 1
0 ℓ3 y0′+ z0′ − kaA1( 􏼁M3 sinτ+ ad5 kb(1 − b)d6 − z0′(2b − 1)􏼂 􏼃􏼂 􏼃􏽮 􏽯 + · · · ,

(71)

r1 � 1 − ε− 2
M3 x0′(1 − cosτ) + y0′sinτ+0.25M3C1(1 − cos2τ)􏼂 􏼃 + · · · , (72)

c1 � M3 cosτ+ · · · , (73)

c1′� − M3 sinτ+ · · · , (74)

c1″� 1+ ε− 2
(1 − b)

− 1
M3y0′sinτ+(1 − a)

− 1
M3x0′(1 − cosτ) − 0.5b

− 1
(1 − b)

− 1
d7M

2
3z0′(1 − cos2τ)􏽮

+0.25M
2
3k 2abd5d6 + C1( 􏼁(1 − cos2τ)

+ r
− 1
0 ℓ3 − abA

− 1
(1 − B)

− 2
M3y0′sinτ+ abB

− 1
(a − 1)

− 2
M3x0′(1 − cosτ)􏽨 +0.5b

− 1
(1 − b)

− 1
× z0′M

2
3(1 − cos2τ)

· A
− 1

a
2
bd5(1 − b)

− 1 2b
2

− 2b +1􏼐 􏼑 + d9􏽨 􏽩

+0.5k(1 − b)
− 1

M
2
3(1 − cos)τ) b

− 1
d13 − aA

− 1
d11(1 − b)

− 1
− (1 − b)(2b − 1)

− 1
d6d9􏽨 􏽩􏽩􏽯 + · · · ,

(75)

α ε− 1
􏼐 􏼑 � ε− 2πn M3x0′ − z0′b

− 1
+(ab)

− 1
kd11 − z0′d7( 􏼁d6 + k M

2
3C1 − B1􏼐 􏼑 +(ab)

− 1
r

− 1
0 ℓ3 z0′ d6 d8 + d9( 􏼁 + d7B

− 1
􏽨 􏽩􏽨􏽮

+ k d6 d13 − d14( 􏼁 − d11B
− 1

􏽨 􏽩􏽩􏽯 + . . . .
(76)
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New solutions (70)–(76) are obtained in terms of the
large parameter ε and a sufficiently small angular velocity
component ro about the minor axis of the ellipsoid of inertia.
&e case of the motion of the body with a sufficiently small
angular velocity component ro about the major axis of the
ellipsoid of inertia is considered in a separate paper since ω′2

is negative in this case. &e motion considered here is a

generalization of many problems studied in a previous work
[18]. &at is, the obtained solutions give many special cases
for gyroscopic problems with new treatment by the large
parameter technique [19] which saves high energy given for
the body at the initial motion. &e correction terms in our
solutions in terms of the parameter ε are

△p1 � ε− 1
x0′b

− 1
B

− 1
1 1 − ω2ω′− 2

􏼒 􏼓 + ω′− 2
A

− 1
r

− 1
0 ℓ3􏼔 􏼕 + χ − χ ∗1( 􏼁M3 cos τ􏼚 􏼛 + · · · ,

△q1 � ε− 1
− y0′ aAA

2
1􏼐 􏼑

− 1
r

− 1
0 ℓ3 + A

− 1
1 M3 sin τ χ1 − χ ∗1 − χ2A

− 1
A

− 1
1 r

− 1
0 ℓ3􏽨 􏽩􏼚 􏼛 + · · · ,

△r1 � ε− 3
[0] + . . . ,△c1 � ε− 1

[0] + . . . ,△c1′ � ε− 1
[0] + · · · ,

△c1″ � ε− 2
aM3 χ − χ∗( 􏼁(1 − cos τ) − bM3y0′ aAA

2
1􏼐 􏼑

− 1
r

− 1
0 ℓ3 sin τ􏼚

+ 0.5M
2
3(1 − cos 2τ) a(1 − b)

− 1 χ1 − χ ∗1( 􏼁 − χ2b AA
2
1􏼐 􏼑

− 1
r

− 1
0 ℓ3􏼔 􏼕􏼛 + · · · ,

Δα ε− 1
􏼐 􏼑 � ε− 2πn 1 − B1( 􏼁 χ1 − χ ∗1( 􏼁 − B

− 1χ1r
− 1
0 ℓ3􏽮 􏽯 + · · · .

(77)

Also,

Δp11 � Δp1 + ε− 1 χ ∗1 − χ ∗∗1( 􏼁M3 cos τ + · · · ,

Δq11 � Δq1 + ε− 1
A

− 1
1 M3 χ ∗1 − χ ∗∗1 − kA1( 􏼁sin τ + · · · ,

Δr11 � − 0.25ε− 2
M

2
3C1(1 − cos 2τ) + · · · ,

Δc11 � ε− 1
[0] + . . . ,Δc11′

Δc11″ � Δc1″ + ε− 2 0.25kM
2
3C1(1 − cos 2τ) + 0.5M

2
3(1 − cos τ) a(1 − b)

− 1 χ ∗1 − χ ∗∗1( 􏼁 − kb􏽨 􏽩􏽮 􏽯 + · · · ,

Δα1 ε− 1
􏼐 􏼑 � Δα + ε− 2πn z0′(2 − b)

− 1
+ k M

2
3C1 − B1􏼐 􏼑 + χ ∗1 1 + B1( 􏼁􏽨 􏽩 + · · · ,

(78)

where

χ∗ � A1x0′ bω2
􏼐 􏼑

− 1
,

χ ∗1 � 1 − ω2
􏼐 􏼑

− 1
k A1 − ω2

􏼐 􏼑 − z0′ a
− 1

− A1b
− 1

􏼐 􏼑􏽨 􏽩,

χ ∗∗1 � − z0′ 1 − ω2
􏼐 􏼑

− 1
a

− 1
− A1b

− 1
􏼐 􏼑.

(79)

5. Geometric Interpretation of Motion

In this section, we explain the geometric interpretation of
motion using Euler’s angles θ,ψ, andφ [20] which are de-
termined from the obtained periodic solutions. Since the
initial system is autonomous, the periodic solutions remain
so, if the time t is replaced by (t + t0), where t0 is the arbitrary
interval time. So, Euler’s angles for this problem are given by

cos θ � c″,

dψ
dt

�
pc + qc′( 􏼁

1 − c″
2

􏼒 􏼓

,

tanφ0 �
c0

c0′
,

dφ
dt

� r − cos θ
dψ
dt

􏼠 􏼡.

(80)

Substituting equations (70)–(76) into equation (80) in
which t is replaced by (t + t0) and using the relations (10),
the following expressions for Euler’s angles θ,ψ, andφ are
obtained:

10 Advances in Astronomy



φ0 �
π
2

􏼒 􏼓 + r
− 1
0 t0 + · · · ,

θ0 � tan− 1
M3,

θ � θ0 − ε− 2 θ1 t + t0( 􏼁 − θ1 t0( 􏼁􏼂 􏼃,

ψ � ψ0 + ε− 1
c cosec θ0

�����

cos θ0
􏽱

ψ1 t + t0( 􏼁 − ψ1 t0( 􏼁􏼂 􏼃,

φ � φ0 + r
− 1
0 t − ε− 1

c cot θ0
�����

cos θ0
􏽱

φ1 t + t0( 􏼁 − φ1 t0( 􏼁􏼂 􏼃

− ε− 2 tan θ0 φ2 t + t0( 􏼁 − φ2 t0( 􏼁􏼂 􏼃,

(81)

where

θ1(t) � a1 sin r
− 1
0 t − a2 cos r

− 1
0 t − a3 tan θ0 cos 2r

− 1
0 t,

ψ1(t) � a4r
− 1
0 sin r

− 1
0 t + a5r

− 1
0 cos r

− 1
0 t + 0.5 χ1 − a6( 􏼁tan θ0

+ 0.25r
− 1
0 χ1 − a6( 􏼁tan θ0 sin 2r

− 1
0 t,φ1(t) � ψ1(t),

a1 � (1 − b)
− 1

y0′ 1 − abA
− 1

(1 − b)
− 1

r
− 1
0 ℓ3􏽨 􏽩,

a2 � (1 − a)
− 1

x0′ 1 + abB
− 1

(1 − a)
− 1

r
− 1
0 ℓ3􏽨 􏽩,

a3 � 0.5z0′b
− 1

(1 − b)
− 1

r
− 1
0 ℓ3 a

2
bd5A

− 1
(1 − b)

− 1 2b
2

− 2b + 1􏼐 􏼑 + d9􏽨 􏽩 − d7􏽮 􏽯

+ 0.25k 2abd5d6 + C1( 􏼁 + 2(1 − b)
− 1

r
− 1
0 ℓ3 b

− 1
d13 − aA

− 1
(1 − b)

− 1
d11 +(b − 1)(2b − 1)

− 1
d6d9􏽨 􏽩􏽯􏽮 ,

a4 � − x0′(a − 1)
− 1 1 + bB

− 1
(a − 1)

− 1
r

− 1
0 ℓ3􏽨 􏽩,

a5 � (1 − b)y0′ − aA
− 1

(1 − b)
− 2

r
− 1
0 ℓ3 y0′ + ad5 kb(1 − b)d6 − z0′(2b − 1)􏼂 􏼃􏼈 􏼉,

a6 � a(1 − b)
− 1 χ2 − aA

− 1
r

− 1
0 ℓ3(1 − b)

− 1 χ2 − χ1( 􏼁􏽨 􏽩,

a7 � x0′ + 0.25kC1 tan θ0.

(82)

6. Comparison between the Previous Problems
and the Considered Problem

In this section, we make a comparison between the previous
works and the considered work through Table 1.

7. Conclusions

From this study, we treat the problem of the slow spinning
motion about the minor axis of the ellipsoid of inertia of a
rigid body to find the periodic solutions and the correction

Table 1: &e differences between the previous works and the considered work.

Ser. &e previous problems &e considered problem
1 &e body rotates fast &e body rotates slow
2 ro is sufficiently high ro is sufficiently small
3 ε⟶ 0 ε⟶∞
4 Poincare’s method is used for solving the problems &e large parameter method is used for solving the problem
5 High kinetic energy is required for the motions Low kinetic energy is required for the motion
6 &e domain of the solutions F (t, ro⟶∞, ε⟶ 0) &e domain of the solutions F (t, ro⟶ 0, ε⟶∞)
7 θ,ψ, andφ have the domain G (t, ro⟶∞, ε⟶ 0) θ,ψ, andφ have the domain G (t, ro⟶ 0, ε⟶∞)
8 ω′2 is positive for A<B<C or A>B>C ω′2 is positive for A<B<C and negative for A>B>C
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of the period of the equations of motion of it in the presence
of Newtonian force field and an external torque. &is
problem is solved in a new domain of the angular velocity
component ro⟶ 0.

&e well-known Poincare’s method [5] cannot solve this
problem because we cannot achieve the small parameter
which must be proportional to a sufficiently high angular
velocity component ro⟶∞. So we must search other
techniques that come from the sufficiently small assumption
of ro and depend on achieving large parameter instead of a
small one. &is technique is named the large parameter
method. &e advantage of this method is as follows: as-
suming low energy at the initial instant instead of high
energy, obtaining a slow periodic motion instead of a fast
periodic one, and giving the solutions in a new domain of
motion ro⟶ 0 and ε⟶∞. &e case when A<B<C [21]
cannot be solved here since ω′2 is negative in this case. So we
will treat this case separately in the future, in shaa Allah. &e
correction terms for our solutions are given in terms of ro

and ε. &e geometric interpretation of motions is given to
describe the orientation of the motion at any instant of time.
&e cases of gyroscopic motions and regular precession are
obtained as special cases from this study when we apply the
symmetry conditions. &e practical importance of this work
is very wide since it is used in many applications of life such
as military life and civil one. &e case of the gyro motion
which is symmetric about the z-axis, i.e., A � B<C, is ob-
tained as a special case from our work [22]. &ere are many
interesting space applications of these problems in [2].

Data Availability

&e data used to support the findings of this study are
available from the corresponding author upon reasonable
request.
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(e small parameter method was applied for solving many rotational motions of heavy solids, rigid bodies, and gyroscopes for
different problems which classify them according to certain initial conditions on moments of inertia and initial angular velocity
components. For achieving the small parameter method, the authors have assumed that the initial angular velocity is sufficiently
large. In this work, it is assumed that the initial angular velocity is sufficiently small to achieve the large parameter instead of the
small one. In this manner, a lot of energy used for making the motion initially is saved. (e obtained analytical periodic solutions
are represented graphically using a computer program to show the geometric periodicity of the obtained solutions in some interval
of time. In the end, the geometric interpretation of the stability of a motion is given.

1. Introduction

Consider a heavy solid of mass M rotating about a fixed
point O in presence of a uniform gravity field of force [1].
(e fundamental equations of motion and their three first
integrals are presented and reduced to a quasilinear

autonomous system having one first integral [2]. Consider
that the ellipsoid of inertia of the body is arbitrary [3]. (e
well-known general equations of motion and their first
integrals are [4]

dp

dt
+ A1qr � MgA

− 1
y0c″ − z0c′( 􏼁,

dc

dt
� rc′ − qc″,

pqr, A1B1C1, ABC, cc′c″, xoyozo( 􏼁,

Ap
2

+ Bq
2

+ Cr
2

− 2Mg x0c + y0c′ + z0c″( 􏼁 � const.,

(Ap)c +(Bq)c′ +(Cr)c″ � const.,

c
2

+ c′
2

+ c″
2

� 1,

(1)
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where

A1 �
C − B

A
,

B1 �
A − C

B
,

C1 �
B − A

C
.

(2)

System (1) of equations of motion represents nonlinear
differential equations of the considered problem. (ese
equations are of the first order in unknown angular velocity
components p, q, and r and geometric angles c, c′, and c″.
(e quantities A, B, and C represent the moments of inertia
of the body and (x0, y0, z0) represent its gravity center. g

denotes the gravity acceleration. t denotes the time of the
motion. (e aim is to find the solution to this system using
the large parameter method [5].

Let the initial value of the angular velocity component
r � ro about the moving z axis be sufficiently small. (e
following variables are introduced:

p1 � pc
− 1

��

c0″
􏽱

,

q1 � qc
− 1

��

c0″
􏽱

,

r1 �
r

r0
,

c1 �
c

c0″
,

c1′ �
c′

c0″
,

c1″ �
c″

c0″
,

τ � r
−1
o t,

. ≡
d
dτ

􏼠 􏼡,

p2 � p1 − eλ− 1
− λ− 1

e1c2,

c2 � c1 − λ− 1υp2,

c �

����
Mgℓ

C

􏽲

,

λ �
c

��

co
″

􏽱

r0
,

e �
xo
′A1

bω2 ,

e1 �
zo
′ A1/b − a− 1􏼂 􏼃

1 − ω2( )
,

υ �
1 + B1( 􏼁

1 − ω2( )
,

ω2
� −A1B1,

a �
A

C
,

b �
B

C
,

xo � ℓxo
′,

yo � ℓyo
′,

zo � ℓzo
′,

ℓ2 � x
2
o + y

2
o + z

2
o,

(3)

where r0 and c0″ are the initial values of the corresponding
quantities.

(e nonlinear equations of motions and their first in-
tegrals (1) are reduced to a quasilinear autonomous system
[6]:

€p2 + ω2p2 � λ− 2F p2, _p2, c2, _c2,
1
λ

􏼒 􏼓,

€c2 + c2 � λ− 2Φ p2, _p2, c2, _c2,
1
λ

􏼒 􏼓,

(4)

where

F � C1A
−1
1 p2 _p

2
2 + x0′ _p2 _c2 − y0′a

− 1
p2 _c2 − y0′A

−1
1 A1 + a

− 1
􏼐 􏼑c2 _p2 − z0′a

− 1
p2

− ]e1 1 − ω2
􏼐 􏼑p2 − ω2

p2s11 + A1b
− 1

x0′s21 + O
1
λ

􏼒 􏼓 + . . . ,

Φ � − 1 − C1( 􏼁A
−1
1 p2 _p2 _c2 + x0′ _c

2
2 − y0′c2 _c2 − z0′b

− 1
c2 + x0′b

− 1
− A

−2
1 c2 _p

2
2

+ ] 1 − ω2
􏼐 􏼑 e + e1c2( 􏼁 − c2s11 + 1 + B1( 􏼁p2s21 + O

1
λ

􏼒 􏼓 + . . . ,

s11 �
a p2

20 − p2
2( 􏼁 + b _p

2
20 − _p

2
2􏼐 􏼑

A2
1 − 2 x0′ c20 − c2( 􏼁 + y0′ _c20 − _c2( 􏼁􏼂 􏼃

,

s21 � a p20c20 − p2c2( 􏼁 − bA
−1
1 _p20 _c20 − _p2 _c2( 􏼁,

υ2 � υ − A
−1
1 ,

(5)
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such that p20 and c20 are the initial values of the corre-
sponding quantities.

(e variables q1, r1, c1′, and c1″ are obtained as follows:

q1 � −A
−1
1 _p2 + λ− 1

A
−1
1 y0′a

− 1
− e2 _c2􏼐 􏼑 + . . . ,

r1 � 1 + 0.5λ− 2
s11 + . . . ,

c1′ � _c2 + λ− 1υ2 _p2 + . . . ,

c1″ � 1 + λ− 1
s21 + λ− 2

s22 − 0.5s11( 􏼁 + . . . ,

(6)

where

s22 � a ] p
2
20 − p

2
2􏼐 􏼑 + e c20 − c2( 􏼁 + e1 c

2
20 − c

2
2􏼐 􏼑􏽨 􏽩

+ bA
−1
1 −]2 _p

2
20 − _p

2
2􏼐 􏼑 + a

− 1
y0′ _c20 − _c2( 􏼁 − e2 _c

2
20 − _c

2
2􏼐 􏼑􏽨 􏽩,

e2 � e1 + a
− 1

zo
′

.

(7)

Assuming that the velocity ro is sufficiently small, the
parameter λ is large.

2. Construction ofPeriodic Solutions,withZero
Basic Amplitudes

In this section, the periodic solutions, with zero basic am-
plitudes [7], of the autonomous system (4) are achieved and
the large parameter method is applied. Without loss of
generality of solutions, it is considered that

p2(0, 0) � _p2(0, 0) � _c2 0,
1
λ

􏼒 􏼓 � 0. (8)

Consider the generating system ((1/λ) � 0), that is,
(λ⟶∞), of (4) in the form:

€p
(0)
2 + ω2

p
(0)
2 � 0,

€c
(0)
2 + c

(0)
2 � 0,

(9)

with a period T0 � 2πn. (ere are three possibilities of the
values of frequency ω which are 1 − ω � 1; 2 − ω � m/n
where m and n are primes; 3 − ω equals an irrational
number.

Consider the case when ω � m/n, then the solution of the
generating system (9) becomes

p
(0)
2 � a

∗
0 cosωτ,

c
(0)
2 � b

∗
0 cos τ,

(10)

where a∗0 and b∗0 are the constants to be determined. (e
autonomous system (4) has periodic solutions with a period
T0 + α, where α is a function of 1/λ such that α(0) � 0.(ese
solutions are reduced to the generating ones (10) when
(1/λ) � 0 (λ⟶∞) and written in the form:

p2 � a
∗ cosψ + 􏽘

N

n�1

1
λ

􏼒 􏼓
n

p
∗
n a
∗
,ψ( 􏼁 + O

1
λ

􏼒 􏼓
N+1

,

c2 � b
∗ cos ϕ + 􏽘

N

n�1

1
λ

􏼒 􏼓
n

c
∗
n a
∗
, ϕ( 􏼁 + O

1
λ

􏼒 􏼓
N+1

.

(11)

With initial conditions:

p2 0,
1
λ

􏼒 􏼓 � a
∗

� a
∗
0 + a
∗ 1

λ
􏼒 􏼓,

c2 0,
1
λ

􏼒 􏼓 � b
∗

� b
∗
0 + b
∗ 1

λ
􏼒 􏼓,

_c2 0,
1
λ

􏼒 􏼓 � 0,

(12)

where a∗(1/λ) � 0 and b∗(1/λ) � 0 when (1/λ) � 0.
From the first integral (4) and initial conditions (12), one

has the following:

0< b
∗
0 � 1 − c

″2
0􏼒 􏼓

1/2
c0″( 􏼁

− 1 <∞,

b
∗ 1

λ
􏼒 􏼓 � −

1
λ

􏼒 􏼓] a
∗
0 + a
∗ 1

λ
􏼒 􏼓􏼔 􏼕 + . . . .

(13)

Let a∗, ψ, and ϕ change with time according to

_a
∗

� 􏽘
N

n�1

1
λ

􏼒 􏼓
n

A
∗
n a
∗

( 􏼁 + O
1
λ

􏼒 􏼓
N+1

, (14)

_ψ � ω + 􏽘
N

n�1

1
λ

􏼒 􏼓
n

ψn a
∗

( 􏼁 + O
1
λ

􏼒 􏼓
N+1

, (15)

_ϕ � 1 + 􏽘
N

n�1

1
λ

􏼒 􏼓
n

ϕn a
∗

( 􏼁 + O
1
λ

􏼒 􏼓
N+1

. (16)

(e following derivatives are obtained:
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_p2 � −a
∗ω sinψ + O

1
λ

􏼒 􏼓,

_c2 � −b
∗ sinϕ + O

1
λ

􏼒 􏼓,

p__2 � −a
∗ω2 cosψ +

1
λ

ω2z
2p∗1
zψ2 − 2a

∗ωψ1 cosψ − 2ωA
∗
1 sinψ􏼢 􏼣

+
1
λ

􏼒 􏼓
2
2ωA
∗
1

z2p∗1
za∗zψ

− 2 ωA
∗
2 + A

∗
1 ψ1( 􏼁sinψ + A

∗
1

dA∗1
da∗

cosψ + ω2z
2p∗2
zψ2􏼢

+2ωψ1
z2p∗1
zψ2 − a

∗ ψ2
1 + 2ωψ2􏼐 􏼑cosψ − a

∗
A
∗
1 sinψ

dψ1
da∗

􏼣 + O
1
λ

􏼒 􏼓
3
,

€c2 � −b
∗ cos ϕ +

1
λ

z2c∗1

zϕ2 − 2b
∗ϕ1 cos ϕ􏼢 􏼣 +

1
λ

􏼒 􏼓
2 z2c∗2

zϕ2
+ 2ϕ1

z2c∗1

zϕ2
􏼢

−b
∗ ϕ21 + 2ϕ2􏼐 􏼑cos ϕ + 2A

∗
1

z2c∗1
za∗zϕ

− b
∗
A
∗
1

dϕ1
da∗

sinϕ􏼣 + O
1
λ

􏼒 􏼓
3
.

(17)

From (5), (7), (11), and (17), it is obtained that

s
(0)
11 � aa

∗ 2
0 cos2ψ0 − cos2ψ􏼐 􏼑 − bA

−2
1 a
∗ 2
0 ω2sin2ψ − 2b

∗
0 x0′ cos ϕ0 − cos ϕ( 􏼁 + y0′ sinϕ􏼂 􏼃,

s
(0)
21 � a

∗
0 b
∗
0 a cosψ0 cos ϕ0 − cosψ cos ϕ( 􏼁 + bA

−1
1 ω sinψ sinϕ􏽨 􏽩,

s
(0)
22 � a ]a

∗ 2
0 cos2ψ0 − cos2ψ􏼐 􏼑 + eb

∗
0 cos ϕ0 − cosϕ( 􏼁􏽨 +e1b

∗ 2
0 cos2ϕ0 − cos2ϕ􏼐 􏼑􏽩

+ bA
−1
1 ]2a

∗ 2
0 ω2sin2ψ + a

− 1
y0′b
∗
0 sinϕ􏽨 +e2b

∗ 2
0 sin2ϕ􏽩,

(18)

where ψ0 andϕ0 are the initial values of the corresponding
quantities.

Using (5), (11), and (17), the following is obtained:

F
(0)

� C1A
−1
1 a
∗ 3
0 ω2 cosψsin2 ψ + ωa

∗
0 b
∗
0 x0′ sinψ sinϕ

+ a
− 1

a
∗
0 b
∗
0 y0′ cosψ sinϕ + ωA

−1
1 A1 + a

− 1
􏼐 􏼑a

∗
0 b
∗
0 y0′ sinψ cos ϕ

− z0′a
− 1

a
∗
0 cosψ − ]e1 1 − ω2

􏼐 􏼑a
∗
0 cosψ

− ω2
a
∗
0 cosψ aa

∗ 2
0 cos2ψ0 − cos2ψ􏼐 􏼑 − bA

−2
1 a
∗ 2
0 ω2sin2ψ􏽮

−2b
∗
0 x0′ cos ϕ0 − cos ϕ( 􏼁 + y0′ sinϕ􏼂 􏼃􏼉

+ A1b
− 1

x0′a
∗
0 b
∗
0 a cosψ0 cosϕ0 − cosψ cos ϕ( 􏼁 + bA

−1
1 ω sinψ sinϕ􏽨 􏽩,

Φ(0)
�
1
2

C1 − 1( 􏼁A
−1
1 ωa
∗ 2
0 b
∗
0 sin 2ψ sinϕ +

1
2
x0′b
∗ 2
0 (1 − cos 2ϕ)

+
1
2
y0′b
∗ 2
0 sin 2ϕ − z0′b

− 1
b
∗
0 cos ϕ + x0′b

− 1

−
1
2
A

−2
1 ω2

a
∗ 2
0 b
∗
0 (1 − cos 2ψ)cosϕ + ]e 1 − ω2

􏼐 􏼑 + ]e1 1 − ω2
􏼐 􏼑b

∗
0 cos ϕ
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− aa
∗ 2
0 b
∗
0 cos

2ψ0 cos ϕ +
1
2

aa
∗ 2
0 b
∗
0 (1 + cos 2ψ)cosϕ

+
1
2

bA
−2
1 ω2

a
∗ 2
0 b
∗
0 (1 − cos 2ψ)cosϕ + 2x0′b

∗ 2
0 cos ϕ0 cos ϕ

− x0′b
∗ 2
0 (1 + cos 2ϕ) + y0′b

∗ 2
0 sin 2ϕ + a

∗ 2
0 b
∗
0 1 + B1( 􏼁 bA

−1
1 ω sinψ sinϕ􏽨

+a cosψ0 cos ϕ0 − cosψ cos ϕ( 􏼁􏼃cosψ.

(19)

Substituting (11), (17), and (19) into system (4) and
equating coefficients of similar power terms of 1/λ, the
following is obtained:

z2p∗1
zψ2 + p

∗
1 �

2a∗0
ω

ψ1 cosψ +
2A∗1
ω

sinψ,

z2c∗1

zϕ2
+ c
∗
1 � 2b

∗
0 ϕ1 cos ϕ,

z2p∗2
zψ2 + p

∗
2 �

2A∗2
ω

sinψ +
a∗0
ω2 2ωψ2 +

1
4
ω2

C1A
−1
1 a
∗ 2
0 +

3
4
ω2

aa
∗ 2
0 − aa

∗ 2
0􏼔

−z0′a
− 1

− ]e1 1 − ω2
􏼐 􏼑 +

1
4

bA
−2
1 a
∗ 2
0 ω4

+ 2ω2
x0′b
∗
0 cos ϕ0􏼕cosψ

+
1
4
a
∗ 3
0 a − C1A

−1
1 − ω2

bA
−2
1􏼐 􏼑cos 3ψ +

aa∗0
ω2 x0′A1b

− 1
b
∗
0 cosψ0 cosϕ0

+ x0′a
∗
0 b
∗
0

1
ω

−
aA1

2bω2 − 1􏼒 􏼓cos(ϕ − ψ) − x0′a
∗
0 b
∗
0 1 +

1
ω

+
aA1

2bω2􏼒 􏼓cos(ϕ + ψ)

+ y0′a
∗
0 b
∗
0 1 +

1
2aω2 −

A1 + a− 1

2A1ω
􏼠 􏼡sin(ϕ − ψ) + y0′a

∗
0 b
∗
0 1 +

1
2aω2 +

A1 + a− 1

2A1ω
􏼠 􏼡sin(ϕ + ψ),

z2c∗2

zϕ2
+ c
∗
2 � 2ϕ2 − z0′b

− 1
+
1
2
A

−2
1 ω2

a
∗ 2
0 (b − 1) + ]e1 1 − ω2

􏼐 􏼑 − aa
∗ 2
0 cos2ψ0􏼔

−
1
2

aB1a
∗ 2
0 + 2x0′b

∗
0 cos ϕ0􏼕b

∗
0 cos ϕ −

1
2
x0′b
∗ 2
0 + x0′b

− 1
+ ]e 1 − ω2

􏼐 􏼑

+ 1 + B1( 􏼁aa
∗ 2
0 b
∗
0 cosψ0 cosϕ0 cosψ −

3
2
x0′b
∗ 2
0 cos 2ϕ +

3
2
y0′b
∗ 2
0 sin 2ϕ

+ a
∗ 2
0

1
2
A

−2
1 ω2

(1 − b) −
1
2

aB1 + A
−1
1 ωb
∗
0 (b − 1)􏼔 􏼕cos(2ψ − ϕ)􏼚

+
1
2
A

−2
1 ω2

(1 − b) −
1
2

aB1 − A
−1
1 ωb
∗
0 (b − 1)􏼔 􏼕cos(2ψ + ϕ)􏼛.

(20)

Canceling the singular terms [8] from (20), one gets
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ψ1 � A
∗
1 � ϕ1 � A

∗
2 � 0,

ψ2 �
1
2ω

−
1
4
ω2

C1A
−1
1 a
∗ 2
0 −

3
4
ω2

aa
∗ 2
0 + aa

∗ 2
0 + z0′a

− 1
+ ]e1 1 − ω2

􏼐 􏼑􏼔

−
1
4

bA
−2
1 ω4

a
∗ 2
0 − 2ω2

x0′b
∗
0 cos ϕ0􏼕,

ϕ2 �
1
2

z0′b
− 1

−
1
2
A

−2
1 ω2

a
∗ 2
0 (b − 1) − ]e1 1 − ω2

􏼐 􏼑 + aa
∗ 2
0

1
2
B1 + cos2ψ0􏼒 􏼓􏼔

−2x0′b
∗
0 cos ϕ0􏼃.

(21)

Substituting (21) into (14), (15), and (16) and integrating,
it is obtained that

a
∗

� a
∗
0 (arbitrary const.),

ψ � ωτ +
1
2

1
λ

􏼒 􏼓
2

−
1
4
ωC1A

−1
1 a
∗ 2
0 −

3
4
ωaa
∗ 2
0 + aa

∗ 2
0 ω− 1

+ z
1
0a

− 1ω− 1
􏼔

+]e1 ω− 1
− ω􏼐 􏼑 −

1
4

bA
−2
1 ω3

a
∗ 2
0 − 2ωx0′b

∗
0 cosϕ0􏼕τ,

ϕ � τ +
1
2

1
λ

􏼒 􏼓
2

z0′b
− 1

−
1
2
A

−2
1 ω2

a
∗ 2
0 (b − 1) − ]e1 1 − ω2

􏼐 􏼑 + aa
∗ 2
0 1 +

1
2
B1􏼒 􏼓 − 2x0′b

∗
0􏼔 􏼕τ.

(22)

From the previous results, the following is obtained:

ψ(0) � ψ0 � 0,

ϕ(0) � ϕ0 � 0.
(23)

Making use of (21), (22), (11), and (13), the periodic
solutions p2 and c2 of the autonomous system are deduced.
Using (6), (18), (22), and (23), the following periodic so-
lutions, with zero basic amplitudes, are obtained:

p1 � −
x0′

λbB1
+
1
λ
e1b
∗
0 cos τ + . . . ,

q1 �
y0′

λaA1
+
1
λ
e1A

−1
1 b
∗
0 sin τ + . . . ,

r1 � 1 −
1
λ2

b
∗
0 x0′(1 − cos τ) + y0′ sin τ􏼂 􏼃 + . . . ,

c1 � b
∗
0 cos τ + . . . ,

c1′ � −b
∗
0 sin τ + . . . ,

c1″ � 1 +
1
λ2

b
∗
0 (1 − a)

− 1
x0′ +

1
2
b
∗ 2
0 z0′

a − b

a + b − 1
􏼠 􏼡 + b

∗
0 (1 − b)

− 1
y0′ sin τ􏼢

−b
∗
0 (1 − a)

− 1
x0′ cos τ −

1
2
b
∗ 2
0 z0′

a − b

a + b − 1
􏼠 􏼡cos 2τ􏼣 + . . . ,

(24)

where the correction of the period α becomes α
1
λ

􏼒 􏼓 �
2
λ
πn b
∗
0 x0′ − z0′􏼂 􏼃 + . . . . (25)
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3. Conclusion

It is concluded that the method of the small parameter failed
to solve this problem under the studied condition r0 which is
sufficiently small because achieving the solutions by this
method depends on assuming sufficiently large angular
velocity r0 to define the small parameter (ε) proportional to
(1/ro). With the sufficiently small assumption, the choosing
of the small parameter (ε) is impossible, and so the author
had to look for another technique.

(e large parameter technique is the only one that solves
this problem under the studied condition. (e advantage of
this method is that you save an enormous amount of energy
given to the body at the start of the motion. (e presented
method proves the ability to solve this problem when the

component of the angular velocity about themoving z-axis is
sufficiently small. Under this technique, gyroscopic motions
are obtained under low energy initially instead of high
energy in using the small parameter technique. It is clear
about the periodicity of the solutions p2 and c2 from Fig-
ures 1 and 2 in a defined interval of time.(e simple smooth
closed curves with different amplitudes of the solution p2
against c2 show the stability [9] of the motions, see Figure 3.
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*e present work aims at constructing an atlas of the balanced Earth satellite orbits with respect to the secular and long periodic
effects of Earth oblateness with the harmonics of the geopotential retained up to the 4th zonal harmonic. *e variations of the
elements are averaged over the fast and medium angles, thus retaining only the secular and long periodic terms. *e models
obtained cover the values of the semi-major axis from 1.1 to 2 Earth’s radii, although this is applicable only for 1.1 to 1.3 Earth’s
radii due to the radiation belts. *e atlas obtained is useful for different purposes, with those having the semi-major axis in this
range particularly for remote sensing and meteorology.

1. Introduction

*e problem of the motion of an artificial satellite of the
Earth was not given serious attention until 1957. At this
time, little was known about the magnitudes of the coef-
ficients of the tesseral and sectorial harmonics in the
Earth’s gravitational potential. It was pretty well known at
this time (1957–1960) that the contributions of the 3rd, 4th,
and 5th zonal harmonics were of order higher than the
contribution of the 2nd zonal harmonic, but the values of
the coefficients C30, C40, and C50 were not very well
established. No reliable information was available for the
tesseral or the sectorial coefficients except that the obser-
vations of orbiting satellites indicated that these coefficients
must be small, certainly no more than the first order with
respect to C20.

For low Earth orbits within an altitude less than 480 km,
if the satellite attitude is stabilized, or at least a mean
projected area could be estimated, the perturbative effects of
atmospheric drag should be included. Unfortunately, the
literature is still void of even a mention of this topic of
balancing this kind of very low Earth orbits. *e reason may
be the present increased interest in space communications

and broadcasting, which still make use of the geostationary
orbits that lie beyond the effects of atmospheric drag, though
they still suffer the effects of drift solar radiation pressure.

With the advance of the space age, it became clear that
most space applications require fixing, as strictly as pos-
sible, the areas covered by the satellite or the constellation
of satellites. In turn, fixing the coverage regions requires
fixed nodes and fixed apsidal lines. *is in turn leads to the
search for orbits satisfying these requirements. *e families
of orbits satisfying such conditions are called “frozen or-
bits” [1–5]. Clearly, the design of such orbits includes the
effects of the perturbing influences that affect the motion of
the satellite. As the present work is interested in low Earth
orbits, only the effect of Earth oblateness is taken into
concern. *ese have been extensively treated in the liter-
ature [6–10].

*is paper is aiming at constructing an atlas of the
balanced low Earth satellite orbits, which fall in the range
from 600 km to 2000 km above sea surface, in the sense that
the variations of the elements are averaged over the fast angle
to keep only long periodic and secular variations that affect
the orbit accumulatively with time. In this paper, a model is
given for the averaged effects (over the mean anomaly) of
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Earth oblateness.*en, the Lagrange planetary equations for
perturbations of the elements are investigated to get sets of
orbital values at which the variations of the elements can be
cancelled simultaneously.

2. Earth Potential

*e actual shape of the Earth is that of an eggplant.*e center
of mass does not lie on the spin axis, and neither the meridian
nor the latitudinal contours are circles. *e net result of this
irregular shape is to produce a variation in the gravitational
acceleration to that predicted using a point mass distribution.
*is variation reaches its maximum value at latitude 45 deg
and approaches zero at latitudes 0 and 90 deg.

*e motion of a particle around the Earth can be visu-
alized best by resolving it into individual motions along the
meridian and the latitudinal contours.*emotion around the
meridian can be thought of as consisting of different periodic
motions called “zonal harmonics.” Similarly, the motion
along a latitudinal contour can be visualized as consisting of
different periodic motions called “tesseral harmonics.” *e
zonal harmonics describe the deviations of a meridian from a
great circle, while the tesseral harmonics describe the devi-
ations of a latitudinal contour from a circle.

At points exterior to the Earth, the mass density is zero,
thus, at external points the gravitational potential satisfies

∇2 V � 0, (1)

where V is a scalar function representing the potential. Also,
the gravitational potential of the Earth must vanish as we
recede to infinitely great distances. With these conditions on
the above equation, the potential V at external points can be
represented in the following form [11]:

V �
− μ
r

􏽘
n≥0

􏽘

n

m�0

R

r
􏼒 􏼓

n

P
m
n (sin δ) Cnm cosmα + Snm sinmα( 􏼁.

(2)

*is expression of the potential is called “Venti poten-
tial,” and it was adopted by the IAU (International Astro-
nomical Union) in 1961. *e terms arising in the above
equation are Cnm and Snm are harmonic coefficients (they are
bounded as is always the case in physical problems), R is the
equatorial radius of the Earth, μ � GM is the Earth’s
gravitational constant, G is the universal constant of gravity,
M is the mass of the Earth, and (r, α, δ) are the geocentric
coordinates of the satellite (Figure 1, [12]) with α measured
east of Greenwich, and Pm

n (sin δ) represents the associated
Legendre polynomials.

*e terms with m� 0 are called “zonal harmonics.”
*e terms with 0<m< n are called “tesseral
harmonics.”
*e terms with m� n are called “sectorial harmonics.”

*e case of axial symmetry is expressed by taking m� 0,
while if equatorial symmetry is assumed, we consider only
even harmonics since P2n+1 (− x)� − P2n+1 (x). Also, the
coefficients C21 and S21 are vanishingly small. Further if the

origin is taken at the center of mass, the coefficients C10, C11,
and S11 will be equal to zero.

Considering axial symmetry, with origin at the center of
mass, we can write

V �
− μ
r

􏽘
n≥0

R

r
􏼒 􏼓

n

Pn(sin δ)Cn0

�
− μ
r

+ 􏽘
n≥2

Jn

Rn

rn+1Pn(sin δ),

(3)

where Jn � − Cn0.
Taking terms up to j4, we can write V in the following

form:

V � 􏽘
4

i�1
Vi, (4)

where

V0 � −
μ
r
,

V1 � 0,

V2 � J2
R2

r3
P2(sin δ) �

1
2
J2

R2

r3
3 sin2 δ − 1􏼐 􏼑,

V3 � J3
R3

r4
P3(sin δ) �

1
2
J3

R3

r4
5 sin3 δ − 3 sin δ􏼐 􏼑,

V4 � J4
R4

r5
P4(sin δ) �

1
8
J4

R4

r5
3 − 30 sin2 δ + 35 sin4 δ􏼐 􏼑.

(5)

It is a purely geometrical transformation to express the
potential function V(r, δ), given by the above equations, as a
function of the Keplerian orbital elements a, e, i, Ω, ω, and I
in their usual meanings (Figure 2, [12]), where a and e are the
semi-major axis and the eccentricity of the orbit, respec-
tively, i is the inclination of the orbit to the Earth’s equatorial
plane, Ω and ω describes the position of the orbit in space
where Ω is the longitude of the ascending node and ω is the
argument of perigee, and finally, l is the mean anomaly to
describe the position of the satellite with respect to the orbit.

*en, V (a, e, i, Ω, ω, I) is in a form suitable to use in
Lagrange’s planetary equations, and in canonical

Right ascension, α

Celestial equator

Satellite
Celestial north pole

Celestial sphere

Earth’s equatorial plane

Intersection of equatorial
and ecliptic planes

r

X

v

Y

K

I

J

Z

Vernal equinox, γ

Declination, δ



Figure 1: Geocentric coordinates of the satellite.
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perturbations methods through the relation. From the
spherical trigonometry of the celestial sphere, we have

sin δ � Si sin(f + ω), (6)

where f is the true anomaly,ω is the argument of perigee, and
Si� sin i, Ci� cos i.

Substituting for δ, in Pn (sin δ), we get

P2(sin δ) �
1
2

3Si
2 sin2(f + g) − 1􏽮 􏽯

�
1
4

1 − 3Ci
2

􏼐 􏼑 − 3Si
2 cos(2g + 2f)􏽮 􏽯,

P3(sin δ) �
1
2

5Si
3 sin3(g + f) − 3Si sin(f + g)􏽮 􏽯

�
1
8

15Si
3

− 12Si􏼐 􏼑sin(f + g) − 5Si
3 sin(3f + 3g)􏽮 􏽯,

P4(sin δ) �
1
8

3 − 30Si
2 sin2(g + f) + 35Si

4 sin4(g + f)􏽮 􏽯

�
1
64

9 − 90Ci
2

+ 105Ci
4

􏼐 􏼑􏽮

+ − 20 + 160Ci
2

− 140Ci
4

􏼐 􏼑cos(2f + 2g)

+ 35Si
4 cos(4f + 4g)􏽯.

(7)

*us, we get V2, V3, and V4 as functions of the orbital
elements.

We now proceed to evaluate the effects of Earth ob-
lateness, considering the geopotential up to the zonal har-
monic J4.

In the present solution, we consider only the secular and
long periodic terms, averaging over the mean anomaly l.

2.1. %e Disturbing Function. *e disturbing function R is
defined as follows:

R � − V2 + V3 + V4( 􏼁, (8)

where V2, V3, and V4 are the 2nd, 3rd, and 4th terms of the
geopotential, namely

V2 �
μj2R

2

4r3
1 − 3Ci

2
􏼐 􏼑 − 3Si

2 cos(2f + 2ω)􏽨 􏽩,

V3 �
μj3R

3

8r4
15Si

3
− 12Si􏼐 􏼑sin(f + ω) − 5Si

3 sin(3f + 3ω)􏽨 􏽩,

V4 �
μj4R

4

64r5
9 − 90Ci

2
+ 105Ci

4
􏼐 􏼑􏽨

+ − 20 + 160Ci
2

− 140Ci
4

􏼐 􏼑cos(2f + 2ω)

+ 35Si
4 cos(4f + 4ω),

(9)

where Ci � cos(i), Si � sin(i), and f is the true anomaly.
Since terms depending only on the fast variable l will not

affect the orbit in an accumulating way with time, we average
the perturbing function R over the mean anomaly with its
period 2π. *e average function is defined by

〈F(l)〉 �
1
2π

􏽚
2π

0
F(l)dl. (10)

As the perturbing function R is a function of the true
anomaly f not the mean anomaly l, we use the relation

dl �
1

�����
1 − e2

√
r

a
􏼒 􏼓

2
df, (11)

where both angles have the same period and the same end points
0 and 2π, and therefore the average function will be given by

〈F(f)〉 �
1

2π
�����
1 − e2

√ 􏽚
2π

0

r

a
􏼒 􏼓

2
F(f)df. (12)

Applying the required integrals, we get the averaged
disturbing function 〈R〉

〈R〉 � − 〈V2〉l +〈V3〉l +〈V4〉l􏼂 􏼃, (13)

where

〈V2〉l �
μj2R

2

4a3 1 − e
2

􏼐 􏼑
− (3/2)

1 − 3Ci
2

􏼐 􏼑,

〈V3〉l �
μj3R

3

8a4 e 1 − e
2

􏼐 􏼑
− (5/2)

15Si
3

− 12Si􏼐 􏼑sin(ω),

〈V4〉l �
μj4R

4

64a5 1 − e
2

􏼐 􏼑
− (7/2)

1 +
3e2

2
􏼠 􏼡 9 − 90Ci

2
+ 105Ci

4
􏼐 􏼑

+
3μj4R

4

256a5 e
2 1 − e

2
􏼐 􏼑

− (7/2)
− 20 + 160Ci

2
− 140Ci

4
􏼐 􏼑cos(2ω).

(14)

2.2. Lagrange Equations for the Averaged Variations of the
Elements. *e Lagrange planetary equations for the varia-
tions of the elements for a disturbing potential R are as
follows [13]:

Ω

ω

i

i

r

fv

Y

Z

Node line N

Ascending node

Satellite
Perigee

Earth’s north polar axis

Earth’s equatorial plane

J

I

X
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e

γ

Figure 2: Keplerian orbital elements of the satellite.
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_a �
2

na

zR

zl
,

_e �
−

�����
1 − e2

√

na2e

zR

zω
+
1 − e2

na2e

zR

zl
,

_i �
− 1

na2Si
�����
1 − e2

√
zR

zh
+

cot(i)

na2
�����
1 − e2

√
zR

zω
,

_Ω �
1

na2Si
�����
1 − e2

√
zR

zi
,

_ω �

�����
1 − e2

√

na2e

zR

ze
− Ci _Ω,

_l � n −
2

na

zR

za
􏼠 􏼡

n

−
1 − e2

na2e

zR

ze
,

(15)

where n is the mean motion given by n �
����
μ/a3

􏽰
.

Substituting for the averaged disturbing function 〈R〉

due to Earth oblateness, the Lagrange equations become

_a � 0, (16)

_e �
−

�����
1 − e2

√

na2e

z〈R〉

zω
, (17)

_i �
− 1

na2Si
�����
1 − e2

√
z〈R〉

zΩ
+

cot(i)

na2
�����
1 − e2

√
z〈R〉

zω
, (18)

_Ω �
1

na2Si
�����
1 − e2

√
z〈R〉

zi
, (19)

_ω �

�����
1 − e2

√

na2e

z〈R〉

ze
− Ci _Ω, (20)

where the equation for l is neglected because we concentrate
on balancing the orbit position not the satellite motion in the
orbit.

2.3. Variations of the Elements due to Earth Oblateness.
Substituting for the required derivatives in equations (16) to
(20) yields

_e �
3 ��μ√

j3R
3

2a9/2 1 − e
2

􏼐 􏼑
− 2 5

4
Si

2
− 1􏼒 􏼓Si cos(ω)

−
15 ��μ√

j4R
4

32a11/2 e 1 − e
2

􏼐 􏼑
− 3

− 1 + 8Ci
2

− 7Ci
4

􏼐 􏼑sin(2ω).

(21)

Defining

η � 1 − e
2

􏼐 􏼑,

c1 �
3j3

2
,

F1i �
5
4

Si
2

− 1􏼒 􏼓Si,

c2 �
15j4

32
,

F2i � − 1 + 8Ci
2

− 7Ci
4

􏼐 􏼑,

(22)

We get

_e �

��μ√
R4

η3a11/2 c1η
a

R
F1iCos(ω) − c2eF2i sin(2ω)􏼒 􏼓,

_i �
cot(i)

n

3μj3R
3

2a6 e 1 − e
2

􏼐 􏼑
− 3 5

4
Si

2
− 1􏼒 􏼓Si cos(ω)􏼨

−
15μj4R

4

16a7 e
2 1 − e

2
􏼐 􏼑

− 4
− 1 + 8Ci

2
− 7Ci

4
􏼐 􏼑sin(2ω)􏼩,

(23)

or

_i � −
e cot(i)

η
_e,

_Ω �
− Ci

n

3μj2R
2

2a5 1 − e
2

􏼐 􏼑
− 2

􏼨

+
μj3R

3

8a6 e 1 − e
2

􏼐 􏼑
− 3

45Si −
12
Si

􏼒 􏼓sin(ω)

+
15μj4R

4

16a7 1 − e
2

􏼐 􏼑
− 4

1 +
3e2

2
􏼠 􏼡 3 − 7Ci

2
􏼐 􏼑􏼢

+ e
2

− 4 + 7Ci
2

􏼐 􏼑cos(2ω)􏼣􏼩.

(24)

Defining

c3 �
3j2
2

,

c4 �
3j3

8
,

c5 �
15j4

16
,

F3i � 15Si −
4
Si

,

F4i � 3 − 7Ci
2
,

F5i � − 4 + 7Ci
2
.

(25)

We get
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_Ω �
− Ci

��μ√
R4

η4a11/2 c3
a

R
􏼒 􏼓

2
η2 + c4

a

R
eηF3i sin(ω)􏼨

+ c5 1 +
3e2

2
􏼠 􏼡F4i + e

2
F5i cos(2ω)􏼢 􏼣􏼩,

(26)

_ω � − Ci _Ω −
3μj2R

2

4na5 1 − e
2

􏼐 􏼑
− 2

1 − 3Ci
2

􏼐 􏼑

−
3μj3R

3

2na6e
1 + 4e

2
􏼐 􏼑 1 − e

2
􏼐 􏼑

− 3 5
4

Si
2

− 1􏼒 􏼓Si sin(ω)

−
15μj4R

4

32na7 1 − e
2

􏼐 􏼑
− 4

1 +
3e2

4
􏼠 􏼡 3 − 30Ci

2
+ 35Ci

4
􏼐 􏼑􏼢

+ 1 +
5
2
e
2

􏼒 􏼓 − 1 + 8Ci
2

− 7Ci
4

􏼐 􏼑cos(2ω)􏼣.

(27)

Defining as in equation (28), we get equation (29):

c6 �
3j2

4
,

F6i � 1 − 3Ci
2

􏼐 􏼑,

F7i � 3 − 30Ci
2

+ 35Ci
4
,

(28)

_ω � −

��μ√
R4

η4a11/2 c6
a

R
􏼒 􏼓

2
η2F6i + c1

a

R
1 + 4e

2
􏼐 􏼑

η
e
F1i sin(ω)􏼢

+ c2 1 +
3e2

4
􏼠 􏼡F7i + 1 +

5
2
e
2

􏼒 􏼓F2i cos(2ω)􏼠 􏼡􏼣 − Ci _Ω.

(29)

Equations (22)–(29) give the average effects of Earth
oblateness including the zonal harmonics of the geopotential
up to J4 on the Keplerian elements of the satellite orbit.

3. Balanced Low Earth Satellite Orbits

In what follows, we try to find orbits that are balanced in the
sense that the averaged (over the fast variable l) variations of
the orbit elements are set equal to zero. In equation (23), we
put it equal to zero and get a relation between the argument
of perigee ω and the inclination i, while treating the ec-
centricity e and the semi-major axis a as parameters. *is
will give a range of values for ω and i at different values of e
and a, which are all give balanced orbits with respect to both
the eccentricity e and the inclination i.*e same is done with
equations (26) and (29), while putting _Ω� 0 and _ω� 0.

*e applicable ranges for this model of the semi-major
axis a are 1.1R≤ a≤ 1.3R, where the range 1.4R–2R is
avoided due to the predominance of the radiation belts at
these levels, to avoid the damages of the equipment that it
may produce, besides its fatal effects on human life (for
inhabited spacecrafts). *e values for the eccentricity e are
taken between 0.01 (almost circular orbit) and 0.5.

3.1. Orbits with Fixed Eccentricity and Inclination. By
equating the variation of e by zero, we get

_e �

��μ√
R4

η3a11/2 c1
a

R
ηF1i cos(ω) + c2eF2i sin(2ω)􏼒 􏼓 � 0. (30)

*is implies

c1
a

R
ηF1i cos(ω) + c2eF2i sin(2ω) � 0. (31)

So either cos(ω) � 0 or

sin(ω) �
a 1 − e2( 􏼁

eR
C1F(i), (32)

where

C1 �
8J3

5J4
,

F(i) �
1 − (5/4)sin2(i)( 􏼁sin(i)

1 − 8cos2(i) + 7cos4(i)
.

(33)

Equations (32) and (33) give the family of low orbits that
have both the eccentricity and the inclination fixed.

*e condition for the existence of such orbits is clearly
that

− 1≤ sin(ω)≤ 1, (34)

which is guaranteed by

− 1≤
a 1 − e2( 􏼁

eR
C1F(i)≤ 1. (35)

We put it as a condition on the eccentricity i only when

− eR

C1a 1 − e2( )
≤F(i)≤

eR

C1a 1 − e2( )
. (36)

3.2. Orbits with Fixed Node. *e families of orbits for which
dΩ/dt� 0 (i.e with fixed nodes) are obtained from

− Ci
��μ√

R4

η4a11/2 c3
a

R
􏼒 􏼓

2
η2 + c4

a

R
eηF3i sin(ω)􏼨

+ c5 1 +
3e2

2
􏼠 􏼡F4i + e

2
F5i cos(2ω)􏼢 􏼣􏼩 � 0.

(37)

*is implies

c3
a

R
􏼒 􏼓

2
η2 + c4

a

R
eηF3i sin(ω)

+ c5 1 +
3e2

2
􏼠 􏼡F4i + e

2
F5i 1 − 2sin2(ω)􏼐 􏼑􏼢 􏼣 � 0.

(38)
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Table 1: Real values of i (in degree) corresponding to the given values of F(i).

F(i) i1 180 − i1 i2 − 180 − i2
0.01 63.63 116.37 − 63.22 − 116.78
0.05 64.27 115.73 − 62.11 − 117.89
0.10 64.84 115.16 − 59.76 − 120.24
0.15 65.25 114.75 − 55.14 − 124.86
0.20 65.56 114.44 − 47.16 − 132.84

0.1 0.2 0.3 0.4 0.5

e

F (i) = 0.01

ω

π

3π/4

π/2

π/4

0

Figure 3: *e curve ω(e) at which _e � _i � 0 for F(i)� 0.01.
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Figure 4: Curves of _Ω and _ω with e for the 4 cases corresponding to F(i)� 0.01. (a) i � 63.63, (b) i � − 63.22, (c) i � 116.37, and (d) i � 116.78.
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*is can be arranged as a second order equation
for sin(ω), giving a family of orbits with fixed argument
of perigee for different values of ω as a function of
the inclination i, the semi-major axis a, and the eccen-
tricity e.

− 2c5e
2
F5isin

2
(ω) + c4

a

R
eηF3i sin(ω)

+ c3
a

R
􏼒 􏼓

2
η2 + c5 1 +

3e2

2
􏼠 􏼡F4i + e

2
F5i􏼢 􏼣 � 0.

(39)

e

F (i) = 0.05

ω

π

3π/4

π/2

π/4

0
0.1 0.2 0.3 0.4 0.5

Figure 5: *e curve ω(e) at which _e � _i � 0 for F(i)� 0.05.

se
c–1

0.1 0.2 0.3 0.4 0.5

Ω·

ω·

e

–2.0 × 10–7

–4.0 × 10–7

–6.0 × 10–7

–8.0 × 10–7

–1.0 × 10–6

(a)

se
c–1

0.1 0.2 0.3 0.4 0.5

Ω·

ω·

–2.0 × 10–7

–4.0 × 10–7

–6.0 × 10–7

–8.0 × 10–7

–1.0 × 10–6

–1.2 × 10–6

e

(b)

se
c–1

Ω·

ω·

–1.0 × 10–6

–8.0 × 10–7

–6.0 × 10–7

–4.0 × 10–7

–2.0 × 10–7

0.1 0.2 0.3 0.4 0.5
e

(c)

se
c–1

0.1 0.2 0.3 0.4 0.5

Ω·

ω·

1.2 × 10–6

1.0 × 10–6

8.0 × 10–7

6.0 × 10–7

4.0 × 10–7

2.0 × 10–7

e

(d)

Figure 6: Curves of _Ω and _ωwith e for the 4 cases corresponding to F(i)� 0.05. (a) i � 64.27, (b) i � − 62.11, (c) i � 115.73, and (d) i � − 117.89.
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When solving for sin(ω), we get the family of orbits for
which the longitude of the node is balanced,

sin(ω) �
2c4zF3i ±

������������������������������������������
4c24z

2F2
3i + 16c5F5i 2c3z

2 + c5F4i 2 + 3e2( ) + 2c5e
2F5i(

􏽱

8c5eF5i

, (40)

F (i) = 0.1

ω

π

3π/4

π/2

π/4

0

e

0.1 0.2 0.3 0.4 0.5

Figure 7: *e curve ω(e) at which _e � _i � 0 for F(i)� 0.01.
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Figure 8: Curves of _Ω and _ω with e for the 4 cases corresponding to F(i)� 0.1. (a) i � − 59.76, (b) i � 64.84, (c) i � − 120.24, and (d) i � 115.16.
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where

z �
a

R
η. (41)

*e condition for having the orbit if real solution exists is
again that − 1≤ sin(ω)≤ 1, which gives

− 1≤
2c3z

2 + 2 + 3e2( 􏼁c5F4i + 2e2 c5 − 1( 􏼁F5i

c4ezF3i

≤ 1, F5i, F3i ≠ 0.

(42)

3.3.Orbitswith FixedPerigee. For the argument of perigee to
balance, we solve _ω � 0.We substitute from equation (26)
into equation (29) then expand cos(2ω) and collect terms
with respect to sin(ω). We get

_ω � A sin2(ω) + B sin(ω) + C. (43)

*us for _ω � 0, we get

sin(ω) �
− B ±

��������
B2 − 4AC

√

2A
, (44)
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Figure 9: *e curve ω(e) at which _e � _i � 0 for F(i)� 0.15.
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Figure 10: Curves of _Ω and _ω with e for the 4 cases corresponding to F(i)� 0.15. (a) i � − 55.14, (b) i � 65.25, (c) i � − 124.86, and (d) i � 114.75.
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where

A � − 2c5e
2
F5cos

2
(i) + 2c2 1 +

5
2
e
2

􏼒 􏼓F2, (45)

B � c4ezF3cos
2
(i) − c1z 4e +

1
e

􏼒 􏼓F1, (46)

C � cos2(i) c3z
2

+ c5 e
2
F5 + 1 +

3e2

2
􏼠 􏼡F4􏼠 􏼡􏼠 􏼡

− c6z
2
F6 − c2 1 +

3e2

4
􏼠 􏼡F7 + 1 +

5e2

2
􏼠 􏼡􏼠 􏼡F2􏼠 􏼡.

(47)
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Figure 11: *e curve ω(e) at which _e � _i � 0 for F(i)� 0.2.
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Figure 12: Curves of _Ω and _ωwith e for the 4 cases corresponding to F(i)� 0.2. (a) i � − 47.16, (b) i � 65.56, (c) i � − 132.84, and (d) i � 114.44.
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Equations (44)–(47) give the relation between sin(ω) and
the inclination i, the semi-major axis a, and the eccentricity
e, which gives the family of orbits that balance the argument
of perigee ω, subject of course to the restriction that sin(ω) is
a real value between − 1 and 1.

4. Numerical Results

In this section, numerical results and graphs are obtained for
the case of seasat a� 7100 km by putting ω as a function of e
and i from equations (32) and (33). *e curves are plotted
within the possible range given by condition (36) to give curves
of balanced e and i.*e curves are against the eccentricity e in
the range [0.01, 0.5]. *e numerical values involved are
J2� 0.001082645, J3� − 0.000002546, J4� − 0.000001649, R�

6378.165km, α� 7100m, and μ� 398600.5 km3sec− 2.
*e condition (36) gives the upper and lower bounds of

the function F(i) as a function of e, and since the function
eR/(C1a(1 − e2)) is increasing with e and has no critical
points in the interval [0.01, 0.5], then the minimum value
occurs at e� 0.01 and the maximum at e� 0.5, which gives
− 0.24≤F(i)≤ 0.24. *e graphs are plotted for different
values of F(i), which corresponds to specific values of i found
by solving the equation resulting from setting F(i) equal to
the required values. After that we plot _Ω� 0 and _ω� 0 si-
multaneously for the same values of F(i) at each specific i-
value, to find the orbit values at which we have nearest values
for _Ω� 0 and _ω� 0. In the graphs of _Ω and _ω, the relation
(32) was kept to ensure that e and i are already balanced.

Five selected values of F(i) are chosen: F(i)� 0.01, 0.5,
0.10, 0.15, and 0.20. Negative values will give the same results
with negative sign since F(i) is odd with respect to i. Also for
each value, the solution of F(i)� x, with x equals one of the
above values we get four real values of i on the form: i1,
180 − i1, i2, and − 180 − i2, where i1 and i2 are near the critical
inclination one of them is positive and the other is negative.
Table 1 gives the values of i corresponding to the selected
values of F(i).

We note that as F(i) increases, i gets away from the
critical inclination, and the curve gets shorter indicating less
stability of ω as expected.

*e graphs are plotted for each value of F(i) first for the
balanced values of e and i, then for the corresponding four
values of i, four graphs are plotted for _Ω and _ω to find the
nearest values of zero variation for both elements.

Figures 3–12 show the possibility of balancing ω with e
and i, while Ω will have a variation of order 10− 6/sec or it
must be balanced alone at i� 90 deg (as shown in equation
(26)), according to the orbit kind. Figures 3, 5, 7, 9, and 11
show the possible values of ω(e) that balance e and i, while
Figures 4, 6, 8, 10, and 12 show the curves of _Ω and _ω at the
values of i at which _e � _i � 0.

5. Conclusion

Let balanced orbits be defined as those for which the orbital
elements are set equal to zero under the effect of secular and
long periodic perturbations. In this work, the effect of Earth
oblateness is the considered perturbing force because of

dealing with low Earth orbits. *e above analysis then shows
that such an orbit will be balanced within a reliable tolerance
only for few weeks since we are forced to accept the motion
of either the node or the perigee by about 10− 6 deg/sec. *e
reason is that under the influence of the Earth oblateness,
_Ω � 0 (exactly) for i � (π/2), while _ω � 0 only near the
critical inclination ic � 63.4 deg. Hence, the best procedure is
to design a satellite constellation for which the nodal shifts
due to the perturbative effects and Earth rotation are
modeled to yield continuous coverage. *e perigees are
either fixed or arranged to realize that the perigee (or the
apogee) be overhead the coverage region (regions) in due
times. *is may require near commensurability with the
admitted nodal periods.
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orbits at high eccentricity and inclination: application to
mercury orbiter,” Celestial Mechanics and Dynamical As-
tronomy, vol. 108, no. 3, pp. 275–300, 2010.

[2] E. Condoleo, M. Cinelli, E. Ortore, and C. Circi, “Stable orbits
for lunar landing assistance,” Advances in Space Research,
vol. 60, no. 7, pp. 1404–1412, 2017.

[3] A. Elipe andM. Lara, “Frozen orbits about the moon,” Journal
of Guidance, Control, and Dynamics, vol. 26, no. 2, pp. 238–
243, 2003.

[4] C. Circi, E. Condoleo, and E. Ortore, “A vectorial approach to
determine frozen orbital conditions,” Celestial Mechanics and
Dynamical Astronomy, vol. 128, no. 2-3, pp. 361–382, 2017.

[5] E. Condoleo, M. Cinelli, E. Ortore, and C. Circi, “Frozen
orbits with equatorial perturbing bodies: the case of Gany-
mede, Callisto, and Titan,” Journal of Guidance, Control, and
Dynamics, vol. 39, no. 10, pp. 2264–2272, 2016.

[6] V. Kudielka, “Balanced earth satellite orbits,” Celestial Me-
chanics & Dynamical Astronomy, vol. 60, no. 4, pp. 455–470,
1994.

[7] S. L. Coffey, A. Deprit, and E. Deprit, “Frozen orbits for
satellites close to an earth-like planet,” Celestial Mechanics &
Dynamical Astronomy, vol. 59, no. 1, pp. 37–72, 1994.

[8] M. Lara, A. Deprit, and A. Elipe, “Numerical continuation of
families of frozen orbits in the zonal problem of artificial
satellite theory,” Celestial Mechanics & Dynamical Astronomy,
vol. 62, no. 2, pp. 167–181, 1995.

[9] D. Brouwer, “Solution of the problem of artificial satellite
theory without drag,” %e Astronomical Journal, vol. 64,
p. 378, 1959.

Advances in Astronomy 11



[10] Y. Kozai, “*e motion of a close earth satellite,” %e Astro-
nomical Journal, vol. 64, p. 367, 1959.

[11] P. M. Fitzpatrick, Principles of Celestial Mechanics, Academic
Press, Cambridge, MA, USA, 1970.

[12] H. D. Curtis, Orbital Mechanics for Engineering Students,
Elsevier, Amsterdam, Netherlands, 2005.

[13] D. Brower and G. M. Clemence, Methods of Celestial Me-
chanics, Academic Press, Cambridge, MA, USA, 1961.

12 Advances in Astronomy



Research Article
Central Configurations and Action Minimizing Orbits in Kite
Four-Body Problem

B. Benhammouda ,1 A. Mansur ,1 M. Shoaib ,1 I. Szücs-Csillik ,2 and D. Offin 3
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In the current article, we study the kite four-body problems with the goal of identifying global regions in the mass parameter space
which admits a corresponding central configuration of the four masses. We consider two different types of symmetrical
configurations. In each of the two cases, the existence of a continuous family of central configurations for positivemasses is shown.
We address the dynamical aspect of periodic solutions in the settings considered and show that the minimizers of the classical
action functional restricted to the homographic solutions are the Keplerian elliptical solutions. Finally, we provide numerical
explorations via Poincaré cross-sections, to show the existence of periodic and quasiperiodic solutions within the broader
dynamical context of the four-body problem.

1. Introduction

To understand the dynamics presented by a total collision of
the masses or the equilibrium state of a rotating system, we
are led to the concept of central configurations. A config-
uration of n bodies is central if the acceleration of each body
is a scalar multiple of its position [1–4]. Let ri ∈ R2 and
mi, i � 1, . . . , n, denote the position and the mass of the ith
body, respectively. Also, let rij � ‖ri − rj‖ represent the
distance between the ith and jth bodies. An n-body system
forms a planar noncollinear central configuration [5, 6] if

fij � 􏽘
n− 1

k�0,k≠i,j
mk Rik − Rjk􏼐 􏼑Δijk � 0, (1)

where Rij � r− 3
ij and Δijk � (ri − rj)∧(ri − rk) represent the

area of the triangle determined by the sides ‖ri − rj‖ and
‖ri − rk‖.

*e four-body problem can be considered from two
different perspectives. *e perturbative approach where we
study the dynamical aspects as a perturbation of the three-

body dynamics and assume that one of the masses is van-
ishingly small, or the global approach where we allow the
masses to vary independently and stay positive. In this paper,
we take the global approach and will study analytically the
problem of central configurations and their dynamical
aspects.

*e computation of central configurations is a difficult
problem for n≥ 4. To overcome this difficulty, symmetries or
other restriction methods are used to reduce the number of
variables and obtain partial answers; see, for example, Cors
and Roberts [7]; Albouy et al. [8]; Shoaib et al. [9]; Érdi and
Czirják [10]. In this paper, we consider a four-body problem
with one axis of symmetry so that the four different masses
make a convex or concave kite.

Since the classification of central configurations as one of
the problems for the 21st century by Smale [11], it has attracted
a lot of attention in recent years and has helped in the un-
derstanding of the n-body problem [12–23]. Ji et al. [24] and
Waldvogel [25] study a rhomboidal four-body problem with
two pairs of masses and use Poincaré sections to find regions of
stability for the rhomboidal four-body problem. In addition,

Hindawi
Advances in Astronomy
Volume 2020, Article ID 5263750, 18 pages
https://doi.org/10.1155/2020/5263750

mailto:offind@queensu.ca
https://orcid.org/0000-0002-3334-4278
https://orcid.org/0000-0002-9901-2444
https://orcid.org/0000-0003-1644-1559
https://orcid.org/0000-0002-8618-1484
https://orcid.org/0000-0002-2860-5357
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5263750


Waldvogel [25] also takes advantage of the simplicity of the
equations and study its collisions and escape manifolds. Yan
[26] considers the same problem for four equal masses and
studies the linear stability of its periodic orbits. One of our
results will consider the same model but with only one pair of
masses. We will analytically derive regions of central config-
urations and will also investigate the existence of periodic
orbits. Mello and Fernandez [27] prove the existence of kite
central configurations for four- and five-body problems on a
circle. In one special case, our rhomboidal model is similar to
their model for which we also identify a number of periodic
orbits and discuss its action minimizing orbits. Gordon [28]
has proved that the elliptic Keplerian orbit minimizes the
Lagrangian action of the two-body problem with periodic
boundary conditions. It is also known that the Eulerian and
Lagrangian elliptical solutions for the planar three-body
problem are the variational minimizers of the Lagrangian
action functional [29, 30]. In the study by Mansur and Offin
[31]; Mansur et al. [32]; Mansur et al. [33], the authors have
extended these ideas to prove that the homographic solutions
to the constrained parallelogram four-body problem are the
variational minimizers of the Lagrangian action functional. In
this paper, we prove that the minimizers for the action
functional restricted to the homographic solutions are the
Keplerian elliptical solutions for the four-body problem with
three equal and unequal masses. Perez-Chavela and Santoprete
[13] show the existence of kite central configurations for a pair
of symmetric masses and show that such a configuration must
always possess a symmetry. Similarly, Celli [34] proves the
existence of planar diamond and trapezoidal central configu-
rations for two pairs of equal masses. Corbera and Llibre [35]
give a complete classification of the same problem and show
that this setup has exactly 34 different classes of central
configurations.

More recently, Deng et al. [36] and Corbera et al. [37]
prove that any four-body setup with perpendicular diagonals
must be a kite [35, 38]. Santoprete [39] studies a four-body
problem with a pair of equal masses and a pair of parallel
opposite sides and show that if the opposite masses are equal,
then the four-body arrangement must have a line of sym-
metry and will be a kite.

*e paper is organized as follows: Section 2 discusses the
equations of motion for the four-body problem. Section 3
discusses the existence of central configurations and the
action minimizing orbits for the four-body problem where
three masses are equal and arranged at vertices of an
isosceles triangle and the fourth mass is on the axis of
symmetry. In Section 4, we discuss the variational tech-
niques where the action functional corresponding to these
family of solutions is shown to be a minimizer. Section 5
discusses the existence of central configurations and the
action minimizing orbits for the four-body problem where
two symmetric masses are equal on the horizontal axis and
two nonequal masses are on the vertical axis.

2. Equations of Motion

Consider four positive point masses m0, m1, m2, and m3
having position vectors ri and interbody distances rij. For a

general four-body setup, equation (1) gives the following six
central configuration equations when n � 4:

f01 � m2 R02 − R12( 􏼁Δ012 + m3 R03 − R13( 􏼁Δ013 � 0,

f02 � m1 R01 − R21( 􏼁Δ021 + m3 R03 − R23( 􏼁Δ023 � 0,

f03 � m1 R01 − R31( 􏼁Δ031 + m2 R02 − R32( 􏼁Δ032 � 0,

f12 � m0 R10 − R20( 􏼁Δ120 + m3 R13 − R23( 􏼁Δ123 � 0,

f13 � m0 R10 − R30( 􏼁Δ130 + m2 R12 − R32( 􏼁Δ132 � 0,

f23 � m0 R20 − R30( 􏼁Δ230 + m1 R21 − R31( 􏼁Δ231 � 0.

(2)

Lemma 1. Consider a four-body problem with masses m0,
m1, m2, and m3 and position vectors r0 � (0, c),
r1 � (− 1, − a), r2 � (0, b), and r3 � (1, − a), where a> 0 and
b> c, then

(a) .e symmetric masses m1 and m3 are equal.
(b) .e central configuration equations are

f01 � m1 R03 − R13( 􏼁Δ013 + m2 R02 − R12( 􏼁Δ012,

f12 � m0 R10 − R20( 􏼁Δ120 + m1 R13 − R23( 􏼁Δ123.
(3)

Proof. Consider four positive masses m0, m1, m2, and m3
with position vectors r0 � (0, c), r1 � (− 1, − a), r2 � (0, b),
and r3 � (1, − a), where a> 0 and b> c. Using the definitions
of Rij, Δijk, and ri(i � 0, 1, 2, 3, 4), we obtain

R01 � R03 � R30 �
1

(a + c)2 + 1􏼐 􏼑
3/2,

R13 �
1
8
,

R02 �
1

(b − c)3
,

R12 � R21 � R32 �
1

(a + b)2 + 1􏼐 􏼑
3/2,

(4)

with

Δijk � − Δjik � − Δikj � − Δkji,

Δijk � Δjki � Δkij,

Δijk � 0, if i � j or i � k or j � k,

Δ012 � Δ023 � c − b,

Δ013 � 2(a + c),

Δ123 � − 2(a + b).

(5)

Using the symmetry of the problem and the relations (4)
and (5), it is trivial to see that

f02 � m1 − m3( 􏼁 R01 − R21( 􏼁Δ021 � 0. (6)

Since Δ021 ≠ 0 and R21 ≠R01, therefore m3 � m1. *is
completes the proof of Lemma 1 (a).

2 Advances in Astronomy



From the geometry of the problem, Δm1m0m3 and
Δm1m2m3 are both isosceles, and therefore R01 � R03,
R12 � R32, and Δ032 � Δ012 and hence f03 � f01. *is also
implies that f13 ≡ 0. By a similar argument, it can be shown
that f23 � f12. *is leaves two independent equations f01
and f12 from the set of equations given in (2). *is com-
pletes the proof of Lemma 1.

3. Three Equal Masses at the Vertices of a
Triangle and a Fourth Mass on the
Axis of Symmetry

In this section, we consider a four-body problemwhere three
equal masses (m1 � m2 � m3) are arranged at the vertices of
an isosceles triangle and a fourth mass m0 is on the axis of
symmetry as shown in Figure 1. We start by showing the
existence of central configuration for a concave kite four-
body problem and then explicitly find regions where such a
configuration exists for positive masses. We also discuss the
action minimizing orbits for this particular problem.

3.1. Central Configurations

Theorem 1. Consider four point masses m0 and m1 � m2 �

m3 having position vectors r0 � (0, 0), r1 � (− 1, − a),
r2 � (0, b), and r3 � (1, − a), where a> 0 and b> 0. .en,
there exists a unique mass ratio μ0(a, b):

μ0 �
m0

m1

�
(a + b)2 + 1􏼐 􏼑

3/2
− 8􏼒 􏼓(a + b)b2 a2 + 1( 􏼁

3/2

4 a2 + 1( )
3/2

− b3􏼐 􏼑 (a + b)2 + 1􏼐 􏼑
3/2 ,

(7)

such that r � (r0, r1, r2, r3) is a central configuration for
μ0 > 0 in Rμ0(a, b) subject to the constraint g(a, b) � 0. .e
region Rμ0(a, b) and the constraint g(a, b) are given below:

Rμ0(a, b) � (a, b) |
2
�
3

√ < b<
�
3

√
∧ 0< a<

�
3

√
− b∨ a >

�����
b2 − 1

√
􏼐 􏼑􏼠 􏼡∨ b≥

�
3

√
∧a>

�����
b2 − 1

√
􏼐 􏼑􏼨 􏼩,

g(a, b) � − b
1
b3

−
1
α

􏼒 􏼓 + 2a −
1
8

+
1
β

􏼠 􏼡 � 0,

(8)

where α � ((a + b)2 + 1)3/2 and β � (a2 + 1)3/2.
Before we attempt to prove Theorem 1, we will need help

from the following lemmas.

Lemma 2. .e function g defined by (8) is negative for all
0< a<

�
3

√
and 0< b≤B � (2/

�
3

√
)((3/7) + (2

�
3

√
/7))1/4 ≃

1.13.

Proof. Let 0< a<
�
3

√
and 0< b≤B, then we have

g(a, b)

b
�
1
α

+
2a

b

1
β

􏼠 􏼡 −
4 + ab2

4b3
. (9)

Consider the equation of the straight line segment that
lies in the first quadrant:

x +
2a

b
y −

4 + ab2

4b3
� 0. (10)

For positive x and y,

x +
2a

b
y −

4 + ab2

4b3
< 0, (11)

is equivalent to

x<
4 + ab2

4b3
,

y<
4 + ab2

8ab2
.

(12)

To prove that g(a, b)b− 1 < 0, we need to show that
1
α
<
4 + ab2

4b3
,

1
β
<
4 + ab2

8ab2
.

(13)

For (1/α)< (4 + ab2/4b3), it is trivial to see that

1
α

�
1

1 +(a + b)2􏼐 􏼑
3/2 <

1
b3
<
4 + ab2

4b3
. (14)

Similarly, to show that (1/β)< (4 + ab2/8ab2), we need

m1 (–1, –a) m1 = m3 (1, –a)

r13

r03

r01

r02r12 r23

m1 = m2 (0, b)

m0 (0, 0)

Figure 1: Concave kite four-body configurations with three equal
masses m1 � m2 � m3.
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β>
8ab2

4 + ab2
, (15)

or 1 + a
2

􏼐 􏼑
3
>

8ab2

4 + ab2
􏼠 􏼡

2

. (16)

Inequality (16) is equivalent to

1 + a
2

􏼐 􏼑
3
4 + ab

2
􏼐 􏼑

2
− 64a

2
b
4 > 0. (17)

Expanding the left-hand side of (17), we obtain the
following:

p(a, b) � b
4
a
8

+ 8b
2
a
7

+ 16 + 3b
4

􏼐 􏼑a
6

+ 24b
2
a
5

+ 48 + 3b
4

􏼐 􏼑a
4

+ 24b
2
a
3

+ 48 − 63b
4

􏼐 􏼑a
2

+ 8b
2
a + 16.

(18)

For positive a and b,

p(a, b)> 48a
4

+ 48 − 63b
4

􏼐 􏼑a
2

+ 16,

≥ 48a
4

+ 48 − 63B
4

􏼐 􏼑a
2

+ 16,

� 48 a
2

−
1
�
3

√􏼠 􏼡

2

≥ 0.

(19)

Consequently, g(a, b)< 0 for 0< a<
�
3

√
and 0< b≤B.

*is completes the proof of Lemma 2.

Lemma 3. .e partial derivative of g defined by (3) satisfies
gb(a, b)> (3/α2), for all a> 0 and b> 0.

Proof. For positive a and b, we have

gb(a, b) �
2
b3

+
α − bαb

α2
,

�
2
b3

+
α − 3b(a + b)c

α2
,

(20)

where c � (1 + (a + b)2)1/2 and αb is the derivative of α
w.r.t. b.

Since b3 < α for all a> 0 and b> 0, then

gb(a, b)>
2
α

+
α − 3b(a + b)c

α2
. (21)

Using the fact that α � c3 and c2 � 1 + (a + b)2, we get

gb(a, b)>
3

����������

1 +(a + b)2
􏽱

1 + a2 + ab( 􏼁

c6 . (22)

Since a and b are positive, therefore

gb(a, b)>
3
α2

. (23)

*is completes the proof of Lemma 3.

Remark 1. Numerically, it is easy to show that g(a, 2) � 0
when a � 0.14 and a � 1.32. For a ∈ I � (0.14, 1.32),
g(a, 1)< 0 and g(a, 2)> 0, when a ∈ I, see Figure 2.

*erefore, by intermediate value theorem g(a, b) has at least
one root b ∈ (1, 2) when a ∈ I.

Lemma 4. Consider the function g defined by (3). .en, for
any a0 ∈ I � (0.14, 1.32) there exists an interval U ⊂ I

containing a0 and an interval V ⊂ (1, 2) containing b0 such
that there is a unique continuously differentiable function b �

ψ(a) defined on U with b ∈ V that satisfies g(a, b) � 0.

Proof. Let a0 be any number in the interval I � (0.14, 1.32);
then, using Lemma 3, we have g(a0, 1)< 0. *en, numeri-
cally, one can check that g(a0, 2)> 0 for a0 ∈ I. *us, by the
mean value theorem, there exists at least one b0 ∈ (1, 2),
solution of g(a0, b) � 0. By Lemma 3, gb(a0, b)> 0 for all
b> 0, hence the solution b0 is unique. Since g has continuous
partial derivatives and g(a0, b0) � 0, with gb(a0, b0)≠ 0,
then by the implicit function theorem, there exists an open
interval U ⊂ I containing a0 and an interval V ⊂ (1, 2)

containing b0 such that there is a unique continuously
differentiable function b � ψ(a) defined on U with b ∈ V

that satisfies g(a, b) � 0. *is completes the proof of Lemma
4.

Proof of .eorem 1. Let m1 � m2 � m3 and c � 0, and then
from Lemma 1, we obtain the following central configura-
tion equations:

f01 � R01 − R13( 􏼁Δ013 + R02 − R12( 􏼁Δ012 � 0,

f12 � m0 R01 − R02( 􏼁Δ012 + m1 R13 − R12( 􏼁Δ123 � 0.
(24)

Solving the above equations, we obtain

μ0(a, b) �
m0

m1
�
ϕ1(a, b)(a + b)b2 a2 + 1( 􏼁

3/2

4ϕ2(a, b) (a + b)2 + 1􏼐 􏼑
3/2 , (25)

such that constraint (3) holds, where
ϕ1(a, b) � ((a + b)2 + 1)3/2 − 8 and ϕ2(a, b) � (a2 + 1)3/2−

b3. It is proved in Lemmas 2, 3, and 4 that constraint (8) is
satisfied by showing the existence of a smooth curve:

ψ(a) � (a, b) | g(a, b) � 0, 0< a<
�
3

√
, 1< b<

�
2

√
􏼈 􏼉. (26)

To find the region where μ0 > 0, we solve the following
inequality for a and b:

g (a, 0.5)g (a, 1)

g (a, 1.5)

0.5 1.0 1.5
a

–600

–500

–400

–300

–200

–100

Figure 2: Graph of g(a, b) for values of b � 0.5, 1, and 1.5.
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ϕ1(a, b)

ϕ2(a, b)
> 0. (27)

*e functions ϕ1(a, b) and ϕ2(a, b) are positive in Rϕ1
and Rϕ2, respectively, where

Rϕ1 � (a, b) | (0< b≤
�
3

√
∧a>

�
3

√
− b)∨(b>

�
3

√
∧a> 0)􏼈 􏼉,

Rϕ2 � (a, b) | (0< b≤ 1∧a> 0)∨ b> 1∧a>
�����
b2 − 1

√
􏼐 􏼑􏽮 􏽯.

(28)

*erefore, the configuration r � (r0, r1, r2, r3) shown in
Figure 1 forms a central configuration in
Rμ0 � (Rϕ1∩Rϕ2)∪(Rc

ϕ1
∩Rc

ϕ2
), where

Rμ0 � Rϕ1∩Rϕ2􏼐 􏼑∪ R
c
ϕ1
∩Rc

ϕ2􏼐 􏼑

� (a, b) | (0< b≤ 1∧a>
�
3

√
− b)∨ 1< b<

2
�
3

√ ∧ 0< a<
�����
b2 − 1

√
∨(a>

�
3

√
− b)􏼐 􏼑􏼠 􏼡􏼨

∨ b �
2
�
3

√ ∧ 0< a<
1
�
3

√ ∨ a>
1
�
3

√􏼠 􏼡􏼠 􏼡􏼠 􏼡∨
2
�
3

√ < b<
�
3

√
∧ 0< a<

�
3

√
− b∨a>

�����
b2 − 1

√
􏼐 􏼑􏼠 􏼡∨ b≥

�
3

√
∧a>

�����
b2 − 1

√
􏼐 􏼑􏼩,

(29)

such that (8) holds. Since g(a, b) � 0 has an absolute
minimum at (a0, b0) � (0.53, 1.15) and is monotonically
decreasing for 0< a< 0.53 and increasing for a> 0.53.

*erefore, g(a, b)≠ 0 for b< 1.15. Hence, the region Rμ0
simplifies to

Rμ0 � (a, b) |
2
�
3

√ < b<
�
3

√
∧ 0< a<

�
3

√
− b∨a>

�����
b2 − 1

√
􏼐 􏼑∨ b≥

�
3

√
∧a>

�����
b2 − 1

√
􏼐 􏼑􏼠 􏼡􏼨 􏼩. (30)

*e region Rμ0 is shown in Figure 3. *is completes the
proof of *eorem 1.

To be able to comment on the values of μ0 in the central
configuration region, we use interpolation techniques and
write the solution of g(a, b) � 0 as b � ψ(a), where

ψ(a) � − 99.4142a
11

+ 713.882a
10

− 2296.59a
9

+ 4371.32a
8

− 5475.35a
7

+ 4748.21a
6

− 2919.84a
5

+ 1282.71a
4

− 400.891a
3

+ 88.7673a
2

− 13.8585a + 2.4259.

(31)

*e function ψ(a) accurately approximates the solution
of g(a, b) � 0 in the central configuration region where μ0 is
positive. *e approximation error is between 10− 10 and
10− 6. *is gives μ0 as a function of a as follows:

μ0(a) �
(a + ψ(a))2 + 1􏼑􏼐 􏼑

3/2
− 8􏼒 􏼓(a + ψ(a))ψ2(a) a2 + 1( 􏼁

3/2

4 a2 + 1( )
3/2

− ψ(a)3􏼐 􏼑 (a + ψ(a))2 + 1􏼐 􏼑
3/2 .

(32)

*e function μ0(a) is a bounded, well-defined contin-
uous function of a except when q(a) � a2 + 1 − ψ(a)2 � 0.
To identify the values of a where q(a) � 0, we write it as

q(a) � − 9883.18a
22

+ 141940.a
21

− 966255.a
20

+ 4.14813 × 106a19
− 1.26042 × 107a18

+ 2.88398 × 107a17
− 5.16176 × 107a16

+ 7.41023 × 107a15
− 8.68138 × 107a14

+ 8.40051 × 107a13
− 6.77049 × 107a12

+ 4.57074 × 107a11
− 2.59398 × 107a10

+ 1.2402 × 107a9
− 5.00236 × 106a8

+ 1.705 × 106a7
− 492405.a

6
+ 120891.a

5

− 25214.6a
4

+ 4405.41a
3

− 621.741a
2

+ 67.2389a − 4.88501 � 0.

(33)

*e numerical solution of q(a) � 0 shows that it has
three real roots a � 1.14605, a � 1.2471, and a � 1.44556.
However, a careful observation of the region of existence of
central configuration for the four-body problem in Figure 1
shows that a � 1.14605 defines a boundary between the
region of existence and nonexistence and a � 1.2471 and a �

1.44556 are outside the domain of interest. Hence, μ0(a)

uniquely defines the positive values of the mass ratio m0/m3
for the four-body problem as described in *eorem 1. *e
region of existence of central configuration for the four-body
problem with three equal masses is given in Figure 3. Taking
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advantage of the interpolated expression b � ψ(a), μ0(a) is
given for b ∈ (0.1, 1.14) in Figure 4 which shows μ0(a) to be
an increasing function of a with the minimum and maxi-
mum at the end points of the domain.

3.2. Action Minimizing Orbits in the Triangular Four-Body
Problem. In this section, we introduce the analytical de-
scription of a family of periodic solutions in the four-body
problem using variational techniques.

Theorem 2. For the four-body problem considered in .e-
orem 1, the minimizers for A(q) restricted to the homographic
solutions qi(t) � ϕ(t)qi,0 are precisely the Keplerian elliptical
solutions and the minimum of the action is equal to
(3/2)(2π)2/3T1/3(ξ(a, b)/η(a, b))2/3.

Define the Lagrangian action as

A(q) � 􏽚
T

0
L(q(t), _q(t))dt, (34)

where the Lagrangian L is defined by

L(q, _q) � 􏽘
4

i�1

mi

2
‖ _q‖

2
− U(q),

U(q) � 􏽘
i< j

mimj

qi − qj

�����

�����
.

(35)

Let us call Ωcm the y-coordinate of the center of mass in
the configuration described earlier in Section 2, then

Ωcm �
(b − 2a)m1

3m1 + m0
, (36)

and the center of mass is

COM � 0,Ωcm( 􏼁. (37)

In this case, we have the following Cartesian coordinates
for the points q0,0, q1,0, q2,0, q3,0:

q0,0 � 0,Ωcm( 􏼁,

q1,0 � − 1, − a − Ωcm( 􏼁,

q2,0 � 0, b − Ωcm( 􏼁,

q3,0 � 1, − a − Ωcm( 􏼁.

(38)

Observe that

r0 � q0,0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � Ωcm,

r1 � r3 �

������������

1 + a +Ωcm( 􏼁
2

􏽱

,

r2 � b − Ωcm.

(39)

We focus on solutions of the form qi(t) � ϕ(t)qi,0. *ese
solutions are called homographic solutions. We will restrict
the action functional to solutions of this type.

Proof of .eorem 2. *e kinetic energy term K is equal to

K �
1
2

􏽘

3

i�0
mi _qi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� | _ϕ(t)|
2
r
2
1 m1 +

1
2

m0
r0

r1
􏼠 􏼡

2

+ m1
r2

r1
􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� _qi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

m1 +
1
2

m0
r0

r1
􏼠 􏼡

2

+ m1
r2

r1
􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(40)

where we have used | _q1(t)|2 � | _ϕ(t)|2r21. *e potential en-
ergy is given by

U � 􏽘
0≤ i< j≤ 3

mimj

qi − qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (41)

and using |qi − qj| � |ϕ(t)||qi,0 − qj,0|, we get

b = √—3 – a

gab = 0

a = 1.14605

b = 1.15 b = 1.15

a = 1.14605

0.0 0.2 0.4 0.6 0.8 1.0 1.2

1.0

1.2

1.4

1.6

a

b

b = √ 1 + a2

b = √—3 – a

b = √—1 + a2

Figure 3: Region of existence of central configuration for the
concave kite four-body problem with (m1 � m2 � m3, m0).

0.2 0.4 0.6 0.8 1.0
a

2

4

6

8

10

μ0

Figure 4: Values of μ0(a) in the region of central configuration.
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U �
m0m1

|ϕ(t)|

2
�����
a2 + 1

√ +
1
b

􏼠 􏼡

+
m2

1
|ϕ(t)|

2
����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(42)

Multiplying and dividing by r1, we obtain

U �
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

m0m1r1
2

�����
a2 + 1

√ +
1
b

􏼠 􏼡􏼠

+m
2
1r1

2
����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎞⎟⎟⎟⎠.

(43)

As defined previously, we use (m0/m1) � μ0, and by
letting m1 � 1, we have

U �
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

μ0r1
2

�����
a2 + 1

√ +
1
b

􏼠 􏼡􏼠

+r1
2

����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎞⎟⎟⎟⎠.

(44)

Now, we are ready to compute the action restricted to
this class of homographic solutions. We have

A � 􏽚
T

0
1 +

1
2

m0
r0

r1
􏼠 􏼡

2

+
r2

r1
􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt

+ 􏽚
T

0
μ0r1

2
�����
a2 + 1

√ +
1
b

􏼠 􏼡􏼠 +r1
2

����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎞⎟⎟⎟⎠
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt

� 2 + m0
r0

r1
􏼠 􏼡

2

+
r2

r1
􏼠 􏼡

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ 􏽚

T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt

+ μ0r1
2

�����
a2 + 1

√ +
1
b

􏼠 􏼡 + r1
2

����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ 􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt.

(45)

Let

η(a, b) � 2 + m0
r0

r1
􏼠 􏼡

2

+
r2

r1
􏼠 􏼡

2
⎛⎝ ⎞⎠,

ξ(a, b) � μ0r1
2

�����
a2 + 1

√ +
1
b

􏼠 􏼡

+ r1
2

����������

(a + b)2 + 1
􏽱 +

1
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(46)

*en,

A(q) � η􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt + ξ 􏽚

T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt. (47)

*e infimum of A(q) is

inf
q

A(q) � inf
a>0,b>0

inf
q1

η􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt + ξ 􏽚

T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt

⎧⎨

⎩

⎫⎬

⎭

� inf
a>0,b>0

η inf
q1

􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt +

ξ
η

􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(48)

By Gordon’s result, we have

inf
q1

􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt +

ξ
η

􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt⎛⎝ ⎞⎠ �

3
2
(2π)

2/3
T
1/3 ξ(a, b)

η(a, b)
􏼠 􏼡

2/3

.

(49)

*en,

inf
q

A(q) � inf
a>0,b>0

η(a, b)
3
2
(2π)

2/3
T
1/3 ξ(b, c)

η(b, c)
􏼠 􏼡

2/3⎧⎨

⎩

⎫⎬

⎭

� inf
a>0,b>0

3
2
(2π)

2/3
T
1/3η(a, b)

1/3
(ξ(a, b))

2/3
􏼚 􏼛.

(50)

Let ϕ(a, b) � (3/2)(2π)2/3T1/3η(a, b)1/3(ξ(a, b))2/3, then
ϕ(a, b) attains its infimum at (a0, b0) if and only if
η(a, b)(ξ(a, b))2 attains its infimum at (a0, b0). It is chal-
lenging to see that for positive values of a0 and b0, the
function ϕ(a, b) is convex and coercive. However, we have
proved that b can be written as b � ψ(a) and used inter-
polation to find ψ(a) as given in equation (31). Hence, we
can nowwrite η(a, b), ξ(a, b), and ϕ(a, b) as functions of one
variable. For convexity, we use the second derivative test and
show that (z2ϕ(a)/za2)> 0 when a ∈ (0.1, 1.14) Hence,
ϕ(a) is convex when a ∈ (0.1, 1.14). For coercivity, we see
that ϕ(a) is continuous for all positive values of a,
ϕ(a)⟶∞ as a⟶ 0, and when a⟶∞, ϕ(a)⟶∞,
which implies ϕ(a) is coercive. Hence, ϕ(a) attains
inf
a>0

ϕ(a)􏼈 􏼉 at unique a0 > 0 and satisfies ϕ(a0) � 0.

4. Three Unequal Masses m3 � m1 ≠m2 ≠m0

In this section, we discuss a four-body problem which has
two symmetric equal masses (m3 � m1) on the horizontal
axis and two nonequal massesm0 andm2 on the vertical axis.
*e position vectors of the four masses m0, m1, m2, and m3
are r0 � (0, c), r1 � (− 1, 0), r2 � (0, b), and r3 � (1, 0), re-
spectively. For c> 0, the four masses make an isosceles
triangle with m0 inside the triangle (Figure 5), and for c< 0,
the convex kite configuration is obtained (Figure 6).

4.1. Central Configurations

Theorem 3. Consider four point masses m0, m1 � m3 ≠m2
having position vectors r0 � (0, c), r1 � (− 1, 0), r2 � (0, b),
and r3 � (1, 0), where b> 0 and b> c such that
r � (r0, r1, r2, r3) is a central configuration.

(a) *en, there exist unique mass ratios:
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μ0 �
m0

m1
�

b 8 − b2 + 1( 􏼁
3/2

􏼐 􏼑(b − c)2 c2 + 1( 􏼁
3/2

4 (b − c)3 − c2 + 1( )
3/2

􏼐 􏼑 b2 + 1( )
3/2 ,

μ2 �
m2

m1
�

c 8 − c2 + 1( 􏼁
3/2

􏼐 􏼑(c − b)2 b2 + 1( 􏼁
3/2

4 b2 + 1( )
3/2

− (b − c)3􏼐 􏼑 c2 + 1( )
3/2 .

(51)

(b) *e region of existence of central configuration
where the four positive masses are arranged in a
concave kite configuration is given by

Rt � (b, c) | 0< c<
1
�
3

√ ∧c +
�����
c2 + 1

√
< b<

�
3

√
􏼠 􏼡􏼨

∨
1
�
3

√ < c<
�
3

√
∧

�
3

√
< b< c +

�����
c2 + 1

√
􏼠 􏼡􏼩.

(52)

(c) *e region of existence of central configuration
where the four positive masses are arranged in a
convex kite configuration is given by

Rr � (b, c) | −
�
3

√
< c≤ −

1
�
3

√ ∧c +
�����
c2 + 1

√
< b<

�
3

√
􏼠 􏼡􏼨

∨ −
1
�
3

√ < c< − 2 +
�
3

√
∧

c2 − 1
2c
< b<

�
3

√
􏼠 􏼡􏼩.

(53)

Proof of .eorem 3. Consider four point masses with po-
sition vectors (r0, r1, r2, r3) and masses m0, m1, m2, and m3,
where m3 � m1. *e solution of f01 � 0 and f12 � 0 gives

μ0 �
m0

m1
�

R12 − R13( 􏼁Δ123
R01 − R02( 􏼁Δ012

�
βcb(α − 8)

4α(b − c)(β − c)
,

μ2 �
m2

m1
�

R01 − R13( 􏼁Δ013
R12 − R02( 􏼁Δ012

�
αcc(8 − β)

4β(b − c)(α − c)
,

(54)

where α � (1 + b2)3/2, β � (1 + c2)3/2, and c � (b − c)3. *e
mass ratios μ0 and μ2 are well-defined functions of b and c

except at b � c and b � c ±
�����
1 + c2

√
.

To find central configuration regions where μ0 > 0, it is
sufficient to show that α − 8 and β − c have the same sign. It
is trivial to see that Rα − 8 � 0 when b �

�
3

√
. Similarly, β −

c � 0 when b � c +
�����
c2 + 1

√
. Hence, β − c is positive in

Ra � (a, b) | b> 0∧c< b∧b< c +
�����
c2 + 1

√
􏽮 􏽯. (55)

*e complement of Ra, where β − c< 0, is given by

R
c
a � (a, b) | b> 0∧c< b

2
− 1􏼐 􏼑(2b)

− 1
􏽮 􏽯. (56)

It is to be noted that the sign of c will be determined
according to whether the four-body configuration is concave
(c> 0) or convex(c< 0). After some simplifications, the
central configuration region for μ0 > 0, c> 0 is given by

Rt1
� (b, c) | 0< c<

1
�
3

√ ∧
�����
c2 + 1

√
+ c< b<

�
3

√
􏼠 􏼡􏼨

∨
1
�
3

√ < c≤
�
3

√
∧

�
3

√
< b<

�����
c2 + 1

√
+ c􏼠 􏼡

∨ c>
�
3

√
∧c< b<

�����
c2 + 1

√
+ c􏼐 􏼑􏽯.

(57)

Similarly, the central configuration region for
μ0 > 0, c< 0 is given by

Rr1
� (b, c) | c< 0, c +

�����
c2 + 1

√
< b<

�
3

√
􏽮 􏽯. (58)

Consider the mass ratio μ2. Let c> 0. Since b> c,
therefore for μ2 > 0, (β − 8)(α − c)− 1 must have the same
sign. It is trivial to see that 8 − β> 0 when c ∈ (0,

�
3

√
) and

α − c> 0 for all b> 0 and c> 0. *erefore, μ2 > 0 in

Rt2
� (b, c) | (0< b≤

�
3

√
∧0< c< b)∨(b >

�
3

√
∧0< c<

�
3

√
)􏼈 􏼉.

(59)

Similarly, when c< 0 (rhomboidal configuration), the
central configuration region where μ2 > 0 is given by

m1 = m3 (1, 0)m1 (–1, 0)

m2 (0, b)

r23r12

m0 (0, c)

r02

r03
r01

Figure 5: Concave four-body configurations with a pair of equal
masses (m1 � m3).

m1 = m3 (1, 0)

m0 (0, c)

m2 (0, b)

r23

r03

r02
r12

r01m1 (–1, 0)

(0, 0)

Figure 6: Convex four-body kite configurations with two equal
masses (m1 � m3).
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Rr2
� (b, c) | (0< b≤

�
3

√
∧0< c< b)∨(b>

�
3

√
∧0< c<

�
3

√
)􏼈 􏼉.

(60)

Hence, the region of existence of central configuration
for the concave kite four-body problem where all the masses

m0, m1 � m3, and m2 are positive is given by Rt � Rt1
∩Rt2

and the corresponding convex kite central configuration
region is given by Rr � Rr1

∩Rr2
, where

Rt � (b, c) | 0< c<(
�
3

√
)
− 1∧ c +

�����
c2 + 1

√
< b<

�
3

√
􏼐 􏼑∨ (

�
3

√
)
− 1 < c<

�
3

√
∧

�
3

√
< b< c +

�����
c2 + 1

√
􏼐 􏼑􏽮 􏽯,

Rr � (b, c) | −
�
3

√
< c≤ − (

�
3

√
)
− 1∧ c +

�����
c2 + 1

√
< b<

�
3

√
􏼐 􏼑∨ − (

�
3

√
)
− 1 < c<

�
3

√
− 2∧ c

2
− 1􏼐 􏼑(2c)

− 1 < b<
�
3

√
􏼐 􏼑􏽮 􏽯.

(61)

*e regions Rt and Rr are shown in Figures 7 and 8,
respectively.

4.2. Action Minimizing Orbits in the Convex Kite Four-Body
Problem. In this section, we discuss the minimization
property of a four-body problemwhich has two equal masses
(m1 � m3) on the horizontal axis and two positive masses
m2 and m0 on the vertical axis, which is also the axis of
symmetry.

Theorem 4. For the four-body problem considered in .e-
orem 1, the minimizers for A(q) restricted to the homographic
solutions qi(t) � ϕ(t)qi,0 are precisely the Keplerian elliptical
solutions, and the minimum of the action is equal to
(3/2)(2π)2/3T1/3(ξ(b, c)/η(b, c))2/3.

Let us call Ωcm the y-coordinate of the center of mass in
the configuration described earlier in Section 3.1, then

Ωcm �
m0c + m2b

m0 + 2m1 + m2
, (62)

and the center of mass is COM � (0,Ωcm). Observe that

r0 � q0,0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � c − Ωcm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

r1 � r3 �

�������

1 +Ω2cm

􏽱

,

r2 � b − Ωcm

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(63)

Proof of .eorem 4. *e kinetic energy term K is equal to

K �
1
2

􏽘

3

i�0
mi _qi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� | _ϕ(t)|
2

m1r
2
1 +

m2

2
r
2
2 +

m0

2
r
2
0􏼒 􏼓

� | _ϕ(t)|
2
r
2
1 m1 +

1
2

m2r
2
2 + m0r

2
0

r21
􏼠 􏼡􏼠 􏼡

� _q1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

m1 +
1
2

m2r
2
2 + m0r

2
0

r21
􏼠 􏼡􏼠 􏼡,

(64)

where we have used the fact that | _q1(t)|2 � | _ϕ(t)|2r21.
On the other hand, the potential energy is given by

U � 􏽘
0≤ i< j≤ 3

mimj

qi − qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (65)

and using |qi − qj| � |ϕ(t)||qi,0 − qj,0|, we get

U �
1

|ϕ(t)|

m2
1
2

+
2m1m2�����
1 + b2

√ +
2m1m0�����
1 + c2

√ +
m2m0

|c − b|
􏼠 􏼡. (66)

Multiplying and dividing by r1, we obtain

U �
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

m2
1r1

2
+
2m1m2r1�����
1 + b2

√ +
2m1m0r1�����
1 + c2

√ +
m2m0r1

|c − b|
􏼠 􏼡. (67)

Defining μ0 � m0/m1, μ2 � m2/m1, and m1 � 1,

U �
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

r1

2
+

2μ2r1�����
1 + b2

√ +
2μ0r1�����
1 + c2

√ +
μ2μ0r1
|c − b|

􏼠 􏼡. (68)

Now, we are ready to compute the action restricted to
this class of homographic solutions:

A � 􏽚
T

0
1 +

1
2

μ2r22 + μ0r20
r21

􏼠 􏼡􏼠 􏼡
q1

.􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

2
dt

+ 􏽚
T

0

r1

2
+

2μ2r1�����
1 + b2

√ +
2μ0r1�����
1 + c2

√ +
μ2μ0r1
|c − b|

􏼠 􏼡
1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt

� 2 +
μ2r22 + μ0r20

r21
􏼠 􏼡 􏽚

T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt

+
r1

2
+

2μ2r1�����
1 + b2

√ +
2μ0r1�����
1 + c2

√ +
μ2μ0r1
|c − b|

􏼠 􏼡 􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt.

(69)

Let

η(b, c) � 1 +
1
2

μ2r22 + μ0r20
r21

􏼠 􏼡,

ξ(b, c) �
r1

2
+

2μ2r1�����
1 + b2

√ +
2μ0r1�����
1 + c2

√ +
μ2μ0r1
|c − b|

.

(70)

*erefore,

A(q) � η􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt + ξ 􏽚

T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt. (71)

*e infimum of A(q) is
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inf
q

A(q) � inf
b>0,c>0

inf
q1

η􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt + ξ 􏽚

T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt

⎧⎨

⎩

⎫⎬

⎭

� inf
b>0,c>0

η inf
q1

􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt +

ξ
η

􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(72)

By Gordon’s result, we have

inf
q1

􏽚
T

0

q1
.􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

2
dt +

ξ
η

􏽚
T

0

1
q1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
dt⎛⎝ ⎞⎠

�
3
2
(2π)

2/3
T
1/3 ξ(b, c)

η(b, c)
􏼠 􏼡

2/3

.

(73)
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μ2 > 0
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Figure 7: Region of existence of central configuration for the concave kite four-body configuration where m1 � m3 � m≠m0 ≠ m2.
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Figure 8: Region of existence of central configuration for the convex kite four-body configuration where m1 � m3 � m≠m0 ≠ m2.
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*en,

inf
q

A(q) � inf
b>0,c>0

η(b, c)
3
2
(2π)

2/3
T
1/3 ξ(b, c)

η(b, c)
􏼠 􏼡

2/3⎧⎨

⎩

⎫⎬

⎭

� inf
b>0,c>0

3
2
(2π)

2/3
T
1/3η(b, c)

1/3
(ξ(b, c))

2/3
􏼚 􏼛.

(74)

Let ϕ(b, c) � (3/2)(2π)2/3T1/3η(b, c)1/3(ξ(b, c))2/3, and
then ϕ(b, c) attains its infimum at (b0, c0) if and only if
η(b, c)(ξ(b, c))2 attains its infimum at (b0, c0). Similar to the
concave case, we need to show that for positive values of b0 and
c0, the function ϕ(b, c) is convex and coercive. For convexity,
we compute the Hessian matrix for ϕ(b, c) and numerically
show that H(b, c) is positive semidefinite in the region Rr.

*at concludes that the function ϕ(b, c) is convex. For
coercivity, we see that ϕ(b, c) is continuous for all positive
values of b and c, ϕ(b, c)⟶∞ as (b, c)⟶ (0, 0), and
when b⟶∞ and c⟶∞, ϕ(b, c) tends to ∞, which
implies ϕ(b, c) is coercive. Hence, ϕ(b, c) attains inf

b>0,c>0
ϕ(b, c)􏼈 􏼉 at unique (b0, c0), b0 > 0, c0 > 0, and

satisfiesϕ(b0, c0) � 0.

5. Hamiltonian Formulation of the
Problem: Some Numerical Examples

It is well known that the study of the trajectories of ce-
lestial bodies under their mutual gravitational attractions
is important for understanding their movement and
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Figure 9: *e progressive evolution of a Poincaré surface of sections for different energy levels in the unequal masses case (m0 � 1.28155,
m2 � 0.31, m3 � m1 � 1, b � 1.1, and c � 0.1).
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navigation. In that sense, a special type of the four-body
problem with analytical and numerical investigation can
contribute to the understanding of the dynamical be-
havior of quadruple stellar systems (e.g., the HD 98800
quadruple system with two pairs of stars orbiting each
other). Several authors studied the stability and dynamical
evolution of symmetric quadruple systems for stars and
exoplanetary systems of two planets [40, 41]. In this
section, we will study the periodic behavior of the kite
four-body problem.

Consider the four-body problem introduced in Lemma
1, which has a pair of equal masses and one axis of symmetry.
Using the symmetries and position coordinates from
Lemma 1, we obtain the following reduced Hamiltonian in
the case of unequal masses:

H � 􏽘
3

i�0

p2
i

2mi

−
m0m1

r01
−

m0m2

r02
−

m0m3

r03
−

m1m2

r12
−

m1m3

r13
−

m2m3

r23
,

(75)

where
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Figure 10: *e progressive evolution of a Poincaré surface of sections for different energy levels in the unequal masses case (m0 � 1.28155,
m2 � 0.31, m3 � m1 � 1, b � 1.1, and c � 0.1).
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r
2
01 � 1 + q1 − c( 􏼁

2
,

r
2
02 � (b − c)

2
,

r
2
03 � 1 + q3 − c( 􏼁

2
,

r
2
12 � 1 + q1 − b( 􏼁

2
,

r
2
13 � 4 + q1 − q3( 􏼁

2
,

r
2
23 � 1 + b − q3( 􏼁

2
,

b> c,

(76)

and qi and pi, i � 0, 3, are the generalized coordinates and
momenta (we assume for simplicity that the gravitational
constant is equal to 1).

For the investigation of the reduced Hamiltonian
equations of motion (75), we have selected examples from
concave and convex kite four-body problems introduced in
Section 2. We have used classical numerical methods and
found periodic orbits for a given vector field. *e stability
of a periodic orbit for an autonomous vector field can
be calculated by Poincaré maps, which replaces the flow
of the n-dimensional continuous vector field with an
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Figure 11: *e progressive evolution of a Poincaré surface of sections for different energy levels in the unequal masses case (m0 � 1.28155,
m2 � 0.31, m3 � m1 � 1, b � 1.1, and c � 0.1).
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(n − 1)-dimensional map [42]. In this article, the analysis
of periodic and quasiperiodic orbits is performed using the
Poincaré surface of the section technique by picking the phase
element p1 � 0. In the n-dimensional case, the Poincaré
surface of the section has dimensionality 2n − 2. *e inter-
section points of the solution curves with the corresponding
(pi, qi), i � 0, n − 1, plane still lie on a smooth curve [43].

In order to construct the Poincaré surface of the
section and to find the corresponding periodic orbits, we
plot the motion from the 4D phase space (q1, q3, p1, p3) in
a “cut plane” p1(t) � 0, q1t> 0. Since H is conserved, any
point on this surface of the section will uniquely define the

orbit. Our Poincaré surface of sections (Figures 9–11)
describe the concave four-body problem in the unequal
mass case with energy values E ∈ − 3.52, . . . , − 2{ }, plot-
ting q3(t) versus p3(t), and m0 � 1.28155, m2 � 0.31,
m3 � m1 � 1, b � 1.1, and c � 0.1. *e initial conditions
considered here satisfy the central configuration equa-
tions introduced in Section 2. We wish to note that in
case of the energy level − 3.52, we can see many little
islands of quasiperiodic orbits. It should be emphasized
that increasing the energy levels increase the Poincaré
surface of sections in size, as a blowing up effect (see
Figures 9–11).

H = –8.340000000

0.6

0.4

0.2

p3 0

–0.2

–0.4

–0.6

1.2 1.3 1.4 1.5 1.6 1.7 1.8
q3

H = –8.300000000

1.2 1.3 1.4 1.5 1.6 1.7 1.8
q3

0.6

0.4

0.2

p3 0

–0.2

–0.4

–0.6

H = –8.200000000
1

0.5

p3 0

–0.5

–1
1 1.2 1.4 1.6 21.8

q3

H = –8

0.5 1 1.5 2
q3

1.5

1

0.5

p3 0

–0.5

–1

–1.5

Figure 12: *e progressive changing of a Poincaré surface of sections for different energy levels in the unequal masses case (m0 � 2.658,
m2 � 1.03, m3 � m1 � 1, b � 1.9, and c � 0.7).
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Another interesting unequal mass case is for increased
masses m0 � 2.658, m2 � 1.03, and m3 � m1 � 1 compared
to the previous case. Similarly, using different energy levels,
in this case for energy values E ∈ − 8.34, . . . , − 7.3{ }, the
variation of the “horseshoe with open side to the left” as the
letter D shape to the “horseshoe with open side to the right”
as the letter C shape can be observed (Figures 12–14). As
earlier, in this particular case, we observe quasiperiodic
orbits and the increasing size of the Poincaré surface of
sections.

In the equal mass case, we have chosen the following
particular case: m4 � 5.17662, m � 1, b � 1.9, and c � 0.7.
In this situation, we detected an interesting

transformation of the Poincaré surface of sections through
the energy levels E ∈ − 13.6, . . . , − 11{ }. In the case of lower
energy levels, the outside part of the orbit indicates
chaotic behavior. Moreover, by increasing the energy
levels, the inside part of the orbit disintegrates, but the size
of the Poincaré surface of sections has just a minor
variation (Figure 15).

Consequently, we developed the surface of sections
with around 300 points, which presents the progressive
disintegration of the surfaces of solution curves of regular
motion (KAM surface) generated with the increase in H

from − 3.615 to − 2 in our first example (Figures 9–11),
from − 8.34 to − 7 in our second example (Figures 12–14),
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Figure 13: *e progressive changing of a Poincaré surface of sections for different energy levels in the unequal masses case (m0 � 2.658,
m2 � 1.03, m3 � m1 � 1, b � 1.9, and c � 0.7).
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and from − 13.6 to − 11 in our third example (Figure 15). It
seems that there exist invariant curves (for example, in the
plots for H equal to − 3.5) near resonances. *ese invariant
curves could form “island sequences” (small groups in a
row) and “islands cycles” (small islands inside of islands).
One can observe that transitions between levels fuse at
progressive integration, and the KAM surfaces progres-
sively disappear.

In both cases (nonequal and equal masses), the
surfaces show unique types of orbits, including quasi-
periodic and island orbits. Let us mention that com-
paring both cases, when the values of m0 are increased,
then there is a noticeable effect influence on the stability
and the existence of quasiperiodic orbits in concave and

convex kite four-body problems. In other words, we
conjecture that the increasing central mass plays a sta-
bilizing role.

*e described Poincaré surface of sections allows
to study the local stability of the kite four-body problem,
the transition from ordered to stochastic motion. *ey
contribute significantly in numerical studies and in
verification of the concordance between analytical and
numerical results.

6. Conclusions

In this paper, we investigated the central configurations
of convex and concave kite four-body problems, deriving
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regions of central configuration. *ree four-body ar-
rangements are discussed which include two concave
four-body configurations and one convex four-body con-
figuration. In one of the concave configurations, three of the
masses on the vertices of the triangle are equal and the mass
on the axis of symmetry can take various positive values. In
the second case of concave configuration and the case of the
convex configuration, there is only a pair of equal masses
and the two masses on the axis of symmetry are nonequal.
In each of the three cases, regions of central configuration
are derived for positive masses. In the first concave case, we
can write the mass ratios as a function of one variable and
show its optimum values give values of the parameter. In the
other two cases, the mass ratios are written as functions
of two variables. *e action minimizing orbits for both
the concave and convex configurations is analyzed, and it
is shown that the minimizers of the action functional re-
stricted to the homographic solutions are the Keplerian
elliptical solutions. Using the Hamiltonian formalism, we
have identified regions with periodic and quasiperiodic
orbits. Moreover, we studied the chaotic behavior in the
phase space utilizing the Poincaré surface of sections. It was
shown that increasing the value of the central mass m0 plays
a stabilizing role in the case of both convex and concave
four-body problems.
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