
Journal of Mathematics

Fractional Operators in Modelling
Chaotic and Real-World Problems

Lead Guest Editor: Ndolane Sene
Guest Editors: José Francisco Gómez Aguilar and Kolade M. Owolabi

 



Fractional Operators in Modelling Chaotic and
Real-World Problems



Journal of Mathematics

Fractional Operators in Modelling
Chaotic and Real-World Problems

Lead Guest Editor: Ndolane Sene
Guest Editors: José Francisco Gómez Aguilar and
Kolade M. Owolabi



Copyright © 2022 Hindawi Limited. All rights reserved.

is is a special issue published in “Journal of Mathematics.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.



Chief Editor
Jen-Chih Yao, Taiwan

Algebra
SEÇİL ÇEKEN  , Turkey
Faranak Farshadifar  , Iran
Marco Fontana  , Italy
Genni Fragnelli  , Italy
Xian-Ming Gu, China
Elena Guardo  , Italy
Li Guo, USA
Shaofang Hong, China
Naihuan Jing  , USA
Xiaogang Liu, China
Xuanlong Ma  , China
Francisco Javier García Pacheco, Spain
Francesca Tartarone  , Italy
Fernando Torres  , Brazil
Zafar Ullah  , Pakistan
Jiang Zeng  , France

Geometry
Tareq Al-shami  , Yemen
R.U. Gobithaasan  , Malaysia
Erhan Güler  , Turkey
Ljubisa Kocinac  , Serbia
De-xing Kong  , China
Antonio Masiello, Italy
Alfred Peris  , Spain
Santi Spadaro, Italy

Logic and Set Theory
Ghous Ali  , Pakistan
Kinkar Chandra Das, Republic of Korea
Jun Fan  , Hong Kong
Carmelo Antonio Finocchiaro, Italy
Radomír Halaš, Czech Republic
Ali Jaballah  , United Arab Emirates
Baoding Liu, China
G. Muhiuddin  , Saudi Arabia
Basil K. Papadopoulos  , Greece
Musavarah Sarwar, Pakistan
Anton Setzer  , United Kingdom
R Sundareswaran, India
Xiangfeng Yang  , China

Mathematical Analysis

Ammar Alsinai  , India
M.M. Bhatti, China
Der-Chen Chang, USA
Phang Chang  , Malaysia
Mengxin Chen, China
Genni Fragnelli  , Italy
Willi Freeden, Germany
Yongqiang Fu  , China
Ji Gao  , USA
A. Ghareeb  , Egypt
Victor Ginting, USA
Azhar Hussain, Pakistan
Azhar Hussain  , Pakistan
Ömer Kişi  , Turkey
Yi Li  , USA
Stefan J. Linz  , Germany
Ming-Sheng Liu  , China
Dengfeng Lu, China
Xing Lü, China
Gaetano Luciano  , Italy
Xiangyu Meng  , USA
Dimitri Mugnai  , Italy
A. M. Nagy  , Kuwait
Valeri Obukhovskii, Russia
Humberto Rafeiro, United Arab Emirates
Luigi Rarità  , Italy
Hegazy Rezk, Saudi Arabia
Nasser Saad  , Canada
Mohammad W. Alomari, Jordan
Guotao Wang  , China
Qiang Wu, USA
Çetin YILDIZ  , Turkey
Wendong Yang  , China
Jun Ye  , China
Agacik Zafer, Kuwait

Operations Research
Ada Che  , China
Nagarajan DeivanayagamPillai, India
Sheng Du  , China
Nan-Jing Huang  , China
Chiranjibe Jana  , India
Li Jin, United Kingdom
Mehmet Emir Koksal, Turkey
Palanivel M  , India

https://orcid.org/0000-0002-7578-9320
https://orcid.org/0000-0001-7600-994X
https://orcid.org/0000-0003-4702-6155
https://orcid.org/0000-0002-5436-7006
https://orcid.org/0000-0003-2891-1124
https://orcid.org/0000-0002-2156-2569
https://orcid.org/0000-0003-3263-0616
https://orcid.org/0000-0003-1055-0279
https://orcid.org/0000-0003-4987-6962
https://orcid.org/0000-0002-5649-4500
https://orcid.org/0000-0002-7063-1882
https://orcid.org/%200000-0002-8074-1102
https://orcid.org/0000-0003-3077-8772
https://orcid.org/0000-0003-3264-6239
https://orcid.org/0000-0002-4870-7908
https://orcid.org/0000-0003-3289-8954
https://orcid.org/0000-0003-1683-2373
https://orcid.org/0000-0001-5316-3063
https://orcid.org/0000-0001-8451-3484
https://orcid.org/0000-0002-1196-8119
https://orcid.org/0000-0002-5596-5841
https://orcid.org/0000-0001-6519-895X
https://orcid.org/0000-0001-5322-6060
https://orcid.org/0000-0002-9792-9566
https://orcid.org/0000-0002-5221-0574
https://orcid.org/0000-0002-0291-3327
https://orcid.org/0000-0002-5436-7006
https://orcid.org/0000-0002-3755-5320
https://orcid.org/0000-0002-4987-7415
https://orcid.org/0000-0002-6093-0475
https://orcid.org/0000-0003-4501-9269
https://orcid.org/0000-0001-6844-3092
https://orcid.org/0000-0002-7148-0019
https://orcid.org/0000-0001-5028-1363
https://orcid.org/0000-0002-2644-6997
https://orcid.org/0000-0002-5129-848X
https://orcid.org/0000-0003-3381-6690
https://orcid.org/0000-0001-8908-5220
https://orcid.org/0000-0003-4335-6990
https://orcid.org/0000-0002-9530-5098
https://orcid.org/0000-0002-6490-2877
https://orcid.org/0000-0001-7197-8581
https://orcid.org/0000-0002-8302-343X
https://orcid.org/0000-0002-6378-0732
https://orcid.org/0000-0003-2841-6529
https://orcid.org/0000-0002-8133-4058
https://orcid.org/0000-0001-8396-7388
https://orcid.org/0000-0003-0248-9316
https://orcid.org/0000-0002-0252-9712
https://orcid.org/0000-0002-1225-0301


Stanislaw Migorski  , Poland
Predrag S. Stanimirović  , Serbia
Balendu Bhooshan Upadhyay, India
Ching-Feng Wen  , Taiwan
K.F.C. Yiu  , Hong Kong
Liwei Zhang, China
Qing Kai Zhao, China

Probability and Statistics
Mario Abundo, Italy
Antonio Di Crescenzo  , Italy
Jun Fan  , Hong Kong
Jiancheng Jiang  , USA
Markos Koutras  , Greece
Fawang Liu  , Australia
Barbara Martinucci  , Italy
Yonghui Sun, China
Niansheng Tang  , China
Ehymios G. Tsionas, United Kingdom
Bruce A. Watson  , South Africa
Ding-Xuan Zhou  , Hong Kong

https://orcid.org/0000-0002-3299-9168
https://orcid.org/0000-0003-0655-3741
https://orcid.org/0000-0001-8900-761X
https://orcid.org/0000-0002-7523-4069
https://orcid.org/0000-0003-4751-7341
https://orcid.org/0000-0001-8451-3484
https://orcid.org/0000-0001-9250-2371
https://orcid.org/0000-0001-5160-2405
https://orcid.org/0000-0003-1034-2349
https://orcid.org/0000-0001-8340-4200
https://orcid.org/0000-0001-7033-3845
https://orcid.org/0000-0003-2403-1752
https://orcid.org/0000-0003-0224-9216


Contents

Conversion of Fructose to 5-Hydroxymethyl Furfural: Mathematical Solution with Experimental
Validation
Muhammad Sajid  , Apu Chowdhury, Ghulam Bary, Yin Guoliang, Riaz Ahmad  , Ilyas Khan  ,
Waqar Ahmed, Muhammad Farooq Saleem Khan, Aisha M. Alqahtani, and Md. Nur Alam 

Research Article (8 pages), Article ID 6989612, Volume 2022 (2022)

 e Consensus of Different Fractional-Order Chaotic Multiagent Systems Using Adaptive Protocols
Masoumeh Firouzjahi  , Bashir Naderi  , and Yousef Edrisi Tabriz 

Research Article (10 pages), Article ID 5129072, Volume 2022 (2022)

Analysis of Multiterm Initial Value Problems with Caputo–Fabrizio Derivative
Mohammed Al-Refai   and Muhammed Syam 

Research Article (6 pages), Article ID 8231828, Volume 2021 (2021)

A Fractional Epidemiological Model for Bone Remodeling Process
Muath Awadalla  , Yves Yannick Yameni Noupoue  , and Kinda Abuasbeh 

Research Article (11 pages), Article ID 1614774, Volume 2021 (2021)

On Semianalytical Study of Fractional-Order Kawahara Partial Differential Equation with the
Homotopy Perturbation Method
Muhammad Sinan  , Kamal Shah  , Zareen A. Khan  , Qasem Al-Mdallal  , and Fathalla Rihan 

Research Article (11 pages), Article ID 6045722, Volume 2021 (2021)

Research on Population Development Trend in Huizhou of China Forecast Based on Optimal
Weighted Combination Method and Fractional Grey Model
Dewang Li  , Jianbao Chen  , and Meilan Qiu 

Research Article (9 pages), Article ID 3320910, Volume 2021 (2021)

On a Memristor-Based Hyperchaotic Circuit in the Context of Nonlocal and Nonsingular Kernel
Fractional Operator
Shahram Rezapour  , Chernet Tuge Deressa  , and Sina Etemad 

Research Article (21 pages), Article ID 6027246, Volume 2021 (2021)

Nonfragile Synchronization of Semi-Markovian Jumping Neural Networks with Time Delays via
Sampled-Data Control and Application to Chaotic Systems
K. Sivaranjani  , M. Sivakumar  , S. Dharani  , K. Loganathan  , and Ngawang Ngmgyel 

Research Article (14 pages), Article ID 2562227, Volume 2021 (2021)

Multiple Positive Solutions for a Class of Boundary Value Problem of Fractional -Difference
Equations under -Integral Boundary Conditions
Yongyang Liu and Yansheng Liu 

Research Article (13 pages), Article ID 2969717, Volume 2021 (2021)

https://orcid.org/0000-0001-9471-8395
https://orcid.org/0000-0003-2465-8221
https://orcid.org/0000-0002-2056-9371
https://orcid.org/0000-0001-6815-678X
https://orcid.org/0000-0003-2839-3793
https://orcid.org/0000-0002-9345-5340
https://orcid.org/0000-0002-6832-9350
https://orcid.org/0000-0001-9399-6756
https://orcid.org/0000-0002-3922-8892
https://orcid.org/0000-0002-6447-6361
https://orcid.org/0000-0002-3598-5853
https://orcid.org/0000-0003-2744-6320
https://orcid.org/0000-0003-2177-3806
https://orcid.org/0000-0002-8851-4844
https://orcid.org/0000-0002-8377-0208
https://orcid.org/0000-0002-2853-9337
https://orcid.org/0000-0003-3855-5944
https://orcid.org/0000-0001-5190-1755
https://orcid.org/0000-0002-0820-9736
https://orcid.org/0000-0002-2407-9150
https://orcid.org/0000-0003-3463-2607
https://orcid.org/0000-0002-7990-9430
https://orcid.org/0000-0002-1574-1800
https://orcid.org/0000-0003-4616-0299
https://orcid.org/0000-0003-3566-0239
https://orcid.org/0000-0003-2557-5209
https://orcid.org/0000-0002-6435-2916
https://orcid.org/0000-0002-5199-0097
https://orcid.org/0000-0002-4911-9016


Analysis of a Coupled System of Nonlinear Fractional Langevin Equations with Certain Nonlocal and
Nonseparated Boundary Conditions
Zaid Laadjal  , Qasem M. Al-Mdallal  , and Fahd Jarad 

Research Article (15 pages), Article ID 3058414, Volume 2021 (2021)

Existence and Uniqueness Results of Volterra–Fredholm Integro-Differential Equations via Caputo
Fractional Derivative
Ameth Ndiaye   and Fulgence Mansal
Research Article (8 pages), Article ID 5623388, Volume 2021 (2021)

https://orcid.org/0000-0003-1627-2898
https://orcid.org/0000-0002-2853-9337
https://orcid.org/0000-0002-3303-0623
https://orcid.org/0000-0003-0055-1948


Research Article
Conversion of Fructose to 5-Hydroxymethyl Furfural:
Mathematical Solution with Experimental Validation

Muhammad Sajid ,1,2 Apu Chowdhury,1 Ghulam Bary,3 Yin Guoliang,1 Riaz Ahmad ,3

Ilyas Khan ,4 Waqar Ahmed,5 Muhammad Farooq Saleem Khan,6 Aisha M. Alqahtani,7

and Md. Nur Alam 8

1Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, Sichuan, China
2Department of Chemical Engineering, University of Gujrat, Gujrat 50700, Pakistan
3Faculty of Science, Yibin University, Yibin 644000, Sichuan, China
4Department of Mathematics, College of Science Al-Zul�, Majmaah University, Al-Majmaah 11952, Saudi Arabia
5Department of Bionanotechnology, Hanyang University, Ansan 155-88, Republic of Korea
6Faculty of International Applied Technology, Yibin University, Yibin 644000, Sichuan, China
7Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428,
Riyadh 11671, Saudi Arabia
8Department of Mathematics, Pabna University of Science & Technology, Pabna-6600, Bangladesh

Correspondence should be addressed to Muhammad Sajid; engr.sajid80@gmail.com, Riaz Ahmad; riazgill2007@gmail.com, and
Md. Nur Alam; nuralam.pstu23@gmail.com

Received 9 August 2021; Accepted 28 March 2022; Published 29 April 2022

Academic Editor: Ndolane Sene

Copyright © 2022 Muhammad Sajid et al. ­is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Conversion of fructose to furan aldehydes is a rapidly developing concept considering the emergent scenario of the replacement of
fossil-derived components to biomass-derived green precursors. 5-hydroxymethyl furfural (HMF) and levulinic acid (LA) are the
two most important bio-precursors with expanded downstream utilization in modern industries.­eir production from biomass-
derived sugars is a complex reaction due to competitive side reactions with a variety of byproducts. ­erefore, their simulated
optimization is an important tool that can help for process optimization in an economical way. In this article, we have developed a
mathematical solution for fructose conversion, HMF production, and levulinic acid (LA) formation in a reactive environment.
­e accuracy of the developedmodel is further veri�ed through experiments and found satisfactory with high accuracy.­erefore,
the developed model can be used to simulate the reaction environment and product optimization under a given set of conditions.

1. Introduction

­e alarming phenomena of global warming and environ-
mental pollution have compelled individuals to shift pro-
duction processes from fossil-derived to C-neutral feedstock
[1–3]. Hence, this compelling problem has expounded the
use of lignocellulosic biomass as an e�cient and green al-
ternative [4–6]. Lignocellulosic biomass, in this regard, is an
abundantly available natural resource of carbohydrates,
which is extensively available as forest residues, agricultural
waste, and in the form of macro/microalgae [7, 8]. ­is
paradigm shift explored the comprehensive dissolution and

fractionation of lignocellulosic biomass to polysaccharides
and monosaccharides for further conversion into di�erent
downstream expedient commodity chemicals [9–11].

Fructose is the simplest C6 sugar which is obtained by
the hydrolysis of cellulose, the major constituent of ligno-
cellulosic biomass [6, 12]. Fructose is versatile platform
sugar that has extended utilization due to its biodegrad-
ability, environmentally friendly characteristics as well as
abundant availability in nature [13, 14]. A long range of
di�erent biochemicals can be produced from fructose by
employing multiple catalytic routes [15, 16]. Extensive ex-
perimental work has been performed on the catalytic
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conversion of fructose to 5-hydroxymethyl furfural (HMF)
and levulinic acid (LA) [15–17]. In our previous study, it was
concluded experimentally that the reaction steps involved in
the conversion of fructose are (i) dehydration of fructose to
5-hydroxymethyl furfural and (ii) rehydration of produced
HMF to LA and formic acid (FA) consuming two H2O
molecules under a protonic environment, as shown in
Scheme 1 [18]. However, the formation of HMF and LA/FA
depends strongly on the reaction environment. *e proton
concentration [H+], in particular, plays a significant role
with strong temperature dependency.

Experimental research is time-consuming and requires
extensive financial support [19–21]. To address such chal-
lenges, the reaction environment can be optimized using
artificial intelligence by developing a similar computational
environment [22–26]. Computational analysis is an eco-
nomical and efficient approach to solving many time-con-
suming problems [27–30]. Optimized parameters achieved
during computational investigations can be used for the
performance of experimental work [31, 32]. A reliable
balance between computational and experimental results
will help to develop a process with less energy and financial
affliction [13, 33–35]. However, the computational study
needs detailed kinetic data and mathematical modeling for
the establishment of a reaction environment similar to
experimental conditions [23, 36]. HMF and LA are the two
most important bioprecursor components [37, 38]. *ese
can be produced by the catalytic dehydration of C6 sugars
under a protonic environment (Scheme 1). Although ex-
tensive experimental work has been performed for the
conversion of fructose to HMF and LA/FA, however,
commercial production of HMF has not been realized yet
[39–41]. Mathematical modeling and kinetic data evaluation
will help to establish a computational reaction environment
for the conversion of fructose to HMF and LA/FA.

Based on this motivational aspect, we have developed a
comprehensive kinetic model to sketch the reaction process
based on our experimental work [18]. A detailed mathe-
matical model is developed considering the established re-
action sequence and reaction stoichiometry. Employing
kinetic and mathematical modeling, the theoretical solution
of reaction species is developed which will help to establish a
real reaction environment in a computational framework.
*e developed model will help to optimize the dehydrated
conversion of lignocellulosic biomass-derived sugar to
platform chemicals. *is model can be used as a base tool to
develop a reaction network model for other sugars, which
will ultimately help to convert lignocellulosic biomass to
platform chemicals. Replacing the feedstock fructose with
other sugars, the same model can be used to elaborate the
reaction environment of conversion of various C5 and C6
sugars.

2. Kinetic Modeling

It has been observed that the conversion of fructose pro-
ceeded through the dehydration of fructose to HMF fol-
lowed by the rehydration to LA/FA as shown in Scheme 1
[18]. *e mechanistic step took place by the removal of one

water molecule in each step under a protonic environment
as shown in Scheme 2.

Hence, the first step is dehydration of fructose to HMF.

C6H12O6 ⟶
k1

H+
C6H6O3 + 3H2O (1)

Accordingly, this conversion of fructose to HMF does
not proceed in a single step but proceeded through three
elementary reactions with the removal of one water molecule
in each step as follows:

C6H12O6(sol) ⟶
k1′

H+
C6H10O5􏼂 􏼃(sol) + H2O

C6H10O5􏼂 􏼃(sol) ⟶
k1
″

H+
C6H8O4􏼂 􏼃(sol) + H2O

C6H8O4􏼂 􏼃(sol) ⟶
k‴1

H+
C6H6O3􏼂 􏼃(sol) + H2O

(2)

whereas the second step is the hydration of HMF to LA and
FA with the consumption of two water molecules.

C6H6O3(sol) + 2H2O⟶
k3

H+
CH2O2 + C5H8O3 (3)

Again, the consumption of two water molecules for the
conversion of HMF to LA/FA does not proceed in a single
step as shown in Scheme 2. Instead, rehydration proceeded
through the following elementary steps:

C6H6O3(sol) + H2O⟶
k3′

H+
C6H8O4􏼂 􏼃

+
(sol)

C6H8O4􏼂 􏼃
+
(sol) + H2O⟶

k3
″

H+
C6H10O5􏼂 􏼃

++
(sol)

C6H10O5􏼂 􏼃
++
(sol) ⟶

k‴3

H+ ,H2O
CH2O2+C5H8O3

(4)

Besides this principal route, fructose degrades through
some side reactions yielding unproportioned products.
Similarly, the nascent HMF is also degraded sometimes
through dimerization or some other nonstoichiometric
reactions. All these products are summarized as humin
[42, 43]. *erefore, the formation of humin from fructose
and HMF can be represented as follows:

C6H12O6 ⟶
k2

H+
HUMIN (5)

C6H6O3(sol) ⟶
k4

H+
HUMIN (6)

Following the principles of elementary reactions de-
fined by Espenson and O. Levenspiel [44, 45], the
mechanistic elementary reactions of fructose conversion
to HMF are as shown in equation (1). HMF conversion to
LA/FA is as shown in equation (3) and formation of
Humin from fructose as well as from freshly produced
HMF can be summarized as shown in equations (7) to
(10). [40, 46].
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−
dCF

dt
� k1 + k2( 􏼁CF, (7)

dCHMF

dt
� k1CF − k3 + k4( 􏼁CHMF, (8)

dCLA/FA

dt
� k3CHMF, (9)

dCH

dt
� k2CF + k4CHMF, (10)

where C represents the molar concentration, F is fruc-
tose, H is humin, and HMF is 5-hydroxymethyl furfural.
k1, k2, k3, and k4 represent the rate constants as shown in
Scheme 1.

3. Mathematical Modeling

Fructose concentration decreases with time as the reaction
proceeds. *e instantaneous concentration of fructose can
be calculated with the integration of the rate equation with
respect to time “t” [44, 45, 47]. Hence, from equation (7),

O

H2O

O

HO

HO HO

HO

HOOH
OH

HO H

H H

H

H

H2O

H2C

H2C H3C H3C H3C

H2CH2O, H+

H2C

CH2 CH2

H2O

O

O

H H H

H

H

H

HO

HO

OH

OH

ÖH

OHOH

O

O
O

O
O

O
O O

O

HMF

CC
H H

O
O

O O
O+O

O
C

C C C C C C COH OH

HC

O O O O
C

O

OHO
Formic acid Levulinic acid

Ö ÖH H H
H

H

H

C

CC
H

H

H

H

O O O O

O

Fructose

H+

H+ H+
H+

H+

H+

H+

H+

Scheme 2: Complete conversion sequence of fructose conversion to HMF and LA/FA in [H+] environment [18].
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O
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Scheme 1: Reactions pathway of conversion of fructose to 5-HMF and LA/FA [18].
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−
dCF

dt
� k1 + k2( 􏼁CF,

−
1

CF

dCF

dt
� k1 + k2( 􏼁.

(11)

Integrating from the start of the reaction to time interval
“t”, i.e., between t� 0 to t� t,

􏽚
t

0

dCF

CF
� − k1 + k2( 􏼁 􏽚

t

0
dt,

ln
CF(t)

CF(0)

􏼠 􏼡 � − k1 + k2( 􏼁t,

CF(t)

CF(0)

􏼠 􏼡 � e
− k1+k2( )t,

CF(t) � CF(0) e
− k1+k2( )t.

(12)

Hence, equation (12) represents the analytical solution of
fructose concentration. *e concentration of fructose at any
time (t) can be calculated using this equation (12). Here, CF(t)
is the concentration of fructose at a time “t”, CF(0) is the
initial fructose concentration when t� 0, k1 and k2 are rate
constants as shown in Scheme 1, and “t” is the time of
reaction.

Similarly, the instantaneous concentration of HMF can
be calculated by the analytical solution of equation (8)
implying time limits similar to the fructose equation (7).
Hence, from equation (8),

dCHMF

dt
� k1CF − k3 + k4( 􏼁CHMF,

dCHMF

dt
� CHMF′ ,

CHMF′ � k1CF − k3 + k4( 􏼁CHMF,

CHMF′ + k3 + k4( 􏼁CHMF � k1CF.

(13)

Let y′(t) � a(t)y(t) � r(t).
*erefore,

CHMF � yS + yH,

yH � Ce
− A(t)

.
(14)

Here,

C � CHMF(0),

t0 � 0,

A(t) � 􏽚
t

0
a(t)dt � 􏽚

t

0
k3 + k4( 􏼁dt � k3 + k4( 􏼁t,

yH � CHMF(0)e
− k3+k4( )t

,

yS � e
− A(t)

􏽚
t

0
r(t)e

A(t)dt,

r(t) � k1CF.

(15)

Putting the value of CF from equation (12),

r(t) � k1CF � k1CFe
− k1+k2( )t

,

􏽚
t

0
r(t)e

A(t)dt � 􏽚
t

0
k1CF(0)e

− k1− k2+k3+k4( )t

�
k1CF(0)

− k1 − k2 + k3 + k4( 􏼁
e

− k1− k2+k3+k4( )t
− 1􏼒 􏼓,

yS �
k1CF(0)

− k1 − k2 + k3 + k4( 􏼁
e

− k1+k2( )t
− e

− k3+k4( )t
􏼒 􏼓,

CHMF(t) �
k1CF(0)

− k1 − k2 + k3 + k4( 􏼁
e

− k1+k2( )t
− e

− k3+k4( )t
􏼒 􏼓 + CHMF(0)e

− k3+k4( )t
,

CHMF(t) �
k1CF(0)

− k1 − k2 + k3 + k4
e

− k1− k2+k3+k4( )t
− 1􏼒 􏼓 + CHMF(0)

􏼢 􏼣e
− k3+k4( )t

,

(16)

equation (16) represents the analytical explanation for HMF
yield concentration. HMF concentration can be calculated
using this equation at any time interval (t) during a reaction.
*rough equations (12) and (16), the concentration profiles
of reactant (fructose) and product (HMF) can be developed
through simulation. In these models, we have the following
assumptions:

(a) *e process is acid-catalysed and [H+] is unchanged
during the time course of a reaction

(b) *e reaction is assumed to proceed at a fixed
temperature

(c) All the unproportioned products are summarized as
humin (H)
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4. Experimental Evolution

Based on these developed models, a control experiment was
performed in the laboratory. Oxalic acid was selected as a
weak organic acid and p-toluenesulfonic acid (pTSA) as a
strong organic acid. Water was selected as a reaction solvent
due to its excellent sugar solvation capacity and recognition
as a universal solvent; hence, selectively adopted as a solvent
in organic reactions. *e reaction was proceeded for a long
enough time to determine the reaction parameters with high
accuracy. *e experimental data were used to calculate the
kinetic parameter employing developed models in MAT-
LAB2016a and presented here in Table 1. With the help of
these predicted values, a dynamic simulation of this process
was performed. Results thus obtained are then compared
with experimental results in Figure 1 and Figure 2 for oxalic
acid-catalysed reaction and pTSA catalysed reaction, re-
spectively. Here, the lines are showing the simulated values
and symbols are representing experimental results.

Figure 1 elucidates a good relationship between exper-
imental results andmodel-predicted values. Briefly, there is a
difference between model-predicted values and experi-
mental results for fructose conversion and humin formation
in the first 120 minutes. *is is because of intermediate
formation (as shown in Scheme 2). Here, all the unac-
counted species formed through different side reactions
(condensation, polymerization, and degradation) are termed
as humin and calculated by mass difference [48]. *erefore,
all the intermediates, whether desired or undesired, were
accounted as humin which made the difference. After the
first two hours, a good relationship exists for fructose
conversion as well as for humin formation. However, for
HMF and LA formation, a satisfactory balance can be ob-
served in Figure 1 which proved the model’s accuracy and
applicability. Additionally, the linear comparison of ex-
perimental results and modeled predicted values shows high
goods of fit as all the R2 values are >0.9 (Table 1). Hence, it
can be validated that the developed model is appropriate for
fructose conversion reactions influenced by weak acids.

It can be observed from Figure 2 that there is a high
difference between the experimental value and model-pre-
dicted results during the first hour of the reaction, which
rapidly decreased in the second hour. After two hours, both
values coincide and show high accuracy. However, an
overlap of experimental results and model values can be
observed for HMF production and LA formation
throughout the reaction similar to the oxalic acid-catalysed
process (Figure 1). *is proved the developed model ac-
curacy for relatively strong acid (pTSA) catalysed fructose
conversion reaction. Hence, it can be validated that the
developed is equally applicable to both for strong acid as well

as for weak acid-catalysed sugar conversion reactions. Ki-
netic investigation of the conversion of sucrose solution to
HMF employing homogenous catalysts was performed by
Abdilla-Santes et al. [49]. *e hydrolysis of sucrose yields
equimolar concentrations of glucose and fructose. *ese
sugars are then dehydrated to HMF. *erefore, sucrose
conversion data are logical to compare with this study be-
cause fructose is a common dehydration feedstock in both
reactions. It was observed during data analysis that most of
the experimental data is comparable with modeled data. *e
only minor exception was observed with HMF formation
during the first hour of the reaction [49]. *is anomaly can
be explained because the employed catalyst was mineral acid
(H2SO4) which is more reactive at a reaction temperature of
180°C during the initial phase of the reaction. Overall, the
tested model was accurate which was proved with high
compatibility of experimental and modeled data-based
parity plot. *e results presented by Guo et al. [29] are as
accurate as shown in this study; however, the catalyst used
was again H2SO4 and the use of mineral acids as catalysts has
severe environmental concerns [50]. Mostly, the use of
environmentally friendly catalysts is the primary choice
which can be achieved either using organic acid catalysts or

Table 1: Calculated kinetic parameters of organic acid-catalysed dehydration of fructose to HMF. *e initial fructose and acid-catalyst
concentrations were 1.0M. *e reaction was performed in 50ml solvent for 3 hours with continuous stirring.

Acid catalyst Solvent Temp (°C)
Rate constant (min− 1) Goodness of fit (R2)

k1 k2 k3 k4 Fructose HMF LA Humin
Oxalic acid Water 100 1.1× 10− 3 9.7×10− 4 1.5×10− 3 4.2×10− 14 0.9525 0.9849 0.9911 0.8665
pTSA Water 100 2.1× 10− 3 1.97×10− 3 3.7×10− 3 4.4×10− 13 0.9576 0.9247 0.9713 0.764
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Figure 1: Plots of oxalic acid-catalysed conversion of fructose in
water solvent. Reaction conditions: 1.0M oxalic acid with 1.0M
fructose in 50ml deionized water; FUR: fructose; HMF: 5-
hydroxymethylfurfural; LA: levulinic acid; HUM; humin.
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recoverable heterogeneous catalysts [51, 52]. *erefore, this
study was aimed to use organic acids catalysts to substitute
mineral acids as a homogenous catalyst.

It can be observed that most of the model-predicted data
are in satisfactory equilibrium with experimental data
(Figures 1 and 2). Furthermore, the linear comparison be-
tween experimental concentrations with model-predicted
values gives very high accuracy as all the R2 values are >0.9
(Table 1). Hence, a good relationship with high R2 proved
the accuracy of this model. For that reason, this model can be
used to predict the experimental outcomes with relatively
high accuracy both for strong acids as well as for weak acids
catalysed reactions.

5. Conclusions

Conversion of fructose can be optimized using a mathe-
matical model prior to the experimental study. In this paper,
an analytical solution for the instantaneous concentration of
reacting fructose and products HMF has been developed
using kinetic and mathematical modeling. *ese developed
relationships can be used to determine the extent of reaction
in a protonic [H+] environment at any time (t) and for the
development of concentration profiles in a computational
environment. *e developed models were further verified
with a detailed experiment employing oxalic acid and pTSA
as catalysts. *e results are elucidated.

(i) *e instantaneous concentration of reactant
fructose can be calculated theoretically using
CF(t) � CF(0)e

− (k1+k2)t.

(ii) *e instantaneous concentration of prod-
uct HMF can be calculated theoretically
using CHMF(t) � [(k1CF(0)

/ − k1 − k2 + k3 + k4)

(e(− k1− k2+k3+k4)t − 1) + CHMF(0)
]e− (k3+k4)t.

(iii) *e comparison analyses of experimental data with
modeled predicted values elucidated that the de-
veloped model is accurate to predict the concen-
trations because all the values of R2 are >0.9. Hence,
it can be validated that the developed solutions are a
good tool to predict the reaction outcomes.

(iv) *is model can be used to demonstrate the actual
computational environment and reaction behavior
during fructose conversion schemes.

(v) *is model can be used as a baseline to develop the
new specific models for the elaboration of ligno-
cellulosic biomass-derived sugars (C5 and C6) and
their derivatives to useful platform chemicals.
Further extension of these models will help to
demonstrate the computational environment of
biomass-derived disaccharides and polysaccharides.
Additionally, the model can be extended to elabo-
rate the effect of reaction temperature on concen-
tration profiles of reactants, intermediates, and
products.
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*is paper is concerned with the adaptive consensus problem of incommensurate chaotic fractional order multiagent systems.
Firstly, we introduce fractional-order derivative in the sense of Caputo and the classical stability theorem of linear fractional order
systems; also, algebraic graph theory and sufficient conditions are presented to ensure the consensus for fractional multiagent
systems. Furthermore, adaptive protocols of each agent using local information are designed and a detailed analysis of the leader-
following consensus is presented. Finally, some numerical simulation examples are also given to show the effectiveness of the
proposed results.

1. Introduction

Study of multiagent systems over the past decades in various
fields such as biology, mechanics, physics, and, more re-
cently, control theories have been found (see [1]). As one of
the most fundamental issues of multiagent systems, the
consensus problem has attracted extensive research from
various perspectives. Consensus of multiagent systems can
be used to solve many complex problems in the control
community and have been widely used in sensor network
(see [2]), flocking (see [3]), formation control (see [4]),
mobile robots (see [5]), and so on. In general, in multiagent
systems, consensus means that agents with the arbitrary
initial conditions converge to the desired target (position,
attitude, speed, phase, etc.) by interacting information with
their neighboring agents. In these systems, to achieve the
conditions of consensus, graph theory, matrix theory, and
the classical stability theorem of fractional-order system
have been used, and in terms of classification, there are two
general types, consensus with leader and consensus without
leader; the latter is more challenging in terms of stability and
connected topology than the former (see [6]). In a leader-
following consensus, the control signals of the agents are
appropriately selected such that their state trajectories follow

the leader state, which can be achieved by local information
exchanging from the leader and other agents. Prior to 2008,
most articles related to multiagent systems worked on
consensus of integer-order dynamics, such as consensus
algorithms of first-order dynamic systems (see [7–9]) as well
as second-order dynamics (see [10]) or even high order
dynamic systems (see [11]). However, since many phe-
nomena cannot be accurately explained by integer-order
dynamics, such as macromolecule fluids and porous media,
a clear example of the fractional order model is the rela-
tionship between heat flow and temperature in heat diffusion
of a semi-infinite solid (see [12]); also, many systems in the
nature can be described and more precisely modeled by a
coordinated behavior of agents with fractional-order
dynamics(see [13,14]); for instance, the group movement of
bacteria in fatty and microbial environments (see [15]) and
the coordination of submarines in stagnant water and the
movement of land vehicles on sandy, muddy, or grassy roads
(see [16]) amongst others, and moreover, compared to the
integer-order model, fractional-order systems can provide
an excellent method in description the characteristics of the
system well; based on these facts, studying the consensus of
fractional-order systems has become very important and was
fully examined for the first time in [16–18]. Successively, the
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convergence speed of consensus for fractional-order mul-
tiagent systems was also discussed further in [19] and in [20]
and presented the consensus of fractional-order multiagent
systems with varying-order [0< α< 1, 1< α< 2]. *e con-
sensus problem of fractional-order systems with input delays
and heterogeneous multiagent systems in [21, 22] was also
examined.

An interesting issue in fractional-order multiagent
systems is that agents follow a leader, where the leader is a
special agent and his movement is independent of other
agents. It has been reported that such models are an energy-
saving mechanism (see [23]), which was found in many
biological systems and can also strengthen group commu-
nication and orientation. *rough the observer method,
consensus of multiagent systems with the leader was given
by the second-order model and the followers depicted
differential order less than two, which was concerned in [24].
In [25], leader-following consensus of fractional-order
multiagent systems under fixed topology has been studied.

As we know, the behavior of some fractional dynamical
systems in nature can be often chaotic. Chaotic systems are a
class of nonlinear deterministic systems and describe nu-
merous complex and unusual behaviors. At first, it has been
found that a large number of fractional-order differential
systems exhibit chaotic behavior, such as the fractional-
order Lorenz system (see [26]), the fractional-order Rossler
system (see [27]), the fractional-order Chua system (see
[28]), the fractional-order Lü system (see [29]), and the
fractional-order Chen system (see [30]). *erefore, control
and consensus of fractional-order chaotic systems have
attracted great attention. According to one type of classi-
fication in terms of the derivative order, consensus in leader-
following chaotic fractional systems is divided into two
categories. *e first group of two dynamic systems have the
same order, which is introduced to the commensurate order
system, and in the second group, the fractional order of the
two systems is different, which is called incommensurate
order system, and it is desirable that, by exercising control,
the follower system follows the behavior of the leader system.
In recent years, many successful attempts have been made to
consensus of chaotic commensurate fractional-order sys-
tems, but in applied and practical systems, two chaotic
systems cannot necessarily be assumed to be the same or-
ders. On the contrary, the methods used to consensus of the
same orders’ chaotic systems are not easily applicable to
consensus of different orders chaotic systems, and also, the
incommensurate order system has advantages compared to
the previous case. One of them is that the fraction derivative
order of the state variables in the follower system, which are
to be consensus, is freed from the derivative order com-
ponent in the leader system, and this can create more
flexibility in the choice of leader and follower system. As a
result, due to the many applications of chaotic systems
consensus in data security in fuzzy systems (see [31]), secure
communication (see [32]), the effect of market trust on the
financial system (see [33]), and the study and treatment of
some diseases, such as the study of tumor cell chaos in the
tumor immunity fractional model (see [34]) and its appli-
cation in neural networks to solve fractional differential

equations (see [35]), motivated us in this paper to deal with
the consensus of the different fractional-order chaotic sys-
tems using adaptive control.

Adaptive control is a technique of applying some sys-
tems’ identification techniques to obtain a model and using
this model to design a controller (see [36]). *e parameters
of the controller are adjusted automatically during the
operation.

*e rest of this paper is organized as follows. In Section
2, the graph theory notations, Caputo fractional operator
and one kind of it, the commensurate and incommensurate
fractional order system, and some necessary lemmas and
theorems are introduced. In Section 3, the main results on
adaptive consensus for chaotic fractional multiagent systems
with 0< α≤ 1 are presented. In Section 4, the corresponding
simulation results are provided in this section to demon-
strate the effectiveness of the proposed method. Finally, the
concluding remarks are given in Section 5.

2. Preliminaries

In this section, first, some basic definitions of algebraic graph
theory and Caputo fractional operator will be mentioned.
*en, fractional systems with different orders and some
necessary lemmas and theorems for the stability of such
systems were discussed.

2.1. Graph  eory. Using graphs is the simplest and most
effective way to model the exchange of information between
factors in multiagent systems with a leader and N agents.
Each graph is a pair of G � (V, ε) that V � (v0, v1, v2, . . . ,

vN) which is a set of empty and finite nodes and
ε � (vi, vj), vi ≠ vj􏽮 􏽯⊆V × V is a set of edges of a graph that
connect nodes to each other. Each edge of the graph is shown
as an ordered pair (vi, vj) which means that the agent j can
transfer its information to the agent i, but not necessarily the
opposite. An undirected graph has the property that
(vi, vj) ∈ ε implies (vj, vi) ∈ ε.*e set of neighbors of node vi

is denoted by Ni � vj ∈ V: (vi, vj) ∈ ε􏽮 􏽯. Edges of graph can
be weighted or weightless. Weight can indicate cost, time,
relocation, or any other factor. *e weighted adjacency
matrix W � [wij] ∈ RN×N of G with nonnegative entries is
defined as wii � 0, wij > 0 if (vi, vj) ∈ ε and wij � 0, other-
wise. *e degree matrix of G is D � diag(d1, . . . ,

dN) ∈ RN×N, where diagonal elements di > 0 if the i agent is a
neighbor of the leader and di � 0, otherwise. *e Laplacian
matrix L � [lij] ∈ RN×N of the weighted graphG is defined as
lii � 􏽐

j≠i
wij and lij � − wij for i≠ j.

Lemma 1 (see [25]). For any undirected graph G, matrix
H � L + D is positive definite if there is at least one directed
path from v0 (the leader) to all the other nodes. Also, it is
obvious that all the elements on the main diagonal of the
matrix H are all positive.

2.2. Caputo Fractional Derivative. At present, there are
several different definitions regarding the fractional deriv-
ative of order α≥ 0; Caputo and Riemann–Liouville (R–L)
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fractional operators are the two most commonly used in
different fields of fractional dynamic systems. *e main
advantage of the Caputo fraction derivative over the R-L
fraction derivative is that the initial conditions for fractional
differential equations with the Caputo derivatives are the
same as the integer order for the differential equations.
*erefore, in this paper, we will adopt the Caputo fractional
derivative to model the multiagent systems’ dynamics. *e
Caputo fractional derivative of f(t) with order α can be
written as follows (see [13]):

c
aD

α
t �

1
Γ(n − α)

􏽚
t

a

f
(n)

(τ)

(t − τ)
α− n+1 dτ, (1)

where n − 1< α< n, n ∈ Z+, and Γ(.) is the Gamma function:

Γ(α) � 􏽚
∞

0
e

− t
t
α− 1dt. (2)

For simplicity, the Caputo derivative c
aDα

t is replaced by
notation Dα in this paper.

One of the important concepts in fractional systems’
theory is stability, where necessary and sufficient conditions
for the stability of these systems have been thoroughly
studied in (see [37, 38]). For this object, we consider the
following linear system of fractional differential equations:

D
α
x(t) � Ax(t), x(0) � x0, (3)

where x ∈ Rn, the matrix A ∈ Rn × Rn, α � [α1, α2, . . . , αN]

indicates the fractional orders, and αi � ki/mi, (ki, mi) �

1, ki, mi ∈ N, 0< αi ≤ 1, for i � 1, 2, . . . , N, and M is the least
common multiple of the denominators mi.

Theorem 1 (see [37]). If α1 � α2 � . . . � αN, then system (3)
is called a commensurate fractional-order system. In this case,
system is asymptotically stable if and only if |arg(λi)|> απ/2 is
satisfied for all eigenvalues λi matrix A(arg(λi) � tan− 1

(Im(λi)/Re(λi))).

Theorem 2 (see [38]). If αi are not identically equal to each
other, then system (3) is called an incommensurate fractional-
order system. In this case, the system is asymptotically stable if
all roots λi of the equation de t(diag[λMα1 , λMα1 , . . . , λMα1] −

A) � 0 satisfy |arg(λi)|> π/2M.

3. Main Results

In this section, the leader-following consensus problem of
incommensurate fractional-order chaotic multiagent sys-
tems is discussed, and a distributed adaptive protocol is
designed to achieve consensus under an undirected

interaction fixed graph. We first consider the different
fractional-order multiagent system consisting of N agents
and a leader. *e dynamics of each agent is given by

D
β
xi � Bxi + G xi( 􏼁 + U, (4)

and the dynamics of the leader(labeled as i � 0) is depicted
by

D
α
x0 � Ax0 + F x0( 􏼁, (5)

where Dα means the Caputo fractional derivative of order α,
0< β≤ α≤ 1, and xi � (xi1, xi2, . . . , xiN) ∈ RN, x0 � (x01,

x02, . . . , x0N) ∈ RN, and U � (u1, u2, . . . , uN) ∈ RN repre-
sent the state of ith agent, the state of the leader, and the
control input, respectively. A � (aij)N×N, B � (bij)N×N are
the system matrices and F(x0) � (f1(x0), f2(x0), . . . ,

fN(x0)
)T, G(xi) � (g1(xi), g2(xi), . . . , gN(xi)

)T denote the
nonlinear part of the leader-following system.

Remark 1. *e leader’s dynamic is independent of others.
We take the different nonlinear dynamical functions F(x)

and G(x) for leader and all the agents, respectively.

Definition 1. *e leader-following consensus of systems (4)
and (5) will be achieved if, for each agent i ∈ 1, 2, . . . , N{ },
there is the appropriate control ui of xj: j ∈ Ni􏽮 􏽯 such that
the closed-loop system satisfies

lim
x⟶∞

xi(t) − x0(t)
����

���� � 0, i � 1, 2, . . . , N. (6)

Theorem 3. Consider the leader-following multiagent sys-
tems (4) and (5), where α≠ β, but αi are equal to each other if
we define the distributed adaptive control law as follows:

U � D
− (α− β)

− I􏽨 􏽩Bxi − G xi( 􏼁 + D
− (α− β)

(A − B)x0 + F x0( 􏼁􏼂

− (B + I + cH) xi − x0( 􏼁􏼃,

(7)

such that

c>
− 1
λMax

, (8)

where c is feedback control gain and λMax is the largest ei-
genvalue of H; then, all the agents follow the leader under any
initial conditions.

Proof. Consider the following system (4), and now, by
substituting U from (7) in (4), we have

D
β
xi � Bxi + G xi( 􏼁 + D

− (α− β)
− I􏽨 􏽩Bxi − G xi( 􏼁 + D

− (α− β)
(A − B)x0 + F x0( 􏼁 − (B + I + cH) xi − x0( 􏼁􏼂 􏼃

� D
− (α− β)

Bxi + D
− (α− β)

(A − B)x0 + F x0( 􏼁 − (B + I + cH) xi − x0( 􏼁􏼂 􏼃.
(9)
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By taking the fractional derivative of order α − β from
the above relation, we will have

D
α
xi � Bxi +(A − B)x0 + F x0( 􏼁 − (B + I + cH) xi − x0( 􏼁.

(10)

Let us define the state error between the agents and the
leader as e � xi − x0. *en, the dynamics of e is

D
α
e � Bxi + Ax0 − Bx0 + F x0( 􏼁 − (B + I + cH)e

− Ax0 − F x0( 􏼁

� B xi − x0( 􏼁 − (B + I + cH)e

� − (I + cH)e.

(11)

*us, according to *eorem 1, system (11) is asymp-
totically stable if

arg λi(− I− cH)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌>
απ
2

,∀i ∈ 1, 2, . . . , N{ } (12)

We select c so that the following relation is established:

− 1 − cλi(H) < 0,∀i ∈ 1, 2, . . . , N{ } (13)

and on the contrary, from Lemma 1, all eigenvalues of
matrix H are nonnegative which implies that

− c<
1

λi(H)

. (14)

By definition, λMax � Max(λH), all the agents follow the
leader from any initial conditions; it is enough
c> (− 1/λMax).

*e main purpose of this controller is to convert the
following system to a fractional-order system equivalent to
the leader system so that the derivative order is equal in the
corresponding state variables in the two systems. □

Corollary 1. Consider  eorem 3 under the control law (7).
If

c<
− 1
λMin

, (15)

where λmin is the smallest eigenvalue of H, the agents never
follow the leader.

Theorem 4. Consider the leader-following multiagent sys-
tems (4) and (5), where α � β, but αi are not necessarily equal
to each other if we define the distributed adaptive control law
as follows:

U � (A − B)x0 + F x0( 􏼁 − G x0( 􏼁 − JG x0( 􏼁 xi − x0( 􏼁

− (B + I) xi − x0( 􏼁 − c diag(H) xi − x0( 􏼁,
(16)

such that

c>
− 1

Max hii( 􏼁
, (17)

where c is feedback control gain and Max(hii) and matrix
diag(H) are shown as the largest elements and the elements
on the main diagonal of the matrix H, respectively. Matrices
L, D and JG are the Laplacian matrix and degree matrix of
graph and Jacobian matrix G, respectively.  en, all the
agents follow the leader under any initial conditions.

Proof. Consider system (4), and assuming
αi � βi,∀i ∈ 1, 2, . . . , N{ }, now, by substituting U from (16)
in (4), we have

D
α
xi � Bxi + G xi( 􏼁 +(A − B)x0 + F x0( 􏼁 − G x0( 􏼁

− JG x0( 􏼁 xi − x0( 􏼁

− (B + I) xi − x0( 􏼁 − c diag(H) xi − x0( 􏼁.

(18)

Now, if we define the state error between the agents and
the leader as e � xi − x0, then the dynamics of e is

D
α
e � Bxi + G xi( 􏼁 +(A − B)x0 + F x0( 􏼁 − G x0( 􏼁 − JG x0( 􏼁e

− (B + I)e − c diag(H)e − Ax0 − F x0( 􏼁

� Bxi + G xi( 􏼁 − Bx0 − G x0( 􏼁 − JG x0( 􏼁e − (B + I)e

− c diag(H)e.

(19)

By using Taylor expansion around xi � x0 + e, the fol-
lowing statement is obtained:

G xi( 􏼁 � G x0( 􏼁 + JG x0( 􏼁e + o ‖e‖
2

􏼐 􏼑. (20)

By combining equations (19) and (20), we have

D
α
e � Bxi + G x0( 􏼁 + JG x0( 􏼁e + o ‖e‖

2
􏼐 􏼑 − Bx0 − G x0( 􏼁 − JG x0( 􏼁e − (B + I)e − c diag(H)e

� − Ie − c diag(H)e + o ‖e‖
2

􏼐 􏼑

� − diag(I + cH) + o ‖e‖
2

􏼐 􏼑.

(21)

Since, αi are not assumed to be equal, so according to
*eorem 2, all roots λ of the equation det(diag
[(λMα1 , λMα1 , . . . , λMα1) + (I + cH)]) � 0 satisfy |arg(λ)|>
π/2M in which λi are obtained as follows:

λMα1 + 1 + ch11􏼐 􏼑 λMα2 + 1 + ch22􏼐 􏼑 . . . λMαN + 1 + chNN􏼐 􏼑 � 0. (22)

So, λi holds in at least one of equations (λMα1 + 1 +

ch11) � 0,
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(λMα2 + 1 + ch22) � 0, . . . , (λMαN + 1 + chNN) � 0. Suppose
λ � r( cos θ + i sin θ) to get n’th roots of a complex number;
we have

λMα1 � − 1 − ch11⟹ λk � cos
2kπ + π

Mα1
+ i sin

2kπ + π
Mα1

􏼠 􏼡, k � 0, 1, . . . , Mα1 − 1,

λMα2 � − 1 − ch22⟹ λk � cos
2kπ + π

Mα2
+ i sin

2kπ + π
Mα2

􏼠 􏼡, k � 0, 1, . . . , Mα2 − 1,

⋮

λMαN � − 1 − chNN⟹ λk � cos
2kπ + π
MαN

+ i sin
2kπ + π
MαN

􏼠 􏼡, k � 0, 1, . . . , MαN − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

On the contrary, all the elements on the main diagonal of
the matrix H are all positive, and as can be seen, if the
relation is c> (− 1/Max(hii)), then the condition |Min
(argλk)| � (π/Max(Mαi))> (π/2M) is in all cases, and
therefore, the stability condition is established. □

Corollary 2. Consider  eorem 4 under the control law (16).
If

c<
− 1

Min hii( 􏼁
, (24)

then the agents never follow the leader.

Remark 2. *e case α≠ β and αi are not necessarily equal to
each other; initially, using controller (7), the fractional order
of the follower system is equal to the order of the leader
system; then, to consensus of the systems, we use the stability
of *eorem 4 and select c from equation (15).

4. Numerical Example

In this section, some illustrative examples are presented to
verify the efficiency of the proposed leader-following con-
sensus approach. *e first example considers the case when
fractional orders α, β in the leader-following system are not
equal, but ∀i ∈ 1, 2, . . . , N{ }, αi are equal and the second one
considers the case when fractional orders α, β in the leader-
following system are equal, but αi are not necessarily equal to
each other. *e third example is considered α≠ β and αi are
not necessarily equal to each other, which are all considered
under the undirected graph.

Example 1. Consider a multiagent of chaotic different
fractional-order consisting of a leader and three agents, and
in order to facilitate the solution of our examples, without
loss of generality, we assume that v0 � (x0, y0, z0) and
vi � (xi, yi, zi), i � 1, 2, . . . , N, for all examples in this sec-
tion. *ey are the state variables of the leader and state
variables of the agents satisfying

D
α1x0 � σ y0 − x0( 􏼁,

D
α2y0 � ρx0 − x0z0 − y0,

D
α3z0 � x0y0 − bz0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(25)

D
β1xi � a2 yi +

xi − 2x
3
i

7
􏼠 􏼡,

D
β2yi � xi − yi + zi,

D
β3zi � − b2yi,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where σ � 10, ρ � 28, b � 8/3 and a2 � 12.75, b2 � 100/7.
Assume the Lorenz system (25) is the leader system (see

[26]) and the Chua system (26) is the agent systems (see
[28]). Also, suppose the topology is described as in Figure 1.
For convenience, let wij � 1(di � 1) if wij > 0(di > 0) and
wij � 0(di � 0), otherwise.*us, the Laplacian L and matrix
D are as follows:

L �

2 − 1 − 1
− 1 2 − 1
− 1 − 1 2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

D �

1 0 0
0 1 0
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(27)

A straightforward calculation shows the largest eigen-
value of H � L + D is λMax � 4. In simulation, we choose
αi � 0.99 and βi � 0.9, the initial conditions of leader system
as (1, 0, − 0.5) and the initial conditions of agents system as
(− 1, 1, 0), (− 0.5, 1.5, 1), (4, 1, − 1). Under the control law (7),
the fractional order of the follower system is equal to the
order of the leader system; now, according to (8), by
choosing c � − 0.1, we can see that three agents follow the
leader. *e consensus errors are shown in Figure 2.

Now, if we increase the feedback control gain c from
− 0.1 to 0.75 in the above example, it is expected that the
consensus speed will increase; in other words, the time to
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reach the zero error will decrease, which we see in Figure 3.
Time to zero error is reduced from above 5 seconds to below
2 seconds. Table 1 also shows the average time to zero of the
variables error with increasing c.

Also, according eigenvalues of H are 0.5858, 3.4142, 4{ }

in the above example; if we suppose c< − (1/λmin), for
example c � − 0.3, we will see that the followers do not follow
the leader, which is shown in Figure 4. And this example is
presented as a proof of Corollary 1.

Example 2. Consider a multiagent of chaotic fractional-
order consisting of a leader and three agents. *ey are the
state variables of the leader and state variables of the agents
satisfying

D
α1x0 � a1 y0 − x0( 􏼁,

D
α2y0 � − x0z0 + c1y0,

D
α3z0 � x0y0 − b1z0,

⎧⎪⎨

⎪⎩
(28)

D
β1xi � a2 yi − xi( 􏼁,

D
β2yi � d2xi − xizi + c2yi,

D
β3zi � xiyi − b2zi,

⎧⎪⎪⎨

⎪⎪⎩
(29)

where a1 � 36, b1 � 3, and c1 � 20 and a2 � 35, b2 � 3,

c2 � 12, and d2 � 7.
Assume the Lü system (28) is the leader system (see [29])

and the Chen system (29) is the agent system (see [30]). Also,
suppose the topology is described as in Figure 5. Hence, the
Laplacian L and matrix D are as follows:

V0

V1
V2

V3

Figure 1: *e topology of the leader-following multiagent system under the undirected graph.
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Figure 2: *e error trajectories of leader and agents with c � − 0.1 in Example 1. (a) *e error trajectories of v0 and v1. (b) *e error
trajectories of v0 and v2. (c) *e error trajectories of v0 and v3.
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Figure 3: *e error trajectories of leader and agents with c � 0.75 in Example 1. (a) *e error trajectories of v0 and v1. (b) *e error
trajectories of v0 and v2. (c) *e error trajectories of v0 and v3.

Table 1: Average time to zero of the variables’ error with increasing c in Example 1.

c − 0.1 0.5 0.75 1 3
T 10.3 2.5 1.8 1.4 1
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Figure 4: *e error trajectories of leader and agents with c � − 0.3 in Example 1. (a) *e error trajectories of v0 and v1. (b) *e error
trajectories of v0 and v2. (c) *e error trajectories of v0 and v3.
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L �

1 0 − 1
0 1 − 1

− 1 − 1 2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠,

D �

1 0 0
0 1 0
0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(30)

In simulation, we choose α � β � (0.99, 0.98, 0.97) and
the initial conditions of leader system as (0.5, 2, 1) and the
initial conditions of agents syttem as (− 2, 1, 1),

(− 0.5, 1.5, − 3), (4, 0, 1.5). Under the control law (16) and

according to equation (17), by choosing c � − 0.4, consensus
occurs in the leader-following system. *e consensus errors
are shown in Figure 6.

We can see in Table 2 the average time to zero of the
variables error with increasing c in Example 2.

Example 3. Consider Example 1, except that the orders of
the leader and follower systems are α � (0.99, 0.98,

0.97) and βi � 0.96, respectively. Now, using controller (7),
we equalize the orders of the two systems, and then,
according to equation (17), we choose c � 0.5. *e con-
sensus errors are provided in Figure 7.

V0

V2

V3

V1

Figure 5: *e topology of the leader-following multiagent system under the undirected graph.
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Figure 6: *e error trajectories of leader and agents with c � − 0.4 in Example 2. (a) *e error trajectories of v0 and v1. (b) *e error
trajectories of v0 and v2. (c) *e error trajectories of v0 and v3.

Table 2: Average time to zero of the variables’ error with increasing c in Example 2.

c − 0.4 − 0.1 0.5 1 3
t 22 7.8 3.1 2 0.8
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Table 3 shows the average time to zero of the variables’
error with increasing c in Example 3.

5. Conclusion

In the present paper, we study the consensus of different
fractional-order systems with adaptive protocols via an
undirected fixed interaction graph. *erefore, using the
stability theorems of the fractional order system as well as
the concepts of information exchange between graph ver-
tices and corresponding matrices, several types of nonlinear
adaptive controllers have been designed to suit the problem
conditions. As mentioned in the study, these controllers
were designed in such a way that, after applying the con-
troller, the fractional order of all agents of the incom-
mensurate leader-followingmultiagent system is equal to the
fractional order of the leader system so that the two systems
can be matched. It should be noted that, in the design of the
controllers, the feedback rate coefficient was used and the
effective range for the desired coefficient was considered.
Future research includes the study of adaptive consensus for
fractional time-delayed multiagent systems and or time-
varying communication constraints. We can also expand on
the condition of consensus in a limited time. Finally, ex-
amples and numerical results show that using the appro-
priate interest rate, the consensus of multiagent systems is
guaranteed.
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In this paper, we discuss the solvability of a class of multiterm initial value problems involving the Caputo–Fabrizio fractional
derivative via the Laplace transform. We derive necessary and sufficient conditions to guarantee the existence of solutions to the
problem. We also obtain the solutions in closed forms. We present two examples to illustrate the validity of the obtained results.

1. Introduction

Recently, there is great interest to develop new types of
fractional derivatives of nonsingular kernel. Motivated by
applications, Caputo and Fabrizio were the first to introduce
such types of fractional derivatives with nonlocal and
nonsingular kernel [1]. ,e Caputo–Fabrizio derivative is
connected with a variety of applications (see [2–6]). Stability
analysis of fractional differential equations without inputs
was studied in [7], where exponential stability is obtained for
the Caputo–Fabrizio derivative. Since their kernels are
nonlocal, fractional derivatives preserve memories, and
therefore, they have been used to model several (SIR) epi-
demic models (see [8–14]). Several analytical techniques
have been implemented to study various fractional equations
with fractional derivatives without singular kernels, such as
the Laplace transform, reduction to initial value problems
with integer derivatives, maximum principles, and fixed
point theorems (see [15–21]), just to mention a few out of

many in the literature.,e following definitions are required
to state our problem.

Definition 1. A function f is said to be absolutely contin-
uous on [a, b], if there exists a function f′ ∈ L1(a, b) such
that

f(t) � f(a) + 􏽚
t

a
f′(x)dx, ∀t ∈ [a, b]. (1)

In the following, we will use the notation AC([a, b]) to
denote the space of absolutely continuous functions on
[a, b].

Definition 2. A function f: [0, +∞)⟶ R is said to be of
exponential order, if there exists three constants T, M, C≥ 0
such that |f(t)|≤CeMt,∀t≥T.

,en, we define the following space.

Definition 3. ,e space M1 is defined by

M
1

� f ∈ L
1
loc: f is absolutely continuous on [0, T], for anyT> 0, andf, f′ are of exponential order􏽮 􏽯. (2)

In this paper, we consider the multiterm fractional initial
value problem:
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􏽘

n

k�1
ak

CFC
D

αk

0 y􏼐 􏼑(t) � an+1y(t) + f(t), t> 0, n≥ 2, (3)

y(0) � y0, (4)

where 1> α1 > α2 > · · · > αn > 0, ak > 0, k � 1, . . . , n, and
(CFCD

α
0) is the Caputo–Fabrizio fractional derivative of

Caputo sense. Here, we assume that y, f ∈M1, so their
Laplace transforms are well defined.

Definition 4 (see [1]). For 0< α< 1, t> 0 and f ∈M1, the
Caputo–Fabrizio fractional derivative of Caputo sense is
defined by

CFC
D

α
0f􏼐 􏼑(t) �

B(α)

1 − α
􏽚

t

0
f′(τ)e

− (α/(1− α))(t− τ)dτ, (5)

where B(α)> 0 is a normalization function satisfying
B(0) � B(1) � 1.

For the corresponding fractional integral and more
properties of the derivative, we refer the readers to
[1, 5, 22–24]. In [15, 17], the fractional initial value problems
were transformed to equivalent initial value problems with
integer derivatives. However, the technique is not valid for
the multiterm initial value problems. ,e single term of the
problemwith n � 1 was discussed in [23], and the solution of
the problem was obtained in a closed form. In this paper, we
apply the Laplace transform to analyze the solutions of the
fractional initial value problems (3) and (4). ,is paper is
organized as follows: in Section 2, we present some pre-
liminary results about the Caputo–Fabrizio fractional de-
rivative and derive necessary and sufficient conditions to
guarantee the existence of solutions to problems (3) and (4).
We also obtain the exact solutions in closed forms using the
Laplace transform. In Section 3, we present two examples to
illustrate the validity of our results. Finally, we close up with
some concluding remarks in Section 4.

2. Main Results

We start with the definition and main results concerning the
Caputo–Fabrizio derivative. ,en, we present necessary and
sufficient conditions for the solution of problems (3) and (4).
Since (CFCD

α
0f)(t) � (B(α)/(1 − α))f′(t)∗ e− (α/(1− α))t,

equation (3) can be written as

􏽘

n

k�1
cke

− μkt ∗y′(t) � cn+1y(t) + f(t), t> 0, n≥ 2, (6)

where

ck �
B αk( 􏼁

1 − αk

ak,

μk �
αk

1 − αk

, k � 1, . . . , n, cn+1 � an+1,

(7)

and ∗ denotes to the convolution of two functions.

Remark 1. Let F(s) � (Pn(s)/Qm(s)) where Pn(s) and
Qm(s) are polynomials with degrees n and m, respectively,
and are with real coefficients. If n<m, then the inverse
Laplace transform of F(s) exists and can be evaluated using
partial fractions.

Lemma 1. For f ∈M1, the following hold:

(1) CFCD
α
0 : AC([0, T])⟶ C([0, T])

(2) (CFCD
α
0f)(0) � 0

Proof.
(1) For any function f ∈ AC([0, T]), CFCD

α
0f is the

convolution product of a continuous function and L1

function, that is continuous
(2) Since for any f ∈ AC([0, T]), CFCD

α
0f is continuous;

then, CFCD
α
0f(0) � limt⟶0+

CFCD
α
0f(t) � 0 □

Definition 5. Let the space M2 be defined by

M
2

� f ∈ C
1
([0, +∞)): f′(0) � f′ 0+

( 􏼁 ∈ R, f′ ∈ AC([0, T]), for any T> 0, andf, f′, f″ are of exponential order􏽮 􏽯. (8)

Lemma 2. 2e following holds for multiterm fractional
initial value problems (3) and (4).

(1) If a solution y: [0, +∞)⟶ R exists such that
y ∈ AC([0, T]) for any T> 0, then cn+1y(0) +f(0)

� 0
(2) If f ∈M1, cn+1y(0) + f(0) � 0, and cn+1 ≠ 􏽐

n
k�1 ck,

then a unique solution y ∈M1 exists
(3) If a solution y ∈M1 exists for y0 ≠ 0 and f ∈M2,

then cn+1 ≠ 􏽐
n
k�1 ck

Proof.
(1) Let y ∈ C([0, +∞)) be a solution to multiterm

fractional initial value problems (3) and (4) with
y ∈ AC([0, T]) for any T> 0. By Lemma 1,
CFCD

αk

0 y(t) � 0 for any k � 1, . . . , n ,en, from
equation (3), one gets

cn+1y(0) + f(0) � 0. (9)

(2) Let y0 ≠ 0, f ∈M1, cn+1y(0) + f(0) � 0, and
cn+1 ≠ 􏽐

n
k�1 ck. ,en, applying the Laplace transform
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to equation (6) and using the convolution result, we
have

􏽘

n

k�1

ck

s + μk

sL(y)(t) − y0􏼂 􏼃 � cn+1L(y)(t) + F(s),

(10)

where F(s) � L(f)(t). ,e above equation yields

L(f)(t) s 􏽘
n

k�1

ck

s + μk

− cn+1
⎛⎝ ⎞⎠ � y0 􏽘

n

k�1

ck

s + μk

+ F(s).

(11)

We have

􏽘

n

k�1

ck

s + μk

�
c1

s + μ1
+

c2

s + μ2
+ · · · +

cn

s + μn

� 􏽘
n

k�1
ck

􏽑
n
j�1,j≠ k s + μj􏼐 􏼑

􏽑
n
k�1 s + μk( 􏼁 �

Qn− 1(s)

Pn(s)
,

(12)

where Qn− 1(s) � 􏽐
n
k�1 ck 􏽑

n
j�1,j≠ k (s + μj) and

Pn(s) � 􏽑
n
k�1 (s + μk) are polynomials of degrees n −

1 and n, respectively. Substituting in equation (11),
we have

L(y) s
Qn− 1(s)

Pn(s)
− cn+1􏼠 􏼡 � y0

Qn− 1(s)

Pn(s)
+ F(s), (13)

or

L(y)(s) � y0
Qn− 1(s)

sQn− 1(s) − cn+1Pn(s)

+
Pn(s)

sQn− 1(s) − cn+1Pn(s)
F(s).

(14)

Now, the leading coefficient of the polynomial
Qn− 1(s) is 􏽐

n
k�1 ck, and the leading coefficient of the

polynomial Pn(s) is 1. If cn+1 ≠ 􏽐
n
k�1 ck, then sQn− 1

(s) − cn+1Pn(s) is a polynomial of degree n. Let

H1(s) �
Qn− 1(s)

sQn− 1(s) − cn+1Pn(s)
,

H2(s) �
1
s

Pn(s)

sQn− 1(s) − cn+1Pn(s)
,

(15)

so that L− 1(H1)(s) � h1(t) andL− 1(H2) (s) � h2
(t) are well defined. ,en,

L(y)(t) � y0H1(s) + H2(s)sF(s)

� y0H1(s) + H(s) L f′( 􏼁(t) + f(0)( 􏼁.

(16)

Using the uniqueness result of the inverse Laplace
transform, we have

y(t) � y0h1(t) + h2(t)∗f′(t) + f(0)h2(t), (17)

which completes the proof.
(3) Let a solution y ∈M1 exists for y0 ≠ 0 and f ∈M2.

Starting from equation (14), let us define

􏽥H1(s) � y0
Qn− 1(s)

sQn− 1(s) − cn+1Pn(s)
,

􏽥g(s) �
Pn(s)

sQn− 1(s) − cn+1Pn(s)
F(s)

�
Pn(s)

s
2

sQn− 1(s) − cn+1Pn(s)( 􏼁
s
2
F(s).

(18)

Define

􏽥H2(s) �
Pn(s)

s
2

sQn− 1(s) − cn+1Pn(s)( 􏼁
. (19)

􏽥H2 admits an inverse Laplace transform since sQn− 1(s) −

cn+1Pn(s) is of degree n − 1. Moreover, since f ∈M2, also
s2F(s) admits an inverse Laplace transform, thus also 􏽥g(s)

(by the convolution rule). One can rewrite equation (14) as

L(y)(s) − 􏽥g(s) � 􏽥H1(s). (20)

However, since sQn− 1(s) − cn+1Pn(s) is of degree n − 1
and y≠ 0, the right-hand side does not admit an inverse
Laplace transform while the left-hand side does, which is a
contradiction. □

Lemma 3. Let y ∈ AC([0, T]), T> 0, be a solution to the
multiterm fractional initial value problem (3) with y(0) � 0,
then f(0) � 0.

Proof. From Lemma 1, since y0 � y(0) � 0, then
f(0) � 0. □

Remark 2. If y(0) � f(0) � 0, f ∈M1, and cn+1 ≠ 􏽐
n
k�1 ck,

then a solution y ∈M1 exists by Lemma 2. If f ∈M2, a
solution exists even if cn+1 � 􏽐

n
k�1 ck, and it can be evaluated

using the Laplace transform in the following manner.

Lemma 4. Let y(t) be a possible solution to multiterm
fractional initial value problems (3) and (4), with
y(0) � f(0) � 0, cn+1 � 􏽐

n
k�1 ck, and f ∈M2. If

G(s) � s2L(f)(t) has an inverse Laplace transform, then
y(t) � h3(t)∗L− 1(s2F(s)), where h3(t) � L− 1(H3)(s)

and H3 is defined in equation (22).

Proof. Substituting y0 � 0, in equation (14), we have

L(y)(t) �
Pn(s)

sQn− 1(s) − cn+1Pn(s)
F(s). (21)
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Since cn+1 � 􏽐
n
k�1 ck, we have sQn− 1(s) − cn+1Pn(s) is a

polynomial of degree n − 1. Let

H3(s) �
1
s
2

Pn(s)

sQn− 1(s) − cn+1Pn(s)
, (22)

so that L− 1(H3)(s) � h3(t) is well defined. ,en, equation
(14) yields

L(y)(t) � H3(s)s
2
F(s). (23)

If f ∈M2, thenL(y)(t) in equation (23) can be written
as

L(y)(t) � H3(s) L f″( 􏼁(t) + sf(0) + f′(0)( 􏼁

� H3(s) L f″( 􏼁(t) + f′(0)( 􏼁.
(24)

Applying the inverse Laplace transform, we have

y(t) � h3 ∗f″(t) + f′(0)h3(t). (25)

We summarize the obtained results in the following
main theorem. □

Theorem 1. Consider multiterm fractional initial value
problems (3) and (4).

(1) For y0 � 0, if a solution y ∈ AC([0, T]), T> 0, exists,
then f(0) � 0

(2) If f ∈M1, cn+1y(0) + f(0) � 0, and cn+1 ≠ 􏽐
n
k�1 ck,

then a solution y ∈M1 exists
(3) If f ∈M2 and y0 ≠ 0, then a solution y ∈M1 exists if

and only if cn+1 � 􏽐
n
k�1 ck

(4) If y0 � 0, f ∈M2, and f(0) � 0, then a solution
y ∈M1 exists

3. Illustrative Examples

We discuss two main examples. ,e first one is a two-term
problem where it holds that cn+1 � 􏽐

n
k�1 ck. We show the

existence of a solution for a specific case by imposing extra
conditions. ,e second example is a three-term problem
where it holds that cn+1 ≠ 􏽐

n
k�1 ck. So, the existence of a

unique solution is guaranteed. We present the solution in a
closed form and discuss several special cases.

Example 1. Consider the two-term fractional initial value
problem:

e
− μ1t

+ e
− μ2t

􏼐 􏼑∗y′(t) � 2y(t) + f(t),

y(0) � y0.
(26)

Since c1 + c2 � c3, then the problem has no solution for
y(0)≠ 0. For y(0) � f(0) � 0 and s2L(f)(t) has Laplace
inverse, the problem admits a solution. To verify, let us find
the solution given by equation (25). We have

Q1(s) � 2s + μ1 + μ2,

P2(s) � s + μ1( 􏼁 s + μ2( 􏼁,

H3(s) � −
1
s
2

s + μ1( 􏼁 s + μ2( 􏼁

μ1 + μ2( 􏼁s + 2μ1μ2

�
R1

s
+

R2

s
2 +

R3

μ1 + μ2( 􏼁s + 2μ1μ2
,

(27)

where

R1 � −
1
4
μ1 + μ2
μ1μ2

,

R2 � −
1
2
,

R3 �
1
4

μ1 − μ2( 􏼁
2

μ1μ2
.

(28)

,us,

h3(t) � L
− 1

H3( 􏼁(s) � R1 + R2t +
R3

μ1 + μ2
e

− 2 μ1μ2/μ1+μ2( )t
,

(29)

and the solution y(t) � h3(t)∗f″(t) + f′(0)h3(t) is ob-
tained, provided that f ∈M2.

As a special case, let us consider f(t) � t2. ,en,
f(0) � 0, L(f)(t) � (2/s3), and s2L(f)(t) � (2/s) have
Laplace inverse. ,us,

y(t) � h3(t)∗f″(t) + f′(0)h3(t) � h3(t)∗ 2

� 2􏽚
t

0
R1 + R2τ +

R3

μ1 + μ2
e

− 2 μ1μ2/μ1+μ2( )τ􏼠 􏼡dτ

� 2R1t + R2t
2

−
R3

μ1μ2
e

− 2 μ1μ2/μ1+μ2( ) − 1􏼒 􏼓.

(30)

For μ1 � (2/3) and μ2 � (1/3), we have
R1 � − (9/8), R2 � − (1/2), R3 � (1/8), and

y(t) �
9
4

t −
1
2
t
2

−
9
16

e
− (4/9)t

+
9
16

. (31)

Example 2. As a second example, we consider the three-
term initial value problem:

e
− μ1t

+ e
− μ2t

+ e
− μ3t

􏼐 􏼑∗y′(t) � y(t) + f(t),

y(0) � y0.
(32)

Since c1 � c2 � c3 � c4 � 1 and c1 + c2 + c3 ≠ c4, the
problem has a unique solution given by equation (17)
provided that y(0) + f(0) � 0. We have

4 Journal of Mathematics



Q2(s) � 􏽘
3

k�1
ck 􏽙

3

j�1,j≠ k

s + μj􏼐 􏼑 � s + μ2( 􏼁 s + μ3( 􏼁

+ s + μ1( 􏼁 s + μ3( 􏼁

+ s + μ1( 􏼁 s + μ2( 􏼁, P3(s)

� 􏽙
3

k�1
s + μk( 􏼁

� s + μ1( 􏼁 s + μ2( 􏼁 s + μ3( 􏼁.

(33)

Let

T3(s) � sQ2(s) − c4P3(s) � 2s
3

+ μ1 + μ2 + μ3( 􏼁s
2

− μ1μ2μ3,
(34)

then

H1(s) �
Q2(s)

T3(s)
,

H2(s) �
1
s

P3(s)

T3(s)
,

(35)

with

L
− 1

H1( 􏼁(s) � h1(t),

L
− 1

H2( 􏼁(s) � h2(t),
(36)

and the solution is given by

y(t) � y0h1(t) + h2(t)∗f′(t) + f(0)h2(t). (37)

For f(t) � t, we have y(0) � − f(0) � 0, and thus

y(t) � h2(t)∗ 1 � 􏽚
t

0
h2(τ)dτ. (38)

For f(t) � 1, we have y(0) � − f(0) � − 1, and thus

y(t) � h2(t) − h1(t). (39)

As a specific case, if we consider
μ1 � (7/5), μ2 � (1/2), and μ3 � (1/3), we have

Q2(s) � 3s
2

+
67
15

s +
4
3
,

P3(s) � s
3

+
67
30

s
2

+
4
3

s +
7
30

,

T3(s) � 2s
3

+
67
30

s
2

−
7
30

,

H1(s) �
Q2(s)

P3(s)
�
90s

2
+ 134s + 40

60s
3

+ 67s
2

− 7
�

A0

s + 1
+

A1

s + Δ1
+

A2

s + Δ2
,

H2(s) �
P3(s)

sT3(s)
�

30s
3

+ 67s
2

+ 40s + 7
s(s + 1) s + Δ1( 􏼁 s + Δ2( 􏼁

� −
1
s

+ H1(s),

(40)

where Δ1 � (7 +
����
1729

√
)/120,Δ2 � (7 −

����
1729

√
)/120, A0 �

− (2/23), A1 � (73
����
1729

√
− 3113)/92

����
1729

√
, A2 �

(73
����
1729

√
+ 3113) /92

����
1729

√
, h1(t) � A0e − t + A1 e− Δ1t

+A2e
− Δ2t, and h2(t) � h1(t) − 1.

Forf(t) � t, we have y(t) � 􏽒
t

0 h2(τ)dτ � (A0+ (A1/Δ1)
+(A2 /Δ2)) − t − A0e

− t − (A1/Δ1)e− Δ1t − (A2/Δ2)e− Δ2t.

4. Concluding Remarks

We obtained the solutions of a class of multiterm fractional
initial value problems in closed forms using the Laplace
transform. We have also discussed several necessary and
sufficient conditions to guarantee the existence of solutions
to the problem. Whether the results are extendable to wider
classes of multiterm initial value problems or systems of
fractional equations is left for future work.
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-is article focuses on modeling bone formation process using a fractional differential approach, named bones remodeling
process.-e first goal of the work is to investigate existence and uniqueness of the proposed fractional differential model.-e next
goal is to investigate how similar is the proposed approach to the method based on system classical differential equations. -e
dynamical system of equations used is built upon three main parameters. -ese are chemical substances, namely, calcitonin
secretion, osteoclastic and osteoblastic, which are involved in the bone’s formation process. We implement some numerical
simulations to graphically show the impact of an arbitrary fractional order of derivative. We finally obtained that modeling bone
formation process using fractional differential equations yielded comparable results with those obtained through a system of
classical differential equations. Flexibility in the choice of the fractional order of derivative is an advantage as it helps in selecting
the best fractional order of derivative.

1. Introduction

Modeling natural phenomena through differential equation
has long been used by scientists. In the early days, differential
equations with integer order of derivative were commonly
used. -en several fractional order derivatives have been
implemented. In earlier days of fractional differential
equations, researchers mainly focused on theoretical
concepts, investigating existence and uniqueness of so-
lution of built models. A sample of such theoretical works
is found in [1–5]. In general, researchers build models
based on fractional differential by analogy to the approach
that would be used in the case of classical differential [6–8].
Hence, in many cases, authors will try to compare models’
performances from both approaches. Despite analogies that
might exist between classical and fractional models upon a
given problem, both models might not have common
properties. For instance, the Carleman embedding technique
[9] applicable in the studies of classical differential equations
does not hold for the fractional differential equations for
instance. Beside theoretical study of fractional differential

equations, a lot have been done by researchers concerning
possible application to real life phenomena. One can
mention a nonexhaustive field of study with examples for
which fractional differential has been successfully per-
formed. In biology, modeling dynamics in human tissues
was proposed in [10]. Alcohol can be dangerous when its
concentration in high human blood exceeds a certain
threshold. In [11], a fractional-based model of alcohol level
in blood was proposed.

Following the aims to prove the use of fractional dif-
ferential equations, we decided to investigate how efficient it
will be in modeling bone formation process. Before going
into details, we will provide an overview of human bone
formation process. Human bone formation and develop-
ment are a complex process that starts from when a fetus is 3
months old and ends during teenage years, 13–18 years old.
However, bone formation never ends in practice. Indeed,
bones are living tissue made up of protein, calcium, and
other minerals, as well as water. In this regard, bones’ tissue
constantly renews itself, by breaking down older tissue and
replacing it with new tissue. -is process is called “bone
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remodeling process.” In literature, “bone formation” and
“bone remodeling” refer often to the same process. -ere
exit various cells or/and chemicals which are at the base of
remodeling process. -ree chemicals to which we will pay
attention include the level of calcitonin above the basal level
in the blood, the number of active osteoclasts at time t, and
the number of active osteoblasts at time t.

In this work, we build a system of fractional differential
equations to modeling bone formation, which we call the
bone remodeling process. Detailed information on the bi-
ological and chemical processes involved in the study as well
as the chemical elements involved in bone formation are
found in [12–17] and references therein. -erefore, we
provided no or a very shallow biological and chemical de-
scription of the phenomenon. We rather focus on building a
system of fractional differential equations of the model in
which a classical differential equation counterpart is found
in [12]. Moreover, we proved the existence and uniqueness
of the built model. Lastly, we exhibited the solution of the
built system using four numerical approaches of solving
nonlinear differential equations, namely, the generalized
Euler’s method (GEM), the Grünwald–Letnikov method or
power series expansion (GL or PSE), the Caputo–Fabrizio
method (CF), and the Atangana–Baleanu fractional derivative
in Caputo sense (ABC). Modeling approach that consists of
performing an experiment on the same data set with different
techniques, including the proposed one, then to compare their
performance using an error-metric function is not used in this
work. Indeed, in the setting of this work, there is no com-
prehensive way to compare performances of the proposed
method with those of existing methods.

2. Preliminaries

Fundamental definitions, terminologies, and notations
commonly used in fractional calculus are provided in this
section.

Definition 1. Given a function h: [0, +∞)⟶ R, its Rie-
mann–Liouville fractional integral of order q> 0 is defined
as

RLI
q
0+ h( 􏼁(t) �

1
Γ(q)

􏽚
t

0
(t − s)

q− 1
h(s)ds, (1)

with the provision that the right-hand side of the integral is
point wise defined on (0, +∞) and Γ representing the usual
gamma function Γ(υ) � 􏽒

∞
0 e− ttυ− 1dt,∀υ> 0.

Definition 2. Given a function h: [0, +∞)⟶ R, its Rie-
mann–Liouville fractional derivative of order q> 0 is defined
by

RLD
q
0+ h( 􏼁(t) �

1
Γ(n − q)

dn

dt
n􏼠 􏼡 􏽚

t

0
(t − s)

n− q− 1
h(s)ds,

(2)

where n − 1≤ q< n, n ∈ N.

Definition 3. Considering a function h: [0, +∞)⟶ R, its
Caputo derivative of order q> 0 is defined as

CD
q
0+ h( 􏼁(t) �

􏽚
t

0

(t − s)
n− q− 1

h
(n)

(s)

Γ(n − q)
ds, n − 1<q<n ∈R,

h
(n)

(t), q ∈ N,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where n � [q] + 1, [q] is the integer part of q.

Definition 4. Let g be a continuous function and
n � (t − a/h), then the Grünwald– Letnikov (GL) fractional
derivative of g is given by

GLD
q
a+ g( 􏼁(t) � lim

h⟶0

1
h

q 􏽘

[(t− a)/h]

j�0
(− 1)

j
q

j

⎛⎝ ⎞⎠g(t − jh),

(4)

where

q

j

⎛⎝ ⎞⎠ �
q!

j!(q − j)!
�

Γ(q + 1)

Γ(j + 1)Γ(q − j + 1)
,

q

0
⎛⎝ ⎞⎠ � 1.

(5)

Definition 5. Let g ∈ H1(a, b), b> a and q ∈ [0, 1], then the
new Caputo version of fractional derivative is defined as

CFD
q
0g( 􏼁(t) �

M(q)

(1 − q)
􏽚

t

a
g′(s)exp −

q

1 − q
(t − s)􏼢 􏼣ds,

(6)

where M(q) is the normalization function with
M(0) � M(1) � 1. If g ∉ H1[a, b], then the new derivative
called Caputo–Fabrizio fractional derivative can be defined
as

CFD
q
0g( 􏼁(t) �

M(q)

(1 − q)
􏽚
t

0
g′(s)exp −

q

1 − q
(t − s)􏼢 􏼣ds.

(7)

Definition 6. Let g ∈ H1(a, b), b> a and q ∈ [0, 1]. -en, the
Atangana–Baleanu operator in the Caputo sense (ABC
derivative) is defined as

ABCD
q
0g( 􏼁(t) �

B(q)

(1 − q)
􏽚

t

a
g′(s)Eq −

q

1 − q
(t − s)

q
􏼢 􏼣ds,

(8)
where B(q) is the normalization function with
B(0) � B(1) � 1.
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3. Numerical Techniques of Solving Nonlinear
Differential Equations

We discussed in this section some general numerical
methods that are often used for computing numerical
solution to nonlinear fractional differential equations.
-ese methods are applied on the fractional model built in
sequel.

3.1. 3e Generalized Euler’s Method (GEM). -e GEM is
discussed in this subsection. -is method was first intro-
duced by Odibat and Momani [18]. -e method is derived
from the well-known Euler’s method of solving classical
differential equations. Consider the fractional order non-
linear differential equation defined by

CD
q
0+( 􏼁(t) � g(t, x(t)), x(0) � 0, (9)

where the fractional order of derivative q ∈ (0, 1] and t> 0.
Moreover, let us assume that the following functions x(t),
CD

q
0+ x(t) and CD

2q
0+ x(t) are continuous on the closed in-

terval [0, T]. In order to compute the numerical solution to
the problem defined by equation (9) over the interval [0, T],
a discretization of [0, T] into k subintervals [tj, tj+1] of equal
width h � T/k is required. -e set of points tj, x(tj)􏽮 􏽯 is also
used in the approximation process. -e GEM approximate
solution is defined by

x tj+1􏼐 􏼑 � x tj􏼐 􏼑 +
h

q

Γ(q + 1)
g tj, x tj􏼐 􏼑􏼐 􏼑, j � 0,1, . . . , k − 1,

(10)

where the node tj � jh, j � 1, 2, . . . , k.

3.2. 3e Grünwald–Letnikov Method GL or PSE.
Grünwald provided a numerical approach of solving non-
linear differential equation. -is approach is discussed in
detail in [19].

Definition 7. -e explicit fractional numerical approxi-
mation formula of q th derivative at the points kh, (k �

1, 2, . . .) in the Grünwald–Letnikov sense has the following
form [19]:

(k− Lm/h) GLD
q
tk

g􏼐 􏼑(t) ≈
1
h

q 􏽘

k

j�0
(− 1)

j
q

j

⎛⎝ ⎞⎠g tk− j􏼐 􏼑, (11)

where Lm is the memory length; tk � kh; the time-space step

of iteration is h and (− 1)j q

j
􏼠 􏼡 are referred to as binomial

coefficients. For computational issue, the binomial coeffi-
cients are usually denoted by c

(q)
j , (j � 0, 1, . . .) and

computed as follows:
c

(q)
0 � 1

c
(q)

j � (1 − (1 + q/j))c
(q)

j− 1

⎧⎨

⎩ .

Consider a nonlinear fractional differential equation,
where the fractional derivative is taken in the
Grünwald–Letnikov sense, with initial condition, defined by

GLD
q
a+ u( 􏼁(t) � g(u(t), t). (12)

-e numerical solution to the problem stated by
equation (12) is given by

u tk( 􏼁 � g u tk( 􏼁, tk( 􏼁h
q

− 􏽘

k

j�1
c

(q)
j u tk− j􏼐 􏼑. (13)

3.3.3eCaputo–FabrizioMethod(CF). Consider a nonlinear
fractional differential equation with initial condition, where
the fractional derivative is taken in the Caputo–Fabrizio
sense, defined by

CFD
q
0u( 􏼁(t) � g(t, u(t)), u(0) � u0. (14)

-e numerical solution to the problem defined by
equation (14) is built based on the Adam–Bashforth method
as (see [20, 21])

un+1 � un +
1 − q

M(q)
+

3qh

2M(q)
􏼠 􏼡g tn, un( 􏼁

+
1 − q

M(q)
+

qh

2M(q)
􏼠 􏼡g tn− 1, un− 1( 􏼁.

(15)

3.4. Atangana–BaleanuFractionalDerivative inCaputo Sense
(ABC). Let us consider the following fractional differential
equation:

ABCD
q
0u( 􏼁(t) � g(t, u(t)), u(0) � u0. (16)

-e numerical solution to the problem defined by
equation (16) is built based on the Adam–Bashforth method
as (see [20, 21])

un+1 � un +
1 − q

ABC(q)
+

q

ABC(q)h

2ht
q
n+1

q
−
2ht

q+1
n+1

q + 1
􏼢 􏼣 −

q

ABC(q)Γ(h)h

2ht
q
n+1

q
−
2ht

q+1
n+1

q + 1
􏼢 􏼣􏼠 􏼡g tn, un( 􏼁

+
q − 1

ABC(q)
−

q

ABC(q)Γ(h)h

ht
q
n+1
q

−
ht

q+1
n+1

q + 1
+

tq+1

ABC(q)Γ(h)h
􏼢 􏼣􏼠 􏼡g tn− 1, un− 1( 􏼁.

(17)
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4. Bone Remodeling Process

In this section, the bone remodeling process is discussed.
Before the fractional model, we recall the classical differ-
ential equations model described in [12].-e system is made
of three nonlinear differential equations

dx

dt
�

c1 + c2y

m1 + y
􏼠 􏼡 − d1x,

dy

dt
� c3 −

c4x

m2 + x
2􏼠 􏼡yz − d2y,

dz

dt
�

c5 + c6x

m3 + x
􏼠 􏼡z − d3z,

(18)

where

x(t): the level of CT above the basal level in the blood,

y(t): the number of active osteoclasts at time t ,

z(t): the number of active osteoblasts at time t.

(19)

-e system given by equation (18) is converted into a
fractional differential system by introducing the Capu-
to–Fabrizio fractional derivative as follows:

CF
0 D

q

t x �
c1 + c2y

m1 + y
􏼠 􏼡 − d1x,

CF
0 D

q

t y � c3 −
c4x

m2 + x
2􏼠 􏼡yz − d2y,

CF
0 D

q

t z �
c5 + c6x

m3 + x
􏼠 􏼡z − d3z.

(20)

Alongside with the initial conditions,

x(0) � x0,

y(0) � y0,

z(0) � z0.

(21)

Let us assume that the three variables involved in the
process are such that T � X + Y + Z, let Ψ be the Banach
space of continuous functions defined on the interval J

endowed with the norm ‖(x, y, z)‖ � ‖x‖ + ‖y‖ + ‖z‖, where
‖x‖ � sup |x(t)|, t ∈ J{ }, ‖y‖ � sup |y(t)|, t ∈ J􏼈 􏼉,
‖z‖ � sup |z(t)|, t ∈ J{ }. Particularly, Ψ � C(J) × C(J),
where C(J) is the Banach space of continuous functions
defined on J.

4.1. Existence and Uniqueness of the System of Bone Remod-
eling Process of Fractional Order. -e existence and
uniqueness of a solution for the system of fractional dif-
ferential equations defined by equation (20) are investigated
in this section through the fixed-point theory.

It follows from the application of the fractional integral
operator introduced by Nieto and Losada [22], to equation
(20), that

x(t) − x(0) �
CF
0 I

q

t

c1 + c2y

m1 + y
􏼠 􏼡 − d1x􏼢 􏼣,

y(t) − y(0) �
CF
0 I

q

t c3 −
c4x

m2 + x
2􏼠 􏼡yz − d2y􏼢 􏼣,

z(t) − z(0) �
CF
0 I

q

t

c5 + c6x

m3 + x
􏼠 􏼡z − d3z􏼢 􏼣.

(22)

It follows from equation (22) that

x(t) − x(0) �
2(1 − q)

(2 − q)M(q)

c1 + c2y(t)

m1 + y(t)
􏼠 􏼡 − d1x(t)􏼢 􏼣 +

2q

(2 − q)M(q)
􏽚

t

0

c1 + c2y(s)

m1 + y(s)
􏼠 􏼡 − d1x(s)􏼢 􏼣ds,

y(t) − y(0) �
2(1 − q)

(2 − q)M(q)
c3 −

c4x(t)

m2 + x
2
(t)

􏼠 􏼡y(t)z(t) − d2y(t)􏼢 􏼣

+
2q

(2 − q)M(q)
􏽚

t

0
c3 −

c4x(s)

m2 + x
2
(s)

􏼠 􏼡y(s)z(s) − d2y(s)􏼢 􏼣ds,

z(t) − z(0) �
2(1 − q)

(2 − q)M(q)

c5 + c6x(t)

m3 + x(t)
􏼠 􏼡z(t) − d3z(t)􏼢 􏼣

+
2q

(2 − q)M(q)
􏽚

t

0

c5 + c6x(s)

m3 + x(s)
􏼠 􏼡z(s) − d3z(s)􏼢 􏼣ds.

(23)
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Let us denote for convenience,

Q1(t, x) �
c1 + c2y(t)

m1 + y(t)
􏼠 􏼡 − d1x(t),

Q2(t, y) � c3 −
c4x(t)

m2 + x
2
(t)

􏼠 􏼡y(t)z(t) − d2y(t),

Q3(t, z) �
c5 + c6x(t)

m3 + x(t)
􏼠 􏼡z(t) − d3z(t),

μ1 � d1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

μ2 � c3 −
c4x

m2 + x
2􏼠 􏼡z − d2

��������

��������
,

μ3 �
c5 + c6x

m3 + x
􏼠 􏼡 − d3

��������

��������
,

(24)

provided that the functions x, y, and z are bounded as as-
sumed above.

Theorem 1. 3e kernel Q1 satisfies the Lipschitz condition
and contraction, if the following inequality holds:

0≤ μ1 < 1. (25)

Proof. Let x and x1 be two functions, then

Q1(t, x) − Q1 t, x1( 􏼁
����

���� �
c1 + c2y(t)

m1 + y(t)
􏼠 􏼡 − d1x(t)􏼠 􏼡

��������

−
c1 + c2y(t)

m1 + y(t)
􏼠 􏼡 − d1x1(t)􏼠 􏼡

��������

≤ μ1 x − x1
����

����.

(26)

Hence, Lipschitz condition satisfied for Q1 and if ad-
ditionally 0≤ μ1 < 1, then it is also contraction. □

Theorem 2. 3e kernel Q2 satisfies the Lipschitz condition
and contraction, if the following inequality holds:

0≤ μ2 < 1. (27)

Theorem 3. 3e kernel Q3 satisfies the Lipschitz condition
and contraction, if the following inequality holds:

0≤ μ3 < 1. (28)

Remark 1. -eorems 2 and 3 are proved in a similar ap-
proach to what is used in the proof of -eorem 1.

Using the notations introduced above, the system given
by equation (23) is written in a simple form as follows:

x(t) � x(0) +
2(1 − q)

(2 − q)M(q)
Q1(t, x) +

2q

(2 − q)M(q)
􏽚

t

0
Q1(s, x)ds,

y(t) � y(0) +
2(1 − q)

(2 − q)M(q)
Q2(t, y) +

2q

(2 − q)M(q)
􏽚

t

0
Q2(s, y)ds,

z(t) � z(0) +
2(1 − q)

(2 − q)M(q)
Q3(t, z) +

2q

(2 − q)M(q)
􏽚

t

0
Q3(s, z)ds.

(29)

Let us consider the following system of recursive formula
derived from equation (29):

xn(t) �
2(1 − q)

(2 − q)M(q)
Q1 t, xn− 1( 􏼁 +

2q

(2 − q)M(q)
􏽚

t

0
Q1 s, xn− 1( 􏼁ds,

yn(t) �
2(1 − q)

(2 − q)M(q)
Q2 t, yn− 1( 􏼁 +

2q

(2 − q)M(q)
􏽚

t

0
Q2 s, yn− 1( 􏼁ds,

zn(t) �
2(1 − q)

(2 − q)M(q)
Q3 t, zn− 1( 􏼁 +

2q

(2 − q)M(q)
􏽚

t

0
Q3 s, zn− 1( 􏼁ds.

(30)

-e difference between two consecutive terms of each of
the equation from the system above can be written as
follows:

xϕn(t) � xn(t) − xn− 1(t) �
2(1 − q)

(2 − q)M(q)
Q1 t, xn− 1( 􏼁 − Q1 t, xn− 2( 􏼁( 􏼁

+
2q

(2 − q)M(q)
􏽚

t

0
Q1 s, xn− 1( 􏼁 − Q1 s, xn− 2( 􏼁( 􏼁ds,

yϕn
(t) � yn(t) − yn− 1(t) �

2(1 − q)

(2 − q)M(q)
Q2 t, yn− 1( 􏼁 − Q2 t, yn− 2( 􏼁( 􏼁

+
2q

(2 − q)M(q)
􏽚

t

0
Q2 s, yn− 1( 􏼁 − Q2 s, yn− 2( 􏼁( 􏼁ds,

zϕn � zn(t) − zn− 1(t) �
2(1 − q)

(2 − q)M(q)
Q3 t, zn− 1( 􏼁 − Q3 t, zn− 2( 􏼁( 􏼁

+
2q

(2 − q)M(q)
􏽚

t

0
Q3 s, zn− 1( 􏼁 − Q3 s, zn− 2( 􏼁( 􏼁ds.

(31)

It follows from equations (30) and (31) that
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xn(t) � 􏽘
n

i�1
xϕi(t),

yn(t) � 􏽘

n

i�1
yϕi

(t),

zn(t) � 􏽘
n

i�1
zϕi(t).

(32)

Moreover, considering the first equation of the system
defined by equation (31), we have the relation

xϕn(t)
����

���� � xn(t) − xn− 1(t)
����

����≤
2(1 − q)

(2 − q)M(q)
Q1 t, xn− 1( 􏼁 − Q1 t, xn− 2( 􏼁

����
����

+
2q

(2 − q)M(q)
􏽚

t

0
Q1 s, xn− 1( 􏼁 − Q1 s, xn− 2( 􏼁( 􏼁ds

�������

�������
.

(33)

Since Q1 fulfills the Lipschitz condition, it follows from
equation (33) that

xϕn(t)
����

����≤
2(1 − q)

(2 − q)M(q)
μ1 xϕn− 1(t)

����
����

+
2q

(2 − q)M(q)
μ1 􏽚

t

0
xϕn− 1(s)

����
����ds.

(34)

Similarly, it follows that

yϕn
(t)

�����

�����≤
2(1 − q)

(2 − q)M(q)
μ2 yϕn− 1(t)

�����

�����

+
2q

(2 − q)M(q)
μ2 􏽚

t

0
yϕn− 1(s)

�����

�����ds,

(35)

zϕn(t)
����

����≤
2(1 − q)

(2 − q)M(q)
μ3 zϕn− 1(t)

����
����

+
2q

(2 − q)M(q)
μ3 􏽚

t

0
zϕn− 1(s)

����
����ds.

(36)

Theorem 4. 3e system of fractional differential equations
for bone remodeling process equation (20) has an exact
coupled solution, if there is t0 such that

2(1 − q)

(2 − q)M(q)
μ1 +

2q

(2 − q)M(q)
μ1t0 < 1. (37)

Proof. -e following conditions hold on functions x, y, and
z, ‖x‖≤M1 <∞, ‖y‖≤M2 <∞, and ‖z‖≤M3 <∞; more-
over, we have proven that the kernels satisfied the Lipschitz
condition, hence on consideration of equations (34)–(36)
and by using the recursive method, we can derive the fol-
lowing nonrecursive formulae:

xϕn(t)
����

����≤ xn(0)
����

����
2(1 − q)

(2 − q)M(q)
μ1 + +

2q

(2 − q)M(q)
μ1t􏼢 􏼣

n

,

yϕn
(t)

�����

�����≤ yn(0)
����

����
2(1 − q)

(2 − q)M(q)
μ2 + +

2q

(2 − q)M(q)
μ2t􏼢 􏼣

n

,

zϕn(t)
����

����≤ zn(0)
����

����
2(1 − q)

(2 − q)M(q)
μ3 + +

2q

(2 − q)M(q)
μ3t􏼢 􏼣

n

.

(38)

-e system given by equation (39) stands as the solution
of equation (20). Moreover, each equation of this system is
continuous. Hence, the existence and continuity are proven.
Now, let us prove that equation (39) is a solution of the
fractional system equation (20). Let us assume that

x(t) − x(0) � xn(t) − xTn(t),

y(t) − y(0) � yn(t) − yT
n
(t),

z(t) − z(0) � zn(t) − zTn(t).

(39)

It follows from the assumption that

xTn(t)
����

���� �
2(1 − q)

(2 − q)M(q)
Q1(t, x) − Q1 t, xn− 1( 􏼁( 􏼁 +

2q

(2 − q)M(q)
􏽚

t

0
Q1(s, x) − Q1 s, xn− 1( 􏼁( 􏼁ds

��������

��������

≤
2(1 − q)

(2 − q)M(q)
Q1(t, x) − Q1 t, xn− 1( 􏼁

����
���� +

2q

(2 − q)M(q)
􏽚

t

0
Q1(s, x) − Q1 s, xn− 1( 􏼁

����
����ds

≤
2(1 − q)

(2 − q)M(q)
μ1 x − xn− 1

����
���� +

2q

(2 − q)M(q)
μ1 x − xn− 1

����
����t.

(40)
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Applying the process recursively yields

xTn(t)
����

����≤
2(1 − q)

(2 − q)M(q)
+

2q

(2 − q)M(q)
t􏼠 􏼡

n+1

μn+1
1 a.

(41)

At t � t0, we have

xTn(t)
����

����≤
2(1 − q)

(2 − q)M(q)
+

2q

(2 − q)M(q)
t0􏼠 􏼡

n+1

μn+1
1 a.

(42)

At the limit case when n approaches infinity, it follows
from equation (42) that ‖xTn(t)‖⟶ 0.

Similarly, we can prove that ‖yT
n
(t)‖⟶ 0 and

‖zTn(t)‖⟶ 0. -is proves the existence of a solution of
equation (20), which furthermore is equation (38).

Let us now prove the uniqueness of a system of solution
of system equation (20). Let us assume there exists another
set of solution to the system equation (20); let us denote this
by x1(t), y1(t) , and z1(t), then

x(t) − x1(t) �
2(1 − q)

(2 − q)M(q)
Q1(t, x) − Q1 t, x1( 􏼁( 􏼁

+
2q

(2 − q)M(q)
􏽚

t

0
Q1(s, x) − Q1 s, x1( 􏼁( 􏼁ds.

(43)

Applying the norm on equation (43), it follows that

x(t) − x1(t)
����

����≤
2(1 − q)

(2 − q)M(q)
μ1 x(t) − x1(t)

����
����

+
2q

(2 − q)M(q)
μ1t x(t) − x1(t)

����
����.

(44)

Consequently,

x(t) − x1(t)
����

���� 1 −
2(1 − q)

(2 − q)M(q)
μ1 −

2q

(2 − q)M(q)
μ1t􏼠 􏼡≤ 0.

(45)
□

Theorem 5. 3e system of equation (20) has a unique so-
lution if the following condition holds:

1 −
2(1 − q)

(2 − q)M(q)
μ1 −

2q

(2 − q)M(q)
μ1t􏼠 􏼡> 0. (46)

Proof. If the above condition holds, then

x(t) − x1(t)
����

���� 1 −
2(1 − q)

(2 − q)M(q)
μ1 −

2q

(2 − q)M(q)
μ1t􏼠 􏼡≤ 0,

(47)

implying that

x(t) − x1(t)
����

���� � 0, thusx(t) � x1(t). (48)
Similarly, we can prove that y(t) � y1(t) and

z(t) � z1(t). □

5. Experimental Studies and
Numerical Simulations

In this section, we performed the numerical study of the
solution of the systems of classical differential equation (18)
of the bone formation process alongside the solution of the
fractional differential equation (20) that we introduced for
the same process. Computation and plotting are all done
using mathematical software called MATLAB. -e values of
initials parameters and constants appearing in the equations
are often determined experimentally by a biologist. For
convenience, we used in our simulations the values retrieved
from [12]. -e initial conditions of the problem are defined
as x0 � 1, y0 � 5 , and z0 � 5 .

-e constants are a1 � 0.1; a2 � 0.5; a3 � 0.4; a4 � 0.7;
a5 � 0.7; a6 � 0.085; k1 � 3; k2 � 5;
k3 � 2; b1 � 0.1; b2 � 0.2; and b3 � 0.2.

5.1. Classical Model. In this section, solution to the problem
defined by equation (18) is discussed. First order derivative
equations are used in the system. Recall that the model has
four variables, namely x, y, z, and t, where x, y, and z are the
three chemicals involved in the process, respectively, the
variation over time of the level of CT above the basal level in
the blood; the number of active osteoclasts at a given time t;
and the number of active osteoblasts at a given time t. -e
parameter t represents the time involved in the bone’s for-
mation process. 4-D representation would be appropriate tool
to simultaneously visualize the behavior of x, y, and z with
respect to t. However, only 1-D, 2-D, and 3-D representations
are efficient for representation. In this regard, we choose a 2-
D representation to show the variation of each of the sub-
stances x, y, and z, involved in the process as a function of
time t. Figures 1(a)–1(c) represent the variation of each of the
elements x, y, and z over time, whereas Figure 1(d) shows a
joint and simultaneous variation of x and z.

Figures 1(a)–1(d) represent the dynamic of chemicals
involved in bone formation process. Figures 1(a)–1(c), re-
spectively, represent the variation over time of the level of
CT above the basal level in the blood; the number of active
osteoclasts at a given time t; and the number of active os-
teoblasts at a given time t. One can observe from
Figures 1(a)–1(c) that chemical production decreases over
time for all the three chemicals involved in the process.
Moreover, the variation in chemical production shows a
sinusoidal shape reflecting the high fluctuation in the pro-
cess. -e level of CT above basal level fluctuates on either
side of the value 2.5 and tends to converge toward 2.5 over
time.-e number of active osteoclasts decreases very quickly
and tends to 0 with time. Finally, the number of active
osteoblasts fluctuates and tends to 1 with time. Figure 1(d)
aims to investigate if there exists a correlation between any
two of the chemicals produced in the process. Without loss
of generality, correlation between variation over time of the
level of CTabove the basal level in the blood and the number
of active osteoblasts at time t is investigated. -e outcome of
the investigation is that there is not a correlation in the way
the produced chemical evolved over time.
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5.2. Letnikov Fractional Model. Likewise the classical model
case, we use a 2-D visualization to display the variation over
time of the level of CTabove the basal level in the blood; the
number of active osteoclasts at a given time t; and the
number of active osteoblasts at a given time t (namely, x, y,
and z, respectively). A numerical approach based of the
fractional Letnikov model is used to produce variation
graphs, which are shown in sequel. -e initial parameters
and constants are same with those used in the previous
section for the classical approach, except the fractional order
of derivative, which we selected as q� 0.95 in this study.
Figures 2(a)–2(c) represent the variation of each of the el-
ements x, y, and z over time, whereas Figure 2(d) shows a
joint and simultaneous variation of x and z.

Figures 2(a)–2(d) represent the dynamic of chemicals
involved in bone formation process. Figures 2(a)–2(c), re-
spectively, represent the variation over time of the level of
CT above the basal level in the blood; the number of active
osteoclasts at a given time t; and the number of active

osteoblasts at a given time t obtained from Letnikov frac-
tional differential model. One can observe from
Figures 2(a)–2(c) that chemical production decreases over
time for all the three chemicals involved in the process.
Moreover, the variation in chemical production shows a
sinusoidal shape reflecting the high fluctuation in the pro-
cess. -e level of CT above basal level fluctuates on either
side of the value 2.5 and tends to converge toward 2.5 over
time.-e number of active osteoclasts decreases very quickly
and converges to a small but nonzero value over time. Fi-
nally, the number of active osteoblasts fluctuates and tends
to 1 with time. Figure 1(d) aims to investigate if there exists a
correlation between any two of the chemicals produced in
the process. Without loss of generality, correlation between
variation over time of the level of CTabove the basal level in
the blood and the number of active osteoblasts at time t is
investigated.-e outcome of the investigation is that there is
not a correlation in the way the produced chemical evolved
over time.
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Figure 1: (a)–(d)) Dynamic of chemicals involved in bone formation process obtained through classical differential equations.
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Figures 2(a)–2(c) have the same sinusoidal shape as their
counterpart from classical model. -ey also decrease over
time. However, maximum (respectively minimum) value of
the graph in classical model is larger (respectively smaller)
than those obtained in the Letnikov model. Figures 1(d) and
2(d) have same shape; they both show same trend.

5.3. Caputo–Fabrizio Fractional Model. In this section,
numerical solution based on Caputo–Fabrizio fractional
model is discussed. -e initial parameters and constants are
like those used in Section 5.3. Figures 3(a)–3(c) represent the
variation over time of the level of CTabove the basal level in
the blood; the number of active osteoclasts at a given time t;
and the number of active osteoblasts at a given time t
(namely, x, y, and z), whereas Figure 3(d) is a joint and
simultaneous variation of the variation over time of the level
of CT above the basal level in the blood and the number of
active osteoblasts at a given time t.

Figures 3(a)–3(c) represent the dynamic of chemicals
involved in bone formation process. Figures 3(a)–3(c),

respectively, represent the variation over time of the level
of CT above the basal level in the blood; the number of
active osteoclasts at a given time t; and the number of
active osteoblasts at a given time t. It is shown from
Figures 3(a)–3(c) that chemical production decreases over
time for all the three chemicals involved in the process.
Moreover, the variation in chemical production shows a
sinusoidal shape reflecting the high fluctuation in the
process. -e level of CT above basal level fluctuates on
either side of the value 2.5 and tends to converge toward
2.5 over time. -e number of active osteoclasts decreases
very quickly and tends to 0 with time. Finally, the number
of active osteoblasts fluctuates and tends to 1 with time.
Figure 3(d) aims to investigate if there exists a correlation
between any two of the chemicals produced in the process.
Without loss of generality, correlation between variation
over time of the level of CT above the basal level in the
blood and the number of active osteoblasts at time t is
investigated. -e outcome of the investigation is that there
is not a correlation in the way the produced chemical
evolved over time.
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Figure 2: (a)–(d)) Dynamic of chemicals involved in bone formation process obtained through fractional model of bone remodeling process
by Letnikov.
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6. Conclusion and Comments

-e goal of this paper was to build a system of differential
equations for bone formation process based on various
fractional differential equations. Indeed, Letnikov and
Caputo–Fabrizio fractional derivatives were used alongside
classical differential equation method for comparison
purposes. -e work does not follow traditional quantitative
modeling approach in which historical data exist, various
models including a proposed model are used to fit the data;
and their error rates are compared to pick the best model.
We put all these models together rather to investigate if the
proposed fractional differential equations-based models are
effective. In the course of the work, we proved existence and
uniqueness of the proposed system of differential equa-
tions; moreover, we studied the solution of the system using
numerical approaches. From the numerical simulation of
the classical model and those from the proposed fractional
model, one can observe similarity in both approaches. -is
consolidates the results obtained in the theoretical part of
the work. As a matter of fact, one can conclude that
fractional differential equation is effective in modeling bone

formation process. In further study, we will investigate
advantages and disadvantages of using such method over
classical approach.
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In this study, we investigate the semianalytic solution of the fifth-order Kawahara partial differential equation (KPDE) with the
approach of fractional-order derivative. We use Caputo-type derivative to investigate the said problem by using the homotopy
perturbation method (HPM) for the required solution. We obtain the solution in the form of infinite series. We next triggered
different parametric effects (such as x, t, and so on) on the structure of the solitary wave propagation, demonstrating that the
breadth and amplitude of the solitary wave potential may alter when these parameters are changed. We have demonstrated that
He’s approach is highly effective and powerful for the solution of such a higher-order nonlinear partial differential equation
through our calculations and simulations. We may apply our method to an additional complicated problem, particularly on the
applied side, such as astrophysics, plasma physics, and quantum mechanics, to perform complex theoretical computation.
Graphical presentation of few terms approximate solutions are given at different fractional orders.

1. Introduction

PDEs have important applications in physics, engineering,
and other applied sciences. (ey can describe different
phenomena and processes of real-world problems. One of
the important KPDE arises in the theory of magnetoacoustic
and shallow-water waves. Furthermore, it arises in the
theory of shallow-water waves with surface tension and
magnetoacoustic waves in plasmas. (erefore, several ana-
lytical and numerical methods have been established in
literature to investigate the prosed problems of PDEs. For
instance, [1] authors have used the comparison method for
the solution of the famous Kawahara equation. In the same
line, a procedure was developed in [2] for the exact solution
of the said problem. Also, authors [3] have computed the
solution of the Kawahara equation by using symbolic

computation. In this study, we apply a semianalytic HPM to
solve the fifth-order KPDEs. As in the last several decades’
investigation, traveling-waves solutions for nonlinear
equations played an important role in the study of the
nonlinear physical phenomenon [4].(ementionedmethod
provides an efficient approach to solve a nonlinear problem.
(eKPDEwas first suggested by Kawahara [5] in 1972. Since
these nonlinear equations need to be solved by using some
approximate methods, researchers have solved several
nonlinear problems by using HPM. (is method was first
proposed by He [6] and has been applied in [7] for the
solution of differential equations and integral equations in
both linear and nonlinear cases. (e said method is a
combination of topological homotopy and traditional per-
turbation methods. (e advantage of this method is to
provide an analytic approximate solution in applied sciences
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with a capacious range, and in this method, a small pa-
rameter is not necessary for an equation.(is method is also
applied to the system of the nonlinear system of equations as
in [8] for the analytic approximate solution for the model of
rabies transmission dynamics.

Because of the popularity of fractional calculus and
applications in many fields of science and engineering [9],
fluid mechanics [10], some more frequent applications in a
diverse area of science by using fraction calculus have been
investigated in [11, 12]. (e mentioned derivative extends
order from integer to any real or complex number which
provides a detailed explanation to physical problems.
Fractional derivatives can produce a complete spectrum of
the geometry which includes its integer counterpart as a
special case. Motivated from the aforesaid work, we extend
the given KPDE [13].

zu

zt
+ ρu

zu

zx
+ σ

z
3
u

zx
3 − c

z
5
u

zx
5 � 0,

u(x, 0) � g(x),

(1)

where g is a continuous function, while ρ, σ, andc are the
nonzero arbitrary constants to fractional order as

z
α
u
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α + ρu

z
β
u
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β + σ

z
κ
u
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κ − c

z
δ
u

zx
δ � 0, 0< α≤ 1, (2)

u(x, 0) � g(x), (3)

while 0< β≤ 1, 2< κ≤ 3, 4< δ ≤ 5, and g: R⟶ R is con-
tinuous function.

For the demonstration of our problem, we testified the
example given by Albert [14] as
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κ
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κ − c

z
δ
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δ � 0, (4)

with the initial condition

u(x, 0) �
105
169

sech4
x

2
��
13

√􏼠 􏼡, (5)

by using fractional derivative in Caputo sense. We also
present the solutions graphically and then, at the end,
provide conclusion and discussion.

2. Preliminaries and Notations

Here, we recall some preliminaries and notations from [15].

Definition 1. Caputo fractional-order derivative of a func-
tion ϕ on the interval [0,∞) is defined as

c
D

α
0+ϕ(t) �

1
Γ(n − α)

􏽚
t

0
(t − s)

n− α−1 dn

ds
n ϕ(s)ds, (6)

where n � [α] + 1 and [α] represent the integral part of α.

Definition 2. If α> 0, the Caputo fractional integral is de-
fined as

I
αϕ(t) �

1
Γ(α)

􏽚
t

0
(t − s)

α−1ϕ(s)ds, (7)

where α ∈ (0,∞).

Lemma 1. =e following result holds:

I
n

CD
n
0+ϕ(t)􏼂 􏼃 � ϕ(t) + a0 + a1t + a2t

2
+ · · · + an−1t

n− 1
,

(8)

for arbitrary ai ∈ R, i � 0, 1, 2, 3, . . . , n − 1, where n � [η] + 1
and [η] represent the integral part of η.

3. A General Algorithm about HPM

Consider a general type problem given by

A(μ) − f(r) � 0, r ∈ Ω, (9)

with boundary condition as

β μ,
zμ
zn

􏼠 􏼡 � 0, r ∈ Γ, (10)

where A is a general differential operator, β is a boundary
operator, f(r) is a known analytic function, and Γ is the
boundary of the domain Ω. (e operator A is divided into
linear part L and nonlinear part N. (erefore, (9) can be
written as

L(μ) + N(u) − f(r) � 0. (11)

By HPM, we can construct a homotopy as

v(r, p): Ω ×[0, 1]⟶ R, (12)

satisfying

H(v, p) � (1 − p)[L(v) − L(μ)] + p[A(v − f(r))] � 0,

(13)

which is also equivalent to

H(v, p) � L(v) − L μ0( 􏼁 + pL v0( 􏼁 + p[N(v) − f(r)] � 0,

(14)

where p ∈ [0; 1] is an embedding parameter, and μ0 is the
initial approximation of the given equation that satisfies the
boundary conditions; we have

H(v, 0) � L(v) − L μ0( 􏼁 � 0,

H(v, 1) � A(v) − f(r) � 0.
(15)

Keeping these points, we construct the required solution
to equation (11) as

v � v0 + p
1
v1 + p

2
v2 + p

3
v3 + · · · . (16)

Furthermore, by taking limit as p⟶ 1 in the ap-
proximation equation (16), one has

lim
p⟶1

v � lim
p⟶1

v0 + p
1
v1 + p

2
v2 + p

3
v3 + · · · , (17)

which yields
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v � v0 + v1 + v2 + v3 + · · · . (18)

Equation (18) represents the semianalytic solution of the
problem equation (9).

4. Approximate Solution to
Considered Problem

Here, in view of HPM as discussed in previous section, we
proceed as
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We assume the solution of equation (2) as follows:
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i
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Now, using equation (20) in (19) and comparing the
coefficients of pi, for i � 0, 1, 2, 3, . . ., we have
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From system equation (21), we get
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Consider zeroth-order problem as
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Second-order problem
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Where
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In the same way, one has
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Now, taking the limit as p⟶ 1 in equation (20), we get
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Next, equations (23)–(28) imply that
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where ξ � c
z
δ

zx
δu0 − ρu0

z
β

zx
βu0 − σ

z
κ

zx
κ ξ. (30)

4 Journal of Mathematics



Hence, (29) is a required solution of the fractional-order
KPDE.

4.1. Fractional Temporal Numerical Example. Consider the
fractional-order KPDE given by
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z
δ
u

zx
δ � 0, 0< α≤ 1, 0< β≤ 1, 2< κ≤ 3, 4< δ ≤ 5, (31)

with initial condition

u(x, 0) �
105
169

sec h
4 x

2
��
13

√􏼠 􏼡. (32)

Using HPM, equation (21) yields that

H(u, p) ≔
z
α
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α u −

105
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z
α
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4 x

2
��
13

√􏼠 􏼡 +
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p
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2
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√􏼠 􏼡􏼢 􏼣

+ p u
z
β

zx
β u +

z
κ

zx
κ u −

z
δ

zx
δ u􏼢 􏼣.

(33)

Using equations (20) and (33), we get the following
comparison with respect to p:

p
0 ≔

z
α
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αu0 −
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z
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(34)

+
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⋮
(35)

Zeroth-order problem
From equation (34), we get the zeroth-order problem
or u(x, 0):

u0 �
105
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2
��
13
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First-order problem
From equation (35),
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(37)

which gives
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(38)

If we use p⟶ 1, then solution of equation (31) implies
that

u(x, t) � u0 + u1(x, t) + u2(x, t) + · · · u(x, t) �
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In Figures 1–4, we present graphical presentation of
solutions.

5. Fractional Spatial Numerical Solution

Consider the equation with orders 0< β≤ 1, 2< κ ≤ 3, 4
< δ ≤ 5 for fractional spatial numerical solution, that is,

z
α
u

zt
α + u

z
β
u

zx
β +

z
κ
u

zx
κ −

z
δ
u

zx
δ � 0, 0< α≤ 1. (40)

In this equation, for the fractional spatial solution, we
only consider the first fractional derivative with order β for
the sake of eliminating long calculations.(erefore, the first-
order problem is turn out to be as follows.

First-order problem

6 Journal of Mathematics



u1(x, t) �
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implies that
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(42)

Hence, the solution at p⟶ 1 becomes
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Figure 1: 3D fractional temporal numerical solution u(x, t) for order α ∈ (0, 1], κ � 4, and δ � 5.
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u(x, t) � 􏽘
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i�0
ui(x, t), (43)

which implies that

u(x, t) � u0 + u1(x, t) + u2(x, t) + · · ·
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6. Results and Discussion

In Figure 1, we have plotted the temporal solution of the
fractional-order Kawahara partial differential equation

against position x and time t based on equation (35), for
different fractional-order α, the plot shows that with α
amplitude of the solitary wave potential increases while its
width squeeze in size slightly. In Figure 2, we have the
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Figure 2: 2D fractional temporal numerical solution u(x) for order t � 0.01, κ � 4, and δ � 5.
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comparison of the solitary wave temporal solution u(x)

against x for t � 0.01 and with different fractional-order α;
this simulation shows a more clear picture of amplitude and
dispersion variation with α. Figure 3 is the contour plot of
solitary wave propagation against x and t for order α � 0.6.
In Figure 4, the plot is among solitary wave propagation
u(x, t) against x and for different time t, which shows a very
interesting situation of the solitary waves structure; while at
the smaller time, we found a compressive type of solitary
wave, but when we take the time t greater than 0.6, then we
observe the refractive type of the solitary wave and that

waves increase its amplitude with time t and also its dis-
persion property.

In Figure 5, we have the 3D spatial numerical solution
u(x, t) of solitary wave propagation against x and t for
differential spatial-order β based on equation (40); the
simulation shows us that with spatial-order fluctuation,
amplitude of the solitary wave change slightly, but the width
of the solitary wave change dramatically in greater steps;
likewise in Figure 6, we have shown the 2D cross-sectional
wave of Figure 5 that demonstrates the amplitude and width
of the solitary wave clearly with spatial-order β for t � 0.01.

x

t

×10-7

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-20 -15 -10 -5 0 5 10 15 20

Figure 3: Contour of fractional temporal numerical solution u(x) for order α � 0.6, κ � 4, and δ � 5.
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Figure 4: 2D fractional temporal numerical solution u(x) for order α � 0.6, κ � 4, and δ � 5.
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Figure 5: 3D fractional spatial numerical solution u(x, t) at order β ∈ (0, 1], κ � 3, δ � 5.
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Figure 6: 2D fractional spatial numerical solution u(x) at orders α � 0.9, β � 1, κ � 3, δ � 5, and time t � 0.01.
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Figure 7 is the contour plot of solitary wave spatial solution
against x and t.

7. Conclusion

Upon the use of the homotopy perturbation method (HPM),
we have investigated the Kawahara fractional-order partial
differential equation of fifth-order under fractional order. By
using Caputo derivative of fractional order separately on
temporal and spatial bases, obtained the semianalytical
solution for the Kawahara frictional-order differential
equation. We have then stimulated various parametric ef-
fects (such as x, t, α, and β) on the structure of the solitary
wave propagation that demonstrates that the width, as well
as the amplitude of the solitary wave potential clearly, can
change with the change of these parameters. We have shown
through our calculation and simulation that He’s technique
is very useful and power full for the solution of such a
higher-order nonlinear partial differential equation. We can
extend our calculation to other complex problems especially
to the applied side such as astrophysics, plasma physics, and
quantum mechanics to solve a complex theoretical calcu-
lation by that technique.
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In this paper, the optimal weighted combination model and fractional grey model are constructed. *e coefficients of the optimal
weighted combination model are determined by minimizing the sum of squares of resists of each model. On the other hand, the
optimal conformable fractional order and dynamic background value coefficient are determined by the quantum inspired
evolutionary algorithm (QIEA). Taking the resident population from 2008 to 2018 as the research object, the optimal weighted
combination model and fractional grey model were used to study the estimated and predicted values. *e results are compared
and analyzed. *e results show that the fractional grey model is better than the optimal weighted combination model in the
estimation of the values. *e optimal weighted combination model is better than the fractional grey model in predicting.
Meanwhile, the fractional grey model is found to be very suitable for the data values that are large, and the changes between the
data are relatively small. *e research results expand the application of the fractional grey model and have important implications
for the policy implementation activities of Huizhou government according to the population growth trend in Huizhou.

1. Introduction

With themassive urbanization of the population, population
development is still an important issue in China.*e current
situation of population development is that the proportion
of the population with young children is gradually de-
creasing, and the proportion of the elderly is gradually in-
creasing [1]. Population scale is one of the main indicators of
regional economic development, and the population
problem is also the basic problem that people pay most
attention to. Professor Zeng [2] has analyzed the past,
present, and future of demography. *erefore, China has
implemented a new birth policy. From the implementation
of the “two-child” birth policy in 2013 to the implementation
of the “two-child comprehensive” birth policy in 2015, new
changes have taken place in population development. Before
2000, the foundation of population and Family Planning in
Huizhou was not very good. Huizhou’s population

reproduction is “high birth rate, low death rate, and high
natural population growth rate.” *e birth rate and natural
growth rate show a characteristic fluctuation trend. In 1979,
the birth rate was as high as 26.68 per thousand, the death
rate remained stable at around 5 per thousand, and the
population grew rapidly [3]. In recent years, population
development has become a new research hotspot.

*e mathematical method of population forecast set the
advantage of the statistical method and demography method
[4]. In the seventeenth century, there were studies on
population prediction abroad, and a series of population
prediction methods were summarized. Fitting the pop-
ulation development trend, we can forecast the future
population scale development trend according to the geo-
metric progression growth. For example the retardation
growth model sets the maximum population carrying ca-
pacity under certain environmental conditions. When the
population growth reaches the limit, the population growth
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rate is zero. *e Leslie model uses the difference equation
matrix to discuss the law of population change under the
condition of stable development. One is to use statistical
methods to build regression models and time series models
for population forecasting. *e other is the population
prediction method, which uses birth, death, and migration
data to explore population trends. For example, the cohort
factor method sets parameters such as death, birth, and
migration and structural change according to the input
parameters of population size. Others are the BP neural
network method which simulates the biological neural dy-
namic principle to predict the population with high
precision.

In domestic population studies, professor Zha [5] proposed
population projections with three possibilities. In the pop-
ulation prediction method, based on cybernetics, Professor
Song et al. [6] introduced the birth rate, death rate, fertility rate,
and other indicators to construct the population control partial
differential equation of population prediction. In the short
term forecast, Professor Deng [7] established a grey system to
be used in population forecasting. He regarded the population
system as a grey system based onmodel uncertainty andmodel
mathematics, which could obtain more accurate prediction
results without too much basic data.

Some Chinese scholars have explored the improvement
methods based on the domestic and foreign population
prediction models. Chen [8] established the progressive
population development model of children’s subclass age and
made a new attempt to predict population based on de-
mographic structure factors. Hao and Wang constructed
a grey dynamic model of China’s population development
trend and verified the practicability of the greymodel [9]. Zhai
et al. [10] studied the application of the queuing factormethod
in population prediction software PADIS-INTand considered
that the software has the characteristics of multiple functions,
convenient input of parameters, strong applicability, and
detailed results, which can be used for more detailed pop-
ulation prediction. Wang [11] derived the problem of pro-
gressive fertility parameters in the progressive child
population prediction model in detail and proved the prac-
ticality of the progressive child population prediction model
in population prediction. Wang [11] deduced in detail the
problem of the progressive fertility parameters in the pro-
gressive child population prediction model and proved the
practicability of the progressive child population prediction
model in population prediction. To sum up, most of the
literature is about the population situation of a country,
a province, or a region, while there are few studies on the
population development trend of second- and third-tier cities.
*e combinedmodel canmake up for the shortcomings of the
single model and can absorb the advantages of the single
model. Compared with single model, it has higher precision
and predictive value and has higher precision. As far as we
know, few scholars use the fractional grey model to study the
population situation of prefecture-level cities. Based on this,
this paper develops the research and obtains good results. *e
results of the fractional grey model and the optimal weighted
combination model are compared and analyzed. At the same
time, this research process is also the attempt to examine the

seventh national Population Census Data and statistical
yearbook data in Huizhou.

2. The Optimal Weighted Combination Model

To extract the most available information, various models
are combined to improve the reliability of the prediction.
*e combination forecasting method is to combine dif-
ferent forecasting submodels into one model. Compared
with the single forecasting model, the combined fore-
casting model is more specific, detailed, comprehensive,
and scientific, which can reduce the influence of some
random factors on the single forecasting model [12]. *e
most important part of combinatorial forecasting method
is to obtain the coefficient of each submodel, that is, the
combination weight coefficient. *e estimation of weight
coefficient includes optimal weight method, variance-co-
variance method, recursive variance method, and positive
weight synthesis method. In this paper, the optimal
weighting method is used. *e optimal weighting method
is realized by minimizing the total error of the combined
prediction in a certain time. *e objective function con-
structed according to a given criterion is minimized under
a series of constraints to obtain the weight coefficient [13].
*e construction of the objective function depends on the
selection of error statistics and the type of minimization
criteria.

Suppose yt􏼈 􏼉(t � 1, 2, . . . , n) for the original data se-
quence, the original data sequence is first built, and the
individual m models are predicted, and the predicted value is
􏽢yit􏼈 􏼉, i � 1, 2, . . . , m and t � 1, 2, . . . , n . And then, the in-
dividual m models are combined to calculate combined K �

(k1, k1, . . . , km)T combined to calculate combined . *e
model is the optimal weighted combination model when the
statistical error of the model is the minimum, that is, Q �

􏽐
m
i�1 e2it the minimum [14]:

min Q,

s.t. 􏽘

m

i�1
ki � 1,

⎧⎪⎪⎨

⎪⎪⎩
(1)

where Q is the objective function constructed by the model
and s.t. is the constraint premise of the objective function.
Turn it into a mathematical programming problem as
follows:

min Q � 􏽘
m

i�1
e
2
it � e

T
e � K

T
EK,

s.t. 􏽘

m

i�1
ki � R

T
K � 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

In the formula, R � 1, 1, . . . , 1􏼂 􏼃
T is the matrix of n ×

1 and E is the matrix of estimated error information. Using
the Lagrange multiplier formula, from

z

zK
K

T
EK − 2λ R

T
K − 1􏼐 􏼑􏼐 􏼑 � 0, (3)
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we obtain

EK − λR � 0,

K � λE
− 1

R.
(4)

At the same time, from

d
dλ

K
T
EK − 2λ R

T
K − 1􏼐 􏼑􏼐 􏼑 � 0, (5)

we obtain

R
T
K � 1,

R
TλE

− 1
R � 1,

λ �
1

R
T
E

− 1
R

.

(6)

Combining (4) and (6), the optimal weighted vector is
solved:

K0 �
E

− 1
R

R
T
E

−1
R

. (7)

*e minimum value of the objective function is as
follows:

Q0 � K
T
0 EK0 �

1
R

T
E

− 1
R

. (8)

3. The Fractional Grey Model

3.1. FGM (1, 1) Mode. *e fractional grey model is firstly
propounded by Wu et al. [15]; the results showed that
compared with the traditional grey model, this model greatly
improves the prediction accuracy. Zeng et al. proposed
a self-adaptive intelligence grey prediction model with
fractional accumulation [16]. Ma et al. proposed a novel
definition of conformable fractional accumulation which is
more feasible and simple compared with the traditional
fractional grey model [17]. Wu et al. further perfected the
definition of conformable fractional accumulation and
successfully utilized it to predict carbon dioxide emissions of
BRICS [18]. Wu et al. utilized a novel fractional nonlinear
grey Bernoulli model to forecast short-term renewable en-
ergy consumption [19]. Ma et al. proposed a fractional delay
grey model based on the grey system optimization algorithm
and applied it to the prediction of natural gas consumption
in Chongqing [20]. Wu et al. [18] applied the univariate
inhomogeneous grey model to study the CO2 emissions of
BRICS countries without considering external factors.
Under several error metrics, one can see that the grey
forecasting model can provide excellent results for the five
countries. Based on the definition of the conformable
fractional derivative, Ma et al. [17] proposed conformable
fractional accumulation and difference. *en, a novel
conformable fractional grey model is proposed based on the
fractional accumulation and difference, and the brute force
method is introduced to optimize its fractional order.

Fractional grey models are divided into fractional ac-
cumulation and derivative grey models. *e fractional
accumulation generating operator (FAGO) can reflect the
characteristics of new information priority and is a gen-
eralization of integer accumulation generation [15]. FAGO
is extended from a GM (1, 1) to grey Bernoulli [21].*e new
information priority principle is embodied in the FAGO
grey Bernoulli model [22]. To solve the prediction problem
with memory characteristics, based on the memory prin-
ciple, Mao [23] proposed to improve the integral differ-
ential equation into a fractional differential equation and
established a univariable fractional derivative grey pre-
diction model. Kang [24] extended it to a Caputo-type
multivariate fractional grey prediction model. Although
some achievements have been made in grey prediction
models, they all use first-order differential equations
[25, 26] or constant fractional differential equations
[23, 27].

Based on this theoretical knowledge, this paper expands
a novel conformable fractional grey model and the optimal
weighted combination model to estimate and predict the
population of Huizhou of China. *e main novelties of this
paper can be outlined as follows. Firstly, the fractional grey
model and the optimal weighted combination model are
compared and analyzed in research of Huizhou’s pop-
ulation. Secondly, the optimal conformable fractional order
and dynamic background value coefficient are determined
by Quantum Inspired Evolutionary Algorithm (QIEA) [28].
In order to verify the effectiveness of the two newmodels, the
twomodels were compared with GM (1, 1) model, regression
model, and growth model. Finally, the optimal weighted
combination model and the fractional grey model are ap-
plied to predict the population of Huizhou of China from
2019 to 2021.

3.2. Modeling Process of FGM (1, 1).
(1) Construct an additive sequence of order r: Write the

original nonnegative data as the original order
column U(0) � u(0)(1), u(0)(2), . . . , u(0)(n)􏼈 􏼉. After
calculation, the rorder accumulation sequence
U(r) � u(r)(1), u(r)(2), . . . , u(r)(n)􏼈 􏼉 is obtained
where u(k)(r) � 􏽐

k
i�1 Ck−i

k−i+r−1u
(0)(i), C0

r−1 � 1, CK+1
k

� 0, k � 0, 1, . . . , n − 1,

C
k−i
k−i+r−1 �

(k − i + r − 1)(k − i + r − 2), . . . , (r + 1)r

(k − i)!
.

(9)

(2) Set up the differential equation and solve it: Set up
the whitening differential equation as follows:

dx
(r)

(t)

dt
+ ax

(r)
(t) � b. (10)

Suppose s(r)(t) � 0.5[u(r)(t) + u(r)(t − 1)], w(r)(k)

� [u(r)(t) − u(r)(t − 1)](t � 2, 3, . . . , n). *en,
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B �

−s
(r)

(2) 1

−s
(r)

(3) 1

⋮ ⋮

−s
(r)

(n) 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

D �

w
(r)

(2)

w
(r)

(3)

⋮

w
(r)

(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)

Use the least square method to obtain the numerical
solution of the parameters as follows:

􏽢a

􏽢b
􏼢 􏼣 � B

T
B􏼐 􏼑

− 1
B

T
D. (12)

*e formal solution of equation (6) is

􏽢u
(r)

(t + 1) � u
(0)

(1) −
􏽢b

􏽢a
􏼠 􏼡e

−􏽢at
+

􏽢b

􏽢a
. (13)

(3) Accumulation and subtraction of r-order sequence:
Change U(r) � 􏽢u(r)(1), 􏽢u(r)(2), . . . , 􏽢u(r)(n), . . .􏽮 􏽯 is
accumulated for order 1-r and then accumulated and
subtracted for order 1, which is

α(r)
U

(0)
� α(1)

􏽢u
(1− r)

(1), α(1)
􏽢u

(1− r)
(2), . . . ,􏽮

α(1)
􏽢u

(1− r)
(n), α(1)

􏽢u
(1− r)

(n + 1), . . .􏽯.
(14)

Calculate the fitted value 􏽢u(0)(1), 􏽢u(0)(2), . . . , 􏽢u(0)(n)

and the predicted value 􏽢u(0)(n + 1), 􏽢u(0)(n + 2), . . ..
(4) Evaluation model: *e mean absolute percentage

error (MAPE) was used to evaluate the model:

MAPE �
1
n

􏽘

n

t�1

􏽢ut − ut( 􏼁

ut

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (15)

(5) *e optimal order r is selected to get the predicted
sequence as follows:

􏽢u
(0)

(n), 􏽢u
(0)

(n + 1), . . . , 􏽢u
(0)

(n + m). (16)

(6) Error test: Perform residual test or correlation test or
calibration error probability test for
􏽢u(0)(1), 􏽢u(0)(2), . . . , 􏽢u(0)(n), judge the fitting effect of
the model according to the test result, and qualita-
tively analyze the prediction accuracy of the model; if
the fitting accuracy is not ideal, the cumulative order
can be adjusted r, that is, return to (1) until the
accuracy reaches the ideal state.

4. Empirical Analysis of the Optimal Weighted
Combination Model and FGM

4.1. Linear Regression Model. Since population prediction
has certain assumptions and stable population theory is an

important prerequisite, choosing a specific linear function or
curve function to fit the historical data of population de-
velopment has a certain impact on short-term population
prediction, and the basic data required are less and easy to
obtain. *e data in this paper are from the statistical
yearbook of Huizhou. *e permanent resident population
data of Huizhou from 2008 to 2018 are selected. *e linear
regression model is fitted, and SPSS is used for correlation
analysis. *e R2 is 0.769, so the fitting error is not large.

*e linear regression equation is as follows:

y � 432.41 + 5.21x. (17)

*e fitting Figure 1 is drawn. See Table 1 for the esti-
mated values in 2008–2018.

4.2. GM (1, 1). On the basis of the fuzzy uncertainty in fuzzy
mathematics, the population system is regarded as a grey system
and its future development is predicted. *e GM model was
proposed by Professor Deng [7]. *is paper selects the per-
manent population data of Huizhou from 2008 to 2018 to build
an estimated model. Python software was used for modeling
and testing. *e posterior difference ratio of this model is
0.37535, which meets the requirement of level 2 accuracy
(qualified), and the predicted result is in good fitting degreewith
the actual situation. *e population development of Huizhou
from 2019 to 2021 shows a linear trend of growth, which is
consistent with the stable mortality rate and recently improved
fertility rate of Huizhou. It shows the release of fertility potential
energy in recent years due to the influence of policies and
economy, and the population growth trend is shown in Fig-
ure 1. *e estimated value of 2008–2018 is shown in Table 1.

4.3. Growth Model. *e permanent resident population
from 2008 to 2018 was selected from the data block, and the
population growth estimation model was established. *e
model considered the needs of the block growthmodel based
on the previous population growth rate to estimate the
regional maximum population capacity and population
growth rate, and then sample data were selected to fit the
population development trend of Huizhou. In this paper, the
growth model is established by using MATLAB software.
*e modeling steps are as follows:

(1) Establish a function file and import the growth
function:

y � e
β0+β1x. (18)

(2) Import population data.
(3) Select the least square method and fit function in

MATLAB; then, the parameter estimation can be
completed and the growth model can be obtained.

(4) *e regression model is as follows:

y � e
6.07+0.011x

. (19)

From 2008 to 2018, Huizhou’s population growth rate
has been on the rise. *e overall population shows an
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increasing trend, and the fertility potential energy is still in
the release period. By 2021, the population growth tends to
5.0471 million. Draw the fitting Figure 1 is drawn. See
Table 1 for the estimated values in 2008–2018.

4.4. Application of Optimal Weighted Combination (OWC)
Model

(1) Construct the optimal weighted combination model:

minQ � 􏽘
m

i�1
e
2
it � e

T
e � K

T
EK

s.t. 􏽘
m

i�1
ki � R

T
K � 1

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

(2) Select an error statistic, i.e., fitting error, and cal-
culate the error information matrix.

(3) According to the predicted and actual values of the
above three submodels, the fitting error and the
prediction error information matrix are calculated:

E �

􏽘
n

t�1
e
2
1t 􏽘

n

t�1
e1te2t 􏽘

n

t�1
e1te3t

􏽘

n

t�1
e2te1t 􏽘

n

t�1
e
2
2t 􏽘

n

t�1
e2te3t

􏽘

n

t�1
e3te1t 􏽘

n

t�1
e3te2t 􏽘

n

t�1
e
2
3t
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�

898.96 921.14 372.01

921.14 945.40 381.45

372.01 381.45 380.74

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(21)

(4) Calculate the weight of the model:

Table 1: Estimated results of Huizhou population with various models, units: 10,000.

Year Raw Linear Growth GM OWC FGM ARIMA Logistic
2008 418.65 437.62 437.47 418.65 422.08 418.65 436.45 437.49
2009 435.08 442.83 442.53 450.79 451.32 436.79 432.32 442.75
2010 460.11 448.04 447.64 454.58 455.85 452.83 455.92 448.02
2011 463.36 453.25 452.81 458.40 460.09 462.62 472.40 453.28
2012 467.40 458.46 458.04 462.25 464.03 468.99 465.16 458.53
2013 470.00 463.67 463.33 466.14 467.66 473.19 464.59 463.77
2014 472.66 468.88 468.68 470.06 470.98 475.91 462.18 469.01
2015 475.55 474.09 474.09 474.01 473.99 477.55 470.63 474.23
2016 477.50 479.30 479.57 478.00 476.69 478.37 477.42 479.44
2017 477.70 484.51 485.10 482.02 479.06 478.54 484.94 484.64
2018 483.00 489.72 490.71 486.07 481.11 478.20 489.18 489.83
MAPE 1.70% 1.76% 1.03% 0.81% 0.56% 1.40% 1.69%
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Figure 1: Huizhou population estimated results of various models.
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According to the Lagrange multiplier method, the
weight coefficient is solved as follows:

K0 �
E

− 1
R

R
T
E

−1
R

� 5.65 0.86 −5.51􏼂 􏼃
T
. (22)

*erefore, in the optimal weighted combination model,
the weight coefficients of each combination are as follows:
the linear regressionmodel is 5.65, the grey predictionmodel
is 0.86, and the growth model is −5.51. *erefore, the final
prediction model is

Q0 � 5.65􏽢y1 + 0.86􏽢y2 − 5.51􏽢y3. (23)

*e prediction results are shown in Table 1.

4.5. FGM. Construct the original sequence of population
data in Huizhou from 2008 to 2018 (unit: ten thousand)
U(0) � 418.65, 435.08, 460.11, 463.36, 467.40, 470.00, 472.{

66, 475.55, 477.50, 477.70, 483}. 0.9 order accumulation
sequence is

U
(0.9)

� 418.65, 811.86, 1209.62, 1595.46, 1974.77, 2348.33, 2717.72, 3084.17, 3447.44, 3806.39, 4166.76{ }. (24)

Use the least square method to calculate the unknown
parameters 􏽢a and 􏽢b:

􏽢a

􏽢b
􏼢 􏼣 � B

T
B􏼐 􏼑

− 1
B

T
D �

0.01743

402.16
􏼠 􏼡, (25)

where

B
T

� −
615.25 1010.74 1402.54 1785.12 2161.55 2533.03 2900.95 3265.81 3626.92 3986.58

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
􏼢 􏼣,

D
T

� 393.21 397.76 385.83 379.30 373.55 369.39 366.45 363.26 358.95 360.36􏼂 􏼃.

(26)

Obtain the response function between time periods:

􏽢u
(0.9)

(t + 1) � 418.65 −
40216
1.1743

􏼒 􏼓e
− 0.01743t

+
40216
1.1743

. (27)

*e fitting value of order 0.9 additive sequence is

􏽢U
(0.9)

� 􏽢u
(0.9)

(1), 􏽢u
(0.9)

(2), . . . , 􏽢u
(0.9)

(11)􏽮 􏽯,

� 103 × 0.4187, 1.0651, 1.6384, 2.2019, 2.7556, 3.2997, 3.8344, 4.3599, 4.8763, 5.3838, 5.8826{ }.
(28)

Restore order list as follows:

􏽢U
(1)

� 􏽢u
(0.9)(0.1)

(1)􏽮 , 􏽢u
(0.9)(0.1)

(2), . . . , 􏽢u
(0.9)(0.1)

(10), 􏽢u
(0.9)(0.1)

(11),

� 418.65, 855.44, 1308.27, 1770.89, 2239.88, 2713.07, 3188.98, 3666.53, 5101.81, 5580.01{ }.
(29)

*e simulated value of Huizhou population is

􏽢U
(0)

� 􏽢u
(0)

􏽮 􏼐1), 􏽢u
(0)

(2), . . . , 􏽢u
(0)

(10), 􏽢u
(0)

(11),

� 418.65, 436.79, 452.83, 462.62, 468.99, 473.19, 475.91, 477.55, 478.37, 478.54, 478.20{ }.
(30)
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Taking the minimum average absolute percentage error
value of the FGM (1, 1) model as the object function and
using the particle swarm optimization algorithm, the pre-
diction effect of the FGM (1, 1) model is the best when the
order r is 0.9, and the prediction result is more accurate.
Python software is used to complete the above estimation
and simulation. *e estimated values with fractional grey
model are shown in Figure 2.

As can be seen from Figure 1, the optimal weighted
combination model balances the characteristics of higher
predicted value of the growth model, strong linear trend and
rapid growth of the regression model’s forecast curve, and
the GM (1, 1) model has a high degree of agreement with the
prediction curve of the optimal weighted combination
method. *e estimated curves of the optimal weighted
combination model are closer to the truth than those of the
three submodels. It can be seen from Figure 1 that the truth
estimation of the optimal weighted combination model is
better than the modification of the three submodels. *e
value of MAPE in Table 1 can also draw OWC superior to its
submodels. *e optimal weighted group method predicts
that the permanent population of Huizhou will continue to
grow and maintain a stable growth from 2019 to 2021. It can
be seen that the population scale development trend of
Huizhou in the next decade is as follows: under the influence
of the national fertility policy reform, the fertility level of
Huizhou has been improved, and the permanent resident
population of Huizhou will gradually rise in the next decade.
By 2021, the total population of Huizhou will reach 5029000,
with an average annual growth of 1.49% and an average
annual growth of 72633.*e predicted population values for
2019–2021 are shown in Table 2. Figure 2 shows that FGM
estimates the raw data better than OWC. Most points on the
FGM curve are closer to the true value than those on the
OWC curve. *ese can be indirectly reflected from the
values of MAE and RMSE in Table 2. Figure 2 shows that the
fractional grey model has a better fitting effect on the truth
value than that of the optimal combination model.

From Table 1, we also getMAPE� 0.56% of the fractional
cumulative grey model, which is smaller than that of the
other three methods. *e MAPE value of model OWC is
smaller than that of its three submodels. At the same time,
the MAPE value of OWC is smaller than that of ARIMA
model and logistic model.

4.6. Model Test. Seen the values of MAPE from Table 1, the
optimal weighted combination model is superior to each
submodel. However, the estimation result of the fractional
grey prediction model is better than that of the optimal
weighted combination model. To further compare the es-
timated results of these two models, we apply the mean
absolute error and root mean square error to measure them.

Mean absolute error (MAE) is as follows:

MAE �
1
N

􏽘

n

t�1
􏽢yt − yt( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (31)

Root mean square error (RMSE) is as follows:

RMSE �

�������������

1
N

􏽘

n

t�1
􏽢yt − yt( 􏼁

2

􏽶
􏽴

, (32)

where N is the total number of years, yt is the real value, and
􏽢yt is the estimated value.

Table 2 shows that theMAE of the OWCmodel is 4.1334,
and theMAPE is 5.9247, and theMAE of FGM is 2.3882, and
RMSE is 3.1369.We add ARIMA and logistic to estimate and
forecast the original data and find that MAE and RMSE
values of these two methods are larger than those of OWC
and FGM. *e results show that the prediction effect of the
optimal weighted combination model is obviously poor than
that of the fractional grey model. However, when it comes to
predicting trends, the optimal weighting combination is
clearly stronger than that of the fractional grey model. *e
population of Huizhou has been increasing steadily in recent
years. From the perspective of stability, when the sample size
is small, the fractional grey model is relatively stable.

5. Conclusions and Suggestions

*epresent situation of population development in Huizhou
city is analyzed qualitatively and quantitatively. *en, we
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Figure 2: Comparison graph of Huizhou population development
trend estimated by the optimal weighted group model and the
fractional grey model.

Table 2: Test results of the prediction model.

Year OWC FGM ARIMA Logistic
2019 497.42 477.43 499.21 494.99
2020 500.31 476.31 512.83 500.14
2021 502.90 474.90 520.77 505.27
MAE 4.1334 2.3882 6.7958 7.6208
RMSE 5.9247 3.1369 8.2047 8.8579
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adopted a series of mathematical methods, i.e., the fractional
grey model, the optimal weighted combination method, the
linear regression model, the growth model, and the GM (1,
1) prediction model, combined with MATLAB and Python
to forecast the population development trend of Huizhou
and analyzed the predicted results. We can obtain that the
total population development trend of Huizhou is increasing
year by year from 2019 to 2021. It will break through 5
million population marks around the end of 2021. In the
estimation and prediction of Huizhou population, the op-
timal combination model and the fractional grey model have
their advantages. In the next decade, the population of
Huizhou will increase steadily, the population growth rate
will be slower over time, but there will be no downward
trend. According to the above conclusions, we proposed the
following two suggestions: on the one hand, we will continue
to implement the national three-child policy, increase
subsidies for family planning, and raise the fertility level; on
the other hand, measures should be taken to combine family
care with social care to ensure that the elderly can rely on
others for retirement and support.

In this paper, we combine the optimal weighted com-
binationmethod and the fractional grey model to implement
the prediction of the total population development trend of
Huizhou in three years and analyze the results in depth. *e
forecast results show that the total population of Huizhou
city will increase year by year from 2019 to 2021, and the
labor supply is relatively sufficient in a demographic divi-
dend period. However, it will soon enter a small and aging
population, which is not conducive to this sustainable de-
velopment. *erefore, we must pay attention to the pop-
ulation planning of Huizhou and turn the population
advantage into the capital advantage in a period of de-
mographic dividend. At the same time, we will raise the
fertility rate and improve the old-age security system. Our
future work is to study the population of Huizhou with the
novel conformable fractional nonhomogeneous grey model
and nonhomogenous discrete grey model with fractional-
order accumulation.
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Memristor is a nonlinear andmemory element that has a future of replacing resistors for nonlinear circuit computation. It exhibits
complex properties such as chaos and hyperchaos. A five-dimensional memristor-based circuit in the context of a nonlocal and
nonsingular fractional derivative is considered for analysis. *e Banach fixed point theorem and contraction principle are utilized
to verify the existence and uniqueness of the solution of the five-dimensional system. A numerical method developed by Toufik
and Atangana is used to get approximate solutions of the system. Local stability analysis is examined using the Matignon
fractional-order stability criteria, and it is shown that the trivial equilibrium point is unstable. *e Lyapunov exponents for
different fractional orders exposed that the nature of the five-dimensional fractional-order system is hyperchaotic. Bifurcation
diagrams are obtained by varying the fractional order and two of the parameters in the model. It is shown using phase-space
portraits and time-series orbit figures that the system is sensitive to derivative order change, parameter change, and small initial
condition change. Master-slave synchronization of the hyperchaotic system was established, the error analysis was made, and the
simulation results of the synchronized systems revealed a strong correlation among themselves.

1. Introduction

In the last decade, fractional differential equations started
gaining much attention in modeling several real-world
problems in different areas including in mathematical epi-
demiology, physics, engineering, and many others. Frac-
tional-order operators are either with singular kernels such
as the Caputo derivative and the Reimann–Liouville frac-
tional derivatives or with nonsingular kernels such as the
Caputo–Fabrizio and Atangana–Baleanu fractional deriva-
tives [1–4].

One of the differences between integer- and fractional-
order derivatives is that the integer-order derivative de-
scribes local properties of a certain dynamic system, whereas
the fractional-order derivative representation of a dynamic
system involves the whole space of the process [5]. *at is,
applying fractional derivative orders in modeling real-world

problems is essential for describing the hereditary specifi-
cations and effectiveness of the memory as essential aspects
of different mechanisms in the problem [6, 7].

*e recent increase in the study of different dynamical
systems using fractional-order derivatives is attributed to the
fact that most of the dynamic systems associated with
complex systems are found to be nonlocal involving long
memory in time and intrinsically fractional derivative op-
erators can describe such systems more accurately than the
integer derivatives [8]. In other words, important features of
many physical systems are best described or exposed by
using fractional-order operators.

*ere are different studies conducted using fractional
derivatives for diverse types of systems pertinenet to dif-
ferent problems. For instance, stability analysis of fractional
differential equations with unknown parameters was con-
sidered using the D-decomposition method by Koksal [9].
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Time- and frequency-domain response of the RLC circuit
with fractional-order derivative was investigated in [10].
Telegraph equation used for the power transmission line
with a nonlocal boundary value problem was deliberated
with a different type of finite difference numerical schemes
in [11].

Chaos theory has attracted many researchers and has
applications in the fields of encryption and secure of
communication [12], modeling financial systems, repre-
senting circuit diagrams, and many others [13, 14].

Nowadays, there are many pieces of literature dedicated
to the analysis of chaotic systems using fractional derivative
operators. *is includes chaotic systems of Chua’s electrical
circuits and memristor-based circuit systems. Some of the
literature are reviewed as follows.

Sene applied the Caputo fractional derivative operator in
detecting the chaotic behavior of different 3D and 4D
chaotic systems. He used Lyapunov exponent and bifurca-
tion diagrams to identify the nature of the chaos and impact
of parameter variation for the different chaotic models in-
vestigated [15–18]. Different chaotic systems including
Chua’s electric circuit and several other chaotic systems were
analyzed using fractional derivative order mathematical
models by Petráš [19]. Bifurcation and chaotic behaviors in
fractional-order simplified Lorenz system using
Adams–Bashforth–Moulton predictor-corrector scheme
were considered in [20]. Atangana–Baleanu fractional de-
rivative operators were used for modeling and analysis of
different chaotic and hyperchaotic systems, and solutions
were approximated using a two-step Adams–Bashforth
numerical scheme in [21].

It was in 1971 that circuit theorist Chua proposed
memristor as a missing two-terminal nonlinear electrical
component. *e three basic components of a circuit are
resistor, capacitor, and inductor. Memristor known for its
memory effect and nonlinear characteristics is the fourth
circuit component. Memristor relates magnetic flux and
electric charge linkage in which case it is called a charge-
controlled electric model (ϕ � ϕ(q)) or it models a rela-
tionship between charges and flux (q � q(ϕ)) in which case
it is called a flux-controlled model [12, 22].

At present, there are several studies conducted on
memristor-based chaotic circuits using both integer and
fractional-order derivatives. In [23], a conformal fractional-
order simplest memristor-based chaotic circuit was inves-
tigated based on conformable Adomian decomposition
method, Lyapunov exponent, bifurcation diagram, and
Poincare’ sections. Buscarino et al. introduced a chaotic
circuit based on a realistic model of the HP memristor, and
numerical results showed a generation of chaotic attractors
[22]. A novel 5D chaotic system with flux-controlled
memristor and integer-order derivative, extracted from
Wang’s 4D hyperchaotic system, was proposed by Wang
et al. [24]. A memristor-based chaotic circuit modified by
replacing the nonlinear resistor in Chua’s circuit with a flux-
controlled memristor was analyzed in [12].

*is research aims to study the memory effect prop-
erties and detection of chaos in a five-dimensional
memristor-based system. Accordingly, an integer model

memristor-based circuit is represented by Atanga-
na–Baleanu fractional derivatives in the Caputo sense
(ABC), and the existence and uniqueness of solution of the
ABC fractional model are analyzed based on Banach fixed
point theorem for contraction principle. From the different
concepts of fractional-order operators introduced above, the
purpose of choosing the ABC fractional derivative is due to
the fact that it possesses nonlocal kernels and of course it
allows the inclusion of traditional initial conditions in the
formulation of a mathematical model. Numerical approxi-
mation of the ABC fractional model is made using the newly
developed numerical approximation for fractional derivative
developed by Toufik and Atangana in [25]. Local stability of
the fractional model representation is accomplished using
the Matignon stability criterion. *e existence and nature of
chaos in the fractional model are investigated using Lya-
punov exponents. A bifurcation diagram for different
fractional derivatives and parameter variation is given.
Several phase portraits are depicted as a verification for the
impact of different parameter values and different fractional
derivative orders. *e impact of initial conditions on the
solution trajectory of the system is also investigated using
simulation of the trajectories of the system for different
initial conditions. Lastly, master-slave synchronization of
the system is performed accompanied by the corresponding
error analysis and simulation of several cases of the syn-
chronized system. All the phase portraits and solution
trajectories in this work were obtained from the numerical
scheme of Toufik and Atangana adapted for the memristor
chaotic model considered in this work. A computing soft-
ware application called Matlab 2019a is used for the sim-
ulation of different results.

A Matlab code for Lyapunov exponents and bifurcation
diagram of fractional-order systems called Danca algorithm
[26] is used to quantify the chaos by calculating Lyapunov
exponents and obtaining bifurcation diagrams for different
fractional orders and different parameter values of the
model. Some of the evidence for the originality of this work
includes the application of Atangana–Baleanu fractional
operator to the memristor-based system considered in this
study, application of the newly developed numerical ap-
proximation by Toufik and Atangana for the fractional-
order systems, obtaining the phase portraits of the system
from the numerical scheme, and performing synchroniza-
tion of the five-dimensional system using the numerical
approximation.

*e remaining part of this paper is arranged as follows.
In Section 2, the memristor-based circuit model considered
in this study is described in the context of integer derivative.
Section 3 is devoted to the fractional derivative represen-
tation of the memristor-based systems following some re-
capping of preliminary concepts and definitions of
Atangana–Baleanu fractional derivatives. *e existence and
uniqueness of the solution for the fractional derivative
representation of the model are portrayed in Section 4 of the
paper. *e numerical scheme applied to get all the phase
portraits and approximate time-series solution of the
memristor-based system are developed in Section 5. Section
6 is concerned with the local stability analysis of the
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fractional model followed by Lyapunov exponents, bifur-
cation diagrams with different fractional orders, and pa-
rameter variation in Section 7. Investigation of the impact of
small change in the initial conditions on the dynamics of the
system is considered in Section 8 followed by synchroni-
zation of the hyperchaotic system in Section 9. Finally, in
Section 10, conclusions are given followed by list of
references.

2. Mathematical Model Description of
Memristor-Based Circuit

Wang et al. [27] developed a new four-dimensional
hyperchaotic circuit system using an improved modularized
design and proposed implementation of the circuit. *e
hyperchaotic circuit system mentioned in [24] is described
under an integer-order system of differential equations.
Later on, Wang et al. [24] proposed a five-dimensional flux-
controlled memristor-based circuit system and demon-
strated that the system exhibits hyperchaotic character
under an integer-order system of differential equations. *e
five-dimensional nondimensionalized flux-controlled
memristor-based circuit developed by Wang et al. is de-
scribed using integer-order differential as given in the fol-
lowing equation:

dx

dt
� β1(y − x) + 4yz − 0.02x(t)W(u),

dy

dt
� − x + 16y − xz + w,

dz

dt
� − β2z + xy − xu − yw,

dw

dt
� − 10y + 0.15xz − 0.3zu,

du

dt
� − x,

(1)

where the memductance used in this study is

W(u) � a + 3bu
2
, a> 0, b> 0. (2)

In this study, motivated by the contribution of Wang
et al. [24] in developing the five-dimensional memristor-
based circuit, we analyzed system (1) under ABC fractional
derivatives.

3. Fractional Derivative Representation of
the Model

In this section, we recall the definitions and basic properties of
nonsingular and nonlocal Atangana–Baleanu fractional deriv-
ative of Caputo type (ABC) used for our analysis of the circuit.

Definition 1. Let f ∈ C1(a, b), a< b, and let q ∈ [0, 1]. *e
AB fractional derivative of order q is defined as [7, 28, 29]

ABC
a D

q

t f(t) �
F(q)

1 − q
􏽚

t

a

df

dk
Eq −

q

1 − q
(t − k)

q
􏼢 􏼣dk, (3)

where F(q) � 1 − q − q/Γ(q) and the Mittag-Leffler function
is

Eq[z] � 􏽘
∞

β�0

z
β

Γ(1 + qβ)
, q, z ∈ C,R(q)> 0. (4)

Definition 2. *e Atangana–Baleanu (AB) fractional inte-
gral of the function f ∈ C1(a, b), a< b, is given by [7, 28, 29]

AB
a I

q

t f(t) �
1 − q

F(q)
f(t) +

q

F(q)Γ(q)
􏽚

t

a
f(k)(t − k)

q− 1dk.

(5)

Lemma 1. -e AB fractional derivative and AB fractional
integral of f ∈ C1(a, b), a< b, fulfill [30]

AB
a I

q

t
ABC
a D

q

t f(t)􏼐 􏼑 � f(t) − f(a). (6)

Lemma 2. For f, g ∈ C1(a, b), b> a, the AB fractional de-
rivative in the Caputo sense satisfies the Lipschitz condition
[29]:

AB
a D

q

t f(t) −
AB
a D

q

t g(t)
�����

�����≤Λ‖f(t) − g(t)‖. (7)

Now we continue with the reformulation of (1) in terms
of ABC fractional derivatives.

Lemma 3. Let G(t) ∈ H1(a, b). -en,
ABC
0 D

q

t (f(t)) � G(t), f(0) � G0, admits one solution given
by

f(t) � G0 +
1 − q

F(q)
G(t) +

q

F(q)Γ(q)
􏽚

t

0
(t − k)

q− 1
G(k)dk.

(8)

We can describe the result in Lemma 3 in the form of the
Banach fixed theorem point as follows. We begin by defining
a Banach space

X � x ∈ C(J,R), J � [0, 1]{ }, (9)

with a norm defined as ‖x‖x � Supt∈J|x(t)|.
Now define the operators M1, M2, M3, M4,

M5: X⟶ X by
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M1x(t) � x0 +
1 − q

F(q)
β1(y(t) − x(t)) + 4y(t)z(t) − 0.02x(t)W(u(t))( 􏼁

+
q

F(q)Γ(q)
􏽚

t

0
(t − k)

q− 1 β1(y − x) + 4yz − 0.02x(t)W(u(k))( 􏼁dk,

(10)

M2y(t) � y0 +
1 − q

F(q)
(− x(t) + 16y(t) − x(t)z(t) + w(t))

+
q

F(q)Γ(q)
􏽚

t

0
(t − k)

α− 1
(− x(k) + 16y(k) − x(k)z(k) + w(k))dk,

(11)

M3z(t) � z0 +
1 − q

F(q)
− β2z(t) + x(t)y(t) − x(t)u(t) − y(t)w(t)( 􏼁

+
q

F(q)Γ(q)
􏽚

t

0
(t − k)

q− 1
− β2z(k) + x(k)y(k) − x(k)u(k) − y(k)w(k)( 􏼁dk,

(12)

M4w(t) � w0 +
1 − q

F(q)
(− 10y(t) + 0.15x(t)z(t) − 0.3z(t)u(t))

+
q

F(q)Γ(q)
􏽚

t

0
(t − k)

q− 1
(− 10y(k) + 0.15x(k)z(k) − 0.3z(k)u(k))dk,

(13)

M5u(t) � z0 +
1 − q

F(q)
(− x(t)) +

q

F(q)Γ(q)
􏽚

t

0
(t − k)

q− 1
(− x(k))dk. (14)

We are now ready to describe the dynamic equation for
the memristor-based chaotic circuit given in (1) using ABC
fractional derivative:

ABC
0 D

q

t x(t) � β1(y − x) + 4yz − 0.02x(t)W(u),

ABC
0 D

q

t y(t) � − x + 16y − xz + w,

ABC
0 D

q

t z(t) � − β2z + xy − xu − yw,

ABC
0 D

q

t w(t) � − 10y + 0.15xz − 0.3zu,

ABC
0 D

q

t u(t) � − x.

(15)

*e initial condition is given as (x(0), y(0), z(0),

w(0), u(0)) � (x0, y0, z0, w0, u0) and W(u) � a + 3bu2.

4. Existence Theory on the Model

Here, the existence and uniqueness of the solution for the
ABCmodel given in (15) are shown using Banach fixed point
theorem for contraction mapping. *e following two the-
orems are worth recalling before proceeding further.

Theorem 1. Let Π be any nonempty closed subset of a
Banach space X. -en, any contraction M: Π⟶Π has a
unique fixed point [31, 32].

Theorem 2. Assume that x, y, z, w, u are continuous func-
tions satisfying the following conditions:

(C1) -ere exist constants k1, k2, k3, k4, k5 > 0 such that
|x(t)|<k1, |y(t)|<k2, |z(t)|< k3, |w(t)|<k4, |u(t)|<k5.
(C2) (Γ(q)(1 − q) + 1)(β1 + 0.02|W|)<F(q)Γ(q),
16(1 − q)Γ(q) + 16<F(q)Γ(q), and (Γ(q)(1 − q) + 1)

β2 <F(q)Γ(q); then, the ABC fractional derivative
system given by (15) has a unique solution in the region
X.

Proof. Let us show that the operator M1 defined in (10) is
well defined in the sense that M1x(t) ∈ Ir and
ABC
0 D

q

t M1x(t) is continuous on J � [0, 1], where

Ir � B ∈ X, ‖B‖≤ r, r≥ 0{ }, (16)

for (β1(k2 + k1) + 4k2k3 + 0.02k1(a + 3bk25))(‖x0‖X F(q)Γ
(q) + Γ(q)(1 − q) + 1)/F(q)Γ(q)< r.
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Now for any x ∈ Ir and from (10), we have

M1x
����

���� � x0
����

����X
+
1 − q

F(q)
sup
t∈J

β1(y(t) − x(t)) + 4y(t)z(t) − 0.02x(t)W(u(t))( 􏼁

+
q

F(q)Γ(q)
sup
t∈J

􏽚
t

0
(t − k)

q− 1 β1(y − x) + 4yz − 0.02x(t)W(u(k))( 􏼁dk

≤ x0
����

���� + β1 k2 − k1( 􏼁 + 4k2k3 − 0.02k1 a + 3bk
2
5􏼐

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
1 − q

F(q)
+

q

F(q)Γ(q)
sup
t∈J

􏽚
t

0
(t − k)

q− 1dk􏼠 􏼡

≤
x0

����
����F(q)Γ(q) + Γ(q)(1 − q) + 1

F(q)Γ(q)
􏼠 􏼡 β1 k2 + k1( 􏼁 + 4k2k3 + 0.02k1 a + 3bk

2
5􏼐 􏼑􏼐 􏼑< r.

(17)

Consequently, we have M1x(t) ∈ Ir.
To show continuous differentiability on J � [0, 1] we

proceed from ABC
0 D

q

t M1x(t) � ABC
0 D

q

t
AB
0 I

q

t (β1(y − x)+

4yz − 0.02x(t)W(u))β1(y − x) + 4yz − 0.02x(t)W(u)

which is continuous on J � [0, 1], and then we conclude that
ABC
0 D

q

t M1x(t) is continuous on J; as a result, M1Ir ⊂ Ir.

To show that the operator M1 has a fixed point based on
*eorem 1, it is enough to show that M1 is a contraction
mapping. Indeed, let x1, x2 ∈ X, t ∈ J, and it is not difficult
to show that

M1x1 − M1x2
����

����X
≤

(Γ(q)(1 − q) + 1)

F(q)Γ(q)
β1 + 0.02‖W(u)‖X( 􏼁 x2 − x1

����
����X
≤H x2 − x1

����
����X

, (18)

where H � (Γ(q)(1 − q) + 1)(β1 + 0.02‖W(u)‖X)/F(q)Γ
(q). Since H< 1 by hypothesis of *eorem 2, we conclude
that M1 is a contraction mapping.

To show that the remaining operators M2, M3, M4, and
M4 are contraction mappings, we proceed in the same
manner.

Let us show that the operator M2 defined in (14) is well
defined in the sense that M2y(t) ∈ I′ and ABC

0 D
q

t M2y(t) is
continuous on J � [0, 1], where

Ir
′ � B ∈ X, ‖B‖≤ r′, r′ ≥ 0􏼈 􏼉, (19)

for r′ > (k1 + 16k2 + k1k3 + k4)(‖y0‖XF(q)Γ(q) + Γ(q) (1 −

q) + 1)/F (q)Γ(q).
Now for any y ∈ Ir

′ and from (11), we have

M2y(t)
����

����x
� y0

����
����X

+
1 − q

F(q)
sup
t∈J

(− x(t) + 16y(t) − x(t)z(t) + w(t))

+
q

F(q)Γ(q)
sup
t∈J

􏽚
t

0
(t − k)

q− 1
(− x(k) + 16y(k) − x(k)z(k) + w(k))dk

≤
k1 + 16k2 + k1k3 + k4( 􏼁 y0

����
����X

F(q)Γ(q) + Γ(q)(1 − q) + 1􏼐 􏼑

F(q)Γ(q)
≤ r′.

(20)

Consequently, we have M2y(t) ∈ Ir
′. To show contin-

uous differentiability on J � [0, 1], we proceed from
ABC
0 D

q

t M2y(t) � ABC
0 D

q

t
AB
0 I

q

t (− x + 16y − xz + w) � − x+ 16
y − xz + w which is continuous on J � [0, 1], and we

conclude that ABC
0 D

q

t M2y(t) is continuous on J; as a result,
ABC
0 D

q

t M2y(t).
To show that the operator M2 has a fixed point, we apply

*eorem 1. Following the theorem, it is sufficient to show
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that M2 is a contraction mapping. Indeed, let
y1, y2 ∈ X, t ∈ J. *en,

M2y2 − M2y1
����

����X
≤
1 − q

F(q)
16 y2 − y1

����
���� +

q16 y2 − y1
����

����

F(q)Γ(q)
sup
t∈J

􏽚
t

0
(t − k)

q− 1dk

≤
16(1 − q)Γ(q) + 16

F(q)Γ(q)
y2 − y1

����
����≤H′ y2 − y1

����
����X

,

(21)

where H′ � (16(1 − q)Γ(q) + 16)/F(q)Γ(q). Since H′ < 1,
we conclude that M2 is a contraction mapping.

Let us show that the operator M3 defined in (12) is well
defined in the sense that ABC

0 D
q

t M2y(t) � ABC
0 D

q

t
AB
0 I

q

t (− x +

16y − xz + w) and ABC
0 D

q

t M3z(t) is continuous on
J � [0, 1], where

Ir″″ � u ∈ X, ‖u‖≤ r″, r″ ≥ 0􏼈 􏼉, (22)

for r″ > (β2k3 + k1k2 + k1k5 + k2k4)(‖z0‖F(q)Γ(q) + Γ(q)

(1 − q) + 1)/F(q)Γ (q).
Now for any z ∈ I

r″
″ and from (12), we have

M3z(t)
����

����X
� z0

����
����X

+
1 − q

F(q)
sup
t∈J

− β2z(t) + x(t)y(t) − x(t)u(t) − y(t)w(t)( 􏼁

+
q

F(q)Γ(q)
sup
t∈J

􏽚
t

0
(t − k)

q− 1
− β2z(k) + x(k)y(k) − x(k)u(k) − y(k)w(k)( 􏼁dk

≤ z0
����

����X
+
1 − q

F(q)
− β2k3 + k1k2 − k1k5 − k2k4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

q

F(q)Γ(q)
− β2k3 + k1k2 − k1k5 − k2k4

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 sup

t∈J
􏽚

t

0
(t − k)

q− 1dk

≤
β2k3 + k1k2 + k1k5 + k2k4( 􏼁 z0

����
����X

F(q)Γ(q) + Γ(q)(1 − q) + 1􏼐 􏼑

F(q)Γ(q)
< r″.

(23)

Consequently, we have M3z(t) ∈ I
r″
″. To show con-

tinuous differentiability on J � [0, 1], we proceed from
ABC
0 D

q

t M3z(t) � ABC
0 D

q

t
AB
0 I

q

t (− β2z + xy − xu − yw) � − β2z
+ xy − xu − yw which is continuous on J � [0, 1], and we
conclude that ABC

0 D
q

t M3z(t) is continuous on J; as a result,
M3Ir″
″ ⊂ I

r″
″.

To show that the operator M3 has a fixed point, we apply
*eorem 1. Following the theorem, it is sufficient to show
that M3 is a contraction mapping. Indeed, let
z1, z2 ∈ X, t ∈ J. *en,

M3z1 − M3z2
����

����X
≤

1 − q

F(q)
β2 z2 − z1

����
����X

􏼐 􏼑 +
q

F(q)Γ(q)
β2 z2 − z1

����
����X

sup
t∈J

􏽚
t

0
(t − k)

q− 1dk

≤
(Γ(q)(1 − q) + 1)β2

F(q)Γ(q)
z2 − z1

����
����X
≤H″ z2 − z1

����
����X

,

(24)

where H″ � (Γ(q)(1 − q) + 1)β2/F(q)Γ(q). Since by hy-
pothesis H″ < 1, we conclude that M3 is a contraction
mapping.

We have then proved that the operators M1, M2, and M3
are well defined and are contraction mappings. *e case for
the operators M4 and M5 follows immediately. Hence, by
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the Banach fixed point theorem, system (17) has a unique
solution in X. □

5. Numerical Solutions

In this part, the numerical scheme applied to get the phase
portrait of the dynamic system (15) is introduced. In the
context of chaotic or hyperchaotic fractional differential
equations, the use of analytical methods such as the Sudumu
transform method, the Laplace transform method, the
homotopy analysis method, and the homotopy perturbation
method cannot easily be applied because of the nonline-
arities of the system [13]. *is leads to the need for using
numerical methods to approximate the solutions of systems
of fractional differential equations. Some of the numerical
methods that can be applied for this case include
Adams–Bashforth and Toufik–Atangana numerical schemes
[8]. Both of these methods are based on Lagrange inter-
polation polynomials. In this study, the newly developed
numerical approximation for fractional derivatives by Toufik
and Atangana is employed. *e numerical scheme is par-
ticularly developed for approximation of Atangana–Baleanu
fractional derivative considered in this study, and it is proved
to be convergent, stable, and consistent [8].

For convenience, let us write (15) in the following form:

ABC
0 D

q

t x � N1(t, x, y, z, w, u),

ABC
0 D

q

t y � N2(t, x, y, z, w, u),

ABC
0 D

q

t z � N3(t, x, y, z, w, u),

ABC
0 D

q

t w � N4(t, x, y, z, w, u),

ABC
0 D

q

t u � N5(t, x, y, z, w, u),

(25)

where

N1(t, x, y, z, w, u) � β1(y − x) + 4yz − 0.02x(t)W(u),

N2(t, x, y, z, w, u) � − x + 16y − xz + w,

N3(t, x, y, z, w, u) � − β2z + xy − xu − yw,

N4(t, x, y, z, w, u) � − 10y + 0.15xz − 0.3zu,

N5(t, x, y, z, w, u) � − x.

(26)

Now from Lemma 3 and the first equation of (25), we
have

ABC
0 D

q

t x(t) � N1(t, x(t), y(t), z(t), ϕ(t)),

x(0) � x0.
(27)

*e solution for (27) is given as follows:

x(t) � x0 +
1 − q

F(q)
N1(t, x(t))

+
q

F(q)Γ(q)
􏽚

t

0
N1(k, x(k))(t − k)

q− 1dk.

(28)

Applying Lagrange’s interpolation polynomial on
[tk, tk+1] to equality N1(s, x(s), y(s), z(s), ϕ (s)) � β1(y −

x) + 4yz − 0.02x(t)W(u) leads to

xk ≈
1
h

s − tk− 1( 􏼁N1 tk, x tk( 􏼁, y tk( 􏼁( 􏼁 − s − tk( 􏼁N1 tk− 1, x tk− 1( 􏼁, y tk− 1( 􏼁( 􏼁􏼂 􏼃, (29)

where h � tk − tk− 1. Substituting (28) into (29), we obtain

x tn+1( 􏼁 � x0 +
1 − q

F(q)
N1 tk, x tk( 􏼁, y tk( 􏼁( 􏼁

+
q

F(q)Γ(q)
􏽘

n

j�1

N1 tj, x tj􏼐 􏼑, y tj􏼐 􏼑􏼐 􏼑

h
Υj− 1 −

N1 tj− 1, x tj− 1􏼐 􏼑, y tj− 1􏼐 􏼑􏼐 􏼑

h
Υj

⎛⎝ ⎞⎠,

(30)
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where

Υj− 1 � 􏽚
tj+1

tj

s − tj− 1􏼐 􏼑 tn+1 − s( 􏼁
q− 1ds � −

1
q

tj+1 − tj− 1􏼐 􏼑 tn+1 − tj+1􏼐 􏼑
q

− tj − tj− 1􏼐 􏼑 tn+1 − tj􏼐 􏼑
q

􏽨 􏽩

−
1

q(q + 1)
tn+1 − tj+1􏼐 􏼑

q+1
tn+1 − tj+1􏼐 􏼑

q
− tn+1 − tj􏼐 􏼑

q+1
􏼔 􏼕,

(31)

Υj � 􏽚
tj+1

tj

y − tj− 1􏼐 􏼑 tn+1 − s( 􏼁
q− 1ds � −

1
q

tj+1 − tj− 1􏼐 􏼑 tn+1 − tj+1􏼐 􏼑
q

􏽨 􏽩

−
1

q(q + 1)
tn+1 − tj+1􏼐 􏼑

q+1
− tn+1 − tj􏼐 􏼑

q+1
􏼔 􏼕.

(32)

Substituting tj � jh in (31) and (32) results in

Υj− 1 �
h

q+1

q(q + 1)
(n + 1 − j)

q
(n − j + 2 + q) − (n − j)

q
(n − j + 2 + 2q)􏼂 􏼃, (33)

Υj �
h

q+1

q(q + 1)
(n + 1 − j)

q+1
− (n − j)

q
(n − j + 1 + q)􏽨 􏽩. (34)

*e expression (30) can be expressed in terms of (31) and
(34) as shown in the following equation:

x tn+1( 􏼁 � x0 +
1 − q

F(q)
N1 tn, x tn( 􏼁, y tn( 􏼁( 􏼁

+
q

F(q)Γ(q)
􏽘

n

j�1

N1 tj, x tj􏼐 􏼑, y tj􏼐 􏼑􏼐 􏼑

Γ(q + 2)
⎛⎝ ⎞⎠ × h

q
(n + 1 − j)

q
(n − j + 2 + q) − (n − j)q(n − j + 2 + 2q)􏼂 􏼃⎛⎝

−
N1 tj− 1, x tj− 1􏼐 􏼑, y tj− 1􏼐 􏼑􏼐 􏼑

Γ(q + 2)
⎛⎝ ⎞⎠ × h

q
(n + 1 − j)

q+1
− (n − j)

q
(n − j + 1 + q)􏽨 􏽩⎞⎠.

(35)
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Similarly, we get the following equations for the rest of
the state variables:

y tn+1( 􏼁 � y0 +
1 − q

F(q)
N2 tn, x tn( 􏼁, y tn( 􏼁, z tn( 􏼁( 􏼁

+
q

F(q)Γ(q)
􏽘

n

j�1

N2 tj, x tj􏼐 􏼑, y tj􏼐 􏼑, z tj􏼐 􏼑􏼐 􏼑

Γ(q + 2)
× h

q
(n + 1 − j)

q
(n − j + 2 + q) − (n − j)

q
(n − j + 2 + 2q)􏼂 􏼃⎛⎝

−
N2 tj− 1, x tj− 1􏼐 􏼑, y tj− 1􏼐 􏼑, z tj− 1􏼐 􏼑􏼐 􏼑

Γ(q + 2)
× h

q
(n + 1 − j)

q+1
− (n − j)

q
(n − j + 1 + q)􏽨 􏽩⎞⎠,

(36)

z tn+1( 􏼁 � z0 +
1 − q

F(q)
N3 tn, y tn( 􏼁, z tn( 􏼁( 􏼁

+
q

F(q)Γ(q)
􏽘

n

j�1

N3 tj, y tj􏼐 􏼑, z tj􏼐 􏼑􏼐 􏼑

Γ(q + 2)
× h

q
(n + 1 − j)

q
(n − j + 2 + q) − (n − j)

q
(n − j + 2 + 2q)􏼂 􏼃⎛⎝

−
N3 tj− 1, y tj− 1􏼐 􏼑, z tj− 1􏼐 􏼑􏼐 􏼑

Γ(q + 2)
× h

q
(n + 1 − j)

q+1
− (n − j)

q
(n − j + 1 + q)􏽨 􏽩⎞⎠,

(37)

w tn+1( 􏼁 � w0 +
1 − q

F(q)
N4 tn, y tn( 􏼁, z tn( 􏼁( 􏼁

+
q

F(q)Γ(q)
􏽘

n

j�1

N4 tj, y tj􏼐 􏼑, z tj􏼐 􏼑􏼐 􏼑

Γ(q + 2)
× h

q
(n + 1 − j)

q
(n − j + 2 + q) − (n − j)

q
(n − j + 2 + 2q)􏼂 􏼃⎛⎝

−
N4 tj− 1, y tj− 1􏼐 􏼑, z tj− 1􏼐 􏼑􏼐 􏼑

Γ(q + 2)
× h

q
(n + 1 − j)

q+1
− (n − j)

q
(n − j + 1 + q)􏽨 􏽩⎞⎠,

(38)

u tn+1( 􏼁 � u0 +
1 − q

F(q)
N5 tn, y tn( 􏼁, z tn( 􏼁( 􏼁

+
q

F(q)Γ(q)
􏽘

n

j�1

N5 tj, y tj􏼐 􏼑, z tj􏼐 􏼑􏼐 􏼑

Γ(q + 2)
× h

q
(n + 1 − j)

q
(n − j + 2 + q) − (n − j)

q
(n − j + 2 + 2q)􏼂 􏼃⎛⎝

−
N5 tj− 1, y tj− 1􏼐 􏼑, z tj− 1􏼐 􏼑􏼐 􏼑

Γ(q + 2)
× h

q
(n + 1 − j)

q+1
− (n − j)

q
(n − j + 1 + q)􏽨 􏽩⎞⎠.

(39)

6. Local Stability Analysis

In this section of the study, the local stability analysis of the
fractional model represented in (25) is performed. It is
known that the equilibrium points of chaotic systems are not
generally stable. Some of the standard methods of stability
analysis in fractional calculus are theMatignon criterion and
the Laplace transform methods. In this work, the Matignon
method is used for its simplicity and is most commonly used
in the literature for the same purpose [1, 7, 13, 17].

*e Matignon criterion is given by

|argλ(J)|>
qπ
2
2, (40)

where J represents the Jacobian matrix, λ(J) is the set of the
eigenvalues of J, and q is the fractional-order derivative. In
the context of fractional derivative, an equilibrium point of
(25) is said to be locally stable provided that the Matignon
criterion (40) is satisfied for each of the eigenvalues of the
Jacobian matrix.
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To determine if the equilibrium points of (25) are stable
or not, we proceed as follows:

(i) *e equilibrium points: the equilibrium points of
(25) are given as (0, 0, 0, 0, 0), and line equilibrium is
given by α(0, 0, 0, 0, 1): α ∈ R{ }.

(ii) *e Jacobian matrix: in this study, analysis is made
regarding the trivial equilibrium point for simplicity.
*e parameter values used, unless otherwise men-
tioned, are set as a � 0.1, b � 0.01,
β1 � 30, and β2 � 8. *us, the Jacobian matrix of
(25) evaluated at the trivial equilibrium point is
given by

Jo �

− β1 − 0.002 β1 0 0 0

− 1 16 0 1 0

0 0 − β2 0 0

0 − 10 0 0 0

− 1 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

*e eigenvalues of the Jacobian matrix J are given by
λ1 � 0, λ2 � − 29.3453, λ4 � 0.6981, λ4 � 0.6981, and
λ5 � − 8.0000. To check the local stability of the trivial
equilibrium point, using the Matignon criteria, we need to
verify if all the eigenvalues satisfy condition (40). Indeed,
|arg(λ1,3,4)| � 0> qπ/2 which is not possible since q ∈ (0, 1).
|arg(λ2,5)| � 3.1416 � π > qπ/2 is true for all q ∈ (0, 1). It can
then be concluded that the equilibrium point
Eeqpts � (0, 0, 0) is locally unstable for the parameter values
considered.

Furthermore, since one of the eigenvalues of the Jaco-
bian matrix is with positive real part, it can be inferred that
system (25) satisfies the necessary condition for showing the
double scroll attractor [19].

7. Lyapunov Exponents, Bifurcation, and
Chaos with Different Fractional Orders of q
and Different Parameter Values

In this section, the level of chaos in system (25) is quantified
using the Lyapunov exponent method. Bifurcation diagrams
of the system (25) related to the fractional derivative order q

and three of the parameters in the model named, β1, β2, and
β3, are depicted.

A Matlab code for Lyapunov exponents of fractional-
order systems named the Danca algorithm [26] is used to
quantify the chaos by calculating Lyapunov exponents for
different fractional orders of model (25). *e initial con-
ditions used in this part of the work are given by
(0.11, 0.11, 0.11, 0.11).*e parameter values used are similar
to the ones used above for calculating the Jacobian matrix.
*e corresponding Lyapunov exponents (LEs) for different
fractional orders q � 0.94, 0.96, 0.98, 1.00 are shown in
Table 1.

It is then possible to conclude that the 5D system
considered in this study is dissipative since the sum of the
LEs in each column of Table 1 is negative and the system

exhibits a hyperchaotic behavior since there are at least two
positive LEs in each column of the table and the largest LE is
positive. Moreover, Kaplan–Yorke dimension coresponding
to the fractional derivatives considered in Table 1can be
calculated. For instance, the dimension of two of the frac-
tional orders is given as follows.

For q� 0.99,

dim(LE) � 4 +
15.3837 + 0.7298 + 0.005 − 8.4128

| − 30.6645|
� 4.2511.

(42)

For q� 0.98,

dim(LE) � 4 +
16.1855 + 0.7676 + 0.005 − 8.8488

| − 32.1742|
� 4.2520.

(43)

7.1. Bifurcations due to Variation of the Fractional Order q.
For obtaining bifurcation diagrams due to the variation of
the fractional order q, the values of all the parameters are
kept fixed and the order of the fractional derivative q is
varied in the interval (0.8, 1) with an increment of 0.001.*e
other parameter values used in this simulation are
a � 0.1, b � 0.01, β1 � 30, and β2 � 8, and the initial condi-
tion is (0.11, 0.11, 0.11, 0.11, 0.11). *e bifurcation diagram
is shown in Figure 1.

As shown in Figure 1, when q ∈ (0.8, 1), the system is
hyperchaotic. As a verification of the observation, the phase
portraits corresponding to q= 0.98 and q= 0.99 using the
numerical approximations for fractional-order systems in-
dicated by equations (35)–(39) are shown in Figures 2 and 3,
respectively. In both Figures 2 and 3, the dependence of the
hyperchaotic system on the fractional derivative is observ-
able as the two figures are seen to be different from each
other for a fractional order difference of 0.01. If we consider
the trajectories in Figure 3, the orbit due to q= 0.98 con-
verged in less than 13.5 seconds which is not the case for
q= 0.99. *at means different fractional derivative orders
generate reasonably different dynamics of the system (25).

7.2. Bifurcations due to Variation of the Parameter β1.
*e values of the parameters used are
a � 0.1, b � 0.01, and β2 � 8, the fractional derivative order
is q � 0.99, and the initial condition is
(0.11, 0.11, 0.11, 0.11, 0.11). *e value of the parameter β1 is
made to vary in the interval (29.5, 30.5) with an increment of
0.001.*e bifurcation diagram is shown in Figure 4. It can be
observed from the diagram that system (25) exhibits sig-
nificant hyperchaos throughout the interval under consid-
eration. In support of this conclusion, some of the phase
portraits of hyperchaotic system (25) are depicted in Figure 5
projected on different planes.

It can be inferred from Figures 5(a)–5(d) that the orbits
seem to overlap initially, but as time increases, their di-
vergence from each other increases. *at is, as time goes, the
orbit due to β1 � 30.5 showed more contraction than the
trajectory due to β1 � 30; this is because of the sum of all the
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Lyapunov exponents (LEs) of the respective parameter
values considered in this case. *e sum of LEs for β1 � 30 is
− 22.9526 (the LEs are shown in Table 1), the sum of LEs for
β1 � 30.5 is − 23.4693 (LEs are 15.3796, 0.7298, 0.0051,
− 8.4066, and − 31.1772), and the sum of LEs for β1 � 30.25 is
− 23.2106 (LEs are 15.3817, 0.7298, 0.0051, − 8.4066, and
− 30.9209). Since the system under investigation is dissipa-
tive, the contraction rate of volumes due to β1 � 30.5 is
stronger than the contraction rate of volumes due to β1 � 30
which is inferred from the magnitude of the sum of all LEs
for the corresponding parameter values.

7.3. Bifurcations due to Variation of the Parameter β2.
*e values of the parameters used are a � 0.1, b � 0.01,

and β2 � 8, the fractional derivative order is q � 0.99, and
the initial condition is (0.11, 0.11, 0.11, 0.11, 0.11). *e value
of the parameter β2 is made to vary in the interval [7, 8.5]
with an increment of 0.001. *e bifurcation diagram is
shown in Figure 6. It can be observed from the diagram that
system (25) exhibits significant hyperchaos throughout the
interval under consideration. In support of this conclusion,
some of the phase portraits of the hyperchaotic system (25)
are depicted in Figure 7 projected on different planes and
some of the time-series trajectories are depicted in Figure 8.

It can be inferred from Figures 7(a)–7(c) that the orbits
seem to overlap initially, but as time increases, their di-
vergence from each other increases. *at is, as time goes, the
orbit due to β1 � 30.5 showed more contraction than the
trajectory due to β1 � 30, as can be observed from the sum of
all LEs of the respective parameter values considered in this
case. *e sum of LEs for β2 � 8 is − 22.9526 (the LEs are
shown in Table 1) and the sum of LEs for β2 � 7.5 is
− 22.4277 (LEs are 15.3837, 0.7298, − 7.8817, 0.0050, and
− 30.6645). Since the system under investigation is dissipa-
tive, the contraction rate of volumes due to β2 � 8 is stronger

than the contraction rate of volumes due to β1 � 7.5 which is
inferred by the magnitude of the sum of all LEs corre-
sponding to the parameter values.

*e trajectories in Figure 8 seem to overlap for the first
few seconds and then begin diverging from each other; the
divergence increases with time.

8. Impact of Initial Condition

In this section, the impact of different initial conditions on
the dynamics of the system (25) is addressed. It is well
known that one of the properties of chaotic systems is
sensitivity to initial conditions, and thus it seems relevant
to verify the impact of applying different initial conditions
on the phase-space and time-series solutions of system
(25). Accordingly, the parameter values and derivative
order used are a � 0.1, b � 0.01, β1 � 30, β2 � 8, and
q � 0.99. In Figure 9, some of the phase portraits of
hyperchaotic system (25) are depicted corresponding to
initial conditions (0.11,0.11,0.11,0.11.0.11) by varying ini-
tial coordinates of u(0) � 0.5, and 1.0is made to run for 5
seconds with a time step of h = 0.001. *e simulation result
is shown in Figure 9.

As can be observed from the figures, hyperchaotic
system (25) is sensitive to changes in initial conditions. As
the variation in the initial condition increases, the dynamics
of the system become different from each other at least for
this example.

As can be observed from Figures 9 and 10, a small
difference of the initial condition generates a significantly
observable change in the dynamics of system (25).

9. Synchronization of the Hyperchaotic Model

Synchronization between two chaotic systems is one of the
most interesting phenomena in the study of dynamic sys-
tems. Synchronization is an occurrence in which two or
more chaotic/hyperchaotic systems express a strong corre-
lation among themselves. It is very interesting to see that two
hyperchaotic systems, being highly sensitive to initial con-
ditions and exponential divergence of nearby orbits, get
synchronized starting from two different initial conditions.
Pecora and Caroll [33, 34] in 1990 showed for the first time
the possibility of synchronizing two chaotic systems starting
from two different initial conditions. Pecora and Caroll used
a technique called replacement synchronization. Chaotic
synchronization has a range of applications including se-
curing communications based on phase synchronization
and controlling insulin production by beta cells. In this

Table 1: LEs corresponding to different fractional orders of model (25) for a simulation time of 300 s.

q 0.94 0.96 0.98 0.99 1
LE1 19.8323 17.9163 16.1855 15.3837 14.6215
LE2 0.9387 0.8490 0.7676 0.7298 0.6938
LE3 0.0050 0.0050 0.0050 0.0050 0.0050
LE4 − 10.7674 − 9.7560 − 8.8353 − 8.4066 − 7.9978
LE5 − 38.8609 − 35.3857 − 32.1742 − 30.6645 − 29.2172
Sum of all LEs − 28.8523 − 26.3714 − 24.0496 − 22.9526 − 21.8497
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Figure 1: Bifurcation diagram for variation of the fractional de-
rivative order q in the interval (0.8, 1).
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study, we applied the master-slave synchronization tech-
nique. *at is, we considered two identical copies of system
(25) and related them with a coupling function. We con-
sidered different initial conditions for the coupled systems,
showed that the error dynamics are asymptotically stable,

and portrayed some of the simulation results. *e coupling
function is added to the slave system to make it respond to
the master system.

Now the master hyperchaotic fractional model is given
by
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Figure 4: Bifurcation diagram for variation of the parameter β1 in the interval (29.5, 30.5).
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ABC
0 D

q

t x(t) � 30(y − x) + 4yz − 0.002x + 0.0006xu
2

􏼐 􏼑,

ABC
0 D

q

t y(t) � − x + 16y − xz + w,

ABC
0 D

q

t z(t) � − 8z + xy − xu − yw,

ABC
0 D

q

t w(t) � − 10y + 0.15xz − 0.3zu,

ABC
0 D

q

t u(t) � − x.

(44)
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Figure 9: Some of the time series orbits of the system (25) due to small changes in the initial conditions.
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Let the slave model be given by

ABC
0 D

q

t xs(t) � 30 ys − xs( 􏼁 + 4yszs − 0.002xs + 0.0006xsu
2
s􏼐 􏼑 + c1,

ABC
0 D

q

t ys(t) � − xs + 16ys − xszs + ws + c2,

ABC
0 D

q

t zs(t) � − 8zs + ysxs − xsus − ysws + c3,
ABC
0 D

q

t ws(t) � − 10ys + 0.15xszs − 0.3uszs + c4,
ABC
0 D

q

t us(t) � − xs + c5.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(45)

Define the error terms by

e1 � xs − x, e2 � ys − y, e3 � zs − z, e4 � ws − w, e5 � us − u.

(46)

*e error dynamics are then given by

ABC
0 D

q

t e1(t) � β1e2 − β1e1 + 4 e3 e2 + y( 􏼁 + e2z( 􏼁 − 0.002e1 + 0.0006 − e1e
2
5 + 2e1e5u − u

2
e1 − xe

2
5 + 2e5ux􏼐 􏼑 + c1,

ABC
0 D

q

t e2(t) � − e1 + 16e2 + − e1e3 − e1z − xe3( 􏼁 + e4 + c2,

ABC
0 D

q

t e3(t) � − β2e3 + e1e2 + e1y + xe2( 􏼁 + − e1e5 − e1u − xe5( 􏼁 + − e2e4 − e4y − e2w( 􏼁 + c3,

ABC
0 D

q

t e4(t) � − 10e2 + 0.15 e1e3 + e1z + xe3( 􏼁 + 0.3 − e5e4 − e5z − ue4( 􏼁 + c4,

ABC
0 D

q

t e5(t) � − e1 + c5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

*e vector (c1, c2, c3, c4, cs)
T is chosen as

c1

c2

c3

c4

c5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� −

β1e2 − β1e1 + 4 e3 e2 + y( 􏼁 + e2z( 􏼁 − 0.002e1 + 0.0006 − e1e
2
5 + 2e1e5u − u

2
e1 − xe

2
5 + 2e5ux􏼐 􏼑,

− e1 + 16e2 + − e1e3 − e1z − xe3( 􏼁,

− β2e3 + e1e2 + e1y + xe2( 􏼁 + − e1e5 − e1u − xe5( 􏼁 + − e2e4 − e4y − e2w( 􏼁,

− 10e2 + 0.15 e1e3 + e1z + xe3( 􏼁 + 0.3 − e5e4 − e5z − ue4( 􏼁,

− e1,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ H.ζ , (48)
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where

H.ζ �

− 30 − 14.5 0 0 0.5

− 14.5 − 21 0 4.5 0

0 0 − 13 0 0

0 4.5 0 − 5 0

0.5 0 0 0 − 5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e1

e2

e3

e4

e5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (49)

*e choice of the matrix H is arbitrary except that all of
its eigenvalues must satisfy the Matignon criteria of stability
(40).

*en, the error dynamics become

ABC
0 D

q

t
e1

ABC
0 D

q

t e2
ABC
0 D

q

t e3
ABC
0 D

q

t e4
ABC
0 D

q

t e5􏼐 􏼑 �

− 30 − 14.5 0 0 0.5

− 14.5 − 21 0 4.5 0

0 0 − 13 0 0

0 4.5 0 − 5 0

0.5 0 0 0 − 5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e1

e2

e3

e4

e5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (50)

*e eigenvalues of matrix H are − 40.8876, − 13.0000,
− 12.1143, − 4.9900, and − 3.0081, and all the eigenvalues

satisfy Matignon criteria, and thus the error dynamics are
asymptotically stable.
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Figure 14: Some of the time series orbits of the system (25) due to different fractional-order derivatives.
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Now the slave system is given by

ABC
0 D

q

t xs(t) � 44.5y − 0.002x + 4yz − 0.5u − 0.0006xu
2

− 30xs − 14.5ys + 0.5us,

ABC
0 D

q

t ys(t) � 13.5x + 37y − xz − 3.5w − 14.5xs − 21ys + 4.5ws,

ABC
0 D

q

t zs(t) � 7z + xy − xu − yw − 13zs,

ABC
0 D

q

t ws(t) � 5w + 0.15xz − 14.5y − 0.3zu + 4.5ys − 5ws,

ABC
0 D

q

t us(t) � − 1.5x + 5u + 0.5xs − 5us.

(51)

*e numerical simulation that verified a strong correlation
between the master and the slave system in the form of phase
space, time-series orbits, and the error dynamics are depicted in
Figures 11–13. *e numerical approximation for fractional
order system (25) given in equations (35)–(39) is adapted to
simulate each of the error dynamics (50), the master system
(44), and slave system (51). *e simulation results are shown in
Figures 11–13. *e parameter values and derivative order used
are a � 0.1, b � 0.01, β1 � 30, β2 � 8, and q � 0.99. *e initial
condition used for master systems is (0.11, 0.11, 0.11, 0.11, 0.11),
and it is (− 10, 10, − 5, − 0.5, − 0.5) for the slave system.*e error
graphs indicate fast synchronization of the slave and master
systems.

10. Conclusion

In this study, a 5-dimensional memristor-based hyper-
chaotic circuit in the context of the fractional operator was
considered and different qualitative and quantitative ana-
lyses are made: numerical approximation of the solution,
bifurcation diagrams, Lyapunov exponents for different
fractional orders, and parameter values are used to inves-
tigate the nature of the solution and chaotic system. *e
system is found to be hyperchaotic. Sensitivity to initial
conditions and sensitivity to parameter value changes were
found to cause a significant effect on the dynamics of the
system. Furthermore, in the course of making several
simulation results on the dynamics of the system, the
hyperchaotic system is sensitive to almost any change made
in the system including time scale increment change used in
the study. *e sensitivity of the system to fractional deriv-
ative order is very strong in the sense that the simulation
results for q= 0.98 and 0.99 are significantly different (see
Figures 2, 3, and 14). *is is perhaps related to the con-
traction rate of volumes due to the different fractional-order
derivatives. *e magnitude of the sum of all the LEs cor-
responding to different fractional-order derivatives de-
creases as the order of the derivative increases for the case of
the hyperchaotic system considered in this study (see Ta-
ble 1). *is requires further investigation. Synchronization
of the system is also established and exhibited a strong
agreement. *e dependence of synchronization on the
fractional derivative orders and variation of parameters
needs further investigation.
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.is study discusses the synchronization problem for delayed neural networks with semi-Markovian jumping parameters. With
the support of Jenson’s inequality and Writinger-based integral inequality, a suitable Lyapunov–Krasovskii functional was
constructed, and a synchronization criterion for the considered system was derived in the form of LMIs. In order to cope with
system uncertainties, the nonfragile controller was taken into account. Also, sampled-data controller is used to improve the
effectiveness of the bandwidth usage. In order to achieve the benefits of both control techniques, the nonfragile sampled-data
controller was considered for synchronization of semi-Markovian jumping neural networks and to assure that the error system is
asymptotically stable. At last, numerical simulations are exhibited to validate the proposed technique.

1. Introduction

Due to their effective implementation in cryptography,
image analysis, associative memory, model identification,
and so on, more attention has been given to different neural
network (NN) models over the past centuries [1–4]. In latest
years, the stability assessment of the constructed networks
has appeared as a significant study subject due to the dy-
namic nature of these applications. In many of the engi-
neering and neural systems, the communication
transmission in a network is frequently interrupted by some
exterior factors, which may direct to adverse dynamic be-
haviors such as oscillation and instability, and there arises
time-delay. In addition to the fact that time delays in NNs
are unavoidable, the literature has explored the stability
assessment of delayed NNs well [5–8]. For example,

synchronization problem for coupled inertial neural net-
works with reaction diffusion terms and time-varying delays
via pinning sampled-data control has been considered in [5].
Finite time synchronization of drive response networks with
discontinuous nodes and noise distribution has been ana-
lyzed in [9]. H∞ filtering problem for fuzzy stochastic NNs
with mixed time-delays has been investigated in [10].

In the actual application, since the system’s state
equation tends to have some randomness, a linear time-
invariant system cannot generally describe such systems..e
Markov jump system, however, can describe such dynamic
systems accurately, which has led to extensive research by
scholars [11, 12]. Since the jump time of a Markov chain is
exponentially distributed, Markovian jumping parameters
have severe limitations in applications. A semi-Markovian
process is a continuous stochastic process whose sojourn
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time fits a variety of probability distributions, such as the
Weibull and Gaussian distributions. As a result of the re-
laxed conditions on the probability distributions, semi-
Markovian jumping parameters are more general than
Markovian jumping parameters in modelling realistic sys-
tems. Semi-MJSs have a fixed matrix of transition proba-
bilities and a matrix of sojourn time probability density
functions, while Markovian jumping systems (MJSs) have
constant transition rates..is means that the transition rates
in S-MJSs are time-varying. Due to these advantages, re-
searchers paid their attention towards semi-Markovian
jumping systems [13–16]. Recently, in [17], stochastic
synchronization problem for semi-Markovian jumping
Lure’s system with packet dropouts subject to multiple
sampling periods has been discussed. In [18], network-based
nonlinear semi-Markovian jump systems with randomly
occurring parameter uncertainties and transmission delay
have been taken into account. Event-triggered synchroni-
zation problem for semi-Markovian jumping complex dy-
namical networks with a reliable control technique has been
investigated in [19].

To stabilize the NNs, there are many control techniques
such as impulsive control [20, 21], feedback control [22],
sampled-data control [23–25], intermittent control [26, 27],
and so on. It should be noted that the sampled-data control
will improve the efficacy of the use of bandwidth by radically
deducing the amount of information transmitted. Analog
signal processing techniques are frequently replaced by
digital signal processing techniques to achieve improved
efficiency, reliability, and precision, in addition to the hasty
developments in discrete measurement and intelligent in-
struments. Sampled-data control systems are continuous-
time systems operated by a digital controller, and they are
usually made up of continuous-time plants to be controlled,
a discrete-time controller to control them, and an ideal
sampler and ZOH to transform continuous-time signals into
discrete-time signals and vice versa. .e sampled-data
systems are hybrid in nature because they operate in the
continuous-time domain with both continuous-time and
discrete-time signals. One of the discrete controllers, the
sampled-data control system, allows control signals to adjust
only at discrete sampling, resulting in a significant reduction
in communication traffic and energy savings. As a result,
sampled-data controllers have received a lot of attention in
recent decades, with related findings published in the lit-
erature [28, 29].

Practically, the designed controller should be able to
tolerate some uncertainties in its coefficients because un-
certainty cannot be avoided for many reasons, such as the
inherent imprecision in analog systems and additional pa-
rameter tuning in the final implementation of the controller.
Due to this fact, the nonfragile controller has been studied by

many researchers [30–32]. Nonfragile synchronization for
chaotic time-delay neural networks with semi-Markovian
jump parameters has been discussed in [32]. Synchroniza-
tion stability criteria for delay-coupled fractional-order
complex Cohen–Grossberg neural networks under param-
eter uncertainties are discussed in [33].

By the impact of the preceding facts, this manuscript
discusses the synchronization problem for SMJNN with
hybrid control strategy. At first, synchronization analysis has
been performed to consider SMJNNs with recently intro-
duced integral inequality techniques and proposed control
strategy. Later, the synchronization criteria for SMJNNs
have been explored with the nonfragile control technique.
Finally, in numerical simulations, chaotic NNs are consid-
ered to verify the designed control technique.

.e main contributions and features of this study are
presented as follows:

(i) Distinguished from the previous works, this article
aims to study the synchronization issue for SMJNNs
with time delays by using nonfragile sampled-data
control

(ii) Moreover, in an aim to enjoy the benefits of the
nonfragile control technique and sampled-data
control technique, the nonfragile sampled-data
control which has the features of both control
techniques has been adopted for achieving
synchronization

(iii) By utilizing novel integral inequalities and designed
controller, synchronization criteria have been given
in the form of LMIs. .e resulting LMIs are solved
with the help of Matlab LMI toolbox.

(iv) Finally, numerical simulations are presented to
validate the correctness of the proposed control
technique

2. Problem Formulation

Let β(t), t≥ 0􏼈 􏼉 be a discrete-state continuous-time semi-
Markov process and assume the values in the finite set �

1, 2, . . . , N{ } are given by

Pr β(t + l) � j | β(t) � i􏼈 􏼉 �
αij(l)l + o(l) i≠ j

1 + αii(l)l + o(l) i � j
􏼨 ,

(1)

where Δ � αij(l) denotes the transition probability matrix,
liml⟶0(o(l)/l) � 0, and αij(l)≥ 0, for i≠ j, is the transition
rate from mode i at time t to mode j at time t + l, and
αii(l) � 􏽐j∈S,j≠iαij(l).

Consider the SMJ-delayed neural networks:

_ζ(t) � − D(β(t))ζ(t) + A(β(t))f(ζ(t)) + B(β(t))f(ζ(t − 9(t))) + J(t), (2)
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where ζ(t) � (ζ1(t), ζ2(t), . . . , ζn(t)) represents the state
vector. f(x(t)) � (f1(x(t)), . . . , fn(x(t))) stands for neu-
ron activation function and τ(t) is the time-varying delay with

0≤ ϱ(t)≤ ϱ. D � diag d1, d2, . . . , dn􏼈 􏼉 with di > 0. A and B are
connection and delayed connection weight matrices. .e ex-
ternal input is denoted by J(t). .e slave system is described as

_ξ(t) � − D(β(t))ξ(t) + A(β(t))f(ξ(t)) + B(β(t))f(ξ(t − 9(t))) + J(t) + u(t), (3)

where u(t) ∈ Rn is the control input. By letting the error as
ψ(t) � ζ(t) − ξ(t), the error system is

_ψ(t) � − D(β(t))ψ(t) + A(β(t))f(ψ(t)) + B(β(t))f(ψ(t − ϱ(t))) + u(t). (4)

Consider the nonfragile sampled-data control as

ui(t) � (K + ΔK(t))ψ tk( 􏼁 � Kψ tk( 􏼁, (5)

where K is the gain matrix to be designed, and tk denotes the
sampling instant and satisfies
0 � t0 < t1 < · · · < tk < · · · < limk⟶∞tk. ΔK(t) stands for the
controller gain fluctuations. It takes the form

ΔK(t) � MF(t)N, (6)

where FT(t)F(t) ≤ I. Using the input-delay approach
t − tk � σ(t), tk ≤ t< tk+1, and 0< σ(t)< σ, then the con-
troller becomes

ui(t) � Kψ(t − σ(t)). (7)

.en, (4) can be written as

_ψ(t) � − D(β(t))ψ(t) + A(β(t))f(ψ(t)) + B(β(t))f(ψ(t − ϱ(t))) + Kψ(t − σ(t)). (8)

Lemma 1 (see [34]). For any two scalars υ2 ≥ υ1 > 0, constant
matrix H ∈ Rn×n, H � HT > 0, such that the integrations
concerned are well defined:

− υ2 − υ1( 􏼁 􏽚
t− υ1

t− υ2
ξT

(s)Hξ(s)ds≤ − 􏽚
t

t− υ2
ξ(s)ds􏼠 􏼡

T

H 􏽚
t− υ1

t
ξ(s)ds􏼠 􏼡. (9)

Lemma 2 (see [35]). For any matrix E ∈ Rn×m, E � ET > 0,
differentiable function θ from [a, b]⟶ Rn, the succeeding
inequality holds:

􏽚
b

a

_z
T
(s)E _z(s)ds≥

ϑT ΥT
1 EΥ1 + π2ΥT

2 EΥ2􏽨 􏽩ϑ
b − a

, (10)

where ϑ � [zT(b)zT(a) 􏽒
b

a
((zT(s))/(b − a))ds]T, Υ1 �

[I − I0], and Υ2 � [(I/2)(I/2) − I].

Lemma 3 (see [36]). Let S � ST, U and V be the real constant
matrices of appropriate dimensions S + UF(t)V + VTFT

(t)UT < 0 for F, satisfying FT(t)F(t) � I if and only if there
exists a scalar ε> 0, such that S + ε− 1UUT + εVTV< 0.

Assumption 1. Each activation function fi(·) is contin-
uous and bounded and there exist constants F−

i and F+
i

such that

F
−
i ≤

fi k1( 􏼁 − fi k2( 􏼁

k1 − k2
≤F

+
i , i � 1, 2, . . . , n, (11)

where k1, k2 ∈ R and k1 ≠ k2.

3. Nonfragile Sampled-Data Synchronization

.is section derives some sufficient conditions for the
synchronization of considered system (8), which can be seen
through the subsequent theorem.

Theorem 1. 0e system (8) is asymptotically synchronized, if
there exist matrices P> 0,Q1 > 0,Q2 > 0,R1 > 0,R2 > 0,

Z1 > 0,Z2 > 0 and matrices S, L, G, for a given scalar c, such
that the following LMI holds:

Υ(δ)< 0, (12)

where
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Υ1,1 � 2P + Q1 + Q3 + τ21R1 + ϱR2 +
ϱ2

4
T1 + Z1

− 2GDi − Z2 +
π2

4
Z2􏼠 􏼡

− R1 +
π2

4
R1􏼠 􏼡 − F1Λ1i + 􏽘

N

j�1
αij(δ)Pj,

Υ1,2 � GAi + F2Λ1i,

Υ1,3 � GBi,

Υ1,4 � GK + Z2 −
π2

4
Z2,

Υ1,5 � R1 −
π2

4
R1,

Υ1,7 � − G + Pi,

Υ1,9 �
π2

4
1
ϱ
R1,

Υ1,12 � −
π2

2
Z2,

Υ2,2 � − Λ1i + Q2,

Υ2,5 � F2
􏽥Λ2i,

Υ2,7 � GAi,

Υ3,3 � (1 − μ)Q2,

Υ3,7 � cGBi,

Υ4,4 � 2 − Z2 −
π2

4
Z2􏼠 􏼡,

Υ4,7 � GK,

Υ5,5 � − Q1 − 2 R1 +
π2

4
R1􏼠 􏼡

Υ5,6 � R1 −
π2

4
R1,

Υ5,7 � cGBi,

Υ5,8 �
π2

4
R1,

Υ5,9 �
π2

2
R1,

Υ6,6 � − Q3 − Z
2

+
π2

4
Z2􏼠 􏼡,

Υ7,7 � τ2R1 + η2Z2 − 2cG,

Υ8,8 � − π2R1,

Υ9,9 � − π2R1,

Υ10,10 � − Z1 − Z2 −
π2

4
Z2,

Υ10,11 �
π2

2
Z2,

Υ11,11 � − π2Z2,

Υ12,12 � − π2Z2,

Υ13,13 � − T1.

(13)

Proof. Consider the following Lyapunov–Krasovskii
functional:

V(t) � 􏽘
5

i�1
Vi(t), (14)

where
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V1(t) � ψT
(t)Piψ(t),

V2(t) � 􏽚
t

t− ϱ(t)
ψT

(s)Q1ψ(s)ds + 􏽚
t

t− ϱ(t)
g

T
(ψ(s))Q2g(ψ(s))ds

+ 􏽚
t

t− ϱ
ψT

(s)Q3ψ(s)ds,

V3(t) � ϱ􏽚
0

− ϱ
􏽚

t

t+θ
_ψT

(s)R1 _ψ(s)dsdθ + 􏽚
0

− ϱ
􏽚

t

t+θ
ψT

(s)R2ψ(s)dsdθ,

V4(t) �
ϱ
2

􏽚
0

− ϱ
􏽚
0

θ
􏽚

t

t+λ
ψT

(s)T1ψ(s)dsdλdθ,

V5(t) � 􏽚
t

t− σm

ψT
(s)Z1ψ(s)ds + σm 􏽚

0

− σm

􏽚
t

t+θ
_ψT

(s)Z2 _ψ(s)dsdθ.

(15)

Calculating the time-derivative of (14) along (8) gives

LV1(t) � − 2ψT
(t)Piψ(t) + ξT

(t) 􏽘
N

j�1
πij(δ)Pjψ(t),

LV2(t) � ψT
(t)Q1ψ(t) − (1 − μ)ψT

(t − ϱ(t))Q1ψ(t − ϱ(t)) + g
T

(ψ(t))Q2g(ψ(t))

− (1 − μ)g
T
(t − τ(t))Q2g(t − ϱ(t)) + ψT

(t)Q3ψ(t) − ψT
(t − ϱ)Q3ψ(t − ϱ),

(16)

LV3(t) � ϱ2 _ψT
(t)R1 _ψ(t) − ϱ􏽚

t

t− ϱ
_ψT

(s)R1 _ψ(s)ds + ϱψT
(t)R2ψ(t)

− 􏽚
t

t− ϱ
ψT

(s)R2ψ(s)ds,

(17)

LV4(t) �
ϱ4

4
ψT

(t)T1ψ(t) − 􏽚
0

− ϱ
􏽚

t

t+θ
ψT

(s)dsdθT1 􏽚
0

− ϱ
􏽚

t

t+θ
ψ(s)dsdθ, (18)

LV5(t) � ψT
(s)Z1ψ(s) − ψT

t − σm( 􏼁Z1ψ t − σm( 􏼁 + σ2m _ψT
(t)Z2 _ψ(t)

− σm 􏽚
t

t− σM

_ψT
(s)Z2 _ψ(s)ds.

(19)

From Lemma 1, it follows from equation (19) that

− 􏽚
t

t− ϱ
ψT

(s)R2ψ(s)ds≤ −
1
ϱ

􏽚
t− ϱ(t)

t− ϱ
ψ(s)ds

􏽚
t

t− ϱ(t)
ψ(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

R2 0

0 R2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

􏽚
t− ϱ(t)

t− ϱ
ψ(s)ds

􏽚
t

t− ϱ(t)
ψ(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

From Lemma 2, (19) becomes
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− σm 􏽚
t− σ(t)

t− σm

_ψT
(s)Z2 _ψ(s)ds≤ −

ψ(t − σ(t))

ψ(t − σ)

1
σ

􏽚
t− σ(t)

t− σ
ψ(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

×

Z2 +
π2

4
Z2 − Z2 +

π2

4
Z2 −

π2

4
Z2

− Z2 +
π2

4
Z2 Z2 +

π2

4
Z2

π2

2
Z2

−
π2

4
Z2 −

π2

4
Z2 π2

Z2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ψ(t − σ(t))

ψ(t − σ)

1
σ

􏽚
t− σ(t)

t− σ
ψ(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

and

− σm 􏽚
t

t− σ(t)

_ψT
(s)Z2 _ψ(s)ds≤

ψ(t)

ψ(t − σ(t))

1
σ

􏽚
t

t− σ(t)
ψ(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

×

Z2 +
π2

4
Z2 − Z2 +

π2

4
Z2 −

π2

4
Z2

− Z2 +
π2

4
Z2 Z2 +

π2

4
Z2

π2

2
Z2

−
π2

4
Z2 −

π2

4
Z2 π2

Z2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ψ(t)

ψ(t − σ(t))

1
σ

􏽚
t

t− σ(t)
ψ(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

From (17), we have
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􏽚
t− ϱ(t)

t− ϱ
_ψT

(s)R1 _ψ(s)ds≥
1
ϱ

ψ(t − ϱ(t))

ψ(t − ϱ)

1
ϱ

􏽚
t− ϱ(t)

t− ϱ(t)
ψ(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

×

R1 +
π2

4
R1 − R1 +

π2

4
R1 −

π2

4
R1

− R1 +
π2

4
R1 R1 +

π2

4
R1

π2

2
R1

−
π2

4
R1 −

π2

4
R1 π2

R1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ψ(t − ϱ(t))

ψ(t − ϱ)

1
ϱ

􏽚
t− ϱ(t)

t− ϱ(t)
ψ(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

(23)

and

􏽚
t

t− ϱ(t)

_ψT
(s)R1 _ψ(s)ds≥

1
ϱ

ψ(t)

ψ(t − ϱ(t))

1
ϱ

􏽚
t− ϱ(t)

t− ϱ(t)
ψ(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

×

R1 +
π2

4
R1 − R1 +

π2

4
R1 −

π2

4
R1

− R1 +
π2

4
R1 R1 +

π2

4
R1

π2

2
R1

−
π2

4
R1 −

π2

4
R1 π2

R1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ψ(t)

ψ(t − ϱ(t))

1
ϱ

􏽚
t− ϱ(t)

t− ϱ(t)
ψ(s)ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(24)

By Assumption 1, for diagonal matrices Λ1i and Λ2i,

0≤ − ψT
(t)F1Λ1iψ(t) + ψT

(t)F2Λ1ig(ψ(t)) + g
T
(ψ(t))F2

􏽥Λ1iψ(t)

− g
T
(ψ(t))􏽦Λ1ig(ψ(t)),

(25)

0≤ − ψT
(t − τ(t))F1Λ2iψ(t − τ(t)) + ψT

(t − τ(t))F2
􏽥Λ2ig(ψ(t − ϱ(t)))

+ g(ψ(t − ϱ(t)))F2
􏽥Λ2iψ(t − ϱ(t)) − g

T
(ψ(t − ϱ(t)))􏽥Λ2ig(ψ(t − ϱ(t))).

(26)

For any matrix G, we have
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0 � 2 ψT
(t)G + _ψT

(t)G􏽨 􏽩[− _ψ(t) − D(β(t))ψ(t) + A(β(t))f(ψ(t))

+ B(β(t))f(ψ(t − ϱ(t))) + Kψ(t − σ(t))].
(27)

From equations (15)–(27), we have

E LV(t){ }≤ χT
(t)Υχ(t)< 0, (28)

where

χ(t) � [ψ(t) g(ψ(t)) g(ψ(t − ϱ(t)))ψ(t − σ(t))ψ(t − ϱ(t))ψ(t − ϱ) _ψ(t)

􏽚
t− ϱ(t)

t− ϱ
ψ(s)ds 􏽚

t

t− ϱ(t)
ψ(s)dsψ(t − σ)

1
σ

􏽚
t− σ(t)

t− σ
ψ(s)ds

1
σ

􏽚
t

t− σ(t)
ψ(s)ds

􏽚
0

− ϱ
􏽚

t

t+θ
ψ(s)dsdθ􏼣,

(29)

and the elements of the matrix Υ are given in the statement
of theorem.

Based on the above theorem, now we are in a position to
design the gain matrix of the derived controller. □

Theorem 2. 0e system (8) is asymptotically synchronized, if
there exist matrices P> 0,Q1 > 0,Q2 > 0,R1 > 0,

R2 > 0,Z1 > 0,Z2 > 0 and matrices S, L, G, for a given scalar
c, such that the following LMI holds:

Υ(δ) U1 ϵV1 U2 εV2

∗ − ϵ1I 0 0 0

∗ ∗ − ϵ1I 0 0

∗ ∗ ∗ − ϵ2I 0

∗ ∗ ∗ ∗ − ϵ2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (30)

where

Υ1,1 � 2P + Q1 + Q3 + τ21R1 + ϱR2 +
ϱ2

4
T1 + Z1

− 2GDi − Z2 +
π2

4
Z2􏼠 􏼡

− R1 +
π2

4
R1􏼠 􏼡 − F1Λ1i + 􏽘

N

j�1
πij(δ)Pj,

Υ1,2 � GAi + F2Λ1i,

Υ1,3 � GBi,

Υ1,4 � GK + Z2 −
π2

4
Z2,

Υ1,5 � R1 −
π2

4
R1,

Υ1,7 � − G + Pi,

Υ1,9 �
π2

4
1
ϱ
R1,

Υ1,12 � −
π2

2
Z2,

Υ2,2 � − Λ1i + Q2,

Υ2,5 � F2
􏽥Λ2i,

Υ2,7 � GAi,

Υ3,3 � (1 − μ)Q2,

Υ3,7 � cGBi,

Υ4,4 � 2 − Z2 −
π2

4
Z2􏼠 􏼡,

Υ4,7 � GK,

Υ5,5 � − Q1 − 2 R1 +
π2

4
R1􏼠 􏼡,

Υ5,6 � R1 −
π2

4
R1,

Υ5,7 � cGBi,

Υ5,8 �
π2

4
R1,

Υ5,9 �
π2

2
R1,

Υ6,6 � − Q3 − Z
2

+
π2

4
Z2􏼠 􏼡,

Υ7,7 � τ2R1 + η2Z2 − 2cG,

ΥΥ8,8 � − π2
R1,

8 Journal of Mathematics



Υ9,9 � − π2R1,

Υ10,10 � − Z1 − Z2 −
π2

4
Z2,

Υ10,11 �
π2

2
Z2,

Υ11,11 � − π2Z2,

Υ12,12 � − π2Z2,

Υ13,13 � − T1.

(31)

Moreover, the desired gain matrices are computed by
K � LG− 1.

Proof. By making use of ΔK(t) � UF(t)V, LMI in (12) can
be written as

Υ(i,j),w + U1F(t)V1 + V
T
1 F(t)U

T
1 + U2F(t)V2 + V

T
2 F(t)U2,

(32)

where

U1 � 0 · · · 0􏽼√√􏽻􏽺√√􏽽
3

GU 0 · · · 0􏽼√√􏽻􏽺√√􏽽
9

􏼔 􏼕,

U2 � 0 · · · 0􏽼√√􏽻􏽺√√􏽽
3

GU 0 · · · 0􏽼√√􏽻􏽺√√􏽽
9

􏼔 􏼕,

V1 � V 0 · · · 0􏽼√√􏽻􏽺√√􏽽
12

􏼔 􏼕,

V2 � 0 · · · 0􏽼√√􏽻􏽺√√􏽽
6

V 0 · · · 0􏽼√√􏽻􏽺√√􏽽
6

􏼔 􏼕.

(33)

From Lemma 3, we have

Υ(i,j),w + ς− 1
1 U1U

T
1 + ς1V

T
1V1 + ς− 1

2 U2U
T
2 + ς2V

T
2V2.

(34)

.us, one can get

Υ(i,j),w U1 ς1V1 U2 ς2V2

∗ − ς1I 0 0 0

∗ ∗ − ς1I 0 0

∗ ∗ ∗ − ς2I 0

∗ ∗ ∗ ∗ − ς2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i � 1, 2, . . . , s. (35)

Theorem 3. 0e system (8) is asymptotically synchronized, if
there exist matrices P> 0,Q1 > 0,Q2 > 0,R1 > 0,R2 > 0,

Z1 > 0,Z2 > 0 and matrices S, L, G, for a given scalar c, such
that the following LMI holds:

Υ(δ) M1 ς1N1 M2 ς2N2

∗ − ς1I 0 0 0

∗ ∗ − ς1I 0 0

∗ ∗ ∗ − ς2I 0

∗ ∗ ∗ ∗ − ς2I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (36)

where

Υ1,1 � 2P + Q1 + Q3 + τ21R1 + ϱR2 +
ϱ2

4
T1 + Z1

− 2GDi − Z2 +
π2

4
Z2􏼠 􏼡

− R1 +
π2

4
R1􏼠 􏼡 − F1Λ1i + 􏽘

N

j�1
πij(δ)Pj,

Υ1,2 � GAi + F2Λ1i,

Υ1,3 � GBi,

Υ1,4 � GK + Z2 −
π2

4
Z2,

Υ1,5 � R1 −
π2

4
R1,

Υ1,7 � − G + Pi,

Υ1,9 �
π2

4
1
ϱ
R1,

Υ1,12 � −
π2

2
Z2,

Υ2,2 � − Λ1i + Q2,

Υ2,5 � F2
􏽥Λ2i,

Υ2,7 � GAi,

Υ3,3 � (1 − μ)Q2,

Υ3,7 � cGBi,

Υ4,4 � 2 − Z2 −
π2

4
Z2􏼠 􏼡,

Υ4,7 � GK,

Υ5,5 � − Q1 − 2 R1 +
π2

4
R1􏼠 􏼡,

Υ5,6 � R1 −
π2

4
R1,

Υ5,7 � cGBi,

Υ5,8 �
π2

4
R1,

Υ5,9 �
π2

2
R1,
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Υ6,6 � − Q3 − Z
2

+
π2

4
Z2􏼠 􏼡,

Υ7,7 � τ2R1 + η2Z2 − 2cG,

Υ8,8 � − π2R1,

Υ9,9 � − π2R1,

Υ10,10 � − Z1 − Z2 −
π2

4
Z2,

Υ10,11 �
π2

2
Z2,

Υ11,11 � − π2Z2,

Υ12,12 � − π2Z2,

Υ13,13 � − T1.

(37)

Moreover, the desired gain matrices are given by
K � LG− 1.

Let us assume ΔK(t) � 0; then, the controller in (7) will
reduce to the form of sampled-data control. .en, the above
theorem can be rewritten.

Theorem 4. 0e system (8) is asymptotically synchronized, if
there exist matrices P> 0,Q1 > 0,Q2 > 0,R1 > 0,R2 > 0,

Z1 > 0,Z2 > 0 and matrices S, L, G, for a given scalar c, such
that the following LMI holds:

Υ(δ)< 0, (38)

where

Υ1,1 � 2P + Q1 + Q3 + τ21R1 + ϱR2 +
ϱ2

4
T1 + Z1

− 2G D − Z2 +
π2

4
Z2􏼠 􏼡

− R1 +
π2

4
R1􏼠 􏼡 − F1Λ1i + 􏽘

N

j�1
πij(δ)Pj,

Υ1,2 � GA + F2Λ1i,

Υ1,3 � GB,

Υ1,4 � GK + Z2 −
π2

4
Z2,

Υ1,5 � R1 −
π2

4
R1,

Υ1,7 � − G + P,

Υ1,9 �
π2

4
1
ϱ
R1,

Υ1,12 � −
π2

2
Z2,

Υ2,2 � − Λ1i + Q2,

Υ2,5 � F2
􏽥Λ2i,

Υ2,7 � GA,

Υ3,3 � (1 − μ)Q2,

Υ3,7 � cGB,

Υ4,4 � 2 − Z2 −
π2

4
Z2􏼠 􏼡,

Υ4,7 � GK,

Υ5,5 � − Q1 − 2 R1 +
π2

4
R1􏼠 􏼡,

Υ5,6 � R1 −
π2

4
R1,

Υ5,7 � cGB,

Υ5,8 �
π2

4
R1,

Υ5,9 �
π2

2
R1,

Υ6,6 � − Q3 − Z
2

+
π2

4
Z2􏼠 􏼡,

Υ7,7 � τ2R1 + η2Z2 − 2cG,

Υ8,8 � − π2R1,

Υ9,9 � − π2R1,

Υ10,10 � − Z1 − Z2 −
π2

4
Z2,

Υ10,11 �
π2

2
Z2,

Υ11,11 � − π2Z2,

Υ12,12 � − π2Z2,

Υ13,13 � − T1.

(39)

Along with, the controller gain matrices are defined as
G � KL− 1.

Remark 1. In the literature, one can find many control
methods for achieving synchronization of neural networks
such as pinning control, feedback control, adaptive control,
impulsive control, and sampled-data control. Different from
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the previous literature, in this work, we employed the novel
control technique, namely, nonfragile sampled-data control
which includes the benefits of both control techniques for
synchronization of SMJNNs. Moreover, switching topology
or jump connection often arises in a network due to link
failures or new development. In Markovian jumping sys-
tems, the jump time is exponentially distributed and also
irrelevant to sojourn time which leads some restrictions in
the utilization of the network. .us, semi-Markovian
jumping parameters which generalizes Markovian jumping
parameters are also taken into account. .is shows the
novelty of the work.

Remark 2. It is worth noting that fractional calculus has a
nearly identical background to traditional calculus. Its
applications in physics and engineering, on the other
hand, are a relatively new source of interest. Fractional-
order models would be more suitable for describing
memory and inherited properties of different materials
than conventional integer-order models. Many known
structures that exhibit fractional dynamics have been
found to be useful in interdisciplinary fields such as
viscoelasticity, dielectric polarization, electromagnetic
waves, and complex system quantum evolution. Due to
this reason, fractional-order system has been one of the
most promising research topics in recent times. In our
future work, the qualitative behaviors of fractional-order
systems will be considered.

4. Numerical Simulation

.is section displays two numerical examples to highlight
the advantages of the theoretical results.

Example 1. Consider the NNs with

D1 �
1.2 0

0 0.7
􏼢 􏼣,

D2 �
1.1 0

0 0.6
􏼢 􏼣,

A1 �
− 1.2 − 2.3

− 2.1 − 1.4
􏼢 􏼣,

A2 �
1.5 − 1.14

5.0 − 2.6
􏼢 􏼣,

B1 �
3.2 − 5.3

3.1 4.1
􏼢 􏼣,

B2 �
2.1 − 1.2

5.15 − 1.05
􏼢 􏼣.

(40)

.e nonlinear activation functions are taken as

f1(ω) � f2(ω) � tanh(ω(t)), (41)

with F+
1 � F+

2 � 1 and F−
1 � F−

2 � 0. .en,

F1 �
0 0

0 0
􏼢 􏼣,

F2 �
0.5 0

0 0.5
􏼢 􏼣.

(42)

.e transition rates are assumed to be
α11(δ) ∈ [2.2, 1.8], α22(δ) ∈ [− 1.9, − 1.5]. From that, we
have α11,1 � − 2.2, α11,2 � − 1.8, α22,1 � − 1.9, and
α22,2 � − 1.5.

By resolving the LMIs obtained in .eorem 1 and by
using the help of Matlab LMI toolbox with the parameters
ϱ � 0.2, the gain matrix is attained as

K � 10− 3
×

− 0.2654 0.3954

0.3608 0.2513
􏼢 􏼣. (43)

Figure 1 displays the chaotic nature of the master system
and Figure 2 shows the chaotic behavior of the slave system.
By applying the designed nonfragile sampled-data control
technique, the phase portraits of the error system are shown
in Figure 3.

Example 2. Consider the NNs with

D1 �

1.2 0

0 1.8
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

D2 �
1 0

0 1.5
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

A1 �

− 3.7 +
π
4

4.1

3.0 − 4.8 +
π
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2 �

− 3.7 +
π
4

4.1

3.0 − 4.8 +
π
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B1 �

− 0.1
���
(2)

􏽰 π
4

− 3.6

1.8 − 3.1
���
(2)

􏽰 π
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2 �

− 0.1
���
(2)

􏽰 π
4

− 3.6

1.8 − 3.1
���
(2)

􏽰 π
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(44)

.e nonlinear activation function and transition rates
are taken as in the previous example. From the LMIs in
.eorem 4 with the parameters ς1 � ς2 � 0.2, ϱ � 0.5, one
can get the gain matrix
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ζ1 (t)

Figure 1: Chaotic behavior of the master system.

ψ 2
 (t

)
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–2

0
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Figure 2: Chaotic behavior of slave system.
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Figure 3: State response of the error system.
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Figure 4: Chaotic nature of the master system.
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Figure 5: Chaotic nature of the slave system.
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Figure 6: State trajectories of the error system.
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K �
0.0351 0

0 0.0552
􏼢 􏼣. (45)

In Figure 4, the chaotic nature of the master system is
presented, and Figure 5 shows the chaotic behavior of the
slave system. By making use of the nonfragile sampled-data
control technique, the state trajectories of the error system
are shown in Figure 6.

5. Conclusion

In this work, the synchronization of SMJNNs has been
analyzed through the hybrid control technique, namely,
nonfragile sampled-data control. Some criteria that ensure
the synchronization of investigated SMJNNs with and
without uncertainties in the control technique have been
derived in the form of LMIs using Lyapunov stability theory
and Writinger-based integral inequality approaches. .e
acquired LMIs are solved with Matlab LMI toolbox. Last,
numerical simulations are granted to validate the designed
controllers. Quaternion-valued neural network is the gen-
eralization of complex-valued neural networks, in which
state, connection weight, and activation function are all
quaternion numbers. Compared to real-valued NNs and
complex-valued NNs, quaternion-valued NNs show sig-
nificant advantages in multidimensional data processing.
Recently, fractional-order quaternion-valued neural net-
works have gained great attention among the researchers
due to its applications in many fields such as attitude control,
image processing, computer graphics, prediction of three-
dimensional wind processing, and so on. Due to its growing
applications, it is important to analyze the qualitative be-
haviors of the fractional-order quaternion-valued NN. .is
will be our future work.
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)is paper is mainly concerned with a class of fractional (p, q)-difference equations under (p, q)-integral boundary conditions.
Multiple positive solutions are established by using the topological degree theory and Krein–Rutman theorem. Finally, two
examples are worked out to illustrate the main results.

1. Introduction

)e q-difference operator was first systematically studied by
Jackson [1]. )en, q-calculus has been studied extensively.
See [2–4] and references therein. q-calculus and q-difference
equations have been used by many researchers to solve
physical problems such as molecular problems and chemical
physics [1, 5–7]. For example, in 1967, Floreanini and Vinet
[3] studied the behaviors of hydrogen atoms by using
Schrödinger equation and q-calculus. Diaz and Osler [8]
investigated the q-field theory.

In the last decades, the theory of quantum calculus based
on two-parameter (p, q)-integer has been studied since it
can be used efficiently in many fields such as difference
equations, Lie group, hypergeometric series, and physical
sciences.)e (p, q)-calculus was first studied by Chakrabarti
and Jagannathan [2] in the field of quantum algebra in 1991.
Njionou Sadjang [9] systematically established the basic
theory of (p, q)-calculus and some (p, q)-Taylor formula.
Milovanovic and Gupta [10] developed the concept of
(p, q)-beta and (p, q)-gamma functions. )ese basic con-
cepts and theories promote the development of

(p, q)-calculus. For detailed results on (p, q)-calculus, please
see [9–13] and references therein.

On the contrary, the research of fractional calculus in
discrete settings was initiated in [8, 11, 14]. In 2020,
Soontharanonl and Sitthiwirattham [15] introduced the
fractional (p, q)-calculus, which has been found in a wide
range of applications in many fields such as concrete
mathematical models of quantum mechanics and fluid
mechanics [7, 13, 15].

As we all know, in recent decades, more and more re-
searchers pay much attention to the fractional differential
equations and have obtained substantial achievements, we
refer the readers to see [16–34] and references therein.
Although the results of discrete fractional calculus are
similar to those of continuous fractional calculus, the theory
of discrete fractional calculus remains much less developed
than that of continuous fractional calculus [35, 36].
)erefore, it is very important to develop discrete calculus.
In particular, the fractional (p, q)-difference equations in-
volving (p, q)-integral boundary conditions have rarely been
studied. In order to make up for this gap, the paper mainly
studies the following boundary value problem of fractional
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(p, q)-difference equations under (p, q)-integral boundary
conditions:

D
α
p,qx(t) + f(t, x) � 0, t ∈ (0, 1),

x(0) � Dp,qx(0) � 0, Dp,qx(1) � 􏽚
1

0
h(t)Dp,qx(t)dp,qt,

⎧⎪⎪⎨

⎪⎪⎩

(1)

where 2< α< 3, 0< q<p≤ 1, f ∈ C([0, 1] × R+, R+), and
Dα

p,q is fractional (p, q)-difference operator.
It should be pointed out that the boundary conditions of

BVP equation (1) are more extensive. Furthermore, two
parameters in the discrete environment makes the boundary
value problem more complex. In order to overcome these
difficulties, we constructed a special cone. )e existence and
multiplicity of the positive solution for the BVP equation (1)
are obtained by using the topological degree theory,
Krein–Rutman theorem.

)is paper is structured as follows. In Section 2, we
introduce some definitions of (p, q)-fractional integral and
differential operator together with some basic properties and
lemmas. )e main results are given and proved in Section 3.
Finally, in Section 4, two examples are given to show the
applicability of our main results.

2. Preliminaries

In this section, we list some basic definitions and lemmas
that will be used in this paper. For 0< q<p≤ 1, we let

[k]p,q ≔

p
k

− q
k

p − q
� p

k− 1
[k]mqq/p, k ∈ N,

1, k � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

)e (p, q)-analogue of the power function (a − b)n
p,q

with n ∈ N0\coloneq 0, 1, 2, . . ., is given by

(a − b)
0
p,q≕ 1, (a − b)

n
p,q ≔ 􏽙

n− 1

k�0
ap

k
− bq

k
􏼐 􏼑, a, b ∈ R.

(3)

For α ∈ R,

(a − b)
α
p,q ≔ a

α
􏽙

∞

i�0

1 − (b/a)(q/p)
i

1 − (b/a)(q/p)
α+i

􏼢 􏼣, a≠ 0. (4)

By [15], we obtain

(a − b)
α
p,q � p

(α/2)
(a − b)

α
q/p � a

α
􏽙

∞

i�0

1
p
α

1 − b/a(q/p)
i

1 − b/a(q/p)
α+i

􏼢 􏼣, a≠ 0. (5)

Note that aα
q � aα

p,q � aα and (0)αq � (0)αp,q � 0 for α> 0.
)e (p, q)-gamma and (p, q)-beta functions are defined by

Γp,q(x) ≔

(p − q)
x− 1
p,q

(p − q)
x− 1 �

(1 − q/p)
x− 1
p,q

(1 − q/p)
x− 1, x ∈ R∖ 0, − 1, − 2, . . . ,{ },

[x − 1]p,q!, x ∈ N,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Bp,q(x, y) ≔ 􏽚
1

0
t
x− 1

(1 − qt)
y− 1
p,q dp,qt � p

1
2

(y − 1)(2x + y − 2)Γp,q(x)Γp,q(y)

Γp,q(x + y)
,

(6)

respectively.

Definition 1 (see [15]). For 0< q<p≤ 1 andf: [0, T]⟶ R,
we define the (p, q)-difference of f as

Dp,qf(t) ≔
f(pt) − f(qt)

(p − q)(t)
, t≠ 0, (7)

where Dp,qf(0) � f′(0), provided that f is differentiable at
0.

Definition 2 (see [15]). For N − 1< α<N, 0< q<p≤ 1, and
f: IT

p,q⟶ R, the fractional (p, q)-difference is defined by

D
α
p,qf(t) �

(p − q)t
N− α

p
N− α
2( )Γp,q(N − α)

􏽘

∞

k�0

q
k

p
k+1 1 −

q

p
􏼠 􏼡

k+1
⎛⎝ ⎞⎠

N− α− 1

p,q

D
N
p,qf

q
k

p
k+N− α t􏼠 􏼡, (8)
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where IT
p,q � (qk/pk+1)T: k ∈ N0􏼈 􏼉⋃ 0{ }.

Definition 3 (see [15]). Let I be any closed interval of R

containing a, b, and 0. Assuming that f: I⟶ R is a given
function, we define (p, q)-integral of f from a to b by

􏽚
b

a
f(t)dp,qt � 􏽚

b

0
f(t)dp,qt − 􏽚

a

0
f(t)dp,qt, (9)

where

Ip,qf(x) � 􏽚
x

a
f(t)dp,qt

� (p − q)x 􏽘
∞

k�0

q
k

p
k+1f

q
k

p
k+1 x􏼠 􏼡, x ∈ I,

(10)

provided that the series converges at x � a and x � b. f is
called (p, q)-integrable on [a, b].

Definition 4 (see [15]). For α> 0, 0< q<p≤ 1, and
f: [0, T]⟶ R, the fractional (p, q)-integral is defined by

I
α
p,qf(t) ≔

1

p
α
2( )Γp,q(α)

􏽚
t

0
(t − qs)

α− 1
p,q f

s

p
α− 1􏼠 􏼡dp,qs,

(11)

and (I0p,qf)(t) � f(t).

Lemma 1 (see [15]). Let f, g be (p, q)-differentiable. )e
properties of (p, q)-difference operator are as follows:

(i) Dp,q[f(t) + g(t)] � Dp,qf(t) + Dp,qg(t)

(ii) Dp,q[αf(t)] � αDp,qf(t), for α ∈ R

Lemma 2 (see [15]). For 0< q<p≤ 1, α≥ 1, and a ∈ R, we
have

(i) Dp,q(t − a)αp,q � [α]p,q(pt − a)α− 1
p,q

(ii) Dp,q(a − t)αp,q � − [α]p,q(a − qt)α− 1
p,q

Lemma 3 (see [15]). For α, β≥ 0 and 0< q<p≤ 1,
(p, q)-integral and (p, q)-difference operators have the fol-
lowing properties:

(i) Iαp,q[I
β
p,qf(x)] � I

β
p,q[Iαp,qf(x)] � I

α+β
p,q f(x)

(ii) Dp,qIp,qf(x) � f(x) and Ip,qDp,qf(x) � f(x)−

f(0)

Lemma 4. Assume h≥ 0, A � 1 − 􏽒
1
0 h(t)tα− 2dp,qt> 0, and

α ∈ (2, 3). If g ∈ C[0, 1], then the following boundary value
problem,

D
α
p,qx(t) + g(t) � 0, t ∈ (0, 1),

x(0) � Dp,qx(0) � 0, Dp,qx(1) � 􏽚
1

0
h(t)Dp,qx(t)dp,qt,

⎧⎪⎪⎨

⎪⎪⎩

(12)

has a unique solution

x(t) � 􏽚
1

0
G(t, qs)g

s

p
α− 2􏼠 􏼡dp,qs, (13)

where

G(t, qs) � G0(t, qs) +
t
α− 1

A
􏽚
1

0
h(t)G1(t, qs)dp,qt,

G0(t, qs) �
1

p
(α− 1/2)Γp,q(α)

1
p
2α− 2/α− 2t

α− 1
(1 − qs)

(α− 2)
− (t − qs)

(α− 1)
, 0≤ s≤ t≤ 1,

1
p
2α− 2/α− 2t

α− 1
(1 − qs)

(α− 2)
, 0≤ t≤ s≤ 1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G1(t, qs) �
1

p
(α− 1/2)Γp,q(α)

1
p
2α− 2/α− 2t

α− 2
(1 − qs)

(α− 2)
− (t − qs)

(α− 2)
, 0≤ s≤ t≤ 1;

1
p
2α− 2/α− 2t

α− 2
(1 − qs)

(α− 2)
, 0≤ t≤ s≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

Proof. According to Dα
p,qx(t) � − g(t), we have

x(t) � C1t
α− 1

+ C2t
α− 2

+ C3t
α− 3

− I
α
p,qg(t). (15)
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From x(0) � Dp,qx(0) � 0, one can easily obtain
C2 � C3 � 0. Hence,

x(t) � C1t
α− 1

− I
α
p,qg(t),

Dp,qx(1) � C1
Γp,q(α)

Γp,q(α − 1)
−

1
p

(α− 1/2)Γp,q(α − 1)
􏽚
1

0
(1 − qs)

(α− 2)
g

s

p
α− 2􏼠 􏼡dp,qs

� 􏽚
1

0
h(t)Dp,qx(t)dp,qt

� 􏽚
1

0
h(t) C1

Γp,q(α)

Γp,q(α − 1)
t
α− 2

􏼢

−
1

p
(α− 1/2)Γp,q(α − 1)

􏽚
t

0
(t − qs)

(α− 2)
g

s

p
α− 2􏼠 􏼡dp,qs⎤⎥⎥⎦dp,qt.

(16)

Based on the hypothesis in Lemma 4, we can deduce that

C1 �
1

Ap
(α− 1/2)Γp,q(α)

􏽚
1

0
(1 − qs)

(α− 2)
g

s

p
α− 2􏼠 􏼡dp,qs −

1
Ap

(α− 1/2)Γp,q(α)
􏽚
1

0
h(t)dp,qt 􏽚

t

0
(t − qs)

(α− 2)
g

s

p
α− 2􏼠 􏼡dp,qs. (17)

)us,

x(t) � C1t
α− 1

− I
α
p,qg(t)

�
1

Ap
(α− 1/2)Γp,q(α)

􏽚
1

0
t(1 − qs)

(α− 2)
g

s

p
α− 2􏼠 􏼡dp,qs

−
1

Ap
(α− 1/2)Γp,q(α)

􏽚
1

0
h(t)dp,qt 􏽚

t

0
t
α− 1

(t − qs)
(α− 2)

g
s

p
α− 2􏼠 􏼡dp,qs

−
1

p
(α/2)Γp,q(α)

􏽚
t

0
(t − qs)

(α− 1)
g

s

p
α− 1􏼠 􏼡dp,qs

�
1

Ap
(α− 1/2)Γp,q(α)

􏽚
1

0
t
α− 2

(1 − qs)
(α− 2)

g
s

p
α− 2􏼠 􏼡dp,qs

−
1

Ap
(α− 1/2)Γp,q(α)

􏽚
1

0
h(t)dp,qt.

−
1

p
(α− 1/2)Γp,q(α)

􏽚
t

0

1
p
2α− 2/α− 2(t − qs)

(α− 1)
g

s

p
α− 2􏼠 􏼡dp,qs +

1
p

(α− 1/2)Γp,q(α)
􏽚
1

0

t
α− 1

p
2α− 2/α− 2(1 − qs)

(α− 1)
g

s

p
α− 2􏼠 􏼡dp,qs

−
1

p
(α− 1/2)Γp,q(α)

􏽚
1

0

t
α− 1

p
2α− 2/α− 2(1 − qs)

(α− 1)
g

s

p
α− 2􏼠 􏼡dp,qs

� 􏽚
1

0
G0

s

p
α− 2􏼠 􏼡dp,qs +

t
α− 1

Ap
(α− 1/2)Γp,q(α)

􏽚
1

0
h(t)t

α− 2
dp,qt 􏽚

1

0

1
p
2α− 2/α− 2(1 − qs)

(α− 2)
g

s

p
α− 1􏼠 􏼡dp,qs

−
t
α− 1

Ap
(α− 1/2)Γp,q(α)

􏽚
1

0
h(t)dp,qt 􏽚

t

0

1
p
2α− 2/α− 2(t − qs)

(α− 2)
g

s

p
α− 2􏼠 􏼡dp,qs

�
t
α− 1

Ap
(α− 1/2)Γp,q(α)

􏽚
1

0
􏽚
1

0

1
p
2α− 2/α− 2h(t)t

α− 2
(1 − qs)

(α− 2)
dp,qt − 􏽚

1

s

1
p
2α− 2/α− 2h(t)(t − qs)

(α− 2)
dp,qt􏼢 􏼣g

s

p
α− 2􏼠 􏼡dp,qs

� 􏽚
1

0
G0(t, qs)g

s

p
α− 2􏼠 􏼡dp,qs +

t
α− 1

A
􏽚
1

0
􏽚
1

0
G1(t, qs)g

s

p
α− 2􏼠 􏼡dp,qs

� 􏽚
1

0
G(t, qs)g

s

p
α− 2􏼠 􏼡dp,qs.

(18)
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)is completes the proof. □

Lemma 5. )e functions Gi(i � 0, 1) have the following
properties:

(1) Gi(t, qs)≥ 0, for t, s ∈ [0, 1]

(2) tα− 1G0(1, qs)≤G0(t, qs)≤G0(1, qs), for t, s ∈ [0, 1]

Proof

(1) On the one hand, for 0≤ s≤ t≤ 1, we know

G0(t, qs) �
1

p
(α− 1/2)Γp,q(α)

1
p
2α− 2/α− 2t

α− 1
(1 − qs)

(α− 2)
− (t − qs)

(α− 1)
􏼢 􏼣. (19)

)us, for t≠ 0, it is easy to see that

G0(t, qs) �
1

p
(α− 1/2)Γp,q(α)

1
p
2α− 2/α− 2t

α− 1
(1 − qs)

(α− 2)
− (t − qs)

(α− 1)
􏼢 􏼣

�
1

p
(α− 1/2)Γp,q(α)

1
p
2α− 2/α− 2t

α− 1
(1 − qs)

(α− 2)
− t

α− 1 1 − q
s

t
􏼒 􏼓

(α− 1)

􏼢 􏼣

≥
t
α− 1

p
(α− 1/2)Γp,q(α)

(1 − qs)
(α− 2)

− (1 − qs)
(α− 1)

􏽨 􏽩

≥ 0.

(20)

Similarly, for 0≤ s≤ t≤ 1, we know

G1(t, qs) �
1

p
(α− 1/2)Γp,q(α)

1
p
2α− 2/α− 2t

α− 2
(1 − qs)

(α− 2)
− (t − qs)

(α− 2)
􏼢 􏼣. (21)

)us, for t≠ 0, it is also easy to see that

G1(t, qs) �
1

p
(α− 1/2)Γp,q(α)

1
p
2α− 2/α− 2t

α− 2
(1 − qs)

(α− 2)
− (t − qs)

(α− 2)
􏼢 􏼣

�
1

p
(α− 1/2)Γp,q(α)

1
p
2α− 2/α− 2t

α− 2
(1 − qs)

(α− 2)
− t

α− 2 1 − q
s

t
􏼒 􏼓

(α− 2)

􏼢 􏼣

≥
t
α− 2

p
(α− 1/2)Γp,q(α)

(1 − qs)
(α− 2)

− (1 − qs)
(α− 2)

􏽨 􏽩

� 0.

(22)
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On the other hand, for 0≤ t≤ s≤ 1, it is easy to see
that, from Lemma 4, the conclusion is obviously
established. )erefore, Gi(t, qs)≥ 0, for t, s ∈ [0, 1].

(2) Firstly, for 0≤ s≤ t≤ 1, one can easily obtain that

t
Dp,qG0(t, qs) � tDp,q

1
p

(α− 1/2)Γp,q(α)

1
p
2α− 2/α− 2t

α− 1
(1 − qs)

(α− 2)
− (t − qs)

(α− 1)
􏼢 􏼣

⎧⎨

⎩

⎫⎬

⎭

�
1

p
(α− 1/2)Γp,q(α)

1
p
2α− 2/α− 2 [α − 1]t

α− 2
(1 − qs)

(α− 2)
− [α − 1](t − qs)

(α− 2)
􏼢 􏼣

⎧⎨

⎩

⎫⎬

⎭

�
1

p
(α− 1/2)Γp,q(α)

[α − 1]t
α− 2

(1 − qs)
(α− 2)

− [α − 1]t
α− 2 1 − q

s

t
􏼒 􏼓

(α− 2)

􏼢 􏼣
⎧⎨

⎩

⎫⎬

⎭

≥ 0.

(23)

For 0≤ t≤ s≤ 1 and 2< α< 3, we know that G(t, qs) �

tα− 1(1 − qs)(α− 2) is obviously an increasing function with
respect to t.

)erefore, for t, s ∈ [0, 1], G0(t, qs) is an increasing
function with respect to t. )en, G0(t, qs)≤G0(1, qs).

Secondly, for 0≤ s≤ t≤ 1, we have

G0(t, qs)

G0(1, qs)
�
1/p2α− 2/α− 2

t
α− 1

(1 − qs)
(α− 2)

− (t − qs)
(α− 1)

1/p2α− 2/α− 2
(1 − qs)

(α− 2)
− (1 − qs)

(α− 1)

�
t
α− 1 1/p2α− 2/α− 2

(1 − qs)
(α− 2)

− (1 − q(s/t))(α− 1)
􏽨 􏽩

1/p2α− 2/α− 2
(1 − qs)

(α− 2)
− (1 − qs)

(α− 1)

≥
t
α− 1 1/p2α− 2/α− 2

(1 − qs)
(α− 2)

− (1 − qs)
(α− 1)

􏽨 􏽩

1/p2α− 2/α− 2
(1 − qs)

(α− 2)
− (1 − qs)

(α− 1)

� t
α− 1

.

(24)

For 0≤ t≤ s≤ 1, we have

G0(t, qs)

G0(1, qs)
� t

α− 1
. (25)

)erefore, tα− 1G0(1, qs)≤G0(t, qs), for t, s ∈ [0, 1]. □

Lemma 6. From Lemma 5, the following conclusions are
established:

t
α− 1θ1(qs)≤G(t, qs)≤ θ1(qs) for t, s ∈ [0, 1],

G(t, qs)≤ t
α− 1θ2(qs) for t, s ∈ [0, 1],

(26)

where

θ1(s) � G0(1, s) +
1
A

􏽚
1

0
h(t)G1(t, s)dp,qs,

θ2(s) �
1
Γp,q(α)

1 − s
(α− 2)

􏼐 􏼑 +
1
A

􏽚
1

0
h(t)G1(t, s)dp,qs.

(27)

Lemma 7 (see [37]). Let Ω be a bounded open set in a
Banach space E, and T: Ω⟶ E is a continuous compact
operator. If there exists x0 ∈ E∖ 0{ } such that

x − Tx≠ μx0, ∀x ∈zΩ, μ≥ 0, (28)

then the topological degree deg(I − T,Ω, 0) � 0.

Lemma 8 (see [37]). Let Ω be a bounded open set in a
Banach space E with 0 ∈ Ω, and T: Ω⟶ E is a continuous
compact operator. If

Tx≠ μx, ∀x ∈zΩ , μ≥ 1, (29)

then the topological degree deg(I − T,Ω, 0) � 1.
Let E ≔ C[0, 1], ‖x‖ ≔ maxt∈[0,1]|x(t)|, and

P ≔ x ∈ E: x(t)≥ tα− 1‖x‖,∀t ∈ [0, 1]􏼈 􏼉. )en, (E, ‖ · ‖) is a
real Banach space and P is a cone on E. From Lemma 4, we
can define operator T: E⟶ E as follows:

(Tx)(t) ≔ 􏽚
1

0
G(t, qs)f

s

p
α− 2, x

s

p
α− 2􏼠 􏼡􏼠 􏼡dp,qs, x ∈ E,

(30)

where G is determined in Lemma 4. Obviously, T is a
completely continuous operator.

In addition, from Lemma 4, we can obtain that the
solution of BVP equation (12) is equivalent to
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x(t) � λ􏽚
1

0
G(t, qs)g

s

p
α− 2􏼠 􏼡dp,qs, t ∈ [0, 1]. (31)

For our purposes, we need to define the operator L by

(Lx)(t) � 􏽚
1

0
G(t, qs)x

s

p
α− 2􏼠 􏼡dp,qs, t ∈ [0, 1], x ∈ E.

(32)

It is easy to prove that L: E⟶ E is a linear completely
continuous operator and L(P) ⊂ P. Obviously, we know that
L has a spectral radius, denoted by r(L), that is not equal to
0. From Krein–Rutman theorem, we know that L has a
positive eigenfunction φ1 corresponding to its first eigen-
value λ1 � (r(L))− 1, i.e., φ1 � λ1Lφ1.

3. Main Results

In this section, we shall establish the existence and multi-
plicity results of BVP equation (1), which is based on the
topological degree theory. For convenience, let λ1 be the first
eigenvalue of the following eigenvalue problem:

D
α
p,qx(t) + λx(t) � 0, t ∈ (0, 1),

x(0) � Dp,qx(0) � 0, Dp,qx(1) � 􏽚
1

0
h(t)Dp,qx(t)dp,qt.

⎧⎪⎨

⎪⎩

(33)

Now, let us list the following assumptions satisfied
throughout the paper:

(H1) liminfx⟶0f(t, x)/x> λ1 uniformly with respect
to t ∈ [0, 1].
(H2) limsupx⟶∞f(t, x)/x< λ1 uniformly with respect
to t ∈ [0, 1].
(H3) limsupx⟶0f(t, x)/x< λ1 uniformly with respect
to t ∈ [0, 1].
(H4) liminfx⟶∞f(t, x)/x> λ1 uniformly with respect
to t ∈ [0, 1].
(H5) )ere exist r∗ > 0 and a continuous function ϕr∗

such that

f(t, x)≥ ϕr∗(t),∀t ∈ [0, 1], x ∈ t
α− 1

r
∗
, r
∗

􏽨 􏽩,

max
t∈[0,1]

􏽚
1

0
t
α− 1

G(1, qs)ϕr∗
s

p
α− 2􏼠 􏼡dp,qs> r

∗
.

(34)

(H6) )ere exist r∗ > 0 and a continuous function ψr∗
such that

f(t, x)≤ψr∗
(t), ∀t ∈ [0, 1],

x ∈ 0, r∗􏼂 􏼃,

􏽚
1

0
G(1, qs)ψr∗

s

p
α− 2􏼠 􏼡dp,qs< r∗.

(35)

Now, we are in a position to give our main results.

Theorem 1. Under assumptions (H1) and (H2), BVP
equation (1) admits at least one positive solution.

Proof. First, assumption (H1) implies that there exists r> 0
such that

f(t, x)> λ1x, ∀x ∈ [0, r], t ∈ [0, 1]. (36)

We claim that, for μ≥ 0,

x(t) − Tx(t) ≠ μφ1(t),∀x ∈ zBr ∩P, t ∈ [0, 1]. (37)

Suppose, on the contrary, that there exist
x1 ∈ zBr ∩P, μ1 > 0 such that

x1(t) − Tx1(t) � μ1φ1(t), t ∈ [0, 1]. (38)

Without loss of generality, suppose μ1 > 0. )en,
x1(t)≥ μ1φ1(t), for t ∈ [0, 1].

Let

μ∗ � sup μ: x1(t)≥ μ1φ1(t), t ∈ [0, 1]􏼈 􏼉. (39)

Obviously, 0< μ1 ≤ μ∗ < +∞ and x1(t)≥ μ∗φ1(t), for
t ∈ [0, 1].

)us,

x1(t) � Tx1(t) + μ1φ1(t)

� 􏽚
1

0
G(t, qs)f

s

p
α− 2, x1

s

p
α− 2􏼠 􏼡􏼠 􏼡dp,qs + μ1φ1(t)

≥ λ1 􏽚
1

0
G(t, qs)x1

s

p
α− 2􏼠 􏼡dp,qs + μ1φ1(t)

≥ λ1μ
∗

􏽚
1

0
G(t, qs)φ1

s

p
α− 2􏼠 􏼡dp,qs + μ1φ1(t)

� μ∗ + μ1( 􏼁φ1(t).

(40)

It is a contradiction with the definition of μ∗. According
to Lemma 7, one obtains

deg T, Br ∩P, P( 􏼁 � 0. (41)

On the contrary, we can choose ε0 > 0 such that
0< (λ1 − ε0)‖L‖< 1. )en, from (H2), there exists R> 0 such
that

f(t, x)≤ λ1 − ε0( 􏼁x, x≥R, t ∈ [0, 1]. (42)

Let m � max(t,x)∈[0,1]×[0,R]f(t, x). )us, one can easily
find that

f(t, x)≤ λ1 − ε0( 􏼁x + m, ∀x≥ 0, t ∈ [0, 1]. (43)

Choose R0 >max􏼈R, r, m 􏽒
1
0 θ1(qs)dp,qs/1 − (λ1 − ε0)

‖L‖}. We claim that, for μ≥ 1,

Tx(t)≠ μx(t), ∀x ∈ zBR0
∩P, t ∈ [0, 1]. (44)

Suppose, on the contrary, that there exist x2 ∈ zBR0
∩P

and μ2 ≥ 1 such that
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Tx2(t) � μ2x2(t), t ∈ [0, 1]. (45) Hence,

x2(t)≤ μ2x(t) � Tx2(t) � 􏽚
1

0
G(t, qs)f

s

p
α− 2, x2

s

p
α− 2􏼠 􏼡􏼠 􏼡dp,qs

≤ 􏽚
1

0
G(t, qs) λ1 − ε0( 􏼁x2

s

p
α− 2􏼠 􏼡 + m􏼢 􏼣dp,q,

(46)

noticing that 0< (λ1 − ε0)‖L‖< 1. We know that the inverse
operator of I − (λ1 − ε0)L exists, and

I − λ1 − ε0( 􏼁L􏼂 􏼃
− 1

� 􏽘
∞

n�0
λ1 − ε0( 􏼁

n
L

n
, (47)

which shows that [I − (λ1 − ε0)L]− 1(P)⊆P.
)us,

x2(t)≤ I − λ1 − ε0( 􏼁L􏼂 􏼃
− 1

m 􏽚
1

0
G(t, qs)dp,qs. (48)

In addition, by ‖[I − (λ1 − ε0)L]− 1‖≤ 1/1 − (λ1 − ε0)‖L‖

and Lemma 6, one can obtain

R0 � x2(t)
����

����≤ I − λ1 − ε0( 􏼁L􏼂 􏼃
− 1

�����

�����m 􏽚
1

0
θ1(qs)dp,qs

≤
m 􏽒

1
0 θ1(qs)dp,qs

1 − λ1 − ε0( 􏼁‖L‖

<R0,

(49)

which is a contradiction. By Lemma 8, we obtain

deg T, BR0
∩P, P􏼐 􏼑 � 1. (50)

)erefore,

deg T, BR0
\Br ∩P, P􏼐 􏼑 � deg T, BR0

∩P, P􏼐 􏼑 − deg T, Br ∩P, P( 􏼁 � 1 − 0 � 1. (51)

which means that BVP equation (1) has at least one positive
solution. □

Theorem 2. Under assumptions (H3) and (H4), BVP
equation (1) admits at least one positive solution.

Proof. On the one hand, assumption (H3) implies that there
exist ε ∈ (0, λ1) and r1 > 0 such that

f(t, x)< λ1 − ε( 􏼁, |x|< r1. (52)

We claim that, for μ ∈ [0, 1],

x(t)≠ μTx(t), ∀x ∈ zBr1
∩P, t ∈ [0, 1]. (53)

Suppose, on the contrary, that there exist x1 ∈zBr1
∩P

and μ ∈ [0, 1] such that

x1(t) � μ1Tx1(t), t ∈ [0, 1]. (54)

Consequently, we have

x1(t) � μ1Tx1(t)< λ1 − ε( 􏼁 􏽚
1

0
G(t, qs)x1

s

p
α− 2􏼠 􏼡dp,qs � λ1 − ε( 􏼁 Lx1( 􏼁(t). (55)

)e nth iteration of this inequality shows that

x1(t)< λ1 − ε( 􏼁
n

L
n
x1( 􏼁(t)(n � 1, 2, . . . , ). (56)

)en,

x1
����

����< λ1 − ε( 􏼁
n

L
n

����
���� x1
����

����, i.e., 1< λ1 − ε( 􏼁
n

L
n

����
����. (57)

It means that

1≤ λ1 − ε( 􏼁 lim
n⟶∞

����

L
n

����
����

n

􏽱

� λ1 − ε( 􏼁 r(L) �
λ1 − ε( 􏼁

λ1
< 1, (58)

which is a contradiction. It follows from Lemma 8 that

deg T, Br1
∩P, P􏼐 􏼑 � 1. (59)

On the other hand, let

Lnx(t) � 􏽚
1

1/n
G(t, qs)x

s

p
α− 2􏼠 􏼡dp,qs, t ∈ [0, 1], (60)
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where n> 1. It is easy to see that Ln: P⟶ P is completely
continuous operator and spectral radius r(Ln)> 0, denoted
by λn � r− 1(Ln). We know limn⟶+∞λn � λ1.

It follows that there exist N0, ε0 such that λN0
< λ1 + ε0,

namely, r(LN0
)> 1/r− 1(L) + ε0. From the Krein–Rutman

theorem, there exists a φN0
(t) ∈ E\ θ{ } such that

φN0
(t) � r

− 1
LN0

􏼐 􏼑 􏽚
1

1/N0

G(t, qs)φN0

s

p
α− 2􏼠 􏼡dp,qs, t ∈ [0, 1].

(61)

By the proof of Lemma 5, we know

G(t, qs)≥ t
α− 1

G(τ, qs). (62)

Hence,

φN0
(t)≥ r

− 1
LN0

􏼐 􏼑 􏽚
1

1/N0

t
α− 1

G(τ, qs)φN0

s

p
α− 2􏼠 􏼡dp,qs � t

α− 1φN0
(τ), ∀, t, τ ∈ [0, 1], (63)

which means that φN0
(t)≥ tα− 1‖φN0

‖, namely,
φN0

(t) ∈ P\ θ{ }.
)us, from (H4), there exists R1 > 0 such that

f(t, x)> λ1 + ε( 􏼁x, t ∈ [0, 1],∀, x≥R1. (64)

Choose R0 >max r1, Nα− 1
0 R1􏼈 􏼉. )us,

x(t)≥ t
α− 1

‖x‖ � t
α− 1

R0 >R1, t ∈
1

N0
, 1􏼢 􏼣, x ∈ zBR0

∩P.

(65)

Now, we prove that, for μ≥ 0,

x(t) − Tx(t)≠ μφN0
(t), ∀x ∈ zBR0

∩P, t ∈ [0, 1]. (66)

Similar to the proof of )eorem 1, this conclusion is
clearly established. So, according to Lemma 7,

deg T, BR0
∩P, P􏼒 􏼓 � 0. (67)

)erefore,

deg T, BR0
\Br1
∩P, P􏼒 􏼓 � deg T, BR0

∩P, P􏼒 􏼓 − deg T, Br1
∩P, P􏼐 􏼑 � 0 − 1 � − 1, (68)

which means that BVP equation (1) has at least one positive
solution.

Up to now, some existence results of BVP equation (1)
have been obtained by using the topological degree theory
and Krein–Rutman theorem. In the following, the multiple
solutions will be considered for BVP equation (1). □

Theorem 3. Suppose that (H2), (H3), and (H5) are satisfied.
)en, BVP equation (1) has at least two positive solutions.

Proof. By (H5), we know

(Tx)(t) � 􏽚
1

0
G(t, qs)f

s

p
α− 2, x

s

p
α− 2􏼠 􏼡􏼠 􏼡dp,qs

≥ 􏽚
1

0
t
α− 1

G(1, qs)ϕr∗
s

p
α− 2􏼠 􏼡dp,qs, x ∈ zBr∗ ∩P.

(69)

Consequently,

‖Tx‖≥ max
t∈[0,1]

􏽚
1

0
t
α− 2

G(1, qs)ϕr∗
s

p
α− 2􏼠 􏼡dp,qs> r

∗
� ‖x‖.

(70)

So, similar to the previous proof of )eorem 1, it is easy
to know, for μ> 0,

x(t) − Tx(t) ≠ μφ1(t), ∀t ∈ [0, 1], x ∈ zBr∗ ∩P. (71)

By Lemma 7, one can immediately obtain that

deg T, Br ∩P, P( 􏼁 � 0. (72)

By the proof of )eorems 1 and 2, we know that there
exist r1 ∈ (0, r∗) and R1 ≥max r∗, R0􏼈 􏼉 such that

deg T, Br1
∩P, P􏼐 􏼑 � 1,

deg T, BR1
∩P, P􏼐 􏼑 � 1.

(73)

Consequently,

deg T, Br∗\Br1
􏼐 􏼑∩P, P􏼐 􏼑 � deg T, Br∗ ∩P, P( 􏼁 − deg T, Br1

∩P, P􏼐 􏼑 � 0 − 1 � − 1,

deg T, BR1
\Br∗􏼐 􏼑∩P, P􏼐 􏼑 � deg T, BR1

∩P, P􏼐 􏼑 − deg T, Br∗ ∩P, P( 􏼁 � 1 − 0 � 1,
(74)
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which means that BVP equation (1) has at least two positive
solutions. □

Theorem 4. Suppose that (H1), (H4), and (H6) are satisfied.
)en, BVP equation (1) has at least two positive solutions.

Proof. By (H6), we know

(Tx)(t) � 􏽚
1

0
G(t, qs)f

s

p
α− 2, x

s

p
α− 2􏼠 􏼡􏼠 􏼡dp,qs

≤ 􏽚
1

0
G(1, qs)ψr∗

s

p
α− 2􏼠 􏼡dp,qs, x ∈ zBr∗

∩P.

(75)

)erefore,

‖Tx‖≤ 􏽚
1

0
G(1, qs)ψr∗

s

p
α− 2􏼠 􏼡dp,qs< r∗ � ‖x‖. (76)

So, similar to the previous proof of )eorem 1, it is easy
to know, for μ≥ 1,

Tx(t)≠ μx(t), ∀x ∈ zBr∗
∩P, t ∈ [0, 1]. (77)

By Lemma 8, one can immediately obtain that

deg T, Br∗
∩P, P􏼐 􏼑 � 1. (78)

By the proof of )eorems 1 and 2, we know that there
exist r1 ∈ (0, r∗) and R1 ≥max r∗, R0􏼈 􏼉 such that

deg T, Br1
∩P, P􏼐 􏼑 � 0,

deg T, BR1
∩P, P􏼒 􏼓 � 0.

(79)

Consequently,

deg T, Br∗
\Br1

􏼐 􏼑∩P, P􏼐 􏼑 � deg T, Br∗
∩P, P􏼐 􏼑 − deg T, Br1

∩P, P􏼐 􏼑 � 1 − 0 � 1,

deg T, BR1
\Br∗

􏼒 􏼓∩P, P􏼒 􏼓 � deg T, BR1
∩P, P􏼒 􏼓 − deg T, Br∗

∩P, P􏼐 􏼑 � 0 − 1 � − 1,
(80)

which means that BVP equation (1) has at least two positive
solutions. □

4. Examples

Example 1. Consider the following boundary value
problem:

D
5/2
(1,1/2)x􏼐 􏼑(t) +

28x
2
t

x
2

+ 1
� 0, 0< t< 1,

x(0) � D(1,1/2)x(0) � 0, D(1,1/2)x(1) � 􏽚
1

0
t
(1/2)

D(1,1/2)x(t)d1,1/2t.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(81)

Conclusion: BVP equation (81) has at least two positive
solutions.

Proof. BVP equation (81) can be regarded as a BVP of the
form of equation (1), where

f(t, x) �
28x

2
t

x
2

+ 1
, (82)

p � 1, q � 1/2, α � 5/2, and h(t) � t1/2. Choose ϕr∗(t) � t2 +

2 and r∗ � 1/5. Obviously,
f: [0, 1] × [1/5t3/2, 1/5]⟶ [0, +∞) is continuous and
f(t, x)≥ϕr∗(t) for (t, x) ∈ [0, 1] × [1/5t3/2, 1/5].

Consequently,

lim
x⟶0

sup
t∈[0,1]

f(t, x)

x
�

28x
2
t

x x
2

+ 1􏼐 􏼑
� 0< λ1,

lim
x⟶+∞

sup
t∈[0,1]

f(t, x)

x
�

28x
2
t

x x
2

+ 1􏼐 􏼑
� 0< λ1.

(83)

From the definition of function G, one can obtain that

G t,
s

2
􏼒 􏼓 � G0 t,

s

2
􏼒 􏼓 +

t
α− 1

A
􏽚
1

0
h(t)G1 t,

s

2
􏼒 􏼓d1,1/2t, (84)
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where

G0 t,
s

2
􏼒 􏼓 �

1
1(α/2)Γ(1,1/2)(5/2)

t
3/2 1 −

s

2
􏼒 􏼓

(1/2)

− t −
s

2
􏼒 􏼓

(3/2)

, 0≤ s≤ t≤ 1,

t
3/2 1 −

s

2
􏼒 􏼓

(1/2)

, 0≤ t≤ s≤ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G1 t,
s

2
􏼒 􏼓 �

1
1(α/2)Γ(1,1/2)(5/2)

t
1/2 1 −

s

2
􏼒 􏼓

(1/2)

− t −
s

2
􏼒 􏼓

(1/2)

, 0≤ s≤ t≤ 1,

t
1/2 1 −

s

2
􏼒 􏼓

(1/2)

, 0≤ t≤ s≤ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(85)

Consequently,

max
t∈[0,1]

􏽚
1

0
t
α− 1

G 1,
s

2
􏼒 􏼓ϕr∗(s)dp,qs ≈ 0.235>

1
5

� r
∗
. (86)

)erefore, by )eorem 3, BVP equation (81) has at least
two positive solutions. □

Example 2. Consider the following boundary value
problem:

D
5/2
(1,(1/2))x􏼐 􏼑(t) + 3x

3/2
+ 2t􏼐 􏼑 � 0, 0< t< 1,

x(0) � D(1,(1/2))x(0) � 0, D(1,(1/2))x(1) � 􏽚

1

0

t
(1/2)

D(1,(1/2))x(t)d1,1/2t.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(87)

Conclusion: BVP equation (87) has at least two positive
solutions.

Proof. BVP equation (87) can be regarded as a BVP of the
form of equation (1), where

f(t, x) � 3x
3/2

+ 2t, (88)

p � 1, q � (1/2), α � (5/2), and h(t) � t(1/2). Choose
ψr∗

(t) � 2t + 9, r∗ � 3
�
3

√
. Obviously, f: [0, 1] × [0, 3�

3
√

]⟶ [0, +∞) is continuous and f(t, x)≤ψr∗
(t) for

(t, x) ∈ [0, 1] × [0, 3
�
3

√
].

Consequently,

lim
x⟶0

inf
t∈[0,1]

f(t, x)

x
�
3x

3/2
+ 2t

x
� +∞> λ1,

lim
x⟶+∞

inf
t∈[0,1]

f(t, x)

x
�
3x

3/2
+ 2t

x
� +∞> λ1.

(89)

From the definition of function G, one can obtain that

G t,
s

2
􏼒 􏼓 � G0 t,

s

2
􏼒 􏼓 +

t
α− 1

A
􏽚
1

0
h(t)G1 t,

s

2
􏼒 􏼓d1,(1/2)t, (90)

where

G0 t,
s

2
􏼒 􏼓 �

1
1(α/2)Γ(1,(1/2))(5/2)

t
1/2 1 −

s

2
􏼒 􏼓

(1/2)

− t −
s

2
􏼒 􏼓

(1/2)

, 0≤ s≤ t≤ 1;

t
3/2 1 −

s

2
􏼒 􏼓

(1/2)

, 0≤ t≤ s≤ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G1 t,
s

2
􏼒 􏼓 �

1
1(α/2)Γ(1,(1/2))(5/2)

t
1/2 1 −

s

2
􏼒 􏼓

(1/2)

− t −
s

2
􏼒 􏼓

(1/2)

, 0≤ s≤ t≤ 1;

t
1/2 1 −

s

2
􏼒 􏼓

(1/2)

, 0≤ t≤ s≤ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(91)
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)us,

􏽚
1

0
G 1,

s

2
􏼒 􏼓ψr∗

(s)dp,qs ≈ 1.324< 3
�
3

√
� r∗. (92)

)erefore, by )eorem 4, BVP equation (87) has at least
two positive solutions. □

5. Conclusions

)is paper is mainly concerned with a class of fractional
(p, q)-difference equations with (p, q)-integral boundary
conditions. We first give the definition of fractional
(p, q)-difference operator and fractional (p, q)-integral
operator. )en, the existence and multiplicity of positive
solutions for boundary value problems are obtained by using
topological degree theory and Krein–Rutman theorem. Fi-
nally, two illustrative examples are given to show the
practical usefulness of the analytical results.
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In this article, we use some fixed point theorems to discuss the existence and uniqueness of solutions to a coupled system of a
nonlinear Langevin differential equation which involves Caputo fractional derivatives of different orders and is governed by new
type of nonlocal and nonseparated boundary conditions consisting of fractional integrals and derivatives. 0e considered
boundary conditions are totally dissimilar than the ones already handled in the literature. Additionally, wemodify the Adams-type
predictor-corrector method by implicitly implementing the Gauss–Seidel method in order to solve some specific particular cases
of the system.

1. Introduction

0e fractional calculus is the ramification of mathematics
concerning the integrals and derivatives of functions with
arbitrary orders. It has a long history that goes back to more
than three hundred years. Nonetheless, researchers dis-
covered the importance and effectiveness of this calculus just
a mere in the last few decades. It turned out that the
fractional integrals and derivatives are very good tools in
modeling some phenomena. 0is was concluded simply
because of the amazing results obtained when some of the
researchers used the implements in the fractional calculus
for the sake of understanding real world problems hap-
pening in the environment surrounding. Recently, differ-
ential equations of fractional order have been applied in
various fields like physical, biology, chemistry, control
theory, electrical circuits, blood flow phenomena, and signal
and image processing; for more details, see [1–3] and ref-
erences cited therein.

In 1908, Langevin [4] formulated his famous equation
containing derivative of integer order. 0is equation de-
scribes the evolution of certain physical phenomena in
fluctuating environments [5]. 0e Langevin equation was
used in large part to describe some phenomena such as
anomalous transport [6]. 0e Langevin equation has been
recently extended to the fractional order by Lim et al. [7].
0ey acquainted a new form of Langevin equations in-
volving two different fractional order for the sake of de-
scribing the viscoelastic anomalous diffusion in the complex
liquids. We refer the reader to Subsection 2.1 in [3] and the
references cited therein for further details. Uranagase and
Munakata [8] discussed the generalized Langevin equation
with emphasis on a mechanical random force whose time
evolution is not natural due to the presence of a projection
operator in a propagator. Lozinski et al. [9] discussed the
applications of Langevin and Fokker–Planck equations in
polymer rheology and stochastic simulation techniques for
solving this equation. Laadjal et al. [10] presented the
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existence and uniqueness of solutions for the multiterm
fractional Langevin equation with boundary conditions.

Using the tools in mathematical analysis and the theory
of fixed points, discussing the qualitative specification en-
capsuling the behaviors of solutions of differential equations
in fractional derivatives settings has attracted the attention
of many scientists. To get an update about the works in the
literature, we ask the readers to investigate [11] and the
references cited there. On the top of this, classes of systems of

fractional differential equations with separated (or non-
separated) boundary conditions have been studied inten-
sively in literatures [12–14].

Motivated by what are mentioned above and the recent
development on Langevin equations, in this paper, we
discuss the existence and the uniqueness of solutions to a
coupled system of fractional Langevin equations in the form
as follows:

c
D

α1 c
D

β1 + λ􏼐 􏼑ψ1(t) � f t,ψ1(t),ψ2(t)( 􏼁, t ∈ J, 0< α1 ≤ 1< β1 ≤ 2,

c
D

α2 c
D

β2 + k􏼐 􏼑ψ2(t) � g t,ψ1(t),ψ2(t)( 􏼁, t ∈ J, 0< α2 ≤ 1< β2 ≤ 2,

⎧⎪⎨

⎪⎩
(1)

subject to a new type of nonlocal nonseparated boundary
conditions as follows:

ψ1(0) � a0,ψ2(0) � b0,ψ1′(0) � ψ2′(0) � 0,

ψ1(ξ) � a
c
D

pψ2( 􏼁 μ1( 􏼁, ξ ∈ (0, 1], μ1 ∈ J, 0<p< β2,

ψ2(η) � b I
qψ1( 􏼃 μ2( 􏼃, η ∈ (0, 1], μ2 ∈ J, q≥ 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where J � [0, 1], λ, k, a0, b0, a, b are real constants, cDi where
i � α1, β1, α2, β2, p are the Caputo fractional derivatives of
order α1, β1, α2, β2, andp, respectively, f, g: J × R×

R⟶ R are given functions, and Iq is the Rie-
mann–Liouville fractional integral of order q. By using the
Banach contraction principle and Leray–Schauder alterna-
tive fixed point theorem, we investigate the existence of
solutions for problems (1) and (2). We remark that the
boundary value problem discussed here is distinctive of the
ones discussed in literatures [12–14].

0is article is organized as follows. In Section 2, we
present some definitions, theorems, and related lemmas
used in next sections. Section 3 discusses the existence and
uniqueness of the system under consideration. In Section 4,
we furnish some numerical examples. Section 5 is devoted to
our concluding remarks.

2. Preliminaries

Definition 1. (see [1, 2]). Let a, b ∈ R (− ∞< a< b<∞). 0e
Riemann–Liouville fractional integral of order α ∈ R+ for a
function f ∈ L1[a, b] is defined by

I
α
af(t) �

1
Γ(α)

􏽚
t

a
(t − s)

α− 1
f(s)ds, for α> 0, and I

0
af(t) � f(t),

(3)

where Γ is the Euler Gamma function.

Definition 2 (see [1, 2]). 0e Caputo fractional derivative of
order α ∈ R+ for a function f ∈ Cn[a, b] is defined by

c
D

α
af(t) � I

n− α
a D

n
f(t), for α> 0, and c

D
0
af(t) � f(t),

(4)

where n − 1< α≤ n, n ∈ N, and Dn � dn/dtn.

Proposition 3 (see [2]). For β> 0 and α> 0 andf ∈ L1[a, b],
we have the following properties:

I
α
aI

β
af(t) � I

β
aI

α
af(t) � I

α+β
a f(t).

I
α
a(t − a)

μ
�
Γ(μ + 1)

Γ(α + μ + 1)
(t − a)

α+μ
, μ> − 1.

c
D

α
a I

β
af(t)􏼐 􏼑 � I

β− α
a f(t), (here β≥ α> 0).

(5)

Proposition 4 (see [2]). Let α> 0 with n − 1< α≤ n and
f ∈ Cn[a, b]. :en,

I
α
a

c
D

α
af(t)􏼂 􏼃 � f(t) − 􏽘

n− 1

k�0
ck(t − a)

k
, (6)

where ck � f(k)(a)/k!. In particular, when 0< α≤ 1, we have

I
α
0

c
D

α
0f(t)􏼂 􏼃 � f(t) − f(0). (7)

Proposition 5 (see [2]). Let μ> 0 and α> 0 with
n − 1< α≤ n. :en,

c
D

α
a(t − a)

μ− 1
�
Γ(μ)

Γ(μ − α)
(t − a)

μ− α− 1
, μ> n,

c
D

α
a(t − a)

k
� 0, k � 0, 1, . . . , n − 1.

(8)

Theorem 6 (Leray–Schauder alternative [15]). Let
T: X⟶ X be a completely continuous operator (i.e., a map
that is restricted to any bounded set in X is compact). Let
M(T) � u ∈ X: u � mT(u) forsome 0<m< 1􏼈 􏼉. :en, either
the set M(T) is unbounded or T has at least one fixed point.

For the sake of simplicity, henceforwards we will write Iα

and cDα instead of Iα0 and cDα
0 , respectively.
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3. Main Results

In this section, we will discuss the existence and uniqueness
of the solution to systems (1)-(2).

Lemma 7. Let v, w ∈ C([0, 1],R), 0< α1, α2 ≤ 1,
1< β1, β2 ≤ 2, q≥ 0, 0<p< β2, (α1 : � α1 + β1 + q, α2 : � α2
+ β2 − p), and

Δ �
ξβ1ηβ2

Γ β1 + 1( 􏼁Γ β2 + 1( 􏼁
−

abμβ2− p
1 μβ1+q

2
Γ β1 + q + 1( 􏼁Γ β2 − p + 1( 􏼁

≠ 0.

(9)

:en, the solution of the following coupled system of
fractional Langevin equations is as follows:

c
D

α1 c
D

β1 + λ􏼐 􏼑ψ1(t) � v(t), (10)

c
D

α2 c
D

β2 + k􏼐 􏼑ψ2(t) � w(t), (11)

equipped with the boundary condition (2) which is equivalent
to the coupled system of the following integral equations:

ψ1(t) � I
α1+β1v(t) − λI

β1ψ1(t) + t
β1 A1 aI

α2w μ1( 􏼁 − akI
β2− pψ2 μ1( 􏼁 − I

α1+β1v(ξ) + λI
β1ψ1(ξ)􏽨 􏽩􏽮

+ A2 bI
α1v μ2( 􏼁 − bλI

β1+qψ1 μ2( 􏼁 − I
α2+β2w(η) + kI

β2ψ2(η)􏽨 􏽩 + A3􏽯 + a0,
(12)

ψ2(t) � I
α2+β2w(t) − kI

β2ψ2(t) + t
β2 B1 bI

α1v μ2( 􏼁 − bλI
β1+qψ1 μ2( 􏼁 − I

α2+β2w(η) + kI
β2ψ2(η)􏽨 􏽩􏽮

+ B2 aI
α2w μ1( 􏼁 − akI

β2− pψ2 μ1( 􏼁 − I
α1+β1v(ξ) + λI

β1ψ1(ξ)􏽨 􏽩 + B3􏽯 + b0,
(13)

where

A1 �
1

ΔΓ β1 + 1( 􏼁

ηβ2

Γ β2 + 1( 􏼁
,

A2 �
1

ΔΓ β1 + 1( 􏼁

aμβ2− p
1

Γ β2 − p + 1( 􏼁
,

A3 �
1

ΔΓ β1 + 1( 􏼁
−

a0η
β2

Γ β2 + 1( 􏼁
+

aμβ2− p
1

Γ β2 − p + 1( 􏼁

ba0μ
q
2

Γ(q + 1)
− b0􏼠 􏼡⎡⎣ ⎤⎦,

B1 �
1

ΔΓ β2 + 1( 􏼁

ξβ1

Γ β1 + 1( 􏼁
,

B2 �
1

ΔΓ β2 + 1( 􏼁

bμq+β1
2

Γ q + β1 + 1( 􏼁
,

B3 �
1

ΔΓ β2 + 1( 􏼁
−

ba0μ
q+β1
2

Γ q + β1 + 1( 􏼁
+

ξβ1

Γ β1 + 1( 􏼁

ba0μ
q
2

Γ(q + 1)
− b0􏼠 􏼡⎡⎣ ⎤⎦.

(14)

Proof. Applying the operator Iα1+β1 and Iα2+β2 on (10) and
(11), respectively, we get
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ψ1(t) � I
α1+β1v(t) − λI

β1ψ1(t) +
c2t

β1

Γ β1 + 1( 􏼁
+ c1t + c0,

(15)

ψ2(t) � I
α2+β2w(t) − kI

β2ψ2(t) +
c2t

β2

Γ β2 + 1( 􏼁
+ c1t + c0,

(16)

where ci, ci ∈ R (i � 0, 1, 2). From the boundary conditions
ψ1(0) � a0,ψ2(0) � b0, and ψ1′(0) � ψ2′(0) � 0, we get
c0 � a0, c0 � b0, and c1 � c1 � 0, respectively. Next, using the
nonlocal integral conditions ψ1(ξ) � a(cDpψ2)(μ1) and
ψ2(η) � b(Iqψ1)(μ2), we obtain that

I
α1+β1v(ξ) − λI

β1ψ1(ξ) +
c2ξ

β1

Γ β1 + 1( 􏼁
+ a0 � aI

α2w μ1( 􏼁

− akI
β2− pψ2 μ1( 􏼁 +

ac2μ
β2− p
1

Γ β2 − p + 1( 􏼁
,

(17)

I
α2+β2w(η) − kI

β2ψ2(η) +
c2η

β2

Γ β2 + 1( 􏼁
+ b0 � bI

α1v μ2( 􏼁

− bλI
β1+qψ1 μ2( 􏼁 +

c2bμ
β1+q
2

Γ β1 + q + 1( 􏼁
+

ba0μ
q
2

Γ(q + 1)
.

(18)

Solving the above system, we find that

c2 �
1
Δ

ηβ2

Γ β2 + 1( 􏼁
􏼢 aI

α2w μ1( 􏼁 − akI
β2− pψ2 μ1( 􏼁 − I

α1+β1v(ξ) + λI
β1ψ1(ξ)􏽨 􏽩

+
aμβ2− p

1
Γ β2 + 1 − p( 􏼁

bI
α1v μ2( 􏼁 − bλI

β1+qψ1 μ2( 􏼁 − I
α2+β2w(η) + kI

β2ψ2(η)􏽨 􏽩

−
a0η

β2

Γ β2 + 1( 􏼁
+

aμβ2− p
1

Γ β2 − p + 1( 􏼁

ba0μ
q
2

Γ(q + 1)
− b0􏼠 􏼡⎤⎦

c2 �
1
Δ

ξβ1

Γ β1 + 1( 􏼁
􏼢 bI

α1v μ2( 􏼁 − bλI
β1+qψ1 μ2( 􏼁 − I

α2+β2w(η) + kI
β2ψ2(η)􏽨 􏽩

+
bμq+β1

2
Γ q + β1 + 1( 􏼁

aI
α2w μ1( 􏼁 − akI

β2− pψ2 μ1( 􏼁 − I
α1+β1v(ξ) + λI

β1ψ1(ξ)􏽨 􏽩

−
a0bμ

q+β1
2

Γ q + β1 + 1( 􏼁
+

ξβ1

Γ β1 + 1( 􏼁

ba0μ
q
2

Γ(q + 1)
− b0􏼠 􏼡􏼣,

(19)

where Δ is the determinant of the matrix associated with
systems (17)-(18) in the two variables c2 and c2, and it is
given by (9).

Substituting the values of c0, c0, c1, c1, c2, and c2 in (15)
and (16), we obtain the system of the integral equations (12)
and (13). 0e proof is completed. □

0e Banach space E � C([0, 1],R) is defined with the
norm ‖ψ1‖E � supt∈J|ψ1(t)|.

So, the space E × E � (ψ1,ψ2), s.t(ψ1,ψ2) ∈ E × E􏼈 􏼉 with
the norm ‖(ψ1,ψ2)‖E×E � ‖ψ1‖E + ‖ψ2‖E is Banach space.

Now, let us define the operator N: E × E⟶ E × E, by
N(ψ1,ψ2)(t) � (N1(ψ1,ψ2)(t),N2(ψ1,ψ2)(t)), where
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N1 ψ1,ψ2( 􏼁(t) �
1

Γ α1 + β1( 􏼁
􏽚

t

0
(t − s)

α1+β1− 1
f s,ψ1(s),ψ2(s)( 􏼁ds −

λ
Γ β1( 􏼁

􏽚
t

0
(t − s)

β1− 1ψ1(s)ds

+ t
β1 A1

a

Γ α2( 􏼁
􏽚
μ1

0
μ1 − s( 􏼁

α2− 1
g s,ψ1(s),ψ2(s)( 􏼁ds􏼠􏼨 −

ak

Γ β2 − p( 􏼁

× 􏽚
μ1

0
μ1 − s( 􏼁

β2− p− 1ψ2(s)ds −
1

Γ α1 + β1( 􏼁
􏽚
ξ

0
(ξ − s)

α1+β1− 1
f s,ψ1(s),ψ2(s)( 􏼁ds

+
λ
Γ β1( 􏼁

􏽚
ξ

0
(ξ − s)

β1− 1ψ1(s)ds􏼡 + A2
b

Γ α1( 􏼁
􏽚
μ2

0
μ2 − s( 􏼁

α1− 1
f s,ψ1(s),ψ2(s)( 􏼁ds􏼠

−
bλ
Γ β1 + q( 􏼁

􏽚
μ2

0
μ2 − s( 􏼁

β1+q− 1ψ1(s)ds −
1

Γ α2 + β2( 􏼁
􏽚
η

0
(η − s)

α2+β2− 1
g s,ψ1(s),ψ2(s)( 􏼁ds

+
k

Γ β2( 􏼁
􏽚
η

0
(η − s)

β2− 1ψ2(s)ds􏼡 + A3􏼩 + a0,

N2 ψ1,ψ2( 􏼁(t) �
1

Γ α2 + β2( 􏼁
􏽚

t

0
(t − s)

α2+β2− 1
g s,ψ1(s),ψ2(s)( 􏼁ds −

k

Γ β2( 􏼁
􏽚

t

0
(t − s)

β2− 1ψ2(s)ds

+ t
β2 B1

b

Γ α1( 􏼁
􏽚
μ2

0
μ2 − s( 􏼁

α1− 1
f s,ψ1(s),ψ2(s)( 􏼁ds􏼠􏼨 −

bλ
Γ β1 + q( 􏼁

× 􏽚
μ2

0
μ2 − s( 􏼁

β1+q− 1ψ1(s)ds −
1

Γ α2 + β2( 􏼁
􏽚
η

0
(η − s)

α2+β2− 1
g s,ψ1(s),ψ2(s)( 􏼁ds

+
k

Γ β2( 􏼁
􏽚
η

0
(η − s)

β2− 1ψ2(s)ds + B2
a

Γ α2( 􏼁
􏽚
μ1

0
μ1 − s( 􏼁

α2− 1
g s,ψ1(s),ψ2(s)( 􏼁ds􏼠

−
ak

Γ β2 − p( 􏼁
􏽚
μ1

0
μ1 − s( 􏼁

β2− p− 1ψ2(s)ds −
1

Γ α1 + β1( 􏼁
􏽚
ξ

0
(ξ − s)

α1+β1− 1
f s,ψ1(s),ψ2(s)( 􏼁ds

+
λ
Γ β1( 􏼁

􏽚
ξ

0
(ξ − s)

β1− 1ψ1(s)ds􏼡 + B3􏼩 + b0.

(20)

Note that the couple (ψ1,ψ2) is a fixed point of the
operatorN if only if (ψ1,ψ2) is a solution of systems (1)-(2).
Consider the following hypotheses:

(H1). f, g: J × R × R⟶ R are continuous functions,
and there exist real positive constants σi, τi (i � 0, 1, 2)

such that
|f(t, ζ, κ)|≤ σ0 + σ1|ζ| + σ2|κ|,

|g(t, ζ, κ)|≤ τ0 + τ1|ζ| + τ2|κ|,
(21)

for all (t, ζ, κ) ∈ J × R × R.
(H2). 0ere exist constants K, L> 0 such that

|f(t, ζ, κ) − f(t, ζ, κ)|≤K(|ζ − ζ| +|κ − κ|),

|g(t, ζ, κ) − g(t, ζ, κ)|≤ L(|ζ − ζ| +|κ − κ|),
(22)

for all (t, ζ, κ), (t, ζ, κ) ∈ J × R × R.

(H3). 0ere exist F0, G0 > 0 such that
F0 � supt∈J|f(t, 0, 0)| and G0 � supt∈J|g(t, 0, 0)|.

Remark 8. From conditions (H1) and (H2) for all
(ψ1,ψ2) ∈ E × E , we get

f t,ψ1(t),ψ2(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤K ψ1,ψ2( 􏼁
����

����E×E
+ F0,

g t,ψ1(t),ψ2(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L ψ1,ψ2( 􏼁
����

����E×E
+ G0.

(23)

For computation convenience, we set the following
constants:

Q1 �
1 + A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξα1+β1

Γ α1 + β1 + 1( 􏼁
+

A2b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα12
Γ α1 + 1( 􏼁

,

Q2 �
aA1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μα21

Γ α2 + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ηα2+β2

Γ α2 + β2 + 1( 􏼁
,

(24)

Q3 �
bB1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μα12

Γ α1 + 1( 􏼁
+

B2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ξα1+β1

Γ α1 + β1 + 1( 􏼁
,

Q4 �
1 + B1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ηα2+β2

Γ α2 + β2 + 1( 􏼁
+

B2a
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα21
Γ α2 + 1( 􏼁

,

(25)
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Q5 �
1 + A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξβ1􏼐 􏼑|λ|

Γ β1 + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|bλ|μβ1+q
2

Γ β1 + q + 1( 􏼁
,

Q6 �
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|ak|μβ2− p

1

Γ β2 − p + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|k|ηβ2

Γ β2 + 1( 􏼁
,

(26)

Q7 �
B2λ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξβ1

Γ β1 + 1( 􏼁
+

bλB1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ1+q
2

Γ β1 + q + 1( 􏼁
,

Q8 �
B2ak

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μβ2− p

1

Γ β2 − p + 1( 􏼁
+

1 + B1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ηβ2􏼐 􏼑|k|

Γ β2 + 1( 􏼁
,

(27)

ρ1 � max Q5, Q6􏼈 􏼉,

ρ2 � max Q7, Q8􏼈 􏼉.
(28)

In the following step, we present the following result
about the uniqueness of solutions for problems (1)-(2) by
applying the Banach contraction principle.

Theorem 9. Assume that (H2) and (H3) hold. If

Q1 + Q3( 􏼁K + Q2 + Q4( 􏼁L + ρ1 + ρ2􏼂 􏼃< 1, (29)

where Q1, Q2, Q3, andQ4 and ρ1 and ρ2 are, respectively,
defined by (24), (25), and (28), then the boundary value
problems (1)-(2) have a unique solution.

Proof. Choose a positive real constant R where

R≥
Q1 + Q3( 􏼁F0 + Q2 + Q4( 􏼁G0 + A3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + B3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + b0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − Q1 + Q3( 􏼁K + Q2 + Q4( 􏼁L + ρ1 + ρ2􏼂 􏼃
.

(30)

Let BR � (ψ1,ψ2) ∈ E × Es.t.‖(ψ1,ψ2)‖E×E≤R􏼈 􏼉. First, we
prove that N(BR)⊆BR.

For all (ψ1,ψ2) ∈ BR, we have

N1 ψ1,ψ2( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
KR + F0

Γ α1 + β1( 􏼁
􏽚

t

0
(t − s)

α1+β1− 1ds +
|λ| ψ1

����
����E

Γ β1( 􏼁
􏽚

t

0
(t − s)

β1− 1ds

+ t
β1 A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|a| LR + G0( 􏼁

Γ α2( 􏼁
􏽚
μ1

0
μ1 − s( 􏼁

α2− 1ds􏼠􏼨 +
|ak| ψ2

����
����E

Γ β2 − p( 􏼁
􏽚
μ1

0
μ1 − s( 􏼁

β2− p− 1ds

+
KR + F0

Γ α1 + β1( 􏼁
􏽚
ξ

0
(ξ − s)

α1+β1− 1ds +
|λ| ψ1

����
����E

Γ β1( 􏼁
􏽚
ξ

0
(ξ − s)

β1− 1ds􏼡

+ A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
|b| KR + F0( 􏼁

Γ α1( 􏼁
􏽚
μ2

0
μ2 − s( 􏼁

α1− 1ds􏼠 +
|bλ| ψ1

����
����E

Γ β1 + q( 􏼁
􏽚
μ2

0
μ2 − s( 􏼁

β1+q− 1ds

+
LR + G0

Γ α2 + β2( 􏼁
􏽚
η

0
(η − s)

α2+β2− 1ds +
|k| ψ2

����
����E

Γ β2( 􏼁
􏽚
η

0
(η − s)

β2− 1ds􏼡 + A3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼩 + a0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
KR + F0

Γ α1 + β1 + 1( 􏼁
+

aA1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 LR + G0( 􏼁μα21
Γ α2 + 1( 􏼁

+
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 KR + F0( 􏼁ξα1+β1

Γ α1 + β1 + 1( 􏼁
+

bA2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 KR + F0( 􏼁μα12
Γ α1 + 1( 􏼁

+
A2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 LR + G0( 􏼁ηα2− β2

Γ α2 − β2 + 1( 􏼁
+ |A3| + |a0| +

|λ| 1 + A1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ξβ1􏼐 􏼑

Γ β1 + 1( 􏼁
+

bλA2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ1+q
2

Γ β1 + q + 1( 􏼁
⎛⎝ ⎞⎠ ψ1

����
����E

+
kA2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ηβ2

Γ β2 + 1( 􏼁
+

akA1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ2− p
1

Γ β2 − p + 1( 􏼁
⎛⎝ ⎞⎠ ψ2

����
����E

≤
K 1 + A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξα1+β1􏼐 􏼑

Γ α1 + β1 + 1( 􏼁
+

aA1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα21 L

Γ α2 + 1( 􏼁
+

bA2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα12 K

Γ α1 + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ηα2+β2L

Γ α2 + β2 + 1( 􏼁
⎛⎝ ⎞⎠R

+
F0 1 + A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξα1+β1􏼐 􏼑

Γ α1 + β1 + 1( 􏼁
+

aA1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα21 G0

Γ α2 + 1( 􏼁
+

bA2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα12 F0

Γ α1 + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ηα2+β2G0

Γ α2 + β2 + 1( 􏼁
+ A3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ρ1 ψ1,ψ2( 􏼁

����
����E×E

≤Q1F0 + Q2G0 + A3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + a0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Q1K + Q2L + ρ1( 􏼁R.

(31)

On the other hand, we have
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N2 ψ1,ψ2( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
LR + G0

Γ α2 + β2 + 1( 􏼁
+

bB1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα12 KR + F0( 􏼁

Γ α1 + 1( 􏼁
+

B1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 LR + G0( 􏼁ηα2+β2

Γ α2 + β2 + 1( 􏼁

+
aB2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 LR + G0( 􏼁μα21
Γ α2 + 1( 􏼁

+
B2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 KR + F0( 􏼁ξα1+β1

Γ α1 + β1 + 1( 􏼁
+ B3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + b0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

bλB1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ1+q
2

Γ β1 + q + 1( 􏼁
+

λB2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ξβ1

Γ β1 + 1( 􏼁
⎛⎝ ⎞⎠ ψ1

����
����E

+
|k|

Γ β2 + 1( 􏼁
+

kB1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ηβ2

Γ β2 + 1( 􏼁
+

akB2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ2− p
1

Γ β2 − p + 1( 􏼁
⎛⎝ ⎞⎠ ψ2

����
����E

≤Q4G0 + Q3F0 + B3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Q4L + Q3K( 􏼁R + ρ2 ψ1
����

����E
+ ψ2

����
����E

􏼐 􏼑

≤Q4G0 + Q3F0 + B3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Q4L + Q3K + ρ2( 􏼁R.

(32)

Consequently,

N ψ1,ψ2( 􏼁
����

����≤ Q1 + Q3( 􏼁F0 + Q2 + Q4( 􏼁G0 + A3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + B3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + a0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Q1 + Q3( 􏼁K + Q2 + Q4( 􏼁L + ρ1 + ρ2􏼂 􏼃R,

≤R.
(33)

0erefore, N(BR)⊆BR. Next, we prove that N is a con-
traction. Let (ψ1,ψ2), (ψ1,ψ2) ∈ E × E. For all t ∈ J, we have

N1 ψ1,ψ2( 􏼁 − N1 ψ1,ψ2( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
K ψ1 − ψ1

����
����E

+ ψ2 − ψ2
����

����E
􏼐 􏼑

Γ α1 + β1 + 1( 􏼁
t
α1+β1 +

|λ| ψ1 − ψ1
����

����E

Γ β1 + 1( 􏼁
t
β1

+ t
β1 A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

aL ψ1 − ψ1
����

����E
+ ψ2 − ψ2

����
����E

􏼐 􏼑

Γ α2 + 1( 􏼁
μα21⎛⎝

⎧⎨

⎩ +
|ak| ψ2 − ψ2

����
����E

Γ β2 − p + 1( 􏼁
μβ2− p
1

+
K ψ1 − ψ1

����
����E

+ ψ2 − ψ2
����

����E
􏼐 􏼑

Γ α1 + β1 + 1( 􏼁
ξα1+β1 +

|λ|‖x − x‖E

Γ β1 + 1( 􏼁
ξβ1􏼡

+ A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
|b|K ψ1 − ψ1

����
����E

+ ψ2 − ψ2
����

����E
􏼐 􏼑

Γ α1 + 1( 􏼁
μα12⎛⎝ +

|bλ| ψ1 − ψ1
����

����E

Γ β1 + q + 1( 􏼁
μβ1+q
2

+
L ψ1 − ψ1

����
����E

+ ψ2 − ψ2
����

����E
􏼐 􏼑

Γ α2 + β2 + 1( 􏼁
ηα2+β2 +

|k| ψ2 − ψ2
����

����E

Γ β2 + 1( 􏼁
ηβ2􏼡 + A3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼩

≤
K ψ1 − ψ1,ψ2 − ψ2( 􏼁

����
����E×E

Γ α1 + β1 + 1( 􏼁
+

|λ| ψ1 − ψ1
����

����E

Γ β1 + 1( 􏼁

+
aA1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌L ψ1 − ψ1,ψ2 − ψ2( 􏼁

����
����E×E

Γ α2 + 1( 􏼁
μα21 +

akA1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ψ2 − ψ2
����

����E

Γ β2 − p + 1( 􏼁
μβ2− p
1

+
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌K ψ1 − ψ1,ψ2 − ψ2( 􏼁

����
����E×E

Γ α1 + β1 + 1( 􏼁
ξα1+β1 +

A1λ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ψ1 − ψ1
����

����E

Γ β1 + 1( 􏼁
ξβ1

+
A2b

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌K ψ1 − ψ1,ψ2 − ψ2( 􏼁

����
����E×E

Γ α1 + 1( 􏼁
μα12 +

A2bλ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ψ1 − ψ1
����

����E

Γ β1 + q + 1( 􏼁
μβ1+q
2

+
A2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌L ψ1 − ψ1,ψ2 − ψ2( 􏼁

����
����E×E

Γ α2 + β2 + 1( 􏼁
ηα2+β2 +

A2k
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ψ2 − ψ2
����

����E

Γ β2 + 1( 􏼁
ηβ2

≤ Q1K + Q2L + ρ1( 􏼁 ψ1,ψ2( 􏼁 − ψ1,ψ2( 􏼁
����

����E×E
.

(34)
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In the other respect, we have

N2 ψ1,ψ2( 􏼁(t) − N2 ψ1,ψ2( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
L ψ1 − ψ1

����
����E

+ ψ2 − ψ2
����

����E
􏼐 􏼑

Γ α2 + β2 + 1( 􏼁
+

k ψ2 − ψ2
����

����E

Γ β2 + 1( 􏼁

+
B1b

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌K ψ1 − ψ1

����
����E

+ ψ2 − ψ2
����

����E
􏼐 􏼑

Γ α1 + 1( 􏼁
μα1− 1
2 +

B1bλ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ψ1 − ψ1
����

����E

Γ β1 + q + 1( 􏼁
μβ1+q
2

+
B1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌L ψ1 − ψ1

����
����E

+ ψ2 − ψ2
����

����E
􏼐 􏼑

Γ α2 + β2 + 1( 􏼁
ηα2+β2 +

B1k
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌K ψ2 − ψ2
����

����E

Γ β2 + 1( 􏼁
ηβ2

+
B2a

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌L ψ1 − ψ1

����
����E

+ ψ2 − ψ2
����

����E
􏼐 􏼑

Γ α2 + 1( 􏼁
μα21 +

B2ak
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ψ2 − ψ2
����

����E

Γ β2 − p + 1( 􏼁
μβ2− p
1

+
B2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌K ψ1 − ψ1

����
����E

+ ψ2 − ψ2
����

����E
􏼐 􏼑

Γ α1 + β1 + 1( 􏼁
ξα1+β1 +

B2λ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ψ1 − ψ1
����

����E

Γ β1 + 1( 􏼁
ξβ1 ,

≤
L

Γ α2 + β2 + 1( 􏼁
􏼠 +

B1b
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌K

Γ α1 + 1( 􏼁
μα1− 1
2 +

B1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌L

Γ α2 + β2 + 1( 􏼁
ηα2+β2

+
B2a

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌Lμα21

Γ α2 + 1( 􏼁
+

B2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Kξα1+β1

Γ α1 + β1 + 1( 􏼁
⎞⎠ ψ1 − ψ1,ψ2 − ψ2( 􏼁

����
����E×E

B1bλ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ1+q
2

Γ β1 + q + 1( 􏼁
+

B2λ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ξβ1

Γ β1 + 1( 􏼁
⎛⎝ ⎞⎠ ψ1 − ψ1

����
����E

|k| 1 + B1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌Kηβ2􏼐 􏼑

Γ β2 + 1( 􏼁
⎛⎝ +

B2ak
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ2− p
1

Γ β2 − p + 1( 􏼁
⎞⎠ ψ2 − ψ2

����
����E

≤ Q4L + Q3K + ρ2( 􏼁 ψ1,ψ2( 􏼁 − ψ1,ψ2( 􏼁
����

����E×E
.

(35)

Consequently,

N ψ1,ψ2( 􏼁 − N(x, y)
����

����≤ Q1 + Q3( 􏼁K + Q2 + Q4( 􏼁L􏼂

+ ρ1 + ρ2􏼃 ψ1,ψ2( 􏼁 − ψ1,ψ2( 􏼁
����

����E×E
.

(36)
0erefore, the operatorN has a unique fixed point.0us,

we conclude that problems (1)-(2) have a unique solution on
[0, 1]. 0e proof is complete.

Now, we apply the Leray-Schauder alternative theoerm
to obtain the following result about the existence of solutions
for problems (1)-(2).

Theorem 10. Assume that (H1) holds. If

S< 1, and S< 1, (37)

where

S � Q1σ1 + Q2τ1 + Q3σ1 + Q4τ1 + Q5 + Q8, (38)

S � Q1σ2 + Q2τ2 + Q3σ2 + Q4τ2 + Q6 + Q7, (39)

then the boundary value problems (1)-(2) have at least one
solution on [0, 1].

Proof. First, we show that the operator N is completely
continuous.

Because f and g are continuous functions, N is con-
tinuous operator as well. Let Λ be any nonempty bounded
subset of E × E. 0en, there exists r> 0 such that for any
(ψ1,ψ2) ∈ Λ, ‖(ψ1,ψ2)‖E×E≤ r. Notice that from the con-
dition (H1) for all (ψ1,ψ2) ∈ Λ, we have

f t,ψ1(t),ψ2(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ σ0 + σ1 ψ1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + σ2 ψ2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

≤ σ0 + max σ1, σ2􏼈 􏼉 ψ1,ψ2( 􏼁
����

����E×E

≤ σ0 + rmax σ1, σ2􏼈 􏼉

g t,ψ1(t),ψ2(t)( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ τ0 + rmax τ1, τ2􏼈 􏼉.

(40)

Next, we prove that N(Λ) is uniformly bounded. Let
(ψ1,ψ2) ∈ Λ. Indeed, for any t ∈ [0, 1], we have
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N1 ψ1,ψ2( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
σ0 + rmax σ1, σ2􏼈 􏼉

Γ α1 + β1( 􏼁
􏽚

t

0
(t − s)

α1+β1− 1ds +
|λ| ψ1

����
����E

Γ β1( 􏼁
􏽚

t

0
(t − s)

β1− 1ds

+ t
β1 A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|a| τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁

Γ α2( 􏼁
􏽚
μ1

0
μ1 − s( 􏼁

α2− 1ds􏼠􏼨 +
|ak| ψ2

����
����E

Γ β2 − p( 􏼁
􏽚
μ1

0
μ1 − s( 􏼁

β2− p− 1ds

+
σ0 + rmax σ1, σ2􏼈 􏼉

Γ α1 + β1( 􏼁
􏽚
ξ

0
(ξ − s)

α1+β1− 1ds +
|λ| ψ1

����
����E

Γ β1( 􏼁
􏽚
ξ

0
(ξ − s)

β1− 1ds􏼡

+ A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
|b| σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁

Γ α1( 􏼁
􏽚
μ2

0
μ2 − s( 􏼁

α1− 1ds􏼠 +
|bλ| ψ1

����
����E

Γ β1 + q( 􏼁
􏽚
μ2

0
μ2 − s( 􏼁

β1+q− 1ds

+
τ0 + rmax τ1, τ2􏼈 􏼉

Γ α2 + β2( 􏼁
􏽚
η

0
(η − s)

α2+β2− 1ds +
|k| ψ2

����
����E

Γ β2( 􏼁
􏽚
η

0
(η − s)

β2− 1ds􏼡 + A3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼩 + a0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

≤
1 + A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξα1+β1􏼐 􏼑 σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁

Γ α1 + β1 + 1( 􏼁
+

aA1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁μα21
Γ α2 + 1( 􏼁

+
bA2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁μα12
Γ α1 + 1( 􏼁

+
A2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁ηα2+β2

Γ α2 + β2 + 1( 􏼁
+ A3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+
|λ| 1 + A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξβ1􏼐 􏼑

Γ β1 + 1( 􏼁
+

bλA2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ1+q
2

Γ β1 + q + 1( 􏼁
⎛⎝ ⎞⎠ ψ1

����
����E

+
kA2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ηβ2

Γ β2 + 1( 􏼁
+

akA1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ2− p
1

Γ β2 − p + 1( 􏼁
⎛⎝ ⎞⎠ ψ2

����
����E

≤
1 + A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξα1+β1􏼐 􏼑

Γ α1 + β1 + 1( 􏼁
+

bA2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα12
Γ α1 + 1( 􏼁

⎛⎝ ⎞⎠ σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁

+
aA1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μα21

Γ α2 + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ηα2+β2

Γ α2 + β2 + 1( 􏼁
⎛⎝ ⎞⎠ τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁 + A3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ρ1r

≤ +∞.

(41)

Similarly,

N2 ψ1,ψ2( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1 + B1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ηα2+β2􏼐 􏼑 τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁

Γ α2 + β2 + 1( 􏼁
+

bB1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα12 σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁

Γ α1 + 1( 􏼁

+
aB2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁μα21
Γ α2 + 1( 􏼁

+
B2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁ξα1+β1

Γ α1 + β1 + 1( 􏼁
+ B3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + b0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+
bλB1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μβ1+q

2

Γ β1 + q + 1( 􏼁
+

λB2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ξβ1

Γ β1 + 1( 􏼁
⎛⎝ ⎞⎠ ψ1

����
����E

+
|k| + kB1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ηβ2

Γ β2 + 1( 􏼁
+

akB2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ2− p
1

Γ β2 − p + 1( 􏼁
⎛⎝ ⎞⎠ ψ2

����
����E

≤
bB1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μα12

Γ α1 + 1( 􏼁
+

B2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ξα1+β1

Γ α1 + β1 + 1( 􏼁
⎛⎝ ⎞⎠ σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁

+
aB2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌μα21

Γ α2 + 1( 􏼁
+

1 + B1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ηα2+β2􏼐 􏼑

Γ α2 + β2 + 1( 􏼁
⎛⎝ ⎞⎠ τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁 + B3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + b0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ρ2r

< +∞.

(42)
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Consequently, ‖(ψ1,ψ2)‖E×E< +∞ for any (ψ1,ψ2) ∈ Λ.
0erefore, N(Λ) is uniformly bounded.

Now, we show that N is equicontinuous on Λ. Let
(ψ1,ψ2) ∈ Λ. For any t2, t1 ∈ J, where t2 > t1, we have

N1 ψ1,ψ2( 􏼁 t2( 􏼁 − N1 ψ1,ψ2( 􏼁 t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤
σ0 + rmax σ1, σ2􏼈 􏼉

Γ α1 + β1( 􏼁
􏽚

t1

0
t2 − s( 􏼁

α1+β1− 1
− t1 − s( 􏼁

α1+β1− 1
􏽨 􏽩ds + 􏽚

t2

t1

t2 − s( 􏼁
α1+β1− 1ds􏼠 􏼡

+
|λ| ψ1

����
����E

Γ β1( 􏼁
􏽚

t1

0
t2 − s( 􏼁

β1− 1
− t1 − s( 􏼁

β1− 1
􏽨 􏽩ds + 􏽚

t2

t1

t2 − s( 􏼁
β1− 1ds􏼠 􏼡

+ t
β1
2 − t

β1
1􏼐 􏼑 A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|a| τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁

Γ α2( 􏼁
􏽚
μ1

0
μ1 − s( 􏼁

α2− 1ds􏼠􏼨 +
|ak| ψ2

����
����E

Γ β2 − p( 􏼁
􏽚
μ1

0
μ1 − s( 􏼁

β2− p− 1ds

+
σ0 + rmax σ1, σ2􏼈 􏼉

Γ α1 + β1( 􏼁
􏽚
ξ

0
(ξ − s)

α1+β1− 1ds +
|λ| ψ1

����
����E

Γ β1( 􏼁
􏽚
ξ

0
(ξ − s)

β1− 1ds􏼡

+ A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
|b| σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁

Γ α1( 􏼁
􏽚
μ2

0
μ2 − s( 􏼁

α1− 1ds􏼠 +
|bλ| ψ1

����
����E

Γ β1 + q( 􏼁
􏽚
μ2

0
μ2 − s( 􏼁

β1+q− 1ds

+
τ0 + rmax τ1, τ2􏼈 􏼉

Γ α2 + β2( 􏼁
􏽚
η

0
(η − s)

α2+β2− 1ds +
|k| ψ2

����
����E

Γ β2( 􏼁
􏽚
η

0
(η − s)

β2− 1
ds􏼡 + A3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼩

≤
σ0 + rmax σ1, σ2􏼈 􏼉􏼂 􏼃

Γ α1 + β1 + 1( 􏼁
− t2 − t1( 􏼁

α1+β1 + t
α1+β1
2 − t

α1+β1
1 + t2 − t1( 􏼁

α1+β1􏼐 􏼑

+
|λ| ψ1

����
����E

Γ β1 + 1( 􏼁
− t2 − t1( 􏼁

β1 + t
β1
2 − t

β1
1 + t2 − t1( 􏼁

β1􏼐 􏼑 + t
β1
2 − t

β1
1􏼐 􏼑

A1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|a|μα21
Γ α2 + 1( 􏼁

+
A2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ηα2+β2

Γ α2 + β2 + 1( 􏼁
⎛⎝ ⎞⎠ τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁

⎧⎨

⎩

+
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|ak|μβ2− p

1

Γ β2 − p + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|k|ηβ2

Γ β2 + 1( 􏼁
⎛⎝ ⎞⎠ ψ2

����
����E

+
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|λ|ξβ1

Γ β1 + 1( 􏼁
+ +

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|bλ|μβ1+q
2

Γ β1 + q + 1( 􏼁
⎛⎝ ⎞⎠ ψ1

����
����E

+
A2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|b|μα12
Γ α1 + 1( 􏼁

+
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξα1+β1

Γ α1 + β1 + 1( 􏼁
⎛⎝ ⎞⎠ σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁 + A3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
⎫⎬

⎭

≤
σ0 + rmax σ1, σ2􏼈 􏼉

Γ α1 + β1 + 1( 􏼁
t
α1+β1
2 − t

α1+β1
1􏼐 􏼑 +

|λ|r

Γ β1 + 1( 􏼁
t
β1
2 − t

β1
1􏼐 􏼑

+ t
β1
2 − t

β1
1􏼐 􏼑

A1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|a|μα21
Γ α2 + 1( 􏼁

+
A2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ηα2+β2

Γ α2 + β2 + 1( 􏼁
⎛⎝ ⎞⎠ τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁

⎧⎨

⎩

+ rmax
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|ak|μβ2− p

1

Γ β2 − p + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|k|ηβ2

Γ β2 + 1( 􏼁
⎛⎝ ⎞⎠,

A1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|λ|ξβ1

Γ β1 + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|bλ|μβ1+q
2

Γ β1 + q + 1( 􏼁
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭

+
A2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|b|μα12
Γ α1 + 1( 􏼁

+
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξα1+β1

Γ α1 + β1 + 1( 􏼁
⎛⎝ ⎞⎠ σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁 + A3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
⎫⎬

⎭

⟶ 0, as t2⟶ t1.

(43)

Analogously,
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N2 ψ1,ψ2( 􏼁 t2( 􏼁 − N2 ψ1,ψ2( 􏼁 t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
τ0 + rmax τ1, τ2􏼈 􏼉

Γ α2 + β2 + 1( 􏼁
t
α2+β2
2 − t

α2+β2
1􏼐 􏼑 +

|k|r

Γ β2 + 1( 􏼁
t
β2
2 − t

β2
1􏼐 􏼑

+ t
β2
2 − t

β2
1􏼐 􏼑

bB1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα12
Γ α1 + 1( 􏼁

+
B2ξ

α1+β1

Γ α1 + β1 + 1( 􏼁
⎛⎝ ⎞⎠ σ0 + rmax σ1, σ2􏼈 􏼉( 􏼁

⎧⎨

⎩

+ rmax
B2λ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξβ1

Γ β1 + 1( 􏼁
+

bλB1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ1+q
2

Γ β1 + q + 1( 􏼁
⎛⎝ ⎞⎠,

B2ak
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μβ2− p
1

Γ β2 − p + 1( 􏼁
+

B1k
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌ηβ2

Γ β2 + 1( 􏼁
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭

+
B1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ηα2+β2

Γ α2 + β2 + 1( 􏼁
+

B2a
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌μα21
Γ α2 + 1( 􏼁

⎛⎝ ⎞⎠ τ0 + rmax τ1, τ2􏼈 􏼉( 􏼁 + B3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
⎫⎬

⎭

⟶ 0, as t2⟶ t1,

(44)

which imply that |N(ψ1,ψ2)(t2) − N(ψ1,ψ2)(t1)|⟶ 0 as
t2⟶ t1.0us, the operatorN is equicontinuous. Hence, by
Arzela–Ascoli theorem, we deduce that the operator N is
completely continuous.

Finally, we will verify that the set M(N)

� (ψ1,ψ2) ∈ E × E: (ψ1,ψ2) � mN(ψ1,ψ2) for some 0<m􏼈

< 1} is bounded. For all (ψ1,ψ2) ∈M(N) and for any t ∈ J,
we have mN(ψ1,ψ2) � (mN1(ψ1,ψ2), mN2(ψ1,ψ2)). 0en,

ψ1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � m N1 ψ1,ψ2( 􏼁(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
σ0 + σ1 ψ1

����
����E

+ σ2 ψ2
����

����E

Γ α1 + β1 + 1( 􏼁
+

A1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|a|μα21
Γ α2 + 1( 􏼁

+
A2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ηα2+β2

Γ α2 + β2 + 1( 􏼁
⎛⎝ ⎞⎠

× τ0 + τ1 ψ1
����

����E
+ τ2 ψ2

����
����E

􏼐 􏼑 +
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|ak|μβ2− p

1

Γ β2 − p + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|k|ηβ2

Γ β2 + 1( 􏼁
⎛⎝ ⎞⎠ ψ2

����
����E

+
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|λ|ξβ1

Γ β1 + 1( 􏼁
+

A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌|bλ|μβ1+q
2

Γ β1 + q + 1( 􏼁
+

|λ|

Γ β1 + 1( 􏼁
⎛⎝ ⎞⎠ ψ1

����
����E

+
A2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|b|μα12
Γ α1 + 1( 􏼁

+
A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ξα1+β1

Γ α1 + β1 + 1( 􏼁
⎛⎝ ⎞⎠ σ0 + σ1 ψ1

����
����E

+ σ2 ψ2
����

����E
􏽨 􏽩 + A3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(45)

0is yields that

ψ1
����

����E
� m N1 ψ1,ψ2( 􏼁

����
����

≤Q1 σ0 + σ1 ψ1
����

����E
+ σ2 ψ2

����
����E

􏼐 􏼑 + Q2 τ0 + τ1 ψ1
����

����E
+ τ2 ψ2

����
����E

􏼐 􏼑 + Q5 ψ1
����

����E
+ Q6 ψ2

����
����E

+ A3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + a0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(46)

In the same way, we deduce that

ψ2
����

����E
� m N2 ψ1,ψ2( 􏼁

����
����

≤Q4 τ0 + τ1 ψ1
����

����E
+ τ2 ψ2

����
����E

􏼐 􏼑 + Q3 σ0 + σ1 ψ1
����

����E
+ σ2 ψ2

����
����E

􏼐 􏼑 + Q7 ψ2
����

����E
+ Q8 ψ1

����
����E

+ B3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(47)

Hence, we have

Journal of Mathematics 11



ψ1,ψ2( 􏼁
����

����E×E
� ψ1

����
����E

+ ψ2
����

����E

≤Q1 σ0 + σ1􏼂 ψ1
����

����E
+ σ2 ψ2

����
����E

+ Q2 τ0 + τ1 ψ1
����

����E
+ τ2 ψ2

����
����E

􏼐 􏼑

+ Q5 ψ1
����

����E
+ Q6 ψ2

����
����E

+ Q4 τ0 + τ1 ψ1
����

����E
+ τ2 ψ2

����
����E

􏼐 􏼑 + Q3 σ0 + σ1 ψ1
����

����E
+ σ2 ψ2

����
����E

􏼐 􏼑

+ Q7 ψ2
����

����E
+ Q8 ψ1

����
����E

+ A3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + |B3| + a0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + b0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(48)

which yields

ψ1,ψ2( 􏼁
����

����E×E

≤
Q3σ0 + Q4τ0 + Q1σ0 + Q2τ0 + A3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + B3

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + b0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 − max S, S􏼈 􏼉
,

(49)

where S and S are given by (36) and (38), respectively, which
proves that M(N) is bounded. 0us, as a consequence of
Leray–Schauder alternative theorem, N has more than one
fixed point. Hence, the boundary value problems (1)-(2)
have one solution at the very least on [0, 1].

4. Applications and Numerical Examples

In this section, we solve the integral equations (12) and (13)
using the Adams-type predictor-corrector method with step
size h � 0.01 (for details, see [16–18] and the references
therein). Briefly, we aim to approximate the solution of the
following fractional initial value problem:

D
α
y(t) � f(t, y(t)), y t0( 􏼁 � y0, t ∈ t0, T( 􏼃, α ∈ (0, 1),

(50)

at the grid points tm � t0 + mh, m≥ 0, with h is a uniform
step size. It is found that

y tm( 􏼁 ≈ Y tm( 􏼁 � y t0( 􏼁 +
1
Γ(α)

􏽘

m

j�0
Rm,jfj, (51)

where

Rm,j �

W0m,0, if j � 0,

W1m,j− 1 + W0m,j, if 1≤ j≤m − 1,

W1m,m− 1, if j � m.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W1m,j �
(− α + j − m)(h(− j + m − 1))

α
+(m − j)(h(m − j))

α

α(α + 1)

W0m,j �
(α + j − m + 1)(h(m − j))

α
+(h(− j + m − 1))

α+1/h
α(α + 1)

.

(52)

To measure the accuracy of the present algorithm, we
calculated the residual function as follows:

R(t) ≔ D
α
Y(t) − f(t, Y(t)), (53)

at the grid points tm for m> 0, i.e.,

R tm( 􏼁 �
1
Γ(1 − α)

􏽚
tm

t0

tm − τ( 􏼁
− α

Y′(τ)dτ − f tm, Y tm( 􏼁( 􏼁,

�
1
Γ(1 − α)

􏽘

m− 1

j�0
􏽚

tj+1

tj

tm − τ( 􏼁
− α

Y′(τ)dτ − f tm, Y tm( 􏼁( 􏼁,

�
h

− α

2Γ(1 − α)
􏽘

m− 1

j�0
(m − j − 1)

− α
Y′ tj+1􏼐 􏼑 − (m − j)

− α
Y′ tj􏼐 􏼑􏼐 􏼑 − f tm, Y tm( 􏼁( 􏼁,

(54)

after using the trapezoidal rule. Consider the following coupled system of fractional
Langevin equations:

c
D

α1 c
D

β1 +
1
8

􏼒 􏼓ψ1(t) �
ψ2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

7 1 + t
2

􏼐 􏼑 1 + ψ2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
−
ψ1(t)

5
+ ln(1 + t), t ∈ [0, 1],

c
D

α2 c
D

β2 +
1
7

􏼒 􏼓ψ2(t) �
ψ1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

14
�����������

1 − t + ψ2
1(t)

􏽱 −
3 sin ψ2(t)

5 + t
− 1 − t

2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(55)
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Equipped with the nonlocal nonseparated fractional
integral and fractional derivative boundary conditions,

ψ1(0) � 1,ψ2(0) � 3,ψ1′(0) � ψ2′(0) � 0,

ψ1
9
10

􏼒 􏼓 �
1
4

c
D

1/4ψ2􏼐 􏼑
1
5

􏼒 􏼓,

ψ2(1) � 2 I
5/4ψ1􏼐 􏼑

1
8

􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)

Here, λ � 1/8, k � 1/7, a � 1/4, b � 2, a0 � 1, b0 � 3, p �

1/4, q � 5/4, ξ � 9/10, η � 1, μ1 � 1/5, μ2 � 1/8, and

f t,ψ1,ψ2( 􏼁 �
ψ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

7 1 + t
2

􏼐 􏼑 1 + ψ2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
−
ψ1

5
+ ln(1 + t),

g t,ψ1,ψ2( 􏼁 �
ψ1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

14
��������

1 − t + ψ2
1

􏽱 −
3 sin ψ2

5 + t
− 1 − t

2
.

(57)

On the other part, for (t, ζ, κ), (t, ζ, κ) ∈ [0, 1] × R × R,
we get

|f(t, ζ, κ) − f(t, ζ, κ)|≤
1
5

(|ζ − ζ| +|κ − κ|),

|g(t, ζ, κ) − g(t, ζ, κ)|≤
3
5

(|ζ − ζ| +|κ − κ|),

|f(t, ζ, κ)|≤ σ0 +
1
5

|ζ| +
1
7

|κ|,

|g(t, ζ, κ)|≤ τ0 +
1
14

|ζ| +
3
5

|κ|,

(58)

so σ1 � 1/5, σ2 � 1/7, τ1 � 1/14, τ2 � 3/5, K � 1/5, and
L � 3/5.

Case i. In order to illustrate 0eorem 9, we take
α1 � 1/2, β1 � 3/2, α2 � 3/4, and β2 � 7/4. 0us, α1 � 13/4,

and α2 � 9/4. By using the Matlab program, we found that

Δ≃ 0.399301327423794,

A1 ≃ 1.171331813010056,

A2 ≃ 0.031689241829108,

A3 ≃ − 1.262241885268691,

B1 ≃ 1.000100634730081,

B2 ≃ 0.002312772254050,

B3 ≃ − 2.871400693622515,

Q1 ≃ 00.974398268143493,

Q2 ≃ 0.043889448160305,

Q3 ≃ 0.001217044521056,

Q4 ≃ 0.601838570591574,

Q5 ≃ 0.188078540898721,

Q6 ≃ 0.005629381698062,

Q7 ≃ 3.713645478256922 × 10− 4
,

Q8 ≃ 0.177657802566698,

ρ1 ≃ 0.188078540898721,

ρ2 ≃ 0.0.177657802566698,

Q1 + Q3( 􏼁K + Q2 + Q4( 􏼁L + ρ1 + ρ2
≃ 0.948296217249456< 1.

(59)

0us, the hypothesis of0eorem 9 holds.0en, problems
(55)-(56) have a unique solution on [0, 1]. 0e behavior of
the solutions ψ1(t) and ψ2(t) for Case i is presented in
Figure 1. Table 1 displays the residuals Rψ1

(tm) and Rψ2
(tm)

for the couple of equations given in (55) which clearly in-
dicates the accuracy of the present algorithm.

Case ii. In order to illustrate 0eorem 10, we take
α1 � 1/4, β1 � 5/4, α2 � 1/2, and β2 � 2.

0us, α1 � 11/4 and α2 � 5/4.
By using the Matlab program, we found that

Δ≃ 0.386787685580080,

A1 ≃ 1.140949096832007,

A2 ≃ 0.021215616584967,

A3 ≃ − 1.201812441154092,

B1 ≃ 1.000159825315441,

B2 ≃ 0.004297601923856,

B3 ≃ − 2.873555329197462,

Q1 ≃ 1.485098417429794,

Q2 ≃ 0.056422691832900,

Q3 ≃ 0.004245829991826,

Q4 ≃ 0.601861587859298,

Q5 ≃ 0.220678979659357,

Q6 ≃ 0.003030802369281,

Q7 ≃ 8.31262586410917 × 10− 4
,

Q8 ≃ 0.142874266998083,

ρ1 ≃ 0.220678979659357,

ρ2 ≃ 0.142874266998083,

S≃ 0.708442401834063< 1,

S≃ 0.611596096688384< 1.

(60)

0us, all the conditions of 0eorem 10 are satisfied.
0en, problems (55)-(56) have one solution at the least
[0, 1]. In addition, both solutions ψ1(t) and ψ2(t) for Case ii
are sketched in Figure 2.
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5. Conclusion

0emost important features of differential equations subject
to either initial or boundary conditions are the existence and
uniqueness of their solutions. In this paper, we discussed the
existence and uniqueness of solutions of specific type of the
couple system of the Langevin differential equation in the
framework of Caputo fractional derivatives and under the
suzerainty of nonlocal and nonseparated boundary condi-
tions. 0e boundary value problem we studied contained 6
different parameters. Because of the complexity, we were
forced to use computer programs in order to find examples
that would support our results. We discussed these examples
from the theoretical point and solved numerically using the
Adams-type predictorcorrector method by implicitly
implementing the Gauss–Seidel method.

It is recommended to consider the same problem in the
frame of other fractional derivatives especially the ones with

no singular kernels and compare their results to the ones
discussed in this paper.
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In this paper, we study a Volterra–Fredholm integro-differential equation.$e considered problem involves the fractional Caputo
derivatives under some conditions on the order. We prove an existence and uniqueness analytic result by application of the
Banach principle. $en, another result that deals with the existence of at least one solution is delivered, and some sufficient
conditions for this result are established bymeans of the fixed point theorem of Schaefer. Ulam stability of the solution is discussed
before including an example to illustrate the results of the proposal.

1. Introduction

Fractional calculus and differential equations of fractional
order are of great importance since they can be used in
analyzing and modeling real word phenomena [1–3]. Re-
cently, there has been a very important progress in the study
of the theory of differential equations of fractional order. $e
theory of differential equations of arbitrary order has been
recently proved to be an important tool for modeling many
physical phenomena. For more details, refer to [4–9].

$e fractional integro-differential equations have been
recently used as effective tools in the modeling of many
phenomena in various fields of applied sciences and engi-
neering such as acoustic control, signal processing, elec-
trochemistry, viscoelasticity, polymer physics,
electromagnetics, optics, medicine, economics, chemical
engineering, chaotic dynamics, and statistical physics (see
[10–16]).

Hattaf in [17] proposed a new definition of fractional
derivative that generalizes the fractional derivatives [18, 19]
with nonsingular kernel for both Caputo and Rie-
mann–Liouville types.

$e efficient numerical method based on a novel shifted
piecewise cosine basis for solving Volterra–Fredholm in-
tegral equations of the second kind is investigated (see [20]).

Recently, Wang et al. in [21] studied a nonlinear frac-
tional differential equations with Hadamard derivative and
Ulam stability in the weighted space of continuous func-
tions. Some sufficient conditions for existence of solutions
are given by using fixed point theorems via a prior esti-
mation in the weighted space of the continuous functions.
Ahmad et al. in [22] discussed the existence of solutions for
an initial value problem of nonlinear hybrid differential
equations of Hadamard type.

Ahmed et al. [23] discussed the existence of solutions by
means of endpoint theory for initial value problem of
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Hadamard and Riemann–Liouville fractional integro-dif-
ferential inclusion of the form as follows:

D
α

x(t) − 􏽘
m

i�1
I
ρi Gi(t, x(t))⎛⎝ ∈ F(t, x(t)), t ∈ J � [1, T], 0< α≤ 1,

x(1) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where Dα denotes the Hadamard fractional derivative of
order α for 0< α≤ 1. Iφ is the Riemann–Liouville integral of
order φ> 0, φ ∈ ρ1, ρ2, . . . , ρm􏼈 􏼉, Gi ∈ C(J × R,R) with
Gi(1, 0) � 0 for i � 1, 2, 3 . . . , m.

Very recent work like Hamoud et al. [24] established
some new conditions for the existence and uniqueness of
solutions for a class of nonlinear Hadamard fractional
Volterra–Fredholm integro-differential equations with ini-
tial conditions. $e homotopy perturbation method has

been successfully applied to find the approximate solution of
a Caputo fractional Volterra–Fredholm integro-differential
equation.

Motivated by the above works, we will study the fol-
lowing problem of fractional integro-differential equations
in the context of Caputo fractional derivative called Caputo
fractional Volterra–Fredholm integro-differential equations
of the form as follows:

D
α

x(t) − 􏽘
m

i�1
I
ρi fi(t, x(t))⎛⎝ ⎞⎠ � g(t, x(t), Kx(t), Hx(t)), t ∈ J � [0, 1],

x(0) � 0,

D
α
x(0) � η, 1< α< 2,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where Dα is in the sense of Caputo, f: J × Rn × Rn⟶ Rn

is a given function, K and H are linear integral operators
defined by Kx(t) � 􏽒

t

0 k(t, τ)x(t)dτ and Hx(t) � 􏽒
t

0 h

(t, τ)x(t)dτ, and its called Volterra–Fredholm integro-dif-
ferential with θ1 � sup |k(t, τ)|: (t, τ) ∈ J × J{ } and
θ2 � sup |h(t, τ)|: (t, τ) ∈ J × J{ }.

$e paper is organised as follows. In Section 2, we recall
some definitions and lemmas that are used for the proof of
our main results. In Section 3, we prove the main theorems
of this paper by the existence and uniqueness of the solution
which have been proved and some numerical simulation of
the solution. A brief conclusion is given in Section 6.

2. Preliminaries

In this section, we introduce some definitions, lemmas, and
preliminaries facts which are used throughout this paper (see
[7] for more information). Let |.| be a suitable norm in Rn

and ‖.‖ be the matrix norm. Let E � C(J,R) denote the
Banach space of continuous function on J with the norm

‖x‖ � sup |x|, x ∈ J{ }. (3)

Definition 1. $e Riemann–Liouville integral of order α> 0
for a continuous function φ ∈ L1((0, 1],R) is given by

I
αφ(t) �

1
Γ(α)

􏽚
t

0
(t − τ)

α− 1φ(t)dτ, ∀t ∈ (0, 1], (4)

with Γ(α): � 􏽒
∞
0 e− uuα− 1du.

Definition 2. If φ ∈ Cn([0, 1],R) and n − 1< α≤ n, then the
Caputo fractional derivative is given by

D
αφ(t) � I

n− α d
n

dt
n (φ(t))

�
1
Γ(n − α)

􏽚
t

0
(t − s)

n− α− 1φ(n)
(s)ds,

(5)

where the parameter α is the order of the derivative and is
allowed to be real or even complex.

Lemma 1. Let n ∈ N∗ and n − 1< α< n, then the general
solution of Dαu(t) � 0 is given by

u(t) � 􏽘
n− 1

i�0
cit

i
, (6)

such that ci ∈ R, i � 0, 1, 2, . . . , n − 1.

Lemma 2. Taking n ∈ N∗ and n − 1< α< n, then we have

I
α
D

α
u(t) � u(t) + 􏽘

n− 1

k�0

u
(k)

(0)

k!
t
k
, (7)

with t> 0, n − 1< α< n.

Definition 3. Let X be a Banach space. $en, a map
T: X⟶ X is called a contraction mapping on X if there
exists q ∈ [0, 1) such that

‖T(x) − T(3y)‖≤ q‖x − y‖, (8)

for all x, y ∈ X.

Theorem 1 (Banach’s fixed point theorem, see [25]). Let Ω
be a nonempty closed subset of a Banach space X. 3en, any
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contraction mapping T of Ω into itself has a unique fixed
point.

Theorem 2 (Schaefer’s fixed point theorem, see [25]). Let X

be a Banach space, and let N: X⟶ X be a completely
continuous operator. If the set
E � y ∈ X: y � λNy for some λ ∈ (0, 1)􏼈 􏼉 is bounded, then
N has fixed points.

3. Existence and Uniqueness Results

We begin this section by some result that helps us for solving
the problem considered in (2).

Lemma 3. Let 1< α< 2 and G ∈ C(J,Rn). 3en, we can
state that the problem

D
α

x(t) − 􏽘
m

i�1
I

p
i fi(t, x(t))⎛⎝ ⎞⎠ � G(t), t ∈ J � [0, 1],

x(0) � 0, D
α
x(0) � η,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

admits as integral solution the following representation:

x(t) �
1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
G(τ)dτ + 􏽘

m

i�1
I
ρi fi(t, x(t)).

(10)

Proof. Using Lemma 2, we get

I
α
D

α
x(t) − 􏽘

m

i�1
I

p
i fi(t, x(t))⎛⎝ ⎞⎠ � I

α
G(t),

x(t) − 􏽘
m

i�1
I

p
i fi(t, x(t)) � I

α
G(t) + c1t + c0,

x(t) � I
α
G(t) + 􏽘

m

i�1
I

p
i fi(t, x(t)) + c1t + c0.

(11)

Using the initial conditions x(0) � 0 and Dαx(0) � η,
we get c1 � c2 � 0 which implies that the proof is completed.

Let us now transform the above problem to a fixed point
one. Consider the nonlinear operator T: E⟶ E defined by

Tx(t) �
1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
g(τ, x(τ), Kx(τ), Hx(τ))dτ

+ 􏽘

m

i�1
I
ρi fi(t, x(t)).

(12)

To prove the main results, we need to work with the
following hypotheses:

(H1) $ere exists a constant Lf > 0, such that

fi(t, x(t)) − fi(t, y(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ Lf|x(t) − y(t)|. (13)

(H2) $ere exist functions c1(t), c2(t), c3(t), and
ai(t) ∈ C(J,R) such that

|g(t, x, y, z)|≤ c1(t) + c2(t)|y| + c2(t)|z|, ∀(t, x, y, z) ∈ I × R
3
,

fi(t, x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ai(t), ∀(t, x) ∈ I × R.
(14)

Set supi∈I|c1(t)| � ‖c1‖, supi∈I|c2(t)| � ‖c2‖, supi∈I |c3
(t)| � ‖c3‖, and supi∈I|ai(t)| � ‖ai‖, i � 1, . . . , m.

(H3) $ere exist constants L1, L2, L3 > 0 such that

g t, x1, y1, z1( 􏼁 − g t, x2, y2, z2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L1 x1 − x2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + L2 y1 − y2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + L3 z1 − z2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, ∀t ∈ J, xi, yi, zi ∈ R, i � 1, 2. (15)

Also, we consider the quantity:

R �
L1

Γ(α + 1)
+
θ1L2 + θ2L3

Γ(α)
+ 􏽘

m

i�1

Lf

Γ ρi + 1( 􏼁
. (16)

□

Theorem 3. Assume that the hypothesis (H1)-(H2) are
fulfilled, and if

Lf 􏽘

m

i�1

1
Γ ρi + 1( 􏼁

< 1, (17)
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then there exists at least one solution for the problem (2).

Proof. Consider the ball Br � x ∈ E: ‖x‖≤ r{ } with r> 0,
where

r≥
􏽐

m
i�1 ai

����
����/Γ ρi + 1( 􏼁􏼐 􏼑 + c1

����
����/Γ(α + 1)􏼐 􏼑

1 − (1/Γ(α)) c2
����

����θ1 + c3
����

����θ2􏼐 􏼑
. (18)

We define the operators P and Q such that T � P + Q, by

Px(t) �
1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
g(τ, x(τ), Kx(τ), Hx(τ))dτ,

Qx(t) � 􏽘
m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi− 1
fi(t, x(t))dτ.

(19)

For any x ∈ Br, we have

|Tx(t)|≤
1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
|g(τ, x(τ), Kx(τ), Hx(τ))|dτ + 􏽘

m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi− 1
fi(τ, x(τ))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ

≤
1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
c1(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + c2(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|Kx(τ)| + c3(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|Hx(τ)|􏼐 􏼑dτ

+ 􏽘

m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi − 1
ai(τ)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ

≤
c1

����
����

Γ(α + 1)
+ c2

����
����θ1 + c3

����
����θ2􏼐 􏼑

r

Γ(α)
+ 􏽘

m

i�1

ai

����
����

Γ ρi + 1( 􏼁
, |Px(t) + Qx(t)|≤ r.

(20)

Now, we will show that P is continuous and compact.
$e operator P is obviously continuous. Also, P is uniformly
bounded on Br as

‖Px‖≤
c1

����
����

Γ(α + 1)
+ c2

����
����θ1 + c3

����
����θ2􏼐 􏼑

r

Γ(α)
. (21)

Let t1, t2 ∈ J with t1 < t2 and x ∈ Br. $en, we have

Px t2( 􏼁 − Px t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1
Γ(α)

􏽚
t2

0
t2 − τ( 􏼁

α− 1
g(τ, x(τ), Kx(τ), Hx(τ))dτ

−
1
Γ(α)

􏽚
t1

0
t1 − τ( 􏼁

α− 1
g(τ, x(τ), Kx(τ), Hx(τ))dτ,

Px t2( 􏼁 − Px t1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
c1

����
���� + c2

����
����θ1 + c3

����
����θ2

c(α + 1)
t
α
2 − t

α
1( 􏼁.

(22)

We remark that when t2⟼ t1, the quantity
‖Px(t2) − Px(t1)‖⟼ 0.

$us, P is equicontinuous and relatively compact on Br.
$en, we show by the Arzelà–Ascoli theorem that P is
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compact on Br. Let us show now that Q is a contraction
mapping and consider x, y ∈ Br.

$en, for t ∈ J, we have

|Qx(t) − Qy(t)| � 􏽘

m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi − 1
fi(τ, x(τ))dτ − 􏽘

m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi − 1
fi(τ, y(τ))dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi − 1
fi(τ, x(τ)) − fi(τ, y(τ))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ

≤ 􏽘
m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi − 1
Lf‖x − y‖

≤Lf 􏽘

m

i�1

1
Γ ρi + 1( 􏼁

‖x − y‖.

(23)

We can therefore deduce that T is a contraction map.
Since all the assumptions of the Krasnoselskii fixed point
theorem are now satisfied, problem (2) then admits at least
one solution on J which ends the proof. □

Theorem 4. Assume that (H1) and (H3) are satisfied. 3en,
problem (2) has a unique solution, provided that R< 1.

Proof. We show that T has a unique fixed point, which is
unique solution of problem (2).

Our objective is to show that TBr ⊂ Br.
Let Br � x ∈ E: ‖x‖≤ r{ } with r> 0, where

r≥
(μ/Γ(α + 1)) + 􏽐

m
i�1 ]i/Γ ρi + 1( 􏼁( 􏼁

L1/Γ(α + 1)( 􏼁 + θ1L2 + θ2L3/c(α)( 􏼁 + Lf 􏽐
m
i�1 1/Γ ρi + 1( 􏼁( 􏼁

.

(24)

Let us set now

μ � sup
i∈J

|g(t, 0, 0, 0)|,

]i � sup
i∈J

fi(t, 0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(25)

For x ∈ Br, we have

|Tx(t)| �
1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
g(τ, x(τ), Kx(τ), Hx(τ))dτ + 􏽘

m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi− 1
fi(τ, x(τ))dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ sup
t∈J

1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
|g(τ, x(τ), Kx(τ), Hx(τ))|dτ + 􏽘

m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi− 1
fi(τ, x(τ))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ⎡⎣ ⎤⎦

≤ sup
t∈J

1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
|g(τ, x(τ), Kx(τ), Hx(τ)) − g(τ, 0, 0, 0)|dτ􏼨 􏼩

+ 􏽘

m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi − 1
fi(τ, x(τ)) − fi(τ, 0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ

≤
1
Γ(α + 1)

L1r + μ( 􏼁 + θ1L2 + θ2L3( 􏼁
r

Γ(α)
+ 􏽘

m

i�1

Lfr + ]i

Γ ρi + 1( 􏼁
≤ r,

(26)

which implies that TBr ⊂ Br. Now, for x, y ∈ X and for each t ∈ J, we obtain

|Tx(t) − Ty(t)|≤ sup
t∈J

1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
|g(τ, x(τ), Kx(τ), Hx(τ)) − g(τ, (τ), Kx(τ), Hx(τ))|dτ􏼨 􏼩

+ 􏽘
m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

ρi− 1
fi(τ, x(τ)) − fi(τ, y(τ))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ

≤
L1

Γ(α + 1)
+
θ1L2 + θ2L3

Γ(α)
+ 􏽘

m

i�1

Lf

Γ ρi + 1( 􏼁
⎛⎝ ⎞⎠‖x − y‖≤R‖x − y‖.

(27)
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Consequently, we observe that ‖Tx − Ty‖≤R‖x − y‖.
Since R< 1, the operator T is a contracting mapping. Hence,
we conclude that the operator T has a unique fixed point
x ∈ X. □

4. Ulam Stability Results

In this section, we will study the Ulam stability of problem
(2). Let us consider the following inequality:

D
α

x(t) − 􏽘
m

i�1
I
ρi fi(t, x(t))⎛⎝ ⎞⎠ − g(t, x(t), Kx(t), Hx(t))

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε. (28)

Definition 4. $e Equation in (2) is Ulam–Hyers stable if
there exists a real number Cf > 0 such that for each ε> 0 and
for each solution y ∈ C(J,R) of inequality (28), there exists
a solution x ∈ C(J,R) of equation (2) with

|y(t) − x(t)| ≤ εCf, t ∈ J. (29)

Theorem 5. Assume that (H1) and (H3) are fulfilled. 3en,
problem (2) is Ulam–Hyers stable if R< 1.

Proof. Let ε> 0, and let y ∈ C(J,R) be a function which
satisfies inequality (28), and let x ∈ C(J,R) be the unique
solution of the following problem. $en, we recall that

x(t) �
1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
g(τ, x(τ), Kx(τ), Hx(τ))dτ

+ 􏽘
m

i�1
I
ρi fi(t, x(t)).

(30)

Integrating inequality (28) and using the initial condi-
tion of problem (2), we get

y(t) − 􏽘
m

i�1
I
ρi fi(t, y(t)) −

1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
g(τ, y(τ), Ky(τ), Hy(τ))dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

εtα

Γ(α + 1)
. (31)

Now, we have

|y(t) − x(t)|≤ y(t) − 􏽘
m

i�1
I
ρi fi(t, y(t)) −

1
Γ(α)

􏽚
t

0
(t − τ)

α− 1
g(τ, y(τ), Ky(τ), Hy(τ))dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘
m

i�1

1
Γ ρi( 􏼁

􏽚
t

0
(t − τ)

α− 1
fi(t, y(t)) − fi(t, x(t))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ +

1
Γ(α)

􏽚
t

0
(t − τ)

α− 1

× |g(τ, y(τ), Ky(τ), Hy(τ)) − g(τ, x(τ), Kx(τ), Hx(τ))|dτ.

(32)

Using hypothesis (H1) and (H3) and inequality (31), we
obtain

‖y − x‖≤
ε
Γ(α + 1)

+ 􏽘
m

i�1

Lf

Γ ρi + 1( 􏼁
+

L1

Γ(α + 1)
+
θ1L2 + θ2L3

Γ(α)
⎛⎝ ⎞⎠‖y − x‖, (33)
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and consequently we get

‖y − x‖≤
ε

Γ(α + 1)(1 − R)
� εC, (34)

where C � (1/Γ(α + 1)(1 − R)).
$us, the considered problem (2) has the Ulam–Hyers

stability. □

5. Illustrative Example

In this section, an application of the results which have
proved is provided. Let us consider Caputo fractional
integro-differential equation as follows:

D
(3/2)

x(t) − 􏽘
2

i�1
I

((3i+2)/3)
fi(t, x(t))⎛⎝ ⎞⎠ � g(t, x(t), Kx(t), Hx(t)), t ∈ J � [0, 1],

x(0) � 0,

D
(3/2)

x(0) � η, 1< α< 2,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(35)

where

fi(t, x(t)) �
2x(t)

(2i + t
�
3

√
)(23 + i)

,

g(t, x(t), y(t), z(t)) �
|x(t)|

100(1 +|x(t)|)
+

2y(t)

30 1 + y
2
(t)􏼐 􏼑

+
2z(t)

55 1 + z
2
(t)􏼐 􏼑

− cos t, ∀t ∈ J; x, y, z ∈ R.

(36)

$en, we have

fi(t, x(t)) − fi(t, y(t))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤Lf|x − y|. (37)

An easy computation gives

Lf �
2

2 +
�
3

√ ,

L1 �
1
100

,

L2 �
1
30

,

L3 �
1
55

,

θ1 �
ln 2
3

,

θ2 �
ln 2
5

.

(38)

$en, we have R � (L1/Γ(α + 1)) + (θ1L2 + θ2L3/Γ(α)) +

􏽐
m
i�1(Lf/Γ(ρi + 1)) � 0.398< 1.
By $eorem 1, we see that problem (2) has a unique

solution and has also the Ulam–Hyers stability.

6. Conclusion

In this work, we have considered a coupled Volterra–
Fredholm integro-differential equation, and we have used
the Caputo derivative operator. We prove two theorems and

an example to illustrate our results. In the first theorem, we
prove the existence and uniqueness of the solution, and the
second theorem deals with the existence of at least one
solution. $e methods used here are Banach’s fixed point
theorem and Schaefer’s fixed point theorem. Here, two
Caputo derivative operators of different fractional orders
were used in the considered equation, and it would be
relevant to generalize this idea by considering several Caputo
operators of different fractional orders. $e example given
on this work establishes the precision and efficiency of the
proposed technique and shows that the problem has a
unique solution. Before that, we have discussed the Ulam
stability of the solution of problem (2).
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