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Józef Banaś, Poland
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Jesús Maŕın-Solano, Spain
Jose M. Martell, Spain
M. Mastyłfjo, Poland
Ming Mei, Canada
Taras Mel’nyk, Ukraine
Anna Mercaldo, Italy
Changxing Miao, China
Stanislaw Migorski, Poland
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Stochastic phenomenon has played an important role in
various branches of science such as biology, economics, and
aircraft. Stochastic modeling approach has achieved a great
number of distinguished contributions for awide spectrumof
systems includingMarkovian jumping systems, Itô stochastic
systems, networked control systems with random communi-
cation delays, and/or packet losses. Over the past few decades,
considerable attention has been paid to modeling, stability
analysis, stabilization, robust filtering, model reduction, and
practical applications of stochastic dynamical systems. In
spite of the extensive and systemic development of stochastic
approaches and techniques, there still remain various types
of open problems desired to be further strengthened, which
includesmodeling, filtering, nonparametricmethods, system
realization and identification, and so forth. Meanwhile, novel
and updated developed theories and results are required to be
investigated for application of stochastic systems in practical
engineering.

This special issue contains thirty-four papers, which are
summarized as follows.

“Event-based 𝐻
∞

filter design for sensor networks with
missing measurements” by J. Liu et al. proposes an event
triggered mechanism based on sampled-data information,
which has some advantages over existing ones. Considering
the missing sensor measurements and the network-induced
delay in the transmission, a new event-based 𝐻

∞
filtering is

constructed by taking the effect of sensor faults with different

failure rates. By using the Lyapunov stability theory and the
stochastic analysis theory, sufficient criteria are derived for
the existence of a solution to the algorithm of the event-based
filter design.

“Finite-horizon robust Kalman filter for uncertain attitude
estimation system with star sensor measurement delays” by
H.-M. Qian et al. addresses the robust Kalman filtering
problem for uncertain attitude estimation system with star
sensor measurement delays. Combined with the misalign-
ment errors and scale factor errors of gyros in the process
model and the misalignment errors of star sensors in the
measurementmodel, the uncertain attitude estimationmodel
can be established to indicate that uncertainties not only
appear in the state and output matrices but also affect the
statistic of the process noise. Meanwhile, the phenomenon of
star sensor measurement delays is described by introducing
Bernoulli random variables with different delay character-
istics. A finite-horizon robust Kalman filter is proposed
to solve this estimation problem which takes into account
the effects of star sensor measurement delays and model
uncertainties.

“Robust adaptive fault-tolerant control of stochastic systems
with modeling uncertainties and actuator failures” by W. Cai
et al. deals with the problem of actuator fault-tolerant control
of a class of uncertain stochastic systems with model uncer-
tainties. A robust adaptive control scheme is developed to
solve this problem. The proposed approach does not require
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the fault detection and diagnosis roles and thus simplifies the
design procedure and achieve a low cost.

“Prescribed performance fuzzy adaptive output-feedback
control for nonlinear stochastic systems” by L. Zhang et al.
proposes a prescribed performance for a class of single-
input and single-output nonlinear stochastic systems with
unmeasured states, and a fuzzy state observer is designed
for estimating the unmeasured states. Based on the back-
stepping recursive design technique and the predefined per-
formance technique, a new fuzzy adaptive output feedback
control method is developed. It is shown that all the sig-
nals of the resulting closed-loop system are bounded in
probability and the tracking error remains an adjustable
neighborhood of the origin with the prescribed performance
bounds.

“Consensus of multiagent systems with packet losses and
communication delays using a novel control protocol” by Z. Yan
et al. addresses the consensus problem of multiagent system
with packet losses and communication delays under directed
communication channels from a practical point of view. A
novel control protocol is proposed depending only on peri-
odic sampling and transmitting data in order to be convenient
for practical implementation and economical for limited
system resources. It is proved that for single integrator agents
and double integrator systems with only communication
delays consensusability can be ensured through stochastic
matrix theory provided that the designed communication
topology contains a directed spanning tree. For double inte-
grator agents and high-order integrator agents, the interval
system theory is introduced to investigate the consensus of
multiagent system.

“State-feedback stabilization for a class of stochastic feed-
forward nonlinear time-delay systems” by L. Liu et al. inves-
tigates the state-feedback stabilization problem for a class
of stochastic feedforward nonlinear time-delay systems. By
using the homogeneous domination approach and choosing
an appropriate Lyapunov-Krasovskii functional, the delay-
independent state-feedback controller is explicitly construct-
ed such that the closed-loop system is globally asymptotically
stable in probability.

“Robust guaranteed cost observer design for singularMark-
ovian jump time-delay systems with generally incomplete tran-
sition probability” by Y. Li et al. investigates the design of
robust guaranteed cost observer for a class of linear singular
Markovian jump time-delay systems with generally incom-
plete transition probability. In this design, each transition
rate can be completely unknown or only its estimate value
is known. Based on stability theory of stochastic differen-
tial equations and linear matrix inequality technique, an
observer is designed to ensure that for all uncertainties the
resulting augmented system is regular, impulse free, and
robust stochastically stablewith the proposed guaranteed cost
performance.

Of course, the selected issues and papers are not a
comprehensive representation of the area of this special
issue. Nonetheless, they represent the rich and many-faceted
knowledge that we have the pleasure of sharing with the
readers.

Acknowledgments

Wewould like to express appreciation to the authors for their
excellent contributions and patience in assisting us. The hard
work of all reviewers on these papers is also very greatly
acknowledged.

Ming Liu
Peng Shi

Hamid Reza Karimi
Shen Yin
Xiaojie Su



Research Article
The Flow Field Analysis and Flow Calculation of Ultrasonic
Flowmeter Based on the Fluent Software

Ling Guo,1,2 Yue Sun,1 Ling Liu,3 Zhixi Shen,1 Ruizhen Gao,1 and Kai Zhao1

1 School of Automation, Chongqing University, Chongqing 400044, China
2 Logistic Engineering University, Chongqing 400016, China
3 Chongqing Vocational Institute of Engineering, Chongqing 400037, China

Correspondence should be addressed to Zhixi Shen; shenzhixi@cqu.edu.cn

Received 26 January 2014; Accepted 3 March 2014; Published 22 May 2014

Academic Editor: Xiaojie Su

Copyright © 2014 Ling Guo et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We can build the three-dimensional structure model based on the Gambit software and achieve the distribution of flow field in
the pipe and reflux flow condition at the position of transducer in regard to the real position of transducer according to the Fluent
software. Under the framework, define the reflux length based on the distance of reflux along the channel and evaluate the effect
of reflux on flow field. Then we can correct the power factor with the transmission speed difference method in the ideal condition
and obtain the matching expression of power correction factor according to the practice model. In the end, analyze the simulation
experience and produce the sample table based on the proposed model. The comparative analysis of test results and simulation
results demonstrates the validity and feasibility of the proposed simulation method.The research in this paper will lay a foundation
for further study on the optimization of ultrasonic flowmeter, enhance the measurement precision, and extend the application of
engineering.

1. Introduction

Compared with the conventional flowmeter, the ultrasonic
flowmeter has a better performance since it has no moving
parts, no pressure loss, wide measuring range, excellent
repeatability, and high precision [1], and it is widely used
in industrial production [2, 3], especially for large diameter
pipes and larger flows [4, 5]. The ultrasonic flowmeter is
mainly comprised of an ultrasonic transducer installed on the
measuring pipe and the related sensors of temperature and
pressure [6]. The ultrasonic transducer has two installations:
intrusive and nonintrusive [7, 8]. With the nonintrusive
installation, the signal emitted by the ultrasonic transducer
needs to go through the pipe wall twice, which will weaken
the strength of the signal largely, while the low SNR will
affect the stability and accuracy of signal receiving. The
intrusive installation is currently used in normal situations
[9]. For the single-path ultrasonic flowmeter, the intrusive
installation requires a through-hole in the pipe wall, where
the ultrasonic transducer can be built. This structure and
ultrasonic transducer generate disturbance in the flow field,

cause measuring errors, and may be the key problem in the
measurement of ultrasonic flowmeter. Reference [10] pointed
out that the unevenness near the pipe wall induced by the
ultrasonic transducer distorts the flow field and leads to lower
measuring values. The measuring value would be lower by
0.05% while the length of the channel is 5m; the measuring
valuewould be lower by 0.35%while the length of the channel
is 1m. However, for the pipe with small diameter and low
flow, the length of channel will be shorter, far less than 1m;
the reference had not stated the magnitude of error. Raišutis
[11] analysed the flow at the recess in the pipe with a diameter
of 70mm; the flow field was distorted and the symmetry of
the velocity distribution was destroyed; this also influenced
the measurement of flow. Yet the velocity of flow was large
in this reference, and the Reynolds number was large; this
belonged to the turbulent flow. Zhang et al. [6] and Zheng
et al. [12] did research on the non-flow-calibrated method of
ultrasonic flowmeter, using the computational fluid dynam-
ics numerical simulation method, and analyzed the influ-
ences of DN500—the multichannel transducer ultrasonic
flowmeter—on the accuracy of measurement. The analysis
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Figure 1: The diagram of the principle of ultrasonic flowmeter.

of flow field pointed out that since there might be a reflux
near the transducer, the average measurement of velocity of
each channel was lower, and the measuring values of flows
were lower as well.

With analysis of the related references, we found that
(1) the ultrasonic flowmeter uses double-path and multi-
path measurement generally [13, 14]; the shortcomings can
be listed as follows: on one hand the complex pipe structure
requires higher accuracy of installation; on the other hand
the use of multiple ultrasonic transducers will increase the
costs; (2) few researches have been done for the fluid with low
Reynolds number in the single-path ultrasonic flowmeter.
And for this kind of ultrasonic flowmeter, the intrusive
installation and transducer have nonignorable disturbance on
flow field.

In order to estimate the measuring errors caused by
disturbance, this paper proposed a novelty model that builds
the practice structure of a single-path ultrasonic transducer
with a 50mm pipe diameter and calculates the disturbance
of transducer to the flow field approximately using the Fluent
software for flow field analysis combined with test data; based
on the above model we can analyze the measurement effects
on the accuracy by quantitative methods.

This paper is structured in the followingway. In Section 2,
the measurement principle of the single-path ultrasonic
flowmeter is presented. In Section 3, we can model and
analyze the flow field based on Fluent software. The sim-
ulation results demonstrate the effectiveness and generality
of the proposed algorithm in Section 4. Finally, Section 5
summarizes the conclusion.

2. Measurement Principle of the Single-Path
Ultrasonic Flowmeter

2.1. Operational Principle. We can see the measurement
principle of transmission speed difference method in the
single-path ultrasonic flowmeter [15–20] from Figure 1. The
diameter of the pipe is represented by 𝐷, ultrasonic trans-
ducers are installed on A and B sides, which could emit and
receive the ultrasonic signals, 𝐿 represents the distance of A
and B, and 𝜃 is the angle of AB with the pipe axis. It will need
time 𝑡

1
for the signal from A to B and the circuit delay is 𝜏

1
.

For the same reason, the signal will cost time 𝑡
2
from B to A

and the circuit delay is 𝜏
2
; in addition, the actual pressure is

𝑃 and the actual temperature is 𝑇.
It is assumed that the fluid will flow with velocity 𝑉

and the direction is parallel to the axis to the right, so on

the channel 𝐿 the propagation velocity of the ultrasonic signal
is composited by the acoustic velocity 𝐶 and component of
flow velocity 𝑉cos 𝜃, then the propagation time of ultrasonic
signal in both downstream and upstream directions can be
shown, respectively:

Downstream: 𝑡
1
=

𝐿

𝐶 + 𝑉cos 𝜃
,

Upstream: 𝑡
2
=

𝐿

𝐶 − 𝑉cos 𝜃
.

(1)

Using (1), the linear mean velocity 𝑉
𝐿
will be calculated

by

𝑉
𝐿
=

𝐿

2 cos 𝜃
(

1

𝑡
1
− 𝜏
1

−
1

𝑡
2
− 𝜏
2

) . (2)

Because of the presence of the actual fluid velocity
distribution in the pipe cross-section, linearmean velocity𝑉

𝐿

is not equal to the cross-section mean velocity 𝑉A. Assume
that there is a power correction factor 𝐾 between the linear
mean velocity𝑉

𝐿
and the cross-section mean velocity𝑉A, the

expression is that

𝐾 =
𝑉A
𝑉
𝐿

. (3)

Then we can get that the flow of the pipe is

𝑄 = 𝐾
𝜋𝐷
2

4
𝑉
𝐿
. (4)

Considering the influences of pressure and temperature,
the flow can be converted under the standard working
conditions:

𝑄 = 𝐾
𝜋𝐷
2

4
𝑉
𝐿
⋅
𝑃

𝑃
0

⋅
𝑇
0

𝑇
. (5)

2.2. Model of Ideal Channel. Based on the hydrodynamic
theory, the fluid has viscosity so that the fluid shows different
velocities at the points of different diameter in the cross-
section. And the Reynolds number can be the only parameter
that distinguishes moving patterns of viscous fluid. Whether
the fluid moving as laminar or turbulent flow can be decided
by the value of Reynolds number, there is a lower bound
around 2000 for the critical Reynolds number, which transits
laminar flow to turbulence. In the moving of laminar flows,
the tiny disturbance in the flow field such as the roughness of
pipe wall and free changes of surface will attenuate gradually
so that the fluid flows as laminar flow. However, the tiny
disturbance can be increased and flow becomes unstable if
Reynolds number is bigger, so it is difficult to make sure the
final status after disturbance increased as the equations are
of nonlinearity, we can only conclude that the final stage is
connected with structure of flow field and Reynolds number.

With regard to the ideal laminar flow shown in Figure 1,
the fluid may flow symmetrically if the gravity effects are
ignored, and the velocity will be a function of radius 𝑟 in
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Figure 2: The velocity profile in the laminar flow.

the horizontal direction. Presume that the pressure drop on
the pipe isΔ𝑃 and the radius of the pipe𝑅 = 𝐷/2, the velocity
distribution at cross-section can be shown by the Hagen-
Poiseuille formula:

𝑢 =
Δ𝑃

4 𝜇L
(𝑅
2

− 𝑟
2

) . (6)

Based on the equation above, each point velocity dis-
tributed parabolically with radius 𝑟; the largest velocity is on
the pipe axis as 𝑟 = 0:

𝑢max =
Δ𝑃

4 𝜇L
𝑅
2

=
Δ𝑃

16 𝜇L
𝐷
2

. (7)

Through the simulation, we can get the flow results with
parabolic distribution in Figure 2; the distribution is shown
clearly.

According to the distribution of flow velocity, the cross-
sectional area of the flow can be calculated as

𝑑𝑄 = 𝑢𝑑A =
Δ𝑃

4 𝜇L
(𝑅
2

− 𝑟
2

) 2𝜋𝑟𝑑𝑟. (8)

After integration:

𝑄 = ∫

𝑅

0

Δ𝑃

4 𝜇L
(𝑅
2

− 𝑟
2

) 2𝜋𝑟𝑑𝑟 =
𝜋Δ𝑃

128 𝜇L
𝐷
4

. (9)

The mean flow velocity at cross-section can be presented as

𝑉A =
𝑄

A
=

Δ𝑃

32 𝜇L
𝐷
2

=
1

2
𝑢max. (10)

Under the normal circumstances, the path of ultrasonic
flowmeter is installed in themiddle of the pipe, then the linear
mean velocity is

𝑉
𝐿
=

1

𝐿
∫
𝐿

𝑢 (𝑟) 𝑑𝐿 =
1

𝑅
∫

𝑅

0

𝑢max (1 −
𝑟
2

𝑅2
)𝑑𝑟 =

2

3
𝑢max.

(11)

On the basis of (4), (10), and (11), we can compute the power
correction factor𝐾:

𝐾 =
𝑉A
𝑉
𝐿

=
3

4
. (12)

Figure 3: The cross-section of ultrasonic flowmeter.

We can achieve the relationship between the cross-section
mean velocity, linear mean velocity, and the maximum flow
rate based on the above theory; meanwhile the relationship
between the cross-section mean velocity and linear mean
velocity is obtained. However, the magnitude and position of
maximum velocity cannot be measured directly in practice
and engineering application.

3. Fluent-Based Modeling and
Analysis of Flow Field

The laminar flow velocity distribution and the value of
power correction factor have been derived under the ideal
circumstances. However, the pipe is not smooth in practice,
and the pipe will be installed with temperature and pressure
sensors inside it, which may disturb the flow field making
the velocity of flow field dissatisfy the standard parabolic
distribution. Therefore, the power correction factor 𝐾 is not
a fixed value.

In this paper, we design the actual structure of ultrasonic
flowmeter with small diameter and small flow as shown in
Figure 3. Then, the model processing of the simulation and
modeling is as follows.

In the first step, we can use the Gambit software to build
the geometric model of the flowmeter. The pipe is cylindrical
with a 50mm-diameter with holes at the 45-degree angle
along with pipe axis, where the transducer is installed; the
pressure and temperature sensors are built separately inside
the two holes on the left side.

Secondly, mesh the model. Since the pipe has a through-
hole structure that the transducer and sensors are installed in,
the shape of flow field is not cylindrical anymore.Thence, the
surface and volume of flow field can ensure the grid near the
transducer and sensors is dense enough and can control the
number of grids by choosing tetrahedral mesh.

Next, put the grid file into the Fluent software in order
to do the fluid calculation. As the pipe is of small diameter,
small flow, and small Reynolds number, we should employ
the laminar flow model to make the fluid calculation.

At last, set the parameters for calculations. Using the
Fluent software to deal with the laminar flowmodel when the
minimum flow is 0.6m3/h and the corresponding Reynolds
number 𝑅

𝑒
is 140. Based on the calculation above, we can set
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Figure 4: The diagram of sound channel (𝑅
𝑒
= 145).
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Figure 5: The diagram of sound channel (𝑅
𝑒
= 1168).

the uniform speed entrance and free exit to do the simulated
calculation and analyze the output after convergence.

3.1. The Disturbance of Pipe Structure in the Flow Field. In
Figures 4 and 5, the fluid flows into the pipe from the right
side and the flow field will be affected by the structures of
the transducer and the sensor installed therefore generating
reflux near the attachments of transducer and sensor at point
A and B. The strength of reflux is changing every time
according to Reynolds number and it will be increased when
Reynolds number is bigger. The reflux will go through the
test channel, produce opposite flow, and decrease the linear
average velocity of the path, which may affect the measuring
accuracy directly. For flowmeter with large diameter, the
influences of reflux can be ignored generally. But these
influences may be significant with the small-diameter and
small-flow condition.

In addition, the fluid velocity has parabolic distribution
in the ideal laminar flow model and is parallel to the axis,
but in the actual structure we can get the curve of fluid
velocity along AB in Figures 6 and 7. In Figure 6, velocity is
not symmetrically distributed in the 𝑋 direction along AB.
At point A the velocity is exactly positive which means the
fluid flows to the opposite direction. The reflux will have
larger influence at point A than point B. Figure 7 shows that
particles were distributed along the velocity to the 𝑌 axis
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Figure 6: The velocity curve in the𝑋 direction along AB.
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Figure 7: The velocity curve in the 𝑌 direction along AB.

along AB; on the axis of pipe there is tiny flow to the 𝑌 axis,
but apparent flow to the 𝑌 axis exists near the ends of AB.

The curve of cross-sectional velocity distribution at the
midpoint of output pipe (the midpoint of AB) can be seen
in Figure 8. Being influenced by actual pipe structure and
transducer, it is no more standard parabolic distribution.

3.2. Estimating the Influence of Reynolds Number on Reflux.
To the fluid, the Reynolds number can be estimated by

𝑅
𝑒
=

𝜌𝑉𝑅

𝜂
, (13)

where 𝑅
𝑒
is the Reynolds number, 𝜌 is the density of gas, 𝑉 is

velocity of flow, and 𝑅means the radius of the pipe.
In the model shown in Figure 3, the distance AB for

transducer installation is 0.098m, the air viscosity is 1.84𝑒 −

05Pa⋅S, and the density can be seen as 1.225 kg/m3. According
to whether the particles on the line in the trajectories of AB
are circulated or not, we can ensure the length of reflux on
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Figure 8: The curve of cross-sectional velocity distribution at the
midpoint of output pipe AB.
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Figure 9: The length of reflux at point A.

Table 1: The length of refluxes 𝐿A and 𝐿B.

Number 𝑅
𝑒

𝐿A 𝐿B Percentage (%)
1 145 0.01191 0.00798 20.3
2 226 0.01198 0.00815 20.5
3 459 0.01212 0.00956 22.1
4 1168 0.01339 0.01110 25.0
5 1853 0.01451 0.01361 28.7

the propagation path. At the same time, the length of reflux
at point A is 𝐿A and at point B is 𝐿B, as in Figures 9 and 10.

Simulating under different Reynolds numbers, we can get
the reflux of fluid at the transducer and the length of refluxes
𝐿A and 𝐿B; the statistics are expressed in Table 1.

On the basis of Table 1, the length of reflux will be raised
if Reynolds number is larger. The curve that shows the
relationship between Reynolds number and length of reflux
is drawn in Figure 11.

3.3. Power Correction Factor Analysis. From (12) above,
the power correction factor 𝐾 plays an important role in
measurement accuracy of ultrasonic flowmeter, which is the
key parameter of ultrasonic flowmeter calibration [9]. The
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Figure 10: The length of reflux at point B.
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Figure 11: The relationship diagram of 𝑅
𝑒
and length of reflux.

value of 𝐾 is highly related to the Reynolds number, pipe
structure, and other factors. If the pipe structure is certain,𝐾
changes all the timewhen theReynolds number changes. And
among the references related to the power correction factor
𝐾, two assumptions can be concluded.

First, assume that the fluid is flowing parallel to the
pipe axis in Figure 1. But in practice, the fluid direction
is influenced by the pipe shape; it will not certainly and
completely be parallel to axis; the velocity 𝑉 of transducer
and sensor is not in the horizontal direction. If the actual
flowing direction is not parallel to the axis, according to (5),
the measurement will generate large errors.

Second, suppose that the pipes are all smooth tubes; we
can ignore the influences on the fluid of exact pipe structure.
However, because of the actual structure of the transducer
by intrusive installation, especially for the pipes with small
diameters, the fluid flow will be affected.

In engineering, we can get the power correction factor
generally from the test when correcting the flowmeter against
the fluid with lowReynolds number, if, considering the actual
shape, structure of pipe, and the influences on the measure-
ment of the non-axis-parallel flowing fluid, the relationship
between flow field that affects power correction factor and
measurement error of pipe flow can be analyzed.
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Reflux makes the linear average velocity less so that
the measurement is lower and the error is negative. Now
considering the influences of reflux, we can rewrite (2):

𝑉 =
𝐿 − 𝐿A − 𝐿B

2 cos 𝜃
(

1

𝑡
1
− 𝑡A1 − 𝑡B1 − 𝜏

1

−
1

𝑡
2
− 𝑡A2 − 𝑡B2 − 𝜏

2

)

=
𝐿 − 𝐿A − 𝐿B

2 cos 𝜃
𝑡
2
− 𝑡A2 − 𝑡B2 − 𝜏

2
− 𝑡
1
+ 𝑡A1 + 𝑡B1 + 𝜏

1

(𝑡
1
− 𝑡A1 − 𝑡B1 − 𝜏

1
) (𝑡
2
− 𝑡A2 − 𝑡B2 − 𝜏

2
)

=
𝐿 − 𝐿A − 𝐿B

2 cos 𝜃
Δ𝑇sim − Δ𝑇A − Δ𝑇B + (𝜏

1
− 𝜏
2
)

(𝑡
1
− 𝑡A1 − 𝑡B1 − 𝜏

1
) (𝑡
2
− 𝑡A2 − 𝑡B2 − 𝜏

2
)
.

(14)

Considering that the type and size of the transducer in
part A are generally the same as part B, so the hardware delay
can be regarded as the same: 𝜏

1
= 𝜏
2
. Then

𝑉 =
𝐿 − 𝐿A − 𝐿B

2 cos 𝜃
Δ𝑇sim − Δ𝑇A − Δ𝑇B

(𝑡
1
− 𝑡A1 − 𝑡B1 − 𝜏

1
) (𝑡
2
− 𝑡A2 − 𝑡B2 − 𝜏

2
)
.

(15)

According to the simulation output data we can get
𝑡
1
, 𝑡A1, 𝑡B1, 𝑡2, 𝑡A2, and 𝑡B2. Since 𝜏1 and 𝜏

2
are errors caused by

circuit board delay, which can be ignored, getting the linear
average velocity by calculation, then the power correction
factor𝐾 is calculated basing on (3) and (4).

4. Simulation

To test the effectiveness of simulation analysis, make a trial
version of ultrasonic flowmeter shown in Figure 3; then test
with the nozzle flow calibration test device.

4.1. TimeDifference Correction ofUltrasonic Propagation. The
analysis from the last section leads to the conclusion that the
actual structure of the pipe generates reflux at points A and
B; the reflux raises the downstream ultrasonic propagation
time and lowers the upstream time so that the time difference
is less, the flow measurement is lower, the errors will be
negative, with the same diameters, and the measuring errors
will increase gradually along with the increasing entrance
velocity.

To estimate the exact influences on measurement of
reflux, this paper is based on the output of Fluent and counts
the propagation time and time difference of ultrasonic wave
between two transducers, as Table 2 states. From the table, the
time difference of reflux at point A isΔ𝑇A, the time difference
of reflux at point𝐵 isΔ𝑇B, the downstreamandupstream time
difference through the AB channel is Δ𝑇sim, and the unit is
nanosecond (ns).

4.2. Power Correction Factor 𝐾. The power correction factor
𝐾 is calculated based on (3) and (4), and the results are shown
in Table 3.

Data from Table 3 suggests that the power factor will
change in the samedirectionwithReynolds number.This also
proves that power factor 𝐾 may have negative errors using
ideal model and the errors increase as Reynolds number

Table 2: Time difference of ultrasonic wave at points A and B.

Number 𝑅
𝑒

Δ𝑇A Δ𝑇B Δ𝑇sim Percentage (%)
1 145 1.874 1.608 97.5 3.6
2 226 3.283 1.883 147.2 3.5
3 459 5.60 3.810 277.1 3.4
4 1168 17.723 2.366 683.4 2.94
5 1853 23.10 1.59 1037.8 2.38

Table 3: The result of mean linear velocity.

Number 𝑅
𝑒

Mean linear velocity Power correction factor
1 145 0.0816 1.067
2 226 0.123 1.105
3 459 0.231 1.196
4 1168 0.569 1.235
5 1853 0.863 1.290

Table 4: The relationship of time difference and 𝑅
𝑒
.

Number 𝑅
𝑒

Δ𝑇exp

1 145 90.5
2 226 202.2
3 459 346.8
4 1168 746.4
5 1853 1119.2

increases. On the basis of Table 3 and using the logarithm of
fitting method in the Matlab software, we can fit the power
factor and Reynolds number as follows:

𝐾 = 0.08444 log (𝑅
𝑒
) + 0.6532. (16)

The curve that indicates the relationship between the
power factor and Reynolds number is drawn in Figure 12.

4.3. The Relationship of Time Difference and 𝑅
𝑒
. During the

test, Δ𝑇exp represents the time difference of downstream
and upstream, the related experimental results are shown in
Table 4.

Based on Table 4, draw the diagram of relationships
among simulated time differences, testing time differences,
and Reynolds number in Figure 13.

The simulation and test outputs have the same trend with
Reynolds number, but there are some offsets in Figure 13; the
related seasons can be listed as follows.

Firstly, when installing two transducers along AB, some
installation errors always exist.

Secondly, when building the finite element model of flow
field, the meshing type and the size of grids will affect the
accuracy and then generate the errors.

Thirdly, while using Fluent to simulate and calculate, the
setting of related parameters in the laminar flow model will
influence the accuracy of outputs.

It is effective to converge the tested and simulated results
by improving the accuracy of meshing, setting the reasonable
parameters and installation accuracy.
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5. Conclusion

In this paper, we analyze the flow field of ultrasonic mono
flowmeter with small diameter and low flow and discuss the
influences on the flow field and power factor of exact pipe
structure and the variation using different Reynolds number.
The main conclusions are as follows.

(1) The installation point of ultrasonic transducer and
temperature/pressure sensor will disturb the laminar
flow field, the velocity will not be standard parabolic
distribution any longer, and the reflux is generated at
the transducer; the length of reflux has the same trend
with Reynolds number.

(2) Near the transducer, the reflux decreases the linear
average velocity and makes the measurement of flow
lower; the errors will be negative.

(3) The expression of power correction factor by simu-
lated data is fit.

(4) Through the test, the effectiveness of simulation is
tested. Numerical simulation method can be a good
reaction to flow state of flow field; it may be an impor-
tant way to design and develop ultrasonic flowmeter.

In further work, we will take into account the main
reason which causes the error between the test data and the
simulation data and fit the power correction factor more
accurately so that the proposed method is a more effective
tool.
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The problem of reactive power control for mains-side inverter (MSI) in doubly fed induction generator (DFIG) is studied in
this paper. To accommodate the modelling nonlinearities and inherent uncertainties, a novel robust adaptive control algorithm
for MSI is proposed by utilizing Lyapunov theory that ensures asymptotic stability of the system under unpredictable external
disturbances and significant parametric uncertainties. The distinguishing benefit of the aforementioned scheme consists in its
capabilities to maintain satisfactory performance under varying operation conditions without the need for manually redesigning
or reprogramming the control gains in contrast to the commonly used PI/PID control. Simulations are also built to confirm the
correctness and benefits of the control scheme.

1. Introduction

Doubly fed induction generator (DFIG) enjoys more notice-
able advantages compared with other kinds of wind genera-
tors [1]. For example, by keeping the rotor current frequency
at a constant level, DFIG can produce nearly constant power
from the stator, and by keeping an optimal tip-speed ratio,
DFIG is able to capture themaximumwind power at different
wind speeds [2]. A wind power generation system equipped
with DFIG requires a converter with only one-third of
the power rating, leading to a less expensive system with
reduced power loss [3]. DFIG can also control reactive power
separately from active power with a reasonable adoption
of orientation frame [4]. Especially, DFIG can stabilize
the power network voltage by providing some controllable
reactive power, thus improving power factor or voltage
characteristics [5].

Researches on the blackout in Canada and America
in 2003 indicated that if reactive power was provided in
time the cascaded outages of several power system devices
might have been avoided. Reactive power is closely related

to voltage level and power factor (pf) and terminal voltage.
To prevent power network instability problem, some power
companies have proposed several standards which must be
strictly met when the wind generators connect to the system
[6]. Therefore, reactive power control in DFIG for wind
turbines has become a research topic of theoretical and
practical importance that has attracted considerable attention
during the past decade, leading to a number of technical
results on reactive power control of DFIG in wind turbines.
Brekken and Mohan [7] deal with the harmonic component
on the frame with a low bandwidth filter. A PI and a state
space based controller for reactive power are studied by
Machmoum et al. [8]. The limitation of generation capability
on both converters of DFIG is analysed in Engelhardt et al.
[9]. Slootweg et al. [10] study the voltage control scheme by
reactive power compensation on theRSI, without considering
reactive power generation ability of grid-side inverter (MSI).
In Tapia et al. [11] a similar problem is investigated in which
MSI contribution to voltage control is ignored. It should
be noted that MSI can be the main reactive compensator
as a STATCOM as shown in Kayikci and Milanovic [12].
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An interesting effort has been made on using both the RSI
and the MSI to design reactive power regulator in DFIG
[13]. There are several other coordinated RSI and MSI based
voltage-control methods suggested in the literature (see, e.g.,
Akhmatov [14] and Ackermann [15] and the references cited
therein).

While reactive power control of DFIG has been exten-
sively studied during the past few years, there are some open
issues which have practical and theoretical importance in
this area. For instance, from a reliable operation and real-
time implementation point of view, currently there is no
uniform framework for the design of a cost-effective and
reliable method for reactive power adjustment. As a matter
of fact, in most existing works, either the control develop-
ment and closed-loop system stability conditions are based
on largely oversimplified linear dynamics or the resultant
control algorithms are prohibitively too complex for real-time
implementation. One reason leading to such barrier is the
fact that differential equations of DFIG are nonlinear and
complex in nature. To facilitate control design, most existing
methods have carried on the tradition of using linear model,
without fully recognizing modelling uncertainty, external
disturbance, or implementation cost. As such, these control
methods which heavily depend on linear model and precise
system parameters seldom satisfactorily work in practice. It
is interesting to notice that different applications of adaptive
control method have been studied in various fields, such as in
power systems [16, 17] and in robot controlling [18]. Adaptive
control method can help to solve the above problems.

This paper proposes a computationally inexpensive con-
trol algorithm for controlling reactive power in DFIG for
wind turbines. The main interest in the mentioned method
is primarily motivated by some practical implementation
situations, where algorithm cost-effectiveness appears to be
the prior concern. Meanwhile, there exist the possibilities
that the system parameters and dynamics are not always
fully available for the sake of some constraints. A dynamic
model which reflects the electrical connection effects of the
MSI of DIFG wind turbine system is established in this
paper. Inspired by the recent work on using core information
for control design [19], a simple yet effective robust adap-
tive control scheme is developed. The superior features of
the resultant control scheme consist in the significance in
dealing with unpredictable lumped disturbances and simple
structure. In fact, only little information of the parame-
ters/dynamics is necessary for the construction of the control
algorithm. Meanwhile complicated and painful trail-and-
error process for control gains determination is no longer
needed. These friendly advantages are favourable in practical
implementations.

2. System Topology and Dynamic Equations

Drive topologies of DFIG have been intensively studied in the
literature [13]. Drive topology of DFIG containing the current
and power flow is shown in Figure 1. Wind power captured
from the wind turbine transfers into electric power through
the gear box and the induction generator. The induction
generator is quite special since it has a dual converter which
is made of electric devices such as IGBTs. The size of the
converter is determined according to the desired speed range.
With a proper control for the RSI and MSI, the separate
control of reactive power from active power is achieved. The
DFIG employs some inductors between the rotor terminals
and the RSI as filters. In order to suppress harmonics, output
filters are also used in the DFIG.

2.1. Voltage Orientation. Considering the deep coupling
nature between reactive and active power, a well-chosen ori-
entation can help to control the two variables independently.
In this paper, the coordinate system rotates synchronously
along with mains voltage vector. By adopting the phase-
locked loop (PLL) scheme [20], the mains voltage vector is
well tracked by 𝑑-axis in the frame.Thus we obtain 𝑢

𝑁
= 𝑢
𝑁𝑑

and 𝑢
𝑁𝑞

= 0. Based on such voltage orientation, current
components on the 𝑞- and 𝑑-axis are considered, separately,
as reactive component and active component.Thus the 𝑞-axis
current component is responsible for controlling the reactive
power production which will be used in later discussion.This
implication is illustrated in Figure 2, and 𝜔

𝑁
is the angular

speed of 𝑢
𝑁
.

2.2. Generator Model. In this work, we follow the modelling
methods as described in Rabelo et al. [13]. The stator voltage
frequency is the same as the net frequency; that is, 𝜔

𝑁
= 𝜔
𝑆
,

and the slip frequency is determined by 𝜔
𝑟
= 𝑆𝜔
𝑁
. 𝑢
𝑠
and
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𝑢
𝑟
are obtained by using the synchronous rotating frame for

induction generator in Leonhard [2]. Consider

𝑢


𝑟
= 𝑅


𝑟
𝑖


𝑟
+
𝑑𝜓
𝑟

𝑑𝑡
+ 𝑗𝑆𝑤

𝑁
𝜓
𝑟
,

𝑢
𝑠
= 𝑅
𝑠
𝑖
𝑠
+
𝑑𝜓
𝑠

𝑑𝑡
+ 𝑗𝑤
𝑁
𝜓
𝑠
.

(1)

Flux linkage of the rotor 𝜓
𝑟
and flux linkage of the stator

𝜓
𝑠
are calculated as

𝜓
𝑟
= 𝐿


𝑟
𝑖


𝑟
+ 𝐿
𝑚
𝑖
𝑠
, 𝜓

𝑠
= 𝐿
𝑠
𝑖
𝑠
+ 𝐿
𝑚
𝑖


𝑟
. (2)

Electromagnetic torque of the drive system is established
by

𝑇
𝑒
=
3

2
𝑛
𝐿
𝑚

𝐿
𝑠

⋅I {𝜓
𝑠
𝑖
∗

𝑟
} , (3)

where “∗” denotes the conjugate complex value and I{⋅}

denotes the imaginary part and 𝑛 represents pole pairs.
The current components on the stator side with orthogo-

nal coordinate are written as

𝑖
𝑠𝑑
= −

𝐿
𝑚

𝐿
𝑠

𝑖
𝑟𝑑
,

𝑖
𝑠𝑞
=

𝜓
𝑠𝑞

𝐿
𝑠

−
𝐿
𝑚

𝐿
𝑠

𝑖
𝑟𝑞
,

(4)

where 𝑖
𝑠𝑑
is the stator current component on the 𝑑-axis and

𝑖
𝑠𝑞
is the stator current component on the 𝑞-axis.
Using the flux linkage equations above and replacing the

stator current component, the following equations can be
obtained:

𝑢
𝑟𝑞
= 𝑅
𝑟
𝑖
𝑟𝑞
+ 𝜎𝐿
𝑟

𝑑𝑖
𝑟𝑞

𝑑𝑡
− 𝑆𝑤
𝑁
𝜎𝐿
𝑟
𝑖
𝑟𝑞
,

𝑢
𝑟𝑑
= 𝑅
𝑟
𝑖
𝑟𝑑
+ 𝜎𝐿
𝑟

𝑑𝑖
𝑟𝑑

𝑑𝑡
+ 𝑆𝑤
𝑁
𝜎𝐿
𝑟
𝑖
𝑟𝑞
+ 𝑆𝑤
𝑁

𝐿
𝑚

𝐿
𝑠

𝜓
𝑠𝑞
,

(5)

where 𝜎 = 1 − (𝐿𝑚
2

/𝐿
𝑠
𝐿
𝑟
). The basic electrical formulas

above will be used to construct the inner rotor current
controller.

2.3. LC Filter Model. Considering the inverter synchronized
with the mains voltage and ignoring the voltage drop on the
𝐿
𝑁
, the MSI output current dynamics can be described as

follows:

𝑢
𝑁𝑞

= 𝑅
𝑓
𝑖
𝑛𝑞
+ 𝐿
𝑓

𝑑𝑖
𝑛𝑞

𝑑𝑡
− 𝑤
𝑁
𝐿
𝑓
𝑖
𝑛𝑑
+ 𝑢
𝑛𝑞
= 0, (6)

𝑢
𝑁𝑑

= 𝑅
𝑓
𝑖
𝑛𝑑
+ 𝐿
𝑓

𝑑𝑖
𝑛𝑑

𝑑𝑡
− 𝑤
𝑁
𝐿
𝑓
𝑖
𝑛𝑞
+ 𝑢
𝑛𝑑
. (7)

The block diagram in Figure 1, together with the above
equations, indicated the mutual and internal relationship in
the drive topology of DFIG and the wind power generation
system.

3. Reactive Power Control Design

Considering the external disturbance acting on the system,
reactive power at the MSI is governed by the dynamic
equation as given in (8): that is,

̈𝑞
𝑛
𝑇
1
𝑇
2
+ ̇𝑞
𝑛
(𝑇
1
+ 𝑇
2
) + 𝑞
𝑛
+ ℎ (⋅) = 𝐾

𝑞𝑛
𝑖
∗

𝑛𝑞
, (8)

which can be shown in detail as follows.

3.1. Current Inner Loop Control. This is a cross-coupled 2D
problem.The transfer function of the plant 𝐺

𝑖
(𝑠) is described

as

𝐺
𝑖
(𝑠) =

𝐾
𝑖

𝑠𝑇
𝑖
+ 1

, (9)

where 𝐾
𝑖
= 1/𝑅 and 𝑇

𝑖
= 𝐿/𝑅. The transfer functions

are identical on both 𝑑 and 𝑞 axes. The time delay of signal
preconditioning and processing can be regarded as a small
time constant 𝑇sum ≪ 𝑇

𝑖
. Note that 𝑇sum is small and its

accurate value is normally difficult to obtain. The first-order
transfer function of such time constant part is described as

𝐺sum (𝑠) =
1

𝑠𝑇sum + 1
. (10)

By utilizing of a simple controller𝐺
𝑅𝑖
, the following open-

loop transfer function is established:

𝐺
𝑜𝑖
(𝑠) = 𝐺

𝑅𝑖
𝐺
𝑖
𝐺sum = 𝐾

𝑃𝑖

𝑠𝑇
𝐼𝑖
+ 1

𝑠𝑇
𝐼𝑖

𝐾
𝑖

𝑠𝑇
𝑖
+ 1

1

𝑠𝑇sum + 1
, (11)

where 𝐾
𝑃𝑖

is the differential parameter and 𝑇
𝐼𝑖
is the inte-

grated time.
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3.2. Output Current Control. Output current control should
track the input current without heavy overshoots. A general
method to solve such problems is proposed in Föllinger [21].
To achieve a well damping factor 1/√2, we can set𝐾

𝑃𝑖
and𝑇
𝐼𝑖

as follows:

𝐾
𝑃𝑖
=

𝐿

2𝑇sum
, 𝑇

𝐼𝑖
= 𝑇
𝑖
. (12)

The closed-loop transfer function becomes

𝐺
𝑐𝑖
(𝑠) =

𝐺
𝑜𝑖

1 + 𝐺
𝑜𝑖

=
1

2𝑇2sum𝑠
2 + 2𝑇sum𝑠 + 1

. (13)

Since 𝑇sum ≪ 𝑇
𝑖
, the square value in the 𝑠2 term can be

ignored. Thus, the closed-loop function of the current inner
control is simplified and obtained as

𝐺
𝑐𝑖
(𝑠) ≅

1

2𝑇sum𝑠 + 1
. (14)

At the mains-side inverter and under the voltage orienta-
tion discussed above, the reactive power is established by

𝑄
𝑛
=
3

2
I {𝑢
𝑛
𝑖
∗

𝑛
} =

3

2
(𝑢
𝑁𝑞
𝑖
𝑛𝑑
− 𝑢
𝑁𝑑
𝑖
𝑛𝑞
) = −

3

2
𝑢
𝑁𝑑
𝑖
𝑛𝑞
. (15)

Before passing into the controller, the data of the input
reactive power pass through a filter. The filter is given by a
one-order transfer function as described in Rabelo et al. [13].
Consider

𝐺
𝐹𝑞𝑛

=
𝑞
𝑛

𝑄
𝑛

=
1

(𝑠𝑇
𝐹𝑞𝑛

+ 1)

, (16)

where 𝑞
𝑛
is the ultimate actual reactive power through the

filter and 𝑇
𝐹𝑞𝑛

is the filter time constant.
We take the current inner control in (13) into account.

Thus the control plant becomes the following second-order
transfer function:

𝐺
𝑃𝑞𝑛

= 𝐾
𝑞𝑛
𝐺
𝑐𝑖
𝐺
𝐹𝑞𝑛

=

𝐾
𝑞𝑛

(𝑠2𝑇sum + 1) (𝑠𝑇
𝐹𝑞𝑛

+ 1)

, (17)

where

𝐾
𝑞𝑛
= −(

3

2
) 𝑢
𝑁𝑑
. (18)

The block diagramof the system adopting robust adaptive
control methods is shown in Figure 3. The primary objective
is to build the reference current 𝑖∗

𝑛𝑞
which makes the actual

reactive power 𝑞
𝑛
regulate the reference one 𝑞∗

𝑛
asymptoti-

cally.
We rewrite control plant equation (16) as

𝑞
𝑛

𝑖∗
𝑛𝑞

=

𝐾
𝑛𝑞

(𝑠𝑇
1
+ 1) (𝑠𝑇

2
+ 1)

, (19)

where 𝑇
1
= 2𝑇sum, 𝑇2 = 𝑇

𝐹𝑛𝑞
. Using Laplace inverse trans-

form, it follows that
̈𝑞
𝑛
𝑇
1
𝑇
2
+ ̇𝑞
𝑛
(𝑇
1
+ 𝑇
2
) + 𝑞
𝑛
= 𝐾
𝑞𝑛
𝑖
∗

𝑛𝑞
. (20)

Taking the external disturbances acting on the system
into account, (20) becomes (8) where ℎ(⋅) is the external
disturbances.

3.3. Robust Adaptive Control for Mains-Side Reactive Power.
In this section, a robust adaptive control for mains-side reac-
tive power will be proposed. To build a meaningful adaptive
control scheme, two realistic assumptions are adopted.

Assumption 1. Voltage amplitude at net connecting point
remains nonzero. Thus with the voltage orientation and (6),
𝑢
𝑁𝑑

can be regarded as a positive known number so that𝐾
𝑞𝑛

with respect to (18) is a negative known number.

Remark 2. Assumption 1 imposed here, rather standard in
addressing system stabilization, is practical because the wind
power generation system will be shut off if the voltage at the
net is extremely low; thus the zero voltage does not occur for
the situation under consideration.

To design the tracking controller, we define the reactive
power tracking error as

𝑒 = 𝑞
𝑛
− 𝑞
∗

𝑛
. (21)

To simplify controller design, we introduce 𝜀 and define 𝜀
as

𝜀 = 𝛽𝑒 + ̇𝑒, (22)

where 𝛽 > 0 is a designed constant.
Apparently if 𝜀 converges to zero as time increases, 𝑒 and

̇𝑒 also converge to zero, which means if we can design a
controller that forces 𝜀 to converge to zero as time increases,
then problem will be solved.

Taking derivative of (22) with respect to time, we get

̇𝜀 = 𝛽 ̇𝑒 + ̈𝑒. (23)

Substituting ë with (21) and using ̈𝑞
𝑛
as given in (8), we

obtain

̇𝜀 =

𝐾
𝑞𝑛

𝑇
1
𝑇
2

𝑖
∗

𝑛𝑞
+

1

𝑇
1
𝑇
2

[−ℎ (⋅) − 𝑞
𝑛
− (𝑇
1
+ 𝑇
2
) ̇𝑞
𝑛
] + 𝛽 ̇𝑒 − ̈𝑞

∗

𝑛
.

(24)

Or equivalently,

̇𝜀 = 𝐵𝑢 + 𝐿 (⋅) , (25)

where 𝑢 = −𝑖∗
𝑛𝑞
,

𝐵 = −

𝐾
𝑞𝑛

𝑇
1
𝑇
2

,

𝐿 (⋅) =
1

𝑇
1
𝑇
2

[−ℎ (⋅) − 𝑞
𝑛
− (𝑇
1
+ 𝑇
2
) ̇𝑞
𝑛
] + 𝛽 ̇𝑒 − ̈𝑞

∗

𝑛
.

(26)

Obviously 𝐵 is positive because of the definition of𝐾
𝑞𝑛
as

given in (18). Note that

𝐿 (⋅) ≤



1

𝑇
1
𝑇
2



[|ℎ (⋅)| +
𝑞𝑛
 +

(𝑇1 + 𝑇2)



̇𝑞
𝑛

] +
𝛽

̇𝑒
 +


̈𝑞
∗

𝑛

 .

(27)
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Assumption 3. In this assumption, the characteristic of the
disturbance is discussed. The external disturbance ℎ(⋅) is
bounded which leads to the existence of an unknown con-
stant such that

|ℎ (⋅)| ≤ 𝑎
1
< ∞. (28)

Also, the time constants 𝑇
1
and 𝑇

2
, although unknown in

general, are bounded so that


1

𝑇
1
𝑇
2



≤ 𝑎
2
< ∞,

(𝑇1 + 𝑇2)
 ≤ 𝑎3 < ∞, (29)

where 𝑎
2
and 𝑎
3
are some unknown positive constants.

This assumption, quite reasonable in practice, allows for
the establishment of

|𝐿 (⋅)| ≤ 𝑎𝜑 (𝑞
𝑛
) , (30)

where

𝑎 = max (𝑎
2
⋅ 𝑎
1
, 𝑎
2
, 𝑎
2
⋅ 𝑎
3
, 1) , (31)

𝜑 (𝑞
𝑛
) = 1 +

𝑞𝑛
 +


̇𝑞
𝑛

 + 𝛽 |
̇𝑒| +


̈𝑞
∗

𝑛

 . (32)

We design the input as

𝑢 = − (𝐾
0
+ �̂�) 𝜀, (33a)

where𝐾
0
> 0 is a design constant and �̂� is updated as

�̂� =
𝑎𝜑

|𝜀|
, (33b)

where 𝑎 is the estimation of 𝑎 and is updated as

̇�̂� = |𝜀| 𝜑. (33c)

Theorem 4. For such system established by (8) under the
assumptions, if 𝑢 is calculated by (33a), (33b), and (33c),
then the reactive power is ensured to track the desired one
asymptotically.

Proof. The result can be justified using the following Lya-
punov function:

𝑉 =
1

2
𝜀
2

+
1

2𝐵min
(𝑎 − 𝑎𝐵min)

2

, (34)

where 𝐵min is constant and 0 < 𝐵min ≤ 𝐵 for ∀𝐵 ∈ 𝐿
∞
.

Differentiating 𝑉 leads to

𝑉 = 𝜀 ̇𝜀 − (𝑎 − 𝑎𝐵min)
̇�̂�. (35)

From (25) and (33a), we get

̇𝜀 = −𝐵𝐾
0
𝜀 − 𝐵�̂�𝜀 + 𝐿. (36)

Equation (35) becomes

𝑉 = 𝜀 (−𝐵𝐾
0
𝜀 − 𝐵�̂�𝜀 + 𝐿) − (𝑎 − 𝑎𝐵min)

̇�̂�. (37)

Substituting �̂� with (33b) and ̇�̂� with (33c),

𝑉 = 𝜀𝐿 − 𝐵𝐾
0
𝜀
2

− 𝐵𝑎𝜑 |𝜀| − 𝜑 |𝜀| (𝑎 − 𝑎𝐵min)

≤ |𝜀| |𝐿| − 𝐵𝐾
0
𝜀
2

− 𝐵𝑎𝜑 |𝜀| − 𝜑 |𝜀| (𝑎 − 𝑎𝐵min)

= −𝐵𝐾
0
𝜀
2

+ (|𝜀| |𝐿| − |𝜀| 𝜑𝑎) + (𝐵min𝑎𝜑 |𝜀| − 𝐵𝑎𝜑 |𝜀|) .

(38)

Because we have

|𝐿 (⋅)| ≤ 𝑎𝜑, 0 < 𝐵min ≤ 𝐵, (39)

we can get

𝑉 ≤ −𝐵min𝐾0𝜀
2

< 0. (40)

As 𝐵min > 0, it is readily shown from (40) that both 𝜀 and
𝑎 are bounded. Furthermore, we can show that ̇𝜀 is bounded
and thus 𝜀 is uniformly continuous.Therefore, using Barbalat
Lemma [22] the reality is obtained that 𝜀 converges to zero
asymptotically. By utilizing (22), ultimately, 𝑒 and ̇𝑒 converge
to zero asymptotically; then the result is established.

Remark 5. It should be noted that when the states get closer
to zero, the control schememight experience chattering.This,
however, can be avoided by using the simple but classic
means of replacing 𝑧/|𝑧| with 𝑧/(|𝑧| + 𝜏), where 𝜏 is small.
Meanwhile, in order to prevent the estimate 𝑎 from drifting,
(33c) can be modified to

̇�̂� = −𝜎
1
𝑎 + 𝜎
2

𝜀
2

𝜑
2

|𝜀| 𝜑 + 𝜏
, 𝜎
1
> 0, 𝜎

2
> 0. (41a)

In this case, we have the following ultimately uniformly
bounded (UUB) tracking control result.

Theorem 6. Also for system established by (8) under the
assumptions, if the following robust adaptive control algorithm
is adopted,

𝑢 = − (𝐾
0
+ �̂�) 𝜀, (41b)

where𝐾
0
> 0 is a design constant and �̂� is updated as

�̂� =
𝑎𝜑

|𝜀| + 𝜏
, (41c)

where 𝑎 is the estimation of a and is updated by (33a), then the
system is ensured to be UUB stable.

Proof. This theorem can be proved by utilizing of the meth-
ods in Cai et al. [23].

Remark 7. Instead of using PI controller as in Rabelo et al.
[13], a simple robust adaptive control scheme is developed
here in which one only needs to specify the parameters in a
clear direction; that is,𝐾

0
> 0 and 𝛽 > 0.

Remark 8. The significance of the developed control scheme
is twofold.
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(1) The control scheme developed here does not rely
on the precise value for the time constants 𝑇

1
, 𝑇
2
.

Also, there is no need for analytical estimation of
the unknown parameters 𝑎

1
, 𝑎
2
, 𝑎
3
. Such fact can

sufficiently simplify the design procedure and imple-
mentation of the proposed control algorithm.

(2) As the parameter 𝑎 involved in the controller is
updated automatically via the algorithm, and such
process is independent of operation conditions, no
redesign or reprogramming is needed during the
system operation.

4. Simulation Verification

Aiming at validating the correctness of the robust adaptive
reactive control scheme, simulations with Matlab/Simulink
are presented here.

Per unit (p.u.) value is introduced to simplify calculation
and simulation. The datum voltage 𝑉

𝑎V and datum capacity
𝑆
𝑎V, respectively, are set as 330V and 1MVar. The net voltage
𝑢
𝑁𝑑

under voltage orientation is chosen as 220V and thus𝐾
𝑞𝑛

with respect to (17) is calculated as −1. Other parameters used
for simulation are chosen as 𝑇sum = 0.5, 𝑇

𝐹𝑞𝑛
= 1, 𝛽 = 1, and

𝐾
0
= 1. The PI control algorithm described in Ackermann

[15] for reactive power is rebuilt for comparison. Three types
of working conditions are simulated here.

4.1. Regulating under Steady Working Condition. In real
application, DFIG can work as a compensator to provide
constant reactive power. Based on this fact, we set the desired
reactive power output as 1 p.u.The desired reactive power and
actual one are together plotted in Figure 4.

Compared with the adopted PI scheme, adaptive method
eliminates overshoot and has a shorter regulate time and
a longer rise time. Both of the control schemes can obtain
stabilization.

4.2. Regulating under Modelling Uncertainty. In this kind of
simulation, the influence of modelling uncertainty is investi-
gated. Assume that the time constant 𝑇sum has a deviation of
5%; then 𝑇sum = 0.525. The result of the proposed adaptive
method is illustrated in Figure 5 and the PI method is shown
in Figure 6.

The result shows that, by utilizing the proposed scheme,
the tracking trajectory almost remains the same even under
such modelling uncertainty and parameter deviation. From
the point of detail, the proposed adaptive scheme enjoys a
better tracking trajectory compared with the PI controller
under such condition.

4.3. Tracking under Dynamic Reactive Power Compensation.
If the voltage begins to drop during an unsymmetrical grid
fault, the DFIG will work as a dynamic reactive compensator
to keep the voltage to a certain degree. Once the fault is
moved, the reactive power generating capacity of DFIG will
be resumed [24]. Based on this fact, we set the desired reactive
power output as illustrated in Figure 7. Specifically, the DFIG
is ordered to provide 1 p.u. before 7 s and provide an extra
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Figure 4: Reactive power regulation trajectories.
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Figure 5: Adaptive controller tracking trajectories.

0.2 p.u. reactive power in the time from 7 s to 8 s, because
the proposed scheme uses the derivative of the desired input.
The reference has been smoothed before putting into the
controller.

The result of PI controller is also compared to the pro-
posed adaptive method. Figure 7 illustrates that, compared
with PI controller, the proposedmethod can track the desired
reactive power better. This is because PI controller fails to
track the reference value at the time of 7 s. The result shows
that the adopted PI controller fails to deal with such problem
which, however, the adaptive scheme proposed in this paper
can deal with.
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Figure 7: Reactive power tracking trajectories.

5. Conclusions

Reactive power control for mains-side inverter (MSI) in
DFIG represents an important issue in wind power gener-
ation systems. A robust adaptive control scheme for MSI is
developed. As confirmed by theoretical analysis the proposed
method is able to maintain satisfactory performance under
varying operation conditions without the need for manually
redesigning or reprogramming the control gains. Numerical
simulations also validate the correctness and benefits of the
proposed algorithm.
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We study the partial information classical and impulse controls problem of forward-backward systems driven by Lévy processes,
where the control variable consists of two components: the classical stochastic control and the impulse control; the information
available to the controller is possibly less than the full information, that is, partial information. We derive a maximum principle to
give the sufficient and necessary optimality conditions for the local critical points of the classical and impulse controls problem. As
an application, we apply the maximum principle to a portfolio optimization problem with piecewise consumption processes and
give its explicit solutions.

1. Introduction

The classical and impulse controls problems have received
considerable attention in recent years due to their wide
applicability in different areas, such as optimal control of
the exchange rate between different currencies (see, e.g., [1–
3]), optimal financing and dividend control problem of an
insurance company facing fixed and proportional transaction
costs (see, e.g., [4, 5]), stochastic differential game (see, e.g.,
[6]), and dynamic output feedback controller design problem
(see, e.g., [7] and the references therein).

In the existing literatures, the dynamic programming pri-
nciple and the maximum principle are two main approaches
in solving these problems.

In dynamic programming principle, the classical and
impulse controls can be solved by a verification theorem and
the value function is a solution to some quasi-variational
inequalities. However, the dynamic programming approach
relies on the assumption that the controlled system is Marko-
vian; see, for example, [8–10].

There have been some pioneering works on deriving
maximum principles for the classical and impulse controls

problems. For example, Wu and Zhang [11] established max-
imum principle for stochastic recursive optimal control
problems involving impulse controls; Wu and Zhang [12]
gave maximum principle for classical and impulse controls
of forward-backward systems. In their control problems, the
information available to the controller is full information.

In many practical systems, the controller only gets partial
information, instead of full information, such as delayed
information (see, e.g., [13–16]). The partial information
stochastic control problem is not of a Markovian type and
hence cannot be solved by dynamic programming. As a
result,maximumprinciples are established to solve the partial
information stochastic control problem. There is already a
rich literature and versions of correspondingmaximumprin-
ciples for partial information control problems. For example,
Baghery and Øksendal [17] derived the maximum principle
for partial information stochastic control problem, where the
stochastic system is described by stochastic differential equa-
tions (SDE hereafter). An andØksendal [18] gave amaximum
principle for the stochastic differential game under partial
information. Øksendal and Sulèm [19] established maximum
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principles for stochastic control of forward-backward systems
driven by Lévy processes. In their control problems, the
control variable is just the classical stochastic control process
𝑢(⋅). To the best of our knowledge, there is no literature
on studying the maximum principle for partial information
classical and impulse controls problems, whichmotivates our
work.

In this paper, we study classical and impulse controls
problems of forward-backward systems, where the stochastic
systems are represented by forward-backward SDEs driven
by Lévy processes, the control variable consists of two com-
ponents: the stochastic control 𝑢(⋅) and the impulse control
𝜉(⋅), and the information available to the controller is possibly
partial information, rather than full information. Because
of the non-Markovian nature of the partial information, we
cannot use dynamic programming principle to solve the
problems. Instead, we derive a maximum principle which
allows us to handle the partial information case.

The similarmaximumprinciple is also studied byWu and
Zhang [11] in the complete information case and with the
Brownian motion setting. There are three main differences
between our paper and [11]. Firstly, we study the more
general cases: the forward-backward system is driven by Lévy
processes and the information available to the controller is
partial information. Secondly, their proof differs from ours.
They used convex perturbation technique to establish the
maximum principle. Thirdly, they assumed the concavity
conditions of Hamiltonian and utility functional to make
the necessary optimality conditions turn out to be sufficient.
However, the concavity conditions may not hold in many
applications. Consequently, in our maximum principle for-
mulation, we give the sufficient and necessary optimality
conditions for the local critical points, instead of global
optimums, without the assumption of concavity condition.

The paper is organized as follows: in the next section
we formulate the partial information classical and impulse
controls of the forward-backward system driven by Lévy
processes. In Section 3 we derive the stochastic maximum
principle for the considered classical and impulse controls
problem. In Section 4 we apply the general results obtained
in Section 3 to give the solutions of the example. Finally we
conclude this paper in Section 5.

2. Problem Formulation

Let (Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃) be a filtered probability space and let

𝜂(⋅) be a Lévy process defined on it. Let 𝐵(𝑡) be an F
𝑡
-

Brownian motion and let �̃�(𝑑𝑡, 𝑑𝑧) = 𝑁(𝑑𝑡, 𝑑𝑧) − ](𝑑𝑧)𝑑𝑡
be compensated Poisson random measures independent of
𝐵(𝑡), where ] is the Lévy measure of Lévy process 𝜂(𝑡) with
jump measure𝑁 such that 𝐸[𝜂2

𝑖
(𝑡)] < ∞ for all 𝑡, 𝑡 ∈ [0,∞).

{F
𝑡
}
𝑡≥0

is the filtration generated by 𝐵(𝑡) and �̃�(𝑑𝑡, 𝑑𝑧) (as
usual augmented with all the 𝑃-null sets). We refer to [8] for
more information about Lévy processes.

Suppose that we are given a subfiltration G
𝑡

⊆ F
𝑡

representing the information available to the controller at
time 𝑡, 𝑡 ∈ [0, 𝑇]. It is remarked that the partial information
of classical and impulse controls is different from the classical

and impulse controls of delay systems, where the state
function is described by the solution of stochastic differential
delay equation (see, e.g., [20]).

Let {𝜏
𝑖
, 𝑖 ≥ 1} be a given sequence of increasing G

𝑡
-sto-

pping times such that 𝜏
𝑖
↑ +∞. At 𝜏

𝑖
we are free to intervene

and give the system an impulse 𝜉
𝑖
∈ R, where 𝜉

𝑖
is G
𝜏𝑖
-mea-

surable random variable. We define impulse process 𝜉(𝑡) by

𝜉 (𝑡) = ∑

𝑖≥1

𝜉
𝑖
1
[𝜏𝑖 ,𝑇]

(𝑡) , 𝑡 ≤ 𝑇. (1)

It is worth noting that the assumption 𝜏
𝑖
↑ +∞ implies that

at most finitely many impulses may occur on [0, 𝑇].
Now we consider the forward-backward systems involv-

ing classical and impulse controls. Given 𝑎 ∈ R and 𝜇 ∈ R
0
,

let 𝑏 : [0, 𝑇] × R × 𝑈 → R, 𝜎 : [0, 𝑇] × R × 𝑈 → R,
𝛾 : [0, 𝑇] × R × 𝑈 × R

0
→ R, 𝑔 : [0, 𝑇] × R × R ×

R × 𝑈 → R, 𝐶 : [0, 𝑇] → R, and 𝐷 : [0, 𝑇] → R be
measurable mappings.𝑈 is a nonempty convex set ofR.Then
the forward-backward systems are described by forward-
backward SDEs in the unknown processes 𝐴(𝑡), 𝑋(𝑡), 𝑌(𝑡),
and𝐾(𝑡) as follows:

𝑑𝐴 (𝑡) = 𝑏 (𝑡, 𝐴 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡 + 𝜎 (𝑡, 𝐴 (𝑡) , 𝑢 (𝑡)) 𝑑𝐵 (𝑡)

+ ∫
R0

𝛾 (𝑡, 𝐴 (𝑡) , 𝑢 (𝑡) , 𝑧) �̃� (𝑑𝑡, 𝑑𝑧) + 𝐶 (𝑡) 𝑑𝜉 (𝑡) ,

𝑑𝑋 (𝑡) = −𝑔 (𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

+ 𝑌 (𝑡) 𝑑𝐵 (𝑡) + ∫
R0

𝐾 (𝑡, 𝑧) �̃� (𝑑𝑡, 𝑑𝑧)

− 𝐷 (𝑡) 𝑑𝜉 (𝑡) ,

𝑋 (𝑇) = 𝜇𝐴 (𝑇) , 𝐴 (0) = 𝑎.

(2)

The result of giving the impulse 𝜉
𝑖
is that the state jumps from

(𝐴(𝜏
𝑖
−),𝑋(𝜏

𝑖
−)) to (𝐴(𝜏

𝑖
), 𝑋(𝜏

𝑖
)) = (𝐴(𝜏

𝑖
−)+𝐶(𝜏

𝑖
)𝜉
𝑖
, 𝑋(𝜏
𝑖
−)−

𝐷(𝜏
𝑖
)𝜉
𝑖
). We call (𝑢, 𝜉) classical and impulse controls.

There are two different jumps in the system (2). One jump
is the jump of (𝐴(𝜏), 𝑋(𝜏)) stemming from the randommea-
sure𝑁, denoted by (Δ

𝑁
𝐴(𝜏), Δ

𝑁
𝑋(𝜏)).The other jump is the

jump caused by the impulse 𝜉, given by (Δ
𝜉
𝐴(𝜏
𝑖
), Δ
𝜉
𝑋(𝜏
𝑖
)) =

(𝐶(𝜏
𝑖
)𝜉
𝑖
, 𝑉(𝜏
𝑖
)𝜉
𝑖
). Let

M = {(Δ
𝑁
𝐴 (𝜏) , Δ

𝑁
𝑋 (𝜏)) ; 0 ≤ 𝜏 ≤ 𝑇} ,

N = {(Δ
𝜉
𝐴 (𝜏
𝑖
) , Δ
𝜉
𝑋(𝜏
𝑖
)) ; 0 ≤ 𝜏

𝑖
≤ 𝑇} .

(3)

Assumption 1. A jump (Δ𝐴(𝑡), Δ𝑋(𝑡)) at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇,
satisfies

(Δ𝐴 (𝑡) , Δ𝑋 (𝑡)) ∈ M ∪N,

(Δ𝐴 (𝑡) , Δ𝑋 (𝑡)) ∉ M ∩N.

(4)

Let UG denote a given family of controls, contained in
the set of G

𝑡
-predictable controls 𝑢(⋅) such that the system

(2) has a unique strong solution. We denote by I the class
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of processes 𝜉(⋅) = ∑
𝑖≥1

𝜉
𝑖
𝜒
[𝜏𝑖 ,𝑇]

(⋅) such that each 𝜉
𝑖
is an R-

valuedG
𝜏𝑖
-measurable random variable. LetKG be the class

of impulse process 𝜉 ∈ I such that𝐸(∑
𝑖≥1

|𝜉
𝑖
|)
2

< ∞.We call
AG = UG ×KG the admissible control set.

Suppose we are given a performance functional of the
form

J (𝑢, 𝜉) = 𝐸[∫

𝑇

0

𝑓 (𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢 (𝑡)) 𝑑𝑡

+ℎ
1
(𝑋 (0)) + ℎ

2
(𝐴 (𝑇)) +∑

𝑖≥1

𝑙 (𝜏
𝑖
, 𝜉
𝑖
)] ,

(5)

where 𝐸 denotes expectation with respect to 𝑃 and 𝑓, ℎ
1
, and

ℎ
2
are given functions such that

𝐸[∫

𝑇

0

𝑓 (𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢 (𝑡))
 𝑑𝑡

+
ℎ1 (𝑋 (0))

 +
ℎ2 (𝐴 (𝑇))

 + ∑

𝑖≥1

𝑙 (𝜏𝑖, 𝜉𝑖)
] < ∞.

(6)

Then the classical and impulse controls problem is to find the
value function ΦG(𝑎) ∈ R and optimal classical and impulse
controls (𝑢∗, 𝜉∗) ∈ AG such that

ΦG (𝑎) = sup
(𝑢,𝜉)∈AG

J (𝑢, 𝜉) = J (𝑢
∗

, 𝜉
∗

) . (7)

3. Maximum Principle for Partial Information
Classical and Impulse Controls Problems

In this section, we derive a maximum principle for the
optimal control problems (7). We will give the necessary and
sufficient conditions for the local critical points (𝑢∗, 𝜉∗).

Firstly, we make the following assumptions.

Assumption 2. (1) For all 𝑠 ∈ [0, 𝑇) and bounded G
𝑠
-

measurable random variables 𝜃(𝜔), the control 𝛽
𝑠
defined by

𝛽
𝑠
(𝑡) = 𝜃 (𝜔) 𝜒

(𝑠,𝑇]
; 𝑠 ∈ [0, 𝑇] (8)

belongs toUG.
(2) For all (𝑢, 𝜉), (𝛽, 𝜍) ∈ AG where (𝛽, 𝜍) is bounded,

there exists 𝛿 > 0 such that the control

(𝑢 (𝑡) + 𝑦𝛽 (𝑡) , 𝜉 (𝑡) + 𝑦𝜍 (𝑡)) ∈ AG,

∀𝑦 ∈ (−𝛿, 𝛿) , 𝑡 ∈ [0, 𝑇] .

(9)

Next we give the definition of the Hamiltonian process.

Definition 3 (see [19]). We define a Hamiltonian process

𝐻 : [0, 𝑇] ×R ×R ×R × 𝐿
2

(]) × 𝑈 ×R → R (10)

as follows:
𝐻(𝑡, 𝑎, 𝑥, 𝑦, 𝑘, 𝑢, 𝜆)

= 𝑓 (𝑡, 𝑎, 𝑥, 𝑦, 𝑘, 𝑢) + 𝜆 (𝑡) 𝑔 (𝑡, 𝑎, 𝑥, 𝑦, 𝑢)

+ 𝑏 (𝑡, 𝑎, 𝑢) 𝑝 (𝑡) + 𝜎 (𝑡, 𝑎, 𝑢) 𝑞 (𝑡)

+ ∫
R0

𝛾 (𝑡, 𝑎, 𝑢, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) ,

(11)

where 𝐻 is Fréchet differentiable in the variables 𝑎, 𝑥, 𝑦, 𝑘;
∇
𝑘
𝐻 denotes the Fréchet derivative in 𝑘 of 𝐻; the adjoint

processes 𝑝(𝑡), 𝑞(𝑡), 𝑟(𝑡, 𝑧), and 𝜆(𝑡) are given by a pair of
forward-backward SDEs as follows.

(i) Forward system in the unknown process 𝜆(𝑡)

𝑑𝜆 (𝑡)

=
𝜕𝐻

𝜕𝑥
(𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) ,

𝑢 (𝑡) , 𝜆 (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡) , 𝑟 (𝑡, 𝑧)) 𝑑𝑡

+
𝜕𝐻

𝜕𝑦
(𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢 (𝑡) ,

𝜆 (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡) , 𝑟 (𝑡, 𝑧)) 𝑑𝐵 (𝑡)

+ ∫
R0

∇
𝑘
𝐻(𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢 (𝑡) ,

𝜆 (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡) , 𝑟 (𝑡, 𝑧)) �̃� (𝑑𝑡, 𝑑𝑧)

𝜆 (0) = ℎ


1
(𝑋 (0)) .

(12)

(ii) Backward system in the unknown processes𝑝(𝑡), 𝑞(𝑡),
and 𝑟(𝑡, ⋅),

𝑑𝑝 (𝑡)

= −
𝜕𝐻

𝜕𝑎
(𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢 (𝑡) , 𝜆 (𝑡) ,

𝑝 (𝑡) , 𝑞 (𝑡) , 𝑟 (𝑡, 𝑧)) 𝑑𝑡

+ 𝑞 (𝑡) 𝑑𝐵 (𝑡) + ∫
R0

𝑟 (𝑡, 𝑧) �̃� (𝑑𝑡, 𝑑𝑧)

𝑝 (𝑇) = 𝜇𝜆 (𝑇) + ℎ


2
(𝐴 (𝑇)) .

(13)

For the sake of simplicity, we use the short hand notation
in the following:

𝜕𝑏

𝜕𝑎
(𝑡, 𝐴 (𝑡) , 𝑢 (𝑡) , 𝜔) =

𝜕𝑏

𝜕𝑎
(𝑡) ,

𝜕𝑏

𝜕𝑢
(𝑡, 𝐴 (𝑡) , 𝑢 (𝑡) , 𝜔) =

𝜕𝑏

𝜕𝑢
(𝑡) ,

(14)

and similarly for (𝜕𝜎/𝜕𝑎)(𝑡), (𝜕𝜎/𝜕𝑢)(𝑡), (𝜕𝛾/𝜕𝑎)(𝑡), (𝜕𝛾/𝜕𝑢)
(𝑡), (𝜕𝑓/𝜕𝑎)(𝑡), (𝜕𝑓/𝜕𝑥)(𝑡), (𝜕𝑓/𝜕𝑦)(𝑡), (𝜕𝑓/𝜕𝑢)(𝑡), ∇

𝑘
𝑓(𝑡, 𝑧),

(𝜕𝑔/𝜕𝑎)(𝑡), (𝜕𝑔/𝜕𝑥)(𝑡), (𝜕𝑔/𝜕𝑦)(𝑡), and (𝜕𝑔/𝜕𝑢)(𝑡).
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Theorem 4 (maximum principle). Let (𝑢, 𝜉) ∈ AG with
corresponding solutions 𝐴(𝑡), 𝑋(𝑡), 𝑌(𝑡), 𝐾(𝑡, 𝑧), and 𝜆(𝑡) of
(2), (12), and (13). Assume that for all (𝑢, 𝜉) ∈ AG the following
growth conditions hold:

𝐸[∫

𝑇

0

𝑋
2

(𝑡) ((
𝜕𝐻

𝜕𝑦
(𝑡))

2

+ ∫
R0

∇𝑘𝐻(𝑡, 𝑧)


2] (𝑑𝑧)) 𝑑𝑡]< ∞,

𝐸 [∫

𝑇

0

𝜆
2

(𝑡) (𝑌
2

(𝑡) + ∫
R0

𝐾
2

(𝑡, 𝑧) ] (𝑑𝑧)) 𝑑𝑡] < ∞,

𝐸 [∫

𝑇

0

𝐴
2

(𝑡) (𝑞
2

(𝑡) + ∫
R0

𝑟
2

(𝑡, 𝑧) ] (𝑑𝑧)) 𝑑𝑡] < ∞,

𝐸 [∫

𝑇

0

𝑝
2

(𝑡) ((𝜎
2

(𝑡))
2

+ ∫
R0

𝛾
2

(𝑡, 𝑧) ] (𝑑𝑧)) 𝑑𝑡] < ∞.

(15)

Then the following are equivalent.
(1) (𝑢, 𝜉) is a critical point forJ(𝑢, 𝜉), in the sense that

𝑑

𝑑𝑦
J (𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |

𝑦=0
= 0

∀𝑏𝑜𝑢𝑛𝑑𝑒𝑑(𝛽, 𝜍) ∈ AG.

(16)

(2) Consider

𝐸[
𝜕

𝜕𝑢
𝐻(𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢, 𝜆 (𝑡))

𝑢=𝑢(𝑡)

|G
𝑡
] = 0

(17)

for a.a. (𝑡, 𝜔) ∈ [0, 𝑇] × Ω and

∑

𝜏𝑖≤𝑇

𝐸[{𝑝 (𝜏
𝑖
) 𝐶 (𝜏
𝑖
) +

𝜕𝑙

𝜕𝜉
(𝜏
𝑖
) − 𝜆 (𝜏

𝑖
)𝐷 (𝜏

𝑖
)} | G

𝜏𝑖
] = 0.

(18)

Proof. Define

̆𝐴(𝑡, 𝛽, 𝜍) =
𝑑

𝑑𝑦
𝐴 (𝑡, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |

𝑦=0
,

𝑋 (𝑡, 𝛽, 𝜍) =
𝑑

𝑑𝑦
𝑋 (𝑡, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |

𝑦=0
,

̆𝑌(𝑡, 𝛽, 𝜍) =
𝑑

𝑑𝑦
𝑌 (𝑡, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |

𝑦=0
,

𝐾 (𝑡, 𝑧, 𝛽, 𝜍) =
𝑑

𝑑𝑦
𝐾 (𝑡, 𝑧, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |

𝑦=0
.

(19)

Then we have

̆𝐴(0, 𝛽, 𝜍) =
𝑑

𝑑𝑦
𝐴 (0, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |

𝑦=0
= 0;

̆𝐴(𝑇, 𝛽, 𝜍) =
𝑑

𝑑𝑦
𝐴 (𝑇, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |

𝑦=0
=
1

𝜇
𝑋 (𝑇, 𝛽, 𝜍) ;

𝑑 ̆𝐴(𝑡, 𝛽, 𝜍) = [
𝜕𝑏

𝜕𝑎
(𝑡) ̆𝐴(𝑡, 𝛽, 𝜍) +

𝜕𝑏

𝜕𝑢
(𝑡) 𝛽 (𝑡)] 𝑑𝑡

+ ∫

𝑡

0

[
𝜕𝜎

𝜕𝑎
(𝑠) ̆𝐴(𝑡, 𝛽, 𝜍) +

𝜕𝜎

𝜕𝑢
(𝑠) 𝛽 (𝑠)] 𝑑𝐵 (𝑠)

+ ∫
R0

[
𝜕𝛾

𝜕𝑎
(𝑡) ̆𝐴(𝑡, 𝛽, 𝜍)+

𝜕𝛾

𝜕𝑢
(𝑡) 𝛽 (𝑡)]�̃�(𝑑𝑡, 𝑑𝑧)

+ 𝐶 (𝑡) 𝑑𝜍 (𝑡) ,

𝑑𝑋(𝑡, 𝛽, 𝜍) = − [
𝜕𝑔

𝜕𝑎
(𝑡) ̆𝐴(𝑡, 𝛽, 𝜍) +

𝜕𝑔

𝜕𝑥
(𝑡)𝑋 (𝑡, 𝛽, 𝜍)

+
𝜕𝑔

𝜕𝑦
(𝑡) ̆𝑌(𝑡, 𝛽, 𝜍) +

𝜕𝑔

𝜕𝑢
(𝑡) 𝛽 (𝑡)] 𝑑𝑡

+ ̆𝑌(𝑡, 𝛽, 𝜍) 𝑑𝐵 (𝑡)

+ ∫
R0

𝐾(𝑡, 𝑧, 𝛽, 𝜍) �̃� (𝑑𝑡, 𝑑𝑧) + 𝐷 (𝑡) 𝑑𝜍 (𝑡) .

(20)

Firstly, we prove (1) ⇒ (2). Assume that (1) holds. Then
we have

0 =
𝑑

𝑑𝑦
J (𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |

𝑦=0

= 𝐸[

[

∫

𝑇

0

{
𝜕𝑓

𝜕𝑎
(𝑡) ̆𝐴(𝑡, 𝛽, 𝜍) +

𝜕𝑓

𝜕𝑥
(𝑡)𝑋 (𝑡, 𝛽, 𝜍)

+
𝜕𝑓

𝜕𝑦
(𝑡) ̆𝑌(𝑡, 𝛽, 𝜍)

+ ∫
R0

∇
𝑘
𝑓 (𝑡, 𝑧)𝐾 (𝑡, 𝑧, 𝛽, 𝜍) ] (𝑑𝑧)

+
𝜕𝑓

𝜕𝑢
(𝑡) 𝛽 (𝑡) } 𝑑𝑡 + ℎ



1
(𝑋 (0))𝑋 (0, 𝛽, 𝜍)

+ ℎ


2
(𝐴 (𝑇)) ̆𝐴(𝑇, 𝛽, 𝜍) + ∑

𝜏𝑖≤𝑇

𝜕𝑙

𝜕𝜂
(𝜏
𝑖
) 𝜍
𝑖

]

]

.

(21)

By Itô formula, we get

𝐸 [ℎ


1
(𝑋 (0))𝑋 (0, 𝛽, 𝜍)]

= 𝐸 [𝜆 (0)𝑋 (0, 𝛽, 𝜍)]
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= 𝐸[𝜆 (𝑇)𝑋 (𝑇, 𝛽, 𝜍) − ∫

𝑇

0

𝑋(𝑡, 𝛽, 𝜍)
𝜕𝐻

𝜕𝑥
(𝑡) 𝑑𝑡

− ∫

𝑇

0

𝜕𝐻

𝜕𝑦
(𝑡) ̆𝑌(𝑡, 𝛽, 𝜍) 𝑑𝑡

+ ∫

𝑇

0

𝜆 (𝑡) (
𝜕𝑔

𝜕𝑎
(𝑡) ̆𝐴(𝑡, 𝛽, 𝜍)

+
𝜕𝑔

𝜕𝑥
(𝑡)𝑋 (𝑡, 𝛽, 𝜍) +

𝜕𝑔

𝜕𝑦
(𝑡) ̆𝑌(𝑡, 𝛽, 𝜍)

+
𝜕𝑔

𝜕𝑦
(𝑡) 𝛽 (𝑡)) 𝑑𝑡

− ∫

𝑇

0

∫
R0

∇
𝑘
𝐻(𝑡, 𝑧)𝐾 (𝑡, 𝑧, 𝛽, 𝜍) ] (𝑑𝑧) 𝑑𝑡

−∑

𝑖≥1

𝜆 (𝜏
𝑖
)𝐷 (𝜏

𝑖
) 𝜍
𝑖
] ,

(22)

where 0 ≤ 𝜏
𝑖
≤ 𝑇. Now we consider

𝐸 [ℎ


2
(𝐴 (𝑇)) ̆𝐴(𝑇, 𝛽, 𝜍)]

= 𝐸 [(𝑝 (𝑇) − 𝜇𝜆 (𝑇)) ̆𝐴(𝑇, 𝛽, 𝜍)]

= 𝐸 [𝑝 (𝑇) ̆𝐴(𝑇, 𝛽, 𝜍)] − 𝐸 [𝜆 (𝑇)𝑋 (𝑇, 𝛽, 𝜍)] .

(23)

Applying Itô formula to 𝐸[𝑝(𝑇) ̆𝐴(𝑇, 𝛽, 𝜍)], we get

𝐸 [𝑝 (𝑇) ̆𝐴(𝑇, 𝛽, 𝜍)]

= 𝐸 [𝑝 (0) ̆𝐴(0, 𝛽, 𝜍)

+ ∫

𝑇

0

𝑝 (𝑡) (
𝜕𝑏

𝜕𝑎
(𝑡) ̆𝐴(𝑡, 𝛽, 𝜍) +

𝜕𝑏

𝜕𝑢
(𝑡) 𝛽 (𝑡)) 𝑑𝑡

+∑

𝑖≥1

𝑝 (𝜏
𝑖
) 𝐶 (𝜏
𝑖
) 𝜍
𝑖
− ∫

𝑇

0

𝜕𝐻

𝜕𝑎
(𝑡) ̆𝐴(𝑡, 𝛽, 𝜍) 𝑑𝑡

+ ∫

𝑇

0

(
𝜕𝜎

𝜕𝑎
(𝑡) ̆𝐴(𝑡, 𝛽, 𝜍) +

𝜕𝜎

𝜕𝑢
(𝑡) 𝛽 (𝑡)) 𝑞 (𝑡) 𝑑𝑡

+ ∫

𝑇

0

∫
R0

𝑟 (𝑡, 𝑧) (
𝜕𝛾

𝜕𝑎
(𝑡, 𝑧) ̆𝐴(𝑡, 𝛽, 𝜍)

+
𝜕𝛾

𝜕𝑢
(𝑡, 𝑧) 𝛽 (𝑡)) ] (𝑑𝑧) 𝑑𝑡] ,

(24)

where 0 ≤ 𝜏
𝑖
≤ 𝑇. By substituting (22), (23), and (24) into

(21), we obtain

0 = 𝐸[∑

𝑖≥1

(𝑝 (𝜏
𝑖
) 𝐶 (𝜏
𝑖
) +

𝜕𝑙

𝜕𝜂
(𝜏
𝑖
) − 𝜆 (𝜏

𝑖
)𝐷 (𝜏

𝑖
)) 𝜍
𝑖
]

+ 𝐸[∫

𝑇

0

{(
𝜕𝑓

𝜕𝑎
(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑎
(𝑡) + 𝑝 (𝑡)

𝜕𝑏

𝜕𝑎
(𝑡)

+ 𝑞 (𝑡)
𝜕𝜎

𝜕𝑎
(𝑡) + ∫

R0

𝜕𝛾

𝜕𝑎
(𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧)

−
𝜕𝐻

𝜕𝑎
(𝑡)) ̆𝐴(𝑡, 𝛽, 𝜍)

+ (
𝜕𝑓

𝜕𝑥
(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑥
(𝑡) −

𝜕𝐻

𝜕𝑥
(𝑡))𝑋 (𝑡, 𝛽, 𝜍)

+ (
𝜕𝑓

𝜕𝑦
(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑦
(𝑡) −

𝜕𝐻

𝜕𝑦
(𝑡)) ̆𝑌(𝑡, 𝛽, 𝜍)

+ ∫
R0

(∇
𝑘
𝑓 (𝑡, 𝑧) − ∇

𝑘
𝐻(𝑡, 𝑧))𝐾 (𝑡, 𝑧, 𝛽, 𝜍) ] (𝑑𝑧)

+ (
𝜕𝑓

𝜕𝑢
(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑢
(𝑡) + 𝑝 (𝑡)

𝜕𝑏

𝜕𝑢
(𝑡)

+ 𝑞 (𝑡)
𝜕𝜎

𝜕𝑢
(𝑡)

+∫
R0

𝑟 (𝑡, 𝑧)
𝜕𝛾

𝜕𝑢
(𝑡, 𝑧) ] (𝑑𝑧)) 𝛽 (𝑡) } 𝑑𝑡] .

(25)

Depending on the definition of Hamiltonian𝐻, we get

𝜕𝐻

𝜕𝑥
(𝑡) =

𝜕𝑓

𝜕𝑥
(𝑡) +

𝜕𝑔

𝜕𝑥
(𝑡) 𝜆 (𝑡) ;

𝜕𝐻

𝜕𝑦
(𝑡) =

𝜕𝑓

𝜕𝑦
(𝑡) +

𝜕𝑔

𝜕𝑦
(𝑡) 𝜆 (𝑡) ;

∇
𝑘
𝐻(𝑡, 𝑧) = ∇

𝑘
𝑓 (𝑡, 𝑧) ;

𝜕𝐻

𝜕𝑎
(𝑡) =

𝜕𝑓

𝜕𝑎
(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑎
(𝑡) + 𝑝 (𝑡)

𝜕𝑏

𝜕𝑎
(𝑡)

+ 𝑞 (𝑡)
𝜕𝜎

𝜕𝑎
(𝑡) + ∫

R0

𝜕𝛾

𝜕𝑎
(𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) ;

𝜕𝐻

𝜕𝑢
(𝑡) =

𝜕𝑓

𝜕𝑢
(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑢
(𝑡) + 𝑝 (𝑡)

𝜕𝑏

𝜕𝑢
(𝑡)

+ 𝑞 (𝑡)
𝜕𝜎

𝜕𝑢
(𝑡) + ∫

R0

𝑟 (𝑡, 𝑧)
𝜕𝛾

𝜕𝑢
(𝑡, 𝑧) ] (𝑑𝑧) .

(26)
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Hence (25) simplifies to

0 = 𝐸[∑

𝑖≥1

(𝑝 (𝜏
𝑖
) 𝐶 (𝜏
𝑖
) +

𝜕𝑙

𝜕𝜂
(𝜏
𝑖
) − 𝜆 (𝜏

𝑖
)𝐷 (𝜏

𝑖
)) 𝜍
𝑖
]

+ 𝐸[∫

𝑇

0

𝜕𝐻

𝜕𝑢
(𝑡) 𝛽 (𝑡) 𝑑𝑡] ,

(27)

for all bounded (𝛽, 𝜍) ∈ AG. It is obvious that 𝛽(𝑡) is
independent of 𝜍(𝑡), 0 ≤ 𝑡 ≤ 𝑇. So we obtain from (27) that

𝐸[∫

𝑇

0

𝜕𝐻

𝜕𝑢
(𝑡) 𝛽 (𝑡) 𝑑𝑡] = 0, (28)

𝐸[∑

𝑖≥1

(𝑝 (𝜏
𝑖
) 𝐶 (𝜏
𝑖
) +

𝜕𝑙

𝜕𝜂
(𝜏
𝑖
) − 𝜆 (𝜏

𝑖
)𝐷 (𝜏

𝑖
)) 𝜍
𝑖
] = 0,

(29)

holds for all bounded 𝛽 ∈ UG and 𝜍 ∈ IG.
Now we prove that (17) holds for all 𝛽(𝑡) ∈ UG. We know

that (28) holds for all bounded 𝛽 ∈ UG. So (28) holds for all
bounded 𝛽 ∈ UG of the form

𝛽 (𝑡) = 𝛽
𝑠
(𝑡, 𝜔) = 𝜃 (𝜔) 𝜒

[𝑠,𝑇]
(𝑡) , 𝑡 ∈ [0, 𝑇] , (30)

for a fixed 𝑠 ∈ [0, 𝑇), where 𝜃(𝜔) is a boundedG
𝑠
-measurable

random variable. Then we have

𝐸[
𝜕𝐻

𝜕𝑢
(𝑠) 𝜃] = 0 (31)

which holds for all boundedG
𝑠
-measurable random variable

𝜃. As a result, we conclude that

𝐸[
𝜕𝐻

𝜕𝑢
(𝑠)



G
𝑠
] = 0. (32)

Moreover, since (29) holds for all bounded G
𝜏𝑖
-measurable

random variable 𝜍
𝑖
, we conclude that (18) holds. Therefore,

we conclude that (1) ⇒ (2).
(2) ⇒ (1) Each bounded 𝛽 ∈ U

𝐺
can be approximated by

linear combinations of controls 𝛽
𝑠
of the form.Thenwe prove

that (2) ⇒ (1) by reversing the above argument.

Remark 5. Let 𝑥 → ℎ
1
(𝑥), 𝑎 → ℎ

2
(𝑎), 𝜉 → 𝑙(𝑡, 𝜉), and

(𝑡, 𝑎, 𝑥, 𝑘, 𝑢) → 𝐻(𝑡, 𝑎, 𝑥, 𝑦, 𝑘, 𝑢, 𝜆) be concave, for all 𝑡 ∈

[0, 𝑇].Then the local critical point (𝑢, 𝜉), which is obtained by
Theorem 4, is also a global optimum for the control problem
(7).

Remark 6. Let G
𝑡
= F
𝑡
, 𝐾(𝑡, 𝑧) = 0, and 𝛾(𝑡, 𝑎, 𝑢, 𝑧) = 0.

Then ourmaximumprinciple (Theorem 4) coincideswith the
maximum principle (Theorem 3.1) in [11].

4. Application

Example 7 (portfolio optimization problem). In a financial
market, we are given a subfiltration

G
𝑡
⊆ F
𝑡

∀𝑡 ∈ [0, 𝑇] , (33)

representing the information available to the trader at time 𝑡.
Let 𝜉(𝑡) = ∑

𝑖≥1
𝜉
𝑖
1
[𝜏𝑖 ,𝑇]

(𝑡), 𝑡 ≤ 𝑇, be a piecewise
consumption process (see, e.g., [11]), where {𝜏

𝑖
} is a fixed

sequence of increasing G
𝑡
-stopping times and each 𝜉

𝑖
is an

G
𝜏𝑖
-measurable random variable. Then the wealth process

𝐴(𝑡) = 𝐴
𝑢,𝜂

(𝑡) corresponding to the portfolio 𝑢(𝑡) is given
by

𝑑𝐴 (𝑡) = 𝑢 (𝑡) [𝜁 (𝑡) 𝑑𝑡 + 𝜋 (𝑡) 𝑑𝐵 (𝑡)

+∫
R0

 (𝑡, 𝑧) �̃� (𝑑𝑡, 𝑑𝑧)] − 𝜛𝑑𝜉 (𝑡) ,

𝐴 (0) = 𝑎 > 0,

(34)

where 𝜛 ≥ 0, R
0
= R \ {0}, and 𝜋(𝑡) and (𝑡, 𝑧) are F

𝑡
-

predictable processes such that (𝑡, 𝑧) ≥ −1+𝜖 for some 𝜖 > 0

and

∫

𝑇

0

{
𝜁 (𝑡)

 + 𝜋
2

(𝑡) + ∫
R0


2

(𝑡, 𝑧) ] (𝑑𝑧)} 𝑑𝑡 < ∞ a.s.

(35)

Endowed with initial wealth 𝑎 > 0, an investor wants
to find a portfolio strategy 𝑢(⋅) and a consumption strategy
𝜉(⋅) minimizing an expected functional which composes of
three parts: the first part is the total utility of the consumption
−∫
𝑇

0

(𝑢
2

(𝑡)/2)𝑑𝑡; the second part represents the risk of the
terminal wealth 𝜌(𝐴(𝑇)) = 𝑋

−𝐴𝑢(𝑇)

𝑔
(0), where 𝑋−𝐴𝑢(𝑇)

𝑔
(0)

is the value at 𝑡 = 0 of the solution 𝑋(𝑡) of the following
backward stochastic differential equation ([19]):

𝑑𝑋 (𝑡) = −𝑔 (𝑡, 𝑋 (𝑡)) 𝑑𝑡 + 𝑌 (𝑡) 𝑑𝐵 (𝑡)

+ ∫
R0

𝐾 (𝑡, 𝑧) �̃� (𝑑𝑡, 𝑑𝑧) − 𝜗𝑑𝜉 (𝑡)

𝑋 (𝑇) = −𝐴 (𝑇) ;

(36)

and the third part is the utility derived from the consump-
tion process 𝜉(⋅). More precisely, for any admissible control
(𝑢(⋅), 𝜉(⋅)), the utility functional is defined by

𝐽 (𝑢 (⋅) , 𝜉 (⋅)) = 𝐸[

[

−∫

𝑇

0

𝑢
2

(𝑡)

2
𝑑𝑡 + 𝜌 (𝐴 (𝑇)) +

𝑆

2
∑

𝜏𝑖≤𝑇

𝜉
2

𝑖

]

]

,

(37)

where𝐸 denotes the expectation with respect to the probabil-
ity measure 𝑃, and 𝑆 > 0. Therefore, the control problem is to
find Φ(𝑎) and (𝑢∗(⋅), 𝜉∗(⋅)) such that

Φ (𝑎) = inf
(𝑢,𝜉)∈AG

𝐸[

[

−∫

𝑇

0

𝑢
2

(𝑡)

2
𝑑𝑡 + 𝜌 (𝐴 (𝑇)) +

𝑆

2
∑

𝜏𝑖≤𝑇

𝜉
2

𝑖

]

]

= 𝐸[

[

−∫

𝑇

0

𝑢
∗2

(𝑡)

2
𝑑𝑡 + 𝑋

−𝐴
𝑢
∗ (𝑇)

𝑔
(0) +

𝑆

2
∑

𝜏𝑖≤𝑇

𝜉
∗2

𝑖

]

]

.

(38)
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The control problem (38) is a classical and impulse
controls problem of forward-backward systems driven by
Lévy processes under partial information G

𝑡
. Next we solve

the control problem (38) byTheorem 4. With the notation of
the previous section we see that in Example 7 we have

𝑓 (𝑡, 𝑎, 𝑥, 𝑦, 𝑘, 𝑢, 𝜔) = −
𝑢
2

2
; ℎ

1
(𝑥) = 𝑥; ℎ

2
(𝑠, 𝜔) = 0;

𝑏 (𝑡, 𝑎, 𝑢, 𝜔) = 𝑢𝜁 (𝑡) ; 𝜎 (𝑡, 𝑎, 𝑢, 𝜔) = 𝑢𝜋 (𝑡) ;

𝛾 (𝑡, 𝑎, 𝑢, 𝑧, 𝜔) = 𝑢 (𝑡, 𝑧) ; 𝑙 (𝜏
𝑖
, 𝜉
𝑖
) =

𝑆

2
𝜉
2

𝑖
;

𝐶 (𝑡) = 𝜛; 𝐷 (𝑡) = 𝜗; 𝜇 = −1.

(39)

Then by (11) the Hamiltonian is

𝐻(𝑡, 𝑎, 𝑥, 𝑦, 𝑘, 𝑢, 𝜆, 𝜔) = −
𝑢
2

2
+ 𝜆 (𝑡) 𝑔 (𝑡, 𝑥)

+ 𝑢 (𝑡) 𝜁 (𝑡) 𝑝 (𝑡) + 𝑢 (𝑡) 𝜋 (𝑡) 𝑞 (𝑡)

+ ∫
R0

𝑢 (𝑡)  (𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) ,

(40)

where

𝑑𝑝 (𝑡) = 𝑞 (𝑡) 𝑑𝐵 (𝑡) + ∫
R0

𝑟 (𝑡, 𝑧) �̃� (𝑑𝑡, 𝑑𝑧)

𝑝 (𝑇) = − 𝜆 (𝑇) ,

(41)

and 𝜆(𝑡) is given by (12); that is,

𝑑𝜆 (𝑡) = 𝜆 (𝑡) 𝑔
𝑥
(𝑡, 𝑋 (𝑡)) 𝑑𝑡,

𝜆 (0) = 1,

(42)

where 𝑔
𝑥
(𝑡, 𝑥) = (𝜕/𝜕𝑥)𝑔(𝑡, 𝑥). We can easily obtain the

solution of (42) as follows:

𝜆 (𝑡) = exp{∫
𝑡

0

𝑔
𝑥
(𝑠, 𝑋 (𝑠)) 𝑑𝑠} ; 0 ≤ 𝑡 ≤ 𝑇. (43)

If (𝑢∗(𝑡), 𝜉∗(𝑡)) is a local critical point with corresponding
𝑋
∗

(𝑡) = 𝑋
(𝑢
∗
)

(𝑡), then, by the sufficient and necessary
optimality condition (17) in Theorem 4, we get

𝐸 [𝑢
∗

(𝑡) | G
𝑡
] = 𝐸 [𝜁 (𝑡) 𝑝 (𝑡) + 𝜋 (𝑡) 𝑞 (𝑡)

+∫
R0

 (𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) | G
𝑡
] .

(44)

Since 𝑢∗(𝑡) isG
𝑡
-adapted, we have

𝑢
∗

(𝑡) = 𝐸 [𝜁 (𝑡) 𝑝 (𝑡) + 𝜋 (𝑡) 𝑞 (𝑡)

+∫
R0

 (𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) | G
𝑡
] ,

(45)

where 𝑝(𝑡), 𝑞(𝑡), and 𝑟(𝑡, 𝑧) are given by (41).

On the other hand, by the sufficient and necessary opti-
mality condition (17) in Theorem 4, we obtain

∑

𝜏𝑖<𝑇

𝐸 [𝑆𝜉
∗

𝑖
+ 𝜛𝑝 (𝜏

𝑖
) − 𝜗𝜆 (𝜏

𝑖
) | G
𝜏𝑖
] = 0. (46)

That is, for each 𝜏
𝑖
< 𝑇, we have

𝐸 [𝜉
∗

𝑖
| G
𝜏𝑖
] =

1

𝑆
𝐸 [𝜗𝜆 (𝜏

𝑖
) − 𝜛𝑝 (𝜏

𝑖
) | G
𝜏𝑖
] . (47)

Since 𝜉
𝑖
is anG

𝜏𝑖
-measurable random variable, we have

𝜉
∗

𝑖
=
1

𝑆
𝐸 [𝜗𝜆 (𝜏

𝑖
) − 𝜛𝑝 (𝜏

𝑖
) | G
𝜏𝑖
] , (48)

where 𝜆(𝑡) is given by (43) and 𝑝(𝑡) is given by (41). Con-
sequently, we summarize the above results in the following
theorem.

Theorem 8. Let 𝑝(𝑡), 𝑞(𝑡), and 𝑟(𝑡, 𝑧) be the solutions of (41)
and let 𝜆(𝑡) be the solution of (43). Then the pair (𝑢∗(𝑡), 𝜉∗(𝑡))
is given by

𝑢
∗

(𝑡) = 𝐸 [𝜁 (𝑡) 𝑝 (𝑡) + 𝜋 (𝑡) 𝑞 (𝑡)

+∫
R0

 (𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) | G
𝑡
] ,

𝜉
∗

(𝑡) = ∑

𝑖≥1

𝜉
∗

𝑖
1
[𝜏𝑖 ,𝑇]

(𝑡) , 𝑡 ≤ 𝑇,

(49)

where 𝜉∗
𝑖
given by (48) is the local critical point of the classical

and impulse controls problem (38).

5. Conclusion

We consider the partial information classical and impulse
controls problem of forward-backward systems driven by
Lévy processes. The control variable consists of two com-
ponents: the classical stochastic control and the impulse
control. Because of the non-Markovian nature of the par-
tial information, dynamic programming principle cannot
be used to solve partial information control problems. As
a result, we derive a maximum principle for this partial
information problem. Because the concavity conditions of the
utility functions and the Hamiltonian process may not hold
in many applications, we give the sufficient and necessary
optimality conditions for the local critical points of the
control problem. To illustrate the theoretical results, we use
the maximum principle to solve a portfolio optimization
problem with piecewise consumption processes and give its
explicit solutions.

In this paper, we assume that the two different jumps in
our system do not occur at the same time (Assumption 1).
This assumption makes the problem easier to analyze. How-
ever, it may fail in many applications. Without this assump-
tion, it requiresmore attention to distinguish between the two
different jumps.Thiswill be explored in our subsequentwork.
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This paper studies the consensus problem of multiagent system with packet losses and communication delays under directed
communication channels. Different fromprevious research results, a novel control protocol is proposed depending only on periodic
sampling and transmitting data in order to be convenient for practical implementation. Due to the randomicity of transmission
delays and packet losses, each agent updates its input value asynchronously at discrete time instants with synchronized time stamped
information and evolves in continuous time. Consensus conditions for multiagent system consists of three typical dynamics
including single integrator, double integrator, and high-order integrator that are all discussed in this paper. It is proved that, for
single integrator agents and double integrator systems with only communication delays, consensusability can be ensured through
stochastic matrix theory if the designed communication topology contains a directed spanning tree. While, for double integrator
agents and high-order integrator agents with packet losses and communication delays, the interval system theory is introduced to
prove the consensus of multiagent system under the condition that the designed communication topology is a directed spanning
tree. Finally, simulations are carried out to validate the effectiveness of the proposed solutions.

1. Introduction

Consensus of multiagent system has attracted increasing
focuses of researchers from different areas including multiple
robotics system, large-scale oceanographic survey, and wire-
less sensor networks [1–4]. Among all the problems studied
aiming at achieving consensus through local interaction,
packet losses and communication delays that usually result
from unreliable communication links are significant factors
which influence the consensusability of multiagent system
[5–25]. Considering those problems, three typical agent
dynamics, single integrator [5, 9, 16, 23], double integrator
[6, 8, 10, 12, 14, 17, 18], and high-order integrator [11, 15], are
most widely discussed because they can represent a majority
of autonomous systems.

Even though plenty of research results have been carried
out about consensus problem of multiagent systems with
communication delays, most of the controllers designed
cannot be easily practiced. Take two typical controllers; for
example, in Gao and Wang [10], the structure of controller
implies that each agent has to memorize system states all the

time between two sampling instants because of the randomic-
ity of communication delay. In Lin and Jia [12], to deploy the
control protocol, each agent has to broadcast the information
all the time and only one transmitted data is useful to
calculate the control input. In both cases, system resources
are wasted to some extent, especially for embedded systems
whose resources are ordinarily limited. So in this paper, in
order to be convenient for practical implementation and
economical for limited system resource, a novel controller
structure is proposed depending only on periodic sampling
and transmitting data which is the main contribution of
this paper. Compared with previously proposed solutions,
this protocol greatly relieves the computational burden of
each agent. In addition, with this control protocol, it is
worth being noticed that since the communication delays
are random, each agent updates its input asynchronously
at discrete time instants based on received data. But the
information transmitted iswith synchronized time stamp and
the whole system evolves in continuous time.

With the proposed control protocol, interaction topology
is time varying due to communication delays and packet
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losses. Also, many research results about consensus of multi-
agent systems with dynamically changing topology have been
obtained based on stochastic matrix theory and Lyapunov
theory.However, Lyapunov theory usually needs the topology
to be undirected or balanced [7, 13, 14]. When random trans-
mission delays and packet losses are concerned, undirected or
balanced assumption is unreasonable. With the novel control
protocol proposed in this paper, it will be shown that, for
single integrator agent and second order agent without packet
losses, similar results can be obtained as in [8, 9] according
to stochastic matrix theory. That is, the consensus can be
reached as long as the designed communication topology
contains a directed spanning tree. However, when it comes
to second order and high-order agent with packet losses and
communication delays, stochastic theory is no longer easily
applicable since the nonnegativity of the systemmatrix is not
always guaranteed. Actually, to the best of the authors’ knowl-
edge, few results have been obtained to handle this problem.
Based on the theory of interval matrix, it will be proved that
the consensus of the system can be reached as long as the
designed communication topology is a directed spanning tree
which is another contribution of this paper. Of course, in this
situation, the states of all agents will converge to the root
node and average consensus cannot be obtained. However,
this assumption can also simplify the system architecture
indicating that one agent can only receive message from its
superior and send information to its inferiors; this kind of
hierarchy structure is actually more efficient and convenient
in real-world application. Since the protocol proposed in this
paper can be easily implemented for system with limited
resources and unreliable communication links, it would have
a wide application prospect in multiple autonomous systems,
especially for multiple marine systems such AUVs, UUVs,
and USVs, that rely on acoustic communication which is
characterized by intermittent failures and latency [16].

The rest of the paper is organized as follows. In Sec-
tion 2, preliminaries are presented and problems concerned
are formulated. In Section 3, consensus of the multiagent
system with single integrator, double integrator, and high-
order integrator are analyzed under different situations. And
simulations to prove the results are given in Section 4.
Conclusions are made in Section 5.

2. Preliminaries and Problem Formulation

2.1. Graph Theory. Graph theory has played an important
role in analysis of multiagent systems for its advantages in
modeling the interactions between agents. As graph theory
has been introduced in many relative articles, only necessary
notations are put forward here. Consider a system with 𝑛

agents and the topology graph consists of a vertex set 𝜐 =

{1, 2, . . . , 𝑛}, an edge set 𝜀 = {(𝑗, 𝑖) : 𝑖, 𝑗 ∈ 𝜐} ⊆ 𝜐 × 𝜐, and
an adjacent matrix 𝐴 = [𝑎

𝑖𝑗
] ∈ 𝑅

𝑛×𝑛. If 𝜀
𝑗𝑖
∈ 𝜀, then 𝑎

𝑖𝑗
> 0

which means that agent 𝑖 can receive information from agent
𝑗; else 𝑎

𝑖𝑗
= 0. The set of neighbors of agent 𝑖 is denoted by

𝑁
𝑖
= {𝜐
𝑗
: (𝜐
𝑗
, 𝜐
𝑖
) ∈ 𝜀}. A directed spanning tree is a graph

that has one node called root node, which has a directed path

to all of the other nodes. The Laplacian matrix 𝐿 ∈ 𝑅
𝑛×𝑛 is

defined as follows:

𝐿 =

{{

{{

{

−𝑎
𝑖𝑗
, 𝑖 ̸= 𝑗; 𝑖, 𝑗 ∈ 𝜐

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
.

(1)

The following definitions are introduced for further
discussion.

Definition 1 (subgraph [8]). Considering a topology graph
𝐺 = (𝜐, 𝜀, 𝐴), then 𝐺

1
= (𝜐
1
, 𝜀
1
, 𝐴
1
) is a subgraph of 𝐺 if

(1) 𝜐
1
⊆ 𝜐; (2) 𝜀

1
⊆ 𝜀.

Definition 2 (union of graphs [7]). Set the union of topology
graphs 𝐺

𝑘
= (𝜐
𝑘
, 𝜀
𝑘
, 𝐴
𝑘
) as 𝐺 = (𝜐, 𝜀, 𝐴); then, (1) 𝜐

𝑘
∈ 𝜐;

(2) 𝜀
𝑘
∈ 𝜀.

2.2. Control Protocol. In this paper, system states are sampled
and transmitted at discrete instants and the controller is
designed based on the periodic sampling and transmitting
information. For agent 𝑖, control input between [𝑡

𝑘
, 𝑡
𝑘+1

) can
be presented as follows:

𝑢
𝑖
(𝑡) = 𝐾∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑡) (𝑥
𝑗
(𝑡
𝑘
) − 𝑥
𝑖
(𝑡
𝑘
)) 𝑡

𝑘
≤ 𝑡 < 𝑡

𝑘+1
, (2)

where 𝐾 is controller gain with proper dimension to be
decided, the value of 𝑎

𝑖𝑗
(𝑡) should be defined as

𝑎
𝑖𝑗
(𝑡) = {

0 𝑡
𝑘
≤ 𝑡 < 𝑡

𝑘
+ 𝜏
𝑖𝑗
(𝑘)

1 𝑡
𝑘
+ 𝜏
𝑖𝑗
(𝑘) ≤ 𝑡 < 𝑡

𝑘+1
.

(3)

In the above equation, 𝜏
𝑖𝑗
(𝑘) denotes the transmission delay

between agent 𝑖 and agent 𝑗 during the period [𝑡
𝑘
, 𝑡
𝑘+1

).
From the structure of the controller, it is obvious that the
control input is not constant during [𝑡

𝑘
, 𝑡
𝑘+1

) and each agent
in the system updates its input asynchronously. It is also
worth noticing that (3) implies that 𝜏

𝑖𝑗
< 𝑡
𝑘+1

− 𝑡
𝑘
, which is

not necessarily guaranteed for communication system with
random delays. So the following assumption is introduced
about communication delays.

Assumption 3 (bounded transmission delays). There exist
positive constant values 𝜏min and 𝜏

𝑖𝑗
denoting the delay

between agent 𝑖 and agent 𝑗; 𝑇 presents the time period for
sampling and transmitting data. The following condition is
satisfied;

𝑇 − 𝜏
𝑖𝑗
(𝑘) > 𝜏min, for any 𝑘. (4)

From a practical point of view, it can be assumed that,
for any packet with transmission delay that cannot satisfy
Assumption 3, the packets are regarded as being lost.

2.3. Model. With the proposed control algorithm as in (2),
the multiagent systems consist of three typical dynamics that
are concerned. And the corresponding discrete-time system
presentations are also presented in Table 1.
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For 𝑚th high-order system, the matrices 𝐴 and 𝐵 are as
follows:

𝐴 =

[
[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 d
...

0 0 0 d 0

...
...

... d 1

0 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]

]

∈ R𝑚×𝑚,

𝐵 = [0 ⋅ ⋅ ⋅ 0 1]
𝑇

∈ R𝑚×1.

(5)

Definition 4 (consensus [11]). Consensus of the multiagent
system is regarded as being achieved when the following
equation is satisfied:

lim
𝑡→∞


𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


= 0, ∀𝑖, 𝑗 ∈ 𝜐. (6)

3. Consensus of Multiagent System

In this section, consensus problem of multiagent system
consists of different agent dynamics that is discussed sep-
arately. With proper assumptions made, we have proposed
the conditions needed for consensusability of the multiagent
system.

3.1. Case 1: Single Integrator Agent

3.1.1. With Communication Delays and No Packet Losses.
Define 𝑋(𝑡) = [𝑥

1
(𝑡) 𝑥
2
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑛
(𝑡)]
𝑇as the state of

the multiagent system. Since it can be easily extended to
multistate through Kronecker production, it is assumed here
that each agent has only one state for briefness of description.
Based on the controller as (2) and the discrete time model in
Table 1, the dynamics of multiagent system can be denoted by

𝑋(𝑡
𝑘+1

) = (𝐼 − 𝛼 (𝑡
0
𝐿
0
+ 𝑡
1
𝐿
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑚
𝐿
𝑚
))𝑋 (𝑡

𝑘
) ,

(7)

where controller gain 𝐾 is presented as 𝛼 ∈ 𝑅 in this
case. Because of transmission delays, Laplacian matrix is not
invariant. So 𝐿

0
, 𝐿
1
, . . . , 𝐿

𝑚
represent the Laplacian matrices

that exist during [𝑡
𝑘
, 𝑡
𝑘+1

) and 𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑚
are the durations

for corresponding Laplacian matrices satisfying 𝑡
0
+ 𝑡
1
+ ⋅ ⋅ ⋅ +

𝑡
𝑚
= 𝑇. In fact, 𝐿

0
is a Laplacian matrix with no connections

between agents and since no packet losses are concerned,
for any 0 ≤ 𝑖 ≤ 𝑚 − 1, the topology associated with 𝐿

𝑖

is a subgraph of the topology associated 𝐿
𝑖+1

. To prove the
consensusability of discrete-time system as in (7), following
lemmas about nonnegative matrix and stochastic matrix are
introduced beforehand.

Lemma 5 (see [26]). Let 𝑀 ∈ R𝑛×𝑛 be a stochastic matrix. If
𝑀 has an eigenvalue 𝜆 = 1 with algebraic multiplicity equal to
one and all of the other eigenvalues satisfy |𝜆| < 1, then 𝑀 is
SIA. That is, lim

𝑛→∞
𝑀
𝑛

→ 1𝑦𝑇.

Lemma 6 (see [9]). A stochastic matrix has algebraic mul-
tiplicity equal to one for its eigenvalue 𝜆 = 1 if and

only if the graph associated with the matrix has a spanning
tree. Furthermore, a stochastic matrix with positive diagonal
elements has the property that |𝜆| < 1 for every eigenvalue not
equal to one.

Lemma 7 (see [27]). Let 𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑘
be a finite set of SIA

matrices with property that, for each sequence 𝑆
𝑖1
, 𝑆
𝑖2
, . . . , 𝑆

𝑖𝑗
of

positive length, the matrix product 𝑆
𝑖𝑗
𝑆
𝑖𝑗−1

⋅ ⋅ ⋅ 𝑆
𝑖1
is SIA. Then,

for each infinite sequence 𝑆
𝑖1
, 𝑆
𝑖2
, . . ., there exists a column

vector 𝑦 such that lim
𝑗→∞

𝑆
𝑖𝑗
, 𝑆
𝑖𝑗−1

, . . . , 𝑆
𝑖1
= 1𝑦𝑇.

Lemma 8 (Gershgorin circle criterion [28]). All eigenvalues
of a matrix 𝐸 = [𝑒

𝑖𝑗
] ∈ 𝑅
𝑁×𝑁 are located within the union of

𝑁 discs as follows:

𝑁

⋃

𝑖=1

{

{

{

𝑧 ∈ 𝐶 :
𝑧 − 𝑒
𝑖𝑖

 ≤ ∑

𝑗 ̸= 𝑖


𝑒
𝑖𝑗



}

}

}

. (8)

Lemma 9 (see [29]). Let 𝑚 ≥ 2 be a positive integer and let
𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑚
be nonnegative matrices with positive diagonal

elements; then, 𝑃
1
𝑃
2
⋅ ⋅ ⋅ 𝑃
𝑚
≥ 𝛾(𝑃
1
+𝑃
2
+ ⋅ ⋅ ⋅ + 𝑃

𝑚
), with 𝛾 > 0.

And if the digraph associated with 𝛾(𝑃
1
+ 𝑃
2
+ ⋅ ⋅ ⋅ + 𝑃

𝑚
) has a

spanning tree, the graph associated with 𝑃
1
𝑃
2
⋅ ⋅ ⋅ 𝑃
𝑚
also has a

spanning tree.

Besides, some assumptions also need to be proposed.

Assumption 10 (quantized transmission delays). There exists
a small positive value Δ such that, for all 𝑖, 𝑗 ∈ 1, 2, . . . , 𝑛,

𝜏
𝑖𝑗
(𝑘) = 𝑞Δ, 𝑞 ∈ 1, 2, . . . , 𝑚

𝑞
. (9)

Assumption 10 indicates that transmission delays can be
quantized and must be a multiple of fundamental delay time
Δ. Assumption 10 is realizable and practical because all agents
are operated under digital computers and the smaller the Δ
is, the higher the accuracy is.

Assumption 11. The designed communication topology for
the multiagent system has a directed spanning tree.

This assumption means that if there are no packet losses
and communication delays, the topology of the multiagent
system has a spanning tree at every instant 𝑡

𝑘
. Combing with

Assumption 3, it can be derived that the union of digraphs
associated with 𝐿

0
, 𝐿
1
, . . . , 𝐿

𝑚
has a directed spanning tree.

Then based on introduced lemmas and assumptions, the
consensus of the system described as in (7) can be proposed.

Theorem 12. For multiagent system consisting of single inte-
grator dynamics, with control protocol designed as (2) and
Assumptions 3–11, the consensus of the multiagent system can
be reached if the controller gain is set to be 𝛼 = 1/𝑇𝑑max,
where 𝑑max is the largest in-degree of the Laplacian matrices
𝐿
0
, 𝐿
1
, . . . 𝐿
𝑚
.

Proof. First of all, since there are a limited number of possible
Laplacian matrices for fixed number of agents, 𝑑max can be
precalculated without consideration about communication
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delays; then, it can be viewed as a constant in subsequent
presentation. By substituting𝛼 = 1/𝑇𝑑max into (7), the system
can be transformed as

𝑋(𝑡
𝑘+1

) = (𝐼 −
1

𝑑max
(
𝑡
0

𝑇
𝐿
0
+
𝑡
1

𝑇
𝐿
1
+ ⋅ ⋅ ⋅ +

𝑡
𝑚

𝑇
𝐿
𝑚
))𝑋 (𝑡

𝑘
)

= 𝑀
𝑘
𝑋(𝑡
𝑘
) .

(10)

Since Assumption 11 holds and there are no packet losses,
𝐿
𝑚
has a spanning tree and the interaction graphs associated

with 𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑚−1
are subgraphs of the topology associ-

ated with 𝐿
𝑚
. Then, for the union of graphs 𝐿

0
, 𝐿
1
, . . . , 𝐿

𝑚−1
,

there is a simple eigenvalue equal to zero. According to
Lemma 8, it is not difficult to conclude that all of other
eigenvalues of (1/𝑑max)((𝑡0/𝑇)𝐿0+(𝑡1/𝑇)𝐿1+⋅ ⋅ ⋅+(𝑡𝑚/𝑇)𝐿𝑚)
are located within the circle with origin point of (1, 0) and
radius of 1. Thus, it can be obtained that 𝑀

𝑘
is a matrix

with simple eigenvalues equal to one and the others within
the unit circle of the complex plane which means that the
topology associated with 𝑀

𝑘
has a spanning tree according

to Lemma 6.
In addition, since all the nondiagonal entries of Laplacian

matrices are nonpositive, the nondiagonal entries of 𝑀
𝑘

are nonnegative. All diagonal elements of 𝑀
𝑘
are less than

one due to the choice of 𝛼. And since Laplacian matrices
𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑚
all have zero row sums,𝑀

𝑘
has row sum equal

to one; that is, 𝑀
𝑘
is a stochastic matrix. As a conclusion,

𝑀
𝑘
is a stochastic nonnegative matrix with positive diagonal

elements and it can be derived from Lemma 5 that𝑀
𝑘
is SIA.

Because 𝑀
𝑘
has a spanning tree, 𝑀

𝑘
𝑀
𝑘+1

⋅ ⋅ ⋅𝑀
𝑘+𝑙

also
has a spanning tree according to Lemma 9. In addition, the
stochastic matrices with positive diagonal entries are closed
undermatrixmultiplication, so that𝑀

𝑘
𝑀
𝑘+1

⋅ ⋅ ⋅𝑀
𝑘+𝑙

is also a
stochastic matrix with positive diagonal elements. According
to Lemmas 6 and 5, the matrix𝑀

𝑘
𝑀
𝑘+1

⋅ ⋅ ⋅𝑀
𝑘+𝑙

is SIA.
With Assumption 10, it can be derived that there is a finite

number of𝑀
𝑘
. After that, Lemma 7 can be applied to acquire

that the multiagent system as in (10) can reach a consensus.
Theorem 12 is proved.

3.1.2. With Packet Losses and Communication Delays. In
the above section, consensus problem with communication
delays has been solved that lay firm foundation for the
problem concerned in the situation where packet losses must
be taken into consideration. In this case, Assumption 3 is no
longer satisfied. As mentioned previously, Assumption 3 is
a relative strict condition to be fulfilled in practice. So the
following assumption is proposed in addition.

Assumption 13. Set the success ratio of transmission between
two agents as 𝑝 ∈ (0, 1), ∀𝜇 ∈ (0, 1); there exists an integer
𝑙 that satisfies 1 − (1 − 𝑝)

𝑙

> 𝜇. If 𝜇 is chosen to be close
to 1 enough, it is reasonable to assume that the transmission
can be successful for at least one time during 𝑙 periods.
Besides, under Assumption 13, the communication delay
can still satisfy Assumption 3 for the successful transmitted
information.WithAssumption 11, this assumption essentially

means that the union of digraphs within 𝑙 periods has a
directed spanning tree.

Theorem 14. For multiagent system consisting of single inte-
grator dynamics satisfying Assumptions 10–13, with control
protocol designed as in (2), the consensus of the multiagent
system can be reached with the same controller gain 𝛼 adopted
as in Theorem 12.

Proof. In this situation, since Assumption 3 is no longer
satisfied all the time, 𝐿

𝑚
cannot always have a spanning tree.

However, according to Assumptions 11 and 13, the digraph
associated with𝑀

𝑘
+𝑀
𝑘+1

+⋅ ⋅ ⋅+𝑀
𝑘+𝑙−1

will have a spanning
tree. Since 𝑀

𝑘
is still a stochastic nonnegative matrix with

positive diagonal elements, Lemma 9 still holds; that is, the
relation 𝑀

𝑘
𝑀
𝑘+1

⋅ ⋅ ⋅𝑀
𝑘+𝑙−1

≥ 𝛾(𝑀
𝑘
+ 𝑀
𝑘+1

+ ⋅ ⋅ ⋅ + 𝑀
𝑘+𝑙−1

)

exists. Thus, define 𝑄
𝑘,𝑙

= 𝑀
𝑘
𝑀
𝑘+1

⋅ ⋅ ⋅𝑀
𝑘+𝑙−1

such that

𝑋(𝑡
𝑘+𝑙

) = 𝑀
𝑘
𝑀
𝑘+1

⋅ ⋅ ⋅𝑀
𝑘+𝑙−1

𝑋(𝑡
𝑘
) = 𝑄

𝑘,𝑙
𝑋(𝑡
𝑘
) . (11)

Since𝑄
𝑘,𝑙
is a stochastic nonnegative matrix with positive

diagonal elements and the associated graph has a spanning
tree, the problem regarding packet losses and communication
delays can be handled in a similar way as in proof of The-
orem 12. So, the consensusability of multiagent system with
packet losses and communication delays is guaranteed.

Remark 15. Based on the analysis of this section, it can be
found that Theorem 12 can be viewed as a special case of
Theorem 14 with 𝑙 = 1. With the proposed control protocol
and proper choice of controller gain, the multiagent system
can reach consensus as long as the union of the digraphs
within finite periods has a spanning tree.

3.2. Case 2: Double Integrator Agent

3.2.1. With Communication Delays and No Packet Losses. For
second order multiagent system, the corresponding variables
are defined as 𝑋(𝑡) = [𝑥

1
(𝑡) 𝑥
2
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑛
(𝑡)]
𝑇, 𝑉(𝑡) =

[V
1
(𝑡) V
2
(𝑡) ⋅ ⋅ ⋅ V

𝑛
(𝑡)]
𝑇, respectively. Then based on the

discrete time model of second order system in Table 1, it can
be obtained that for agent 𝑖

V
𝑖
(𝑡
𝑘+1

) = V
𝑖
(𝑡
𝑘
) + ∑

𝑗∈𝑁𝑖 ,𝑗=0

(𝑇 − 𝜏
𝑖𝑗
(𝑘)) 𝑢

𝑖𝑗
(𝑘) , (12)

𝑥
𝑖
(𝑡
𝑘+1

) = 𝑥
𝑖
(𝑡
𝑘
) + 𝑇V

𝑖
(𝑡
𝑘
)

+ ∑

𝑗∈𝑁𝑖 ,𝑗=0

(𝑇 − 𝜏
𝑖𝑗
(𝑘))
2

2
𝑢
𝑖𝑗
(𝑘) ,

(13)

where 𝑢
𝑖𝑗
(𝑘) is the control input results from the relative state

information between agent 𝑖 and agent 𝑗. 𝑢
𝑖0

denotes the
default control value of agent 𝑖 that is usually set as 0 and
𝜏
𝑖0
= 0 since the input is default.
To make (13) more concise, some transformations need

to be carried out. Set 𝑢
𝑖𝑗
(𝑘) = (2/(𝑇 − 𝜏

𝑖𝑗
(𝑘))
2

)𝑢


𝑖𝑗
(𝑘).

The transformation process is applicable because, during the
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period [𝑡
𝑘
, 𝑡
𝑘+1

), 𝜏
𝑖𝑗
(𝑘) are known to the agent 𝑖. Equations (12)

and (13) are revised as

V
𝑖
(𝑡
𝑘+1

) = V
𝑖
(𝑡
𝑘
) + ∑

𝑗∈𝑁𝑖 ,𝑗=0

2

(𝑡
𝑘+1

− 𝜏
𝑖𝑗
)

𝑢


𝑖𝑗
,

𝑥
𝑖
(𝑡
𝑘+1

) = 𝑥
𝑖
(𝑡
𝑘
) + 𝑇V

𝑖
(𝑡
𝑘
) + ∑

𝑗∈𝑁𝑖 ,𝑗=0

𝑢


𝑖𝑗
.

(14)

With the controller gain chosen as 𝐾 = [𝛼 𝛽], 𝑢
𝑖𝑗
(𝑘) =

𝛼(𝑥
𝑗
(𝑡
𝑘
) − 𝑥
𝑖
(𝑘)) + 𝛽(V

𝑗
(𝑡
𝑘
) − V
𝑖
(𝑘)). The dynamics of the

multiagent system can be presented as

[
𝑋 (𝑡
𝑘+1

)

𝑉 (𝑡
𝑘+1

)
] = [

𝐼
𝑛
− 𝛼𝐿
𝑘

𝑇𝐼
𝑛
− 𝛽𝐿
𝑘

−𝛼𝐿


𝑘
𝐼
𝑛
− 𝛽𝐿


𝑘

] [
𝑋 (𝑡
𝑘
)

𝑉 (𝑡
𝑘
)
] . (15)

Aswe know, topology associatedwith 𝐿
𝑘
will have a span-

ning tree if Assumption 11 holds. 𝐿
𝑘
has the same structure

as 𝐿
𝑘
except for all its items that have been multiplied by

2/(𝑇 − 𝜏
𝑖𝑗
(𝑘)). Thus, topology of 𝐿

𝑘
also has a spanning tree.

The consensus problem for system depicted as (15) can be
discussed in a similar way as in Cao and Ren [8].

Lemma 16 (Cao and Ren [8]). With the decomposition of
system transfer matrix as in (16), since 𝐿

𝑘
, 𝐿
𝑘
all have spanning

tree, if the conditions (1) and (2) are satisfied, consensus of the
system can be reached

[
𝐼
𝑛
− 𝛼𝐿
𝑘

𝑇𝐼
𝑛
− 𝛽𝐿
𝑘

−𝛼𝐿


𝑘
𝐼
𝑛
− 𝛽𝐿


𝑘

]

= [
𝐼
𝑛
− 𝑇𝐼
𝑛
− 𝛼𝐿
𝑘

𝑇𝐼
𝑛
− 𝛽𝐿
𝑘

𝑇𝐼
𝑛
− 𝛼𝐿


𝑘
𝐼
𝑛
− 𝑇𝐼
𝑛
− 𝛽𝐿


𝑘

] + [
𝑇𝐼
𝑛

0
−𝑇𝐼
𝑛

𝑇𝐼
𝑛

] .

(16)

(1) 𝐼
𝑛
−𝑇𝐼
𝑛
−𝛼𝐿
𝑘
, (1−𝑇)𝐼

𝑛
−𝛽𝐿


𝑘
are nonnegativematrices

with positive diagonal entries and𝑇𝐼
𝑛
−𝛽𝐿
𝑘
, 𝑇𝐼
𝑛
−𝛼𝐿


𝑘

are nonnegative matrices.

(2) The infinite norm of matrix [ 𝑇𝐼𝑛 0
−𝑇𝐼𝑛 𝑇𝐼𝑛

] is less than 1.

The first condition is aimed to guarantee that the first
matrix is a nonnegative one with positive diagonal entries.
In addition, it is not difficult to find that the matrix is also
stochastic.Then the matrix is SIA and Lemma 7 is applicable.
And the second condition is to make sure that multiplication
of infinite number of the second matrix goes to zero. More
detailed proofs can be found in Cao and Ren [8].

Theorem 17. For multiagent system consisting of double inte-
grator agents, with Assumptions 3–11 holding, if the sampling
and transmitting period 𝑇 and controller gain𝐾 can satisfy the
following conditions, the consensus of the multiagent system is
guaranteed:

(1) 1/4 < 𝑇 < 1/2;

(2) 𝛼 = 𝛽 = 𝜏min/4𝑑max.

Proof. If condition (1) is satisfied, the infinite norm of matrix
[
𝑇𝐼𝑛 0
−𝑇𝐼𝑛 𝑇𝐼𝑛

] is less than 1. Define 𝑑max, 𝑑


max that represent the
largest in-degree for 𝐿

𝑘
, 𝐿


𝑘
, respectively. 𝑑max is random due

to the randomicity of transmission delays. From Assump-
tion 3, it is obvious that

𝜏min𝑑


max < 𝑑max. (17)

Then, with the second condition, it can be acquired that

sup( 𝜏min
4𝑑max

𝑑


max) <
1

4
. (18)

As a result,𝑇−𝛼𝑑max > 0. Besides, it is not difficult to find
that 1 − 𝑇 − 𝛽𝑑



max > 0 since 𝜏min < 𝑇. As a result, it can be
concluded that if the conditions are satisfied, Lemma 16 is also
fulfilled and the consensusability of the multiagent system
with double integrator dynamics is proved.

3.2.2. With Communication Delays and Packet Losses. For
second order system with packet losses, Assumption 11
cannot hold and the Laplacian matrices 𝐿

𝑘
, 𝐿
𝑘
discussed

in the above section no longer have a spanning tree all the
time. In this situation, Lemma 16 cannot directly be applied.
Inspired byQin et al. [17], a covariable can be introduced here
with definition as

𝑦
𝑖
(𝑡
𝑘
) = 𝑎V

𝑖
(𝑡
𝑘
) + 𝑏𝑥

𝑖
(𝑡
𝑘
) , (19)

where 𝑎, 𝑏 are constant parameters. It is easily derived that if
𝑥(𝑡
𝑘
) and𝑦(𝑡

𝑘
) can reach consensus, the velocity of the system

will also achieve consensus. So in the following discussion,
the consensus problem of system states 𝑥(𝑡

𝑘
) and 𝑦(𝑡

𝑘
) is

concerned. Besides, default control of agent 𝑖 also needs to
be set as 𝑢

𝑖0
= −𝑐V

𝑖
(𝑡
𝑘
), 𝑖 ∈ {1, 2, . . . , 𝑛}.

As a result, themultiagent system can be transformed into

[
𝑥 (𝑡
𝑘+1

)

𝑦 (𝑡
𝑘+1

)
] =

[
[
[

[

(1 −
𝑏𝑇

𝑎
(1 − 𝑐𝑇)) 𝐼

𝑛
− (𝛼 −

𝑏𝛽

𝑎
)𝐿
𝑘

𝑇

𝑎
(1 − 𝑐𝑇) 𝐼

𝑛
−
𝛽

𝑎
𝐿
𝑘

(𝑐𝑏𝑇 −
𝑏
2

𝑇

𝑎
(1 − 𝑐𝑇)) 𝐼

𝑛
− (𝛼 −

𝑏𝛽

𝑎
)𝐿


𝑘
(
𝑏𝑇

𝑎
(1 − 𝑐𝑇) + 1 − 𝑐𝑇) 𝐼

𝑛
−
𝛽

𝑎
𝐿


𝑘

]
]
]

]

[
𝑥 (𝑡
𝑘
)

𝑦 (𝑡
𝑘
)
] . (20)

With proper choices of parameters 𝛼, 𝛽, 𝑎, 𝑏, and 𝑇, the
system matrix can be a nonnegative stochastic matrix with

positive diagonal elements. In fact, to ensure that the transfer
matrix is stochastic, 𝑏 ≡ 1. Then if Assumption 13 holds, the
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system described as (20) can reach a consensus with similar
proof as Theorem 14. However, because of the existence
of default control input, the consensus value of system
velocity is zero which is usually the case for rendezvous
problem not for formation control or flocking. So in order to
obtain the consensus for multiagent system without adding
the control input 𝑢

𝑖0
, in the subsequence of this paper, a

different assumption about interaction topology needs to be
made.

Assumption 18. The designed communication topology for
the multiagent system is a directed spanning tree. Similarly,
with Assumption 13, this assumption essentially means that

the union of digraphs within 𝑙 periods is a directed spanning
tree.

Consider two agents 𝑖, 𝑗 and assume that there is a
directed link from agent 𝑖 to 𝑗. According to Assumption 13,
there exist a positive integer 𝑔 with 1 ≤ 𝑔 ≤ 𝑙 such
that the data transmission is successful during the period
[𝑡
𝑘+𝑔−1

, 𝑡
𝑘+𝑔

) and packets dropout during the previous 𝑔 − 1

periods. Define the delay during [𝑡
𝑘+𝑔−1

, 𝑡
𝑘+𝑔

) as 𝜏
𝑖𝑗
(𝑡
𝑔

𝑘
)which

satisfies Assumption 3. Adopt the controller gain as 𝛼
𝑗
(𝑡
𝑔

𝑘
) =

𝛽
𝑗
(𝑡
𝑔

𝑘
) = (𝑇 − 𝜏

𝑖𝑗
(𝑡
𝑔

𝑘
))/4 and the following dynamics can be

obtained for agents 𝑖 and 𝑗:

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑥
𝑖
(𝑡
𝑘+𝑔

)

𝑥
𝑗
(𝑡
𝑘+𝑔

)

V
𝑖
(𝑡
𝑘+𝑔

)

V
𝑗
(𝑡
𝑘+𝑔

)

]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 𝑔𝑇 0

(𝑇 − 𝜏
𝑖𝑗
(𝑡
𝑔

𝑘
))

4
1 −

(𝑇 − 𝜏
𝑖𝑗
(𝑡
𝑔

𝑘
))

4

𝑇 − 𝜏
𝑖𝑗
(𝑡
𝑔

𝑘
)

4
(1 + (𝑔 − 1) 𝑇) 𝑔𝑇 −

𝑇 − 𝜏
𝑖𝑗
(𝑡
𝑔

𝑘
)

4
(1 + (𝑔 − 1) 𝑇)

0 0 1 0

1

2
−
1

2

1

2
(1 + (𝑔 − 1) 𝑇)

1

2
(1 − (𝑔 − 1) 𝑇)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[
[
[
[
[

[

𝑥
𝑖
(𝑡
𝑘
)

𝑥
𝑗
(𝑡
𝑘
)

V
𝑖
(𝑡
𝑘
)

V
𝑗
(𝑡
𝑘
)

]
]
]
]
]
]
]
]
]
]
]

]

.

(21)

Define the states error between agents 𝑖 and 𝑗 at time
instants as 𝑡

𝑘
and 𝑡
𝑘+𝑔

as follows:

𝜁
𝑖𝑗
(𝑑 + 1) = 𝑥

𝑗
(𝑡
𝑘+𝑔

) − 𝑥
𝑖
(𝑡
𝑘+𝑔

) ,

𝜉
𝑖𝑗
(𝑑 + 1) = V

𝑗
(𝑡
𝑘+𝑔

) − V
𝑖
(𝑡
𝑘+𝑔

) ,

𝜁
𝑖𝑗
(𝑑) = 𝑥

𝑗
(𝑡
𝑘
) − 𝑥
𝑖
(𝑡
𝑘
) ,

𝜉
𝑖𝑗
(𝑑) = V

𝑗
(𝑡
𝑘
) − V
𝑖
(𝑡
𝑘
) ,

(22)

where 𝑑 represents the number of successful transmissions.
Then the following equation is acquired denoting the error
dynamics between agents 𝑖 and 𝑗 :

[
𝜁
𝑖𝑗
(𝑑 + 1)

𝜉
𝑖𝑗
(𝑑 + 1)

] =

[
[
[

[

(1 −

(𝑇 − 𝜏
𝑖𝑗
(𝑡
𝑔

𝑘
))

4
) (𝑔𝑇 −

𝑇 − 𝜏
𝑖𝑗
(𝑡
𝑔

𝑘
)

4
(1 + (𝑔 − 1) 𝑇))

−
1

2

1

2
(1 − (𝑔 − 1) 𝑇)

]
]
]

]

[
𝜁
𝑖𝑗
(𝑑)

𝜉
𝑖𝑗
(𝑑)

] . (23)

According to the error dynamics depicted as above, the
following lemma can be proposed.

Theorem 19. For multiagent system consisting of double inte-
grator dynamics as in Table 1, with Assumptions 13 and 18, the
consensusability of the system can be guaranteed with packet

losses and transmission delays as long as the discrete error
dynamics as in (23) is stable.

Proof. Without loss of generality, set agent 𝑖 as the root node
of the directed spanning tree. Define 𝑁0

𝑖
as the set of agents

that receive information from agent 𝑖. If the error dynamics as
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Table 1: Continuous time and discrete time presentations of agent dynamics.

Agent type Continuous time system Discrete time presentation
Single integrator ̇𝑥

𝑖
(𝑡) = 𝑢

𝑖
(𝑡) 𝑥

𝑖
(𝑡
𝑘+1

) = 𝑥
𝑖
(𝑡
𝑘
) + 𝑇𝐾∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑡
𝑘
) − 𝑥
𝑖
(𝑡
𝑘
))

Double integrator ̇𝑥
𝑖
(𝑡) = V

𝑖
(𝑡)

̇V
𝑖
(𝑡) = 𝑢

𝑖
(𝑡)

𝑥
𝑖
(𝑡
𝑘+1

) = 𝑥
𝑖
(𝑡
𝑘
) + 𝑇V

𝑖
(𝑡
𝑘
) +

𝑇
2

2
𝐾∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑡
𝑘
) − 𝑥
𝑖
(𝑡
𝑘
))

V
𝑖
(𝑡
𝑘+1

) = V
𝑖
(𝑡
𝑘
) + 𝑇𝐾∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑡
𝑘
) − 𝑥
𝑖
(𝑡
𝑘
))

High-order integrator ̇𝑥
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝐵𝑢

𝑖
(𝑡) 𝑥

𝑖
(𝑡
𝑘+1

) = 𝑒
𝐴𝑇

𝑥
𝑖
(𝑡
𝑘
) + ∫

𝑇

0

𝑒
𝐴𝑡

𝐵𝐾∑

𝑗∈𝑁𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑡
𝑘
) − 𝑥
𝑖
(𝑡
𝑘
)) 𝑑𝑡

in (23) is stable, that is, lim
𝑑→∞

𝜁
𝑖𝑗
(𝑑) = 0, lim

𝑑→∞
𝜉
𝑖𝑗
(𝑑) =

0. It is obvious that agents 𝑖 and 𝑗 can reach a consensus for
any 𝑗 ∈ 𝑁

0

𝑖
with finite time periods since Assumption 18

holds.
Then there exist a positive number𝑚

𝑗
and a time instant

𝑡
𝑚𝑗

such that [𝜁
𝑖𝑗
(𝑚
𝑗
) 𝜉
𝑖𝑗
(𝑚
𝑗
)]
𝑇

= [0 0]
𝑇 for 𝑡 > 𝑡

𝑚𝑗
. With

definition of 𝑡
𝑚

= max{𝑡
𝑚𝑗
}, 𝑗 ∈ 𝑁

0

𝑖
, it can be derived that

when 𝑡 > 𝑡
𝑚
, 𝑥
𝑗
(𝑡) = 𝑥

𝑖
(𝑡), V
𝑗
(𝑡) = V

𝑖
(𝑡), for all 𝑗 ∈ 𝑁

0

𝑖

which means that the consensus has been reached between
agents 𝑖 and 𝑁

0

𝑖
. Since the discrete error dynamics is as in

(23) set no restrictions on initial states of agents and the
agents belonging to𝑁0

𝑗
will reach consensus with agent 𝑗 in a

similar way. Finally, the whole multiagent system will reach a
consensus.

To be more illustrative, the process can be shown in
Figure 1. The error dynamics between different agents in the
dash line circle can be presented as (23).The agents in the real
line circle mean that the consensus has been reached among
them.

In the following, an algorithm to testify the Schur stability
of discrete-time dynamics system as in (23) is proposed. Since
all communication delay 𝜏

𝑖𝑗
is random, the transfer matrix

𝑀 =

[
[
[

[

(1 −

𝑇 − 𝜏
𝑖𝑗
(𝑡
𝑔

𝑘
)

4
) (𝑔𝑇 −

𝑇 − 𝜏
𝑖𝑗
(𝑡
𝑔

𝑘
)

4
(1 + (𝑔 − 1) 𝑇))

−
1

2

1

2
(1 − (𝑔 − 1) 𝑇)

]
]
]

]

(24)

can be viewed as an interval matrix [𝑀
𝑚

,𝑀
𝑀

] = {𝑀 =

[𝑚
𝑖𝑗
] : 𝑚

𝑚

𝑖𝑗
< 𝑚
𝑖𝑗

< 𝑚
𝑀

𝑖𝑗
, 𝑖, 𝑗 = 1, 2} for fixed 𝑔 with the

expressions of𝑀𝑚 and𝑀𝑀 as follows:

𝑀
𝑚

=
[
[

[

1 −
𝑇

4
𝑔𝑇 −

𝑇

4
(1 + (𝑔 − 1) 𝑇))

−
1

2

1

2
(1 − (𝑔 − 1) 𝑇)

]
]

]

;

𝑀
𝑀

=
[
[

[

1 −
𝜏min
4

𝑔𝑇 −
𝜏min
4

(1 + (𝑔 − 1) 𝑇))

−
1

2

1

2
(1 − (𝑔 − 1) 𝑇)

]
]

]

.

(25)

The following lemma needs to be introduced concerning
the stability of interval matrix.

Lemma 20. An interval matrix [𝑅
𝑚

, 𝑅
𝑀

] is Schur stable if
and only if there are finitely subinterval matrices [𝑅𝑚

𝑖
, 𝑅
𝑀

𝑖
] ⊂

[𝑅
𝑚

, 𝑅
𝑀

], 1 ≤ 𝑖 ≤ 𝑘, such that

[𝑅
𝑚

, 𝑅
𝑀

] =

𝑘

⋃

𝑖=1

[𝑅
𝑚

𝑖
, 𝑅
𝑀

𝑖
] . (26)

And for each 𝑖, 1 ≤ 𝑖 ≤ 𝑘, [𝑅𝑚
𝑖
, 𝑅
𝑀

𝑖
] satisfies the following

conditions.

(1) 𝑅
𝑖0
is Schur stable and there exists a positive definite

matrix 𝑃 = 𝑃
𝑇 satisfying

𝑅
𝑖0

𝑇

𝑃
𝑖
𝑅
𝑖0
− 𝑃
𝑖
+ 𝐼 = 0. (27)

(2) 𝜙(Δ𝑅
𝑖
) < [𝜙(𝑅

𝑖0
)
2

+ 1/|𝑃
𝑖
|
∞
]
1/2

− 𝜙(𝑅
𝑖0
). 𝜙(⋅) is an

operator 𝜙(𝑅) = max{|𝑅|
1
, |𝑅|
∞
} and the definitions of

Δ𝑅
𝑖
and 𝑅

𝑖0
are as follows:

Δ𝑅
𝑖
=
1

2
(𝑅
𝑀

𝑖
− 𝑅
𝑚

𝑖
) ,

𝑅
𝑖0
=
1

2
(𝑅
𝑀

𝑖
+ 𝑅
𝑚

𝑖
) .

(28)

(3) Subinterval matrices ⋃
𝑘

𝑖=1
[𝑅
𝑚

𝑖
, 𝑅
𝑀

𝑖
] are complete

decomposition of interval matrix [𝑅
𝑚

, 𝑅
𝑀

] which
means that ∀𝑅 ∈ [𝑅

𝑚

, 𝑅
𝑀

], ∃𝑖 ∈ [1, 2, . . . , 𝑘] such that
𝑅 ∈ [𝑅

𝑚

𝑖
, 𝑅
𝑀

𝑖
].

Proof. SeeWang et al. [30] and Liao et al. [31] for details.

Consider the parameters in (23), according to Assump-
tion 3 and 𝜏min actually denotes the smallest processing
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Figure 1: Consensus process of multiagent system under directed
spanning tree.

time available for the embedded system. 𝑇 is the sampling
and transmitting period for the multiagent system and for
acoustic communication system it also indicates the largest
distance available between two linked agents since the rela-
tion Dis < V

𝑐
(𝑇 − 𝜏min) has to be satisfied, where V

𝑐
is the

acoustic velocity. Due to the physical meanings of 𝜏min, 𝑇,
they usually are predetermined once the multiagent system
structure is determined. As for 𝑔, according to Assumption 13
and the derivation of (23), 𝑔 is a time varying positive
integrator variable satisfying 1 ≤ 𝑔 ≤ 𝑙. So the following
lemma is put forward.

Lemma 21. The system transfer matrix in (23) is Schur stable
if, for every fixed 𝑔 ∈ [1, 2, . . . , 𝑙], [𝑀𝑚,𝑀𝑀] is Schur stable.

Proof. Define the interval matrix [𝑀
𝑚

,𝑀
𝑀

] as [𝑀𝑚
𝑗
,𝑀
𝑀

𝑗
]

when𝑔 = 𝑗, 1 ≤ 𝑗 ≤ 𝑙. If [𝑀𝑚
𝑗
,𝑀
𝑀

𝑗
] is Schur stable, then there

exist a finite number of subinterval matrices [𝑀𝑚
𝑗
,𝑀
𝑀

𝑗
] =

⋃
𝑘

𝑖=1
[𝑀
𝑚

𝑖𝑗
,𝑀
𝑀

𝑖𝑗
] satisfying conditions in Lemma 20. In addi-

tion, the systemmatrix in (23) can be completely decomposed
as

[𝑀
𝑚

,𝑀
𝑀

] =

𝑙

⋃

𝑔=1

[𝑀
𝑚

𝑗
,𝑀
𝑀

𝑗
] . (29)

Then it can be derived that

[𝑀
𝑚

,𝑀
𝑀

] = {

𝑘

⋃

𝑖=1

[𝑀
𝑚

𝑖1
,𝑀
𝑀

𝑖1
]} ∪ {

𝑘

⋃

𝑖=1

[𝑀
𝑚

𝑖2
,𝑀
𝑀

𝑖2
]}

∪ ⋅ ⋅ ⋅ ∪ {

𝑘

⋃

𝑖=1

[𝑀
𝑚

𝑖𝑙
,𝑀
𝑀

𝑖𝑙
]} .

(30)

The above equation means that the system matrix can be
decomposed into finite number of subinterval matrices that
all satisfy the conditions in Lemma 20. The matrix is Schur
stable.

Even though Lemmas 20 and 21 have provided conditions
to guarantee the Schur stability of the discrete interval
system matrix, method to completely decompose an interval
matrix is needed. Based on the definition of 𝑅

𝑖0
and Δ𝑅

𝑖

in (28), the interval matrix [𝑅
𝑚

, 𝑅
𝑀

] can be presented as
[𝑅
0
± Δ𝑅]. With this presentation, it is natural to adopt the

decomposition as [𝑅
𝑚

, 𝑅
𝑀

] = [𝑅
0
− Δ𝑅, 𝑅

0
] ∪ [𝑅

0
, 𝑅
0
+

Δ𝑅]. However, the decomposition is not always complete.
Denote the element of the interval matrix at 𝑖th row and 𝑗th

column by [𝑅
𝑚

(𝑖, 𝑗), 𝑅
𝑀

(𝑖, 𝑗)]. Then divide the interval into
two subintervals as follows:

[𝑅
𝑚

(𝑖, 𝑗) , 𝑅
𝑀

(𝑖, 𝑗)] = 𝑅
𝐿
(𝑖, 𝑗) ∪ 𝑅

𝐻
(𝑖, 𝑗) (31)

with 𝑅
𝐿
(𝑖, 𝑗) and 𝑅

𝐻
(𝑖, 𝑗) defined as

𝑅
𝐿
(𝑖, 𝑗) = [𝑅

0
(𝑖, 𝑗) − Δ𝑅 (𝑖, 𝑗) , 𝑅

0
(𝑖, 𝑗)] ,

𝑅
𝐻
(𝑖, 𝑗) = [𝑅

0
(𝑖, 𝑗) , 𝑅

0
(𝑖, 𝑗) + Δ𝑅 (𝑖, 𝑗)]

(32)

If 𝑅𝑚, 𝑅𝑀 ∈ R𝑛×𝑛, the interval matrix can be decomposed
as follows:

[𝑅
𝑚

, 𝑅
𝑀

] =

2
𝑛×𝑛

⋃

𝑘=1

𝑅inv (𝑘) . (33)

Each element in 𝑅inv(𝑘) at 𝑖th row and 𝑗th column will
be either 𝑅

𝐿
(𝑖, 𝑗) or 𝑅

𝐻
(𝑖, 𝑗). Then, it is obvious that the

decomposition is complete. Now, Algorithm 1 is proposed
in pseudocode to testify the Schur stability of the interval
matrix. If a limited number of subintervals can be obtained
for each [𝑀

𝑚

𝑗
,𝑀
𝑀

𝑗
], 1 ≤ 𝑗 ≤ 𝑙 that satisfy the Schur

stability conditions in Lemma 20, the systemmatrix in (23) is
stable according to Lemma 21. That is, the multiagent system
consists of second order agent with communication delays
and packet losses can reach a consensus.

Through Algorithm 1, the consensusability of the multia-
gent system concerned can be testified. However, since the
controller gain and the system parameters are predefined,
no analytical solutions are provided by this method for
multiagent system that could not reach consensus. Besides,
the computational burden of the algorithm will increase
exponentially with the order of agents. Therefore, in the next
section, a theorem will be proposed to design the controller
gain and solve the consensus problem of multiagent system
with high-order integrator agents.

3.3. High-Order Integrator Agent. Assume that Assump-
tion 18 still holds; similar result can be obtained as in
Theorem 19; that is, if the root agent 𝑖 and agent 𝑗, 𝑗 ∈ 𝑁

0

𝑖
, can

reach consensus, the multiagent system can reach consensus.
So for the high-order integrator dynamics introduced in
Table 1, with communication delays, the discrete system
dynamics for agent 𝑖 and agent 𝑗 can be presented as

𝑋
𝑖
(𝑡
𝑘+1

) = 𝑒
𝐴𝑇

𝑋
𝑖
(𝑡
𝑘
) ,

𝑋
𝑗
(𝑡
𝑘+1

) = 𝑒
𝐴𝑇

𝑋
𝑗
(𝑡
𝑘
) + ∫

𝑇−𝜏𝑖𝑗(𝑡𝑘)

𝑜

𝑒
𝐴𝑡

𝑑𝑡

⋅ 𝐵𝐾 (𝑋
𝑖
(𝑡
𝑘
) − 𝑋
𝑗
(𝑡
𝑘
))

(34)

with 𝐾 = [𝑘
1
𝑘
2
⋅ ⋅ ⋅ 𝑘
𝑚
] as the controller gain to

be designed; 𝜏
𝑖𝑗
(𝑡
𝑘
) is the communication delay satisfying

Assumption 3. Let the states error between agent 𝑖 and agent
𝑗 at time 𝑡

𝑘

𝛿 (𝑡
𝑘
) = 𝑋

𝑖
(𝑡
𝑘
) − 𝑋
𝑗
(𝑡
𝑘
) . (35)
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Initialization of parameters 𝜏min, 𝑇 and 𝑙;
For 𝑗 = 1: 𝑙

Test the Schur stability ([𝑀𝑚
𝑗
,𝑀
𝑀

𝑗
])

{

If [𝑀𝑚
𝑗
,𝑀
𝑀

𝑗
] is Schur stable

Break;
Else

If 𝑀𝑜
𝑗
is not Hurwitz stable

[𝑀
𝑚

𝑗
,𝑀
𝑀

𝑗
] is not stable; break;

Else
Decompose [𝑀𝑚

𝑗
,𝑀
𝑀

𝑗
];

Test the Schur stability (each subinterval);
}

End

Algorithm 1

The error dynamics between two agents is

𝛿 (𝑡
𝑘+1

) = (𝑒
𝐴𝑇

− ∫

𝑇−𝜏𝑖𝑗(𝑡𝑘)

𝑜

𝑒
𝐴𝑡

𝑑𝑡 ⋅ 𝐵𝐾)𝛿 (𝑡
𝑘
) . (36)

Considering packet losses and according to Assump-
tion 13, there exists an integer𝑔 ∈ [1, . . . , 𝑙] such that the error
dynamics during the period [𝑡

𝑘
, 𝑡
𝑘+𝑔

) can be presented as

𝛿 (𝑡
𝑘+𝑔

) = 𝑒
(𝑔−1)𝐴𝑇

(𝑒
𝐴𝑇

− ∫

𝑇−𝜏𝑖𝑗(𝑡
𝑔

𝑘
)

𝑜

𝑒
𝐴𝑡

𝑑𝑡 ⋅ 𝐵𝐾)𝛿 (𝑡
𝑘
) .

(37)

Algorithm 1 can still be applied to test the Schur stability
of system matrix equation (36) and (37). Except for the
computational complexity increases exponentially with the
system order, the controller gain is also difficult to design
comparing with second order multiagent system. So in order
to circumvent those difficulties, the following lemmas are
applied to achieve the controller gain.

Lemma 22 (see [32]). For discrete time interval system as
in (38), 𝑀 ∈ R𝑛×𝑛, 𝑁 ∈ R𝑛×𝑝, the system is stabilizable if
and only if there exist a matrix 𝐺 ∈ R𝑝×𝑛 and a symmetric
positive definite matrix 𝐻 ∈ R𝑛×𝑛 and scalars 𝜆

𝑖𝑗
> 0, 𝑖, 𝑗 =

1, 2, . . . , 𝑛, 𝛿
𝑖𝑗
> 0, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑝, satisfying

(39). And the controller gain can be adopted as 𝐾 = 𝐺𝐻
−1.

Consider

𝛿 (𝑑 + 1) = [𝑀min,𝑀max] 𝛿 (𝑑) + [𝑁min, 𝑁max] 𝑢 (𝑑) ,

𝑢 (𝑑) = 𝐾𝛿 (𝑑) ,

(38)

[
[
[

[

−𝐻 𝐻𝑀
𝑇

𝑜
+ 𝐺𝑁

𝑇

𝑜
𝐻
𝑑

𝐺
𝑑

𝑀
0
𝐻 +𝑁

0
𝐺 −𝐻 + Σ 0 0

𝐻
𝑇

𝑑
0 −Λ

𝐺
𝑇

𝑑
0 −Δ

]
]
]

]

< 0, (39)

where Σ = ∑
𝑛

𝑖,𝑗=1
𝜆
𝑖𝑗
|Δ𝑚
𝑖𝑗
|
2

𝑒
𝑖
𝑒
𝑇

𝑖
+∑
𝑛

𝑖=1
∑
𝑝

𝑗=1
𝛿
𝑖𝑗
|Δ𝑛
𝑖𝑗
|
2

𝑒
𝑖
𝑒
𝑇

𝑖
, 𝑒
𝑖
is

a column vector with 𝑖th element being 1. And

𝐻
𝑑
= [𝐻, . . . , 𝐻]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

, 𝐺
𝑑
= [𝐺
𝑇

, . . . , 𝐺
𝑇

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

,

Λ = diag {𝜆
11
, 𝜆
12
, . . . , 𝜆

1𝑛
, . . . , 𝜆

𝑛1
, 𝜆
𝑛2
, . . . , 𝜆

𝑛𝑛
} ,

Δ = diag {𝛿
11
, 𝛿
12
, . . . , 𝛿

1𝑝
, . . . , 𝛿

𝑛1
, 𝛿
𝑛2
, . . . , 𝛿

𝑛𝑝
} .

(40)

Lemma 23. The interval system matrices [𝑀min,𝑀max] and
[𝑁min, 𝑁max] are stabilizable if there are a finite number
of subintervals [𝑀

𝑖

min,𝑀
𝑖

max], [𝑁
𝑖

min, 𝑁
𝑖

max], 1 ≤ 𝑖 ≤ 𝑘

such that, for each 𝑖 ∈ {1, 2, . . . , 𝑘}, the system matrices
[𝑀
𝑖

min,𝑀
𝑖

max], [𝑁
𝑖

min, 𝑁
𝑖

max] are stabilizable. And the interval
system is completely decomposed whichmeans that, at any time
instant 𝑡, if𝑁(𝑡) ∈ [𝑁

𝑖

min, 𝑁
𝑖

max], then𝑀(𝑡) ∈ [𝑀
𝑖

min,𝑀
𝑖

max],
1 ≤ 𝑖 ≤ 𝑘. And the complete decomposition can be denoted by

[𝑀min,𝑀max] =
𝑘

⋃

𝑖=1

[𝑀
𝑖

min,𝑀
𝑖

max] ,

[𝑁min, 𝑁max] =
𝑘

⋃

𝑖=1

[𝑁
𝑖

min, 𝑁
𝑖

max] .

(41)

Proof. Since the systemmatrices [𝑀𝑖min,𝑀
𝑖

max], [𝑁
𝑖

min, 𝑁
𝑖

max]
are stabilizable, suppose that the controller gain is denoted by
𝐾; then, it can be derived that [𝑀𝑖min,𝑀

𝑖

max]+ [𝑁
𝑖

min, 𝑁
𝑖

max]𝐾
is Schur stable. Because the interval system is completely
decomposed, the following decomposition is also complete

[𝑀min,𝑀max] + [𝑁min, 𝑁max]𝐾

=

𝑘

⋃

𝑖=1

([𝑀
𝑖

min,𝑀
𝑖

max] + [𝑁
𝑖

min, 𝑁
𝑖

max]𝐾) .

(42)

Then according to Lemma 21, the Schur stability of
[𝑀
𝑖

min,𝑀
𝑖

max] + [𝑁
𝑖

min, 𝑁
𝑖

max]𝐾, 𝑖 ∈ {1, 2, . . . , 𝑘} indicated
Schur stability of the multiagent system.
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Comparing (36) with (37), it can be concluded that (36)
is the special case of (37) when 𝑔 = 1. Actually, the interval
matrices in (37) are piecewise interval, and the system can be
completely decomposed into 𝑙 subinterval systems easily.The
subinterval systems can be presented as follows:

𝛿 (𝑡
𝑘+𝑔

) = 𝑒
𝑔𝐴𝑇

𝛿 (𝑡
𝑘
) − 𝑒
(𝑔−1)𝐴𝑇

∫

𝑇−𝜏𝑖𝑗(𝑡
𝑔

𝑘
)

𝑜

𝑒
𝐴𝑡

𝐵𝑑𝑡 ⋅ 𝑢 (𝑡
𝑘
)

= 𝑀
𝑔
𝛿 (𝑡
𝑘
) + 𝑁
𝑔
𝑢 (𝑡
𝑘
)

for 𝑔 ∈ {1, 2, . . . , 𝑙} .

(43)

Theorem 24. For multiagent system consisting of high order
agents, under Assumptions 13 and 18, the consensusability of
the system can be guaranteed with transmission delays and
packet losses if there exists a controller gain 𝐾 such that the
conditions in Lemma 22 can be satisfied for each 𝑀

𝑔
+ 𝑁
𝑔
𝐾,

𝑔 ∈ {1, 2, . . . , 𝑙}.

Proof. If the conditions in Lemma 22 are satisfied,𝑀
𝑔
+𝑁
𝑔
𝐾

is Schur stable. From (43), the interval system in (37) can be
completely decomposed by𝑀

𝑔
and𝑁

𝑔
,𝑔 ∈ {1, 2, . . . , 𝑙}.Then

according to Lemma 23, the theorem is established.

In fact, the existence of controller gain 𝐾 is important in
the above lemma. According to (39) in Lemma 22, matrix 𝐾
can be obtained by solving the LMI with matlab. In order
to guarantee the conditions in Lemma 23, 𝑙 LMIs should
be solved simultaneously to calculate the feedback gain 𝐾.
Besides, it should be noticed that Theorem 24 is a general
solution for controller gain of multiagent system and can
be applied to all kinds of agent dynamics including single
integrator, second order integrator, and general linear system.

4. Simulations

In this section, simulation results will be presented to
demonstrate the theoretical results in Section 3. Amultiagent
system consists of five agents with the designed interaction
topology as in Figure 2 that is concerned. The success ratio
𝑝 in Assumption 13 is set as 0.8 according to the property of
ordinary acoustic communication equipment; if 𝜇 is chosen
to be 0.999, then 𝑙 can be set as 5 which means that the
transmission will be successful at least one time during five
periods. 𝜏min is set to be 0.1, which is long enough for system
to calculate the system inputs. Sampling and transmitting
period𝑇 = 0.5.With all above initialization, single integrator,
second order, and high-order agents are discussed separately
and consensusability for every typical multiagent system is
testified with packet losses and communication delays.

4.1. Single Integrator Agent. In this case, the initial state of
each agent in themultiagent system is chosen randomly from
0 to 50, 𝛼 = 2. Simulation result is shown in Figure 3. It can
be concluded that, for single integrator system, the position
of each agent will converge to the state of agent 1 and the
consensus of the system will be reached fast.

1

2 3

4 5

Figure 2: Interaction topology.
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Figure 3: Consensus of single integrator system.

4.2. Second Order Agent. In this case, we need to test Schur
stability of the error dynamics with Algorithm 1; it can
be calculated that, with 582 subintervals, the conditions in
Lemma 20 can be satisfied for every subinterval. Similar
to Case 1, the initial values for position and velocity are
randomly adopted within [0, 50] and [0, 10], respectively.The
simulation results are shown in Figures 4 and 5. It can be
seen that, during some time intervals at the beginning, the
difference of states may increase, especially for velocity of the
agent, but the consensus will be reached with enough time.
It is also worth noticing that the sampling and transmitting
period 𝑇 adopted in this case cannot satisfy the condition in
Theorem 17; however, the consensus can still be guaranteed
which indicated that the condition from stochastic matrix
theory is more conservative if Assumption 18 holds.

4.3. High-Order Agent. Considering the third order integra-
tor agent, corresponding structure of matrices 𝐴 and 𝐵 can
be obtained through Table 1. Then according to Lemmas
22 and 23, the controller gain 𝐾 can be calculated through
solving the 5 LMIs with matlab. It can be found that 𝐾 =

[2.36 2.57 3.59] is a proper solution and the simulations
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Figure 4: Consensus of position for second order system.
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Figure 5: Consensus of velocity for second order system.

are carried out with results presented in Figures 6, 7, and 8.
Even though it takes more time to reach the consensus for
themultiagent system, with the proposed controller structure
and controller gain, the consensusability is guaranteed. In
addition, the initial states for position, velocity, and accelera-
tion are randomly chosen from [0, 50], [0, 10], and [0, 3].

5. Conclusions

In this paper, the consensus problem of multiagent system
with packet losses and communication delays is discussed.
A novel control protocol that depends on periodic sampling
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Figure 7: Consensus of velocity for high-order system.

and transmitting information is proposed to make it more
convenient for implementation. Then, sufficient conditions
for consensusability of multiagent systems consist of single
integrator, second order, and high-order agents that are estab-
lished, respectively, according to stochasticmatrix theory and
interval matrix theory. Finally, simulations are carried out
to verify the theoretical results obtained. However, to reach
the consensus for second and high-order systems with packet
losses and communication delays, the directed communica-
tion topology is limited to a directed spanning tree. Even
though this kind of structure has its own advantages in real-
world applications, being convenient and economical, for
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example, it also has some flaws in modeling the system with
massive agents such as flock and fish school.Therefore, in the
follow-up study of this research, the directed topology will
not be limited to a directed spanning tree in order to make
the whole system more distributive.
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This paper presents a data-driven adaptive predictive control method using closed-loop subspace identification. As the predictor is
the key element of the predictive controller, we propose to derive such predictor based on the subspacematrices which are obtained
through the closed-loop subspace identification algorithm driven by input-output data. Taking advantage of transformational
systemmodel, the closed-loop data is effectively processed in this subspace algorithm. By combining themerits of receding window
and recursive identification methods, an adaptive mechanism for online updating subspace matrices is given. Further, the data
inspection strategy is introduced to eliminate the negative impact of the harmful (or useless) data on the system performance. The
problems of online excitation data inaccuracy and closed-loop identification in adaptive control are well solved in the proposed
method. Simulation results show the efficiency of this method.

1. Introduction

With the development of industrial technology, the industrial
processes become more complex than before and it is more
difficult to build the accurate mechanism models of these
processes. Hence, the data-driven approach has obtained
widespread attention since it emerged. Data-driven control
also turns into focus of study. Simply, the data-driven control
is a method from data to design controller directly [1, 2].
Model predictive control (MPC) has been attractive for
decades in control theory field. It has become more estab-
lished as the one of the choices for the control architecture
in the industry, especially with the improvement of compu-
tational capabilities of processors [3–8]. But one drawback of
the traditional industrial predictive control is based on input-
outputmodel, including parametric and nonparametric ones.
In order to improve the control performance, a state-space
model should be adopted, so the modern filter theory and
the design method of controller developed in recent years
can play a role [9]. Subspace identification is one of the

system identification algorithms for state-space modeling.
The control workers may relieve completely from the tedious
mechanismmodeling and the accurate state-spacemodel can
be obtained when there is enough process input-output data
[10–12]. More attractively, the subspace matrices obtained
through the subspace identification algorithm can be used
to derive the predictor of predictive controllers, eliminating
the intermediate step of process model identification and
providing a method of data-driven predictive control [13].
This method has been applied in some industrial processes
and achieved good results.

Most data-driven predictive controllers are designed
based on open-loop subspace identification, but in practice
it is often necessary to perform identification experiments
on systems operating in closed-loop. This is especially true
when open-loop experiments are not allowed due to safety
(unstable processes) or production (undesirable open-loop
behavior) reasons [14]. It is found that the regular open-loop
subspace identification algorithm yields a biased estimate
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when applied to closed-loop data [15]. The closed-loop data-
driven predictive control methods in [16, 17] have been
presented. But the predictor is derived with the estimated
Markov parameters which lead to a complicated predictor.
We get a simple predictor constructed by subspace matrices.
Jansson [18] developed a subspace method that can perform
well on data collected both in open- and closed-loop condi-
tions.

It is a major problem to implement adaptive control in
closed-loop system. In this paper, based on the subspace
prediction model derived from [18], we design a closed-loop
data-driven predictive controller to solve this problem that
obtains subspace matrices simply fromHankel matrices for a
better implementation of the following adaptive mechanism
in closed-loop system.

The control performance of predictive control is depen-
dent on the model quality [19]. The linear fixed model is
used to design the controller in conventional data-driven
predictive control method. It is applied to a linear system
showed good results in a short period. But there are nonlinear
and time-varying characteristics of long period in industrial
processes, resulting in a poor performance when using the
fixed model. It is highly desirable to implement adaptive
mechanism to adjust the system model online. The feature
of subspace identification is suitable for designing adaptive
predictive controller perfectly. The adaptive mechanism is
realized by online updating subspace matrices. At present,
there are two ways of online adaptive subspace identifica-
tion [20]. One is recursive identification method; by using
different weighting to the new and old data, the variation
of the process is tracked. The size of modeling data set
will become larger with the process operation which needs
enough memory storage. The other one is receding window
method; the size of modeling data set remains unchanged
and the oldest data is removed at the arriving of the new
data. It is unfavorable that the harmless (or useless) data
will increase information missing in the whole window and
the computation time is longer than recursive one [21]. The
recursive adaptive predictive control method is shown in [22,
23]; in [22] an adaptive predictive control strategy based on
recursive subspace identification has been presented, adopt-
ing the prediction model with the smallest matching error.
Mardi and Wang [23] presented an approach to constrained
subspace-based MPC of time-varying systems. The central
ideas are to find the predictive control law recursively using a
subspace identification technology and to update the control
law once a plant-model mismatch is detected. Although
both of them consider the forgetting factor to weaken the
negative impact of the old data on the identification model,
the identification accuracy will be declined as the old data
more or less. Accordingly, we can find the receding window
method in [24, 25]. Yang and Li [24] designed a subspace-
based predictive controller, using receding window method
to update subspace matrices at each time step for adaptive
mechanism. Wahab et al. [25] proposed a direct adaptive
MPC method which requires a single QR decomposition
for obtaining the controller parameters and uses a receding
horizon approach to process input-output data for the iden-
tification. These two methods require 𝑄𝑅 decomposition at

every time instant which increase the computational load
and have incapability of handling harmless (or useless) data
that bring performance degradation. Only one way of online
adaptive subspace identification is employed in the above
adaptive predictive control methods. We have been trying
to combine the two ways, in our previous work [26]; an
adaptivemechanism through online updating of the𝑅matrix
is proposed. By comparing the prediction error before and
after updating, we consider whether or not to update the
prediction model. This method employs a recursive strategy
to derive𝑅matrix but it requires us to compute every element
value of 𝑅 matrix that increases the computation time. The
model inspection can bring a promotion in harmless (or
useless) data suppression but it cannot eliminate the harmless
(or useless) data. Kameyama et al. [27] derived a recursive
subspace-based identification algorithm with fixed input-
output data size. It only solves the identification problem.
We get the online updated subspace matrices from partial
results in [27] but stress the derivation of the key elements of
𝑅 matrix which can reduce the computation time compared
to the method in [26] and extend it to design the predictive
controller. Another major problem to implement adaptive
control is the inaccuracy of online excitation data. When
the model or system parameters change, it needs to be
adequately excited. Otherwise, some of the obtained data
become harmless (or useless) ones which have a negative
impact on system performance. The data inspection strategy
introduced is a good solution for this problem through
comparing the prediction error.

The main contribution of the paper is the development
of a new solution of data-driven adaptive predictive control
ensuring adaptation of closed-loop systems. The method can
offer an attractive alternative for industrial nonlinear, time-
varying systems of long period in closed-loop condition and
there is no need for obtaining the system explicitmodelwhich
can reduce the complexity. Through transforming system
model form, the closed-loop subspace identification algo-
rithm is developed and the subspace matrices are obtained
from the closed-loop data.The adaptive mechanism is imple-
mented by combining the advantages of recedingwindowand
recursive identification methods. The subspace matrices are
derived by recursive method using a fixedmodest size of data
set with receding windowmethod.The proposedmechanism
can sufficiently fade the influence of the old data better than
only recursive method and bring less computation load than
only receding window method. By comparing the prediction
error before and after updating, we consider whether or not
to add the new data in data inspection strategy. The purpose
of the strategy is to eliminate the new arrival of harmful (or
useless) data produced by the online insufficient excitation.
The control performance is superior to adopt open-loop
identification and other methods of data-driven adaptive
predictive control.

The paper is organized as follows. In Section 2 the
open-loop data-driven predictive control method is given.
Section 3 provides the closed-loop data-driven predictive
control method. The adaptive mechanism is highlighted
in Section 4. Some simulation results are presented and
discussed in Section 5. Section 6 gives the conclusions.
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2. Open-Loop Data-Driven Predictive Control

Consider a discrete state-space system of order 𝑛 described
by innovations form

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐵𝑢
𝑘
+ 𝐾𝑒
𝑘
,

𝑦
𝑘
= 𝐶𝑥
𝑘
+ 𝐷𝑢
𝑘
+ 𝑒
𝑘
,

(1)

where 𝑢
𝑘

∈ R𝑚, 𝑦
𝑘

∈ R𝑙, and 𝑥
𝑘

∈ R𝑛 are input, output,
and state vectors, respectively.𝐾 is the Kalman filter gain and
𝑒
𝑘
∈ R𝑙 is an innovation sequence where variance 𝐸(𝑒

𝑘
𝑒
𝑇

𝑘
) =

𝑆. (𝐴, 𝐵, 𝐶,𝐷) are systemmatrices of appropriate dimensions
and 𝑆 is the innovations covariance matrix.

Construct the inputs block Hankel matrices using the
data of 𝑢

𝑘
with 𝑘 ∈ {1, 2, . . . , 𝑁} at instant 𝑡:

𝑈
𝑝

=

[
[
[
[

[

𝑢
1

𝑢
2

⋅ ⋅ ⋅ 𝑢
𝑁−𝑓−𝑝+1

𝑢
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𝑢
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⋅ ⋅ ⋅ 𝑢
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...
... d
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𝑢
𝑝

𝑢
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]

]

,

𝑈
𝑓

=

[
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,

(2)

where the subscripts𝑝 and𝑓 represent the “past” and “future”
time. Similarly, the outputs and noise Hankel matrices𝑌

𝑝
,𝑌
𝑓
,

𝐸
𝑝
, and 𝐸

𝑓
can also be obtained in the same way. The system

past and future state sequences are defined as

𝑋
𝑝

= [𝑥
1

𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑁−𝑓−𝑝+1

] ,

𝑋
𝑓

= [𝑥
𝑝+1

𝑥
𝑝+2

⋅ ⋅ ⋅ 𝑥
𝑁−𝑓+1

] .

(3)

The subspace prediction expression of the outputs can be
derived by recursive substitution of (1):

𝑌
𝑓

= Γ𝑋
𝑓
+ 𝐻𝑈

𝑓
+ 𝐻
𝑠

𝐸
𝑓
, (4)

where Γ ∈ R𝑓𝑙×𝑛 is the extended observability matrix and
𝐻 ∈ R𝑓𝑙×𝑓𝑚 and 𝐻

𝑠

∈ R𝑓𝑙×𝑓𝑙 are the low triangular Toeplitz
matrices, respectively, denoted by

Γ =

[
[
[
[

[

𝐶

𝐶𝐴

...
𝐶𝐴
𝑓−1
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]

]

, 𝐻 =

[
[
[
[
[

[

𝐷 0 ⋅ ⋅ ⋅ 0

𝐶𝐵 𝐷 d
...

... d d 0

𝐶𝐴
𝑓−2

𝐵 ⋅ ⋅ ⋅ 𝐶𝐵 𝐷

]
]
]
]
]

]

,
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=

[
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[
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d
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... d d 0
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(5)

The optimal prediction of 𝑌
𝑓
can be written as

�̂�
𝑓

= 𝐿
𝑤
𝑊
𝑝
+ 𝐿
𝑢
𝑈
𝑓
, (6)

where𝑊
𝑝
denotes the past input-output data matrix as𝑊

𝑝
=

[𝑌
𝑇

𝑝
𝑈
𝑇

𝑝
]
𝑇, 𝐿
𝑤
is the subspace matrix that corresponds to

the past input-output data, and 𝐿
𝑢
is the subspacematrix that

corresponds to the future input data.
In order to calculate the subspace matrices 𝐿

𝑤
and 𝐿

𝑢

from block Hankel matrices, by solving the following least
squares problem:

min
𝐿𝑤,𝐿𝑢



𝑌
𝑓
− (𝐿
𝑤
, 𝐿
𝑢
) (

𝑊
𝑝

𝑈
𝑓

)



2

𝐹

, (7)

where ‖ ⋅ ‖
𝐹
represents the Frobenius norm, the solution can

be found from the orthogonal projection of the row space of
𝑌
𝑓
onto the row space of the matrix (

𝑊𝑝

𝑈𝑓
):

�̂�
𝑓

=

𝑌
𝑓

(
𝑊𝑝

𝑈𝑓
)

, (8)

where / denotes the orthogonal projection. The solution for
(8) can be done in an efficient way by performing a 𝑄𝑅-
decomposition:

[
[
[
[
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𝑓

𝑌
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]
]
]
]

]
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]
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[

[

𝑄
𝑇

1

𝑄
𝑇

2

𝑄
𝑇

3

]
]
]
]
]

]

, (9)

where 𝑅 is a low triangular matrix and 𝑄 is an orthogonal
matrix. By letting

𝐿 = [𝑅
31

𝑅
32
] [

𝑅
11

0

𝑅
21

𝑅
22

]

†

, (10)

with

𝐿 = [𝐿
𝑤

𝐿
𝑢
] , (11)

where superscript † represents theMoore-Penrose pseudoin-
verse and 𝐿

𝑤
∈ R𝑓𝑙×𝑝(𝑚+𝑙), 𝐿

𝑢
∈ R𝑓𝑙×𝑓𝑚.

The model predictive control problem is realized by the
minimization of a cost function. A typical form of cost
function in MPC is given as follows:

𝐽 =

𝑁𝑝

∑

𝑘=1

(𝑦
𝑡+𝑘

− 𝑟
𝑡+𝑘

)
𝑇

𝐺
𝑄
(𝑦
𝑡+𝑘|𝑡

− 𝑟
𝑡+𝑘

)

+

𝑁𝑐

∑

𝑘=1

Δ𝑢
𝑇

𝑡+𝑘−1
𝐺
𝑅
Δ𝑢
𝑡+𝑘−1

,

(12)

where 𝑟
𝑡
is the reference setpoint signal at the current time 𝑡,

𝐺
𝑄
and 𝐺

𝑅
are the weight matrices, and 𝑁

𝑝
and 𝑁

𝑐
are the

prediction and control horizon, respectively. 𝑁
𝑝
and 𝑁

𝑐
are

defined as being equal to 𝑓, and (12) can be rewritten as

𝐽 = (𝑦
𝑓
− 𝑟
𝑓
)
𝑇

𝐺
𝑄
(𝑦
𝑓
− 𝑟
𝑓
) + Δ𝑢

𝑇

𝑓
𝐺
𝑅
Δ𝑢
𝑓
. (13)
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Figure 1: The structure of closed-loop data-driven predictive
control.

In MPC framework, only the leftmost column is used to
predict output. And to avoid steady-state error, the predictor
of predictive controllers can be written in terms of incremen-
tal Δ𝑤

𝑝
and Δ𝑢

𝑓
as follows:

𝑦
𝑓

= 𝐹
𝑙
𝑦
𝑡
+ Γ
𝑙
𝐿
𝑤
Δ𝑤
𝑝
+ Γ
𝑙
𝐿
𝑢
Δ𝑢
𝑓
, (14)

where

𝐹
𝑙
= [𝐼
𝑇

𝑙
⋅ ⋅ ⋅ 𝐼
𝑇

𝑙
]
𝑇

, Γ
𝑙
=

[
[
[
[

[

𝐼
𝑙

0 ⋅ ⋅ ⋅ 0

𝐼
𝑙

𝐼
𝑙

⋅ ⋅ ⋅ 0

...
... d

...
𝐼
𝑙

𝐼
𝑙

⋅ ⋅ ⋅ 𝐼
𝑙

]
]
]
]

]

,

Δ𝑢
𝑓

= [Δ𝑢
𝑇

𝑡
Δ𝑢
𝑇

𝑡+1
⋅ ⋅ ⋅ Δ𝑢

𝑇

𝑡+𝑓−1
]
𝑇

,

Δ𝑤
𝑝

= [Δ𝑦
𝑇

𝑡−𝑝+1
⋅ ⋅ ⋅ Δ𝑦

𝑇

𝑡
Δ𝑢
𝑇

𝑡−𝑝
⋅ ⋅ ⋅ Δ𝑢

𝑇

𝑡−1
]
𝑇

.

(15)

Using (14) in the minimization of cost function 𝐽 of (13), the
control sequence can be obtained as follows:

Δ𝑢
𝑓

= −((Γ
𝑙
𝐿
𝑢
)
𝑇

𝐺
𝑄
(Γ
𝑙
𝐿
𝑢
) + 𝐺
𝑅
)
−1

× (Γ
𝑙
𝐿
𝑢
)
𝑇

𝐺
𝑄
(Γ
𝑙
𝐿
𝑤
Δ𝑤
𝑝
+ 𝐹
𝑙
(𝑦
𝑡
− 𝑟
𝑡
)) .

(16)

At each time instance, only the first element ofΔ𝑢
𝑓
is used

for calculating the control input. Therefore the control input
𝑢
𝑡
is drawn as

𝑢
𝑡
= 𝑢
𝑡−1

+ Δ𝑢
𝑡
. (17)

At the next instant, when the new input-output data
arrive, the same optimization is repeated. The above results
can also be seen in [28–32]. In the above objectives, subspace
matrices are identified using the open-loop data and applied
to the open-loop system suitably. But, in closed-loop system,
as the data correlations due to feedback, above identification
algorithm will result in a less accurate model and it will
lead to degradation in control performance. To overcome
the drawback, a closed-loop data-driven predictive control
method is given in Section 3.

3. Closed-Loop Data-Driven Predictive Control

The structure of closed-loop data-driven predictive control
method is shown in Figure 1.

In order to use the closed-loop structure of the subspace
identification technique, the necessary steps are presented.
Firstly, transform the system model in (1); define

𝐴 = 𝐴 − 𝐾𝐶,

𝐵 = 𝐵 − 𝐾𝐷.

(18)

It is well known that we can rewrite system model form
as follows:

𝑥
𝑘+1

= 𝐴𝑥
𝑘
+ 𝐵𝑢
𝑘
+ 𝐾𝑦
𝑘
,

𝑦
𝑘
= 𝐶𝑥
𝑘
+ 𝐷𝑢
𝑘
+ 𝑒
𝑘
.

(19)

The prediction model can be represented as the subspace
expression:

𝑌
𝑓

= Γ̃𝑋
𝑓
+ �̃�𝑈

𝑓
+ �̃�
𝑠

𝑌
𝑓
+ 𝐸
𝑓
, (20)

where

Γ̃ =

[
[
[
[

[

𝐶

𝐶𝐴

...
𝐶𝐴
𝑓−1

]
]
]
]

]

, �̃� =

[
[
[
[

[

𝐷 0 ⋅ ⋅ ⋅ 0

𝐶𝐵 𝐷 ⋅ ⋅ ⋅ 0

...
... d

...
𝐶𝐴
𝑓−2

𝐵 𝐶𝐴
𝑓−3

𝐵 ⋅ ⋅ ⋅ 𝐷

]
]
]
]

]

,

𝐺 =

[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

𝐶𝐾 0 ⋅ ⋅ ⋅ 0

...
... d

...
𝐶𝐴
𝑓−2

𝐾 𝐶𝐴
𝑓−3

𝐾 ⋅ ⋅ ⋅ 0

]
]
]
]

]

.

(21)

Next, it’s directly to obtain the system state-space model
in previous paper [18]. But in this paper, we focus on the
derivation of subspace matrices to implement data-driven
predictive control. Equation (20) can be rewritten as

�̃�
𝑓

= Γ̃𝑋
𝑓
+ �̃�𝑈

𝑓
+ 𝐸
𝑓
, (22)

where �̃�
𝑓

= (𝐼 − �̃�
𝑠

)𝑌
𝑓
and 𝐼 is the appropriate identity

matrix. �̃�
𝑓
can be denoted by constituting the subspace

matrices as follows:

�̃�
𝑓

= �̃�
𝑤
𝑋
𝑓
+ �̃�
𝑢
𝑈
𝑓
+ 𝐸
𝑓
. (23)

The intermediate subspace matrices �̃�
𝑤
and �̃�

𝑢
are pro-

vided by the least squares problem:

[�̃�
𝑤

�̃�
𝑢
] = arg min

�̃�𝑤,�̃�𝑢



�̃�
𝑓
− (�̃�
𝑤
, �̃�
𝑢
) (

𝑊
𝑝

𝑈
𝑓

)



2

𝐹

. (24)

The solution procedure is similar to the derivation of
𝐿
𝑤
and 𝐿

𝑢
in Section 2. Therefore, the closed-loop subspace

matrices 𝐿
𝑤
and 𝐿

𝑢
can be calculated as

𝐿
𝑤

= (𝐼 − �̃�
𝑠

)
−1

�̃�
𝑤
,

𝐿
𝑢
= (𝐼 − �̃�

𝑠

)
−1

�̃�
𝑢
.

(25)



Abstract and Applied Analysis 5

We use incremental form to denote the predictor:

𝑦
𝑓

= 𝐹
𝑙
𝑦
𝑡
+ Γ
𝑙
𝐿
𝑤
Δ𝑤
𝑝
+ Γ
𝑙
𝐿
𝑢
Δ𝑢
𝑓
. (26)

So the control sequence becomes

Δ𝑢
𝑓

= −((Γ
𝑙
𝐿
𝑢
)
𝑇

𝐺
𝑄
(Γ
𝑙
𝐿
𝑢
) + 𝐺
𝑅
)
−1

× (Γ
𝑙
𝐿
𝑢
)
𝑇

𝐺
𝑄
(Γ
𝑙
𝐿
𝑤
Δ𝑤
𝑝
+ 𝐹
𝑙
(𝑦
𝑡
− 𝑟
𝑡
)) ,

Δ𝑢
𝑡
= [𝐼
1

0 ⋅ ⋅ ⋅ 0] Δ𝑢
𝑓
,

(27)

where 𝐼
1
is an identity matrix of size 1. The control input is

𝑢
𝑡
= 𝑢
𝑡−1

+ Δ𝑢
𝑡
. (28)

At the next time step, measuring the new input-output
data and the new control input will be calculated using the
above optimization.

The above method relies on transforming system model
form for reducing the impact of the noise sequence 𝐸

𝑓
on

input sequence 𝑈
𝑓
greatly. It can be applied in closed-loop

system but also is suitable for open-loop system.

4. Adaptive Mechanism

The linear fixed model is used to design the controller in
traditional data-driven predictive control. But, in industrial
processes, in presence of nonlinear and time-varying char-
acteristics, the control performance is difficult to achieve the
desired control effect and it will cause great mismatch of the
model. Therefore, the adaptive control methods, updating
the model online according to the conditions, have been
attractive for decades and gradually applied to industrial
processes.The adaptive predictive control, one of the adaptive
methods, also has achieved a number of applications [33].
In this paper, an adaptive predictive control method is
presented. Drawing the advantages of the receding window
approach, the size of window ismaintained asmodest a priori
while the recursive approach is used for updating the model.
Additionally, due to the systemdisturbance andnoise, a larger
match error will be produced between the test data with
the real time data at some time when the model or system
parameters change. Such data is referred to as the harmful
(or useless) data. A data inspection strategy is suggested to
use the 1-step output prediction error for filtering the harmful
(or useless) data and eliminating the negative impact on
the system of the harmful (or useless) data. Then, updating
the subspace matrices online and implementing the adaptive
mechanism are done.

The subspace matrices are obtained from 𝑅 matrix, so
we update the 𝑅 matrix online using recursive method; then
the prediction model can be obtained to calculate the control
input.

Let 𝐴
∗

∈ R2(𝑝+𝑓)(𝑚+𝑙)×(𝑁−𝑓−𝑝+1) be the input-output
Hankel matrix at instant 𝑡 as

𝐴
∗

= [𝑊
𝑇

𝑃
(𝑡) 𝑈

𝑇

𝑓
(𝑡) 𝑌

𝑇

𝑓
(𝑡)]
𝑇

, (29)

where 𝑊
𝑝
(𝑡), 𝑈

𝑓
(𝑡), and 𝑌

𝑓
(𝑡) are the past input-output

data matrix, future input data matrix, and future output
data matrix, respectively, in closed-loop system. The oldest
column of 𝐴

∗ is defined as 𝑏 = [𝑤
𝑇

𝑃
(1) 𝑢

𝑇

𝑓
(1) 𝑦

𝑇

𝑓
(1)]
𝑇

,
where

𝑤
𝑝
(1) = [𝑦

𝑇

𝑝
(1) 𝑢

𝑇

𝑝
(1)]
𝑇

= [𝑦
𝑇

1
⋅ ⋅ ⋅ 𝑦
𝑇

𝑝
𝑢
𝑇

1
⋅ ⋅ ⋅ 𝑢
𝑇

𝑝
]
𝑇

,

𝑢
𝑓
(1) = [𝑢

𝑇

𝑝+1
𝑢
𝑇

𝑝+2
⋅ ⋅ ⋅ 𝑢
𝑇

𝑝+𝑓
]
𝑇

,

𝑦
𝑓
(1) = [𝑦

𝑇

𝑝+1
𝑦
𝑇

𝑝+2
⋅ ⋅ ⋅ 𝑦
𝑇

𝑝+𝑓
]
𝑇

.

(30)

Given a set of new input-output data 𝑐 =

[𝑤
𝑇

𝑃
(𝑡 + 1) 𝑢

𝑇

𝑓
(𝑡 + 1) 𝑦

𝑇

𝑓
(𝑡 + 1)]

𝑇

at instant 𝑡 + 1, where

𝑤
𝑝
(1) = [𝑦

𝑇

𝑝
(𝑡 + 1) 𝑢

𝑇

𝑝
(𝑡 + 1)]

𝑇

= [𝑦
𝑇

𝑁−𝑓−𝑝+2
⋅ ⋅ ⋅ 𝑦
𝑇

𝑁−𝑓+1
𝑢
𝑇

𝑁−𝑓−𝑝+2
⋅ ⋅ ⋅ 𝑢
𝑇

𝑁−𝑓+1
]
𝑇

,

𝑢
𝑓
(𝑡 + 1) = [𝑢

𝑇

𝑁−𝑓+2
𝑢
𝑇

𝑁−𝑓+3
⋅ ⋅ ⋅ 𝑢
𝑇

𝑡+1
]
𝑇

,

𝑦
𝑓
(𝑡 + 1) = [𝑦

𝑇

𝑁−𝑓+2
𝑦
𝑇

𝑁−𝑓+3
⋅ ⋅ ⋅ 𝑦
𝑇

𝑡+1
]
𝑇

.

(31)

The input-output Hankel matrix 𝐷
∗ at instant 𝑡 + 1 is

defined as

𝐴
∗

= [𝑊
𝑇

𝑃
(𝑡) 𝑈

𝑇

𝑓
(𝑡) 𝑌

𝑇

𝑓
(𝑡)]
𝑇

, (32)

where 𝑊
𝑝
(𝑡 + 1), 𝑈

𝑓
(𝑡 + 1), and 𝑌

𝑓
(𝑡 + 1) are similar to the

definitions of 𝑊
𝑝
(𝑡), 𝑈
𝑓
(𝑡), and 𝑌

𝑓
(𝑡).

In order to maintain the size of receding window con-
stant, it is necessary to exclude 𝑏 from 𝐴

∗ and add 𝑐 to 𝐴
∗.

So we can get the relation as [𝐴
∗

... 𝑐] = [𝑏
... 𝐷
∗

]; then the

relation [𝐴
∗

... 𝑐][𝐴
∗

... 𝑐]
𝑇

= [𝑏
... 𝐷
∗

][𝑏
... 𝐷
∗

]
𝑇 gives

𝐴
∗

𝐴
∗𝑇

+ 𝑐𝑐
𝑇

= 𝑏𝑏
𝑇

+ 𝐷
∗

𝐷
∗𝑇

. (33)

The 𝑄𝑅 decomposition of 𝐴∗ is

𝐴
∗

= 𝑅
𝑇

(𝑡) 𝑄
𝑇

(𝑡) = [

[

𝑅
11

(𝑡) 0 0

𝑅
21

(𝑡) 𝑅
22

(𝑡) 0

𝑅
31

(𝑡) 𝑅
32

(𝑡) 𝑅
33

(𝑡)

]

]

[
[
[
[
[

[

𝑄
𝑇

1
(𝑡)

𝑄
𝑇

2
(𝑡)

𝑄
𝑇

3
(𝑡)

]
]
]
]
]

]

=

[
[
[
[
[

[

𝑅
11

(𝑡) 𝑄
𝑇

1
(𝑡)

𝑅
21

(𝑡) 𝑄
𝑇

1
(𝑡) + 𝑅

22
(𝑡) 𝑄
𝑇

2
(𝑡)

𝑅
31

(𝑡) 𝑄
𝑇

1
(𝑡) + 𝑅

32
(𝑡) 𝑄
𝑇

2
(𝑡) + 𝑅

33
(𝑡) 𝑄
𝑇

3
(𝑡)

]
]
]
]
]

]

.

(34)

The objective is to get the results from the 𝑄𝑅 decompo-
sition of 𝐷∗:
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𝐷
∗

= 𝑅
𝑇

(𝑡 + 1)𝑄
𝑇

(𝑡 + 1)

=

[
[
[
[
[

[

𝑅
11

(𝑡 + 1)𝑄
𝑇

1
(𝑡 + 1)

𝑅
21

(𝑡 + 1)𝑄
𝑇

1
(𝑡 + 1) + 𝑅

22
(𝑡 + 1)𝑄

𝑇

2
(𝑡 + 1)

𝑅
31

(𝑡 + 1)𝑄
𝑇

1
(𝑡 + 1) + 𝑅

32
(𝑡 + 1)𝑄

𝑇

2
(𝑡 + 1) + 𝑅

33
(𝑡 + 1)𝑄

𝑇

3
(𝑡 + 1)

]
]
]
]
]

]

.

(35)

From (34)-(35), we have

𝐴
∗

𝐴
∗𝑇

+ 𝑐𝑐
𝑇

=

[
[
[
[
[

[

𝑅
11

(𝑡) 𝑅
𝑇

11
(𝑡) 𝑅

11
(𝑡) 𝑅
𝑇

21
(𝑡) 𝑅

11
(𝑡) 𝑅
𝑇

31
(𝑡)

𝑅
21

(𝑡) 𝑅
𝑇

11
(𝑡) 𝑅

21
(𝑡) 𝑅
𝑇

21
(𝑡) + 𝑅

22
(𝑡) 𝑅
𝑇

22
(𝑡) 𝑅

21
(𝑡) 𝑅
𝑇

31
(𝑡) + 𝑅

22
(𝑡) 𝑅
𝑇

32
(𝑡)

𝑅
31

(𝑡) 𝑅
𝑇

11
(𝑡) 𝑅

31
(𝑡) 𝑅
𝑇

21
(𝑡) + 𝑅

32
(𝑡) 𝑅
𝑇

22
(𝑡) 𝑅

31
(𝑡) 𝑅
𝑇

31
(𝑡) + 𝑅

32
(𝑡) 𝑅
𝑇

32
(𝑡) + 𝑅

33
(𝑡) 𝑅
𝑇

33
(𝑡)

]
]
]
]
]

]

+

[
[
[
[
[

[

𝑤
𝑝
(𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1) 𝑤

𝑝
(𝑡 + 1) 𝑢

𝑇

𝑓
(𝑡 + 1) 𝑤

𝑝
(𝑡 + 1) 𝑦

𝑇

𝑓
(𝑡 + 1)

𝑢
𝑓
(𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1) 𝑢

𝑓
(𝑡 + 1) 𝑢

𝑇

𝑓
(𝑡 + 1) 𝑢

𝑓
(𝑡 + 1) 𝑦

𝑇

𝑓
(𝑡 + 1)

𝑦
𝑓
(𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1) 𝑦

𝑓
(𝑡 + 1) 𝑢

𝑇

𝑓
(𝑡 + 1) 𝑦

𝑓
(𝑡 + 1) 𝑦

𝑇

𝑓
(𝑡 + 1)

]
]
]
]
]

]

,

𝑏𝑏
𝑇

+ 𝐷
∗

𝐷
∗𝑇

=

[
[
[
[
[

[

𝑤
𝑝
(1) 𝑤
𝑇

𝑝
(1) 𝑤

𝑝
(1) 𝑢
𝑇

𝑓
(1) 𝑤

𝑝
(1) 𝑦
𝑇

𝑓
(1)

𝑢
𝑓
(1) 𝑤
𝑇

𝑝
(1) 𝑢

𝑓
(1) 𝑢
𝑇

𝑓
(1) 𝑢

𝑓
(1) 𝑦
𝑇

𝑓
(1)

𝑦
𝑓
(1) 𝑤
𝑇

𝑝
(1) 𝑦

𝑓
(1) 𝑢
𝑇

𝑓
(1) 𝑦

𝑓
(1) 𝑦
𝑇

𝑓
(1)

]
]
]
]
]

]

+

[
[
[

[

𝑅11 (𝑡 + 1) 𝑅
𝑇

11
(𝑡 + 1) 𝑅11 (𝑡 + 1) 𝑅

𝑇

21
(𝑡 + 1) 𝑅11 (𝑡 + 1) 𝑅

𝑇

31
(𝑡 + 1)

𝑅21 (𝑡 + 1) 𝑅
𝑇

11
(𝑡 + 1) 𝑅21 (𝑡 + 1) 𝑅

𝑇

21
(𝑡 + 1) + 𝑅22 (𝑡 + 1) 𝑅

𝑇

22
(𝑡 + 1) 𝑅21 (𝑡 + 1) 𝑅

𝑇

31
(𝑡 + 1) + 𝑅22 (𝑡 + 1) 𝑅

𝑇

32
(𝑡 + 1)

𝑅31 (𝑡 + 1) 𝑅
𝑇

11
(𝑡 + 1) 𝑅31 (𝑡 + 1) 𝑅

𝑇

21
(𝑡 + 1) + 𝑅32 (𝑡 + 1) 𝑅

𝑇

22
(𝑡 + 1) 𝑅31 (𝑡 + 1) 𝑅

𝑇

31
(𝑡 + 1) + 𝑅32 (𝑡 + 1) 𝑅

𝑇

32
(𝑡 + 1) + 𝑅33 (𝑡 + 1) 𝑅

𝑇

33
(𝑡 + 1)

]
]
]

]

.

(36)

From (33), firstly, we can get the first element 𝑅
11
(𝑡+1) of

𝑅(𝑡 + 1):

𝑅
11

(𝑡 + 1) 𝑅
𝑇

11
(𝑡 + 1)

= 𝑅
11

(𝑡) 𝑅
𝑇

11
(𝑡) + 𝑤

𝑝
(𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1) − 𝑤

𝑝
(1) 𝑤
𝑇

𝑝
(1) ,

(37)

𝑅
11

(𝑡 + 1) = chol (𝑅
11

(𝑡) 𝑅
𝑇

11
(𝑡) + 𝑤

𝑝
(𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1)

−𝑤
𝑝
(1) 𝑤
𝑇

𝑝
(1)) ,

(38)

where chol is Cholesky factorization [34]. The subspace
matrices are obtained from 𝑅 matrix as in (10), so we just
calculate the elements required in 𝑅(𝑡 + 1):

𝑅
21

(𝑡 + 1) = [𝑅
21

(𝑡) 𝑅
𝑇

11
(𝑡) + 𝑢

𝑓
(𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1)

− 𝑢
𝑓
(1) 𝑤
𝑇

𝑝
(1)] [𝑅

𝑇

11
(𝑡 + 1)]

−1

,

𝑅
31

(𝑡 + 1) = [𝑅
31

(𝑡) 𝑅
𝑇

11
(𝑡) + 𝑦

𝑓
(𝑡 + 1)𝑤

𝑇

𝑝
(𝑡 + 1)

− 𝑦
𝑓
(1) 𝑤
𝑇

𝑝
(1)] [𝑅

𝑇

11
(𝑡 + 1)]

−1

,

𝑅
22

(𝑡 + 1) = chol (𝑅
21

(𝑡) 𝑅
𝑇

21
(𝑡) + 𝑅

22
(𝑡) 𝑅
𝑇

22
(𝑡)

+ 𝑢
𝑓
(𝑡 + 1) 𝑢

𝑇

𝑓
(𝑡 + 1) − 𝑢

𝑓
(1) 𝑢
𝑇

𝑓
(1)

− 𝑅
21

(𝑡 + 1) 𝑅
𝑇

21
(𝑡 + 1)) ,

𝑅
32

(𝑡 + 1) = [𝑅
31

(𝑡) 𝑅
𝑇

21
(𝑡) + 𝑅

32
(𝑡) 𝑅
𝑇

22
(𝑡)

+ 𝑦
𝑓
(𝑡 + 1) 𝑢

𝑇

𝑓
(𝑡 + 1) − 𝑦

𝑓
(1) 𝑢
𝑇

𝑓
(1)

− 𝑅
31

(𝑡 + 1) 𝑅
𝑇

21
(𝑡 + 1)] [𝑅

𝑇

22
(𝑡 + 1)]

−1

.

(39)
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Substituting (38) and (39) into (10), the subspace matrices at
instant 𝑡 + 1 can be derived by

[𝐿
𝑤
(𝑡 + 1) 𝐿

𝑢
(𝑡 + 1)]

= [𝑅
31

(𝑡 + 1) 𝑅
32

(𝑡 + 1)] [
𝑅
11
(𝑡 + 1) 0

𝑅
21
(𝑡 + 1) 𝑅

22
(𝑡 + 1)

]

†

.

(40)

By this way, the subspace matrices can be obtained
through the above method; then the predictor will be cal-
culated using (14) in open-loop system and (26) in closed-
loop system. So we can get the control input at instant 𝑡 + 1.
At the next time, repeat the above procedure to implement
the online adaptive mechanism and it will result in a quicker
response to process changes.

In presence of noise and online disturbance, it would
result in an inaccurate identification precision and an
unneglectable match error as the presence of the harmful
(or useless) data in the online excitation. In our previous
work [26], an inspection strategy of model precession was
proposed, but it cannot eliminate the negative impact of
harmful (or useless) data on system performance. In this
paper, a data inspection strategy introduced is the use of
prediction error to remove the harmful (or useless) data.

Calculate the following prediction error before adding
new data:

𝑒
𝑡+1|𝑡

=
𝑦𝑡+1|𝑡 − 𝑦

𝑡+1

 , (41)

where 𝑦
𝑡+1

is the process output at 𝑡 + 1 time and 𝑦
𝑡+1|𝑡

is the
predictive output at 𝑡 time predicting 𝑡+1 time before adding
new data.

Similarly, the prediction error after adding new data can
be also introduced:

𝑒


𝑡+1|𝑡
=


𝑦


𝑡+1|𝑡
− 𝑦
𝑡+1


, (42)

where 𝑦


𝑡+1|𝑡
is the output at 𝑡 time predicting 𝑡 + 1 time after

adding new data.
While 𝑒

𝑘+1|𝑘
≤ 𝑒


𝑘+1|𝑘
, the new data is a harmful (or

useless) one, so maintain 𝑅 matrix and the system model
invariably. Inversely, while 𝑒

𝑘+1|𝑘
> 𝑒


𝑘+1|𝑘
, use the new data

to update the 𝑅 matrix and predictor. At the next sampling
time, when the new data arrives, recycle the above progress.

For the sake of clarity, the proposed adaptive mechanism
implemented in the closed-loop data-driven predictive con-
troller is summarized in Algorithm 1.

5. Simulation Examples

In this section, a SISO (single input single output) example
and a MIMO (multiple input multiple output) example iden-
tified and controlled by the proposed method are presented
and discussed as follows.

Remark 1. Thedata usedwere preprocessedwith themethods
in Section 14 of [35].

Table 1: The prediction errors of open-loop and closed-loop
identified hair dryer models.

Identified method Open-loop Closed-loop
Prediction error 15.6561 8.6039

5.1. A Hair Dryer Example. This hair dryer system is a simple
mechanical device. The input 𝑢 is the power of the heating
device, which is a mesh of resistor wires. The output 𝑇

is the outlet air temperature, which can be measured by
thermocouple. Air is fanned through a tube and heated at
the inlet. The details can be seen in [35]. In this example,
we operated in case of closed-loop system. 𝑢 was chosen
to be a binary random signal shifting between 35W and
65W. The length of samples and sampling time were set to
1000 and 0.2 s, respectively. Firstly, totally 100 samples were
used to verify the identification accuracy.The comparisons in
Figure 2 show the response of the identified model and pro-
cess output using open-loop data-driven predictive control
(ODPC) in Section 1 and closed-loop data-driven predictive
control (CDPC) in Section 2, where “Rf ” is process output,
“open-loop” is open-loop identifiedmodel, and “closed-loop”
is closed-loop identified model.

To test the cross-validation in Figure 2, a form of predic-
tion error in [10] is given as

𝜀 = 100
1

𝑙

𝑙

∑

𝑐=1

[
[
[

[

√
∑
𝑁

𝑘=1
((𝑦
𝑘
)
𝑐
− (𝑦
𝑝

𝑘
)
𝑐
)
2

∑
𝑁

𝑘=1
((𝑦
𝑘
)
𝑐
)
2

]
]
]

]

%, (43)

where 𝑦
𝑘
and 𝑦

𝑝

𝑘
are the values at instant 𝑘 of process and

model output, respectively. Table 1 illustrates the prediction
errors of open-loop and closed-loop identified models.

The cross-validation results indicate that the closed-loop
model is more accurate than open-loop model. Then, the
system is given a performance of desired output changes to
track using ODPC and CDPC. The sample 𝑁 was set to
1000 and the sampling time 𝑡 used was 0.2 s. The tuning
parameters used in this simulation were 𝑝 = 𝑓 = 3,
𝑄 = 𝐼

3
, and 𝑅 = 0.16 ∗ 𝐼

3
. Figure 3 depicts the output

𝑇 tracking performance. It can be seen that CDPC shows
the favorable control performance and has a better tracking
ability compared to ODPC.

In order to verify the adaptive mechanism in Section 4,
the model of closed-loop identification was identified as a
state-space model:

𝐴 = [
0.9398 0.1275

−0.3046 0.8897
] , 𝐵 = [

−0.0019

−0.0721
] ,

𝐶 = [
−41.9003

5.5421
] , 𝐷 = [0.1157] .

(44)

We changed the system model at 𝑡 = 600 as

𝐴 = [
1.1762 −0.1275

−0.3046 0.8897
] , 𝐵 = [

−0.0019

−0.0721
] ,

𝐶 = [
−41.9003

5.5421
] , 𝐷 = [0.1157] .

(45)
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(1) Construct the block Hankel matrices from the closed-loop data.
(2) Obtain the intermediate subspace matrices �̃�

𝑤
and �̃�

𝑢
by solving the least squares problem (24).

(3) Compute the closed-loop subspace matrices 𝐿
𝑤
and 𝐿

𝑢
using (25).

(4) Derive the predictor 𝑦
𝑓
of predictive controller with (26).

(5) Implement the control input 𝑢 using (27) and (28).
(6) At the next time, when new data arrives, implement the data inspection strategy. If the data
is harmful (or useless), keep the 𝑢 constant. Otherwise, implement the following steps.
(7) Build the new input-output Hankel matrix 𝐷

∗ and the new Rmatrix is the QR decomposition
results of 𝐷∗ with (35).
(8) Recursively computer the elements 𝑅

11
, 𝑅
21
, 𝑅
22
, 𝑅
31
, 𝑅
32
of Rmatrix using (38) and (39).

(9) Calculate the new subspace matrices using (40) and computer the control input by
repeating steps 4-5. Then, back to step 6.

Algorithm 1: Summary of the proposed method.
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Figure 2: The response of the identified model and process output.

For comparison, the adaptive methods in [25, 26] are
given. The method in [25] is an original receding window
method which is performed by only 𝑄𝑅 decomposition. In
[26], recursive approach is presented to obtain every element
value of 𝑅 matrix and the model inspection strategy is given.
Figure 4 shows the response comparison in the presence
of disturbance after the system model changes. We can get
that, in performance of disturbance rejection, the method in
this paper is better than the other two methods. The data
inspection strategy makes the contribution for this result.
The harmless (or useless) data are always produced when
we implement online identification.The control performance
depends on the better data preprocessing in this paper
compared to the methods in [25, 26].

By comparing computation time of 1000 samples, the
methods in [25, 26] and this paper take about 71 s, 62 s,
and 52 s, respectively. The method in [25] requiring 𝑄𝑅

decomposition at every instant results in the most time of
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(∘
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Figure 3: The output 𝑇 tracking performance.

the three methods. The computation time of our proposed
method is less than that taken by the method in [26] since it
only requires calculating the key elements 𝑅

11
, 𝑅
21
, 𝑅
22
, 𝑅
31
,

and 𝑅
32

of 𝑅 matrix of our method but every element value
of 𝑅 matrix of the method in [26].

Additionally, to verify the usefulness of the data inspec-
tion strategy, the prediction error in (43) is used. When
systemmodel was changed, we introduced two identification
ways, the data inspection strategy is used in one way and the
other not.The prediction errors of these two ways are showed
in Table 2 from 600 s to 1000 s. We can get that the data
inspection strategy improves the accuracy of the method.

5.2. An Industrial 4-Stage Evaporator Example. The evap-
orator is a nonlinear and time-varying industrial process
control system, and considering the stability of system the
evaporator is often necessary to work in the closed-loop
case.The conventional control methods, such as PID control,
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Figure 4: The response comparison in the presence of disturbance
after the model changes.

Table 2:The prediction errors with and without the data inspection
strategy in the hair dryer example.

Identification way
in hair dryer

The method with
the data inspection

strategy

The method
without the data

inspection strategy
Prediction error 19.2230 26.0138

Table 3: The prediction errors of open-loop and closed-loop
identified evaporator model.

Identification
algorithm Open-loop Closed-loop

Prediction error 53.1732 28.0058

will result in poor control performance. The product quality
will be also affected accordingly. The evaporator is used to
reduce the water content of a product and is widely applied
in chemical industry, food industry, pharmaceuticals, and
others. Therefore, it is of an extremely important practical
significance to use an effective control method to achieve
fast and accurate control performance of the evaporator. A
typical industrial 4-stage evaporator system and the detailed
principle of operation can be seen in [36]. The system has
three inputs and three outputs. The three inputs are input
product flow 𝑞

𝑖
, vapour flow 𝑞V to the first evaporator, and

cooling water flow 𝑞
𝑐
to condenser, respectively. The three

outputs are dry matter content TDS of output product,
output product flow 𝑞

𝑜
, and output product temperature 𝑇,

respectively [37].
The open-loop and closed-loop identification algorithms

are applied in system. Using 1000 validation data for identifi-
cation, the prediction errors in (43) are given in Table 3.

It is similar to the hair dryer example in Section 5.1; the
closed-loop identification computes a more accurate model.

Table 4:The prediction errors with and without the data inspection
strategy in the evaporator example.

Identification way
in evaporator

The method with
the data inspection

strategy

The method
without the data

inspection strategy
Prediction error 32.1687 41.3125
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Figure 5: The tracking comparison of output TDS.

The target is set for the output TDS tracking the reference
signal in the system.The parameters of proposed data-driven
adaptive predictive control (DAPC) method were tuned as
𝑁 = 4000, 𝑡 = 1 s, 𝑝 = 𝑓 = 10, 𝑄 = 𝐼

30
, and

𝑅 = 0.1 ∗ 𝐼
30
. The initial value of TDS was 1.5mg/L.

For comparison, the recursive adaptive subspace predictive
control (RASPC) method in [23] and an adaptive fuzzy-PID
controller in [38] were selected as competitors to compare the
tracking capability. Figure 5 depicts the tracking comparison
of these three controllers in the first 2000 samples and
Figure 6 showed the partial enlarged drawing between 1000 s
and 1200 s of Figure 5. At 1600 s, we changed 𝑞

𝑖
to increase

by 10 percent; the response comparison after the parameters
change is showed in Figure 7.

Through the simulation results, it may fairly be said that
our proposed method is much better in output tracking
and disturbance rejection than that performed by recursive
method in [23] and fuzzy-PID controller in [38]. It can be
interpreted that the reduction of the influence of the old data
plays an important role.

As for the computation time, our method takes about 76 s
for 1000 samples, while their recursivemethod in [23] is about
64 s; the lattermethod is somewhat superior to ours because it
needs to add new data and eliminate old data at every instant
in ours but theirs only add new data.

Similar to Section 5.1, the prediction errors with and
without the data inspection strategy from 1600 s to 2000 s are
listed in Table 4. Corresponding to the conclusion in the hair
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Figure 6: The partial enlarged comparison of Figure 5.
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Figure 7: The response comparison in the presence of disturbance
after the parameters change.

dryer example, the superior performance is obtained as using
the data inspection strategy.

6. Conclusion

In this paper, the design of a data-driven adaptive predictive
controller based on closed-loop subspace identification has
been addressed. The predictor is identified through the
closed-loop subspace identification and used to design a
data-driven predictive controller. The adaptive mechanism
is presented that combines the merits of both receding
window and recursive identification methods, keeping the
size of input-output data matrix constant and using recursive

identification to obtain the subspace matrices which can
derive the predictor. Meanwhile, the data inspection strategy
is used to eliminate the new harmless (or useless) data. By
simulation studies for two examples its performance has been
proved to be efficient by comparing with other methods.
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Aiming at the problem of inefficiency of wireless local area networks (WLAN) access point (AP) deployment in urban environment,
a new algorithm for AP deployment based on physical distance and channel isolation (DPDCI) is proposed. First, it detects the
position information of deployed APs and then calculates the interference penalty factor combined with physical distance and
channel isolation, and finally gets the optimal location and channel of the new AP through the genetic algorithm. Comparing with
NOOCA algorithm and NOFA-2 algorithm, the results of numerical simulation show that the new algorithm can minimize the
mutual interference between basic service sets (BSS), can ensure the maximum of throughput based on quality of service (QoS) in
BSS, and can effectively improve the system performance.

1. Introduction

With the development of information era, the growing
importance of the wireless local area network (WLAN)
becomes more and more obvious. Since the WLAN has the
advantages of flexibility, simplicity, easy extension, and so on,
it widely applies in hot places such as the markets, leisure
clubs, and companies. However, there is no authoritative
standards for commercial WLAN deployment and channel
allocation and management standards, which leads to the
current situation that each major telecom operator deploys
its own WLAN equipment in the same hot spots in order
to provide its own high-speed broadband multimedia busi-
ness, respectively, which causes the repetitive construction
of the coverage of the wireless access point (AP) and, at
the same time, the large amount of channel interference
in the limited frequency band due to the high-density
deployment of AP. Therefore, how to effectively configure
and optimize the AP channels becomes one of the leading
problems to be solved for the large-scale commercial use of
WLAN.

Aiming at AP channel interference problems, there have
been some research results,most of which aremainly through
the graph coloring [1], integer linear programming [2], and
heuristic method [3] for allocating channels for APs in
ISM (industrial, scientific, medical) band to make the whole
interferenceminimum. Reference [4] uses the cognitive radio
technology, combined with the service condition of the
primary users’ band, to allocate accessible primary users’
channels for AP. However, the above algorithms improve
the system throughput by minimizing interference, which
neither considers the influence from different business on
the throughput nor guarantees the quality of service (QoS)
of the system. In order to ensure the QoS and fairness of
different business in WLAN, based on Hsum algorithm [5],
reference [6] introduces fairness index and puts forward
the CAOTR (Channel Assignment based on the Order of
Throughput Reduction) algorithm, but the complexity of the
algorithm is higher. Reference [7] proposes the interference
factor combining physical distance and channel isolation, but
it is only suitable for the channel allocation of the fixed-
location AP and does not consider changing the deployment
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Figure 1: Work scene under the coexistence of high-density AP.

position of the AP. In [8], it gives a self-adapted algorithm
based on neural network, which adapts retreat parameters
in real time at Data Link Layer according to QoS request
from Application Layer and channel state information from
Physical Layer. In [9, 10], based on game theory algorithm, it
seeks the optimal solution under the restricted condition of
throughput, QoS, fairness, and so forth. However, [8–10] fail
to involve the channel allocation of AP.

This paper considers synthetically the physical distance
and channel isolation among APs and the position infor-
mation of already deployed AP in detection area; a new
algorithm for AP deployment based on physical distance
and channel isolation (DPDCI) is proposed, which can
effectively reduce interference and improve the systemoverall
throughput.

2. System Model

2.1. Network Model. As shown in Figure 1, each AP and
associated terminals in AP’s communication range comprise
a basic service set (BSS). In the BSS, terminals communicate
with AP through the Media Access Control (MAC) protocol,
while the communication between the APs is achieved by
the IAPP [11], whose working principle is as follows: AP
monitoring the adjacent AP beacon, including SNR infor-
mation and the received signal strength and so on, and
then AP will send its own information to the controller,
including the number of terminals in the BSS. After the
controller gets all the information from each AP, it will
measure the overall throughput and allocate the channels.
Because of the uncertainty of the AP position, it may
cause the overlap on the range of BSS of different APs.
In the overlap area, if channel allocation is not reasonable,
it will cause interference problems when the terminals in
the overlap area exchange data with the corresponding AP,
especially when cochannel interference appears; it may even
cause the communication interruption between client and
its AP.

2.2. Interference Model. As shown in Figure 2, each AP owns
two areas—one is communication area, and the other is
interference area. Communication area is related to trans-
mitter power and path loss and the receiver sensitivity
corresponded to the real communication rate of the physical
layer. While interference area is related to transmitter power,
path loss and the receiver sensitivity corresponded to the
minimum-supported communication rate of the physical
layer. Apparently, the interference area is greater than or equal
to communication area.

The communication radius (interference radius) is
defined as [12]

𝑟 = 10
(𝑃𝑡−𝑃𝑟−𝐿0)/10𝛼, (1)

where 𝑃
𝑡
is transmitting power, 𝑃

𝑟
is receiving power; 𝛼 is

channel attenuation factor, and 𝐿
0
is the channel attenuation

with one meter distance from receiver. The communication
radius 𝑟

1
is obtained based on theminimumeffective received

power and the interference radius 𝑟
2
is obtained according to

theminimum received power under interference. To simplify
the analysis, we assume that the communication radius and
interference radius of each AP are 𝑟

1
and 𝑟
2
, respectively.

2.2.1. Channel Interference Factor. Channel interference fac-
tor between APs is defined as follows;

𝜙 (𝑐
𝑖
, 𝑐
𝑗
) = ∫

+∞

−∞

𝑆
𝑡
(𝑓) 𝑆
𝑟
(𝑓 − 𝜏) 𝑑𝑓, (2)

where 𝑐
𝑖
is the channel index number allocated to AP

𝑖
, 𝑐
𝑖
is

the channel index number allocated to AP
𝑗
, 𝑖, 𝑗 ∈ {1, . . . , 11},

𝑆
𝑡
(𝑓) is the transmitting power distribution of AP, 𝑆

𝑟
(𝑓) is the

receiving power distribution of AP, and 𝜏 is off-set frequency.
In order to make it easy to analyze, the paper uses the

IEEE 802.11b as theWiFi to analyze, and the channel isolation
is set to 5MHz and channel bandwidth is set to 22MHz. The
transmitting power distribution is defined as follows [7]:

𝑆
𝑡
(𝑓) =

{{

{{

{

−50 dB, if 𝑓 − 𝑓𝑐
 > 22MHz,

−30 dB, if 11MHz < 𝑓 − 𝑓𝑐
 < 22MHz,

0 dB, otherwise,
(3)

where 𝑓
𝑐
is the central frequency.

It is obvious that𝜙(𝑐
𝑖
, 𝑐
𝑗
) ∈ [0, 1], and especially,𝜙(𝑐

𝑖
, 𝑐
𝑗
) =

0 when two APs’ channels are completely orthogonal.

2.2.2. Physical Distance Interference. When the distance
between AP

𝑖
and AP

𝑗
is bigger than the summation of 𝑟

1
and

𝑟
2
, its overlap area 𝐴

𝑖𝑗
is illustrated in Figure 2, where the

distance between adjacent AP
𝑖
and AP

𝑗
is 𝑑
𝑖𝑗
, namely, AB,

the communication radius of AP
𝑖
, namely, length ofAC, is 𝑟

1
,

and the interference radius of AP
𝑗
, namely, length of BC, is

𝑟
2
; in ΔABC, we can obtain 𝜃

1
and 𝜃
2
according to the cosine

theorem:

𝜃
1
= arccos(

𝑟
2

1
+ 𝑑
𝑖𝑗

2

− 𝑟
2

2

2𝑟
1
𝑑
𝑖𝑗

)

𝜃
2
= arccos(

𝑟
2

2
+ 𝑑
𝑖𝑗

2

− 𝑟
2

1

2𝑟
2
𝑑
𝑖𝑗

) ,

(4)
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where 𝑆
1
is the difference value that corresponding sector

area of 𝜃
1
in the AP

𝑖
communication area minuses the area of

ΔAOC, 𝑆
2
is the difference value that corresponding to sector

area of 𝜃
2
in AP

𝑗
communication area minuses the area of

ΔBOC:

𝑆
1
=
1

2
𝜃
1
𝑟
2

1
−
1

2
× 𝑟
1
sin 𝜃
1
× 𝑟
1
cos 𝜃
1

=
1

2
𝜃
1
𝑟
2

1
−
1

4
𝑟
2

1
sin (2𝜃

1
)

𝑆
2
=
1

2
𝜃
2
𝑟
2

2
−
1

2
× 𝑟
2
sin 𝜃
2
× 𝑟
2
cos 𝜃
2

=
1

2
𝜃
2
𝑟
2

2
−
1

4
𝑟
2

2
sin (2𝜃

2
) .

(5)

According to symmetry, the expression of area 𝐴
𝑖𝑗
is

𝐴
𝑖𝑗
= 2 (𝑆

1
+ 𝑆
2
)

=
1

2
𝑟
2

1
[2𝜃
1
− sin (2𝜃

1
)] +

1

2
𝑟
2

2
[2𝜃
2
− sin (2𝜃

2
)] .

(6)

Therefore, 𝐴
𝑖𝑗
can be expressed as

𝐴
𝑖𝑗
=

{{{{

{{{{

{

1

2
𝑟
2

1
[2𝜃
1
− sin (2𝜃

1
)]

+
1

2
𝑟
2

2
[2𝜃
2
− sin (2𝜃

2
)] , 𝑑

𝑖𝑗
< 𝑟
1
+ 𝑟
2

0, 𝑑
𝑖𝑗
≥ 𝑟
1
+ 𝑟
2
.

(7)

2.2.3. Signal to Interference Ratio in BSS. To facilitate analysis,
wemake such assumptions: AP receives the same power from
the client and client obeys Poisson distribution in commu-
nication area, and each client transmits data equiprobably.
Therefore, ignoring the noise, the APi’s SIR [13] can be
expressed as

SIR
𝑖
=

𝜋𝑟
2

1

∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝜙 (𝑐
𝑖
, 𝑐
𝑗
)𝐴
𝑖𝑗

. (8)

To guarantee the communication quality, SIRmust satisfy
the following condition:

SIR
𝑖
≤ 𝛾
𝑖
, (9)

where 𝛾
𝑖
is the value of SIR threshold under AP

𝑖
.

3. Detection of Deployed APs

In an urban environment, a lot of the APs are located in some
place which unable to be observed directly and the physical
distance information of AP is hard to be measured directly,
so wireless locating method is introduced [14]. It is assumed
that the position of the already deployed AP is (𝑥

0
, 𝑦
0
, 𝑧
0
), the

position of the 𝑖th measuring point is (𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
), the received

signal intensity measured at the 𝑖th measuring point is 𝑟
𝑖
, and

the numerical relationship between AP and the measuring
point can be expressed as

[
[
[
[
[

[

−𝑥
2

1
− 𝑦
2

1
− 𝑧
2

1
+ 𝑥
2

𝑘
+ 𝑦
2

𝑘
+ 𝑧
2

𝑘

−𝑥
2

2
− 𝑦
2

2
− 𝑧
2

2
+ 𝑥
2

𝑘
+ 𝑦
2

𝑘
+ 𝑧
2

𝑘

⋅ ⋅ ⋅

−𝑥
2

𝑘−1
− 𝑦
2

𝑘−1
− 𝑧
2

𝑘−1
+ 𝑥
2

𝑘
+ 𝑦
2

𝑘
+ 𝑧
2

𝑘

]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

−2𝑥
1
+ 2𝑥
𝑘

−2𝑦
1
+ 2𝑦
𝑘

−2𝑧
1
+ 2𝑧
𝑘

𝑎
1
(𝑟
1
− 𝑟
𝑘
)

5

−2𝑥
2
+ 2𝑥
𝑘

−2𝑦
2
+ 2𝑦
𝑘

−2𝑧
2
+ 2𝑧
𝑘

𝑎
1
(𝑟
2
− 𝑟
𝑘
)

5
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−2𝑥
𝑘−1

+ 2𝑥
𝑘
−2𝑦
𝑘−1

+ 2𝑦
𝑘
−2𝑧
𝑘−1

+ 2𝑧
𝑘

𝑎
1
(𝑟
𝑘−1

− 𝑟
𝑘
)

5

]
]
]
]
]
]
]
]
]

]

[
[
[
[

[

𝑥
0

𝑦
0

𝑧
0

1

𝑛

]
]
]
]

]

.

(10)

For simplicity, assume

[
[
[
[
[

[

−𝑥
2

1
− 𝑦
2

1
− 𝑧
2

1
+ 𝑥
2

𝑘
+ 𝑦
2

𝑘
+ 𝑧
2

𝑘

−𝑥
2

2
− 𝑦
2

2
− 𝑧
2

2
+ 𝑥
2

𝑘
+ 𝑦
2

𝑘
+ 𝑧
2

𝑘

⋅ ⋅ ⋅

−𝑥
2

𝑘−1
− 𝑦
2

𝑘−1
− 𝑧
2

𝑘−1
+ 𝑥
2

𝑘
+ 𝑦
2

𝑘
+ 𝑧
2

𝑘

]
]
]
]
]

]

= 𝑎 (11)
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[
[
[
[
[
[
[
[
[

[

−2𝑥
1
+ 2𝑥
𝑘

−2𝑦
1
+ 2𝑦
𝑘

−2𝑧
1
+ 2𝑧
𝑘

𝑎
1
(𝑟
1
− 𝑟
𝑘
)

5

−2𝑥
2
+ 2𝑥
𝑘

−2𝑦
2
+ 2𝑦
𝑘

−2𝑧
2
+ 2𝑧
𝑘

𝑎
1
(𝑟
2
− 𝑟
𝑘
)

5
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

−2𝑥
𝑘−1

+ 2𝑥
𝑘
−2𝑦
𝑘−1

+ 2𝑦
𝑘
−2𝑧
𝑘−1

+ 2𝑧
𝑘

𝑎
1
(𝑟
𝑘−1

− 𝑟
𝑘
)

5

]
]
]
]
]
]
]
]
]

]

= 𝐵. (12)

According to the Least-Square Estimation, we can obtain

[
[
[
[

[

𝑥
0

𝑦
0

𝑧
0

1

𝑛

]
]
]
]

]

= (𝐵
𝑇

𝐵)
−1

𝐵
𝑇

𝑎. (13)

So, the position information of the deployed AP can be
calculated and the position information of all APs in the area
can be measured.

4. Access Strategy in Authorized
Frequency Band

We define 𝑠
𝑡
as the primary user channel state at time slot

𝑡, 𝑠
𝑡
= 0 indicates that the primary user’s channel is busy,

𝑠
𝑡
= 1 stands for availability of primary user’s channel,

𝜃
0
= Pr{𝑠

𝑡
= 0} stands for busy probability of primary user’s

channel, and 𝜃
1
= Pr{𝑠

𝑡
= 1} stands for available probability

of primary user’s channel. 𝑠
𝑡
stands for the detection result

of primary user’s channel from secondary user, 𝑠
𝑡
= 0 stands

for that the detection of primary user’s channel being busy,
𝑠


𝑡
= 1 stands for that the detection of primary user’s channel

being available, 𝜋
0
= Pr{𝑠

𝑡
= 0} stands for probability

that the detection of primary user’s channel is busy, and
𝜋
1
= Pr{𝑠

𝑡
= 1} stands for probability that the detection

of primary user’s channel is available. The accuracy of the
secondary user detection result is mainly expressed with
detection probability 𝑝de (𝑝de = Pr{𝑠

𝑡
= 0 | 𝑠

𝑡
= 0}) and false

alarm probability 𝑝fa (𝑝fa = Pr{𝑠
𝑡
= 0 | 𝑠

𝑡
= 1}). The access

strategy of authorized frequency band can be expressed as
[15]

max
{𝑟𝑗 ,𝑥𝑗}

∑

𝑗=0,1

𝜋
𝑗
𝑟
𝑗
Pr{𝑟
𝑗
≤ log
2
[1 +

𝑥
𝑗
𝑔
𝑠𝑠

(1 − 𝑧
𝑗
) 𝑌𝑔
𝑝𝑠
+ 𝑛

]}

s.t. ∑

𝑗=0,1

𝜋
𝑗
𝑥
𝑗
≤ Γ
1

∑

𝑗=0,1

𝜋
𝑗
𝛼
0𝑗
𝑥
𝑗
𝑔
𝑠𝑝
≤ Γ
2
,

(14)

where 𝑟
𝑗
and 𝑥

𝑗
stand for the secondary user’s state when

channel state of authorized frequency band is 𝑗. 𝑔
𝑠𝑠
is the

channel power gain between the secondary user’s transmitter
and receiver. 𝑔

𝑝𝑠
is the gain between the primary user’s

transmitter and secondary user’s receiver. 𝑔
𝑠𝑝

is the gain
between the secondary user’s transmitter and primary user’s

receiver. 𝑧
𝑗
= 0 stands for the busy state of authorized

frequency channel. 𝑧
𝑗
= 1 stands for the available state of

authorized frequency channel. 𝛼
𝑖𝑗
is the situation that, after

authorization, the real state of frequency band is 𝑖 and the
detected result is the posterior probability of 𝑗. Γ

1
is the

maximum power of secondary user. Γ
2
is the interference

threshold of the primary user corresponding to secondary
user.

5. The GA-Based AP Deployment Algorithm

In order to solve the optimal solution of the target channel
allocation function reasonably, we introduce genetic algo-
rithm [16] to solve the optimal channel allocation problem
of AP.

Genetic algorithm is viewed as a classic bionic algorithm,
which imitates the selection process of the biological nature
and selects the more adaptive individuals to reproduce with
the rule of the survival of the fittest in order to form a new
solution space through crossover and mutation and finally
get the optimal solution of the problem. Each kind of AP
deployment is viewed as an individual, and a limited kind of
AP deployment constitutes a population.

5.1. Fitness Function. In order to obtain the optimal solution,
we first build the fitness function. Fitness function reflects
how adaptively an individual responds to the restricted
conditions, and individuals with larger function values adapt
better.

Assuming the positions of AP
𝑖
and AP

𝑗
are (𝑥

𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) and

(𝑥
𝑗
, 𝑦
𝑗
, 𝑧
𝑗
), respectively, so the distance between AP

𝑖
and AP

𝑗

is

𝑑
𝑖𝑗
= √(𝑥

𝑖
− 𝑥
𝑗
)
2

+ (𝑦
𝑖
− 𝑦
𝑗
)
2

+ (𝑧
𝑖
− 𝑧
𝑗
)
2

. (15)

𝐼
𝑐
is defined as the whole interference factor in the area,

and 𝐼
𝑐
(𝑖, 𝑗) = 𝐼

𝑐
(𝑗, 𝑖), so 𝐼

𝑐
can be expressed as

𝐼
𝑐
= 2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝐼
𝑐
(𝑖, 𝑗) , (16)

where𝑁 is the number of APs in the area.
The system interference is minimized when the whole

interference factor in the area is the minimum. To make the
influence on the throughput of the whole area minimum,
fitness function is defined as

fit = 𝑁

𝐼
𝑐

. (17)
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Figure 2: Diagram of interference model.

The probability that one individual is selected for cross-
over and mutation is defined as

𝑝
𝑖
=

fit (𝑖)
∑
𝐿

𝑗=1
fit (𝑗)

, (18)

where 𝐿 is the number of individuals in the population.

5.2. The Pseudocode of the Algorithm. The pseudocode of the
algorithm is as in Algorithm 1.

The input of the algorithm is the position information
of deployed AP, the number of new AP, and information
of AP-usable position. First, it allocates channels randomly
for the AP and then allocates deployment point for the
new APs using the deployable positions and generate a not
completely same allocation result to constitutes a population,
and calculate the adaptability function value of each indi-
vidual in the population, and the number of the iteration is
initialized as 0. When the number of the iteration is smaller
than the predefined maximum iteration number, calculating
the selection probability according to (18), uses the Roulette
method to select individual pair for hybrid processing, uses
the Roulette method to select a single individual for mutation
processing to get rid of individuals less adaptive individuals,
and finally it refreshes the population and the number of
iterations.

6. Simulations

To illustrate the performance of the algorithm, DPDCI
algorithm is to be compared with the NOFA-2 algorithm [17]
and the NOOCA algorithm [18].

The simulation parameters are shown in Table 1.
To estimate the interference of channel allocation algo-

rithm over system performance, we define the average inter-
ference ratio 𝜂 of system user from channel interference as
follows:

𝜂 =
1

𝑁

𝑁

∑

𝑖=1

(

∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝐴
𝑖𝑗

𝜋𝑟
2

1

) . (19)

Table 1: Main parameters of numerical analysis.

Network topology size 1 km × 1 km
Transmit power of primary user’s station 𝑃pt 43 dBm
Received power of primary user’s receiver 𝑃pr −60 dBm
Antenna gain of primary user’s station 𝐺pt 15 dBi
Antenna gain of primary user’s receiver 𝐺pr 0 dBi
Path loss parameter 𝛼 of cognitive network 4
Interference noise power 𝛿 0.01mw
The reserved average transmit rate of primary user
𝐶
0

4Mbps

Signal bandwidth 𝐵 5MHz
The total channel of primary user 11
Channel attenuation 𝐿

0
at 1m 1

Available channel in authorized frequency band 15
Available probability of each channel in authorized
frequency band 0.5

Communication radius 𝑟
1

100m
Interference radius 𝑟

2
200m

The simulation results are as in Figure 3.
In Figure 3, the horizontal coordinate indicates the

accessed number 𝑛 ofAP and the vertical coordinate indicates
the average interference of all the system users due to channel
interference. At the first halves of the three algorithms, the
tendencies of average interference are the same; this is due
to the fact that the ISM band resource is relatively abundant
under the situation that the number of AP is small. In
particular, when the channel number is fewer than 3, the
system average interference is 0 since ISM band owns three
orthogonal channels (1/6/11). When AP takes orthogonal
channel, there has no mutually interference.

With the increase of the number of AP, the average
interference of NOFA-2 is always higher than NOOCA and
DPDCI since NOFA-2 only assigns channel in ISM band,
while, in the lower part of ISM band, AP’s SIR is over its
threshold value; if AP number increases on this base, it will
increase the channel interference and lead to the increase
of average interference. Moreover, the average interference
of NOOCA is bigger than that of DPDCI, which is because
the fact that when the NOOCA algorithm assigns channel in
hybrid band, it fails to consider that the AP in unauthorized
channel cannot interfere with AP in ISM band, which results
in suboptimal allocation result of certain ISM band channel.

The comparison of normalization throughput of the
three algorithms is shown in Figure 4. NOOCA and DPDCI
algorithms introduce authorized band channel. When the
number of communication channels increases, it decreases
the interference between APs. Therefore, they are better than
NOFA-2 algorithm in normalization throughput.TheDPDCI
algorithm considers that the AP in unauthorized channel
cannot interfere with AP in ISM band which makes the
channel allocation in ISM band more optimal. Therefore,
it has a higher normalization throughput over NOOCA
algorithm. As the accessing client increases, the advantage of
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Input: a graph of APs with the No. of each AP
Output: an assigned channel for each AP
(1) Initial a population with different individual
(2) Calculated fitness for each individual
(3) Let gen = 0
(4)While gen < GMAX do
(5) Assign a probability for each individual according to (18)
(6) Select many pair of the individual using the roulette method
(7) Crossover each pair of individual
(8) Select many individual using the roulette method
(9) Mutation each individual
(10) Calculated fitness for each individual
(11) Choose the right individual to form a new population
(12) gen = gen++
(13) End while

Algorithm 1
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Figure 3: The comparison of average interference.

DPDCI and NOOCA algorithms is highlighted and they are
obviously higher than NOFA-2 algorithm.

Figure 5 shows the normalized throughput of DPDCI
algorithm in the cases of detecting already deployed APs
and not detecting already deployed APs. Because detecting
already deployed AP can effectively avoid the strong interfer-
ence between new AP and already deployed AP due to too
close physical distance, the optimization result of this case
is better than the case of not detecting already deployed AP.
From the whole point of view, the normalized throughput is
improved about 3.7%.

7. Conclusion

This paper gives a deep discussion on the newAPdeployment
in city area that has been deployed APs and uses the wireless
locatingmethod to detect the position of the already deployed

20 30 40 50 60 70 80 90 100 110 120

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

The number of client

N
or

m
al

iz
ed

 sy
ste

m
 th

ro
ug

hp
ut

NOFA-2
NOOCA
DPDCI

Figure 4: Comparison of normalization throughput.

APs that cannot be observed directly. Adopting genetic algo-
rithm deploys new AP and allocates channels for AP; a new
algorithm for AP deployment based on physical distance and
channel isolation is proposed. The simulation results show
that the new algorithm canminimize the mutual interference
between BSS and ensure the maximum of throughput based
on QoS in BSS and can also effectively improve the system
performance. In order to achieve more practical oriented
results, such as achieving dynamic configuration for the AP
deployment, future work in the research will consider data-
driven (measurements) framework [19–22].
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The design of the dynamic output feedback 𝐻
∞

control for uncertain interconnected systems of neutral type is investigated. In
the framework of Lyapunov stability theory, a mathematical technique dealing with the nonlinearity on certain matrix variables
is developed to obtain the solvability conditions for the anticipated controller. Based on the corresponding LMIs, the anticipated
gains for dynamic output feedback can be achieved by solving some algebraic equations. Also, the norm of the transfer function
from the disturbance input to the controlled output is less than the given index. A numerical example and the simulation results
are given to show the effectiveness of the proposed method.

1. Introduction

With the development of engineering systems, nowadays
the systems become more and more complex and large.
Therefore, there has been a growing interest in investigating
the stability and stabilization problems for the large-scale
interconnected systems [1–12]. In [5], Schuler et al. address
a design of structured controllers for networks of intercon-
nectedmultivariable discrete-time subsystems, in which a so-
called degree of decentralization is introduced to characterize
the sparsity level of the controller. In [6], Chen et al. consider
the stabilization and 𝐻

∞
disturbance attenuation problem

for uncertain interconnected networked systems with both
quantised output signal and quantised control inputs signal.
A local-output dependent strategy is proposed to update the
parameters of quantisers and achieve the 𝐻

∞
disturbance

attenuation level. In [7], Yan et al. consider the global decen-
tralized stabilization of a class of interconnected systems
with known and uncertain interconnections. Based on the
Razumikhin-Lyapunov approach, they design a composite
sliding surface and analyze the stability of the associated
sliding motion, which is governed by a time delayed inter-
connected system. Not invoking the Lyapunov-Krasovskii
functional approach and the RazumikhinTheorem approach,
Ye provides a new method to globally stabilize a class of

nonlinear large-scale systems with constant time-delay in
[8], in which the Nussbaum gain is employed to tackle
the unknown high-frequency-gain sign in the considered
systems. Hua et al. investigate the model reference adaptive
control problem and the exponential stabilization problem
for a class of large-scale systems with time-varying delays
in [9, 10], respectively. Different from the constraint on the
derivatives of time-varying delays in [9, 10],Wu in [11] relaxes
the constraint, that is, the derivatives of time-varying delays
does not have to be less than one. It is worth pointing out that
the nonlinear interconnections are subject to the matched
condition in [9, 10] and the time-varying delays only appear
in the interconnection in [11].

On the other hand, time delay frequently occurs in many
engineering systems, such as the state, input, or related
variable of dynamic systems [13, 14]. In particular, when
it arises in the state derivative, the considered systems are
called as neutral systems [15]. Neutral system is the general
form of delay system and contains the same highest order
derivatives for the state vector 𝑥(𝑡), at both time 𝑡 and past
time(s) 𝑡

𝑠
≤ 𝑡. Due to the extensive applications of the

neutral systems, in recent years, many efforts have beenmade
for the stability analysis and control problem for neutral
systems [16–22]. In [16], Xiong et al. construct a new class
of stochastic Lyapunov-Krasovskii functionals to investigate
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the stability of neutral Markovian jump systems in the case of
partly known transition probabilities. In [17], the Lyapunov-
Krasovskii functional containing novel triple integral terms
is developed to study the robust stabilization for a class of
uncertain neutral system with discrete and distributed time
delays. Based on the state feedback controller, an improved
robust stability and stabilization criteria depending on the
allowable maximum delay are derived. In [18], Kwon et al.
propose a few delay-dependent stability criteria for uncertain
neutral systems with time-varying delays, in which the aug-
mented Lyapunov-Krasovskii functional is constructed and
the reciprocal convex optimization approach is introduced.
In [19], the delay-dependent exponential stability and stabil-
isation problems are investigated for a class of special neutral
systems with actuator failures. A class of switching laws
incorporating the average dwell time method is proposed to
robustly stabilise the closed-loop system.

In practice, it is not always possible to have full access to
the state variables and only the partial information through
a measured output is available [23]. Therefore, it is more
realistic in control engineering to design the output feedback
control for the considered systems and there is a growing
interest in it [24–29]. However, to the authors’ best knowl-
edge, there is little literature on designing dynamic output
feedback control for interconnected systems of neutral type.
This motivates the present study.

In this paper, the 𝐻
∞

control problem for uncertain
interconnected systems of neutral type is investigated via
decentralized dynamic output feedback. Based on the Lya-
punov stability theory, we develop a new technique to deal
with the nonlinearity problem of certain matrix variables
appearing in the solvable conditions of dynamic output
feedback𝐻

∞
control. Furthermore, the parameterized char-

acterization of the anticipated controller is achieved, which
can be obtained by solving the corresponding LMIs and
computing the corresponding algebraic equations. Also, it is
guaranteed that the norm of the transfer function from the
disturbance input to the controlled output is less than the
given index. Finally, the effectiveness of the proposedmethod
is elucidated by a numerical example and the simulation
results.

2. Problem Formulation

Consider the following uncertain neutral interconnected
systems composed of𝑁 subsystems:

̇𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
̇𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

= [𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥
𝑖
(𝑡)

+ [𝐴
𝑖𝜎𝑖
+ Δ𝐴
𝑖𝜎𝑖
(𝑡)] 𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡))

+ 𝐵
𝑖1
𝜔
𝑖
(𝑡) +

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

[𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
] 𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) ,

𝑧
𝑖
(𝑡) = 𝐶

𝑖1
𝑥
𝑖
(𝑡) + 𝐷

𝑖11
𝜔
𝑖
(𝑡) ,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , 𝑡 ∈ [−𝑙, 0] , 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) ∈ R𝑛𝑖 , 𝑧

𝑖
(𝑡) ∈ R𝑟𝑖 , and 𝜔

𝑖
(𝑡) ∈ R𝑝𝑖 are the

state, the controlled output, and the disturbance input of
the 𝑖th subsystem, respectively. 𝐴

𝑖
, 𝐴
𝑖𝜎𝑖
, 𝐴
𝑖𝜂𝑖
, 𝐵
𝑖1
, 𝐴
𝑖𝑗
, 𝐶
𝑖1
,

and𝐷
𝑖11

are known constant matrices of appropriate dimen-
sions. 𝜙

𝑖
(𝑡) is the initial condition. 𝜎

𝑖
(𝑡), 𝜂
𝑖
(𝑡), and 𝜏

𝑖𝑗
(𝑡) are

the time-varying delays. Assume that there exist constants
𝑓
𝑖0
, 𝑔
𝑖0
, 𝑙
𝑖0
, 𝑓
𝑖
, 𝑔
𝑖
, 𝑙
𝑖
, and 𝑙 satisfying

0 ≤ 𝜎
𝑖
(𝑡) ≤ 𝑓

𝑖0
, 0 ≤ 𝜂

𝑖
(𝑡) ≤ 𝑔

𝑖0
, 0 ≤ 𝜏

𝑖𝑗
(𝑡) ≤ 𝑙

𝑖0
,

̇𝜎
𝑖
(𝑡) ≤ 𝑓

𝑖
< 1, ̇𝜂

𝑖
(𝑡) ≤ 𝑔

𝑖
< 1, ̇𝜏

𝑖𝑗
(𝑡) ≤ 𝑙

𝑖
< 1,

𝑙 = max {𝑓
𝑖0
, 𝑔
𝑖0
, 𝑙
𝑖0
} , 𝑖, 𝑗 = 1, 2 . . . , 𝑁, 𝑗 ̸= 𝑖.

(2)

Time-varying parametric uncertaintiesΔ𝐴
𝑖
(𝑡), Δ𝐴

𝑖𝜎𝑖
(𝑡),

and Δ𝐴
𝑖𝑗
(𝑡) are assumed to satisfy

[Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑖𝜎𝑖
(𝑡) Δ𝐴

𝑖𝑗
(𝑡)] = 𝐷

𝑖
𝐹
𝑖
(𝑡) [𝐸𝑖1 𝐸𝑖𝜎𝑖

𝐿
𝑖𝑗
] , (3)

where matrices 𝐷
𝑖
, 𝐸
𝑖1
, 𝐸
𝑖𝜎𝑖
, and 𝐿

𝑖𝑗
are constant matrices

of appropriate dimensions, and 𝐹
𝑖
(𝑡) is the unknown matrix

function satisfying 𝐹𝑇
𝑖
(𝑡)𝐹
𝑖
(𝑡) ≤ 𝐼, for all 𝑡 ≥ 0.

Assumption 1 (see [30]). The matrix 𝐴
𝑖𝜂𝑖

̸=0 and ‖𝐴
𝑖𝜂𝑖
‖ < 1.

As a general approach of dealing with the retarded
argument in the state derivatives, it is assumed often that
either there is no unstable neutral root chain or they can first
use derivative feedback to assign the unstable neutral root
chain to the left-hand side of the complex plane. Also, since
𝐴
𝑖𝜂𝑖

̸=0, it follows form that that the solution of (1) exists and
is unique.

Lemma 2 (see [31]). Given any constant 𝜀 > 0 and matrices
𝐷, 𝐸, and 𝐹 with compatible dimensions such that 𝐹𝑇𝐹 < 𝐼

then

2𝑥
𝑇

𝐷𝐹𝐸𝑦 ≤ 𝜀𝑥
𝑇

𝐷𝐷
𝑇

𝑥 + 𝜀
−1

𝑦
𝑇

𝐸
𝑇

𝐸𝑦, (4)

for all 𝑥 ∈ R𝑛, 𝑦 ∈ R𝑛.

3. Main Result

3.1. Robust𝐻
∞

Performance Analysis

Theorem 3. For given 𝛾
𝑖
> 0, consider system (1) with (2) and

(3). Under the condition of Assumption 1, system (1) is robustly
asymptotically stable and satisfies ‖𝑇

𝑧𝑖𝜔𝑖
‖
∞

< 𝛾
𝑖
, if there exist

matrices 𝑃
𝑖
> 0, 𝑄

𝑖1
> 0, 𝑄

𝑖2
> 0, 𝐺

𝑖𝑗
> 0, and 𝐺

𝑗𝑖
> 0 such

that the following LMI holds:
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Γ
𝑖

16
Γ
𝑖

17
0

∗ Γ
𝑖

22
Γ
𝑖

23
Γ
𝑖

24
0 0 0 0

∗ ∗ Γ
𝑖

33
Γ
𝑖

34
0 0 0 0

∗ ∗ ∗ Γ
𝑖

44
Γ
𝑖

45
0 0 Γ

𝑖

48

∗ ∗ ∗ ∗ Γ
𝑖

55
Γ
𝑖

56
0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (5)
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where

Γ
𝑖

11
= 𝑃
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+

1

1 − 𝑓
𝑖

𝑄
𝑖1
+

1

1 − 𝑔
𝑖

𝑄
𝑖2
+

1

1 − 𝑙
𝑗

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺
𝑗𝑖
+ 2𝐸
𝑇

𝑖1
𝐸
𝑖1
, Γ

𝑖

12
= 𝑃
𝑖
𝐴
𝑖𝜎𝑖
+ 2𝐸
𝑇

𝑖1
𝐸
𝑖𝜎𝑖
,

Γ
𝑖

13
= [𝑃
𝑖
𝐴
𝑖1
+ 2𝐸
𝑇

𝑖1
𝐿
𝑖1
⋅ ⋅ ⋅ 𝑃
𝑖
𝐴
𝑖 𝑖−1

+ 2𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖−1

𝑃
𝑖
𝐴
𝑖 𝑖+1

+ 2𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 𝑃
𝑖
𝐴
𝑖𝑁
+ 2𝐸
𝑇

𝑖1
𝐿
𝑖𝑁
] ,

Γ
𝑖

14
= −𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖
, Γ

𝑖

15
= 𝑃
𝑖
𝐵
𝑖1
, Γ

𝑖

16
= 𝐶
𝑇

𝑖1
, Γ

𝑖

17
= 𝑃
𝑖
𝐷
𝑖
, Γ

𝑖

22
= −𝑄
𝑖1
+ 2𝐸
𝑇

𝑖𝜎𝑖

𝐸
𝑖𝜎𝑖
,

Γ
𝑖

24
= −𝐴
𝑇

𝑖𝜎𝑖

𝑃
𝑖
𝐴
𝑖𝜂𝑖
, Γ

𝑖

23
= [2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖1
⋅ ⋅ ⋅ 2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖−1

2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖𝑁
] ,

Γ
𝑖

33
= diag {−𝐺

𝑖1
+ 2𝐿
𝑇

𝑖1
𝐿
𝑖1
, . . . , −𝐺

𝑖 𝑖−1
+ 2𝐿
𝑇

𝑖 𝑖−1
𝐿
𝑖 𝑖−1

, −𝐺
𝑖 𝑖+1

+ 2𝐿
𝑇

𝑖 𝑖+1
𝐿
𝑖 𝑖+1

, . . . , −𝐺
𝑖𝑁
+ 2𝐿
𝑇

𝑖𝑁
𝐿
𝑖𝑁
} ,

Γ
𝑖

34
= [−𝐴

𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐴
𝑖1
⋅ ⋅ ⋅ −𝐴

𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐴
𝑖 𝑖−1

−𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐴
𝑖 𝑖+1

⋅ ⋅ ⋅ −𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐴
𝑖𝑁
]
𝑇

, Γ
𝑖

44
= −𝑄
𝑖2
,

Γ
𝑖

45
= −𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐵
𝑖1
, Γ

𝑖

48
= −𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐷
𝑖
, Γ

𝑖

55
= −𝛾
2

𝑖
𝐼, Γ

𝑖

56
= 𝐷
𝑇

𝑖11
.

(6)

Proof. Construct the following Lyapunov-Krasovskii func-
tional candidate of the form

𝑉 (𝑥
𝑡
) =

𝑁

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
)

=

𝑁

∑

𝑖=1

{

{

{

[𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))]
𝑇

× 𝑃
𝑖
[𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))]

+
1

1 − 𝑓
𝑖

∫

𝑡

𝑡−𝜎𝑖(𝑡)

𝑥
𝑇

𝑖
(𝑠) 𝑄
𝑖1
𝑥
𝑖
(𝑠) 𝑑𝑠

+
1

1 − 𝑔
𝑖

∫

𝑡

𝑡−𝜂𝑖(𝑡)

𝑥
𝑇

𝑖
(𝑠) 𝑄
𝑖2
𝑥
𝑖
(𝑠) 𝑑𝑠

+
1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

∫

𝑡

𝑡−𝜏𝑖𝑗(𝑡)

𝑥
𝑇

𝑗
(𝑠) 𝐺
𝑖𝑗
𝑥
𝑗
(𝑠) 𝑑𝑠

}

}

}

.

(7)

The time derivative of𝑉(𝑥
𝑡
) along the trajectory of system

(1) satisfies

𝑉 (𝑥
𝑡
) =

𝑁

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
) ≤

𝑁

∑

𝑖=1

𝑈
𝑖
(𝑥
𝑡
)

≤

𝑁

∑

𝑖=1

{

{

{

2(𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡)))
𝑇

× 𝑃
𝑖

[

[

(𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥
𝑖
(𝑡)

+ (𝐴
𝑖𝜎𝑖
+ Δ𝐴
𝑖𝜎𝑖
(𝑡))

× 𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡)) + 𝐵

𝑖1
𝜔
𝑖
(𝑡)

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
) 𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))]

]

+
1

1 − 𝑓
𝑖

𝑥
𝑇

𝑖
(𝑡) 𝑄
𝑖1
𝑥
𝑖
(𝑡)

+
1

1 − 𝑔
𝑖

𝑥
𝑇

𝑖
(𝑡) 𝑄
𝑖2
𝑥
𝑖
(𝑡)

− 𝑥
𝑇

𝑖
(𝑡 − 𝜎

𝑖
(𝑡)) 𝑄

𝑖1
𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡))

− 𝑥
𝑇

𝑖
(𝑡 − 𝜂
𝑖
(𝑡)) 𝑄

𝑖2
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

+
1

1 − 𝑙
𝑖

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗
(𝑡) 𝐺
𝑖𝑗
𝑥
𝑗
(𝑡)

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑥
𝑇

𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) 𝐺

𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

}

}

}

.

(8)
In view of (3), applying Lemma 2, we obtain the following

inequality:

2[𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))]
𝑇

× 𝑃
𝑖

[

[

Δ𝐴
𝑖
(𝑡) 𝑥
𝑖
(𝑡) + Δ𝐴

𝑖𝜎𝑖
(𝑡) 𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡))

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

Δ𝐴
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))]

]

≤ 𝑥
𝑇

𝑖
(𝑡) 𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
𝑥
𝑖
(𝑡) + 2𝛼

𝑇

𝑖
(𝑡)𝑀
𝑇

𝑖
𝑀
𝑖
𝛼
𝑖
(𝑡)

+ 𝑥
𝑇

𝑖
(𝑡 − 𝜂
𝑖
(𝑡)) 𝐴

𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖
𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡)) ,

(9)



4 Abstract and Applied Analysis

where

𝛼
𝑖
(𝑡) = [𝑥

𝑖
(𝑡) 𝑥

𝑖
(𝑡 − 𝜎

𝑖
(𝑡)) 𝑥

𝑖1
(𝑡 − 𝜏

𝑖1
(𝑡)) ⋅ ⋅ ⋅ 𝑥

𝑖 𝑖−1
(𝑡 − 𝜏

𝑖 𝑖−1
(𝑡)) 𝑥

𝑖 𝑖+1
(𝑡 − 𝜏

𝑖 𝑖+1
(𝑡)) ⋅ ⋅ ⋅ 𝑥

𝑖𝑁
(𝑡 − 𝜏

𝑖𝑁
(𝑡)) 𝑥

𝑖
(𝑡 − 𝜂

𝑖
(𝑡))] ,

𝑀
𝑖
= [𝐸
𝑖1
𝐸
𝑖𝜎𝑖

𝐿
𝑖1
⋅ ⋅ ⋅ 𝐿

𝑖 𝑖−1
𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 𝐿
𝑖𝑁

0] .

(10)

It follows from (8) and (9) that

𝑉 (𝑥
𝑡
) =

𝑁

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑡
) ≤

𝑁

∑

𝑖=1

𝛼
𝑇

𝑖
(𝑡) [Ξ
𝑖
+ 2𝑀

𝑇

𝑖
𝑀
𝑖
] 𝛼
𝑖
(𝑡) , (11)

where
𝑀
𝑖
= [𝐸
𝑖1
𝐸
𝑖𝜎𝑖

𝐿
𝑖1
⋅ ⋅ ⋅ 𝐿

𝑖 𝑖−1
𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 𝐿
𝑖𝑁

0] ,

Ξ
𝑖
=

[
[
[
[

[

Ξ
𝑖

11
𝑃
𝑖
𝐴
𝑖𝜎𝑖

Ξ
𝑖

13
−𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖

∗ −𝑄
𝑖1

0 −𝐴
𝑇

𝑖𝜎𝑖

𝑃
𝑖
𝐴
𝑖𝜂𝑖

∗ ∗ Ξ
𝑖

33
Ξ
𝑖

34

∗ ∗ ∗ Ξ
𝑖

44

]
]
]
]

]

,

Ξ
𝑖

44
= −𝑄
𝑖2
+ 𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖
,

Ξ
𝑖

11
= 𝑃
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+

1

1 − 𝑓
𝑖

𝑄
𝑖1
+

1

1 − 𝑔
𝑖

𝑄
𝑖2

+
1

1 − 𝑙
𝑗

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺
𝑗𝑖
+ 𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
,

Ξ
𝑖

13
= [𝑃
𝑖
𝐴
𝑖1
⋅ ⋅ ⋅ 𝑃
𝑖
𝐴
𝑖 𝑖−1

𝑃
𝑖
𝐴
𝑖 𝑖+1

⋅ ⋅ ⋅ 𝑃
𝑖
𝐴
𝑖𝑁
] ,

Ξ
𝑖

33
= diag {−𝐺

𝑖1
, . . . , −𝐺

𝑖 𝑖−1
, −𝐺
𝑖 𝑖+1

, . . . , −𝐺
𝑖𝑁
} ,

Ξ
𝑖

34

= [−𝐴
𝑇

𝑖𝜂𝑖
𝑃𝑖𝐴𝑖1 ⋅ ⋅ ⋅ −𝐴

𝑇

𝑖𝜂𝑖
𝑃𝑖𝐴𝑖 𝑖−1 −𝐴

𝑇

𝑖𝜂𝑖
𝑃𝑖𝐴𝑖 𝑖+1 ⋅ ⋅ ⋅ −𝐴

𝑇

𝑖𝜂𝑖
𝑃𝑖𝐴𝑖𝑁]
𝑇

.

(12)

By the Schur Complement formula, it is easy to see that
LMI (5) implies thatΞ

𝑖
+2𝑀
𝑇

𝑖
𝑀
𝑖
< 0.Thenwe can obtain that

𝑉(𝑡) < 0 for all 𝛼
𝑖
(𝑡) ̸= 0 when 𝜔

𝑖
(𝑡) = 0. Therefore, under the

condition of Assumption 1, system (1) is asymptotically stable.
Next, consider the 𝐻

∞
performance of system (1) under

the zero initial condition. To this end, we introduce the
following index:

𝐽 =

𝑁

∑

𝑖=1

∫

∞

0

[𝑧
𝑇

𝑖
(𝑡) 𝑧
𝑖
(𝑡) − 𝛾

2

𝑖
𝜔
𝑇

𝑖
(𝑡) 𝜔
𝑖
(𝑡)] 𝑑𝑡. (13)

In view of the zero initial condition, it is easy to obtain
that

𝐽 =

𝑁

∑

𝑖=1

∫

∞

0

[𝑧
𝑇

𝑖
(𝑡) 𝑧
𝑖
(𝑡) − 𝛾

2

𝑖
𝜔
𝑇

𝑖
(𝑡) 𝜔
𝑖
(𝑡) + 𝑉

𝑖
(𝑥
𝑡
)] 𝑑𝑡

+ 𝑉 (𝑥
𝑡
)
𝑡=0

−𝑉 (𝑥
𝑡
)
𝑡=∞

,

≤

𝑁

∑

𝑖=1

𝜉
𝑇

𝑖
(𝑡) [Π

𝑖
+ 2𝑀

𝑇

𝑖
𝑀
𝑖
] 𝜉
𝑖
(𝑡) ,

(14)

where

Π
𝑖
=

[
[
[
[
[
[

[

Π
𝑖

11
𝑃
𝑖
𝐴
𝑖𝜎𝑖

Ξ
𝑖

13
−𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖

Π
𝑖

15

∗ −𝑄
𝑖1

0 −𝐴
𝑇

𝑖𝜎𝑖

𝑃
𝑖
𝐴
𝑖𝜂𝑖

0

∗ ∗ Ξ
𝑖

33
Ξ
𝑖

34
0

∗ ∗ ∗ Ξ
𝑖

44
Π
𝑖

45

∗ ∗ ∗ ∗ Π
𝑖

55

]
]
]
]
]
]

]

,

𝜉
𝑖
= [

𝛼
𝑖
(𝑡)

𝜔
𝑖
(𝑡)
] , 𝑀

𝑖
= [𝑀
𝑖
0] ,

Π
𝑖

11
= 𝑃
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
𝑖
+

1

1 − 𝑓
𝑖

𝑄
𝑖1
+

1

1 − 𝑔
𝑖

𝑄
𝑖2

+
1

1 − 𝑙
𝑗

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺
𝑗𝑖
+ 𝑃
𝑖
𝐷
𝑖
𝐷
𝑇

𝑖
𝑃
𝑖
+ 𝐶
𝑇

𝑖1
𝐶
𝑖1
,

Π
𝑖

15
= 𝑃
𝑖
𝐵
𝑖1
+ 𝐶
𝑇

𝑖1
𝐷
𝑖11
, Π

𝑖

45
= −𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐵
𝑖1
,

Π
𝑖

55
= −𝛾
2

𝑖
𝐼 + 𝐷
𝑇

𝑖11
𝐷
𝑖11
.

(15)

It is obvious that Π
𝑖
+ 2𝑀

𝑇

𝑖
𝑀
𝑖
< 0 implies that 𝐽 < 0,

that is, ‖𝑇
𝑧𝑖𝜔𝑖
‖
∞

< 𝛾
𝑖
. By the Schur Complement formula, the

inequality Π
𝑖
+ 2𝑀

𝑇

𝑖
𝑀
𝑖
< 0 is equivalent to LMI (5). This

completes the proof.

3.2. 𝐻
∞

Output Feedback Synthesis. Consider the following
uncertain neutral interconnected systems composed of 𝑁
subsystems:

̇𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
̇𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

= [𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥
𝑖
(𝑡)

+ [𝐴
𝑖𝜎𝑖
+ Δ𝐴
𝑖𝜎𝑖
(𝑡)] 𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡))

+ 𝐵
𝑖1
𝜔
𝑖
(𝑡) +

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

[𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
] 𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

+ [𝐵
𝑖2
+ Δ𝐵
𝑖2
] 𝑢
𝑖
(𝑡) ,

𝑧
𝑖
(𝑡) = 𝐶

𝑖1
𝑥
𝑖
(𝑡) + 𝐷

𝑖11
𝜔
𝑖
(𝑡) + 𝐷

𝑖12
𝑢
𝑖
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝐶

𝑖2
𝑥
𝑖
(𝑡) + 𝐷

𝑖21
𝜔
𝑖
(𝑡) ,

𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) , 𝑡 ∈ [−𝑙, 0] , 𝑖 = 1, 2, . . . , 𝑁,

(16)

where 𝑢
𝑖
(𝑡) ∈ R𝑚𝑖 and 𝑦

𝑖
(𝑡) ∈ R𝑞𝑖 are the control

input and the measurement output. 𝐵
𝑖2
, 𝐶
𝑖2
, 𝐷
𝑖12
, and 𝐷

𝑖21
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are known constant matrices of appropriate dimensions.
Δ𝐵
𝑖2
(𝑡) is the unknown matrix satisfying 𝐵

𝑖2
(𝑡) = 𝐷

𝑖
𝐹
𝑖
(𝑡)𝐸
𝑖2
,

where 𝐸
𝑖2

is the known constant matrix with appropriate
dimensions. The other signals are the same with system
(1).

Consider the following output feedback controller for
system (16):

̇�̂�
𝑖
(𝑡) = 𝐴

𝑖𝐾
𝑥
𝑖
(𝑡) + 𝐵

𝑖𝐾
𝑦
𝑖
(𝑡) ,

𝑢
𝑖𝐾
(𝑡) = 𝐶

𝑖𝐾
𝑥
𝑖
(𝑡) ,

(17)

where 𝑥
𝑖
(𝑡) ∈ R𝑛𝑖×𝑛𝑖 is the controller state, and 𝐴

𝑖𝐾
, 𝐵
𝑖𝐾
, and

𝐶
𝑖𝑘
are the gains to be designed.
Then the closed-loop system composed of system (16)

with the controller (17) can be written as

̇𝑥
𝑖
(𝑡) − 𝐴

𝑖𝜂𝑖
̇𝑥
𝑖
(𝑡 − 𝜂
𝑖
(𝑡))

= [𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)] 𝑥
𝑖
(𝑡)

+ [𝐴
𝑖𝜎𝑖
+ Δ𝐴
𝑖𝜎𝑖
(𝑡)] 𝑥
𝑖
(𝑡 − 𝜎

𝑖
(𝑡)) + 𝐵

𝑖1
𝜔
𝑖
(𝑡)

+

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

[𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
] 𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) ,

𝑧
𝑖
(𝑡) = 𝐶

𝑖1
𝑥
𝑖
(𝑡) + 𝐷

𝑖11
𝜔
𝑖
(𝑡) ,

(18)

where

𝐴
𝑖
= [

𝐴
𝑖

𝐵
𝑖2
𝐶
𝑖𝑘

𝐵
𝑖𝐾
𝐶
𝑖2

𝐴
𝑖𝐾

] , 𝐴
𝑖𝜎𝑖
= [

𝐴
𝑖𝜎𝑖

0

0 0
] ,

𝐴
𝑖𝑗
= [

𝐴
𝑖𝑗
0

0 0
] , 𝐴

𝑖𝜂𝑖
= [

𝐴
𝑖𝜂𝑖

0

0 0
] ,

𝐴
𝑖
(𝑡) = [

Δ𝐴
𝑖
(𝑡) Δ𝐵

𝑖2
𝐶
𝑖𝐾

0 0
] = 𝐷

𝑖
𝐹
𝑖
(𝑡) 𝐸
𝑖1

= [
𝐷
𝑖

0
] 𝐹
𝑖
(𝑡) [𝐸
𝑖1
𝐸
𝑖2
𝐶
𝑖𝐾
] ,

Δ𝐴
𝑖𝜎𝑖
(𝑡) = [

Δ𝐴
𝑖𝜎𝑖
(𝑡) 0

0 0
] = 𝐷

𝑖
𝐹
𝑖
(𝑡) 𝐸
𝑖𝜎𝑖

= [
𝐷
𝑖

0
] 𝐹
𝑖
(𝑡) [𝐸
𝑖𝜎𝑖

0] ,

Δ𝐴
𝑖𝑗
(𝑡) = [

Δ𝐴
𝑖𝑗
(𝑡) 0

0 0
] = 𝐷

𝑖
𝐹
𝑖
(𝑡) 𝐿
𝑖𝑗

= [
𝐷
𝑖

0
]𝐹
𝑖
(𝑡) [𝐿 𝑖𝑗 0] ,

𝐵
𝑖1
= [

𝐵
𝑖1

𝐵
𝑖𝐾
𝐷
𝑖21

] , 𝐶
𝑖1
= [𝐶
𝑖1
𝐷
𝑖12
𝐶
𝑖𝐾
] ,

𝑥
𝑖
(𝑡) = [

𝑥
𝑖
(𝑡)

𝑥
𝑖
(𝑡)
] , 𝑧

𝑖
(𝑡) = 𝑧

𝑖
(𝑡) .

(19)

The following theorempresents the solvingmethod of the
dynamic 𝐻

∞
output feedback controller gains for uncertain

neutral interconnected systems (16).

Theorem 4. For given 𝛾
𝑖
> 0, consider system (16) with (2)

and (3). Under the condition of Assumption 1, if there exist
matrices 𝑋

𝑖
> 0, 𝑌

𝑖
> 0, 𝑄

𝑖1
> 0, 𝑄

𝑖2
> 0, 𝐺

𝑖𝑗
> 0, 𝐺

𝑗𝑖
> 0

and invertible matrices𝑁
𝑖
, matrices 𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, such that Ψ

𝑖
=

[
𝑋𝑖 𝐼

∗ 𝑌𝑖
] > 0 and the following LMI holds,

Ωi

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Ω
i
11

Ω
i
12

Ω
i
13

Ω
i
14

Ω
i
15

Ω
i
16

Ω
i
17

Ω
i
18

Ω
i
19

Ω
i
110

∗ Ω
i
22

Ω
i
23

Ω
i
24

0 0 0 0 0 0

∗ ∗ Ω
i
33

Ω
i
34

0 0 0 0 0 0

∗ ∗ ∗ Ω
i
44

Ω
i
45

Ω
i
46

0 0 0 0

∗ ∗ ∗ ∗ Ω
i
55

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ω
i
66

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω
i
77

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω
i
88

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω
i
99

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −
1

2
I

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0

(20)

then there exists a dynamic output feedback controller such that
the closed-loop system (18) is asymptotically stable and satisfies
‖𝑇
𝑧𝑖𝜔𝑖
‖ < 𝛾

𝑖
with 𝐴

𝑖𝐾
= 𝑁
−1

𝑖
(𝐴
𝑖
− 𝑌
𝑖
𝐴
𝑖
𝑋
𝑖
− 𝑁
𝑖
𝐵
𝑖𝐾
𝐶
𝑖2
𝑋
𝑖
−

𝑌
𝑖
𝐵
𝑖2
𝐶
𝑖𝐾
𝑀
𝑇

𝑖
)𝑀
−𝑇

𝑖
, 𝐵
𝑖𝐾
= 𝑁
−1

𝑖
𝐵
𝑖
, 𝐶
𝑖𝐾
= 𝐶
𝑖
𝑀
−𝑇

𝑖
, where



6 Abstract and Applied Analysis

𝑀
𝑖
= (𝐼 − 𝑋

𝑖
𝑌
𝑖
)𝑁
−𝑇

𝑖
,

Ω
𝑖

11
= [

𝐴
𝑖
𝑋
𝑖
+ 𝑋
𝑖
𝐴
𝑇

𝑖
+ 𝐵
𝑖2
𝐶
𝑖
+ 𝐶
𝑇

𝑖
𝐵
𝑇

𝑖2
𝐴
𝑇

𝑖
+ 𝐴
𝑖

∗ 𝑌
𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑌
𝑖
+ 𝐵
𝑖
𝐶
𝑖2
+ 𝐶
𝑇

𝑖2
𝐵
𝑇

𝑖

] ,

Ω
𝑖

12
= [

A
𝑖𝜎𝑖
+ 2𝑋
𝑖
𝐸
𝑇

𝑖1
𝐸
𝑖𝜎𝑖
+ 2𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2
𝐸
𝑖𝜎𝑖

0

𝑌
𝑖
𝐴
𝑖𝜎𝑖
+ 2𝐸
𝑇

𝑖1
𝐸
𝑖𝜎𝑖

0
] ,

Ω
𝑖

13
= [

𝐴
𝑖1
+ 2𝑋
𝑖
𝐸
𝑇

𝑖1
𝐿
𝑖1
+ 2𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2
𝐿
𝑖1
0 ⋅ ⋅ ⋅ 𝐴

𝑖 𝑖−1
+ 2𝑋
𝑖
𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖−1

+ 2𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2
𝐿
𝑖 𝑖−1

0

𝑌
𝑖
𝐴
𝑖1
+ 2𝐸
𝑇

𝑖1
𝐿
𝑖1

0 ⋅ ⋅ ⋅ 𝑌
𝑖
𝐴
𝑖 𝑖−1

+ 2𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖−1

0

𝐴
𝑖 𝑖+1

+ 2𝑋
𝑖
𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖+1

+ 2𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2
𝐿
𝑖 𝑖+1

0 ⋅ ⋅ ⋅ 𝐴
𝑖𝑁
+ 2𝑋
𝑖
𝐸
𝑇

𝑖1
𝐿
𝑖𝑁
+ 2𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2
𝐿
𝑖𝑁

0

𝑌
𝑖
𝐴
𝑖 𝑖+1

+ 2𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖+1

0 ⋅ ⋅ ⋅ 𝑌
𝑖
𝐴
𝑖𝑁
+ 2𝐸
𝑇

𝑖1
𝐿
𝑖𝑁

0
] ,

Ω
𝑖

14
= −[

𝐴
𝑇

𝑖
𝐴
𝑖𝜂𝑖

0

𝐴
𝑇

𝑖
𝑌
𝑖
𝐴
𝑖𝜂𝑖
+ 𝐶
𝑇

𝑖2
𝐵
𝑇

𝑖
𝐴
𝑖𝜂𝑖

0
] , Ω

𝑖

15
= [

𝐵
𝑖1

𝑋
𝑖
𝐶
𝑇

𝑖1
+ 𝐶
𝑇

𝑖
𝐷
𝑇

𝑖12

𝑌
𝑖
𝐵
𝑖1
+ 𝐵
𝑖
𝐷
𝑖21

𝐶
𝑇

𝑖1

] ,

Ω
𝑖

16
= [

𝐷
𝑖
0

𝑌
𝑖
𝐷
𝑖
0
] , Ω

𝑖

17
= Ψ
𝑖
, Ω

𝑖

18
= [

[

Ψ
𝑖
⋅ ⋅ ⋅ Ψ

𝑖
Ψ
𝑖
⋅ ⋅ ⋅ Ψ

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁−1

]

]

, Ω
𝑖

19
= Ψ
𝑖
,

Ω
𝑖

110
= [

𝑋
𝑖
𝐸
𝑇

𝑖1
+ 𝐶
𝑇

𝑖
𝐸
𝑇

𝑖2

𝐸
𝑇

𝑖1

] , Ω
𝑖

22
= −𝑄
𝑖1
+ [

2𝐸
𝑇

𝑖𝜎𝑖

𝐸
𝑖𝜎𝑖

0

0 0
] , Ω

𝑖

24
= −[

𝐴
𝑇

𝑖𝜎𝑖

𝑌
𝑖
𝐴
𝑖𝜂𝑖

0

0 0
] ,

Ω
𝑖

23
= [

2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖1
0 ⋅ ⋅ ⋅ 2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖−1

0 2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖+1

0 ⋅ ⋅ ⋅ 2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖𝑁

0

0 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0
] ,

Ω
𝑖

33
= diag{−𝐺

𝑖1
+ [

2𝐿
𝑇

𝑖1
𝐿
𝑖1
0

0 0
] , . . . , −𝐺

𝑖 𝑖−1
+ [

2𝐿
𝑇

𝑖 𝑖−1
𝐿
𝑖 𝑖−1

0

0 0
] ,

−𝐺
𝑖 𝑖+1

+ [
2𝐿
𝑇

𝑖 𝑖+1
𝐿
𝑖 𝑖+1

0

0 0
] , . . . , −𝐺

𝑖𝑁
+ [

2𝐿
𝑇

𝑖𝑁
𝐿
𝑖𝑁

0

0 0
]} ,

Ω
𝑖

34
= −[

𝐴
𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐴
𝑖1
0 ⋅ ⋅ ⋅ 𝐴

𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐴
𝑖 𝑖−1

0 𝐴
𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐴
𝑖 𝑖+1

0 ⋅ ⋅ ⋅ 𝐴
𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐴
𝑖𝑁

0

0 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0
] ,

Ω
𝑖

44
= −𝑄
𝑖2
, Ω

𝑖

45
= −[

𝐴
𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐵
𝑖1
+ 𝐴
𝑇

𝑖𝜂𝑖

𝐵
𝑖
𝐷
𝑖21

0

0 0
] , Ω

𝑖

46
= −[

0 𝐴
𝑇

𝑖𝜂𝑖

𝑌
𝑖
𝐷
𝑖

0 0
] ,

Ω
𝑖

55
= [

−𝛾
2

𝑖
𝐼 𝐷
𝑇

𝑖11

∗ −𝐼
] , Ω

𝑖

66
= [

−𝐼

∗ −𝐼
] , Ω

𝑖

77
= 𝑄
𝑖1
− (1 − 𝑓

𝑖
) [
2𝐼 𝑌

𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

] ,

Ω
𝑖

88
= diag{𝐺

1𝑖
− (1 − 𝑙

1
) [
2𝐼 𝑌

𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

] , . . . , 𝐺
𝑖−1 𝑖

− (1 − 𝑙
𝑖−1
) [
2𝐼 𝑌

𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

] ,

𝐺
𝑖+1 𝑖

− (1 − 𝑙
𝑖+1
) [
2𝐼 𝑌

𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

] , . . . , 𝐺
𝑁𝑖
− (1 − 𝑙

𝑁
) [
2𝐼 𝑌

𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

]} ,

Ω
𝑖

99
= 𝑄
𝑖2
− (1 − 𝑔

𝑖
) [
2𝐼 𝑌

𝑖

∗ 𝑁
𝑖
+ 𝑁
𝑇

𝑖

] .

(21)

Applying Theorem 3 to the closed-loop system (18), then
system (18) is robustly asymptotically stable and satisfies
‖𝑇
𝑧𝑖𝜔𝑖
‖
∞

< 𝛾
𝑖
under the condition of Assumption 1, if there

exist matrices 𝑃
𝑖
> 0, 𝑄

𝑖1
> 0, 𝑄

𝑖2
> 0, 𝐺

𝑖𝑗
> 0, and 𝐺

𝑗𝑖
> 0

such that the LMI (5) holds, where𝐴
𝑖
, 𝐴
𝑖𝜎𝑖
, 𝐴
𝑖𝜂𝑖
, 𝐵
𝑖1
,𝐴
𝑖𝑗
,𝐶
𝑖1
,

𝐷
𝑖11
, 𝐷
𝑖
, 𝐸
𝑖𝜎𝑖
, and 𝐿

𝑖𝑗
are substituted with 𝐴

𝑖
, 𝐴
𝑖𝜎𝑖
, 𝐴
𝑖𝜂𝑖
, 𝐵
𝑖1
,

𝐴
𝑖𝑗
, 𝐶
𝑖1
,𝐷
𝑖11
,𝐷
𝑖
, 𝐸
𝑖𝜎𝑖
, and 𝐿

𝑖𝑗
, respectively.
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Firstly, decompose matrix 𝑃
𝑖
and its inverse as

𝑃
𝑖
= [

𝑌
𝑖
𝑁
𝑖

∗ 𝑊
𝑖

] , 𝑃
−1

𝑖
= [

𝑋
𝑖
𝑀
𝑖

∗ 𝑍
𝑖

] , (22)

where 𝑌
𝑖
, 𝑋
𝑖
∈ R𝑛𝑖 are positive definite matrices, and𝑀

𝑖
and

𝑁
𝑖
are invertible matrices. According to 𝑃−1

𝑖
𝑃
𝑖
= 𝐼, we have

𝑀
𝑖
𝑁
𝑇

𝑖
= 𝐼 − 𝑋

𝑖
𝑌
𝑖
. (23)

Define 𝐹
𝑖1
= [
𝑋𝑖 𝐼

𝑀
𝑇

𝑖
0
], 𝐹
𝑖2
= [
𝐼 𝑌𝑖

0 𝑁
𝑇 ], then it follows that

𝑃
𝑖
𝐹
𝑖1
= 𝐹
𝑖2
, 𝐹

𝑇

𝑖1
𝑃
𝑖
𝐹
𝑖1
= 𝐹
𝑇

𝑖2
𝐹
𝑖1
= [

𝑋
𝑖
𝐼

∗ 𝑌
𝑖

] > 0. (24)

Next, pre- and postmultiply the substitute of LMI (5) by
the matrix

diag {𝐹𝑇
𝑖1
, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼} (25)

and its transpose, respectively. By the Schur Complement
formula, the following LMI can be obtained:

Φ
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Φ
𝑖

11
Φ
𝑖

12
Φ
𝑖

13
Φ
𝑖

14
Φ
𝑖

15
Φ
𝑖

16
Φ
𝑖

17
0 Φ

𝑖

19
Φ
𝑖

110
Φ
𝑖

111
Φ
𝑖

112

∗ Φ
𝑖

22
Φ
𝑖

23
Φ
𝑖

24
0 0 0 0 0 0 0 0

∗ ∗ Φ
𝑖

33
Φ
𝑖

34
0 0 0 0 0 0 0 0

∗ ∗ ∗ Φ
𝑖

44
Φ
𝑖

45
0 0 Φ

𝑖

48
0 0 0 0

∗ ∗ ∗ ∗ Φ
𝑖

55
Φ
𝑖

56
0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐼 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
𝑖

99
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
𝑖

1010
0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ
𝑖

1111
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −
1

2
𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (26)

where

Φ
𝑖

11
= 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖
𝐹
𝑖1
+ 𝐹
𝑇

𝑖1
𝐴
𝑇

𝑖
𝑃
𝑖
𝐹
𝑖1
,

Φ
𝑖

12
= 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖𝜎𝑖
+ 2𝐹
𝑇

𝑖1
𝐸
𝑇

𝑖1
𝐸
𝑖𝜎𝑖
,

Φ
𝑖

13

= [ 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖1
+ 2𝐹
𝑇

𝑖1
𝐸
𝑇

𝑖1
𝐿
𝑖1
⋅ ⋅ ⋅ 𝐹

𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖 𝑖−1

+ 2𝐹
𝑇

𝑖1
𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖−1

𝐹
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖 𝑖+1

+ 2𝐹
𝑇

𝑖1
𝐸
𝑇

𝑖1
𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐴
𝑖𝑁
+ 2𝐹
𝑇

𝑖1
𝐸
𝑇

𝑖1
𝐿
𝑖𝑁
] ,

Φ
𝑖

14
= −𝐹
𝑇

𝑖1
𝐴
𝑇

𝑖
𝑃
𝑖
𝐴
𝑖𝜂𝑖
, Φ

𝑖

15
= 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐵
𝑖1
,

Φ
𝑖

16
= 𝐹
𝑇

𝑖1
𝐶
𝑇

𝑖1
, Φ

𝑖

17
= 𝐹
𝑇

𝑖1
𝑃
𝑖
𝐷
𝑖
,

Φ
𝑖

19
= 𝐹
𝑇

𝑖1
, Φ

𝑖

110
= 𝐹
𝑇

𝑖1
,

Φ
𝑖

111
= 𝐹
𝑇

𝑖1
, Φ

𝑖

112
= 𝐹
𝑇

𝑖1
𝐸
𝑇

𝑖1
,

Φ
𝑖

22
= −𝑄
𝑖1
+ 2𝐸
𝑇

𝑖𝜎𝑖

𝐸
𝑖𝜎𝑖
, Φ

𝑖

24
= −𝐴
𝑇

𝑖𝜎𝑖

𝑃
𝑖
𝐴
𝑖𝜂𝑖
,

Φ
𝑖

23
= [2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖1
⋅ ⋅ ⋅ 2𝐸

𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖−1

2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖 𝑖+1

⋅ ⋅ ⋅ 2𝐸
𝑇

𝑖𝜎𝑖

𝐿
𝑖𝑁
] ,

Φ
𝑖

33

= diag {−𝐺
𝑖1
+ 2𝐿
𝑇

𝑖1
𝐿
𝑖1
, . . . , −𝐺

𝑖 𝑖−1
+ 2𝐿
𝑇

𝑖 𝑖−1
𝐿
𝑖 𝑖−1
,

−𝐺
𝑖 𝑖+1

+ 2𝐿
𝑇

𝑖 𝑖+1
𝐿
𝑖 𝑖+1

, . . . , −𝐺
𝑖𝑁
+ 2𝐿
𝑇

𝑖𝑁
𝐿
𝑖𝑁
} ,

Φ
𝑖

34

= [−𝐴
𝑇

𝑖𝜂𝑖
𝑃
𝑖
𝐴
𝑖1
⋅ ⋅ ⋅ −𝐴

𝑇

𝑖𝜂𝑖
𝑃
𝑖
𝐴
𝑖 𝑖−1

−𝐴
𝑇

𝑖𝜂𝑖
𝑃
𝑖
𝐴
𝑖 𝑖+1

⋅ ⋅ ⋅ −𝐴
𝑇

𝑖𝜂𝑖
𝑃
𝑖
𝐴
𝑖𝑁
]
𝑇

,

Φ
𝑖

44
= −𝑄
𝑖2
, Φ

𝑖

45
= −𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐵
𝑖1
,

Φ
𝑖

48
= −𝐴
𝑇

𝑖𝜂𝑖

𝑃
𝑖
𝐷
𝑖
, Φ

𝑖

55
= −𝛾
2

𝑖
𝐼,

Γ
𝑖

56
= 𝐷
𝑇

𝑖11
, Φ

𝑖

99
= − (1 − 𝑓

𝑖
) 𝑄
−1

𝑖1
,

Φ
𝑖

1111
= − (1 − 𝑔

𝑖
) 𝑄
𝑖2
,

Φ
𝑖

1010
= diag {− (1 − 𝑙

1
) 𝐺
1𝑖
, . . . , − (1 − 𝑙

𝑖−1
) 𝐺
𝑖−1 𝑖

,

− (1 − 𝑙
𝑖+1
) 𝐺
𝑖+1 𝑖

, . . . , − (1 − 𝑙
𝑁
) 𝐺
𝑁𝑖
} .

(27)
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By Lemma 2, we have

−𝐹
𝑇

𝑖2
𝑄
−1

𝑖1
𝐹
𝑖2
− 𝑄
𝑖1
≤ −𝐹
𝑇

𝑖2
− 𝐹
𝑖2
,

−𝐹
𝑇

𝑖2
𝑄
−1

𝑖2
𝐹
𝑖2
− 𝑄
𝑖2
≤ −𝐹
𝑇

𝑖2
− 𝐹
𝑖2
,

− 𝐹
𝑇

𝑖2
𝐺
−1

𝑗𝑖
𝐹
𝑖2
− 𝐺
𝑗𝑖
≤ −𝐹
𝑇

𝑖2
− 𝐹
𝑖2
,

𝑖, 𝑗 = 1, 2, . . . , 𝑁, 𝑗 ̸= 𝑖.

(28)

Pre- andpostmultiplying the inequality (26) by thematrix

diag {𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐹𝑇
𝑖2
, 𝐹
𝑇

𝑖2
, 𝐹
𝑇

𝑖2
, 𝐼} , (29)

and its transpose, respectively, and utilizing (28), and denot-
ing

𝐴
𝑖
= 𝑌
𝑖
𝐴
𝑖
𝑋
𝑖
+ 𝑁
𝑖
𝐵
𝑖𝐾
𝐶
𝑖2
𝑋
𝑖
+ 𝑌
𝑖
𝐵
𝑖2
𝐶
𝑖𝐾
𝑀
𝑇

𝑖
+ 𝑁
𝑖
𝐴
𝑖𝐾
𝑀
𝑇

𝑖
,

𝐵
𝑖
= 𝑁
𝑖
𝐵
𝑖𝐾
, 𝐶

𝑖
= 𝐶
𝑖𝐾
𝑀
𝑇

𝑖
,

(30)

one can obtain Theorem 4 immediately. This completes the
proof.

Algorithm 5. Given any solution of the LMI (20) in Theo-
rem 4, a corresponding controller of the form (17) will be
constructed as follows.

(i) Utilizing the two positive definite solutions𝑋
𝑖
, 𝑌
𝑖
and

the invertible matrix 𝑁
𝑖
; compute the invertible 𝑀

𝑖

satisfying (23).

(ii) Utilizing the matrices 𝑀
𝑖
and 𝑁

𝑖
obtained above;

compute the gains 𝐴
𝑖𝐾
, 𝐵
𝑖𝐾
, and 𝐶

𝑖𝐾
according to

(30).

4. Illustrative Example

Consider system (16) composed of a three-order subsystem
and a two-order subsystem with the following parameters:

𝐴
1
= [

[

0.3 −1.50.8

−0.9 −23.5 5.6

0.5 0.9 −25.3

]

]

, 𝐵
11
= [

[

−0.1 −0.2

−0.3 0.2

0.1 −0.1

]

]

,

𝐵
12
= [

[

0.2 0.5

−0.1 −0.7

−0.1 0.2

]

]

, 𝐴
1𝜎1

= [

[

−0.1 0.3 −0.1

0.1 −0.2 −0.3

0.2 0.4 0.2

]

]

,

𝐴
1𝜂1

= [

[

0.1 −0.3 −0.1

0.1 0.5 −0.1

0.2 0.1 −0.5

]

]

, 𝐴
12
= [

[

−0.1 0.1

−0.1 0.2

−0.6 −0.4

]

]

,

𝐷
1
= [

[

0.01 0.5 −0.01

−0.1 0 0

0 0.1 0

]

]

, 𝐸
11
= [

[

−0.1 −0.1 0.1

−0.1 0.2 0.1

0.1 −0.1 −0.2

]

]

,

𝐿
12
= [

[

−0.01 0.1

0.01 −0.2

0.01 −0.2

]

]

, 𝐸
1𝜎1

= [

[

0.1 0.1 −0.1

−0.1 −0.2 −0.1

−0.1 −0.1 0.1

]

]

,

𝐸
12
= [

[

−0.1 −0.3

−0.1 0.1

−0.4 0.2

]

]

, 𝐶
11
= [

−0.4 −0.1 0.1

−0.1 −0.2 0.3
] ,

𝐷
111

= [
−0.1 0.1

0.01 −0.1
] , 𝐷

112
= [

0.1 −0.1

−0.1 0.3
] ,

𝐶
12
= [

−0.1 −0.1 −0.1

0.5 0.3 −1.4
] , 𝐷

121
= [

−0.2 −0.1

0.1 0.1
] ,

𝜎
1
(𝑡) = 0.1 (2 + sin (𝑡)) , 𝜂

1
(𝑡) = 0.2 (1 + cos (𝑡)) ,

𝐴
2
= [

−15.1 0.1

−0.7 −5.4
] , 𝐴

2𝜎2
= [

−0.6 −0.3

−0.4 0.1
] ,

𝐴
2𝜂2

= [
−0.2 0.2

0.1 −0.1
] , 𝐵

21
= [

−0.1

−0.1
] ,

𝐴
21
= [

0.1 −0.1 −0.1

−0.1 0.1 0.1
] , 𝐵

22
= [

0.5

0.1
] ,

𝐷
2
= [

0.1 0.4

−0.1 0.1
] , 𝐸

21
= [

−0.1 0.1

0.2 −0.1
] ,

𝐸
2𝜎2

= [
−0.1 −0.1

−0.1 0.1
] , 𝐸

22
= [

−0.1

0.1
] ,

𝐿
21
= [

−0.01 0.01 −0.01

−0.01 0.02 0.01
] , 𝐶

21
= [−0.1 0.8] ,

𝐷
211

= 0.13, 𝐷
221

= −0.53,

𝐶
22
= [0.1 0.5] , 𝐷

212
= 0.16,

𝜎
2
(𝑡) = 0.2 (1 + cos (𝑡)) ,

𝜂
2
(𝑡) = 0.1 (2 + cos (𝑡)) ,

𝜏
21
(𝑡) = 0.2 (2 + sin (𝑡)) ,

𝜏
12
(𝑡) = 0.1 (1 + cos (𝑡)) ,

𝛾
1
= 0.5, 𝛾

2
= 0.3.

(31)

Using the above parameters and applying Matlab Soft-
ware to solving LMI (20), we can obtain the following results:

𝑋
1
= [

[

0.0947 0.5569 −0.1173

0.5569 6.1762 0.5942

−0.1173 0.5942 7.2277

]

]

,

𝑌
1
= [

[

0.2448 −0.0612 0.2138

−0.0612 0.1830 −0.0255

0.2138 −0.0255 0.2034

]

]

,
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𝑁
1
= [

[

1.2558 −0.0000 0.0000

−0.0000 1.2558 −0.0000

0.0000 −0.0000 1.2558

]

]

× 10
5

,

𝑋
2
= [

4.4043 0.4772

0.4772 1.4044
] , 𝑌

2
= [

1.4996 1.4523

1.4523 8.4219
] ,

𝑁
2
= [

1.2075 0.0001

0.0001 1.2078
] × 10

5

,

𝐴
1
= [

[

−1.4345 −2.7721 5.7617

−1.2489 −9.1781 1.1119

0.3361 3.1163 −5.0939

]

]

,

𝐶
1
= [

−1.6597 −1.9990 −0.3384

−1.7543 0.5932 1.5744
] ,

𝐵
1
= [

[

−1.8297 −4.1087

0.3341 −0.3560

−0.9167 −0.6854

]

]

, 𝐴
2
= [

0.5829 −1.2895

1.5056 −5.9999
] ,

𝐵
2
= [

−1.1894

−2.1534
] , 𝐶

2
= [−10.0067 −3.6127] .

(32)

Using the obtained solutions 𝑋
1
, 𝑌
1
, 𝑁
1
, 𝑋
2
, 𝑌
2
, and 𝑁

2

to solve (23), we have

𝑀
1
= [

[

0.0825 −0.0079 0.0014

0.0091 −0.0064 −0.0066

−0.1178 0.0054 −0.0342

]

]

× 10
−4

,

𝑀
2
= [

−0.5215 −0.8623

−0.2281 −0.9538
] × 10

−4

.

(33)

Using the above solutions𝑀
1
,𝑁
1
,𝑀
2
, and𝑁

2
to compute

𝐴
1𝐾
, 𝐵
1𝐾
, 𝐶
1𝐾
, 𝐴
2𝐾
, 𝐵
2𝐾
, and 𝐶

2𝐾
according to (30), the

following results are obtained:

𝐴
1𝐾
= [

[

5.6151 65.5141 −14.4781

−33.1939 −343.0572 85.8446

3.9271 29.4768 −64.3063

]

]

,

𝐵
1𝐾
= [

[

−0.1457 −0.3272

0.0266 −0.0283

−0.0730 −0.0546

]

]

× 10
−4

,

𝐶
1𝐾
= [

0.0683 2.8751 0.3203

−0.4408 −2.2598 0.6995
] × 10

6

,

𝐴
2𝐾
= [

−25.1345 3.8472

−24.1933 −1.0036
] , 𝐵

2𝐾
= [

−0.0985

−0.1783
] × 10

−4

,

𝐶
2𝐾
= [2.1380 −0.1326] × 10

5

.

(34)

When 𝐹
1
(𝑡) = diag{sin(𝑡), sin(𝑡), sin(𝑡)} and 𝐹

2
(𝑡) =

diag{cos(𝑡), cos(𝑡)}, the simulation results are shown in Fig-
ures 1–4 based on the above parameters. From Figures 1 and
2, one can see that the uncertain interconnected systems of
neutral type (16)without controllers are not convergent. From
Figures 3 and 4, one can see that the uncertain interconnected
systems of neutral type (16) are indeed well stabilized.
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Figure 1: State response of the first open-loop subsystem.
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5. Conclusion

The 𝐻
∞

decentralized control problem via output feedback
for uncertain neutral interconnected systems with time-
varying delays is complex and challenging. Developing a
novel mathematical technique for treating the nonlinear
interconnection variable matrices, a sufficient condition of
existing anticipated controller is obtained in terms of LMIs
based on Lyapunov stability theory, which not only depends
on the sizes of delays but also on the information of deriva-
tives.The illustrative example shows that the results obtained
in this paper are effective.
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This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian
jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be
completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear
matrix inequality (LMI) technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is
regular, impulse free, and robust stochastically stablewith the proposed guaranteed cost performance. Finally, a convex optimization
problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump
time-delay systems with generally incomplete transition probability.

1. Introduction

Descriptor systems are also referred to as singular systems,
implicit systems, generalized state-space systems, or semis-
tate systems and provide convenient and natural representa-
tions in the description of economic systems, power systems,
robotics, network theory, and circuits systems [1]. The sta-
bility for singular system is more complicated than that for
nonsingular systems because not only the asymptotic stability
but also the system regularity and impulse elimination are
needed to be addressed [2–5].

In practice, in many physical systems, such as aircraft
control, solar receiver control, power systems, manufacturing
systems, networked control systems, air intake systems, and
other practical systems, abrupt variations may happen in
their structure, due to random failures, repair of components,
sudden environmental disturbances, changing subsystem
interconnections, or abrupt variations in the operating points
of a nonlinear plant [6–19]. Therefore, more and more
attention has been paid to the problem of stochastic stability
and stochastic admissibility for singular Markovian jump

systems (SMJSs) [20–30]. Long et al. [23] derived stochastic
admissibility for a class of singular Markovian jump systems
with mode-dependent time delays. Wang and Zhang [27]
focused on the asynchronous 𝑙

2
−𝑙
∞
filtering for discrete-time

stochastic Markov jump systems with randomly occurring
sensor nonlinearities. However, the TRs in the above men-
tioned literatures are assumed to be completely known.

In practice, the TRs in some jumping processes are
difficult to be precisely estimated due to the cost and some
other factors. Therefore, analysis and synthesis problems
for normal MJSs with incomplete information on transition
probability have attracted more and more attentions [31–49].
Xiong and Lam [32] probed robust𝐻

2
control of Markovian

jump systems with uncertain switching probabilities. Karan
et al. [33] considered the stochastic stability robustness for
continuous-time and discrete-time Markovian jump linear
systems (MJLSs) with upper bounded TRs. Zhang and
Boukas [34] discussed stability and stabilization for the
continuous-time MJSs with partly unknown TRs. Lin et al.
[38] considered delay-dependent 𝐻

∞
filtering for discrete-

time singular Markovian jump systems with time-varying
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delay and partially unknown transition probabilities. Guo
and Wang [49] proposed another description for the uncer-
tain TRs, which is called generally uncertain TRs (GUTRs).

On the other hand, state estimation plays an important
role in systems and control theory, signal processing, and
information fusion [50, 51]. Certainly, the most widely used
estimation method is the well-known Kalman filtering [52,
53]. A common feature in the Kalman filtering is that an
accurate model is available. In some applications, however,
when the system is subject to parameter uncertainties, the
accurate system model is hard to obtain. To overcome this
difficulty, the guaranteed cost filtering approach has been
proposed to ensure the upper bound of guaranteed cost func-
tion [54]. Robust𝐻

∞
filtering for uncertainMarkovian jump

systems with mode-dependent time delays was proposed in
[55]. In [56], guaranteed cost and 𝐻

∞
filtering for time-

delay systems were presented in terms of LMIs. However,
to the best of our knowledge, there are few considering
the robust guaranteed cost observer for a class of linear
singular Markovian jump time-delay systems with generally
incomplete transition probability, which is still an open
problem.

In this paper, based on LMI method, we address the
design problem of the robust guaranteed cost observer for a
class of uncertain descriptor time-delay systems withMarko-
vian jumping parameters and generally uncertain transition
rates. The design problem proposed here is to design a mem-
oryless observer such that for all uncertainties, including
generally uncertain transition rates, the resulting augmented
system is regular, impulse-free, and robust stochastically sta-
ble, and satisfies the proposed guaranteed cost performance.

2. Problem Formulation

Consider the following descriptor time-delay systems with
Markovian jumping parameters:

𝐸 ̇𝑥 (𝑡) = 𝐴 (𝑟
𝑡
, 𝑡) 𝑥 (𝑡) + 𝐴

𝑑
(𝑟
𝑡
, 𝑡) 𝑥 (𝑡 − 𝑑) ,

𝑦 (𝑡) = 𝐶 (𝑟
𝑡
, 𝑡) 𝑥 (𝑡) + 𝐶

𝑑
(𝑟
𝑡
, 𝑡) 𝑥 (𝑡 − 𝑑) ,

𝑥 (𝑡) = 𝜑 (𝑡) , ∀𝑡 ∈ [−𝑑, 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 and 𝑦(𝑡) ∈ 𝑅

𝑟 are the state vector and
the controlled output, respectively. 𝑑 represents the state time
delay. For convenience, the input terms in system (1) have
been omitted. 𝜑(𝑡) ∈ 𝐿

2
[−𝑑, 0] is a continuous vector-valued

initial function. The random parameter 𝛾(𝑡) represents a
continuous-time discrete-state Markov process taking values
in a finite set S = {1, 2, . . . , 𝑠} and having the transition
probability matrix Π = [𝜋

𝑖𝑗
], 𝑖, 𝑗 ∈ 𝑁. The transition

probability from mode 𝑖 to mode 𝑗 is defined by

Pr {𝑟
𝑡+Δ

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑗
Δ + 𝑜 (Δ) , 𝑖 = 𝑗,

(2)

where Δ > 0 satisfies lim
Δ→0

(𝑜(Δ)/Δ) = 0, 𝜋
𝑖𝑗
≥ 0 is the

transition probability from mode 𝑖 to mode 𝑗 and satisfies

𝜋
𝑖𝑖
= −

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
≤ 0. (3)

In this paper, the transition rates of the jumping process
are assumed to be partly available; that is, some elements in
matrix Λ have been exactly known, some have been merely
known with lower and upper bounds, and others may have
no information to use. For instance, for system (1) with
four operation modes, the transition rate matrix might be
described by

Λ =

[
[
[
[

[

�̂�
11
+ Δ
11

? ? ⋅ ⋅ ⋅ ?

? ? �̂�
23
+ Δ
23

⋅ ⋅ ⋅ �̂�
2𝑠
+ Δ
2𝑠

...
...

... d
...

? �̂�
𝑠2
+ Δ
𝑠2

? ⋅ ⋅ ⋅ ?

]
]
]
]

]

,

(4)

where �̂�
𝑖𝑗
and Δ

𝑖𝑗
∈ [−𝜎

𝑖𝑗
, 𝜎
𝑖𝑗
] (𝜎
𝑖𝑗

≥ 0) represent the
estimate value and estimate error of the uncertain TR 𝜋

𝑖𝑗
,

respectively, where �̂�
𝑖𝑗
and 𝜎

𝑖𝑗
are known. ? represents the

complete unknown TR, which means that its estimate value
�̂�
𝑖𝑗
and estimate error bound are unknown.
For notational clarity, for all 𝑖 ∈ S, the set 𝑈

𝑖

denotes 𝑈
𝑖

= 𝑈
𝑖

𝑘
∪ 𝑈
𝑖

𝑢𝑘
with 𝑈

𝑖

𝑘
= {𝑗 : The estimate

value of 𝜋
𝑖𝑗
is known for 𝑗 ∈ S}, 𝑈𝑖

𝑢𝑘
= {𝑗 : The estimate

value of 𝜋
𝑖𝑗
is unknown for 𝑗 ∈ S}. Moreover, if 𝑈𝑖

𝑘
̸= 0, it is

further described as 𝑈𝑖
𝑘
= {𝑘
𝑖

1
, 𝑘
𝑖

2
, . . . , 𝑘

𝑖

𝑚
}, where 𝑘𝑖

𝑚
∈ N+

represents the 𝑚th bound-known element with the index
𝑘
𝑖

𝑚
in the 𝑖th row of matrix Π. We assume that the known

estimate values of the TRs are well defined. That is

Assumption 1. If 𝑈𝑖
𝑘

= S, then �̂�
𝑖𝑗
− 𝜎
𝑖𝑗

≥ 0 (for all 𝑗 ∈

S, 𝑗 ̸= 𝑖), �̂�
𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
�̂�
𝑖𝑗
and 𝜎

𝑖𝑖
= −∑

𝑠

𝑗=1,𝑗 ̸= 𝑖
𝜎
𝑖𝑗
.

Assumption 2. If 𝑈
𝑖

𝑘
̸=S and 𝑖 ∈ 𝑈

𝑖

𝑘
, then �̂�

𝑖𝑗
− 𝜎
𝑖𝑗

≥

0 (for all 𝑗 ∈ S, 𝑗 ̸= 𝑖), �̂�
𝑖𝑖
+ 𝜎
𝑖𝑖
≤ 0 and ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
.

Assumption 3. If 𝑈
𝑖

𝑘
̸=S and 𝑖 ∉ 𝑈

𝑖

𝑘
, then �̂�

𝑖𝑗
− 𝜎
𝑖𝑗

≥

0 (for all 𝑗 ∈ S).

Remark 4. The above assumption is reasonable, since it is
the direct result from the properties of the TRs (e.g., 𝜋

𝑖𝑗
≥

0 (for all 𝑖, 𝑗 ∈ S, 𝑗 ̸= 𝑖) and 𝜋
𝑖𝑖
= −∑

𝑠

𝑗=1,𝑗 ̸= 𝑖
𝜋
𝑖𝑗
). The above

description about uncertain TRs is more general than either
the MJSs model with bounded uncertain TRs or the MJSs
model with partly uncertain TRs. If 𝑈𝑖

𝑢𝑘
= 0, for all 𝑖 ∈ S,

then generally uncertain TR matrix (4) reduces to bounded
uncertain TR matrix (5) as follows:

[
[
[
[

[

�̂�
11
+ Δ
11

�̂�
12
+ Δ
12

⋅ ⋅ ⋅ �̂�
1𝑠
+ Δ
1𝑠

�̂�
21
+ Δ
21

�̂�
22
+ Δ
22

⋅ ⋅ ⋅ �̂�
2𝑠
+ Δ
2𝑠

...
... d

...
�̂�
𝑠1
+ Δ
𝑠1

�̂�
𝑠2
+ Δ
𝑠2

⋅ ⋅ ⋅ �̂�
𝑠𝑠
+ Δ
𝑠𝑠

]
]
]
]

]

, (5)

where �̂�
𝑖𝑗
−Δ
𝑖𝑗
≥ 0 (for all 𝑗 ∈ S, 𝑗 ̸= 𝑖), �̂�

𝑖𝑖
= −∑

𝑠

𝑗=1,𝑗 ̸= 𝑖
�̂�
𝑖𝑗
≤

0, and Δ
𝑖𝑖
= ∑
𝑠

𝑗=1,𝑗 ̸= 𝑖
Δ
𝑖𝑗
; if 𝜎
𝑖𝑗
= 0, for all 𝑖 ∈ S, for all 𝑗 ∈
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𝑈
𝑖

𝑘
, then generally uncertain TR matrix (4) reduces to partly

uncertain TR matrix (6) as follows:

[
[
[
[

[

𝜋
11

? ? ⋅ ⋅ ⋅ ?

? ? 𝜋
23

⋅ ⋅ ⋅ 𝜋
2𝑠

...
...

... d
...

? 𝜋
𝑠2

? ⋅ ⋅ ⋅ ?

]
]
]
]

]

. (6)

Our results in this paper can be applicable to the general
Markovian jump systems with bounded uncertain or partly
uncertain TR matrix.

𝐴(𝛾(𝑡), 𝑡),𝐴
𝑑
(𝛾(𝑡), 𝑡),𝐶(𝛾(𝑡), 𝑡), and𝐶

𝑑
(𝛾(𝑡), 𝑡) arematrix

functions of the random jumping process 𝛾(𝑡). To simplify the
notion, the notation 𝐴

𝑖
(𝑡) represents 𝐴(𝛾(𝑡), 𝑡) when 𝛾(𝑡) =

𝑖. For example, 𝐴
𝑑
(𝛾(𝑡), 𝑡) is denoted by 𝐴

𝑑𝑖
(𝑡) and so on.

Further, for each 𝛾(𝑡) = 𝑖 ∈ 𝑁, it is assumed that the
matrices 𝐴

𝑖
(𝑡), 𝐴

𝑑𝑖
(𝑡), 𝐶
𝑖
(𝑡), and 𝐶

𝑑𝑖
(𝑡) can be described by

the following form:

𝐴
𝑖
(𝑡) = 𝐴

𝑖
+ Δ𝐴
𝑖
(𝑡) , 𝐴

𝑑𝑖
(𝑡) = 𝐴

𝑑𝑖
+ Δ𝐴
𝑑𝑖
(𝑡) ,

𝐶
𝑖
(𝑡) = 𝐶

𝑖
+ Δ𝐶
𝑖
(𝑡) , 𝐶

𝑑𝑖
(𝑡) = 𝐶

𝑑𝑖
+ Δ𝐶
𝑑𝑖
(𝑡) ,

(7)

where 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐶
𝑖
are 𝐶

𝑑𝑖
known real coefficient matrices

with appropriate dimensions. Time-varying matrices
Δ𝐴
𝑖
(𝑡), Δ𝐴

𝑑𝑖
(𝑡), Δ𝐶

𝑖
(𝑡), and Δ𝐶

𝑑𝑖
(𝑡) represent norm-

bounded uncertainties and satisfy

[
Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑑𝑖
(𝑡)

Δ𝐶
𝑖
(𝑡) Δ𝐶

𝑑𝑖
(𝑡)

] = [
𝑀
1𝑖

𝑀
2𝑖

]𝐹
𝑖
(𝑡) [𝑁

1𝑖
𝑁
2𝑖
] , (8)

where𝑀
1𝑖
,𝑀
2𝑖
,𝑀
1𝑖
, and𝑁

2𝑖
are known constant real matri-

ces of appropriate dimensions, which represent the structure
of uncertainties, and 𝐹

𝑖
(𝑡) is an unknown matrix function

with Lebesgue measurable elements and satisfies 𝐹
𝑖
(𝑡)𝐹
𝑇

𝑖
(𝑡) ≤

𝐼.
Further, for convenience, we assume that the system has

the same dimension at each mode and the Markov process
is irreducible. Consider the following nominal unforced
descriptor time-delay system:

𝐸 ̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝑑) ,

𝑥 (𝑡) = 𝜑 (𝑡) , ∀𝑡 ∈ [−𝑑, 0] .

(9)

Let 𝑥
0
, 𝑟
0
, and 𝑥(𝑡, 𝜑, 𝑟

0
) be the initial state, initial mode,

and the corresponding solution of the system (9) at time 𝑡,
respectively.

Definition 5. System (9) is said to be stochastically stable if,
for all 𝜑(𝑡) ∈ 𝐿

2
[−𝑑, 0] and initial mode 𝑟

0
∈ 𝑁, there exists

a matrix𝑀 > 0 such that

𝐸{∫

∞

0

𝑥 (𝑡, 𝜑, 𝑟0)


2

𝑑𝑡 | 𝑟
0
, 𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0]}

≤ 𝑥
𝑇

0
𝑀𝑥
0
.

(10)

The following definition can be regarded as an extension
of the definition in [2].

Definition 6. (1) System (9) is said to be regular if det(𝑠E −

𝐴
𝑖
), 𝑖 = 1, 2, . . . , 𝑠 are not identically zero.
(2) System (9) is said to be impulse free if deg(det(𝑠𝐸 −

𝐴
𝑖
)) = rank 𝐸

𝑖
, 𝑖 = 1, 2, . . . , 𝑠.

(3) System (9) is said to be admissible if it is regular,
impulse free, and stochastically stable.

The linearmemoryless observer under consideration is as
follows:

𝐸 ̇�̂� (𝑡) = 𝐾
1𝑖
𝑥 (𝑡) + 𝐾

2𝑖
𝑦 (𝑡) ,

𝑥
0
= 0, 𝑟 (0) = 𝑟

0
,

(11)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the observer state, and the constant

matrices𝐾
1𝑖
and𝐾

2𝑖
are observer parameters to be designed.

Denote the error state 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡), and the
augmented state vector 𝑥

𝑓
= [𝑥
𝑇

(𝑡) 𝑒
𝑇

(𝑡)]
𝑇

. Let 𝑥(𝑡) = 𝐿𝑒(𝑡)

represent the output of the error states, where 𝐿 is a known
constant matrix. Define

𝐴
𝑓𝑖
= [

𝐴
𝑖

0

𝐴
𝑖
− 𝐾
1𝑖
− 𝐾
2𝑖
𝐶
𝑖
𝐾
1𝑖

] ,

𝐴
𝑓𝑑𝑖

= [
𝐴
𝑑𝑖

0

𝐴
𝑑𝑖
− 𝐾
2𝑖
𝐶
𝑑𝑖

0
] , 𝐸

𝑓
= [

𝐸 0

0 𝐸
] ,

𝑀
𝑓𝑖
= 𝑀
𝑓1𝑖

= [
𝑀
1𝑖

𝑀
1𝑖
− 𝐾
2𝑖
𝑀
2𝑖

] , 𝑁
𝑓𝑖
= [𝑁
1𝑖

0] ,

Δ𝐴
𝑓𝑖
= 𝑀
𝑓𝑖
𝐹
𝑖
(𝑡)𝑁
𝑓𝑖
, 𝑁

𝑓1𝑖
= [𝑁
2𝑖

0] ,

Δ𝐴
𝑓𝑑𝑖

= 𝑀
𝑓1𝑖

𝐹
𝑖
(𝑡)𝑁
𝑓1𝑖

, 𝐶
𝑓
= [0 𝐿]

(12)

and combine (1) and (11); then we derive the augmented
systems as follows:

𝐸
𝑓

̇𝑥
𝑓
(𝑡) = (𝐴

𝑓𝑖
+ Δ𝐴
𝑓𝑖
) 𝑥
𝑓
(𝑡)

+ (𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) 𝑥
𝑓
(𝑡 − 𝑑) ,

𝑧 (𝑡) = 𝐶
𝑓
𝑥
𝑓
(𝑡) ,

𝑥
𝑓0

(𝑡) = [𝜑
𝑇

(𝑡) , 𝜑
𝑇

(𝑡)]
𝑇

, ∀𝑡 ∈ [−𝑑, 0] .

(13)

Similar to [5], it is also assumed in this paper that, for all 𝜍 ∈
[−𝑑, 0], there exists a scalar ℎ > 0 such that ‖𝑥

𝑓
(𝑡 + 𝜍)‖ ≤

ℎ‖𝑥
𝑓
(𝑡)‖.
Associated with system (13) is the cost function

J = E{∫

∞

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡} . (14)

Definition 7. Consider the augmented system (13), if there
exist the observer parameters 𝐾

1𝑖
, 𝐾
2𝑖
and a positive scalar

J∗, for all uncertainties, such that the augmented system
(13) is robust, stochastically stable and the value of the cost
function (14) satisfies J ≤ J∗, then J∗ is said to be a
robust guaranteed cost and observer (11) is said to be a robust
guaranteed cost observer for system (1) with (4).

Problem 8 (robust guaranteed cost observer problem for a
class of linear singular Markovian jump time-delay systems
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with generally incomplete transition probability). Given sys-
tem (1) with GUTRMatrix (4), can we determine an observer
(11) with parameters 𝐾

1𝑖
and 𝐾

2𝑖
such that the observer is a

robust guaranteed cost observer for system (1) with GUTR
Matrix (4)?

Lemma 9. Given any real number 𝜀 and any matrix Q, the
matrix inequality 𝜀(𝑄 + 𝑄

𝑇

) ≤ 𝜀
2

𝑇 + 𝑄𝑇
−1

𝑄
𝑇 holds for any

matrix 𝑇 > 0.

3. Main Results

Theorem 10. Consider the augmented system (13)with GUTR
Matrix (4) and the cost function (14). Then the robust guar-
anteed cost observer (11) with parameters 𝐾

1𝑖
and 𝐾

2𝑖
can

be designed if there exist matrices 𝑃
𝑖
, 𝐾
1𝑖
, and 𝐾

2𝑖
, 𝑖 =

1, 2, . . . , 𝑠, and symmetric positive definite matrix Q, satisfying
the following LMIs, respectively:

Case 1. If 𝑖 ∉ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑘
= {𝑘
𝑖

1
, . . . , 𝑘

𝑖

𝑚
}, there exist a set of

symmetric positive definite matrices 𝑇
𝑖𝑗
∈ R𝑛×𝑛 (𝑖 ∉ 𝑈

𝑖

𝑘
, 𝑗 ∈

𝑈
𝑖

𝑘
) such that

𝐸
𝑇

𝑓
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓
≥ 0, (15)

[
[

[

Π
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

< 0, (16)

𝑃
𝑖
− 𝑃
𝑗
≥ 0, ∀𝑗 ∈ 𝑈

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖. (17)

Case 2. If 𝑖 ∈ 𝑈
𝑖

𝑘
, 𝑈𝑖
𝑘
= {𝑘
𝑖

1
, . . . , 𝑘

𝑖

𝑚
} and 𝑈𝑖

𝑢𝑘
̸= 0, there exist a

set of symmetric positive definite matrices 𝑉
𝑖𝑗𝑙

∈ R𝑛×𝑛 (𝑖, 𝑗 ∈

𝑈
𝑖

𝑘
, 𝑙 ∈ 𝑈

𝑖

𝑢𝑘
) such that

𝐸
𝑇

𝑓
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓
≥ 0, (18)

[
[

[

Ω
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

< 0. (19)

Case 3. If 𝑖 ∈ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑢𝑘
= 0, there exist a set of symmetric

positive definite matrices𝑊
𝑖𝑗
∈ R𝑛×𝑛 (𝑖, 𝑗 ∈ 𝑈

𝑖

𝑘
) such that

𝐸
𝑇

𝑓
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓
≥ 0, (20)

[
[

[

Δ
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

< 0, (21)

where

Π
𝑖
= (𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)

+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑇
𝑖𝑗
,

Ω
𝑖
= (𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)

+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑉
𝑖𝑗𝑙
,

Δ
𝑖
= (𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)

+ 𝑄 + ∑

𝑗∈S,𝑗 ̸= 𝑖

�̂�
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈S,𝑗 ̸= 𝑖

1

4
𝜎
2

𝑖𝑗
𝑊
𝑖𝑗
,

�̂�
1
= [𝐸
𝑇

𝑓
(𝑃
𝑖𝑘
𝑖

1

− 𝑃
𝑖
) , 𝐸
𝑇

𝑓
(𝑃
𝑖𝑘
𝑖

2

− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑖𝑘
𝑖

𝑚
− 𝑃
𝑖
)] ,

�̂�
2
= diag {−𝑇

𝑖𝑘
𝑖

1

, . . . , −𝑇
𝑖𝑘
𝑖

𝑚
} ,

�̂�
1
= [𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

1

− 𝑃
𝑙
) , 𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

2

− 𝑃
𝑙
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑘
𝑖

𝑚
− 𝑃
𝑙
)] ,

�̂�
2
= diag {−𝑉

𝑖𝑘
𝑖

1
𝑙
, . . . , −𝑉

𝑖𝑘
𝑖

𝑚
𝑙
} ,

�̂�
1
= [𝐸
𝑇

𝑓
(𝑃
1
− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑖−1

− 𝑃
𝑖
) ,

𝐸
𝑇

𝑓
(𝑃
𝑖+1

− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑠
− 𝑃
𝑖
)] ,

�̂�
2
= diag {−𝑊

𝑖1
, . . . , −𝑊

𝑖𝑠
} .

(22)

Proof. According to Definition 2 and Theorem 1 in [2], we
can derive from (15)–(21) that system (13) is regular and
impulse free. Let the mode at time 𝑡 be 𝑖, and consider the
following Lyapunov function with respect to the augmented
system (13)

𝑉(𝑥
𝑓
(𝑡) , 𝛾 (𝑡) = 𝑖) = 𝑥

𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓
𝑃
𝑖
𝑥
𝑓
(𝑡)

+ ∫

𝑡

𝑡−𝑑

𝑥
𝑇

𝑓
(𝑠) 𝑄𝑥

𝑓
(𝑠) 𝑑𝑡,

(23)

where 𝑄 is the symmetric positive definite matrix to be cho-
sen, and 𝑃

𝑖
is a matrix satisfying (15)–(21).The weak infinites-

imal operatorL of the stochastic process {𝛾(𝑡), 𝑥
𝑓
(𝑡)}, 𝑡 ≥ 0,

is presented by

L𝑉(𝑥
𝑓
(𝑡) , 𝛾 (𝑡) = 𝑖)

= lim
Δ→0

1

Δ
[𝐸
𝑓
{𝑉 (𝑥 (𝑡 + Δ) , 𝛾 (𝑡 + Δ)) 𝑥 (𝑡) , 𝛾 (𝑡) = 𝑖}

−𝑉 (𝑥 (𝑡) , 𝛾 (𝑡) = 𝑖) ]

= 𝑥
𝑇

𝑓
(𝑡) [

[

(𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)
𝑇

𝑃
𝑖
+ 𝑃
𝑖
(𝐴
𝑓𝑖
+ Δ𝐴
𝑓𝑖
)

+

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
+ 𝑄]

]

𝑥
𝑓
(𝑡)

+ 2𝑥
𝑇

𝑓
(𝑡) 𝑃
𝑖
(𝐴
𝑓1𝑖

+ Δ𝐴
𝑓1𝑖

) 𝑥
𝑓
(𝑡 − 𝑑)

− 𝑥
𝑇

𝑓
(𝑡 − 𝑑)𝑄𝑥

𝑓
(𝑡 − 𝑑) .

(24)
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Case 1 (𝑖 ∉ 𝑈
𝑖

𝑘
). Note that in this case ∑

𝑗∈𝑈
𝑖

𝑢𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗

=

−∑
𝑗∈U𝑖
𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
− 𝜋
𝑖𝑖
and 𝜋

𝑖𝑗
≥ 0, 𝑗 ∈ 𝑈

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖; then from

(24), we have

𝑥
𝑇

𝑓
(𝑡) [

[

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗

]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) [

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
+ ∑

𝑗∈𝑈
𝑖

𝑢𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
+ 𝜋
𝑖𝑖
𝐸
𝑇

𝑓
𝑃
𝑗

]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) [

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
+ (−𝜋

𝑖𝑖
− ∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
)𝐸
𝑇

𝑓
𝑃
𝑖

+𝜋
𝑖𝑖
𝐸
𝑇

𝑓
𝑃
𝑖

]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓

[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓

[

[

∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥
𝑓
(𝑡) .

(25)

On the other hand, in view of Lemma 9, we have

∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
)

= ∑

𝑗∈𝑈
𝑖

𝑘

[
1

2
Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) +

1

2
Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
)]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[(
1

2
Δ
𝑖𝑗
)

2

𝑇
𝑖𝑗
+ 𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) 𝑇
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) 𝐸
𝑓
]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[
1

4
𝜎
2

𝑖𝑗
𝑇
𝑖𝑗
+ 𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) 𝑇
−1

𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) 𝐸
𝑓
] .

(26)

Case 2 (𝑖 ∈ 𝑈
𝑖

𝑘
and𝑈𝑖

𝑢𝑘
̸= 0). Because of𝑈𝑖

𝑘
= {𝑘
𝑖

1
, . . . , 𝑘

𝑖

𝑚
} and

𝑈
𝑖

𝑢𝑘
= {𝑢
𝑖

1
, . . . , 𝑢

𝑖

𝑠−𝑚
}, there must be 𝑙 ∈ 𝑈

𝑖

𝑢𝑘
so that 𝐸𝑇

𝑓
𝑃
𝑙
≥

𝐸
𝑇

𝑓
𝑃
𝑗
(for all 𝑗 ∈ 𝑈

𝑖

𝑢𝑘
):

𝑥
𝑇

𝑓
(𝑡) [

[

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗

]

]

𝑥
𝑓
(𝑡)

≤ 𝑥
𝑇

𝑓
(𝑡) [

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗
− ( ∑

𝑗∈𝑈
𝑖

𝑘
,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
)𝐸
𝑇

𝑓
𝑃
𝑙

]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓

[

[

∑

𝑗∈𝑈
𝑖

𝑘

𝜋
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓

[

[

∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
) + ∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑙
)]

]

𝑥
𝑓
(𝑡) .

(27)

By using Lemma 9, we have

∑

𝑗∈𝑈
𝑖

𝑘

Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
)

= ∑

𝑗∈𝑈
𝑖

𝑘

[
1

2
Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
) +

1

2
Δ
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
)]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[(
1

2
Δ
𝑖𝑗
)

2

𝑉
𝑖𝑗𝑙
+ 𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
)𝑉
−1

𝑖𝑗𝑙
(𝑃
𝑗
− 𝑃
𝑙
) 𝐸
𝑇

𝑓
]

≤ ∑

𝑗∈𝑈
𝑖

𝑘

[
1

4
𝜎
2

𝑖𝑗
𝑉
𝑖𝑗𝑙
+ 𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑙
)𝑉
−1

𝑖𝑗𝑙
(𝑃
𝑗
− 𝑃
𝑙
) 𝐸
𝑇

𝑓
] .

(28)

Case 3 (𝑖 ∈ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑢𝑘
= 0). Consider

𝑥
𝑇

𝑓
(𝑡) [

[

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝐸
𝑇

𝑓
𝑃
𝑗

]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓

[

[

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

𝜋
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥
𝑓
(𝑡)

= 𝑥
𝑇

𝑓
(𝑡) 𝐸
𝑇

𝑓

[

[

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)

+

𝑠

∑

𝑗=1,𝑗 ̸= 𝑖

Δ
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
)]

]

𝑥
𝑓
(𝑡) .

(29)

Case 1. Substituting (25) and (26) into (24), it results in

L𝑉 ≤ Λ
𝑇

(𝑡) Φ (𝑖) Λ (𝑡) , (30)

where Λ𝑇(𝑡) = [𝑥
𝑇

𝑓
(𝑡), 𝑥
𝑇

𝑓
(𝑡 − 𝑑)] and

Φ
𝑖
=
[
[

[

Π
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

. (31)

Case 2. Substituting (27) and (28) into (24), it results in

L𝑉 ≤ Λ
𝑇

(𝑡) Ψ (𝑖) Λ (𝑡) , (32)

where Λ𝑇(𝑡) = [𝑥
𝑇

𝑓
(𝑡), 𝑥
𝑇

𝑓
(𝑡 − 𝑑)] and

Ψ
𝑖
=
[
[

[

Ω
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

. (33)
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Case 3. Substituting (29) into (24), we get

L𝑉 ≤ Λ
𝑇

(𝑡) Γ (𝑖) Λ (𝑡) , (34)

where Λ𝑇(𝑡) = [𝑥
𝑇

𝑓
(𝑡), 𝑥
𝑇

𝑓
(𝑡 − 𝑑)] and

Γ
𝑖
=
[
[

[

Δ
𝑖
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

) �̂�
1

(𝐴
𝑓𝑑𝑖

+ Δ𝐴
𝑓𝑑𝑖

)
𝑇

𝑃
𝑖

−𝑄 0

∗ ∗ �̂�
2

]
]

]

. (35)

Similar to [5], usingDynkin’s formula, we drive for each 𝑖 ∈ 𝑁:

lim
𝑇→∞

E{∫

𝑇

0

𝑥
𝑇

𝑓
(𝑡) 𝑥
𝑓
(𝑡) 𝑑𝑡 | 𝜑

𝑓
, 𝛾
0
= 𝑖} ≤ 𝑥

𝑇

𝑓0
𝑀𝑥
𝑓0
. (36)

By Definition 5, it is easy to see that the augmented system
(13) is stochastically stable. Furthermore, from (16), (19), and
(21), we have

L𝑉 ≤ −𝑥
𝑇

𝑓
(𝑡) 𝐶
𝑇

𝑓
𝐶
𝑓
𝑥
𝑓
(𝑡) < 0. (37)

On the other hand, we have

J = E{∫

∞

0

𝑥
𝑇

𝑓
(𝑡) 𝐶
𝑇

𝑓
𝐶
𝑓
𝑥
𝑓
(𝑡) 𝑑𝑡} < −∫

∞

0

L𝑉𝑑𝑡

= − E { lim
𝑡→∞

𝑉 (𝑥 (𝑡) , 𝛾 (𝑡))} + 𝑉 (𝑥
0
, 𝛾
0
) .

(38)

As the augmented system (13) is stochastically stable, it
follows from (38) that 𝐽 < 𝑉(𝑥

𝑓0
, 𝑟
0
). From Definition 7, it

is concluded that a robust guaranteed cost for the augmented
system (13) can be given by 𝐽

∗

= 𝑥
𝑇

𝑓0
(𝑡)𝐸
𝑇

𝑓𝑟0

𝑃(𝑟
0
)𝑥
𝑓0

+

∫
0

−𝑑

𝑥
𝑇

𝑓
(𝑡)𝑄𝑥

𝑓
(𝑡)𝑑𝑡.

In the following, based on the above sufficient condition,
the design of robust guaranteed cost observers can be turned
into the solvability of a system of LMIs.

Theorem 11. Consider system (13)with GUTRMatrix (4) and
the cost function (14). If there exist matrices 𝑌

1𝑖
and 𝑌

2𝑖
, 𝑖 =

1, 2, . . . , 𝑠 positive scalars 𝜀
𝑖
, 𝑖 = 1, 2, . . . , 𝑠, symmetric positive

definite matrix Q, and the full rank matrices 𝑃
2𝑖
, and matrices

𝑃
𝑖
= diag(𝑃

1𝑖
, 𝑃
2𝑖
), 𝑖 = 1, 2, . . . , 𝑠, satisfying the following

LMIs, respectively.

Case 1. If 𝑖 ∉ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑘
= {𝑘
𝑖

1
, . . . , 𝑘

𝑖

𝑚
}, a set of positive

definite matrices 𝑇
𝑖𝑗
∈ R𝑛×𝑛 (𝑖 ∉ 𝑈

𝑖

𝑘
, 𝑗 ∈ 𝑈

𝑖

𝑘
) exist such that

𝐸
𝑇

𝑓
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓
≥ 0, (39)

[
[
[
[
[
[
[
[
[

[

𝜙
1𝑖

𝜙
2𝑖

𝑁
1

𝜙
3𝑖

𝜙
𝑇

2𝑖
−𝑄 0 0

𝑁
𝑇

1
0 𝑁

2
0

𝜙
𝑇

3𝑖
0 0 −𝜀

𝑖
𝐼

]
]
]
]
]
]
]
]
]

]

< 0, (40)

𝑃
𝑖
− 𝑃
𝑗
≥ 0, ∀𝑗 ∈ 𝑈

𝑖

𝑢𝑘
, 𝑗 ̸= 𝑖. (41)

Case 2. If 𝑖 ∈ 𝑈
𝑖

𝑘
(𝑈
𝑖

𝑘
= {𝑘
𝑖

1
, . . . , 𝑘

𝑖

𝑚
}) and 𝑈

𝑖

𝑢𝑘
̸= 0, a set of

positive definite matrices𝑉
𝑖𝑗𝑙
∈ R𝑛×𝑛 (𝑖, 𝑗 ∈ 𝑈

𝑖

𝑘
, 𝑙 ∈ 𝑈

𝑖

𝑢𝑘
) exist

such that

𝐸
𝑇

𝑓
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓
≥ 0, (42)

[
[
[
[
[
[
[
[
[

[

𝜑
1𝑖

𝜑
2𝑖

𝑀
1

𝜑
3𝑖

𝜑
𝑇

2𝑖
−𝑄 0 0

𝑀
𝑇

1
0 𝑀

2
0

𝜑
𝑇

3𝑖
0 0 −𝜀

𝑖
𝐼

]
]
]
]
]
]
]
]
]

]

< 0. (43)

Case 3. If 𝑖 ∈ 𝑈
𝑖

𝑘
and 𝑈

𝑖

𝑢𝑘
= 0, a set of positive definite

matrices𝑊
𝑖𝑗
∈ R𝑛×𝑛 (𝑖, 𝑗 ∈ 𝑈

𝑖

𝑘
) exist such that

𝐸
𝑇

𝑓𝑖
𝑃
𝑖
= 𝑃
𝑇

𝑖
𝐸
𝑓𝑖
≥ 0, (44)

[
[
[
[
[
[
[
[
[

[

𝜓
1𝑖

𝜓
2𝑖

𝐿
1

𝜓
3𝑖

𝜓
𝑇

2𝑖
−𝑄 0 0

𝐿
𝑇

1
0 𝐿
2

0

𝜓
𝑇

3𝑖
0 0 −𝜀

𝑖
𝐼

]
]
]
]
]
]
]
]
]

]

< 0, (45)

where

𝜙
1𝑖
= 𝜑
1𝑖
= 𝜓
1𝑖

= [
𝑃
1𝑖
𝐴
𝑖
+ 𝐴
𝑇

𝑖
𝑃
1𝑖

𝐴
𝑇

𝑖
𝑃
2𝑖
− 𝑌
𝑇

1𝑖
− 𝐶
𝑇

𝑖
𝑌
𝑇

2𝑖

𝑃
2𝑖
𝐴
𝑖
− 𝑌
1𝑖
− 𝑌
2𝑖
𝐶
𝑖

𝑌
𝑇

1𝑖
+ 𝑌
1𝑖

]

+ 𝑄 + 𝐶
𝑇

𝑓
𝐶
𝑓
+ ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
𝐸
𝑇

𝑓
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑇
𝑖𝑗
,

𝜙
2𝑖
= 𝜑
2𝑖
= 𝜓
2𝑖
= [

𝑃
1𝑖
𝐴 i 0

𝑃
2𝑖
𝐴
𝑖
− 𝑌
1𝑖
− 𝑌
2𝑖
𝐶
𝑖
0
] ,

𝜙
3𝑖
= 𝜑
3𝑖
= 𝜓
3𝑖
= [

𝑃
1𝑖
𝑀
1𝑖

𝑃
2𝑖
𝑀
1𝑖
− 𝑌
1𝑖
𝑀
1𝑖
− 𝑌
2𝑖
𝑀
2𝑖

] ,

𝑁
1
= [𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

1

− 𝑃
𝑖
) , 𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

2

− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑘
𝑖

𝑚
− 𝑃
𝑖
)] ,

𝑁
2
= diag {−𝑇

𝑖𝑘
𝑖

1

, . . . , −𝑇
𝑖𝑘
𝑖

𝑚
} ,

𝑀
1
= [𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

1

− 𝑃
𝑖
) , 𝐸
𝑇

𝑓
(𝑃
𝑘
𝑖

2

− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑘
𝑖

𝑚
− 𝑃
𝑖
)] ,

𝑀
2
= diag {−𝑉

𝑖𝑘
𝑖

1
𝑙
, . . . , −𝑉

𝑖𝑘
𝑖

𝑚
𝑙
} ,

𝐿
1
= [𝐸
𝑇

𝑓
(𝑃
1
− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑖−1

− 𝑃
𝑖
) ,

𝐸
𝑇

𝑓
(𝑃
𝑖+1

− 𝑃
𝑖
) , . . . , 𝐸

𝑇

𝑓
(𝑃
𝑠
− 𝑃
𝑖
)] ,

𝐿
2
= diag {−𝑊

𝑖1
, . . . , −𝑊

𝑖𝑠
} .

(46)
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Then a suitable robust guaranteed cost observer in the
form of (11) has parameters as follows:

𝐾
1𝑖
= 𝑃
−1

1𝑖
𝑌
1𝑖
, 𝐾

2𝑖
= 𝑃
−1

2𝑖
𝑌
2𝑖

(47)

and 𝐽∗ is a robust guaranteed cost for system (13) with GUTR
Matrix (4).

Proof. Define

𝐴
1

𝑖
=

[
[
[
[

[

𝐴
𝑇

𝑓𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑓𝑖
+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑇
𝑖𝑗
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
𝐴
𝑓𝑑𝑖

𝑁
1

𝐴
𝑇

𝑓𝑑𝑖
𝑃
𝑖

−𝑄 0

∗ ∗ 𝑁
2

]
]
]
]

]

, (48)

𝐴
2

𝑖
=

[
[
[
[

[

𝐴
𝑇

𝑓𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑓𝑖
+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑉
𝑖𝑗𝑙
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
𝐴
𝑓𝑑𝑖

𝑀
1

𝐴
𝑇

𝑓𝑑𝑖
𝑃
𝑖

−𝑄 0

∗ ∗ 𝑀
2

]
]
]
]

]

, (49)

𝐴
3

𝑖
=

[
[
[
[

[

𝐴
𝑇

𝑓𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑓𝑖
+ 𝑄 + ∑

𝑗∈𝑈
𝑖

𝑘

�̂�
𝑖𝑗
(𝑃
𝑗
− 𝑃
𝑖
) + ∑

𝑗∈𝑈
𝑖

𝑘

1

4
𝜎
2

𝑖𝑗
𝑊
𝑖𝑗
+ 𝐶
𝑇

𝑓
𝐶
𝑓

𝑃
𝑖
𝐴
𝑓𝑑𝑖

𝐿
1

𝐴
𝑇

𝑓𝑑𝑖
𝑃
𝑖

−𝑄 0

∗ ∗ 𝐿
2

]
]
]
]

]

< 0. (50)

Then (16) is equivalent to

𝐴
1

𝑖
+ [

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝐹
𝑖
[𝑁
𝑓𝑖

𝑁
𝑓1𝑖

0]

+ [𝑁
𝑓𝑖

𝐹
𝑓1𝑖

0]
𝑇

𝐹
𝑇

𝑖

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

< 0.

(51)

Then (19) is equivalent to

𝐴
2

𝑖
+ [

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝐹
𝑖
[𝑁
𝑓𝑖

𝑁
𝑓1𝑖

0]

+ [𝑁
𝑓𝑖

𝐹
𝑓1𝑖

0]
𝑇

𝐹
𝑇

𝑖

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

< 0.

(52)

Then (21) is equivalent to

𝐴
3

𝑖
+ [

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝐹
𝑖
[𝑁
𝑓𝑖

𝑁
𝑓1𝑖

0]

+ [𝑁
𝑓𝑖

𝐹
𝑓1𝑖

0]
𝑇

𝐹
𝑇

𝑖

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

< 0.

(53)

By applying Lemma 2.4 in [57], (50), (51), and (52) hold for
all uncertainties𝐹i satisfying𝐹

𝑇

𝑖
𝐹
𝑖
< 𝐼 if and only if there exist

positive scalars 𝜀
𝑖
, 𝑖 = 1, 2, . . . , 𝑠, such that

𝐴
1

𝑖
+ 𝜀
−1

𝑖

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

+ 𝜀
𝑖
[𝑁
𝑓𝑖

𝐹
𝑓1𝑖

0]
𝑇

[𝑁
𝑓𝑖

𝐹
𝑓1𝑖

0] < 0,

𝐴
2

𝑖
+ 𝜀
−1

𝑖

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

+ 𝜀
𝑖
[𝑁
𝑓𝑖

𝐹
𝑓1𝑖

0]
𝑇

[𝑁
𝑓𝑖

𝐹
𝑓1𝑖

0] < 0,

𝐴
3

𝑖
+ 𝜀
−1

𝑖

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

[

[

𝑃
𝑖
𝑀
𝑓𝑖

0

0

]

]

𝑇

+ 𝜀
𝑖
[𝑁
𝑓𝑖

𝐹
𝑓1𝑖

0]
𝑇

[𝑁
𝑓𝑖

𝐹
𝑓1𝑖

0] < 0.

(54)

Let 𝑃
𝑖
= diag(𝑃

1𝑖
, 𝑃
2𝑖
), and using (47), we can conclude from

Schur complement results that the above matrix inequalities
are equivalent to the coupled LMIs (40), (43), and (45).
It further follows from Theorem 10 that 𝐽

∗ is a robust
guaranteed cost for system (13) with (4).

Remark 12. The solution of LMIs (39)–(45) parameterizes
the set of the proposed robust guaranteed cost observers.
This parameterized representation can be used to design the
guaranteed cost observer with some additional performance
constraints. By applying the methods in [14], the suboptimal
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guaranteed cost observer can be determined by solving a
certain optimization problem. This is the following theorem.

Theorem 13. Consider system (13)with GUTRMatrix (4) and
the cost function (14), and suppose that the initial conditions 𝑟

0

and 𝑥
𝑓0

are known; if the following optimization problem

min
𝑄,𝑃1𝑖 ,𝑃2𝑖 ,𝜀𝑖 ,𝑌1𝑖 and 𝑌2𝑖

𝐽
∗

s.t. LMIs (39) – (45)
(55)

has a solution 𝑄, 𝑃
1𝑖
, 𝑃
2𝑖
, 𝜀
𝑖
, 𝑌
1𝑖
, and 𝑌

2𝑖
, 𝑖 = 1, 2, . . . , 𝑠,

then the observer (11) is a suboptimal guaranteed cost
observer for system (1), where 𝐽

∗

= 𝑥
𝑇

𝑓0
𝐸
𝑇

𝑓𝑟0

𝑃(𝑟
0
)𝑥
𝑓0

+

tr(∫0
−𝑑

𝑥
𝑓0
(𝑡)𝑥
𝑓0
(𝑡)𝑥
𝑇

𝑓0
𝑑𝑡𝑄).

Proof. It follows from Theorem 11 that the observer (11)
constructed in terms of the solution 𝑄, 𝑃

1𝑖
, 𝑃
2𝑖
, 𝜀
𝑖
, 𝑌
1𝑖
, and

𝑌
2𝑖
, 𝑖 = 1, 2, . . . , 𝑠, is a robust guaranteed cost observer. By

noting that

∫

0

−𝑑

𝑥
𝑇

𝑓0
(𝑡) 𝑄𝑥

𝑓0
(𝑡) 𝑑𝑡 = ∫

0

−𝑑

tr (𝑥𝑇
𝑓0

(𝑡) 𝑄𝑥
𝑓0

(𝑡)) 𝑑𝑡

= tr(∫
0

−𝑑

𝑥
𝑇

𝑓0
(𝑡) 𝑥
𝑓0

(𝑡) 𝑑𝑡𝑄) ,

(56)

it follows that the suboptimal guaranteed cost observer
problem is turned into the minimization problem (55).

Remark 14. Theorem 13 gives the suboptimal guaranteed cost
observer conditions of a class of linear Markovian jump-
ing time-delay systems with generally incomplete transition
probability and LMI constraints, which can be easily solved
by the LMI toolbox in MATLAB.

4. Numerical Example

In this section, a numerical example is presented to
demonstrate the effectiveness of the method mentioned in
Theorem 11. Consider a 2-dimensional system (1) with 3
Markovian switching modes. In this numerical example, the
singular system matrix is set as 𝐸 = [

1 0

0 0
], and the 3-mode

transition rate matrix is Λ = [
−3.2 ? ?

? ? 2

1.5 2.1 −3.6

], where Δ
11
, Δ
31

∈

[−0.15, 0.15]; Δ
23
, Δ
33

∈ [−0.12, 0.12] and Δ
32

∈ [−0.1, 0.1].
The other system matrices are as follows.

For mode 𝑖 = 1, there are

𝐴
1
= [

−3.2 0.65

1 0.2
] , 𝐴

𝑑1
= [

0.2 0.5

1 −0.68
] ,

𝐶
1
= [

[

1.2 0.65

−6.5 1.9

−0.21 −1.8

]

]

, 𝐶
𝑑1

= [

[

−3.6 −1.05

2.1 0.96

0.21 −0.86

]

]

,

𝑀
11

= [
−0.2

0.8
] , 𝑀

21
= [

[

0.25

0.875

−2

]

]

,

𝑁
11

= [−1.2 3.1] , 𝑁
21

= [−0.69 −4.2] .

(57)

For mode 𝑖 = 2, there are

𝐴
2
= [

−1 6

2 −3.6
] , 𝐴

𝑑2
= [

−3.1 −1.6

3 0.75
] ,

𝐶
2
= [

[

9 −2.5

0.35 −2

3.6 −1.8

]

]

, 𝐶
𝑑2

= [

[

0.89 −6

−1.2 0.9

−2.4 6

]

]

,

𝑀
12

= [
2.3

−4
] , 𝑀

22
= [

[

0.75

−3.6

2.5

]

]

,

𝑁
12

= [−7.2 −6] , 𝑁
22

= [1 2] .

(58)

For mode 𝑖 = 3, there are

𝐴
3
= [

−10.6 2.9

−0.3 3.6
] , 𝐴

𝑑3
= [

−5.6 −1.2

−3 4.5
] ,

𝐶
3
= [

[

−3 −0.36

0.15 −1.8

0.9 −5

]

]

, 𝐶
𝑑3

= [

[

−1.65 5

−1.2 2.65

−0.98 −5.6

]

]

,

𝑀
13

= [
−8.2

−0.3
] , 𝑀

23
= [

[

−0.52

2.5

−3.6

]

]

,

𝑁
13

= [1.05 −5] , 𝑁
23

= [−7.2 −1.26] .

(59)

Then, we set the error state matrix 𝐿 = [
−45 0.6

2 −6
], and the

positive scalars in Theorem 11 are 𝜀
1
= 0.2, 𝜀

2
= 0.15, 𝜀

3
=

0.32. According to the definitions of augmented statematrices
in (12), we can easily obtain the following parameter matrices
in Theorem 11 by MATLAB

𝑌
11

= [
−8452.1006 0.0127

0.0127 8450.9001
] ,

𝑌
21

= [
0.02 0.1291 0.1435

−2.3520 −0.4080 −0.8106
] ,

𝑌
12

= [
−17.0991 26.9626

26.9626 −24.6750
] ,

𝑌
22

= [
−20.0744 −13.2941 52.9388

21.6893 18.0120 −50.6693
] ,

𝑌
13

= [
−675.1329 22.4456

22.4456 −897.6976
] ,

𝑌
23

= [
−13.6021 −146.1726 54.0500

−3.4324 −19.5125 −10.3068
] ,

𝑃
1
=

[
[
[

[

6.3029 0 0 0

0 4.8620 0 0

0 0 2.2914 0

0 0 0 0.3169

]
]
]

]

,
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𝑃
2
=

[
[
[

[

0.8914 0 0 0

0 1.2505 0 0

0 0 7.3629 0

0 0 0 3.0056

]
]
]

]

,

𝑃
3
=

[
[
[

[

3.0265 0 0 0

0 0.2156 0 0

0 0 0.8965 0

0 0 0 1.0002

]
]
]

]

,

𝑄 =

[
[
[

[

0.5000 0 0 0

0 0.5001 0 0

0 0 0.5001 0

0 0 0 0.5001

]
]
]

]

,

𝑇
11

=

[
[
[

[

3417.3214 −870.7765 0 0

−870.7765 416.7216 0 0

0 0 2226.3598 −320.7456

0 0 −320.7456 1226.3101

]
]
]

]

,

𝑇
23

=

[
[
[

[

3775.3231 −2799.9330 0 0

−2799.9330 2810.7685 0 0

0 0 10690.7366 −10743.2750

0 0 −10743.2750 10855.5053

]
]
]

]

,

𝑇
31

=

[
[
[

[

951.8504 −539.9245 0 0

−539.9245 896.2029 0 0

0 0 1477.3012 −207.7540

0 0 −207.7540 1479.1256

]
]
]

]

,

𝑇
32

=

[
[
[

[

2161.7695 −1209.4164 0 0

−1209.4164 2037.1205 0 0

0 0 1.4786 −0.9283

0 0 −0.9283 1.4794

]
]
]

]

,

𝑇
33

=

[
[
[

[

1493.9313 −839.8780 0 0

−839.8780 1407.3689 0 0

0 0 147.8123 −133.6452

0 0 −133.6452 245.9347

]
]
]

]

,

𝑉
11

=

[
[
[

[

1.6650 0 0 0

0 1.6650 0 0

0 0 1.6650 0

0 0 0 1.6650

]
]
]

]

,

𝑊
31

=

[
[
[

[

1.5426 0 0 0

0 1.6650 0 0

0 0 1.6662 0

0 0 0 1.6650

]
]
]

]

,

𝑊
32

=

[
[
[

[

1.5428 0 0 0

0 1.6650 0 0

0 0 1.6622 0

0 0 0 1.6650

]
]
]

]

.

(60)

Therefore, we can design a linear memoryless observer as
(11) with the constant matrices

𝐾
11

= 𝑃
−1

11
𝑌
11

= [
−1340.9860 0.0020

0.0026 1738.1530
] ,

𝐾
21

= 𝑃
−1

21
𝑌
21

= [
0.0087 0.0563 0.0626

−7.4219 −1.2875 −2.5579
] ,

𝐾
12

= 𝑃
−1

12
𝑌
12

= [
−19.1823 30.2475

21.5615 −19.7321
] ,

𝐾
22

= 𝑃
−1

22
𝑌
22

= [
−2.7264 −1.8056 7.1899

7.2163 5.9928 −16.8583
] ,

𝐾
13

= 𝑃
−1

13
𝑌
13

= [
−223.1402 7.4186

104.1076 −4163.7180
] ,

𝐾
23

= 𝑃
−1

23
𝑌
23

= [
−15.1724 −163.0481 60.2900

−3.4317 −19.5086 −10.3047
] .

(61)

Finally, the observer (11) with the above parameter matri-
ces for this numerical example is a suboptimal guaranteed
cost observer byTheorems 11 and 13.

5. Conclusions

In this paper, the robust guaranteed cost observer problem
for a class of uncertain descriptor time-delay systems with
Markovian jumping parameters and generally uncertain
transition rates is studied by using LMI method. In this
GUTR singular model, each transition rate can be com-
pletely unknown or only its estimate value is known. The
parameter’s uncertainty is time varying and is assumed to
be norm-bounded. Memoryless guaranteed cost observers
are designed in terms of a set of linear coupled matrix
inequalities. The suboptimal guaranteed cost observer is
designed by solving a certain optimization problem. Our
results can be applicable to the general Markovian jump
systems with bounded uncertain or partly uncertain TR
matrix.
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This paper investigates the relative orbit control problem for a space communication satellite network. An observer-based state
feedback control scheme is developed under the circumstance of faults and disturbance occurring in the sensors and actuators.The
validity of sliding mode observer for the satellites’ network is deduced and the analysis and proof of the relative orbit stabilization
control are completed.

1. Introduction

The agile satellites have brought a great number of conve-
niences for modern spatial application; they have evolved
from single satellite to constellation and formation [1]; fur-
thermore, a spatial dynamic network is constructed. In order
to expand the range of imaging services, orbit maneuver
ability becomes an intrinsic ability of the satellite, and the
satellites do not run on their preselected orbit. Therefore, the
relative position and velocity need to be measured; all the
members in the spatial agile imaging network need to be
controlled real-timely [2].

The research of relative motion control is focusing on
the two aspects, namely, relative orbit control and relative
attitude control. Somemethods are proposed for relative orbit
control, such as optimal control for the orbit rendezvous
[3] and predictive control for the rendezvous maneuver
[4]. The relative control methods include the centralized
and decentralized approach [5]. These methods pay more
attention to the control law design in an ideal world where
the status measurement sensors and control actuators work
well.Themodern control method is mentioned and analyzed
[6–11] while, in the practical orbit control, the sensors and
actuators will work in the fault or disturbance status.

This paper will complete the studies and analysis of
sliding mode observer and state feedback control based on

designed observer. The relative motion dynamic model will
be depicted in Section 2; the sliding mode observer will
be discussed in Section 3; the state feedback controller will
be designed and its stabilization analysis is completed in
Section 4.

2. Dynamic Model of Network Members

The relative motion dynamics of satellite communication
network is usually established in the local-vertical-local hor-
izontal [LVLH] coordinate system [12]. The relative motion
equation can be rewritten as in the following form:

̈𝑥(𝑡) − 𝐴
1

̇𝑥 − 𝐴
2
𝑥 − 𝐶 (𝑥) = 𝐵𝑢. (1)

Formula (1) can be expanded into the following form:

[
[

[

̈𝑥

̈𝑦

̈𝑧

]
]

]

−
[
[

[

0 0 2𝜔
𝑡

0 0 0

−2𝜔
𝑡

0 0

]
]

]

[
[

[

̇𝑥

̇𝑦

̇𝑧

]
]

]

−

[
[
[

[

𝜔
2

𝑡
0 ̇𝜔
𝑡

0 0 0

− ̇𝜔
𝑡

0 𝜔
2

𝑡

]
]
]

]

[
[

[

𝑥

𝑦

𝑧

]
]

]
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−

[
[
[
[
[
[
[
[

[

−
𝜇

𝑟
3

𝑡

𝛿𝑥

−
𝜇

𝑟
3

𝑡

𝛿𝑦

−
𝜇

𝑟
3

𝑡

𝛿𝑧 +
𝜇

𝑟
2

𝑡

𝛿 −
𝜇

𝑟
2

𝑡

]
]
]
]
]
]
]
]

]

= [

[

𝑎
𝑥

𝑎
𝑦

𝑎
𝑧

]

]

.

(2)

The 𝑥, 𝑦, and 𝑧 are the relative coordinates to the target
spacecraft, 𝜔 is the orbit angular of the target spacecraft,
𝑟
𝑡
is the orbit radius of the spacecrafts, 𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧
is the

control acceleration, 𝜇 is the gravitational constant, and
𝛿 = [(𝑥

2

/𝑟
2

𝑡
) + (𝑦

2

/𝑟
2

𝑡
) + (𝑧/𝑟

𝑡
− 1)
2

]
−3/2. Actually (2) is

equivalent to

̈𝑥(𝑡) − 2𝜔
𝑡
̇𝑧 − 𝜔
2

𝑡
𝑥 − ̇𝜔
𝑡
𝑧 +

𝜇

𝑟
3

𝑡

𝛿𝑥 = 𝑎
𝑥
,

̈𝑦 (𝑡) +
𝜇

𝑟
3

𝑡

𝛿𝑦 = 𝑎
𝑦
,

̈𝑧 (𝑡) + 2𝜔
𝑡

̇𝑥 + ̇𝜔
𝑡
𝑥 − 𝜔
2

𝑡
𝑧 +

𝜇

𝑟
3

𝑡

𝛿𝑧 −
𝜇

𝑟
2

𝑡

𝛿 +
𝜇

𝑟
2

𝑡

= 𝑎
𝑧
.

(3)

Hence ̈𝑥(𝑡), ̈𝑦(𝑡), and ̈𝑧(𝑡) can be derived, and the
expressions, respectively, are

̈𝑥(𝑡) = 2𝜔
𝑡
̇𝑧 + 𝜔
2

𝑡
𝑥 + ̇𝜔
𝑡
𝑧 −

𝜇

𝑟
3

𝑡

𝛿𝑥 + 𝑎
𝑥
,

̈𝑦 (𝑡) = −
𝜇

𝑟
3

𝑡

𝛿𝑦 + 𝑎
𝑦
,

̈𝑧 (𝑡) = −2𝜔
𝑡

̇𝑥 − ̇𝜔
𝑡
𝑥 + 𝜔
2

𝑡
𝑧 −

𝜇

𝑟
3

𝑡

𝛿𝑧 +
𝜇

𝑟
2

𝑡

𝛿 −
𝜇

𝑟
2

𝑡

+ 𝑎
𝑧
.

(4)

Consider each expression of variables in the system (4):

𝑥 = [

[

𝑥

𝑦

𝑧

]

]

, 𝑢 = [

[

𝑎
𝑥

𝑎
𝑦

𝑎
𝑧

]

]

, 𝐴
1
= [

[

0 0 2𝜔
𝑡

0 0 0

−2𝜔
𝑡

0 0

]

]

,

𝐴
2
= [

[

𝜔
2

𝑡
0 ̇𝜔
𝑡

0 0 0

− ̇𝜔
𝑡

0 𝜔
2

𝑡

]

]

,

𝐶 (𝑥) =

[
[
[
[
[
[
[
[

[

−
𝜇

𝑟
3

𝑡

𝛿𝑥

−
𝜇

𝑟
3

𝑡

𝛿𝑦

−
𝜇

𝑟
3

𝑡

𝛿𝑧 +
𝜇

𝑟
2

𝑡

𝛿 +
𝜇

𝑟
2

𝑡

]
]
]
]
]
]
]
]

]

, 𝐵 = [

[

1 0 0

0 1 0

0 0 1

]

]

.

(5)

We define augmented variable as follows:

𝑥
𝑎
(𝑡) =

[
[
[
[
[
[
[

[

𝑥

𝑦

𝑧

̇𝑥

̇𝑦

̇𝑧

]
]
]
]
]
]
]

]

. (6)

The system (4) can be rewritten as in the following form:

̇𝑥
𝑎
(𝑡)=

[
[
[
[
[
[
[

[

̇𝑥

̇𝑦

̇𝑧

̈𝑥

̈𝑦

̈𝑧

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

𝜔
2

𝑡
−

𝜇

𝑟
3

𝑡

𝛿 0 ̇𝜔
𝑡

0 0 2𝜔
𝑡

0 0 −
𝜇

𝑟
3

𝑡

𝛿 0 0 0

− ̇𝜔
𝑡

0 𝜔
2

𝑡
−

𝜇

𝑟
3

𝑡

𝛿 −2𝜔
𝑡

0 0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

𝑥

𝑦

𝑧

̇𝑥

̇𝑦

̇𝑧

]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[

[

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

]
]
]
]
]
]
]

]

[

[

𝑎
𝑥

𝑎
𝑦

𝑎
𝑧

]

]

+

[
[
[
[
[
[
[
[

[

0

0

0

0

0
𝜇

𝑟
2

𝑡

𝛿 −
𝜇

𝑟
2

𝑡

]
]
]
]
]
]
]
]

]

.

(7)

Aiming at system (7), we consider more complex and
practical situation: there exist sensors and actuators fault,
constant input disturbance (namely, the last item in formula
(7)), and the output disturbance in the system.Thenwe define
system matrix as follows:

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

𝜔
2

𝑡
−

𝜇

𝑟
3

𝑡

𝛿 0 ̇𝜔
𝑡

0 0 2𝜔
𝑡

0 0 −
𝜇

𝑟
3

𝑡

𝛿 0 0 0

− ̇𝜔
𝑡

0 𝜔
2

𝑡
−

𝜇

𝑟
3

𝑡

𝛿 −2𝜔
𝑡

0 0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[
[
[

[

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

]
]
]
]
]
]
]

]

, 𝑢 (𝑡) = [

[

𝑎
𝑥

𝑎
𝑦

𝑎
𝑧

]

]

,

𝐵
𝜔1

=

[
[
[
[
[
[
[
[

[

0

0

0

0

0
𝜇

𝑟
2

𝑡

𝛿 −
𝜇

𝑟
2

𝑡

]
]
]
]
]
]
]
]

]

.

(8)

The system (7) can be rewritten as

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐵
𝜔1

𝜔 (𝑡) + 𝐵
𝑎
𝑓
𝑎
(𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) + 𝐷
𝑎
𝑓
𝑎
(𝑡) + 𝐶

𝑠
𝑓
𝑠
(𝑡) ,

+ 𝐷
𝑑
𝑑 (𝑡) + 𝐵

𝜔2
𝜔 (𝑡) .

(9)

Here, 𝐵
𝑎

∈ 𝑅
𝑛×𝑎, 𝐷

𝑎
∈ 𝑅
𝑝×𝑎, 𝐶

𝑠
∈ 𝑅
𝑝×𝑠, 𝐷

𝑑
∈ 𝑅
𝑝×𝑑,

and 𝐵
𝜔2

∈ 𝑅
𝑝×1 represent system matrix and 𝑓

𝑎
(𝑡) ∈ 𝑅

𝑎
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and 𝑓
𝑠
(𝑡) ∈ 𝑅

𝑠, respectively, are actuators fault and sensors
fault. 𝑑(𝑡) ∈ 𝑅

𝑑 is the sensors’ disturbance. 𝜔(𝑡) is the
constant disturbance.Herewe pay attention to amore general
situation: the disturbance 𝜔(𝑡) meanwhile exists in the state
equation and output 𝑦(𝑡) of system (9).

Defining 𝑛 = 𝑛 + 𝑎 + 𝜔 + 2𝑝, we do the following
assumptions to the system (9).

(A1) fault and the perturbation vector: 𝑓
𝑎
(𝑡), 𝑓
𝑠
(𝑡), 𝑑(𝑡),

and 𝜔(𝑡) satisfy the following assumption:

𝑓𝑠 (𝑡)
 ≤ 𝑟
𝑠1
,


̇𝑓
𝑠
(𝑡)


≤ 𝑟
𝑠2
,

𝑓𝑎 (𝑡)
 ≤ 𝑟
𝑎1
,


̇𝑓
𝑎
(𝑡)


≤ 𝑟
𝑎2
,

‖𝜔 (𝑡)‖ ≤ 𝑟
𝜔1

, ‖ ̇𝜔 (𝑡)‖ ≤ 𝑟
𝜔2

,

‖𝑑 (𝑡)‖ ≤ 𝑟
𝑑1
,

(10)

where 𝑟
𝑠1

> 0, 𝑟
𝑠2

> 0, 𝑟
𝑎1

> 0, 𝑟
𝑎2

> 0, 𝑟
𝜔1

> 0,
𝑟
𝜔2

> 0, and 𝑟
𝑑
> 0 are known constant.

(A2) (𝐴,𝐶) is able to be observed, and there exists constant
𝑎 > 0, which makes

rank [
𝑎𝐼
𝑛
+ 𝐴 𝐵

𝑎

𝐶 𝐷
𝑎

] = 𝑛. (11)

(A3) matrix: 𝐷
𝑎
, 𝐶
𝑠
, 𝐷
𝑑
, 𝐵
𝜔2

are column full rank
matrix.

For the convenience of discussion, we define augmented
vector and matrix as follows:

𝐴 =

[
[
[
[
[

[

𝐴 0 0 0 0

0 −𝛼𝐼
𝑎

0 0 0

0 0 −𝛼𝐼
𝜔

0 0

0 0 0 −𝛼𝐼
𝑝

0

0 0 0 0 −𝐼
𝑝

]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[
[
[

[

𝐵
𝑛×𝑚

0
𝑎×𝑚

0
𝜔×𝑚

0
𝑝×𝑚

0
𝑑×𝑚

]
]
]
]
]
]
]

]

𝑥 (𝑡) =

[
[
[
[
[
[
[

[

𝑥 (𝑡)

𝑓
𝑎
(𝑡)

𝜔 (𝑡)

𝐶
𝑠
𝑓
𝑠
(𝑡)

𝐷
𝑑
𝑑 (𝑡)

]
]
]
]
]
]
]

]

,

𝐵
𝑎
=

[
[
[
[
[
[
[

[

𝛼
−1

𝐵
𝑎

𝛼
−1

𝐵
𝜔

0
𝑛×𝑠

𝐼
𝑎

0
𝑎×𝜔

0

0 𝐼
𝜔

0

0 0 𝐶
𝑠

0 0 0

]
]
]
]
]
]
]

]

,

𝑓 (𝑡) =

[
[
[

[

(𝛼𝑓
𝑎
(𝑡) + ̇𝑓

𝑎
(𝑡))
𝑎×1

(𝛼𝜔 (𝑡) + ̇𝜔(𝑡))
𝜔×1

(𝛼𝑓
𝑠
(𝑡) + ̇𝑓

𝑠
(𝑡))
𝑠×1

]
]
]

]

, 𝑁 =

[
[
[
[
[
[
[

[

0
𝑛

0
𝑎

0
𝜔

0
𝑝

𝐼
𝑝

]
]
]
]
]
]
]

]

,

𝐸 =

[
[
[
[
[

[

𝐼
𝑛

𝛼
−1

𝐵
𝑎

0 0 0

0 𝐼
𝑎

0 0 0

0 0 𝐼
𝜔

0 0

0 0 0 𝐼
𝑝

0

0 0 0 0 0

]
]
]
]
]

]

, 𝐶 = [𝐶 𝐷
𝑎

𝐵
𝜔2

𝐼
𝑝

𝐼
𝑝
] .

(12)

Establish an augmented generalized system based on
system (9) as follows:

𝐸 ̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐵
𝑎
𝑓 (𝑡) + 𝑁𝐷

𝑑
𝑑 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) .

(13)

Matrix 𝐸 and matrix 𝐶 have the following properties:

rank [
𝐸

𝐶
] =

[
[
[
[
[
[
[

[

𝐼
𝑛

𝛼
−1

𝐵
𝑎

0 0 0

0 𝐼
𝑎

0 0 0

0 0 𝐼
𝜔

0 0

0 0 0 𝐼
𝑝

0

0 0 0 0 0

𝐶 𝐷
𝑎

𝐵
𝜔2

𝐼
𝑝

𝐼
𝑝

]
]
]
]
]
]
]

]

= 𝑛 + 𝑎 + 𝜔 + 𝑝 + 𝑝 = 𝑛.

(14)

Therefore, it can be inferred that, according to matrix
knowledge, there must be an appropriate number of dimen-
sions matrix 𝐿 which makes 𝐸 + 𝐿𝐶 an invertible matrix. We
may define a new matrix

𝐿
𝐷

=

[
[
[
[
[
[
[
[

[

0
𝑛×𝑝

0
𝑎×𝑝

0
𝜔×𝑝

0
𝑝×𝑝

𝐿
(4)

𝐷

]
]
]
]
]
]
]
]

]

, (15)

where 𝐿
(4)

𝐷
∈ 𝑅
𝑝×𝑝 and 𝐿

(4)

𝐷
= diag {𝛽

1
𝛽
2

⋅ ⋅ ⋅ 𝛽
𝑝
}, 𝛽
𝑖
> 0,

𝑖 > 1, 2, . . . , 𝑝. Meanwhile, we define a new matrix 𝑆 = 𝐸 +

𝐿
𝐷
𝐶. We can calculate directly

𝑆 =

[
[
[
[
[
[
[

[

𝐼
𝑛

𝛼
−1

𝐵
𝑎

0 0 0

0 𝐼
𝑎

0 0 0

0 0 𝐼
𝜔

0 0

0 0 0 𝐼
𝑝

0

0 0 0 0 0

]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[

[

0
𝑛×𝑝

0
𝑎×𝑝

0
𝜔×𝑝

0
𝑝×𝑝

𝐿
(4)

𝐷

]
]
]
]
]
]
]
]

]

[𝐶 𝐷
𝑎

𝐵
𝜔2

𝐼
𝑝

𝐼
𝑝
]

=

[
[
[
[
[
[
[

[

𝐼
𝑛

𝛼
−1

𝐵
𝑎

0 0 0

0 𝐼
𝑎

0 0 0

0 0 𝐼
𝜔

0 0

0 0 0 𝐼
𝑝

0

0 0 0 0 0

]
]
]
]
]
]
]

]
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+

[
[
[
[
[
[

[

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

𝐿
(4)

𝐷
𝐶 𝐿
(4)

𝐷
𝐷
𝑎

𝐿
(4)

𝐷
𝐵
𝜔2

𝐿
(4)

𝐷
𝐿
(4)

𝐷

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝐼
𝑛

𝛼
−1

𝐵
𝑎

0 0 0

0 𝐼
𝑎

0 0 0

0 0 𝐼
𝜔

0 0

0 0 0 𝐼
𝑃

0

𝐿
(4)

𝐷
𝐶 𝐿
(4)

𝐷
𝐷
𝑎

𝐿
(4)

𝐷
𝐵
𝜔2

𝐿
(4)

𝐷
𝐿
(4)

𝐷

]
]
]
]
]
]

]

.

(16)

We can conclude that theremust be 𝑆−1 according to (16).
Suppose that 𝑆−1 has the following form:

𝑆
−1

=

[
[
[
[
[

[

𝐼
𝑛

−𝛼
−1

𝐵
𝑎

0 0 0

0 𝐼
𝑎

0 0 0

0 0 𝐼
𝜔

0 0

0 0 0 𝐼
𝑝

0

𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

]
]
]
]
]

]

. (17)

In formula (17), 𝑋
1
, 𝑋
2
, 𝑋
3
, 𝑋
4
, and 𝑋

5
are matrixes

needed to be solved. Expand 𝑆𝑆
−1

= 𝐼
𝑛
as follows:

[
[
[
[
[
[

[

𝐼
𝑛

𝛼
−1

𝐵
𝑎

0 0 0

0 𝐼
𝑎

0 0 0

0 0 𝐼
𝜔

0 0

0 0 0 𝐼
𝑝

0

𝐿
(4)

𝐷
𝐶 𝐿
(4)

𝐷
𝐷
𝑎

𝐿
(4)

𝐷
𝐵
𝜔2

𝐿
(4)

𝐷
𝐿
(4)

𝐷

]
]
]
]
]
]

]

×

[
[
[
[
[

[

𝐼
𝑛

−𝛼
−1

𝐵
𝑎

0 0 0

0 𝐼
𝑎

0 0 0

0 0 𝐼
𝜔

0 0

0 0 0 𝐼
𝑝

0

𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

]
]
]
]
]

]

= 𝐼
𝑛
.

(18)

Consider the elements in the last line of the expression 𝑆𝑆
−1

=

𝐼
𝑛
. Consider

𝐿
(4)

𝐷
𝐶 + 𝐿

(4)

𝐷
𝑋
1
= 0,

−𝛼
−1

𝐿
(4)

𝐷
𝐶𝐵
𝑎
+ 𝐿
(4)

𝐷
𝐷
𝑎
+ 𝐿
(4)

𝐷
𝑋
2
= 0,

𝐿
(4)

𝐷
𝐵
𝜔2

+ 𝐿
(4)

𝐷
𝑋
3
= 0,

𝐿
(4)

𝐷
+ 𝐿
(4)

𝐷
𝑋
4
= 0,

𝐿
(4)

𝐷
𝑋
5
= 𝐼
𝑝
.

(19)

Formula (2) can be obtained by directly calculating

𝑋
1
= −𝐶,

𝑋
2
= 𝛼
−1

𝐶𝐵
𝑎
− 𝐷
𝑎
,

𝑋
3
= −𝐵
𝜔2

,

𝑋
4
= −𝐼
𝑝
,

𝑋
5
= (𝐿
(4)

𝐷
)

−1

.

(20)

3. Observer Design

To get the asymptotic estimates of the state of system (9) and,
at the same time, solve the corresponding control problem,
we introduce sliding-mode observer as follows:

𝑆 ̇𝑧 (𝑡) = (𝐴 − 𝐿
𝑝
𝐶) 𝑧 (𝑡) − 𝑁 (𝑦 (𝑡) − 𝐷𝑢 (𝑡))

+ 𝐵𝑢 (𝑡) + 𝐿
𝑠
𝑢
𝑠
(𝑡) ,

�̂� = 𝑧 (𝑡) + 𝑆
−1

𝐿
𝐷
(𝑦 (𝑡) − 𝐷𝑢 (𝑡)) .

(21)

Here,

𝑧 (𝑡) =

[
[
[
[
[
[
[

[

𝑧
𝑥
(𝑡)

𝑧
𝑎
(𝑡)

𝑧
𝜔
(𝑡)

𝑧
𝑠
(𝑡)

𝑧
𝑑
(𝑡)

]
]
]
]
]
]
]

]

, �̂� (𝑡) =

[
[
[
[
[
[
[

[

𝑥 (𝑡)

𝑓
𝑎
(𝑡)

�̂� (𝑡)

𝑓
𝑠
(𝑡)

𝑑 (𝑡)

]
]
]
]
]
]
]

]

, (22)

where 𝑧
𝑥
(𝑡) ∈ 𝑅

𝑛, 𝑧
𝑎
(𝑡) ∈ 𝑅

𝑎, 𝑧
𝜔
(𝑡) ∈ 𝑅

𝜔, 𝑧
𝑠
(𝑡) ∈ 𝑅

𝑝,
𝑧
𝑑
(𝑡) ∈ 𝑅

𝑝, 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑓
𝑎
(𝑡) ∈ 𝑅

𝑎, �̂�(𝑡) ∈ 𝑅
𝜔, 𝑓
𝑠
(𝑡) ∈ 𝑅

𝑝,
𝑑(𝑡) ∈ 𝑅

𝑝. 𝐿
𝐷

∈ 𝑅
𝑛×𝑝, 𝐿

𝑠
∈ 𝑅
𝑛×𝑝, and 𝐿

𝑠
∈ 𝑅
𝑛×𝑝, respectively,

are derivative gain, proportional gain, and sliding gain of the
observer and 𝑆 = 𝐸 + 𝐿

𝐷
𝐶 is defined previously. The 𝑧

𝑠
(𝑡)

and 𝑧
𝑑
(𝑡) are not real estimation of 𝑓

𝑠
(𝑡) and 𝑑(𝑡) in the

observer (21). Assume that the real estimations of 𝑧
𝑠
(𝑡) and

𝑧
𝑑
(𝑡), respectively, are ̆𝑓

𝑠
(𝑡) and ̆𝑑(𝑡); thus,

𝑓
𝑠
(𝑡) = 𝐶

𝑠

̆𝑓
𝑠
(𝑡) , 𝑑 (𝑡) = 𝐷

𝑑

̆𝑑 (𝑡) . (23)

According to the assumption (A3),𝐶
𝑠
and𝐷

𝑑
are column full

rank, so (𝐶
𝑠

𝐶
𝑠
)
−1 and (𝐷

𝑑
𝐷
𝑑
)
−1 exist. It can be concluded

from (23) that

̆𝑓
𝑠
(𝑡) = (𝐶

𝑇

𝑠
𝐶
𝑠
)
−1

𝐶
𝑇

𝑠
𝑓
𝑠
(𝑡) ,

̆𝑑 (𝑡) = (𝐷
𝑇

𝑑
𝐷
𝑑
)
−1

𝐷
𝑇

𝑑
𝑑 (𝑡) .

(24)

Lemma 1. In the case of (A2), for the observer (21), there is a
gain matrix 𝐿

𝑝
, which makes 𝑆−1(𝐴 − 𝐿

𝑝
𝐶) Hurwitz.

Proof. First, considering matrix 𝑆
−1

𝐴, for the finite dimen-
sions matrix, there must exist a constant 𝜇 > 0, making
Re[𝜆
𝑖
(𝑆
−1

𝐴)] > −𝜇, (𝑖 = 1, 2, . . . , 𝑛), which means
Re[𝜆
𝑖
(−(𝜇𝐼 + 𝑆

−1

𝐴))] < 0, (𝑖 = 1, 2, . . . , 𝑛).
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So, for arbitrary real number 𝜎 ∈ 𝑅
+, the followingmatrix

rank relationship existed:

rank [
𝜎𝐼
𝑛
− 𝑆
−1

𝐴

𝐶
] = rank [

𝑆
−1

0

0 𝐼
𝑝

][
𝜎 (𝐸 + 𝐿

𝐷
𝐶) − 𝐴

𝐶
] ,

(25)

rank (𝜎 (𝐸 + 𝐿
𝐷
𝐶) − 𝐴)

= rank

[
[
[
[
[
[
[
[

[

𝜎𝐼
𝑛
− 𝐴 −𝜎𝛼

−1

𝐵
𝑎

0 0 0

0 𝜎𝐼
𝑎
+ 𝛼𝐼
𝑎

0 0 0

0 0 𝐼
𝜔
+ 𝛼𝐼
𝜔

0 0

0 0 0 𝐼
𝑝
+ 𝛼𝐼
𝑝

0

𝜎𝐿
(4)

𝐷
𝐶 𝜎𝐿

(4)

𝐷
𝐷
𝑎

𝜎𝐿
(4)

𝐷
𝐵
𝜔2

𝜎𝐿
(4)

𝐷
𝜎𝐿
(4)

𝐷
+ 𝐼
𝑝

]
]
]
]
]
]
]
]

]

.

(26)

In formula (26), notice that, for any 𝜎 ∈ 𝑅
+, rank(𝜎𝐿(4)

𝐷
+𝐼
𝑝
) =

𝑝 always existed. Therefore,

rank (𝜎 (𝐸 + 𝐿
𝐷
𝐶) − 𝐴)

= rank
[
[
[

[

𝜎𝐼
𝑛
− 𝐴 −𝜎𝛼

−1

𝐵
𝑎

0 0

0 𝜎𝐼
𝑎
+ 𝛼𝐼
𝑎

0 0

0 0 𝐼
𝜔
+ 𝛼𝐼
𝜔

0

0 0 0 𝐼
𝑝
+ 𝛼𝐼
𝑝

]
]
]

]

+ 𝑝.

(27)

On the other hand, we notice that

rank (𝜎𝐸 − 𝐴)

= rank
[
[
[
[
[

[

𝜎𝐼 − 𝐴 −𝜎𝛼
−1

𝐵
𝑎

0 0 0

0 −𝜎𝐼
𝑎
+ 𝛼𝐼
𝑎

0 0 0

0 0 𝜎𝐼
𝜔
+ 𝛼𝐼
𝜔

0 0

0 0 0 𝜎𝐼
𝑝
+ 𝛼𝐼
𝑝

0

0 0 0 0 𝐼
𝑑

]
]
]
]
]

]

= rank
[
[
[

[

𝜎𝐼 − 𝐴 −𝜎𝛼
−1

𝐵
𝑎

0 0

0 −𝜎𝐼
𝑎
+ 𝛼𝐼
𝑎

0 0

0 0 𝜎𝐼
𝜔
+ 𝛼𝐼
𝜔

0

0 0 0 𝜎𝐼
𝑝
+ 𝛼𝐼
𝑝

]
]
]

]

+ 𝑑.

(28)

So we can derive rank(𝜎(𝐸 + 𝐿
𝐷
𝐶) − 𝐴) = rank(𝜎𝐸 − 𝐴).

According to (26), we can derive the following formula:

rank [
𝜎𝐼
𝑛
− 𝑆
−1

𝐴

𝐶
]

= rank [
𝜎 (𝐸 + 𝐿

𝐷
𝐶) − 𝐴

𝐶
]

= rank [
𝜎𝐸 − 𝐴

𝐶
]

= rank

[
[
[
[
[
[
[
[
[
[

[

𝜎𝐼
𝑛
− 𝐴 −𝜎𝛼

−1

𝐵
𝑎

0 0 0

0 −𝜎𝐼
𝑎
+ 𝛼𝐼
𝑎

0 0 0

0 0 𝜎𝐼
𝜔
+ 𝛼𝐼
𝜔

0 0

0 0 0 𝜎𝐼
𝑝
+ 𝛼𝐼
𝑝

0

0 0 0 0 𝐼
𝑝

𝐶 𝐷
𝑎

𝐵
𝜔2

𝐼
𝑝

𝐼
𝑝

]
]
]
]
]
]
]
]
]
]

]

= rank

[
[
[
[
[
[
[

[

𝜎𝐼
𝑛
− 𝐴 −𝜎𝛼

−1

𝐵
𝑎

0 0

0 −𝜎𝐼
𝑎
+ 𝛼𝐼
𝑎

0 0

0 0 𝜎𝐼
𝜔
+ 𝛼𝐼
𝜔

0

0 0 0 𝜎𝐼
𝑝
+ 𝛼𝐼
𝑝

𝐶 𝐷
𝑎

𝐵
𝜔2

𝐼
𝑝

]
]
]
]
]
]
]

]

+ 𝑝.

(29)

Then we discuss the values of 𝜎 ̸= − 𝛼 and 𝜎 = −𝛼, based
on formula (29).

First, we consider the situation of 𝜎 ̸= −𝛼 and, at this time,
formula (29) can be equivalent to

rank [
𝜎𝐼
𝑛
− 𝐴 −𝜎𝛼

−1

𝐵
𝑎

𝐶 𝐷
𝑎

] + 𝜔 + 2𝑝. (30)

We can draw the conclusion based on the assumption
(A2)

rank [
𝜎𝐼
𝑛
− 𝑆
−1

𝐴

𝐶
] = 𝑛 + 𝑎 + 𝜔 + 2𝑝 = 𝑛. (31)

On the other hand, consider the condition of 𝜎 = −𝛼 and,
at this moment, formula (28) turns into

rank [
−𝛼𝐼
𝑛
− 𝐴 𝐵

𝑎
0 0

𝐶 𝐷
𝑎

𝐵
𝜔2

𝐼
𝑝

] + 𝑝. (32)

Notice that 𝐵
𝜔2

is column full rank and the above formula
turns into

rank [
−𝛼𝐼
𝑛
− 𝐴 𝐵

𝑎

𝐶 𝐷
𝑎

] + 𝜔 + 2𝑝 = 𝑛 + 𝑎 + 𝜔 + 2𝑝 = 𝑛. (33)

Integrating the above two cases derived, we have proved
that, for any 𝜎 ∈ 𝑅

+, rank(𝜎(𝐸 + 𝐿
𝐷
𝐶) − 𝐴) = 𝑛.

Hence, [𝑆
−1

𝐴 𝐶] is a couple observed, and can elicit
that[−𝑆−1 𝐴 𝐶] can be observed. Therefore, there exists
matrix𝐻, making −𝑆

−1

𝐴−𝐻𝐶Hurwitz (i.e., the eigenvalues
of −𝑆−1𝐴−𝐻𝐶 are all negative).Thus theremust exist matrix
𝑋 > 0 which makes

− (𝜇𝐼
𝑛
+ 𝑆
−1

𝐴)𝑋 − 𝑋(𝜇𝐼
𝑛
+ 𝑆
−1

𝐴) = −𝐶
𝑇

𝐶. (34)

Let the proportion gain of observer (21) be equal to 𝐿
𝑝
=

𝑆𝑋
−1

𝐶; then, we can calculate

[𝜇𝐼
𝑛
+ 𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶)]

𝑇

𝑋 + 𝑋[𝜇𝐼
𝑛
+ 𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶)]

= −𝐶
𝑇

𝐶.

(35)

Therefore, Re[𝜆
𝑖
(𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶))] < −𝜇, (𝑖 = 1, 2, . . . , 𝑛).

The proof completes.
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4. Observer Error System

Then we derive the error system of the observer (21). Firstly,
in the first formula of the system (13), we add 𝐿

𝐷
𝐶 ̇𝑥(𝑡) at the

left and right side and we can get

(𝐸 + 𝐿
𝐷
𝐶) ̇𝑥 (𝑡)

= 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐵
𝑎
𝑓 (𝑡) + 𝐿

𝐷
𝐶 ̇𝑥 (𝑡) + 𝑁𝐷

𝑑
𝑑 (𝑡)

⇐⇒ 𝑆 ̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐵
𝑎
𝑓 (𝑡)

+ 𝐿
𝐷
𝐶 ̇𝑥 (𝑡) + 𝑁𝐷

𝑑
𝑑 (𝑡) .

(36)

On the other hand, for the observer (21), we can get

𝑆
̇

�̂� (𝑡)

= 𝑆𝑧 (𝑡) + 𝐿
𝐷
(𝑦 (𝑡) − 𝐷𝑢 (𝑡))

= (𝐴 − 𝐿
𝑝
𝐶) 𝑧 (𝑡) − 𝑁 (𝑦 (𝑡) − 𝐷𝑢 (𝑡)) + 𝐵𝑢 (𝑡) + 𝐿

𝑠
𝑢
𝑠
(𝑡)

+ 𝐿
𝐷
( ̇𝑦 (𝑡) − 𝐷 ̇𝑢 (𝑡))

= (𝐴 − 𝐿
𝑝
𝐶) �̂� (𝑡) − (𝐴 − 𝐿

𝑝
𝐶) 𝑆
−1

𝐿
𝐷
(𝑦 (𝑡) − 𝐷𝑢 (𝑡))

− 𝑁 (𝑦 (𝑡) − 𝐷𝑢 (𝑡)) + 𝐵𝑢 (𝑡) + 𝐿
𝑠
𝑢
𝑠
(𝑡)

+ 𝐿
𝐷
( ̇𝑦 (𝑡) − 𝐷 ̇𝑢 (𝑡))

= (𝐴 − 𝐿
𝑝
𝐶) �̂� (𝑡) − 𝐴 𝑆

−1

𝐿
𝐷
(𝑦 (𝑡) − 𝐷𝑢 (𝑡))

+ 𝐿
𝑝
𝐶𝑆
−1

𝐿
𝐷
(𝑦 (𝑡) − 𝐷𝑢 (𝑡)) − 𝑁 (𝑦 (𝑡) − 𝐷𝑢 (𝑡)) + 𝐵𝑢 (𝑡)

+ 𝐿
𝑠
𝑢
𝑠
(𝑡) + 𝐿

𝐷
( ̇𝑦 (𝑡) − 𝐷 ̇𝑢 (𝑡))

= [(𝐴 − 𝐿
𝑝
𝐶) �̂� (𝑡) + 𝐿

𝑝𝑖
(𝑦 (𝑡) − 𝐷𝑢 (𝑡)) + 𝐵𝑢 (𝑡) + 𝐿

𝑠
𝑢
𝑠
(𝑡)]

+ 𝐿
𝐷
( ̇𝑦 (𝑡) − 𝐷 ̇𝑢 (𝑡)) .

(37)

Notice that 𝑦(𝑡) − 𝐷𝑢(𝑡) = 𝐶𝑥(𝑡), so ̇𝑦(𝑡) − 𝐷 ̇𝑢(𝑡) = 𝐶 ̇𝑥(𝑡).
Therefore, from formula (36), we can obtain

𝑆 ̇𝑥 = (𝐴 − 𝐿
𝑝
𝐶) �̂� (𝑡) + 𝐿

𝑝
𝐶𝑥 (𝑡) + 𝐵𝑢 (𝑡)

+ 𝐿
𝑠
𝑢
𝑠
(𝑡) + 𝐿

𝐷
𝐶 ̇𝑥 (𝑡) .

(38)

We define error variable as follows:

𝑒 (𝑡) = �̂� (𝑡) − 𝑥 (𝑡) =

[
[
[
[
[
[
[

[

𝑒
𝑥
(𝑡)

𝑒
𝑎
(𝑡)

𝑒
𝜔
(𝑡)

𝑒
𝑠
(𝑡)

𝑒
𝑑
(𝑡)

]
]
]
]
]
]
]

]

. (39)

Meanwhile considering (36) and (38), we obtain

𝑆 ̇𝑒 (𝑡) = (𝐴 − 𝐿
𝑝
𝐶) 𝑒 (𝑡) + 𝐿

𝑠
𝑢
𝑠
(𝑡) − 𝐵

𝑎
𝑓 (𝑡) − 𝑁𝐷

𝑑
𝑑 (𝑡) .

(40)

This is equal to

̇𝑒 (𝑡) = 𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶) 𝑒 (𝑡) + 𝑆

−1

𝐿
𝑠
𝑢
𝑠
(𝑡) − 𝑆

−1

𝐵
𝑎
𝑓 (𝑡)

− 𝑆
−1

𝑁𝐷
𝑑
𝑑 (𝑡) .

(41)

In formula (41),

𝑆
−1

𝑁 =

[
[
[
[
[
[
[

[

𝐼
𝑛

−𝛼
−1

𝐵
𝑎

0 0 0

0 𝐼
𝑎

0 0 0

0 0 𝐼
𝜔

0 0

0 0 0 𝐼
𝑝

0

𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

]
]
]
]
]
]
]

]

[
[
[
[
[
[
[

[

0
𝑛

0
𝑎

0
𝜔

0
𝑝

𝐼
𝑝

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

0

0

0

0

(𝐿
(4)

𝐷
)

−1

]
]
]
]
]
]

]

.

(42)

Here,

𝐿
(4)

𝐷
= (

𝛽
1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 𝛽
𝑝

). (43)

Hence, if the value of 𝛽
𝑖
(𝑖 = 1, 2, . . . , 𝑝) is large enough, in

the system (41), 𝑆−1𝑁 will become infinitesimal. Until now,
we remove the influence of disturbance𝐷

𝑑
𝑑(𝑡) for the system

stability.
On the other hand, for the 𝑆

−1

𝐿
𝑠
𝑢
𝑠
(𝑡) − 𝑆

−1

𝐵
𝑎
𝑓(𝑡) of the

system (41), we design 𝑢
𝑠
(𝑡) as the following form (𝜌 > 0 is

design parameter):

𝑢
𝑠
(𝑡)=−(𝛼𝑟

𝑎1
+ 𝑟
𝑎2

+ 𝛼𝑟
𝜔1

+ 𝑟
𝜔2

+ 𝛼𝑟
𝑠1

+ 𝑟
𝑠2

+ 𝑝) sgn (𝑠 (𝑡)) ,

𝑠 (𝑡) = 𝐵
𝑇

𝑎
𝑆
−1

𝑃𝑒 (𝑡) ∈ 𝑅
𝑎+𝜔+𝑠

,

(44)

of which, 𝑃 is Lyapunov matrix required and 𝑃 > 0 satisfies

𝐵
𝑇

𝑎
𝑆
−1

𝑃 = 𝑀𝐶. (45)

Here, 𝑀 ∈ 𝑅
(𝑎+𝜔+𝑠)×𝑝 is matrix parameters waiting for being

solved. Based on the above analysis, error system (41) changes
as

̇𝑒 (𝑡) = 𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶) 𝑒 (𝑡) + 𝑆

−1

𝐿
𝑠
𝑢
𝑠
(𝑡) − 𝑆

−1

𝐵
𝑎
𝑓 (𝑡) .

(46)

The following section discusses the stability of error
system (46) and then discusses stabilization problem of
closed-loop system.

5. The Stability Analysis of the Error System

Theorem 2. For error system (46), let the sliding mode
observer gain 𝐿

𝑠
= 𝐵
𝑎
, if there exists matrix 𝑃 > 0 making

the following matrix inequality established:

𝑃 𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶) + (𝐴 − 𝐿

𝑝
𝐶)
𝑇

(𝑆
−1

)

𝑇

𝑃 < 0. (47)

Then the system (46) states trajectory asymptotically stable
convergence to the origin.
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Proof. For the system (46), defining Lyapunov function V(𝑡) =

𝑒
𝑇

(𝑡)𝑃𝑒(𝑡), 𝑃 > 0, along the system (46) state trajectory, we
can calculate
̇V (𝑡)

= 2𝑒
𝑇

(𝑡) 𝑃 ̇𝑒 (𝑡)

= 2𝑒
𝑇

(𝑡) 𝑃 [𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶) 𝑒 (𝑡) + 𝑆

−1

𝐿
𝑠
𝑢
𝑠
(𝑡) − 𝑆

−1

𝐵
𝑎
𝑓 (𝑡)]

≤ 2𝑒
𝑇

(𝑡) 𝑃 𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶) 𝑒 (𝑡) + 2𝑃 𝑆

−1

(𝐿
𝑠
𝑢
𝑠
(𝑡) − 𝐵

𝑎
𝑓 (𝑡)) .

(48)

Consider parts of above formula,

2𝑒 (𝑡) 𝑃 𝑆
−1

(𝐿
𝑠
𝑢
𝑠
(𝑡) − 𝐵

𝑎
𝑓 (𝑡))

≤ 2𝑒
𝑇

(𝑡) 𝑃 𝑆
−1

𝐿
𝑠
𝑢
𝑠
(𝑡) − 2𝑒

𝑇

(𝑡) 𝑃 𝑆
−1

𝐵
𝑎
𝑓 (𝑡)

= 2𝑒
𝑇

(𝑡) 𝑃 𝑆
−1

𝐵
𝑎
(𝑢
𝑠
(𝑡) − 𝑓 (𝑡))

≤ −2𝑒
𝑇

(𝑡) 𝑃 𝑆
−1

𝐵
𝑎
(𝛼𝑟
𝑎1

+ 𝑟
𝑎2

+ 𝛼𝑟
𝜔1

+ 𝑟
𝜔2

+ 𝛼𝑟
𝑠1

+ 𝑟
𝑠2

+ 𝑝)

× sgn (𝑠 (𝑡)) + 2

𝑒
𝑇

(𝑡) 𝑃 𝑆
−1

𝐵
𝑎
𝑓 (𝑡)



≤ −2𝑠
𝑇

(𝑡) (𝛼𝑟
𝑎1

+ 𝑟
𝑎2

+ 𝛼𝑟
𝜔1

+ 𝑟
𝜔2

+ 𝛼𝑟
𝑠1

+ 𝑟
𝑠2

+ 𝑝)

× sgn (𝑠 (𝑡)) + 2

𝑠
𝑇

(𝑡)


𝑓 (𝑡)


= −2 |𝑠 (𝑡)| (𝛼𝑟
𝑎1

+ 𝑟
𝑎2

+ 𝛼𝑟
𝜔1

+ 𝑟
𝜔2

+ 𝛼𝑟
𝑠1

+ 𝑟
𝑠2

+ 𝑝)

× sgn (𝑠 (𝑡)) + 2

𝑠
𝑇

(𝑡)


𝑓 (𝑡)
 .

(49)

The following formation can be derived based on assump-
tion (A1):

𝑓 (𝑡)
 ≤ 𝛼𝑟

𝑎1
+ 𝑟
𝑎2

+ 𝛼𝑟
𝜔1

+ 𝑟
𝜔2

+ 𝛼𝑟
𝑠1

+ 𝑟
𝑠2

+ 𝑝. (50)

Therefore

2𝑒
𝑇

(𝑡) 𝑃 𝑆
−1

(𝐿
𝑠
𝑢
𝑠
(𝑡) − 𝐵

𝑎
𝑓 (𝑡)) ≤ 0. (51)

So we can derive

̇V (𝑡) ≤ 2𝑒
𝑇

(𝑡) 𝑃 𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶) 𝑒 (𝑡)

≤ 𝑒
𝑇

(𝑡) [𝑃 𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶)

+(𝐴 − 𝐿
𝑝
𝐶)
𝑇

(𝑆
−1

)

𝑇

𝑃] 𝑒 (𝑡)

≤ 0.

(52)

If 𝑒(𝑡) ̸= 0. the inequality always holds. So the error system
(46) is asymptotically stable. The proof completes.

6. The Stabilization of Closed-Loop System

Nowwe consider the stabilization problem of the closed-loop
system based on the observer. Considering the system (9),

we design a state feedback controller based on observer as
follows:

𝑢 (𝑡) = 𝑘𝑥 (𝑡) − 𝐵
−1

𝐵
𝑎
𝑓
𝑎
(𝑡) − 𝐵

−1

𝐵
𝜔1

�̂� (𝑡) . (53)

Substitute formula (53) into the system (9) and we can
obtain

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵 (𝑘𝑥 (𝑡) − 𝐵
−1

𝐵
𝑎
𝑓
𝑎
(𝑡) − 𝐵

−1

𝐵
𝜔1

�̂� (𝑡))

+ 𝐵
𝜔1

𝜔 (𝑡) + 𝐵
𝑎
𝑓
𝑎
(𝑡)

= 𝐴𝑥 (𝑡) + 𝐵𝑘𝑥 (𝑡) − 𝐵
𝑎
𝑓
𝑎
(𝑡) − 𝐵

𝜔1
�̂� (𝑡) + 𝐵

𝜔1
𝜔 (𝑡)

+ 𝐵
𝑎
𝑓
𝑎
(𝑡)

= 𝐴𝑥 (𝑡) + 𝐵𝑘𝑥 (𝑡) − 𝐵
𝑎
𝑒
𝑎
(𝑡) − 𝐵

𝜔1
𝑒
𝜔
(𝑡) .

(54)

Here, 𝑒
𝑎
(𝑡) = 𝑓

𝑎
(𝑡) − 𝑓

𝑎
(𝑡), 𝑒
𝜔
(𝑡) = �̂�(𝑡) − 𝜔(𝑡).

Formula (54) can be rewritten as

̇𝑥 (𝑡) = (𝐴 + 𝐵𝑘) 𝑥 (𝑡) − 𝐹𝑒 (𝑡) . (55)

Here, 𝐹 = [0
𝑛×𝑛

𝐵
𝑎

𝐵
𝜔1

0
𝑛×𝑝

0
𝑛×𝑝

].
For the close-loop system (55) and the error system (46),

they can construct the following system:

̇𝑥 (𝑡) = (𝐴 + 𝐵𝑘) 𝑥 (𝑡) − 𝐹𝑒 (𝑡) ,

̇𝑒 (𝑡) = 𝑆
−1

(𝐴 − 𝐿
𝑝
𝐶) 𝑒 (𝑡) + 𝑆

−1

𝐿
𝑠
𝑢
𝑠
(𝑡) − 𝑆

−1

𝐵
𝑎
𝑓 (𝑡) .

(56)

We present the following theorem.

Theorem 3. If there is symmetric positive definite matrix 𝑍 ∈

𝑅
𝑛 and the matrix 𝐾 ∈ 𝑅

𝑚×𝑛, which makes the following
constraint matrix established:

(𝐴 + 𝐵𝐾)
𝑇

𝑍 + 𝑍 (𝐴 + 𝐵𝐾) < 0, (57)

then the system (56) is asymptotically stable.

Proof. For the system (56), we define Lyapunov function

V
𝑥
(𝑡) = 𝑥

𝑇

(𝑡) 𝑍𝑥 (𝑡) . (58)

Here, 𝑍 > 0 is a positive definite symmetric matrix
waiting for being solved. Along the system (56) trajectory, we
can directly calculate

̇V
𝑥
(𝑡) = 2𝑥

𝑇

(𝑡) 𝑍 ̇𝑥 (𝑡)

= 2𝑥
𝑇

(𝑡) 𝑍 [(𝐴 + 𝐵𝑘) 𝑥 (𝑡) − 𝐹𝑒 (𝑡)]

= 𝑥
𝑇

(𝑡) 𝑍 [(𝐴 + 𝐵𝑘)
𝑇

𝑍 + 𝑍 (𝐴 + 𝐵𝑘)]

− 2𝑥
𝑇

(𝑡) 𝑍𝐹𝑒 (𝑡) .

(59)

Let Φ = (𝐴 + 𝐵𝐾)
𝑇

𝑍 + 𝑍(𝐴 + 𝐵𝐾) and then

̇V
𝑥
(𝑡) ≤ 𝑥

𝑇

(𝑡) Φ𝑥 (𝑡) − 2𝑥
𝑇

(𝑡) 𝑍𝐹𝑒 (𝑡)

≤ 𝜆min (Φ) ‖𝑥 (𝑡)‖
2

+ 2 ‖𝑥 (𝑡)‖

𝑍𝐹𝑒 (𝑡)


.

(60)
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Here, 𝜆min(Φ) represents the minimum eigenvalue of the
matrixΦ. We define a new Lyapunov function

V
0
(𝑡) = V

𝑥
(𝑡) + 𝜃V (𝑡) . (61)

Here, 𝜃 > 0 is a parameter waiting for design, V(𝑡) is de-
fined inTheorem 2.

According to the proof in Theorem 2, we can obtain

̇V (𝑡) ≤ 𝜀
1
‖𝑒 (𝑡)‖

2

. (62)

Here,

𝜀
1
= 𝜆min (𝑃 𝑆

−1

(𝐴 − 𝐿
𝑝
𝐶) + (𝐴 − 𝐿

𝑝
𝐶)
𝑇

(𝑆
−1

)

𝑇

𝑃) < 0.

(63)

In addition, the new parameters are defined as follows:

𝜀
2
= 𝜆min (Φ) < 0, 𝜀

3
= 2


𝑍𝐹


. (64)

Selecting parameters 𝜃 > 0 and let it satisfy

𝜃 >
𝜀
2

3

𝜀
1
𝜀
2

. (65)

Calculate formula (61) further and we can obtain

̇V
0
(𝑡) ≤ 𝜀

2
‖𝑥 (𝑡)‖

2

+ 𝜀
3
‖𝑥 (𝑡)‖ ‖𝑒 (𝑡)‖ + 𝜃𝜀

1
‖𝑒(𝑡)‖

2

≤ 𝜀
2
‖𝑥 (𝑡)‖

2

+ 𝜀
3
‖𝑥 (𝑡)‖ ‖𝑒 (𝑡)‖ +

𝜀
2

3

𝜀
1
𝜀
2

𝜀
1
‖𝑒(𝑡)‖

2

≤ 𝜀
2
‖𝑥 (𝑡)‖

2

+ 𝜀
3
‖𝑥 (𝑡)‖ ‖𝑒 (𝑡)‖ +

𝜀
2

3

𝜀
2

‖𝑒(𝑡)‖
2

≤ 0.5𝜀
2
‖𝑥 (𝑡)‖

2

+ 𝜀
3
‖𝑥 (𝑡)‖ ‖𝑒 (𝑡)‖ + 0.5

𝜀
2

3

𝜀
2

‖𝑒(𝑡)‖
2

+ 0.5
𝜀
2

3

𝜀
2

‖𝑒(𝑡)‖
2

+ 0.5𝜀
2
‖𝑥(𝑡)‖

2

≤ (√
𝜀
2

2
‖𝑥(𝑡)‖ + √

𝜀
2

3

2𝜀
2

‖𝑒(𝑡)‖)

2

+ 0.5
𝜀
2

3

𝜀
2

‖𝑒(𝑡)‖
2

+ 0.5𝜀
2
‖𝑥(𝑡)‖

2

≤ 0.5
𝜀
2

3

𝜀
2

‖𝑒 (𝑡)‖
2

+ 0.5𝜀
2
‖𝑥 (𝑡)‖

2

.

(66)

Notice that 𝜀
3
> 0, 𝜀
2
< 0, so we have

̇V
0
(𝑡) ≤ 0.5

𝜀
2

3

𝜀
2

‖𝑒 (𝑡)‖
2

+ 0.5𝜀
2
‖𝑥 (𝑡)‖

2

< 0. (67)

So we have proved that the system (56) is asymptotically
stable.

7. Conclusions and Future Works

The sliding mode observer and the state feedback controller
is proposed and the controller’s stabilization under stochastic
disturbance is proved. The research provides a theoretical
analysis of the controller design method based on sliding
mode observer. In the future, we will give the simulation
verification combined with the specific space mission.
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This paper is concerned with robust stability analysis of uncertain Roesser-type discrete-time two-dimensional (2D) systems. In
particular, the underlying parameter uncertainties of system parameter matrices are assumed to belong to a convex bounded
uncertain domain, which usually is named as the so-called polytopic uncertainty and appears typically in most practical systems.
Robust stability criteria are proposed for verifying the robust asymptotical stability of the related uncertain Roesser-type discrete-
time 2D systems in terms of linear matrix inequalities. Indeed, a parameter-dependent Lyapunov function is applied in the proof of
our main result and thus the obtained robust stability criteria are less conservative than the existing ones. Finally, the effectiveness
and applicability of the proposed approach are demonstrated by means of some numerical experiments.

1. Introduction

During the past several decades, the well-known Lyapunov
stability theory has become an efficient tool for dealing with
the problem of stability analysis of many kinds of uncertain
systems [1–6]. However, those earlier results on stability
analysis of uncertain systems are developed by using the so-
called common quadratic Lyapunov function (CQLF) [7].
Actually, the CQLF applies a single Lyapunov matrix for all
the submodels and therefore the obtained stability criteria are
rather conservative.With the purpose of further releasing the
conservatism of the stability criteria, the affine parameter-
dependent Lyapunov function (APDLF) has been proposed
in [8], where the fixed quadratic Lyapunov function is
replaced by a Lyapunov function with affine dependence on
the underlying uncertain parameters. Because of the con-
struction of such parameter-dependent Lyapunov functions,
the conservatism could be released a lot as a tradeoff.

On the other hand, the famous 2D systems model could
represent a wide range of practical plants, for example, water
stream heating, thermal processes, biomedical imaging, gas
absorption, river pollution modeling, data processing and
transmission, process of gas filtration, grid based wireless
sensor networks, and so forth, [9, 10]. As a result, a consid-
erable interest in stability analysis of 2D systems has emerged

during the past two decades [11–15]. Recently, the 2D system
theory has also been applied to address the problem of
stability analysis 2D state-space digital filters with saturation
arithmetic in [16–30].However, it is worth noting thatmost of
the aforementioned results are feasible for linear 2D systems
without uncertainties. As is well known, most of the practical
2D dynamical systems in the realistic world are subject to
parameter uncertainties and the above results would fail to
work when some uncertain parameters occur in the practical
settings.

In particular, it is worth noting that the Roesser-type
discrete-time 2D system’s information is propagated along
two independent directions and this fact makes the problem
of stability analysis more complicated. Due to the complexity
of mathematical analysis of Roesser-type discrete-time 2D
systems with parameter uncertainties, there has been little
literature which focuses on robust stability analysis of uncer-
tain Roesser-type discrete-time 2D systems so far. Thus, this
problem needs to be further investigated and this fact moti-
vates us to carry out this task in this paper.

Based on the above analysis, the problem of robust sta-
bility analysis of Roesser-type discrete-time 2D systems with
parameter uncertainties will be addressed via the Lyapunov
stability theory. The parameter uncertainties of 2D system’s
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parameter matrices are assumed to belong to a convex
bounded uncertain domain, which usually is named as the
so-called polytopic uncertainty and appears typically in most
modeling processes of uncertainties. An efficient parameter-
dependent Lyapunov function is applied in the derivation of
our main result and thus the obtained robust stability criteria
are less conservative than the existing ones. Moreover, robust
stability criteria are given to verify the robust asymptotical
stability of the uncertain Roesser-type discrete-time 2D
systems in terms of linear matrix inequalities. Finally, the
effectiveness and applicability of the proposed approach are
demonstrated by means of numerical examples.

The rest of this paper is organized as follows: following the
introduction, some preliminaries are provided in Section 2.
In Section 3, LMI-based robust stability criteria are proposed
for verifying the robust asymptotical stability of the uncertain
Roesser-type discrete-time 2D systems. A numerical example
is given to demonstrate the effectiveness of the given
approach in Section 4. Finally, some conclusions are also
given in Section 5.

The following notations are applied for simplicity. A star∗
in a symmetric matrix denotes the transposed element in the
symmetric position; the symbol 𝐼 represents the identity
matrix with appropriate dimension;𝑋 > 0 (or 𝑋 ≥ 0) means
thematrix𝑋 is symmetric and positive definite (or symmetric
and positive semidefinite);𝑋𝑇 denotes the transpose of𝑋.

2. Preliminaries

Consider a class of uncertain discrete-time 2D systems which
is described by the Roesser-type model

x+ (𝑘, 𝑙) = 𝐴 (𝛼) x (𝑘, 𝑙) , (1)

with

x (𝑘, 𝑙) = [
xℎ (𝑘, 𝑙)
xV (𝑘, 𝑙)] , x+ (𝑘, 𝑙) = [

xℎ (𝑘 + 1, 𝑙)

xV (𝑘, 𝑙 + 1)
] , (2)

where 𝑘 and 𝑙 are two integers in Z+. xℎ(⋅, ⋅) is the horizontal
state in R𝑛1 and xV(⋅, ⋅) is the vertical state in R𝑛2 , where 𝑛

1

and 𝑛
2
are dimensions of the horizontal state vector and the

vertical state vector, respectively. The system coefficient
matrix 𝐴(𝛼) is not precisely known but belongs to a convex
bounded uncertain domain:

𝐴 (𝛼) = [
𝐴
11

(𝛼) 𝐴
12

(𝛼)

𝐴
21

(𝛼) 𝐴
22

(𝛼)
] , (3)

with 𝐴
11

(𝛼) ∈ R𝑛1×𝑛1 , 𝐴12(𝛼) ∈ R𝑛1×𝑛2 , 𝐴21(𝛼) ∈ R𝑛2×𝑛1 ,
and𝐴

22

(𝛼) ∈ R𝑛2×𝑛2 , respectively. Specially, these matrices
𝐴
11

(𝛼), 𝐴12(𝛼), 𝐴21(𝛼), and 𝐴
22

(𝛼) belong to a convex bou-
nded (polytope type) uncertain domainP given as follows:

P := { (𝐴
11

, 𝐴
12

, 𝐴
21

, 𝐴
22

) (𝛼) : (𝐴
11

, 𝐴
12

, 𝐴
21

, 𝐴
22

) (𝛼)

=

𝑟

∑

𝑖=1

𝛼
𝑖
(𝐴
11

𝑖
, 𝐴
12

𝑖
, 𝐴
21

𝑖
, 𝐴
22

𝑖
) ; 𝛼 ∈ Δ

𝑟
} ,

(4)

where Δ
𝑟
is the so-called unit simplex given by

Δ
𝑟
= {𝛼 ∈ R𝑟 :

𝑟

∑

𝑖=1

𝛼
𝑖
= 1, 𝛼

𝑖
≥ 0; 𝑖 = 1, . . . , 𝑟} . (5)

Moreover, the boundary conditions along two independent
directions are defined as xℎ(0, 𝑙) = 𝑓(𝑙) and xV(𝑘, 0) = 𝑔(𝑘),
where 𝑓(𝑙) and 𝑔(𝑘) are boundary conditions along the hori-
zontal direction and vertical direction, respectively.

Finally, let us end this section by giving a definition and a
lemma which will play an important role in the following
proof.

Denote𝑋
𝑁

= sup{‖x(𝑘, 𝑙)‖ : 𝑁 = 𝑘 + 𝑙}, and then we give
the definition of robust asymptotical stability for uncertain
Roesser-type discrete-time 2D system (1).

Definition 1. The uncertain Roesser-type discrete-
time 2D system (1) is robust asymptotically stable if
lim
𝑘→∞,𝑙→∞

𝑋
𝑁

= 0 with the initial and boundary con-
ditions xℎ(0, 𝑙) = 𝑓(𝑙) and xV(𝑘, 0) = 𝑔(𝑘).

Lemma 2 (see [7]). Given matrices 𝑄 = 𝑄
𝑇 and 𝑅 = 𝑅

𝑇 with
appropriate dimensions, the inequality ( 𝑄 𝑆

𝑆
𝑇
𝑅

) > 0 is equivalent
to 𝑅 > 0, 𝑄 − 𝑆𝑅

−1

𝑆
𝑇

> 0.

3. Main Results

In this section, by using the Lyapunov stability theory, suffi-
cient robust stability criteria for ensuring the robust asymp-
totical stability of the underlying uncertain Roesser-type
discrete-time 2D system (1)will be proposed in terms of linear
matrix inequalities. Indeed, less conservative robust stability
conditions are given bymeans of a parameter-dependent Lya-
punov function and a slack method for exploiting the alge-
braic properties of the uncertain Roesser-type discrete-time
2D system (1).

Theorem 3. The uncertain Roesser-type discrete-time 2D sys-
tem (1) is robust asymptotically stable if there exist appropri-
ately dimensional matrices 𝑃

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑟; 𝑖 ≤ 𝑗 ≤ 𝑟, with

𝑃
𝑖𝑗
= [

𝑃
1

𝑖𝑗
∗

𝑃
3

𝑖𝑗
𝑃
2

𝑖𝑗

] , 𝑃
1

𝑖𝑗
∈ R𝑛1×𝑛1 ,

𝑃
2

𝑖𝑗
∈ R𝑛2×𝑛2 , 𝑃

3

𝑖𝑗
∈ R𝑛2×𝑛1 ,

(6)

such that the following LMIs hold:

[
−𝑃
𝑖𝑖

∗

𝑃
𝑖𝑖
𝐴
𝑖
−𝑃
𝑖𝑖

] < 0, 𝑖 = 1, 2, . . . , 𝑟;

[
−𝑃
𝑖𝑖

∗

𝑃
𝑖𝑖
𝐴
𝑗

−𝑃
𝑖𝑖

] + [
−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑖
−𝑃
𝑖𝑗

] < 0,

𝑖 = 1, 2, . . . , 𝑟 − 1, 𝑖 < 𝑗;
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[
−𝑃
𝑗𝑗

∗

𝑃
𝑗𝑗
𝐴
𝑖

−𝑃
𝑗𝑗

] + [
−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑗

−𝑃
𝑖𝑗

] < 0,

𝑖 = 1, 2, . . . , 𝑟 − 1, 𝑖 < 𝑗;

[
−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑙
−𝑃
𝑖𝑗

] + [
−𝑃
𝑖𝑙

∗

𝑃
𝑖𝑙
𝐴
𝑗

−𝑃
𝑖𝑙

] + [
−𝑃
𝑗𝑙

∗

𝑃
𝑗𝑙
𝐴
𝑖

−𝑃
𝑗𝑙

] < 0,

𝑖 = 1, 2, . . . , 𝑟 − 2, 𝑖 < 𝑗 < 𝑙 ≤ 𝑟.

(7)

Proof. Consider the following parameter-dependent Lya-
punov function which is suitable for the uncertain Roesser-
type discrete-time 2D system (1):

𝑉 (x (𝑘, 𝑙)) = x𝑇 (𝑘, 𝑙) 𝑃
𝛼𝛼
x (𝑘, 𝑙) , (8)

where thematrix𝑃
𝛼𝛼

is a positive definitematrix andwith the
following structure: 𝑃

𝛼𝛼
= ∑
𝑟

𝑖=1
∑
𝑖≤𝑗≤𝑟

𝛼
𝑖
𝛼
𝑗
[
𝑃
1

𝑖𝑗
∗

𝑃
3

𝑖𝑗
𝑃
2

𝑖𝑗

], 𝑃1 ∈

R𝑛1×𝑛1 , 𝑃2 ∈ R𝑛2×𝑛2 , 𝑃3 ∈ R𝑛2×𝑛1 .
Then, the variation of the parameter-dependent Lya-

punov function 𝑉(x(𝑘, 𝑙)) could be described as

Δ𝑉 (x (𝑘, 𝑙)) = x𝑇 (𝑘, 𝑙) (𝐴(𝛼)
𝑇

𝑃
𝛼𝛼

𝐴 (𝛼) − 𝑃
𝛼𝛼

) x (𝑘, 𝑙) .

(9)

By applying the Lyapunov stability theory, the uncertain
Roesser-type discrete-time 2D system (1) is robust asymptot-
ically stable if the following inequality holds:

𝐴(𝛼)
𝑇

𝑃
𝛼𝛼

𝐴 (𝛼) − 𝑃
𝛼𝛼

< 0. (10)

Applying Lemma 2 to (10), it can be concluded that
inequality (10) is equivalent to the following inequality:

Φ = [
−𝑃
𝛼𝛼

∗

𝑃
𝛼𝛼

𝐴 (𝛼) −𝑃
𝛼𝛼

] < 0. (11)

On the other hand, reordering the expression of Ψ, one can
obtain

Φ = [
−𝑃
𝛼𝛼

∗

𝑃
𝛼𝛼

𝐴 (𝛼) −𝑃
𝛼𝛼

]

=

𝑟

∑

𝑖=1

𝛼
3

𝑖
Φ
𝑖𝑖𝑖

+

𝑟−1

∑

𝑖=1

∑

𝑗>𝑖

𝛼
2

𝑖
𝛼
𝑗
Φ
𝑖𝑖𝑗

+

𝑟−1

∑

𝑖=1

∑

𝑗>𝑖

𝛼
2

𝑖
Υ
𝑗
Γ
𝑖𝑗𝑗

+

𝑟−2

∑

𝑖=1

∑

𝑗>𝑖

∑

𝑙>𝑗

𝛼
𝑖
𝛼
𝑗
𝛼
𝑙
Φ
𝑖𝑗𝑙
,

(12)

where we have

Φ
𝑖𝑖𝑖

= [
−𝑃
𝑖𝑖

∗

𝑃
𝑖𝑖
𝐴
𝑖

−𝑃
𝑖𝑖

] ,

Φ
𝑖𝑖𝑗

= [
−𝑃
𝑖𝑖

∗

𝑃
𝑖𝑖
𝐴
𝑗

−𝑃
𝑖𝑖

] + [
−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑖
−𝑃
𝑖𝑗

] ,

Φ
𝑖𝑗𝑗

= [
−𝑃
𝑗𝑗

∗

𝑃
𝑗𝑗
𝐴
𝑖

−𝑃
𝑗𝑗

] + [
−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑗

−𝑃
𝑖𝑗

] ,

Φ
𝑖𝑗𝑙

= [
−𝑃
𝑖𝑗

∗

𝑃
𝑖𝑗
𝐴
𝑙
−𝑃
𝑖𝑗

] + [
−𝑃
𝑖𝑙

∗

𝑃
𝑖𝑙
𝐴
𝑗

−𝑃
𝑖𝑙

]

+ [
−𝑃
𝑗𝑙

∗

𝑃
𝑗𝑙
𝐴
𝑖

−𝑃
𝑗𝑙

] .

(13)

From (10)–(12), if the LMI-based stability conditions (7) hold,
inequality (10) evidently holds, which guarantee the robust
asymptotical stability for the uncertain Roesser-type discrete-
time 2D system (1).

This completes the proof.

Remark 4. From (1) and (4), the parameter uncertainties of
2D system parameter matrices are assumed to belong to a
convex bounded uncertain domain. Then, LMI-based robust
stability criteria are given for ensuring the robust asympt-
otical stability of the underlying uncertain Roesser-type dis-
crete-time 2D systems in Theorem 3. Indeed, the parameter-
dependent Lyapunov function 𝑉(x(𝑘, 𝑙)) = x𝑇(𝑘, 𝑙)𝑃

𝛼𝛼
x(𝑘, 𝑙)

is applied in the derivation of our main result and thus the
obtained robust stability criteria are less conservative than
before. Furthermore, the effectiveness and applicability of the
proposed results will be demonstrated bymeans of numerical
experiments in the following section.

4. Numerical Examples

Consider the uncertain Roesser-type discrete-time two-
dimensional systems described as follows:

[
𝑥
ℎ

(𝑘 + 1, 𝑙)

𝑥
V
(𝑘, 𝑙 + 1)

] =

2

∑

𝑖=1

𝛼
𝑖
(𝐴
𝑖
[
𝑥
ℎ

(𝑘, 𝑙)

𝑥
V
(𝑘, 𝑙)

]) , (14)

where 𝐴
1
= [
1+𝑎1𝑇1 (𝑎1𝑎2+𝑎0)𝑇1

𝑇2 1+𝑎2𝑇2

] and 𝐴
2
= [
1+𝑎1𝑇1 𝑎1𝑎2𝑇1

𝑇2 1+𝑎2𝑇2

]. And
the following parameter values about 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑇
1
, and 𝑇

2
are

given: 𝑎
0
= −2, 𝑎

1
= −3, 𝑇

1
= 0.1, and 𝑇

2
= 0.2. Furthermore,

the initial and boundary conditions of the above uncertain
Roesser-type discrete-time two-dimensional systems are set
as 𝑥ℎ(0, 𝑙) = 6 cos(𝑙) for 𝑙 < 30 and 𝑥

V
(𝑘, 0) = 4 sin(𝑘) for 𝑘 <

30 and 𝑥
ℎ

(0, 𝑙) = 0 for 𝑙 ≥ 30 and 𝑥
V
(𝑘, 0) = 0 for 𝑘 ≥ 30.

Let 𝑎
2
= −0.6; the stability criteria given inTheorem 3 are

feasible by solving LMIs (7), which guarantee the robust
asymptotical stability for the underlying uncertain Roesser-
type discrete-time 2D systems. On the other hand, Figures 1
and 2 show the state trajectory of the system state variables
𝑥
ℎ

(𝑘, 𝑙) and 𝑥
V
(𝑘, 𝑙) with 𝛼

1
= 0.4 and 𝛼

2
= 0.6, respectively.

From Figures 1 and 2, it is easy to see that the state trajectories
of 𝑥ℎ(𝑘, 𝑙) and 𝑥

V
(𝑘, 𝑙) are robust asymptotically stable in this

case.
Let 𝑎
2
= −2.9; the stability criteria given inTheorem 3 are

feasible by solving LMIs (7), which guarantee the robust
asymptotical stability for the underlying uncertain Roesser-
type discrete-time 2D systems. On the other hand, Figures 3
and 4 show the state trajectory of the system state variables
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Figure 1: The state trajectory of 𝑥ℎ(𝑘, 𝑙) with 𝑎
2
= −0.6.
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Figure 2: The state trajectory of 𝑥V
(𝑘, 𝑙) with 𝑎

2
= −0.6.

𝑥
ℎ

(𝑘, 𝑙) and 𝑥
V
(𝑘, 𝑙) with 𝛼

1
= 0.4 and 𝛼

2
= 0.6, respectively.

FromFigures 3 and 4, it is easy to see that the state trajectories
of 𝑥ℎ(𝑘, 𝑙) and 𝑥

V
(𝑘, 𝑙) are robust asymptotically stable in this

case.
Let 𝑎
2
= −8.9; the stability criteria given inTheorem 3 are

not feasible by solving LMIs (7), which do not guarantee the
robust asymptotical stability for the underlying uncertain
Roesser-type discrete-time 2D systems. On the other hand,
Figures 5 and 6 show the state trajectory of the system state
variables 𝑥

ℎ

(𝑘, 𝑙) and 𝑥
V
(𝑘, 𝑙) with 𝛼

1
= 0.4 and 𝛼

2
= 0.6,

respectively. From Figures 5 and 6, it is easy to see that the
state trajectories of 𝑥ℎ(𝑘, 𝑙) and 𝑥

V
(𝑘, 𝑙) are not robust asymp-

totically stable in this case. Now, it could be concluded that
the effectiveness and applicability of the proposed approach
given in Theorem 3 are illustrated by means of numerical
experiments.

5. Conclusions

Theproblem of robust stability analysis of a class of uncertain
Roesser-type discrete-time 2D systems has been addressed by
using an efficient parameter-dependent Lyapunov function.
In particular, the parameter uncertainties of the underlying
2D system’s parameter matrices belong to a convex bounded
uncertain domain, which often is named as polytopic uncer-
tainty and appears typically in most practical systems. In
order to ensure the robust asymptotic stability of the
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Figure 3: The state trajectory of 𝑥ℎ(𝑘, 𝑙) with 𝑎
2
= −2.9.

0
10

20
30

40

0
10

20
30

40
−4

−2

0

2

4

k
l

x
�
(
k
,
l)

Figure 4: The state trajectory of 𝑥V
(𝑘, 𝑙) with 𝑎

2
= −2.9.
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Figure 5: The state trajectory of 𝑥ℎ(𝑘, 𝑙) with 𝑎
2
= −8.9.
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Figure 6: The state trajectory of 𝑥V
(𝑘, 𝑙) with 𝑎

2
= −8.9.
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uncertain Roesser-type discrete-time 2D systems, LMI-based
robust stability criteria are proposed by exploiting the alge-
braic properties of the convex bounded uncertain domain.
Finally, a numerical example is provided to demonstrate the
effectiveness and applicability of the approach given in this
paper.
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This paper first makes an attempt to investigate the near-optimal control of systems governed by fully nonlinear coupled forward-
backward stochastic differential equations (FBSDEs) under the assumption of a convex control domain. By Ekeland’s variational
principle and some basic estimates for state processes and adjoint processes, we establish the necessary conditions for any 𝜀-near
optimal control in a local form with an error order of exact 𝜀1/2. Moreover, under additional convexity conditions on Hamiltonian
function, we prove that an 𝜀-maximum condition in terms of the Hamiltonian in the integral form is sufficient for near-optimality
of order 𝜀1/2.

1. Introduction

Bismut [1] first investigated linear backward stochastic differ-
ential equations (BSDEs in short) as the adjoint equation of
the forward stochastic system. The existence and uniqueness
of BSDEs with nonlinear generators under Lipschitz con-
dition were first proved by Pardoux and Peng [2] in 1990.
Since then, the theory of BSDEs has extensive applications in
both mathematical finance and stochastic control. Forward-
backward stochastic differential equations (FBSDEs in short)
consist of forward stochastic differential equations (SDEs in
short) of Itô type and BSDEs of Pardoux-Peng. Forward-
backward stochastic equations (FBSDEs) not only are widely
used in stochastic control and differential games but also
have profound applications in mathematical economics and
mathematical finance. Therefore, it is natural to investigate
control problems for systems governed by this kind of
stochastic equations. In mathematical finance, FBSDEs can
be formulated as the price equations of financial assets under
model uncertainty. In the stochastic optimal control problem,
FBSDEs arise as the Hamilton system which is composed of
the optimality conditions, the adjoint equation, and the state
equation and which completely characterizes the optimal
control.

A classical approach for optimal control problems is to
derive necessary conditions satisfied by an optimum, such as
Pontryagin’s maximum principle. Now the maximum prin-
ciples for optimal controls of FBSDEs have rich literatures
which can be referred to [3–12] and references therein.

The references stated in the above are all concerned with
(exact) optimal control. But, in fact, the (exact) optimal
control may not exist in many situations. So it becomes
very important to study near-optimal controls which are
more available and much easier to be obtained than optimal
ones, both analytically and numerically. The near-optimal
deterministic control problems have been investigated in [13–
15]. Near-optimal control problems for SDEs with controlled
diffusion coefficients were first investigated in 1998 by Zhou
[16], where necessary and sufficient conditions are established
by introducing second adjoint equation, for all near-optimal
controls. Inspired by Zhou [16], we refer to [16–20] on the
near-optimal control of other forward stochastic systems.

For forward-backward stochastic systems, Huang et al.
[21] in 2010 and Bahlali et al. [22] in 2009, respectively,
established the corresponding stochastic maximum principle
for the near-optimal control of linear systems and nonlinear
systems, where diffusion coefficients and control variables are
each independently based on Ekeland’s principle and spike
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variation. In 2011, Hui et al. [23] studied the near-optimal
control of nonlinear FBSDEs, where diffusion coefficients can
be dependent on the control variable, with the assumption
that the control domain is convex. In 2012, for linear FBSDEs,
Zhang et al. [24] extended the results of [21–23] to the general
case of control domains based on the Ekeland’s principle,
spike variation, reduction technique developed recently by
Yong [25], and the methodology recently introduced by Wu
[26].

The control systems of FBSDEs studied in references [21–
24] are nonfully coupled which are only coupled in BSDE
and not in SDE. For the control systems of fully coupled
FBSDEs, the existing literatures mainly focused on exact
optimal control problems and few on near-optimal control
problems. The purpose of the present paper is to make the
first attempt to discuss the near-optimal control for fully
coupled FBSDEs. Its main contribution is the developments
of maximum principle and verification theorem of the near-
optimal control in a uniformmanner by Ekeland’s variational
principle. Compared with references [21–24], this paper
mainly has three advantages as follows. Firstly, our systems
studied are fully coupled FBSDEs, which are coupled not
only in BSDEs but also in SDEs. Secondly, we get necessary
optimality conditions for near-optimal control with an error
order of exact 𝜀1/2, which is better than all in the existing
literature on the cases of FBSDEs, where the error orders
are almost 𝜀

1/3. In fact, by Ekeland’s variational principle,
we know that the error order of exact 𝜀

1/2 for the near-
optimal control is the best error order.Thirdly, different from
[21–24], by continuous dependence theorem of FBSDEs (see
Lemma 4), we obtain directly the basic estimates for state
processes and adjoint processes (see Lemmas 10, 11, 12, and 14)
which play a very important role in proving our main results.
Therefore, our approach is simpler and more quickly.

The paper is organized as follows. In Section 2, we present
the notations and give main theory on FBSDEs. In Section 3,
the problem studied is formulated and basic assumptions
are given. In Section 4, we prove some prior estimates for
state trajectories and adjoint equation. In Section 5, we
obtain a variational formula for the performance functional.
Sections 6 and 7 are devoted to deriving verification theorem
and stochastic maximum principle by Ekeland’s variational
principle. In Section 8, we conclude our paper.

2. Preliminary Notations and Basic
Theory for FBSDEs

Now we first introduce some preliminary notations which
will be used throughout this paper. Let (Ω,F, 𝑃) be a
probability space. Let {𝑊(𝑡), 0 ≤ 𝑡 ≤ 𝑇} be a 𝑑-dimensional
Brownian motion. Let {F

𝑡
}
0≤𝑡≤𝑇

be 𝑃-completed natural
filtration generated by {𝑊(𝑡), 0 ≤ 𝑡 ≤ 𝑇}. Let 𝐸 be a
Euclidean space, where the inner product and norm are
denoted by (⋅, ⋅) and | ⋅ |, respectively. For a given function,
𝜙 : R𝑛

→ R, we denote its gradient and Hessian by 𝜙
𝑥

and 𝜙
𝑥𝑥
, respectively. If 𝜙 : R𝑛

→ R𝑘 (with 𝑘 ≥ 2),
then 𝜙

𝑥
= (𝜕𝜙

𝑖
/𝜕𝑥

𝑗
) is the corresponding (𝑘 × 𝑛) Jacobian

matrix. ByP we denote the predictable 𝜎 field on Ω × [0, 𝑇]

and by B(Λ) the Borel 𝜎-algebra of any topological space
Λ. Denote by 𝑀

2

F(0, 𝑇; 𝐸) the space of all P-measurable 𝐸-
valued stochastic processes 𝑓 = {𝑓(𝑡, 𝜔), (𝑡, 𝜔) ∈ [0, 𝑇] ×

Ω} satisfying ‖𝑓‖
𝑀
2

F
(0,𝑇;𝐸)

≜ √𝐸∫
𝑇

0

|𝑓(𝑡)|2𝑑𝑡 < ∞, by
𝑆
2

F(0, 𝑇; 𝐸), the space of all F
𝑡
-adapted 𝐸-valued stochastic

càdlàg processes 𝑓 = {𝑓(𝑡, 𝜔), (𝑡, 𝜔) ∈ [0, 𝑇] × Ω}

such that ‖𝑓‖
𝑆
2

F
(0,𝑇;𝐸)

≜ √𝐸 sup
0≤𝑡≤𝑇

|𝑓(𝑡)|2𝑑𝑡 < +∞, by
𝐿
2

(Ω,F, 𝑃; 𝐸), and the set of all 𝐸-valued random variables
𝜉 on (Ω,F, 𝑃) such that ‖𝜉‖

𝐿
2
(Ω,F,𝑃;𝐸)

≜ √𝐸|𝜉|2 < ∞. Finally,
we define the space

M
2

[0, 𝑇] := 𝑆
2

F (0, 𝑇;R
𝑛

) × 𝑆
2

F (0, 𝑇;R
𝑚

)

× 𝑀
2

F (0, 𝑇;R
𝑚×𝑑

) .

(1)

Then M2

[0, 𝑇] is a Banach space with respect to the norm
‖ ⋅ ‖M2 given by

‖Θ (⋅)‖
2

M2 = 𝐸 sup
0≤𝑡≤𝑇

|𝑥 (𝑡)|
2

+ 𝐸 sup
0≤𝑡≤𝑇

𝑦(𝑡)


2

+ 𝐸∫

𝑇

0

|𝑧 (𝑡)|
2

𝑑𝑡,

(2)

for Θ(⋅) = (𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) ∈ M2

[0, 𝑇].
Now we are in position to present the preliminary results

of fully coupled FBSDEs. Consider a general FBSDE as
follows:

𝑑𝑥 (𝑡) = 𝑏 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡)) 𝑑𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡)) 𝑑𝐵 (𝑡) ,

𝑦 (𝑡) = −𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡)) 𝑑𝑡 + 𝑧 (𝑡) 𝑑𝐵 (𝑡) ,

𝑥 (0) = 𝑎,

𝑦 (𝑇) = ℎ (𝑥 (𝑇)) .

(3)

Here 𝑓 : [0, 𝑇] × Ω × R𝑛

× R𝑚

× R𝑚×𝑑

→ R𝑚, 𝑏 : [0, 𝑇] ×

Ω × R𝑛

× R𝑚

× R𝑚×𝑑

→ R𝑛, ℎ : Ω × R𝑛

→ R𝑚, and
𝜎 : [0, 𝑇]×Ω×R𝑛

×R𝑚

×R𝑚×𝑑

→ R𝑛×𝑑 are given mappings
and 𝑎 ∈ R𝑛. For a given full-rank𝑚 × 𝑛matrix 𝐺, we use the
notations V = (

𝑥

𝑦

𝑧

) and 𝐴(𝑡, 𝑢) = (
−𝐺
∗
𝑓

𝐺𝑏

𝐺𝜎

), where 𝐺
∗ is the

transpose matrix of 𝐺.

Definition 1. A stochastic process (𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) ∈ M2

[0, 𝑇]

for the coefficients (𝑎, 𝑏, 𝜎, 𝑓, ℎ) is said to be an adapted
solution of (3) if, for any 𝑡 ∈ [0, 𝑇], it follows almost surely

𝑥 (𝑡) = 𝑎 + ∫

𝑡

0

𝑏 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟)) 𝑑𝑟

+ ∫

𝑡

0

𝜎 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟)) 𝑑𝐵 (𝑟) ,

𝑦 (𝑡) = ℎ (𝑥 (𝑇)) + ∫

𝑇

𝑡

𝑓 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟)) 𝑑𝑟

− ∫

𝑇

𝑡

𝑧 (𝑟) 𝑑𝐵 (𝑟) .

(4)



Abstract and Applied Analysis 3

Furthermore, FBSDE (3) is said to be solvable if it has an
adapted solution. An FBSDE is said to be nonsolvable if it is
not solvable.

In order to get the solvability of FBSDE (3), we make the
basic assumptions as follows.

Assumption 2. (i) The randommappings 𝑏, 𝜎, and 𝑓 areP ⊗

B(R𝑛

) ⊗ B(R𝑚

) × B(R𝑚×𝑑

) measurable with 𝑏(⋅, 0, 0, 0) ∈

𝑀
2

F(0, 𝑇; 𝑅
𝑛

), 𝜎(⋅, 0, 0, 0) ∈ 𝑀
2

F(0, 𝑇;R𝑛×𝑑

), and𝑓(⋅, 0, 0, 0) ∈

𝑀
2

F(0, 𝑇;R𝑚

). And ℎ isF
𝑇
×B(R𝑚

)measurable with ℎ(0) ∈

𝐿
2

(Ω,F
𝑇
, 𝑃;R𝑚

). Moreover, 𝑏, 𝜎, and 𝑓 are uniformly Lip-
schitz continuous in (𝑥, 𝑦, 𝑧) and ℎ is uniformly Lipschitz
continuous in 𝑥.

(ii) Monotonicity conditions

⟨𝐴 (𝑡, 𝑢) − 𝐴 (𝑡, 𝑢) , 𝑢 − 𝑢⟩

≤ −𝛾
1
|𝐺𝑥|

2

− 𝛾
2
(
𝐺

∗

𝑦


2

+
𝐺

∗

�̂�


2

) ,

⟨𝑥 − 𝑥, ℎ (𝑥) − ℎ (𝑥)⟩ ≥ 𝜃
1
|𝐺𝑥|

2

,

(5)

or

⟨𝐴 (𝑡, 𝑢) − 𝐴 (𝑡, 𝑢) , 𝑢 − 𝑢⟩

≥ 𝛾
1
|𝐺𝑥|

2

+ 𝛾
2
(
𝐺

∗

𝑦


2

+
𝐺

∗

�̂�


2

) ,

⟨ℎ (𝑥) − ℎ (𝑥) , 𝑥 − 𝑥⟩ ≤ −𝜃
1
|𝐺𝑥|

2

,

(6)

for all 𝑢 = (𝑥, 𝑦, 𝑧) and 𝑢 = (𝑥, 𝑦, 𝑧), 𝑥 = 𝑥 − 𝑥, 𝑦 = 𝑦 − 𝑦,
�̂� = 𝑧 − 𝑧, where 𝛾

1
, 𝛾

2
and 𝜃

1
are nonnegative constants with

𝛾
1
+ 𝛾

2
≥ 0, 𝛾

2
+ 𝜃

1
≥ 0. Moreover, we have 𝛾

1
> 0, 𝜃

1
> 0

(resp., 𝛾
2
> 0), if𝑚 > 𝑛 (resp.,𝑚 < 𝑛).

The following two lemmas present the solvability results
and continuous dependence theorem of FBSDE (3), respec-
tively, which will be used to demonstrate the basic estimates
for the state equation and adjoint equation (see Lemmas 10,
11, 12, and 14).

Lemma 3. Let Assumption 2 be satisfied. Then (3) admits a
unique solution (𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) ∈ M2

[0, 𝑇].

The proof can be found in Peng and Wu [27].

Lemma 4. Let (𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) and (𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) be the
solutions of the FBSDE (3) corresponding to two given
coefficients (𝑏, 𝜎, 𝑓, ℎ, 𝑎) and (𝑏, 𝜎, 𝑓, ℎ, 𝑎) which both satisfy
Assumption 2, respectively. Then there exists 𝑎 constant such
that

(𝑥 (⋅) , 𝑦 (⋅) , �̂� (⋅))
M2[0,𝑇]

≤ 𝐾[|𝑎 − 𝑎|
2

+ 𝐸∫

𝑇

0


𝑏 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟))

−𝑏 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟))


2

𝑑𝑟

+ 𝐸∫

𝑇

0

𝜎 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟))

−𝜎 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟))


2

𝑑𝑟

+ 𝐸∫

𝑇

0


𝑓 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟))

−𝑓 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟))


2

𝑑𝑟

+𝐸

ℎ (𝑥 (𝑇)) − ℎ (𝑥 (𝑇))



2

] .

(7)

Particularly, if (𝑏, 𝜎, 𝑓, ℎ, 𝑎) = (0, 0, 0, 0), we have
(𝑥 (⋅) , 𝑦 (⋅) , 𝑧 (⋅))

M2[0,𝑇]

≤ 𝐾[|𝑎|
2

+ 𝐸∫

𝑇

0

|𝑏 (𝑡, 0, 0, 0)|
2

𝑑𝑡 + 𝐸∫

𝑇

0

|𝜎 (𝑡, 0, 0, 0)|
2

𝑑𝑡

+𝐸∫

𝑇

0

𝑓 (𝑡, 0, 0, 0)


2

𝑑𝑡 + 𝐸|ℎ (0)|
2

] .

(8)

The proof can be found in Lin [28].

3. Statement of the Problem and
Basic Assumptions

Suppose that 𝑈 is a given compact convex subset of R𝑘. The
stochastic process 𝑢(⋅) : [0, 𝑇] × Ω → R𝑘 is said to be
admissible, if it is anF

𝑡
-adopted process taking values in 𝑈.

We denote all admissible controls by the setA.
For any admissible control 𝑢(⋅) ∈ A, we consider the

following controlled FBSDE:

𝑑𝑥 (𝑠) = 𝑏 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟) , 𝑢 (𝑟)) 𝑑𝑟

+ 𝜎 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟) , 𝑢 (𝑟)) 𝑑𝐵 (𝑟) ,

𝑑𝑦 (𝑟) = −𝑓 (𝑟, 𝑥 (𝑟) , 𝑦 (𝑟) , 𝑧 (𝑟) , 𝑢 (𝑟)) 𝑑𝑟 + 𝑧 (𝑟) 𝑑𝐵 (𝑟) ,

𝑥 (0) = 𝑎 ∈ R
𝑛

,

𝑦 (𝑇) = ℎ (𝑥 (𝑇)) ,

(9)

with the performance functional

𝐽 (𝑢 (⋅)) = 𝐸 [∫

𝑇

0

𝑙 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

+𝜙 (𝑥 (𝑇)) + 𝛾 (𝑦 (0))] .

(10)

In the above, 𝑏,𝜎,𝑓, ℎ, 𝑙,𝜙, and 𝛾 are given randommappings.
𝑏 : [0, 𝑇] × Ω ×R𝑛

×R𝑚

×R𝑚×𝑑

× 𝑈 → R𝑛, 𝜎 : [0, 𝑇] × Ω ×

R𝑛

× R𝑚

× R𝑚×𝑑

× 𝑈 → R𝑛×𝑑, 𝑓 : [0, 𝑇] × Ω × R𝑛

× R𝑚

×

R𝑚×𝑑

×𝑈 → R𝑚, 𝑙 : [0, 𝑇]×Ω×R𝑛

×R𝑚

×R𝑚×𝑑

×𝑈 → R1,
ℎ : Ω × R𝑛

× R𝑛, 𝛾 : Ω × R𝑚

→ R1, and 𝜙 : Ω × R𝑛

→ R1

are given measurable mappings.
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The basic assumptions on coefficients (𝑏, 𝜎, 𝑓, ℎ, 𝑙, 𝜙, 𝛾)

are given as follows.

Assumption 5. (i) For any 𝑢 ∈ 𝑈, (𝑎, 𝑏, 𝜎, 𝑓, ℎ) satisfy
Assumption 2. Moreover, 𝑏, 𝑓, and 𝜎 are differentiable in
(𝑥, 𝑦, 𝑧, 𝑢), ℎ is differentiable in 𝑥, and the corresponding
derivatives are continuous and uniformly bounded for all
(𝑡, 𝜔) ∈ [0, 𝑇] × Ω.

(ii) 𝑙 : [0, 𝑇]×Ω×R𝑛

×R𝑚

×R𝑚×𝑑

×𝑈 → R1 is continuous
differentiable in (𝑥, 𝑦, 𝑧, 𝑢), 𝜙 : Ω × R𝑛

→ R1 is continuous
differentiable in 𝑥, and 𝛾 : Ω × R𝑚

→ R1 is continuous
differentiable in𝑦. For all (𝑡, 𝜔) ∈ [0, 𝑇]×Ω, there is a constant
𝐶 such that, for all (𝑥, 𝑦, 𝑧, 𝑢) ∈ R𝑛

×R𝑚

×R𝑚×𝑑

× 𝑈,

|𝑙| ≤ 𝐶 (1 +
𝑦


2

+ |𝑥|
2

+ |𝑧|
2

+ |𝑢|
2

) ,

𝛾
 ≤ 𝐶 (

𝑦


2

+ 1) ,
𝜙
 ≤ 𝐶 (|𝑥|

2

+ 1) ,

𝑙𝑥
 +


𝑙
𝑦


+
𝑙𝑧

 +
𝑙𝑢

 ≤ 𝐶 (1 + |𝑧| + |𝑥| +
𝑦
 + |𝑢|) ,

𝜙𝑥
 ≤ 𝐶 (|𝑥| + 1) ,


𝛾
𝑦


≤ 𝐶 (

𝑦
 + 1) .

(11)

Under Assumption 5, from Lemma 3, we know that, for
every 𝑢(⋅) ∈ A, (9) has a unique solution. The corre-
sponding strong solution is denoted by (𝑥

𝑢

(⋅), 𝑦
𝑢

(⋅), 𝑧
𝑢

(⋅))

or (𝑥(⋅), 𝑦(⋅), 𝑧(⋅)). Then (𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) is said to be the
state processes associated with the admissible control 𝑢(⋅)
and (𝑢(⋅); 𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) is called the admissible control pair.
Moreover, under Assumption 5, using a priori estimates (8),
we can deduce the fact that

|𝐽 (𝑢 (⋅))| < ∞. (12)

The so-called stochastic optimal control problem is to
minimize the cost function 𝐽(𝑢(⋅)), over all 𝑢(⋅) ∈ A. The
corresponding value function is defined as

𝑉 (𝑎) = inf
𝑢(⋅)∈A

𝐽 (𝑢 (⋅)) . (13)

We denote the above problem (9)–(13) by 𝑃𝑅𝑂. Any 𝑢(⋅) ∈

A is said to be an optimal control of Problem 𝑃𝑅𝑂, if
𝑢(⋅) achieves the infimum of 𝐽(𝑢(⋅)) over A. The state
process (𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) is said to be the optimal state. And
(𝑢(⋅); 𝑥(⋅), 𝑦(⋅), 𝑧(⋅)) is called an optimal pair of Problem𝑃𝑅𝑂.

Since this paper is devoted to discussing the near-optimal
problem of FBSDEs, we recall the definition of the near-
optimal control, following [16].

Definition 6. An admissible control pair (𝑢
𝜀

(⋅); 𝑥
𝜀

(⋅), 𝑦𝜀

(⋅),
𝑧
𝜀

(⋅)) is said to be an 𝜀-optimal control for some 𝜀 ≥ 0, if
𝐽 (𝑢

𝜀

(⋅)) − 𝑉 (𝑎)
 ≤ 𝜀. (14)

Definition 7. The set of parameterized admissible control
pairs {(𝑢𝜀(⋅); 𝑥𝜀(⋅), 𝑦𝜀

(⋅), 𝑧
𝜀

(⋅))} is said to be near-optimal for
sufficient small 𝜀, if

𝐽 (𝑢
𝜀

(⋅)) − 𝑉 (𝑎)
 ≤ 𝑟 (𝜀) . (15)

Here 𝑟 is a function with respect to 𝜀 satisfying 𝑟(𝜀) → 0 as
𝜀 → 0. We call the estimate 𝑟(𝜀) an error bound. If 𝑟(𝜀) = 𝑐𝜀

𝛿

for some 𝛿 > 0 independent of the constant 𝑐, then we call
𝑢
𝜀

(⋅) the near-optimal control with order 𝜀𝛿.

Before we conclude this section, let us recall the definition
of the Clarke generalized gradient as well as Ekeland’s
variational principle which will be used to prove our main
results.

Definition 8 (see Zhou [16]). Let𝑋 be a convex set inR𝑑 and
let 𝜂(⋅) :→ 𝑅 be a locally Lipschitz function. At any given
𝑥 ∈ 𝑋, we define the generalized gradient of 𝜂 as a set given
by

𝜕
𝑥
𝜂 = {𝜉 : ⟨𝜉, 𝛽⟩ ≤ lim

𝑦→𝑥,𝑦∈𝑋,ℎ↓0

sup
𝜂 (𝑦 + ℎ𝛽) − 𝜂 (𝑥)

ℎ
,

for any 𝛽 ∈ R
𝑑

} .

(16)

Lemma 9 (Ekeland’s variational principle [29]). Suppose that
(𝑆, 𝑑) is a complete metric space and 𝜌(⋅) : 𝑆 → R is bounded
from below and lower-semi-continuous. For 𝜀 > 0, let 𝑢𝜀 ∈ 𝑆

satisfy the following inequality:

𝜌 (𝑢
𝜀

) ≤ inf
𝑢∈𝑆

𝜌 (𝑢) + 𝜀. (17)

Then, for any 𝜆 > 0, there exists 𝑢𝜆 such that

(1) 𝜌(𝑢𝜆) ≤ 𝜌(𝑢
𝜀

),
(2) 𝑑(𝑢𝜆, 𝑢𝜀) ≤ 𝜆,
(3) 𝜌(𝑢𝜆) ≤ 𝜌(𝑢) + (𝜀/𝜆)𝑑(𝑢

𝜆

, 𝑢), for all 𝑢 ∈ 𝑆.

4. Some Prior Estimates for State Trajectories
and Adjoint Equations

In order to apply Ekeland’s variational principle to obtain
our main result, we must define a distance 𝑑 on the space
of admissible controls such that (A, 𝑑) is a complete metric
space. For any given V(⋅), 𝑢(⋅) ∈ A, we define

𝑑 (V (⋅) , 𝑢 (⋅)) = [𝐸∫

𝑇

0

|V (𝑟) − 𝑢 (𝑟)|
2

𝑑𝑟]

1/2

. (18)

To simplify our notation, for any admissible control pair
(𝑢(⋅); 𝑥

𝑢

(⋅), 𝑦
𝑢

(⋅), 𝑧
𝑢

(⋅)), we set

Θ
𝑢

(𝑡) := (𝑥
𝑢

(𝑡) , 𝑦
𝑢

(𝑡) , 𝑧
𝑢

(𝑡)) . (19)

The following is devoted to proving the boundedness and
continuity of the state and adjoint processes with the control
processes under the metric (18). Note that, in the following,
𝐶 is a generic constants, which may change from line to line.

Lemma 10. Let Assumption 5 be satisfied. Then there exists a
constant 𝐶 s.t. that, for every admissible pair (𝑢(⋅); Θ

𝑢

(⋅)) =

(𝑢(⋅); 𝑥
𝑢

(⋅), 𝑦
𝑢

(⋅), 𝑧
𝑢

(⋅)),
Θ

𝑢

(⋅)
M2

≤ 𝐶. (20)
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Proof. Under Assumption 5, by the estimate (8), we have

Θ
𝑢

(⋅)
M2

≤ 𝐶[𝐸∫

𝑇

0

|𝑏 (𝑡, 0, 0, 0, 𝑢 (𝑡))|
2

𝑑𝑡

+ 𝐸∫

𝑇

0

|𝜎 (𝑡, 0, 0, 0, 𝑢 (𝑡))|
2

𝑑𝑡

+ 𝐸∫

𝑇

0

𝑓 (𝑡, 0, 0, 0, 𝑢 (𝑡))


2

𝑑𝑡

+𝐸|ℎ (0)|
2

+ |𝑎|
2

]

≤ 𝐶[𝐸∫

𝑇

0

|𝑏 (𝑡, 0, 0, 0, 0)|
2

𝑑𝑡

+ 𝐸∫

𝑇

0

|𝜎 (𝑡, 0, 0, 0, 0)|
2

𝑑𝑡

+ 𝐸∫

𝑇

0

𝑓 (𝑡, 0, 0, 0, 0)


2

𝑑𝑡

+𝐸|ℎ (0)|
2

+ 1 + |𝑎|
2

] ,

(21)

where the last inequality is obtained by the boundedness of
the control domain 𝑈. The proof is complete.

Lemma 11. Let Assumption 5 be satisfied. Then there is a
positive constant 𝐶 s.t. for any given two admissible pairs
(𝑢(⋅); Θ

𝑢

(⋅)) = (𝑢(⋅); 𝑥
𝑢

(⋅), 𝑦
𝑢

(⋅), 𝑧
𝑢

(⋅)) and (V(⋅); ΘV
(⋅)) =

(V(⋅); 𝑥V
(⋅), 𝑦

V
(⋅), 𝑧

V
(⋅)),

Θ
𝑢

(⋅) − Θ
V
(⋅)



2

M2
≤ 𝐶𝑑(𝑢 (⋅) , V (⋅))2. (22)

Proof. Under Assumption 5, from the estimate (7), we have

Θ
𝑢

(⋅) − Θ
V
(⋅)



2

M2

≤ 𝐶[𝐸∫

𝑇

0

𝑏(𝑟, Θ
𝑢

(𝑟), 𝑢(𝑟)) − 𝑏(𝑟, Θ
𝑢

(𝑟), V(𝑟))
2

𝑑𝑟

+ 𝐸∫

𝑇

0

𝜎(𝑟, Θ
𝑢

(𝑟), 𝑢(𝑟)) − 𝜎(𝑟, Θ
𝑢

(𝑟), V(𝑟))
2

𝑑𝑟

+𝐸∫

𝑇

0

𝑓(𝑟, Θ
𝑢

(𝑟), 𝑢(𝑟)) − 𝑓(𝑟, Θ
𝑢

(𝑟), V(𝑟))
2

𝑑𝑟]

≤ 𝐶𝐸∫

𝑇

0

|𝑢 (𝑟) − V (𝑟)|2𝑑𝑟

= 𝐶𝑑(𝑢(⋅), V (⋅))2,
(23)

where the second inequality is obtained by the mean value
theorem and the boundedness of 𝑏

𝑢
, 𝜎

𝑢
, and 𝑓

𝑢
. The proof is

complete.

We know that the adjoint process plays a key role in
establishing stochastic maximum principle. In the following,
we will study certain boundedness and continuity of adjoint
processes with the control variable under the metric 𝑑.

For a given admissible pair (𝑢(⋅); Θ
𝑢

(⋅)), corresponding
adjoint process Λ𝑢

(⋅) = (𝑘
𝑢

(⋅), 𝑝
𝑢

(⋅), 𝑞
𝑢

(⋅)) is defined as the
solution to the following FBSDE:

𝑑𝑘
𝑡
= − [𝑏

∗

𝑦
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡)) 𝑝
𝑡
+ 𝜎

∗

𝑦
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡)) 𝑞
𝑡

− 𝑓
∗

𝑦
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡)) 𝑘
𝑡

+𝑙
𝑦
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡))] 𝑑𝑡

− [𝑏
∗

𝑧
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡)) 𝑝
𝑡

+ 𝜎
∗

𝑧
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡)) 𝑞
𝑡

−𝑓
∗

𝑧
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡)) 𝑘
𝑡
+ 𝑙

𝑧
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡))] 𝑑𝐵
𝑡
,

𝑑𝑝
𝑡
= − [𝑏

∗

𝑥
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡)) 𝑝
𝑡

+ 𝜎
∗

𝑥
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡)) 𝑞
𝑡
− 𝑓

∗

𝑥
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡)) 𝑘
𝑡

+𝑙
𝑥
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡))] 𝑑𝑡 + 𝑞
𝑡
𝑑𝐵

𝑡
,

𝑘
0
= −𝛾

𝑦
(𝑦

𝑢

(0)) ,

𝑝
𝑇
= −ℎ

∗

𝑥
(𝑥

𝑢

(𝑇)) 𝑘 (𝑇) + 𝜙
𝑥
(𝑥

𝑢

(𝑇)) ,

0 ≤ 𝑡 ≤ 𝑇.

(24)

The adjoint equation (24) is a linear FBSDE whose
solution consists of (𝑝𝑢

(⋅), 𝑞
𝑢

(⋅), 𝑘
𝑢

(⋅)). Under Assumption 5,
by Lemma 3, the adjoint equation has a unique solution
Λ
𝑢

(⋅) = (𝑘
𝑢

(⋅), 𝑝𝑢

(⋅), 𝑞𝑢(⋅)) ∈ M2.
Next, the Hamiltonian𝐻 : [0, 𝑇]×R𝑛

×R𝑚

×R𝑚×𝑑

×𝑈×

R𝑚

×R𝑛

×R𝑛×𝑑

→ R is defined as follows:

𝐻(𝑡, 𝑥, 𝑦, 𝑧, 𝑢, 𝑘, 𝑝, 𝑞)

= (𝑘, −𝑓 (𝑡, 𝑥, 𝑦, 𝑧, 𝑢)) + (𝑝, 𝑏 (𝑡, 𝑥, 𝑦, 𝑧, 𝑢))

+ (𝑞, 𝜎 (𝑡, 𝑥, 𝑦, 𝑧, 𝑢)) + 𝑙 (𝑡, 𝑥, 𝑦, 𝑧, 𝑢) .

(25)

Then (24) can be rewritten in Hamiltonian system as follows:

𝑑𝑘 (𝑡) = −𝐻
𝑦
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡) , Λ
𝑢

(𝑡)) 𝑑𝑡

− 𝐻
𝑧
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡) , Λ
𝑢

(𝑡)) 𝑑𝐵 (𝑡) ,

𝑑𝑝 (𝑡) = −𝐻
𝑥
(𝑡, Θ

𝑢

(𝑡) , 𝑢 (𝑡) Λ
𝑢

(𝑡)) 𝑑𝑡 + 𝑞 (𝑡) 𝑑𝐵 (𝑡) ,

𝑘
0
= −𝛾

𝑦
(𝑦

𝑢

(0)) ,

𝑝 (𝑡) = −ℎ
∗

𝑥
(𝑥

𝑢

(𝑇)) 𝑘 (𝑇) + 𝜙
𝑥
(𝑥 (𝑇)) .

(26)

Lemma 12. Let Assumption 5 be satisfied. Then there is a
constant 𝐶 s.t. for all control pairs (𝑢(⋅); Θ(⋅)) = (𝑢(⋅); 𝑥

𝑢

(⋅),
𝑦
𝑢

(⋅), 𝑧
𝑢

(⋅)); it holds

Λ
𝑢

(⋅)
M2

≤ 𝐶. (27)
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Proof. Under Assumption 5, by the estimate (8), we have

Λ
𝑢

(⋅)
M2

≤ 𝐶{𝐸∫

𝑇

0

𝑙𝑥 (𝑟, Θ
𝑢

(𝑟) , 𝑢 (𝑟))


2

𝑑𝑟

+ 𝐸∫

𝑇

0


𝑙
𝑦
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟))


2

𝑑𝑟

+ 𝐸∫

𝑇

0

𝑙𝑧 (𝑟, Θ
𝑢

(𝑟), 𝑢(𝑟))


2

𝑑𝑟

+𝐸
𝜙𝑥 (𝑥

𝑢

(𝑇))


2

+ 𝐸

𝛾
𝑦
(𝑦

𝑢

(0))


2

}

≤ 𝐶 {
Θ

𝑢

(⋅)
M2

+ 1} ≤ 𝐶,

(28)

where the last inequality is obtained by Lemma 10. The proof
is complete.

Assumption 13. There is a constant 𝐶 > 0 s.t. for every
(𝑡, 𝜃, 𝑢) = (𝑡, 𝑥, 𝑦, 𝑧, 𝑢), (𝑡, 𝜃, 𝑢) = (𝑡, 𝑥, 𝑦, 𝑧, 𝑢) ∈ [0, 𝑇] ×R𝑛

×

R𝑚

×R𝑚×𝑑

× 𝑈 and a.s. 𝜔 ∈ Ω,

𝑙
𝛼
(𝑡, 𝜃, 𝑢) − 𝑙

𝛼
(𝑡, 𝜃, 𝑢)


≤ 𝐶 (|𝑥| + |�̂�| +

𝑦
 + |�̂�|) ,

𝜙𝑥 (𝑥) − 𝜙
𝑥
(𝑥)

 ≤ 𝐶 |𝑥| ,


𝛾
𝑦
(𝑦) − 𝛾

𝑦
(𝑦)


≤ 𝐶

𝑦
 ,

(29)

where 𝛼 = 𝑥, 𝑦, 𝑧, 𝑢.

Lemma 14. Let Assumptions 5 and 13 be satisfied. Let
Λ
𝑢

(⋅) = (𝑘
𝑢

(⋅), 𝑝
𝑢

(⋅), 𝑞
𝑢

(⋅)) and Λ
V
(⋅) = (𝑘

V
(⋅), 𝑝

V
(⋅), 𝑞

V
(⋅))

be adjoint processes corresponding to two admissible pairs
(𝑢(⋅); Θ

𝑢

(⋅)) = (𝑢(⋅); 𝑥
𝑢

(⋅), 𝑦
𝑢

(⋅), 𝑧
𝑢

(⋅)) and (V(⋅); ΘV
(⋅)) =

(V(⋅); 𝑥V
(⋅), 𝑦

V
(⋅), 𝑧

V
(⋅)), respectively. Then we have

Λ
𝑢

(⋅) − Λ
V
(⋅)



2

M2
≤ 𝐶𝑑(𝑢 (⋅) , V (⋅))2. (30)

Proof. Under Assumptions 5 and 13, from the estimate (7), we
have
Λ

𝑢

(⋅) − Λ
V
(⋅)



2

M2

≤ 𝐶{𝐸∫

𝑇

0

𝑙𝑥 (𝑟, Θ
𝑢

(𝑟) , 𝑢 (𝑟))

+ 𝑙
𝑦
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟)) + 𝑙
𝑧
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟))

− 𝑙
𝑥
(𝑟, Θ

V
(𝑟) , V (𝑟)) − 𝑙

𝑦
(𝑟, Θ

V
(𝑟) , V (𝑟))

−𝑙
𝑧
(𝑟, Θ

𝑢

(𝑟) , V (𝑟))
2

𝑑𝑟

+ 𝐸
𝜙𝑥 (𝑥

𝑢

(𝑇)) − 𝜙
𝑥
(𝑥

V
(𝑇))



2

+𝐸
𝛾𝑥 (𝑦

𝑢

(0)) − 𝛾
𝑥
(𝑦

V
(0))



2

}

≤ 𝐶{‖Θ (⋅) − Θ (⋅)‖
2

M2
+ 𝐸∫

𝑇

0

|𝑢 (𝑟) − V (𝑟)|2𝑑𝑟}

≤ 𝐶𝑑(𝑢 (⋅) , V (⋅))2,
(31)

where the last inequality is obtained by Lemma 11 directly.

5. A Variational Formula

The purpose of this section is to obtain a variational formula
for the cost functional (10). For any two given control pairs
(𝑢(⋅); Θ

𝑢

(⋅)) = (𝑢(⋅); 𝑥
𝑢

(⋅), 𝑦
𝑢

(⋅), 𝑧
𝑢

(⋅)) and (𝑢(⋅); Θ
𝑢

(⋅)) =

(𝑢(⋅); 𝑥
𝑢

(⋅), 𝑦
𝑢

(⋅), 𝑧
𝑢

(⋅)), from the convex property of the
control domain 𝑈, we can define an admissible control
process as follows:

𝑢
𝛿

(⋅) = 𝑢 (⋅) + 𝛿 (𝑢 (⋅) − 𝑢 (⋅)) , 0 ≤ 𝛿 ≤ 1. (32)

We denote the corresponding state process by Θ
𝑢
𝛿

(⋅) =

(𝑥
𝑢
𝛿

(⋅), 𝑦
𝑢
𝛿

(⋅), 𝑧
𝑢
𝛿

(⋅)).
In the following, using the Hamiltonian𝐻 (see (25)) and

adjoint process Λ
𝑢

(⋅) = (𝑘
𝑢

(⋅), 𝑝𝑢

(⋅), 𝑞𝑢(⋅)) associated with
the admissible control pair (𝑢(⋅); Θ

𝑢

(⋅)), we will state and
prove a presentation for the difference 𝐽(𝑢𝛿(⋅)) − 𝐽(𝑢(⋅)).

Lemma 15. Let Assumption 5 be satisfied. Then we get

𝐽 (𝑢
𝛿

(⋅)) − 𝐽 (𝑢 (⋅))

= 𝐸∫

𝑇

0

[𝐻(𝑟, Θ
𝑢
𝛿

(𝑟) , 𝑢
𝛿

(𝑟) , Λ
𝑢

)

− 𝐻(𝑟, Θ
𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟))

− 𝐻
𝑥
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟))

× (𝑥
𝑢
𝛿

(𝑟) − 𝑥
𝑢

(𝑟))

− 𝐻
𝑦
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟))

× (𝑦
𝑢
𝛿

(𝑟) − 𝑦
𝑢

(𝑟))

− 𝐻
𝑧
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟))

× (𝑧
𝑢
𝛿

(𝑟) − 𝑧
𝑢

(𝑟))] 𝑑𝑟

+ 𝐸 [𝜙 (𝑥
𝑢
𝛿

(𝑇)) − 𝜙 (𝑥
𝑢

(𝑇))

−𝜙
𝑥
(𝑥

𝑢

(𝑇)) ⋅ (𝑥
𝑢
𝛿

(𝑇) − 𝑥
𝑢

(𝑇))]

+ 𝐸 [𝛾 (𝑦
𝑢
𝛿

(0)) − 𝛾 (𝑦
𝑢

(0))

−𝛾
𝑦
(𝑦

𝑢

(0)) ⋅ (𝑦
𝑢
𝛿

(0) − 𝑦
𝑢

(0))]

− 𝐸 [(ℎ (𝑥
𝑢
𝛿

(𝑇)) − ℎ (𝑥
𝑢

(𝑇)) , 𝑘
𝑢

(𝑇))

− (ℎ
𝑥
(𝑥

𝑢

(𝑇)) ⋅ (𝑥
𝑢
𝛿

(𝑇) − 𝑥
𝑢

(𝑇)) , 𝑘
𝑢

(𝑇))]

≜ 𝛽
(𝑢
𝛿
,𝑢)

.

(33)
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Proof. Applying the definitions of 𝐽(𝑢(⋅)) andHamilton𝐻, we
obtain

𝐽 (𝑢
𝛿

(⋅)) − 𝐽 (𝑢 (⋅))

= 𝐸∫

𝑇

0

[𝐻(𝑟, Θ
𝑢
𝛿

(𝑟) , 𝑢
𝛿

(𝑟) , Λ
𝑢

(𝑟))

− 𝐻(𝑟, Θ
𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟))

− (𝑏 (𝑟, Θ
𝑢
𝛿

(𝑟) , 𝑢
𝛿

(𝑟))

−𝑏 (𝑟, Θ
𝑢

(𝑟) , 𝑢 (𝑟)) , 𝑝
𝑢

(𝑟) )

− (𝜎 (𝑟, Θ
𝑢
𝛿

(𝑟) , 𝑢
𝛿

(𝑟))

−𝜎 (𝑟, Θ
𝑢

(𝑟) , 𝑢 (𝑟)) , 𝑞
𝑢

(𝑟) )

+ (𝑓 (𝑟, Θ
𝑢
𝛿

(𝑟) , 𝑢
𝛿

(𝑟))

−𝑓 (𝑟, Θ
𝑢

(𝑟) , 𝑢 (𝑟)) , 𝑘
𝑢

(𝑟)) ] 𝑑𝑟

+ 𝐸 [𝜙 (𝑥
𝑢
𝛿

(𝑇)) − 𝜙 (𝑥
𝑢

(𝑇))]

+ 𝐸 [𝛾 (𝑦
𝑢
𝛿

(0)) − 𝛾 (𝑦
𝑢

(0))] .

(34)

Applying Itô formula to (𝑝
𝑢

(𝑟), 𝑥
𝑢
𝛿

(𝑟) − 𝑥
𝑢

(𝑟)) + (𝑘
𝑢

(𝑟),
𝑦
𝑢
𝛿

(𝑟) − 𝑦
𝑢

(𝑟)), we have

𝐸∫

𝑇

0

[(𝑏 (𝑟, Θ
𝑢
𝛿

(𝑟) , 𝑢
𝛿

(𝑟)) − 𝑏 (𝑟, Θ
𝑢

(𝑟) , 𝑢 (𝑟)) , 𝑝
𝑢

(𝑟))

+ (𝜎 (𝑟, Θ
𝑢
𝛿

(𝑟) , 𝑢
𝛿

(𝑟))

−𝜎 (𝑟, Θ
𝑢

(𝑟) , 𝑢 (𝑟)) , 𝑞
𝑢

(𝑟) )

− (𝑓 (𝑟, Θ
𝑢
𝛿

(𝑟) , 𝑢
𝛿

(𝑟))

−𝑓 (𝑟, Θ
𝑢

(𝑟) , 𝑢 (𝑟)) , 𝑘
𝑢

(𝑟)) ] 𝑑𝑟

= 𝐸∫

𝑇

0

[𝐻
𝑥
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟)) (𝑥
𝑢
𝛿

(𝑟) − 𝑥
𝑢

(𝑟))

+ 𝐻
𝑦
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟))

× (𝑦
𝑢
𝛿

(𝑟) − 𝑦
𝑢

(𝑟))

+ 𝐻
𝑧
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟))

× (𝑧
𝑢
𝛿

(𝑟) − 𝑧
𝑢

(𝑟))] 𝑑𝑟

+ 𝐸 [𝜙
𝑥
(𝑥

𝑢

(𝑇)) ⋅ (𝑥
𝑢
𝛿

(𝑇) − 𝑥
𝑢

(𝑇))]

+ 𝐸 [𝛾
𝑦
(𝑦

𝑢

(0)) ⋅ (𝑦
𝑢
𝛿

(0) − 𝑦
𝑢

(0))]

+ 𝐸 [(ℎ (𝑥
𝑢
𝛿

(𝑇)) − ℎ (𝑥
𝑢

(𝑇)) , 𝑘
𝑢

(𝑇))

− (ℎ
𝑥
(𝑥

𝑢

(𝑇)) ⋅ (𝑥
𝑢
𝛿

(𝑇) − 𝑥
𝑢

(𝑇)) , 𝑘
𝑢

(𝑇))] .

(35)

Now putting (35) into (34), we deduce the fact that (33) holds.
The proof is complete.

Remark 16. According to the above proof, it is easy to check
that 𝑢𝛿(⋅) can be changed as any admissible control and need
not have the formof the convex variation𝑢

𝛿

(⋅) = 𝑢(⋅)+𝛿(𝑢(⋅)−

𝑢(⋅)).

Now we state and prove the variational formula for the
cost functional (10) as follows.

Theorem 17. Suppose that Assumption 5 holds. Let 𝑢(⋅) be any
given admissible control. Then we have

𝑑

𝑑𝛿
𝐽 (𝑢 (⋅) + 𝛿 (𝑢 (⋅) − 𝑢 (⋅)))|

𝛿=0

:= lim
𝛿→0

𝐽 (𝑢 (⋅) + 𝛿 (V (⋅) − 𝑢 (⋅))) − 𝐽 (𝑢 (⋅))

𝛿

= 𝐸∫

𝑇

0

(𝐻
𝑢
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟)) , 𝑢 (𝑟) − 𝑢 (𝑟)) 𝑑𝑟,

(36)

where 𝑢(⋅) is any given admissible control and 𝛿 > 0.

Proof. Define 𝑢
𝛿

(⋅) = 𝑢(⋅) + 𝛿(V(⋅) − 𝑢(⋅)); by Lemma 15, we
have

𝐽 (𝑢
𝛿

(⋅)) − 𝐽 (𝑢 (⋅))

= 𝐽 (𝑢 (⋅) + 𝛿 (𝑢 (⋅) − 𝑢 (⋅))) − 𝐽 (𝑢 (⋅))

= 𝐸∫

𝑇

0

𝐻
𝑢
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟)) (𝑢
𝛿

(𝑟) − 𝑢 (𝑟)) 𝑑𝑟

+ 𝛽
(𝑢
𝛿
,𝑢)

− 𝐸∫

𝑇

0

𝐻
𝑢
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟))

× (𝑢
𝛿

(𝑟) − 𝑢 (𝑟)) 𝑑𝑟

= 𝛿𝐸∫

𝑇

0

𝐻
𝑢
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟)) (V (𝑟) − 𝑢 (𝑟)) 𝑑𝑟

+ 𝛽
(𝑢
𝛿
,𝑢)

− 𝐸∫

𝑇

0

𝐻
𝑢
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟))

× (𝑢
𝛿

(𝑟) − 𝑢 (𝑟)) 𝑑𝑟.

(37)

Applying Lemma 11 and Assumption 5, we get

𝛽
(𝑢
𝛿
,𝑢)

− 𝐸∫

𝑇

0

𝐻
𝑢
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟))

× (𝑢
𝛿

(𝑟) − 𝑢 (𝑟)) 𝑑𝑟 = 𝑜 (𝛿) .

(38)
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Hence, by (38) and (37), we get

lim
𝛿→0

𝐽 (𝑢
𝛿

(⋅)) − 𝐽 (𝑢 (⋅))

𝛿

= 𝐸∫

𝑇

0

(𝐻
𝑢
(𝑟, Θ

𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝑢

(𝑟)) , V (𝑟) − 𝑢 (𝑟)) 𝑑𝑟.

(39)

The proof is complete.

6. Necessary Conditions for Near-Optimality

In this section, we will state and prove our main results,
that is, the stochastic maximum principle of the near-optimal
control of Problem 𝑃𝑅𝑂. Moreover, we give the additional
assumption as follows.

Assumption 18. There is a constant 𝐶 > 0 s.t. for all (𝑡, 𝑥,
𝑦, 𝑧, 𝑥, 𝑦, 𝑧, 𝑢, 𝑢) and a.s. 𝜔 ∈ Ω,

𝑙 (𝑡, 𝑥, 𝑧, 𝑦, 𝑢) − 𝑙 (𝑡, 𝑥, 𝑧, 𝑦, 𝑢)


≤ 𝐶 (|𝑥| + |�̂�| +
𝑦
 + |�̂�|) .

(40)

Theorem 19. Suppose that Assumptions 5 and 13 hold. Let
(𝑢

𝜀

(⋅); Θ
𝜀

(⋅)) = (𝑢
𝜀

(⋅); 𝑥
𝜀

(⋅), 𝑦
𝜀

(⋅), 𝑧
𝜀

(⋅)) be 𝜀-optimal pair of
problem 𝑃𝑅𝑂. Then, for any given 𝜀 > 0, there is a positive
constant 𝐶 s.t.:

𝐻
𝑢
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜖

(𝑟)) ⋅ (𝑢 − 𝑢
𝜀

(𝑟)) ≥ −𝐶𝜀
1/2

,

∀𝑢 ∈ 𝑈, 𝑎.𝑒. (𝑟, 𝜔) ∈ [0, 𝑇] × Ω,

(41)

where Λ
𝜖

(⋅) = (𝑘
𝜖

(⋅), 𝑝
𝜀

(⋅), 𝑞
𝜀

(⋅)) is the adjoint process
corresponding to (𝑢

𝜀

(⋅); Θ
𝜀

(⋅)).

Proof. By Lemma 11 and Assumption 13, we can deduce the
fact that 𝐽(𝑢(⋅)) is continuous on A with respect to the
metric (18). Using Ekeland’s variational principle (see [16])
with 𝛿 = 𝜀

1/2, there exists an admissible pair (𝑢𝜀(⋅); Θ𝜀

(⋅)) =

(𝑢
𝜀

(⋅); 𝑥
𝜀

(⋅), 𝑦
𝜀

(⋅), 𝑧
𝜀

(⋅)) such that

𝑑 (𝑢
𝜀

(⋅) , 𝑢
𝜀

(⋅)) ≤ 𝜀
1/2

, (42)

𝐽 (𝑢 (⋅)) − 𝐽 (𝑢
𝜀

(⋅)) ≥ −𝜀
1/2

𝑑 (𝑢 (⋅) , 𝑢
𝜀

(⋅)) ,

∀𝑢 (⋅) ∈ A.

(43)

Now we define a convex perturbed control 𝑢𝜀,ℎ(⋅) of 𝑢𝜀(⋅) as

𝑢
𝜀,ℎ

(⋅) = 𝑢
𝜀

(⋅) + ℎ (𝑢
𝜀

(⋅) − 𝑢 (⋅)) , (44)

where 𝑢(⋅) ∈ A is an arbitrary given admissible control and
0 ≤ ℎ ≤ 1.

Then by the variational formula (36), (43), and the fact
that

𝑑 (𝑢
𝜀,ℎ

(⋅) , 𝑢
𝜀

(⋅)) ≤ 𝐶ℎ, (45)

we have

𝐸∫

𝑇

0

𝐻
𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜖

(𝑟)) ⋅ (𝑢 (𝑟) − 𝑢
𝜀

(𝑡)) 𝑑𝑡

= lim
𝜀→0
+

𝐽 (𝑢
𝜀,ℎ

(⋅)) − 𝐽 (𝑢
𝜀

(⋅))

ℎ

≥ lim
𝜀→0
+

−𝜀
1/2

𝑑 (𝑢
𝜀,ℎ

(⋅) , 𝑢
𝜀

(⋅))

ℎ

≥ −𝐶𝜀
1/2

,

(46)

where Λ
𝜖

= (𝑝
𝜀

(⋅), 𝑞
𝜀

(⋅), 𝑘
𝜖

(⋅)) is the adjoint process corre-
sponding to (𝑢

𝜀

(⋅); Θ
𝜀

(⋅)).
Now in order to obtain the optimal condition (41), we now

have to estimate the following formula:

𝐼
𝜀

:= 𝐸∫

𝑇

0

𝐻
𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟)) ⋅ (𝑢 (𝑟) − 𝑢
𝜀

(𝑟)) 𝑑𝑟

− 𝐸∫

𝑇

0

𝐻
𝑢
(𝑡, Θ

𝜖

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟)) ⋅ (𝑢 (𝑟) − 𝑢
𝜀

(𝑟)) 𝑑𝑟.

(47)

First, by adding and subtracting 𝐸∫
𝑇

0

𝐻
𝑢
(𝑡, Θ

𝜀

(𝑟), 𝑢
𝜖

(𝑟),
Λ
𝜖

(𝑟)) ⋅ (𝑢(𝑟) − 𝑢
𝜀

(𝑟))𝑑𝑟, we have

𝐼
𝜀

= 𝐸∫

𝑇

0

𝐻
𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟)) ⋅ (𝑢
𝜀

(𝑟) − 𝑢
𝜀

(𝑟)) 𝑑𝑟

+ 𝐸∫

𝑇

0

(𝐻
𝑢
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟))

−𝐻
𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟)))

⋅ (𝑢 (𝑟) − 𝑢
𝜀

(𝑟)) 𝑑𝑟

= 𝐼
𝜀

1
+ 𝐼

𝜀

2
.

(48)

Next, using Lemmas 11 and 14 and (42), we have

𝐼
𝜀

2

 ≤ 𝐶𝐸∫

𝑇

0

𝐻𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟))

−𝐻
𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟))

𝑑𝑟

≤ 𝐶𝐸∫

𝑇

0

𝐻𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟))

−𝐻
𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟))

𝑑𝑟

+ 𝐶𝐸∫

𝑇

0


𝐻

𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟))

−𝐻
𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟))

𝑑𝑟
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≤ 𝐶(𝐸 sup
0≤𝑟≤𝑇

|𝑥
𝜀

(𝑟) − 𝑥
𝜀

(𝑟) |
2

)

1/2

+ 𝐶(𝐸 sup
0≤𝑟≤𝑇

|𝑝
𝜀

(𝑟) − 𝑝
𝜀

(𝑟) |
2

)

1/2

+ 𝐶(𝐸∫

𝑇

0

|𝑞
𝜀

(𝑟) − 𝑞
𝜀

(𝑟) |
2

𝑑𝑟)

1/2

+ 𝐶(𝐸∫

𝑇

0

𝑢
𝜀

(𝑟) − 𝑢
𝜀

(𝑟)


2

𝑑𝑟)

1/2

+ (𝐸 sup
0≤𝑟≤𝑇

|𝑘
𝜀

(𝑟) − 𝑘
𝜀

(𝑟) |
2

)

1/2

≤ 𝐶(𝐸∫

𝑇

0

𝑢
𝜀

(𝑟) − 𝑢
𝜀

(𝑟)


2

𝑑𝑟)

1/2

≤ 𝐶𝜀
1/2

.

(49)

Then, combining Schwarz’s inequality and Lemmas 10 and 12
and (42), we have

𝐼
𝜀

1

 ≤ 𝐸(∫

𝑇

0

𝐻𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜖

(𝑟))


2

𝑑𝑟)

1/2

× (𝐸∫

𝑇

0

𝑢
𝜀

(𝑟) − 𝑢
𝜀

(𝑟)


2

𝑑𝑟)

1/2

≤ 𝐶(𝐸∫

𝑇

0

𝑢
𝜀

(𝑡) − 𝑢
𝜀

(𝑟)


2

𝑑𝑟)

1/2

≤ 𝐶𝜀
1/2

.

(50)

Therefore, combining (46), (47), (49), and (50), we have

𝐸∫

𝑇

0

𝐻
𝑢
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑡) , Λ
𝜖

(𝑟)) ⋅ (𝑢 (𝑟) − 𝑢
𝜀

(𝑟)) 𝑑𝑟

= 𝐸∫

𝑇

0

𝐻
𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜖

(𝑟))

⋅ (𝑢 (𝑟) − 𝑢
𝜀

(𝑟)) 𝑑𝑟 + 𝐼
𝜀

= 𝐸∫

𝑇

0

𝐻
𝑢
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜖

(𝑟))

⋅ (𝑢 (𝑟) − 𝑢
𝜀

(𝑟)) 𝑑𝑟 + 𝐼
𝜀

1
+ 𝐼

𝜀

2

≥ −𝐶𝜀
1/2

(51)

which implies that (41) holds. The proof is complete.

7. Sufficient Optimality Conditions

In this section, we will show that, under certain convex
conditions, the near-maximum condition of the Hamiltonian
function in the integral form is sufficient for near-optimality.

Theorem 20. Under Assumption 5, let (𝑢𝜀(⋅); Θ𝜖

(⋅)) = (𝑢
𝜀

(⋅);
𝑥
𝜀

(⋅), 𝑦
𝜖

(⋅), 𝑧
𝜖

(⋅)) be an admissible pair with 𝑦(𝑇) = 𝑀𝑥
𝜀

(𝑇),
𝑀 ∈ 𝐿

2

(Ω,F
𝑇
, 𝑃;R𝑚×𝑛

). Let Λ𝜖

(⋅) = (𝑝
𝜖

(⋅), 𝑞
𝜖

(⋅), 𝑘
𝜀

(⋅)) be
the adjoint process associated with (𝑢

𝜀

(⋅); Θ
𝜖

(⋅)). Assume that
for almost all (𝑡, 𝜔) ∈ [0, 𝑇]×Ω,𝐻(𝑡, 𝑥, 𝑦, 𝑧, 𝑢, Λ

𝜖

(𝑡)) is convex
in (𝑥, 𝑦, 𝑧, 𝑢), 𝛾(𝑦) is convex in 𝑦, and 𝜙(𝑥) is convex in 𝑥,
respectively, and for some 𝜀, the optimality conditions,

𝐸∫

𝑇

0

𝐻(𝑟, Θ
𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟)) 𝑑𝑟

≤ 𝐸 inf
𝑢(⋅)∈A

∫

𝑇

0

𝐻(𝑟, Θ
𝜀

(𝑟) , 𝑢 (𝑟) , Λ
𝜀

(𝑟)) 𝑑𝑟 + 𝜀,

(52)

hold. Then

𝐽 (𝑢
𝜀

(⋅)) ≤ inf
𝑢(⋅)∈A

𝐽 (𝑢 (⋅)) + 𝐶
1
𝜀
1/2

, (53)

where 𝐶
1
is a constant independent of 𝜀.

Proof. In the following, 𝐶
1
is a constant which may change

from line to line and is independent of 𝜀.
According to Lemma 15, we deduce the fact that

𝐽 (𝑢 (⋅)) − 𝐽 (𝑢
𝜀

(⋅))

= 𝐸∫

𝑇

0

[𝐻 (𝑡, Θ
𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝜀

(𝑟))

− 𝐻 (𝑟, Θ
𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟))

− 𝐻
𝑥
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟))

× (𝑥
𝑢

(𝑟) − 𝑥
𝜖

(𝑟))

− 𝐻
𝑦
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟))

× (𝑦
𝑢

(𝑟) − 𝑦
𝜖

(𝑟))

− 𝐻
𝑧
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟))

× (𝑧
𝑢

(𝑟) − 𝑧
𝜖

(𝑟))] 𝑑𝑟

+ 𝐸 [𝜙 (𝑥
𝑢

(𝑇)) − 𝜙 (𝑥
𝜖

(𝑇))

−Φ
𝑥
(𝑥

𝜖

(𝑇)) ⋅ (𝑥
𝑢

(𝑅) − 𝑥
𝜖

(𝑇))]

+ 𝐸 [𝛾 (𝑦
𝑢

(0)) − 𝛾 (𝑦
𝜖

(0))

−𝛾
𝑦
(𝑦

𝜀

(0)) ⋅ (𝑦
𝑢

(0) − 𝑦
𝜖

(0)) ] ,

(54)

where (𝑢(⋅); 𝑥
𝑢

(⋅), 𝑦
𝑢

(⋅), 𝑧
𝑢

(⋅)) are any given admissible con-
trol pairs. By the convexity of𝐻, 𝜙, and 𝛾, we have

𝐻(𝑡, Θ
𝑢

(𝑟) , 𝑢 (𝑟) , Λ
𝜀

(𝑟))

− 𝐻 (𝑟, Θ
𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟))

≥ 𝐻
𝑥
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟)) (𝑥
𝑢

(𝑟) − 𝑥
𝜖

(𝑟))
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+ 𝐻
𝑦
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟)) (𝑦
𝑢

(𝑟) − 𝑦
𝜖

(𝑟))

+ 𝐻
𝑧
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟)) (𝑧
𝑢

(𝑟) − 𝑧
𝜖

(𝑟))

+ 𝐻
𝑢
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟)) (𝑢 (𝑟) − 𝑢
𝜀

(𝑟)) ,

𝐸 [𝜙 (𝑥
𝑢

(𝑇)) − 𝜙 (𝑥
𝜖

(𝑇))

−𝜙
𝑥
(𝑥

𝜖

(𝑇)) ⋅ (𝑥
𝑢

(𝑇) − 𝑥
𝜖

(𝑇))]

+ 𝐸 [𝛾 (𝑦
𝑢

(0)) − 𝛾 (𝑦
𝜖

(0))

−𝛾
𝑦
(𝑦

𝑢

(0)) ⋅ (𝑦
𝑢

(0) − 𝑦
𝜖

(0))] ≥ 0.

(55)

Putting (55) into (54), we have

𝐽 (𝑢
𝜀

(⋅)) − 𝐽 (𝑢 (⋅))

≤ −𝐸∫

𝑇

0

𝐻
𝑢
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜀

(𝑟) , Λ
𝜀

(𝑟)) (𝑢 (𝑟) − 𝑢
𝜀

(𝑟)) 𝑑𝑟.

(56)

Therefore, the rest of the proof is only to estimate the term
𝐻

𝑢
(𝑟, Θ

𝜀

(𝑟), 𝑢
𝜀

(𝑟), Λ
𝜀

(𝑟))(𝑢(𝑟)−𝑢
𝜀

(𝑟)). To this end, for a given
𝜀 > 0, let us introduce a new metric 𝑑 onA as follows:

𝑑 (𝑢 (⋅) , 𝑢


(⋅)) = 𝐸∫

𝑇

0

V𝜀 (𝑟)

𝑢 (𝑟) − 𝑢



(𝑟)

𝑑𝑟, (57)

where
V𝜀 (𝑟) = 1 +

𝑝
𝜀

(𝑟)
 +

𝑞
𝜀

(𝑟)
 +

𝑘
𝜀

(𝑟)
 ≥ 1. (58)

Now onA we define a new functional 𝐹 by

𝐹 (𝑢 (⋅)) = 𝐸∫

𝑇

0

𝐻(𝑟, Θ
𝜀

(𝑟) , 𝑢 (𝑟) , Λ
𝜀

(𝑟)) 𝑑𝑟. (59)

It is easy to check that


𝐹 (𝑢 (⋅)) − 𝐹 (𝑢



(⋅))

≤ 𝐶𝐸∫

𝑇

0

V𝜀 (𝑟)

𝑢 (𝑟) − 𝑢



(𝑟)

𝑑𝑟.

(60)

Therefore 𝐹 is continuous on A with respect to metric 𝑑.
Using (52) and Ekeland’s variational principle, we can find an
admissible control 𝑢𝜀(⋅) ∈ A such that

𝑑 (𝑢
𝜀

(⋅) , 𝑢
𝜀

(⋅)) ≤ 𝜀
1/2

, (61)

𝐸∫

𝑇

0

�̃� (𝑟, Θ
𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜀

(𝑟))

= max
𝑢(⋅)∈A

𝐸∫

𝑇

0

�̃� (𝑡, Θ
𝜀

(𝑟) , 𝑢 (𝑟) , Λ
𝜀

(𝑟)) ,

(62)

where
�̃� (𝑡, Θ

𝜀

(𝑟) , 𝑢 (𝑟) , Λ
𝜀

(𝑟))

= 𝐻 (𝑡, Θ
𝜀

(𝑟) , 𝑢 (𝑟) , Λ
𝜀

(𝑟)) − 𝜀
1/2V𝜀 (𝑟) 𝑢 (𝑟) − 𝑢

𝜀

(𝑟)
 .

(63)

By standard methods, the maximum condition (52) implies
that

�̃� (𝑡, Θ
𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜀

(𝑟))

= max
𝑢(⋅)∈A

�̃� (𝑡, Θ
𝜀

(𝑟) , 𝑢 (𝑟) , Λ
𝜀

(𝑟)) ,

a.e. (𝑟, 𝜔) ∈ [0, 𝑇] × Ω.

(64)

Applying Proposition 2.3.2 in [30], we have

0 ∈ 𝜕
𝑢
𝐻(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜀

(𝑟))

⊂ 𝜕
𝑢
𝐻(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜀

(𝑟))

+ [−𝜀
1/2V𝜀 (𝑟) , 𝜀1/2V𝜀 (𝑟)] ,

(65)

which implies that there exists 𝛽𝜀

(𝑟) ∈ [−𝜀
1/2V𝜀(𝑟), 𝜀1/2V𝜀(𝑟)]

such that

𝐻
𝑢
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜀

(𝑟)) + 𝛽
𝜀

(𝑟) = 0. (66)

Therefore, under Assumptions 13 and 5,
𝐻𝑢

(𝑟, Θ
𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜀

(𝑟))

−𝐻
𝑢
(𝑟, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜀

(𝑟))


+
𝐻𝑢

(𝑟, Θ
𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜀

(𝑟))


≤ 𝐶 (1 +
𝑝

𝜀

(𝑟)
 +

𝑞
𝜀

(𝑟)
 +

𝑘
𝜀

(𝑟)
)

×
𝑢

𝜀

(𝑡) − 𝑢
𝜀

(𝑡)
 + 𝜀

1/2V𝜀

≤ 𝐶 (1 +
𝑝

𝜀

(𝑟)
 +

𝑞
𝜀

(𝑟)
 +

𝑘
𝜀

(𝑟)
)

× (
𝑢

𝜀

(𝑟) − 𝑢
𝜀

(𝑟)
 + 𝜀

1/2

) .

(67)

Then, applying Holder’s inequality and Lemma 12 and (61),
we deduce

𝐸∫

𝑇

0

𝐻𝑢
(𝑡, Θ

𝜀

(𝑟) , 𝑢
𝜖

(𝑟) , Λ
𝜀

(𝑟))
 𝑑𝑟

≤ 𝑑 (𝑢
𝜀

(⋅) , 𝑢
𝜀

(⋅)) + 𝐶𝜀
1/2

≤ 𝐶𝜀
1/2

.

(68)

By (56) and (68), we get

𝐽 (𝑢
𝜀

(⋅)) ≤ 𝐽 (𝑢 (⋅)) + 𝐶𝜀
1/2

. (69)

Since 𝑢(⋅) is arbitrary,𝑢(⋅) is a near-optimal control with order
𝜀
1/2.

8. Conclusion

This paper is the near-optimal control problem for a stochas-
tic system driven by fully coupled FBSDEs. Stochastic max-
imum principle and verification theory of the near-optimal
control are obtained. The control variable appears in both
drift and diffusion coefficients of the FBSDEs. The control
domain is assumed to be convex. The reviewers suggest that
the data-driven control has extensive applications in industry
and finance (see, e.g., [31–33] and the references therein)
and the model discussed in this present paper may has the
potential to achieve more practical oriented results under
data-driven framework. Some investigations on this topicwill
be studied and carried out in our future publications.
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This paper deals with the problem of fault-tolerant control (FTC) of uncertain stochastic systems subject to modeling uncertainties
and actuator failures. A robust adaptive fault-tolerant controller design method based on stochastic Lyapunov theory is developed
to accommodate the negative impact on system performance arising from uncertain system parameters and external disturbances
as well as actuation faults. There is no need for on-line fault detection and diagnosis (FDD) unit in the proposed FTC scheme,
which not only simplifies the design process but also makes the implementation inexpensive. Numerical examples are provided to
validate and illustrate the benefits of the proposed control method.

1. Introduction

Stability analysis and control design of stochastic systems
have received increasing attention during the past decades.
Under the framework of Itô equations together with the
notion of mean-square stability, some interesting results
have been obtained in terms of generalized algebraic Riccati
equations, linear matrix inequality (LMI), or spectra of some
operators (see, for instance, [1–4] and the references cited
therein).

However, to our knowledge, very few works have
dealt with the stabilization of general stochastic systems
where actuator failures, parameter uncertainties, and state-
dependent disturbances are involved simultaneously. This
motivates us to investigate the reliable control problem
of stochastic systems, aiming at maintaining an acceptable
performance for the closed-loop systems in the presence of
actuator failures and modeling uncertainties.

Actuator failures can cause severe performance deterio-
ration of control systems, or even system instability, leading
to catastrophic accidents. Fault-tolerant control (FTC) has
been viewed as one of the most promising methods to
increase system safety and reliability and has thus received
considerable attention from control and system engineering

research community [5–17]. Most existing FTC methods can
be broadly classified as active FTC and passive FTC. The
active FTC requires a fault detection and diagnosis (FDD)
mechanism to detect and identify the faults in real time,
and a mechanism to reconfigure the controller according
to the on-line fault information from the FDD [9–17]. The
main idea of the passive FTC approach is to design a single
controller that is robust against faults and uncertainties.
In contrast to the passive approach, active methods utilize
control reconfiguration to adjust controllers in real time so
that the impacts of the failures can be compensated and the
stability as well as the acceptable performance of the system
can be maintained. Remarkable progress have been made
in the area of actuator accommodation control with various
effective design methods developed such as linear quadratic
[18], multiple model designs [19–21], model following [2],
FDD-dependent designs [22–24], and sliding mode control-
based designs [10, 25].

It is noted that, by blending adaptive control into FTC,
the resultant control scheme turns out to be effective in
reconfigurable control of systems with actuator failures [9,
26–30]. However, it is noted that few of the aforementioned
works address the fault-tolerant control problem of stochastic
systems.
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In this research, we will consider robust adaptive FTC for
uncertain stochastic systems subject to actuator faults. The
system under consideration involves parameter uncertainties
and state-dependent disturbances. Moreover, there involves
actuation faults that are assumed to be unpredictable during
the system operation.We are interested in developing an FTC
control scheme without the need for FDD. The developed
FTC scheme is user friendly in the fact that no complicated
computation is involved in its design and implementation.

The remaining part of the paper is organized as follows.
In Section 2, the control problem is formulated. The design
and analysis of the proposed control schemes are given in
Section 3. Numerical simulations are conducted to demon-
strate various features of the proposed control method and
the results are presented in Section 4. Finally, the paper is
closed with some concluding comments in Section 5.

Notation. The notations in this paper are quite standard. 𝑅𝑛
and 𝑅𝑛×𝑚 denote, respectively, the 𝑛 dimensional Euclidean
space and the set of all 𝑛 × 𝑚 real matrices. The superscript
“𝑇” denotes the transpose and the notation 𝑋 ≥ 𝑌 (resp.,
𝑋 > 𝑌) where 𝑋 and 𝑌 are symmetric matrices, which
means that 𝑋 − 𝑌 is positive semidefinite (resp., positive
definite). 𝐼 is the identity matrix with compatible dimension.
| ⋅ | is the Euclidean norm in 𝑅

𝑛. If 𝐴 is a matrix, denote
by ‖𝐴‖ its operator norm; that is, ‖𝐴‖ = sup{|𝐴𝑥| : |𝑥| =
1} = 𝜆

1/2

max(𝐴
𝑇

𝐴), where 𝜆max(⋅) [resp., 𝜆min(⋅)] means the
largest (resp., smallest) eigenvalues of 𝐴. Moreover, (Ω, F,P)
is probability space withΩ the sample space, F the 𝜎-algebra
of subsets of the sample space, and P the probability measure.
Ξ{⋅} stands for the mathematical expectation operator with
respect to the given probabilitymeasureP. 𝐿

2
and 𝐿

∞
denote

the spaces of square-integrable vector and bounded vector
functions over [0,∞), respectively.

2. Problem Statement

Consider the stabilization problem of the following uncertain
stochastic systems subject to actuator faults and external
disturbances:

𝑑𝑥 (𝑡) = [(𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑢
𝑎
(𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is state, 𝑢

𝑎
(𝑡) ∈ 𝑅

𝑚 is actual control input,
𝑓(𝑥, 𝑡) ∈ 𝑅

𝑚 is unknown external disturbances.
Here,𝜔(𝑡) is a one-dimensional Brownianmotion defined

on the probability space (Ω, F,P) with Ξ{𝜔(𝑡)} = 0 and
Ξ{𝜔
2

(𝑡)} = 1. 𝐴; 𝐵 and 𝐶 are known real constant matrices
with appropriate dimensions. Without loss of generality, it
is assumed that the pair (𝐴, 𝐵) is controllable. Δ𝐴(𝑡), Δ𝐶(𝑡),
and 𝐶 denote parameter uncertainties and satisfy

Δ𝐴 (𝑡) = 𝐵𝐹
1
(𝑡) Δ𝐶 (𝑡) = 𝐵𝐹

2
(𝑡) 𝐶 = 𝐵𝐹

3
, (2)

where 𝐹
3
is known constant matrix, 𝐹

1
(𝑡) and 𝐹

2
(𝑡) are

unknown time-varying matrix satisfying ‖𝐹
1
(𝑡)‖ ≤ 𝑎

𝐹1
< ∞

and (‖𝐹
2
(𝑡)‖ + ‖𝐹

3
‖)
2

≤ 𝑎
𝐹2
< ∞.

Table 1: Representations of typical actuator failures.

Type of actuator failures 𝛿
𝑖
(𝑡) 𝜅(𝑡)

Healthy actuator 1 0
Loss of effectiveness only 0 < 𝛿

𝑖
(𝑡) ≤ 1 0

Loss of effectiveness and partially
out of control 0 < 𝛿

𝑖
(𝑡) ≤ 1 Time-varying

Loss of effectiveness and partially
jammed 0 < 𝛿

𝑖
(𝑡) ≤ 1 Constant

Remark 1. It is observed that the parameter uncertainty struc-
ture as in (2) is more relaxed than the most existing methods.
The parameter uncertainty structure which has been widely
used in the problems of robust control and robust filtering
of uncertain systems is assumed to be (Δ𝐴(𝑡)𝑇 Δ𝐶(𝑡)

𝑇

)
𝑇

=

(𝐸
𝑇

1
𝐸
𝑇

2
)
𝑇

𝐹(𝑡)𝐻, where 𝐸
1
, 𝐸
2
, and 𝐻 are known constant

matrices and 𝐹(𝑡) is an known time-varyingmatrix satisfying
𝐹
𝑇

(𝑡)𝐹(𝑡) < 𝐼 (see, for instance, [31–34]). Obviously, the
structure herein which only needs the existence of the upper
bound of 𝐹(𝑡) is easier to be satisfied.

To formulate the fault-tolerant control problem, the fault
model must be established first. In system (1), the types
of faults under consideration include loss of effectiveness,
stuck, or combination of all. The actual control input 𝑢

𝑎
(𝑡)

able to impact the system and the designed control input
𝑢(𝑡) designed are not the same in general. In this paper, the
relationship between them will be adopted. Consider

𝑢
𝑎
(𝑡) = Δ (⋅) 𝑢 (𝑡) + 𝜅 (𝑡) , (3)

where Δ(⋅) = diag{𝛿
𝑖
(𝑡)} is a diagonal matrix with 𝛿

𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑚) being the unknown and time-varying scalar func-
tion called actuator efficiency factor, or “health indicator.” For
every fault mode, 𝛿

𝑖
and 𝛿

𝑖
represent the lower and upper

bounds of 𝛿
𝑖
, respectively. Note that, when 𝛿

𝑖
= 𝛿 = 1, there

is no fault for the 𝑖th actuator 𝑢
𝑖
. When 𝛿

𝑖
= 𝛿 = 0, the 𝑖th

actuator 𝑢
𝑖
is outage. When 0 < 𝛿

𝑖
≤ 𝛿 < 1, the type of

actuator is loss of effectiveness. 𝜅(𝑡) denotes a vector function
reflecting the portion of the control action produced by the
actuator that is completely out of control.

The type of actuator failures considered in this work is
listed in Table 1.

In order for the system to admit a feasible FTC, the
following assumptions are imposed.

Assumption 2. The unparametrizable stuck-actuator fault
and external disturbance are piecewise continuous bounded
functions; that is, there exist unknown positive constants 𝑎

𝜅

and 𝑎
𝑓
such that

‖𝜅 (𝑡)‖ ≤ 𝑎
𝜅
< ∞,

𝑓 (⋅)
 ≤ 𝑎𝑓𝜓𝑓 (⋅) < ∞. (4)

Assumption 3. For the system under consideration, there
exist some constants 𝛼 > 0 and 𝛽 > 0 such that for all possible
actuator faults, the following relation holds:

𝛼

𝐵
𝑇

𝑃𝑥


2

≤ 𝛽

𝐵
𝑇

𝑃𝑥√Δ (⋅)


2

, (5)
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where

√Δ (⋅) = diag {√𝛿
𝑖
(𝑡)} ,

𝛿
𝑖
(𝑡) ∈ (0, 1] (𝑖 = 1, 2, . . . , 𝑚) .

(6)

Remark 4. Assumption 2 confines the vector 𝜅(𝑡) and exter-
nal disturbances are bounded. Assumption 3, slightly less
restrictive, sets constraint on the actuation faults, which a
feasible FTC is able to deal with. Clearly, such condition is
well justified if all the actuators with faults are still functional
(i.e., 𝛿

𝑖
(𝑡) ̸= 0), whereas the too extreme faults in that all

the actuators completely fail to work (i.e., 𝛿
𝑖
(𝑡) = 0)

make the assumption invalid, which, if not impossible, is
significantly challenging to develop a globally stable control
for the stochastic system (1); thus it is not considered in this
work.

Remark 5. Since (𝐴, 𝐵) is controllable, one can choose 𝑁
0

properly such that𝐴 = 𝐴−𝐵𝑁
0
is Hurwitz. Namely, for given

𝑄 = 𝑄
𝑇

> 0, there exists a symmetric and positive definite 𝑃
such that the following matrix inequality is established:

𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜌𝐼 < −𝑄, (7)

where 𝜌 = ‖𝐵
𝑇

𝑃𝐵‖𝑎
𝐹2
. Note that we can find the proper 𝑃

very easily because (7) is much simpler than those complex
LMIs.Themethod in frame of linear matrix inequality is well
used in many existing works [8, 13, 31, 33].

In the end of this section, the following important lemma
is given, which will be used for the development of our result.

Lemma 6 (see [35]). The trivial solution of the stochastic
differential equation

𝑑𝑥 (𝑡) = 𝑎 (𝑥, 𝑡) 𝑑𝑡 + 𝑏 (𝑥, 𝑡) 𝑑𝜔, (8)

with 𝑎(𝑥, 𝑡) and 𝑏(𝑥, 𝑡) sufficiently differentiable maps, is
globally asymptotically stable in probability, if there exists
a positive definite, radially unbounded, twice continuously
differentiable function 𝑉(𝑥(𝑡), 𝑡) such that the infinitesimal
generator is

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] =
𝜕𝑉

𝜕𝑡
+ (

𝜕𝑉

𝜕𝑥
)

𝑇

𝑎 (𝑥, 𝑡)

+
1

2
𝑏(𝑥(𝑡), 𝑡)

𝑇
𝜕
2

𝑉

𝜕𝑥2
𝑏 (𝑥 (𝑡) , 𝑡) < 0.

(9)

3. Fault-Tolerant Control Design

To show the idea of this work explicitly, several fault-tolerant
control schemes are developed under different conditions in
this section. At the beginning, a robust fault-tolerant control
method is presented.

3.1. Robust Fault-Tolerant Control. In this section, a robust
fault-tolerant control of the form

𝑢 (𝑡) = −𝑁
0
𝑥 + 𝑁 (𝑡) (10a)

is proposed, where𝑁
0
is chosen such that𝐴−𝐵𝑁

0
is Hurwitz,

and𝑁(𝑡) is generated by

𝑁(𝑡) = −
𝑎

𝜆
𝑚

𝜑 (⋅)
𝐵
𝑇

𝑃𝑥

𝐵
𝑇𝑃𝑥



, (10b)

with 0 < 𝜆
𝑚
≤ 𝛼/𝛽 being a constant, where 𝜆

𝑚
represents

the lower bound of the health indicator matrix Δ(⋅); that is,
0 < 𝜆

𝑚
≤ 𝜆min(Δ) and 𝛼 > 0, 𝛽 > 0 are suitable constants

such that

𝛼

𝐵
𝑇

𝑃𝑥


2

≤ 𝛽

𝐵
𝑇

𝑃𝑥√Δ (⋅)


2

, (10c)

𝜑 (⋅) = 1 +
𝑁0𝑥

 +

𝜑
𝑓
(𝑥)


+ ‖𝑥‖ ,

𝑎 = max {1, 𝑎
𝑁
, 𝑎
𝑓
, 𝑎
𝐹1
} .

(10d)

Theorem 7. Under Assumptions 2 and 3, the FTC as given
in ((10a), (10b), (10c), and (10d)) exponentially stabilizes
(in mean square) the stochastic system described by (1), for
all admissible uncertainties as well as all actuator failures
corresponding to (3).

Proof. When the system is subject to the actuator failure as
described in (3), its dynamic behavior becomes

𝑑𝑥 (𝑡) = [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) 𝑢 (𝑡) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡) .

(11)

With the proposed control ((10a), (10b), (10c), (10d)), one has

𝑑𝑥 (𝑡) = [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) 𝑢 (𝑡) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) (−𝑁
0
𝑥 + 𝑁 (𝑡)) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡) 𝑑𝑡

+ 𝐵 [Δ (⋅)𝑁 (𝑡) + 𝑍 (𝑡)] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡) ,

(12)

where

𝑍 (⋅) = (𝐼 − Δ (⋅))𝑁
0
𝑥 (𝑡) + 𝜅 (𝑡) + 𝑓 (⋅) + 𝐹

1
(𝑡) 𝑥 (𝑡) , (13)

which is bounded as

‖𝑍 (⋅)‖ ≤
𝑁0𝑥

 + ‖𝜅 (⋅)‖ +
𝑓 (⋅)

 +
𝐹1 (𝑡) 𝑥 (𝑡)



≤ 𝑎 (1 +
𝑁0𝑥

 +
𝜓 (𝑥)

 + ‖𝑥‖) ,

(14)
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based on Assumption 2, where 𝑎 = max{1, 𝑎
𝑁
, 𝑎
𝑓
, 𝑎
𝐹1
} and

𝜑(⋅) = 1 + ‖𝑁
0
𝑥‖ + ‖𝜑

𝑓
(𝑥)‖ + ‖𝑥‖. Thus, it is not difficult to

get

(𝐵
𝑇

𝑃𝑥)
𝑇

𝑍 ≤ 𝑎𝜑 (⋅)

𝐵
𝑇

𝑃𝑥

. (15)

Consider the following Lyapunov function candidate:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) . (16)

Then, by Itô’s formula, the infinitesimal generator of (12) is

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] = 𝑥
𝑇

(𝑡) 𝑃 (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡)

+ ((𝐴 − 𝐵𝑁
0
) 𝑥(𝑡))

𝑇

𝑃𝑥 (𝑡)

+ 2(𝐵
𝑇

𝑃𝑥)
𝑇

[−Δ (⋅)
𝑎

𝜆
𝑚

𝜑 (⋅)
𝐵
𝑇

𝑃𝑥

𝐵
𝑇𝑃𝑥



]

+ 2 (𝐵
𝑇

𝑃𝑥)
𝑇

𝑍

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) .

(17)

Note that the last term of (17) cannot be combined with
𝑍(⋅); thus the adaptive updating law cannot be used to
compensate its effect as usual. To establish the robust stability
of the closed-loop system (12), we need to have the following
development. From the fact that (‖𝐹

2
(𝑡)‖ + ‖𝐹

3
‖)
2

≤ 𝑎
𝐹2
< ∞

and using (2), it is seen that the last term of (17) can be
expressed as

𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶(𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡)

= 𝑥
𝑇

(𝑡) [𝐵(𝐹
2
(𝑡) + 𝐹

3
)
𝑇

𝑃𝐵 (𝐹
2
(𝑡) + 𝐹

3
)] 𝑥 (𝑡)

≤ 𝑥
𝑇

(𝑡) [

𝐵
𝑇

𝑃𝐵

𝑎
𝐹2
] 𝑥 (𝑡) ;

(18)

from (10c), it holds that

−(𝐵
𝑇

𝑃𝑥)
𝑇

Δ (⋅) (𝐵
𝑇

𝑃𝑥) ≤ −
𝛼

𝛽


𝐵
𝑇

𝑃𝑥


2

≤ −𝜆
𝑚


𝐵
𝑇

𝑃𝑥


2

.

(19)

and by defining 𝜌 = ‖𝐵
𝑇

𝑃𝐵‖𝑎
𝐹2
, the inequality (17) can be

shown to satisfy

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] ≤ 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥 (𝑡)

− 2
𝑎

𝜆
𝑚

𝜑 (⋅)

𝐵
𝑇𝑃𝑥



(𝐵
𝑇

𝑃𝑥)
𝑇

Δ (⋅) (𝐵
𝑇

𝑃𝑥)

+ 𝑎𝜑 (⋅)

𝐵
𝑇

𝑃𝑥

+ 𝑥
𝑇

(𝑡)

𝐵
𝑇

𝑃𝐵


𝐹2


2

𝑥 (𝑡)

≤ 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜌𝐼) 𝑥 (𝑡)

≤ −
1

2
𝑥
𝑇

𝑄𝑥 < 0 for 𝑥 (𝑡) ̸= 0,

(20)

where matrixes 𝑃 and 𝑄 are chosen properly to satisfy
𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜌𝐼 ≤ −𝑄. Therefore, it is confirmed from
Lemma 6 that the closed-loop system (11) is asymptotically
mean square stable in probability despite faulty actuatorswith
the proposed FTC.

Remark 8. Note that if proper constants 𝛼 and 𝛽 can be
obtained in advance, the proposed control ((10a), (10b), (10c),
and (10d)) achieved exponential stability in mean square for
the stochastic system under Assumptions 2 and 3. However,
it is a little difficult to select such 𝛼 and 𝛽 to ensure 𝜆

𝑚
≤ 𝛼/𝛽,

since 𝜆
𝑚

the lower bound of the eigenvalue of the health
indicator matrix is not available in general. In view of this,
a more feasible method is developed in the next subsection.

3.2. Robust Adaptive Fault-Tolerant Control. In order to
develop a control scheme that is not only robust but also
adaptive yet fault-tolerant, we modify the previous one to get

𝑢 (𝑡) = −𝑁
0
𝑥 + �̂� (𝑡) , (21a)

where 𝑁
0
> 0 is chosen such that 𝐴 − 𝐵𝑁

0
is Hurwitz and

�̂�(𝑡) is on-line updated by

�̂� (𝑡) =
𝑎 (𝑡) 𝜑 (𝑥) 𝐵

𝑇

𝑃𝑥

𝐵
𝑇𝑃𝑥



, (21b)

with

𝜑 (𝑥) = 1 +
𝑁0𝑥

 +

𝜑
𝑓
(𝑥)


+ ‖𝑥‖ , (21c)

̇�̂� (𝑡) = −𝛾𝜑 (𝑥)

𝐵
𝑇

𝑃𝑥

, 𝛾 > 0. (21d)

Theorem 9. Consider the uncertain stochastic system (11)
underAssumptions 2 and 3. If the robust adaptive fault-tolerant
controller ((21a), (21b), (21c), and (21d)) is implemented, the
closed-loop system is ensured to be asymptotically stable.

Proof. Substituting the proposed control ((21a), (21b), (21c),
and (21d)) into the stochastic system (11), we obtain the
closed-loop system dynamics as follows:

𝑑𝑥 (𝑡) = [(𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) 𝑢 (𝑡) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) (−𝑁
0
𝑥 + �̂� (𝑡)) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡) 𝑑𝑡

+ 𝐵 [Δ (⋅) �̂� (𝑡) + Ζ (𝑡)] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡) .

(22)
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Consider the following Lyapunov function candidate:

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇

𝑃𝑥 +
1

𝜆
𝑚
𝛾
(𝑎 − 𝑎𝜆

𝑚
)
2

, (23)

where 𝛾 > 0 is a constant related to adaptation rate chosen by
the designer and 𝜆

𝑚
> 0 is constant defined as before. Upon

using the control schemewith the adaptive algorithm, it is not
difficult to show that

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] = 𝑥
𝑇

(𝑡) 𝑃 (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡)

+ ((𝐴 − 𝐵𝑁
0
) 𝑥(𝑡))

𝑇

𝑃𝑥 (𝑡)

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇�̂�𝛾

−1

)

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡)

= [𝐴𝑥 + 𝐵 (Δ(⋅)�̂�(𝑡)𝑥 + 𝑍(⋅))]
𝑇

𝑃𝑥

+ 𝑥
𝑇

𝑃 [𝐴𝑥 + 𝐵 (Δ (⋅) �̂� (𝑡) 𝑥 + 𝑍 (⋅))]

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇�̂�𝛾

−1

)

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡)

= 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥

+ 2𝑥
𝑇

𝑃𝐵 (Δ (⋅) �̂� (𝑡) 𝑥 + 𝑍 (⋅))

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇�̂�𝛾

−1

)

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) .

(24)

Then

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)]

= 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥

+ 2𝑥
𝑇

𝑃𝐵{Δ (⋅) [−

𝑎𝜑 (𝑥) (𝐵
𝑇

𝑃𝑥)

𝐵
𝑇𝑃𝑥



] + 𝑍 (⋅)}

+ 2 (𝑎 − 𝜆
𝑚
𝑎) (−𝛾

−1 ̇�̂�)

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) .

(25)

In light of the definition of 𝜆
𝑚
, it is true that (𝐵𝑇𝑃𝑥)𝑇

Δ(⋅)(𝐵
𝑇

𝑃𝑥) ≥ 𝜆
𝑚
‖𝐵
𝑇

𝑃𝑥‖
2; thus the second term in (25) can

be rewritten as

2𝑥
𝑇

𝑃𝐵{Δ (⋅) [−

𝑎𝜑 (𝑥) (𝐵
𝑇

𝑃)

𝐵
𝑇𝑃𝑥



] 𝑥 + 𝑍 (⋅)}

= −2
𝑎𝜑 (𝑥)

𝐵
𝑇𝑃𝑥



(𝐵
𝑇

𝑃𝑥)
𝑇

Δ (⋅) (𝐵
𝑇

𝑃𝑥)

+ 2(𝐵
𝑇

𝑃𝑥)
𝑇

𝑍 (⋅)

≤ 2 (𝑎 − 𝜆
𝑚
𝑎) 𝜑 (𝑥)


𝐵
𝑇

𝑃𝑥

.

(26)

The fact 𝑥
𝑇

(𝑡)(𝐶 + Δ𝐶(𝑡))
𝑇

𝑃(𝐶 + Δ𝐶(𝑡))𝑥(𝑡) ≤

𝑥
𝑇

(𝑡)[‖𝐵
𝑇

𝑃𝐵‖𝑎
𝐹2
]𝑥(𝑡) ≤ 𝑥

𝑇

(𝑡)(𝜌𝐼)𝑥(𝑡) leads (25) to

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] ≤ 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥 (𝑡)

+ 2 (𝑎 − 𝜆
𝑚
𝑎) 𝜑 (𝑥)


𝐵
𝑇

𝑃𝑥


+ 2 (𝑎 − 𝜆
𝑚
𝑎) (−𝛾

−1 ̇�̂�)

+ 𝑥
𝑇

(𝑡) (

𝐵
𝑇

𝑃𝐵


𝐹2


2

) 𝑥 (𝑡)

≤ 𝑥
𝑇

(𝑡) (𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜌𝐼) 𝑥 (𝑡) .

(27)

Using the updating law (21d) and choosing the proper
matrixes 𝑃 and 𝑄 to ensure that the matric inequality is
established, one obtains from (27) that

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] ≤ −
1

2
𝑥
𝑇

𝑄𝑥 < 0 for 𝑥 (𝑡) ̸= 0. (28)

Consequently, according to Lemma 6, it can be obtained
that the closed-loop system (11) is globally asymptotically
stable in probability in presence of actuator failures.

Remark 10. Note that in designing and implementing the first
robust fault-tolerant control method we need to predeter-
mine the parameters 𝑎 and 𝜆

𝑚
. This might present analyt-

ical and technical difficulty in practice. The second robust
adaptive FTC scheme, which does not need the analytic
computation of the parameters 𝑎 and 𝜆

𝑚
, circumvents this

shortcoming. Although the existence of 𝜆
𝑚

> 0 is used
in stability analysis, none of them are used in the control
algorithm.

Remark 11. It is seen that the proposed control is independent
of explicit information on faults and disturbances. As with
most variable structure control methods, when the states
get closer to zero, the control scheme might experience
chattering, which can be easily avoided by replacing 𝑧/‖𝑧‖
with 𝑧/(‖𝑧‖ + 𝜍), where 𝜍 is a small number, as commonly
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adopted in the literature. Also to prevent the estimate 𝑎 from
drifting, (21d) can be modified as

̇�̂� (𝑡) = −𝜎𝑎 + 𝛾

𝜑(𝑥)
2

𝐵
𝑇

𝑃𝑥


2

𝜑 (𝑥)
𝐵
𝑇𝑃𝑥

 + 𝜍
, 𝛾 > 0, 𝜎 > 0. (29a)

In this case, we have the following ultimately uniformly
bounded (UUB) stabilization result.

Theorem 12. Consider the uncertain stochastic system (11). Let
the Assumptions 2 and 3 hold. If the following robust adaptive
control is applied:

𝑢 (𝑡) = −𝑁
0
𝑥 + �̂� (𝑡) , (29b)

where𝑁
0
> 0 is chosen such that𝐴−𝐵𝑁

0
is Hurwitz, and �̂�(𝑡)

is generated by

�̂� (𝑡) =
𝑎 (𝑡) 𝜑(𝑥)

2

𝐵
𝑇

𝑃𝑥

𝐵
𝑇𝑃𝑥

 𝜑 (𝑥) + 𝜍
(29c)

and 𝑎 is updated by (29a), then the closed-loop system (11) is
ensured to UUB stable.

Proof. The result can be established by using the method
similar to that as in [15].

Remark 13. Since the robust FTC with the fixed gain may
bring more conservatives, a new robust adaptive FTC is
further addressed in the next subsection. Bymeans of the on-
line estimation of effectiveness values of faulty actuators, the
robust adaptive FTC gain is adaptively updated to compen-
sate the effects of actuator faults.

3.3. Improved Robust Adaptive Fault-Tolerant Control. Con-
sider that the elements of the actuator efficiency factorΔ(⋅) are
constants. A robust and adaptive control scheme integrated
with on-line fault estimation is designed as

𝑢 (𝑡) = −Δ̂(𝑡)
−1

𝑁
0
𝑥 + �̂� (𝑡) , (30a)

where Δ̂(𝑡) = diag{𝛿
1
(𝑡), 𝛿
2
(𝑡), . . . , 𝛿

𝑚
(𝑡)}, 𝛿

𝑖
(𝑡) is the

estimated values of effectiveness for 𝑖th actuator, and the
updating law for 𝛿

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑚) is given as

̇
�̂�
𝑖
(𝑡) = Pr
[𝛿
𝑖
,𝛿𝑖]

{
0, if 𝛿

𝑖
= 𝛿
𝑖
, 𝑈
𝑖
≤ 0, or 𝛿

𝑖
= 𝛿
𝑖
, 𝑈
𝑖
≥ 0

𝑈
𝑖
, otherwise,

(30b)

where 𝑈
𝑖
= 𝜂
𝑖
𝑥(𝑡)
𝑇

(𝑃𝐵)
𝑖
Δ̂(⋅)
−1

𝑁
𝑖

0
𝑥(𝑡), 𝜂

𝑖
> 0 is the adaptive

law gain to be chosen according to practical applications.
Here, 𝑀𝑖 and 𝑀

𝑖
denote the 𝑖th row and 𝑖th column of a

matrix𝑀, respectively.
𝑁
0
> 0 is chosen such that 𝐴 − 𝐵𝑁

0
is Hurwitz, and �̂�(𝑡)

is on-line updated by

�̂� (𝑡) =
𝑎 (𝑡) 𝜓 (𝑥) 𝐵

𝑇

𝑃𝑥

𝐵
𝑇𝑃𝑥



, (30c)

with

𝜓 (𝑥) = 1 +

𝜑
𝑓
(𝑥)


+ ‖𝑥‖ , (30d)

̇�̂� (𝑡) = −𝛾𝜓 (𝑥)

𝐵
𝑇

𝑃𝑥

, 𝛾 > 0. (30e)

Remark 14. It is noted from (30b) that Pr{⋅} is a projection
operator [28], which projects the estimate 𝛿

𝑖
into the interval

[𝛿
𝑖
, 𝛿
𝑖
] so as to satisfy the assumption on the bound of

effectiveness values in (3). Because this updating law can
ensure the estimated values 𝛿

𝑖
(𝑡) are not zero, the control

signal 𝑢(𝑡) will take effect on the plant.

Theorem 15. For the uncertain stochastic system (11), the
robust adaptive fault-tolerant controller given as ((30a), (30b),
(30c), (30d), and (30e)) can ensure that the state will asymp-
totically tend to zero.

Proof. Substituting ((30a), (30b), (30c), (30d), and (30e)) into
the stochastic system (11), we obtain the closed-loop system
equation as follows:

𝑑𝑥 (𝑡) = [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+𝐵 (Δ (⋅) 𝑢 (𝑡) + 𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)))] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= [ (𝐴 + Δ𝐴 (𝑡)) 𝑥 (𝑡)

+ 𝐵 (Δ (⋅) (−Δ̂(⋅)
−1

𝑁
0
𝑥 + �̂� (𝑡))

+𝜅 (𝑡) + 𝑓 (𝑥 (𝑡)) )] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡)

= (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡) 𝑑𝑡

+ 𝐵 [(𝐼 − Δ (⋅) Δ̂(⋅)
−1

)𝑁
0
𝑥 + Δ (⋅) �̂� (𝑡) + 𝑍 (⋅)] 𝑑𝑡

+ (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) 𝑑𝜔 (𝑡) ,

(31)

where 𝑍(⋅) = 𝜅(𝑡) + 𝑓(⋅) + 𝐹
1
(𝑡)𝑥(𝑡), which is bounded by

‖𝑍 (⋅)‖ ≤ ‖𝜅 (⋅)‖ +
𝑓 (⋅)

 +
𝐹1 (𝑡) 𝑥 (𝑡)



≤ 𝑎 (1 +
𝜑 (𝑥)

 + ‖𝑥‖)

(32)

under Assumption 2.
Consider the following Lyapunov function candidate

𝑉 (𝑥 (𝑡) , 𝑡) = 𝑥
𝑇

𝑃𝑥 +
1

𝜆
𝑚
𝛾
(𝑎 − 𝑎𝜆

𝑚
)
2

+

𝑚

∑

𝑖=1

𝜂
−1

𝑖
𝛿
2

𝑖
(𝑡) , (33)

where 𝛾 > 0 and 𝜂 > 0 are constants related to adaptation
rate chosen by the designer and 𝜆

𝑚
> 0 is constant defined

as before. Upon using the control scheme with the adaptive



Abstract and Applied Analysis 7

algorithm, it is not difficult to show that the infinitesimal
operator

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] = 𝑥
𝑇

(𝑡) 𝑃 (𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡)

+ ((𝐴 − 𝐵𝑁
0
) 𝑥 (𝑡))

𝑇

𝑃𝑥 (𝑡)

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇�̂�𝛾

−1

)

+ 2

𝑚

∑

𝑖=1

𝜂
−1

𝑖
𝛿
𝑖
(𝑡)

̇
�̂�
𝑖
(𝑡)

= [𝐴𝑥 + 𝐵 (−𝛿𝛿
−1

𝑁
0
𝑥

+Δ (⋅) �̂� (𝑡) 𝑥 + 𝑍 (⋅))
𝑇

] 𝑃𝑥

+ 𝑥
𝑇

𝑃 [𝐴𝑥 + 𝐵 (−𝛿𝛿
−1

𝑁
0
𝑥

+Δ (⋅) �̂� (𝑡) 𝑥 + 𝑍 (⋅))]

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇�̂�𝛾

−1

)

+ 2

𝑚

∑

𝑖=1

𝜂
−1

𝑖
𝛿
𝑖
(𝑡)

̇
�̂�
𝑖
(𝑡)

= 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥 + 2𝑥
𝑇

𝑃𝐵𝛿𝛿
−1

𝑁
0
𝑥

+ 2𝑥
𝑇

𝑃𝐵 (Δ (⋅) �̂� (𝑡) 𝑥 + 𝑍 (⋅))

+ 2 (𝑎 − 𝑎𝜆
𝑚
) (− ̇�̂�𝛾

−1

)

+ 2

𝑚

∑

𝑖=1

𝜂
−1

𝑖
𝛿
𝑖
(𝑡)

̇
�̂�
𝑖
(𝑡) .

(34)

Considering that 𝑃𝐵𝛿𝛿−1 = ∑
𝑚

𝑖=1
𝛿(𝑃𝐵)

𝑖

𝛿
−1 and the adaptive

law (30b), we have

−2𝑥
𝑇

𝑃𝐵𝛿𝛿
−1

𝑁
0
𝑥 + 2

𝑚

∑

𝑖=1

𝜂
−1

𝑖
𝛿
𝑖
(𝑡)

̇
�̂�
𝑖
(𝑡) ≤ 0. (35)

Then, 𝐿[𝑉(𝑥(𝑡), 𝑡)] becomes

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)]

= 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴)𝑥

+ 2𝑥
𝑇

𝑃𝐵{Δ (⋅) [−

𝑎𝜓 (𝑥) (𝐵
𝑇

𝑃𝑥)

𝐵
𝑇𝑃𝑥



] + 𝑍 (⋅)}

+ 2 (𝑎 − 𝜆
𝑚
𝑎) (−𝛾

−1 ̇�̂�)

+ 𝑥
𝑇

(𝑡) (𝐶 + Δ𝐶 (𝑡))
𝑇

𝑃 (𝐶 + Δ𝐶 (𝑡)) 𝑥 (𝑡) ,

(36)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

t (s)

Figure 1: Profile of the time-varying actuator efficiency variable (𝛿
1

(solid), 𝛿
2
(dot)).

in which the second term in (36) can be rewritten as

2𝑥
𝑇

𝑃𝐵{Δ (⋅) [−

𝑎𝜓 (𝑥) (𝐵
𝑇

𝑃)

𝐵
𝑇𝑃𝑥



] 𝑥 + 𝑍 (⋅)}

= −2
𝑎𝜓 (𝑥)

𝐵
𝑇𝑃𝑥



(𝐵
𝑇

𝑃𝑥)
𝑇

Δ (⋅) (𝐵
𝑇

𝑃𝑥)

+ 2(𝐵
𝑇

𝑃𝑥)
𝑇

𝑍 (⋅)

≤ 2 (𝑎 − 𝜆
𝑚
𝑎) 𝜓 (𝑥)


𝐵
𝑇

𝑃𝑥

;

(37)

by using (19) it is true that (𝐵𝑇𝑃𝑥)𝑇Δ(⋅)(𝐵𝑇𝑃𝑥) ≥ 𝜆
𝑚
‖𝐵
𝑇

𝑃𝑥‖
2.

Thus by using the fact that 𝑥
𝑇

(𝑡)(𝐶 + Δ𝐶(𝑡))
𝑇

𝑃(𝐶 +

Δ𝐶(𝑡))𝑥(𝑡) ≤ 𝑥
𝑇

(𝑡)(𝜌𝐼)𝑥(𝑡) and the updating law (30e), the
function 𝐿[𝑉(𝑥(𝑡), 𝑡)] eventually is bounded as

𝐿 [𝑉 (𝑥 (𝑡) , 𝑡)] ≤ 𝑥
𝑇

(𝐴
𝑇

𝑃 + 𝑃𝐴 + 𝜌𝐼) 𝑥

+ 2 (𝑎 − 𝜆
𝑚
𝑎) 𝜓 (𝑥)


𝐵
𝑇

𝑃𝑥


+ 2 (𝑎 − 𝜆
𝑚
𝑎) (−𝛾

−1 ̇�̂�)

≤ −
1

2
𝑥
𝑇

𝑄𝑥 < 0 for 𝑥 (𝑡) ̸= 0,

(38)

as long as proper matrixes 𝑃 and 𝑄 are select to ensure (7).
Therefore, it can be obtained from Lemma 6 that the state of
the stochastic system is asymptotically stable in probability
and the estimation parameters (𝑎−𝜆

𝑚
𝑎) and 𝛿

𝑖
are bounded.

4. Numerical Simulation

Two examples are used to demonstrate the features of the
proposed control scheme.
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0 2 4 6 8 10 12 14 16 18 20
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Figure 2:The curve of𝑥(𝑡)with the proposed control scheme ((29a),
(29b), and (29c)).
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Figure 3:The curve of𝑢(𝑡)with the proposed control scheme ((29a),
(29b), and (29c)).

Example 1. Consider the uncertain stochastic system (11)
with

𝐴 = [

[

0.2 −0.2 0

−0.2 −0.6 0.3

0.2 −0.4 −0.2

]

]

, 𝐵 = [

[

−0.2 0.2

1 −1.7

0.6 −0.7

]

]

,

𝐶 = [

[

−0.04 0.2 0.07

−0.03 0.1 0.04

0.04 −0.2 −0.07

]

]

,

Δ𝐴 = [

[

0.02 sin (𝑡) 0.04cos2 (𝑡) 0.04 cos (2𝑡)
0.02 0.04 sin (2𝑡) cos (𝑡) 0.04

0.03 cos (𝑡) 0.06 0.06 sin (𝑡)
]

]

,

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

t (s)

Figure 4: Updating of 𝑎(𝑡)with the proposed control scheme ((29a),
(29b), and (29c)).
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Figure 5: System responses under the control of the proposed FTC
((30a), (30b), (30c), (30d), and (30e)).

Δ𝐶 = [

−0.007 cos (𝑡) 0.014 0.014 sin (2𝑡)
0.004cos2 (𝑡) 0.008sin2 (𝑡) 0.008

−0.007 −0.014 sin (𝑡) cos (2𝑡) −0.014 sin (𝑡) cos (3𝑡)
] ,

𝑓 (𝑥 (𝑡)) = (
sin (𝑥

1
(𝑡)) sin (𝑥

2
(𝑡))

2𝑥
1
(𝑡) cos (𝑥

2
(𝑡))

) .

(39)

It is seen that the uncertainties Δ𝐴 and Δ𝐶 are complex
to be described by the form of (Δ𝐴(𝑡)𝑇 Δ𝐶(𝑡)

𝑇

)
𝑇

=

(𝐸
𝑇

1
𝐸
𝑇

2
)
𝑇

𝐹(𝑡)𝐻. But the form of (2) is easy to satisfy. The
external disturbance 𝑓(⋅) is state-dependent and unknown.
For the simulation, the initial conditions are 𝑥(0) = [1, 2.5, 3]
and 𝑎(0) = 0.

The actuator efficiency variables for each of the two
control channels simulated are as illustrated in Figure 1,
where two of the actuators suffer from the failure as shown
in the figure.
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Figure 6: The curve of 𝑢(𝑡) with the proposed control scheme
((30a), (30b), (30c), (30d), and (30e)).
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Figure 7: Updating of 𝑎(𝑡)with the proposed control scheme ((30a),
(30b), (30c), (30d), and (30e)).
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Figure 8: The curve of the estimate Δ̂(𝑡) with 𝜂 = 2 (𝛿
1
(solid), 𝛿

2

(dot)).

The scenario simulated is that the system operates nor-
mally at the beginning, and the disturbances always exist
during the system operation. After 4 seconds of the operation
some faults in actuators occur: the first and the second
actuators encounter severe failures in the fact that both
channels lose their effectiveness by over 50% at some time and
the faults are fast time-varying for some period.

The objective in this work is to design a reliable robust
adaptive fault-tolerant controller such that the closed-loop
system is asymptotically stable in probability despite the
presence of actuator faults. In applying the control scheme
((29a), (29b), and (29c)), one can easily determine all the
control parameters:

𝑁
0
= [

−1.0912 0.3210 0.0695

8.0245 −3.8070 0.0239
] ,

𝛾 = 5, 𝜎 = 0.08, 𝜀 = 0.001,

𝜑 (𝑥) = 1 +
𝑁0𝑥

 +

𝜑
𝑓
(𝑥)


+ ‖𝑥‖ .

(40)

The simulation results in terms of stabilization of the three
states are presented in Figure 2. It can be seen that the states
𝑥
1
, 𝑥
2
, and 𝑥

3
can converge to a small neighborhood around

zero. Figure 3 shows the control signals of the two inputs.The
estimated parameter 𝑎(𝑡) is shown in Figure 4. The results
confirm the theoretical prediction.

Example 2. The second simulation is made for robust adap-
tive fault-tolerant controller ((30a), (30b), (30c), (30d), and
(30e)). It is assumed that at 𝑡 = 4 𝑠, the first actuator 𝑢

1
is still

normal and the second actuator 𝑢
2
is faulty with 𝛿

2
= 0.5.The

simulations are shown in Figures 5, 6, 7, and 8. Also it should
be pointed out from [36] that the estimated value 𝛿

𝑖
(𝑡) (𝑖 =

1, 2) can converge butmay not converge to its true value 𝛿
𝑖
(𝑡).

And in our controller design procedure, only the estimated
value 𝛿

𝑖
(𝑡) is needed to construct adaptive controller and

whether 𝛿
𝑖
(𝑡) can converge to its true values or not is not

necessary.
From Figure 5, the FTC scheme ((30a), (30b), (30c),

(30d), and (30e)) makes the curves relatively smooth via the
adaptive estimate 𝛿

𝑖
(𝑡) of efficiency value. The simulation

results confirm that the robust adaptive FTC can achieve
a good performance on dealing with the reliable control
problem of stochastic systems in presence of actuator failures,
parameter uncertainty, and state-dependent disturbance.

5. Conclusion

In this paper, the problem of robust adaptive FTC for
stochastic systems with faulty actuators has been considered.
By blending adaptive control into robust FTC, the proposed
control method is able to accommodate actuation faults
and modeling uncertainties concurrently. Both theoretical
analysis and numerical simulations validate the benefits and
effectiveness of the proposed approach.
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Overcoming the coupling among variables is greatly necessary to obtain accurate, rapid and independent control of the real
nonlinear systems. In this paper, the main methodology, on which the method is based, is dynamic neural networks (DNN)
and adaptive control with the Lyapunov methodology for the time-varying, coupling, uncertain, and nonlinear system. Under
the framework, the DNN is developed to accommodate the identification, and the weights of DNN are iteratively and adaptively
updated through the identification errors. Based on the neural network identifier, the adaptive controller of complex system is
designed in the latter. To guarantee the precision and generality of decoupling tracking performance, Lyapunov stability theory is
applied to prove the error between the reference inputs and the outputs of unknownnonlinear system which is uniformly ultimately
bounded (UUB). The simulation results verify that the proposed identification and control strategy can achieve favorable control
performance.

1. Introduction

Coupling is a widespread phenomenon existing in nonlinear
systems. Due to the existence of the coupling, the variables
among systems often suffer impact from each other’s fluc-
tuations. Besides, time-varying and time delay is frequently
encountered in many real control systems, and these may
be the root of instability in the performance of closed-
loop system. If the problems which have attracted many
researchers cannot be solved effectively, they would not only
delay achieving the steady states, but also realize the goal
of independent control at all. Thereby, in order to achieve
accurate, rapid, and independent control, it is essential to
decouple among these variables and take the relatedmethods.
However, how to select the proper methodology according to
the characteristics of control object is a thorny question.

In the open pieces of literature, the traditional decoupling
ways to a multi-input multioutput (MIMO) system are
primarily represented by frequency domain methods such
as state variable method, diagonal dominance matrix, char-
acteristic curve method, inverse Nyquist array, and relative
gain analysis method [1]. These methods, which are based

on rigorous transfer functions or state spaces, play a signif-
icant role in decoupling the linear time-invariant systems.
Nevertheless, these methods are hard to accomplish dynamic
decoupling for uncertain, nonlinear, and time-variantMIMO
systems because precise systemmodels are difficult to develop
for these systems. Hence, the above traditional decoupling
methods are limited to a certain extent.

With the development of decoupling control, many other
decoupling approaches, such as adaptive decoupling [2, 3],
energy decoupling [4, 5], disturbance decoupling [6, 7],
robust decoupling [8, 9], prediction decoupling, intelligent
decoupling methods mainly represented by fuzzy decou-
pling [10], and neural network (NN) decoupling [11], have
been proposed and applied in many real control practices.
Adaptive decoupling has merits in decoupling a system with
uncertain factors and can solve the system’s uncertainty to
some extent. However, the algorithm of adaptive controller
has a large amount of calculation and ismuch time consumed
[12] so that it is hard to be implemented in the processing
of real-time control. Energy decoupling can be applied in
linear uncertain systems, but, up to now, the method is also
confined to the research stage [13]. Disturbance decoupling
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[14, 15] tries to perfectly eliminate the external influences
on system outputs, but the feasibility of this method has
closer relationship with the development of nonlinear system
differential geometry theory which is too strict and complex,
so some researchers think this approach is very trouble
to be widely used in the real control processes. Robust
decoupling attempts to design a compensator with both
good dynamic performance and strong robustness, but it is
tough to deal well with the inner contradiction between the
dynamic performance and the optimal decoupling controller
parameters of robustness. Intelligent decoupling methods
have obvious advantages in decoupling nonlinear systems
and have received a lot of interest in decoupling control fields.
The representative of intelligent decoupling methods, NN
decoupling, has self-learning, adaptive, and fault tolerance
abilities and is an universal approximator which has the
capability of approximating any nonlinear function to any
desired degree of accuracy, making it a useful tool for
decoupling control in MIMO nonlinear systems. But NN
decoupling commonly requires to be combined with other
related algorithms to realize decoupling control [11, 16].
Fuzzy decoupling accomplishes the system decoupling by
defuzzification based on the fuzzy rules which are often
summarized by practical experiences. For the simple systems,
it can be achieved easily, but for more complex MIMO
nonlinear systems the accurate multidimensional fuzzy rules
are very difficult, even impossible, to be established [17].

In practice, allowing for a complicated MIMO nonlinear
system with uncertainty and strong coupling, the common
PID controller with fixed parameters can hardly achieve the
desired steady sate at all. At the same time, the physical system
is often difficult to obtain accurate and faithful mathemat-
ical model so that the conventional control schemes based
on precise mathematical model can hardly achieve good
performance in the real control process. Motivated by the
seminal paper [18], there is a continuously increasing interest
in applying neural network to identification and control
of nonlinear system. In structure, neural networks can be
classified as dynamic and feedforward ones.However,most of
practical applications use the feedforward structures [19, 20],
which are suitable for the approximation of complex static
functions. Nevertheless, the major shortcomings of such
structure of neural networks in describing dynamic functions
are that the weight updating does not utilize the information
on the local date structure and the function approximation
is sensitive to the purity of training data. On the other hand,
the dynamic neural networks [21–24] incorporate feedback
not merely having concise structure but more importantly
having adaptive mechanism incorporated to fine tune the
approximation accuracy and convergent speed. So dynamic
neural network (DNN) is being developed, which is superior
to the static neural network such as radial basis function
(RBF) and backpropagation (BP) neural network on the
dynamic characteristic [25, 26] recent years, and it is now
widely applied in the fields of system identification and
MIMO nonlinear control.

In this paper, we focus on developing an indirect adap-
tive NN controller for complex nonlinear systems includ-
ing strong coupling, unknown or uncertain models, and

disturbances simultaneously. The proposed method is the
combination of NN-based identifier and adaptive controller,
and the controller is designed based on the identified NN
model. The main merits of this paper can be summarized as
follows.

(1) A novel and generalized decoupling control strategy
based on indirect adaptive control is presented for
nonlinear systems. Firstly, we construct a dynamic
neural network (DNN) identifier without coupling to
replace the real coupled systems. Then, we design the
adaptive controller to deal with the nonlinear systems
based on DNN identifier models.

(2) According to the Lyapunov methodology, the online
weights updating laws of DNN are developed to
accommodate the identification and to guarantee that
the error between the DNN identifier and the real
unknown systems is UUB.

(3) According to the Lyapunov methodology, the adap-
tive control laws are designed to deal with model-
ing uncertainties, system nonlinearities, and external
disturbances and to guarantee stable tracking per-
formance of the real outputs related to the reference
inputs.

This paper is structured in the followingway. In Section 2,
the problem formulation and preliminaries are presented, in
which a general nonlinear dynamic systemmodel and its neu-
ral network approximator are presented to establish a basis
for designing and analyzing the system identification and
control. In Section 3, a DNN-based identification algorithm
is developed to approximate the nonlinear system. Section 4
proposed the adaptive decoupling control algorithm based
on the DNN identifier. In Section 5, the whole procedure
for the identification and control is described to provide a
step by step guide for potential users. The simulation results
demonstrate the effectiveness and generality of the proposed
algorithm in Section 6. Finally, in Section 7 the conclusion is
summarized.

2. Problem Formulation and Preliminaries

The equation of MIMO continuous-time-varying nonlinear
coupling system can be generally described as

𝑦 = 𝑔 (𝑥, 𝑢, 𝑡) , (1)

where 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇 is the state vector of nonlinear

system, 𝑢 = [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
]
𝑇 is the bounded control input

vector, 𝑦 = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
]
𝑇 is the output vector, and 𝑔(⋅) is

an unknown continuous nonlinear smooth function.
In this study, the following assumptions are imposed.

Assumption 1. The whole system can be decomposed as 𝑁
coupling subsystems. The architecture of the multi-input
multioutput nonlinear system is shown in Figure 1.

Assumption 2. All the states of system are bounded and
measurable at every instant.Thedesired output trajectory and
its first derivative are bounded.
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Figure 1: The architecture of the MIMO nonlinear system.
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Figure 2: The architecture of system identification based on DNN.

In order to analyze the dynamic characteristic of nonlin-
ear systemmore conveniently, we use the state-space equation
to describe system (1) as follows:

̇𝑥
1
= 𝑔
1
(𝑥, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)

̇𝑥
2
= 𝑔
2
(𝑥, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)

...

̇𝑥
𝑛
= 𝑔
𝑛
(𝑥, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)

𝑦
1
= 𝑥
1

𝑦
2
= 𝑥
2

...

𝑦
𝑛
= 𝑥
𝑛
.

(2)

By qualitatively analyzing the above model (2), it can
be seen that the system is a coupling, time-varying, and
uncertain nonlinear system. It is difficult, even impossible,
to establish the accurate mathematical model and achieve
prefect performance by using traditional decoupling control
methods. In this paper, the dynamic neural network 𝑔

𝑛𝑛
(𝑥
𝑛𝑛
)

will be employed to approximate the continuous nonlinear
function 𝑔(𝑥), so that

𝑔 (𝑥) = 𝑔
𝑛𝑛
(𝑥
𝑛𝑛
) . (3)

To identify the coupling, uncertain, and nonlinear
dynamic system (2), we use dynamic neural network as the
identifier and construct the identification structure as shown
in Figure 2.
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Figure 3: The architecture of DNN-based identifier.

We consider a single-layer, fully interconnected DNN as
follows [25, 27]:

𝑔
𝑛𝑛
(𝑥
𝑛𝑛
) = ̇𝑥
𝑛𝑛
= 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢, (4)

where 𝑥
𝑛𝑛
∈ R𝑛 is the state variables of DNN, 𝐴 =

diag[−𝑎
1
, . . . , −𝑎

𝑛
] ∈ R𝑛×𝑛, 𝑎

𝑖
> 0, 𝑖 = 1, . . . , 𝑛 is the

unknown matrix for the linear part of NN model, 𝐵 ∈

R𝑛×𝑛 is the matrix of synaptic weights for nonlinear system
feedback, 𝑓(𝑥

𝑛𝑛
) = [𝑓(𝑥

𝑛𝑛1
), . . . , 𝑓(𝑥

𝑛𝑛𝑛
)]
𝑇 is the vector

of network feedback, 𝑓(⋅) represents the neuron activation
function, and 𝑢 = [𝑢

1
, . . . , 𝑢

𝑛
]
𝑇 is the control force vector of

adaptive controller, which will be designed subsequently. In
this work, the architecture of DNN-based identifier is shown
in Figure 3.

Remark 1. The real system is a coupling, time-varying,
and uncertain nonlinear system. Since neural network is a
universal approximator which is capable of approximating
any nonlinear function to any desired degree of accuracy,
we can use DNN model without coupling to replace the real
coupled system. This idea motivates a novel and generalized
decoupling control strategy based on indirect adaptive con-
trol as described in what follows. Using this basic idea, the
specific design for DNN-based identifier can be developed in
the next section.

3. System Identification Based on
Neural Networks

The nonlinear system (2) can be approximated by the follow-
ing continuous dynamic neural networks:

̇𝑥 = 𝐴
∗

𝑥 + 𝐵
∗

𝑓 (𝑥) + 𝑢, (5)

where𝐴∗ and 𝐵∗ are ideal nominal constant matrices and the
state and output variables are physically bounded.

In the process of approximating the time-varying, cou-
pling, nonlinear system, DNN model (4) can be rewritten as
follows:

̇𝑥
𝑛𝑛
= 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢, (6)



4 Abstract and Applied Analysis

where the activation function is specified as a monotonically
increased function and bounded with

0 ≤ 𝑓 (𝑥) − 𝑓 (𝑦) ≤ 𝑘 ⋅ (𝑥 − 𝑦) (7)

for any 𝑥, 𝑦, 𝑘 ∈ R and 𝑥 ≤ 𝑦, 𝑘 > 0, such as 𝑓(𝑥) = tanh(𝑥).
The identification errors are defined as

𝐸 = 𝑥
𝑛𝑛
− 𝑥. (8)

From (5) and (6), we can obtain the error dynamics
equation as follows:

̇𝐸 = ̇𝑥
𝑛𝑛
− ̇𝑥

= {𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢} − {𝐴

∗

𝑥 + 𝐵
∗

𝑓 (𝑥) + 𝑢}

= (𝐴𝑥
𝑛𝑛
− 𝐴
∗

𝑥) + (𝐵𝑓 (𝑥
𝑛𝑛
) − 𝐵
∗

𝑓 (𝑥))

= 𝐴𝑥
𝑛𝑛
+ 𝐴
∗

𝐸 + 𝐵𝑓 (𝑥
𝑛𝑛
) + 𝐵
∗

𝑓 (𝐸) ,

(9)

where 𝐴 = 𝐴 − 𝐴∗, 𝐵 = 𝐵 − 𝐵∗, and 𝑓(𝐸) = 𝑓(𝑥
𝑛𝑛
) − 𝑓(𝑥).

Remark 2. In model (6), we use a DNN model without
coupling to approximate the real coupled system (2). If
we could develop effective weights updating laws of DNN
model (6) to make the error (8) become zero or uniformly
ultimately bounded, it is indicated that the DNN-based
identifier without coupling has the ability of approximating
the coupled, nonlinear systems, namely, instead of the real
systems. Using this idea, the objective of decoupling among
the subsystems would be realized.

Lemma 3. If𝑀 ∈ R𝑛×𝑛 is a positive define symmetric matrix
and 𝑞 ∈ R𝑛 is a vector arbitrarily, then there exist positive
constants 𝜆min and 𝜆max such that

𝜆min
𝑞


2

≤ 𝑞
𝑇

𝑀𝑞 ≤ 𝜆max
𝑞


2

, (10)

where 0 < 𝜆min ≤ 𝜆max denotes the minimum and maximum
eigenvalues of𝑀, respectively.

Lemma 4. If 𝐿 ∈ R1×𝑚,𝑀 ∈ R𝑚×𝑛, and 𝑄 ∈ R𝑛×1 are any
real matrix, there is the following property:

tr (𝐿𝑀𝑄) = tr (𝑀𝑄𝐿) = tr (𝑄𝐿𝑀) = 𝐿𝑀𝑄. (11)

Theorem 5. Considering the identification model (6), the
identification error (8) will be uniformly ultimately bounded
(UUB) if the weights updating laws are as follows:

̇̂
𝐴 = −Λ

1
[𝐸𝑥
𝑛𝑛

𝑇

+ 𝜎
1
𝐴] ,

̇
�̂� = −Λ

2
[𝐸𝑓
𝑇

(𝑥
𝑛𝑛
) + 𝜎
2
𝐵] ,

(12)

where Λ
𝑖
is a free positive define symmetric constant matrix

picked arbitrarily which is related to the approximation preci-
sion and 𝜎

𝑖
> 0 is a design parameter introduced to ensure the

boundedness of ̇̂𝐴, ̇�̂� (the term 𝜎
1
𝐴 or 𝜎

2
𝐵 in (12) is to make

suitable corrections to prevent parameter drift).

Proof. Consider a Lyapunov function candidate as

𝑉
𝐼1
=
1

2
𝐸
𝑇

𝐸. (13)

The time derivative of 𝑉
𝐼1
is given by

𝑉
𝐼1
= 𝐸
𝑇 ̇𝐸. (14)

Now applying the error dynamics equation (9) leads to

𝑉
𝐼1
= 𝐸
𝑇

{𝐴𝑥
𝑛𝑛
+ 𝐴
∗

𝐸 + 𝐵𝑓 (𝑥
𝑛𝑛
) + 𝐵
∗

𝑓 (𝐸)}

= 𝐸
𝑇

𝐴𝑥
𝑛𝑛
+ 𝐸
𝑇

𝐴
∗

𝐸 + 𝐸
𝑇

𝐵𝑓 (𝑥
𝑛𝑛
) + 𝐸
𝑇

𝐵
∗

𝑓 (𝐸) .

(15)

According to the properties (7) of the active function,

𝐸
𝑇

𝐵
∗

𝑓 (𝐸) = 𝐸
𝑇

𝐵
∗

[𝑓 (𝑥
𝑛𝑛
) − 𝑓 (𝑥)]

≤ 𝐸
𝑇

𝐵
∗

𝑘 (𝑥
𝑛𝑛
− 𝑥) = 𝐸

𝑇

𝐵
∗

𝑘𝐸.

(16)

In the view of Lemma 4, (16) can be rewritten as

𝐸
𝑇

𝐵
∗

𝑓 (𝐸) ≤
1

2
𝑘
2

𝐸
𝑇

𝐸 +
1

2
𝐸
𝑇

𝐵
∗

(𝐵
∗

)
𝑇

𝐸. (17)

Then, substituting (17) into (15) yields the following:

𝑉
𝐼1
≤ 𝐸
𝑇

𝐴𝑥
𝑛𝑛
+ 𝐸
𝑇

𝐴
∗

𝐸 + 𝐸
𝑇

𝐵𝑓 (𝑥
𝑛𝑛
)

+
1

2
𝑘
2

𝐸
𝑇

𝐸 +
1

2
𝐸
𝑇

𝐵
∗

(𝐵
∗

)
𝑇

𝐸.

(18)

Namely,

𝑉
𝐼1
≤ 𝐸
𝑇

𝐴𝑥
𝑛𝑛
+ 𝐸
𝑇

𝐴
∗

𝐸 + 𝐸
𝑇

𝐵𝑓 (𝑥
𝑛𝑛
)

+
1

2
𝑘
2

𝐸
𝑇

𝐸 +
1

2
𝐸
𝑇

𝐵
∗

(𝐵
∗

)
𝑇

𝐸 − 𝜂
1
𝑉
𝐼1
+
𝜂
1

2
𝐸
𝑇

𝐸

= −𝜂
1
𝑉
𝐼1
+ 𝐸
𝑇

{
𝜂
1

2
+ 𝐴
∗

+
1

2
𝑘
2

+
1

2
𝐵
∗

(𝐵
∗

)
𝑇

}𝐸

+ 𝐸
𝑇

𝐴𝑥
𝑛𝑛
+ 𝐸
𝑇

𝐵𝑓 (𝑥
𝑛𝑛
) ,

(19)

where 𝜂
1
is a positive real number which is picked arbitrarily.

As 𝐴, 𝐵 contain the ideal weight matrices, we will cancel
them in the following step:

𝑉
𝐼2
=
1

2
tr (𝐴𝑇Λ−1

1
𝐴 + 𝐵

𝑇

Λ
−1

2
𝐵) . (20)

The time derivative of 𝑉
𝐼2
is given by

𝑉
𝐼2
= tr (𝐴𝑇Λ−1

1

̇̃
𝐴 + 𝐵

𝑇

Λ
−1

2

̇
�̃�) = tr (𝐴𝑇Λ−1

1

̇̂
𝐴 + 𝐵

𝑇

Λ
−1

2

̇
�̂�) .

(21)

Using the updating laws (12) and Lemma 4 yields

𝑉
𝐼2
= − tr [𝐴𝑇𝐸𝑥

𝑛𝑛

𝑇

] − 𝜎
1
tr (𝐴𝑇𝐴)

− tr [𝐵𝑇𝐸𝑓𝑇 (𝑥
𝑛𝑛
)] − 𝜎

2
tr (𝐵𝑇𝐵)

= −𝐸
𝑇

𝐴𝑥
𝑛𝑛
− 𝐸
𝑇

𝐵𝑓 (𝑥
𝑛𝑛
) − 𝜎
1
tr (𝐴𝑇𝐴) − 𝜎

2
tr (𝐵𝑇𝐵) .

(22)
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At the same time, it is clear that

𝐴
𝑇

𝐴 = 𝐴
𝑇

(𝐴 + 𝐴
∗

) = 𝐴
𝑇

𝐴 + 𝐴
𝑇

𝐴
∗

≥
1

2
𝐴
𝑇

𝐴 −
1

2
(𝐴
∗

)
𝑇

𝐴
∗

,

𝐵
𝑇

𝐵 = 𝐵
𝑇

(𝐵 + 𝐵
∗

) ≥
1

2
𝐵
𝑇

𝐵 −
1

2
(𝐵
∗

)
𝑇

𝐵
∗

.

(23)

Substituting (23) into (22), we can obtain that

𝑉
𝐼2
≤ −𝐸
𝑇

𝐴𝑥
𝑛𝑛
− 𝐸
𝑇

𝐵𝑓 (𝑥
𝑛𝑛
)

−
𝜎
1

2
tr (𝐴𝑇𝐴) + 𝜎1

2
tr ((𝐴∗)𝑇𝐴∗)

−
𝜎
2

2
tr (𝐵𝑇𝐵) + 𝜎2

2
tr ((𝐵∗)𝑇𝐵∗) .

(24)

In the view of Lemma 3, we can obtain the following
property:

𝐴
𝑇

Λ
−1

1
𝐴 ≤ 𝜆max(Λ−1

1
)
𝐴
𝑇

𝐴,

𝐵
𝑇

Λ
−1

2
𝐵 ≤ 𝜆max(Λ−1

2
)
𝐵
𝑇

𝐵.

(25)

Using the characteristics of the positive define matrices
(25), (24) can be rewritten as

𝑉
𝐼2
≤ −𝐸
𝑇

𝐴𝑥
𝑛𝑛
− 𝐸
𝑇

𝐵𝑓 (𝑥
𝑛𝑛
) +
𝜎
1

2
tr ((𝐴∗)𝑇𝐴∗)

+
𝜎
2

2
tr ((𝐵∗)𝑇𝐵∗) − 𝜎

1

2𝜆max(Λ−1
1
)

tr (𝐴𝑇Λ−1
1
𝐴)

−
𝜎
2

2𝜆max(Λ−1
2
)

tr (𝐵𝑇Λ−1
2
𝐵)

≤ −𝜂
2
𝑉
𝐼2
− 𝐸
𝑇

𝐴𝑥
𝑛𝑛
− 𝐸
𝑇

𝐵𝑓 (𝑥
𝑛𝑛
)

+
𝜎
1

2
tr ((𝐴∗)𝑇𝐴∗) + 𝜎2

2
tr ((𝐵∗)𝑇𝐵∗) ,

(26)

where 𝜂
2
= min(𝜎

𝑖
/𝜆max(Λ−1

𝑖
)
), 𝑖 = 1, 2.

We choose the following Lyapunov function 𝑉
𝐼
= 𝑉
𝐼1
+

𝑉
𝐼2
, and its time derivative is

𝑉
𝐼
= 𝑉
𝐼1
+ 𝑉
𝐼2

≤ −𝜂
1
𝑉
𝐼1
+ 𝐸
𝑇

{
𝜂
1

2
+ 𝐴
∗

+
1

2
𝑘
2

+
1

2
𝐵
∗

(𝐵
∗

)
𝑇

}𝐸

− 𝜂
2
𝑉
𝐼2
+
𝜎
1

2
tr ((𝐴∗)𝑇𝐴∗) + 𝜎2

2
tr ((𝐵∗)𝑇𝐵∗)

≤ −𝜂𝑉
𝐼
+ 𝐸
𝑇

Ψ𝐸 + Ω,

(27)

where

Ω =
𝜎
1

2
tr ((𝐴∗)𝑇𝐴∗) + 𝜎2

2
tr ((𝐵∗)𝑇𝐵∗) > 0,

Ψ =
𝜂
1

2
+ 𝐴
∗

+
1

2
𝑘
2

+
1

2
𝐵
∗

(𝐵
∗

)
𝑇

,

𝜂 = min (𝜂
1
, 𝜂
2
) > 0.

(28)

Make Ψ < 0 to specify 𝐴∗ as follows:

𝐴
∗

< −(
𝜂
1

2
+
1

2
𝑘
2

+
1

2
𝐵
∗

(𝐵
∗

)
𝑇

) . (29)

Therefore we arrive at

𝑉
𝐼
< −𝜂𝑉

𝐼
+ Ω (30)

and it can be concluded that

𝑉
𝐼
< (𝑉
𝐼
(0) −

Ω

𝜂
) exp (−𝜂𝑡) + Ω

𝜂
. (31)

We assume that 𝑉
𝐼
(0) = 0; then

𝑉
𝐼
< (−

Ω

𝜂
) exp (−𝜂𝑡) + Ω

𝜂
. (32)

As 𝑉
𝐼
> (1/2)𝐸

𝑇

𝐸, then

lim
𝑡→∞

‖𝐸‖ = √
2Ω

𝜂
. (33)

According to the Boundedness Theorem [5], we can get
the error using dynamic neural network to approximate the
nonlinear system which is uniformly ultimately bounded
(UUB) and converges to a set containing origin with a rate
at least as fast as 𝑒−𝜂𝑡/2 .

4. Adaptive Decoupling Control Based on
System Identification

In this section, the aim of controller design is to drive
outputs of systemproperly following a prespecified trajectory.
In addition, model errors of DNN-based identifier and
external disturbances should be considered. The architecture
of indirect adaptive control for the time-varying, coupling,
and nonlinear system is shown in Figure 4, which combines
the dynamic neural network and the adaptive controller.

In Figure 4, 𝑥 represents the real outputs, and 𝑥
𝑛𝑛

is the
identification outputs of dynamic neural network. According
to the errors 𝐸, the identification model of dynamic neural
network is used to approximate the unknown nonlinear
system. 𝑥

𝑑
is the reference inputs, 𝐸

𝑑
is the errors between

the given value 𝑥
𝑑
and real output 𝑥 in every instant, and 𝑢 is

the manipulated variables.
In Section 3, we know that the nonlinear system can be

modeled by DNN-based identifier with the weights updating
laws (12). In this section,we should considermodel errors and
external disturbances. If

𝑔
𝑛𝑛
(𝑥
𝑛𝑛
) = 𝑔 (𝑥) − 𝑔, (34)

the nonlinear system can be represented as follows:

̇𝑥 = 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢 + 𝑔, (35)

where 𝑔 is the lump model errors and external disturbances,
which is assumed to be bounded and |𝑔| < 𝑑∗, 𝑑∗ is an
unknown constant.
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Figure 4: The architecture of indirect adaptive decoupling control.

The desired reference inputs 𝑥
𝑑
are defined as follows:

̇𝑥
𝑑
= ℎ
𝑑
(𝑡) . (36)

The states errors 𝐸
𝑑
are defined as follows:

𝐸
𝑑
= 𝑥 − 𝑥

𝑑
. (37)

So we can obtain the errors dynamics equation as follows:
̇𝐸
𝑑
= ̇𝑥 − ̇𝑥

𝑑
= 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢 + 𝑔 − ℎ

𝑑
. (38)

Then, we design the control action 𝑢 as follows:

𝑢 = 𝑢
𝑐
+ 𝑢
𝑟
, (39)

where 𝑢
𝑐
is a compensation action for the nonlinearity and

𝑢
𝑟
is dedicated to deal with the model errors and external

disturbances.

Remark 6. If model errors and external disturbances are zero
or negligible, 𝑢

𝑟
can be chosen to be zero and will drive the

error dynamics to converge to the origin. From the control
point of view, the system stability will not be affected. How-
ever, even if the DNN-based identifier has superb learning
ability to represent the dynamic process of nonlinear system,
model errors and environment disturbances are sometimes
inevitable or even may affect the system stability. So the
following controller design will consider this factor and will
be suitable for general situations.

Theorem7. Thestates errors (37) between referencemodel and
real output will asymptotically converge to zero, if the adaptive
control laws are as follows:

𝑢
𝑐
= −𝐴𝑥

𝑛𝑛
− 𝐵𝑓 (𝑥

𝑛𝑛
) + ℎ
𝑑
,

𝑢
𝑟
= −𝑘
0
⋅ 𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑

̇
�̂� =
𝐸𝑑
 .

(40)

Proof. Substituting (40) into (38), we can obtain the equation
as follows:

̇𝐸
𝑑
= ̇𝑥 − ̇𝑥

𝑑

= 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) − 𝐴𝑥

𝑛𝑛
− 𝐵𝑓 (𝑥

𝑛𝑛
) + ℎ
𝑑

− 𝑘
0
⋅ 𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑 + 𝑔 − ℎ

𝑑

= −𝑘
0
⋅ 𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑 + 𝑔.

(41)

Consider the Lyapunov function candidate of controller
design as follows:

𝑉
𝐶
=
1

2
𝐸
𝑑

𝑇

𝐸
𝑑
+
1

2
𝑑
𝑇

𝑑. (42)

We can obtain the time derivative of the Lyapunov
function candidate (42) as follows:

𝑉
𝐶
= 𝐸
𝑑

𝑇 ̇𝐸
𝑑
+ 𝑑
𝑇 ̇̃
𝑑. (43)

Then, substituting (41) into (43),

𝑉
𝐶

= 𝐸
𝑑

𝑇

[−𝑘
0
𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑 + 𝑔] + 𝑑

𝑇 ̇
�̃�

= 𝐸
𝑑

𝑇

[−𝑘
0
𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑 + 𝑔] + 𝑑

𝑇 ̇
�̂�

= −𝑘
0
𝐸
𝑑

𝑇

𝐸
𝑑
−

𝐸
𝑑

𝑇

𝑑 + 𝐸
𝑑

𝑇

𝑔 + 𝑑
𝑇 ̇
�̂�

≤ −𝑘
0
𝐸
𝑑

𝑇

𝐸
𝑑
−

𝐸
𝑑

𝑇

𝑑 +

𝐸
𝑑

𝑇


𝑔
 + 𝑑
𝑇 ̇
�̂�

≤ −𝑘
0
𝐸
𝑑

𝑇

𝐸
𝑑
−

𝐸
𝑑

𝑇

𝑑 +

𝐸
𝑑

𝑇

𝑑
∗

+ 𝑑
𝑇 ̇
�̂�

= −𝑘
0
𝐸
𝑑

𝑇

𝐸
𝑑
−

𝐸
𝑑

𝑇

𝑑 + 𝑑
𝑇 ̇
�̂�

= −𝑘
0
𝐸
𝑑

𝑇

𝐸
𝑑

≤ 0,

(44)

where 𝑑 = 𝑑 − 𝑑∗.
Thus, we have 𝑉

𝐶
∈ ℓ
∞
, implying that 𝐸

𝑑
∈ ℓ
2
∩ ℓ
∞
, 𝑑 ∈

ℓ
∞
. From (38), it is readily shown that ̇𝐸

𝑑
∈ ℓ
∞
; namely, 𝐸

𝑑
is

uniformly continuous. According to 𝑉
𝐶
≤ −𝑘
0
𝐸
𝑑

𝑇

𝐸
𝑑
≤ 0, we

can obtain ∫𝑡
0

𝑘
0
𝐸
𝑑

𝑇

𝐸
𝑑
𝑑𝜏 ≤ 𝑉

𝐶
(0) < ∞. By Barbalat’s lemma,

it can be concluded that 𝐸
𝑑
→ 0 and 𝑥 → 𝑥

𝑑
as 𝑡 → ∞.

The online computational algorithm for the system iden-
tification and controller design will be described in next
section.

Remark 8. If considering the identification and control as a
whole process, we can prove the system stability by defining
the final Lyapunov function candidate as 𝑉 = 𝑉

𝐼
+ 𝑉
𝐶
. Since

the stability of system identification and adaptive control
has already been proven in Theorems 5 and 7, respectively,
we can make a conclusion that the errors between the real
system states and the desired reference inputs are uniformly
ultimately bounded (UUB).

5. Algorithm for Implement

In this section, a step by step procedure is listed to implement
the identification and control strategy.

Step 1. Assign the initial values of gain matrices Λ
𝑖
and 𝜎

𝑖
in

weight updating laws, and the initial values of the estimated
parameters 𝐴, 𝐵.



Abstract and Applied Analysis 7

Step 2. Based on the initial states 𝑥(0) and system inputs 𝑢,
calculate the states of neural network 𝑥

𝑛𝑛
according to (6).

Step 3. Calculate the new parameter values of 𝐴, 𝐵 by weight
updating laws (12) and then calculate the state variables 𝑥

𝑛𝑛

once again.

Step 4. Choose the suitable control gain 𝑘 and calculate the
values of 𝑢

𝑐
and 𝑢

𝑟
according toTheorem 7.

Step 5. Go to Step 2.

This is the algorithm of online identification and control
scheme for the MIMO system with time varying, coupling,
and nonlinearity.

6. Simulation Example

In this section, in order to verify the effectiveness of indirect
adaptive controller based on DNN, we choose a coupled
two-input two-output, time-varying, nonlinear system as the
simulation model

̇𝑥
1
= −2𝑥

1
+ 5 sign (𝑥

2
) + 𝑢
1
+ 𝑢
2
,

̇𝑥
2
= −0.8𝑥

1
− 3𝑥
2
+ 5 sign (𝑥

2
) − 1.2𝑢

1
+ 0.8𝑢

2
,

(45)

where 𝑥
1
and 𝑥

2
are state variables and 𝑢

1
and 𝑢

2
are control

inputs. As a coupled system, 𝑢
1
and 𝑢

2
can impact every

subsystem, respectively.

6.1. Nonlinear System Identification. It is assumed that the
structure of two-input two-output system is a black box sys-
tem. In this experiment, this test was to validate the feasibility
of the proposed DNN-based identifier to approximate the
unknown, coupled, and nonlinear system.

In this study, 𝑢
1
= 4 sin(0.2𝑡), 𝑢

2
= 4 cos(0.6𝑡). The DNN

model was selected as follows:

̇𝑥
𝑛𝑛
= 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢 (46)

which was structured with single layer, 2 neurons and the
activation functions were selected as hyperbolic tangent;
namely, tanh(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥). Assigned the
initials 𝐴(0) and 𝐵(0) as null matrices, Λ

𝑖
= [
6000 50

50 6000
], 𝜎
1

= 0.1, and 𝜎
2
= 0.02. Then run the online identification

procedure and the whole process was run for 50s. The
identification results are shown in Figures 5 and 6.

The real system (45) is a coupled nonlinear system, and
the DNN model (46) is constructed without coupling. We
use the DNN (46) to approximate the real system (45) on
the basis of the weights updating laws (12) which is derived
by the Lyapunov method. In Figures 5 and 6, 𝑥

1
and 𝑥

2
are

the state variables of the real system, 𝑥
𝑛𝑛1

and 𝑥
𝑛𝑛2

are the
state variables of the DNN model, and 𝐸

1
and 𝐸

2
stand for

the errors of state variables between the real system and the
DNN model. We can explicitly see that the errors are small
enough and the effectiveness of the DNN model according
to the relevant algorithm although the DNN model has no
coupling features.

0 5 10 15 20 25 30 35 40 45 50
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Figure 5: Identification result for system state 𝑥
1
.
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Figure 6: Identification result for system state 𝑥
2
.

6.2. Nonlinear System Control. Although the DNN has the
ability to approximate any nonlinear systems, however,
the DNN model errors and environment disturbances are
inevitable in the real systems. In the control point of view, we
should consider these factors which include neural network
model errors and uncertain disturbance forces acting on the
real nonlinear systems.

The control objective is to make the real outputs of the
unknown, coupled, and MIMO nonlinear systems tracking
the perspecified inputs; namely, the system states 𝑥 =

[𝑥
1
, 𝑥
2
]
𝑇 to follow the prespecified inputs 𝑥

𝑑
= [𝑥
𝑑1
, 𝑥
𝑑2
]
𝑇.

So a comprehensive control scheme was shown in Section 4,
and the controller designed could deal with the compensation
of the nonlinearity, the uncertain model errors, and environ-
ment disturbances.
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Figure 7: Trajectory tracking result for system state 𝑥
1
.

In the view of this paper, the real systems can be
formulated as

̇𝑥 = 𝐴𝑥
𝑛𝑛
+ 𝐵𝑓 (𝑥

𝑛𝑛
) + 𝑢 + 𝑔 (𝑡) , (47)

where 𝑔 = (𝑔
1
, 𝑔
2
)
𝑇 represents the lump model errors and

disturbances.
In this study, first we simply define 𝑔

1
= 0.8 sin(𝑡), 𝑔

2
=

1.5 cos(𝑡) and the reference model inputs are defined as

̇𝑥
𝑑1
= ̇𝑥
𝑑2
=

{{

{{

{

0.2 0 ≤ 𝑡 ≤ 10

sin (0.7𝑡) 10 ≤ 𝑡 ≤ 20
0 20 ≤ 𝑡.

(48)

In fact, the desired inputs 𝑥
𝑑1

and 𝑥
𝑑2

are the piecewise
functions of ramp signal, cosine signal, and step signal.

By using the DNN-based identifier to approximate the
real systems, the adaptive controller is designed as follows:

𝑢
𝑐
= −𝐴𝑥

𝑛𝑛
− 𝐵𝑓 (𝑥

𝑛𝑛
) + ℎ
𝑑
,

𝑢
𝑟
= −𝑘
0
⋅ 𝐸
𝑑
− diag (sgn (𝐸

𝑑
)) ⋅ 𝑑

̇
�̂� =
𝐸𝑑
 .

(49)

Assigned the initials 𝐴(0) and 𝐵(0) as null matri-
ces, Λ

𝑖
= [
6000 50

50 6000
], 𝜎
1
= 0.1, 𝜎

2
= 0.02, and 𝑘

0
= 25. Then

run the proposed controller design procedure and the whole
process was run for 30 s. The response curves of trajectory
tracking are shown in Figures 7 and 8.

In Figures 7 and 8, 𝑥
1
and 𝑥

2
are the state variables

identified by DNNmodel, 𝑥
𝑑1
and 𝑥

𝑑2
are the reference input

signals, and 𝐸
𝑑1

and 𝐸
𝑑2

stand for the errors of trajectory
tracking. We can see no matter how the reference input
signals change;𝐸

𝑑1
and𝐸

𝑑2
are bounded as time goes bywhen

considering the model errors and environment disturbances.
At the same time, there is no large magnitude of overshoot
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Figure 8: Trajectory tracking result for system state 𝑥
2
.

in the response curves. It is concluded that the proposed
adaptive controller is able to achieve excellent dynamic per-
formance and high antidisturbance capability in trajectory
tracking, which agrees with our theoretic prediction.

For the purpose of verifying the generality and effective-
ness of the proposed method for more complex nonlinear
signal, we choose another reference input signal as follows:

̇𝑥
𝑑1
= sin 𝑡,

̇𝑥
𝑑2
= cos 𝑡.

(50)

The lump model errors and disturbances 𝑔
𝑖
are defined

as the square signals

𝑔
1
= 4 square (0.5, 𝑡) ,

𝑔
2
= 3 square (1, 𝑡) .

(51)

And the other conditions are the samewith the above.The
response curves of trajectory tracking are shown in Figures 9
and 10.

From Figures 9 and 10, there is explicitly fluctuation
in the first 20 s, but the errors are always bounded and
become smaller and smaller as time goes on. And the
simulation results once again demonstrate the effectiveness
of the proposed control scheme, and it can be observed with
the excellent performance of the system states following the
prespecified inputs.

7. Conclusion

In this paper, we present the DNN identification and adaptive
control strategy for the real systems which is of nonlinearity,
coupling, and uncertain environment disturbances. Accord-
ing to the Lyapunov methodology, the weights updating laws
of DNN-based identifier and the control laws of indirect
adaptive controller have been derived to ensure the stability
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Figure 9: Trajectory tracking result for system state 𝑥
1
.
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Figure 10: Trajectory tracking result for system state 𝑥
2
.

of decoupling control and to achieve favorable tracking
performance for the real system. The simulation results have
indicated that the success of decoupling and the proper
dynamic response of the plant states to follow the desired
input trajectories.
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A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output
nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and
a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and
the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the
signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood
of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed
approach.

1. Introduction

In the past decade, control design and stability analysis on
stochastic systems have received considerable attention, since
stochastic modeling has come to play an important role
in many real systems, including nuclear processes, thermal
processes, chemical processes, biology, socioeconomics, and
immunology [1–4]. Especially, the investigations on the
control design methods of nonlinear stochastic systems have
received more attention in recent years based on back-
stepping technique. For example, the adaptive backstepping
control problem has been investigated in [5] for a class of
SISO strict-feedback stochastic systems by a risk-sensitive
cost criterion. An output-feedback stabilization method has
been proposed for a class of strict-feedback stochastic non-
linear systems by using the quartic Lyapunov function in
[6]. Two backstepping control design approaches have been
developed for nonlinear stochastic systems with the Marko-
vian switching in [7, 8]. By using a linear reduced-order
state observer, several different output-feedback controllers
have been developed for strict-feedback nonlinear stochastic
systems with unmeasured states, such as tracking control [9],
decentralized control [10], and time-delay systems [11]. How-
ever, these proposed control methods are only suitable for

those nonlinear stochastic systems with nonlinear dynamic
models known exactly or with the unknown parameters
appearing linearly with respect to known nonlinear func-
tions. To cope with the problems that the nonlinear dynamic
models are unknown or the system uncertainties are not
linearly parameterized, the adaptive output-feedback control
approaches have been proposed for a class of uncertain
nonlinear stochastic systems by using neural networks in
[12, 13]. The decentralized adaptive neural networks control
methods have been developed in [14, 15] for a class of uncer-
tain large-scale nonlinear stochastic systems on the basis
of [12, 13].

Although the adaptive neural networks backstepping
control approaches in [12–15] can solve the problem of the
unmeasured states by designing a linear state observer, there
is a limit; that is, uncertain terms are only the functions
of the output of the controlled systems, not related to the
other states variables. To solve this limit, some adaptive fuzzy
output feedback control methods have been proposed for a
class of nonlinear stochastic systems by designing nonlinear
fuzzy state observers in [16–18].

It should be mentioned that the control methods [12–
18] can only solve output-feedback stabilization problem and
cannot solve the output feedback tracking control problem.
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In addition, the tracking performance in the above con-
trol methods confined to converge to a small residual set,
whose size depends on the design parameters and some
unknown bounded terms; they cannot offer the guaranteed
transient performance at time instants. As we know, the
practical engineering often requires the proposed control
scheme to satisfy certain quality of the performance indices,
such as overshoot, convergence rate, and steady-state error.
Prescribed performance issues are extremely challenging and
difficult to be achieved, even in the case of the nonlin-
ear behavior of the system in the presence of unknown
uncertainties and external disturbances. More recently, a
design solution called prescribed performance control for the
problem has been proposed in [19] for a class of feedback
linearization nonlinear systems and was extended to the class
of nonlinear systems in [20]. Its main idea is to introduce
predefined performance bounds of the tracking errors and is
able to adjust control performance indices. However, to the
author’s best knowledge, by far, the prescribed performance
designmethodology has not been applied to nonlinear strict-
feedback systems with unknown functions and immeasur-
able states, which is important andmore practical; thus, it has
motivated us for this study.

In this paper, an adaptive fuzzy output-feedback control
design with prescribed performance is developed for a
class of uncertain SISO nonlinear stochastic systems with
unmeasured states. With the help of fuzzy logic systems
identifying the unknown nonlinear systems, a fuzzy adaptive
observer is developed to estimate the immeasurable states.
The backstepping control design technique based on prede-
fined performance bounds is presented to design adaptive
fuzzy output-feedback controller. It is shown that all the
signals of the resulting closed-loop system are bounded in
probability. Moreover, the tracking error converges to an
adjustable neighborhood of the origin and remainswithin the
prescribed performance bounds. Compared with the existing
results, the main advantages of the proposed control scheme
are as follows: (i) the restrictive assumption that all the
states of the system be measured directly can be removed by
designing a state observer; and (ii) by introducing predefined
performance, the proposed adaptive control method can
ensure that the tracking error converges to a predefined
arbitrarily small residual set.

2. System Descriptions and Preliminaries

2.1. Nonlinear System Descriptions. Consider the following
SISO strict-feedback nonlinear stochastic system:

𝑑𝑥
1

= (𝑥
2
+ 𝑓
1
(𝑥
1
) + 𝑑
1
(𝑡)) 𝑑𝑡 + 𝑔

1
(𝑥) 𝑑𝑤,

𝑑𝑥
2

= (𝑥
3
+ 𝑓
2
(𝑥
2
) + 𝑑
2
(𝑡)) 𝑑𝑡 + 𝑔

2
(𝑥) 𝑑𝑤,

...

𝑑𝑥
𝑛−1

= (𝑥
𝑛
+ 𝑓
𝑛−1

(𝑥
𝑛−1

) + 𝑑
𝑛−1

(𝑡)) 𝑑𝑡

+ 𝑔
𝑛−1

(𝑥) 𝑑𝑤,

𝑑𝑥
𝑛

= (𝑢 + 𝑓
𝑛
(𝑥
𝑛
) + 𝑑
𝑛
(𝑡)) 𝑑𝑡 + 𝑔

𝑛
(𝑥) 𝑑𝑤,

𝑦 = 𝑥
1
,

(1)

where 𝑥
𝑖

= [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
]
𝑇

∈ 𝑅
𝑖, 𝑖 = 1, 2, . . . , 𝑛 (𝑥 =

𝑥
𝑛
) is the state vector; 𝑢 ∈ 𝑅 and 𝑦 ∈ 𝑅 are the control

input and system output, respectively. 𝑓
𝑖
(𝑥
𝑖
) and 𝑔

𝑖
(𝑥) 𝑖 =

1, 2, . . . , 𝑛 are unknown continuous nonlinear functions, and
𝑑
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛 is the external disturbance. 𝑤 ∈ 𝑅

is an independent standard Wiener process defined on a
complete probability space with the incremental covariance
𝐸{𝑑𝑤 ⋅ 𝑑𝑤

𝑇

𝑗
} = 𝜎(𝑡)𝜎(𝑡)

𝑇

𝑑𝑡.
In this paper, the states 𝑥

𝑖
(𝑖 ≥ 2) are assumed not to be

available for measurement.
Our control objective is to design a stable output feedback

control scheme for system (1) to ensure that all the signals
are bounded in probability and that the system output 𝑦(𝑡)
can track the given reference signal 𝑦

𝑑
(𝑡) with the given

prescribed performance bounds.

Assumption 1. The external disturbances 𝑑
𝑖
(𝑡) are bounded;

that is, |𝑑
𝑖
(𝑡)| ≤ 𝑑

∗

𝑖
with 𝑑

∗

𝑖
being an unknown constant.

Assumption 2 (see [17]). Assume that functions 𝑓
𝑖
(⋅) satisfy

the global Lipschitz condition; that is, there exist known
constants 𝑚

𝑖
, 𝑖 = 1, 2, . . . , 𝑛 such that for all 𝑋

1
, 𝑋
2

∈ 𝑅
𝑖,

the following inequalities hold:
𝑓𝑖 (𝑋1) − 𝑓

𝑖
(𝑋
2
)
 ≤ 𝑚
𝑖

𝑋1 − 𝑋
2

 , (2)

where ‖𝑋‖ denotes the 2-norm of a vector𝑋.

Assumption 3 (see [9]). The disturbance covariance
𝑔
𝑇

𝜎𝜎
𝑇

𝑔 = 𝜎𝜎
𝑇 is bounded, where 𝑔 = [𝑔

1
, . . . , 𝑔

𝑛
]
𝑇.

2.2. Prescribed Performance. This section introduces prelim-
inary knowledge on the prescribed performance concept
reported in [20]. According to [20], the prescribed perfor-
mance is achieved by ensuring that each error 𝑧

𝑖
(𝑡) evolves

strictly within predefined decaying bounds as follows:

−𝛿
𝑖min𝜇𝑖 (𝑡) < 𝑧

𝑖
(𝑡) < 𝛿

𝑖max𝜇𝑖 (𝑡) , ∀𝑡 ≥ 0, (3)

where 1 ≤ 𝑖 ≤ 𝑛, 𝛿
𝑖min and 𝛿

𝑖max are design con-
stants, and the performance functions 𝜇

𝑖
(𝑡) are bounded

and strictly positive decreasing smooth functions with the
property lim

𝑡→∞
𝜇
𝑖
(𝑡) = 𝜇

𝑖,∞
; 𝜇
𝑖,∞

> 0 are a constant.
In this paper, the performance functions are chosen as the
exponential form 𝜇

𝑖
(𝑡) = (𝜇

𝑖,0
− 𝜇
𝑖,∞

)𝑒
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are strictly positive constants, 𝜇
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,
and 𝜇
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= 𝜇
𝑖
(0) is selected such that −𝛿

𝑖min𝜇𝑖(0) <

𝑧
𝑖
(0) < 𝛿

𝑖max𝜇𝑖(0) is satisfied. The constant 𝜇
𝑖,∞

denotes
the maximum allowable size of 𝑧

𝑖
(𝑡) at steady state that is

adjustable to an arbitrary small value reflecting the resolution
of the measurement device. The decreasing rate 𝑛

𝑖
represents

a lower bound on the required speed of convergence of 𝑧
𝑖
(𝑡).

Furthermore, the maximum overshoot of 𝑧
𝑖
(𝑡) is prescribed

less thanmax{𝛿
𝑖min𝜇𝑖(0), 𝛿𝑖max𝜇𝑖(0)}.Therefore, choosing the

performance function 𝜇
𝑖
(𝑡) and the constants 𝛿

𝑖min, 𝛿𝑖max
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appropriately determines the performance bounds of the
error 𝑧

𝑖
(𝑡).

To represent (3) by an equality form, we employ an error
transformation as

𝑧
𝑖
= 𝜇
𝑖
(𝑡) Φ
𝑖
(𝜁
𝑖
(𝑡)) , ∀𝑡 ≥ 0, (4)

where Φ
𝑖
(𝜁
𝑖
) = (𝛿

𝑖max𝑒
𝜁𝑖 − 𝛿
𝑖min𝑒
−𝜁𝑖)/(𝑒

𝜁𝑖 + 𝑒
−𝜁𝑖).

Since the functionΦ
𝑖
(𝜁
𝑖
) is strictly monotonic increasing,

its inverse function can be expressed as
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(𝑡) = Φ

−1
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2
ln
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𝑧
𝑖

𝜇
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)

(5)

with 𝑝
𝑖
= (1/2𝜇

𝑖
)[(1/(Φ

𝑖
+ 𝛿
𝑖min)) − (1/(Φ

𝑖
− 𝛿
𝑖max))].

For the output-feedback control design of the nonlinear
system, we design the following state transformation:

𝑧
𝑖
(𝑡) = 𝜁

𝑖
(𝑡) −

1

2
ln

𝛿
𝑖min

𝛿
𝑖max

. (6)

And the transformation state dynamics is

̇𝑧
𝑖
(𝑡) = 𝑝

𝑖
( ̇𝑧
𝑖
−

̇𝜇
𝑖
𝑧
𝑖

𝜇
𝑖

) . (7)

2.3. Fuzzy Logic Systems. A fuzzy logic system (FLS) consists
of four parts: the knowledge base, the fuzzifier, the fuzzy
inference engine working on fuzzy rules, and the defuzzifier.
The knowledge base for FLS comprises a collection of fuzzy
IF-THEN rules of the following form:

𝑅
𝑙

: If 𝑥
1
is 𝐹
𝑙

1
, 𝑥
2
is 𝐹
𝑙

2
, . . . , 𝑥

𝑛
is 𝐹
𝑙

𝑛
,

Then 𝑦 𝑖𝑠 𝐺
𝑙

, 𝑙 = 1, 2, . . . , 𝑁,

(8)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇 and 𝑦 are the FLS input and output,

respectively. Fuzzy sets 𝐹
𝑙

𝑖
and 𝐺

𝑙 are associated with the
fuzzy functions 𝜇

𝐹
𝑙

𝑖

(𝑥
𝑖
) and 𝜇

𝐺
𝑙(𝑦), respectively.𝑁 is the rule

number of IF-THEN.
Through singleton function, center average defuzzifica-

tion, and product inference [21], the FLS can be expressed as
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where 𝑦
𝑙
= max
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𝜇
𝐺
𝑙(𝑦).

Define the fuzzy basis functions as
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Denoting 𝜃
𝑇
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2
, . . . , 𝑦

𝑁
] = [𝜃

1
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] and 𝜑(𝑥) =

[𝜑
1
(𝑥), . . . , 𝜑

𝑁
(𝑥)]
𝑇, then FLS (9) can be rewritten as

𝑦 (𝑥) = 𝜃
𝑇

𝜑 (𝑥) . (11)

Lemma4 (see [21]). Let𝑓(𝑥) be a continuous function defined
on a compact set Ω. Then for any constant 𝜀 > 0, there exists a
FLS (11) such as

sup
𝑥∈Ω


𝑓 (𝑥) − 𝜃

𝑇

𝜑 (𝑥)

≤ 𝜀. (12)

3. Fuzzy State Observer Design

Since the states 𝑥
2
, . . . , 𝑥

𝑛
in system (1) are not available for

measurement, a state observer is to be established to estimate
them in this section.

Rewrite (1) in the following form:
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= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
)
𝑇 is the estimate of 𝑥

𝑖
=

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
)
𝑇, 𝐴 = [

−𝑘1... I
−𝑘𝑛 0 ⋅⋅⋅ 0

], 𝐾 = [𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
]
𝑇,

𝐵
𝑖
= [0 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 0]

𝑇, 𝐵 = [0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 1]
𝑇, Δ𝑓
𝑖
= 𝑓
𝑖
(𝑥
𝑖
) − 𝑓
𝑖
(�̂�
𝑖
),

𝑔(𝑥) = [𝑔
1
(𝑥), . . . , 𝑔

𝑛
(𝑥)]
𝑇.

The vector 𝐾 is chosen such that 𝐴 is a Hurwitz matrix.
Thus, given a positive definitematrix𝑄 = 𝑄

𝑇

> 0, there exists
a positive definite matrix 𝑃 = 𝑃

𝑇

> 0 satisfying

𝐴
𝑇

𝑃 + 𝑃𝐴 = −2𝑄. (14)

By Lemma 4, we can assume that nonlinear terms 𝑓
𝑖
(�̂�
𝑖
), 𝑖 =

1, 2, . . . , 𝑛 in (13) can be approximated by the following FLSs:

𝑓
𝑖
(�̂�
𝑖
𝜃
𝑖
) = 𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
) . (15)

Define the optimal parameter vectors 𝜃∗
𝑖
as

𝜃
∗

𝑖
= argmin
𝜃𝑖∈Ω𝑖

[

[

sup
̂
𝑥𝑖∈𝑈𝑖


𝑓
𝑖
(�̂�
𝑖
| 𝜃
𝑖
) − 𝑓
𝑖
(�̂�
𝑖
)

]

]

, (16)

where Ω
𝑖
and 𝑈

𝑖
are bounded compact sets for 𝜃

𝑖
and �̂�

𝑖
,

respectively. Also, the fuzzy minimum approximation error
𝜀
𝑖
is defined as

𝜀
𝑖
= 𝑓
𝑖
(�̂�
𝑖
) − 𝑓
𝑖
(�̂�
𝑖
| 𝜃
∗

𝑖
) , (17)

where 𝜀
𝑖
satisfies |𝜀

𝑖
| ≤ 𝜀
∗

𝑖
, with 𝜀

∗

𝑖
being a positive constant.

The state observer for (13) is designed as

̇
�̂�
𝑛
= 𝐴�̂�
𝑛
+ 𝐾𝑦 +

𝑛

∑

𝑖=1

𝐵
𝑖
[𝑓
𝑖
(�̂�
𝑖
| 𝜃
𝑖
)] + 𝐵𝑢,

𝑦 = 𝐶�̂�
𝑛
,

(18)

where 𝐶 = [1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0].



4 Abstract and Applied Analysis

4. Adaptive Controller Design

In this section, an adaptive fuzzy output-feedback control
scheme will be developed by using the above fuzzy state
observer and the backstepping technique, and the stability of
the closed-loop system will be given.

The controller design consists of step 𝑛; each step is based
on the following change of coordinates:

𝑧
1
= 𝑦 − 𝑦

𝑑
, 𝑧

𝑖
= 𝑥
𝑖
− 𝛼
𝑖−1

, (𝑖 = 2, . . . , 𝑛) , (19)

where 𝛼
𝑖−1

is referred to as the intermediate control function,
which will be designed later.

Step 1. From (1), (7), and (19), according to Itô’s differentia-
tion rule, we can obtain

𝑑𝑧
1
= 𝑝
1
(𝑥
2
+ 𝑓
1
(𝑥
1
) + 𝑑
1
− ̇𝑦
𝑑
−

̇𝜇
1
𝑧
1

𝜇
1

)𝑑𝑡

+ 𝑝
1
𝑔
1
(𝑥) 𝑑𝑤

= 𝑝
1
(𝑧
2
+ 𝛼
1
+ 𝑒
2
+ 𝜃
𝑇

1
𝜑
1
(𝑥
1
)

+ 𝜃
𝑇

1
𝜑
1
(𝑥
1
) + 𝜀
1
+ 𝑑
1
− ̇𝑦
𝑑

+Δ𝑓
1
−

̇𝜇
1
𝑧
1

𝜇
1

)𝑑𝑡 + 𝑝
1
𝑔
1
(𝑥) 𝑑𝑤.

(20)

Choose the intermediate control function 𝛼
1
and the adapta-

tion law for 𝜃
1
as follows:

𝛼
1
= −𝑐
1
𝑧
1
𝑝
1
−

9

4
𝑧
1
𝑝
1/3

1
−

3

4
𝑧
1
𝑝
3

1
− 𝑧
3

1
𝑝
1

− 𝜃
𝑇

1
𝜑
1
(𝑥
1
) + ̇𝑦
𝑑
+

̇𝜇
1
𝑧
1

𝜇
1

,

(21)

̇𝜃
1
= 𝜂
1
𝑧
3

1
𝑝
1
𝜑
1
(𝑥
1
) − 𝜎
1
𝜃
1
, (22)

where 𝑐
1
> 0, 𝜎

1
> 0 and 𝜂

1
> 0 are design parameters and 𝜃

1

is the estimate of 𝜃∗
1
.

Step 𝑖 (2 ≤ 𝑖 ≤ 𝑛 − 1). Similar to Step 1, we have

𝑑𝑧
𝑖
= [𝑝
𝑖
(𝑧
𝑖+1

+ 𝛼
𝑖
+ 𝑘
𝑖
𝑒
1
+ 𝜃
𝑇

𝑖
𝜑 (�̂�
𝑖
)

−

𝑖−1

∑

𝑙=1

𝜕𝛼
𝑙−1

𝜕𝑥
𝑙

̇�̂�
𝑙
−

𝑖−1

∑

𝑙=1

𝜕𝛼
𝑙−1

𝜕𝜃
𝑙

̇𝜃
𝑙

−

𝑖−1

∑

𝑙=1

𝜕𝛼
𝑙−1

𝜕𝑦
(𝑙−1)

𝑑

𝑦
𝑙

𝑑
−

𝜕𝛼
1

𝜕𝑦
̇𝑦 −

̇𝜇
𝑖
𝑧
𝑖

𝜇
𝑖

)]𝑑𝑡

− 𝑝
𝑖

𝜕𝛼
𝑖−1

𝜕𝑦
𝑔
1
(𝑥) 𝑑𝑤

= [𝑝
𝑖
(𝑧
𝑖+1

+ 𝛼
𝑖
+ 𝑘
𝑖
𝑒
1
+ 𝜃
𝑇

𝑖
𝜑 (�̂�
𝑖
)

+ 𝜃
𝑇

𝑖
𝜑 (�̂�
𝑖
) − 𝜃
𝑇

𝑖
𝜑 (�̂�
𝑖
) −

𝜕𝛼
1

𝜕𝑦

× [𝜃
𝑇

1
𝜑
1
(𝑥
1
) + 𝑒
2
+ 𝜀
1
+ Δ𝑓
1
+ 𝑑
1
]

−𝐻
𝑖
−

̇𝜇
𝑖
𝑧
𝑖

𝜇
𝑖

)]𝑑𝑡

− 𝑝
𝑖

𝜕𝛼
𝑖−1

𝜕𝑦
𝑔
1
(𝑥) 𝑑𝑤,

(23)

where

𝐻
𝑖
= −

𝑖−1

∑

𝑙=1

𝜕𝛼
𝑙−1

𝜕𝑥
𝑙

[𝑥
𝑙+1

+ 𝜃
𝑇

𝑙
𝜑
𝑙
(�̂�
𝑙
) + 𝑘
𝑙
𝑒
1
]

−
𝜕𝛼
1

𝜕𝜃
1

̇𝜃
1
−

𝜕𝛼
1

𝜕𝑦
(𝑙−1)

𝑑

̇𝑦
𝑑
−

𝜕𝛼
1

𝜕𝑦
[𝑥
2
+ 𝜃
𝑇

1
𝜑
1
(𝑥
1
)] .

(24)

Choose intermediate control function 𝛼
𝑖
and adaptation law

𝜃
𝑖
as

𝛼
𝑖
= −𝑐
𝑖
𝑧
𝑖
𝑝
𝑖
− 𝑘
𝑖
𝑒
1
− 𝐻
𝑖
− 𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
)

−
3

4
𝑧
𝑖
𝑝
1/3

𝑖
−

1

4
𝑧
𝑖
+

̇𝜇
𝑖
𝑧
𝑖

𝜇
𝑖

,

(25)

̇𝜃
𝑖
= 𝜂
𝑖
𝑧
3

𝑖
𝑝
𝑖
𝜑
𝑖
(�̂�
𝑖
) − 𝜎
𝑖
𝜃
𝑖
, (26)

where 𝑐
𝑖
> 0, 𝜎

𝑖
> 0 and 𝜂

𝑖
> 0 are design parameters and 𝜃

𝑖

is the estimate of 𝜃∗
𝑖
, and

𝐻
𝑖
= 𝐻
𝑖
+ (

𝜕𝛼
𝑖−1

𝜕𝑥
1

)

2

𝑧
3

𝑖
𝑝
𝑖
+

3

4
𝑧
𝑖
𝑝
3

𝑖
(
𝜕𝛼
𝑖−1

𝜕𝑦
)

4

+
1

2
𝑧
3

𝑖
𝑝
𝑖
+

1

4
𝑧
3

𝑖
𝑝
𝑖
(
𝜕
2

𝛼
𝑖−1

𝜕𝑦2
)

2

.

(27)

Step 𝑛. In the final design step, the actual control input 𝑢 will
be designed. Similar to Step 𝑖 we have

𝑑𝑧
𝑛
= 𝑝
𝑛
(𝑢 + 𝑘

𝑛
𝑒
1
+ 𝜃
𝑇

𝑛
𝜑
𝑛
(�̂�
𝑛
) − ̇𝛼
𝑛−1

−
̇𝜇
𝑛
𝑧
𝑛
(𝑡)

𝜇
𝑛

)𝑑𝑡

− 𝑝
𝑛

𝜕𝛼
𝑛−1

𝜕𝑦
𝑔
1
(𝑥) 𝑑𝑤.

(28)

The controller 𝑢 and adaptation law 𝜃
𝑛
are chosen as

𝑢 = −𝑐
𝑛
𝑧
𝑛
𝑝
𝑛
− 𝑘
𝑛
𝑒
1
− 𝜃
𝑇

𝑛
𝜑
𝑛
(�̂�
𝑛
) − 𝐻

𝑛
−

1

4
𝑧
𝑛
+

̇𝜇
𝑛
𝑧
𝑛

𝜇
𝑛

, (29)

̇𝜃
𝑛
= 𝜂
𝑛
𝑧
3

𝑛
𝑝
𝑛
𝜑
𝑛
(�̂�
𝑛
) − 𝜎
𝑛
𝜃
𝑛
, (30)

where 𝑐
𝑛
> 0, 𝜎

𝑛
> 0 and 𝜂

𝑖
> 0 are design parameters and 𝜃

𝑛

is the estimate of 𝜃∗
𝑛
.
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5. Stability Analysis

Consider the total Lyapunov candidate functions 𝑉 as the
sum of local Lyapunov candidate functions𝑉

0
and𝑉
𝑖
, namely,

𝑉 = 𝑉
0
+ 𝑉
𝑖
, with 𝑉

0
= (1/2)𝑒

𝑇

𝑃𝑒, and 𝑉
𝑖
= ∑
𝑛

𝑖=1
((1/4)𝑧

4

𝑖
+

(1/2𝜂
𝑖
)𝜃
𝑇

𝑖
𝜃
𝑖
), where 𝑒 = 𝑥 − �̂� is the observer error vector, 𝜂

𝑖

is positive design constant, and 𝜃
𝑖
= 𝜃
∗

𝑖
− 𝜃
𝑖
.

Theorem5. For the stochastic nonlinear system (1), if Assump-
tions 1–3 are satisfied, the controller (29)with the state observer
(18), together with the intermediate control functions (21) and
(25), and adaptation laws (22), (26), and (30) can guarantee
that all signals in the closed-loop system are semiglobally
uniformly ultimately bounded in probability, and the tracking
error remains in a neighborhood of the origin within the
prescribed performance bounds for all 𝑡 ≥ 0.

Proof. The infinitesimal generator of 𝑉 is

ℓ𝑉 = ℓ𝑉
0
+ ℓ𝑉
𝑖
. (31)

From (13) and (18), we have the observer error equation

𝑑𝑒 = (𝐴𝑒 +

𝑛

∑

𝑖=1

𝐵
𝑖
[𝑓
𝑖
(�̂�
𝑖
) − 𝑓
𝑖
(�̂�
𝑖
| 𝜃
𝑖
)

+ Δ𝑓
𝑖
+ 𝑑
𝑖
])𝑑𝑡 + 𝑔 (𝑥) 𝑑𝑤

= (𝐴𝑒 +

𝑛

∑

𝑖=1

𝐵
𝑖
[𝜀
𝑖
+ 𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
)

+Δ𝑓
𝑖
+ 𝑑
𝑖
])𝑑𝑡 + 𝑔 (𝑥) 𝑑𝑤

= (𝐴𝑒 + 𝜀 + 𝑑 + Δ𝑓

+

𝑛

∑

𝑖=1

𝐵
𝑖
𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
))𝑑𝑡 + 𝑔 (𝑥) 𝑑𝑤,

(32)

where Δ𝑓 = [Δ𝑓
1
, . . . , Δ𝑓

𝑛
]
𝑇, 𝜀 = [𝜀

1
, . . . , 𝜀

𝑛
]
𝑇, 𝑑 =

[𝑑
1
, . . . , 𝑑

𝑛
]
𝑇, 𝜃
𝑖
= 𝜃
∗

𝑖
− 𝜃
𝑖
.

The infinitesimal generator of 𝑉
0
along with (32) is

ℓ𝑉
0
≤ −𝜆min (𝑄) ‖𝑒‖

2

+ 𝑒
𝑇

𝑃 (𝜀 + 𝑑 + Δ𝑓)

+

𝑛

∑

𝑖=1

𝑒
𝑇

𝑃𝐵
𝑖
𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
) + 𝑇𝑟 [𝜎𝑔

𝑇

𝑃𝑔𝜎
𝑇

] .

(33)

By Young’s inequality, Assumptions 1–3, we have

𝑒
𝑇

𝑃 (𝑑 + 𝜀 + Δ𝑓) ≤
3

2
‖𝑒‖
2

+
1

2
‖𝑃‖
2𝜀
∗

2

+
1

2
‖𝑃‖
2𝑑
∗

2

+
1

2
‖𝑃‖
2Δ𝑓



2

≤ (
3

2
+

1

2
‖𝑃‖
2

𝑛

∑

𝑖=1

𝑚
2

𝑖
)‖𝑒‖
2

+
1

2
‖𝑃‖
2𝜀
∗

2

+
1

2
‖𝑃‖
2𝑑
∗

2

,

𝑇𝑟 [𝜎𝑔
𝑇

𝑃𝑔𝜎
𝑇

] ≤
1

2
‖𝑃‖
2

+
1

2


𝜎 𝜎
𝑇


2

,

(34)

where 𝜀∗ = [𝜀
∗

1
, . . . , 𝜀

∗

𝑛
]
𝑇, 𝑑∗ = [𝑑

∗

1
, . . . , 𝑑

∗

𝑛
]
𝑇.

Note that 𝜑𝑇
𝑖
(�̂�
𝑖
)𝜑
𝑖
(�̂�
𝑖
) ≤ 1; by Young’s inequality, we have

𝑒
𝑇

𝑃

𝑛

∑

𝑖=1

𝐵
𝑖
𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
) ≤

1

4
𝑒
𝑇

𝑃𝑃
𝑇

𝑒 +

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
) 𝜑
𝑇

𝑖
(�̂�
𝑖
) 𝜃
𝑖

≤
1

4
𝜆
2

max (𝑃) ‖𝑒‖
2

+

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖
,

(35)

where 𝜆max(𝑃) is the largest eigenvalue of 𝑃.
Substituting (34)-(35) into (33) gives

𝑉
0
≤ −𝑞
0
‖𝑒‖
2

+

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖
+ 𝜆
0
, (36)

where 𝑞
0

= 𝜆min(𝑄) − ((3/2) + (1/2)‖𝑃‖
2

∑
𝑛

𝑖=1
𝑚
2

𝑖
+

(1/4)𝜆
2

max(𝑃)), 𝜆0 = (1/2)‖𝑃‖
2

‖𝜀
∗

‖
2

+ (1/2)‖𝑃‖
2

‖𝑑
∗

‖
2

+

(1/2)‖𝑃‖
2

+ (1/2)|𝜎 𝜎
𝑇

|
2

, and 𝜆min(𝑄) is the minimal eigen-
value of 𝑄.

From (19), (20), (23), and (28) we have

𝑧
3

1
̇𝑧
1
= 𝑧
3

1
𝑝
1
(𝑥
2
+ 𝑓
1
(𝑥
1
) + 𝑑
1
− ̇𝑦
𝑑
−

̇𝜇
1
𝑧
1

𝜇
1

)

+
3

2
𝑧
2

1
𝑝
2

1
𝑔
𝑇

1
𝜎𝜎
𝑇

𝑔
1

= 𝑧
3

1
𝑝
1
(𝑧
2
+ 𝛼
1
+ 𝑒
2
+ 𝜃
𝑇

1
𝜑
1
(𝑥
1
) + 𝜃
𝑇

1
𝜑
1
(𝑥
1
)

+𝜀
1
+ 𝑑
1
− ̇𝑦
𝑑
+ Δ𝑓
1
−

̇𝜇
1
𝑧
1

𝜇
1

)

+
3

2
𝑧
2

1
𝑝
2

1
𝑔
𝑇

1
𝜎𝜎
𝑇

𝑔
1
,

𝑧
3

𝑖
̇𝑧
𝑖
= 𝑧
3

𝑖
𝑝
𝑖
(𝑧
𝑖+1

+ 𝛼
𝑖
+ 𝑘
𝑖
𝑒
1
−

𝜕𝛼
1

𝜕𝑦

× [𝜃
𝑇

1
𝜑
1
(𝑥
1
) + 𝑒
2
+ Δ𝑓
1
+ 𝑑
1
+ 𝜀
1
]

+ 𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
) + 𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
) − 𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
) − 𝐻

𝑖

−
1

2

𝜕
2

𝛼
𝑖−1

𝜕𝑦2
𝑔
𝑇

1
𝜎𝜎
𝑇

𝑔
1
−

̇𝜇
𝑖
𝑧
𝑖

𝜇
𝑖

)

+
3

2
𝑝
2

𝑖
𝑧
2

𝑖
(
𝜕𝛼
𝑖−1

𝜕𝑦
)

2

𝑔
𝑇

1
𝜎𝜎
𝑇

𝑔
1
,



6 Abstract and Applied Analysis

𝑧
3

𝑛
̇𝑧
𝑛
= 𝑧
3

𝑛
𝑝
𝑛
(𝜃
𝑇

𝑛
𝜑
𝑛
(�̂�
𝑛
)+𝑢 +

1

4
𝑧
𝑛
+ 𝑘
𝑛
𝑒
1
− 𝐻
𝑛
−

̇𝜇
𝑛
𝑧
𝑛
(𝑡)

𝜇
𝑛

)

+ 𝜃
𝑇

𝑛
𝜑
𝑛
(�̂�
𝑛
)−𝜃
𝑇

𝑛
𝜑
𝑛
(�̂�
𝑛
)+

3

2
𝑝
2

𝑛
𝑧
2

𝑛
(
𝜕𝛼
𝑛−1

𝜕𝑦
)

2

𝑔
𝑇

1
𝜎𝜎
𝑇

𝑔
1
.

(37)

By Young’s inequality and Assumptions 1–3, we have

𝑧
3

1
𝑝
1
𝑧
2
+ 𝑧
3

1
𝑝
1
𝑒
2
+ 𝑧
3

1
𝑝
1
𝜀
1
+ 𝑧
3

1
𝑝
1
𝑑
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+ 𝑧
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𝑝
1
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1
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3
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𝑝
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1
+

1
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𝑧
4
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+

1

2
𝑧
6

1
𝑝
2

1
+

1

2
‖𝑒‖
2

+
3

4
𝑧
4

1
𝑝
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1

+
1

4
𝜀
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1
+

3

4
𝑧
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1
𝑝
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1
+

1

4
𝑑
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1
+

1

2
𝑧
6

1
𝑝
2

1
+

1

2
Δ𝑓
2

1

≤
9

4
𝑧
4

1
𝑝
4/3

1
+ 𝑧
6

1
𝑝
2

1
+

1

4
𝑧
4

2
+

1

4
𝜀
∗4

1
+

1

4
𝑑
∗4

1

+
1

2
‖𝑒‖
2

+
1

2
‖𝑒‖
2

𝑚
2

1
,

(38)

3

2
𝑧
2

1
𝑝
2

1
𝑔
𝑇

1
𝜎𝜎
𝑇

𝑔
1
≤

3

4
𝑧
4

1
𝑝
4

1
+

3

4


𝜎 𝜎
𝑇


2

, (39)

𝑧
3

𝑖
𝑝
𝑖
𝑧
𝑖+1

− 𝑧
3

𝑖
𝑝
𝑖
𝜃
𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
)

≤
3
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𝑧
4

𝑖
𝑝
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𝑖
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1
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𝑧
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𝑧
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𝑖
𝑝
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𝑖
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2
𝜃
𝑇
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𝜃
𝑖
,

(40)

−𝑧
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𝑖
𝑝
𝑖
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𝜕𝑥
1

𝑒
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2
‖𝑒‖
2

+
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𝜕𝑥
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𝑧
6

𝑖
𝑝
2

𝑖
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−𝑧
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𝑖
𝑝
𝑖

𝜕𝛼
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𝜕𝑥
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𝜃
𝑇
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𝜑
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(𝑥
1
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1
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𝜃
𝑇

1
𝜃
1
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1

2
(
𝜕𝛼
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𝜕𝑥
1

)

2

𝑧
6

𝑖
𝑝
2

𝑖
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− 𝑧
3

𝑖
𝑝
𝑖
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𝑖−1

𝜕𝑥
1

[𝜀
1
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1
]

≤
3
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(
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2

,

(43)

−
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𝑧
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𝑖
𝑝
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𝜕
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𝛼
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𝑇

1
𝜎𝜎
𝑇

𝑔
1
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3

2
𝑝
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𝑇
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≤
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𝑧
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2
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(
𝜕
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𝜎 𝜎
𝑇


2

.

(44)

From (21)-(22), (25)-(26), (29)-(30), and (41)–(44), we have

ℓ𝑉 ≤ −𝑞
𝑛
‖𝑒‖
2

−

𝑛

∑

𝑖=1

𝑐
𝑖
𝑧
4

𝑖
𝑝
2

𝑖
+

𝑛

∑

𝑖=1

𝜎
𝑖

𝜂
𝑖

𝜃
𝑇

𝑖
𝜃
𝑖

+ 2

𝑛

∑

𝑖=1

𝜃
𝑇

𝑖
𝜃
𝑖
+

𝑛 − 1

2
𝜃
𝑇

1
𝜃
1
+ 𝜆
𝑛
,

(45)

where 𝑞
𝑛
= 𝑞
0
−(𝑛/2)−(𝑛𝑚

2

1
/2), 𝜆
𝑛
= 𝜆
0
+(𝑛/2)𝜀

2

1
+(𝑛/2)𝑑

∗2

1
+

𝑛|𝜎 𝜎|
2.

Note that
𝑛

∑

𝑖=1

𝜎
𝑖

𝜂
𝑖

𝜃
𝑇

𝑖
𝜃
𝑖
≤ −

1

2

𝑛

∑

𝑖=1

𝜎
𝑖

𝜂
𝑖

𝜃
𝑇

𝑖
𝜃
𝑖
+

1

2

𝑛

∑

𝑖=1

𝜎
𝑖

𝜂
𝑖

𝜃
∗𝑇

𝑖
𝜃
∗

𝑖
. (46)

Substituting the above inequality into (52) gives

ℓ𝑉 ≤ −𝑞
𝑛
‖𝑒‖
2

−

𝑛

∑

𝑖=1

𝑐
𝑖
𝑧
4

𝑖
𝑝
2

𝑖
−

𝑛

∑

𝑖=2

(
𝜎
𝑖

2𝜂
𝑖

− 2) 𝜃
𝑇

𝑖
𝜃
𝑖

− (
𝜎
1

2𝜂
1

−
𝑛 + 3

2
) 𝜃
𝑇

1
𝜃
1
+ 𝜆,

(47)

where 𝐷 = ∑
𝑛

𝑖=1
(𝜎
𝑖
/2𝜂
𝑖
)𝜃
∗𝑇

𝑖
𝜃
∗

𝑖
+ 𝜆
𝑛
. Let 𝑞

𝑛
> 0, 𝑐

𝑖
> 0,

(𝜎
𝑖
/2𝜂
𝑖
) > 1, and define

𝐶 = min{
2𝑞
𝑛

𝜆min (𝑃)
, 4𝑐
𝑖
𝑝
2

𝑖
, (𝑖 = 1, . . . , 𝑛) ,

𝜎
1
− (𝑛 + 3) 𝜂

1
, 2 (𝜎
𝑖
− 4𝜂
𝑖
) , (𝑖 = 2, . . . , 𝑛) } .

(48)

Then (47) can be written as

ℓ𝑉 ≤ −𝐶𝑉 + 𝐷. (49)

Multiplying 𝑉 by 𝑒𝐶𝑡 and by Itô formula leads to

𝑑 (𝑒
𝐶𝑡

𝑉) = 𝑒
𝐶𝑡

(𝐶𝑉 + ℓ𝑉) 𝑑𝑡 + 𝑒
𝐶𝑡

Ω
1
𝑑𝑤, (50)

whereΩ
1
= (𝜕𝑉/𝜕𝑧

1
)𝑔
1
(𝑥) −∑

𝑛

𝑖=2
(𝜕𝑉/𝜕𝑧

𝑖
)(𝜕𝛼
𝑖−1

/𝜕𝑦)𝑔
1
(𝑥) +

(𝜕𝑉/𝜕𝑒)𝑔(𝑥).
From (49) and (50), we have

𝑑 (𝑒
𝐶𝑡

𝑉) ≤ 𝑒
𝐶𝑡

𝐷𝑑𝑡 + 𝑒
𝐶𝑡

Ω
1
𝑑𝑤. (51)

Integrating (51) over [0, 𝑇], we get

𝑉 (𝑇) ≤ 𝑒
𝐶𝑇

𝑉 (0) +
𝐷

𝐶
+ 𝑒
𝐶𝑇

∫

𝑇

0

𝑒
𝐶𝑠

Ω
1
𝑑𝑤 (𝑠) . (52)

Taking expectation on (52), it follows that

𝐸 [𝑉 (𝑇)] ≤ 𝐸𝑉 (0) 𝑒
−𝐶𝑇

+
𝐷

𝐶
, (53)

where 𝐸(⋅) is probability expectation.
The above inequality means that 𝐸[𝑉(𝑇)] is bounded

by 𝐷/𝐶 in mean square. Thus, according to [12–18], it is
concluded that all the signals of the closed-loop system are
SGUUB in the sense of the four-moment.Moreover, it follows
that the tracking errors and virtual tracking errors remain
within the prescribed performance bounds for all time 𝑡 ≥

0.

6. Simulation Study

In this section, a simulation example is provided to evaluate
the control performance of the proposed adaptive output-
feedback control method.
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Figure 1: The curves of 𝑦 (solid line) and 𝑦
𝑑
(dot line).

Consider a stochastic system governed by the following
form:

𝑑𝑥
1
= [𝑥
2
+ 𝑓
1
(𝑥
1
)] 𝑑𝑡 + 𝑔

1
(𝑥) 𝑑𝑤,

𝑑𝑥
2
= [𝑓
2
(𝑥
1
, 𝑥
2
)] 𝑑𝑡 + 𝑢 + 𝑔

2
(𝑥) 𝑑𝑤,

𝑦 = 𝑥
1
,

(54)

where 𝑓
1
(𝑥
1
) = sin(𝑥2

1
), 𝑓
2
(𝑥
1
, 𝑥
2
) = 𝑥

1
sin(𝑥2
2
) − 𝑥
1
𝑒
0.5𝑥1 ,

𝑔
1
(𝑥) = sin(𝑥

1
)/(1+0.5 cos(𝑥

2
)), 𝑔
2
(𝑥) = 𝑥

1
𝑥
2
/(1+(𝑥

1
𝑥
2
)
2

).
̇𝑤(𝑡) is assumed to be a Gaussian white noise with zero mean

and variance 1.0. The tracking reference signal is chosen as
𝑦
𝑑
(𝑡) = sin(𝑡).
Choose fuzzy membership functions as

𝜇
𝐹
𝑙

𝑖

(𝑥
𝑖
) = exp[−

(𝑥
𝑖
− 3 + 𝑙)

2

16
] , 𝑙 = 1, 2, 3, 4, 5. (55)

Construct the FLSs 𝑓
𝑖
(�̂�
𝑖
| 𝜃
𝑖
) = 𝜃

𝑇

𝑖
𝜑
𝑖
(�̂�
𝑖
) to appreciate the

unknown nonlinear functions 𝑓
𝑖
(⋅), 𝑖 = 1, 2.

Choose the design parameters and performance func-
tions as 𝑘

1
= 0.8, 𝑘

2
= 10, 𝑐

1
= 0.01, 𝑐

2
= 1, 𝜂

1
= 𝜂
2
= 0.01,

𝜇
1,0

= 2, 𝜇
1,∞

= 0.5, 𝑛
1
= 0.5, 𝜎

1
= 𝜎
2
= 0.01, 𝛿

1min = 0.01,
𝛿
1max = 0.02, and 𝜇

1
(𝑡) = 1.5𝑒

−0.5𝑡

+ 0.5.
The initial conditions are chosen as follows: 𝑥

1
(0) = 0,

𝑥
2
(0) = 0.1, 𝑥

1
(0) = 0, 𝑥

2
(0) = −0.1, 𝜃𝑇

1
(0) = [0, 0, −0.1, 0, 0],

and 𝜃
𝑇

2
(0) = [0, 0, 0, −0.1, 0].

Applying the control method in this paper to control
(54), the simulation results are shown by Figures 1–4, where
Figure 1 expresses the curves of the output 𝑦and tracking
signal 𝑦

𝑑
; Figure 2 expresses the curves of the observer error

𝑒
1
and 𝑒
2
; Figure 3 expresses the curve of the control input 𝑢.

Figure 4 express the curve the tracking error of the proposed
control method. Figure 4 reveals that the evolution of the
proposed adaptive controller remains within the prescribed
performance bounds for all 𝑡 ≥ 0; that is, the prescribed
performance is satisfied.

7. Conclusion

In this paper, fuzzy adaptive output feedback tracking control
problem has been investigated for a class of nonlinear
stochastic systems in strict-feedback form. The addressed
stochastic nonlinear systems contain unknown nonlinear
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Figure 2: The curves of 𝑒
1
(solid line) and 𝑒

2
(dot line).
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Figure 3: The curve of 𝑢.

functions and without the measurements of the states. Fuzzy
logic systems are used to identify the unknown nonlin-
ear functions, and a fuzzy state filter observer has been
designed for estimating the unmeasured states. By applying
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Figure 4: The curves of 𝑧
1
and performance bounds.

the backstepping recursive design technique and the prede-
fined performance technique, a new robust fuzzy adaptive
output-feedback control approach has been developed, and
the stability of the closed-loop system has been proved.
The main advantages of the proposed control approach are
that it cannot only solve the state unmeasured problem of
nonlinear stochastic systems, but can also guarantee that the
tracking error converges to an adjustable neighborhood of
the origin and remains within the prescribed performance
bounds. Future research will be concentrated on an adaptive
fuzzy output-feedback tracking control for multiinput and
multioutput stochastic nonlinear systems with unmeasured
states based on the results of [22, 23] and this paper.
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This paper proposes a continuous finite-time control scheme using a new form of terminal sliding mode (TSM) combined with a
sliding mode disturbance observer (SMDO). The proposed controller is applied for nanopositioning of piezoelectric actuators
(PEAs). Nonlinearities, mainly hysteresis, can drastically degrade the system performance. Same as the model imperfection,
hysteresis can also be treated as uncertainties of the system.These uncertainties can be addressed by terminal sliding mode control
(TSMC) for it is promising for positioning and tracking control. To further improve the robustness of the TSM controller, the
SMDO is employed to estimate the bounded disturbances and uncertainties. The robust stability of the TSMC is proved through
a Lyapunov stability analysis. Simulation results demonstrate the effectiveness of the proposed TSM/SMDO controller for both
positioning and tracking applications.The fast response, few chattering, and high precision positioning and tracking performances
can be achieved in finite time by the proposed controller.

1. Introduction

Different from other traditional actuators, piezoelectric actu-
ators (PEAs) possess the advantages of high positioning
resolution, fast response, large actuating force, and free of
backlash and friction [1]. Therefore, PEAs have been widely
used in a variety of applications, such as adaptive optics [2],
scanning tunneling microscopy [3, 4], data storage [1, 5, 6],
and nanofabrication.However, there are also some challenges
in the use of PEAs. The main problems come from the
nonlinear behaviors like creep and hysteresis that often occur
when the PEAs are driven by an amplifier. These nonlineari-
ties can greatly degrade the performance of PEAs and even
compromise the stability of the closed-loop system [2, 7].
For these two types of nonlinearity, creep is a slow drifting
behavior in the displacement of PEAs, when responding to a
step command voltage. Creep can cause a drifting steady state
error in static or slow moving applications, but this effect can
be easily eliminated by feedback techniques.

Hysteresis, on the other hand, is another typical nonlinear
behavior that needs to be tackled in applications of PEAs.
The hysteresis relation between the input voltage and the

output displacement can cause normally 10%–15% of open-
loop positioning error in the displacement range of PEAs.
Figure 1 shows the simulated hysteresis response of the PEA
model employed in this research [8]. This phenomenon can
largely degrade the performance of controllers that have not
considered its influence. Some earlier works dealt with this
problem by using charge amplifier [1, 9–11] or restricting the
amplitude of the input voltage small enough [12]. However,
these two methods were either too complex or not practical
in implementation. Therefore, researchers start to employ
advanced control methods to suppress hysteresis in various
applications of PEAs.

Past research proposed various control methods to deal
with the influence of hysteresis. To generally summarize,
mainly two ways of control strategies were employed in
related literature. One way is using some inverse-based
feedforward compensation methods, and another is using
feedback control methods. In feedforward based methods,
different hysteresis models are used to compensate this effect
inversely. Typical models are Prandt-Ishlinskii model [13,
14], Preisach model [15, 16], Bouc-Wen model [17], and
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Figure 1: (a) A 1Hz input displacement signal applied to the PEA model and (b) hysteresis loop obtained by simulation.

Maxwell resistive capacitor (MRC) model [18, 19]. How-
ever, these methods are based on precise hysteresis model;
degraded compensation performance is unavoidable if mod-
eling error exists. On the other hand, in feedback control
methods, the hysteresis model is usually not needed since
nonlinearities can be treated as disturbances that can be
suppressed by feedback controller, related methods include
PID (proportional-integral-derivative) control [20], repeti-
tive control [21], robust control [22–26], and SMC (sliding
mode control) [8, 27–29]. In addition, [30, 31] combined
those two types of methods by employing both feedforward
and feedback control design.

It is well known that finite-time stabilization of dynamical
systems will improve the systems performance of high-
precision and finite-time convergence to the equilibrium.
Therefore, discontinuous terminal sliding mode control with
robustness for matched disturbances and parametric uncer-
tainties with known bounds has been widely adopted in
nonlinear systems for finite-time stability [32–35]. However,
because of the chattering of discontinuous control, it may
induce poor tracking performance and create undesirable
oscillations in the control signal and even may excite high-
frequency dynamics neglected in the course of modeling [8].
In order to alleviate chattering, the boundary layer technique
is usually adopted. However, both the attractive SMC feature
of insensitivity to uncertainties and disturbances and the
finite time stability are lost. Recently, a continuous TSMC
scheme has been developed for robotic manipulators to avoid
this problem [36]. In this paper, a new continuous finite-time
terminal sliding mode control combined with a sliding mode
disturbance observer is proposed, which is then applied in
a piezoelectric actuator system with finite-time stability. To
improve the robustness of the TSMC, the SMDO is adopted
to estimate the bounded disturbances and uncertainties in
finite time. Here, the PEA is considered as a second-order
nonlinear system to design the proposed controller, and the
hysteresis considered as the main nonlinearity is modeled for
accurate simulation. The stability of the proposed controller

is proved by using the Lyapunov stability theory, and the posi-
tioning and tracking performances of the resulting control
system illustrate that the proposed controller can provide the
fast convergence in finite time and high tracking precision.

This paper is organized as follows. In Section 2, the
problem formulation is presented. In Section 3, the contin-
uous finite-time terminal sliding mode control with sliding
mode disturbance observer scheme is designed. Simula-
tions demonstration of the proposed controller is shown in
Section 4. Section 5 concludes this paper.

2. Problem Formulation

A class of second-order single input nonlinear systems with
dynamic processes can be defined as follows:

̈𝑥 = 𝑓 (𝑥, ̇𝑥) + 𝑏 (𝑥) 𝑢 + 𝑓
𝑑
, (1)

where 𝑥 and ̇𝑥 are the system state variables, 𝑓(𝑥, ̇𝑥) is in
general nonlinear and possibly time-varying, 𝑏(𝑥) expresses
the control gain, 𝑢 is the control input, and 𝑓

𝑑
represents

the bounded external disturbance with |𝑓
𝑑
| ≤ 𝑑. 𝑓(𝑥, ̇𝑥) =

𝑓
𝑛
(𝑥, ̇𝑥) + Δ𝑓(𝑥, ̇𝑥), and 𝑏(𝑥) = 𝑏

𝑛
(𝑥) + Δ𝑏(𝑥). Here 𝑓

𝑛
(𝑥, ̇𝑥)

and 𝑏
𝑛
(𝑥) are the nominal parts, whereas Δ𝑓(𝑥, ̇𝑥) and Δ𝑏(𝑥)

represent the perturbations in the system. Then, the second-
order system can be rewritten as

̈𝑥 = 𝑓
𝑛
(𝑥, ̇𝑥) + 𝑏

𝑛
(𝑥) 𝑢 + 𝐹

𝑑
, (2)

where 𝑓
𝑛
(𝑥, ̇𝑥), 𝑏

𝑛
(𝑥) are the nominal parts and 𝐹

𝑑
=

Δ𝑓(𝑥, ̇𝑥) + Δ𝑏(𝑥)𝑢 + 𝑓
𝑑
is the lumped system uncertainty,

which is assumed to be bounded by |𝐹
𝑑
| ≤ 𝐷. 𝐷 is a given

positive constant.
Consider the piezoelectric actuator as a second-order

system [37], which can be written as

̈𝑥 + 2𝜉𝜔
𝑛
̇𝑥 + 𝜔
2

𝑛
𝑥 = 𝑘𝜔

2

𝑛
𝑢 + 𝐹
𝑑
, (3)

where 𝜉, 𝜔
𝑛
, and 𝑘 are the damping ratio, the natural fre-

quency, and the gain of the second-order system, respectively.
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3. Controller Design

To have a concise manner of representation, in the rest of this
paper, the system state variables 𝑥 and ̇𝑥 will be omitted.

3.1. Terminal Sliding Mode Controller Design. For simplicity
of expression and used in the analysis and design of the TSM
controller, the following notion, which was used in [38], is
introduced in this paper:

sig(𝑥)𝜆 = |𝑥|𝜆 sign (𝑥) , (4)

where 0.5 < 𝜆 < 1.

Remark 1. A TSM and a fast TSM can be described by the
following first-order nonlinear differential equations [36]:

𝑠 = ̇𝑥 + 𝜇 sig(𝑥)𝜆 = 0, (5)

𝑠 = ̇𝑥 + 𝑎𝑥 + 𝜇 sig(𝑥)𝜆 = 0, (6)

respectively, where 𝑥 ∈ 𝑅, 𝑎, 𝜇 > 0, 0.5 < 𝜆 < 1.

Remark 2. According to the definition of finite-time stability
[39], the equilibrium point 𝑥 = 0 of the differential equations
(5) and (6) is globally finite-time stable; for example, for any
given initial condition 𝑥(0) = 𝑥

0
, the system state 𝑥 will

converge to 0 in finite time as follows:

𝑇 =
1

𝜇 (1 − 𝜆)

𝑥0


(1−𝜆)

,

𝑇 =
1

𝑎 (1 − 𝜆)
ln
𝑎
𝑥0


(1−𝜆)

+ 𝜇

𝜇
,

(7)

respectively, and it stays there forever, such as 𝑥 = 0 for 𝑡 > 𝑇.
Define the tracking error as

𝑒
0
= 𝑥 − 𝑥

𝑑
, (8)

where 𝑥
𝑑
represents the desired position trajectory, and for

the tracking task to be achievable using a feedback control 𝑢,
the actuator output 𝑥 tracks the desired trajectory 𝑥

𝑑
in finite

time.

Introduce three auxiliary variables 𝑒
01
, 𝑒
02
, and 𝑒, where

̇𝑒
01
= 𝑒
0
, ̇𝑒
02
= 𝑒
01
, and

𝑒 = ̇𝑒
01
+ 𝑘
0
𝑒
02
, (9)

where 𝑘
0
is a positive constant.

Hence, a TSM sliding surface is defined as

𝑠 = ̇𝑒 + 𝜇 sig(𝑒)𝜆, (10)

where 𝜇 > 0 and 0.5 < 𝜆 < 1. A continuous fast TSM-
type reaching law is selected to achieve continuous control
as follows:

̇𝑠 = −𝑘
1
𝑠 − 𝑘
2
sig(𝑠)𝜌, (11)

where 𝑘
1
, 𝑘
2
> 0 and 0 < 𝜌 < 1.

By differentiating the sliding variable 𝑠 with respect to
time, we have

̇𝑠 = −2𝜉𝜔
𝑛
̇𝑥 − 𝜔
2

𝑛
𝑥 + 𝑘𝜔

2

𝑛
𝑢 + 𝐹
𝑑
− ̈𝑥
𝑑
+ 𝜇𝜆|𝑒|

𝜆−1

̇𝑒. (12)

Substituting (11) into (12), the control law of the finite-
time TSM controller can be obtained as follows:

𝑢 = 𝐵
−1

[−𝐴 − 𝑘
1
𝑠 − 𝑘
2
sig(𝑠)𝜌 − 𝐹

𝑑
] , (13)

where 𝐴 = −2𝜉𝜔
𝑛
̇𝑥 − 𝜔
2

𝑛
𝑥 + 𝜇𝜆|𝑒|

𝜆−1

̇𝑒 − ̈𝑥
𝑑
and 𝐵 = 𝑘𝜔2

𝑛
.

It can be seen from the expression equation (12) that the
term |𝑒|𝜆−1 ̇𝑒 is included in the control law 𝑢 which has the
negative fractional power 𝜆 − 1 because of 0.5 < 𝜆 < 1.
Therefore, singularity will occur as 𝑒 = 0 and ̇𝑒 ̸= 0. To avoid
the singularly problem, the approach proposed in [40] is used
in this paper. Define a new auxiliary variable 𝑒 to replace the
original 𝑒, which is written as

𝑒 =

{{

{{

{

|𝑒|
𝜆−1

̇𝑒 if 𝑒 ̸= 0 and ̇𝑒 ̸= 0

|Δ|
𝜆−1

̇𝑒 if 𝑒 = 0 and ̇𝑒 ̸= 0

0 if 𝑒 = 0 and ̇𝑒 = 0,

(14)

where Δ > 0 is a small positive constant.
It should be noted that the bounded system uncertainty

𝐹
𝑑
is always unknown and not available in general.Therefore,

in order to increase the robustness of the controller and
improve the control performance, a slidingmode disturbance
observer is incorporated to estimate the uncertain terms.

3.2. Sliding Mode Disturbance Observer. The SMDO is
designed as an effective way to improve the robustness to
external disturbances and modeling uncertainties which can
finish the estimation in finite time [41, 42]. To design a
SMDO for estimating the bounded system uncertainty 𝐹

𝑑
, an

auxiliary system is introduced as
𝜎 = 𝑠 + 𝑧,

̇𝑧 = −𝐴 − 𝐵𝑢 − V,
(15)

where 𝜎 and 𝑧 are the auxiliary sliding variable and interme-
diate variable, respectively. V is the auxiliary traditional SMC.

The 𝜎 dynamic is derived, differentiating it with respect
to time, we have

̇𝜎 = ̇𝑠 + ̇𝑧 = 𝐹
𝑑
− V. (16)

Then the auxiliary traditional sliding mode control V is
designed to stabilize the sliding variable𝜎 at zero in finite time
as follows:

V = (𝐷 + 𝜖) sign (𝜎) , (17)

where 𝜖 > 0. Introduce a Lyapunov function 𝑉 = (1/2)𝜎2
to drive 𝜎 to zero in finite time, and then compute its
differentiating, we have

𝑉 = 𝜎 ̇𝜎 = 𝜎 (𝐹
𝑑
− V) ≤ |𝜎|𝐷 − |𝜎| (𝐷 + 𝜖) = −𝜖 |𝜎| . (18)

It can be conclude by using (17) that 𝜎 converges to zero
in finite time 𝑡

𝑓
[41], which is

𝑡
𝑓
≤
|𝜎 (0)|

𝜖
. (19)
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Therefore, the auxiliary systemdynamics can be governed
by equivalent control Veq. Veq is obtained by filtering the high-
frequency switching control V using a low pass filter, which
is

Veq =
1

𝜏𝑠 + 1
V, (20)

where 𝜏 > 0. For any 𝑡 satisfied 𝑡 > 𝑡
𝑓
, the system uncertain

term 𝐹
𝑑
is estimated by Veq in finite time 𝑡

𝑓
, which is written

as

𝐹
𝑑
= Veq, (21)

where 𝐹
𝑑
is the estimation of 𝐹

𝑑
. Then the final continuous

TSM control law with SMDO is designed as

𝑢 = 𝐵
−1

[−𝐴 − 𝑘
1
𝑠 − 𝑘
2
sig(𝑠)𝜌 − 𝐹

𝑑
] . (22)

Remark 3. The convergence of the auxiliary sliding variable
𝜎must be faster than that of 𝑠 to make sure that the terminal
sliding variable is stabilized to zero only after the system
uncertainty is estimated.

3.3. Stability Analysis

Lemma 4. Suppose that 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
and 0 < 𝑝 < 2 are all

positive numbers; then the following inequality holds:

(𝑐
2

1
+ 𝑐
2

2
+ ⋅ ⋅ ⋅ + 𝑐

2

𝑛
)
𝑝

≤ (𝑐
𝑝

1
+ 𝑐
𝑝

2
+ ⋅ ⋅ ⋅ + 𝑐

𝑝

𝑛
)
2

. (23)

Lemma 5. An extended Lyapunov description of finite-time
stability can be given with the form of fast TSM equation (6)
as [36]

𝑉 (𝑥) + 𝑎𝑉 (𝑥) + 𝜇𝑉
𝜆

(𝑥) ≤ 0, (24)

and the settling time can be given by

𝑇 ≤
1

𝑎 (1 − 𝜆)
ln
𝑎𝑉
1−𝜆

(𝑥
0
) + 𝜇

𝜇
. (25)

It is evident that the inequalities (24) and (25)mean exponen-
tial stability as well as faster finite-time stability.

Theorem 6. For a single-input second-order nonlinear system
given by (3), with the terminal sliding surface defined by (10)
and the reaching law given by (11), both the system robust
stability and tracking convergence are guaranteed in finite time
if the control law is designed as (22) based on the combination
of SMDO.

Proof. Consider the following positive definite Lyapunov
function:

𝑉 =
1

2
𝑠
2

. (26)

By taking the time derivative of 𝑉 with respect to time, we
have

𝑉 = 𝑠 ̇𝑠

= 𝑠 (𝐴 + 𝐹
𝑑
+ 𝐵𝑢)

= 𝑠 {𝐴 + 𝐹
𝑑
+ 𝐵 [𝐵

−1

(−𝐴 − 𝑘
1
𝑠 − 𝑘
2
sig(𝑠)𝜌 − 𝐹

𝑑
)]}

= −𝑘
1
𝑠
2

− 𝑠𝑘
2
sig(𝑠)𝜌 + 𝑠𝐹

𝑑
,

(27)

where 𝐴 = −2𝜉𝜔
𝑛
̇𝑥 − 𝜔
2

𝑛
𝑥 + 𝜇𝜆|𝑒|

𝜆−1 ̇𝑒 − ̈𝑥
𝑑
. 𝐹
𝑑
= 𝐹
𝑑
− 𝐹
𝑑

since the sliding variable 𝑠 converges to zero only after the
systemuncertainty𝐹

𝑑
is estimated in finite time 𝑡

𝑓
.Thus,𝐹

𝑑
=

𝐹
𝑑
− 𝐹
𝑑
→ 0, if 𝑡 > 𝑡

𝑓
.

Therefore, for any 𝑡 > 𝑡
𝑓
, from Lemma 4, we have

𝑉 ≤ −2𝑘
1
𝑉 − 2
(𝜌+1)/2

𝑘
2
𝑉
(𝜌+1)/2

, (28)

where 1/2 < 𝜌 < 1. According to Lemma 5, the proposed
terminal sliding surface equation (10) will be reached in the
finite time as follows:

𝑇 ≤
1

𝑘
1
(1 − 𝜌)

ln 𝑘1𝑉
(1−𝜌)/2

+ 2
(𝜌−1)/2

𝑘
2

2(𝜌−1)/2𝑘
2

. (29)

Thus, according to the definition of (8), (9), and (10), if 𝑠 →
0 in finite time 𝑇, then 𝑒 → 0 and ̇𝑒 → 0 in finite time
𝑇, and then 𝑒

0
→ 0 and ̇𝑒

0
→ 0 in finite time 𝑇; hence,

𝑥 → 𝑥
𝑑
and ̇𝑥 → ̇𝑥

𝑑
in finite time 𝑇. This shows that the

proposed TSM controller combined with the SMDO ensures
both the robust stability of the system and the convergence of
the motion tracking.

4. Simulation Results

In this section, the proposed TSM controller combined with
SMDO is validated through simulations. The results are
shown and discussed in this section.

4.1. PEA Model. For the purpose of simulation, a Bouc-
Wen model which can describe the hysteresis is applied in
this work. Consider the fact that the hysteresis is the major
nonlinearity which can be handled as the uncertainty of the
PEAs system. Thus, the hysteresis is modeled and integrated
into the second-order PEA model for exact simulation. The
Bouc-Wen model has already been verified that it is adaptive
to describe the hysteresis loop of PEAs [43].The piezoelectric
actuator model with nonlinear hysteresis for simulation can
be written as

̈𝑥 + 2𝜉𝜔
𝑛
̇𝑥 + 𝜔
2

𝑛
𝑥 = 𝜔

2

𝑛
(𝐾𝑢 − ℎ) , (30)

ℎ̇ = 𝛼𝑑 ̇𝑢 − 𝛽 | ̇𝑢| ℎ|ℎ|
𝑛−1

− 𝛾 ̇𝑢|ℎ|
𝑛

, (31)

where ℎ is the nonlinear hysteresis which indicates the hys-
teretic loop in terms of displacement whose magnitude and
shape are determined by parameters 𝛼, 𝛽, 𝛾, the parameter
𝑑 is the piezoelectric coefficient, 𝑢 denotes the input voltage,
and the order 𝑛 governs the smoothness of the transition
from elastic to plastic response. For the elastic structure and
material, 𝑛 = 1 is assigned in (31) as usual. These parameters
used in this paper are from [8] and the values of these
parameters are shown in Table 1.
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Figure 2: Simulation responses to step signals with amplitudes of (a) 1 𝜇m, (b) 2𝜇m, (c) 3 𝜇m, and (d) 4 𝜇m.

Table 1: Parameters of the PEA with Bouc-Wen model.

Parameter Value
𝑛 1
𝜉 1.2315 × 10

4

𝜔
𝑛

1.2225 × 10
6

𝑘 1.7339 × 10
−6

𝛼 0.3575
𝛽 0.0364
𝛾 0.0272

4.2. Step Responses. The transient response capability of
the proposed controller is examined firstly. The controller
parameters for all simulations of this paper are shown in
Table 2, and the results for steps of different amplitudes are
described in Figure 2 and tabulated in Table 3 for a clear
expression.

The simulation results observed from Figure 2 and
Table 3 show that the proposed controller provides a smooth

Table 2: Parameters of the implemented controller.

Parameter Value
𝜇 1
𝜆 0.85
𝜌 0.5
𝜏 0.01
𝑘
0

2.5 × 10
4

𝑘
1

1.5 × 10
7

𝑘
2

1.5 × 10
7

𝐷 + 𝜖 5

control with chattering free and fast convergence in finite
time. Specifically, it can produce a fast response with a small
overshoot.

4.3. Sinusoidal Tracking. The performances for tracking a
sinusoidal waveform of 4 𝜇m peak-to-peak (p-p) amplitude
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Figure 3: Simulation results of response to a 20Hz sinusoidal signal.
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Figure 4: Simulation results of response to a 50Hz sinusoidal signal.

Table 3: Control performance in step tracking.

Performance
(with different amplitudes)

TSMC
1 𝜇m 2 𝜇m 3𝜇m 4 𝜇m

1% settling time (ms) 1.40 1.27 1.16 0.87
Overshoot 0.50% 0.55% 0.67% 0.72%

in different frequencies using the proposed controller are
depicted in Figures 3-4 and described in Table 4. It can
be observed from the trajectories and tracking errors that

the TSM controller can track the sinusoidal trajectory pre-
cisely and chattering free. It produces a maximum error of
±0.0019𝜇m at 20Hz and 0.0130 𝜇m at 50Hz.

4.4. Responses to Staircase Signal. The staircase signal is
applied to the proposed controller for the PEA. Figures 5(a)
and 5(b) show that a step of the staircase signal covering
the range of 1 𝜇m by 100 steps with each step lasting for
0.01 s. The proposed controller can guarantee the steady-
state error of 0 nm for approximating 80% duration of the
step. Shorter distance positioning response is described in
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Figure 5: Simulation responses to staircase signals covering the range 1 𝜇m with (a)-(b) 100 steps and (c)-(d) 1000 steps.

Table 4: Performance of the controller with sinusoidal signal.

Performance
(with different frequencies)

SMC
RMSE (𝜇m) Max. 𝐸 (𝜇m)

5HZ 1.3791 × 10
−8

−2.1021 × 10
−4

10HZ 1.0575 × 10
−7

−5.0846 × 10
−4

20HZ 1.4110 × 10
−6

±0.0019
50HZ 6.8825 × 10

−5 0.0130
100HZ 0.0012 0.0515

Figures 5(c) and 5(d) in which the amplitude of each step
is 1 nm. The proposed controller can realize the steady-state
error of ±0.5 nm for approximating 85% duration of the step.

Therefore, the steps can be identified which indicates that the
positioning resolution of the proposed controller is less than
1 nm.

4.5. Discussions on Control Performance. In view of the
simulation results, it can be concluded that the proposedTSM
controller can obtain good performances in both positioning
control and tracking control of the PEA. In the step signal
simulations, the proposed controller enables a fast transient
response without much overshoot, and especially, it removes
the chattering without steady-state error.The TSM controller
is also suitable for tracking control because of its small
tracking error, fast response, and high resolution in both
sinusoidal tracking and stair signals tracking.
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5. Conclusions

In this paper, a robust control strategy based on a new TSMC
combined with a SMDO is developed for piezoelectric actua-
tors. In order to get accurate motion tracking performance,
the hysteresis model is considered in the PEA model for
simulation. The step response simulation results show that
the proposed controller can accelerate the transient response
with low overshoot. In addition, it provides a smooth control
and excellent performance in the control implementation
yielding few chattering and fast convergence. The sinusoidal
motion and stair signal tracking simulation results illustrate
that the proposed controller can give a rise to the tracking
performance with a small tracking error and high resolution.
Based on this control strategy, the design of the controller
is simple and convenient to drive the piezoelectric actuator.
Robust stability of the proposed controller is guaranteed with
the nonlinear uncertainties and external disturbance.

In the future research, fault detection and fault tolerant
control of piezoelectric actuators will be an interesting work
based on related results [44, 45].
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An efficient method to determine a numerical solution of a stochastic differential equation (SDE) driven by fractional Brownian
motion (FBM) with Hurst parameter 𝐻 ∈ (1/2, 1) and 𝑛 independent one-dimensional standard Brownian motion (SBM) is
proposed. The method is stated via a stochastic operational matrix based on the block pulse functions (BPFs). With using this
approach, the SDE is reduced to a stochastic linear system of𝑚 equations and𝑚 unknowns.Then, the error analysis is demonstrated
by some theorems and defnitions. Finally, the numerical examples demonstrate applicability and accuracy of this method.

1. Introduction

In many fields of science and engineering, there are a
large number of problems which are intrinsically involving
stochastic excitations of a Gaussian white noise type. Having
in mind a Gaussian white noise mathematically described as
a formal derivative of a Brownian motion process, all such
problems are mathematically modeled by stochastic differen-
tial equations. Most of them cannot be solved analytically, so
it is important to provide their numerical solutions.There has
been a growing interest in numerical solutions of stochastic
differential equations for the last years [1–10].

In the presented work, we consider SDE as follows:

𝑑𝑥 (𝑠) = 𝑘 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝑠 +

𝑛

∑

𝑖=1

𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝐵
𝑖
(𝑠)

+ 𝑟 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝐵
𝐻

𝑠
, 𝑠 ∈ (0, 𝑇) , 𝑇 < 1,

𝑥 (0) = 𝑥
0
,

(1)

or

𝑥 (𝑡) = 𝑥
0
+ ∫

𝑡

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝐵
𝑖
(𝑠)

+ ∫

𝑡

0

𝑟 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝐵
𝐻

𝑠
, 𝑡 ∈ (0, 𝑇) , 𝑇 < 1,

(2)

where 𝐵𝐻
𝑠

denotes the FBM with Hurst parameter 𝐻 ∈

((1/2), 1) on probability space (Ω, ϝ, 𝑃) and 𝐵
𝑖
(𝑠) (𝑖 =

1, 2, . . . , 𝑛) is 𝑛 independent one-dimensional SBM defined
on the same probability space. Also, 𝑘(𝑠, 𝑡), 𝑡

𝑖
(𝑠, 𝑡) : (0, 𝑇) ×

(0, 𝑇) → R (𝑖 = 1, 2, . . . , 𝑛) and 𝑥(𝑡) is the stochastic process
of unknown on the probability space.

Investigations concerning the SDE driven by the FBM
have been done by Zähle [11], Coutin [12], Decreusefond
and Üstünel [13], Nualart [4, 14], Lisei and Soós [15], and
other authors. Also, there exist several ways for solving
it, pathwise and related techniques, Dirichlet forms, Euler
approximations, Malliavin calculus, and Skorohod integral
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[1, 4, 15–17]; almost all methods have very poor numerical
convergence.

It is important to find approximate solutions of the
stochastic equations driven by the FBM, since these equations
cannot be solved analytically in most cases and have many
applications in models arising in physics, telecommunication
networks, and finance [18]. Also, we cannot use from the
classical Ito theory for their stochastic calculus, since these
processes are not Markovian and semimartingale. Hence, in
this work, we implement the stochastic operational matrix
based on the BPFs for solving (2). The benefits of this
method are lower cost of setting up the system of equations;
moreover, the computational cost of operations is low. Also,
convergence of this method is faster than other methods.
These advantages make the method easier to apply.

The rest of the paper is organized as follows. In Section 2,
some essential definitions and the following assumptions
on the coefficients of (2) are stated. Also, the necessary
properties of the block pulse functions (BPFs) are introduced.
In Section 3, first a theorem is proved; then (2) is reduced to
a stochastic linear system by using the properties of the BPFs.
In Section 4, the error analysis is demonstrated. Efficiency
of this method and good reasonable degree of accuracy are
confirmed by some numerical examples, in Section 5. Finally,
in Section 6, a brief conclusion is given.

2. Preliminaries

Definition 1. Let be the step 𝑟(𝑡) = ∑𝑚−1
𝑗=1

𝑑
𝑗
𝜒
[𝑡𝑗 ,𝑡𝑗+1(𝑡)]

function
and 𝜒 denotes the characteristic function on [0, 𝑝], 𝑑

𝑗
∈ R,

and 0 = 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑚
= 𝑝. Then, the wiener integral

with respect to the FBM is defined as

∫

𝑝

0

𝑟 (𝑡) 𝑑𝐵
𝐻

𝑡
=

𝑚−1

∑

𝑗=1

𝑑
𝑗
(𝐵
𝐻

𝑡𝑗+1

− 𝐵
𝐻

𝑡𝑗

) , (3)

where𝐻 ∈ ((1/2), 1) and 𝑝 > 0 (see [19]).

Definition 2. Let ] = ][𝛼, 𝜆] denote the class of function ℎ on
[𝛼, 𝜆] × Ω such that

(1) the function ℎ is 𝛽 × ϝmeasurable;

(2) the function ℎ is adapted to {ϝ
𝑡
}
𝑡≥0

;

(3) ∫𝜆
𝛼

∫
𝑠

𝛼

𝐸[ℎ
2

(𝑠)]|𝑠 − 𝑡|𝑑𝑡 𝑑𝑠 < ∞ and 𝑠, 𝑡 ∈ [𝛼, 𝜆].

Let us consider the following assumptions on the coeffi-
cients.

(A
1
) (𝑟(𝑠, 𝑡)𝑥(𝑠) is differentiable in 𝑥(𝑠) and there exist
constants 𝛼, 𝛽 ≤ 1 and𝐾

1
, 𝐾
2
, 𝐾
3
> 0 such that

𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑦 (𝑠)


≤ 𝐾
1

𝑥 (𝑠) − 𝑦 (𝑠)
 (Lipschitz continuity) ,

𝜕𝑥𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝜕𝑥𝑟 (𝑠, 𝑡) 𝑦 (𝑠)


≤ 𝐾
2

𝑥 (𝑠) − 𝑦 (𝑠)


𝛼

(Holder continuity) ,

|𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑢, 𝑡) 𝑥 (𝑠)| +
𝜕𝑥𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝜕𝑥𝑟 (𝑢, 𝑡) 𝑥 (𝑠)



≤ 𝐾
3
|𝑠 − 𝑢|

𝛽

.

(4)

(A
2
) There exist constants 𝐾

4𝑖
, 𝐾
5𝑖
> 0 (𝑖 = 1, . . . , 𝑛) such

that
𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑡𝑖 (𝑠, 𝑡) 𝑦 (𝑠)



≤ 𝐾
4𝑖

𝑥 (𝑠) − 𝑦 (𝑠)
 (Lipschitz continuity) ,

|𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠)| ≤ 𝐾
5𝑖
(1 + |𝑥 (𝑠)|) (Linear growth) .

(5)

(A
3
) There exist constants 𝐾

6
, 𝐾
7
> 0 (𝑖 = 1, . . . , 𝑛) such

that
𝑘 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑘 (𝑠, 𝑡) 𝑦 (𝑠)



≤ 𝐾
6

𝑥 (𝑠) − 𝑦 (𝑠)
 (Lipschitz continuity) ,

|𝑘 (𝑠, 𝑡) 𝑥 (𝑠)| ≤ 𝐾
7
(1 + |𝑥 (𝑠)|) (Linear growth) ,

(6)

for all 𝑡, 𝑠, 𝑢 ∈ (0, 𝑇).

Theorem 3. Let 𝑘(𝑠, 𝑡)𝑥(𝑠), 𝑡𝑖(𝑠, 𝑡)𝑥(𝑠) and 𝑟(𝑠, 𝑡)𝑥(𝑠) hold in
condition (A

1
), (A
2
), (A
3
), and 𝐻 < {(1/2), (𝛼/(𝛼 + 1)), 𝛽}.

Then, there exists a unique solution for (2).

Proof. See [18].

Now, we review the main properties of the BPFs which
are necessary for this paper. Note that the BPFs are discussed
in [7, 8].

(1)A function𝑝(𝑥) ∈ 𝐿2([0, 𝑇)) is approximated by using
properties of the BPFs as

𝑝 (𝑥) ≈ 𝑝 (𝑥) = 𝑃
𝑇

Ψ (𝑥) = Ψ
𝑇

(𝑥) 𝑃, (7)

where

Ψ (𝑥) = (Ψ
1
(𝑥) , Ψ

2
(𝑥) , . . . , Ψ

𝑖
(𝑥) , . . . , Ψ

𝑚
(𝑥))
𝑇

, (8)

with

Ψ
𝑖
(𝑥) =

{

{

{

1 (𝑖 − 1)
𝑇

𝑚
≤ 𝑥 < 𝑖

𝑇

𝑚
, 𝑖 = 1, . . . , 𝑚,

0 otherwise,
(9)

where Ψ
𝑖
(𝑥) denotes the BPFs and

𝑃 = (𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑖
, . . . , 𝑝

𝑚
)
𝑇

, (10)
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with

𝑝
𝑖
=
𝑚

𝑇
∫

𝑇

0

𝑝 (𝑥)Ψ
𝑖
(𝑥) 𝑑𝑥. (11)

(2) A function 𝑝(𝑥, 𝑦) ∈ 𝐿
2

([0, 𝑇) × [0, 𝑇)) is approxi-
mated as follows:

𝑝 (𝑥, 𝑦) ≈ 𝑝 (𝑥, 𝑦) = Ψ
𝑇

(𝑥) 𝑃Ψ (𝑦) = Ψ
𝑇

(𝑦) 𝑃
𝑇

Ψ (𝑥) ,

(12)

where

𝑃 = (𝑝
𝑖𝑗
)
𝑚×𝑚

,

𝑝
𝑖𝑗
=
𝑚
2

𝑇2
∬

𝑇

0

𝑝 (𝑥, 𝑦)Ψ
𝑖
(𝑥)Ψ
𝑗
(𝑦) 𝑑𝑥 𝑑𝑦,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑚.

(13)

(3) Consider

Ψ (𝑥)Ψ
𝑇

(𝑥)

=

(
(
(
(
(
(
(

(

Ψ
1
(𝑥) 0 0 ⋅ ⋅ ⋅ 0

0 Ψ
2
(𝑥) 0 ⋅ ⋅ ⋅ 0

0 0 Ψ
3
(𝑥) ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ Ψ
𝑚
(𝑥)

)
)
)
)
)
)
)

)𝑚×𝑚

.

(14)

(4) Ψ(𝑥)Ψ
𝑇

(𝑥)𝐿 = �̂�Ψ(𝑥), where

𝐿 = (𝑙
11
, 𝑙
21
, . . . , 𝑙
𝑚1
)
𝑇

,

�̂� =

(
(
(
(
(
(
(

(

𝑙
11

0 0 ⋅ ⋅ ⋅ 0

0 𝑙
21

0 ⋅ ⋅ ⋅ 0

0 0 𝑙
31

⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑙
𝑚1

)
)
)
)
)
)
)

)𝑚×𝑚

.

(15)

(5) In [8], it is proved that

(∫

𝑡

0

Ψ (𝑥)Ψ
𝑇

(𝑥) 𝑑𝑥)𝐴Ψ (𝑡) = 𝑅Ψ (𝑡) , (16)

where

𝐴 = (𝑎
𝑖𝑗
)
𝑚×𝑚

,

𝑅 =
𝑇

2𝑚

(
(
(
(
(
(
(

(

𝑎
11

2𝑎
12

2𝑎
13

⋅ ⋅ ⋅ 2𝑎
1𝑚

0 𝑎
22

2𝑎
23

⋅ ⋅ ⋅ 2𝑎
2𝑚

0 0 𝑎
33

⋅ ⋅ ⋅ 2𝑎
3𝑚

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑎
𝑚𝑚

)
)
)
)
)
)
)

)𝑚×𝑚

.

(17)

(6) In [8], it is proved that

(∫

𝑡

0

Ψ (𝑥)Ψ
𝑇

(𝑥) 𝑑𝐵 (𝑥))𝐴Ψ (𝑡) = 𝐸Φ (𝑡) , (18)

where

𝐸 =

(
(
(
(
(
(
(
(
(
(
(
(

(

𝑎
11
𝐵(

ℎ

2
) 𝑎

12
𝐵 (ℎ) 𝑎

13
𝐵 (ℎ) ⋅ ⋅ ⋅ 𝑎

1𝑚
𝐵 (ℎ)

0 𝑎
22
(𝐵(

3ℎ

2
) − 𝐵 (ℎ)) 𝑎

23
(𝐵 (2ℎ) − 𝐵 (ℎ)) ⋅ ⋅ ⋅ 𝑎

2𝑚
(𝐵 (2ℎ) − 𝐵 (ℎ))

0 0 𝑎
33
(𝐵(

5ℎ

2
) − 𝐵 (2ℎ)) ⋅ ⋅ ⋅ 𝑎

3𝑚
(𝐵 (3ℎ) − 𝐵 (2ℎ))

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑎
𝑚𝑚

(𝐵(
(2𝑚 − 1) ℎ

2
) − 𝐵 ((𝑚 − 1) ℎ))

)
)
)
)
)
)
)
)
)
)
)
)

)𝑚×𝑚

,

ℎ =
𝑇

𝑚
.

(19)
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3. Solving the SDE Driven by FBM and 𝑛
Independent One-Dimensional SBM

Theorem 4. Let Ψ(𝑡) denote the BPFs, ℎ = (𝑇/𝑚), and 𝑅 =

(𝑟
𝑖𝑗
)
𝑚×𝑚

, 𝑖, 𝑗 = 1, . . . , 𝑚; then

(∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑑𝐵
𝐻

𝑠
)𝑅Ψ (𝑡) ≈ 𝐵Ψ (𝑡) , 𝑡 ∈ (0, 𝑇) , (20)

where

𝐵 =(

𝑟
11
𝐵
𝐻

ℎ/2
𝑟
12
𝐵
𝐻

ℎ
⋅ ⋅ ⋅ 𝑟

1𝑚
𝐵
𝐻

ℎ

0 𝑟
22
(𝐵
𝐻

3ℎ/2
− 𝐵
𝐻

ℎ
) ⋅ ⋅ ⋅ 𝑟

2𝑚
(𝐵
𝐻

2ℎ
− 𝐵
𝐻

ℎ
)

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝑟

𝑚𝑚
(𝐵
𝐻

((2𝑚−1)ℎ/2)
− 𝐵
𝐻

(𝑚−1)ℎ
)

)

𝑚×𝑚

. (21)

Proof. First, we compute stochastic operationalmatrix driven
by the FBM based on the BPFs as follows.

(A1) If 0 ≤ 𝑡 < (𝑖 − 1)ℎ, then

∫

𝑡

0

Ψ
𝑖
(𝑠) 𝑑𝐵

𝐻

𝑠
= 0. (22)

(A2) If (𝑖 − 1)ℎ ≤ 𝑡 < 𝑖ℎ, the function Ψ
𝑖
(𝑠) is defined as

Ψ
𝑖
(𝑠) =

𝑚+1

∑

𝑘=1

𝑓
𝑖𝑘
𝜒
[𝑠𝑘−1 ,𝑠𝑘)

(𝑠) , 𝑖 = 1, . . . , 𝑚, (23)

where 𝜒 denotes the characteristic function and 0 = 𝑠
0
<

𝑠
1
< ⋅ ⋅ ⋅ < 𝑠

𝑖−1
≤ 𝑠
𝑖
= 𝑡 < 𝑠

𝑖+1
< ⋅ ⋅ ⋅ < 𝑠

𝑚+1
, where 𝑠

𝑘
= 𝑘ℎ

if 𝑘 = 0, 1, . . . , 𝑖 − 1 and 𝑠
𝑘
= (𝑘 − 1)ℎ if 𝑘 = 𝑖 + 1, . . . , 𝑚 + 1.

Also,

𝑓
𝑖𝑘
= {

1 𝑘 = 𝑖 ∨ 𝑘 = 𝑖 + 1,

0 otherwise.
(24)

Now, for computation ∫𝑡
0

Ψ
𝑖
(𝑠)𝑑𝐵
𝐻𝑖

𝑠
(𝑠 ∈ [0, 𝑡]), we can write

Ψ
𝑖
(𝑠) =

𝑖

∑

𝑘=1

𝑓
𝑖𝑘
𝜒
[𝑠𝑘−1 ,𝑠𝑘)

(𝑠) , 𝑖 = 1, . . . , 𝑚. (25)

Then by using Definition 1, we obtain

∫

𝑡

0

Ψ
𝑖
(𝑠) 𝑑𝐵

𝐻

𝑠
=

𝑖

∑

𝑘=1

𝑓
𝑖𝑘
(𝐵
𝐻

𝑠𝑘

− 𝐵
𝐻

𝑠𝑘−1

)

= 𝐵
𝐻

𝑡
− 𝐵
𝐻

(𝑖−1)ℎ
, 𝑖 = 1, 2, . . . , 𝑚.

(26)

(A3) If 𝑖ℎ ≤ 𝑡 < 𝑇, then

Ψ
𝑖
(𝑠) =

𝑚+1

∑

𝑘=1

𝑐
𝑖𝑘
𝜒
[𝑠𝑘−1 ,𝑠𝑘)

(𝑠) , 𝑖 = 1, . . . , 𝑚, (27)

where 0 = 𝑠
0
< 𝑠
1
< ⋅ ⋅ ⋅ < 𝑠

𝑖
≤ 𝑠
𝑖+1

= 𝑡 < 𝑠
𝑖+2

< ⋅ ⋅ ⋅ < 𝑠
𝑚+1

,
𝑠
𝑘
= 𝑘ℎ if 𝑘 = 0, 1, . . . , 𝑖, 𝑠

𝑘
= (𝑘 − 1)ℎ if 𝑘 = 𝑖 + 2, . . . , 𝑚 + 1,

and

𝑐
𝑖𝑘
= {

1 𝑘 = 𝑖,

0 𝑘 ̸= 𝑖.
(28)

For computation ∫𝑡
0

Ψ
𝑖
(𝑠)𝑑𝐵
𝐻𝑖

𝑠
(𝑠 ∈ [0, 𝑡]), we can write

Ψ
𝑖
(𝑠) =

𝑖+1

∑

𝑘=1

𝑐
𝑖𝑘
𝜒
[𝑠𝑘−1 ,𝑠𝑘)

(𝑠) , 𝑖 = 1, . . . , 𝑚, (29)

so, we get

∫

𝑡

0

Ψ
𝑖
(𝑠) 𝑑𝐵

𝐻

𝑠
=

𝑖+1

∑

𝑘=1

𝑐
𝑖𝑘
(𝐵
𝐻

𝑠𝑘

− 𝐵
𝐻

𝑠𝑘−1

)

= 𝐵
𝐻

𝑖ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
, 𝑖 = 1, 2, . . . , 𝑚.

(30)

From (A1), (A2), and (A3), we get

∫

𝑡

0

Ψ
𝑖
(𝑠) 𝑑𝐵

𝐻

𝑠
=

{{{

{{{

{

0 0 ≤ 𝑡 < (𝑖 − 1) ℎ,

𝐵
𝐻

𝑡
− 𝐵
𝐻

(𝑖−1)ℎ
(𝑖 − 1) ℎ ≤ 𝑡 < 𝑖ℎ,

𝐵
𝐻

𝑖ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
𝑖ℎ ≤ 𝑡 < 𝑇.

(31)

Furthermore, we suppose that

𝐵
𝐻

𝑡
− 𝐵
𝐻

(𝑖−1)ℎ
≈ 𝐵
𝐻

(𝑖−0.5)ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
, (𝑖 − 1) ℎ ≤ 𝑡 < 𝑖ℎ, (32)

so, we can write

∫

𝑡

0

Ψ
𝑖
(𝑠) 𝑑𝐵

𝐻

𝑠
≈ (0, . . . , 0, 𝐵

𝐻

(𝑖−0.5)ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
,

𝐵
𝐻

𝑖ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
, . . . , 𝐵

𝐻

𝑖ℎ
− 𝐵
𝐻

(𝑖−1)ℎ
)Ψ (𝑡) .

(33)

Hence, by using the relation (33), we can write

∫

𝑡

0

Ψ (𝑠) 𝑑𝐵
𝐻

𝑠
≈ 𝑃
𝐻
Ψ (𝑡) , (34)
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where

𝑃
𝐻
=

(
(
(
(
(
(
(
(

(

𝐵
𝐻

ℎ/2
𝐵
𝐻

ℎ
𝐵
𝐻

ℎ
⋅ ⋅ ⋅ 𝐵

𝐻

ℎ

0 𝐵
𝐻

3ℎ/2
− 𝐵
𝐻

ℎ
𝐵
𝐻

2ℎ
− 𝐵
𝐻

ℎ
⋅ ⋅ ⋅ 𝐵

𝐻

2ℎ
− 𝐵
𝐻

ℎ

0 0 𝐵
𝐻

5ℎ/2
− 𝐵
𝐻

2ℎ
⋅ ⋅ ⋅ 𝐵

𝐻

3ℎ
− 𝐵
𝐻

2ℎ

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝐵
𝐻

((2𝑚−1)ℎ/2)
− 𝐵
𝐻

(𝑚−1)ℎ

)
)
)
)
)
)
)
)

)𝑚×𝑚

. (35)

Now, let 𝐶
𝑅
𝑖 be the 𝑖th row of matrix 𝐶

𝑅
= Diag(𝑅), let

𝑃
𝑖

𝐻
be the ith row of the matrix 𝑃

𝐻
, and let 𝑅𝑖 be the ith row

of matrix 𝑅. We have

(∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑑𝐵
𝐻

𝑠
)𝑅Ψ (𝑡)

≈

(
(
(

(

𝑃
1

𝐻
Ψ (𝑡) 𝑅

1

Ψ (𝑡)

𝑃
2

𝐻
Ψ (𝑡) 𝑅

2

Ψ (𝑡)

...

𝑃
𝑚

𝐻
Ψ (𝑡) 𝑅

𝑚

Ψ (𝑡)

)
)
)

)

≈

(
(
(

(

𝑃
1

𝐻
𝐶
𝑅
1

𝑃
2

𝐻
𝐶
𝑅
2

...

𝑃
𝑚

𝐻
𝐶
𝑅
𝑚

)
)
)

)

Ψ(𝑡)

≈ 𝐵Ψ (𝑡) ,

(36)

where 𝐵 is given by (21).

Let

𝑥 (𝑡) ≈ 𝑥
𝑇

Ψ (𝑡) = Ψ
𝑇

(𝑡) 𝑥,

𝑥
0
≈ 𝑥
𝑇

0
Ψ (𝑡) = Ψ

𝑇

(𝑡) 𝑥
0
,

𝑘 (𝑠, 𝑡) ≈ Ψ
𝑇

(𝑠) 𝐾Ψ (𝑡) = Ψ
𝑇

(𝑡) 𝐾
𝑇

Ψ (𝑠) ,

𝑟 (𝑠, 𝑡) ≈ Ψ
𝑇

(𝑠) 𝑅Ψ (𝑡) = Ψ
𝑇

(𝑡) 𝑅
𝑇

Ψ (𝑠) ,

𝑡𝑖 (𝑠, 𝑡) ≈ Ψ
𝑇

(𝑠) 𝑇𝑖Ψ (𝑡)

= Ψ
𝑇

(𝑡) 𝑇𝑖
𝑇

Ψ (𝑠) , 𝑖 = 1, 2, . . . , 𝑛,

(37)

where 𝑥 and 𝑥
0
are the block pulse coefficients vector and𝐾,

𝑅, and𝑇𝑖, 𝑖 = 1, . . . , 𝑛, are the block pulse coefficients matrix.

By substituting the relation (37) in (2), we get

𝑥
𝑇

Ψ (𝑡) ≈ 𝑥
𝑇

0
Ψ (𝑡) + 𝑥

𝑇

∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝐾Ψ (𝑡) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝑥
𝑇

∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑇𝑖Ψ (𝑡) 𝑑𝐵
𝑖
(𝑠)

+ 𝑥
𝑇

∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑅Ψ (𝑡) 𝑑𝐵
𝐻

𝑠
,

(38)

or

𝑥
𝑇

Ψ (𝑡) ≈ 𝑥
𝑇

0
Ψ (𝑡) + 𝑥

𝑇

(∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑑𝑠)𝐾Ψ (𝑡)

+ 𝑥
𝑇

𝑛

∑

𝑖=1

(∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑑𝐵
𝑖
(𝑠))𝑇𝑖Ψ (𝑡)

+ 𝑥
𝑇

(∫

𝑡

0

Ψ (𝑠)Ψ
𝑇

(𝑠) 𝑑𝐵
𝐻

𝑠
)𝑅Ψ (𝑡) .

(39)

Therefore, by using properties of the BPFs andTheorem 4, we
can write

𝑥
𝑇

Ψ (𝑡) ≈ 𝑥
𝑇

0
Ψ (𝑡) + 𝑥

𝑇

𝐴Ψ (𝑡)

+ 𝑥
𝑇

𝑛

∑

𝑖=1

𝐶
𝑖
Ψ (𝑡) + 𝑥

𝑇

𝐵Ψ (𝑡) ,

(40)

where

𝐴 =
𝑇

2𝑚

(
(
(

(

𝑘
11

2𝑘
12

2𝑘
13

⋅ ⋅ ⋅ 2𝑘
1𝑚

0 𝑘
22

2𝑘
23

⋅ ⋅ ⋅ 2𝑘
2𝑚

0 0 𝑘
33

⋅ ⋅ ⋅ 2𝑘
3𝑚

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑘
𝑚𝑚

)
)
)

)

, (41)

with
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𝑘
𝑖𝑗
=
𝑚
2

𝑇2
∬

𝑇

0

𝑘 (𝑠, 𝑡) Ψ
𝑖
(𝑠) Ψ
𝑗
(𝑡) 𝑑𝑠 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑚,

𝐶
𝑖
=

(
(
(
(
(
(
(

(

𝑡𝑖
11
𝐵(

ℎ

2
) 𝑡𝑖

12
𝐵 (ℎ) 𝑡𝑖

13
𝐵 (ℎ) ⋅ ⋅ ⋅ 𝑡𝑖

1𝑚
𝐵 (ℎ)

0 𝑡𝑖
22
(𝐵(

3ℎ

2
) − 𝐵 (ℎ)) 𝑡𝑖

23
(𝐵 (2ℎ) − 𝐵 (ℎ)) ⋅ ⋅ ⋅ 𝑡𝑖

2𝑚
(𝐵 (2ℎ) − 𝐵 (ℎ))

0 0 𝑡𝑖
33
(𝐵(

5ℎ

2
) − 𝐵 (2ℎ)) ⋅ ⋅ ⋅ 𝑡𝑖

3𝑚
(𝐵 (3ℎ) − 𝐵 (2ℎ))

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑡𝑖
𝑚𝑚

(𝐵(
(2𝑚 − 1) ℎ

2
) − 𝐵 ((𝑚 − 1) ℎ))

)
)
)
)
)
)
)

)
𝑚×𝑚

,

(42)

with

𝑡𝑖
𝑝𝑞
=
𝑚
2

𝑇2
∬

𝑇

0

𝑡𝑖 (𝑠, 𝑡) Ψ
𝑝
(𝑠) Ψ
𝑞
(𝑡) 𝑑𝑠 𝑑𝑡,

𝑝 = 1, 2, . . . , 𝑚, 𝑞 = 1, 2, . . . , 𝑚,

𝐵 = (

𝑟
11
𝐵
𝐻

ℎ/2
𝑟
12
𝐵
𝐻

ℎ
⋅ ⋅ ⋅ 𝑟

1𝑚
𝐵
𝐻

ℎ

0 𝑟
22
(𝐵
𝐻

3ℎ/2
− 𝐵
𝐻

ℎ
) ⋅ ⋅ ⋅ 𝑟

2𝑚
(𝐵
𝐻

2ℎ
− 𝐵
𝐻

ℎ
)

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝑟

𝑚𝑚
(𝐵
𝐻

((2𝑚−1)ℎ/2)
− 𝐵
𝐻

(𝑚−1)ℎ
)

)

𝑚×𝑚

,

(43)

with

𝑟
𝑖𝑗
=
𝑚
2

𝑇2
∬

𝑇

0

𝑟 (𝑠, 𝑡) Ψ
𝑖
(𝑠) Ψ
𝑗
(𝑡) 𝑑𝑠 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑚.

(44)

Now, with replacing ≈ by =, we have

𝑥
𝑇

(𝐼 − 𝐴 −

𝑛

∑

𝑖=1

𝐶
𝑖
− 𝐵)Ψ (𝑡) = 𝑥

𝑇

0
Ψ (𝑡) , (45)

or
𝑀𝑥 = 𝑥

0
, (46)

where𝑀 = (𝐼−𝐴−∑
𝑛

𝑖=1
𝐶
𝑖
−𝐵)
𝑇. Clearly, (46) is the stochastic

linear system of𝑚 equations and𝑚 unknowns.

4. Error Analysis

In [20], it is stated that if 𝑓(𝑡) ∈ ][𝛼, 𝛽] and (1/2) < 𝐻 < 1,
then

𝐸[(∫

𝛽

𝛼

𝑓 (𝑥) 𝑑𝐵
𝐻

𝑥
)

2

]

= ∫

𝛽

𝛼

𝐸 [(𝑓 (𝑥))
2

] (𝑑𝑥)
2𝐻

= 2𝐻 (2𝐻 − 1)

× ∫

𝛽

𝛼

∫

𝑦

𝛼

(𝑦 − 𝑥)
2𝐻−2

𝐸 [𝑓
2

(𝑥)] 𝑑𝑥 𝑑𝑦.

(47)

Theorem 5. Let 𝑟(𝑠) be an arbitrary bounded function on
[0, 1) and 𝑒(𝑠) = 𝑟(𝑠) − 𝑟(𝑠) such that 𝑟(𝑠) is the BPFs of 𝑟(𝑠).
Then,

|𝑒 (𝑠)|
2

≤ 𝑂 (ℎ
2

) , 0 ≤ 𝑠 < 1. (48)

Proof. See [7].

Theorem 6. Let 𝑟(𝑥, 𝑦) be an arbitrary bounded function on
𝐼 = [0, 1) × [0, 1) and 𝑒(𝑥, 𝑦) = 𝑟(𝑥, 𝑦) − 𝑟(𝑥, 𝑦) such that
𝑟(𝑥, 𝑦) is the BPFs of 𝑟(𝑥, 𝑦). Then,

𝑒 (𝑥, 𝑦)


2

≤ 𝑂 (ℎ
2

) , (𝑥, 𝑦) ∈ 𝐼. (49)

Proof. See [7].
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Let
𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) = 𝑥

0
− 𝑥
0

+ ∫

𝑡

0

(𝑘 (𝑠, 𝑡) 𝑥 (𝑠) − �̂� (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

(𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝑖
(𝑠)

+ ∫

𝑡

0

(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝐻

𝑠
,

(50)

where 𝑥(𝑡) is the approximate solution of 𝑥(𝑡) defined in (46)
and 𝑥

0
, �̂�(𝑠, 𝑡), 𝑡𝑖(𝑠, 𝑡), and 𝑟(𝑠, 𝑡) are approximated by using

properties of the BPFs.

Theorem 7. Let 𝑥(𝑡) be the approximate solution of (2) which
is the solution of (46), ‖𝑥(𝑡)‖2 ≤ 𝑁, ‖𝑘(𝑠, 𝑡)‖2 ≤ 𝑙

1
, ‖𝑡𝑖(𝑠, 𝑡)‖2 ≤

𝑙
2𝑖
, 𝑖 = 1, 2, . . . , 𝑛, and ‖𝑟(𝑠, 𝑡)‖2 ≤ 𝑙

3
, for all (𝑠, 𝑡) ∈ 𝐼 = [0, 1) ×

[0, 1). Then,
‖𝑥(𝑡) − 𝑥(𝑡)‖

2

≤ 𝑂 (ℎ
2

) , 𝑡 ∈ [0, 1) , (51)

where ‖𝑥‖ = (𝐸[𝑥2])1/2.

Proof. Consider
𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) = 𝑥

0
− 𝑥
0

+ ∫

𝑡

0

(𝑘 (𝑠, 𝑡) 𝑥 (𝑠) − �̂� (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

(𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝑖
(𝑠)

+ ∫

𝑡

0

(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝐻

𝑠
;

(52)

by using (∑𝑛+3
𝑖=1

𝑥
𝑖
)
2

≤ (𝑛 + 3)(∑
𝑛+3

𝑖=1
𝑥
2

𝑖
), we can write

‖𝑥(𝑡) − 𝑥(𝑡)‖
2

≤ (𝑛 + 3) (
𝑥0 − 𝑥0



2

+



∫

𝑡

0

(𝑘(𝑠, 𝑡)𝑥(𝑠) − �̂�(𝑠, 𝑡)𝑥(𝑠))𝑑𝑠



2

+

𝑛

∑

𝑖=1



∫

𝑡

0

(𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝑖
(𝑠)



2

+



∫

𝑡

0

(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝐻

𝑠



2

) .

(53)

First, by using the relation (47), we can write

𝐸[(∫

𝑡

0

(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝐻

𝑠
)

2

]

= ∫

𝑡

0

𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

] (𝑑𝑠)
2𝐻

= 2𝐻 (2𝐻 − 1)

×∫

𝑡

0

∫

𝑝

0

(𝑝 − 𝑠)
2𝐻−2

× 𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

] 𝑑𝑠 𝑑𝑝

= 2𝐻 (2𝐻 − 1)

× ∫

𝑡

0

∫

𝑡

𝑠

(𝑝 − 𝑠)
2𝐻−2

× 𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

] 𝑑𝑝 𝑑𝑠

= 2𝐻 (2𝐻 − 1)∫

𝑡

0

𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

]

× ∫

𝑡

𝑠

(𝑝 − 𝑠)
2𝐻−2

𝑑𝑝𝑑𝑠

= 2𝐻∫

𝑡

0

𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

] (𝑡 − 𝑠)
2𝐻−1

𝑑𝑠.

(54)

Cleary, we have

0 < 𝑠 < 𝑡 < 1,

0 < 2𝐻 − 1 < 1,

(55)

and consequently,

0 < (𝑡 − 𝑠)
2𝐻−1

< 1. (56)

Hence,

𝐸[(∫

𝑡

0

𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠) 𝑑𝐵
𝐻

𝑠
)

2

]

≤ 2∫

𝑡

0

𝐸 [(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠))
2

] 𝑑𝑠,

(57)

or


∫

𝑡

0

(𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)) 𝑑𝐵
𝐻

𝑠



2

≤ 2∫

𝑡

0

‖𝑟(𝑠, 𝑡)𝑥(𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)‖
2

𝑑𝑠.

(58)

Now, by using the property of the Ito isometry for the SBM
defined in [21] and (𝑥 + 𝑦)2 ≤ 2(𝑥2 + 𝑦2), we get

‖𝑥(𝑡) − 𝑥(𝑡)‖
2

≤ (𝑛 + 3) (
𝑥0 − 𝑥0



2

+ ∫

𝑡

0


𝑘 (𝑠, 𝑡) 𝑥 (𝑠) − �̂� (𝑠, 𝑡) 𝑥 (𝑠)



2

𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0


𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑡𝑖 (𝑠, 𝑡) 𝑥 (𝑠)



2

𝑑𝑠

+2∫

𝑡

0

‖𝑟 (𝑠, 𝑡) 𝑥 (𝑠) − 𝑟 (𝑠, 𝑡) 𝑥 (𝑠)‖
2

𝑑 (𝑠))
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Table 1: Mean, standard deviation, and confidence interval for error mean (𝑇 = 0.25,𝐻 = 2/3).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 1.6470 × 10−4 1.0272 × 10−4 1.1968 × 10−4 2.0972 × 10−4

0.1 2.1125 × 10−4 1.3531 × 10−4 1.5195 × 10−4 2.7055 × 10−4

0.15 3.8495 × 10−4 3.2763 × 10−4 2.4135 × 10−4 5.2855 × 10−4

0.2 4.3880 × 10−4 2.7714 × 10−4 3.1734 × 10−4 5.6026 × 10−4

Table 2: Mean, standard deviation, and confidence interval for numerical solution mean (𝑇 = 0.25,𝐻 = 3/4).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 1.9830 × 10−4 1.3868 × 10−4 1.1235 × 10−4 2.8425 × 10−4

0.1 1.8920 × 10−4 1.7302 × 10−4 8.196 × 10−5 2.9644 × 10−4

0.15 3.7490 × 10−4 1.9789 × 10−4 2.5225 × 10−4 4.9755 × 10−4

0.2 3.0940 × 10−4 2.8441 × 10−4 1.3312 × 10−4 4.8568 × 10−4

≤ 2 (𝑛 + 3) (
𝑥0 − 𝑥0



2

+ ∫

𝑡

0

‖𝑘 (𝑠, 𝑡) (𝑥 (𝑠) − 𝑥 (𝑠))

+ (𝑘 (𝑠, 𝑡) − �̂� (𝑠, 𝑡))

×(𝑥(𝑠) − 𝑥(𝑠) + 𝑥(𝑠))‖
2

𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

‖𝑡𝑖 (𝑠, 𝑡) (𝑥 (𝑠) − 𝑥 (𝑠))

+ (𝑡𝑖 (𝑠, 𝑡) − 𝑡𝑖 (𝑠, 𝑡))

× (𝑥 (𝑠) − 𝑥 (𝑠) + 𝑥 (𝑠))‖
2

𝑑𝑠

+ ∫

𝑡

0

‖𝑟 (𝑠, 𝑡) (𝑥 (𝑠) − 𝑥 (𝑠))

+ (𝑟 (𝑠, 𝑡) − 𝑟 (𝑠, 𝑡))

× (𝑥 (𝑠) − 𝑥 (𝑠) + 𝑥 (𝑠))‖
2

𝑑𝑠)

≤ 2 (𝑛 + 3) (
𝑥0 − 𝑥0



2

+ 2∫

𝑡

0

‖𝑘 (𝑠, 𝑡)‖
2

× ‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+ 2∫

𝑡

0

(

𝑘 (𝑠, 𝑡) − �̂� (𝑠, 𝑡)



2

)

× (2 (‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

+ ‖𝑥 (𝑠)‖
2

)) 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

∫

𝑡

0

‖𝑡𝑖(𝑠, 𝑡)‖
2

‖𝑥(𝑠) − 𝑥(𝑠)‖
2

𝑑𝑠

+ 2

𝑛

∑

𝑖=1

∫

𝑡

0

(

𝑡𝑖(𝑠, 𝑡) − 𝑡𝑖(𝑠, 𝑡)



2

)

× (2 (‖𝑥(𝑠) − 𝑥(𝑠)‖
2

+‖𝑥(𝑠)‖
2

)) 𝑑𝑠

+ 2∫

𝑡

0

‖𝑟(𝑠, 𝑡)‖
2

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+ 2∫

𝑡

0

(‖𝑟 (𝑠, 𝑡) − 𝑟 (𝑠, 𝑡)‖
2

)

× (2 (‖𝑥(𝑠) − 𝑥 (𝑠)‖
2

+‖𝑥 (𝑠)‖
2

)) 𝑑𝑠)

≤ 8 (𝑛 + 3)

× (
𝑥0 − 𝑥0



2

+ ∫

𝑡

0

‖𝑘(𝑠, 𝑡)‖
2

‖𝑥(𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+ ∫

𝑡

0

(

𝑘 (𝑠, 𝑡) − �̂� (𝑠, 𝑡)



2

)

× (‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

+ ‖𝑥 (𝑠)‖
2

) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

‖𝑡𝑖(𝑠, 𝑡)‖
2

‖𝑥(𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

(

𝑡𝑖 (𝑠, 𝑡) − 𝑡𝑖 (𝑠, 𝑡)



2

)

× (‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

+ ‖𝑥 (𝑠)‖
2

) 𝑑𝑠

+ ∫

𝑡

0

‖𝑟 (𝑠, 𝑡)‖
2

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠
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Table 3: Mean, standard deviation, and confidence interval for numerical solution mean (𝑇 = 0.25,𝐻 = 9/10).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 1.9270 × 10−4 1.3065 × 10−4 1.1172 × 10−4 2.7368 × 10−4

0.1 1.7260 × 10−4 1.6552 × 10−4 7.001 × 10−5 2.7519 × 10−4

0.15 3.5330 × 10−4 2.1775 × 10−4 2.1834 × 10−5 4.8826 × 10−4

0.2 2.8700 × 10−4 2.6380 × 10−4 1.2349 × 10−4 4.5051 × 10−4

Table 4: Mean, standard deviation, and confidence interval for numerical solution mean (𝑇 = 0.25,𝐻 = 2/3).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 4.1685 × 10−4 2.8249 × 10−4 2.9305 × 10−4 5.4065 × 10−4

0.1 4.8485 × 10−4 3.1651 × 10−4 3.4613 × 10−4 6.2357 × 10−4

0.15 5.7120 × 10−4 5.3911 × 10−4 3.3491 × 10−4 8.0749 × 10−4

0.2 7.3150 × 10−4 5.4920 × 10−4 4.9081 × 10−4 9.7219 × 10−4

+ ∫

𝑡

0

(‖𝑟 (𝑠, 𝑡) − 𝑟 (𝑠, 𝑡)‖
2

)

× (‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

+ ‖𝑥 (𝑠)‖
2

) 𝑑𝑠) .

(59)

By usingTheorems 5 and 6, we can write

𝑥0 − 𝑥0


2

≤ 𝑘
1
ℎ
2

,


𝑘(𝑠, 𝑡) − �̂� (𝑠, 𝑡)



2

≤ 𝑘
2
ℎ
2

,


𝑡𝑖(𝑠, 𝑡) − 𝑡𝑖 (𝑠, 𝑡)



2

≤ 𝑘
3𝑖
ℎ
2

, 𝑖 = 1, . . . , 𝑛,

‖𝑟(𝑠, 𝑡) − 𝑟(𝑠, 𝑡)‖
2

≤ 𝑘
4
ℎ
2

.

(60)

By substituting the relation (60) in (59), we get

‖𝑥(𝑡) − 𝑥(𝑡)‖
2

≤ 8 (𝑛 + 3)

× (𝑘
1
ℎ
2

+ 𝑙
1
∫

𝑡

0

‖𝑥(𝑠) − 𝑥(𝑠)‖
2

𝑑𝑠

+ 𝑘
2
ℎ
2

(∫

𝑡

0

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠 + 𝑁)

+

𝑛

∑

𝑖=1

𝑙
2𝑖
∫

𝑡

0

‖𝑥(𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+

𝑛

∑

𝑖=1

𝑘
3𝑖
ℎ
2

(∫

𝑡

0

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠 + 𝑁)

+ 𝑙
3
∫

𝑡

0

‖𝑥(𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠

+𝑘
4
ℎ
2

(∫

𝑡

0

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠 + 𝑁)) ,

(61)

or

‖𝑥 (𝑡) − 𝑥 (𝑡)‖
2

≤ 𝜇 + 𝜆∫

𝑡

0

‖𝑥 (𝑠) − 𝑥 (𝑠)‖
2

𝑑𝑠, (62)

where 𝜇 = 8(𝑛+3)(𝑘
1
ℎ
2

+𝑘
2
ℎ
2

𝑁+∑
𝑛

𝑖=1
𝑘
3𝑖
ℎ
2

𝑁+𝑘
4
ℎ
2

𝑁) and
𝜆 = 8(𝑛 + 3)(𝑙

1
+ 𝑘
2
ℎ
2

+ ∑
𝑛

𝑖=1
𝑙
2𝑖
+ ∑
𝑛

𝑖=1
𝑘
3𝑖
ℎ
2

+ 𝑙
3
+ 𝑘
4
ℎ
2

). If
𝑓(𝑠) = ‖𝑥(𝑠) − 𝑥(𝑠)‖

2, we get

𝑓 (𝑡) ≤ 𝜇 + 𝜆∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠. (63)

Now, by using Gronwall inequality, we have

𝑓 (𝑡) ≤ 𝜇(1 + 𝜆∫

𝑡

0

exp (𝜆 (𝑡 − 𝑠)) 𝑑𝑠) , 𝑡 ∈ [0, 1) , (64)

or

‖𝑥(𝑡) − 𝑥 (𝑡)‖
2

≤ 𝑂 (ℎ
2

) . (65)

5. Numerical Examples

The SDE driven by the FBM

𝑆 (𝑡) = 𝑆
0
+ ∫

𝑡

0

𝜇 (𝑠) 𝑆 (𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

0

𝜎𝑖 (𝑠) 𝑆 (𝑠) 𝑑𝐵
𝑖
(𝑠)

+ ∫

𝑡

0

𝛼 (𝑠) 𝑆 (𝑠) 𝑑𝐵
𝐻

𝑠
, 𝑡 ∈ (0, 𝑇) ,

(66)
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Table 5: Mean, standard deviation, and confidence interval for numerical solution mean (𝑇 = 0.25,𝐻 = 3/4).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 5.0950 × 10−4 1.8639 × 10−4 3.9397 × 10−4 6.2503 × 10−4

0.1 5.0980 × 10−4 2.9898 × 10−4 3.2449 × 10−4 6.9511 × 10−4

0.15 4.0610 × 10−4 3.3768 × 10−4 1.9680 × 10−4 6.1540 × 10−4

0.2 4.9960 × 10−4 3.0343 × 10−4 3.1153 × 10−4 6.8767 × 10−4

Table 6: Mean, standard deviation, and confidence interval for numerical solution mean (𝑇 = 0.25,𝐻 = 9/10).

𝑡 𝑥 𝑠
%95 confidence interval for mean

Lower Upper
0.05 4.9780 × 10−4 2.0137 × 10−4 3.7299 × 10−4 6.2261 × 10−4

0.1 6.9850 × 10−4 3.4267 × 10−4 4.8611 × 10−4 9.1089 × 10−4

0.15 7.7470 × 10−4 5.1518 × 10−4 4.5537 × 10−4 1.0940 × 10−3

0.2 1.2516 × 10−3 6.3210 × 10−4 8.5982 × 10−4 1.6434 × 10−3

is applied in modeling the price 𝑆 of a stock with various
Hurst parameters (see [18]). Hence, we show applicability and
accuracy of this method in two numerical examples.

Example 1. Let us consider a SDE

𝑑𝑥 (𝑠) = −
1

5
𝑠
2

𝑥 (𝑠) 𝑑𝑠 −
1

10
𝑥 (𝑠) 𝑑𝐵

𝐻

𝑠

−
1

6
𝑥 (𝑠) 𝑑𝐵

1
(𝑠) −

1

30
𝑥 (𝑠) 𝑑𝐵

2
(𝑠) ,

𝑠 ∈ (0, 𝑇) , 𝑇 < 1,

𝑥 (0) =
1

30
,

(67)

with the exact solution 𝑥(𝑡) = (1/30) exp(−(1/10)𝐵𝐻
𝑡
−

(1/15)𝑡
3

−(1/200)× 𝑡
2𝐻

−(1/6)𝐵
1
(𝑡)− (1/72)𝑡− (1/30)𝐵

2
(𝑡)−

(1/1800)𝑡). The numerical results have been shown in Tables
1, 2, and 3 (with various Hurst parameters), where 𝑥 and 𝑠 are
error mean and standard deviation of error, respectively.

Example 2. Let us consider a SDE

𝑑𝑥 (𝑠) = −
1

6
𝑠
2

𝑥 (𝑠) 𝑑𝑠 −
1

30
𝑥 (𝑠) 𝑑𝐵

𝐻

𝑠

−
1

10 (1 − 𝑠)
𝑥 (𝑠) 𝑑𝐵

1
(𝑠) −

1

30
𝑥 (𝑠) 𝑑𝐵

2
(𝑠) ,

𝑠 ∈ (0, 𝑇) , 𝑇 < 1,

𝑥 (0) =
1

12
,

(68)

with the exact solution 𝑥(𝑡) = (1/12) exp(−(1/30)𝐵𝐻
𝑡
−

(1/18)𝑡
3

−(1/1800)𝑡
2𝐻

−∫
𝑡

0

(1/10(1−𝑠))𝑑𝐵
1
(𝑠)−(1/30)𝐵

2
(𝑡)−

(1/1800)𝑡+(1/(200(1−𝑠)))).The numerical results have been
shown in Tables 4, 5, and 6 (with various Hurst parameters),
where 𝑥 and 𝑠 are error mean and standard deviation of error,
respectively.

6. Conclusion

This paper presents a numerical comparison between the
approximation solution of the SDE driven by the FBM
with Hurst parameter 𝐻 ∈ ((1/2), 1) and 𝑛 independent
one-dimensional SBM and the exact solution of it. Also,
the method is applied with two examples to illustrate the
accuracy and implementation of the method.
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Offshore floating wind turbine (OFWT) has been a challenging research spot because of the high-quality wind power and complex
load environment.This paper focuses on the research of variable torque control of offshore wind turbine on Spar floating platform.
The control objective in below-rated wind speed region is to optimize the output power by tracking the optimal tip-speed ratio
and ideal power curve. Aiming at the external disturbances and nonlinear uncertain dynamic systems of OFWT because of the
proximity to load centers and strong wave coupling, this paper proposes an advanced radial basis function (RBF) neural network
approach for torque control ofOFWTsystemat speeds lower than ratedwind speed.The robust RBFneural networkweight adaptive
rules are acquired based on the Lyapunov stability analysis. The proposed control approach is tested and compared with the NREL
baseline controller using the “NREL offshore 5MW wind turbine” model mounted on a Spar floating platform run on FAST and
Matlab/Simulink, operating in the below-rated wind speed condition.The simulation results show a better performance in tracking
the optimal output power curve, therefore, completing the maximum wind energy utilization.

1. Introduction

Wind energy has been an important part of the renewable
energy. It is significantly meaningful for optimizing the
energy system structure, easing the energy crisis, and pro-
tecting the environment by actively developing wind energy.
With the rapidly development of wind energy all over the
world, promising and reliable wind turbine concepts have
been developed. Offshore wind turbine makes it possible
to go further into water deeper than 60m [1]; therefore,
it has become the key research in the field of renewable
energy.

The floating offshore wind turbine (OFWT) concept
provides a groundbreaking strategy to fully utilize the high-
quality wind power in deep waters. The design concept of
“large floating offshore wind turbine” was firstly proposed
by Heronemus from Massachusetts Institute of Technol-
ogy (MIT) in 1972 [2, 3]. American Renewable Energy

Laboratory (NREL) and MIT have completed the dynamic
system modeling of OFWT and the three types of floating
platform: tension leg platform with suction pile anchors,
Spar-buoy with catenary mooring, drag-embedded anchors
and barge with catenary mooring lines through OC3 projects
[4]. Figure 1 shows the three primary types of floating
offshore wind turbine concepts.

Previous research results show that, compared to onshore
wind turbines, OFWTs with six degrees of freedom are
prone to pitching motion and to produce complex dynamic
load because of proximity to load centers and strong wave
coupling [5]. Meanwhile, with the larger scale (the capacity
of OFWTs reaches up to 10MW, the diameter of blades
approximates 200 meters), the blades of OFWT produce
higher uneven loads due to the effect of turbulence, wind
shear, tower shadow, and spindle tilt. Accumulating of the
above two types of loads will result in devastating impact on
the fatigue life and output power quality of theOFWT system.
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Mooring line stabilized
Tension leg platform with
suction pile anchors

Ballast stabilized
Spar buoy with catenary
mooring, drag-embedded
anchors

Buoyancy stabilized
Barge with catenary

mooring lines

Figure 1: Floating offshore wind turbine concepts (image from Google).

Therefore, it is urgently needed to reduce fatigue loads and
improve output power quality for OFWT system by utilizing
advanced control strategies.

Control of OFWT is a relatively new yet challenging
research area. There have been a large number of recent
achievements in the research of blade pitch control forOFWT
in the above-rated wind speed region [6–13]. In our previous
work [6], we propose a computationally inexpensive robust
adaptive control approach with memory-based compensa-
tion for blade pitch control. However, works on the variable
speed control for OFWT system in below-rated wind speed
region are relatively few.

In this study, to address the challenge that the system
parameters of OFWT are varying and uncertain due to the
complex external wind and wave disturbances, an adaptive
radial basis function (RBF) neural network approach is
proposed for torque control of OFWT system at speeds
lower than rated wind speed.The robust RBF neural network
weight adaptive rules are acquired based on the Lyapunov
stability analysis. The proposed torque controller based on
RBF neural network is presented and mounted on a Spar
floating platform for performance comparison with the
baseline torque controller in the below-rated wind speed
region.

Section 2 briefly presents the wind turbine model and
the Spar floating platform utilized in this paper. Section 3
describes the two implemented controllers: the baseline
torque controller and the proposed variable torque con-
troller based on RBF neural network. Section 4 shows the
simulation and results, in which performances of the above
two controllers are compared with each other on Spar
floating platform. Eventually, conclusions are reported in
Section 5.
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Figure 2: Power coefficients for VSVP wind turbine.

2. Wind Turbine and Platform Models

2.1. 5MWOffshoreWindTurbineModel. Thebasic properties
of future offshore turbines can be estimated by considering
the amount of kinetic energy density in the wind, which can
be converted into kinetic energy of the turbine shaft. The
expression for power produced by the wind is simply given by

𝑃
𝑆
=
1

2
𝐶
𝑝
(𝜆, 𝛽) 𝜌𝐴V3, (1)

where 𝜌 is air density and 𝐴 is the swept area of the turbine
rotor with a radius 𝑅, giving 𝐴 = 𝜋𝑅

2. V is wind speed
passing the rotor. 𝐶

𝑝
denotes power coefficient of wind

turbine, which is a nonlinear function of the tip-speed ratio
𝜆 and the pitch angle 𝛽 [14]. Figure 2 depicts the curve of
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power coefficients for variable speed and variable pitch wind
turbine. It indicates that, for a different 𝛽, there will be a
different curve for the 𝐶

𝑝
− 𝜆, while, for a fixed 𝛽, there will

be an optimal 𝜆 at which the power output is maximum. In
addition, for any tip-speed ratio 𝜆, power coefficient 𝐶

𝑝
is

relatively maximum when blade pitch angle 𝛽 = 0
∘. When 𝛽

increases, 𝐶
𝑝
decreases simultaneously.

Note that the tip-speed ratio is defined as

𝜆 =

VTip
V

=
𝑅𝜔
𝑟

V
, (2)

where VTip is the tip speed and 𝜔
𝑟
is the rotor speed.

For a constant value of 𝛽 = 0
∘, the mathematical model

of 𝐶
𝑝
is expressed as

𝐶
𝑝
(𝜆) = 𝑐

1
(
𝑐
2

𝜆
1

− 𝑐
4
) 𝑒
−𝑐5/𝜆1 + 𝑐

6
𝜆,

1

𝜆
1

= (
1

𝜆
− 0.035) ,

(3)

where the coefficients (𝑐
1
, 𝑐
2
, 𝑐
4
, 𝑐
5
, 𝑐
6
) depend on the aero-

dynamic design of the blade and operating conditions of the
wind turbine. In this paper, the coefficients are 𝑐

1
= 0.5176,

𝑐
2
= 116, 𝑐

4
= 5, 𝑐
5
= 21, and 𝑐

6
= 0.0068 [15]. For the “NREL

5MW reference offshore wind turbine” model simulated in
this paper, the peak power coefficient of 0.482 occurred at a
tip-speed ratio of 7.55 and a rotor-collective blade-pitch angle
of 0.0∘ [16].

In the case of the variable speed wind power generation
system, the maximum power point control from the wind
turbine can be adopted. The maximum power of the wind
turbine is given by

𝑃max =
1

2

𝜌𝜋𝑅
5

𝐶
𝑝 max

𝜆∗3
𝜔
∗3

𝑟
. (4)

The physical properties of the specified wind turbine
model used for analysis, the “NREL 5MW reference offshore
wind turbine,” are listed in Table 1 [16]. This wind turbine is
mounted on a Spar floating platform.

2.2. Floating Platform. The Spar-buoy platform is modeled
for the support structure. The NREL 5 MW offshore floating
platform input properties for the OC3-Hywind Spar-buoy
used in this paper are briefly summarized in Table 2 [4].

3. Implemented Controllers

This section gives the detailed information about the two
controllers simulated in the analysis.

3.1. The Baseline Generator Torque Controller. The baseline
generator torque controller is built on the best performance
presented by Jonkman in his previous research on the Spar-
buoy platform [17].

In the below rated wind speed region, the purpose is to
optimize power capture.The generator torque is proportional

Table 1: NREL 5MW turbine model properties.

Power rating 5MW
Rotor orientation, Configuration Upwind, 3 blades

Control Variable speed, variable
pitch, active yaw

Rotor, hub diameter 126m, 3m
Hub height 90m
Cut-in, rated, cut-out wind speed 3m/s, 11.4m/s, 25m/s
Rated rotor, generator speed 12.1 rpm, 1173.7 rpm
Rotor mass 110000 kg
Optimal tip-speed-ratio 7.55
Blade operation Pitch to feather
Maximum blade pitch rate 8∘/s
Rated generator torque 43,093Nm
Maximum generator torque 47,402Nm
Using the turbine model data from [16].

Table 2: Physical properties for the OC3-hywind spar-buoy.

Diameter 6.5m
Draft 120.0m
Platform mass 7,466,330 kg
Water depth 320.0m
Number of mooring lines 3
Using the barge platform data from [4].

to the square of the filtered generator speed to maintain a
constant optimal tip-speed ratio.

The generator torque for this region is expressed as

𝑇
𝜔𝑟

𝑔
= 𝑇
1

𝑔
+

𝑇
∗

𝑔
− 𝑇
1

𝑔

𝜔
𝑟,2
− 𝜔
𝑟,1

(𝜔
𝑟
− 𝜔
𝑟,1
) , (5)

where𝜔
𝑟
is rotor speed,𝑇1

𝑔
is the generator torque at the rotor

speed inwhich this region starts (𝜔
𝑟,1
),𝑇∗
𝑔
is rated torque, and

𝜔
𝑟,2

is the rotor speed in which the rated torque is reached.

3.2. Advanced Generator Torque Controller Based on RBF
Neural Network. We propose a RBF neural network for
variable torque control of the OFWT system. The total
number of input signals in the OFWT torque control system
is no more than 4. Consequently, it is a computationally
inexpensive approach to utilize the RBF neural network for
linearization and approximation.

In this paper, the RBF neural network is a three-layer
forward network, including an input layer, a hidden layer
with a Gaussian activation function, and a linear output layer.
The mapping from input to output is nonlinear, while the
mapping from hidden layer to output layer is linear, therefore
speeding up the process of study obviously and avoiding
local minimum problem. The topological structure of RBF
network is presented in Figure 3.

The control block diagram of RBF neural network is
illustrated in Figure 4.
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Figure 3: Topological graph of RBF neural network.

Controlled

RBF NN

object
u(k)

y(k)

ym(k)

+

−

Figure 4: Control block diagram of RBF neural network.

In RBF network,𝑋 = [𝑥
1
, 𝑥
1
, . . . , 𝑥

𝑛
]
𝑇 is the input vector,

ℎ
𝑔
is a nonlinear RBF activation function, which is given by

ℎ
𝑔
= Φ (


𝑋 − 𝐶

𝑔


) = exp(−


𝑋 − 𝐶

𝑔



2

2𝑏2
𝑔

) ,

𝑔 = 1, 2, . . . , 𝑚,

(6)

where 𝑚 is the number of neurons in the hidden layer and
𝐶
𝑔
= [𝑐
1𝑔
, 𝑐
2𝑔
, . . . , 𝑐

𝑖𝑔
, . . . , 𝑐

𝑛𝑔
]
𝑇 is the central vector of 𝑔th

hidden neuron. 𝐵 = [𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑔
, . . . , 𝑏

𝑚
]
𝑇 is the basis-width

vector, 𝑏
𝑔

> 0 is the base width constant of 𝑔th mode,
and the weight vector of the linear output neurons is 𝑤 =

[𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑔
, . . . , 𝑤

𝑚
]
𝑇.

The output 𝑅𝑛 → 𝑅 of the neural network is defined as

𝐹 (𝑥) = 𝑤𝐻 =

𝑚

∑

𝑔=1

𝑤
𝑔
Φ(


𝑥 − 𝐶

𝑔


) . (7)

From previous research results [13, 18–25], we could learn
that, a RBF neural network with enough hidden neurons
can approximate any nonlinear continuous functions with
arbitrary precision. In this paper, in order to train the RBF
neural network, we utilize the Lyapunov stability to get the
weights updating rules of the RBF neural network.

In the first mode of operating at variable torque control,
where the wind speed is less than the rated speed region,
the electrical torque of the wind turbine must be adjusted to
make the rotor speed track the desired speed that is specified

Rotor side

Generator side
Gearbox

Tm

Jr

TL

TH

Te

Jg

Kr
Kg

𝜔r 𝜔g

Figure 5: Layout of drive train model.

according to the optimal tip-speed ratio. The drive train
dynamics are depicted in Figure 5. The mechanical motion
equations are given by

𝐽
𝑟
̇𝜔
𝑟
+ 𝐾
𝑟
𝜔
𝑟
+ 𝐵
𝑟
𝜃
𝑟
= 𝑇
𝑚
(𝜔, 𝛽, V, ̇𝑥) − 𝑇

𝐿
,

𝐽
𝑔
̇𝜔
𝑔
+ 𝐾
𝑔
𝜔
𝑔
+ 𝐵
𝑔
𝜃
𝑔
= 𝑇
𝐻
− 𝑇
𝑒
,

𝑛 =

𝜔
𝑔

𝜔
𝑟

=
𝑇
𝐿

𝑇
𝐻

,

(8)

where 𝐽
𝑟
and 𝐽
𝑔
are themoment of inertia of the rotor and the

generator.𝐾
𝑟
and𝐾

𝑔
are the coefficient of viscous reaction of

rotor and generator, respectively. 𝐵
𝑟
and 𝐵

𝑔
are the coefficient

and stiffness of rotor and generator, respectively. 𝑇
𝑚
, 𝑇
𝑒
, 𝑇
𝐿
,

and 𝑇
𝐻
are the shaft torque at wind turbine end, generator

end, and before and after gear box, respectively. 𝑥 is the tower
displacement and 𝑛 is the gearbox ratio. 𝜃

𝑟
and 𝜃

𝑔
are the

mechanical angular position of the rotor and generator.
We rewrite the above mechanical motion equations in a

compact form as follows:

𝐽 ̇𝜔
𝑟
+ 𝐾𝜔
𝑟
+ 𝐵𝜃
𝑟
= 𝑇
𝑚
(𝜔, 𝛽, V, ̇𝑥) − 𝑛𝑇

𝑒
, (9)

where, 𝐵 are lumped parameters given by

𝐽 = 𝐽
𝑟
+ 𝑛
2

𝐽
𝑔
,

𝐾 = 𝐾
𝑟
+ 𝑛
2

𝐾
𝑔
,

𝐵 = 𝐵
𝑟
+ 𝑛
2

𝐵
𝑔
.

(10)

𝑇
𝑚
is given by

𝑇
𝑚
=

𝜌𝜋𝑅
3

𝐶
𝑝
(𝜆, 𝛽)

2𝜆
(V − ̇𝑥)

2

. (11)

The affine form of the rotor speed equation can be
characterized by the following equation:

̇𝜔
𝑟
= Γ (𝜔

𝑟
, V) + 𝛾𝑇

𝑒
, (12)

where 𝛾 is a constant negative value and 𝑇
𝑒
is the input signal,

with

Γ (𝜔
𝑟
, V) =

(𝜌𝜋𝑅
3

𝐶
𝑝
(𝜆, 𝛽) /2𝜆) V2 − 𝐾𝜔

𝑟
− 𝐵𝜃
𝑟

𝐽
,

𝛾 =
−𝑛

𝐽
.

(13)
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Construct a nonlinear approximation function through
RBF neural network given by

Γ (𝜔
𝑟
, V)

𝛾
= Φ (𝜔

𝑟
, V) 𝑤 + 𝐿 (𝜔

𝑟
, V) , (14)

where |𝐿(𝜔
𝑟
, V)| ≤ 𝐿max represents the lumped RBF neural

network approximation error.
To design the rotor speed tracking controller, define the

rotor tracking error 𝑒 as follows:

𝑒 = 𝜔
𝑟
− 𝜔
∗

𝑟
, (15)

where 𝜔∗
𝑟
is the optimal rotor speed, which is defined as

𝜔
∗

𝑟
=
𝜆
∗V
𝑅
, (16)

where the optimum tip speed ratio 𝜆∗ is given in Table 1.
The control system can be justified by considering the

Lyapunov function candidate as follows:

𝑉 =
1

−2𝛾
𝑒
2

+
1

2𝜃
1

𝑤
𝑇

𝑤, (17)

where 𝜃
1
> 0 is the positive adaptation gain. 𝑤 = 𝑤 − 𝑤 is

the weight error. 𝑤 and 𝑤 are the ideal weight and estimated
weight of the network, respectively. The Lyapunov function
candidate 𝑉 is a positive definite function and 𝑉 ≤ 0 is the
sufficient condition for the robust stability of the nonlinear
system. We can get the following:

𝑉 = (𝜔
𝑟
− 𝜔
∗

𝑟
) (−

Γ (𝜔
𝑟
, V)

𝛾
− 𝑇
𝑒
+
𝜆
∗

̇V
𝑅𝛾

) −
1

𝜃
1

𝑤
𝑇 ̇̂𝑤. (18)

Deriving the approximation through the neural networks
Γ(𝜔
𝑟
, V)/𝛾 = Φ(𝜔

𝑟
, V)𝑤+𝐿(𝜔

𝑟
, V) and Γ̂(𝜔

𝑟
, V)/𝛾 = Φ(𝜔

𝑟
, V)𝑤.

For the stability of the nonlinear system, consider the follow-
ing controller:

�̂� = 𝑇
𝑒
= −Φ (𝜔

𝑟
, V) 𝑤 + 𝜅 (𝜔

𝑟
− 𝜔
∗

𝑟
) + 𝜔
𝑟
, (19)

where 𝜅 > 0 is the rotor speed tracking error feedback gain.

Proof. Based on (18) and (19), we can get

𝑉 = (𝜔 − 𝜔
∗

) (−𝐿 (𝜔
𝑟
, V) − 𝜅 (𝜔

𝑟
− 𝜔
∗

𝑟
) − 𝜔
𝑟
+
𝜆
∗

̇V
𝑅𝛾

)

+ 𝑤
𝑇

(−Φ
𝑇

(𝜔
𝑟
, V) (𝜔

𝑟
− 𝜔
∗

𝑟
) −

1

𝜃
1

̇̂𝑤) .

(20)

The weight updating rule of the network can be obtained
through the e-modification method given by

̇̂𝑤 = − 𝜃
1
(Φ
𝑇

(𝜔
𝑟
, V) (𝜔

𝑟
− 𝜔
∗

𝑟
) + 𝜐

𝜔𝑟 − 𝜔
∗

𝑟

 𝑤) , (21)

where 𝜐 is a constant positive value. Combine (20) and (21) to
get the following:

𝑉 = (𝜔
𝑟
− 𝜔
∗

𝑟
) (−𝐿 (𝜔

𝑟
, V) − 𝜔

𝑟
+
𝜆
∗

̇V
𝑅𝛾

)

− 𝜅(𝜔
𝑟
− 𝜔
∗

𝑟
)
2

+ 𝜐
𝜔𝑟 − 𝜔

∗

𝑟

 𝑤
𝑇

𝑤.

(22)
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Figure 6: Block diagram of the RBF NN variable speed control
scheme.

It is assumed that 𝜔
𝑟
and ̇𝜔

∗

𝑟
are bounded, so

𝜔𝑟
 ≤ 𝐿1,


̇𝜔
∗

𝑟

 =



𝜆
∗

̇V
𝑅𝛾



≤ 𝐿
2
,

𝑉 ≤
𝜔𝑟 − 𝜔

∗

𝑟



⋅ ((𝐿max + 𝐿1 + 𝐿2) − 𝜅
𝜔𝑟 − 𝜔

∗

𝑟

 − 𝜐𝑤
𝑇

𝑤 + 𝜐𝑤
𝑇

𝑤) .

(23)

If |𝜔
𝑟
−𝜔
∗

𝑟
| ≥ (𝐿max +𝐿𝑤)/𝜅+ (𝜐𝑤

2

)/4𝜅 or ‖𝑤‖ ≥ (𝑤/2)+
√(𝐿max + 𝐿𝑤)/𝜐 + 𝑤

2/4, we could get

𝑉 ≤ 0. (24)

Therefore, the overall dynamic system is uniformly ulti-
mately bounded.

From the above equations, we can see that the estimated
wind speed input enables the generator to track the optimal
output power curve by generating a reference rotor speed.
There are many previous researches working on estimating
wind speed without directly measuring the wind speed. In
this paper, we utilize the sensorless scheme presented in [26]
to estimate wind speed based on neural network. Then we
could get the reference rotor speed by the following equation:

𝜔
∗

𝑟
= 𝑓 (V) =

𝜆
∗V
𝑅
. (25)

The block diagram of the RBF neural network variable
speed control scheme of the OFWT system is depicted in
Figure 6.

4. Simulation and Results

In this section, the “NREL 5MW reference offshore wind
turbine” installed on a OC3-Hywind Spar-buoy floating
platform is tested and simulated with the FAST and MAT-
LAB/Simulink under mean value of 8m/s turbulence wind
speed, which is below the rated wind speed.

To verify the robustness and self-adaptation of the
proposed variable torque controller based on RBF neural
network, compared simulations of two types of controllers,
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the baseline torque controller and the proposed torque
controller, have been performed on the same offshore wind
turbine system. Two comparison performances are simulated
based on power tracking: generator output power and torque
regulations.

Figure 7 shows the turbulence wind and wave conditions.
Figure 8 compares the average generator output power

tracking for the proposed torque controller based on RBF
neural network and the baseline torque controller with the
optimal output power trajectory. It can be observed that,
the proposed adaptive torque controller is able to follow the
optimal output power curve with better tracking accuracy
than the baseline torque controller, therefore completing the
maximum offshore wind energy utilization.

Figure 9 presents the compared curve in generator
torque.

5. Conclusions

This paper mainly focuses on the variable torque control
of OFWT system for power tracking in below-rated wind
speed region on a Spar-buoy floating platform. In allusion to
the external disturbances and uncertain system parameters
of OFWT due to the much more complicated external load
environment and strong wave coupling compared to the
onshore wind turbine, a robust adaptive torque controller
based on RBF neural network is proposed and tested. Two
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Figure 9: Comparison in generator torque.

types of controllers are implemented on the OC3-Hywind
Spar-buoy floating platform for performance comparison: the
baseline torque controller and the proposed torque controller

According to the average simulation results, the proposed
torque controller based on RBF neural network is not only
robust to complex wind andwave disturbances but also adap-
tive to varying and uncertain system parameters as well. As a
result, the advanced controller shows a better performance in
tracking the optimal generator output power curve, therefore
completing the maximum wind energy utilization.
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This paper investigates the Hankel norm filter design problem for stochastic time-delay systems, which are represented by Takagi-
Sugeno (T-S) fuzzy model. Motivated by the parallel distributed compensation (PDC) technique, a novel filtering error system is
established. The objective is to design a suitable filter that guarantees the corresponding filtering error system to be mean-square
asymptotically stable and to have a specified Hankel norm performance level 𝛾. Based on the Lyapunov stability theory and the Itô
differential rule, the Hankel norm criterion is first established by adopting the integral inequality method, which can make some
useful efforts in reducing conservativeness. The Hankel norm filtering problem is casted into a convex optimization problem with
a convex linearization approach, which expresses all the conditions for the existence of admissible Hankel norm filter as standard
linear matrix inequalities (LMIs). The effectiveness of the proposed method is demonstrated via a numerical example.

1. Introduction

Thefiltering problem can be briefly described as the design of
an estimator from the measured output to estimate the state
of the given systems and plays an important role in control
fields and signal processing. During the last decades, various
methodologies have been developed for the filter designs,
such as Kalman filter [1, 2],𝐻

∞
filter [3, 4], and𝐻

2
or𝐻
2
/𝐻
∞

filter [5, 6]. To mention a few, the earlier appeared Kalman
filter is based on the precise noise statistics, while 𝐻

∞
filter

can be designed without the statistical assumption on the
noise signals. With the continuous development of filtering
technology, research on the above filteringmethods hasmade
a lot of achievements. In recent years,more andmore scholars
pay their attentions to other performance index, such as 𝐿

1
,

𝐿
2
–𝐿
∞
, and Hankel norm, where the analysis of Hankel

norm takes the effects of past inputs on the future outputs into
account. Since the inputs and outputs of the plants for actual
control systems change over time, environment and any other
factors, the past inputs will affect the future outputs, which is
one issue need to consider in the filtering analysis. Therefore,
the study onHankel normfilter has significance of theoretical
guidance and engineering application.

On another research frontline, a great number of results
on stochastic systems have been reported since stochastic
modeling has come to be a key part in many branches of
science and engineering. As far as we know, the study of
stochastic systems mainly focusses on the stability analysis
[7, 8], controller design [9, 10], filtering [11], model reduction
[12] and fault detection [13], and so forth. Among them, the
literature [8] proposed some sufficient conditions to ensure
that the stochastic interval delay system is exponentially
stable by using the Razumikhin-type theorem, and the robust
𝐻
∞

control and filtering problem for a class of uncertain
stochastic time-delay systems were discussed in [9, 11],
respectively. In the literature [12], theHankel norm gain crite-
rion ofmodel reductionwas established for neutral stochastic
time-delay systems by using the projection lemma. For the
existence of nonlinearity and unknown measured noise as
well as stochastic perturbation, researchers have proposed
different methods as data-driven approach [14, 15] and fault
tolerant control with an iterative optimization scheme [16].
It is noted that the research on the filtering problem for
stochastic time-delay systems has great significance and the
major works are obtained with𝐻

∞
performance, while being
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relatively less with other performance constraints, especially
Hankel norm.

As well known, a significant body of research on the
aforementioned filter design problem has been investigated
up to now and the closely related results of nonlinear systems
are also fruitful with the T-S fuzzy model approach. Over
the past few years, the T-S fuzzy model has been recognised
as a powerful tool in approximating complex nonlinear
systems to a number of linear subsystems by employing
piecewise smooth membership functions. It has been proved
that some stability analysis and synthesis methods in the
linear systems can be effectively extended to the T-S fuzzy
systems [17, 18]. Through the T-S fuzzy model approach, the
filtering problem for nonlinear systems has undergone a fast
development in recent year. Some results are cited in the study
[19, 20], where the literature [19] considered both continuous
and differential uniformly bounded time-varying delays and
proposed some novel delay-dependent 𝐻

∞
filtering criteria

for nonlinear systems via a T-S fuzzy model approach, and
[20] is concerned with the design problem of 𝐻

∞
filter for

continuous T-S fuzzy systems based on the delay partitioning
idea. However, it should be pointed out that the mentioned
results aremostly establishedwith the induced norms, such as
𝐻
2
and𝐻

∞
, while more and more researchers have switched

their interests to Hankel norm very recently. Different from
other norms, the analysis of the Hankel norm included
both the past inputs and the future outputs. By estimating
the effect of the system past inputs on the system future
outputs, the Hankel norm can be used to achieve the system
performance analysis more efficiently. So far, the applications
of the Hankel norm is mainly in system model reduction
[12, 21, 22]. To the best of the authors’ knowledge, the Hankel
norm filtering problem for T-S model-based stochastic time-
delay systems has not been investigated, which motivates the
current research.

The goal of this paper is to design a robust Hankel norm
filter for stochastic time-delay systems. Firstly, based on the
T-S fuzzy model approximation and the parallel distributed
compensation (PDC) technique, a novel filtering error system
is established. Then, two appropriate Lyapunov-Krasovskii
functions are chosen for the stability and Hankel norm per-
formance analysis. By using the Itô differential rule and the
integral inequality method, the Hankel norm criterion is first
proposed for the existence of admissible filter that guaran-
tees the mean-square asymptotic stability and Hankel norm
performance of the corresponding filtering error system.
Finally, the existence conditions of the admissible Hankel
normfilter can be expressed as LMIs and the filter parameters
are obtained by using standard numerical software. An
example is illustrated to show the efficiency of the proposed
filter design methods.

The notation used in this paper is standard. R𝑛 denotes
the 𝑛-dimensional real Euclidean space, R𝑛×𝑚 is the set of
𝑛 × 𝑚 real matrices. N denotes the natural numbers set. The
notation 𝑋𝑇 and 𝑋−1 denote its transpose and inverse when
it exists, respectively. Given a symmetric matrix𝑋 = 𝑋𝑇, the
notation 𝑋 > 0 (𝑋 ≥ 0) means that the matrix 𝑋 is real
positive definiteness (semidefiniteness). By 𝑑𝑖𝑎𝑔 we denote
a block diagonal matrix with its input arguments on the

diagonal. 𝐼 denotes the identity matrix. The symbol ∗ within
a matrix represents the symmetric entries. 𝐿

2
[0,∞) denotes

the space of square integrable functions over [0,∞). The
notationE{⋅} stands for the expectation operator.

2. Problem Statement

Consider a stochastic time-delay system which could be
approximated by a T-S fuzzy model with 𝑟 plant rules.

Plant Rule 𝑖. If 𝜃
1
(𝑡) is𝑊

𝑖1
, 𝜃
2
(𝑡) is𝑊

𝑖2
and. . .and 𝜃

𝑔
(𝑡) is𝑊

𝑖𝑔
,

then
𝑑𝑥 (𝑡) = [𝐴

𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐵

𝑖
V (𝑡)] 𝑑𝑡

+ [𝑀
𝑖
𝑥 (𝑡) + 𝑀

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝑁

𝑖
V (𝑡)] 𝑑𝜔 (𝑡) ,

𝑑𝑦 (𝑡) = [𝐶
𝑖
𝑥 (𝑡) + 𝐶

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐷

𝑖
V (𝑡)] 𝑑𝑡

+ [𝐸
𝑖
𝑥 (𝑡) + 𝐸

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐹

𝑖
V (𝑡)] 𝑑𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐿
𝑖
𝑥 (𝑡) ,

𝑥 (𝑡) = 0, 𝑡 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑟,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑚 is themeasured
output signal, and V(𝑡) ∈ R𝑝 is the exogenous disturbance
that is assumed to be an arbitrary signal belonging to
𝐿
2
[0,∞). 𝑧(𝑡) ∈ R𝑞 is the signal to be estimated. 𝜔(𝑡) is

a zero-mean real scalar Wiener process on (Ω,F,P). And
E{𝑑𝜔(𝑡)} = 0, E{𝑑𝜔2(𝑡)} = 0. 𝜏 is the time delay and
is assumed to be constant in the whole dynamic process.
𝜃(𝑡) = [𝜃

1
(𝑡), 𝜃
2
(𝑡), . . . , 𝜃

𝑔
(𝑡)] is the premise variables vector,

𝑊
𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑔) is the fuzzy set, and 𝑟 is

the number of IF-THEN rules. 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐵
𝑖
,𝑀
𝑖
,𝑀
𝑑𝑖
, 𝑁
𝑖
, 𝐶
𝑖
,

𝐶
𝑑𝑖
, 𝐷
𝑖
, 𝐸
𝑖
, 𝐸
𝑑𝑖
, 𝐹
𝑖
, and 𝐿

𝑖
are known constant matrices with

appropriate dimensions.
The fuzzy system (1) is supposed to have singleton

fuzzifier, product inference, and centroid difuzzifier.The final
output of the fuzzy system is inferred as follows:
𝑑𝑥 (𝑡)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

× {[𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐵

𝑖
V (𝑡)] 𝑑𝑡

+ [𝑀
𝑖
𝑥 (𝑡) + 𝑀

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝑁

𝑖
V (𝑡)] 𝑑𝜔 (𝑡)} ,

𝑑𝑦 (𝑡)

=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

× {[𝐶
𝑖
𝑥 (𝑡) + 𝐶

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐷

𝑖
V (𝑡)] 𝑑𝑡

+ [𝐸
𝑖
𝑥 (𝑡) + 𝐸

𝑑𝑖
𝑥 (𝑡 − 𝜏) + 𝐹

𝑖
V (𝑡)] 𝑑𝜔 (𝑡)} ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝐿

𝑖
𝑥 (𝑡) ,

𝑥 (𝑡) = 0, 𝑡 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑟,

(2)
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where

ℎ
𝑖
(𝜃 (𝑡)) =

𝜇
𝑖
(𝜃 (𝑡))

∑
𝑟

𝑖=1
𝜇
𝑖
(𝜃 (𝑡))

,

𝜇
𝑖
(𝜃 (𝑡)) =

𝑔

∏

𝑗=1

𝑊
𝑖𝑗
(𝜃
𝑗
(𝑡)) ,

(3)

and𝑊
𝑖𝑗
(𝜃
𝑗
(𝑡)) representing the grade of membership of 𝜃

𝑗
(𝑡)

in𝑊
𝑖𝑗
. Here, for all 𝑡, ℎ

𝑖
(𝜃(𝑡)) ≥ 0 and ∑𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑡)) = 1.

In this paper, we will design the following Hankel norm
filter by employing the parallel distributed compensation
technique.

Filter Rule 𝑖. If 𝜃
1
(𝑡) is𝑊

𝑖1
, 𝜃
2
(𝑡) is𝑊

𝑖2
and. . .and 𝜃

𝑔
(𝑡) is𝑊

𝑖𝑔
,

then

𝑑𝑥 (𝑡) = 𝐴fi𝑥 (𝑡) + 𝐵fi𝑑𝑦 (𝑡) ,

�̂� (𝑡) = 𝐶fi𝑥 (𝑡) ,
(4)

where 𝑥(𝑡) ∈ R𝑛 and �̂�(𝑡) ∈ R𝑞 are the state and output of
the filter, respectively. The matrices 𝐴fi, 𝐵fi, and 𝐶fi are filter
parameters to be determined.

The defuzzified output of (4) is referred by

𝑑𝑥 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) {𝐴fi𝑥 (𝑡) + 𝐵fi𝑑𝑦 (𝑡)}

�̂� (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝐶fi𝑥 (𝑡) .

(5)

Defining the augmented state vector 𝜉
𝑇

(𝑡) =

[𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡)] and 𝑒(𝑡) = 𝑧(𝑡) − �̂�(𝑡), then the filtering
error system can be written in the following form:

𝑑𝜉 (𝑡)

= [𝐴 (𝑡) 𝜉 (𝑡) + 𝐴
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝐵 (𝑡) V (𝑡)] 𝑑𝑡

+ [𝑀 (𝑡) 𝜉 (𝑡) + 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)] 𝑑𝜔 (𝑡) ,

𝑒 (𝑡) = 𝐿 (𝑡) 𝜉 (𝑡) ,

(6)

where 𝐺 = [𝐼 0],

𝐴 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝐴
𝑗

0

𝐵fi𝐶𝑗 𝐴fi
]

]

= [
𝐴 (𝑡) 0

𝐵
𝑓
(𝑡) 𝐶 (𝑡) 𝐴

𝑓
(𝑡)
] ,

𝐴
𝑑
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝐴
𝑑𝑗

𝐵fi𝐶𝑑𝑗
]

]

= [

[

𝐴
𝑑
(𝑡)

𝐵
𝑓
(𝑡) 𝐶
𝑑
(𝑡)
]

]

,

𝐵 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝐵
𝑗

𝐵fi𝐷𝑗
]

]

= [
𝐵 (𝑡)

𝐵
𝑓
(𝑡) 𝐷 (𝑡)

] ,

𝑀 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝑀
𝑗
0

𝐵fi𝐸𝑗 0
]

]

= [
𝑀(𝑡) 0

𝐵
𝑓
(𝑡) 𝐸 (𝑡) 0

] ,

𝑀
𝑑
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝑀
𝑑𝑗

𝐵fi𝐸𝑑𝑗
]

]

= [

[

𝑀
𝑑
(𝑡)

𝐵
𝑓
(𝑡) 𝐸
𝑑
(𝑡)
]

]

,

𝑁 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [

[

𝑁
𝑗

𝐵fi𝐹𝑗
]

]

= [
𝑁 (𝑡)

𝐵
𝑓
(𝑡) 𝐹 (𝑡)

] ,

𝐿 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) [𝐿𝑗 −𝐶fi]

= [𝐿 (𝑡) −𝐶
𝑓
(𝑡)] .

(7)

The Hankel norm filtering problem addressed in this
paper can be expressed as follows.

Given a scalar 𝛾 > 0, determine the matrices 𝐴fi, 𝐵fi, and
𝐶fi to find a suitable filter in the form of (5) such that

(i) the filtering error system (6) with V(𝑡) = 0 is mean-
square asymptotically stable;

(ii) subjected to the zero initial condition (𝜉(𝑡) = 0, for all
𝑡 ≤ 0)

E{∫
∞

T

𝑒
𝑇

(𝑡) 𝑒 (𝑡) 𝑑𝑡} < 𝛾
2

∫

T

0

V𝑇 (𝑡) V (𝑡) 𝑑𝑡; (8)

for all V(𝑡) ∈ 𝐿
2
[0,∞) with V(𝑡) = 0, for all 𝑡 ≥ T.

Then, the filtering error system (6) is said to be mean-square
asymptotically stable with a Hankel norm performance level
𝛾.

Lemma 1. Given matrix 𝑅 = 𝑅𝑇 ≥ 0 and scalar 𝜏 > 0, 𝑦(𝑡) is
a vector function which satisfies 𝑦(𝑡)𝑑𝑡 = 𝑑𝜉(𝑡), then

− 𝜏∫

𝑡

𝑡−𝜏

𝑦
𝑇

(𝑠) 𝑅𝑦 (𝑠) 𝑑𝑠

≤ [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − 𝜏)] [
−𝑅 𝑅

𝑅 −𝑅
] [

𝜉 (𝑡)

𝜉 (𝑡 − 𝜏)
] .

(9)
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Remark 2. 𝑦(𝑡) in Lemma 1 is not equivalent to ̇𝜉(𝑡) in
deterministic time-delay systems and cannot be expressed
by the known system parameters for the existence of the
stochastic perturbation 𝑑𝜔(𝑡). If 𝑑𝜔(𝑡) = 0, 𝑦(𝑡) = ̇𝜉(𝑡).

3. Hankel Norm Performance Analysis

In this subsection, we will derive a sufficient condition for
the existence of the Hankel norm filter that guarantees the
filtering error system (6) to be mean-square asymptotically
stable with a specified Hankel norm performance level.
By making use of the Itô differential rule, the stochastic

differentials of Lyapunov functions along the solution of
system (6) are obtained and the integral inequality method is
also used during the derivation. Based on these, the Hankel
norm criterion of filtering problem is first established. Now,
we will first give the following theorem which will play a key
role in the derivation of our main results.

Theorem 3. The filtering error system (6) is mean-square
asymptotically stable and has a guaranteed Hankel norm
performance 𝛾 if there exist 𝑃

1
> 0, 𝑃

2
> 0, 𝑄

1
> 0, 𝑄

2
> 0,

𝑅
1
> 0, 𝑅

2
> 0, and 𝑆

1
, 𝑆
2
satisfying

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃
1

𝑃
1
𝑀(𝑡) 𝑃

1
𝑀
𝑑
(𝑡) 0 𝑃

1
𝑁(𝑡)

∗ 𝑃
1
𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑃
1
+ 𝐺
𝑇

(𝑄
1
−
𝑅
1

𝜏
)𝐺 𝑃

1
𝐴
𝑑
(𝑡) + 𝐺

𝑇
𝑅
1

𝜏
𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
1

𝑃
1
𝐵 (𝑡)

∗ ∗ −𝑄
1
−
𝑅
1

𝜏
𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
1

0

∗ ∗ ∗ 𝜏𝑅
1
− 𝑆
1
− 𝑆
𝑇

1
𝑆
𝑇

1
𝐺𝐵 (𝑡)

∗ ∗ ∗ ∗ −𝛾
2

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (10)

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑃
2

𝑃
2
𝑀(𝑡) 𝑃

2
𝑀
𝑑
(𝑡) 0 0

∗ 𝑃
2
𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑃
2
+ 𝐺
𝑇

(𝑄
2
−
𝑅
2

𝜏
)𝐺 𝑃

2
𝐴
𝑑
(𝑡) + 𝐺

𝑇
𝑅
2

𝜏
𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
2
𝐿
𝑇

(𝑡)

∗ ∗ −𝑄
2
−
𝑅
2

𝜏
𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
2

0

∗ ∗ ∗ 𝜏𝑅
2
− 𝑆
2
− 𝑆
𝑇

2
0

∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (11)

𝑃
1
− 𝑃
2
≥ 0, (12)

𝐺
𝑇

(𝑄
1
− 𝑄
2
) 𝐺 ≥ 0, (13)

𝐺
𝑇

(𝑅
1
− 𝑅
2
) 𝐺 ≥ 0. (14)

Proof. Choose the Lyapunov-Krasovskii functionals as

𝑉
1
(𝜉
𝑡
, 𝑡) = 𝜉

𝑇

(𝑡) 𝑃
1
𝜉 (𝑡) + ∫

𝑡

𝑡−𝜏

𝜉
𝑇

(𝛼) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝛼) 𝑑𝛼

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝛽

𝑦
𝑇

(𝛼) 𝐺
𝑇

𝑅
1
𝐺𝑦 (𝛼) 𝑑𝛼 𝑑𝛽,

(15)

𝑉
2
(𝜉
𝑡
, 𝑡) = 𝜉

𝑇

(𝑡) 𝑃
2
𝜉 (𝑡) + ∫

𝑡

𝑡−𝜏

𝜉
𝑇

(𝛼) 𝐺
𝑇

𝑄
2
𝐺𝜉 (𝛼) 𝑑𝛼

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝛽

𝑦
𝑇

(𝛼) 𝐺
𝑇

𝑅
2
𝐺𝑦 (𝛼) 𝑑𝛼 𝑑𝛽,

(16)

where 𝑃
1
, 𝑃
2
, 𝑄
1
, 𝑄
2
, 𝑅
1
, and 𝑅

2
are real symmetric positive

definite matrices to be determined, 𝜉
𝑡
= 𝜉(𝑡 + 𝜄), −𝜏 ≤ 𝜄 ≤ 0.

𝑦(𝑡) is defined as 𝑦(𝑡)𝑑𝑡 = 𝑑𝜉(𝑡), and according to the
Newton-Leibniz formula, we have

∫

𝑡

𝑡−𝜏

𝑦 (𝛼) 𝑑𝛼 = 𝜉 (𝑡) − 𝜉 (𝑡 − 𝜏) . (17)

Then by making use of the Itô differential rule, the
stochastic differential 𝑑𝑉

1
(𝜉
𝑡
, 𝑡) along the solution of system

(6) can be obtained as

𝑑𝑉
1
(𝜉
𝑡
, 𝑡)

=L𝑉
1
(𝜉
𝑡
, 𝑡) 𝑑𝑡 + 2𝜉

𝑇

(𝑡) 𝑃
1

× [𝑀 (𝑡) 𝜉 (𝑡) + 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)] 𝑑𝜔 (𝑡) ,

(18)
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where
L𝑉
1
(𝜉
𝑡
, 𝑡)

= 2𝜉
𝑇

(𝑡) 𝑃
1
[𝐴 (𝑡) 𝜉 (𝑡) + 𝐴

𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝐵 (𝑡) V (𝑡)]

+ [𝑀 (𝑡) 𝜉 (𝑡) + 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)]

𝑇

× 𝑃
1
[𝑀 (𝑡) 𝜉 (𝑡) + 𝑀

𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)]

+ 𝜉
𝑇

(𝑡) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝑡)

− 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

𝑄
1
𝐺𝜉 (𝑡 − 𝜏) + 𝜏𝑦

𝑇

(𝑡) 𝐺
𝑇

𝑅
1
𝐺𝑦 (𝑡)

− ∫

𝑡

𝑡−𝜏

𝑦
𝑇

(𝑠) 𝐺
𝑇

𝑅
1
𝐺𝑦 (𝑠) 𝑑𝑠.

(19)

Applying Lemma 1 toL𝑉
1
(𝜉
𝑡
, 𝑡), we have

L𝑉
1
(𝜉
𝑡
, 𝑡)

≤ 𝜉
𝑇

(𝑡) [2𝑃
1
𝐴 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑀(𝑡) + 𝐺

𝑇

(𝑄
1
−
𝑅
1

𝜏
)𝐺]

× 𝜉 (𝑡) + 𝜉
𝑇

(𝑡) [2𝑃
1
𝐴
𝑑
(𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑀
𝑑
(𝑡) + 𝐺

𝑇
𝑅
1

𝜏
]

× 𝐺𝜉 (𝑡 − 𝜏)

+ 𝜉
𝑇

(𝑡) [2𝑃
1
𝐵 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡)

+ 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

[𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑀(𝑡) +

𝑅
1

𝜏
𝐺] 𝜉 (𝑡)

+ 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

× [𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑀
𝑑
(𝑡) − (𝑄

1
+
𝑅
1

𝜏
)]𝐺𝜉 (𝑡 − 𝜏)

+ 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

× [𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡) + V𝑇 (𝑡) [𝑁

𝑇

(𝑡) 𝑃
1
𝑀(𝑡)] 𝜉 (𝑡)

+ V𝑇 (𝑡) [𝑁
𝑇

(𝑡) 𝑃
1
𝑀
𝑑
(𝑡)] 𝐺𝜉 (𝑡 − 𝜏)

+ V𝑇 (𝑡) [𝑁
𝑇

(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡)

+ 𝜏𝑦
𝑇

(𝑡) 𝐺
𝑇

𝑅
1
𝐺𝑦 (𝑡) .

(20)

Noting that 𝑦(𝑡)𝑑𝑡 = 𝑑𝜉(𝑡) and system (6), for arbitrary
matrix 𝑆

1
∈ R𝑛×𝑛 it can be seen that

0 = 2𝑦
𝑇

(𝑡) 𝐺
𝑇

𝑆
𝑇

1
𝐺

× {[𝑀 (𝑡) 𝜉 (𝑡)

+ 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)] 𝑑𝜔 (𝑡)

+ [𝐴 (𝑡) 𝜉 (𝑡) + 𝐴
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏)

+ 𝐵 (𝑡) V (𝑡) − 𝑦 (𝑡)] 𝑑𝑡} .

(21)

Thus, it follows from (18) and (21) that

𝑑𝑉
1
(𝜉
𝑡
, 𝑡) =L�̃�

1
(𝜉
𝑡
, 𝑡) 𝑑𝑡

+ 2 [𝜉
𝑇

(𝑡) 𝑃
1
+ 𝑦
𝑇

(𝑡) 𝐺
𝑇

𝑆
𝑇

1
𝐺]

× [𝑀 (𝑡) 𝜉 (𝑡) + 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)]

× 𝑑𝜔 (𝑡) ,

(22)

where

L�̃�
1
(𝜉
𝑡
, 𝑡)

=L𝑉
1
(𝜉
𝑡
, 𝑡) + 2𝑦

𝑇

(𝑡) 𝐺
𝑇

𝑆
𝑇

1
𝐺

× [𝐴 (𝑡) 𝜉 (𝑡) + 𝐴
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏)

+ 𝐵 (𝑡) V (𝑡) − 𝑦 (𝑡)]

≤ 𝜉
𝑇

(𝑡) [2𝑃
1
𝐴 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑀(𝑡)

+ 𝐺
𝑇

(𝑄
1
−
𝑅
1

𝜏
)𝐺]

× 𝜉 (𝑡) + 2𝜉
𝑇

(𝑡) [𝑃
1
𝐴
𝑑
(𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑀
𝑑
(𝑡)

+ 𝐺
𝑇
𝑅
1

𝜏
]𝐺𝜉 (𝑡 − 𝜏)

+ 2𝜉
𝑇

(𝑡) [𝐴(𝑡)
𝑇

𝐺
𝑇

𝑆
1
] 𝐺𝑦 (𝑡)

+ 2𝜉
𝑇

(𝑡) [𝑃
1
𝐵 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡)

+ 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

× [𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑀
𝑑
(𝑡) − 𝑄

1
−
𝑅
1

𝜏
]

× 𝐺𝜉 (𝑡 − 𝜏) + 2𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

× [𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
1
]𝐺𝑦 (𝑡)

+ 2𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

[𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡)

+ 𝑦
𝑇

(𝑡) 𝐺
𝑇

[𝜏𝑅
1
− 𝑆
1
− 𝑆
𝑇

1
] 𝐺𝑦 (𝑡)

+ 2𝑦
𝑇

(𝑡) 𝐺
𝑇

[𝑆
𝑇

1
𝐺𝐵 (𝑡)] V (𝑡)

+ V𝑇 (𝑡) [𝑁
𝑇

(𝑡) 𝑃
1
𝑁(𝑡)] V (𝑡) .

(23)

Therefore, when assuming zero input V(𝑡) = 0, it follows
that

L�̃�
1
(𝜉
𝑡
, 𝑡) ≤ 𝜂

𝑇

(𝑡) Θ
1
𝜂 (𝑡) , (24)
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where

𝜂
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

𝑦
𝑇

(𝑡) 𝐺
𝑇
] ,

Θ
1
=
[
[

[

Π
11
Π
12

𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
1

∗ Π
22

𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
1

∗ ∗ 𝜏𝑅
1
− 𝑆
1
− 𝑆
𝑇

1

]
]

]

,

Π
11
= 𝑃
1
𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑃
1
+𝑀
𝑇

(𝑡) 𝑃
1
𝑀(𝑡)

+ 𝐺
𝑇

(𝑄
1
−
𝑅
1

𝜏
)𝐺,

Π
12
= 𝑃
1
𝐴
𝑑
(𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑀
𝑑
(𝑡) + 𝐺

𝑇
𝑅
1

𝜏
,

Π
22
= 𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑀
𝑑
(𝑡) − 𝑄

1
−
𝑅
1

𝜏
.

(25)

By using the Schur complement lemma, the inequality
(10) implies the negative definiteness of Θ

1
. Then, we have

L�̃�
1
(𝜉
𝑡
, 𝑡) < 0, and the filtering error system (6) with V(𝑡) = 0

is guaranteed to be mean-square asymptotically stable. And
the next step is to establish the Hankel norm performance:

E{∫
∞

T

𝑒
𝑇

(𝑡) 𝑒 (𝑡) 𝑑𝑡} < 𝛾
2

∫

T

0

V𝑇 (𝑡) V (𝑡) 𝑑𝑡, (26)

under zero initial condition and V(𝑡) ∈ 𝐿
2
[0,∞) with V(𝑡) =

0, for all 𝑡 ≥ T.
For any nonzero V(𝑡) ∈ 𝐿

2
[0,∞) with V(𝑡) = 0, for all

𝑡 ≥ T, the inequality of (23) can be rewritten in the following
quadratic form:

L�̃�
1
(𝜉
𝑡
, 𝑡) ≤ 𝜁

𝑇

(𝑡) Θ̃
1
𝜁 (𝑡) , (27)

where

𝜁
𝑇

(𝑡) = [𝜉
𝑇

(𝑡) 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

𝑦
𝑇

(𝑡) 𝐺
𝑇 V𝑇 (𝑡)] ,

Θ̃
1
=

[
[
[
[
[

[

Π
11
Π
12

𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
1
𝑃
1
𝐵 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
1
𝑁(𝑡)

∗ Π
22

𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
1

𝑀
𝑇

𝑑
(𝑡) 𝑃
1
𝑁(𝑡)

∗ ∗ 𝜏𝑅
1
− 𝑆
1
− 𝑆
𝑇

1
𝑆
𝑇

1
𝐺𝐵 (𝑡)

∗ ∗ ∗ 𝑁
𝑇

(𝑡) 𝑃
1
𝑁(𝑡)

]
]
]
]
]

]

.

(28)

The inequalities (10) and (27) imply

L�̃�
1
(𝜉
𝑡
, 𝑡) − 𝛾

2V𝑇 (𝑡) V (𝑡)

≤ 𝜁
𝑇

(𝑡) Θ̃
1
𝜁 (𝑡) − 𝛾

2V𝑇 (𝑡) V (𝑡) < 0.
(29)

Integrating both sides of (22) and (29), respectively, from
0 toT and then taking expectation, we have

E {𝑉
1
(𝜉T,T)}

= E{∫
T

0

L�̃�
1
(𝜉
𝑡
, 𝑡) 𝑑𝑡} < 𝛾

2

∫

T

0

V𝑇 (𝑡) V (𝑡) 𝑑𝑡,
(30)

where zero initial condition is used.

Second, introduce 𝑉
2
(𝜉
𝑡
, 𝑡) in (16). By following similar

lines as above, it is not difficult to obtain the stochastic
differential 𝑑𝑉

2
(𝜉
𝑡
, 𝑡) as

𝑑𝑉
2
(𝜉
𝑡
, 𝑡) =L�̃�

2
(𝜉
𝑡
, 𝑡) 𝑑𝑡

+ 2 [𝜉
𝑇

(𝑡) 𝑃
2
+ 𝑦
𝑇

(𝑡) 𝐺
𝑇

𝑆
𝑇

2
𝐺]

× [𝑀 (𝑡) 𝜉 (𝑡) + 𝑀
𝑑
(𝑡) 𝐺𝜉 (𝑡 − 𝜏) + 𝑁 (𝑡) V (𝑡)]

× 𝑑𝜔 (𝑡) ,

(31)

where
L�̃�
2
(𝜉
𝑡
, 𝑡) ≤ 𝜁

𝑇

(𝑡) Θ̃
2
𝜁 (𝑡) ,

Θ̃
2
=

[
[
[
[
[
[
[
[
[
[

[

Γ
11
Γ
12

𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
2
𝑃
2
𝐵 (𝑡) + 𝑀

𝑇

(𝑡) 𝑃
2
𝑁(𝑡)

∗ Γ
22

𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
2

𝑀
𝑇

𝑑
(𝑡) 𝑃
2
𝑁(𝑡)

∗ ∗ 𝜏𝑅
2
− 𝑆
2
− 𝑆
𝑇

2
𝑆
𝑇

2
𝐺𝐵 (𝑡)

∗ ∗ ∗ 𝑁
𝑇

(𝑡) 𝑃
2
𝑁(𝑡)

]
]
]
]
]
]
]
]
]
]

]

,

Γ
11
= 𝑃
2
𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑃
2
+𝑀
𝑇

(𝑡) 𝑃
2
𝑀(𝑡)

+ 𝐺
𝑇

(𝑄
2
−
𝑅
2

𝜏
)𝐺,

Γ
12
= 𝑃
2
𝐴
𝑑
(𝑡) + 𝑀

𝑇

(𝑡) 𝑃
2
𝑀
𝑑
(𝑡) + 𝐺

𝑇
𝑅
2

𝜏
,

Γ
22
= 𝑀
𝑇

𝑑
(𝑡) 𝑃
2
𝑀
𝑑
(𝑡) − 𝑄

2
−
𝑅
2

𝜏
,

(32)

By Schur complement lemma, the inequality (11) is equiv-
alent to

[
[
[

[

Γ
11
Γ
12

𝐴
𝑇

(𝑡) 𝐺
𝑇

𝑆
2

∗ Γ
22

𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
2

∗ ∗ 𝜏𝑅
2
− 𝑆
2
− 𝑆
𝑇

2

]
]
]

]

+ [

[

𝐿
𝑇

(𝑡)

0

0

]

]

[𝐿 (𝑡) 0 0] < 0.

(33)

Thus, we have

Υ = 𝜉
𝑇

(𝑡) [𝑃
2
𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑃
2

+ 𝑀
𝑇

(𝑡) 𝑃
2
𝑀(𝑡) + 𝐺

𝑇

(𝑄
2
−
𝑅
2

𝜏
)𝐺] 𝜉 (𝑡)

+ 2𝜉
𝑇

(𝑡) [𝑃
2
𝐴
𝑑
(𝑡) + 𝑀

𝑇

(𝑡) 𝑃
2
𝑀
𝑑
(𝑡) + 𝐺

𝑇
𝑅
2

𝜏
]

× 𝐺𝜉 (𝑡 − 𝜏)

+ 2𝜉
𝑇

(𝑡) [𝐴 (𝑡)
𝑇

𝐺
𝑇

𝑆
2
]𝐺𝑦 (𝑡)

+ 𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

[𝑀
𝑇

𝑑
(𝑡) 𝑃
2
𝑀
𝑑
(𝑡) − 𝑄

2
−
𝑅
2

𝜏
]

× 𝐺𝜉 (𝑡 − 𝜏)

+ 2𝜉
𝑇

(𝑡 − 𝜏) 𝐺
𝑇

[𝐴
𝑇

𝑑
(𝑡) 𝐺
𝑇

𝑆
2
]𝐺𝑦 (𝑡)
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+ 𝑦
𝑇

(𝑡) 𝐺
𝑇

[𝜏𝑅
2
− 𝑆
2
− 𝑆
𝑇

2
] 𝐺𝑦 (𝑡)

+ [𝐿 (𝑡) 𝜉 (𝑡)]
𝑇

[𝐿 (𝑡) 𝜉 (𝑡)]

< 0.

(34)

By considering V(𝑡) = 0, for all 𝑡 ≥ T and (32), for any
𝑡 ≥ T, inequalities (32) and (34) guarantee

L�̃�
2
(𝜉
𝑡
, 𝑡) + 𝑒

𝑇

(𝑡) 𝑒 (𝑡) < 0, ∀𝑡 ≥ T. (35)

Integrating both sides of (31) and (35), respectively, from
T to∞ and then taking expectation, we have

E{∫
∞

T

L�̃�
2
(𝜉
𝑡
, 𝑡) 𝑑𝑡} +E{∫

∞

T

𝑒
𝑇

(𝑡) 𝑒 (𝑡) 𝑑𝑡} < 0. (36)

Due to E{∫
∞

T
L�̃�
2
(𝜉
𝑡
, 𝑡)𝑑𝑡} = E{𝑉

2
(𝜉
∞
,∞)} − E{𝑉

2
(𝜉T,

T)} and E{𝑉
2
(𝜉
∞
,∞)} ≥ 0, then

E{∫
∞

T

𝑒
𝑇

(𝑡) 𝑒 (𝑡) 𝑑𝑡} < E {𝑉
2
(𝜉T,T)} . (37)

By considering (12), (13), (14), (30), and (37), we obtain
(26), the proof is concluded.

Remark 4. For general continuous time stochastic time-delay
systems, the delay-independent results can be obtained by
choosing the following form of Lyapunov functional:

𝑉 (𝑡) = 𝜉
𝑇

(𝑡) 𝑃𝜉 (𝑡) + ∫

𝑡

𝑡−𝜏

𝜉
𝑇

(𝑠) 𝑄𝜉 (𝑠) 𝑑𝑠. (38)

However, the presence of stochastic perturbation (Wiener
process) in the stochastic time-delay systems makes ̇𝜉(𝑡)

undefined and the above function is not suitable for its large
conservative.Thus, we adopt the Lyapunov functionals in the
form of (15) and (16) in the original version and obtain delay-
dependent criterion of filtering problem for stochastic time-
delay systems. It should be pointed out that the Lyapunov
functions are chosen with constant delay 𝜏 in this paper, and
the proposedmethod can be also extended to the case of time-
varying delay 𝜏(𝑡), which can have more conservative results.

Remark 5. Theorem 3 provides a delay-dependent sufficient
condition of the robustly mean-square asymptotic stability
with aHankel normperformance level 𝛾 for the filtering error
system (6). By introducing the assistant vector 𝑦(𝑡) and free-
weighting matrices 𝑆

𝑖
, the derivation of the above theorem

is completed without using any model transformations and
cross terms bounding techniques. The introduction of 𝑆

𝑖

helps establishing the contact of 𝜉(𝑡), 𝑦(𝑡), and 𝜉(𝑡 − 𝜏) and
then the delay-dependent results are obtained.This approach
has been proved to be less conservative.

4. Hankel Norm Filter Design

In this section, we will provide the solution to Hankel
norm filtering problem for stochastic time-delay systems.

As mentioned above, Theorem 3 gives a sufficient condition
for the existence of a filter that guarantees the filtering
error system mean-square asymptotically stable with Hankel
norm performance. However, the inequalities (10) and (11) in
Theorem 3 cannot be solved directly for the coupled matrix
variables. To solve this problem, we will make decoupling
process and adopt the convex linearization approach to
transform (10) and (11) into LMI forms, which can be solved
easily with the standard numerical software.

Theorem 6. For the given positive constants 𝜏 > 0 and
0 < 𝛼 ≤ 1, an admissible Hankel norm filter in the form
of (5) exists such that the filtering error system (6) is mean-
square asymptotically stable and has a guaranteed Hankel
norm performance level 𝛾 if there exist 𝑋 > 0, 𝑌 > 0, 𝑄 > 0,
𝑅 > 0, 𝑆, 𝐴

𝑓
(𝑡), 𝐵
𝑓
(𝑡), and 𝐶

𝑓
(𝑡) satisfying

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑋 −𝑌 Φ
13

0 Φ
15

0 Φ
17

∗ −𝑌 Φ
23

0 Φ
25

0 Φ
27

∗ ∗ Φ
33
Φ
34
Φ
35
𝐴
𝑇

(𝑡) 𝑆 Φ
37

∗ ∗ ∗ Φ
44
Φ
45

0 Φ
47

∗ ∗ ∗ ∗ Φ
55
𝐴
𝑇

𝑑
(𝑡) 𝑆 0

∗ ∗ ∗ ∗ ∗ Φ
66

𝑆
𝑇

𝐵 (𝑡)

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (39)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋 −𝛼𝑌 Ψ
13

0 Ψ
15

0 0

∗ −𝛼𝑌 Ψ
23

0 Ψ
25

0 0

∗ ∗ Ψ
33
Ψ
34
Ψ
35
𝛼𝐴
𝑇

(𝑡) 𝑆 𝐿
𝑇

(𝑡)

∗ ∗ ∗ Ψ
44
Ψ
45

0 −𝐶
𝑇

𝑓
(𝑡)

∗ ∗ ∗ ∗ Ψ
55
𝛼𝐴
𝑇

𝑑
(𝑡) 𝑆 0

∗ ∗ ∗ ∗ ∗ Ψ
66

0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(40)

where

Φ
13
= 𝑋𝑀(𝑡) + 𝐵

𝑓
(𝑡) 𝐸 (𝑡) ,

Φ
15
= 𝑋𝑀

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡) ,

Φ
17
= 𝑋𝑁 (𝑡) + 𝐵

𝑓
(𝑡) 𝐹 (𝑡) ,

Φ
23
= 𝑌𝑀(𝑡) + 𝐵

𝑓
(𝑡) 𝐸 (𝑡) ,

Φ
25
= 𝑌𝑀

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡) ,

Φ
27
= 𝑌𝑁 (𝑡) + 𝐵

𝑓
(𝑡) 𝐹 (𝑡) ,

Φ
33
= 𝑋𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑋 + 𝐵
𝑓
(𝑡) 𝐶 (𝑡)

+ 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) + 𝑄 −

𝑅

𝜏
,



8 Abstract and Applied Analysis

Φ
34
= 𝐴
𝑓
(𝑡) + 𝐴

𝑇

(𝑡) 𝑌 + 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) ,

Φ
35
= 𝑋𝐴

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) +

𝑅

𝜏
,

Φ
37
= 𝑋𝐵 (𝑡) + 𝐵

𝑓
(𝑡) 𝐷 (𝑡) ,

Φ
44
= 𝐴
𝑓
(𝑡) + 𝐴

𝑇

𝑓
(𝑡) ,

Φ
45
= 𝑌𝐴
𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) ,

Φ
47
= 𝑌𝐵 (𝑡) + 𝐵

𝑓
(𝑡) 𝐷 (𝑡) ,

Φ
55
= −𝑄 −

𝑅

𝜏
,

Φ
66
= 𝜏𝑅 − 𝑆 − 𝑆

𝑇

,

Ψ
13
= 𝛼 (𝑋𝑀(𝑡) + 𝐵

𝑓
(𝑡) 𝐸 (𝑡)) ,

Ψ
15
= 𝛼 (𝑋𝑀

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡)) ,

Ψ
23
= 𝛼 (𝑌𝑀(𝑡) + 𝐵

𝑓
(𝑡) 𝐸 (𝑡)) ,

Ψ
25
= 𝛼 (𝑌𝑀

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡)) ,

Ψ
33
= 𝛼(𝑋𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑋 + 𝐵
𝑓
(𝑡) 𝐶 (𝑡)

+ 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) + 𝑄 −

𝑅

𝜏
) ,

Ψ
34
= 𝛼 (𝐴

𝑓
(𝑡) + 𝐴

𝑇

(𝑡) 𝑌 + 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡)) ,

Ψ
35
= 𝛼(𝑋𝐴

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) +

𝑅

𝜏
) ,

Ψ
44
= 𝛼 (𝐴

𝑓
(𝑡) + 𝐴

𝑇

𝑓
(𝑡)) ,

Ψ
45
= 𝛼 (𝑌𝐴

𝑑
(𝑡) + 𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡)) ,

Ψ
55
= −𝛼(𝑄 +

𝑅

𝜏
) ,

Ψ
66
= 𝛼 (𝜏𝑅 − 𝑆 − 𝑆

𝑇

) .

(41)

Proof. Inequality (39) implies𝑋 > 0 and 𝑌 > 0. For arbitrary
symmetric positive definite matrix 𝑌, one can always find a
nonsingular matrix𝑉 and symmetric positive definite matrix
𝑊 satisfying 𝑌 = 𝑉𝑊−1𝑉𝑇. Now we introduce, respectively,
the following matrix variables

𝑃 = [
𝑋 𝑉

𝑉
𝑇

𝑊
] , 𝐽

1
= [
𝐼 0

0 𝑊
−1

𝑉
𝑇] . (42)

By Schur complement lemma, we can infer from (39) that
𝑋 − 𝑉𝑊

−1

𝑉
𝑇

= 𝑋 − 𝑌 > 0, and then 𝑃 > 0.
Defining 𝑃

1
= 𝑃, 𝑃

2
= 𝛼𝑃, 𝑄

1
= 𝑄, 𝑄

2
= 𝛼𝑄, 𝑅

1
=

𝑅, 𝑅
2
= 𝛼𝑅, and applying the congruence transformation by

matrix Δ̂ = diag{𝐽
1
, 𝐽
1
, 𝐼, 𝐼, 𝐼} to (10) and (11), respectively, we

can easily infer the following inequalities:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑋 −𝑌 Φ̃
13

0 Φ̃
15

0 Φ̃
17

∗ −𝑌 Φ̃
23

0 Φ̃
25

0 Φ̃
27

∗ ∗ Φ̃
33
Φ̃
34

Φ̃
35

𝐴
𝑇

(𝑡) 𝑆 Φ̃
37

∗ ∗ ∗ Φ̃
44

Φ̃
45

0 Φ̃
47

∗ ∗ ∗ ∗ −𝑄 −
𝑅

𝜏
𝐴
𝑇

𝑑
(𝑡) 𝑆 0

∗ ∗ ∗ ∗ ∗ 𝜏𝑅 − 𝑆 − 𝑆
𝑇

𝑆
𝑇

𝐵 (𝑡)

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋 −𝛼𝑌 Ψ̃
13

0 Ψ̃
15

0 0

∗ −𝛼𝑌 Ψ̃
23

0 Ψ̃
25

0 0

∗ ∗ Ψ̃
33
Ψ̃
34

Ψ̃
35

𝛼𝐴
𝑇

(𝑡) 𝑆 𝐿
𝑇

(𝑡)

∗ ∗ ∗ Ψ̃
44

Ψ̃
45

0 −𝐶
𝑇

𝑓
(𝑡)

∗ ∗ ∗ ∗ −𝛼(𝑄 +
𝑅

𝜏
) 𝛼𝐴

𝑇

𝑑
(𝑡) 𝑆 0

∗ ∗ ∗ ∗ ∗ 𝛼 (𝜏𝑅 − 𝑆 − 𝑆
𝑇

) 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(43)
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where

Φ̃
13
= 𝑋𝑀(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸 (𝑡) ,

Φ̃
15
= 𝑋𝑀

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡) ,

Φ̃
17
= 𝑋𝑁 (𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐹 (𝑡) ,

Φ̃
23
= 𝑌𝑀(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸 (𝑡) ,

Φ̃
25
= 𝑌𝑀

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡) ,

Φ̃
27
= 𝑌𝑁 (𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐹 (𝑡) ,

Φ̃
33
= 𝑋𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑋 + 𝑉𝐵
𝑓
(𝑡) 𝐶 (𝑡)

+ 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) 𝑉
𝑇

+ 𝑄 −
𝑅

𝜏
,

Φ̃
34
= 𝑉𝐴
𝑓
(𝑡)𝑊
−1

𝑉
𝑇

+ 𝐴
𝑇

(𝑡) 𝑌 + 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) 𝑉
𝑇

,

Φ̃
35
= 𝑋𝐴

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) +

𝑅

𝜏
,

Φ̃
37
= 𝑋𝐵 (𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐷 (𝑡) ,

Φ̃
44
= 𝑉𝐴
𝑓
(𝑡)𝑊
−1

𝑉
𝑇

+ 𝑉𝑊
−1

𝐴
𝑇

𝑓
(𝑡) 𝑉
𝑇

,

Φ̃
45
= 𝑌𝐴
𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) ,

Φ̃
47
= 𝑌𝐵 (𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐷 (𝑡) ,

Ψ̃
13
= 𝛼 (𝑋𝑀(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸 (𝑡)) ,

Ψ̃
15
= 𝛼 (𝑋𝑀

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡)) ,

Ψ̃
23
= 𝛼 (𝑌𝑀(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸 (𝑡)) ,

Ψ̃
25
= 𝛼 (𝑌𝑀

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐸
𝑑
(𝑡)) ,

Ψ̃
33
= 𝛼(𝑋𝐴 (𝑡) + 𝐴

𝑇

(𝑡) 𝑋 + 𝑉𝐵
𝑓
(𝑡) 𝐶 (𝑡)

+ 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) 𝑉
𝑇

+ 𝑄 −
𝑅

𝜏
) ,

Ψ̃
34
= 𝛼 (𝑉𝐴

𝑓
(𝑡)𝑊
−1

𝑉
𝑇

+ 𝐴
𝑇

(𝑡) 𝑌 + 𝐶
𝑇

(𝑡) 𝐵
𝑇

𝑓
(𝑡) 𝑉
𝑇

) ,

Ψ̃
35
= 𝛼(𝑋𝐴

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡) +

𝑅

𝜏
) ,

Ψ̃
44
= 𝛼 (𝑉𝐴

𝑓
(𝑡)𝑊
−1

𝑉
𝑇

+ 𝑉𝑊
−1

𝐴
𝑇

𝑓
(𝑡) 𝑉
𝑇

) ,

Ψ̃
45
= 𝛼 (𝑌𝐴

𝑑
(𝑡) + 𝑉𝐵

𝑓
(𝑡) 𝐶
𝑑
(𝑡)) .

(44)

Letting 𝐴
𝑓
(𝑡) = 𝑉𝐴

𝑓
(𝑡)𝑊
−1

𝑉
𝑇, 𝐵
𝑓
(𝑡) = 𝑉𝐵

𝑓
(𝑡), 𝐶
𝑓
(𝑡) =

𝐶
𝑓
(𝑡)𝑊
−1

𝑉
𝑇, we readily obtain (39) and (40). The proof is

completed.

Remark 7. It is noted that there exist different approaches to
solve the Hankel norm filtering problem asmentioned above,
such as the well-known projection lemma and the convex
linearization approach. In this paper, the later approach
is employed to solve the Hankel norm filtering problem.
Compared with the projection lemma, the convex lineariza-
tion approach has been proved to be less conservative. The
contrast analysis of the two methods can be referred in the
literature [19].

Remark 8. AlthoughTheorem 6 overcome the coupled prob-
lem in Theorem 3, the inequalities (39) and (40) still cannot
be used to solve the filter parameters in (5) directly.Therefore,
the next step of using Δ(𝑡) = ∑𝑟

𝑖=1
ℎ
𝑖
(𝜃(𝑡))Δ

𝑖
to substitute the

matrix functions inTheorem 6 is necessary, where Δ denotes
system matrices 𝐴, 𝐴

𝑑
, 𝐵,𝑀,𝑀

𝑑
, 𝑁, 𝐶, 𝐶

𝑑
, 𝐷, 𝐸, 𝐸

𝑑
, 𝐹, 𝐿,

𝑆 and corresponding parameters 𝐴
𝑓
, 𝐵
𝑓
, 𝐶
𝑓
. By this way, the

following theorem is obtained to present the final results.

Theorem9. For the given positive constants 𝜏 > 0 and 0 < 𝛼 ≤
1, the filtering error system (6) is mean-square asymptotically
stable and has a guaranteed Hankel norm performance level 𝛾
if there exist 𝑋 > 0, 𝑌 > 0, 𝑄 > 0, 𝑅 > 0, 𝑆

𝑖
, 𝐴
𝑓𝑖
, 𝐵
𝑓𝑖
, and

𝐶
𝑓𝑖
(𝑖 = 1, 2, . . . , 𝑟) satisfying

Ω
𝑖𝑗

1
+ Ω
𝑗𝑖

1
< 0,

Ω
𝑖𝑗

2
+ Ω
𝑗𝑖

2
< 0, 𝑖 ≤ 𝑗,

(45)

whereΩ𝑖𝑗
1
and Ω𝑖𝑗

2
are given as

Ω
𝑖𝑗

1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝑋 −𝑌 𝑋𝑀
𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑗
0 𝑋𝑀

𝑑𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑑𝑗

0 𝑋𝑁
𝑗
+ 𝐵
𝑓𝑖
𝐹
𝑗

∗ −𝑌 𝑌𝑀
𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑗

0 𝑌𝑀
𝑑𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑑𝑗

0 𝑌𝑁
𝑗
+ 𝐵
𝑓𝑖
𝐹
𝑗

∗ ∗ Λ
33

Λ
34
𝑋𝐴
𝑑𝑗
+ 𝐵
𝑓𝑖
𝐶
𝑑𝑗
+
𝑅

𝜏
𝐴
𝑇

𝑗
𝑆
𝑖

𝑋𝐵
𝑗
+ 𝐵
𝑓𝑖
𝐷
𝑗

∗ ∗ ∗ Λ
44

𝑌𝐴
𝑑𝑗
+ 𝐵
𝑓𝑖
𝐶
𝑑𝑗

0 𝑌𝐵
𝑗
+ 𝐵
𝑓𝑖
𝐷
𝑗

∗ ∗ ∗ ∗ −𝑄 −
𝑅

𝜏
𝐴
𝑇

𝑑𝑗
𝑆
𝑖

0

∗ ∗ ∗ ∗ ∗ 𝜏𝑅 − 𝑆
𝑖
− 𝑆
𝑇

𝑖
𝑆
𝑇

𝑖
𝐵
𝑗

∗ ∗ ∗ ∗ ∗ ∗ −𝛾
2

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,
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Ω
𝑖𝑗

2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛼𝑋 −𝛼𝑌 𝛼 (𝑋𝑀
𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑗
) 0 𝛼 (𝑋𝑀

𝑑𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑑𝑗
) 0 0

∗ −𝛼𝑌 𝛼 (𝑌𝑀
𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑗
) 0 𝛼 (𝑌𝑀

𝑑𝑗
+ 𝐵
𝑓𝑖
𝐸
𝑑𝑗
) 0 0

∗ ∗ Λ̃
33

Λ̃
34
𝛼(𝑋𝐴

𝑑𝑗
+ 𝐵
𝑓𝑖
𝐶
𝑑𝑗
+
𝑅

𝜏
) 𝛼𝐴

𝑇

𝑗
𝑆
𝑖

𝐿
𝑇

(𝑡)

∗ ∗ ∗ Λ̃
44

𝛼 (𝑌𝐴
𝑑𝑗
+ 𝐵
𝑓𝑖
𝐶
𝑑𝑗
) 0 −𝐶

𝑇

𝑓𝑖

∗ ∗ ∗ ∗ −𝛼(𝑄 +
𝑅

𝜏
) 𝛼𝐴

𝑇

𝑑𝑗
𝑆
𝑖

0

∗ ∗ ∗ ∗ ∗ 𝛼 (𝜏𝑅 − 𝑆
𝑖
− 𝑆
𝑇

𝑖
) 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Λ
33
= 𝑋𝐴

𝑗
+ 𝐴
𝑇

𝑗
𝑋 + 𝐵

𝑓𝑖
𝐶
𝑗
+ 𝐶
𝑇

𝑗
𝐵
𝑇

𝑓𝑖
+ 𝑄 −

𝑅

𝜏
,

Λ
34
= 𝐴
𝑓𝑖
+ 𝐴
𝑇

𝑗
𝑌 + 𝐶

𝑇

𝑗
𝐵
𝑇

𝑓𝑖
, Λ

44
= 𝐴
𝑓𝑖
+ 𝐴
𝑇

𝑓𝑖
,

Λ̃
33
= 𝛼(𝑋𝐴

𝑗
+ 𝐴
𝑇

𝑗
𝑋 + 𝐵

𝑓𝑖
𝐶
𝑗
+ 𝐶
𝑇

𝑗
𝐵
𝑇

𝑓𝑖
+ 𝑄 −

𝑅

𝜏
) ,

Λ̃
34
= 𝛼 (𝐴

𝑓𝑖
+ 𝐴
𝑇

𝑗
𝑌 + 𝐶

𝑇

𝑗
𝐵
𝑇

𝑓𝑖
) , Λ̃

44
= 𝛼 (𝐴

𝑓𝑖
+ 𝐴
𝑇

𝑓𝑖
) .

(46)

In this case, the filter parameters in (5) are given by

𝐴
𝑓𝑖
= 𝑌
−1

𝐴
𝑓𝑖
, 𝐵

𝑓𝑖
= 𝑌
−1

𝐵
𝑓𝑖
,

𝐶
𝑓𝑖
= 𝐶
𝑓𝑖
, 𝑖 = 1, 2, . . . , 𝑟.

(47)

Proof. Based onTheorems 3 and 6, we set

𝐴
𝑓
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝐴fi,

𝐵
𝑓
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝐵fi,

𝐶
𝑓
(𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝐶fi,

𝑆 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡)) 𝑆

𝑖
.

(48)

From (39) and (40), we have

Ω
1
(𝑡) =

𝑟

∑

𝑖=1

ℎ
2

𝑖
(𝜃 (𝑡)) Ω

𝑖𝑖

1

+

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) (Ω

𝑖𝑗

1
+ Ω
𝑗𝑖

1
) < 0,

Ω
2
(𝑡) =

𝑟

∑

𝑖=1

ℎ
2

𝑖
(𝜃 (𝑡)) Ω

𝑖𝑖

2

+

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜃 (𝑡))

𝑟

∑

𝑗=1

ℎ
𝑗
(𝜃 (𝑡)) (Ω

𝑖𝑗

2
+ Ω
𝑗𝑖

2
) < 0.

(49)

By virtue of Theorems 3 and 6, the Hankel norm filter
design problem is solvable and the filter parameters are given
by

𝐴
𝑓
(𝑡) = 𝑉

−1

𝐴
𝑓
(𝑡) 𝑉
−𝑇

𝑊, 𝐵
𝑓
(𝑡) = 𝑉

−1

𝐵
𝑓
(𝑡) ,

𝐶
𝑓
(𝑡) = 𝐶

𝑓
(𝑡) 𝑉
−𝑇

𝑊,

(50)

where matrices 𝑊 > 0 and 𝑉 are such that 𝑌 =

𝑉𝑊
−1

𝑉
𝑇. Or equivalently under transformation 𝑉−𝑇𝑊𝑥(𝑡),

the filter parameters can be obtained as (47). The proof is
completed.

Remark 10. Notice that the obtained conditions inTheorem 9
are all in LMI forms and the Hankel norm filtering problem
can be solved by the following convex optimization problem
with LMI Toolbox in MATLAB:

min
𝑋>0,𝑌>0,𝑄>0,𝑅>0,𝑆𝑖 ,𝐴fi,𝐵fi,𝐶fi

𝜆 Subject to (45) , (51)

where 𝜆 = 𝛾2, and the admissible filter parameters can be
determined by (47).

5. Numerical Example

In this section, we will present a numerical example to
demonstrate the validity of the developed results. Consider
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a stochastic system of the form (2) with the following
parameters (𝑟 = 2):

𝐴
1
= [
−1.5 0.5

−1 −3
] , 𝐴

𝑑1
= [
−0.8 0.2

0.2 −0.2
] , (52)

𝐵
1
= [

0.2

−0.2
] , 𝑀

1
= [
−0.8 0.2

0.5 −0.5
] , (53)

𝑀
𝑑1
= [
0.5 0.5

0.2 0.3
] , 𝑁

1
= [
−0.2

0.5
] , (54)

𝐶
1
= [0.2 0.1] , 𝐶

𝑑1
= [−0.1 0.2] , 𝐷

1
= 0.2,

(55)

𝐸
1
= [−0.2 0.2] , 𝐸

𝑑1
= [0.2 −0.5] , (56)

𝐹
1
= 0.5, 𝐿

1
= [−1 0.5] , (57)

𝐴
2
= [
−1 0.5

0.5 −1.3
] , 𝐴

𝑑2
= [
0.02 0.14

0 0.15
] , (58)

𝐵
2
= [
0.3

0.1
] , 𝑀

2
= [

−1 0

−0.5 −1.3
] , (59)

𝑀
𝑑2
= [

0.1 0

0.02 0.03
] , 𝑁

2
= [

0.2

−0.5
] , (60)

𝐶
2
= [0.5 0.1] , 𝐶

𝑑2
= [−0.1 0.5] , 𝐷

2
= 0.1,

(61)

𝐸
2
= [−0.1 0.2] , 𝐸

𝑑2
= [0.1 −0.5] , (62)

𝐹
2
= 0.2, 𝐿

2
= [0.5 −0.1] . (63)

According to Theorem 9, we can get the minimum per-
formance level 𝛾 = 0.5253 for 𝜏 = 0.5 and 𝛼 = 1, and the
solutions of corresponding parameters are as follows:

𝑌 = [
0.1901 −0.1134

−0.1134 0.1207
] , 𝐴

𝑓1
= [
−0.5394 −0.0057

−0.0057 −0.3529
] ,

𝐵
𝑓1
= [

0.2148

−0.1394
] , 𝐶

𝑓1
= [−0.6610 0.0083]

𝐴
𝑓2
= [
−0.4336 0.5944

0.5944 −0.9336
] , 𝐵

𝑓2
= [
−0.0247

−0.1454
] ,

𝐶
𝑓2
= [0.6553 −1.1762] .

(64)

Then the Hankel norm filter parameter matrices are
computed from (47) as

𝐴
𝑓1
= [
−6.5154 −4.0327

−6.1661 −6.7104
] , 𝐵

𝑓1
= [

1.0035

−0.2123
] ,

𝐶
𝑓1
= [−0.6610 0.0083] , 𝐴

𝑓2
= [
0.7727 −3.3775

5.6483 −10.9038
] ,

𝐵
𝑓2
= [
−1.9283

−3.0147
] , 𝐶

𝑓2
= [0.6553 −1.1762] .

(65)

Table 1: Minimum index 𝛾 for different 𝜏.

𝜏 = 0.5 𝜏 = 0.6 𝜏 = 0.8 𝜏 = 1.0

𝛾 0.5253 0.5553 0.6387 0.8138

The solvability of the filter parameters indicates that the
proposed approach is effective. Furthermore, different value
of 𝜏 may yield different 𝛾min. By selecting several different
values of 𝜏, the computation results of minimum 𝛾 are
obtained in Table 1. Table 1 shows that the results presented
in this paper are delay-dependent and less conservative.

6. Conclusions

In this paper, the problem of Hankel norm filter design
for stochastic time-delay systems via T-S fuzzy-model-based
approach has been investigated. A new filtering error system
is established by designing local linear filters for each linear
subsystem according to the parallel distributed compensation
(PDC) method. Based on the Lyapunov stability theory and
LMI techniques, a delay-dependent sufficient condition is
developed in terms of LMIs for the mean-square asymptotic
stability with Hankel norm performance of the filtering
error system. The integral inequality method is adopted
and an assistant vector and free matrices are introduced,
which helps achieving much less conservative results. The
results of numerical example are presented to demonstrate
the effectiveness of the proposed approach.
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We investigate the problem of finite-time cooperative tracking for multiple surface vessels in the presence of external disturbances.
A robust finite-time cooperative tracking algorithmbased on terminal sliding-mode control is proposed formultiple surface vessels.
In light of the leader-follower strategy, a virtual leader vessel is defined to provide reference point for other surface vessels to form
the desired formation. Specifically, the proposed algorithm only requires the communication topology among the surface vessels
to be a directed graph with a directed spanning tree. The robustness is achieved by compensating the upper bound of external
disturbance in the control input, and the global finite-time stability is proved by Lyapunov stability theory. Finally, the effectiveness
of the proposed finite-time cooperative tracking control algorithm is demonstrated by simulation results.

1. Introduction

With the rapid development of marine technology, the
cooperative motion control for multiple vessels has received
increasing attention during the last decades. The cooperative
formation of multiple vessels has become popular for mili-
tary and commercial applications. For example, coast patrol
requires multiple vessels to perform cooperative tracking
operation while maintaining a desired formation pattern.
During winter, the tanker must be escorted by icebreakers,
which requires the tanker to keep a fixed distance to the
icebreakers. Besides, underway replenishment is performed
by coordinating one or more supply vessels and the receiving
vessel such that all vessels maintain the desired relative
distances and hold the equal course and forward speed.These
complicated operations of multiple vessels are carried out by
moving collectively as a whole formation. Compared with
individual vessel, cooperative operations of multiple vessels
have higher operational efficiency, larger serve areas, better
fault-tolerant property, and stronger robustness [1]. Based on
these broad applications and several superiorities mentioned
above, study on cooperative control algorithm for multiple
surface vessels is important and significative.

With respect to the cooperative control issues, formation
control as a special case, a large number of studies have
been widely reported in existing publications. The formation
strategies mainly include leader-follower strategy, virtual
structures strategy, and behavioral strategy [2]. In order to
achieve robustness and improve cooperative performance,
some robust control approaches had been proposed, such
as model predictive control [3], Lagrangian method [4],
and null-space-based behavioral control [5]. Some advanced
cooperative control approaches had also been investigated,
such as graph theory [6], passivity-based control [7, 8],
and hybrid control [9], to name just a few. In particular,
the leader-follower strategy is utilized widely in practice
due to its easy manipulation and implementation. For
maritime applications, Kyrkjebø et al. proposed a leader-
follower synchronization algorithm to solve the ship under-
way replenishment, which realizes feedback control law by
estimating velocity and acceleration of all ships based on
nonlinear observers [10]. Breivik et al. proposed a guided
leader-follower approach for ship formation control using
integrator backstepping and cascade theory [11].Thorvaldsen
and Skjetne researched the formation control of fully actuated
marine vessels and proposed group agreement protocols

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 807102, 10 pages
http://dx.doi.org/10.1155/2014/807102

http://dx.doi.org/10.1155/2014/807102


2 Abstract and Applied Analysis

based on leader-follower strategy [7].Overall, the cooperative
task based on leader-follower strategy is achieved through
that the appointed leaders track the predefined desired paths
or trajectories, while the followers track the leaders. However,
the main shortcoming of this formation strategy in the
aforementioned studies is that it depends heavily on the
leader.The formation task cannot be achieved if the leader has
failure in the process of operations. To avoid this problem, the
concept of virtual leader is introduced and used to solve the
formation control of multiagent systems [12, 13]. It is a good
choice to design cooperative control algorithm based on the
virtual leader strategy.

When multiple agents are to be coordinated to perform
complicated task, information exchange between them is
a necessary condition. In order to accomplish cooperative
tracking operations, both position and velocity information
need to be shared. In practice, the communication topology
among these agents might be directed as a result of the
external disturbances. That means one agent might receive
the information from neighbors but cannot send his own
information to the neighbors. Under directed communi-
cation topologies, Ren had studied the consensus tracking
algorithm for multiagent with single-integrator kinematics
[14]. Yu et al. provided a consensus algorithm for mul-
tiagent systems with nonlinear dynamics [15, 16]. Zhang
et al. studied the cooperative control problem of multiple
uncertain Lagrangian systems [17]. Besides, Fu et al. proposed
a coordinated formation control algorithm under directed
communication topology for multiple surface vessels [18].
However, it is still a big problem to design a cooperative con-
trol algorithm under directed communication for the leader-
follower multiagent systems, especially in the case that the
information of the leader is not available to all the followers;
that is, only a portion of followers can communicate with the
leader and the communication links are directed.

For marine control, finite-time control is quite desirable
when considering the huge inertia of the surface vessels.
Compared to asymptotic stability control, the convergence
rate of finite-time control is faster, and the system with finite-
time convergence has better disturbance rejection properties
and robustness against uncertainties [19]. However, a com-
mon trait of the existing cooperative tracking control algo-
rithms for multiple surface vessels is that they only provide
asymptotic stability [9, 20]. In other words, the cooperative
operations can be achieved in infinite time, which may not
be applicable to practical operation. So the finite-time coop-
erative control has received considerable attention. Wang
and Xiao and Khoo et al. developed finite-time consensus
algorithm for multiagent systems in [21, 22]. The finite-
time formation control algorithms had been investigated for
multiagent systems in [23, 24]. Furthermore, both finite-
time position consensus and collision avoidance problems
had been investigated for multiple autonomous underwater
vehicle [25].The cooperative performance ofmultiple surface
vessels is often influenced by the environmental disturbances;
therefore, robust cooperative tracking algorithm is signi-
ficative, and the real-time implementation of fault-tolerant
control is also important [26–29].The sliding-mode control is
a better method for solving this problem, which possesses the

robustness to external disturbances [30]. A robust tracking
control algorithm is proposed based on sliding-mode control
for a single surface vessel to achieve robustness to the wind,
wave, and current environment disturbances in [31, 32].
The sliding-mode control approach is also used to design
the robust cooperative control algorithm in [20, 33, 34].
The terminal sliding-mode control can be achieved by the
finite-time cooperative operations [35], which motivates the
research of the finite-time cooperative tracking for multiple
surface vessels.

In this paper, the problem of robust cooperative tracking
control for multiple surface vessels is considered, and the
communication topology among these surface vessels is
directed graph which has a directed spanning tree.The finite-
time cooperative tracking control algorithm is designed using
the terminal sliding-mode control method, and the desired
formation configuration is achieved using the virtual leader-
follower strategy.The rest of this paper is organized as follows.
In Section 2, the basic notations for the graph theory are
introduced and the vessel mathematic model is established.
Section 3 describes a detailed algorithm of the finite-time
cooperative tracking control for multiple surface vessels. The
simulation is carried out to demonstrate the validity of the
proposed cooperative control algorithm in Section 4. At last,
we draw conclusion in Section 5.

2. Preliminaries

2.1. Vessel Model. With respect to the surface vessels, only
the motions on the surge, sway, and yaw are considered. If
we define the generalized position and orientation which are
expressed in the inertial reference frame as 𝜂 = [𝑛, 𝑒, 𝜓]

𝑇,
the linear-angular velocity vector expressed in the body-fixed
reference frame is denoted as V = [𝑢, V, 𝑟]𝑇. Then we can
obtain the 3 degrees of freedom (DOF) mathematical model
for the surface vessels as follows [36]:

̇𝜂 = 𝑅 (𝜓) V,

𝑀V ̇V + 𝐶V (V) V + 𝐷V (V) V = 𝜏V + 𝑅
−𝑇

(𝜓) 𝜔,

(1)

where 𝑅(𝜓) is a transformation matrix from the body-fixed
reference to the inertial reference frame and the form is

𝑅 (𝜓) = [

[

cos (𝜓) − sin (𝜓) 0

sin (𝜓) cos (𝜓) 0

0 0 1

]

]

. (2)

It is obvious that 𝑅−1
𝑖
(𝜓
𝑖
) = 𝑅
𝑇

𝑖
(𝜓
𝑖
), for all 𝜓

𝑖
.

𝑀V denotes a positive definite matrix of inertia mass
which includes added mass. 𝐶V(V) is a matrix which arises
from the coriolis and centripetal forces and 𝐷V(V) represents
a damping matrix.The detailed expression of the above three
matrices can be seen in [36]. 𝜏V represents the forces and
torques input vector from the thruster system. 𝜔 denoted
the forces and torques input vector from the external distur-
bances. And we assume that the disturbances are bounded;
|𝜔| < 𝜔max ∈ R3.
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In order to design the tracking controller for surface
vessels in the sequel, the expression of vessel model can be
transformed as

𝑀(𝜂) ̈𝜂 + 𝐶 (𝜂, ̇𝜂) ̇𝜂 + 𝐷 (𝜂, ̇𝜂) ̇𝜂 = 𝜏 + 𝜔. (3)

The above expression is vessel mathematic model in the
inertial reference frame, which is obtained by using the
following transformations:

𝑀(𝜂) = 𝑅
−𝑇

(𝜓)𝑀V𝑅
−1

(𝜓) ,

𝐶 (𝜂, ̇𝜂) = 𝑅
−𝑇

(𝜓) [𝐶V (V) − 𝑀V𝑅
−1

(𝜓) ̇𝑅 (𝜓)] 𝑅
−1

(𝜓) ,

𝐷 (𝜂, ̇𝜂) = 𝑅
−𝑇

(𝜓)𝐷V (𝑣) 𝑅
−1

(𝜓) ,

𝜏 = 𝑅
−𝑇

(𝜓) 𝜏V.

(4)

The vessel model as (3) holds the following properties.

(1) Inertia mass matrix𝑀(𝜂) is symmetric positive defi-
nite and satisfies

𝜆min (𝑀) 𝐼 ≤ 𝑀(𝜂) ≤ 𝜆max (𝑀) 𝐼, (5)

where 𝜆min(𝑀) represents the minimum eigenvalue
of thematrix𝑀 and 𝜆max(𝑀) represents themaximal
eigenvalue of the matrix𝑀;

(2) 𝑀(𝜂) − 2𝐶(𝜂, ̇𝜂) satisfies

𝜂
𝑇

(𝑀 (𝜂) − 2𝐶 (𝜂, ̇𝜂)) 𝜂 = 0, ∀𝜂 ∈ R
3 (6)

which means it is skew symmetric;
(3) 𝐷(𝜂, ̇𝜂) is positive definite matrix which satisfies

𝜂
𝑇

𝐷(𝜂, ̇𝜂) 𝜂 > 0, ∀𝜂 ̸= 0. (7)

2.2. Notations. In order to model the information transmit
relationship between the group of surface vessels, several
basic concepts of directed graph are given here [20]. If we
define ] as a set of vertices and define 𝜀 ∈ ]2 as a set of
edges, then we can represent a directed graph as 𝐺 = (], 𝜀).
Furthermore, the edges of directed graph are directed. The
directed edge ⟨𝑖, 𝑗⟩ ∈ 𝜀 can represent the information that
flows from vertex 𝑗 to vertex 𝑖, and ⟨𝑗, 𝑖⟩ ∈ 𝜀 represents the
information that flows from vertex 𝑖 to vertex 𝑗. Let𝐴 ∈ R𝑛×𝑛

be the adjacent matrix of a directed graph 𝐺. The matrix
𝐴 is defined as follows: the off-diagonal entries are 𝑎

𝑖𝑗
=

1 if ⟨𝑖, 𝑗⟩ ∈ 𝜀 and 0; otherwise, the diagonal entries are 0.
𝐷 ∈ R𝑛×𝑛 is called the degree matrix, which is defined as
follows: off-diagonal entries are 0 and diagonal entries are
𝑑
𝑖𝑖

= ∑
𝑗 ̸= 𝑖

𝑎
𝑖𝑗
. The Laplacian matrix can be calculated as

𝐿 = 𝐷 − 𝐴 ∈ R𝑛×𝑛. The matrix 𝐿 = [𝑙
𝑖𝑗
] ∈ R𝑛×𝑛 is defined

as follows: 𝑙
𝑖𝑖
= ∑
𝑗 ̸= 𝑖

𝑎
𝑖𝑗
, 𝑙
𝑖𝑗
= −𝑎
𝑖𝑗
.

Let one vertex represent one vessel in the group and
the edges represent information exchange links by available
directed communication; then the communication relation-
ship between the group of vessels is described by a directed

graph. Specially, in this paper we consider the communica-
tion topology as a directed graph with a directed spanning
tree; that is, the digraph has at least one vertex with a directed
path to all other vertexes.

Define the Kronecker product of two matrices 𝐴 ∈ R𝑛×𝑛

and 𝐵 ∈ R𝑝×𝑞 as

𝐴 ⊗ 𝐵 =
[
[

[

𝑎
11
𝐵 ⋅ ⋅ ⋅ 𝑎

1𝑛
𝐵

... d
...

𝑎
𝑚1
𝐵 ⋅ ⋅ ⋅ 𝑎

𝑚𝑛
𝐵

]
]

]

∈ R
𝑚𝑝×𝑛𝑞

. (8)

The Kronecker product holds the following properties:

(1) (𝐴 ⊗ 𝐵)
𝑇

= 𝐴
𝑇

⊗ 𝐵
𝑇;

(2) 𝐶(𝐴 ⊗ 𝐵) = (𝐶𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝐶𝐵);
(3) (𝐴 ⊗ 𝐼

𝑝
)(𝐶 ⊗ 𝐼

𝑝
) = 𝐴𝐶 ⊗ 𝐼

𝑝
, 𝐼
𝑝
∈ R𝑝×𝑝.

Given a variable vector 𝑥 = [𝑥
1
, . . . , 𝑥

𝑛
]
𝑇

∈ R𝑛 and an
integer 𝛼, define 𝑥𝛼 = [𝑥

𝛼

1
, . . . , 𝑥

𝛼

𝑛
]
𝑇, diag(𝑥) = [

𝑥1

d
𝑥𝑛

].

2.3. Some Lemmas

Lemma 1 (see [14]). Let the Laplacian matrix of a directed
graph G be defined as 𝐿 = [𝑙

𝑖𝑗
] ∈ R𝑝×𝑝, where 𝐿 is

not necessarily symmetric. The Laplacian matrix satisfies the
following conditions:

𝑙
𝑖𝑗
≤ 0, 𝑖 ̸= 𝑗;

𝑝

∑

𝑗=1

𝑙
𝑖𝑗
= 0, 𝑖 = 1, . . . 𝑝. (9)

The Laplacian matrix 𝐿 of a directed graph G has a simple zero
eigenvalue with an associated eigenvector 1

𝑝
, and all the other

eigenvalues have positive real parts if and only if the directed
graph has a directed spanning tree. Furthermore, if Laplacian
matrix 𝐿 has a simple zero eigenvalue, then Rank (𝐿) = 𝑝 − 1.

Lemma 2 (see [37]). For the non-Lipschitz system

̇𝑥 = 𝑓 (𝑥) , 𝑓 (0) = 0, 𝑥 ∈ R
𝑛

, (10)

where 𝑓(⋅) is a continuous nonlinear function on an open
neighborhood 𝑈 of the origin 𝑥 = 0 in R𝑛. Suppose there exist
a continuous function 𝑉(𝑥) : 𝑈 → R, real numbers 𝐶 > 0

and 0 < 𝛼 < 1, and an open neighborhood 𝑈
0
⊂ 𝑈 of 𝑥 = 0,

such that

(1) 𝑉(𝑥) is positive definite;
(2) 𝑉(𝑥) + 𝐶(𝑉(𝑥))

𝛼

≤ 0, 𝑥 ∈ 𝑈
0
\ {0}.

Then the origin 𝑥 = 0 is a finite-time stable equilibrium of
system (10). Furthermore, if 𝑈 = 𝑈

0
= R𝑛, the origin 𝑥 = 0

is a globally finite-time stable equilibrium of system (10). And
the finite settling time satisfies 𝑇 ≤ 𝑉

1−𝛼

(𝑥
0
)/𝐶(1 − 𝛼), where

𝑥
0
is the initial state of the system.

3. Finite-Time Cooperative
Tracking Controller Design

In this section, we will design the finite-time cooperative
tracking controller based on terminal sliding-mode control.
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Here we consider 𝑛 vessels to perform the cooperative
tracking task with desired formation. And these vessels are
identified by the index set 𝐼 = [1, 2, . . . 𝑛]. We define the
communication topology relationship among these vessels as
a directed graph 𝐺; then the adjacent matrix of 𝐺 is

𝐴 =
[
[

[

𝑎
11

𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑛

...
...

...
...

𝑎
𝑛1

𝑎
𝑛2

⋅ ⋅ ⋅ 𝑎
𝑛𝑛

]
]

]

∈ R
𝑛×𝑛

. (11)

The degree matrix is defined as 𝐷 = diag {𝑑
1
𝑑
2
⋅ ⋅ ⋅ 𝑑
𝑛
} ∈

R𝑛×𝑛; then we can know that the Laplacian matrix is 𝐿 = 𝐷 −

𝐴.
The desired formation pattern among the surface vessels

is established based on the leader-follower strategy. The
leader vessel is virtual and it is labeled by 0. Then the
communication topology among all the vessels (include the
virtual leader) is described by a directed graph𝐺; the adjacent
matrix of 𝐺 is denoted as

𝐴 =

[
[
[
[

[

0 0 0 0

𝑎
10

𝑎
11

⋅ ⋅ ⋅ 𝑎
1𝑛

...
...

...
...

𝑎
𝑛0

𝑎
𝑛1

⋅ ⋅ ⋅ 𝑎
𝑛𝑛

]
]
]
]

]

∈ R
(𝑛+1)×(𝑛+1)

. (12)

The connected relationship between the leader vessel and the
practical vessels is denoted by 𝐵 = diag {𝑏

1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑛
}.

Remark 3. Consider the following.

𝑎
𝑖𝑗
= {

1, if (𝑗, 𝑖) ∈ 𝜀

0, otherwise,

𝑏
𝑖
= {

1, if vessel 𝑖 can receive the leader’s information
0, otherwise.

(13)

We assume that the position of the virtual leader vessel is
denoted as 𝜂

0
and the desired trajectory of the whole forma-

tion is given by the leader vessel. Here we define the desired
trajectory of the leader as 𝜂

𝑑
, where 𝜂

𝑑
= [𝑛
𝑑
(𝑡), 𝑒
𝑑
(𝑡), 𝜓
𝑑
(𝑡)]
𝑇,

𝑛
𝑑
(𝑡), 𝑒
𝑑
(𝑡) are sufficiently smooth functions, and the motion

direction of the virtual leader vessel can be chosen as the
tangential vector of its desired trajectory; that is, 𝜓

𝑑
(𝑡) =

arctan( ̇𝑒
𝑑
(𝑡)/ ̇𝑛
𝑑
(𝑡)). In order to form the desired formation,

we define the relative distance between the ith follower vessel
and the virtual leader vessel as 𝑙

𝑖
= [𝑥
0𝑖
, 𝑦
0𝑖
, 𝜓
0𝑖
]
𝑇 and𝜓

0𝑖
= 0;

then we can define the formation reference point of the ith
vessel as 𝑥

𝑖
= 𝜂
𝑖
+ 𝑙
𝑖
. It is obvious that 𝑙

0
= 0; then 𝑥

0
= 𝜂
0
. In

order to maintain the desired formation among these surface
vessels, it is necessary for all the formation reference points
to synchronize. That is, 𝑥

1
= ⋅ ⋅ ⋅ = 𝑥

𝑖
= ⋅ ⋅ ⋅ = 𝑥

𝑛
= 𝜂
0
. And

the cooperative tracking while keeping the desired formation
is achieved by 𝑥

1
= ⋅ ⋅ ⋅ = 𝑥

𝑖
= ⋅ ⋅ ⋅ = 𝑥

𝑛
= 𝜂
𝑑
.

The virtual vessel is free to external disturbances, so the
leader vessel model in the inertial reference frame can be
written as

𝑀
0
(𝜂
0
) ̈𝜂
0
+ 𝐶
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
+ 𝐷
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
= 𝜏
0
. (14)

Design the tracking control law 𝜏
0
using the backstepping

control approach to make 𝜂
0
→ 𝜂
𝑑
as in the literature [20].

We assume that the position of the virtual vessel and
its velocity are available to its neighbors only and the
control force input 𝜏

0
is unknown to any practical vessels,

but its upper bound 𝜏
0
is available to its neighbors. The

detailed design process of the finite-time cooperative tracking
algorithm is as follows.

Define the relative position error of the formation refer-
ence point for the ith vessel as

𝑒
𝑖

1
=

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
) + 𝑏
𝑖
(𝑥
𝑖
− 𝑥
0
)

=

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝜂
𝑖
+ 𝑙
𝑖
− 𝜂
𝑗
− 𝑙
𝑗
) + 𝑏
𝑖
(𝜂
𝑖
+ 𝑙
𝑖
− 𝜂
0
) .

(15)

Define the the relative velocity error of the formation refer-
ence point for for the ith vessel in the inertial reference frame
as

𝑒
𝑖

2
=

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
( ̇𝑥
𝑖
− ̇𝑥
𝑗
) + 𝑏
𝑖
( ̇𝑥
𝑖
− ̇𝑥
0
)

=

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
( ̇𝜂
𝑖
− ̇𝜂
𝑗
) + 𝑏
𝑖
( ̇𝜂
𝑖
− ̇𝜂
0
)

= (

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
) ̇𝜂
𝑖
− (

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
) ̇𝜂
𝑗
+ 𝑏
𝑖
̇𝜂
𝑖
− 𝑏
𝑖
̇𝜂
0
.

(16)

Define the terminal sliding-mode surface of the ith vessel as

𝑠
𝑖
= 𝑒
𝑖

1
+ (𝑒
𝑖

2
)
𝛼

, (17)

where (𝑒
𝑖

2
)
𝛼

= [(𝑒
𝑖

2
(1))
𝛼

(𝑒
𝑖

2
(2))
𝛼

(𝑒
𝑖

2
(3))
𝛼

]
𝑇

. The real-
time control input 𝜏

0
of the virtual leader is unknown

to any following vessels due to time delay or information
transmission failure in the communication channel; while the
upper boundof the control input 𝜏

0
is available to the adjacent

vessels. The control input of each vessel can be chosen as

𝜏
𝑖
= 𝐶
𝑖
(𝜂
𝑖
, ̇𝜂
𝑖
) ̇𝜂
𝑖
+ 𝐷
𝑖
(𝜂
𝑖
, ̇𝜂
𝑖
) ̇𝜂
𝑖

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

(𝑎
𝑖𝑗
+ 𝑏
𝑖
)
−1

𝑀
𝑖

×

{

{

{

(𝑒
𝑖

2
)
2−𝛼

𝛼
+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
𝑀
−1

𝑗

× [−𝐶
𝑗
(𝜂
𝑗
, ̇𝜂
𝑗
) ̇𝜂
𝑗
− 𝐷
𝑗
(𝜂
𝑗
, ̇𝜂
𝑗
) ̇𝜂
𝑗
+ 𝜏
𝑗
]

+ 𝑏
𝑖
𝑀
−1

0
[−𝐶
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
− 𝐷
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
]

− diag (2𝑛𝑀−1min𝜔max + 𝑏
𝑖
𝑀
−1

min𝜏0 + 𝜅
1
)

× sign (𝑠
𝑖
)

}

}

}

,

(18)
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where 𝜅
1

∈ R3×1 is positive vector and 0 < 𝑀min ≤

min{𝑀
1
, . . .𝑀

𝑛
}.

Theorem 4. Consider the vessel with the nonlinear model as
in (1) and (3), if the communication topology among all the
vessels (include the virtual leader) is a directed graph which
has a directed spanning tree and the terminal sliding-mode
surface is defined as (17), the control input force is chosen as
(18). Then, the cooperative tracking of multiple surface vessels
can be reached in finite time.

Proof. The Laplacian matrix of the communication graph
among these surface vessels is

𝐿 = 𝐷 − 𝐴 =

[
[
[
[
[
[
[
[
[

[

(

𝑛

∑

𝑗=1

𝑎
1𝑗
) − 𝑎

11
⋅ ⋅ ⋅ −𝑎

1𝑛

... d
...

−𝑎
𝑛1

⋅ ⋅ ⋅ (

𝑛

∑

𝑗=1

𝑎
𝑛𝑗
) − 𝑎

𝑛𝑛

]
]
]
]
]
]
]
]
]

]

.

(19)

The connected relationship between the leader vessel and the
practical vessels is denoted as

𝐵 = [

[

𝑏
1

d
𝑏
𝑛

]

]

. (20)

If we define

𝐸
1
= [𝑒
1

1
⋅ ⋅ ⋅ 𝑒
𝑛

1
]
𝑇

∈ R
3𝑛×1

,

𝐸
2
= [𝑒
1

2
⋅ ⋅ ⋅ 𝑒
𝑛

2
]
𝑇

∈ R
3𝑛×1

,

𝜂 = [𝜂
1
⋅ ⋅ ⋅ 𝜂
𝑛
]
𝑇

∈ R
3𝑛×1

,

1
𝑛
= [1, . . . , 1]

𝑇

∈ R
𝑛×1

,

𝐼
3
= diag (1 1 1) ∈ R

3×3

,

(21)

then the error dynamics of multiple surface vessels can be
written in terms of matrix and vector:

̇𝐸
1
= 𝐸
2
,

̇𝐸
2
= [(𝐿 + 𝐵) ⊗ 𝐼

3
] ̈𝜂 − (𝐵 ⊗ 𝐼

3
) (1
𝑛
⊗ ̈𝜂
0
) .

(22)

For representing conveniently, we define

𝜂 = [𝜂
𝑇

1
𝜂
𝑇

2
⋅ ⋅ ⋅ 𝜂
𝑇

𝑛
]
𝑇

;

𝑙 = [𝑙
𝑇

1
𝑙
𝑇

2
⋅ ⋅ ⋅ 𝑙
𝑇

𝑛
]
𝑇

;

𝜏 = [𝜏
𝑇

1
𝜏
𝑇

2
⋅ ⋅ ⋅ 𝜏
𝑇

𝑛
]
𝑇

;

𝑀 (𝜂) = diag (𝑀
1
(𝜂
1
) ⋅ ⋅ ⋅ 𝑀

𝑛
(𝜂
𝑛
)) ,

𝐶 (𝜂, ̇𝜂) = diag (𝐶
1
(𝜂
1
, ̇𝜂
1
) ⋅ ⋅ ⋅ 𝐶

𝑛
(𝜂
𝑛
, ̇𝜂
𝑛
)) ,

𝐷 (𝜂, ̇𝜂) = diag (𝐷
1
(𝜂
1
, ̇𝜂
1
) ⋅ ⋅ ⋅ 𝐷

𝑛
(𝜂
𝑛
, ̇𝜂
𝑛
)) .

(23)

We can redefine the error dynamics with the matrix or vector
form with the vessel model; then we can obtain that

̇𝐸
1
= 𝐸
2
,

̇𝐸
2
= [(𝐿 + 𝐵) ⊗ 𝐼

3
]

× [𝑀
−1

(𝜂) × (𝜏 + 𝜔 − 𝐶 (𝜂, ̇𝜂) ̇𝜂 − 𝐷 (𝜂, ̇𝜂) ̇𝜂)]

− (𝐵 ⊗ 𝐼
3
)

× {1
𝑛
⊗ [𝑀
0

−1

(𝜂
0
)

× (𝜏
0
− 𝐶
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
− 𝐷
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
) ] } .

(24)

The terminal sliding-mode variable vector can be written as
𝑆 = [𝑠

1
⋅ ⋅ ⋅ 𝑠
𝑛
]
𝑇; then we can obtain that

𝑆 = 𝐸
1
+ 𝐸
𝛼

2
. (25)

Consider the Lyapunov function

𝑉 =
1

2
𝑆
𝑇

𝑆. (26)

Differentiating 𝑉 with respect to time, we can obtain that

𝑉 = 𝑆
𝑇 ̇𝑆

= 𝑆
𝑇

[𝐸
2
+ 𝛼 diag (𝐸𝛼−1

2
) ̇𝐸
2
]

= 𝑆
𝑇

{𝐸
2
+ 𝛼 diag (𝐸𝛼−1

2
)

× [ ((𝐿 + 𝐵) ⊗ 𝐼
3
)

× (𝑀
−1

(𝜂) (𝜏 + 𝜔 − 𝐶 (𝜂, ̇𝜂) ̇𝜂 − 𝐷 (𝜂, ̇𝜂) ̇𝜂))

− (𝐵 ⊗ 𝐼
3
)

× (1
𝑛
⊗ (𝑀
0

−1

(𝜂
0
)

× (𝜏
0
− 𝐶
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0

−𝐷
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
) ))] } .

(27)
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Figure 1:The information exchange topology among all the vessels.
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Figure 2: The dynamic trajectory of each vessel.

The control input vector of all these vessels can be written
as

𝜏 = 𝐶 (𝜂, ̇𝜂) ̇𝜂 + 𝐷 (𝜂, ̇𝜂) ̇𝜂 + [(𝐷 + 𝐵)
−1

⊗ 𝐼
3
]𝑀

× {
(𝐸
2
)
2−𝛼

𝛼
+ (𝐴 ⊗ 𝐼

3
)𝑀
−1

× (𝜏 − 𝐶 (𝜂, ̇𝜂) ̇𝜂 − 𝐷 (𝜂, ̇𝜂) ̇𝜂)

+ (𝐵 ⊗ 𝐼
3
)

× (1
𝑛
⊗𝑀
−1

0
(−𝐶
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
− 𝐷
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
))

− diag {diag (𝑀−1min (2𝑛𝜔max + 𝑏
𝑖
𝜏
0
) + 𝜅
1
) ,

. . . , diag (𝑀−1min (2𝑛𝜔max + 𝑏
𝑖
𝜏
0
) + 𝜅
1
)}

× sign (𝑆) } .

(28)

We can note that

𝐼
3𝑛
− {[(𝐷 + 𝐵)

−1

⊗ 𝐼
3
]𝑀 (𝐴 ⊗ 𝐼

3
)𝑀
−1

}

= 𝑀𝑀
−1

− {[(𝐷 + 𝐵)
−1

⊗ 𝐼
3
]𝑀 (𝐴 ⊗ 𝐼

3
)𝑀
−1

}

= 𝑀[(𝐷 + 𝐵)
−1

⊗ 𝐼
3
] [(𝐷 + 𝐵) ⊗ 𝐼

3
]𝑀
−1

− {[(𝐷 + 𝐵)
−1

⊗ 𝐼
3
]𝑀 (𝐴 ⊗ 𝐼

3
)𝑀
−1

}

= 𝑀[(𝐷 + 𝐵)
−1

⊗ 𝐼
3
] [(𝐷 + 𝐵) ⊗ 𝐼

3
− (𝐴 ⊗ 𝐼

3
)]𝑀
−1

= 𝑀[(𝐷 + 𝐵)
−1

⊗ 𝐼
3
] [(𝐷 + 𝐵 − 𝐴) ⊗ 𝐼

3
]𝑀
−1

= 𝑀[(𝐷 + 𝐵)
−1

⊗ 𝐼
3
] [(𝐿 + 𝐵) ⊗ 𝐼

3
]𝑀
−1

.

(29)

Then the control input can be rewritten as

𝜏 = 𝑀((𝐿 + 𝐵)
−1

⊗ 𝐼
3
)

× ((𝐷 + 𝐵) ⊗ 𝐼
3
)𝑀
−1

× {𝐶 (𝜂, ̇𝜂) ̇𝜂 + 𝐷 (𝜂, ̇𝜂) ̇𝜂

+ ((𝐷 + 𝐵)
−1

⊗ 𝐼
3
)𝑀

× {
(𝐸
2
)
2−𝛼

𝛼
+ (𝐴 ⊗ 𝐼

3
)𝑀
−1

× (𝜏 − 𝐶 (𝜂, ̇𝜂) ̇𝜂 − 𝐷 (𝜂, ̇𝜂) ̇𝜂) + (𝐵 ⊗ 𝐼
3
)

× (1
𝑛
⊗𝑀
−1

0
(−𝐶
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
− 𝐷
0
(𝜂
0
, ̇𝜂
0
) ̇𝜂
0
))

− diag {diag (𝑀−1min (2𝑛𝜔max + 𝑏
𝑖
𝜏
0
) + 𝜅
1
) ,

. . . , diag (𝑀−1min (2𝑛𝜔max + 𝑏
𝑖
𝜏
0
) + 𝜅
1
)}

× sign (𝑆) }} .

(30)
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Figure 3: The heading consensus for these vessels.
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Figure 4: The surge velocities consensus of the vessels.

Substituting the control input (30) into (27), then

𝑉 = 𝑆
𝑇

× {𝛼 diag (𝐸𝛼−1
2

)

× [((𝐿 + 𝐵) ⊗ 𝐼
3
)𝑀
−1

(𝜂) 𝜔

− (𝐵 ⊗ 𝐼
3
) (1
𝑛
⊗ (𝑀
−1

0
(𝜂
0
) 𝜏
0
))

− diag {diag (𝑀−1min (2𝑛𝜔max + 𝑏
𝑖
𝜏
0
) + 𝜅
1
) ,

. . . , diag (𝑀−1min (2𝑛𝜔max + 𝑏
𝑖
𝜏
0
) + 𝜅
1
)}

× sign (𝑆) ] }

= −𝛼

𝑛

∑

𝑖=1

[𝑠
𝑇

𝑖
(𝑒
𝑖

2
)
𝛼−1

× diag (𝑀min
−1

(2𝑛𝜔max + 𝑏
𝑖
𝜏
0
) + 𝜅
1
)

× sign (𝑠
𝑖
) ]

+ 𝛼

𝑛

∑

𝑖=1

[

[

𝑠
𝑇

𝑖
(𝑒
2

𝑖

)
𝛼−1

× ((

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
+ 𝑏
𝑖
)(𝑀

−1

𝑖
(𝜂
𝑖
)
𝜔𝑖

)

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
(𝑀
−1

𝑗
(𝜂
𝑗
)

𝜔
𝑗


))

+ 𝑏
𝑖
𝑀
−1

𝑖
(𝜂
𝑖
)
𝜏0


]

]

≤ −𝛼

𝑛

∑

𝑖=1

[

𝑠
𝑇

𝑖


(𝑒
𝑖

2
)
𝛼−1

× diag (𝑀−1min (2𝑛𝜔max + 𝑏
𝑖
𝜏
0
) + 𝜅
1
) 1
3
]

+ 𝛼

𝑛

∑

𝑖=1

[

[


𝑠
𝑇

𝑖


(𝑒
𝑖

2
)
𝛼−1

× ((

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
+ 𝑏
𝑖
)(𝑀

−1

𝑖
(𝜂
𝑖
)
𝜔𝑖

)

+

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎
𝑖𝑗
(𝑀
−1

𝑗
(𝜂
𝑗
)

𝜔
𝑗


))

+ 𝑏
𝑖
𝑀
−1

𝑖
(𝜂
𝑖
)
𝜏0


]

]

≤ −𝛼

𝑛

∑

𝑖=1


𝑠
𝑇

𝑖


(𝑒
𝑖

2
)
𝛼−1

𝜅
1
.

(31)

Let

𝜌 (𝐸
2
) = min[

[

𝛼(𝑒
1

2
(𝑘))
𝛼−1

𝜅
1
(𝑘) , . . . 𝛼(𝑒

𝑛

2
(𝑘))
𝛼−1

𝜅
1
(𝑘)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

,

𝑘 = 1, 2, 3

]

]

.

(32)
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Figure 5: The sway velocities consensus of the vessels.

For 𝑒𝑘
2

̸= 0, 𝑘 = 1, 2, . . . , 𝑛, 𝜌(𝐸
2
) > 0, then we have

𝑉 ≤ −𝛼

𝑛

∑

𝑖=1


𝑠
𝑇

𝑖


(𝑒
𝑖

2
)
𝛼−1

𝜅
1

≤ −𝜌 (𝐸
2
)

3𝑛

∑

𝑙=1

|𝑆 (𝑙)|

≤ −𝜌 (𝐸
2
)(

3𝑛

∑

𝑙=1

|𝑆 (𝑙)|
2

)

1/2

= −2
1/2

𝜌 (𝐸
2
) 𝑉
1/2

.

(33)

Therefore, we can know that the terminal sliding surface 𝑆 = 0

can be reached in a finite time for the case of 𝑒𝑘
2

̸= 0, 𝑘 =

1, 2, . . . , 𝑛, because the condition of finite-time stability is
satisfied.

Substituting the control input (30) into the error dynam-
ics (24), then

̇𝐸
2
= −

(𝐸
2
)
2−𝛼

𝛼

− (diag (2𝑛𝜔max + 𝜅
1
) + (𝐵 ⊗ 𝐼

3
) (1
𝑛
⊗ 𝜏
0
))

× sign (𝑆)

+ (𝐿 + 𝐵) 𝜔 + (𝐵 ⊗ 𝐼
3
) (1
𝑛
⊗ 𝜏
0
) .

(34)

If 𝑆 ̸= 0, ̇𝑒
𝑖

2
≤ −𝜅
1
or ̇𝑒
𝑖

2
≥ 𝜅
1
, we can know that 𝐸

2
= 0 is not

an attractor.
However, on this new terminal sliding-mode surface, that

is, 𝑆 = 0, 𝐸
1
+ 𝐸
𝛼

2
= 0, so 𝐸

2
= −𝐸
1/𝛼

1
.

Define the Lyapunov function as

𝑉
𝐸1

=
1

2
𝐸
𝑇

1
𝐸
1
. (35)
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Figure 6: The angular velocities consensus of the vessels.

And it follows that

𝑉
𝐸1

= −𝐸
𝑇

1
𝐸
1/𝛼

1
≤ −2
(1+𝛼)/2𝛼

(𝑉
𝐸1
)
(1+𝛼)/2𝛼

. (36)

In light of Lemma 2, the error functions 𝐸
1
and 𝐸

2
will

converge to zero in finite time.

4. Simulation Results

In this section, simulation results are presented to evaluate
the performance of the proposed finite-time cooperative
formation control algorithm.We consider four surface vessels
to perform the cooperative tracking task. For detailed system
parametersmatrices of vesselmathematicmodel, we can refer
to the literature [7]. Here, we suppose that the information
of virtual leader is available only to vessel 3 and vessel 4.
The information exchange topology among all the vessels
(including the virtual vessel) can be denoted as a directed
graph in Figure 1.

From the above information exchange topology graph,we
can know that the adjacent matrix of the graph is as follows:

𝐴 =

[
[
[
[
[

[

0 0 0 0 0

0 0 1 1 1

0 0 0 1 0

1 0 1 0 0

1 0 0 0 0

]
]
]
]
]

]

. (37)

Then the Laplacian matrix of the information exchange
topology graph of the practical vessels can be written as

𝐿 =

[
[
[

[

3 −1 −1 −1

0 1 −1 0

0 −1 1 0

0 0 0 0

]
]
]

]

. (38)
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And the matrix for the communication relationship between
the virtual vessel and the practical vessels is

𝐵 = diag (0 0 1 1) . (39)

The initial conditions are 𝜂
0
(0) = [27 782 −𝜋/3]

𝑇,
𝜂
1
(0) = [80 831 −7𝜋/30]

𝑇, 𝜂
2
(0) = [−94 753 −𝜋/2]

𝑇,
𝜂
3
(0) = [40 700 −𝜋/4]

𝑇 and 𝜂
4
(0) = [−50 800 −𝜋/3]

𝑇,
respectively. The desired trajectory for the virtual vessel is
chosen as 𝜂

𝑑
(𝑡) = [𝑛

𝑑
𝑒
𝑑

𝜓
𝑑
]
𝑇, and the detailed expressions

are 𝑛
𝑑
= 𝑡, 𝑒
𝑑
= 800 sin(𝑡/800), and 𝜓

𝑑
= arc tan( ̇𝑒

𝑑
/ ̇𝑛
𝑑
). In

order to maintain the desired formation pattern, the relative
distance between the practical vessels and the virtual leader
vessel is defined as 𝑙

1
= [0 100 0]

𝑇, 𝑙
2
= [0 − 100 0]

𝑇,
𝑙
3
= [0 50 0]

𝑇, and 𝑙
4
= [0 − 50 0]

𝑇, respectively.
With the proposed finite-time cooperative tracking con-

trol law, the dynamic trajectory of each vessel is shown in
Figure 2. It can be seen that these vessels move collectively
along the sinusoid with maintaining a beeline formation
pattern in the plane. The heading consensus for these vessels
is achieved in finite time as shown in Figure 3. Furthermore,
in the process of cooperative tracking, the surge velocities, the
sway velocities, and the angular velocities of all these surface
vessels converge to the desired values as a whole in finite time,
which are presented in Figures 4, 5, and 6, respectively. From
Figure 4, it is clearly seen that the surge velocities consensus
of these vessels cannot be achieved absolutely at the inflexion
of the curves. This is a natural phenomenon because all
the desired trajectories are curve and all the curvatures are
distinct.

Based on the above simulation results, we can know
that the cooperative tracking task of multiple surface vessels
is achieved by the proposed finite-time cooperative control
algorithm.That means that these surface vessels can form the
desired formation and perform the cooperative tracking as a
whole formation in finite time. Overall, the proposed finite-
time cooperative tracking control algorithm for multiple
surface vessels is effective and satisfactory.

5. Conclusion

In this paper, the finite-time cooperative tracking control
scheme for multiple surface vessels has been proposed. The
cooperative formation is achieved by defining the forma-
tion reference point of each vessel based on the virtual
leader-follower strategy. Furthermore, the communication
topology among these vessels (include the virtual leader)
is only the directed graph with a directed spanning tree.
The cooperative tracking control scheme is designed using
the terminal sliding-mode control approach which requires
defining a nonlinear sliding variable function. In addition, the
robustness against the external disturbances is achieved by
compensating for the upper bound in the control input. It is
proved that the cooperative tracking with desired formation
can be achieved in finite time. Finally, the effectiveness of the
proposed finite-time cooperative tracking control algorithm
is validated by the simulation results.
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mode formation control for cooperative autonomous mobile
robots,” IEEE Transactions on Industrial Electronics, vol. 55, no.
11, pp. 3944–3953, 2008.

[35] D. Zhao and T. Zou, “A finite-time approach to formation
control of multiple mobile robots with terminal sliding mode,”
International Journal of Systems Science, vol. 43, no. 11, pp. 1998–
2014, 2012.

[36] T. Fossen, Marine Control Systems: Guidance, Navigation and
Control of Ships, Rigs and Underwater Vehicles, Marine Cyber-
netics, Trondheim, Norway, 2002.

[37] S. P. Bhat and D. S. Bernstein, “Finite-time stability of con-
tinuous autonomous systems,” SIAM Journal on Control and
Optimization, vol. 38, no. 3, pp. 751–766, 2000.



Research Article
𝐻
∞

Filtering for Discrete-Time Genetic Regulatory Networks
with Random Delay Described by a Markovian Chain

Yantao Wang, Xingming Zhou, and Xian Zhang

School of Mathematical Science, Heilongjiang University, Harbin 150080, China

Correspondence should be addressed to Xian Zhang; zhangx663@126.com

Received 14 December 2013; Accepted 22 January 2014; Published 2 March 2014

Academic Editor: Xiaojie Su

Copyright © 2014 Yantao Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the 𝐻
∞
filtering problem for a class of discretetime genetic regulatory networks with random delay

and external disturbance. The aim is to design 𝐻
∞

filter to estimate the true concentrations of mRNAs and proteins based on
available measurement data. By introducing an appropriate Lyapunov function, a sufficient condition is derived in terms of linear
matrix inequalities (LMIs)whichmakes the filtering error system stochastically stablewith a prescribed𝐻

∞
disturbance attenuation

level. The filter gains are given by solving the LMIs. Finally, an illustrative example is given to demonstrate the effectiveness of the
proposed approach; that is, our approach is available for a smaller𝐻

∞
disturbance attenuation level than one in (Liu et al., 2012).

1. Introduction

Genetic regulatory networks (GRNs) are collections of DNA
segments in a cell which interact with each other indirectly
through their mRNAs, protein expression products, and
other substances. Understanding the nature and functions
of various GRNs is very interesting and crucially important
for the treatment of many diseases such as cancers [1, 2].
Therefore, in the past decade, the study onGRNs has been put
more emphasis by the researchers at interdisciplinary field.
Mathematical modeling of GRNs provides a powerful tool
for studying gene regulation processes. In general, genetic
network models can be classified into two types, that is,
the discrete model [3, 4] and the continuous model [5–8].
Usually, a continuous model is described by a (functional)
differential equation. Due to slow biochemical reactions
such as gene transcription and translation, time delays can
play an important role in GRNs, which results that the
(functional) differential equation model has been one of the
most fashionable GRN models, and a lot of research on
analysis and synthesis ofGRNs have been recently done based
on (functional) differential equation models (see, e.g., [9–
15]).

The concentrations of gene products, such as mRNAs
and proteins, are described as system states in a (functional)

differential equation model. In practice, biologists hope to
gain actual concentrations of gene products in GRNs. How-
ever, due to model errors, external perturbation, time delays,
and parameters jump, the steady-state values of GRNs can
hardly be obtained. In order to obtain the steady-state values
through available measurement data, the design of filter and
estimator for (functional) differential equation models of
GRNs has been investigated by some scholars (see, e.g., [16–
23]). However, due to the requirement for implementing and
application of GRNs for computer-based simulation, it is
of vital importance to design filter or estimator for delayed
discrete-time GRNs (i.e., discretized (functional) differential
equation models of GRNs) in today’s digital world, although
there are, to the best author’s knowledge, only three results
reported at present [24–26]. Zhang et al. [25] is concerned
with the set-values filtering for a class of discrete-time
GRNs with time-varying parameters, constant time-delay,
and bounded external noise. For a class of discrete-time
GRNs with random delays described by a Markov chain,
Liu et al. [26] designed a filter ensuring that the filtering
error system is stochastically stable and has a prescribed𝐻

∞

performance. By utilizing the Lyapunov stability theory and
stochastic analysis technique, Wang et al. [24] investigated
the existing conditions and explicit expressions of 𝐻

∞
state

estimators for a class of stochastic discrete-time GRNs with
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probabilistic measurement delays described by Bernoulli
distributed white sequences. These conditions are given in
terms of LMIs and are dependent on the lower and upper
bounds of the time-varying delays.

It should also be emphasized that for delayed discrete-
time GRNs, the stability problem (as the most important
properties for any dynamics systems) [27–29], 𝐻

∞
sta-

bilization problem [30], and passivity problem [31] have
been exploited. On the other hand, researchers have been
paying attention to the problems of analysis and synthesis for
Markovian jump system [32–36] and the filtering problems
for some nonlinear systems [37–41].

Motivated by the above discussion, in this paper, we
will deal with the 𝐻

∞
filtering problem for a class of

discrete-time GRNs with random delay which is described
by a Markovian chain. By constructing a novel Lyapunov
function different from one in [26], a sufficient LMI con-
dition is first established to ensure the existence of the
desired filter. The condition is dependent on the transition
probability matrix of the random delay. Then, the explicit
expression of the desired filter is shown to ensure the
resulting filtering error system to be stochastically stable
and have a prescribed 𝐻

∞
disturbance attenuation level.

Moreover, an optimization problem with LMIs constraints
is established to design an 𝐻

∞
filter which ensures an opti-

mal 𝐻
∞

disturbance attenuation level. Finally, a numerical
example is given to show the effectiveness of the proposed
approach.

2. Problem Formulation

Consider the following discrete-time GRN with random
delays, 𝑛mRNAs, and 𝑛 proteins [27, 28]:

𝑀
𝑖
(𝑘 + 1) = 𝑒

−𝑎𝑖ℎ𝑀
𝑖
(𝑘) + 𝜙

𝑖
(ℎ)

× [

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑃
𝑗
(𝑘 − 𝑑 (𝑘))) + 𝑉

𝑖

]

]

,

𝑃
𝑖
(𝑘 + 1) = 𝑒

−𝑐𝑖ℎ𝑃
𝑖
(𝑘) + 𝜑

𝑖
(ℎ) 𝑑
𝑖
𝑀
𝑖
(𝑘 − 𝑑 (𝑘)) ,

𝑖 = 1, 2, . . . , 𝑛,

(1)

where𝑀
𝑖
(𝑘) and 𝑃

𝑖
(𝑘), respectively, are the concentrations of

mRNA and protein of the 𝑖th gene; 𝜙
𝑖
(ℎ) = (1 − 𝑒

−𝑎𝑖ℎ)/𝑎
𝑖
> 0

and 𝜑
𝑖
(ℎ) = (1 − 𝑒

−𝑐𝑖ℎ)/𝑐
𝑖
> 0, where ℎ is a given positive real

number standing for the uniformdiscretionary step size; 𝑑(𝑘)
denotes the random time delay of mRNAs and proteins, and
is assumed to be a Markovian chain with state space N :=

{1, 2, . . . , 𝑑}, and 𝑑 is a fixed positive integer; 𝑎
𝑖
> 0 and 𝑐

𝑖
> 0

are the degradation rates of mRNA and protein, respectively;
𝑑
𝑖
is the translation rate;𝑉

𝑖
= ∑
𝑗∈𝐼𝑖

V
𝑖𝑗
, where V

𝑖𝑗
is a bounded

constant denoting the dimensionless transcriptional rate of

gene 𝑗 to 𝑖, and 𝐼
𝑖
is the set of all the repressors of 𝑖th gene;

𝑏
𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑛) are the coupling coefficients satisfying

𝑏
𝑖𝑗
=

{{{{{{{{{

{{{{{{{{{

{

V
𝑖𝑗,

if transcription factor 𝑗 is
an activator of gene 𝑖,

0, if there is no link from
link node 𝑗 to 𝑖,

−V
𝑖𝑗,

if transcription factor 𝑗 is
a repressor of gene 𝑖;

(2)

the nonlinear function 𝑓
𝑗
(𝑗 = 1, 2, . . . , 𝑛) denotes the

feedback regulation of protein in process of transcription.
In general, 𝑓

𝑗
is a monotonic function in Hill form; namely,

𝑓
𝑗
(𝑠) = 𝑠

ℎ𝑗/(1 + 𝑠
ℎ𝑗) (𝑗 = 1, 2, . . . , 𝑛), where ℎ

𝑗
is the Hill

coefficient. Denote by 𝜋 := [𝜋
𝑖𝑗
]
𝑛×𝑛

the transition probability
matrix of 𝑑(𝑘), where 𝜋

𝑖𝑗
= Prob{𝑑(𝑘 + 1) = 𝑗 | 𝑑(𝑘) = 𝑖}.

Let us rewrite GRN (1) as the following compact matrix
form:

𝑀(𝑘 + 1) = 𝐴𝑀(𝑘) + 𝐵𝑓 (𝑃 (𝑘 − 𝑑 (𝑘))) + 𝑉,

𝑃 (𝑘 + 1) = 𝐶𝑃 (𝑘) + 𝐷𝑀(𝑘 − 𝑑 (𝑘)) ,

(3)

where

𝑀(𝑘) = [𝑀
1
(𝑘) 𝑀

2
(𝑘) ⋅ ⋅ ⋅ 𝑀

𝑛
(𝑘)]
𝑇

,

𝑃 (𝑘) = [𝑃
1
(𝑘) 𝑃

2
(𝑘) ⋅ ⋅ ⋅ 𝑃

𝑛
(𝑘)]
𝑇

,

𝑓 (𝑃 (𝑘 − 𝑑 (𝑘)))

=[𝑓
1
(𝑃
1
(𝑘−𝑑(𝑘))) 𝑓

2
(𝑃
2
(𝑘−𝑑(𝑘))) ⋅ ⋅ ⋅ 𝑓

𝑛
(𝑃
𝑛
(𝑘−𝑑(𝑘)))]

𝑇

,

𝑉 = [𝜙
1
(ℎ)𝑉
1
𝜙
2
(ℎ)𝑉
2
⋅ ⋅ ⋅ 𝜙
𝑛
(ℎ)𝑉
𝑛
]
𝑇

,

𝐴 = diag (𝑒−𝑎1ℎ, 𝑒−𝑎2ℎ, . . . , 𝑒−𝑎𝑛ℎ) ,

𝐶 = diag (𝑒−𝑐1ℎ, 𝑒−𝑐2ℎ, . . . , 𝑒−𝑐𝑛ℎ) ,

𝐷 = diag (𝜑
1
(ℎ) 𝑑
1
, 𝜑
2
(ℎ) 𝑑
2
, . . . , 𝜑

𝑛
(ℎ) 𝑑
𝑛
) ,

𝐵 = [𝜙
𝑖
(ℎ)𝑏
𝑖𝑗
]
𝑛×𝑛

(𝑖 = 1, 2, . . . , 𝑛) .

(4)

Let (𝑀∗, 𝑃∗) be an equilibrium point of GRN (3), where
𝑀
∗

= [𝑀
∗

1
⋅ ⋅ ⋅ 𝑀

∗

𝑛
]
𝑇 and 𝑃∗ = [𝑃∗

1
⋅ ⋅ ⋅ 𝑃
∗

𝑛
]
𝑇; that is,

𝑀
∗

= 𝐴𝑀
∗

+ 𝐵𝑓 (𝑃
∗

) + 𝑉, 𝑃
∗

= 𝐶𝑃
∗

+ 𝐷𝑀
∗

. (5)

To simplify the analysis, one can transform the equilibrium
point to the origin by the relation 𝑥

𝑚
(𝑘) = 𝑀(𝑘) − 𝑀

∗ and
𝑥
𝑝
(𝑘) = 𝑃(𝑘) − 𝑃

∗. Then the transformed system is changed
as follows:

𝑥
𝑚
(𝑘 + 1) = 𝐴𝑥

𝑚
(𝑘) + 𝐵𝑔 (𝑥

𝑝
(𝑘 − 𝑑 (𝑘))) ,

𝑥
𝑝
(𝑘 + 1) = 𝐶𝑥

𝑝
(𝑘) + 𝐷𝑥

𝑚
(𝑘 − 𝑑 (𝑘)) ,

(6)

where 𝑔(𝑥
𝑝
(𝑘)) = 𝑓(𝑥

𝑝
(𝑘) + 𝑃

∗

) − 𝑓(𝑃
∗

). For every 𝑖 =
1, 2, . . . , 𝑛, since 𝑓

𝑖
is a monotonic function in Hill form, one
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can easily obtain that 𝑔
𝑖
is a monotonically increasing func-

tion with saturation and satisfies the following inequality:

𝑔
𝑖
(0) = 0, 0 ≤

𝑔
𝑖
(𝑠
1
) − 𝑔
𝑖
(𝑠
2
)

𝑠
1
− 𝑠
2

≤ 𝑙
𝑖
, ∀𝑠

1
, 𝑠
2
∈ 𝑅, 𝑠

1
̸= 𝑠
2
,

(7)

where 𝑙
𝑖
is a given constant.

When we take extracellular perturbations into account,
a class of stochastic discrete-time GRN model with random
delays is represented as follows:

𝑥
𝑚
(𝑘 + 1) = 𝐴𝑥

𝑚
(𝑘) + 𝐵𝑔 (𝑥

𝑝
(𝑘 − 𝑑 (𝑘))) + 𝐸

1
𝑤 (𝑘) ,

𝑥
𝑝
(𝑘 + 1) = 𝐶𝑥

𝑝
(𝑘) + 𝐷𝑥

𝑚
(𝑘 − 𝑑 (𝑘)) + 𝐹

1
V (𝑘) ,

𝑦
𝑚
(𝑘) = 𝐶

1
𝑥
𝑚
(𝑘) + 𝐸

2
𝑤 (𝑘) ,

𝑦
𝑝
(𝑘) = 𝐶

2
𝑥
𝑝
(𝑘) + 𝐹

2
V (𝑘) ,

𝑧
𝑚
(𝑘) = 𝐺

1
𝑥
𝑚
(𝑘) ,

𝑧
𝑝
(𝑘) = 𝐺

2
𝑥
𝑝
(𝑘) ,

𝑥
𝑚
(𝑘) = 𝜃

𝑚
(𝑘) , 𝑥

𝑝
(𝑘) = 𝜃

𝑝
(𝑘) ,

𝑘 = −𝑑, −𝑑 + 1, . . . , 0,

(8)

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐶
1
, 𝐶
2
, 𝐸
1
, 𝐸
2
, 𝐹
1
, 𝐹
2
, 𝐺
1
, and 𝐺

2

are constant matrices of appropriate dimension; 𝑦
𝑚
(𝑘) :=

[𝑦
𝑚1
(𝑘) ⋅ ⋅ ⋅ 𝑦

𝑚𝑛
(𝑘)]
𝑇 and 𝑦

𝑝
(𝑘) := [𝑦

𝑝1
(𝑘) ⋅ ⋅ ⋅ 𝑦

𝑝𝑛
(𝑘)]
𝑇

denote the expression levels of mRNA and protein, respec-
tively; 𝑧

𝑚
(𝑘) := [𝑧

𝑚1
(𝑘) ⋅ ⋅ ⋅ 𝑧

𝑚𝑙
(𝑘)]
𝑇 and 𝑧

𝑝
(𝑘) :=

[𝑧
𝑝1
(𝑘) ⋅ ⋅ ⋅ 𝑧

𝑝𝑙
(𝑘)]
𝑇 are the estimated signals; both𝑤(𝑘) and

V(𝑘) are exogenous disturbance signals; and 𝜃
𝑚
(𝑘) and 𝜃

𝑝
(𝑘)

are the initial conditions of 𝑥
𝑚
(𝑘) and 𝑥

𝑝
(𝑘), respectively.

In complex GRNs, only the partial information of the
network components can be usually obtained. Therefore, in
order to obtain the states of GRNs, we need to estimate them
via available measurements [42]. The full order linear filter
which need to be designed as the following form:

𝑥
𝑚
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑚
(𝑘) + 𝐵

𝑓
𝑦
𝑚
(𝑘) ,

𝑥
𝑝
(𝑘 + 1) = 𝐶

𝑓
𝑥
𝑝
(𝑘) + 𝐷

𝑓
𝑦
𝑝
(𝑘) ,

�̂�
𝑚
(𝑘) = 𝐺

1𝑓
𝑥
𝑚
(𝑘) + 𝐻

1𝑓
𝑦
𝑚
(𝑘) ,

�̂�
𝑝
(𝑘) = 𝐺

2𝑓
𝑥
𝑝
(𝑘) + 𝐻

2𝑓
𝑦
𝑝
(𝑘) ,

(9)

where 𝑥
𝑚
(𝑘), 𝑥

𝑝
(𝑘), �̂�

𝑚
(𝑘), and �̂�

𝑝
(𝑘) are the estimates of

𝑥
𝑚
(𝑘),𝑥
𝑝
(𝑘), 𝑧
𝑚
(𝑘), and 𝑧

𝑝
(𝑘), respectively;𝐴

𝑓
,𝐵
𝑓
,𝐶
𝑓
,𝐷
𝑓
∈

𝑅
𝑛×𝑛 and 𝐺

1𝑓
, 𝐺
2𝑓
, 𝐻
1𝑓
, 𝐻
2𝑓
∈ 𝑅
𝑙×𝑛 are filter parametric

matrices to be determined.
Set

𝑥
𝑚
(𝑘) = [

𝑥
𝑚
(𝑘)

𝑥
𝑚
(𝑘)
] , 𝑥

𝑝
(𝑘) = [

𝑥
𝑝
(𝑘)

𝑥
𝑝
(𝑘)
] ,

𝑒
𝑚
(𝑘) = 𝑧

𝑚
(𝑘) − �̂�

𝑚
(𝑘) , 𝑒

𝑝
(𝑘) = 𝑧

𝑝
(𝑘) − �̂�

𝑝
(𝑘) .

(10)

Then the filtering error system can be expressed as

𝑥
𝑚
(𝑘 + 1) = 𝐴𝑥

𝑚
(𝑘) + 𝐵𝑔 (𝑍

1
𝑥
𝑝
(𝑘 − 𝑑 (𝑘))) + 𝐸𝑤 (𝑘) ,

𝑥
𝑝
(𝑘 + 1) = 𝐶𝑥

𝑝
(𝑘) + 𝐷𝑍

1
𝑥
𝑚
(𝑘 − 𝑑 (𝑘)) + 𝐹V (𝑘) ,

𝑒
𝑚
(𝑘) = 𝐺

1𝑓
𝑥
𝑚
(𝑘) + 𝐻

1𝑓
𝑤 (𝑘) ,

𝑒
𝑝
(𝑘) = 𝐺

2𝑓
𝑥
𝑝
(𝑘) + 𝐻

2𝑓
V (𝑘) ,

𝑥
𝑚
(𝑘) = 𝜃

𝑚
(𝑘) , 𝑥

𝑝
(𝑘) = 𝜃

𝑝
(𝑘) ,

𝑘 = −𝑑, −𝑑 + 1, . . . , 0,

(11)

where

𝜃
𝑚
(𝑘) = [

𝜃
𝑚
(𝑘)

0
] , 𝜃

𝑝
(𝑘) = [

𝜃
𝑝
(𝑘)

0
] ,

𝐴 = [
𝐴 0

𝐵
𝑓
𝐶
1
𝐴
𝑓

] , 𝐵 = [
𝐵

0
] , 𝐶 = [

𝐶 0

𝐷
𝑓
𝐶
2
𝐶
𝑓

] ,

𝐷 = [
𝐷

0
] , 𝐸 = [

𝐸
1

𝐵
𝑓
𝐸
2

] , 𝐹 = [
𝐹
1

𝐷
𝑓
𝐹
2

] ,

𝐺
1𝑓
= [𝐺
1
− 𝐻
1𝑓
𝐶
1
−𝐺
1𝑓
] ,

𝐺
2𝑓
= [𝐺
2
− 𝐻
2𝑓
𝐶
2
−𝐺
2𝑓
] , 𝐻

1𝑓
= −𝐻
1𝑓
𝐸
2
,

𝐻
2𝑓
= −𝐻
2𝑓
𝐹
2
, 𝑍

1
= [𝐼 0] .

(12)

For convenience, for a nonnegative integer 𝑘 we define

Θ
𝑘
= {𝑥
𝑚
(𝑘) , 𝑥

𝑚
(𝑘 − 1) , . . . , 𝑥

𝑚
(𝑘 − 𝑑) ,

𝑥
𝑝
(𝑘) , 𝑥

𝑝
(𝑘 − 1) , . . . , 𝑥

𝑝
(𝑘 − 𝑑)} .

(13)

Definition 1 (see [26]). Thedelay𝑑(𝑘) is said to be the random
delay described by a Markovian chain if it is bound by 1 ≤
𝑑(𝑘) ≤ 𝑑, and {𝑑(𝑘) ∈ N, 𝑘 = 0, 1, 2, . . .} is a Markovian
chain with state spaceN and transition probability matrix 𝜋.

Definition 2 (see [26]). When 𝑤(𝑘) = 0 and V(𝑘) = 0, the
filtering error system (11) is said to be stochastically stable, if

∞

∑

𝑘=0

𝐸 {
𝑥𝑚(𝑘)



2

+

𝑥
𝑝
(𝑘)


2

| Θ
0
, 𝑑 (0)} < ∞ (14)

for every initial condition Θ
0
and initial mode 𝑑(0), where

𝐸{⋅} represents the mathematical expectation operator.

Definition 3. For a given constant 𝛾 > 0, the filtering
error system (11) is said to be stochastically stable with 𝐻

∞

disturbance attenuation level 𝛾 if it is stochastically stablewith
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𝑤(𝑘) = 0 and V(𝑘) = 0, and under the zero initial conditions
it satisfies the following inequality:

∞

∑

𝑘=0

𝐸{[
𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

𝑇

[
𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
] | Θ
0
, 𝑑 (0)}

< 𝛾
2

∞

∑

𝑘=0

[
𝑤(𝑘)

V(𝑘)]
𝑇

[
𝑤 (𝑘)

V (𝑘)]

(15)

for all nonzero𝑤(𝑘), V(𝑘) ∈ 𝑙
2
[0, +∞), and initial mode 𝑑(0).

The objective of this paper is to design a filter of form (9)
such that the filtering error system (11) is stochastically stable
with 𝐻

∞
disturbance attenuation level 𝛾. In order to realize

the aim, we first introduce the following lemma.

Lemma 4 (see [43]). For symmetric matrices 𝑃 > 0 and 𝑄 >
0, the matrix inequality

[
−𝑃
−1

𝐴

∗ −𝑄
] < 0 (16)

holds, if and only if there is a matrix 𝑅 such that

[
𝑃 − 𝑅 − 𝑅

𝑇

𝑅
𝑇

𝐴

∗ −𝑄
] < 0. (17)

3. Stability Analysis and𝐻
∞

Filter Design

The stability analysis for the filtering error system (11) with
𝑤(𝑘) = 0 and V(𝑘) = 0 is presented by the following theorem.

Theorem 5. The filtering error system (11) with 𝑤(𝑘) = 0 and
V(𝑘) = 0 is stochastically stable, if there exist matrices 𝜍 :=
diag(𝜍

1
, 𝜍
2
, . . . , 𝜍

𝑛
) > 0, 𝜇 := diag(𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑛
) > 0, 𝑃𝑇

𝑖
(𝑟) =

𝑃
𝑖
(𝑟) > 0(𝑖 = 1, 2, . . . , 6; 𝑟 = 1, 2, . . . , 𝑑), and 𝑃𝑇

𝑗
= 𝑃
𝑗
> 0 (𝑗 =

2, 3, 5, 6) such that the following matrix inequalities (18) and
(19) hold for all 𝑟 ∈N:

Ω := Ω̃ + Ω̂ < 0, (18)

𝑃
𝑗
(𝑟) < 𝑃

𝑗
, 𝑗 = 2, 3, 5, 6, (19)

where

Ω̂ = Λ
𝑇

1
𝑃
1
(𝑟) Λ
1
+ Λ
𝑇

2
(𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2
𝑃
3
)Λ
2

+ Λ
𝑇

3
𝑃
4
(𝑟) Λ
3
,

Λ
1
= [𝐴 0 0 𝐵 0 0] ,

Λ
2
= [𝐴 − 𝐼 0 0 𝐵 0 0] ,

Λ
3
= [0 𝐶 𝐷𝑍

1
0 0 0] ,

Ω̃ =

[
[
[
[
[
[
[

[

Ω
11

0 Ω
13

0 0 0

∗ −𝑃
4
(𝑟) 0 0 −𝑍

𝑇

1
𝜍𝐿 −𝑍

𝑇

1
𝐶
𝑇

𝜇𝐿

∗ ∗ Ω
33

0 0 −𝑍
𝑇

1
𝐷
𝑇

𝜇𝐿

∗ ∗ ∗ Ω
44

Ω
45

0

∗ ∗ ∗ ∗ Ω
55

Ω
56

∗ ∗ ∗ ∗ ∗ Ω
66

]
]
]
]
]
]
]

]

,

Ω
11
= (𝑑 − 1) 𝑃

2
+ 𝑃
2
(𝑟) − 𝑃

1
(𝑟) − Ω

13
,

Ω
13
=
1

𝑟
𝑃
3
(𝑟) +

1

𝑟
𝑃
3
, Ω

33
= −𝑃
2
(𝑟) − Ω

13
,

Ω
44
= −𝑃
5
(𝑟) − Ω

45
, Ω

45
=
1

𝑟
𝑃
6
(𝑟) +

1

𝑟
𝑃
6
,

Ω
55
= (𝑑 − 1) 𝑃

5
+ 𝑃
5
(𝑟) − Ω

56
− Ω
45
− 𝜍,

Ω
56
= −𝑑𝑃

6
(𝑟) −

(𝑑
2

+ 𝑑)𝑃
6

2
, Ω

66
= −Ω
56
− 𝜇,

𝐿 = diag(−𝑙1
2
, −
𝑙
2

2
, . . . , −

𝑙
𝑛

2
) ,

𝑃
𝑖
(𝑟) =

𝑑

∑

𝑠=1

𝜋
𝑟𝑠
𝑃
𝑖
(𝑠) , 𝑖 = 1, 2, . . . , 6.

(20)

Proof. Choose an appropriate Lyapunov function 𝑉(Θ
𝑘
,

𝑘, 𝑑(𝑘)) for the filtering error system (11) with 𝑤(𝑘) = 0 and
V(𝑘) = 0 as follows:

𝑉 (Θ
𝑘
, 𝑘, 𝑑 (𝑘)) =

3

∑

𝑖=1

(𝑉
𝑚,𝑖
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) + 𝑉

𝑝,𝑖
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)))

(21)

with
𝑉
𝑚,1
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) = 𝑥

𝑇

𝑚
(𝑘) 𝑃
1
(𝑑 (𝑘)) 𝑥

𝑚
(𝑘) ,

𝑉
𝑝,1
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) = 𝑥

𝑇

𝑝
(𝑘) 𝑃
4
(𝑑 (𝑘)) 𝑥

𝑝
(𝑘) ,

𝑉
𝑚,2
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) =

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑑 (𝑘)) 𝑥

𝑚
(𝑖)

+

−1

∑

𝑗=−𝑑+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
𝑥
𝑚
(𝑖) ,

𝑉
𝑝,2
(Θ
𝑘
, 𝑘, 𝑑 (𝑘))

=

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑑 (𝑘)) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

+

−1

∑

𝑗=−𝑑+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
𝑔 (𝑍
1
𝑥
𝑝
(𝑖)) ,

𝑉
𝑚,3
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) =

−1

∑

𝑗=−𝑑(𝑘)

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
(𝑑 (𝑘)) 𝜂 (𝑖)

+

−1

∑

𝑗=−𝑑

−1

∑

𝑙=𝑗

𝑘−1

∑

𝑖=𝑘+𝑙

𝜂
𝑇

(𝑖) 𝑃
3
𝜂 (𝑖) ,
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𝑉
𝑝,3
(Θ
𝑘
, 𝑘, 𝑑 (𝑘)) =

−1

∑

𝑗=−𝑑(𝑘)

𝑘−1

∑

𝑖=𝑘+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
(𝑑 (𝑘)) 𝜁 (𝑖)

+

−1

∑

𝑗=−𝑑

−1

∑

𝑙=𝑗

𝑘−1

∑

𝑖=𝑘+𝑙

𝜁
𝑇

(𝑖) 𝑃
6
𝜁 (𝑖) ,

(22)

where 𝜂(𝑘) = 𝑥
𝑚
(𝑘 + 1) − 𝑥

𝑚
(𝑘) and 𝜁(𝑘) = 𝑔(𝑍

1
𝑥
𝑝
(𝑘 + 1)) −

𝑔(𝑍
1
𝑥
𝑝
(𝑘)). By taking the forward difference of the function

𝑉
𝑚,1
(Θ
𝑘
, 𝑘, 𝑑(𝑘)) along with the solution of system (11), one

can obtain that

𝐸 {𝑉
𝑚,1
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑚,1
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠
𝑥
𝑇

𝑚
(𝑘 + 1) 𝑃

1
(𝑠) 𝑥
𝑚
(𝑘 + 1) − 𝑥

𝑇

𝑚
(𝑘) 𝑃
1
(𝑟) 𝑥
𝑚
(𝑘)

= 𝑥
𝑇

𝑚
(𝑘 + 1) 𝑃

1
(𝑟) 𝑥
𝑚
(𝑘 + 1) − 𝑥

𝑇

𝑚
(𝑘) 𝑃
1
(𝑟) 𝑥
𝑚
(𝑘) .

(23)

Additionally, it can be verified that

𝐸 {𝑉
𝑚,2
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑚,2
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

𝑘

∑

𝑖=𝑘+1−𝑠

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑠) 𝑥
𝑚
(𝑖)

−

𝑘−1

∑

𝑖=𝑘−𝑟

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑖)

+

−1

∑

𝑗=−𝑑+1

𝑘

∑

𝑖=𝑘+1+𝑗

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
𝑥
𝑚
(𝑖)

−

−1

∑

𝑗=−𝑑+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
𝑥
𝑚
(𝑖)

= 𝑥
𝑇

𝑚
(𝑘) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑘) − 𝑥

𝑇

𝑚
(𝑘 − 𝑟) 𝑃

2
(𝑟) 𝑥
𝑚
(𝑘 − 𝑟)

+

𝑘−1

∑

𝑖=𝑘+1−𝑠

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑖) −

𝑘−1

∑

𝑖=𝑘+1−𝑟

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑖)

+

−1

∑

𝑗=−𝑑+1

𝑥
𝑇

𝑚
(𝑘) 𝑃
2
𝑥
𝑚
(𝑘) −

𝑘−1

∑

𝑗=𝑘+1−𝑑

𝑥
𝑇

𝑚
(𝑗) 𝑃
2
𝑥
𝑚
(𝑗)

≤ 𝑥
𝑇

𝑚
(𝑘) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑘) − 𝑥

𝑇

𝑚
(𝑘 − 𝑟) 𝑃

2
(𝑟) 𝑥
𝑚
(𝑘 − 𝑟)

+ (𝑑 − 1) 𝑥
𝑇

𝑚
(𝑘) 𝑃
2
𝑥
𝑚
(𝑘)

+

𝑘−1

∑

𝑖=𝑘+1−𝑑

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
(𝑟) 𝑥
𝑚
(𝑖) −

𝑘−1

∑

𝑖=𝑘+1−𝑑

𝑥
𝑇

𝑚
(𝑖) 𝑃
2
𝑥
𝑚
(𝑖)

≤ 𝑥
𝑇

𝑚
(𝑘) [(𝑑 − 1) 𝑃

2
+ 𝑃
2
(𝑟)] 𝑥

𝑇

𝑚
(𝑘)

− 𝑥
𝑇

𝑚
(𝑘 − 𝑟) 𝑃

2
(𝑟) 𝑥
𝑇

𝑚
(𝑘 − 𝑟) ,

𝐸 {𝑉
𝑚,3
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑚,3
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

−1

∑

𝑗=−𝑠

𝑘

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
(𝑠) 𝜂 (𝑖)

−

−1

∑

𝑗=−𝑟

𝑘−1

∑

𝑖=𝑘+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
(𝑟) 𝜂 (𝑖)

+

−1

∑

𝑗=−𝑑

−1

∑

𝑙=𝑗

[

𝑘

∑

𝑖=𝑘+1+𝑙

𝜂
𝑇

(𝑖) 𝑃
3
𝜂 (𝑖) −

𝑘−1

∑

𝑖=𝑘+𝑙

𝜂
𝑇

(𝑖) 𝑃
3
𝜂 (𝑖)]

≤

−1

∑

𝑗=−𝑑

𝜂
𝑇

(𝑘) 𝑃
3
(𝑟) 𝜂 (𝑘) −

−1

∑

𝑗=−𝑟

𝜂
𝑇

(𝑘 + 𝑗) 𝑃
3
(𝑟) 𝜂 (𝑘 + 𝑗)

+

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
(𝑟) 𝜂 (𝑖) +

𝑑
2

+ 𝑑

2
𝜂
𝑇

(𝑘) 𝑃
3
𝜂 (𝑘)

−

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
𝜂 (𝑖) −

−1

∑

𝑗=−𝑑

𝜂
𝑇

(𝑘 + 𝑗) 𝑃
3
𝜂 (𝑘 + 𝑗)

≤ 𝜂
𝑇

(𝑘) [𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2
𝑃
3
] 𝜂 (𝑘)

−

−1

∑

𝑗=−𝑟

𝜂
𝑇

(𝑘 + 𝑗)
1

𝑟
𝑃
3
(𝑟)

−1

∑

𝑗=−𝑟

𝜂 (𝑘 + 𝑗)

+

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
(𝑟) 𝜂 (𝑖) −

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜂
𝑇

(𝑖) 𝑃
3
𝜂 (𝑖)

−

−1

∑

𝑗=−𝑟

𝜂
𝑇

(𝑘 + 𝑗)
1

𝑟
𝑃
3

−1

∑

𝑗=−𝑟

𝜂 (𝑘 + 𝑗)

≤ 𝜂
𝑇

(𝑘) [𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2
𝑃
3
] 𝜂 (𝑘)

−

−1

∑

𝑗=−𝑟

𝜂
𝑇

(𝑘 + 𝑗)
1

𝑟
(𝑃
3
(𝑟) + 𝑃

3
)

−1

∑

𝑗=−𝑟

𝜂 (𝑘 + 𝑗) .

(24)

Similarly, the following inequalities (25) can be derived:

𝐸 {𝑉
𝑝,1
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑝,1
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠
𝑥
𝑇

𝑝
(𝑘 + 1) 𝑃

4
(𝑠) 𝑥
𝑝
(𝑘 + 1) − 𝑥

𝑇

𝑝
(𝑘) 𝑃
4
(𝑟) 𝑥
𝑝
(𝑘)

= 𝑥
𝑇

𝑝
(𝑘 + 1) 𝑃

4
(𝑟) 𝑥
𝑝
(𝑘 + 1) − 𝑥

𝑇

𝑝
(𝑘) 𝑃
4
(𝑟) 𝑥
𝑝
(𝑘) ,
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𝐸 {𝑉
𝑝,2
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑝,2
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

𝑘

∑

𝑖=𝑘+1−𝑠

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑠) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

−

𝑘−1

∑

𝑖=𝑘−𝑟

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

+

−1

∑

𝑗=−𝑑+1

𝑘

∑

𝑖=𝑘+1+𝑗

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
𝑔 (𝑍
1
𝑥
𝑝
(𝑖))

−

−1

∑

𝑗=−𝑑+1

𝑘−1

∑

𝑖=𝑘+𝑗

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
𝑔 (𝑍
1
𝑥
𝑝
(𝑖))

= 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) 𝑃

5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑘))

− 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘 − 𝑟)) 𝑃

5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑘 − 𝑟))

+

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

𝑘−1

∑

𝑖=𝑘+1−𝑠

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑠) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

−

𝑘−1

∑

𝑖=𝑘+1−𝑟

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

+

−1

∑

𝑗=−𝑑+1

[𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) 𝑃

5
𝑔 (𝑍
1
𝑥
𝑝
(𝑘))

−𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘 + 𝑗)) 𝑃

5
𝑔 (𝑍
1
𝑥
𝑝
(𝑘 + 𝑗))]

≤ 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) [(𝑑 − 1) 𝑃

5
+ 𝑃
5
(𝑟)] 𝑔 (𝑍

1
𝑥
𝑝
(𝑘))

− 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘 − 𝑟)) 𝑃

5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑘 − 𝑟))

+

𝑘−1

∑

𝑖=𝑘+1−𝑑

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑖))

−

𝑘−1

∑

𝑖=𝑘+1−𝑑

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑖)) 𝑃
5
𝑔 (𝑍
1
𝑥
𝑝
(𝑖))

≤ 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) [(𝑑 − 1) 𝑃

5
+ 𝑃
5
(𝑟)] 𝑔 (𝑍

1
𝑥
𝑝
(𝑘))

− 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘 − 𝑟)) 𝑃

5
(𝑟) 𝑔 (𝑍

1
𝑥
𝑝
(𝑘 − 𝑟)) ,

𝐸 {𝑉
𝑝,3
(Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉
𝑝,3
(Θ
𝑘
, 𝑘, 𝑟)

=

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

−1

∑

𝑗=−𝑠

𝑘

∑

𝑖=𝑘+1+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
(𝑠) 𝜁 (𝑖)

−

−1

∑

𝑗=−𝑟

𝑘−1

∑

𝑖=𝑘+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
(𝑟) 𝜁 (𝑖)

+

−1

∑

𝑗=−𝑑

−1

∑

𝑙=𝑗

[

𝑘

∑

𝑖=𝑘+1+𝑙

𝜁
𝑇

(𝑖) 𝑃
6
𝜁 (𝑖) −

𝑘−1

∑

𝑖=𝑘+𝑙

𝜁
𝑇

(𝑖) 𝑃
6
𝜁 (𝑖)]

≤

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

−1

∑

𝑗=−𝑑

𝜁
𝑇

(𝑘) 𝑃
6
(𝑠) 𝜁 (𝑘)

−

−1

∑

𝑗=−𝑟

𝜁
𝑇

(𝑘 + 𝑗) 𝑃
6
(𝑟) 𝜁 (𝑘 + 𝑗)

+

𝑑

∑

𝑠=1

𝜋
𝑟𝑠

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
(𝑠) 𝜁 (𝑖)

−

−1

∑

𝑗=−𝑟

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
(𝑟) 𝜁 (𝑖) +

𝑑
2

+ 𝑑

2
𝜁
𝑇

(𝑘) 𝑃
6
𝜁 (𝑘)

−

−1

∑

𝑗=−𝑑

𝑘−1

∑

𝑖=𝑘+1+𝑗

𝜁
𝑇

(𝑖) 𝑃
6
𝜁 (𝑖) −

−1

∑

𝑗=−𝑑

𝜁
𝑇

(𝑘 + 𝑗) 𝑃
6
𝜁 (𝑘 + 𝑗)

≤ 𝜁
𝑇

(𝑘)Ω
56
𝜁 (𝑘) −

−1

∑

𝑗=−𝑟

𝜁
𝑇

(𝑘 + 𝑗)Ω
45

−1

∑

𝑗=−𝑟

𝜁 (𝑘 + 𝑗) .

(25)

In view of (7), we can conclude that

𝑔
𝑖
(𝑠) [𝑔
𝑖
(𝑠) − 𝑙

𝑖
𝑠] ≤ 0, ∀𝑠 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛. (26)

Then, it follows from (26) that

− 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) 𝜍𝑔 (𝑍

1
𝑥
𝑝
(𝑘)) − 2𝑥

𝑇

𝑝
(𝑘) 𝑍
𝑇

1
𝜍𝐿𝑔 (𝑍

1
𝑥
𝑝
(𝑘))

≥ 0,

− 𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘 + 1)) 𝜇𝑔 (𝑍

1
𝑥
𝑝
(𝑘 + 1))

− 2𝑥
𝑇

𝑝
(𝑘 + 1) 𝑍

𝑇

1
𝜇𝐿𝑔 (𝑍

1
𝑥
𝑝
(𝑘 + 1)) ≥ 0.

(27)

Now, combining (23)–(25) and (27) results in

𝐸 {𝑉 (Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉 (Θ
𝑘
, 𝑘, 𝑟) ≤ 𝜉

𝑇

(𝑘)Ω𝜉 (𝑘) ,

(28)

where 𝜉𝑇(𝑘) = [𝑥
𝑇

𝑚
(𝑘) 𝑥
𝑇

𝑝
(𝑘) 𝑥
𝑇

𝑚
(𝑘 − 𝑟) 𝑔

𝑇

(𝑍
1
𝑥
𝑝
(𝑘 − 𝑟))

𝑔
𝑇

(𝑍
1
𝑥
𝑝
(𝑘)) 𝑔

𝑇

(𝑍
1
𝑥
𝑝
(𝑘 + 1))], andΩ is defined as in (18).

Due to (18), formula (28) results in
𝐸 {𝑉 (Θ

𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

≤ 𝑉 (Θ
𝑘
, 𝑘, 𝑟) − 𝜆min {𝑥

𝑇

𝑚
(𝑘) 𝑥
𝑚
(𝑘) + 𝑥

𝑇

𝑝
(𝑘) 𝑥
𝑝
(𝑘)} ,

(29)

where 𝜆min denotes the minimal eigenvalue of −Ω. Since

𝐸 {𝐸 {𝑉 (Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘)} | Θ

0
, 𝑑 (0)}

= 𝐸 {𝑉 (Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

0
, 𝑑 (0)} ,

(30)

we obtain

𝐸 {
𝑥𝑚 (𝑘)



2

+

𝑥
𝑝
(𝑘)


2

| Θ
0
, 𝑑 (0)} ≤ 𝜆

−1

min𝑉 (Θ0, 0, 𝑑 (0))

< ∞.

(31)
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by taking the conditional expectation 𝐸{⋅ | Θ
0
, 𝑑(0)} and

summing from 𝑘 = 0 to +∞ on both sides of (29). Con-
sequently, by Definition 2, one can conclude from the above
inequality that the filtering error system (11) is stochastically
stable, and the proof is thus completed.

Remark 6. It is worth noting that the 𝐻
∞

filtering problem
for (8) has been studied in [26], but the obtained results
in [26] are not dependent on the transition probability
matrix of the random delay described by a Markovian chain.
In order to reduce the conservatism and give the explicit
expression of the desired filter, in the above theorem we have
constituted intensive studying of the 𝐻

∞
filtering problem

for (8) and have investigated a result dependent on the
transition probability matrix of the random delay described
by a Markovian chain.

Remark 7. The novel Lyapunov functional in this paper is
selected to be of (21). Since in (21) we have not only chosen
the triple summation termbut also considered sufficiently the
information of the random delay described by a Markovian
chain, the conservatism might be reduced than one in [26],
which will be illustrated through a numerical example in
Section 4.

Theorem 5 does not give a design procedure for the
desired filter. Based on Theorem 5, the following theorem
offers an approach to design a 𝐻

∞
filter for GRN (8) such

that the filtering error system (11) is stochastically stable with
𝐻
∞

disturbance attenuation level 𝛾.

Theorem 8. For given a scalar 𝛾 > 0 and a positive integer 𝑑,
if for each 𝑟 ∈ N, there exist matrices 𝑃𝑇

𝑖
(𝑟) = 𝑃

𝑖
(𝑟) > 0 (𝑖 =

1, 2, . . . , 6), 𝑃𝑇
𝑗
= 𝑃
𝑗
> 0 (𝑗 = 2, 3, 5, 6),

𝑅
𝑘
:= [
𝑅
𝑘1
𝑅
𝑘2

𝑅
𝑘3
𝑅
𝑘2

]

𝑇

, det𝑅
𝑘2
̸=0, 𝑘 = 1, 2, (32)

𝜍 := diag(𝜍
1
, 𝜍
2
, . . . , 𝜍

𝑛
) > 0, 𝜇 := diag(𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑛
) > 0, 𝐴

𝑓
,

𝐵
𝑓
, 𝐶
𝑓
, 𝐷
𝑓
, 𝐺
1𝑓
, 𝐻
1𝑓
, 𝐺
2𝑓
, and 𝐻

2𝑓
, such that the following

LMIs (34) and (35) hold, then the filtering error system (11) is
stochastically stable with 𝐻

∞
disturbance attenuation level 𝛾.

Moreover, the required filter is given by (9) with

𝐴
𝑓
= 𝑅
−1

12
𝐴
𝑓
, 𝐵

𝑓
= 𝑅
−1

12
𝐵
𝑓
,

𝐶
𝑓
= 𝑅
−1

22
𝐶
𝑓
, 𝐷

𝑓
= 𝑅
−1

22
𝐷
𝑓
,

(33)

Υ :=

[
[
[
[
[
[
[

[

Υ
11

0 0 0 0 Υ
16

∗ Υ
22

0 0 0 Υ
26

∗ ∗ Υ
33
0 0 Υ

36

∗ ∗ ∗ −𝐼 0 Υ
46

∗ ∗ ∗ ∗ −𝐼 Υ
56

∗ ∗ ∗ ∗ ∗ Υ
66

]
]
]
]
]
]
]

]

< 0, (34)

𝑃
𝑗
(𝑟) < 𝑃

𝑗
, 𝑗 = 2, 3, 5, 6, (35)

where

Υ
11
= 𝑃
1
(𝑟) − 𝑅

1
− 𝑅
𝑇

1
,

Υ
22
= 𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2
𝑃
3
− 𝑅
1
− 𝑅
𝑇

1
,

Υ
33
= 𝑃
4
(𝑟) − 𝑅

2
− 𝑅
𝑇

2
,

𝑃
𝑖
(𝑟) =

𝑑

∑

𝑠=1

𝜋
𝑟𝑠
𝑃
𝑖
(𝑠) , 𝑖 = 1, 2, . . . , 6,

Υ
16
= 𝑅
𝑇

1
Ψ
1
+ (𝑍
1
+ 𝑍
2
)
𝑇

(𝐵
𝑓
Ψ
2
+ 𝐴
𝑓
Ψ
3
) ,

Υ
26
= 𝑅
𝑇

1
Ψ
4
+ (𝑍
1
+ 𝑍
2
)
𝑇

(𝐵
𝑓
Ψ
2
+ 𝐴
𝑓
Ψ
3
) ,

Υ
36
= 𝑅
𝑇

2
Ψ
5
+ (𝑍
1
+ 𝑍
2
)
𝑇

(𝐷
𝑓
Ψ
6
+ 𝐶
𝑓
Ψ
7
) ,

𝑍
1
= [𝐼 0] , 𝑍

2
= [0 𝐼] ,

Ψ
1
= [
𝐴𝑍
1
0 0 𝐵 0 0 𝐸

1
0

0 0 0 0 0 0 0 0
] ,

Ψ
2
= [𝐶
1
𝑍
1
0 0 0 0 0 𝐸

2
0] ,

Ψ
3
= [𝑍
2
0 0 0 0 0 0 0] ,

Ψ
4
= [
(𝐴 − 𝐼)𝑍

1
0 0 𝐵 0 0 𝐸

1
0

−𝑍
2

0 0 0 0 0 0 0
] ,

Ψ
5
= [
0 𝐶𝑍

1
𝐷𝑍
1
0 0 0 0 𝐹

1

0 0 0 0 0 0 0 0
] ,

Ψ
6
= [0 𝐶

2
𝑍
1
0 0 0 0 0 𝐹

2
] ,

Ψ
7
= [0 𝑍

2
0 0 0 0 0 0] ,

Υ
46
= [𝐺
1𝑓
0 0 0 0 0 𝐻

1𝑓
0] ,

Υ
56
= [0 𝐺

2𝑓
0 0 0 0 0 𝐻

2𝑓
] ,

Υ
66
= [

[

Ω̃ 0 Φ
2

∗ −𝛾
2

𝐼 0

∗ ∗ −𝛾
2

𝐼

]

]

,

Φ
2
= [0 0 0 0 0 −𝐹

𝑇

1
𝜇𝐿]
𝑇

,

(36)

and 𝐿, 𝐺
1𝑓
, 𝐺
2𝑓
,𝐻
1𝑓
, and𝐻

2𝑓
are defined as previously.

Proof. 𝐴
𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, and 𝐷

𝑓
are defined as in (33). Then it is

easy to verify that Υ
16
= 𝑅
𝑇

1
Λ
1
, Υ
26
= 𝑅
𝑇

1
Λ
2
, and Υ

36
= 𝑅
𝑇

2
Λ
3
,

where

Λ
1
= [Λ
1
𝐸 0] , Λ

2
= [Λ
2
𝐸 0] ,

Λ
3
= [Λ
3
0 𝐹] ,

(37)

and Λ
1
, Λ
2
, Λ
3
, 𝐸, and 𝐹 are defined as previously. This,

together with (34) and Lemma 4, implies that
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[
[
[
[
[
[
[
[
[
[

[

−𝑃
−1

1
(𝑟) 0 0 0 0 Λ

1

∗ −(𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2
𝑃
3
)

−1

0 0 0 Λ
2

∗ ∗ −𝑃
−1

4
(𝑟) 0 0 Λ

3

∗ ∗ ∗ −𝐼 0 Υ
46

∗ ∗ ∗ ∗ −𝐼 Υ
56

∗ ∗ ∗ ∗ ∗ Υ
66

]
]
]
]
]
]
]
]
]
]

]

< 0. (38)

Due to the Schur complement lemma, inequality (38) is equal
to

Φ + Φ < 0, (39)

where

Φ = [

[

0 0 0

0 −𝛾
2

𝐼 0

0 0 −𝛾
2

𝐼

]

]

+ Υ
𝑇

46
Υ
46
+ Υ
𝑇

56
Υ
56
,

Φ = [

[

Ω̃ 0 Φ
2

0 0 0

Φ
𝑇

2
0 0

]

]

+ Λ
𝑇

1
𝑃
1
(𝑟) Λ
1

+ Λ
𝑇

2
(𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2
𝑃
3
)Λ
2
+ Λ
𝑇

3
𝑃
4
(𝑟) Λ
3
.

(40)

Thus

Λ := Υ
66
+ Λ
𝑇

1
𝑃
1
(𝑟) Λ
1
+ Λ
𝑇

2
(𝑑𝑃
3
(𝑟) +

𝑑
2

+ 𝑑

2
𝑃
3
)Λ
2

+ Λ
𝑇

3
𝑃
4
(𝑟) Λ
3
< 0.

(41)

Noting thatΩ is a submatrix ofΛ, we can conclude thatΩ < 0.
By Theorem 5, the filtering error system (11) with 𝑤(𝑘) = 0
and V(𝑘) = 0 is stochastically stable.

Choose the same Lyapunov function as in (21) for the
filtering error system (11) and employ the similar approach
in the proof of Theorem 5, one has

Δ𝑉
𝑘
:= 𝐸 {𝑉 (Θ

𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘) = 𝑟}

− 𝑉 (Θ
𝑘
, 𝑘, 𝑟)

≤ 𝐸 {𝛿
𝑇

(𝑘)Φ𝛿 (𝑘)} ,

(42)

where 𝛿(𝑘) = [𝜉𝑇(𝑘) 𝑤𝑇(𝑘) V𝑇(𝑘)]
𝑇

, and 𝜉(𝑘) is defined as
previously. To deal with the 𝐻

∞
performance, the following

performance function is considered

𝐽
𝐾
:=

𝐾

∑

𝑘=0

𝐸{[
𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

𝑇

[
𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

−𝛾
2

[
𝑤(𝑘)

V(𝑘)]
𝑇

[
𝑤 (𝑘)

V (𝑘)] | Θ0, 𝑑 (0)} .

(43)

Due to the zero initial condition and

𝐸 {𝐸 {𝑉 (Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

𝑘
, 𝑑 (𝑘)} | Θ

0
, 𝑑 (0)}

= 𝐸 {𝑉 (Θ
𝑘+1
, 𝑘 + 1, 𝑑 (𝑘 + 1)) | Θ

0
, 𝑑 (0)} ,

(44)

it is easy to see from (39) and (42) that

𝐽
𝐾
=

𝐾

∑

𝑘=0

𝐸{[
𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

𝑇

[
𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

−𝛾
2

[
𝑤(𝑘)

V(𝑘)]
𝑇

[
𝑤 (𝑘)

V (𝑘)] + Δ𝑉𝑘 | Θ0, 𝑑 (0)}

−

𝐾

∑

𝑘=0

𝐸 {Δ𝑉
𝑘
| Θ
0
, 𝑑 (0)}

=

𝐾

∑

𝑘=0

𝐸{[
𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

𝑇

[
𝑒
𝑚
(𝑘)

𝑒
𝑝
(𝑘)
]

−𝛾
2

[
𝑤 (𝑘)

V (𝑘)]
𝑇

[
𝑤 (𝑘)

V (𝑘)] + Δ𝑉𝑘 | Θ0, 𝑑 (0)}

− 𝐸 {𝑉 (Θ
𝐾+1
, 𝐾 + 1, 𝑑 (𝐾 + 1)) | Θ

0
, 𝑑 (0)}

+ 𝑉 (Θ
0
, 0, 𝑑 (0))

≤

𝐾

∑

𝑘=0

𝐸 {𝑒
𝑇

𝑚
(𝑘) 𝑒
𝑚
(𝑘) + 𝑒

𝑇

𝑝
(𝑘) 𝑒
𝑝
(𝑘) − 𝛾

2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)

−𝛾
2V𝑇 (𝑘) V (𝑘) + Δ𝑉

𝑘
| Θ
0
, 𝑑 (0)}

≤

𝐾

∑

𝑘=0

𝐸 {𝛿
𝑇

(𝑘) (Φ + Φ) 𝛿 (𝑘) | Θ
0
, 𝑑 (0)} < 0.

(45)

Let 𝑘 → ∞; it is concluded from Definition 3 that the
filtering error system (11) is stochastically stable with 𝐻

∞

disturbance attenuation level 𝛾.
The proof is thus completed.

Remark 9. What can be seen from Theorem 8 is that the
scalar 𝛾 can be calculated as an optimization variable to
obtain theminimum𝐻

∞
disturbance attenuation level. To be

more specific, the minimal𝐻
∞
disturbance attenuation level
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can be obtained by solving the following convex optimization
problem:

min
s.t. (34)-(35)

𝛽, 𝛽 = 𝛾
2

. (46)

Note that if there exists a solution 𝛽∗ to the problem (46),
then the minimal𝐻

∞
disturbance attenuation level is√𝛽∗.

4. Illustrative Example

In this section we illustrate the effectiveness of the proposed
approach by testing the following numerical example which
has been used in [26].

Consider GRN (8) with the following parameters:

𝐴 = [

[

0.3679 0 0

0 0.3679 0

0 0 0.3679

]

]

,

𝐵 = [

[

0 0 −0.126

−0.126 0 0

0 −0.126 0

]

]

,

𝐸
1
= [

[

0.3

0.5

0

]

]

, 𝐹
1
= [

[

0.6

0.4

0.2

]

]

,

𝐶 = [

[

0.3679 0 0

0 0.6065 0

0 0 0.3679

]

]

,

𝐷 = [

[

0.6321 0 0

0 0.3935 0

0 0 0.6321

]

]

,

𝐸
2
= [

[

0.5

0.4

0.2

]

]

, 𝐹
2
= [

[

0.2

0.6

0.3

]

]

,

𝐺
2
= 𝐺
1
= 𝐶
2
= 𝐶
1
= [

[

0.3 0 0

0 0.2 0

0 0 0.3

]

]

.

(47)

The regulation function is taken as 𝑔
𝑖
(𝑥) = 𝑥

2

/(1 + 𝑥
2

) (𝑖 =

1, 2, 3). It is easy to know that the derivative of 𝑔
𝑖
(𝑥) is less

than 𝑙 = 0.65, which shows 𝐿 = diag(−0.325, −0.325, −0.325).
Suppose the bound of the time delay is 𝑑 = 3: then 𝑑(𝑘) ∈
N = {1, 2, 3}. The transition probability matrix Π is given by

Π = [

[

0.3 0.5 0.2

0.4 0.3 0.3

0.2 0.5 0.3

]

]

. (48)

By solving the optimization problem (46), it can be obtained
that the optimal disturbance attenuation level 𝛾∗ is 0.2289,

which is better than one (i.e., 1.5046) in [26]. And the
corresponding filter gain matrices are as follows:

𝐴
𝑓
= [

[

0.3033 0.0362 −0.0085

−0.1172 0.0675 0.0442

−0.0196 −0.0232 0.3032

]

]

,

𝐵
𝑓
= [

[

−1.3657 1.0166 −0.1168

0.2405 −1.8421 −0.0969

0.0521 0.4326 −1.7666

]

]

,

𝐶
𝑓
= [

[

0.0604 −0.0945 −0.0015

−0.2121 0.4325 0.0640

−0.1054 0.1555 0.1184

]

]

,

𝐷
𝑓
= [

[

0.4505 −2.1899 −0.2779

0.0936 −1.8583 0.3270

−0.4267 1.2589 −2.8255

]

]

,

𝐺
1𝑓
= [

[

−0.0965 −0.1809 0.0340

−0.0772 −0.1447 0.0272

−0.0386 −0.0724 0.0136

]

]

,

𝐺
2𝑓
= [

[

0.0413 −0.0725 −0.0097

0.1240 −0.2175 −0.0292

0.0620 −0.1087 −0.0146

]

]

,

𝐻
1𝑓
= [

[

0.6784 −0.9047 0.1134

−0.2573 0.2762 0.0907

−0.1286 −0.3619 1.0454

]

]

,

𝐻
2𝑓
= [

[

1.1304 −0.3575 −0.0320

0.3912 −0.0724 −0.0960

0.1956 −0.5362 0.9520

]

]

.

(49)

In the following simulation setup, the noise signal is
chosen as

𝑤 (𝑘) = V (𝑘) = {
sin (0.3𝑘) , 𝑘 ≤ 20,
0, 𝑘 > 20.

(50)

Let the filtering error system run by random sequence
𝑑(𝑘), the trajectories and their estimations of themRNAs and
proteins are shown in Figures 1 and 2, where the solid line
and dotted line describe the state trajectories and estimations
of mRNAs and proteins, respectively. The filtering errors are
shown in Figures 3 and 4. It can be seen from Figures 3 and
4 that the filtering error converges to zero in the absence of
disturbances.

Next, we illustrate the 𝐻
∞

performance of the filtering
error system (11). By direct computation, we have

60

∑

𝑘=0

[
𝑤(𝑘)

V(𝑘)]
𝑇

[
𝑤 (𝑘)

V (𝑘)] = 20.9454. (51)

For values of 1000 random sequences of 𝑑(𝑘), we obtain
by MATLAB that the maximum of ∑60

𝑘=0
[
𝑒𝑚(𝑘)

𝑒𝑝(𝑘)
]

𝑇

[
𝑒𝑚(𝑘)

𝑒𝑝(𝑘)
] is
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Figure 1: Trajectories and estimations of mRNAs.
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Figure 2: Trajectories and estimations of proteins.

0.1647, and hence the maximum disturbance attenuation
level is

√
√
√

√

∑
60

𝑘=0
[
𝑒
𝑚
(𝑘)

𝑒𝑝(𝑘)

]

𝑇

[
𝑒
𝑚
(𝑘)

𝑒𝑝(𝑘)

]

∑
60

𝑘=0
[
𝑤(𝑘)

V(𝑘)
]

𝑇

[
𝑤 (𝑘)

V(𝑘)
]

= √
0.1647

20.9454
= 0.0887 < 𝛾

∗

.

(52)

This verifies that the 𝐻
∞

disturbance attenuation level is
below the given upper bound.
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Figure 3: Estimation error of mRNAs.
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Figure 4: Estimation error of proteins.

5. Conclusion

In this paper, we investigate the filtering problem on a class
of discrete-time GRNs with random delays. The filtering
error system is established as a Markovian switched system
and the random delay is described as a Markovian chain.
By introducing an appropriate Lyapunov function, sufficient
conditions for concerned problems are derived in terms
of LMIs. The designed filter guarantees that the filtering
error system is stochastically stable with 𝐻

∞
disturbance

attenuation level. Finally, the effectiveness and performance
of the obtained results are demonstrated by a numerical
example.
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An adaptive neural networks chaos synchronization control method is proposed for a four-dimensional energy resource demand-
supply system with input constraints. Assuming the response system contains unknown uncertain nonlinearities and unknown
stochastic disturbances, the neural networks and robust terms are used to identify the nonlinearities and overcome the stochastic
disturbances, respectively. Based on stochastic Lyapunov stability and robust adaptive theories, an adaptive neural networks
synchronization control method is developed. In the design process, an auxiliary design system is employed to address input
constraints. Simulation results, which fully coincide with theoretical results, are presented to demonstrate the obtained results.

1. Introduction

Energy resource system is a kind of complex nonlinear
system. Over the last two decades, much attention has been
paid to the chaos synchronization in this class system. Ref-
erence [1] established a three-dimensional energy resource
demand-supply system based on the real energy resources
demand-supply system in the East and theWest of China. By
adding a new variable to consider the renewable resources,
a four-dimensional energy resource system was proposed
in [2]. The dynamics behaviors of the four-dimensional
energy resource system have been analyzed by means of
the Lyapunov exponents and bifurcation diagrams. Also the
same as the above-mentioned power systems, this four-
dimensional energy resource system is with rich chaos behav-
iors. The problem of chaotic control for the energy resource
system was considered in [3]. Feedback control and adaptive
control methods were used to suppress chaos to unstable
equilibrium or unstable periodic orbits, where only three
of the system’s parameters were supposed to be unknown.
Reference [4] investigated the robust chaos synchronization
problem for the four-dimensional energy resource systems
based on the sliding mode control technique. The control
of energy resource chaotic system was investigated by time-
delayed feedback control method in [5]. Four linear control

schemes are proposed to a four-dimensional energy resource
system in [6]. Based on stability criterion of linear system
and Lyapunov stability theory, respectively, the chaos syn-
chronization problems for energy resource demand-supply
system were discussed using two novel different control
methods in [7].

In many practical dynamic systems (including the energy
resource demand-supply system), physical input saturation
on hardware dictates that the magnitude of the control signal
is always constrained. Saturation is a potential problem for
actuators of control systems. It often severely limits system
performance, giving rise to undesirable inaccuracy or leading
instability [8, 9]. The development of control schemes for
systems with input saturation has been a task of major
practical interest as well as theoretical significance. The
proposed approaches in [1–7] assume that all the components
of the considered energy resource demand-supply systems
are in good operating conditions and do not consider the
problem of saturation. Reference [10] proposed two differ-
ent chaos synchronization methods for a class of energy
resource demand-supply systems with input saturation, but
the response system in [10] did not contain unknown uncer-
tain nonlinearities and unknown stochastic disturbances. It
is well known that stochastic disturbances also often exist
in many practical systems. Their existence is a source of
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instability of the control systems; thus, the investigations
on stochastic control systems have received considerable
attention in recent years [11–22]. Since the emergence of the
stochastic stabilization theory in the 1960s, the progress has
been constructed by a fundamental technical Itô lemma, and
the control design for stochastic systems is more difficult
compared with deterministic systems.

Motivated by the above observations, an adaptive neural
networks chaos synchronization method is proposed for
a four-dimensional energy resource demand-supply system
with input constraints. Assume that the response system
contains unknown uncertain nonlinearities and unknown
stochastic disturbances. In the design, the neural networks
and robust terms are used to identify the nonlinearities and
overcome the stochastic disturbances, respectively. Based on
Lyapunov stability, an adaptive synchronization method is
developed in order to make the states of two chaotic sys-
tems asymptotically synchronized. The new auxiliary design
system is employed to address input constraints. Numerical
simulations are provided to illustrate the effectiveness of the
proposed approach.

Compared with the existing results, the main contribu-
tions of the proposedmethod are as follows: (i) the controlled
response system of this paper contains unknown nonlin-
earities, and the proposed method can solve the unknown
nonlinearity problem by neural networks, but the methods
of [1–8, 10] cannot solve this problem; (ii) the controlled
response system of this paper contains stochastic distur-
bances, and the proposed method can solve the stochastic
disturbances problem based on Itô’s lemma and stochastic
LaSalle’s theorem, but the methods of [1–8, 10] cannot solve
this problem; (iii) an auxiliary design system is employed to
address input constraints problem, and the methods of [1–8]
can solve this problem.

2. Energy Resource Chaotic System

The four-dimensional energy resource system can be ex-
pressed as follows (see [2, 4, 6]):

̇𝑥 = 𝑎
1
𝑥 (1 −

𝑥

𝑀
) − 𝑎
2

(𝑦 + 𝑧) − 𝑑
3
𝑤,

̇𝑦 = −𝑏
1
𝑦 − 𝑏
2
𝑧 + 𝑏
3
𝑥 [𝑁 − (𝑥 − 𝑧)] ,

̇𝑧 = 𝑐
1
𝑧 (𝑐
2
𝑥 − 𝑐
3
) ,

̇𝑤 = 𝑑
1
𝑥 − 𝑑
2
𝑤,

(1)

where 𝑥(𝑡) is the energy resource shortage in A region, 𝑦(𝑡)

is the energy resource supply increment in B region, and
𝑧(𝑡) and 𝑤(𝑡) are energy resource import in A region and
renewable energy resource in A region, respectively; 𝑀, 𝑁,
𝑎
𝑖
, 𝑏
𝑗
, 𝑐
𝑗
, and 𝑑

𝑗
(𝑖 = 1, 2, 𝑗 = 1, 2, 3) are parameters that

are all positive real. The dynamics of this system has been
extensively studied in [2, 4, 6].

When the system parameters are taken as the following
values, this system exhibits chaotic behavior: 𝑀 = 1.8, 𝑁 =

1, 𝑎
1

= 0.1, 𝑎
2

= 0.15, 𝑏
1

= 0.06, 𝑏
2

= 0.082, 𝑏
3

= 0.07,
𝑐
1

= 0.2, 𝑐
2

= 0.5, 𝑐
3

= 0.4, 𝑑
1

= 0.1, 𝑑
2

= 0.06, and 𝑑
3

= 0.07.
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Figure 1: Three-dimensional view 𝑥 − 𝑦 − 𝑧.

Without the particular statement, these values are adopted in
this whole paper. Figures 1, 2, and 3 show the phase portraits
with initial conditions of 𝑥(0) = 0.82, 𝑦(0) = 0.29, 𝑧(0) =

0.48, and 𝑤(0) = 0.1.

3. Synchronization of the Energy
Resource System

In this section, a controller will be designed in order to make
the response system track the drive system. The drive system
with subscript 1 is written as

̇𝑥
1

= 𝑎
1
𝑥
1

(1 −
𝑥
1

𝑀
) − 𝑎
2

(𝑦
1

+ 𝑧
1
) − 𝑑
3
𝑤
1
,

̇𝑦
1

= −𝑏
1
𝑦
1

− 𝑏
2
𝑧
1

+ 𝑏
3
𝑥
1

[𝑁 − (𝑥
1

− 𝑧
1
)] ,

̇𝑧
1

= 𝑐
1
𝑧
1

(𝑐
2
𝑥
1

− 𝑐
3
) ,

̇𝑤
1

= 𝑑
1
𝑥
1

− 𝑑
2
𝑤
1
.

(2)

Assume that the controlled response system with subscript 2
contained uncertain nonlinearities (unknown smooth non-
linear functions) and unknown external stochastic distur-
bance, and it can be expressed as the following dynamics:

𝑑𝑥
2

= [𝑎
1
𝑥
2

(1 −
𝑥
2

𝑀
) − 𝑎
2

(𝑦
2

+ 𝑧
2
) − 𝑑
3
𝑤
2

+𝑓
1

(𝑥
2
) + 𝑢
1

(V
1

(𝑡)) ] 𝑑𝑡 + 𝑝
1

(𝑒
1
) 𝑑𝑊,

𝑑𝑦
2

= [−𝑏
1
𝑦
2

− 𝑏
2
𝑧
2

+ 𝑏
3
𝑥
2

[𝑁 − (𝑥
2

− 𝑧
2
)]

+𝑓
2

(𝑦
2
) + 𝑢
2

(V
2

(𝑡))] 𝑑𝑡 + 𝑝
2

(𝑒
2
) 𝑑𝑊,

𝑑𝑧
2

= [𝑐
1
𝑧
2

(𝑐
2
𝑥
2

− 𝑐
3
) + 𝑓
3

(𝑧
2
) + 𝑢
3

(V
3

(𝑡))] 𝑑𝑡

+ 𝑝
3

(𝑒
3
) 𝑑𝑊,

𝑑𝑤
2

= [𝑑
1
𝑥
2

− 𝑑
2
𝑤
2

+ 𝑓
4

(𝑤
2
) + 𝑢
4

(V
4

(𝑡))] 𝑑𝑡

+ 𝑝
4

(𝑒
4
) 𝑑𝑊,

(3)

where V
𝑖
is the actual controller to be designed and

𝑢
𝑖
(V
𝑖
(𝑡)) (𝑖 = 1, 2, 3, 4) is the plant input subject to saturation
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Figure 2: Three-dimensional view 𝑦 − 𝑥 − 𝑤.
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Figure 3: Three-dimensional view 𝑤 − 𝑧 − 𝑥.

type nonlinearly. 𝑝
𝑖
(𝑒
𝑖
), 𝑖 = 1, 2, 3, 4, are uncertain functions,

and 𝑊 ∈ 𝑅
𝑛 is an independent standard Brownian motion

defined on a complete probability space, with the incremental
covariance 𝐸{𝑑𝑊 ⋅ 𝑑𝑊

𝑇

} = 𝜎(𝑡)𝜎(𝑡)
𝑇

𝑑𝑡.

Remark 1. If no input saturation, uncertain nonlinearities,
and unknown external stochastic disturbance (i.e., 𝑢

𝑖
(V
𝑖
(𝑡)) =

V
𝑖
(𝑡)), 𝑝

𝑖
(𝑡) = 0, and 𝑓

𝑖
(⋅) = 0 (𝑖 = 1, 2, 3, 4)) are included in

(3), then (3) becomes the chaotic systems studied widely, see
[8, 10], where 𝑢

𝑖
(V
𝑖
(𝑡)) can be described as

𝑢
𝑖
(V
𝑖
(𝑡)) = sat (V

𝑖
(𝑡))

= {

sign (V
𝑖
(𝑡)) 𝑢
𝑖𝑀

,
V𝑖 (𝑡)

 ≥ 𝑢
𝑖𝑀

,

V
𝑖
(𝑡) ,

V𝑖 (𝑡)
 < 𝑢
𝑖𝑀

,

(4)

where 𝑢
𝑖𝑀

is a known bound of 𝑢
𝑖
(V
𝑖
(𝑡)).

To design an adaptive controller, the following basic
assumption is made for the system (3).

Assumption 2. The disturbance covariance 𝑃
𝑇

𝜎𝜎
𝑇

𝑃 ≤

∑
4

𝑖=1
𝑒
𝑖
𝜎
𝑖
(𝑒
𝑖
), where 𝑃 = [𝑝

1
(𝑒
1
) 𝑝
2
(𝑒
2
) 𝑝
3
(𝑒
3
) 𝑝
4
(𝑒
4
)]
𝑇 and

𝜎
𝑖
(𝑒
𝑖
) is a known function.

To establish stochastic stability as a preliminary, consider
a stochastic nonlinear system:

𝑑𝑥 = 𝑓 (𝑥, 𝑡) 𝑑𝑡 + 𝑔 (𝑥, 𝑡) 𝑑𝑊, (5)

where 𝑥 ∈ 𝑅
𝑛, 𝑊 is an independent 𝑟-dimensional Wiener

process, defined on the probability space (Ω, 𝐹, 𝑃), with the
incremental covariance 𝐸{𝑑𝑊, 𝑑𝑊

𝑇

= 𝜎(𝑡)𝜎(𝑡)
𝑇

𝑑𝑒}, and 𝑓 :

𝑅
𝑛

× 𝑅 → 𝑅
𝑛 and 𝑓 : 𝑅

𝑛

× 𝑅 → 𝑅
𝑛×𝑟 are locally Lipschitz

continuous in 𝑥, uniformly in 𝑡 ∈ 𝑅, with 𝑓(0, 𝑡) = 0 and
𝑔(0, 𝑡) = 0, for all 𝑡 ≥ 0.

Lemma 3 (see [16, 17] (stochastic LaSalle’s theorem)). Con-
sider (5) and suppose that there exists a twice continu-
ously differentiable function 𝑉(𝑥, 𝑡), which is positive definite,
decrescent, and radially unbounded, and another nonnegative
continuous function 𝑄(𝑥) ≥ 0 such that the infinitesimal
generator 𝑉(𝑥, 𝑡) along (5) satisfies

ℓ𝑉 :=
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥
𝑓 (𝑥) +

1

2
Tr{𝜎

𝑇

𝑔
𝑇

𝜕
2

𝑉

𝜕𝑥2
𝑔𝜎} ≤ −𝑄 (𝑥) ,

∀𝑥 ∈ 𝑅
𝑛

, 𝑡 ≥ 0,

(6)

where Tr denotes the matrix trace.Then, the equilibrium 𝑥 = 0

is globally stable in probability and

𝑃 { lim
𝑡→∞

𝑄 (𝑥 (𝑡)) = 0} = 1, ∀𝑥 (0) ∈ 𝑅
𝑛

. (7)

In order to solve the unknown nonlinear 𝑓
𝑖
(⋅) (𝑖 = 1, 2,

3, 4), the following radial basis function neural networks
(RBFNNs) [23] are used to identify them similar to fuzzy logic
systems [24–27].

AnRBFNN can approximate a continuous function ℎ(𝑋):
𝑅
𝑞

→ 𝑅,

ℎ
𝑛𝑛

(𝑋) = 𝑊
𝑇

𝜑 (𝑋) , (8)

where the input vector 𝑋 ∈ Ω ⊂ 𝑅
𝑞, weight vector 𝑊 = [𝑊

1
,

. . . , 𝑊
𝑚

]
𝑇

∈ 𝑅
𝑚, the NN node number 𝑚 > 1, and 𝜑(𝑋) =

[𝜑
1
(𝑋) ⋅ ⋅ ⋅ 𝜑

𝑚
(𝑋)]
𝑇, with 𝜑

𝑖
(𝑋) being Gaussian functions,

which have the form

𝜑
𝑖
(𝑋) = exp[

−(𝑋 − 𝜇
𝑖
)
𝑇

(𝑋 − 𝜇
𝑖
)

𝜂2
] , 𝑖 = 1, 2, . . . , 𝑚,

(9)

where 𝜇
𝑖

= [𝜇
𝑖1

, . . . , 𝜇
𝑖𝑞

]
𝑇 is the center of the receptive field

and 𝜂 is the width of the Gaussian function.
According to the literatures [23], the neural network

(8) can approximate any continuous function ℎ(𝑋) over a
compact set 𝐷 ⊂ 𝑅

𝑞 to arbitrary any accuracy as

ℎ (𝑋) = 𝑊
∗𝑇

𝜑 (𝑋) + 𝜀 (𝑋) , ∀𝑋 ∈ 𝐷, (10)

where 𝑊
∗ is an ideal constant weight, 𝜀(𝑋) is the bounded

approximation error, and 𝑊
∗ is defined as

𝑊
∗

= arg min
𝑊∈Ω

{sup
𝑋∈𝐷


ℎ (𝑋) − 𝑊

𝑇

𝜑 (𝑋)

} . (11)
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4. Adaptive Synchronization of the Energy
Resource System

For different initial conditions of systems (2) and (3), the two
coupled systems can achieve synchronization by designing
an appropriate control input 𝑢

𝑖
(𝑡). First, we define the

synchronization error vector between systems (2) and (3) as

𝑒
1

= 𝑥
2

− 𝑥
1

− ℎ
1
, 𝑒

2
= 𝑦
2

− 𝑦
1

− ℎ
2
,

𝑒
3

= 𝑧
2

− 𝑧
1

− ℎ
3
, 𝑒

4
= 𝑤
2

− 𝑤
1

− ℎ
4
,

(12)

where ℎ
𝑖

(𝑖 = 1, 2, 3, 4) is filter signal and will be given later.
From (2), (3), and (12), the error dynamical system can be

written as

𝑑𝑒
1

= [−ℎ̇
1

+ 𝑎
1
𝑒
1

− 𝑎
2

(𝑒
2

+ 𝑒
3
) −

𝑎
1
𝑥
2

2

𝑀
+

𝑎
1
𝑥
2

1

𝑀
− 𝑑
3
𝑒
4

+ 𝑎
1
ℎ
1

− 𝑎
2

(ℎ
2

+ ℎ
3
) − 𝑑
3
ℎ
4

+ 𝑓
1

(𝑥
2
)

+ 𝑢
1

(V
1

(𝑡)) ] 𝑑𝑡 + 𝑝
1

(𝑒
1
) 𝑑𝑊,

𝑑𝑒
2

= [−ℎ̇
2

− 𝑏
1
𝑒
2

− 𝑏
2
𝑒
3

+ 𝑏
3
𝑁𝑒
1

− 𝑏
3
𝑥
2

2
+ 𝑏
3
𝑥
2

1
+ 𝑏
3
𝑥
2
𝑧
2

− 𝑏
3
𝑥
1
𝑧
1

− 𝑏
1
ℎ
2

− 𝑏
2
ℎ
3

+ 𝑏
3
𝑁ℎ
1

+𝑓
2

(𝑦
2
) + 𝑢
2

(V
2

(𝑡)) ] 𝑑𝑡 + 𝑝
2

(𝑒
2
) 𝑑𝑊,

𝑑𝑒
3
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3

− 𝑐
1
𝑐
3
𝑒
3

+ 𝑐
1
𝑐
2
𝑥
2
𝑧
2

− 𝑐
1
𝑐
2
𝑥
1
𝑧
1

− 𝑐
1
𝑐
3
ℎ
3

+𝑓
3

(𝑧
2
) + 𝑢
3

(V
3

(𝑡)) ] 𝑑𝑡 + 𝑝
3

(𝑒
3
) 𝑑𝑊,

𝑑𝑒
4

= [−ℎ̇
4

+ 𝑑
1
𝑒
1

− 𝑑
2
𝑒
4

+ 𝑑
1
ℎ
1

− 𝑑
2
ℎ
4

+ 𝑓
4

(𝑤
2
)

+ 𝑢
4

(V
4

(𝑡)) ] 𝑑𝑡 + 𝑝
4

(𝑒
4
) 𝑑𝑊.

(13)

RBFNNs are used to identify 𝑓
𝑖
(⋅) (𝑖 = 1, 2, 3, 4), and (13) can

be rewritten as

𝑑𝑒
1

= [−ℎ̇
1

+ 𝑎
1
𝑒
1

− 𝑎
2

(𝑒
2

+ 𝑒
3
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𝑎
1
𝑥
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𝑀
+

𝑎
1
𝑥
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1

𝑀
− 𝑑
3
𝑒
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+ 𝑎
1
ℎ
1
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2
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+ ℎ
3
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3
ℎ
4
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∗𝑇

1
𝜑
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(𝑥
2
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(𝑥
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)
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1

(V
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𝑥
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𝑧
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𝑧
1

− 𝑏
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2

(𝑒
2
) 𝑑𝑊,

𝑑𝑒
3

= [−ℎ̇
3

− 𝑐
1
𝑐
3
𝑒
3

+ 𝑐
1
𝑐
2
𝑥
2
𝑧
2

− 𝑐
1
𝑐
2
𝑥
1
𝑧
1

− 𝑐
1
𝑐
3
ℎ
3

+ 𝑊
∗𝑇

3
𝜑
3

(𝑧
2
)+𝜀
3

(𝑧
2
)+𝑢
3

(V
3

(𝑡))]𝑑𝑡+𝑝
3

(𝑒
3
) 𝑑𝑊,

𝑑𝑒
4

= [−ℎ̇
4

+ 𝑑
1
𝑒
1

− 𝑑
2
𝑒
4

+ 𝑑
1
ℎ
1

− 𝑑
2
ℎ
4

+ 𝑊
∗𝑇

4
𝜑
4

(𝑤
2
)

+ 𝜀
4

(𝑤
2
) + 𝑢
4

(V
4

(𝑡)) ] 𝑑𝑡 + 𝑝
4

(𝑒
4
) 𝑑𝑊,

(14)

where |𝜀
𝑖
| ≤ 𝜀
∗

𝑖
(𝑖 = 1, 2, 3, 4) and 𝜀

∗

𝑖
is a positive constant.

In this section, we assume that all the parameters of
the energy resource system are unknown. For convenience,
similar to [7], we define 𝑎

3
= 𝑎
1
/𝑀, 𝑏

4
= 𝑏
3
𝑁, 𝑞
1

= 𝑐
1
𝑐
2
, and

𝑞
2

= 𝑐
1
𝑐
3
; the system (14) can be rewritten as

𝑑𝑒
1

= [−ℎ̇
1

+ 𝑎
1
𝑒
1

− 𝑎
2

(𝑒
2

+ 𝑒
3
) − 𝑎
3
𝑥
2

2
+ 𝑎
3
𝑥
2

1
− 𝑑
3
𝑒
4

+ 𝑎
1
ℎ
1

− 𝑎
2

(ℎ
2

+ ℎ
3
) − 𝑑
3
ℎ
4

+ 𝑊
∗𝑇

1
𝜑
1

(𝑥
2
) + 𝜀
1

(𝑥
2
)

+ 𝑢
1

(V
1

(𝑡)) ] 𝑑𝑡 + 𝑝
1

(𝑒
1
) 𝑑𝑊,

𝑑𝑒
2

= [−ℎ̇
2

− 𝑏
1
𝑒
2

− 𝑏
2
𝑒
3

+ 𝑏
4
𝑒
1

− 𝑏
3
𝑥
2

2

+ 𝑏
3
𝑥
2

1
+ 𝑏
3
𝑥
2
𝑧
2

− 𝑏
3
𝑥
1
𝑧
1

− 𝑏
1
ℎ
2

− 𝑏
2
ℎ
3

+ 𝑏
4
ℎ
1

+ 𝑊
∗𝑇

2
𝜑
2

(𝑦
2
) + 𝜀
2

(𝑦
2
)

+ 𝑢
2

(V
2

(𝑡)) ] 𝑑𝑡 + 𝑝
2

(𝑒
2
) 𝑑𝑊,

𝑑𝑒
3

= [−ℎ̇
3

− 𝑞
2
𝑒
3

+ 𝑞
1
𝑥
2
𝑧
2

− 𝑞
1
𝑥
1
𝑧
1

− 𝑞
2
ℎ
3

+ 𝑊
∗𝑇

3
𝜑
3

(𝑧
2
)

+ 𝜀
3

(𝑧
2
) + 𝑢
3

(V
3

(𝑡)) ] 𝑑𝑡 + 𝑝
3

(𝑒
3
) 𝑑𝑊,

𝑑𝑒
4

= [−ℎ̇
4

+ 𝑑
1
𝑒
1

− 𝑑
2
𝑒
4

+ 𝑑
1
ℎ
1

− 𝑑
2
ℎ
4

+ 𝑊
∗𝑇

4
𝜑
4

(𝑤
2
)

+ 𝜀
4

(𝑤
2
) + 𝑢
4

(V
4

(𝑡)) ] 𝑑𝑡 + 𝑝
4

(𝑒
3
) 𝑑𝑊.

(15)

Define the dynamic system as

ℎ̇
𝑖

= −ℎ
𝑖

+ (𝑢
𝑖

− V
𝑖
) , 𝑖 = 1, 2, 3, 4. (16)

Choose the following Lyapunov function candidate 𝑉 as

𝑉 =
1

2
(𝑒
2

1
+ 𝑒
2

2
+ 𝑒
2

3
+ 𝑒
2

4
) + �̃�

𝑇

1
�̃�
1

+ �̃�
𝑇

2
�̃�
2

+ �̃�
𝑇

3
�̃�
3

+ �̃�
𝑇

4
�̃�
4

+ 𝑎
2

1
+ 𝑎
2

2
+ 𝑎
2

3
+ �̃�
2

1
+ �̃�
2

2
+ �̃�
2

3
+ �̃�
2

4

+ 𝑑
2

1
+ 𝑑
2

2
+ 𝑑
2

3
+ 𝑞
2

1
+ 𝑞
2

2
,

(17)

where 𝑎
𝑖

= 𝑎
𝑖

− 𝑎
𝑖
, 𝑑
𝑖

= 𝑑
𝑖

− 𝑑
𝑖

(𝑖 = 1, 2, 3), �̃�
𝑗

= 𝑊
∗

𝑗
− �̂�
𝑗
,

�̃�
𝑗

= 𝑏
𝑗

− �̂�
𝑗

(𝑗 = 1, 2, 3, 4), and 𝑞
𝑘

= 𝑞
𝑘

− 𝑞
𝑘

(𝑘 = 1, 2).
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Similar to [16, 17], the ℓ infinitesimal generator of 𝑉 along
with the solutions of (15) is

ℓ𝑉 = 𝑒
1

[ℎ
1

+ V
1

+ 𝑎
1
𝑒
1

− 𝑎
2

(𝑒
2

+ 𝑒
3
) − 𝑎
3
𝑥
2

2
+ 𝑎
3
𝑥
2

1

− 𝑑
3
𝑒
4

+ 𝑎
1
ℎ
1

− 𝑎
2

(ℎ
2

+ ℎ
3
) − 𝑑
3
ℎ
4

+ 𝑝
1

(𝑡)

+ �̂�
𝑇

1
𝜑
1

(𝑥
2
) + 𝜀
1

(𝑥
2
)]

+ 𝑒
2

[ℎ
2

+ V
2

− �̂�
1
𝑒
2

− �̂�
2
𝑒
3

+ �̂�
4
𝑒
1

− �̂�
3
𝑥
2

2

+ �̂�
3
𝑥
2

1
+ �̂�
3
𝑥
2
𝑧
2

− �̂�
3
𝑥
1
𝑧
1

− �̂�
1
ℎ
2

− �̂�
2
ℎ
3

+ �̂�
4
ℎ
1

+ 𝑝
2

(𝑡) + �̂�
𝑇

2
𝜑
2

(𝑦
2
) + 𝜀
2

(𝑦
2
)]

+ 𝑒
3

[ℎ
3

+ V
3

− 𝑞
2
𝑒
3

+ 𝑞
1
𝑥
2
𝑧
2

− 𝑞
1
𝑥
1
𝑧
1

− 𝑞
2
ℎ
3

+ 𝑝
3

(𝑡) + �̂�
𝑇

3
𝜑
3

(𝑧
2
) + 𝜀
3

(𝑧
2
)]

+ 𝑒
4

[ℎ
4

+ V
4

+ 𝑑
1
𝑒
1

− 𝑑
2
𝑒
4

+ 𝑑
1
ℎ
1

− 𝑑
2
ℎ
4

+ 𝑝
4

(𝑡) + �̂�
𝑇

4
𝜑
4

(𝑤
2
) + 𝜀
4

(𝑤
2
)]

+ �̃�
𝑇

1
[𝑒
1
𝜑
1

(𝑥
2
) −

̇̂
𝑊
1
] + �̃�

𝑇

2
[𝑒
2
𝜑
2

(𝑦
2
) −

̇̂
𝑊
2
]

+ �̃�
𝑇

3
[𝑒
3
𝜑
3

(𝑧
2
) −

̇̂
𝑊
3
] + �̃�

𝑇

4
[𝑒
4
𝜑
4

(𝑤
2
) −

̇̂
𝑊
4
]

+ 𝑎
1

[𝑒
2

1
+ 𝑒
1
ℎ
1

− ̇�̂�
1
]

+ 𝑎
2

[𝑒
1

(𝑒
2

+ 𝑒
3
) − 𝑒
1

(ℎ
2

+ ℎ
3
) − ̇�̂�
2
]

+ 𝑎
3

[−𝑒
1
𝑥
2

2
+ 𝑒
1
𝑥
2

1
− ̇�̂�
3
] + �̃�
1

[−𝑒
2

2
− 𝑒
2
ℎ
2

−
̇

�̂�
1
]

+ �̃�
2

[−𝑒
2
𝑒
3

− 𝑒
2
ℎ
3

−
̇

𝑏
2
]

+ �̃�
3

[−𝑒
2
𝑥
2

2
+ 𝑒
2
𝑥
2

1
+ 𝑒
2
𝑥
2
𝑧
2

− 𝑒
2
𝑥
1
𝑧
1

−
̇

�̂�
3
]

+ �̃�
4

[𝑒
2
𝑒
1

+ 𝑒
2
ℎ
1

−
̇

�̂�
4
] + 𝑑
1

[𝑒
4
𝑒
1

+ 𝑒
4
ℎ
4

+ 𝑒
4
ℎ
1

−
̇

�̂�
1
]

+ 𝑑
2

[−𝑒
2

4
−

̇
�̂�
2
] + 𝑑
3

[−𝑒
1

(𝑒
4

+ ℎ
4
) −

̇
�̂�
3
]

+ 𝑞
1

[𝑒
3
𝑥
2
𝑧
2

− 𝑒
3
𝑥
1
𝑧
1

− ̇�̂�
1
] + 𝑞
2

[−𝑒
2

3
− 𝑒
3
ℎ
3

− ̇�̂�
2
]

+

4

∑

𝑖=1

𝑒
𝑖
𝜎
𝑖
(𝑒
𝑖
) .

(18)

Design the actual controllers V
𝑗
and parameters update laws

of �̂�
𝑗
, 𝑎
𝑖
, 𝑑
𝑖

(𝑖 = 1, 2, 3), �̂�
𝑗

(𝑗 = 1, 2, 3, 4), and 𝑞
𝑘

(𝑘 = 1, 2)

as follows:

V
1

= − 𝑙
1
𝑒
1

− 𝜎
1

(𝑒
1
) − ℎ
1

− 𝑎
1
𝑒
1

+ 𝑎
2

(𝑒
2

+ 𝑒
3
)

+ 𝑎
3
𝑥
2

2
− 𝑎
3
𝑥
2

1
+ 𝑑
3
𝑒
4

− 𝑎
1
ℎ
1

+ 𝑎
2

(ℎ
2

+ ℎ
3
)

+ 𝑑
3
ℎ
4

− �̂�
𝑇

1
𝜑
1

(𝑥
2
) − sgn (𝑒

1
) (𝜀
∗

1
+ 𝛼
1
) ,

(19)

V
2

= − 𝑙
2
𝑒
2

− 𝜎
2

(𝑒
2
) − ℎ
2

+ �̂�
1
𝑒
2

+ �̂�
2
𝑒
3

− �̂�
4
𝑒
1

+ �̂�
3
𝑥
2

2
− �̂�
3
𝑥
2

1
− �̂�
3
𝑥
2
𝑧
2

+ �̂�
3
𝑥
1
𝑧
1

+ �̂�
1
ℎ
2

+ �̂�
2
ℎ
3

− �̂�
4
ℎ
1

− �̂�
𝑇

2
𝜑
2

(𝑦
2
) − sgn (𝑒

2
) (𝜀
∗

2
+ 𝛼
2
) ,

(20)

V
3

= − 𝑙
3
𝑒
3

− 𝜎
3

(𝑒
3
) − ℎ
3

+ 𝑞
2
𝑒
3

− 𝑞
1
𝑥
2
𝑧
2

+ 𝑞
1
𝑥
1
𝑧
1

+ 𝑞
2
ℎ
3

− �̂�
𝑇

3
𝜑
3

(𝑧
2
) − sgn (𝑒

3
) (𝜀
∗

3
+ 𝛼
3
) ,

(21)

V
4

= − 𝑙
4
𝑒
4

− 𝜎
4

(𝑒
4
) − ℎ
4

− 𝑑
1
𝑒
1

+ 𝑑
2
𝑒
4

− 𝑑
1
ℎ
1

+ 𝑑
2
ℎ
4

− �̂�
𝑇

4
𝜑
4

(𝑤
2
) − sgn (𝑒

4
) (𝜀
∗

4
+ 𝛼
4
) ,

(22)

where 𝑙
𝑖

(𝑖 = 1, 2, 3, 4) are positive design parameters. Con-
sider the following:

̇̂
𝑊
1

= 𝑒
1
𝜑
1

(𝑥
2
) , (23)

̇̂
𝑊
2

= 𝑒
2
𝜑
2

(𝑦
2
) , (24)

̇̂
𝑊
3

= 𝑒
3
𝜑
3

(𝑧
2
) , (25)

̇̂
𝑊
4

= 𝑒
4
𝜑
4

(𝑤
2
) , (26)

̇�̂�
1

= 𝑒
2

1
+ 𝑒
1
ℎ
1
, (27)

̇�̂�
2

= 𝑒
1

(𝑒
2

+ 𝑒
3
) − 𝑒
1

(ℎ
2

+ ℎ
3
) , (28)

̇�̂�
3

= −𝑒
1
𝑥
2

2
+ 𝑒
1
𝑥
2

1
, (29)

̇
�̂�
1

= −𝑒
2

2
− 𝑒
2
ℎ
2
, (30)

̇
�̂�
2

= −𝑒
2
𝑒
3

− 𝑒
2
ℎ
3
, (31)

̇
�̂�
3

= −𝑒
2
𝑥
2

2
+ 𝑒
2
𝑥
2

1
+ 𝑒
2
𝑥
2
𝑧
2

− 𝑒
2
𝑥
1
𝑧
1
, (32)

̇
�̂�
4

= 𝑒
2
𝑒
1

+ 𝑒
2
ℎ
1
, (33)

̇
�̂�
1

= 𝑒
4
𝑒
1

+ 𝑒
4
ℎ
4

+ 𝑒
4
ℎ
1
, (34)

̇
�̂�
2

= −𝑒
2

4
, (35)

̇
�̂�
3

= −𝑒
1

(𝑒
4

+ ℎ
4
) , (36)

̇�̂�
1

= 𝑒
3
𝑥
2
𝑧
2

− 𝑒
3
𝑥
1
𝑧
1
, (37)

̇�̂�
2

= −𝑒
2

3
− 𝑒
3
ℎ
3
. (38)

Substituting (19)–(38) into (18) results in

ℓ𝑉 ≤ −𝑙
1
𝑒
2

1
− 𝑙
2
𝑒
2

2
− 𝑙
3
𝑒
2

3
− 𝑙
4
𝑒
2

4
. (39)

From (39) and Lemma 3, we can conclude that the states
𝑥
2
, 𝑦
2
, 𝑧
2
, and 𝑤

2
of response system (2) and the states 𝑥

1
,

𝑦
1
, 𝑧
1
, and 𝑤

1
of drive system (3) are ultimately synchronized

asymptotically in probability.
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Figure 4: The trajectory of 𝑒
1
.
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Figure 5: The trajectory of 𝑒
2
.

5. Simulation Results

In this section, external perturbations 𝑝
𝑖
(𝑒
𝑖
) = 𝑒
𝑖
; uncertain

nonlinear 𝑓
1
(𝑥
2
) = 0.1𝑥

2

2
, 𝑓
2
(𝑦
2
) = 0.1𝑦

2

2
, 𝑓
3
(𝑧
2
) = 𝑧
2
, and

𝑓
4
(𝑤
2
) = 𝑤

2
. Consider 𝛼

1
= 𝛼
2

= 𝛼
2

= 𝛼
2

= 0.1 and
𝜀
∗

1
= 𝜀
∗

2
= 𝜀
∗

3
= 𝜀
∗

4
= 0.1. RBFNNs, �̂�

𝑇

𝑖
𝜑
𝑖
(⋅), contain 25

nodes, with centers evenly spaced in [−4, 4] and width is 2.
𝑊(𝑡) is assumed to be Gaussian white noise with zero mean
and variance 1.0.

The initial values are chosen as 𝑥
1
(0) = 0.1, 𝑦

1
(0) = −0.8,

𝑧
1
(0) = 0.2, 𝑤

1
(0) = 0.1, 𝑥

2
(0) = 0.4, 𝑦

2
(0) = 0.1, 𝑧

2
(0) =

0.6, and 𝑤
2
(0) = −0.3, and the other initial values are chosen

as zeros. The saturation values are 𝑢
2𝑀

= 5, 𝑢
3𝑀

= 2, and
𝑢
4𝑀

= 2. Design parameters in controllers are 𝑙
1

= 20, 𝑙
2

= 20,
𝑙
3

= 20, and 𝑙
4

= 20. The simulation results are shown in
Figures 4, 5, 6, 7, 8, 9, 10, and 11.

Remark 4. It is worth pointing out that the method of [10]
cannot be used to control the systems of this paper.There exist
three reasons: (i) the system of this paper is four dimensional
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Figure 6: The trajectory of 𝑒
3
.
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Figure 7: The trajectory of 𝑒
4
.
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Figure 8:The trajectories of V
1
(solid line) and 𝑢

1
(dash-dotted line).
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−20

−15

−10

−5

0

5

Time (s)
0 0.4 0.6 0.8 1.2 1.40.2 1 1.6 1.8 2

Figure 9:The trajectories of V
2
(solid line) and 𝑢

2
(dash-dotted line).
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Figure 10: The trajectories of V
3
(solid line) and 𝑢

3
(dash-dotted

line).

and the system in [10] is three dimensional; (ii) the system of
this paper contains stochastic disturbances, and the system
in [10] does not contain them; (iii) the controlled response
system of this paper contains unknown nonlinearities, and
[10] does not contain them.

6. Conclusions

This paper has solved the synchronization problems of a class
of unknown parameters four-dimensional energy resource
system.The main features of the proposed algorithm are that
(i) the problems of the input constraint have been solved
by employing a new auxiliary system; (ii) the unknown
nonlinearities and stochastic disturbances that existed in the
response system have been overcome by the neural networks
and some special robust terms, respectively; (iii) the stability
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Figure 11: The trajectories of V
4
(solid line) and 𝑢

4
(dash-dotted

line).

of the energy resource demand-supply system has been guar-
anteed based on stochastic Lyapunov theory.
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Due to the complexity and uncertainty of microbial fermentation processes, data coming from the plants often contain some
outliers. However, these data may be treated as the normal support vectors, which always deteriorate the performance of soft sensor
modeling. Since the outliers also contaminate the correlation structure of the least square support vector machine (LS-SVM), the
fuzzy pruning method is provided to deal with the problem. Furthermore, by assigning different fuzzy membership scores to data
samples, the sensitivity of themodel to the outliers can be reduced greatly.The effectiveness and efficiency of the proposed approach
are demonstrated through two numerical examples as well as a simulator case of penicillin fermentation process.

1. Introduction

For the limitation of advanced measurement techniques,
some important process variables in biochemical industrial
processes, such as product composition, product concentra-
tion, and biomass concentration, are difficult or impossible to
measure online. However, these variables are very important
for the products quality and the result of the whole reaction
process. A soft sensor model is always needed to construct
between variables which are easy to measure online and one
which is difficult to measure. Then a value of an objective
variable can be inferred by this model. The approaches and
corresponding applications of soft sensors have been dis-
cussed in some literature [1–4]. For example, partial least
squares (PLS) and principal component analysis (PCA) [5, 6]
are the most popular projection based soft sensor modeling
methods for modeling and prediction. However, a drawback
of these models is their linear nature. If it is known that the
relation between the easy-to-measure and the difficult-to-
measure variables is nonlinear, then a nonlinear modeling
method should be used. In last decades, data-based soft
sensor modeling approaches have been intensively studied,
such as nonlinear partial least squares (NPLS), nonlinear
principal component analysis (NPCA), artificial neural net-
works (ANNs), and support vector machine (SVM) [7–
10]. Although the NPCA is a well-established and powerful

algorithm, it has several drawbacks. One of them is that the
principal components describe very well the input space but
do not reflect the relation between the input and the output
data space. A solution to this drawback is given by the NPLS
method. NPLS models are appropriate to study the behavior
of the process. Unfortunately, sometimes the algorithm of
NPLS is available only for specific nonlinear relationships.
To break through the limitation of NPLS, ANN is adopted to
solve the complexity andhighly nonlinear problem in the case
of the sample data tending to infinity. The disadvantage of
ANNs is that during their learning they are prone to get stuck
in localminima,which can result in suboptimal performance.
Meanwhile, SVM has been demonstrated to work very well
for a wide spectrumof applications under the limited training
data samples, so it is not surprising that it has also been
successfully applied as soft sensor.

Support vector machine (SVM) proposed by Vapnik [11,
12], which is based on statistical learning theory, obtains
the optimal classification of the sample data through a
quadratic programming. So it can balance the risk of learning
algorithm and promotion of the extension ability. As a
sophisticated soft sensor modeling method, SVM has a lot of
advantages in solving small sample data and nonlinear and
high dimensional pattern recognition and has been applied
to the fermentation process successfully [13, 14]. Least squares
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support vector machine (LS-SVM) proposed by Suykens and
Vandewalle [15] is an extension of the standard SVM. It can
solve linear equations with faster solution speed and figure
out the robustness, sparseness, and large-scale computing
problems. However, all training data are treated as the normal
support vector which loses the sparseness of SVM [16–19].
In this paper, the effective work addressed in Section 3 could
improve the performance of the standard LS-SVM effectively.

Penicillin fermentation process is a typical biochemi-
cal reaction process with the features of nonlinearity and
dynamic, which is caused by the factors such as genetic
variation of somatic cell, microbial sensitivity to environment
changing, and instability of rawmaterial and seed quality that
bring about serious nonlinearity and uncertainty [20]. For
this process, key variables are concentration of the biomass,
product, and substrate which are difficult to measure directly.
However, some other auxiliary variables are easy to measure.
So we choose aeration rate, dissolved oxygen concentration,
agitator power, and others as auxiliary variables and the con-
centration of penicillin as the quality variable in this process.
The next step is to construct the inferred model between the
auxiliary variables and the quality variable. Outliers are com-
monly encountered in penicillin fermentation process which
may be treated as the normal support vector and always
has a bad influence on the precision of the soft sensor
model. So applying the idea of fuzzy pruning for LS-SVM
algorithm to cut off these outliers and reduce the number of
support vectors will improve the sparseness and precision of
the original LS-SVM model. Also assigning different fuzzy
membership scores to sample data, the sensitivity to the
outliers is reduced and the accuracy of the model is further
improved as well. Finally, the LS-SVM and fuzzy pruning
based LS-SVMsoft sensormodels for the penicillin fermenta-
tion process are constructed based on the optimal parameters
obtained by using particle swarm optimization algorithm
[21, 22]. Thus a soft sensor model with higher prediction
precision and better generalization capability for penicillin
fermentation process is completed.

The remainder of this paper is organized as follows.
Section 2 begins with the revisit of LS-SVM algorithm and
lays out themathematical formulations.Detailed descriptions
of improved LS-SVM based on fuzzy pruning algorithm are
provided in Section 3. Two numerical simulation examples
are illustrated in Section 4 which aims to demonstrate the
effectiveness of the proposed method in developing soft sen-
sors.Thereafter, a soft sensor application for the penicillin fer-
mentation process using the proposed approach is presented
in Section 5. Section 6 draws conclusions based on the results
obtained in this paper.

2. The LS-SVM Revisit

Given the training data {𝑇 = (𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, 2, 3, . . . , 𝑙}, 𝑥

𝑖
∈

𝑅
𝑛 and 𝑦

𝑖
∈ 𝑅 denote the input patterns and one-dimension

output data, respectively. Similar to the standard SVM,
LS-SVMnonlinear regression is mapping the data to a higher
dimension space 𝐹 by using a nonlinear function 𝜙(𝑥) and

constructing an optimal linear regression function in the
higher dimension space:

𝑦 (𝑥) = 𝜔
𝑇

⋅ 𝜙 (𝑥) + 𝑏. (1)
Here 𝜔 is the weight value and 𝑏 is the threshold.

The main difference between LS-SVM and SVM is that
LS-SVM adopts the equality constraints instead of inequal-
ity constraints, and empirical risk is the deviation of the
quadratic rather than one square deviation. By introducing
the Kernel function 𝜎 and the penalty factor𝐶, one considers
the following optimization problem:

min
𝜔,𝑏,𝑒

𝐽 (𝜔, 𝑒) =
1

2
𝜔
𝑇

𝜔 +
1

2
𝐶

𝑙

∑

𝑖=1

𝑒
𝑖

2

s.t. 𝑦
𝑖
= 𝜔
𝑇

𝜙 (𝑥
𝑖
) + 𝑏 + 𝑒

𝑖
, 𝑖 = 1, 2, . . . 𝑙.

(2)

To solve the optimization problem, the constrained opti-
mization problem should be converted to unconstrained
optimization problem first. By introducing Lagrange multi-
plier 𝛼

𝑖
, we obtain the following Lagrange function as follows:

𝐿 (𝜔, 𝑏, 𝑒, 𝛼) = 𝐽 (𝜔, 𝑒) −

𝑙

∑

𝑖=1

𝛼
𝑖
{𝜔
𝑇

𝜙 (𝑥
𝑖
) + 𝑏 + 𝑒

𝑖
− 𝑦
𝑖
} . (3)

Then according to theMercer condition, the specific form
of the nonlinear mapping does not need to be known a
priori. Suppose the kernel function takes the form 𝑘(𝑥

𝑖
, 𝑥
𝑗
) =

𝜙(𝑥
𝑖
) ⋅ 𝜙(𝑥

𝑗
); this optimization problem could be changed

into several linear equations. Based on the conditions of
Karush-Kuhn-Tucker, calculating the partial derivative of
𝐿(𝜔, 𝑏, 𝑒

𝑖
, 𝛼
𝑖
) with respect to 𝜔, 𝑏, 𝑒

𝑖
, and 𝛼

𝑖
, respectively, and

setting to zero yield

𝜕𝐿

𝜕𝜔
= 0, 𝜔 =

𝑙

∑

𝑖=1

𝛼
𝑖
𝜙 (𝑥
𝑖
) ,

𝜕𝐿

𝜕𝑏
= 0,

𝑙

∑

𝑖=1

𝛼
𝑖
= 0,

𝜕𝐿

𝜕𝑒
𝑖

= 0, 𝛼
𝑖
= 𝐶𝑒
𝑖
,

𝜕𝐿

𝜕𝛼
𝑖

= 0, 𝜔
𝑇

𝜙 (𝑥
𝑖
) + 𝑏 + 𝑒

𝑖
− 𝑦
𝑖
= 0.

(4)

To simplify the equations, we can get a compressed matrix
equation:

(

0 𝑒
𝑇

𝑒 𝑄 +
1

𝐶
𝐼
)(

𝑏

𝛼
) = (

0

𝑦
) , (5)

where 𝑄
𝑖𝑗
= 𝜙(𝑥

𝑖
) ⋅ 𝜙(𝑥

𝑗
) = 𝑘(𝑥

𝑖
, 𝑥
𝑗
), 𝑒 = (1, 1, 1 . . . 1)𝑇, 𝑦 =

(𝑦
1
, 𝑦
2
. . . 𝑦
𝑙
)
𝑇, 𝛼 = (𝛼

1
, 𝛼
2
. . . 𝛼
𝑙
)
𝑇

𝑖 = 1, 2, 3 . . . 𝑙, 𝐶 > 0

denotes the penalty factor, and 𝐼 denotes the identity matrix.
Solving the matrix equation (5), eventually the function of
least squares vector machines is estimated as

𝑦 (𝑥) =

𝑙

∑

𝑖=1

𝛼
𝑖
𝑘 (𝑥, 𝑥

𝑖
) + 𝑏. (6)
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3. Improved LS-SVM with Fuzzy
Pruning Algorithm

3.1. The Idea of Fuzzy Pruning Algorithm. Compared with
SVM, the computational load of LS-SVM is reduced greatly.
However, LS-SVM loses its sparseness because all training
data are treated as support vectors even the outliers which
always have a bad influence on the precision of the soft sensor
model. In this paper, aiming tominimize effects of the outliers
as well as the antidisturbance ability of sampling data [23, 24],
fuzzy pruning approach is employed to handle the problem.
Thenumber of the support vectors is reducedwhich improves
the sparseness of LS-SVM and model accuracy as well.
Furthermore, the sensitivity to outliers of the proposed algo-
rithm can be reduced through the fuzzy membership score
assigned to the data samples.

The absolute value of Lagrange multiplier determines the
importance of data in the training process which means the
higher the absolute value, the greater the influence degree.
The absolute value of Lagrange multiplier of outliers is often
higher than that of the normal data. Based on this situation,
the data which have the higher absolute value of Lagrange
multiplier will be cut off according to certain proportion (e.g.,
5%). When these data are cut off, the impact of outlier data
is minimized, and the model sparseness and accuracy are
improved simultaneously.

Since Lagrange multiplier plays an important role in
constructing model, a fuzzy membership score is introduced
to adjust the weight of data for modeling. Fuzzy membership
value is defined as

𝑠
𝑖
= (1 − 𝛿)

𝛼𝑖
 − |𝛼|min

|𝛼|max − |𝛼|min
, 0 ≤ 𝛿 < 1, (7)

where 𝑠
𝑖
is the fuzzymembership score and 𝛼

𝑖
is the Lagrange

multiplier of the 𝑖th sample data. Meanwhile, 𝛿 need to be
given an appropriate value between 0 and 1.

It is noticed that the fuzzy membership score is near
to zero when Lagrange multiplier is very small. So the cor-
responding sampling data may play no role in modeling,
whichmeans a part of sample data can be cut off according to
the absolute value of Lagrangemultiplier that is very small. As
a result, the sparseness of the proposed LS-SVM algorithm is
further improved.

3.2. Description of Fuzzy Pruning Based LS-SVM Algorithm.
Adding fuzzy membership score 𝑠

𝑖
to error 𝑒

𝑖
, the new

quadratic programming problem is expressed as follows:

min
𝜔,𝑏,𝑒

𝐽 (𝜔, 𝑒) =
1

2
𝜔
𝑇

𝜔 +
1

2
𝐶

𝑙

∑

𝑖=1

𝑠
𝑖
𝑒
2

𝑖

s.t. 𝑦
𝑖
= 𝜔
𝑇

Φ(𝑥
𝑖
) + 𝑏 + 𝑒

𝑖
, 𝑖 = 1, 2, . . . 𝑙.

(8)
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Figure 1: Lagrange multiplier value.
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Figure 2: Prediction output of one-dimension function.

Since the direct optimization is not tractable, Lagrange
method is introduced to convert it to become an uncon-
strained optimization problem.Therefore, the Lagrange func-
tion can be obtained as

𝐿 (𝜔, 𝑏, 𝑒, 𝛼) = 𝐽 (𝜔, 𝑒) −

𝑙

∑

𝑖=1

𝛼
𝑖
{𝜔
𝑇

𝜙 (𝑥
𝑖
) + 𝑏 + 𝑒

𝑖
− 𝑦
𝑖
} . (9)

The optimization requires the computation of the deriva-
tive of 𝐿(⋅) with respect to 𝜔, 𝑏, 𝑒

𝑖
, and 𝛼

𝑖
, respectively.

Thereafter, a set of linear equations are obtained and can be
simplified as

(
0 𝑒

𝑇

𝑒 𝑄 +𝑀
𝑛

)(
𝑏
∗

𝛼
∗) = (

0

𝑦
) , (10)

where 𝑄
𝑖𝑗
= (𝜙(𝑥

𝑖
) ⋅ 𝜙(𝑥

𝑗
)) = 𝑘(𝑥

𝑖
, 𝑥
𝑗
), 𝑒 = (1, 1, 1 . . . 1)

𝑇,
𝑦 = (𝑦

1
, 𝑦
2
. . . 𝑦
𝑙
)
𝑇, 𝛼∗ = (𝛼

1
, 𝛼
2
. . . 𝛼
𝑙
)
𝑇, 𝑀

𝑛
=

diag{1/𝐶𝑠
1
, . . . , 1/𝐶𝑠

𝑙
}, and 𝐶 > 0 denotes the penalty factor.

Eventually, the fuzzy pruning based LS-SVM function
takes the form as follows:

𝑦 (𝑥) =

𝑙

∑

𝑖=1

𝛼
∗

𝑖
𝑘 (𝑥, 𝑥

𝑖
) + 𝑏
∗

. (11)
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3.3. The Modeling Steps Based on Fuzzy Pruning LS-SVM.
The proposed LS-SVM algorithm based on fuzzy pruning
technique can be summarized as follows.

(1) Based on the training data set {𝑥
𝑖
, 𝑦
𝑖
}
𝑙

𝑖=1
, we can

calculate the Lagrange multiplier 𝛼
𝑖
.

(2) Choose a suitable 𝛿; the fuzzy membership scores 𝑠
𝑖

of training data are obtained from (7).

(3) Build a new data set {𝑥
𝑖
, 𝑦
𝑖
, 𝑠
𝑖
}
𝑙

𝑖=1
, and train the new

data set under the scheme of fuzzy pruning LS-SVM
algorithm again; then we can get the new 𝛼

∗

𝑖
.

(4) Sort the Lagrange multiplier 𝛼
𝑖
, and cut off the data

taking larger Lagrangemultiplier according to certain
proportion (e.g., 5%).

(5) Then the fuzzy pruning based LS-SVM algorithm is
applied to train the current data set. If the fitting per-
formance degrades, the training procedure is done.
Otherwise, switch to (4).

4. Two Numerical Simulations

4.1. One-Dimension Function. The effectiveness and effi-
ciency of handing the outliers through the proposed
approach are evaluated through two numerical functions. All
the simulation experiments are run on a 2.8GH CPU with
1024MB RAM PC using Matlab 7.11.

Consider one-dimension function defined as follows:

𝑦 =
sin𝑥
𝑥

, −15 < 𝑥 < 15. (12)

100 data are generated in [−15, 15] randomly as the training
data set. To test the performance of detecting outliers, 30%
disturbance is added to the 20th, 40th, 60th, 80th, and 100th
data sample, respectively. And another 100 data are collected
for evaluation.

It can be seen from Figure 1 that the outliers have the
higher value of Lagrange multiplier as mentioned above.
Using PSO algorithm (𝑤 keeps linear decline from 1.2 to 0.4,
population size is 20, and maximum number of iterations of
the population is 200) to optimize kernel parameter 𝜎 and
the penalty factor 𝐶, then the LS-SVM and fuzzy pruning
LS-SVM models are constructed to predict and compare
(Figures 2 and 3). Figure 3 is the 45-degree line comparison
between different measurements. If two measurements agree
with the true outputs, then all data points will fall into the
black 45-degree line. The blue circles denote the LS-SVM
measurements and the pink asterisks denote the model
predictions of fuzzy pruning LS-SVM. We can see that the
estimation with the fuzzy pruning LS-SVM fits the black line
better and thus provides a superior performance compared to
the LS-SVM observation.

The detailed results such as the maximum absolute error
(Max EE), themean absolute error (Mean EE), and rootmean
square error (RMSE) are calculated and listed in Table 1. The
RMSE decreased from 1.21% to 0.052%, which indicates the
fuzzy pruning LS-SVM has higher prediction performance
and better antidisturbance.
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Figure 3: 45-degree comparison of the two soft sensors.
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Figure 4: Lagrange multiplier value.

4.2. Two-Dimension Function. A two-dimension function is
described as

𝑧 = sin𝑥 cos𝑦, 𝑥 ≥ −𝜋, 𝑦 ≤ 𝜋. (13)

100 data are generated randomly in the range of [−𝜋, 𝜋],
whichmakes up a training data set.Then the 20th, 40th, 60th,
80th, and 100th data points are added with 30% disturbance
separately and the performance is tested by using another
different 100 data. As is shown in Figure 4, Lagrange multi-
plier value of data points that corrupted by some disturbance
always has the higher value. Compared results are shown in
Figure 5. From Table 2, prediction accuracy of fuzzy pruning
LS-SVM is much higher than LS-SVM, which indicates the
five outliers have been detected and cut off effectively using
the proposed method.

5. An Experiment Simulation

The Pensim simulator provides a simulation of a fed-batch
fermentation process for penicillin production. The main
component of the process is a fermenter, where the biological
reaction takes place. It fully considers the most factors
influencing the penicillin fermentation process, such as
PH, aeration rate, substrate feed rate, carbon dioxide, and



Abstract and Applied Analysis 5

Table 1: One-dimension function predicted results.

Model 𝐶 𝜎 MaxEE Mean EE RMSE
LS-SVM 4616.2 1.5118 0.0640 0.0079 0.0121
Fuzzy pruning LS-SVM 4616.2 1.5118 0.0028 0.0002 5.2456𝑒 (−4)
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Figure 5: Prediction error of two-dimension function.
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Figure 6: Lagrange multiplier value.

penicillin production. The practicability and validity of the
platform have been fully verified [25–27] and it has been a
benchmark problem for modeling and diagnosis detection.

In this paper Pensim simulation platform is used to gen-
erate the original 100 training data. Then 30% disturbance is
added to the 20th, 30th, 40th, 60th, and 85th, respectively, and
another 100 data are used as test data to verify the constructed
model. The simulation results are shown in Figures 7 and 8.

To further exhibit the difference of the two methods, the
indexes of Max EE, Mean EE, and RMSE of each method are
also calculated and listed in Table 3.

Compared to LS-SVM, the proposed approach makes
RMSE decrease from 2.44% to 0.97%, which indicates the
fuzzy pruning LS-SVM has better prediction performance.
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Figure 7: Penicillin concentration prediction.

Lagrange multiplier values according to each data point
are shown in Figure 6, and we can easily find out the outliers
obviously have much bigger Lagrange multiplier. Figure 8
is the 45-degree line comparison between two different soft
sensors. Clearly, the fuzzy pruning based LS-SVM exhibits
the better capability of approximating the true process. It has
effectively handled the disturbance of the outliers so that their
impact on modeling is minimized to lowest.
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Table 2: Two-dimension function predicted results.

Model 𝐶 𝜎 MaxEE Mean EE RMSE
LS-SVM 9528.2 1.4557 0.0475 0.0146 0.0207
Pruning fuzzy LS-SVM 9528.2 1.4557 0.0415 0.0029 0.0066

Table 3: The predicted concentration of penicillin.

Model 𝐶 𝜎 MaxEE Mean EE RMSE
LS-SVM 2131.3 2.5448 0.0678 0.0191 0.0244
Pruning fuzzy LS-SVM 2131.3 2.5448 0.0261 0.0075 0.0097
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Pruning fuzzy LS-SVM
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Figure 8: 45-degree comparison of the two soft sensors.

6. Conclusions

A novel LS-SVM method based on fuzzy pruning technique
is investigated in this paper. Pruning algorithm is applied to
cut off the outliers. Therefore the number of support vectors
is reducedwhich improves the sparseness and accuracy of LS-
SVM algorithm. On the other hand, assigning different fuzzy
membership score to each of the sample data makes those
sample data that play a small role in soft sensor modeling not
participate in the construction of the model. Furthermore,
the sensitivity to the outliers of the proposed algorithm can
be reduced through the fuzzy membership score. The simu-
lation examples demonstrated that the proposed method can
effectively handle the outliers and achieved satisfied perfor-
mance of modeling and prediction.
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The normal electromagnetic force distribution in stator system of axial flux permanent magnet synchronous motor (PMSM) has
been thoroughly analyzed in this paper. The main composition of force wave causing vibration and noise has been proposed, and
at the same time a calculation method of stator natural frequency of axial flux PMSM has been raised. Through this method
electromagnetic force wave, natural frequency, vibration response, and electromagnetic noise of a 15 kW axial flux PMSM with
22 poles and 24 slots have been calculated; calculations and measured values are consistent by comparison. The noise sources of
axial flux PMSMhave been found in this paper, which provides the theoretical support for the suppression of electromagnetic noise
of axial flux PMSM.

1. Introduction

Currently, noise, water pollution, and exhaust gas have been
the three public hazards of environmental pollution.With the
implementation of ISO14001 standard, the motor noise level
has been listed as an important indicator of measuring its
quality. Therefore, low noise motor will surely become one
of the key products to in the 21st century. Internationally,
for the motor, the merits and defects of noise control have
become a domain factor of market competition for electronic
motor, which has been widely recognized by this industry.
The level of controlling motor noise has attracted more and
more attention of manufacturers and users. And the laws and
regulations connected with the working environment noise
are becoming more rigid.

Various reasons cause the motor vibration, which are
mainly divided into electromagnetic noise, mechanical noise,
and aerodynamic noise. A research on how to apply effective
fault diagnosis method to make noise fault diagnosis is
very significant [1–8]. And the first problem to be solved
is how to effectively calculate the vibration and noise of
the motor. Compared with the electrical excitation motors,
permanent magnet motors, especially rare earth permanent

magnet motors, have simple structure, reliable operation,
small volume, light weight, low loss, high efficiency, and
diverse shapes and sizes as well as other remarkable advan-
tages [5]. PMSM with multiphase, multipole, and few slots
(especially the ratio of poles to slots was 1 to 1) has been ap-
plied more and more widely at present. However, compared
with the traditional motor, the number and amplitude of air
gap harmonics magnetic field, the intensity and frequency of
electromagnetic noise, and the adapted suppression methods
of this kind of PMSM have distinctive difference.

Although the research about the electromagnetic vibra-
tion andnoise ofmotors hasmade great achievements [6–25],
there are still no mature methods to analyze and calculate the
modal and natural frequency of axial flux PMSM. Thus this
paper will explore the electromagnetic noise of PMSM with
multipole and few slots.

2. The Generation Mechanism of
Electromagnetic Noise

Thenormal electromagnetic force, which consists of different
frequencies and different distribution rotation force waves
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caused by the mutual action of stator and rotor and acting on
the inner surface of stator core, is the main source of motors
vibration and electromagnetic noise.

According to Maxwell law, the instantaneous value of
normal electromagnetic force per unit area can be expressed
as

𝑝
𝑟
(𝜃, 𝑡) =

𝑏
2

(𝜃, 𝑡)

2𝜇
0

, (1)

where 𝜇
0
is the permeability of vacuum and 𝑏(𝜃, 𝑡) is the air

gap flux density, which was superposed by stator flux and
rotor flux, and can be expressed as

𝑏 (𝜃, 𝑡) = 𝑏] (𝜃, 𝑡) + 𝑏
𝜇
(𝜃, 𝑡)

= ∑

]
𝐵] cos (]𝜃 − 𝜔

1
𝑡 − 𝜙]𝑟)

+ ∑

𝜇

𝐵
𝜇
cos (𝜇𝜃 − 𝜔

𝜇
𝑡 − 𝜙
𝜇𝑟
) ,

(2)

where 𝑏](𝜃, 𝑡), 𝑏𝜇(𝜃, 𝑡), respectively, represent the instanta-
neous value of flux density produced at stator side and rotor
side which changed with position angle and time. Then
substitute (2) into (1), the following equation can be obtained:

𝑝
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1
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0
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2
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1
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× cos (]
2
𝜃 − 𝜔
1
𝑡 − 𝜙]2𝑟)

+ 2∑

],𝜇
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1
𝑡 − 𝜙]𝑟)

× cos (𝜇𝜃 − 𝜔
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)
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× cos (𝜇
2
𝜃 − 𝜔
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𝜇2𝑟

) } .

(3)

According to (3), the normal electromagnetic force acting
on the stator tooth consists of five parts. And the force waves
with large amplitude and low order are the primary sources.
To PMSM, the electromagnetic force waves, caused by the
interaction between rotor and stator harmonic magnetic flux
density (the fourth item) and the interaction of various har-
monicmagnetic flux density produced by permanent magnet
(the fifth item), are the major sources of electromagnetic
noise.

Under plane radiation, the power of electromagnetic
noise caused by electromagnetism acting on stator teeth can
be expressed as

𝑊 = 2𝜌𝑐𝜋
2

𝑓
2

𝑟
𝑌
2

𝑆
0
, (4)

where 𝜌 is the medium density of sound, c is the veloc-
ity of sound in medium density, 𝑓

𝑟
is the frequency of

electromagnetic force wave, and 𝑆
0
is the vibrating area in

vertical direction of the sound wave propagation. Y is the
displacement of vibration under stator electromagnetic force
and 𝑌 = 𝑃



/𝐾 − 𝜔
2

𝑟
𝑀 when damping neglected. 𝑃 is the

amplitude of electromagnetic force wave acting on stator
teeth.𝐾 is the stiffness of stator system.𝑀 is themass of fixed
system. 𝜔

𝑟
is the angular frequency of electromagnetic force

wave

3. The Analysis of Electromagnetic Force Wave
of Axial Flux PMSM

The rotating force wave per unit area, causing the electromag-
netic noise, can be expressed as

𝑝
𝑟
(𝜃, 𝑡) = ∑

𝑟

𝑃
𝑟
cos (𝜔

𝑟
𝑡 − 𝑟𝜃 + 𝜑

𝑛
) , (5)

where 𝑃
𝑟
, 𝑟 (𝑟 = 1, 2, 3, . . .) represent the amplitude and the

order of electromagnetic force wave.
In a moment of time, the distribution of normal elec-

tromagnetic force from zero to third harmonic of axial flux
PMSM is shown in Figure 1, where solid dots stand for
outward and crossing lines stand for inward. Different sizes
of solid dots and crossing lines signify the size and direction
of electromagnetic force.

After further clarification of fourth and fifth formulas in
formula (3), the main values of electromagnetic force in the
realm of amplitude, order, and frequency can be obtained.
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Table 1: Main normal electromagnetic force.

Harmonic source Item
Amplitude Frequency Order

The interaction between rotor and stator harmonic (1/2𝜇
0
) 𝐵]𝐵𝜇

2𝑘
1
𝑓
1

2(𝑘
1
+ 1)𝑓
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1
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2
𝑍
1
] 𝑡 − ]

𝑝

[(2𝑘
1
+ 1) 𝑝
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2
𝑍
1
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𝑝

The interaction of different rotor harmonic (1/2𝜇
0
) 𝐵
𝜇1
𝐵
𝜇2
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3
)𝑓
1

2(𝑘
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3
+ 1)𝑓
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[2 (𝑘
1
− 𝑘
3
) 𝑝
1
± (𝑘
2
± 𝑘
4
) 𝑍
1
] 𝑡

[2 (𝑘
1
+ 𝑘
3
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1
± (𝑘
2
± 𝑘
4
) 𝑍
1
] 𝑡

Remark: 𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
are defined as 0, 1, 2, 3,. . ., respectively 𝑓

1
is fundamental frequency; ]

𝑝
is harmonic order produced by stator winding.
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Figure 1: Normal electromagnetic forces distribution of axial flux
permanent magnet synchronous motor.
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1
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× cos [(𝜇
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(6)

The electromagnetic noise of axial flux PMSM with the
characteristics of 22 poles and 24 slots, six phases, dual-Y,
and 30∘ shifts was studied in this paper. The main normal
electromagnetic force was illustrated in formula (6) and its
amplitude, order, and frequency were shown in Table 1.

As for PMSM, the main electromagnetic force was from
the interactions of different harmonic waves of rotor in which
the electromagnetic force generated from the interactions
between fundamental harmonic magnetic flux density and
first-order tooth harmonic magnetic density of permanent
magnet was the most important. The frequency of the elec-
tromagnetic force was 2 multiple of fundamental frequency.
The order of the electromagnetic force r is

𝑟 = (𝑝
1
+ (𝑝
1
− 𝑍
1
)) 𝑡 = (2𝑝

1
− 𝑍
1
) 𝑡. (7)

A 15 kW axial flux PMSM with 22 poles and 24 slots
was taken as an example in this paper. The frequency and

Table 2: Main electromagnetic force with 22 Poles and 24 Slots.

V
1

𝜇
1

(9)
3

11 (−13)
1

33 (35)
1

[−37]
1

55
5 4/2 f 1
−7 4/2 f 1
11 2/2 f 1 2/2 f 1
(−13)1 4/4 f 1 2/2 f 1
17 4/2 f 1
29 4/2 f 1
−31 2/4 f 1 4/2 f 1
(35)1 2/2 f 1
[−37]1 4/4 f 1 2/2 f 1
41 4/2 f 1

order of the electromagnetic force were shown in Table 2,
where ( ) stands for first slot harmonic, [ ] stands for second
slot harmonic, the subscripts out of parentheses represent
that the slot harmonic in parentheses was generated by its
interactions, and ]

1
, 𝜇
1
were the harmonic order of stator

side and rotor. Also, low-order harmonic force wave would
be generated from the interactions between 𝜇

1
and 𝜇

2
. The

harmonic order with bold font also represented ]
1
and 𝜇

2
.

As seen from Table 2, firstly, the electromagnetic force
wave, which order is 2 and frequency is 2f

1
, has been

generated from the interactions between 11th fundamental
harmonic of permanent magnet and first slot harmonic
magnetic flux density (−13) of stator and rotor. Secondly, low-
order force wave generated from the interactions between
11th fundamental harmonic of stator and first slot harmonic
magnetic flux density (−13) of rotor was equally important.
Thirdly, another electromagnetic force wave was the second
gear force wave (the frequency was 2f

1
) which was generated

from the interactions between 33th harmonic (the flux
density was 3 times of fundamental wave) and 35th step first
slot harmonic wave of rotor. The above will be the largest
sources of force wave.

The power spectral density of electromagnetic force wave
(the step was less than 4) could be derived by using analytic
method. The fundamental frequency (𝑓

1
) of motor was

82.5Hz. As seen in Figure 2, each frequency of electromag-
netic force was an even multiple of fundamental frequency,
where the energy of electromagnetic force whose frequency
was 2 multiple of fundamental frequency was the biggest,
which was consistent with analysis of Table 2.
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Figure 2: Power spectral density of electromagnetic forces used
analytical methods.

Cover

Stator core

Windings

Figure 3: Stator system of axial flux PMSM.

4. The Analysis of Natural Frequency of Stator
System of Axial Flux PMSM

4.1. The Analysis of Natural Frequency. The vibrating direc-
tion of axial flux PMSM stator system was axial. Based
on the analysis, the vibration characteristics of stator yoke
were similar to doughnut-shaped steel plate, so choosing the
circular plate as a replacement. The stator structure and the
stress direction of stator tooth were shown in Figures 3 and 4.

With reference to calculative method of stator natural
frequency for radial flux PMSM, the calculation formula of
stator natural frequency of axial flux PMSMwas presented as
follows:

𝑓
𝑚

=
1

2𝜋
√

𝐾
(𝑐)

𝑚
+ 𝐾
(𝑓)

𝑚

Δ
𝑤
𝑀
(𝑐)

𝑚
+ Δ
𝑓
𝑀
(𝑓)

𝑚

, (8)

where 𝐾
(𝑐)

𝑚
is the equivalent stiffness of stator core, 𝐾(𝑓)

𝑚
is

the equivalent stiffness of the cover, 𝑀(𝑐)
𝑚

is the equivalent
mass of stator core, 𝑀(𝑓)

𝑚
is the equivalent mass of the cover,

Δ
𝜔
= 1+ (𝑀

𝑡
+𝑀
𝑤
)/𝑀
(𝑐)

𝑚
is the additional coefficient of core

mass, 𝑀
𝑡
,𝑀
𝑤
is the mass of stator tooth and stator winding,

Figure 4: Stress direction of stator tooth of axial flux PMSM stator
system of axial flux PMSM.

Δ
𝑓
= 1 + 𝑀

𝑓
/𝐾
(𝑓)

𝑚
is the additional coefficient of the cover,

and𝑀
𝑓
is the mass of shell.

From (8), we can see that the key to getting stator natural
frequency was how to determine the equivalent stiffness of
iron core and cover in different vibrational modes.

When computed through the distribution of the quality
system and the centralized quality system, the calculation
formula of natural frequency of annular plate was presented
as follows:

𝑓
𝑚

=
𝑎
𝑛𝑠

2𝜋𝑎2
√

𝐷

𝜌
𝐴

(9)

𝑓
𝑚

=
1

2𝜋
√

𝐾
𝑚

𝑀
𝑚

, (10)

where D is the bending rigidity of plate and 𝐸 is the modulus
of elasticity of plate. h is the thickness of laminated plate
and 𝜇 is Poisson’s ratio. a is the outer radius of annular
plates, 𝜌

𝐴
is the surface density of circular plate with a

radius of 𝑎, and 𝑎
𝑛𝑠

is the frequency constants, determined
by boundary conditions, vibrational mode, and the ratio of
inside to outside diameter.

According to (9),

𝑓
𝑚

=
𝑎
𝑛𝑠

2𝜋𝑎2
√

𝐷

𝜌
𝐴

=
1

2𝜋

√
𝑎
2

𝑛𝑠
𝐷𝜋(𝑎

2

− 𝑏
2

)

𝑎4𝜌
𝐴
𝜋 (𝑎2 − 𝑏2)

=
1

2𝜋
√

𝐾
𝑚

𝑀
𝑚

,

(11)

where

𝐾
𝑚

=

𝑎
2

𝑛𝑠
𝐷𝜋(𝑎

2

− 𝑏
2

)

𝑎4

𝑀
𝑚

= 𝜌
𝐴
𝜋 (𝑎
2

− 𝑏
2

) ,

(12)

where 𝑏 the inside radius of the annular plate.

4.2. The Calculations of Stator System Natural Frequency of a
15 kW Axial Flux PMSM. The natural frequency of a 15 kW
axial flux PMSM was calculated in this paper. The structure
parameters of stator system were listed in Table 3 and the
computational results of equivalent stiffness and natural
frequency were listed in Table 4. To verify the effectiveness
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Figure 5: Stator system for 15 kWmotor example of a figure caption.
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Figure 6: Excitation signal imposed on stator system.

Table 3: Parameters of stator system of 15 kWmotor.

Parameters Value
Outerdiameter of stator 250mm
Innerdiameter of stator 144mm
Height of iron core yoke 12.7mm
Weight of statorteeth 2.4 kg
Weight of iron core yoke 2.9 kg
Weight of stator winding 3.4 kg

of the calculation method presented in this paper, the 15 kW
axial flux PMSMwas tested by using PULSE system produced
by Denmark B&K company. Figure 5 was stator system for
15 kW motor. Figures 6, 7, and 8 were, respectively, curves
of excitation, response, and transfer functions. According
to Figure 8, the natural frequency of stator system can be
obtained, and test results were listed in Table 4.

The natural frequency of stator systemmust be away from
the electromagnetic force wave; otherwise the motor will
cause resonance, resulting in serious consequences.
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Figure 7: Response by stator system natural frequency experiment.

Table 4: Calculation and test results for natural frequencies of stator
core of 15 kWmotor.

(𝑛, 𝑠) 𝐾
(𝑐)

𝑚
/MN⋅m−1 𝑓ma/Hz 𝑓me/Hz err/%

(2, 0) 91.75 258.3 280 −7.75
(3, 0) 777.42 691.2 675 2.40
(1, 1) 238.67 1174.5 1135 3.48
(4, 0) 2746.05 1265.0 1313 −3.65
(5, 0) 6943.36 1985.2 2040 −2.68
Remark: n is pitch diameter number; s is pitch circle number; 𝑓ma is
calculation natural frequency; 𝑓me is measured value of natural frequency;
err is relative error.

5. The Analysis of Electromagnetic Noise of
Axial Flux PMSM

5.1. The Dynamic Response of Motor. The vibration of motor
caused by normal electromagnetic force acting on stator
system is the main source of electromagnetic noise and an
analytic relationship exists between the vibration and noise.
Therefore it is very important to calculate the vibration of
motor. When the motor was at work, vibration at every point
was caused all by different electromagnetic forces, which syn-
thesized by vibration waveform of different amplitudes and
different frequencies. When a lumped parameter mechanical
system suffered a harmonic force with 𝜔

𝑟
frequency and

𝑃
𝑟𝑠

amplitude, the vibration velocity of the system can be
expressed as follows:

̇𝑌 =
𝜔
𝑟
𝑃
𝑟𝑠

(𝐾
(𝑐)

𝑟
+ 𝐾
(𝑓)

𝑟
) − 𝜔2
𝑟
(Δ
𝑤
𝑀
(𝑐)

𝑚
+ Δ
𝑓
𝑀
(𝑓)

𝑚
)

, (13)

where 𝐾
(𝑐)

𝑟
, 𝐾
(𝑓)

𝑟
is equivalent stiffness of stator core and

shields with the same number between number of pitch
diameter and force wave.

The spectrum curve of vibrator acceleration of motor
cover was obtained through experiment, which is shown in
Figure 9. We can obtain the amplitude of vibration accel-
eration in maximal frequency from curve. Calculation and
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Figure 8: Transfer function by stator system natural frequency
experiment.
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Figure 9: Spectrogram of vibration accelerations of motor cover.

measured value of vibration acceleration ofmotor shield were
listed in Table 5.

The most important frequency component of the vibra-
tion acceleration level is 165Hz and 330Hz. From Table 5,
the calculate errors −5.2% and −0.47% indicate that the
calculation results are consistent with the actual value.

5.2.The Electromagnetic Noise. Four stepsmust be completed
before obtaining electromagnetic noise: calculating magnetic
field and its harmonic, calculating normal electromagnetic
force, calculating natural frequency and vibratory response
of stator system, and calculating noise power level. On the
basis of the previous three steps, you can successfully get
the electromagnetic noise of the motor. Under nonloaded
operation, the electromagnetic noise of axial flux PMSM was
calculated by author edited programming, and at the same
time the electromagnetic noise of the motor was measured

Figure 10: Experiment of 15 kWmotor.
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Figure 11: Spectrum of electromagnetic noise sound power lever 𝐿
𝐼

of 15 kWmotor.

in an anechoic chamber which is shown in Figures 10 and 11.
And the test value and calculated value were listed in Table 6.

The calculation results of acoustic noise in Table 6 have
been modified, and the correction factor is 1.082. The noise
of 165Hz is the most significant from themeasured spectrum
of acoustic noise, and theoretical calculations have the same
conclusion. So rationality about analysis and calculation
methods of axial flux PMSM electromagnetic noise men-
tioned by this paper has been proved.

6. Conclusion

Themethods of analyses and calculation for electromagnetic
vibration and noise have been researched in this paper. Using
a 15 kW axial flux PMSM with 22 poles and 24 slots as an
example, a verification calculation has been completed. The
conclusions are illustrated.

(1) The direction of electromagnetic vibration: the direc-
tion of electromagnetic vibration was axial; thus
typical estimationmethod for calculating electromag-
netic vibration is not suitable.
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Table 5: Calculated and experimental values of accelerations level
of 15 kWmotor.

Item Value
Frequency/Hz 165 330 495 825
Calculation/dB 94.5 84.1 82.3 62.36
Measured value/dB 99.7 84.5 78.1 74.66
Error/% −5.2 −0.47 5.3 16.4

Table 6: Comparation between calculated and measured values of
Sound power lever.

Frequency/Hz Calculation after
correction/dB (A)

Measured
value/dB (A) Error/%

165 72.60 72.6 0
330 59.73 59.1 1.06
660 48.15 48.5 −0.7
Combining 72.6 72.6 0

(2) The stator system structure of axial flux PMSM: the
stator system of axial flux PMSM can be equivalent to
annular steel plate and vibration mode was indicated
by the number of pitch diameter and pitch, where the
stator core thickness replaced with annular plate of
stator yoke to calculate the height, teeth of the stator,
andwinding as additional qualitywere included in the
stator core; shell as additional quality was included in
the shield.

(3) The frequency of electromagnetic noise and vibra-
tion: the frequencies of electromagnetic noise and
vibration were even multiple of fundamental wave.
The frequency of vibration with highest energy was
2 times of fundamental frequency, which was caused
by the normal electromagnetic force with frequency
of double fundamental frequency. The main compo-
nents of the electromagnetic force are listed below.

(a) One of the main components of the electro-
magnetic force: the low order force was caused
by the interaction between fundamental flux
density of permanent magnet and first-order
slot harmonic magnetic density of rotor and
stator.

(b) Another one of the main components of the
electromagnetic force: the low order force was
caused by the interaction between fundamental
flux density of stator and first-order tooth har-
monic magnetic density of rotor.

(c) The third main components of the electromag-
netic force: the low order force was caused by
the interaction between 3 times of the funda-
mental flux density of rotor and first-order slot
harmonic magnetic density of rotor and stator.

(d) The forth main components of the electro-
magnetic force: the electromagnetic vibration
and noise sources of axial flux PMSM have
been presented in this paper, which provides

the theoretical support for the suppression of
electromagnetic noise of axial flux PMSM.
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In order to save network resources and network bandwidth, this paper proposed an event triggered mechanism based on sampled-
data information, which has some advantages over existing ones. Considering the missing sensor measurements and the network-
induced delay in the transmission, we construct a new event-based 𝐻

∞
filtering by taking the effect of sensor faults with different

failure rates. By using the Lyapunov stability theory and the stochastic analysis theory, sufficient criteria are derived for the existence
of a solution to the algorithm of the event-based filter design. Finally, an example is exploited to illustrate the effectiveness of the
proposed method.

1. Introduction

The application of network technologies is becoming increas-
ingly important inmany areas for its predominant advantages
(such as low cost, simple installation and maintenance, and
high reliability). However, it is known that implementing a
communication network can induce multiple channel trans-
mission, packet dropout, and so on. This has motivated
much attention to the research. Various techniques have
been proposed to deal with the above issues, such as time
triggered communication scheme [1, 2] and event triggered
communication scheme [3–7]. In general, under a time trig-
gered communication scheme, a fixed sampling interval
should be selected under worse conditions such as external
disturbances and time delay. However, such situation rarely
occurs. Hence, time triggered communication scheme can
lead to transmit much unnecessary information and inef-
ficient utilization of limited network resources. Comparing
with time triggered scheme, the event triggered scheme can
save the network resources such as network bandwidth while
maintaining the control performance. The adoption of the
event triggered scheme has drawn a great deal of interest to
the researchers. The authors in [3] firstly proposed a kind

of event triggered scheme which decided whether the newly
sampled signal should be transmitted to the controller and
invested the controller design problem. In [8], the authors
took the sensor and actuator faults into consideration and
studied the reliable control design for networked control
system under event triggered scheme.The authors in [9] were
concerned with the control design problem of event triggered
networked systems with both state and control input quan-
tization. In [10], the authors discussed the event-based fault
detection for the networked systems with communication
delay and nonlinear perturbation.

On the other hand, the filtering problem has been a hot
topic over the past decades. A large number of outstanding
results have been published [9, 11–18]. For example, the
researchers in [9] studied the problem of event-based 𝐻

∞

filtering for networked systems with communication delay.
Most of them are based on an assumption that sensors
are working without any flaws. However, the distortion
of the sensor usually occurs due to the internal noise or
external disturbance. Therefore, it is necessary to discuss
the situation when the filter cannot receive the value of the
process accurately. Fortunately, much effort has been put into
this issue. The authors in [19] were concerned with reliable
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Figure 1: The structure of an event triggered filter design system.

𝐻
∞

filter design for sampled-data systems with probabilistic
sensor signal distortion. In [20], the authors investigated
reliable𝐻

∞
filter design for T-S fuzzymodel based networked

control systems with random sensor failure.
To the best of our knowledge, the filter design of event

triggering network-based systems with random sensor fail-
ures is still an open problem, which motivates our present
paper. The main contributions of the obtained results are as
follows: (I) the insertion of the event triggering generator
saves the network resources and network bandwidth. (II) A
new kind of event triggering network-based systems with
probabilistic sensor failures and network induced delay,
which has not been investigated in the existing literatures, is
proposed.

This paper is outlined as follows. Section 2 presents the
modeling. Section 3 presents our main stability theorem and
develops a filter design method. In Section 4, an example is
given to illustrate the effectiveness of the proposed method.

R𝑛 and R𝑛×𝑚 denote the 𝑛-dimensional Euclidean space
and the set of 𝑛 × 𝑚 real matrices; the superscript “𝑇”
stands for matrix transposition; 𝐼 is the identity matrix of
appropriate dimension; ‖ ⋅ ‖ stands for the Euclidean vector
norm or the induced matrix 2-norm as appropriate; the
notation 𝑋 > 0 (resp., 𝑋 ≥ 0), for 𝑋 ∈ R𝑛×𝑛 means that the
matrix 𝑋 is real symmetric positive definite (resp., positive
semidefinite), when 𝑥 is a stochastic variable. For a matrix
𝐵 and two symmetric matrices 𝐴 and 𝐶, [

𝐴 ∗

𝐵 𝐶
] denotes a

symmetric matrix, where ∗ denotes the entries implied by
symmetry.

2. System Description

As shown in Figure 1, our aim in this paper is to investigate
an event-based reliable filtering design problem by taking the
effect of sensor faults. Suppose the plant model is governed
by

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

𝑧 (𝑘) = 𝐿𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state vector, 𝑦(𝑘) ∈ R𝑚 is the
measured output, 𝑧(𝑘) is the signal to be estimated, 𝑤(𝑘) is
the process noise belonging to L

2
(0,∞), 𝐴, 𝐵, 𝐶, and 𝐿 are

known constant matrices with appropriate dimensions.

Remark 1. Considering the network induced delay, the trans-
mission time of measured output 𝑦(𝑘) from sensor to filt
cannot be neglected. The input of the filter is not 𝑦(𝑘), but
𝑦(𝑘), in fact, 𝑦(𝑘) = 𝑦(𝑘 + 𝜏(𝑘)). 𝜏(𝑘) is the network induced
delay, and 𝜏(𝑘) ∈ [0, 𝜏

𝑀

), where 𝜏
𝑀 is a positive real number.

For the network-based system in described in Figure 1, we
propose the following filter:

𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓
𝑦 (𝑘) ,

𝑧
𝑓
(𝑘) = 𝐶

𝑓
𝑥
𝑓
(𝑘) ,

(2)

where 𝑥
𝑓
(𝑘) is the filter state, 𝑦(𝑘) is the input of the filter,

𝐴
𝑓
, 𝐵
𝑓
, 𝐶
𝑓
are the filter matrices of appropriate dimensions.

If we take the missing sensor measurements into consid-
eration, (2) can be described as

𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓
Ξ𝑦 (𝑘) ,

𝑧
𝑓
(𝑘) = 𝐶

𝑓
𝑥
𝑓
(𝑘) ,

(3)

where Ξ = diag{Ξ
1
, Ξ
2
, . . . , Ξ

𝑚
}, Ξ
𝑖

∈ [0, 𝜃
1
] (𝑖 = 1, 2, . . .)

(𝜃
1

> 1) being 𝑚 unrelated random variables, and the
mathematical expectation and variance of Ξ

𝑖
are 𝛼
𝑖
and 𝜎

2

𝑖
,

respectively.

Remark 2. When 𝛼
𝑖
= 1, it means the sensor 𝑖 works nor-

mally. When 𝛼
𝑖
= 0, it means the sensor 𝑖 completely failed

and the signal transmitted by sensor 𝑖 is lost.WhenΞ
𝑖
∈ [0, 1],

it means the signal at the filter is smaller or greater than it
actually is [20].

In order to reduce the load of network transmission and
save the network resources such as network bandwidth, it is
necessary to introduce an event triggered mechanism. As is
shown in Figure 1, an event generator is constructed between
the sensor and filter, which is used to decide whether the
measured output should be sent to the filter. We adopt the
following judgement algorithm:

[E {Ξ𝑦 (𝑘)} − E {Ξ𝑦 (𝑠
𝑖
)}]
𝑇

Ω[E {Ξ𝑦 (𝑘)} − E {Ξ𝑦 (𝑠
𝑖
)}]

≤ 𝜎[E {Ξ𝑦 (𝑘)}]
𝑇

Ω[E {Ξ𝑦 (𝑘)}] ,

(4)

where Ω ∈ R𝑚 × 𝑚 is a symmetric positive definite matrix,
𝜎 ∈ [0, 1), Ξ = diag{Ξ

1
, Ξ
2
, . . .}, and Ξ

𝑖
∈ [0, 𝜃

1
] (𝑖 = 1, 2, . . .)
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are𝑚unrelated randomvariables. Onlywhen the expectation
of a certain function of current sampled value 𝑦(𝑘) and the
previously transmitted one 𝑦(𝑠

𝑖
) violate (4), it can be sent out

to the filter.

Remark 3. Under the event triggering (4), the release times
are assumed to be 𝑠

0
, 𝑠
1
, 𝑠
2
, . . . . Due to the delay in the

network transmission, the measured output will arrive at
the filter at the instants 𝑠

0
+ 𝜏(𝑠
0
), 𝑠
1
+ 𝜏(𝑠
1
), 𝑠
2
+ 𝜏(𝑠
2
), . . .,

respectively.

Based on the above analysis, considering the behavior of
ZOH, the input of the filter is

Ξ𝑦 (𝑘) = Ξ𝑦 (𝑠
𝑖
) , 𝑘 ∈ [𝑠

𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] .

(5)

Similar to [4, 6, 11], for technical convenience, consider
the following two cases.

Case 1. When 𝑠
𝑖
+1+𝜏

𝑀

≥ 𝑠
𝑖+1

+𝜏(𝑠
𝑖+1

)−1, define a function
𝑑(𝑘) as

𝑑 (𝑘) = 𝑘 − 𝑠
𝑖
, 𝑘 ∈ [𝑠

𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] . (6)

Obviously,

𝜏 (𝑠
𝑖
) ≤ 𝑑 (𝑘) ≤ (𝑠

𝑖+1
− 𝑠
𝑖
) + 𝜏 (𝑠

𝑖+1
) − 1 ≤ 1 + 𝜏

𝑀

. (7)

Case 2. When 𝑠
𝑖
+ 1 + 𝜏

𝑀

≤ 𝑠
𝑖+1

+ 𝜏(𝑠
𝑖+1

) − 1, consider the
following two intervals:

[𝑠
𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖
+ 𝜏
𝑀

] , [𝑠
𝑖
+ 𝜏
𝑀

+ 𝑙, 𝑠
𝑖
+ 𝜏
𝑀

+ 𝑙 + 1] .

(8)

From 𝜏(𝑘) ≤ 𝜏
𝑀, we can deduce that there must exist 𝑑

satisfying

𝑠
𝑖
+ 𝑑 + 𝜏

𝑀

< 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1 ≤ 𝑠
𝑖
+ 𝑑 + 1 + 𝜏

𝑀

. (9)

Moreover, 𝑦(𝑠
𝑖
) and 𝑦(𝑠

𝑖
+ 𝑙) 𝑙 = 1, 2, . . . , 𝑑 satisfy (4). Set

𝐼
0
= [𝑠
𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖
+ 𝜏
𝑀

+ 1) ,

𝐼
𝑙
= [𝑠
𝑖
+ 𝜏
𝑀

+ 𝑙, 𝑠
𝑖
+ 𝜏
𝑀

+ 𝑙 + 1) ,

𝐼
𝑑
= [𝑠
𝑖
+ 𝑑 + 𝜏

𝑀

, 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] ,

(10)

where 𝑙 = 1, 2, . . . , 𝑑 − 1. Clearly, we have

[𝑠
𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] =

𝑖=𝑑

⋃

𝑖=0

𝐼
𝑖
. (11)

Define 𝑑(𝑘) as

𝑑 (𝑘) =

{{{

{{{

{

𝑘 − 𝑠
𝑖
, 𝑘 ∈ 𝐼

0
,

𝑘 − 𝑠
𝑖
− 𝑙, 𝑘 ∈ 𝐼

𝑙
, 𝑙 = 1, 2, . . . , 𝑑 − 1,

𝑘 − 𝑠
𝑖
− 𝑑, 𝑘 ∈ 𝐼

𝑑
.

(12)

Then, one can easily get

𝜏 (𝑠
𝑖
) ≤ 𝑑 (𝑘) ≤ 1 + 𝜏

𝑀

≜ 𝑑
𝑀

, 𝑘 ∈ 𝐼
0
,

𝜏 (𝑠
𝑖
) ≤ 𝜏
𝑀

≤ 𝑑 (𝑘) ≤ 𝑑
𝑀

, 𝑘 ∈ 𝐼
𝑙
, 𝑙 = 1, 2, . . . , 𝑑 − 1,

𝜏 (𝑠
𝑖
) ≤ 𝜏
𝑀

≤ 𝑑 (𝑘) ≤ 𝑑
𝑀

, 𝑘 ∈ 𝐼
𝑑
.

(13)

Due to 𝑠
𝑖+1

+𝜏(𝑠
𝑖+1

) − 1 ≤ 𝑠
𝑖
+𝑑+1+𝜏

𝑀, the third row in (13)
holds. Obviously,

𝜏 (𝑠
𝑖
) ≤ 𝜏
𝑀

≤ 𝑑 (𝑘) ≤ 𝑑
𝑀

, 𝑘 ∈ 𝐼
𝑑
. (14)

In Case 1, for 𝑘 ∈ [𝑠
𝑖
+ 𝜏(𝑠
𝑖
), 𝑠
𝑖+1

+ 𝜏(𝑠
𝑖+1

) − 1], define
𝑒
𝑖
(𝑘) = 0. When it comes to Case 2, define

Ξ𝑒
𝑖
(𝑘)

=

{{

{{

{

0, 𝑘 ∈ 𝐼
0
,

Ξ𝑦 (𝑠
𝑖
) − Ξ𝑦 (𝑠

𝑖
+ 𝑙) , 𝑘 ∈ 𝐼

𝑙
, 𝑙 = 1, 2, . . . , 𝑑 − 1,

Ξ𝑦 (𝑠
𝑖
) − Ξ𝑦 (𝑠

𝑖
+ 𝑑) , 𝑘 ∈ 𝐼

𝑑
.

(15)

It can be deduced from the definition of Ξ𝑒
𝑖
(𝑘) and the

event triggering scheme (4); for 𝑘 ∈ [𝑠
𝑖
+𝜏(𝑠
𝑖
), 𝑠
𝑖+1

+𝜏(𝑠
𝑖+1

)−1],
the following inequality holds

𝑒
𝑇

𝑖
(𝑘) Ξ
𝑇

ΩΞ𝑒
𝑖
(𝑘) ≤ 𝜎𝑦

𝑇

(𝑘 − 𝑑 (𝑘)) Ξ
𝑇

ΩΞ𝑦 (𝑘 − 𝑑 (𝑘)) .

(16)

Remark 4. From (15), it can be easily obtained that

𝑒
𝑖
(𝑘)

=

{{

{{

{

0, 𝑘 ∈ 𝐼
0
,

𝑦 (𝑠
𝑖
) − 𝑦 (𝑠

𝑖
+ 𝑙) , 𝑘 ∈ 𝐼

𝑙
, 𝑙 = 1, 2, . . . , 𝑑 − 1,

𝑦 (𝑠
𝑖
) − 𝑦 (𝑠

𝑖
+ 𝑑) , 𝑘 ∈ 𝐼

𝑑
.

(17)

Employing 𝑑(𝑘) 𝑒
𝑖
(𝑘), the input of the filter Ξ𝑦(𝑘) can be

rewritten as

Ξ𝑦 (𝑘) = Ξ𝑦 (𝑠
𝑖
) = Ξ (𝑦 (𝑘 − 𝑑 (𝑘)) + Ξ𝑒

𝑖
(𝑘)) ,

𝑘 ∈ [𝑠
𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] .

(18)

Obviously,

𝑦 (𝑘) = 𝑦 (𝑠
𝑖
) = (𝑦 (𝑘 − 𝑑 (𝑘)) + 𝑒

𝑖
(𝑘)) ,

𝑘 ∈ [𝑠
𝑖
+ 𝜏 (𝑠
𝑖
) , 𝑠
𝑖+1

+ 𝜏 (𝑠
𝑖+1

) − 1] .

(19)

Combining (19) and (3), we can get

𝑥
𝑓
(𝑘 + 1) = 𝐴

𝑓
𝑥
𝑓
(𝑘) + 𝐵

𝑓
Ξ (𝐶𝑥 (𝑘 − 𝑑 (𝑘)) + 𝑒

𝑖
(𝑘)) ,

𝑧
𝑓
(𝑘) = 𝐶

𝑓
𝑥
𝑓
(𝑘) .

(20)
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Define 𝜂(𝑘) = [
𝑥(𝑘)

𝑥𝑓(𝑘)
], 𝑒(𝑘) = 𝑧(𝑘) − 𝑧

𝑓
(𝑘); the following

filtering-error system based on (1) and (20) can be obtained
as

𝜂 (𝑘 + 1) = 𝐴𝜂 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑 (𝑘)) + 𝐷
𝑘
𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝐵𝑒
𝑖
(𝑘) + 𝐵

𝑘
𝑒
𝑖
(𝑘) + 𝐵

1
𝑤 (𝑘) ,

𝑒 (𝑘) = 𝐿𝜂 (𝑘) ,

(21)

where𝐴 = [
𝐴 0

0 𝐴𝑓
],𝐷 = [

0

𝐵𝑓Ξ𝐶
],𝐷
𝑘
= [

0

𝐵𝑓(Ξ−Ξ)𝐶
],𝐵 = [

0

𝐵𝑓Ξ
],

𝐵
𝑘
= [

0

𝐵𝑓(Ξ−Ξ)
], 𝐵
1
= [
𝐵

0
], 𝐿 = [𝐿 −𝐶

𝑓
].

Remark 5. The event triggering scheme (4) can be applied to
the situation when the sensor have failures. Besides, the effect
of the network environment is also taken into consideration.
From the modeling process, we can see that the system (21) is
more general.

Before giving the main results in the next section, the
following lemmas will be introduced, which will be helpful
in deriving the main results.

Lemma 6 (see [21]). For any vectors 𝑥, 𝑦 ∈ R𝑛, and positive
definite matrix 𝑄 ∈ R𝑛×𝑛, the following inequality holds:

2𝑥
𝑇

𝑦 ≤ 𝑥
𝑇

𝑄𝑥 + 𝑦
𝑇

𝑄
−1

𝑦. (22)

Lemma 7 (see [22]). Ω
1
, Ω
2
, and Ω are matrices with appro-

priate dimensions, 𝑑(𝑘) ∈ [0, 𝑑
𝑀

]; then

𝑑 (𝑘)Ω
1
+ (𝑑
𝑀

− 𝑑 (𝑘))Ω
2
+ Ω < 0, (23)

if and only if the following two inequalities hold

𝑑
𝑀

Ω
1
+ Ω < 0,

𝑑
𝑀

Ω
2
+ Ω < 0.

(24)

3. Main Results

In this section, we will invest a new approach to guarantee the
filter error system (21) to be globally asymptotically stable. A
sufficient condition is established for (21). Then, the explicit
filter design method in (20) is given.

Theorem 8. For given scalars 𝛼
𝑖
, 𝜇
𝑖
(𝑖 = 1, . . . , 𝑚), 𝜌 ∈ [0, 1),

0 ≤ 𝑑(𝑘) ≤ 𝑑
𝑀, and 𝛾, under the event triggered communica-

tion scheme (4), the augmented system (21) is asymptotically
stable with an 𝐻

∞
performance index 𝛾 for the disturbance

attention, if there exist positive definite matrices 𝑃, 𝑄, 𝑅 and
matrices 𝑁, 𝑀 with appropriate dimensions, such that

Ω (𝑠) =

[
[
[
[

[

Ω
11

+ Γ + Γ
𝑇

∗ ∗ ∗

Ω
21

Ω
22

∗ ∗

Ω
31

0 Ω
33

∗

Ω
41

(𝑠) 0 0 −𝑅

]
]
]
]

]

< 0, 𝑠 = 1, 2,

(25)

where

Ω
11

=

[
[
[
[
[
[
[
[
[
[

[

𝑃𝐴 + 𝐴
𝑃

− 2𝑃 + 𝐻
𝑇

𝑄𝐻 ∗ ∗ ∗ ∗

𝐷
𝑇

𝑃 0 ∗ ∗ ∗

0 0 −𝑄 ∗ ∗

𝐵
𝑇

𝑃 0 0 −Ξ
𝑇

ΩΞ ∗

𝐵
𝑇

1
𝑃 0 0 0 −𝛾

2

𝐼

]
]
]
]
]
]
]
]
]
]

]

,

Γ = [𝑁𝐻 𝑀 − 𝑁 −𝑀 0 0] ,

Ω
21

=

[
[
[
[

[

𝑃(𝐴 − 𝐼) 𝑃𝐷 0 𝑃𝐵 𝑃𝐵
1

√𝑑
𝑀
𝑅𝐻(𝐴 − 𝐼) √𝑑

𝑀
𝑅𝐻𝐷 0 √𝑑

𝑀
𝑅𝐻𝐵 √𝑑

𝑀
𝑅𝐻𝐵
1

𝐿 0 0 0 0

0 √𝜎ΩΞ𝐶 0 0 0

]
]
]
]

]

,

Ω
22

= diag {−𝑃, −𝑅, −𝐼, −Ω} ,

Ω
31

=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 𝛿
1
𝑃𝐷
1

0 0 0

0
... 0 0 0

0 𝛿
𝑚
𝑃𝐷
𝑚

0 0 0

0 0 0 𝛿
1
𝑃𝐵
1

0

0 0 0
... 0

0 0 0 𝛿
𝑚
𝑃𝐵
𝑚

0

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Ω
41

(1) = √𝑑𝑀𝑁
𝑇

, Ω
41

(2) = √𝑑𝑀𝑀
𝑇

,

𝑁
𝑇

= [𝑁
𝑇

1
𝑁
𝑇

2
𝑁
𝑇

3
𝑁
𝑇

4
𝑁
𝑇

5
] ,

𝑀
𝑇

= [𝑀
𝑇

1
𝑀
𝑇

2
𝑀
𝑇

3
𝑀
𝑇

4
𝑀
𝑇

5
] ,

𝐷
𝑖
= [

0

𝐵
𝑓
𝐸
𝑖
𝐶
] , 𝐵

𝑖
= [

0

𝐵
𝑓
𝐸
𝑖

] , (𝑖 = 1, 2, . . . , 𝑚) ,

𝐸
𝑖
= diag{0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖−1

, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚−𝑖

} , 𝐻 = [𝐼 0] .

(26)

Proof. Set 𝛿(𝑘) = 𝑥(𝑘+1)−𝑥(𝑘), 𝜂(𝑘) = 𝜂(𝑘+1)−𝜂(𝑘); choose
the Lyapunov functional candidate

𝑉 (𝑘) = 𝜂
𝑇

(𝑘) 𝑃𝜂 (𝑘) +

𝑘−1

∑

𝑘−𝑑
𝑀

𝑥
𝑇

(𝑖) 𝑄𝑥 (𝑖)

+

−1

∑

𝑖=−𝑑
𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝛿
𝑇

(𝑗) 𝑅𝛿 (𝑗) .

(27)
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Calculating the difference of 𝑉(𝑘) along the solution of
(27) and taking the mathematical expectation, we obtain

E {Δ𝑉 (𝑘)} = 2𝜂
𝑇

(𝑘) 𝑃 [(𝐴 − 𝐼) 𝜂 (𝑘) + 𝐷𝑥 (𝑘 − 𝑑 (𝑘))

+𝐵𝑒
𝑖
(𝑘) + 𝐵

1
𝑤 (𝑘)] + A

𝑇

𝑃A

+

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) [
0

𝐵
𝑓
𝐸
𝑖
𝐶
]

𝑇

× 𝑃[
0

𝐵
𝑓
𝐸
𝑖
𝐶
]𝑥 (𝑘 − 𝑑 (𝑘))

+

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝑒
𝑇

𝑖
(𝑘) [

0

𝐵
𝑓
𝐸
𝑖

]

𝑇

𝑃[
0

𝐵
𝑓
𝐸
𝑖

] 𝑒
𝑖
(𝑘)

+ 𝜂
𝑇

(𝑘)𝐻
𝑇

𝑄𝐻𝜂 (𝑘)

− 𝑥
𝑇

(𝑘 − 𝑑
𝑀

)𝑄𝑥 (𝑘 − 𝑑
𝑀

)

+ E {𝑑
𝑀

𝛿
𝑇

(𝑘) 𝑅𝛿 (𝑘)} −

𝑘−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿
𝑇

(𝑘) 𝑅𝛿 (𝑘) ,

(28)

whereA = (𝐴− 𝐼)𝜂(𝑘) +𝐷𝑥(𝑘 − 𝑑(𝑘)) + 𝐵𝑒
𝑖
(𝑘) + 𝐵

1
𝑤(𝑘) and

E {𝑑
𝑀

𝛿
𝑇

(𝑘) 𝑅𝛿 (𝑘)} = E {𝑑
𝑀

𝜂
𝑇

(𝑘)𝐻
𝑇

𝑅𝐻𝜂 (𝑘)}

= 𝑑
𝑀

A
𝑇

𝐻
𝑇

𝑅𝐻A.

(29)

Then by employing free weight matrix method [23, 24],
we have

2𝜉
𝑇

(𝑘)𝑀 [𝑥 (𝑘 − 𝑑 (𝑘)) − 𝑥 (𝑘 − 𝑑
𝑀

)] −

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿 (𝑖) = 0,

2𝜉
𝑇

(𝑘)𝑁 [𝑥 (𝑘) − 𝑥 (𝑘 − 𝑑 (𝑘))] −

𝑘−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿 (𝑖) = 0,

(30)

where 𝜉
𝑇

(𝑘) = [𝜂
𝑇

(𝑘) 𝑥
𝑇

(𝑘 − 𝑑(𝑘)) 𝑥
𝑇

(𝑘 − 𝑑
𝑀

) 𝑒
𝑇

𝑖
(𝑘)

𝑤
𝑇

(𝑘)]
𝑇.

By Lemma 6, we can easily get

−2𝜉
𝑇

(𝑘)𝑀

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿 (𝑖) ≤ (𝑑
𝑀

− 𝑑 (𝑘)) 𝜉
𝑇

(𝑘)𝑀𝑅
−1

𝑀
𝑇

𝜉 (𝑘)

+

𝑘−𝑑(𝑘)−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿
𝑇

(𝑖) 𝑅𝛿 (𝑖) ,

(31)

−2𝜉
𝑇

(𝑘)𝑁

𝑘−1

∑

𝑖=𝑘−𝑑
𝑀

𝛿 (𝑖) ≤ 𝑑 (𝑘) 𝜉
𝑇

(𝑘)𝑁𝑅
−1

𝑁
𝑇

𝜉 (𝑘)

+

𝑘−1

∑

𝑖=𝑘−𝑑(𝑘)

𝛿
𝑇

(𝑖) 𝑅𝛿 (𝑖) .

(32)

Combine (28)–(31) and (16), we have

E {Δ𝑉 (𝑘)} − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) + 𝑒
𝑇

(𝑘) 𝑒 (𝑘)

≤ 𝜉
𝑇

(𝑘) [Ω
11

+ Γ + Γ
𝑇

] 𝜉 (𝑘)

+ (𝑑
𝑀

− 𝑑 (𝑘)) 𝜉
𝑇

(𝑘)𝑀𝑅
−1

𝑀
𝑇

𝜉 (𝑘)

+ 𝑑 (𝑘) 𝜉
𝑇

(𝑘)𝑁𝑅
−1

𝑁
𝑇

𝜉 (𝑘)

+ A
𝑇

𝑃A +

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) [
0

𝐵
𝑓
𝐸
𝑖
𝐶
]

𝑇

× 𝑃[
0

𝐵
𝑓
𝐸
𝑖
𝐶
]𝑥 (𝑘 − 𝑑 (𝑘))

+

𝑚

∑

𝑖=1

𝜎
2

𝑖
𝑒
𝑇

𝑖
(𝑘) [

0

𝐵
𝑓
𝐸
𝑖

]

𝑇

𝑃[
0

𝐵
𝑓
𝐸
𝑖

] 𝑒
𝑖
(𝑘)

+ 𝜎𝑥
𝑇

(𝑘 − 𝑑 (𝑘)) 𝐶
𝑇

Ξ
𝑇

ΩΞ𝐶𝑥 (𝑘 − 𝑑 (𝑘))

+ 𝑑
𝑀

A
𝑇

𝐻
𝑇

𝑅𝐻A + 𝜂
𝑇

(𝑘) 𝐿
𝑇

𝐿𝜂 (𝑘) .

(33)

Subsequently, by the well known Schur complement and
Lemma 7, from (25), we can deduce

E {Δ𝑉 (𝑘)} − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) + 𝑒
𝑇

(𝑘) 𝑒 (𝑘) ≤ 0. (34)

Similar to the method in [25], the filter error system (21) is
asymptotically stable.

Based onTheorem 8, a designmethod of the reliable filter
in the form of (20) is given inTheorem 9.

Theorem 9. For given parameters 𝛼, 𝜎
𝑖
(𝑖 = 1, 2, . . . , 𝑚),

𝜌 ∈ [0, 1), and 0 ≤ 𝑑(𝑘) ≤ 𝑑
𝑀, the filter error system (21)

is asymptotically stable with 𝐻
∞

performance level 𝛾, if there
exist positive definite matrices 𝑋, 𝑄, �̂�, and 𝐴

𝑓
, 𝐵
𝑓
, 𝐶
𝑓
, 𝑁
10
,

𝑁
11
, 𝑀
10
, 𝑀
11
, 𝑀
𝑖
, and 𝑁

𝑖
(𝑖 = 2, 3, 4, 5) with appropriate

dimensions, such that

Ω̂ (𝑠) =

[
[
[
[
[
[
[
[

[

Ω̂
11

+ Γ̂ + Γ̂
𝑇

∗ ∗ ∗ ∗

Ω̂
21

Ω̂
22

∗ ∗ ∗

Ω̂
31

0 Ω̂
33

∗ ∗

Ω̂
41

0 0 Ω̂
44

∗

Ω̂
51

(𝑠) 𝐵
𝑤

0 0 −𝑅

]
]
]
]
]
]
]
]

]

< 0, 𝑠 = 1, 2,

(35)

𝑃
1
− 𝑃
3
> 0, (36)



6 Abstract and Applied Analysis

where

Ω̂
11

=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑃
1
𝐴 + 𝐴

𝑇

𝑃
1
− 2𝑃
1
+ 𝑄 ∗ ∗ ∗ ∗ ∗

𝑃
3
𝐴 + 𝐴

𝑇

𝑓
− 2𝑃
3

𝐴
𝑓
+ 𝐴
𝑇

𝑓
− 2𝑃
3

∗ ∗ ∗ ∗

𝐶
𝑇

Ξ
𝑇

𝐵
𝑇

𝑓
𝐶
𝑇

Ξ
𝑇

𝐵
𝑇

𝑓
0 ∗ ∗ ∗

0 0 0 −𝑄 ∗ ∗

Ξ
𝑇

𝐵
𝑇

𝑓
Ξ
𝑇

𝐵
𝑇

𝑓
0 0 −Ξ

𝑇

ΩΞ ∗

𝐵
𝑇

𝑃
1

𝐵
𝑇

𝑃
3

0 0 0 −𝛾
2

𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Ω̂
21

= [

𝑃
1
(𝐴 − 𝐼) 𝐴

𝑓
− 𝑃
3

𝐵
𝑓
Ξ𝐶 0 𝐵

𝑓
Ξ 𝑃
1
𝐵

𝑃
3
(𝐴 − 𝐼) 𝐴

𝑓
− 𝑃
3

𝐵
𝑓
Ξ𝐶 0 𝐵

𝑓
Ξ 𝑃
3
𝐵

] , Ω̂
22

= [

−𝑃
1

∗

−𝑃
3

−𝑃
3

] ,

Ω̂
31

=

[
[
[

[

√𝑑𝑀𝑅 (𝐴 − 𝐼) 0 0 0 0 √𝑑𝑀𝑅𝐵

𝐿 −𝐶
𝑓

0 0 0 0

0 √𝜎ΩΞ𝐶 0 0 0 0

]
]
]

]

,

Ω̂
41

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 𝛿
1
𝐵
𝑓
𝐸
1
𝐶 0 0 0

0 0 𝛿
1
𝐵
𝑓
𝐸
1
𝐶 0 0 0

0 0
... 0 0 0

0 0 𝛿
𝑚
𝐵
𝑓
𝐸
𝑚
𝐶 0 0 0

0 0 𝛿
𝑚
𝐵
𝑓
𝐸
𝑚
𝐶 0 0 0

0 0 0 0 𝛿
1
𝐵
𝑓
𝐸
1

0

0 0 0 0 𝛿
1
𝐵
𝑓
𝐸
1

0

0 0 0 0
... 0

0 0 0 0 𝛿
𝑚
𝐵
𝑓
𝐸
𝑚

0

0 0 0 0 𝛿
𝑚
𝐵
𝑓
𝐸
𝑚

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Γ̂ =

[
[
[
[
[
[
[
[
[

[

𝑁
10

0 𝑀
10

− 𝑁
10

−𝑀
10

0 0

𝑁
11

0 𝑀
11

− 𝑁
11

−𝑀
11

0 0

𝑁
2

0 𝑀
2
− 𝑁
2

−𝑀
2

0 0

𝑁
3

0 𝑀
3
− 𝑁
3

−𝑀
3

0 0

𝑁
4

0 𝑀
4
− 𝑁
4

−𝑀
4

0 0

𝑁
5

0 𝑀
5
− 𝑁
5

−𝑀
5

0 0

]
]
]
]
]
]
]
]
]

]

,

Ω̂
33

= diag {−𝑅, −𝐼, −Ω} , Ω̂
44

= diag{Ω̂
22
, . . . , Ω̂

22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑚

} ,

Ω
51

(1) = √𝑑𝑀𝑁
𝑇

, Ω
51

(2) = √𝑑𝑀𝑀
𝑇

,

𝑁
𝑇

= [𝑁
𝑇

10
𝑁
𝑇

11
𝑁
𝑇

2
𝑁
𝑇

3
𝑁
𝑇

4
𝑁
𝑇

5
] ,

𝑀
𝑇

= [𝑀
𝑇

10
𝑀
𝑇

11
𝑀
𝑇

2
𝑀
𝑇

3
𝑀
𝑇

4
𝑀
𝑇

5
] .

(37)

The filter parameters are given by

𝐴
𝑓

= 𝐴
𝑓
𝑃
−1

3
,

𝐵
𝑓

= 𝐵
𝑓
,

𝐶
𝑓

= 𝐶
𝑓
𝑃
−1

3
.

(38)

Proof. Since 𝑃
3

> 0, there exist nonsingular matrix 𝑃
2
and

symmetrical matrix 𝑃
3
> 0 satisfying 𝑃

3
= 𝑃
𝑇

2
𝑃
−1

3
𝑃
2
.

Define

𝑃 = [
𝑃
1

𝑃
𝑇

2

𝑃
2

𝑃
3

] , 𝐽 = [
𝐼 0

0 𝑃
𝑇

2
𝑃
−1

3

] . (39)
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Now premultiply and postmultiply Equation (25) with
Υ = diag{𝐽, 𝐼, 𝐼, . . . , 𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

4

, 𝐽, 𝐼, 𝐼, 𝐼, 𝐽, 𝐽, . . . , 𝐽⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2𝑚

, 𝐼} and Υ
𝑇, and

define new variables as
𝐴
𝑓

= 𝐴
𝑓
𝑃
3
, 𝐴

𝑓
= 𝑃
𝑇

2
𝐴
𝑓
𝑃
−𝑇

2
,

𝐵
𝑓

= 𝑃
𝑇

2
𝐵
𝑓
,

𝐶
𝑓

= 𝐶
𝑓
𝑃
3
, 𝐶

𝑓
= 𝐶
𝑓
𝑃
−𝑇

2
,

𝑁
𝑇

1
𝐽
𝑇

= [𝑁
𝑇

10
𝑁
𝑇

11

] , 𝑀
𝑇

1
𝐽
𝑇

= [𝑀
𝑇

10
𝑀
𝑇

11

] .

(40)

We can obtain (35). Therefore, (35) holds, only if (25) holds.
From Theorem 8, the filter error system (21) is asymptotic
stable with 𝐻

∞
performance level 𝛾.

Similar to the analysis of [25], the filter parameters in (20)
can be obtained as (38).

4. Simulation Examples

Consider a specific network controlled system of Equation
(21) under a structure:

𝐴 = [
0.1 0.4

−0.4 0.1
] , 𝐵 = [

−0.7

0.2
] ,

𝐶 = [0 1] , 𝐿 = [1 1] .

(41)

Assume 0 ≤ 𝑑(𝑘) ≤ 4 and the failure rates of the sensors are
𝛼
1
= 0.8 and 𝜎

1
= 0.05.

According to Theorem 9, when 𝐻
∞

performance level
𝛾 = 0.8, the following parameters can be obtained from the
solution of (35) and (36) by using the LMI technique:

𝑃
3
= [

0.7521 0.5801

0.5801 1.4216
] , 𝐴

𝑓
= [

−0.0837 0.3567

−0.3238 0.2977
] ,

𝐵
𝑓

= [
−0.0036

−0.0019
] , 𝐶

𝑓
= [−0.6268 −0.6181] .

(42)

From (38), the corresponding filter parameters can be
obtained as

𝐴
𝑓

= [
−0.4448 0.4325

−0.8641 0.5620
] , 𝐵

𝑓
= [

−0.0036

−0.0019
] ,

𝐶
𝑓

= [−0.7268 −0.1382]

(43)

and the parameter in the event triggering scheme (4) is Ω =

0.0239.
Suppose the initial condition 𝑥(0) = [0.2 0.1]

𝑇 and
external disturbance

𝑤 (𝑘) = {
0.05 5𝑠 ≤ 𝑘 ≤ 15𝑠

0 else.
(44)

Based on the designed filter above, the response of the
error 𝑒(𝑘) and the probabilistic failure Ξ are given in Figures
2 and 3, respectively. Figure 4 describes the release instants
and release interval. It is easy to see from Figures 2–4 that the
filter design method in this paper is effectiveness.
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Figure 2: The response of the error 𝑒(𝑘).
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Figure 3: The probabilistic failure Ξ.

5. Conclusion

This paper investigates a 𝐻
∞

filter design for a class of
network-based systems under an event triggeredmechanism.
In particular, the system under study is a more general sensor
failure model. Considering the uncertain time delay, the
uncertain network environment and probabilistic missing
sensormeasurements, we introduce an event triggeredmech-
anism into the system. By using the free-weighting matrix
method and the LMI techniques, the fundamental stability
conditions are obtained and the filter design methods are
developed. Finally, a numerical example is given to demon-
strate the effectiveness of the proposed designed method.

We would like to point out that it is possible to extend
our main results to the nonlinear systems such as T-S fuzzy
systems, and complex network systems. This will also be one
of our future research issues.
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Figure 4: The release instants and release interval.
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This paper addresses the robust Kalman filtering problem for uncertain attitude estimation system with star sensor measurement
delays. Combined with the misalignment errors and scale factor errors of gyros in the process model and the misalignment
errors of star sensors in the measurement model, the uncertain attitude estimation model can be established, which indicates
that uncertainties not only appear in the state and output matrices but also affect the statistic of the process noise. Meanwhile,
the phenomenon of star sensor measurement delays is described by introducing Bernoulli random variables with different delay
characteristics. The aim of the addressed attitude estimation problem is to design a filter such that, in the presence of model
uncertainties and star sensors delays for the attitude estimation system, the optimized filter parameters can be obtained tominimize
the upper bound on the estimation error covariance. Therefore, a finite-horizon robust Kalman filter is proposed to cope with this
question. Compared with traditional attitude estimation algorithms, the designed robust filter takes into account the effects of star
sensor measurement delays and model uncertainties. Simulation results illustrate the effectiveness of the developed robust filter.

1. Introduction

Attitude estimation has played an important role in many
actual applications, such as aerospace, satellites, marine, and
robots. For attitude estimation system, due to the high mea-
surement precision of star sensor, the rate gyro and star sen-
sor are often integrated to determinate the spacecraft attitude.
Furthermore, the filter design is one of the key technologies in
attitude estimation. As is well known, Kalman filter has been
employed to solve the attitude estimation filtering problem
[1–3]. Although these attitude estimation filtering algorithms
are available for handling attitude estimation problem, they
need to know the accurate model with Gaussian noises and
assume exact alignment of gyro and star sensor. However, in
practical problems, the measurement misalignment errors of
these sensors are inevitable, which will severely degrade the
filtering performance. To overcome the sensor misalignment
problem in attitude estimation, many researches have been
reported in some recent notes [4–8]. For example, Shuster
et al. [4] utilize the batch estimation technique to calibrate

the misalignment of the sensors. Pittelkau [5, 6] develops the
Kalman filtering technique to estimate the calibration param-
eters of gyro and star sensor. Lai and Crassidis [7] derived
a new spacecraft sensor alignment estimation approach
based on the unscented filter. Vandersteen [8] presents
the real-time moving horizon estimation of a spacecraft’s
attitude and sensor calibration parameters. Unfortunately,
even though misalignment calibration is accomplished, the
measurement misalignment error of gyro and star sensor
cannot be removed completely, which lead to model uncer-
tainty. Therefore, in the case that an exact uncertain model
is established, the robust filtering technique can be used
to deal with the filtering problem with model uncertainty.
For the purpose, in the past few decades, many researchers’
attentions have been drawn to the robust filtering problem
with model uncertainties, including the 𝐻

∞
filter [9], new

energy-to-peak FIR filter [10], fuzzy filter design [11], and
robust Kalman filter [12, 13]. Among them, the robust Kalman
filter design based on the minimum variance theory has
been approved to be an effective methodology. Based on
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this, Wang et al. [14] proposed a regularized robust filter for
attitude determination system to deal with the installation
error of star trackers. In this work, the installation error
of star trackers is expressed as model uncertainty in the
measurement model, but the measurement misalignment
error of gyros is not taken into account.

In this paper, all the misalignment errors and scale factor
errors of gyros introduced into the process model and the
misalignment errors of star sensors in the measurement
model are described asmodel uncertainties, so that uncertain
attitude estimation model is established. From the uncertain
model, we can find that the attitude estimation filtering
problem suffers from uncertainties in the state and output
matrices and uncertainty in the process noise matrix. A
typical way is to represent the model uncertainties as norm-
bounded uncertainties. Recently, the finite-horizon robust
Kalman filter design has been investigated to be available for
handling the filtering problem with model uncertainties in
the state, output, and noise matrices by getting an optimized
upper bound on the estimation error covariance [15]. Souto
and Ishihara [16] extend this work by considering correlated
noises with unknown mean and variance.

However, the above works have been based on this
assumption that all the observations should be available at
the time of estimation. In many situations, the sensor mea-
surements are disturbed by complicated signal processing
circuit, leading to the sensor measurement delays or mea-
surement failures [17–20]. Therefore, the filtering problems
with sensor measurement delays have stirred considerable
research attention, such as [21–26]. In attitude estimation
system, due to optics imaging, star recognition, and attitude
determination, the attitude information output of star sensors
has the random delay characteristic. Up to now, the attitude
estimation filtering problem with model uncertainties in the
state, output, and process noise matrices and star sensor
delays has not been reported. So, there is great desire to
present a robust Kalman filter for uncertain attitude estima-
tion system with star sensor delays.

Based on the above discussion, a finite-horizon robust
Kalman filter is proposed for uncertain attitude estimation
system with star sensor delays. The star sensor measurement
is assumed as one-step randomly delayed measurement with
different delay characteristics. The main contributions of the
paper are as follows. (1) The uncertain attitude estimation
model is established to take into consideration measurement
errors of gyros and star sensors, which indicates that the
norm-bounded uncertainties appear in the state, output,
and process noise matrices. (2) Combined with star sensor
delays, a new finite-horizon robust Kalman filter design is
derived for the uncertain attitude estimation system. (3) The
Hadamard product is employed to help the robust Kalman
filter development. (4)Thepresented robust filter is recursive,
which is suitable for online applications.

This paper is organized as follows. In Section 2, the
uncertainty attitude estimationmodel with star sensor delays
is set up. In Section 3, a finite-horizon robust Kalman filter for
uncertainty attitude estimation systemwith star sensor delays
is developed. In Section 4, the simulation results and analysis
are given. In Section 5, some conclusions are drawn.
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Figure 1: A brief principal diagram of the gyro.

2. Uncertainty Attitude Estimation Model
with Star Sensor Delays

2.1. Gyro Error Model. As Figure 1 shows, 𝑥, 𝑦, and 𝑧 are
three axes of the gyro, respectively. The gyro model with
misalignment errors and scale factor errors is given as follows:

�̃� = (I
3×3

+M)𝜔 + 𝛽 + 𝜂V

̇𝛽 = 𝜂
𝑢
,

(1)

where �̃� is the gyro measured output, 𝜔 is the actual gyro
angular rate, 𝛽 is the gyro bias, 𝜂V and 𝜂𝑢 are independent
Gaussian white-noise processes with zero means and covari-
ance 𝜎2V and covariance 𝜎

2

𝑢
, andM is an unknownmatrix with

misalignment errors and scale factor errors, which is defined
by

M = [

[

𝜆
𝑥

𝛿
𝑥𝑦

𝛿
𝑥𝑧

𝛿
𝑦𝑥

𝜆
𝑦

𝛿
𝑦𝑧

𝛿
𝑧𝑥

𝛿
𝑧𝑦

𝜆
𝑧

]

]

, (2)

where 𝜆 = [𝜆
𝑥

𝜆
𝑦

𝜆
𝑧
]
𝑇 is the unknown scale factor error

vector and 𝛿
𝑖𝑗
is the projection of the 𝑖-gyro axis on the 𝑗

body-axis, which is assumed to be a small and unknown
misalignment angle.

2.2. Uncertainty Process Model. The quaternion is employed
to express the attitude for the attitude estimation system
consisting of the gyro and star tracker. So, the quaternion
orientation equation is described as

̇q =
1

2
[
𝜔

0
] ⊗ q =

1

2
Ω (𝜔) ⋅ q, (3)

where q = [𝑞
1

𝑞
2

𝑞
3

𝑞
4
]
𝑇

= [𝜌
𝑇

𝑞
4
]
𝑇

is the attitude
quaternion, 𝜌 is the quaternion vector, 𝑞

4
is the quaternion

scalar part, ⊗ is the quaternion product, and Ω(𝜔) can be
defined as follows:

Ω (𝜔) = [
− [𝜔×] 𝜔

−𝜔
𝑇

0
] , (4)

where [𝜔×] is a cross-product matrix defined by

[𝜔×] = [

[

0 −𝜔
3

𝜔
2

𝜔
3

0 −𝜔
1

−𝜔
2

𝜔
1

0

]

]

. (5)
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Using quaternion multiplication, the quaternion error is
expressed as

𝛿q = q ⊗ q̂−1 = [Δ𝜌
𝑇

Δ𝑞
4
]
𝑇

, (6)

where q is the true quaternion, q̂ is the estimated quaternion,
q−1 is the inverse quaternion, which is given by q−1 =

[−𝜌
𝑇

𝑞
4
]
𝑇

, and Δ𝜌 is the quaternion error vector part.
The gyro error angular rate 𝛿𝜔 is assumed as the differ-

ence between the estimated and actual angular rate: 𝛿𝜔 =

𝜔 − �̂�. According to (1), using a small angle approximation,
we have

𝛿𝜔 = 𝜔 − �̂� = 𝜔 − (I
3×3

+M)
−1

(�̃� − �̂�)

= 𝜔 − (I
3×3

+M)
−1

[(I
3×3

+M)𝜔 + 𝛽 + 𝜂V − �̂�]

= − (I
3×3

+M)
−1

(Δ𝛽 + 𝜂V) ≈ − (I
3×3

−M) (Δ𝛽 + 𝜂V) ,

(7)

where Δ𝛽 is the gyro bias error vector.
Differentiating (6) with respect to time and combining

the quaternion multiplication, we obtain

𝛿 ̇q = ̇q ⊗ q̂−1 + q ⊗ ̇q̂−1 = ̇q ⊗ q̂−1 + q ⊗
1

2
q̂−1 ⊗ [
�̂�

0
]

−1

=
1

2
[
𝜔

0
] ⊗ 𝛿q −

1

2
𝛿q ⊗ [
�̂�

0
]

=
1

2
[
�̂�

0
] ⊗ 𝛿q −

1

2
𝛿q ⊗ [
�̂�

0
] +

1

2
[
𝛿𝜔

0
] ⊗ 𝛿q

= [
− [�̂�×] Δ𝜌

0
] +

1

2
[
Δ𝑞
4
⋅ 𝛿𝜔 − [𝛿𝜔×] Δ𝜌

−𝛿𝜔
𝑇

Δ𝜌
] .

(8)

In order to avoid the quaternion normalization con-
straint, only the vector component of the quaternion error 𝛿q
is considered in the states. Inserting (7) into (8), by neglecting
the second-order terms, we have

Δ ̇𝜌 = − [�̂�×] Δ𝜌 +
1

2
𝛿𝜔

= − [�̂�×] Δ𝜌 −
1

2
(I
3×3

−M) (Δ𝛽 + 𝜂V) .

(9)

The quaternion error vector part Δ𝜌 and the gyro bias
error vector Δ𝛽 are constructed as the error state vector: x =

[Δ𝜌
𝑇

Δ𝛽
𝑇

]
𝑇

. An error state process model with unknown
misalignment errors and scale factor errors can be expressed
as

̇x = [
Δ ̇𝜌

Δ𝛽
] = [

− [�̂�×] Δ𝜌 −
1

2
(I
3×3

−M) (Δ𝛽 + 𝜂V)

𝜂
𝑢

] . (10)

According to (10), the discrete-time process equation can
be developed as

x
𝑘+1

= (A
𝑘
+ ΔA
𝑘
) x
𝑘
+ (B
𝑘
+ ΔB
𝑘
)w
𝑘
, (11)

where w
𝑘
is the zero mean Gaussian noise with covariance

Q
𝑘
= [
Δ𝑡𝜎
2

V I3 × 3 03 × 3
03 × 3 Δ𝑡𝜎2𝑢I3 × 3

],

A
𝑘
= [

I
3×3

− [�̂�×] −
1

2
I
3×3

0
3×3

I
3×3

] , ΔA
𝑘
= [

0
3×3

1

2
M

0
3×3

0
3×3

] ,

B
𝑘
= [

−
1

2
I
3×3

0
3×3

0
3×3

I
3×3

] , ΔB
𝑘
= [

1

2
M 0
3×3

0
3×3

0
3×3

] .

(12)

From (11), it can be seen that the unknown errormatrixM
not only appears in the statematrix but also affects the statistic
of the process noise. In order to realize the robust filtering
design, the unknown error matrixM can be rewritten as

M = HFE, (13)

where 𝛿
𝑖𝑗

= Δ
𝑖𝑗
𝜎
𝑖𝑗
(𝑖, 𝑗 = 𝑥, 𝑦, 𝑧, and 𝑖 ̸= 𝑗); 𝜆

𝑖
= 𝛾
𝑖
Δ𝜆
𝑖
(𝑖 =

𝑥, 𝑦, 𝑧),

H = [

[

𝛾
𝑥

𝜎
𝑥𝑦

𝜎
𝑥𝑧

𝜎
𝑦𝑥

𝛾
𝑦

𝜎
𝑦𝑧

𝜎
𝑧𝑥

𝜎
𝑧𝑦

𝛾
𝑧

]

]

F = diag([Δ𝜆
1

Δ
𝑥𝑦

Δ
𝑥𝑧

Δ
𝑦𝑥

Δ𝜆
2

Δ
𝑦𝑧

Δ
𝑧𝑥

Δ
𝑧𝑦

Δ𝜆
3
])

E = [

[

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

]

]

𝑇

.

(14)

The parameters 𝜎
𝑖𝑗
and 𝛾

𝑖
are positive constants, which

can be chosen by the priori information of the gyro instal-
lation errors. If the 𝜎

𝑖𝑗
and 𝛾
𝑖
are set to be large enough, the

inequalities Δ
𝑖𝑗
Δ
𝑇

𝑖𝑗
≤ 1 and Δ𝜆

𝑖
Δ𝜆
𝑇

𝑖
≤ 1 can be fulfilled, so

that the inequality FF𝑇 ≤ I is satisfied. According to (13), the
model error matrices ΔA

𝑘
and ΔB

𝑘
can be described as

ΔA
𝑘
= H
1,𝑘
F
1,𝑘
E
1,𝑘

, ΔB
𝑘
= H
1,𝑘
F
1,𝑘
E
2,𝑘

, (15)

where F
1,𝑘
F𝑇
1,𝑘

≤ I,

H
1,𝑘

= [

1

2
H

0
3×9

] , F
1,𝑘

= [
F

0
9×9

] ,

E
1,𝑘

= [
0
9×3

E
0
9×3

0
9×3

] , E
2,𝑘

= [
E 0
9×3

0
9×3

0
9×3

] .

(16)

2.3. Uncertainty Measurement Model with Star Sensor Delays.
To obtain the attitude information, three star sensors are
chosen. Considering the misalignment error of star sensors,
the measurement model with model errors is expressed as

[

[

Δ𝜌
𝐴

Δ𝜌
𝐵

Δ𝜌
𝐶

]

]

= [

[

I
3 × 3

− [𝜑
𝐴
×] 0
3 × 3

I
3 × 3

− [𝜑
𝐵
×] 0
3 × 3

I
3 × 3

− [𝜑
𝐶
×] 0
3 × 3

]

]

[
Δ𝜌

Δ𝛽
] + [

[

k
𝐴

k
𝐵

k
𝐶

]

]

, (17)



4 Abstract and Applied Analysis

where 𝐴, 𝐵, and 𝐶 denote different star sensors, Δ𝜌
𝑖
(𝑖 =

𝐴, 𝐵, 𝐶) are themeasured quaternion error vector parts of star
sensors, 𝜑

𝑖
= [𝜑
𝑖𝑥

𝜑
𝑖𝑦

𝜑
𝑖𝑧
]
𝑇

(𝑖 = 𝐴, 𝐵, 𝐶) is the unknown
misalignment error vector, and k

𝑖
(𝑖 = 𝐴, 𝐵, 𝐶) are the zero

mean Gaussian white noises with covariance matrix 𝜎
2

𝑠
I
3 × 3

.
The unknown cross-product matrix [𝜑

𝑖
×] (𝑖 = 𝐴, 𝐵, 𝐶) can

be written as

− [𝜑
𝑖
×] = −[

[

0 −𝜑
𝑖𝑧

𝜑
𝑖𝑦

𝜑
𝑖𝑧

0 −𝜑
𝑖𝑥

−𝜑
𝑖𝑦

𝜑
𝑖𝑥

0

]

]

= N
𝑖
Δ
𝑖
U
𝑖

(𝑖 = 𝐴, 𝐵, 𝐶) ,

(18)

where

N
𝑖
= [

[

0 0 𝜋
𝑖𝑦

0 𝜋
𝑖𝑧

0

𝜋
𝑖𝑥

0 0 0 0 𝜋
𝑖𝑧

0 𝜋
𝑖𝑥

0 𝜋
𝑖𝑦

0 0

]

]

,

Δ
𝑖
= diag ([Δ

𝑖𝑥
Δ
𝑖𝑥

Δ
𝑖𝑦

Δ
𝑖𝑦

Δ
𝑖𝑧

Δ
𝑖𝑧
]) ;

U
𝑖
= [

[

0 0 0 1 0 −1

0 −1 0 0 1 0

1 0 −1 0 0 0

]

]

T

;

Δ
𝑖𝑗
=

𝜑
𝑖𝑗

𝜋
𝑖𝑗

, 𝑗 = 𝑥, 𝑦, 𝑧.

(19)

The parameters 𝜋
𝑖𝑗
are positive constants. If 𝜋

𝑖𝑗
are large

enough, the inequalities Δ
𝑖

𝑇

Δ
𝑖
≤ I and Δ

𝑖
Δ
𝑖

𝑇

≤ I can be
satisfied. For convenience, the uncertain measurement with
misalignment errors can be rewritten as

z
𝑘
= (C
𝑘
+ ΔC
𝑘
) x
𝑘
+ k
𝑘
, (20)

where k
𝑘
is the zero mean Gaussian white-noise process with

covariance R
𝑘
= 𝜎
2

𝑠
I
9 × 9

,

z
𝑘
= [

[

Δ𝜌
𝐴

Δ𝜌
𝐵

Δ𝜌
𝐶

]

]

, C
𝑘
= [

[

I
3 × 3

0
3 × 3

I
3 × 3

0
3 × 3

I
3 × 3

0
3 × 3

]

]

,

ΔC
𝑘
= H
2,𝑘
F
2,𝑘
E∗
1,𝑘

, H
2,𝑘

= [

[

N
𝐴

N
𝐵

N
𝐶

]

]

,

F
2,𝑘

= [

[

Δ
𝐴

Δ
𝐵

Δ
𝐶

]

]

, E∗
1,𝑘

= [

[

U
𝐴

0
6 × 3

U
𝐵

0
6 × 3

U
𝐶

0
6 × 3

]

]

.

(21)

Since the attitude information of star sensors is given
by the complicated data processing and transmission, the
output measurement is delayed. The delayed star sensor
measurement is assumed as

y
𝑘
= (I − Γ

𝑘
) z
𝑘
+ Γ
𝑘
z
𝑘−1

, (22)

where y
𝑘

∈ R𝑚 is the true measurement output vector,
Γ
𝑘
= diag{𝜇

𝑘,1
, 𝜇
𝑘,2

, . . . , 𝜇
𝑘,𝑚

} accounts for the different delay

rates, and 𝜇
𝑘,𝑖

∈ R (𝑖 = 1, 2, . . . , 𝑚) are independent random
variables taking the values of 1 or 0 with

𝑝 (𝜇
𝑘,𝑖

= 1) = 𝐸 [𝜇
𝑘,𝑖
] = 𝑝
𝑘,𝑖

𝑝 (𝜇
𝑘,𝑖

= 0) = 1 − 𝐸 [𝜇
𝑘,𝑖
] = 1 − 𝑝

𝑘,𝑖
,

(23)

where 𝑝
𝑘,𝑖

∈ [0, 1) is a known scalar.

Remark 1. The measurement errors of sensors are inevitable
in real applications, and the gyro and star sensor are no
exception.Though the literature [14] takes into consideration
the misalignment error of star sensors, no attention is paid
to the misalignment errors and scale factor errors of the
gyro. However, they can lead to the uncertainty process
model. As shown in (11), the uncertainty error matrix exists
in the state matrix and noise matrix, which influences the
design of robust filter. Besides, the sensor measurement
signal transmission is susceptible to interference from the
external environment and limited bandwidth of network,
which makes the sensor measurement delay occur. In (22),
the delayed star sensormeasurementmodel is established. As
discussed in the work [25], different delay rates are taken into
account by introducing the diagonal matrix Γ

𝑘
.

3. Finite-Horizon Robust Kalman Filter for
Attitude Estimation

3.1. ProblemDescription. Considering the uncertain discrete-
time linear stochastic system with sensor delays

x
𝑘+1

= (A
𝑘
+ ΔA
𝑘
) x
𝑘
+ (B
𝑘
+ ΔB
𝑘
)w
𝑘

z
𝑘
= (C
𝑘
+ ΔC
𝑘
) x
𝑘
+ k
𝑘

y
𝑘
= (I − Γ

𝑘
) z
𝑘
+ Γ
𝑘
z
𝑘−1

,

(24)

where x
𝑘
∈ R𝑛 is the state vector, z

𝑘
∈ R𝑚 is the measurement

vector, y
𝑘
∈ R𝑚 is the true measurement output vector, w

𝑘

and k
𝑘
are uncorrelated process and measurement Gaussian

noises with zero means and covariance Q
𝑘
and covariance

R
𝑘
, and A

𝑘
, B
𝑘
, and C

𝑘
are known matrices with appropriate

dimensions. The matrices ΔA
𝑘
, ΔB
𝑘
, and ΔC

𝑘
represent

uncertainties in the state, process noise, and output matrices,
which have the following form:

ΔA
𝑘
= H
1,𝑘
F
1,𝑘
E
1,𝑘

, ΔB
𝑘
= H
1,𝑘
F
1,𝑘
E
2,𝑘

,

ΔC
𝑘
= H
2,𝑘
F
2,𝑘
E∗
1,𝑘

,

(25)

where H
1,𝑘
, E
1,𝑘
, E
2,𝑘
, H
2,𝑘
, and E∗

1,𝑘
are known matrices

with appropriate dimensions and F
1,𝑘

and F
2,𝑘

are the norm-
bounded uncertainties satisfying F

1,𝑘
F𝑇
1,𝑘

≤ I and F
2,𝑘
F𝑇
2,𝑘

≤ I.
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Due to the delayed measurement model, we need to
obtain a concise model for convenience. By defining

X
𝑘
= [

x
𝑘

x
𝑘−1

] , A
𝑘
= [

A
𝑘

0
0 A
𝑘−1

] ,

B
𝑘
= [

B
𝑘

0
0 B
𝑘−1

] ,

ΔA
𝑘
= H
1,𝑘
F
1,𝑘
E
1,𝑘

, ΔB
𝑘
= H
1,𝑘
F
1,𝑘
E
2,𝑘

,

H
1,𝑘

= [
H
1,𝑘

0
0 H

1,𝑘−1

] , F
1,𝑘

= [
F
1,𝑘

0
0 F
1,𝑘−1

] ,

E
1,𝑘

= [
E
1,𝑘

0
0 E
1,𝑘−1

] , E
2,𝑘

= [
E
2,𝑘

0
0 E
2,𝑘−1

] ,

C
𝑘
= [

C
𝑘

0
0 C
𝑘−1

] , ΔC
𝑘
= H
2,𝑘
F
2,𝑘
E∗
1,𝑘

,

H
2,𝑘

= [
H
2,𝑘

0
0 H

2,𝑘−1

] , F
2,𝑘

= [
F
2,𝑘

0
0 F
2,𝑘−1

] ,

E∗
1,𝑘

= [
E∗
1,𝑘

0
0 E∗
1,𝑘−1

] , w
𝑘
= [

w
𝑘

w
𝑘−1

] ,

k
𝑘
= [

k
𝑘

k
𝑘−1

] , Υ
𝑘
= [I − Γ

𝑘
Γ
𝑘
] ,

(26)

we have the following form:

X
𝑘+1

= (A
𝑘
+ ΔA
𝑘
)X
𝑘
+ (B
𝑘
+ ΔB
𝑘
)w
𝑘

y
𝑘
= Υ
𝑘
[(C
𝑘
+ ΔC
𝑘
)X
𝑘
+ k
𝑘
] ,

(27)

where it is known that

𝐸 [w
𝑘
w𝑇
𝑘
] = Q

𝑘
= [

Q
𝑘

0
0 Q
𝑘−1

] ,

𝐸 [k
𝑘
k𝑇
𝑘
] = R
𝑘
= [

R
𝑘

0
0 R
𝑘−1

] .

(28)

According to the definition, Υ
𝑘
can be expressed as

Υ
𝑘
= 𝐸 [Υ

𝑘
] = [I − Γ

𝑘
Γ
𝑘
]

Υ̃
𝑘
= Υ
𝑘
− Υ
𝑘
= [Γ
𝑘
− Γ
𝑘
Γ
𝑘
− Γ
𝑘
] ,

(29)

where Γ
𝑘
= diag{𝑝

𝑘,1
, 𝑝
𝑘,2

, . . . , 𝑝
𝑘,𝑚

}.
For the uncertain system (27), a required filter form is

assumed as

X̂
𝑘+1

= A
𝑜
X̂
𝑘
+ K
𝑜
(y
𝑘
− Υ
𝑘
C
𝑘
X̂
𝑘
) , (30)

where X̂
𝑘
is the state estimation value with X̂

0
= [x𝑇
0

0]
𝑇

and A
𝑜
and K

𝑜
are the filter parameters to be determined.

According to the above analysis, the robust filtering problem
for delayed uncertain system (24) can be converted to the
robust filter design problem for uncertain system (27).There-
fore, our aim is to find anupper boundon the estimation error
covariance and design a finite-horizon robust filter for (30) to
minimize the upper bound.

Remark 2. Compared with the literature [15, 16], it is obvious
that the designed robust Kalman filter does not apply to
the case that the measurement delay appears in the system.
Meanwhile, the definition of the uncertainty matrices ΔA

𝑘

and ΔC
𝑘
is different from the definition of the corresponding

matrices in [15, 16]. So, in order to facilitate the robust filter
design, we need to utilize the state augmentation method to
obtain a new uncertain system in (27).

3.2. Upper Bound of the Estimation Error Covariance.
Because there are uncertain and delay rate terms for the
system (27), it is difficult to obtain the true estimation error
covariance. Our objective is to find the upper bound Ξ

𝑘
,

where

𝐸 [(X
𝑘
− X̂
𝑘
) (X
𝑘
− X̂
𝑘
)
𝑇

] ≤ Ξ
𝑘
. (31)

Considering the system (27) and the filter structure (30),
we define an augmented state 𝜂

𝑘
= [X𝑇

𝑘
X̂𝑇
𝑘
]
𝑇

. Then, the
augmented state-space model is expressed as

𝜂
𝑘+1

= (Â
𝑘
+ Ĥ
1,𝑘
F̂
1,𝑘
Ê
1,𝑘

) 𝜂
𝑘
+ Â
1,𝑘
𝜂
𝑘

+ (B̂
𝑘
+ Ĥ
2,𝑘
F̂
2,𝑘
Ê
2,𝑘

) ŵ
𝑘
+ B̂
1,𝑘
ŵ
𝑘
,

(32)

where

Â
𝑘
= [

A
𝑘

0
K
𝑜
Υ
𝑘
C
𝑘

A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘

] ,

Ĥ
1,𝑘

= [
H
1,𝑘

0
0 K

𝑜
Υ
𝑘
H
2,𝑘

] ,

Ê
1,𝑘

= [
E
1,𝑘

0
E∗
1,𝑘

0] , F̂
1,𝑘

= [
F
1,𝑘

0
0 F
2,𝑘

] ,

Â
1,𝑘

= [
0 0

K
𝑜
Υ̃
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

) 0] ,

B̂
𝑘
= [

B
𝑘

0
0 K
𝑜
Υ
𝑘

] ,

Ĥ
2,𝑘

= [
H
1,𝑘

0
0 0] , F̂

2,𝑘
= [

F
1,𝑘

0
0 0] ,

Ê
2,𝑘

= [
E
2,𝑘

0
0 0] ,

B̂
1,𝑘

= [
0 0
0 K
𝑜
Υ̃
𝑘

] , ŵ
𝑘
= [

w
𝑘

k
𝑘

] .

(33)

The state covariance matrix of 𝜂
𝑘
in augmented system (32) is

denoted as

Ξ
𝑘
= 𝐸 [𝜂

𝑘
𝜂
𝑇

𝑘
] = [
Ξ
11,𝑘
Ξ
12,𝑘

Ξ
𝑇

12,𝑘
Ξ
22,𝑘

] . (34)
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So, the evolution equation can be expressed as

Ξ
𝑘+1

= (Â
𝑘
+ Ĥ
1,𝑘
F̂
1,𝑘
Ê
1,𝑘

)Ξ
𝑘
(Â
𝑘
+ Ĥ
1,𝑘
F̂
1,𝑘
Ê
1,𝑘

)
𝑇

+Ψ
1

+ (B̂
𝑘
+ Ĥ
2,𝑘
F̂
2,𝑘
Ê
2,𝑘

)W
𝑘
(B̂
𝑘
+ Ĥ
2,𝑘
F̂
2,𝑘
Ê
2,𝑘

)
𝑇

+Ψ
2
,

(35)

where

W
𝑘
= [

Q
𝑘

0
0 R
𝑘

] , F̂
1,𝑘
F̂𝑇
1,𝑘

≤ I, F̂
2,𝑘
F̂𝑇
2,𝑘

≤ I

Ψ
1
= 𝐸 [Â

1,𝑘
𝜂
𝑘
𝜂
𝑇

𝑘
Â𝑇
1,𝑘

]

= 𝐸([
0 0

K
𝑜
Υ̃
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

) 0] [
X
𝑘

X̂
𝑘

]

× [
X
𝑘

X̂
𝑘

]

𝑇

[
0 0

K
𝑜
Υ̃
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

) 0]
𝑇

)

= [

0 0
0 K𝑜𝐸[̃Υ𝑘 (C𝑘 +H2,𝑘F2,𝑘E

∗

1,𝑘
)X𝑘X𝑇𝑘 (C𝑘 +H2,𝑘F2,𝑘E

∗

1,𝑘
)

𝑇
̃Υ
𝑇

𝑘
]K𝑇
𝑜

]

Ψ
2
= 𝐸 [B̂

1,𝑘
ŵ
𝑘
ŵ𝑇
𝑘
B̂𝑇
1,𝑘

]

= 𝐸([
0 0
0 K
𝑜
Υ̃
𝑘

] [
w
𝑘

k
𝑘

] [
w
𝑘

k
𝑘

]

𝑇

[
0 0
0 K
𝑜
Υ̃
𝑘

]

𝑇

)

= [

0 0
0 K
𝑜
𝐸 [Υ̃
𝑘
k
𝑘
k𝑇
𝑘
Υ̃
𝑇

𝑘
]KT
𝑜

] .

(36)

In order to obtain the upper bound of the error covariance
in (35), the following two lemmas are employed.

Lemma 3 (see [27]). Given matrices A, H, E, and F with
compatible dimensions such that FF𝑇 ≤ I, letX be a symmetric
positive definite matrix and let 𝛾 be an arbitrary positive
constant such that

𝛾
−1I − EXE𝑇 > 0. (37)

Then, the following matrix inequality holds:

(A +HFE)X(A +HFE)𝑇

≤ A(X−1 − 𝛾E𝑇E)
−1

A𝑇 + 𝛾
−1HH𝑇.

(38)

Lemma 4 (see [28]). Let A = [a
𝑖𝑗
]
𝑛×𝑛

be a real matrix and let
B = diag(𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
) be a diagonal random matrix. Then,

E {BABT
} =

[
[
[
[
[

[

E {b2
1
} E {b

1
b
2
} ⋅ ⋅ ⋅ E {b

1
b
𝑛
}

E {b
2
b
1
} E {b2

2
} ⋅ ⋅ ⋅ E {b

2
b
𝑛
}

...
... d

...
E {b
𝑛
b
1
} E {b

𝑛
b
2
} ⋅ ⋅ ⋅ E {b2

𝑛
}

]
]
]
]
]

]

∘ A, (39)

where ∘ is the Hadamard product.

Then, the following conclusion can be given by making
use of the two lemmas.

Theorem 5. If there exist three positive scalars 𝜆
1
, 𝜆
2
, and 𝜆

3
,

such that

𝜆
−1

1
I − Ê
1,𝑘
Ξ
𝑘
Ê𝑇
1,𝑘

> 0

𝜆
−1

2
I − Ê
2,𝑘
W
𝑘
Ê𝑇
2,𝑘

> 0

𝜆
−1

3
I − E∗
1,𝑘
Ξ
11,𝑘

(E∗
1,𝑘

)
𝑇

> 0

(40)

and there exists a symmetric positive-definite matrix Ξ̃
𝑘
, such

that

Ξ̃
𝑘+1

= Â
𝑘
(Ξ̃
−1

𝑘
− 𝜆
1
Ê𝑇
1,𝑘
Ê
1,𝑘

)

−1

Â𝑇
𝑘

+ 𝜆
−1

1
Ĥ
1,𝑘
Ĥ𝑇
1,𝑘

+ 𝜆
−1

2
Ĥ
2,𝑘
Ĥ𝑇
2,𝑘

+ B̂
𝑘
(W−1
𝑘

− 𝜆
2
Ê𝑇
2,𝑘
Ê
2,𝑘

)
−1

B̂𝑇
𝑘

+ [
0 0
0 K
𝑜
(Φ
1,𝑘

+Φ
2,𝑘

)K𝑇
𝑜

] ,

(41)

where

Φ
1,𝑘

= ̆Γ
𝑘
∘ {H [C

𝑘
(Ξ̃
11,𝑘

+ Ξ̃
11,𝑘

(E∗
1,𝑘

)
𝑇

×(𝜆
−1

3
I − E∗
1,𝑘
Ξ̃
11,𝑘

(E∗
1,𝑘

)
𝑇

)

−1

× E∗
1,𝑘
Ξ̃
11,𝑘

)C𝑇
𝑘
+𝜆
−1

3
H
2,𝑘
H𝑇
2,𝑘

]H𝑇}

Φ
2,𝑘

= ̆Γ
𝑘
∘ (HR

𝑘
H𝑇) , H = [I

𝑚
−I
𝑚
]

̆Γ
𝑘
= diag {𝑝

𝑘,1
(1 − 𝑝

𝑘,1
) , 𝑝
𝑘,2

(1 − 𝑝
𝑘,2

) , . . . ,

𝑝
𝑘,𝑚

(1 − 𝑝
𝑘,𝑚

)}

(42)

with initial value Ξ̃
0
= diag{U

0
, 0}, then Ξ

𝑘
≤ Ξ̃
𝑘
for 0 ≤ 𝑘 ≤

𝑁.

Proof. According to Lemma 4, we have

𝐸 [Υ̃
𝑘
k
𝑘
k𝑇
𝑘
Υ̃
𝑇

𝑘
] = ̆Γ
𝑘
∘ (HR

𝑘
H𝑇)

𝐸 [Υ̃
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

)X
𝑘
X𝑇
𝑘
(C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

)
𝑇

Υ̃
𝑇

𝑘
]

= ̆Γ
𝑘
∘ {H [(C

𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

)Ξ
11,𝑘

× (C
𝑘
+H
2,𝑘
F
2,𝑘
E∗
1,𝑘

)
𝑇

]H𝑇} .

(43)
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Since the assumptions in (40) hold, using Lemma 3, we
can get

Ξ
𝑘+1

≤ Â
𝑘
(Ξ
−1

𝑘
− 𝜆
1
Ê𝑇
1,𝑘
Ê
1,𝑘

)
−1

Â𝑇
𝑘

+ 𝜆
−1

1
Ĥ
1,𝑘
Ĥ𝑇
1,𝑘

+ 𝜆
−1

2
Ĥ
2,𝑘
Ĥ𝑇
2,𝑘

+ B̂
𝑘
(W−1
𝑘

− 𝜆
2
ÊT
2,𝑘
Ê
2,𝑘

)
−1

B̂𝑇
𝑘

+ [
0 0
0 K
𝑜
(Φ
1,𝑘

+Φ
2,𝑘

)K𝑇
𝑜

] ,

(44)

where

Φ
1,𝑘

= ̆Γ
𝑘
∘ {H [C

𝑘
(Ξ
−1

11,𝑘
− 𝜆
3
(E∗
1,𝑘

)
𝑇

E∗
1,𝑘

)

−1

C𝑇
𝑘

+ 𝜆
−1

3
H
2,𝑘
H𝑇
2,𝑘

]HT
}

Φ
2,𝑘

= ̆Γ
𝑘
∘ (HR

𝑘
HT

) , H = [I
𝑚

−I
𝑚
]

̆Γ
𝑘
= diag {𝑝

𝑘,1
(1 − 𝑝

𝑘,1
) , 𝑝
𝑘,2

(1 − 𝑝
𝑘,2

) , . . . ,

𝑝
𝑘,𝑚

(1 − 𝑝
𝑘,𝑚

)} .

(45)

Then, when 𝑘 = 0, we have Ξ
0
= Ξ̃
0
= diag{U

0
, 0}.

When 𝑘 = 𝑛, suppose that Ξ
𝑛
≤ Ξ̃
𝑛
.

When 𝑘 = 𝑛 + 1, comparing (41) with (44), it is easy
to obtain that Ξ

𝑛+1
≤ Ξ̃
𝑛+1

. According to the mathematical
induction, the proof is complete.

Assume that Ξ
𝑘
= [I −I] Ξ̃

𝑘
[I −I]𝑇; then

𝐸 [(X
𝑘
− X̂
𝑘
) (X
𝑘
− X̂
𝑘
)
T
] ≤ Ξ
𝑘
. (46)

Therefore, for the upper bound Ξ
𝑘
, we need to choose

the filter parametersA
𝑜
andK

𝑜
to obtain an optimized upper

bound. In the next part, wewill find the value ofΞ
𝑘
anddesign

the finite-horizon robust Kalman filter tominimize the upper
bound.

3.3. Finite-Horizon Robust Kalman Filter Design. In order to
obtain a solution to the above question and design the robust
filter, the main result is presented in the following theorem.

Theorem 6. Assume that the positive scalars 𝜆
1
, 𝜆
2
, and 𝜆

3

fulfill the assumptions in (40); then the upper bound Ξ̃
𝑘
can be

expressed as

Ξ̃
𝑛
= [
Ξ̃
11,𝑛
Ξ̃
12,𝑛

Ξ̃
𝑇

12,𝑛
Ξ̃
22,𝑛

] = [
Ξ̃
11,𝑛
Ξ̃
22,𝑛

Ξ̃
22,𝑛
Ξ̃
22,𝑛

] , 𝑛 ∈ [0,𝑁] . (47)

If the filter parameters A
𝑜
and K

𝑜
can be written as

A
𝑜
= A
𝑘
+ (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
)Ξ
𝑘
GT
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ
𝑘
GT
𝑘
)
−1

G
𝑘

(48)

K
𝑜
= A
𝑘
S
𝑘
C𝑇
𝑘
Υ
𝑇

𝑘
[Υ
𝑘
C
𝑘
S
𝑘
C𝑇
𝑘
Υ
𝑇

𝑘
+ Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)

× Υ
T
𝑘
+Φ
1,𝑘

+Φ
2,𝑘

]

−1

,

(49)

where

E𝑇
1,𝑘
E
1,𝑘

+ (E∗
1,𝑘

)
𝑇

E∗
1,𝑘

= G𝑇
𝑘
G
𝑘
, (50)

S
𝑘
= Ξ
𝑘
+ Ξ
𝑘
G𝑇
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ
𝑘
G𝑇
𝑘
)
−1

G
𝑘
Ξ
𝑘
, (51)

then tr(Ξ
𝑘
) is minimized. So, the state covariance can be

obtained as

Ξ̃
11,𝑘+1

= A
𝑘
(Ξ̃
11,𝑘

+ Ξ̃
11,𝑘

G𝑇
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ̃
11,𝑘

G𝑇
𝑘
)
−1

× G
𝑘
Ξ̃
11,𝑘

)A𝑇
𝑘
+ B
𝑘
(Q−1
𝑘

− 𝜆
2
ET
2,𝑘
E
2,𝑘

)

−1

B𝑇
𝑘

+ (𝜆
−1

1
+ 𝜆
−1

2
)H
1,𝑘
H𝑇
1,𝑘

(52)

and the estimation error covariance can be given as

Ξ
𝑘+1

= A
𝑘
S
𝑘
A𝑇
𝑘
+ B
𝑘
(Q−1
𝑘

− 𝜆
2
E𝑇
2,𝑘
E
2,𝑘

)

−1

B𝑇
𝑘
− A
𝑘
S
𝑘
C𝑇
𝑘
Υ
𝑇

𝑘

× [Υ
𝑘
C
𝑘
S
𝑘
C𝑇
𝑘
Υ
𝑇

𝑘
+ Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)Υ
𝑇

𝑘

+Φ
1,𝑘

+Φ
2,𝑘

]

−1

Υ
𝑘
C
𝑘
S𝑇
𝑘
A𝑇
𝑘

+ (𝜆
−1

1
+ 𝜆
−1

2
)H
1,𝑘
H𝑇
1,𝑘

.

(53)

Proof. when 𝑛 = 0, we have Ξ̃
0
= [
Ξ̃11,0 Ξ̃22,0

Ξ̃22,0 Ξ̃22,0

] = [
U0 0
0 0 ]. When

𝑛 = 𝑘, assume that (47) is valid. When 𝑛 = 𝑘 + 1, we will
prove that (47) is still valid. From (47), suppose that the upper
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bound Ξ̃
𝑘+1

can be partitioned as [ Ξ̃11,𝑘+1 Ξ̃12,𝑘+1
Ξ̃
𝑇

12,𝑘+1
Ξ̃22,𝑘+1

]. According to

the definitions of (50), inserting Ξ̃
𝑘
into (41), we have

Ξ̃
11,𝑘+1

= A
𝑘
Ξ̃
11𝑐,𝑘

A𝑇
𝑘
+ B
𝑘
(Q−1
𝑘

− 𝜆
2
E𝑇
2,𝑘
E
2,𝑘

)

−1

B𝑇
𝑘

+ (𝜆
−1

1
+ 𝜆
−1

2
)H
1,𝑘
H𝑇
1,𝑘

,

(54)

Ξ̃
12,𝑘+1

= A
𝑘
Ξ̃
11𝑐,𝑘

(K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ A
𝑘
Ξ̃
12𝑐,𝑘

(A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

,

(55)

Ξ̃
22,𝑘+1

= K
𝑜
Υ
𝑘
C
𝑘
Ξ̃
11𝑐,𝑘

(K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
𝑇

12𝑐,𝑘
(K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ (K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
12𝑐,𝑘

(A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
22𝑐,𝑘

(A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ K
𝑜
[Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
) Υ
𝑇

𝑘

+Φ
1,𝑘

+Φ
2,𝑘

]K𝑇
𝑜
,

(56)

where

M
𝑘
= G𝑇
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ̃
11,𝑘

G𝑇
𝑘
)
−1

G
𝑘
,

Ξ̃
11𝑐,𝑘

= Ξ̃
11,𝑘

+ Ξ̃
11,𝑘

M
𝑘
Ξ̃
11,𝑘

,

Ξ̃
12𝑐,𝑘

= Ξ̃
12,𝑘

+ Ξ̃
11,𝑘

M
𝑘
Ξ̃
12,𝑘

,

Ξ̃
22𝑐,𝑘

= Ξ̃
22,𝑘

+ Ξ̃
𝑇

12,𝑘
M
𝑘
Ξ̃
12,𝑘

,

S
𝑘
= Ξ̃
11𝑐,𝑘

− Ξ̃
12𝑐,𝑘
Ξ̃
−1

22𝑐,𝑘
Ξ̃
𝑇

12𝑐,𝑘
.

(57)

Due to the fact that Ξ
𝑘
= [I −I] Ξ̃

𝑘
[I −I]𝑇, using (54)–

(56), the required upper bound Ξ
𝑘+1

can be calculated as

Ξ
𝑘+1

= Ξ̃
11,𝑘+1

− Ξ̃
12,𝑘+1

− Ξ̃
𝑇

12,𝑘+1
+ Ξ̃
22,𝑘+1

= (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
11𝑐,𝑘

(A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

− (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
12𝑐,𝑘

(A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

− (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
𝑇

12𝑐,𝑘
(A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
22𝑐,𝑘

(A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
)
𝑇

+ B
𝑘
(Q−1
𝑘

− 𝜆
2
E𝑇
2,𝑘
E
2,𝑘

)

−1

B𝑇
𝑘

+ (𝜆
−1

1
+ 𝜆
−1

2
)H
1,𝑘
H𝑇
1,𝑘

+ K
𝑜
[Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)Υ
𝑇

𝑘

+ Φ
1,𝑘

+Φ
2,𝑘

]K𝑇
𝑜
.

(58)

Computing the first-order variation of (58) with respect
to A
𝑜
and K

𝑜
and making them equal to zero, we have

𝜕 tr (Ξ
𝑘+1

)

𝜕A
𝑜

= − 2 (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
12𝑐,𝑘

+ 2 (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
22𝑐,𝑘

= 0,

(59)

𝜕 tr (Ξ
𝑘+1

)

𝜕K
𝑜

= − 2 (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
11𝑐,𝑘

C𝑇
𝑘
Υ
𝑇

𝑘

+ 2A
𝑘
Ξ̃
12𝑐,𝑘

C𝑇
𝑘
Υ
𝑇

𝑘
+ 2A
𝑜
Ξ̃
𝑇

12𝑐,𝑘
C𝑇
𝑘
Υ
𝑇

𝑘

− 2K
𝑜
[Υ
𝑘
C
𝑘
(Ξ̃
12𝑐,𝑘

+ Ξ̃
𝑇

12𝑐,𝑘
)C𝑇
𝑘
Υ
𝑇

𝑘
]

− 2 (A
𝑜
− K
𝑜
Υ
𝑘
C
𝑘
) Ξ̃
22𝑐,𝑘

C𝑇
𝑘
Υ
𝑇

𝑘

+ 2K
𝑜
[Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)Υ

T
𝑘

+Φ
1,𝑘

+Φ
2,𝑘

] = 0.

(60)

According to (59) and (60), the optimal parameters
A
𝑜
and K

𝑜
to minimize the required upper bound can be

calculated by

A
𝑜
= A
𝑘
+ (A
𝑘
− K
𝑜
Υ
𝑘
C
𝑘
) (Ξ̃
12𝑐,𝑘
Ξ̃
−1

22𝑐,𝑘
− I) , (61)

K
𝑜
= A
𝑘
S
𝑘
C𝑇
𝑘
Υ
𝑇

𝑘
[Υ
𝑘
C
𝑘
S
𝑘
CT
𝑘
Υ
𝑇

𝑘
+ Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)

×Υ
𝑇

𝑘
+Φ
1,𝑘

+Φ
2,𝑘

]

−1

.

(62)

Then, substituting (61) and (62) into (55) and (56), we can
obtain

Ξ̃
12,𝑘+1

= Ξ̃
𝑇

12,𝑘+1
= Ξ̃
22,𝑘+1

= A
𝑘
Ξ̃
12𝑐,𝑘
Ξ̃
−1

22𝑐,𝑘
Ξ̃
𝑇

12𝑐,𝑘
A𝑇
𝑘
+ A
𝑘
S
𝑘
C𝑇
𝑘
Υ
𝑇

𝑘

× [Υ
𝑘
C
𝑘
S
𝑘
C𝑇
𝑘
Υ
𝑇

𝑘
+ Υ
𝑘
(𝜆
−1

1
H
2,𝑘
H𝑇
2,𝑘

+ R
𝑘
)Υ
𝑇

𝑘

+ Φ
1,𝑘

+Φ
2,𝑘

]

−1

Υ
𝑘
C
𝑘
S𝑇
𝑘
A𝑇
𝑘
.

(63)

Thus, when 𝑛 = 𝑘 + 1, (47) is still valid. We can deduce
that (50) is valid, for 𝑛 ∈ [0,𝑁]. From (47), we can know that
Ξ
𝑘
= Ξ̃
11,𝑘

− Ξ̃
22,𝑘

. Utilizing (57), we have

Ξ̃
12𝑐,𝑘
Ξ̃
−1

22𝑐,𝑘
− I = Ξ

𝑘
G𝑇
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ
𝑘
G𝑇
𝑘
)
−1

G
𝑘
, (64)

S
𝑘
= Ξ̃
11𝑐,𝑘

− Ξ̃
12𝑐,𝑘
Ξ̃
−1

22𝑐,𝑘
Ξ̃
𝑇

12𝑐,𝑘

= Ξ
𝑘
+ Ξ
𝑘
G𝑇
𝑘
(𝜆
−1

1
I − G
𝑘
Ξ
𝑘
G𝑇
𝑘
)
−1

G
𝑘
Ξ
𝑘
.

(65)

Substituting (64) into (61), (48) can be given. Fur-
thermore, using (59), the required upper bound Ξ

𝑘+1
can
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be rewritten as (56). Therefore, the theorem has been
proved.

Based on the above theorems, the finite-horizon robust
Kalman filter can be summarized as follows.

Step 1. The initial values can be given as X̂
0
= [x𝑇
0

0]
𝑇

and
Ξ
0
= U
0
.

Step 2. In the presence of uncertainties and sensor delays, the
parameters of the filter can be calculated by (48) and (49).

Step 3. According to (30) and (53), the state estimation X̂
𝑘

and the filtering error covariance Ξ
𝑘
can be obtained.

Remark 7. The finite-horizon robust Kalman filter design
is accomplished by using Theorems 5 and 6 for uncertain
attitude estimation system with star sensor delays. Different
from the most existing attitude estimation filtering algo-
rithms, the finite-horizon robust Kalman filter presented in
this paper has the advantage to consider the misalignment
errors and scale factor errors of gyros and measurement
delays of star sensors for attitude estimation system.Note that
these phenomena of the misalignment errors of gyro and star
sensor and star sensor measurement delays are often encoun-
tered in real attitude estimation systems. To compensate the
misalignment errors of sensor and star sensor measurement
delays, we have designed a finite-horizon robust Kalman filter
by finding the upper bound of the estimation error covariance
and minimizing the upper bound. It is worth mentioning
that, due to the presence of the star sensor measurement
delays, the upper bound of the estimation error covariance
in (35) and the filter parameters A

𝑜
and K

𝑜
in (48) and

(49) distinguished our work from the counterpart in [15, 16].
In addition, this paper talks about the filter problem with
only one type of noise disturbance. The filter problem with
multiple disturbances can be considered to achieve more
practical oriented results, as discussed in [28, 29], which will
be one of our future research topics.

4. Simulations and Analysis

4.1. Simulation Conditions. The simulation utilizes the data
from a satellite. The initial orbit elements of the satellite are
set as follows: the semimajor axis 𝑎 = 7.087457 × 10

3 km, the
eccentricity 𝑒 = 1.99 × 10

−3, the inclination 𝑖 = 98.153
∘, the

ascending node longitude Ω = −30.534
∘, and the argument

of perigee 𝜔
∗

= −0.133
∘. Numerical simulation gives the

measurement data of gyro. The standard deviation of gyros’
measurement noise is 𝜎V = 1.45444 × 10

−6 rad/s1/2; the
standard deviation of gyros’ drift noise is 𝜎

𝑢
= 1.3036 ×

10
−9 rad/s3/2; the gyro sampling interval is Δ𝑡 = 0.25 s;

the components of the gyro scale factor error vector are
chosen randomly at the interval [−6 × 10

−6

, 6 × 10
−6

]; the
misalignment error of gyro is chosen randomly at the interval
[−3 × 10

−6

, 3 × 10
−6

]; three star sensors are used and the
standard deviation of star sensors’ measurement noise is all
𝜎
𝑠

= 18
. The misalignment error of star sensor is set to

[−5


, 5


]. Three star sensors have different delay rates, so the
random variables 𝜇

𝑘,𝑖
(i = 1, 2, . . . , 9) satisfy the Bernoulli

distribution with

Γ
𝑘
= diag {0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.05, 0.05, 0.05} . (66)

The initial attitude quaternion of the system is taken as
q
0

= [0 0 0 1]
𝑇; the gyros’ initial bias is set as 𝛽 =

[0. 1 0.1 0.1]
𝑇
∘

/ℎ; all the filters are initialized with no
attitude errors and zero bias estimate; the initial attitude
error covariance is set at 0.1∘ for the quaternion components
and 0.2

∘ for the bias components. In order to complete the
robust filter design and ensure the estimation precision, the
parameters 𝜆

1
, 𝜆
2
, and 𝜆

3
are set to satisfy the condition (40).

4.2. Simulation Results. To validate the effectiveness of the
proposed robust filter for controlling themeasurement errors
of gyros and star sensors and star sensor delays, the proposed
approach (FRKF) is compared with the traditional Kalman
filter (KF) and the robust Kalman filter (RKF) in the literature
[15]. For a fair comparison, the root-mean square error
(RMSE) and accumulative RMSE (ARMSE) [30, 31] of the
attitude are employed to describe the quality of the attitude
estimation. Monte-Carlo simulation runs are set as 𝑁MC =

50, and the RMSE of attitude angles can be defined by

RMSEatt (𝑘) = √
1

𝑁MC

𝑁MC

∑

𝑖=1

ae𝑖(𝑘)


2

, (67)

where ae
𝑖
(𝑘) expresses the attitude estimation error vector at

the 𝑖th Monte-Carlo run. Then, the ARMSE of the attitude is
defined by

AMSEatt = √
1

𝑁

𝑁

∑

𝑖=1

RMSE2att (𝑘), (68)

where𝑁 denotes the simulation time. The simulation results
are shown in Figures 2–4.

From Figures 2 and 3, it is obvious to be seen that the
FRKFperformsmuch better than theRKF andKF, and theKF
performs the worst. This is because the traditional KF is not
suitable for handling the model uncertainties in the system
model and star sensor delays. However, the RKF compensates
the measurement errors of gyros and star sensors, whose
precisions are better than the KF. But the RKF cannot control
the effect of the star sensor delays. Compared with the RKF,
the FRKFhas higher estimation precision that the RKF,which
indicates that the FRKF not only deals with the measurement
errors of gyros and star sensors but also cope with the star
sensor delays.

For the sake of accounting for the effect of star sensor
delays, three star sensors are assumed to have the same delay
rate, such as 𝑝

𝑘,𝑖
(𝑖 = 1, 2, . . . , 𝑚) = 𝑝. Figure 4 shows the

ARMSE of the attitude angles from three filters when 𝑝 =

0, 0.1, 0.2, . . . , 1.0. From Figure 4, it can be seen that if there
are no star sensor delays, that is, 𝑝 = 0, the FRKF is equal
to the RKF. Meanwhile, it is apparent that the KF and RKF
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Figure 2: Attitude estimation errors.
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Figure 3: RMSE of the attitude angles.

increase faster than the FRKF as the delay probability 𝑝 is
greater, which illustrates the efficiency of the FRKF to control
the star sensor delays.

5. Conclusion

By the fact that the misalignment errors and scale factor
errors of gyros and the misalignment errors of star sensors
are difficult to be removed entirely by the attitude estimation
filter calibration, these measurement errors of sensors are
assumed as the norm-bounded uncertainties in the attitude
estimation model. At the same time, due to the complicated
signal processing of star sensors, the star sensor delay is
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Figure 4: ARMSE of the attitude angles.

one of the most important problems for attitude estimation
system. Therefore, a finite-horizon robust Kalman filter for
the uncertain attitude estimation system with star sensor
delays is proposed in this paper. The uncertain attitude
estimation model with star sensor delays is constructed, and
the finite-horizon robust Kalman filter design is developed.
Finally, the applicability and effectiveness of the proposed
filter have been demonstrated by the simulation.
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Focusing on the issue of nonlinear stability control system about the single-stage inverted pendulum, the T-S fuzzy model is
employed. Firstly, linear approximation method would be applied into fuzzy model for the single-stage inverted pendulum. At
the same time, for some nonlinear terms which could not be dealt with via linear approximation method, this paper will adopt fan
range method into fuzzy model. After the T-S fuzzy model, the PDC technology is utilized to design the fuzzy controller secondly.
Numerical simulation results, obtained byMatlab, demonstrate the well-controlled effectiveness based on the proposedmethod for
the model of T-S fuzzy system and fuzzy controller.

1. Introduction

Traditional control theory has perfect control ability for
explicitly controlled system, however, which is a little weak to
describe too complex or difficult systemaccurately.Therefore,
many researchers seek ways to resolve this problem; those
researchers have also focused on fuzzy mathematics and
applied it to control problems. Zadeh [1] created fuzzy math-
ematics on an uncertainty system of control which is great
contribution. Since the 70s, some practical controllers appear
in succession, so that we have a big step forward in the control
field. A number of control design approaches using adaptive
control [2–4], sliding mode control [5, 6],𝐻

∞
[7–9], optimal

control [10–12], control based data driven [10, 13–15], and
fuzzy control [16, 17]. The inverted pendulum system is
controlled by the method of fuzzy control and realizes steady
control.The inverted pendulum is a typical automatic control
in the field of controlled object [18], which is multivariable
and nonlinear and strong coupling characteristics, and so
on. The inverted pendulum system reveals a natural unstable
object, which can accomplish the stability and good perfor-
mance by the control methods.

For the stability control of inverted pendulum system,
the establishment of the model takes an important role. T-
S fuzzy control [19] is the most popular one of the most

promising methods based on modeling of fuzzy control
research platform. At present, the T-S fuzzy control is one
of the methods for nonlinear system control research [20],
which is very popular. Based on T-S fuzzy model of inverted
pendulum system modeling and control have a certain
research. For inverted pendulum system based on T-S fuzzy
mode, there are two methods [21]: the first one is the fan of
nonlinear method. Although this method has high precision
in describing the nonlinear system, it obtains many fuzzy
rules.Thus it brings to the controller design difficulty, especi-
ally for the nonlinear term system. The second one is linear
approximation modeling method, the method at the expense
of the modeling accuracy and less number of rules of T-S
fuzzy model. Since the secondmethod can obtain a simple T-
S fuzzy model, so in the inverted pendulum systemmodeling
it is widely applied, but there is a very important problem,
which is that if for one type of inverted pendulum system it
contains the approximate method to deal with the nonlinear
term, then the fuzzy modeling becomes the key to study.

Based on the above analysis anddiscussion, this thesiswill
carry the fuzzy modeling and control on inverted pendulum
system of complex nonlinear term. For this point, sector
nonlinear and linear approximation method will be adopted
in the T-S fuzzy modeling of some inverted pendulums and
the design of fuzzy controller.The fuzzymodeling and control
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method can achieve the stability control of the single inverted
pendulum system through the simulation.

2. Fuzzy Modeling for the Inverted
Pendulum System

Assume that the car’s quality is 𝑀, the pendulum’s quality is
𝑚, the pendulum’s length is 𝑙, the pendulum’s angle is 𝜃 at an

instant (the angle between the pendulum rod and the vertical
direction), the initial displacement is 𝑥, 𝑔 = 9.8 m/s2 is the
gravity constant, the level for control is forced acting on the
car is 𝐹, 𝑎 = 1/(𝑚 + 𝑀), and the inverted pendulum’s state
space is as follows:

(
̇𝑥
1
(𝑡)

̇𝑥
2
(𝑡)

) = (

𝑥
2
(𝑡)

1

(4𝑙/3) − 𝑎𝑚𝑙cos2 (𝑥
1
(𝑡))

[𝑔 sin (𝑥
1
(𝑡)) −

𝑎𝑚𝑙𝑥
2

2
(𝑡) sin2 (𝑥

1
(𝑡))

2
− 𝑥
2
(𝑡) − 𝑎𝑢 (𝑡)]

) , (1)

where 𝜃 is 𝑥
1
(𝑡), ̇𝜃 is 𝑥

2
(𝑡), 𝐹 = 𝑢(𝑡), and 𝑥

1
(𝑡) ∈ (0, ±𝜋/2),

𝑥
2
(𝑡) ∈ [−𝛼, 𝛼].
When 𝑥

1
(𝑡) = ±𝜋/2, the system is uncontrollable, so

we take 𝑥
1
(𝑡) ∈ [−88

∘

, 88
∘

] as the range. For this inverted
pendulum system, T-S fuzzy model can be considered as
follows:

𝑅
𝑖

: if 𝑥
1
(𝑡) is 𝑀𝑖

1
, . . . 𝑥
𝑛
(𝑡) is 𝑀𝑖

𝑛

then ̇𝑥 (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) ,

(2)

where 𝑥(𝑡) = [𝑥
1
(𝑡) 𝑥
2
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑛
(𝑡)]
𝑇

∈ 𝑅
𝑛 is the state vari-

ables for the fuzzy system,𝑀𝑖
𝑘
is the fuzzy sets and where 𝑘 =

1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑟, the input vector is 𝑢(𝑡) ∈ 𝑅
𝑚, 𝐴
𝑖
∈

𝑅
𝑛×𝑛, 𝐵

𝑖
∈ 𝑅
𝑛×𝑚 are coefficient matrix for the system. The

number of fuzzy rules for the system is 𝑟.
The total fuzzy control system is as follows:

̇𝑥 (𝑡) =
∑
𝑟

𝑖=1
𝜔
𝑖
(𝑥 (𝑡)) (𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡))

∑
𝑟

𝑖=1
𝜔
𝑖
(𝑥 (𝑡))

, (3)

where 𝜔
𝑖
(𝑥(𝑡)) = ∏

𝑛

𝑘=1
𝑀
𝑖

𝑘
(𝑥
𝑘
(𝑡)), and 𝑀

𝑖

𝑘
(𝑥
𝑘
(𝑡)) is denotes

the membership degree, and where 𝑥
𝑘
(𝑡) for 𝑀

𝑖

𝑘
. The

ℎ
𝑖
(𝑥(𝑡)) = 𝜔

𝑖
(𝑥(𝑡))/∑

𝑟

𝑗=1
𝜔
𝑗
(𝑥(𝑡)) and (2) will be as follows:

̇𝑥 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑥 (𝑡)) (𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡)) , (4)

where ℎ
𝑖
(𝑥(𝑡)) ≥ 0 and ∑

𝑟

𝑖=1
ℎ
𝑖
(𝑥(𝑡)) = 1.

There is an important nonlinear term in this inverted
pendulum system, in other words 𝑥

2

2
(𝑡)sin2(𝑥

1
(𝑡)), which

should be paid more attention. The nonlinear term cannot
be conducted through the linear approximation method on
this inverted pendulum system.Thus, the thesis will combine
the linear approximation method with the fan of nonlinear
method to establish the fuzzymodel.Theprocess is as follows.

(1) If 𝑥
1
(𝑡) is about 0, through approximate treatment

the systemwith the linear approximationmethod, the
fuzzy model of system can be obtained as follows:

then

(
̇𝑥
1
(𝑡)

̇𝑥
2
(𝑡)

) = (

0 1

𝑔

(4𝑙/3) − 𝑎𝑚𝑙

−1

(4𝑙/3) − 𝑎𝑚𝑙

)(
𝑥
1
(𝑡)

𝑥
2
(𝑡)

)

+ (

0

−𝑎

(4𝑙/3) − 𝑎𝑚𝑙

)𝑢 (𝑡)

(
̇𝑥
1
(𝑡)

̇𝑥
2
(𝑡)

) = (

0 1

3𝑔

4𝑙 − 3𝑎𝑚𝑙

−3

4𝑙 − 3𝑎𝑚𝑙

)(
𝑥
1
(𝑡)

𝑥
2
(𝑡)

)

+ (

0

−3𝑎

4𝑙 − 3𝑎𝑚𝑙

)𝑢 (𝑡) .

(5)

(2) If 𝑥
1
(𝑡) is about ±𝜋/2, and consider the fan of nonli-

near method, and 𝑧(𝑡) = 𝑥
2
(𝑡)sin2(𝑥

1
(𝑡)),

then

max
𝑥1(𝑡), 𝑥2(𝑡)

𝑧 (𝑡) = 𝑥
2
(𝑡) sin2 (𝑥

1
(𝑡)) ≡ 𝑐

1
= 0.2595. (6)

Then

min
𝑥1(𝑡), 𝑥2(𝑡)

𝑧 (𝑡) = 𝑥
2
(𝑡) sin2 (𝑥

1
(𝑡)) ≡ 𝑐

2
= −0.2595. (7)

(1) If 𝑧(𝑡) is 𝑐
1
, through the linear approximation

method and the fan of nonlinear method to
approximate treatment, the fuzzy model of sys-
tem can be obtained as follows:

(
̇𝑥
1
(𝑡)

̇𝑥
2
(𝑡)

) = (

0 1

𝑔 (2/𝜋)

4𝑙/3
−(

1

4𝑙/3

𝑎𝑚𝑙𝑐
1

2
+

1

4𝑙/3
)
)(

𝑥
1
(𝑡)

𝑥
2
(𝑡)

)

+ (

0

−𝑎

4𝑙/3

)𝑢 (𝑡) ,

(
̇𝑥
1
(𝑡)

̇𝑥
2
(𝑡)

)=(

0 1

3𝑔

2𝜋𝑙
−(

3𝑎𝑚𝑐
1

8
+
3

4𝑙
)
)(

𝑥
1
(𝑡)

𝑥
2
(𝑡)

)+(

0

−3𝑎

4𝑙

) 𝑢 (𝑡) .

(8)
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Figure 1: Membership functions of two-rule model.

(2) If 𝑧(𝑡) is 𝑐
2
, through the linear approximation

method and the fan of nonlinear method to
approximate treatment, the fuzzy model of sys-
tem can be obtained as follows:

(
̇𝑥
1
(𝑡)

̇𝑥
2
(𝑡)

)=(

0 1

𝑔 (2/𝜋)

4𝑙/3
−(

1

4𝑙/3

𝑎𝑚𝑙𝑐
2

2
+

1

4𝑙/3
)
)(

𝑥
1
(𝑡)

𝑥
2
(𝑡)

)

+ (

0

−𝑎

4𝑙/3

)𝑢 (𝑡) ,

(
̇𝑥
1
(𝑡)

̇𝑥
2
(𝑡)

)=(

0 1

3𝑔

2𝜋𝑙
−(

3𝑎𝑚𝑐
2

8
+
3

4𝑙
)
)(

𝑥
1
(𝑡)

𝑥
2
(𝑡)

)+(

0

−3𝑎

4𝑙

)𝑢 (𝑡) .

(9)

Here define membership functions. For the part of lin-
ear approximation, the membership function is shown as
Figure 1.

Rule 1: Consider

𝐻
1
(𝑡) =

{{

{{

{

2

𝜋
𝑥
1
(𝑡) + 1, (−

𝜋

2
≤ 𝑥
1
(𝑡) ≤ 0)

−
2

𝜋
𝑥
1
(𝑡) + 1, (0 < 𝑥

1
(𝑡) ≤

𝜋

2
)

. (10)

Rule 2: Consider

𝐻
2
(𝑡) = 1 − 𝐻

1
(𝑡) . (11)

Figure 2 is the membership function for the fan of nonlinear
method. 𝑧(𝑡) can be rewritten as 𝑧(𝑡) = ∑

2

𝑖=1
𝐸
𝑖
(𝑧(𝑡))𝑐

𝑖
, where

𝐸
1
(𝑧(𝑡)) = (𝑧(𝑡)−𝑐

2
)/(𝑐
1
−𝑐
2
) and𝐸

2
(𝑧(𝑡)) = (𝑐

1
−𝑧(𝑡))/(𝑐

1
−𝑐
2
).

The membership functions 𝐸
1
(𝑧(𝑡)) and 𝐸

2
(𝑧(𝑡)) will meet

the equation 𝐸
1
(𝑧(𝑡)) + 𝐸

2
(𝑧(𝑡)) = 1.

In conclusion, the finally fuzzy model for the system will
be shown as follows.

Rule 1: if 𝑥
1
(𝑡) tends to 0, then ̇𝑥(𝑡) = 𝐴

1
𝑥(𝑡)+𝐵

1
𝑢(𝑡).

Rule 2: if 𝑥
1
(𝑡) tends to ±(𝜋/2)(|𝑥

1
(𝑡)| < 𝜋/2) and

𝑧(𝑡) takes the maximum value, then ̇𝑥(𝑡) = 𝐴
2
𝑥(𝑡) +

𝐵
2
𝑢(𝑡).

E2(z(t)) E1(z(t))

Negative Positive

−a a
0

1

z(t)

0

Figure 2: Membership function for the fan of nonlinear method.

Table 1: Function parameters.

Parameter Function Value
𝑀 Themass of the cart 1.096 kg
𝑚 Themass of the pendulum 0.109 kg
𝑙 The length of the pendulum 0.25m

𝜃
The angle of the pendulum from
the vertical

𝐹 The force applied to the cart

Rule 3: if 𝑥
1
(𝑡) tends to ±(𝜋/2)(|𝑥

1
(𝑡)| < 𝜋/2) and

𝑧(𝑡) takes the minimum value, then ̇𝑥(𝑡) = 𝐴
3
𝑥(𝑡) +

𝐵
3
𝑢(𝑡).

The function and value of every parameter are shown in
Table 1.

All the parameters defined in Table 1 are taken to account,
then the system coefficient matrix can be obtained as follow

𝐴
1
= (

0 1

3𝑔

4𝑙 − 3𝑎𝑚𝑙

−3

4𝑙 − 3𝑎𝑚𝑙

) = (
0 1

31.5397 −3.2183
) ,

𝐵
1
= (

0

−3𝑎

4𝑙 − 3𝑎𝑚𝑙

) = (
0

−2.6708
) ,

𝐴
2
= (

0 1

3𝑔

2𝜋𝑙
− (

3𝑎𝑚𝑐
1

8
+

3

4𝑙
)
) = (

0 1

18.7166 −3.0088
) ,

𝐵
2
= (

0

−3𝑎

4𝑙

) = (
0

−2.4896
) ,

𝐴
3
= (

0 1

𝑔 (2/𝜋)

4𝑙/3
−(

1

4𝑙/3

𝑎𝑚𝑙𝑐
2

2
+

1

4𝑙/3
)
)

= (
0 1

18.7166 −2.9912
) ,

𝐵
3
= (

0

−𝑎

4𝑙/3

) = (
0

−2.4896
) .

(12)
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Figure 3: Simulation result without the controller.

The model rules can be represented as follows:

ℎ
1
(𝑡) = 𝐻

1
(𝑡) ,

ℎ
2
(𝑡) = 𝐻

2
(𝑡) × 𝐸

1
(𝑧 (𝑡)) = 𝐻

2
(𝑡) × [

𝑧 (𝑡) − 𝑐
2

𝑐
1
− 𝑐
2

] ,

ℎ
3
(𝑡) = 𝐻

2
(𝑡) × 𝐸

2
(𝑧 (𝑡)) = 𝐻

2
(𝑡) × [

𝑐
1
− 𝑧 (𝑡)

𝑐
1
− 𝑐
2

] .

(13)

For the T-S model of the control object, a parallel distributed
compensation control scheme (PDC) is employed. And the
regulations are described as follow:

𝑅
𝑖

: if 𝑥
1
(𝑡) is 𝑀𝑖

1
, . . . 𝑥
𝑛
(𝑡) is 𝑀𝑖

𝑛

then 𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) .

(14)

Here the fuzzy controller and the fuzzy system adopt the same
fuzzy rule. The overall model for the fuzzy controller is as
follows:

𝑢 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝑥 (𝑡)) 𝐾

𝑖
𝑥 (𝑡) . (15)

The closed control system can be obtained by combining (2)
and (4):

̇𝑥 =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) 𝑥. (16)

3. Based on Linear Matrix Inequalities (LMI)
and the Matlab Simulation

Without the controller, the simulation output curves of
the angular velocity and angular acceleration are shown in
Figure 3.

Figure 3 shows that the inverted pendulum system is
unstable without the controller.

In the following, by using the linear matrix inequalities
technique [23], the fuzzy controller is designed.

Let us define the Lyapunov function as (𝑥(𝑡)) =

𝑥
𝑇

(𝑡)𝑃𝑥(𝑡),𝑃 > 0, then the stable criterion of the system for
(16) is as follows:
𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)
𝑇

𝑃 + 𝑃

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
) < 0.

(17)

Define𝑄 = 𝑃
−1; we can obtain (18) by multiplying𝑄 on both

sides contemporary:

𝑄

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)
𝑇

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑗
)𝑄 < 0.

(18)

After defining 𝐾
𝑗
𝑄 = 𝑁

𝑗
, the system stability discriminant

conditions can be obtained. And this will guarantee a positive
definite matrix 𝑄 and matrix 𝑁

𝑗
can be searched, then the

following matrix inequality can be established:

𝑄𝐴
𝑇

𝑖
+ 𝑁
𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐴
𝑖
𝑄 + 𝐵

𝑖
𝑁
𝑖
< 0,

𝑄𝐴
𝑇

𝑖
+𝑁
𝑇

𝑗
𝐵
𝑇

𝑖
+𝐴
𝑖
𝑄+𝐵
𝑖
𝑁
𝑗
+𝑄𝐴
𝑇

𝑗
+𝑁
𝑇

𝑖
𝐵
𝑇

𝑗
+𝐴
𝑗
𝑄+𝐵
𝑗
𝑁
𝑖
< 0,

𝑖 = 1, 2, . . . , 𝑟, 𝑖 < 𝑗,

(19)

where the stable controller will be obtained from (20):

𝐾
𝑗
= 𝑁
𝑗
𝑄
−1

. (20)

Through solving (19) by linear matrix inequality with LMI of
Matlab [24], we can obtain

𝑄 = [
1.1127 −0.4874

−0.4874 1.9975
] ,

𝑁
1
= [14.6725 − 7.9846] ,

𝑁
2
= [9.7868 − 5.9077] ,

𝑁
3
= [9.7836 − 5.8945] .

(21)

Moreover, taking advantage of (20), the fuzzy controller gain
will be obtained and shown as follows:

𝐾
1
= [12.8038 − 0.8733] ,

𝐾
2
= [8.3975 − 0.9086] ,

𝐾
3
= [8.3975 − 0.9020] .

(22)

Put the controller gain into (16); design the simulation
program in the simulink environment. Here the initial value
𝑥(0) = [−0.01 −0.1] is selected. The results of the fuzzy con-
trol simulation of the level single inverted pendulum system
are shown in Figures 4, 5, and 6.

Simulation results show that the system responses con-
verge to the equilibriumpoint, which indicates that the design
of the controller is stable.
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Figure 4: Simulation result of the angle.

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

Time (s)

x2(t)

x
2
(
t
)

Figure 5: Simulation result of the angular velocity.
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Figure 6: Simulation result of the controller.

4. Conclusion

This thesis takes a class of an inverted pendulum system
as the research object. The system fuzzy model was estab-
lished by the methods that combining with the linearization
approximation processing and fan-shaped interval, and then
the fuzzy controller was designed. Matlab-Simulink soft-
ware toolbox was employed to be on computer simulation.
The results show that it achieved a stable control of the
single-stage inverted pendulum system through fuzzy control
method on the basis of this fuzzy model. This model has
the advantages of less fuzzy rules, high precision, and simple
structure. The research results can provide an effective way
for the subsequent instability in other nonlinear system
modeling and fuzzy control.
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A 2-dimensional stochastic Burgers equation with dissipative term perturbed by Wiener noise is considered. The aim is to prove
the well-posedness, existence, and uniqueness of invariant measure as well as strong law of large numbers and convergence to
equilibrium.

1. Introduction

The paper is concerned with the 2-dimensional Burgers
equation in a bounded domainwithWiener noise as the body
forces like this

𝑑𝑢 = (]Δ𝑢 + (𝑢 ⋅ ∇) 𝑢) 𝑑𝑡 + 𝑑𝑊, on [0, 𝑇] × 𝐷,

𝑢 (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕𝐷,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝐷,

(1)

where 𝑢(𝑡, 𝑥) = (𝑢
1

(𝑡, 𝑥), 𝑢
2

(𝑡, 𝑥)) is the velocity field, ] >
0 is viscid coefficient, Δ denotes the Laplace operator, ∇
represents the gradient operator,𝑊 stands for the 𝑄-Wiener
process, and 𝐷 is a regular bounded open domain of R2.
Burgers equation has received an extensive amount of atten-
tion since the studies by Burgers in the 1940s (and it has
been considered even earlier by Beteman [1] and Forsyth [2]).
But it is well known that the Burgers’ equation is not a good
model for turbulence since it does not perform any chaos.
Even if a force is added to equation, all solutions will converge
to a unique stationary solution as time goes to infinity.
However, if the force is a random one, the result is completely
different. So, several authors have indeed suggested to use the
stochastic Burgers’ equation to model turbulence, see [3–6].
The stochastic equation has also been proposed in [7] to study
the dynamics of interfaces.

So far, most of the monographs concerning the equation
focus on one-dimensional case, for example, Bertini et al. [8]

solved the equation with additive space-time white noise by
an adaptation of the Hopf-cole transformation. Da Prato et
al. [9] studied the equation via a different approach based
on semigroup property for the heat equation on a bounded
interval.Themore general equation with multiplicative noise
was considered by Da Prato and Debussche [10]. With
a similar method, Gyöngy and Nualart [11] extended the
Burgers equation from bounded interval to real line. A large
deviation principle for the solution was obtained by Gourcy
[12]. Concerning the ergodicity, an important paper by
Weinan et al. [13] proved that there exists a unique stationary
distribution for the solutions of the random inviscid Burgers
equation, and typical solutions are piecewise smooth with
a finite number of jump discontinuities corresponding to
shocks. For model with jumps, Dong and Xu [14] proved
that the global existence and uniqueness of the strong, weak,
and mild solutions for a one-dimensional Burgers equation
perturbed by Lévy noise. When the noise is fractal, Wang et
al. [15] get the well-posedness.

The main aim in our paper is to study the large time
behavior of stochastic system. There are lots of the literature
about the topic (see [16–20]).

Burgers system is a well-known model for mechanics
problems. But as far as we know, there are no results about the
long-term behavior of stochastic Burgers’ system. We think
that the difficulty lies in the fact that the dissipative term Δ𝑢

cannot dominate the nonlinear term (𝑢 ⋅ ∇)𝑢. However, in
many practical cases, we cannot ignore the energy dissipation
and external forces, especially considering the long-term
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behavior. Therefore, we introduce dissipative term 𝑓(𝑢) and
study the ergodicity of the following equation:

𝑑𝑢 = [Δ𝑢 + (𝑢 ⋅ ∇) 𝑢 − 𝑓 (𝑢)] 𝑑𝑡 + 𝑑𝑊, on [0, 𝑇] × 𝐷,

𝑢 (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕𝐷,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝐷,

(2)

where𝑓(𝑢) = 𝜗|𝑢(𝑡, 𝑥)|
2

𝑢(𝑡, 𝑥), 𝜗 > 0, |⋅| denote the absolute
value or norm for the real number or two-dimensional vector,
respectively.

We believe that our work is new and is worth researching.
The methods and results in this paper can be applied to
stochastic reaction diffusion equations and stochastic real
valued Ginzburg Landau equation in high dimensions. But
we cannot extend our result to dynamical systems with state-
delays. Since in order to show the existence of an invariant
measure, we should consider the segments of a solution.
In contrast to the scalar solution process, the process of
segments is a Markov process. We show that the process of
segments is also Feller and that there exists a solution ofwhich
the segments are tight.Then, we apply theKrylov-Bogoliubov
method. Since the segment process has values in the infinite-
dimensional space 𝐶([−𝑟, 0],𝐻), boundedness in probabil-
ity does not automatically imply tightness. For solution
processes of infinite-dimensional equations, one often uses
compactness of the orbits of the underlying deterministic
equation to obtain tightness. For an infinite-dimensional
formulation of the functional differential equation, however,
such a compactness property does not hold. For ergodicity
of stochastic delay equations, we can see [21]. We believe
that stochastic Burgers’ system with state-delays is a very
interesting problem.

In order to study ergodicity of problem (2), we use a
remarkable dissipativity property of the stochastic dynamic to
obtain the existence of the invariantmeasure. For uniqueness,
we try to use the method from [22] to prove that the
distributions 𝑃(𝑡, 𝑥, ⋅) induced by the solution are equivalent.
It is well known that the equivalence of the distributions
implies uniqueness, a strong law of large numbers, and the
convergence to equilibrium.

The remaining of this paper is organized as follows. Some
preliminaries are presented in Section 2, the local existence
and global existence are presented, respectively, in Sections 3
and 4. In Section 5, we obtain the existence and uniqueness of
the invariant measure as well as strong law of large numbers,
and convergence to equilibrium. As usual, constants 𝐶 may
change from one line to the next; we denote by 𝐶

𝑎
a constant

which depends on some parameter 𝑎.

2. Preliminaries on the Burgers Equation

Let 𝑢(𝑡, 𝑥) = (𝑢
1

(𝑡, 𝑥), 𝑢
2

(𝑡, 𝑥)) be a row vector valued func-
tion on [0,∞) ×R2. And it denotes the following:

|𝑢|
2

:=

2

∑

𝑖=1


𝑢
𝑖


2

, 𝜕
𝑖
𝑢
𝑗

:=
𝜕𝑢

𝑗

𝜕𝑥
𝑖

, 𝑖, 𝑗 = 1, 2. (3)

Let [𝐶∞

(𝐷)]
2 be infinitely differentiable 2-dimensional vec-

tor field on 𝐷, and let [𝐶∞

0
(𝐷)]

2 be infinitely differentiable
2-dimensional vector field with compact support strictly
contained in 𝐷. We denote by 𝐻𝛼 the closure of [𝐶∞

(𝐷)]
2

in [𝐻
𝛼

(𝐷)]
2, whose norms are denoted by ‖ ⋅ ‖

𝐻
𝛼 , when

𝛼 ̸= 0. Let 𝐻1

0
, 𝐻 be the closure of [𝐶∞

0
(𝐷)]

2 in [𝐻
1

(𝐷)]
2

and [𝐿2

(𝐷)]
2 whose norms are denoted by ‖ ⋅ ‖

𝐻
1 and ‖ ⋅ ‖

𝐻
,

respectively.Without confusion, set ⟨⋅, ⋅⟩ as the inner product
in𝐻 or 𝐿2

(𝐷). For 𝑝 > 0, let ‖ ⋅ ‖
𝐿
𝑝 be the norm of vector filed

in Lebesgue spaces [𝐿𝑝

(𝐷)]
2. | ⋅ |

𝐻
𝛼 represents the norm in

the usual sobolev spaces𝐻𝛼

(𝐷) for real valued functions on
𝐷 and 𝛼 ∈ R; | ⋅ |

𝐿
𝑝 stands for the norm in the usual Lebesgue

spaces 𝐿𝑝

(𝐷) for real valued functions on𝐷. Denote𝐴 := −Δ;
then 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 and𝐷(𝐴) = [𝐻

2

(𝐷)]
2

∩𝐻
1

0
. Since

𝐻
1

0
coincides with𝐷(𝐴1/2

), we can endow𝐻
1

0
with the norm

‖𝑢‖
𝐻
1 = ‖𝐴

1/2

𝑢‖
𝐻
. The operator 𝐴 is positive self-adjoint

with compact resolvent; we denote by 0 < 𝛼
1
≤ 𝛼

2
≤ ⋅ ⋅ ⋅ the

eigenvalues of 𝐴, and by 𝑒
1
, 𝑒

2
, . . . the eigenvectors which is a

corresponding complete orthonormal system in𝐻 satisfying

(i) 𝑒
𝑖
∈ [𝐶

∞

0
(𝐷)]

2

,

(ii) 𝑒𝑖 (𝑥)
 ≤ 𝐶,

∇𝑒𝑖 (𝑥)
 ≤ 𝐶√𝛼

𝑖
,

𝑥 ∈ 𝐷, 𝑖 = 1, 2, . . . .,

(4)

for some positive constant C. We remark that ‖𝑢‖2
𝐻
1 ≥

𝛼
1
‖𝑢‖

2

𝐻
. We define the bilinear operator 𝐵(𝑢, V) : 𝐻1

×𝐻
1

→

𝐻
−1 as

⟨𝐵 (𝑢, V) , 𝑧⟩ = ∫
𝐷

𝑧 (𝑥) ⋅ (𝑢 (𝑥) ⋅ ∇) V (𝑥) 𝑑𝑥, (5)

for all 𝑧 ∈ 𝐻1.Then, (2) is equivalent to the following abstract
equation:

𝑑𝑢 (𝑡) + [𝐴𝑢 (𝑡) + 𝐵 (𝑢 (𝑡) , 𝑢 (𝑡)) + 𝑓 (𝑢 (𝑡))] 𝑑𝑡 = 𝑑𝑊 (𝑡) .

(6)

𝑊 is the 𝑄Wiener process having the following representa-
tive:

𝑊(𝑡) =

∞

∑

𝑛=1

√𝜆
𝑛
𝑒
𝑛
𝛽
𝑛
(𝑡) , 𝑡 ∈ [0, 𝑇] , (7)

in which ∑
∞

𝑛=1
𝜆

𝑛
< ∞ and 𝛽

𝑘
are a sequence of mutually

independent 1-dimensional Brownian motions in a fixed
probability space (Ω,F, 𝑃) adapted to a filtration {F

𝑡
}
𝑡≥0

.
It can be derived from [23] that the solution to the

linear problem corresponding to (2) with the following initial
condition:

𝑑𝑢 = Δ𝑢𝑑𝑡 + 𝑑𝑊,

𝑢 (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕𝐷,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝐷,

(8)

is unique, and when 𝑢
0
= 0, it has the form of

𝑊
𝐴
(𝑡) = ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑑𝑊 (𝑠) . (9)
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Let

V (𝑡) = 𝑢 (𝑡) − 𝑊
𝐴
(𝑡) , 𝑡 ≥ 0, (10)

then 𝑢 is a solution to (2) if and only if it solves the following
evolution equation:

𝜕V
𝑑𝑡

+ 𝐴V + 𝐵 (V +𝑊
𝐴
, V +𝑊

𝐴
) + 𝑓 (V +𝑊

𝐴
) = 0,

V (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕𝐷,

V (0) = 𝑢
0
.

(11)

So, we see that when 𝑤 ∈ Ω is fixed, this equation is in fact
a deterministic equation. From now on, we will study the
equation of the form (11) to get the existence and uniqueness
of the solution a.s. 𝑤 ∈ Ω.

3. Local Existence in Time

Definition 1 (see Definition 5.1.1 in [24]). We say a (F(𝑡))
𝑡≥0

adapted process V(𝑡) is a mild solution to (11), if V(𝑡) ∈

𝐶([0, 𝑇];𝐻
1

0
) and it satisfies

V (𝑡) = 𝑒
𝑡𝐴V

0
+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝐵 (V +𝑊
𝐴
, V +𝑊

𝐴
) 𝑑𝑠

− ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑓 (V +𝑊
𝐴
) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(12)

Lemma 2. For any 𝜃 ∈ (0, 1), if ∑∞

𝑖=1
𝜆

𝑖
(𝛼

𝑖
)
𝜃

< ∞, then
𝐴

1/2

𝑊
𝐴

has a version which is 𝛼-Hölder continuous with
respect to 𝑡 ∈ [0, 𝑇], 𝑥 ∈ 𝐷 with any 𝛼 ∈]0, 𝜃/2[.

Proof. Let 𝑇 > 0 and 𝑠, 𝑡 ∈ [0, 𝑇]; then

𝐸

𝐴

1/2

𝑊
𝐴
(𝑡, 𝑥) − 𝐴

1/2

𝑊
𝐴
(𝑠, 𝑥)



2

=

∞

∑

𝑖=1

𝜆
𝑖
∫

𝑡

𝑠


𝐴

1/2

𝑆 (𝑡 − 𝜏) 𝑒
𝑖
(𝑥)



2

𝑑𝑠

+

∞

∑

𝑖=1

𝜆
𝑖
∫

𝑠

0


𝐴

1/2

[𝑆(𝑡 − 𝜏) − 𝑆(𝑠 − 𝜏)]𝑒
𝑖
(𝑥)



2

𝑑𝜏

=: 𝐼
1
(𝑡, 𝑠, 𝑥) + 𝐼

2
(𝑡, 𝑠, 𝑥) .

(13)

Then, we have

𝐼
1
(𝑡, 𝑠, 𝑥)

≤ 𝐶

∞

∑

𝑖=1

𝜆
𝑖
𝛼
𝑖
∫

𝑡

𝑠

𝑒
−2(𝑡−𝜏)𝛼𝑖𝑑𝜏

= 𝐶

∞

∑

𝑖=1

𝜆
𝑖
𝛼
𝑖
(
1 − 𝑒

−2(𝑡−𝑠)𝛼𝑖

2𝛼
𝑖

)

≤ 𝐶

∞

∑

𝑖=1

𝜆
𝑖
(𝛼

𝑖
)
𝜃

|𝑡 − 𝑠|
𝜃

,

𝐼
2
(𝑡, 𝑠, 𝑥)

≤
1

2
𝐶

∞

∑

𝑖=1

𝜆
𝑖
𝛼
𝑖
∫

𝑠

0


[𝑒

−(𝑡−𝜏)𝛼𝑖 − 𝑒
−(𝑠−𝜏)𝛼𝑖]



2

𝑑𝜏

= 𝐶

∞

∑

𝑖=1

𝜆
𝑖
𝛼
𝑖

1

2𝛼
𝑖

[(𝑒
−(𝑡−𝑠)𝛼𝑖 − 1)

2

− (𝑒
−𝑡𝛼𝑖 − 𝑒

−𝑠𝛼𝑖)
2

]

≤ 𝐶

∞

∑

𝑖=1

𝜆
𝑖
(𝛼

𝑖
)
𝜃

|𝑡 − 𝑠|
𝜃

.

(14)

So, by the estimate of 𝐼
1
and 𝐼

2
, we arrive at

𝐸

𝐴

1/2

𝑊
𝐴
(𝑡, 𝑥) − 𝐴

1/2

𝑊
𝐴
(𝑠, 𝑥)



2

≤ 𝐶

∞

∑

𝑖=1

𝜆
𝑖
(𝛼

𝑖
)
𝜃

|𝑡 − 𝑠|
𝜃

.

(15)

For 𝑡 ∈ [0, 𝑇], 𝑥, 𝑦 ∈ 𝐷, we get

𝐸

𝐴

1/2

𝑊
𝐴
(𝑡, 𝑥) − 𝐴

1/2

𝑊
𝐴
(𝑡, 𝑦)



2

=

∞

∑

𝑖=1

𝜆
𝑖
𝛼
𝑖
∫

𝑡

0

𝑒
−2𝛼𝑖(𝑡−𝑠)

𝑒𝑖 (𝑥) − 𝑒𝑖 (𝑦)


2

𝑑𝑠

≤

∞

∑

𝑖=1

𝜆
𝑖

𝑒𝑖 (𝑥) − 𝑒𝑖 (𝑦)


2

≤

∞

∑

𝑖=1

𝜆
𝑖
(𝛼

𝑖
)
𝜃𝑥 − 𝑦



𝜃

.

(16)

Therefore,

𝐸

𝐴

1/2

𝑊
𝐴
(𝑡, 𝑥) − 𝐴

1/2

𝑊
𝐴
(𝑠, 𝑦)



2

≤ 𝐶(|𝑡 − 𝑠|
𝜃

+
𝑥 − 𝑦



𝜃

) .

(17)

As𝐴1/2

𝑊
𝐴
(𝑡, 𝑥)−𝐴

1/2

𝑊
𝐴
(𝑠, 𝑦) is aGaussian randomvariable,

we obtain

𝐸

𝐴

1/2

𝑊
𝐴
(𝑡, 𝑥) − 𝐴

1/2

𝑊
𝐴
(𝑠, 𝑦)



2𝑚

≤ 𝐶(|𝑡 − 𝑠|
𝑚𝜃

+
𝑥 − 𝑦



𝑚𝜃

) ,

(18)

for 𝑚 = 1, 2, . . . By Kolmogorov’ test theorem, we get the
conclusion.

Remark 3. An example of the noise satisfying condition of
Lemma 2 is

𝑑𝑊 (𝑡) =

∞

∑

𝑛=1

√𝜆
𝑛
𝑒
𝑛
𝑑𝛽

𝑛
(𝑡) , (19)

where {𝛽
𝑛
} is a sequence of independent 1-dimensional

Brownian motion, and {𝜆
𝑛
} satisfies

𝜆
𝑛
= 𝑛

−(1+2𝜃)

, 𝛼
𝑛
= 𝑛 ∀𝑛 ∈ N. (20)
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It is so because the eigenvalues 𝛼
𝑛
of the operator 𝐴, in 2-

dimensional space, behave like 𝑛.

Remark 4. Another example of stochastic noise satisfying
Lemma 2 is

𝐴
−𝛾

𝐿𝑑𝑊 (𝑡) , (21)

where𝑊(𝑡) = ∑
∞

𝑛=1
𝑒
𝑛
𝛽
𝑛
(𝑡), 𝐿 is an isomorphism in𝐻, and

𝛾 ≥
1

2
+ 𝜃. (22)

To prove the local existence of the solution of (1) in sense
of Definition 1, we introduce the spaceB

𝑚
defined by

B
𝑚
= {V : V ∈ 𝐶 ([0, 𝑇

∗

] ;𝐻
1

0
) , ‖V‖

𝐻
1 ≤ 𝑚, ∀𝑡 ∈ [0, 𝑇

∗

]} ,

(23)

where 𝑇∗

≥ 0 which in fact is a stopping time and 𝑚 > 0,
𝑝 > 0.

Lemma 5. For 𝑢
0
= (𝑢

1

(0), 𝑢
2

(0)), ‖𝑢
0
‖
𝐻
1 < 𝑚, and 𝑢𝑖

(0) is
adapted toF

0
, 𝑖 = 1, 2; then there exists a uniquemild solution

V in sense of Definition 1 to (11) inB
𝑚
.

Proof. Choose a V inB
𝑚
, and set

L (V) := 𝑒
−𝑡𝐴

𝑢
0

+ ∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

[(V +𝑊
𝐴
) ⋅ ∇] (V +𝑊

𝐴
) 𝑑𝑠

− ∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

𝑓 (V +𝑊
𝐴
) 𝑑𝑠.

(24)

Then,

‖L (V)‖
𝐻
1 ≤


𝑒
−𝑡𝐴

𝑢
0

𝐻1

+



∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

[(V +𝑊
𝐴
) ⋅ ∇] (V +𝑊

𝐴
) 𝑑𝑠

𝐻1

+



∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

𝑓 (V +𝑊
𝐴
) 𝑑𝑠

𝐻1
.

(25)

For the second term on the right hand side of (25),

𝑒
−(𝑡−𝑠)𝐴

[(V +𝑊
𝐴
) ⋅ ∇] (V +𝑊

𝐴
)
𝐻1

=

𝑒
−(𝑡−𝑠)𝐴

[𝑢 ⋅ ∇] 𝑢
𝐻1

≤
1

2


𝑒
−(𝑡−𝑠)𝐴

𝜕
1
(𝑢

1

)
2𝐻1

+
1

2


𝑒
−(𝑡−𝑠)𝐴

𝜕
2
(𝑢

2

)
2𝐻1

+

𝑒
−(𝑡−𝑠)𝐴

𝑢
2

𝜕
2
𝑢
1
𝐻1

+

𝑒
−(𝑡−𝑠)𝐴

𝑢
1

𝜕
1
𝑢
2
𝐻1

:= 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
.

(26)

In the following, we will estimate 𝐼
𝑖
, respectively, 𝑖 = 1, 2, 3, 4.

Since {𝑒−𝑡𝐴}
𝑡≥0

is contraction on 𝐿
𝑝

(𝐷), 𝑝 ≥ 1, it is known
that


𝑒
−𝑡𝐴

𝑧
𝑊𝑠2,𝑟

≤ 𝐶
1
𝑡
(𝑠1−𝑠2)/2

|𝑧|
𝑊
𝑠1,𝑟 , (27)

for all 𝑧 ∈ 𝑊
𝑠1 ,𝑟(𝐷), 𝑠

1
, 𝑠

2
∈ R, 𝑠

1
≤ 𝑠

2
, 𝑟 ≥ 1, and 𝐶

1
only

depends on 𝑠
1
, 𝑠

2
, and 𝑟. Before calculating each 𝐼

𝑖
, we outline

the Sobolev embedding principle in fractional Sobolev spaces
as follows:

𝑊
𝜂1,𝑝1

(𝐷) ⊂ 𝑊
𝜂2 ,𝑞1

(𝐷) , (28)

when

1

𝑝
1

−
1

𝑛
(𝜂

1
− 𝜂

2
) ≤

1

𝑞
1

≤
1

𝑝
1

, (29)

where 𝑛 is the dimension of the spatial. Let 𝜂
1
= 3/4, 𝑝

1
=

2, 𝜂
2
= 1/4, 𝑞

1
= 4 satisfying (29) such that

𝑊
3/4,2

(𝐷) ⊂ 𝑊
1/4,4

(𝐷) . (30)

For 𝐼
1
, by (27) andTheorem A.8 in [25], we get

𝐼
1
≤ 𝐶

1
|𝑡 − 𝑠|

−7/8

𝜕
1
(𝑢

1

)
2𝐻−3/4

= 𝐶
1
|𝑡 − 𝑠|

−7/8

𝐴

1/8

(𝑢
1

)
2𝐻

= 𝐶
1
|𝑡 − 𝑠|

−7/8

2𝑢

1

𝐴
1/8

𝑢
1

+ 𝑅
𝐻
,

(31)

where

𝑅 = 𝐴
1/8

(𝑢
1

)
2

− 2𝐴
1/8

𝑢
1

, (32)

satisfying

|𝑅|
𝐻
≤

𝐴

1/16

𝑢
1


2

𝐿
4
≤

𝑢
1


2

𝐻
1
. (33)

The last inequality follows by (30). For the other term added
to 𝑅, we have


2𝑢

1

𝐴
1/8

𝑢
1
𝐻

≤
𝑢1



2

𝐿
4 +


𝐴

1/8

𝑢
1


2

𝐿
4
≤ 2


𝑢
1


2

𝐻
1
. (34)

So, by (31)–(34), we have

𝐼
1
≤ 3𝐶

1
|𝑡 − 𝑠|

−7/8

𝑢
1


2

𝐻
1
. (35)

Similarly, we get for 𝐼
2
that

𝐼
2
≤ 3𝐶

1
|𝑡 − 𝑠|

−7/8

𝑢
2


2

𝐻
1
. (36)

For 𝐼
3
, by Theorem A.8 in [25], we get

𝐼
3
≤

𝑒
−(𝑡−𝑠)𝐴

𝑢
2

𝐴
1/2

𝑢
1
𝐻1

=

𝑒
−(𝑡−𝑠)𝐴

[𝐴
1/4

(𝑢
2

𝐴
1/4

𝑢
1

) − (𝐴
1/4

𝑢
1

) (𝐴
1/4

𝑢
2

) − 𝑅
1
]
𝐻1

,

(37)
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where

𝑅
1
= 𝐴

1/4

(𝑢
2

𝐴
1/4

𝑢
1

) − [𝐴
1/4

𝑢
2

] [𝐴
1/4

𝑢
1

] − 𝑢
2

𝐴
1/2

𝑢
1

.

(38)

For 𝑅
1
, we have

𝑒
−(𝑡−𝑠)𝐴

𝑅
1

𝐻1

≤ 𝐶
1
|𝑡 − 𝑠|

−1/2𝑅1

𝐻

≤ 𝐶
1
|𝑡 − 𝑠|

−1/2

𝐴

1/4

𝑢
1
𝐿4

⋅

𝐴

1/4

𝑢
2
𝐿4

≤ 𝐶
1
|𝑡 − 𝑠|

−1/2

(

𝑢
1


2

𝐻
1
+

𝑢
2


2

𝐻
1
) .

(39)

For the first term on the right hand side of (37), by (27), we
have


𝑒
−(𝑡−𝑠)𝐴

𝐴
1/4

(𝑢
2

𝐴
1/4

𝑢
1

)
𝐻1

=

𝑒
−(𝑡−𝑠)𝐴

𝐴
3/4

(𝑢
2

𝐴
1/4

𝑢
1

)
𝐻

≤ 𝐶
1
|𝑡 − 𝑠|

−3/4

𝑢
2

𝐴
1/4

𝑢
1
𝐻

≤ 𝐶
1
|𝑡 − 𝑠|

−3/4

(

𝑢
2


2

𝐿
4
+

𝐴

1/4

𝑢
1


2

𝐿
4
)

≤ 𝐶
1
|𝑡 − 𝑠|

−3/4

(

𝑢
2


2

𝐻
1
+

𝑢
1


2

𝐻
1
) .

(40)

For the second term on the right hand side of (37), by (27),
we obtain


𝑒
−(𝑡−𝑠)𝐴

[𝐴
1/4

𝑢
2

⋅ 𝐴
1/4

𝑢
1

]
𝐻1

≤ 𝐶
1
|𝑡 − 𝑠|

−1/2

𝐴

1/4

𝑢
2

⋅ 𝐴
1/4

𝑢
1
𝐻

≤ 𝐶
1
|𝑡 − 𝑠|

−1/2

(

𝑢
1


2

𝐻
1
+

𝑢
2


2

𝐻
1
) .

(41)

From (37) to (41), we get for 𝐼
3
that

𝐼
3
≤ 𝐶 (|𝑡 − 𝑠|

−1/2

+ |𝑡 − 𝑠|
−3/4

) (

𝑢
1


2

𝐻
1
+

𝑢
2


2

𝐻
1
) . (42)

Analogously, for 𝐼
4
, we get

𝐼
4
≤ 𝐶 (|𝑡 − 𝑠|

−1/2

+ |𝑡 − 𝑠|
−3/4

) (

𝑢
1


2

𝐻
1
+

𝑢
2


2

𝐻
1
) . (43)

By (26), (35), (36), (42), and (43), we have

𝑒
−(𝑡−𝑠)𝐴

[(V +𝑊
𝐴
) ⋅ ∇] (V +𝑊

𝐴
)
𝐻1

≤ 𝐶 (|𝑡 − 𝑠|
−1/2

+ |𝑡 − 𝑠|
−3/4

+ |𝑡 − 𝑠|
−7/8

)

× (

𝑢
1


2

𝐻
1
+

𝑢
2


2

𝐻
1
) .

(44)

As 𝑢 = V +𝑊
𝐴
, by (44), for 𝑡 ≤ 𝑇

∗, we have

∫

𝑡

0

𝑑𝑠

𝑒
−(𝑡−𝑠)𝐴

[(V +𝑊
𝐴
) ⋅ ∇] (V +𝑊

𝐴
)
𝐻1

≤ 𝐶 (𝑡
1/8

+ 𝑡
1/4

+ 𝑡
1/2

)( sup
𝑡∈[0,𝑇

∗
]

‖V‖2
𝐻
1 + sup

𝑡∈[0,𝑇]

𝑊𝐴



2

𝐻
1) .

(45)

Since by Lemma 2,

sup
𝑡∈[0,𝑇]

𝑊𝐴



2

𝐻
1 < ∞. (46)

For the last term on the right hand side of (25), we have

𝑒
−(𝑡−𝑠)𝐴

𝑓 (V +𝑊
𝐴
)
𝐻1

≤ 𝐶|𝑡 − 𝑠|
−1/2

(
V +𝑊𝐴



3

𝐿
6)

≤ 𝐶|𝑡 − 𝑠|
−1/2

(
𝑊𝐴



3

𝐻
1 + ‖V‖3

𝐻
1) .

(47)

Therefore,


∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

𝑓 (V +𝑊
𝐴
) 𝑑𝑠

𝐻1

≤ 𝐶 (1 + 𝑚
3

)∫

𝑡

0

|𝑡 − 𝑠|
−1/2

𝑑𝑠

≤ 𝐶 (1 + 𝑚
3

) 𝑇
∗1/2

.

(48)

So by (25), (45), and (48), when 𝑇∗ is small enough,

‖L(V)‖
𝐻
1 ≤ 𝑚. (49)

For each V
1
, V

2
∈ B

𝑚
, set 𝑢

𝑖
= V

𝑖
+𝑊

𝐴
, 𝑖 = 1, 2. To simplify the

notation in the following calculation, we denote 𝑢
𝑖
= (𝑢

1

𝑖
, 𝑢

2

𝑖
),

𝑖 = 1, 2. Then,

L (V
1
) −L (V

2
)

= ∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

[(𝑢
1
⋅ ∇) 𝑢

1
− (𝑢

2
⋅ ∇) 𝑢

2
] 𝑑𝑠

+ ∫

𝑡

0

𝑒
−(𝑡−𝑠)𝐴

[𝑓 (𝑢
1
) − 𝑓 (𝑢

2
)] 𝑑𝑠.

(50)

So,
L (V

1
) −L (V

2
)
𝐻1

≤ ∫

𝑡

0


𝑒
−(𝑡−𝑠)𝐴

[(𝑢
1
⋅ ∇) 𝑢

1
− (𝑢

2
⋅ ∇) 𝑢

2
]
𝐻1

𝑑𝑠

+ ∫

𝑡

0


𝑒
−(𝑡−𝑠)𝐴

[𝑓 (𝑢
1
) − 𝑓 (𝑢

2
)]
𝐻1

𝑑𝑠.

(51)

In order to simplify the notation, we set

(𝑢
1
⋅ ∇) 𝑢

1
− (𝑢

2
⋅ ∇) 𝑢

2
= (𝑓

1
+ 𝑓

2
, 𝑓

3
+ 𝑓

4
) , (52)

where

𝑓
1
=
1

2
𝜕
1
[(𝑢

1

1
)
2

− (𝑢
1

2
)
2

] ,

𝑓
2
= 𝑢

2

1
𝜕
2
𝑢
1

1
− 𝑢

2

2
𝜕
2
𝑢
1

2
,

𝑓
3
=
1

2
𝜕
2
[(𝑢

2

1
)
2

− (𝑢
2

2
)
2

] ,

𝑓
4
= 𝑢

1

1
𝜕
1
𝑢
2

1
− 𝑢

1

2
𝜕
1
𝑢
2

2
.

(53)
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Then, we estimate 𝑓
𝑖
, 𝑖 = 1, 2, 3, 4, respectively. For 𝑓

1
, we

have

𝑒
−(𝑡−𝑠)𝐴

𝑓
1

𝐻1

=

𝑒
−(𝑡−𝑠)𝐴

𝐴
1/2

[(𝑢
1

1
− 𝑢

1

2
) (𝑢

1

1
+ 𝑢

1

2
)]
𝐻1

≤ 𝐶|𝑡 − 𝑠|
−7/8


𝐴

1/8

[(𝑢
1

1
)
2

− (𝑢
1

2
)
2

]
𝐻

= 𝐶|𝑡 − 𝑠|
−7/8


𝐴

1/8

[(𝑢
1

1
− 𝑢

2

1
) (𝑢

1

1
+ 𝑢

2

1
)]
𝐻

= 𝐶|𝑡 − 𝑠|
−7/8


[𝐴

1/8

(𝑢
1

1
− 𝑢

2

1
)] (𝑢

1

1
+ 𝑢

2

1
)
𝐻

+ 𝐶|𝑡 − 𝑠|
−7/8


[𝐴

1/8

(𝑢
1

1
+ 𝑢

2

1
)] (𝑢

1

1
− 𝑢

2

1
) + 𝑅

2

𝐻
.

(54)

We first consider
𝑅2

𝐻
≤ 𝐶


𝐴

1/16

(𝑢
1

1
− 𝑢

1

2
)
𝐿4

⋅

𝐴

1/16

(𝑢
1

1
+ 𝑢

1

2
)
𝐿4

≤ 𝐶

𝑢
1

1
− 𝑢

1

2

𝐻1
⋅

𝑢
1

1
+ 𝑢

1

2

𝐻1
.

(55)

For the other term added to 𝑅
2
,


[𝐴

1/8

(𝑢
1

1
+ 𝑢

1

2
)] (𝑢

1

1
− 𝑢

1

2
)
𝐻

≤

𝑢
1

1
+ 𝑢

1

2

𝐻1
⋅

𝑢
1

1
− 𝑢

1

2

𝐻1
.

(56)

By (54)–(56),

𝑒
−(𝑡−𝑠)𝐴

𝑓
1

𝐻1
≤ 𝐶|𝑡 − 𝑠|

−7/8

𝑢
1

1
− 𝑢

1

2

𝐻1
⋅

𝑢
1

1
+ 𝑢

1

2

𝐻1
. (57)

Analogously, for 𝑓
3
,


𝑒
−(𝑡−𝑠)𝐴

𝑓
3

𝐻1
≤ 𝐶|𝑡 − 𝑠|

−7/8

𝑢
1

1
− 𝑢

1

2

𝐻1
⋅

𝑢
1

1
+ 𝑢

1

2

𝐻1
. (58)

For 𝑓
2
, by (53), we have


𝑒
−(𝑡−𝑠)𝐴

𝑓
2

𝐻1
=

𝑒
−(𝑡−𝑠)𝐴

(𝑢
2

1
𝜕
2
𝑢
1

1
− 𝑢

2

2
𝜕
2
𝑢
1

2
)
𝐻1

≤

𝑒
−(𝑡−𝑠)𝐴

(𝑢
2

1
(𝜕

2
𝑢
1

1
− 𝜕

2
𝑢
1

2
))
𝐻1

+

𝑒
−(𝑡−𝑠)𝐴

((𝑢
2

1
− 𝑢

2

2
) 𝜕

2
𝑢
1

2
)
𝐻1

.

(59)

For the first term on the right hand side of (59), we have

𝑒
−(𝑡−𝑠)𝐴

(𝑢
2

1
(𝜕

2
𝑢
1

1
− 𝜕

2
𝑢
1

2
))
𝐻1

≤

𝑒
−(𝑡−𝑠)𝐴

(𝑢
2

1
𝐴

1/2

(𝑢
1

1
− 𝑢

1

2
))
𝐻1

=

𝑒
−(𝑡−𝑠)𝐴

{𝐴
1/4

[𝑢
2

1
𝐴

1/4

(𝑢
1

1
− 𝑢

1

2
)]

− [𝐴
1/4

𝑢
2

1
, 𝐴

1/4

(𝑢
1

1
− 𝑢

1

2
)] − 𝑅

3
}
𝐻1

.

(60)

For 𝑅
3
,

𝑒
−(𝑡−𝑠)𝐴

𝑅
3

𝐻1

≤ |𝑡 − 𝑠|
−1/2𝑅3

𝐻

≤ |𝑡 − 𝑠|
−1/2


𝐴

1/4

𝑢
2

1

𝐿4
⋅

𝐴

1/4

(𝑢
1

1
− 𝑢

1

2
)
𝐿4

= |𝑡 − 𝑠|
−1/2


𝑢
2

1

𝐻1
⋅

𝑢
1

1
− 𝑢

1

2

𝐻1
.

(61)

For the first term on the right hand side of (60), we arrive at

𝑒
−(𝑡−𝑠)𝐴

𝐴
1/4

[𝑢
2

1
𝐴

1/4

(𝑢
1

1
− 𝑢

1

2
)]
𝐻1

=

𝑒
−(𝑡−𝑠)𝐴

𝐴
3/4

[𝑢
2

1
𝐴

1/4

(𝑢
1

1
− 𝑢

1

2
)]
𝐻

≤ |𝑡 − 𝑠|
−3/4


𝑢
2

1
𝐴

1/4

(𝑢
1

1
− 𝑢

1

2
)
𝐻

≤ |𝑡 − 𝑠|
−3/4


𝑢
2

1

𝐿4
⋅

𝐴

1/4

(𝑢
1

1
− 𝑢

1

2
)
𝐿4

≤ |𝑡 − 𝑠|
−3/4


𝑢
2

1

𝐻1
⋅

𝑢
1

1
− 𝑢

1

2

𝐻1
.

(62)

For the second term on the right hand side of (60), we obtain

𝑒
−(𝑡−𝑠)𝐴

[(𝐴
1/4

𝑢
2

1
) (𝐴

1/4

(𝑢
1

1
− 𝑢

1

2
))]

𝐻1

≤ |𝑡 − 𝑠|
−1/2


[𝐴

1/4

𝑢
2

1
] ⋅ [𝐴

1/4

(𝑢
1

1
− 𝑢

1

2
)]
𝐻

≤ |𝑡 − 𝑠|
−1/2


𝐴

1/4

𝑢
2

1

𝐿4
⋅

𝐴

1/4

(𝑢
1

1
− 𝑢

1

2
)
𝐿4

≤ |𝑡 − 𝑠|
−1/2


𝑢
2

1

𝐻1
⋅

𝑢
1

1
− 𝑢

1

2

𝐻1
.

(63)

By (59)–(63), we get for 𝑓
2
that


𝑒
(𝑡−𝑠)𝐴

𝑓
2

𝐻1

≤ 𝐶 (|𝑡 − 𝑠|
−1/2

+ |𝑡 − 𝑠|
−3/4

)

× (
𝑢1

𝐻1
+
𝑢2

𝐻1
)
𝑢1

− 𝑢
2

𝐻1
.

(64)

Similarly, we get for 𝑓
4
that


𝑒
(𝑡−𝑠)𝐴

𝑓
4

𝐻1

≤ 𝐶 (|𝑡 − 𝑠|
−1/2

+ |𝑡 − 𝑠|
−3/4

)

× (
𝑢1

𝐻1
+
𝑢2

𝐻1
)
𝑢1

− 𝑢
2

𝐻1
.

(65)

By (52), (53), (57), (58), (64), and (65), we have

𝑒
−(𝑡−𝑠)𝐴

[(𝑢
1
⋅ ∇) 𝑢

1
− (𝑢

2
⋅ ∇) 𝑢

2
]
𝐻1

≤

4

∑

𝑖=1


𝑒
−(𝑡−𝑠)𝐴

𝑓
𝑖

𝐻1

≤ 𝐶 (|𝑡 − 𝑠|
−1/2

+ |𝑡 − 𝑠|
−3/4

+ |𝑡 − 𝑠|
−7/8

)

× (
𝑢1

𝐻1
+
𝑢2

𝐻1
)
𝑢1

− 𝑢
2

𝐻1

≤ 𝐶 (2𝑚 + 1) (|𝑡 − 𝑠|
−1/2

+ |𝑡 − 𝑠|
−3/4

+ |𝑡 − 𝑠|
−7/8

)

×
V1 − V

2

𝐻1
.

(66)

For the second term on the right hand side of (51), we have

𝑓 (𝑢
1
) − 𝑓 (𝑢

2
) = (ℎ

1
, ℎ

2
) , (67)

where

ℎ
1
=
𝑢1



2

𝑢
1

1
−
𝑢2



2

𝑢
1

2
,

ℎ
2
=
𝑢1



2

𝑢
2

1
−
𝑢2



2

𝑢
2

2
.

(68)
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Then,

𝑒
(𝑡−𝑠)𝐴

ℎ
1

𝐻1

≤ 𝐶|𝑡 − 𝑠|
−1/2



𝑢1



2

𝑢
1

1
−
𝑢2



2

𝑢
1

2

𝐻

≤ 𝐶|𝑡 − 𝑠|
−1/2



𝑢1



2

𝑢
1

1
−
𝑢2



2

𝑢
1

1

𝐻

+ 𝐶|𝑡 − 𝑠|
−1/2



𝑢2



2

𝑢
1

1
−
𝑢2



2

𝑢
1

2

𝐻

≤ 𝐶|𝑡 − 𝑠|
−1/2



V1 − V
2

 ⋅ (
V1
 +

V2
 + 2

𝑊𝐴

) ⋅

𝑢
1

1



𝐻

+ 𝐶|𝑡 − 𝑠|
−1/2



𝑢2



2

⋅

V1
1
− V1

2



𝐻

≤ 𝐶|𝑡 − 𝑠|
−1/2V1 − V

2

𝐿4
⋅

(
V1
 +

V2
 + 2

𝑊𝐴

) ⋅

𝑢
1

1



𝐿4

+ 𝐶|𝑡 − 𝑠|
−1/2V1 − V

2

𝐿4
⋅
𝑢2



2

𝐿
4

≤ 𝐶|𝑡 − 𝑠|
−1/2V1 − V

2

𝐿4
(
V1



2

𝐿
8 +

V2


2

𝐿
8 + 1)

≤ 𝐶|𝑡 − 𝑠|
−1/2V1 − V

2

𝐻1
(
V1



2

𝐻
1 +

V2


2

𝐻
1 + 1) .

(69)

Similarly, we can get the same estimate for ℎ
2
. So, we have

∫

𝑡

0


𝑒
(𝑡−𝑠)𝐴

[𝑓 (𝑢
1
) − 𝑓 (𝑢

2
)]
𝐻1

𝑑𝑠

≤ 𝐶 (1 + 𝑚
2

) 𝑇
∗1/2 sup

𝑡∈[0,𝑇
∗
]

V1 (𝑡) − V
2
(𝑡)
𝐻1

.

(70)

By (51), (66), and (70), we have
L (V

1
) −L (V

2
)
𝐻1

≤ 𝐶 [𝑇
∗1/2

+ 𝑇
∗1/4

+ 𝑇
∗1/8

] ⋅ ( sup
𝑡∈[0,𝑇

∗
]

V1 − V
2

𝐻1
) .

(71)

By (49), (71), and fixed point principle, we get the conclusion.

Remark 6. Bymaking someminormodifications in the proof
of Lemma 5, we can see that the conclusion in Lemma 5 is
also true for (1). Our original aim is to get the global well-
posedness of (1), but we find that the dissipative term Δ𝑢

cannot dominate the nonlinear term (𝑢⋅∇)𝑢. So, we introduce
the dissipative term |𝑢|

2

𝑢 which will also play an important
role in obtaining the ergodicity.

4. Global Existence

Theorem 7. With conditions in Lemma 2, for V ∈ 𝐶([0, 𝑇];
𝐻

1

0
) satisfying (12), when 𝜗 > 1/16, one has

‖V‖
𝐻
1 ≤ (𝐶

𝑇
+
V0



2

𝐻
1) 𝑒

𝐶𝑇 . (72)

Subsequently, one gets the existence of the global solution be-
longing to 𝐶([0, 𝑇];𝐻1

0
).

Proof. Let {𝑢0

𝑛
}
𝑛≥1

be a sequence of vectors which satisfies
𝑢
0

𝑛
= (𝑢

0,1

𝑛
, 𝑢

0,2

𝑛
) and 𝑢0,𝑖

𝑛
∈ 𝐶

∞

0
(𝐷), 𝑖 = 1, 2, 𝑛 ≥ 1, such that

𝑢
0

𝑛
→ 𝑢

0
, as 𝑛 → ∞, (73)

in sense of ‖ ⋅ ‖
𝐻
1 . Let {𝑊

𝑛
}
𝑛≥1

be a sequence of regular
process, such that

𝐴
𝑎/2

𝑊
𝑛

𝐴
:= 𝐴

𝑎/2

∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑑𝑊
𝑛
(𝑠) → 𝐴

𝑎/2

𝑊
𝐴
(𝑡) ,

as 𝑛 → ∞,

(74)

in 𝐶(𝑇 × 𝐷) when 𝑎 = 0 or 𝑎 = 1. For ℎ = (ℎ
1
, ℎ

2
),

ℎ
𝑖
∈ 𝐶([0, 𝑇] × 𝐷;R),‖ℎ‖

𝐶(𝑇×𝐷)
:= ∑

2

𝑖=1
|ℎ

𝑖
|
𝐶(𝑇×𝐷)

, where
|ℎ

𝑖
|
𝐶(𝑇×𝐷)

= sup
(𝑡,𝑥)∈[0,𝑇]×𝐷

|ℎ
𝑖
|. Then, by (74), we have

sup
{𝑛≥1}

𝑊
𝑛

𝐴

𝐶(𝑇×𝐷)
< ∞, (75)

sup
{𝑛≥1}

sup
𝑡∈[0,𝑇]


𝐴

1/2

𝑊
𝑛

𝐴


< ∞. (76)

If V
𝑛
satisfies

V
𝑛
= 𝑒

𝑡A
𝑢
0

𝑛
+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

[(V
𝑛
+𝑊

𝐴
) ⋅ ∇] (V

𝑛
+𝑊

𝐴
) 𝑑𝑠

− ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑓 (V
𝑛
+𝑊

𝐴
) ,

(77)

then, V
𝑛
is regular, such that

𝜕V
𝑛

𝜕𝑡
+ 𝐴V

𝑛
+ 𝐵 (V

𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) + 𝑓 (V

𝑛
+𝑊

𝑛

𝐴
) = 0.

(78)

Taking inner product with respect to V
𝑛
in (78), we have

⟨
𝜕V

𝑛

𝜕𝑡
, V

𝑛
⟩ + ⟨𝐴V

𝑛
, V

𝑛
⟩

+ ⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , V

𝑛
⟩

+ ⟨𝑓 (V
𝑛
+𝑊

𝑛

𝐴
) , V

𝑛
⟩ = 0.

(79)

For simplicity, we calculate the third term on the left hand
side of (79) first as follows:

⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , V

𝑛
⟩

= ⟨(V1
𝑛
+𝑊

𝑛

𝐴,1
) 𝜕

1
(V1

𝑛
+𝑊

𝑛

𝐴,1
) , V1

𝑛
⟩

+ ⟨(V2
𝑛
+𝑊

𝑛

𝐴,2
) 𝜕

2
(V1

𝑛
+𝑊

𝑛

𝐴,1
) , V1

𝑛
⟩

+ ⟨(V1
𝑛
+𝑊

𝑛

𝐴,1
) 𝜕

1
(V2

𝑛
+𝑊

𝑛

𝐴,2
) , V𝑛

2
⟩

+ ⟨(V2
𝑛
+𝑊

𝑛

𝐴,2
) 𝜕

2
(V2

𝑛
+𝑊

𝑛

𝐴,2
) , V2

𝑛
⟩

= 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
,

(80)
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where𝑊𝑛

𝐴
= (𝑊

𝑛

𝐴,1
,𝑊

𝑛

𝐴,2
). For 𝐼

1
, we have

𝐼
1
= ⟨(V1

𝑛
+𝑊

𝑛

𝐴,1
) 𝜕

1
(V1

𝑛
+W𝑛

𝐴,1
) , V1

𝑛
⟩

= ⟨V1
𝑛
𝜕
1
V1
𝑛
, V1

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,1
𝜕
1
V1
𝑛
, V1

𝑛
⟩

+ ⟨V1
𝑛
𝜕
1
𝑊

𝑛

𝐴,1
, V1

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,1
𝜕
1
𝑊

𝑛

𝐴,1
, V1

𝑛
⟩ .

(81)

In the following, we estimate the four terms for 𝐼
1
, respec-

tively. For the first term,

⟨V1
𝑛
𝜕
1
V1
𝑛
, V1

𝑛
⟩ = ∫

𝐷

(V1
𝑛
)
2

𝜕
1
V1
𝑛
𝑑𝑥

= ∫
𝐷

𝜕
1

[

[

(V1
𝑛
)
3

3

]

]

𝑑𝑥 = 0.

(82)

For the second term, by (75), we have

⟨𝑊
𝑛

𝐴,1
𝜕
1
V1
𝑛
, V1

𝑛
⟩

≤ 𝐶

V1
𝑛



2

𝐻

+ 𝜀∫
𝐷

(𝜕
1
V1
𝑛
)
2

𝑑𝑥

≤ 𝐶

V1
𝑛



2

𝐻

+ 𝜀

V1
𝑛



2

𝐻
1
.

(83)

similarly, for the third term,

⟨V1

𝑛
𝜕
1
𝑊

𝑛

𝐴,1
, V1

𝑛
⟩


=


∫
𝐷

(V1
𝑛
)
2

𝜕
1
𝑊

𝑛

𝐴,1
𝑑𝑥



=


∫

𝐷

𝑊
𝑛

𝐴,1
𝜕
1
(V1

𝑛
)
2

𝑑𝑥



≤ 𝐶


∫

𝐷

V1
𝑛
𝜕
1
V1
𝑛
𝑑𝑥



≤ 𝐶

V1
𝑛



2

𝐻

+ 𝜀

V1
𝑛



2

𝐻
1
.

(84)

For the last term, by (75) and (76),

⟨𝑊

𝑛

𝐴,1
𝜕
1
𝑊

𝑛

𝐴,1
, V1

𝑛
⟩


≤ 𝐶


∫
𝐷

𝜕
1
V1
𝑛
𝑑𝑥



≤ 𝐶 + 𝜀

V1
𝑛



2

𝐻
1
.

(85)

By (81)–(85), it follows that

𝐼
1
≤ 𝐶 (1 +

V𝑛


2

𝐻
) + 4𝜀

V𝑛


2

𝐻
1 . (86)

Similarly,

𝐼
4
≤ 𝐶 (1 +

V𝑛


2

𝐻
) + 4𝜀

V𝑛


2

𝐻
1 . (87)

For 𝐼
3
,

𝐼
3
= ⟨V1

𝑛
𝜕
1
V2
𝑛
, V2

𝑛
⟩ + ⟨V1

𝑛
𝜕
1
𝑊

𝑛

𝐴,2
, V2

𝑛
⟩

+ ⟨𝑊
𝑛

𝐴,1
𝜕
1
V2
𝑛
, V2

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,1
𝜕
1
𝑊

𝑛

𝐴,2
, V2

𝑛
⟩.

(88)

For the first term on the right hand side of (88), we deduce
that


⟨V1

𝑛
𝜕
1
V2
𝑛
, V2

𝑛
⟩

=
1

2


∫
𝐷

V1
𝑛
𝜕
1
(V2

𝑛
)
2

𝑑𝑥



=
1

2


∫
𝐷

𝜕
1
V1
𝑛
⋅ (V2

𝑛
)
2

𝑑𝑥



≤
1

2


V2
𝑛



2

𝐿
4
⋅

V1
𝑛

𝐻1

≤
1

4
𝜖

V2
𝑛



4

𝐿
4
+

1

4𝜖


V1
𝑛



2

𝐻
1
,

(89)

where 𝜖 > 0. For the second term on the right hand side of
(88), we have


⟨V1

𝑛
𝜕
1
𝑊

𝑛

𝐴,2
, V2

𝑛
⟩

≤ 𝜀

V
𝑛

2

𝐻
1 + 𝐶

V
𝑛

2

𝐻
. (90)

Analogously, for the third term on the right hand side of (88),
we see that


⟨𝑊

𝑛

𝐴,1
𝜕
1
V2
𝑛
, V2

𝑛
⟩

≤ 𝐶

V
𝑛

2

𝐻
+ 𝜀

V
𝑛

2

𝐻
1 . (91)

For the last term, by (75) and (76), we have


⟨𝑊

𝑛

𝐴,1
𝜕
𝑥
𝑊

𝑛

𝐴,2
, V2

𝑛
⟩

≤ 𝐶 + 𝜀

V
𝑛

2

𝐻
1 . (92)

By (88)–(92), we get

𝐼
3
≤

1

4𝜖


V2
𝑛



4

𝐿
4
+
𝜖

4


V1
𝑛



2

𝐻
1

+ 3𝜀
V𝑛



2

𝐻
1 + 𝐶

V𝑛


2

𝐻
+ 𝐶.

(93)

Analogously, for 𝐼
2
, it follows that

𝐼
2
≤

1

4𝜖


V1
𝑛



4

𝐿
4
+
𝜖

4


V2
𝑛



2

𝐻
1

+ 3𝜀
V𝑛



2

𝐻
1 + 𝐶

V𝑛


2

𝐻
+ 𝐶.

(94)

By (80) and the estimates of 𝐼
1
, 𝐼

2
, 𝐼

3
, and 𝐼

4
, see (86), (87),

(93), and (94), we have

⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , V

𝑛
⟩

≤ 𝐶 (1 +
V𝑛



2

𝐻
) + (

𝜖

4
+ 14𝜀)

V𝑛


2

𝐻
1

+
1

4𝜖

V𝑛


4

𝐿
4 .

(95)
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For the last term on the left hand side of (79), we have

⟨𝑓 (VV +𝑊
𝑛

𝐴
) , V

𝑛
⟩

= 𝜗
V𝑛



4

𝐿
4 + 3𝜗∫

𝐷

V𝑛


2

(V1
𝑛
𝑊

𝑛

𝐴,1
+ V2

𝑛
𝑊

𝑛

𝐴,2
) 𝑑𝑥

+ 𝜗∫
𝐷

V𝑛


2𝑊
𝑛

𝐴



2

𝑑𝑥

+ 𝜗∫
𝐷

(V1
𝑛
𝑊

𝑛

𝐴,1
+ V2

𝑛
𝑊

𝑛

𝐴,2
)
𝑊

𝑛

𝐴



2

𝑑𝑥

+ 2𝜗∫
𝐷

(

𝑊

𝑛

𝐴,1



2
V1
𝑛



2

+

𝑊

𝑛

𝐴,2



2
V2
𝑛



2

) 𝑑𝑥

+ 4𝜗∫
𝐷

𝑊
𝑛

𝐴,1
𝑊

𝑛

𝐴,2
V1
𝑛
V2
𝑛
𝑑𝑥

≤ (𝜗 + 𝜀)
V𝑛



4

𝐿
4 + 𝐶 (1 +

V𝑛


2

𝐻
) .

(96)

By (79), (95), and (96), we get

1

2

𝜕

𝜕𝑡

V𝑛


2

𝐻
+
V𝑛



2

𝐻
1 + 𝜗

V𝑛


4

𝐿
4

≤ 𝐶 (1 +
V𝑛



2

𝐻
) + (

𝜖

4
+ 14𝜀)

V𝑛


2

𝐻
1

+ (
1

4𝜖
+ 𝜀)

V𝑛


4

𝐿
4 .

(97)

Rearranging the above inequality, we deduce that

1

2

𝜕

𝜕𝑡

V𝑛


2

𝐻
+ (1 −

𝜖

4
− 14𝜀)

V𝑛


2

𝐻
1

+ (𝜗 −
1

4𝜖
− 𝜀)

V𝑛


4

𝐿
4 ≤ 𝐶 (1 +

V𝑛


2

𝐻
) .

(98)

Let 𝜖 ∈ (1/4𝜗, 4), and 𝜀 be small enough, such that

1 −
𝜖

4
− 14𝜀 > 0, 𝜗 −

1

4𝜖
− 𝜀 > 0. (99)

So, we integrate with respect to 𝑡 on both sides of (98) to
obtain

V𝑛(𝑡)


2

𝐻
+ 𝐶

𝜖
∫

𝑡

0

V𝑛(𝑠)


2

𝐻
1𝑑𝑠

≤
V𝑛(0)



2

𝐻
+ 𝐶𝑡 + 𝐶∫

𝑡

0

V𝑛(𝑠)


2

𝐻
𝑑𝑠,

(100)

where 𝐶
𝜖
= 2(1 − 𝜖/4 − 14𝜀), by Gronwall’s inequality, we

arrive at

V𝑛 (𝑡)


2

𝐻
≤ (

V𝑛 (0)


2

𝐻
+ 𝐶𝑡) 𝑒

𝐶𝑡

≤ 𝐶
𝑇
. (101)

By (100) and (101), we have

∫

𝑡

0

V𝑛 (𝑠)


2

𝐻
1𝑑𝑠 ≤ 𝐶

𝑇
. (102)

Multiplying 𝐴V
𝑛
on both sides of (78), and integrating with

respect to 𝑥 ∈ 𝐷, we have

⟨
𝜕V

𝑛

𝜕𝑡
, 𝐴V

𝑛
⟩ + ⟨𝐴V

𝑛
, 𝐴V

𝑛
⟩ + ⟨𝑓 (V

𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩

= ⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩ ,

(103)

which is equivalent to

1

2

𝜕

𝜕𝑡

V𝑛


2

𝐻
1 +

V𝑛


2

𝐻
2

= − ⟨𝑓 (V
𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩

+ ⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩.

(104)

We first estimate the second term on the right hand side of
(104) as follows:

⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩

= ⟨V1
𝑛
+𝑊

𝑛

𝐴,1
𝜕
1
(V1

𝑛
+𝑊

𝑛

𝐴,1
) , 𝐴V1

𝑛
⟩

+ ⟨V2
𝑛
+𝑊

𝑛

𝐴,2
𝜕
2
(V1

𝑛
+𝑊

𝑛

𝐴,1
) , 𝐴V1

𝑛
⟩

+ ⟨V1
𝑛
+𝑊

𝑛

𝐴,1
𝜕
1
(V2

𝑛
+𝑊

𝑛

𝐴,2
) , 𝐴V2

𝑛
⟩

+ ⟨V2
𝑛
+𝑊

𝑛

𝐴,2
𝜕
2
(V2

𝑛
+𝑊

𝑛

𝐴,2
) , 𝐴V2

𝑛
⟩

= 𝐽
1
+ 𝐽

2
+ 𝐽

3
+ 𝐽

4
.

(105)

For 𝐽
1
, we have

𝐽
1
= ⟨V1

𝑛
𝜕
1
V1
𝑛
, 𝐴V1

𝑛
⟩ + ⟨V1

𝑛
𝜕
1
𝑊

𝑛

𝐴,1
, 𝐴V1

𝑛
⟩

+ ⟨𝑊
𝑛

𝐴,1
𝜕
1
V1
𝑛
, 𝐴V1

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,1
𝜕
1
𝑊

𝑛

𝐴,1
, 𝐴V1

𝑛
⟩

= 𝑘
1
+ 𝑘

2
+ 𝑘

3
+ 𝑘

4
.

(106)

For 𝑘
1
, we have

𝑘
1
≤ 𝜀


V1
𝑛



2

𝐻
2
+ 𝐶


V1
𝑛



2

𝐿
4
⋅

V1
𝑛



2

𝑊
1,4
. (107)

By interpolation inequality, there exists some𝐶 > 0, such that


V1
𝑛

𝐿4
≤ 𝐶


V1
𝑛



1/2

𝐻


V1
𝑛



1/2

𝐻
1
,


V1
𝑛

𝑊1,4
≤ 𝐶


V1
𝑛



1/4

𝐻


V1
𝑛



3/4

𝐻
2
.

(108)

Then,

𝑘
1
≤ 𝜀


V1
𝑛



2

𝐻
2
+ 𝐶


V1
𝑛



3/2

𝐻

⋅

V1
𝑛

𝐻1
⋅

V1
𝑛



3/2

𝐻
2

≤ 𝜀

V1
𝑛



2

𝐻
2
+ 𝜀


V1
𝑛



2

𝐻
2
+ 𝐶


V1
𝑛



6

𝐻


V1
𝑛



4

𝐻
1

≤ 2𝜀

V1
𝑛



2

𝐻
2
+ 𝐶

𝑇


V1
𝑛



4

𝐻
1
,

(109)
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where the last inequality follows from (101). For 𝑘
2
, we deduce

that

𝑘
2
≤ 𝜀


V1
𝑛



2

𝐻
2
+ 𝐶∫

𝐷

(V1
𝑛
)
2

(𝜕
1
𝑊

𝑛

𝐴,1
)
2

𝑑𝑥

≤ 𝜀

V1
𝑛



2

𝐻
2
+ 𝐶


V1
𝑛



2

𝐻

≤ 𝜀

V1
𝑛



2

𝐻
2
+ 𝐶

𝑇
.

(110)

For 𝑘
3
, we arrive at

𝑘
3
≤ 𝐶∫

𝐷


𝜕
1
V1
𝑛
⋅ 𝐴V1

𝑛


𝑑𝑥 ≤ 𝜀


V1
𝑛



2

𝐻
2
+ 𝐶


V1
𝑛



2

𝐻
1
. (111)

For 𝑘
4
, we obtain

𝑘
4
≤ 𝐶 + 𝜀


V1
𝑛



2

𝐻
2
. (112)

By (106) and (109)–(112),

𝐽
1
≤ 5𝜀


V1
𝑛



2

𝐻
2
+ 𝐶

𝑇


V1
𝑛



4

𝐻
1
+ 𝐶


V1
𝑛



2

𝐻
1
+ 𝐶

𝑇
. (113)

Similarly, for 𝐽
4
, we infer that

𝐽
4
≤ 5𝜀


V2
𝑛



2

𝐻
2
+ 𝐶

𝑇


V2
𝑛



4

𝐻
1
+ 𝐶


V2
𝑛



2

𝐻
1
+ 𝐶

𝑇
. (114)

For 𝐽
2
, we have

𝐽
2
= ⟨V2

𝑛
𝜕
2
V1
𝑛
, 𝐴V1

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,2
𝜕
2
V1
𝑛
, 𝐴V1

𝑛
⟩

+ ⟨V2
𝑛
𝜕
2
𝑊

𝑛

𝐴,1
, 𝐴V1

𝑛
⟩ + ⟨𝑊

𝑛

𝐴,2
𝜕
2
𝑊

𝑛

𝐴,1
, 𝐴V1

𝑛
⟩

= 𝑙
1
+ 𝑙

2
+ 𝑙

3
+ 𝑙

4
.

(115)

By interpolation inequality and (101), we deduce that

𝑙
1
≤ 𝜀


V1
𝑛



2

𝐻
2
+ 𝐶


V2
𝑛



2

𝐿
4
⋅

V1
𝑛



2

𝑊
1,4

≤ 𝜀

V1
𝑛



2

𝐻
2
+ 𝐶


V2
𝑛

𝐻
⋅

V2
𝑛

𝐻1
⋅

V1
𝑛



1/2

𝐻

⋅

V1
𝑛



3/2

𝐻
2

≤ 2𝜀

V1
𝑛



2

𝐻
2
+ 𝐶

𝑇


V2
𝑛



4

𝐻
1
.

(116)

For 𝑙
2
, we have

𝑙
2
≤ 𝐶∫

𝐷


𝜕
2
V1
𝑛


⋅

𝐴V1

𝑛


𝑑𝑥 ≤ 𝜀


V1
𝑛



2

𝐻
2
+ 𝐶


V1
𝑛



2

𝐻
1
. (117)

Similarly, for 𝑙
3
,

𝑙
3
≤ 𝐶∫

𝐷


V2
𝑛


⋅

𝐴V1

𝑛


𝑑𝑥 ≤ 𝜀


V1
𝑛



2

𝐻
2
+ 𝐶

𝑇
. (118)

As for 𝑙
4
, we get

𝑙
4
≤ 𝜀


v1
𝑛



2

𝐻
2
+ 𝐶

𝑇
. (119)

By (115)-(119), we arrive at

𝐽
2
≤ 5𝜀


V1
𝑛



2

𝐻
2
+ 𝐶

𝑇


V2
𝑛



4

𝐻
1
+ 𝐶


V1
𝑛



2

𝐻
1
+ 𝐶

𝑇
. (120)

Analogously to 𝐽
2
, we have

𝐽
3
≤ 5𝜀


V2
𝑛



2

𝐻
2
+ 𝐶

𝑇


V1
𝑛



4

𝐻
1
+ 𝐶


V2
𝑛



2

𝐻
1
+ 𝐶

𝑇
. (121)

By (105) and the estimates of 𝐽
1
−𝐽

4
, see (113), (114), (120), and

(121), we get that

⟨𝐵 (V
𝑛
+𝑊

𝑛

𝐴
, V

𝑛
+𝑊

𝑛

𝐴
) , 𝐴V

𝑛
⟩

≤ 10𝜀
V𝑛



2

𝐻
2 + 𝐶𝑇

V𝑛


4

𝐻
1

+ 𝐶
V𝑛



2

𝐻
1 + 𝐶𝑇

.

(122)

For the first term on the right hand side of (104), we have

⟨𝑓 (V𝑛 +𝑊
𝑛

𝐴
) , 𝐴V

𝑛
⟩


≤ 𝜀
V𝑛



2

𝐻
2 + 𝐶

V𝑛 +𝑊
𝑛

𝐴



6

𝐿
6

≤ 𝜀
v𝑛



2

𝐻
2 + 𝐶

V𝑛


6

𝐿
6 + 𝐶𝑇

≤ 𝜀
V𝑛



2

𝐻
2 + 𝐶𝑇

V𝑛


2

𝐻
1

V𝑛


4

𝐻
+ 𝐶

𝑇

≤ 𝜀
V𝑛



2

𝐻
2 + 𝐶𝑇

(1 +
V𝑛



2

𝐻
1) .

(123)

By (104), (122), and (123),

1

2

𝜕

𝜕𝑡

V𝑛


2

𝐻
1 +

V𝑛


2

𝐻
2

≤ 11𝜀
V𝑛



2

𝐻
2 + 𝐶𝑇

(1 +
V𝑛



2

𝐻
1)
V𝑛



2

𝐻
1 + 𝐶𝑇

.

(124)

By the Gronwall inequality, we get

V𝑛 (𝑡)


2

𝐻
1

≤ (
V𝑛 (0)



2

𝐻
1 + 𝐶𝑇

) 𝑒
𝐶𝑇 ∫

𝑡

0
(1+‖V𝑛(𝑠)‖

2

𝐻
1𝑑𝑠)

≤ (
V𝑛 (0)



2

𝐻
1 + 𝐶𝑇

) 𝑒
𝐶𝑇 .

(125)

Let 𝑛 → ∞, by Fatou Lemma,

‖V (𝑡)‖2
𝐻
1 ≤ (‖V (0)‖2

𝐻
1 + 𝐶

𝑇
) 𝑒

𝐶𝑇 . (126)

5. Invariant Measures

5.1. Existence. In this section, we will establish the existence
of invariant measure for (2). Analogously to [24], we extend
the Wiener process𝑊(𝑡) to R by setting

𝑊(𝑡) := 𝑊
1

(𝑡) , 𝑡 ≤ 0, (127)

where 𝑊1

(𝑡) is another 𝐻-valued Wiener process satisfying
conditions in Lemma 2 and being independent of 𝑊(𝑡). For
any 𝜏 ≥ 0, we consider the following equation:

𝑑𝑢
𝜏
+ [𝐴𝑢

𝜏
+ 𝐵 (𝑢

𝜏
, 𝑢

𝜏
) + 𝑓 (𝑢

𝜏
)] 𝑑𝑡 = 𝑑𝑊,

on [0, 𝑇] × 𝐷, 𝑢
𝜏
(−𝜏) = 0.

(128)

By Theorem 7, we know that there exists unique solution. In
order to obtain the invariant measure, we should show that
the family of laws {L(𝑢

𝜏
(0))}

𝜏≥0
is tight. Since 𝐻1+𝛿

⊂ 𝐻
1
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is compact, for any 𝛿 > 0, we only need to show that
{L(𝑢

𝜏
(0))}

𝜏≥0
is bounded in probability in𝐻1+𝛿. As we know,

𝑊
𝐴
(𝑡) = ∫

𝑡

−∞

𝑒
−(𝑡−𝑠)𝐴

𝑑𝑊 (𝑠) , 𝑡 ∈ R (129)

is themild solution of (8) with the following initial condition:

𝑊
𝐴
(0) = ∫

0

−∞

𝑒
𝑠𝐴

𝑑𝑊 (𝑠) . (130)

Making the classical change of variable V
𝜏
(𝑡) = 𝑢

𝜏
(𝑡) −𝑊

𝐴
(𝑡),

(128) is equivalent to
𝑑V

𝜏
(𝑡)

𝑑𝑡
= 𝐴V

𝜏
(𝑡) + 𝐵 (V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡))

+ 𝑓 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,

(131)

with initial condition

V
𝜏
(−𝜏) = −𝑊

𝐴
(−𝜏) . (132)

In order to get the invariant measure of (131), it is enough to
show that V

𝜏
(0) is bounded in probability in 𝐻

1+𝛿, for some
𝛿 > 0. That is what we have to do inTheorem 8 below.

Theorem8. With conditions in Lemma 2, when 𝜗 > 1/4, there
exists an invariant measure for (2).

Proof. Multiplying (131) by V
𝜏
and integrating on𝐷, we get

1

2

𝑑

𝑑𝑡

V𝜏 (𝑡)


2

𝐻
+
V𝜏 (𝑡)



2

𝐻
1

+ ⟨𝑓 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) , V

𝜏
(𝑡)⟩

= ⟨𝐵 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡)

+𝑊
𝐴
(𝑡)) , V

𝜏
(𝑡)⟩ .

(133)

For the third term on the left hand side of (133), we deduce
that
⟨𝑓 (V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) , V

𝜏
(𝑡)⟩

= 𝜗 ⟨
V𝜏 (𝑡) + 𝑊𝐴

(𝑡)


2

(V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)⟩

− 𝜗 ⟨
V𝜏 (𝑡) + 𝑊𝐴

(𝑡)


2

(V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩

= 𝜗
V𝜏 (𝑡) + 𝑊𝐴

(𝑡)


4

𝐿
4

− 𝜗 ⟨
V𝜏 (𝑡) + 𝑊𝐴

(𝑡)


2

(V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩

≥ 𝜗[
V𝜏 (𝑡)

𝐿4
−
𝑊𝐴

(𝑡)
𝐿4

]
4

− 𝜗 ⟨
V𝜏 (𝑡) + 𝑊𝐴

(𝑡)


2

(V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩

≥ 𝜗
V𝜏 (𝑡)



4

𝐿
4 − 4𝜗

V𝜏 (𝑡)


3

𝐿
4

𝑊𝐴
(𝑡)
𝐿4

− 4𝜗
V𝜏 (𝑡)



1

𝐿
4

𝑊𝐴
(𝑡)


3

𝐿
4

− 𝜗 ⟨
V𝜏 (𝑡) + 𝑊𝐴

(𝑡)


2

(V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩ .

(134)

Substituting (134) into (133), we have

1

2

𝑑

𝑑𝑡

V𝜏 (𝑡)


2

𝐻
+
V𝜏 (𝑡)



2

𝐻
1 + 𝜗

V𝜏 (𝑡)


4

𝐿
4

≤ 4𝜗
V𝜏 (𝑡)



3

𝐿
4

𝑊𝐴
(𝑡)
𝐿4

+ 4𝜗
V𝜏 (𝑡)

𝐿4
𝑊𝐴

(𝑡)


3

𝐿
4

+ 𝜗 ⟨
V𝜏 (𝑡) + 𝑊𝐴

(𝑡)


2

(V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩

+ ⟨𝐵 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) , V

𝜏
(𝑡)⟩ .

(135)

For the third term on the right hand side of (135), we get by
the Young inequality that

𝜗 ⟨
V𝜏 (𝑡) + 𝑊𝐴

(𝑡)


2

(V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) ,𝑊

𝐴
(𝑡)⟩

≤ 𝜀
V𝜏 (𝑡)



4

𝐿
4 + 𝐶

𝑊𝐴
(𝑡)


4

𝐿
4 .

(136)

For the last term on the right hand side of (135),

⟨𝐵 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) , V

𝜏
(𝑡)⟩

= ⟨(V
𝜏
(𝑡) ⋅ ∇) V

𝜏
(𝑡) , V

𝜏
(𝑡)⟩

+ ⟨(𝑊
𝐴
(𝑡) ⋅ ∇) V

𝜏
(𝑡) , V

𝜏
(𝑡)⟩

+ ⟨(V
𝜏
(𝑡) ⋅ ∇)𝑊

𝐴
(𝑡) , V

𝜏
(𝑡)⟩

+ ⟨(𝑊
𝐴
(𝑡) ⋅ ∇)𝑊

𝐴
(𝑡) , V

𝜏
(𝑡)⟩

= 𝑟
1
+ 𝑟

2
+ 𝑟

3
+ 𝑟

4
.

(137)

Since V
𝜏
(𝑡) is vector field, we denote it by V

𝜏
(𝑡) =

(V1
𝜏
(𝑡), V2

𝜏
(𝑡)), where V𝑖

𝜏
(𝑡) is real valued function, 𝑖 = 1, 2. For

𝑟
1
, we have

𝑟
1
= ⟨V1

𝜏
(𝑡) 𝜕

1
V1
𝜏
(𝑡) + V2

𝜏
(𝑡) 𝜕

2
V1
𝜏
(𝑡) , V1

𝜏
(𝑡)⟩

+ ⟨V1
𝜏
(𝑡) 𝜕

1
V2
𝜏
(𝑡) + V2

𝜏
(𝑡) 𝜕

2
V2
𝜏
(𝑡) , V2

𝜏
(𝑡)⟩

= ⟨V2
𝜏
(𝑡) 𝜕

2
V1
𝜏
(𝑡) , V1

𝜏
(𝑡)⟩

+ ⟨V1
𝜏
(𝑡) 𝜕

1
V2
𝜏
(𝑡) , V2

𝜏
(𝑡)⟩

≤ −
1

2
⟨𝜕

2
V2
𝜏
(𝑡) , (V1

𝜏
(𝑡))

2

⟩

−
1

2
⟨𝜕

1
V1
𝜏
(𝑡) , (V2

𝜏
(𝑡))

2

⟩

≤
1

4


𝜕
1
V1
𝜏
(𝑡)


2

𝐻

+
1

4


V2
𝜏
(𝑡)


4

𝐿
4

+
1

4


𝜕
2
V2
𝜏
(𝑡)


2

𝐻

+
1

4


V1
𝜏
(𝑡)


4

𝐿
4

≤
1

4

V𝜏 (𝑡)


2

𝐻
1 +

1

4

V𝜏 (𝑡)


4

𝐿
4 .

(138)
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Similarly for 𝑟
2
,

𝑟
2
= ⟨𝑊

𝐴,1
(𝑡) 𝜕

1
V1
𝜏
(𝑡) + 𝑊

𝐴,2
(𝑡) 𝜕

2
V1
𝜏
(𝑡) , V1

𝜏
(𝑡)⟩

+ ⟨𝑊
𝐴,1

(𝑡) 𝜕
1
V2
𝜏
(𝑡) + 𝑊

𝐴,2
(𝑡) 𝜕

2
V2
𝜏
(𝑡) , V2

𝜏
(𝑡)⟩

= −⟨𝜕
1
𝑊

𝐴,1
(𝑡) , (V1

𝜏
(𝑡))

2

⟩

− ⟨𝜕
2
𝑊

𝐴,2
(𝑡) , (V1

𝜏
(𝑡))

2

⟩

− ⟨𝜕
1
𝑊

𝐴,1
(𝑡) , (V2

𝜏
(𝑡))

2

⟩

− ⟨𝜕
2
𝑊

𝐴,2
(𝑡) , (V2

𝜏
(𝑡))

2

⟩

≤ 𝜀
V𝜏 (𝑡)



4

𝐿
4 + 𝐶

𝑊𝐴
(𝑡)


2

𝐻
1 .

(139)

Analogously to 𝑟
1
, we deduce that

𝑟
3
= ⟨V1

𝜏
(𝑡) 𝜕

1
𝑊

𝐴,1
(𝑡) + V2

𝜏
(𝑡) 𝜕

2
𝑊

𝐴,1
(𝑡) , V1

𝜏
(𝑡)⟩

+ ⟨V1
𝜏
(𝑡) 𝜕

1
𝑊

𝐴,2
(𝑡) + V2

𝜏
(𝑡) 𝜕

2
𝑊

𝐴,2
(𝑡) , V2

𝜏
(𝑡)⟩

≤ 𝜀
V𝜏 (𝑡)



4

𝐿
4 + 𝐶

𝑊𝐴
(𝑡)


2

𝐻
1 .

(140)

For 𝑟
4
, we have

𝑟
4
= ⟨𝑊

𝐴,1
(𝑡) 𝜕

1
𝑊

𝐴,1
(𝑡) + 𝑊

𝐴,2
(𝑡) 𝜕

2
𝑊

𝐴,1
(𝑡) , V1

𝜏
(𝑡)⟩

+ ⟨𝑊
𝐴,1

(𝑡) 𝜕
1
𝑊

𝐴,2
(𝑡) + 𝑊

𝐴,2
(𝑡) 𝜕

2
𝑊

𝐴,2
(𝑡) , V2

𝜏
(𝑡)⟩

≤ 𝜀

V1
𝜏
(𝑡)


2

𝐻

+ 𝐶
𝑊𝐴,1

(𝑡) 𝜕
1
𝑊

𝐴,1
(𝑡)


2

𝐻

+ 𝜀

V1
𝜏
(𝑡)


2

𝐻

+ 𝐶
𝑊𝐴,2

(𝑡) 𝜕
2
𝑊

𝐴,1
(𝑡)


2

𝐻

+ 𝜀

V2
𝜏
(𝑡)


2

𝐻

+ 𝐶
𝑊𝐴,1

(𝑡) 𝜕
1
𝑊

𝐴,2
(𝑡)


2

𝐻

+ 𝜀

V2
𝜏
(𝑡)


2

𝐻

+ 𝐶
𝑊𝐴,2

(𝑡) 𝜕
2
𝑊

𝐴,2
(𝑡)


2

𝐻

≤ 𝜀

V1
𝜏
(𝑡)


2

𝐻

+
𝑊𝐴,1

(𝑡)


2

𝐿
4 ⋅
𝑊𝐴,1

(𝑡)


2

𝑊
1,4

+ 𝐶
𝑊𝐴,2

(𝑡)


2

𝐿
4 ⋅
𝑊𝐴,1

(𝑡)


2

𝑊
1,4

+ 𝜀

V2
𝜏
(𝑡)


2

𝐻

+ 𝐶
𝑊𝐴,1

(𝑡)


2

𝐿
4 ⋅
𝑊𝐴,2

(𝑡)


2

𝑊
1,4

+ 𝐶
𝑊𝐴,2

(𝑡)


2

𝐿
4 ⋅
𝑊𝐴,2

(𝑡)


2

𝑊
1,4

≤ 𝜀
V𝜏 (𝑡)



2

𝐻
+ 𝐶

𝑊𝐴
(𝑡)


2

𝐿
4 ⋅
𝑊𝐴

(𝑡)


2

𝑊
1,4 .

(141)

Since {𝐴1/2

𝑊
𝐴
(𝑡)}

𝑡∈R is a Gaussian process, we infer that

𝐸(

𝐴

1/2

𝑊
𝐴
(𝑡)


4

) ≤ 𝐶[𝐸 (

𝐴

1/2

𝑊
𝐴
(𝑡)


2

)]

2

. (142)

Then, with the proof of Lemma 2, we know that ‖𝑊
𝐴
(𝑡)‖

2

𝑊
1,4

is continuous with respect to 𝑡. By (137)–(141), we have

⟨𝐵 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) , V

𝜏
(𝑡)⟩

≤ (
1

4
+ 𝜀)

V𝜏 (𝑡)


2

𝐻
1 + (

1

4
+ 2𝜀)

V𝜏 (𝑡)


4

𝐿
4

+ 𝐶 (
𝑊𝐴

(𝑡)


2

𝐻
1 +

𝑊𝐴
(𝑡)


2

𝐿
4

𝑊𝐴
(𝑡)


2

𝑊
1,4) .

(143)

By (135), (136), and (143), we arrive at

1

2

𝑑

𝑑𝑡

V𝜏 (𝑡)


2

𝐻
+
V𝜏 (𝑡)



2

𝐻
1 + 𝜗

V𝜏 (𝑡)


4

𝐿
4

≤ (
1

4
+ 3𝜀)

V𝜏 (𝑡)


4

𝐿
4 + (

1

4
+ 𝜀)

V𝜏 (𝑡)


2

𝐻
1

+ 𝐶
𝑊𝐴

(𝑡)


4

𝑊
1,4 + 𝐶.

(144)

It is equivalent to

1

2

𝑑

𝑑𝑡

V𝜏 (𝑡)


2

𝐻
+ (

3

4
− 𝜀)

V𝜏 (𝑡)


2

𝐻
1

+ (𝜗 −
1

4
− 3𝜀)

V𝜏 (𝑡)


4

𝐿
4

≤ 𝐶 (1 +
𝑊𝐴

(𝑡)


4

𝑊
1,4) .

(145)

Since 𝜗 > 1/4, let 𝜀 be small enough, such that

3

4
− 𝜀 > 0; 𝜗 −

1

4
− 3𝜀 > 0. (146)

Then, the above estimates can be changed into

𝑑

𝑑𝑡

V𝜏 (𝑡)


2

𝐻
+ 𝛼

1

V𝜏 (𝑡)


2

𝐻
1 + 𝐶]

V𝜏 (𝑡)


4

𝐿
4

≤ 𝐶 (1 +
𝑊𝐴

(𝑡)


4

𝑊
1,4) .

(147)

By the Gronwall inequality, we get

V𝜏 (𝑡)


2

𝐻
≤
𝑊𝐴

(−𝜏)


2

𝐻
𝑒
−𝛼1(𝜏+𝑡)

+ 𝐶∫

𝑡

−𝜏

(1 +
𝑊𝐴

(𝑠)


4

𝑊
1,4) 𝑒

𝛼1(𝑠−𝑡)𝑑𝑠

≤
𝑊𝐴

(−𝜏)


2

𝐻
𝑒
−𝛼1(𝜏+𝑡)

+ 𝐶∫

0

−∞

(1 +
𝑊𝐴

(𝑠)


4

𝑊
1,4) 𝑒

𝛼1(𝑠−𝑡)𝑑𝑠.

(148)

Similarly to the argument of [26], we will prove that
‖𝑊

𝐴
(𝑡)‖

𝑊
1,4 has at most polynomial growth, when 𝑡 → −∞

a.s. So, we conclude that

sup
0≤𝜏;𝑡≤𝑇

V𝜏(𝑡)


2

𝐻
< ∞. a.s. (149)
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Multiplying 𝑒𝛿𝑡 on both sides of (147) and integrating with
respect to 𝑡, we have

∫

𝑡

−𝜏

𝑒
𝛿𝑠V𝜏 (𝑠)



2

𝐻
1𝑑𝑠

≤ 𝑒
−𝛿𝜏𝑊𝐴

(−𝜏)


2

𝐻
+ 𝛼

1
∫

𝑡

−𝜏

𝑒
𝛿𝑠V𝜏 (𝑠)



2

𝐻
𝑑𝑠

+ 𝐶∫

𝑡

−𝜏

(1 +
𝑊𝐴

(𝑡)


4

𝑊
1,4) 𝑒

𝛿𝑠

𝑑𝑠

≤ 𝑒
−𝛿𝜏𝑊𝐴

(−𝜏)


2

𝐻

+ 𝛼
1
∫

0

−∞

𝑒
𝛿𝑠V𝜏 (𝑠)



2

𝐻
𝑑𝑠

+ 𝐶∫

0

−∞

(1 +
𝑊𝐴

(𝑡)


4

𝑊
1,4) 𝑒

𝛿𝑠

𝑑𝑠.

(150)

As

∫

0

−∞

(1 +
𝑊𝐴

(𝑡)


4

𝑊
1,4) 𝑒

𝛿𝑠

𝑑𝑠 < ∞, (151)

by (149), we have

sup
0≤𝜏;𝑡≤𝑇

∫

𝑡

−𝜏

𝑒
𝛿𝑠V𝜏 (𝑠)



2

𝐻
1𝑑𝑠 < ∞. a.s. (152)

By Theorem 7, we know that for problem (131) there exists
unique mild solution, which has the following:

V
𝜏
(0) = 𝑒

𝜏𝐴

𝑊
𝐴
(−𝜏)

+ ∫

0

−𝜏

𝑒
𝑡𝐴

𝐵 ((V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡))) 𝑑𝑡

+ ∫

0

−𝜏

𝑒
𝑡𝐴

𝑓 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡)) 𝑑𝑡.

(153)

Then, for any 𝜁 ∈ (0, 𝜃)∩(0, 1/4), where the 𝜃 is the parameter
in Lemma 2,

𝐴

(1+𝜁)/2V
𝜏
(0)

𝐻

≤

𝑒
𝜏𝐴

𝐴
(1+𝜁)/2

𝑊
𝐴
(−𝜆)

𝐻

+ ∫

0

−𝜏


𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

𝐵((V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡))

𝐻
𝑑𝑡

+ ∫

0

−𝜏


𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

𝑓 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡))

𝐻
𝑑𝑡.

(154)

Since

𝐵 ((V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)))

= (V
𝜏
(𝑡) ⋅ ∇) V

𝜏
(𝑡) + (V

𝜏
(𝑡) ⋅ ∇)𝑊

𝐴
(𝑡)

+ (𝑊
𝐴
(𝑡) ⋅ ∇) V

𝜏
(𝑡) + (𝑊

𝐴
(𝑡) ⋅ ∇)𝑊

𝐴
(𝑡) ,

(155)

then,

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

𝐵 ((V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)))

𝐻

≤

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[V
𝜏
(𝑡) ⋅ ∇] V

𝜏
(𝑡)
𝐻

+

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[V
𝜏
(𝑡) ⋅ ∇]𝑊

𝐴
(𝑡)
𝐻

+

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[𝑊
𝐴
(𝑡) ⋅ ∇] V

𝜏
(𝑡)
𝐻

+

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[𝑊
𝐴
(𝑡) ⋅ ∇]𝑊

𝐴
(𝑡)
𝐻

= 𝑧
1
+ 𝑧

2
+ 𝑧

3
+ 𝑧

4
.

(156)

For 𝑧
1
, we have

𝑧
1
≤

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[V1
𝜏
(𝑡) 𝜕

1
V1
𝜏
(𝑡)]

𝐻

+

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[V2
𝜏
(𝑡) 𝜕

2
V1
𝜏
(𝑡)]

𝐻

+

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[V1
𝜏
(𝑡) 𝜕

1
V2
𝜏
(𝑡)]

𝐻

+

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[V2
𝜏
(𝑡) 𝜕

2
V2
𝜏
(𝑡)]

𝐻

= 𝑧
1,1

+ 𝑧
1,2

+ 𝑧
1,3

+ 𝑧
1,4
.

(157)

In the following, we use Theorem 6.13 in chapter two of [27]
to estimate them respectively as follows:

𝑧
1,1

=
1

2


𝑒
𝑡𝐴

𝐴
(1+𝜁)/2

𝜕
1
(V1

𝜏
)
2𝐻

≤
1

2


𝑒
𝑡𝐴

𝐴
(3+2𝜁)/4

(V1
𝜏
)
2𝐻1/2

≤ 𝐶|𝑡|
−(3+2𝜁)/4

𝑒
𝛿𝑡

(V1

𝜏
)
2𝐻1/2

≤ 𝐶|𝑡|
−(3+2𝜁)/4

𝑒
𝛿𝑡

2V1

𝜏
(𝑡) 𝐴

1/4V1
𝜏
(𝑡) + 𝑅

4

𝐻
,

(158)

the last inequality follows by Theorem A.8 in [25], where
𝛿 > 0, 𝑅

4
= 𝐴

1/4

(V1
𝜏
)
2

− 2V1
𝜏
𝐴

1/4V1
𝜏
, and |𝑅

4
|
𝐻

≤

𝐶|𝐴
1/8V1

𝜏
(𝑡)|

2

𝐿
4 ≤ 𝐶|V1

𝜏
(𝑡)|

2

𝐻
1 . So, by Hölder inequality and

interpolation inequality, we have

𝑧
1,1

≤ 𝐶|𝑡|
−(3+2𝜁)/4

𝑒
𝛿𝑡V𝜏 (𝑡)



2

𝐻
1 . (159)

For 𝑧
1,2
, we have

𝑧
1,2

=

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[V2
𝜏
(𝑡) 𝜕

2
V1
𝜏
(𝑡)]

𝐻

≤

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[𝐴
1/4

(V2
𝜏
(𝑡) 𝐴

1/4V1
𝜏
(𝑡))]

𝐻

+

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

[𝐴
1/4V1

𝜏
(𝑡) 𝐴

1/4V2
𝜏
(𝑡)]

𝐻

+

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

𝑅
5

𝐻
,

(160)

where
𝑅

5
= 𝐴

1/4

[V2
𝜏
(𝑡) 𝐴

1/4V1
𝜏
(𝑡)]

− [𝐴
1/4V1

𝜏
(𝑡) , 𝐴

1/4V2
𝜏
(𝑡)]

− V2
𝜏
(𝑡) 𝐴

1/2V1
𝜏
(𝑡) .

(161)
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Analogously to estimating 𝑧
1,1
, we have

𝑧
1,2

≤ 𝐶|𝑡|
−(3+2𝜁)/4

𝑒
𝛿𝑡

V2
𝜏
(𝑡)
𝐿4


V1
𝜏
(𝑡)
𝑊1/2,4

+ 𝐶|𝑡|
−(1+𝜁)/2

𝑒
𝛿𝑡

V1
𝜏
(𝑡)
𝑊1/2,4


V2
𝜏
(𝑡)
𝑊1/2,4

≤ 𝐶 (|𝑡|
−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

) 𝑒
𝛿𝑡V𝜏 (𝑡)



2

𝑊
1/2,4

≤ 𝐶 (|𝑡|
−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

) 𝑒
𝛿𝑡V𝜏 (𝑡)



2

𝐻
1 .

(162)

Similarly, we can get the same estimates for 𝑧
1,3

and 𝑧
1,4
.

Therefore,

𝑧
1
≤ 𝐶 (|𝑡|

−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

) 𝑒
𝛿𝑡V𝜏 (𝑡)



2

𝐻
1 . (163)

Analogously to estimating 𝑧
1
, we can get for 𝑧

2
, 𝑧

3
, and 𝑧

4
that

𝑧
2
≤ 𝐶 (|𝑡|

−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡

(
𝑊𝐴

(𝑡)


2

𝐻
1 +

V𝜏 (𝑡)


2

𝐻
1) ,

𝑧
3
≤ 𝐶 (|𝑡|

−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡

(
𝑊𝐴

(𝑡)


2

𝐻
1 +

V𝜏 (𝑡)


2

𝐻
1) ,

𝑧
4
≤ 𝐶 (|𝑡|

−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡𝑊𝐴

(𝑡)


2

𝐻
1 .

(164)

So, by (163)–(164) and (156), we get

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

𝐵 ((V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)))

𝐻

≤ 𝐶 (|𝑡|
−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡

(
𝑊𝐴

(𝑡)


2

𝐻
1 +

V𝜏 (𝑡)


2

𝐻
1) .

(165)

For the third term on the right hand side of (154), we obtain

𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

𝑓 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡))

𝐻

≤ 𝐶|𝑡|
−(1+𝜁)/2

𝑒
𝛿𝑡

(
V𝜏 (𝑡)



3

𝐿
6 +

𝑊𝐴
(t)

3

𝐿
6)

≤ 𝐶|𝑡|
−(1+𝜁)/2

× 𝑒
𝛿𝑡

(
V𝜏 (𝑡)

𝐻
⋅
V𝜏 (𝑡)



2

𝐻
1 +

𝑊𝐴
(𝑡)


3

𝐻
1)

≤ 𝐶|𝑡|
−(1+𝜁)/2

𝑒
𝛿𝑡

× 𝑒
𝛿𝑡

(
V𝜏 (𝑡)



2

𝐻
1 +

𝑊𝐴
(𝑡)


2

𝐻
1) ,

(166)

since ‖V
𝜏
(𝑡)‖

𝐻
and 𝑒

𝛿𝑡

‖𝑊
𝐴
(𝑡)‖

2

𝐻
1 are bounded for 𝑡, 𝜏 ∈

(−∞,𝑇], the last inequality follows. For the first term on the
right hand side of (154), we have


𝑒
𝜏𝐴

𝐴
(1+𝜁)/2

𝑊
𝐴
(−𝜏)

𝐻
≤ 𝑒

−𝛿𝜏

𝐴

(1+𝜁)/2

𝑊
𝐴
(−𝜏)

𝐻
. (167)

Similar to [26], we can prove that ‖𝐴(1+𝜁)/2

𝑊
𝐴
(−𝜏)‖

𝐻
has at

most polynomial growth when 𝜏 → ∞. For the reader

convenience, we sketch a proof. By Lemma 2, we know that
𝑊(𝑡) − 𝑊(𝑠) is a 𝐷(𝐴𝜃/2

) valued Brownian motion, for 𝑠 ≤
𝑡 ≤ 0. So, by the law of iterated logarithm, we have

𝑤
𝑛
:= sup

𝑛≤𝑠≤𝑡≤𝑛+1

‖𝑊 (𝑡) − 𝑊 (𝑠)‖
𝐻
𝜃

|𝑡 − 𝑠|
1/2+(𝜁−𝜃)/4

< ∞, a.s. 𝑛 ∈ Z. (168)

Obviously,𝑤
𝑛
is a i.i.d sequence. By the law of large numbers,

there exists an integer-valued random variable 𝑛
0
(𝑤) > 0,

when 𝑛 ≥ 𝑛
0
(𝑤), we have

𝑤
−𝑛

𝑛
≤
𝑤

−𝑛
+ ⋅ ⋅ ⋅ + 𝑤

−1

𝑛
≤ 𝐸𝑤

0
+ 1 < ∞. (169)

This implies that

𝑤
−𝑛

≤ 𝐶
0
(𝑤) 𝑛, (170)

for all 𝑛 > 0. In other words,

‖𝑊 (𝑡) − 𝑊 (𝑠)‖
𝐻
𝜃 ≤ 𝐶

0
(𝑤) |[𝑠]| ⋅ |𝑡 − 𝑠|

1/2+(𝜁−𝜃)/4

, (171)

when 𝑠 ≤ 𝑡 ≤ [𝑠]+1. By the law of iterated logarithm, we have

‖𝑊 (𝑡)‖
𝐻
𝜃 ≤ 𝐶

1
(𝑤) |𝑡| , 𝑡 ∈ (−∞, 0] , (172)

for some positive random variable. By Theorem 5.14 in [23],
we know that

𝑊
𝐴
(𝑡) = ∫

𝑡

−∞

𝐴𝑒
−(𝑡−𝑠)𝐴

(𝑊 (𝑡) − 𝑊 (𝑠)) d𝑠. (173)

So, we have that

𝐴

(1+𝜁)/2

𝑊
𝐴
(𝑡)
𝐻

≤ ∫

𝑡

−∞


𝐴

1+1/2+𝜁/2

𝑒
−(𝑡−𝑠)𝐴

(𝑊 (𝑡) − 𝑊 (𝑠))
𝐻
𝑑𝑠

= ∫

𝑡

−∞


𝐴

1+1/2+(𝜁−𝜃)/2

𝑒
−(𝑡−𝑠)𝐴

[𝐴
𝜃/2

(𝑊 (𝑡) − 𝑊 (𝑠))]
𝐻
𝑑𝑠

≤ ∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

|𝑡 − 𝑠|
1+1/2+(𝜁−𝜃)/2

‖𝑊 (𝑡) − 𝑊 (𝑠)‖
𝐻
𝜃𝑑𝑠

≤ ∫

𝑡

[𝑡]−1

𝑒
−𝛿(𝑡−𝑠)

|𝑡 − 𝑠|
1+(𝜁−𝜃)/4

⋅
‖𝑊 (𝑡) − 𝑊 (𝑠)‖

𝐻
𝜃

|𝑡 − 𝑠|
1/2+(𝜁−𝜃)/4

+ ∫

[𝑡]−1

−∞

𝑒
−𝛿(𝑡−𝑠)

|𝑡 − 𝑠|
1+(𝜁−𝜃)/4

⋅
𝐶

1
(𝑤) (|𝑡| + |𝑠|)

|𝑡 − 𝑠|
1/2+(𝜁−𝜃)/4

≤ ∫

𝑡

[𝑡]−1

𝑒
−𝛿(𝑡−𝑠)

|𝑡 − 𝑠|
1+(𝜁−𝜃)/4

⋅ 𝐶
0
(𝑤) |[𝑠]| 𝑑𝑠

+ ∫

[𝑡]−1

−∞

𝑒
−𝛿(𝑡−𝑠)

𝐶
1
(𝑤) (|𝑡| + |𝑠|)

≤ (𝐶
0
(𝑤) + 𝐶

1
(𝑤)) (|𝑡| + 1) ,

(174)

since 𝑠 ≤ [𝑡] − 1, the fourth inequality follows. By (167) and
(174), we know that

sup
𝜏≥0


𝑒
𝜏𝐴

𝐴
(1+𝜁)/2

𝑊
𝐴
(−𝜏)

𝐻
< ∞, a.s. (175)
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If we let 𝜁 = 1/2 < 𝜃, repeating the argument of (174), we
can see that ‖𝑊

𝐴
(𝑡)‖

𝑊
1,4 also has at most polynomial growth,

when 𝑡 → −∞ a.s., since we have the Sobolev embedding
𝐻

3/2

⊂ 𝑊
1,4. Consider the second term on the right hand

side of (154), by (165),

∫

0

−𝜏


𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

𝐵 ((V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡) , V

𝜏
(𝑡) + 𝑊

𝐴
(𝑡)))

𝐻
𝑑𝑡

≤ ∫

0

−𝜏

𝐶 (|𝑡|
−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡

(
𝑊𝐴

(𝑡)


2

𝐻
1 +

V𝜏 (𝑡)


2

𝐻
1) 𝑑𝑡

≤ ∫

0

−1

𝐶 (|𝑡|
−(3+2𝜁)/4

+ |𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡

(
𝑊𝐴

(𝑡)


2

𝐻
1 +

V𝜏 (𝑡)


2

𝐻
1) 𝑑𝑡

+ ∫

−1

−∞

𝐶𝑒
𝛿𝑡

(
𝑊𝐴

(𝑡)


2

𝐻
1 +

V𝜏 (𝑡)


2

𝐻
1) 𝑑𝑡 < ∞,

(176)

where the last inequality follows by (152). Analogously, we can
prove that

∫

0

−𝜏


𝐴

(1+𝜁)/2

𝑒
𝑡𝐴

𝑓 (V
𝜏
(𝑡) + 𝑊

𝐴
(𝑡))

𝐻
𝑑𝑡

≤ ∫

0

−𝜏

𝐶 (|𝑡|
−(1+𝜁)/2

)

× 𝑒
𝛿𝑡

(
V𝜏 (𝑡)

𝐻

V𝜏 (𝑡)


2

𝐻
1 +

𝑊𝐴
(𝑡)


3

𝐻
1)

< ∞,

(177)

where we used (149) and (152) for the last inequality. By (154)
and (175)–(177), we get


𝐴

(1+𝜁)/2V
𝜏
(0)

𝐻
≤ 𝜉 (𝑤) , a.s., (178)

for some positive random variable 𝜉(𝑤). As 𝐻1+𝛿

⊂ 𝐻
1 is

compact, by Prohorov Theorem, we know that the family of
laws for (V

𝜏
(0))

𝜏≥0
taking values in𝐻1 is tight. Since V

𝜏
(0) =

𝑢
𝜏
(0)−𝑊

𝐴
(0), then so does the law of (𝑢

𝜏
(0))

𝜏≥0
taking values

in the same space. For 𝑡 ≥ 0, set

(𝑃
𝑡
𝑓) (𝑥) = 𝐸𝑓 (𝑢 (𝑡, .; 0, 𝑥)) , (179)

where 𝑓 ∈ 𝐶
𝑏
(𝐻

1

0
). Following the arguments in [24], for all

𝑡
0
< 𝑠 < 𝑡 and all 𝑢

𝑡0
∈ 𝐻

1

0
, by proving

𝐸 (𝑓 (𝑢 (𝑡; 𝑡
0
, 𝑢

𝑡0
)) | F

𝑠
) = 𝑃

𝑡−𝑠
(𝑢 (𝑠; 𝑡

0
, 𝑢

𝑡0
)) , (180)

we can show that 𝑢 is a Markov process. Here, F
𝑠
is the 𝜎-

algebra generated by𝑊(𝑟) for 𝑟 ≤ 𝑠. So, (𝑃
𝑡
)
𝑡≥0

is the Markov
semigroup. Define a dual semigroup𝑃∗

𝑡
in the space𝑃(𝐻1

0
) of

probability measures on𝐻1

0
as follows:

∫
𝐻
1

0

𝑓𝑑 (𝑃
∗

𝑡
𝜇) = ∫

𝐻
1

0

𝑃
𝑡
𝑓𝑑𝜇. (181)

Let 𝜇
𝜏
be the law of 𝑢

𝜏
(0), which is the solution of (2) with

initial condition 𝑢(−𝜏) = 0. Then, we have

𝜇
𝜏
(𝑓) = 𝐸𝑓 (𝑢

−𝜏
(0)) = 𝐸𝑓 (𝑢 (𝜏, ⋅; 0, 0))

= (𝑃
𝜏
𝑓) (0) = ∫

𝐻
1

0

𝑃
𝜏
𝑓𝑑𝛿

0

= ∫
𝐻
1

0

𝑓𝑑 (𝑃
∗

𝜏
𝛿
0
) ,

(182)

where we use the fact that 𝑢(𝜏, ⋅; 0, 0) and 𝑢
𝜏
(0) have the same

law, the second equality follows. Therefore,

𝑃
∗

𝜏1

𝜇
𝜏
= 𝜇

𝜏+𝜏1
. (183)

Since (𝜇
𝜏
)
𝜏≥0

is tight, then by Prokhorov theorem, we know
that (𝜇

𝜏
)
𝜏≥0

is relatively compact. We can choose a subse-
quence of (𝜇

𝜏
)
𝜏≥0

denoted by (𝜇
𝜏𝑛
)
𝑛∈N such that for 𝜇 ∈

𝑃(𝐻
𝜎

),

∫
𝐻
1

0

(𝑃
𝑡
𝑓) (𝑥) 𝜇 (𝑑𝑥)

= lim
𝑛→∞

∫
𝐻
1

0

(𝑃
𝑡
𝑓) (𝑥) 𝜇

𝜏𝑛
(𝑑𝑥)

= lim
𝑛→∞

∫
𝐻
1

0

𝑓 (𝑥) 𝑃
∗

𝑡
𝜇
𝜏𝑛
(𝑑𝑥)

= lim
𝑛→∞

∫
𝐻
1

0

𝑓 (𝑥) 𝜇
𝜏𝑛+𝑡

(𝑑𝑥)

= ∫
𝐻
1

0

𝑓 (𝑥) 𝜇 (𝑑𝑥) .

(184)

5.2. Uniqueness. Themain result of this part is as follows.

Theorem 9. Assume 𝜃 > 1/2 in Lemma 2 and 𝜗 > 1/4; then,

(i) the stochastic Burgers equation (2) has a unique invari-
ant measure 𝜇;

(ii) for all 𝑢
0
∈ 𝐻

1

0
𝜑,𝐻1

0
→ R, such that ∫

𝐻
1

0

|𝜑|𝑑𝜇 < ∞,

lim
𝑇→∞

1

𝑇
∫

𝑇

0

𝜑 (𝑢 (𝑡; 𝑢
0
)) 𝑑𝑡 = ∫

𝐻
1

0

𝜑𝑑𝜇 a.s.; (185)

(iii) for every Borel measure 𝜇∗ on𝐻1

0
, one has that

𝑃
∗

𝑡
𝜇
∗

− 𝜇
𝑇𝑉

→ 0 as 𝑡 → ∞, (186)

where ‖ ⋅ ‖
𝑇𝑉

stands for the total variation of a measure. In
particularly, one has that

𝑃
∗

𝑡
𝜇
∗

(𝐵) → 𝜇 (𝐵) , as 𝑡 → ∞, (187)

for every Borel set 𝐵 ∈ B(𝐻
1

0
)(the Borel 𝜎-algebra of𝐻1

0
).
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In order to prove Theorem 9, we only need Theorem 10
below, see [28, Theorem 4.2.1]. We define 𝑃(𝑡, 𝑥, ⋅), 𝑡 > 0, 𝑥 ∈

𝐻
1

0
, to be the transition probability measure that is,

𝑃 (𝑡, 𝑥, 𝐵) = 𝑃
∗

𝑡
𝛿
𝑥
(𝐵) = 𝑃 (𝑢 (𝑡; 𝑥) ∈ 𝐵) (188)

for 𝐵 ∈ B(𝐻
1

0
).

Theorem 10. Assume that the probability measures 𝑃(𝑡,
𝑥, ⋅), 𝑡 > 0, 𝑥 ∈ 𝐻

1

0
, are all equivalent, in the sense that they are

mutually absolutely continuous. Then, Theorem 9 holds true.

In the following, we will prove the irreducibility and the
strong Feller property in 𝐻

1

0
to get the equivalence of the

measure 𝑃(𝑡, 𝑥, ⋅). For the two notations, we outline them
below. For 𝑦 ∈ 𝐻

1

0
, 𝜀 > 0, let

𝐵 (𝑦, 𝜀) = {𝑥 ∈ 𝐻
1

0
;
𝑥 − 𝑦

𝐻1
< 𝜀} . (189)

(I) For any 𝑥, 𝑦 ∈ 𝐻
1

0
, such that for all 𝜀 > 0,

𝑃 (𝑡, 𝑥, 𝐵 (𝑦, 𝜀)) > 0 (190)

for each 𝑡 > 0.
(S) For all 𝑂 ∈ B(𝐻

1

0
), every 𝑡 > 0, and all 𝑥

𝑛
, 𝑥 ∈ 𝐻

1

0

such that 𝑥
𝑛
→ 𝑥 in𝐻1

0
, it holds that

𝑃 (𝑡, 𝑥
𝑛
, 𝑂) → 𝑃 (𝑡, 𝑥, 𝑂) . (191)

Before checking the condition (I), we need Lemma 11
below. For 𝑥 ∈ 𝐻

1

0
and 𝜙 : [0, 𝑇] → 𝐻

1

0
, set

𝑢 (𝑡, 𝑥, 𝜙) = V (𝑡, 𝑥, 𝜙) + 𝜙 (𝑡) , (192)

where V(𝑡, 𝑥, 𝜙) is solution of the following equation:

𝑑V
𝑑𝑡

+ 𝐴V + 𝐵 (V + 𝜙, V + 𝜙) + 𝑓 (V + 𝜙) = 0, (193)

for 𝑡 ∈ [0, 𝑇], with initial condition V(0) = 𝑥. As it is proved
in previously this equation has a unique solution as follows:

V ∈ 𝐶 ([0, 𝑇] ;𝐻
1

0
) , (194)

when 𝑥 ∈ 𝐻
1

0
and 𝜙 ∈ 𝐶([0, 𝑇];𝐻

1

0
).

Lemma 11. Define Ψ(𝜙) = 𝑢(⋅, 𝑥, 𝜙); then,

(i) the mapping

Ψ : 𝐶
0
([0, 𝑇] ;𝐻

3/2

) → 𝐶([0, 𝑇] ;𝐻
1

0
) (195)

is continuous, where 𝐶
0
([0, 𝑇]; 𝐵) := {ℎ ∈

𝐶([0, 𝑇]; 𝐵); ℎ(0) = 0} for Banach space 𝐵;

(ii) for every 𝑥, 𝑦 ∈ 𝐻
3/2 and 𝑇 > 0 there exists 𝑧 ∈

𝐶
0
([0, 𝑇];𝐻

3/2

) such that 𝑢(𝑇, 𝑥, 𝑧) = 𝑦.

Proof. (i) is proved by (A.30) in the Appendix. To prove (ii),
let 𝑥, 𝑦, ∈ 𝐻3/2 and 𝑇 > 0, define 𝑢 as

𝑢 (𝑡) = 𝑒
−𝑡𝐴

𝑥, 𝑡 ∈ [0, 𝑡
0
] ,

𝑢 (𝑡) = 𝑒
−(𝑇−𝑡)𝐴

𝑦, 𝑡 ∈ [𝑡
1
, 𝑇] ,

𝑢 (𝑡) = 𝑢 (𝑡
0
) +

𝑡 − 𝑡
0

𝑡
1
− 𝑡

0

(𝑢 (𝑡
1
) − 𝑢 (𝑡

0
)) ,

𝑡 ∈ (𝑡
0
, t

1
) .

(196)

Obviously, 𝑢(𝑡) ∈ 𝐶([0, 𝑇];𝐻
3/2

). Define V as the solution of
the following equation:

𝑑

𝑑𝑡
V + 𝐴V + 𝐵 (𝑢, 𝑢) + 𝑓 (𝑢) = 0, (197)

with initial condition V(0) = 𝑥; then V ∈ 𝐶([0, 𝑇];𝐻
3/2

). Set
𝑧 = 𝑢 − V; then it satisfies all the requirements of the lemma.

Proposition 12. With conditions in Theorem 9, the irre-
ducibility property (I) is satisfied.

Proof. Let 𝑥 ∈ 𝐻
3/2 and 𝑧 be the same as (ii) in Lemma 11. By

the above lemma, we have that for 𝜀 > 0, we can find 𝛿 > 0,
such that

‖𝑧 − 𝑧‖
𝐶0([0,𝑇];𝐻

3/2
)
< 𝛿 (198)

implies that

‖𝑢 (⋅, 𝑥, 𝑧) − 𝑢 (⋅, 𝑥, 𝑧)‖
𝐶([0,𝑇];𝐻

1
)
< 𝜀. (199)

If 𝜃 > 1/2 in Lemma 2, and denote 𝑧 and 𝑧 the corresponding
Ornstein-Uhlenbeck process satisfying conditions in the
lemma, then 𝑧, 𝑧 ∈ 𝐶([0, 𝑇];𝐻

3/2

). Choose 𝛿
1
> 0 such that

𝛿
1
< 𝛿 and

𝑧 ∈ 𝑈
𝛿1
=: {𝑧 ∈ 𝐶

0
([0, 𝑇] ;𝐻

3/2

) ; ‖𝑧 − 𝑧‖
𝐶([0,𝑇];𝐻

3/2
)
< 𝛿

1
} .

(200)

Then, for 𝑧 ∈ 𝑈
𝛿1
, we have that

𝑢(𝑇, , 𝑥, 𝑧) − 𝑦
𝐻1

< 𝜀. (201)

Recall now that the solution 𝑢 of the stochastic Burgers
equation is equal to Ψ(𝑧), 𝑧 being the Ornstein-Uhlenbeck
process. Then, it remains to show that

𝑃 {𝑧 (⋅, 𝑤) ∈ 𝑈
𝛿1
} > 0. (202)

But this is obviously true. So far, we have proved that for
for all 𝑡 > 0, for all 𝑥, 𝑦 ∈ 𝐻

3/2, for all 𝜀 > 0,

𝑃 (𝑡, 𝑥, 𝐵 (𝑦, 𝜀)) > 0. (203)
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Next, we will prove for all 𝑥
0
∈ 𝐻

1

0
, 𝑦

0
∈ 𝐻

3/2, the above
inequality also holds. Indeed, for 0 < ℎ < 𝑡, by Chapman-
Kolmogorov equation, we have

𝑃 (𝑡, 𝑥
0
, 𝐵 (𝑦

0
, 𝜀))

= ∫
𝐻
1

0

𝑃 (𝑡 − ℎ, 𝑥
0
, 𝑑𝑦) 𝑃 (ℎ, 𝑦, 𝐵 (𝑦

0
, 𝜀))

= ∫
𝐻
3/2

𝑃 (𝑡 − ℎ, 𝑥
0
, 𝑑𝑦) 𝑃 (ℎ, 𝑦, 𝐵 (𝑦

0
, 𝜀)) > 0.

(204)

Since 𝑃(𝑡 − ℎ, 𝑥
0
, 𝐻

3/2

) = 1, we will extend (204) to the case
for all 𝑥

0
∈ 𝐻

1

0
, 𝑦

0
∈ 𝐻

1

0
. If this is not true, there exists 𝑡

0
>

0, 𝑥
0
, 𝑦

0
∈ 𝐻

1

0
, 𝜀 > 0 such that

𝑃 (𝑡
0
, 𝑥

0
, 𝐵 (𝑦

0
, 𝜀)) = 0. (205)

Then, we can choose 𝑦
1
∈ 𝐻

3/2

, 𝜀
1
> 0 such that 𝐵(𝑦

1
, 𝜀

1
) ⊂

𝐵(𝑦
0
, 𝜀). By (204), we have

𝑃 (𝑡
0
, 𝑥

0
, 𝐵 (𝑦

1
, 𝜀

1
)) > 0, (206)

which is contrary to (205).

In this part, it is time to check the condition (S).
We will first obtain the strong Feller property in 𝐻

1

0
for

modified Burgers equation (208) below, then let 𝑅 → ∞ to
check the condition (S).

Fix 𝑅 > 0, let 𝐾
𝑅
: [0,∞[→ [0,∞[ satisfy 𝐾

𝑅
∈ 𝐶

1

(R
+
)

such that |𝐾
𝑅
| ≤ 1, |𝐾



𝑅
| ≤ 2 and

𝐾
𝑅
= 1, if 𝑥 < 𝑅,

𝐾
𝑅
= 0, if 𝑥 ≥ 𝑅 + 1.

(207)

Consider the following equation:

𝑑𝑢
𝑅
(𝑡) + 𝐴𝑢

𝑅
(𝑡) 𝑑𝑡

+ 𝐾
𝑅
(
𝑢𝑅

(𝑡)


2

𝐻
1) 𝐵 (𝑢𝑅

(𝑡) , 𝑢
𝑅
(𝑡)) 𝑑𝑡

+ 𝐾
𝑅
(
𝑢𝑅

(𝑡)


2

𝐻
1) 𝑓 (𝑢𝑅

) (𝑡) = 𝑑𝑊 (𝑡) .

(208)

Proposition 13. There exists a unique mild solution 𝑢
𝑅
(⋅, 𝑤) ∈

𝐶([0, 𝑇];𝐻
1

0
) for (208) which is Markov process with the Feller

property in 𝐻
1

0
, that is for every 𝑅 > 0, 𝑡 > 0, there exists a

constant 𝐿 = 𝐿(𝑡, 𝑅) > 0 such that

𝑃

(𝑅)

𝑡
𝜙 (𝑥) − 𝑃

(𝑅)

𝑡
𝜙 (𝑦)


≤ 𝐿

𝑥 − 𝑦
𝐻1

(209)

holds for all 𝑥, 𝑦 ∈ 𝐻
1

0
, and all 𝜙 ∈ 𝐶

𝑏
(𝐻

1

0
) ≤ 1, where

𝑃
(𝑅)

𝑡
𝜙(𝑥) := ∫

𝐻
1

0

𝜙(𝑦)𝑃
𝑅
(𝑡, 𝑥, 𝑑𝑦), 𝑃

𝑅
(𝑡, 𝑥, ⋅) is the transition

probabilities corresponding to (204).

Proof. The proof of existence and uniqueness is similar to
Section 2. Let 𝜙

1
= 𝜙

2
in (A.28), by the Gronwall inequality,

we know that 𝑢
𝑅
is Lipschitz continuouswith respect to initial

value. Using the method in Proposition 4.3.3 in [24], we
can prove that the solution is a Markov process. To prove
the Fell property, we first consider the following Galerkin

approximations of (208). Let 𝑃
𝑛
be the orthogonal projection

in 𝐻 defined as 𝑃
𝑛
𝑥 = ∑

𝑛

𝑗=1
⟨𝑥, 𝑒

𝑗
⟩𝑒

𝑗
, 𝑥 ∈ 𝐻. Clearly, 𝐻

𝑛
:=

𝑃
𝑛
𝐻 for every 𝑛. Consider the equation in𝐻

𝑛
as follows:

𝑑𝑢
(𝑅)

𝑛
(𝑡) + 𝐴𝑢

(𝑅)

𝑛
(𝑡) 𝑑𝑡

+ 𝐾
𝑅
(

𝑢
(𝑅)

𝑛
(𝑡)


2

𝐻
1
)𝑃

𝑛
𝐵 (𝑢

(𝑅)

𝑛
(𝑡) , 𝑢

(𝑅)

𝑛
(𝑡))

+ 𝐾
𝑅
(

𝑢
(𝑅)

𝑛
(𝑡)


2

𝐻
1
)𝑓 (𝑢

(𝑅)

𝑛
) (𝑡) = 𝑑𝑊 (𝑡) ,

(210)

with initial condition 𝑢
(𝑅)

𝑛
(0) = 𝑃

𝑛
𝑢
0
. This is a finite-

dimensional equationwith globally Lipschitz nonlinear func-
tions, so it has a unique progressively measurable solution
with 𝑃-a.e. trajectory 𝑢

(𝑅)

𝑛
(⋅, 𝑤) ∈ 𝐶([0, 𝑇];𝐻

𝑛
), which is

also a Markov process in 𝐻
𝑛
with associated semigroup 𝑃(𝑅)

𝑛,𝑡

defined as

𝑃
(𝑅)

𝑛,𝑡
𝜙 (𝑥) = 𝐸𝜙 (𝑢

(𝑅)

𝑛
(𝑡; 𝑥)) , (211)

for all 𝑥 ∈ 𝐻
𝑛
and 𝜙 ∈ 𝐶

𝑏
(𝐻

𝑛
). For every 𝑅 > 0, 𝑡 > 0, we can

prove that there exists a constant 𝐿 = 𝐿(𝑡, 𝑅) > 0 such that

𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑥) − 𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑦)


≤ 𝐿

𝑥 − 𝑦
𝐻1

(212)

hold for all 𝑛 ∈ N, 𝑥, 𝑦 ∈ 𝐻
𝑛
, and all 𝜙 ∈ 𝐶

𝑏
(𝐻

𝑛
)with ‖𝜙‖

𝐻
1 ≤

1. Indeed, the following remarkable formula holds true for the
differential in 𝑥 of 𝑃(𝑅)

𝑛,𝑡
𝜙 [29]:

𝐷
𝑥
𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑥) ⋅ ℎ

=
1

𝑡
𝐸(𝜙 (𝑢

(𝑅)

𝑛
(𝑡; 𝑥)) ∫

𝑡

0

⟨(𝑃
𝑛
𝑄𝑄

∗

𝑃
𝑛
)
−1/2

𝐷
𝑥
𝑢
(𝑅)

𝑛
(𝑠; 𝑥)

⋅ℎ, 𝑑𝛽
𝑛
(𝑠) ⟩ ) ,

(213)

for all ℎ ∈ 𝐻
𝑛
, where 𝛽

𝑛
is a 𝑛-dimensional standard Wiener

process with incremental covariance𝑃
𝑛
𝑄 and𝑄 is the covari-

ance operator of𝑊(𝑡). Obviously, 𝑄 is nonnegative, adjoint,
Hilbert-Schmidt operator with inverse. Since the eigenvalues
𝛼
𝑛
of the Stokes operator𝐴, in 2-space dimension, behave like

𝑛, let 𝜃 = 1/2 + 𝜀 for some 𝜀 > 0, in Lemma 2, we have
𝐷(𝐴) ⊂ R(𝑄) ⊂ 𝐷(𝐴

3/4

), where R(𝑄) is the image of 𝑄.
Therefore,

𝐷

𝑥
𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑥) ⋅ ℎ



≤
1

𝑡
𝐸(∫

𝑡

0


(𝑃

𝑛
𝑄𝑄

∗

𝑃
𝑛
)
−1/2

𝐷
𝑥
𝑢
(𝑅)

𝑛
(𝑠; 𝑥) ⋅ ℎ



2

𝐻

𝑑𝑠)

1/2

.

(214)

Since for 𝑦 ∈ 𝐻
𝑛


(𝑃

𝑛
𝑄𝑄

∗

𝑃
𝑛
)
−1/2

𝑦


2

𝐻

= ⟨(𝑃
𝑛
Q𝑄∗

𝑃
𝑛
)
−1

𝑦, 𝑦⟩

= ⟨(𝐴𝑃
𝑛
𝑄𝑄

∗

𝑃
𝑛
𝐴)

−1

𝐴𝑦,𝐴𝑦⟩ ≤ 𝐶
𝑦


2

𝐻
2 ,

(215)
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it follows that

𝐷

𝑥
𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑥) ⋅ ℎ



≤
1

𝑡
𝐶𝐸(∫

𝑡

0


𝐷

𝑥
𝑢
(𝑅)

𝑛
(𝑠; 𝑥) ⋅ ℎ



2

𝐻
2
𝑑𝑠)

1/2

≤
1

𝑡
𝐶 (𝑅) ‖ℎ‖

𝐻
1 ,

(216)

where the last inequality follows by the Estimate 4 of the
Appendix (note that 𝐶(𝑅) is independent of 𝑥 ∈ 𝐻

𝑛
and

𝑛 ∈ N). Indeed, 𝑢(𝑅)

𝑛
(𝑡, 𝑥) is given by V

𝑛
(𝑡, 𝑥) +𝑃

𝑛
𝑧(𝑡), where 𝑧

is the Ornstein-Uhlenbeck process, and V
𝑛
is the solution of

(A.2). Therefore,

𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑥) − 𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑦)



≤ sup
‖ℎ‖
𝐻
1≤1,𝑘∈𝐻𝑛


𝐷

𝑥
𝑃

(𝑅)

𝑛,𝑡
𝜙 (𝑘) ⋅ ℎ


⋅
𝑥 − 𝑦

𝐻1

≤
1

𝑡
𝐶 (𝑅)

𝑥 − 𝑦
𝐻1

.

(217)

In the following step, we will let 𝑛 → ∞ to get the
Fell property for (208). Let 𝑥 ∈ 𝐻

1

0
and 𝜙 ∈ 𝐶

𝑏
(𝐻

1

0
)

be given. From the Appendix, Remark A.1, we know that
𝑢
(𝑅)

𝑛
(𝑡) converges to 𝑢(𝑅)

(𝑡) strongly in 𝐿2

(0, 𝑇;𝐻
1

0
), 𝑝-a.s.. By

the boundedness and continuous of 𝜙 as well as Lebesgue
dominated convergence theorem, we have

𝐸∫

𝑇

0


𝜙 (𝑢

(𝑅)

𝑛
(, ; 𝑥)) − 𝜙 (𝑢

(𝑅)

(, ; 𝑥))

𝑑𝑡 → 0, (218)

which implies that for some subsequence 𝑛
𝑘
,

𝐸𝜙 (𝑢
(𝑅)

𝑛𝑘
(, ; 𝑥)) → 𝐸𝜙 (𝑢

(𝑅)

(, ; 𝑥)) , (219)

for a.e. 𝑡 ∈ [0, 𝑇]. Take 𝑥, 𝑦 ∈ 𝐻
1

0
, by the previous argument,

we can find a subsequence 𝑛
𝑘
such that the previous almost

sure convergence in 𝑡 ∈ [0, 𝑇] holds true both 𝑥 and 𝑦.
Thus, from (212), we have


𝑃

(𝑅)

𝑡
𝜙 (𝑥) − 𝑃

(𝑅)

𝑡
𝜙 (𝑦)


≤ 𝐿

𝑥 − 𝑦
𝐻1

, (220)

for a.e. 𝑡 ∈ [0, 𝑇]. As 𝑢(𝑅)

(𝑡; 𝑥) has continuous trajectories
with values in𝐻1

0
, the above inequality holds for all 𝑡 ∈ [0, 𝑇].

Proposition 14. Under conditions of Theorem 9, (S) holds
true.

Proof. Take 𝑡 > 0, 𝑥
𝑛
, 𝑥 ∈ 𝐻

1

0
satisfying 𝑥

𝑛
→ 𝑥 in 𝐻1. For

every 𝑅 > 0, we have that
𝑃𝑅

(𝑡, 𝑥
𝑛
, ⋅) − 𝑃

𝑅
(𝑡, 𝑥, ⋅)

𝑇𝑉

= sup
‖𝜙‖
𝐶
𝑏
(𝐻
1
)
≤1


𝑃

(𝑅)

𝑡
𝜙 (𝑥

𝑛
) − 𝑃

(𝑅)

𝑡
𝜙 (𝑥)



≤ 𝐿
𝑥𝑛

− 𝑥
𝐻1

→ 0,

(221)

as 𝑛 → ∞ by Proposition 13. Then,
𝑃𝑅

(𝑡, 𝑥
𝑛
, ⋅) − 𝑃 (𝑡, 𝑥

𝑛
, ⋅)
𝑇𝑉

+
𝑃𝑅

(𝑡, 𝑥, ⋅) − 𝑃 (𝑡, 𝑥, ⋅)
𝑇𝑉

= sup
‖𝜙‖
𝐶
𝑏
(𝐻
1
)
≤1


𝑃

(𝑅)

𝑡
𝜙 (𝑥

𝑛
) − 𝑃

𝑡
𝜙 (𝑥

𝑛
)


+ sup
‖𝜙‖
𝐶
𝑏
(𝐻
1
)
≤1


𝑃

(𝑅)

𝑡
𝜙 (𝑥) − 𝑃

𝑡
𝜙 (𝑥)



= sup
‖𝜙‖
𝐶
𝑏
(𝐻
1
)
≤1

𝐸𝜙 (𝑢𝑅
(𝑡; 𝑥

𝑛
)) − 𝐸𝜙 (𝑢 (𝑡; 𝑥

𝑛
))


+ sup
‖𝜙‖
𝐶
𝑏
(𝐻
1
)
≤1

𝐸𝜙 (𝑢𝑅
(𝑡; 𝑥)) − 𝐸𝜙 (𝑢 (𝑡; 𝑥))



≤ 2∫
Ω

𝐼
{sup
𝑛∈N

‖𝑢(𝑡;𝑥𝑛)‖𝐻
1>𝑅}

𝑃 (𝑑𝑤)

+ 2∫
Ω

𝐼
{‖𝑢(𝑡;𝑥)‖

𝐻
1>𝑅}

𝑃 (𝑑𝑤) → 0, as 𝑅 → ∞,

(222)

where the inequality follows by the consistency of 𝑢(𝑡; 𝑥) and
𝑢
(𝑅)

(𝑡; 𝑥), when ‖𝑢(𝑡; 𝑥)‖
𝐻
1 ≤ 𝑅, and the limit follows by

(A.21). Therefore,
𝑃 (𝑡, 𝑥𝑛

, ⋅) − 𝑃 (𝑡, 𝑥, ⋅)
𝑇𝑉

≤
𝑃 (𝑡, 𝑥𝑛

, ⋅) − 𝑃
𝑅
(𝑡, 𝑥

𝑛
, ⋅)
𝑇𝑉

+
𝑃𝑅

(𝑡, 𝑥
𝑛
, ⋅) − 𝑃

𝑅
(𝑡, 𝑥, ⋅)

𝑇𝑉

+
𝑃𝑅

(𝑡, 𝑥, ⋅) − 𝑃 (𝑡, 𝑥, ⋅)
𝑇𝑉

→ 0,

(223)

as 𝑛 → ∞.

6. Example

Our theory can be applied to stochastic reaction diffusion
equations or stochastic real valued Ginzburg Landau equa-
tion in high dimensions as follows:

𝜕𝑢

𝜕𝑡
− Δ𝑢 + |𝑢|

2

𝑢 − 𝑢 = 𝑑𝑊, on [0, 𝑇] × 𝐷,

𝑢 (𝑡, 𝑥) = 0, 𝑡 ∈ [0, 𝑇] , 𝑥 ∈ 𝜕𝐷,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝑥 ∈ 𝐷,

(224)

where 𝑢(𝑡, 𝑥) = (𝑢
1

(𝑡, 𝑥), 𝑢
2

(𝑡, 𝑥)) is the velocity field, Δ
denotes the Laplace operator, 𝑊 stands for the 𝑄-Wiener
process, and𝐷 is a regular bounded open domain of R2.

Appendix

Fix 𝑅 > 0 and let 𝐾
𝑅
: [0,∞[→ [0,∞[ satisfy 𝐾

𝑅
∈ 𝐶

1

(R
+
)

such that |𝐾
𝑅
| ≤ 1, |𝐾



𝑅
| ≤ 2 and

𝐾
𝑅
(𝑥) = 1, if 𝑥 < 𝑅,

𝐾
𝑅
(𝑥) = 0, if 𝑥 ≥ 𝑅 + 1.

(A.1)



Abstract and Applied Analysis 19

Consider the following equation:

𝑑V
𝑛

𝑑𝑡
+ 𝐴V

𝑛
+ 𝐾

𝑅
(
V𝑛 + 𝑃𝑛

𝜙


2

𝐻
1)

× 𝑃
𝑛
𝐵 (V

𝑛
+ 𝑃

𝑛
𝜙, V

𝑛
+ 𝑃

𝑛
𝜙)

+ 𝐾
𝑅
(
V𝑛 + 𝑃𝑛

𝜙


2

𝐻
1) 𝑓 (V𝑛 + 𝑃𝑛

𝜙) = 0,

(A.2)

where 𝜙 ∈ 𝐶([0, 𝑇];𝐻
3/2

).

Estimate 1. We have the following estimate in𝐻 for (A.2):

V𝑛
𝐶([0,𝑇];𝐻)

+
V𝑛

𝐿2([0,𝑇];𝐻
1
)
≤ 𝐶 (‖𝑥‖

𝐻
,
𝜙
𝐶([0,𝑇];𝐻

3/2
)
, 𝑇) ,

(A.3)

where 𝐶(𝑎, 𝑏, 𝑐) indicates a constant 𝐶 depending on 𝑎, 𝑏, 𝑐.
Analogously to the derivation of (147), we get

𝑑

𝑑𝑡

V𝑛


2

𝐻
+
V𝑛



2

𝐻
1 +

V𝑛


4

𝐿
4 ≤ 𝐶 (

𝜙


4

𝐻
3/2 + 1) . (A.4)

Therefore, for all 𝑡 ∈ [0, 𝑇],

V𝑛 (𝑡)


2

𝐻
+ ∫

𝑡

0

V𝑛


2

𝐻
1𝑑𝑠 + ∫

𝑡

0

V𝑛


4

𝐿
4𝑑𝑠

≤ ‖𝑥‖
2

𝐻
+ 𝐶∫

𝑡

0

(
𝜙 (𝑠)



4

𝐻
3/2 + 1) ,

(A.5)

Then, we get (A.3).

Estimate 2. We obtain the following estimate in𝐻1

0
for (A.2):

V𝑛 (𝑡)


2

𝐶([0,𝑇];𝐻
1

0
)
+ ∫

𝑇

0

V𝑛 (𝑠)


2

𝐻
2𝑑𝑠

≤ 𝐶 (‖𝑥‖
𝐻
1 ,
𝜙
𝐶([0,𝑇];𝐻

3/2
)
, 𝑇) .

(A.6)

Since we have

𝑑

𝑑𝑡

V𝑛 (𝑡)


2

𝐻
1 +

V𝑛 (𝑡)


2

𝐻
2

+ ⟨𝑓 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡)) , 𝐴V

𝑛
(𝑡)⟩

= ⟨𝐵 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡) , V

𝑛
(𝑡)

+𝑃
𝑛
𝜙 (𝑡)) , 𝐴V

𝑛
(𝑡)⟩ ,

(A.7)

the equation is equivalent to

𝑑

𝑑𝑡

V𝑛 (𝑡)


2

𝐻
1 +

V𝑛 (𝑡)


2

𝐻
2

+ ⟨𝑓 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡)) , 𝐴 (V

𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡))⟩

= ⟨𝐵 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡) , V

𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡)) , 𝐴V

𝑛
(𝑡)⟩

+ ⟨𝑓 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡)) , 𝐴𝑃

𝑛
𝜙 (𝑡)⟩ .

(A.8)

Denote by 𝑢
𝑛
:= V

𝑛
(𝑡) + 𝑃

𝑛
𝜙(𝑡) and 𝑢

𝑛
= (𝑢

1

𝑛
, 𝑢

2

𝑛
); then

⟨
𝑢𝑛



2

𝑢
𝑛
, 𝐴𝑢

𝑛
⟩ = 3∫

𝐷

(𝑢
1

𝑛
)
2

(𝜕
1
𝑢
1

𝑛
)
2

𝑑𝑥

+ 3∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ 3∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
1
𝑢
2

𝑛
)
2

𝑑𝑥

+ 3∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
1
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
1
𝑢
2

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
2
𝑢
2

𝑛
)
2

𝑑𝑥

+ 4∫
𝐷

(𝑢
1

𝑛
𝜕
1
𝑢
1

𝑛
) (𝑢

2

𝑛
𝜕
1
𝑢
2

𝑛
) 𝑑𝑥

+ 4∫
𝐷

(𝑢
1

𝑛
𝜕
2
𝑢
1

𝑛
) (𝑢

2

𝑛
𝜕
2
𝑢
2

𝑛
) 𝑑𝑥.

(A.9)

As

4∫
𝐷

(𝑢
1

𝑛
𝜕
1
𝑢
1

𝑛
) (𝑢

2

𝑛
𝜕
1
𝑢
2

𝑛
) 𝑑𝑥

≤ 2∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
1
𝑢
1

𝑛
)
2

𝑑𝑥

+ 2∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
1
𝑢
2

𝑛
)
2

𝑑𝑥,

4 ∫
𝐷

(𝑢
1

𝑛
𝜕
2
𝑢
1

𝑛
) (𝑢

2

𝑛
𝜕
2
𝑢
2

𝑛
) 𝑑𝑥

≤ 2∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ 2∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
2
𝑢
2

𝑛
)
2

𝑑𝑥,

(A.10)

so, we have that

⟨
𝑢𝑛



2

𝑢
𝑛
, 𝐴𝑢

𝑛
⟩

≥ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
1
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
1
𝑢
2

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
2
𝑢
2

𝑛
)
2

𝑑𝑥
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+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
1
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
2

𝑛
)
2

(𝜕
2
𝑢
1

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
1
𝑢
2

𝑛
)
2

𝑑𝑥

+ ∫
𝐷

(𝑢
1

𝑛
)
2

(𝜕
2
𝑢
2

𝑛
)
2

𝑑𝑥

= ∫
𝐷

𝑢𝑛



2∇𝑢𝑛



2

𝑑𝑥.

(A.11)

For the first term on the right hand side of (A.3), we have

⟨[(𝑢
𝑛
⋅ ∇) 𝑢

𝑛
] , 𝐴V

𝑛
(𝑡)⟩

≤
V𝑛 (𝑡)



2

𝐻
2 +

1

4
∫
𝐷

𝑢𝑛



2∇𝑢𝑛



2

𝑑𝑥.

(A.12)

Substitute (A.11) and (A.12) into (A.8), we get

𝑑

𝑑𝑡

V𝑛 (𝑡)


2

𝐻
1 +

V𝑛 (𝑡)


2

𝐻
2

≤ ⟨𝑓 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡)) , 𝐴𝜙 (𝑡)⟩

= ⟨𝐴
1/4

𝑓 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡) , 𝐴

3/4

𝜙 (𝑡))⟩ .

(A.13)

Denote

𝑢
𝑛
(𝑡) = V

𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡) . (A.14)

Then,

⟨𝐴
1/4

𝑓 (V
𝑛
(𝑡) + 𝑃

𝑛
𝜙 (𝑡) , 𝐴

3/4

𝜙 (𝑡))⟩

≤
𝜙(𝑡)

𝐻3/2
⋅

𝐴

1/4

(
𝑢𝑛

(𝑡)


2

𝑢
𝑛
(𝑡))

𝐻

≤
𝜙 (𝑡)

𝐻3/2

⋅

(𝐴

1/4𝑢𝑛
(𝑡)


2

) 𝑢
𝑛
(𝑡) +

𝑢𝑛
(𝑡)


2

𝐴
1/4

𝑢
𝑛
(𝑡) + 𝑅

𝐻

≤
𝜙 (𝑡)

𝐻3/2

⋅ [

(𝐴

1/4𝑢𝑛
(𝑡)


2

) 𝑢
𝑛
(𝑡)
𝐻

+


𝑢𝑛
(𝑡)


2

𝐴
1/4

𝑢
𝑛
(𝑡)
𝐻

+ ‖𝑅‖
𝐻
]

=
𝜙 (𝑡)

𝐻3/2
⋅ [𝐼

1
+ 𝐼

2
+ 𝐼

3
] ,

(A.15)

where

𝑅 = 𝐴
1/4

(
𝑢𝑛

(𝑡)


2

𝑢
𝑛
(𝑡))

− (𝐴
1/4𝑢𝑛

(𝑡)


2

) 𝑢
𝑛
(𝑡)

−
𝑢𝑛

(𝑡)


2

𝐴
1/4

𝑢
𝑛
(𝑡) .

(A.16)

For 𝐼
1
, we have

𝐼
1
≤

(𝑢

𝑛
(𝑡) 𝐴

1/4

𝑢
𝑛
(𝑡) + 𝑅

1
) 𝑢

𝑛
(𝑡)
𝐻
, (A.17)

where

𝑅
1
= 𝐴

1/4𝑢𝑛
(𝑡)


2

− 2𝑢
𝑛
(𝑡) 𝐴

1/4

𝑢
𝑛
(𝑡) . (A.18)

So,

𝐼
1
≤ 𝐶



𝑢𝑛
(𝑡)


2

𝐴
1/4

𝑢
𝑛
(𝑡) + 𝑅

1
𝑢
𝑛
(𝑡)
𝐻

≤ 𝐶
𝑢𝑛

(𝑡)


2

𝐿
8

𝑢𝑛
(𝑡)
𝐻1/2,4

+
𝑢𝑛

(𝑡)
𝐿4

𝑅1

𝐿4

≤ 𝐶
𝑢𝑛

(𝑡)


2

𝐿
8

𝑢𝑛
(𝑡)
𝐻1/2,4

+
𝑢𝑛

(𝑡)
𝐿4

𝑢𝑛
(𝑡)
𝐻1/4,8

≤ 𝐶
𝑢𝑛

(𝑡)


3

𝐻
1 .

(A.19)

Analogously, we can get the same estimate for 𝐼
2
and 𝐼

3
.

Take advantage of the estimates for 𝐼
1
, 𝐼

2
, and 𝐼

3
, we have

𝑑

𝑑𝑡

V𝑛 (𝑡)


2

𝐻
1 +

V𝑛 (𝑡)


2

𝐻
2

≤ 𝐶
𝜙 (𝑡)

𝐻3/2
𝑢𝑛

(𝑡)


3

𝐻
1

≤ 𝐶 (
V𝑛 (𝑡)



3

𝐻
1 +

𝜙 (𝑡)


3

𝐻
3/2) .

(A.20)

By the Gronwall inequality and (A.3), we get (A.6).

Remark A.1. It is standard to show that, for 𝑥 ∈ 𝐻
1

0
and 𝜙 ∈

𝐶([0, 𝑇];𝐻
3/2

), there exists a subsequence which converges
to some V, strongly in 𝐿2

([0, 𝑇];𝐻
1

), weekly in 𝐿2

([0, 𝑇];𝐻
2

),
and weak star in 𝐿∞

([0, 𝑇];𝐻
1

). Therefore, we have

‖V (𝑡)‖2
𝐶([0,𝑇];𝐻

1

0
)
+ ∫

𝑇

0

‖V (𝑠)‖2
𝐻
2𝑑𝑠

≤ 𝐶 (‖𝑥‖
𝐻
1 ,
𝜙
𝐶([0,𝑇];𝐻

3/2
)
, 𝑇) .

(A.21)

Estimate 3. We compare, only in the case 𝑅 = ∞. Let V1
𝑛
, V2

𝑛

be two solutions with the same initial condition 𝑥 ∈ 𝐻
1

but with different functions 𝜙
1
, 𝜙

2
, there exists a constant

𝐶(‖𝑥‖
𝐻
1 , ‖𝜙

1
‖
𝐶([0,𝑇];𝐻

3/2
)
, ‖𝜙

2
‖
𝐶([0,𝑇];𝐻

3/2
)
, 𝑇), such that


V1
𝑛
− V2

𝑛

𝐶([0,𝑇];𝐻
1

0
)

≤ 𝐶 (‖𝑥‖
𝐻
1 ,
𝜙1

𝐶([0,𝑇];𝐻
3/2

)
,
𝜙2

𝐶([0,𝑇];𝐻
3/2

)
, 𝑇)

×
𝜙1

− 𝜙
2

𝐶([0,𝑇];𝐻
3/2

)
,

(A.22)

for every 𝑛, 𝑥 ∈ 𝐻
1

, 𝜙
1
, 𝜙

2
, 𝑇. We have

𝑑V𝑖
𝑛

𝑑𝑡
+ 𝐴V𝑖

𝑛
+ 𝑃

𝑛
𝐵 (V𝑖

𝑛
+ 𝑃

𝑛
𝜙
𝑖
, V𝑖

𝑛
+ 𝑃

𝑛
𝜙
𝑖
)

+ 𝜗

V𝑖
𝑛
+ 𝑃

𝑛
𝜙
𝑖



2

(V𝑖
𝑛
+ 𝑃

𝑛
𝜙
𝑖
) = 0,

(A.23)
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with initial condition V𝑖
𝑛
(0) = 𝑃

𝑛
𝑥, for 𝑖 = 1, 2. Set 𝜂

𝑛
= V1

𝑛
−

V2
𝑛
, 𝜓 = 𝜙

1
− 𝜙

2
. Then,

𝑑𝜂
𝑛

𝑑𝑡
+ 𝐴𝜂

𝑛
+ 𝑃

𝑛
𝐵 (V1

𝑛
+ 𝑃

𝑛
𝜙
1
, 𝜂

𝑛
+ 𝑃

𝑛
𝜓)

+ 𝑃
𝑛
𝐵 (𝜂

𝑛
+ 𝑃

𝑛
𝜓, V2

𝑛
+ 𝑃

𝑛
𝜙
2
)

+ 𝜗

V1
𝑛
+ 𝜙

1



2

(V1
𝑛
+ 𝜙

1
)

− 𝜗

V2
𝑛
+ 𝜙

2



2

(V2
𝑛
+ 𝜙

2
) = 0.

(A.24)

Take inner product in𝐻 with respect to 𝐴𝜂
𝑛
, we have

1

2

𝑑

𝑑𝑡

𝜂𝑛


2

𝐻
1 +

𝜂𝑛


2

𝐻
2

+ ⟨𝑃
𝑛
𝐵 ((V1

𝑛
+ 𝑃

𝑛
𝜙
1
) , (𝜂

𝑛
+ 𝑃

𝑛
𝜓)) , 𝐴𝜂

𝑛
⟩

+ ⟨𝑃
𝑛
𝐵 (𝜂

𝑛
+ 𝑃

𝑛
𝜓, V2

𝑛
+ 𝑃

𝑛
𝜙
2
) , 𝐴𝜂

𝑛
⟩

+ 𝜗⟨

V1
𝑛
+ 𝜙

1



2

(V1
𝑛
+ 𝜙

1
)

−

V2
𝑛
+ 𝜙

2



2

(V2
𝑛
+ 𝜙

2
) , 𝐴𝜂

𝑛
⟩ = 0.

(A.25)

For the third term on the left hand side of (A.23), we have

⟨𝑃
𝑛
𝐵 (V1

𝑛
+ 𝑃

𝑛
𝜙
1
, 𝜂

𝑛
+ 𝑃

𝑛
𝜓) , 𝐴𝜂

𝑛
⟩

≤
𝜂𝑛

𝐻2
𝜂𝑛 + 𝑃𝑛

𝜓
𝐻1,4


V1
𝑛
+ 𝑃

𝑛
𝜙
1

𝐿4

≤
𝜂𝑛

𝐻2
(
𝜂𝑛

𝐻3/2
+
𝜓
𝐻3/2

) (

V1
𝑛
+ 𝜙

1

𝐻1
)

≤

V1
𝑛
+ 𝜙

1

𝐻1
𝜂𝑛

𝐻2
(
𝜂𝑛



1/2

𝐻
1

𝜂𝑛


1/2

𝐻
2 +

𝜓
𝐻3/2

)

≤ 𝜀
𝜂𝑛



2

𝐻
2 + 𝐶


V1
𝑛
+ 𝜙

1



4

𝐻
1

𝜂𝑛


2

𝐻
1

+ 𝐶

V1
𝑛
+ 𝜙

1



2

𝐻
1

𝜓


2

𝐻
3/2 .

(A.26)

Similarly, we can get

⟨𝑃
𝑛
𝐵 (𝜂

𝑛
+ 𝑃

𝑛
𝜓, V2

𝑛
+ 𝑃

𝑛
𝜙
2
) , 𝐴𝜂

𝑛
⟩

≤ 𝜀
𝜂𝑛



2

𝐻
2 + 𝐶


V2
𝑛



2

𝐻
2

𝜂𝑛


2

𝐻
1

+ 𝐶

V2
𝑛



2

𝐻
2

𝜓


2

𝐻
1

+ 𝐶
𝜙2



2

𝐻
3/2

𝜂𝑛


2

𝐻
1

+ 𝐶
𝜙2



2

𝐻
3/2

𝜓


2

𝐻
1 ,

(A.27)

𝜗⟨

V1
𝑛
+ 𝜙

1



2

(V1
𝑛
+ 𝜙

1
) −


V2
𝑛
+ 𝜙

2



2

(V2
𝑛
+ 𝜙

2
) , 𝐴𝜂

𝑛
⟩

≤ 𝜀
𝜂𝑛



2

𝐻
2 + 𝐶

𝜂𝑛


2

𝐻
1 (

V1
𝑛
+ 𝜙

1



4

𝐻
1
+

V2
𝑛
+ 𝜙

2



4

𝐻
1
)

+ 𝐶
𝜓


2

𝐻
1 (

V1
𝑛
+ 𝜙

1



4

𝐻
1
+

V2
𝑛
+ 𝜙

2



4

𝐻
1
) .

(A.28)

By (A.23)–(A.27), we have
𝑑

𝑑𝑡

𝜂𝑛


2

𝐻
1 +

𝜂𝑛


2

𝐻
2

≤ 𝐶
𝜂𝑛



2

𝐻
1 (

V1
𝑛
+ 𝜙

1



4

𝐻
1
+

V2
𝑛
+ 𝜙

2



4

𝐻
1

+

V1
𝑛
+ 𝜙

1



2

𝐻
1
+

V2
𝑛



2

𝐻
2
+
𝜙2



2

𝐻
3/2)

+ 𝐶
𝜓


2

𝐻
3/2 (


V1
𝑛
+ 𝜙

1



4

𝐻
1
+

V2
𝑛
+ 𝜙

2



4

𝐻
1

+

V1
𝑛
+ 𝜙

1



2

𝐻
1
+

V2
𝑛



2

𝐻
2
+
𝜙2



2

𝐻
3/2) .

(A.29)

So, by the Gronwall inequality and (A.6), we get (A.21).
By (A.6), we know that V𝑖

𝑛
converges week star to V𝑖 in

𝐶([0, 𝑇];𝐻
1

0
), for 𝑖 = 1, 2, we have


V1 − V2

𝐶([0,𝑇];𝐻
1
)

≤ 𝐶 (‖𝑥‖
𝐻
1 ,
𝜙1

𝐶([0,𝑇];𝐻
3/2

)
,
𝜙2

𝐶([0,𝑇];𝐻
3/2

)
, 𝑇)

𝜙1
− 𝜙

2

𝐶([0,𝑇];𝐻
3/2

)
.

(A.30)

Estimate 4. Let us consider only the case 𝑅 ∈ (0,∞), and
denote by V

𝑛
(𝑡) the solution to (A.2). Let 𝜉

𝑛
be the differential

mapping 𝑥 → V
𝑛
in the direction ℎ at point 𝑥, defined by, for

given 𝑥, ℎ ∈ 𝐻 as follows:
𝜉
𝑛
(𝑡) = 𝐷

𝑥
V
𝑛
(𝑡; 𝑥) ⋅ ℎ. (A.31)

Set also
𝑢
𝑛
(𝑡; 𝑥) = V

𝑛
(𝑡, 𝑥) + 𝑃

𝑛
𝜙 (𝑡) , (A.32)

so that 𝜉
𝑛
is also the differential of the mapping 𝑥 → 𝑢

𝑛
(𝑡; 𝑥)

in the direction ℎ at the point 𝑥. Thus, 𝜉
𝑛
satisfies

𝑑

𝑑𝑡
𝜉
𝑛
+ 𝐴𝜉

𝑛

= 2𝐾


𝑅
(
𝑢𝑛



2

𝐻
1) ⟨𝐴

1/2

𝑢
𝑛
, 𝐴

1/2

𝜉
𝑛
⟩𝐵 (𝑢

𝑛
, 𝑢

𝑛
)

+ 𝐾
𝑅
(
𝑢𝑛



2

𝐻
1) {𝐵 (𝑢𝑛

, 𝜉
𝑛
) + 𝐵 (𝜉

𝑛
, 𝑢

𝑛
)}

+ 2𝐾


𝑅
(
𝑢𝑛



2

𝐻
1) ⟨𝐴

1/2

𝑢
𝑛
, 𝐴

1/2

𝜉
𝑛
⟩ 𝑢

3

𝑛

+ 3𝐾
𝑅
(
𝑢𝑛



2

𝐻
1)
𝑢𝑛



2

𝜉
𝑛
.

(A.33)

So,
𝑑

𝑑𝑡

𝜉𝑛


2

𝐻
1 +

𝜉𝑛


2

𝐻
2

= 2𝐾


𝑅
(
𝑢𝑛



2

𝐻
) ⟨𝐵 (𝑢

𝑛
, 𝑢

𝑛
) , 𝐴𝜉

𝑛
⟩

+ 𝐾
𝑅
(
𝑢𝑛



2

𝐻
) ⟨𝐵 (𝑢

𝑛
, 𝜉

𝑛
) , 𝐴𝜉

𝑛
⟩

+ 𝐾
𝑅
(
𝑢𝑛



2

𝐻
) ⟨𝐵 (𝜉

𝑛
, 𝑢

𝑛
) , 𝐴𝜉

𝑛
⟩

+ 2𝐾


𝑅
(
𝑢𝑛



2

𝐻
) ⟨𝐴

1/2

𝑢
𝑛
, 𝐴

1/2

𝜉
𝑛
⟩ ⟨

𝑢𝑛



2

𝑢
𝑛
, 𝐴𝜉

𝑛
⟩

+ 3𝐾
𝑅
(
𝑢𝑛



2

𝐻
) ⟨

𝑢𝑛



2

𝜉
𝑛
, 𝐴𝜉

𝑛
⟩ .

(A.34)
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Therefore,
𝑑

𝑑𝑡

𝜉𝑛


2

𝐻
1 +

𝜉𝑛


2

𝐻
2

≤ 2𝐾


𝑅
(
𝑢𝑛



2

𝐻
)
𝑢𝑛

𝐻1
𝜉𝑛

𝐻1
𝜉𝑛

𝐻2
𝑢𝑛

𝐿4
𝑢𝑛

𝐻1,4

+ 𝐾
𝑅
(
𝑢𝑛



2

𝐻
1)
𝜉𝑛

𝐻2
𝜉𝑛

𝐻1,4
𝑢𝑛

𝐿4

+ 𝐾
𝑅
(
𝑢𝑛



2

𝐻
1)
𝜉𝑛

𝐻2
𝜉𝑛

𝐿4
𝑢𝑛

𝐻1,4

+ 2𝐾


𝑅
(
𝑢𝑛



2

𝐻
1)
𝑢𝑛

𝐻1
𝜉𝑛

𝐻1
𝜉𝑛

𝐻2
𝑢𝑛



3

𝐿
6

+ 3𝐾
𝑅
(
𝑢𝑛



2

𝐻
1)
𝜉𝑛

𝐻2
𝜉𝑛

𝐿4
𝑢𝑛



2

𝐿
8

≤ 𝐶 (𝑅)
𝜉𝑛

𝐻1
𝜉𝑛

𝐻2
(
V𝑛

𝐻2
+
𝜙
𝐻3/2

)

+ 𝐶 (𝑅)
𝜉𝑛



3/2

𝐻
2

𝜉𝑛


1/2

𝐻
1

+ 𝐶 (𝑅)
𝜉𝑛

𝐻2
𝜉𝑛

𝐻1

≤ 𝜀
𝜉𝑛



2

𝐻
2 + 𝐶 (𝑅)

𝜉𝑛


2

𝐻
1

× (1 +
V𝑛
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By the Gronwall inequality and (A.6), we have
𝜉𝑛 (𝑡)



2

𝐻
1 ≤ 𝐶 (R) ‖ℎ‖2

𝐻
1 . (A.36)

And therefore, using again the previous inequality,

∫

𝑇

0

𝜉𝑛 (𝑡)


2

𝐻
2𝑑𝑡 ≤ 𝐶 (𝑅) ‖ℎ‖

2

𝐻
1 . (A.37)
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A new approach of real-time path planning based on belief space is proposed, which solves the problems of modeling the real-time
detecting environment and optimizing in local path planning with the fusing factors. Initially, a double-safe-edges free space is
defined for describing the sensor detecting characters, so as to transform the complex environment into some free areas, which can
help the robots to reach any positions effectively and safely. Then, based on the uncertainty functions and the transferable belief
model (TBM), the basic belief assignment (BBA) spaces of each factor are presented and fused in the path optimizing process. So
an innovative approach for getting the optimized path has been realized with the fusing the BBA and the decision making by the
probability distributing. Simulation results indicate that the new method is beneficial in terms of real-time local path planning.

1. Introduction

Recently, the development and application of autonomous
robots are with growing interest in industrial and military
fields. As we all know, navigation is one of the key technical
problems for autonomous robots, and the most important
factor of navigation is map building based on the sensor
system, especially when the autonomous robots are work-
ing in an entire unknown environment. The environment
is reconstructed bymerging the information transferred from
the sensor system during the motion. To build a practical
map, one of the most difficult problems is due to the poor
environment information of the sensor system which has
inherent wide radiation cone and the phenomenon of multi-
ple reflections. Thus, how to describe these uncertainties and
filter out inaccurate and conflicting information and how to
construct the environment view are the hot issues.

In these few years, there are about three types of
approaches of constructing the environment view that
appeared in exoteric literatures. The first type is the occu-
pancy grid mapping method [1], which represents maps
with fine-grained grids that model the occupied and free
space of the environment.The second type is the geometrical
information mapping method [2], which uses some sets of

line, angles and polygons to describe the geometry of the
environment. The third way is the topological method [3, 4],
which models the environment by a series of landmarks that
are connected via arcs.

In order to describe the uncertainties, or filter out the
conflicting information detected by sensors, the probabilistic
algorithms [5] was proposed by a definitive formulation
through the Bayesian technique originally. Then a family
of algorithms [6] based on fuzzy theory [7] established the
uncertainty information model in each cell. In a similar way,
another way based on Dempster-Shafer theory described the
uncertainty model by using the belief functions. In these
years, the neural network technique have been introduced
with using the learning ability of the neural cell [8].

There is no doubt that the optimization problem is quite
important for autonomous robots path planning. So many
evolutionary optimizing techniques like genetic algorithm
[9–11], neural network [12], and ant colony optimization
[13] are extensively used in solving the global path planning
problems, on condition that the environment has been
detected. But these algorithms do not work in a real-time
local path planning environment, because, besides the path
length, some other factors such as the underwater robot’s
self-characters and the influence of the special environment



2 Abstract and Applied Analysis

(ocean current, wind speed) also influence the selection of the
local target point in real-time local detecting path planning.
As far as we know, few researchers consider these factors in
solving real-time path planning problems.

In this paper, a novel real-time path planning approach
based on the belief space is introduced. As the transferable
belief model (TBM), which is popular in these years, can
be used to describe a highly flexible model to manage
the uncertainty information in the multisensor data fusion
problems. In particular, many applications of TBMhave been
presented in mobile vehicles and other areas [14–17].

The rest of the paper is organized as follows. In Section 2,
the uncertainty model of the sensor detection is shortly
described, and the main idea of the transferable belief model
is written in Section 3. In Section 4, the complex environment
information is expressed by the double-safe-edges free space,
which can simplify the real-time detecting environment
information and prepare for the real-time path planning.
In Section 5, the belief space is established according to the
belief functions of the factors that affect the selection of the
local target points, so the optimization local target point
can be found at each step. The connection line of these
optimization local target points is the optimization path of the
task. Section 6 shows the experimental results of the newpath
planning approach and Section 7 comprises of conclusion.

2. Uncertainty Model of the Sensor Detection

Sonar is far from being an ideal sensor, mainly due to the
width of the radiation cone and to the multiple reflections
phenomenon. The former does not allow determining the
exact angular position of the obstacle on the fixed angle 𝜃
arc of the circle corresponding to the detected distance. The
latter needs a more thorough explanation. The sonar waves
are reflected in two different ways depending on the surface
irregularities. If their sizes are much smaller than the wave-
length of the signal, we have a diffused reflection; that is, the
incident energy is scattered in all directions; otherwise, the
reflection is mainly specula and the beam may either reach
the receiver after multiple reflections or even get lost [18].

The uncertainty model has been set up by fuzzy measure
approach. A single reading 𝑟 provides the information that
one or more obstacles are located somewhere along the 𝜃
arc of circumference of radius 𝑟. Hence, there is evidence
that points located in the proximity of this arc “occupied.”
On the other hand, points well inside the circular sector of
radius 𝑟 are likely to be “empty.” Tomodel this knowledge, we
introduce the two functions [19]:

𝑓
𝑒
(𝜌, 𝑟) =

{{{{

{{{{

{

𝑘
𝑒

0 ≤ 𝜌 ≤ 𝑟 − Δ𝑟

𝑘
𝑒
(
𝑟 − 𝜌

Δ𝑟
)

2

𝑟 − Δ𝑟 ≤ 𝜌 ≤ 𝑟

0 𝜌 ≥ 𝑟,

(1)

𝑓
𝑜
(𝜌, 𝑟) =

{{{{

{{{{

{

0 0 ≤ 𝜌 ≤ 𝑟 − Δ𝑟

𝑘
𝑜
[1 − (

𝑟 − 𝜌

Δ𝑟
)

2

] 𝑟 − Δ𝑟 ≤ 𝜌 ≤ 𝑟

0 𝜌 ≥ 𝑟 + Δ𝑟.

(2)

That describe, respectively, how the degree of certainty
of the assertions “empty” and “occupied” varies with 𝜌 for a
given range reading 𝑟. Here, 𝜌 is the distance from the sensor
𝑘
𝑒
and 𝑘

𝑜
are two constants corresponding to the maximum

values attained by the functions, and 2×Δ𝑟 is the width of the
area considered “proximal” to the arc of radius 𝑟 [20].

Since the intensity of the waves decreases to zero at the
borders of the radiation cone, the degree of certainty of each
assertion is assumed to be higher for points close to the
beam axis.This is realized by defining an angular modulation
function [19]:

𝑓
𝑎
(𝜗) = {

𝐷 (𝜗) 0 ≤ |𝜗| ≤ 𝛾

0 |𝜗| > 𝛾,

(3)

𝑔
𝑑
(𝜌) = 1 −

1 + tanh (2 (𝜌 − 𝜌
𝜐
))

2
. (4)

In order to weaken the confidence of each assertion as the
distance from the sensor increases, the parameter 𝜌V plays
the role of a “visibility radiuses,” where a smooth transition
occurs from certainty to uncertainty. The motivation for
introducing this function is twofold. Firstly, as the possibility
ofmultiple reflections increases as the beammakes a loner fly.
Besides, narrow passages appear to be obstructed if seen from
a large distance, due to the sensor wide radiation angle. By
varying the visibility radius according to the characteristics
of the environment, it is possible to obtain a more correct
detection behavior [20].

3. The Transferable Belief Model (TBM)

TBM is a model for describing quantified beliefs based
on belief function. Beliefs can be held at two levels: (1) a
“credal” level where beliefs are entertained and quantified
by belief functions; (2) a “pignistic” level where beliefs can
be used to make decisions and are quantified by probability
functions. The relation between the belief function and the
probability function when decisions must be made is derived
and justified [21].

In TBM, the actual value 𝜔
0
of the variable whose finite

domain is a given set Ω has been considered. A basic
belief mass (BBM) denoted by 𝑚Ω is used to represent the
uncertainty about the value of 𝜔

0
. 𝑚Ω

(𝐴), which is the basic
belief assignment (BBA), is given to 𝐴 ⊆ Ω.𝑚Ω maps 2Ω, the
power set ofΩ on [0, 1], and satisfies [22]:

∑

𝐴⊆Ω

𝑚
Ω

(𝐴) = 1. (5)

The mass 𝑚Ω

(𝐴) represents the part of belief that sup-
ports that the actual valueΩ

0
belongs to𝐴 and without more

specific several useful functions [23].
Belief function is defined as

belΩ (𝐴) = ∑

𝐵:0 ̸=𝐵⊆𝐴

𝑚
Ω

(𝐵) . (6)

The value belΩ(𝐴) represents the total amount of belief
supporting that 𝜔

0
is in 𝐴 or without supporting that it is in

𝐴 where 𝐴 is the complement of 𝐴 relative toΩ.
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Figure 1: The sketch map of the sensor detection simulation.

Plausibility function is defined as

plΩ (𝐴) = ∑

𝐵:0∩𝐵 ̸= 0

𝑚
Ω

(𝐵) . (7)

The value plΩ(𝐴) represents the total amount of belief
supporting that 𝜔

0
might be in 𝐴 without supporting that it

might be in 𝐴.
Combination rules: in general Bayesian theorem, the

sensor detection 𝑥 is the vector of plausibility pl𝑋[ℎ
𝑖
](𝑥)

for all ℎ
𝑖
∈ 𝐻. The conditional belief can be written by

probability function pl𝑋[ℎ
𝑖
](𝑥) = 𝑃

𝑋

[ℎ
𝑖
](𝑥). It is easier to use

the likelihood of ℎ
𝑖
given 𝑥, denoted by 𝑙(ℎ

𝑖
| 𝑥) [24]. So given

the likelihood 𝑙(ℎ
𝑖
| 𝑥) for every and for every ℎ

𝑖
∈ 𝐻, Smets

[25] has proved

𝑚
𝐻

[𝑥] (𝐴) = ∏

ℎ𝑖∈𝐴

𝑙 (ℎ
𝑖
|𝑥 ) ∏

ℎ𝑖∈𝐴

(1 − 𝑙 (ℎ
𝑖
| 𝑥)) ,

pl𝐻 [𝑥] (𝐴) = 1 − ∏

ℎ𝑖∈𝐴

(1 − 𝑙 (ℎ
𝑖
| 𝑥)) .

(8)

Decision making function is defined as

Bet𝑃Ω

(𝐴) = ∑

𝐵⊆Ω

|𝐴 ∩ 𝐵|

|𝐵|

𝑚
Ω(𝐵)

1 − 𝑚Ω(0)

∀𝐴 ⊆ Ω. (9)

In the TBM, when a decision has to be made, a proba-
bility functions Bet𝑃Ω

(𝐴) on Ω must be adopted. Bet𝑃Ω is
a probability measure.

4. The Simulation of the Process of
the Sensor Detection

4.1. The Process of Detecting of the Sensor. We will build a
simulation environment about the detection process of the
robot sensor for testing the new approach of the real-time
path planning process.The robot sensor is an initiative sensor,
the angle of the detecting is 180∘, and the distance of detecting
is 𝑅, so this paper will make 180 lines which starts from the
particle of the robot and the length are𝑅 and the angle of each
line is 1∘.

In Figure 1, point 𝑜 is the particle of the sensor, the
sector 𝑝𝑜𝑞 is the detecting area of the sensor, the distance

𝑅 is the max distance of detecting, the lines 𝑜𝑟
𝑛
= (𝑛 ∈

[0, 180]) are the sound wave of the sensor, and the diameter
of the sector and the 𝑦-axis of the robot is vertical. Thus,
with this enactment, after each detecting of the environment,
the environment information is the 181-distance, information
in the sector 𝑝𝑜𝑞; they are the position information of the
obstacles.

Figure 2 shows the four-detail process of the simulation of
the detecting process of the sensor; in Figure 2(a) is the state
of the no obstacle at time 𝑡

0
; it gives the particle of the sensor,

the 181 lines of𝑅 distance, and the sector area of the detecting;
in Figure 2(b) is obstacles which the sensor needs to detect
at time 𝑡

𝑠
; in Figure 2(c) is the detection state of the sensor

has detected the obstacles in Figure 2(b); it shows that some
of these 181 lines have been cut in this state, so the process
of detecting has been built; Figure 2(d) shows the result of
the detection; the position information of the obstacles can
be noted by the set 𝑄

𝑡
(𝑡 = 0, 1, . . . , 𝑛).

4.2. The Transformation of the Detecting Space Coordinates of
the Sensor. In the process of the path planning, the position
information of the obstacle, and the robot, the information
of the whole target point and the local target points must be
described at each time, so it needs a uniform reference frame.
There are two reference frames in the process of path planning
of this paper: the reference frame of the robot movement and
the reference frame of the sensor detection, so it needs the
transition of the reference frame. In this paper, the reference
frame of the robotmovement is a vertical coordinate; the start
point 𝑆, the whole target point 𝐺, and the position of robot𝑂
can be denoted; the reference frame of the sensor detection
is a pole that coordinates the obstacle information 𝑄 and the
local target point can be denoted, and the transition of these
two coordinates is in Figure 3.

In Figure 3, the origin of the vertical coordinate is𝑂
𝑔
, the

position of the robot and thewhole target point is 𝑜 and𝐺, the
origin of pole coordinate is 𝑜, vector 𝑜𝑝 is the pole axes, and
the angle between the pole axes and the 𝑥-axis of the vertical
coordinate is 𝛽 so the coordinate of the obstacles or the local
target point is (𝜌

𝑛
, 𝜃). The vertical coordinate in the reference

frame of the sensor detection is (𝑥
𝑝
, 𝑦

𝑝
):

𝑥
𝑝
= 𝜌 cos 𝜃,

𝑦
𝑝
= 𝜌 sin 𝜃.

(10)

So the vertical coordinate in the reference frame of the robot
movement is the position vector which is [𝑥

0
, 𝑦

0
, 𝑧

0
]
𝑇:

𝑥 = 𝑥
𝑝
cos𝛽

0
− 𝑦

𝑝
sin𝛽

0
+ 𝑥

0
,

𝑦 = 𝑥
𝑝
cos𝛽

0
+ 𝑦

𝑝
sin𝛽

0
+ 𝑦

0
.

(11)

5. The Procedure of Confirming the Double
Safe Edges Free Space

5.1. The Description of the Environment Information in Real-
Time. In an uncertainty and dynamic environment, the
environment information for path planning is obtained from
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(a) The simulation of the sensor detecting at
time 𝑡

(b) The obstacles environment

(c) The state of detecting the obstacles at time 𝑡 (d) The storage information of the detected obstacle
at time 𝑡

Figure 2: Simulation results of the sensor detection at time 𝑡.
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Figure 3: The transformation of the detecting space coordinates of
the sensor.

the sensor on the robot only, so the algorithm should have
well real-time ability and it is also the first step of generating
the robot’s motion. According to the sensor detecting model,
we propose a method for searching the important informa-
tion from the detecting information in this paper, which is
called the double-safe-edges (DSE) information.

5.1.1. Searching for the Sensor Edges. Obviously, the sensor
edges can be searched directly from the sensor detecting
information, and its distance and direction can be ensured
according to the position of the obstacles.

In Figure 4, point 𝑜 is the particle of the robot (the sensor
and robot at the same particle) and the self-safe area of the
robot is a circle whose radius is the particle of the robot,
and the radius is 𝑟, the range of the angle is 𝜋/2, the biggest
detection radius is 𝑅max, the obstacles are 𝑜𝑏

1
and 𝑜𝑏

2
, and

the safe distance between he robot and obstacle is 𝑑
𝑖
. Because

b

a

c

o

d

ob2

ob1

rs Rmax

Figure 4: The sketch map of searching the sensor edges at time 𝑡.

the robot detection area is a hemicycle in front of the robot,
so we use the lines to simulate the detecting process and the
lines’ length is 𝑅max, the number is 180, and the angle of them
is 1∘. So it can find the sensor edges set {𝑎, 𝑏, 𝑐, 𝑑} quickly
according to the decision parameter 𝐸

𝑖
, 𝐸

𝑖
= 𝑅max − 𝑑

𝑖
,

𝑖 ∈ [0, 180]. The rule of detecting sensor edges is as follows:
if 𝐸

𝑖
≥ 2𝑟

𝑠
, so the sensor edges are appearance. The rule of

detecting the direction of sensor-edges is as follows: suppose
the searching direction of the sensor-edges from the left of
the robot, if min {𝐸

𝑖−1
, 𝐸

𝑖+1
} = 𝐸

𝑖−1
, so the direction of 𝑃

𝑖
is

left, denoted by 𝐿, if min {𝐸
𝑖−1
, 𝐸

𝑖+1
} = 𝐸

𝑖+1
, so the direction

of 𝑃
𝑖
is right, denoted by 𝑅.

In Figure 5, it is the state curve of 𝐸 at certain time,
the sensor edges set is {𝑎, 𝑏, 𝑐, 𝑑}, and the direction set is
{𝑅, 𝐿, 𝑅, 𝐿}.

5.1.2. Searching for the Double-Safe-Edges. The edges are
based on the sensor as mentioned above. But the robot has
its own safe area because of its special shape and kinematics,
if it considers the sensor edges only, and the path planning
must be failing. So it is necessary to consider the environment
information and the robot’s safe area together.
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Figure 5: The result of the simulation of searching the sensor edges
at time 𝑡.
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Figure 6:The sketch map of searching the double-safe-edges points
at time 𝑡.

In this paper the definition of the double-safe-edges has
consider the environment information and robot’s safe area.

Definition 1 (double-safe-edges (DSE)). When the sensor
edges been found, the algorithm will search some points
which considering the environment information and robot’s
safe area, searching start from the sensor-edges according to
its directions, the tangent lines which from these points to the
robot’s safe circle are tangent to the edges of the obstacles at
the same time.The robot and obstacle are at the different sides
of the tangent line.These points are the set of the double-safe-
edges points and these lines are the set of the double-safe-
edges.

In Figure 6, point 𝑜 is the particle of the robot, the set
of sensor-edges {𝑎, 𝑏, 𝑐, 𝑑}, and the set direction {𝑅, 𝐿, 𝑅, 𝐿};
the radius of the safe circle of the robot is 𝑟

𝑠
. Figure 7 shows

that the state curve of 𝐸 at certain time, the set of double-
safe-edges {𝑎, 𝑏, 𝑐, 𝑑}, and the set of direction {𝑅, 𝐿, 𝑅, 𝐿}

can be found according to the definition of the double-safe-
edges. This double-safe-edges information is very important
to generate the motion commands in this paper.
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Figure 7: The result of the simulation of searching the double-safe-
edges points at time 𝑡.

p

m

g

o

k

ob

rs

Rmax

b


Figure 8: The sketch map of S-DSE at time 𝑡: DSE points set is {𝑏},
safe distance set is {𝑚𝑏}, and safe distance set is 𝑜𝑝.

The success of finding the double-safe-edges means that
the environment detected by the sensor in real-time has
been analyzed and interpreted efficiently, the environment
information has been simplified, the real-time has been
increased, and the robot’s safe area and the kinematics have
been considered, so it will be efficient in generating the
motion commands at the next step.

5.2.The Types of the Double-Safe-Edges. There are three types
of the double-safe-edges: S-DSE, M-DSE, and Z-DSE.

(1) S-DSE.There is only single DSE point after analyzing and
interpreting the environment information. In Figure 8, line
𝑚𝑔 connects the goal 𝑔 and point 𝑚; if 𝑘 is the interaction
point of𝑚𝑔 and obstacle, the robot must escape the obstacle.
So the robot’s safe moving direction is ∠

𝑠
= ∠

𝑜𝑝
, and the safe
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Figure 9: The sketch map of S-DSE at time 𝑡: DSE points set
is {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, safe distance set is {𝑚
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𝑐, 𝑚
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𝑑, 𝑛
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𝑒}, and safe

distance set is {𝑜𝑝
1
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Figure 10:The sketchmap of S-DSE at time 𝑡: DSE points set is𝑅max,
and safe distance set is {0}, and safe distance set is {𝑜𝑎, 𝑜𝑏}.

moving distance is 𝑑
𝑒−𝑒

= 𝑚𝑏
 according to the DSE point 𝑏

and line𝑚𝑏, 𝑜𝑝//𝑚𝑏.

(2) M-DSE.There is more than oneDSE point after analyzing
and interpreting the environment information. In Figure 9,
lines𝑚

2
𝑔 and 𝑛

1
𝑔 connect target point 𝑔 and the interaction

points 𝑚
2
𝑔 and 𝑛

1
𝑔 which are on the safe circle; if 𝑘

1
and

𝑘
2
are the interaction points of 𝑚

2
𝑔, 𝑛

1
𝑔, and obstacle, the

robot must escape the obstacle. So the possible path set is
{𝑜𝑝

1
, 𝑜𝑞

1
, 𝑜𝑝

2
, 𝑜𝑞

2
} according to the DSE points set {𝑎, 𝑏, 𝑐, 𝑑}

and DSE lines set {𝑚
1
𝑏, 𝑛

1
𝑐, 𝑚

2
𝑑, 𝑛

2
𝑒} and 𝛼

1
and 𝛼

2
are the

angle vector 𝑜𝑝
1
and 𝑜𝑞

1
, 𝑜𝑝

2
and 𝑜𝑞

2
.

(3) Z-DSE. There is zero DSE point after analyzing and
interpreting the environment information.The first situation
is that there is no obstacle around the robot, so the robot can
move to the target directly; the second situation is that the
part or whole of detection area that has been enveloped by
the obstacle. For example, In Figure 10, there is part detection
area has been enveloped by the obstacle. In this situation,
there is zero DSE, so the robot enters the state of cruising
in order to find the DSE. The rule of cruising is that if part
of detection area 𝑐𝑑 has been enveloped, so the directions
set {𝑜𝑎, 𝑜𝑏} will be found according to the points set {𝑎, 𝑏}
and the moving direction 𝑜𝑐 will be found according to
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Figure 11: The sketch map of the safe distance and direction of the
double safe edge points at time 𝑡.

the heuristic algorithm. So the robot can move according to
this rule and find the DSE at the same time until the DSE
appear.

5.3. The Description of the Double-Safe-Edges Free Space.
After searching the double-safe-edges, the algorithm has
transformed the focus from the environment information to
some double-safe-edges points, and these points can be used
to generate the robot’s motion. We will describe the double-
safe-edges free space in this part.

In Figure 11, 𝑏 and 𝑐
 are the double-safe-edges points.

Lines 𝑜𝑏 and 𝑜𝑐
 are the distances from the particle to the

double-safe-edges point, and points𝑚 and 𝑛 are on the circle
of the safe area of the robot, 𝑜𝑚 = 𝑜𝑛 = 𝑟

𝑠
. Lines𝑚𝑏 and 𝑛𝑐

are the distances of the tangent lines, 𝑚𝑏 = √𝑜𝑏2 − 𝑜𝑚2,
𝑛𝑐



= √𝑜𝑐2 − 𝑜𝑛2, and 𝑜𝑝//𝑚𝑏
, 𝑜𝑞//𝑛𝑐, 𝑜𝑝, and 𝑜𝑞 are

the possible planning distances of navigation. So the double-
safe-edges free space can be defined by the sector area 𝑝𝑜𝑞.
This area is a free moving space and the robot can select the
local target point according to some rule to finish the motion
command on time.

6. The Optimization of the Real-Time Local
Path Planning Based on the Belief Space

6.1. The Description of the Path Optimization in Real-Time
Path Planning. Although the environment information can
be detected by the sensor in real-time, the robot did not know
the whole environment information; thus, optimizing the
whole path in real-time path planning cannot come true. But
there are still some important factors to affect the selection of
the path in local environment, and we consider the six local
planning factors in this paper, the avoidance collision factor
𝑅 between the robot and the obstacles, the kinematics factor
𝑀, the self-safe area factor 𝑆, the path length factor 𝐿, moving
obstacle factor 𝐵, and other factors (ocean current, wind
speed, and so on) 𝐶, and this part will analyse the influence
of the 𝑅, 𝐵, and 𝐶 in real-time local detection planning.

In Figure 12, the robot’s position is 𝑜
𝑡
at time 𝑡, the

real-time detection space is 𝑊
𝑡
, the local target set is 𝐺

𝑡
,

𝐺
𝑡
⊆ 𝑊

𝑡
, and the target is 𝑔. It is the sketch mapping

of analyzing the optimization in local detection space 𝑊
𝑡
.
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Figure 12:The sketchmap of the analysis of the optimization in local
path planning at time 𝑡.
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Figure 13:The sketchmap of the base idea of the belief space at time
𝑡.

Firstly, it can find the edge area (the broken line area) 𝐵
𝑡
,

𝐵
𝑡
⊆ 𝑊

𝑡
, according to the factor 𝑅, and 𝐵

𝑡
is the selected

area of 𝐺
𝑡
; secondly, supposing that the robot’s kinematics is

the gyration movement, so the reachable area (the undertone
area) 𝑀

𝑡
, 𝑀

𝑡
⊆ 𝑊

𝑡
according to the factor 𝑀, and finally,

these two factors can makes the local goal selection area
smaller. Supporting the other factor 𝐶 can make the robot
have the speed V

𝑓
, and this speed can make the displacement

𝑠, 𝑠 = V
𝑓
. So it can find the reachable area (the real line area)

𝐹
𝑡
, 𝐹

𝑡
⊂ (𝐵

𝑡
∩𝑀

𝑡
) ⊂ 𝑊

𝑡
, at time according to the factors. This

area will be smaller when the consideration factors increase,
so the analysis treating and fusing these factors is a necessary
method to optimize the path in real-time local detection path
planning.

6.2. The Original Idea of the Belief Space in Local Target
Selection. In Figure 13, it is the selection local target point
situation in which the robot 𝑂 must reach the target point
𝐴 according to some selection rules and the local target point
set is 𝑍 = {𝑧

1
, 𝑧

2
, . . . , 𝑧

7
} and the selection rules set is 𝑄 =

{𝑞
1
, 𝑞

2
, . . . , 𝑞

𝑗
}, so it needs to fuse these selection rules in

order to find the optimization local target point.
We note that the selection state space is𝐻 = {𝑛𝑢𝑙𝑙, 𝑠𝑒𝑙𝑒𝑐𝑡,

𝑑𝑒𝑙𝑒𝑐𝑡, 𝑢𝑛𝑘𝑛𝑜𝑤}, described by 𝐻 = {0, 𝑆, 𝑅, 𝑈}, 𝑈 ̸=0. For
each 𝑧

𝑖
∈ 𝑍, the selection state space 𝑐

𝑖
∈ 𝐻 is known and
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Figure 14: The sketch map of the belief function distribution of the
sensor detection at time 𝑡.

the influence from 𝑞
𝑗
to 𝑧

𝑖
can be defined by the BBA in

the selection state space 𝐻, denoted by 𝑚𝐻

𝑞1

(𝑧
𝑖
), so the BBA

set in 𝐻 is 𝑀 = {𝑚
𝐻

𝑞1

(𝑧
1
), 𝑚

𝐻

𝑞1

(𝑧
2
), . . . , 𝑚

𝐻

𝑞1

(𝑧
1
)}. Three gray

areas are the area of the BBA set {𝑚𝐻

𝑞1

, 𝑚
𝐻

𝑞2

, 𝑚
𝐻

𝑞3

}, denoted by
{𝑋

𝐻

𝑚𝑞1

, 𝑋
𝐻

𝑚𝑞2

, 𝑋
𝐻

𝑚𝑞3

}, and these are also the descriptions of the
obstacle information, kinematics, and the path length factors,
so the belief space can be defined, denoted by 𝑋𝐻

𝑚
= 𝑋

𝐻

𝑚𝑞1

∪

𝑋
𝐻

𝑚𝑞2

∪ 𝑋
𝐻

𝑚𝑞3

, the local target points’ belief can be defined
by the belief functions, and the belief functions can be fused
according to the TBM rules. The definition of the fusing is

(12)

The selection of the local target point must satisfy every
belief function distribution at the same time, so some local
target points can be deleted and the set has been changed
to {𝑚𝐻

(𝑧
3
), 𝑚

𝐻

(𝑧
4
)}, and the optimization local target point

𝑍
3
can be found if the fusing belief distribution is 𝑚𝐻

(𝑧
3
) >

𝑚
𝐻

(𝑧
4
); thereby the selection of local target point at certain

time in belief space has been finished and the aim of
optimization came true.

6.3. The Method of Making the Belief Function

6.3.1. The Belief Function Distribution of the Sensor Detection.
As the uncertainty model has been described, we further
discuss the belief function distribution in Figure 14.The angle
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of detection is 90∘, the direction of 𝑜𝑎 is the coordinate
axes, and the right is positive. The coordinate of position is
(𝑟

𝑖
, 𝜐), and from (1)–(4), the detection distance is 𝑟

𝑖
, the angle

between 𝑏 and 𝑜𝑎 is 𝜃, the uncertainty area because of the
detecting of 𝑏 is defined by the 𝛾

𝑏
= 12.5

∘ sector and the
2⋅Δ𝑟 = 𝑅/4width approach to the detection distance, and this
area is the gray area in Figure 14. The point 𝑧

𝑖
is in this area

and the angle between 𝑧
𝑖
and 𝑜𝑎 is 𝛽, so the angle between

𝑧
𝑖
and 𝑏 is 𝛼 = |𝜃 − 𝛽|, and the detection area uncertainty

function is

𝑓
𝑎
(𝜃) = {

𝐷 (𝜃) 0 ≤ |𝜃| ≤ 45
∘

0 |𝜃| > 45
∘

,

𝑔
𝑎
(𝜌) = 1 −

1 + tanh (2 𝜌 − 𝜌V
)

2
,

(0 ≤ 𝜌 ≤ 𝑅, 𝜌V =
𝑅

2
) .

(13)

The detection position uncertainty function is

𝑓
𝑏
(𝛼) = {

𝐷 (𝛼) 0 ≤ |𝛼| ≤ 45
∘

0 |𝛼| > 45
∘

,

𝑔
𝑏
(𝜌) = 1 −

1 + tanh (2 𝜌 − 𝜌V
)

2
,

(−Δ𝑟 ≤ 𝜌 ≤ Δ𝑟, 𝜌V = ±
Δ𝑟

2
) .

(14)

According to the analysis mentioned above, the detection
area uncertainty distribution is from the coordinate axes to
the opposition side, and the detection position uncertainty
distribution is from ±12.5

∘ sector to the ±Δ𝑟 distance area.
So the point 𝑘

𝑖
in the detection area plausibility function is

defined as

pl𝐻
𝑜
[𝑥

𝑘
] (𝑇) = 𝑓

𝑎𝑘
(𝜃) 𝑔

𝑎𝑘
(𝜌) . (15)

The point 𝑧
𝑖
in detection position plausibility function is

defined as

pl𝐻
𝑜𝑏
[𝑥

𝑧
] (𝑇) = 𝑓

𝑎𝑠
(𝜃) 𝑔

𝑎𝑠
(𝜌) 𝑓

𝑏𝑧
(𝛼) 𝑔

𝑏𝑧
(𝛼) . (16)

So the position 𝑧
𝑖
“occupy” and “empty” plausibility func-

tion can be defined as

pl𝐻
𝑜𝑏
[𝑥

𝑧
] (𝑇, 𝑜) = 𝑓

𝑎𝑧
(𝜃) 𝑓

𝑎𝑧
(𝛼) 𝑔

𝑏𝑧
(𝛼) 𝑓

𝑜
(𝜌, 𝑟

𝑖
) ,

pl𝐻
𝑜𝑏
[𝑥

𝑧
] (𝑇, 𝑒) = 𝑓

𝑎𝑧
(𝜃) 𝑓

𝑎𝑧
(𝛼) 𝑔

𝑏𝑧
(𝛼) 𝑓

𝑒
(𝜌, 𝑟

𝑖
) ,

pl𝐻
𝑜𝑏
[𝑥

𝑧
] (𝑇, (𝑜, 𝑒)) = 1 − ∏

ℎ𝑖∈(𝑜,𝑒)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑧
)) .

(17)

oc a b

lslm

𝜃

Figure 15: The sketch map of the belief function distribution of the
safe distance at time 𝑡.

Thus, the BBA of the “occupy” and “empty” in TBM can
be defined as

𝑚
𝐻

𝑜𝑏
(𝑜) = ∏

ℎ𝑖∈𝑜

𝑙 (ℎ
𝑖
| 𝑥

𝑧
)∏

ℎ𝑖∈𝑜

𝑙 (ℎ
𝑖
| 𝑥

𝑧
) ,

𝑚
𝐻

𝑜𝑏
(𝑒) = ∏

ℎ𝑖∈𝑒

𝑙 (ℎ
𝑖
| 𝑥

𝑧
)∏

ℎ𝑖∈𝑒

𝑙 (ℎ
𝑖
| 𝑥

𝑧
) ,

𝑚
𝐻

𝑜𝑏
(𝑜, 𝑒) = ∏

ℎ𝑖∈(𝑜,𝑒)

𝑙 (ℎ
𝑖
| 𝑥

𝑧
) ∏

ℎ𝑖∈(0,𝑒)

𝑙 (ℎ
𝑖
| 𝑥

𝑧
) .

(18)

This BBA space is defined in the belief space.They are the
belief functions distribution according to the base idea of the
belief space, denoted by {𝑋

𝑜𝑏
(𝑖)}.

6.3.2. The Belief Function Distribution of the Safe Distance to
the Obstacle. Figure 15 shows the belief function distribution
of the safe distance to the obstacle, and point 𝑜 is the particle
of the robot, point 𝑏 is on the edge of the obstacle, the shortest
safe distance is 𝑙

𝑠
, and it is the radius of the self-safe area. In

a real environment, when the robot enters into a specified
distance (alertness distance) 𝑙

𝑚
, it needs to calculate the

dangerous degree of collision. So the safe distance function
can be given as

𝑓
𝑡
(𝜌) =

𝜌 − 𝑙
𝑠

𝑙
𝑚

(𝑙
𝑠
< 𝜌 < 𝑙

𝑚
) . (19)

Then the “safe” and “dangerous” plausibility function can
be defined as

pl𝐻
𝑎𝑚

[𝑥
𝑡
] (𝑇, 𝑠) = pl𝐻

𝑜
[𝑥

𝑏
] (𝑇) 𝑓

𝑡
(𝜌) ,

pl𝐻
𝑎𝑚

[𝑥
𝑡
] (𝑇, 𝑑) = pl𝐻

𝑜
[𝑥

𝑏
] (𝑇) (1 − 𝑓

𝑡
(𝜌)) ,

pl𝐻
𝑎𝑚

[𝑥
𝑡
] (𝑇, (𝑠, 𝑑)) = 1 − ∏

ℎ𝑖∈(𝑠,𝑑)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) .

(20)
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Figure 16: The sketch map of the belief function distribution of the
optimization the path at time 𝑡.

Finally, the BBA of the “safe” and “dangerous” can be
defined as

𝑚
𝐻

𝑎𝑚
[𝑥

𝑡
] (𝑠) = ∏

ℎ𝑖∈𝑠

𝑙 (ℎ
𝑖
| 𝑥

𝑡
)∏

ℎ𝑖∈𝑠

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) ,

𝑚
𝐻

𝑎𝑚
[𝑥

𝑡
] (𝑑) = ∏

ℎ𝑖∈𝑑

𝑙 (ℎ
𝑖
| 𝑥

𝑡
) ∏

ℎ𝑖∈𝑑

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) ,

𝑚
𝐻

𝑎𝑚
[𝑥

𝑡
] (𝑠, 𝑑) = ∏

ℎ𝑖∈(𝑠,𝑑)

𝑙 (ℎ
𝑖
| 𝑥

𝑡
) ∏

ℎ𝑖∈(𝑠,𝑑)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) .

(21)

All these BBA spaces are defined in the belief space. They
are the belief functions distribution according to the base idea
of the belief space, denoted by {𝑋

𝑎𝑚
(𝑖)}.

So other factors can be defined and described in the belief
space, it is the base step of fusing these factors to find the
optimization local target point.

6.3.3. The Belief Function Distribution of the Optimization the
Path. In Figure 16, we give the distribution of the path belief
function at one movement space. Point 𝑜 is the particle of the
robot, the detection distance is 𝑅, and the angle of the free
space is 𝛼; thus there are two definitions of the selection of
the local goal 𝑒 and 𝑐 for optimizing the path.

(1) As the global target 𝑔
1
is in a free space at this time,

𝑙
𝑔
= 𝑜𝑔

1
, 𝑙
𝑔
> 𝑅, 𝑙

𝑔
= 𝑜𝑒+𝑒𝑔

1
𝑙
𝑑
= 𝑅+𝑑𝑔

1
𝑙
𝑓
= 𝑜𝑓+𝑓𝑔

1
,

so the path proportion function in two ways is

𝑓
𝑙1
(𝑙
𝑒
) =

𝑙
𝑓
− 𝑙

𝑒

𝑙
𝑓
− 𝑙

𝑔

. (22)

The direction of the distribution 𝑒𝑓 is

𝑓
𝑙1
(𝑙
𝑒
) = {

1 𝑙
𝑒
= 𝑙

𝑔

0 𝑙
𝑒
= 𝑙

𝑓
,

𝑓
𝑙2
(𝑙
𝑒
) =

𝑙
𝑑
− 𝑙

𝑒

𝑙
𝑑
− 𝑙

𝑔

.

(23)

The direction is 𝑜𝑒:

𝑓
𝑙2
(𝑙
𝑒
) = {

1 𝑙
𝑒
= 𝑙

𝑔

0 𝑙
𝑒
= 𝑙

𝑑
.

(24)

So the path proportion function is

𝑓
𝑙
(𝑙
𝑒
) = 𝑓

𝑙1
(𝑙
𝑒
) 𝑓

𝑙2
(𝑙
𝑒
) . (25)

(2) As the global target 𝑔
1
is out of a free space at this

time,

𝑙
𝑎
= 𝑜𝑎 + 𝑜𝑔

2
,

𝑙
𝑐
= {

𝑜𝑐 + 𝑐𝑎 + 𝑎𝑔
2

in 𝑎

𝑜ℎ + ℎ𝑔
2

out 𝑎,

𝑙
𝑏
= 𝑜𝑏 + 𝑏𝑔

2
,

𝑙
ℎ
= {

𝑜ℎ + ℎ𝑎 + 𝑎𝑔
2

in 𝑎

𝑜𝑐 + 𝑐𝑔
2

out 𝑎,

(26)

so the path proportion function in two ways is

𝑓
𝑙1
(𝑙
𝑐
) =

𝑙
ℎ
− 𝑙

𝑐

𝑙
ℎ
− 𝑙

𝑎

. (27)

The direction of the distribution is 𝑐ℎ; then

𝑓
𝑙1
(𝑙
𝑐
) = {

1 𝑙
𝑐
= 𝑙

𝑎

0 𝑙
𝑐
= 𝑙

ℎ
,

𝑓
𝑙2
(𝑙
𝑐
) =

𝑙
𝑏
− 𝑙

𝑐

𝑙
𝑏
− 𝑙

𝑎

.

(28)

The direction is 𝑜𝑏, so

𝑓
𝑙2
(𝑙
𝑐
) = {

1 𝑙
𝑐
= 𝑙

𝑎

0 𝑙
𝑐
= 𝑙

𝑏.

(29)

So the path proportion function is

𝑓
𝑙
(𝑙
𝑐
) = 𝑓

𝑙1
(𝑙
𝑐
) 𝑓

𝑙2
(𝑙
𝑐
) . (30)

So the path “optimization” and “nonoptimization” plausi-
bility function can be defined as

pl𝐻dis [𝑥𝑒,𝑐] (𝑇, 𝜔) = pl𝐻
𝑜
[𝑥

𝑒,𝑐
] (𝑇) 𝑓

𝑙
(𝑙
𝑒,𝑐
) ,

pl𝐻dis [𝑥𝑒,𝑐] (𝑇, 𝑓) = pl𝐻
𝑜
[𝑥

𝑒,𝑐
] (𝑇) (1 − 𝑓

𝑙
(𝑙
𝑒,𝑐
)) ,

pl𝐻dis [𝑥𝑒,𝑐] (𝑇, (𝜔, 𝑓)) = 1 − ∏

ℎ𝑖∈(𝜔,𝑓)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
)) .

(31)
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Figure 17: The sketch map of the belief function distribution of the
dynamics of the robot at time 𝑡.

As the same way, the BBA of the “optimization” and
“nonoptimization” in TBM can be defined as

𝑚
𝐻

dis [𝑥𝑒,𝑐] (𝜔) = ∏

ℎ𝑖∈𝜔

𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
) ∏

ℎ𝑖∈𝜔

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
)) ,

𝑚
𝐻

dis [𝑥𝑒,𝑐] (𝑓) = ∏

ℎ𝑖∈𝑓

𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
) ∏

ℎ𝑖∈𝑓

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
)) ,

𝑚
𝐻

dis [𝑥𝑒,𝑐] (𝜔, 𝑓)

= ∏

ℎ𝑖∈(𝜔,𝑓)

𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
) ∏

ℎ𝑖∈(𝜔,𝑓)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑒,𝑐
)) .

(32)

All these BBA spaces are defined in the belief space. They
are the belief functions distribution according to the base idea
of the belief space, denoted by {𝑋dis(𝑖)}.

6.3.4. The Belief Function Distribution of the Dynamics of the
Robot. Figure 17 shows the distribution of the dynamics of
the robot at one movement space, point 𝑜 is the particle of
the robot, and the speed of the robot is V; supposing the
movement character is the nonglide movement, so the track
of the movement is one part of the circle, the position of the
local target point is 𝑑, the radius of the track is 𝑟

𝑏
= 𝑜

𝑏
𝑏,

the position 𝑏 is the max distance that the robot can reach
at certain time, and the min movement radius is 𝑟

𝑎
= 𝑜

𝑎
𝑏, so

the reached proportion function has two directions.

(1) Consider the reached proportion functions in the
same track radius:

𝑓
𝑡−𝑑𝑔

(𝑙
𝑜𝑑
) =

𝑙
𝑜𝑏
− 𝑙

𝑜𝑑

𝑙
𝑜𝑏

(0 ≤ 𝑙
𝑜𝑑
≤ 𝑙

𝑜𝑏
) . (33)

(2) Consider the reached proportion functions in the
same detection area:

𝑓
𝑡−𝑑𝑔

(𝛼
𝑑
) =

𝛼
𝑎
− 𝛼

𝑑

𝛼
𝑎

(0 ≤ 𝛼
𝑑
≤ 𝛼

𝑎
) . (34)

So the reached proportion function at certain detection
time at local target point 𝑑 is

𝑓
𝑑𝑔
(𝑙
𝑜𝑑
, 𝛼

𝑑
) = 𝑓

𝑡−𝑑𝑔
(𝑙
𝑜𝑑
) 𝑓

𝑡−𝑑𝑔
(𝛼

𝑑
) . (35)
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Figure 18: The sketch map of the belief function distribution of the
escaping the movement obstacle at time 𝑡.

So the path “reach” and “unreach” plausibility function
can be defined as

pl𝐻
𝑑𝑔
[𝑥

𝑑
] (𝑇, 𝑠) = pl𝐻

𝑜
[𝑥

𝑑
] (𝑇) 𝑓

𝑑𝑔
(𝑙
𝑜𝑑
, 𝛼

𝑑
) ,

pl𝐻
𝑑𝑔
[𝑥

𝑑
] (𝑇, 𝑠) = pl𝐻

𝑜
[𝑥

𝑑
] (𝑇) (1 − 𝑓

𝑑𝑔
(𝑙
𝑜𝑑
, 𝛼

𝑑
)) ,

pl𝐻
𝑑𝑔
[𝑥

𝑑
] (𝑇, (𝑠, ℎ)) = 1 − ∏

ℎ𝑖∈(𝑠,ℎ)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑑
)) .

(36)

Then the BBA of the “reach” and “unreach” in TBM can
be defined as

𝑚
𝐻

𝑑𝑔
[𝑥

𝑑
] (𝑠) = ∏

ℎ𝑖∈𝑠

𝑙 (ℎ
𝑖
| 𝑥

𝑑
)∏

ℎ𝑖∈𝑠

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑑
)) ,

𝑚
𝐻

𝑑𝑔
[𝑥

𝑑
] (ℎ) = ∏

ℎ𝑖∈ℎ

𝑙 (ℎ
𝑖
| 𝑥

𝑑
)∏

ℎ𝑖∈ℎ

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑑
)) ,

𝑚
𝐻

𝑑𝑔
[𝑥

𝑑
] (𝑠, ℎ)

= ∏

ℎ𝑖∈(𝑠,ℎ)

𝑙 (ℎ
𝑖
| 𝑥

𝑑
) ∏

ℎ𝑖∈(𝑠,ℎ)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑑
)) .

(37)

All these BBA spaces are defined in the belief space. They
are the belief functions distribution according to the base idea
of the belief space, denoted by {𝑋

𝑑𝑔
(𝑖)}.

6.3.5. The Belief Function Distribution of the Escaping the
Movement Obstacle. Figure 18 gives the distribution of the
path belief function at one movement space, point 𝑜 is the
particle of the robot, the detection distance is 𝑅, the angle
of the free space is 𝛼, the one side speed of the movement
obstacle is V, and the belief function distribution of the
movement obstacle in the free movement space can be
defined.

The one side edge point of the obstacle ob is 𝑒, and this
point can reach the position 𝑓

𝑡
after time 𝑇, so the double-

safe-edges free space will be changed from 𝑐𝑜𝑎 to 𝑐𝑜𝑏, and
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the position of the robot can reach the position ℎ
𝑡
after time

𝑇. If the position of the robot is ℎ
𝑡
after time 𝑇, the angle is

𝛽
𝑡
of the 𝑒𝑜ℎ

𝑡
and the angle is 𝛾

𝑡
𝑡 of the 𝑒𝑜ℎ

𝑡
, so the it can

describe the belief function distribution of the escaping the
movement obstacle.

The collisions function of the robotwhichmoves from the
position 𝑜 to the position 𝑓 is

𝑓mov (𝛾𝑡) =
𝛽
𝑡
− 𝛾

𝑡

𝛽
𝑡

(0 < 𝛾
𝑡
< 𝛽

𝑡
) . (38)

So the path “safe” and “collisions” plausibility function
can be defined as

pl𝐻mov [𝑥𝑡] (𝑇, 𝑠) = pl𝐻
𝑜
[𝑥

𝑡
] (𝑇) 𝑓mov (𝛾𝑡) ,

pl𝐻mov [𝑥𝑡] (𝑇, ℎ) = pl𝐻
𝑜
[𝑥

𝑑
] (𝑇) (1 − 𝑓mov (𝛾𝑡)) ,

pl𝐻mov [𝑥𝑡] (𝑇, (𝑠, ℎ)) = 1 − ∏

ℎ𝑖∈(𝑠,ℎ)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) .

(39)

Then, the BBA of the “safe” and “collisions” in TBM can
be defined as

𝑚
𝐻

mov [𝑥𝑡] (𝑠) = ∏

ℎ𝑖∈𝑠

𝑙 (ℎ
𝑖
| 𝑥

𝑡
)∏

ℎ𝑖∈𝑠

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) ,

𝑚
𝐻

mov [𝑥𝑡] (ℎ) = ∏

ℎ𝑖∈ℎ

𝑙 (ℎ
𝑖
| 𝑥

𝑡
)∏

ℎ𝑖∈ℎ

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) ,

𝑚
𝐻

mov [𝑥𝑡] (𝑠, ℎ) = ∏

ℎ𝑖∈(𝑠,ℎ)

𝑙 (ℎ
𝑖
| 𝑥

𝑡
) ∏

ℎ𝑖∈(𝑠,ℎ)

(1 − 𝑙 (ℎ
𝑖
| 𝑥

𝑡
)) .

(40)

All these BBA spaces are defined in the belief space. They
are the belief functions distribution according to the base idea
of the belief space, denoted by {𝑋mov(𝑖)}.

6.4.TheModel of Fusing the Correlation Factors in Belief Space.
Suppose that, at any given time, the local target points set is
𝑍 = {𝑧

1
, 𝑧

2
, . . . , 𝑧

7
}, the correlation factors set is 𝑄 = {𝑞

1
,

𝑞
2
, . . . , 𝑞

6
}, and the selection state space is 𝐻 = {𝜙, 𝑆, 𝑅, 𝑈},

𝑈 ̸=𝜙. For each 𝑧
𝑖
∈ 𝑍, the BBA set in the selection state space

𝐻 is𝑀 = {𝑚
𝐻

𝑞1
(𝑧

𝑖
), 𝑚

𝐻

𝑞2
(𝑧

𝑖
), . . . , 𝑚

𝐻

𝑞𝑗
(𝑧

𝑖
)}, so the belief space is

𝑋 = {𝑋
𝑚𝑞1

, 𝑋
𝑚𝑞2

, 𝑋
𝑚𝑞3

}, and this partwill combine the BBA in
the belief space𝑋 to optimize the selection of the local target
point.

6.4.1. The Structure of the Local Target Point Belief Space.
Figure 19 shows three proposition spaces (Ω, 𝑍)(Ω,𝑄)(Ω,𝐻)

and a decision-making function; supposing that Λ
1
is a

multimapping from 𝑄 to 𝑍, Λ
2
is a multimapping from 𝐻

to𝑄;Λ
1
andΛ

2
compose the “credal” level and the decision-

making function composes the “pignistic” level in TBM.
In “credal” level each local target point has its own factors,

so it has to filter the fusing local target point belief space to
make sure of the whole factors at the same time. Each factor
has its own belief space, the whole factors BBA depend on the
selection state space of the factors, and this chain structure of
the local target point belief space can transform the influence

S
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“Credal” level

ZBet Q H

“Pignistic” level

Bet PH

z1

z2

z3

zn

q1

q2

q3

qk

...
...

𝜆2𝜆1

𝜙

Figure 19: The structure of selecting the local target point belief
space at time 𝑡.

of the factors to the BBA function in the belief space. In the
“pignistic” level it denotes the influence degrees of the factors
using the probability functions; it is the final form of selecting
the local target point.

6.4.2. The Fusing Process of the Belief Space. It needs to fuse
the belief space when the factors have been described to the
BBA functions in the belief space; the details of the process at
certain times are as follows.

Step 1. The local target points set is selected according to
the double-safe-edges free space, denoted as 𝑍, and the
correlation influence factors are ascertained at certain time,
denoted as 𝑄.

Step 2. The BBA of the correlation influence factors set can
be calculated, denoted as 𝑀, and the belief space 𝑋 can be
made according to the base idea of the belief space in local
goal selection.

Step 3. In belief space 𝑋, the BBA set 𝑀 can be combined
according to the elements of the selection state space 𝐻, so
the belief space𝑋𝐻 including𝑀𝐻 in the same state space can
be made.

Step 4. The𝑀𝐻 in𝑋𝐻 can be transformed to the probability
distribution Bet𝑃𝐻

(𝐴). For all 𝐴 ⊆ 𝐻, so the optimization
local target point can be selected according to the Bet𝑃𝐻

(𝐴).

7. The Simulation of the Local Target
Point in Belief Space

In a real-time path planning process, the environment infor-
mation requires to be detected at each time, so the simulation
of the local target point in belief space should satisfy this
character. In this paper, the maps of simulation have been
made by the .bmp pictures beforehand, and the algorithm
of the local target point in belief space has been written
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Figure 20: The simulation of the path planning in special environ-
ment which has lots of edges and corners.

Figure 21:The simulation of the path planning in U-shape environ-
ment which is always called dead area.

in the software by the program, so in the process of the
simulation it shows the start point and the target point, the
obstacles on the map, the particle and the self-safe area, the
lines of detecting, the position of the robot, and the path.

There are about two different types of simulation that will
be shown in this paper to prove the feasibility of the double-
safe-edges space and the idea of selecting the local target point
in belief space. Simulation I is the simulation of double-safe-
edges space in two conditions; it will show the special map
which can show the characters of the double-safe-edges space
and the death area (U shape) which can show its flexible
ability. Simulation II is the simulation of efficiencies of the
selecting the local target point in belief space, and it will
show the changes of belief in the process of the detecting path
planning.

Simulation I. The following two special maps show the
simulation results of testing the double-safe-edges space.
Figure 20 shows the special environment which has lots of
edges and corners. In this environment, the sensorwill be able
to easily detect the edges points of the obstacles, so it is easy to
transform these sensor edges points to the double-safe-edges
points, and the double-safe-edges free space can be built each
time, so the local target point will be found in real-time, and
the robot will move to this position. From the simulation
we can see that the method of double-safe-edges space
has found the target point successfully and also keeps the
path smoothness. Figure 21 shows the special environment
which is called death area (U shape). Because of this special
environment, when a robot enters this environment, there are
zero obstacle edges that can be found, so it is hard to find
the right local target point to escape from the obstacle. In the
double-safe-edges space, this situation is the Z-DSE type, the
robot can move along with one side of the obstacle until it
finds the new edges of the obstacle. From the simulation we

x: 132

y: 384

d: 650

Figure 22: The simulation of the path in situation A for distance
detecting.
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Figure 23: The BBA state in the process of situation A.

can see that this method can escape the death area and reach
the goal successfully.

So this simulation has proved that the method of double-
safe-edges space is a feasiblemethod to describe the real-time
detecting environment.

Simulation II.This simulation results are shown in the Figures
22 and 23. Different detection areas will make the decision
belief different in belief space. Figure 22 is the situation of
special A. In this saturation well the maximum detection
distance is shorter than the length of the right-angle line. So
in this environment the delectation ability of the sensor is low,
and from the simulation we can see that the robot can reach
the target point after 115 steps. Figure 23 shows the belief of
7 correlation factors of each point of these 115 points at each
step, and we can see that the belief is higher the line of 0.7
belief; it means the selection of each local target point in each
step shows the well belief degree.

Figure 24 is the situation of special B. In this saturation
the maximum detection distance is longer than the length of
the right-angle line. So in this environment the delectation
ability of the sensor is high, and from the simulation we can
see that the robot can reach the target point after 126 steps.
Figure 25 shows the belief 7 correlation factors of each point
of these 126 points at each step, and we can see that the belief
is higher than the line of 0.7 belief; it means that the selection
of each local target point in each step shows the well belief
degree. So these simulations have proved that this belief space
algorithm has the well effect.

8. Conclusions

As can be seen from literature works that there are a lot
of methods for robot path planning, but most of them do
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Figure 24: The simulation of the path in situation B for distance
detecting.

0.9

0.8

0.7

BB
A

0 20 40 60 80 100 140120

Step

Figure 25: The BBA state in the process of situation B.

not work well in a complex real-time environment. In this
paper, we are making some efforts for solving two problems
in real-time detecting path planning: one is the expression
the environment, and the second is how to optimize the path
in local path planning. The double-safe-edges space has been
presented to express the environment, and the simulation has
proved the feasibility of this approach. Then, the belief space
has fused the factors and the uncertainty of detection in real-
time detecting path planning successfully, the simulation of
the belief space is well running. So these achievements will
help the researching of the real-time path planning effectively.
Certainly, there are a lot of tough jobs such as the details of the
system structure, or how to control the robot accurately. All
these considerations should be further extended in our future
work.
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The nonlinear model of main drive system in cold rolling process, which considers the influence with parameter uncertainties such
as clearance and variable friction coefficient, as well as external disturbance by roll eccentricity and variation of stripmaterial quality,
is built. By transformation, the lower triangular structure form of main drive system is obtained.The backstepping algorithm based
on signal compensation is proposed to design a linear time-invariant (LTI) robust controller, including a nominal controller and
a robust compensator. A comparison with PI controller shows that the controller has better disturbance attenuation performance
and tracking behaviors. Meanwhile, according to its LTI characteristic, the robust controller can be realized easily; therefore it is
also appropriated to high speed dynamic rolling process.

1. Introduction

Themain drive system in cold rolling mill, as a high accuracy
mechanical-electrical system, plays an important role in
high speed stable rolling operation. However, the torsional
vibration which usually occurs inmain drive system has been
recognized as a major restriction to the increase of strip yield
and improvement of product quality [1, 2]. It may lead to
large gauge variations [3] of strip as well as the instability of
rolling speed and can even cause damage to the mechanical
equipment of mill stands [4, 5]. As a matter of fact, the
phenomenon of vibration exists generally in rolling process,
but the time and location of where it happens cannot be easily
predicted. Moreover, there are many factors that can cause
the occurrence of torsional vibration, such as unstable state
of friction in rolling deformation zone [6], asynchronous
working between upper and lower work rolls [7], defects or
failure in reduction gear box [8], influence of high order
electrical harmonics excitation [9], and so on. Thus, all of
these factors will cause a huge difficulty to operators on
vibration-related fault detection [10–13] and suppression [14].

In order to analyze and control torsional vibration, many
researchers have done a lot of work in studying the chatter
mechanism. Although these mechanisms, such as negative
damping effect and model matching have been identified
after years of research, no clear and definite theory of their
mechanics has emerged. One of the most important factors
responsible for this situation is the oversimplified by neglect-
ing nonlinearities in mechanical-electrical system, then the
models can hardly be suitable for the vibration mechanism
and the further control algorithms designation. Variable
stiffness due to clearance in gearbox and friction coefficient
should memost concerned among these nonlinearities, since
the existence of nonlinear friction and stiffness terms have
become the obstacle to modifying system dynamic charac-
teristics.

In addition to studying vibration mechanism in main
drive system with the consideration of nonlinearity, the con-
trol strategy is also a key point in vibration suppres-
sion. With the higher demand on speed and accuracy in
modern cold rolling process, the traditional control method,
such as PID, has not been qualified tomanage those vibration
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pheromones, and some advanced control algorithms [15, 16]
are not suitable to deal with the problem of model nonlinear-
ity in rolling process. Thus, a nonlinear control algorithm is
necessary to deal with this situation.

One of the recent breakthroughs in nonlinear control
theory is the introduction of backstepping algorithms. The
relative-degree constraints over parameterization and growth
condition are removed by allowing the controlled plant to
be nonlinearly dependent on structure uncertainty, such as
unknown parameters or unmodeled time-varying distur-
bances [17–20]. Although there are many advantages in back-
stepping algorithm, the “explosion of complexity” problem
[18, 21], caused by repeated differentiation, cannot be ignored
due to its increase in calculation complexity, thereforemaking
severe time delay on control output, which can directly
influence the operation performance in cold rolling mills. In
this paper, a more general case is discussed, where uncertain-
ties are not required to satisfy matching condition or to be
smooth, and then a robust control method based backstep-
ping algorithm is introduced. The feature of this approach is
that the designed controller is an LTI one, so the controller
can be easily realized, and then the “explosion of complexity”
can be avoided.

The major objective pursued in this paper is to formulate
a reasonable nonlinear model with parameter uncertainty
and external disturbance of cold rolling main drive system,
including variable stiffness by clearance, changeable friction
coefficient due to relative speed between work roll and strip,
and external disturbance by load variation under dynamic
working conditions. Furthermore, after proper model trans-
formation, a robust backstepping control algorithm is stated.
Finally, within actual industrial data, simulation result shows
the good performance and tracking behaviors of this pro-
posed approach, even under the influence of parameter
uncertainties and external disturbances.

2. Problem Description

2.1. Mathematical Model of Main Drive System. Based on our
former research, the main drive system of cold rolling mill
can be defined as a “Mass-Spring System”, including motor,
shaft, gearbox, roll, and so on. Reasonable simplification
is necessary for a better analysis of the dynamic behaviors
in rolling system, which makes two parts of main drive
system, mass system such as motor, as well as roll and spring
system like gearbox and shaft. Therefore, the two-degrees-
of-freedommodel within clearance, nonlinear friction coeffi-
cient, and load disturbance is established in this section. The
dynamic structure of main drive system is shown in Figure 1,
where 𝐽

1
, 𝐽
2
is the moment of inertia of motor and load,𝑀

1
is

the drive torque of motor,𝑀
2
is the torque of load with load

disturbance, 𝐾
12

is defined as torsional stiffness coefficient
of flexible shaft, 𝐶

1
, 𝐶
2

 is the damping coefficient of motor,
rolls, and shaft separately, 𝜃

1
is the rotational angle of motor,

and 𝜃
2
is the rotational angle of work roll.

Due to wear of mechanical system, there may be a
clearance [22] between gears and universal joint shaft, and its
elastic recovery torque is a nonlinear function of rotational

angle, as shown in Figure 2. The stiffness coefficient can be
expressed in Figure 2 as
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Friction is necessary in rolling process, in a sense that the
rolls pull the strip into roll bite by means of friction; mean-
while the lubrication state in roll gap and main drive system
has a direct impact on system stability. A former model
[23] utilized a constant friction factor approach between
the work roll and strip. The constant friction factor model
may not be adequate under excellent lubrication conditions,
which are exactly happening in the case of high-speed rolling
mill configuration. So a dynamic friction model is proposed
considering dynamic rolling process and relative speed dif-
ference. Then the coefficient can be expressed as follows:

𝜇 = −𝑐V + 𝑑V3, (2)

where 𝑐, 𝑑 are variable parameters and V = 𝑅
 ̇𝜃
2
.

Besides, when the cold rolling mill begins to vibrate, the
rolling force in the roll gap is extremely high, leading to
the work roll flattening effect, which cannot be neglected
because that may significantly reduce the estimate of the
actual contact length between thework roll and the strip, then
leads to an underestimation of the rolling force. Therefore, a
model of the work roll flattening effect which is more proper
for practical working conditions has been shown as follows
[24]:

𝑅


= 𝑅[1 +

16 (1 − 𝜐
2

1
) 𝑓
𝑦

(Δℎ + Δℎ
𝑒
) 𝜋𝐸
1

] , (3)

where 𝑅 is original radius without working roll flattening
effect, 𝑓

𝑦
is the roll force per width, Δℎ is the screw down

amount of work roll, Δℎ
𝑒
is the elastic feedback of the strip,

𝜐
1
is Poisson’s ratio, and 𝐸

1
is Young’s modulus of the roll

material.
Based on the analyses above, the differential equation of

two degrees-of-freedom model can be derived as
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Then it can be transformed into
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(5)

where 𝑓 = 𝜇𝑃, 𝑃 is rolling force, and 𝐶
2
is the damping coef-

ficient of vertical rolls system.
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Figure 1: Structure of speed control model in main drive system with consideration of nonlinear influence.
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Figure 2: The relationship between torsional torque and rotational
angle within clearance.

After substitution of (2) into (5), the new form of differ-
ential equation can be acquired:
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Equation (6) can be transformed into the three following
equations:

̇𝑧
1
= 𝑧
2
− 𝑧
3
,

̇𝑧
2
= −

𝐾
12

𝐽
1

𝑧
1
−
𝐶
1

𝐽
1

𝑧
2
+

1

𝐽
1

𝑀
1
,

̇𝑧
3
=
𝐾
12

𝐽
1

𝑧
1
−
𝐶
2
− 𝑐𝑅
2

𝑃

𝐽
2

𝑧
3
−
𝑀
2
+ 𝑑𝑅
4

𝑃𝑧
3

3

𝐽
2

.

(7)

And the torsional vibration torque can be obtained as
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. (8)

2.2. Model Transformation. According to the demand of our
control approach, the mathematical model of main drive sys-
tem has to be transformed into a lower triangular structure.

Define𝑥
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= 𝑧
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, and then nonlinear torsional

vibration model of main drive system can be expressed as
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(9)

2.3. Control Task. Based on (9), the drive torque of motor𝑀
1

is the controller output. 𝑑𝑅4𝑃𝑥
1

3 is the nonlinear item of
variable friction coefficient in dynamic cold rolling process.
𝑀
2
is the load torquewithin external load disturbance.Due to

the variation of thickness and hardness fromupstream rolling
stands, as well as roll eccentricity, combined with the actual
situation in rolling process, the following equation can be
obtained:

𝑀
2
= 𝑀
2

𝑜

+𝑀
2

∗

= 𝑀
2

𝑜

+ 𝐴 sin (𝜋𝑡) , (10)

where𝑀
2

𝑜 is the load of rolls side under steady state,𝑀
2

∗

=

𝐴 sin(𝜋𝑡) is the external disturbance, and 𝐴 is defined as
vibration amplitude.

As we can see from (7) and (9)

𝑥
1
= 𝑧
3
= ̇𝜃
2
, (11)

where ̇𝜃
2
is the angular velocity of work roll; we aim at

designing a robust controller to have ̇𝜃
2
tracking the reference

signals. At the same time, it is expected to show good dis-
turbance attenuation performance for nonlinear parameters
such as stiffness and friction, as well as load disturbance.
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3. Control Design Procedure

Consider a nonlinear plant with lower triangular structure
described by the following equations:

∑𝑥
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where 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are the states, 𝑦

𝑝
(𝑡) is the

output, 𝑑(𝑡) is an external disturbance vector, 𝑔
𝑖
(𝑥, 𝑑, 𝑡) (𝑖 =

1, 2, . . . , 𝑛) are unknown virtual control coefficients, and
𝜙
𝑖
(𝑥, 𝑑, 𝑡) (𝑖 = 1, 2, . . . , 𝑛) are regarded as nonlinear time-

varying uncertainties.
It is expected we will design a linear robust controller

within backstepping procedure, which can produce a control
input 𝑢(𝑡) to drive the output 𝑦

𝑝
(𝑡) of the plant to track a

reference output, denoted by 𝑦
𝑑
(𝑡).

The main idea of this control algorithm at each step of
backstepping procedure is presented as follows [20]:

(1) firstly, the tracking problem is transformed into a
regulation problem;

(2) then the nominal controller is designed to get desired
property for the nominal disturbance-free model;

(3) thirdly, the influence of the uncertainties and external
disturbance is regarded as an equivalent disturbance;

(4) finally, a robust compensator is designed to restrain
the effect of the equivalent disturbance and to achieve
robust properties.

Step 1. To start, define the variables below:
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where 𝑥
2
(𝑡) is a virtual controller to be designed. Then

according to (12) and (14), the subsystem can be established
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Based on (16), 𝑥
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where the first item of (17) represents nominal virtual control
input to stabilize the nominal subsystem without disturbance
and uncertainties and 𝛼

1
is a positive constant. The second

item of (17) defines a robust compensator, and 𝑤
1
(𝑡) is the

compensating input; 𝑓
1
is also a positive constant to be

determined. Substituting (14), (15), and (17) into (16), one can
obtain
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where 𝜙
1
(𝑡) is defined as equivalent disturbance
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In order to attenuate and suppress the influence of
subsystem robust property by equivalent disturbance, the
robust compensating input is constructed as follows

𝑤
1
(𝑡) = −𝐹

1
(𝑠) 𝜙
1
(𝑡) , (20)

where 𝐹
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(𝑠) is a robust low-pass filter in the following form:
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As shown in (21), if the filter time-constant 𝑓
1
is positive

and sufficiently large, we can see that 𝐹
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(𝑠) is sufficiently

small, then one can expect that 𝑓
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(𝑡) would approximate
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(𝑡) and neutralize the effect of equivalent disturbance to

gain robust property.
Since 𝜙
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(𝑡) is immeasurable, it can be expressed in the

form
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To get the robust compensating input 𝑤
1
(𝑡), only 𝑦
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(𝑡) is

needed in the form below:
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According to those equations above, the subsystem can be
established as
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As the second step, the 𝜙

2
(𝑡) item of subsystem (24) will

be considered as disturbance and continue the similar design
procedure.

Step i. Consider the 𝑖th subsystem (𝑖 = 2, . . . , 𝑛 − 1)

̇�̃�
𝑖
(𝑡) = 𝑔

𝑖
(𝑡) 𝑥
𝑖+1

(𝑡) + 𝜙
𝑖
(𝑡) , (25)

where

𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) +

𝛼
𝑖−1

𝑔
𝑖−1

𝑦
𝑖−1

(𝑡) −
𝑓
𝑖−1

𝑔
𝑖−1

𝑤
𝑖−1

(𝑡) ,

𝜙
𝑡
(𝑡) = 𝜙

𝑖
(𝑡) −

𝛼
𝑖−1

2

𝑔
𝑖−1

𝑦
𝑖−1

(𝑡)

+
𝑓
𝑖−1

+ 𝛼
𝑖−1

𝑔
𝑖−1

[𝜙
𝑖−1

(𝑡) + 𝑓
𝑖−1

𝑤
𝑖−1

(𝑡)] .

(26)

Introduce the error variable

𝑦
𝑖+1

(𝑡) = 𝑥
𝑖+1

(𝑡) − 𝑥
𝑖+1

(𝑡) . (27)
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And regard 𝑥
𝑖+1

(𝑡) as the virtual control input of the 𝑖th
subsystem

𝑥
𝑖+1

(𝑡) = −
𝛼
𝑖

𝑔
𝑖

𝑦
𝑖
(𝑡) +

𝑓
𝑖

𝑔
𝑖

𝑤
𝑖
(𝑡) , (28)

where 𝛼
𝑖
and 𝑓

𝑖
are both positive constants. Then

̇�̃�
𝑖
(𝑡) = −𝛼

𝑖
𝑦
𝑖
(𝑡) + 𝜙

𝑖
(𝑡) + 𝑓

𝑖
𝑤
𝑖
(𝑡) , (29)

where 𝜙
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) + 𝑔

𝑖

𝑦
𝑖+1

(𝑡) + [𝑔
𝑖
(𝑡) − 𝑔

𝑖

]𝑥
𝑖+1

(𝑡).
The robust compensating input 𝑤

𝑖
(𝑡) can be expressed as

𝑤
𝑖
(𝑡) = −𝐹

𝑖
(𝑠) 𝜙
𝑖
(𝑡) ,

𝐹
𝑖
(𝑠) =

1

𝑠 + 𝑓
𝑖

.

(30)

Note that

𝜙
𝑖
(𝑡) = (𝑠 + 𝛼

𝑖
) 𝑦
𝑖
(𝑡) − 𝑓

𝑖
𝑤
𝑖
(𝑡) . (31)

Therefore, 𝑤
𝑖
(𝑡) can also be given by

𝑤
𝑖
(𝑡) = − (1 +

𝛼
𝑖

𝑠
) 𝑦
𝑖
(𝑡) . (32)

After differentiating ̇�̃�
𝑖+1

(𝑡), one has

̇�̃�
𝑖+1

(𝑡) = 𝑔
𝑖+1

(𝑡) 𝑥
𝑖+2

(𝑡) + 𝜙
𝑖+1

(𝑡) , (33)

where 𝜙
𝑖+1

(𝑡) = 𝜙
𝑖+1

(𝑡) − (𝛼
𝑖

2

/𝑔
𝑖

)𝑦
𝑖
(𝑡) + ((𝑓

𝑖
+ 𝛼
𝑖
)/𝑔
𝑖

)[𝜙
𝑖
(𝑡) +

𝑓
𝑖
𝑤
𝑖
(𝑡)].

Step n. At the last step, one has

̇�̃�
𝑛
(𝑡) = 𝑔

𝑛
(𝑡) 𝑢 (𝑡) + 𝜙

𝑛
(𝑡) , (34)

where

𝑦
𝑛
(𝑡) = 𝑥

𝑛
(𝑡) +

𝛼
𝑛−1

𝑔
𝑛−1

𝑦
𝑛−1

(𝑡) −
𝑓
𝑛−1

𝑔
𝑛−1

𝑤
𝑛−1

(𝑡) ,

𝜙
𝑛
(𝑡) = 𝜙

𝑛
(𝑡) −

𝛼
𝑛−1

2

𝑔
𝑛−1

𝑦
𝑛−1

(𝑡)

+
𝑓
𝑛−1

+ 𝛼
𝑛−1

𝑔
𝑛−1

[𝜙
𝑛−1

(𝑡) + 𝑓
𝑛−1

𝑤
𝑛−1

(𝑡)] .

(35)

The real control input 𝑢(𝑡) can be constructed including
nominal control input and robust compensating input

𝑢 (𝑡) = −
𝛼
𝑛

𝑔
𝑛

𝑦
𝑛
(𝑡) +

𝑓
𝑛

𝑔
𝑛

𝑤
𝑛
(𝑡) , (36)

where 𝑤
𝑛
(𝑡) = −𝐹

𝑛
(𝑠)𝜙
𝑛
(𝑡), 𝐹
𝑛
(𝑠) = 1/(𝑠 + 𝑓

𝑛
).

Note that

𝜙
𝑛
(𝑡) = 𝜙

𝑛
(𝑡) + [𝑔

𝑛
(𝑡) − 𝑔

𝑛

] 𝑢 (𝑡) . (37)

𝑤
𝑛
(𝑡) can be expressed as

𝑤
𝑛
(𝑡) = − (1 +

𝛼
𝑛

𝑠
) 𝑦
𝑛
(𝑡) . (38)

As we can see from (34) and (36), it follows that

̇�̃�
𝑛
(𝑡) = −𝛼

𝑛
𝑦
𝑛
(𝑡) + 𝜙

𝑛
(𝑡) + 𝑓

𝑛
𝑤
𝑛
(𝑡) . (39)

After summarizing the design results, the following sys-
tem structure can be established:

[
̇�̃�
𝑖
(𝑡)

̇𝑤
𝑖
(𝑡)

] = [
−𝛼
𝑖

𝑓
𝑖

0 −𝑓
𝑖

] [
𝑦
𝑖
(𝑡)

𝑤
𝑖
(𝑡)

] + [
1

−1
] 𝜙
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑛.

(40)

The whole controller description is

𝑢 (𝑡) = −
𝛼
𝑛

𝑔
𝑛

𝑦
𝑛
(𝑡) +

𝑓
𝑛

𝑔
𝑛

𝑤
𝑛
(𝑡) ,

𝑦
1
(𝑡) = 𝑥

1
(𝑡) − 𝑦

𝑑
(𝑡) ,

𝑦
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) +

𝛼
𝑖−1

𝑔
𝑖−1

𝑦
𝑖−1

(𝑡) −
𝑓
𝑖−1

𝑔
𝑖−1

𝑤
𝑖−1

(𝑡) ,

𝑖 = 2, 3, . . . , 𝑛,

𝑤
𝑖
(𝑡) = − (1 +

𝛼
𝑖

𝑠
) 𝑦
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛,

(41)

where 𝛼
𝑖
is chosen so that 𝑦

𝑖
(𝑡) has desired convergent speed

and 𝑓
𝑖
is needed to be determined to achieve robust stability

and robust output tracking properties [20].

4. Simulation Result and Discussion

From the design procedure of the control algorithm in the
last section, one can notice that the problem of “explosion
of complexity” is fully avoided. Meanwhile, less information
about reference output as well as the bounds of uncertainties
is applied to construct the robust controller. While the
price of this solution is that when there is no dynamic
uncertainty or external disturbance, the tracking error cannot
be guaranteed to converge to zero, it can only be made
as small as desired by appropriately choosing controller
parameters 𝛼

𝑖
and 𝑓

𝑖
. However, due to the actual situation

in industrial fields, uncertainty and external disturbance are
ubiquitous in dynamic rolling process, especially when the
vibration phenomenon begins to emerge. Besides, from (9)–
(11), one can notice the good applicability of our approach
on the mathematical model in main drive system with the
consideration of model parametric nonlinearity and external
load disturbance.

In order to prove the advantage of control method, a
simulation experiment with actual industrial data is built,
because the torsional vibration in tandem cold rolling mill
usually happens in the latter roll-stand, due to its higher
rolling speed and the influence by back tension variations.
Therefore, the experimental parameters come from the main
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Table 1: Rolling parameters.

Parameters Value and unit
𝐽
1

1552 kg⋅m2

𝐽
2

1542 kg⋅m2

𝐾
12

5.93 × 106 N⋅M/rad
Δ 0.1 rad
𝑅 0.4m
𝑃 932KN
𝑐 0.06
𝑑 0.0024
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Figure 3: Step response of rolling speed within parameter uncer-
tainties.

drive system data in 4th rolling stand of Baosteel. The major
parameters are listed in Table 1.

At first, a comparison between robust backstepping con-
troller and PI is made, that the PI algorithm, which is still
widely used in the actual rolling field control system, is
derived with application of integral square time error

𝐾PI = 243 (1 +
1

0.371𝑠
) . (42)

Based on the results on robust property and selection of
control performance index in [20], the two key parameters
can be obtained separately: 𝛼

𝑖
= 3 (𝑖 = 1, 2, 3), 𝑓

1
= 10, 𝑓

2
=

100, and 𝑓
3
= 1000. Let us assume that the operation con-

dition of dynamic rolling mill neglects the influence of load
disturbance temporarily, while the parameter uncertainty by
variable nonlinear stiffness and friction is considered. Given
the system, a unit step response with rolling speed 𝑟 =

30 rad/s, as shown in Figure 3, although the PI controller is
capable of maintaining stable rolling operation in ideal
working conditions, which means the system response is not
affected by variation of strip thickness or by back or front
tension, it is no longer qualified in this situation as its over-
shoot and regulating time is unacceptable in real industrial
rolling process. On the other hand, the control performance
of robust backstepping algorithm is still good because of its
better suppression capability on parameter uncertainties.

As demonstrated in many papers [1–8] and engineering
projects, the roll eccentricity and variation of strip material
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Figure 4: Step response of rolling speed under load disturbance.

quality (thickness, hardness, etc.) will lead to motor speed
fluctuation, then generate current harmonics and therefore
causing the unstable or vibration rolling process within
electromechanical coupling inmain drive system.Thus, those
load disturbances can be derived as sinusoidal disturbance
[25, 26], and based on the above parameters and process data,
the value can be expressed as

𝑀
2
= 𝑀
2

𝑜

+ 𝐴 sin (𝜋𝑡) = [14500 + 2910 sin (𝜋𝑡)]N⋅m.

(43)

Figure 4 shows the system step response when the load
disturbancewas added at 3 s.During a short-termfluctuation,
the system under robust backstepping algorithm returns to
normal status quickly, mainly because of low-pass filter and
robust compensating input on the attenuation to equivalent
disturbance.

5. Conclusion

Anonlinearmodel of cold rollingmain drive system has been
formulated, including variable stiffness by clearance, change-
able friction coefficient with consideration of relative speed
between work roll and strip, and the load disturbance with
roll eccentricity and variation of strip material quality.

In view of parameter uncertainty and external distur-
bance in dynamic cold rolling process, the mathematical
model is transformed into a lower triangular structure. A
robust backstepping method has been introduced to design
a robust controller, which contains a nominal controller and
a robust compensator, to achieve a robust tracking property
for real controlled plant. The simulation results show its
good performance on reference signal tracking under differ-
ent operational conditions. Meanwhile, its linear and time-
invariant characteristic causes the controller to be fulfilled
easily.

Despite these encouraging results, the industrial applica-
tion of this control algorithm should be involved. Due to the
existing difficulty, such as nonlinearity, strong coupling fea-
tures in rolling mill system, and requirement in fast response
on control algorithm, the improvements of controller on
efficiency and practically would be enormous benefits. More-
over, the possibility for expansion of this robust controller
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in industrial practical plants to improve strip quality is
recommended as an important issue for future investigation.
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A model predictive control (MPC) is proposed for the piecewise affine (PWA) systems with constrained input and time delay.
The corresponding operating region of the considered systems in state space is described as ellipsoid which can be characterized
by a set of vector inequalities. And the constrained control input of the considered systems is solved in terms of linear matrix
inequalities (LMIs). An MPC controller is designed that will move the PWA system with time delay from the current operating
point to the desired one. Multiple objective functions are used to relax the monotonically decreasing condition of the Lyapunov
function when the control algorithm switches from a quasi-infinite horizon to an infinite horizon strategy. The simulation results
verify the effectiveness of the proposed method. It is shown that, based on LMI constraints, it is easy to get the MPC for the PWA
systems with time delay. Moreover, it is suitable for practical application.

1. Introduction

In engineering practice, there are many hybrid systems
described by piecewise affine systems (PWA) which are
composed of linear subsystems and convex polytopic regions.
Hybrid systems are composed of discrete event dynamic
systems and continuous time dynamic systems or discrete
time dynamic systems, which interact with each other [1].The
hybrid system theory, which is proposed for the demand of
the economic development, is the result of the development of
computer science and control theory. Piecewise affine system
is one of the most important branches of hybrid system
[2]. It consists of some subsystems that integrate the logical
and continuous dynamics by switching. Theoretically, any
nonlinear system can be approximated as piecewise affine
system [3, 4]. In [5], the PWA system is described as ellipsoid
which can be characterized by a set of vector inequalities.
In [6], the constraint of linear matrix inequalities (LMIs) is
released. In terms of LMIs, the PWA system can be stabilized
in Lyapunov theory.

Model predictive control (MPC), also known as receding
horizon control, is a popular technique for the control of

dynamical systems, such as those encountered in chemical
process control in the petrochemical, pulp and paper indus-
tries, and in industrial hot strip mill [7]. MPC is also a
popular technique for the control of dynamical system subject
to input and state constraints. At any time instant, MPC
requires the online solution of an optimization problem to
compute-optimal control inputs over a fixednumber of future
time instants, known as the finite horizon or quasi-infinite
horizon. Using MPC, it is possible to handle inequality
constraints on the manipulated and controlled variables in a
systematic manner during the design and implementation of
the controller [8, 9]. MPC has become the control strategy of
choice in industrial applications that typically involve linear
systems subject to linear inequality constraints. However,
industrial processes are in general inherently nonlinear and
operated over a wide range of operating conditions [10, 11].
The use of multiple model/controllers is a common strategy
in dealing with the complex of nonlinear systems and has
led to the development of various multiple model/controller
approaches. Considerable research has been focused on the
development and utilization of multiple model/controller
banks within the MPC framework [12–14] in order to cope
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with nonlinear systems. The basis of these approaches is the
decomposition of the systems full range of operation into
a number of operating regimes in which a simpler local
model and/or controller is applied. The local models and
controllers are then incorporated to give a global model
and/or controller.

Closed-loop stability in multiple model/control
approaches has also been studied [15] since designing
local controllers that stabilize each individual model may not
result in a stable global closed-loop system. In general, the
use of piecewise models in a control structure necessitates
a means of switching among the available models to the
one that best describes the current process dynamics. The
switching from one model/controller to another based
on a logical argument (supervisory scheme) results in a
hybrid system. A closely related work is the stability analysis
of piecewise linear systems by [16] in which piecewise
quadratic Lyapunov functions were constructed using
convex optimization in terms of linear matrix inequalities
(LMIs) as an alternative to a globally quadratic Lyapunov
function.

Time delay systems are very common in industry. How-
ever, few works on control algorithms development for time
delay PWA system have been reported [17, 18]. Based on
this concept, we propose a MPC control algorithms for
the discrete polytopic time-delay PWA systems. The MPC
controller of the considered systems is solved in terms of
LMIs. The sufficient conditions of stability are derived for
time-delay systems. The feedback control law is obtained by
convex optimization involving LMIs. The simulation results
verify the effectiveness of the proposed method.

Notation. The symbol ∗ will be used in some matrix expres-
sions to induce a symmetric structure. 𝐼 denotes identity
matrix. For example, when𝐻 and 𝑅 are symmetric matrices,
then

[
𝐻 ∗

𝑇 𝑅
] = [

𝐻 𝑇
T

𝑇 𝑅
] . (1)

2. Problem Formulation

Consider a discrete time-delay PWA systems with input
constraints:

x (𝑘 + 1) = A
𝑖
x (𝑘) + A

𝑑𝑖
x (𝑘 − 𝑑) + B

𝑖
u (𝑘) + b

𝑖
,

x (𝑘) = 𝜑 (𝑘) ,

‖u‖
2
≤ 𝑢max,

x (𝑘) ∈ X
𝑖
, −𝑑 ≤ 𝑘 ≤ 0, 𝑘 = 0, 1, . . .∞,

(2)

where x(𝑘) ∈ 𝑅
𝑛 is the state of the plant, u(𝑘) ∈ 𝑅

𝑚 is
the control input, and 𝑑 is fixed time-delay constant. And
b
𝑖
is constant affine vector of the 𝑖th subsystem. 𝑖 represents

the switching rule, which makes value from finite set𝑁, and
𝑖 ∈ 𝑁 = {1, 2, . . . , 𝑁}. A

𝑖
, A
𝑑𝑖
, B
𝑖
, and b

𝑖
are sets of known

real constant matrices with appropriate dimensions of the 𝑖th
subsystem separately. The feedback control law is

u (𝑘) = K
𝑖
x (𝑘) . (3)

Substituting (3) into inequality (2), we can get

x (𝑘 + 1) = A
𝑖
x (𝑘) + A

𝑑𝑖
x (𝑘 − 𝑑) + b

𝑖
, (4)

where A
𝑖
= A
𝑖
+ B
𝑖
K
𝑖
. Denote 𝑋

𝑖
as the state region where

subsystem 𝑖 is active at moment 𝑘, and there is no switch that
occurred at moment 𝑘 + 1 (see [5]), which is

X
𝑖
= {x (𝑘) ∈ 𝑅

𝑛

| ∃𝑘 ≥ 0, x (𝑘) ∈ X
𝑖
, x (𝑘 + 1) ∈ X

𝑖
}

𝑖, 𝑗 ∈ 𝑁.

(5)

Commonly,X
𝑖
is ellipsoid set.Thedimension ofX

𝑖
is less than

the dimension of state. To stabilize the PWA system (2), a
state feedback control law is solved by defining a quadratic
Lyapunov-Krasovskii function:

𝑉 (x (𝑘)) = xT (𝑘)P
𝑖
x (𝑘) +

𝑑

∑

𝑗=1

xT (𝑘 − 𝑗) Sx (𝑘 − 𝑗) , (6)

By solving the following two problems, the feedback control
law is obtained.

Problem 1. Find a piecewise affine state feedback controller
that exponentially stabilizes the PWA systemwhen x(𝑘) ∈ X

𝑖
,

x(𝑘 + 1) ∈ X
𝑖
.

Problem 2. It is the same as Problem 1 at the switching
moment when x(𝑘) ∈ X

𝑖
, x(𝑘 + 1) ∈ X

𝑖+1
.

Lemma 3. The state region X
𝑖
can be described as same

ellipsoids X
𝑖
⊆ 𝜀
𝑖
, where 𝜀

𝑖
= {x | ‖E

𝑖
x + e
𝑖
‖ ≤ 1}. Denote

the ellipsoid X
𝑖
as the quadratic inequalities (see [5]):

[
x (𝑘)
1

]

T
[
ET
𝑖
E
𝑖

∗

eT
𝑖
E
𝑖
−1 + eT

𝑖
e
𝑖

] [
x (𝑘)
1

] ≤ 0. (7)

More precisely, if 𝑑
1
< CT
𝑖
𝑥 < 𝑑

2
, then the degenerate ellipsoid

is described by

E
𝑖
=

2CT
𝑖

(𝑑
2
− 𝑑
1
)
, e

𝑖
= −

(𝑑
2
+ 𝑑
1
)

(𝑑
2
− 𝑑
1
)
. (8)

Finally, it is assumed that the control objective is to stabilize
the system to a given point 𝑥

𝑐𝑙
. With the change of coordinates

𝑧 = 𝑥 − 𝑥
𝑐𝑙
, the problem is transformed to the stabilization of

the origin. Accordingly, the ellipsoid changes into

𝜀
𝑖
= {𝑧 |


E
𝑖
x + e𝑐𝑙
𝑖


≤ 1} , (9)

where e𝑐𝑙
𝑖
= e
𝑖
+ E
𝑖
𝑥
𝑐𝑙
.

Assumption 4. In application of this formulation to multiple
regions, we assume that we know the order of regions that the
states will go through starting from the current region of the
system to the terminal region.

Assumption 5. We also assume that we know the number of
moves that the system has to take to go from one region to
another adjacent operating region.
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3. Main Result

Model predictive control, also known asmoving horizon con-
trol or receding horizon control, has become very successful
in process industries, especially in the control of processes
that are constrained, multivariable and uncertain. In general,
MPC solves online an open-loop optimal control problem
subject to system dynamics and constraints at each time
instant and implements only the first element of the control
profile. At each sampling time 𝑘, plant measurements are
obtained and a model of the process is used to predict future
outputs of the system. Using these predictions, 𝑚 control
moves u(𝑘 + 𝑚 | 𝑘), are computed by minimizing a nominal
𝐽
∞
(𝑘) over a prediction horizon as follows:

𝐽
∞
(𝑘) =

∞

∑

𝑚=0

[xT(𝑘 + 𝑚 | 𝑘)Q
𝐼
x (𝑘 + 𝑚 | 𝑘)

+ uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)]

(10)

s.t. x (𝑘 + 𝑚 + 1 | 𝑘)

= A
𝑖
x (𝑘 + 𝑚 | 𝑘) + A

𝑑𝑖
x (𝑘 − 𝑑 + 𝑚 | 𝑘)

+ B
𝑖
u (𝑘 + 𝑚 | 𝑘) + b

𝑖
,

x (𝑘 + 𝑚 | 𝑘) ∈ X
𝑖
, 𝑚 = 0, 1 . . . 𝑛,

x (𝑘 + 𝑛 + 1 | 𝑘) ∈ X
𝑖+1

,

‖u (𝑘 + 𝑚 | 𝑘)‖
2
≤ 𝑢max, 𝑚 = 0, 1, . . .∞,

(11)

where Q
𝐼
> 0, R > 0 are symmetric weighting matrices,

𝑛 is control horizon, x(𝑘 + 𝑚 | 𝑘) is state at time 𝑘 + 𝑚

predicted based on the measurements of system (2) at time
𝑘. u(𝑘 + 𝑚 | 𝑘) is control move at time 𝑘 + 𝑚 computed by
solving the optimization problem (10) at time 𝑘, u(𝑘 + 𝑚 | 𝑘)

is implemented to the system at time 𝑘, and then in time
𝑘 + 1, the maximization problem is solved by deriving an
upper bound on the objective function 𝐽

∞
(𝑘) based on the

measurements of new states of system. The control law is
obtained by convex optimization based on MPC involving
LMIs and ellipsoids constraints (7), which is suitable to
practical application.

In this section, the problem formulation for MPC using
piecewise linear models of the form (2) is discussed. The aim
is to find a sequence of control input signals u(𝑘 + 𝑛 | 𝑘)

that will move the system from the current operating point to
the desired one.The authors of [19] presented anMPC design
technique (min-maxMPC) in which the minimization of the
nominal objective function was modified to a minimization
of the worst case objective function. In this work, we extend
this formulation using piecewise affinemodelwith time delay.

Theorem 6. Consider a time-delay PWA system (2) with
several operating points, where 𝑖 denotes the active PWAmodel
and X

𝑖+1
shows the corresponding operating region which if

described by |E
𝑖+1

x + e
𝑖+1

| ≤ 1 with x ∈ X
𝑖+1

. u(𝑘 | 𝑘) ⋅ ⋅ ⋅ u(𝑘 +
𝑛 | 𝑘) are sequences of control inputs to the PWA system.
The states of PWA system (2) are steered from X

𝑖
to X
(𝑖+1)

in 𝑛 steps, where 𝑛 is control horizon constant. If there exist

Y
𝑖+1

= K
𝑖+1

Q, Q ≥ 0,W > 0, 𝛾 > 0, 𝜉 > 0, and a sequence of
u(𝑘 | 𝑘) ⋅ ⋅ ⋅ u(𝑘 + 𝑛 | 𝑘) satisfy the following LMI (12)–(16), the
sequence of control input signals will move the system from the
current operating region to the desired one, until to the origin
of the system.

Themodified MPC law is given by

min
𝛾,u,Q,W,Y𝑖

𝛾, (12)

s.t. [
𝑢
2

maxI Y
𝑖+1

YT
𝑖+1

Q ] ≥ 0, (13)

|u (𝑘 + 𝑚 | 𝑘)| ≤ 𝑢max, 𝑚 = 0 ⋅ ⋅ ⋅ 𝑛, (14)

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Q1/2
𝐼

x (𝑘 | 𝑘) 𝛾I 0 0 0 0 0 0 0 0 0
...

... d 0 0 0 0 0 0 0 0

Q1/2
𝐼

x (𝑘 + 𝑛 | 𝑘) 0 0 𝛾I 0 0 0 0 0 0 0

R1/2u (𝑘 | 𝑘) 0 0 0 𝛾I 0 0 0 0 0 0

...
...

...
...

... d 0 0 0 0 0
R1/2u (𝑘 + 𝑛 | 𝑘) 0 0 0 0 0 𝛾I 0 0 0 0
x (𝑘 + 𝑛 | 𝑘) 0 0 0 0 0 0 W 0 0 0

...
...

...
...

...
...

...
... d 0 0

x (𝑘 + 𝑛 + 1 − 𝑑 | 𝑘) 0 0 0 0 0 0 0 0 W 0
x (𝑘 + 𝑛 + 1 | 𝑘) 0 0 0 0 0 0 0 0 0 Q

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

> 0,

(15)

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Q ∗ ∗ ∗ ∗ ∗ ∗

0 W−1 AT
𝑑𝑖+1

0 0 0 0

Σ A
𝑑𝑖+1

Ξ b
𝑖+1

eT
𝑖+1

𝜉 0 0 0

E
𝑖+1

Q 0 𝜉e
𝑖+1

bT
𝑖+1

𝑡 0 0 0

Q1/2I Q 0 0 0 𝛾I 0 0

R1/2Y
𝑖+1

0 0 0 0 𝛾I 0

Q 0 0 0 0 0 W

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

> 0,

(16)

where x(𝑘 + 1 | 𝑘) ⋅ ⋅ ⋅ x(𝑘 + 𝑛 + 1 | 𝑘) are computed iteratively
by (2) as follows:

x (𝑘 + 𝑛 + 1 | 𝑘)

= A𝑛+1
𝑖

x (𝑘 | 𝑘) +

𝑛

∑

𝑗=0

A𝑛−𝑗
𝑖

A
𝑑𝑖
x (𝑘 − 𝑑 + 𝑗 | 𝑘)

+

𝑛

∑

𝑗=0

A𝑛−𝑗
𝑖

B
𝑖
u (𝑘 + 𝑗 | 𝑘) +

𝑛

∑

𝑗=1

A𝑛−𝑗
𝑖

b
𝑖

(17)

and Σ = A
𝑖+1

Q + B
𝑖+1

Y
𝑖+1

, Ξ = Q + 𝜉b
𝑖+1

bT
𝑖+1

.
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Proof
(1) Upper Bound on the Objective Function. The objective
function can be split into two parts:

𝐽
∞
(𝑘) = 𝐽

𝑛

0
(𝑘) + 𝐽

∞

𝑛+1
(𝑘) , (18)

where

𝐽
𝑛

0
(𝑘) =

𝑛

∑

𝑚=0

[xT (𝑘 + 𝑚 | 𝑘)Q
𝐼
x (𝑘 + 𝑚 | 𝑘)

+ uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)] ,

𝐽
∞

𝑛+1
(𝑘) =

∞

∑

𝑙=𝑛+1

[xT (𝑘 + 𝑚 | 𝑘)Q
𝐼
x (𝑘 + 𝑚 | 𝑘)

+ uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)] .

(19)

It is also assumed that the number ofmoves 𝑛 required for the
system to transition from one partX

𝑖
to the next desired part

X
(𝑖+1)

is prespecified. Using quadratic Lyapunov-Krasovskii
function, the upper bound on the objective function 𝐽

∞

𝑛+1
(𝑘)

is given as

𝑉 (x (𝑘)) = xT (𝑘)Px (𝑘) +
𝑑

∑

𝑗=1

xT (𝑘 − 𝑗) Sx (𝑘 − 𝑗) . (20)

Suppose 𝑉(x(𝑘)) satisfies the following inequality:
𝑉 (x (𝑘 + 𝑚 + 1 | 𝑘)) − 𝑉 (x (𝑘 + 𝑚 | 𝑘))

≤ − [xT (𝑘 + 𝑚 | 𝑘)Q
𝐼
x (𝑘 + 𝑚 | 𝑘)

+uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)]

(21)

with the conditions 𝑉(x(∞ | 𝑘)) = 0 and x(∞ | 𝑘) = 0.
Summing (21) from𝑚 = 𝑛 + 1 to𝑚 = ∞ gives
𝐽
∞

𝑛+1
(𝑘) ≤ 𝑉 (x (𝑘 + 𝑛 + 1 | 𝑘))

= xT (𝑘 + 𝑛 + 1 | 𝑘)Px (𝑘 + 𝑛 + 1 | 𝑘)

+

𝑑

∑

𝑗=1

xT (𝑘 + 𝑛 + 1 − 𝑗 | 𝑘) Sx (𝑘 + 𝑛 + 1 − 𝑗 | 𝑘) .

(22)
Then, the minimization of the upper bound on the objective
function 𝐽

∞
(𝑘)u,Q,W,Y𝑖,𝑖∈𝑁 is derived as

min 𝐽
∞
(𝑘)

u,Q,W,Y𝑖,𝑖∈𝑁

= min
u,Q,W,Y𝑖,𝑖∈I

𝑛

∑

𝑚=0

[xT (𝑘 + 𝑚 | 𝑘) Lx (𝑘 + 𝑚 | 𝑘)

+ uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)]

+xT (𝑘 + 𝑛 + 1 | 𝑘)Px (𝑘 + 𝑛 + 1 | 𝑘)

+

𝑑

∑

𝑗=1

xT (𝑘 + 𝑛 + 1 − 𝑗 | 𝑘) Sx (𝑘 + 𝑛 + 1 − 𝑗 | 𝑘)

≤ 𝛾,

(23)

where P = 𝛾Q−1 > 0 and W = 𝛾S−1 > 0. Using the S-
procedure [6], we get (15).

(2) The Stability of Inequality with Ellipsoids Constraints. In
this section, the aim is to design an MPC controller in
which the minimization of the nominal objective function
was modified to a minimization of the worst case objective
function.A thoroughdiscussion of the previous problems can
be found in [19]. The objective function of MPC in [19] is

min 𝐽
∞
(𝑘) , (24)

where

𝐽
∞
(𝑘) =

∞

∑

𝑚=0

[xT (𝑘 + 𝑚 | 𝑘)Q
𝐼
x (𝑘 + 𝑚 | 𝑘)

+uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)] .

(25)

In this section, the objective function min 𝐽
∞
(𝑘) is replaced

by

min (𝐽
𝑛

0
(𝑘) + 𝐽

∞

𝑛+1
(𝑘))

s.t. x (𝑘 + 𝑚 + 1 | 𝑘)

= A
𝑖
x (𝑘 + 𝑚 | 𝑘) + A

𝑑
x (𝑘 + 𝑚 − 𝑑 | 𝑘)

+ B
𝑖
u (𝑘 + 𝑚 | 𝑘) + b

𝑖
0 ≤ 𝑚 ≤ 𝑛,

(26)

𝑉 (x (𝑘 + 𝑚 + 1 | 𝑘)) − 𝑉 (x (𝑘 + 𝑚 | 𝑘))

≤ − [xT (𝑘 + 𝑚 | 𝑘)Q
𝐼
x (𝑘 + 𝑚 | 𝑘)

+ uT (𝑘 + 𝑚 | 𝑘)Ru (𝑘 + 𝑚 | 𝑘)]
E𝑖+1x (𝑘 + 𝑚 | 𝑘) + e

𝑖+1

 ≤ 1

}}}

}}}

}

𝑚 ≥ 𝑛 + 1.

(27)

In this section, theMPC formulation given in [19] is extended
to PWA system with form (2) that has polytopic and ellipsoid
approximations for the operating region X

𝑖
. The previous

inequalities (27) are the stability constraints for subsystem
𝑖 + 1. Inequalities (27) can guarantee the PWA system to
be steered from X

𝑖
to X
𝑖+1

in 𝑛 steps. The control inputs
u(𝑘 + 𝑚𝑘), 𝑚 = 0, 1 . . . 𝑛 are a sequence of free variables,
based on the input constraints. If X

𝑖+1
is not the terminal

operating ellipsoid region, we apply u(𝑘 + 𝑚 | 𝑘),𝑚 = 0 . . . 𝑛

to PWA. OnceX
𝑖+1

is the terminal operating ellipsoid region,
the feedback control law u(𝑘) = K

𝑖+1
x(𝑘) is running to

reduce the calculation.The quadratic ellipsoid inequality (10)
is equivalent to

[

[

x (𝑘 + 𝑚 | 𝑘)

x (𝑘 − 𝑑 + 𝑚 | 𝑘)

1

]

]

T

Π[

[

x (𝑘 + 𝑚 | 𝑘)

x (𝑘 − 𝑑 + 𝑚 | 𝑘)

1

]

]

≤ 0, (28)

where Π = [

ET
𝑖+1

E𝑖+1 0 ET
𝑖+1

e𝑖+1
0 0 0

eT
𝑖+1

E𝑖+1 0 −1+eT𝑖+1e𝑖+1
] .

Substituting (20) into (21) gives

[

[

x (𝑘 + 𝑚 | 𝑘)

x (𝑘 − 𝑑 + 𝑚 | 𝑘)

1

]

]

T

M[

[

x (𝑘 + 𝑚 | 𝑘)

x (𝑘 − 𝑑 + 𝑚 | 𝑘)

1

]

]

≤ 0, (29)
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where

M =

[
[
[
[
[
[
[

[

𝜓
1

AT
𝑖+1

PA
𝑑𝑖+1

AT
𝑖+1

Pb
𝑖+1

AT
𝑑𝑖+1

PA
𝑖+1

AT
𝑑𝑖+1

PA
𝑑𝑖+1

− S AT
𝑑𝑖+1

Pb
𝑖+1

bT
𝑖+1

PA
𝑖+1

bT
𝑖+1

PA
𝑑𝑖+1

bT
𝑖+1

Pb
𝑖+1

]
]
]
]
]
]
]

]

,

𝜓
1
= AT
𝑖+1

PA
𝑖+1

+ S +Q
𝐼
+ KT
𝑖+1

RK
𝑖+1

− P.

(30)

Using the S-procedure [6] into (28) and (29), we get 𝜆 > 0,

[

[

Φ
1

0 𝜆ET
𝑖+1

e
𝑖+1

0 S 0

𝜆eT
𝑖+1

E
𝑖+1

0 −𝜆 (1 − eT
𝑖+1

e
𝑖+1

)

]

]

−

[
[
[
[
[
[

[

AT
𝑖+1

AT
𝑑𝑖+1

bT
𝑖+1

]
]
]
]
]
]

]

P [A
𝑖+1

A
𝑑𝑖+1

b
𝑖+1

] > 0,

(31)

where

Φ
1
= P + 𝜆ET

𝑖+1
E
𝑖+1

− S − KT
𝑖+1

RK
𝑖+1

−Q
𝐼
. (32)

By Schur complements, this is equivalent to

[
[
[
[
[
[
[
[
[
[
[
[

[

Φ
1

0 𝜆ET
𝑖+1

e
𝑖+1

AT
𝑖+1

0 S 0 AT
𝑑𝑖+1

𝜆eT
𝑖+1

E
𝑖+1

0 −𝜆 (1 − eT
𝑖+1

e
𝑖+1

) bT
𝑖+1

A
𝑖+1

A
𝑑𝑖+1

b
𝑖+1

P−1

]
]
]
]
]
]
]
]
]
]
]
]

]

> 0. (33)

Substituting P = 𝛾Q−1 and pre- and postmultiplying by
diag{I I [

0 I
I 0 ]} gives

[
[
[
[
[
[
[
[
[
[
[

[

Φ
2

0 AT
𝑖+1

𝜆ET
𝑖+1

e
𝑖+1

0 S AT
𝑑𝑖+1

0

A
𝑖+1

A
𝑑𝑖+1

𝛾
−1Q b

𝑖+1

𝜆eT
𝑖+1

E
𝑖+1

0 bT
𝑖+1

−𝜆 (1 − eT
𝑖+1

e
𝑖+1

)

]
]
]
]
]
]
]
]
]
]
]

]

> 0, (34)

whereΦ
2
= 𝛾Q−1 + 𝜆ET

𝑖+1
E
𝑖+1

− S −KT
𝑖+1

RK
𝑖+1

−Q
𝐼
. Pre- and

postmultiplying by diag[Q I I I] gives

[
[
[
[

[

Φ
3

0 QAT
𝑖+1

𝜆QET
𝑖+1

e
𝑖+1

0 S AT
𝑑𝑖+1

0

A
𝑖+1

Q A
𝑑𝑖+1

𝛾
−1Q b

𝑖+1

𝜆eT
𝑖+1

E
𝑖+1

Q 0 bT
𝑖+1

−𝜆 (1 − eT
𝑖+1

e
𝑖+1

)

]
]
]
]

]

> 0, (35)

where

Φ
3
= 𝛾Q + 𝜆QET

𝑖+1
E
𝑖+1

Q −QSQ

−QKT
𝑖+1

RK
𝑖+1

Q −QQ
𝐼
Q.

(36)

This is equivalent to

[
[

[

Φ
3

0 QAT
𝑖+1

0 S AT
𝑑𝑖+1

A
𝑖+1

Q A
𝑑𝑖+1

𝛾
−1Q

]
]

]

+ [

[

𝜆QET
𝑖+1

e
𝑖+1

0

b
𝑖+1

]

]

× 𝜆
−1

(1 − eT
𝑖+1

e
𝑖+1

)
−1

[

[

𝜆QET
𝑖+1

e
𝑖+1

0

b
𝑖+1

]

]

T

> 0.

(37)

Substituting W = 𝛾S−1 > 0, 𝜉 = 𝛾𝜆
−1, pre- and post-

multiplying by

diag {𝛾−1/2 𝛾
−1/2

𝛾
1/2

𝛾
1/2

} , (38)

we get the inequality (16) by multiple Schur complements.

(3) Input Constraints. It is also possible to incorporate input
constraints. We consider bounds on input at time 𝑘 such as

|u (𝑘 + 𝑚)| ≤ 𝑢max, 𝑚 = 0 . . . 𝑛. (39)

Inputs can be split into sequences:

{u (𝑘 | 𝑘) , u (𝑘 + 1 | 𝑘) ⋅ ⋅ ⋅ u (𝑘 + 𝑛 | 𝑘) ,U
𝑡
} , (40)

where u(𝑘 | 𝑘),u(𝑘 + 1 | 𝑘) ⋅ ⋅ ⋅ u(𝑘 + 𝑛 | 𝑘) are free variables
and U

𝑡
are future control moves in the terminal region given

by the state feedback law.
(1) If PWA does not switches to the terminal operating

ellipsoid region, the sequences u(𝑘 + 𝑚 | 𝑘), 𝑚 = 0 . . . 𝑛 are
free variables satisfying |u(𝑘 + 𝑚)| ≤ 𝑢max,𝑚 = 0 . . . 𝑛.

(2) If PWA switch to the terminal operating ellipsoid
region,

U
𝑡
: u (𝑘 + 𝑚 | 𝑘) = K

𝑖+1
x (𝑘 + 𝑚 | 𝑘) , 𝑚 ≥ 𝑛 + 1,

K
𝑖+1

= Y
𝑖+1

Q−1,

|u (𝑘)| ≤ 𝑢max,

(41)

where K
𝑖+1

is state feedback matrix, which is equal to LMI
(13).

Using the previous techniques, the problem of minimiz-
ing an upper bound on the worst-case objective function,
subject to input and terminal operating ellipsoid constraints,
is reduced to a convex optimization of {u(𝑘 | 𝑘), u(𝑘 + 1 |

𝑘) ⋅ ⋅ ⋅ u(𝑘 + 𝑛 | 𝑘),U
𝑡
} in terms of LMIs (12)–(16).

Remark 7. Although derived for a time-delay PWA system
with ellipsoidal partitions, the optimization problem LMI
(16) gives a feasible solution only when −𝜆

𝑖
(I − e

𝑖
eT
𝑖
) >

0, which means the ellipsoidal region X
𝑖
does not contain

origin [5]. When the ellipsoidal region contains origin, it is
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Figure 1: Underactuated surface vessel.

assumed that 𝑏
𝑖
= 0. For convenient notion, we get LMI (16)

as follows:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Q ∗ ∗ ∗ ∗ ∗

0 W−1 AT
𝑑𝑖+1

0 0 0

A
𝑖+1

Q + B
𝑖+1

Y
𝑖+1

A
𝑑𝑖+1

Q 0 0 0

Q1/2I Q 0 0 𝛾I 0 0

R1/2Y
𝑖+1

0 0 0 𝛾I 0

Q 0 0 0 0 𝑊

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

> 0. (42)

Remark 8. If the ellipsoidal region 𝑋
𝑖
contains origin, it is

necessary to substitute (42) into (16) to get a feasible solution.

4. Simulation Result

4.1. Example for Autonomous Land Vehicle. We use the ALV
(autonomous land vehicle) model formulated by [20] in this
simulation. The objective is to design a controller that forces
a cart on the 𝑥−𝑦 plane to follow the straight line 𝑦 = 0 with
a constant velocity 𝑢

0
= 1m/s (see Figure 1). We assume that

a controller has already been designed to maintain a constant
forward velocity. The carts path is then controlled by the
torque 𝑇 about 𝑧-axis according to the following dynamics:

[

[

̇𝜓

̇𝜔

̇𝑦

]

]

=
[
[

[

0 1 0

0 −
𝑘

𝐼
0

0 0 0

]
]

]

[

[

𝜓

𝜔

𝑦

]

]

+ [

[

0

0

𝑢
0
sin (𝜓)

]

]

+
[
[

[

0

1

𝐼
0

]
]

]

𝑇,

|𝑇| ≤ 𝑇max,

(43)

where 𝜓 is the heading angle with time derivative 𝜔, 𝐼 =

1 kgm2 is the moment of inertia of the cart with respect to the
center of mass, 𝑘 = 0.01Nms is the damping coefficient, and

𝑇 is the control torque. Due to the limitation of power of the
drive motor, the maximum control torque𝑇 is roughly 8Nm.
Approximately the control constraint is |𝑇| ≤ 𝑇max = 8. The
states of the system are (𝑥

1
, 𝑥
2
, 𝑥
3
) = (𝜑, 𝜔, 𝑦). We assume

that the trajectories can start from any possible initial angle
in the range 𝜑

0
∈ [−3𝜋/5, 3𝜋/5] and any initial distance

from the line. The function sin(𝜓) is approximated by a
piecewise affine function yielding a piecewise affine system
with 5 regions as follows:

X
1
= {x | x

1
∈ (−

3𝜋

5
, −

𝜋

5
)} ,

X
2
= {x | x

1
∈ (−

𝜋

5
, −

𝜋

15
)} ,

X
3
= {x | x

1
∈ (−

𝜋

15
,
𝜋

15
)} ,

X
4
= {x | x

1
∈ (

𝜋

15
,
𝜋

5
)} ,

X
5
= {x | x

1
∈ (

𝜋

5
,
3𝜋

5
)} .

(44)

To illustrate the proposed results on the time-delay systems,
we assume that the system x

2
(𝑡) is perturbed by time delay

and the delay model is given as

̇x
1
(𝑡) = 𝛼x

2
(𝑡) + (1 − 𝛼) x

2
(𝑡 − 𝜏) ,

̇x
2
(𝑡) = −

𝑘

𝐼
𝛼x
2
(𝑡) −

𝑘

𝐼
(1 − 𝛼) x

2
(𝑡 − 𝜏) +

1

𝐼
u,

̇x
3
(𝑡) = u

0
sin (x
1
(t)) .

(45)

The constant 𝛼 is the retarded coefficient [21], which
satisfies the conditions: 𝛼 ∈ [0, 1]. The limits 1 and 0
correspond to no delay term and to a completed delay term,
respectively. In this example, we assume 𝛼 = 0.7. We
construct the following time-delay PWA system:

̇x = A
𝑖
x + A
𝑑𝑖
x (𝑡 − 𝜏) + B

𝑖
𝑢 + b
𝑖

x ∈ X
𝑖

|𝑢| ≤ 𝑢max 𝑖 = 1, 2, . . . , 5,

(46)

where A
1,5

= [
0 0.7 0

0 −0.007 0

0.309 0 0

] , A
3
= [
0 0.7 0

0 −0.007 0

1 0 0

] , A
2,4

=

[
0 0.7 0

0 −0.007 0

0.914 0 0

] , B
1,2,3,4,5

= [0 1 0]
T, A
𝑑1

= A
𝑑2

= A
𝑑3

=

A
𝑑4

= A
𝑑5

= [
0 0.3 0

0 −0.003 0

0 0 0

] , b
1
= [0 0 − 0.757]

T, b
2
=

[0 0 − 0.216]
T, b
3
= [0 0 0]

T, b
4
= [0 0 0.216]

T, b
5
=

[0 0 0.757]
T, 𝑢max = 8.

𝜏 = 2 is the time-delay constant.We construct the discrete
system by sampling 𝑇 = 0.02 s, and initial state x(0) =

x(−1) = x(−2) = [𝜋/2, 0, 3]
T. By applying Theorem 6, we get

the simulation results.
Figures 2 and 3 are the simulation results. Figure 2

shows the state response of the PWA system with time
delay. Obviously, all of the states are stable. Figure 3 shows
control input action. Physical limitations in ALV impose
hard constraints on the torque input. The simulation result
in Figure 3 shows that state feedback control strategy can
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Figure 2: States trajectories.
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Figure 3: Control action.

stabilize the PWA system with time-delay subject to input
constraints. In this section, the simulation shows the specified
constraints on the torque input variable are satisfied.

4.2. Example for Nonlinear Circuit. This example considers a
circuit with a nonlinear resistor taken from [5] and shown in
Figure 4 with time in 10

−10 seconds, the inductor current in
mA, and the capacitor voltage in Volts, and the dynamics are

[
̇𝑥
1

̇𝑥
2

] = [
−30 −20

0.05 0
] [

𝑥
1

𝑥
2

] + [
24

−50𝑔 (𝑥
2
)
] + [

20

0
] 𝑢. (47)

x2

1.5 kΩ

U+ 1.2V

2pF

5nH

+

−

iR = g(x2)

+

−

+

−

x1

Figure 4: A circuit with a nonlinear resistor.
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Figure 5: Characteristic of the nonlinear resistor.

Following [5], the characteristic of the nonlinear resistor
is described as 𝑔(𝑥

2
), which is defined to be the piecewise-

affine function shown in Figure 5. The corresponding poly-
topic regions are generated as follows:

X
1
= {x ∈ 𝑅

2

| −𝐿 < 𝑥
2
< 0.2} ,

X
2
= {x ∈ 𝑅

2

| 0.2 < 𝑥
2
< 0.6} ,

X
3
= {x ∈ 𝑅

2

| 0.6 < 𝑥
2
< 𝐿} ,

(48)

where 𝐿 = 100. X
1,2,3

are described as ellipsoids in (10) with
the following parameters: 𝐸

1
= 𝐸
3
= [0, 0.01], 𝐸

2
= [0, 5],

𝑒
1
= 1.0044, 𝑒

2
= 1.2145, and 𝑒

3
= 0.9996.

By using Lemma 3 and the characteristic of the nonlinear
resistor, the dynamics (47) is transformed to the PWA system
as follows:

̇x = [
−30 −20

0.05 −0.25
] x + [

20

0
] 𝑢 + [

0

−0.1422
] x ∈ X

1
,

̇x = [
−30 −20

0.05 0.1
] x + [

20

0
] 𝑢 + [

0

0.0129
] x ∈ X

2
,

̇x = [
−30 −20

0.05 −0.2
] x + [

20

0
] 𝑢 x ∈ X

3
.

(49)

Respectively, the open-loop equilibrium points of X
1
, X
2
,

and X
3
are 𝑥
1

ol = [0.71, 0.14]
T, 𝑥2ol = [0.5, 0.45]

T, and
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𝑥
3

ol = [0.37, 0.64]
T. The objective is to design a piecewise-

affine state feedback controller to steer the original state 𝑥(0)
to close-loop equilibrium 𝑥cl = 𝑥

3

ol; at the same time the
control input constraints |𝑢| ≤ 1(𝑉)must be satisfied.

Using forward differential ̇x = (x(𝑘 + 1) − x(𝑘))/𝑇, we
get the following PWA with time delay, where 𝑇 = 0.002 s,
and initial state is selected as x(0) = x(−1) = x(−2) =

[0.5; 0.1] ∈ X
1
. To illustrate the proposed results on the time-

delay system, we assume that the system 𝑥
2
(𝑡) is perturbed by

time delay and the delay model is given as

̇x = A
𝑖
x + A
𝑑𝑖
x (𝑡 − 𝜏) + B

𝑖
𝑢 + b
𝑖
,

𝑖 = 1, 2, 3, x ∈ X
𝑖
.

(50)

The constant𝛼 is the retarded coefficient [21]. In this example,
we assume 𝛼 = 0.7. 𝜏 = 2 is the time-delay constant, where
A
1
= [
−30 −20𝛼

0.05 −0.25𝛼
] , A
2
= [
−30 −20𝛼

0.05 0.1𝛼
] , A
3
= [
−30 −20𝛼

0.05 −0.2𝛼
] ,

A
𝑑1

= A
𝑑2

= A
𝑑3

= [
0 1−𝛼

0 1−𝛼
] , B
1,2,3

= [20 0]
T, b
1

=

[0 − 0.1422]
T, b
2

= [0 0.0129]
T, and b

3
= [0 0]

T. By
applyingTheorem 6, we get the following simulation results.

Figures 6 and 7 show the state response of the PWA
system with time delay. Trajectory of the current and voltage
shows that the original states are steered from X

1
to close-

loop equilibrium in X
3
. Obviously, all of the states are stable.

Figure 8 shows the control input action.The simulation result
shows that state feedback control strategy can stabilize the
PWA system with time delay subject to ellipsoid constraints.
Moreover, the constraint on the control input is satisfied.

5. Conclusion

This work presented a stabilizing multimodel predictive
control algorithm which has a contractive constraint to
guarantee closed-loop stability. Moreover, the stability of the
closed-loop is analyzed by employing the Lyapunov functions
approach. Depending on the system state (in the terminal
region or outside) the corresponding Lyapunov functions
are assigned. The use of multiple objective functions has

0.7

0.6

0.5

0.3

0.4

0.2

0.1

0

Vo
lta

ge
 (V

)

500 1000 1500
Time

0

Figure 7: Trajectory of the voltage.
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enabled us to relax the monotonically decreasing condi-
tion of the Lyapunov function when the control algorithm
switches from a quasi-infinite horizon to an infinite hori-
zon strategy. We have developed a new controller design
technique for MPC of piecewise affine systems with time-
delay and input constraints. The two simulation examples
proposed in Section 4 show that the driving moment (in
example 1) and control voltage (in example 2) are limited
in amplitude, which makes MPC approach a natural choice
for the design of the controller with hard constraints. The
technique in this paper leads to convex LMIs based online
optimization problem when the local operating regions of
the piecewise linear model family are described by ellipsoids.
Perhaps the principal shortcoming of MPC proposed is their
inability to explicitly incorporate plant model uncertainty.
MPC involving data-driven technique is suitable to overcome
the previous problem [7, 10, 11, 22, 23]. And it should also be
noted that the controller proposed in this paper is developed
with known order of regions. In the future work, efforts
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will be made to design the data-driven MPC controller with
uncertain model parameters and switching order.
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We consider the exponential stabilization for Timoshenko beam with distributed delay in the boundary control. Suppose that the
controller outputs are of the form 𝛼

1
𝑢
1
(𝑡) +𝛽

1
𝑢
1
(𝑡 −𝜏)+∫

0

−𝜏

𝑔
1
(𝜂)𝑢
1
(𝑡 +𝜂)𝑑𝜂 and 𝛼

2
𝑢
2
(𝑡) +𝛽

2
𝑢
2
(𝑡 −𝜏)+∫

0

−𝜏

𝑔
2
(𝜂)𝑢
2
(𝑡 +𝜂)𝑑𝜂; where

𝑢
1
(𝑡) and 𝑢

2
(𝑡) are the inputs of boundary controllers. In the past, most stabilization results for wave equations and Euler-Bernoulli

beamwith delay are required 𝛼
𝑖
> 𝛽
𝑖
> 0, 𝑖 = 1, 2. In the present paper, we will give the exponential stabilization about Timoshenko

beam with distributed delay and demand to satisfy the lesser conditions for 𝛼
𝑖
, 𝛽
𝑖
, 𝑖 = 1, 2.

1. Introduction

Since the extensive applications of Timoshenko beam in
high-Tech, the stabilization problem has been a hot topic
in the mathematical control theory and engineering; for
instance, see [1–5] and the references therein. In many
literature, the control delay problem has been neglected. Due
to extensive applications of the system with delay, more and
more scholars devoted to study the stabilization of the system
with controller delay. It is well known that time delay caused
by controller memory usually takes the form ∫

0

−∞

𝑑𝛼(𝑠)𝑢(𝑡 +

𝑠), where 𝛼(𝑠) is a bounded variation function (or matrix-
valued function) and 𝑢(𝑡) is the control input. If the control
is in the space 𝐿

2

loc(R), then the memory controller will take
the form

∫

0

−𝜏

𝑑𝛼 (𝑠) 𝑢 (𝑡 + 𝑠) = 𝛼𝑢 (𝑡) + 𝛽𝑢 (𝑡 − 𝜏)

+ ∫

0

−𝜏

𝑔 (𝑠) 𝑢 (𝑡 + 𝑠) 𝑑𝑠.

(1)

Based on this reason, Xu et al. (see [6]) studied firstly
stabilization of the 1-d wave systems with delay of the
form 𝛼𝑢(𝑡) + 𝛽𝑢(𝑡 − 𝜏). They proved that the system with

control delay is exponential stable if 𝛼 > 𝛽 > 0 and unstable
if 𝛽 > 𝛼. Nicaise and Pignotti in [7] studied the stability and
instability of the wave equation with delay in boundary and
internal distributed delay. Nicaise and Valein in [8] extend
the 1-d wave equation to the networks of 1-d wave equations.
Shang et al. in [9] studied Euler-Bernoulli beam and showed
that 𝛽 > 0 is not necessary, but the condition 𝛼 > |𝛽| is
necessary. For the case of distributed delay, that is, 𝛽 >

0 and ∫
0

−𝜏

|𝑔(𝜂)|𝑑𝜂 ̸= 0, Nicaise and Pignotti in [10] discussed
a high dimensional wave equation. Under the condition
that 𝛼 > ∫

0

−𝜏

|𝑔(𝜂)|𝑑𝜂 ̸= 0, they proved the velocity feedback
control law also stabilizes exponentially the system.

From above we see that 𝛼, 𝛽, and 𝑔(𝜂) are determined
by the controller. We cannot determine whether or not 𝛼 >

𝛽 > 0 including 𝛼 > |𝛽| in practice. Under the assump-
tion of state being measurable, Shang and Xu in [11]
designed a dynamic feedback controller for cantilever Euler-
Bernoulli beam that stabilizes exponentially the system for
any real |𝛼| ̸= |𝛽|. Recently Han and Xu in [12] extended this
result to the case of output being measurable; they showed
that a state observer can realize the state reconstruction from
the output of the system. Xu and Wang in [13] discussed the
Timoshenko beam with boundary control delay, and they
also stabilized the system by a dynamic feedback controller.
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Note that the difference between [11, 13], one is a system
of single input and single output, the other is a system
of 2 inputs and 2 outputs. Such discussion will lead us
to extend the method to a general system of multiinput
and multioutput. So far, however, there is no result for
any 𝛼, 𝛽, and 𝑔(𝜂) about Timoshenko beams. In this paper,
we still consider Timoshenko beam with boundary control
distributed delay.Wewill seek for a dynamic feedback control
law that exponentially stabilizes the Timoshenko beam with
distributed delay under certain conditions.

The rest is organized as follows. In Section 2, we will
describe the design process of controllers, including predict
system and generation of signal, and then state the main
results of this paper. In Section 3, we will give the represen-
tation of the transform system. In Section 4, we will prove
our first result on the stabilization of the original system. In
Section 5, we will prove the second result on the exponential
stabilization of the induced system. In Section 6, we conclude
the paper.

2. Design of Controllers and Main Results

Let 𝑤(𝑥, 𝑡) be the displacement and 𝜑(𝑥, 𝑡) the rotation
angle of the beam. The motion of a cantilever beam is
governed by the following partial differential equations:

𝜌𝑤
𝑡𝑡
(𝑥, 𝑡) − 𝐾 (𝑤

𝑥𝑥
− 𝜑
𝑥
) (𝑥, 𝑡) = 0,

𝑥 ∈ (0, 1) , 𝑡 > 0,

𝐼
𝜌
𝜑
𝑡𝑡
(𝑥, 𝑡) − 𝐸𝐼𝜑

𝑥𝑥
(𝑥, 𝑡) − 𝐾 (𝑤

𝑥
− 𝜑) (𝑥, 𝑡) = 0,

𝑥 ∈ (0, 1) , 𝑡 > 0,

𝑤 (0, 𝑡) = 𝜑 (0, 𝑡) = 0, 𝑡 > 0,

𝐾 (𝑤
𝑥
− 𝜑) (1, 𝑡) = V

1
(𝑡) ,

𝐸𝐼𝜑
𝑥
(1, 𝑡) = V

2
(𝑡) ,

𝑤 (𝑥, 0) = 𝑤
0
(𝑥) , 𝑤

𝑡
(𝑥, 0) = 𝑤

1
(𝑥) ,

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) , 𝜑

𝑡
(𝑥, 0) = 𝜑

1
(𝑥) ,

(2)

where V
1
(𝑡) and V

2
(𝑡) are the control force and torque from

the controllers, respectively. If the controllers have no mem-
ory, namely, 𝑢

𝑗
(𝑡) = V

𝑗
(𝑡), 𝑗 = 1, 2, where 𝑢

𝑗
(𝑡) are controller

inputs, this model had been studied in [14]. If the controllers
have memory, then the Timoshenko beam became

𝜌𝑤
𝑡𝑡
(𝑥, 𝑡) − 𝐾 (𝑤

𝑥𝑥
− 𝜑
𝑥
) (𝑥, 𝑡) = 0,

𝑥 ∈ (0, 1) , 𝑡 > 0,

𝐼
𝜌
𝜑
𝑡𝑡
(𝑥, 𝑡) − 𝐸𝐼𝜑

𝑥𝑥
(𝑥, 𝑡) − 𝐾 (𝑤

𝑥
− 𝜑) (𝑥, 𝑡) = 0,

𝑥 ∈ (0, 1) , 𝑡 > 0,

𝑤 (0, 𝑡) = 𝜑 (0, 𝑡) = 0, 𝑡 > 0,

𝐾 (𝑤
𝑥
− 𝜑) (1, 𝑡) = 𝛼

1
𝑢
1
(𝑡) + 𝛽

1
𝑢
1
(𝑡 − 𝜏)

+ ∫

0

−𝜏

𝑔
1
(𝜂) 𝑢
1
(𝑡 + 𝜂) 𝑑𝜂,

𝐸𝐼𝜑
𝑥
(1, 𝑡) = 𝛼

2
𝑢
2
(𝑡) + 𝛽

2
𝑢
2
(𝑡 − 𝜏)

+ ∫

0

−𝜏

𝑔
2
(𝜂) 𝑢
2
(𝑡 + 𝜂) 𝑑𝜂,

𝑤 (𝑥, 0) = 𝑤
0
(𝑥) , 𝑤

𝑡
(𝑥, 0) = 𝑤

1
(𝑥) ,

𝜑 (𝑥, 0) = 𝜑
0
(𝑥) , 𝜑

𝑡
(𝑥, 0) = 𝜑

1
(𝑥) ,

𝑢
1
(𝜃) = 𝑓

1
(𝜃) , 𝑢

2
(𝜃) = 𝑓

2
(𝜃) , 𝜃 ∈ (−𝜏, 0) ,

(3)

where 𝜏 is the delay time, 𝛼
𝑖
, 𝛽
𝑖

∈ R (𝑖 = 1, 2) are the
controller parameters, and 𝑔

𝑖
(𝜂) ∈ 𝐿

2

[−𝜏, 0], 𝑗 = 1, 2,
and 𝑓

𝑖
(𝜃), 𝜃 ∈ (−𝜏, 0) (𝑖 = 1, 2) are bounded measurable

functions that are memory values of controllers. When 𝑔
𝑗
≡

0, 𝑗 = 1, 2, (3) is just the model in [13].
We suppose that the state of (3) is measurable; that

is, (𝑤(𝑥, 𝑡), 𝜑(𝑥, 𝑡), 𝑤
𝑡
(𝑥, 𝑡), 𝜑

𝑡
(𝑥, 𝑡)) is measurable. We intro-

duce an auxiliary system as follows:

𝑤
𝑠
(𝑥, 𝑠, 𝑡) = �̂� (𝑥, 𝑠, 𝑡) , 𝑥 ∈ (0, 1) , 𝑠 ∈ (0, 𝜏) ,

𝜑
𝑠
(𝑥, 𝑠, 𝑡) = �̂� (𝑥, 𝑠, 𝑡) , 𝑥 ∈ (0, 1) , 𝑠 ∈ (0, 𝜏) ,

�̂�
𝑠
(𝑥, 𝑠, 𝑡) =

𝐾

𝜌
(𝑤
𝑥𝑥

(𝑥, 𝑠, 𝑡) − 𝜑
𝑥
(𝑥, 𝑠, 𝑡)) ,

�̂�
𝑠
(𝑥, 𝑠, 𝑡) =

𝐸𝐼

𝐼
𝜌

𝜑
𝑥𝑥

(𝑥, 𝑠, 𝑡) +
𝐾

𝐼
𝜌

(𝑤
𝑥
(𝑥, 𝑠, 𝑡) − 𝜑 (𝑥, 𝑠, 𝑡)) ,

𝑤 (0, 𝑠, 𝑡) = 𝜑 (0, 𝑠, 𝑡) = 0, 𝑠 ∈ (0, 𝜏) ,

𝐾 (𝑤
𝑥
− 𝜑) (1, 𝑠, 𝑡) = 𝛽

1
𝑢
1
(𝑡 + 𝑠 − 𝜏)

+ ∫

−𝑠

−𝜏

𝑔
1
(𝜂) 𝑢
1
(𝑡 + 𝑠 + 𝜂) 𝑑𝜂,

𝑠 ∈ (0, 𝜏) ,

𝐸𝐼𝜑
𝑥
(1, 𝑠, 𝑡) = 𝛽

2
𝑢
2
(𝑡 + 𝑠 − 𝜏)

+ ∫

−𝑠

−𝜏

𝑔
2
(𝜂) 𝑢
2
(𝑡 + 𝑠 + 𝜂) 𝑑𝜂,

𝑠 ∈ (0, 𝜏) , 𝑡 > 0,

𝑤 (𝑥, 0, 𝑡) = 𝑤 (𝑥, 𝑡) , �̂� (𝑥, 0, 𝑡) = 𝑤
𝑡
(𝑥, 𝑡) ,

𝑥 ∈ (0, 1) ,

𝜑 (𝑥, 0, 𝑡) = 𝜑 (𝑥, 𝑡) , �̂�
𝑡
(𝑥, 0, 𝑡) = 𝜑

𝑡
(𝑥, 𝑡) ,

𝑥 ∈ (0, 1) , 𝑡 > 0.

(4)

Equation (4) is a partial state predictor.
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Denote the state of (4) at the moment 𝑠 = 𝜏 by

(𝑝
1
(𝑥, 𝑡) , 𝑝

2
(𝑥, 𝑡) , 𝑞

1
(𝑥, 𝑡) , 𝑞

2
(𝑥, 𝑡))

= (𝑤 (𝑥, 𝜏, 𝑡) , 𝜑 (𝑥, 𝜏, 𝑡) , �̂� (𝑥, 𝜏, 𝑡) , �̂� (𝑥, 𝜏, 𝑡)) .

(5)

Using (3) we can verify that the functions group (𝑝
1
(𝑥, 𝑡),

𝑝
2
(𝑥, 𝑡), 𝑞

1
(𝑥, 𝑡), 𝑞

2
(𝑥, 𝑡)) satisfy the following partial differ-

ential equations:

𝑝
1,𝑡
(𝑥, 𝑡) = 𝑞

1
(𝑥, 𝑡) + 𝑎

1
(𝑥) 𝑢
1
(𝑡) + 𝑎

2
(𝑥) 𝑢
2
(𝑡) ,

𝑥 ∈ (0, 1) , 𝑡 > 0,

𝑝
2,𝑡
(𝑥, 𝑡) = 𝑞

2
(𝑥, 𝑡) + 𝑎

3
(𝑥) 𝑢
1
(𝑡) + 𝑎

4
(𝑥) 𝑢
2
(𝑡) ,

𝑥 ∈ (0, 1) , 𝑡 > 0,

𝑞
1,𝑡
(𝑥, 𝑡) =

𝐾

𝜌
(𝑝
1,𝑥𝑥

− 𝑝
2,𝑥
) (𝑥, 𝑡) + 𝑏

1
(𝑥) 𝑢
1
(𝑡)

+ 𝑏
2
(𝑥) 𝑢
2
(𝑡) ,

𝑞
2,𝑡
(𝑥, 𝑡) =

𝐸𝐼

𝐼
𝜌

𝑝
2,𝑥𝑥

(𝑥, 𝑡) +
𝐾

𝐼
𝜌

(𝑝
1,𝑥

− 𝑝
2
) (𝑥, 𝑡)

+ 𝑏
3
(𝑥) 𝑢
1
(𝑡) + 𝑏

4
(𝑥) 𝑢
2
(𝑡),

𝑝
1
(0, 𝑡) = 𝑝

2
(0, 𝑡) = 𝑞

1
(0, 𝑡) = 𝑞

2
(0, 𝑡) = 0,

𝑡 > 0,

𝐾 (𝑝
1,𝑥

− 𝑝
2
) (1, 𝑡) = 𝛽

1
𝑢
1
(𝑡) , 𝑡 > 0,

𝐸𝐼𝑝
2,𝑥

(1, 𝑡) = 𝛽
2
𝑢
2
(𝑡) , 𝑡 > 0,

𝑝
1
(𝑥, 0) = 𝐸

1
(𝑤
0
, 𝜑
0
, 𝑤
1
, 𝜑
1
) (𝑥) − ∫

0

−𝜏

𝑎
1
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠

− ∫

0

−𝜏

𝑎
2
(𝑥, 𝑠) 𝑓

2
(𝑠) 𝑑𝑠,

𝑝
2
(𝑥, 0) = 𝐸

2
(𝑤
0
, 𝜑
0
, 𝑤
1
, 𝜑
1
) (𝑥) − ∫

0

−𝜏

𝑎
3
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠

− ∫

0

−𝜏

𝑎
4
(𝑥, 𝑠) 𝑓

2
(𝑠) 𝑑𝑠,

𝑞
1
(𝑥, 0) = 𝐸

3
(𝑤
0
, 𝜑
0
, 𝑤
1
, 𝜑
1
) (𝑥) + ∫

0

−𝜏

𝑏
1
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠

+ ∫

0

−𝜏

𝑏
2
(𝑥, 𝑠) 𝑓

2
(𝑠) 𝑑𝑠,

𝑞
2
(𝑥, 0) = 𝐸

4
(𝑤
0
, 𝜑
0
, 𝑤
1
, 𝜑
1
) (𝑥) + ∫

0

−𝜏

𝑏
3
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠

+ ∫

0

−𝜏

𝑏
4
(𝑥, 𝑠) 𝑓

2
(𝑠) 𝑑𝑠,

(6)

where 𝑎
𝑖
(𝑥, 𝑟), 𝑏

𝑖
(𝑥, 𝑟), 𝑎

𝑖
(𝑥), 𝑏
𝑖
(𝑥) (𝑖 = 1, 2, 3, 4) are mea-

surable function and 𝐸
𝑖
(𝑖 = 1, 2, 3, 4) are bounded linear

operators on [𝐻
1

[0, 1] × 𝐿
2

[0, 1]]
2; they are determined later.

Equation (6) is a system without delay, but the controls
appear in the system interior and boundary. First we consider
the stabilization problem of (6). Let us consider the energy
functional of (6)

𝐸 (𝑡) =
1

2

(𝑝1, 𝑝2)


2

𝑉
1

𝐾
(0,1)×𝑉

1

𝐸𝐼
(0,1)

+
1

2

(𝑞1, 𝑞2)


2

𝐿
2

𝜌
(0,1)×𝐿

2

𝐼𝜌
(0,1)

=
1

2
∫

1

0

𝐾
𝑝1,𝑥 (𝑥, 𝑡) − 𝑝

2
(𝑥, 𝑡)



2

𝑑𝑥

+
1

2
∫

1

0

𝐸𝐼
𝑝2,𝑥 (𝑥, 𝑡)



2

𝑑𝑥

+
1

2
∫

1

0

𝜌
𝑞1 (𝑥, 𝑡)



2

𝑑𝑥

+1
2
∫

1

0

𝐼
𝜌

𝑞2 (𝑥, 𝑡)


2

𝑑𝑥.

(7)

A direct calculation gives

𝑑𝐸 (𝑡)

𝑑𝑡

= 𝑢
1
(𝑡) [𝛽

1
𝑞
1
(1, 𝑡)

+ ∫

1

0

𝐾(𝑝
1,𝑥

− 𝑝
2
) [𝑎


1
(𝑥) − 𝑎

3
(𝑥)] 𝑑𝑥

+ ∫

1

0

𝐸𝐼𝑝
2,𝑥

(𝑥, 𝑡) 𝑎


3
(𝑥) 𝑑𝑥

+ ∫

1

0

𝜌𝑞
1
(𝑥, 𝑡) 𝑏

1
(𝑥) 𝑑𝑥

+∫

1

0

𝐼
𝜌
𝑞
2
(𝑥, 𝑡) 𝑏

3
(𝑥) 𝑑𝑥]

+ 𝑢
2
(𝑡) [𝛽

2
𝑞
2
(1, 𝑡) + ∫

1

0

𝐾(𝑝
1,𝑥

− 𝑝
2
)

× [𝑎


2
(𝑥) − 𝑎

4
(𝑥)] 𝑑𝑥

+ ∫

1

0

𝐸𝐼𝑝
2,𝑥

(𝑥, 𝑡) 𝑎


4
(𝑥) 𝑑𝑥

+ ∫

1

0

𝜌𝑞
1
(𝑥, 𝑡) 𝑏

2
(𝑥) 𝑑𝑥

+∫

1

0

𝐼
𝜌
𝑞
2
(𝑥, 𝑡) 𝑏

4
(𝑥) 𝑑𝑥] .

(8)

Set

𝑈
1
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
)

= 𝛽
1
𝑞
1
(1, 𝑡)

+ ∫

1

0

𝐾(𝑝
1,𝑥

(𝑥, 𝑡) − 𝑝
2
(𝑥, 𝑡)) (𝑎



1
(𝑥) − 𝑎

3
(𝑥)) 𝑑𝑥
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+ ∫

1

0

𝜌𝑞
1
(𝑥, 𝑡) 𝑏

1
(𝑥) 𝑑𝑥 + ∫

1

0

𝐸𝐼𝑝
2,𝑥

(𝑥, 𝑡) 𝑎


3
(𝑥) 𝑑𝑥

+ ∫

1

0

𝐼
𝜌
𝑞
2
(𝑥, 𝑡) 𝑏

3
(𝑥) 𝑑𝑥;

𝑈
2
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
)

= 𝛽
2
𝑞
2
(1, 𝑡)

+ ∫

1

0

𝐾(𝑝
1,𝑥

(𝑥, 𝑡) − 𝑝
2
(𝑥, 𝑡)) (𝑎



2
(𝑥) − 𝑎

4
(𝑥)) 𝑑𝑥

+ ∫

1

0

𝜌𝑞
1
(𝑥, 𝑡) 𝑏

2
(𝑥) 𝑑𝑥 + ∫

1

0

𝐸𝐼𝑝
2,𝑥

(𝑥, 𝑡) 𝑎


4
(𝑥) 𝑑𝑥

+ ∫

1

0

𝐼
𝜌
𝑞
2
(𝑥, 𝑡) 𝑏

4
(𝑥) 𝑑𝑥. (9)

We take the feedback control law as

𝑢
1
(𝑡) = −𝑈

1
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
) ,

𝑢
2
(𝑡) = −𝑈

2
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
) .

(10)

Then, the closed loop system associated with (6) is

𝑝
1,𝑡
(𝑥, 𝑡) = 𝑞

1
(𝑥, 𝑡) − 𝑎

1
(𝑥)𝑈
1
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
)

− 𝑎
2
(𝑥)𝑈
2
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
) ,

𝑥 ∈ (0, 1) , 𝑡 > 0,

𝑝
2,𝑡
(𝑥, 𝑡) = 𝑞

2
(𝑥, 𝑡) − 𝑎

3
(𝑥)𝑈
1
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
)

− 𝑎
4
(𝑥)𝑈
2
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
) ,

𝑥 ∈ (0, 1) , 𝑡 > 0,

𝑞
1,𝑡
(𝑥, 𝑡) =

𝐾

𝜌
(𝑝
1,𝑥𝑥

− 𝑝
2,𝑥
) (𝑥, 𝑡) − 𝑏

1
(𝑥)𝑈
1

× (𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
) − 𝑏
2
(𝑥)𝑈
2
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
) ,

𝑞
2,𝑡
(𝑥, 𝑡) =

𝐸𝐼

𝐼
𝜌

𝑝
2,𝑥𝑥

(𝑥, 𝑡) +
𝐾

𝐼
𝜌

(𝑝
1,𝑥

− 𝑝
2
) (𝑥, 𝑡)

− 𝑏
3
(𝑥)𝑈
1
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
)

− 𝑏
4
(𝑥)𝑈
2
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
) ,

𝑝
1
(0, 𝑡) = 𝑝

2
(0, 𝑡) = 𝑞

1
(0, 𝑡) = 𝑞

2
(0, 𝑡) = 0, 𝑡 > 0,

𝐾 (𝑝
1,𝑥

− 𝑝
2
) (1, 𝑡) = −𝛽

1
𝑈
1
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
) , 𝑡 > 0,

𝐸𝐼𝑝
2,𝑥𝑥

(1, 𝑡) = −𝛽
2
𝑈
2
(𝑝
1
, 𝑝
2
, 𝑞
1
, 𝑞
2
) , 𝑡 > 0,

𝑝
1
(𝑥, 0) = 𝐸

1
(𝑤
0
, 𝜑
0
, 𝑤
1
, 𝜑
1
) (𝑥) − ∫

0

−𝜏

𝑎
1
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠

− ∫

0

−𝜏

𝑎
2
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠,

𝑝
2
(𝑥, 0) = 𝐸

2
(𝑤
0
, 𝜑
0
, 𝑤
1
, 𝜑
1
) (𝑥) − ∫

0

−𝜏

𝑎
3
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠

− ∫

0

−𝜏

𝑎
4
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠,

𝑞
1
(𝑥, 0) = 𝐸

3
(𝑤
0
, 𝜑
0
, 𝑤
1
, 𝜑
1
) (𝑥) + ∫

0

−𝜏

𝑏
1
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠

+ ∫

0

−𝜏

𝑏
2
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠,

𝑞
2
(𝑥, 0) = 𝐸

4
(𝑤
0
, 𝜑
0
, 𝑤
1
, 𝜑
1
) (𝑥) + ∫

0

−𝜏

𝑏
3
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠

+ ∫

0

−𝜏

𝑏
4
(𝑥, 𝑠) 𝑓

1
(𝑠) 𝑑𝑠.

(11)

We estimate the error of the system (3) with control (10) and
the system (11).

Let (𝑤(𝑥, 𝑡), 𝜑(𝑥, 𝑡), 𝑤
𝑡
(𝑥, 𝑡), 𝜑

𝑡
(𝑥, 𝑡)) be the solution to

(3) with control signals (10) and let function group (𝑝
1
(𝑥, 𝑡),

𝑝
2
(𝑥, 𝑡), 𝑞

1
(𝑥, 𝑡), 𝑞

2
(𝑥, 𝑡)) be the solution to (11). Set 𝑊(𝑥, 𝑡)

= (𝑤(𝑥, 𝑡), 𝜑(𝑥, 𝑡)) and 𝑊
𝑡
(𝑥, 𝑡) = (𝑤

𝑡
(𝑥, 𝑡), 𝜑

𝑡
(𝑥, 𝑡)),

and set 𝑃(𝑥, 𝑡) = (𝑝
1
(𝑥, 𝑡), 𝑝

2
(𝑥, 𝑡)) and 𝑄(𝑥, 𝑡) = (𝑞

1
(𝑥, 𝑡),

𝑞
2
(𝑥, 𝑡)).
To discuss the stability (𝑊(𝑥, 𝑡),𝑊

𝑡
(𝑥, 𝑡)), we consider

the error both solutions in the energy space

‖𝑃 (⋅, 𝑡) − 𝑊 (⋅, 𝑡 + 𝜏)‖
2

𝑉
1

𝐾
(0,1)×𝑉

1

𝐸𝐼
(0,1)

+
𝑄(⋅, 𝑡) − 𝑊

𝑡
(⋅, 𝑡 + 𝜏)



2

𝐿
2

𝜌
(0,1)×𝐿

2

𝐼𝜌
(0,1)

.

(12)

In this paper, we will prove the following results.

Theorem 1. Let (𝑊(𝑥, 𝑡),𝑊
𝑡
(𝑥, 𝑡)) be the solution to (3) with

controls (10) and let (𝑃(𝑥, 𝑡), 𝑄(𝑥, 𝑡)) be the solution to the
closed-loop system (11). If the system (11) is asymptotically
(exponentially) stable, then the system (3) also is asymptotically
(exponentially) stable.

Theorem 2. Suppose that 𝐾/𝜌 ̸=𝐸𝐼/𝐼
𝜌
. Let 𝜇

𝑛
, 𝑛 ∈ N be the

eigenvalues of the free system (the system (2) without controls).
Set

𝜉
(1)

𝑛
= ∫

0

−𝜏

𝑔
1
(𝜂) 𝑒
−𝑖√𝜇𝑛(𝜏+𝜂)𝑑𝜂,

𝜉
(2)

𝑛
= ∫

0

−𝜏

𝑔
2
(𝜂) 𝑒
−𝑖√𝜇𝑛(𝜏+𝜂)𝑑𝜂.

(13)

Then the following assertions are true:

(1) when

inf
𝑛



𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(1)

𝑛



> 0,

inf
𝑛



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(2)

𝑛



> 0,

(14)

the system (11) is exponentially stable;
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(2) if for all 𝑛 ∈ N,



𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(1)

𝑛



> 0,



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(2)

𝑛



> 0

(15)

but

inf
𝑛



𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(1)

𝑛



= 0,

inf
𝑛



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(2)

𝑛



= 0,

(16)

then the system (11) is asymptotically stable.

In the following sections, we will prove our results.
In Section 3, we will determine functions 𝑎

𝑖
(𝑥), 𝑏
𝑖
(𝑥),

𝑎
𝑖
(𝑥, 𝑠), 𝑏

𝑖
(𝑥, 𝑠) (𝑖 = 1, 2, 3, 4). In Section 4, we will prove

Theorem 1. In Section 5, we pay our attention to the proof of
Theorem 2.

3. Representation of the System (6)
In this section, we will obtain the expressions for the func-
tions 𝑎

𝑖
(𝑥), 𝑏
𝑖
(𝑥), 𝑎
𝑖
(𝑥, 𝑠), 𝑏

𝑖
(𝑥, 𝑠) (𝑖 = 1, 2, 3, 4) appearing in

system (6) using (3) and (4).
We begin with introducing two useful lemmas.

Lemma 3 (see [13]). Define the differential operator in
𝐿
2

𝜌
(0, 1) × 𝐿

2

𝐼𝜌

(0, 1) as follows:

L (𝑤, 𝜑) = (−
𝐾

𝜌
(𝑤


(𝑥) − 𝜑


(𝑥)) , −
𝐸𝐼

𝐼
𝜌

𝜑


(𝑥)

−
𝐾

𝐼
𝜌

(𝑤


(𝑥) − 𝜑 (𝑥)))

𝑇

,

(17)

with domain

D (L)

=

{

{

{

(𝑤 (𝑥) , 𝜑 (𝑥)) ∈ 𝐻
2

(0, 1)

×𝐻
2

(0, 1)
|

𝑤 (0) = 𝜑 (0) = 0,

𝐾 (𝑤


(1) − 𝜑 (1)) = 0,

𝐸𝐼𝜑


(1) = 0

}

}

}

.

(18)

ThenLis a positive define operator with compact resolvent
in 𝐿
2

𝜌
(0, 1) × 𝐿

2

𝐼𝜌

(0, 1); its eigenvalues are

0 < 𝜇
1
< 𝜇
2
< ⋅ ⋅ ⋅ < 𝜇

𝑛
< ⋅ ⋅ ⋅ (19)

and the eigenfunctionsΦ
𝑛
(𝑥) = (𝑤

𝑛
(𝑥), 𝜑
𝑛
(𝑥))
𝑇 corresponding

to 𝜇
𝑛
are real functions and form a normalized orthogonal

basis for 𝐿2
𝜌
(0, 1) × 𝐿

2

𝐼𝜌

(0, 1).

Lemma 4 (see [13]). Let Φ
𝑛
(𝑥) = (𝑤

𝑛
(𝑥), 𝜑
𝑛
(𝑥)) be the

normalized eigenfunction corresponding to the eigenvalue
𝜇
𝑛
ofL. Then it holds that

∫

1

0

𝐾

𝜔


𝑛
(𝑥) − 𝜑

𝑛
(𝑥)



2

𝑑𝑥 + ∫

1

0

𝐸𝐼

𝜑


𝑛
(𝑥)



2

𝑑𝑥 = 𝜇
𝑛
,

0 < inf
𝑛

{𝜌
𝑤𝑛 (1)



2

+

𝐼
𝜌
𝜑
𝑛
(1)



2

}

≤ sup
𝑛

{𝜌
𝑤𝑛 (1)



2

+

𝐼
𝜌
𝜑
𝑛
(1)



2

} < ∞.

(20)

Now let us return to (3). We write the equation in (3) into
the vector form

(
𝑤
𝑡𝑡
(𝑥, 𝑡)

𝜑
𝑡𝑡
(𝑥, 𝑡)

) −(

𝐾

𝜌
𝜕
𝑥𝑥

−
𝐾

𝜌
𝜕
𝑥

𝐾

𝐼
𝜌

𝜕
𝑥

𝐸𝐼

𝐼
𝜌

𝜕
𝑥𝑥

−
𝐾

𝐼
𝜌

)(
𝑤(𝑥, 𝑡)

𝜑 (𝑥, 𝑡)
) = 0

(21)

and the boundary conditions are (
𝑤(0,𝑡)

𝜑(0,𝑡)
) = 0, and

(
𝐾𝜕
𝑥

−𝐾

0 𝐸𝐼𝜕
𝑥

)(
𝑤(𝑥, 𝑡)

𝜑(𝑥, 𝑡)
)

𝑥=1

= (
𝛼
1

0

0 𝛼
2

)(
𝑢
1
(𝑡)

𝑢
2
(𝑡)

) + (
𝛽
1

0

0 𝛽
2

)(
𝑢
1
(𝑡 − 𝜏)

𝑢
2
(𝑡 − 𝜏)

)

+ ∫

0

−𝜏

(
𝑔
1
(𝜂) 0

0 𝑔
2
(𝜂)

)(
𝑢
1
(𝑡 + 𝜂)

𝑢
2
(𝑡 + 𝜂)

) 𝑑𝜂.

(22)

The initial datum are

(
𝑤 (𝑥, 0)

𝜑 (𝑥, 0)
) = (

𝑤
0
(𝑥)

𝜑
0
(𝑥)

) , (
𝑤
𝑡
(𝑥, 0)

𝜑
𝑡
(𝑥, 0)

) = (
𝑤
1
(𝑥)

𝜑
1
(𝑥)

) .

(23)

Set 𝑊(𝑥, 𝑡) = (𝑤(𝑥, 𝑡), 𝜑(𝑥, 𝑡))
𝑇 and 𝑈(𝑡) = (𝑢

1
(𝑡), 𝑢
2
(𝑡))
𝑇.

Define 2 × 2 matrices

Λ
1
= (

𝛼
1

0

0 𝛼
2

) , Λ
2
= (

𝛽
1

0

0 𝛽
2

) ,

Λ
3
(𝜂) = (

𝑔
1
(𝜂) 0

0 𝑔
2
(𝜂)

)

(24)

and define an operator 𝐵 from R2 to 𝐻
−1

(0, 1) × 𝐻
−1

(0, 1),
where 𝐻

−1

(0, 1) = (𝑉
1

𝜔
(0, 1))

∗ is dual space,

𝐵 = (
𝛿 (𝑥 − 1) 0

0 𝛿 (𝑥 − 1)
) , (25)

and define an operator Γ
𝑁
from𝐻

2

(0, 1) × 𝐻
2

(0, 1) toR2 by

Γ
𝑁
𝑊 = (

𝐾(𝑤


(1) − 𝜑 (1))

𝐸𝐼𝜑


(1)
) , (26)

where 𝑊(𝑥) = (𝑤(𝑥), 𝜑(𝑥))
𝑇.
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With help of these notations, we can rewrite (3) into

𝑊
𝑡𝑡
(𝑥, 𝑡) +L𝑊(𝑥, 𝑡)

= 𝐵(Λ
1
𝑈 (𝑡) + Λ

2
𝑈 (𝑡 − 𝜏) + ∫

0

−𝜏

Λ
3
(𝜂)𝑈 (𝑡 + 𝜂) 𝑑𝜂) ,

𝑡 > 0,

𝑊 (0, 𝑡) = 0, Γ
𝑁
𝑊(1, 𝑡) = 0,

𝑊 (𝑥, 0) = 𝑊
0
(𝑥) = (𝑤

0
(𝑥) , 𝜑

0
(𝑥))
𝑇

,

𝑊
𝑡
(𝑥, 0) = 𝑊

1
(𝑥) = (𝑤

1
(𝑥) , 𝜑

1
(𝑥))
𝑇

,

(27)

and (4) into

�̂�
𝑠
(𝑥, 𝑠, 𝑡) = �̂� (𝑥, 𝑠, 𝑡) ,

�̂�
𝑠
(𝑥, 𝑠, 𝑡) +L�̂� (𝑥, 𝑠, 𝑡) = 𝐵Λ

2
𝑈 (𝑡 + 𝑠 − 𝜏)

+ 𝐵∫

−𝑠

−𝜏

Λ
3
(𝜂)𝑈 (𝑡 + 𝑠 + 𝜂) 𝑑𝜂,

�̂� (0, 𝑠, 𝑡) = 0, Γ
𝑁
�̂� (1, 𝑠, 𝑡) = 0,

�̂� (𝑥, 0, 𝑡) = 𝑊 (𝑥, 𝑡) ,

�̂� (𝑥, 0, 𝑡) = 𝑊
𝑡
(𝑥, 𝑡) ,

(28)

where �̂�(𝑥, 𝑠, 𝑡) = (𝑤(𝑥, 𝑠, 𝑡), 𝜑(𝑥, 𝑠, 𝑡))
𝑇, �̂�(𝑥, 𝑠, 𝑡) =

(�̂�(𝑥, 𝑠, 𝑡), �̂�(𝑥, 𝑠, 𝑡))
𝑇.

We define two families of the bounded linear operators
on 𝐿
2

𝜌
(0, 1) × 𝐿

2

𝐼𝜌

(0, 1) by

Cos (𝑡L) 𝐹 =

∞

∑

𝑛=1

cos√𝜇
𝑛
𝑡(𝐹, Φ

𝑛
)
𝐿
2

𝜌
×𝐿
2

𝐼𝜌

Φ
𝑛
,

Sin (𝑡L) 𝐹 =

∞

∑

𝑛=1

sin√𝜇
𝑛
𝑡

√𝜇
𝑛

(𝐹,Φ
𝑛
)
𝐿
2

𝜌
×𝐿
2

𝐼𝜌

Φ
𝑛
.

(29)

Clearly, the following equalities hold, for any 𝑡 ∈ R,

Sin (𝑡L) = ∫

𝑡

0

Cos (𝑡L) 𝑑𝑡,

𝑑

𝑑𝑡
(Cos (𝑡L)) = −L Sin (𝑡L) .

(30)

It is easy to know that the vector-valued function

𝑊(𝑥, 𝑡) = Cos (𝑡L)𝑊
0
+ Sin (𝑡L)𝑊

1

+ ∫

𝑡

0

Sin ((𝑡 − 𝑠)L) 𝐵 [Λ
1
𝑈 (𝑠) + Λ

2
𝑈 (𝑠 − 𝜏)] 𝑑𝑠

+ ∫

𝑡

0

Sin ((𝑡 − 𝑠)L) 𝐵∫

0

−𝜏

Λ
3
(𝜂)𝑈 (𝑠 + 𝜂) 𝑑𝜂 𝑑𝑠

(31)

is differentiable with respect to 𝑡 and

𝑊
𝑡
(𝑥, 𝑡) = −L Sin (𝑡L)𝑊

0
+ Cos (𝑡L)𝑊

1

+ ∫

𝑡

0

Cos ((𝑡 − 𝑠)L) 𝐵 [Λ
1
𝑈 (𝑠)+Λ

2
𝑈 (𝑠 − 𝜏)] 𝑑𝑠

+ ∫

𝑡

0

Cos ((𝑡 − 𝑠)L) 𝐵∫

0

−𝜏

Λ
3
(𝜂)𝑈 (𝑠 + 𝜂) 𝑑𝜂 𝑑𝑠.

(32)

Further, 𝑊(𝑥, 𝑡) satisfies (27).
Similarly, we know the vector-valued function

�̂� (𝑥, 𝑠, 𝑡)

= Cos (𝑠L)𝑊 (⋅, 𝑡) + Sin (𝑠L)𝑊
𝑡
(⋅, 𝑡)

+ ∫

𝑠

0

Sin ((𝑠 − 𝑟)L) 𝐵Λ
2
𝑈 (𝑡 + 𝑟 − 𝜏) 𝑑𝑟

+ ∫

𝑠

0

Sin ((𝑠 − 𝑟)L) 𝐵∫

−𝑟

−𝜏

Λ
3
(𝜂)𝑈 (𝑡 + 𝑟 + 𝜂) 𝑑𝜂 𝑑𝑟,

(33)

�̂� (𝑥, 𝑠, 𝑡)

= −L Sin (𝑠L)𝑊 (⋅, 𝑡) + Cos (𝑠L)𝑊
𝑡
(⋅, 𝑡)

+ ∫

𝑠

0

Cos ((𝑠 − 𝑟)L) 𝐵Λ
2
𝑈 (𝑡 + 𝑟 − 𝜏) 𝑑𝑟

+ ∫

𝑠

0

Cos ((𝑠 − 𝑟)L) 𝐵∫

−𝑟

−𝜏

Λ
3
(𝜂)𝑈 (𝑡 + 𝑟 + 𝜂) 𝑑𝜂 𝑑𝑟.

(34)

satisfy (28).
Set

𝑃 (𝑥, 𝑡) = �̂� (𝑥, 𝜏, 𝑡) , 𝑄 (𝑥, 𝑡) = �̂� (𝑥, 𝜏, 𝑡) . (35)

Then we have

(
𝑃 (𝑥, 𝑡)

𝑄 (𝑥, 𝑡)
) = (

Cos (𝜏L) Sin (𝜏L)

−L Sin (𝜏L) Cos (𝜏L)
) (

𝑊 (𝑥, 𝑡)

𝑊
𝑡
(𝑥, 𝑡)

)

+ ∫

𝜏

0

(
Sin ((𝜏 − 𝑟)L)

Cos ((𝜏 − 𝑟)L)
) 𝐵Λ
2
𝑈 (𝑡 + 𝑟 − 𝜏) 𝑑𝑟

+ ∫

𝜏

0

(
Sin ((𝜏 − 𝑟)L)

Cos ((𝜏 − 𝑟)L)
)

× 𝐵∫

−𝑟

−𝜏

Λ
3
(𝜂)𝑈 (𝑡 + 𝑟 + 𝜂) 𝑑𝜂𝑑𝑟.

(36)

Thus,

(
𝑃
𝑡
(𝑥, 𝑡)

𝑄
𝑡
(𝑥, 𝑡)

) = (
Cos (𝜏L) Sin (𝜏L)

−L Sin (𝜏L) Cos (𝜏L)
) (

𝑊
𝑡
(𝑥, 𝑡)

𝑊
𝑡𝑡
(𝑥, 𝑡)

)

+ ∫

𝜏

0

(
Cos ((𝜏 − 𝑟)L)

−L Sin ((𝜏 − 𝑟)L)
)

× 𝐵Λ
2
𝑈 (𝑡 + 𝑟 − 𝜏) 𝑑𝑟
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+ (
0

𝐵Λ
2
𝑈 (𝑡)

) − (
Sin (𝜏L)

Cos (𝜏L)
) 𝐵Λ
2
𝑈 (𝑡 − 𝜏)

− (
Sin (𝜏L)

Cos (𝜏L)
) 𝐵∫

0

−𝜏

Λ
3
(𝜂)𝑈 (𝑡 + 𝜂) 𝑑𝜂

+ ∫

𝜏

0

(
Cos ((𝜏 − 𝑟)L)

−L Sin ((𝜏 − 𝑟)L)
) 𝐵

× ∫

−𝑟

−𝜏

Λ
3
(𝜂)𝑈 (𝑡 + 𝑟 + 𝜂) 𝑑𝜂𝑑𝑟

+ ∫

0

−𝜏

(
Sin ((𝜏 + 𝜂)L)

Cos ((𝜏 + 𝜂)L)
) 𝐵Λ
3
(𝜂)𝑈 (𝑡) 𝑑𝜂.

(37)

Note that

(
𝑊
𝑡
(𝑥, 𝑡)

𝑊
𝑡𝑡
(𝑥, 𝑡)

)

= (
0 𝐼

−L 0
)(

𝑊(𝑥, 𝑡)

𝑊
𝑡
(𝑥, 𝑡)

)

+ (

0

𝐵(Λ
1
𝑈 (𝑡) + Λ

2
𝑈 (𝑡 − 𝜏) + ∫

0

−𝜏

Λ
3
(𝜂)𝑈 (𝑡 + 𝜂) 𝑑𝜂)

) .

(38)

So it holds that

(
𝑃
𝑡
(𝑥, 𝑡)

𝑄
𝑡
(𝑥, 𝑡)

) = (
0 𝐼

−L 0
)(

𝑃 (𝑥, 𝑡)

𝑄 (𝑥, 𝑡)
)

+(

Sin (𝜏L) 𝐵Λ
1
𝑈 (𝑡) + ∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂)𝑈 (𝑡) 𝑑𝜂

Cos (𝜏L) 𝐵Λ
1
𝑈 (𝑡) + ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂)𝑈 (𝑡) 𝑑𝜂 + 𝐵Λ

2
𝑈 (𝑡)

) .

(39)

Therefore, we have equations

𝑃
𝑡
(𝑥, 𝑡) = 𝑄 (𝑥, 𝑡) + Sin (𝜏L) 𝐵Λ

1
𝑈 (𝑡)

+ ∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂)𝑈 (𝑡) 𝑑𝜂,

𝑄
𝑡
(𝑥, 𝑡) = −L𝑃 (𝑥, 𝑡) + Cos (𝜏L) 𝐵Λ

1
𝑈 (𝑡)

+ ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂)𝑈 (𝑡) 𝑑𝜂,

𝑃 (0, 𝑡) = 𝑄 (0, 𝑡) = 0, Γ
𝑁
𝑃 (⋅, 𝑡) = Λ

2
𝑈 (𝑡)

(40)

and initial conditions
𝑃 (𝑥, 0) = Cos (𝜏L)𝑊

0
+ Sin (𝜏L)𝑊

1

− ∫

0

−𝜏

Sin (𝑠L) 𝐵Λ
2
𝑓 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

∫

𝑠

−𝜏

Sin ((𝜏 − 𝑠 + 𝜂)L)

× 𝐵Λ
3
(𝜂) 𝑓 (𝑠) 𝑑𝜂 𝑑𝑠,

(41)

𝑄 (𝑥, 0) = −L Sin (𝜏L)𝑊
0
+ Cos (𝜏L)𝑊

1

+ ∫

0

−𝜏

Cos (𝑠L) 𝐵Λ
2
𝑓 (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

∫

𝑠

−𝜏

Cos ((𝜏 − 𝑠 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑓 (𝑠) 𝑑𝜂 𝑑𝑠,

(42)

where 𝑓(𝑠) = (𝑓
1
(𝑠), 𝑓
2
(𝑠))
𝑇.

Since all entries of 𝐵 are meaningful as linear functional
on 𝐻
1

(0, 1), so for any 𝑍 = (𝑧
1
, 𝑧
2
) ∈ R2 and Φ

𝑛
(𝑥) ∈

𝐻
1

(0, 1) × 𝐻
1

(0, 1),

(𝐵𝑍,Φ
𝑛
)
𝐿
2

𝜌
(0,1)×𝐿

2

𝐼𝜌
(0,1)

= 𝑧
1
∫

1

0

𝜌𝛿 (𝑥 − 1)𝑤
𝑛
(𝑥) 𝑑𝑥 + 𝑧

2
∫

1

0

𝐼
𝜌
𝛿 (𝑥 − 1) 𝜑

𝑛
(𝑥) 𝑑𝑥

= 𝜌𝑧
1
𝑤
𝑛
(1) + 𝐼

𝜌
𝑧
2
𝜑
𝑛
(1) = [𝑧

1
, 𝑧
2
] [𝜌𝑤
𝑛
(1) , 𝜑

𝑛
(1)]
𝑇

.

(43)

Therefore, we have the following results.

Theorem 5. Let {𝜇
𝑛
; 𝑛 ∈ N} be the list of all eigenvalues ofL.

Then the functions that appear in (6) are

𝑎
1
(𝑥) = 𝜌

∞

∑

𝑛=1

𝑤
𝑛
(1) 𝑤
𝑛
(𝑥)

× (𝛼
1

sin 𝜏√𝜇
𝑛

√𝜇
𝑛

+∫

0

−𝜏

𝑔
1
(𝜂)

sin (𝜏 + 𝜂)√𝜇
𝑛

√𝜇
𝑛

𝑑𝜂) ,

𝑎
2
(𝑥) = 𝐼

𝜌

∞

∑

𝑛=1

𝜑
𝑛
(1) 𝑤
𝑛
(𝑥)

× (𝛼
2

sin 𝜏√𝜇
𝑛

√𝜇
𝑛

+∫

0

−𝜏

𝑔
2
(𝜂)

sin (𝜏 + 𝜂)√𝜇
𝑛

√𝜇
𝑛

𝑑𝜂) ,
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𝑎
3
(𝑥) = 𝜌

∞

∑

𝑛=1

𝑤
𝑛
(1) 𝜑
𝑛
(𝑥)

× (𝛼
1

sin 𝜏√𝜇
𝑛

√𝜇
𝑛

+∫

0

−𝜏

𝑔
1
(𝜂)

sin (𝜏 + 𝜂)√𝜇
𝑛

√𝜇
𝑛

𝑑𝜂) ,

𝑎
4
(𝑥) = 𝐼

𝜌

∞

∑

𝑛=1

𝜑
𝑛
(1) 𝜑
𝑛
(𝑥)

× (𝛼
2

sin 𝜏√𝜇
𝑛

√𝜇
𝑛

+∫

0

−𝜏

𝑔
2
(𝜂)

sin (𝜏 + 𝜂)√𝜇
𝑛

√𝜇
𝑛

𝑑𝜂) ,

𝑏
1
(𝑥) = 𝜌

∞

∑

𝑛=1

𝑤
𝑛
(1) 𝑤
𝑛
(𝑥)

× (𝛼
1
cos 𝜏√𝜇

𝑛

+∫

0

−𝜏

𝑔
1
(𝜂) cos (𝜏 + 𝜂)√𝜇

𝑛
𝑑𝜂) ,

𝑏
2
(𝑥) = 𝐼

𝜌

∞

∑

𝑛=1

𝜑
𝑛
(1) 𝑤
𝑛
(𝑥)

× (𝛼
2
cos 𝜏√𝜇

𝑛

+∫

0

−𝜏

𝑔
2
(𝜂) cos (𝜏 + 𝜂)√𝜇

𝑛
𝑑𝜂) ,

𝑏
3
(𝑥) = 𝜌

∞

∑

𝑛=1

𝑤
𝑛
(1) 𝜑
𝑛
(𝑥)

× (𝛼
1
cos 𝜏√𝜇

𝑛

+∫

0

−𝜏

𝑔
1
(𝜂) cos (𝜏 + 𝜂)√𝜇

𝑛
𝑑𝜂) ,

𝑏
4
(𝑥) = 𝐼

𝜌

∞

∑

𝑛=1

𝜑
𝑛
(1) 𝜑
𝑛
(𝑥)

× (𝛼
2
cos 𝜏√𝜇

𝑛

+∫

0

−𝜏

𝑔
2
(𝜂) cos (𝜏 + 𝜂)√𝜇

𝑛
𝑑𝜂) ,

𝑎
1
(𝑥, 𝑠) = 𝜌

∞

∑

𝑛=1

𝑤
𝑛
(1) 𝑤
𝑛
(𝑥)

× (𝛽
1

sin 𝑠√𝜇
𝑛

√𝜇
𝑛

−∫

𝑠

−𝜏

𝑔
1
(𝜂)

sin (𝜏 − 𝑠 + 𝜂)√𝜇
𝑛

√𝜇
𝑛

𝑑𝜂) ,

𝑎
2
(𝑥, 𝑠) = 𝐼

𝜌

∞

∑

𝑛=1

𝜑
𝑛
(1) 𝑤
𝑛
(𝑥)

× (𝛽
2

sin 𝑠√𝜇
𝑛

√𝜇
𝑛

−∫

𝑠

−𝜏

𝑔
2
(𝜂)

sin (𝜏 − 𝑠 + 𝜂)√𝜇
𝑛

√𝜇
𝑛

𝑑𝜂) ,

𝑎
3
(𝑥, 𝑠) = 𝜌

∞

∑

𝑛=1

𝑤
𝑛
(1) 𝜑
𝑛
(𝑥)

× (𝛽
1

sin 𝑠√𝜇
𝑛

√𝜇
𝑛

−∫

𝑠

−𝜏

𝑔
1
(𝜂)

sin (𝜏 − 𝑠 + 𝜂)√𝜇
𝑛

√𝜇
𝑛

𝑑𝜂) ,

𝑎
4
(𝑥, 𝑠) = 𝐼

𝜌

∞

∑

𝑛=1

𝜑
𝑛
(1) 𝜑
𝑛
(𝑥)

× (𝛽
2

sin 𝑠√𝜇
𝑛

√𝜇
𝑛

−∫

𝑠

−𝜏

𝑔
2
(𝜂)

sin (𝜏 − 𝑠 + 𝜂)√𝜇
𝑛

√𝜇
𝑛

𝑑𝜂) ,

𝑏
1
(𝑥, 𝑠) = 𝜌

∞

∑

𝑛=1

𝑤
𝑛
(1) 𝑤
𝑛
(𝑥)

× (𝛽
1
cos 𝑠√𝜇

𝑛

+∫

𝑠

−𝜏

𝑔
1
(𝜂) cos (𝜏 − 𝑠 + 𝜂)√𝜇

𝑛
𝑑𝜂) ,

𝑏
2
(𝑥, 𝑠) = 𝐼

𝜌

∞

∑

𝑛=1

𝜑
𝑛
(1) 𝑤
𝑛
(𝑥)

× (𝛽
2
cos 𝑠√𝜇

𝑛

+∫

𝑠

−𝜏

𝑔
2
(𝜂) cos (𝜏 − 𝑠 + 𝜂)√𝜇

𝑛
𝑑𝜂) ,

𝑏
3
(𝑥, 𝑠) = 𝜌

∞

∑

𝑛=1

𝑤
𝑛
(1) 𝜑
𝑛
(𝑥)

× (𝛽
1
cos 𝑠√𝜇

𝑛

+∫

𝑠

−𝜏

𝑔
1
(𝜂) cos (𝜏 − 𝑠 + 𝜂)√𝜇

𝑛
𝑑𝜂) ,

𝑏
4
(𝑥, 𝑠) = 𝐼

𝜌

∞

∑

𝑛=1

𝜑
𝑛
(1) 𝜑
𝑛
(𝑥)

× (𝛽
2
cos 𝑠√𝜇

𝑛

+∫

𝑠

−𝜏

𝑔
2
(𝜂) cos (𝜏 − 𝑠 + 𝜂)√𝜇

𝑛
𝑑𝜂) ,

(44)
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and the linear operators are

𝐸
1
(𝜔
0
, 𝜑
0
, 𝜔
1
, 𝜑
1
) (𝑥)

=

∞

∑

𝑛=1

[cos 𝜏√𝜇
𝑛
(𝑊
0
, Φ
𝑛
) +

sin 𝜏√𝜇
𝑛

√𝜇
𝑛

(𝑊
1
, Φ
𝑛
)]𝑤
𝑛
(𝑥) ,

𝐸
2
(𝜔
0
, 𝜑
0
, 𝜔
1
, 𝜑
1
) (𝑥)

=

∞

∑

𝑛=1

[ cos 𝜏√𝜇
𝑛
(𝑊
0
, Φ
𝑛
)

+
sin 𝜏√𝜇

𝑛

√𝜇
𝑛

(𝑊
1
, Φ
𝑛
)] 𝜑
𝑛
(𝑥) ,

𝐸
3
(𝜔
0
, 𝜑
0
, 𝜔
1
, 𝜑
1
) (𝑥)

=

∞

∑

𝑛=1

[−√𝜇
𝑛
sin 𝜏√𝜇

𝑛
(𝑊
0
, Φ
𝑛
)

+ cos 𝜏√𝜇
𝑛
(𝑊
1
, Φ
𝑛
)] 𝑤
𝑛
(𝑥) ,

𝐸
4
(𝜔
0
, 𝜑
0
, 𝜔
1
, 𝜑
1
) (𝑥)

=

∞

∑

𝑛=1

[−√𝜇
𝑛
sin 𝜏√𝜇

𝑛
(𝑊
0
, Φ
𝑛
)

+ cos 𝜏√𝜇
𝑛
(𝑊
1
, Φ
𝑛
)] 𝜑
𝑛
(𝑥) ,

(45)

4. The Proof of Theorem 1

In this section, we will prove Theorem 1. Here we mainly
estimate the error:

‖𝑃(⋅, 𝑡) − 𝑊(⋅, 𝑡 + 𝜏)‖
2

𝑉
1

𝐾
(0,1)×𝑉

1

𝐸𝐼
(0,1)

+
𝑄(⋅, 𝑡) − 𝑊

𝑡
(⋅, 𝑡 + 𝜏)



2

𝐿
2

𝜌
(0,1)×𝐿

2

𝐼𝜌
(0,1)

.

(46)

According to the calculation in Section 3, we have

𝑃 (𝑥, 𝑡) − 𝑊 (𝑥, 𝑡 + 𝜏)

= −∫

𝜏

0

Sin ((𝜏 − 𝑟)L) 𝐵Λ
1
𝑈 (𝑡 + 𝑟) 𝑑𝑟

− ∫

𝜏

0

Sin ((𝜏 − 𝑟)L) 𝐵∫

0

−𝜏

Λ
3
(𝜂)𝑈 (𝑡 + 𝑟 + 𝜂) 𝑑𝜂 𝑑𝑟,

(47)

𝑄 (𝑥, 𝑡) − 𝑊
𝑡
(𝑥, 𝑡 + 𝜏)

= −∫

𝜏

0

Cos ((𝜏 − 𝑟)L) 𝐵Λ
1
𝑈 (𝑡 + 𝑟) 𝑑𝑟

− ∫

𝜏

0

Cos ((𝜏 − 𝑟)L) 𝐵∫

0

−𝜏

Λ
3
(𝜂)𝑈 (𝑡 + 𝑟+𝜂) 𝑑𝜂 𝑑𝑟.

(48)

So,

‖𝑃(⋅, 𝑡) − 𝑊(⋅, 𝑡 + 𝜏)‖
2

𝑉
1

𝐾
(0,1)×𝑉

1

𝐸𝐼
(0,1)

+
𝑄(⋅, 𝑡) − 𝑊

𝑡
(⋅, 𝑡 + 𝜏)



2

𝐿
2

𝜌
(0,1)×𝐿

2

𝐼𝜌
(0,1)

≤ 4(𝛼
1
𝜌)
2

∞

∑

𝑛=1

𝜔𝑛 (1)


2

×



∫

𝜏

0

sin√𝜇
𝑛
(𝜏 − 𝑟) 𝑢

1
(𝑟 + 𝑡) 𝑑𝑟



2

+ 4(𝛼
2
𝐼
𝜌
)
2

∞

∑

𝑛=1

𝜑𝑛 (1)


2

×



∫

𝜏

0

sin√𝜇
𝑛
(𝜏 − 𝑟) 𝑢

2
(𝑟 + 𝑡) 𝑑𝑟



2

+ 4𝜌
2

∞

∑

𝑛=1

𝜔𝑛 (1)


2

×



∫

𝜏

0

sin√𝜇
𝑛
(𝜏 − 𝑟) (∫

0

−𝜏

𝑔
1
(𝜂) 𝑢
1
(𝑟 + 𝑡 + 𝜂) 𝑑𝜂) 𝑑𝑟



2

+ 4𝐼
2

𝜌

∞

∑

𝑛=1

𝜑𝑛 (1)


2

×



∫

𝜏

0

sin√𝜇
𝑛
(𝜏 − 𝑟) (∫

0

−𝜏

𝑔
2
(𝜂) 𝑢
2
(𝑟 + 𝑡 + 𝜂) 𝑑𝜂) 𝑑𝑟



2

+ 4(𝛼
1
𝜌)
2

∞

∑

𝑛=1

𝜔𝑛 (1)


2

×



∫

𝜏

0

cos√𝜇
𝑛
(𝜏 − 𝑟)𝑢

1
(𝑟 + 𝑡)𝑑𝑟



2

+ 4(𝛼
2
𝐼
𝜌
)
2

∞

∑

𝑛=1

𝜑𝑛 (1)


2

×



∫

𝜏

0

cos√𝜇
𝑛
(𝜏 − 𝑟)𝑢

2
(𝑟 + 𝑡)𝑑𝑟



2

+ 4𝜌
2

∞

∑

𝑛=1

𝜔𝑛 (1)


2

×



∫

𝜏

0

cos√𝜇
𝑛
(𝜏 − 𝑟) (∫

0

−𝜏

𝑔
1
(𝜂) 𝑢
1
(𝑟 + 𝑡 + 𝜂) 𝑑𝜂) 𝑑𝑟



2

+ 4𝐼
2

𝜌

∞

∑

𝑛=1

𝜑𝑛 (1)


2

×



∫

𝜏

0

cos√𝜇
𝑛
(𝜏 − 𝑟) (∫

0

−𝜏

𝑔
2
(𝜂) 𝑢
2
(𝑟 + 𝑡 + 𝜂) 𝑑𝜂)𝑑𝑟



2

.

(49)
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Note that {cos√𝜇
𝑛
𝑡, sin√𝜇

𝑛
𝑡; 𝑛 ∈ N} is a Riesz basis

sequence for 𝐿
2

[0, 𝜏]. Thus, there exist positive
constants 𝑀

𝑖
(𝑖 = 1, 2, 3, 4) such that

‖𝑃(⋅, 𝑡) − 𝑊(⋅, 𝑡 + 𝜏)‖
2

𝑉
1

𝐾
(0,1)×𝑉

1

𝐸𝐼
(0,1)

+
𝑄(⋅, 𝑡) − 𝑊

𝑡
(⋅, 𝑡 + 𝜏)



2

𝐿
2

𝜌
(0,1)×𝐿

2

𝐼𝜌
(0,1)

≤ 𝑀
1

2

∫

𝜏

0

𝑢1 (𝑟 + 𝑡)


2

𝑑𝑟 +𝑀
2

2

∫

𝜏

0

𝑢2 (𝑟 + 𝑡)


2

𝑑𝑟

+𝑀
3

2

∫

𝜏

0



∫

0

−𝜏

𝑔
1
(𝜂) 𝑢
1
(𝑡 + 𝑟 + 𝜂) 𝑑𝜂



2

𝑑𝑟

+𝑀
4

2

∫

𝜏

0



∫

0

−𝜏

𝑔
2
(𝜂) 𝑢
2
(𝑡 + 𝑟 + 𝜂) 𝑑𝜂



2

𝑑𝑟

≤ 𝑀
1

2

∫

𝜏

0

𝑢1 (𝑟 + 𝑡)


2

𝑑𝑟 +𝑀
2

2

∫

𝜏

0

𝑢2 (𝑟 + 𝑡)


2

𝑑𝑟

+𝑀
3

2

𝜏
2

∫

0

−𝜏

𝑔1 (𝜂)


2

𝑑𝜂∫

𝑡+𝜏

𝑡−𝜏

𝑢1 (𝑠)


2

𝑑𝑠

+𝑀
4

2

𝜏
2

∫

0

−𝜏

𝑔2 (𝜂)


2

𝑑𝜂∫

𝑡+𝜏

𝑡−𝜏

𝑢2 (𝑠)


2

𝑑𝑠.

(50)

Let (𝑃(𝑥, 𝑡), 𝑄(𝑥, 𝑡)) be the solution to (11), and 𝐸(𝑡) be its
energy functional; then we have

𝐸 (𝑡) =
1

2
‖(𝑃 (𝑥, 𝑡) , 𝑄 (𝑥, 𝑡))‖

2

H,

𝑑𝐸 (𝑡)

𝑑𝑡
= −𝑈
2

1
(𝑃, 𝑄) (𝑡) − 𝑈

2

2
(𝑃, 𝑄) (𝑡) .

(51)

Therefore, we have

∫

𝜏

0

‖𝑈 (𝑡 + 𝑟)‖
2

R2𝑑𝑟

= ∫

𝑡+𝜏

𝑡

(𝑈
2

1
(𝑃, 𝑄) (𝑟) + 𝑈

2

2
(𝑃, 𝑄) (𝑟)) 𝑑𝑟

= 𝐸 (𝑡) − 𝐸 (𝑡 + 𝜏) ,

∫

𝜏

0

‖𝑈(𝑡 − 𝑟)‖
2

R2𝑑𝑟 = 𝐸 (𝑡 − 𝜏) − 𝐸 (𝑡) .

(52)

So, we can get

‖𝑃(⋅, 𝑡) − 𝑊(⋅, 𝑡 + 𝜏)‖
2

𝑉
1

𝐾
(0,1)×𝑉

1

𝐸𝐼
(0,1)

+
𝑄(⋅, 𝑡) − 𝑊

𝑡
(⋅, 𝑡 + 𝜏)



2

𝐿
2

𝜌
(0,1)×𝐿

2

𝐼𝜌
(0,1)

≤ max
𝑖=1,2

{𝑀
𝑖

2

} [𝐸 (𝑡) − 𝐸 (𝑡 + 𝜏)]

+max
𝑗=3,4

{𝑀
𝑗

2

} 𝜏
2

∫

0

−𝜏

(
𝑔1 (𝜂)



2

+
𝑔2 (𝜂)



2

) 𝑑𝜂

× [𝐸 (𝑡 − 𝜏) − 𝐸 (𝑡 + 𝜏)] .

(53)

If (𝑃(𝑥, 𝑡), 𝑄(𝑥, 𝑡)) is exponential stable, there exists a
positive constant 𝜀 > 0 such that 𝐸(𝑡) ≤ 𝐸(0)𝑒

−𝜀𝑡

. We can
obtain the following result from above:

‖𝑃(⋅, 𝑡) − 𝑊(⋅, 𝑡 + 𝜏)‖
2

𝑉
1

𝐾
(0,1)×𝑉

1

𝐸𝐼
(0,1)

+
𝑄 (⋅, 𝑡) − 𝑊

𝑡
(⋅, 𝑡 + 𝜏)



2

𝐿
2

𝜌
(0,1)×𝐿

2

𝐼𝜌
(0,1)

≤ 𝑀𝑒
−𝜀(𝑡−𝜏)

,

(54)
where 𝑀 is a positive constant. So (𝑊(𝑥, 𝑡),𝑊

𝑡
(𝑥, 𝑡)) also

decays exponentially.

5. The Proof of Theorem 2

In this section, we will discuss the stability of system (11). At
first we consider 𝐿2 well posed of the system (6). For the sake
of simplicity, we use the vector form of (6); that is,

𝑃
𝑡
(𝑥, 𝑡) = 𝑄 (𝑥, 𝑡) + Sin (𝜏L) 𝐵Λ

1
𝑈 (𝑡)

+ ∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂)𝑈 (𝑡) 𝑑𝜂,

𝑄
𝑡
(𝑥, 𝑡) = −L𝑃 (𝑥, 𝑡) + Cos (𝜏L) 𝐵Λ

1
𝑈 (𝑡)

+ ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂)𝑈 (𝑡) 𝑑𝜂,

Γ
𝑁
𝑃 (⋅, 𝑡) = Λ

2
𝑈 (𝑡) ,

𝑃 (0, 𝑡) = 𝑄 (0, 𝑡) = 0,

𝑃 (𝑥, 0) = 𝑃
0
(𝑥) , 𝑄 (𝑥, 0) = 𝑄

0
(𝑥) .

(55)

The observation system corresponding to (55) is
𝑊
𝑡
(𝑥, 𝑡) = 𝑉 (𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,

𝑉
𝑡
(𝑥, 𝑡) = −L𝑊(𝑥, 𝑡) , 𝑥 ∈ (0, 1) , 𝑡 > 0,

𝑊 (𝑥, 0) = 𝑊
0
,

𝑉 (𝑥, 0) = 𝑉
0
,

𝑦
1
(𝑡) = 𝛽

1
𝑧 (1, 𝑡) + ∫

1

0

𝐾(𝑤
𝑥
(𝑥, 𝑡) − 𝜑 (𝑥, 𝑡))

× (𝑎


1
(𝑥) − 𝑎

3
(𝑥)) 𝑑𝑥

+ ∫

1

0

𝐸𝐼𝜑
𝑥
(𝑥, 𝑡) 𝑎



3
(𝑥) 𝑑𝑥

+ ∫

1

0

𝜌𝑧 (𝑥, 𝑡) 𝑏
1
(𝑥) 𝑑𝑥 + ∫

1

0

𝐼
𝜌
𝜓 (𝑥, 𝑡) 𝑏

3
(𝑥) 𝑑𝑥;

𝑦
2
(𝑡) = 𝛽

2
𝜓 (1, 𝑡) + ∫

1

0

𝐾(𝑤
𝑥
(𝑥, 𝑡) − 𝜑 (𝑥, 𝑡))

× (𝑎


2
(𝑥) − 𝑎

4
(𝑥)) 𝑑𝑥

+ ∫

1

0

𝐸𝐼𝜑
𝑥
(𝑥, 𝑡) 𝑎



4
(𝑥) 𝑑𝑥

+ ∫

1

0

𝜌𝑧 (𝑥, 𝑡) 𝑏
2
(𝑥) 𝑑𝑥 + ∫

1

0

𝐼
𝜌
𝜓 (𝑥, 𝑡) 𝑏

4
(𝑥) 𝑑𝑥,

(56)
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where 𝑊(𝑥, 𝑡) = (𝑤(𝑥, 𝑡), 𝜑(𝑥, 𝑡))
𝑇 and 𝑉(𝑥, 𝑡) = (𝑧(𝑥, 𝑡),

𝜓(𝑥, 𝑡))
𝑇.

We can write the observation as
𝑦
1
(𝑡) = 𝛽

1
𝑧 (1, 𝑡) + ⟨𝑊 (⋅, 𝑡) , (𝑎

1
, 𝑎
3
)
𝑇

⟩
𝑉
1

𝑘
×𝑉
1

𝐸𝐼

+ ⟨𝑉 (⋅, 𝑡) , (𝑏
1
, 𝑏
3
)
𝑇

⟩
𝐿
2

𝜌
×𝐿
2

𝐼𝜌

,

𝑦
2
(𝑡) = 𝛽

1
𝜓 (1, 𝑡) + ⟨𝑊 (⋅, 𝑡) , (𝑎

2
, 𝑎
4
)
𝑇

⟩
𝑉
1

𝑘
×𝑉
1

𝐸𝐼

+ ⟨𝑉 (⋅, 𝑡) , (𝑏
2
, 𝑏
4
)
𝑇

⟩
𝐿
2

𝜌
×𝐿
2

𝐼𝜌

.

(57)

Since

(
𝑎
1
(𝑥) 𝑎

2
(𝑥)

𝑎
3
(𝑥) 𝑎

4
(𝑥)

)

= Sin (𝜏L) 𝐵Λ
1

+ ∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂,

(
𝑏
1
(𝑥) 𝑏
2
(𝑥)

𝑏
3
(𝑥) 𝑏
4
(𝑥)

)

= Cos (𝜏L) 𝐵Λ
1

+ ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂,

𝑌 (𝑡) = 𝐶 (𝑊,𝑉) = Λ
2
𝑉 (1, 𝑡)

+ [Λ
1
L
1/2 Sin (𝜏L) 𝐵

+ L
1/2

∫

0

−𝜏

Sin((𝜏 + 𝜂)L)𝐵Λ
3
(𝜂)𝑑𝜂]

∗

L
1/2

𝑊(𝑡)

+ [Λ
1
Cos (𝜏L) 𝐵

+∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂]

∗

𝑉 (𝑡) .

(58)
Taking the Laplace transform for above equation leads to,

for anyR𝜆 > 0,
𝜆𝑃 (𝑥) = 𝑄 (𝑥) + Sin (𝜏L) 𝐵Λ

1
𝑈 (𝜆)

+ ∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂)𝑈 (𝜆) 𝑑𝜂,

𝑥 ∈ (0, 1) ,

𝜆𝑄 (𝑥) = −L𝑃(𝑥) + Cos (𝜏L) 𝐵Λ
1
𝑈 (𝜆)

+ ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂)𝑈 (𝜆) 𝑑𝜂,

Γ
𝑁
𝑃 (⋅, 𝑡) = Λ

2
𝑈 (𝜆) ,

𝑃 (0, 𝑡) = 𝑄 (0, 𝑡) = 0,

𝑌 (𝜆) = Λ
2
𝑄 (1)

+ [Λ
1
L
1/2 Sin (𝜏L) 𝐵

+L
1/2

∫

0

−𝜏

Sin((𝜏 + 𝜂)L)𝐵Λ
3
(𝜂)𝑑𝜂]

∗

L
1/2

𝑃 (⋅)

+ [Λ
1
Cos (𝜏L) 𝐵

+ ∫

0

−𝜏

Cos((𝜏 + 𝜂)L)𝐵Λ
3
(𝜂)𝑑𝜂]

∗

𝑄 (⋅) .

(59)

We have the following results by solving (59):

(𝜆
2

+L) 𝑝 (𝑥)

= [𝜆( Sin (𝜏L) 𝐵Λ
1

+∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂)

+ Cos (𝜏L) 𝐵Λ
1

+ ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂

+𝐵Λ
2
]𝑈 (𝜆) ,

𝑌 (𝜆) = [𝜆( Sin (𝜏L) 𝐵Λ
1

+∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂)

+ Cos (𝜏L) 𝐵Λ
1
+∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂

+ 𝐵Λ
2
]

∗

𝑃.

(60)

So we can get

𝑌 (𝜆) = [𝜆( sin (𝜏L) 𝐵Λ
1

+∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂)

+ Cos (𝜏L) 𝐵Λ
1
+∫

0

−𝜏

Cos ((𝜏+𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂

+ 𝐵Λ
2
]

∗

(𝜆
2

+L)
−1
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× [𝜆( Sin (𝜏L) 𝐵Λ
1

+∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂)

+ Cos (𝜏L) 𝐵Λ
1

+ ∫

0

−𝜏

Cos ((𝜏+𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂+ 𝐵Λ

2
]𝑈(𝜆) ,

(61)

and hence the transform matrix is

𝐻(𝜆) = [𝜆( Sin (𝜏L) 𝐵Λ
1

+∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂)

+ Cos (𝜏L) 𝐵Λ
1

+ ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂

+ 𝐵Λ
2
]

∗

(𝜆
2

+L)
−1

× [𝜆( Sin (𝜏L) 𝐵Λ
1

+∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂)

+ Cos (𝜏L) 𝐵Λ
1

+ ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂 + 𝐵Λ

2
] .

(62)

For any 𝑍 = (𝑧
1
, 𝑧
2
) ∈ C2, we can get

(𝐻 (𝜆)𝑍, 𝑍)C2

=

∞

∑

𝑛=1

1

𝜆2 + 𝜇
𝑛

×



([𝜆( Sin (𝜏L) 𝐵Λ
1

+∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂)

+ Cos (𝜏L) 𝐵Λ
1
+ ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L)

×𝐵Λ
3
(𝜂) 𝑑𝜂 + 𝐵Λ

2
]𝑍,Φ

𝑛
)

𝐿
2

𝜌
×𝐿
2

𝐼𝜌



2

.

(63)

We can easily get

(𝐵Λ
2
𝑍,Φ
𝑛
)
𝐿
2

𝜌
×𝐿
2

𝐼𝜌

= 𝛽
1
𝑧
1
𝜌𝑤
𝑛
(1) + 𝛽

2
𝑧
2
𝐼
𝜌
𝜑
𝑛
(1) ,

(Sin(𝜏L)𝐵Λ
1
𝑍,Φ
𝑛
)
𝐿
2

𝜌
×𝐿
2

𝐼𝜌

=
Sin (𝜏√𝜇

𝑛
)

√𝜇
𝑛

[𝛼
1
𝑧
1
𝜌𝑤
𝑛
(1) + 𝛼

2
𝑧
2
𝐼
𝜌
𝜑
𝑛
(1)] ,

(Cos(𝜏L)𝐵Λ
1
𝑍,Φ
𝑛
)
𝐿
2

𝜌
×𝐿
2

𝐼𝜌

= Cos (𝜏√𝜇
𝑛
) [𝛼
1
𝑧
1
𝜌𝑤
𝑛
(1) + 𝛼

2
𝑧
2
𝐼
𝜌
𝜑
𝑛
(1)] ,

(∫

0

−𝜏

Sin(𝜏 + 𝜂)L𝐵Λ
3
(𝜂)𝑑𝜂𝑍,Φ

𝑛
)

𝐿
2

𝜌
×𝐿
2

𝐼𝜌

= ∫

0

−𝜏

Sin ((𝜏 + 𝜂)√𝜇
𝑛
)

√𝜇
𝑛

× [𝑔
1
(𝜂) 𝑧
1
𝜌𝑤
𝑛
(1) + 𝑔

2
(𝜂) 𝑧
2
𝐼
𝜌
𝜑
𝑛
(1)] 𝑑𝜂,

(∫

0

−𝜏

Cos(𝜏 + 𝜂)L𝐵Λ
3
(𝜂)𝑑𝜂𝑍,Φ

𝑛
)

𝐿
2

𝜌
×𝐿
2

𝐼𝜌

= ∫

0

−𝜏

Cos ((𝜏 + 𝜂)√𝜇
𝑛
)

× [𝑔
1
(𝜂) 𝑧
1
𝜌𝑤
𝑛
(1) + 𝑔

2
(𝜂) 𝑧
2
𝐼
𝜌
𝜑
𝑛
(1)] 𝑑𝜂.

(64)

Thus, we have


([𝜆(Sin (𝜏L) 𝐵Λ
1
+ ∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂)

+ Cos (𝜏L) 𝐵Λ
1
+ ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂

+ 𝐵Λ
2
]𝑍,Φ

𝑛
)

𝐿
2

𝜌
×𝐿
2

𝐼𝜌



2

≤ 𝐹



|𝜆|
2

𝜇
𝑛

+ 2



[𝜌
𝜔𝑛 (1)



2

+ 𝐼
𝜌

𝜑𝑛 (1)


2

] ‖𝑍‖
2

C2 , (65)

where 𝐹 is a positive constant dependent on 𝛼
𝑖
, 𝛽
𝑖
, 𝑔
𝑖
(𝜂), 𝑖 =

1, 2. Therefore, we have the following result:

‖𝐻 (𝜆)‖ ≤ 𝐹

∞

∑

𝑛=1

1

|𝜆|
2

+ 𝜇
𝑛



|𝜆|
2

𝜇
𝑛

+ 2



× [𝜌
𝜔𝑛 (1)



2

+ 𝐼
𝜌

𝜑𝑛 (1)


2

] .

(66)

From Lemma 4, we have

sup
R𝜆>𝛿>0

‖𝐻 (𝜆)‖ < ∞. (67)

Hence the system (6) is 𝐿2loc well posed (see, [15]).
Next, we consider the exact observability of the system

(6).
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Lemma 6 (see [16]). LetH be a separable Hilbert space, and
let L be a unbounded positive definite operator. Assume that
L satisfies the following conditions:

(1) Lhas compact resolvent and its spectrum is 𝜎(L) =

{𝜇
𝑛
; 𝑛 ∈ N};

(2) the spectra ofL satisfy the separable condition

inf
𝑛 ̸=𝑚

√𝜇
𝑛
− √𝜇
𝑚

 = 𝛿 > 0; (68)

(3) the corresponding eigenvectors {Φ
𝑛
; 𝑛 ∈ N} with

‖Φ
𝑛
‖H = 1 form a normalized orthogonal basis forH.

LetYbe a Hilbert space. Assume that 𝐶 : 𝐷(L) → Y is
an admissible observation operator for L. Then the following
system:

𝑍
𝑡𝑡
+L𝑍 (𝑡) = 0, 𝑍 (0) = 𝑍

0
,

𝑍
𝑡
(0) = 𝑍

1
, 𝑌 (𝑡) = 𝐶 (𝑍, 𝑍

𝑡
)

(69)

is exactly observable in finite time in the energy space
𝐷(L1/2) ×H if and only if

inf
𝑛∈N



𝐶(
Φ
𝑛

𝑖√𝜇
𝑛

, Φ
𝑛
)

Y

> 0. (70)

Now we apply Lemma 6 to the system (55). We can eas-
ily know that the condition (68) is fulfilled when 𝑐

1
=

√𝐾/𝜌 ̸= 𝑐
2
= √𝐸𝐼/𝐼

𝜌
(see Remark 2.1 in [8]).

For Φ
𝑛
(𝑥) = (𝑤

𝑛
(𝑥), 𝜑
𝑛
(𝑥))
𝑇, we have

𝐶(
Φ
𝑛

𝑖√𝜇
𝑛

, Φ
𝑛
)

= Λ
2
Φ
𝑛
(1)

+ [Λ
1
L
1/2 Sin (𝜏L) 𝐵

+ L
1/2

∫

0

−𝜏

Sin((𝜏 + 𝜂)L)𝐵Λ
3
(𝜂)𝑑𝜂]

∗

L
1/2

Φ
𝑛

𝑖√𝜇
𝑛

+ [Λ
1
Cos (𝜏L) 𝐵

+ ∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂]

∗

Φ
𝑛
.

(71)

For any 𝑍 = (𝑧
1
, 𝑧
2
) ∈ C2, we have

(Λ
1
(L
1/2 Sin (𝜏L) 𝐵)

∗

L
1/2

Φ
𝑛

𝑖√𝜇
𝑛

, 𝑍)

C2

= (L
1/2

Φ
𝑛

𝑖√𝜇
𝑛

,L
1/2 Sin (𝜏L) 𝐵Λ

1
𝑍)

𝐿
2

𝜌
×𝐿
2

𝐼𝜌

= −𝑖√𝜇
𝑛
(Φ
𝑛
, Sin (𝜏L) 𝐵Λ

1
𝑍)
𝐿
2

𝜌
×𝐿
2

𝐼𝜌

= −𝑖 sin (√𝜇
𝑛
𝜏) [𝛼
1
𝑧
1
𝜌𝜔
𝑛
(1) + 𝛼

2
𝑧
2
𝐼
𝜌
𝜑
𝑛
(1)].

(72)

Similarity, we have

((L
1/2

∫

0

−𝜏

Sin ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂)

∗

L
1/2

Φ
𝑛

𝑖√𝜇
𝑛

, 𝑍)

C2

= −𝑖 ∫

0

−𝜏

sin ((𝜏 + 𝜂)√𝜇
𝑛
)

× [𝑔
1
(𝜂) 𝑧
1
𝜌𝜔
𝑛
(1) + 𝑔

2
(𝜂) 𝑧
2
𝐼
𝜌
𝜑
𝑛
(1)]𝑑𝜂,

(Λ
1
(Cos (𝜏L) 𝐵)

∗

Φ
𝑛
, 𝑍)

C2

= cos (√𝜇
𝑛
𝜏) [𝛼
1
𝑧
1
𝜌𝜔
𝑛
(1) + 𝛼

2
𝑧
2
𝐼
𝜌
𝜑
𝑛
(1)],

((∫

0

−𝜏

Cos ((𝜏 + 𝜂)L) 𝐵Λ
3
(𝜂) 𝑑𝜂)

∗

Φ
𝑛
, 𝑍)

C2

= ∫

0

−𝜏

cos ((𝜏 + 𝜂)√𝜇
𝑛
)

× [𝑔
1
(𝜂) 𝑧
1
𝜌𝜔
𝑛
(1) + 𝑔

2
(𝜂) 𝑧
2
𝐼
𝜌
𝜑
𝑛
(1)]𝑑𝜂.

(73)

Thus it holds that

𝐶(
Φ
𝑛

𝑖√𝜇
𝑛

, Φ
𝑛
)

= (

(
𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + ∫

0

−𝜏

𝑔
1
(𝜂) 𝑒
−𝑖((𝜏+𝜂)√𝜇𝑛)𝑑𝜂) 𝜌𝑤

𝑛
(1)

(
𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + ∫

0

−𝜏

𝑔
2
(𝜂) 𝑒
−𝑖((𝜏+𝜂)√𝜇𝑛)𝑑𝜂) 𝐼

𝜌
𝜑
𝑛
(1)

) .

(74)

Set

𝜉
(1)

𝑛
= ∫

0

−𝜏

𝑔
1
(𝜂) 𝑒
−𝑖√𝜇𝑛(𝜏+𝜂)𝑑𝜂,

𝜉
(2)

𝑛
= ∫

0

−𝜏

𝑔
2
(𝜂) 𝑒
−𝑖√𝜇𝑛(𝜏+𝜂)𝑑𝜂.

(75)

Then


𝐶(
Φ
𝑛

𝑖√𝜇
𝑛

, Φ
𝑛
)



2

C2

=



𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(1)

𝑛



2

𝜌𝑤𝑛 (1)


2

+



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(2)

𝑛



2


𝐼
𝜌
𝜑
𝑛
(1)



2

.

(76)

Obviously, when

𝐴
1
= inf
𝑛



𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(1)

𝑛



> 0,

𝐴
2
= inf
𝑛



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(2)

𝑛



> 0,

(77)
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we have



𝐶(
Φ
𝑛

𝑖√𝜇
𝑛

, Φ
𝑛
)



2

C2

≥ 𝐴
2

1

𝜌𝑤𝑛 (1)


2

+ 𝐴
2

2


𝐼
𝜌
𝜑
𝑛
(1)



2

≥ min {𝐴
1
, 𝐴
2
} (

𝜌𝑤𝑛 (1)


2

+

𝐼
𝜌
𝜑
𝑛
(1)



2

) ;

(78)

using Lemma 4,

inf
𝑛



𝐶(
Φ
𝑛

𝑖√𝜇
𝑛

, Φ
𝑛
)



2

C2

> 0. (79)

According to Lemma 6, the system (56) is exactly observable
in finite time, and hence the closed-loop system (11) is
exponentially stable.

If for all 𝑛 ∈ N,



𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(1)

𝑛



> 0,



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(2)

𝑛



> 0,

(80)

we can see that in this case, there is no eigenvalue of system
(11) on the imaginary axis. Moreover, if the conditions

inf
𝑛



𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(1)

𝑛



= 0,

inf
𝑛



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(2)

𝑛



= 0

(81)

hold, then the imaginary axis is an asymptote of the eigen-
values of the system (11). Therefore, the stability theorem
[17] asserts then that the system (11) is asymptotically stable.
Therefore, we get the result of the Theorem 2.

6. Conclusion

In this paper, we designed a new controller for a Timoshenko
beam with distributed delay in the boundary that stabilizes
exponentially the system. In the design process of new
controllers, there are main steps: (1) to translate the delay
system into a system without delay; (2) for the undelay
system, we used the collocated feedback law to obtain the
control signals; (3) using the obtained control signals, act on
the delay system. This control strategy can be regarded as
extension form of [15]. In the stability analysis, the key trick is
to use the exact observability of the dual system in finite time
to obtain the exponential stability of the closed-loop system.

In the proof of main result, the condition 𝐾/𝜌 ̸=𝐸𝐼/𝐼
𝜌
is

used to ensure the separability of the spectrum (see, the
condition (2)) in Lemma 6). In the statement of our result

(Theorem 2), the conditions are stronger than the practice; in
fact,


𝐶(
Φ
𝑛

𝑖√𝜇
𝑛

, Φ
𝑛
)



2

C2

=



𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(1)

𝑛



2

𝜌𝑤𝑛 (1)


2

+



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(2)

𝑛



2

|𝐼
𝜌
𝜑
𝑛
(1)|
2

;

(82)
one only needs to request

inf
𝑛



𝐶(
Φ
𝑛

𝑖√𝜇
𝑛

, Φ
𝑛
)



2

C2

> 0, (83)

so, the conditions

inf
𝑛



𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(1)

𝑛



> 0,

inf
𝑛



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(2)

𝑛



> 0,

(84)

are sufficient, but not necessary. Since

𝜉
(1)

𝑛
= ∫

0

−𝜏

𝑔
1
(𝜂) 𝑒
𝑖√𝜇𝑛(𝜏−𝜂)𝑑𝜂,

𝜉
(2)

𝑛
= ∫

0

−𝜏

𝑔
2
(𝜂) 𝑒
𝑖√𝜇𝑛(𝜏−𝜂)𝑑𝜂,

(85)

so lim
𝑛→∞

𝜉
(𝑗)

𝑛
= 0, 𝑗 = 1, 2. Therefore, when


𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(1)

𝑛



> 0,



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛 + 𝜉

(2)

𝑛



> 0

(86)

that means that there is no eigenvalue on the imaginary axis,
and

inf
𝑛



𝛽
1

𝜌
+ 𝛼
1
𝑒
−𝑖𝜏√𝜇𝑛



> 0,

inf
𝑛



𝛽
2

𝐼
𝜌

+ 𝛼
2
𝑒
−𝑖𝜏√𝜇𝑛



> 0,

(87)

we have

inf
𝑛



𝐶(
Φ
𝑛

𝑖√𝜇
𝑛

, Φ
𝑛
)



2

C2

> 0. (88)

Clearly, when 𝛽
1

̸= 𝜌𝛼
1
and 𝛽

2
̸= 𝐼
𝜌
𝛼
2
, we also have

inf
𝑛



𝐶(
Φ
𝑛

𝑖√𝜇
𝑛

, Φ
𝑛
)



2

C2

> 0. (89)

Therefore, the conditions inTheorem 2 are easily verified.
The controlmethod proposed in this paper can be used to

the system of output availed system by using the Luenberger
observer. Also we have noted that the method is only fitting
the continuous model; for the model of data-driven system
(e.g., see, [18]), it might fail. So we need to study the
corresponding control strategy for the data-driven system.
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Due to the recent rapid growth of advanced sensing and production technologies, the monitoring and diagnosis of multivariate
process operating performance have drawn increasing interest in process industries. The multivariate statistical process control
(MSPC) chart is one of the most commonly used tools for detecting process faults. However, an out-of-control MSPC signal only
indicates that process faults have intruded the underlying process. Identifying which of the monitored quality variables is responsi-
ble for theMSPC signal is fairly difficult. Pinpointing the responsible variable is vital for process improvement because it effectively
determines the root causes of the process faults. Accordingly, this identification has become an important research issue concerning
recentmultivariate process applications. In contrast with the traditional single classifier approach, the present study proposes hybrid
modeling schemes to address problems that involve a large number of quality variables in a multivariate normal process. The
proposed scheme includes multivariate adaptive regression splines (MARS), logistic regression (LR), and artificial neural network
(ANN). By applying MARS and LR techniques, we may obtain fewer but more significant quality variables, which can serve as
inputs to the ANN classifier. The performance of our proposed approaches was evaluated by conducting a series of experiments.

1. Introduction

A multivariate process monitors two or more quality vari-
ables.When a signal is triggered by themultivariate statistical
process control (MSPC) chart, process personnel are typically
only aware that the underlying process is in an unstable state.
Identifying which of themonitored quality characteristics (or
variables) is responsible for this MSPC signal is challenging.
Accordingly, effective determination of the source of process
faults becomes an important and challenging issue in MSPC
applications, because these sources are associated with spe-
cific assignable causes that adversely affect the process.

Typically, a literature review has shown that there are
different kinds of approaches to investigate on source iden-
tification of faults in a multivariate process. The first type of
approach uses various graphical techniques, such as polygo-
nal charts [1], line charts [2], multivariate profile charts [3],
and boxplot charts [4] to assist in determining the quality
variables at fault in a process. However, the operations of
these graphical approaches are tedious and subjective.

The second type of approach uses the statistical decom-
position techniques to interpret the contributors to anMSPC
signal. Mason et al. [5] proposed the method to decompose
the 𝑇
2 statistic into independent parts, each of which reflects

the contribution of an individual quality variable. Since the
decomposition of the 𝑇

2 statistic into 𝑝 independent 𝑇
2

components is not unique, Mason et al. [6] provided a
computing scheme that can reduce the computational effort.
The same concept to decompose the 𝑇

2 statistics has been
proposed by the studies [7, 8]. However, these approaches
have not been analyzed in terms of the percentage of success
in the classification of the variables that have actually shifted
in the process [9, 10]. The study [11] investigated the method
of principal components analysis (PCA) to determine the
quality variables at fault in a multivariate process. The 𝑇

2

statistic is expressed in terms of normalized principal com-
ponents scores of the multinormal variables. The normalized
score with high values are detected when an MSPC signal
is triggered. The contribution plots can then be used to
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determine the variables which are responsible for the signal.
In addition, the contribution plots were used by the studies
[12, 13]. However, the PCA approach can be argued that
the dimensionality of data may not be efficiently reduced by
linear transformation. Also, the problem of the PCA consists
in the fact that the directions maximizing variance do not
always maximize information. More recently, the study [14]
developed a statistical decomposition method to estimate
the sources of process variance shifts in a multivariate
normal process. Although the performance of the approach
was acceptable, the decomposition method requires a large
sample size, which may not be feasible for some practical
applications.

The third type of approach employs the machine learning
(ML) mechanisms, such as artificial neural networks (ANN)
and support vector machine (SVM), to identify the quality
variables which are responsible for the MSPC signal. A
comparative study has been conducted by the studies [9, 10].
While the study [9] made a comparison between neural
network approaches with the method of Mason et al. [5], the
study [10] made a comparison between ANN and SVM with
themethod of Runger et al. [8]. Both studies [9, 10] concluded
that ML methods are in general better than those obtained
using the decomposition approach. The study [15] proposed
a backpropagation-net based model which can identify the
group of quality variables at faults and can classify the
magnitude of the process shifts. The study [16] developed a
two level-basedmodel using𝑇

2 control chart for detecting the
signals and an ANN for identifying the sources of the signals.
The study [17] proposed anANN-basedmodel to identify and
quantify the mean shifts in bivariate processes. The authors
[18] developed a neural-network-based identifier to detect
the mean shifts and simultaneously to identify the sources
of the shifts for a multivariate autocorrelated processes. They
benchmarked the run-length performance of the proposed
method against the Hotelling 𝑇

2, the MEWMA, and the
Z control charts. The authors [19] investigated the sources
of process variance faults with the use of ANN and SVM;
however, their considerations of process variance shifts were
large. The authors [20] proposed a hybrid model for online
analysis of MSPC signals in multivariate manufacturing
processes.Theirmodel consisted of twomodules inwhich the
first module used a SVM to recognize the unnatural pattern,
and then, the magnitude of different shifts can be determined
by using the secondmodule, theNNmodels.The authors [21]
also proposed a hybrid model for online analysis of MSPC
signals in multivariate manufacturing processes. They also
used the SVM to recognize the mean and variance shifts
in the first module. In the second module, they employed
two neural network models to recognize the magnitude
of shifts for each variable simultaneously. The study [22]
proposed a hybrid schemewhich is composed of independent
component analysis (ICA) and SVM to decide the fault
quality variables when a step change disturbance existed in
a multivariate process.

The literature review has shown that most of the existing
studies are concerned with the determination of which
variable or group of variables has caused the signal through

single step modeling. However, there is a difficulty that may
not have been addressed yet. When the number of quality
characteristics is large, the existing decomposition methods
and/or machine learning methods may lack the capability to
handle such a situation. In addition, because process faults
are typically attributed to mean shifts and the multivariate
normal process is one of the most widely used applications,
the present study is motivated by addressingmean shift faults
for a multivariate normal process with a large number of
quality variables. A review of relevant literature also indicates
that the application of ANN for process fault determination
is promising; however, it suffers from the requirement of
a large number of controlling parameters and the risk of
model overfitting [23–25]. Consequently, contrary to the
existing approaches, the present study proposes two-stage
hybrid schemes to identify which quality variable or group
of variables is responsible for process mean shift faults. The
proposed schemes integrate multivariate adaptive regression
splines (MARS), logistic regression (LR), and artificial neural
networks, which are referred to as the MARS-ANN and
LR-ANN schemes, respectively. The performance of the
proposed approaches was examined by a series of computer
simulations.

The rest of this paper is organized as follows. Section 2
provides brief overviews of process models and the proposed
schemes. The various experimental conditions are addressed
in Section 3. This study is concluded in Section 4.

2. Process Models and Methodologies

The structure of the process model is addressed. The pro-
posed hybrid schemes are also described in this section.

2.1. Structure of the Process and the Mean Shift. This study
considers the situation of process mean shifts and assumes
that the multivariate process is initially in a normal state and
the sample observations are derived from a 𝑘-dimensional
multivariate normal distribution 𝑁(𝜇

̃
0

, Σ
0
), where

𝜇

̃
0

=

[
[
[
[

[

0

0

...
0

]
]
]
]

]

, (1)

Σ
0
=

[
[
[
[
[

[

1 𝜌 ⋅ ⋅ ⋅ 𝜌

𝜌 d d
...

... d 1 𝜌

𝜌 ⋅ ⋅ ⋅ 𝜌 1

]
]
]
]
]

]

. (2)

After a certain length of time, this study assumes that the
mean vector changes from 𝜇

̃
0

to 𝜇

̃
1

, where

𝜇

̃
1

= 𝜇

̃
0

+

[
[
[
[

[

𝛿
1

𝛿
2

...
𝛿
𝑘

]
]
]
]

]

. (3)
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Let

𝑋

̃
𝑖𝑗

= [𝑋
𝑖𝑗1

, 𝑋
𝑖𝑗2

, . . . , 𝑋
𝑖𝑗𝑘

]


, 𝑗 = 1, 2, . . . , 𝑛 (4)

be a 𝑘 × 1 vector that represents 𝑘 characteristics on the 𝑗th
observation in subgroup 𝑖. The resulting sample mean vector
is as follows:

𝑋

̃
𝑖

=
1

𝑛

𝑛

∑

𝑗=1

𝑋

̃
𝑖𝑗

. (5)

To detect a multivariate process mean shift, Hotelling [26]
proposed the following chi-square statistic

𝜒
2

𝑖
= 𝑛(𝑋

̃
𝑖

− 𝜇

̃
0

)

 −1

∑

0

(𝑋

̃
𝑖

− 𝜇

̃
0

) . (6)

This statistic is asymptotically distributed as a chi-square
distribution with 𝑘 degrees of freedom.The control chart that
uses 𝜒

2 as a monitoring statistic in (6) has the upper control
limit

UCL = 𝜒
2

𝛼
(𝑘) , (7)

where 𝜒
2

𝛼
(𝑘) is the upper 𝛼th percentile of the chi-square

distribution with 𝑘 degrees of freedom. If the plotted statistic
𝜒
2

𝑖
falls outside the UCL, the process is considered to be in

an abnormal state, and our proposed method can be applied
to identify the source of mean shifts.The proposed two-stage
hybrid methods integrate the framework of MARS, LR, and
ANN. In the initial stage, influencing variables are selected
using multivariate adaptive regression splines or logistic
regression. In the second stage, the significant influencing
variables selected are taken as the input variables of the ANN.
The following sections address these three components.

2.2. Logistic Regression. The purpose of performing logistic
regression modeling in stage I was to identify important
influencing variables and refine the entire set of input vari-
ables. The structure of the logistic regression model can be
briefly described as follows. Let 𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
represent the

dependent variables (𝑌
𝑖
= 1 denotes “the abnormal state” and

𝑌
𝑖
= 0 denotes “the normal state”) and let

𝑃
𝑖
= Pr [𝑌

𝑖
= 1 | 𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑘
] (8)

be the conditional probability of event {𝑌
𝑖
= 1} with a given

series of independent variables (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑘
), where 𝑥

𝑖𝑚

is the sample mean of the 𝑚th characteristic. The logistic
regression model is then defined as follows:

ln(
𝑃
𝑖

1 − 𝑃
𝑖

) = 𝛽
0
+

𝑘

∑

𝑗=1

𝛽
𝑗
𝑥
𝑖𝑗
. (9)

Before screening significant independent variables, we
performed the collinearity diagnosis procedure to exclude
variables that exhibited high collinearity. After this diagnosis,
the remaining variables served as independent variables for

logistic regression modeling and testing. The Wald forward
method was applied to identify independent variables with
significant influence on an abnormal state probability. These
significant independent variables and the dependent variable
were then substituted into the ANN to construct a two-stage
model.

2.3. Multivariate Adaptive Regression Splines. The superior
performance of the MARS has been reported in many
applications [27–32]. MARS is typically capable of revealing
important data patterns and relationships for the complex
data structure that is often concealed in high-dimensional
data [28, 31]. The MARS model can be represented as [33]

𝑓 (𝑥) = 𝑏
0
+

𝑀

∑

𝑚=1

𝑏
𝑚

𝐾𝑚

∏

𝑘=1

[𝑆
𝑘𝑚

(𝑥](𝑘,𝑚) − 𝑡
𝑘𝑚

)] , (10)

where 𝑏
0
and 𝑏

𝑚
are the parameters, 𝑀 is the number of

basis functions (BF), 𝐾
𝑚
is the number of knots, 𝑆

𝑘𝑚
takes

on values of either 1 or −1 and indicates the right or left
sense of the associated step function, ](𝑘,𝑚) is the label of
the independent variable, and 𝑡

𝑘𝑚
is the knot location. The

optimalMARSmodel is obtained in two steps.Thepurpose of
the first step is to construct a large number of basis functions
that initially fit the data. The purpose of the second step is to
delete basis functions in order of least contribution using the
generalized cross-validation (GCV) criterion. The variable
importance measure was obtained by observing the decrease
in the calculated GCV values when a variable was removed
from the model. The GCV is described as

GCV (𝑀) =

1/𝑁∑
𝑁

𝑖=1
[𝑦
𝑖
− 𝑓
𝑀

(𝑥
𝑖
)]
2

[1 − 𝐶 (𝑀) /𝑁]
2

, (11)

where 𝑁 is the number of observations and 𝐶(𝑀) is the cost
penalty measure of a model containing 𝑀 basis functions.

2.4.The Artificial Neural Network. TheANNhas been widely
used inmany SPC applications [34, 35].TheANN is a parallel
system comprised of highly interconnected processing ele-
ments that are based on neurobiological models. The ANN
processes information through the interactions of a large
number of simple processing elements called neurons.

Figure 1 illustrates that neurons in networks take inputs
from the previous layer and send outputs to the next layer.
Typically, ANN nodes consist of three layers: the input,
output, and hidden layers. The nodes in the input layers
receive input signals from an external source and the nodes
in the output layers generate the target output signals. The
output of each neuron in the input layer is the same as the
input to that neuron. For each neuron 𝑗 in the hidden layer
and neuron 𝑘 in the output layer, the net inputs are given by

net
𝑗
= ∑

𝑖

𝑤
𝑗𝑖

× 𝑜
𝑖
, net

𝑘
= ∑

𝑗

𝑤
𝑘𝑗

× 𝑜
𝑗
, (12)
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Figure 1: Structure of ANN model.

where 𝑖(𝑗) is a neuron in the previous layer, 𝑜
𝑖
(𝑜
𝑗
) is the output

of node 𝑖(𝑗), and 𝑤
𝑗𝑖
(𝑤
𝑘𝑗
) is the connection weight from

neuron 𝑖(𝑗) to neuron 𝑗(𝑘). The neuron outputs are given by

𝑜
𝑖
= net
𝑖
, (13)

𝑜
𝑗
=

1

1 + exp−(net𝑗+𝜃𝑗)
= 𝑓
𝑗
(net
𝑗
, 𝜃
𝑗
) ,

𝑜
𝑘
=

1

1 + exp−(net𝑘+𝜃𝑘)
= 𝑓
𝑘
(net
𝑘
, 𝜃
𝑘
) ,

(14)

where net
𝑗
(net
𝑘
) is the input signal from the external source

to the node 𝑗(𝑘) in the input layer and 𝜃
𝑗
(𝜃
𝑘
) is a bias. The

transformation function shown in (14) is called a sigmoid
function and is the most commonly utilized function to date.
As a result, this study used the sigmoid function.

3. Experiments and Analysis

3.1. The Parameter Settings. To evaluate the performance of
the proposed approach, a series of simulations were con-
ducted. Without loss of generality, this study assumed that
each quality characteristic was initially sampled from a nor-
mal distribution with zero mean and one standard deviation.
In addition, we assumed that twenty quality characteristics
were monitored simultaneously (i.e., 𝑘 = 20), and the
covariance matrix was defined as in (2).

Because we considered 20 quality characteristics for the
multivariate normal process, there are 2

20

− 1 possible
types of mean shifts. They are represented by (1, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . , and (1, 1, . . . , 1), where 1 denotes a quality
characteristic that is at fault and 0 denotes a quality character-
istic that is not at fault. For an abnormal mean vector struc-
ture, we considered three types of mean shifts for demonstra-
tion: (1, 0, . . . , 0), (1, 0, 1, 0, . . . , 0) and (1, 0, 1, 0, 1, 0, . . . , 0).
This study also considered three different values of 𝜌: 0.1, 0.5,
and 0.9. The sample size was assumed to be 10. Two values of
𝛿
𝑖
were considered: 0.5 and 1.0. We repeated the simulation

500 times for each data structure. The structure of the ANN

is established as follows. When applying ANN in the single
stage in this study, we had 20 input nodes and one output
node in the ANN structure.The hidden nodes were set to the
range 𝑖 − 2 to 𝑖 + 2, where 𝑖 is the number of input variables.
Thus, in the initial phase, the hidden nodes were 18, 19, 20, 21,
and 22.

According to the suggestions of the study [36], the learn-
ing rates were set to 0.01, 0.005, and 0.001. After performing
ANNmodeling, we obtained the {20 − 20 − 1} topology with
a learning rate of 0.01, which provides the best result with
the minimum test RMSE. Here, {𝑛

𝑖
− 𝑛
ℎ

− 𝑛
𝑜
} denotes the

number of neurons in the input layer, number of neurons in
the hidden layer, and number of neurons in the output layer,
respectively.

3.2. The Results. For the hybrid LR-ANN model, this study
calculated the variance inflation factor (VIF) to examine
the presence of collinearity, used a 0.05 significance level,
and employed logistic regression analysis to select important
influencing variables in the initial stage. Values of VIFs
greater than 10 were considered large enough to suspect
serious multicollinearity [37–39]. As shown in Table 1, all
of the VIFs are less than 10. Consequently, collinearity was
not too high among the independent variables. The analysis
results of LR modeling are summarized in Table 2. The
significant variables selected in this stage served as the input
variables of the ANN.

For the hybrid MARS-ANN model, we obtained the
selection results of the variables after performing the MARS
procedure. Tables 3, 4, 5, 6, 7, and 8 list the selection results for
theMARSmodels for 6 different combinations of 𝜌 and 𝛿

𝑖
. In

this selection procedure, the important explanatory variables
were chosen; their relative importance indicators are listed in
the last column of Tables 3 to 8.

When the first stage of hybrid modeling was completed,
the ANN topology settings were established. Table 9 displays
the corresponding ANN topologies for various types of
hybridmodels.The network topology with theminimum test
RMSEwas again considered as the optimal network topology.
The learning rate of 0.01 was used for all of those models.

This study used the classical single stage of anANNmodel
and the proposed two-stage of MARS-ANN and LR-ANN
models to determine the source of mean shift faults in a
multivariate process. The experimental results are displayed
in Table 10.

Table 10 reveals that the two-stage MARS-ANN and
LR-ANN approaches exhibit better performance than the
classical single-stage ANNmethod in many situations. Based
on the results shown in Table 10, it is noted that when the type
of mean shift is (1, 0, 1, 0, 1, 0, . . . , 0), the LR-ANN approach
exhibits the best performance in terms of accurate identifi-
cation rates (AIR) for all (𝜌, 𝛿

𝑖
) combinations. The MARS-

ANN approach was preferable to the single stage of the ANN
in almost every case. The last two rows of Table 10 list the
average and standard errors of the accurate identification
rates.The proposed hybrid approaches, LR-ANN andMARS-
ANN, outperformed the classical method, which is the single
stage of the ANN. The proposed MARS-ANN approach had
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Table 1: Collinearity diagnosis for LR models.

Variables 𝜌 = 0.1 𝜌 = 0.5 𝜌 = 0.9

𝛿
𝑖
= 0.5 𝛿

𝑖
= 1.0 𝛿

𝑖
= 0.5 𝛿

𝑖
= 1.0 𝛿

𝑖
= 0.5 𝛿

𝑖
= 1.0

𝑥
1

1.11 1.23 1.65 1.56 3.66 2.26
𝑥
2

1.09 1.09 1.95 1.95 9.85 9.85
𝑥
3

1.21 1.54 1.80 1.97 3.98 2.89
𝑥
4

1.07 1.07 1.91 1.91 9.54 9.54
𝑥
5

1.21 1.55 1.81 2.00 4.03 2.91
𝑥
6

1.07 1.07 1.88 1.88 9.31 9.31
𝑥
7

1.13 1.28 1.69 1.63 3.78 2.33
𝑥
8

1.11 1.11 1.98 1.98 9.82 9.82
𝑥
9

1.07 1.07 1.89 1.88 9.21 9.21
𝑥
10

1.05 1.05 1.81 1.80 9.21 9.19
𝑥
11

1.07 1.07 1.90 1.90 9.43 9.41
𝑥
12

1.07 1.07 1.89 1.89 9.60 9.59
𝑥
13

1.07 1.07 1.91 1.90 9.84 9.83
𝑥
14

1.06 1.06 1.83 1.82 9.13 9.11
𝑥
15

1.08 1.08 1.92 1.92 9.62 9.60
𝑥
16

1.07 1.06 1.93 1.92 9.95 9.93
𝑥
17

1.07 1.07 1.84 1.83 8.93 8.92
𝑥
18

1.09 1.09 1.96 1.96 9.78 9.78
𝑥
19

1.09 1.09 1.94 1.93 9.69 9.68
𝑥
20

1.09 1.09 1.97 1.96 9.64 9.63

Table 2: Significant variables selected by LR analysis.

Correlation 𝜌 Shift value 𝛿
𝑖

Significant explanatory variables
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12
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13
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16
, 𝑥
20

1.0 𝑥
1
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13

the smallest standard error, which implies the robustness of
themechanism.After comparing the performances of the LR-
ANN and MARS-ANN approaches, we determined that the
MARS-ANN approach is superior. The reason may be that
population stratification in logistic regression analysis can
lead to bias in estimates and test statistics. As a result, the
results of the LR-ANN approach were somewhat unstable.

Table 11 summarizes the AIR with consideration of three
different correlations, namely, the low, the moderate, and
the strong correlations, respectively. The standard deviations
for those AIR values are listed in parentheses. By observing
Table 11, one is able to observe that the performance of the
proposed hybrid models almost completely outperforms the
classical single-stage ANNmodel. In particular, the proposed

MARS-ANN has the best and the most robust performance
among those three modeling approaches.

Table 12 shows the overall improvement percentage of
the proposed model in comparison with the classical single-
stage model. The AIR improvements of the proposed LR-
ANN model over the classical ANN model for three types
of correlations are 18.73%, 10.67%, and −2.50%, respectively.
Although there is a poor improvement for the case of 𝜌 =

0.9, the average AIR improvement is 8.97%. In addition,
the AIR improvements of the proposed MARS-ANN model
over the classical ANN model for three types of correlations
are 14.39%, 15.85%, and 6.96%, respectively. Accordingly, the
average AIR improvement reaches 12.73%.

One important result is that our proposed approach is
useful in dealing with difficulties of the smaller shifts for a
multivariate process. The case of the smaller shift value (i.e.,
𝛿
𝑖
= 0.5) drew particular attention from industries because it

is very difficult to identify the sources of small mean shifts.
Considering all the cases of 𝛿

𝑖
= 0.5, Table 10 illustrates

that the 21.12% and 17.00% improvement in identification can
be achieved when the proposed LR-ANN and MARS-ANN
schemes are used. The improvements in identification are
significant.

4. Conclusions

The ANN has been criticized for its long training process;
however, the combination of LR/MARS and ANN is a good
alternative for performing classification tasks. Accordingly,
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Table 3: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.1, 0.5).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.501 1.070 1 𝑥

3
100.000

2 0.500 1.065 3 𝑥
5

98.993
3 0.339 0.963 1 𝑥

1
70.614

4 0.332 0.957 1 𝑥
7

68.366
5 0.131 0.873 1 𝑥

13
26.827

6 0.104 0.867 1 𝑥
16

20.879
7 0.099 0.866 1 𝑥

14
19.621

8 0.093 0.865 1 𝑥
17

18.071

Table 4: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.1, 1.0).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.517 0.372 3 𝑥

5
100.000

2 0.519 0.370 2 𝑥
3

99.356
3 0.395 0.328 2 𝑥

1
85.740

4 0.369 0.310 1 𝑥
7

79.157
5 0.066 0.211 1 𝑥

20
15.440

Table 5: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.5, 0.5).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.596 0.871 2 𝑥

3
100.000

2 0.582 0.864 2 𝑥
5

98.281
3 0.380 0.764 2 𝑥

7
68.774

4 0.369 0.763 1 𝑥
1

68.220
5 0.245 0.702 1 𝑥

13
40.739

6 0.234 0.700 1 𝑥
16

39.271
7 0.203 0.692 2 𝑥

17
33.836

8 0.195 0.691 1 𝑥
14

32.728
9 0.188 0.688 1 𝑥

20
30.632

10 0.186 0.688 1 𝑥
6

30.530

Table 6: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.5, 1.0).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.540 0.352 1 𝑥

3
100.000

2 0.535 0.344 2 𝑥
5

97.416
3 0.389 0.306 1 𝑥

1
83.637

4 0.380 0.294 1 𝑥
7

78.935
5 0.174 0.217 2 𝑥

13
35.183

6 0.167 0.216 2 𝑥
16

33.487
7 0.149 0.212 1 𝑥

20
29.230

8 0.143 0.211 1 𝑥
14

29.042

the proposed combination of the LR-ANN and MARS-ANN
schemes was proven to be useful for determining the mean
shift faults in a multivariate process.

The rationale behind the proposed schemes was initially
to obtain fewer important explanatory variables by perform-
ing LR orMARSmodeling.The resulting significant variables
served as inputs to the designed ANNmodels. The proposed

LR-ANN andMARS-ANNmodels not only have fewer input
variables but also possess better classification capabilities.

The proposed hybrid two-stage models in this study are
not the only combination techniques; other artificial intelli-
gence techniques, such as decision tree or genetic algorithms,
can be integrated with neural networks or a support vector
machine to further refine the structure of the classifiers and
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Table 7: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.9, 0.5).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.789 0.363 2 𝑥

5
100.000

2 0.761 0.356 2 𝑥
3

98.013
3 0.570 0.304 2 𝑥

1
79.033

4 0.531 0.289 2 𝑥
7

72.994
5 0.412 0.225 1 𝑥

13
35.419

6 0.402 0.225 1 𝑥
16

34.692
7 0.349 0.221 1 𝑥

14
30.760

8 0.315 0.218 1 𝑥
6

27.641
9 0.317 0.218 1 𝑥

10
27.426

10 0.306 0.217 1 𝑥
17

26.965

Table 8: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.9, 1.0).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.579 0.179 2 𝑥

5
100.000

2 0.565 0.176 2 𝑥
3

98.746
3 0.450 0.160 2 𝑥

1
91.803

4 0.434 0.151 2 𝑥
7

87.535
5 0.295 0.072 2 𝑥

13
31.978

6 0.293 0.072 2 𝑥
16

31.287
7 0.249 0.069 1 𝑥

14
26.538

8 0.222 0.067 1 𝑥
6

23.337

Table 9: ANN topology settings for different hybrid LR-ANN and MARS-ANNmodels.

Correlation 𝜌 Shift value 𝛿
𝑖

Type of mean shifts ANN topology for LR-ANN ANN topology for MARS-ANN

0.1

0.5
(1, 0, . . ., 0) {8-8-1} {8-9-1}

(1, 0, 1, 0, . . ., 0) {8-8-1} {8-7-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {8-8-1} {8-10-1}

1.0
(1, 0, . . ., 0) {11-13-1} {5-5-1}

(1, 0, 1, 0, . . ., 0) {11-12-1} {5-6-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {11-12-1} {5-7-1}

0.5

0.5
(1, 0, . . ., 0) {10-10-1} {10-10-1}

(1, 0, 1, 0, . . ., 0) {10-10-1} {10-10-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {10-10-1} {10-10-1}

1.0
(1, 0, . . ., 0) {9-9-1} {8-9-1}

(1, 0, 1, 0, . . ., 0) {9-7-1} {8-8-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {9-11-1} {8-9-1}

0.9

0.5
(1, 0, . . ., 0) {8-9-1} {10-9-1}

(1, 0, 1, 0, . . ., 0) {8-10-1} {10-10-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {8-9-1} {10-11-1}

1.0
(1, 0, . . ., 0) {2-2-1} {8-6-1}

(1, 0, 1, 0, . . ., 0) {2-2-1} {8-8-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {2-2-1} {8-7-1}

improve classification accuracy. The applications of other
process faults, such as variance shift faults, for a multivariate
process should be further investigated.

The data-driven methods of multivariate statistical pro-
cess control have been the subject of considerable interest
from both the academic community and industry as an

important implement in the process monitoring area. Since
the practical systems become more and more complicated
and the physical models become extremely hard to obtain,
considering the related topics within data-driven framework
seems more meaningful in the current and future work to
achievemore industrial oriented results [40–44]. In addition,
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Table 10: Comparison of classification accuracy among the ANN, LR-ANN, and MARS-ANNmodels.

Correlation 𝜌 Shift value 𝛿
𝑖

Type of mean shifts ANN LR-ANN MARS-ANN

0.1

0.5
(1, 0, . . ., 0) 60.80% 61.20% 58.40%

(1, 0, 1, 0, . . ., 0) 60.80% 59.20% 62.40%
(1, 0, 1, 0, 1, 0, . . ., 0) 56.00% 70.40% 58.80%

1.0
(1, 0, . . ., 0) 58.00% 80.40% 85.60%

(1, 0, 1, 0, . . ., 0) 86.40% 84.80% 81.20%
(1, 0, 1, 0, 1, 0, . . ., 0) 56.00% 92.80% 86.00%

0.5

0.5
(1, 0, . . ., 0) 38.80% 66.00% 59.60%

(1, 0, 1, 0, . . ., 0) 46.00% 55.60% 62.00%
(1, 0, 1, 0, 1, 0, . . ., 0) 46.40% 70.80% 64.80%

1.0
(1, 0, . . ., 0) 90.40% 91.60% 94.00%

(1, 0, 1, 0, . . ., 0) 94.40% 63.60% 94.40%
(1, 0, 1, 0, 1, 0, . . ., 0) 85.20% 96.40% 94.00%

0.9

0.5
(1, 0, . . ., 0) 82.40% 93.20% 81.30%

(1, 0, 1, 0, . . ., 0) 94.40% 82.80% 94.40%
(1, 0, 1, 0, 1, 0, . . ., 0) 56.00% 96.80% 92.00%

1.0
(1, 0, . . ., 0) 98.80% 44.00% 100.00%

(1, 0, 1, 0, . . ., 0) 100.00% 100.00% 100.00%
(1, 0, 1, 0, 1, 0, . . ., 0) 98.40% 100.00% 99.20%

Average of accurate identification rates 72.73% 78.31% 81.57%
Standard error of accurate identification rates 0.05007 0.04092 0.03767

Table 11: AIR comparison of the classical-single stage and the
proposed models.

ANN Proposed Proposed
LR-ANN MARS-ANN

𝜌 = 0.1
63.00% 74.80% 72.07%
(0.1166) (0.1344) (0.1354)

𝜌 = 0.5
66.87% 74.00% 78.13%
(0.2565) (0.1632) (0.1760)

𝜌 = 0.9
88.33% 86.13% 94.48%
(0.1711) (0.2161) (0.0725)

Table 12: AIR improvement of the proposed models in comparison
with classical ANN model.

Proposed Proposed
LR-ANN MARS-ANN

𝜌 = 0.1 18.73% 14.39%
𝜌 = 0.5 10.67% 16.85%
𝜌 = 0.9 −2.50% 6.96%
Average improvement 8.97% 12.73%

real-time implementation of fault tolerant control system
with performance optimization is an important issue inmod-
ern industries [45]. Extensions of the proposed procedures
to data-driven design or real-time implementation of fault
tolerant control system are possible. Such works deserve
further research and are our future concern.

Acknowledgment

This work is partially supported by the National Science
Council of the Republic of China, Grant no. NSC 102-2221-
E-030-019 and Grant no. NSC 102-2118-M-030-001.

References

[1] L.W. Blazek, B. Novic, andM.D. Scott, “Displayingmultivariate
data using polyplots,” Journal of Quality Technology, vol. 19, no.
2, pp. 69–74, 1987.

[2] N. Subramanyan and A. A. Houshmand, “Simultaneous rep-
resentation of multivariate and corresponding univariate x-bar
charts using a line graph,” Quality Engineering, vol. 7, no. 4, pp.
681–682, 1995.

[3] C. Fuchs and Y. Benjamini, “Multivariate profile charts for
statistical process control,”Technometrics, vol. 36, no. 2, pp. 182–
195, 1994.

[4] O. O. Atienza, L. T. Ching, and B. A.Wah, “Simultaneousmoni-
toring of univariate and multivariate SPC information using
boxplots,” International Journal of Quality Science, vol. 3, no. 2,
pp. 194–204, 1998.

[5] R. L.Mason, N. D. Tracy, and J. C. Young, “Decomposition of T2
for multivariate control chart interpretation,” Journal of Quality
Technology, vol. 27, no. 2, pp. 99–108, 1995.

[6] R. L. Mason, N. D. Tracy, and J. C. Young, “A practical approach
for interpretingmultivariate T2 control chart signals,” Journal of
Quality Technology, vol. 29, no. 4, pp. 396–406, 1997.

[7] N. H. Timm, “Multivariate quality control using finite intersec-
tion tests,” Journal of Quality Technology, vol. 28, no. 2, pp. 233–
243, 1996.



Abstract and Applied Analysis 9

[8] G. C. Runger, F. B. Alt, and D. C.Montgomery, “Contributors to
a multivariate statistical process control chart signal,” Commu-
nications in Statistics, vol. 25, no. 10, pp. 2203–2213, 1996.

[9] F. Aparisi, G. Avendaño, and J. Sanz, “Techniques to interpret T2
control chart signals,” IIE Transactions, vol. 38, no. 8, pp. 647–
657, 2006.

[10] Y. E. Shao and B.-S. Hsu, “Determining the contributors for a
multivariate SPC chart signal using artificial neural networks
and support vectormachine,” International Journal of Innovative
Computing, Information and Control, vol. 5, no. 12, pp. 4899–
4906, 2009.

[11] T. Kourti and J. F. MacGregor, “Multivariate SPC methods for
process and productmonitoring,” Journal of Quality Technology,
vol. 28, no. 4, pp. 409–428, 1996.

[12] J. A. Westerhuis, S. P. Gurden, and A. K. Smilde, “Generalized
contribution plots in multivariate statistical process monitor-
ing,” Chemometrics and Intelligent Laboratory Systems, vol. 51,
no. 1, pp. 95–114, 2000.

[13] P. E. Maravelakis, S. Bersimis, J. Panaretos, and S. Psarakis,
“Identifying the out of control variable in a multivariate control
chart,” Communications in Statistics. Theory and Methods, vol.
31, no. 12, pp. 2391–2408, 2002.

[14] Y. E. Shao, C.-D. Hou, C.-H. Chao, and Y.-J. Chen, “A decompo-
sition approach for identifying the sources of variance shifts in
a multivariate process,” ICIC Express Letters, vol. 5, no. 4A, pp.
971–975, 2011.

[15] S. T. A. Niaki and B. Abbasi, “Fault diagnosis in multivariate
control charts using artificial neural networks,” Quality and
Reliability Engineering International, vol. 21, no. 8, pp. 825–840,
2005.

[16] R.-S. Guh, “On-line identification and quantification of mean
shifts in bivariate processes using a neural network-based
approach,”Quality andReliability Engineering International, vol.
23, no. 3, pp. 367–385, 2007.

[17] L.-H. Chen and T.-Y. Wang, “Artificial neural networks to clas-
sify mean shifts from multivariate 𝜒

2 chart signals,” Computers
and Industrial Engineering, vol. 47, no. 2-3, pp. 195–205, 2004.

[18] H. B. Hwarng and Y. Wang, “Shift detection and source identi-
fication in multivariate autocorrelated processes,” International
Journal of Production Research, vol. 48, no. 3, pp. 835–859, 2010.

[19] C.-S. Cheng and H.-P. Cheng, “Identifying the source of
variance shifts in themultivariate process using neural networks
and support vectormachines,”Expert SystemswithApplications,
vol. 35, no. 1-2, pp. 198–206, 2008.

[20] M. Salehi, A. Bahreininejad, and I. Nakhai, “On-line analysis of
out-of-control signals in multivariate manufacturing processes
using a hybrid learning-based model,”Neurocomputing, vol. 74,
no. 12-13, pp. 2083–2095, 2011.

[21] M. Salehi, R. B. Kazemzadeh, and A. Salmasnia, “On line
detection of mean and variance shift using neural networks and
support vector machine in multivariate processes,” Applied Soft
Computing, vol. 12, no. 9, pp. 2973–2984, 2012.

[22] Y. E. Shao, C.-J. Lu, and Y.-C. Wang, “A hybrid ICA-SVM
approach for determining the quality variables at fault in a
multivariate process,” Mathematical Problems in Engineering,
vol. 2012, Article ID 284910, 12 pages, 2012.

[23] L. Cao, “Support vector machines experts for time series
forecasting,” Neurocomputing, vol. 51, pp. 321–339, 2003.

[24] L. J. Cao and F. E. H. Tay, “Support vector machine with
adaptive parameters in financial time series forecasting,” IEEE
Transactions on Neural Networks, vol. 14, no. 6, pp. 1506–1518,
2003.

[25] C.-J. Lu, Y. E. Shao, and P.-H. Li, “Mixture control chart
patterns recognition using independent component analysis
and support vector machine,” Neurocomputing, vol. 74, no. 11,
pp. 1908–1914, 2011.

[26] H. Hotelling, Techniques of Statistical Analysis, McGraw Hill,
New York, NY, USA, 1947.

[27] Q.-S. Xu, D. L. Massart, Y.-Z. Liang, and K.-T. Fang, “Two-step
multivariate adaptive regression splines for modeling a quan-
titative relationship between gas chromatography retention
indices and molecular descriptors,” Journal of Chromatography
A, vol. 998, no. 1-2, pp. 155–167, 2003.

[28] S.-M. Chou, T.-S. Lee, Y. E. Shao, and I.-F. Chen, “Mining
the breast cancer pattern using artificial neural networks and
multivariate adaptive regression splines,” Expert Systems with
Applications, vol. 27, no. 1, pp. 133–142, 2004.

[29] Y. Zhou and H. Leung, “Predicting object-oriented software
maintainability using multivariate adaptive regression splines,”
Journal of Systems and Software, vol. 80, no. 8, pp. 1349–1361,
2007.

[30] F. Vidoli, “Evaluating the water sector in Italy through a
two stage method using the conditional robust nonparametric
frontier and multivariate adaptive regression splines,” European
Journal ofOperational Research, vol. 212, no. 3, pp. 583–595, 2011.

[31] Y. E. Shao and C.-D. Hou, “Change point determination for a
multivariate process using a two-stage hybrid scheme,” Applied
Soft Computing Journal, vol. 13, no. 3, pp. 1520–1527, 2013.

[32] V. L. Pilla, J. M. Rosenberger, V. Chen, N. Engsuwan, and S. Sid-
dappa, “Amultivariate adaptive regression splines cutting plane
approach for solving a two-stage stochastic programming fleet
assignment model,” European Journal of Operational Research,
vol. 216, no. 1, pp. 162–171, 2012.

[33] J. H. Friedman, “Multivariate adaptive regression splines,” The
Annals of Statistics, vol. 19, no. 1, pp. 1–141, 1991.

[34] C.-C. Chiu, Y. E. Shao, T.-S. Lee, and K.-M. Lee, “Identification
of process disturbance using SPC/EPC and neural networks,”
Journal of Intelligent Manufacturing, vol. 14, no. 3-4, pp. 379–
388, 2003.

[35] Y. E. Shao and C.-D. Hou, “Fault identification in industrial
processes using an integrated approach of neural network and
analysis of variance,”Mathematical Problems in Engineering, vol.
2013, Article ID 516760, 7 pages, 2013.

[36] B. Abbasi, “A neural network applied to estimate process
capability of non-normal processes,” Expert Systems with Appli-
cations, vol. 36, no. 2, pp. 3093–3100, 2009.

[37] F. A. Graybill and H. K. Iyer, Regression Analysis, International
Thomson Publishing, 1994.

[38] J. F. Hair, R. E. Anderson, R. L. Tatham, and W. C. Black,
Multivariate Data Analysis, Prentice-Hall, Upper Saddle River,
NJ, USA, 5th edition, 1998.

[39] Y. E. Shao, “Prediction of currency volume issued in Taiwan
using a hybrid artificial neural network and multiple regression
approach,” Mathematical Problems in Engineering, vol. 2013,
Article ID 676742, 9 pages, 2013.

[40] H. Wang, T.-Y. Chai, J.-L. Ding, and M. Brown, “Data driven
fault diagnosis and fault tolerant control: some advances and
possible new directions,” Acta Automatica Sinica, vol. 35, no. 6,
pp. 739–747, 2009.

[41] S. Yin and S. X. Ding, “A comparison study of basic data-
driven fault diagnosis and process monitoring methods on
the benchmark Tennessee Eastman process,” Journal of Process
Control, vol. 22, no. 9, pp. 1567–1581, 2012.



10 Abstract and Applied Analysis

[42] S. Yin, X. Yang, and H. R. Karimi, “Data-driven adaptive
observer for fault diagnosis,” Mathematical Problems in Engi-
neering, vol. 2012, Article ID 832836, 21 pages, 2012.

[43] S. J. Qin, “Survey on data-driven industrial process monitoring
and diagnosis,” Annual Reviews in Control, vol. 36, no. 2, pp.
220–234, 2012.

[44] S. Yin, S. X. Ding, A. H. A. Sari, and H. Hao, “Data-driven
monitoring for stochastic systems and its application on batch
process,” International Journal of Systems Science, vol. 44, no. 7,
pp. 1366–1376, 2013.

[45] S. Yin, H. Luo, and S. Ding, “Real-time implementation of fault-
tolerant control systems with performance optimization,” IEEE
Transactions on Industrial Electronics, vol. 64, no. 5, pp. 2402–
2411, 2013.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 151374, 8 pages
http://dx.doi.org/10.1155/2013/151374

Research Article
State-Feedback Stabilization for a Class of Stochastic
Feedforward Nonlinear Time-Delay Systems

Liang Liu,1 Zhandong Yu,1 Qi Zhou,2 and Hamid Reza Karimi3

1 College of Engineering, Bohai University, Liaoning 121013, China
2 College of Information Science, Bohai University, Liaoning 121013, China
3Department of Engineering, Faculty of Engineering and Science, University of Agder, 4898 Grimstad, Norway

Correspondence should be addressed to Liang Liu; smithll@163.com

Received 18 October 2013; Accepted 18 November 2013

Academic Editor: Ming Liu

Copyright © 2013 Liang Liu et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the state-feedback stabilization problem for a class of stochastic feedforward nonlinear time-delay systems. By using
the homogeneous domination approach and choosing an appropriate Lyapunov-Krasovskii functional, the delay-independent state-
feedback controller is explicitly constructed such that the closed-loop system is globally asymptotically stable in probability. A
simulation example is provided to demonstrate the effectiveness of the proposed design method.

1. Introduction

In recent years, the study on stochastic lower-triangular
nonlinear systems has received considerable attention from
both theoretical and practical point of views see, for instance,
[1–19] and the references therein.This paper will further con-
sider the following stochastic feedforward nonlinear time-
delay systems described by
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where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
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𝑖
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𝑖
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𝑛
)
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𝑇 is the time-delayed state vector,

and 𝑑(𝑡) : 𝑅
+

→ [0, 𝑑] is the time-varying delay. 𝜔 is
an 𝑚-dimensional standard Wiener process defined on the
complete probability space (Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃) with Ω being

a sample space, F being a 𝜎-field, {F
𝑡
}
𝑡≥0

being a filtration,
and 𝑃 being a probability measure. 𝑓

𝑖
: 𝑅
𝑛−𝑖−1

× 𝑅
𝑛−𝑖−1

→ 𝑅

and 𝑔
𝑗
: 𝑅
𝑛−𝑗

× 𝑅
𝑛−𝑗

→ 𝑅
𝑚 are assumed to be locally

Lipschitz with 𝑓
𝑖
(0, 0) = 0 and 𝑔

𝑗
(0, 0) = 0, 𝑖 = 1, . . . , 𝑛 − 2,

𝑗 = 1, . . . , 𝑛 − 1.
Feedforward (also called upper-triangular) system is

another important class of nonlinear systems. Firstly, from a
theoretical point of view, since they are not feedback lineariz-
able and maybe not stabilized by applying the conventional
backstepping method, the stabilization problem of these sys-
tems is more difficult than that of lower-triangular systems.
Secondly, many physical devices, such as the cart-pendulum
system in [20] and the ball-beam system with a friction term
in [21], can be described by equations with the feedforward
structure. In the recent papers, the stabilization problems for
feedforward nonlinear (or time-delay) systems have achieved
remarkable development; see, for example, [22–29] and the
references therein.

However, all these above-mentioned results are limited to
deterministic systems. There are fewer results on stochastic
feedforward nonlinear systems until now, due to the special
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characteristics of this system. To the best of the authors’
knowledge, [30] is the only paper to consider this kind of
stochastic feedforward nonlinear systems, but the assump-
tions on the nonlinearities are restrictive.

The purpose of this paper is to further weaken the
assumptions on the drift and diffusion terms of system
(1) and solve the state-feedback stabilization problem. By
using the homogeneous domination approach in [26] and
choosing an appropriate Lyapunov-Krasovskii functional,
a delay-independent state-feedback controller is explicitly
constructed such that the closed-loop system is globally
asymptotically stable in probability.

The paper is organized as follows. Section 2 provides
some preliminary results. The design and analysis of state-
feedback controller are given in Sections 3 and 4, respectively,
following a simulation example in Section 5. Section 6 con-
cludes this paper.

2. Preliminary Results

The following notations, definitions, and lemmas are to be
used throughout the paper.

𝑅
+
denotes the set of all nonnegative real numbers, and

𝑅
𝑛 denotes the real 𝑛-dimensional space. For a given vector

or matrix 𝑋, 𝑋𝑇 denotes its transpose, Tr{𝑋} denotes its
trace when 𝑋 is square, and |𝑋| is the Euclidean norm of
a vector 𝑋. C([−𝑑, 0]; 𝑅𝑛) denotes the space of continuous
𝑅
𝑛-value functions on [−𝑑, 0] endowed with the norm ‖ ⋅ ‖

defined by ‖𝑓‖ = sup
𝑥∈[−𝑑,0]

|𝑓(𝑥)| for 𝑓 ∈ C([−𝑑, 0]; 𝑅𝑛);
C𝑏F0([−𝑑, 0]; 𝑅

𝑛

) denotes the family of all F
0
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bounded C([−𝑑, 0]; 𝑅𝑛)-valued random variables 𝜉 = {𝜉(𝜃) :

−𝑑 ≤ 𝜃 ≤ 0}. C𝑖 denotes the set of all functions with
continuous 𝑖th partial derivatives; C2,1(𝑅𝑛 × [−𝑑,∞); 𝑅

+
)

denotes the family of all nonnegative functions 𝑉(𝑥, 𝑡) on
𝑅
𝑛

× [−𝑑,∞) which areC2 in 𝑥 andC1 in 𝑡;C2,1 denotes the
family of all functions which areC2 in the first argument and
C1 in the second argument.K denotes the set of all functions
𝑅
+

→ 𝑅
+
, which are continuous, strictly increasing, and

vanishing at zero;K
∞

denotes the set of all functions which
are of classK and unbounded;KL is the set of all functions
𝛽(𝑠, 𝑡): 𝑅

+
× 𝑅
+
→ 𝑅
+
, which are of K for each fixed 𝑡 and

decrease to zero as 𝑡 → ∞ for each fixed 𝑠.
Consider the following stochastic time-delay system:
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+ 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑡) 𝑑𝜔,
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(2)

with initial data {𝑥(𝜃) : −𝑑 ≤ 𝜃 ≤ 0} = 𝜉 ∈ C𝑏F0([−𝑑, 0]; 𝑅
𝑛

),
where 𝑑(𝑡) : 𝑅

+
→ [0, 𝑑] is a Borel measurable function, 𝜔

is an𝑚-dimensional standardWiener process defined on the
complete probability space (Ω,F, {F
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Lipschitz in (𝑥(𝑡),𝑥(𝑡−𝑑(𝑡))) uniformly in 𝑡with𝑓(0, 0, 𝑡) ≡ 0

and 𝑔(0, 0, 𝑡) ≡ 0.

Definition 1 (see [6]). For any given 𝑉(𝑥(𝑡), 𝑡) ∈ C2,1

associated with system (2), the differential operator L is
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Definition 2 (see [6]). The equilibrium 𝑥(𝑡) = 0 of system
(2) is said to be globally asymptotically stable (GAS) in
probability if for any 𝜖 > 0 there exists a function 𝛽(⋅, ⋅) ∈

KL such that 𝑃{|𝑥(𝑡)| ≤ 𝛽(‖𝜉‖, 𝑡)} ≥ 1 − 𝜖 for any 𝑡 ≥ 0,
𝜉 ∈ C𝑏F0([−𝑑, 0]; 𝑅
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) \ {0}, where ‖𝜉‖ = sup
𝜃∈[−𝑑,0]

|𝑥(𝜃)|.

Definition 3 (see [26]). For fixed coordinates (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈

𝑅
𝑛 and real numbers 𝑟

𝑖
> 0, 𝑖 = 1, . . . , 𝑛, one has the following.

(i) The dilation Δ
𝜀
(𝑥) is defined by Δ

𝜀
(𝑥) =

(𝜀
𝑟1𝑥
1
, . . . , 𝜀

𝑟𝑛𝑥
𝑛
) for any 𝜀 > 0; 𝑟

1
, . . . , 𝑟

𝑛
are called

as the weights of the coordinates. For simplicity, we
define dilation weight Δ = (𝑟

1
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(ii) A function 𝑉 ∈ C(𝑅𝑛, 𝑅) is said to be homogeneous
of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such that
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1
, . . . , 𝑥

𝑛
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(iii) A vector field ℎ ∈ C(𝑅𝑛, 𝑅𝑛) is said to be homoge-
neous of degree 𝜏 if there is a real number 𝜏 ∈ 𝑅 such
that ℎ

𝑖
(Δ
𝜀
(𝑥)) = 𝜀

𝜏+𝑟𝑖ℎ
𝑖
(𝑥) for any 𝑥 ∈ 𝑅𝑛 \ {0}, 𝜀 > 0,

𝑖 = 1, . . . , 𝑛.
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=
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𝑛

𝑖=1
|𝑥
𝑖
|
𝑝/𝑟𝑖 )
1/𝑝 for any 𝑥 ∈ 𝑅

𝑛, where 𝑝 ≥ 1 is
a constant. For simplicity, in this paper, one chooses
𝑝 = 2 and writes ‖𝑥‖

Δ
for ‖𝑥‖

Δ,2
.

Lemma 4 (see [6]). For system (2), if there exist a function
𝑉(𝑥(𝑡), 𝑡) ∈ C2,1(𝑅𝑛 × [−𝑑,∞); 𝑅

+
), two class K

∞
functions

𝛼
1
, 𝛼
2
, and a classK function 𝛼

3
such that

𝛼
1
(|𝑥 (𝑡)|) ≤ 𝑉 (𝑥 (𝑡) , 𝑡) ≤ 𝛼

2
( sup
−𝑑≤𝑠≤0

|𝑥 (𝑡 + 𝑠)|) ,

L𝑉 (𝑥 (𝑡) , 𝑡) ≤ −𝛼
3
(|𝑥 (𝑡)|) ,

(4)

then there exists a unique solution on [−𝑑,∞) for (2), the equi-
librium 𝑥(𝑡) = 0 is GAS in probability, and 𝑃{lim

𝑡→∞
|𝑥(𝑡)| =

0} = 1.

Lemma 5 (see [26]). Given a dilation weight Δ = (𝑟
1
, . . . , 𝑟

𝑛
),

suppose that 𝑉
1
(𝑥) and 𝑉

2
(𝑥) are homogeneous functions

of degrees 𝜏
1
and 𝜏

2
, respectively. Then 𝑉

1
(𝑥)𝑉
2
(𝑥) is also

homogeneous with respect to the same dilation weight Δ.
Moreover, the homogeneous degree of 𝑉

1
⋅ 𝑉
2
is 𝜏
1
+ 𝜏
2
.

Lemma 6 (see [26]). Suppose that 𝑉 : 𝑅
𝑛

→ 𝑅 is a
homogeneous function of degree 𝜏 with respect to the dilation
weight Δ; then (i) 𝜕𝑉/𝜕𝑥

𝑖
is homogeneous of degree 𝜏 − 𝑟

𝑖
with

𝑟
𝑖
being the homogeneous weight of 𝑥

𝑖
; (ii) there is a constant 𝑐

such that 𝑉(𝑥) ≤ 𝑐‖𝑥‖
𝜏

Δ
. Moreover, if 𝑉(𝑥) is positive definite,

then 𝑉(𝑥) ≥ 𝑐‖𝑥‖
𝜏

Δ
, where 𝑐 is a positive constant.
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Lemma 7 (see [5]). Let 𝑐 and 𝑑 be positive constants. For any
positive number 𝛾, then |𝑥|𝑐|𝑦|𝑑 ≤ (𝑐/(𝑐 + 𝑑))𝛾|𝑥|

𝑐+𝑑

+ (𝑑/(𝑐 +

𝑑))𝛾
−𝑐/𝑑

|𝑦|
𝑐+𝑑.

3. Design of State-Feedback Controller

The objective of this paper is to design a state-feedback con-
troller for system (1) such that the equilibrium of the closed-
loop system is globally asymptotically stable in probability.

3.1. Assumptions. For system (1), we need the following
assumptions.

Assumption 8. For 𝑖 = 1, . . . , 𝑛 − 1, there exist positive
constants 𝑎

1
and 𝑎
2
such that

𝑓𝑖 (𝑥𝑖+2, 𝑥𝑖+2 (𝑡 − 𝑑 (𝑡)))


≤ 𝑎
1
(

𝑛

∑

𝑗=𝑖+2


𝑥
𝑗


+

𝑛

∑

𝑗=𝑖+2


𝑥
𝑗
(𝑡 − 𝑑 (𝑡))


) ,

𝑔𝑖 (𝑥𝑖+1, 𝑥𝑖+1 (𝑡 − 𝑑 (𝑡)))


≤ 𝑎
2
(

𝑛

∑

𝑗=𝑖+1


𝑥
𝑗


+

𝑛

∑

𝑗=𝑖+1


𝑥
𝑗
(𝑡 − 𝑑 (𝑡))


) ,

(5)

where 𝑥
𝑛+1

= 𝑥
𝑛+1

(𝑡 − 𝑑(𝑡)) = 0.

Assumption 9. The time-varying delay 𝑑(𝑡) satisfies ̇𝑑(𝑡) ≤

𝛾 < 1 for a constant 𝛾.

Remark 10. When 𝑥
𝑖+1

= 𝑥
𝑖+1
(𝑡 − 𝑑(𝑡)) = 0 in diffusion term

𝑔
𝑖
(𝑖 = 1, . . . , 𝑛−1), Assumption 8 reduces to the same formas

in [30], fromwhich one can see that system (1) ismore general
than [30].The significance and reasonability of Assumption 8
are illustrated in that paper.

Firstly, we introduce the following coordinate transfor-
mation:

𝜂
𝑖
=

𝑥
𝑖

𝜅𝑖−1
, V =

𝑢

𝜅𝑛
, 𝑖 = 1, . . . , 𝑛, (6)

where 0 < 𝜅 < 1 is a scalar to be designed. By (6), (1) can be
expressed as

𝑑𝜂
1
= 𝜅𝜂
2
𝑑𝑡 + 𝑓

1
(𝜂
3
, 𝜂
3
(𝑡 − 𝑑 (𝑡))) 𝑑𝑡

+ 𝑔
𝑇

1
(𝜂
2
, 𝜂
2
(𝑡 − 𝑑 (𝑡))) 𝑑𝜔,

...

𝑑𝜂
𝑛−2

= 𝜅𝜂
𝑛−1

𝑑𝑡 + 𝑓
𝑛−2

(𝜂
𝑛
, 𝜂
𝑛
(𝑡 − 𝑑 (𝑡))) 𝑑𝑡

+ 𝑔
𝑇

𝑛−2
(𝜂
𝑛−1

, 𝜂
𝑛−1

(𝑡 − 𝑑 (𝑡))) 𝑑𝜔,

𝑑𝜂
𝑛−1

= 𝜅𝜂
𝑛
𝑑𝑡 + 𝑔

𝑇

𝑛−1
(𝜂
𝑛
, 𝜂
𝑛
(𝑡 − 𝑑 (𝑡))) 𝑑𝜔,

𝑑𝜂
𝑛
= 𝜅V𝑑𝑡,

(7)

where 𝑓
𝑖
= 𝑓
𝑖
/𝜅
𝑖−1, 𝑔
𝑖
= 𝑔
𝑖
/𝜅
𝑖−1, 𝑖 = 1, . . . , 𝑛 − 1, 𝑓

𝑛−1
= 0.

3.2. State-Feedback Controller Design. We construct a state-
feedback controller for system (7).

Step 1. Introducing 𝜉
1
= 𝜂
1
and choosing 𝑉

1
(𝜂
1
) = (1/4)𝜉

4

1
,

from (3) and (7), it follows that

L𝑉
1
= 𝜅𝜉
3

1
𝜂
2
+
𝜕𝑉
1

𝜕𝜂
1

𝑓
1
+
1

2
Tr{𝑔

1

𝜕
2

𝑉
1

𝜕𝜂
2

1

𝑔
𝑇

1
} . (8)

The first virtual controller

𝜂
∗

2
= −𝑐
11
𝜉
1
=: −𝛼
1
𝜉
1
, 𝑐
11
> 0, (9)

leads to L𝑉
1
≤ −𝜅𝑐

11
𝜉
4

1
+ 𝜅𝜉
3

1
(𝜂
2
− 𝜂
∗

2
) + (𝜕𝑉

1
/𝜕𝜂
1
)𝑓
1
+

(1/2)Tr{𝑔
1
(𝜕
2

𝑉
1
/𝜕𝜂
2

1
)𝑔
𝑇

1
}.

Step i (𝑖 = 2, . . . , 𝑛). In this step, we can get the following
lemma.

Lemma 11. Suppose that at step 𝑖 − 1, there is a set of virtual
controllers 𝜂∗

1
, . . . , 𝜂

∗

𝑖
defined by

𝜂
∗

1
= 0, 𝜉

1
= 𝜂
1
− 𝜂
∗

1
= 𝜂
1
,

𝜂
∗

𝑘
= −𝛼
𝑘−1

𝜉
𝑘−1

, 𝜉
𝑘
= 𝜂
𝑘
− 𝜂
∗

𝑘
, 𝑘 = 2, . . . , 𝑖,

(10)

such that the (𝑖 − 1)th Lyapunov function 𝑉
𝑖−1
(𝜂
𝑖−1
) =

(1/4)∑
𝑖−1

𝑗=1
𝜉
4

𝑗
satisfies

L𝑉
𝑖−1

≤ −𝜅

𝑖−1

∑

𝑗=1

𝑐
𝑖−1,𝑗

𝜉
4

𝑗
+ 𝜅𝜉
3

𝑖−1
(𝜂
𝑖
− 𝜂
∗

𝑖
)

+

𝑖−1

∑

𝑗=1

𝜕𝑉
𝑖−1

𝜕𝜂
𝑗

𝑓
𝑗
+
1

2

𝑖−1

∑

𝑝,𝑞=1

Tr{𝑔
𝑝

𝜕
2

𝑉
𝑖−1

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
} ,

(11)

where 𝛼
𝑗
, 𝑐
𝑖−1,𝑗

, 𝑗 = 1, . . . , 𝑖 − 1, are positive constants. Then
there exists a virtual control law 𝜂

∗

𝑖+1
= −𝛼
𝑖
𝜉
𝑖
such that

L𝑉
𝑖
≤ −𝜅

𝑖

∑

𝑗=1

𝑐
𝑖𝑗
𝜉
4

𝑗
+ 𝜅𝜉
3

𝑖
(𝜂
𝑖+1

− 𝜂
∗

𝑖+1
)

+

𝑖

∑

𝑗=1

𝜕𝑉
𝑖

𝜕𝜂
𝑗

𝑓
𝑗
+
1

2

𝑖

∑

𝑝,𝑞=1

Tr{𝑔
𝑝

𝜕
2

𝑉
𝑖

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
} ,

(12)

where 𝑉
𝑖
(𝜂
𝑖
) = (1/4)∑

𝑖

𝑗=1
𝜉
4

𝑗
=: 𝑉
𝑖−1
(𝜂
𝑖−1
) + 𝑊
𝑖
(𝜂
𝑖
).

Proof. See the Appendix.

At step 𝑛, choosing 𝑉
𝑛
(𝜂
𝑛
) = (1/4)∑

𝑛

𝑖=1
𝜉
4

𝑖
and

V = 𝜂
∗

𝑛+1
= −𝛼
𝑛
𝜉
𝑛

= − (𝛼
𝑛
𝜂
𝑛
+ 𝛼
𝑛−1

𝜂
𝑛−1

+ ⋅ ⋅ ⋅ + 𝛼
1
𝜂
1
) ,

(13)
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with the help of (3), (12), and (13), one obtains

L𝑉
𝑛
≤ −𝜅

𝑛

∑

𝑖=1

𝑐
𝑛𝑖
𝜉
4

𝑖
+ 𝜅𝜉
3

𝑛
(V − 𝜂∗

𝑛+1
)

+

𝑛

∑

𝑖=1

𝜕𝑉
𝑛

𝜕𝜂
𝑖

𝑓
𝑖
+
1

2

𝑛

∑

𝑝,𝑞=1

Tr{𝑔
𝑝

𝜕
2

𝑉
𝑛

𝜕𝜂
𝑝
𝜕𝜂
𝑞

𝑔
𝑇

𝑞
}

= −𝜅

𝑛

∑

𝑖=1

𝑐
𝑛𝑖
𝜉
4

𝑖
+
𝜕𝑉
𝑛

𝜕𝜂
𝐹 +

1

2
Tr{𝐺

𝜕
2

𝑉
𝑛

𝜕𝜂2
𝐺
𝑇

} ,

(14)

where 𝐹 = (𝑓
1
, . . . , 𝑓

𝑛−2
, 0, 0)
𝑇, 𝐺 = (𝑔

1
, . . . , 𝑔

𝑛−1
, 0), 𝜉
𝑛
=

𝜂
𝑛
− 𝜂
∗

𝑛
, 𝛼
𝑖
= 𝛼
𝑛
⋅ ⋅ ⋅ 𝛼
𝑖
, 𝑐
𝑛𝑖
, 𝑖 = 1, . . . , 𝑛, are positive constants.

The system (7) and (13) can be written as

𝑑𝜂 = 𝜅𝐸 (𝜂) 𝑑𝑡 + 𝐹 (𝜂, 𝜂 (𝑡 − 𝑑 (𝑡))) 𝑑𝑡

+ 𝐺
𝑇

(𝜂, 𝜂 (𝑡 − 𝑑 (𝑡))) 𝑑𝜔,

(15)

where 𝜂 = 𝜂
𝑛
= (𝜂
1
, . . . , 𝜂

𝑛
)
𝑇, 𝐸(𝜂) = (𝜂

2
, . . . , 𝜂

𝑛
, V)𝑇, and 𝐹

and 𝐺 are defined as in (14). Introducing the dilation weight
Δ = (1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

for 𝜂1 ,...,𝜂𝑛

), by (10) and 𝑉
𝑛
(𝜂) = (1/4)∑

𝑛

𝑖=1
𝜉
4

𝑖
, one has

𝑉
𝑛
(Δ
𝜀
(𝜂))

=
1

4

𝑛

∑

𝑖=1

(𝜀𝜂
𝑖
+ 𝛼
𝑖−1
𝜀𝜂
𝑖−1

+ ⋅ ⋅ ⋅ + 𝛼
𝑖−1

⋅ ⋅ ⋅ 𝛼
1
𝜀𝜂
1
)
4

= 𝜀
4

𝑉
𝑛
(𝜂) ,

(16)

from which and Definition 3, we know that𝑉
𝑛
(𝜂) is homoge-

neous of degree 4.

4. Stability Analysis

We state the main result in this paper.

Theorem 12. If Assumptions 8 and 9 hold for the stochastic
feedforward nonlinear time-delay system (1), under the state-
feedback controller 𝑢 = 𝜅

𝑛V and (13), then

(i) the closed-loop system has a unique solution on
[−𝑑,∞);

(ii) the equilibrium at the origin of the closed-loop system
is GAS in probability.

Proof. We proveTheorem 12 by four steps.

Step 1. Since 𝑓
𝑖
, 𝑔
𝑖
, 𝑖 = 1, . . . , 𝑛, are assumed to be locally

Lipschitz, so the system consisting of (13) and (15) satisfies
the locally Lipschitz condition.

Step 2. We consider the following entire Lyapunov function
for system (15):

𝑉 (𝜂) = 𝑉
𝑛
(𝜂) +

(𝑐
02
+ 𝑐
03
) 𝜅
2

1 − 𝛾
∫

𝑡

𝑡−𝑑(𝑡)

𝜂(𝜎)


4

Δ
𝑑𝜎, (17)

where 𝑐
02
and 𝑐
03
are positive parameters to be determined. It

is easy to verify that𝑉(𝜂) isC2 on 𝜂. Since𝑉
𝑛
(𝜂) is continuous,

positive definite, and radially unbounded, by Lemma 4.3 in
[31], there exist two classK

∞
functions 𝛽

1
and 𝛼

21
such that

𝛽
1
(
𝜂
) ≤ 𝑉

𝑛
(𝜂) ≤ 𝛼

21
(
𝜂
) . (18)

By Lemma 4.3 in [31] and Lemma 6, there exist positive
constants 𝑐 and 𝑐, class K

∞
functions 𝛼

22
and 𝛼

22
, and a

positive definite function 𝑈(𝜂) whose homogeneous degree
is 4 such that

𝑐
𝜂


4

Δ
≤ 𝑈 (𝜂) ≤ 𝑐

𝜂


4

Δ
,

𝛼
22
(
𝜂
) ≤ 𝑈 (𝜂) ≤ 𝛼

22
(
𝜂
) .

(19)

From 𝑑(𝑡) : 𝑅
+
→ [0, 𝑑] and (19), it follows that

(𝑐
02
+ 𝑐
03
) 𝜅
2

1 − 𝛾
∫

𝑡

𝑡−𝑑(𝑡)

𝜂 (𝜎)


4

Δ
𝑑𝜎

≤ 𝑐∫

𝑡

𝑡−𝑑(𝑡)

𝛼
22
(
𝜂 (𝜎)

) 𝑑𝜎

𝜎=𝑠+𝑡

= 𝑐∫

0

−𝑑(𝑡)

𝛼
22
(
𝜂 (𝑠 + 𝑡)

) 𝑑 (𝑠 + 𝑡)

≤ 𝑐∫

0

−𝑑

𝛼
22
(
𝜂 (𝑠 + 𝑡)

) 𝑑 (𝑠 + 𝑡)

≤ 𝑐 sup
−𝑑≤𝑠≤0

𝛼
22
(
𝜂 (𝑠 + 𝑡)

)

≤ 𝛼
22
( sup
−𝑑≤𝑠≤0

𝜂 (𝑠 + 𝑡)
) ,

(20)

where 𝑐, 𝑐 are positive constants and 𝛼
22

is a class K
∞

function. Since |𝜂| ≤ sup
−𝑑≤𝑠≤0

|𝜂(𝑠 + 𝑡)|, 𝛼
21
(|𝜂|) ≤

𝛼
21
(sup
−𝑑≤𝑠≤0

|𝜂(𝑠 + 𝑡)|). Defining 𝛽
2
= 𝛼
21
+ 𝛼
22
, by (17), (18),

and (20), one gets

𝛽
1
(
𝜂
) ≤ 𝑉 (𝜂) ≤ 𝛽

2
( sup
−𝑑≤𝑠≤0

𝜂 (𝑠 + 𝑡)
) . (21)

Step 3. By Lemma 6 and (14), there exists a positive constant
𝑐
01
such that

𝜕𝑉
𝑛

𝜕𝜂
𝜅𝐸 (𝜂) ≤ −𝑐

01
𝜅
𝜂


4

Δ
. (22)

By Assumption 8, (6), and 0 < 𝜅 < 1, one has

𝑓
𝑖
(𝜂
𝑖+2
, 𝜂
𝑖+2

(𝑡 − 𝑑 (𝑡)))


≤

𝑎
1
(∑
𝑛

𝑗=𝑖+2


𝜅
𝑗−1

𝜂
𝑗


+ ∑
𝑛

𝑗=𝑖+2


𝜅
𝑗−1

𝜂
𝑗
(𝑡 − 𝑑 (𝑡))


)

𝜅𝑖−1

≤ 𝑎
1
𝜅
2

(

𝑛

∑

𝑗=𝑖+2


𝜂
𝑗


+

𝑛

∑

𝑗=𝑖+2


𝜂
𝑗
(𝑡 − 𝑑 (𝑡))


)

≤ 𝛿
1
𝜅
2

(
𝜂
Δ
+
𝜂 (𝑡 − 𝑑 (𝑡))

Δ
) ,

(23)
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where 𝛿
1
is a positive constant. Using Lemmas 5–7 and (23),

one gets

𝜕𝑉
𝑛

𝜕𝜂
𝐹 (𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))

=

𝑛−2

∑

𝑖=1

𝜕𝑉
𝑛

𝜕𝜂
𝑖

𝑓
𝑖
(𝜂
𝑖+2
, 𝜂
𝑖+2

(𝑡 − 𝑑 (𝑡)))

≤ 𝑐
02
𝜅
2

𝑛−2

∑

𝑖=1

𝜂


3

Δ
(
𝜂
Δ
+
𝜂 (𝑡 − 𝑑 (𝑡))

Δ
)

≤ 𝜅
2

(𝑐
02

𝜂


4

Δ
+ 𝑐
02

𝜂 (𝑡 − 𝑑 (𝑡))


4

Δ
) ,

(24)

where 𝑐
02
, 𝑐
02
, and 𝑐

02
are positive constants. Similar to (23),

there is a positive constant 𝛿
2
such that

𝑔𝑖 (𝜂𝑖+1, 𝜂𝑖+1 (𝑡 − 𝑑 (𝑡)))
 ≤ 𝛿
2
𝜅 (
𝜂
Δ
+
𝜂 (𝑡 − 𝑑 (𝑡))

Δ
) ,

(25)

from which and Lemmas 5–7, one gets

1

2
Tr{𝐺 (𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))

𝜕
2

𝑉
𝑛

𝜕𝜂2
𝐺
𝑇

(𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))}

≤
1

2
𝑚√𝑚

𝑛−1

∑

𝑖,𝑗=1



𝜕
2

𝑉
𝑛

𝜕𝜂
𝑖
𝜕𝜂
𝑗



𝑔𝑖 (𝜂𝑖+1, 𝜂𝑖+1 (𝑡 − 𝑑 (𝑡)))


×

𝑔
𝑗
(𝜂
𝑗+1
, 𝜂
𝑗+1

(𝑡 − 𝑑 (𝑡)))


≤ 𝑐
03
𝜅
2

𝑛−1

∑

𝑖,𝑗=1

𝜂


2

Δ
(
𝜂
Δ
+
𝜂 (𝑡 − 𝑑 (𝑡))

Δ
)
2

≤ 𝜅
2

(𝑐
03

𝜂


4

Δ
+ 𝑐
03

𝜂 (𝑡 − 𝑑 (𝑡))


4

Δ
) ,

(26)

where 𝑐
03
, 𝑐
03
, and 𝑐

03
are positive constants. With the help of

(3), (15), (17), (22), (24), (26), and Assumption 9, one has

L𝑉 ≤
𝜕𝑉
𝑛

𝜕𝜂
𝜅𝐸 (𝜂) +

𝜕𝑉
𝑛

𝜕𝜂
𝐹 (𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))

+
1

2
Tr{𝐺 (𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))

𝜕
2

𝑉
𝑛

𝜕𝜂2
𝐺
𝑇

(𝜂, 𝜂 (𝑡 − 𝑑 (𝑡)))}

+ (𝑐
02
+ 𝑐
03
) 𝜅
2

(
1

1 − 𝛾

𝜂


4

Δ
−
𝜂 (𝑡 − 𝑑 (𝑡))



4

Δ
)

≤ −𝑐
01
𝜅
𝜂


4

Δ
+ (𝑐
02
+ 𝑐
03
+
𝑐
02
+ 𝑐
03

1 − 𝛾
) 𝜅
2𝜂



4

Δ

= −𝜅(𝑐
01
− (𝑐
02
+ 𝑐
03
+
𝑐
02
+ 𝑐
03

1 − 𝛾
) 𝜅)

𝜂


4

Δ
.

(27)

Since 𝑐
01
is a constant independent of 𝑐

02
, 𝑐
03
, 𝑐
02
, 𝑐
03
, and

𝛾, by choosing

0 < 𝜅 < 𝜅
∗

=: min{1,
𝑐
01

𝑐
02
+ 𝑐
03
+ ((𝑐
02
+ 𝑐
03
) / (1 − 𝛾))

} .

(28)

Equation (27) becomes L𝑉 ≤ −𝑐
0
‖𝜂‖
4

Δ
, where 𝑐

0
is a

positive constant. By (19), one obtains

L𝑉 ≤ −
𝑐
0

𝑐
𝛼
22
(
𝜂
) . (29)

By Steps 1–3 and Lemma 4, the system consisting of (13)
and (15) has a unique solution on [−𝑑,∞), 𝜂 = 0 is GAS in
probability, and 𝑃{lim

𝑡→∞
|𝜂| = 0} = 1.

Step 4. Since (6) is an equivalent transformation, so the
closed-loop system consisting of (1), 𝑢 = 𝜅

𝑛V, and (13) has
the same properties as the system (13) and (15). Theorem 12
holds.

Remark 13. In this paper, the homogeneous domination idea
is generalized to stochastic feedforward nonlinear time-delay
systems (1). The underlying philosophy of this approach
is that the state-feedback controller is first constructed for
system (7) without considering the drift and diffusion terms,
and then a low gain 𝜅 in (6) (whose the value range is (28)) is
introduced to state-feedback controller to dominate the drift
and diffusion terms.

Remark 14. Due to the special upper-triangular structure and
the appearance of time-varying delay, there is no efficient
method to solve the stabilization problem of system (1).
By combining the homogeneous domination approach with
stochastic nonlinear time-delay system criterion, the state-
feedback stabilization of system (1) was perfectly solved in
this paper.

Remark 15. One of the main obstacles in the stability analysis
is how to deal with the effect of time-varying delay. In this
paper, by constructing an appropriate Lyapunov-Krasovskii
functional (17), this problem was effectively solved.

Remark 16. It is worth pointing out that the rigorous proof of
Theorem 12 is not an easy job.

5. A Simulation Example

Consider the following stochastic nonlinear system:

𝑑𝑥
1
= 𝑥
2
𝑑𝑡 +

1

10
(𝑥
2
+ 𝑥
2
(𝑡 − 𝑑 (𝑡)) cos 𝑥

2
) 𝑑𝜔,

𝑑𝑥
2
= 𝑢𝑑𝑡,

(30)

where 𝑑(𝑡) = 1 + (1/2) sin 𝑡. It is easy to verify that
Assumptions 8 and 9 are satisfied with 𝑎

1
= 0, 𝑎

2
= 1/10,

and ̇𝑑(𝑡) = (1/2) cos 𝑡 < 1.

Design of Controller. Introducing the following coordinate
transformation:

𝜂
1
= 𝑥
1
, 𝜂

2
=
𝑥
2

𝜅
, V =

𝑢

𝜅2
, (31)

system (30) becomes

𝑑𝜂
1
= 𝜅𝜂
2
𝑑𝑡 + 𝑔

1
𝑑𝜔,

𝑑𝜂
2
= 𝜅V𝑑𝑡,

(32)
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Figure 1: (a) The response of the closed-loop system (30) and (b) the response of the controller (37).

where 𝑔
1
= (1/10)(𝜅𝜂

2
+𝜅𝜂
2
(𝑡−𝑑(𝑡)) cos 𝜅𝜂

2
). Choosing 𝜉

1
=

𝜂
1
and 𝑉

1
(𝜂
1
) = (1/4)𝜉

4

1
, we obtainL𝑉

1
≤ −2𝜅𝜉

4

1
+ 𝜅𝜉
3

1
(𝜂
2
−

𝜂
∗

2
) + (1/2)(𝜕

2

𝑉
1
/𝜕𝜂
2

1
)𝑔
2

1
, where 𝜂∗

2
= −2𝜂

1
=: −𝛼
1
𝜉
1
. By 𝜉
2
=

𝜂
2
− 𝜂
∗

2
and 𝑉

2
(𝜂
2
) = 𝑉

1
(𝜂
1
) + (1/4)𝜉

4

2
, a direct calculation

leads to

L𝑉
2
≤ −2𝜅𝜉

4

1
+ 𝜅𝜉
3

1
𝜉
2
+ 𝜅𝜉
3

2
V + 𝜅𝛼

1
𝜉
3

2
𝜂
2
+
1

2

𝜕
2

𝑉
2

𝜕𝜂
2

1

𝑔
2

1
. (33)

By Lemma 7, one has

𝜉
3

1
𝜉
2
≤ 0.5𝜉

4

1
+ 0.8438𝜉

4

2
,

𝛼
1
𝜉
3

2
𝜂
2
≤ 0.5𝜉

4

1
+ 5.7797𝜉

4

2
.

(34)

Choosing

V = −7.6235𝜉
2
=: −𝛼
2
𝜉
2

(35)

and substituting (34) into (33), one gets

L𝑉
2
≤ −𝜅 (𝜉

4

1
+ 𝜉
4

2
) +

1

2

𝜕
2

𝑉
2

𝜕𝜂
2

1

𝑔
2

1
. (36)

By (31) and (35), one obtains the actual controller

𝑢 = −𝛼
2
(𝜅𝑥
2
+ 𝛼
1
𝜅
2

𝑥
1
) . (37)

The Choice of 𝜅∗. Defining ‖𝜂‖
Δ
= (𝜂
2

1
+ 𝜂
2

2
)
1/2 and choosing

𝑉 (𝜂) = 𝑉
2
(𝜂) + 𝜅

2

∫

𝑡

𝑡−𝑑(𝑡)

𝜂 (𝜎)


4

Δ
𝑑𝜎, (38)

by (3), (36), and 𝑑(𝑡) = 1 + (1/2) sin 𝑡, one obtains

L𝑉 ≤ −𝜅
𝜂


4

Δ
+ 𝜅
2

(1.5
𝜂


4

Δ
+ 0.5

𝜂 (𝑡 − 𝑑 (𝑡))


4

Δ
)

+ 𝜅
2

(
𝜂


4

Δ
− 0.5

𝜂 (𝑡 − 𝑑 (𝑡))


4

Δ
)

= −𝜅 (1 − 2.5𝜅)
𝜂


4

Δ
,

(39)

from which we get the critical value 𝜅∗ = 0.4; that is, 𝜅 ∈

(0, 0.4).
In simulation, we choose the initial values 𝑥

1
(0) =

−0.8, 𝑥
2
(0) = 1, and 𝜅 = 0.3. Figure 1 demonstrates the

effectiveness of the state-feedback controller.

6. A Concluding Remark

By using the homogeneous domination approach, this paper
further studied the state-feedback stabilization problem for
a class of stochastic feedforward nonlinear time-delay sys-
tems (1). The delay-independent state-feedback controller is
explicitly constructed such that the closed-loop system is
globally asymptotically stable in probability.

There still exist some problems to be investigated. One is
to consider the output-feedback control of switched stochas-
tic system (1) by using average dwell time method in [32].
Another is to find a practical example (similar to [33–
35]) for system (1). The last is to generalize the networked
control systems (such as [36–41]) to stochastic feedforward
networked systems.



Abstract and Applied Analysis 7

Appendix

Proof of Lemma 11. According to (3), (7), (10), and (11), one
has
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We concentrate on the last two terms on the right-hand side
of (A.1).

Using (10) and Lemma 7, one obtains
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where 𝑙
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and substituting (A.2)-(A.3) into (A.1), one gets the desired
result.
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A nonlinear model predictive control (MPC) is proposed for underactuated surface vessel (USV) with constrained invariant
manifolds. Aimed at the special structure of USV, the invariant manifold under the given controller is constructed in terms of
diffeomorphism and Lyapunov stability theory. Based on MPC, the states of the USV are steered into the constrained terminal
invariant manifolds. After the terminal manifolds set is reached, a linear feedback control is used to stabilize the system. The
simulation results verified the effectiveness of the proposed method. It is shown that, based on invariant manifolds constraints,
it is easy to get the MPC for the USV and it is suitable for practical application.

1. Introduction

The waterjet propulsor is widely used to thrust existing
planning surface vessels.The conventional method to control
planning surface vessels is indirectly achieved through the
course control which is actuated by a steerable nozzle. If the
planar position and course are controlled directly, we need to
regulate the angle and the thrust force of the steering nozzle
to control the movements in three degrees of freedom syn-
chronously. Obviously, the control system of planning surface
vessels is typical underactuated system. In order to ensure
the safety of the planning surface vessel, many constraints
such as the angle of the steering nozzle and radius of gyration
must be in consideration in the design process of shipmotion
controller; otherwise it will undermine the performance of
the planning surface vessels and even lead to collapse of
the hull and other serious consequences. The underactuated
system with constraints is essentially nonlinear system and
cannot be stabilized by any smooth time-invariant control
laws. Predictive control is an effective optimization control
method to deal with constrains [1–6].

In general, the use of MPC in an underactuated structure
system necessitates a means of switching among the available

models to the one that best describes the current operating
condition. A closely related work is the stability analysis of
switched stochastic systems by [7] in which dissipativity-
based sliding mode control was constructed. Since designing
MPC controllers that stabilize underactuated system may
not result in a stable global closed-loop system, closed-loop
stability in switch model/control approaches has also been
studied [8]. The study in the paper is aimed to analyse the
underactuated characteristics of planning surface vessels and
guarantee safe movements of the vessels. Furthermore, based
on predictive control approach, the problem of the stabiliza-
tion and tracking control is solved under the condition of
reserved safety constraints.

Control of underactuated systems has been one of the
active research topics due to its intrinsic nonlinear nature
and practical applications. As a typical example of underac-
tuated systems, control of an underactuated ship has been
focused on recently. The main difficulty in the control of
underactuated ships is that they are not actuated in the
sway axis. This configuration is the most common among
the surface ships [9]. Furthermore, unlike underactuated
systems with nonintegrable constraints, the surface vessels
under the consideration are a class of underactuated systems
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with nonintegrable dynamics and are not transformed into a
driftless system [10]. Nevertheless, several authors have stud-
ied the trajectory tracking control problem. A discontinuous
control approach with two stage control laws switched on
at given time is proposed based on the stability analysis of
the global transformed system in [11]. In [12], the authors
proposed a kinematic tracking controller that achieved global
exponential practical stability of an underactuated surface
vessel. In [13], a continuous time-invariant control law was
proposed to obtain semiglobal exponential position and
orientation tracking, provided the desired angular trajectory
remains positive. Based on the cascaded approach, a global
tracking result was obtained in [14, 15]. The stability analysis
relied on the stability theory of linear time-varying systems.
An application of the recursive technique proposed in [16]
for the standard chain form systems was used in [17] to
provide exponential stability of the reference trajectory.
Based on Lyapunov’s direct method and passivity approach,
two constructive tracking solutions were proposed in [18]
for an underactuated ship. The constructive control design
procedure exploited the inherent cascade-interconnected
structure of the ship dynamics and actually generated an
explicit Lyapunov function whose availability might suit
the requirements of robust and adaptive control design.
With the help of the backstepping design methodology, a
nonlinear time-invariant control law was proposed in [19]
for an underactuated surface vessel. But the control design
in [19] was not complete and lacked a further step in the
backstepping procedure. In the comment letter [20], the
control laws in [19] were revised and the states decayed
asymptotically to zero.

Model predictive control (MPC) is a popular technique
for the control of slow dynamical system subject to input
and state constraints. At any time instant, MPC requires
the online solution of an optimization problem to com-
pute optimal control inputs over a fixed number of future
time instants, known as the finite horizon or quasi-infinite
horizon. Using MPC, it is possible to handle inequality
constraints on the manipulated and controlled variables in
a systematic manner during the design and implementation
of the controller. Perhaps the principal shortcoming of
existing MPC-base control techniques is their inability to
explicitly incorporate plant model uncertainty. The fact that
the rudder actuation is limited in amplitude and rate makes
MPC approach a natural choice for the design of the path
following controller. In [21], a standard model predictive
control approach for path following with roll constraints
of marine surface vessels in calm water using the rudder
as the control input has been proposed. The focus is on
satisfying all the input (rudder) and state (roll) constraints
while achieving satisfactory path following performance. For
notational convenience the ship dynamics in [21] are written
into linearized matrix form based on the assumption that
surge velocity is constant and the yawmoment is proportional
to the rudder angle. However, the former assumption is
hardly admissible in engineering. In [22], an analytic model
predictive controller is presented for path following of an
underactuated ship maneuvering along a predefined path.
Themathematical model of shipmotion is described by using
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Figure 1: Underactuated surface vessel.

Serret-Frenet frame, and a systematic method is provided to
guarantee the stability of the closed-loop system in terms
of transforming the original single-input multiple-output
(SIMO) into an equivalent single-input single-output (SISO)
system. However, the MPC algorithm proposed in [22] is
designed as an analytic model predictive controller which is
affected by the accuracy of the parameters.

This paper illuminates the stabilization approach for
underactuated surface vessels with only a surge force and
a yaw moment. A nonlinear model predictive controller is
presented for steering the states of underactuated ship into
a desired terminal invariant manifolds. After the terminal
manifolds set is reached, a linear feedback control is used to
stabilize the system. However, in the techniques mentioned
above, plant modeling is the critical step to obtain feedback
controller and the control result is strongly influenced by
the model; the problems inherent to plant modeling are
inevitable. Moreover, even complex models cannot cover
all the system dynamics [23–26]. In the future work, we
will make efforts to design data-driven MPC controllers to
overcome these problems.

2. Problem Formulation

In this paper, we consider the trajectory tracking control
problem of a surface vessel shown in Figure 1.There is no side
thruster, but two independent main thrusters are located at a
distance from the center line in order to provide both surge
force and yaw moment.

The dynamics and kinematics of an underactuated sur-
face vessel are described as follows [27]:

𝑀 ̇] + 𝐶 (]) ] + 𝐷] = 𝜏, (1)

̇𝜂 = 𝐽 (𝜂) ]. (2)

The inertiamatrix𝑀 = diag {𝑚
11
, 𝑚
22
, 𝑚
33
} and the damping

matrix 𝐷 = diag {𝑑
11
, 𝑑
22
, 𝑑
33
} are constant and positive

definite. The vector 𝜏 = [𝜏
1
, 𝜏
2
, 𝜏
3
] denotes the control

forces in surge and sway and control torque in yaw. In this
paper, the surface vessel is assumed as the common thruster
configuration that has no side thruster, such as 𝜏

2
= 0. So
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the second component of (1) behaves as a nonholonomic
constraint, which is a nonintegrable relation involving not
only the generalized coordinates and velocities but also the
generalized accelerations [28]. 𝐶(]) is the matrix of Coriolis
and centripetal terms also including added mass. 𝐽(𝜂) is the
rotation matrix for the transformation between body-fixed
and earth-fixed coordinates:

𝐶 (]) = [

[

0 0 −𝑚
22
V

0 0 𝑚
11
𝑢

𝑚
22
V −𝑚

11
𝑢 0

]

]

,

𝐽 (𝜂) = [

[

cos (𝜓) − sin (𝜓) 0

sin (𝜓) cos (𝜓) 0

0 0 1

]

]

.

(3)

The vector 𝜂 = [𝑥, 𝑦, 𝜓]
𝑇 denotes the North and East

positions and orientation of the underactuated surface vessel
in the earth-fixed coordinate system.The vector ] = [𝑢, V, 𝑟]𝑇
denotes the linear velocities in surge and sway and the angular
velocity in yaw.

As a general accepted conclusion [29, 30], there is no
continuous time-invariant feedback control law that makes
the zero origin an asymptotically stable equilibrium of the
system (1) and (2), for the system does not satisfy Brocketts
condition [31]. Then time-varying and discontinuous control
approaches are only taken into account in this paper.

Neglecting the motions in heave, roll, and pitch, the
simplified kinematic model which describes the geometrical
relationship between the earth-fixed (E-frame) and the body-
fixed (B-frame) motion is given as

𝑚
11
̇𝑢 − 𝑚
22
V𝑟 + 𝑑

11
𝑢 = 𝜏
1
,

𝑚
22
̇V + 𝑚
11
𝑢𝑟 + 𝑑

22
V = 0,

𝑚
33
̇𝑟 + (𝑚
22
− 𝑚
11
) 𝑢V + 𝑑

33
𝑟 = 𝜏
3
,

̇𝑥 = 𝑢 cos𝜓 − V sin𝜓,
̇𝑦 = 𝑢 sin𝜓 + V cos𝜓,

̇𝜓 = 𝑟.

(4)

The following global coordinate transformation and feedback
transformation are adopted before control design. Define

𝑧
1
= 𝑥 cos (𝜓) + 𝑦 sin (𝜓) ,

𝑧
2
= V,

𝑧
3
= −𝑥 sin (𝜓) + 𝑦 cos (𝜓) + 𝑚

22

𝑑
22
]
,

𝑧
4
= 𝜓,

𝑧
5
= −

𝑚
11

𝑑
22
𝑢
− 𝑧
1
,

𝑧
6
= 𝑟.

(5)

It is proved that the state transformation (5) is a global
diffeomorphism [32]. The feedback transformation is

𝑤
1
= (

𝑑
11

𝑑
22

− 1)𝑢 − 𝑧
3
𝑧
6
−
𝜏
1

𝑑
22

,

𝑤
2
=
(𝑚
11
− 𝑚
22
) 𝑢V

𝑚
33

−
𝑑
33
𝑟

𝑚
33

+
𝜏
3

𝑚
33

.

(6)

With the state and feedback transformation (5)-(6), the
system (1)-(2) is eventually transformed to

̇𝑧
1
= −

𝑑
22

𝑚
11

𝑧
1
−
𝑑
22

𝑚
11

𝑧
5
+ 𝑧
3
𝑧
6
−
𝑚
22

𝑑
22

𝑧
2
𝑧
6
,

̇𝑧
2
= −

𝑑
22

𝑚
22

𝑧
2
+
𝑑
22

𝑚
22

𝑧
6
(𝑧
1
+ 𝑧
5
) ,

̇𝑧
3
= 𝑧
5
𝑧
6
, ̇𝑧

4
= 𝑧
6
,

̇𝑧
5
= 𝑤
1
, ̇𝑧

6
= 𝑤
2
.

(7)

The system (7) has the same diffeomorphismproperties as the
system (1) and (2) [32]; that is, if lim

𝑡→∞
𝑧
𝑖
= 0 (1 ≤ 𝑖 ≤ 6)

then (𝑥, 𝑦, 𝜓, 𝑢, V, 𝑟) converges to zero as 𝑡 → ∞.

Lemma 1. If there exists a control lawwhich globally uniformly
asymptotically stabilizes the system

̇𝑧
3
= 𝑧
5
𝑧
6
, ̇𝑧

4
= 𝑧
6
,

̇𝑧
5
= 𝑤
1
, ̇𝑧

6
= 𝑤
2
,

(8)

then the system (7) under the control law is also globally
uniformly asymptotically stabilized.

Proof. An approach to prove Lemma 1 based on Lyapunov
stability theoremhas been given in [28].Therefore, to stabilize
the system (1) and (2), it is only needed to design a stabilizing
control law for the system (8). In the following section, a
discontinuous and time-varying control approach with MPC
control method is proposed for the stabilization of the system
(8).

3. Control Design

Let us recall the following definitions firstly.

Definition 2. LetΦ : 𝑅
𝑛

→ 𝑅
𝑝 be a smoothmap. Amanifold

𝑀 = {𝑥 ∈ 𝑅
𝑛

: Φ(𝑥) = 0} is said to be invariant for the
control system ̇𝑥 = 𝑓(𝑥, 𝑢) if all system trajectories starting
in𝑀 at 𝑡 = 𝑡

0
remain in this manifold for all 𝑡 ≥ 𝑡

0
. In other

words, the Lie derivative of Φ along the vector field 𝑓 is zero
(𝐿
𝑓
Φ(𝑥) = 0) for all 𝑥 ∈ 𝑀.

Definition 3. A manifold𝑀 = {𝑥 ∈ 𝑅
𝑛

: Φ(𝑥) = 0} is said to
be asymptotically attractive in an open domainΩ of 𝑅𝑛 if, for
all 𝑡 ∈ 𝑅

+
such that 𝑥(𝑡

0
) ∈ Ω, lim

𝑥→∞
𝑥(𝑡) ∈ 𝑀.

3.1. Construction of the Invariant Manifold. First, in order to
construct the invariant manifold of the system (8), assume
that [𝑤

1
𝑤
2
]
𝑇 is a linear state feedback such that

𝑤
1
= −𝑘
1
𝑧
5

(𝑘
1
> 0) ,

𝑤
2
= −𝑘
2
𝑧
6
− 𝑘
3
𝑧
5

(𝑘
2
> 0, 𝑘

3
> 0, 𝑘

1
̸= 𝑘
2
) .

(9)

Substitute (9) into (8); we obtain

̇𝑧
3
= 𝑧
5
𝑧
6
, ̇𝑧

4
= 𝑧
6
,

̇𝑧
5
= −𝑘
1
𝑧
5
, ̇𝑧

6
= −𝑘
2
𝑧
6
− 𝑘
3
𝑧
5
.

(10)
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The resulting closed-loop system (10) can be successively
integrated to obtain

𝑧
5
(𝑡) = 𝑧

50
𝑒
−𝑘1𝑡,

𝑧
6
(𝑡) = 𝑧

60
𝑒
−𝑘2𝑡 +

𝑘
3
𝑧
50

𝑘
1
− 𝑘
2

(𝑒
−𝑘1𝑡 − 𝑒

−𝑘2𝑡) ,

𝑧
4
(𝑡) = 𝑠

4
(𝑧
0
) + [

𝑘
3
𝑧
50

𝑘
2
(𝑘
1
− 𝑘
2
)
−
𝑧
60

𝑘
2

] 𝑒
−𝑘2𝑡

−
𝑘
3
𝑧
50

𝑘
1
(𝑘
1
− 𝑘
2
)
𝑒
−𝑘1𝑡,

𝑧
3
(𝑡) = 𝑠

3
(𝑧
0
) −

1

𝑘
1
+ 𝑘
2

(𝑧
40
𝑧
60
−

𝑘
3
𝑧
2

50

𝑘
1
− 𝑘
2

) 𝑒
−(𝑘1+𝑘2)𝑡

−
𝑘
3
𝑧
2

50

2𝑘
1
(𝑘
1
− 𝑘
2
)
𝑒
−2𝑘1𝑡,

(11)

where 𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑠
3
(𝑧
0
), and 𝑠

4
(𝑧
0
) are the integration con-

stants, which can be determined, at 𝑡 = 0, as a function of the
initial conditions 𝑧

40
, 𝑧
50
, and 𝑧

60
. Besides, from (11), one can

easily see that [𝑧
5
𝑧
6
𝑧
4
𝑧
3
] tends to [0 0 𝑠

4
(𝑧
0
) 𝑠
3
(𝑧
0
)]

when 𝑡 tends to infinity. So, if we take the initial conditions
such that 𝑠

4
(𝑧
0
) = 0 and 𝑠

3
(𝑧
0
) = 0, then the whole state

tends to the origin. Setting 𝑡 = 0 in (11), 𝑠
4
(𝑧) and 𝑠

3
(𝑧) can

be determined. Substituting 𝑧
0
by 𝑧 in the previous functions

leads to

𝑆
4
(𝑧) = 𝑧

4
−

𝑘
3
𝑧
5

𝑘
2
(𝑘
1
− 𝑘
2
)
+
𝑧
6

𝑘
2

+
𝑘
3
𝑧
5

𝑘
1
(𝑘
1
− 𝑘
2
)
,

𝑆
3
(𝑧) = 𝑧

3
+

𝑧
5
𝑧
6

𝑘
1
+ 𝑘
2

−
𝑘
3
𝑧
2

5

𝑘
2

1
− 𝑘
2

2

+
𝑘
3
𝑧
2

5

2𝑘
1
(𝑘
1
− 𝑘
2
)
.

(12)

Let

𝑆 = [𝑆
4
(𝑧) 𝑆

3
(𝑧)]
𝑇

. (13)

From (13), it appears clearly that if the state variables belong
to the 2-dimensional manifold

𝑀
𝑆
= {𝑧 ∈ 𝑅

4

| 𝑆
4
(𝑧) = 0, 𝑆

3
(𝑧) = 0} , (14)

then the whole state 𝑧 tends to the origin, since 𝑧
5
and 𝑧

6

decay exponentially to zero. Furthermore, this manifold is
invariant under the linear state feedback (9), as it is shown
in the following result.

Proposition 4. Consider the following functions:

𝑆
4
(𝑧) = 𝑧

4
−

𝑘
3
𝑧
5

𝑘
2
(𝑘
1
− 𝑘
2
)
+
𝑧
6

𝑘
2

+
𝑘
3
𝑧
5

𝑘
1
(𝑘
1
− 𝑘
2
)
,

𝑆
3
(𝑧) = 𝑧

3
+

𝑧
5
𝑧
6

𝑘
1
+ 𝑘
2

−
𝑘
3
𝑧
2

5

𝑘
2

1
− 𝑘
2

2

+
𝑘
3
𝑧
2

5

2𝑘
1
(𝑘
1
− 𝑘
2
)
.

(15)

Then 𝑀
𝑆
= {𝑧 ∈ 𝑅

4

| 𝑆
4
(𝑧) = 0, 𝑆

3
(𝑧) = 0} is an invariant

manifold for the closed-loop system (8)–(10).

Proof. Denote vector fields of system (10) under the linear
state feedback (9)

𝑓 = 𝑧
5
𝑧
6

𝜕

𝜕𝑧
3

+ 𝑧
6

𝜕

𝜕𝑧
4

− 𝑘
1
𝑧
5

𝜕

𝜕𝑧
5

− (𝑘
2
𝑧
6
+ 𝑘
3
𝑧
5
)
𝜕

𝜕𝑧
6

.

(16)

Evaluating the Lie derivatives of along the vector fields (16)
yields

𝐿
𝑓
𝑆
4
(𝑧)

=
𝜕𝑆
4

𝜕𝑧
𝑓 (𝑧)

=

[
[
[
[
[
[
[

[

0

1

−
𝑘
3

𝑘
2
(𝑘
1
− 𝑘
2
)
+

𝑘
3

𝑘
1
(𝑘
1
− 𝑘
2
)

1

𝑘
2

]
]
]
]
]
]
]

]

𝑇

×

[
[
[

[

𝑧
5
𝑧
6

𝑧
6

−𝑘
1
𝑧
5

−𝑘
2
𝑧
6
− 𝑘
3
𝑧
5

]
]
]

]

= 𝑧
6
+

𝑘
1
𝑘
3
𝑧
5

𝑘
2
(𝑘
1
− 𝑘
2
)
−

𝑘
3
𝑧
5

(𝑘
1
− 𝑘
2
)
− 𝑧
6
−
𝑘
3

𝑘
2

𝑧
5

= 0,

𝐿
𝑓
𝑆
3
(𝑧)

=
𝜕𝑆
3

𝜕𝑧
𝑓 (𝑧)

= [
𝜕𝑆
3

𝜕𝑧
3

,
𝜕𝑆
3

𝜕𝑧
4

,
𝜕𝑆
3

𝜕𝑧
5

,
𝜕𝑆
3

𝜕𝑧
6

]𝑓 (𝑧)

= [1, 0,
𝑧
6

𝑘
1
+ 𝑘
2

−
2𝑘
3
𝑧
5

𝑘
2

1
− 𝑘
2

2

+
2𝑘
3
𝑧
5

2𝑘
1
(𝑘
1
− 𝑘
2
)
,

𝑧
5

𝑘
1
+ 𝑘
2

]

× [𝑧
5
𝑧
6
, 𝑧
6
, −𝑘
1
𝑧
5
, − (𝑘
2
𝑧
6
+ 𝑘
3
𝑧
5
)]
𝑇

= 0.

(17)

It appears clearly that the state variables𝑀
𝑆
belong to the 2-

dimensional invariant manifold.
Hence, we can construct the invariant manifold of the

system (10) as𝑀
𝑆
, which has the following characters:

(1) 𝑧 = 0 ∈ 𝑀
𝑠
;

(2) to stabilize system (8) exponentially, it suffices to
bring the state variables [𝑧

5
𝑧
6
𝑧
4
𝑧
3
] into𝑀

𝑆
by an

additional state feedback, namely, 𝑤
1
, 𝑤
2
.

Now it appears clearly that if the initial conditions are
locating in the invariant manifold 𝑀

𝑆
, the system variables

decay exponentially to zero in terms of linear feedback
control. If the initial conditions locate outside of𝑀

𝑆
, in order

to stabilize the system, we should force the system variables
into𝑀

𝑆
firstly and then use the feedback control to stabilize

the system.
In this paper, an MPCmethod is proposed for system (8)

with the initial conditions out of the manifolds𝑀
𝑆
. Consider

an initial state [𝑧
5
𝑧
6
𝑧
4
𝑧
3
] and a control horizon of 𝑇. At

initial time, let the manifolds𝑀
𝑆
be the terminal constraint

set. The first objective of the proposed algorithm is to use a
T-step control horizon to steer the terminal set-valued state
prediction [𝑧(𝑡 + 𝑇)] into the terminal constraint set𝑀

𝑆
. The

detail solution can be achieved by the minimization problem
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in Section 3.2. Secondly, use the feedback control to stabilize
the system to the origin.

3.2. Design of MPC Controller. In this subsection we focus
our objective on the determination of the first term to make
the MPC controller steer the state into the terminal manifold
𝑀
𝑆
, asymptotically attractive. Once on it, the whole state

[𝑧
5
𝑧
6
𝑧
4
𝑧
3
] tends to zero under the residual linear state

feedback (9).
MPC is an attractive strategy for systems subject to

terminal constraints. Due to the USV systems with terminal
constraints, we obtain the control input by minimizing a
nominal cost [𝐽(𝑧, 𝑤

𝑐
)] over a finite predictive horizon as

follows:

𝐽 (𝑧, 𝑤
𝑐
) = min
𝑢𝑐

∫

𝑡+𝑇

𝑡

𝐿 (𝑧, 𝑤
𝑐
) 𝑑𝑡 + 𝑊 (𝑥 (𝑡 + 𝑇)) (18)

s.t.

̇𝑧
3
= 𝑧
5
𝑧
6
, ̇𝑧
4
= 𝑧
6
,

̇𝑧
5
= 𝑤
1
, ̇𝑧
6
= 𝑤
2
, 𝑧 (𝑡 + 𝑇) ∈ 𝑀

𝑠
,

(19)

where 𝑇, 𝐿(𝑧, 𝑤
𝑐
), and𝑊(𝑥(𝑡 + 𝑇)) denote the time horizon,

the running, and terminal costs. 𝑀
𝑠
denotes the terminal

constraint set.
Substituting 𝐿(𝑧, 𝑤

𝑐
) = 𝑆
2 by 𝑆 = √𝑠2

3
+ 𝑠
2

4
, we can obtain

𝑀
2

𝑠
= 𝑆
2

= (𝑧
3
+
𝑧
6

𝑘
2

)

2

+ (𝑧
2
+

𝑧
4
𝑧
6

𝑘
1
+ 𝑘
2

)

2

. (20)

Selecting 𝐿(𝑧, 𝑤
𝑐
) = 𝑆
2 and𝑊 = 0 leads to

𝐽 (𝑧, 𝑤
𝑐
) = min
𝑤𝑐

∫

𝑡+𝑇

𝑡

((𝑧
3
+
𝑧
6

𝑘
2

)

2

+ (𝑧
2
+

𝑧
4
𝑧
6

𝑘
1
+ 𝑘
2

)

2

)𝑑𝑡.

(21)

Proposition 5. If the optimization problem in (18) and (19)
is feasible, the closed-loop underactuated system (10) with
terminal invariant manifolds constraints𝑀

𝑠
is asymptotically

stable in terms of MPC controller.

Proof. Firstly, define the “MPC value function” as 𝑉; (𝑧, 𝑤
𝑐
)

denotes the optimal solution of (18), 𝛿 denotes the sampling
time, and𝑇 denotes the predictive and control horizon.There
exists a scalar 𝜀 > 0 such that for each time 𝑡 ∈ [𝑇,∞) and
each 𝑧

𝑡
∈ 𝑀
𝑠
, we can choose a control function 𝑤

𝑐
: [𝑡, 𝑡 +

𝜀] → 𝑅
2, satisfying [33]

𝜕𝑊(𝑧
𝑡
)

𝜕𝑧
𝑓 (𝑧
𝑡
, 𝑤
𝑐
(𝑡)) ≤ −𝐿 (𝑧

𝑡
, 𝑤
𝑐
(𝑡)) . (22)

In sampling time 𝑡
𝑖
, the value function for 𝐽(𝑡

𝑖
, 𝑧
𝑡𝑖
, 𝑇) is

𝑉
𝑡𝑖
= ∫

𝑡𝑖+𝑇

𝑡𝑖

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡 + 𝑊(𝑧 (𝑡

𝑖
+ 𝑇)) . (23)

Choose sample time 𝛿 < 𝜀 small enough such that extending
the process (𝑧, 𝑤

𝑐
) to [𝑡

𝑖
, 𝑡
𝑖
+ 𝑇 + 𝛿], 𝑢

𝑐
[𝑡
𝑖
+ 𝑇, 𝑡
𝑖
+ 𝑇 + 𝛿] will

satisfy (22). To this control it will correspond to the extended
trajectory 𝑧[𝑡

𝑖
+𝑇, 𝑡
𝑖
+𝑇+𝛿].The condition (22) guarantees that

the extended process (𝑧, 𝑤
𝑐
) taken in the interval [𝑡

𝑖
+ 𝛿, 𝑡
𝑖
+

𝑇 + 𝛿] is admissible for problem 𝐽(𝑡
𝑖
+ 𝛿, 𝑧

𝑡𝑖+𝛿
, 𝑇). However,

since this process is not necessarily optimal, we have

𝑉
𝑡𝑖+𝛿

(𝑡
𝑖
+ 𝛿, 𝑧 (𝑡

𝑖
+ 𝛿)) ≤ ∫

𝑡𝑖+𝑇+𝛿

𝑡𝑖+𝛿

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡

+ 𝑊(𝑧 (𝑡
𝑖
+ 𝑇 + 𝛿)) .

(24)

Hence

𝑉
𝑡𝑖+𝛿

(𝑡
𝑖
+ 𝛿, 𝑧 (𝑡

𝑖
+ 𝛿)) − 𝑉

𝑡𝑖
(𝑡
𝑖
, 𝑧 (𝑡
𝑖
))

≤ −∫

𝑡𝑖+𝛿

𝑡𝑖

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡

+ ∫

𝑡𝑖+𝑇+𝛿

𝑡𝑖+𝑇

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡

+ 𝑊(𝑧 (𝑡
𝑖
+ 𝑇 + 𝛿)) − 𝑊(𝑧 (𝑡

𝑖
+ 𝑇)) .

(25)

Integrating (22), we have

𝑊(𝑧 (𝑡
𝑖
+ 𝑇 + 𝛿)) − 𝑊(𝑧 (𝑡

𝑖
+ 𝑇))

+ ∫

𝑡𝑖+𝑇+𝛿

𝑡𝑖+𝑇

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡 ≤ 0.

(26)

Finally, we obtain

𝑉
𝑡𝑖+𝛿

(𝑡
𝑖
+ 𝛿, 𝑧 (𝑡

𝑖
+ 𝛿)) − 𝑉

𝑡𝑖
(𝑡
𝑖
, 𝑧 (𝑡
𝑖
))

≤ −∫

𝑡𝑖+𝛿

𝑡𝑖

𝐿 (𝑧 (𝑡) , 𝑤
𝑐
(𝑡)) 𝑑𝑡.

(27)

Due to 𝐿(𝑧, 𝑤
𝑐
) ≥ 0, we know the value function is decreasing

on each interval [𝑡
𝑖
, 𝑡
𝑖
+ 𝛿] for any 𝑖 and the function 𝑉 is

smaller at 𝑡
𝑖+1

than at 𝑡
𝑖
. Hence the close-loop system (8) is

asymptotically stable.
The stabilizing properties of this approach can be con-

firmed by the existence of an admissible solution to the open-
loop optimization (21) at initial time 𝑡, and so stability is
guaranteed provided that 𝑀

𝑠
is reachable in time. Then the

condition 𝐿(𝑧, 𝑤
𝑐
) = 0 is guaranteed by using the linear

feedback control 𝑤
𝑐
. Because 𝐿(𝑧, 𝑤

𝑐
) = 0, the condition

𝑊 = 0 ≤ 𝐿(𝑧, 𝑤
𝑐
) = 0 is satisfied. It is clear that condition (22)

is satisfied. (A thorough discussion of the previous problems
can be found in [33].)

The approach was first described in [33]. In this case,
outside the invariant manifolds centered at the origin, we
have to solve the open-loop optimal control problem with
(21). Before we reach 𝑀

𝑠
, we have a free time problem.

After the set 𝑀
𝑠
is reached, we switch to a linear stabilizing

feedback controller for the linearized system. The course of
solution is described as follows:

𝑤
𝑐
= 𝑤
𝑐MP𝐶, 𝑧 ∉ 𝑀

𝑠
, 𝑤

𝑐
= 𝑤
𝑐𝑀𝑠
, 𝑧 ∈ 𝑀

𝑠
, (28)

where𝑤
𝑐MPC denotes the control law by using nonlinearMPC

and denotes the linear feedback control law.
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Figure 2: Trajectory of 𝑥 and 𝑦.
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4. Simulation Results

In [9], an underactuated actual ship named “Northern Clip-
per” is introduced. Consider the simulation model with par-
ameters as “Northern Clipper” in [9]: 𝑚

11
= 5.312 × 10

6 kg,
𝑚
22
= 8.283 × 10

6 kg, 𝑚
33
= 3.745 × 10

6 kg, 𝑑
11
= 5.024 ×

10
4 kg/s, 𝑑

22
= 2.722 × 10

5 kg/s, and 𝑑
33
= 1.189 × 10

8 kg/s.
Length of “Northern Clipper” 𝐿 = 76.2m, and mass 𝑚 =

4.6 × 10
6 kg. In this section, the effectiveness of the proposed

MPC control law is verified by following simulation. For the
purpose of comparisons,more simulations with slidingmode
control approach proposed in [11] and backstepping control
proposed in [19] are done to verify the advantage of the MPC
method. The control law is selected as Proposition 5, and
the initial values are selected as 𝑥(0) = −152.4m, 𝑦(0) =
−152.4m, 𝜓(0) = −𝜋/2 rad, 𝑢(0) = V(0) = 0m/s, and
𝑟 = 0 rad/s.

The control parameters are selected as 𝑘
1
= 1.2, 𝑘

2
=

0.8, and 𝑘
3
= 1.5. The performance cost is selected as (21).

The terminal manifolds are selected as 𝑀
𝑠
. Sampling time

is selected as 𝛿 = 0.5 s. Predictive and control horizon are
selected as 𝑇 = 5 s.

Simulation results are shown in the following figures, and
the simulation time is set as 150 s. Figure 2 gives the time
response of the position 𝑥, 𝑦. Figure 3 gives the time response
of the orientation 𝜓 and orientation velocity 𝑟. Figure 4 gives
the time response of the velocities 𝑢, V. The responses of the
control inputs 𝜏

1
and 𝜏
3
are shown in Figure 5.

Figures 2–5 show that the three control laws all asymp-
totically stabilize the underactuated surface vessel to the
zero origin. Since the MPC control law guarantees a faster
convergence rate of the simulation system, the MPC method
may be superior to the other two. Furthermore, Figure 5
shows that surge control force 𝜏

1
given by MPC is always

positive. Compared with reverse thrust for an actual ship,
positive thrust is easier to achieve in practice. Therefore, the
MPC approach gets a more favorable control effect.

5. Conclusion

This paper proposes the stabilization approach for under-
actuated surface vessels with only a surge force and a yaw
moment. The invariant manifolds constraints are studied,
and stability theory of MPC controller is further developed,
which is applied to the stabilization control of underactuated
surface vessel. For the stabilization control of underactuated
surface vessel, a nonlinear MPC control law with terminal
invariant manifolds constraints is designed through coor-
dinate transformation and state feedback transformation
based on diffeomorphism and Lyapunov stability theory.The
simulation results show that the proposed control law can
effectively deal with the problem of stabilization control of
underactuated surface vessel.

It should be noted that the controller proposed in this
paper is developed with constant parameters. In the future
work, efforts will bemade to design the data-driven controller
with uncertain parameters to reduce the effect of noisy data
and computational complexity.
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