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In the field of subdivision, the smoothness increases as the arity of schemes increases. /e family of high arity schemes gives high
smoothness comparative to low arity schemes. In this paper, we propose a simple and generalized formula for a family of
multiparameter quaternary subdivision schemes. /e conditions for convergence of subdivision schemes are also presented.
Moreover, we derive subdivision schemes after substituting the different values of parameters. We also analyzed the important
properties of the proposed family of subdivision schemes. After comparison with existing schemes, we analyze that the proposed
family of subdivision schemes gives better smoothness and approximation compared with the existing subdivision schemes.

1. Introduction

Subdivision schemes are the backbone of Computer Aided
Geometric Design (CAGD). Subdivision schemes are used
for the generation of smooth curves from the initial polygon.
If the rules of subdivision schemes are four, then subdivision
schemes are called quaternary subdivision schemes.

In 2009, a 4-point quaternary scheme is presented in [1].
/e purposed scheme has C3-continuity. A family of qua-
ternary schemes is presented in [2]. /ey used the Cox–De
Boor recursion formula for the construction of quaternary
schemes. In 2013, Ghaffar et al. [3] presented a generalized
formula for the generation of 4-point subdivision schemes of
binary, ternary, and quaternary subdivision schemes. In the
same year, Amat and Liandrat [4] presented a 4-point
scheme for the elimination of the Gibbs phenomenon.

In 2018, Pervaz [5] presented a 4-point quaternary
scheme. /ey discuss the shape preserving properties of the
subdivision scheme. Ashraf et al. [6, 7] presented and an-
alyzed the geometrical properties of four point interpolating
subdivision schemes. Hameed et al. [8] presented a 4-point
subdivision scheme for regular curves and surfaces design.

Hussain et al. [9] presented a generalized formula for 5-point
subdivision schemes of any arity. Khan et al. [10] presented a
computational method for the generation of subdivision
schemes. Conti and Romani [11] presented an algebraic
technique for the generation of m-ary subdivision schemes.
Romani [12] presented an algorithm for the generation of
dual interpolating m-ary subdivision schemes. Romani and
Viscardi [13] presented a new class of univariate stationary
interpolating subdivision schemes of arity m. Recently,
Mustafa et al. [14] presented a family of integer-point ternary
parametric subdivision schemes.

1.1. Our Contributions. In the field of subdivision, as arity
increases, the smoothness also increases. /e main purpose
of this work is to present a simple and generalized formula
for derivation of multiparametric quaternary subdivision
schemes based on Laurent polynomial. /e conditions for
the construction of subdivision schemes are also presented.
Our schemes give better approximation and smoothness
compared to the same type of existing subdivision schemes
(see Figures 1 and 2).
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/e paper is organized as follows. In Section 2, we
present the general formula with different cases of a family of
quaternary subdivision schemes. Analysis of the proposed
family is presented in Section 3. Section 4 is for the com-
parison of the proposed family of subdivision schemes with
existing subdivision schemes. Conclusions are drawn in
Section 5.

2. General Formula for Multiparameter
Family of Quaternary Subdivision Schemes

In this section, we present a general formula for the mul-
tiparameter family of quaternary approximating subdivision
schemes based on Laurent polynomial. /e general formula
is

λl,q(z) � 1 + z + z
2

+ z
3

􏼐 􏼑
l+1

a0 + a1z + a2z
2

+ · · · + aqz
q

􏼐 􏼑.

(1)

/e value of l controls the complexity and that of q

controls the parameters in subdivision schemes. By using
different values of l and q, we get the Laurent polynomial of
family of (l + 1)-point quaternary (q + 1) parametric sub-
division schemes. Here, we will discuss the different cases
and conditions for family of quaternary subdivision
schemes.

Case 1. By putting l � 2, q � 1 and a0 + a1 � 1/16, with
a0 < 1/4, a1 < 1/4, in (1), we can obtain the Laurent poly-
nomial of subdivision scheme

λ2,1(z) � a1z
10

+ a0 + 3a1( 􏼁z
9

+ 3a0 + 6a1( 􏼁z
8

+ 6a0 + 10a1( 􏼁z
7

+ 10a0 + 12a1( 􏼁z
6

+ 12a0 + 12a1( 􏼁z
5

+ 12a0 + 10a1( 􏼁z
4

+ 10a0 + 6a1( 􏼁z
3

+ 6a0 + 3a1( 􏼁z
2

+ a1 + 3a0( 􏼁z + a0.

(2)

Initial Polygon
λ3,3
α4

4

(a)

Initial Polygon
λ3,3
α4

4

(b)

Initial Polygon
λ3,3
α4

4

(c)

Initial Polygon
λ3,3
SA

(d)

Initial Polygon
λ3,3
SA

(e)

Initial Polygon
λ3,3
SA

(f )

Figure 1: (a–c) Comparison of limit curves for close polygons produced by 4-point schemes λ3,3 and α44.
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/e mask of the scheme corresponding to the Laurent
polynomial λ2,1(z) is

λ2,1 �
a1, a0 + 3a1( 􏼁, 3a0 + 6a1( 􏼁, 6a0 + 10a1( 􏼁, 10a0 + 12a1( 􏼁, 12a0 + 12a1( 􏼁,

12a0 + 10a1( 􏼁, 10a0 + 6a1( 􏼁, 6a0 + 3a1( 􏼁, 3a0 + a1( 􏼁, a0
􏼨 􏼩. (3)

/e scheme corresponding to mask (3) is

P
k+1
4i � 10a0 + 6a1( 􏼁P

k
i− 1 + 6a0 + 10a1( 􏼁P

k
i ,

P
k+1
4i+1 � 6a0 + 3a1( 􏼁P

k
i− 1 + 10a0 + 12a1( 􏼁P

k
i + a1P

k
i+1,

P
k+1
4i+2 � 3a0 + a1( 􏼁P

k
i− 1 + 12a0 + 12a1( 􏼁P

k
i + a0 + 3a1( 􏼁P

k
i+1,

P
k+1
4i+3 � a0P

k
i− 1 + 12a0 + 10a1( 􏼁P

k
i + 3a0 + 6a1( 􏼁P

k
i+1.

(4)

Case 2. By setting l � 2, q � 2 and a0 + a1 + a2 � 1/16 with
a0 < 1/4, a1 < 1/4, a2 < 1/4 in (2), we get the Laurent poly-
nomial of 3-point scheme

λ2,2(z) � a2z
11

+ a1 + 3a2( 􏼁z
10

+ a0 + 3a1 + 6a2( 􏼁z
9

+ 3a0 + 6a1 + 10a2( 􏼁z
8

+ 6a0 + 10a1 + 12a2( 􏼁z
7

+ 10a0 + 12a1 + 12a2( 􏼁z
6

+ 12a0 + 12a1 + 10a2( 􏼁z
5

+ 12a0 + 10a1 + 6a2( 􏼁z
4

+ 10a0 + 6a1 + 3a2( 􏼁z
3

+ 6a0 + a2 + 3a1( 􏼁z
2

+ a1 + 3a0( 􏼁z + a0.

(5)

/e mask of the scheme corresponding to the Laurent
polynomial (5) is

Initial Polygon
λ3,3
KP

(a)

Initial Polygon
λ3,3
KP

(b)

Initial Polygon
λ3,3
KP

(c)

Figure 2: (a–c) Comparison of limit curves for close polygons produced by 4-point schemes λ3,3 and KP.
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a
1)

,

(
12

a
0

+
12

a
1)

,(
12

a
0

+
10

a
1)

,(
10

a
0

+
6a

1)
,(
6a

0
+
3a

1)
,

(
3a

0
+

a
1)

,a
0}

.

2,
2

3-
po

in
t

a
2,

(
3a

2
+

a
1)

􏼈
,(

a
0

+
3a

1
+
6a

2)
,(
3a

0
+
6a

1
+
10

a
2)

,(
6a

0
+
10

a
1

+
12

a
2)

,

(
10

a
0

+
12

a
1

+
12

a
2)

,(
12

a
0

+
12

a
1

+
10

a
2)

,(
12

a
0

+
10

a
1

+
6a

2)
,(
10

a
0

+
6a

1
+
3a

2)
,

(
6a

0
+

a
2

+
3a

1)
,(

a
1

+
3a

0)
,a

0}
.

3,
2

4-
po

in
t

a
2,

(
4a

2
+

a
1)

􏼈
,(

a
0

+
4a

1
+
10

a
2)

,(
4a

0
+
10

a
1

+
20

a
2)

,(
10

a
0

+
20

a
1

+
31

a
2)

,

(
20

a
0

+
31

a
1

+
40

a
2)

,(
31

a
0

+
40

a
1

+
44

a
2)

,(
40

a
0

+
44

a
1

+
40

a
2)

,

(
44

a
0

+
40

a
1

+
31

a
2)

,(
40

a
0

+
20

a
2

+
31

a
1)

,(
20

a
1

+
31

a
0

+
10

a
2)

,

(
20

a
0

+
10

a
1

+
4a

2)
,(
10

a
0

+
4a

1
+

a
2)

,(
4a

0
+

a
1)

,a
0}

.

3,
3

4-
po

in
t

a
3,

(
4a

3
+

a
2)

􏼈
,(

a
1

+
4a

2
+
10

a
3)

,(
a
0

+
4a

1
+
10

a
2

+
20

a
3)

,(
4a

0
+
10

a
1

+
20

a
2

+
31

a
3)

,

(
10

a
0

+
20

a
1

+
31

a
2

+
40

a
3)

,(
20

a
0

+
31

a
1

+
40

a
2

+
44

a
3)

,(
31

a
0

+
40

a
1

+
44

a
2

+
40

a
3)

,

(
40

a
0

+
44

a
1

+
40

a
2

+
31

a
3)

,(
44

a
0

+
40

a
1

+
31

a
2

+
20

a
3)

),
(
40

a
0

+
31

a
1

+
20

a
2

+
10

a
3)

,

(
31

a
0

+
20

a
1

+
10

a
2

+
4a

3)
,(
20

a
0

+
10

a
1

+
4a

2
+

a
3)

,(
10

a
0

+
4a

1
+

a
2)

,(
4a

0
+

a
1)

,a
0}

.
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λ2,2 �

a2, 3a2 + a1( 􏼁, a0 + 3a1 + 6a2( 􏼁, 3a0 + 6a1 + 10a2( 􏼁, 6a0 + 10a1 + 12a2( 􏼁,

10a0 + 12a1 + 12a2( 􏼁, 12a0 + 12a1 + 10a2( 􏼁, 12a0 + 10a1 + 6a2( 􏼁, 10a0 + 6a1 + 3a2( 􏼁,

6a0 + a2 + 3a1( 􏼁, a1 + 3a0( 􏼁, a0

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (6)

/e scheme corresponding to mask (6) is

P
k+1
4i � 10a0 + 6a1 + 3a2( 􏼁P

k
i− 1 + 6a0 + 10a1 + 12a2( 􏼁P

k
i + a2P

k
i+1,

P
k+1
4i+1 � 6a0 + 3a1 + a2( 􏼁P

k
i− 1 + 10a0 + 12a1 + 12a2( 􏼁P

k
i + a1 + 3a2( 􏼁P

k
i+1,

P
k+1
4i+2 � 3a0 + a1( 􏼁P

k
i− 1 + 12a0 + 12a1 + 10a2( 􏼁P

k
i + a0 + 3a1 + 6a2( 􏼁P

k
i+1,

P
k+1
4i+3 � a0P

k
i− 1 + 6a2 + 10a1 + 12a2( 􏼁P

k
i + 3a0 + 6a1 + 10a2( 􏼁P

k
i+1.

(7)

Case 3. By setting l � 3, q � 2, and a0 + a1 + a2 � 1/64, with
a0 < 1/4, a1 < 1/4, a2 < 1/4 in (2), we can obtain the Laurent
polynomial of 4-point scheme

λ3,2(z) � a2z
14

+ a1 + 4a2( 􏼁z
13

+ a0 + 4a1 + 10a2( 􏼁z
12

+ 4a0 + 10a1 + 20a2( 􏼁z
11

+ 10a0 + 20a1 + 31a2( 􏼁z
10

+ 20a0 + 31a1 + 40a2( 􏼁z
9

+ 31a0 + 40a1 + 44a2( 􏼁z
8

+ 40a0 + 44a1 + 40a2( 􏼁z
7

+ 44a0 + 40a1 + 31a2( 􏼁z
6

+ 40a0 + 20a2 + 31a1( 􏼁z
5

+ 31a0 + 20a1 + 10a2( 􏼁z
4

+ 20a0 + 10a1 + 4a2( 􏼁z
3

+ 10a0 + 4a1 + a2( 􏼁z
2

+ 4a0 + a1( 􏼁z + a0.

(8)

/e mask of the scheme corresponding to the Laurent
polynomial (8) is

λ3,2 �

a2, 4a2 + a1( 􏼁, a0 + 4a1 + 10a2( 􏼁, 4a0 + 10a1 + 20a2( 􏼁, 10a0 + 20a1 + 31a2( 􏼁,

20a0 + 31a1 + 40a2( 􏼁, 31a0 + 40a1 + 44a2( 􏼁, 40a0 + 44a1 + 40a2( 􏼁, 44a0 + 40a1 + 31a2( 􏼁,

40a0 + 20a2 + 31a1( 􏼁, 20a1 + 31a0 + 10a2( 􏼁, 20a0 + 10a1 + 4a2( 􏼁, 10a0 + 4a1 + a2( 􏼁, 4a0 + a1( 􏼁, a0

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (9)

/e scheme corresponding to mask (9) is

Table 2: /e degree of generation of family of unified quaternary curve subdivision scheme for different cases.

Cases l, q Dg Values of aq′s τ Parametrization

1 l � 2, q � 1 2 a0 � − (3/32), a1 � 5/32 7 Primal
a0 � 5/32, a1 � − (3/32) 3 Primal

2 l � 2, q � 2 2 a0 � a2 � − (15/128), a1 � 19/64 11
2 Dual

3 l � 3, q � 2 3 a0 � a2 � − (5/128), a1 � 3/32 7 Primal
4 l � 3, q � 3 3 a0 � a3 � w, a1 � a2 � 1/128 − w 15

2 Dual
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P
k+1
4i � 20a0 + 10a1 + 4a2( 􏼁P

k
i− 1 + 40a0 + 44a1 + 40a2( 􏼁P

k
i + 4a0 + 10a1 + 20a2( 􏼁P

k
i+1,

P
k+1
4i+1 � 10a0 + 4a1 + a2( 􏼁P

k
i− 1 + 44a0 + 40a1 + 31a2( 􏼁P

k
i + 10a0 + 20a1 + 31a2( 􏼁P

k
i+1 + a2P

k
i+2,

P
k+1
4i+2 � 4a0 + a1( 􏼁P

k
i− 1 + 40a0 + 20a2 + 31a1( 􏼁P

k
i + 20a0 + 31a1 + 40a2( 􏼁P

k
i+1 + 4a2 + a1( 􏼁P

k
i+2,

P
k+1
4i+3 � a0P

k
i− 1 + 20a1 + 31a0 + 10a2( 􏼁P

k
i + 31a0 + 40a1 + 44a2( 􏼁P

k
i+1 + a0 + 4a1 + 10a2( 􏼁P

k
i+2.

(10)

Case 4. By putting l � 3, q � 3, and a0 + a1 + a2 + a3 � 1/64,
with a0 < 1/4, a1 < 1/4, a2 < 1/4, a3 < 1/4 in (2), we can obtain
the Laurent polynomial of 4-point scheme

λ3,3(z) � a3z
15

+ a2 + 4a3( 􏼁z
14

+ a1 + 4a2 + 10a3( 􏼁z
13

+ a0 + 4a1 + 10a2 + 20a3( 􏼁z
12

+ 4a0 + 10a1 + 20a2 + 31a3( 􏼁z
11

+ 10a0 + 20a1 + 31a2 + 40a3( 􏼁z
10

+ 20a0 + 40a2 + 44a3 + 31a1( 􏼁z
9

+ 31a0 + 40a1 + 44a2 + 40a3( 􏼁z
8

+ 40a0 + 44a1 + 40a2 + 31a3( 􏼁z
7

+ 44a0 + 31a2 + 40a1 + 20a3( 􏼁z
6

+ 31a1 + 20a2 + 10a3 + 40a0( 􏼁z
5

+ 20a1 + 10a2 + 4a3 + 31a0( 􏼁z
4

+ 20a0 + 10a1 + 4a2 + a3( 􏼁z
3

+ 4a1 + 10a0 + a2z( 􏼁
2

+ 4a0 + a1( 􏼁z + a0.

(11)

/e mask of the scheme corresponding to the Laurent
polynomial (11) is

λ3,3 �

a3, 4a3 + a2( 􏼁, a1 + 4a2 + 10a3( 􏼁, a0 + 4a1 + 10a2 + 20a3( 􏼁, 4a0 + 10a1 + 20a2 + 31a3( 􏼁,

10a0 + 20a1 + 31a2 + 40a3( 􏼁, 20a0 + 31a1 + 40a2 + 44a3( 􏼁, 31a0 + 40a1 + 44a2 + 40a3( 􏼁,

40a0 + 44a1 + 40a2 + 31a3( 􏼁, 44a0 + 40a1 + 31a2 + 20a3( 􏼁, 40a0 + 31a1 + 20a2 + 10a3( 􏼁,

31a0 + 20a1 + 10a2 + 4a3( 􏼁, 20a0 + 10a1 + 4a2 + a3( 􏼁, 10a0 + 4a1 + a2( 􏼁, 4a0 + a1( 􏼁, a0

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (12)

/e scheme corresponding to the mask is

P
k+1
4i � 20a0 + 10a1 + 4a2 + a3( 􏼁P

k
i− 1 + 40a0 + 44a1 + 40a2 + 31a3( 􏼁P

k
i

+ 4a0 + 10a1 + 20a2 + 31a3( 􏼁P
k
i+1 + a3P

k
i+2,

P
k+1
4i+1 � 10a0 + 4a1 + a2( 􏼁P

k
i− 1 + 44a0 + 40a1 + 31a2 + 20a3( 􏼁P

k
i + 10a0 + 20a1 + 31a2 + 40a3( 􏼁P

k
i+1

+ 4a3 + a2( 􏼁P
k
i+2,

P
k+1
4i+2 � 4a0 + a1( 􏼁P

k
i− 1 + 40a0 + 31a1 + 20a2 + 10a3( 􏼁P

k
i + 20a0 + 31a1 + 40a2 + 40a2 + 44a3( 􏼁P

k
i+1

+ 4a2 + a1 + 10a3( 􏼁P
k
i+2,

P
k+1
4i+3 � a0P

k
i− 1 + 31a0 + 20a1 + 10a2 + 4a3( 􏼁P

k
i + 31a0 + 40a1 + 44a2 + 40a3( 􏼁P

k
i+1

+ a0 + 4a1 + 10a2 + 20a3( 􏼁P
k
i+2.

(13)

Scheme (13) is the general 4-point quaternary scheme
with 4 parameters.

Similarly for different values of l and q, we get the
l + 1-point quaternary approximating subdivision schemes
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having (q + 1) parameters. In Table 1, we present the mask of
family members of quaternary schemes for different values of l

and q.

3. Analysis of the Unified Family of Quaternary
Curve Subdivision Schemes

/is section contains the analysis of important properties of
the proposed subdivision schemes. For this, we consider the

4-point scheme. After substituting the values of a0 � w,
a1 � 1/128 − w, a2 � 1/128 − w, and a3 � w in (13), we get a
4-point parametric scheme

P
k+1
4i � 7w +

7
64

􏼒 􏼓P
k
i− 1 +

21
32

− 13w􏼒 􏼓P
k
i + 5w +

15
64

􏼒 􏼓P
k
i+1 + wP

k
i+2,

P
k+1
4i+1 � 5w +

5
128

􏼒 􏼓P
k
i− 1 +

71
128

− 7w􏼒 􏼓P
k
i +

51
128

− w􏼒 􏼓P
k
i+1 + 3w +

1
128

􏼒 􏼓P
k
i+2,

P
k+1
4i+2 � 3w +

1
128

􏼒 􏼓P
k
i− 1 +

51
128

− w􏼒 􏼓P
k
i +

71
128

− 7w􏼒 􏼓P
k
i+1 + 5w +

5
128

􏼒 􏼓P
k
i+2,

P
k+1
4i+3 � wP

k
i− 1 + 5w +

15
64

􏼒 􏼓P
k
i +

21
32

− 13w􏼒 􏼓P
k
i+1 + 7w +

7
64

􏼒 􏼓P
k
i+2.

(14)

/e Laurent polynomial corresponding to scheme (14) is

λ(z) �
1
128

1 + z + z
2

+ z
3

􏼐 􏼑
4
(1 + z) 128w +(1 − 256w)z + 128wz

2
􏼐 􏼑, (15)

/e Laurent polynomial method [15] is used to compute
the degree of generation, degree of reproduction, and
continuity analysis. Moreover, Rioul’s method [16] is used to
compute lower and upper bounds on Hölder regularity of
scheme (14). /e analysis of other schemes is similar.

Theorem 1. A 4-point quaternary subdivision scheme (14)
has cubic reproduction with respect to the dual parametri-
zation for w � − (21/1024).

Proof. By taking the derivative of (15) with respect to z, we get

λ′(z) � 4 1 + z + z
2

+ z
3

􏼐 􏼑
3
1 + 2z + 3z

2
􏼐 􏼑 w +

1
128

− w􏼒 􏼓z +
1
128

− w􏼒 􏼓z
2

+ wz
3

􏼒 􏼓

+ 1 + z + z
2

+ z
3

􏼐 􏼑
4 1

128
− w􏼒 􏼓 + 2

1
128

− w􏼒 􏼓z + 3wz
2

􏼒 􏼓,

(16)

After substituting z � 1 in (15) and (16), we get λ(1) � 4
and λ′(1) � 30. /e value of shift parameter
τ � λ′(1)/4 � 15/2. Hence, by [15], the subdivision scheme
(14) has dual parametrization. Further, we can easily verify
that

λk
(1) � 4􏽙

k− 1

j�0

15
2

− j􏼒 􏼓 for k � 0, 1, 2, 3withw � −
21
1024

,

(17)

Hence, by [15], the scheme corresponding to λ(z) has cubic
reproduction with respect to the dual parametrization. □

Table 2 summarizes the results of degree of generation,
values of parameters, shift parameter, and parametrization of a

proposed family of quaternary subdivision schemes. Here, l, q,
Dg, values of aq′s, τ, and parametrization denote the positive
integer, degree of generation, parameter values, shift param-
eter, and parametrization of the scheme, respectively.

Theorem 2. A 4-point quaternary subdivision scheme (14)
has C3 continuity for w ∈ (− (1/128)(2/128)).

Proof. Consider the Laurent polynomial

λ1(z) �
4z3

1 + z + z2 + z3􏼠 􏼡

4

λ(z), (18)

where λ(z) is defined in (15). /is implies
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λ1(z) �
4z3

1 + z + z2 + z3􏼠 􏼡

4

1 + z + z
2

+ z
3

􏼐 􏼑
4

w +
1
128

− w􏼒 􏼓z +
1
128

− w􏼒 􏼓z
2

+ wz
3

􏼒 􏼓, (19)

After simplification, we get

λ1(z) � 256z
12

w +
1
128

− w􏼒 􏼓z +
1
128

− w􏼒 􏼓z
2

+ wz
3

􏼔 􏼕.

(20)

Let λ1 be the mask of the scheme S1 corresponding to
λ1(z), then we have

λ1 � 256 w,
1
128

− w,
1
128

− w, w􏼔 􏼕, (21)

/e scheme corresponding to λ(z) is C3 continuous if
‖1/4S1‖∞ < 1; for this, we have to check that

1
4
S
1

�������

�������∞
� max

1
4

|256w|, ||2 − 256w||, |2 − 256w|, |256w|{ }.

(22)

If w ∈ (− (1/128), (2/128)), then ‖1/4S1‖∞ < 1. /en, by
[15], the scheme corresponding to λ(z) has C3 continuity,
which completes the proof. □

Theorem 3. �eHölder regularity of a 4-point scheme (14) is
r � 4 − log4(μ), where μ is defined as

μ � 2 − 256w, if −
1
128
<w≤

1
256

,

μ � 256w, if
1
256
<w<

2
128

.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

Proof. /e Laurent polynomial (15) can be written as

λ(z) �
1 + z + z2 + z3

4
􏼠 􏼡

4

b(z), (24)

where

b(z) � 256w +(2 − 256w)z +(2 − 256w)z
2

+ 256wz
3

􏽨 􏽩.

(25)

From (25), the coefficients of z in b(z) are b0 � 256w,
b1 � 2 − 256w, b2 � 2 − 256w, and b3 � 256w. /e number
of factors in λ(z) is k � 4. /e matrices Bn has order 3 × 3
where n � 0, 1, 2 and 3. /e elements of the matrices
B0, B1, B2, and B3 can be derived by (Bn)ij � b(3+n)+i− 4j, for i,
� 1, 2, and 3; then, we have

B0 �

256w 0 0

2 − 256w 0 0

2 − 256w 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

B1 �

2 − 256w 0 0

2 − 256w 0 0

256w 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B2 �

2 − 256w 0 0

256w 0 0

0 256w 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B3 �

256w 0 0

0 256w 0

0 2 − 256w 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(26)

/e eigenvalues of B0, B1, B2, and B3 are
0, 0, 256w{ }, 0, 0, 2 − 256w{ }, 0, 0, 2 − 256w{ }, and
0, 256w, 256w{ }, respectively. For bounds on Hölder regu-
larity, we calculate max ρ(B0), ρ(B1), ρ(B2),􏼈

ρ(B3)}≤ μ≤max ‖(B0)‖, ‖(B1)‖,􏼈 ‖(B2)‖, ‖(B3)‖}, with ‖.‖

denoting the infinity norm, since μ is bounded from below
by the spectral radii and from above by the infinity norm of
the matrices B0, B1, B2, B3. So max ρ(B3), ρ(B1),􏼈

ρ(B2), ρ(B3)} � max(|2 − 256w|, |256w|) and max(‖B0‖,

‖B1‖, ‖B2‖, ‖B3‖) � max(|2 − 256w|, |256w|). /en by [16],
we have μ � max(|2 − 256w|, |256w|). So Hölder regularity
of the scheme S is computed by r � 4 − log4(μ), where μ is
defined as

μ � 2 − 256w if −
1
128
<w≤

1
256

,

μ � 256w if
1
256
<w<

2
128

,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

which completes the proof. □

Corollary 1. �e 4-point scheme (14) is C3 continuous if and
only if 1≤ μ< 4, i.e., if and only if − 1/128<w< 2/128.

Theorem 4. �e limit stencils providing the evaluations of
the basic limit function of the 4-point scheme (14) at integers
and half integers are (128w

2/15 + 7w/12 + 1/5120),􏽮

(31w/5 − 512w
2/15 + 223/1280), (256w

2/5 − 407w/30+

1667/2560), (31w/5 − 512w
2/15 + 223/1280), (128w

2/15+

7w/12 + 1/5120)} and (64w/15 + 1/40),{ (19/40 − 64w/15),

(19/40 − 64w/15), (64w/15 + 1/40)}, respectively.

Proof. /e local subdivision matrices for limit stencils of 4-
point scheme (14) at integers and half integers are Pk+1

I �

SIP
k
I and Pk+1

I/2 � SI/2P
k
I/2, respectively, with
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SI �

1
128

+ 3w
51
128

− w
71
128

− 7w
5
128

+ 5w 0

w
15
64

+ 5w
21
32

− 13w
7
64

+ 7w 0

0
7
64

+ 7w
21
32

− 13w
15
64

+ 5w w

0
5
128

+ 5w
71
128

− 7w
51
128

− w
1
128

+ 3w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P
k+1
I �

P
k+1
− 2

P
k+1
− 1

P
k+1
0

P
k+1
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P
k
I �

P
k
− 2

P
k
− 1

P
k
0

P
k
1

P
k
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(28)

SI/2 �

7w +
7
64

21
32

− 13w 5w +
15
64

w

5w +
5
128

71
128

− 7w
51
128

− w 3w +
1
128

3w +
1
128

51
128

− w
71
128

− 7w 5w +
5
128

w 5w +
15
64

21
32

− 13w 7w +
7
64

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P
k+1
I/2 �

P
k+1
− (3/2)

P
k+1
− (1/2)

P
k+1
1/2

P
k+1
3/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and P
k
I/2 �

P
k
− (3/2)

P
k
− (1/2)

P
k
1/2

P
k
3/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(29)

/e eigenvalues of the matrix SI/2 are 1/16, 1, 1/64, 1/4{ }.
/e eigenvectors of local subdivision matrix SI/2 corre-
sponding to eigenvalues are

QI/2 �

1 1 − 1 − 1

512w + 3
512w − 57

1 −
128w + 2
384w − 9

−
1
3

512w + 3
512w − 57

1
128w + 2
384w − 9

1
3

1 1 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

/e inverse of QI/2 is

Q
− 1
I/2 �

19
40

−
64w

15
−
19
40

+
64w

15
−
19
40

+
64w

15
19
40

−
64w

15

1
40

+
64w

15
19
40

−
64w

15
19
40

−
64w

15
1
40

−
64w

15

−
3
10

+
64w

5
9
10

−
192w

5
−
9
10

+
192w

5
3
10

−
64w

5

−
1
5

−
64w

5
−
9
10

+
192w

5
9
10

−
192w

5
1
5

+
64w

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(31)
For the decomposition of matrix SI/2, we need ΔI/2, where
ΔI/2 is the scalar matrix in which eigenvalues are arranged
diagonally; therefore, we now compute limk⟶∞Δk

I/2
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Δk
I/2 �

1
16

􏼒 􏼓
k

0 0 0

0 1 0 0

0 0
1
64

􏼒 􏼓
k

0

0 0 0
1
4

􏼒 􏼓
k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and lim
k⟶∞
Δk

I/2 �

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

Pk+1
I/2 � SI/2P

k
I/2; therefore, Pk+1

I/2 � Sk
I/2P

0
I/2. /is implies

P
∞
− (3/2)

P
∞
− (1/2)

P
∞
1/2

P
∞
3/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1
40

+
64
15

w
19
40

−
64
15

w
19
40

−
64
15

w
1
40

+
64
15

w

1
40

+
64
15

w
19
40

−
64
15

w
19
40

−
64
15

w
1
40

+
64
15

w

1
40

+
64
15

w
19
40

−
64
15

w
19
40

−
64
15

w
1
40

+
64
15

w

1
40

+
64
15

w
19
40

−
64
15

w
19
40

−
64
15

w
1
40

+
64
15

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P
0
− (3/2)

P
0
− (1/2)

P
0
1/2

P
0
3/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

Since the subdivision scheme is dual, after computing the
limit stencil at half integers by the local matrix SI/2, the limit
stencil at integers must be computed as

limit stencil integers � limit stencil half integers × SI.

(34)

/e matrix of limit stencils at half integers is

S
∞
I/2 �

1
40

+
64
15

w
19
40

−
64
15

w
19
40

−
64
15

w
1
40

+
64
15

w

1
40

+
64
15

w
19
40

−
64
15

w
19
40

−
64
15

w
1
40

+
64
15

w

1
40

+
64
15

w
19
40

−
64
15

w
19
40

−
64
15

w
1
40

+
64
15

w

1
40

+
64
15

w
19
40

−
64
15

w
19
40

−
64
15

w
1
40

+
64
15

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

After multiplying the matrix of limit stencil at half in-
tegers S∞I/2 with local subdivision matrix SI, we get

S
∞
I �

l1 l2 l3 l4 l5

l1 l2 l3 l4 l5

l1 l2 l3 l4 l5

l1 l2 l3 l4 l5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (36)

with

l1 �
128w

2

15
+
7w

12
+

1
5120

,

l2 �
31w

5
−
512w

2

15
+

223
1280

,

l3 �
256w

2

5
−
407w

30
+
1667
2560

,

l4 �
31w

5
−
512w

2

15
+

223
1280

,

l5 �
128w

2

15
+
7w

12
+

1
5120

.

(37)

Hence, the limit stencils providing the evaluations of the
basic limit functions of the 4-point scheme (14) at integers
and half integers are
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128w
2/15 + 7w/12 + 1/5120􏼐 􏼑, 31w/5 − 512w

2/15 + 223/1280􏼐 􏼑, 256w
2/5 − 407w/30 + 1667/2560􏼐 􏼑,

31w/5 − 512w
2/15 + 223/1280􏼐 􏼑, 128w

2/15 + 7w/12 + 1/5120􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(64w/15 + 1/40), (19/40 − 64w/15), (19/40 − 64w/15), (64w/15 + 1/40){ }

(38)

respectively, which completes the proof. □

In Figure 3, we present the basic limit functions of the
proposed 4-point quaternary approximating subdivision
scheme for different values of w and show its evaluations at
integers and half integers which coincide with the limit
stencils computed in /eorem 4.

4. Comparison with Existing Schemes

Here we will present the comparison of our proposed family of
quaternary subdivision schemes with existing quaternary
subdivision schemes in visual performance. In Figure 1, we
present the comparison of proposed 4-point scheme λ3,3 with
4-point scheme α44 presented in [1] ((a), (b)&(c)) and 4-point
scheme presented in [4] ((d), (e)&(f)), respectively. Here,
black dotted lines show the initial polygon, red solid lines are
the limit curves of 4-point scheme λ3,3, and blue solid lines are
the limit curves of 4-point scheme α44 presented in [1] and 4-
point scheme presented in [4]. We see that, our proposed
schemes λ3,3 give maximum smoothness and best approxi-
mation compared with the schemes presented in [1, 4].

In Figure 2, we present the comparison of proposed 4-
point scheme λ3,3 with 4-point scheme KP presented in
[5]. Here, black doted lines show the initial polygon, red
solid lines are the limit curve of 4-point scheme λ3,3, and
blue solid lines are the limit curve of 4-point scheme KP

presented in [5]. We see that the approximating scheme
KP presented in [5] gives interpolating behavior, but our
proposed schemes λ3,3 give maximum smoothness and
best approximation compared with the schemes presented
in [5].

5. Conclusions

In this paper, we have presented a general formula for the
derivation of multiparametric family of quaternary sub-
division schemes. We present the complete analysis of the
proposed family of the multiparametric quaternary sub-
division schemes. We also present the comparison with
exiting quaternary subdivision schemes. /e comparison
shows that our proposed family gives maximum
smoothness compared with existing quaternary subdivi-
sion schemes.
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available within this paper.

Conflicts of Interest

/e authors declare that there are no conflicts of interest
regarding the publication of this study.

0

0.2

0.4

0.6

0.8

1

3-1 2-3 -2 10

Figure 3: Basic limit functions produced by the 4-point scheme corresponding to (14) for different values of parameter w. /e red lines
denote the initial polyline, and the blue, black, and green lines represent the basic limit functions produced with w � − 1/256, 0, 1/256
respectively. /e circles denote the evaluations of the basic limit function at integers, and the asterisks denote the evaluations of the basic
limit function at half integers.
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,e generalized Gamma model has been applied in a variety of research fields, including reliability engineering and lifetime
analysis. Indeed, we know that, from the above, it is unbounded. Data have a bounded service area in a variety of applications. A
new five-parameter bounded generalized Gammamodel, the boundedWeibull model with four parameters, the bounded Gamma
model with four parameters, the bounded generalized Gaussian model with three parameters, the bounded exponential model
with three parameters, and the bounded Rayleigh model with two parameters, is presented in this paper as a special case. ,is
approach to the problem, which utilizes a bounded support area, allows for a great deal of versatility in fitting various shapes of
observed data. Numerous properties of the proposed distribution have been deduced, including explicit expressions for the
moments, quantiles, mode, moment generating function, mean variance, mean residual lifespan, and entropies, skewness,
kurtosis, hazard function, survival function, r th order statistic, and median distributions.,e delivery has hazard frequencies that
are monotonically increasing or declining, bathtub-shaped, or upside-down bathtub-shaped. We use the Newton Raphson
approach to approximate model parameters that increase the log-likelihood function and some of the parameters have a closed
iterative structure. Six actual data sets and six simulated data sets were tested to demonstrate how the proposed model works in
reality. We illustrate why the Model is more stable and less affected by sample size. Additionally, the suggested model for wavelet
histogram fitting of images and sounds is very accurate.

1. Introduction

,e gamma (ΓM) model, including Weibull, gamma, ex-
ponential, and Rayleigh as special submodels, among
others, is a very popular distribution for modeling lifetime
data and for modeling phenomenon with monotone failure
rates. An advantage of ΓM is that it requires a little measure
of parameters for learning. Also, these parameters can be
measured by getting the expectation maximization (EM)
algorithm [1, 2] to maximize the log-likelihood function.
,e early generalization of gamma distribution can be
traced back to Amoroso [3] who discussed a generalized
gamma distribution and applied it to fit income rates.
Johnson et al. [4] gave a four parameter generalized gamma

distribution which reduces to the generalized gamma
distribution defined by Stacy [2] when the location pa-
rameter is set to zero. Mudholkar and Srivastava [5] in-
troduced the exponentiated method to derive a
distribution. ,e generalized gamma defined by Stacy [2] is
a three-parameter exponentiated gamma distribution.
Agarwal and Al-Saleh [6] applied generalized gamma to
study hazard rates. Balakrishnan and Peng [7] applied this
distribution to develop generalized gamma frailty model.
Cordeiro et al. [8] derived another generalization of Stacys
generalized gamma distribution using exponentiated
method and applied it to life time and survival analysis.
Nadarajah and Gupta [9] proposed another type of gen-
eralized gamma distribution with application to fit drought
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data. As of late, Chen et al. [10] used generalized gamma
distribution with three parameters for flood frequency
analysis, Zhao et al. [11] used generalized gamma distribution
with three parameters to give the statistical characterizes of
high-resolution SAR images, and Mead et al. [12] defined
modified generalized gamma distribution so as to investigate
greater flexibility in modeling data from a practical viewpoint
and they derived multifarious identities and properties of this
distribution, including explicit expressions for the moments,
quantiles, mode, moment generating function, mean devia-
tion, mean residual lifetime, and expression of the entropies.
We extend all the past models with five parameters to rangeR
(real numbers) or any bounded subset of R. Fulger et al. [13]
generate random numbers within any arbitrary interval. We
introduce in this paper the high flexibility of a bounded
generalized Gamma model with five parameters (BGΓM) for
analyzing data. ,e BGΓMModel is of noticeable significance
for image coding, compression applications, sound system,
wind speed data, and breast cancer data fitting. ,is new
distribution has a flexibility to fit any kind of observed data
whose pdf is monotonically increasing, decreasing, bathtub,
and upside down bathtub-shaped depending on the pa-
rameter values and bounded support regions. ,e remainder
of this paper is organized as follows: ,e BGΓM with its sub
models and some shapes describe the hazard rate function are
defined in Section 2. Some properties of the BGΓM distri-
bution are studied in Section 3 including, quantile, mode,
moments, moment generating function, mean deviation,
mean residual life and entropy. Section 4 presents the pa-
rameter estimation. Section 5 sets out the experimental re-
sults. Section 6 presents our conclusions.

2. TheBoundedGeneralizedGammaModel and
Its Special Models

,e standard form of gamma function is

Γ(η) � 􏽚
∞

0
x
η− 1

e
− xdx, η> 0. (1)

,e incomplete gamma function is defined by

Γ(η, s) �
1
Γ(η)

􏽚
s

0
x
η− 1

e
− xdx, η> 0 and s≥ 0. (2)

,e probability density function (pdf) of the generalized
gamma distribution is given by

T(x|Θ) �
λβη

2δΓ(η)

|x − u|

δ
􏼠 􏼡

ηλ− 1

e
− β(|x− u|/δ)λ

, (3)

for all x ∈ R, where Θ � (u, δ, β, η, λ)′, δ, η, λ, β> 0 and
u ∈ R. ,e cumulative distribution function (cdf) of gen-
eralized gamma distribution defined as follows:

D(z) � 􏽚
z

−∞
T(x|Θ)dx � 􏽚

z

−∞

λβη

2δΓ(η)

|x − u|

δ
􏼠 􏼡

ηλ− 1

e
− β(|x− u|/δ)λdx

�
1
2

+
1
2
sign(z − u) Γ η, β

|z − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(4)

Let Ω � [a, b]⊆R and we denote the indicator function
by

1Ω(x) �
1, if x ∈ Ω,

0, if otherwise.
􏼨 (5)

We define the pdf of the bounded generalized gamma
distribution (BGΓM) as

Υ � Υ(x|Θ) �
T(x|Θ)

􏽒ΩT(x|Θ)dx

�
λβη/2δΓ(η)(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ

􏽒ΩT(x|Θ)dx
, for allx ∈ Ω.

(6)

In another form, we can write the pdf of the bounded
generalized gamma distribution (BGΓM) as

Υ �
λβη/2δΓ(η)(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ

D(b) − D(a)
, (7)

where

D(b) − D(a) �
1
2
sign(b − u) Γ η, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

−
1
2
sign(a − u) Γ η, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(8)

It is clear to see that

Υ≥ 0 and􏽚
Ω
Υ(x|u, δ, β, η, λ)dx � 1. (9)

Hence, the cdf of the bounded generalized gamma
distribution (BGΓM) is given by

Φ(x) �
D(x) − D(a)

D(b) − D(a)

�
sign(x − u) Γ η, β(|x − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
.

(10)

2 Journal of Mathematics



,e parameters u(δ, β) and (η, λ) are corresponding to
the location, scale, and shape parameters, respectively. Note
that Υ(x|Θ) can be any kind of distribution, for example, in
exponential distribution (ED) [14, 15] be ϕ(x|u, δ, β),
Weibull distribution (WD) [16–18] be T(x|u, δ, β, λ), Ray-
leigh distribution (RD) [19, 20] be T(x|u, δ), generalized
Gaussian distribution (GGD) [21] be T(x|u, δ, λ), Gaussian
distribution (GD) [15] be T(x|u, δ), Laplacian distribution
(LD) [22] be T(x|u, δ) and Gamma distribution (ΓD) [1] be
T(x|u, δ, η, β). ,ese distributions are all unbounded with
support range (0,∞). We extend all the past models with
range (−∞,∞) also to the bounded case. ,e BGΓM has
several models as special cases, which makes it distin-
guishable scientific importance from other models. We
investigate the various special models of the BGΓM as listed
in Table 1.,e survival function and hazard rate function for
BGΓM are, respectively, given by

S(x) � 1 −Φ(x)

�
sign(b − u) Γ η, β(|b − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩 − sign(x − u) Γ η, β(|x − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
,

∧(x) �
Υ(x|Θ)

S(x)

�
λβη/2δΓ(η)(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(x − u) Γ η, β(|x − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
.

(11)

In Figures 1 and 2, we display the plots of the pdf of
BGΓM for various parameters. Figure 3 displays the BGΓM
failure rate function which can be increasing, decreasing,
bathtub, and upside down bathtub-shaped depending on the
parameter values.

3. Properties of BGΓM

In this section, we provide some general properties of the
BGΓM including quantile function, mode, moments, mean

deviation, mean residual life and mean waiting time, Rényi
entropy, and order statistics.

3.1. Mode and Quantile. ,e pth quantile function of the
BGΓM is the solution of

Φ xp􏼐 􏼑 �
D xp􏼐 􏼑 − D(a)

D(b) − D(a)
� p⇒

sign xp − u􏼐 􏼑 Γ η, β xp − u
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌/δ􏼒 􏼓
λ

􏼠 􏼡 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏼢 􏼣 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
� p.

(12)

,e median, denoted by μ∗, can be obtained by
substituting p � 0.5 in 10 and solving the equation

Table 1: ,e comparative models are special cases of the BGΓM.

GΓM BGΓM: Ω � R

BΓM BGΓM: λ � 1
ΓM BGΓM: Ω � R and λ � 1
BWM BGΓM: η � 1
WM BGΓM: Ω � R, η � 1
BGGM BGΓM: η � 1/λ and β � (Γ(3/λ)/Γ(1/λ))λ/2

GGM BGΓM: Ω � R, η � 1/λ and β � (Γ(3/λ)/Γ(1/λ))λ/2

BEM BGΓM: λ � 1, and η � 1
EM BGΓM: Ω � R, λ � 1, and η � 1
BGM BGΓM: λ � 2, η � 0.5 and β � 0.5
GM BGΓM: Ω � R, λ � 2, η � 0.5 and β � 0.5
BRM BGΓM: λ � 2, η � 1 and β � 0.5
RM BGΓM: Ω � R, λ � 2, η � 1 and β � 0.5
BLM BGΓM: λ � 1, η � 1 and β �

�
2

√

LM BGΓM: Ω � R, λ � 1, η � 1 and β �
�
2

√
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Figure 1: Continued.
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Figure 1: ,e pdf of BGΓM for a � −2, b � 3, u � 1, δ � 1, β � 1 and (a) η � 7 and λ � 2, 4, 7; (b) λ � 7 and η � 2, 4, 9; (c) (η � 0.5, λ � 2),
(η � 2, λ � 0.6) and (η � 7, λ � 5).

β=2,η=0.5
β=2,η=5
β=2,η=7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Υ 
(x

)

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3−2
x

(a)

Figure 2: Continued.

Journal of Mathematics 5



sign μ∗ − u( 􏼁 Γ η, β μ∗ − u
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌/δ􏼐 􏼑
λ

􏼒 􏼓 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏼔 􏼕 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
� 0.5. (13)

,e mode, denoted by xm of the BGΓ distribution, is
given by

xm � u ± δ
ηλ − 1
βλ

􏼠 􏼡

1/λ

, such thatΥ″ xm|Θ( 􏼁< 0. (14)

Remark 1

(1) If ηλ � 1, then the BGΓ distribution is unimodal
distribution

(2) If ηλ> 1, then the BGΓ distribution is multimodal
distribution
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Figure 2: ,e pdf of BGΓM for a � −2, b � 3, u � 1, δ � 1, λ � 2 and (a) β � 2 and η � 0.5, 5, 7; (b) η � 3 and β � 0.5, 1, 10;
(c)(η � 0.5, β � 0.5), (η � 0.5, β � 3), (η � 3, β � 0.5) and (η � 4, β � 4).
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3.2. Moments, Generating Function, and Mean Deviation. ,e rth moment about zero of BGΓ distribution is

E x
r

( 􏼁 � 􏽚
b

a
x

rΥ(x|Θ)dx

�

± 􏽐
r
n�0

r

n

⎛⎝ ⎞⎠u
n ±δ/β1/λ􏼐 􏼑

r− n
Γ(η +(r − n/λ)) Γ η +(r − n/λ), β(|b − u|/δ)

λ
􏼐 􏼑 − Γ η +(r − n/λ), β(|a − u|/δ)

λ
􏼐 􏼑􏽨 􏽩

2Γ(η)(D(b) − D(a))
.

(15)

,e mean μ of the BGΓ distribution is given by

μ � E(x)

�
±1

2Γ(η)(D(b) − D(a))
± δβ1/λΓ η +

1
λ

􏼒 􏼓 Γ η +
1
λ
, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η +

1
λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ uΓ(η) Γ η, β
|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(16)

,e variance σ2 of the BGΓ distribution is given by
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Figure 3: ,e hazard plots of BGΓM for a � −2, b � 3, u � 1, δ � 1 and different values of β, η and λ.
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σ2 � E x
2

􏼐 􏼑 − E
2
(x)

�
±1

2Γ(η)(D(b) − D(a))

δ2

β2/λ
Γ η +

2
λ

􏼒 􏼓 Γ η +
2
λ
, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η +

2
λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎨

⎩

±
2uδ
β1/λ
Γ η +

1
λ

􏼒 􏼓 Γ η +
1
λ
, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣

− Γ η +
1
λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎤⎥⎥⎦

+u
2Γ(η) Γ η, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎫⎬

⎭ − μ2.

(17)

,e central moments of BGΓ distribution can be ob-
tained as follows

E (x − μ)
r

( 􏼁 � 􏽚
b

a
(x − μ)

rΥ(x|Θ)dx

�
±1

2Γ(η)(D(b) − D(a))
􏽘

r

n�0

r

n

⎛⎝ ⎞⎠u
n ±δ

β1/λ
􏼠 􏼡

r− n

Γ η +
r − n

λ
􏼒 􏼓 Γ η +

r − n

λ
, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣

−Γ η +
r − n

λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎤⎥⎥⎦ 􏽘

r

j�0

r

j

⎛⎝ ⎞⎠(−μ)
r− j

,

c1 �
E (x − μ)

3
􏼐 􏼑

σ3
,

c2 �
E (x − μ)

4
􏼐 􏼑

σ4
.

(18)

,e moment generating function Mx(t) of BGΓ dis-
tribution is

Mx(t) � 􏽚
b

a
e

txΥ(x|Θ)dx

�

± 􏽐
∞
r�0 t

r/r! 􏽐
r
n�0

r

n

⎛⎝ ⎞⎠u
n ±δ/β1/λ􏼐 􏼑

r− n
Γ(η +(r − n/λ)) Γ η +(r − n/λ), β(|b − u|/δ)

λ
􏼐 􏼑 − Γ η +(r − n/λ), β(|a − u|/δ)

λ
􏼐 􏼑􏽨 􏽩

2Γ(η)(D(b) − D(a))
.

(19)

,e mean deviation Md of BGΓ distribution can be
derived as
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Md � E(|x − μ|) � 􏽚
b

a
|x − μ|Υ(x|Θ)dx � 2 μΦ(μ) − 􏽚

μ

a
xΥ(x|Θ)dx􏼔 􏼕

�
2μ sign(μ − u) Γ η, β(|μ − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩

−
1

Γ(η)(D(b) − D(a))

δ
β1/λ
Γ η +

1
λ

􏼒 􏼓 Γ η +
1
λ
, β

|μ − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η +

1
λ
, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

Γ(η) Γ η, β
|μ − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β

|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(20)

In Table 2, the Median, Mode, Mean, Variance, Skew-
ness, and Kurtosis of BGΓM have given for a � −2, b � 3,
u � 1, δ � 1, and β � 1 and various values of η and λ. From
Table 2, we note that for fixed values of a, b, u, δ, β, and η, the
Kurtosis is decreasing function of λ. Also, for fixed values of
a, b, u, δ, β, and λ, the Mode 1, Variance, and Skewness are
increasing function and the Mode 2 and Mean are de-
creasing function of η. In Table 3, Median, Mode, Mean,
Variance, Skewness, and Kurtosis of BGΓM have given for
a � −2, b � 3, u � 1, δ � 1, and λ � 2 and various values of η

and β. From Table 3, we note that for fixed values of
a, b, u, δ, λ, and η, Mode 1 is decreasing, Median, Mode 2,
andMean are increasing functions of β. Also, for fixed values
of a, b, u, δ, β, and β, Mode 1 and Skewness are increasing
and Mode 2 and Mean are decreasing functions of η.

3.3. Mean Residual Life and Mean Waiting Time. ,e mean
residual life function, say φ(t), is given by

φ(t) � E(τ − t|τ > t)

�
sign(b − u) Γ η, β(|b − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩

sign(b − u) Γ η, β(|b − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(t − u) Γ η, β(|t − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
⎛⎝

×
1

2Γ(η)(D(b) − D(a))

δ
β1/λ
Γ η +

1
λ

􏼒 􏼓 Γ η +
1
λ
, β

|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η +

1
λ
, β

|t − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎨

⎩

± uΓ(η) Γ η, β
|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β
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δ
􏼠 􏼡
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⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎫⎬

⎭
⎞⎠ − t.

(21)

,emean waiting time of BGΓ distribution, say φ(t), can
be derived as

φ(t) � t −
􏽒

t

a
xΥ(x|Θ)dx

Φ(t)

� t −
1

2Γ(η)(D(b) − D(a))

δ
β1/λ
Γ η +

1
λ

􏼒 􏼓 Γ η +
1
λ
, β

|t − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η +

1
λ
, β
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δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎨

⎩

± uΓ(η) Γ η, β
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δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ − Γ η, β
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δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎫⎬

⎭

×
sign(b − u) Γ η, β(|b − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)

λ
􏼐 􏼑 − Γ η, β(|u|/δ)

λ
􏼐 􏼑􏽨 􏽩

sign(t − u) Γ η, β(|t − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩 − sign(a − u) Γ η, β(|a − u|/δ)
λ

􏼐 􏼑 − Γ η, β(|u|/δ)
λ

􏼐 􏼑􏽨 􏽩
.

(22)
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3.4. Entropy. ,e entropy of a random variable X measures
the variation of the uncertainty. ,e Rényi entropy of BGΓ
distribution, say REX(]) for ]≠ 1 and ]> 0, is derived as

REX(]) �
ln􏽒

b

a
xΥ](x|Θ)dx

1 − ]

� −ln λ −
] ln 2
1 − ]

+ ln δ −
] ln Γ(η)

1 − ]

−
] ln(D(b) − D(a))

1 − ]
−
ln β
λ

−
1
λ

+
]η

1 − ]
􏼒 􏼓ln ]

+
1

1 − ]
ln Γ ]η −

] − 1
λ

􏼒 􏼓 +
1

1 − ]
ln ±Γ ]η −

] − 1
λ

, β]
|b − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠∓Γ ]η −

] − 1
λ

, β]
|a − u|

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(23)

3.5. Order Statistics. Let X1:n, X2:n, . . . , Xn:n denote the
order statistics obtained from a random sample of size n

from BGΓ distribution. ,e probability density function of
ith order statistics is given by

fi: n(x) �
n!

(i − 1)!(n − i)!
(Φ(x))

i− 1
(1 −Φ(x))

n− iΥ(x|Θ)

�
n!λβη(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ
(D(x) − D(a))

i− 1
(D(b) − D(x))

n− i

2(i − 1)!(n − i)!δΓ(η)(D(b) − D(a))
n .

(24)

Table 2: Median, Mode, Mean, Variance, Skewness, and Kurtosis of BGΓM.

η λ Median Mode1 Mode2 Mean Variance Skewness Kurtosis
0.5 2 0.9979 1 1 0.9949 0.4895 −0.0525 2.8857
0.5 4 1.0037 1.7071 0.2929 1 0.5642 0 1.5708
0.5 7 0.9909 1.8632 0.1368 1 0.6661 0 1.2251
2 2 0.4207 2.2248 −0.2248 0.8932 1.8297 0.0117 1.4184
2 4 0.8071 2.1502 −0.1502 1 1.3293 0 1.13176489
2 7 0.9244 2.0925 −0.0924 1 1.1568 0 1.04581787
7 2 −1.3817 3.5495 −1.5495 −0.9009 2.0185 2.0649 5.7078
7 4 −0.1453 2.6119 −0.6119 0.9959 2.5958 0.0035 1.0358
7 7 0.9785 2.3166 −0.3166 1 1.7181 0 1.0121

Table 3: Median, Mode, Mean, Variance, Skewness, and Kurtosis of BGΓM.

η β Median Mode1 Mode2 Mean Variance Skewness Kurtosis
0.5 0.5 0.9732 1 1 0.9492 0.8732 −0.1824 2.6472
0.5 2 1 1 1 0.9999 0.2499 −0.002 2.993
0.5 7 1 1 1 1 0.0714 0 3
2 0.5 −0.2227 2.7321 −0.7321 0.4599 2.7085 0.2947 1.4377
2 2 0.8327 1.866 0.134 0.9968 0.9946 −0.0052 1.4863
2 7 1.001 1.4629 0.5371 1 0.2857 0 1.5
7 0.5 −1.722 4.6056 −2.6056 −1.547 0.5886 4.8737 28.0326
7 2 −0.483 2.8028 −0.8028 0.5854 3.0344 0.3259 1.2304
7 7 1.0855 1.9636 0.0364 1 1 0 1.1429
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,e pdf of the minimum and the maximum order
statistics of BGΓ distribution can be obtained, respectively, as
follows:

f1:n(x) �
nλβη(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ
(D(b) − D(x))

n− 1

2δΓ(η)(D(b) − D(a))
n ,

fn:n(x) �
nλβη(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ
(D(x) − D(a))

n− 1

2δΓ(η)(D(b) − D(a))
n .

(25)

If n is odd. ,e pdf of BGΓ distribution of the median is
obtained by substituting i � (n + 1)/2 in equation (24) as
follows:

f(n+1/2):n(x) �
n!λβη(|x − u|/δ)

ηλ− 1
e

− β(|x− u|/δ)λ
(D(x) − D(a))

n− 1/2
(D(b) − D(x))

n− 1/2

2((n − 1/2)!)
2δΓ(η)(D(b) − D(a))

n
. (26)

,e joint pdf of the ith and the lth order statistics for x<y

can be written as

fi,l: n(x) �
n!

(i − 1)!(l − i − 1)!(n − l)!
(Φ(x))

i− 1

(1 − Φ(y))
n− l

(Φ(y) −Φ(x))
l− i− 1Υ(x|Θ)Υ(y|Θ).

(27)

So the joint pdf of the ith and the lth order statistics of BGΓ
distribution is

fi,l:n(x) �
n!λ2β2η(D(x) − D(a))

i− 1
(D(b) − D(y))

n− l
(D(y) − D(x))

l− i− 1

4δ2Γ2(η)(D(b) − D(a))
n
(i − 1)!(l − i − 1)!(n − l)!

×
|x − u‖y − u|

δ2
􏼠 􏼡

ηλ− 1

e
− β (|x− u|/δ)λ+(|y− u|/δ)λ( ).

(28)

4. Maximizing the Log-Likelihood Function

Here, we consider the estimation of the unknown param-
eters of the BGΓD by the method of maximum likelihood.
Let x1, x2, . . . , xN be a random sample from the BGΓD. ,e
total log-likelihood (L(Θ)) is given by

L(Θ) � 􏽘
N

i�1
ln T xi|u, δ, β, η, λ( 􏼁 − ln􏽚

Ω
T(x|u, δ, β, η, λ)dx􏼔 􏼕.

(29)

4.1. Location Parameter Estimation. To maximize the like-
lihood function in (28), we consider the derivation of L with
the location u at the (t + 1) iteration step. We have

zL

zu
� 􏽘

N

i�1
u − xi( 􏼁 u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 2 ηλ − 1 −

βλ
δλ

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

λ
􏼠 􏼡􏼠 􏼡􏼨

−
􏽒Ω sign u − xi( 􏼁 u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1 ηλ − 1 − βλ/δλ u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

λ
􏼒 􏼓􏼒 􏼓T(x|Θ)dx

􏽒ΩT(x|Θ)dx

⎫⎪⎪⎬

⎪⎪⎭
.

(30)
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At that point as [23], we have

􏽚
Ω

T(x|Θ)dx ≈
1

M
􏽘

M

i�1
1Ω vi( 􏼁, (31)

where vi ∼ T(x|Θ(t)) indicates the random variable that is
drawn from the probability distribution T(x|Θ(t)), with
Θ(t) � (u(t), δ(t), β(t), η(t), λ(t))′ and M is the number of
random variables vi. We use M � 106, for our experiments.
In the same manner, we can write

􏽚
Ω

sign u − xi( 􏼁 u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
− 1 ηλ − 1 −

βλ
δλ

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

λ
􏼠 􏼡􏼠 􏼡T(x|Θ)dx

≈
1

M
􏽘

M

i�1
1Ω vi( 􏼁 sign u

(t)
− vi􏼐 􏼑 u

(t)
− vi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− 1

η(t)λ(t)
− 1 −

β(t)λ(t)

δ(t)
􏼐 􏼑

λ(t)
u

(t)
− vi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
λ(t)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠.

(32)

By using (31) and (32), we can rewrite (30) as

zL

zu
|u�u(t) ≈ 􏽘

N

i�1
u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− 2

u
(t)

− xi􏼐 􏼑 η(t)λ(t)
− 1 −

β(t)λ(t)

δ(t)
􏼐 􏼑

λ(t)
u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
λ(t)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ − H u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (33)

where

H �

􏽐
M
i�1 1Ω vi( 􏼁sign u

(t)
− vi􏼐 􏼑 u

(t)
− vi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− 1

η(t)λ(t)
− 1 − β(t)λ(t)/ δ(t)

􏼐 􏼑
λ(t)

u
(t)

− vi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
λ(t)

􏼠 􏼡

􏽐
M
i�1 1Ω vi( 􏼁

.
(34)

According to the theory of robust statistics [24], any
estimate u is defined by an implicit equation:

􏽘
i

F xi − u( 􏼁 � 0. (35)

,is gives a numerical solution of the location of u as a
weighted mean:

u �
􏽐iωixi

􏽐iωi

;whereωi �
F xi − u( 􏼁

xi − u
. (36)

Now, we can apply (35) to zL/zu in (33), and the solution
of zL/zu � 0 gives the solutions of u at the (t + 1) step:

u
(t+1)

�

􏽐
N
i�1 u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
− 2

xi η(t)λ(t)
− 1 − β(t)λ(t)/ δ(t)

􏼐 􏼑
λ(t)

􏼠 􏼡 u
(t)

− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
λ(t)

􏼠 􏼡 + H􏼢 􏼣

􏽐
N
i�1 u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
−2

η(t)λ(t)
− 1 − β(t)λ(t)/ δ(t)

􏼐 􏼑
λ(t)

􏼠 􏼡 u
(t)

− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
λ(t)

􏼠 􏼡􏼢 􏼣

. (37)
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4.2. Scale Parameters Estimation. Putting the derivative of
the log-likelihood function L with respect to the scale pa-
rameter δ at the (t + 1) iteration step, we have

zL

zδ
� δ− 1

􏽘

N

i�1
βλδ− λ

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
λ

− ηλ􏼔

−
􏽒Ω βλδ− λ

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
λ

− ηλ􏼒 􏼓T(x|Θ)dx

􏽒ΩT(x|Θ)dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(38)

Similarly as (31) and (32), we can rewrite zL/zδ as

zL

zδ
� δ− 1

􏽘

N

i�1
βλδ− λ

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
λ

− ηλ − G􏼔 􏼕, (39)

where

G �

􏽐
M
i�1 β(t)λ(t) δ(t)

􏼐 􏼑
− λ(t)

u
(t)

− vi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
λ(t)

− η(t)λ(t)
􏼢 􏼣1Ω vi( 􏼁

􏽐
M
i�1 1Ω vi( 􏼁

.

(40)

,e solution of zL/zδ � 0 yields the solutions of δ at the
(t + 1) step:

δ(t+1)
�

β(t)λ(t) 􏽐
N
i�1 u(t) − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
λ(t)

􏽐
N
i�1 η(t)λ(t) + G􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠

1/λ(t)

. (41)

,e next step is to update the estimate of the scale
parameter β. ,is includes fixing the other parameters and
improving the estimate of β by using the Newton Raphson
method [25]. Every cycle requires the first and second de-
rivatives of L(Θ) with respect to the parameter β.

β(t+1)
� β(t)

−
zL/zβ

z2L/zβ2􏼐 􏼑 + ε
|β�β(t) , (42)

where ε is a scaling element. ,e derivative of the function
L(Θ) regarding β is given by

zL

zβ
� 􏽘

N

i�1
f xi,Θ( 􏼁 −

􏽒Ωf(x,Θ)T(x|Θ)dx

􏽒ΩT(x|Θ)dx

⎧⎨

⎩

⎫⎬

⎭, (43)

where

f xi,Θ( 􏼁 �
1

T xi|Θ( 􏼁

zT xi|Θ( 􏼁

zβ
�
η
β

−
u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δ
􏼠 􏼡

λ

. (44)

,e term zL/zβ can be approximated as

zL

zβ
|β�β(t) ≈ 􏽘

N

i�1
f xi,Θ

(t)
􏼐 􏼑 −

􏽐
M
i�1 1Ω vi( 􏼁f vi,Θ

(t)
􏼐 􏼑

􏽐
M
i�1 1Ω vi( 􏼁

⎧⎨

⎩

⎫⎬

⎭.

(45)

,e term z2L/zβ2 is given by

z
2
L

zβ2
� 􏽘

N

i�1

zf(x,Θ)

zβ
+

􏽒ΩT(x|Θ)f dx􏼐 􏼑
2

􏽒ΩT(x|Θ) dx􏼐 􏼑
2

⎧⎪⎨

⎪⎩

−
􏽒Ω (zf/zβ) + f

2
􏼐 􏼑T(x|Θ) dx

􏽒ΩT(x|Θ) dx

⎫⎬

⎭,

(46)

where

zf

zβ
�

−η
β2

. (47)

Also the term z2L/zβ2 can be approximated as

z2L

zβ2
|β�β(t) ≈ 􏽘

N

i�1

−η(t)

β(t)
􏼐 􏼑

2 +
􏽐

M
i�1 1Ω vi( 􏼁 f vi,Θ(t)􏼐 􏼑􏼐 􏼑􏼐 􏼑

2

􏽐
M
i�1 1Ω vi( 􏼁􏼐 􏼑

2

⎧⎪⎨

⎪⎩

−
􏽐

M
i�1 1Ω vi( 􏼁 −η(t)/ β(t)

􏼐 􏼑
2

+ f vi,Θ
(t)

􏼐 􏼑􏼐 􏼑
2

􏼒 􏼓

􏽐
M
i�1 1Ω vi( 􏼁

⎫⎪⎪⎬

⎪⎪⎭
.

(48)

4.3. Shape Parameters Estimation. For shape parameter
estimation η by using the Newton Raphson method, we have

η(t+1)
� η(t)

−
zL/zη

z2L/zη2􏼐 􏼑 + ε
|η�η(t) . (49)

,e derivative of the function L(Θ) with respect to η is
given by

zL

zη
� 􏽘

N

i�1
g xi|Θ( 􏼁 −

􏽒Ωg(x|Θ)T(x|Θ)dx

􏽒ΩT(x|Θ)dx

⎧⎨

⎩

⎫⎬

⎭, (50)

where

g xi|Θ( 􏼁 �
1

T xi|Θ( 􏼁

zT xi|Θ( 􏼁

zη

� ln β − Ψ(η) + λ ln u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ln δ􏼐 􏼑.

(51)

,e term zL/zη can be approximated as

zL

zη
|η�η(t) ≈ 􏽘

N

i�1
g

(t)
xi|Θ( 􏼁 −

􏽐
M
m�1 1Ω vm( 􏼁g

(t)
vm|Θ( 􏼁

􏽐
M
i�1 1Ω vi( 􏼁

􏼨 􏼩,

(52)

where

g
(t)

xi|Θ( 􏼁 � ln β(t)
− Ψ η(t)

􏼐 􏼑 + λ(t) ln u
(t)

− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − ln δ(t)
􏼒 􏼓.

(53)

,e calculation of the term z2L/zη2 is obtained as
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z
2
L

zη2
� 􏽘

N

i�1

zg xi|Θ( 􏼁

zη
+

􏽒ΩT(x|Θ)g(x|Θ)dx􏼐 􏼑
2

􏽒ΩT(x|Θ)dx􏼐 􏼑
2

⎧⎪⎨

⎪⎩

−
􏽒Ω zg(x|Θ)/zη + g

2
(x|θ)􏼐 􏼑T(x|Θ)dx

􏽒ΩT(x|Θ)dx

⎫⎬

⎭,

(54)

where

zg

zη
� −Ψ′(η). (55)

,e term z2L/zη2 can be approximated as

z2L

zη2
|η�η(t) ≈ 􏽘

N

i�1

zg xi|Θ( 􏼁

zη
􏼠 􏼡

(t)

+
􏽐

M
m�1 1Ω vm( 􏼁g(t) vm|Θ( 􏼁􏼐 􏼑

2

􏽐
M
i�1 1Ω vi( 􏼁􏼐 􏼑

2

⎧⎪⎨

⎪⎩

−
􏽐

M
m�1 1Ω vm( 􏼁 zg vm|Θ( 􏼁/zη( 􏼁

(t)
+ g

(t)
vm|Θ( 􏼁􏼐 􏼑

2
􏼒 􏼓

􏽐
M
i�1 1Ω vi( 􏼁

⎫⎪⎪⎬

⎪⎪⎭
,

(56)

where

zg xi|θ( 􏼁

zη
􏼠 􏼡

(t)

� −Ψ′ η(t)
􏼐 􏼑. (57)

For shape parameter estimation λ by using the Newton
Raphson method, we have

λ(t+1)
� λ(t)

−
zL/zλ

z2L/zλ2 + ε

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌λ�λ(t)

. (58)

,e derivative of the function L(Θ) with respect to λ is given
by

zL

zλ
� 􏽘

N

i�1
h xi|Θ( 􏼁 −

􏽒Ωh(x|Θ)T(x|Θ)dx

􏽒ΩT(x|Θ)dx

⎧⎨

⎩

⎫⎬

⎭, (59)

where

h xi|Θ( 􏼁 �
1

T xi|Θ( 􏼁

zT xi|Θ( 􏼁

zλ

�
1
λ

+ η − β
u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δ
􏼠 􏼡

λ
⎛⎝ ⎞⎠ln

u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δ
􏼠 􏼡.

(60)

,e term zL/zλ can be approximated as

zL

zλ
|λ�λ(t) ≈ 􏽘

N

i�1
h

(t)
xi|Θ( 􏼁 −

􏽐
M
m�1 1Ω vm( 􏼁h

(t)
vm|Θ( 􏼁

􏽐
M
m�1 1Ω vm( 􏼁

􏼨 􏼩,

(61)

where

h
(t)

xi|Θ( 􏼁 �
1
λ(t)

+ η(t)
− β(t) u(t) − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δ(t)
􏼠 􏼡

λ(t)

⎛⎜⎝ ⎞⎟⎠ln
u

(t)
− xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

δ(t)
⎛⎝ ⎞⎠.

(62)

,e calculation of the term z2L/zλ2 is obtained as

z
2
L

zλ2
� 􏽘

N

i�1

zh xi|Θ( 􏼁

zλ
+

􏽒ΩT(x|Θ)h(x|Θ)dx􏼐 􏼑
2

􏽒ΩT(x|Θ)dx􏼐 􏼑
2 N

⎧⎪⎨

⎪⎩

−
􏽒Ω (zh(x|Θ)/zλ) + h

2
(x|Θ)􏼐 􏼑T(x|Θ)dx

􏽒ΩT(x|Θ)dx

⎫⎬

⎭,

(63)

where

zh

zλ
�

−1
λ2

− β
u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δ
􏼠 􏼡

λ

ln2
u − xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δ
􏼠 􏼡. (64)

,e term z2L/zλ2 can be approximated as

z2L

zλ2
|λ�λ(t) ≈ 􏽘

N

i�1

zh xi|Θ( 􏼁

zλ
􏼠 􏼡

(t)

+
􏽐

M
m�1 1Ω vm( 􏼁h(t) vm|Θ( 􏼁􏼐 􏼑

2

􏽐
M
m�1 1Ω vm( 􏼁􏼐 􏼑

2 −
⎧⎪⎨

⎪⎩

􏽐
M
m�1 1Ω vm( 􏼁 zh vm|Θ( 􏼁/zλ( 􏼁

(t)
+ h

(t)
vm|Θ( 􏼁􏼐 􏼑

2
􏼒 􏼓

􏽐
M
m�1 1Ω vm( 􏼁

⎫⎪⎪⎬

⎪⎪⎭
.

(65)

4.4. Algorithm. To study the stability of our model, we have
to find the set of initial points that generate a convergent
sequence which called stable points of the dynamical system,
i.e., we have to find u(0), δ(0), β(0), η(0), λ(0) such that
limt⟶∞u(t), limt⟶∞δ

(t), limt⟶∞β
(t), limt⟶∞η(t), and

limt⟶∞λ
(t) exist. Indeed for fixed initial, it is difficult to

predict how the approximation sequence behaves; hence, for
this purpose, we take a random numbers of initial points
until the convergence is verified (two successive approxi-
mations of each parameter correct to 4 decimal places). ,e
various steps of the proposed model can be summarized as
follows:

Step 1: Initialize the parameters Θ(u, δ, β, η, λ).
Step 2: Reestimate the parametersΘ(u, δ, β, η, λ), where
the most common value of scaling parameter ε is 10− 30

for our experiments.

+Update the parameter u in (37).
+Update the parameter δ in (41).
+Update the parameter β in (42).
+Update the parameter η in (49).
+Update the parameter λ in (58).
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Figure 4: ,e estimated histogram (a) the histogram of the observed data with u � 0.3; δ � 1.5; η � 2, λ � 3 and β � 0.1 in the interval
(1.5, 4); (b) the estimated histogram of RM, LM, WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM,
BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Figure 5: ,e estimated histogram. (a) ,e histogram of the observed data with u � 0; δ � 0.5; η � 2, λ � 3 and β � 1 in the interval
(−1.5, 1.5); (b) the estimated histogram of RM, LM,WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM,
BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Figure 6: ,e estimated histogram. (a) ,e histogram of the observed data with u � −0.3; δ � 1.5; η � 2, λ � 3 and β � 0.1 in the interval
(−4, −1.5); (b) the estimated histogram of RM, LM, WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM,
BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Step 3: Check the convergence, if |zL(Θ)/zΘi|Θ�Θ(t)|

< 10− 4, for all 1≤ i≤ 5 under the constrains AL(Θ(t)) is
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(66)

,en evaluate the function in (29). When the conver-
gence is not verified, then go to step 1 to update the initial
point.

Recall that since the matrix AL(Θ) be an 5 × 5 symmetric
matrix and let AkL(Θ) be the submatrix of AL(Θ) obtained
by taking the upper left-hand corner 5 × 5 submatrix of
AL(Θ). Furthermore, let Δk � det(AkL(Θ)), the kth principal
minor of AL(Θ). ,en AL(Θ) is negative definite if and only
if (−1)kΔk > 0 for k � 1, 2, 3, 4, 5. In comparison with the
standard EM algorithm, our methodology can make it simple
to evaluate the parameters β, η, and λ by maximizing the
higher bound on the data log-likelihood function as appeared
in (42), (49), and (58) separately. In the following section, we
will explain the robustness, accuracy, and effectiveness of the
proposed model, as compared with other models.

5. Experiments

We explain the proposed technique in different examina-
tions. ,e execution of BGΓM is compared with the WM
[16], RM [19], EM [14], LM [22], GM [15], GGM [25], ΓM
[1], GΓM [2], BWMM [26], BRM [27], BEM [28], BLM [22],
BGM [29, 30], BGGM [22], and BΓM [31]. To measure the
fitting precision of every model, we use the corresponding
−2 Log-likelihood (−2L) values of models fitted to data. In
general, the smaller values of (−2L), is the better fit to the
data.

5.1. Simulation Study. We generate 40000 random numbers
from BGΓMwith different parameters and bounded support
regions see Figures 4–6. ,e corresponding −2L values of
models fitted to simulated data are listed in Table 4. We find
that BGΓM is the most powerful and has the least −2L. ,e
pdf of BGΓM is monotonically increasing, decreasing,
bathtub, and upside down bathtub-shaped depending on the
parameter values and bounded support regions. So this
model is of noticeable importance for image coding and
compression applications [32, 33].

5.2. Real Data Study. We give here six real data as follows:

(1) ,e first data set arose in tests on endurance of deep
groove ball bearings which is from Lawless (1982, p.
288). ,e data set is 17.88, 28.92, 33, 41.52, 42.12,
45.6, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64,
68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84,
127.92, 128.04, 173.40.

(2) ,e second data set of the yearly maximum wind
speed data in miles/hour, used in this study has been
quoted from Castillo (1988) [34].

(3) ,e third data set of the tensile strength of 100
observations of carbon fibers, the data was obtained
from Ref [35]. ,e data are 3.7, 2.74, 2.73, 2.5, 3.6,

Table 4: ,e corresponding −2L values of models fitted to simulated data in Figures 4–6.

Model Figure 4 Figure 5 Figure 6
LM 340369.6 127185.1 339937.1
RM 236056.8 58161.5 235563.1
GM 321759.5 93056.9 321116.7
EM 342290.4 113226.3 342259.8
GGM 328885.3 79528 327945.2
WM 172977.9 59251.4 172863.8
ΓM 496904.9 99792 497023.3
GΓM 199109.3 18948.2 199442.2
BLM 157338.1 123729.1 156760.5
BRM 132502.2 52067.8 132867
BGM 321759.5 93056.9 321116.7
BEM 89868.5 103830.2 90370.9
BGGM 189787.7 59251.4 188722.3
BWM 76569.8 78813.4 76857.7
BΓM 71019.3 63381.9 70210
BGΓM 55227.9 18944.4 55581
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Figure 7: ,e estimated histogram. (a) ,e histogram of the tests on endurance of deep groove ball bearings; (b) the estimated histogram of
RM, LM,WM,GM, EM,GGM, ΓM,GΓM, andGΓM; (c) the estimated histogram of BRM, BLM, BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Figure 8: ,e estimated histogram. (a) ,e histogram of the yearly maximum wind speed data; (b) the estimated histogram of RM, LM,
WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM, BWM, BGM, BEM, BGGM, BΓM, and BGΓM.
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Figure 9: ,e estimated histogram. (a) ,e histogram of the tensile strength of 100 observations of carbon fibers; (b) the estimated
histogram of RM, LM, WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM, BWM, BGM, BEM, BGGM,
BΓM, and BGΓM.
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Figure 10: ,e estimated histogram. (a) ,e histogram of the survival times of 121 patients with breast cancer; (b) the estimated histogram
of RM, LM, WM, GM, EM, GGM, ΓM, GΓM, and GΓM; (c) the estimated histogram of BRM, BLM, BWM, BGM, BEM, BGGM, BΓM, and
BGΓM.
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Figure 11: Approximation of the wavelet coefficients. (a) “Leleccum.wav”(leleccum (1 : 3920)); (b) approximation of the wavelet coefficient
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3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69,
3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39,
2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55,
3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38,
2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98,
2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73,
1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18,
3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85,
1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,
1.89, 2.88, 2.82, 2.05, 3.65.

(4) ,e fourth data set of the survival times of 121
patients with breast cancer, the data was obtained
from Ref [36].

(5) In this part “Leleccum.wav”(leleccum (1 : 3920)) is
disintegrated into three high-pass subbands (CH,
CV, CD) and one low-pass subband (CA). ,e
Daubechies channel bank (db1) is used. ,e fifth
data set is the approximation of the wavelet coeffi-
cient (db1, CD, level 1) of “leleccum.wav” in the
interval (−20.32, 20.32).

(6) ,e wavelet approximation coefficient is an essential
issue in computer vision as it assumes an important
part in an extensive range of applications. ,e image
of (lena) is decomposed into three high-pass sub-
bands (CH, CV, CD) and one low-pass subband
(CA). ,e Daubechies filter bank (db4) is used. ,e
sixth data set is the wavelet coefficients of the high-
pass subband (CD), level 1 in the interval (−0.5, 0.5).

,e histogram for all real sets and their estimated pdfs
for the fitted models are displayed in Figure 7–12. ,e
corresponding −2L values of models fitted to real data are
listed in Table 5. ,erefore, the proposed model provides a

better fit to these data and has the least −2L.Secondly, if we
compare the power of our model with modified generalized
gamma distribution (MGG) having 6-parameters defined
and studied in [12] on real data 3, we have −2L � 280.608
and −2L � 282.692, respectively. Hence, BGΓM is high
flexible than MGG for this data. Furthermore, we compare
McDonald log-logistic distribution (McLL) [36] with our
model BGΓM. ,e model selection is carried out using the
following statistics: AIC (Akaike information criterion),
CAIC (consistent Akaike information criterion), and BIC
(Bayesian information criterion). ,e corresponding values
of models fitted to real data 4 are listed in Table 6. We find
that BGΓM is more flexible than McLL in this case.

6. Conclusions

A bounded generalized Gamma model with five parameters,
whose hazard function can be monotonically increasing,
decreasing, bathtub, and upside down bathtub-shaped
depending on the parameter values, has been introduced and
studied. Some mathematical and statistical properties of the
new model are investigated. We estimate the model pa-
rameters using maximum log-likelihood function and find a
closed form of some parameters by the Newton Raphson
method. ,e predictive ability of our model is found to be
comparable or superior to widely accepted distributions.,e
performance of the model has the smallest −2L values. A
simulation study was carried out to evaluate the predictive
ability of our model to fit any kind of data with bounded
support regions and compare it with other distributions.,e
power of the new model is illustrated by means of appli-
cation to six real data sets. ,e BGΓM performs significantly
better than the others distributions when sample sizes are

Table 5: ,e corresponding −2L values of models fitted to real data in Figures 7–12.

Model Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12
LM 231.689 372.636 294.201 1202.9 2054.7969 1622.7872
RM 258.488 445.485 311.805 1343.8 12980.3354 20236.904
GM 230.955 396.412 285.541 1204.7 6672.0221 10248.145
EM 231.691 372.636 294.201 1202.9 1597.1747 1.4026
GGM 231.743 370.125 285.727 1201.7 4469.5735 1.6748
WM 230.41 415.379 287.88 1202.2 7595.6214 534.9312
ΓM 305.696 373.761 314.142 1218.7 3552.8825 739.3194
GΓM 257.824 441.071 421.314 1198.6 1557.8015 440.4421
BLM 225.714 343.052 282.126 1152 2020.3745 1294.9581
BRM 224.418 343.064 285.874 1154.8 20206.6427 20527.3021
BGM 224.632 343.072 281.674 1155 6672.0221 10248.145
BEM 225.714 343.052 282.098 1156.6 1597.168 881.9213
BGGM 232.148 342.794 328.575 1154.9 2104.6441 1361.9667
BWM 224.164 432.44 279.486 1155.7 3551.7368 515.5414
BΓM 245.613 346.724 296.563 11741.7 1557.7918 626.7688
BGΓM 223.82 342.289 280.608 1151.3 1493.2769 366.1614

Table 6: ,e corresponding AIC, BIC, and CAIC on real data 4.

Model AIC BIC CAIC
BGΓM 1161.308 1175.288 1161.831
McLL 1164.661 1178.64 1165.183
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small. ,us, it is less affected by sample size and is more
robust. Also the accuracy of the proposed model for wavelet
histogram fitting of image and sound is high. We hope that
this model may attract wider applications on themodeling of
the probability density function of the data via BGΓD in
video coding and image denoising as a future work.
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In this article, an algorithm has been established to approximate parametric-parametric, explicit-implicit, and explicit-explicit
surface intersection. Foremost, it extracts the characteristic points (boundary and turning points) from the sequence of in-
tersection points and fits an optimal cubic spline curve to these points. Moreover, this paper utilizes genetic algorithm (GA) for
optimization of shape parameters in the portrayal of cubic spline so that the error is minimal. *e proposed algorithm is
demonstrated with different types of surfaces to analyze its robustness and proficiency. In the end, all illustrations show the
effectiveness of the algorithm which makes it more influential to resolve all complexities arises during intersection with a
minimal error.

1. Introduction

Surface/surface intersection (SSI) has enormous applications
in diverse fields while dealing with two surfaces/curves’
intersection problems. It is a fundamental ingredient in
computer graphics to develop different shapes of ultrasonic
machines (3D images from ultrasonic machines can be
joined with CAD images for good results), airplanes, ar-
chitecture designs, etc., via a variety of surfaces. With the
advancement in 3D technologies, such as in laser scanning,
one can scan more precisely even at a significant distance.
Similarly, in engineering, curve of intersection (COI) is
achieved by the intersection of different solids such as prism-
prism, prism-cone, and cone-cone. It deals with complex
mathematical geometry which arises in designing of auto-
motive at large scale. A huge collection of work, extending
back quite a few years, addresses the issues related to SSI.
*is is still an important issue in industrial engineering and
mathematical fields. Usually, nonempty intersection intends
to find an error bound for approximation of intersection
curves, see, for example, [1–5] and references therein.

*e algorithm proposed in [6] focused on evaluating
intersection curves of rational polynomial parametric sur-
face patches, which is based on a validated ordinary

differential equation system solver. Later on, they empha-
sized on the marching method [7] for solving problems
which offer remarkable advantages, but still their approach is
facing some problems because of complicated initial and
boundary values. In the same way, an approach in [8]
worked on solving differential geometry problems of hy-
persurfaces; also, they are doing this research [9] by in-
creasing dimensions of surfaces which take more time for
showing results. Extracting boundary and turning points of
parametric surface intersection curves by the GKmethod are
discussed in [10, 11]. *eir topology is still confronting
problems of error that come up through surface intersection.
Also, the methodology in [12] is used for finding charac-
teristics points, but excess of points are calculated for ap-
propriate results.

Explicit and implicit surfaces are not extensively used in
a variety of fields, but researchers did remarkable work
whatever the circumstances occurred during research. In the
medical field, scientists used an explicit surface-based
method for the cortical thickness of the brain [13]; still, they
are doing their work on that purpose. In CAD, hybrid
models can be merged with explicit models [14] for re-
moving ambiguities and getting better graphic results. *e
problems occurring in ocean-free surface models can be
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solved explicitly or implicitly. In explicit surfaces, scaling
behavior on parallel systems is better than implicit schemes
[15] because baro-clinic time steps are used in implicit
surfaces and are larger than the time-stepping scheme in
explicit surfaces.

Collectively, methods involving implicit surfaces are
quite diffusive because global communication in each it-
eration makes the method’s scale poorer; while explicit
surface methods have flexibility to resolve all possible dif-
ficulties during the iteration process. *e combination of
these surfaces is good for intersection because if one surface
is creating some problem during intersection the other may
overcome the situation.

Soft computing behavior such as computational intel-
ligence, is a blend of different techniques such as fuzzy logic
[16], simulated annealing, genetic algorithm, numerical
technics [17], etc., whose objective is to solve computational
problems which is based on natural evolution theory [18],
which is not easily demonstrated numerically. In this re-
search work, a genetic algorithm is utilized, which is useful
in getting optimal outcomes.

While a lot of work has been done on SSI issues, still
there is hardly any established algorithm which can deal
intersection of all types of surfaces. Each approach that was
discussed in the previous section has its own disadvantages
and limits. *is motivated us to develop an optimal tech-
nique using genetic algorithm and cubic spline function,
which can be used to approximate intersections of wider
range of surfaces. *e technique proposed in this paper
works equally well to approximate intersection curves for
following three cases of intersection of surfaces:

1 Intersection of two explicit surfaces
2 Intersection of one implicit and one explicit surface
3 Intersection of two parametric surfaces

*is paper is organized as follows. Section 2 includes the
materials and methods of proposed approach. Genetic al-
gorithm is discussed in Section 3. Results and discussion is
given in Section 4. *is paper is concluded in Section 5.

2. Materials and Methods

*e proposed approach takes two surfaces as input. *ese
surfaces may consist of two explicit surfaces s1 and s2 in R3,
which are defined as

s1: a1 � G1(x, y): a � x � b, c � y � d􏼈 􏼉,

s2: a2 � G2(x, y): a � x � b, c � y � d􏼈 􏼉,
(1)

where a, b, c, d ∈ R.
One implicit and one explicit surface h1 and h2 are

represented by

h1: K1(x, y, z) � 0: a � x � b, c � y � d, e � z � f􏼈 􏼉,

h2: z � K2(x, y): a � x � b, c � y � d, e � z � f􏼈 􏼉,

(2)

where a, b, c, d, e, f ∈ R.
Two parametric surfaces z1 and z2in R3 are denoted as

z1 � F1(x(s, t), y(s, t), z(s, t)): a � s � b, c � t � d􏼈 􏼉,

z2 � F2(x(r, w), y(r, w), z(r, w)): a � r � b, c � w � d􏼈 􏼉,

(3)

where a, b, c, d ∈ R.
In order to find sequence of intersection points of all

above surfaces, the solution of the following equations is
required, respectively:

a1 − a2 � 0,

z − K1(x, y, z) � 0,

F1 − F2 � 0.

⎧⎪⎪⎨

⎪⎪⎩
(4)

Additionally, its nonempty intersection contains isolated
sequence points and curves of intersected pieces.

2.1. Characteristic Points. Characteristic points are the
subset of the sequence of intersection points which helps to
identify the shape of intersection curves, including all the
turning and boundary points.

2.1.1. Boundary Points. *e boundary points can be de-
termined by imposing the following conditions:
x � a, x � b, y � c, y � d, z � e, and z � f in equation (4).

2.1.2. Turning Point. A point where curve changes its di-
rection or where intersected curve makes a sharp turn is
called turning point. *e turning points can be estimated by
finding

(i) *e inflection point of equation (4)
(ii) *e points where curve (4) has slope 0, 1, or −1
(iii) Where the function changes its curvature
(iv) When derivative changes its sign

2.2. Cubic Spline Interpolant. Cubic spline function [19] is
used to fit the curve at the points obtained in the previous
section. Let Fi and Fi+1, i � 1, 2, . . . , n − 1, be distinct
characteristic points. Moreover, the slope of tangent asso-
ciated to these points is denoted by Di, Di+1, and vi and wi

are shape control parameters. *en, the cubic function is
considered as

Pi(t) � Ui(1 − t)
3

+ 3Vi(1 − t)
2
t + 3Wi(1 − t)t

2
+ Xit

3
,

hi � ti+1 − ti, i � 1, 2, . . . , n − 1,

⎧⎨

⎩

(5)

satisfying the following properties:

P ti( 􏼁 � Fi,

P ti+1( 􏼁 � Fi+1,

P
(1)

ti( 􏼁 � viDi,

P
(1)

ti+1( 􏼁 � wiDi+1,

(6)
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where P(1) denotes first derivative with respect to t, which
yields interpolating conditions as

Ui � Fi,

Xi � Fi+1,

Vi � Fi +
hiDivi

3
􏼠 􏼡,

Wi � Fi+1 −
hiDi+1wi

3
􏼠 􏼡.

(7)

So, Pi(t) takes the form:

Pi(t) � Fi(1 − t)
3

+ 3 fi +
hiDivi

3
􏼠 􏼡(1 − t)

2
t

+ 3 fi+1 −
hiDi+1wi

3
􏼠 􏼡(1 − t)t

2
+ Fi+1t

3
.

(8)

*e above equation can be rewritten as

Pi(t) � R0,i(t)Fi + R1,i(t)Vi + R2,i(t)Wi + R3,i(t)Fi+1,

(9)

where R0.i � (1 − t)3, R1,i � 3t(1 − t)2, R2,i � 3t2(1 − t), and
R3,i � t3.

*e functions Rj,i, j � 0, 1, 2, 3, are like Bernstein Bezier
basis functions such that

􏽘

3

j�0
Rj,i(t) � 1. (10)

Two cases of optimal intersection curve are discussed
below.

In order to achieve optimal curve fitted to characteristic
points, the sum of squares of distances between data (in-
tersection) points Pi,j

′ � (xi,j, yi,j) and approximated points
using cubic spline P(tj) should be minimized, i.e.,

Si � 􏽘

mi

j�1
Pi ti,j􏼐 􏼑 − Pi,j

′􏽨 􏽩
2
, i � 1, 2, . . . , n, (11)

where chord length parameterization which is used for
parameter t needs to be minimized.

In this procedure, such values of the shape control
parameters vi and wi must be chosen with the help of genetic
algorithm so that Si (equation (11)) is minimal and the
following two cases may arise to do so.

Case 1. vi � wi

Shape parameters are taken as equal in this case, so the
objective function (11) depends on one variable only.

Case 2. vi ≠wi

Shape parameters are not taken as equal in this case. *e
process of finding the best curve is the same as above by
taking objective function (11) as a function of two variables.

Moreover, in this paper, results are obtained using case 2
as case 1 is special case of case 2.

3. Genetic Algorithm

As cubic spline has two parameters vi and wi, in case of
achieving optimal values of v and w, a soft computing
technique, i.e., genetic algorithm (GA) [18] is used. Genetic
algorithm is one of the powerful evolutionary-based opti-
mization technique to tackle complicated optimization
problems. It forms adaptive patterns of searching, based on
natural genetics and designs of natural selection. Natural
evolution process works under some genetic operators
(selection, crossover, and mutation). *is procedure moves
from one parent population (chromosomes) to another by
using genetic operators where every chromosome consists of
more than one bit strings. Selection operator helps selecting
chromosome which allowed to reproduce and would die out.
Crossover operator generates new chromosomes by ex-
changing some area of two bit strings (chromosomes)
mutually. Mutation operator disseminates some new char-
acteristics among the bit strings for more variety of chro-
mosomes. Figure 1 shows an example of crossover and
mutation operator for some particular choice of
chromosomes.

GA does not need any lengthymathematical formulation
for better results and rise as a significant technique which
solves complex problems in short time with appropriate
results. GA choses random values of the parameters vi, wi

from certain population and application of iterated process
of GA along with genetic operators, selection, mutation, and
crossover which specifically fit the optimal curve to inter-
section points by finding optimal values of shape control
parameters vi, wi.

For best curve fitted to given data, those values of shape
parameters are required, for which the sums Si should be
minimized. GA is used to optimize the values of parameters
which help in minimizing the error.

In literature, different methods are used for finding the
error. *e error occurs when approximated points do not lie
on the exact location. *e error calculated by the proposed
technique in this paper is shown in Tables 1–3. *e mini-
mized error gives best approximated curve which shows the
efficiency of the proposed approach. Table 4 displays values
of parameters which are used for GA.

3.1. Proposed Algorithm Steps. *e overall proposed scheme
can be described in the form of an algorithm.

Step 1: input surface data
Step 2: find intersection of surfaces by the method
mentioned in Section 2
Step 3: extract the characteristics points through cri-
teria given in Section 2
Step 4: fit the spline curve to the points attained in Step 3
Step 5: compute the best optimal value of parameters v

and w by using GA

Journal of Mathematics 3
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Figure 1: Execution of crossover and mutation operator.

Table 1: Iterative values with characteristic points of Example 1.

SPV TE (seconds) E (SSE) TOIP CP

1st iteration

v � 0.22

w � 0.31 0.047 0.02941 762

(–1.85,–0.39)
(0.19, 0.82)
(–0.15,–0.39)
(2, 1.77)
(–2, 0.5)

2nd iteration v � 0.41
w � 0.56 0.039 0.00572

Optimal curve v � 0.9
w � 0.9 0.023 6.7 × 10−5

Table 2: Iterative values with characteristics points of Example 2.

SPV TE (seconds) E (SSE) TOIP CP

1st iteration

v � 1.06

w � 1.17 0.124 0.00365 217

(0, 1.249, 1.562)
(0, −1.249, 1.562)
(1.249, 0, –1.562)
(–1.249, 0, –1.562)
(1.414, 1.414, 0)

(–1.414, –1.414, 0)
(1.414, –1.414, 0)
(–1.414, 1.414, 0)

2nd iteration v � 1.22
w � 1.34 0.086 0.00021

Optimal curve v � 3.82
w � 3.82 � 3.82 0.135 1.1 × 10−7

Table 3: Iterative values with characteristics points of Example 3.

SPV TE (seconds) E (SSE) TNIP CS

1st iteration v � 1.49 (1/3, 1/3)
w � 1.56 0.049 0.0169 167 (0.993, 0.284)

2nd iteration v � 1.67
w � 1.77 0.052 0.00021

Optimal curve v � 2.99
w � 2.99 0.047 1.8×10−8

Table 4: Parameters utilized for GA.

Sr. no. Name Values
1 Population size 25–30
2 Genome length 15
3 Selection rate 0.5
4 Mutation rate 0.01
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Step 6: if the optimal curve has been accomplished in
Step 5, then go to Step 7, otherwise go to Step 4 and
repeat these steps until the desired optimal curve is
achieved
Step 7: Stop

4. Results and Discussion

*e execution of proposed approach on intersection of
explicit-explicit, implicit-explicit, and parametric-paramet-
ric surfaces has been shown in the following examples.

Example 1. Two explicit surfaces are given by

s1: z � y
2

+ 2x|0≤ x, y≤ 1􏽮 􏽯,

s2: z � 2y
3

− x
2
|0≤x, y≤ 1􏽮 􏽯.

(12)

Both explicit surfaces are shown in Figures 2 and 3.
Figure 4 depicts intersection of surfaces, while Figure 5
epitomizes the xy-view of intersection along with bound-
ary and turning points which extracted through criteria
given in Section 2. Approximation of sequence of points is
displayed in Figure 6. Figures 7 and 8 show how cubic spline
is used to fit the curve through 1st and 2nd iterations of GA.
*e best optimal curve is given in Figure 9 and achieved in
20th iteration of GA.

Example 2. Implicit and explicit surfaces are given by

s1: x
2

+ y
2

+ z
2

� 4|0≤x, y, z≤ 1􏽮 􏽯,

s2: −x
2

+ y
2

� z|0≤ x, y, z≤ 1􏽮 􏽯.
(13)

Explicit and implicit surfaces are displayed in Figures 10
and 11. Figure 12 portrays intersection of surfaces, while
Figure 13 denotes the xy-view of intersection along with
boundary and turning points which are extracted through
criteria given in Section 2. Approximation of sequence of
points is publicized in Figure 14. Figures 15 and 16 represent
how cubic spline is used to fit the curve through 1st and 2nd
iterations of GA. *e best optimal curve is shown in Fig-
ure 17 and obtained after 24th iteration of GA.

Example 3. Two parametric surfaces with parameters x, y

are given by

s1: (3x, 3y, 18xy(x − 1)(y − 1))|0≤ x, y≤ 1􏼈 􏼉,

s2: 3x + 1, −18x
3
y
2

+ 18x
3
y + 27x

2
y
2

− 27x
2
y􏼐􏽮

− 9xy
2

+ 9xy + 1, 3y − 1􏼑|0≤ x, y≤ 1􏽯.

(14)

Both parametric surfaces are shown in Figures 18 and 19.
Figure 20 illustrates intersection of surfaces, while Figure 21
demonstrates the xy-view of intersection along with
boundary and turning points which extracted through
criteria given in Section 2. Approximation of sequence of
points is shown in Figure 22. Figures 23 and 24 exemplify
how cubic spline is used to fit the curve through 1st and 2nd
iterations of GA. *e best optimal curve is depicted in
Figure 25 and produced in 31st iteration.

Figure 2: Explicit surface 1.

Figure 3: Explicit surface 2.

Figure 4: Intersection of both surfaces.

Figure 5: xy-view of intersection along with boundary and turning
points.
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Some randomly selected values of shape parameters by
GA and characteristics points of Example 1–3 are shown in
Tables 1–3. In these tables, CS denotes characteristics points,
TNIP denotes the total number of intersection points, E
denotes the error, TE denotes time elapsed, and SPV denotes
shape parameter values.

Figure 6: Sequence of points.

Figure 7: Cubic spline fitted for 1st iteration of GA.

Figure 8: Cubic spline fitted for 2nd iteration of GA.

Figure 9: Best optimal curve achieved.

Figure 10: Implicit surface.

Figure 11: Explicit surface.

Figure 12: Intersection of both surfaces.

Figure 13: xy-view of intersection along with boundary and
turning points.

Figure 14: Sequence of points.
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Figure 15: Cubic spline fitted for 1st iteration of GA.

Figure 16: Cubic spline fitted for 2nd iteration of GA.

Figure 17: Best optimal curve achieved.

Figure 18: Implicit surface.

Figure 19: Explicit surface.

Figure 20: Intersection of both surfaces.

Figure 21: xy-view of intersection along with boundary and
turning points.

Figure 22: Sequence of points.
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5. Conclusion

A new scheme together with a genetic algorithm has been
introduced to approximate surface to surface (parametric-
parametric, explicit-implicit, and implicit-implicit) inter-
section curves. Characteristics points are evaluated from
sequence points of surface intersection and fit optimal curve
using cubic spine. Finest shape parameter values in cubic
spline are selected by genetic algorithm. Moreover, it does
not include any extra points for approximation. Finally, the
optimal outcomes from the proposed technique suggested
that it is more reliable scheme with GA in order to overcome
surface intersection problems.

Data Availability

All data required for this research is included within this
paper.

Conflicts of Interest

Authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally in this paper.

Acknowledgments

*is work was supported by the Key Teaching Research
Project of Quality Engineering in Colleges and Universities
in Anhui Province and Hefei College of Finance & Eco-
nomics Guangzhou Zhuoya Education Investment Co., Ltd.
Practical Education Base (subject no. 2020sjjd093).

References

[1] D. Ritelli and G. Spaletta, “Trinomial equation: *e hyper-
geometric way,”Open Journal of Mathematical Sciences, vol. 5,
no. 1, pp. 236–247, 2021.

[2] I. Kovcs and T. Vrady, “Constrained fitting with free-form
curves and surfaces,” Computer-Aided Design, vol. 122, Article
ID 102816, 2020.

[3] S. Motta, A. Montenegro, M. Gattass, and D. Roehl, “A 3D
sketch-based formulation to model salt bodies from seismic
data,” Computers & Geosciences, vol. 142, Article ID 104457,
2020.

[4] S. Foschi and D. Ritelli, “*e lambert function, the quintic
equation and the proactive discovery of the implicit function
theorem,”Open Journal of Mathematical Sciences, vol. 5, no. 1,
pp. 94–114, 2021.

[5] F. Liang, C. Kang, and F. Fang, “A smooth tool path planning
method on NURBS surface based on the shortest boundary
geodesic map,” Journal of Manufacturing Processes, vol. 58,
pp. 646–658, 2020.

[6] H. Mukundun, T. Maekawa, T. Sakkalis, and N. Patrikalakis,
“Tracing surface intersections with validated ODE system
solver,” ACM Symposium on Solid Modeling and Applications,
vol. 4, 2004.

[7] N. M. Patrikalakis, T. Maekawa, K. H. Ko, and H. Mukundan,
“Surface to surface intersections,” Computer Aided Design and
Applications, vol. 1, pp. 449–457, 2013.

[8] N. H. Abdel-All, S. A. N. Badr, M. A. Soliman, and
S. A. Hassan, “Intersection curves of hypersurfaces in,”
Computer Aided Geometric Design, vol. 29, no. 2, pp. 99–108,
2012.

[9] M. Salem, O. Alessio, M. Jamali, and M. Hassan, “Transversal
intersection curves of hyper-surfaces in R5,” 2007, https://
arxiv.org/abs/1601.04252.

[10] S. Hur, M. Oh, and T. W. Oh, “Approximation of surface-to-
surface intersection curves within a prescribed error bound
satisfying G continuity,” Computer-Aided Design, vol. 41,
no. 1, pp. 37–46, 2009.

[11] S. Hur, M. Oh, and T.W. Oh, “Classification and resolution of
critical cases in grandine and klein’s topology determination
using a perturbation method,” Computer Aided Geometric
Design, vol. 26, no. 2, pp. 243–258, 2009.

[12] M. Sarfraz, M. Irshad, F. Sarfraz, and M. Zawwar, “A novel
approach for surface to surface intersection approximation,”
in Proceedings of the Information Visualisation 17th Inter-
national Conference, London, England, July 2013.

Figure 24: Cubic spline fitted for 2nd iteration of GA.

Figure 25: Best optimal curve achieved.

Figure 23: Cubic spline fitted for 1st iteration of GA.

8 Journal of Mathematics

https://arxiv.org/abs/1601.04252
https://arxiv.org/abs/1601.04252


[13] A. Gutman, “Intersection of neuroscience, ethics, and soci-
ety,” Presidential Commission for the Study of Bioethical, vol. 2,
2015.

[14] S. Ilic and P. Fua, From Explicit to Implicit Surfaces for Vi-
sualization. Animation and Modelling, Computer Vision Lab,
Swiss Federal Institute of Technology, Zürich, Switzerland,
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(e purpose of this article is to employ the subdivision collocation method to resolve Bratu’s boundary value problem by using
approximating subdivision scheme.(emain purpose of this researcher is to explore the application of subdivision schemes in the
field of physical sciences. Our approach converts the problem into a set of algebraic equations. Numerical approximations of the
solution of the problem and absolute errors are compared with existing methods. (e comparison shows that the proposed
method gives a more accurate solution than the existing methods.

1. Introduction

(e general expression of Liouville–Bratu–Gelfand equation
[1, 2]:

Δχ(r) + α exp(χ(r)) � 0, r ∈ Ω1,

χ(r) � 0, r ∈ zΩ1,
􏼨 (1)

where parameter α> 0 and Ω1 is a bounded domain. We
consider the Bratu’s boundary value problem in one-di-
mensional planar coordinates [2–4] of the form

χ··
(r) + α exp(χ(r)) � 0, 0< r< 1, α> 0, (2)

with conditions at the ends of the domain

χ(0) � 0,

χ(1) � 0.
(3)

(e detailed information of problem (2) is given in [4, 5].
(e exact solution of (2) is

χ(r) � − 2 ln
cosh(0.5θ(r − 0.5))

cosh(0.25θ)
􏼢 􏼣, where θ �

���
2α

√
cosh(0.25θ).

(4)

(e exponential term guarantees nonlinearity and the
bifurcation phenomenon that follows up. In particular, one
can verify the following for different values of α, i.e., problem
(2) has no solution for α> αc, unique solution for α � αc, and
two bifurcated solutions have been obtained for 0< α< αc,
where αc is the critical value given as αc � 3.51380719. It is
the solution of 1 � 0.25

���
2αc

􏽰
sinh(0.25θ).

In science and engineering, Bratu’s problem is often used
to characterize complex physical and chemical models. For
example, Bratu’s problem is used in a wide range of ap-
plications, including the thermal combustion theory’s fuel
ignition model, the model of the thermal reaction mecha-
nism, the Chandrasekhar model of the universe’s expansion,
chemical reaction theory, radiative heat transfer, and
nanotechnology.

Many researchers have developed analytical and nu-
merical methods to solve the Bratu’s problem, including the
B-spline method [6], Adomian decomposition method
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[7, 8], Chebyshev polynomial approximation method [2],
homotopy analysis method [9], homotopy perturbation
method [10, 11], differential transform method [12], Laplace
transformed decomposition method [13], method of
weighted residuals [14], and variational iteration method
[15, 16]. Moreover, the solutions of the problem have been
reported by Jalilian [17] using the nonpolynomial spline
method, by Boyd [18] with the one-point pseudospectral
collocation method, and by Abbasbandy et al. [19] with the
Lie-group shooting method.

Our goal is to make use of subdivision schemes for
solving Bratu’s problem. Subdivision schemes-based algo-
rithms are not frequently used to find numerical solutions of
boundary value problems. (e approximate solutions of
boundary value problems have been found by subdivision-
based algorithms. Initially, these algorithms were con-
structed by Qu and Agarwal [20, 21]. (eir constructed
algorithms were based on an interpolatory subdivision al-
gorithm and formulated only for the second-order two-
point boundary value problems. After that, Ejaz et al. [22, 23]
constructed subdivision schemes-based algorithm for so-
lutions of boundary value problems of third and fourth
order. We present a subdivision collocation algorithm for
solving Bratu’s problem in this paper.

We organize our paper in the following way. In Section
2, we present some important properties of 6-point binary
approximating subdivision scheme. In Section 3, subdivision
collocation algorithm is formulated for the solution of (2).
(e convergence and error estimation of the proposed al-
gorithm are also discussed in this section. Numerical results
based on the proposed algorithm, comparison with other
existing methods, and conclusion based on the obtained
results are given in Section 4.

2. Subdivision Scheme and Derivatives of Its
Two-Scale Relation

In this section, we define 6-point binary approximating
subdivision scheme (6PBASS) [24] as

Z
k+1
2i � a0Z

k
i− 2 + a1Z

k
i− 1 + a2Z

k
i + a3Z

k
i+1 + a4Z

k
i+2,

Z
k+1
2i+1 � b0Z

k
i− 2 + b1Z

k
i− 1 + b2Z

k
i + b3Z

k
i+1 + b4Z

k
i+2 + b5Z

k
i+3,

⎧⎨

⎩

(5)

with a0 � a4 � − (1/32)α, a1 � a3 � (1/8)α, a2 � (1 −

(3/16)α), b0 � b5 � (1 − α)β, b1 � b4 � − (1/16) − 3β(1 − α),
b2 � b3 � (9/16) + 2β(1 − α), where α and β are tension
parameters. (e 6PBASS scheme possesses some of the
following properties:

(i) (e scheme (5) is C2-continuous for α � (1/5),
β � (13/1000).

(ii) It has support width (5, 5).
(iii) Its approximation order is fourth.
(iv) Its fundamental solution is

](i) �
1, for i � 0,

0, for i≠ 0,
􏼨 (6)

and it satisfies the two-scale relation

](x) � 􏽘
k

ak](2x − k), (7)

where ak is the mask of the scheme (5). Since
6PBASS is C2-continuous by [24], so its 2-scale
relations ](x) are also C2-continuous.

(v) For the computation of the first- and second-order
derivatives of (7), we adopt similar approach of
[22, 23].

(e first two derivatives of (7) are given in the following
equations:

]··
(0) � 0,

]··
(±1) � ±

308375375
103575526

,

]·
(±2) � ∓

89875573
155363289

,

]·
(±3) � ±

6037875
1035755526

,

]·
(±4) � ±

186056
155363289

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

]·
(0) � −

2030241008
65127633

,

]··
(±1) �

1259384000
65127633

,

]··
(±2) � −

96510000
21709211

,

]··
(±3) �

43501000
65127633

,

]··
(±4) �

1765504
65127633

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

3. Subdivision Collection Algorithm for
Bratu’s Problem

In this section, we have constructed a subdivision colloca-
tion algorithm for the solution of (2), which is based upon
the fundamental solution of the subdivision scheme and its
derivatives. Convergence and error estimations results are
also presented in this section.

3.1. Formulation of Subdivision Collection Algorithm for
Bratu’s Problem. (e detail of the proposed algorithm is
given as follows:
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Let

W(y) � 􏽘
N+4

i�− 4
wi]

y − yi

h
􏼒 􏼓, 0≤y≤ 1, (10)

be an approximate solution of (2) and N must be greater
than or equal to four, h is the step size and is defined as
h � (1/N), yi � ih, where i � − 4 to N + 4, and wi are the
unknowns to be determined. From (10), we get

D
2
W yi( 􏼁 �

1
h
2 􏽘

N+4

i�− 4
wi]

·· y − yi

h
􏼒 􏼓. (11)

By using (10) and (11) in (2), we get

1
h
2 􏽘

N+4

i�− 4
wi]

··
yj − yi

h
􏼒 􏼓⎡⎣ ⎤⎦ + α exp 􏽘

N+4

i�− 4
wi]

yj − yi

h
􏼒 􏼓⎡⎣ ⎤⎦ � 0,

(12)

where j � 0, 1, . . . , N, and the conditions given at the ends of
the domain (3) become

W(0) � w0 � 0,

W(1) � wN � 0.
(13)

(e matrix representation of equation (12) is

AW + αD1 � 0, (14)

where

A �

]··
4 ]··

3 ]··
2 ]··

1 ]··
0 ]··

− 1 ]··
− 2 · · · 0 0 0

0 ]··
4 ]··

3 ]··
2 ]··

1 ]··
0 ]··

− 1 · · · 0 0 0

0 0 ]··
4 ]··

3 ]··
2 ]··

1 ]··
0 · · · 0 0 0

⋮

0 0 0 0 0 0 0 · · · ]··
N− 3 ]··

N− 4 0

0 0 0 0 0 0 0 · · · ]··
N− 2 ]··

N− 3 ]··
N− 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N+1×N+9

, (15)

W � w− 4, w− 3, . . . , wN+3, wN+4( 􏼁
T
, (16)

D1 � h
2

× exp W y0( 􏼁( 􏼁, exp W y1( 􏼁( 􏼁, . . . , exp W yN− 1( 􏼁( 􏼁, exp W yN( 􏼁( 􏼁( 􏼁
T
. (17)

Since system (14) is underdetermined because it has
fewer equations than unknowns, so it requires eight more
equations to get a unique solution. Two conditions are given
in (13) at the ends of the domain of (2) and the detail of the
remaining six conditions is given in the next section.

3.2. ForcedConditions. As we require six more conditions to
get a unique solution of (14), so we will construct three
conditions at the left and three conditions at the right end of
the domain. Since 6PBASS reproduces third degree poly-
nomial with order of approximation four, so the order of
new conditions is four and these conditions are known as
forced conditions. Let w− 3, w− 2, w− 1 and wN+1, wN+2, wN+3
represent the left end points and right end points. (ese left
and right end points can be computed by using polynomial
of degree three which interpolates the data (yi, wi), for
0≤ i≤ 3, i.e., left end conditions are obtained from

w− i � S − yi( 􏼁, i � 1, 2, 3, (18)

where

S yi( 􏼁 � 􏽘
4

j�1

4
j

􏼠 􏼡(− 1)
j+1

W yi− j􏼐 􏼑. (19)

Since by (10), W(yi) � wi for i � 1, 2, 3 and substituting
yi by − yi in (19), we have

S − yi( 􏼁 � 􏽘
4

j�1

4
j

􏼠 􏼡(− 1)
j+1

wj− i. (20)

So, the following conditions can be used at the left end
and

􏽘

4

j�0

4
j

􏼠 􏼡(− 1)
j
wj− i � 0, i � 3, 2, 1. (21)

Similarly, at the right end, we have the following
conditions:

􏽘

4

j�0

4
j

􏼠 􏼡(− 1)
j
wi− j � 0, i � N + 3, N + 2, N + 1. (22)

Finally, we get system of (N + 9) × (N + 9) nonlinear
equations
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JcW + αD � 0, (23)

or

JcW � − αD(w), (24)

where

Jc � J
T
c0

,A
T
, J

T
cN

􏼐 􏼑, (25)

whereA is defined in (15) and Jc0
and JcN

are constrained as
follows: the matrix Jc0

is obtained from all the conditions
defined at the left end of the domain, i.e., first three rows
obtained from (21) and fourth row of Jc0

obtained from (13)
atW(0) � w0 � 0. Similarly, the matrix JcN

is obtained from
all the conditions defined at the right end of the domain, i.e.,
first row comes from (13) at W(1) � wN � 0 and remaining
rows come from (22). Hence,

Jc0
�

0 1 − 4 6 − 4 1 0 0 · · · 0

0 0 1 − 4 6 − 4 1 0 · · · 0

0 0 0 1 − 4 6 − 4 1 · · · 0

0 0 0 0 1 0 0 0 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

JcN
�

0 · · · 0 0 0 1 0 0 0 0

0 · · · 1 − 4 6 − 4 1 0 0 0

0 · · · 0 1 − 4 6 − 4 1 0 0

0 · · · 0 0 1 − 4 6 − 4 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(26)

(e column vectorW is defined in (16) and D is defined
as

D � 0, 0, 0,W(0),D
T
1 ,W(N), 0, 0, 0􏼐 􏼑

T
, (27)

where D1 is given in (17).

3.3. Iterative Algorithm. To find the numerical solutions of
nonlinear system of equation (24), we define an iterative
algorithm. (e iterative algorithm includes the following
steps:

(i) Formulation of initial solution: the initial approx-
imate solution W0 is selected to find the following
system:

JcW
0

� − αR0
, (28)

where

R
0

� 0, 0, 0,W(0), δ0, δ1, . . . , δN,W(N), 0, 0, 0( 􏼁
T
,

δi � h
3
Di yi,Li,D

∗
0( 􏼁,

Li � W(0) + 3ih(W(N) − W(0)),

D
∗
0 � W(N) − W(0),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

where i ∈ 0, 1, . . . , N{ }. (e column vector R0 is the
linear approximation of the column vector (27).

(ii) Iterative scheme: the following iterative scheme is
used to find the approximate solution W∗,

JcW
k+1

� D w
k

􏼐 􏼑, k � 0, 1, 2, . . . . (30)

(iii) Terminating criteria: the following condition is used
to stop the iteration at k − th level, for any ε; let
ε � 10− 4,

W
k+1

− W
k

�����

�����∞
≤ ε. (31)

3.4. Convergence and Error Estimation. In this section, we
present results of convergence and error estimation of the
proposed iterative algorithm. (e convergence of the iter-
ative algorithm is guaranteed by the following proposition.

Proposition 1. �e approximate solution Wk􏽮 􏽯 founded by
(28) and (30) linearly converges to the approximate solution
W∗ of (24) with the supposition that step size and the Lip-
schitz constants r0, r1 are small, i.e.,

J
− 1
c

����
����∞ r0h

2
+ r1h

29773
10000

􏼒 􏼓≤ 1. (32)

(e proof is similar to [23].
(e main result of error estimation is given by the

following proposition.

Theorem 1. Let exact solution g(y) ∈ C4[0, 1] and wi be
obtained by solving (24) with the fourth order boundary
treatment at the end points. �en, we have

w yj􏼐 􏼑 − g yj􏼐 􏼑
�����

�����∞
� O h

4− j
􏼐 􏼑, j � 0, 1, 2. (33)

4. Numerical Examples and Comparison

(e numerical technique discussed previously is illustrated
in this section by applying subdivision collection algorithm
to the planar one-dimensional Bratu’s problem (2) for three
distinct values of α, which guarantee the existence of two
locally unique solutions. We have created comparison tables
using α � 1, 2 and 3.51 to show the consistency of our ap-
proach in comparison to the exact solution as well as the
solutions of other methods. All calculations have been
performed using MATLAB .

(i) (e fact regarding the solution of Bratu’s problem
for α � 1 is obtained after third iteration, as shown
in Table 1. Comparison between the numerical
results and absolute errors obtained by our subdi-
vision collection algorithm and decomposition
method [25] are presented in Tables 2 and 3, re-
spectively. From the tabulated results, we observed
that the numerical results obtained by our subdi-
vision collection algorithm are better than the de-
composition method [25].

(ii) (e fact regarding the solution of Bratu’s problem
for α � 2 is obtained after fifth iteration, as shown in
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Table 1: Numerical results of (2) by subdivision collection algorithm for case α � 1.

x Exact solution By subdivision collection algorithm Absolute error
0.0 0.0000000000 0.000000000000000 0.00000000000000
0.1 0.0498467900 0.049835942666664 1.08473333363529e − 5
0.2 0.0891899350 0.089157036980790 3.28980192095263e − 5
0.3 0.1176090956 0.117560379925558 4.87156744417711e − 5
0.4 0.1347902526 0.134731783666151 5.84689338488098e − 5
0.5 0.1405392142 0.140477341442747 6.18727572535005e − 5
0.6 0.1347902526 0.134731783666151 5.84689338488931e − 5
0.7 0.1176090956 0.117560379925558 4.87156744419098e − 5
0.8 0.0891899350 0.089157036980790 3.28980192097483e − 5
0.9 0.0498467900 0.049835942666663 1.08473333366513e − 5
1.0 0.0000000000 0.000000000000000 0.00000000000085e − 5

Table 2: Comparison between the numerical results of (2) for α � 1.

x Exact solution By [25] By subdivision collection algorithm
0.0 0.0000000000 0.0000000000 0.000000000000000
0.1 0.0498467900 0.0471616875 0.049835942666664
0.2 0.0891899350 0.0871680000 0.089157036980790
0.3 0.1176090956 0.1177614375 0.117560379925558
0.4 0.1347902526 0.1369920000 0.134731783666151
0.5 0.1405392142 0.1435546875 0.140477341442747
0.6 0.1347902526 0.1369920000 0.134731783666151
0.7 0.1176090956 0.1177614375 0.117560379925558
0.8 0.0891899350 0.0871680000 0.089157036980790
0.9 0.0498467900 0.0471616875 0.049835942666663
1.0 0.0000000000 0.0000000000 0.000000000000000

Table 3: Comparison between the absolute errors of (2) for case α � 1.

x By [25] By subdivision collection algorithm
0.0 0.000000000000000000 0.00000000000000
0.1 2.685102500000001e − 3 1.08473333363529e − 5
0.2 2.021935000000003e − 3 3.28980192095263e − 5
0.3 1.523418999999915e − 4 4.87156744417711e − 5
0.4 2.201747400000009e − 3 5.84689338488098e − 5
0.5 3.015473299999988e − 3 6.18727572535005e − 5
0.6 2.201747400000009e − 3 5.84689338488931e − 5
0.7 1.523418999999915e − 4 4.87156744419098e − 5
0.8 2.021935000000003e − 3 3.28980192097483e − 5
0.9 2.685102500000001e − 3 1.08473333366513e − 5
1.0 0.000000000000000000 0.00000000000085e − 5

Table 4: Numerical results of (2) for case α � 2.

x Exact solution By subdivision collection algorithm Absolute error
0.0 0.0000000000 0.000000000000000 0.00000000000000
0.1 0.1144107440 0.114588772999854 1.78028999853849e − 4
0.2 0.2064191156 0.206717298179522 2.98182579522244e − 4
0.3 0.2738793116 0.274280205962876 4.00894362875881e − 4
0.4 0.3150893646 0.315559243360757 4.69878760757103e − 4
0.5 0.3289524214 0.329446300901418 4.93879501417605e − 4
0.6 0.3150893646 0.315559243360757 4.69878760757159e − 4
0.7 0.2738793116 0.274280205962876 4.00894362875992e − 4
0.8 0.2064191156 0.206717298179522 2.98182579522410e − 4
0.9 0.1144107440 0.114588772999854 1.78028999854057e − 4
1.0 0.0000000000 0.000000000000000 0.00000000000017e − 4
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Table 5: Comparison between numerical results of (2) for case α � 2.

x Exact solution By subdivision collection algorithm By [25] By [5]
0.0 0.0000000000 0.000000000000000 0.0000000000 0.0000000000
0.1 0.1144107440 0.114248449272834 0.0991935000 0.1122817141
0.2 0.2064191156 0.206065066411653 0.1917440000 0.2022094162
0.3 0.2738793116 0.273375407642615 0.2679915000 0.2676925058
0.4 0.3150893646 0.314489410524746 0.3183360000 0.3070874506
0.5 0.3289524214 0.328319028557975 0.3359375000 0.3193532294
0.6 0.3150893646 0.314489410524746 0.3183360000 0.3041598403
0.7 0.2738793116 0.273375407642615 0.2679915000 0.2619458909
0.8 0.2064191156 0.206065066411653 0.1917440000 0.1940413072
0.9 0.1144107440 0.114248449272835 0.0991935000 0.1035373785
1.0 0.0000000000 0.000000000000000 0.0000000000 0.0000000000

Table 6: Comparison between absolute errors of (2) for case α � 2.

x By subdivision collection algorithm By [25] By [5]
0.0 0.00000000000200e − 4 0.000000000000000000 0.000000000000000000
0.1 1.78028999853849e − 4 1.521724399999999e − 2 2.129029899999996e − 3
0.2 2.98182579522244e − 4 1.467511560000001e − 2 4.209699400000017e − 3
0.3 4.00894362875881e − 4 5.887811600000015e − 3 6.186805800000028e − 3
0.4 4.69878760757103e − 4 3.246635400000031e − 3 8.001913999999999e − 3
0.5 4.93879501417605e − 4 6.985078600000028e − 3 9.599191999999979e − 3
0.6 4.69878760757159e − 4 3.246635400000031e − 3 1.092952429999999e − 2
0.7 4.00894362875992e − 4 5.887811600000015e − 3 1.193342070000003e − 2
0.8 2.98182579522410e − 4 1.467511560000001e − 2 1.237780840000000e − 2
0.9 1.78028999854057e − 4 1.521724399999999e − 2 1.087336650000000e − 2
1.0 0.00000000000017e − 4 0.000000000000000000 0.000000000000000000

Table 7: Numerical results of (2) for case α � 3.51.

x Exact solution By subdivision collection algorithm Absolute error
0.0 0.0000000000 0.000000000000002 0.000000000000002
0.1 0.3958056990 0.395838508425970 0.000032809425970
0.2 0.7390974100 0.739653867710330 0.000556457710330
0.3 1.0087582600 1.009642835147183 0.000884575147183
0.4 1.1825366600 1.183595191371533 0.001058531371533
0.5 1.2427426900 1.243855461630791 0.001112771630791
0.6 1.1825366600 1.183595191371532 0.001058531371532
0.7 1.0087582600 1.009642835147182 0.000884575147182
0.8 0.7390974100 0.739653867710329 0.000556457710329
0.9 0.3958056990 0.395838508425968 0.000032809425968
1.0 0.0000000000 0.000000000000000 0.000000000000000

Table 8: Comparison between absolute errors of (2) for case α � 3.51.

x By [6] By subdivision collection algorithm
0.0 0.00000000000000 0.00000000000002
0.1 3.84172369550e − 2 3.280942597000e − 5
0.2 7.48135367780e − 2 5.564577103300e − 4
0.3 1.05827422823e − 1 8.845751471830e − 4
0.4 1.27116880861e − 1 1.058531371533e − 3
0.5 1.34752877607e − 1 1.112771630791e − 3
0.6 1.27116880861e − 1 1.058531371532e − 3
0.7 1.05827422823e − 1 8.845751471820e − 4
0.8 7.48135367780e − 2 5.564577103290e − 4
0.9 3.84172369550e − 2 3.280942596800e − 5
1.0 0.00000000000000 0.000000000000
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Table 4. Comparison between the numerical results
and absolute errors obtained by our subdivision
collection algorithm, decomposition [25], and
Laplace method [5] are presented in Tables 5 and 6,
respectively. From the tabulated results, we ob-
served that the numerical results obtained by our
subdivision collection algorithm are better than
[5, 25].

(iii) (e fact regarding the solution of Bratu’s problem
for α � 3.15 is obtained after forty-two iterations, as
shown in Table 7. Comparisons between the ab-
solute errors obtained by our subdivision collection
algorithm and B-spline [6] method are presented in
Table 8. From the tabulated results, we observed that
the numerical results obtained by our subdivision
collection algorithm give better approximation than
[6].

5. Concluding Remarks

In this paper, we have established a subdivision collocation
algorithm for the solution of one-dimensional nonlinear
Bratu’s problem. (e numerical results obtained by subdi-
vision collection algorithm showed that the algorithm is
suitable for the approximate solution of (2). We have
concluded that the numerical results converge to the exact
solution for the small step size. We have also presented a
comparison of absolute errors of the solution obtained from
subdivision collection algorithm with decomposition
method [25], Laplace method, [5] and B-spline method [6]
for different values of α. We conclude that our algorithm
gives smaller absolute errors as compared with the other
existing methods [5, 6, 25].
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$e representation of the action of PGL(2,Z) on Ft ∪ ∞{ } in a graphical format is labeled as coset diagram.$ese finite graphs are
acquired by the contraction of the circuits in infinite coset diagrams. A circuit in a coset diagram is a closed path of edges and
triangles. If one vertex of the circuit is fixed by(pq)Δ1(pq− 1)Δ2(pq)Δ3 . . . (pq− 1)Δm ∈ PSL(2,Z), then this circuit is titled to be a
length-m circuit, denoted by(Δ1,Δ2,Δ3, . . . ,Δm). In this manuscript, we consider a circuit Δ of length 6 as (Δ1,Δ2,Δ3,Δ4,Δ5,Δ6)
with vertical axis of symmetry, that is, Δ2 � Δ6,Δ3 � Δ5. Let Γ1 and Γ2 be the homomorphic images of Δ acquired by contracting
the vertices a, u and b, v, respectively, then it is not necessary that Γ1 and Γ2 are different. In this study, we will find the total
number of distinct homomorphic images of Δ by contracting its all pairs of vertices with the condition Δ1 >Δ2 >Δ3 >Δ4. $e
homomorphic images are obtained in this way having versatile applications in coding theory and cryptography. One can attain
maximum nonlinearity factor using this in the encryption process.

1. Introduction

It is prominent that the finite presentation 〈p, q; p2 � q3 �

1〉 is known as the modular group PSL(2,Z) generated by
the linear fractional transformations p: χ⟶ (− 1/χ)

and q: χ⟶ ((χ − 1)/χ). In [1], Akbas discussed sub-
orbitalgraphs for the modular group by showing that these
graphs contains no circuit if and only if it contains no
triangles. If we insert an extra generator r � (1/χ) with p

and q, another group is emerged, denoted as PGL(2,Z) [2],
an extension of PSL(2,Z) with the finite presentation as

〈p, q, r; p
2

� q
3

� r
2

� (pr)
2

� (qr)
2

� 1〉. (1)

In 1978, Professor Graham Higman propounds an unfa-
miliar type of a graph, titled as coset diagram, which presents
the action of PGL(2,Z) on PL(Ft), where Ft is a finite field
and t shows a prime power. In 1983, this foundation is laid by
Qaisar Mushtaq [3]. Small triangles are proposed for the cycle
q3, such that q permutes the vertices of triangles in the opposite
direction of rotation of clock and an edge is attached to any two
vertices that are interchanged by p. Heavy dots represent the

fixed points of p and q. Note that (pr)2 � 1 equals rqr � q− 1,
which means r reverses the triangle orientation proposed for
the cycle q3. For that reason, the diagram need not to be made
more perplexing by interjecting r edges.

A coset diagram (subdiagram) Γ1 is said to be a ho-
momorphic image of the coset diagram (subdiagram) Γ2 if
and only if |V(Γ1)|< |V(Γ2)| ∀ a ∈ V(Γ2) with(a)h � a,
where h ∈ PSL(2,Z), there exist a vertex u in V(Γ1) such
that (u)h � u.

Coset diagrams obtained from the action of PSL(2,Z)

over Qϵ are infinite graphs [4], where Qε
� a1 + a2

�
ε

√
; a1, a2 ∈ Q and ε ∈ Z+ is a square free􏼈 􏼉. $ese

diagrams are not easy to study because they are infinite.
$ence, coset diagrams are considered as important for the
action of PSL(2,Z) on PL(Fq) because this action presents
finite graphs.$e number ((x1 +

�
ε

√
)/x2) is an expression of

the number a1 + a2
�
ε

√
∈ Qε, where (x1, x2, ((x2

1 − ε)/x2)) �

1. $ese finite coset diagrams are the homomorphic images
of the coset diagrams for ((x1 +

�
ε

√
)/x2), where

ε ≡ z2 modp for some z ∈ N.
To explain more, coset diagram in Figure 1 illustrates the

action on PL(F17) by PGL(2,Z) with permutation
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representations p, q, and r by (χ)p � (− 1/χ), (χ)q �

((χ − 1)/χ), and(χ)r � (1/χ), respectively, as

p: (0∞), (1 16), (2 8), (3 11), (4), (5 10), (6 14), (7 12),

(9 15), (13) ,

q: (0∞ 1), (2 9 16), (3 12 8), (4 5 11), (6 15 10), (7 13 14),

r: (0∞), (1), (2 9), (3 6), (4 13), (5 7), (8 15), (10 12),

(11 14), (16).

(2)

$us, 13 � 82 mod 17 gives that the coset diagram
PGL(2, 17) is a homomorphic image of the coset diagram for
((x1 +

��
13

√
)/x2).

Coset diagrams obtained from the action of PSL(2,Z)

on Qε have some attractive narrative. In [5], the quadratic
irrational numbers are classified by taking prime modulus
that proved helpful in investigating the modular group
action on the real quadratic field. $e number B � ((x1 −�
ε

√
)/x2) is called the conjugate of B � ((x1 +

�
ε

√
)/x2),

where x1 and x2 are integers and ε is a fixed number from
Z+, which is not a perfect square. B is said to be an am-
biguous number [6], if the sign of B is different from the sign
of B. B is said to be a totally negative (positive) if B and B

both have the same signs. For a fixed ϵ, the number of
ambiguous numbers of the form B � ((x1 +

�
ε

√
)/x2) is finite

and that segment of the coset diagram attained by the
ambiguous numbers forms a closed path (circuit) and it is
the only closed path in B-orbit [4]. With the help of coset
diagram, Anna Torstensson not only described the appli-
cations to study the finitely presented group but also dis-
cussed the one-relator quotients of the modular group [7].

A closed path of triangles and edges in a coset diagram is
called a circuit. In a coset diagram, a circuit is said to be a
length-k circuit, denoted by (Δ1,Δ2,Δ3, . . . ,Δk), if its one
vertex is fixed by

(ax)
Δ1 ax

− 1
􏼐 􏼑

Δ2
(ax)
Δ3 . . . ax

− 1
􏼐 􏼑

Δk ∈ PSL(2,Z). (3)

Alternatively, it means that one vertex of the Δ1 tri-
angles lies outside of the circuit and one vertex of the Δ2
triangles lies inside of the circuit and likewise. Since
(Δ1,Δ2,Δ3, . . . ,Δk) is a cycle, so it does not matter if one

vertex of the Δ1 triangles lies inside of the circuit and one
vertex of the Δ2 triangles lies outside of the circuit and
likewise. Note that k is always even.

$e circuit of the type (Δ1,
Δ2,Δ3, . . . ,Δl′ ,Δ1,Δ2,Δ3, . . . ,Δl′ , . . . ,Δ1,Δ2,Δ3, . . . ,Δl′) is
termed as a periodic circuit with period of length l′.

Note 1. By V(Δ), we mean the collection of vertices lies on
the circuit Δ � (Δ1,Δ2,Δ3, . . . ,Δk).

Let a, u ∈ V(Δ) be any two vertices fixed by the words h1
and h2, that is, (a)h1 � a and (u)h2 � u. Suppose h3 is the
word that maps a to u, then (a)h− 1

1 h3 � u. Note that h3 and
h− 1
1 h3 are the only two paths that assign a to u. Now, by

contraction of the pair of vertices a and u, we mean that a

and u melt together to become one node s � a � u such that
(s)h3 � (s)h− 1

1 h3 � s. As a result of this contraction, a closed
path Γ is created that contains the vertex s fixed by h3 and
h− 1
1 h3. $is closed path Γ is the homomorphic image of the

circuit Δ. It is important to note that a and u is not the only
pair of contraction in Δ that creates homomorphic image Γ.
$ere are also many pairs of contraction other than a and u

that create the same homomorphic image Γ. $e following
theorems proved in [8] will help us to find the total number
of such contracted pairs that produce the same homo-
morphic image Γ of Δ.

Theorem 1. Let the vertices a and u in Δ are contracted and a
homomorphic image Γof Δ is evolved, then Γ is also obtainable
if the vertices (a)h and (u)h in Δ are contracted.

Theorem 2. If a and u are contracted to obtain Γ, then
during this process |E| number of pairs are contracted all
together, where E is the collection of words such that
∀h ∈ E,(a)h and (u)h are contained by Δ.

Example 1. Let us contract the vertices a and u from the
circuit (3, 4, 2, 4, 2, 4) (Figure 2) and acquire a homomorphic
Γ (Figure 3) of the circuit (3, 4, 2, 4, 2, 4). $us, h1 � q(pq)

and h2 � (pq)(pq− 1)4(pq)2(pq− 1)4(pq)2(pq− 1)4p are the
two possible paths between a and u that are fixing the vertex
s � a � u in Γ.

Let E be the family of words such that for all h ∈ E

implies (a)h and (u)h lie on the circuit (3, 4, 2, 4, 2, 4), then
E � e, q, q− 1, p, pq, pq− 1, (pq)p, (pq)2, (pq)pq− 1􏽮 􏽯. $en
by $eorem 2, the cardinality of E implies that there are 9
pairs of vertices contracted to generate the homomorphic
image Γ.

Note that the cardinality of E does not give the total
number of contracted pairs to generate the homomorphic
image Γ. In the following, we will discuss the process to find
the total number of contracted pairs to generate Γ.

Let Γ∗ denote itself as the mirror image of Γ. $us, the
permutation r ensures that the coset diagram is symmetric
along the vertical axis. $is implies Γ∗ will assuredly occur.

If u � pqπ1pqπ2 . . . pqπn (πi � 1 or − 1) is a word, then
u∗ � pq− π1pq− π2 . . . pq− πn . If the word h fixes the vertex s,
then the vertex s∗ is fixed by u∗.

3 8 15

16

1

08

6

1012

11 13 144

5

2 9

7

Figure 1: Coset diagram for the action of PGL(2,Z) on PL(F17).
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A homomorphic image Γ has a symmetry with respect to
vertical axis if and only if by contracting a and u, the vertices
a∗ and u∗ are also contracted.

Remark 1. In coset diagrams, r reverses the orientation of
the triangles representing the three cycles of q (as reflection
does). So corresponding to each vertex s fixed by the pair h1,
h2, there is a vertex s∗ in Γ∗ (mirror image of Γ ) such that s∗

is a fixed point of h∗1 , h∗2 . In other words, it is created by
contracting a∗ and u∗. $ere are certain Γ’s which have a
vertical symmetry and so have the same orientations as those
of their mirror images. $e homomorphic image Γ of a
circuit Δ � (Δ1,Δ2,Δ3,Δ4,Δ5,Δ6), which has a vertex s fixed

by the pair h1, h2, has the same orientation as that of its
mirror image if and only if there is a vertex s∗ in Γ such that
(s∗)h1 � (s∗)h2 � s∗.

1.1. Counting the Number of Pairs of Contracting Vertices of a
Homomorphic Image. Let Γ be a homomorphic image of the
circuit Δ acquired by the contraction of pair of vertices a and
u of Δ. $en by $eorem 2, Γ has |E| number of pairs of
vertices. To find the total number of pairs of vertices, one
should follow the following steps.

To know howmany total pairs of contracting vertices are
there, special precaution must be taken.

(1) If by contracting a and u to create Γ, the pair of
vertices a∗ and u∗ are not contracted, then Γ has
different orientation from its mirror image Γ∗. So,
there are |E| number of more pairs of vertices for the
mirror image of Γ.

(2) If by contracting a and u to create Γ, the pair of
vertices a∗ and u∗ are also contracted, then Γ has the
same orientation as that of its mirror image Γ∗. So, in
this case, Γ has |E| number of pairs of contracted
vertices.

Consider a circuit of length 6 as
Δ � (Δ1,Δ2,Δ3,Δ4,Δ5,Δ6) (Figure 4) with vertical axis of
symmetry, that is, Δ2 � Δ6,Δ3 � Δ5. Suppose
Δ1 >Δ2 >Δ3 >Δ4. $e coset diagrams are composed of
circuits. $e vertices of the circuits in infinite diagrams are
contracted in a certain way, and a finite coset diagram
evolves. It is therefore necessary to ask how many distinct
homomorphic images are obtained if we contract all the
pairs of vertices of the circuit Δ? We not only give the
answer to this question for a circuit Δ but also mention
those pairs of vertices which are “important”. $ere is no
need to contract the pairs which are not mentioned as
“important”. If we contract those, we obtain a homo-
morphic image, which we have already obtained by
contracting “important” pairs.

Note 2. It is clear from Figure 4 that

(1) $e mirror image of the vertex ek
l is e

2− k

3Δk− (l− 1), that is,
ek∗

l � e
2− k

3Δk− (l− 1)

(2) $e vertex ak
3m+1 is fixed by the word (pq− 1)m(pq)

Δk ± 5 (pq− 1)
Δk ± 4 (pq)

Δk ± 3 (pq− 1)
Δk ± 2 (pq)

Δk ± 1 (pq− 1)Δk− m

(3) $e vertex xk
3m is fixed by the word (pq)

Δk− m(pq− 1)Δ

k ± 1 (pq)
Δk ± 2 (pq− 1)

Δk ± 3 (pq)
Δk ± 4 (pq− 1)

Δk ± 5 (pq)m,
where

k ∈ 1, 2, 3, 4, 5, 6{ }; l � 1, 2, 3, . . . , Δk; m �

1, 2, 3, . . . , Δk − 1, n �
6, if n � 0, 6
n(mod 6) otherwise􏼨

and ± �
+ if k is odd
− otherwise􏼨 ·

a u

v

Figure 2: Circuit (3, 4, 2, 4, 2, 4).
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Figure 3: Homomorphic image Γ.
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Lemma 1. If we contract the vertices e13l1+1: l1 � 0, 1, 2, . . . ,

Δ2 − 1, with the vertex e13Δ1
in the circuit Δ, then there arise Δ2

distinct homomorphic images of Δ and 3(l1 + 2) pairs of
contracted vertices create each homomorphic image. More-
over, the number of total pairs of contracted vertices to
generate all Δ2 and their mirror homomorphic images of Δ is
3(Δ2

2 + 3Δ2 − 2).

Proof. Let H1 � Ω1l1 ; l1 � 0, 1, 2, . . . ,Δ2 − 1􏽮 􏽯 (Figure 5) be
the collection of homomorphic images of Δ acquired by the
contraction of the vertices e13l1+1: l1 � 0, 1, 2, . . . ,Δ2 − 1 with
the vertex e13Δ1 in Δ, where e13l1+1 and e13Δ1are fixed by the
words (pq)l1(pq− 1)Δ6(pq)Δ5(pq− 1)Δ4(pq)Δ3 (pq− 1)Δ2

(pq)Δ1− l1 and (pq)Δ2(pq− 1)Δ3(pq)Δ4(pq− 1)Δ5(pq)Δ6

(pq− 1)Δ1 . It is easy to verify that P1 � q− 1(pq− 1)Δ1− l1− 1 and
P2 � (pq)Δ2(pq− 1)Δ3(pq)Δ4(pq− 1)Δ5(pq)Δ6(pq− 1)l1p are
the possible paths between e13l1+1 and e13Δ1 (Figure 4). $is
implies that for each l1, the homomorphic image Ω1l1 has a
vertex s fixed by P1 and P2.

$us,

E1 � e, q, q
− 1

, p, pq, pq
− 1

, pqp, (pq)
2
, pqpq

− 1
, . . . ,􏽮

(pq)
l1p, (pq)

l1+1
, (pq)

l1pq
− 1

} (4)

is the family of elements in PSL(2,Z) such that ∀x ∈ E,Δ
contains the vertices (e13l1+1)x and (e13Δ1)x.$is gives that the
cardinality of E1, that is, 3(l1 + 2) is the number of con-
tracted pairs of vertices to produce the homomorphic image
Ω1l1 ($eorem 2). For m≠ n, let Ω1m and Ω1n be any two el-
ements of H1, then the number of triangles inΩ1m andΩ1n are
not equal (Figure 5). $is implies that all the elements in H1
are different and no one is themirror image of the other.$is

further forms the result as |H1| � Δ2. $ence, the number of
contracted pairs of vertices of Δ to create all the elements of
H1 is 􏽐

Δ2− 1
l1�0 3(l1 + 2).

From Figure 5, it is also clear that no element of H1
except Ω10 has vertical axis of symmetry. So, Ω10 is the only
homomorphic image whose orientation is not different from
its mirror image Ω1∗0 and all the remaining Δ2 − 1 elements
of H1 have different orientations from their mirror images.
Hence, there are

6 􏽘

Δ2− 1

l1�1
l1 + 2( 􏼁 + 6 � 3 Δ22 + 3Δ2 − 2􏼐 􏼑 (5)

pairs of contracted vertices to produce all the homomorphic
images in H1. □

Lemma 2. If we contract the vertices e23l1+1: l1 � 0, 1, 2, . . . ,

Δ2 − 1, with the vertex e13Δ1
in the circuit Δ, then there arise Δ2

distinct homomorphic images of Δ and 3(l1 + 2) pairs of
contracted vertices create each homomorphic image. More-
over, the number of total pairs of contracted vertices to
generate all Δ2 and their mirror homomorphic images of Δ is
3(Δ2

2 + 3Δ2).
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Figure 5: Homomorphic images Ω1l1 .
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Figure 4: $e circuit Δ � (Δ1,Δ2,Δ3,Δ4,Δ5,Δ6).
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Let H2 � Ω2l1 ; l1 � 0, 1, 2, . . . ,Δ2 − 1􏽮 􏽯 be the collection
of homomorphic images of Δ acquired by the contraction of
the vertices e23l1+1: l1 � 0, 1, 2, . . . ,Δ2 − 1 with the vertex e13Δ1
in Δ. Suppose r shows itself as the remainder of
(l1/(Δ2 − l1)). $en, graphically we make four partitions of
H2 as follows:

(i) Ω2l1 : Δ2 − 2l1 > 1 (Figure 6(a))
(ii) Ω2l1 : Δ2 − 2l1 � 1 (Figure 6(b))
(iii) Ω2l1 : Δ2 − 2l1 < 1 and Δ2 − l1 > r + 1 (Figure 6(c))
(iv) Ω2l1 : Δ2 − 2l1 < 1 and Δ2 − l1 � r + 1 (Figure 6(d))

From all the homomorphic images presented in these
figures, it is not intricated to check that no one is the mirror
image of itself. $is lemma can be proved by using the same
procedure as that for Lemma 1.

Let k1 ∈ 3, 4, 5{ }.

Lemma 3. If we contract the vertices e
k1
3l(2, k1)+1

: l(2, k1) �

0, 1, 2, . . . ,Δk1
− 1, with the vertex e13Δ1

in the circuit Δ, then
for each k1, there arise Δk1

distinct homomorphic images of Δ
and 3(l(2, k1) + 2)pairs of contracted vertices that create each
homomorphic image. Moreover, the number of total pairs of
contracted vertices to generate all Δk1

and their mirror
homomorphic images of Δ is 3(Δ2k1 + 3Δk1

).
For a fix value of k1, let H

k1
3 � Ω3l(2, k1)

; l(2, k1) �􏼚

0, 1, 2, . . . ,Δk1
− 1} be the collection of homomorphic im-

ages of Δ acquired by the contraction of the vertices
e

k1
3l(2,k1)+1

: l(2,k1) � 0, 1, 2, . . . ,Δk1
− 1, with the vertex e13Δ1 in

Δ. Figures 7–9 present H
k1
3 graphically. From all the ho-

momorphic images presented in these figures, it is not
intricated to check that no one is the mirror image of itself.

$is lemma can be proved by using the same procedure
as that for Lemma 1.

Lemma 4. If we contract the vertices e63l3+1: l3 � 0, 1, 2, . . . ,

Δ6 − 1, with the vertex e13Δ1
in the circuit Δ, then there arise Δ6

distinct homomorphic images of Δ and 3(l3 + 2) pairs of
contracted vertices create each homomorphic image. More-
over, the number of total pairs of contracted vertices to
generate all Δ6 and their mirror homomorphic images of Δ is
(3/2)(Δ2

6 + 3Δ6).
Let H4 � Ω4l3 ; l3 � 0, 1, 2, . . . ,Δ6 − 1􏽮 􏽯 be the collection

of homomorphic images of Δ acquired by the contraction
of the vertices e13l6+1: l3 � 0, 1, 2, . . . ,Δ6 − 1 with the vertex
e13Δ1 in Δ. Figure 10 presents H4 graphically. From all the
homomorphic images presented in Figure 10, it is not
intricated to check that every one is the mirror image of
itself.

$is lemma can be proved by using the same procedure
as that for Lemma 1.

Lemma 5. If we contract the vertices e13l4+1: l4 � 1, 2, . . . ,

Δ1 − 1, with the vertex e23Δ2
in the circuit Δ, then there arise

Δ1 − 1 distinct homomorphic images of Δ and 3(l4 + 2) pairs
of contracted vertices create each homomorphic image.
Moreover, the number of total pairs of contracted vertices to

generate all Δ1 − 1 and their mirror homomorphic images of Δ
is (3/2)(Δ2

1 + 3Δ1 − 4).
Let H5 � Ω5

l4
; l4 � 1, 2, . . . ,Δ1 − 1􏽮 􏽯 be the collection of

homomorphic images of Δ acquired by the contraction of
the vertices e13l4+1: l4 � 1, 2, . . . ,Δ1 − 1, with the vertex e23Δ2
in Δ. Suppose r shows itself as the remainder of
(l4/(Δ1 − l4)), then graphically, we make four partitions of
H5 as follows:

(i) Ω5l4 : Δ1 − 2l4 > 1 (Figure 11(a))
(ii) Ω5l4 : Δ1 − 2l4 � 1 (Figure 11(b))
(iii) Ω5l4 : Δ1 − 2l4 < 1 and Δ1 − l4 > r + 1 (Figure 11(c))
(iv) Ω5l4 : Δ1 − 2l4 < 1 and Δ1 − l4 � r + 1 (Figure 11(d))

From all the homomorphic images presented in these
figures, it is not intricated to check that every one is the
mirror image of itself. $is lemma can be proved by using
the same procedure as that for Lemma 1.

Lemma 6. If we contract the vertices e23l5+1: l5 � 1, 2, . . . ,

Δ2 − 1, with the vertex e23Δ2
in the circuit Δ, then there arise

Δ2 − 1 distinct homomorphic images of Δ and 3(l5 + 2) pairs
of contracted vertices create each homomorphic image.
Moreover, the number of total pairs of contracted vertices to
generate all Δ2 − 1 and their mirror homomorphic images of Δ
is 3(Δ2

2 + 3Δ2 − 4).
Let H6 � Ω6

l5
; l5 � 1, 2, . . . ,Δ2 − 1􏽮 􏽯 be the collection of

homomorphic images of Δ acquired by the contraction of the
vertices e23l5+1: l5 � 1, 2, . . . ,Δ2 − 1, with the vertex e23Δ2

in Δ.
Graphically, we make two partitions of H5 as follows:

(i) Ω6l5 : l5 <Δ2 − 1 (Figure 12(a))
(ii) Ω6l5 : l5 � Δ2 − 1 (Figure 12(b))

From all the homomorphic images presented in
Figures 12(a) and 12(b), it is not intricated to check that no
one is the mirror image of itself. $is lemma can be proved
by using the same procedure as that for Lemma 1.

Letk1 ∈ 3, 4, 5{ }.

Lemma 7. If we contract the vertices e
k1
3l(6,k1)+1

: l(6,k1) �

1, 2, . . . ,Δk1
− 1, with the vertex e23Δ2

in the circuit Δ, then for
each k1, there arise Δk1

− 1 distinct homomorphic images of Δ
and 3(l(6,k1) + 2) pairs of contracted vertices create each
homomorphic image. Moreover, the number of total pairs of
contracted vertices to generate all Δk1

− 1 and their mirror
homomorphic images of Δ is 3(Δ2

k1
+ 3Δk1

− 4).
For a fix value of k1, let H

k1
7 � Ω7

l(6,k1)
; l(6,k1) �􏼚

1, 2, . . . ,Δk1
− 1} be the collection of homomorphic images of

Δ acquired by the contraction of the vertices e
k1
3l(6,k1)+1

: l(6,k1) �

1, 2, . . . ,Δk1
− 1, with the vertex e23Δ2

in Δ. Figures 13–15
present H

k1
7 graphically. From all the homomorphic images

presented in these figures, it is not intricated to check that no
one is the mirror image of itself. �is lemma can be proved by
using the same procedure as that for Lemma 1.

Lemma 8. If we contract the vertices e33l7+1: l7 � 1, 2, . . . ,

Δ4 − 1, with the vertex e33Δ3
in the circuit Δ, then there arise
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Figure 6: (a) Homomorphic images Ω2l1 : Δ2 − 2l1 > 1. (b) Homomorphic images Ω2l1 : Δ2 − 2l1 � 1. (c) Homomorphic images Ω2l1 : Δ2 −

2l1 < 1 and Δ2 − l1 > r + 1. (d) Homomorphic images Ω2l1 : Δ2 − 2l1 < 1 and Δ2 − l1 � r + 1.
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Δ4 − 1 distinct homomorphic images of Δ and 3(l7 + 2) pairs
of contracted vertices create each homomorphic image.
Moreover, the number of total pairs of contracted vertices to
generate all Δ4 − 1 and their mirror homomorphic images of Δ
is 3(Δ2

4 + 3Δ4 − 4).
Let H8 � Ω8

l7
; l7 � 1, 2, . . . ,Δ4 − 1􏽮 􏽯be the collection of

homomorphic images of Δ acquired by the contraction of the
vertices e33l7+1: l7 � 1, 2, . . . ,Δ4 − 1, with the vertex e33Δ3

in Δ.
Figure 16 presents H8 graphically. From all the homo-
morphic images presented in Figure 16, it is not intricated to
check that no one is the mirror image of itself. �is lemma
can be proved by using the same procedure as that for
Lemma 1.

Lemma 9. If we contract the vertices e43l7+1: l7 � 1, 2, . . . ,

Δ4 − 1, with the vertex e33Δ3
in the circuit Δ, then there arise

Δ4 − 1 distinct homomorphic images of Δ and 3(l7 + 2) pairs
of contracted vertices create each homomorphic image.
Moreover, the number of total pairs of contracted vertices to
generate all Δ1 − 1 and their mirror homomorphic images of Δ
is (3/2)(Δ2

4 + 3Δ4 − 4).
Let H9 � Ω9

l7
; l7 � 1, 2, . . . ,Δ4 − 1􏽮 􏽯 be the collection of

homomorphic images of Δ acquired by the contraction of the

vertices e43l7+1: l7 � 1, 2, . . . ,Δ4 − 1, with the vertex e33Δ3
in Δ.

Suppose r shows itself as the remainder of (l7/Δ4 − l7), then
graphically we make four partitions of H9 as follows:

(i) Ω9
l7

: Δ4 − 2l7 > 1 (Figure 17(a))
(ii) Ω9

l7
: Δ4 − 2l7 � 1 (Figure 17(b))

(iii) Ω9
l7

: Δ4 − 2l7 < 1 and Δ4 − l7 > r + 1 (Figure 17(c))
(iv) Ω9

l7
: Δ4 − 2l7 < 1 and Δ4 − l7 � r + 1 (Figure 17(d))

From all the homomorphic images presented in these
figures, it is not intricated to check that every one is the mirror
image of itself. �is lemma can be proved by using the same
procedure as that for Lemma 1.

Lemma 10. If we contract the vertices e43l8+1: l8 � 0, 1, 2, . . . ,

Δ4 − 1, with the vertex e43Δ4
in the circuit Δ, then there arise Δ4

distinct homomorphic images of Δ and 3(l8 + 2) pairs of
contracted vertices create each homomorphic image. More-
over, the number of total pairs of contracted vertices to
generate all Δ4 and their mirror homomorphic images of Δ is
3(Δ2

4 + 3Δ4 − 2).
Let H10 � Ω10

l8
; l8 � 0, 1, 2, . . . ,Δ4 − 1􏽮 􏽯 be the collection

of homomorphic images of Δ acquired by the contraction of
the vertices e43l8+1: l8 � 0, 1, 2, . . . ,Δ4 − 1, with the vertex e43Δ4

in Δ. Graphically, we make two partitions of H10 as follows:

(i) Ω10
l8

: l8 <Δ4 − 1 (Figure 18(a))
(ii) Ω10

l8
: l8 � Δ4 − 1 (Figure 18(b))

From all the homomorphic images presented in these
figures, it is not intricated to check that no one is the mirror
image of itself except Ω10

0 . �is lemma can be proved by using
the same procedure as that for Lemma 1.

Lemma 11. If we contract the vertices e53l9+1: l9 � 0, 1, 2, . . . ,

Δ5 − 1, with the vertex e43Δ4
in the circuit Δ, then there arise Δ5

distinct homomorphic images of Δ and 3(l9 + 2) pairs of
contracted vertices create each homomorphic image. More-
over, the number of total pairs of contracted vertices to
generate all Δ5 and their mirror homomorphic images of Δ is
(3/2)(Δ2

5 + 3Δ5).
Let H11 � Ω11

l9
; l9 � 0, 1, 2, . . . ,Δ5 − 1􏽮 􏽯 be the collection

of homomorphic images of Δ acquired by the contraction of the
vertices e53l9+1: l9 � 0, 1, 2, . . . ,Δ5 − 1, with the vertex e43Δ4

in Δ.
Figure 19 presents H11 graphically. From all the homomorphic
images presented in Figure 19, it is not intricated to check that
every one is the mirror image of itself. �is lemma can be
proved by using the same procedure as that for Lemma 1.

Lemma 12. If we contract the verticese33l10+1: l10 � 0, 1, 2, . . . ,

Δ3 − 1, with the vertex e43Δ4
in the circuit Δ, then there arise Δ3

distinct homomorphic images of Δ and 3(l10 + 2) pairs of
contracted vertices create each homomorphic image. More-
over, the number of total pairs of contracted vertices to
generate all Δ3 and their mirror homomorphic images of Δ is
3(Δ2

3 + 3Δ3).
Let H12 � Ω12

l10
; l10 � 0, 1, 2, . . . ,Δ3 − 1􏽮 􏽯 be the collection

of homomorphic images of Δ acquired by the contraction of
the vertices e33l10+1: l10 � 0, 1, 2, · · · ,Δ3 − 1, with the vertex e43Δ4
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Figure 7: Homomorphic images Ω3l(2,3)
.
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in Δ. Suppose r shows itself as the reminder of (l10/(Δ3 − l10)),
then graphically we make four partitions of H12 as follows:

(i) Ω12
l10

: Δ3 − 2l10 > 1 (Figure 20(a))
(ii) Ω12

l10
: Δ3 − 2l10 � 1 (Figure 20(b))

(iii) Ω12
l10

: Δ3 − 2l10 < 1 and Δ3 − l10 > r + 1 (Figure 20(c))
(iv) Ω12

l10
: Δ3 − 2l10 < 1 and Δ3 − l10 � r + 1 (Figure 20(d))

From all the homomorphic images presented in these
figures, it is not intricated to check that no one is the mirror

image of itself. �is lemma can be proved by using the same
procedure as that for Lemma 1.

Lemma 13. If we contract the vertices e23l1+1: l1 � 0, 1, 2, . . . ,

Δ2 − 1, with the vertex e53Δ5
in the circuit Δ, then there arise

Δ2 distinct homomorphic images of Δ and 3(l1 + 2) pairs of
contracted vertices create each homomorphic image.
Moreover, the number of total pairs of contracted vertices
to generate all Δ2 and their mirror homomorphic images of
Δ is (3/2)(Δ2

2 + 3Δ2).
Let H13 � Ω13

l1
; l1 � 0, 1, 2, . . . ,Δ2 − 1􏽮 􏽯 be the collection

of homomorphic images of Δ acquired by the contraction of
the vertices e23l1+1: l1 � 0, 1, 2, . . . ,Δ2 − 1, with the vertex e53Δ5
in Δ. Figure 21 presents H13 graphically. From all the ho-
momorphic images presented in Figure 21, it is not intricated
to check that every one is the mirror image of itself. �is
lemma can be proved by using the same procedure as that for
Lemma 1.

Lemma 14. If we contract the vertices
e33l11+1: l11 � 0, 1, 2, . . . , Δ3 − 1, with the vertex e53Δ5

in the
circuit Δ, then there arise Δ3 distinct homomorphic images of
Δ and 3(l11 + 2) pairs of contracted vertices create each
homomorphic image. Moreover, the number of total pairs of
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contracted vertices to generate all Δ3 and their mirror ho-
momorphic images of Δ is 3(Δ2

3 + 3Δ3 − 2).
Let H14 � Ω14

l11
; l11 � 0, 1, 2, . . . ,Δ3 − 1􏽮 􏽯 be the collection

of homomorphic images of Δ acquired by the contraction of
the vertices e33l11+1: l11 � 0, 1, 2, . . . ,Δ3 − 1, with the vertex
e53Δ5

in Δ. Figure 22 presents H14 graphically. From all the
homomorphic images presented in Figure 22, it is not intri-
cated to check that no one is the mirror image of itself except
Ω14

0 . �is lemma can be proved by using the same procedure as
that for Lemma 1.

Lemma 15. If we contract the vertices e43l7+1: l7 � 1, 2, . . . ,

Δ4 − 1, with the vertex e53Δ5
in the circuit Δ, then there arise

Δ4 − 1 distinct homomorphic images of Δ and 3(l7 + 2) pairs
of contracted vertices create each homomorphic image.
Moreover, the number of total pairs of contracted vertices to
generate all Δ4 − 1 and their mirror homomorphic images of Δ
is 3(Δ2

4 + 3Δ4 − 4).
Let H15 � Ω15

l7
; l7 � 1, 2, . . . ,Δ4 − 1􏽮 􏽯 be the collection of

homomorphic images of Δ acquired by the contraction of the
vertices e43l7+1: l7 � 1, 2, . . . ,Δ4 − 1, with the vertex e53Δ5

in Δ.
Figure 23 presents H15 graphically. From all the homomor-
phic images presented in Figure 23, it is not intricated to check
that no one is the mirror image of itself.

�is lemma can be proved by using the same procedure as
that for Lemma 1.

Lemma 16. If we contract the vertices e53l12+1: l12 � 0, 1, 2,

. . . ,Δ5 − 1, with the vertex e53Δ5
in the circuit Δ, then there

arise Δ5 distinct homomorphic images of Δ and 3(l12 + 2)

pairs of contracted vertices create each homomorphic image.
Moreover, the number of total pairs of contracted vertices to
generate all Δ5 and their mirror homomorphic images of Δ is
3(Δ2

5 + 3Δ5).
Let H16 � Ω16

l12
; l12 � 0, 1, 2, . . . ,Δ5 − 1􏽮 􏽯 be the collection

of homomorphic images of Δ acquired by the contraction of the
vertices e53l12+1: l12 � 0, 1, 2, . . . ,Δ5 − 1, with the vertex e53Δ5

in
Δ. Graphically, we make two partitions of H16 as follows:

(i) Ω16
l12

: l12 <Δ5 − 1 (Figure 24(a))
(ii) Ω16

l12
: l12 � Δ5 − 1 (Figure 24(b))

From all the homomorphic images presented in these
figures, it is not intricated to check that no one is the mirror
image of itself. �is lemma can be proved by using the same
procedure as that for Lemma 1.

Lemma 17. If we contract the vertices e33l13+1: l13 � 1, 2, . . . ,

Δ3 − 1, with the vertex e63Δ6
in the circuit Δ, then there arise

Δ3 − 1 distinct homomorphic images of Δ and 3(l13 + 2) pairs
of contracted vertices create each homomorphic image.
Moreover, the number of total pairs of contracted vertices to
generate all Δ3 − 1 and their mirror homomorphic images of Δ
is (3/2)(Δ2

3 + 3Δ3 − 4).
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Figure 11: (a) Homomorphic images Ω5l4 : Δ1 − 2l4 > 1. (b) Homomorphic images Ω5l4 : Δ1 − 2l4 � 1. (c) Homomorphic images Ω5l4 : Δ1 −

2l4 < 1 and Δ1 − l4 > r + 1. (d) Homomorphic images Ω5l4 : Δ1 − 2l4 < 1 and.Δ1 − l4 � r + 1
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Let H17 � Ω17
l13

; l13 � 1, 2, . . . ,Δ3 − 1􏽮 􏽯 be the collection of
homomorphic images of Δ acquired by the contraction of the
vertices e33l13+1: l13 � 1, 2, . . . ,Δ3 − 1, with the vertex e63Δ6

in Δ.
Figure 25 presents H17 graphically. From all the homomor-
phic images presented in Figure 25, it is not intricated to check
that every one is the mirror image of itself. �is lemma can be
proved by using the same procedure as that for Lemma 1.

Lemma 18. If we contract the vertices e13l14+1: l14 � Δ2 + 1,

Δ2 + 2, . . . ,Δ1 − 1, with the vertex e13Δ1
in the circuit Δ, then

there arise Δ1 − Δ2 − 1 distinct homomorphic images of Δ and
3(Δ2 + 2) pairs of contracted vertices create each homomorphic
image. Moreover, the number of total pairs of contracted
vertices to generate all Δ1 − Δ2 − 1 and their mirror homo-
morphic images of Δ is 6(Δ2 + 2) (Δ1 − Δ2 − 1).

Proof. Let H18 � Ω18l14
; l14 � Δ2 + 1,Δ2 + 2, . . . ,Δ1 − 1􏽮 􏽯

(Figure 26) be the collection of homomorphic images of Δ
acquired by the contraction of the vertices e13l14+1: l14 � Δ2 +

1,Δ2 + 2, . . . ,Δ1 − 1, with the vertex e13Δ1 in Δ, where e13l14+1
and e13Δ1 are fixed by the words (pq)Δ1

− l14(pq− 1)Δ6(pq)Δ5(pq− 1)Δ4(pq)Δ3(pq− 1)Δ2(pq)l14 and

(pq)Δ2(pq− 1)Δ3(pq)Δ4(pq− 1)Δ5(pq)Δ2(pq− 1)Δ3(pq)Δ4

(pq− 1)Δ5(pq)Δ6(pq− 1)Δ1 . It is easy to verify that P1 �

q− 1(pq− 1)Δ1− l14− 1 and P2 � (pq)Δ2(pq− 1)Δ3(pq)Δ4(pq− 1)Δ5

(pq)Δ6(pq− 1)l14p are the possible paths between e13l14+1 and
e13Δ1 (Figure 4). $is implies that, for each l14, the homo-
morphic image Ω18l14

has a vertex s fixed by P1 and P2. $us,

E18 � e, q, q
− 1

, p, pq, pq
− 1

, pqp, (pq)
2
, pqpq

− 1
, . . . ,􏽮

(pq)
Δ2p, , (pq)

Δ2+1
, (pq)

Δ2pq
− 1

} (6)

is the family of elements in PSL(2,Z) such that ∀x ∈ E18,Δ
contains the vertices (e13l14+1)x and (e13Δ1)x. $is gives that
the cardinality of E18, that is, 3(Δ2 + 2) is the number of
contracted pairs of vertices to produce the homomorphic
image Ω18l14

($eorem 2).
Now, we will prove that all the homomorphic images in

H18 are distinct and no one is the mirror image of itself.
Let Ω18m and Ω18n be any two elements of H18, then Ω18m is

produced by contraction of e13m+1 and e13Δ1 and Ω18n is
produced by contraction of e13n+1 and e13Δ1 . Suppose Ω

18
m and

Ω18n are the same. $is concludes that Ω18m is procurable also
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Figure 12: (a) Homomorphic images Ω6l5 : l5 <Δ2 − 1. (b) Homomorphic images Ω6l5 : l5 � Δ2 − 1.
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by contracting e13n+1 and e13Δ1 , implying that e13n+1↔e13Δ1 is
one of the pairs of contracted vertices for Ω18m . $en there
must exist an element w ∈ E18 such that (e13m+1)w � e13n+1
and (e13Δ1)w � e13Δ1 . e ∈ E18 is the only element such that
(e13Δ1)e � e13Δ1but (e13m+1)e≠ e13n+1. $us,Ω18m andΩ18n are not
the same, that is, by contracting e13m+1 and e13Δ1 to produce
Ω18m , e13n+1 and e13Δ1 are not contracted. Now, if Ω

18
m andΩ18∗n
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Figure 13: Homomorphic images Ω7l(6,3)
.
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Figure 14: Homomorphic images Ω7l(6,4)
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Figure 15: Homomorphic images Ω7l(6,5)
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Figure 17: (a) Homomorphic images Ω9l7 : Δ4 − 2l7 > 1. (b) Homomorphic images Ω9l7 : Δ4 − 2l7 � 1. (c) Homomorphic images Ω9l7 : Δ4 −

2l7 < 1 and Δ4 − l7 > r + 1. (d) Homomorphic images Ω9l7 : Δ4 − 2l7 < 1 and Δ4 − l7 � r + 1.
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are the same, then there must exist an element w ∈ E18 such
that (e13m+1)w � e1∗3n+1 and (e13Δ1)w � e1∗3Δ1 . But there does not
such an element exist in E18. $us,Ω18m is not the same as the
mirror image ofΩ18n , that is, by contracting e13m+1 and e13Δ1 to
create Ω18m , e1∗3n+1 and e1∗3Δ1 are not contracted. $is implies
that all the elements in H18 are distinct. $us,
H18 � Ω18l14

; l14 � Δ2 + 1,Δ2 + 2, . . . ,Δ1 − 1􏽮 􏽯 gives
|H18| � Δ1 − Δ2 − 1.

To check does any element of H18 is the mirror image of
itself, we supposeΩ18m is the same to its mirror image Ω18∗m .
$en by definition, there must exist an element w ∈ E18 such
that (e13m+1)w � e1∗3m+1 and (e13Δ1)w � e1∗3Δ1 . But there does not
such an element exist in E18. $us, Ω18m is not the same as its
mirror image, that is, by contracting e13m+1 and e13Δ1 to create
Ω18m , e1∗3m+1 and e1∗3Δ1 are not contracted. Hence, there are

2 × E18
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 × H18
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 6 Δ2 + 2( 􏼁 Δ1 − Δ2 − 1( 􏼁 (7)

pairs of contracting vertices to produce all the homomorphic
images in H18.

Let η1 �
0, if Δ1 + Δ4 � 0(mod 2)

1, otherwise.􏼨 . □

Lemma 19. If we contract the vertices
e13l15+1: l15 � Δ4 + 1,Δ4 + 2, . . . , ((Δ1 + Δ4 − η1)/2), with the
vertex e33Δ3

in the circuit Δ, then there arise ((Δ1 − Δ4 − η1)/2)

distinct homomorphic images of Δ and 3(Δ4 + 2) pairs of
contracted vertices create each homomorphic image. More-
over, the number of total pairs of contracted vertices to
generate all ((Δ1 − Δ4 − η1)/2) and their mirror homomor-
phic images of Δ is 3(Δ4 + 2)(Δ1 − Δ4 − 1).

Proof. Let
H19 � Ω19l15

; l15 � Δ4 + 1,Δ4 + 2, . . . , ((Δ1 + Δ4 − η1)/2)􏽮 􏽯

(Figure 27) be the collection of homomorphic images of Δ
acquired by the contraction of the vertices
e13l15+1: l15 � Δ4 + 1,Δ4 + 2, . . . , ((Δ1 + Δ4 − η1)/2), with the
vertex e33Δ3 in Δ, where e13l15+1 and e33Δ3 are fixed by the words
(pq)Δ1− l15(pq− 1)Δ6(pq)Δ5(pq− 1)Δ4(pq)Δ3(pq− 1)Δ2(pq)l15

and (pq)Δ4(pq− 1)Δ5(pq)Δ6(pq− 1)Δ1(pq)Δ2(pq− 1)Δ3 . It is
easy to verify that P1 � q− 1(pq− 1)Δ1− l15− 1(pq)Δ2(pq− 1)Δ3

and P2 � (pq)Δ4(pq− 1)Δ5(pq)Δ6(pq− 1)l15p are the possible
paths between e13l15+1 and e33Δ3 (Figure 4). $is implies that,
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Figure 18: (a) Homomorphic images Ω10l8
: l8 <Δ4 − 1. (b) Homomorphic images Ω10l8

: l8 � Δ4 − 1.
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Figure 20: Continued.
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for each l15, the homomorphic imageΩ19l15
has a vertex s fixed

by P1 and P2. $us,

E19 � e, q, q
− 1

, p, pq, pq
− 1

, pqp, (pq)
2
, pqpq

− 1
, . . . ,􏽮

(pq)
Δ4p, (pq)

Δ4+1
, (pq)

Δ4pq
− 1

} (8)

is the family of elements in PSL(2,Z) such that ∀x ∈ E19,Δ
contains the vertices (e13l15+1)x and (e33Δ3)x. $is gives that
the cardinality of E19, that is, 3(Δ4 + 2) is the number of
contracted pairs of vertices to produce the homomorphic
image Ω17l15

($eorem 2).
Now, we will prove that (i) for Δ1 + Δ4 � 1(mod 2), all

the homomorphic images in H19 are distinct and no one is

the mirror image of itself, and (ii) for Δ1 + Δ4 � 0(mod 2),
all the homomorphic images in H19 are distinct and only
Ω19((Δ1+Δ4)/2) is the mirror image of itself.

Let Ω19m and Ω19n be any two elements of H19, then Ω19m is
produced by contraction of e13m+1 and e33Δ3 and Ω19n is
produced by contraction of e13n+1 and e33Δ3 .

Suppose Ω19m and Ω19n are the same. $is concludes that
Ω19m is procurable also by contracting e13n+1 and e33Δ3 , implying
that e13n+1↔e33Δ3 is one of the pairs of contracted vertices for
Ω19m . $en there must exist an element w ∈ E19 such that
(e13m+1)w � e13n+1 and (e33Δ3)w � e33Δ3 . e ∈ E19 is the only el-
ement such that (e33Δ3)e � e33Δ3 but (e13m+1)e≠ e13n+1. $us,
Ω19m and Ω19n are not the same, that is, by contracting e13m+1
and e33Δ3 to produce Ω19m , e13n+1 and e33Δ3 are not contracted.
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Figure 20: (a) Homomorphic imagesΩ12l10
: Δ3 − 2l10 > 1. (b) Homomorphic imagesΩ12l10

: Δ3 − 2l10 � 1. (c) Homomorphic imagesΩ12l10
: Δ3 −

2l10 < 1 and Δ3 − l10 > r + 1. (d) Homomorphic images Ω12l10
: Δ3 − 2l10 < 1 and Δ3 − l10 � r + 1.
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Now, if Ω19m and Ω19∗n are the same, then there must exist an
element w ∈ E19 such that (e13m+1)w � e1∗3n+1 and
(e33Δ3)w � e3∗3Δ3 . (pq)Δ4p ∈ E19 is the only element such that
(e33Δ3)(pq)Δ4p � e3∗3Δ3 and (e13m+1)(pq)Δ4p � e1∗3(Δ1+Δ4− m)+1.
$is implies that Ω19m and Ω19n are the mirror images of each
other if and only if n � Δ1 + Δ4 − m and Ω19m is the mirror
image of itself if and only if m � Δ1 + Δ4 − m, that is,
m � ((Δ1 + Δ4)/2). Now,

(i) If Δ1 + Δ4 � 1(mod 2), then ∀m ∈ l15,
Δ1 + Δ4 − m> ((Δ1 + Δ4 − 1)/2), implying that
Ω19Δ1+Δ4− m ∉ H19. $is states that no homomorphic
image in H19 is the mirror image of other. Hence, all
the homomorphic images in H19 are distinct. $us,
H19 � Ω19l15

; l15 � Δ4 + 1,Δ4 + 2, . . . , ((Δ1 + Δ4 − 1)/􏽮

2)} gives |H19| � ((Δ1 − Δ4 − 1)/2).
Also, ((Δ1 + Δ4)/2)> ((Δ1 + Δ4 − 1)/2) gives that no
homomorphic image in H19 is the mirror image of
itself. Hence, there are

2 × E19
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 × H19
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 6 Δ4 + 2( 􏼁
Δ1 − Δ4 − 1

2
􏼒 􏼓

� 3 Δ4 + 2( 􏼁 Δ3 − Δ4 − 1( 􏼁

(9)

pairs of contracting vertices to produce all the ho-
momorphic images in H19.

(ii) If Δ1 + Δ4 � 0(mod 2), then ∀m ∈ (l15/ (Δ1 + Δ4)􏼈

/2}), Δ1 + Δ4 − m> ((Δ1 + Δ4)/2), implying that
Ω19Δ1+Δ4− m ∉ H19. $is states that no homomorphic
image in H19 is the mirror image of other. Hence, all
the homomorphic images in H19 are distinct. $us,
H19 � Ω19l15

; l15 � Δ4 + 1,Δ4 + 2, . . . , ((Δ1 + Δ4)/2)􏽮 􏽯

gives |H19| � ((Δ1 − Δ4)/2).

For m � ((Δ1 + Δ4)/2), we have Δ1 + Δ4 − m � ((Δ1 +

Δ4)/2) ∈ l15 gives Ω19(Δ1+Δ4)/2 ∈ H19 is the mirror image of
itself. Hence, there are

2 × E19
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 × H19
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + E19
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 6 Δ4 + 2( 􏼁
Δ1 − Δ4

2
− 1􏼒 􏼓

+ 3 Δ4 + 2( 􏼁 � 3 Δ4 + 2( 􏼁 Δ3 − Δ4 − 1( 􏼁

(10)

pairs of contracting vertices to produce all the homomorphic
images in H19.

Letk2 ∈ 2, 3{ }. □

Lemma 20. If we contract the vertices e
k2
3l(3,k2)+1

: l(3,k2) �

Δ4 + 1,Δ4 + 2, . . . ,Δk2
− 1, with the vertex e33Δ3

in the circuit
Δ, then for each k2, there arise Δk2

− Δ4 − 1 distinct homo-
morphic images of Δ and 3(Δ4 + 2) pairs of contracted vertices
create each homomorphic image. Moreover, the number of
total pairs of contracted vertices to generate all Δk2

− Δ4 − 1
and their mirror homomorphic images of Δ is
6(Δ4 + 2)(Δk2

− Δ4 − 1 ).
For a fix value of k2, let

H
k2
20 � Ω20

l(3,k2)
; l(3,k2) � Δ4 + 1,Δ4 + 2, . . . ,Δk2

− 1􏼚 􏼛 be the

collection of homomorphic images of Δ acquired by the
contraction of the vertices e3l(3,k2)
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Figure 22: Homomorphic images Ω14l11
.
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+1k2 : l(3,k2) � Δ4 + 1,Δ4 + 2, . . . ,Δk2
− 1, with the vertex e33Δ3

in Δ. Figures 28 and 29 present H
k2
3 graphically. From all the

homomorphic images presented in these figures, it is not
intricated to check that no one is the mirror image of itself.

�is lemma can be proved by using the same procedure as
that for Lemma 18.

Lemma 21. If we contract the vertices e23l16+1: l16 � Δ3+

1,Δ3 + 2, . . . ,Δ2 − 1, with the vertex e43Δ4
in the circuit Δ, then

there arise Δ2 − Δ3 − 1 distinct homomorphic images of
Δ and 3(Δ3 + 2) pairs of contracted vertices create
each homomorphic image. Moreover, the number of total
pairs of contracted vertices to generate all Δ2 − Δ3 − 1 and
their mirror homomorphic images of Δ is 6(Δ3 + 2)

(Δ2 − Δ3 − 1).
Let H21 � Ω21

l16
; l16 � Δ3 + 1,Δ3 + 2, . . . ,Δ2 − 1􏽮 􏽯 be the

collection of homomorphic images of Δ acquired by the
contraction of the vertices e23l16+1:

l16 � Δ3 + 1,Δ3 + 2, . . . ,Δ2 − 1, with the vertex e43Δ4
in Δ.

Figure 30 presents H21 graphically. From all the homomor-
phic images presented in Figure 30, it is not intricated to check

that no one is the mirror image of itself. �is lemma can be
proved by using the same procedure as that for Lemma 18.

Let k3 ∈ 1, 2{ }.

Lemma 22. If we contract the vertices
e

k3
3l(4,k3)+1

: l(4,k3) � Δ5 + 1,Δ5 + 2, . . . ,Δk3
− 1, with the vertex

e63Δ6
in the circuit Δ, then for each k3, there arise Δk3

− Δ5 − 1
distinct homomorphic images of Δ and 3(Δ5 + 2) pairs of
contracted vertices create each homomorphic image. More-
over, the number of total pairs of contracted vertices to
generate all Δk3

− Δ5 − 1 and their mirror homomorphic
images of Δ is 6(Δ5 + 2)(Δk3

− Δ5 − 1 ).
For a fix value of k3, let

H
k3
22 � Ω22

l(4,k3)
; l(4,k3) � Δ5 + 1,Δ5 + 2, . . . ,Δk3

− 1􏼚 􏼛 be the

collection of homomorphic images of Δ acquired by the
contraction of the vertices e

k3
3l(4,k3)+1

: l(4,k3) � Δ5 + 1,

Δ5 + 2, . . . ,Δk3
− 1, with the vertex e63Δ6

in Δ. Figures 31 and
32 present H

k3
22 graphically. From all the homomorphic images

presented in these figures, it is not intricated to check that no
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Figure 24: (a) Homomorphic images Ω16l12
: l12 <Δ5 − 1. (b) Homomorphic images Ω16l12

: l12 � Δ5 − 1.
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one is the mirror image of itself. �is lemma can be proved by
using the same procedure as that for Lemma 18.

Let k2 ∈ 2, 3{ }.

Lemma 23. If we contract the vertices e13l4+1: l4 � 1, 2, . . . ,

Δ1 − 1, with the vertices e
k2
3l(5,k2)

: l(5,k2) � 1, 2, . . . ,Δk2
− 1, in

the circuit Δ, then for each k2, there arise (Δ1 − 1)(Δk2
− 1)

distinct homomorphic images of Δ and 6 pairs of contracted
vertices create each homomorphic image. Moreover, the
number of total pairs of contracted vertices to generate all
(Δ1 − 1)(Δk2

− 1) and their mirror homomorphic images of Δ
is 12(Δ1 − 1)(Δk2

− 1).

Proof. For k2 � 2, let H2
23 � Ω23(l4 ,l(5,2))

; l4 � 1, 2, . . . ,􏼚

Δ1 − 1; l(5,2) � 1, 2, . . . ,Δ2 − 1}(Figure 33) be the collection
of homomorphic images of Δ acquired by the contraction of
the vertices e13l4+1 with the vertex e23l(5,2)

in Δ, where e13l4+1 and
e23l(5,2)

are fixed by the words
(pq)l4(pq− 1)Δ6(pq)Δ5(pq− 1)Δ4(pq)Δ3(pq− 1)Δ2(pq)Δ1− l4

and (pq− 1) Δ2− l(5,2) (pq)Δ1(pq− 1)Δ6(pq)Δ5

(pq− 1)Δ4(pq)Δ3(pq− 1)l(5,2) (pq)Δ5(pq− 1)Δ4(pq)Δ3(pq− 1)l(5,2) .
It is easy to verify that P1 � (pq− 1)Δ2− l(5,2) (pq)Δ1− l4 and P2 �

(pq)l4 (pq− 1)Δ6(pq)Δ5(pq− 1)Δ4(pq)Δ3(pq− 1)l(5,2) are the
possible paths between e13l4+1 and e23l(5,2)

(Figure 4). $is
implies that the homomorphic image Ω23(l4 ,l(5,2))

has a vertex s

fixed by P1 and P2. $us,

E
2
23 � e, q, q

− 1
, p, pq, pq

− 1
􏽮 􏽯 (11)

is the family of elements in PSL(2,Z) such that ∀x ∈ E2
23,Δ

contains the vertices (e13l4+1)x and (e23l(5,2)
)x. $is gives that

the cardinality of E2
23, that is, 6 is the number of contracted

pairs of vertices to produce the homomorphic image
Ω23(l4 ,l(5,2))

($eorem 2).
Now, we will prove that all the homomorphic images in

H2
23 are distinct and no one is the mirror image of itself.
LetΩ23(m1 ,m2) andΩ

23
(n1 ,n2) be any two elements of H2

23, then
Ω23(m1 ,m2) is produced by contraction of e13m1+1 and e23m2

and
Ω23(n1,n2) is produced by contraction of e13n1+1 and e23n2

.
Suppose Ω23(m1 ,m2) and Ω23(n1 ,n2) are the same. $is con-

cludes that Ω23(m1 ,m2) is procurable also by contracting e13n1+1

and e23n2
, implying that e13n1+1↔e23n2

is one of the pairs of
contracted vertices for Ω23(m1 ,m2). $en there must exist an
element w ∈ E2

23 such that (e13m1+1)w � e13n1+1 and
(e23m2

)w � e23n2
. pq− 1 ∈ E2

5 is the only element such that
(e23m2

)pq− 1 � e23(m2+1) but (e13m1+1)pq− 1 ≠ e13n1+1. $us,
Ω23(m1 ,m2) and Ω

23
(n1 ,n2) are not the same, that is, by contracting

e13m1+1 and e23m2
to produce Ω23(m1 ,m2), e13n1+1 and e23n2

are not
contracted. Now, if Ω23(m1 ,m2) and Ω

23∗
(n1 ,n2) are the same, then

there must exist an element w ∈ E2
23 such that (e13m1+1)w �

e1∗3n1+1 and (e23m2
)w � e2∗3n2

. p ∈ E2
23 is the only element such

that (e13m1+1)p � e1∗3(Δ1− m1)+1 but (e23m2
)p≠ e2∗3n2

. $is implies
that Ω23(m1 ,m2) and Ω

23
(n1 ,n2) are not the mirror images of each

other, that is, by contracting e13m1+1 and e23m2
to produce

Ω23(m1 ,m2), e1∗3n1+1 and e2∗3n2
are not contracted. Hence, all the

homomorphic images in H2
23 are distinct. $us,

H2
23 � Ω23(l4 ,l(5,2))

; l4 � 1, 2, . . . ,Δ1 − 1;􏼚 l(5,2) � 1, 2, . . . ,Δ2 −

1} gives |H2
23| � (Δ1 − 1)(Δ2 − 1).

Suppose Ω23(m1 ,m2) is the mirror image of itself, then there
must exist an element w ∈ E2

23 such that (e13m1+1)w � e1∗3m1+1
and (e23m2

)w � e2∗3m2
. p ∈ E2

23 is the only element such that

S
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Figure 25: Homomorphic images Ω17l13
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(e13m1+1)p � e1∗3(Δ1− m1)+1 but (e23m2
)p≠ e2∗3m2

. $is implies that
Ω23(m1 ,m2) is not the same as Ω23∗(m1 ,m2), that is, by contracting
e13m1+1 and e23m2

to produce Ω23(m1 ,m2), e1∗3m1+1 and e2∗3m2
are not

contracted.
Hence, there are

2 × E
2
23

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 × H

2
23

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 12 Δ1 − 1( 􏼁 Δ2 − 1( 􏼁 (12)

pairs of contracting vertices to produce all the homomorphic
images in H2

23.
We can prove this lemma for k2 � 3 (Figure 34) in similar

way as that for k2 � 2.

Let η2 �
0 if Δ4 � 0(mod 2)

1 otherwise􏼨 and

η3 �
0 if Δ1 � 0(mod 2)

1 otherwise􏼨 . □

Lemma 24. If we contract the vertices

e13l17+1: l17 �
1, 2, . . . , ((Δ1 − η3)/2), if l18 � (Δ4/2)

1, 2, . . . ,Δ1 − 1 otherwise􏼨 , with

the vertices e43l18
: l18 � 1, 2, . . . , ((Δ4 − η2)/2), in the circuit Δ,

then there arise
(1/2)(Δ1 − 1)(Δ4 − 1) if Δ4 � 1(mod 2)

(1/2)[(Δ1 − 1)(Δ4 − 1) + 1 − η3] if Δ4 � 0(mod 2)
􏼨 dis-

tinct homomorphic images of Δ and 6 pairs of contracted
vertices create each homomorphic image. Moreover, the
number of total pairs of contracted vertices to generate all
these homomorphic images and their mirror homomorphic
images of Δ is 6(Δ1 − 1)(Δ4 − 1).

Proof. Let H24 � Ω(l􏽮 17, l18)
24; l17 � 1, 2, . . . ,􏼈

((Δ1 − η3)/2), if l18 � (Δ4/2), l18 � 1, 2, . . . , ((Δ4 −

η2)/2)1, 2, . . . ,Δ1 − 1otherwise} (Figure 35) be the collection
of homomorphic images of Δ acquired by the contraction of
the vertices e13l17+1 with the vertices e43l18

in Δ, where e13l17+1
and e43l18

are fixed by the words
(pq)l17(pq− 1)Δ6(pq)Δ5(pq− 1)Δ4(pq)Δ3(pq− 1)Δ2(pq)Δ1− l18

and (pq− 1)Δ4− l18(pq)Δ3(pq− 1)
Δ2(pq)Δ1(pq− 1)Δ6(pq)Δ5(pq− 1)l18 . It is easy to verify that
P1 � (pq)l17(pq− 1)Δ6(pq)Δ5(pq− 1)l18 and
P2 � (pq− 1)Δ4− l18(pq)Δ3(pq− 1)Δ2(pq)Δ1− l17 are the possible
paths between e13l17+1 and e43l18

(Figure 4).$is implies that the
homomorphic image Ω24(l17 ,l18) has a vertex s fixed by P1 and
P2. $us,

E24 � e, q, q
− 1

, p, pq, pq
− 1

􏽮 􏽯 (13)

is the family of elements in PSL(2,Z) such that ∀x ∈ E24,Δ
contains the vertices (e13l17+1)x and (e43l18

)x. $is gives that
the cardinality of E24, that is, 6 is the number of contracted
pairs of vertices to produce the homomorphic imageΩ24(l17 ,l18)

($eorem 2).
Now, we prove that (i) for Δ4 � 0(mod 2), all the ele-

ments in H24 are distinct and no one is the mirror image of
itself, and (ii) for Δ4 � 1(mod 2), all the elements in H24 are
distinct and the homomorphic image Ω24((Δ1/2),(Δ4/2)) is the
mirror image of itself.
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Suppose Ω24(m1 ,m2) and Ω24(n1 ,n2) are the same. $is con-
cludes that Ω24(m1 ,m2) is procurable also by contracting e13n1+1
and e43n2

, implying that e13n1+1↔e43n2
is one of the pairs of

contracted vertices for Ω24(m1 ,m2). $en there must exist an
element w ∈ E24 such that (e13m1+1)w � e13n1+1 and
(e43m2

)w � e43n2
. pq− 1 ∈ E24 is the only element such that

(e43m2
)pq− 1 � e43(m2+1) but (e13m1+1)pq− 1 ≠ e13n1+1. $us,

Ω24(m1 ,m2) and Ω
24
(n1 ,n2) are not the same, that is, by contracting

e13m1+1 and e43m2
to produce Ω24(m1 ,m2), e13n1+1 and e43n2

are not
contracted. Now, if Ω24(m1 ,m2) and Ω

24
(n1,n2) are the same, then

there must exist an element w ∈ E24 such that (e13m1+1)w �

e1∗3n1+1 and (e43m2
)w � e4∗3n2

. p ∈ E24 is the only element such
that (e13m1+1)p � e1∗3(Δ1− m1)+1 and (e43m2

)p � e4∗3(Δ4− m2). $is
implies that Ω24(m1 ,m2) and Ω

24
(n1 ,n2) are the mirror images of

each other if and only if n1 � Δ1 − m1 and n2 � Δ4 − m2, that
is, by contracting e13m1+1 and e43m2

to produce Ω24(m1,m2), e1∗3n1+1
and e4∗3n2

are also contracted and the homomorphic image
Ω24(m1 ,m2) is the mirror image of itself if and only if m1 �

Δ1 − m1 and m2 � Δ4 − m2 that is m1 � (Δ1/2) and
m2 � (Δ4/2). Now,

(1 )If Δ4 � 1(mod 2) then ∀m2 ∈ l18, we get
Δ4 − m2 > ((Δ4 − 1)/2) implies Ω24(Δ1− m1 ,Δ4− m2) ∉ H24.
$is indicates that no homomorphic image in H24 is
the mirror image of other. Hence, all the elements in
H24 are distinct.$us,H24 � Ω(l17 ,l18)􏽮 24; l17 � 1, 2,􏼈

. . . , ((Δ1 − η3)/2) if l18 � (Δ4/2), l18 � 1, 2, . . . ,

((Δ4 − η2)/2)1, 2, . . . ,Δ1 − 1otherwise}, implying
that

H24
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1
2
Δ1 − 1( 􏼁 Δ4 − 1( 􏼁· (14)

Also, (Δ4/2)> ((Δ4 − 1)/2) implies no homomorphic
image in H24 is the mirror image of itself. Hence,
there are

2 × E24
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 × H24
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 6 Δ1 − 1( 􏼁 Δ4 − 1( 􏼁 (15)

pairs of contracting vertices to produce all the ho-
momorphic images in H24.

(2) If Δ4 � 0(mod 2), then only for m2 � (Δ4/2), Δ4 −

m2 � (Δ4/2) ∈ l18 and ∀m1 ∈ l17 Δ1/2􏼈 􏼉,
Δ1 − m1 ∉ l17, implying that Ω24(Δ1− m1 ,(Δ4/2)) ∉ H24.
Hence, all the elements in H24 are distinct. $us,
H24 � Ω(l17 ,􏽮 l18)

24; l17 � 1, 2,􏼈 . . . , ((Δ1−
η3)/2)if l18 � (Δ4/2); l18 � 1, 2, . . . , ((Δ4 − η
2)/2)1, 2, . . . ,Δ1 − 1otherwise}, implying that

H24
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
1
2
Δ1 − 1( 􏼁 Δ4 − 2( 􏼁 +

1
2
Δ1 − η3( 􏼁

�
1
2
Δ1 − 1( 􏼁 Δ4 − 1( 􏼁 + 1 − η3􏼂 􏼃·

(16)

Now,

(a). If Δ1 is odd, then (Δ1/2) ∉ l17, implying that
Ω24((Δ1/2),(4/2)) ∉ H24. So, no homomorphic image in
H24 is the mirror image of itself. Hence, there are

2 × E24
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 × H24
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 6 Δ1 − 1( 􏼁 Δ4 − 1( 􏼁 (17)

pairs of contracting vertices to produce all the ho-
momorphic images in H24.

(b) If Δ1 is even, then (Δ1/2) ∈ l17, implying that
Ω24((Δ1/2),(Δ4/2)) ∈ H24 is the mirror image of itself.
Hence, there are

2 × E24
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 × H24
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 1􏼐 􏼑 + E24
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 6 Δ1 − 1( 􏼁 Δ4 − 1( 􏼁

(18)

pairs of contracting vertices to produce all the ho-
momorphic images in H24.
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Figure 29: Homomorphic images Ω20l(3,3)
.
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Let k1 ∈ 3, 4, 5{ }. □

Lemma 25. If we contract the vertices e23l5+1: l5 � 1, 2, . . . ,

Δ2 − 1, with the vertices e
k1
3l(6,k1)

: l(6,k1) � 1, 2, . . . ,Δk1
− 1, in

the circuit Δ, then for each k5, there arise (Δ2 − 1)(Δk1
− 1)

distinct homomorphic images of Δ and 6 pairs of contracted
vertices create each homomorphic image. Moreover, the

number of total pairs of contracted vertices to generate all
(Δ2 − 1)(Δk1

− 1) and their mirror homomorphic images of Δ
is 12(Δ2 − 1)(Δk1

− 1).
For a fix value of k1, let H

k1
25 � Ω25

(l5 ,l(6,k1))
; l5 �􏼚

1, 2, . . . ,Δ2 − 1; l(6,k1) � 1, 2, . . . ,Δk1
− 1}be the collection of

homomorphic images of Δ acquired by the contraction of the
vertices e23l5+1 with the vertices e

k1
3l(6,k1)

in Δ. Figures 36, 37, and
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Figure 31: Homomorphic images Ω22l(4,1)
.
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38 present H
k1
25 graphically. From all the homomorphic images

presented in these figures, it is not intricated to check that no
one is the mirror image of itself.

�is lemma can be proved by using the same procedure as
that for Lemma 23.

Lemma 26. If we contract the vertices e33l13+1: l13 � 1, 2, . . . ,

Δ3 − 1, with the vertices e43l7
: l7 � 1, 2, . . . ,Δ4 − 1, in the

circuit Δ, then there arise (Δ3 − 1)(Δ4 − 1) distinct homo-
morphic images of Δ and 6 pairs of contracted vertices create
each homomorphic image. Moreover, the number of total pairs
of contracted vertices to generate all (Δ3 − 1)(Δ4 − 1) and their
mirror homomorphic images of Δ is 12(Δ3 − 1)(Δ4 − 1).

Let H26 � Ω26
(l13 ,l7); l13 � 1, 2, . . . ,Δ3 − 1; l7 � 1, 2, . . . ,􏽮

Δ4 − 1} be the collection of homomorphic images of Δ acquired
by the contraction of the vertices e33l13+1 with the vertices e43l7

in Δ.
Figure 39 presents H26 graphically. From all the homomorphic
images presented in Figure 39, it is not intricated to check that no

one is the mirror image of itself. �is lemma can be proved by
using the same procedure as that for Lemma 23.

Let k2 � 8 − k2.

Lemma 27. If we contract the vertices e
k2
3l(7,k2)+1

: l(7,k2) �

1, 2, . . . ,Δk2
− 1, with the vertices e

k2
3l(8,k2)

: l(8,k2) � 1, 2, . . . ,

Δk2
− l(7,k2), in the circuit Δ, then for each k3, there arise

(1/2)Δk2
(Δk2

− 1) distinct homomorphic images of Δ and 6
pairs of contracted vertices create each homomorphic image.
Moreover, the number of total pairs of contracted vertices to
generate all (1/2)Δk2

(Δk2
− 1) and their mirror homomorphic

images of Δ is 6(Δk2
− 1)2.

Proof. For k2 � 2, let H2
27 � Ω(l(7,2) ,l(8,2))

􏼚 27; l(7,2) � 1, 2, . . . ,

Δ2 − 1; l(8,2) � 1, 2, . . . ,Δ2 − l(7,2)} (Figure 40) be the col-
lection of homomorphic images of Δ acquired by the
contraction of the vertices e23l(7,2)+1

with the vertex e63l(8,2)
in Δ,

where e23l(7,2)+1
and e63l(8,2)

are fixed by the words
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(pq)l(7,2) (pq− 1)Δ3(pq)Δ4(pq− 1)Δ5(pq)Δ6(pq− 1)Δ1(pq)Δ2− l(7,2)

and (pq− 1)Δ6− l(8,2) (pq)Δ5(pq− 1)Δ4(pq)Δ3(pq− 1)Δ2 (pq)Δ1

(pq− 1)l(8,2) . It is easy to verify that P1 � (pq)l(7,2)

(pq− 1)Δ3(pq)Δ4(pq− 1)Δ5(pq)Δ6− l(8,2) p and P2 � q(pq)l(8,2) − 1

(pq− 1)Δ1(pq)Δ2− l(7,2) are the possible paths between e23l(7,2)+1
and e63l(8,2)

(Figure 4). $is implies that the homomorphic
image Ω27(l(7,2) ,l(8,2))

has a vertex s fixed by P1 and P2. $us,

E
2
27 � e, q, q

− 1
, p, pq, pq

− 1
􏽮 􏽯 (19)

is the family of elements in PSL(2,Z) such that ∀w ∈ E2
27,Δ

contains the vertices (e23l(7,2)+1
)w and (e63l(8,2)

)w. $is gives
that the cardinality of E2

27, that is, 6 is the number of
contracted pairs of vertices to produce each homomorphic
image Ω27(l(7,2) ,l(8,2))

($eorem 2).

Suppose Ω27(m1 ,m2) and Ω27(n1 ,n2) are the same. $is con-
cludes that Ω27(m1 ,m2) is procurable also by contracting e23n1+1
and e63n2

, implying that e23n1+1↔e63n2
is one of the pairs of

contracted vertices for Ω27(m1 ,m2). $en there must exist an
element w ∈ E2

27 such that (e23m1+1)w � e23n1+1 and
(e63m2

)w � e63n2
. pq− 1 ∈ E2

27 is the only element such that
(e63m2

)pq− 1 � e63(m2+1) but (e23m1+1)pq− 1 ≠ e23n1+1. $us,
Ω27(m1 ,m2) and Ω

27
(n1 ,n2) are not the same, that is, by contracting

e23m1+1 and e63m2
to produce Ω27(m1 ,m2), e23n1+1 and e63n2

are not
contracted. Now, if Ω27(m1 ,m2) and Ω

27
(n1 ,n2) are the same, then

there must exist an element w ∈ E2
27 such that (e23m1+1)w �

e2∗3n1+1 and (e63m2
)w � e6∗3n2

or (e23m1+1)w � e6∗3n1+1 and
(e63m2

)w � e2∗3n2
. p ∈ E2

27 is the only element such that
(e23m1+1)p � e23m1

� e6∗3(Δ2− m1)+1 and
(e63m2

)p � e63m2+1 � e2∗3(Δ2− m2). $is implies that Ω27(m1 ,m2) and
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Figure 37: Homomorphic images Ω25(l5 ,l(6,4))
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Figure 41: Homomorphic images Ω27(l(7,3) ,l(8,3))
.
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Ω27(n1 ,n2) are the mirror images of each other if and only if
n1 � Δ2 − m2 and n2 � Δ2 − m1, that is, by contracting e23m1+1
and e63m2

to produce Ω27(m1 ,m2), e2∗3n1+1 and e6∗3n2
are also con-

tracted. For a fix m1 ∈ l(7,2) and for all m2 ∈ l(8,2)\ Δ2 − m1􏼈 􏼉,
Ω22(Δ2− m2 ,Δ2− m1) ∉ H2

27, implying that Ω27(m1 ,m2) and Ω
27
(n1 ,n2) are

not the mirror images of each other. $is implies that all the
homomorphic images in H2

27 are distinct. $us,
H2

27 � Ω(l(7,2) ,l(8,2))
􏼚 27; l(7,2) � 1, 2, . . . ,Δ2 − 1; l(8,2) � 1,

2, . . . ,Δ2 − l(7,2)} implies

H
2
27

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

1
2
Δ2 Δ2 − 1( 􏼁. (20)

Let Ω27(m1 ,m2) be the mirror image of itself, then from
Figure 40, we have m1 − 1 � Δ2 − m2 − 1 and
m2 − 1 � Δ2 − m1 − 1, implying m2 � Δ2 − m1. Now,
∀m1 ∈ l(7,2),Δ2 − m1 ∈ l(8,2), implying thatΩ27(m1,Δ2− m1) ∈ H2

27
is the mirror image of itself. So, out of (1/2)Δ2(Δ2 − 1).

homomorphic images in H2
27, Δ2 − 1 are the mirror images

of itself. Hence, there are

2 × E
2
27

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 × H

2
27

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − Δ2 − 1( 􏼁􏽨 􏽩 + E

2
27

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 × Δ2 − 1( 􏼁 � 6 Δ2 − 1( 􏼁

2

(21)

pairs of contracting vertices to produce all the homomorphic
images in H2

27. We can prove this lemma for k2 � 3 (Fig-
ure 41) in similar way as that for k2 � 2.

Letk4 � 1, 4{ } and η(4,k4) �
0 if Δk4

� 0(mod 2)

1 otherwise􏼨 . □

Lemma 28. If we contract the vertices e
k4
3l(7,k4)+1

: l(9,k4) �

1, 2, . . . , ((Δk4
− 2 − η(4,k4) )/2), with the vertices

e
k4
3l(10,k4)

: l(10,k4) � l(9,k4) + 1, l(9,k4) + 2, . . . ,Δk4
− l(9,k4), in the

circuit Δ, then for each k4, there arise (1/4)(Δ2
k4

− 2Δk4
+

η(4,k4)) distinct homomorphic images of Δ and 6 pairs of
contracted vertices create each homomorphic image. More-
over, the number of total pairs of contracted vertices to
generate all (1/4)(Δ2

k4
− 2Δk4

+ η(4,k4)) and their mirror ho-
momorphic images of Δ is 3(Δ2

k4
− 3Δk4

+ 2).

Proof. For k4 � 1, let H1
28 � Ω(l(9,1) ,l(10,1))

􏼚
28; l(9,1) � 1, 2, . . . , ((Δ1 − 2 − η(4,1) )/2); l(10, 1) �

l(9,1) + 1, l(9,1) + 2, . . . ,Δ1 − l(9,1)} (Figure 42) be the

collection of homomorphic images of Δ acquired by the
contraction of the vertices e13l(9,1)+1

with the vertices e13l(10,1)
in

Δ, where e13l(9,1)+1
and e13l(10,1)

are fixed by the words
(pq)l(9,1) (pq− 1)Δ6(pq)Δ5(pq− 1)Δ4(pq)Δ3(pq− 1)Δ2(pq)Δ1− l(9,1)

and (pq− 1)Δ

1 − l(10,1)(pq)Δ2(pq− 1)Δ3(pq)Δ4(pq− 1)Δ5(pq)Δ6(pq− 1)l(10,1) .
It is easy to verify that P1 � (pq)l(9,1) (pq− 1)Δ

6(pq)Δ5(pq− 1)Δ4(pq)Δ3(pq− 1)Δ2(pq)Δ1− l(10,1) p and
P2 � q(pq)l(10,1)− l(9,1) − 1 are the possible paths between e13l(9,1)+1
and e13l(10,1)

(Figure 4). $is implies that the homomorphic
image Ω28(l(9,1) ,l(10,1))

has a vertex s fixed by P1 and P2. $us,

E
1
28 � e, q, q

− 1
, p, pq, pq

− 1
􏽮 􏽯 (22)

is the family of elements in PSL(2,Z) such that ∀w ∈ E1
28,Δ

contains the vertices (e13l(9,1)+1
)w and (e13l(10,1)

)w. $is gives
that the cardinality of E1

28, that is, 6 is the number of
contracted pairs of vertices to produce each homomorphic
image Ω28(l(9,1) ,l(10,1))

($eorem 2).
Suppose Ω28(m1 ,m2) and Ω28(n1 ,n2) are the same. $is con-

cludes that Ω28(m1 ,m2) is procurable also by contracting e13n1+1
and e13n2

, implying that e13n1+1↔e13n2
is one of the pairs of

contracted vertices for Ω28(m1 ,m2). $en there must exist an
element w ∈ E1

28 such that (e13m1+1)w � e13n1+1 and
(e13m2

)w � e13n2
. pq, pq− 1 ∈ E1

28 are the only element such
that (e13m1+1)pq � e13(m1− 1)+1 and (e13m2

)pq− 1 � e13(m2+1) but
(e13m2

)pq≠ e13n2
and (e13m1+1)pq− 1 ≠ e13n1+1. Ω

28
(m1 ,m2) and

Ω28(n1,n2) are not the same, that is, by contracting e13m1+1 and
e13m2

to produce Ω28(m1 ,m2), e13n1+1 and e13n2
are not contracted.

Now, if Ω28(m1 ,m2) and Ω
28∗
(n1 ,n2) are same, then there must exist

an element w ∈ E1
28 such that (e13m1+1)w � e1∗3n1+1 and

(e13m2
)w � e1∗3n2

. p ∈ E1
28 is the only element such that

(e13m1+1)p � e13m1
� e1∗3(Δ1− m1)+1 and (e13m2

)p � e13m2+1 �

e1∗3(Δ1− m2). $is implies that Ω28(m1 ,m2) and Ω28(n1 ,n2) are the
mirror images of each other if and only if n1 � Δ1 − m1 and
n2 � Δ1 − m2, that is, by contracting e13m1+1 and e13m2

to
produce Ω28(m1 ,m2), e1∗3n1+1 and e1∗3n2

are also contracted. For all
m1 ∈ l(9,1), Δ1 − m1 > ((Δ1 − 2 − η(4,1) )/2), implying that
Ω28(n1,n2) � Ω28(Δ2− m2 ,Δ2− m1) ∉ H1

28 and that Ω28(m1 ,m2) and Ω
28
(n1 ,n2)

are not the mirror images of each other. $is implies that all
the homomorphic images in H1

28 are distinct. $us,

H
1
28 � Ω28l(9,1) ,l(10,1)( ); l(9,1) � 1, 2, . . . ,

Δ1 − 2 − η(4,1)

2
; l(10, 1) � l(9,1) + 1, l(9,1) + 2, . . . ,Δ1 − l(9,1)􏼨 􏼩 (23)

implies

H
1
28

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � Δ1 − 2( 􏼁 + Δ2 − 4( 􏼁 + Δ2 − 6( 􏼁 + · · · + 4 − η(4,1)􏼐 􏼑

+ 2 − η(4,1)􏼐 􏼑,

�
1
4
Δ21 − 2Δ1 + η(4,1)􏼐 􏼑.

(24)

Let Ω28(m1 ,m2) be the mirror image of itself, then from
Figure 42, we have m1 − 1 � Δ1 − m2 − 1, implying
m2 � Δ1 − m1. Now, ∀m1 ∈ l(9,1), Δ1 − m1 ∈ l(10,1), implying
thatΩ28(m1 ,Δ1− m1) ∈ H1

28 is the mirror image of itself. So, out of
(1/4)(Δ21 − 2Δ1 + η(4,1)) homomorphic images in H1

28,
((Δ1 − 2 − η(4,1) )/2) are the mirror images of itself. Hence,
there are
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2 × E
2
28

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 × H

2
28

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −
Δ1 − 2 − η(4,1)

2
􏼢 􏼣 + E

2
28

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ×
Δ1 − 2 − η(4,1)

2

� 3 Δ21 − 3Δ1 + 2􏼐 􏼑

(25)

pairs of contracting vertices to produce all the homomorphic
images in H1

28. We can prove this lemma for k4 � 4 (Fig-
ure 43) in similar way as that for k4 � 1. □

Lemma 29. If we contract the vertices e
k2
3l(11,k2)+1

: l(11,k2) �

1, 2, . . . ,Δk2
− 1, with the vertices

e
k2
3l(12,k2)

: l(12,k2) � 1, 2, . . . ,Δk2
− l(11,k2), in the circuit Δ, then

for each k2, there arise (1/6)(Δk2
− 1 )(Δk2

− 2 ) distinct
homomorphic images of Δ and 6 pairs of contracted vertices
create each homomorphic image. Moreover, the number of
total pairs of contracted vertices to generate all (1/2)(Δk2

−

1 )(Δk2
− 2 ) and their mirror homomorphic images of Δ is

6(Δk2
− 1 )(Δk2

− 2 ).
For a fix value of k2, let H

k2
29 � Ω(l(11,k2),l

􏼚

(12,k2))
29; l(11,k2) � 1, 2, . . . ,Δk2

− 1; l(12,k2) � 1, 2, . . . ,Δk2
−

l(11,k2)} be the collection of homomorphic images of Δ acquired
by the contraction of the vertices e

k2
3l(11,k2)+1

with the vertices
e

k2
3l(12,k2)

in Δ. Figures 44 and 45 present H
k2
29 graphically. From

all the homomorphic images presented in these figures, it is not
intricated to check that no one is the mirror image of itself.
�is lemma can be proved by using the same procedure as that
for Lemma 23.

Letk4 � 1, 4{ } and η(4,k4) �
0 if Δk4

� 0(mod 2)

1 otherwise􏼨 .

Lemma 30. If we contract the vertices e
k4
3l(13,k4)+1

: l(13,k4) �

1, 2, . . . , ((Δk4
− η(4,k4))/2), with the vertices e

k4
3l(13,k4)

in the
circuit Δ, then for each k4, there arise (1/2)(Δk4

− η(4,k4))

distinct homomorphic images of Δ and 3 pairs of contracted
vertices create each homomorphic image. Moreover, the
number of total pairs of contracted vertices to generate all
(1/2)(Δk4

− η(4,k4)) and their mirror homomorphic images of
Δ is 3(Δk4

− 1).
For a fix value of k4, let

H
k4
30 � Ω30

(l(13,k4),l(13,k4))
; l(13,k4) � 1, 2, . . . , ((Δk4

− η(4,k4))/2)􏼚 􏼛

be the collection of homomorphic images of Δ acquired by the
contraction of the vertices e

k4
3l(13,k4)+1

with the vertices e
k4
3l(13,k4)

in

Δ. Figures 46 and 47 present H
k4
30 graphically. From all the

homomorphic images presented in these figures, it is not
intricated to check that if Δk2

� 0(mod 2), then
Ω30

((Δk2/2),(Δk2/2))is the only homomorphic image which is the
mirror image of itself; otherwise, no one is the mirror image of
itself.

�is lemma can be proved by using the same procedure as
that for Lemma 28.

Lemma 31. If we contract the vertices e
k2
3l(11,k2)+1

: l(11,k2) �

1, 2, . . . ,Δk2
− 1, with the vertices e

k2
3l(11,k2)

in the circuit Δ, then
for each k2, there arise Δk2

− 1 distinct homomorphic images
of Δ and 3 pairs of contracted vertices create each homo-
morphic image. Moreover, the number of total pairs of
contracted vertices to generate all Δk2

− 1 and their mirror
homomorphic images of Δ is 6(Δk2

− 1 ).
For a fix value of k2, let

H
k2
31 � Ω31

(l(11,k2),l(11,k2))
; l(11,k2) � 1, 2, . . . ,Δk2

− 1􏼚 􏼛 be the col-
lection of homomorphic images of Δ acquired by the
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Figure 43: Homomorphic images Ω28(l(9,4) ,l(10,4))
.
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contraction of the vertices e
k2
3l(11,k2)+1

with the vertices e
k2
3l(11,k2)

in
Δ. Figures 48 and 49 present H

k2
31 graphically. From all the

homomorphic images presented in these figures, it is not
intricated to check that no one is the mirror image of itself.
�is lemma can be proved by using same procedure as that for
Lemma 23.

Let k5 � 2, 4{ }.

Lemma 32. For each k5, there are 6 (Δk5
+ Δk5+1 + 2) pairs of

contracting vertices to produce the homomorphic image of Δ
by contracting the vertex e11 with the vertex e

k5
1 .

For k5 � 2, let Ω32
2 be the homomorphic image of Δ ac-

quired by contracting the vertex e11 with the vertex e21 in Δ,
where e11 and e21 are fixed by the words
(pq− 1)Δ6(pq)Δ5(pq− 1)Δ4(pq)Δ3(pq− 1)Δ2(pq)Δ1 and
(pq− 1)Δ3(pq)Δ4(pq− 1)Δ5(pq)Δ6(pq− 1)Δ1(pq)Δ2 . It is easy to
verify that P1 � (pq− 1)Δ6(pq)Δ5(pq− 1)Δ4(pq)Δ3p and P2 �

q− 1(pq− 1)Δ2− 1(pq)Δ1 are the possible paths between e11 and e21
(Figure 4). �is implies that the homomorphic image Ω32

2 has
a vertex s fixed by P1 and P2. �us,

E
32
2 �

e, q, q
− 1

, p, pq, pq
− 1

􏼐 􏼑
1
, pq

− 1
􏼐 􏼑

1
p, pq

− 1
􏼐 􏼑

1
pq, pq

− 1
􏼐 􏼑

2
, . . . , pq

− 1
􏼐 􏼑

Δ3
p, pq

− 1
􏼐 􏼑

Δ3
pq,

pq
− 1

􏼐 􏼑
Δ3+1

, q
− 1

p􏼐 􏼑
1
, q

− 1
p􏼐 􏼑

1
q, q

− 1
p􏼐 􏼑

1
q

− 1
, . . . , q

− 1
p􏼐 􏼑
Δ2

, q
− 1

p􏼐 􏼑
Δ2

q, q
− 1

p􏼐 􏼑
Δ2

q
− 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
(26)

is the family of elements in PSL(2,Z) such that ∀w ∈ E32
2 ,Δ

contains the vertices (e11)w and (e12)w. �is gives that the
cardinality of E32

2 , that is, 3(Δ2 + Δ3 + 2) is the number of
contracted pairs of vertices to produce the homomorphic
image Ω32

2 (�eorem 2). From Figure 50, it is not intricated to

check that Ω32
2 and its mirror image Ω32∗

2 are not the same.
Hence, there are

2 × E
2
32

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 3 Δ2 + Δ3 + 2( 􏼁, (27)
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pairs of contracting vertices to produce the homomorphic
images Ω32

2 .
We can prove this lemma for k5 � 4 (Figure 51) in similar

way as that for k5 � 2.

Lemma 33. For each k3, there are 6 (Δ4 + Δ5 + 2) pairs of
contracting vertices to produce the homomorphic image of Δ
by contracting the vertex e51 with the vertex e

k3
1 .

For a fix value of k3, let Ω33
k3
be the homomorphic image of

Δ acquired by the contraction of the vertex e51 with the vertex
e

k3
1 in Δ. Figures 52 and 53 present Ω33

k3
graphically. From these

figures, it is not intricated to check that Ω33
k3
is not the mirror

image of itself.
�is lemma can be proved by using the same procedure as

that for Lemma 32.
Let k6 � 1, 2, 5{ } and k6 �

6 if k6 � 1,

3 if k6 � 2,

4 if k6 � 5.

⎧⎪⎨

⎪⎩
.

Lemma 34. For each k6, there are 6 (Δ
k6

+ 1) pairs of
contracting vertices to produce the homomorphic image of Δ
by contracting the vertex e

k6
1 with the vertex e

k6
1 .

For a fix value of k6, let Ω34
k6
be the homomorphic image of

Δ acquired by the contraction of the vertex e
k6
1 with the vertex

e
k6
1 in Δ. Figures 54, 55, and 56 present Ω34

k6
graphically. From

these figures, it is not intricated to check that Ω34
k6

is not the
mirror image of itself. �is lemma can be proved by using the
same procedure as that for Lemma 32.

Lemma 35. For each k3, there are 3 (Δk3+1 + 2Δk3+2 + 2)

pairs of contracting vertices to produce the homomorphic
image of Δ by contracting the vertex e

k3
1 with the vertex e

k3+2
1 .

For a fix value of k3, let Ω35
k3
be the homomorphic image of

Δ acquired by the contraction of the vertex e
k3
1 with the vertex

e
k3+2
1 in Δ. Figures 57(a), 57(b), and 57(c) present Ω35

1 and
Figure 58 presents Ω35

2 graphically. From these figures, it is not
intricated to check that Ω35

k3
is the mirror image of itself. �is

lemma can be proved by using the same procedure as that for
Lemma 32.

Let V(Δ × Δ) � (a, b); a, b ∈ V(Δ) and a≠ b{ }, then

|V(Δ × Δ)| �
1
2

9 Δ1 + 2Δ2 + 2Δ3 + Δ4( 􏼁 − 3 Δ1 + 2Δ2 + 2Δ3 + Δ4( 􏼁􏼂 􏼃·

(28)

We are now able to prove our primary outcome. Let

η �

4, if Δ1,Δ4( 􏼁 � (E, E),

0, if Δ1,Δ4( 􏼁 � (O, O),

− 1, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(29)

where E and O stand for even and odd, respectively.

Theorem 5. �ere are (1/4)[(Δ1 + 2Δ2 + 2Δ3 + Δ4)
2+

4(Δ1 + 2Δ2 + 2Δ3 + Δ4) + 4Δ4 + η] number of distinct
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homomorphic images acquired by the contraction of all pairs
of vertices of the circuit Δ.

Proof. Let us collect all the pairs of contracting vertices of Δ
mentioned in Lemma 1 to Lemma 35 in the form of set S as

S �

e
1
3l1+1, e

1
3Δ1􏼐 􏼑, e

2
3l1+1, e

1
3Δ1􏼐 􏼑, e

k1
3l 2,k1( )+1

, e
1
3Δ1􏼒 􏼓, e

6
3l3+1, e

1
3Δ1􏼐 􏼑, e

1
3l4+1, e

2
3Δ2􏼐 􏼑, e

2
3l5+1, e

2
3Δ2􏼐 􏼑, e

k1
3l 6,k1( )+1

, e
2
3Δ2􏼒 􏼓,

e
3
3l7+1, e

3
3Δ3􏼐 􏼑, e

4
3l7+1, e

3
3Δ3􏼐 􏼑, e

4
3l8+1, e

4
3Δ4􏼐 􏼑, e

5
3l9+1, e

4
3Δ4􏼐 􏼑, e

3
3l10+1, e

4
3Δ4􏼐 􏼑, e

2
3l1+1, e

5
3Δ5􏼐 􏼑, e

3
3l11+1, e

5
3Δ5􏼐 􏼑, e

4
3l7+1, e

5
3Δ5􏼐 􏼑,

e
5
3l12+1, e

5
3Δ5􏼐 􏼑, e

3
3l13+1, e

6
3Δ6􏼐 􏼑, e

1
3l14+1, e

1
3Δ1􏼐 􏼑, e

1
3l15+1, e

3
3Δ3􏼐 􏼑, e

k2
3l 3,k2( )+1

, e
3
3Δ3􏼒 􏼓, e

2
3l16+1, e

4
3Δ4􏼐 􏼑, e

k3
3l 4,k3( )+1

, e
6
3Δ6􏼒 􏼓,

e
1
3l4+1, e

k2
3l 5,k2( )

􏼒 􏼓, e
1
3l4+1, e

4
3l17

􏼐 􏼑, e
2
3l5+1, e

k1
3l 6,k1( )

􏼒 􏼓, e
3
3l13+1, e

4
3l7

􏼐 􏼑, e
k2
3l 7,k2( )+1

, e
k2
3l 8,k2( )

􏼒 􏼓, e
k4
3l 7,k4( )+1

, e
k4
3l 10,k4( )

􏼒 􏼓, e
k2
3l 11,k2( )+1

, e
k2
3l 12,k2( )

􏼒 􏼓,

e
k4
3l 13,k4( )+1

, e
k4
3l 13,k4( )

􏼒 􏼓, e
k2
3l 11,k2( )+1

, e
k2
3l 11,k2( )

􏼒 􏼓, e
k5
1 , e

1
1􏼐 􏼑, e

k3
1 , e

5
1􏼐 􏼑, e

k6
1 , e

k6
1􏼒 􏼓, e

k3
1 , e

k3+2
1􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (30)

Let H be the set of homomorphic images obtained by
contracting each element of S, then

H �

Ω1l1 ,Ω
2
l1

,Ω3l 2,k1( )
,Ω4l3 ,Ω

5
l4

,Ω6l5 ,Ω
7
l 6,k1( )

,Ω8l7 ,Ω
9
l7

,Ω10l8
,Ω11l9

,Ω12l10
,Ω13l1

,Ω14l11
,Ω15l7

,Ω16l12
,Ω17l13

,

Ω18l14
,Ω19l15

,Ω20l 3,k2( )
,Ω21l16

,Ω22l 4,k3( )
,Ω23

l4 ,l 5,k2( )􏼐 􏼑
,Ω24l4 ,l17( ),Ω25

l5 ,l 6,k1( )􏼐 􏼑
,Ω26l13 ,l7( ),Ω27

l 7,k2( ),l 8,k2( )􏼐 􏼑
,

Ω28
l 9,k4( ),l 10,k4( )􏼐 􏼑

,Ω29
l 11,k2( ),l 12,k2( )􏼐 􏼑

,Ω30
l 13,k4( ),l 13,k4( )􏼐 􏼑

,Ω31
l 11,k2( ),l 11,k2( )􏼐 􏼑

,Ω32k5
,Ω33k3

,Ω34k6
,Ω35k3

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

· (31)
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Figure 48: Homomorphic images Ω31(l(11,2) ,l(11,2))
.

∆1 triangles

∆ 6
 tr

ia
ng

le
s

∆ 2
 tr

ia
ng

le
s

∆ 5
 tr

ia
ng

le
s

∆ 3
 tr

ia
ng

le
s

S
∆4 – l(13,4) – 1 triangles l(13,4) – 1 triangles

Figure 47: Homomorphic images Ω30(l(13,4) ,l(13,4))
.

32 Journal of Mathematics



Let S′ be the sum of contracted pairs obtained by
contracting each element of S, then

S′ � 3 Δ22 + 3Δ2 − 2􏼐 􏼑 + 3 Δ22 + 3Δ2􏼐 􏼑 +
3
2
Δ26 + 3Δ6􏼐 􏼑 +

3
2
Δ21 + 3Δ1 − 4􏼐 􏼑 + 3 Δ22 + 3Δ2 − 4􏼐 􏼑 + 3 Δ24 + 3Δ4 − 4􏼐 􏼑

+
3
2
Δ24 + 3Δ4 − 4􏼐 􏼑 + 3 Δ24 + 3Δ4 − 2􏼐 􏼑 +

3
2
Δ25 + 3Δ5􏼐 􏼑 + 3 Δ23 + 3Δ3􏼐 􏼑 +

3
2
Δ22 + 3Δ2􏼐 􏼑 + 3 Δ23 + 3Δ3 − 2􏼐 􏼑

+ 3 Δ24 + 3Δ4 − 4􏼐 􏼑 + 3 Δ25 + 3Δ5􏼐 􏼑 +
3
2
Δ23 + 3Δ3 − 4􏼐 􏼑 + 6 Δ2 + 2( 􏼁 Δ1 − Δ2 − 1( 􏼁

+ 3 Δ4 + 2( 􏼁 Δ1 − Δ4 − 1( 􏼁

+ 6 Δ3 + 2( 􏼁 Δ2 − Δ3 − 1( 􏼁

+ 6 Δ1 − 1( 􏼁 Δ4 − 1( 􏼁 + 12 Δ3 − 1( 􏼁 Δ4 − 1( 􏼁 + 􏽘
5

k1�3
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3 Δ2k1 + 3Δk1
􏼐 􏼑 + 3 Δ2k1 + 3Δk1

− 4􏼐 􏼑 + 12 Δ2 − 1( 􏼁 Δk1
− 1􏼐 􏼑􏽨 􏽩

+ 􏽘
3

k2�2
6 Δ4 + 2( 􏼁 Δk2

− Δ4 − 1􏼐 􏼑 + 12 Δ1 − 1( 􏼁 Δk2
− 1􏼐 􏼑 + 6 Δk2

− 1􏼐 􏼑
2

+ 6 Δk2
− 1􏼐 􏼑 Δk2

− 2􏼐 􏼑 + 6 Δk2
− 1􏼐 􏼑􏼔 􏼕

+ 􏽘
2

k3�1
6 Δ5 + 2Δk3

− Δ5 − 1􏼐 􏼑 + 6 Δ4 + Δ5 + 2( 􏼁 + 3 Δk3+1 + 2Δk3+2 + 2􏼐 􏼑􏽨 􏽩 + 􏽘
4

k4�1
3 Δ2k4 − 3Δk4

+ 2􏼐 􏼑 + 3 Δk4
− 1􏼐 􏼑􏽨 􏽩

+ 􏽘
k5�2,4

6 Δk5
+ Δk5+1 + 2􏼐 􏼑􏽨 􏽩 + 􏽘

k6�1,2,5
6 Δk6

+ 1􏼐 􏼑􏽨 􏽩

�
1
2

9 Δ1 + 2Δ2 + 2Δ3 + Δ4( 􏼁 − 3 Δ1 + 2Δ2 + 2Δ3 + Δ4( 􏼁􏼂 􏼃· (32)

shows that each element of V(Δ × Δ) is contracted. Now,

|H| � Δ2 + Δ2 + Δ6 + Δ1 − 1( 􏼁 + Δ2 − 1( 􏼁 + Δ4 − 1( 􏼁 + Δ1 − 1( 􏼁 + Δ4 + Δ5 + Δ3 + Δ2 + Δ3 + Δ4 − 1( 􏼁 + Δ5 + Δ3 − 1( 􏼁

+ Δ1 − Δ2 − 1( 􏼁 +
Δ1 − Δ4 − η1

2
+ Δ2 − Δ3 − 1( 􏼁 +

1
2
Δ1 − 1( 􏼁 Δ4 − 1( 􏼁 if Δ4 � 1(mod 2)

1
2
Δ1 − 1( 􏼁 Δ4 − 1( 􏼁 + 1 − η3􏼂 􏼃 if Δ4 � 0(mod 2)

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

+ Δ3 − 1( 􏼁 Δ4 − 1( 􏼁
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Figure 51: Homomorphic image Ω324 .
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+ 􏽘
5

k1�3
Δk1

+ Δk1
− 1􏼐 􏼑 + Δ2 − 1( 􏼁 Δk1

− 1􏼐 􏼑􏽨 􏽩 + 􏽘
5

k1�3
Δk2

− Δ4 − 1􏼐 􏼑 + Δ1 − 1( 􏼁 Δk2
− 1􏼐 􏼑 +

1
2
Δk2
Δk2

− 1􏼐 􏼑 + Δk2
− 1􏼐 􏼑􏼔

+
1
2
Δk2

− 1􏼐 􏼑 Δk2
− 2􏼐 􏼑]

+ 􏽘
2

k3�1
Δk3

− Δ5 − 1 + 1 + 1􏽨 􏽩 + 􏽘
k4�1,4

1
4
Δ2k4 − 2Δk4

+ Δ 4,k4( )􏼒 􏼓 +
1
2
Δk4

− η 4,k4( )􏼒 􏼓􏼔 􏼕 + 􏽘
k5�2,4

[1] + 􏽘
k6�1,2,5

[1]

�
1
4
Δ1 + 2Δ2 + 2Δ3 + Δ4( 􏼁

2
+ 4 Δ1 + 2Δ2 + 2Δ3 + Δ4( 􏼁 + 4Δ4 + η􏽨 􏽩.

(33)
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Figure 53: Homomorphic image Ω332 .
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Figure 54: Homomorphic image Ω341 .

Journal of Mathematics 35



S

∆6 triangles

∆ 1
 tr

ia
ng

le
s

∆ 3
 tr

ia
ng

le
s

∆ 5
 tr

ia
ng

le
s

∆ 2
 –

 ∆
3 –

 1
 tr

ia
ng

le
s

∆ 4
 –

 1
 tr

ia
ng

le
s

Figure 55: Homomorphic image Ω342 .
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$e value of |H| gives the total number of homomorphic
images produced in the contraction of all pairs of vertices of
Δ. $e value of S′ guaranteed that the set H contains all
homomorphic images. □

2. Conclusion

$us, there are total (1/2)[9(Δ1 + 2Δ2 + 2Δ3 + Δ4) − 3(Δ1 +

2Δ2 + 2Δ3 + Δ4)] number of elements in V(Δ × Δ). To find
all distinct homomorphic images, we do not need to contract
each pair of vertices of V(Δ × Δ). We have to contract only
those pairs of vertices, which are in set S and they are
(1/4)[(Δ1 + 2Δ2 + 2Δ3 + Δ4)

2 + 4(Δ1 + 2Δ2 + 2Δ3 + Δ4) +

4Δ4 + η] in numbers because if we contract the pair which is
not belong to set S, we attain the homomorphic image,
which we already acquired by contracting the element of set
S.

3. Applications of Homomorphic Copies in
Lightweight Cryptography and Chemistry

$e construction of any product by using minimum re-
sources without compromising on quality is primary ob-
jective of scientists.

$e coset diagrams with 256 vertices are used in the
construction of strong 8 × 8 S-boxes [9]. In present-day
block ciphers, cryptographically secure S-boxes are designed
to attain the requirements of Shannon's necessity for per-
plexity. Substitution boxes are the fundamental segments in
numerous Feistel network-based block cryptosystems or
substitution-permutation (S-P) networks. $e use of 8× 8
S-boxes in block cipher is excessively costly. So, it is not
surprising that we are seeing strong progress in the field of
lightweight cryptography in recent years, for instance

PRESENT. Lightweight cryptographic calculations are uti-
lized in business items, including DESL, PRINTCIPHER,
SEA, HIGHT, PRESENT, LED, and KATAN/KTANTAN.
For instance, Keeloq is a 32-bit block cipher frequently
utilized in the automobile business. Digital signature tran-
sponder is a 40-bit block cipher, implemented in wireless
authentication systems. Since a homomorphic copy of a
graph is smaller graph with the same algebraic structure, it
can be quite handy to generate small sized S-boxes by using
homomorphic copies of the coset diagram having 256
vertices.

Interrelation of certain types of coset graphs and
structure of carbon allotropes not only highlights the con-
nection but also improvises applications in many fields.

Several forms of carbon can be found in nature. One of
the most important allotropes of carbon is fullerene which
was discovered in 1985. Fullerenes are carbon-cage-like
polyhedral molecules in which a large number of carbon
atoms are bonded in a nearly spherical symmetric config-
uration. Fullerenes Cn can be drawn for n � 20 and for all
even n≥ 24. $ey have n carbon atoms, (3n/2) bonds, 12
pentagonal faces, and (n/2) − 10 hexagonal faces. $e most
important member of the family of fullerenes is C60. Ful-
lerenes can be classified in terms of their groups of sym-
metries. $ese groups are also known as point groups. Every
element of a point group is an isometry of the Euclidian
space and so it is either a rotation around an axis or it is a
reflection in a plane. $e list of all 28 fullerene point groups
is: Ih, I, Th, Td, T, D6h, D6d, D6, D5h, D5d, D5, D3h, D3d, D3, D2h,
D2d, D2, S6, S4, C3h, C2h, C3v, C3, C2v, C2, Cs, Ci, and C1 [10].
Fullerene C60 has icosahedral symmetry, that is, the sym-
metry group is isomorphic to A5. A constructive enumer-
ation of fullerenes has been dealt in detail in [11]. $e
structure of coset graphs of fullerene C60, symmetry group
PSL(2, 5) and adjacency matrix has been explored through
the action of modular group in [12]. Another carbon allo-
trope with high permutational symmetry is allotrope D168
Schwarzite, proposed by Vanderbilt and Tersoff, which has
an automorphism group of order 168. In [13], it has been
shown that coset diagram for PSL(2, 7) points has inter-
esting relation with carbon allotrope with negative curvature
D168 Schwarzite. $e future studies may extend the present
study by investigating the homomorphic copies of the coset
graphs for PSL(2, 5) and PSL(2, 7) and their related
chemical structures.
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Nanostructures with information processing play an important role in many fields. It is an excellent approach to the application
that DNA nanostructures represented by DNA origami molecules combine with the hybrid chain reaction. In this paper, the
assignment problem is mapped to a combinatorial graph on the DNA origami substrate. .e graph has several modules
corresponding to the time efficiency matrix of the assignment problem. .e starting chain of the corresponding module is
hybridized with the hairpin structure of the starting point, and the corresponding module is opened to emit light. .e feasible
solution to the problem can be obtained by observing the light-emitting fluorescent numbers of the opened modules. .e
fluorescent numbers of all the opened modules are added up on the same origami substrate, then different opening methods in
different test tubes are compared, and the optimal solution is obtained.

1. Introduction

DNA nanostructure is being studied by more and more
scholars, and it has become the main way to construct
nanomaterials. DNA nanostructures from one-dimensional
to two-dimensional and three-dimensional structures play
an increasingly important role in related issues [1–4]. In
2006, Rothemund proposed a new DNA nano-self-assembly
method—DNA origami [5]. DNA origami is a kind of phage
DNA chain as a scaffold. We call it scaffold chain folding
back and forth using multiple stapling chains to fix the
shape, and we can get a sophisticated two-dimensional
structure. DNA origami has the advantages of high assembly
efficiency, nanostructure programmability, and nano-
structure addressability. DNA origami can construct many
complex and diverse nanostructures, and its substrate has
great advantages in assembling functional carbon nano-
tubes, nanoparticles, and proteins [6, 7]. Ke et al. designed
and constructed a tetrahedral three-dimensional molecular
container by DNA origami. .e three-dimensional molec-
ular cage has high stability and has potential application
prospects in the nanofield [8]. Tikhomirov and his team

proposed a fractal assembly method for micron-scale DNA
origami arrays with arbitrary patterns. In this paper, square
DNA origami tiles with patterns on the surface are used as
basic building units to construct patterns such as Mona Lisa
and rooster. .e construction and successful implementa-
tion of this assembly method demonstrate the addressability
of DNA origami [9]. Wang et al. used DNA origami
nanostructures to visually observe cell uptake and metastasis
of tumor cells [10]. DNA origami can construct highly
complex nanostructures, which has a wide range of potential
applications in the nanofield. In fact, DNA origami has been
widely used in logic operation, single-molecule detection,
and other fields [11, 12]. DNA origami has been used as the
basic template, carbon nanotubes, and protein structure for
the assembly of functional metal nanoparticles [13–15].

Hybrid chain reaction (HCR) is a DNA molecular
structure interaction method proposed by Dirks and Pierce
in 2004. It uses competitive hybridization between nucleic
acid probes as the energy source to self-assemble a nucleic
acid nanostructure to realize signal amplification [16].
Hybridized chain reaction can take place at room temper-
ature. It is easy to operate and has lower experimental cost.
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By combining HCRwith G-quadruplex, Dong et al. designed
a fluorescent sensor for unlabeled detection of target DNA.
When the target DNA strand exists, it opens two hairpin
probes and hybridizes them as a trigger chain. HCR forms
long double chains and releases G-quadruplex to detect
target DNA by changing the fluorescence intensity before
and after the reaction [17]. Xiao et al. designed a variety of
chemiluminescent imaging technologies aiming at the hy-
bridization chain reaction amplification of DNA micro-
arrays and adjacent binding [18]. In this paper, the correct
solution of logical circuit can be obtained on the basis of
hybrid chain reaction. Chao et al. integrated DNA origami
with the hybrid chain reaction to design a single-molecule
DNA navigator to solve the maze problem. In this design,
the 2D origami model is used as the base, and the near-end-
chain exchange cascade reaction based on the hybrid chain
reaction is used for unidirectional amplification on the base.
Finally, the correct route of the maze problem is obtained
through the atomic force microscope observation [19]. It has
been proved to have good application prospects like hybrid
chain reaction combined with DNA origami structure
[20–32].

DNA nanostructure and hybrid chain reaction were used
to design the graph on the origami substrate. .e starting
chain was put into the reaction solution and hybridized with
the hairpin structure to open the correspondingmodule..e
sequence of the DNA strand in the model is carefully
designed, which ensures that the system is stable in solution
without any reaction. By reacting with the hairpin structure
on the origami substrate in the solution, the corresponding
module is opened, and the fluorescence emits light. By
adding up the fluorescent numbers of the opened modules
on the same origami substrate, we can get the feasible
solution.

2. Background Knowledge

2.1.DNAOrigami andHybridChainReaction. DNA origami
is to fold a longM13mp18 phage DNA strand back and forth
and to use multiple short chains to fix the shape to obtain the
fine and complex structure. .e design of the DNA chain is
relatively simple, and the assembly efficiency is high..e site
selection can be achieved by redesigning the staple chain
(short chain) and scaffold chain (long chain) to complement
each other.

Hybrid chain reaction (HCR) is a new signal amplifi-
cation method proposed by Dirks and Pierce. It designs
different oligonucleotides and uses a small nucleotide chain
as an initiator to induce oligonucleotides to hybridize with
each other to form DNA with spatial structure. .e reaction
conditions are mild, and the operation is simple. .e re-
action principle is shown in Figure 1.

C 1 and C2 are two hairpin DNA strands that are stable in
solution..ey are composed of sticky ends, double-stranded
“stems,” and single-stranded loops, as shown in the left side
of Figure 1. T is the starting strand, which is a single strand of
DNA composed of two parts. When the starting chain is
added, its two segments hybridize with the sticky end, and
the stem of C1 and the hairpin segment of C1 are opened, as

shown in the middle of Figure 1. .e exposed section of C1
hybridizes with C2, and the hairpin section of C2 is opened,
as shown in the right side of Figure 1..e exposed section of
C2 continues to hybridize with the next C1, open up the
clamp structure, and repeat the reaction in turn until C1 and
C2 in the solution are exhausted. Finally, a long DNA
nanowire assembled spontaneously by alternate hybridiza-
tion of C1 and C2 is formed. Each priming strand is
equivalent to the growth site of a DNA nanowire.

2.2. Assignment Problem. .e assignment problem is a
special integer programming problem. .ere are a certain
number of tasks and the same number of people. Each
person can complete the task, but the time cost is different.
So, we need to find a way of assignment to minimize the total
time (or the total efficiency of completing the tasks is the
highest). Such problems are called assignment problems.

It is often encountered in life. Each person has different
expertise and completes the task differently, so the efficiency
is also different. In an actual assignment problem, the cost
for the i-th person to complete the j-th task is Cij. .en, n
individuals and n tasks are combined one by one to get n2
costs, which are listed into a matrix to get the coefficient
matrix of the assignment problem.

3. DNA Origami Model

3.1. Model Composition and Design. For the assignment
problem, we present a combinatorial graph of the hairpin
structure on DNA origami. It is mapped to the efficiency or
time matrix of the assignment problem. .e combination
has n × n modules, and each module has a corresponding
number of hairpin structures, corresponding to the effi-
ciency or time required for a person to complete a task in the
problem. In each module of the graph, the first chain is a
common hairpin structure, and the rest are molecular
beacons with fluorescent group and quenching group
markers, as shown in Figure 2. .e origami substrate is
represented by gray in the figure. On the origami substrate,
there are staple chains (light purple in the figure) extending
at corresponding distances, and they connect molecular
beacons and ordinary hairpin structures. .e distance be-
tween adjacent hairpin structures in each module is just the
distance that can be connected by opening the auxiliary
chain (intermediate chain). Enough space is provided be-
tween modules, which enables the same module to react
completely and avoids the interaction of different modules.

Molecular beacon and hairpin structure: they are
composed of several oligoglycosidic acid segments. A “ring”
is a single chain, two complementary segments form a
double chain, and the other segment is complementary to
the sticky end of a staple chain extending from the origami
base to fix the chain on the origami substrate. .e molecular
beacon has two more sticky ends with the luminescent
fluorescent group and quenching group than the ordinary
hairpin structure. .ey do not light up when they are not
turned on; they are only turned on while the starting chain
and auxiliary chain are added. .e molecular beacon fixed
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on the origami substrate can represent the efficiency (the
time required) of the assignment problem. In this way, it can
be used for graphic design to solve the optimal problem.

.e DNA origami substrate with the hairpin structure
can be stable in solution. To open the hairpin structure, the
corresponding starting chain is added, whose structure is
composed of two oligonucleotide fragments, as shown in
Figure 3(a). Only the corresponding starting chain can open
the corresponding hairpin structure. After opening the first
hairpin structure of each module, the intermediate chain
needs to open all the other molecular beacons in the module.
.e intermediate chain can also exist stably in the solution
without adding the starting chain. .e intermediate chain is
composed of four oligoglycosidic acid segments, as shown in
Figure 3(b).

3.2. Model Graphic Realization. According to the compo-
sition of the model, the combination graph reflecting the
assignment problem matrix is designed. .e graph has nn

modules. Each module starts with an ordinary hairpin
structure followed by the molecular beacons. .e base of the
hairpin structure at the beginning of each module is dif-
ferent, while the other molecular beacons are the same. Here,
because the hairpin structure of the first starting point of
each module can only be opened by adding the corre-
sponding starting chain, we will design themolecular beacon
of all modules after the hairpin structure of the starting point
to be the same, which can greatly simplify the design and
model construction. .e hairpin structure base of the
starting point is mostly the same as the molecular beacon

base; only the base of the molecular beacon at the binding
marker and the one at the junction of the starting chain are
different, as shown in Figure 4. In the composite pattern on
the origami substrate, all the starting hairpin structures can
be regarded as composed of five oligoglycosidic acid frag-
ments, and the subsequent molecular beacon can be
regarded as composed of five oligoglycosidic acid fragments,
fluorescent groups and quenching groups. One of them
complements the sticky end of the staple chain extending
from the base, and all the hairpins in this section have the
same structure. .e rest of the segments are shown in the
hairpin structure in Figure 4, and we mark them with letters.
.e design of three sections is the same for all hairpin
structures. .ere are two complementary segments forming
a double chain, named s and s∗ segments, respectively, and
one segment is a ring structure, named o segment. Com-
pared with the hairpin structure of the starting point, the two
sticky ends of the s and s∗ segments of the latter molecular
beacon have luminescent fluorescent groups and absorbable
fluorescence quenching groups. However, the oligoglyco-
sidic acid fragment is different that binds the starting chain
and the hairpin structure at the beginning of each module,
which is labeled ai, bi, ci,. . . For other molecular beacons,
the design of this segment is the same, and we mark it as
segment e.

Origami base and intermediate chain have been in the
solution in advance, and then the starting chain corre-
sponding to the opening module is added to the solution.
When the start chain is added, it opens the hairpin structure
of the starting point. .e opening process is shown in
Figure 5. .e corresponding section of the starting chain
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Figure 1: Basic principle of the hybrid chain reaction.

Figure 2: .e diagram of the origami substrate and hairpin structure.
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complements the corresponding section of the starting
hairpin structure to open the hairpin structure. Corre-
spondingly, the starting hairpin structure and the inter-
mediate chain complement each other and then open the
intermediate chain. .e intermediate chain can continue to
complement the molecular beacon, open the molecular
beacon, and make the graph luminescent.

.e biological algorithm based on the calculation model
of the hybrid chain reaction assignment problem is as
follows:

(1) For the assignment problem with n implementers
and n tasks, all possible solutions are n!, corre-
sponding to n! different opening modules’ combi-
nations of the DNA strand.

(2) Construct the combinatorial graph on DNA origami
(n) of corresponding variables, and put them in the
test tubes (n! in total). Add a set of DNA start strands
to each test tube, and perform the DNA hybrid chain
reaction.

(3) After the reaction is completed, each test tube has a
combination mode of opening the hairpin structure

module, corresponding to a task completion mode,
which is the feasible solution of the problem.

(4) By comparing the light-emitting fluorescent number
in different test tubes, the efficiency of different ways
is obtained, and then the optimal solution is
determined.

3.3. Case Analysis. To illustrate the feasibility of DNA
computing to solve the assignment problem, an example of
an assignment problem is given to verify it.

.e calculation process of the assignment problem with
an efficiency value in Table 1 is as follows.

It can be seen from the above algorithm that, for the
assignment problem of three implementers completing three
tasks, all possible solutions are 3!� 6, corresponding to the
DNA origami base combination graph composed of nine
modules. Each module is composed of a common hairpin
structure at the starting point and a luminous molecular
beacon at the back. .e number of molecular beacons
corresponds to the efficiency of an implementer to complete
a task. Because the possible solutions are 6, the designed
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origami substrate is put into 6 test tubes. A set of promoter
chains were added to each tube and hybridized at room
temperature. Each group of chains is the starting chain
corresponding to three modules in different rows and col-
umns. In this way, in each test tube, three modules in
different rows and columns are opened to emit light. After
the reaction, the DNA strand on the origami substrate is
shown in Figure 6. By observing the fluorescent number of
each tube, the one with the least fluorescent number is the
optimal solution. Finally, the origami base with the least
open fluorescent number is a1, b2, c3, that is, the optimal
solution is (1, 0, 0, 0, 1, 0, 0, 0, 0, 1).

4. Simulation

In this paper, a DNA origami model based on the DNA
nanostructure is constructed, which can be used to solve
assignment problems. .e simulation results are consistent
with the expected results of the system. .e molecular
beacon was used as reactant, and the reaction concentration
gradually approached 0. .e concentration of intermediate
chain tends to be stable. .e simulation results show that the
model has good performance compared with the previous
work.

5. Conclusion

In this paper, DNA nanostructures are combined with the
hybrid chain reaction to establish a DNA origami model that
solves the assignment problem. We design the hairpin
structure on the origami base, which can solve simple as-
signment problems. By adding the starting chain, the cor-
responding module is opened to obtain the optimal solution.

With the development of molecular biology and bioengi-
neering, this method is expected to have more progress in
reusability and can be further expanded to solve more
complex problems.
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Shape Parameters

Salma Naseer,1 Muhammad Abbas ,1 Homan Emadifar ,2 Samia Bi Bi,3 Tahir Nazir,1

and Zaheer Hussain Shah4

1Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan
2Department of Mathematics, Islamic Azad University, Hamedan Branch, Hamedan, Iran
3School of Mathematical Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
4Department of Physics, University of Management and Technology, Lahore, Pakistan

Correspondence should be addressed to Homan Emadifar; homan_emadi@yahoo.com

Received 25 April 2021; Revised 5 June 2021; Accepted 19 June 2021; Published 28 June 2021

Academic Editor: Muhammad Aslam

Copyright © 2021 Salma Naseer et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we present a new class of sextic trigonometric Bernstein (ST-Bernstein, for short) basis functions with two shape
parameters along with their geometric properties which are similar to the classical Bernstein basis functions. A sextic trigo-
nometric Bézier (ST-Bézier, for short) curve with two shape parameters and their geometric characteristics is also constructed.)e
continuity constraints for the connection of two adjacent ST-Bézier curves segments are discussed. Shape control parameters can
provide an opportunity to modify the shape of curve as designer desired. Some open and closed curves are also part of this study.

1. Introduction

A Bézier curve is a parametric curve that is used to draw the
shapes in the fields of computer graphics and computer-
aided geometric design. )e Bézier curve is usually followed
by the defining polygon. )e tangent vectors direction at the
end is the same as the vector defined by the first and last
segment of the Bézier curves. It is useful in many industrial
and engineering fields with various applications. Since
Bézier curve always mimics the shape of its control polygon,
designers can easily attain the required shape for designing
purposes.

)e trigonometric Bézier curves got a lot of attention in
the fields of computer graphics and computer-aided geo-
metric design due to their construction of conic section.
Bézier curve with two parameters and control point was
introduced by Kun [1], but the behavior of curve was not
symmetric. )e generalized Bézier-like curve with all of its
geometric characteristics and continuity conditions is de-
scribed by Yan and Liang [2]. )ey also applied the gen-
eralized Bézier-like curve for the tensor product surfaces to

gain access for triangular surfaces as well. )e modeling of
innovative surfaces based on stream curves was described by
Liu et al. [3]. By extending the concept of Bézier curve, Li [4]
defined alpha-Bézier-like curves of degree n with shape
control parameters. )e properties and applications of al-
pha-Bézier-like curves are also given. Han et al. [5–7] in-
troduced some cubic and quartic trigonometric Bézier
curves. )ey created an ellipse by using a cubic trigono-
metric Bézier curve and some designing and geometric
modeling also made by continuity conditions. )e behavior
of shape control parameters also examined on these Bézier
curves. Xiujuan et al. [8] investigated special revolution
surfaces and their dramatic improvement. Bashir et al. [9]
derived a class of quasi-quantic trigonometric Bézier curves
with two shape parameters and proved their geometric
features. )e properties of the basis functions and curves are
established, and the effect of the shape control parameters is
also discussed. Practical applications of Bézier curves in
geometric modeling and engineering are limited due to their
shortcomings, and much work has been done to resolve
these shortcomings [10–16].
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BiBi et al. [17, 18] suggested a newmethod for solving the
problem of constructing symmetric curves and surfaces by
using GHT-Bézier curves with four different shape pa-
rameters.)e shape of curves can easily bemodified by using
different values of shape parameters. )ey generated some
free-form complex curves with parametric continuity con-
ditions by using GHT-Bézier curves to demonstrate the
efficiency of modeling. Yan and Liang [2] used the recursive
technique to create the rectangular Bézier curve and surface
based on a new class of polynomial basis functions with one
shape parameter. Hu et al. [19] presented a novel scheme to
generate free-form complex figures using shape-adjustable
generalized (SG) Bézier curves with some geometric con-
tinuities conditions. )ey constructed the necessary and
sufficient constraints for G1 and G2 continuity for con-
nection of two adjacent SG-Bézier curves to overcome the
difficulty that most of the composite curves in engineering
cannot often be constructed by using only a single curve.
Majeed and Qayyum [20] presented the cubic and rational
cubic trigonometric B-spline curves using new trigono-
metric functions with shape parameter.)e proposed curves
inherit the basic properties of classical B-spline and have
been proved. Misro et al. [21] developed the general tech-
nique to construct S- and C-shaped transition curves using
cubic trigonometric Bézier Curve with two shape parameters
which satisfy G2 Hermite condition. Misro et al. [22] con-
structed a new quintic trigonometric Bézier curve that has
the potential to estimate the maximum driving speed
allowed for safe driving on roads.)e shape parameters used
in this trigonometric Bézier function provided more flexi-
bility for users in designing highways. )e trigonometric
Bézier curve of fifth degree with two shape parameters has
been presented by Misro et al. [23]. Shape parameters
provided more control on the shape of the curve compared
to the classical Bézier curve. Juhász and Róth [24] presented
a scheme for interpolating the given set of data points with
Cn continuous trigonometric spline curves of order n + 1
which are produced by blending elliptical arcs with global
parameter α ∈ (0, π). Zhu and Han [25] constructed four
new trigonometric Bernstein-like basis functions with two
exponential shape parameters, based on which a class of
trigonometric Bézier-like curves, similar to the cubic Bézier
curves, have also been developed. )e trigonometric Bézier-
like curves corner cutting algorithm was also constructed.
Yan and Liang [26] presented a new kind of algebraic-
trigonometric blended spline curve, called xyB curves. )e
proposed curves not only inherit most properties of classical
cubic B-spline curves in polynomial space but also enjoy
some other advantageous properties for modeling.

In this article, the research begins with the development
of new ST-Bernstein basis functions with two shape control
parameters.)is study also provides a guarantee to construct
a new ST-Bézier curve with two shape parameters.)e newly
constructed curves share all geometric properties of classical
Bézier curves except the shape modification property, which
is superior to the classical Bézier curve. )e C2 and G2

continuity constraints are constructed to connect the two
adjacent ST-Bézier curves segments. Moreover, in contrast
with classical Bézier curves, our proposed scheme gives more

shape adjustability in curve designing. Several examples are
presented to show that the proposed method has high ap-
plied values in geometric modeling in terms of some closed
and open curves.

)e remainder of the paper is organized as follows. In
Section 2, the new ST-Bernstein basis functions with two
parameters are presented, which possess all geometric
properties. In Section 3, the graphical representation of ST-
Bézier curve with all geometric properties is given. )e
parametric and geometric continuity conditions with shape
control parameters are given in Section 5. Shape control on
ST-Bézier curve via shape parameters is given in Section 4.
In Section 6, some application to construction of some
closed and open curves is given with multiple shape control
parameters. Finally, concluding remarks of this work are
given in Section 7.

2. Sextic Trigonometric Bernstein
Basis Functions

In this section, the ST-Bernstein basis function with two
shape parameters μ,ω and their geometric properties is
discussed.

Definition 1. For η ∈ [0, π/2], the ST-Bernstein basis
function with two shape parameters μ,ω ∈ [− 4, 1] is defined
by

Φ0(η) � (1 − sin η)
4
(1 − μ sin η),

Φ1(η) � sin η(1 − sin η)
3
(4 + μ(1 − sin η)),

Φ2(η) � sin2 η(1 − sin η)
2
(6 + μ(1 − sin η)),

Φ3(η) � 1 − Φ0(η) − Φ1(η) − Φ2(η) − Φ4(η) − Φ5(η) − Φ6(η),

Φ4(η) � cos2 η(1 − cos η)
2
(6 + ω(1 − cos η)),

Φ5(η) � cos η(1 − cos η)
3
(4 + ω(1 − cos η)),

Φ6(η) � (1 − cos η)
4
(1 − ω cos η).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

)e graphical representation of ST-Bernstein basis
functions is given in Figure 1. By changing the values of
shape control parameters, the variation in graphs of ST-
Bernstein basis function is obvious. In Figure 1(a), the ST-
Bernstein basis functions are drawn as μ � ω � 1 (thick red),
μ � ω � 0.5 (dotted, blue), μ � ω � 0 (dot dashed, green),
μ � ω � − 1 (dashed, pink), μ � ω � − 2 (thick, purple), μ �

ω � 3 (thick, black), and μ � ω � − 4 (thick, yellow). In
Figure 1(b), the ST-Bernstein basis functions are drawn as
μ � ω � 1 (thick, red), μ � 1,ω � 0.5 (dotted, blue),
μ � 1,ω � 0 (dot dashed, green), μ � 1,ω � − 1 (dashed,
pink), μ � 1,ω � − 2 (thick, purple), μ � 1,ω � − 3 (thick,
black), and μ � 1,ω � − 4 (thick, yellow). In Figure 1(c), the
ST-Bernstein basis functions are drawn as μ � ω � 1 (thick,
red), μ � 0.5,ω � 1 (dotted, blue), μ � 0,ω � 1 (dot dashed,
green), μ � − 1,ω � 1 (dashed, pink), μ � − 2,ω � 1 (thick,
purple), μ � − 3,ω � 1 (thick, black), and μ � − 4,ω � 1
(thick, gray).
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Theorem 1. 1e ST-Bernstein basis functions in equation (1)
have the following geometric characteristics:

(1) Nonnegativity: Φi(η)≥ 0(i � 0, 1, . . . , 6)

(2) Partition of unity: 􏽐
6
i�0Φi(η) � 1

(3) Symmetry: Φi(η; μ,ω) � Φ6− i(π/2 − η; μ,ω)(i �

0, 1, . . . , 6)

(4) Monotonicity: for the given value of the shape pa-
rameter μ,ω, Φ0(η) is monotonically decreasing and
Φ6(η) is monotonically increasing

(5) Terminal property: Φ0(0) � 1,Φi(0) � 0,Φi(π/2) �

0,Φ6(π/2) � 1, i � 0, 1, 2, . . . , 5

Proof

(1) For η ∈ [0, π/2] and − 4≤ μ,ω≤ 1, since
(1 ± sin η)≥ 0, (1 − μ sin η)≥ 0, (1 ± cos η)≥ 0
and (1 − ω cos η)≥ 0, sin η≥ 0, cos η≥ 0, sin2 η
≥ 0, cos2 η≥ 0, this shows that Φi(η)≥ 0,

(i � 0, 1, 2, . . . , 6).
(2) It is obvious by Definition 1.
(3) For i � 0,

Φ0(η) � (1 − sin η)
4
(1 − μ sin η) � 1 − cos

π
2

− η􏼒 􏼓􏼒 􏼓
4
1 − ω cos

π
2

− η􏼒 􏼓􏼒 􏼓 � Φ6(η). (2)

For i � 1,

Φ1(η) � sin η(1 − sin η)
3
(4 + ω(1 − sin η)) � cos

π
2

− η􏼒 􏼓 1 − cos
π
2

− η􏼒 􏼓􏼒 􏼓
3
4 + ω 1 − cos

π
2

− η􏼒 􏼓􏼒 􏼓􏼒 􏼓 � Φ5(η). (3)

For i � 2,
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Figure 1: ST-Bernstein basis functions with shape parameters.
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Φ2(η) � sin2 η(1 − sin η)
2
(6 + μ(1 − sin η)) � cos2

π
2

− η􏼒 􏼓 1 − cos
π
2

− η􏼒 􏼓􏼒 􏼓
2
6 + ω 1 − cos

π
2

− η􏼒 􏼓􏼒 􏼓􏼒 􏼓 � Φ4(η).

(4)

(4) For any η0, η1 ∈ [0, π/2] such that if η0 ≤ η1 then
Φ0(η0)≥Φ0(η1), this means that Φ0(η) is mono-
tonically decreasing similarly when η0 ≤ η1 and
Φ6(η0)≥Φ6(η1), which shows that Φ6(η) is
monotonically increasing. Let f1(η) � Φ0′(η)

� − μ cos η(1 − sin η)4 − 4 cos η(1 − sin η)3(1 − μ
sin η) and f2(η) � Φ6′ (η) � ω(1 − cos η)4 sin η +

4(1 − cos η)3(1 − ω cos η)sin η, where η ∈ [0, π/2].
From the figures of the functions f1(η) and f2(η),
we can see f1(η)≤ 0 and f2(η)≥ 0 when
η ∈ [0, π/2]. )erefore, Φ0(η) and Φ6(η) are
monotonically decreasing and increasing about η,
respectively. )is can also be shown graphically in
Figure 1.

(5) When we put η � 0 and η � π/2 in Definition 1, we
get Φ0(0) � 1,Φi(0) � 0(i � 1, 2, . . . , 6),Φi(π/2) �

0(i � 0, 1, 2, . . . , ),Φ6(π/2) � 1 and the first deriva-
tives of these basis functions at their end points are
given as follows:

Φi
′(0) �

− 4 − μ, i � 0,

4 + μ, i � 1,

0, i � 2, . . . , 6,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φi
′ π
2

􏼒 􏼓 �

4 + ω, i � 6,

− 4 − ω, i � 5,

0, i � 0, . . . , 4.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

Similarly, the second derivatives of these basis functions
at their end points are given as follows (see Figure 2):

Φi
″(0) �

12 + 8μ, i � 0,

− 12 − 8μ, i � 1,

2(6 + μ), i � 2,

− 2μ, i � 3,

0, i � 4, 5, 6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φi
′ π
2

􏼒 􏼓 �

12 + 8ω, i � 6,

− 12 − 8ω, i � 5,

2(6 + ω), i � 4,

− 2ω, i � 3,

0, i � 0, 1, 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

□

3. Sextic Trigonometric Bézier Curves with Two
Shape Parameters

In this section, the ST-Bézier curves with two shape pa-
rameters μ,ω and their geometric properties are discussed.

Definition 2. For the given control points
Si(i � 0, 1, 2, . . . , 6), the curve

α(η) � 􏽘
6

i�0
SiΦi(η), η ∈ 0,

π
2

􏼔 􏼕, μ,ω ∈ [− 4, 1], (7)

is called ST-Bézier curve, where Φi(η)(i � 0, 1, 2, . . . , 6) are
called ST-Bernstein basis functions and μ,ω are the shape
parameters.

Some graphical results of ST-Bézier curve are discussed
as follows: when shape parameters vary equally, Figure 3 is
generated, while, by keeping one parameter fixed to 1,
Figure 4 is generated. In Figure 4(a), when μ � 1 and ω
varies, then influence of shape parameters can be seen on the
left side of the figure. Meanwhile when we consider ω � 1
and parameter μ varies, the influence of these parameters can
be observed on the right side of Figure 4(b).

Theorem 2. 1e ST-Bézier curves in equation (7) have the
following geometric properties:

(1) End point properties:

α(0) � S0,

α
π
2

􏼒 􏼓 � S6,

α′(0) � (4 + μ) S1 − S0( 􏼁,

α′
π
2

􏼒 􏼓 � (4 + ω) S6 − S5( 􏼁,

α″(0) � 2 2(3 + 2μ)S0 − 2(3 + 2μ)S1 +(6 + μ)S2 − μS3( 􏼁,

α″
π
2

􏼒 􏼓 � 2 2(3 + 2ω)S6 − 2(3 + 2ω)S5 +(6 + ω)S4 − ωS3( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

(2) Symmetry: the control points Si define the same ST-
Bézier curve having symmetric influence in different
parameterizations, such as

α η; μ,ω; S0, . . . , S6( 􏼁 � α
π
2

− η; μ,ω; S6, . . . , S0􏼒 􏼓. (9)

(3) Geometric invariance: the shape of ST-Bézier curve is
independent from the coordinate axis, which means

4 Journal of Mathematics



that the curve defined in equation (7) satisfies the two
following equations:

α η; μ,ω; S0 + ϑ, . . . , S6 + ϑ( 􏼁 � α η; μ,ω; S0, . . . , S6( 􏼁 + ϑ,

α η; μ,ω; S0 × ρ, . . . , S6 × ρ( 􏼁 � α η; μ,ω; S0, . . . , S6( 􏼁 × ρ.

(10)

(4) Shape control property: the shape of classical Bézier
curve cannot be modified due to absence of shape

control parameters, while the ST-Bézier curve pos-
sesses two shape parameters by which we can modify
the curve easily.

(5) Convex hull property: the ST-Bézier curve must be
confined inside the convex polygon spanned by its
control points.

(6) Linearly independent: for any bi ∈ R(i � 0, 1, . . . , 6),
consider a linear combination as follows:

0.5 1.0 1.5

–4

–2

2

4

y-axis

x-axis

f2 (η)

f1 (η)

Figure 2: Functions f1(η) and f2(η) on η ∈ [0, π/2].
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Figure 3: ST-Bézier curves with some shape parameters when μ � ω � 1, 0.5, 0, − 1, − 2, − 3, − 4.

0

S1

S0 S6

S2 S3 S4

S5

2 3 4 5 6

1

2

3

4
y-axis

x-axis

(a)

S1

S0 S6

S2 S3 S4

S5

1

2

3

4

0 2 3 4 5 6
x-axis

y-axis

(b)

Figure 4: ST-Bézier curves with different shape parameters. (a) μ � 1,ω � 1, 0.5, 0, − 1, − 2, − 3, − 4. (b) ω � 1, μ � 1, 0.5, 0, − 1, − 2, − 3, − 4.
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􏽘

6

i�0
biΦi(η) � 0, η ∈ 0,

π
2

􏼔 􏼕. (11)

Taking 1st, 2nd, 3rd ,. . ., 6th derivatives of the above
equation with respect to η on each side yields the following
equations:

􏽘

6

i�0
biΦi
′(η) � 0,

􏽘

6

i�0
biΦi
″(η) � 0,

􏽘

6

i�0
biΦ
′″
i(η) � 0,

􏽘

6

i�0
biΦ

(iv)
i (η) � 0,

􏽘

6

i�0
biΦ

(v)
i (η) � 0,

􏽘

6

i�0
biΦ

(vi)
i (η) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

When η � 0, we have

􏽘
6

i�0
biΦi
′(0) � 0,

􏽘

6

i�0
biΦi
″(0) � 0,

􏽘

6

i�0
biΦ
′″
i(0) � 0,

􏽘

6

i�0
biΦ

(iv)
i (0) � 0,

􏽘

6

i�0
biΦ

(v)
i (0) � 0,

􏽘

6

i�0
biΦ

(vi)
i (0) � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

By using the values of the 1st, 2nd, 3rd,. . ., 6th-order
derivatives of ST-Bernstein basis functions at η � 0, we get
bi � 0(i � 0, 1, . . . , 6); this fact shows that Φi(η)(i �

0, 1, . . . , 6) are linearly independent.

4. Shape Control of the ST-Bézier Curve

As we know, the shape parameters help us to modify the
shape of the curve within which lies inside the control
polygon. So, by using these shape control parameters, the
ST-Bézier curves can be modified wherever the shape does
not change at all. )e shape parameters μ,ω cause local

change in the curve; see Figure 5. In Figure 5(a), the effect on
shape of the curve is observed when μ � ω �{1 (dot dashed,
green), 0.5 (thick, red), 0 (thick, purple), − 1 (thick, blue), − 2
(thick, black), − 3 (thick, orange), and − 4 (dashed, yellow)}.
In Figure 5(b), the influence of ST-Bézier curve can be seen
on the left-hand side when ω � 1 is fixed and μ varies in the
interval [− 4,1] as μ � 1 (thick, pink), μ � 0.5 (thick, red), μ
� 0 (thick, green), μ � − 1 (thick, black), μ � − 3 (thick, or-
ange), and μ � − 4 (dashed, yellow). Similarly, Figure 5(c) is
determined with influence on the right-hand side of the
figure when μ� 1 is fixed and ω varies as ω� 1(thick, pink),
ω� 0.5 (thick, red), ω� 0 (thick, green), ω � − 1 (thick,
black), ω � − 3 (thick, orange), and ω � − 4 (dashed, yellow).

5. Continuity Conditions for ST-Bézier
Curve Segments

In this section, the continuity conditions are derived for
smooth joining of two ST-Bézier curves segments.

Lemma 1 (see [15]). 1e necessary and sufficient conditions
for smooth joining of two ST-Bézier curve segments α(η) �

􏽐
6
i�0 SiΦi(η) with control points S0, . . . , S6 and shape pa-

rameters μ,ω and α1(η) � 􏽐
6
i�0 TiΦi(η) with control points

T0, . . . , T6 and shape parameters μ1,ω1 via parametric
continuity are as follows:

(1) S6 � T0, for C0 continuity
(2) S6 � T0, α′(π/2) � α1′(0), for C1 continuity
(3) S6 � T0, α′(π/2) � α1′(0), α″(π/2) � α1″(0), for C2

continuity

Lemma 2 (see [15]). 1e necessary and sufficient conditions
for smooth joining of two ST-Bézier curve segments α(η) �

􏽐
6
i�0 SiΦi(η) with control points S0, . . . , S6 and shape pa-

rameters μ,ω and α(η) � 􏽐
6
i�0 TiΦi(η) with control points

T0, . . . , T6 and shape parameters μ1,ω1 via geometric con-
tinuity are as follows:

(1) S6 � T0, for G0 continuity
(2) S6 � T0, α′ � λα1′(π/2), λ> 0, for G1 continuity
(3) S6 � T0, α′(π/2) � λα1′(0), λ> 0 and the curvature

κ(π/2) � |α′(π/2) × α″(π/2)| / |α′(π/2)|3 � |α1′(0)×

α1″(0)|/|α1′(0)|3 � κ1(0), for G2 continuity

Theorem 3. Suppose that any two adjacent segments of ST-
Bézier curves α(η) � 􏽐

6
i�0 SiΦi(η) and α(η) � 􏽐

6
i�0 TiΦi(η)

with control points S0, . . . , S6 and T0, . . . , T6 reach Ck, k �

0, 1, 2 smooth continuities at joint point if they match the
following necessary and sufficient conditions:

(1) S6 � T0 for C0 continuity.
(2) For C1 continuity,

S6 � T0, T1 �
− 4S5 − ωS5 + 8S6 + μ1S6 + ωS6

4 + μ1
. (14)

(3) For C2 continuity,
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S6 � T0,

T1 �
− 4S5 − ωS5 + 8S6 + μ1S6 + ωS6

4 + μ1
,

T2 �
6(4 + μ1)S3 − 4(24 + 7ω + μ1(7 + 2ω)) S5 − S6( 􏼁 + μ1(4 + μ1)T3

(4 + μ1)(6 + μ1)
.

(15)

Proof
(1) Using α(π/2) � α1(0), we get S6 � T0. C0 continuity

is achieved.

(2) For C1 continuity, we must have C0 continuity first
to get S6 � T0, and α′(π/2) � α1′(0) can be used to get
T1 � − 4S5 − ωS5 + 8S6 + μ1S6 + ωS6/4 + μ1.
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Figure 5: Effect on shape of the curve by changing the shape parameters. (a) ω � μ � 1, 0.5, 0, − 1, − 2, − 3, − 4. (b) μ � 1 andω �

1, 0.5, 0, − 1, − 2, − 3, − 4. (c) ω � 1 and μ � 1, 0.5, 0, − 1, − 2, − 3, − 4.

Journal of Mathematics 7



(3) For C2 continuity, we must have C0 continuity and
C1 continuity conditions; additionally the condition
α″(π/2) � α1(0) is used to get

S6 � T0,

T1 �
− 4S5 − ωS5 + 8S6 + μ1S6 + ωS6

4 + μ1
,

T2 �
6(4 + μ1)S3 − 4(24 + 7ω + μ1(7 + 2ω)) S5 − S6( 􏼁 + μ1(4 + μ1)T3

(4 + μ1)(6 + μ1)
.

(16)

□

5.1. C0 Continuity of ST-Bézier Curve. For C0 parametric
continuity, we consider any two ST-Bézier curve segments
having the same joint point. In this case, the last control
point of initial curve and the first control point of second
curve are the same. By changing the values of control pa-
rameters, we can see the variation in figures. )e values of
different shape control parameters are used to modify the
shape of values; see Figure 6.

5.2. C1 Continuity of ST-Bézier Curve. For parametric
continuity of degree 1, consider two adjacent ST-Bézier
curve segments with shape control parameters. In this case,
we should have common tangents of the two curve segments
at joint point. )e first two control points of second curve
can be achieved as given in)eorem 3. Figures 7(a)–7(c) can
be obtained by varying the shape control parameters via C1

continuity constraints.

5.3.C2 Continuity of ST-Bézier Curve. )e C2 continuity can
be achieved by connecting two adjacent ST-Bézier curve
segments if they fulfill the C0 and C1 continuity conditions.
)e second derivative of these segments at joint point must
be the same as that ofC2 continuity.)e control points of the
first curve can be chosen according to the designer’s

requirement, while the control points for the second curve
can be obtained from )eorem 3. Different values of shape
control parameters can be used to obtain different curves as
given in Figure 8.

6. Geometric Continuity of ST-Bézier Curve

To get more smoothness between any two adjacent ST-
Bézier curves, geometric continuity conditions have been
derived. In geometric continuity conditions, one extra pa-
rameter is involved, which is used for the modification of the
curve.

Theorem 4. Suppose that two adjacent segments of ST-Bézier
curve α(η) � 􏽐

6
i�0 SiΦi(η) and α(η) � 􏽐

6
i�0 TiΦi(η) with

control points S0, . . . , S6 and T0, . . . , T6, respectively, can be
connected via Gk, k � 0, 1, 2 smooth continuities at joint point
if they match the following necessary and sufficient conditions:

(1) S6 � T0, for G0 continuity.
(2) S6 � T0, T1 � − 4S5 − ωS5 + 4S6 + ωS6 + 4λS6 + μ1λ

S6/(4 + μ1)λ, for G1 continuity.
(3) S6 � T0, T1 � − 4S5 − ωS5 + 4S6 + ωS6+

4λS6 + μ1λS6/(4 + μ1)λ,

T2 �
1

2(4 + μ1)(6 + μ1)λ3
12(4 + μ1)λS3 + (4 + μ1)(4 + ω)β − 8(4 + μ1)(3 + ω)λ − 8(3 + μ1)(4 + ω)λ2􏼐 􏼑S5􏼐􏼨

+ − (4 + μ1)(4 + ω)β + 4λ
(4 + μ1)(3 + 2ω)

+2(3 + μ1)(4 + ω)λ + 3(4 + μ1)λ2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠S6 + 2μ1(4 + μ1)λ3T3

⎞⎠,

(17)

for G2 continuity.

Proof

1. For G0 continuity, α(π/2) � α1(0) yields S6 � T0.
(2) For G1 continuity, the expressions α(π/2) � α1(0)

and α(π/2) � λα′(0), λ> 0, yield S6 � T0,

T1 � − 4S5 − ωS5 + 4S6 + ωS6 + 4λS6 + μ1λS6/(4+

μ1)λ.

(3) For G2 continuity, as we know that
α(π/2) � S6 � T0 � α1(0), α′(π/2) � λα1′(0), λ> 0,
and the reverse normal vector D � α′(π/
2) × α″(π/2) of α(η) and vice normal vector D1 �

α1′(0) × α1″(0) of α1(η) in η � π/2 have the same
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direction, the four vectors α′(π/2), α′(0),

α″(π/2), α″(0) are coplanar. So, we consider
α″(π/2) � μα1″(0) + βα1′(0), where μ, β> 0 are

arbitrarily constants. Since the curvatures at the final
point of the first curve and at the initial point of the
second curve are the same,

κ
π
2

􏼒 􏼓 �
α′(π/2) × α″(π/2)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

α′(π/2)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3 �

λμ α1′(0) × α1″(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

λ3 α1′(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3 �

α1′(0) × α1″(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

α1′(0)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
3 � κ1(0), (18)

where μ � λ2, to meet the G2 continuity
conditions. □

6.1. G1 Continuity of ST-Bézier Curve. C0 and G0 both have
the same significance. For G1 continuity, the tangents of the
first curve and the second curve at joint point are the same.
)e parameter λ is any positive scale factor which is used for
modification of curves. In Figure 9, by having different

values of shape control parameters, the variation in figures
can be seen.

6.2. G2 Continuity of ST-Bézier Curve. )e geometric con-
tinuity of degree 2 between any two adjacent ST-Bézier
curves is given here. Different figures display the behavior of
various shape parameters and scale factors. In Figures 9(a)–
9(c), the shape parameters for both curves vary, while the
scale factors remain fixed. In Figures 10(a)–10(d), the shape
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Figure 6: C0 continuity of ST-Bézier curve segments with various shape parameters.
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parameters for both curves remain the same, while by
changing the scale factors of the second curve the variation
in the figures is obvious.

7. Construction of Some Closed and
Open Curves

Modeling and shape designing play a very important role in
CAGD/CAD. ST-Bézier curves are also very useful for
modeling and construction. So, by using ST-Bézier curves
with various shape control parameters, we can construct
some closed curves as shown in Figure 11. In Figure 11(a),
closed curves are generated by using ST-Bézier curve when
μ � ω � 1 (dot dashed, green), 0.5 (thick, red), 0 (thick,
purple), − 1 (thick, blue), − 2 (thick, black), − 3 (thick, or-
ange), and − 4 (dashed, yellow). Similarly, in Figures 11(b)
and 11(c), some closed curves are obtained by continuity
conditions when μ � ω � 1 (dot dashed, green), ω � 1, μ �

0.5 (thick, red), ω � 1, μ � 0 (thick, purple), ω � 1, μ � 1
(thick, blue), ω � 1, μ � − 2 (thick, black), ω � 1, μ � − 3
(thick, orange), and ω � 1, μ � − 4 (dashed, yellow). By
having different values of shape parameters, the influence
can be seen as in Figures 11(a)–11(c). By using ST-Bézier
curves with various shape control parameters, we can
construct some open curves as shown in Figure 12. In
Figure 12(a), the open curve is generated by using ST-Bézier
curve when μ � ω � 1 (dot dashed, green), 0.5 (thick, red), 0
(thick, purple), − 1 (thick, blue), − 2 (thick, black), − 3 (thick,
orange), and − 4 (dashed, yellow). Similarly, in Figures 12(b)
and 12(c), some open curves are obtained by continuity
conditions when μ � ω � 1 (dot dashed, green), ω � 1, μ �

0.5 (thick, red), ω � 1, μ � 0 (thick, purple), ω � 1, μ � 1
(thick, blue), ω � 1, μ � − 2 (thick, black), ω � 1, μ � − 3
(thick, orange), and ω � 1, μ � − 4 (dashed, yellow). By
having different values of shape parameters, the influence
can be seen as in Figures 12(a)–12(c).
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Figure 7: C1 continuity of ST-Bézier curve segments with various shape parameters. (a) μ � ω � μ1 � ω1, 0, 0.5, 1, − 0.5, − 1, − 1.5. (b)
μ � ω � 0, 0.5, 1, 0.5, − 1, − 1.5, μ1 � ω1 � 0. (c) μ1 � ω1 � 0, 0.5, 1, − 0.5, − 1, − 1.5, μ1 � ω1 � 0.

10 Journal of Mathematics



1 2 3 4 5 6
x

–2

–3

–4

–1

1

2

y

S0

S1

S2 S4

S5

S6 T0

T3

T4

T5

T6

S3

(a)

1 2 3 4 5 6
x

–2

–3

–4

–1

1

2

y

S0

S1

S2 S4

S5

S6 T0

T3

T4

T5

T6

S3

(b)

1 2 3 4 5 6
x

–2

–3

–1

1

2

y

S0

S1

S2 S4

S5

S6 T0

T3

T4

T5

T6

S3

(c)

Figure 8: C2 continuity of ST-Bézier curve segments with various shape parameters. (a) μ � ω � μ1 � ω1 � 0, 0.5, 0.2, − 0.5. (b) μ �
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Figure 9:G1 continuity of ST-Bézier curve segments with various shape parameters. (a) μ � ω � μ1 � ω1 � 0, 0.5, 1, − 1, − 1.5, − 2, λ � 1.2. (b)
μ � ω � 0, 0.5, 1, − 0.5, − 1, − 1.5, μ1 � ω1 � 0, λ � 1.2. (c) μ1 � ω1 � 0, 0.5, 1, − 0.5, − 1, 1.5, μ � ω � 0, λ � 1.2. (d) μ1 � ω1 � μ � ω � 0, λ �

1.2, 1.4, 1.6, 1.8, 2.2, 2.4, 2.8.
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Figure 10: Continued.
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Figure 10: G2 continuity of ST-Bézier curve segments with various shape parameters. (a) μ � ω � μ1 � ω1 � 0, 0.2, 0.5, 0.6, 0.8, λ �

1.8, β � 1.1. (b) μ1 � ω1 � 0, λ � 1.8, β � 1.1, μ � ω � 0, 0.2, 0.5, 0.6, 0.8. (c) μ � ω � μ1 � ω1 � 0, β � 1.1, λ � 1.2, 1.4, 1.6, 1.8, 2.2, 2.4. (d) μ
� ω � μ1 � ω1 � 0, β � 1.1, 1.5, 2.1, 2.7, 3.2, 3.8, λ � 1.2.
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Figure 11: Construction of some closed curves by different values of shape parameters. (a) μ � ω � 1, 0.5, 0, − 1, − 2, − 3, − 4. (b) ω �
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Figure 12: Continued.
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8. Conclusions

In this research, a newly constructed ST-Bernstein basis
and Bézier curve with two shape parameters has been
proposed. It can be concluded that its geometric properties
are similar to those of the classical Bézier curve. )e shape
of the curve can be regulated by changing the values of
shape parameters. )e suggested curve can be used to
create open and closed curves with different values of shape
parameter. )e parametric and geometric continuities for
two adjacent ST-Bézier curves are also presented, which
demonstrate the efficiency of adjoining the ST-Bézier
curves.
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During the process of jujube planting, there are not only natural risks caused by natural disasters but also market risks caused by
price factors. In the study, firstly, wavelet analysis method was used to stabilize the jujube yield per unit area and the jujube price
from 1997 to 2018 in Aksu region, Xinjiang, China. Secondly, EasyFit software was used to fit the distribution functions of yield
per unit area and price, respectively.2irdly, the optimal Copula function which connects the marginal distribution functions and
its joint distribution function was selected with the principle of “the minimum square distance from the empirical Copula
function.” Finally, taking the premium rate and the insurance amount as two decision variables, the farmer’s risk minimization as
the objective function, around the four constraints of functions and role of insurance, the nonspeculative nature of insurance, the
sustainability of insurance, and the moral hazard factors and the farmers’ willing to participate in insurance, the Copula-stochastic
optimization model was set up to determine the premium rate of jujube revenue insurance in Aksu region.

1. Introduction

“2e world’s red dates are in China, and China’s red dates
are in Xinjiang.” China’s jujube planting area and output
rank first in the world. As the largest fruit industry in
Xinjiang, the jujube industry is a new growth point of rural
economy in southern Xinjiang and an important way to
increase farmers’ income. However, due to the existence of
natural disasters such as harmful organisms, low tempera-
ture and freezing damage, strong wind and dust, and market
price, the development of the jujube industry in southern
Xinjiang is directly affected. For this reason, the local
governments actively explore safeguard measures. In years
of production practice, the importance of agricultural in-
surance in the development of Xinjiang characteristic fruit
industry has been gradually recognized [1].

In 2018, Xinjiang’s jujube planting area accounted for
nearly 50% of China’s total, and the planting area of jujube in
Xinjiang wasmainly concentrated around the Tarim Basin in
southern Xinjiang, and Aksu region accounted for about
20%. Aiming at the situation of rapid development of fruit
industry in Aksu region, in order to ensure fruit growers’
income and prevent natural disasters, Xinjiang government
launched pilot insurance policy for characteristic fruit in-
dustry in 2010. Aksu city was selected as the pilot county and
city. It adopted the form of fixed insurance with an insurance
amount of 15,000 Yuan per hectare, with a premium rate of
9%, covering jujube, apple, pear, etc., and the premium
subsidy ratio was 65% from the regional government, 15%
from the regional and municipal government, and 20% from
farmers. In 2020, the policy of policy-based forest and fruit
industry insurance award and subsidy benefiting the people
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implemented in Aksu region, with an insurance amount of
24,000 Yuan per hectare and a premium rate of 6%. 2e
insurance premium subsidy ratio was 30% subsidized by the
central government, 35% subsidized by the autonomous
region, 15% subsidized by the prefectural and county gov-
ernments (no more than 5% in counties or cities), and 20%
subsidized by fruit farmers. Reasonable premium rate will
directly affect whether the local fruit insurance can be
carried out smoothly and directly determine whether ag-
ricultural insurance can play a role in escorting the fruit
industry.

Agricultural insurance is an effective mechanism for
avoiding and apportioning agricultural risks, which is one of
the effective tools for promoting agricultural development
and one of the core ways of modern agricultural risk
management [2, 3]. And, agricultural insurance belongs to
the “green box policy” of WTO. Revenue insurance, which
combines yield risk with price risk, has become one of the
most popular types of insurance in the United States [4, 5].
Since 2007, agricultural insurance has appeared in China’s
Document No. 1 of the Central Government for many
consecutive years. China has appeared for many years in a
row. In 2016, it was proposed to explore the revenue in-
surance pilot, and in 2019, it was proposed to promote the
revenue insurance pilot program for agricultural products
[6].

At present, the literature and materials for the deter-
mination of crop revenue insurance rate all adopt the mode
of “fitting the marginal distribution functions of yield per
unit area and price—selecting the optimal Copula func-
tion—Monte Carlo simulation” to determine the rate [7–17].
But the Monte Carlo simulation method is a computer
simulation method, and its basic idea is to replace the
probability with the frequency of random events and obtain
some digital characteristics of the random variable through
the generation of random number. 2e Monte Carlo sim-
ulation method is easy to implement and can obtain the
estimate of these digital features through a large number of
“experiments,” but the results are not stable and will be
certain deviation with the difference of “number of
experiments.”

Stochastic optimization method is an optimization
method with random variables [18]. Compared with the
Monte Carlo simulationmethod, the stochastic optimization
method preserves the randomness of random variables in
the model to a greater extent. By analyzing the correlation of
random variables, determining decision variables, defining
the objective function, and constructing the constraint
conditions, the stochastic optimization model is established
to obtain the final results.

2. Copula Functions

2e Copula function (also known as the join or dependent
function) is a function that connects the marginal distri-
butions and the joint distribution. In 1959, Sklar first
proposed Copula theory, and Elizabeth applied it in the field
of crop yield insurance in 2002. In recent years, it has been
gradually applied in the field of income insurance. In 2006,

Nelsen [19] gave the definition of 2-element copulas—a 2-
element copula is a function with the following properties:
(i) the domain of definition is [0, 1]2; (ii) C is grounded and
is 2-increasing; (iii) For every u and v in [0,1], C (u, 1)� u
and C (1, v)� v.

2.1. Sklar’s 1eorem [19]. Let H is a joint distribution
function with margins F andG.2en, there exists a Copula C
such that, for all x, y ∈(− ∞, +∞) andH(x, y)�C(F(x),G(y)).
If F and G are continuous, then C is unique; otherwise, C is
uniquely determined on RanF×RanG. Conversely, if C is a
copula and F and G are distribution functions, then the
function H defined by H(x, y)�C(F(x), G(y)) is a joint
distribution function with margins F and G.

Sklar’s theorem guarantees the existence and uniqueness
of copulas, through which the edge distribution of crop yield
per unit area and price can be connected to its joint dis-
tribution function.

3. Data Source and Processing

3.1. Data Source. In this paper, the data of planting area,
output value, and yield of jujube are all from Aksu Statistical
Yearbook (1998–2019), and the sample time is from 1997 to
2018. 2e jujube is not divided into varieties or grades. 2e
data of jujube in Aksu region uniformly adopts the sum of
the data of 7 counties and 2 cities under the jurisdiction of
Aksu region as the corresponding data. According to the
growth law of jujube, the grafted jujube trees will bear fruit in
the same year (the second year after planting) and enter the
full fruit period from the 4th year, and the yield is relatively
stable from about the 6th year after planting. In this paper,
the jujube output value in the current year is divided by the
jujube yield as the jujube price in the current year. Since
jujube is a perennial fruit tree, the calculation of yield per
unit area is different from that of annual crops. 2e increase
of nonbearing jujube trees and the reduction of the age of
jujube trees is not clear, and other problems all affect the
yield per unit area of jujube trees. And, considering the
actual situation of Chinese jujube cultivation of Aksu region
in Xinjiang and the situation of steady production after bear
fruit, we calculated the yield per unit area of jujube by re-
ferring to the calculation method of apple yield per unit area
used by Wu and Wang [7] in the study of apple insurance
rage calculation in Aksu region. In other words, the planting
area of jujube trees in 1997 was taken as the planting area of
actual output of jujube trees in 2002, and then it was cal-
culated in turn with a period of 6 years.

3.2. Data Processing. Since the Copula function is used, the
per unit area yield and price data are required to be stable.
2erefore, SAS software is first used to conduct a stabili-
zation test on the yield per unit area and price data of jujube
trees, and it is found that these two sequences are not stable.
2e following is to consider the stabilization processing of
the data.

For the stabilization of time series, there are both time
domain analysis for the time trend of the series, such as
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various linear or nonlinear trend models and frequency
domain analysis for the fluctuation frequency of the sta-
tionary series at specific time points, such as Fourier
transform. However, in actual production, the variation law
of crop yield per unit area and price series is often more
complex, which not only increases with the improvement of
agricultural technology but also randomly fluctuates due to
natural disasters and other conditions. 2erefore, it is biased
to adopt a simple time-domain analysis or frequency-do-
main analysis [20]. Wavelet analysis has the characteristics
of multiresolution, which can decompose the signal into low
frequency region and high frequency region. 2e analysis in
time domain and frequency domain is more suitable for the
stabilization of time series.

In this paper, wavelet multiresolution analysis is used to
decompose the time series into multiple layers to separate
the trend term and fluctuation term. Its essence is to de-
compose and reconstruct the nonstationary time series. 2e
time series is decomposed into large-scale components (low-
frequency signals, i.e., trend items) and small-scale com-
ponents (high-frequency signals, i.e., wave items), and the
superposition of the corresponding large-scale components
and small-scale components is the original sequence, i.e.,

S � A1 + D1 � A2 + D1 + D2 � A3 + D1 + D2 + D3 � · · · ,

(1)

where S represents the original nonstationary time series,
Ai(i � 1, 2, . . . , ) represents the trend term of the nonsta-
tionary time series, and Dj(j � 1, 2, . . . , ) represents the
fluctuation term of the nonstationary time series.

Using the wavelet toolbox of MATLAB software, the
tightly supported orthogonal wavelet SMy8 wavelet was
selected to carry out wavelet multiresolution analysis on the
yield per unit area of jujube and the price of jujube in Aksu
region. It was found that the wave terms after two-layer
wavelet decomposition and reconstruction all passed
the ADF stabilization test. Considering the dimensional
differences between the yield per unit area and the price, Z-
score normalization was conducted for the stabilized se-
quence of fluctuation terms, and the data are shown in
Table 1.

4. Establishment of Copula-Stochastic
Optimization Model

4.1. Fit Distribution Functions of Yield perUnit Area and Price
of Jujube Tree. EasyFit software was used to fit the distri-
bution functions of the data series after the stabilization of
yield per unit area and price of jujube in Aksu region, re-
spectively. 2e results are shown in Table 2.

As can be seen from Table 2, both unit yield and price are
subject to log-logistic (3P) function, and their distribution
function is

F(y) � 1 +
β

y − c
􏼠 􏼡

α

􏼢 􏼣

− 1

, y≥ c, (2)

and the probability density function is

f(y) �
α((y − c)/β)

α− 1

β 1 +((y − c)/β)
α

􏼂 􏼃
2. (3)

4.2. Select the Optimal Copula Function. Among the
Gaussian Copula function, t-Copula function, Gumbel
Copula function, Clayton Copula function, and Frank
Copula function, the optimal Copula function was selected
with the principle of minimum the square Euclidean dis-
tance from the empirical Copula function (as shown in
Figure 1).

Empirical Copula [21]: let (xi, yi) (i� 1, 2, . . ., n) be a
sample taken from a 2-dimensional population (X, Y). 2e
empirical distribution function of X is Fn(x), and the em-
pirical distribution function of Y is Gn(y), and the empirical
Copula function is as follows:

􏽢Cn(u, v) �
1
n

􏽘

n

i�1
I Fn xi( )≤ u[ ]I Gn yi( )≤ v[ ], u, v ∈ [0, 1],

(4)

where I[·] is an indicator function,

I[Fn(xi)≤u] �
1, Fn(xi)≤ u,

0, Fn(xi)> u,
􏼨 and

I[Gn(yi)≤ v] �
1, Gn(yi)≤ v,

0, Gn(yi)> v.
􏼨

MATLAB software was used to calculate the square
Euclidean distances between the five Copula functions and
the empirical Copula functions, respectively [21]. So, Frank
Copula function was selected as the optimal Copula function
adopting the principle of minimum the square Euclidean
distance from the empirical Copula function. 2e results are
shown in Table 3.

2e distribution function of Frank Copula function is
expressed as follows:

C
α
F(u, v) � −

1
α
ln 1 +

e
− αu

− 1( 􏼁 e
− αv

− 1( 􏼁

e
− α

− 1
􏼢 􏼣, (5)

and the probability density function is expressed as follows:

c
α
F(u, v) �

α 1 − e
− α

( 􏼁e
− α(u+v)

1 − e
− α

( 􏼁 − 1 − e
− αu

( 􏼁 1 − e
− αv

( 􏼁􏼂 􏼃
2. (6)

Frank Copula function (Figure 2) has a symmetrical tail
feature, which indicates that the yield per unit area and price
of jujube trees are asymptotically independent. Kendall’s
rank correlation coefficient is − 0.1626, indicating that there
is a very weak negative correlation between yield per unit
area and price of jujube trees.

4.3. Model Preparation. Before establishing the stochastic
optimization model, variables such as compensation
amount, jujube farmers’ income, and jujube farmers’ risk
should be further clarified.
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Table 1: Z-score normalized data of fluctuation items in yield per unit area and price of jujube in Aksu region.

Time/year 2002 2003 2004 2005 2006 2007 2008 2009 2010
Yield per unit area 0.9209 − 1.2248 − 0.7132 − 0.4427 2.96 − 1.1104 − 1.0053 − 0.3387 0.8537
Price − 1.4635 2.3301 − 0.9486 0.3199 − 0.3625 0.2797 − 0.2522 − 0.9188 1.5111
Time/year 2011 2012 2013 2014 2015 2016 2017 2018 —
Yield per unit area 0.6656 − 0.5131 0.1116 − 0.3877 − 0.2682 − 0.0334 0.1674 0.3584 —
Price − 0.0232 0.1822 − 1.1625 − 0.3641 1.4938 − 0.0033 − 0.5163 − 0.1018 —

Table 2: Distribution functions and parameters of jujube yield per unit area and price in Aksu region.

2e data sequence Distribution function Parameters
Yield per unit area Log-logistic α � 3.40740, β � 1.60040, c � − 1.80370
Price Log-logistic α � 4.48300, β � 2.28600, c � − 2.45590
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Figure 1: Empirical Copula function.

Table 3: Estimation results of the optimal Copula function.

Copula function Parameter Kendall rank correlation coefficient Euclidean distance squared
Frank − 1.4956 − 0.1626 0.0120
Gumbel 1.0000 1.3575e − 06 0.0125
Clayton 1.4509e − 06 7.2543e − 07 0.0125
Gaussian − 0.3024 − 0.1955 0.0142
t − 0.3050 − 0.1973 0.0143
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Figure 2: Probability density function of Frank Copula function.
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4.3.1. Compensation Amount. After the jujube harvest pe-
riod, when the actual income of jujube farmers (the insured)
H is lower than the expected income agreed in the contract
(insurance amount) H due to the risk, the insurance
company starts the claim settlement procedure, verify the
cause of the loss and the extent of the loss, and pays the
compensation.

Compensation amount is the cost that insurance com-
pany compensates to farmer: compensation amount
I� insurance amount H − jujube farmer’s actual income H.

4.3.2. Risk. Risk is the core of this paper. How to define risk
will directly affect the result of stochastic optimization.

2e risk of jujube farmers is mainly reflected in the
volatility of yield per unit area and price of jujube trees,
which can be described by the variance of variables. 2e
greater the variance is, the greater the risk is.

In this paper, the variance of date farmers’ income from
planting dates is selected to represent the risk of jujube
farmers before insurance. 2en,

S0 � E H
2

􏼐 􏼑 − [E(H)]
2
. (7)

Select the variance of the jujube farmer’s income of
planting jujube trees H plus the compensation amount I
minus the insurance premium F (i.e., H + I − F) as the risk
after insurance. 2en,

S(x, y, Z, F) � E (H + I − F)
2

􏽨 􏽩 − [E(H + I − F)]
2
. (8)

Substitute F�ZM into the above equation, and the risks
of jujube farmers after insurance S(x, y, Z, F) are sorted out
as S(x, y, Z, M).

4.3.3. Revenue. Assuming that there is no moral hazard, the
cost L of fertilizer, pesticide, labor, and other costs of
planting one hectare of jujube is fixed. Let the probability
density function of the yield per unit area of jujube tree x is
fX(x), the probability density function of the price y is fY(y),
and the joint probability density function of the yield per
unit area and the price is f(x, y). Select the mathematical
expectation E(H) of the jujube farmer’s incomeH of planting

jujube trees minus the cost sL as the revenue N0(x, y) of
jujube farmers noninsured, i.e.,

N0(x, y) � E(H) − sL,

� B
R+

rp × rq × s × f(x, y)dxdy − sL.
(9)

After the jujube farmers purchase insurance, the addi-
tional expenditure is the insurance premium F and the
additional income is the compensation amount I. 2us, the
revenue of the farmers N(x, y) insured is obtained:

N(x, y) � N0(x, y) + I − F. (10)

4.4. Determine Constraint Conditions

(1) Determination of decision variables
In this paper, select premium rate and insurance
amount as decision variables

(2) Determination of objective function
2e target of insurance products is jujube farmers. It
is assumed that there is no moral hazard. It is as-
sumed that the cost of fertilizer, pesticide, labor, and
other costs per hectare for each hectare are fixed cost
L. Assume the income of the jujube farmer with the
planting area s is H and the fixed cost is sL. Assume
the expenditure is only the insurance premium.
2en, the objective function of the optimization
model is S(x, y, Z, M) (i.e., the risk of jujube farmers
insured).

(3) Establishment of constraint conditions
First of all, the risk of jujube farmers insured should
be lower than that of the noninsured, so as to es-
tablish constraint 1:

S(x, y, Z, M)< S0(x, y). (11)

Secondly, in order to avoid the speculative nature of
insurance, the revenue of jujube farmers insured is
limited, so that the revenue of jujube farmers insured
is lower than that noninsured so as to establish
constraint 2:

B
(x,y)|x,y∈R+ ,xy<Z{ }

(xy − F + I)f(x, y)dxdy + B
(x,y)|x,y∈R+ ,xy<Z{ }

(xy − F)f(x, y)dxdy≤B
(x,y)|x,y∈R+{ }

xyf(x, y)dxdy.

(12)

2irdly, farmers’ revenue should be improved as
much as possible; on the other hand, in order to
ensure the sustainability of insurance company
operation, the earning of insurance company should

be positive and from 0+ tend to 0. In the optimi-
zation algorithm, in order to expand the feasible
region of the algorithm, the earning interval of the
insurance company is extended to [− 0.5, 0.5], which
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is conducive to finding the optimal solution so as to
establish constraint 3:

− 0.5≤B
(x,y)|x,y∈R+ ,xy<Z{ }

(F − I)f(x, y)dxdy + B
(x,y)|x,y∈R+ ,xy≥Z{ }

Ff(x, y)dxdy≤ 0.5. (13)

Finally, the excessively high insurance amount will
promote the emergence of moral hazard behavior of
jujube farmers and also lead to the excessively high
insurance premium, which will affect the insurance
willingness of jujube farmers. 2erefore, the insur-
ance amount per hectare needs to be constrained.
According to relevant materials, the material cost of
jujube tree planting in Aksu city is 18,000 Yuan per
hectare, and the labor cost is about 12,000 Yuan per
hectare. 2erefore, the limited insurance amount is
18,000–30,000 Yuan per hectare, so as to establish
constraint 4:

18000≤Z≤ 30000. (14)

4.5. Solve the Stochastic Optimization Model

Step 1. Use MATLAB software, according to the probability
density functions of yield per unit area and price. 2e
random numbers of yield per unit area and price were
generated by simple random sampling and selection sam-
pling method, respectively.

Step 2. Use the random number obtained in Step 1 to solve
the income of jujube.

Step 3. Call the “FMINCON” function library, set the initial
value of insurance amount and premium rate as 22000 and
0.1, respectively, set the lower limit as 0 and the upper limit
as 100000 and 0.5, and solve the model.

Step 4. Calculate the risk of noninsured and insured
farmers’ by using the insurance amount and premium rate
obtained.

Use MATLAB software to solve the stochastic optimi-
zation model and obtain that, at the 100% guarantee level,
the insurance amount is 30000Yuan per hectare, the pure
premium rate is 11.33%, the gross premium rate is 16.42%,
and the premium is 4926 Yuan per hectare (according to the
subsidy ratio of the current insurance award and subsidy

scheme, jujube farmers only need to bear 985.2 Yuan per
hectare), and the risk of jujube farmers has decreased by
47.03% compared with that noninsured. 2e results are
shown in Table 4.

5. Conclusions and Policy Recommendations

5.1. Conclusions

(i) 2e stochastic optimization method can be used to
determine the crop revenue insurance rate, which is
more stable than such simulationmethods as Monte
Carlo simulation.

(ii) 2e yield per unit area and the price of jujube in
Aksu region are asymptotically independent, and
there is a weak positive correlation.

(iii) Revenue insurance plays a very important role in
risk diversification of jujube farmers, and the risk
after insurance is nearly 50% lower than that before
insurance.

(iv) Compared with the calculation result in this paper,
“under the 80% guarantee level, the insurance
amount is 24,000 Yuan per hectare, and the gross
premium rate is 9.32%,” the current policy-based
premium rate of 6% for fruit insurance is low. 2is
may be because the current policy requires com-
prehensive consideration of the six main tree va-
rieties of walnut, jujube, apricot, almond, apple, and
grape, rather than just a single variety of jujube, so
the insurance amount and premium formulated are
not targeted enough for different trees and fruits
[23].

5.2. Policy Recommendations

(1) Carry Out Jujube Revenue Insurance to Boost the
Development of the Jujube Industry. As the main
producing area of jujube in Aksu, Xinjiang is vul-
nerable to natural disasters such as hail and wind
damage. Market risks such as price factors cannot be
ignored. In recent years, the price fluctuation of

Table 4: Premium rate and risk of jujube revenue insurance in Aksu region.

Guarantee level 100 (%) 95 (%) 90 (%) 85 (%) 80 (%) 75 (%) 70 (%)
Pure premium rate 11.33 10.06 8.81 7.61 6.43 5.31 4.24
Gross premium rate 16.42 14.58 12.77 11.03 9.32 7.69 6.14
Risk reduction ratio insured 47.03 41.75 36.45 31.21 26.08 21.15 16.51
Note. gross rate�net rate× (1 + safety factor)× (1 + operating expense factor)× (1 + predetermined savings rate), safety factor is 15%, operating expense factor
is 20%, and predetermined savings rate is 5% [22].

6 Journal of Mathematics



Xinjiang jujube market is very violent, which seri-
ously affects the healthy development of jujube in-
dustry and directly affects the economic income of
jujube farmers. In order to prevent jujube farmers
from going back to poverty again, carrying out jujube
revenue insurance is necessary on the basis of the
current policy-based insurance reward and subsidy
policy of characteristic fruit industry, so as to boost
the development of jujube industry and increase the
income of jujube farmers in Xinjiang.

(2) Formulate Agricultural Insurance Policies in View of
Different Fruit Trees. Since 2010, Aksu has succes-
sively implemented the characteristic fruit industry
insurance policies, which are unified insurance
amount and unified premium rate for jujube, apple,
and other major varieties. It is convenient to cal-
culate and highly operable, but it is easy to promote
moral hazard and adverse selection which is not
conducive to the development of fruit industry [24].
Moreover, with the development of various fruit
industries, the differences in cost and price are in-
creasing. 2erefore, it is necessary to formulate
different agricultural insurance policies for different
fruit varieties.

(3) Establish the Database of Fruit Industry. 2e fruit
industry is of great significance for Xinjiang farmers
to get rid of poverty, but there is not too much data
about the fruit industry. Considering the formula-
tion of relevant policies such as agricultural insur-
ance pricing, as well as the early warning research on
industrial development and disaster early warning, it
is suggested to establish a database for the fruit
industry, which includes the disaster data of natural
disasters, the product price, and planting cost data.

(4) 1e Government Needs to Continue to Provide Fi-
nancial Subsidies for Agricultural Insurance and
Support the Development of Agricultural Insurance
such as Revenue Insurance. 2e income of Xinjiang
fruit growers is still lower in the whole country.
Considering the insurance cost in fruit industry,
insurance will increase the burden of fruit farmers,
which may affect the fruit farmers to participate in
the initiative to protect all kinds of risks. 2erefore,
finance of all levels of government may adopt the
insurance premium award and subsidy policy
implemented in the pilot at present and share the
proportion of the insurance premium of fruit
farmers [25].

(5) Increase Publicity to Enhance the Awareness of Risk
and Insurance Participation of Fruit Farmers. In
addition to the pricing factors of agricultural in-
surance, such as insurance amount and premium,
farmers’ risk awareness and insurance participation
consciousness also directly affect the implementation
of agricultural insurance system and fundamentally
determine whether the fruit insurance policy for-
mulated can really play the role of guarantee.

2erefore, the government may organize profes-
sionals to popularize various professional knowledge
and possible planting risks for fruit farmers and to
increase the publicity of the fruit industry insurance,
which can enhance the risk awareness and insurance
participation awareness of fruit farmers and fully
mobilize their enthusiasm for insurance participa-
tion, so that agricultural insurance can really play a
role in protecting the fruit industry.
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In this article, we present a new method to construct a family of (2N + 2)-point binary subdivision schemes with one tension
parameter. (e construction of the family of schemes is based on repeated local translation of points by certain displacement
vectors.(erefore, refinement rules of the (2N + 2)-point schemes are recursively obtained from refinement rules of the 2N-point
schemes. (us, we get a new subdivision scheme at each iteration. Moreover, the complexity, polynomial reproduction, and
polynomial generation of the schemes are increased by two at each iteration. Furthermore, a family of interproximate subdivision
schemes with tension parameters is also introduced which is the extended form of the proposed family of schemes. (is family of
schemes allows a different tension value for each edge and vertex of the initial control polygon.(ese schemes generate curves and
surfaces such that some initial control points are interpolated and others are approximated.

1. Introduction

Subdivision schemes are efficient tools for generating
smooth curves/surfaces as the limit of an iterative process
based on simple refinement rules starting from certain
control points defining a control polygon/mesh. In recent
years, subdivision schemes have been an important research
area. (ese schemes provide an efficient way to describe
curves, surfaces, and related geometric objects. Generally,
subdivision schemes are classified as interpolatory or ap-
proximating, depending on whether the limit curve passes
through all the given initial control points or not. Although
approximating schemes yield smoother curves with higher
order continuity, interpolating schemes are more useful for
engineering applications as they preserve the shape of the
coarse mesh. (e special family of interpolatory schemes
consists of the schemes with refinement rules that preserve
the points associated with the coarse mesh and only generate
new points related to the additional vertices of the refined
mesh. An important family of interpolatory schemes was

introduced by Deslauriers and Dubuc [1], and latest tools for
its analysis were introduced by Amat et al. [2] whereas an
important family of approximating subdivision schemes that
is the dual counterparts of the schemes of Deslauriers and
Dubuc [1] was proposed by Dyn et al. [3]. In 2017, Hameed
and Mustafa [4] introduced an oscillation-free family of
a-point b-ary subdivision schemes which can produce ap-
proximating curves with high continuity and less
complexity.

However, there also exist the parametric subdivision
schemes, which can produce family of smooth approxi-
mating curves for special choices of the tension parameters.
(e families of such schemes were introduced in [5–8].
Furthermore, a parametric subdivision scheme can be
converted to the nonuniform subdivision scheme by de-
fining the local tension parameter. Mustafa and Hameed
[6, 7] converted their families of univariate and bivariate
subdivision schemes to nonuniform approximating subdi-
vision schemes by defining local tension parameters. A
parametric subdivision scheme which can produce both
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interpolatory and approximating curves is called the com-
bined subdivision scheme. If a combined subdivision
scheme is capable to convert in the nonuniform form such
that it can interpolate only certain initial control points and
approximate all the other initial control points, then such a
scheme will be interproximate scheme. Pan et al. [9] and
Novara and Romani [10] presented the combined ternary
subdivision schemes to fit interpolatory and approximating
curves. However, they did not present the nonuniform form
of their combined subdivision schemes.

Li and Zheng [11] combined the 4-point scheme of Dyn
et al. [12] and the cubic B-spline binary refinement scheme to
construct an interproximate subdivision scheme. Tan et al.
[13] combined the 4-point scheme of Dyn et al. [12] and a 2-
point corner cutting scheme to construct another inter-
proximate subdivision scheme. However, these schemes give
interproximate behavior but are not easy to implement and
analyze. Nowadays, surface modeling is also modifying to
fulfill the previous gaps. Pan et al. [14] presented a surface
formulation method of multipatches based on rational
splines. Nguyen-(anh et al. [15] gave a subdivision approach
for the minimal surface models on planar domains.

In this paper, we present a recursive method to construct
the (2N + 2)-point combined subdivision schemes with one
tension parameter to control the given points of the initial
polygon.(e construction of combined subdivision schemes
by a recursive method is a new trend in CAGD. We also
present an extended form of this family of combined
schemes by defining another tension parameter to control
the insertion of new point between the given points in order
to smooth the given polygon. (us, the involvement of two
tension parameters increases the flexibility in curves and
surfaces fitting. Furthermore, we analyze the behavior of
these combined subdivision schemes mathematically and
show that these schemes not only give optimal smoothness
but also give a desired reproduction degree. (e results are
then verified geometrically. Furthermore, we convert our
schemes to interproximate schemes that generate smooth
and oscillation-free curves and surfaces such that some
initial control points are interpolated and others are
approximated.

(is article is organized as follows. Section 2 deals with
some basic definitions and results. In Section 3, we construct
three families of primal subdivision schemes. Section 4 deals
with some important properties of the proposed families of
schemes. In Section 5, numerical examples and comparisons
are presented. A family of interproximate subdivision
schemes and associated numerical examples are presented in
Section 6. Conclusions are given in Section 7.

2. Preliminaries

A general compact form of linear, uniform, and stationary
binary univariate subdivision scheme Sa which maps a
polygon fk � fk

i , i ∈ Z􏼈 􏼉 to a refined polygon
fk+1 � fk+1

i , i ∈ Z􏼈 􏼉 is defined as

f
k+1
i � 􏽘

j∈Z
ai− 2jf

k
j , i ∈ Z. (1)

Since the subdivision scheme (1) is a binary scheme, the
two rules for defining the new control points are as follows:

f
k+1
2i � 􏽘

j∈Z
a2i− 2jf

k
j � 􏽘

c∈Z
a2cf

k
i− c, i ∈ Z,

f
k+1
2i+1 � 􏽘

j∈Z
a2i+1− 2jf

k
j � 􏽘

c∈Z
a2c+1f

k
i− c, i ∈ Z.

(2)

(e symbol of the above subdivision scheme is given by
the Laurent polynomial:

a(z) � 􏽘
i∈Z

aiz
i
, z ∈ C\ 0{ }, (3)

where a � ai, i ∈ Z􏼈 􏼉 is called the mask of the subdivision
scheme. Detailed information about refinement rules,
Laurent polynomials, and convergence of a subdivision
scheme can be found in [16–18].(e necessary condition for
the convergence of the subdivision scheme (2) is that
􏽐c∈Za2c � 􏽐c∈Za2c+1 � 1. (e continuity of the subdivision
schemes can be analyzed by the following theorems.

Theorem 1 (see [17]). A convergent subdivision scheme Sa

corresponding to the symbol

a(z) �
1 + z

2z
􏼒 􏼓

n

b(z), (4)

is Cn-continuous iff the subdivision scheme Sb corresponding
to the symbol b(z) is convergent.

Theorem 2 (see [17]). �e scheme Sb corresponding to the
symbol b(z) is convergent iff its difference scheme Sc corre-
sponding to the symbol c(z) is contractive, where
b(z) � (1 + z)c(z). �e scheme Sc is contractive if

c
l

�����

�����∞
� max 􏽘

i

c
l
j− 2li

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌: 0≤ j< 2l
⎧⎨

⎩

⎫⎬

⎭ < 1, l ∈ N, (5)

where cl
i are the coefficients of the scheme Sl

c with symbol

c
l
(z) � c(z)c z

2
􏼐 􏼑, . . . , c z

2l− 1
􏼒 􏼓. (6)

In a geometric context, subdivision schemes are further
categorized into primal and dual subdivision schemes. (e
primal binary subdivision schemes are the schemes that
leave or modify the old vertex points and create one new
point at each old edge. Primal schemes can be interpolatory,
approximating, or combined. Dual binary subdivision
schemes on the other hand are the schemes that create two
new points at the old edges and discard the old points. Most
of the dual schemes are approximating subdivision schemes;
however, recently Romani [19, 20] introduced interpolatory
subdivision schemes that are dual in nature. Detailed in-
formation about the primal and dual subdivision schemes
can be found in [16]. Furthermore, if one refinement rule of
an approximating binary subdivision scheme (2) uses the
affine combination of ξ � ξ1 > 2: ξ1 ∈ Z􏼈 􏼉 control points at
level k to get a new control point at level k + 1 whereas the
other refinement rule of (2) uses the affine combination of
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control points less than ξ at level k to get a new point at level
k + 1, then that binary scheme is called the primal binary
scheme.Moreover, every primal binary scheme is the relaxed
subdivision scheme. Mathematical definition of primal and
dual subdivision schemes is presented as follows.

Definition 1. Let the symbol of the symmetric subdivision
scheme (2) defined in (3) can particularly be written as
a(z) � · · · + a− 3z

− 3 + a− 2z
− 2 + a− 1z

− 1+ a0z
0 + a1z

1+ a2z
2+

a3z
3 + · · ·. If the symbol a(z) defined in (3) corresponding to

the scheme Sa satisfies the following condition:
a(z) � a z

− 1
􏼐 􏼑, (7)

then Sa is said to be a primal subdivision scheme. On the
other hand, if it satisfies following condition:

za(z) � a z
− 1

􏼐 􏼑, (8)

then Sa is said to be a dual subdivision scheme.
(e combined subdivision schemes are the schemes

which depend on one or more tension parameters. More-
over, at the specific values of these parameters, these schemes
can be regarded either as an approximating subdivision
scheme or an interpolatory one. Interproximate subdivision
schemes (see [11]) are the schemes which generate the limit
curves that interpolate some of the vertices of the given
control polygons, while approximate the other vertices of the
given control polygons.

Generation and reproduction degrees are used to check
the behaviors of a subdivision scheme when the original data
points lie on the graph of a polynomial. Suppose that the
original data points are taken from a polynomial of degree d.
If the control points of the limit curve lie on graph of the
polynomial having same degree (i.e., d), then we say that the
subdivision scheme generates polynomials of degree d. If the
control points of the limit curve lie on graph of the same
polynomial, then we say that the subdivision scheme re-
produces polynomials of degree d. Mathematically, let Πd

denote the space of polynomials of degree d and g, h ∈ Πd;
an operator O generates polynomials of degree d if
Og � h∀g, h ∈ Πd, whereas O reproduces polynomials of
degree d if Og � g∀g ∈ Πd. Furthermore, the generation
degree of a subdivision scheme is the maximum degree of
polynomials that can theoretically be generated by the
scheme, provided that the initial data are taken correctly.
Evidently, it is not less than the reproduction degree. For
exact definitions of polynomial generation and reproduc-
tion, the readers can consult [16, 21]. (e following theorem
is used to check the generation and reproduction degrees of
the subdivision schemes in this paper.

Theorem 3 (see [21]). A univariate convergent binary
subdivision scheme Sa performs the following functions:

(i) Generates polynomials up to degree d if and only if

a(1) � 2,

a(− 1) � 0,

D
(m)

a(z)|z�− 1 � 0, m � 1, 2, . . . , d,

(9)

where D(m)a(z)|z�− 1 denotes the m-th derivative of
a(z) with respect to z evaluated at a point z � − 1.

(ii) Reproduces polynomials up to degree d with respect to
the parametrization t

(k)
i � (i + τ/2k)􏽮 􏽯

i∈Z with
τ � (1/2)D(1)(z)|z�1 if and only if it generates
polynomials of degree d and

D
(m)

a(z)|z�1 � 2 􏽙
m− 1

h�0
(τ − h), m � 1, 2, . . . , d. (10)

(e support of a basic limit function and a subdivision
scheme is the area of the limit curve that will be affected
by the displacement of a single control point from its
initial place. (e part which is dependent on that given
control point is called the support width of the given
subdivision scheme. By following the approach of [22],
we give following theorem to calculate the support width
of a relaxed binary combined scheme or an interpolatory
binary scheme.

Theorem 4. �e support width of a ξ-point binary relaxed
subdivision scheme Sa is 2ξ where ξ � ξ1 > 2: ξ1 ∈ Z􏼈 􏼉, which
implies that it vanishes outside the interval [− ξ, ξ]. �e
support width of a ξ-point interpolatory binary scheme Sa is
2ξ − 2, which implies that it vanishes outside the interval
[− ξ + 1, ξ − 1].

3. Construction of the Families of
Subdivision Schemes

In this section, we present a family of (2N + 2)-point
relaxed combined subdivision schemes that is based on
repeated local translation of points by using certain
displacement vectors. (us, the refinement rules of a
member of the proposed family is recursively obtained by
the refinement rules of one other member of this family,
i.e., the refinement rules of a (2N + 2)-point scheme for
N � M are recursively obtained from the refinement rules
of the (2N + 2)-point scheme for N � M − 1. We propose
a new family of (2N + 3)-point relaxed combined schemes
with two tension parameters by extending the points of
the family of (2N + 2)-point relaxed combined schemes.
(en, we modify the family of (2N + 3)-point relaxed
schemes to a family of (2N + 4)-point interpolatory
schemes by removing one of its tension parameters.
Construction process for the family of (2N + 2)-point
relaxed combined schemes with one tension parameter is
given as follows.

3.1. Framework for the Construction of a Family of
(2N + 2)-Point Relaxed Schemes. (e family of
(2N + 2)-point combined subdivision schemes Sa2N+2

which
maps the polygon fk

N+1 � fk
i,N+1: i ∈ Z􏽮 􏽯 to the refined

polygon fk+1
N+1 � fk+1

i,N+1: i ∈ Z􏽮 􏽯 is defined by the set of
following refinement rules:
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f
k+1
2i,N+1 � 􏽘

N+1

j�− N− 1
a2j,N+1f

k
i+j,N+1,

f
k+1
2i+1,N+1 � 􏽘

N

j�− N− 1
a2j+1,N+1f

k
i+j+1,N+1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

where N ∈ N0 � N∪ 0{ } is used to calculate the complexity
(number of control points at k-th subdivision level used in
the insertion of a new point at (k + 1)-th subdivision level is
called the complexity) of the subdivision schemes and k ∈ N
denotes the number of times subdivision is applied on the
original data points. Hence, for each N, the set
fk+1

i,N+1: i ∈ Z􏽮 􏽯 represents the (k + 1)-th level subdivided
points obtained by applying (k + 1)-times the
(2N + 2)-point relaxed subdivision scheme (11) on the
initial data points f0

i � f0
i,N+1: i ∈ Z􏽮 􏽯, and a � [aj,N+1: j �

− 2(N + 1), . . . , 2(N + 1)] is mask of the scheme (11) which
is same at each level of refinement for a fix value of N. (e
schematic sketches of both rules defined in (11) are pre-
sented in Figures 1(a) and 1(b).

(e construction process of these rules is given as
follows.

If N � 0, the two refinement rules of the 2-point relaxed
scheme are obtained from (12). Hence, f1

i,1: i ∈ Z􏽮 􏽯 are the
control points at first subdivision level obtained by the 2-
point relaxed subdivision scheme on the initial control
points f0

i � f0
i,1: i ∈ Z􏽮 􏽯. (ese two refinement rules are the

initial refinement rules used to calculate the other

refinement rules of proposed family of schemes for each
successive value of N. (e initial refinement rules are de-
fined as

f
1
2i,1 � f

0
i,1 + α0 f

0
i− 1,1 − 2f

0
i,1 + f

0
i+1,1􏼐 􏼑,

f
1
2i+1,1 �

1
2
f
0
i,1 +

1
2
f
0
i+1,1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where α0 ∈ (− 1, 1).
Now, we calculate points f1

2i+ℓ,N+1: ℓ � 0, 1􏽮 􏽯
i∈Z of the

(HTML translation failed)-point relaxed subdivision
scheme for N⩾1. Hence, for a fix value of N, the points
f1
2i+ℓ,N+1: ℓ � 0, 1􏽮 􏽯

i∈Z of the (2N + 2)-point relaxed sub-
division scheme are obtained by moving the points
f1
2i+ℓ,N: ℓ � 0, 1􏽮 􏽯

i∈Z to the new position according to the

displacement vectors αℓ C
→

2i+ℓ,N+1: ℓ � 0, 1􏼚 􏼛
i∈Z

, where αℓ is

the tension parameter with α1 � 1 and α0 � α.
Mathematically, for N≥ 1, the two refinement rules of

the family of (2N + 2)-point relaxed subdivision schemes at
first level of subdivision are obtained by the following re-
currence relation:

f
1
2i+ℓ,N+1 � f

1
2i+ℓ,N + αℓ C

→
2i+ℓ,N+1, ℓ � 0, 1, (13)

where the vectors C
→

2i+ℓ,N+1: ℓ � 0, 1 are calculated by the
following recurrence relation:

C
→

2i,N+1 � C
→

2i,N − C
→

2(i+1),N􏼒 􏼓 + C
→

2i,N − C
→

2(i− 1),N􏼒 􏼓,

C
→

2i+1,N+1 �
1
N

N

4
−
1
8

􏼒 􏼓 C
→

2i+1,N − C
→

2(i+1)+1,N􏼒 􏼓 + C
→

2i+1,N − C
→

2(i− 1)+1,N􏼒 􏼓􏼒 􏼓,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

and initial values for relation (14) are

C
→

2i,1 � f
0
i− 1,1 − f

0
i,1 + f

0
i+1,1,

C
→

2i+1,1 �
1
2

f
0
i,1 + f

0
i+1,1􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(15)

Here, f0
i � f0

i,1 � f0
i,2 � f0

i,3 � · · · � f0
i,N+1 are the initial

control points.
While the points f1

i,1, f1
i,2, f1

i,3, and f1
i,4 are the initial

points of the 4-point, 6-point, and 8-point relaxed subdi-
vision schemes obtained by substituting the values of N

equal to 1, 2, and 3, respectively, in (13) and (14). Since the
proposed subdivision schemes are stationary, the refinement
rules are same at each level of subdivision. (erefore, for
other subdivision levels, we apply (11) while the coefficients
of points fk

i,N+1 remain same as the coefficients of points
f0

i,N+1 � f0
i obtained from (13). Also, fk+1

i,1 , fk+1
i,2 , fk+1

i,3 , and
fk+1

i,4 are the control points at (k + 1)-th subdivision level
obtained by applying the 2-point, 4-point, 6-point, and 8-

point relaxed subdivision schemes on the k-th level points
fk

i,1, fk
i,2, fk

i,3, and fk
i,4, respectively. Moreover, the points

other than the initial control points hold the relation
fk

i,N ≠fk
i,N+1 ∀N ∈ N.

At each iteration, i.e., by substituting N � 1, 2, 3, . . . in
(11), (13), and (14), we get a new binary primal
(2N + 2)-point subdivision scheme. (e masks of these
(2N + 2)-point schemes by defining α0 � α are tabulated in
Table 1.

Remark 1. If α � 0, the family of scheme (11) reduces to the
family of (2N + 2)-point interpolatory schemes with symbol

a(z) � 1 + 􏽘
N

j�− N− 1
a2j+1,N+1z

2j+1
, (16)

which is proposed by Deslauriers and Dubuc [1]. (e
continuity of (2N + 2)-point interpolatory schemes is CN

for 0≤N≤ 4 and C≈(83/200)(N+1) for N≥ 5.
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3.2. Interpretation of Framework 3.1 for N � 1. (e refine-
ment rules of the initial subdivision scheme defined in (12)
are

f
1
2i,1 � αf

0
i− 1 +(1 − 2α)f

0
i + αf

0
i+1,

f
1
2i+1,1 �

1
2
f
0
i +

1
2
f
0
i+1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

Moreover, the initial values C
→

2i+ℓ,1: ℓ � 0, 1􏼚 􏼛 which

will be used to calculate the vectors C
→

2i+ℓ,N+1: ℓ � 0, 1􏼚 􏼛
N∈N

defined in (15) are

C
→

2i,1 � f
0
i− 1 − f

0
i + f

0
i+1,

C
→

2i+1,1 �
1
2
f
0
i +

1
2
f
0
i+1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(18)

f k
i–(N+1),N+1 f k

i+(N+1),N+1f k
i,N+1

(2N + 3)–points

f k+1
2i,N+1

(a)

f k
i+(N+1),N+1f k

i–N,N+1 f k
i,N+1

(2N + 2)–points

f k
i+1,N+1

f k+1
2i+1,N+1

(b)

f k
i–(N+1),N+1 f k

i+(N+1),N+1f k
i,N+1

(2N + 3)–points

f k+1
2i,N+1

(c)

f k
i–(N+1),N+1 f k

i+(N+2),N+1f k
i,N+1

(2N + 4)–points
f k

i+1,N+1

f k+1
2i+1,N+1

(d)

Figure 1: Graphical sketches of the rules of (2N + 2)-point primal schemes in (a-b) and of (2N + 3)-point primal schemes in (c-d),
respectively. (a) Vertex rule. (b) Edge rule. (c) Vertex rule. (d) Edge rule.

Table 1: Mask of the (2N + 2)-point schemes Sa2N+2
.

N Mask
0 (1/2)[2α, 1, 2 − 4α, 1, 2α]

1 (1/16)[− 16α, − 1, 64α, 9, 16 − 96α, 9, 64α, − 1, − 16α]

2 (1/256) −
256α, 3, − 1536α, − 25, 3840α, 150, 256 − 5120α, 150, 3840α,

25, − 1536α, 3, 256α􏼢 􏼣

3 (1/2048)
− 2048α, − 5, 16384α, 49, − 57344α, − 245, 114688α, 1225, 2048−

143360α, 1225, 114688α, − 245, − 57344α, 49, 16384α, − 5, − 2048α􏼢 􏼣

4 (1/65536)

65536α, 35, − 655360α, − 405, 2949120α, 2268, − 7864320α
− 8820, 13762560α, 39690, 65536 − 16515072α, 39690, 13762560α,

− 8820, − 7864320α, 2268, 2949120α, − 405, − 655360α, 35, 65536α

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

5 (1/524288)

− 524288α, − 63, 6291456α, 847, − 34603008α, − 5445, 115343360α,

22869, − 259522560α, − 76230, 415236096α, 320166, 524288,

− 484442112α, 320166, 415236096α, − 76230, − 259522560α, 22869,

115343360α, − 5445, − 34603008α, 847, 6291456α, − 63, − 524288α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Now, we use initial relations (17) and (18) to calculate the
refinement rules of 4-point relaxed scheme which will be
obtained by putting N � 1 in (13) and (14). Hence, for
N � 1, we get

f
1
2i,2 � f

1
2i,1 + α0 C

→
2i,2,

f
1
2i+1,2 � f

1
2i+1,1 + α1 C

→
2i+1,2,

⎧⎪⎨

⎪⎩
(19)

where

C
→

2i,2 � C
→

2i,1 − C
→

2(i+1),1􏼒 􏼓 + C
→

2i,1 − C
→

2(i− 1),1􏼒 􏼓,

C
→

2i+1,2 �
1
8

C
→

2i+1,1 − C
→

2(i+1)+1,1􏼒 􏼓 + C
→

2i+1,1 − C
→

2(i− 1)+1,1􏼒 􏼓􏼔 􏼕.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

By using (18) in (20), we get

C
→

2i,2 � − f
0
i− 2 + 3f

0
i− 1 − 4f

0
i + 3f

0
i+1 − f

0
i+2,

C
→

2i+1,2 �
1
16

− f
0
i− 1 + f

0
i + f

0
i+1 − f

0
i+2􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

Now, firstly we put α0 � α and α1 � 1 in (19) and then we
use (17) and (21) in (19). Hence, we get the following 4-point
relaxed subdivision scheme:

f
1
2i,2 � − αf

0
i− 2 + 4αf

0
i− 1 +(1 − 6α)f

0
i + 4αf

0
i+1 − αf

0
i+2,

f
1
2i+1,2 �

1
16

− f
0
i− 1 + 9f

0
i + 9f

0
i+1 − f

0
i+2􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

By using (22) in (11), we get

f
k+1
2i,2 � − αf

k
i− 2 + 4αf

k
i− 1 +(1 − 6α)f

k
i + 4αf

k
i+1 − αf

k
i+2,

f
k+1
2i+1,2 �

1
16

− f
k
i− 1 + 9f

k
i + 9f

k
i+1 − f

k
i+2􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

Step by step geometrical representations of the above
procedure are shown in Figures 2 and 3. (e description of
Figure 2 is as follows. In Figure 2(a), the implementation of
the initial subdivision scheme defined in (17) is given. In
Figure 2(b), blue bullets show the points obtained by the
relations defined in (18). Here, C

→
2i− 2,1 � f0

i− 2 − f0
i− 1 + f0

i ,
C
→

2i− 1,1 � (1/2)(f0
i− 1 + f0

i ), C
→

2i,1 � f0
i− 1 − f0

i + f0
i+1,

C
→

2i+1,1 � (1/2)(f0
i + f0

i+1), C
→

2i+2,1 � f0
i − f0

i+1 + f0
i+2, and

C
→

2i+3,1 � (1/2)(f0
i+1 + f0

i+2). In Figure 2(c), C
→

2i,2 is the re-
sultant vector of two vectors C

→
2i,1 − C

→
2(i+1),1 and

C
→

2i,1 − C
→

2(i− 1),1. Similarly, CC
��→

2i+1,2 is the resultant vector of
C
→

2i+1,1 − C
→

2(i+1)+1,1 and C
→

2i+1,1 − C
→

2(i− 1)+1,1. (e resultant
vectors are obtained by adding two vectors using head to tail

rule. (e resultant vectors are denoted by blue solid lines
while the other vectors are denoted by blue dashed lines.
Moreover, the description of Figure 3 is as follows, In
Figure 3(a), the geometrical representation of the vectors
defined in (20) is given. Here, C

→
2i+1,2 � (1/8)CC

��→
2i+1,2; In

Figure 3(b), the translation of the points f1
2i,1 and f1

2i+1,1 is
shown by using vectors αC

→
2i,2 and C

→
2i+1,2 to obtain the

points f1
2i,2 and f1

2i+1,2 denoted by green bullets; In
Figure 3(c), green bullets show the points of the subdivision
scheme (21) constructed by the proposed framework.

3.3. Extended Form of Framework 3.1 for Constructing a
Family of (2N + 3)-Point Relaxed Schemes. When ℓ � 1, we
add these weights

􏽘

N

j�− N− 1
(− 1)

j+N+1 2j + 1
N − j + 1

􏼠 􏼡

2N + 2

N + j + 2
⎛⎝ ⎞⎠β

· (1 − α)f
0
i+j+1,N+1 + β(1 − α) f

0
i− N− 1,N+1 + f

0
i+N+2,N+1􏼐 􏼑,

(24)

in (13), where − 1< α< 1& − 1< β< 1. Hence, we get the
family of (2N + 3)-point combined relaxed schemes Sa2N+3
associated with the following refinement rules:

f
k+1
2i,N+1 � 􏽘

N+1

j�− N− 1
b2jf

k
i+j,N+1,

f
k+1
2i+1,N+1 � 􏽘

N+1

j�− N− 2
b2j+1f

k
i+j+1,N+1,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)

where

b2j � a2j,N+1 for j � − (N + 1), − N, . . . , (N + 1),

b2j+1 � a2j+1,N+1 +(− 1)
j+N+1 2j + 1

N − j + 1
􏼠 􏼡

2N + 2

N + j + 2
⎛⎝ ⎞⎠β

· (1 − α) for j � − (N + 1), − N, . . . , N and

b2j+1 � β(1 − α) for j � − (N + 2)(N + 1).

(26)

(e schematic sketches of these rules are given in
Figures 1(c) and 1(d), and mask of the first three members of
this family of schemes is given as follows:

(i) When N � 0, (25) gives the primal 3-point relaxed
scheme with mask

β(1 − α), α,
1
2

− β(1 − α), 1 − 2α,
1
2

− β(1 − α), α, β(1 − α)􏼔 􏼕.

(27)

(i)i When N � 1, (25) gives the primal 5-point relaxed
scheme with mask
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β(1 − α), − α, −
1
16

− 3β(1 − α), 4α,
9
16

+ 2β(1 − α), 1 − 6α,
9
16

+ 2β(1 − α), 4α, −
1
16

− 3β(1 − α), − α, β(1 − α)􏼔 􏼕. (28)

f 0
i–1

f 0
i+1

f 0
i

f 1
2i–1,1

f 1
2i–2,1

f 1
2i,1

f 1
2i+3,1

f 1
2i+1,1

f 1
2i+2,1

(a)

f 0
i – f 0

i+1 f 0
i+2 = f 0

i+2

f 0
i f 0

i+1 = f 0
i–2

C2i+2,1

C2i–1,1

C2i+3,1

C2i+1,1

C2i,1

C2i–2,1

f 0
i–2 – f 0

i–1

f 0
i–1 – f 0

i

(b)

f 0
i–1

f 0
i+1

C2i+1,1 – C2i–1,1

C2i,1 – C2i–2,1 C2i,1 – C2i+2,1

CC2i+1,2

C2i+1,1 – C2i+3,1

C2i,2

f 0
i

(c)

Figure 2: Geometrical interpretation of the proposed framework. Red bullets and red lines represent initial points and initial polygons,
respectively. Black bullets and black lines represent the points and the polygons obtained by the subdivision scheme (17).

f 12i,1 f 12i+1,1

f 0i+1

f 0i–1

f 0i

C2i+1,2

C2i,2

(a)

αC2i,2 C2i+1,2

f 0
i+1

f 1
2i+1,1

f 1
2i+1,2

f 1
2i,2 f 1

2i,1

f 0
i–1

f 0
i

(b)

αC2i,2 C2i+1,2

f 1
2i+3,2

f 1
2i+2,2

f 1
2i–1,2

f 1
2i+1,2

f 1
2i–2,2

f 1
2i,2 f 1

2i+1,1f 1
2i,1

f 0
i+1

f 0
i

f 0
i–1

(c)

Figure 3: Geometrical interpretation of the proposed framework. Red bullets and red lines represent initial points and initial polygons,
respectively. Black bullets and black lines represent the points and the polygons obtained by the subdivision scheme (17). Green bullets and
green lines represent the points and the polygons obtained by the subdivision scheme (22).
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(iii) When N � 2, (25) gives the primal 7-point relaxed
scheme with mask

β(1 − α), α,
3
256

− 5β(1 − α), − 6α, −
25
256

+ 9β(1 − α), 15α,
150
256

− 5β(1 − α), 1 − 20α,
150
256

− 5β(1 − α), 15α, −
25
256

+ 9β(1 − α), − 6α,

3
256

− 5β(1 − α), α, β(1 − α)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(29)

3.4. Interpretation of Extended Form 3.3 for N � 1. When
N � 1, (24) gives

􏽘

1

j�− 2
(− 1)

j+2 2j + 1
2 − j

􏼠 􏼡

4

3 + j

⎛⎝ ⎞⎠β(1 − α)f
0
i+j+1,2 + β(1 − α) f

0
i− 2,2 + f

0
i+3,2􏼐 􏼑

� β(1 − α) f
0
i− 2,2 − 3f

0
i− 1,2 + 2f

0
i,2 + 2f

0
i+1,2 − 3f

0
i+2,2 + f

0
i+3,2􏽨 􏽩.

(30)

Adding weights which are defined in (30) in the edge rule
of (22), we get

f
1
2i,2 � − αf

0
i− 2 + 4αf

0
i− 1 +(1 − 6α)f

0
i + 4αf

0
i+1 − αf

0
i+2,

f
1
2i+1,2 � β(1 − α)f

0
i− 2 −

1
16

+ 3β(1 − α)􏼒 􏼓f
0
i− 1 +

9
16

+ 2β(1 − α)􏼒 􏼓f
0
i +

9
16

+ 2β(1 − α)􏼒 􏼓f
0
i+1

−
1
16

+ 3β(1 − α)􏼒 􏼓f
0
i+2 + β(1 − α)f

0
i+3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

Since the above scheme is stationary, the refinement
rules of proposed 5-point relaxed scheme with two tension
parameters are

f
k+1
2i,2 � − αf

k
i− 2 + 4αf

k
i− 1 +(1 − 6α)f

k
i + 4αf

k
i+1 − αf

k
i+2,

f
k+1
2i+1,2 � β(1 − α)f

k
i− 2 −

1
16

+ 3β(1 − α)􏼒 􏼓f
k
i− 1 +

9
16

+ 2β(1 − α)􏼒 􏼓f
k
i +

9
16

+ 2β(1 − α)􏼒 􏼓f
k
i+1

−
1
16

+ 3β(1 − α)􏼒 􏼓f
k
i+2 + β(1 − α)f

k
i+3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Remark 2.

(i) (e schemes of [5] are the special cases of the
proposed family of (2N + 3)-point schemes.

(ii) (e family of (2N + 4)-point interpolatory schemes
SaI

2N+4
with one tension parameter is obtained by

putting α � 0 in (25). (e refinement rules of these
schemes are given as follows:
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f
k+1
2i,N+1 � f

k
i,N+1,

f
k+1
2i+1,N+1 � 􏽘

N+1

j�− N− 2
b2j+1f

k
i+j+1,N+1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)

where b2j+1 is defined in (26).

4. Analysis of the Families of Schemes

In this section, we present properties of the proposed
families of schemes. In Table 2, we present “ranges of tension
parameter α” for which the first six members of “the family
of (2N + 2)-point relaxed schemes” are Cn-continuous. (e
continuity of the proposed schemes is analyzed with a
computer algebra system like Mathematica/Maple by using
(eorems 1 and 2. Similarly, continuity of the first three
members of (2N + 3)-point relaxed schemes and
(2N + 4)-point interpolatory schemes is presented in Ta-
bles 3 and 4, respectively, for specific ranges of tension
parameters.

In Tables 4–6, we tabulate the support widths, degrees of
polynomial generation, and degrees of polynomial repro-
duction of the proposed families of (2N + 2)-point relaxed,
(2N + 3)-point relaxed, and (2N + 4)-point interpolatory
schemes, respectively. (e generation and reproduction
degrees of the proposed schemes are analyzed by using
(eorem 3, while the support widths of the proposed
schemes are calculated by using (eorem 4. Properties of
some special members of the family of schemes (11) are
presented in Table 7.

Let a2N+2(z), a2N+3(z), and aI
2N+4(z) denote the symbols

of schemes (11), (25), and (33), respectively. By Definition 1,
the following theorem can be easily proved.

Theorem 5. �e families of subdivision schemes (11), (25),
and (33) are the families of primal schemes.

Proof. Since the symbols associated with schemes (11), (25),
and (33) satisfy the relations a2N+2(z) � a2N+2(z− 1),
a2N+3(z) � a2N+3(z− 1), and aI

2N+4(z) � aI
2N+4(z− 1), re-

spectively, for all N ∈ N0, then by Definition 1, these
schemes are primal. (is completes the proof.

Now, we check the property of polynomial generation
and reproduction of the families of schemes Sa2N+2

, Sa2N+3
, and

SaI
2N+4

by using(eorem 3. We prove the following theorems
for this purpose. □

Theorem 6. �e families of subdivision schemes (11), (25),
and (33) generate polynomials up to degree 2N + 1 for all α
and β and for all N ∈ N0.

Proof. It is to be noted that for all α and β, the results
a2N+2(1) � a2N+3(1) � aI

2N+4(1) � 2 and a2N+2(− 1) �

a2N+3(− 1) � aI
2N+4(− 1) � 0 are trivial for all N ∈ N0. Fur-

thermore, D(m)a2N+2(z)|z�− 1 � D(m)a2N+3(z)|z�− 1 � D(m)

aI
2N+4(z)|z�− 1 � 0 for m � 0, 1, . . . , 2N + 1 and N ∈ N0.

(erefore, by (eorem 3, the result proved. □

Theorem 7. �e families of subdivision schemes (11), (25),
and (33) reproduce polynomials up to degree 2N + 1 for all α
and β and N ∈ N0.

Proof. Since by (eorem 5, the families of schemes (11),
(25), and (33) are primal; hence, the parameter τ � 0 for all α
and β and N ∈ N0. Moreover, D(m)a2N+2(z)|z�1 �

D(m)a2N+3(z)|z�1 � D(m)aI
2N+4(z)|z�1 � 2􏽑

m− 1
h�0 (τ − h) for

m � 0, 1, . . . , 2N + 1 and N ∈ N0. Now, by combining these
conditions with(eorem 6 and then by using(eorem 3, we
get the required result. □

Remark 3. (eorems 6 and 7 show that the schemes defined
in (11), (25), and (33) generate and reproduce polynomials
up to degree 2N + 1 for all α and β. However, by choosing
specific values of α and β, the polynomial generation and
polynomial reproduction of these schemes can be increased.
Tables 4, 6, and 7 summarize the generation and repro-
duction degrees of proposed schemes for specials choices of
tension parameters.

In the coming theorem, we give the support width of the
proposed families of schemes.

Theorem 8. �e support width of the family of scheme (11) is
4N + 4 where N ∈ N0. �e support width of each family of
subdivision schemes defined in (25) and (33) is 4N + 6.

Proof. By (eorem 4, the result is trivial.
We prove the following theorem by using (eorems 1

and 2. □

Theorem 9. �e subdivision schemes Sa3
, Sa5

, and Sa7
are C1,

C3, and C5, respectively, for some special conditions.

Proof. (e conditions for C1, v, and C5 continuities of the
schemes Sa3

, Sa5
, and Sa7

, respectively, are given as follows:
(e subdivision scheme Sa3

is C1 if

max c1, c2 + c3􏼈 􏼉< 1, (34)

where c1 � 2|2α − 4β(1 − α)|, c2 � 2|2β(1 − α)|, and
c3 � |1 + 4β(1 − α) − 4α|.

(e scheme Sa5
is C3 if

max η1 + η2, η3 + η4􏼈 􏼉< 1, (35)

where η1 � 16|β(1 − α)|, η2 � 2| − 56β(1 − α) − 32α+ (1/2)|,
η3 � 2| − 32β(1 − α) − 8α|, and η4 � | − 48α − 64β(1 − α)

+2|.
Similarly, the subdivision scheme Sa7

is C5 if

max χ1 + χ2 + χ3, χ4 + χ5􏼈 􏼉< 1, (36)

where χ1 � 64|β(1 − α)|, χ2 � 2| − 512β(1 − α)+ 192α−

(3/8)|, χ3 � | − (19/4) − 960β(1 − α) + 640α|, χ4 � 2| − 192β
(1 − α) + 32α|, and χ5 � 2|480α − (9/4) − 832β(1 − α)|. □

Remark 4. (roughout the article, red bullets and red lines
represent initial points and initial polygons/meshes,
respectively.
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5. Numerical Examples and Comparisons

(is section deals with the numerical examples of the
proposed families of subdivision schemes.We also give some
numerical and mathematical companions of the proposed
schemes with the existing schemes. Numerical performance
of 2-point, 3-point, 4-point, 5-point, 6-point, and 7-point
relaxed subdivision schemes is shown in Figures 4(a), 4(b),
4(d), 4(e), 4(g), and 4(h), respectively. From these figures, it
is easy to see that the tension parameters which are involved
in the proposed schemes allow us to draw different models
from same initial points. Similarly, geometrical behaviors of
interpolatory 4-point, 6-point, and 8-point schemes for
different values of tension parameters are shown in
Figures 4(c), 4(f ), and 4(i), respectively. An interesting
geometrical behavior of 3-point, 5-point, and 7-point
schemes is shown in Figures 5(a)‒5(h) and 6(a)‒6(d),
respectively.

We apply these schemes to two different initial models
with same values of the tension parameters. From these

figures, we observe that the artifacts in the limit curve can be
removed either by changing values of the tension parameters
or by changing the initial polygons.While schemes proposed
by Deslauriers and Dubuc [1], which are also the special
cases of the proposed schemes for specific values of tension
parameters α and β, do not have this characteristic (see
Figures 6(e)–6(h)). Figures 7–9 show that the surfaces
produced by the tensor product schemes of proposed primal
schemes also give better numerical results than those of the
tensor product schemes of primal schemes [1]. Table 8 gives
comparisons between proposed families of primal schemes
and the family of primal interpolatroy schemes of Deslau-
riers and Dubuc [1]. (e parameters used in our families of
subdivision schemes not only increase the choices of
drawing different shapes but also increase the polynomial
reproduction, polynomial generation, and smoothness of the
proposed schemes. Moreover, we can draw interpolatory
and approximating curves by using a single member of the
family. Table 9 gives the comparisons of the proposed primal
schemes with the primal approximating schemes of [6, 7].

Tabe 4: GD and RD represent the degree of polynomial generation and degree of polynomial reproduction of the proposed schemes SaI
2N4

.

N 0 1 2

C0 − (1/8)< β< 0 − (5/48)< β< (1/16) − (39/2560)< β< (89/2560)

C1 (2 −
�
6

√
/8)< β< (1 −

�
3

√
/8) (15 −

���
273

√
/96)< β< (− 5 + 3

��
37

√
/224) (219 −

������
661133

√
/31232)< β< (− 171 +

�����
56713

√
/6144)

C2 0< β< (1/36) (16 −
���
286

√
/96)< β< (− 675 +

������
637161

√
/31744)

C3 − (157/20000)< β< − (43/20000)

GD 1 ∀ β 3 ∀ β 5 ∀ β
3 for β � − (1/16) 5 for β � (3/256) 7 for β � − (5/2048)

RD 1 ∀ β 3 ∀ β 5 ∀ β
3 for β � − (1/16) 5 for β � (3/256) 7 for β � − (5/2048)

Table 5: Properties of schemes Sa2N+2
for ∀ α.

N 0 1 2 3 4 5
Support 4 8 12 16 20 24
Generation 1 3 5 7 9 11
Reproduction 1 3 5 7 9 11

Table 6: Properties of schemes Sa2N+3
.

N 0 1 2
Sp 6 10 14

GD

1 ∀ α and β 3 ∀ α& β 5∀ α& β
3∀ α where β � − (1/16)(8α − 1/α − 1) 5∀ α where β � (1/256)(128α − 3/α − 1) 7∀ α where β � − (1/2048)(1024α − 5/α − 1)

3∀ β where α � (1/8)(16β + 1/2β + 1) 5∀ β where α � (1/128)(256β − 3/2β − 1) 7∀ β where α � (1/1024)(2048β + 5/2β + 1)

5 for
α � (3/16)&β � − (1/16)(8α − 1/α − 1)

7 for
α � (5/128)&β � (1/256)(128α − 3/α − 1)

9 for
α � (35/4096)&β � − (1/2048)(1024α − 5/α − 1)

5 for β � (1/26) where
α � (1/8)(16β + 1/2β + 1)

7 for β � − (1/123) where
α � (1/128)(256β − 3/2β − 1)

9 for β � (15/8122) where
α � (1/1024)(2048β + 5/2β + 1)

RD
1 ∀ α & β 3 ∀ α& β 5∀ α& β

3 for α � 0&β � − (1/16) 5 for α � 0&β � (3/256) 7 for α � 0&β � − (5/2048)

3 for α � − (1/8)&β � 0 5 for α � − (3/128)&β � 0 7 for α � − (5/1024)&β � 0
Sp, GD, and RD represent support width, generation degree, and reproduction degree, respectively.
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Figure 4: Continued.

Table 7: Properties of schemes Sa2N+2
for specific values of α.

N 0 1 2 3 4 5
α (1/8) (3/128) (5/1024) (35/32768) (63/262144) (231/4194304)

Continuity C2 C2 C2 C3 C5 C3

Generation 3 5 7 9 11 13
Reproduction 1 3 5 7 9 11
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Figure 4: Black curves are the limit curves obtained by the subdivision schemes: (a) Sa2
; (b) Sa3

; (c) SaI
4
; (d) Sa4

; (e) Sa5
; (f ) SaI

6
; (g) Sa6

; (h) Sa7
;

(i) SaI
8
, respectively.

(a) (b) (c) (d)

Figure 5: Continued.
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(e) (f ) (g) (h)

Figure 5: Black curves are the limit curves obtained by subdivision scheme Sa3
in (a–d) and by subdivision scheme Sa5

in (e–h), respectively:
(a) α � 1/2048, β � 255/4096; (b) α � 1/16, β � − (1/30); (c) α � 1/8, β � 0; (d) α � 1/4, β � 1/4; (e) α � 1/32, β � − 3/62; (f ) α � 1/ 16, β
� − 1/48; (g) α � 1/10, β � − 49/1152; (h) α � 1/8, β � − 11/128.

(a) (b) (c) (d)

Figure 6: Continued.
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(e) (f ) (g) (h)

Figure 6: Black curves are the limit curves obtained by subdivision scheme Sa7
in (a–d) and by subdivision schemes of Deslauriers and

Dubuc [1] in (e–h), respectively: (a) α � 1/2048, β � 1/512; (b) α � 1/100, β � − 1/128; (c) α � 1/128, β � 1/512; (d) α � 1/80, β � 1/80; (e) 2-
point scheme; (f ) 4-point scheme; (g) 6-point scheme; (h) 8-point scheme.
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Figure 7: Continued.
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Figure 7: (a–c, g–i) (e surfaces generated by the tensor product of scheme Sa3
. (d–f) (e mirror images of the parts inside the blue

rectangles of (a–c), respectively. (j–l) (e 2-dimensional images in xy-planes of (g–i), respectively.
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Figure 8: Continued.
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Figure 8: (a–c, g–i) (e surfaces generated by the tensor product of scheme Sa5
. (d–f) (e mirror images of the parts inside the blue

rectangles of (a–c), respectively. (j–l) (e 2-dimensional images in xy-planes of (g–i), respectively.
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Figure 9: Continued.
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Since approximating subdivision schemes give more
smoothness in limits curves as comparative to the inter-
polating and combined schemes, some of the proposed
schemes give lower level of continuity than that of the
schemes of [6, 7]. However, the degrees of polynomial re-
production of the proposed schemes are higher than those of
these approximating primal schemes.

6. Interproximate Subdivision Schemes

In this section, we present a new family of subdivision
schemes, that is, the family of interproximate subdivision
schemes, for generating curves that interpolate certain given
initial control points and approximate the other initial
control points. By the interproximate subdivision scheme,
only the initial control points specified to be interpolated are
fixed and the other points are updated at each refinement
step.(e interproximate subdivision schemes can be defined
by replacing αi and βi as the substitution of α and β in (25)
and (26). In this interproximate subdivision process, the
parameters αi control the interpolating property of the
subdivision schemes and parameters βi control the ap-
proximating property of the subdivision schemes.
Figures 10(a)–10(c) show the initial polygon and limit curves
generated by the subdivision scheme Sa3

using initial control
points (1, 5), (1, 2), (13, 3.4), (14, 2.5), (14, 4.5), (13, 3.6),
and (1, 5). Figures 10(d)–10(f) demonstrate that this scheme
interpolates the control points in a local manner and uses a
different value of tension parameter for each edge of the
control polygon. Values of the tension parameters at first

subdivision levels are shown in these figures. Whereas at the
other subdivision levels, we use same interpolating values for
the control points which are interpolated at the first sub-
division levels and use the approximating values of the
tension parameters for the modified and new inserted
points. Figures 10(g)–10(l) show the limit curves generated
by subdivision scheme Sa5

using initial control points (0, 0),
(4, 0), (5, 5), (4, 10), (0, 10), (0, 8), (1, 8), (2, 5), (1, 2), and
(0, 2). In this figure,

(i) (g) represents the initial polygon with indexed
initial control points.

(ii) (h) shows the limit curve that interpolates all the
control points with (α, β) � (0, − 0.001).

(iii) (i) represents the limit curve that approximates all
the initial control points with (α, β) � ((1/16),

− (1/48)).
(iv) (j) shows the interproximate limit curve with

(αi, βi) � (1/10) − (49/1152), (1/10) − (49/1152),
(1/10) − (49/1152), (1/10) − (49/1152), (1/10) −

(49/1152), (1/10) − (49/1152), (0, (1/64)),
(0, (1/64)), (0, (1/64)), (1/10) − (49/1152) at first
subdivision level. Whereas at other subdivision
levels, we use (αi, βi) � (0, (1/64)) for the points
(1, 8), (2, 5), and (1, 2) and (αi, βi) � (1/10),

− (49/1152) for all the other points.
(v) (k) shows the interproximate limit curve with

(αi, βi) � [(1/14) − (43/1664), (0, − (2/125)), (0,

− (2/125)), (0, − (2/125)), (1/14) − (43/1664),
(1/14)− (43/1664), (1/14) − (43/1664), (1/14)−
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Figure 9: (a–c, g–i)(e surfaces generated by the tensor product schemes of Deslauriers and Dubuc [1]. (d–f)(emirror images of the parts
inside the blue rectangles of (a–c), respectively. (j–l) (e 2-dimensional images in xy-planes of (g–i), respectively.
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Table 9: Comparison of the proposed schemes with existing primal relaxed schemes having the same support width.

Schemes SW NTP Type GD GD1 RD RD1 Continuity
Scheme Sa3

6 2 Combined 1 5 1 3 C4

Scheme [7] 6 1 Approximating 1 5 1 1 C1

Scheme Sa4
8 1 Combined 3 5 3 3 C2

Scheme [7] 8 1 Approximating 3 7 1 1 C3

Scheme [6] 8 1 Approximating 1 3 1 1 C1

Scheme Sa5
10 2 Combined 3 7 3 5 C4

Scheme [7] 10 1 Approximating 5 9 1 1 C5

Scheme Sa6
12 1 Combined 5 7 5 5 C3

Scheme [7] 12 1 Approximating 7 11 1 1 C7

Scheme Sa7
14 2 Combined 5 9 5 7 C4

Scheme [6] 14 1 Approximating 3 5 1 3 C3

SW, NTP, GD, GD1, RD, and RD1 represent the support width, number of tension parameter(s), degree of polynomial generation at all value(s) of tension
parameter(s), degree of polynomial generation at specific value(s) of tension parameter(s), degree of polynomial reproduction for all value(s) of tension
parameter(s), and degree of polynomial reproduction at specific value(s) of tension parameter(s).

Table 8: NTP, RD, GD, MC, Pr, In, Cm, Re, and DD-schemes represent the number of tension parameter(s), degree of polynomial
reproduction, degree of polynomial generation, maximum continuity, primal, interpolatory, combined, relaxed, and schemes of Deslauriers
and Dubuc [1], respectively, where N ∈ N0 with N< 5.

Family of schemes Type NTP RD GD MC
(2N + 2)-point DD-schemes Pr/In 0 2N + 1 2N + 1 CN

(2N + 2)-point schemes Pr/Cm/Re 1 2N + 1∀′ 2N + 3∀′ At least CN+1

(2N + 3)-point schemes Pr/Cm/Re 2 2N + 3∀′ 2N + 5∀′ At least C4

(2N + 4)-point schemes Pr/In 1 2N + 3∀′ 2N + 3∀′ CN+1

Here, ∀ and ∀′ stand for “for all value(s) of parameter(s)” and “not for all value(s) of parameter(s) (at specific values of parameter(s)),” respectively.
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Figure 10: Continued.
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(43/1664), (1/14) − (43/1664), (1/14) − (43/1664)

at first subdivision level. Whereas at other subdi-
vision levels, we use (αi, βi) � (0, − (2/125)) for the
points (4, 0), (5, 5), and (4, 10) and (αi, βi) �

(1/14), − (43/1664) for all the other points.
(vi) (l) shows the interproximate limit curve with

(αi, βi) � [(0, (1/30)), (0, (1/30)), (1/11), − (1/30),
(0, (1/30)), (0, (1/30)), (1/11), − (1/30), (1/11),

− (1/30), (1/11), − (1/30), (1/11), − (1/30), (1/11) −

(1/30) at first subdivision level. Whereas at other
subdivision levels, we use (αi, βi) � (0, (1/30)) for
the points (0, 0), (4, 0), (4, 10), and (0, 10) and
(αi, βi) � (1/11), − (1/30) for all the other points.

(ese figures show that proposed schemes can inter-
polate the initial control points which are chosen by the
programmers to be interpolated.

Figure 11 shows the limit surfaces generated by tensor
product subdivision scheme of scheme Sa3

using initial
control points (0, 2, 0), (5, 0, 0), (10, 2, 0), (5, 15, 0), (0, 2, 0),
(0, 2, 2), (5, 0, 2), (10, 2, 2), (5, 15, 2), (0, 2, 2), (0, 2, 4),
(5, 0, 4), (10, 2, 4), (5, 15, 4), (0, 2, 4), (0, 2, 6), (5, 0, 6),
(10, 2, 6), (5, 15, 6), and (0, 2, 6), where Figure 11(a) shows
the limit surface that interpolates all the initial control points
with (α, β) � (0, − (1/40)) , Figure 11(b) shows the limit
surface that approximates all the initial control points with
(α, β) � (1/8, t0), and Figure 11(c) shows the limit surface

1 2
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45

6 7

8

910

(g) (h) (i)

(j) (k) (l)

Figure 10: (e effect of local interpolation by our combined subdivision scheme Sa3
with different αi and βi is shown in (a–f) and by our

combined subdivision scheme Sa5
with different αi and βi is shown in (g–l), respectively.
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that interpolates only the control points (5, 15, 0), (5, 15, 2),
(5, 15, 4), and (5, 15, 6) at each level of subdivision with
(αi, βi) � (0, − (1/40)) and approximates all the other con-
trol points at each level of subdivision with
(αi, βi) � ((1/8), 0). Similarly, a programmer can choose
other control points of his choice to be interpolated by using
the tensor product schemes of the proposed schemes.
Moreover, the extension of these schemes to the more
general schemes which can produce surfaces with arbitrary
topology is a direction for future study.

7. Conclusion

In this article, we have proposed a recursive method to
generate the refinement rules of combined subdivision
schemes. On the basis of that recursive refinement rules, we
have presented the family of (2N + 2)-point relaxed primal
combined schemes, the family of (2N + 3)-point relaxed
combined schemes, and the family of (2N + 4)-point
interpolatory subdivision schemes with reproduction de-
grees 2N + 1, 2N + 3, and 2N + 3, respectively, at certain
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Figure 11: (e effect of local interpolation by tensor product of our combined subdivision scheme Sa3
with different αi and βi.
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values of the tension parameters. In fact, when value of N is
increased by one, polynomial reproductions of the pro-
posed families of schemes are increased by two. Similarly,
polynomial generations of the proposed families of
schemes are 2N + 3, 2N + 5, and 2N + 3, respectively. N is
also directly proportional to the polynomial generations of
the schemes. (e continuity of the proposed families may
be increased by increasing N. Our families of schemes not
only give the flexibility in fitting limit curves/surfaces
because of the involvement of tension parameters but also
give the optimal polynomial reproduction, polynomial
generation, and continuity than the existing primal
schemes. Moreover, we converted the proposed family of
(2N + 3)-point combined subdivision schemes to the
family of interproximate subdivision schemes by defining
local parameters. One of these parameters is defined to
control the interpolating property of the subdivision
schemes and other one is defined to control the approxi-
mating property of the subdivision schemes. (e inter-
proximate subdivision schemes have applications in
situations where some of the initial data points cannot be
measured exactly. Future work is to do a theoretical study
that how to choose values of tension parameters in an
interproximate algorithm automatically.
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Structure-based topological descriptors of chemical networks enable us the prediction of physico-chemical properties and the
bioactivities of compounds through QSAR/QSPR methods. Topological indices are the numerical values to represent a graph
which characterises the graph. One of the latest distance-based topological index is the Mostar index. In this paper, we study the
Mostar index, Szeged index, PI index, ABCGG index, and NGG index, for chain oxide network COXn, chain silicate network CSn,
ortho chain Sn, and para chain Qn, for the first time. Moreover, analytically closed formulae for these structures are determined.

1. Introduction and Preliminary Results

All the graphs G in this paper are considered to be finite,
undirected, and loopless. Graph G is the set made up of
vertices (also called the nodes) which are connected with the
edges (also called links). It consists on two sets V and E,
where V is called the vertex set and E is called the edge set. In
order to understand the properties and information con-
tained in the connectivity pattern of graphs, there are many
numbers of numerical quantities, known as structure in-
variants, topological indices, or topological descriptors,
which have been derived and studied over the past few
decades. )e topological indices have vast number of ap-
plications in the chemical graph theory which is the special
branch of mathematical chemistry.Graph theory has a wide
range of applications in engineering due to its diagrammatic
nature. It is used in computer science to study the algorithms
and flow of information. In engineering, it is used to model
the graphics and designs of different networks by converting
them in the form of graph.

)e topological indices are very much used for char-
acterizing the chemical graphs on the basis of their nu-
merical values. )ey establish the relationship between the
structure and properties of molecule. Topological indices are
widely used in QSAR and QSPR research studies [1]. Till
now, many topological indices have been derived. For any
two graphs G and H which are isomorphic to each other,
then Top(G) � Top(H) [2]. Due to the success of simple
topological indices, such as Wiener Index [3], Zagreb index
[4], and Szeged index [5], motivated others, hundreds of
topological indices are introduced. Wiener index is one of
the first index which was introduced by Harold Wiener in
1947 [6], when he was working on the boiling point of
paraffins. )eWiener index [7] of a graph G is defined as the
sum of all the distances between pairs of vertices of G:

W(G) � 􏽘
(u,v)⊆V(G)

d(u, v), (1)

where d(u, v) denotes the shortest-path distance in G.
)e Szeged index is defined as

Hindawi
Journal of Mathematics
Volume 2021, Article ID 5520619, 10 pages
https://doi.org/10.1155/2021/5520619

mailto:ahsanbanyamin@gmail.com
https://orcid.org/0000-0002-9815-7158
https://orcid.org/0000-0003-0717-7557
https://orcid.org/0000-0002-9620-7692
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5520619


Sz(G) � 􏽘
e�uv∈E(G)

nunv, (2)

where nu denotes the number of vertices of G closer to u than
to v and nv is defined as the number of vertices of G closer to
v than to u. )is was first studied by Gutman. Later, it is
known as the Szeged index [8].

)e PI index [9], of a graph G, is defined as

PIv(G) � 􏽘
e�uv∈E(G)

nu + nv. (3)

)e Graovac–Ghorbani index is defined as

ABCGG(G) � 􏽘
e�uv∈E(G)

���������
nu + nv − 2

nunv

􏽳

, (4)

and this index is introduced by Graovac and Ghorbani [10],
and Furtula [11] used the name Graovac–Ghorbani index.

)e normalized ABCGG index is NGG index, first studied
by Dimitrov et al. [12], and is defined as

NGG(G) � 􏽘
e�uv∈E(G)

1
����
nunv

√ . (5)

A chemical graph is a simple graph in which atoms
correspond to the vertices and edge denotes the bond be-
tween two atoms. A topological index, specially, the Mostar
index is one of the latest topological index, derived in 2018
[13]. Previously, Arockiaraj [14] found the Mostar indices of
carbon nanostructures, and Hayata and Zhou [15] calculated
the largeMostar index on cacti.)eMostar index for a graph
G is defined as the sum of all the absolutes values of the
difference between nu and nv, where u and v are the adjacent
vertices of an edge:

Mo(G) � 􏽘
e�uv∈E(G)

nu − nv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (6)

2. Main Results

)e main goal of this article is to compute the Mostar index
of ortho chain and para chain using the edge cut method;
also, we find the Mostar index, Szeged index, PI index,
ABCGG index, and NGG index of oxide chains, chain sili-
cates, ortho chain, and para chain by using the technique of
edge partition. )e notations used in this paper are standard
and taken from the book of west [16]. For the concepts and
terms not defined here, we refer the reader to concern with
the book of Harary [17] and also concern with [18–25].

2.1. Results for the Chain Oxide Network COXn. In this
section, we discuss COXn and compute the exact results for
Szeged, PI, ABCGG, NGG, and Mostar index. If we remove
the silicon atom from the silicate network, then the resulting

network is an oxide network [26], which consists of three
oxygen atoms. Oxide network has the triangular structure. If
an oxide network shares its oxygen with other oxide network
linearly, then the oxide chain is formed, as shown in
Figure 1.

Theorem 1. Let G1 be the oxide network of n order, then its
Szeged index is 2n3 + 6n2 + n/3.

Proof. Let G1 � OX(n), where n≥ 2; also, n is an integer.

Sz G1( 􏼁 � 􏽘

e∈E G1( )

nunv,

Sz G1( 􏼁 � 􏽘

e∈E G1( )

n2n2 + 􏽘

e∈E G1( )

n2n4 + 􏽘

e∈E G1( )

n4n4.
(7)

By using Table 1, we have

Sz G1( 􏼁 � 2 + 2n
2

+ 4n − 4 +
2n

3
− 11n + 6
3

,

Sz G1( 􏼁 �
2n

3
+ 6n

2
+ n

3
,

(8)

which is required. □

Theorem 2. Let G1 be the oxide network of n order; then, its
PI index is 4n2 + 2n.

Proof. Let G1 � OX(n), where n≥ 2; also, n is an integer:

PIv G1( 􏼁 � 􏽘

e∈E G1( )

nu + nv,

PIv G1( 􏼁 � 􏽘

e∈E G1( )

n2 + n2 + 􏽘

e∈E G1( )

n2 + n4 + 􏽘

e∈E G1( )

n4 + n4.

(9)

By using Table 2, we have

PIv G1( 􏼁 � 4 + 2n
2

+ 6n − 4 + 2n
2

− 4n,

PIv G1( 􏼁 � 4n
2

+ 2n,
(10)

which is required. □

Theorem 3. Let G1 be the oxide network of n order; then,
its ABCGG index is 1 +

�������������������
n2 + 3n − 3/n2 + 2n − 2

√
+�����������������������

6n2 − 12n − 6/2n3 − 11n + 6
√

.

1
2

3
n – 1

n

Figure 1: Oxide network.
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Proof. Let G1 � OX(n), where n≥ 2; also, n is an integer:

ABCGG G1( 􏼁 � 􏽘

e∈E G1( )

���������
nu + nv − 2

nunv

􏽳

,

ABCGG G1( 􏼁 � 􏽘

e∈E G1( )

���������
n2 + n2 − 2

n2n2

􏽳

+ 􏽘

e∈E G1( )

���������
n2 + n4 − 2

n2n4

􏽳

+ 􏽘

e∈E G1( )

���������
n4 + n4 − 2

n4n4

􏽳

.

(11)

By using Table 3, we have

ABCGG G1( 􏼁 � 1 +

���������

n
2

+ 3n − 3
n
2

+ 2n − 2

􏽳

+

�����������

6n
2

− 12n − 6
2n

3
− 11n + 6

􏽳

, (12)

which is required. □

Theorem 4. Let G1 be the oxide network of n order; then, its
NGG(G1) index is 1/

�
2

√
+ 1/

����������
2n2 + 4n − 4

√
+�������������

3/2n3 − 11n + 6
√

.

Proof. Let G1 � OX(n), where n≥ 2; also, n is an integer:

NGG G1( 􏼁 � 􏽘

e∈E G1( )

1
����
nunv

√ ,

NGG G1( 􏼁 � 􏽘

e∈E G1( )

1
����
n2n2

√ + 􏽘

e∈E G1( )

1
����
n2n4

√ + 􏽘

e∈E G1( )

1
����
n4n4

√ .

(13)

By using Table 4, we have

NGG G1( 􏼁 �
1
�
2

√ +
1

����������
2n

2
+ 4n − 4

􏽰 +

�����������
3

2n
3

− 11n + 6

􏽳

, (14)

which is required. □

Theorem 5. Let G1 be the oxide network of even order; then,
its Mostar index is 3n2 − 2n.

Proof. Let G1 � OX(n), where n≥ 2; also, n is even:

Mo G1( 􏼁 � 􏽘

uv∈E G1( )

nu − nv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

Mo G1( 􏼁 � 􏽘

uv∈E G1( )

n2 − n2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G1( )

n2 − n4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G1( )

n4 − n4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(15)
By using Table 5, we have

Mo G1( 􏼁 � 0 + 2n
2

+ 2n − 4 + n
2

− 4n + 4,

Mo G1( 􏼁 � 3n
2

− 2n,
(16)

which is required. □

Theorem 6. Let G1 be the oxide network of odd order; then,
its Mostar index is 3n2 − 2n − 1.

Proof. Let G1 � OX(n), where n≥ 1; also, n is odd:
Mo G1( 􏼁 � 􏽘

uv∈E G1( )

nu − nv,

Mo G1( 􏼁 � 􏽘

uv∈E G1( )

n2 − n2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G1( )

n2 − n4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G1( )

n4 − n4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(17)

By using Table 6, we have

Mo G1( 􏼁 � 0 + 2n
2

+ 2n − 4 + n
2

− 4n + 3,

Mo G1( 􏼁 � 3n
2

− 2n − 1,
(18)

which is required. □

2.2.Results for theChainSilicateNetworkCSn. In this section,
we discuss CSn and compute the exact results for Szeged, PI,
ABCGG, NGG, and Mostar index. Silicates are the

Table 1: Edge partition of oxide network of n order.

Edge partition du, dv Number of edges Szeged index
2, 2 2 2
2, 4 2n 2n2 + 4n − 4
4, 4 n − 2 2n3 − 11n + 6/3

Table 2: Edge partition of oxide network of n order.

Edge partition du, dv Number of edges PI index

2, 2 2 4
2, 4 2n 2n2 + 6n − 4
4, 4 n − 2 2n2 − 4n

Table 3: Edge partition of oxide network of n order.

Edge partition
du, dv

Number of edges ABCGG index

2,2 2 1
2,4 2n

�������������������
n2 + 3n − 3/n2 + 2n − 2

√

4,4 n − 2
�����������������������
6n2 − 12n − 6/2n3 − 11n + 6

√

Table 4: Edge partition of oxide network of n order.

Edge partition du, dv Number of edges NGG index

2, 2 2 1/
�
2

√

2, 4 2n 1/
����������
2n2 + 4n − 4

√

4, 4 n − 2
�������������
3/2n3 − 11n + 6

√
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compounds which consist of silicon and oxygen, having the
tetrahedron structure with bond angle of 109.5°. SiO4 is
found in almost all of the silicates. A single tetrahedron has a
shape like a pyramid with triangular base. It has four oxygen
atoms at its corners, and silicon atom is bounded equally
with oxygen atoms with bond length of 162 pm. A single
tetrahedron is shown in Figure 2(a). If a single tetrahedron
shares its oxygen with other tetrahedrons; then, a linear
silicate chain [27] is formed, as shown in Figure 2(b).

Theorem 7. Let G2 be the chain silicate network of n order;
then, its Szeged index is 3n3 + 9n2/2.

Proof. Let G2 � CSn, where n≥ 2; also, n is an integer:

Sz G2( 􏼁 � 􏽘

e∈E G2( )

nunv,

Sz G2( 􏼁 � 􏽘

e∈E G2( )

n3n3 + 􏽘

e∈E G2( )

n3n6 + 􏽘

e∈E G2( )

n6n6.
(19)

By using Table 7, we have

Sz G2( 􏼁 � n + 4 + 6n
2

+ 4n − 8 +
3n

3
− 3n

2
− 10n + 8
2

,

Sz G2( 􏼁 �
3n

3
+ 9n

2

2
,

(20)

which is required. □

Theorem 8. Let G2 be the chain silicate network of n order;
then, its PI index is 9n2 + 3n.

Proof. Let G2 � CSn, where n≥ 2; also, n is an integer:

PIv G2( 􏼁 � 􏽘

e∈E G2( )

nu + nv,

PIv G2( 􏼁 � 􏽘

e∈E G2( )

n3 + n3 + 􏽘

e∈E G2( )

n3 + n6 + 􏽘

e∈E G2( )

n6 + n6.

(21)

By using Table 8, we have

PIv G2( 􏼁 � 2n + 8 + 6n
2

+ 8n − 10 + 3n
2

− 7n + 2,

PIv G2( 􏼁 � 9n
2

+ 3n,
(22)

which is required. □

Theorem 9. Let G2 be the chain silicate network of n order
then its ABCGG index is

���������
2n +6/n +4

√
+�������������������

3n2 +4n −6/3n2 +2n −4
√

+
�����������������������
6n2 −14n/3n3 −3n2 −10n +8

√
.

Proof. Let G2 � CSn, where n≥ 2; also, n is an integer:

ABCGG G2( 􏼁 � 􏽘

e∈E G2( )

���������
nu + nv − 2

nunv

􏽳

,

ABCGG G2( 􏼁 � 􏽘

e∈E G2( )

���������
n3 + n3 − 2

n3n3

􏽳

+ 􏽘

e∈E G2( )

���������
n3 + n6 − 2

n3n6

􏽳

+ 􏽘

e∈E G2( )

���������
n6 + n6 − 2

n6n6

􏽳

.

(23)

By using Table 9, we have

ABCGG G2( 􏼁 �

�����
2n + 6
n + 4

􏽲

+

����������

3n
2

+ 4n − 6
3n

2
+ 2n − 4

􏽳

+

����������������

6n
2

− 14n

3n
3

− 3n
2

− 10n + 8

􏽳

,

(24)

which is required. □

Theorem 10. Let G2 be the chain silicate network of n order;
then, its NGG index is 1/

�����
n + 4

√
+ 1 /

����������
6n2 + 4n − 8

√

+
������������������
2/3n3 − 3n2 − 10n + 8

√
.

Proof. Let G2 � CSn, where n≥ 2; also, n is an integer:

NGG G2( 􏼁 � 􏽘

e∈E G2( )

1
����
nunv

√ ,

NGG G2( 􏼁 � 􏽘

e∈E G2( )

1
����
n3n3

√ + 􏽘

e∈E G2( )

1
����
n3n6

√ + 􏽘

e∈E G2( )

1
����
n6n6

√ .

(25)

By using Table 10, we have

NGG G2( 􏼁 �
1

�����
n + 4

√ +
1

����������
6n

2
+ 4n − 8

􏽰 +

����������������
2

3n
3

− 3n
2

− 10n + 8

􏽳

,

(26)

Table 5: Edge partition of oxide network of even order.

Edge partition du, dv Number of edges Mostar index

2, 2 2 0
2, 4 2n 2n2 + 2n − 4
4, 4 n − 2 n2 − 4n + 4

Table 6: Edge partition of oxide network of odd order.

Edge partition du, dv Number of edges Mostar index

2, 2 2 0
2, 4 2n 2n2 + 2n − 4
4, 4 n − 2 n2 − 4n + 3
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which is required. □

Theorem 11. Let G2 be the chain silicate network of even
order; then, its Mostar index is 15n2 − 12n/2.

Proof. Let G2 � CSn, where n≥ 2; also, n is even.

Mo G2( 􏼁 � 􏽘

uv∈E G2( )

nu − nv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

Mo G2( 􏼁 � 􏽘

uv∈E G2( )

n3 − n3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G2( )

n3 − n6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G2( )

n6 − n6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(27)

By using Table 11, we have

Mo G2( 􏼁 � 0 + 6n
2

− 6 +
3n

2
− 12n + 12

2
,

Mo G2( 􏼁 �
15n

2
− 12n

2
,

(28)

which is required. □

Theorem 12. Let G2 be the chain silicate network of odd
order; then, its Mostar index is 15n2 − 12n − 3/2.

Proof. Let G2 � CSn, where n≥ 1; also, n is odd:

Mo G2( 􏼁 � 􏽘

uv∈E G2( )

nu − nv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

Mo G2( 􏼁 � 􏽘

uv∈E G2( )

n3 − n3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G2( )

n3 − n6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G2( )

n6 − n6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(29)

By using Table 12, we have

Mo G2( 􏼁 � 0 + 6n
2

− 6 +
3n

2
− 12n + 9
2

,

Mo G2( 􏼁 �
15n

2
− 12n − 3
2

,

(30)

(a) (b)

Figure 2: (a) Single silicate and (b) chain silicate.

Table 7: Edge partition of chain silicate network of n order.

Edge partition du, dv Number of edges Szeged index

3, 3 n + 4 n+4
3, 6 2(2n − 1) 6n2 + 4n − 8
6, 6 n − 2 3n3 − 3n2 − 10n + 8/2

Table 8: Edge partition of chain silicate network of n order.

Edge partition du, dv Number of edges PI index

3, 3 n + 4 2n+8
3, 6 2(2n − 1) 6n2 + 8n − 10
6, 6 n − 2 3n2 − 7n + 2

Table 9: Edge partition of chain silicate network of n order.

Edge partition du, dv Number of edges ABCGG index

3, 3 n + 4
����������
2n + 6/n + 4

√

3, 6 2(2n − 1)
���������������������
3n2 + 4n − 6/3n2 + 2n − 4

√

6, 6 n − 2
������������������������
6n2 − 14n/3n3 − 3n2 − 10n + 8

√

Table 10: Edge partition of chain silicate network of n order.

Edge partition du, dv Number of edges ABCGG index

3, 3 n + 4 1/
�����
n + 4

√

3, 6 2(2n − 1) 1/
����������
6n2 + 4n − 8

√

6, 6 n − 2
������������������
2/3n3 − 3n2 − 10n + 8

√

Table 11: Edge partition of chain silicate network of even order.

Edge partition du, dv Number of edges Mostar index

3, 3 n + 4 0
3, 6 2(2n − 1) 6n2 − 6
6, 6 n − 2 3n2 − 12n + 12/2
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which is required. □

2.3. Results for theOrthoChain Sn. In this section, we discuss
Sn and compute the exact results for Szeged, PI, ABCGG,
NGG, and Mostar index. )e single molecule of para and
ortho chain has the same structure. Basically, it is a cycle
graph having 4 sides denoted as C4 and represented as a
four-sided regular polygon. )e ortho chain has a zig-zag
structure where each corner of C4 is attached linearly, as
shown in Figure 3. )e para chain has a structure in which
each C4 is attached at corner to corner with other C4 but not
linearly, as shown in Figure 4 [28].

Theorem 13. Let G3 be the ortho chain of n order; then, its
Szeged index is 3n3 + 15n2 − 2n.

Proof. Let G3 � Sn, where n≥ 2; also, n is an integer.

Sz G3( 􏼁 � 􏽘

e∈E G3( )

nunv,

Sz G3( 􏼁 � 􏽘

e∈E G3( )

n2n2 + 􏽘

e∈E G3( )

n2n4 + 􏽘

e∈E G3( )

n4n4.
(31)

By using Table 13, we have

Sz G3( 􏼁 �
3n

3
+ 3n

2
+ 26n − 8
2

+ 12n
2

− 4n +
3n

3
+ 3n

2
− 22n + 8
2

,

Sz G3( 􏼁 � 3n
3

+ 15n
2

− 2n,

(32)

which is required. □

Theorem 14. Let G3 be the ortho chain of n order; then, its PI
index is 12n2 + 4n.

Proof. Let G3 � Sn, where n≥ 2; also, n is an integer:

PIv G3( 􏼁 � 􏽘

e∈E G3( )

nu + nv,

PIv G3( 􏼁 � 􏽘

e∈E G3( )

n2 + n2 + 􏽘

e∈E G3( )

n2 + n4 + 􏽘

e∈E G3( )

n4 + n4.

(33)

By using Table 14, we have

PIv G3( 􏼁 � 3n
2

+ 7n + 2 + 6n
2

+ 2n + 3n
2

− 5n − 2,

PIv G3( 􏼁 � 12n
2

+ 4n,
(34)

which is required. □

Theorem 15. Let G3 be the ortho chain of n order; then, its
ABCGG index is

������������������������
6n2 + 14n/3n3 + 3n2 + 26n − 8

√

+
�����������������
3n2 + n − 1/6n2 − 2n

√
+

������������������������
6n2 − 10n − 8/3n3 + 3n2 − 22n

√

+8.

Proof. Let G3 � Sn, where n≥ 2; also, n is an integer:

ABCGG G3( 􏼁 � 􏽘

e∈E G3( )

���������
nu + nv − 2

nunv

􏽳

,

ABCGG G3( 􏼁 � 􏽘

e∈E G3( )

���������
n2 + n2 − 2

n2n2

􏽳

+ 􏽘

e∈E G3( )

���������
n2 + n4 − 2

n2n4

􏽳

+ 􏽘

e∈E G3( )

���������
n4 + n4 − 2

n4n4

􏽳

.

(35)

By using Table 15, we have

Table 12: Edge partition of chain silicate network of odd order.

Edge partition du, dv Number of edges Mostar index

3, 3 n + 4 0
3, 6 2(2n − 1) 6n2 − 6
6, 6 n − 2 3n2 − 12n + 9/2

1

2

3

4

n – 1

n

Figure 3: Ortho chain of n vertices.

1

2

3

n – 1

n

Figure 4: Para chain of n order.

Table 13: Edge partition of ortho chain of n order.

Edge partition du, dv Number of edges Szeged index

2, 2 n + 2 3n3 + 3n2 + 26n − 8/2
2, 4 2n 12n2 − 4n

4, 4 n − 2 3n3 + 3n2 − 22n + 8/2

Table 14: Edge partition of ortho chain of n order.

Edge partition du, dv Number of edges PI index

2, 2 n + 2 3n2 + 7n + 2
2, 4 2n 6n2 + 2n

4, 4 n − 2 3n2 − 5n − 2
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ABCGG G3( 􏼁 �

����������������

6n
2

+ 14n

3n
3

+ 3n
2

+ 26n − 8

􏽳

+

���������

3n
2

+ n − 1
6n

2
− 2n

􏽳

+

����������������

6n
2

− 10n − 8
3n

3
+ 3n

2
− 22n + 8

􏽳

,

(36)

which is required. □

Theorem 16. Let G3 be the ortho chain of n order; then, its
NGG(G3) index is

������������������
2/3n3 + 3n2 + 26n − 8

√
+ 1/2������

3n2 − n
√

+
������������������
2/3n3 + 3n2 − 22n + 8

√
.

Proof. Let G3 � Sn, where n≥ 2; also, n is an integer:

NGG G3( 􏼁 � 􏽘

e∈E G3( )

1
����
nunv

√ ,

NGG G3( 􏼁 � 􏽘

e∈E G3( )

1
����
n2n2

√ + 􏽘

e∈E G3( )

1
����
n2n4

√ + 􏽘

e∈E G3( )

1
����
n4n4

√ .

(37)

By using Table 16, we have

NGG G3( 􏼁 �

����������������
2

3n
3

+ 3n
2

+ 26n − 8

􏽳

+
1

2
������
3n

2
− n

􏽰

+

����������������
2

3n
3

+ 3n
2

− 22n + 8

􏽳

,

(38)

which is required. □

Theorem 17. Let G3 be the ortho chain of even order; then,
its Mostar index is 9n2 − 6n.

Proof. Let G3 � Sn, where n≥ 2; also, n is even:

Mo G3( 􏼁 � 􏽘

uv∈E G3( )

nu − nv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

Mo G3( 􏼁 � 􏽘

uv∈E G3( )

n2 − n2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G3( )

n2 − n4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ 􏽘

uv∈E G3( )

n4 − n4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(39)

By using Table 17, we have

Mo G3( 􏼁 �
3n

2
+ 12n − 12

2
+ 6n

2
− 6n +

3n
2

− 12n + 12
2

,

Mo G3( 􏼁 � 9n
2

− 6n,

(40)

which is required. □

Theorem 18. Let G3 be the ortho chain of odd order; then, its
Mostar index is 9n2 − 6n − 3.

Proof. Let G3 � Sn, where n≥ 1; also, n is odd:

Mo G3( 􏼁 � 􏽘

uv∈E G3( )

nu − nv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

Mo G3( 􏼁 � 􏽘

uv∈E G3( )

n2 − n2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G3( )

n2 − n4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

+ 􏽘

uv∈E G3( )

n4 − n4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(41)

By using Table 18, we have

Mo G3( 􏼁 �
3n

2
+ 12n − 15

2
+ 6n

2
− 6n +

3n
2

− 12n + 9
2

,

Mo G3( 􏼁 � 9n
2

− 6n − 3,

(42)

which is required. □

2.4. Results for the Para ChainQn. In this section, we discuss
Qn and compute the exact results for Szeged, PI, ABCGG,
NGG, and Mostar index.

Theorem 19. Let G4 be the para chain of n order; then, its
Szeged index is 6n3 + 6n2 + 4n.

Proof. Let G4 � Qn, where n≥ 2; also, n is an integer.

Table 15: Edge partition of ortho chain of n order.

Edge
partition
du, dv

Number of edges ABCGG index

2, 2 n + 2
������������������������
6n2 + 14n/3n3 + 3n2 + 26n − 8

√

2, 4 2n
�����������������
3n2 + n − 1/6n2 − 2n

√

4, 4 n − 2
���������������������������
6n2 − 10n − 8/3n3 + 3n2 − 22n + 8

√

Table 16: Edge partition of oxide network of n order.

Edge partition du, dv Number of edges NGG index

2, 2 n + 2
������������������
2/3n3 + 3n2 + 26n − 8

√

2, 4 2n 1/2
������
3n2 − n

√

4, 4 n − 2
������������������
2/3n3 + 3n2 − 22n + 8

√

Table 17: Edge partition of ortho chain of even order.

Edge partition du, dv Number of edges Mostar index

2, 2 n + 2 3n2 + 12n − 12/2
2, 4 2n 6n2 − 6n

4, 4 n − 2 3n2 − 12n + 12/2
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Sz G4( 􏼁 � 􏽘

e∈E G4( )

nunv,

Sz G4( 􏼁 � 􏽘

e∈E G4( )

n2n2 + 􏽘

e∈E G4( )

n2n4.
(43)

By using Table 19, we have

Sz G4( 􏼁 � 24n − 8 + 6n
3

+ 6n
2

− 20n + 8,

Sz G4( 􏼁 � 6n
3

+ 6n
2

+ 4n,
(44)

which is required. □

Theorem 20. Let G4 be the para chain of n order; then, its PI
index is 12n2 + 4n.

Proof. Let G4 � Qn, where n≥ 2; also, n is an integer:

PIv G4( 􏼁 � 􏽘

e∈E G4( )

nu + nv,

PIv G4( 􏼁 � 􏽘

e∈E G4( )

n2 + n2 + 􏽘

e∈E G4( )

n2 + n4.
(45)

By using Table 20, we have

PIv G4( 􏼁 � 12n + 4 + 12n
2

− 8n − 4,

PIv G4( 􏼁 � 12n
2

+ 4n,
(46)

which is required. □

Theorem 21. Let G4 be the para chain of n order; then, its
ABCGG index is

������������
6n + 1/12n − 4

√

+
��������������������������
6n2 − 4n − 3/3n3 + 3n2 − 10n + 4

√
.

Proof. Let G4 � OX(n), where n≥ 2; also, n is an integer:

ABCGG G4( 􏼁 � 􏽘

e∈E G4( )

���������
nu + nv − 2

nunv

􏽳

,

ABCGG G4( 􏼁 � 􏽘

e∈E G4( )

���������
n2 + n2 − 2

n2n2

􏽳

+ 􏽘

e∈E G4( )

���������
n2 + n4 − 2

n2n4

􏽳

.

(47)

By using Table 21, we have

ABCGG G4( 􏼁 �

������
6n + 1
12n − 4

􏽲

+

����������������

6n
2

− 4n − 3
3n

3
+ 3n

2
− 10n + 4

􏽳

, (48)

which is required. □

Theorem 22. Let G4 be the para chain of n order; then, its
NGG(G4) index is 1/2

�����
6n − 2

√
+ 1/

����������������
6n3 + 6n2 − 20n + 8

√
.

Proof. Let G4 � Qn, where n≥ 2 also n is an integer:

NGG G4( 􏼁 � 􏽘

e∈E G4( )

1
����
nunv

√ ,

NGG G4( 􏼁 � 􏽘

e∈E G4( )

1
����
n2n2

√ + 􏽘

e∈E G4( )

1
����
n2n4

√ .

(49)

By using Table 22, we have

NGG G4( 􏼁 �
1

2
�����
6n − 2

√ +
1

����������������
6n

3
+ 6n

2
− 20n + 8

􏽰 , (50)

which is required. □

Theorem 23. Let G4 be the para chain of even order; then, its
Mostar index is 6n2.

Proof. Let G4 � Qn, where n≥ 2; also, n is even:

Mo G4( 􏼁 � 􏽘

uv∈E G4( )

nu − nv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

Mo G4( 􏼁 � 􏽘

uv∈E G4( )

n2 − n2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G4( )

n2 − n4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(51)

By using Table 23, we have

Mo G4( 􏼁 � 12n − 12 + 6n
2

− 12n + 12,

Mo G4( 􏼁 � 6n
2
,

(52)

which is required. □

Theorem 24. Let G4 be the para chain of odd order; then, its
Mostar index is 6n2 − 6.

Table 20: Edge partition of para chain of n order.

Edge partition du, dv Number of edges PI index

2, 2 4 12n + 4
2, 4 4n − 4 12n2 − 8n − 4

Table 21: Edge partition of para chain of n order.

Edge
partition
du, dv

Number of edges ABCGG index

2, 2 4
������������
6n + 1/12n − 4

√

2, 4 4n − 4
��������������������������
6n2 − 4n − 3/3n3 + 3n2 − 10n + 4

√

Table 18: Edge partition of ortho chain of odd order.

Edge partition du, dv Number of edges Mostar index

2, 2 n + 2 3n2 + 12n − 15/2
2, 4 2n 6n2 − 6n

4, 4 n − 2 3n2 − 12n + 9/2

Table 19: Edge partition of para chain of n order.

Edge partition du, dv Number of edges Szeged index

2, 2 4 24n − 8
2, 4 4n − 4 6n3 + 6n2 − 20n + 8
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Proof. Let G4 � Qn, where n≥ 1; also, n is odd:

Mo G4( 􏼁 􏽘

uv∈E G4( )

nu − nv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

Mo G4( 􏼁 � 􏽘

uv∈E G4( )

n2 − n2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽘

uv∈E G4( )

n2 − n4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.
(53)

By using Table 24, we have

Mo G4( 􏼁 � 12n − 12 + 6n
2

+ 12n + 6,

Mo G4( 􏼁 � 6n
2

− 6,
(54)

which is required.

For the comparison of Szeged, PI, ABCGG, and NGG
index of COXn, we computed the indices for different
values of n. By increasing the values of n, we can clearly
check from Table 25 that the order of Szeged and PI
index is increasing while that of ABCGG and NGG is
decreasing.
For the comparison of Szeged, PI, ABCGG, and NGG
index of CSn, we computed the indices for different
values of n. By increasing the values of n, we can clearly
check from Table 26 that the order of Szeged and PI
index is increasing while that of ABCGG and NGG is
decreasing.
For the comparison of Szeged, PI, ABCGG, and NGG
index of Sn, we computed the indices for different
values of n. By increasing the values of n, we can clearly
check from Table 27 that the order of Szeged and PI
index is increasing while that of ABCGG and NGG is
decreasing.
For the comparison of Szeged, PI, ABCGG, and NGG
index of Qn, we computed the indices for different
values of n. By increasing the values of n, we can clearly
check from Table 28 that the order of Szeged and PI
index is increasing while that of ABCGG and NGG is
decreasing. □

3. Conclusion

In this article, we have figured out several bond-additive TIs
such as Szeged, PI, ABC, NGG, and Mostar index. We
calculated the closed formulae for abovementioned TIs of
chain silicate, oxide network, para, and ortho chain. )e
above outcomes contribute in the field of natural sciences

Table 27: Comparison table for ortho chain.

Sn Sz(G) PI ABC NGG
1 16 16 — —
2 80 56 — —
3 210 120 — —
4 424 208 1.98 0.26
5 740 320 1.88 0.19
6 1176 456 1.80 0.15
7 1750 616 1.74 0.12
8 2480 800 1.68 0.10
9 3384 1006 1.63 0.09
10 4480 1240 1.58 0.08

Table 28: Comparison table for para chain.

Qn Sz(G) PI ABC NGG
1 16 16 — —
2 80 56 1.61 0.32
3 228 120 1.46 0.20
4 496 208 1.37 0.16
5 920 320 1.30 0.13
6 1536 456 1.26 0.11
7 2380 616 1.22 0.10
8 3488 800 1.19 0.09
9 4896 1008 1.16 0.08
10 6640 1240 1.14 0.07

Table 22: Edge partition of para chain of n order.

Edge partition du, dv Number of edges NGG index

2, 2 4 1/2
�����
6n − 2

√

2, 4 4n − 4 1/
����������������
6n3 + 6n2 − 20n + 8

√

Table 24: Edge partition of para chain of odd order.

Edge partition du, dv Number of edges Mostar index

2, 2 4 12n − 12
2, 4 4n − 4 6n2 + 12n + 6

Table 25: Comparison table for chain oxide network.

OX(n) Sz(G) PI ABC NGG
1 3 6 — —
2 14 20 — —
3 37 42 — —
4 76 72 2.75 1.04
5 135 110 2.71 0.95
6 218 156 2.66 0.90
7 329 210 2.62 0.86
8 472 272 2.59 0.84
9 651 342 2.56 0.83
10 870 420 2.53 0.81

Table 26: Comparison table for chain silicate.

CSn Sz(G) PI ABC NGG
1 6 12 — —
2 30 42 — —
3 81 90 — —
4 168 156 2.91 0.58
5 300 240 2.89 0.49
6 486 342 2.88 0.45
7 735 462 2.86 0.41
8 1056 600 2.83 0.38
9 1458 756 2.81 0.35
10 1950 930 2.80 0.33

Table 23: Edge partition of para chain of even order.

Edge partition du, dv Number of edges Mostar index

2, 2 4 12n − 12
2, 4 4n − 4 6n2 − 12n + 12
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and pharmaceutical science. Our exploration kept on de-
termining new consequences of these graphs.
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In this manuscript, we present a new general family of optimal iterative methods for finding multiple roots of nonlinear equations
with knownmultiplicity using weight functions. An extensive convergence analysis is presented to verify the optimal eighth order
convergence of the new family. Some special cases of the family are also presented which require only three functions and one
derivative evaluation at each iteration to reach optimal eighth order convergence. A variety of numerical test functions along with
some real-world problems such as beam designing model and Van der Waals’ equation of state are presented to ensure that the
newly developed family efficiently competes with the other existing methods. *e dynamical analysis of the proposed methods is
also presented to validate the theoretical results by using graphical tools, termed as the basins of attraction.

1. Introduction

*e solution of a nonlinear equation of the type, g(x) � 0, is
one of the important problems and is a demanding task in
computational mathematics. *is problem becomes more
complex when we deal with multiple roots of nonlinear
equations. Many problems arise in the areas of engineering
and mathematical modeling with the need to determine
roots of the nonlinear equations as an intermediate problem
for their solution. We have a large number of one-point and
multipoint methods in the literature which are used to find
roots of nonlinear equations, see [1–4]. A natural question
arises that, is there any need of these variants? *is question
is pinching and alarming. So, we decided to investigate for its
answer. We have tested iterative schemes having the same
order of convergence for different test functions. We have
also chosen test functions from real-world problems such as
Van der Waals’ equation of state and beam positioning
problem. It is observed that every variant behaves differently
for different test functions, so the need for more and more
variants is justified. It is almost fictitious to find solutions of

such problems in analytical form. In practice, to obtain
approximated and effective solution up to a specific degree of
accuracy, we use an iterative procedure. In the past years,
many researchers have been worked to formulate iterative
multiple root finding schemes with higher order of con-
vergence, by knowing the practical, challenging, and de-
manding nature of multiple zeros. *e behavior of iterative
schemes for multiple roots is not similar to that of simple
ones of nonlinear equations.

*e well-known classical Newton’s method with qua-
dratic order of convergence is given as [5]

xζ+1 � xζ −
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
. (1)

In case of multiple roots of nonlinear equations, this
classical Newton’s method fails to keep the quadratic con-
vergence and drops to linear convergence, when provided a
good initial guess x0 near the exact root α. Classical New-
ton’s method with a prior knowledge of multiplicity (k> 1)

yields a modified Newton’s method also known as Rall’s
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method [6] which converges quadratically to the desired
multiple root, given as

xζ+1 � xζ − k ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
, ζ ≥ 0. (2)

In recent years, many researchers have presented opti-
mal fourth order convergent schemes for multiple roots
when multiplicity is known in advance [7–11]. *ukral [12],
Geum et al. [13, 14], and Sharma et al. [15] presented
nonoptimal sixth and seventh order multiple root finding
methods. *e optimal convergence order is defined by Kung
and Traub [16] that a without memory method can ac-
complish the order of convergence at most 2n− 1 consuming
n function or derivative evaluations. Efficiency index is
defined by Ostrowski [17] as, if the order of convergence of
an iterative family is r and the total number of function or
derivative evaluations per iteration is n, then the efficiency
index of an iterative scheme is r(1/n).

In 2018, Behl et al. [18] presented a class of optimal
eighth order methods for approximating multiple roots of
nonlinear equations with known multiplicity k, given as
follows:

yζ � xζ − k ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
, ζ ≥ 0,

zζ � yζ − G tζ􏼐 􏼑 · sζ ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

xζ+1 � zζ − H sζ , wζ􏼐 􏼑 · sζ · wζ ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

(3)

where sζ � [(g(yζ)/g(xζ))]
(1/k), tζ � (sζ/β1 + β2sζ), wζ

� [(g(zζ)/g(yζ))]
(1/k), β1 and β2 are parameters. *e uni-

variate weight function G: C⟶ C and bivariate weight
function H: C2⟶ C are analytic in a neighborhood of (0)
and(0, 0), respectively.

In 2019, Akram et al. [19] proposed an optimal eighth
order multiple root finding scheme based on weight function
approach with known multiplicity (k≥ 1), which is given as
follows:

yζ � xζ − k ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
, ζ ≥ 0,

zζ � yζ − k · G sζ􏼐 􏼑 · sζ ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

xζ+1 � zζ − k · H tζ , wζ􏼐 􏼑 · sζ ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

(4)

where sζ � [(g(yζ)/g(xζ))]
(1/k), tζ � [(g(zζ)/g(yζ))]

(1

/k), wζ � [(g(zζ) /g(xζ))]
(1/k). *e univariate weight func-

tion G: C⟶ C is analytic and bivariate weight function

H: C2⟶ C is holomorphic in a neighborhood of (0)
and(0, 0), respectively.

Zafar et al. [20] presented another family of optimal
eighth order multiple root finders with known multiplicity
by using free parameters λ1, λ2 ∈ R, given as follows:

yζ � xζ − k ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
, ζ ≥ 0,

zζ � yζ − k · G sζ􏼐 􏼑 · sζ ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

xζ+1 � zζ − k · H tζ􏼐 􏼑 · P wζ􏼐 􏼑 · λ1 + λ2sζ􏼐 􏼑 · sζ · wζ ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

(5)

where sζ � [(g(yζ)/g(xζ))]
(1/k), wζ � [(g(zζ)/g(yζ))]

(1

/k), tζ � [(g(zζ) /g(xζ))]
(1/k). *e univariate weight func-

tions G: C⟶ C, H: C⟶ C, and P: C⟶ C are analytic
in a neighborhood of (0). *e above-presented schemes (3),
(4), and (5) require only four-function or derivative eval-
uations and their efficiency index is 8(1/4) � 1.6818.

*ere is very limited literature about the higher order
optimal multiple root finding iterative schemes that can
handle multiple roots with known multiplicity (k≥ 1). *e
main reason is that it is a more challenging and time taking
task with tough and lengthy computations to develop it-
erative methods for finding multiple roots. In the literature,
most of the iterative procedures for multiple roots are the
extensions of modified Newton’s method with complex body
structures.

Our aim for the presented work is to develop a general
family of multiple root finding methods with simple and
compact body structures. *erefore, with the demand to
construct simple and more effective optimal higher order
methods for multiple roots, we present a family of optimal
eighth order convergent iterative methods. *e proposed
scheme requires only four-function evaluations per iterative
step which satisfies the classical conjecture given by Kung
and Traub [16] and thus falls in the category of optimal
methods. *e new simple structured scheme is based on
univariate and trivariate weight functions in each iterative
step. Our scheme provides faster convergence and wider
regions of convergence as compared to the results obtained
by the earlier methods of similar kind.

*e rest of the manuscript is organized as follows: in
Section 2, we present the development of the new family
based on weight function approach for finding multiple
roots with known multiplicity (k≥ 1), followed by the
analysis of its convergence to achieve the optimal eighth
order of convergence. In Section 3, some simple special cases
of weight functions and proposed family are presented.
*ese special cases are used to perform the numerical tests
and comparison of the performance of newly developed
methods with the existing schemes is presented in Section 4.
In Section 5, an extensive dynamical analysis of the pre-
sented methods in complex plane is shown by using a
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graphical tool, namely, basins of attraction. Finally, the
concluding remarks are given in Section 6.

2. Methodology of Iterative Scheme

In this section, we define a general and simple iterative
family in order to approximate multiple roots of nonlinear
equations. Let α be a multiple root with known multiplicity
(k≥ 1) of the function g: C⟶ C. We consider the fol-
lowing iterative scheme by employing weight functions at
each iterative step:

yζ � xζ − G vζ􏼐 􏼑, ζ ≥ 0,

zζ � yζ − H tζ􏼐 􏼑 · G vζ􏼐 􏼑,

xζ+1 � zζ − H tζ􏼐 􏼑 vζ􏼐 􏼑 · D tζ , sζ , wζ􏼐 􏼑G,

(6)

where vζ � (g(xζ)/g′(xζ)), tζ � [(g(yζ)/g(xζ))]
(1/k),

sζ � [(g(zζ)/g(yζ))]
(1/k), wζ � [(g(zζ)/g(xζ))]

(1/k).
*e weight functions G, H, and D involved in the above

iterative scheme (6) play an eminent role to obtain optimal
eighth order convergence. *e univariate weight functions

G: C⟶ C and H: C⟶ C are analytic in the neigh-
borhood of (0) and the trivariate weight function
D: C3⟶ C is analytic in the neighborhood of (0, 0, 0).
Note that the schemes given by (3), (4), and (5) are the
special cases of our proposed family (6).

In the next theorem, we find the conditions on univariate
and trivariate weight functions and investigate the optimal
eighth order of convergence of presented scheme (6).

Theorem 1. Let α be a multiple root with multiplicity (k≥ 1)

of the involved function g and g: C⟶ C is analytic in the
region enclosing a multiple zero α of g. Further, we also
suppose that D: C3⟶ C, G: C⟶ C, and H: C⟶ C

are analytic in neighborhood of their respected origins. 6en,
for an initial guess x0 provided sufficiently close to α of g, the
iterative method defined by (6) has an optimal eighth order of
convergence when the following conditions hold: A0 � 0;
A1 � k; A2 � 0; B0 � 0; B1 � 1; B2 � 4; B3 � 18 ; D000 � 0;
D100 � 0; D010 � 1; D200 � 0; D001 � − 1; D110 � 1; D020 � 2;
D101 � 1; D011 � 2, with the following error equation:

eζ+1 �
1

24k
7 C1 (3 + k)C

2
1 − 2kC2􏼐 􏼑 − 163 + 7k

2
􏼐 􏼑C

4
1 − 24k

2
C
2
1C2 − 12k

2
C
2
2 + 12k

2
C1C3􏼐 􏼑e

8
ζ􏽮 􏽯 + O e

9
ζ􏼐 􏼑, (7)

where eζ � xζ − α and Ct � (k!/(k + t)!)(g(k+t)(α)/g(k)(α)),
for t ∈ N.

Proof. Let α be the multiple zero of g and eζ � xζ − α be the
error at ζ th iteration, where k is the known multiplicity and
k≥ 1. Now, we adopt the Taylor series expansion of g(xζ)

and g′(xζ) around α; we have

g xζ􏼐 􏼑 �
g

(k)
(α)

k!
e

k
ζ 1 + C1eζ + C2e

2
ζ + C3e

3
ζ + C4e

4
ζ + C5e

5
ζ + C6e

6
ζ + C7e

7
ζ + C8e

8
ζ + O e

9
ζ􏼐 􏼑􏼐 􏼑, (8)

g′ xζ􏼐 􏼑 �
g

(k)
(α)

k!
e

k− 1
ζ k +(k + 1)C1eζ +(k + 2)C2e

2
ζ +(k + 3)C3e

3
ζ +(k + 4)C4e

4
ζ + · · · + O e

9
ζ􏼐 􏼑􏼐 􏼑, (9)

respectively.
By using expressions (8) and (9), we get

vζ �
1
k

eζ −
C1

k
e
2
ζ +

(1 + k) − 2kC1

k
3 e

3
ζ + O e

4
ζ􏼐 􏼑. (10)

We expand the weight function G(vζ) by using Taylor
series, which leads us to the following expression:

G vζ􏼐 􏼑 � A0 + A1vζ +
1
2
A2v

2
ζ , (11)

where Aj � (Aj(0)/j!) for 0≤ j≤ 2.
By employing expression (11) in the first step of scheme

(6), we have

yζ � − A0 + 1 −
A1

k
􏼒 􏼓eζ −

− 2C1A1 + A2

2k
2􏼠 􏼡e

2
ζ + O e

3
ζ􏼐 􏼑.

(12)

To achieve the second order of convergence, we select
A0 � 0 and A1 � k and obtain

yζ �
2kC1 − A2

2k
2􏼠 􏼡e

2
ζ + O e

3
ζ􏼐 􏼑. (13)

By using expression (13) and Taylor series expansion of
yζ , we get the following expression:
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g yζ􏼐 􏼑 � g
(k)

(α)e
2k

2− k
− A2 − 2kC1/k

2
􏼐 􏼑􏼐 􏼑

k

k!
−
21− k

A2 − 2kC1/k
2

􏼐 􏼑
k− 1

− A2C1 + k(1 + k)C
2
1 − 2k

2
C2􏼐 􏼑

k
2
k!

⎛⎝ ⎞⎠eζ

+ g
(k)

(α)e
2k

􏽘

2

x�0
Fxe

x+2
ζ

⎛⎝ ⎞⎠ + O e
5
ζ􏼐 􏼑,

(14)

where Fx � Fx(k, C1, C2, . . . , C8) are given in terms of
k, C1, C2, . . . , C8. For example, the expressions for coeffi-
cients F0 and F1 are as follows:

F0 �
1

k
2
k! − A2 − 2kC1/k

2
􏼐 􏼑􏼐 􏼑

k
2− 1− k

−
A2 − 2kC1

k2􏼠 􏼡

k

− 4A2k
2 5 + 4k + 3k

2
􏼐 􏼑C

3
1 + 4k

3 3 + 3k + 3k
2

+ k
3

􏼐 􏼑C
4
1 + 8kC

2
1 A2(1 + k) − k

3 2 + 3k + 2k
2

􏼐 􏼑C2􏼐 􏼑􏼐

− 4 2A2k
2
C2 − 4(− 1 + k)k

5
C
2
2 + 3A2k

4
C3􏼐 􏼑 + C1 − A

3
2 + 4A2k

3
(4 + 7k)C2 + 24k

5
C3􏼁􏼐 􏼑,

F1 �
1

3k
3
k!
2− k

−
A2 − 2kC1

k2􏼠 􏼡

k

3C1 A2C1 − k(k + 1)C
2
1 + 2k

2
C2􏼐􏼐 􏼑 + 3kC1 A2C1 − k(1 + k)C

2
1 + 2k

2
C2􏼐 􏼑

−
4(− 2 + k)(− 1 + k)k A2C1 − k(1 + k)C

2
1 + 2k

2
C2􏼐 􏼑

3

A2 − 2kC1( 􏼁
3

+
6(− 1 + k)k A2C1 − k(1 + k)C

2
1 + 2k

2
C2􏼐 􏼑 − A2(3 − 2k)C

2
1 + 2k(1 + k)

2
C
3
1 − 4A2kC2 − 2k

2
(4 + 3k)C1C2 − 6k

3
C3􏼐 􏼑

A2 − 2kC1( 􏼁
2 .

(15)

From expressions (8) and (14), we obtain

tζ � −
A2 − 2kC1( 􏼁

2k
2 eζ +

3A2C1 − 2k(2 + k)C
2
1 + 4k

2
C2􏼐 􏼑

2k
3 e

2
ζ

+ ϕ1e
3
ζ + ϕ2e

4
ζ + O e

5
ζ􏼐 􏼑,

(16)
where ϕ1 � (1/4k5)(− 5A2k(3 + k)C2

1 + 2k2(7 + 7k + 2k2)

C3
1 + C1(A2

2 − 4k3(7 + 3k)C2) + 2k2(5A2C2 + 6k2C3)), ϕ2 �

(1/12k6) A2k(97 − 69k − 14k
2
)C

3
1 − 2k

2
(34 + 51k +􏼐 29k

2
+

6k
3
)C

4
1 + 3C

2
1(− 5A

2
2 − 4k

3
(17 + 16k + 4k

2
)C2) − 6k

2
C1(A2

(23 + 7k)C2 + 4k
2
(5 + 2k)C3) + 6k

3
(− 4k(3 + k)C

2
2 − 7A2C3

+ 8k
2
C4)).

Expansion of the weight function H(tζ) by using Taylor
series is given as follows:

H tζ􏼐 􏼑 � B0 + B1tζ +
1
2
B2t

2
ζ +

1
6
B3t

3
ζ , (17)

where Bj � (Bj(0)/j!) for 0≤ j≤ 3.
By inserting (11) and (17) in the second step of scheme

(6), we attain
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zζ � − B0eζ −
1
2k

2 1 + B0 − B1( 􏼁 A2 − 2kC1( 􏼁( 􏼁e
2
ζ +

1
8k

4

A
2
2 2B1 − B2( 􏼁 + 4A2 2 + 2B0 − 5B1 + B2( 􏼁kC1

− 4k
2 2 + B2 + 2k + 2B0(1 + k) − 2B1(3 + k)( 􏼁C

2
1 + 16 1 + B0 − B1( 􏼁k

3
C2

⎛⎜⎜⎝ ⎞⎟⎟⎠e
3
ζ

+
1

48k
6

− 3A
3
2B2 − A

3
2B3 − 12A2k

2 6 + 13B2 − B3 + 4k + 2B2k + B0(6 + 4k) − B1(31 + 9k)( 􏼁

C
2
1 + 8k

3 6 − 15B2 − B3 − 6B2k + 6k
2

+ 6B0(1 + k)
2

− 3B1 13 + 11k − 2k
2

􏼐 􏼑􏼐 􏼑

C
3
1 + 24A2 4 + 4B0 − 9B1 − 2B2( 􏼁k

3
C2 − 6kC1

A
2
2 12B1 − 9B2 + B3( 􏼁 + 8k

3 4 − 11B1 − 2B2 + 3k − 3B1k + H(4 + 3k)( 􏼁C2􏼐 􏼑

+144k
5
C3 − 144B0k

5
C3 − 144B1k

5
C3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e
4
ζ + O e

5
ζ􏼐 􏼑.

(18)

By selecting B0 � 0, B1 � 1, B2 � 4, and A2 � 0, we get

zζ �
1
6k

3 − B3 − 3(9 + k)( 􏼁C
3
1 − 6kC1C2􏼐 􏼑e

4
ζ + O e

5
ζ􏼐 􏼑.

(19)

Hence, scheme (6) reaches at fourth order of conver-
gence by using its first two steps.

Now, again by using the Taylor series expansion of zζ , we
obtain

g zζ􏼐 􏼑 � g
(k)

(α)e
4k

6− k
− B3 + 3(9 + k)( 􏼁C

3
1 − 6kC1C2/k

3
􏼐 􏼑

k

k!
+
6− k

− B3 + 3(9 + k)( 􏼁C
3
1 − 6kC1C2/k

3
􏼐 􏼑

− 1+k
ψ0

k
3
k!

⎛⎝ ⎞⎠

+ g
(k)

(α)e
4k

􏽘

7

x�0
Lxe

x+1
ζ

⎛⎝ ⎞⎠ + O e
9
ζ􏼐 􏼑,

(20)

where ψ0 � (− 125 − 84k − 7k2 + B3(7 + 3k))C4
1 + 6k(− B3 +

4(7 + k))C2
1C2 − 12k2C2

2 − 12k2C1C3.
With the help of expressions (14) and (20), we have

sζ �
− B3 + 3(9 + k)( 􏼁C

2
1 − 6kC2􏼐 􏼑

6k
2 e

2
ζ + ψ1e

3
ζ + ψ2e

4
ζ + O e

5
ζ􏼐 􏼑,

(21)

where ψ1 � (− 49 − 27k − 2k2 + B3(3 + k))C3
1 + 2k(− B3 + 3

(9 + k))C1C2− 6k2C3, ψ2 � (1/24k4)

(899 + 1002k + 313k
2

+ 18k
3

− 2B3(43 + 33k + 6k
2
))C

4
1

− 4k(501 − 33B3 + 261k − 10B3k + 18k
2
)C

2
1C2 + 24k

2
(26 − B3 − 3k)C1C3

+4k
2
((105 − 4B3 − 9k)C

2
2 − 18kC4)

⎛⎝ ⎞⎠.

With the help of expressions (8) and (20), we obtain

wζ �
1
6k

3 − B3 + 3(9 + k)( 􏼁C
2
1 − 6kC1C2􏼐 􏼑e

3
ζ + ψ3e

4
ζ + O e

5
ζ􏼐 􏼑,

(22)

where ψ3 � (1/6k4)((− 152 − 87k − 7k2 + B3(8 + 3k))C4
1 +

6k(29 − B3 + 4k)C2
1C2 − 12k2C2

2 − 12k2C1C3).
Now, we expand the trivariate weight function

D(tζ , sζ , wζ) in the neighborhood of (0, 0, 0) by using the
Taylor series expansion as follows:

D tζ , sζ , wζ􏼐 􏼑 � D000 + D100tζ + D010sζ + D001wζ + D101tζwζ

+ D011sζwζ + D111tζsζwζ +
1
2
D200t

2
ζ

+
1
2
D020s

2
ζ +

1
2
D002w

2
ζ ,

(23)

where Dijk � (1/i!j!xk!)(zi+j+k/zti
ζ zs

j

ζ zwx
ζ )D(tζ , sζ , wζ), for

i, j, k ∈ N.
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We obtain the asymptotic error constant term by
employing expressions (11), (17), and (23) in the third step of
scheme (6), as follows:

eζ+1 �
D000C1

k
e
2
ζ +

D000 + kD000 − D100( 􏼁C
2
1 − 2kD000C2􏼐 􏼑

k
2 e

3
ζ

+ D4e
4
ζ + D5e

5
ζ + D6e

6
ζ + D7e

7
ζ + O e

8
ζ􏼐 􏼑.

(24)

*e coefficients Di(4≤ i≤ 7) simultaneously depend
generally upon the weights Dijk and multiplicity k. To obtain
the eighth order convergence of scheme (6), we have to select
the following conditions of the weights such as D000 � 0;
D100 � 0; D010 � 1; D200 � 0; D001 � − 1; D110 � 1 ; D020 � 2;
D101 � 1; D011 � 2; and B3 � 18.

By using the above conditions, we get the required as-
ymptotic error constant equation as follows:

eζ+1 �
1

24k
7 C1 (3 + k)C

2
1 − 2kC2􏼐 􏼑 − 163 + 7k

2
􏼐 􏼑C

4
1 − 24k

2
C
2
1C2 − 12k

2
C
2
2 + 12k

2
C1C3􏼐 􏼑e

8
ζ􏽮 􏽯 + O e

9
ζ􏼐 􏼑. (25)

*e above equation (25) confirms that the proposed
scheme (6) has optimal eighth order of convergence con-
suming only one-derivative and three-function evaluations
per full iteration (i.e., g′(xζ), g(xζ), g(yζ) and g(zζ)). □

3. Some Special Cases of Weight Functions

We consider some special choices of weight functions
employed in our new scheme (6) satisfying the conditions of
*eorem 1. *e considered weight functions are simple.

First, we consider the polynomial weight function G(vζ),
satisfying the conditions given in *eorem 1 and can be
represented as

G vζ􏼐 􏼑 � k · vζ , ζ ≥ 0. (26)

*e trivariate weight function D(tζ , sζ , wζ) is also chosen
as a polynomial and is given as

D tζ , sζ , wζ􏼐 􏼑 � sζ · 1 + sζ + 2sζtζ + t
2
ζ􏼐 􏼑 + D201 · wζt

2
ζ ,

(27)

where D201 is a free parameter. By taking different choices
for D201, we have three cases described as follows.

3.1. Case 1. We take the polynomial weight function H(tζ)

directly from *eorem 1 as follows:

H tζ􏼐 􏼑 � tζ + 2t
2
ζ . (28)

We select the parameter D201 � − 6 in (28), and also by
using the weight functions given in equations (26), (28), and
(27), respectively, we prevail the special case of our newly
developed optimal eighth order family (6), named as SFM1
given by

yζ � eζ − k · vζ􏼐 􏼑, ζ ≥ 0,

zζ � yζ − tζ + 2t
2
ζ􏼐 􏼑 × k · vζ􏼐 􏼑,

xζ+1 � zζ − tζ + 2t
2
ζ􏼐 􏼑 × sζ · 1 + sζ + 2sζtζ + t

2
ζ􏼐 􏼑 − 6wζt

2
ζ􏼐 􏼑 × k · vζ􏼐 􏼑,

(29)

where vζ � (g(xζ)/g′(xζ)), tζ � [(g(yζ)/g(xζ))]
(1/k), s ζ �

[(g(zζ) /g(yζ))]
(1/k), wζ � [(g(zζ)/g(xζ))]

(1/k).

3.2. Case 2. By keeping the fact in our mind that the rational
functions show more stable behavior by using the same
degree polynomial in contrast to simple polynomial of the
same degree, we take the rational weight function H(tζ)

from the hypothesis of *eorem 1 as follows:

H tζ􏼐 􏼑 �
tζ

1 − 2tζ
. (30)

For this special choice of weight function given in (30),
we choose the parameter D201 � 2, involved in expression
(27). By using the weight functions given in equations (26),
(30), and (27), respectively, we obtain another special case of
our newly developed optimal eighth order family (6)
denoted by SFM2 as follows:
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yζ � eζ − k · vζ􏼐 􏼑, ζ ≥ 0,

zζ � yζ −
tζ

1 − 2tζ
􏼠 􏼡 × k · vζ􏼐 􏼑,

xζ+1 � zζ −
tζ

1 − 2tζ
􏼠 􏼡 × sζ · 1 + sζ + 2sζtζ + t

2
ζ􏼐 􏼑 + 2wζt

2
ζ􏼐 􏼑 × k · vζ􏼐 􏼑,

(31)

where vζ � (g(xζ)/g′(xζ)), tζ � [(g(yζ)/g(xζ))]
(1/k),

sζ � [(g(zζ)/ g(yζ))]
(1/k), wζ � [(g(zζ)/g(xζ))]

(1/k).

3.3. Case 3. We consider the logarithmic weight function
H(tζ) as follows:

H tζ􏼐 􏼑 �
5
2
t
2
ζ + log tζ + 1􏼐 􏼑. (32)

By usingD201 � − (16/3) in (27) and the weight functions
given in equations (26), (32), and (27), respectively, we
prevail the special case of the family (6), named as SFM3,
given as

yζ � eζ − k · vζ􏼐 􏼑, ζ ≥ 0,

zζ � yζ −
5
2
t
2
ζ + log tζ + 1􏼐 􏼑􏼒 􏼓 × k · vζ􏼐 􏼑,

xζ+1 � zζ −
5
2
t
2
ζ + log tζ + 1􏼐 􏼑􏼒 􏼓 × sζ · 1 + sζ + 2sζtζ + t

2
ζ􏼐 􏼑 −

16
3

wζt
2
ζ􏼒 􏼓 × k · vζ􏼐 􏼑,

(33)

where vζ � (g(xζ)/g′(xζ)), tζ � [(g(yζ)/g(xζ))]
(1/k) , sζ � [

(g(zζ) /g(yζ))]
(1/k), wζ � [(g(zζ)/g(xζ))]

(1/k).

4. Computational Results

In this section, we examine the convergence behavior,
strength, and effectiveness of the proposed multiple root
finding scheme (6). We consider some numerical test

functions including two real-life problems and some stan-
dard nonlinear functions. We take the special cases of our
newly proposed scheme given in (29), (31), and (33) denoted
by SFM1, SFM2, and SFM3, respectively. We compare them
with the eighth order optimal scheme by Behl et al. [18],
given in (3). We choose a special case of their scheme with
the parametric values (β1 � 1 and β2 � 1) given below,
denoted by BM1:

yζ � xζ − k ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
, ζ ≥ 0,

zζ � yζ − k + 2tζkβ1 +
1
2
t
2
ζ 4kβ21 + 2kβ1β2􏼐 􏼑􏼒 􏼓 · sζ ·

g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

xζ+1 � zζ −
k 1 + 2wζ + 3t

2
ζ β

2
1 + tζβ1 2 + 6wζ + tζβ2􏼐 􏼑􏼐 􏼑

1 + wζ

⎛⎝ ⎞⎠ · sζ · wζ ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

(34)
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where sζ � [(g(yζ)/g(xζ))]
(1/k), tζ � (sζ/β1 + β2sζ), wζ �

[(g(zζ)/g(yζ))]
(1/k).

We also compare the results of our methods with the
three-step optimal eighth order family by Akram et al. [19],
given in (4). We choose the following special case of their
scheme denoted by AM2:

yζ � xζ − k ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
, ζ ≥ 0,

zζ � yζ − k · 6s
3
ζ − s

2
ζ + 2sζ + 1􏼐 􏼑 · sζ ·

g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

xζ+1 � zζ − k · 2wζ + 4tζwζ + tζ + t
2
ζ􏼐 􏼑 · sζ ·

g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

(35)

where sζ � [(g(yζ)/g(xζ))]
(1/k), tζ � [(g(zζ)/g(yζ))]

(1/k),

wζ � [(g(zζ)/g(xζ))]
(1/k).

We compare our methods with another three-step op-
timal eighth order family presented by Zafar et al. [20], given
in (5). We select the following special case of their scheme
denoted by ZM3:

yζ � xζ − k ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
, ζ ≥ 0,

zζ � yζ − k · 1 + 6s
3
ζ − s

2
ζ + 2sζ􏼐 􏼑 · sζ ·

g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

xζ+1 � zζ − k · 2tζ + 1􏼐 􏼑 · wζ + 1􏼐 􏼑 · 2sζ + 1􏼐 􏼑 · sζ · wζ ·
g xζ􏼐 􏼑

g′ xζ􏼐 􏼑
,

(36)

where sζ � [(g(yζ)/g(xζ))]
(1/k), wζ � [(g(zζ)/g(yζ))]

(1/k),

tζ � [(g(zζ)/g(xζ))]
(1/k).

Comparison has been made on the basis of |g(xζ)|, that
is, function value at xζ or also known as the absolute residual
error, |xζ − α|, that is, the absolute error approximation to
the sought zero at each iteration, AEC � |(xζ+1 − xζ
/(xζ − xζ− 1)

r)| (r represents the order of convergence), that
is, the asymptotic error constant and COC ≈ (log|(xζ+1 −

α)/(xζ − α)|/log|(xζ − α)/(xζ− 1 − α)|) (formula given by Jay
[21]), that is, the computational order of convergence.
Tables 1–7 show the comparison of the methods BM1, AM2,
and ZM3, given in (34), (35), and (36), with our newly
developed methods SFM1, SFM2, and SFM3. *e pro-
gramming packages Maple 18 and Wolfram Mathematica 8
have been used to perform all the computational works for
the numerical and theoretical results. *e calculations for
numerical results have been made by using several (mini-
mum 1000) number of significant digits of precision. Due to
limited space of paper, numerical results are displayed up to
only four decimal places.

Example 1. Van der Waals’ equation of state

Van der Waals’ equation is particularly useful in our
effort to understand the behavior of real gases, because it
embodies a simple physical picture for the difference be-
tween a real and an ideal gas. We know the ideal gas law as

PV � nRT. (37)

*e relationship between the pressure P, the volume V,
and the temperature T for real gases is the Van der Waals’
equation expressed as

P +
β1n

2

V
2􏼠 􏼡 V − nβ2( 􏼁 � nRT. (38)

*is expression explains the behavior of real gas by
taking in the ideal gas equation. *e involving two pa-
rameters β1 and β2 are specific for each gas. We require the
solution of the following nonlinear function in V to de-
termine the volume V of the gas in terms of the remaining
parameters:

PV3
− nβ2P + nRT( 􏼁V

2
+ β1n

2
V − β1β2n

3
� 0. (39)

Considering the involving parameters β1 and β2 of a
particular gas, one can find values for n, P, and T.By the
implementation of particular values, we have the below
given nonlinear function:

g1(x) � x
3

− 5.22x
2

+ 9.0825x − 5.2675, (40)

where g1(x) has three roots. One is simple root α � 1.72 and
the other is a multiple zero α � 1.75 of multiplicity 2. We
considered the initial approximation x0 � 1.8 for this test
problem. *e computational results are mentioned in
Table 1.

Regarding the results shown in Table 1, the convergence
behavior of newly developed methods SFM1, SFM2, and
SFM3 is far better than the earlier known methods BM1,
AM2, and ZM3 for the test problem g1(x). *e comparison
of function value at xζ and absolute error shows that SFM2
and SFM3 have smaller error values than the existing known
methods.

Example 2. Beam designing model.
We consider a beam positioning problem [22] where a

beam of p unit length is straight towards the edge of the
cubical box having 1 unit length of each side. One end of the
beam touches the wall and the other end touches with the
floor, as depicted in Figure 1.

We have problem here to measure the distance alongside
the floor from the base of the wall to the bottom of the beam.
Assume that x is the distance in units from the bottom of the
beam at floor to the bottom of the box and let y be
the distance in units from the bottom of the beam at floor to
the edge of the box, along the beam. *en, by employing a
specific value of p, we have the following nonlinear equation:

g2(x) � x
4

+ 4x
3

− 24x
2

+ 16x + 16 � 0, (41)

having a multiple zero α � 2.0 of multiplicity 2. We con-
sidered the initial approximation x0 � 2.5 for this test
function. *e comparison results are depicted in Table 2.
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*e comparison results of the model presented in Table 2
show the newly developed schemes SFM1, SFM2, and SFM3
are not only convergent but also their speed of convergence
is better than BM1, AM2, and ZM3.

Example 3. Further, we consider the standard test problem
involving trigonometric function is as follows:

g3(x) � sin2x + x􏼐 􏼑
5
, (42)

having a root α � 0.0 of multiplicity 5. We considered the
initial approximation x0 � 0.2 for this test problem. *e
numerical results are shown in Table 3.

In Table 3, it can be seen that the newly proposed
methods SFM2 and SFM3 are computationally more effi-
cient than all other methods BM1, AM2, and ZM3 for the
test function g3(x). Among all the methods, convergence
behavior of SFM2 is very efficient and results of SFM1 are
comparable with ZM3.

Table 1: Convergence behavior of different iterative methods for g1(x).

g1(x) � x3 − 5.22x2 + 9.0825x − 5.2675, x0 � 1.8
ζ xζ |g(xζ)| |xζ − α| AEC COC

BM1
1 1.75 9.9347 × 10− 9 5.7007 × 10− 4

2 1.75 5.5189 × 10− 32 1.3563 × 10− 15 7.9067 × 105
3 1.75 8.4215 × 10− 218 1.6754 × 10− 108 6.9320 × 107 7.990

AM2
1 1.75 6.6085 × 10− 9 4.6574 × 10− 4

2 1.75 3.1520 × 10− 33 3.2414 × 10− 16 1.2849 × 107
3 1.75 1.4151 × 10− 227 2.1718 × 10− 113 1.464 × 1011 7.990

ZM3
1 1.75 4.5788 × 10− 9 3.8817 × 10− 4

2 1.75 7.9903 × 10− 35 5.1608 × 10− 17 1.057 × 107
3 1.75 1.0549 × 10− 240 5.9301 × 10− 120 1.001 × 1011 7.992

SFM1
1 1.75 5.5235 × 10− 9 4.2607 × 10− 4

2 1.75 2.0673 × 10− 34 8.3013 × 10− 17 1.1680 × 107
3 1.75 1.2060 × 10− 237 2.0050 × 10− 118 7.6431 × 1010 7.992

SFM2
1 1.75 1.0796 × 10− 9 1.8910 × 10− 4

2 1.75 3.6782 × 10− 42 1.1072 × 10− 20 4.990 × 106
3 1.75 7.7223 × 10− 302 1.6044 × 10− 150 6.7693 × 109 7.998

SFM3
1 1.75 5.0786 × 10− 9 4.0867 × 10− 4

2 1.75 7.3241 × 10− 35 4.9410 × 10− 17 1.117 × 107
3 1.75 2.0151 × 10− 241 2.5917 × 10− 120 6.350 × 1010 7.993

Table 2: Convergence behavior of different iterative methods for g2(x).

g2(x) � x4 + 4x3 − 24x2 + 16x + 16, x0 � 2.5
ζ xζ |g(xζ)| |xζ − α| AEC COC

BM1
1 2.0 3.2691 × 10− 9 1.1671 × 10− 5

2 2.0 1.1447 × 10− 81 6.9063 × 10− 42 1.494 × 10− 3

3 2.0 2.5882 × 10− 661 1.0384 × 10− 331 2.341 × 10− 7 7.99

AM2
1 2.0 2.4815 × 10− 9 1.0168 × 10− 5

2 2.0 2.1471 × 10− 82 2.9910 × 10− 42 2.603 × 10− 3

3 2.0 6.7449 × 10− 667 1.6764 × 10− 334 2.616 × 10− 2 7.99

ZM3
1 2.0 1.1173 × 10− 9 6.8232 × 10− 6

2 2.0 1.5102 × 10− 85 7.9327 × 10− 44 1.746 × 10− 3

3 2.0 1.6824 × 10− 692 2.6477 × 10− 347 1.688 × 10− 2 7.99

SFM1
1 2.0 1.1137 × 10− 9 6.8121 × 10− 6

2 2.0 8.0859 × 10− 86 5.8044 × 10− 44 1.744 × 10− 3

3 2.0 6.2434 × 10− 695 1.6128 × 10− 348 1.251 × 10− 2 7.99

SFM2
1 2.0 1.2487 × 10− 11 7.2132 × 10− 7

2 2.0 7.0178 × 10− 104 5.4074 × 10− 53 1.846 × 10− 4

3 2.0 6.9822 × 10− 842 5.3937 × 10− 422 7.377 × 10− 4 7.99

SFM3
1 2.0 8.4488 × 10− 10 5.9332 × 10− 6

2 2.0 5.7599 × 10− 87 1.5491 × 10− 44 1.519 × 10− 3

3 2.0 2.6878 × 10− 704 3.3465 × 10− 353 1.008 × 10− 2 7.99
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Example 4. Now, we choose standard nonlinear problem
involving logarithmic function, which is given as

g4(x) � (x − 1) x ln(x) −
��
x

√
+ x

4
􏼐 􏼑

2
, (43)

having a root α � 1.0 of multiplicity 3. We considered the
initial approximation x0 � 1.2 for this test problem. *e
comparison results are depicted in Table 4.

In Table 4, we can see that the newly developed method
performs better than the existing presented schemes BM1,
AM2, and ZM3. However, ZM3 performs slightly better than

SFM1, for the test function g4(x). SFM2 performs very well
among all the presented methods.

Example 5. We consider one more standard nonlinear test
problem, which is as follows:

g5(x) � x
3

− 2x
2

+ 1􏼐 􏼑
3
. (44)

We select α � 1.0 multiple zero of multiplicity 6 for the
computational point of view. *e comparison results are
shown in Table 5 corresponding to initial approximation
x0 � 1.2.

Table 3: Convergence behavior of different iterative methods for g3(x).

g3(x) � (sin2 x + x)5, x0 � 0.2
ζ xζ |g(xζ)| |xζ − α| AEC COC

BM1
1 0.0 2.7742 × 10− 22 4.8821 × 10− 5

2 0.0 7.2420 × 10− 161 9.3750 × 10− 33 3.820
3 0.0 1.5699 × 10− 1269 1.7345 × 10− 254 0.014 7.99

AM2
1 0.0 9.2496 × 10− 23 3.9192 × 10− 5

2 0.0 5.0593 × 10− 164 2.1918 × 10− 33 15.333
3 0.0 4.0762 × 10− 1294 2.0991 × 10− 259 393.69 7.99

ZM3
1 0.0 1.4220 × 10− 23 2.6950 × 10− 5

2 0.0 1.6273 × 10− 171 6.9550 × 10− 35 10.539
3 0.0 4.8042 × 10− 1355 1.3687 × 10− 271 249.86 7.99

SFM1
1 0.0 2.04471 × 10− 23 2.8981 × 10− 5

2 0.0 6.3062 × 10− 171 9.1191 × 10− 35 11.333
3 0.0 5.1803 × 10− 1351 8.7674 × 10− 271 183.24 7.99

SFM2
1 0.0 9.0702 × 10− 28 3.9041 × 10− 6

2 0.0 2.2390 × 10− 212 4.6775 × 10− 43 1.5252
3 0.0 3.0889 × 10− 1689 1.9859 × 10− 338 8.6663 7.99

SFM3
1 0.0 1.1580 × 10− 23 2.5866 × 10− 5

2 0.0 2.1367 × 10− 173 2.9238 × 10− 35 10.114
3 0.0 2.8788 × 10− 1371 7.7954 × 10− 275 145.90 7.99

Table 4: Convergence behavior of different iterative methods for g4(x).

g4(x) � (x − 1)(x ln(x) −
��
x

√
+ x4)2, x0 � 1.2

ζ xζ |g(xζ)| |xζ − α| AEC COC

BM1
1 1.0 5.0023 × 10− 12 6.2741 × 10− 5

2 1.0 2.2328 × 10− 93 4.7952 × 10− 32 4.9124
3 1.0 3.5294 × 10− 744 3.5294 × 10− 249 0.0125 7.99

AM2
1 1.0 2.8876 × 10− 12 5.2241 × 10− 5

2 1.0 8.9735 × 10− 95 1.6425 × 10− 32 20.449
3 1.0 7.8338 × 10− 755 1.5698 × 10− 252 296.052 7.99

ZM3
1 1.0 8.1638 × 10− 13 3.4287 × 10− 5

2 1.0 8.7066 × 10− 100 3.5032 × 10− 34 13.412
3 1.0 1.4607 × 10− 795 4.1628 × 10− 266 183.375 7.99

SFM1
1 1.0 1.0911 × 10− 12 3.7768 × 10− 5

2 1.0 3.3006 × 10− 99 5.4625 × 10− 34 14.775
3 1.0 2.3195 × 10− 791 1.0463 × 10− 264 131.923 7.99

SFM2
1 1.0 3.7040 × 10− 16 2.6348 × 10− 6

2 1.0 1.6585 × 10− 131 9.3563 × 10− 45 1.0293
3 1.0 2.6810 × 10− 1054 2.3656 × 10− 352 4.0281 7.99

SFM3
1 1.0 7.2300 × 10− 13 3.2927 × 10− 5

2 1.0 5.8147 × 10− 101 1.4213 × 10− 34 12.879
3 1.0 1.0197 × 10− 805 1.7140 × 10− 269 102.858 7.99
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In Table 5, we observe that our new iterative schemes
SFM1, SFM2, and SFM3 perform better than the existing
schemes BM1, AM2, and ZM3 for test function g5(x).

Example 6. In addition, we select the below given standard
nonlinear test function:

g6(x) � (x − 1)
3

− 1􏼐 􏼑
50

. (45)

*is expression has a multiple zero at α � 2 of multiplicity
k � 50. *e computational results with the initial approxima-
tion x0 � 2.9 are mentioned in Table 6.

From Table 6, it is observed that computational ef-
ficiency of newly developed methods SFM1, SFM2, and
SFM3is better than the earlier known methods BM1 and
AM2, whereas our scheme SFM2 is more efficient as
compared to ZM3. However, performance of ZM3 is
comparable with the new method SFM1 for function
g6(x).

Example 7. We use the following standard test problem
involving logarithmic function:

Table 5: Convergence behavior of different iterative methods for g5(x).

g5(x) � (x3 − 2x2 + 1)3, x0 � 1.2
ζ xζ |g(xζ)| |xζ − α| AEC COC

BM1
1 1.0 6.0797 × 10− 34 1.4552 × 10− 6

2 1.0 5.9820 × 10− 271 4.5896 × 10− 47 0.113
3 1.0 5.2548 × 10− 2221 4.4915 × 10− 371 0.003 7.99

AM2
1 1.0 3.7688 × 10− 34 1.3438 × 10− 6

2 1.0 8.1145 × 10− 278 3.2898 × 10− 47 0.524
3 1.0 3.7475 × 10− 2227 4.2454 × 10− 372 3.093 7.99

ZM3
1 1.0 2.9165 × 10− 35 8.7723 × 10− 7

2 1.0 6.9307 × 10− 288 6.9039 × 10− 49 0.342
3 1.0 7.0488 × 10− 2309 1.0162 × 10− 385 1.968 7.99

SFM1
1 1.0 2.3448 × 10− 35 8.4590 × 10− 7

2 1.0 1.8939 × 10− 289 3.7890 × 10− 49 0.330
3 1.0 3.4308 × 10− 2322 6.1405 × 10− 388 1.445 7.99

SFM2
1 1.0 5.8129 × 10− 42 6.7045 × 10− 8

2 1.0 3.5820 × 10− 350 2.8707 × 10− 59 0.026
3 1.0 7.4467 × 10− 2816 3.2431 × 10− 470 0.070 7.99

SFM3
1 1.0 9.0965 × 10− 36 7.2240 × 10− 7

2 1.0 2.4977 × 10− 293 8.5486 × 10− 50 0.282
3 1.0 8.0724 × 10− 2354 3.2870 × 10− 393 1.152 7.99

Table 6: Convergence behavior of different iterative methods for g6(x).

g6(x) � ((x − 1)3 − 1)50, x0 � 2.9
ζ xζ |g(xζ)| |xζ − α| AEC COC

BM1
1 2.0 1.5168 × 10− 39 5.2931 × 10− 2

2 2.0 1.8108 × 10− 381 8.0916 × 10− 9 0.169
3 2.0 7.3247 × 10− 3096 4.1703 × 10− 63 6.951 7.93

AM2
1 2.0 7.2090 × 10− 44 4.3768 × 10− 2

2 2.0 4.8078 × 10− 409 2.2725 × 10− 9 0.1515
3 2.0 6.8409 × 10− 3308 2.3965 × 10− 67 168.72 7.93

ZM3
1 2.0 3.1076 × 10− 48 3.6070 × 10− 2

2 2.0 1.6232 × 10− 450 3.3657 × 10− 10 0.1162
3 2.0 4.3287 × 10− 3650 3.4324 × 10− 74 117.44 7.95

SFM1
1 2.0 7.4516 × 10− 45 4.1903 × 10− 2

2 2.0 2.8683 × 10− 430 8.5512 × 10− 10 0.1425
3 2.0 2.8294 × 10− 3495 4.2846 × 10− 71 89.952 7.95

SFM2
1 2.0 9.7376 × 10− 71 1.3091 × 10− 2

2 2.0 1.8913 × 10− 699 3.5352 × 10− 15 0.0341
3 2.0 9.3674 × 10− 5725 1.1023 × 10− 115 4.0984 7.99

SFM3
1 2.0 7.2719 × 10− 46 4.0070 × 10− 2

2 2.0 2.9188 × 10− 442 4.9224 × 10− 10 0.1340
3 2.0 1.2411 × 10− 3596 4.0249 × 10− 73 74.059 7.95
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Table 7: Convergence behavior of different iterative methods for g7(x).

g7(x) � x2(x3 − log(x2 + 1))2, x0 � − 0.9
ζ xζ |g(xζ)| |xζ − α| AEC COC

BM1
1 − 0.0 2.1027 × 10− 23 1.6612 × 10− 4

2 − 0.0 7.4964 × 10− 184 3.0139 × 10− 31 3.4 × 10− 4

3 − 0.0 1.9858 × 10− 1467 3.5453 × 10− 245 8.6 × 10− 5 7.99

AM2
1 − 0.0 7.1551 × 10− 24 1.3880 × 10− 4

2 − 0.0 9.7548 × 10− 188 6.7847 × 10− 32 3.2 × 10− 4

3 − 0.0 1.1811 × 10− 1498 2.2150 × 10− 250 0.4922 7.99

ZM3
1 − 0.0 2.8275 × 10− 24 1.1890 × 10− 4

2 − 0.0 8.9533 × 10− 192 1.4410 × 10− 32 2.7 × 10− 4

3 − 0.0 9.1591 × 10− 1532 6.7139 × 10− 256 0.3605 7.99

SFM1
1 − 0.0 2.9473 × 10− 24 1.1973 × 10− 4

2 − 0.0 3.5576 × 10− 192 1.2355 × 10− 32 2.7 × 10− 4

3 − 0.0 1.6211 × 10− 1535 1.5908 × 10− 256 0.2924 7.99

SFM2
1 − 0.0 3.7297 × 10− 26 5.7801 × 10− 5

2 − 0.0 1.7193 × 10− 211 7.4569 × 10− 36 1.3 × 10− 4

3 − 0.0 3.5209 × 10− 1694 5.7250 × 10− 283 5.9 × 10− 2 7.99

SFM3
1 − 0.0 2.2186 × 10− 24 1.1419 × 10− 4

2 − 0.0 1.6657 × 10− 193 7.4176 × 10− 33 2.6 × 10− 4

3 − 0.0 1.6993 × 10− 1546 2.3534 × 10− 258 0.2564 7.99

x

y

Figure 1: Beam positioning problem.
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Figure 2: Basins of attraction of (a) SFM1, (b) SFM2, and (c) SFM3 for g1(x).

12 Journal of Mathematics



Im
{z
}

5

4

3

2

1

0

–1

–2

–3

–4

–5

1 2 3 4 5 6 7 8 9 100

Re{z}

(a)
Im

{z
}

5

4

3

2

1

0

–1

–2

–3

–4

–5

1 2 3 4 5 6 7 8 9 100

Re{z}

(b)

Im
{z
}

5

4

3

2

1

0

–1

–2

–3

–4

–5

1 2 3 4 5 6 7 8 9 100

Re{z}

(c)

Figure 3: Basins of attraction of (a) BM1, (b) AM2, and (c) ZM3 for g1(x).
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Figure 4: Basins of attraction of (a) SFM1, (b) SFM2, and (c) SFM3 for g2(x).
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Figure 5: Basins of attraction of (a) BM1, (b) AM2, and (c) ZM3 for g2(x).
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Figure 6: Basins of attraction of (a) SFM1, (b) SFM2, and (c) SFM3 for g3(x).
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Figure 7: Basins of attraction of (a) BM1, (b) AM2, and (c) ZM3 for g3(x).
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Figure 8: Basins of attraction of (a) SFM1, (b) SFM2, and (c) SFM3 for g4(x).
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g7(x) � x
2

x
3

− log x
2

+ 1􏼐 􏼑􏼐 􏼑
2
, (46)

having multiple zero α � 0.0 of multiplicity 6. We choose the
initial guess x0 � − 0.9 for the comparison results shown in
Table 7.

From Table 7, it can be observed that the newly devel-
oped schemes SFM1, SFM2, and SFM3 give the faster

convergence and smaller errors than the earlier known
methods for test function g7(x) and these numerical results
confirm the robust nature of our presented iterative method.

It can be seen from the results depicted in Tables 1–7 that
the special cases of our newly developed methods SFM1,
SFM2, and SFM3 are faster, efficient, and reliable than the
existing known methods BM1, AM2, and ZM3 in terms of
absolute error and computational order of convergence, etc.
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Figure 9: Basins of attraction of (a) BM1, (b) AM2, and (c) ZM3 for g4(x).
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Figure 10: Basins of attraction of (a) SFM1, (b) SFM2, and (c) SFM3 for g5(x).
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Figure 11: Basins of attraction of (a) BM1, (b) AM2, and (c) ZM3 for g5(x).
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We conclude that the newly developed family gives the
faster convergence, small absolute, and residual error
corresponding to the involved function. It is also observed

that, in most cases, SFM2 is faster among all schemes.
*erefore, the new presented schemes are better alter-
natives to the present schemes.
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Figure 12: Basins of attraction of (a) SFM1, (b) SFM2, and (c) SFM3 for g6(x).
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Figure 13: Basins of attraction of (a) BM1, (b) AM2, and (c) ZM3 for g6(x).
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Figure 14: Basins of attraction of (a) SFM1, (b) SFM2, and (c) SFM3 for g7(x).
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5. Complex Dynamics

Regarding the dynamical behavior, our goal is to observe and
compare the performance of proposed methods by means of a
graphical tool, named as the basins of attraction. Initially,
Vrscay and Gilbert [23] suggest this idea to investigate the
convergence and dynamical behavior of iterative schemes. For
the sake of stability comparison, we plot the dynamical planes
corresponding to each scheme, SFM1, SFM2, SFM3, BM1,
AM2, and ZM3, for the nonlinear functions g1(x), g2(x),
g3(x), g4(x), g5(x), g6(x), and g7(x) used for numerical
comparison in Section 4. *e complex dynamical planes
presented in Figures 2–15 have been generating by using the
procedure defined in [1]. Regarding the stability comparison, a
mesh of [500 × 500] points is defined in the region of the
complex plane to check how wide the set of initial guess leads
us to the desired repeated root. We used to work out up to a
total number of 80 iterations with the stopping criterion 10− 3.
If the iteration sequence converges to the multiple zero, then
the convergence region is painted in orange colour. *e di-
vergence region is painted in black colour, when the iteration
sequence does not converge to the multiple root or converge to
strange fixed points (which are not roots of nonlinear func-
tion). A white star represents the multiple zero in Figures 2–15.

Figures 2–15 show the study of the convergence and
divergence regions of the new schemes SFM1, SFM2, and
SFM3 in comparison with the other schemes of the same
order. It is observed that our methods SFM1, SFM2, and
SFM3 have more wider convergence region than the earlier
ones BM1, AM2, and ZM3. In the case of g1(x), g2(x), and
g6(x), we observed that the new schemes SFM1, SFM2, and
SFM3 are more stable than BM1, AM2, and ZM3 as they are
almost divergence-free and converge faster than BM1, AM2,
and ZM3 in their common regions of convergence. So, the
stable and consistent nature of newly developed scheme is
clear from the graphics.

6. Conclusion

In this paper, we have presented a new general family of
optimal iterative methods for finding multiple roots of

nonlinear equations with known multiplicity using weight
functions. An extensive convergence analysis is presented to
verify the optimal convergence of the new family. Some
special cases of the family are also presented which require
only three-function and one-derivative evaluations at each
iteration to reach optimal eighth order convergence. A
variety of numerical test functions along with some real-
world problems such as beam positioning model and Van
derWaals’ equation of state are used to ensure that the newly
developed family efficiently competes with the other existing
methods.*e dynamical analysis of the proposed methods is
also presented to validate the theoretical results by using
graphical tool, termed as the basins of attraction. As the
proposed methods are sensitive towards initial guess, so for
the safe selection of initial guess, convergence regions are
presented. Figures 2–15 show that our newly developed
schemes have wider regions of convergence. Hence, we have
more choices for initial guess to choose from. Finally, our
newly presented scheme shows stable behavior in complex
plane and validates the theoretical results. By considering the
above stated facts, it is concluded that the new methods
SFM1, SFM2, and SFM3 are efficient, stable, and robust
among the existing schemes of their domain.
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.is article uses support vector machines, logistics regression, and other methods for the comprehensive evaluation of credit
decision-making of small, medium, and microenterprises and comprehensively uses software programming such as MATLAB
and SPSS Modeler to solve the problem. .e results, such as credit risk evaluation index system, credit risk classification model,
and credit decision-making comprehensive evaluation model, are obtained. Finally, this article starts from the credit decision of
small, medium, and microenterprises and provides theoretical and practical suggestions for banks to control the risks of small,
medium, and microenterprises and their own development.

1. Introduction

In the context of economic globalization, our country’s
economy is booming. Small- and medium-sized enterprises,
known as the “new economic turning point,” have sprung
up. .ey have played a huge role in the country’s industrial
upgrading and economic construction and have gradually
become the economic pillars of various regions. However,
under negative conditions such as inadequate economic
volume, loose economic system, and high financing costs,
small, medium, and microenterprises are gradually in a
disadvantaged position under the background of environ-
mental competition and face the risk of being merged by
companies in the same industry. .ey urgently need to
“make blood” for enterprises through direct financing and
indirect financing and solve the problem of financing dif-
ficulties, which is a stumbling block on the development of
small, medium, and microenterprises.

.e main reasons are the following two aspects: on the
one hand, due to the pressure of the competitive environment
in the same industry, small, medium, and microenterprises
cannot provide the same accurate and reliable assessment

information as mature enterprises, which causes commercial
banks to face the challenge of credit risk management; on the
one hand, due to a loose management system and insufficient
managerial experience, legal loopholes and moral hazards
appear, which affect the order of the credit market and disrupt
the market balance. Nowadays, encouraging and protecting
the active development of small- and medium-sized enter-
prises have become a new economic trend. Banks urgently
need to solve the problems of whether to lend to enterprises
and how much to allocate to enterprises.

.e data in this article come from the 2020 China
National College Students Mathematical Modeling Contest
Question C: A bank’s loan amount to companies determined
to lend is 100,000 to 1 million yuan; the annual interest rate
is 4% to 15%; the loan period is 1 year, which is known
statistics on the relationship between 123 companies with
credit records and 302 companies without credit records and
the relationship between loan interest rates and customer
churn rates in 2019. .rough the establishment of a
mathematical model, the bank’s credit strategy for small,
medium, and microenterprises is studied under certain
conditions.
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2. Literature Review

Regarding the evaluation of credit decision-making for
small, medium, and microenterprises, Gen [1] took Shan-
dong Province as an example to analyze the causes of credit
rationing misbehavior and ways to correct them and provide
a way to improve the efficiency of credit rationing and realize
the Pareto improvement of credit resource allocation. Wang
and Tang [2] compared the allocation of bank financing
opportunities and the expected loans of enterprises and
found that banks’ credit decisions are based on rational risk
control decisions, while the discrimination against SMEs in
lending is due to the recognition of both banks and en-
terprises, caused by gaps in knowledge and lag in cognition.
Wu [3] combined the actual characteristics of SMEs and
used fuzzy analytic hierarchy process to determine the
weight of SME credit risk evaluation indicators and con-
structed a scientific and reasonable credit risk evaluation
indicator system for SMEs. Li [4] believes that our country’s
banking industry’s credit decisions on SMEs have problems
such as low quality of preloan review, long loan approval
cycles, and difficulty in implementing postloan manage-
ment. Commercial banks should control the production and
financial status of SMEs. Reasonable evaluation of its
guarantee capacity will improve the quality of credit support
decision-making for SMEs.

.e abovementioned documents all give relevant
opinions on banks’ credit for small- and medium-sized
enterprises, but most of them are based on theoretical re-
search in a specific situation and do not give a more uni-
versal model that includes dynamic factors. Aiming at the
abovementioned shortcomings, this paper attempts to es-
tablish a relatively general credit model by establishing a
related mathematical model.

3. Basic Assumptions

In order to facilitate the handling of the problem, the fol-
lowing assumptions are proposed: (i) assuming that when
banks make loan decisions to SMEs, there is no corporate
loan failure; (ii) assuming that there are no changes in
macropolicy when banks make loan decisions to SMEs; (iii)
assumptions: the average supply and demand of available
companies can represent the stable value of supply and
demand; (iv) assuming that the impact of unexpected factors
on the enterprise is mainly the impact on the amount of sales
invoices of the enterprise; (v) assuming that the reputation of
small, medium, and microenterprises is only determined by
the research variables in this article.

4. Based on Multiobjective Optimization, the
Credit Risk and Strategy Research of SMEs
when the Bank’s Annual Total Credit Is Fixed

4.1. Research &ought. It is required to quantitatively an-
alyze the credit risk of 123 companies in the data source
when the loan period is one year and when the bank’s
annual total credit is fixed, and for companies that are
determined to lend, the loan line of each company is

100,000 to 1 million yuan, and the annual interest rate is
4%–15%; give credit strategies to these companies. Based
on the existing research literature, this article assumes that
the credit strategy consists of four parts: whether to lend,
loan amount, loan interest, and loan period. In principle,
companies with a credit rating of D will not lend. First,
based on relevant data, calculate the relevant index values
of the upstream and downstream corporate influence,
strength, supply and demand relationship stability, and
customer churn rate of each enterprise; then construct a
bank profit maximization model based on nonlinear re-
gression, a credit risk minimization model based on Lo-
gistics regression, and a comprehensive evaluation system
based on principal component analysis. Finally the
abovementioned three optimization models are trans-
formed into a multiobjective optimization model to obtain
the bank’s credit strategy [5].

4.2. Analysis Procedure

4.2.1. Bank Income Maximization Model Based on Nonlinear
Regression

(1) Research Steps. First, process the corresponding original
data in the data source. After referring to related books, this
article believes that the formula for the upstream and
downstream corporate influence of each company is as
follows:

Pi,j �
α0Si,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − α1Ci,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

Si,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − Ci,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

(i � 1, 2, · · · , n; j � 1, 2, · · · , 12),

(1)

where Pi,j represents the upstream and downstream influ-
ence of the i-th company in the j-th month, Si,j represents
the sum of the output bills of the i-th company in the j-th
month, Ci,j represents the sum of the input bills of the i-th
company in the j-th month, and αi(i � 1, 2) indicates that
different companies place different emphases on output and
input.

In order to comprehensively evaluate the comprehensive
strength of each enterprise, this article considers the actual
income, expenditure, tax amount, and monthly sales volume
of the enterprise. On the basis of the existing literature
research in the reference part, the average monthly tax
payment of each company is obtained as an index to evaluate
the comprehensive strength of the company, and the fol-
lowing formula is obtained:

ΔTi,j � Log
TIi,j/Si,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + TOi,j/Ci,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Ni,j

⎛⎝ ⎞⎠

(i � 1, 2, · · · , n; j � 1, 2, · · · , 12),

(2)

where ΔTi,j represents the average tax payment of the i-th
company in the j-th month, TIi,j represents the tax payment
of the i-th company’s output bill in the j-th month, TOi,j
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represents the tax payment of the i-th company’s input bill in
the j-thmonth, and Ni,j represents the number of sales of the
i-th company in the j-th month.

According to the checked literature and actual life ex-
perience, the stability of the supply-demand relationship of
an enterprise will greatly affect the income of the enterprise,
which will also affect the evaluation of the enterprise by the
bank, so the supply stability value coefficient G and the
demand stability value are constructed. .e coefficient Q is
used to quantify the degree of stability, and the specific
formula is as follows [6–8]:

Gi,j � β1log
Ci,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

N
1
i,j

⎛⎝ ⎞⎠, i � 1, 2, · · · , n; j � 1, 2, · · · , 12,

Qi,j � β2log
Si,j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

N
2
i,j

⎛⎝ ⎞⎠, i � 1, 2, · · · , n; j � 1, 2, · · · , 12,

(3)

where Gi,j represents the supply stability of the i-th company
in the j-th month, N1

i,j represents the demand of the i-th
company in the j-th month, Qi,j represents the demand
stability of the i-th company in the j-th month, N2

i,j rep-
resents the supply of the i-th company in the j-th month, and
β1, β2 is a balance parameter.

.e monthly comprehensive supply stability degree and
demand stability degree of each company are as follows:

Gi �
Gi,j

􏽐
12
j�1Gi,j

,

Qi �
Qi,j

􏽐
12
j�1Qi,j

.

(4)

.e formula for a company’s customer churn rate is

M �
R

Z
. (5)

Among them, M represents the customer churn rate of
the company, R represents the number of voided output bills
of the company, and Z represents the total number of sales
bills of the company.

(2) Result Analysis. First of all, from the meaning of the
question, companies with a credit rating of D do not grant
loans in principle, so this type of corporate data is excluded
when allocating the total amount of loans. .en, use the
above formula to calculate the customer churn rate, up-
stream and downstream enterprise influence, strength,
stability of supply and demand relationship, customer churn
rate index value, and other data of each company with
reputation ratings of A, B, and C. At this time, the desire to
maximize the bank’s profit is to ask the bank to deduct the
amount of loan income from the profitable income from
deposits in the same period. .e expression for maximizing
bank profit based on known conditions is as follows:

f(x) � max 􏽘
99

1
Ai ri − r0( 􏼁 1 − zi( 􏼁,

s.t.

10≤Ai ≤ 100,

4%≤ ri ≤ 15%,

􏽘

99

1
Ai ≤ a.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

Among them, Ai represents the loan amount to each
company, ri represents the interest rate of the loan to each
company, r0 represents the bank deposit interest rate over
the same period, z0 means customer churn rate, and a
represents the annual bank credit value of a fixed total
amount.

4.2.2. Bank Credit Risk Quantification Model Based on
Logistics Regression

(1) Research Steps. According to Section 4.2.1, the company’s
reputation rating is divided into A–D, and when the risk is
low, the reputation rating is A, and when the risk is high, the
reputation rating is D. .is article uses default as the de-
pendent variable. Default is recorded as 1, and nondefault is
recorded as 0. .erefore, a company with a reputation rating
of A can be assigned a risk of 0.2, a company with a reputation
of B can be assigned a risk of 0.4, a company with a reputation
of C can be assigned a risk of 0.6, and a company with a
reputation of D can be assigned a risk of 0.8, with different
quantifications credit risk of credit-rated companies [9].

At this point, the solving steps based on logistics re-
gression are as follows:

Step1: Collect relevant data according to business goals;
Step2: Standardized data;
Step3: Analyze the data and preprocess the data;
Step4: Train the algorithm to find the best classification
coefficient, ① Find the h function (namely, hypothe-
sis). ② Construct J function (loss function). ③ Min-
imize the J function and obtain the regression
parameters (θ);
Step5: Test algorithm and model evaluation;
Step6: Get new data and convert it into corresponding
structured values. Based on the trained regression
coefficients, you can perform simple regression cal-
culations on these values to determine which category
the new data belongs to.

(2) Result Analysis. Suppose the risk of bank loans is R, and
the value is 0<R< 1. .e closer the R value is to 0, the lower
the credit risk of the company and the better the credit rating
of the company; the closer the R value is to 1, the higher the
financial risk of the company and the worse the credit rating
of the company. .e influencing factors are the influence of
upstream and downstream enterprises’ influence, strength,
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stability of supply-demand relationship, customer churn
rate index value, and other indicators. Banks should min-
imize the total risk of loans [10–12].

.e quantified data and the original enterprise data were
imported into SPSS, and the normality test and significance
test passed. .en, proceed to principal component analysis,
and the results are shown in Table 1.

According to the screening results of the above com-
ponent score coefficient matrix, redefine the name of the
principal component: N1 is the amount of tax contribution,
and N2 is the relative fluctuation of sales.

At this time, two principal component factors N1 and N2
are used as research variables, and SPSS is used to do forward
stepwise logistic regression on these two variables. .e final
model statistics are shown in Table 2.

.e logistic reputation risk quantificationmodel that can
be established based on the above results is as follows:

R �
l
−1.274− 0.107N1− 0.087N2

1 + l
−1.274−0.107N1−0.087N2

,

�
1

1 + e
1.274+0.107N1+0.087N2

.

(7)

4.2.3. Quantification Model of Corporate Reputation Risk
Based on Analytic Hierarchy Process.
(1) Principal component analysis method

Step 1: Standardize the original data and calculate
the correlation matrix;
Step 2: Calculate the eigenvalues and eigenvectors
of the correlation matrix;
Step 3: Take the first 2–3 principal components
based on the cumulative contribution rate
reaching 85%;
Step 4: Explain the principal components;
Step 5: Calculate the principal component score.
.at is, standardize each sample data and bring it
into the principal component formula of the third
step to calculate the first principal component
score and the second principal component score;
Step 6: Regard the principal component score as a
new dependent variable that can be linearly
regressed.

(2) Establish an indicator system. .is article summa-
rizes the corporate reputation risk into three di-
mensions, namely, debt service capacity, credit
guarantee situation, and macropolicy. Based on this,
it is preliminarily subdivided into 10 specific cor-
porate reputation risk indicator systems, as shown in
Figure 1.
.e quantified enterprise credit risk and original
enterprise index data are imported into SPSS, and its
normality test and significance test are passed.
According to the screening results of the component
score coefficient matrix, redefine the names of the

first three principal components: N1 is the debt
service capacity, N2 is the credit guarantee situation,
and N3 is the macropolicy.

(3) Model Construction. At this time, three principal
component factors are used as research variables,
andOi is used as the size of corporate reputation risk,
and SPSS is used to perform forward stepwise logistic
regression on these two variables. Based on the above
results, a logistic corporate reputation risk prediction
model can be established:

Oi � e
1+ 1/ln N1( )( )/ N2+ e/ln N3( )( )[ ]. (8)

4.2.4. A Model for Maximizing Bank Revenue and Mini-
mizing Credit Risk Based on Multiobjective Optimization.
According to the relationship between the interest rate and
the customer churn rate in the data source, the relationship
between the loan interest rate and the customer churn rate of
three types of credit risk companies A, B, and C is con-
structed. .e images are established in the order of A, B, and
C companies from top to bottom, and the result is shown in
Figure 2.

.e specific equation results are as follows:

zi �

7.524rA − 0.09793 . . . . . . (A),

7.351rB − 0.1178 . . . . . . (B),

7.468 rC − 0.1379 . . . . . . (C).

⎧⎪⎪⎨

⎪⎪⎩
(9)

Combining the two optimization models of bank profit
maximization and enterprise credit risk minimization, the
optimized objective function and its limiting conditions are
as follows:

Y � min 􏽘
99

1
Ri + 􏽘

99

1
Ai ri − r0( 􏼁 1 − zi( 􏼁 + 􏽘

99

1
Oi,

s.t.

Oi � e
1+ 1/ln N1( )/N2+ N3/ln N4( )( ),

10≤Ai ≤ 100,

4%≤ ri ≤ 15%,

􏽘

99

1
Ai ≤ a,

Z0 � a
∗
pa + b

∗
pb + c

∗
pc a
∗
, b
∗
, c
∗

� 0, 1{ }( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i � 1, 2, . . . , 99).

(10)

At this time, a∗, b∗, and c∗ represent the total amount of
loans that can be allocated to companies A, B, and C, re-
spectively. .e value of the overall function should be as
small as possible. Introducing the index value of each en-
terprise into the model, the loan interest rate and total loan
amount of each enterprise are obtained.
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Credit risk
valuation system

Debt service capacity

Credit guarantee capacity

Macropolicy

Industry policy environment

Industry development cycle

Product substitutability

Relative sales fluctuation

Relative purchase fluctuation

Bank credit

Contribution tax

Asset size

Customer chum rate

Profit

Figure 1: Corporate reputation risk evaluation index system.

Table 1: Component score coefficient matrix.

Variable Zscore Profit Contribution tax Relative sales fluctuation Purchase fluctuation size Customer churn rate
1 0.871 0.876 0.198 0.426 0.525
2 −0.107 −0.018 0.849 0.406 −0.441

Table 2: Variable coefficients in the equation.

Variable name B S. E, Wals Df Sig. Exp (B)
95% of EXP (B) C. I.

Lower limit Upper limit
Z (size of contribution tax) −0.107 0.223 0.23 1 0.631 0.898 0.58 1.392
Z (relative sales fluctuation size) −0.087 0.26 0.113 1 0.737 0.916 0.55 1.526
Constant −1.274 0.219 33.868 1 0 0.28 — —
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Figure 2: .e relationship between loan interest rates and customer churn rates of three types of credit risk.
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5. Research on the Classification of Credit
Ratings of SMEs Based on Support Vector
Machines and the Credit Risk and
Strategy of Banks

5.1.Research&ought. It is required to quantify the credit risk
of 302 companies in the data source and give the bank’s credit
strategy for these companies when the total annual credit is
100 million yuan. .is paper first constructs a support vector
machine training set to classify the reputation ratings of each
company in the data source; then, according to the risk level of
each company, after removing the company with a risk level
of D, it is substituted into the model constructed in Section 4,
and calculate the bank’s credit strategy for 302 companies
when the total annual credit is 100 million yuan.

5.2. Research Methods

5.2.1. Research Steps.
Step 1: Further process the relevant data according to
the indicators in the previous section to obtain the
corresponding indicator values;
Step 2: Perform normalization and cluster analysis on
all data;
Step 3: Split the processed data into the training set and
test set, and use support vector machine clustering
analysis results to verify [13].

5.2.2. Model Construction. Perform cluster analysis on
standardized data to obtain the proportions of all types of
companies with loan records, as shown in Figure 3, and the
proportion of all types of companies with no loan records, as
shown in Figure 4.

.en, import the relevant data and classification results
intoMATLAB and perform support vector machine analysis
on the accuracy of the classification results. .e accuracy of
the cluster analysis test set is close to 70%, and the classi-
fication results are acceptable. .e classification and pre-
diction results are shown in Figure 5 [14–16].

Based on the results of reputation risk classification,
substituting into the multiobjective optimized bank revenue
maximization and credit risk minimization models in the
previous section [15], the partial results of the loans to
enterprises and interest rates are shown in Table 3.

6. Credit Adjustment Strategy Model under the
Influence of Emergencies Based on Analytic
Hierarchy Process

6.1. Research&ought. .is question requires comprehensive
consideration of the credit risk of each enterprise in the
previous section and the impact of possible emergent factors
such as the new crown virus epidemic on each enterprise and
gives the bank’s credit adjustment strategy when the total
annual credit is 100 million yuan. In response to this problem,
this article treats emergencies as a single overall influencing
factor, considering how it affects the first-level indicators

selected in Section 4 and then affects the second-level indi-
cators. .erefore, the analytic hierarchy process is used to give
different adjustment plans for different industries in emer-
gencies..e processed values are respectively calculated on the
relevant index values and brought into the existing model for
calculation, and the bank’s credit adjustment strategy when the
total annual credit is 100 million yuan under the influence of
unexpected factors can be obtained [17–20].

6.2. Research Methods

6.2.1. Analytic Hierarchy Process. Analytic hierarchy process
is abbreviated as AHP, which refers to a decision-making
method that decomposes elements that are always related to
decision-making into goals, guidelines, and plans, and then
conducts qualitative and quantitative analysis on this basis.
.e steps of the analytic hierarchy process are as follows:

Step 1: Establish a hierarchical structure model;
Step 2: Construct a pair of comparison matrix;
Step 3: Calculate the weight vector and do the con-
sistency check;
Step 4: Calculate the combination weight vector and do
the combination consistency test.

6.2.2. Model Construction. Based on the indicator system
constructed in Section 5, and the impact of unexpected
factors (such as the epidemic) on each company, according

Class B company 31%

Class C company 28%

Class D company 19%

Class A
company 22%

Figure 3: Visual pie chart of business classification with loan
records.

Class C company 27.2%

Class C company 54.6%

Class A company 4.7%
Class D company 13.5%

Figure 4: Visual pie chart of business classification with no loan
records.
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to the industry characteristics of each company, build a
reputation risk evaluation system and bank loan strategy for
companies in different industries. Taking the epidemic as an
emergency factor as an example, for the pharmaceutical
industry, the increase in the amount of its sales will increase
its profits. At this time, it is more appropriate to use the
company’s debt servicing capacity as the main indicator to
evaluate the loan strategy of the industry’s enterprises; but
for the manufacturing industry, due to the epidemic, it will

not be possible to resume work and production. At this time,
it is more appropriate to evaluate the company’s guarantee
capacity and the favorable situation of the macropolicy. .e
specific model is shown in Figure 6 [21–24].

Bring the processed index values into the final multi-
objective optimization model in Section 4, and recalculate
the results of the credit adjustment strategy of each enter-
prise when the total annual credit is 100 million yuan, as
shown in Table 4.

Table 3: Screenshot of loan interest and loan limit of some of the 302 companies.

Enterprise code Reputation Loan interest rate (%) Loan limit (yuan)
E124 A 15.000 2896690.49
E125 A 14.337 2910374.58
E126 A 10.823 1753908.32
E127 A 4.000 731860.94
E128 A 15.000 861454.12
E129 A 15.000 267664.16
E130 A 12.481 352527.12
E131 A 11.736 290436.29
E132 A 8.650 525292.91
E133 A 9.033 3486055.36
E134 A 10.005 181575.50
E135 A 9.502 1605406.61
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Actual test set classification
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Figure 5: Results of corporate reputation risk classification.

Emergencies lead to changes in 
credit strategy basis (taking the 

epidemic as an example)

Beneficial influence (such as 
pharmaceutical industry)

Adverse influence (such as 
manufacturing industry)

Degree of macropolicy support

Guarantee capability

Solvency

Operational capability

Figure 6: Credit adjustment strategy model under the influence of emergencies.
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7. Conclusion

In Section 4, the analytic hierarchy process is used to
quantify the corporate reputation risk. .is method can be
extended to the quantitative analysis of an unknown risk
affected by multiple factors, such as the financial risk of the
enterprise and the risk of stock trading; the method of using
nonlinear regression to maximize bank returns can be ex-
tended to any conditional constraint solution. .e method
of using nonlinear regression to maximize bank revenue can
be extended to any conditional constraint to solve the
maximum value, such as finding the maximum value of
production capacity under resource constraints. In Section
5, since the support vector machine is a small sample
learning method, the category prediction of 302 companies
without loan records has a natural advantage different from
other machine learning algorithms. From the perspective of
algorithm principles, the novel nonlinear mapping and
optimal hyperplane ideas greatly simplify many traditional
classification and regression problems. In addition, the
method of using support vector machines to classify the
credit risk of SMEs can be extended to classify any item
according to specific attributes, such as classifying wine
quality and classifying food quality [25–29].

However, it should be noted that in the data processing,
this article uses the average value to represent the stable
supply and marketing status of the enterprise. If the supply
and marketing data of the company have a large extreme
value, the average value will not represent the stable supply
and marketing status. In addition, when calculating the
customer churn rate in the analysis in Section 4, the absolute
customer churn rate is used because the relative purchase
amount of the churn customer is lacking in the data source.
In view of these two shortcomings, when calculating the
fluctuation value of supply and demand of small, medium,
and microenterprises, the median can be used instead of the
average to represent the stable supply and demand status,
thereby reducing the influence of extreme values to assess
the reputation risk of SMEs; at that time, the customer churn
rate can be calculated using the relative customer churn rate,
and the relative purchase volume of the relative customer
churn is included in the calculation, so that the result is more
objective and reliable.
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(e nonlinear conjugate gradient algorithms are a very effective way in solving large-scale unconstrained optimization problems.
Based on some famous previous conjugate gradient methods, a modified hybrid conjugate gradient method was proposed. (e
proposed method can generate decent directions at every iteration independent of any line search. Under the Wolfe line search,
the proposed method possesses global convergence. Numerical results show that the modified method is efficient and robust.

1. Introduction

Consider the following unconstrained optimization
problem:

min
x∈Rn

f(x), (1)

where x ∈ Rn is a real vector with n≥ 1 component and
f: Rn⟶ R is a smooth function and its gradient
g(x)≜∇f(x) is available. Unconstrained problem is an
important problem with a broad range of scientific and
operational applications.

During the last decade, the conjugate gradient methods
constitute an active choice for efficiently solving the above
optimization problem, especially when the dimension n is
large, characterized by the simplicity of their iteration, their
low memory requirement, and their excellent numerical
performance. (e general procedure of the iterative com-
putational scheme is as follows.

When applied to solve problem (1), starting from an
initial guess x1 ∈ Rn, the conjugate gradient method usually
generates a sequence xk􏼈 􏼉 as

xk+1 � xk + αkdk, (2)

where xk is the current iterate, αk > 0 is called a step size
determined by some suitable line search, and dk is the search
direction defined by

dk �
− gk, k � 1,

− gk + βkdk− 1, k≥ 2,
􏼨 (3)

where gk � ∇f(xk) and βk is an important scalar parameter.
Generally inexact line search is used in order to get the

global convergence of conjugate gradient method, such as
theWolfe line search or the strongWolfe line search.(at is,
the step length αk is usually computed by the Wolfe line
search:

f xk( 􏼁 − f xk + αkdk( 􏼁≥ − δαkg
T
k dk,

g xk + αkdk( 􏼁
T
dk ≥ σg

T
k dk,

(4)

or the strong Wolfe line search:

f xk( 􏼁 − f xk + αkdk( 􏼁≥ − δαkg
T
k dk,

g xk + αkdk( 􏼁
T
dk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ σ g
T
k dk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(5)

where 0< δ < σ < 1 are some fixed parameters.
Different conjugate gradient methods correspond to

different values of the scalar parameter βk. (e well-known
conjugate gradient methods include the Fletcher–Reeves
(FR) method [1], the Polak–Ribière–Polyak (PRP) method
[2, 3], the Hestenes–Stiefel (HS) method [4], the Dai–Yuan
(DY) method [5], the conjugate-descent method (CD) [6],
and the Liu–Storey method (LS) [7]. (e parameters βk in
these conjugate gradient methods are specified as follows:
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βLSk � −
g

T
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d
T
k− 1gk− 1

,

(6)

where ‖ · ‖ stands for the Euclidean norm.(ese methods are
identical when f(x) is a strongly convex quadratic function
and the line search is exact, since the gradients are mutually
orthogonal, and the parameters βk in these methods are
equal. When applied to general nonlinear functions with
inexact line searches, the behavior of these methods is
marked different.

It is well known that FR, DY, and CD methods have
strong convergent properties, but they may not perform well
in practice due to jamming. Moreover, although PRP, HS,
and LS methods may not converge in general, they often
perform better. Naturally, people try to devise some new
methods, which have the advantages of these two kinds of
methods. So far, various hybrid methods have been pro-
posed (see [8–20]).

In [14], Wei et al. gave a variant of the PRP method,
WYL method for short, where the parameter βk is yielded by

βWYL
k �

gk

����
����
2

− gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1

gk− 1
����

����
2 . (7)

(e above WYL method can be considered as the
modification of the PRP method. It inherits the good
properties of the PRP method, such as excellent numerical
effect. Furthermore, Huang et al. [15] proved that the WYL
method satisfies the sufficient descent condition and con-
verges globally under the strong Wolfe line search (5) if the
parameter satisfies σ < (1/4).

Yao et al. [16] gave a modification of the HS conjugate
gradient method as follows:

βMHS
k �

gk

����
����
2

− gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1

d
T
k− 1 gk − gk− 1( 􏼁

. (8)

Under the strong Wolfe line search (5) with the pa-
rameter σ < (1/3), it has been shown that the MHS method
can generate sufficient descent directions and converges
globally for general objective functions.

Jiang et al. [17] proposed a hybrid conjugate gradient
method with

βJHJ
k �

gk

����
����
2

− max 0, gk

����
����/ dk− 1

����
����􏼐 􏼑g

T
k dk− 1, gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1􏽮 􏽯

d
T
k− 1 gk − gk− 1( 􏼁

.

(9)

Under the Wolfe line search (4), the method possesses
global convergence and efficient numerical performance.

In [18], Jiang et al. proposed a hybrid conjugate gradient
method with

βMDY
k �

gk

����
����
2

max μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, d
T
k− 1 gk − gk− 1( 􏼁􏼚 􏼛

. (10)

Under the parameter μ> 1, it has been shown that the
MDY method can generate sufficient descent directions and
converges globally for general objective functions.

In [19], Jiang et al. proposed a hybrid conjugate gradient
method, denote it by JHS with

βJHS
k �

gk

����
����
2

− gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1

max μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, d
T
k− 1 gk − gk− 1( 􏼁􏼚 􏼛

. (11)

Under the parameter μ> 2, it has been shown that the
JHS method can generate sufficient descent directions and
converges globally for general objective functions.

In this paper, we introduce a new hybrid choice for
parameter βk. (is motivation mainly comes from [18, 19].
For convenience, we call the iteration method a FW method
as follows:

βFWk �
gk

����
����
2

− max 0, gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1􏽮 􏽯

max μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, d
T
k− 1 gk − gk− 1( 􏼁􏼚 􏼛

, (12)

where μ> 1.
It is easy to know that βFWk � βDYk or βFWk � βMDY

k or βFWk �

βJHSk or βFWk � βMHS
k , so βFWk is one of the hybrids of βDYk , βMDY

k ,
βJHSk , and βMHS

k .(e proposedmethod has attractive property of
satisfying the sufficient descent condition independent of any
line search and attains global convergence if the step length is
yielded by the Wolfe line search (4).

(is paper is organized as follows. In Section 2, we give the
details of our algorithm and discuss its sufficient descent
property. In Section 3, we prove the global convergence of the
proposed method with Wolfe line search (4). A number of
numerical experiments comparing the proposed method with
other conjugate gradientmethods are given in Section 4. Finally,
conclusion is given in Section 5.

2. Algorithm and Its Property

In this section, first, based on the discussed above, we de-
scribe our algorithm framework (Algorithm 1) without fixed
line search as follows.
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(e following lemma states that the search direction in
Algorithm 1 is always sufficient descent depending on no
line search.

Lemma 1. If the objective function f(x) is continuously
differentiable, let dk be generated by Algorithm 1. ,en,
gT

k dk < 0 holds for each k≥ 1.

Proof. We prove this lemma by induction. For k � 1, it is
easy to know that gT

1 d1 � gT
1 (− g1) � − ‖g1‖

2 < 0. Assume
that gT

k− 1dk− 1 < 0 holds for k − 1 and k> 2. Now we prove
that gT

k dk < 0 holds for k.
If gT

k dk− 1 � 0, then βFWk � (‖gk‖2 − max 0, (‖gk‖/􏼈

‖gk− 1‖)gT
k gk− 1}/ − dT

k− 1gk− 1); furthermore, we have

g
T
k dk � g

T
k − gk + βFWk dk− 1􏼐 􏼑 � − gk

����
����
2

+ βFWk g
T
k dk− 1 � − gk

����
����
2 < 0.

(13)

If gT
k dk− 1 ≠ 0, we divide the proof into four following

cases.

(i) If gT
k gk− 1 ≤ 0 and μ|gT

k dk− 1|≤ dT
k− 1(gk − gk− 1), then

βFWk � (‖gk‖2/dT
k− 1(gk − gk− 1)) � βDYk by the defi-

nition of βFWk . Noticing that μ|gT
k dk− 1|> 0, dT

k− 1(gk −

gk− 1)> 0 holds.
From (3) and (12), we have

g
T
k dk � g

T
k − gk + βFWk dk− 1􏼐 􏼑 � − gk

����
����
2

+
gk

����
����
2

d
T
k− 1 gk − gk− 1( 􏼁

g
T
k dk− 1

�
gk

����
����
2

d
T
k− 1 gk − gk− 1( 􏼁

g
T
k− 1dk− 1 < 0.

(14)

(ii) If gT
k gk− 1 ≤ 0, μ|gT

k dk− 1|>dT
k− 1(gk − gk− 1), then

from (12), one has βFWk � (‖gk‖2/μ|gT
k dk− 1|).

(erefore, we obtain

g
T
k dk � g

T
k − gk + βFWk dk− 1􏼐 􏼑 � − gk

����
����
2

+
gk

����
����
2

μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
g

T
k dk− 1

≤ − gk

����
����
2

+
gk

����
����
2

μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
g

T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � − 1 −
1
μ

􏼠 􏼡 gk

����
����
2 < 0.

(15)

(iii) If gT
k gk− 1 > 0 and μ|gT

k dk− 1|≤dT
k− 1(gk − gk− 1), then

from (12), one knows

βFWk �
gk

����
����
2

− gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1

d
T
k− 1 gk − gk− 1( 􏼁

� βMHS
k . (16)

Noticing gT
k gk− 1 > 0, we have 0< cos θk < 1, where

θk is the angle between gk and gk− 1.
Furthermore, we obtain

g
T
k dk � g

T
k − gk + βFWk dk− 1􏼐 􏼑 � − gk

����
����
2

+
gk

����
����
2

− gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1

d
T
k− 1 g

T
k − gk− 1􏼐 􏼑

g
T
k dk− 1

� − gk

����
����
2

+
gk

����
����
2
g

T
k dk− 1 − gk

����
����
2 cos θkg

T
k dk− 1

d
T
k− 1 g

T
k − gk− 1􏼐 􏼑

�
gk

����
����
2
g

T
k− 1dk− 1 − gk

����
����
2 cos θkg

T
k dk− 1

d
T
k− 1 g

T
k − gk− 1􏼐 􏼑

<
gk

����
����
2
g

T
k− 1dk− 1 − gk

����
����
2 cos θkg

T
k− 1dk− 1

d
T
k− 1 g

T
k − gk− 1􏼐 􏼑

�
gk

����
����
2 1 − cos θk( 􏼁g

T
k− 1dk− 1

d
T
k− 1 g

T
k − gk− 1􏼐 􏼑

< 0.

(17)

(iv) If gT
k gk− 1 > 0 and μ|gT

k dk− 1|>dT
k− 1(gk − gk− 1), then

from (12), one gets

βFWk �
gk

����
����
2

− gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1

μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (18)

As in the case of (iii), we have

Initialization. Given constants ε≥ 0, δ ∈ (0, 1), σ ∈ (δ, 1), μ> 1 and x1 ∈ Rn. Let d1 � − g1, k: � 1.
Step 1. If ‖gk‖< ε, then stop. Otherwise, go to Step 2.
Step 2. Determine a step length αk by a suitable line search.
Step 3. Let xk+1 � xk + αkdk and compute gk+1 � g(xk+1) and βFWk+1 by (12).
Step 4. Let dk+1 � − gk+1 + βFWk+1dk. Set k: � k + 1; go to Step 1.

ALGORITHM 1: FW
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g
T
k dk � g

T
k − gk + βFWk dk− 1􏼐 􏼑

� − gk

����
����
2

+
gk

����
����
2

− gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1

μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
g

T
k dk− 1

� − gk

����
����
2

+
gk

����
����
2

− gk

����
����
2 cos θk

μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
g

T
k dk− 1

≤ − gk

����
����
2

+
gk

����
����
2 1 − cos θk( 􏼁

μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
g

T
k dk− 1

����
����

� − 1 −
1 − cos θk

μ
􏼠 􏼡 gk

����
����
2 < 0.

(19)

(erefore, gT
k dk < 0 holds for all k≥ 1. □

Lemma 2. Let xk􏼈 􏼉 be generated by Algorithm 1. ,en, for
any k≥ 1, we can obtain the following relations:

0≤ βFWk ≤
g

T
k dk

g
T
k− 1dk− 1

. (20)

Proof. From formula (12), it is easy to see that

βFWk �
gk

����
����
2

− max 0, gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1􏽮 􏽯

max μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, d
T
k− 1 gk − gk− 1( 􏼁􏼚 􏼛

≥ 0. (21)

Now we are ready to prove βFWk ≤ (gT
k dk/gT

k− 1dk− 1) by
considering the following four cases.

(i) If gT
k gk− 1 ≤ 0 and μ|gT

k dk− 1|≤dT
k− 1(gk − gk− 1), then

βFWk � (‖gk‖2/dT
k− 1(gk − gk− 1)) � βDYk .

In view of Lemma 1 and (14), we have

βFWk �
gk

����
����
2

d
T
k− 1 gk − gk− 1( 􏼁

�
g

T
k dk

g
T
k− 1dk− 1

. (22)

(ii) If gT
k gk− 1 ≤ 0, μ|gT

k dk− 1|> dT
k− 1(gk − gk− 1), then

βFW
k � (‖gk‖2/μ|gT

k dk− 1|).
If gT

k dk− 1 > 0, by the recurrence formula, we have

βFWk �
gk

����
����
2

μg
T
k dk− 1

, (1 − μ)g
T
k dk− 1 <g

T
k− 1dk− 1. (23)

(erefore, one gets

g
T
k dk � g

T
k − gk + βFWk dk− 1􏼐 􏼑

� − gk

����
����
2

+
gk

����
����
2

μg
T
k dk− 1

g
T
k dk− 1

�
(1 − μ) gk

����
����
2

μg
T
k dk− 1

g
T
k dk− 1 <

gk

����
����
2

μg
T
k dk− 1

g
T
k dk− 1

� βFWk g
T
k− 1dk− 1.

(24)

Dividing both sides of (24) by gT
k− 1dk− 1, it follows that

βFWk ≤
g

T
k dk

g
T
k− 1dk− 1

. (25)

If gT
k dk− 1 < 0, similarly, we can get that

βFWk �
gk

����
����
2

− μg
T
k dk− 1

, (1 + μ)g
T
k dk− 1 <g

T
k− 1dk− 1,

g
T
k dk � g

T
k − gk + βFWk dk− 1􏼐 􏼑 � − gk

����
����
2

+
gk

����
����
2

− μg
T
k dk− 1

g
T
k dk− 1

�
(1 + μ) gk

����
����
2

− μg
T
k dk− 1

g
T
k dk− 1 <

gk

����
����
2

− μg
T
k dk− 1

g
T
k dk− 1 � βFW

k g
T
k− 1dk− 1.

(26)

Dividing both sides of (26) by gT
k− 1dk− 1, one has

βFWk ≤
g

T
k dk

g
T
k− 1dk− 1

. (27)

(iii) If gT
k gk− 1 > 0 and μ|gT

k dk− 1|≤ dT
k− 1(gk − gk− 1), then

βFWk �(‖gk‖2 − (‖gk‖/‖gk− 1‖)gT
k gk− 1/dT

k− 1(gk − gk− 1))

� βMHS
k .

From the above formula, we have

βFWk �
gk

����
����
2

− gk

����
����/ gk− 1

����
����􏼐 􏼑g

T
k gk− 1

d
T
k− 1 gk − gk− 1( 􏼁

�
gk

����
����
2 1 − cos θk( 􏼁

d
T
k− 1 gk − gk− 1( 􏼁

.

(28)

Combining with (17), we get

βFWk ≤
g

T
k dk

g
T
k− 1dk− 1

. (29)

(iv) If gT
k gk− 1 > 0 and μ|gT

k dk− 1|>dT
k− 1(gk − gk− 1), then

βFWk � (‖gk‖2 − (‖gk‖/‖gk− 1‖)gT
k gk− 1/μ|gT

k dk− 1|).
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Noticing that gT
k dk− 1 < μ|gT

k dk− 1| + gT
k− 1dk− 1, we have

from the above formula that

βFWk �
gk

����
����
2 1 − cos θk( 􏼁

μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
. (30)

So,

g
T
k dk � g

T
k − gk + βFWk dk− 1􏼐 􏼑

� − gk

����
����
2

+
gk

����
����
2 1 − cos θk( 􏼁

μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
g

T
k dk− 1

< − gk

����
����
2

+
gk

����
����
2 1 − cos θk( 􏼁

μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
μ g

T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + g
T
k− 1dk− 1􏼒 􏼓

� − cos θk gk

����
����
2

+
gk

����
����
2 1 − cos θk( 􏼁

μ g
T
k dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
g

T
k− 1dk− 1

<
gk

����
����
2 1 − cos θk( 􏼁

μ g
T
k− 1dk− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
g

T
k− 1dk− 1 � βFWk g

T
k− 1dk− 1.

(31)

Dividing both sides of (31) by gT
k− 1dk− 1, we have

βFWk ≤
g

T
k dk

g
T
k− 1dk− 1

. (32)

(e proof is complete. □

3. Global Convergence of Algorithm

(is section is devoted to the global convergence of algo-
rithm framework under the Wolfe line search condition, i.e.,
the step length αk is yielded by condition (4). For this goal,
we make the following basic assumptions in subsequent
discussions.

H 3.1 f(x) is bounded from below on the level set
Ω � x ∈ Rn|f(x) ≤f(x1)􏼈 􏼉, where x1 is the initial
point.
H 3.2 In some neighborhoodΩ1 of the level setΩ, f(x)

is continuous differentiable, and its gradient g(x) is
Lipschitz continuous, that is to say, for all x, y ∈ Ω1,
there exists a constant L> 0 such that

‖g(x) − g(y)‖≤L‖x − y‖. (33)

Lemma 3. Suppose that assumptions (H 3.1) and (H 3.2)
hold. Let xk􏼈 􏼉 be generated by Algorithm 1, where the step
length αk satisfies the Wolfe line search (4). ,en,
􏽐k≥1((gT

k dk)2/‖dk‖2)<+∞.

Proof. In view of (4) and (33), we have

(σ − 1)g
T
k dk ≤d

T
k gk+1 − gk( 􏼁≤ αkL dk

����
����
2
. (34)

(erefore, we get

αk ≥
σ − 1

L

g
T
k dk

dk

����
����
2. (35)

Combining (4) and (20), we can get that

fk − fk+1 ≥ − δαkg
T
k dk ≥ −

δ(σ − 1)

L

g
T
k dk􏼐 􏼑

2

dk

����
����
2 �

δ(1 − σ)

L

g
T
k dk􏼐 􏼑

2

dk

����
����
2 .

(36)

Let us sum up the inequalities (36) for k � 1, . . .. We
obtain

􏽘
k≥1

fk − fk+1( 􏼁 � f1 − lim
k⟶∞

fk ≥ 􏽘
k≥1

δ(1 − σ)

L

g
T
k dk􏼐 􏼑

2

dk

����
����
2 .

(37)

(is inequality along with the assumption (H3.1) results
in

􏽘
k≥1

g
T
k dk􏼐 􏼑

2

dk

����
����
2 <+∞. (38)

(erefore, Lemma 3 holds. □

Theorem 1. Suppose that Assumptions (H 3.1) and (H 3.2)
hold. Consider iterate xk+1 � xk + αkdk by Algorithm 1; if the
direction dk is a descent direction and the step length αk

satisfies the Wolfe line search (4), then limk⟶∞inf‖gk‖ � 0.

Proof. We prove this theorem by contradiction. If
limk⟶∞inf‖gk‖≠ 0, in view of ‖gk‖> 0, there exists a
constant c> 0 such that ‖gk‖≥ c, ∀k≥ 1. Again, from (3), it
follows that dk + gk � βFWk dk− 1. Squaring both sides of above
equality, we have

dk

����
����
2

� βFWk􏼐 􏼑
2

dk− 1
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����
2

− 2g
T
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����
����
2
. (39)

Dividing both sides of (39) by (gT
k dk)2 and in view of

(20), it follows that
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����
2 −

1
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����
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����
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gT
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2
⎛⎜⎝ ⎞⎟⎠
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≤
dk− 1

����
����
2

g
T
k− 1dk− 1􏼐 􏼑

2 +
1

gk

����
����
2.

(40)

Combining with (40), by a recurrence of relation ‖gk‖≥ c

and d1 � − g1, we have
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Table 1: Test results of the FW method, MDY method, JHS method, and MHS method.

p n
FW MDY JHS MHS

I NF NG TCpu I NF NG TCpu I NF NG TCpu I NF NG TCpu
badscp 2 3 58 5 0.0189 3 58 5 0.0144 3 58 5 0.1081 3 58 5 0.0116
beale 2 17 57 29 0.0290 21 62 34 0.0094 23 79 40 0.0140 19 60 31 0.0239
jensam 2 2 52 3 0.0054 2 52 3 0.0079 2 52 3 0.0091 2 52 3 0.0098
helix 3 63 465 245 0.0855 79 648 339 0.1265 113 756 401 0.2044 70 467 226 0.1752
bard 3 37 99 58 0.0214 86 199 122 0.0909 49 161 71 0.0538 47 94 61 0.0454
gauss 3 4 9 5 0.0144 4 9 5 0.0388 4 9 5 0.0154 4 9 5 0.0138
meyer 3 3 56 5 0.0187 3 56 5 0.0156 3 56 5 0.0176 3 56 5 0.0230
gulf 3 2 52 4 0.0115 2 52 4 0.0138 2 52 4 0.0162 2 52 4 0.0188
box 3 1 51 2 0.0166 1 51 2 0.0147 1 51 2 0.0168 1 51 2 0.0214
wood 4 111 335 166 0.0865 85 245 136 0.0774 14 146 90 0.0657 85 250 135 0.0567
kowosb 4 153 332 212 0.0452 15 180 126 0.0821 15 147 95 0.0556 105 317 182 0.0747
osb1 5 1 51 2 0.0102 1 51 2 0.0110 1 51 2 0.0142 1 51 2 0.0188
biggs 6 8 65 10 0.0210 8 69 12 0.0066 12 95 22 0.0087 11 89 20 0.0075
osb2 11 17 89 23 0.0147 28 117 40 0.0178 16 93 24 0.0136 7 66 10 0.0143
pen1 10 2 58 7 0.0156 2 58 7 0.0149 2 58 7 0.0211 2 58 7 0.0194
pen1 100 2 101 3 0.0132 2 101 3 0.0216 7 351 8 0.1244 5 251 6 0.0487
pen1 200 1 51 2 0.0119 1 51 2 0.0256 1 51 2 0.0213 1 51 2 0.0244
pen1 1000 1 51 2 0.9192 1 51 2 0.9964 1 51 2 0.9902 1 51 2 0.9578
pen1 1500 1 51 2 2.0667 1 51 2 2.2766 1 51 2 2.0790 1 51 2 2.1576
pen1 2000 1 51 2 3.6421 1 51 2 4.0836 1 51 2 3.7250 1 51 2 3.7133
pen1 3000 1 51 2 8.2712 1 51 2 9.2095 1 51 2 8.1979 1 51 2 8.5341
pen1 5000 1 51 2 23.0663 1 51 2 25.5505 1 51 2 22.1556 1 51 2 23.6629
pen2 10 2 52 3 0.0160 2 52 3 0.0171 2 52 3 0.0156 2 52 3 0.0180
pen2 50 1 51 2 0.0165 2 52 3 0.0266 1 51 2 0.0210 1 51 2 0.0197
vardim 2 4 27 10 0.0024 4 30 11 0.0035 5 25 10 0.0034 5 25 10 0.0033
vardim 100 1 51 2 0.0119 1 51 2 0.0218 1 51 2 0.0131 1 51 2 0.0116
vardim 500 1 51 2 0.0776 1 51 2 0.1024 1 51 2 0.0982 1 51 2 0.1105
vardim 1000 1 51 2 0.2908 1 51 2 0.3441 1 51 2 0.3951 1 51 2 0.3326
vardim 2000 1 51 2 0.9955 1 51 2 1.0401 1 51 2 1.0591 1 51 2 1.0676
vardim 3000 1 51 2 1.9162 1 51 2 2.1069 1 51 2 1.9204 1 51 2 2.0107
vardim 4000 1 51 2 3.1114 1 51 2 3.4843 1 51 2 3.3016 1 51 2 3.3019
vardim 5000 1 51 2 4.6175 1 51 2 5.2175 1 51 2 4.8257 1 51 2 4.9972
trig 10 42 80 50 0.0130 40 70 45 0.0169 41 73 46 0.0182 48 94 60 0.0153
trig 50 56 101 64 0.0294 49 108 65 0.0538 51 112 67 0.0436 52 114 68 0.0482
trig 150 62 110 71 0.1451 54 112 69 0.1962 61 113 73 0.1620 81 185 113 0.2364
trig 200 54 103 65 0.2280 60 124 77 0.3072 67 176 85 0.3789 68 230 102 0.3682
ie 10 7 15 8 0.0231 6 13 7 0.0398 7 15 8 0.0314 7 15 8 0.0287
ie 100 9 18 10 0.1928 7 16 9 0.2051 7 14 8 0.1332 11 21 12 0.2035
ie 500 8 18 10 2.8779 8 18 10 3.2010 8 18 10 2.9477 8 18 10 2.9802
ie 1000 8 18 10 11.3304 7 16 9 11.2570 8 18 10 12.0797 8 18 10 11.9909
ie 2000 8 18 10 45.4075 8 18 10 50.2927 7 16 9 40.4006 7 16 9 42.0180
ie 4000 8 21 11 200.1344 8 21 11 216.9107 7 19 10 179.2517 7 19 10 195.2297
trid 100 36 74 40 0.0350 32 69 36 0.0562 33 69 37 0.0544 38 78 43 0.0438
trid 500 33 74 39 0.3026 32 70 38 0.3045 32 71 38 0.3125 35 90 47 0.3451
band 10 21 58 26 0.0229 25 66 31 0.0072 18 56 23 0.0084 20 63 27 0.0074
band 500 1 51 2 0.3930 1 51 2 0.4692 1 51 2 0.4523 1 51 2 0.4562
band 5000 1 51 2 32.4417 1 51 2 37.1887 1 51 2 32.5321 1 51 2 33.9574
lin 2 1 4 3 0.0061 1 4 3 0.0091 1 4 3 0.0047 1 4 3 0.0046
lin 50 1 4 3 0.0058 1 4 3 0.0047 1 4 3 0.0053 1 4 3 0.0084
lin 500 1 4 3 0.0432 1 4 3 0.0646 1 4 3 0.0522 1 4 3 0.0632
lin 1000 1 4 3 0.2213 1 4 3 0.2170 1 4 3 0.1997 1 4 3 0.1960
lin 1500 1 4 3 0.4253 1 4 3 0.4649 1 4 3 0.3651 1 4 3 0.3824
lin 2000 1 4 3 0.6977 1 4 3 0.8611 1 4 3 0.7180 1 4 3 0.8242
lin 3000 1 4 3 1.6127 1 4 3 1.9749 1 4 3 1.6681 1 4 3 1.6817
lin 5000 1 4 3 4.7730 1 4 3 5.3896 1 4 3 4.8142 1 4 3 4.8166
lin1 2 2 4 3 0.0086 2 4 3 0.0018 2 4 3 0.0134 2 4 3 0.0096
lin1 10 1 4 3 0.0029 1 4 3 0.0034 1 4 3 0.0042 1 4 3 0.0065
lin1 100 6 62 9 0.0580 6 62 9 0.0408 6 62 9 0.0530 6 62 9 0.0598
lin1 500 3 56 7 0.5768 3 56 7 0.6440 3 56 7 0.5921 3 56 7 0.6223
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(is is a contradiction to Lemma 3. (e proof is
completed. □

4. Numerical Results

In this part of the paper, we report some numerical ex-
periments that indicate the efficiency of the proposed

algorithm. To test and compare the computation effect of the
proposed FW, a large number of testing problems from
Morè et al. [21] are solved by the FW, MHS [16], MDY [18],
and JHS [19]. In all conjugate gradient methods, the step
length αk is yielded by the Wolfe line search (4). All codes
were written in Matlab 7.5 and run on Dell with 2.90GHz
CPU processor, 8 GB RAM memory, and Windows 10
operating system. (e parameters are set as follows:
σ � 0.2, δ � 0.02, μ � 10.75, and ε � 10− 6. We stop the it-
eration if one of the following conditions is satisfied: (1)
‖gk‖≤ ε � 10− 6; (2) the number of iteration Itr >1000. If
condition (2) occurs, the method is deemed to fail for solving
the corresponding test problem and denote it by F. (e
simulation results of the proposed method were efficient and
robust as compared with hybrid conjugate gradient methods
(FW, MHS, MDY, and JHS). (e hybrid conjugate gradient
methods are listed in Table 1. Here P denotes the abbre-
viation of the test problems, n denotes the dimension of the
test problems, and Itr, NF, and NG denote the number of
iteration, function evaluations, and gradient evaluations,
respectively. TCpu denotes the computing time of CPU for

Table 1: Continued.

p n
FW MDY JHS MHS

I NF NG TCpu I NF NG TCpu I NF NG TCpu I NF NG TCpu
lin1 1000 3 56 5 2.1466 3 56 5 2.5596 3 56 5 2.1943 3 56 5 2.3149
lin1 2000 3 56 5 9.0047 3 56 5 10.9094 3 56 5 9.0499 3 56 5 9.8109
lin1 3000 3 56 5 25.2678 5 63 8 30.5328 5 63 8 25.2772 5 63 8 27.4500
lin0 4 2 4 3 0.0111 2 4 3 0.0096 2 4 3 0.0142 2 4 3 0.0138
lin0 500 3 58 6 0.7479 3 58 6 0.7779 3 58 6 0.7604 3 58 6 0.6715
lin0 800 3 56 5 1.8232 3 56 5 2.1614 3 56 5 1.9628 3 56 5 1.8111
lin0 1000 7 62 9 3.3620 7 62 9 3.6958 7 62 9 3.6405 7 64 9 3.3911
lin0 2000 3 56 5 11.8533 3 56 5 14.5539 3 56 5 12.0432 3 56 5 12.2544
lin0 2500 3 56 5 19.5770 3 56 5 23.3801 3 56 5 19.6448 3 56 5 22.1141
lin0 3000 3 57 5 28.9680 3 57 5 33.4278 3 57 5 28.9657 3 57 5 30.2009
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0.9

1
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Figure 1: Performance profiles with respect to CPU time (FW versus MDY, JHS, and MHS).
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computing the corresponding test problem (unit: seconds).
To visualize the whole behaviour of the algorithms, we use
the performance profiles proposed by Dolan and Morè [22]
to compare the performance based on the CPU time, the
number of function evaluation, the number of gradient
evaluation, and the number of iteration, respectively. For
each method, we plot the fraction P/τ of the problems for
which the method is within a factor τ of the best time. (e
left side of the figure gives the percentage of the test
problems for which a method is the fastest. Based on the

theory of the performance profile above, four performance
figures, i.e., Figures 1–4, can be generated according to
Table 1. From the four figures, we can see that our methods
perform effectively on the testing problems.

5. Conclusion

In this paper, we proposed a new hybrid conjugate gradient
method for solving unconstrained optimization problems.
(e proposed method satisfied sufficient descent condition

FW
MDY

JHS
MHS

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
τ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

P/
τ

Figure 2: Performance profile on the number of gradient evaluation (FW versus MDY, JHS, and MHS).
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Figure 3: Performance profile on the number of function evalu-
ation (FW versus MDY, JHS, and MHS).
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Figure 4: Performance profile on the number of iteration (FW
versus MDY, JHS, and MHS).
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irrespective of the line searches condition. Moreover, the
global convergence of the proposed method has been
established under the Wolfe line search (4). Numerical
experiments show the efficiency and robustness of the new
algorithm in solving a collection of unconstrained optimi-
zation problems from [21].
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In today’s technological world, confidentiality is an important issue to deal with, and it is carried out through different pro-
ficiencies. Cryptography is a scientific technique of securing a communication from unauthenticated approach. .ere exist many
encryption algorithms in cryptography for data security. .e need of new nonstandard encryption algorithms has been raised to
prevent the communication from traditional attacks. .is paper proposes some new encryption algorithms for secure trans-
mission of messages using some special corona graphs and bipartite graph along with some algebraic properties. .ese proposed
encryption schemes will lead to more secure communication of secret messages.

1. Introduction

Secret communications have been needed by military offi-
cers and diplomats since ancient times. In today’s advanced
age, where the internet, mobile phones, and computer
technology are widely used in almost every sphere of life, the
need to keep important information secure and confidential
is also increasing day by day. Overtime, as data security
continues to evolve, new ways to break the confidential
communication are being discovered.

Cryptography is the science of transforming the secret
data into coded information with the goal that it can safely
reach its end without leakage. It was basically utilized for war
time plans. Classical cryptography goes back over two
thousand years. Modern cryptography was established by
Shannon in 1949 [1]. After the development of digital
communications, new forms of cryptography have come. It
addresses the problems of secrecy, privacy, authentication,
passwords, digital signatures, identification, and digital
money. It is now an integral part of a modern society.

.e process to transform the original message into a
code format is called the encryption, and the reverse process
is known as decryption [2]. Encryption prevents the original
contents from interception. Uncovered message is known as
plaintext. In any encryption scheme, the information which

is referred as plaintext is encoded or encrypted to generate a
cipher text with the help of a specified key..is cipher text is
then converted into readable message through decryption.
Key is such a piece of information that is used to put the
original data in code shape and then decrypt to get real text.
.rough a provided key, the authorized recipient can open
up the hiddenmessage with full ease, but it is not possible for
an interceptor. Mainly, three types of schemes are used in
modern cryptography, i.e., symmetric key cryptography,
public key cryptograph, and hash functions [3]. Symmetric
key cryptography uses one key for both encryption and
decryption, while the public key cryptography uses one key
for encryption and another key for decryption. .e hash
functions use a transformation to irreversibly encrypt
information.

We are interested in developing encryption by using
graph theory and some algebraic concepts. Firstly, some
useful concepts of graph theory are recalled [4]. A graph
G � G(V, E) consists of two sets: the set of vertices V(G) and
the set of edges E(G). If the vertex set V(G) can be parti-
tioned into two disjoint nonempty subsets such that each
edge has one vertex in each partition, then the graphG is said
to be a bipartite graph. A bipartite graph is said to be
complete-bipartite if every vertex in one partition is joined to
all vertices of other partition. A complete-bipartite graph, in
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which only one vertex is in one partition while all other
vertices are in second partition, is termed as star graph. A
vertex of degree one is named a pendent vertex, and the edge
incident to it is pendent edge. .e corona of two graphs G

and H is the graph G⊙H formed by one copy of G and
|V(G)| copies of H, where the i th vertex of G is joined to
each vertex in the i th copy of H. .is product is an im-
portant operation between graphs, introduced by Frucht and
Harary [5]. .e star graph Sn+1 on n + 1 vertices can be seen
as a corona graph K1 ⊙Kn. .e corona graph of the cycle Cn

with K1, i.e., Cn ⊙K1, is a graph on 2n vertices obtained by
attaching n pendant edges in a cycle graph Cn.

Graphs can be used for designing different encryption
algorithms. .e interaction between graph theory and
cryptography is quite interesting. For applications of graph
theory in cryptography, refer to [6–9]. .e recent past has
seen a growing interest in exploring graphs as a tool to
propose newmethodologies in different areas of cryptography
(see [10–20]). In [10], Selvakumar and Gupta proposed an
innovative algorithm for encryption and decryption using
connected graphs. In [11], Kedia andAgrawal discussed a new
encryption algorithm, in which data are secured through
numeric representation and letters, using basic concepts of
mathematics like Venn diagram. In [12], the authors have
proposed a graph-based algorithm for encryption in which
fundamental circuits are chosen with respect to corre-
sponding weights of edges. In [13], Yamuna and Karthika
describe a unique method of transferring data by using bi-
partite graph. .ey constructed a numeric table for the
representation of alphabets. In [14], Al Etaiwi presented a new
symmetric encryption algorithm using cycle graph, complete
graph, and minimum spanning tree. It is reflected in paper
[15] that the authors highlight some vast applications of
bipartite graph in computation. In [16], the authors presented
a scheme for securing a data by giving a new concept of line
sigraph. Sigraph consists of graphs with sign of edges and
belongs to − 1, +1{ } as their labeled number. In [17], the
authors proposed a novel bipartite graph-based propagation
approach to overcome fraud detection in large advertising
system. In [18], Razaq et al. used coset diagram for the action
of PSL(2,Z) on projective line over the finite field F 29 to
construct proposed substitution box (S-box). .e strong
S-box is an important area of research in cryptography. In
[19], Razaq et al. generated a strong S-box using orbits of coset
graphs and the action of the symmetric group S256. In [20],
Selim G. Akl described an algorithm for encrypting a graph
for its secure transmission from a sender to a receiver.

Our aim in this work is to describe new encryption
algorithms based on some types of graphs, particularly, the
corona graph Cn ⊙K1, K1 ⊙Kn (also called star graph), and
the bipartite graph. .e proposed algorithms send and re-
ceive secure messages consisting of words of any length by
using graphs and certain algebraic properties. After applying
prescribed algorithmic steps, data could be fully protected.
.e recipient then gets the labeled graph and eventually
approaches to the original message.

In Section 2, an encryption scheme is described by using
the corona graph Cn ⊙K1. Afterwards, an algorithm of this
scheme is formulated. Application of this algorithm is studied

through an example. However, in Section 3, bipartite graphs
are used to construct a secure encryption scheme with de-
scribed algorithm. .is scheme is applicable on important
information, shown by an example. In Section 4, a secured
encryption scheme is described by using a special corona
graph K1 ⊙Kn, also named as a star graph. Its algorithm is
mentioned, and application is viewed through an example.

2. Secure Data Transfer Using Corona
Graph Cn ⊙K1

To initiate the described algorithm, the first step is to take a
simple text which is to be transferred and is to be encrypted
before sending. Every letter in data has its unique numeric
representation, mentioned in encoding table, which is used
to encode each alphabetic character. .en, each digit is
transmuted up to n-place, through shift type of cipher. Now,
new numeric values ai are obtained. Randomly, some
positive integers bi are selected which are relatively prime
with ai. By taking inverse of that ai in the modulus of bi,
corona graph Cn ⊙K1 is considered according to length of
simple text with specified outward vertices and allocates the
resulting inverses to suspended outward vertices, while main
vertices are labeled with bi. .e final labeled corona graph
Cn ⊙K1 is the encrypted data, in which the recipient receives
to get required information. Figure 1 replicates the sche-
matic diagram of the proposed algorithm.

Algorithm for encryption is as follows:

Give a plain-text word of length n.
Give the numerical values to the alphabets of plain-text
word and apply shift cipher; en(x) � x + n(mod26), to
each numerical value obtained before and get new
numerical values, say a1, a2, a3, . . ., an.
Find a sequence; b1, b2, b3, . . ., bn of positive integers in
increasing order such that gcd(bi, ai) � 1 and bi > 26.
Consider a corona graph Cn ⊙K1 with 2n vertices and
allot weights b1, b2, b3, . . ., bn to the vertices, adjacent to
pendent vertices randomly.
Find the inverse of ai(modbi) for all i and denote them
by ci, i.e., ci � (ai)

− 1(modbi)∀i.
Give numeric values c1, c2, c3, . . ., cn to pendent
vertices.
Send this corona graph Cn ⊙K1 to the receiver.

Algorithm for decryption is as follows.
.e receiver receives the graph, and following steps are

applied to transform the information and get original data:

Arrange those vertices which are adjacent to the
pendent vertices, in increasing order as
b1 < b2 < b3 < · · · < bn.
Find the inverse of the weights of pendent vertices ci

modulus their adjacent vertices bi and denote them by
ai for each i.
Compute wi � ai − (order of graph/2)mod26,∀i.
Convert the numeric values wi for each i, to relate
specific alphabets.
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Example 1. Let us suppose we have to transfer information,
i.e., EDGE, encrypting it and then sending it to the recipient.

.e starting point is to convert the alphabetic letters into
numbers of their respective positions through the encoding
table, as shown in Figure 2:

E D G E

5 4 7 5
. (1)

Here, length of word is n � 4. Applying shift cipher
en � x + n(mod26), we get

5 + 4 � 9 � a1,

4 + 4 � 8 � a2,

7 + 4 � 11 � a3,

5 + 4 � 9 � a4.

(2)

Given word is encrypted in the form

I H K I . (3)

Selecting random increasing integers bi such that value
of bi > 26:

gcd b1, a1( 􏼁 � gcd(28, 9) � 1,

gcd b2, a2( 􏼁 � gcd(31, 8) � 1,

gcd b3, a3( 􏼁 � gcd(35, 11) � 1,

gcd b4, a4( 􏼁 � gcd(47, 9) � 1.

(4)

Construct corona graph Cn ⊙K1 and put value of bi to
main vertices randomly, as shown in Figure 3.

Now, through the below-mentioned step,

ci � ai( 􏼁
− 1 modbi( 􏼁, (5)

we get

c1 � a1( 􏼁
− 1 modb1( 􏼁 � (9)

− 1
(mod28) � 25,

c2 � a2( 􏼁
− 1 modb2( 􏼁 � (8)

− 1
(mod31) � 4,

c3 � a3( 􏼁
− 1 modb3( 􏼁 � (11)

− 1
(mod35) � 16,

c4 � a4( 􏼁
− 1 modb4( 􏼁 � (9)

− 1
(mod47) � 21.

(6)

.ese inverse values are given to the adjacent pendant
vertices of Figure 3, as shown in Figure 4.

Send this labeled graph (Figure 4) to the receiver.
.e recipient, after receiving that labeled graph, arranges

the main vertices in ascending order such that

28< 31< 35< 47, (7)

and considers these numbers as values of bi such that

b1 < b2 < b3 < b4. (8)

Taking inverses of corresponding pendent vertices with
respect to the value of each bi, as shown in Figure 4, we get

25− 1
(mod28) � 9 � a1,

4− 1
(mod31) � 8 � a2,

16− 1
(mod35) � 11 � a3,

21− 1
(mod47) � 9 � a4.

(9)

Selected plaintext and
their numeric
representation

Shifted up to length of
text

Considering random
increasing sequence

with gcd (bi , ai) = 1 ∀ i

Inverse of ai (mod bi) Find inverse of ci (mod bi)

Computing wi (mod 26)

Obtaining original text

Sending labeled
graph

Sender Receiver

Arranging bi in ascending
order

Corona graph
Cn K1

Figure 1: Schematic diagram.
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Now, for wi,

wi � ai −
2n

2
􏼒 􏼓mod26. (10)

Find values of a1, a2, a3, and a4:

w1 � a1 −
2(4)

2
􏼢 􏼣mod26 � 5 � E,

w2 � a2 −
2(4)

2
􏼢 􏼣mod26 � 4 � D,

w3 � a3 −
2(4)

2
􏼢 􏼣mod26 � 7 � G,

w4 � a4 −
2(4)

2
􏼢 􏼣mod26 � 5 � E.

(11)

Finally, we get the original text.

3. Secure Data Transfer Using Bipartite Graphs

In this section, we propose an encryption algorithm for the
secure and confidential communication of messages be-
tween two communicating parties. .e construction of this
encryption algorithm is based on bipartite graph and the
concept of unique factorization domain (UFD). .e fol-
lowing are the steps of algorithm.

Algorithm for encryption is as follows:

Take a UFD with infinite primes. For example, Z.

Take a set Pn of first “n” primes, where
n � ⌈(26/k) + k⌉, 2< k< 13, and k� key (which is fixed
according to length of a word).
Consider a message, for encryption with length S.
.en, make a table (n − k) × k such that the first value
shows number of rows and second value shows the
number of columns.
After that, alphabets are partitioned as
1 st, 2 nd, 3 rd, . . . , k th position primes. (horizontally)
while;
(k+ 1)th, (k+ 2)th, (k+ 3)th, . . ., nth position primes.
(vertically)
Now, label the alphabets with the integers rici ;
ri � row position, ci � columnposition.
Label the entry ij with rici, where k + 1≤ i≤ n, 1≤ j≤ k

Forming each number as vertex of path graph
(according to sequence of letters).
Multiplying i.j and then label each vertex with that
number (say, ap where 1≤p≤ k). Keeping in view that,
one place digits are not taken in column position. In
other words, we say that column position has just 2-
digit primes.
Construct a path graph by giving consecutive i, j

numbers to each vertex.
Separate the graph labels as row and column numbers;

A B C D E F G H I J K L M

1 2 3 4 5 6 7 8 9 10 11 12 13

N O P Q R S T U V W X Y Z

14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 2: Numeric representation.

28

35

47

31

Figure 3

28

25 21

16 4

35

47

31

Figure 4
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V1 � {first place numbers from i}
V2 � {second place numbers from j}
Edge set of G becomes (r1, c1), (r2, c2), . . ., (rn, cn).
Now construct a bipartite graph with mentioned edge
set. Edges move from ri to ci.
Assign random numbers to the edges as weight in
increasing order.
Send that labeled graph.

Algorithm for decryption is as follows.
.e recipient receives the labeled bipartite graph.

Arrange the weight of edges in increasing order.
.en, arrange edges with respect to weights in a set of
order pair such that number of rows at first and number
of columns at second position.
Construct path graph with the help of order pair
information.
Find prime factorization of each vertex label.
Resultantly, required alphabets are taken through
factorization, by using table (described).

Example 2. For defining the scheme, we have to explain an
example. Take a word, GRA P H. Numerically, corre-
sponding digits are 7, 18, 1, 16, and 8, respectively. Here,
length of word is k � 5.

Step 1: take a UFD with infinite primes, i.e., Z.
Step 2: in this example, n � ⌈(26/5) + 5⌉; 2< k< 13. So,
n � 11. Take a set P11 of first 11 primes. As,
P11 � 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31{ }.
Step 3: Figure 5 shows a table. For making a table,
(n − k) × k � 6 × 5. First value, i.e., 6 shows the number
of rows and 5 the number of columns.
Step 4: message becomes G � 173, R � 235, A � 132,
P � 232, H � 175; 6≤ i≤ 11, 1≤ j≤ 5.
Step 5: corresponding values are

a1 � 17 × 3 � 51,

a2 � 23 × 5 � 115,

a3 � 13 × 2 � 26,

a4 � 23 × 2 � 46,

a5 � 17 × 5 � 85.

(12)

Next, we construct a path graph by labelling the vertices,
as shown in Figure 6

Here, V1 � 5, 11, 2, 4, 8{ } and V2 � 1, 5, 6{ }.
.e vertex set of bipartite graph becomes

G V1, V2( 􏼁 � (5, 1), (11, 5), (2, 6), (4, 6), (8, 5){ }. (13)

Graph is obtained as shown in Figure 7.
Now, apply arbitrary weights to the adjacent edges of the

bipartite graph in Figure 7, as shown in Figure 8.
Send the labeled graph in Figure 8 to the receiving

authority. .en, apply the steps for decryption:

Step 1: at first, arrange the weight of the edges in as-
cending order:

W � 10, 18, 21, 36, 41{ }. (14)

Step 2: now, arrange edges {(5,1), (11,5), (2,6), (4,6),
(8,5)}.
.e corresponding path graph is shown in Figure 9.
Step 3: prime factorization of each vertex label. As,
51 � 3 × 17, . . ., 85 � 5 × 17. Numerical values are
173, 235, 132, 232, and 175, respectively.
Step 4: we finally get the alphabetsGRAPH according
to values in the described table. Keep in view that one
place digits are not in column position.

.e examples prove the security of described algorithm.
.is tells a simple bipartite graph can make secrecy of in-
formation very strong, that is, the major output of any
encryption scheme.

4. Secure Data Transfer Using Star Graphs

Many schemes are introduced to protect data. .e men-
tioned scheme is based on star graphs. Information is
transferred with full secrecy of main idea. .ese steps are
followed to encrypt data and then decrypt it by applying
decryption steps.

Algorithm for encryption is as follows:

Let M be the message which is to be encrypted. Length
is l(say).
Here, we have to use shift cipher with formulation:

ek(x) � x + k(mod26). (15)

A B C D E

F G H I J

K L M

2 3 5 7 11

13

N O

P Q R S T

U V W X Y

Z

17

19

23

29

31

Figure 5

51 115 26 46 85

Figure 6
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Keeping k � l (fixed).
Converting the plaintext message to a sequence of
integers by adding k into every value, by reducing every
sum into modulo 26.
Now, take a star graph Sn+1 � K1 ⊙Kn, corresponding
to the length of message, by fixing center vertex with the
numeric value zero, such that number of vertices of star
graph� 1 + number of alphabetic characters in the text.
Representing data as vertices of a graph, each vertex is
represented by a letter. However, all adjacent vertices of
a graph will be represented as adjacent letters.
Now label each vertex with respect to their numeric
representation in shift cipher.
Next, give weights w1, w2, w3, . . . , wn to each edge
e1, e2, e3, . . . , en in such a way that

w1 e1( 􏼁<w2 e2( 􏼁<w3 e3( 􏼁< · · · <wn en( 􏼁. (16)

Method for finding weights of edges.
Subtract increasing power of 10 from each vertex label,
adjacently with respect to edges, such that

V1 − 10, V2 − 102, V3 − 103, . . . , Vn − 10n
, (17)

where Vi ∈ vertex tex i � 1, 2, 3, . . . , n{ }.
.ese resulting values become weight of corresponding
edges ei.
Now, the final graph is the star graph with edge’s
weights (hiding the vertex label).
Send this graph to the receiver.

After explaining the encryption procedure, we have to
explain the decryption scheme as well.

Algorithm for decryption is as follows:

Arrange the weight of edges in ascending order.
Now add up the increasing power of 10, respectively.
Apply the decryption formulation for shift cipher in the
resulting number.
Decode the characters from encoding table, and
eventually, we get the required text.

Example 3. For explaining the described scheme, we have to
take an example for satisfying the steps. Let us take a word
CODE. We have to send this word by encrypting it with the
help of such scheme.

Replace the alphabetic characters with their numeric
representation. Length of message is k � 4:

C O D E

3 15 4 5
. (18)

Now, consider a star graph S5 � K1 ⊙K4, such that the
number of its corner vertices is equal to the length of
message. Figure 10 shows the respective star graph in such a
way that edges are labeled as e1, e2, e3, and e4.

Apply the shift type of cipher as shifting up to the length
k of the message. In this example, translated through
formula,

e4(x) � x + 4(mod6). (19)

New shifted numeric values are 7, 19, 8, and 9, respec-
tively. .e related graph becomes as shown in Figure 11.

After that, apply weights wi,∀i ∈ 1, 2, 3, 4{ } to the cor-
responding edges of the vertices:

w1(7)<w2(19)<w3(8)<w4(9). (20)

Weights are given by subtracting the increasing power of
10 from each adjacent numeric value in Figure 11:

weight of edge e1 � w1 � 7 − 10,

weight of edge e2 � w2 � 19 − 102,

weight of edge e3 � w3 � 8 − 103,

weight of edge e4 � w4 � 9 − 104.

(21)

Resulting star graph is shown in Figure 12.
.is is the final labeled graph, which is to be send to the

second authority. Now, describe the decryption process.
Firstly, the recipient receives the labeled graph, as shown in
Figure 12.

.e initial step is arranging the weights of edges (Figure 13)
in ascending order of mod values, i.e.,

| − 3|<| − 81|<| − 992|<| − 9991|. (22)

Add the increasing power of 10 to each adjacent value
such that

| − 3 + 10|<| − 81 + 100|<| − 992 + 1000|<| − 9991 + 10000|.

(23)

2 4 5 8

1 5 6

11

Figure 7

2 4 5 8

1

10

21 36 41
18

5 6

11

Figure 8

51 115 26 46 85

Figure 9
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.rough this mod operation, we get the values:

7, 19, 8, 9. (24)

Apply inverse shifting by guessing the number of edges
of the star graph, which is 4. So, the values become as follows:

7 − 4 � 3,

19 − 4 � 15,

8 − 4 � 4,

9 − 4 � 5.

(25)

Finally, we get the values 3, 15, 4, 5. .rough the
encoding table, we get their respective letters asCODE. Get
the required hidden text.

.is example explains that any type of data is hidden and
is kept secure until it approaches to the receiver. .e

algorithm depends on star graphs. Labeled graphs are sent to
the recipient. It is a best possible way to secure the data.

5. Conclusion

.is work presents graph theoretic-based schemes to im-
prove encryption quality. .ree new encryption algorithms
are proposed which are very helpful for secure communi-
cation of secret messages. In the first algorithm, encryption
and decryption is performed by using a specific corona
graph Cn ⊙K1 along with some basic algebraic properties.
.e second algorithm is based on encoding table, bipartite
graph, and the concept of unique factorization domain
(UFD). In third algorithm, we used a certain labeling of
vertices and edges of the star graph K1 ⊙Kn. .ese sym-
metric algorithms use the concept of shared key that must be
predefined and shared between two communicating parties.
We can modify the proposed algorithms, to be applicable for
the communication of sentences or the set of sentences.
Furthermore, for more complexity, these algorithms could
be improved by using the public key cryptography. More-
over, we can try to implement these algorithms using any
programming language like C++, JAVA, or Microsoft.Net.
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Let Γ � (V, E) be a graph. If all the eigenvalues of the adjacency matrix of the graph Γ are integers, then we say that Γ is an integral
graph. A graph Γ is determined by its spectrum if every graph cospectral to it is in fact isomorphic to it. In this paper, we investigate
some algebraic properties of the Cayley graph Γ � Cay(Zn, S), where n � pm (p is a prime integer and m ∈ N) and
S � a ∈ Zn|(a, n) � 1􏼈 􏼉. First, we show that Γ is an integral graph. Also, we determine the automorphism group of Γ. Moreover, we
show that Γ and Kv▽Γ are determined by their spectrum.

1. Introduction

.e graphs in this paper are simple, undirected, and con-
nected. We always assume that Γ denotes the complement
graph of Γ. .e eigenvalues of a graph Γ are the eigenvalues
of the adjacency matrix of Γ. .e spectrum of Γ is the list of
the eigenvalues of the adjacency matrix of Γ together with
their multiplicities, and it is denoted by Spec(Γ); see [1]. If all
the eigenvalues of the adjacency matrix of the graph Γ are
integers, then we say that Γ is an integral graph. .e notion
of integral graphs was first introduced by Harary and
Schwenk in 1974; see [2]. In general, the problem of
characterizing integral graphs seems to be very difficult.
.ere are good surveys in this area; see [3]. For more results
depending on the integral graphs and their applications in
engineering networks, see [4–6]. For any vertex v of a
connected graph Γ, we denote the set of vertices of Γ at
distance r from Γ by Γr(v). .en, we have

Γr(v) � u ∈ V(Γ) | d(u, v) � r{ }, (1)

where d(u, v) denotes the distance in Γ between the vertices
u and v and r is a nonnegative integer not exceeding d, the
diameter of Γ. It is clear that Γ0(v) � v{ }, and V(Γ) is

partitioned into the disjoint subsets Γ0(v), . . . , Γd(v), for
each v in V(Γ). .e graph Γ is called distance regular with
diameter d and intersection array b0, . . . , bd− 1; c1, . . . , cd􏼈 􏼉 if
it is regular of valency k and, for any two vertices u and v in Γ
at distance r, we have |Γr+1(v)∩ Γ1(u)| � br, (0≤ r≤d − 1),
and |Γr− 1(v)∩ Γ1(u)| � cr (1≤ r≤ d). .e intersection
numbers cr, br, and ar satisfy ar � k − br − cr(0≤ r≤ d),
where ar is the number of neighbours of u in Γr(v). Let G be
a finite group and let H be a subset of G such that it is closed
under taking inverses and does not contain the identity. A
Cayley graph Γ � Cay(G, H) is the graph whose vertex set
and edge set are defined as follows:

V(Γ) � G;

E(Γ) � x, y􏼈 􏼉 | x
− 1

y ∈ H􏽮 􏽯.
(2)

It is well known that if Γ is a distance regular graph with
valency k, diameter d, adjacency matrix A, and intersection
array

b0, b1, . . . , bd− 1; c1, c2, . . . , cd􏼈 􏼉, (3)

then the tridiagonal (d + 1) × (d + 1) matrix,
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B �

a0 b0 0 0 . . .

c1 a1 b1 0 . . .

0 c2 a2 b2

. . .

cd− 2 ad− 2 bd− 2 0

. . . 0 cd− 1 ad− 1 bd− 1

. . . 0 0 cd ad

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

determines all the eigenvalues of Γ [7]. Note that the concept
of distance regular graphs dates back to the 1960s..ey were
defined by Biggs; see [8]; and their basic theory was de-
veloped by him and others. Distance regular graphs of di-
ameter 2 are just the connected strongly regular graphs. .e
theory of distance regular graphs has connections to many
parts of graph theory such as design theory, coding theory,
geometry, and group theory. Two graphs with the same
spectrum are called cospectral. It is not hard to see that the
spectrum of a graph does not determine its isomorphism
class. .e authors in [9] proposed the following question:
which graphs are determined by their spectrum? It seems
hard to prove a graph to be determined by its spectrum. Up
to now, only a few classes of graphs are proved to be de-
termined by their spectrum, such as the path Pn, the
complete graph Kn and the cycle Cn, graph Zn, and their
complements; see [10–12]. For a graph Γ, let A(Γ) and
L(Γ) � D(Γ) − A(Γ) be, respectively, the adjacency matrix
and Laplacianmatrix of Γ, where D(Γ) is the diagonal matrix
of vertex degrees with d1, d2, . . . , dn􏼈 􏼉 as diagonal entries.
Laplacian spectra and their applications are involved in
diverse theoretical problems on complex networks [13, 14].
Many results have been devoted to studying Laplacian
spectrum for complex networks [15, 16]. Calculating the
Laplacian spectrum of networks has many applications in
lots of aspects, such as the topological structures and dy-
namical processes [17]. Algebraic properties of various
classes of Cayley graphs have been studied by various au-
thors; see [18, 19]. In this paper, we want to study some
algebraic properties of a class of Cayley graphs constructed
on the cyclic additive group Zn, denoted by Γ � Cay(Zn, S),
where n � pm (p is a prime integer and m ∈ N) and
S � a ∈ Zn|(a, n) � 1􏼈 􏼉. It is easy to check that S is an inverse
closed subset in the group Zn and 0 ∉ S. .us, Γ is a simple
graph. .is class of graphs is a special subclass of graphs,
which are investigated from some other aspects by Basić and
Ilić [20]. Using the theory of distance regular graphs, we
show that the adjacency spectrum of Γ is
n − pm− 1, 0(n− p), (− pm− 1)(p− 1)

􏽮 􏽯, where the superscripts
give the multiplicities of eigenvalues with multiplicity
greater than one. Finally, we show that any graph cospectral
with the multicone graph Kv▽Γ is determined by its ad-
jacency spectrum as well as its Laplacian spectrum, where Kv

is the complete graph on v vertices.

2. Definitions and Preliminaries

Definition 1 (see [7, 21]). Let Γ be a graph with automor-
phism group Aut(Γ). We say that Γ is a vertex transitive
graph if, for all vertices x, y of Γ, there is an automorphism θ
in Aut(Γ) satisfying θ(x) � y. Also, we say that Γ is distance
transitive graph if, for all vertices u, v, x, y of Γ such that
d(u, v) � d(x, y), there is an automorphism θ in Aut(Γ)
satisfying θ(u) � x and θ(v) � y.

Theorem 1 (see [22]). Let Γ be a graph such that it contains k

components Γ1, . . . , Γk. If, for any i ∈ I � 1, . . . , k{ }, we have
Γi � Γ1, then Aut(Γ) � Aut(Γ1)wrISym(k), where the
wreath product is defined.

Definition 2 (see [23]). Let Γ1 ∪ Γ2 denote the disjoint union
of graphs Γ1 and Γ2. .e join Γ1▽Γ2 is the graph obtained
from Γ1 ∪ Γ2 by joining every vertex of Γ1 with every vertex of
Γ2. Amulticone graph is defined to be the join of a clique and
a regular graph.

Theorem 2 (see [9]). If Γ is a distance regular graph with
diameter d and girth g satisfying one of the following
properties, then every graph cospectral with Γ is also distance
regular, with the same parameters as Γ:

(i) g≥ 2d − 1
(ii) g≥ 2d − 2 and Γ is bipartite

Proposition 1 (see [9]). For regular graphs, being DS (or not
DS) is equivalent for the adjacency matrix, the adjacency
matrix of the complement, and the Laplacian matrix.

Proposition 2 (see [9]). >e following graph and its com-
plement, which have at most four eigenvalues, are regular DS
graphs:

(i) >e disjoint union of k copies of a strongly regular DS
graph.

Theorem 3 (see [24]). Let Γ1 and Γ2 be two graphs with the
Laplacian spectrum λ1 ≥ λ2 ≥ · · · ≥ λn and μ1 ≥ μ2 ≥ · · · ≥ μm,
respectively. >en, the Laplacian spectrum of Γ1▽Γ2 is n +

m, m + λ1, m + λ2, . . . , m + λn− 1, n + μ1, n + μ2, . . . , n + μm− 1,

0.

Theorem 4 (see [1]). Let Γ be a graph on n vertices.>en, n is
a Laplacian eigenvalue of Γ if and only if Γ is the join of two
graphs.

Lemma 1 (see [1]). A connected graph Γ has exactly one
positive eigenvalue if and only if it is a complete multipartite
graph.
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3. Main Results

Theorem 5. Let Γ � Cay(Zn, S) be the Cayley graph on the
cyclic group Zn, where n � pm (p is a prime integer and
m ∈ N) and S � a ∈ Zn|(a, n) � 1􏼈 􏼉. >en,

Aut(Γ) � Sym p
m− 1

􏼐 􏼑wrISym(p), (5)

where I � 1, 2, . . . , p􏼈 􏼉.

Proof. Let V(Γ) � 1, . . . , n{ } be the vertex set of Γ. Note that
if m � 1, then the result immediately follows. Because, in this
case, Γ � Kp, where Kp is the complete graph on p vertices,
in the sequel, we assume that m≥ 2. Let
T � 〈p〉 � kp | 0≤ k≤pm− 1 − 1􏼈 􏼉 be the subgroup of the
groupZn of order pm− 1. It is clear that T and every coset of T

represent an independent set in the graph Γ. In fact, if T + a

is a coset of T in the group Zn such that T∩T + a � ∅, then
a and p are coprime and hence we have a ∈ S. It follows that
every coset of T is a clique of order pm− 1 in the complement
of the graph Γ. .us, Γ contains p disjoint components
Γ1, Γ2, . . . , Γp such that Γi � Kpm− 1 (1≤ i≤p), where Kpm− 1 is
the complete graph on pm− 1 vertices. It follows that
Γ � pKpm− 1 . Hence, by .eorem 1,
Aut(Γ) � Aut(Kpm− 1)wrISym(p) � Sym(pm− 1)wrISym(p).
On the other hand, it is well known that, for any graph Γ,
Aut(Γ) � Aut(Γ); see [1]. □

Proposition 3. Let Γ � Cay(Zn, S) be the Cayley graph on
the cyclic group Zn, where n � pm (p is a prime integer and
m ∈ N) and S � a ∈ Zn|(a, n) � 1􏼈 􏼉. >en Γ is a distance
transitive graph.

Proof. Suppose that u, v, x, y are vertices of Γ such that
d(u, v) � d(x, y) � r, where r is a nonnegative integer not
exceeding d, the diameter of Γ. So d(u, v) � d(x, y) � 1 or 2,
since we now have the diameter of Γ as d � 2. In the fol-
lowing cases, we show that Γ is a distance transitive graph.

Case 1. If d(u, v) � d(x, y) � 2, then u− 1v ∉ S and
x− 1y ∉ S. .erefore, two vertices u and v are adjacent
in the complement Γ of Γ; also two vertices x and y are
adjacent in the complement Γ of Γ. By .eorem 5, we
know that Γ contains p components Γ1, Γ2, . . . , Γp such
that, for any i ∈ 1, 2, . . . , p􏼈 􏼉, Γi � Kpm− 1 . .erefore,
Γ � pKpm− 1 . If u � x, then u, v, y lie in a clique of graph
Γ, and hence we may assume that
θ � (vy) ∈ Aut(Γ) � Aut(Γ), so θ(u) � x and
θ(v) � y. If u≠x and v≠y, then u, v lie in a clique of
graph Γ, say Γi; also x, y lie in a clique of graph Γ, say Γj,
where Γi ≠ Γj or Γi � Γj. Hence, we may assume that
θ � (ux)(vy) ∈ Aut(Γ) � Aut(Γ). .us, θ(u) � x and
θ(v) � y.
Case 2. If d(u, v) � d(x, y) � 1, then we can show that
there is an automorphism θ in Aut(Γ) such that θ(u) �

x and θ(v) � y. □

Proposition 4. Let Γ � Cay(Zn, S) be the Cayley graph on
the cyclic group Zn, where n � pm (p is a prime integer and

m ∈ N) and S � a ∈ Zn|(a, n) � 1􏼈 􏼉. >en Γ is an integral
graph.

Proof. It is well known that if Γ is a distance transitive graph,
then Γ is also distance regular; see [21]. Now, let V(Γ) �

1, 2, . . . , n{ } be the vertex set of Γ. Consider the vertex v � n

in V(Γ); then Γ0(v) � n{ }, Γ1(v) � a ∈ V(Γ)|(a, n) � 1{ },
and Γ2(v) � a ∈ V(Γ)| (a, n)≠ 1{ }. Let u be the vertex in
V(Γ) such that d(u, v) � 0; then u � v � n and
|Γ1(v)∩ Γ1(u)| � n − pm− 1. Hence, b0 � n − pm− 1, and, by
definition of distance regularity of graph, we have
a0 � (n − pm− 1) − b0 � 0. Also, if u in V(Γ) and d(u, v) � 1,
then two vertices u, v are adjacent in Γ, so
|Γ0(v)∩ Γ1(u)| � 1, and |Γ2(v)∩ Γ1(u)| � pm− 1 − 1. Hence,
c1 � 1, b1 � pm− 1 − 1, and a1 � (n − pm− 1) − b1 − c1
� n − 2pm− 1. Finally, if u in V(Γ) and d(u, v) � 2, then two
vertices u, v are not adjacent in Γ, so
|Γ1(v)∩ Γ1(u)| � n − pm− 1; hence, c2 � n − pm− 1 and
a2 � (n − pm− 1) − (n − pm− 1) � 0. .us, the intersection
array of Γ is n − pm− 1, pm− 1 − 1; 1, n − pm− 1􏼈 􏼉. .erefore, the
tridiagonal (3) × (3) matrix,

a0 b0 0

c1 a1 b1

0 c2 a2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

0 n − p
m− 1 0

1 n − 2p
m− 1

p
m− 1

− 1

0 n − p
m− 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

determines all the eigenvalues of Γ. It is clear that all the
eigenvalues of Γ are n − pm− 1, 0, − pm− 1, and their multi-
plicities are 1, n − p, p − 1, respectively. .us, Γ is an integral
graph. □

Corollary 1. Let Γ � Cay(Zn, S) be the Cayley graph on the
cyclic group Zn, where n � pm (p is a prime integer and
m ∈ N) and S � a ∈ Zn|(a, n) � 1􏼈 􏼉. >en the adjacency
spectrum of Γ is n − pm− 1, 0(n− p), (− pm− 1)(p− 1)

􏽮 􏽯.

Theorem 6. Let Γ � Cay(Zn, S) be the Cayley graph on the
cyclic group Zn, where n � pm (p is a prime integer and
m ∈ N) and S � a ∈ Zn|(a, n) � 1􏼈 􏼉. >en Γ is a DS graph
with respect to its adjacency spectrum.

Proof. We know that if p is even prime integer, then Γ is
isomorphic to the bipartite graph Kpm− 1 ,pm− 1 , and hence the
result immediately follows.

Now, let p be an odd prime integer; then, Γ is not bi-
partite graph. In particular, g≥ 2 d − 1, because the diameter
of Γ is 2 and the girth of Γ is 3. Hence, by .eorem 2, every
graph cospectral with Γ is also distance regular, with the
same parameters as Γ. Because by Proposition 3 we know
that Γ is a distance regular graph, Γ is a DS graph with respect
to its adjacency spectra. Because, by Proposition 2, Γ con-
tains disjoint union of p copies of the strongly regular DS
graph Kpm− 1 in addition to the graph Γ and its complement,
which have at most four eigenvalues. □

Proposition 5. Let Π be a graph cospectral with the mul-
ticone graph Kv▽Γ with respect to its adjacency matrix
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spectrum, where Γ � Cay(Zn, S), which is defined as before.
>en Π is a bidegreed graph. Also,

Spec(Π) � 0(n− p)
, − p

m− 1
􏼐 􏼑

(p− 1)
, − 1(v− 1)

,
M +

��������
M

2
+ 4N

􏽰

2
⎛⎝ ⎞⎠,

M −
��������
M

2
+ 4N

􏽰

2
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭, (7)

where M � v − 1 + pm − pm− 1 and N � pm + pm− 1v − pm− 1.

Proof. We can deduce the following from .eorem 2.1.8 in
[25] and .eorem 2.1 in [26]. □

Theorem 7. Consider the multicone graph Kv▽Γ, where
Γ � Cay(Zn, S), which is defined as before. >en Kv▽Γ is DS
with respect to its adjacency matrix spectrum.

Proof. In the following, we proceed by induction on the
number of vertices in Kv. Let Kv have one vertex and letΠ be
a graph cospectral with the multicone graph K1▽Γ with
respect to its adjacency matrix spectrum. By Proposition 5, it
is easy to see that Π has one vertex of degree pm, say j.
Hence, if Spec(Π − j) � Spec(Γ), then Π − j � Γ. Because,
by.eorem 6, we know that Γ is DS graph with respect to its
adjacency matrix spectrum, Π � K1▽Γ. We assume in-
ductively that this claim holds for Kv; that is, ifΠ1 is a graph
cospectral with the multicone graph Kv▽Γwith respect to its
adjacency matrix spectrum, then Π1 � Kv▽Γ. We show that
the claim is true for Kv+1; that is, if Π is a graph cospectral
with the multicone graph Kv+1▽Γ with respect to its adja-
cency matrix spectrum, then Π � Kv+1▽Γ. It is obvious that
Π has one vertex and pm + v edges more than Π1. On the
other hand, by Proposition 5, we know thatΠ1 has v vertices
of degree pm + v − 1 and pm vertices of degree
pm − pm− 1 + v, and alsoΠ has v + 1 vertices of degree pm + v

and pm vertices of degree pm − pm− 1 + v + 1. So, we must
have Π � K1▽Π1. Now, by assuming induction, we con-
clude that Π � Kv+1▽Γ and complete the proof. □

Theorem 8. Consider the complement Kv▽Γ of multicone
graph Kv▽Γ with respect to its adjacency spectrum, where
Γ � Cay(Zn, S), which is defined as before. >en, Kv▽Γ is a
DS graph.

Proof. By .eorem 5, we know that Γ contains p compo-
nents Γ1, Γ2, . . . , Γp such that Γi � Kpm− 1 (1≤ i≤p). So
Γ � pKpm− 1 . In addition, the adjacency matrix spectrum of Γ
is

p
m− 1

− 1􏼐 􏼑
(p)

, − 1 pm − p( )􏼚 􏼛. (8)

Also, the adjacency matrix spectrum of Kv is 0(v)􏼈 􏼉..us,
the adjacency matrix spectrum of Γ ∪Kv is

p
m− 1

− 1􏼐 􏼑
(p)

, − 1 pm − p( ), 0(v)
􏼚 􏼛. (9)

On the other hand, it is not hard to see that
Γ ∪Kv � Kv▽Γ. Let Π be a graph cospectral with the
complementKv▽Γ of multicone graphKv▽Γwith respect to
its adjacency spectrum; then,

Spec(Π) � Spec Kv▽Γ( 􏼁 � p
m− 1

− 1􏼐 􏼑
(p)

, − 1 pm− p( ), 0(v)
􏼚 􏼛.

(10)
It is easy to prove that Π cannot be regular, since reg-

ularity of a graph can be determined by its spectrum. Also,
we show that Π is disconnected graph. Suppose to the
contrary that Π is connected; hence, by Lemma 1, Π is
complete multipartite graph, contradicting the adjacency
spectrum ofΠ. .us,Π is disconnected graph..erefore, we
conclude that Kv▽Γ is DS with respect to its adjacency
spectrum. □

Proposition 6. Consider the multicone graph Kv▽Γ, where
Γ � Cay(Zn, S), which is defined as before. >en Kv▽Γ is DS
with respect to its Laplacian spectrum.

Proof. By .eorem 3, the Laplacian matrix spectrum of
Kv▽Γ is

(n + v)
(p+v− 1)

, n + v − p
m− 1

􏼐 􏼑
(n− p)

, 0􏼚 􏼛. (11)

We proceed by induction on the number of vertices in
Kv. If v � 1, there is nothing to prove. We assume induc-
tively that this claim holds for Kv; that is, if
Spec(L(Π1)) � Spec(L(Kv▽Γ)), then Π1 � Kv▽Γ, where
Π1 is a graph cospectral with the multicone graph Kv▽Γ
with respect to its Laplacian spectrum. We show that the
claim is true for Kv+1; that is, if

Spec(L(Π)) � Spec L Kv+1▽Γ( 􏼁( 􏼁

� (n + v + 1)
(p+v)

, n + v + 1 − p
m− 1

􏼐 􏼑
(n− p)

, 0􏼚 􏼛,

(12)

then Π � Kv+1▽Γ, where Π is a graph cospectral with the
multicone graph Kv+1▽Γ with respect to its Laplacian
spectrum. By .eorem 4, we know that Π1 and Π are join of
two graphs, because n + v and n + v + 1 are eigenvalues ofΠ1
and Π, respectively. In addition, Π has one vertex of degree
n + v more than Π1, say j; hence,
Spec(L(Π − j)) � Spec(L(Kv▽Γ)), and, by assuming in-
duction, Π − j � Kv▽Γ. .us, it can be concluded that
Π � Kv+1▽Γ. □
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4. Conclusion

In this paper, we computed the adjacency spectrum of a class
of integral graphs, denoted by Γ � Cay(Zn, S), where n � pm

(p is a prime integer and m ∈ N) and
S � a ∈ Zn|(a, n) � 1􏼈 􏼉. Indeed, by using the theory of
distance regular graphs, it is shown that the adjacency
spectrum of Γ is n − pm− 1, 0(n− p), (− pm− 1)(p− 1)

􏽮 􏽯, where the
superscripts give the multiplicities of eigenvalues with
multiplicity greater than one. Moreover, it is shown that the
Cayley graph Γ and Kv▽Γ are determined by their spectrum.
Note that this class of graphs is a special subclass of integral
circulants, and hence clearly not only is this class of graphs
mathematically applicable, but also it is used in the design of
engineering networks.
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Subdivision schemes play a vital role in curve modeling. /e curves produced by the class of (2n + 2)-point ternary scheme
(Deslauriers and Dubuc (1989)) interpolate the given data while the curves produced by a class of (2n + 2)-point ternary B-spline
schemes approximate the given data. In this research, we merge these two classes to introduce a consolidated and unified class of
combined subdivision schemes with two shape control parameters in order to grow versatility for overseeing valuable necessities.
However, the proposed class of subdivision schemes gives optimal smoothness in the final shapes, yet we can increase its
smoothness by using a proposed general formula in form of its Laurent polynomial. /e theoretical analysis of the class of
subdivision schemes is done by using various mathematical tools and using their coding in the Maple environment. /e graphical
analysis of the class of schemes is done in the Maple environment by writing the codes based on the recursive mathematical
expressions of the class of subdivision schemes.

1. Introduction

Nowadays, subdivision schemes have got great importance
in the field of geometric modeling. It is an innovation which
creates smooth shapes. /is technique produces a sequence
of refined polygons which converge to a limiting shape. New
points are added at each refinement level in order to get a
smooth final shape./e number of points which are inserted
at each refinement level is known as the arity of the curve
subdivision scheme. Binary schemes insert two new points at
each refinement level between every old consecutive pair of
points of the previous refinement level [1]. Similarly, ternary
subdivision schemes insert three new points at each re-
finement level between every old consecutive pair of points
of the previous refinement level. Hence, ternary schemes
smooth the given sketch in fewer subdivision steps as
compared to the binary subdivision schemes. If we move the
single point of the control polygon, then the shape of the
curve changes over the specific region. /is region is known
as the support of the scheme. Subdivision schemes give us

local control on the shapes. Schemes with small support give
better local control on shapes as compared to the schemes
with large support size. Ternary schemes give us small
support as compared to the binary subdivision scheme and
hence give better local control on the shapes. Because of
these two main characteristics of ternary schemes, we
consider them superior to the binary subdivision schemes.

Subdivision schemes can also produce the shapes which
pass through the initial data. /ese types of subdivision
schemes are known as interpolatory subdivision schemes.
/ese schemes have been introduced by [2–6]. /e other
types of subdivision schemes produce shapes which do not
pass through the initial data. /is type of subdivision
schemes is known as approximating subdivision schemes
and was introduced by [7–10]. /e analysis of both types of
schemes is done by [11, 12]. In [13–16], the subdivision
schemes are introduced with parameters which can produce
both the interpolatory and approximating shapes. /e
combined behaviour of these combined subdivision schemes
got more attention in curve modeling.
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In this paper, we present a class of ternary combined
schemes which is obtained from the well-known classes of
interpolatory and approximating subdivision schemes. We
unify interpolatory and approximating classes of subdivision
schemes into a single class of combined schemes by applying
certain mathematical operations on their refinement rules.
Consequently, we get a class of (2n + 2)-point ternary
combined subdivision schemes. Two shape parameters are
also inserted in the refinement rules to control the ap-
pearance of the limiting shapes. A sketch of our construction
procedure is shown in Figure 1.

/e remaining layout of the paper is as follows: in
Section 2, basic definitions, notations, and established
tools are introduced. In Section 3, we construct a para-
metric class of (2n + 2)-point ternary relaxed subdivision
schemes. /is class depends on two parameters. In Section
4, we discuss several features of this class. In Section 5, we
present the geometrical influence of the schemes on the
shapes. /e conclusion of this research is presented in
Section 6.

2. Preliminaries

In this section, we review some fundamental definitions and
known realities about subdivision schemes, which structure
the basis of the remainder of this paper. If qk � qk

i􏼈 􏼉i∈Z and
qk+1 � qk+1

i􏼈 􏼉i∈Z are two polygons at kth and (k + 1) the level,
then the ternary subdivision scheme (SS)a which produces
qk+1 from qk is defined as

(SS)aq
k

􏼐 􏼑
i
� q

k+1
i � 􏽘

j∈Z
ai− 3jq

k
j , i ∈ Z, (1)

where the set a � ai: i ∈ Z􏼈 􏼉 of coefficients is called the mask
of the subdivision scheme.

For the ternary subdivision scheme (SS)a, a point at
(k + 1)-th level is calculated by

(SS)aq
k

􏼐 􏼑3i+l
� q

k+1
3i+l � 􏽘

c∈Z
a3c+lq

k
i− c, i ∈ Z, 0≤ l≤ 2.

(2)

A necessary condition of the subdivision scheme for
uniform convergence is that

􏽘
j∈Z

a3j � 􏽘
j∈Z

a3j+1 � 􏽘
j∈Z

a3j+2 � 1.
(3)

In order to analyze the characteristics of the subdivision
scheme, the z-transform of the mask is

a(z) � 􏽘
i∈Z

aiz
i
, z ∈ C\ 0{ }, (4)

which is also known as the Laurent polynomial of the
scheme.

Definition 1. A subdivision scheme is uniformly convergent
if, for any initial data q0 � q0i : i ∈ Z􏼈 􏼉, there exists a con-
tinuous function f, such that for any closed interval I ⊂ R
that satisfies

lim
k⟶∞

sup
j∈3kI

f
j

3k
􏼠 􏼡 − q

k
j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0, (5)

where f � S∞q0.

Definition 2. If we rewrite the Laurent polynomial of (SS)a

as a(z) � (1 + z + z2/3)kδ(z), where δ(z) has no factor of
the form (1 + z + z2) and m0, . . . , ml are nonzero coeffi-
cients of δ(z). Let F0, F1, . . . , Fl be l × l matrices with the
elements given by (FZ)i,j � mℓ+i− 3j+Z, where Z � 0, 1, . . . , l

while i, j � 1, . . . , l. Hölders regularity/continuity is defined
as r � k − logn(μ), whereas the parameter μ is known as a
joint spectral radius of F0, F1, . . . , Fl. It is bounded below by
spectral radii and from above by the norm of matrices
F0, F1, . . . , Fl. If lower and upper bounds coincide, an ex-
plicit formula for the joint spectral radius is obtained:

max ρ F0( 􏼁, ρ F1( 􏼁, . . . , ρ Fl( 􏼁􏼁,􏼁􏼈 􏼉

≤ μ≤max F0
����

����∞, F1
����

����∞, . . . , Fl

����
����∞􏽮 􏽯.

(6)

Theorem 1 (see [17]). If Sa is the subdivision scheme with
Laurent polynomial a(z), then Sa is said to be Cj-continuous
if the subdivision scheme (1/3)Sn is contractive. �at is,

1
3
Sn􏼒 􏼓

L
��������

��������∞
�

1
3L

max 􏽘
j∈Z

a
[n,L]

i+3L
j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
; i � 0, 1, 2, . . . , 3L

− 1
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
< 1,

(7)

where

a
[n,L]

� 􏽙
L

j�1
a z

3j− 1
􏼒 􏼓,

a
(n)

(z) �
3z

2

1 + z + z
2􏼠 􏼡a

(n− 1)
(z).

(8)

3. Formulation of the Class of
Combined Schemes

Here, we construct and unify the generalized form of the
refinement rules of the class of interpolating and approxi-
mating schemes. /e construction of the class of combined
subdivision schemes is based on two classes of subdivision
schemes. One of which is the class of (2n + 2)-point ternary
interpolatory subdivision schemes (CETISS), which is
constructed by the Lagrange interpolating polynomial, and
the other one is the class of (2n + 2)-point relaxed ternary
approximating subdivision schemes (CETASS), which is
constructed by the B-spline basis function. We merge these
classes of schemes in a specific manner such that we get a
single class of (2n + 2)-point combined schemes from them.

3.1. Mathematical Representation of the Construction
Procedure. In this subsection, we present the stepwise
procedure to construct the class of combined ternary
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subdivision schemes. /e construction procedure of the
class of combined subdivision schemes is given below.

Step 1. We define the generalized form of the refinement
rules of the CETISS; that is, if we have a shape which is

obtained by joining the 2D points qk
i,2n+2: i ∈ Z, then, to

refine this shape by CETISS, we use the following refinement
rules:

L
k+1
3i,2n+2 � q

k
i,2n+2,

L
k+1
3i+1,2n+2 �

1
33n+1 􏽘

n+1

j�− n

(− 1)
j
(n − j + 2)

(1 − 3j)

3n + 2

n

⎛⎜⎜⎝ ⎞⎟⎟⎠
2n + 2

n + j

⎛⎜⎜⎝ ⎞⎟⎟⎠q
k
i+j,2n+2,

L
k+2
3i+2,2n+2 �

1
33n+1 􏽘

n+1

j�− n− 1

(− 1)
j+1

(n + j + 1)

(3j − 2)

3n + 2

n

⎛⎜⎜⎝ ⎞⎟⎟⎠
2n + 2

n + j + 1

⎛⎜⎜⎝ ⎞⎟⎟⎠q
k
i+j,2n+2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

and, hence, we get a refined shape by joining the 2D refined

points Lk+1
i,2n+2: i ∈ Z, where n

r
􏼠 􏼡 � (n!/r!(n − r)!).

Step 2. By Pitolli [18], ternary B-spline schemes of degree-M
can be written as

B
k+1
δ,M �

1
3M

􏽘

δ

η�⌊(δ+1/2)⌋

M + 1

η
⎛⎝ ⎞⎠

η

δ − η
⎛⎝ ⎞⎠, 0≤ δ ≤ 2(M + 1).

(10)

By using (10), we can generalize the refinement rules of
the CETASS; that is, if we have a shape which is obtained by
joining the 2D points qk

i,2n+2: i ∈ Z, then to refine this shape
by CETASS, we use the following refinement rules:

S
k+1
3i,2n+2 �

1
33m+1 􏽘

2m

η�0
􏽘

3η+2

c�⌊(3η+3/2)⌋

3m + 2

c

⎛⎜⎜⎝ ⎞⎟⎟⎠
c

3η + 2 − c

⎛⎜⎜⎝ ⎞⎟⎟⎠q
k
i+η− m,2n+2,

S
k+1
3i+1,2n+2 �

1
33m+1 􏽘

2m+1

η�0
􏽘

3η+2

c�⌊(3η+2/2)⌋

3m + 2

c

⎛⎜⎜⎝ ⎞⎟⎟⎠
c

3η + 1 − c

⎛⎜⎜⎝ ⎞⎟⎟⎠q
k
i+η− m,2n+2,

S
k+1
3i+2,2n+2 �

1
33m+1 􏽘

2m+1

η�0
􏽘

3η+2

c�⌊(3η+1/2)⌋

3m + 2

c

⎛⎜⎜⎝ ⎞⎟⎟⎠
c

3η − c

⎛⎜⎜⎝ ⎞⎟⎟⎠q
k
i+η− m,2n+2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Interpolatory
subdivision scheme

Approximating
subdivision scheme

Displacement vectors Shape parameters

New combined
subdivision scheme

Figure 1: Flowchart for the construction of combined subdivision schemes.
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and thus we get a refined shape by joining the 2D refined
points Sk+1

i,2n+2: i ∈ Z.

Step 3. Now we calculate the displacement vectors from the
refined points of CETISS, that is, Lk+1

3i+α,2n+2: α � 0, 1, 2 to the
refined points of CETASS, that is, Sk+1

3i+α,2n+2: α � 0, 1, 2. We
denote these displacement vectors by Δk+1

3i+α,2n+2 where
α � 0, 1, 2, respectively. Hence the displacement vectors are

Δk+1
3i+α,2n+2 � L

k+1
3i+α,2n+2 − S

k+1
3i+α,2n+2, (12)

where α � 0, 1, 2.

Step 4. Now we find the new refinement point qk+1
3i+α,2n+2: α �

0, 1, 2 by using the displacement vectors Δk+1
3i+α,2n+2: α � 0, 1, 2

and the refined points Lk+1
3i+α,2n+2: α � 0, 1, 2, respectively. We

control the position of the refinement points qk+1
3i+α,2n+2: α �

0, 1, 2 by controlling the direction and size of these dis-
placement vectors. /e shape parameters μ and ] control the
direction and size of the displacements vectors. /e pro-
posed refined points are given below:

q
k+1
3i,2n+2 � L

k+1
3i,2n+2 − (μ + ])Δk+1

3i,2n+2,

q
k+1
3i+1,2n+2 � L

k+1
3i+1,2n+2 − μΔk+1

3i+1,2n+2 − ]Δk+1
3i+2,2n+2,

q
k+1
3i+2,2n+2 � L

k+1
3i+2,2n+2 − ]Δk+1

3i+1,2n+2 − μΔk+1
3i+2,2n+2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)

Step 5. Hence we get the refinement rules qk+1
3i+α,2n+2: α �

0, 1, 2 by using (9), (12), and (13). /at is,

q
k+1
3i,2n+2 � (1 − μ − ])q

k
i,2n+2 +(μ + ]) ×

1
33m+1 􏽘

2m

η�0
􏽘

3η+2

c�⌊(3η+3/2)⌋

3m + 2

c

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

c

3η + 2 − c

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦q

k
i+η− m,2n+2,

q
k+1
3i+1,2n+2 �

1
33n+1 􏽘

n+1

j�− n

(− 1)
j
(n − j + 2)

(1 − 3j)

3n + 2

n

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2n + 2

n + j

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠q

k
i+j,2n+2

− μ
1

33n+1 􏽘

n+1

j�− n

(− 1)
j
(n − j + 2)

(1 − 3j)

3n + 2

n

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2n + 2

n + j

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠q

k
i+j,2n+2 −

1
33m+1 􏽘

2m+1

η�0
􏽘

3η+2

c�⌊(3η+2/2)⌋

3m + 2

c

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

c

3η + 1 − c

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠q

k
i+η− m,2n+2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− ]
1

33n+1 􏽘

n+1

j�− n− 1

(− 1)
j+1

(n + j + 1)

(3j − 2)

3n + 2

n

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2n + 2

n + j + 1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠q

k
i+j,2n+2 −

1
33m+1 􏽘

2m+1

η�0
􏽘

3η+2

c�⌊(3η+1/2)⌋

3m + 2

c

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

c

3η − c

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠q

k
i+η− m,2n+2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

q
k+1
3i+2,2n+2 �

1
33n+1 􏽘

n+1

j�− n− 1

(− 1)
j+1

(n + j + 1)

(3j − 2)

3n + 2

n

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2n + 2

n + j + 1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠q

k
i+j,2n+2

− ]
1

33n+1 􏽘

n+1

j�− n

(− 1)
j
(n − j + 2)

(1 − 3j)

3n + 2

n

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2n + 2

n + j

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠q

k
i+j,2n+2 −

1
33m+1 􏽘

2m+1

η�0
􏽘

3η+2

c�⌊(3η+2/2)⌋

3m + 2

c

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

c

3η + 1 − c

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠q

k
i+η− m,2n+2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− μ
1

33n+1 􏽘

n+1

j�− n− 1

(− 1)
j+1

(n + j + 1)

(3j − 2)

3n + 2

n

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2n + 2

n + j + 1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠q

k
i+j,2n+2 −

1
33m+1 􏽘

2m+1

η�0
􏽘

3η+2

c�⌊(3η+1/2)⌋

3m + 2

c

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

c

3η − c

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠q

k
i+η− m,2n+2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where ⌊·⌋ denotes the floor function. In this article, we
denote the class of combined subdivision schemes (14) by
(CSS)a2n+2

.

3.2. �e Graphical Clarification of the Parameters and the
Refinement Rules. In this subsection, we graphically explain
the construction of the class of subdivision schemes. For this,
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we restrict the value of n to be 1. Let
qk

i+α,4 � qk
i+α: α � − 1, 0, 1, 2 be the control points of the

polygon qkqk; then, for n � 1, the class of subdivision
schemes (9) gives the following 4-point ternary interpolatory
subdivision scheme:

L
k+1
3i � L

k+1
3i,4 � q

k
i ,

L
k+1
3i+1 � L

k+1
3i+1,4 �

− 5
81

q
k
i− 1 +

60
81

q
k
i +

30
81

q
k
i+1 −

4
81

q
k
i+2,

L
k+1
3i+2 � L

k+1
3i+2,4 �

− 4
81

q
k
i− 1 +

30
81

q
k
i +

60
81

q
k
i+1 −

5
81

q
k
i+2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Similarly, for n � 1, the class of scheme (11) gives the
following 4-point relaxed approximating subdivision
scheme:

S
k+1
3i � S

k+1
3i,4 �

5
27

q
k
i− 1 +

17
27

q
k
i +

5
27

q
k
i+1,

S
k+1
3i+1 � S

k+1
3i+1,4 �

5
81

q
k
i− 1 +

5
9
q

k
i +

10
27

q
k
i+1 +

1
81

q
k
i+2,

S
k+1
3i+2 � S

k+1
3i+2,4 �

1
81

q
k
i− 1 +

10
27

q
k
i +

5
9
q

k
i+1 +

5
81

q
k
i+2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Now, we find the displacement vectors from the refined
points defined in (15) to the refined points defined in (16);
thus, we have

Δk+1
3i � Δk+1

3i,4 � L
k+1
3i − S

k+1
3i �

10
27

q
k
i −

5
27

q
k
i− 1 −

5
27

q
k
i+1,

Δk+1
3i+1 � Δk+1

3i+1,4 � L
k+1
3i+1 − S

k+1
3i+1 � −

10
81

q
k
i− 1 +

5
27

q
k
i −

5
81

q
k
i+2,

Δk+1
3i+2 � Δk+1

3i+2,4 � L
k+1
3i+2 − S

k+1
3i+2 � −

5
81

q
k
i− 1 +

5
27

q
k
i+1 −

10
81

q
k
i+2.

(17)

Now, we find the refined points by applying operations
on vectors − (μ + ])Δk+1

3i , − μΔk+1
3i+1, − ]Δk+1

3i+2 and refined points
Lk+1
3i+α: α � 0, 1, 2, where μ and ] are real numbers. Hence, we

get

q
k+1
3i � q

k+1
3i,4 � L

k+1
3i − (μ + ])Δk+1

3i ,

q
k+1
3i+1 � q

k+1
3i+1,4 � L

k+1
3i+1 − μΔk+1

3i+1 − ]Δk+1
3i+2,

q
k+1
3i+2 � q

k+1
3i+2,4 � L

k+1
3i+2 − ]Δk+1

3i+1 − μΔk+1
3i+2.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(18)

By simplifying (18), we get

q
k+1
3i �

5μ
27

+
5]
27

􏼒 􏼓q
k
i− 1 + 1 −

10μ
27

−
10]
27

􏼒 􏼓q
k
i +

5μ
27

+
5]
27

􏼒 􏼓q
k
i+1,

q
k+1
3i+1 �

− 5
81

+
5]
81

+
10μ
81

􏼒 􏼓q
k
i− 1 +

20
27

−
5μ
27

􏼒 􏼓q
k
i +

10
27

−
5]
27

􏼒 􏼓q
k
i+1 +

− 4
81

+
5μ
81

+
10]
81

􏼒 􏼓q
k
i+2,

q
k+1
3i+2 �

− 4
81

+
5μ
81

+
10]
81

􏼒 􏼓q
k
i− 1 +

10
27

−
5]
27

􏼒 􏼓q
k
i +

20
27

−
5μ
27

􏼒 􏼓q
k
i+1 +

− 5
81

+
5]
81

+
10μ
81

􏼒 􏼓q
k
i+2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Scheme (19) is the first member of the class of com-
bined subdivision schemes, that is, 4-point combined
subdivision scheme. /e graphical sketch of the refined
points of (19) is shown in Figure 2. In this figure, green
bullets show the points qk

i : i ∈ Z, green lines show the
polygon qk, red squares show the refined points
Lk+1
3i+α: α ∈ R, red lines show the refined polygon Lk+1, blue

squares show the refined points Sk+1
3i+α: α ∈ R, blue lines

show the refined polygon Sk+1, black arrows show the
displacement vectors, and black solid circles show the
refined points qk+1

i,2n+2 � qk+1
i : i ∈ Z.

Remark 1. When μ � ] � 0, the first member of the class
of combined subdivision schemes which is defined in (19)
reduces to the first member of the CETISS. And when
μ � 1 and ] � 0, the first member of the class of combined
subdivision schemes which is defined in (19) reduces to
the first member of the CETASS.

4. Analysisof theClassofCombinedSubdivision
Schemes by Using Mathematical Tools

In this section, we present the characteristics of the class of
combined subdivision schemes. We use the mathematical
tools to analyze the class of schemes.

4.1. Affine Combination of Control Points. A linear combi-
nation in which the sum of coefficients is equal to one is
called the affine combination. /e necessary condition for
the convergence of a subdivision scheme is that each re-
finement rule of it must be the affine combination of the
control points in the previous subdivision step. To check this
property for (CSS)a2n+2

, we prove the following theorem.

Theorem 2. Each refined point of the (CSS)a2n+2
at (k + 1)-th

subdivision step which is defined in (14) is the affine com-
bination of control points of k-th subdivision step.
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Proof. To prove this theorem, we have to prove that the
mask ai,2n+2: i ∈ Z􏽮 􏽯 of (CSS)a2n+2

satisfies the relation
􏽐i∈Za3i+α,2n+2 � 1, where α � 0, 1, 2.

Let us simplify the expressions:

􏽘

2m

η�0
􏽘

3η+2

c�⌊(3η+3/2)⌋

3m + 2

c
􏼠 􏼡

c

3η + 2 − c
􏼠 􏼡 � 33m+1

,

􏽘

2m+1

η�0
􏽘

3η+2

c�⌊(3η+2/2)⌋

3m + 2

c
􏼠 􏼡

c

3η + 1 − c
􏼠 􏼡 � 33m+1

,

􏽘

2m+1

η�0
􏽘

3η+2

c�⌊(3η+1/2)⌋

3m + 2

c
􏼠 􏼡

c

3η − c
􏼠 􏼡 � 33m+1

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

We also calculate

􏽘
n+1

j�− n

(− 1)
j
(n − j + 2)

(1 − 3j)

3n + 2

n

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2n + 2

n + j

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ � 33n+1

,

􏽘

n+1

j�− n− 1

(− 1)
j+1

(n + j + 1)

(3j − 2)

3n + 2

n

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2n + 2

n + j + 1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ � 33n+1

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Hence, to prove that each of the refined points qk+1
3i,2n+2,

qk+1
3i+1,2n+2, and qk+1

3i+2,2n+2 is the affine combinations of
qk

i : i ∈ Z􏼈 􏼉, we use (20) and (21). /us,

􏽘
i∈Z

a3i,2n+2 � (1 − μ − ]) +(μ + ])
1

33m+13
3m+1

􏼢 􏼣 � 1,

􏽘
i∈Z

a3i+1,2n+2 �
1

33n+13
3n+1

− μ
1

33n+13
3n+1

−
1

33m+13
3m+1

􏼢 􏼣 − ]
1

33n+13
3n+1

−
1

33m+13
3m+1

􏼢 􏼣 � 1,

􏽘
i∈Z

a3i+2,2n+2 �
1

33n+13
3n+1

− ]
1

33n+13
3n+1

−
1

33m+13
3m+1

􏼢 􏼣 − μ
1

33n+13
3n+1

−
1

33m+13
3m+1

􏼢 􏼣 � 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

which completes the proof. □

4.2. Support of the Class of Combined Schemes. In this sub-
section, we present the support size of the class of combined
schemes. /e support of a subdivision scheme represents
how far one vertex is affected by its neighboring points. Its
size represents the local support property of the subdivision
curve.

Theorem 3. �e support of the class of subdivision schemes
(CSS)a2n+2

is [− ((3n + 2)/2), ((3n + 2)/2)].

Proof. Let q0i,2n+2 � q0i ∈ R􏽮 􏽯
i∈Z be the initial data such that

q00 � 1 and q0α ≠ 0 for α ∈ Z\ 0{ }; that is,

q
0
α,2n+2 �

1, for α � 0,

0, otherwise.
􏼨 (23)

qki+2
qki+1

Lk3i+1
+1

Lk3i+1
+1

Δk3i+2
+1

Δk3i+1
+1

qki = Lk3i
+1

Δk3i
+1

qki–1qki+4

qki+3

Sk3i+2
+1

–v∆k3i+2
+1

–μ∆k3i+1
+1

Sk3i+1
+1

Sk3i
+1

–(μ + v)∆k3i
+1

Figure 2: Graphical sketch of the construction of the refinement points of scheme (19).
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In order to calculate the support size of (CSS)a2n+2
, we

have to calculate the distance between two corresponding
subscripts belonging to the leftmost vertex and rightmost
vertex after k-steps of subdivision.

If we operate on initial data q0i,2n+2 � q0i ∈ R􏽮 􏽯
i∈Z by

(CSS)a2n+2
one time, then we get

q
1
α,2n+2 �

≠0, for α � − 30(3n + 2), − 30(3n + 2) + 1, . . . , 30(3n + 2) − 1, 30(3n + 2),

0, otherwise.

⎧⎨

⎩ (24)

If we operate on the data q1i,2n+2 ∈ R􏽮 􏽯
i∈Z which is de-

fined in (24) by (CSS)a2n+2
one time, that is, we operate on

initial data q0i,2n+2 � q0i ∈ R􏽮 􏽯
i∈Z by (CSS)a2n+2

two times, then
we get

q
2
α,2n+2 �

≠0, for α � − 􏽘
1

j�0
3j

(3n + 2), − 􏽘
1

j�0
3j

(3n + 2) + 1, . . . , 􏽘
1

j�0
3j

(3n + 2) − 1, 􏽘
1

j�0
3j

(3n + 2),

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

Similarly, if we operate on initial data
q0i,2n+2 � q0i ∈ R􏽮 􏽯

i∈Z which is defined in (23) by
(CSS)a2n+2

k-times, then we get

q
k
α,2n+2 �

≠0, for α � − 􏽘
k− 1

j�0
3j

(3n + 2), − 􏽘
k− 1

j�0
3j

(3n + 2) + 1, . . . , 􏽘
k− 1

j�0
3j

(3n + 2) − 1, 􏽘
k− 1

j�0
3j

(3n + 2),

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

Hence, after k-steps of subdivision, the leftmost nonzero
vertex is qk

− (3n+2)􏽐
k− 1
j�03

j,2n+2
and the rightmost nonzero vertex

is qk

(3n+2)􏽐
k− 1
j�03

j,2n+2
. Since k-times, the subdivision process is

applied and, at each step, we have relabeled the subscripts of

the vertices; thus, qk
(i/3k),2n+2 � q(i/3k− 1),2n+

2k− 1 � qk− 2
(i/3k− 2),2n+2 � · · · � q1(i/3),2n+2 � q0i,2n+2. Hence, after

k-steps, the distance between leftmost and rightmost non-
zero vertices is equal to the support of (CSS)a2n+2

; that is,

support �
(3n + 2) 1 + 3 + 32 + · · · + 3k− 1

􏼐 􏼑

3k
−

− (3n + 2) 1 + 3 + 32 + · · · + 3k− 1
􏼐 􏼑

3k
⎡⎢⎣ ⎤⎥⎦

� 2(3n + 2)
1
3

+
1
32

+ · · · +
1
3k

􏼠 􏼡

� 2(3n + 2)
(1/3)

1 − (1/3)
􏼠 􏼡

� (3n + 2).

(27)

Since the class of subdivision schemes is symmetric, then
obviously the support region is
[(− (3n + 2)/2), ((3n + 2)/2)]. □

4.3. Generation Degree. One of the necessary conditions for
generating Cn- continuous limit curves is the order of
polynomial generation of the subdivision scheme. A ternary
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subdivision scheme can generate polynomials up to degree d

if and only if its Laurent polynomial can be written in the
following form:

a(z) �
1 + z + z2

3
􏼠 􏼡

d+1

φ(z), z ∈ C\ 0{ }. (28)

Here, φ(z) is the Laurent polynomial with φ(1) � 3 and it
does not have the factor (1 + z + z2).

Theorem 4. �e class of combined schemes (CSS)a2n+2
gen-

erates polynomials of degree up to 2 for all μ and ].

Proof. /e Laurent polynomial of (CSS)a2n+2
is

a2n+2(z) �
1 + z + z2

3
􏼠 􏼡

3

b2n+2(z), (29)

where b2n+2(z) is a Laurent polynomial obtained by
b2n+2(z) � (3a2n+2(z)/1 + z + z2). Hence, the degree of
polynomial generation of (CSS)a2n+2

is 2. □

4.4. Properties of the 4-Point Subdivision Scheme (19).
From/eorem 2, the subdivision scheme which is defined in
(14) and denoted by (CSS)a4

satisfies the necessary condi-
tions for convergence. Moreover, the Laurent polynomial of
(CSS)a4

is

a4(z) �
1

81z
5 1 + z + z

2
􏼐 􏼑

3
(10] − 4 + 5μ)z

4
+(− 25] + 7 − 5μ)z

3
+(30] + 3)z

2
+(− 25] + 7 − 5μ)z +(10] − 4 + 5μ)􏽨 􏽩. (30)

By using Laurent polynomial of (CSS)a4
, we prove the

following theorem.

Theorem 5. Let q0i􏼈 􏼉i∈Z be the initial data; then, the re-
finement rules defined in (19) of (CSS)a4

produce the C2-
continuous shapes if ] ∈ ((− 2/5), (1/5)) and its corresponding
μ ∈ ((1/5) − (7]/2), 2 − (7]/2)).

Proof. To prove that (CSS)a4
produces the C2-continuous

shapes, first, we have to prove that this scheme produces

C0-continuous and C1-continuous shapes in the given in-
tervals of μ and ].

/us, by using (30), we calculate

a
(1)
4 (z) �

3z
2

1 + z + z
2􏼠 􏼡a

(0)
4 (z). (31)

Hence, from the above equation, we have

a
(1)
4 (z) �

1
27z

2

(− 4 + 5μ + 10])z
5

+(− 1 + 5μ − 5])z
4
+

(10] + 5μ + 5)z
3

+(26 − 10μ − 20])z
2

+(29 + 10] − 10μ)z
1

+(26 − 10μ − 20])z
0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

� 􏽘
3

j�− 2
aj,4z

j
,

(32)

where the subdivision scheme corresponding to the Laurent
polynomial a

(1)
4 (z) is denoted by (CSS)

a
(1)
4
; then, by /e-

orem 1, we have

1
3
(CSS)

a
(1)
4

􏼒 􏼓
1��������

��������∞
�
1
3
max 􏽘

j∈Z
a

[1,1]
i+3j,4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌; i � 0, 1, 2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(33)

/is implies that

1
3
(CSS)

a
(1)

4
􏼒 􏼓

1��������

��������∞
�
1
3
max 􏽘

j∈Z
a

[1,1]
3j,4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 􏽘
j∈Z

a
[1,1]
1+3j,4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, 􏽘
j∈Z

a
[1,1]
2+3j,4

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(34)

By substituting values, we get

1
3
(CSS)

a
(1)
4

􏼒 􏼓
1��������

��������∞
� max

1
81

| − 4 + 5μ + 10]| +|26 − 10μ − 20]| +|10] + 5μ + 5|, | − 1 + 5μ − 5]| +|29 + 10] − 10μ| +| − 1 + 5μ − 5]|􏼈 􏼉.

(35)
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Hence, ‖((1/3)(CSS)
a

(1)
4

)1‖∞< 1 for
μ + 2] ∈ ((− 14/5), (53/10)) and μ − ] ∈ ((5/2), (28/5)).

/is implies that (CSS)
a

(1)
4

is contractive and the scheme
(CSS)a4

produces C0-continuous shapes.
Now, we again calculate

a
(2)
4 (z) �

3z
2

1 + z + z
2􏼠 􏼡a

(1)
4 (z), (36)

which implies

a
(1)
4 (z) �

1
9z

2

(10] − 4 + 5μ)z
5

+(3 − 15])z
4

+(6 + 15])z
3

􏽨

+(− 10μ + 17 − 20])z
2

+(6 + 15])z
1

+(3 − 15])z
0

+(10] − 4 + 5μ)z
− 1

􏽩,

(37)

where the subdivision scheme corresponding to the Laurent
polynomial a

(2)
4 (z) is denoted by (CSS)

a
(2)

4
; then, by /e-

orem 1, we have

1
3
(CSS)

a
(2)
4

􏼒 􏼓
1��������

��������∞
� max

1
27

.

| − 4 + 5μ + 10]| +|17 − 10μ − 20]|􏼈

+|10] + 5μ − 4|, |3 − 15]| +|6 + 15]|􏼉.

(38)

/us, ‖((1/3)(CSS)
a

(2)
4

)1‖∞< 1 for ] ∈ (− 1, (4/5)) and
μ ∈ ((− 1/10) − 2], − 2] + (13/5)).

/erefore, (CSS)
a

(2)
4

is contractive and hence (CSS)a4
produces C1-continuous shapes.

Now, we find the following Laurent polynomial by using
a

(3)
4 (z) � (3z2/1 + z + z2)a

(2)
4 (z). /us, we have

a
(3)
4 (z) �

1
3

(10] − 4 + 5μ)z
5

+(− 25] + 7 − 5μ)z
4

+(30] + 3)z
3

􏽨

+(− 25] + 7 − 5μ)z
2

+(10] − 4 + 5μ)z􏽩.

(39)

Let (CSS)
a

(3)
4

be the subdivision scheme corresponding
to the Laurent polynomial a

(3)
4 (z); then, by /eorem 1, we

get

1
3
(CSS)

a
(3)
4

􏼒 􏼓
1��������

��������∞
� max

1
9

| − 4 + 5μ + 10]|􏼈

+|7 − 5μ − 25]|, |3 + 30]|􏼉.

(40)

/us, ‖((1/3)(CSS)
a

(3)
4

)1‖∞< 1 for ] ∈ ((− 2/5), (1/5))

and μ ∈ ((1/5) − (7]/2), 2 − (7]/2)).
/is implies that (CSS)

a
(3)
4

is contractive and hence
(CSS)a4

is C2-continuous. /is completes the proof. □

If we put ]� 0 in the Laurent polynomial (30), then it
gives one more factor of (1 + z + z2). Hence, the following
corollary is proved.

Corollary 1. If ] � 0 and μ ∈ ((4/5), (6/5)), then (CSS)a4
produces C3-continuous shapes.

Corollary 2. �e continuity of (CSS)a4
can be increased if we

use the refinement rules corresponding to the following
Laurent polynomial which is derived from the Laurent
polynomial of (30):

α(z) �
1

3n+2 C
n
0 C

n
0(10] − 4 + 5μ)􏼈 􏼉 + C

n
0 C

n
0(− 15] + 3) + C

n
1(10] − 4 + 5μ)􏼈 􏼉z􏼂

+ C
n
0 C

n
0(15] + 6) + C

n
1(− 15] + 3) + C

n
2(10] − 4 + 5μ)􏼈 􏼉 + C

n
1 C

n− 1
0 (10] − 4 + 5μ)􏽮 􏽯􏼐 􏼑z

2

+ C
n
0 C

n
0(− 20] − 10μ + 17) + C

n
1(15] + 6) + C

n
2(− 15] + 3) + C

n
3(10] − 4 + 5μ)􏼈 􏼉(

+ C
n
1 C

n− 1
0 (− 15] + 3) + C

n− 1
1 (10] − 4 + 5μ)􏽮 􏽯􏼑z

3

+ C
n
0 C

n
0(15] + 6) + C

n
1(− 20] − 10μ + 17) + C

n
2(15] + 6) + C

n
3(− 15] + 3)􏼈 􏼉(

+ C
n
1 C

n− 1
0 (15] + 6) + C

n− 1
1 (− 15] + 3) + C

n− 1
2 (10] − 4 + 5μ)􏽮 􏽯 + C

n
2 C

n− 2
0 (10] − 4 + 5μ)􏽮 􏽯􏼑z

4

+ · · · + + C
n− 2
n C

2
2(10] − 4 + 5μ)􏽮 􏽯􏼐 􏼑z

2n+4

+ C
n
n− 1 (10] − 4 + 5μ) +(− 15] + 3)􏼈 􏼉 + C

n
n(− 15] + 3)( 􏼁z

2n+5

+ C
n
n(10] − 4 + 5μ)( 􏼁z

2n+6
􏽩,

(41)

where μ and ] are shape parameters and n � 1, 2, . . .. Remark 2. If we put n � 2, n � 3, and n � 4 in (41), we get
the Laurent polynomials of 3-point, 4-point, and 5-point
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combined subdivision schemes which produce continuous
shapes up to C2, C3, and C4 smoothness.

/eorem 3 gives the following result.

Corollary 3. �e support of (CSS)a4
is [− (5/2), (5/2)].

Now, here we use the method proposed by Rioul [19] to
find out the H€oölders regularity of (CSS)a4

.

Theorem 6. If we choose μ � 1 and ] � (− 1/5), then the
lower and upper bound of H€older regularity of (CSS)a4

is
2.1079 and 2.369, respectively.

Proof. From (30), we have

a4(z) �
1 + z + z2

3
􏼠 􏼡

3

z
− 5

􏽘

4

j�0
mjz

j
, (42)

where m0 � ((10] − 4 + 5μ)/3), m1 � ((− 25] + 7 − 5μ)/3),
m2 � ((30] + 3)/3), m3 � ((− 25] + 7 − 5μ)/3),
m4 � ((10] − 4 + 5μ)/3), k � 3, ℓ � 4, n � 3, and
Z � 0, 1, 2, 3, 4. F0, F1, F2, F3, and F4 are matrices given by

FZ( 􏼁i,j � mℓ+i− 3j+Z. (43)

Since (F0)i,j � m4+i− 3j, (F1)i,j � m5+

i − 3j, (F2)i,j � m6+i− 3j, (F3)i,j � m7+i− 3j, (F4)i,j � m8+i− 3j,
where i, j � 1, 2, 3, 4, thus, we have

F0 �

m2 0 0 0

m3 m0 0 0

m4 m1 0 0

0 m2 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F1 �

m3 m0 0 0

m4 m1 0 0

0 m2 0 0

0 m3 m0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F2 �

m4 m1 0 0

0 m2 0 0

0 m3 m0 0

0 m4 m1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F3 �

0 m2 0 0

0 m3 m0 0

0 m4 m1 0

0 0 m2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

F4 �

0 m3 m0 0

0 m4 m1 0

0 0 m2 0

0 0 m3 m0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(44)

Let ρ(Fj): j � 0, 1, 2, 3, 4 be the joint spectral radii of
matrices F0, F1, F2, F3, and F4, respectively; then, we have

max ρ F0( 􏼁, ρ F1( 􏼁, ρ F2( 􏼁, ρ F3( 􏼁, ρ F4( 􏼁􏼈 􏼉

≤ ρ≤max F0
����

����∞, F1
����

����∞, F2
����

����∞, F3
����

����∞, F4
����

����∞􏽮 􏽯.
(45)

/e eigenvalues of F0, F1, F2, F3, and F4 are required to
calculate their joint spectral radii; therefore,
ρ(F0) � ρ(F2) � ρ(F3) � ρ(F4) �, max |mo|, |m2|􏼈 􏼉,
ρ(F1) �, max |m3 + m0|, |m1 + m4|􏼈 􏼉.

/e infinity norm of F0, F1, F2, F3, and F4 is

Fj

�����

�����∞
� max m2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, m3 + m0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, m4 + m1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯, (46)

where j � 0, 1, 2, 3, 4.

max m0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, m2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, m3 + m0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, m1 − m4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯

≤ ρ≤max m2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, m3 + m0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, m4 + m1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯.
(47)

If we use μ � 1 and ] � (− 1/5) in (47), we get

max 1, 0.333, 2, 2.6667{ }≤ ρ≤max 1, 2{ }. (48)

Hence, the lower bound of H€oölders exponent is

r≥ 3 − log3(2.6667) � 2.10719. (49)

/e upper bound of H€olders exponent is
r≤ 3 − log3(2) � 2.369. (50)

/is completes the proof. □ □

Theorem 7. �e limit stencil of (CSS)a4
which is defined in

(18) is
5μ + 5] − 3

48
,
27 − 5μ − 5]

48
,
27 − 5μ − 5]

48
,
5μ + 5] − 3

48
􏼔 􏼕.

(51)

Proof. To find out the limit stencil of (CSS)a4
, we substitute

i � − 1 and i � 0 in the refinement rules (19) of (CSS)a4
.

Hence, we obtain the following refined points:

q
k+1
− 3 �

5μ
27

+
5]
27

􏼒 􏼓q
k
− 2 + 1 −

10μ
27

−
10]
27

􏼒 􏼓q
k
− 1 +

5μ
27

+
5]
27

􏼒 􏼓q
k
0,

q
k+1
− 2 �

− 5
81

+
5]
81

+
10μ
81

􏼒 􏼓q
k
− 2 +

20
27

−
5μ
27

􏼒 􏼓q
k
− 1 +

10
27

−
5]
27

􏼒 􏼓q
k
0

+
− 4
81

+
5μ
81

+
10]
81

􏼒 􏼓q
k
1,

q
k+1
− 1 �

− 4
81

+
5μ
81

+
10]
81

􏼒 􏼓q
k
− 2 +

10
27

−
5]
27

􏼒 􏼓q
k
− 1 +

20
27

−
5μ
27

􏼒 􏼓q
k
0

+
− 5
81

+
5]
81

+
10μ
81

􏼒 􏼓q
k
1,

q
k+1
0 �

5μ
27

+
5]
27

􏼒 􏼓q
k
− 1 + 1 −

10μ
27

−
10]
27

􏼒 􏼓q
k
0 +

5μ
27

+
5]
27

􏼒 􏼓q
k
1.

(52)
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/e matrix form of the above system of four linear
equations is

q
k+1
− 3

q
k+1
− 2

q
k+1
− 1

q
k+1
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

5μ
27

+
5]
27

􏼒 􏼓 1 −
10μ
27

−
10]
27

􏼒 􏼓
5μ
27

+
5]
27

􏼒 􏼓 0

− 5
81

+
5]
81

+
10μ
81

􏼒 􏼓
20
27

−
5μ
27

􏼒 􏼓
10
27

−
5]
27

􏼒 􏼓
− 4
81

+
5μ
81

+
10]
81

􏼒 􏼓

− 4
81

+
5μ
81

+
10]
81

􏼒 􏼓
10
27

−
5]
27

􏼒 􏼓
20
27

−
5μ
27

􏼒 􏼓
− 5
81

+
5]
81

+
10μ
81

􏼒 􏼓

0
5μ
27

+
5]
27

􏼒 􏼓 1 −
10μ
27

−
10]
27

􏼒 􏼓
5μ
27

+
5]
27

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

qk
− 3

q
k
− 2

q
k
− 1

q
k
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (53)

Symbolically, it can be written as

q
k+1

� R1q
j
. (54)

Hence, the local subdivision matrix of the 4-point
scheme (CSS)a4

is

R1 �

5μ
27

+
5]
27

􏼒 􏼓 1 −
10μ
27

−
10]
27

􏼒 􏼓
5μ
27

+
5]
27

􏼒 􏼓 0

− 5
81

+
5]
81

+
10μ
81

􏼒 􏼓
20
27

−
5μ
27

􏼒 􏼓
10
27

−
5]
27

􏼒 􏼓
− 4
81

+
5μ
81

+
10]
81

􏼒 􏼓

− 4
81

+
5μ
81

+
10]
81

􏼒 􏼓
10
27

−
5]
27

􏼒 􏼓
20
27

−
5μ
27

􏼒 􏼓
− 5
81

+
5]
81

+
10μ
81

􏼒 􏼓

0
5μ
27

+
5]
27

􏼒 􏼓 1 −
10μ
27

−
10]
27

􏼒 􏼓
5μ
27

+
5]
27

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (55)

Now we calculate the eigenvalues of the subdivision
matrix R1 and denote them by λi: i � 0, 1, 2, 3./us, we have

λi � 1,
1
3
,
1
9
,
10] + 1
27

. (56)
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/e matrix of the eigenvector corresponding to the ei-
genvalues is

W �

1 − 1 1 − 1

5μ + 5] − 3
5μ + 5] − 27

− 1
3

1
5] − 5μ + 1

15μ + 15] − 27

5μ + 5] − 3
5μ + 5] − 27

1
3

1
− (5] − 5μ + 1)

15μ + 15] − 27

1 1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (57)

By taking the inverse of the above matrix, we get

W
− 1

�

27 − 5μ − 5]
48

5μ + 5] − 27
48

5μ + 5] − 27
48

27 − 5μ − 5]
48

− (5] − 5μ + 1)

20] − 16
− 3(5] + 5μ − 9)

20] − 16
3(5] + 5μ − 9)

20] − 16
5] − 5] + 1
20] − 16

5μ + 5] − 3
48

27 − 5μ − 5]
48

27 − 5μ − 5]
48

5μ + 5] − 3
48

− (5] + 5μ − 9)

20] − 16
3(5] + 5μ − 9)

20] − 16
− 3(5] + 5μ − 9)

20] − 16
(5] + 5μ − 9)

20] − 16

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (58)

Let δ be the diagonal matrix of eigenvalues; then,

δ �

1 0 0 0

0
1
3

0 0

0 0
1
9

0

0 0 0
(10] + 1)

27

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (59)

Since R1 � WδW− 1, therefore Rk
1 � WδkW− 1. Also, we

have

q
k+1

� R1q
k

� R
2
1q

k− 1
� R

3
1q

k− 2
� · · · � R

k
1q

0
, (60)

which implies that

q
k+1

� Wδk
W

− 1
q
0
. (61)

Hence,

lim
k⟶∞

q
k+1

� W lim
k⟶∞

δk
􏼒 􏼓W

− 1
q
0
. (62)

/us, we have

q
∞
− 3

q
∞
− 2

q
∞
− 1

q
∞
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

5μ + 5] − 3
48

27 − 5μ − 5]
48

27 − 5μ − 5]
48

5μ + 5] − 3
48

5μ + 5] − 3
48

27 − 5μ − 5]
48

27 − 5μ − 5]
48

5μ + 5] − 3
48

5μ + 5] − 3
48

27 − 5μ − 5]
48

27 − 5μ − 5]
48

5μ + 5] − 3
48

5μ + 5] − 3
48

27 − 5μ − 5]
48

27 − 5μ − 5]
48

5μ + 5] − 3
48

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q
0
− 3

q
0
− 2

q
0
− 1

q
0
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (63)
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Hence, we get the limit stencil of (CSS)a4
, that is,

5μ + 5] − 3
48

,
27 − 5μ − 5]

48
,
27 − 5μ − 5]

48
,
5μ + 5] − 3

48
􏼔 􏼕.

(64)

Hence, it is proved. □

4.5. Properties of the 6-Point Subdivision Scheme. If we put
n � 2 in (14), then we get the following 6-point combined
subdivision scheme. We denote this scheme by (CSS)a6

:

q
k+1
3i �

4μ
243

+
4]
243

􏼒 􏼓q
k
i− 2 +

56μ
243

+
56]
243

􏼒 􏼓q
k
i− 1 + 1 −

40μ
81

−
40]
81

􏼒 􏼓q
k
i +

56μ
243

+
56]
243

􏼒 􏼓q
k
i+1 +

4μ
243

+
4]
243

􏼒 􏼓q
k
i+2,

q
k+1
3i+1 �

− 16μ
2187

−
20]
2187

+
8
729

􏼒 􏼓q
k
i− 2 +

− 70
729

+
280]
2187

+
476μ
2187

􏼒 􏼓q
k
i− 1 +

560
729

−
664μ
2187

−
56]
2187

􏼒 􏼓q
k
i

+
280
729

−
56μ
2187

−
664]
2187

􏼒 􏼓q
k
i+1 +

− 56
729

+
280μ
2187

+
476]
2187

􏼒 􏼓q
k
i+2 +

7
729

−
20μ
2187

−
16]
2187

􏼒 􏼓q
k
i+3,

q
k+1
3i+2 �

7
729

−
20μ
2187

−
16]
2187

􏼒 􏼓q
k
i− 2 +

− 56
729

+
280μ
2187

+
476]
2187

􏼒 􏼓q
k
i− 1 +

280
729

−
56μ
2187

−
664]
2187

􏼒 􏼓q
k
i

+
560
729

−
664μ
2187

−
56]
2187

􏼒 􏼓q
k
i+1 +

− 70
729

+
280]
2187

+
476μ
2187

􏼒 􏼓q
k
i+2 + −

16μ
2187

−
20]
2187

+
8
729

􏼒 􏼓q
k
i+3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(65)

/e Laurent polynomial of (CSS)a6
denoted by a6(z) �

a
(0)
6 (z) is defined:

a6(z) �
1

2187z
8 1 + z + z

2
􏼐 􏼑

3

(21 − 20μ − 16])z
10

+(− 39 + 44μ + 28])z
9

+(24μ + 48] − 9)z
8

+(− 54 + 276] + 84μ)z
7

􏽨

+(− 108μ − 936] + 153)z
6

+(99 + 1200] − 48μ) × z
5

+(− 108μ − 936] + 153)z
4

+(− 54 + 276] + 84μ)z
3

+(24μ + 48] − 9)z
2

+(− 39 + 44μ + 28])z +(21 − 20μ − 16])􏽩.

(66)

Theorem 8. Let q0i􏼈 􏼉i∈Z be the initial data; then, the re-
finement rules defined in (65) of (CSS)a6

produce the C2-
continuous shapes if ] ∈ ((− 1/4), (1/8)) and its corresponding
μ ∈ ((3/32) − (157]/32), (255/128) − (157]/32)). It gives
C3-continuous shapes for ] � 0 and μ ∈ ((93/128), (87/64)).

It produces C4-smooth shapes for ] � 0 and
μ ∈ ((3/5), (51/40)). And it gives C5-smooth shapes for ] � 0
and μ ∈ ((57/62), (33/31)).

Proof. By /eorem 1, we have
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a
(n)
6 (z) �

3z
2

1 + z + z
2􏼠 􏼡a

(n− 1)
6 (z), i � 1, 2, 3, 4, 5, 6. (67)

Hence,

a
(1)
6 (z) �

1
729

(21 − 20μ − 16])z
8

+(3 − 4] + 4μ)z
7

+(− 24 + 56] + 52μ)z
6

+(224μ + 424] − 147)z
5

􏽨

+(− 39 − 200] + 200μ)z
4

+(280] + 186 + 80μ)z
3

+(− 336μ + 693 − 744])z
2

+(801 + 408] − 408μ)z
1

+(− 336μ + 693 − 744])z
0

+(280] + 186 + 80μ)z
− 1

+

(− 39 − 200] + 200μ)z
− 2

+(224μ + 424] − 147)z
− 3

+(− 24 + 56] + 52μ)z
− 4

+ (3 − 4] + 4μ)z
5

+(21 − 20μ − 16])z
− 6

􏽩.

a
(2)
6 (z) �

1
243

(21 − 20μ − 16])z
8

+(12] + 24μ − 18)z
7

+(60] + 48μ − 27)z
6

􏽨

+(152μ − 102 + 352])z
5

+(90 − 612])z
4

+(198 − 72μ + 540])z
3

+(405 − 264μ − 672])z
2

+(198 − 72μ + 540])z
1

+(90 − 612])z
0

+(152μ − 102 + 352])z
− 1

+(60] + 48μ − 27)z
− 2

+(12] + 24μ − 18)z
− 3

+(21 − 20μ − 16])z
− 4

􏽩.

a
(3)
6 (z) �

1
81z

2 (21 − 20μ − 16])z
10

+(− 39 + 44μ + 28])z
9

+(24μ + 48] − 9)z
8

􏽨

+(− 54 + 276] + 84μ)z
7

+(− 108μ − 936] + 153)z
6

+(99 + 1200] − 48μ)z

+(− 108μ − 936] + 153)z
4

+(− 54 + 276] + 84μ)z
3

+(24μ + 48] − 9)z
25

+(− 39 + 44μ + 28])z +(21 − 20μ − 16])].

(68)

And when ] � 0, we get the following Laurent poly-
nomials from (67):

a
(4)
6 (z) �

1
27

(21 − 20μ)z
8

+(− 60 + 64μ)z
7

+(− 20μ + 30)z
6

+(40μ − 24)z
5

+(147 − 128μ)z
4

+(40μ − 24)z
3

+(− 20μ + 30)z
2

+(− 60 + 64μ)z +(21 − 20μ)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

a
(5)
6 (z) �

1
9

(21 − 20μ)z
6

+(− 81 + 84μ)z
5

+(− 84μ + 90)z
4

+(40μ − 33)z
3

+(− 84μ + 90)z
2

+(− 81 + 84μ)z
1

+(21 − 20μ)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

α(6)
(z) �

3z
2

1 + z + z
2􏼠 􏼡

1
9

(21 − 20μ)z
6

+(− 81 + 84μ)z
5

+(− 84μ + 90)z
4

+(40μ − 33)z
3

+(− 84μ + 90)z
2

+(− 81 + 84μ)z
1

+(21 − 20μ)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

(69)

/en, by using /eorem 1 and denoting the subdivision
schemes corresponding to the Laurent polynomials

a
(j)
6 (z): j � 0, 1, 2, 3, 4, 5, 6 by (CSS)

a
(j)

6
: j � 0, 1, 2, 3, 4, 5, 6,

respectively, we get
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1
3
(CSS)

a
(j)

6
􏼒 􏼓

1��������

��������∞
�
1
3
max 􏽘

j∈Z
α[j,1]

i+3j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌; i � 0, 1, 2
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, j � 0, 1, 2, 3, 4, 5, 6. (70)

By solving ‖((1/3)(CSS)
a

(j)

6
)1‖∞< 1 for

j � 0, 1, 2, 3, 4, 5, 6, we get the required result. □
Corollary 4. �e order of smoothness of (CSS)a6

can be
increased if we use the refinement rules corresponding to the
following Laurent polynomial which is derived from the
Laurent polynomial of (66):

α(z) �
1

3n+5 C
n
0 C

n
0(21 − 16] − 20μ)􏼈 􏼉 + C

n
0 C

n
0(− 18 + 12] + 24μ) + C

n
1(21 − 16] − 20μ)􏼈 􏼉z􏼂

+ C
n
0 C

n
0(48μ + 60] − 27) + C

n
1(− 18 + 12] + 24μ) + C

n
2(21 − 16] − 20μ)􏼈 􏼉 + C

n
1 C

n− 1
0 (21 − 16] − 20μ)􏽮 􏽯􏼐 􏼑z

2

+ C
n
0 C

n
0(152μ + 352] − 102) + C

n
1 ×(48μ + 60] − 27) + C

n
2(− 18 + 12] + 24μ) + C

n
3(21 − 16] − 20μ)􏼈 􏼉+(

C
n
1 × C

n− 1
0 (− 18 + 12] + 24μ) + C

n− 1
1 (21 − 16] − 20μ)􏽮 􏽯􏼑z

3

+ C
n
0 C

n
0(− 612] + 90) + C

n
1(152μ + 352] − 102) + C

n
2(48μ + 60] − 27) + C

n
3(− 18 + 12] + 24μ)􏼈 􏼉 + C

n
1×(

C
n− 1
0 (48μ + 60] − 2) + C

n− 1
1 (− 18 + 12] + 24μ) + C

n− 1
2 (21 − 16] − 20μ)􏽮 􏽯 + C

n
2 C

n− 2
0 (21 − 16] − 20μ)􏽮 􏽯􏼑z

4

· · · + C
n
n− 2 C

2
2(21 − 16] − 20μ)􏽮 􏽯 + C

n
n− 1 C

1
1(21 − 16] − 20μ) + C

1
0(− 18 + 12] + 24μ)􏽮 􏽯 + C

n
n(48μ + 60] − 27)􏼐 􏼑z

2n+10

+ C
n
n− 1 × (21 − 16] − 20μ)􏼈 􏼉 + C

n
n(− 18 + 12] + 24μ)( 􏼁z

2n+11

C
n
n(21 − 16] − 20μ)( 􏼁z

2n+12
􏽩,

(71)

where μ and ] are shape parameters and m ∈ N.

/eorem 3 gives the following result.

Corollary 5. �e support of (CSS)a6
is [− 4, 4].

Theorem 9. �e limit stencil of (CSS)a6
is

[ξ1, ξ2, ξ3, ξ4, ξ3, ξ2, ξ1], where

ξ1 �
64 μ3 + μ2] − μ]2 − ]3􏼐 􏼑 − 580μ2 − 930μ] + 555μ + 350]2 + 555]

756 20μ + 145] − 6μ] − 6]2 + 240􏼐 􏼑
,

ξ2 �
− 12μ3 + 40μ2] − 317μ2 + 44μ]2 + 45μ + 16]3 − 644]2 + 45] − 961μ]􏼐 􏼑

42 20μ + 145] − 6μ] − 6]2 + 240􏼐 􏼑
,

ξ3 �
32μ3 + 88μ2] − 1396μ2 + 80μ]2 − 2138μ] + 6525μ + 24]3 − 742]2 + 6525]

84 20μ + 145] − 6μ] − 6]2 + 240􏼐 􏼑
,

ξ4 �
− 68 μ3 + μ2] − μ]2 − ]3􏼐 􏼑 + 3719μ2 + 303μ] − 25455μ − 3416]2 − 1830] + 45360

189 20μ + 145] − 6μ] − 6]2 + 240􏼐 􏼑
.

(72)

Theorem 10. If we choose μ � 1 and ] � (− 1/5), then the
lower and upper bound of H€oölder regularity of (CSS)a6

are
2.1302 and 2.455, respectively.
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Start

Initial control
points qi0, i ∈ ℤ

Initial sketch q0 by joining
the points qi0, i ∈ ℤ

Apply recursive refinement
rules (19) and (65)

k-times and get qik, i ∈ ℤ

Smooth shape
by joining
the refined

points qik, i ∈ ℤ

End

Figure 3: Flowchart to explain the geometric examples.
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Figure 4: Continued.
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Figure 4: Coloured lines show the curves fitted by the combined subdivision schemes.
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Figure 5: Red bullets are initial control points. Black solid lines are initial control polygons. Coloured lines show the fitted curves by our
schemes in (b) and (d).
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5. Geometrical Influence of (CSS)a2n+2
in

Curve Modeling

In this section, we present models produced by the new
combined 4-point and 6-point subdivision schemes. For
modeling of 2D shapes by the combined schemes, we use the
procedure which is explained in Figure 3 through a flow-
chart. /is procedure is used in the following numerical
examples for curve modeling.

Example 1. In this example, we draw the initial sketch q0 by
using the initial data q0i : i ∈ Z􏼈 􏼉. /e initial sketch and the
initial data are shown by black polygons and red bullets in
Figure 4. Curves fitted by the subdivision schemes (CSS)a4
and (CSS)a6

after four refinements steps for various values of
μ and ] are shown in this figure. Figure 4(a) shows the curves
fitted by a 4-point ternary combined scheme for ] � − 0.2

and μ � 1, 1.5, 2. Figure 4(b) shows the curves fitted by a 4-
point ternary combined scheme for ] � 0.1 and
μ � − 0.5, − 0.8, 1. Figure 4(c) shows the curves fitted by a 6-
point ternary combined scheme for ] � − 0.1 and
μ � 0.8, 1, 1.5. Figure 4(d) shows the curves fitted by a 4-
point ternary combined scheme for ] � 0.1 and
μ � − 0.2, − 0.5, 1.

Example 2. In this experiment, we input the initial data
taken from the discontinuous function:

h(x) �
+cos πx, if x ∈ [0.5, 0[ ,

− cos πx, if x ∈ [0, 0.5].
􏼨 (73)

Curves fitted by the first two members of our class of
schemes are shown in Figures 5(b) and 5(d), respectively,
and the curves fitted by the first two members of the CETISS
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Figure 6: Red bullets show the initial control points. Black solid lines are the initial control polygon. Coloured lines show curves fitted by our
subdivision scheme after two refinement steps. (a) 4-point combined scheme ] � − 0.1, μ � 0.1, 0.5, 1.5; (b) 4-point combined scheme
] � 0.1, μ � 0.1, 0.5, 1.5; (c) 6-point combined scheme ] � − 0.1, μ � 1, 1.5, 1.9; and (d) 6-point combined scheme ] � − 0.3, μ � 1, 1.3, 1.5.
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are shown in Figures 5(a) and 5(c), respectively. We see that
the CETISS produce Gibbs oscillations in the limit curves
close to the discontinuity. It is also noted that our combined
schemes do not produce Gibbs oscillations in the limit
curves for certain values of the shape parameters.

Example 3. In this example, we take the initial data such that
if we join this data by straight lines, we get a close polygonal
shape.We smooth this shape by the first twomembers of our
class of schemes and results are shown in Figure 6. /is
figure shows the flexible behaviour of our combined sub-
division scheme. It also shows that shape parameters in the
combined subdivision schemes provide grip on the limit
curves.

6. Conclusion

In this research, we have constructed and analyzed a class of
combined ternary subdivision schemes. /e construction
procedure is very simple and consists of only a few simple
mathematical operations on the refinement rules of the two
well-known classes of the schemes. But it gives us amazing
results that are discussed theoretically and geometrically in
detail. /e class of schemes gives good smoothness and local
control on the limit shapes. It also provides us a flexible
environment to fit curves. /e unnecessary oscillations in
the limit curves of our combined schemes can be removed by
changing the values of the shape parameters.
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,is paper uses the continued fraction technique to construct a nonstationary 4-point ternary interpolatory subdivision scheme,
which provides the user with a tension parameter that effectively handles cusps compared with a stationary 4-point ternary
interpolatory subdivision scheme.,en, the continuous nonstationary 4-point ternary scheme is analyzed, and the limit curve is at
least C2-continuous. Furthermore, the monotonicity preservation and convexity preservation are proved.

1. Introduction

Subdivision schemes are wildly used in many areas, in-
cluding CAGD, CG, and related areas. Most of the existing
univariate subdivision schemes are binary, ternary, sta-
tionary, and linear. ,e classical binary 4-point scheme is
one of the earliest and most popular interpolatory subdi-
vision schemes [1, 2]. Hassan et al. present the 4-point
ternary subdivision scheme in [3], in which the limit curves
by the 4-point ternary subdivision scheme are continuous.
Beccari et al. present a nonstationary subdivision scheme in
[4, 5], which generates continuous limit curves. In graphic
design, shape-preserving of curve/surface is essential.
Monotonicity preservation and convexity preservation are
two significant properties in maintaining shape-preserving.
Dyn et al. analyze the convexity preservation of the 4-point
interpolatory scheme in [6]. Many subdivision schemes
cannot satisfy monotonicity preservation and convexity
preservation in the current subdivision zoo. Cai presents
binary and ternary 4-point interpolatory subdivision
schemes that are continuous in nonuniform control points
and discusses the limit curve’s convexity preservation [7, 8].
Kuijt and van Damme present a local nonlinear inter-
polatory subdivision scheme which is monotonicity pre-
serving in [9], and Kuijt and van Damme also research a type
of shape-preserving 4-point interpolatory subdivision

scheme which interpolated nonuniform data in [10]. Tan
et al. discuss the monotonicity preservation and convexity
preservation of the binary subdivision scheme [11, 12].
Several subdivision schemes are designed to have their
unique properties in [13–15]. Much research has been done
on continued fraction theory and its application by Tan [16].
Ghaffar et al. discussed a new class of 2q-point nonstationary
subdivision schemes and their application [17]. Ashraf et al.
analyzed the ternary four-point rational interpolating sub-
division scheme’s geometric properties [18, 19]. More
subdivision schemes are studied in [17, 20–22].

Nonstationary subdivision schemes have been studied
[5, 22], but the limit curves are not monotonicity preserving
and convexity preserving. Our paper aims to construct a
nonstationary 4-point ternary interpolatory subdivision
scheme, which is shape-preserving using a continued frac-
tion. Section 2 uses a continued fraction to construct a
nonstationary interpolatory subdivision scheme and then
analyze the continuity. In Section 3, the monotonicity
preservation of the limit curves is discussed. In Section 4, the
convexity preservation of limit curves is discussed and
proven. In Section 5, when the initial control polygon is
open, we use the new rule for the endpoints to achieve better
continuity. In Section 6, we use experiments to show
that our scheme effectively handles cusps and shape
preservation.
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2. A Nonstationary Subdivision

2.1. A Stationary Subdivision

Definition 1 (see [3]). Given a set of the initial control points
P0 � p0

i ∈ Rd􏼈 􏼉
n

i�1, let Pk � pk
i ∈ Rd􏼈 􏼉

n

i�1 be the set of control

points at the order k subdivision. Define Pk+1
i ∈ Rd􏼈 􏼉

3k+1n

i�1
recursively by the following ternary subdivision rules:

P
k+1
3i � p

k
i , 1< i< 3k

n,

P
k+1
3i+1 � a

k
0p

k
i− 1 + a

k
1p

k
i + a

k
2p

k
i+1 + a

k
3p

k
i+2, 2< i< 3k

n,

P
k+1
3i+2 � a

k
3p

k
i− 1 + a

k
2p

k
i + a

k
1p

k
i+1 + a

k
0p

k
i+2, 2< i< 3k

n,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where ak
0 ≡ a0 � − 1/18 − 1/6u, ak

1 ≡ a1 � 13/18 + 1/2u, ak
2 ≡

a2 � 7/18 − 1/2u, and ak
3 ≡ a3 � − 1/18 + 1/6u. u is a tension

parameter. When u ∈ ( 1/15, 1/9 ), the limit curve is
C2-continuous.

2.2. A Nonstationary Subdivision. We use the continued
fraction technique to construct a nonstationary 4-point
ternary interpolatory subdivision scheme.

Definition 2. Given a set of the initial control points
P0 � p0

i ∈ Rd􏼈 􏼉
n

i�1, let Pk � pk
i ∈ Rd􏼈 􏼉

n

i�1 be the set of control

points at the order k subdivision. Define Pk+1
i ∈ Rd􏼈 􏼉

3k+1n

i�1
recursively by the following ternary subdivision rules:

P
k+1
3i � p

k
i , 1< i< 3k

n,

P
k+1
3i+1 � a

k
0p

k
i− 1 + a

k
1p

k
i + a

k
2p

k
i+1 + a

k
3p

k
i+2, 2< i< 3k

n,

P
k+1
3i+2 � a

k
3p

k
i− 1 + a

k
2p

k
i + a

k
1p

k
i+1 + a

k
0p

k
i+2, 2< i< 3k

n,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where ak
0 � − 1/18 − 1/6uk, ak

1 � 13/18 + 1/2uk, ak
2 � 7/18−

1/2uk, and ak
3 � − 1/18 + 1/6uk. uk is a tension parameter:

u
k

� b0 +
c1|

|b1
+

c2|

|b2
+ · · · +

ck|

|bk

,

b0 � u + 1, bj �
u + 1/4k+1

)( 1 + 1/8k− 1
) − ( u + 1/4k− 1

)( 1 + 1/8k+1
􏼐 􏼑

u + 1/4k
)( 1 + 1/8k− 1

) − ( u + 1/4k− 1
)( 1 + 1/8k

􏼐 􏼑
,

cj �
u + 1/4k− 1

)( 1 + 1/8k
) − ( u + 1/4k

)( 1 + 1/8k+1
􏼐 􏼑

u + 1/4k
)( 1 + 1/8k− 1

) − ( u + 1/4k− 1
)( 1 + 1/8k

􏼐 􏼑
, u ∈ (

1
15

,
1
9

)( j � 1, 2, . . . k ).

(3)

Theorem 1 (Pringsheim Theorem [16]). Let
fn � b0 + a1|/|b1 + a2|/|b2 + · · · + ak|/|bk, if |bn|≥ |an| + 1, so
fn � b0 + a1|/|b1 + a2|/|b2 + · · · + ak|/|bk is convergence.

Remark 1. According to ,eorem 1, we know uk is con-
vergence. Due to uk � b0 + c1|/|b1 + c2|/|b2 + · · · + ck|/|bk

+ · · · � u + (1/4k+1)/1 + (1/8k+1), we know the
limk⟶+∞uk � u, u ∈ ( 1/15, 1/9 ).

2.3. Convergence Analysis. ,is section’s purpose primarily
proves the continuity of (2) when the initial tension pa-
rameter u ∈ ( 1/15, 1/9 ). To analyze our scheme’s smooth-
ness properties, we exploit Dyn and Levin’s well-known
results in [23], which relate the convergence of a nonsta-
tionary scheme to its asymptotically equivalent stationary
counterpart. From Remark 1, we know
limk⟶+∞uk � u, u ∈ ( 1/15, 1/9 ), and the nonstationary
subdivision scheme defined in (2) converges to the sta-
tionary subdivision scheme (1).

Proposition 1. +e nonstationary subdivision scheme de-
fined in (2) is asymptotically equivalent to the stationary
scheme defined in (1) with u ∈ ( 1/15, 1/9 ). Moreover, it
generates C2-continuous limit curve.

Proof. If we want to prove that the proposed nonsta-
tionary subdivision scheme converges to a C2-continuous
limit curve, we compute its second divided difference
mask and show that the associated limit curves are
C0-continuous.

,e mask of nonstationary subdivision scheme is given
by

m
k

�
1
18

3u
k

− 1, − 3u
k

− 1, 0, − 9u
k

+ 7, 9u
k

+ 13, 18, 9u
k

􏽨

+ 13, − 9u
k

+ 7, 0, − 3u
k

− 1, 3u
k

− 1􏽩.

(4)

Its related first divided difference is

d
k
(1) �

1
6

3u
k

− 1, − 6u
k
, 3u

k
+ 1, − 6u

k
+ 6, 12u

k
+ 6, − 6u

k
􏽨

+ 6, 3u
k

+ 1, − 6u
k
, 3u

k
− 1􏽩.

(5)

Hence, the second divided difference mask turns out to
be
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d
k
(2) �

1
2

3u
k

− 1, − 9u
k

+ 1, 9u
k

+ 1, − 6u
k

􏽨

+ 4, 9u
k

+ 1, − 9u
k

+ 1, 3u
k

− 1􏽩.

(6)

In this way, according to Remark 1, it follows that

lim
k⟶∞

d
k
(2) �

1
2

[3u − 1, − 9u + 1, 9u + 1, − 6u + 4, 9u + 1,

− 9u + 1, 3u − 1].

(7)

,e mask limk⟶∞dk
(2) tends to mask of the second

divided differences of the stationary subdivision scheme
defined in (1) with u ∈ ( 1/15, 1/9 ).

Since the stationary subdivision scheme is C2-continu-
ous when u ∈ ( 1/15, 1/9 ), then nonstationary subdivision
scheme associated with d∞(2) will be C0.

According to [16], if

􏽘

+∞

k

d
k
(2) − d

∞
(2)

�����

�����∞
< +∞, (8)

then the two different schemes are asymptotically equiva-
lent, so it concludes that the scheme associated with dk

(2) is
C0.

Since

d
k
(2) − d

∞
(2)

�����

�����∞
�
1
2
max 3u

k
− 3u

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, − 9u
k

+ 9u
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,􏼚

− 6u
k

+ 6u
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼛 �
9
2

u
k

− u
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(9)

Next, we need to prove 9/2􏽐
+∞
k�1 |uk − u|< +∞.

According to the structural characteristics of the uk, we
know uk > uk+1 and lim

k⟶+∞
uk � u, u ∈ ( 1/15, 1/9 ). As

uk+1 < uk, uk+1 − u> 0, uk − u> 0, thus uk+1 − u/uk − u< 1,
according to the comparison test, we know
􏽐

+∞
k�1 |uk − u|< +∞, so 9/2􏽐

+∞
k�1 |uk − u|< +∞.

,is completes the proof.
Hence, the nonstationary subdivision scheme defined in

(2) is asymptotically equivalent to the stationary scheme
defined in (1) with u ∈ ( 1/15, 1/9 ). Limit curves generated
by (1) are C2-continuous. According to Proposition 1, the
limit curves generated by (2) are C2-continuous. □

3. Monotonicity Preservation

,e limit curves generated by (2) are C2-continuous, we next
discuss the limit curves generated by (2) are monotonicity
preserving.

Proposition 2. Given a set of the initial control points P0 �

p0
i ∈ Rd􏼈 􏼉

n

i�1 that satisfies ...p0
− 1 <p0

0 <p0
1 < ...<p0

n− 1 <p0
n < ...,

a nonstationary subdivision scheme for designing curves
generates a new control point Pk � pk

i ∈ Rd􏼈 􏼉 recursively at
the level k by applying (2). Denoting Dk

i � pk
i+1 − pk

i , qk
i �

Dk
i+1/D

k
i , Qk � max

i
qk

i , 1/qk
i􏼈 􏼉, ∀k≥ 0, k ∈ Z, i ∈ Z. Further-

more, if 1≤ λ≤ 4, λ ∈ R, 1/λ≤Q0 ≤ λ, then

D
k
i > 0,

1
λ
≤Q

k ≤ λ, ∀k≥ 0, k ∈ Z, i ∈ Z. (10)

Proof. We use mathematic induction to verify Proposition 2.
When k � 0, D0

i � p0
i+1 − p0

i > 0, 1/λ≤Q0 ≤ λ, then (10) is
true.

Suppose that (10) is true for k, next we will verify it also
holds true for k + 1.

D
k+1
3i � p

k+1
3i+1 − p

k+1
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1
18

+
1
6
u
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􏼒 􏼓 p
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6
18
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2
6
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k
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1
18
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1
6
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� −
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18
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1
6
u
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k
i+1 +

6
18
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u
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1
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6
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� D
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1
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6
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D
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D
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1
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1
6
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D
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D
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6
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(11)

As 1≤ λ≤ 4, uk ∈ ( 1/15, 1/9 ), so

D
k+1
3i >D

k
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+
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6
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� D
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1
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+
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2
6
u
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D
k
i

+
6
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+
4
6
u

k
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2
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6
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4
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2
6
u
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4
6
u

k
(1 − λ) +

1
3

􏼒 􏼓.

(12)

As 1≤ λ≤ 4, uk ∈ ( 1/15, 1/9 ), so

D
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3i+1 >D

k
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1
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− 2u
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(13)

As 1≤ λ≤ 4, uk ∈ ( 1/15, 1/9 ), so

Journal of Mathematics 3



D
k+1
3i >D
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1
18

+
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−
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+
1
6
u

k
􏼒 􏼓 × 4􏼔 􏼕

� D
k
i

1
6

+
1
6
u

k
􏼒 􏼓> 0.

(14)

Now, we prove 1/λ≤Qk ≤ λ.
Since

q
k+1
3i �

D
k+1
3i+1

D
k+1
3i

�
− 2/6u

k
D

k
i+1 + 6/18 + 4/6u

k
􏼐 􏼑D

k
i − 2/6u

k
D

k
i− 1

− 1/18 + 1/6u
k

􏼐 􏼑D
k
i+1 + 6/18 − 2/6u

k
􏼐 􏼑D

k
i + 1/18 + 1/6u

k
􏼐 􏼑D

k
i− 1

�
− 2/6u

k
q

k
i+1 + 6/18 + 4/6u

k
􏼐 􏼑 − 2/6u

k1/qk
i− 1

− 1/18 + 1/6u
k

􏼐 􏼑q
k
i+1 + 6/18 − 2/6u

k
􏼐 􏼑 + 1/18 + 1/6u

k
􏼐 􏼑1/qk

i− 1

,

q
k+1
3i − λ �

− 2/6u
k

+ λ/18 − 1/6λu
k

􏼐 􏼑q
k
i + 6/18 + 4/6u

k
− 6λ/18 + 2/6λu

k
􏼐 􏼑 − 2/6u

k
+ λ/18 + 1/6λu

k
􏼐 􏼑1/qk

i− 1

− 1/18 + 1/6u
k

􏼐 􏼑q
k
i + 6/18 − 2/6u

k
􏼐 􏼑 + 1/18 + 1/6u

k
􏼐 􏼑1/qk

i− 1

.

(15)

By (12), the denominator of the above expression is
greater than zero. ,e numerator satisfies

numerator< − 2/6u
k

+ λ/18 − 1/6λu
k

􏼐 􏼑λ + 6/18 + 4/6u
k

− 6λ/18 + 2/6λu
k

􏼐 􏼑 − 2/6u
k

+ λ/18 + 1/6λu
k

􏼐 􏼑1/λ􏽨 􏽩

� λ2/18 − 1/3λ + 5/18􏼐 􏼑 + − 1/6λ2 − 1/3λ + 1/2􏼐 􏼑u
k
.

(16)

When 1≤ λ≤ 4, − 1/6λ2 − 1/3λ + 1/2≤ 0, limk⟶+∞uk �

u, u ∈ ( 1/15, 1/9 ).
,en it can get numerator< 1/18(λ2 − 6λ

+5) + (− 1/6λ2 − 1/3λ + 1/2) × 1/15≤ 0. So qk+1
3i − λ≤ 0, qk+1

3i

≤ λ.
In the same way, we prove the 1/qk+1

3i ≤ λ.

1
q

k+1
3i

− λ �
− 1/18 + 1/6u

k
+ 2/6u

k
􏼐 􏼑q

k
i + 6/18 − 2/6u

k
− 6λ/18 − 4/6λu

k
􏼐 􏼑 + 1/18 + 1/6u

k
+ 2/6λu

k
􏼐 􏼑1/qk

i− 1

− 2/6u
k
q

k
i+1 + 6/18 + 4/6u

k
􏼐 􏼑 − 2/6u

k1/qk
i− 1

. (17)

By (13), the denominator of the above expression is
greater than zero. ,e numerator satisfies

numerator< −
1
18

+
1
6
u

k
+
2
6
u

k
􏼒 􏼓λ +

6
18

−
2
6
u

k
−
6λ
18

−
4
6
λu

k
􏼠 􏼡 +

1
18

+
1
6
u

k
+
2
6
λu

k
􏼒 􏼓λ

�
1
3

2λ2 − λ − 1􏼐 􏼑u
k

+(1 − λ)􏽨 􏽩.

(18)

When 1≤ λ≤ 4, 2λ2 − λ − 1≥ 0, limk⟶+∞uk � u, u ∈
( 1/15, 1/9 ).

,en numerator< 1/3[(2λ2 − λ − 1) × 1/9 + (1 − λ)]

� 2/17(λ2 − 5λ + 4)≤ 0. So 1/qk+1
3i ≤ λ.

,erefore, 1/λ≤ qk+1
3i ≤ λ, 1/λ≤ 1/qk+1

3i ≤ λ.
In the same way, we can prove 1/λ≤ qk+1

3i+1
≤ λ, 1/λ≤ 1/qk+1

3i+2 ≤ λ. So λ≤Qk+1 � max qk+1
i , 1/qk+1

i􏼈 􏼉≤ λ.
,is completes the proof. □
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Theorem 2 (see [10]). Given a set of initial control points
P0

i􏼈 􏼉i∈Z which are strictly monotonically increasing (strictly
monotone decreasing), such that D0

i ≥ 0.

Let

D
k
i � p

k
i+1 − p

k
i , q

k
i �

D
k
i+1

D
k
i

, Q
k

� max
i

q
k
i ,

1
q

k
i

⎧⎨

⎩

⎫⎬

⎭, ∀k≥ 0, k ∈ Z, i ∈ Z.

(19)

Furthermore, the parameter λ satisfies
1/λ≤Q0 ≤ λ, 1≤ λ≤ 4, and the limit curves generated by (2)
are strictly monotone increasing.

4. Convexity Preservation

Now we discuss the convexity preservation of the nonsta-
tionary subdivision scheme. We consider convexity pres-
ervation and convex control polygon so the limiting curve
generated by our scheme preserves convexity initial data.

Definition 3 (see [23]). Given a set of control points
P0 � p0

i ∈ Rd􏼈 􏼉
n

i�1, let Pk � pk
i ∈ Rd􏼈 􏼉

3n

i�1, pk
i is strictly convex

at a point xk
i , if f[xk

i− 1, xk
i , xk

i+1]> 0.
In this section, we check the convexity preservation of

the nonstationary subdivision scheme (2) with uniform
initial control points.

Given a set of initial control points P0
i􏼈 􏼉i∈Z, P0

i � (x0
i , p0

i )

which are strictly convex, where x0
i􏼈 􏼉i∈Z are equidistant

points. For convenience, we make Δx0
i � x0

i+1 − x0
i � 1. By

the subdivision scheme (2), we have
Δxk+1

i � xk+1
i+1 − xk+1

i � 1/3Δxk
i � 1/3k+1. Denote dk

i �

f[xk
i− 1, xk

i , xk
i+1] �32k− 1(pk

i− 1 − 2pk
i + pk

i+1) as the second-
order divided differences. In the following, we will prove
dk

i > 0, ∀k≥ 0, k ∈ Z, i ∈ Z.

Proposition 3. Given that the initial control points
P0

i􏼈 􏼉i∈Z, P0
i � (x0

i , p0
i ) are strictly convex, such that d0

i > 0,
∀i ∈ Z, denote rk

i � dk
i+1/d

k
i , Rk � max

i
rk

i , 1/rk
i􏼈 􏼉,

∀k≥ 0, k ∈ Z. Furthermore, the parameter m satisfies

1≤m≤ 2, m ∈ R, then for 1/m≤R0 ≤m, Pk � pk
i ∈ Rd􏼈 􏼉 re-

cursively at the level k by applying (2), then

d
k
i > 0,

1
m
≤R

k ≤m, ∀k≥ 0, k ∈ Z, i ∈ Z. (20)

Namely, the limit functions generated by the nonsta-
tionary subdivision scheme (2) are strictly convex.

Proof. We use mathematic induction to verify Proposition
3.

When k � 0, d0
i > 0, 1/m≤R0 ≤m, it is clear that (10) is

true.
Suppose that (10) holds for k, next, we will verify it also

holds for k + 1.

d
k+1
3i � 32k+1

p
k+1
3i − 2p

k+1
3i+1 + p

k+1
3i+2􏼐 􏼑

� 32k+1 1
18
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1
18

−
1
2
u

k
􏼒 􏼓d

k
i􏼔 􏼕.

(21)

As dk
i− 1 > 0, dk

i > 0, uk ∈ ( 1/15, 1/9 ), thus dk+1
3i > 0.

d
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2
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k
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As dk
i− 1 > 0, dk

i > 0, uk ∈ ( 1/15, 1/9 ), thus dk+1
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(23)

As 1≤m≤ 2, uk ∈ ( 1/15, 1/9 ), thus dk+1
3i+2 > 0.

Next we will prove 1/m≤Rk+1 ≤m.
Since

r
k+1
3i �

d
k+1
3i+1

d
k+1
3i

�
( 1/18 − 1/2u

k
)d

k
i− 1 +( 1/18 + 1/2u

k
)d

k
i

( 1/18 + 1/2u
k

)d
k
i− 1 +( 1/18 − 1/2u

k
)d

k
i

, (24)

r
k+1
3i − m �

( 1/18 − 1/2u
k

− m/18 + 1/2mu
k

) +( ( 1/18 + 1/2u
k

− ( m/18 + 1/2mu
k

)r
k
i

( ( 1/18 + 1/2u
k

) +( ( 1/18 − 1/2u
k

)r
k
i

. (25)

By (21), the denominator of (25) is greater than zero, and
the numerator satisfies
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1
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1
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m
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(26)

As 1≤m≤ 2, uk ∈ ( 1/15, 1/9 ), thus numerator≤ 0, so
rk+1
3i ≤m.

In the same way, we can prove the 1/rk+1
3i ≤m.

1
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. (27)
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Figure 1: Limit curves and their curvature figures. (a) Stationary subdivision. (b) Curvature by (1). (c) Nonstationary subdivision.
(d) Curvature by (2).
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Figure 2: Limit curves and their curvature figures. (a) Stationary Nike by (1). (b) Curvature of stationary curvature (1). (c) nonstationary
Nike by (2). (d) Curvature of stationary curvature (2).
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Figure 3: Limit curve by our scheme when limk⟶∞uk � 1/12. ,e initial polygon derives from f(x) � 1/x.
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By (22), the denominator of (27) is greater than zero:

numerator≤
1
18

+
1
2
u

k
−

1
18

m +
1
2
u

k
m􏼒 􏼓 +

1
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1
2
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1
m

� −
1

18m
m

2
− 1􏼐 􏼑 1 − 9u

k
􏼐 􏼑.

(28)

As 1≤m≤ 2, uk ∈ ( 1/15, 1/9 ), thus numerator≤ 0, so
1/rk+1

3i ≤m. ,erefore, 1/m≤ rk+1
3i ≤m.

In the same way, we can prove 1/m≤ rk+1
3i+1

≤m, 1/m≤ 1/rk+1
3i+1 ≤m, 1/m≤ rk+1

3i+2 ≤m, 1/m≤ 1/rk+1
3i+2 ≤m, so

1/m≤Rk+1 � max rk+1
i , 1/rk+1

i􏼈 􏼉≤m. ,is completes the
proof.

From Proposition 3, the limit curves are generated by
(2), which are convexity preserving. □

5. Improved Subdivision Interpolation
Scheme at Endpoints

If the initial control polygons are open, the new vertices near
two endpoints cannot be calculated using (2), so we use the
following subdivision schemes near the left endpoints and
right endpoints to solve this problem.

,e subdivision rules near the left endpoints are

P
k+1
1 � p

k
i ,

P
k+1
2 � αk

0p
k
1 + αk

1p
k
2 + αk

2p
k
3,

P
k+1
3 � βk

0p
k
1 + βk

1p
k
2 + βk

2p
k
3.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(29)

,e subdivision rules near the right endpoints are
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3

4

f (x) = sinh(x)

Figure 5: Limit curve by our scheme when limk⟶∞uk � 1/12. ,e initial polygon derives from f(x) � sinh(x).
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Figure 4: Limit curve by our scheme when limk⟶∞uk � 1/12. ,e initial polygon derives from f(x) � x2.
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P
k+1
3k+1n � p

k
3kn,

P
k+1
3k+1n− 1 � αk

0p
k
3kn + αk

1p
k
3kn− 1 + αk

2p
k
3kn− 2,

P
k+1
3k+1n− 2 � βk

0p
k
3kn + βk

1p
k
3kn− 1 + βk

2p
k
3kn− 2,
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⎪⎪⎪⎩

(30)

where

αk
0 � 3a

k
0 + a

k
1, α

k
1 � a

k
2 − 3a

k
0, α

k
2 � a

k
0 + a

k
3,

βk
0 � a

k
1 + 3a

k
3, βk

1 � a
k
1 − 3a

k
3, β

k
2 � a

k
0 + a

k
3.

(31)

,e improved interpolating subdivision scheme pro-
vides accurate endpoint interpolation.Wang and Qin in [24]
have proved the limit curves by improved interpolating
subdivision scheme are C2-continuous when the masks are

stationary scheme. However, according to Section 2, we can
quickly get that (29) and (30) are C2-continuous.

6. Experiment and Conclusions

,is paper uses the continued fraction technique to con-
struct a nonstationary 4-point ternary interpolatory sub-
division scheme. ,e smoothness analysis is discussed,
which indicates that the limit curve generated by the
nonstationary subdivision scheme is continuous. Shape-
preserving of the curve is essential. Monotonicity preser-
vation and convexity preservation are two significant ele-
ments in shape-preserving. We have been proved that our
schemes can ensure monotonicity preservation and con-
vexity preservation when the conditions are imposed on the
initial points in Sections 3 and 4. Nonstationary subdivision
scheme by (2) and stationary subdivision scheme by (1)
generate limit curves that are semblable by eye. So the
approach of curvature plots is used to check out the
efficiency.

,e initial control polygons cannot satisfy monotonicity
preservation and convexity preservation in Figures 1 and 2.
So the limit curves by our scheme are not shape-preserving.
However, from Figure 1, the nonstationary subdivision
scheme’s curvature is better than the stationary subdivision
scheme by (1); unfortunately, they are not obvious. Figure 2
shows that the shape of the curves and curvature of the
nonstationary subdivision scheme by (2) are significantly
better than those of the stationary subdivision scheme (1). By
comparing the shape of the curve and curvature of Figure 1
with Figure 2, we can conclude that when the shapes of the
control polygon are relatively flat, the shape and curvature of
the nonstationary subdivision scheme by (2) are not sig-
nificantly better than those of the stationary subdivision
scheme by (1). Nevertheless, when the control polygon
shapes are relatively steep or have cusps, the shape and
curvature of the nonstationary subdivision scheme by (2) are
significantly better than those of the stationary subdivision
scheme by (1). Furthermore, Figures 3–5 show that if the
initial control polygons are monotonicity preserving, our
scheme’s limit curves are also monotonicity preserving.
From Figures 6 and 7, if the initial control polygons are
convexity preserving, the limit curves are also convexity
preserving by our scheme. So the experiments also show that
our nonstationary subdivision scheme is shape-preserving.
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We introduce here a new two-step derivate-free inverse simultaneous iterative method for estimating all roots of nonlinear
equation. It is proved that convergence order of the newly constructed method is four. Lower bound of the convergence order is
determined using Mathematica and verified with theoretical local convergence order of the method introduced. Some nonlinear
models which are taken from physical and engineering sciences as numerical test examples to demonstrate the performance and
efficiency of the newly constructed modified inverse simultaneous methods as compared to classical methods existing in literature
are presented. Dynamical planes and residual graphs are drawn using MATLAB to elaborate efficiency, robustness, and au-
thentication in its domain.

1. Introduction

A wide range of problems in physical and engineering
sciences can be formulated as a nonlinear equation:

f(r) � 0. (1)

,e most ancient and popular iterative technique for
approximating single roots of (1) is Newton’s method [1]
which has local quadratic convergence:

s
(k)

� r
(k)

−
f r

(k)
􏼐 􏼑

f′ r
(k)

􏼐 􏼑
, (k � 0, 1, . . .). (2)

Nedzibove et al., in [2], presented the inverse method of
the same order corresponding to method (2):

s
(k)

�
r

(k)
􏼐 􏼑

2
f′ r

(k)
􏼐 􏼑

r
(k)

f′ r
(k)

􏼐 􏼑 + f r
(k)

􏼐 􏼑
. (3)

In the last few years, lot of work has been carried out on
numerical iterative methods which approximate single root
at a time of (1). ,ere is another class of derivative-free
iterative methods which approximates all roots of (1) si-
multaneously. ,e simultaneous iterative methods for ap-
proximating all roots of (1) are very popular due to their
global convergence and parallel implementation on com-
puter (see, e.g., Weierstrass [3], Kanno [4], Proinov [5],
Petkovi´c [6], Mir [7], Nourein [8], Aberth [9], and reference
cited there in [10–22]).

Among derivative-free simultaneous methods, Weier-
strass–Dochive [23] method (abbreviated as WDK) is the
most attractive method given by

s
(k)
i � r

(k)
i − w r

(k)
i􏼐 􏼑, (4)

where
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w r
(k)
i􏼐 􏼑 �

f r
(k)
i􏼐 􏼑

􏽑
n
j�1
j≠i

r
(k)
i − r

(k)
j􏼐 􏼑

, (i, j � 1, 2, 3, . . . , n), (5)

is Weierstrass’ Correction. Method (4) has local quadratic
convergence.

Nedzibove [2] introduced a new modification to (4), that
is, an inverse method to WDK abbreviated as IWDK, i.e.,

u
(k)
i �

r
(k)
i􏼐 􏼑

2
􏽑

n
j�1
j≠i

r
(k)
i − r

(k)
j􏼐 􏼑

r
(k)
i 􏽑

n
j�1
j≠i

r
(k)
i − r

(k)
j􏼐 􏼑 + f r

(k)
i􏼐 􏼑

. (6)

,e main aim of this paper is to construct a two-step
inverse method of convergence order four.

2. Construction of Family of Simultaneous
Method for Distinct Roots

We modify the Weierstrass method (4) as follows:

z
(k)
i � u

(k)
i −

f u
(k)
i􏼐 􏼑

􏽑
n
j�1
j≠i

u
(k)
i − u

(k)
j􏼐 􏼑

, (7)

where u
(k)
i � r

(k)
i − ( f(r

(k)
i )/( 􏽑

n
j�1
j≠i

(r
(k)
i − r

(k)
j ))) and denote

it by WDK2. Let us now convert method (7) into inverse
iterative method as follows:

z
(k)
i �

u
(k)
i􏼐 􏼑

2
􏽑

n
j�1
j≠i

u
(k)
i − u

(k)
j􏼐 􏼑

u
(k)
i 􏽑

n
j�1
j≠i

u
(k)
i − u

(k)
j􏼐 􏼑 + f u

(k)
i􏼐 􏼑

, (8)

where u
(k)
i � (r

(k)
i )2 􏽑

n
j�1
j≠i

(r
(k)
i − r

(k)
j )􏼠 􏼡/􏼠

r
(k)
i 􏽑

n
j�1
j≠i

(r
(k)
i − r

(k)
j ) + f(r

(k)
i )􏼠 􏼡􏼡.

,us, method (8) is a two-step inverse method abbre-
viated as IWM2.

2.1. Convergence Analysis. We prove here that convergence
order of the IWM2 method is four.

Let D ∈ Cn be an open convex subset, Γ: D⟶ Cn and
m times differentiable operator (Γ1(r), . . . , Γn(r))T be
continuous, and the sequence (r(k))k∈N be defined by
r(k+1) � Γ(r(k)):

r
(k)

� r
(k)
1 , . . . , r

(k)
n􏼐 􏼑

⟺ r
(k+1)
i � Γi r

(k)
􏼐 􏼑, ∀i ∈ 1, ..., n{ }, k ∈ N,

(9)

where norm in Cn is defined as ‖r‖ � max |r1|, . . . , |rn|􏼈 .

Theorem 1. Let X and Y be normed spaces. Take an open
convex subset D of X for a u times Fr�echet differential operator
Γ, i.e., Γ: D⟶ Y /en, for any x, y ∈∈D

Γ(y) − Γ(x) − 􏽘

q−

j�1

1
j!
Γ(j)

(x) (y − x) . . . (y − x)
j− times

⎛⎝ ⎞⎠

����������

����������

≤
‖y − x‖

q

q!
sup

ζ∈(x,y)

Γ(q)
(ζ)

�����

�����.

(10)

Using ,eorem 1, we have the following.

Theorem 2. Let β ∈ D if

(i) Γ(β) � β
(ii) Γ(β) � Γ′(β) � Γ″(β) � · · · � Γ(u)(β) � 0

/en, there exists s> 0 such that, for any
r(0) ∈ D, ‖r(0) − β‖< s, the sequence r(k+1) � Γ(r(k))k∈N
converges to β.

Proof. Let s0 > 0 be such that

v0 � r ∈ C: ‖r − β‖≤ s0􏼈 􏼉 ⊂ D. (11)

C0 � max‖Γ(u)(r0)‖z∈v0, and there exists 0< s≤ s0 such
that

C0s
q

q!
< s⟺

C0

q!
􏼠 􏼡

(1/q− 1)

< s, (12)

where v � r ∈ Cn: ‖r − β‖≤ s􏼈 􏼉. Using hypothesis (2), r ∈ v;
then, (ii) and ,eorem 1 implies

‖Γ(r) − β‖ � Γ(r) − Γ(β) − 􏽘

q− 1

j�1

1
j!
Γ(j)

(β) (r − β) . . . (r − β)
j− times

⎛⎝ ⎞⎠

����������

����������

≤
1
q!

‖r − β‖
q sup
ζ∈(β,r)

Γ(q)
(ζ)

�����

�����
q
≤

C0s
q

q!
< s.

(13)

,us, Γ(r) ∈ v. Using the above relation for r � r(k), we
have

r
(k+1)

− β
�����

����� � Γ r
(k)

􏼐 􏼑 − β
�����

�����≤
C0

u!
r

(k)
− β

�����

�����
q
. (14)

Using (14), recursively, we have

r
(k)

− β
�����

�����≤
C0

u!
r

(k)
− β

�����

�����
q
≤

C0

u!

C0

u!
r

(k)
− β

�����

�����
q

􏼒 􏼓
q

≤ · · · ≤
C0

q!
􏼠 􏼡

1+q+···+qk

r
(0)

− β
�����

�����
qk

≤
C0

q!
􏼠 􏼡

(1/q− 1)

s⎛⎝ ⎞⎠

qk

⟶ 0 for k⟶ 0.

(15)
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,us, from inequality (14), (r)
(k)
k∈N is at least q. Now,

consider IWM2 as a vector function, i.e.,
Γ(r) � (Γ1(r), . . . , Γn(r)), where

Γi zi( 􏼁 �
ui( 􏼁

2

ui + f ui( 􏼁/􏽑n
j�1
j≠i

ui − uj􏼐 􏼑􏼠 􏼡

, where

ui �
ri( 􏼁

2

ri + f ri( 􏼁/􏽑
n
j�1
j≠i

ri − rj􏼐 􏼑􏼠 􏼡

.

(16)

For a fixed point β � (β1, . . . , βn), it is not difficult to
prove (zΓi(ζ)/zri) � (z2Γi(ζ)/zrizrj) � (z3Γi(ζ)/z2rizrj) �

0 and higher order partial derivative is not equal to zero.
,us, IWM2 has at least fourth-order convergence. □

Theorem 3. Let ζ1, . . . , ζn be simple roots of (1) and for
sufficiently close initial distinct estimations r

(0)
1 , . . . , r(0)

n of the
roots, respectively; IWM2 has then convergence order 4.

Proof. Consider εi � r
(k)
i − ζ i, εi

′ � u
(k)
i − ζ i, and εi

″ � z
(k)
i −

ζ i be the errors in r
(k)
i , u

(k)
i , and z

(k)
i , respectively. For

simplicity, we omit iteration index k. From first step of
IWM2, we have

ui − ζ i � ri − ζ i −

rif ri( 􏼁/􏽑
n
j�1
j≠i

ri − rj􏼐 􏼑􏼠 􏼡

ri + f ri( 􏼁/􏽑
n
j�1
j≠i

ri − rj􏼐 􏼑􏼠 􏼡

. (17)

,us, we obtain

εi
′ � εi 1 −

􏽑
n
j≠i
j�1

ri − ζj􏼐 􏼑/ ri − rj􏼐 􏼑􏼐 􏼑

1 + f ri( 􏼁/􏽑
n
j�1
j≠i

ri − rj􏼐 􏼑􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� εi
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j≠i
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j≠i

ri − rj􏼐 􏼑􏼠 􏼡

1 + f ri( 􏼁/􏽑
n
j�1
j≠i

ri − rj􏼐 􏼑􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(18)

Using the expression 􏽑 n
j≠i
j�1

((ri − ζj)/(ri − rj))
⎛⎝ ⎞⎠ − 1 �

􏽐
n
k≠i(εk/ri − rk)􏽑

k− 1
j≠i ((ri − ζk)/(ri − rj)) [2] in (18), we have

εi
′ � εi

εi/ri( 􏼁 􏽑
n
j≠i
j�1

ri − ζj􏼐 􏼑/ ri − rj􏼐 􏼑􏼐 􏼑 − 􏽐
n
k≠i εk/ri − rk( 􏼁􏽑

k− 1
j≠i ri − ζk( 􏼁/ ri − rj􏼐 􏼑􏼐 􏼑

1 + εk/ri( 􏼁 􏽑
n
j≠i
j�1

ri − ζj􏼐 􏼑/ ri − rj􏼐 􏼑􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (19)

If we assume all errors are of the same order, i.e.,
|εi| � |εk| � O(|ε|); then, we have

εi
′ � |ε|2

1/ri( 􏼁 􏽑
n
j≠i
j�1

ri − ζj􏼐 􏼑/ ri − rj􏼐 􏼑􏼐 􏼑 − 􏽐
n
k≠i 1/ri − rk( 􏼁􏽑

k− 1
j≠i ri − ζk( 􏼁/ ri − rj􏼐 􏼑􏼐 􏼑

1 + εk/ri( 􏼁 􏽑
n
j≠i
j�1

ri − ζj􏼐 􏼑/ ri − rj􏼐 􏼑􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � O |ε|2􏼐 􏼑. (20)
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From second-step of IWM2, we have

zi − ζ i � ui − ζ i −

uif ui( 􏼁/􏽑
n
j�1
j≠i

ui − uj􏼐 􏼑􏼠 􏼡

ri + f ui( 􏼁/􏽑
n
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j≠i
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. (21)

,us, we obtain
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j≠i
j�1

ui − ζj􏼐 􏼑/ ui − uj􏼐 􏼑􏼐 􏼑􏼠 􏼡 + f ui( 􏼁/􏽑
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. (22)

As from the above argument 􏽑
n
j≠i
j�1

((ui − ζj)/􏼠

(ui − uj))) − 1� 􏽐
n
k≠i((εk
′)/ui − uk)􏽑

k− 1
j≠i ((ui − ζk)/(ui − uj))

using in (22), we have

εi
″ � εi
′

εi
′/ui( 􏼁 􏽑
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j≠i
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n
k≠i εk
′( 􏼁/ui − uk( 􏼁􏽑

k− 1
j≠i ui − ζk( 􏼁/ ui − uj􏼐 􏼑􏼐 􏼑

1 + εk
′/ui( 􏼁 􏽑

n
j≠i
j�1

ui − ζj􏼐 􏼑/ ui − uj􏼐 􏼑􏼐 􏼑􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

If we assume all errors are of the same order, i.e.,
|εi
′| � |εk
′| � O(|ε′|); then,

εi
″ � ε′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

1/ui( 􏼁 􏽑
n
j≠i
j�1

ui − ζj􏼐 􏼑/ ui − uj􏼐 􏼑􏼐 􏼑 − 􏽐
n
k≠i 1/ui − sk( 􏼁􏽑

k− 1
j≠i ui − ζk( 􏼁/ ui − uj􏼐 􏼑􏼐 􏼑

1 + εk
′/ui( 􏼁 􏽑

n
j≠i
j�1

ui − ζj􏼐 􏼑/ ui − uj􏼐 􏼑􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � O ε′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑

� O |ε|2􏼐 􏼑
2

􏼒 􏼓 � O |ε|4􏼐 􏼑.

(24)

Hence, the theorem is proved. □

2.1.1. Using CAS for Verification of Convergence
Order. Consider

f(r) � (r − θ)(r − ϕ)(r − φ), (25)

and the first component of Γ1(r) iterative schemes to find
zeros of (25), r(k+1) � Γ(r(k)), simultaneously. In order to
verify ,eorem 2 conditions, we have to express the dif-
ferential of an operator Γ(r) in terms of their partial derivate
of its component as Γi(r):
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1
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2
2

z
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zr2zr3
,

z
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3
1

z
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2
1zr2

z
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zr1zr
2
2

z
3Γ1(r)
zr

3
2

z
3Γ1(r)

zr
2
2zr3

,

⋮ ⋮ ⋮ ⋮ ⋮ . . . ,

(26)

and so on.
,e lower bound of the convergence obtained until the

first nonzero element of the row is found. ,e Mathematica
code is given for each of the consider methods as follows.

Weierstrass–Dochive Method (WDK):

Γ1 r1, r2, r3( 􏼁 ≔ r −
f(r)

􏽑
n
j�1
j≠i

ri − rj􏼐 􏼑
, (i, j � 1, . . . , n),

In [1] ≔ D Γ1 r1, r2, r3􏼂 􏼃, r1􏼂 􏼃/. r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉,

Out [1] ≔ 0,

In [2] ≔ D Γ1 r1, r2, r3􏼂 􏼃, r2􏼂 􏼃/. r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉,

Out [2] ≔ 0,

In [2] ≔ D Γ1 r1, r2, r3􏼂 􏼃, r2􏼂 􏼃/. r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉,

Out [2] ≔ 0,

In [3] ≔ Simplify D Γ1 r1, r2, r3􏼂 􏼃, r1, r2􏼂 􏼃/. r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉􏼂 􏼃,

Out [3] ≔
1

− θ + ϕ
.

(27)

Modified Inverse Weierstrass Method:

Γ1 r1, r2, r3( 􏼁 ≔
(r)2 􏽑

n
j�1
j≠i

ri − rj􏼐 􏼑

r􏽑
n
j�1
j≠i

ri − rj􏼐 􏼑 + f(r)
,

In [1]: �
D Γ1 r1, r2, r3􏼂 􏼃, r2􏼂 􏼃

r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉
,

Out [1]: � 0,

In [2]: �
D Γ1 r1, r2, r3􏼂 􏼃, r3􏼂 􏼃

r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉
,

Out [2]: � 0,

In [3]: � Simplify
D Γ1 r1, r2, r3􏼂 􏼃, r1, r1􏼂 􏼃􏼂

r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉􏼃
,

Out [3]: �
2θ(θ − ϕ)(θ − φ)

θϕφ
.

(28)

WDK2 Method:

Γ1 r1, r2, r3( 􏼁 ≔ u −
f(u)

􏽑
n
j�1
j≠i

ui − uj􏼐 􏼑
,

(29)

where u � r − (f(r))/􏽑
n
j�1
j≠i

(ri − rj)),

In [1] ≔ D Γ1 r1, r2, r3􏼂 􏼃, r1􏼂 􏼃/. r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉,

Out [1] ≔ 0,

⋮,

In [13] ≔ Simplify
D Γ1 r1, r2, r3􏼂 􏼃, r1, r3, r1, r2􏼂 􏼃

r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉
􏼢 􏼣,

Out [13] ≔ −
− 12
θ2

.

(30)

IWM2 Method:
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Γ1 r1, r2, r3( 􏼁 ≔
(u)

2
􏽑

n
j�1
j≠i

ui − uj􏼐 􏼑

u􏽑
n
j�1
j≠i

ui − uj􏼐 􏼑 + f(u)
, (31)

where u � (r) 􏽑
n
j�1
j≠i

(ri − rj)/r􏽑
n
j�1
j≠i

(ri − rj) + f(r),

In [1] ≔
D Γ1 r1, r2, r3􏼂 􏼃, r1􏼂 􏼃

r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉
,

Out [1] ≔ 0,

⋮,

In [14] ≔ Simplify
D Γ1 r1, r2, r3􏼂 􏼃, r1, r1, r1, r1,􏼂 􏼃

r1⟶ θ, r2⟶ ϕ, r3⟶ φ􏼈 􏼉
􏼢 􏼣,

Out [14] ≔
24
θ3

.

(32)

(1) Basins of Attraction. To provoke the basins of attraction
of iterative schemes WDK, IWDK, WDK2, and IWM2 for
the root of nonlinear equation, we execute the real and
imaginary parts of the starting approximation as two axes
over a mesh of 250 × 250 in complex plane. Using |r(k+1) −

r(k)|< 10− 3 as a stopping criteria and maximum number of
iterations as 25. We allow different colors to mark to which
root the iterative scheme converges and black in other case.
Color brightness in basins shows less number of iterations.
For the generation of basins, we consider the following four
nonlinear functions, i.e., f1(r) � log r + er + 1 and
f2(r) � sin((r − 1)/2)cos((r − 3)/2) + 1.

,e elapsed time from Table 1 and brightness in color in
Figure 1(d)–2(d) shows the dominance behavior of IWM2
over WDK, IWDK, and WDK2, respectively.

,e elapsed time from Table 1 and brightness in color in
Figure 2(d) show the dominance behavior of IWM2 over
WDK, IWDK, and WDK2, respectively.

3. Numerical Results

Some nonlinear models from engineering and physical
sciences are considered to illustrate the performance and
efficiency of WDK2 and IWM2 using CAS Maple 18 with 64
digits floating point arithmetic for all computer calculations.
We approximate the roots of (1) rather than the exact roots
which depend on computer precision ∈, and the following
stopping criteria are used to terminate the computer
program:

ei � r
(k+1)
i − r

(k)
i

�����

�����2
< ∈, (33)

where ei represents the absolute error. We take ∈ � 10− 30. In
Tables 2–5, CO represents convergence order of iterative
schemes WDK2 and IWM2, respectively.

3.1. Applications in Engineering. In this section, we discuss
some applications in engineering.

Example 1 (see [24]). Fractional Conversion.
As expression described in [25, 26],

f3(r) � r
4

− 7.79075r
3

+ 14.7445r
2

+ 2.511r − 1.674,

(34)

is the fractional conversion of nitrogen, hydrogen feed at
250 atm. and 227 k.

,e exact roots of (34) are

ζ1 � 3.9485 + 0.3161i,

ζ2 � 3.9485 − 0.3161i,

ζ3 � − 0.3841,

ζ4 � 0.2778.

(35)

,e initial calculated values of (34) have been taken as
follows:

r1
0

(0) � 3.5 + 0.3i,

r2
0

(0) � 3.5 − 0.3i,

r3
0

(0) � − 0.3 + 0.01i,

r4
0

(0) � 1.8 + 0.01i.

(36)

Table 2 clearly shows the dominance behavior of IWM2
over WDK2 iterative method in terms of CPU time in
seconds and absolute error on same number of iterations k
for nonlinear function. f3(r).

Example 2 (see [6]). Van der Waal’s Fluid Model.
A Van der Waals fluid is the one which satisfies the

equation of state:

p �
Rθ

v − b
−

a

v
2, (37)

Table 1: Elapsed time in seconds.

Method WDK IWDK WDK2 IWM2
f1(r) 0.12937 0.142207 0.323190 0.107267
f2(r) 0.160921 0.23889 0.431936 0.153851
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where R, a, and b are positive constants, P is the pressure, θ is
the absolute temperature, and v volume. We obtain a
nonlinear equation

P +
3
v

􏼒 􏼓(3v − 1) � 8T, (38)

by setting P � (27b2p/a), T � (27Rbθ/8a), and r � (v/3b)

Taking P � 6 and T� 2 in (37), we have

18r
3

+ 13r
2

+ 9r − 3 � 0 (39)

or

f4(r) � 18r
3

+ 13r
2

+ 9r − 3. (40)
,e exact roots of (40) are

ζ1 � − 0.476763 − 0.702381i,

ζ2 � − 0.476763 + 0.702381i,

ζ3 � 0.2313104.

(41)

,e initial calculated values of (40) have been taken as
follows:

r1
0

(0) � − 0.4 − 0.7i,

r2
0

(0) � − 0.4 − 0.7i,

r3
0

(0) � 0.2.

(42)

Table 3 clearly shows the dominance behavior of IWM2
over the WDK2 iterative method in terms of CPU time in
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Figure 1: (a), (b), (c), and (d) show basins of attraction for nonlinear function f1(r) � r3 + r − 40 of the iterative methods WDK, IWDK,
WDK2, and IWM2 respectively.
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Figure 2: (a), (b), (c), and (d) show basins of attraction for nonlinear function f2(r) � sin((r − 1)/2)cos((r − 3)/2) + 1 of the iterative
methods WDK, IWDK, WDK2, and IWM2, respectively.
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Figure 3: Computational time in seconds of WDK2 and IWM2 for
nonlinear function f3(r) − f6(r), respectively.

Table 2: Simultaneous finding of all roots.

Method e
(6)
1 e

(6)
2 e

(6)
3 e

(6)
4

WDK2 0.0 0.0 6.8e − 66 6.8e − 66
IWM2 0.0 0.0 1.2e − 89 2.4e − 86
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seconds and absolute error on the same number of iterations
k for nonlinear function f4(r).

Example 3 (see [27]). Continuous Stirred Tank Reactor
(CSTR).

An isothermal stirred tank reactor (CSTR) is considered
here. Items A and R are fed to the reactor at rates of Q and
q-Q, respectively. Complex reaction developed in the reactor
is given as follows:

A + R⟶ B,

B + R⟶ C,

C + R⟶ D,

C + R⟶ E.

(43)

For a simple feedback control system, this problemwas first
tested by Douglas (see [28]). During his searching, he designed
the following equation of transfer function of the reactor:

Hc

2.98(r + 2.25)

(r + 1.45)(r + 2.85)
2
(r + 4.35)

� − 1. (44)

Hc being the gain of the proportional controller. ,is
transfer function yields the following nonlinear equation by
taking Hc � 0:

f5(r) � r
4

+11.50t
3

+47.49r
2

+83.06325r +51.23266875� 0.

(45)
,e transfer function has the four negative real roots, i.e.,

r1 � − 1.45, r2 � − 2.85, r3 � − 2.85, and r4 � − 4.45
,e initial calculated values of (45) have been taken as

follows:
r1
0

(0) � − 1.0,

r2
0

(0) � − 1.1,

r3
0

(0) � − 2.2,

r4
0

(0) � − 3.9.

(46)

Table 4 clearly shows the dominance behavior of IWM2
over the WDK2 iterative method in terms of CPU time in
seconds and absolute error on same number of iterations k
for nonlinear function f5(r).

Example 4 (see [16]). Predator-Prey Model.
Consider the Predator-Prey model in which the pre-

dation rate is denoted by

P(r) �
kr

3

a
3

+ r
3, a, k> 0, (47)

where r is the number of aphids as preys [6] and lady bugs as
a predator. Obeying the Mathusian Model, the growth rate
of aphids is defined asG(r) � r∗1r, r∗1 > 0. To find the solution
of the problem, we take the aphid density for which P(r) �

G(r) implies

r
∗
1r

3
− kr

2
+ r
∗
1a

3
� 0. (48)

Taking k� 30 (aphids eaten rate), a� 20 (number of
aphids), and r∗1 � 2(− 1/3) (rate per hour) in (48), we obtain

Table 3: Simultaneous finding of all roots.

Method e
(3)
1 e

(3)
2 e

(3)
3

WDK2 8036.0 8036.0 20.2
IWM2 4.9e − 97 4.9e − 97 1.7e − 110

Table 4: Simultaneous finding of all roots.

Method e
(3)
1 e

(3)
2 e

(3)
3 e

(3)
4

WDK2 0.2 0.4 0.5 0.7
IWM2 4.8e − 37 9.4e − 36 0.001 0.004

Table 5: Simultaneous finding of all roots.

Methods e
(3)
1 e

(3)
2 e

(3)
3

WDK2 9.3 9.3 7.5
IWM2 3.9e − 73 7.0e − 73 1.3e − 102
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Figure 4: Error graph ofWDK2 and IWM2 for f3(r), respectively.
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f6(r) � 0.7937005260r
3

− 30r
2

+ 6349.604208. (49)

,e exact roots of (49) are

ζ1 � 25.198,

ζ2 � 25.198,

ζ3 � 12.84.

(50)

,e initial estimates for f6(r) has been taken as follows:

r1
0

(0) � 1.8 + 8.7i,

r2
0

(0) � 1.8 − 8.7i,

r3
0

(0) � 0.1 + 0.1i.

(51)

Table 5 clearly shows the dominance behavior of IWM2
over WDK2 iterative method in terms of CPU time in

seconds and absolute error on the same number of iterations
k for nonlinear function f6(r).

4. Conclusion

In this work, new two-step derivative-free inverse iterative
methods of convergence order 4 for the simultaneous ap-
proximations of all roots of a nonlinear equation (1) are
introduced and discussed. Dynamical planes and basins of
attraction are presented to show the global convergence
behavior of inverse simultaneous iterative methods and two-
step classical Weierstrass method. Brightness in color in the
dynamical planes of IWM2 shows less number of iteration
steps as compared to classical simultaneous methods WDK2
for finding all roots of (1). ,e results of numerical test
examples from Tables 2–5, CPU time from Figure 3, and
residual error from Figures 4–7, corroborate with theoretical
analysis and illustrate the effectiveness and rapid conver-
gence of our proposed derivative-free inverse simultaneous
iterative method as compared to the WDK2.
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