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This article has been retracted by Hindawi following an inves-
tigation undertaken by the publisher [1]. This investigation
has uncovered evidence of one or more of the following indi-
cators of systematic manipulation of the publication process:

(1) Discrepancies in scope

(2) Discrepancies in the description of the research
reported

(3) Discrepancies between the availability of data and
the research described

(4) Inappropriate citations

(5) Incoherent, meaningless and/or irrelevant content
included in the article

(6) Peer-review manipulation

The presence of these indicators undermines our confi-
dence in the integrity of the article’s content and we cannot,
therefore, vouch for its reliability. Please note that this notice
is intended solely to alert readers that the content of this arti-
cle is unreliable. We have not investigated whether authors
were aware of or involved in the systematic manipulation
of the publication process.

Wiley andHindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and
Research Publishing teams and anonymous and named
external researchers and research integrity experts for con-
tributing to this investigation.

The corresponding author, as the representative of all
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This study was aimed at constructing a pyroptosis-related signature for prostate cancer (PCa) and elucidating the prognosis and
immune landscape and the sensitivity of immune checkpoint blockade (ICB) therapy in signature-define subgroups of PCa. We
identified 22 differentially expressed pyroptosis-related genes in PCa from The Cancer Genome Atlas (TCGA) database. The
pyroptosis-related genes could divide PCa patients into two clusters with differences in survival. Seven genes were determined
to construct a signature that was confirmed by qRT-PCR to be closely associated with the biological characteristics of
malignant PCa. The signature could effectively and independently predict the biochemical recurrence (BCR) of PCa, which was
validated in the GSE116918 and GSE21034. We found that patients in the high-risk group were more prone to BCR and
closely associated with high-grade and advanced-stage disease progression. Outperforming clinical characteristics and nine
published articles, our signature demonstrated excellent predictive performance. The patients in the low-risk group were
strongly related to the high infiltration of various immune cells including CD8+ T cells and plasma B cells. Furthermore, the
high-risk group with higher TMB levels and expression of immune checkpoints was more likely to benefit from immune
checkpoint therapy such as PD-1 and CTLA-4 inhibitors. The sensitivity to chemotherapy, endocrine, and targeted therapy
showed significant differences in the two risk groups. Our signature was a novel therapeutic strategy to distinguish the
prognosis and guide treatment strategies.

1. Introduction

Prostate cancer (PCa) is the second most widespread male
cancer with high lethality, causing more than 370000 deaths
worldwide in 2020 [1]. Meanwhile, more than one-third of
patients eventually experience biochemical recurrence
(BCR) after definitive treatment [2]. Patients with BCR were
more likely to develop clinical recurrence, metastases, and
cancer-specific mortality [3]. Therefore, early detection of
BCR was essential for the management and treatment of
PCa patients. The existing clinical indicators cannot effec-

tively predict BCR and guide treatment, necessitating repre-
sentative and robust clinical models to promote preclinical
translational and mechanistic studies of treatment in PCa.

Pyroptosis is considered to be a form of programmed
cell necrosis triggered by proinflammatory signals and asso-
ciated with inflammation [4]. Pyroptotic cells undergo cyto-
plasmic swelling and membrane pore formation, leading to
loss of plasma membrane integrity and ultimately to leakage
of cytoplasmic contents. The occurrence of pyroptosis
requires the activation of caspase-1, which is responsible
for the maturation of proinflammatory cytokines through
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inflammasome-dependent pathways, such as interleukin 1 β
(IL-1β) and IL-18 [5]. Meanwhile, gasdermin D (GSDMD)
cleaved by activated caspase-1 locks into the plasma mem-
brane to form pores [6]. More and more studies on the rela-
tionship between pyroptosis and tumors had shown that
pyroptosis played an important role in the proliferation,
invasion, and metastasis of tumor cells and affected the
prognosis and therapeutic effects of tumors. GSDME-
mediated pyroptosis promoted the development of colitis-
related colorectal cancer, inducing tumor cell proliferation
and proliferating cell nuclear antigen expression [7]. Gasder-
min E-dependent pyroptosis might be indispensable in
mediating the immunotherapy response of BRAF mutant
melanoma [8].

The tumor microenvironment (TME) has been con-
firmed to play a central role in tumorigenesis, immune
escape, progression, and metastasis [9]. Tumor cells actively
secrete inflammatory factors and growth factors to recruit
stromal cells, inflammatory, and immune cells. The interac-
tion between tumor cells and nontumor cells shapes TME,
which in turn affects tumor progression and evades immune
surveillance [10]. Characterized as inflammatory, pyroptosis
recruited and activated immune cells through the inflamma-
tory factors released during cell death to bridge innate
immunity and adaptive immunity to regulate the TME and
induce immune responses [11]. Meanwhile, neoantigens
produced during the process of pyroptosis further induced
new immune responses and hindered the development of

tumors [12]. The study by Z. Zhang et al. showed that the
infiltration of CD8+ T cells and natural killing cells in the
pyroptosis-activated TME could promote pyroptosis and
form a positive feedback loop [13]. The important role of
pyroptosis in the efficacy of cancer immunotherapy, such
as immune checkpoint blockade (ICB), and the new
approaches of pyroptosis to aid immunotherapy were receiv-
ing increasing attention [14]. Therefore, there was a need to
identify the different risk stratification of PCa patients for
immunotherapy through a comprehensive and deep insight
into TME by pyroptosis.

In this study, we sought to develop a prognostic signa-
ture for PCa, which can effectively stratify patients and pre-
dict the prognosis and treatment efficacy of patients with
different risk levels. The results revealed that the predictive
ability of our signature was superior to traditional clinical
features. On this basis, we systematically explored the role
of the signature in the TME. Our signature was a promising
prognostic biomarker to guide and determine the subgroup
of PCa patients more suitable for endocrine therapy, chemo-
therapy, and immunotherapy.

2. Materials and Methods

2.1. Data Source and Preprocessing. Transcriptome RNA
sequencing data and corresponding clinical information of
PCa samples, which was the training cohort, were down-
loaded from the TCGA program (https://tcga-data.nci.nih

RNA-seq data of 499 PCa and 52
adjacent tissues from TCGA
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Figure 1: The workflow of this study.
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.gov/tcga/). The GSE116918 dataset as testing cohort and
GSE21034 dataset as validation cohort were extracted from
the Gene Expression Omnibus (GEO) dataset (https://www
.ncbi.nlm.nih.gov/geo/). The ComBat algorithm of SVA
package was applied to correct the batch impact of nonbio-
technical bias. The training cohort was appointed to build
signature, and the testing and validation cohorts were used
to validate it. The R package maftools was used to visualize
the mutation landscape, and the CNV feature in human
chromosomes was investigated by the Rcircos package. The
rms package was used to build a predictive nomogram for
predicting the 1-, 2-, and 3-year overall survival.

2.2. Identification of Differentially Expressed Pyroptosis-
Related Genes. A total of 33 pyroptosis-related genes were
selected based on the previously published literature [15].
The difference in pyroptosis-related genes with a P value

< 0.05 was identified by limma package. We constructed
a protein-protein interaction (PPI) network using the
Search Tool for Retrieval of Interacting Genes (STRING).

2.3. Consensus Clustering. To identify different pyroptosis
modifications, we applied consensus clustering to identify
different pyroptosis patterns associated with the expression
of pyroptosis-related genes. The ConsensuClusterPlus pack-
age was applied to determine the number of clusters and
their stability, performing 1000 replications. The clusters
were selected based on the relative change in the area under
the cumulative distribution function (CDF) curve, the num-
ber of samples in the cluster, and the relevance of the cluster.

2.4. Construction of the Signature. The Cox regression
analysis was conducted to assess the correlation between
the expression level of each gene and its prognosis.
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Figure 2: Expression and interactions of the pyroptosis-related genes in PCa. (a) Heatmap of differentially expressed pyroptosis-related
genes in tumor and normal tissues. (b) Protein-protein interaction network of 22 DEGs. (c) The correlation network of DEGs. (d) The
CNV variation frequency of DEGs. (e) The location of CNV alteration of DEGs on chromosomes. (f) Bubble graph for GO enrichment
and (g) KEGG pathways.
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Figure 3: Clinical characteristics of PCa clusters. (a) CDF curves in clustering PCa patients. (b) Relative changes in the AUC of CDF curves.
(c) PCa patients were divided into two clusters based on consensus clustering matrix. (d) The clinical characteristics of the two clusters in the
heatmap. (e) Survival analysis in the two clusters.
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Furthermore, we obtained candidate gene through the least
absolute shrinkage and selection operator (Lasso) with 10-
fold cross-validation. In the end, we kept the 7 genes and
the coefficients, and the penalty parameter (λ) was deter-
mined by the minimum criterion. The formula to calculate
the risk score was as follows: Risk Score =∑λ

i βiSi, where β
is the coefficients and S is the gene expression level.

2.5. Evaluation of the Signature. The area under curve
(AUC) value of ROC curves was used to assess the sensitivity
and specificity. A risk score was assigned to each patient
according to the signature. Furthermore, we divided the
PCa patients into high- and low-risk groups by the median
value of risk score. Survival curves were plotted by the
Kaplan-Meier analysis to assess the overall survival of
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Figure 4: Identification of a signature to predict the BCR of PCa. (a and b) Process of variable selection in Lasso Cox regression and the
optimal values of the penalty parameter were determined by 10-fold cross-validation in the training cohort. The risk score, survival
status, and heatmap of the signature in the (c) training cohort, (d) testing cohort, and (e) validation cohort.
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Figure 5: Validation of the signature in multiple cohorts. Time-dependent ROC curves analysis in the (a) training cohort, (b) testing cohort,
and (c) validation cohort. The Kaplan-Meier survival curves based on the signature in the (d) training cohort, (e) testing cohort, and (f)
validation cohort. Univariate analysis in the (g) training cohort, (h) testing cohort, and (i) validation cohort. Multivariate Cox regression
in the (j) training cohort, (k) testing cohort, and (l) validation cohort.
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patients in the high- and low-risk groups. The univariate
and multivariate Cox regression analyses were implemented
to evaluate the independent prognostic value. These R soft-
ware packages include timeROC, survival, and survminer.

2.6. Functional Enrichment Analysis. Gene Ontology (GO)
including biological process (BP), cellular component
(CC), and molecular function (MF) categories and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) were analyzed
by the clusterProfiler R package.

2.7. Immune Landscape and TIDE Analysis. In order to
explore the difference of the abundance of immune infiltrates
in the high- and low-risk groups, we used the algorithms
including EPIC, XCELL, MCPCOUNTER, QUANTISEQ,
CIBERSORT-ABS, CIBERSORT, and TIMER to score the
infiltration of each immune cell subtype. The significance
threshold was set to a P value less than 0.05. The Wilcoxon
sign-rank test was used to analyze the difference in the abun-
dance of immune infiltrating cells between the high- and
low-risk groups. The tumor immune dysfunction and exclu-
sion (TIDE) of the PCa patients was calculated from the
website (http://tide.dfci.harvard.edu/). The tumor inflamma-
tion signature (TIS) score was computed as the mean of
log2-scale normalized expression of 18 signature genes [16].

2.8. Association between the Signature and the Treatments.
To investigate the potential role of the signature in immuno-
therapy, we analyzed the relationship between the signature
and immune checkpoints expression. Here, we adopted the

ggpubr package. In addition, we explored the function of sig-
nature in endocrine therapy and chemotherapy by analyzing
the half-maximal inhibitory concentration (IC50) of the
drugs. The difference in targeted therapy between the high-
and low-risk groups was found by the Wilcoxon signed-
rank test. The R packages used here were pRRophetic and
ggplot2. NCI-60 database of 60 different tumor cell lines
from 9 different tumor types was provided by CellMiner
(https://discover.nci.nih.gov/cellminer). Pearson’s correla-
tion analysis was carried to analyze the drug sensitivity
between the expression of genes and 263 drugs approved
by the FDA or in clinical trials.

2.9. Cell Line Culture and qRT-PCR. All human cell lines
were purchased from the American Type Culture Collection
(ATCC, USA), including DU145, PC3, and BPH-1. All cells
were cultured in Roswell Park Memorial Institute (RPMI)
1640 medium (Gibco, USA; catalog number: C11875500BT)
supplemented with 10% fetal bovine serum (FBS; Gibco,
USA; Cat.10270–106), 0.1mg/mL streptomycin, and 100U/
mL penicillin (Gibco, USA; catalog number: 15,140–122)
and were maintained in a humidified incubator at 37°C con-
taining 5% CO2. Total RNA was obtained with the RNeasy
mini kit (QIAGEN, Germany, Cat. No. 74,104) and reverse
transcribed with the RT kit (TaKaRa, Japan, Cat. No.
NR037A). The cDNA products were then subjected to real-
time PCR using Fast SYBR® Green Master Mix (Life technol-
ogy, USA; Cat. No: 4,385,610). The sequences of all primers
used for PCR were documented in the supplementary
materials.
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Figure 6: Distribution pattern and Kaplan-Meier survival analysis. (a) 2D PCA plot and t-SNE analysis between the high- and low-risk
groups in the training cohort. (b) 2D PCA plot and t-SNE analysis between the two groups in the testing cohort. (c–i) The Kaplan-Meier
survival curve of 7 genes between the two groups.
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2.10. Statistical Analysis. All statistical analyses were applied
by R version 4.1.1 (Institute for Statistics and Mathematics,
Vienna, Austria; https://www.r-project.org), and some related
packages were applied to all statistical analyses. P < 0:05 was
considered the significantly statistical difference.

3. Result

3.1. Screening Differentially Expressed Pyroptosis-Related
Genes. The brief process of this research was depicted in
Figure 1. Initially, we compared the expression of 33
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Figure 7: The expression of seven genes in PCa cell lines. (a–g) The relative mRNA levels of UBAP1L, UBE2C, KIFC2, MAPK8IP3, TTLL3,
MYBL2, and MMP11 in DU145, PC3, and BPH-1.
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pyroptosis-related genes in 52 normal tissues and 499 PCa
samples from the TCGA database and identified 22 differen-
tially expressed genes (DEGs), which were depicted in the
heatmap (all P < 0:001) (Figure 2(a)). Protein-protein inter-
action (PPI) analysis with the minimum required interaction
score of 0.9 was employed to investigate the interactions of
these DEGs. CASP1, CASP8, IL1B, and PYCARD were iden-
tified as hub genes (Figure 2(b)). Furthermore, the correla-
tion network of the DEGs was illustrated in Figure 2(c).
The analysis of CNV alteration frequency exhibited that
most DEGs were focused on copy number reduction

(Figure 2(d)). We further annotated the sites of CNV alter-
ations of DEGs on the chromosome (Figure 2(e)). In order
to further explore the biological processes and potential
molecular mechanisms that the DEGs involved, we con-
ducted GO analysis and KEGG pathway, revealing the par-
ticipation of many biological processes and signaling
pathways (Figures 2(f) and 2(g)).

3.2. Classification of PCa Patients Based on Pyroptosis-
Related Genes. The empirical CDF was depicted to identify
the optimum k values for the distribution of samples with
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Figure 8: Evaluating the relationship between the signature and clinical characteristics of PCa. (a) The distribution of clinicopathological
factors between the high- and low-risk groups. Risk scores were significantly associated with BCR (b), tumor grade (c), tumor stage (d),
T stage (e), N stage (f), and M stage (g).
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maximal stability (Figures 3(a) and 3(b)). The result of con-
sensus matrices suggested that PCa patients can be divided
into two completely different clusters when clustering vari-
able ðkÞ = 2 (Figure 3(c)). We found significant differences
in the clinical characteristics including BCR, M stage, N
stage, T stage, tumor stage, and tumor grade between these
two different clusters (Figure 3(d)). In addition, the
Kaplan-Meier survival analysis confirmed that patients in
cluster 2 had a shorter BCR-free time than those in cluster
1 (P < 0:001) (Figure 3(e)).

3.3. Construction and Evaluation of Prognostic Signature for
PCa. To identify a specific prognostic signature for disease
diagnosis and treatment, we explored differentially
expressed genes between the above two clusters. Then, we
performed univariate Cox regression and Lasso regression
analysis, in which the best values of the penalty parameter
were determined by 10-fold cross-validation (Figures 4(a)
and 4(b)). Finally, 7 effective genes for the construction of
the risk signature were determined. The PCa patients were
stratified into high-risk and low-risk groups according to
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Figure 9: Stratification survival analyses. (a–j) The Kaplan-Meier curve analyses of overall survival in subgroups stratified by different
clinical features.
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the median risk score as the cut-off point. The distribution of
risk score showed a significant difference in BCR-free time
among the training cohort, testing cohort, and independent
external validation cohort, with a gradual increase in the
probability of BCR as the risk score increased (Figures 4(c)
– 4(e)). Furthermore, we performed time-dependent ROC
analysis and calculated the AUC at 1, 3, and 5 years, showing
good sensitivity and specificity of the signature for prognosis
of PCa patients in three cohorts (Figures 5(a) – 5(c)). The
result of the Kaplan-Meier survival curve indicated that the
patients in the high-risk group suffered shorter BCR-free
time, showing the same outcome in all three cohorts
(Figures 5(d) – 5(f)). The univariate and multivariate Cox
regression proved that the signature could serve as a robust
and independent prognostic factor for PCa patients
(Figures 5(g) – 5(l)).

3.4. Distribution Patterns of the High-Risk and Low-Risk
Groups. PCA and t-SNE analyses were conducted to reduce
dimensionality and showed a satisfactory separation
between the high- and low-risk groups. The distribution of
the high- and low-risk groups tended to be in different direc-
tions (Figures 6(a) and 6(b)). Furthermore, we explored the
impact of the 7 genes used to construct the signature on
BCR-free time. Surprisingly, patients had higher probability
of BCR when each of these genes was highly expressed
(Figures 6(c) – 6(d)). We further analyzed the mRNA
expression of the 7 genes used to construct the signature in
two PCa cell lines (DU145 and PC3) and benign prostatic
hyperplasia cell (BPH-1) by qRT-PCR assays. These results
indicated that the expression levels of UBE2C, KIFC2, MAP-
K8IP3, TTLL3, MYBL2, and MMP11 were significantly

upregulated in PCa cell lines, except for UBAP1L which
did not show significant differences (Figures 7(a) – 7(g)).

3.5. Correlation between Clinicopathological Characteristics
and the Signature. The distributed patterns between the sig-
nature and clinicopathological characteristics were illus-
trated on the heatmap (Figure 8(a)). The BCR, M stage, N
stage, T stage, tumor stage, tumor grade, and age were
diversely distributed in the high- and low-risk groups. To
further investigate whether the signature was closely related
to different clinicopathological conditions, we found that the
clinical features including BCR, tumor grade, tumor stage, T
stage, N stage, and M stage were significantly associated with
the signature (Figures 8(b) – 8(g)). The high-grade and
advanced-stage patients were more likely to be related to
the high-risk group. In addition, the low-risk group was
more inclined to low grade and early stage, which were
equivalent to a better prognosis. We further divided PCa
patients into different stratified groups according to age,
gender, tumor grade, tumor stage, and T stage. There were
significant differences between the high- and low-risk
groups, suggesting that the low-risk group had longer
BCR-free time in all stratification subgroups. (Figures 9(a)
– 9(k)) Therefore, the signature might be significantly asso-
ciated with the progression of PCa and had broad applicabil-
ity and feasibility for prognosis prediction.

3.6. Construction and Evaluation of the Nomogram.We con-
structed a nomogram containing risk scores and clinical
characteristics to predict the 1-, 2-, and 3-year BCR proba-
bility of PCa patients. A higher total score in the nomogram
represented a worse prognosis (Figure 10(a)). The
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Figure 10: Construction and validation of nomogram. (a) The nomogram for predicting the probability of the 1-, 2-, and 3-year BCR-free
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calibration chart displayed excellent agreement between
observed and predicted rates at 1, 2, and 3 years
(Figures 10(b) – 10(d)). By comparing the AUC between
the signature and clinical features, we found that our signa-
ture can predict BCR more accurately (Figure 10(e)). Thus,
our nomogram based on the signature had good predictive
ability in clinical practice.

3.7. Comparison with Other Gene Expression Signatures. To
determine whether our signature was superior to other sig-
natures, we compared the signatures constructed for PCa
in 9 published articles [17–25]. We found that the accuracy
and stability of our signature in 1, 2, and 3 years were better
than those of the nine signatures in the ROC curves analysis
(Figures 11(a) – 11(j)). Then, in order to further compare
our signature with the predicted performance of these signa-
tures, we calculated the concordance index (C-index). As the
results depicted, the C-index of our signature was 0.731
(Figure 11(k)), which was better than other signatures.

3.8. Landscape of Somatic Mutations in PCa. We analyzed
the TMB level of the high- and low-risk groups and found
that the TMB level of the high-risk group was higher than
the TBM level of the low-risk group and was proportional
to the risk score (Figures 12(a) and 12(b)). PCa patients with
high TMB levels were more likely to develop BCR
(Figure 12(c)). After further dividing the patients into the
high- and low-risk groups by TMB level, we noticed that
the patients in the high-risk group with high TMB levels
had the shortest BCR-free time (Figure 12(d)). We then
compared the 20 genes with the highest mutation frequen-
cies in the high- and low-risk groups, showing that these
genes were mutated more frequently in the high-risk group,
with more significant gene-to-gene coincidence and exclu-
sivity relationships (Figures 12(e) – 12(j)).

3.9. Evaluation the Immune Landscape of PCa. We analyzed
the correlation between the signature and the immune cell
subtype infiltration, which showed that the signature was
positively associated with multiple immune cells including
CD8+ T cells, B plasma cells, B memory cells, and B naive
cells (Figures 13(a) – 13(g)). Compared with the high-risk
group, the abundance of infiltrating CD8+ T cells in the
low-risk group was significantly higher. To figure out the
relationship between the signature and the expression of
immune checkpoint in PCa, we found that the high-risk
group was positively correlated with high expression of
TIGIT, LAG3, PD-1, and CTLA-4 (Figure 14(a)). The TIDE
was applied to evaluate the potential response of ICIs for
PCa patients (Figures 14(b) – 14(d)). TIDE value in the
high-risk group was significantly lower than that in the
low-risk group, demonstrating that the high-risk group
deserved a better immunotherapy response and immuno-
therapy outcome. The time-dependent ROC analysis
revealed that the prognostic performance of the signature
was significantly higher than that of the newly discovered
biomarkers including TIDE and TIS (Figure 14(e)).

3.10. Correlation Analysis between the Signature and Drug
Treatments. Endocrine drugs and chemotherapeutic drugs
are the conventional options for the nonsurgical treatment
of PCa. Therefore, we analyzed the sensitivity of different
risk groups to endocrine drugs, which suggested that bicalu-
tamide had a lower IC50 in the low-risk group
(Figure 15(a)). Chemotherapy combined with immunother-
apy has been shown to have better efficacy than either ther-
apy alone. Our results indicated that patients in the low-risk
group were more sensitive to docetaxel. (Figure 15(b)) How-
ever, the high-risk group was more sensitive to chemothera-
peutic agents such as cisplatin, paclitaxel, doxorubicin,
etoposide, and mitomycin C than the low-risk group, imply-
ing that patients in the high-risk group were more likely to
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Figure 11: Comparison with other 9 published gene signatures (a–j). (k) C-index of signatures.
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benefit from these agents (Figures 15(c) – 15(g)). Olaparib, a
novel targeted drug, acted to inhibit poly ADP ribose poly-
merase protein [26]. The high-risk group was more sensitive
to olaparib than the low-risk group (Figure 15(h)). Finally,
we found that each of the seven genes was also closely
related to multiple drugs (Figure 15(i)).

4. Discussion

Treatment strategies for PCa have evolved and progressed
tremendously over the past decade yet remained unsatisfac-
tory. More than half of patients with high-risk PCa experi-
enced BCR postoperatively [27]. BCR was a significantly
poor prognosis for PCa patients and was strongly associated
with progression to metastatic castration-resistant prostate
cancer (mCRPC) [28]. Accurately predicting the risk of
BCR in PCa patients was essential for the clinical manage-
ment of PCa and the prognosis of patients. Effective man-
agement of PCa could be achieved by precisely stratifying
patients at low risk of BCR progression from those at high

risk of BCR progression. Watchful waiting (active surveil-
lance) and curative therapies of patients at different risks
of developing BCR could lead to a better prognosis for the
patient population in greater need. However, there was cur-
rently no feasible way for risk stratification of PCa patients
in clinical practice. Thus, this study focuses on a novel type
of programmed cell death pyroptosis that played a complex
and important role in tumor development and treatment.
Normal cells might be transformed into cancer cells by the
inflammatory factors released during the process of pyropto-
sis [29]. Meanwhile, the interaction between pyroptosis and
immune cells in TME affected immune defense and antitu-
mor immune function, which in turn had a significant
impact on tumor growth, invasion, and metastasis [30]. Pro-
viding a novel and comprehensive insight into the relation-
ship between pyroptosis and TME could lead to better
identification of PCa and more precise treatments for the
patients. As the first report of pyroptosis-related genes in
PCa, this study accurately and effectively classified the risk
of PCa patients by constructing a signature, which could
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predict the BCR and sensitivity to chemotherapy, endocrine
therapy, and immunotherapy for PCa patients at different
risk groups. Our signature could provide clinicians with
new ideas for managing the risk of BCR in PCa patients
and guiding clinical treatment strategies.

In this study, first, we determined the expression levels of
33 known pyroptosis-related genes in PCa and normal tis-
sues and identified 22 differentially expressed pyroptosis-
related genes related to prognosis. Second, sample classifica-
tion based on predefined gene expression features was a
proven method [31]. In order to verify the prognostic value
of pyroptosis-related genes, we found that the expression of
pyroptosis-related genes occurred differently in patients
divided into two groups, resulting in a completely different
prognosis. Patients in cluster 2 had higher expression levels
of pyroptosis-related genes and a poorer prognosis. Third,
a signature composed of 7 genes through Lasso regression
analysis was constructed. The independent and powerful
ability of the signature to predict the prognosis of PCa
patients was verified in the two independent datasets
GSE116918 and GSE21034. Fourth, our signature that was
closely associated with various stages of PCa could effectively
judge the prognosis of patients in different pathological con-
ditions. There were significant differences between the two
risk groups in N stage, T stage, and tumor stage and grade,
suggesting that our signature was closely related to the exist-
ing clinical characteristics. A total of 5 grading groups from
grade 1 to grade 5 were proposed based on the Gleason score
[32]. Our results found that our signature was closely related
to grade, and that grade increased with increasing risk score,
indicating that our signature was strongly associated with
the existing scoring systems such as Gleason score. Addi-
tionally, we then constructed a nomogram that combined
our signature and clinical characteristics to predict the 1-,
2-, and 3-year BCR-free survival rates of PCa patients. Fifth,
we compared our signature with nine published signatures

constructed for PCa and showed that our signature possesses
excellent and accurate prognostic performance superior to
the currently established PCa signatures. Overall, our signa-
ture had the unexpected predictive ability as well as excellent
predictive accuracy to classify PCa patients according to the
risk of BCR, which would facilitate clinicians to better treat
patients with higher risk.

Chronic inflammation and the associated sustained
immune response were thought to contribute to the develop-
ment and progression of PCa [33]. Pyroptosis was an
inflammatory programmed cell death caused by inflamma-
tory caspases and was involved in the inflammatory
response to enhance host protective immunity [34]. The
tumor microenvironment played a key role in the pathogen-
esis and disease progression. As the interaction between can-
cer cells and the tumor microenvironment triggered
complex physiological changes that lead to disease severity,
cancer metastasis, and resistance to conventional therapies
[35]. Q. Wang et al. found that less than 15% pyroptosis of
tumor cells could induce the elimination of entire 4T1 tumor
grafts in tumor-bearing mice by activating cytotoxic T cells
and CD4+ T helper cells in the TME, which was not repro-
duced in immunodeficient mice [36]. The plasma B cells
were considered to be the driving factor of the immune
response of PCa, which could improve recurrence-free sur-
vival after surgery, and the way that plasma cells participated
in the immune system for therapy might be a potential bio-
marker of the target for therapeutic response to immuno-
therapy for future prospective evaluation [37]. CD8+ T
cells were active antitumor lymphocytes with strong prog-
nostic relevance in many solid tumors [38]. Vicier et al.
revealed that low density of CD8+ T cells was influential as
an independent poor prognostic marker for BCR and risk
of metastatic recurrence in a study of 109 patients with pri-
mary PCa [39]. Collectively, it could be seen that the poor
prognosis and outcome of PCa were closely related to
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Figure 13: CCorrelation between the signature and the immune infiltration. (a) The difference between the signature and tumor-infiltrating
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immune cell infiltration, which was consistent with our
results. As we have discovered, the patients in the high-risk
group had a significantly shorter time to BCR, while the
high-risk group was negatively associated with the immune
cells such as CD8+ T cells and plasma B cells. The signature
distinguished different groups and thus determined different
degrees of immune cell infiltration, leading to different out-
comes in PCa. Paying more attention to immune cell infil-
tration might become a future treatment strategy and
further affect the clinical outcome of PCa patients.

One promising PCa treatment method currently under
study was immunotherapy, which used the antitumor
immune response of the innate immune system to destroy
tumorigenesis. ICB therapy targeting CTLA-4, PD-1, and
PD-L1 had shown significant therapeutic benefit and
become an attractive treatment option for several malignant
cancers, such as melanoma, bladder cancer, and lung cancer
[40]. It was previously widely believed that PCa did not show
a desirable therapeutic response to immunotherapy. How-
ever, a small percentage of PCa patients had shown impres-
sive and durable responses to immunotherapy PD-1
inhibition according to the results of KEYNOTE-028 trial
[41]. Meanwhile, the immunosuppressive microenviron-
ment of PCa suppressed tumor-specific T cell responses
and promoted tumor progression and invasion. A renewed
focus on the tumor immune environment was needed to
determine prognostic and predictive biomarkers and to
guide novel immunotherapies for precise cancer treatment.
KEYNOTE-199, the largest ongoing clinical study to date
evaluating anti-PD-1 therapy in mCRPC, noted that patients
with higher TMB after treatment with pembrolizumab were
strongly associated with better prostate-specific antigen
(PSA) response and time to PSA progression [42]. More-
over, in the subgroup of patients with mCRPC receiving

docetaxel and endocrine therapy, pembrolizumab demon-
strated favorable antitumor activity and disease control,
which was durable and encouraging [43]. As seen above, a
key challenge in managing PCa was clinical heterogeneity,
where patients with the same disease may have different out-
comes depending on the tumor microenvironment and
whether they were treated with a combination of chemother-
apy and endocrine therapy, which was difficult to predict
with the available biomarkers. In this study, we tried to pro-
vide novel insight to explore the immune landscape and
immunotherapy in PCa by our signature. We compared
the expression of immune checkpoints in the high- and
low-risk groups and found that most immune checkpoints
such as PD-1, CTLA-4, LAG3, and TIGIT were more
expressed in the high-risk group than in the low-risk group.
The previous studies reported that increased expression of
PD-1 and PD-L1 was associated with more aggressive PCa
[44, 45], which was in line with our findings that patients
in the high-risk group were more likely to develop BCR
and were associated with high-grade and advanced-stage
PCa. Meanwhile, patients with high levels of immune check-
point gene expression were prone to develop immunosup-
pressive microenvironment to promote tumor immune
escape [46], suggesting that PCa patients in the high-risk
group were more likely to benefit from immune checkpoint
inhibitor therapy. TMB, TIS, and TIDE were newly identi-
fied predictors of immunotherapy [16, 47]. In particular,
TIDE had been shown to have better performance than
other biomarkers or indicators in predicting immunothera-
peutic response [48]. We adopted TIDE to assess the poten-
tial clinical efficacy of immunotherapy in the high- and low-
risk groups. Higher TIDE represents less likely to benefit
from immunotherapy, such as PD-1 and CTLA-4 inhibition
therapy. Based on our results, patients in the high-risk group
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with low TIDE were more suitable for immunotherapy. Our
signature sheds new light on the effective identification of
subgroups of PCa patients who can benefit from immuno-
therapy. In addition, by comparing the AUC values of our
signature with other biomarkers in time-dependent ROC

analysis, we observed that our signature had better predic-
tive performance and superiority. Therefore, it was sug-
gested that our signature was not only effective as an
efficacy predictor to discriminate PCa patients with greater
benefit from immunotherapy but also had higher accuracy
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Figure 15: Assessment of the drug sensitivity. The high- and low-risk groups had significant differences in IC50 of drugs such as (a)
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and specificity to predict the prognosis than other existing
biological indicators. We have proved that our signature
could effectively stratify the risk of PCa patients into sub-
groups that were more suitable for immunotherapy and
had the potential as an indicator of immunotherapy
response in PCa.

Bicalutamide is a nonsteroidal androgen receptor inhib-
itor widely used in the endocrine therapy of PCa. A prospec-
tive randomized trial demonstrated that the use of
bicalutamide significantly reduced the risk of objective dis-
ease progression in patients with locally advanced PCa
[49]. The sensitivity analysis of bicalutamide in the high-
and low-risk groups revealed that the low-risk group had a
lower IC50, which meant that patients in the low-risk group
had a higher sensitivity for bicalutamide. Chemotherapy is a
common treatment for advanced PCa, among which doce-
taxel is the first choice for chemotherapy in most cases.
Combined docetaxel and prednisone was the first-line treat-
ment for mCRPC [50]. Chemotherapy drugs were designed
to attack rapidly dividing cells, which include not only can-
cer cells but also normal cells in the body, and this is where
the side effects of chemotherapy arise. The side effects of
chemotherapy were determined by the type of drug and
the dose and period of taking the drug. Common side effects
included hair loss, diarrhea, and infections [51]. However,
there was currently no biological indicator for the choice of
chemotherapy drugs used in clinical practice. Our results
showed that patients in the low-risk group were more sensi-
tive to docetaxel and patients in the high-risk group could
benefit more from cisplatin, doxorubicin, etoposide, mito-
mycin C, and paclitaxel. Subgroups of prostate patients
stratified according to the signature had different sensitivi-
ties to chemotherapeutic agents. Targeted administration
of chemotherapeutic agents based on their sensitivity will
not only improve treatment outcomes but also reduce the
adverse effects of chemotherapy. In addition, the available
clinical trial results indicated that the targeted drug olaparib
could bring unexpectedly better results to PCa patients [52].
Our results showed that the high-risk group was more likely
to benefit from olaparib. Our signature was a promising and
reliable predictor of chemotherapy, endocrine, and targeted
therapy in PCa, providing a novel approach to get a better
prognosis for patients.

5. Conclusion

In short, we have constructed a pyroptosis-related signature
that could serve as an independent prognostic factor for
PCa. The role of the signature in the immune landscape
and treatments was fully elaborated. It was expected to
become a robust and promising signature to guide the treat-
ment of PCa.
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Sepsis has high fatality rates. Early diagnosis could increase its curating rates. There were no reliable molecular biomarkers to
distinguish between infected and uninfected patients currently, which limit the treatment of sepsis. To this end, we analyzed
gene expression datasets from the GEO database to identify its mRNA signature. First, two gene expression datasets
(GSE154918 and GSE131761) were downloaded to identify the differentially expressed genes (DEGs) using Limma package.
Totally 384 common DEGs were found in three contrast groups. We found that as the condition worsens, more genes were
under disorder condition. Then, random forest model was performed with expression matrix of all genes as feature and disease
state as label. After which 279 genes were left. We further analyzed the functions of 279 important DEGs, and their potential
biological roles mainly focused on neutrophil threshing, neutrophil activation involved in immune response, neutrophil-
mediated immunity, RAGE receptor binding, long-chain fatty acid binding, specific granule, tertiary granule, and secretory
granule lumen. Finally, the top nine mRNAs (MCEMP1, PSTPIP2, CD177, GCA, NDUFAF1, CLIC1, UFD1, SEPT9, and
UBE2A) associated with sepsis were considered as signatures for distinguishing between sepsis and healthy controls. Based on
5-fold cross-validation and leave-one-out cross-validation, the nine mRNA signature showed very high AUC.

1. Introduction

As a clinical syndrome, sepsis has been accompanied by
human society from ancient times to the present [1]. Sepsis
and septic shock have high fatality rates and consume a large
amount of medical resources. Since the launch of save sepsis
in the early 2000s, the treatment outcomes of patients with
sepsis have improved. But the case fatality rate for sepsis
remains at 25 to 30 percent, and when shock occurs, it can
be as high as 40 to 50 percent [2]. After decades of research,
there is still no specific treatment for sepsis. The improve-
ment in patient outcomes came primarily from nonspecific
interventions, including fluid resuscitation, early application
of antibiotics, and elimination of the source of infection ([3]
#5; [4] #8478; [5] #8582; [6] #49). An important reason for

this disheartening situation is that the definitions of sepsis
and septic shock cover a very heterogeneous population of
patients. The causes are so varied that it is difficult to find
a common treatment for these conditions.

How to classify patients with sepsis is one of the key
areas of research on sepsis and other diseases [7–9], though
biomarkers have been the subject of intensive research for
decades ([10] #71; [11] #15; [12] #8853; [13] #431; [14]
#673; [15] #50). For example, procalcitonin has been
included in treatment guidelines [16], but there is currently
no reliable biomarker to distinguish between infected and
uninfected patients. Only 30-40% of patients with sepsis or
septic shock have positive blood cultures. New technologies
such as high-throughput technologies (genomics, tran-
scriptomics, etc.) have been used to better identify subsets
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of patients with sepsis, to identify patients at high risk of
developing sepsis, and to provide the possibility for rapid
and accurate diagnosis of infection [17, 18, 19].

This study analyzed microarray dataset from public gene
expression database, to obtain differentially expressed genes
(DEGs) between sepsis and healthy people, and then, a ran-
dom forest model was performed on the DEGs to select
more import biomarkers. Next, we performed gene func-
tional enrichment analysis on the DEGs selected to analyze
the function module of the DEGs and to uncover how the
DEGs contribute to sepsis. Our study aims to detect
neglected biomarkers of sepsis to better distinguish between
sepsis patients and healthy controls.

2. Materials and Methods

2.1. Data Resource. To identify potential gene signatures
associated with sepsis, we got two gene expression datasets
(GSE154918 and GSE131761) [20, 21] from the GEO data-
base (https://www.ncbi.nlm.nih.gov/geo/), GSE154918 data-
set as primary research data and GES131761 as
supplementary data.

Totally, 109 samples from GSE154918 dataset were col-
lected from 19 septic shock patients, 20 sepsis patients, 12
uncomplicated infection patients, and 40 healthy volunteers.
Supplementary validation dataset GSE131761 was collected
from 81 septic shock patients and 15 healthy volunteers.
All samples were collected from peripheral blood. The diag-
nosis of septic shock was according to the Sepsis 3.0 cri-
teria [3].

2.2. Identification of DEGs. The workflow is shown in
Figure 1. DEGs were calculated between sepsis samples
(uncomplicated infection, sepsis, and septic shock) and
healthy control using Limma package [22] with p value <
0.05 and ∣logFC ∣ >1 as threshold.

2.3. Random Forest Model. Random forest model was per-
formed using Python machine learning library Scikit-learn
[23], with expression matrix of all genes as feature and dis-
ease state as label as other researches [1]. We set 1000 ran-
dom forest trees and operated 5-fold cross-validation and
leave-one-out cross-validation to evaluate the performance
of the model. Feature importance was collected from the
random forest model after training and assessment, and
then, we sorted the features by feature importance and chose
top n features to reconstruct random forest, accessing the
best combination of gene signatures [24].

2.4. Functional and Pathway Enrichment Analyses. Gene
enrichment analysis of DEGs was based on Gene Ontology
(GO) database from molecular function, cellular compo-
nent, and biological process using R package ClusterProfiler
[25]; pathways with adjusted p value < 0.05 were selected as
significant enriched pathways [26].

3. Results

3.1. Identification of DEGs. Gene expression difference was
calculated between three sepsis groups and healthy control,

respectively. 530 differentially expressed genes (DEGs) were
found in uncomplicated infection patients compared with
healthy control, 727 DEGs were found in sepsis samples,
1414 DEGs were found in sepsis shock samples, and 384
common DEGs were found in the above three contrast
groups (Figure 2). We found that as the condition worsens,
more genes were under disorder condition.

3.2. Features Selected by Random Forest. Next, we performed
random forest [15, 27] to select important genes of the DEGs
of the above three contrast groups, with gene expression
matrix of DEGs as feature and health state as label; we
selected the genes with feature importance > 0 as the most
important genes. We, respectively, found 440, 657, and
1018 DEGs in uncomplicated infection vs. healthy control,
sepsis vs. healthy control, and sepsis shock vs. healthy con-
trol, and 279 genes were common among the three
(Figure 3).

3.3. Enrichment Analysis of Intersection Important DEGs.
We further performed functional analyses for 279 important
DEGs to explore the underlying biological roles. Multiple
GO-BP terms were associated with neutrophil degranula-
tion, neutrophil activation involved in immune response,
and neutrophil-mediated immunity. The DEGs played
essential roles in GO-MF terms containing 2 more enriched
terms: RAGE receptor binding and long-chain fatty acid
binding. The GO-CC revealed that these DEGs were mainly
enriched in specific granule, tertiary granule, and secretory
granule lumen (Figure 4).

3.4. Biomarkers Distinguishing Disease States. To detect bio-
markers to distinguish three disease-state patients and
healthy patients, we further performed random forest on
three disease states and healthy samples together, sorted
the feature importance, and selected the top n (1-50) gene
features to reconstruct random forest model to access the
best biomarker combination. We found that when 6 features
were selected, the accuracy of the model reached 0.895, and
the accuracy of model began to decline since more than 9
features were selected. Therefore, the first 9 characteristics
were selected as potential biomarkers to predict different
sepsis states (Figure 5).

3.5. Supplement Validation. In order to assess the availabil-
ity of the 9 biomarkers, we used a supplementary valida-
tion dataset to build random forest model using these 9
biomarkers as feature. Since the biomarker MCEMP1
was not sequenced because of lacking probe, only 8 bio-
markers were sequenced in supplement dataset, so we only
evaluated the 8 biomarkers. We found that the model per-
formed good to distinguish sepsis from healthy control in
supplement dataset. Then, we further calculated the gene
expression difference between sepsis and healthy control
samples in supplement dataset, and we found that 6 out
of 8 biomarkers were DEGs in supplement dataset
(Table 1).
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4. Discussion

According to the Sepsis 3.0 definition, sepsis is a life-
threatening organ dysfunction resulting from an infection-
induced host response disorder. Neutrophils are the main
immune-cell barrier against pathogens, but they can be a
double-edged sword in sepsis because they play a role in
both proinflammatory response and anti-inflammatory
response. We hypothesize that the immune signature of sep-
sis can be determined early by the phenotype of neutrophils
and distinguish sepsis from noninfectious inflammatory
syndromes. It is important to screen for features that are
considered important in the biology of sepsis but alone are
not distinguishable to clearly distinguish sepsis. Sepsis is
thought to be an immune imbalance in which pathogens
evade the host’s defense mechanisms and continue to stimu-
late and destroy host cells. Many of the protective immune
mechanisms activated early in the disease become harmful
and are associated with excessive inflammation and immu-
nosuppression. The host response of sepsis involves the
coexistence of inflammatory and anti-inflammatory
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Figure 1: The workflow of identifying molecular signature of sepsis. Gene different expression analysis was firstly performed on gene
expression data, and then, random forest model was performed with expression of DEGs as feature. Next, the function of selected
important DEGs from random forest was analyzed.
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Figure 2: DEG numbers of the three contrast groups. The Venn
diagram displays the DEG numbers of three contrast groups
Inf1_P vs. healthy, Sepsis_P vs. healthy, and Shock_P vs. healthy.
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responses, involving different organs, systems, and cell
types [28].

We conducted a differential analysis of data from a
group of three sepsis severity levels and healthy controls
and found that the number of differential genes in sepsis
patients increased according to the severity of the disease,
suggesting that more genes became dysregulated with the
severity of the disease. There were 279 differentially
expressed genes in all three kinds of severe infection, which
may play roles in the onset and progression of sepsis. Func-
tional enrichment analysis showed that biological processes
were most significantly enriched in neutrophil activation,
immune activation, inflammatory response, and bacterial
response.

In GO-MF analysis, DEGs were significantly enriched in
RAGE receptor binding and long-chain fatty acid binding. A
meta-analysis showed that RAGE inhibition had a signifi-
cant advantage in multiple microbial infections. For G+ bac-
terial infection, RAGE suppression reduced bacterial growth
and transmission, inflammatory cell flow, plasma cytokine
levels, and lung damage. This paper concluded that RAGE
inhibition had beneficial effects on the outcomes of animal
models of sepsis with different causes [29]. There are few
studies on long-chain fatty acid binding and sepsis. This arti-
cle is one of them. Extraenteral pathogenic E. coli can cause
diseases such as urinary tract infections and sepsis. Mucus is
the main nutrient source of Escherichia coli in the intestinal
tract, and genes directly or indirectly related to the fatty acid
oxidation pathway contribute to the adaptation and migra-
tion of ExPEC [30].

In our study, the remarkable GO-CC terms are associ-
ated with neutrophil degranulation, such as tertiary granule,
specific granule, and secretory granule lumen. Neutrophils
are one of the most important cells in the host’s natural
defense. The following are the granules in neutrophil cyto-
plasm: azurophilic granule, specific granules, gelatinase
granules, and secretory vesicles. They all play very important
roles. Neutrophil dysregulation is present in sepsis. Many
evidence suggest that neutrophil threshing molecules are of

value in the diagnosis and prognosis of sepsis. Monitoring
neutrophil function may help identify early sepsis [31].

We used the random forest to select 9 characteristic
genes as potential biomarkers for predicting sepsis:
MCEMP1, PSTPIP2, CD177, GCA, NDUFAF1, CLIC1,
UFD1, SEPT9, and UBE2A. Some of these genes have been
confirmed in experiments or have also been widely con-
cerned in bioinformatics studies.

MCEMP1 is involved in the regulation of mast cell differ-
entiation or innate immune response. In our study, MCEMP1
gene expression was increased in sepsis. Chen et al. [32]. estab-
lished a cecal ligation and puncture-induced sepsis mouse
model to determine the expression of mast cell expression
membrane protein 1 (MCEMP1). They observed that
MCEMP1 was highly expressed in septic mice. Loss of
MCEMP1 can promote T lymphocyte and NK cell activity,
increase immunoglobulin expression, inhibit the release of
inflammatory factors, and reduce T lymphocyte apoptosis.
They also found that downregulation of lncRNA NEAT1
could inhibit MCEMP1, thereby promoting the immunosup-
pression effect of Mir-125 on sepsis mice. This may be a
potential therapeutic target for sepsis. Xie et al. found that
MALAT1 upregulates MCEMP1 by binding to Mir-23a,
thereby promoting inflammatory response in sepsis mice [33].

Proline-serine-threonine-phosphatase-interacting pro-
tein 2 (PSTPIP2) belongs to the F-BAR family of proteins
and is mainly expressed in macrophages. In recent years,
PSTPIP2 has been found to play an important role in con-
genital immune diseases and acquired immune diseases
(AIDS) [34]. Chen et al. [35] studied biomarkers of Escher-
ichia coli-induced sepsis. They analyzed 4 microarray data-
sets from GEO database and identified 54 DEGs. Eight
different genes were found between sepsis patients and con-
trols. Furthermore, differential expression of the candidate
gene was verified by human blood model in vitro. qPCR
results suggested that PSTPIP2 may be closely related to
Escherichia coli-induced sepsis.

Neutrophils play an important role in the pathophysiol-
ogy of sepsis and are the primary defense against infection.
A transcriptome study was performed on purified neutro-
phils from patients with septic shock to identify genes that
were differentially expressed during the first week of illness
compared with healthy controls. The results were confirmed
at the protein level. They found that 364 differentially
expressed genes were upregulated and 328 downregulated
in patients with sepsis. CD177mRNA showed the most sig-
nificant difference between patients and healthy controls.
This is consistent with our findings, which also found that
CD177 was significantly upregulated in sepsis patients [36].

Yang and Li [37] applied bioinformatics to study the
molecular mechanism of sepsis. Transcriptome data
(GSE12624) were downloaded from Gene Expression Omni-
bus database for protein-protein interaction network analysis.
Twenty-four differentially expressed clusters were identified
by ANCOVA global test, including 12 clusters in sepsis sam-
ples and 12 clusters in nonsepsis samples. 207 biomarker
genes were extracted from the first 6 clusters by SVMmethod,
and 10 genes including GCA were considered as potential
biomarkers.
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Figure 3: Gene feature numbers of the three contrast groups after
performing random forest. The Venn diagram displays the gene
feature numbers of the three contrast groups Inf1_P vs. healthy,
Sepsis_P vs. healthy, and Shock_P vs. healthy.
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Tang et al. [38] explored the relationship between septic
shock and AKI by analyzing codifferentially expressed genes
(co-DEGs) in the hope of identifying possible genetic
markers for septic shock-associated AKI. They downloaded
two gene expression datasets (GSE30718 and GSE57065).
DEGs related to septic shock and AKI were searched to clar-
ify the molecular mechanism of DEGs through function
analysis (GO), pathway enrichment analysis (KEGG), and
protein interaction (PPI) network analysis. They also
assessed co-DEGs and corresponding predictive miRNAs
associated with septic shock and AKI. 16 genes, including
NDUFAF1, were found to be involved in septic shock-
associated AKI. Our study also found that NDUFAF1
expression was upregulated in patients with sepsis.

UBE2A, also called HHR6A or UBC2, can be expressed
in a variety of tissues. Current studies mainly focus on cog-
nitive impairment and skeletal muscle metabolism, but we
have not found reports that UBE2A is directly related to sep-
sis. UBE2A may be associated with increased skeletal muscle
protein catabolic activity in a number of diseases and malnu-
trition states, such as cancer, sepsis, and diabetes. Sepsis is
often accompanied by septic encephalopathy, which is
mainly manifested by changes in cognitive function and
state of consciousness. It is necessary to further study
whether UBE2A expression is abnormal in patients with
septic encephalopathy [39, 40].
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In our study, there were 9 major differential genes
involved in the development of sepsis. Five of these genes
have been reported, indicating that the biomarkers selected
by our random forest model have high diagnostic value.
CLIC1, UFD1, SEPT9, and UBE2A are new biomarkers
found by us through the random forest model, and there is
no research report related to sepsis so far. These four genes
may serve as relevant targets for the diagnosis and treatment
of sepsis. Future in vitro and in vivo studies are needed to
analyze the functions and pathways of these genes in the
pathophysiology of sepsis. Further studies in more sepsis
patients are needed to confirm the diagnostic value of the
selected genes.

5. Conclusions

In this study, bioinformatics methods were used to analyze
two septic shock-related datasets (GSE154918 and
GES131761) and identify differentially expressed genes
(DEGs) from GEO. We found that the number of differen-
tially expressed genes increased with the increase of sepsis
severity. It indicates that there are more genetic disorders
from sepsis to septic shock. GO gene enrichment analysis
showed that differential gene expression was significantly
enriched in neutrophil activation and degranulation path-
ways. RAGE pathway has been found to be closely related
to the occurrence of sepsis. Nine genes, including MCEMP1,
PSTPIP2, CD177, GCA, NDUFAF1, CLIC1, UFD1, SEPT9,
and UBE2A, were identified to be associated with sepsis.
Further studies of the role of these pathways and genes in
sepsis patients or experiments are needed.
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Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease for which there is a lack of therapeutic options. Genome-
wide association studies (GWASs) have identified over 100 genetic loci associated with RA susceptibility; however, the most causal
risk genes (RGs) associated with, and molecular mechanism underlying, RA remain unknown. In this study, we collected 95 RA-
associated loci from multiple GWASs and detected 87 candidate high-confidence risk genes (HRGs) from these loci via integrated
multiomics data (the genome-scale chromosome conformation capture data, enhancer-promoter linkage data, and gene
expression data) using the Bayesian integrative risk gene selector (iRIGS). Analysis of these HRGs indicates that these genes
were indeed, markedly associated with different aspects of RA. Among these, 36 and 46 HRGs have been reported to be related
to RA and autoimmunity, respectively. Meanwhile, most novel HRGs were also involved in the significantly enriched RA-
related biological functions and pathways. Furthermore, drug repositioning prediction of the HRGs revealed three potential
targets (ERBB2, IL6ST, and MAPK1) and nine possible drugs for RA treatment, of which two IL-6 receptor antagonists
(tocilizumab and sarilumab) have been approved for RA treatment and four drugs (trastuzumab, lapatinib, masoprocol, and
arsenic trioxide) have been reported to have a high potential to ameliorate RA. In summary, we believe that this study provides
new clues for understanding the pathogenesis of RA and is important for research regarding the mechanisms underlying RA
and the development of therapeutics for this condition.

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune and inflamma-
tory disease in which the immune system mistakenly attacks
healthy joint tissues, thereby causing inflammation that pri-
marily affects the joints [1]. It is a multifactorial disease
involving complex traits affected by many genetic and envi-
ronmental factors, as well as the potential interactions
among these factors [2]. Although the etiology underlying
RA development is not fully understood, investigators have
determined that abnormal immune system responses are

the core cause of RA-associated inflammation and joint
destruction [3].

Currently, there is no cure for RA. Disease-modifying
antirheumatic drugs (DMARDs) still represent the main
treatment strategy for RA. These drugs mainly act on the
immune system and slow the progression of RA; they can
efficiently attenuate disease symptoms and substantially
decrease and/or delay joint deformity [4]. DMARDs can be
classified as follows: conventional DMARDs and biologic
DMARDs [5]. Commonly used conventional DMARDs
include methotrexate, leflunomide, hydroxychloroquine,
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and sulfasalazine. Recently, many biological DMARDs,
including TNF inhibitors (adalimumab, infliximab, and eta-
nercept), anti-CD20 antibodies (rituximab), IL-6 receptor
antibodies (sarilumab), RANKL antibodies (denosumab),
and Janus kinase inhibitors (baricitinib), have been devel-
oped [6, 7]. Despite the increasing numbers of new drugs
and treatment regimens, agents that completely cure RA or
long-acting agents for RA are still far from being developed;
thus, novel therapeutics and/or targets for this condition are
required.

Hereditary factors show a clear causal relationship with
RA [8]. And elucidating the pathogenesis of RA from the
genomics and genetics standpoints is an important means
for clinical therapeutics and drug discovery [9]. At present,
genome-wide association studies (GWASs) have identified
over 100 genetic loci associated with RA susceptibility [10,
11]. Although genetic information indicates an association
between genetic factors and RA, the most causal risk genes
(RGs) associated with RA and the molecular mechanisms
underlying this disease remain unknown [12]. Mo et al.
[13] predicted the RA-associated susceptibility genes by the
summary data-based Mendelian randomization (SMR) anal-
ysis and identified 140 genes that showed causal association
with RA. Moreover, thus far, only a few effective drug targets
have been identified through GWASs [14].

In this study, to identify RA-associated RGs and predict
candidate drug targets for RA, we collected 95 RA-associated
loci from different GWASs and detected the candidate RGs
from these loci via integrated multiomics data (the
genome-scale chromosome conformation capture data,
enhancer-promoter linkage data, and gene expression data)
using the Bayesian integrative risk gene selector (iRIGS)
[15]. Then, we evaluated the relevance between the candi-
date RGs and RA progression in the context of multiple
aspects, such as biological functions, gene expression, and
gene regulatory patterns. Finally, we predicted the candidate
targets and drugs of these RA-associated RGs using the drug
repositioning prediction approach (Figure 1(a)).

2. Methods

2.1. RA-Associated Loci. We collected over 100 RA-
associated loci from multiple GWASs, including 101 loci
collected from a meta-analysis GWAS containing over
100,000 subjects of European and Asian ancestries (29,880
RA cases vs. 73,758 controls) [16], two loci collected from
a GWAS containing over 1,600 subjects (397 RA cases vs.
1,211 controls) [17], and four loci collected from a case-
control GWAS of a cohort of Arab subjects (511 RA cases
vs. 352 controls) [18]. Finally, a total of 104 RA-associated
loci were collected (there are 3 duplicated SNPs). After
excluding 12 loci for which SNP IDs were unavailable, 95
RA-associated loci were included in this study.

2.2. Identifying RGs for the RA-Associated Loci. The high-
confidence risk genes (HRGs) of RA were inferred by iRIGS
(GRCh38/hg38) [15], which is a powerful tool for RG iden-
tification that integrates multiomics data and gene networks.
Here, the omics data include two RA-associated gene expres-

sion datasets, i.e., GSE55235 [19] and GSE77298 [20], two
distal regulatory element- (DRE-) promoter linkage datasets,
1,618,000 DRE promoter linkages obtained from genome-
scale chromosome conformation capture (Hi-C) [21], and
66,899 enhancer-promoter linkages obtained from the FAN-
TOM5 project [22]. All these omics data have been proc-
essed and deposited in iRIGS. Furthermore, the GO
network data containing gene-gene relationships obtained
by the iRIGS method were also integrated. A total of 1,972
candidate genes located within a 2Mb region centered at
the index SNP were collected as the candidate genes for
iRIGS analysis. The posterior probability (PP) value was cal-
culated by a Bayesian framework embedded in iRIGS [15],
which is the index of possibility for genes to serve as an
RG for RA. For each GWAS locus, one or more RGs can
be selected according to the PP value. In this study, we only
selected one risk gene with the highest PP for each locus. For
evaluation of HRGs, we constructed two background gene
lists for comparison with the HRGs: (1) the local back-
ground genes (LBGs), which is defined as the genes with P
P values less than the median PP of all candidate genes
(1,972 genes located within a 2Mb region of the RA-
associated loci). Ultimately, a total of 986 LBGs were
obtained; (2) the whole-genome background genes (WBGs),
which are defined as the genes that included all the human
genes (obtained from the R package of iRIGS) except the
HRGs. Ultimately, a total of 25,814 WBGs were obtained.

2.3. Data Collection. Five RA-associated keyword gene sets
(keywords: “Arthritis,” “Rheumatic,” “Autoimmune,”
“Joint,” and “Connective Tissue”) were constructed from
the GeneCards database (http://www.genecards.org). At
first, the five keywords were used to research the related
genes in the GeneCards database; then, the genes with a rel-
evance score greater than 10 were considered as the
keyword-related genes. Finally, it was found that the “Con-
nective Tissue” gene set contained 507 genes, the “Joint”
gene set contained 1,063 genes, the “Autoimmune” gene
set contained 457 genes, the “Arthritis” gene set contained
422 genes, and the “Rheumatic” gene set contained 65 genes.
Furthermore, an immune system-related gene set containing
1,534 genes was collected from the ImmPort database
(https://www.immport.org) [23]. The tissue-specific gene
expression profiles (FPKM, reads per kilobase of transcript
per million mapped reads) were collected from GTEx release
V8 data source [24].

2.4. Drug Repositioning Prediction of the HRGs. To predict
the drug-specific target genes and corresponding drugs spe-
cific to the HRGs, a command-line Python software,
Genome for REPositioning drugs (GREP), was used [25].
The GREP software quantifies the enrichment of drug tar-
gets by using DrugBank and the Therapeutic Target Data-
base. Approximately 22,300 drugs and 2,029 genes were
categorized based on the Anatomical Therapeutic Chemical
(ATC) and World Health Organization (WHO) classifica-
tion system; the P values and odds ratios for this categoriza-
tion were calculated using Fisher’s exact test.
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95 RA-associated loci

87 HRGs

Evaluation and comparison 
(i) RA related gene sets enrichment analysis
(ii) RA related DEGs enrichment analysis

(iii) DREs-promoter links enrichment analysis
(iv) Tissue specific analysis

iRIGS

GREP

25,814 WBGs

986 LBGs

Prediction of drug target genes and corresponding drugs of HRGs

(a)

GO:0019900: kinase binding
GO:0008134: transcription factor binding
GO:0071396: cellular response to lipid
GO:0051403: stress-activated MAPK cascade
GO:0007159: leukocyte cell-cell adhesion
GO:0044389: ubiquitin-like protein ligase binding
GO:0019902: phosphatase binding
GO:0007169: transmembrane receptor protein tyrosine kinase signaling pathway
GO:0001568: blood vessel development
GO:0001959: regulation of cytokine-mediated signaling pathway
GO:0010035: response to inorganic substance
GO:0009896: positive regulation of catabolic process
GO:0009615: response to virus
GO:0071407: cellular response to organic cyclic compound
GO:0060485: mesenchyme development
GO:0032663: regulation of interleukin-2 production
GO:0006469: negative regulation of protein kinase activity
GO:0005925: focal adhesion
GO:1901652: response to peptide
GO:1904019: epithelial cell apoptotic process

hsa05161: Hepatitis B
hsa05169: Epstein-Barr virus infection
ko04659: Th17 cell differentiation
hsa05166: HTLV-I infection
ko05203: Viral carcinogenesis
hsa05202: Transcriptional misregulation in cancer
hsa04114: Oocyte meiosis
hsa04810: Regulation of actin cytoskeleton
hsa05130: Pathogenic Escherichia coli infection
ko04141: Protein processing in endoplasmic reticulum
hsa04530: Tight junction
hsa05010: Alzheimer's disease
M00177: Ribosome, eukaryotes
ko04152: AMPK signaling pathway
hsa04110: Cell cycle

(b)

Figure 1: A flowchart depicting the steps in our study and the function enrichment analysis of the HRGs. (a) A flowchart detailing the steps
followed in this study. (b) The GO and KEGG pathway analyses of the HRGs.
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2.5. Statistical Analysis. The differentially expressed genes
(DEGs) were identified using the Limma package in the R
software (adjusted. P < 0:05) [26]. The GO and pathway
enrichment analyses were performed using Metascape [27].
One-sided Fisher’s exact test and one-sided Wilcoxon
rank-sum test were performed using the R software. The
Jensen–Shannon divergence (JSD) score was calculated
using the R package “philentropy.” The P values were
adjusted using the Bonferroni correction method.

3. Results

3.1. Predicting HRGs for RA. A total of 87 HRGs related to
the 95 RA-associated loci were inferred using iRIGS; most
of these genes have been implicated in RA and/or autoim-
munity (see Table 1 and Supplementary Table 1). Some of
the well-known drug targets for RA treatment, such as
IRAK1, HIF1A, and IL6ST, have been identified as HRGs
for RA [28]. Further, 36 and 46 genes have been reported
to be related to RA and autoimmunity, respectively. For
instance, IL6/IL6ST signaling plays a key role in the
progression of RA, and some IL6 receptor antagonists have
been proved to be effective in altering leukocyte trafficking
and reducing the severity of RA [29]. GATA-3 has been
shown to protect against severe joint inflammation and
reduce the differentiation of Th17 cells in mice with RA
[30]. EGR2 acts as a key regulator for systemic
autoimmunity by regulating cytokine production and cell

proliferation [31]. Meanwhile, we also investigated the rest
HRGs which have no direct evidence linking to RA and
found that these HRGs might also be close to RA or
autoimmunity diseases (Table 2). For example, PTPRC is
associated with response to antitumor necrosis factor-alpha
therapy, which is a mainstay of treatment in rheumatoid
arthritis [32]. ANXA11 is an antigen associated with
multiple systemic autoimmune diseases [33]. GDI2 is a
candidate biomarker in synovial fluid of RA [34]. And
there are seven genes (TNFAIP3, XPO1, GDI2, GATA3,
EGR2, DDB1, and ABI2) supported by more than one
SNP. Most of which are related to the RA. TNFAIP3
showed differential expression between RA and
osteoarthritis synoviocytes [35]. XPO1 has been indicated
to serve as new candidate therapeutic targets for RA [36].
Moreover, the GO and KEGG pathway enrichment
analyses of the HRGs showed that these genes were
enriched mainly in intercellular communication and
immune-related functions and pathways, such as leukocyte
cell-cell adhesion, focal adhesion, regulation of cytokine-
mediated signaling pathways, tight junction formation,
Th17 cell differentiation, and regulation of interleukin-2
production (Figure 1(b)). These functions and pathways
have been reported to be critical for RA progression [37, 38].

3.2. Evaluation of the HRGs. To assess the reliability of the
HRGs, we constructed two background gene lists for com-
parison with the HRGs: the local background genes (LBGs)

Table 1: Information of some RA or autoimmunity-related HRGs.

HRG SNP PMID RA related Autoimmunity related

IL6ST rs7731626 16646038 Yes Yes

SUMO1 rs6715284 30562482; 17360386 Yes

XPO1 rs13385025, rs34695944 24965445 Yes

FOXO1 rs9603616 24812285 Yes Yes

HIF1A rs3783782 27445820 Yes Yes

DUSP22 rs9378815 29287311 Yes

GATA3 rs12413578, rs3824660 19248112; 29097726 Yes Yes

AKT1 rs2582532 28559961 Yes

CD40 rs4239702 28455435 Yes Yes

EGR2 rs6479800, rs71508903 24058814 Yes

Table 2: Information of some HRGs without direct evidence linking to RA.

HRGs SNP PP value Description

PTPRC rs17668708 0.429 Associated with response to TNFα therapy

ANXA11 rs726288 0.427 Antigen associated with systemic autoimmune diseases

SPRED1 rs8032939 0.369 Suppressor of the Ras–ERK pathway

PRDM1 rs9372120 0.366 PRDM1 is belonging to the B cell development pathway

BUB1 rs6732565 0.351 Differentially expressed in RA chondrocytes

LCLAT1 rs10175798 0.327 Related to triacylglycerol biosynthesis and fatty acyl-CoA biosynthesis

AZI2 rs3806624 0.292 Activator of NFKB

GDI2 rs947474 0.284 Is a candidate biomarker in synovial fluid of RA

CNOT6L rs10028001 0.2766 Differentially expressed in RA

RFTN1 rs4452313 0.271 Involved in T-cell antigen receptor-mediated signaling
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included 986 genes with PP values less than the median PP
of all candidate genes, and the whole-genome background
genes (WBGs) included all the human genes except the
HRGs (25,814 genes). At first, concerning biological func-
tion, we compared the HRGs with the LBGs and WBGs
using the six RA-related gene sets, i.e., the “Arthritis,”
“Rheumatic,” “Autoimmune,” “Joint,” “Connective Tissue,”
and “ImmPort” gene sets (see Methods for details). As

shown in Figure 2(a), HRGs were significantly enriched in
all the six RA-related gene sets (one-sided Fisher’s exact test:
P value < 0.05). Next, about gene expression, we compared
the HRGs with the LBGs and WBGs using the two gene
expression datasets GSE77298 and GSE55235; as shown in
Figure 2(b), the HRGs were more likely to serve as the DEGs
in these two RA gene expression profiles (one-sided Wil-
coxon rank-sum test: P value < 0.05). Then, with regard to
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Figure 2: Comparison of the HRGs with the local background genes (LBGs) and whole-genome background genes (WBGs). (a)
Comparison of the HRGs with the LBGs and WBGs using the six RA-related gene sets: the “Arthritis,” “Rheumatic,” “Autoimmune,”
“Joint,” “Connective Tissue,” and “ImmPort” gene sets. (b) Comparison of the HRGs with the LBGs and WBGs using the two gene
expression datasets GSE77298 and GSE55235 and the two DRE-promoter linkage datasets obtained using the Hi-C and FANTOM5. (c)
Tissue-specificity analysis of the HRGs (one-sided Wilcoxon rank-sum test).
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gene regulation, we compared the HRGs with the LBGs and
WBGs using the two DRE-promoter linkage datasets
obtained using the Hi-C and FANTOM5 methods. These
results also showed that the HRGs were significantly associ-

ated with a large number of DREs (Figure 2(b); one-sided
Wilcoxon rank-sum test: P value < 0.05). To investigate
the tissue specificity of the HRGs, we converted the RPKM
GTEx data to JSD scores to represent the tissue specificity
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Figure 3: Drug repositioning prediction of the HRGs based on (a) the ATC large dataset and (b) the detailed ATC dataset.
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of each gene for each tissue. Moreover, compared to the
LBGs, the HRGs showed a significantly high expression in
the muscles, blood vessels, blood, etc. (see Figure 2(c), one-
sided Wilcoxon rank-sum test: adjusted P value < 0.05).
These tissues have been proved involved in RA progression.
For example, muscle deterioration (myositis and weakness)
and inflammation of blood vessels (vasculitis and ulcers)
are common complications of RA [39].

3.3. Predicting the Targets and Corresponding Drugs for the
HRGs. To investigate whether some HRGs could serve as
targets of existing repositioned drugs for RA therapy, we
used GREP to perform enrichment analysis to ascertain the
targets of the existing and approved drugs (see Methods
for details). As shown in Figure 3 and Supplementary
Table 2, three HRGs, ERBB2, IL6ST, and MAPK1, were
identified to be related to the targets of
immunosuppressants and antineoplastic agents. A total of
six potential drugs (trastuzumab, pertuzumab, trastuzumab
emtansine, lapatinib, afatinib, and masoprocol) were
predicted to target ERBB2. Of these, trastuzumab,
pertuzumab, and trastuzumab emtansine are HER2/ErbB2
receptor monoclonal antibodies approved for the treatment
of metastatic HER2-positive breast cancer, and
trastuzumab has been reported to inhibit RA synovial cell
growth [40]. Lapatinib has been reported to ameliorate
experimental arthritis in rats by targeting epidermal
growth factor receptors (EGFRs) [41]. Li et al. [42] found
that masoprocol significantly reduces the severity of bone
destruction and osteoclast recruitment in the ankle joint of
rats with adjuvant-induced arthritis and indicated the
potential utility of masoprocol as a therapeutic agent for
RA. Pertuzumab and afatinib have also been approved as
antineoplastic agents. Two potential drugs (tocilizumab
and sarilumab) were predicted to target IL6ST.
Tocilizumab, which functions by targeting IL-6 receptors,
was the first DMARD to be approved for RA treatment
[43]. Sarilumab was the second IL-6 receptor antagonist to
be approved for the treatment of RA [44]. Arsenic trioxide,
which has been reported as a potential therapeutic agent
for RA, was predicted to target MAPK1; it has also been
approved to treat leukemia and reported to regulate the
Treg and Th17 cell balance by modulating STAT3
expression in treatment-naïve RA patients [45].

4. Discussion

To date, the exact cause of the immune system’s faulty
response in RA remains unclear [46]. Though some genes
have been identified to be responsible for the increased risk
of developing RA, such as HLA complex, STAT4, TRAF1,
and PTPN22 [47], most RA-related RGs and their causal
variants remain unknown [48]. Recently, GWASs have been
utilized to identify RA-associated genetic variants on a
genome-wide scale, and over 100 RA-associated loci were
obtained [10, 11]. However, the presence of most GWAS
variants (90%) in noncoding regions hinders the identifica-
tion of disease-related RGs [49], which also obscures the
interpretation of their mode of action and the correct iden-

tification of the target gene via which the causal variant
may affect the phenotype [50]. Herein, to fill this gap, we
identified 87 HRGs from 95 RA-associated loci collected
from different GWASs based on multiomics data. The
assessment of the HRGs indicated that they were markedly
correlated with RA progression. In addition, using drug
repositioning prediction, we also identified several targets
of these genes and the drugs associated with their function.
Some of these identified drugs have already been approved
for RA treatment.

The inspection of previously published literature
revealed that 36 and 46 HRGs have been implicated in RA
progression and autoimmunity, respectively. Besides the
well-known drug targets for RA treatment, such as IRAK1,
HIF1A, and IL6ST, some HRGs, including XPO1, GATA3,
MYC, and CD40, have also been indicated to serve as new
candidate therapeutic targets for RA [36, 51, 52]. The func-
tion enrichment analysis of the HRGs showed that they were
enriched mainly in the immune system- and intercellular
communication-related functions and pathways. It is known
that RA is a classic autoimmune and inflammatory disease
that strongly involves multiple innate and adaptive
immune-related processes [53]. Additionally, the dysfunc-
tion of several intercellular signaling pathways, including
the JAK/STAT, SAPK/MAPK, and PI-3K/AKT/mTOR sig-
naling pathways, plays a critical role in RA [37]. Cell-cell
crosstalk mediates various biological processes in the tissue
microenvironment in RA. Therefore, many studies have
focused on the development of new therapeutics for RA by
considering the intercellular communications in RA
[54–56]. These results indicate that the HRGs identified
herein are markedly involved in RA progression and are of
importance for research regarding the mechanism underly-
ing RA and therapeutic strategies for this condition. More-
over, some of the rest HRGs without direct evidence
linking to RA are also involved in autoimmunity disease-
related functions or pathways. This part of HRGs is probably
more worth exploring than the well-known RA-related
HRGs.

The comparison of the HRGs with the LBGs and HRGs
showed that the HRGs are markedly associated with RA-
related functions and RA-related DEGs and indicated that
the expression levels of the HRGs tend to be regulated by
DREs. Interestingly, the HRGs showed a markedly high
expression in the muscle tissues, blood vessels, and blood.
Muscle deterioration (myositis and weakness) and inflam-
mation of blood vessels (vasculitis and ulcers) are common
complications of RA [39]. Therefore, the high expression
of HRGs in these tissues may implicate them in the progres-
sion of RA and may highlight them as potential therapeutic
targets for RA. Further, the expression of HRGs in the blood
may mainly influence RA-related immune processes [57,
58]; this may also implicate these HRGs as factors governing,
and ultimately, as candidate biomarkers for, the progression
of RA.

Drug repositioning prediction of the HRGs yielded three
targets and nine drugs. Two IL-6 receptor antagonist drugs,
tocilizumab and sarilumab, have been approved for RA
treatment. Meanwhile, trastuzumab, lapatinib, masoprocol,

8 Computational and Mathematical Methods in Medicine



and arsenic trioxide have been reported to ameliorate the
symptoms of RA in patients or model animals and may serve
as candidate DMARDs for RA treatment. The other drugs,
pertuzumab, trastuzumab emtansine, and afatinib, have also
been approved as immunosuppressants and/or antineoplas-
tic agents. These results not only indicate that these HRGs
are markedly involved in RA progression but also provide
a trajectory for screening effective drugs for RA treatment.

5. Conclusion

In this study, we collected 95 RA-associated loci from differ-
ent GWASs of RA and obtained 87 HRGs from these loci
using a multiomics-based method. The analysis and evalua-
tion of these HRGs indicated that these genes were indeed,
highly involved in RA. Moreover, the drug repositioning
prediction of the HRGs suggested several potential targets
and drugs for RA treatment. In summary, this study pre-
dicted new RGs, drug targets, and drugs for RA using the
GWAS and multiomics data. We believe that our study pro-
vides more clues for understanding the pathogenesis of RA
and will be important for research regarding the mecha-
nisms underlying RA and the possible therapeutic strategies
for this condition.
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Helicobacter pylori (H. pylori) is the most common risk factor for gastric cancer worldwide. The membrane proteins of the H.
pylori are involved in bacterial adherence and play a vital role in the field of drug discovery. Thus, an accurate and cost-
effective computational model is needed to predict the uncharacterized membrane proteins of H. pylori. In this study, a reliable
benchmark dataset consisted of 114 membrane and 219 nonmembrane proteins was constructed based on UniProt. A support
vector machine- (SVM-) based model was developed for discriminating H. pylori membrane proteins from nonmembrane
proteins by using sequence information. Cross-validation showed that our method achieved good performance with an
accuracy of 91.29%. It is anticipated that the proposed model will be useful for the annotation of H. pylori membrane proteins
and the development of new anti-H. pylori agents.

1. Introduction

Helicobacter pylori (H. pylori) is a Gram-negative spiral-
shaped bacterium that infects half of the human population
worldwide. H. pylori causes gastric mucosa damage, chronic
inflammation, and dysregulation of the gut community,
increasing the risk of gastric cancer [1–3]. Attachment to
the gastric mucosa is the first step in establishing bacterial
colonization [4]. H. pylori membrane proteins such as
antigen-binding adhesin (BabA), sialic acid-binding adhesin
(SabA), outer inflammatory protein (OipA), and outer mem-
brane protein Q (HopQ) can act as putative virulence factors
that mediate the host-pathogen interactions, induce the
release of inflammatory cytokines, and enhance the virulence
property of the bacterium [4–6]. Thus, the identification of
H. pylori membrane protein receptors contributes to the
design of therapeutic drugs and vaccine development [7, 8].

Although H. pylori membrane proteins play a key role in
attachment to and entry into host cells, only few have been
described so far. There are some efforts in the prediction of
membrane proteins [9, 10] for other germs like Mycobacte-

rial [11] and Chlamydiae [12]. However, there are no
machine learning-based approaches for the prediction of
theH. pylorimembrane proteins. In this study, we developed
a comprehensive in silico approach for discriminating novel
H. pylori membrane proteins using amino acid sequence-
based criteria. First, the benchmark dataset was constructed
based on a reliable source. Second, sequence-based feature
encoding methods were used to represent protein sequences.
Next, the incremental feature selection (IFS) technique with
multiple feature ranking methods was applied to obtain the
optimal feature set. Finally, a membrane protein prediction
model was established based on the optimal feature set. The
workflow can be seen in Figure 1.

2. Materials and Methods

2.1. Benchmark Dataset. An objective and strict benchmark
dataset is fundamental for a robust prediction model
construction [13–18]. The Universal Protein Resource
(UniProt) [19] is a comprehensive resource for proteins
and can be freely accessed at https://www.uniprot.org/. The
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382 H. pylori membrane protein sequences and 1111
nonmembrane protein sequences were obtained from the
UniProt. If a sequence contains nonstandard letters, the
sequence was removed from the dataset. To avoid the influ-
ence of sequence similarity [20], CD-HIT [21] with 0.3
sequence identity was used to exclude highly similar
membrane proteins. Finally, 114 (29.8% of the original)
membrane proteins and 219 (19.7% of the original) non-
membrane proteins remained in the benchmark dataset.

2.2. Feature Encoding. Generally, feature encoding plays a
crucial role for machine learning in model construction
[22–28]. The feature encoding method determines the
degree of sequence information mining. In this work, k
-mer amino acid composition [29–31], gapped k-mer
method [32], and pseudo-amino acid composition
(PseAAC) [33–39] were used to formulate sequences.

Let the protein S be expressed as follows:

S = R1R2R3R4R5 ⋯ RiRi+1 ⋯ RL, ð1Þ

where L denotes the length of the protein sequence and Ri is
the i-th amino acid.

By using k-mer amino acid composition, a primary pro-
tein sequence S can be transferred into a vector Vk with 20k
elements according to the following formula:

Vk = f k−mer
1 f k−mer

2 ∙∙∙f k−mer
i ∙∙∙f k−mer

20k
h iT

, ð2Þ

where the symbol T means the transposition of a vector and
f k−mer
i is the normalized frequency of the i-th k-mer amino
acid component occurring in S and can be calculated by

f k−mer
i = ni

∑20k
i=1ni

= ni
L − k + 1 , ð3Þ

where ni means the number of occurrences of the i-th k-mer
amino acid component in the sequence S.

With the increase of k, one protein sequence may have
many k-mers absent, and its feature vector will contain a

large number of zero values. To overcome this sparse prob-
lem, gapped k-mer (k-mer with g gap) was used. For exam-
ple, “GG” with 3 gaps constitute the patterns “GNNNG,”
where N represent any kind of amino acid. By using the
gapped k-mer method, a primary protein sequence S can
be transferred into a vector Vg with 20k−g elements accord-
ing to the following formula:

Vg = f gk−mer
1 f gk−mer

2 ∙∙∙f gk−mer
i ∙∙∙f gk−mer

20k−g
h iT

, ð4Þ

where the f gk−mer
i is the normalized frequency of the i-th k

-mer with g gap amino acid component occurring in S.
PseAAC can represent a protein sequence in a dis-

crete model without completely losing its sequence-order
information. A primary protein sequence S can be trans-
ferred into a vector Vp with PseAAC according to the
following formula:

Vp = x1 ⋯ x20 x20+1 ⋯ x20+λ½ �T, ð5Þ

xi =

f i
∑20

i=1 f i + ω∑λ
j=1Θj

, 1 ≤ i ≤ 20,

ωΘi − 20
∑20

i=1 f i + ω∑λ
j=1Θj

, 20 + 1 ≤ i ≤ 20 + λ,

8>>>><
>>>>:

ð6Þ

where f i is the normalized frequency of i-th amino acid,
and Θj is the j-th sequence correlation factor that can be
calculated by the product of the six physicochemical
property numerical values between amino acids at differ-
ent positions. ω is the weight factor for short range and
long range.

2.3. Feature Selection and Modeling. To exclude noise and
improve computational efficiency, feature selection is an
indispensable step [23, 40–45]. Binomial distribution is one
of the wonderful feature selection techniques that have been
successfully applied in many works [46–48]. The high bino-
mial distribution score indicates that the presence of the k
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Figure 1: The workflow diagram of developing the H. pylori membrane protein prediction model.
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-mer amino acid in a membrane protein sequence is not
accidental. Analysis of variance (ANOVA) tests the ratio of
the variance between groups and the variance within the
groups to analyse the differences among group means [30].
The high ANOVA score means there is a big feature differ-
ence between the membrane protein group and the non-
membrane protein group. In this study, binomial
distribution was used on k-mer features, and ANOVA was
used on gapped k-mer and PseAAC features to winnow
out the irrelevant features. Then, ANOVA was used to
reprune all the redundant features.

After ranking the features according to their statistical
scores, the IFS strategy with support vector machine
(SVM) was adopted to determine the optimal feature set
[49–53]. SVM is a classification algorithm that finds the
optimal classification hyperplane in the high-dimensional
feature space. The IFS strategy added features one by one
to the feature set from a higher-ranked to a lower-ranked
score. Once a new feature set was composed, LIBSVM [54]
with 5-fold cross-validation was performed to train and test
prediction models. The optimal feature set is defined based
on the principle that the prediction model based on such
features could achieve maximum accuracy. Finally, an
SVM model was constructed based on the optimal feature
subset for the membrane protein prediction.

2.4. Performance Evaluation Metrics. In order to assess the
capability of the binary prediction method, six indexes,
namely, accuracy (ACC), sensitivity (Sn), specificity (Sp),

precision (Pre), Matthew’s correlation coefficient (MCC),
and the area under the receiver operating characteristic
curve (AUC) [55–60], were used and formulated as

ACC = TP + TN
TP + TN + FP + FN

, ð7Þ
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Figure 3: The ROC curves of the 5-fold cross-validation test.
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3Computational and Mathematical Methods in Medicine



Sn = TP
TP + FN

, ð8Þ

Sp = TN
TN + FP

, ð9Þ

Pre = TP
TP + FP

, ð10Þ

MCC = TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FNð Þ TP + FPð Þ TN + FPð Þ TN + FNð Þp ,

ð11Þ
where TP (true positive) and TN (true negative) present the
numbers of correctly identified membrane proteins and
nonmembrane proteins, respectively. FP (false positive)
and FN (false negative) denote the number of nonmem-
brane proteins incorrectly classified as membrane proteins
and the number of membrane proteins incorrectly classi-
fied as nonmembrane proteins, respectively. Receiver oper-
ating characteristics (ROC) analysis was used to measure

the performance of the model with the varying decision
thresholds [61–63]. Due to the small sample size, the
result of the 5-fold cross-validation was used to evaluate
the model performance.

3. Results and Discussion

3.1. Feature Optimization. As shown in equations (3), (4),
and (5), the description of the protein sequences depends
on parameters k, g, ω, and λ. For k-mer feature encoding,
k = 2, 3, 4 was tried in this study. The model achieved the
best accuracy of 90.09% with the top 150 binomial
distribution-ranked 2-mer features (Figure 2(a)). For gapped
k-mer feature encoding, we set k = 2 and traverse g from 1 to
20, when g = 15, and the model achieved the best accuracy of
90.39% with the top 89 ANOVA-ranked features
(Figure 2(b)). For PseAAC, we set the weight factor ω = 0:5
and parameter λ from 1 to 70 with step size 5, and the best
performance achieved was 88.59% when the λ is 20 and fea-
ture number is 10 (Figure 2(c)). To represent the sequence
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Figure 4: (a) The heat map of AAC of the model features. (b) The frequency of the six amino acids in the two classes.
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information comprehensively, all best feature subsets were
merged and ranked by ANOVA. IFS was performed again
to filter out the redundant features. As we can see in
Figure 2(d), the model achieved the best accuracy of
91.29% when the top 109 ANOVA-ranked features were
used to train the model.

3.2. Model Construction and Evaluation. Finally, 109 features
were used to construct the SVM-based model for the predic-
tion of membrane proteins. And the soft margin SVM
penalty coefficient c and Gaussian kernel function width
parameter γ are 0.5.

To show the prediction capability of the final model, six
evaluation metrics were calculated based on the result of the
5-fold cross-validation. The model achieved the ACC of
91.29%, Sn of 82.46%, Sp of 95.9%, Pre of 91.26%, and
MCC of 0.804. We also drew the ROC curve in
Figure 3. It shows that the AUC reaches the value of
0.931, suggesting that the proposed model has an excellent
prediction capability on membrane protein classification.

3.3. Amino Acid Composition (AAC) of Optimal Features.
The AAC of the model features was used to analyse the pref-
erence of membrane proteins for specific amino acids.
Among the optimal feature set, there are 83 2-mer features,
16 gapped 2-mer features, and 10 PseAAC features. Focus-
ing on the 2-mer and gapped 2-mer features, we found that
the occurrence of leucine (L), glutamic acid (E), aspartic acid
(D), phenylalanine (F), valine (V), and histidine (H) exceeds
50% of the total (Figure 4(a)). And the frequencies of F, L,
and V in membrane protein sequences are significantly
higher than those in nonmembrane protein sequences
(p < 0:001). In contrast, the frequencies of D, E, and H in
nonmembrane protein sequences are significantly higher
than those in membrane proteins (p < 0:001) (Figure 4(b)).

4. Conclusions

H. pylori membrane proteins are an important class of
molecules that play key roles in host-pathogen interactions.
However, it is a new area in the prediction of H. pylorimem-
brane proteins with machine learning methods. Hence, we
developed an H. pylori membrane proteins predictor on
the basis of sequence-based information. The model will
powerfully support the discovery of H. pylori membrane
proteins and the research of H. pylori infection. It has the
potential to be significant in novel vaccine candidate anti-
gens and drug development [64, 65]. In the future, we will
stay focused on the H. pylori membrane protein prediction
issues and screen the possible vaccine candidates and drug
targets. Moreover, we will collect more data to train a deep
learning model [66–71] to improve prediction performance.
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Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide due to its asymptomatic onset and
poor survival rate. This highlights the urgent need for developing novel diagnostic markers for early HCC detection. The
circadian clock is important for maintaining cellular homeostasis and is tightly associated with key tumorigenesis-associated
molecular events, suggesting the so-called chronotherapy. An analysis of these core circadian genes may lead to the discovery of
biological markers signaling the onset of the disease. In this study, the possible functions of 13 core circadian clock genes
(CCGs) in HCC were systematically analyzed with the aim of identifying ideal biomarkers and therapeutic targets. Profiles of
HCC patients with clinical and gene expression data were downloaded from The Cancer Genome Atlas and International
Cancer Genome Consortium. Various bioinformatics methods were used to investigate the roles of circadian clock genes in
HCC tumorigenesis. We found that patients with high TIMELESS expression or low CRY2, PER1, and RORA expressions have
poor survival. Besides, a prediction model consisting of these four CCGs, the tumor-node-metastasis (TNM) stage, and sex was
constructed, demonstrating higher predictive accuracy than the traditional TNM-based model. In addition, pathway analysis
showed that these four CCGs are involved in the cell cycle, PI3K/AKT pathway, and fatty acid metabolism. Furthermore, the
network of these four CCGs-related coexpressed genes and immune infiltration was analyzed, which revealed the close
association with B cells and nTreg cells. Notably, TIMELESS exhibited contrasting effects against CRY2, PER1, and RORA in
most situations. In sum, our works revealed that these circadian clock genes TIMELESS, CRY2, PER1, and RORA can serve as
potential diagnostic and prognostic biomarkers, as well as therapeutic targets, for HCC patients, which may promote HCC
chronotherapy by rhythmically regulating drug sensitivity and key cellular signaling pathways.

1. Introduction

Liver cancer is the sixth most common type of cancer
and the fourth highest cause of cancer-associated death
globally [1]. Hepatocellular carcinoma (HCC) accounts
for 85–90% of all primary liver cancers with increased
incidence and mortality [2]. Although there are several
therapeutic treatments of HCC, including surgery, radio-
therapy, and chemotherapy, the five-year survival of
HCC patients remains low primarily due to the delayed
diagnoses [3]. Alpha-fetoprotein (AFP) is a tumor marker

commonly used for diagnosing patients with HCC. How-
ever, the lack of specificity and accuracy limits its applica-
tion for early-stage HCC detection. Therefore, it is urgent
to search for novel biomarkers to facilitate early detection
of HCC and improve the clinical survival rate of HCC
patients.

Previous research has demonstrated the link between
the circadian clock and key tumorigenesis-associated
molecular events [4], suggesting the so-called chronother-
apy [5]. The circadian clock is an internal timing system
that adjusts behaviors and rhythm according to
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geophysical time. Similarly, the mammalian circadian
clock describes an internal timekeeping mechanism regu-
lating physiology and behavior [6]. A set of core “clock
genes” that form a feedback loop of gene transcription
and translation has been identified to generate circadian
rhythms in cells. The key “positive” transcriptional regula-
tors CLOCK and BMAL1 bind to E-box regulatory ele-
ments and transactivate the transcription of the
“negative” elements PERs and CRYs, as well as multiple
other rhythmically expressed genes.

Conversely, PER and CRY act as repressors to inhibit the
CLOCK : BMAL1 complex. Notably, by rhythmically tran-
scriptionally regulating the gene expression and gene activity
throughout the genome, circadian clock genes play critical
roles in biological processes such as apoptosis, cellular senes-
cence, DNA damage repair, and metastasis [7]. Accumulat-
ing evidence has shown the importance of circadian clock
genes in the diagnosis, therapy, and prognosis of different
kinds of cancers. For instance, the expression alterations of
most circadian clock genes were associated with overall sur-
vival, tumor-node-metastasis stage, and cellular sensitivity to
anticancer drugs [8]. Besides, PER1 and CLOCK were
reported as potential biomarkers for head and neck squa-
mous cell carcinoma [9], whereas PER2 was reported to be
associated with vital tumor-related genes in oral cancer
[10]. Until now, little is known about the roles of circadian
clock genes in HCC.

Herein, we systematically characterized the expression
pattern of core circadian clock genes, including ARNTL,
CLOCK, CRY1, CRY2, DBP, NPAS2, NR1D1, NR1D2,
PER1, PER2, PER3, RORA, and TIMELESS, and their clinical
significances in HCC. The expression and clinical informa-
tion profiles were extracted from The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium
(ICGC) databases. Various bioinformatics methods were
applied to analyze the data to screen vital hits possibly
involved in the development of HCC. We also established
a prediction model with high performance to predict the
overall survival of HCC patients. Moreover, we comprehen-
sively analyzed the mutation, drug sensitivity, immune infil-
tration, key cellular signaling pathway, and coexpression
network of circadian clock genes in the HCC tumor
microenvironment.

2. Materials and Methods

2.1. Patient Data. The gene expression profiles and clinical
information of HCC patients were downloaded from TCGA
(https://portal.gdc.cancer.gov/) and ICGC (https://dcc.icgc
.org/) databases, containing 50 normal and 374 tumor sam-
ples (TCGA) and 202 normal and 240 tumor samples
(ICGC), respectively. Univariate and multivariate Cox
regression analyses were performed to investigate the corre-
lation between clinicopathological characteristics and overall
survival (OS) by R software (4.0.2).

2.2. Analysis of Differential Expressed Gene. To investigate
the expression difference of circadian clock genes between
the tumor and normal samples, 374/424 of tumor samples

from TCGA and 240/442 of tumor samples from ICGC were
analyzed using the ‘edgeR’ package and ‘limma’ package,
respectively. Log2 fold change (logFC), P value, and false
discovery rate (FDR) were calculated. Genes with P < 0:05
and FDR < 0:05 were regarded as differentially expressed
genes (DEGs). The expression difference of each gene was
shown by boxplots. Besides, a Venn diagram was drawn to
show the overlapping genes which represent similar expres-
sion tendency in all HCC cases.

2.3. Validation of DEGs between HCC and Normal Liver
Tissues. Methylation and copy number variation (CNV)
analysis were performed to validate the differentially
expressed genes between normal liver tissues and tumor
tissues. Student’s t-test was used to analyze the methyla-
tion difference between the normal and tumor samples.
The correlation between gene CNV and mRNA expression
in HCC was also built. A Venn diagram was drawn to
present circadian clock genes regulated by both methyla-
tion and CNV. The Human Protein Atlas (HPA)
(https://www.proteinatlas.org/) database was used to vali-
date the protein expression of DEGs between normal liver
tissues and HCC tissues.

2.4. Survival Analysis. After dividing patients into the high-
and low-expression groups, survival curves were drawn
according to the Kaplan-Meier method by ‘survival’ package
in R software, with significance set at P < 0:05. Besides, the
receiver operating characteristic (ROC) curves were gener-
ated to determine the survival parameters, while the area
under the curve (AUC) value determined the prognostic
performance of the survival model. In addition, to further
verify the result of survival analysis, the hazard ratio (HR)
and P value of circadian clock genes were calculated through
the univariate Cox regression based on the gene expression
and overall survival.

2.5. Prognosis Prediction Models. Prediction models were
used to predict the prognosis of HCC patients based on sur-
vival analysis. Through a stepwise multivariate Cox hazard
regression analysis, a four-gene model was established. The
risk score of each HCC patient was calculated by the follow-
ing formula:

Risk score = 〠
n

i=1
Coef i × Expi, ð1Þ

where n, Coef, and Exp represent the number of
included circadian clock genes, the coefficient of each gene,
and the gene expression level, respectively. The ROC curve
was then constructed for the cohorts from TCGA and ICGC.
The AUC representing the predictability of 3-year survival
was also calculated by the ‘survival ROC’ package. When
the AUC value was >0.6, the prediction method was consid-
ered reliable. Furthermore, the HCC patients were grouped
into the high-risk and low-risk groups according to the
median risk score, and the survival curve was then obtained.
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2.6. Weighted Gene Coexpression Network Analysis
(WGCNA). WGCNA was performed to construct a gene
coexpression network, aimed at finding genes coexpressing
with circadian clock genes in HCC tissues. The coexpression
network was drawn using Cytoscape software (version 3.8.0).

2.7. Immune Infiltrate Analysis. The connection between
the gene expression and immune cell infiltration in each
sample was evaluated by Immune Cell Abundance Identi-
fier (ImmuCellAI). ImmuCellAI is a database-derived web
tool to estimate the abundance of 24 immune cells from
gene expression datasets, including RNA-Seq and micro-
array data, which provides infiltration scores of
pancancer.

2.8. Pathway Analysis. The potential mechanism of circa-
dian clock genes was explored by Gene Set Cancer Analy-
sis (http://bioinfo.life.hust.edu.cn/web/GSCALite/), which
is an online research tool for genomics analysis. A pie
chart describes several critical cancer pathways in which
the circadian clock genes play different roles. To further
determine the underlying mechanism of circadian clock
genes, the expression profiles of tumor samples down-
loaded from TCGA were used to conduct Gene Set
Enrichment Analysis (GSEA). Hallmark gene sets (h) and
Kyoto Encyclopedia of Genes and Genomes gene sets
(c2) were used as references. A significant enrichment
pathway was used to screen which circadian clock genes
were upregulated in the high-risk group, with P < 0:05
set as the threshold. Furthermore, drug sensitivity analysis
was carried out to investigate the correlation between
clock genes and anticancer drugs.

3. Results

3.1. Circadian Rhythm of Core Circadian Clock Genes in the
Liver. Herein, we investigated the possible roles of 13 core
circadian clock genes in HCC, including ARNTL, CLOCK,
CRY1, CRY2, DBP, NR1D1, NR1D2, NPAS2, PER1, PER2,
PER3, RORA, and TIMELESS. The expression profiles of
core circadian genes in liver tissue were explored by RNA
sequencing at different intervals [11]. The corresponding
expression fluctuations of these genes are shown in
Figure 1. Apparently, all these genes showed significant cir-
cadian rhythms in liver tissue except TIMELESS. Besides,
ARNTL and CLOCK, two central circadian clock regulators
controlling the circadian rhythm of PERs, CRYs, NR1Ds,
RORA, DBP, and TIMISS [6], exhibited the most regular
rhythms.

3.2. Clinicopathological Characteristics of the HCC Patients.
To investigate the functions of circadian clock genes in
HCC, 424 samples from TCGA and 442 samples from ICGC
were analyzed by univariate and multivariate Cox regression
analyses, respectively. In univariate analysis, the poor overall
survival of patients was related to tumor-node-metastasis
(TNM) stage and T stage in TCGA. It was significantly asso-
ciated with TNM stage and sex in ICGC (Tables 1 and 2).
Clinicopathological characteristics observed with P < 0:3 in
the univariate analysis were further screened and used for

multivariate analysis, revealing that sex and TNM stage
might be independent prognostic factors for patients with
HCC (Table 2).

3.3. Identification of Differentially Expressed Circadian Clock
Genes. The differential expression of the circadian clock
genes between the tumor and normal samples was
described using a boxplot (Figures 2(a) and 2(b)).
Besides, the overlapping genes that exhibited similar
expression levels in tumor samples from both the TCGA
and ICGC databases were shown in a Venn diagram,
including DBP, NPAS2, PER1, RORA, and TIMELESS
(Figure 2(c)). Next, we analyzed the copy number varia-
tion (CNV) and methylation, two important factors
influencing the mRNA expression, of these circadian
clock genes. As shown in Figure 2(d), the methylation
levels of CRY2, DBP, and RORA were statistically higher
in HCC tissues than in normal liver tissues. Besides, most
of the circadian clock genes were regulated by methyla-
tion except for ARNTL and PER1 (Figure 2(e)). The
result of the CNV analysis indicated that the mRNA
expressions of all circadian clock genes, except for DBP
and NPAS2, were regulated by copy number variation
(Figure 2(f)). Moreover, a Venn diagram was drawn to
demonstrate that these genes were regulated by both
methylation and CNV (Figure 2(g)).

Furthermore, the protein expression levels of TIME-
LESS and CRY2 were validated using the HPA database.
The protein expression level of TIMELESS was increased,
and that of CRY2 was decreased in cancerous tissues com-
pared to those in adjacent noncancerous tissues in HCC
patients (Fig. S1), which was in agreement with the bioin-
formatics analysis. Finally, to investigate the interrelation-
ship between circadian clock genes, the Pearson
correlation coefficient was applied to draw the correlation
coefficient heatmap based on the gene expression profiles.
As shown in Figure 2(h), three circadian clock genes
CRY2, PER1, and RORA, were positively and closely
related to each other, indicating their similar effects on
HCC patients. Additionally, the correlation between each
gene was investigated by R software (Fig. S2), which fur-
ther verified the close relationship between CRY2, PER1,
and RORA. On the contrast, TIMELESS showed a low rel-
evance to the expression of CRY2, PER1, and RORA,
which were slightly negatively associated. Indeed, CRY2,
PER1, and RORA were downregulated, and TIMELESS
was upregulated in tumor tissues, suggesting that TIME-
LESS may play a different role in HCC.

3.4. Circadian Clock Genes as Prognostic Biomarkers for
HCC Patients. HCC patients were grouped into the high-
and low-risk groups according to the expression of the tar-
geted gene. The survival curves of circadian clock genes were
plotted using the K-M method (Figures 3(a) and 3(b)).
Among 13 circadian clock genes, CRY2, PER1, RORA, and
TIMELESS were the only four genes associated with the
overall survival of HCC patients (Fig. S3). Patients with
higher TIMELESS expression had poorer overall survival
rates (P = 0:01 in TCGA and P = 0:003 in ICGC). On the
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contrary, patients with lower CRY2, PER1, and RORA
expressions exhibited poor overall survival rates (P = 0, P =
0:001, and P = 0:018 in TCGA and P = 0:003, P = 0:005,
and P = 0:004 in ICGC, respectively). Collectively, these
results suggested that CRY2, PER1, RORA, and TIMELESS
were closely associated with the prognosis of HCC.

3.5. Circadian Clock Gene-Based Prediction Models. Subse-
quently, a circadian clock gene-based prediction model was
established to predict patient survival using the multivariate
Cox regression analysis. As shown in Figures 4(a) and 4(b),
ROC curves of the single-gene model (CRY2, PER1, RORA,
and TIMELESS, respectively) showed unsatisfactory predic-
tive effects, with the AUC value of 0.6 approximately (0.63,
0.673, 0.586, and 0.62 in TCGA and 0.641, 0.672, 0.62,
0.696 in ICGC, respectively). Furthermore, the traditional
TNM stage-based prediction model was constructed, and it
was observed that the AUC value was 0.642 in both TCGA
and ICGC, which is nearly equal to the single-gene-based
model (Figures 4(c) and 4(d)). In addition, the combinatory
prediction models consisting of a single circadian clock gene
and the TNM stage were constructed, which still exhibited
unsatisfactory prediction (Fig. S4). A four-gene-based pre-

diction model combined with two clinicopathological risk
factors, TNM stage and sex, was established to further
improve predictive frequency (Figures 4(e) and 4(f)). Risk
scores of the patients were calculated according to the fol-
lowing formulas:

Risk Score TCGAð Þ = −0:235 ∗ CRY2Exp
� �

+ −0:031 ∗ RORAExp
� �

+ −0:267 ∗ PER1Exp
� �

+ 0:077 ∗ TIMELESSExp
� �

+ −0:130 ∗ SEXð Þ
+ 0:905 ∗ TNMð Þ,

Risk Score ICGCð Þ = −0:576 ∗ CRY2Exp
� �

+ 0:193 ∗ RORAExp
� �

+ −0:236 ∗ PER1Exp
� �

+ 0:913 ∗ TIMELESSExp
� �

+ −1:109 ∗ SEXð Þ
+ 1:135 ∗ TNMð Þ:

ð2Þ

As a result, the AUC value reached 0.743 in the TCGA
database and 0.806 in the ICGC database. Finally, patients
were divided into the high-risk and low-risk groups accord-
ing to the median point, and survival curves were plotted,
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Figure 1: Core circadian clock genes in HCC. The circadian rhythm of core circadian genes in HCC, including ARNTL, CRY1, CRY2,
CLOCK, DBP, NR1D1, NR1D2, NPAS2, PER1, PER2, PER3, RORA, and TIMELESS. RNA-seq data are from ref. [12].
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demonstrating a similar tendency. Collectively, the results
showed that the prognostic model proposed in this study
effectively predicted the survival of HCC patients.

3.6. Nomogram Analysis Indicates the Sampling Time of
HCC Patients. Furthermore, nomogram analysis was per-
formed based on genes showing significant circadian
rhythms in liver tissue, which showed that CCGs, including
CRY2, PER1, and RORA, have significant impacts on the
predictive accuracy of the 4-CCG-based predictive model
(Figure 5(a)). The nomogram results also revealed that lower
expression levels of CRY2, PER1, and RORA were associated
with higher predictive ability. More importantly, due to the
rhythmic expression of CCGs in the liver, the time course
of CCG’s predictive accuracy was plotted based on their dif-
ferent expression levels (Figure 5(b)). Previous research indi-

cates that the expression peak phase of CCGs shifted by ~12
hours between the mouse and baboon [12]. Accordingly, we
found that, when patents sampling at night (8:00 pm), CRY2
and PER1 reached their peak, resulting in higher risk scores
and facilitating the early diagnosis of patients. Therefore, it is
better to sample the HCC patients in the evening to obtain a
more accurate predictive function.

3.7. Molecular Mechanisms of Circadian Clock Genes in
HCC. To investigate the underlying mechanisms of circa-
dian clock genes in the prognosis and diagnosis of HCC,
firstly, WGCNA was performed to construct a coexpression
gene network of the four core clock genes. As shown in
Figure 5, these four clock genes are marked as large red
nodes, whereas blue nodes represent the other coexpressed
genes. Notably, gene CRY2, PER1, and RORA were closely

Table 1: Univariate and multivariate analyses of clinicopathological characteristics for overall survival in HCC patients from the TCGA
dataset (N = 318).

Variables n (%)
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Age

<60 152 (47.8%) 1 (reference)

>60 166 (52.2%) 1.173 (0.796-1.730) 0.421

Sex

Female 99 (31.1%) 1 (reference) 1 (reference)

Male 219 (68.9%) 0.804 (0.539-1.198) 0.284 0.864 (0.579-1.287) 0.472

TNM stage

I+II 237 (73.9%) 1 (reference) 1 (reference)

III+IV 83 (26.1%) 2.815 (1.909-4.151) <0.001 1.522 (0.206-11.219) 0.68

Tumor grade

G1+G2 197 (61.9%) 1 (reference)

G3+G4 121 (38.1%) 1.077 (0.724-1.603) 0.713

T stage

T1+T2 237 (74.5%) 1 (reference) 1 (reference)

T3+T4 81 (25.5%) 2.839 (1.923-4.189) <0.001 1.822 (0.247-13.464) 0.556

Note: characteristics with P < 0:3 in the univariate analysis were further screened in the multivariate analysis. HR: hazard ratio; CI: confidence interval; TNM
stage: tumor-node-metastasis stage; T stage: stage of tumor invasion.

Table 2: Univariate and multivariate analyses of clinicopathological characteristics for overall survival in HCC patients from the ICGC
dataset (N = 231).

Variables n (%)
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Age

<60 44 (19.0%) 1 (reference)

>60 187 (81.0%) 0.890 (0.426-1.862) 0.758

Sex

Female 61 (26.4%) 1 (reference) 1 (reference)

Male 170 (73.6%) 0.502 (0.268-0.940) 0.031 0.389 (0.203-0.744) 0.004

TNM stage

I+II 141 (61.0%) 1 (reference) 1 (reference)

III+IV 90 (39.0%) 2.492 (1.351-4.599) 0.003 3.003 (1.598-5.645) <0.001
Note: characteristics with P < 0:3 in the univariate analysis were further screened in the multivariate analysis. HR: hazard ratio; CI: confidence interval; TNM
stage: tumor-node-metastasis stage.
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Figure 2: Differential expression analysis of circadian clock genes between HCC and normal tissues. (a, b) Box diagrams showing the
expression levels of 13 circadian clock genes in tumor samples compared with normal samples in TCGA and ICGC. The P values of the
differential expressed four CCGs (CRY2, PER1, RORA, and TIMELESS) were >0.05. (c) The circadian clock genes showing a similar
expression tendency in TCGA and ICGC. (d) Methylation difference between normal and tumor tissues. (e) Correlation between
methylation and mRNA expression. (f) Correlation of copy number variation (CNV) with mRNA expression. (g) Venn diagram showing
clock genes that were regulated by both methylation and CNV. (h) The interrelationship between circadian clock genes. TCGA: The
Cancer Genome Atlas; ICGC: International Cancer Genome Consortium.
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Figure 3: The prognostic value of circadian clock gene in HCC. The role of circadian clock genes in the overall survival of HCC patients
based on the TCGA database (a) or ICGC database (b).
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Figure 4: Prediction models to predict the survival of HCC patients. (a, b) ROC and survival curves of single-gene-based models in TCGA
and ICGC, respectively. (c, d) ROC and survival curves of TNM stage-based model in TCGA and ICGC, respectively. (e, f) ROC and
survival curves of the model consisting of survival-related four genes significantly associated with TNM stage and sex in TCGA and
ICGC, respectively. CCGs: the four circadian clock genes.
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Figure 5: Nomogram analysis showed risk scores in HCC patients. (a) Nomogram based on genes that showed significant circadian
rhythms in liver tissue. (b) Detailed display of the predictive point based on gene rhythmic expression.

Figure 6: Coexpression network of circadian clock genes. The red nodes are circadian clock genes, while the blue nodes are the coexpressed
genes.
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associated, possessing several mutual cooperators (hereafter
referred to as Cluster 1). However, TIMELESS was a rela-
tively independent part of the coexpression gene network
(Figure 6). This result was in accordance with the interrela-
tionship between circadian clock genes (Figure 2(h)).

Previous studies have revealed the connection between
the circadian rhythm and tumor microenvironment [13].
However, the role of the circadian clock in the tumor micro-
environment remains unclear. Next, a correlation analysis
was performed between the four core circadian clock genes
and the infiltration levels of different immune cells
(Figure 7). It was observed that Cluster 1 was significantly
negatively associated with B cell, natural CD4+ regulatory
T cell (nTreg), CD8+ T cell, and dendritic cell (DC) and pos-
itively related with the infiltration of T helper 17 (Th17) cell.
On the contrary, TIMELESS was positively associated with B
cell and nTreg cell. TIMELESS was also correlated with Tfh
cell, NK cell, and Tr1 cell. These results indicated that Clus-
ter 1 and TIMELESS might affect the survival of HCC
patients by regulating immune infiltration levels, especially
B cell and nTreg cell.

In addition, the role of circadian clock genes in cancer-
related signaling pathways, including TSC/mTOR, RTK,
RAS/MAPK, PI3K/AKT, hormone ER, hormone AR, EMT,
DNA damage response, cell cycle, and apoptosis pathways,
were examined (Figures 8(a) and 8(b)). As shown in pancan-
cer analysis (Figure 8(a)) or liver cancer analysis
(Figure 8(b)), Cluster 1 and TIMELESS exerted opposite
effects on the same signaling pathway; that is, Cluster 1 acti-
vated, whereas TIMELESS inhibited the same pathway and
vice versa. Besides, Cluster 1 mainly inhibited apoptosis, cell
cycle, and DNA damage response, which play a critical role
in maintaining uncontrolled proliferation and chemoresis-
tance of cancer cells. For a better understanding of the
molecular functions underlying the oncogenesis of early
HCC, Gene Set Enrichment Analysis (GSEA) was per-
formed, which showed that each clock gene of Cluster 1
was enriched in the same pathway, such as fatty acid metab-
olism, adipogenesis, bile acid metabolism, and peroxisome
pathway based on the Hallmark Gene Sets. By contrast,
TIMELESS was involved in pathways, including mitotic
spindle, oxidative phosphorylation, and the E2F pathway.
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Figure 7: The correlation between circadian clock genes and the immune infiltration level in HCC. nTreg: natural regulator T cell; Th17: T
helper 17 cells; DC: dendritic cell; Tfh: T follicular helper cell; NK, natural killer cell; Tr1: type 1 regulatory T cell.
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Figure 8: Continued.
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KEGG gene sets were also applied as a reference cohort
(Figures 8(c) and 8(d)). It was also observed that Cluster 1
was closely positively related to the metabolism of amino
acids, whereas TIMELESS was related to DNA replication
and DNA repair-associated signaling pathways (Fig. S5).

Cancer chronotherapy, a therapeutic treatment at a spe-
cific time following circadian rhythms, may improve the
antitumor effects and reduce toxicity [14]. Accordingly, the
correlation between clock gene expression and drug sensitiv-
ity was also investigated using datasets from Genomics of
Drug Sensitivity in Cancer (GDSC), in which high expres-
sion means resistance to a particular anticancer drug. We
found that higher expression of Cluster 1 exhibited a similar
positive correlation with chemoreagents such as selumetinib,
17-AAG, docetaxel, PD-0325901, and trametinib. Con-
versely, TIMELESS showed a stronger negative correlation
with masitinib, GSK1070916, methotrexate, navitoclax, PI-
103, SNX-2112, and 5-fluorouracil (Figure 8(e)). These
results suggested that inhibition of Cluster 1 or activation
of TIMELESS might enhance the chemotherapeutic sensitiv-
ity toward special anticancer drugs.

4. Discussion

This study demonstrated that four circadian clock genes,
including CRY2, PER1, RORA, and TIMELESS, could be

potential diagnostic and prognostic biomarkers for HCC
patients. We also established a prediction model consisting
of these four genes, TNM stage, and sex, demonstrating high
predictive ability. In addition, it was shown that Cluster 1
(CRY2, PER1, and RORA) and TIMELESS exerted opposite
impacts on interactive gene network, infiltration of immune
cells, cancer-related signaling pathways, and cellular sensi-
tivity to clinically used drugs.

Disruption of the circadian rhythm always leads to
physiological disorders of homeostasis in mammals,
which is closely associated with the development of can-
cer [4]. Gene expression, cell cycle, and DNA repair are
regulated by the clock genes, providing the base to the
hypothesis that disruption of biorhythms may predispose
individuals to cancer [6]. Considering the possibility that
circadian clock genes play a pivotal role in the physiolog-
ical functions of mammals, rendering individuals towards
the development of cancer [15], the differential expression
of core circadian clock genes between HCC tissues and
normal tissues was discussed. It was observed that DBP,
NPAS2, PER1, RORA, and TIMELESS showed similar
expression tendency in HCC tissues in the TCGA and
ICGC databases. The mRNA expression was either
affected by methylation [16] or by copy number variation
(CNV), and the fluctuation of DNA copy number was
found responsible for the alteration in coding RNA

Se
lu

m
et

in
ib

17
_A

AG
D

oc
et

ax
el

PD
_0

32
59

01
Tr

am
et

in
ib

M
as

iti
ni

b
G

SK
10

70
91

6
M

et
ho

tre
xa

te

PI
-1

03
SN

X-
21

12
5-

Fl
uo

ro
ur

ac
il

N
av

ito
cla

x

PER1

CRY2

RORA

TIMELESS

Sy
m

bo
l

0.4

FDR
<0.05

–0.4

0

>0.05

(e)

Figure 8: Pathway associated with survival-related clock genes. (a, b) Correlation between survival-related genes and cancer-related
pathways. Pancancer (a) or liver cancer analysis (b) was performed to find the key cellular processes associated with the four CCGs. (c,
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expression level [17]. It was also observed that the
expression of genes such as CRY2, DBP, NPAS2, and
RORA was significantly affected by methylation
(Figure 2(d)), and all circadian clock genes, except for
DBP and NPAS2, exhibited a significant correlation with
CNV. Collectively, the results mentioned above implied
the involvement of methylation or CNV in the dysregula-
tion of circadian clock genes.

In addition, we demonstrated that the dysregulation of
circadian clock genes was associated with the prognosis of
HCC patients. High expression of Cluster 1 (CRY2, PER1,
and RORA), or low expression of TIMELESS, was corre-
lated with prolonged overall survival (OS) of patients
(Figure 3). The investigation of the molecular mechanisms
revealed that Cluster 1 and TIMELESS counteractively reg-
ulated the infiltration of several immune cells such as B
cells and nTreg cells. Inherently, B cells can inhibit tumor
growth by producing antibodies and presenting tumor
antigens, while nTreg cells control the inflammatory
microenvironment to restrict tumor development
[18–20]. High expression of Cluster 1, or low expression
of TIMELESS, might inhibit both the infiltration of B cells
and nTreg cells (Figure 7), suggesting that the dysregula-
tion of circadian clock genes may manifest HCC by dis-
rupting the tumor microenvironment.

Another important finding of this study was that dys-
regulation of the circadian clock genes was also found to
be associated with several cancer-related pathways
(Figure 8), such as DNA damage response, cell cycle,
and apoptosis, which is in accordance with previous
research that the circadian clock genes influenced cancer
susceptibility through DNA damage and apoptosis [21].
Although the cell cycle and circadian clock genes are con-
sidered two different biological oscillators, their close rela-
tion and interaction have been reported [22]. The GSEA
results showed that gene sets of E2F targets, fatty acid
metabolism, AKT/mTOR, and p53 signal pathway were
significantly enriched. Similarly, Cluster 1 and TIMELESS
exerted effects on these signaling pathways conversely.
Moreover, AKT/mTOR and p53 pathways played vital
roles in regulating cell proliferation, and TIMELESS could
promote the proliferation of HCC cells by inhibiting the
p53-dependent signals [23], affirming the finding that high
expression of TIMELESS is related to poor survival of
HCC patients (Figure 3).

Furthermore, the interaction between the circadian clock
genes and cellular sensitivity to an anticancer drug was ana-
lyzed. Several chemoreagents, such as 5-FU [24] and doce-
taxel [25], have demonstrated potent antiliver cancer
activities. It was observed that higher expression of Cluster
1 might enhance the chemoresistance of these anticancer
reagents, implying that inhibition of Cluster 1, or activation
of TIMELESS, may render liver cancer cells more sensitive to
chemotherapy.

5. Conclusion

This work demonstrated that four CCGs, including CRY2,
PER1, RORA, and TIMELESS, could be potential diagnos-

tic and prognostic biomarkers for HCC patients. Besides,
CRY2, PER1, and RORA exerted opposite impacts against
TIMELESS on immune cell infiltration and cancer-related
signaling pathways, affecting the overall survival of HCC
patients. Selective regulation of circadian clock genes
may further assist in precise chronotherapy of HCC
patients.
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The metal ion binding of transmembrane proteins (TMPs) plays a fundamental role in biological processes, pharmaceutics, and
medicine, but it is hard to extract enough TMP structures in experimental techniques to discover their binding mechanism
comprehensively. To predict the metal ion binding sites for TMPs on a large scale, we present a simple and effective two-stage
prediction method TMP-MIBS, to identify the corresponding binding residues using TMP sequences. At present, there is no
specific research on the metal ion binding prediction of TMPs. Thereby, we compared our model with the published tools
which do not distinguish TMPs from water-soluble proteins. The results in the independent verification dataset show that
TMP-MIBS has superior performance. This paper explores the interaction mechanism between TMPs and metal ions, which is
helpful to understand the structure and function of TMPs and is of great significance to further construct transport
mechanisms and identify potential drug targets.

1. Introduction

Metal ions are vital to live organisms involving in various
biological processes. They can enter cells to regulate the
expression and activation of multiple biomolecules, partici-
pate in cell signal transduction, and complete various func-
tions. For example, Ca2+ signaling is essential for T cell
activation, autoantigen tolerance, differentiation, and devel-
opment [1]. Mg2+ regulates ion channels’ activity in cardiac
cells, affecting the myocardium’s electrical properties [2].
Zn2+ is a multitasking tool necessary to stimulate various
enzyme activities [3] that lack and excess can cause central
nervous system diseases [4, 5]. Also, other metal ions
[6–10] perform their respective biological functions. Their
homeostasis disorders involve neurodegenerative diseases,
cardiovascular diseases, bone diseases, asthma, cancer, and
diabetes [11]. Therefore, maintaining the correct levels of
metal ions in the cytoplasm is essential for life and health.

As we know, metal ions cannot directly penetrate the cell
membrane unless the transporter’s assistance is on the cell
membrane. According to the transport mode and spatial
structure, the transporter protein can be roughly divided

into channel and carrier proteins, all transmembrane pro-
teins (TMPs). These particular proteins cross through the
biomembranes by their transmembrane domains and exist
therein whole life, constitute 15-30% of the genome [12].
TMPs, as the primary carrier of metal ions, participate in
signal transduction, intracellular trafficking, and maintain-
ing homeostasis [13, 14]. However, knowledge about the
transport mechanism of metal ions that bind to proteins
across membranes is still insufficient and varies for different
metals. Exploring the TMPs’ metal ion binding site (MIBs)
provides a practical means to explore the ion selectivity
and crucial abilities and even further construct the ion trans-
port mechanism.

Experimental techniques such as AFM [15], MS [16],
IMAC [17, 18], NMR [19], and X-ray crystallography [20]
are comprehensive to identify the crystal structures of pro-
tein and characterize the binding sites in proteins. However,
these techniques had not achieved large-scale application
compared to the water-soluble proteins since the TMPs’
folding, native structure, stability, and activity are reached
only within the lipid bilayer [21]. With sequencing technol-
ogy development, the time has come to study the work
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related to TMPs. Previous extensive research on water-
soluble proteins has provided ideas in computational
methods for use as reference. These methods, computa-
tion-based, reduce the cost to discover the potential MIBs
that also have near-accurate predictions.

Over the last decade, computational methods have been
made significant advances in identifying MIBs. Yang et al.
combined two methods based on substructure and sequence
(COACH [22]) to identify protein-ligand binding sites and
achieved Matthews correlation coefficient (MCC) of 0.54.
Zhao et al. present a 3D template-based metal site prediction
(TEMSP [23]) to predict zinc binding sites and completed
sensitivity of 0.86. Lin et al. used a fragment transformation
method (MIB [24]) to predict twelve metal ion-binding sites
with overall accuracy from 0.92 to 0.95. Yu et al. report a
ligand-specific template-free predictor (TargetS [25]) for
identifying protein-ligand binding sites that contain five
metal ions overall MCC from 0.14 to 0.69. Hu et al. pro-
posed a ligand-specific and template-based components
approach (IonCom [26]) to predict 13 ions and achieved
MCC from 0.14 to 0.69. Cao et al. [27] used only sequence
information for multiple metals and yielded an overall accu-
racy from 0.62 to 0.84. Kumar [28] used the amino acid
sequence information and machine learning approach to
predict six metal ion binding sites’ accuracy 0.86 to 0.87.
Qiao and Xie developed a sequence-based ligand-specific
predictor (MIonSite [29]) to predict 12 metal ion binding
sites and completed MCC from 0.17 to 0.68. Haberal and
Ogul [30] present deep learning architectures to predict
metal binding of histidines (HIS) and cysteines (CYS) amino
acids and acquire the precision 0.79 and recall 0.82.

Although the prediction of the binding site of metal ions
and proteins has been fruitful, it cannot be directly applied
to TMPs [31–34]. First of all, the above methods can be
roughly summarized into structure-based and sequence-
based. The former has better prediction performance, but
the latter is more common. In the past, one of the impedi-
ments to this effort related to ion channels is that TMPs’
structures have been notoriously difficult to obtain. There-
fore, the performance of structure-based is limited in TMPs.
Then, sequence-based methods of MIBs did not distinguish
between TMPs and water-soluble proteins, while TMPs have
significant conformational differences with those water-
soluble proteins. Structurally, metal ions pass through the
body of TMPs while they had never done so to any water-
soluble protein. Functionally, water-soluble proteins cannot
take on the responsibility of transporting metal ions inside
and outside the membrane. Finally, TMPs have selective
specificity for metal ions, which allows only a suitable size
of metal ions to pass through. Therefore, ignoring the
natures as mentioned above is incompatible with biological
significance.

In this study, we proposed a metal-specific method for
predicting the binding sites of the transmembrane protein
and metal ions (TMP-MIBS) from protein sequence infor-
mation. We selected five kinds of TMPs’ specific structural
or biochemical features: evolutionary information, physico-
chemical properties, solvent-accessible surface area, topol-
ogy structure, and Z-coordinate features. TMP-MIBS was

well trained against an up-to-date dataset collected from
the PDBTM database. The sliding windows were introduced
to build feature spaces, and random undersampling was uti-
lized to tackle sample imbalance. The performance of the
model is gradually improved through a two-stage learning
process. In the first stage, metal ion binding sites of TMPs
were identified. In the second stage, specific recognition
models were constructed for the metal-specific. We have
not yet found any tool specifically for binding site prediction
about metal ion prediction and TMPs, so we compared ours
with the published means for metal ions and general pro-
teins. Our model achieves the best performance except for
Ca2+. The work has culminated in a relatively effective tool
for predicting metal binding sites without 3D structures. It
has guiding significance for understanding and ultimately
controlling the binding ability of metal ions and their appli-
cation in drug and disease treatment in the future.

2. Materials and Methods

2.1. Datasets. The PDBTM [35] database (available at http://
pdbtm.enzim.hu), which aims to collect all the TMPs from
the protein structure database (PDB) and keep up to date
with PDB, is the source of the data in this work. We screen
protein data containing metal ion binding sites and parse
sequences from the PDB file by applying the following
criteria.

(1) Only keep chains with residues that participate in
binding metal ions when the proteins have more
than one polypeptide chain

(2) The length of the polypeptide chain is required to
exceed 50 residues

(3) Removing the protein sequences with sequence sim-
ilarities greater than or equal to 40% by Cd-Hit [36]

Finally, there are 427 protein chains left as the experi-
mental dataset. To evaluate the effectiveness of our model,
we divide the training dataset and the independent verifica-
tion dataset as listed in Table 1.

2.2. Feature Extraction

2.2.1. Evolutionary Information. The sequence-based
methods mainly rely on residue conservation analyses
assuming that ligand binding residues are functionally
important and should be conserved in the evolution
[37–39]. By running the PSI-BLAST program on the server,
iteratively searched the NR database three times and used
0.001 as the E-value cutoff of multiple sequence alignments
to obtain evolution information of the protein sequence.
We generated the position-specific scoring matrix (PSSM).
The L residue’s protein sequence generates an L × 20 matrix.

2.2.2. Physicochemical Properties. Early studies in the predic-
tion of transmembrane (TM) helices had widely used phys-
icochemical properties (PCP) such as hydrophobicity
analysis [40], the positive inside rule [41–43], and charge
bias which are indeed valid. Besides, the residues binding
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with metal ions have many distinctive properties, such as
electron-acceptor ability, positive charge, ion size, specific
ligand affinity, varying valence state, and low or high spin
configuration [44]. We collected the 553 physicochemical
properties that influence the microenvironment of proteins.
They were obtained from AAindex [45]. The protein
sequence of the L residue generates an L × 553 matrix.

2.2.3. Solvent-Accessible Surface Area. The solvent-accessible
residues could be responsible for acquiring metal and may
act as a potential metallochaperone to deliver metal to the
TM region [46]. We calculate the relative solvent accessibil-
ity surface area (rASA) by MemBrain [47] for each residue
to provide the residues’ relative positions, which characterize
TMPs’ structure. The protein sequence of the L residue gen-
erates an L × 1 matrix.

2.2.4. Topology Structure. Knowledge of the TM helices’
presence and the exact location is essential for functional
annotation and direct functional analysis. The prediction
of topology structure (TOPO) serves to quickly obtain fun-
damental structural knowledge of TM proteins [48]. We
used TMHMM-2.0 [49], which predicts the sequence’s most

probable location and orientation of transmembrane helices.
The protein sequence of the L residue generates an L × 3
matrix.

2.2.5. Z-Coordinate. The Z-coordinate (Zcoord) is defined as
the residue’s distance to the center of the membrane [50]
and reflects the high correlation with the ligand binding
and the protein-protein binding regions [51]. It implicitly
contains information about TMPs’ secondary structure, such
as re-entrant helices, interfacial helices, a TM helix’s tilt, and
loop lengths. TOPCONS [52] was used to predict the
Zcoord. The protein sequence of the L residue generates an
L × 1 matrix.

2.3. Methods

2.3.1. Outline. TMP-MIBS employs a two-stage learning
process and an ensemble of models to improve prediction
performance gradually. The obtained data were prepro-
cessed and extracted the protein sequence and feature. All
binding residues (the 24 kinds of metal ions) are predicted
to identify the MIBs in the first stage. The second stage indi-
cates the most probable location and binding probability of
MIBs for seven classes which are K+, Ca2+, Na+, Zn2+,
Mg2+, Hg2+, and others. We test two-stage models on the
independent verification dataset to examine the perfor-
mance of the model. More details on how our final model
was built and trained are explained below.

2.3.2. The First Stage of the Learning Process. When con-
structing the feature space is generated as the input of the
first stage of the model, the sliding window strategy is used
to intercept the amino acid fragments, and the random
undersampling is introduced to extract some negative sam-
ples. Random forest (RF) is used as the prediction model
and vote for binary class and selects the classification having
the most votes. For a given protein sequence, the classifier
outputs the exact conclusion that each residue is or is not a
MIBs. This stage only predicted whether the residue would
be binding with one in the 24 metal ions.

2.3.3. The Second Stage of the Learning Process. The second
stage learning process takes into account the ligand-
specific. After the first model training stage, two prediction
results, “1”and “0”, are output, corresponding to MIBs and
non-MIBs. To further predict the binding of amino acid res-
idues to metal ions, it is necessary to model the samples with
the prediction result of “1” and enter the second stage of
model learning. The second stage models the seven types
of metal ions with the most significant number of sites,
respectively. The OVR strategy in the multiclassification
problem is adopted. Each time, the examples in one class
are regarded as positive classes, and all other classes are
taken as counterexamples. Finally, the seven classifiers for
seven class metal ions output the probabilities for each resi-
due binding residue in the given protein sequence.

2.4. Random Undersampling. Undersampling is a common
technique among the existing technologies to overcome the
sample imbalance problems. All the binding sites (positive

Table 1: The training set and independent test set.

Category Training dataset
Independent

verification dataset
Main NProta Nrecb NProta Nrecb

K+ 63 202 6 17

Ca2+ 78 388 10 51

Na+ 54 223 7 46

Zn2+ 52 241 5 26

Mg2+ 64 209 10 27

Hg2+ 8 83 3 25

Cu2+ 14 54 2 9

W6+ 13 56 1 4

Cd2+ 8 31 2 10

Ni2+ 10 28 3 9

Fe3+ 7 19 0 0

Mn2+ 7 32 0 0

Cu2 2 12 0 0

Rb+ 4 18 0 0

Au+ 2 13 0 0

Cs+ 6 23 0 0

Pb2+ 1 10 0 0

Fe2+ 3 7 0 0

Pt2+ 1 2 0 0

Sr2+ 1 4 0 0

Li+ 1 4 0 0

Co2+ 3 4 0 0

Pr3+ 1 3 0 0

Mo6+ 1 1 0 0

NProta: number of protein entries; Nrecb: number of protein receptors
bound with ions.
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samples) are kept, and the nonbinding sites (negative sam-
ples) as an original dataset S will generate a new set S′.
The numbers are N times the positive samples (N takes an
integer). We set the ratio parameter of positive and negative
samples to 1 : 5, with the N design details explained in Sec-
tion 3.4.

2.5. Sliding Windows. The structural state of a residue is
determined not only by amino acid residue itself but also
by neighboring residues. The interception of the neighbor
residue length is critical to the description of the target resi-
due. Underintroducing the information of neighbor residues
is not conducive to distinguishing, but overintroducing may
cause noise. The sliding window strategy is widely used to
contemplate the influence of neighbor residues for the target
residuals, located in the middle, and ðw − 1Þ/2 adjacent res-
idues are found on both sides (ðwÞ size, being an odd num-
ber). Since the volume of metal ions is usually small, the
optimal window length of metal ions should be smaller than
that of the larger ligands, such as ATP and NAD ligands (17
in general) [53]. We computed and analyzed evaluation
indicators for seven class metal ions to determine the opti-
mal sliding window length.

2.6. Validation and Evaluation Metrics. Random 10-fold
cross-validation was used to validate model and tuning
parameters, which one set was used for testing, and the
remaining sets were used for training. We randomly divided
the dataset into ten sets. Repeat this process ten times, and
the final score was obtained by averaging the performances.
We used five evaluation measures to evaluate the generaliza-
tion ability of the model, which are accuracy (ACC), speci-
ficity (SPE), sensitivity (SEN), Matthews correlation
coefficient (MCC), and area under ROC curve (AUC),
respectively [54–57]. The training dataset is used to fine-
tune the proposed methods’ parameters, and the indepen-
dent test is used to test the methods.

ACC = TP + TN
TP + TN + FP + FN

, ð1Þ

SPE =
TN

TN + FP
, ð2Þ

SEN =
TP

TP + FN
, ð3Þ

MCC =
TP × TN − FP × FN

TP + FPð Þ × TP + FNð Þ × TN + FPð Þ × TN + FNð Þ ,

ð4Þ

AUC =
1
2
〠
m−1

i=1
xi+1 + xið Þ∙ yi + yi+1ð Þ, ð5Þ

where TP, FP, TN, and FN represent true positive, false pos-
itive, true negative, and false negative.

3. Results and Discussion

3.1. Specific Binding of Metal Ions and Amino Acids. It is well
known that ion channels are highly selective for controlling
ions in and out, which can be reflected by combining differ-
ent ions with amino acid residues [27]. We counted the fre-
quency of amino acids and nonamino acids bound by metal
ions to TMPs, as shown in Figure 1. Interestingly, (b) Ca2+,
(d) Zn2+, (e) Mg2+, and (f) Hg2+have higher specificity when
combined with residues than (a) K+ and (c) Na+. For Zn2+, it
is more likely to connect with His (H), Cys (C), and Glu (E),
which are polar amino acids. Mg2+ is more likely to bind
ASP (D) and more minor to nonpolar amino acids. Hg2+

has the highest tendency to combine with amino acids con-
taining the neutral R group, while Ca2+ has the most
increased tendency to combine with acidic amino acids.
Careful observation shows that metal ions are more likely
to connect with hydrophilic amino acids than hydrophobic
amino acids. The finding supports the hypothesis of
solvent-accessible residues that act as a potential metallocha-
perone and participate in delivering metal to the TM region.

In addition, we can conclude that the difference in the
binding frequency with amino acids reflects metal ions’
physical and chemical properties. Metal ions under the main
analogous group have similar chemical properties and also
have similar selectivity. The selection of binding amino acid
residues by metal ions of different main groups is also quite
different.

3.2. Position Conservation of Amino Acids. We further stud-
ied the conservative position information of the above six
MIBs by WebLogo [58], as shown in Figure 2. Sequences
were intercepted in window length L of 21 as an example
for each metal ion class to analyze. The relative size of letters
(amino acids) indicates their occurrence frequency in the
sequence. The larger the letter, the higher the frequency.
According to the illustration, no matter the binding site or
nonbinding site of K+ and Na+ is remarkable, reflecting the
proximity of the two metal ion sites in sequence and struc-
ture. But the status of other metal ions (Ca2+, Zn2+, Mg2+,
and Hg2+) makes the difference, which reflection of the
binding site is remarkable, but the neighboring residues’
contribution limits during the crucial process.

The degree of conservation demonstrates the importance
of amino acids in evolution. A commonly cited approxima-
tion is that the more critical amino acids realize protein
function, the less likely they will mutate. Thus, the conserva-
tion of amino acid residues is a good indicator of protein-
metal ion binding. It was selected as the feature information
to develop an effective identification model further.

3.3. Contribution of Features. The feature space contains five
feature information, which we introduced in Section 2.2 for
classifier learning. We compared the effects of adding differ-
ent features on the results to verify the selected feature’s
validity. Table 2 shows that five elements were verified by
successively adding them into the classifier in the first stage
of the learning process.
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It can be seen from Table 2 that adding features in
sequence from top to bottom plays a positive role for models
in MCC indicators. On the one hand, the five characteristics
selected in this experiment can better reflect the critical

information of the TMP sequence and help the model
identify the MIBs. On the other hand, five features are rel-
atively independent and can play a more significant role
when combined.
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Figure 1: The amino acid binding frequency of six metal ions. The frequency of 20 kinds of amino acids on the binding site (blue) and
nonbinding (red) was histogram. The abscissa represents the kinds of amino acids, and the ordinate represents the frequency (%); (a),
(b), (c), (d), (e), and (f) represents K+, Ca2+, Na+, Zn2+, Mg2+, and Hg2+, respectively.
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3.4. Random Undersampling Scheme. Exploring the ratio of
binding and nonbinding residues is necessary to tackle the
sample imbalance problem because too few negative samples
will cause the loss of valuable information, and too many
negative instances will increase the interference caused by
redundant data. Figure 3 depicts the change of evaluation
indexes with the shift in positive and negative sample pro-
portion in the first stage. We can see that the MCC value
in the 10-fold cross-validation sets shows a decreasing trend
with the ratio increase. In contrast, the MCC value on the
independent set is fluctuant, but it increased in general.
The ratio of negative sample sampling is the key to influence
the final results. We used the proportion of positive and neg-
ative samples which is 1 : 5 to improve the model’s overall
performance.

3.5. Comparison with Other Machine Learning Methods over
Cross-Validation. TMP-MIBS is based on the RF algorithm.
This section compares the random forest with other
machine learning methods on the training dataset, such as
support vector machine (SVM), naïve Bayes, and AdaBoost.
These methods have shown excellent performance in com-
mon classification problems. To obtain fair and objective

experimental results, all models adopt the same dataset and
preprocessing mechanism and finally get the test results
shown in Table 3.

As shown in Table 3, the integration classes’ perfor-
mance is better than the others. Compare the two ensemble
strategies AdaBoost and RF. The former adopts a boosting
approach to ensemble base learners that adjust according
to the previous one to generate prediction results serially,
making the model susceptible to noise and outliers. Instead,
the RF adopts a bagging strategy to make the base learner
relatively independent and has no strong dependency. It
can generate the prediction results in parallel, reduce out-
liers’ influence on them, and have the natural advantage of
solving the multidimensional unbalanced data. We further
compared the prediction performance of different classifiers
for each metal ion. The comparison similarly shows that the
overall performance of the random forest classifier is
optimal.

3.6. Comparison with Other Ligand-Specific Methods. To
prove TMP-MIBS’s robustness and effectiveness, we further
tested the model on the independent testing dataset and
compared it with two publicly available methods, including
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Figure 2: Position-specific conservation of amino acid residues. (a) K+, (b) Ca2+, (c) Na+, (d) Zn2+, (e) Mg2+, and (f) Hg2+.

Table 2: The performance of different combinations of features.

Feature combination ACC SPE SEN MCC AUC

PSSM 0.695 0.765 0.624 0.395 0.695

PSSM, PCP 0.75 0.801 0.7 0.504 0.75

PSSM, PCP, rASA 0.754 0.832 0.676 0.515 0.754

PSSM, PCP, rASA, Zcoord 0.755 0.834 0.675 0.516 0.755

PSSM, PCP, rASA, Zcoord, TOPO 0.766 0.861 0.67 0.542 0.766
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TargetS [25] and MIB [24]. The prediction performance was
calculated based on the same dataset (Tables 1 and 4). For
the TargetS method, a ligand-specific template-free
protein-ligand binding site predictor used classifier ensem-
ble and spatial clustering. It has five metal ligands that over-
lap with this study. We submitted the protein sequence into

the webserver (http://www.csbio.sjtu.edu.cn/TargetS/) to
obtain the predicted results and evaluate predictive perfor-
mance. For the MIB method, which constructs metal ion
binding templates for structural comparison between query
proteins and templates and has four metal ligands identical
to this study, we submitted and ran the MIB webserver
(http://bioinfo.cmu.edu.tw/MIB/).

We observed that the performance of TMP-MIBS sig-
nificantly outperforms the MIB on four metal ions. The
average MCC value of Na+, Zn2+, and Hg2+ is about 16–
39% higher than the TargetS. The results show that our
model is superior to the available metal ion predictors,
whether template-based or non-template-based methods.
It can be inferred that the results largely depend on our
input data rather than the complicated method. Although
the number of TMPs sequences is increasing, it is still
quite limited compared with non-TMPs. MIB and TargetS
training models do not distinguish TMPs, so the models
mainly learn the information of non-TMPs. The differ-
ences between the TMPs and non-TMPs are reflected in
the secondary structure through sequence information
and determine their tertiary conformation and function.
TMP-MIBS focuses on TMPs, and the final results also
confirm our efforts.

3.7. Metal Ion Binding Motif Analysis. A motif is an approx-
imate sequence pattern that repeatedly occurs in a group of
related sequences. It was used to reflect the protein’s conser-
vative information and discover novel information between
different sequences. We tried to find out the motif within
the metal ion binding domains to discover potential drug
targets. The seven group metal ion binding domains were
extracted for analysis. Figure 4 shows the sequence logos of
motifs for six metal ions and the 3D visualizations of their
examples. Note that we stipulate the MEME outputs with
ten motifs for each metal ion class and select the highest E
-value for reporting.
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Figure 3: The ratio of nonbinding residues and binding residues. (a) 10-fold cross-validation test. (b) Independent validation test.

Table 3: Comparison of RF with other classifiers.

Classifier ACC SPE SEN MCC AUC

SVM 0.658 0.648 0.703 0.267 0.676

Naïve Bayes 0.767 0.775 0.73 0.409 0.752

AdaBoost 0.808 0.804 0.649 0.428 0.745

RF 0.795 0.808 0.73 0.447 0.769

Table 4: Comparison with publicly available methods.

Ligand Method ACC SPE SEN MCC AUC

K+ TMP-MIBS 0.981 1 0.118 0.34 0.559

Ca2+ MIB 0.942 0.943 0.342 0.067 0.643

TargetS 0.997 0.999 0.471 0.494 0.735

TMP-MIBS 0.908 0.998 0.196 0.398 0.597

Na+ TargetS 0.998 0.999 0.259 0.336 0.629

TMP-MIBS 0.901 0.997 0.304 0.501 0.65

Zn2+ MIB 0.945 0.946 0.538 0.101 0.742

TargetS 0.996 0.997 0.231 0.151 0.614

TMP-MIBS 0.979 1 0.154 0.388 0.577

Mg2+ MIB 0.932 0.933 0.053 0 0.493

TMP-MIBS 0.991 0.998 0.259 0.356 0.628

Hg2+ MIB 0.948 0.949 0.56 0.104 0.754

TMP-MIBS 0.973 0.998 0.259 0.502 0.63

Others TMP-MIBS 0.976 0.987 0.056 0.041 0.521
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Figure 4: Continued.
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From Figures 4(a) to 4(g), describe the logo of K+, Ca2+,
Na+, Zn2+, Mg2+, Hg2+, and (g) other metal ions respectively.
“E-value” is an estimate of the expected number of motifs
with the given log-likelihood ratio (or higher). “Site Count”
represents the number of sites contributing to the construc-
tion of the motif. “Width” represents the width of the motif.
Sequences where each position is independent and letters are
chosen according to the background letter frequencies. The
red dashed box indicates the TMP-MIBS prediction site.
The 3D visualization on the right is an example of the corre-
sponding motif. “Protein” represents the PDB ID_Chain
(domain).

The relative size of letters indicates their frequency in the
sequence. It can be seen from the figure that the higher the
letter, the more likely it is to become a binding site. Based
on the extraction of motif sequence, we can predict the
potential binding sites, which is helpful to understand fur-
ther the biological significance involved in various biological
processes.

4. Conclusions

Metal ions regulate almost all organisms’ physiological cell
functions, and their abnormal homeostasis usually leads to
a variety of diseases and pathogenic states. They achieve
homeostasis inside and outside the membrane and perform
essential biological functions with TMPs’ assistance. This
study proposed an effective method to predict the binding
residues of seven class metal ions in TMPs. We used the
combination of conservative structure, physical and chemi-
cal properties, topological structure, solution accessibility,
and Z-coordinate to apply the random forest algorithm to
identify metal ion binding residues. These characteristics
positively affected the prediction in essence. Test results
show that TMP-MIBS has excellent performance for metal
ion binding residues. This indicates that the sequential
approach alone can achieve pleasant performance and dem-
onstrates the importance of input data. With more and more
sequence information obtained in the future, our model will
show more excellent performance.

In the current work, a significant problem of TMB-MIBS
is that predicting fewer MIBs on the protein sequence is still
challenging. However, it can accurately predict more sites
than existing tools because the imbalance of positive and
negative samples is the unavoidable normal state of such

problems. We will work to overcome this problem as the
goal of the next phase.
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Membrane protein is an important kind of proteins. It plays essential roles in several cellular processes. Based on the
intramolecular arrangements and positions in a cell, membrane proteins can be divided into several types. It is reported that
the types of a membrane protein are highly related to its functions. Determination of membrane protein types is a hot topic in
recent years. A plenty of computational methods have been proposed so far. Some of them used functional domain
information to encode proteins. However, this procedure was still crude. In this study, we designed a novel feature extraction
scheme to obtain informative features of proteins from their functional domain information. Such scheme termed domains as
words and proteins, represented by its domains, as sentences. The natural language processing approach, word2vector, was
applied to access the features of domains, which were further refined to protein features. Based on these features, RAndom k-
labELsets with random forest as the base classifier was employed to build the multilabel classifier, namely, iMPT-FDNPL. The
tenfold cross-validation results indicated the good performance of such classifier. Furthermore, such classifier was superior to
other classifiers based on features derived from functional domains via one-hot scheme or derived from other properties of
proteins, suggesting the effectiveness of protein features generated by the proposed scheme.

1. Introduction

Membrane protein refers to the protein that can bind to the
cell membrane and is an important part of the cell mem-
brane. It exposes a surface that is very suitable for merging
to the membrane [1]. There are lots of membrane proteins
in human. They perform various functions related to cell
survival. About 30% of genes can encode membrane
proteins [2], 60% of membrane proteins can be used as drug
targets, and some membrane proteins can act as enzyme
mediators in the immune system [3]. It is reported that the
function of membrane protein is highly associated with its
type. Identification of the types of membrane proteins is an
important step to uncover their functions. Traditional exper-
imental methods can provide solid results. However, they
have some evident defects, such as low efficiency and high
cost. The large-scale tests for identification of membrane

protein types via these methods are almost impossible. Thus,
it is urgent to design quick and cheap methods.

In recent years, lots of new computational methods have
proposed, providing strong technical support for designing
classifiers for identification of membrane protein types. On
the other hand, several online databases have been set up for
collecting various information of proteins, giving strong data
support. To date, several classifiers have been proposed to
identify membrane protein types. Most classifiers are based
on machine learning algorithms. These classifiers always
learn patterns based on the information of membrane pro-
teins, whose types have been determined. These patterns can
be used to determine the types of given proteins. Several exist-
ing classifiers used features extracted from protein sequences
[4–9]. Amino acid composition (AAC) and pseudo amino
acid composition (PseAAC) are two classic schemes to access
features from protein sequences. Functional domains are also
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used to build classifiers for identification of membrane
protein types [10–12]. The classifiers incorporating such
information always provided good performance. However,
the usage of functional domain information is still at a low
level. One-hot scheme was used to encode proteins based
their functional domain information. Through this scheme,
each protein was encoded into a binary vector, where each
component represented one domain. If the domain was anno-
tated on a given protein, its corresponding component was set
to one; otherwise, it was set to zero. However, such scheme
had some evident defects. For example, the performance of
the classifiers was quite sensitive to some domains. This study
gave an investigation on the usage of functional domain infor-
mation of proteins.

In this study, we set up a novel classifier to identify
membrane protein types. This classifier adopted the novel
features obtained from functional domain information of
proteins via a natural language processing approach, word2-
vector. These features were fed into a multilabel classifica-
tion scheme, RAndom k-labELsets (RAKEL) [13], to set up
the classifier. Classic classification algorithm, random forest
(RF) [14], was selected as the base classifier in RAKEL.
The proposed classifier was called iMPT-FDNPL. The ten-
fold cross-validation indicated the good performance of such
classifier. It was also superior to other classifiers that were
constructed with other widely used feature extraction
schemes, including the classifier using features derived from
functional domain information via one-hot scheme.

2. Materials and Methods

2.1. Database. The data of human membrane proteins was
sourced from Huang et al.’s study (dataset S1) [15]. 2883
membrane proteins, encoded by UniProt IDs, were
obtained. In fact, these proteins were extracted from a larger
dataset retrieved from the UniProt database (release 2012_
09) [16] by using CD-HIT [17]. The sequence similarity of
any two proteins was smaller than 0.7. These 2883 proteins
were classified into six types: (1) GPI- (glycosyl phosphatidyl
isohydrin-) anchored, (2) lipid-anchor, (3) multipass, (4)
peripheral, (5) single-channel type I, and (6) single-pass II
type [18]. Because we adopted functional domain informa-
tion to encode proteins, those without such information
were excluded. 2729 membrane proteins remained. These
proteins were still classified into six abovementioned types.
The distribution of 2729 membrane proteins on six types is
shown in Table 1. The sum of protein numbers in all six
types was 2810 (last row of Table 1), which was bigger than
the number of different proteins. It was suggested that some
proteins belonged to more than one types. As shown in
Figure 1, 73 proteins belonged to two types, 4 proteins
belonged to three types, whereas rest proteins belonged to
one type. Thus, it is a multilabel classification problem to
assign types to membrane proteins.

2.2. Feature Engineering. Feature engineering is an important
step in designing efficient classifiers. In this study, we should
extract features from each membrane protein, which can
retain essential properties of proteins. Functional domain is

widely used to investigate various protein-related problems,
including membrane protein type prediction. The classic
way to employ such information is one-hot scheme. Several
classifiers have been built with such scheme, and they
provided good performance [10–12]. As mentioned above,
such scheme also had some defects. Here, we proposed a
new scheme to adopt functional domain information,
thereby encoding membrane proteins in a new way.

2.2.1. Domain Representation. The functional domain infor-
mation of all human proteins was retrieved from the Inter-
Pro database (http://ftp.ebi.ac.uk/pub/databases/interpro/,
accessed in February 2021) [19]. 17,410 IPR terms were
annotated on 171,472 human proteins. In this study, we
adopted a natural language processing approach to analyze
this information. To this end, IPR terms were deemed as
words and proteins, represented by one or more IPR terms,
were termed as sentences. Accordingly, the well-known
word2vector method was applied on them to learn a feature
vector for each IPR term. This study used the word2vector
program obtained from https://github.com/RaRe-
Technologies/gensim. Default parameters were adopted.

2.2.2. Protein Representation. As mentioned above, the fea-
ture vector of each IPR term was learnt by word2vector.
Based on them, we can further access the feature vectors
of proteins. Here, a simple way was adopted. The feature
vector of a given protein was defined as the average vector of
feature vectors of IPR terms that was annotated on such pro-
tein. For example, for a certain protein A4D1S5, there are
three IPR terms, say IPR001806, IPR005225, IPR027417,
and the average vector of three vectors, representing above
three IPR terms, respectively, was used to represent A4D1S5.

2.3. Multilabel Classifier. This study adopted a problem
transformation method, RAKEL [13], to build the multilabel
classifier, which has wide applications in dealing with several
biological and medicine problems [20–27]. From the origi-
nal multilabel classification problem, several single-label
classification problems are derived as follows. Given a prob-
lem with l labels, denoted by L1, L2,⋯, Ll, it first randomly
constructs m label subsets, each of which contains k labels,
where 1 ≤ k ≤ l. For each label subset, members in its power
set are deemed as new labels. Samples are assigned new
labels according to their original labels. For example, for
the label subset fL1, L2, L3g, the labels of each sample are

Table 1: Distribution of membrane proteins on six types.

Membrane protein type Number of proteins

GPI-anchor 69

Lipid-anchor 211

Multipass 1306

Peripheral 530

Single-pass type I 539

Single-pass type II 155

Total 2810
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first restricted to this subset, i.e., labels in this subset are
picked up and the rest are discarded. Then, the remaining
labels are put together as a new label. If the labels for one
sample are L1, L2 and L4, L1 and L2 are first selected
and fL1, L2g, a member of the power set of fL1, L2, L3g,
is assigned to such sample as its new label. Accordingly,
each sample has exactly one new label. Then, a classifier
can be built with a given base single-label classifier. The
m label subsets induce m single-label classifiers. The final
multilabel classifier integrates these single-label classifiers.
In detail, given a query sample, each single-label classifier
provides its prediction. Such prediction can be refined to
the binary predictions for labels involved in this classifier.
For each label, the binary predictions yielded by classifiers
involving this label are selected and count the proportion
of classifiers that predict this label. If this proportion is
higher than a predefined threshold, which is always set
to 0.5, the label is assigned to the query sample.

To quickly implement the RAKEL algorithm, we used
the tool “RAKEL” in Meka [28], retrieved from http://
waikato.github.io/meka/. Several values of m and k, the main
parameters of RAKEL, were tried in this study. For conve-
nience, the classifiers built by RAKEL were termed as
RAKEL classifiers.

2.4. Base Classifier. The multilabel classifier built by RAKEL
needs a base single-label classifier as mentioned above. One
of the most classic algorithms, RF [14], was selected in this
study. It is an ensemble classifier, consisting of several deci-
sion trees. Each decision tree is constructed by randomly
selecting samples and features. Given a sample, each deci-
sion tree provides its prediction. RF counts these predictions
and determines the final prediction using majority voting.
Although decision tree is quite weak, RF is much more
robust. Thus, it is always an important candidate to build
classifiers for tackling different problems [29–39].

In this study, we adopted the tool “RandomForest” inte-
grated in Meka [28], which implements RF.

2.5. Performance Measurement. All classifiers were assessed
by tenfold cross-validation [40–44]. This method randomly
and equally divides samples into ten subsets. Each subset is
singled out to constitute the test set one by one, and rest
subsets are put together to constitute the training set.
Accordingly, each sample is predicted only once.

After obtaining the outcomes of tenfold cross-validation,
we calculated three measurements to assess the quality of
results, including exact matching, accuracy, and hamming
loss [25–27], which can be computed by

Exactmatch = 1
n
〠
n

i=1
∇ Li, Li′
� �

,

Accuracy = 1
n
〠
n

i=1

Li ∩ Li′
�� ��
Li ∪ Li′
�� ��

 !
,

Hamming loss = 1
n
〠
n

i=1

LiΔLi′
�� ��

m

 !
,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1Þ

where n denotes the overall number of samples, m stands for
the number of labels (m = 6 in this study), Li and Li′ repre-
sent the set of true labels and predicted labels of the ith sam-
ple, respectively,Δ stands for the set symmetric difference
operation, and ∇ is defined as follows:

∇ Li, Li′
� �

=
1 If Li is identifical to Li′,
0 Otherwise:

(
ð2Þ

Obviously, the higher exact matching and the accuracy,
the better the performance of the classifier. For hamming
loss, the lower the hamming loss, the better the performance.
For easy comparisons, an integrated measurement, called
integrated score, was defined as below
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Figure 1: An illustration to show the distribution on the number of types a membrane belongs to. Four membrane proteins belong to three
types, 73 proteins belong to two types, and rest 2652 proteins belong to one type.
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Integrated score = exactmatch ∗ accuracy ∗ 1 − hamming lossð Þ:
ð3Þ

The higher the score, the better the classifier.

3. Results and Discussion

In this study, we set up a multilabel classifier, iMPT-FDNPL,
for prediction of membrane protein types. Such classifier
employed the features derived from functional domain
information of proteins. The entire procedures are shown
in Figure 2. In this section, we would give the evaluation
results and comparisons with other classifiers.

3.1. Performance of iMPT-FDNPL. iMPT-FDNPL adopted
the features derived from functional domain information
via word2vector. Because the optimum dimension of fea-
tures was unknown, several dimensions were tried, including
dimensions from 50 to 500 with interval 50. Furthermore,
the main parameter m in RAKEL was set to 10, and another
main parameter k was set to all integers between 2 and 6. As
for the parameter of RF, number of decision trees, it was set
to integers from 100 to 500 with interval 100. RAKEL classi-
fiers with all possible parameter settings were set up and
assessed by tenfold cross-validation. The outcomes showed
that when the dimension was set to 350, k = 6, m = 10, and
the number of decision trees was 500, the RAKEL classifiers
provided the highest integrated score of 0.6874. Thus, this
classifier was the proposed multilabel classifier, iMPT-
FDNPL. The exact match, accuracy, and hamming loss were
0.851, 0.853, and 0.053, respectively, which are listed in
Table 2. The exact match and accuracy both exceed 0.850,
suggesting the good performance of iMPT-FDNPL.

To fully assess the performance of iMPT-FDNPL under
tenfold cross-validation, 20 additional tenfold cross-
validations on this classifier were conducted. The obtained
values of exact matching, accuracy, hamming loss, and inte-
grated score are illustrated in Figure 3. We can see that exact
match varied from 0.853 to 0.860, accuracy from 0.856 to
0.863, hamming loss from 0.049 to 0.052, and integrated score
from 0.6921 to 0.7058. Above four measurements varied in a
small interval, implying that the performance of iMPT-
FDNPLwas quite stable nomatter how samples were divided.

3.2. Comparison of RAKEL Classifiers with Other Base
Classifiers. The proposed classifier, iMPT-FDNPL, adopted
RF as the base classifier. In fact, we also attempted another
classic classification algorithm, support vector machine
(SVM) [45]. Similar to RF, the tool “SMO” integrated in
Meka was directly employed in this study, which imple-
ments one type of SVM, whose training procedures are opti-
mized by the sequential minimal optimization algorithm
[46, 47]. The kernel was polynomial kernel or RBF kernel.
Various values of regularization parameter C were tried,
including 1, 2, 3, and 4. The exponent of polynomial kernel
was set to 1, 2, 3, and 4. As for parameter γ of RBF kernel, it
was set to various values between 0.01 and 0.05. The feature
dimensions and m, k in RAKEL were the same as those in
Section 3.1. All RAKEL classifiers with possible parameter

settings were built and evaluated by tenfold cross-
validation. The best performance (highest integrated score)
of RAKEL classifiers with SVM using two different kernels
is listed in Table 2. If the basic classifier was SVM (polynomial
kernel), the integrated score was 0.6515, exact match was
0.831, accuracy was 0.834, and hamming loss was 0.060. If
SVM (RBF kernel) was the base classifier, the integrated score
was 0.6787, exact match was 0.846, accuracy was 0.848, and
hamming loss was 0.054. The comparisons of those yielded
by iMPT-FDNPL indicated that the proposed classifier was
superior to these RAKEL classifiers. It was proper to select
RF as the base classifier to construct the classifier.

3.3. Comparison of BR Classifiers. In this study, we adopted
RAKEL to build the multilabel classifier. Here, another mul-
tilabel classifier construction method, Binary Relevance (BR)
[48], was employed to build the classifiers. Similar to
RAKEL, it also needs one base classifier. We still used three
base classifiers mentioned above: RF, SVM with polynomial
kernel, and SVM with RBF kernel. We tried the same
parameter settings as those in above sections. With all possi-
ble parameter settings, several classifiers were set up and
assessed by tenfold cross-validation. For convenience, these
classifiers were called BR classifiers.

The best performance of BR classifiers with different
base classifiers is listed in Table 2. The integrated scores
of these BR classifiers were 0.5778, 0.6152, and 0.6544,
respectively, which were all lower than that of the iMPT-
FDNPL. Furthermore, the exact match and accuracy of
iMPT-FDNPL were also higher than the corresponding
measurements of three BR classifiers. As for hamming loss,
iMPT-FDNPL provided lower performance than BR classi-
fier with SVM (RBF kernel) as the base classifier. However,
the hamming loss of iMPT-FDNPL was lower than those of
other two BR classifiers. All these results indicated the supe-
riority of the iMPT-FDNPL. In addition, given a base classi-
fier, RAKEL classifiers always provided higher performance
than BR classifiers, implying RAKEL was more powerful to
construct multilabel classifiers for identifying membrane
protein types than BR.

3.4. Comparison of Classifiers with Other Embedding
Features. In this study, the multilabel classifier, iMPT-
FDNPL, adopted features derived from functional domains
via a natural language processing approach to encode mem-
brane proteins. As mentioned above, one-hot scheme is a
more widely used way to encode proteins. Here, each protein
was encoded by such scheme. Then, the RAKEL and BR
were employed to construct classifiers, and the base classifier
was SVM or RF. With all possible parameter settings used
above, several classifiers were built, each of which was
assessed by tenfold cross-validation. The best performance
for RAKEL and BR with one of the base classifiers is listed
in Table 3, from which we can see that with such features,
the RAKEL with SVM (polynomial kernel) provided the best
performance. In detail, the integrated score was 0.6794, and
three measurements (exact match, accuracy, and hamming
loss) were 0.847, 0.848, and 0.054. Such performance was
lower than that of the iMPT-FDNPL. Thus, features derived
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from functional domains via word2vector were more effi-
cient than the features derived from functional domains
via one-hot scheme for identifying membrane protein types.

Gene ontology (GO) [49] and KEGG pathway [50]
information was also widely used to investigate protein- or
gene-related problems. With the similar procedures that

were done for functional domains, GO terms and pathways
were termed as words, whereas proteins, annotated by GO
terms and pathways, were considered as sentences. We can
obtain feature vectors of GO terms and pathways via word2-
vector. Then, a membrane protein was represented by an
average vector of vectors of GO terms and pathways that
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Figure 2: Entire procedures to construct and evaluate the multilabel classifier, iMPT-FDNPL. Membrane proteins and types are retrieved
from the UniProt database. The types are termed as labels. Function domain information is obtained from the InterPro database. This
information is processed by a natural language processing approach (word2vector), and the outcomes are used to encode proteins. Labels
and vectors are fed into RAKEL with random forest as the base classifier to construct the multilabel classifier. This classifier is evaluated
by tenfold cross-validation.
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were annotated on such protein. Likewise, several dimen-
sions from 50 to 500 with interval 50 were generated.
RAKEL or BR with SVM or RF as the base classifier was
employed. Several classifiers were constructed with all possi-
ble parameter settings. All classifiers were evaluated by
tenfold cross-validation. Similarly, the best performance

using RAKEL or BR with one base classifier is listed in
Table 4. Evidently, in this case, RAKEL with SVM (polyno-
mial kernel) generated the highest performance with
integrated score of 0.6106. The exact match was 0.808, accu-
racy was 0.810, and hamming loss was 0.067. The exact
match, accuracy, and integrated score were all lower than

Table 2: Performance of different multilabel classifiers with features derived from functional domain information via a natural language
processing approach.

Scheme (base classifier) Exact match Accuracy Hamming loss Integrated score

RAKEL (RF) (iMPT-FDNPL) 0.851 0.853 0.053 0.6874

RAKEL (SVM-polynomial kernel) 0.831 0.834 0.060 0.6515

RAKEL (SVM-RBF kernel) 0.846 0.848 0.054 0.6787

BR (RF) 0.781 0.782 0.054 0.5778

BR (SVM-polynomial kernel) 0.804 0.815 0.061 0.6152

BR (SVM-RBF kernel) 0.829 0.831 0.050 0.6544
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Figure 3: Boxplot to show the performance of iMPT-FDNPL using tenfold cross-validation for 20 times. (a) Accuracy; (b) exact match; (c)
hamming loss; (d) integrated score. Each measurement varies in a same range.

Table 3: Performance of different multilabel classifiers with features derived from functional domain information via one-hot scheme.

Scheme (base classifier) Exact match Accuracy Hamming loss Integrated score

RAKEL (RF) 0.825 0.827 0.061 0.6406

RAKEL (SVM-polynomial kernel) 0.847 0.848 0.054 0.6794

RAKEL (SVM-RBF kernel) 0.846 0.847 0.054 0.6778

BR (RF) 0.785 0.788 0.049 0.5882

BR (SVM-polynomial kernel) 0.774 0.778 0.049 0.5726

BR (SVM-RBF kernel) 0.836 0.840 0.048 0.6685

Table 4: Performance of different multilabel classifiers with features derived from gene ontology and pathway information via a natural
language processing approach.

Scheme (base classifier) Exact match Accuracy Hamming loss Integrated score

RAKEL (RF) 0.761 0.762 0.083 0.5324

RAKEL (SVM-polynomial kernel) 0.808 0.810 0.067 0.6106

RAKEL (SVM-RBF kernel) 0.808 0.810 0.068 0.6099

BR (RF) 0.584 0.584 0.087 0.3113

BR (SVM-polynomial kernel) 0.717 0.738 0.068 0.4931

BR (SVM-RBF kernel) 0.747 0.755 0.063 0.5284
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those of iMPT-FDNPL, and the hamming loss was larger
than that of iMPT-FDNPL. These results indicated that
features derived from functional domains via word2vector
were more powerful to identify membrane protein types
than those derived from GO and pathways via the same
natural language processing approach. It was also implied
that functional domain information was more related to
membrane protein types than GO and pathway information.

Network embedding algorithm is a type of recently
proposed computational methods, which can abstract asso-

ciations of nodes in one or more networks and extract a
feature vector for each node. It has also been applied to pro-
cess some protein-related problems [25, 26, 34, 51–55].
Here, we used such method to extract protein features. To
this end, eight protein networks were first built according
to protein-protein interaction information reported in
STRING (https://www.string-db.org/, version 10.0) [56].
The network embedding algorithm, Mashup [53], was
applied on these networks to access the feature vectors of
proteins. The dimensions included integers from 50 to 500

Table 5: Performance of different multilabel classifiers with features derived from protein networks via a network embedding algorithm.

Scheme (base classifier) Exact match Accuracy Hamming loss Integrated score

RAKEL (RF) 0.758 0.759 0.085 0.5264

RAKEL (SVM-polynomial kernel) 0.805 0.807 0.068 0.6054

RAKEL (SVM-RBF kernel) 0.801 0.803 0.070 0.5981

BR (RF) 0.584 0.584 0.088 0.3110

BR (SVM-polynomial kernel) 0.712 0.730 0.068 0.4844

BR (SVM-RBF kernel) 0.746 0.756 0.063 0.5284
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Figure 4: Boxplot to show the performance of classifiers with different feature types using tenfold cross-validation for 20 times. (a)
Accuracy; (b) exact match; (c) hamming loss; (d) integrated score. Features derived from functional domain via word2vector are most
efficient to identify membrane protein types.
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with interval 50. Obtained feature vectors of membrane
proteins were fed into RAKEL or BR with SVM or RF as
the base classifier to build the classifiers. All possible param-
eter settings used above were tried, and all constructed
classifiers were assessed by tenfold cross-validation. Table 5
lists the best performance of RAKEL or BR classifiers with
different base classifiers. Interestingly, the RAKEL with
SVM (polynomial kernel) also provided the best perfor-
mance. The integrated score of such classifier was 0.6054.
Other three measurements were 0.805, 0.807, and 0.068,
respectively. However, compared with the performance of
iMPT-FDNPL (see Table 2), such performance was still
lower. These results also suggested the effectiveness of fea-
tures derived from functional domain via word2vector for
prediction of membrane protein types.

With above arguments, we can conclude that features
derived from functional domain via word2vector are quite
effective to identify membrane protein types because classi-
fiers based such features were more powerful than those
based on other three types of features, which were derived
from functional domain via one-hot scheme, from GO and
pathway via word2vector, and from protein network via
Mashup, respectively. To further confirm the superiority of
features derived from functional domain via word2vector,
the best classifiers using above three types of features were
further evaluated by tenfold cross-validation for 20 times.
Obtained values of exact match, accuracy, hamming loss,
and integrated score are shown in Figure 4. For easy com-
parisons, those of the classifier (iMPT-FDNPL) using
features derived from functional domain via word2vector
are also shown in this figure. It is easy to observe that
iMPT-FDNPL always generated highest exact match, accu-
racy, and integrated score and lowest hamming loss. All
these further confirmed the superiority of the used features,
which was the main reason why iMPT-FDNPL can provide
such good performance.

4. Conclusions

This study sets up a multilabel classifier, iMPT-FDNPL, to
identify membrane protein types. A novel feature extraction
scheme was integrated in this classifier, which can extract
efficient protein features by applying a natural language pro-
cessing approach, word2vector, to functional domain infor-
mation of proteins. The cross-validation results showed
that such classifier was quite powerful and superior to classi-
fiers using other types of protein features. Such results also
indicated the superiority of features extracted by the
proposed scheme. It is hopeful that such classifier can be a
useful tool to identify membrane protein types, and the
novel feature extraction scheme can be used to tackle other
protein-related problems. All codes and data are available
athttps://github.com/mufei111/iMPT-FDNPL.
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Simulation and prediction of the scale change of fungal community. First, using the experimental data of a variety of fungal
decomposition activities, a mathematical model of the decomposition rate and the relationship between the bacterial species
was established, thereby revealing the internal mechanism of fungal decomposition activity in a complex environment. Second,
based on the linear regression method and the principle of biodiversity, a model of fungal decomposition rate was constructed,
and it was concluded that the interaction between mycelial elongation and moisture resistance could increase the fungal
decomposition rate. Third, the differential equations are used to quantify the competitive relationship between different
bacterial species, divide the boundaries of superior and inferior species, and simulate the long-term and short-term evolution
trends of the community under the same initial environment. And an empirical analysis is made by taking the sudden change
of the atmosphere affecting the evolution of the colony as an example. Finally, starting from summer, combining soil
temperature, humidity, and fungal species data in five different environments such as arid and semiarid, a three-dimensional
model and RBF neural network are introduced to predict community evolution. The study concluded that under given
conditions, different strains are in short-term competition, and in the long-term, mutually beneficial symbiosis. Biodiversity is
important for the biological regulation of nature.

1. Introduction

The carbon cycle is an important part of life on earth, where
the decomposition of compounds allows carbon to be
renewed and used in other forms [1]. The key component
of this process is the decomposition of plant materials and
wood fibers. Related studies have found that the decomposi-
tion rate of fungi, a key factor in the decomposition of plant
materials and wood fibers, is influenced by temperature,
humidity, time, growth rate, mycelial density, and moisture
tolerance [2, 3]. And slow-growing fungi are more likely to
survive and grow in the environment of humidity and tem-
perature changes, while faster-growing fungi are less resistant
to the same environmental changes [4]. At the same time, the
decomposition rate of fungi determines the biomass and
nutrient content of the forest surface and significantly affects
the physical and chemical properties of the soil. By exploring
the mycelial elongation rate of fungi and the moisture resis-

tance of fungus, it is possible to reveal the important role of
fungi’s decomposition mechanism of plant material and
wood fiber, as well as the mutual adaptation of coupling
modes between different species combinations in biodiver-
sity [5].

He selected the suitable tree species of karst natural com-
munity habitat, Constructus and Yungui gooseberry as the
research object to investigate how AM fungi regulate soil lit-
ter to achieve nutrient release and change soil properties
under competitive conditions [6]. Zhang investigated the
correlation between the culture products of corn stover in
four treatments, basic properties, material content and bio-
logical enzyme activities, and the dynamic change pattern
of the humus-like composition of culture products [7]. To
investigate the effect of endophytic fungi on the decomposi-
tion of apoplasts, Chen investigated the effect of endophytic
fungi on the decomposition of apoplasts by using different
sampling methods and selecting endophytic fungi with
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different dominance to participate in different community
construction [8]. By combining indoor culture experiments
and field experiments, Tan investigated the changes of soil
microbial biomass, enzyme activities related to soil organic
carbon decomposition, and the effects of ectomycorrhizal
fungi community structure and diversity, and then analyzed
the role of ectomycorrhizal fungi in forest soil organic car-
bon decomposition [9].

Under natural conditions, microorganisms do not
degrade apoplankton independently, but the interactions
between decomposer groups and their components cannot
be ignored, but due to the complexity of the interactions
between microorganisms, soil and apoplankton quality, this
aspect has not been well studied. Most of the studies on fun-
gal decomposition and community evolution are based on
the biological level and are not well integrated with mathe-
matical models. The data in this paper are from real experi-
mental data, which are reliable and can be closer to the
complex natural conditions.

In this paper, first, a mathematical model of the relation-
ship between the decomposition rate of fungal species and
fungal species was established based on the experimental
data of decomposition activities of various fungi. Second,
based on the principle of biodiversity, a linear regression
method is used to construct a model of fungal decomposi-
tion. Then, using differential equations, a dynamic model
of fungal competitiveness was established and empirically
analyzed. Finally, the three-dimensional model and RBF
neuron network were combined to predict the evolution of
the community.

2. Basic Assumptions

The research question comes from Question A of the 2021
American College Students Mathematical Modeling Compe-
tition, and the data comes from National Center for Biotech-
nology Information. To explore the above issues, we make
the following assumptions: (i) it is assumed that the sub-
stances produced by fungal decomposition have no signifi-
cant impact on itself and the surrounding environment. (ii)
It is assumed that only fungi participate in the decomposi-
tion process, and other microorganisms do not participate
in the decomposition of the compound. (iii) The decompo-
sition of plant material and wood fiber is independent of
each other. (iv) It is assumed that the main factors affecting
the shape of the fungus that affect the decomposition rate are
the fungal hyphae elongation and moisture resistance, and
the influence of other factors is negligible. (v) In the compe-
tition of fungi, the influence of fungal aerobic respiration,
anaerobic respiration, or anaerobic respiration on the
decomposition rate is not considered.

3. Construction of Fungal Decomposition
Model Based on Multiple Linear
Regression Method

3.1. Research Ideas. To describe the decomposition of
organic matter by a variety of fungi, this paper selects seven
common fungi as the research object, takes Chinese fir as an

example to be decomposed, and constructs a fungal decom-
position model [10–12]. By consulting the relevant informa-
tion, we found that temperature, humidity, colony
abundance, time, soil sulfur and phosphorus content, myce-
lial elongation, and moisture resistance are the main factors
affecting the decomposition rate of fungi, so we set them as
independent variables and use K , H, N , T , P, G, and R to
represent, respectively. Besides, we set the mass loss rate of
each patch of plant per unit time as the dependent variable,
denoted by V. The method of multiple linear regression is
used to study the decomposition activity of fungi.

3.2. Analysis Steps

3.2.1. Construct a Multiple Linear Regression Model. In this
paper, 7 strains of AM fungus, Cladosporium, Trichoderma,
Aspergillus flavus, Alternaria spp, Penicillium, and Chaeto-
mium vulgaris were mixed [13], and they were simulta-
neously inoculated on a petri dish with Chinese fir as the
decomposed substance. The experimental data was collected
in one week and lasted for 12 weeks. Under the conditions of
controlling the temperature and humidity of each group of
experiments, the fungus’ decomposition activity on the sub-
strate was studied [14].

Standardize the data obtained in the experiment to elim-
inate the influence of dimensions on the model and use the
data to construct a multiple linear regression model.

V = a + bK + cH + dT + eS + f G + gR: ð1Þ

Since this article is seven sets of parallel experiments
under the control of temperature K , humidity H, and fungal
richness N , the multiple linear regression models of each
group can be obtained:

V1 = −1:062 − 0:056K + 1:093H − 0:212T + 0:218P − 0:0416G − 1:041R,N = 1,
V2 = −1:173 − 1:041K − 1:043H − 0:031T + 0:237P + 2:153G − 1:092R,N = 2,
V3 = −0:159 + 0:483K − 1:224H − 0:435T − 0:083P − 1:228G − 1:059R,N = 3,
V4 = 0:338 + 2:087K − 1:006H − 0:052T − 0:163P + 2:221G + 0:162R,N = 4,
V5 = 1:387 + 1:607K − 1:020H + 0:690T + 0:286P + 1:156G − 1:241R,N = 5,
V6 = 1:710 + 1:609K − 0:183H − 0:039T + 0:189P + 0:376G − 0:197R,N = 6,
V7 = 0:450 − 0:231K + 0:144H − 0:058T + 0:1429P − 0:107G − 0:317R,N = 7:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð2Þ

To obtain a fungal decomposition rate model closer to
the natural environment, this paper uses the entropy method
to weight the above equations to eliminate the influence of
colony richness N on the difference in fungal decomposition
rates between the experimental groups to meet the needs of
biodiversity.

3.2.2. Entropy Method. By calculating the information
entropy of each indicator in the indicator system and deter-
mining the weight of the indicator according to the relative
change degree of the indicator and the contribution rate to
the overall system, it is a method of combining static weight-
ing and dynamic weighting. If the information entropy is
smaller, the disorder degree of the information is lower,

2 Computational and Mathematical Methods in Medicine
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the utility value of the information is larger, and the weight
of the index is larger. Specific steps are as follows:

X = xij
À Á

mn
, namely, X =

x11 ⋯ x1n

⋮ ⋱ ⋮

xm1 ⋯ xmn

0
BB@

1
CCA: ð3Þ

P xij
À Á

=
xij′

∑
m

i = 1
xij′

: ð4Þ

hj = −k〠
n

i = 1
P xij
À Á

ln P xij
À Á

, j = 1, 2,⋯, n: ð5Þ

Step 1. Define the initial evaluation matrix.

Step 2. Calculate the ratio of the index value PðxijÞ.

Step 3. Calculate the entropy value of each index.

Among them, PðxijÞ represents the corresponding value,
K > 0, generally take K = 1/ln k, so 0 ≤ hj ≤ 1. The greater the
degree of difference between the evaluation, indicators xij
the greater the contribution rate of the indicator to the entire
indicator system and the greater the weight assigned.

ωj =
hj

∑
n

j = 1
hj

, j = 1, 2,⋯, n: ð6Þ

Step 4. Calculation of index weight.

The weight of the indicator reflects the degree of influ-
ence of the evaluation indicator on the overall performance.

To sum up, when N = 1, 2, 3, 4, 5, 6, 7 the weight
assigned to each group should be ð1:424, 1:729, 1:865,
1:870, 1:885, 1:918, 1:930Þ.

That is, the relationship between the overall fungal
decomposition rate and the fungal decomposition rate
between groups is

1:424V1 + 1:729V2 + 1:865V3 + 1:870V4 + 1:885V5 + 1:918V6 + 1:930V7:

ð7Þ

Substituting the equations of the above experiment to
obtain the decomposition rate model of fungi on fir in the
presence of multiple fungi is

V = −1:703 + 2:081K − 1:334H − 0:046T + 0:356P + 2:128G − 1:093R:

ð8Þ

3.3. Conclusion Analysis. It can be found from equation (12)
that when the colony abundance N = 7, it has a greater
impact on the overall fungal decomposition rate, and when

N = 1, it has a small impact on the overall fungal decompo-
sition rate. To better adapt to the biodiversity of nature,
expand the number of studies on colonies, and further
explore the impact of biodiversity on fungal decomposition
activities, this paper sets a dummy variable D1. The colony
with N > 2 is defined as a multicolony group and D1 = 1 is
assigned; the colony with N = 1, 2 is defined as a single col-
ony, and the value is D1 = 0.

D1 =
0 N = 1, 2,
1 N > 2:

(
ð9Þ

The average value of the fungal decomposition rate in
each group of experiments is selected to indicate the size of
the fungal decomposition rate under different colony rich-
ness when the temperature, humidity, and other variables
are unchanged. Introduce dummy variables in the form of
addition, and establish a unary linear model of fungal
decomposition rate and colony richness:

V = a + bN +D1: ð10Þ

Substituting the standardized decomposition rate data
into equation (10), the equation of decomposition rate and
colony richness is obtained as:

V = 4:9671 + 0:3452N + 1:0387D1: ð11Þ

The regression results show that the decomposition rate
is positively correlated with the colony abundance, and the
coefficient before the dummy variable D1 is positive, indicat-
ing that the multicolony community is beneficial to the
decomposition of fungi, that is, the decomposition rate will
be significantly increased under the condition of multiple
colonies.

From equation (13), it can be found that the fungal
decomposition rate is related to temperature, humidity,
decomposition time, soil antibiotic content, mycelial elonga-
tion, and moisture resistance.

In summary, in a variety of bacterial communities, the
decomposition rate of fungi will be significantly increased.
Therefore, under the conditions of coexistence of multiple
fungi, higher temperature, higher soil phosphorus and sulfur
content, and faster growth rate of fungi, the decomposition
rate of fungi increases; in the presence of single fungi, higher
humidity, longer decomposition time, and higher humidity
resistance under the conditions, the decomposition rate of
fungi slows down [15–18].

4. Construction of a Decomposition Rate Model
Based on the Interaction between Fungi

4.1. Research Ideas. The rate of change of temperature and
humidity has a certain relationship with the vitality of fungi
[19]. According to Lustenhouwer et al., the relationship
between mycelial elongation and wood decomposition rate
is approximately positive and linear; under logarithmic
transformation, the relationship between moisture tolerance

3Computational and Mathematical Methods in Medicine
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of different fungi and the final wood decomposition rate is
also approximately positive and linear. It can be inferred that
there may also be a linear relationship between the moisture
resistance of different fungi and the elongation of their
hyphae.

Therefore, this paper will use the characteristics of
hyphae, elongation, and moisture resistance of different
types of fungi to combine the types of fungi. First, we estab-
lish a univariate linear regression model to study the rela-
tionship between the moisture tolerance of different fungi
and the hyphae elongation; second, the two characteristics
of fungi are combined under the condition of keeping the
fungal decomposition rate constant, that is, the hyphae
extension rate represents moisture resistance; finally,

substituting the unary linear model into the above fungal
decomposition rate model to obtain a modified model—a
decomposition rate model based on the interaction between
fungi.

4.2. Analysis Steps. Under the condition that the decomposi-
tion rate of fungi remains unchanged, the relevant data of
mycelial elongation and moisture resistance are obtained
through web crawling and standardized processing, and a
unary linear regression model of mycelial elongation and
moisture resistance is constructed:

R = a + bG: ð12Þ

2.00

1.00

–1.00

–2.00

–3.00
–1.00 0.00 1.00 2.00

Hypha extension rate

R=–0.981G+1.045

M
oi

st
ur

e 
to

le
ra

nc
e

0.00

Figure 1: Mycelium elongation and moisture resistance.
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Figure 2: The relationship between temperature and mycelial
elongation.
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Figure 3: The relationship between humidity and mycelial
elongation.
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Using SPSS25 software to fit the equations of mycelial
elongation and moisture resistance, as shown in Figure 1.

R = −0:981G + 1:45: ð13Þ

Thanks for the suggestion, this sentence is revised to:
Substitute the above results into the fungal decomposition
rate model in section 3.3.2, and get an improved model
based on the different interactions among hyphae, elonga-
tion, and moisture resistance:

V = −1:231 + 2:018K − 0:533H − 0:346T + 1:056P + 1:119G:
ð14Þ

4.3. Conclusion Analysis. The change of environmental tem-
perature and humidity is related to the vitality of fungi, that
is, it will affect the growth rate of fungi. The decomposition
rate of fungi is positively correlated with the growth rate and
negatively correlated with the humidity resistance. Under
the condition of controlling the decomposition rate
unchanged, the fungus growth rate and humidity resistance
are combined. It was found that there was a significant neg-
ative correlation between the growth rate and moisture tol-
erance of the fungus, and the interaction between the
growth rate and moisture tolerance of the fungus had a pos-
itive effect on its decomposition rate.

5. Construction of Competitive Dynamic Model
Based on Differential Equations

5.1. Research Ideas. Different fungi have different moisture
resistance, so their mycelial elongation rate or growth rate
is different in the same environment [20]. When the size of
each colony is different, the limited survival resources will
not get a reasonable and even distribution, and the competi-
tion relationship between the populations will occur, that is,
the interaction [21–25]. The dynamic model is a model that

describes the characteristics of the system related to time
changes and the environment of the event. It can explore
the overall behavior of the system, reduce the complexity
of the system with the help of state diagrams or sequence
diagrams, and can be completed while monitoring whether
the conceptual system has defects. And show the internal
operating mechanism of the system in detail [26].

Based on the above analysis, this paper firstly quan-
tifies the internal interaction, namely, establishes a com-
petitive dynamic model to simulate the long-term and
short-term evolution trends of the community under the
same initial environment under the premise of dividing
the boundary between the advantages and disadvantages
of the bacteria [27]. Second, consider the sudden external
atmospheric changes. The overall impact is to explore
the susceptibility of colony evolution to rapid environmen-
tal fluctuations.
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Figure 4: Comparison of different fungi under the same humidity.

5.00

4.00

3.00

2.00

0.00

1.00

H
yp

ha
 e

xt
en

sio
n 

ra
te

–5.00 –4.00 –3.00 –2.00 –1.00 0.00
Humidity

Species
Actual measurement
Trivial function fitting

Figure 5: Changes in humidity of a fungus.
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Figure 6: Effect of fungus on humidity.
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5.2. Analysis Steps

5.2.1. Comparative Analysis. According to the data of
changes in the mycelial elongation of each fungus under
different temperature and humidity conditions, a scatter
plot was drawn with the mycelial elongation as the depen-
dent variable, and temperature and humidity independent.

Variables are shown in Figures 2 and 3.
It can be seen from the above figure that the influence

trends of temperature and humidity on different strains are
roughly similar, but there are still some differences. To
observe the degree of difference more intuitively, this paper
selected two fungi from the aspects of temperature and
humidity for comparison, to amplify the similarities and dif-
ferences of the impact of environmental changes on different
fungi, as shown in Figures 4–9.

It can be seen from the comparative analysis graph that
the overall trend of the sensitivity of different fungi to

changes in the external environment is relatively consistent,
and all of them can fit the cubic linear equation with a higher
coefficient of determination. The impact of the environment
on different strains is more significant, that is, under the
same external environment, different fungi have different
hyphae elongation rates, which in turn creates a competitive
relationship between colonies.

5.2.2. Model Construction under General Conditions. The
density of the hypha is equal to the ratio of the length of
the hypha to the quality of the soil, which describes the
density of fungal growth horizontally and can represent
the growth scale of the colony. This article is represented
by W.

According to the above temperature and humidity curve,
the evaluation model is introduced to evaluate and score the
competitiveness of different fungi, and the competitiveness
ranking of each strain is obtained, as shown in Table 1.

According to the size of the competitive ranking, the
bacteria are divided into two categories, A and B, based on
the value equal to 0.5.

Type A fungi: the competitive ranking is less than 0.5,
and it is greatly affected by temperature and humidity. It
has greater hyphae elongation and hyphae density at the
optimum temperature. This article defines it as an inferior
strain.

Type B fungi: competitive ranking is greater than or
equal to 0.5 and is less affected by temperature and humid-
ity. It has low hyphae elongation and hypha density at the
optimum temperature. This article defines it as a dominant
species.

To explore the dynamic changes of the mycelial density
D of these two types of bacteria under the long-term and
short-term trends under this competitive situation, this
paper uses AðtÞ and JðtÞ to indicate the density of hyphae
of type A species and type B species, setting the initial tem-
perature of the fungus to 22°C and 55% humidity under gen-
eral conditions in week t.
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Figure 7: Comparison of different fungi at the same temperature.
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(i) In the long-term process, from the time span of the
1st to 12th week, the following differential equations
are obtained using experimental data:

dA tð Þ
dt

= −aJ tð Þ,
dA tð Þ
dt

= −bA tð Þ,
A 0ð Þ = 0:2475, J 0ð Þ = 0:5570:

8>>>>><
>>>>>:

ð15Þ

A tð Þ − A 0ð Þ = −a〠
t

n = 1
J nð Þ: ð16Þ

J tð Þ − J 0ð Þ = −b〠
t

n = 1
A nð Þ: ð17Þ

At week 12:

A tð Þ = 0:2063, J tð Þ = 0:7640: ð18Þ

〠
t

n=1
A nð Þ = 0:2269 × 12 = 2:4958: ð19Þ

Substituting the above formula into equation (17), we
can get

−2:4958b = 0:7640 − 0:5557, namely, b = 0:0835: ð20Þ

Because b < 0, there is a coexistence relationship between
A and B species in the long run.

(ii) In the short-term process, from the time span of the
1st to 5th week, the following differential equations are
obtained using experimental data

dA tð Þ
dt

= −aJ tð Þ,
dA tð Þ
dt

= −bA tð Þ,
A 0ð Þ = 0:2475, J 0ð Þ = 0:5570:

8>>>>><
>>>>>:

ð21Þ

A tð Þ − A 0ð Þ = −a〠
t

n=1
J nð Þ = −0:2475: ð22Þ

J tð Þ − J 0ð Þ = −b〠
t

n=1
A nð Þ = −0:5570: ð23Þ

At week 5:

A tð Þ = 0:1633, J tð Þ = 0:4783: ð24Þ

〠
t

n=1
A nð Þ = 0:2054 × 5 = 1:027: ð25Þ

Substituting the above formula into equation (23), we
can get

−1:027b = 0:4783 − 0:5570, namely, b = 0:0766: ð26Þ

Because b > 0, there is a competitive relationship
between A and B strains in the short term.

In summary, under the conditions of a temperature of
22°C and a humidity of 55%, the A strain and the B strain
have short-term competition and long-term coexistence.

5.2.3. Model Construction under Burst Conditions. In the
absence of human interference, the changes in the external
environment are usually relatively stable, but there will also
be certain emergencies [28–30], in which atmospheric
changes dominate. Therefore, the following will study the
overall impact of atmospheric changes on the interaction
between different species of fungi, select temperature and
humidity as the main factors affecting the atmospheric level,
and still use the mycelial density to represent the growth
scale of the colony.

First of all, based on the example of B-type strains, which
are dominant strains, a binary linear regression equation
with hypha density as the dependent variable and tempera-
ture and humidity as independent variables is established
using standardized related data.

It can be seen from Table 2 that the model determination
coefficient R2 is 0.087, indicating that the degree of fit is very
small, and the P values of the coefficients are all greater than
0.05, indicating that the effect of independent variables in
the model is not significant. Therefore, the binary linear

Table 1: Ranking.

Fungus name
Competitive
ranking

Mycelial
elongation rate

Hypha
density

Armillaria 0.281 0.398 0.420

Hyphodontia 0.630 3.590 0.080

Laetiporus 0.342 4.115 0.168

Lentinus 0.569 6.380 0.050

Mycoacia
subconspersa

0.569 1.300 0.840

Merulius
tremullosus

0.813 10.120 0.050

Phlebiopsis
gigantea

0.634 6.105 0.480

Porodisculus
pendulus

0.465 4.060 0.320

Phellinus robiniae 0.376 2.220 0.095

Phlebia acerina 0.973 8.510 0.270

Pycnoporus
sanguineus

0.697 4.970 0.020

Schizophyllum
commune

0.626 3.490 0.560

Tyromyces 0.805 3.880 0.060

Xylobolus
subpileatus

0.493 0.770 1.740
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regression equation is not suitable to explain this problem.
This article will consider building a fitting model in a
three-dimensional space.

Combine the temperature and humidity data to deter-
mine the plane corresponding to each value of the mycelium
density, use Matlab software to build a three-dimensional
fitting model, as shown in Figure 10.

From Table 3, it is clear that the SSE value of the
dynamic model based on the dominant species is extremely
small and negligible, and the correlation coefficient R-square
value is 1, indicating that the model fits well and is able to
explain and portray the overall effect of fungal atmospheric
changes on the interaction between dominant fungi.

Similarly, the three-dimensional fitting model of atmo-
spheric changes on the class A strain, i.e., the inferior strain,
can be obtained, and the results are shown in Figure 11.

Thus, as shown in Table 4, the SSE numerical disadvan-
tage dynamic model-based species can be ignored, the corre-
lation coefficient R-square value of 1 indicates that the
model fits well the effect, and can be interpreted to charac-
terize changes in the atmosphere between disadvantage fun-
gal fungi are mutually effect.

In summary, by constructing a dynamic model of the
influence of temperature and humidity on mycelial density
in a three-dimensional space, it is possible to reveal the nat-

ural law of interaction between atmospheric changes on dif-
ferent types of fungi and to explore the overall trend of
atmospheric changes on the evolution of colonies.

5.3. Conclusion Analysis. Changes in the atmospheric envi-
ronment mainly lead to changes in external temperature
and humidity, which in turn affect the initial mycelial den-
sity D of the superior and inferior strains. Under the distur-
bance of rapid environmental fluctuations, it is possible that
the original dominant strains will gradually weaken or even
become inferior strains [31]. The conclusions on the sensi-
tivity of colony evolution to rapid environmental fluctua-
tions are specifically analyzed in this paper in conjunction
with the models in Sections 5.2.2 and 5.2.3.

When the initial ambient temperature is 22.5°C and the
humidity is 55%, the verification of the competitive dynamic
model is constructed in Section 5.2.2. It is known that the
relationship between A and B species is a state of short-
term competition and long-term mutually beneficial symbi-
osis, and in the end, B species becomes the dominant species.

When the external environment changes, i.e., the tem-
perature and humidity of the living environment of A and
B bacteria change, according to the three-dimensional model
constructed in Section 5.2.3, their respective mycelial density
D will also change in the initial situation.

When the temperature changed to 16.6°C and the
humidity changed to 32%, the initial mycelial densities cor-
responding to the A and B strains were 0.38 and 0.27. We
applied the competitive dynamics model to simulate the evo-
lution of the community and obtained that the mycelial den-
sities corresponding to the moment of equilibrium point for
A and B fungi were 0.47 and 0.26, respectively. In this case,
the class A fungi became the dominant species, in contrast to
the original environmental conditions in which they were
the weaker species.

Based on the above conclusions, it can be concluded that
changes in the environment have a greater impact on the

Table 3: Output results.

SSE R-square Adjusted R-square RMSE

2.046e-34 1 NaN NaN
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Figure 11: Three-dimensional fitting model of type A bacteria.

Table 4: Output results.

SSE R-square Adjusted R-square RMSE
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Figure 10: Fitting image of B-type fungus hypha density with
temperature and humidity.

Table 2: Model fit test.

Variables Coefficient
Standard
deviation

T
-statistic

Significance

C 0.372 0.441 0.843 0.413

K -0.016 0.019 -0.847 0.411

H 0.212 0.201 1.056 0.309

Decidability factor 0.087
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which is that they change the status of dominant and inferior
strains. But in the overall situation, their interrelationship is
all about short-term competition and long-term mutually
beneficial symbiosis [32].

6. Prediction of Relative Advantages and
Disadvantages among Species

6.1. Research Ideas. Due to the rich biodiversity in nature,
the advantages and disadvantages of each species or combi-
nation of species are always relative [33–35]. From the
abovementioned community evolution, with the change of
time, the dominant species may become the inferior species,
and predicting the relative advantages and disadvantages
among species can determine the dominant species, which
is conducive to exploring the inner mechanism of nature’s
superiority and inferiority.

6.2. Prediction of Relative Strengths and Weaknesses. By
reading various references [36–41], soil temperature, humid-
ity, fungal species, and initial temperature and humidity of
five different environmental types with a representative
starting point in summer were collected in this paper [42],
as shown in Table 5. Where x1, x2, x3, x4, x5, and x6 denote
temperature (°C), humidity, fungal species, initial tempera-
ture and humidity duration (weeks), equilibrium tempera-
ture (°C), and equilibrium humidity, respectively.

From the three-dimensional model of mycelial density and
temperature and humidity in Section 5.2.3, it is known that if
any combination of temperature and humidity is given, class
A and class B strains will have corresponding initial mycelial
densities, respectively, and our summary data is shown in
Table 6. Where x7, x8, x9, and x10 denote initial mycelial den-
sity of class, A fungi initial mycelial density of class, B fungi
mycelial density of class A fungi, in equilibrium and mycelial
density of class B fungi in equilibrium, respectively.

From the data in the table, it can be seen that when the
temperature is suitable and the humidity is lower, the myce-
lial density of the A strain is greater than that of the B strain,
and the growth rate is faster. At this time, it is the dominant
strain. When the temperature is suitable and the humidity is
higher, the mycelial density of the B strain is higher than
that of the A strain, and the growth rate is faster. At this
time, it is the dominant strain.

On the whole, the B strains are less affected by the envi-
ronment, the mycelial elongation rate is more stable, and the
relative advantage is higher. However, due to the continuous
changes of the environment over time, the B strain may

evolve into a weak strain under special environmental condi-
tions. On the contrary, the A inferior strain may also become
a dominant strain.

If there are only a few species of bacteria in the soil, the
growth and reproduction of fungi will be greatly affected by
environmental changes, and the abundance of colonies will
also be affected to a certain extent. If many strains of fungi
are present in the soil, the environment, fungi, and fungus
are predicted to establish a relationship between their
strengths and weaknesses in the colony. In other words,
when the environment changes, each species of fungus can
complement each other in dynamics and ensure the biodi-
versity in the soil. After a period of time, the overall size of
the colonies of various fungi and the abundance of the col-
ony in the soil remained relatively stable, that is, in the evo-
lution of the community, the various bacterial species
compete in the short term, while the long-term different bac-
terial species present mutually beneficial symbiosis This sit-
uation reflects the diversity and richness of biodiversity.

7. Biodiversity Prediction Based on RBF
Neuron Networks

7.1. Research Ideas. It can be seen from the above that the
rapid fluctuation of the external environment will affect the
vitality of fungi. At the same time, the interaction between
different bacterial species will also affect the colony size of
each bacterial species.

7.2. Analysis Steps. From the above, it can be seen that the
status of superior and inferior strains may be interchanged
when the environment is changed, and at this time, the
abundance of colonies will be affected to some extent.
Diverse fungal communities are more “disturbance resis-
tant” and “resilient” when considering the possibility of
varying degrees of variability in the local environment, i.e.,
differences in initial conditions. That is, if the diversity of
the fungal community is lost, the ecosystem can still be
restored under certain natural laws.

Construction of neuronal network models. The multiple
linear regression model has strong correlation between vari-
ables, i.e., high multicollinearity, so the accuracy of the
model is still lacking. Considering this effect, we use RBF
neural network algorithm to implement the prediction
model with the help of Matlab software to achieve better
prediction results [43].

RBF neural network has strong approximation ability,
classification ability, and learning speed. Its working princi-
ple is to regard the network as an approximation to an

Table 6: Summary data of type A hyphae and type B hyphae.

Temperature band x7 x8 x9 x10
Tree coniferous forest 0.017 0.009 0.023 0.016

Tropical rainforest 0.050 0.030 0.110 0.090

Tree coniferous forest 0.450 0.650 0.430 0.710

Tropical rainforest 0.210 0.270 0.280 0.220

Tree coniferous forest 0.760 0.940 0.740 0.980

Table 5: Relevant conditions in five different environments.

Temperature band x1 x2 x3 x4 x5 x6
Drought 34.5 10% 1848 8 31.4 15%

Semiarid 29.4 25% 5038 12 28.3 28%

Temperate 22.5 55% 10274 24 20.7 51%

Tree coniferous forest 8.6 28% 17893 24 10.2 29%

Tropical rainforest 31.5 68% 23137 48 30.2 65%
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unknown function. Any function can be expressed as a
weighted sum of a set of basis functions, that is, the transfer
function of each hidden layer neuron is selected to form a set
of basis functions to approximate the unknown. Build a neu-
ral network model and function. The RBF artificial neural
network consists of an input layer, a hidden layer, and an
output layer.

Build a general model: set the input layer as X = ½x1, x2,
⋯,xn�, and the actual output layer as Y = ½y1, y2,⋯,yp�. The
input layer realizes the nonlinear mapping from X to Ri
ðXÞ, the output layer realizes the linear mapping from

RiðXÞ to yk, and the output of the k-th neuron network
in the output layer is

ŷk = 〠
m

i=1
wikRi Xð Þ, k = 1,⋯, p: ð27Þ

In equation (27), n is the number of input nodes, and
m is the number of hidden layer nodes; p is the number
of output layer nodes; wik is the connection weight
between the i-th neuron in the hidden layer and the k

Table 7: Sample data on the variation of decomposition rate with each factor.

Growth rate Mycelial density Humidity resistance Sulfur, phosphorus content Temperature Humidity Decomposition rate

0.25 0.10 3.46 44.1 18.75 1.955 0.31

0.35 1.02 2.55 36.5 25.85 1.510 0.64

0.21 0.16 4.18 58.6 18.20 2.325 0.47

0.25 0.50 4.64 48.6 18.75 2.491 0.46

0.25 0.65 3.09 13.0 20.40 1.805 0.59

0.49 0.91 4.34 4.7 23.10 2.265 0.51

0.25 0.55 2.85 60.7 25.30 1.670 0.58

0.76 0.61 2.21 44.6 24.75 1.190 0.53

0.77 0.12 1.89 9.1 21.70 1.020 0.47

0.50 0.07 3.65 17.2 24.20 1.935 0.32

1.07 0.63 1.43 8.9 24.20 0.770 0.57

4.71 0.02 1.29 15.7 25.45 0.695 0.23

1.96 0.12 1.28 8.3 18.70 0.685 0.45

4.11 0.09 1.31 6.3 23.15 0.715 0.26

4.70 0.03 1.74 3.8 23.85 1.050 0.24

3.77 0.10 2.28 2.3 23.75 1.355 0.31

5.16 0.04 1.52 46.6 23.55 0.910 0.22

6.38 0.05 1.68 0.3 31.30 0.905 0.21

4.14 0.12 1.63 9.7 26.85 0.895 0.35

3.39 0.41 1.55 21.2 24.45 0.941 0.24

1.30 0.84 1.28 0.1 21.95 0.685 0.41

10.62 0.08 1.31 11.0 25.40 0.715 0.22

9.62 0.02 1.38 2.1 24.90 0.762 0.21

8.04 0.05 1.72 2.0 26.90 0.935 0.32

10.80 0.04 2.81 3.0 24.20 1.544 0.35

4.04 0.03 1.71 3.4 26.00 1.011 0.31

1.54 1.80 1.99 14.4 18.90 1.205 0.67

4.06 0.32 1.58 17.0 24.20 0.960 0.43

2.30 0.07 1.84 14.6 26.85 1.075 0.41

2.14 0.12 1.79 9.4 25.70 1.052 0.46

8.75 0.14 1.29 2.9 22.45 0.695 0.32

8.51 0.27 1.62 0.9 21.10 0.980 0.34

4.97 0.02 2.08 1.4 32.45 1.225 0.25

4.41 0.53 2.67 14.3 27.45 1.570 0.53

2.57 0.59 2.74 16.9 28.70 1.581 0.33

3.88 0.06 1.27 1.8 26.30 0.675 0.32

0.77 1.74 5.25 52.5 19.35 2.770 0.36
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-th neuron in the input layer; RiðXÞ is the hidden layer
the action function of the i-th neuron in the layer,
namely,

Ri Xð Þ = exp − X − Cik k2/2α2i
À Á

, i = 1,⋯,m: ð28Þ

In equation (28), X is the n-dimensional input vector;
Ci is the center of the i-th basis function, a vector with
the same dimension as X; αi is the width of the i-th basis
function; m is the number of perceptual units (the num-
ber of hidden layer nodes); the norm of the vector kX
− Cik, which usually represents the distance between X
and Ci; the unique maximum value of RiðXÞ at Ci. As
kX − Cik increases, RiðXÞ decays rapidly to 0.

For a given input, only a small portion near the center of
X is activated. Once the clustering centers Ci, weights wik,
and αi of the RBF network are all determined, the corre-
sponding output values of the network can be given for a
certain input.

In this paper, there are 6 independent variables and 1
dependent variable, the number of input neurons is taken
as 6, the number of output neurons is taken as 1, and the
number of neurons in the middle hidden layer is 0. The
RBF network will be taken adaptively during the training
process.

Use the data in Table 7 to fit the RBF neural network
model to predict the decomposition effect of biologically
diverse colonies when the local environment has different
degrees of variability.

The data were imported into Matlab, and RBF neural
networks were performed to fit and combine the predictions.
The predictions were compared to single strain conditions to
give an arbitrary combination of six initial factor values for
colonies with species diversity.

For example, growth rate: 6.16; mycelial density: 0.04;
humidity tolerance: 1.52; sulfur and phosphorus content:
46.6; temperature: 23.55; humidity: 0.91, enter code: pi = ½
6:16 0:04 1:52 46:6 23:55 0:91�.

The predicted value of decomposition rate t is 0.31,
which is higher and better than the decomposition rate in
the case of a single strain.

7.3. Conclusion Analysis. Based on the results of the above
runs, we can find that the higher the species richness, the
higher the decomposition rate. Because different species
have different factors such as its mycelial growth rate and
growth rate under different environmental conditions, i.e.,
different rates of decomposition of dead branches and leaves
[44]. When the ambient temperature changes abruptly, the
A class strains are affected more by weak strains, while the
B class strains are affected less as the dominant strains, with
a diversity of strains can complement each other between the
AB class strains, the overall decomposition rate will not
appear too big fluctuations, even if the community is affected
more, it can gradually recover to the original level with time.
Whereas a single strain is more affected by environmental
changes, no complementary strain compensates for the
decreased part of the decomposition rate [45]. In addition
when it is affected more, it is less resilient than colonies with

material diversity. It is thus clear that biodiversity is impor-
tant for the automatic balance of biological regulation in
nature.

8. Conclusion

After our reasonable and rigorous model analysis, it was
concluded that the decomposition rate of fungi was affected
by temperature, humidity, colony abundance, time, soil sul-
fur and phosphorus content, mycelial elongation rate, and
moisture tolerance. Under the given temperature and
humidity conditions, different fungi have different mycelial
densities, while they show competitive relationships in the
short term and mutually beneficial symbiotic relationships
in the long term. Different fungi are sensitive to environ-
mental changes, so when environmental conditions change,
the original dominant species may become the inferior
species. For colonies with high species richness, there are
dominant and inferior species in the colony, regardless of
environmental changes. They have complementary strengths
and weaknesses, and the rate of decomposition is dynamically
balanced over time by the combined action of multiple fungi.
In addition, plant communities are highly resistant to distur-
bance and recovery, so biodiversity provides stability to
ecosystems.
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