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Personalized oncology is an evidence-based, patient’s tai-
lored approach that is aimed at identifying and treating each
cancer patient based on its genetic makeup and molecular
features. Biomarkers are a key player in personalized cancer
medicine, and biomarker discovery and development repre-
sent an area of active research and specific challenges. Cur-
rently, predictive and prognostic biomarkers that can guide
the therapeutic decision-making process are already available
in the clinical practice. Patients with solid tumors and hema-
tological malignancies derive great clinical benefit and access
to specific treatment upon specific biomarker assessment.
First, the advent of molecular diagnostics with single/multi-
, gene/protein variant detection enabled the identification of
patients with exquisite sensitivity to targeted therapies or
immunotherapy. More recently, the advent of high-
throughput genomic and molecular profiling and “omics”
techniques has led to the discovery of a wide spectrum of
potentially relevant biomarkers that will hopefully provide a
deeper understanding of cancer biology and host interaction,
raising the bar of personalized cancer medicine. This special
issue includes selected articles focusing on emerging bio-
markers and their potential clinical application in different
solid tumors.

T. Shen et al. showed that kinesin family member 20A
(KIF20A) promotes the growth of the bladder tumors
in vivo, and its overexpression associates with a poor progno-
sis in patients with bladder cancer. This study suggests that
KIF20A may become an independent prognostic factor in
patients with bladder cancer and a potential therapeutic tar-
get as selective KIF20A inhibitors are in development.

C.-Y. Huang and colleagues demonstrated that GRP94
silencing may increase the resistance of osteosarcoma cell
lines (MG63 and 143B) to paclitaxel, gemcitabine, and epiru-
bicin treatments by inhibiting the induction of apoptosis,
suggesting that GRP94 may be a key biomarker for the che-
motherapeutic response of osteosarcoma.

By using gynecologic cancer cell lines with known TP53
mutational status, X. Meng et al. demonstrated that protea-
some inhibition induced cell death in cells with two recurrent
gain of function (GOF) TP53 mutations (R175H and R248Q)
and that the addition of a histone deacetylase inhibitor
(HDAC:) enhanced this effect. This study provides prelimi-
nary evidence for a novel therapeutic strategy for tumors
with GOF TP53 mutations using drugs that are already being
advanced in clinical trials.

C. Mecca and colleagues analyzed the rationale of target-
ing mTOR in GBM and the available preclinical and clinical
evidences supporting the choice of this therapeutic approach,
highlighting the different roles of mMTORCI and mTORC2 in
GBM biology.

G. Cervino and colleagues provided an overview of the
emerging diagnostic and prognostic biomarkers in oral can-
cer, which still represents one of the leading causes of death
in developing countries.

In conclusion, this special issue wants to emphasize the
central role of biomarker identification and implementation
as the cornerstone of personalized cancer medicine and high-
lights how the bench to bedside translational science has a
great impact on the clinical practice and patient’s quality of
life.
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Objective. To investigate the expression of kinesin family member 20A (KIF20A) in bladder cancer, the effect of KIF20A on the
proliferation and metastasis of bladder cancer cells, and the effect of KIF20A expression on the prognosis of bladder cancer
patients. Methods. Bladder cancer tissue and its adjacent tissues were collected from tumour patients. The mRNA and protein
expression levels of KIF20A in the tissue samples were detected by qRT-PCR and western blot. Immunohistochemical (IHC)
staining was used to identify the expression and distribution of KIF20A proteins in the tissue samples. The relationship between
the KIF20A expression and the clinical pathology of bladder cancer was analysed. The effect of the differential expression of
KIF20A on the prognosis of patients with bladder cancer was analysed by the TCGA database. The plasmid was transfected into
the bladder cell lines T24 and 5637 to construct two stable cell lines with knocked down KIF20A. The effect of KIF20A
expression on the proliferation and invasion of T24 and 5637 bladder cells was explored in vitro using the abovementioned
stable cell lines. The effect of the KIF20A expression on the proliferation of bladder cancer cells was evaluated by a mouse
xenograft model. Results. The expression of KIF20A was significantly higher in the bladder cancer tissues than in the adjacent
control tissues. The expression of KIF20A was significantly associated with the degree of pathological differentiation of bladder
cancer. Patients with a higher expression of KIF20A had a higher tumour grade and a more advanced stage. The mean survival
of patients with a high KIF20A expression was significantly lower than the mean survival of patients with a low KIF20A
expression. The in vitro experiments demonstrated that the knockdown of KIF20A significantly inhibited T24 and 5637 cell
proliferation and invasion. The in vivo experiments showed that the knockdown of KIF20A significantly inhibited the
proliferation of the bladder tumours. Conclusion. KIF20A promotes the proliferation and metastasis of bladder cancer cells.
Bladder cancer patients with a high KIF20A expression have a worse tumour differentiation and a poor prognosis. KIF20A may
become an independent factor that affects the prognosis of bladder cancer patients and a therapeutic target for bladder cancer.

1. Introduction

Bladder cancer is one of the most common malignant
tumours in the urinary system. According to cancer statistics,
the estimated number of new bladder cancer cases increased
from 79030 in 2017 to 81190 in 2018 in the United States.
The number of deaths also increased from 16870 to 17240
[1, 2]. Treating bladder cancer is often difficult and expensive
[3]. In recent years, bladder cancer morbidity and mortality

have increased in the Chinese population. The time of diag-
nosis plays a crucial role in achieving a good prognosis [4].
Current chemotherapy methods and surgery can effectively
prolong the survival of patients with bladder cancer, and
patients need to bear the high expenses and pain caused by
surgical treatment. Therefore, finding molecular markers
that are potential therapeutic targets and prognostic indica-
tors of bladder cancer is critical for a clinically accurate diag-
nosis and treatment.
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The KIF family of molecules possesses a highly conserved
kinetic domain, and many of its family members have ATP
activity and are able to move towards the positive pole of
the microtubule [5-9]. These molecules are involved in vari-
ous physiological functions, such as intracellular spindle
formation, chromosome partitioning, and substance trans-
port [5, 8, 9]. Kinesin family member 20A (KIF20A), also
known as MKLP2 and RAB6KIFL, is located on chromosome
5q31.2 [5]. The encoded protein contains 890 amino acids
and has a molecular weight of approximately 100kDa [10].
KIF20A mainly accumulates in the central region of the
mitotic cell spindle and participates in the process of cell
mitosis [11]. Studies have found that KIF20A is highly
expressed in many types of tumours, such as lung cancer [12,
13], breast cancer [14], gastric cancer [15], liver cancer [16],
bladder cancer [17], and pancreatic cancer [18-20]. Taniuchi
et al. found that the KIF20A levels are elevated in pancreatic
cancer [21]. If the expression of KIF20A is downregulated,
there is a significant reduction in the proliferation of pancre-
atic cancer cells. In recent years, some scholars have pointed
out that the downregulation of KIF20A can induce gastric can-
cer cell mitosis (G2/M phase) arrest and enhance chemother-
apy drug sensitivity [15]. At present, research on the effect of
KIF20A on the proliferation, invasion, and migration of blad-
der cancer cells is still in the preliminary stage, and the specific
regulation and mechanisms of KIF20A have yet to be studied.

In this study, we examined the expression of KIF20A in
clinical specimens of bladder cancer and found that the
expression of KIF20A in the bladder cancer tissues is higher
than that in the adjacent tissues. We further analysed the
relationship between the KIF20A expression and the clinical
pathology of bladder cancer. Statistical results showed that
patients with a higher expression of KIF20A had a higher
tumour grade and a more advanced stage. The effect of the
differential expression of KIF20A on the prognosis of
patients with bladder cancer was analysed by the TCGA data-
base. The effects of KIF20A on the proliferation and invasion
of bladder cancer cells were detected in vitro and in vivo.

2. Materials and Methods

2.1. Antibodies. Antibodies for the following proteins were
used in this study for western blot and immunohistochem-
istry: KIF20A (Abcam, ab104118, 1:1000 dilution for west-
ern blot and 1:200 dilution for IHC-P), PCNA (Abcam,
ab92552, 1:1000 dilution for western blot), Ki67 (Abcam,
ab16667, 1:1000 dilution for western blot), Bcl-2 (Abcam,
ab32124, 1:1000 dilution for western blot), caspase-3
(Abcam, ab13847, 1:500 dilution for western blot), MMP-2
(Abcam, ab37150, 1:500 dilution for western blot), and
GAPDH (Sungene Biotech, KM9002, 1:5000 dilution for
western blot).

2.2. Cell Culture and Cell Lines. The cell lines involved in this
experiment, including T24, 5637, E]J, BIU87, and SV-HUC-1,
were purchased from ATCC. These cells were cultured in
RPMI 1640 medium (Gibco, Waltham, MA, USA) contain-
ing 10% foetal bovine serum (Gibco, Waltham, MA, USA)
with culture conditions of 37.0°C with 5% CO,.

Disease Markers

2.3. MTT Assay. The MTT powder was formulated into a
solution at a concentration of 5g/mL. The cells were seeded
in a 96-well plate and incubated for 3-6 days at 37°C with
5% CO, in a cell culture incubator. Then, 50 uL of MTT
solution was added to each well and incubated at 37°C for
4 hours. The supernatant was aspirated, and 150 yuL of
DMSO was added to each well. A microplate reader mea-
sured the optical density (OD) value of each well at a wave-
length of 490 nm.

2.4. Western Blot. Total cellular protein was extracted. The
prepared protein samples were added to the corresponding
gel lane of the separation gel, and electrophoresis was carried
out using a constant voltage. Protein transfer was performed
using a PVDF membrane. After the completion of the elec-
troporation, the PVDF membrane was sealed with skim milk
for 60 minutes. After washing the gel with TBST, the pri-
mary antibody was added and the membrane was incubated
overnight at 4°C. The primary antibody was washed away by
TBST; the secondary antibody solution corresponding to the
primary antibody was added, and the membrane was incu-
bated at room temperature for 1 hour. After washing away
the secondary antibody with TBST, the membrane was pre-
pared for exposure. The exposure reagents A and B were
mixed in equal proportion; the mixed solution was applied
to the PVDF membrane, and the membrane was exposed.

2.5. Immunohistochemistry. The paraffinized tissue sections
were dewaxed in water and subjected to antigen retrieval.
Briefly, 3% H,O, was added to the sections, and the sections
were incubated for 15 minutes at room temperature. After
washing with PBS, the primary antibody was added dropwise
and the sections were incubated at 4°C for 18 hours. After
washing with PBS, the secondary antibody was applied to
the specimens and the specimens were incubated at 37°C
for 1 hour. The sections were stained with DAB solution.
After washing with tap water, haematoxylin was added to
the specimen to counterstain the cell nuclei. After washing
with tap water, the sections were dehydrated, a transparent
coverslip was mounted, and the slides were sealed. The
results were observed under a microscope, and the positive
staining rate was counted.

2.6. Colony Formation Assay. The cells were seeded in a cul-
ture dish and cultured in the abovementioned manner. The
culture was terminated when macroscopic colonies appeared
in the culture dish. The supernatant was discarded, and the
cells were washed 3 times with PBS. The cells were fixed for
15 minutes, and an appropriate amount of Giemsa staining
solution was added for 10 to 30 minutes. The number of col-
onies was then counted.

2.7. Transwell Invasion Assay. Matrigel was stored at 4°C
overnight. Matrigel was diluted with prechilled RPMI
1640 medium, and 60 yL of the diluted gel was added to
each Transwell chamber of a 24-well plate for 2 hours. Cells
were plated in each Transwell chamber. The serum-
containing medium was added to the lower Transwell
chamber surface. The cells were cultured for 24 hours with
the abovementioned cell culture method. The Transwell
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FiGure 1: KIF20A is upregulated in bladder cancer tissues. (a) QRT-PCR was used to detect the expression level of KIF20A mRNA in surgical
specimens of bladder cancer and its adjacent tissues from tumour patients. (b) Western blot was used to detect the protein expression level of

KIF20A in the abovementioned specimens.

chambers were removed, and cell fixation, staining, and
counting were performed.

2.8. In Vitro Transfection. The following shRNA plasmids
were used in this study for in vitro transfection: KIF20A
human shRNA plasmid (CAT#: TG311916, OriGene) and
HuSH shRNA RFP cloning vector (CAT#: TR30014, Ori-
Gene). The cells were transfected with liposomes. The plas-
mid was mixed with the transfection reagent at a ratio of
1:1-1:4, and the mixture was added to Opti-MEM for 30
minutes. The above mixture was then added to the medium
with the cells. The medium was replaced with new medium
after 24-48 hours. The transfected cells were screened using
G418. A stably transfected cell line was finally obtained.

2.9. RNA Isolation and Quantitative RT-PCR Analysis. Total
RNA was extracted using the TRIzol reagent (Invitrogen)
according to the manufacturer’s protocol. The RNA was
reverse transcribed using a reverse transcription kit to obtain
cDNA. The mRNA reverse transcription-PCR (RT-PCR)
primers for KIF20A and GAPDH were purchased from
Applied Biosystems. The primers were designed as follows:
for KIF20A, forward primer, 5'-TGCTGTCCGATGACGA
TGTC-3', reverse primer, 5'-AGGTTCTTGCGTACCACA
GAC-3'; and for GAPDH, forward primer, 5'-AGGTTC
TTGCGTACCACAGAC-3', reverse primer, 5'-GCCATCA
CGCCACAGTTTC-3'. The expression of the mRNAs was
determined in quantitative RT-PCR with an Applied Bio-
systems 7900 Real-Time PCR System (Thermo Scientific,
Waltham, MA, USA). Small nucleolar RNA U6 was used
as an internal reference for normalization.

2.10. Statistical Analysis. Statistical processes were performed
with SPSS 20.0. Multiple groups were compared using one-
way analysis of variance. The LSD test was used for compar-
isons between groups. Comparisons between the different
treatment groups and control groups were performed using

paired t-tests. Data analysis was performed with GraphPad
Prism 5. P <0.05 indicated a statistically significant differ-
ence in the results. P < 0.05 was marked as *, P <0.01 was
marked as ##, P <0.01 was marked as #** *, and no signifi-
cant difference was expressed by “n.s.”

3. Results

3.1. KIF20A Expression Is Upregulated in Bladder Cancer.
To study the expression of KIF20A in gastric cancer, the
research team collected 16 surgical specimens of bladder can-
cer and their adjacent tissues from tumour patients. We first
used qRT-PCR to detect the mRNA expression level of
KIF20A in the above samples (Figure 1(a)) and found that
the mRNA expression level of KIF20A was higher in the
bladder cancer tissues than in the adjacent tissues of 16
sample pairs. Subsequently, we randomly selected 8 pairs
of the 16 pairs of samples to detect the protein expression
level of KIF20A. Western blot results showed that the expres-
sion level of the KIF20A protein was higher in the tumour
tissue than in the adjacent tissues (Figure 1(b)). The pre-
liminary results indicated that both the transcriptional
and translational KIF20A expression levels were increased
in bladder cancer.

3.2. High Expression of KIF20A Suggests a High Degree
of Malignancy and a Poor Prognosis in Bladder Cancer. To
further explore the relationship between the expression of
KIF20A and the malignancy of bladder cancer, the research
team performed immunohistochemical staining on 108 pairs
of paraffinized bladder cancer and adjacent tissue sections
(Figure 2(a)). The results showed that KIF20A was mainly
expressed in the cytoplasm and membranes. According to
the results of the immunohistochemical scoring, the posi-
tive rate of the KIF20A expression in bladder cancer tissues
was 67.6% (17.9% strong positive, 49.7% weak positive)
(Figure 2(b)). The positive rate in the adjacent tissues
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F1cure 2: High KIF20A expression suggests a poor prognosis in bladder cancer. (a) Representative IHC staining images of KIF20A in bladder
cancer and its adjacent tissues. (b) Chart of positive immunohistochemical rates and the associated statistics. (c) Survival curves for patients
with bladder cancer (n =402, P =0.012) that were mapped with the website http://gepia.cancer-pku.cn/.

was 11.7% (2.2% strong positive, 9.5% weak positive)
(Figure 2(b)). These results confirmed that the expression
of KIF20A in the bladder cancer tissues was significantly
higher than that in the adjacent tissues and the difference
was statistically significant (P < 0.05). This result again con-
firms the conclusion from Figure 1. We collected essential
and tumour status information from 108 patients with blad-
der cancer. Table 1 showed that patients with a higher
expression of KIF20A had a higher tumour grade and a more
advanced stage. Additionally, lymph node metastasis and
vascular invasion of the tumours were also associated with
a high KIF20A expression.

We used the GEPIA website (http://gepia.cancer-pku.cn/)
[22] to examine the effect of the KIF20A expression on

patient survival. These data are from The Cancer Genome
Atlas (TCGA) database. The survival rate of patients with
bladder cancer with a high KIF20A expression was signifi-
cantly lower than that of patients with bladder cancer with
a low KIF20A expression (P =0.012) (Figure 2(c)). This sug-
gests that the high KIF20A expression indicates a poor prog-
nosis in patients with bladder cancer. KIF20A can be an
independent factor that affects the prognosis of patients with
bladder cancer.

3.3. Knockdown of KIF20A Inhibits the Proliferation and
Invasion of Bladder Cancer Cells. We further explored the
effect of KIF20A on the biological function of bladder cancer
cells in vitro. First, we used western blot to detect the protein
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TaBLE 1: Relationships of KIF20A and the clinicopathological
characteristics of 108 patients with bladder cancer.

KIF20A
Variables Alln=108 Low High P value’
n=35 n=73

Age
<65 56 17 39 0.64
>65 52 18 34

Sex
Male 65 20 45 0.65
Female 43 15 28

Tumour stage
T2 54 23 31 0.02*
T3/T4 54 12 42

Tumour grade
Low 64 34 30 0.01*
High 54 11 43

Lymph node metastasis
No 45 20 25 0.02"
Yes 63 15 48

Distant metastasis
No 60 20 40 0.82
Yes 48 15 33

Vascular invasion
No 54 23 31 0.02"
Yes 54 12 42

#P value was analysed by a chi-square test; * indicates P <0.05 with
statistical significance.

expression levels of KIF20A in the bladder cancer cell lines
T24, BIU87, EJ, and 5637 and in the normal bladder cell line
SV-HUC-1. The results showed that the protein levels of
KIF20A in the bladder cancer cell lines were higher than
those in the normal bladder cell line (Figure 3(a)). This is
consistent with the results shown in Figure 1. Since the pro-
tein expression level of KIF20A was higher in T24 and 5637
cell lines than in the other bladder cancer cell lines, we chose
these two cell lines for experimental studies. We transfected
T24/5637 cells with the shKIF20A plasmid and screened
them to obtain the stable T24/5637 knockdown cell lines
T24shKIF20A/5637shKIF20A. The knockdown efficiency
was again detected by western blot (Figures 3(b) and 3(c)).
It has been reported that KIF20A is involved in cell prolifer-
ation, apoptosis, and even metastasis [13, 23, 24], so we tested
the corresponding indicators in the abovementioned stable
cell lines. We found that the expression levels of PCNA and
Ki67 in T24shKIF20A/5637shKIF20A were lower than those
in the control group (Figure 3(d)). That is, the proliferation
of bladder cancer cells is inhibited after knocking down
KIF20A. At the same time, the expression level of Bcl-2 in
T24shKIF20A/5637shKIF20A was lower than that in the
control group (Figure 3(d)), and the expression level of
caspase-3 was higher in T24shKIF20A/5637shKIF20A than
in the control group (Figure 3(d)). These data indicate that
the knockdown of KIF20A effectively promoted apoptosis

in the bladder cancer cell lines T24/5637. Moreover, the
expression of MMP-2 in T24shKIF20A/5637shKIF20A was
also lower than that in the control group (Figure 3(d)), indi-
cating that the invasive ability of the cells was also inhibited
compared with that of the control group. The MTT assay
further tested the effect of knocking down KIF20A on the
proliferation of the bladder cancer cell lines T24/5637. The
results showed that the proliferation ability of T24shKI-
F20A/5637shKIF20A was weaker than that of the control
group (Figure 3(e)). The results of the colony formation assay
showed that the number of cell colonies in the T24shKI-
F20A/5637shKIF20A group was significantly lower than that
in the control group (Figures 3(f) and 3(g)), which confirmed
that the knockdown of KIF20A could effectively inhibit the
proliferation of bladder cancer cells. Transwell invasion
assays were performed to detect the effect of KIF20A on the
invasion of bladder cancer cells, and the results showed that
the number of invading cancer cells in the T24shKI-
F20A/5637shKIF20A group was significantly lower than that
in the control group (Figures 3(h) and 3(i)). We believe that
knocking down KIF20A can effectively reduce the invasion
ability of bladder cancer cells.

3.4. KIF20A Promotes the Growth of Bladder Tumours In
Vivo. The abovementioned two cell lines were used to estab-
lish xenograft tumour models. We divided 12 nude BALB/C
mice into four groups on average, and each group was
implanted with the following cell lines: T24, T24shKIF20A,
5637, and 5637shKIF20A. The size of the tumour was mea-
sured with the Vernier calipers two weeks after the inocula-
tion and then measured once a week. The tumours were
removed at week 5, and each tumour was weighed. Based
on the tumour photograph (Figure 4(a)) and tumour growth
curve (Figure 4(b)), the tumour volume of the shKIF20A
group was significantly smaller than that of the shCON
group. The tumour weight of the shKIF20A group was also
lower than that of the shCON group (Figure 4(c)). We
extracted total protein from the tumour tissues and examined
the indicators for proliferation, apoptosis, and metastasis
by western blot (Figure 4(d)). The results showed that the
proliferation and metastatic ability of the tumours in the
shKIF20A group were weaker than those of the tumours in
the control group. The in vivo experiments confirmed that
tumour growth was significantly inhibited after knocking
down KIF20A.

4. Discussion

Because the diagnosis and treatment of bladder cancer is
difficult, it is especially important to find a biomarker for
the early diagnosis of bladder cancer and as a target for
treatment. Based on our knowledge of the current scientific
research, this is the first report on KIF20A in bladder cancer.
We confirmed that KIF20A promotes the proliferation and
metastasis of bladder cancer cells. Bladder cancer patients
with a high KIF20A expression have a worse tumour differ-
entiation and a poor prognosis. More importantly, KIF20A
may become an independent factor that affects the prognosis
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FiGgure 3: Knockdown of KIF20A inhibits the proliferation and invasion of bladder cancer cells. (a) Western blot was used to detect the
protein expression levels of KIF20A in T24, BIU87, EJ, 5637, and SV-HUC-1 cells. (b, ¢) The shKIF20A plasmid was transfected into T24
and 5637 cells. The protein expression levels of KIF20A after transfection were detected by western blot. (d) Western blot was used to
detect the expression levels of PCNA, Ki67, Bcl-2, caspase-3, and MMP-2 after the knockdown of KIF20A in T24 cells. (e) The MTT assay
detected the growth of bladder cancer cells after the knockdown of KIF20A. The absorbance value was detected at a wavelength of 490 nm
(*P <0.05). (f) A cloning formation assay detected the growth of bladder cancer cells after the knockdown of KIF20A. (g) The number of
colonies in (g) was counted and plotted on a graph (***P < 0.001). (h) Transwell invasion assays detected the invasiveness of the bladder
cancer cells after the knockdown of KIF20A. (i) The number of invaded cells in (h) was counted and plotted on a graph (**P < 0.01).

of bladder cancer patients and a therapeutic target for
bladder cancer.

Kinesin family member 20A (KIF20A) is also known as
mitotic kinesin-like protein 2 (MKLP2) [5]. As a member
of the kinesin-6 subfamily, KIF20A is a microtubule-
associated motor protein. KIF20A is involved in the trans-
port of organelles or cell membranes, as well as in activities
such as cell division [24-26]. KIF20A is also involved in the
formation of the spindle [8, 13]. It has been reported that

the mitosis of cells could be regulated by KIF20A [27, 28].
The abnormal expression of KIF20A may lead to abnormal
cell division, which can then lead to chromosomal aneu-
ploidy and genomic instability in cancer [29-31]. In 2005,
scientists first discovered that KIF20A is overexpressed in
pancreatic cancer and silenced KIF20A with siRNA to inhibit
the growth of pancreatic cancer cells [21]. In a related
study of liver cancer, Lu et al. reported that KIF20A might
be an independent factor that predicts overall survival and



Disease Markers

(a)

T24 tumour 5637 tumour
o5 0.8 % 0.8
= sk = —_—%
TED 0.6 —ED 0.6
z 04 z 04
5 5
S 0.2 S 0.2
g g
= 0.0 = 0.0

shCON  shKIF20A shCON  shKIF20A

(©)

“ T24 tumour — 5637 tumour
g }3 g 1.2
2 1.0
L
E 08 ¥ 208 ¥
s 0.6 = 06
04 S04
g 02 g 02
2 00+ 2 00 —
1 2 3 4 5 6 1 2 3 4 5 6

Week Week
—e— shCON
—=— shKIF20A
(b)
T24 tumour 5637 tumour

shCON shKIF20A

shCON KIFZOA

(d)

F1GURE 4: KIF20A promotes the growth of the bladder tumours in vivo. (a) The tumours were compared between the shKIF20A and shCON
groups. (b) Subcutaneous T24 xenograft tumour volumes were compared between the shKIF20A and shCON groups (**P < 0.01). (c) The
tumour weights were compared between the shKIF20A and shCON groups (**P < 0.01). (d) Western blot analysis of PCNA, Ki67, Bcl-2,
caspase-3, and MMP-2 expression levels in the tumours of the shKIF20A and shCON groups.

recurrence-free survival in patients with hepatocellular carci-
noma [32]. These conclusions are consistent with our exper-
imental results. In addition, KIF20A is highly expressed in
glioma cell lines and glioma tissues. Patients with gliomas
and a high KIF20A expression have a poor prognosis [33].
Studies have even shown that KIF20A also plays an essential
role in the resistance to traditional chemotherapy drugs, such
as paclitaxel. The high expression of KIF20A leads to pacli-
taxel resistance in breast cancer cell lines [34]. The molecular
mechanism of KIF20A in cancer is still unclear. It has been
reported that FOXMI1 can enhance the radioresistance of
lung cancer by inducing the expression of KIF20A [35].
Many studies have found that the upregulation of
KIF20A is associated with cancer, but the development and
potential molecular mechanisms of KIF20A in bladder can-
cer are not well understood. We studied the relationship
between the expression of KIF20A and the clinicopathologi-
cal features and prognosis of bladder cancer. The final results
showed that the tumour differentiation of patients with a
high KIF20A expression was worse than that of patients with
alow KIF20A expression. According to the analysis of TCGA
data, the high KIF20A expression in bladder cancer patients
leads to a decrease in disease-free survival. Because KIF20A

is closely related to cell division, a significant feature of malig-
nant tumours is uncontrolled cell growth. Based on the above
information, we hypothesized that KIF20A could affect the
proliferation of bladder cancer cells. To demonstrate this
hypothesis, we confirmed in vitro and in vivo that the high
expression levels of KIF20A indeed promote the proliferation
of bladder cancer cells.

In summary, KIF20A is likely to be a potential target for
cancer therapy in bladder cancer. This finding will help in the
development of antibladder cancer drugs. Our research had
certain limitations. Due to the lack of follow-up of clinical
patients in our hospital, we were unable to perform survival
analyses. In subsequent work, we will expand the sample size.
The mechanism by which KIF20A promotes the proliferation
and metastasis of bladder cancer cells has not been studied in
depth. Our group will continue to explore the molecular
mechanism of KIF20A in the development of bladder cancer.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding authors upon request.
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Backgrounds. The objective of the present research was to systematically revise the international literature about the genetic
biomarkers related to oral cancer (OC) evaluating the recent findings in clinical studies. Methods. A comprehensive review of
the current literature was conducted according to the PRISMA guidelines by accessing the NCBI PubMed database. The authors
conducted the search of articles in the English language published from 2008 to 2018. The present systematic review included
only papers with significant results about correlation between wound healing, genetic alteration, and OC. Prognostic capacity of
genetic markers was not evaluated in vivo. Results. The first analysis with filters recorded about 1884 published papers. Beyond
reading and consideration of suitability, only 20 and then 8 papers, with case report exclusion, were recorded for the revision.
Conclusion. All the researches recorded the proteomic and genetic alterations in OC human biopsy cells. The gene modification
level in the different studies, compared with samples of healthy tissues, has always been statistically significant, but it is not
possible to associate publications with each other because each job is based on the measurement of different biomarkers and
gene targets. Further investigations should be required in order to state scientific evidence about a clear advantage of using these
biomarkers for diagnostic purpose.

1. Introduction

Oral cancer (OC) is today considered one of the principal
causes of deaths with an increasing distribution located in
the developing countries. The difficulty in performing a quick
diagnosis and prompt management seems to be the reason
for this high mortality and morbidity. Recently, several

investigation methods and modern instruments have been
analyzed in order to help clinicians in doing noninvasive
analysis and fast recognition of this kind of oral pathological
lesions [1-9].

OC is a highly relevant problem of global public health,
especially for dental surgeons. It is among the top 10 most
frequent cancers, and though current research in the field
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discovered new therapies and treatment options, the survival
still remains low representing a continuing challenge for the
clinicians [7, 9-18].

A quick diagnosis is crucial in order to control a possible
malignant transformation of oral premalignant diseases and
for increasing the overall survival rate of the patients.
Numerous techniques and methods like scraping the surface
of the lesion analyzing the cytological characteristics of the
oral premalignant lesions are essential for doing the right
diagnosis. It is hard to state but clinicians should be able to
recognize the features of the oral lesions just by doing a sim-
ple view and without touching the lesions avoiding possible
modifications in the cells of the tissue [2-10, 16-24].

Nowadays, though the current standard of performing
diagnosis in oral pathology is related to incisional biopsy with
histology, this method is painful for patients and involves a
delay in the diagnosis, although histology is fully done. A
new technique for doing noninvasive analysis of a soft tis-
sue lesion is the autofluorescence. It can be used as a help-
ful method useful to find oral precursor malignant lesions
and the correct location for taking biopsies within the
altered mucosa. However, the main limitation of this proce-
dure is related to the possibility of frequently occurring
false-positive results [1, 3, 18-20].

A novel issue in the OC diagnosis is connected to
the molecular biology investigations. This procedure is able
to highlight any modification at a molecular stage much
before using a microscope and much before clinical
changes happen.

Moreover, their molecular features can also classify oral
lesions. So it is possible to predict malignant potential of oral
lesions decreasing the incidence and to improve early diag-
nosis and treatment of OC [13, 21-29].

The progress into the understanding of human genome
and the numerous possibilities of genetic and molecular
researches can be used as diagnostic and prognostic tools
for performing quick diagnosis and management of oral
lesion by doing molecular investigation.

Molecular detection instruments can be classified into
nucleic acid-based and protein-based markers. Nucleic
acid-based modifications happen due to preceding epigenetic
processes or existing genetic mutations, amplifications, and
polymorphisms. These mechanisms lead to aberrant expres-
sions of genes [30-36]. Unlike nucleic acid-based techniques,
protein-based early detection tools detect posttranscriptional
and posttranslational changes that may take place as a result
of carcinogenesis. The reason of investigating the oral bio-
markers available in the clinical study is related to the possi-
bility of evaluating the soft tissue healing phases. In oral
pathology, the wound healing physiological steps involve a
complex interplay of cells, mediators, growth factors, and
cytokines. The cascade of this inflammatory process starts
with clotting and recruitment of inflammatory cells, and
then, it proceeds to a highly proliferative state. At this
time, fibroblasts are involved in the collagen matrix syn-
thesis and remodelling. The keratinocytes spread across
the wound to form a new epithelial layer, and angiogenesis
occurs, regulating the tissue healing. A close correlation
between specific OC biomarkers and wound healing should
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be significant in the whole health recovering inflammatory
processes [1, 4, 7, 19, 36].

In this article, the authors will discuss genetic and molec-
ular pathways as possible genesis of oral carcinoma. Clinical
reports related to the soft tissue healing will be selected in
order to determine useful prognostic and diagnostic factors
for OC.

Moreover, the objective of the present revision is to over-
view the recent literature clinical trials based on diagnostic
and prognostic possibilities of genetic and proteomic bio-
markers of oral cancer.

2. Materials and Methods

2.1. Application Protocol and Website Recording Data. The
inclusion parameters for the current research was collected
in a protocol and then submitted in advance and docu-
mented in the CRD York website PROSPERO, an interna-
tional prospective register of systematic reviews: application
ID number: CRD 86658 (registration in progress).

The data of this systematic investigation observed the
Preferred Reporting Items for Systematic Review accordingly
with the PRISMA statement [37, 38].

2.2. Outcome Questions. The following next two questions
were sentenced and structured according to the PICO
study design:

(i) Are there some molecular biomarkers for oral carci-
noma wound healing process?

(ii) What is the diagnosis method for oral carcinoma,
and what biomarkers are they using on clinical trials?

2.3. Searches. The PubMed-Medline resource database was
explored through advanced searches. The keywords and
search inquiries used during the first selection stage were as
follows: “oral cancer biomarker”, “oral cancer gene”, and
“soft tissue wound healing”. Additional manually selected
articles were included following the eligibility criteria.
Figure 1 represents the flow diagram of the selected studies
according to guidelines and following the criteria for the
investigated papers choice.

2.4. Data Recorded from the Selected Manuscripts. The Med-
ical Subject Headings (MeSH) was applied for finding the
keywords used in the present revision. The selected key-
words: “oral” OR “facial” AND “cancer” OR “tumor” AND
“biomarkers” AND “gene” AND “clinical” AND “wound
healing”, were recorded for collecting the data.

2.5. Selections of the Papers. Four independent reviewers of
different Italian Universities (Messina, Foggia, Catania, and
Naples) singularly investigated the obtained full-text papers
in order to select inclusion and exclusion criteria as fol-
lows. Reviewers compared decisions and resolved differ-
ences through discussion and consulting a third party
when consensus could not be reached. For the stage of
reviewing of full-text articles, a complete independent dual
review was undertaken.
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PubMed, advanced search:

(i) Search terms: “Oral” OR “Cancer” AND “Biomarkers” OR
“Gene” AND “Face” OR “Facial” AND “Tumor” AND

“Wound Healing”

T
(ii) Publication dates: 01/02/2008-01/02/2018
. (iii) Species: humans, in vivo, clinical trials
5]
g (iv) Languages: English
&
E (v) Abstract available (n = 5406)
&
-
5406 search results
50
g Paper deleted because
§ Filtered it was published before 2008
3 (n=1772)
Titles and abstracts were selected according to relevancy after
duplications and full-text availability
(1 = 1886)
& Filtered Not enough information
i) regarding selected topic—no
5b . :
= clinical trials
= (n=1453)
Filtered Papers foundin full text
(n = 290), gene expression
(n=110), protein expression
(n = 180), and specific keywords
Full-text articles assessed for eligibility with correspondence (1 = 27)
2 adequate information (n = 20)
!
E (n=48)
Q
g
- Papers exluded because of
Filtered bri . .
ring classified as single case
— report presented (n = 9) or
weak methods or far from
Articles finally included in the revision the topic (n = 3)
(n=8)

FIGURE 1: Prisma flow diagram.

2.6. Research Classifications. The method of classification
included all human prospective and retrospective clinical
studies, split mouth cohort studies, case-control papers,
and case series manuscripts, published between December

The manuscripts selected in the present revision
highlighted the clinical researches on humans published in
the English language. Letters, editorials, case reports, animal
studies, and PhD thesis were excluded.



2008 and January 2018, on biomarkers for oral cancer and
wound healing.

2.7. Statement of the Problem. The sentence case of “oral can-
cer biomarkers clinical trials wound healing” was searched
over each selected papers.

2.8. Exclusion and Inclusion Criteria. The applied inclusion
criteria for the studies were created as follows:

(i) English language

(ii) Clinical human studies of oral cancer and molecular
biomarkers

(iii) Last ten-year data of publishing

The following types of articles were excluded as follows:

(i) In vivo/in vitro studies

(ii) Studies of testing medication and/or new treatment
methodologies

(iii) Studies of cancer in locations other than mentioned

(iv) Studies not relevant to our selected diagnostic
methods

(v) Animal studies

(vi) Literature review articles published prior to Febru-
ary Ist, 2008

(vii) No access to the title and abstract in the English
language

2.9. Strategy for Collecting Data. Following the initial liter-
ature search, all the article titles were screened in order to
eliminate irrelevant publications, review articles, case
reports, and animal studies. Next, studies were excluded
based on data obtained from screening the abstracts. The
final stage of screening involved reading the full texts con-
firming each study’s eligibility based on the inclusion and
exclusion criteria.

2.10. Data Extraction from the Collected Papers. The data and
the results of the full-text manuscript screened were com-
pared. The conclusions were used for assembling the data,
according to the aims and themes of the present revision, as
listed onwards.

The following key criteria were used as guidelines for
agglomerating the data and then structured following the
schemes:

(i) “Author (year)”—revealed the first author and the
year of publication

(ii) “Type of study”’—indicated the method of the
research

(iii) “Sample origin”—describes the number of particu-
lar investigated samples in the study and its origin
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(e.g., BS: blood sample; SS: saliva sample; and TT:
tumor tissue)

(iv) “Follow-up”—yes/no described the duration of the
observed outcomes

(v) “Result”—indicates the parameters that were coher-
ent with alterations of particular biomarkers in
prognostic studies

2.11. Risk of Bias Assessment. The grade of bias risk was inde-
pendently considered and in duplicate by the two indepen-
dent reviewers at the moment of data extraction process.

The quality of all included studies was assessed during
the data extraction process. The quality appraisal involved
evaluating the methodological elements that might influence
the outcomes of each study. According to Moher et al. and
Higgins et al., this revision followed the Cochrane Collabora-
tion’s two-part tool for assessing risk of bias and PRISMA
statement [37, 38].

Risk of bias (e.g., absence of information or selective
reports on variables of interest) was assessed on a study level.
The risks were indicated as lack of precise information of
interest related to the keywords selected.

This method applied by the four reviewers was valu-
able for giving to each study a level of bias. Then, the
selected papers were classified with low, moderate, high,
and unclear risk.

3. Results

3.1. Manuscript Collection. Manuscript choice and analyzing
data process followed the PRISMA flow diagram (Figure 1).
The first electronic and hand search performed on
PubMed-Medline and Dentistry and Oral Sciences Source
resulted with a total of 5406 papers. 1772 papers were
excluded because they were published prior to February 1st,
2008. Then, the other 1886 papers were not involved in the
revision because they were not available in full text. Then,
the other 1453 papers were not selected because they were
not directly developed as clinical trials. At this point, 290
titles and abstracts were evaluated: then, the papers were clas-
sified into papers that revealed gene expression n =110 and
protein expression n = 180; 27 articles were selected as having
significant data regarding “Oral Cancer Tumor Biomarkers
Clinical Trials Wound Healing” topic. 20 articles were deter-
mined as full-text papers, 8 of which were incorporated in
this work. Some researches were excluded because of being
classified as a single case report presented (n=9) or weak
methods or far from the topic (n = 3).

3.2. Statistical Analysis. No meta-analyses could be per-
formed due to the heterogeneity between the studies (differ-
ent study designs, control groups, and observation periods).

3.3. Study Characteristics. After the manuscript selection, a
new time for screening related to the kind of gene expression

or protein expression has been performed:

(i) Gene expression (n =110)
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TaBLE 1: Altered biomarkers in OC.
# Year Author Subjects samP l*e Gene marker** Result P value
(n) origin
Taoudi An increased EGFR gene copy number increases
P =0.062
1 2010 Benchekroun et al. 162 HB EGER (U) the risk of OSCC
2 2012 Jung et al. 17 TB 134 dlffe.rent miRNA Kera'.ﬂm.zatlon and high miR-21 l.evels areimportant ) oz
(see image 1) indicators of oral cancer patient prognosis
3 2013 Minakawa et al 106 TB KIFGA (U) Results showed tha;rf(IOFgA is overexpressed P <005
Tumor OPN plays an important role in tumor
4 2015 Luo et al. 121 HB OPN (osteopontin) development particularly in tumor invasion P=0.002
and metastasis
DEPDCIB is highly expressed in oral cancer tissue,
5 2014 Suetal 7 HB DEPDCIB (U) compared to adjacent t1s.sue.‘The overexpression in /
cells promotes cell migration and induces cell
invasion in cancer cell lines
EZH2 expression is an independent predictor for
6 2011 Cao et al. 76 TB EZM2(D) OSCC. EZH2 may serve as a biomarker for oral P=0.05
cancer risk
Hazard risk of OC with upregulated genes is
L. deltaNp63 (U), EIC augmented. Considering all three biomarkers,
P <0.0001
72009 Saintigny et al. 162 HB (U), podoplanin (U) OC patient survival rate is strikingly higher
compared with no, one, or two positive biomarkers
It demonstrated the value of gene expression
Has-miR-101 (D), profiles in predicting oral cancer development
8 2011  Saintigny et al. 162 HB deltaNp63 (U), P63 in OPL patients. The microRNA-based strategies /

(U), DNMT3B (U)

might therefore be considered in future
chemoprevention studies

*Type of sample: HU: human biopsy; TB: tissue bank sample. **Type of altered gene regulation: D: downregulation, diminution; U: upregulation,

augmentation.

(ii) Protein expression (n = 180)

The final clinical papers in full text selected were num-
bered as 8.

3.4. Possible Bias of the Selected Studies. The possible risk of
bias was evaluated for each selected papers. The final number
of the selected papers was limited to eight papers. The inclu-
sion criteria were really restrictive and for this reason also,
the risk of bias was low. Seven studies were considered as
having a low risk of bias [39-45]; another one was classified
as moderate risk [46].

Current analysis of the data extracted from studies writ-
ten in English only could introduce a publication bias. About
possible bias, some of the selected papers did not specify the
inclusion criteria of the patient selection. Another key
parameter that can be assumed as bias is related to the eval-
uation of the clinical condition for selecting the patient. Some
studies referred “patients with oral preneoplastic lesions,”
while another study wrote about “patients with neoplastic
lesion” [39, 43]. The soft tissue healing after the surgical exci-
sion was not evaluated in all the selected studies. Moreover,
data recorded from the eight studies pointed out the hetero-
geneity of the research methods, selections of the patients,
and therapeutic options. One paper started the investigation
not directly from the patient but from immortalized human
OSCC-derived cell lines (HSC-2, HSC-3, HSC-4, Ca9-22,

Sa3, HO-1-u-1, and KON) obtained from the Human Sci-
ence Research Resources Bank (Osaka, Japan) or the RIKEN
BRC (Ibaraki, Japan) through the National BioResource Pro-
ject of the Ministry of Education, Culture, Sports, Science and
Technology, and this is another bias [46].

Tables 1 and 2 resume the studies selected and their
results related to the altered biomarkers and to the bio-
marker measurements.

3.5. Genetic Alterations in Oral Cancer and Wound Healing.
The chosen clinical papers evaluated the alterations in some
gene expressions able to influence a predisposition by the
patient on developing oral cancer and consequently the pos-
sibility on having a better healing. In the selected clinical
studies, the oral cancer soft tissue biopsies have been
recorded and then, the genetic expression of these biopsies
was evaluated, highlighting any possible alterations. Alter-
ations in the EGFR gene copy number, or alterations in
miR-7, miR-21, mRNA-KIFGA, OPN, DEPDCI1B, EZH2,
deltaNp63, and DNMT3B were significant for early evalua-
tion and correlation with oral cancer. It is fundamental to
underline how sometimes the quick presumptive diagnosis
of preoral cancer lesion and the stage of diagnosis remain
the fundamental steps on recording positive oral cancer diag-
nosis. In the final 8 studies, the degree of significance of these
data was never higher than p < 0.05. In one paper, the corre-
lation between the patient’s degree of survival and the
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TABLE 2: Biomarker measurement.
# Year Author Subjects Sa.m.p lf Gene marker** Sample preparation Method
(n) origin
Taoudi Human OC biopsy formalin fixed
L 2010 Benchekroun et al. 162 HB EGER (U) and paraffin-embedded FISH
134 different miRNAs Cell culture and transfection mirVana™, mlcr.oarray
22012 Jung et al. 17 TB (see image 1) of oral cancer cells and normal gene expression,
8 cell biopsy qRT-PCR
Immortalized human
OSCC-derived
3 2013 Minakawa et al. 106 TB KIFGA (U) cell lines obtained from the tissue qRT-PCR
bank. Human biopsy fixed in 20%
buffered formaldehyde solution
. Human OC biopsy formalin fixed
4 2015 Luo et al. 121 HB OPN (osteopontin) and paraffin-embedded Western blot
Immunoprecipitation,
5 2014 Su et al. 7 HB DEPDCIB (U) Human biopsy Northern blot,
Western blot
Human biopsy sample paraffin
6 2011 Cao et al. 76 TB EZM2(D) included and sectioned. Colored Western blot
with H&E
deltaNp63 (U), EIC ~ Human OC biopsy formalin fixed Cell membrane
7 2009  Saintigny et al. 162 HB 2 immunoreactivity,
(U), podoplanin (U) and paraffin-embedded .
microscope
Has-miR-101 (D), Whole biopsy including both the Microarray gene
8 2011 Saintigny 162 HB deltaNp63 (U), P63 epithelial cells and the underlying V8

(U), DNMT3B (U)

expression
stroma

*Type of sample: HU: human biopsy; TB: tissue bank sample. **Type of altered gene regulation: D: downregulation, diminution; U: upregulation,

augmentation.

expression of miR-21 is also considered. If the miR-21 values
are high, the patient’s chances of survival are lower. In one
study, the degree of dysplasia is evaluated based on the
expression of the EZH2 gene. Another study illustrated the
possibility of evaluating the predisposition to the formation
of OC by evaluating deltaNp63 and EIC, also using the
expression of podoplanin [39-46].

In oncology, the tumor markers or tumor indicators are
classified as substances that can be found in the blood or less
often in the ascitic fluid, which show a significant increase in
their concentration in some types of neoplasia. A high level of
a tumor marker may indicate the presence of cancer,
although other causes of raising those values may exist. Some
markers are specific to certain tumors while others increase
in many neoplasms. Tumor markers can be produced
directly from tumor cells or from normal cells. The tumor
markers, on the other hand, are more useful when they are
used to monitor a possible recurrence of cancer after the
treatment (surgical or medical) of the primary tumor. Many
proteins are known to regulate programmed cell death (or
apoptosis), and members of the Bcl-2 family are the most
important example. This group includes at least 15 different
proteins both with antiapoptotic function (Bcl-2, Bcl-X)
and proapoptotic (Bax, Bak), and it represents the balance
between these two activities determining cell fate. Regarding
their role in the forms of OSCC, an increase in the levels of
Bcl-2 and Bcl-X expression was observed, both in dysplastic
oral lesions and in oral cancer [47]. p53 is a tumor suppressor

involved in several mechanisms including cell cycle progres-
sion, differentiation, DNA repair, and apoptotic process reg-
ulation. p53, also known as tumor protein 53 (TP53 gene), is
a transcription factor that regulates cell cycle and covers
tumor suppressor function. It intervenes in many antitumor
mechanisms, activates the repair of damaged DNA (if the
DNA is repairable), and can initiate apoptosis, inducing the
transcription of Noxa, in case DNA damage is irreparable;
if the DNA is repaired, p53 is degraded and there is a recov-
ery of the cell cycle. Some pathogens can instead directly
affect the p53 protein. An example is the human papilloma-
virus (HPV), which encodes a protein which binds p53 inac-
tivating it. This, in synergy with the inactivation of another
cell cycle regulator, the p105RB, allows repeated cell divisions
that occur in the clinical form of the wart. The introduction
of p53 into cells with protein deficiency has shown to cause
a rapid death of cancer cells or a block of cell division. This
phenomenon reflects the possibility on having good thera-
peutic prognosis. For this reason, it is one of the most widely
studied oral cavity biomarkers. The gene encoding is mutated
in the 50% of the tumor forms, particularly in 25-69% of
OSCC cases [48]. A high expression of p53 was observed in
40-67% of cases of carcinoma of the head and neck, and this
variability is related to problems inherent in the method.
Some authors [49, 50] have observed a direct relationship
between overexpression of p53 and a poor prognosis in terms
of survival. In other works, on the contrary, a correlation
between p53 overexpression and survival did not clearly
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emerge, while an important role of p53 in the carcinogenesis
process was highlighted, as an early event of malignant trans-
formation, and of the histological progression of the tumor
[51, 52]. The expression of p53 above the basal layer is con-
sidered an early event of the oral carcinogenesis process. It
is an indicator of the development of carcinoma, even before
the definite morphological changes of the involved tissue.
The inactivation of this protein or the alteration of the coding
gene could therefore play an important role in the genesis of
OC. This could certainly represent a parameter (biomarker)
to be taken into consideration during the diagnostic or inter-
ceptive phase of the tumor. Inactivated p53 is not able to stop
the reproduction of cells with damaged DNA. This could be a
starting point for OC. The Rb (retinoblastoma) pathway also
plays a key role in regulating cell cycle progression, and this
activity can be inhibited by specific mutations. Although Rb
mutations are rare in oral cancer, its loss of expression was
seen in 66% of OSCC cases and in 64% of premalignant
lesions [22]. Another possible marker of oral cancer is Survi-
vin, an apoptotic process inhibitor, expressed in about 80% of
the forms of squamous cell oral carcinoma and whose
expression is related with an aggressive phenotype [53]. It
has been shown that miRNAs can have specific expression
profiles for developmental stages, tissues, and various pathol-
ogies. Studies on several forms of cancer, including oral can-
cer, have shown an altered expression of miRNA in tumor
tissue compared to healthy tissue, suggesting the involve-
ment of these molecules in carcinogenesis [54-56]. Human
cells have a limited capacity for self-replication and, after
numerous cell divisions, cease to grow and enter on senes-
cence phase. Cells with carcinogenic characteristics need to
be immortal in order to replicate infinitely and succeed in
maintaining the length of their telomeres unaltered.

Since tumor growth is limited to 1-2 mm3 in the absence
of adequate perfusion, solid tumors require substantial blood
supply to be able to grow and metastasize [57]. The angio-
genic phenomenon is the result of the opposing action of
proangiogenic signals (vascular endothelial growth factor
(VEGE), platelet-derived growth factor (PDGF), and inter-
leukin 8 (IL-8)) and antiangiogenic signals (interferons and
proteolytic fragments such as angiostatin and endostatin).
Oral squamous cell cancer has an important local invasive
capacity and a high predisposition to metastasize in the cer-
vical lymph nodes. The invasive and metastatic phenomena
are the result of a series of processes involving cell adhesion,
cytoskeletal rearrangement, cell migration and degradation
of the basement membrane, passage and survival in the
bloodstream, and the ability to escape from this and colonize
distant sites with the formation of new vessels.

3.6. Proteomic Changes of Oral Cancer. A total of eight clini-
cal studies, in which samples were analyzed, described pro-
tein biomarkers and evaluated the wound healing of the site
after the surgery. In biology, a biomarker is a molecule that
identifies the presence of a tissue. The marker can be of any
nature, but substantially it is a protein, or otherwise polypep-
tide, since it is the proteins that are translated by DNA. For
this reason, a marker is such: it is a molecule that is produced
mainly by that type of cell. If the marker is used as a disease

index, it should only be produced in the presence of this dis-
ease. Few markers however meet these needs. The major
problem is given by tumor cell markers: as cells, however,
are not completely extraneous to the body, neoplastic cells
do not translate for molecules that make their dosage accu-
rate method. From a molecular point of investigation, studies
involved evaluated the aberrant expressions of candidate
protein biomarkers and their quantitative yield in speci-
mens. The protein modification is related to the genetic or
epigenetic alterations. In some cases, the marker can be rep-
resented by high-density lipoprotein components, HDLs,
and HDL-cholesterol, [16, 41-48] or even by genetic alter-
ations such as those found in some solid tumors [50-54].
Proteins are fundamental for physiological cell functioning
and life. Aberrant genetic expressions of potential proteins
alter cell division, proliferation, immune response, tissue
growth, and finally metastasis [48-55]. As for other kind
OC cancers, typical patterns of protein expression or indi-
vidual proteins with specific features have been recorded
and classified as oral cancer biomarkers in order to perform
diagnosis and therapy.

4. Discussion

The purpose of this review was to systematically overview
published studies restricted to “clinical trials” concerning
genetic and proteomic biomarkers for detection and progno-
sis of OC and their relation to wound healing.

Luo et al. [39] evaluated the role of osteopontin (OPN)
in chemosensitivity in locally advanced oral squamous cell
carcinoma (OSCC) in humans. Authors considered 121
patients and validated the role of OPN in cell proliferation.
The recombinant human OPN was executed to SAS cells
(human tongue carcinoma cell line) to investigate if the
increased OPN protein could influence a proliferative advan-
tage to SAS cells. The presence of OPN is related to bone
resorption, wound repair, immune function, and angiogen-
esis. However, it is particularly strongly associated with
tumorigenesis also. The authors demonstrated that the pro-
liferation percentage was significantly increased in matricel-
lular OPN in a dose-dependent manner in SAS cells. This
result demonstrates that one of the major roles of OPN is
to promote growth of OSCC cells. Moreover, it was con-
cluded how OPN-mediated cisplatin resistance contributes
to a poorer clinical outcome and local wound healing in
patients with locally advanced inoperable OSCC treated with
cisplatin-based IC and CCRT.

Taoudi Benchekroun et al. [40] performed a study inves-
tigating oral premalignant lesions. The authors obtained data
indicating that an increased EGFR gene copy number is com-
mon. Therefore, it is associated with OSCC development in
patients with oral premalignant lesions (OPLs) expressing
high EGFR, particularly OSCC developing at the site of a
high-expression OPL; the authors also suggested that EGFR
inhibitors might prevent oral cancer in patients with OPLs
having an increased EGFR gene copy number. Moreover,
the authors also demonstrated that an increased EGFR gene
copy number in OPLs is a precursor to EGFR gene amplifica-
tion in HNSCC (as is chromosome 7 increased copy number)



and an important oncogenesis-driving effector in oral onco-
genesis reducing the possibility of having healing at the sur-
gical site and final good prognosis for the patient.

Jung et al. [41] identified deregulated miRNAs in oral
cancer and further focus on specific miRNAs that were
related to patient survival. Authors reported that miRNA
expression profiling provided more precise information
when oral squamous cell carcinomas were subcategorized
on the basis of clinic pathological criteria. Data extracted
from their research highlighted that the interpretation of
miRNA expression patterns could be better resolved when
one takes into consideration clinical pathological data of
OSCC subtypes. Patient survival data demonstrated that the
keratinization and the high miR-21 levels were significant
factors of OC patient prognosis. Moreover, miR-7 and
miR-21, two keratinization-associated miRNAs, could influ-
ence the modification of the tumor suppressor gene RECK
in OC. Even if the 17 analyzed tumors clinically showed sim-
ilar features, unique miRNA expression patterns were gener-
ated for specific subtypes of OSCCs. Finally, the recorded
data underlined that different clinicopathological features
and miRNA expression profiles could be used as specific sig-
natures of individual subtypes of oral tumors with different
final prognoses and healing possibilities.

Minakawa et al. [46] assumed that Kinesin family mem-
ber 4 (KIF4A) is involved in oral squamous cell carcinomas
(OSCCs) pathogenesis by the activation of the spindle assem-
bly checkpoint (SAC). KIF4A is overexpressed frequently in
OSCC, which suggests interference in the function of the
spindle checkpoint proteins such as BUB1, MAD2, and
CDC20. KIF4A expression was correlated with tumor size
in KIF4A-positive cases, suggesting that SAC activation plays
a significant role in cellular proliferation in OSCC. The
authors concluded that KIF4A expression is likely to be a
key regulator of carcinogenesis progression in OSCCs.

Su et al. [42] studied how the DEPDCI1B (defined like
guanine nucleotide exchange factor) induced both cell
migration in a cultured embryonic fibroblast cell line. More-
over, it was recorded to favor anchorage-independent growth
in oral cancer cells. It was demonstrated that DEPDC1B
exerts a biological function by regulating Racl. To determine
whether DEPDCIB played a role in the induction of cell pro-
liferation, contributing to faster wound healing, the authors
evaluated the growth rate of cells expressing DEPDC1B and
control cells founding no substantial difference between the
growth rates of DEPDC1B-expressing cells and control cells.

However, the authors concluded that oral cancer samples
overexpressed DEPDCIB proteins, compared with normal
adjacent tissue, and so DEPDCI1B plays a role in the develop-
ment of oral cancer.

Cao et al. [43] investigated the role of the transcriptional
repressor named Enhancer of Zeste Homolog 2 (EZH2) in
oral carcinogenesis and its clinical implication as an OSCC
risk predictor. The study revealed how at 5 years after diag-
nosis, the 80% of patients whose OLs expressed strong
EZH2 developed OSCC. In Leuk-1 cells, EZH2 downregula-
tion resulted in G1 arrest, decreased invasion capability,
decreased anchorage independent growth, downregulation
of cyclin D1, and upregulation of p15™**® The recorded
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data suggested that EZH2 seems to have a fundamental role
in OL malignant transformation and may be a biomarker in
predicting OSCC development in patients with OLs. More-
over, classifying the EZH2 expression in three stages as weak,
moderate, and strong, the authors correlated this situation
with better or not clinical healing, patient survival, and final
prognosis. Quick diagnosis results are fundamental in order
to approach the right therapy and for long survival.

Saintigny et al. [44] considered deltaNp63 as homolog of
the p53 tumor suppressor and frequently amplified and over-
expressed in squamous cell carcinomas, including head and
neck squamous cell carcinoma. The authors were able to
determine, in a relatively large population from whom OPL
samples had been collected in a prospective longitudinal
manner, how the level of overexpression of deltaNp63 alone
or in combination with other molecular and morphologic
features can be associated with a high risk to develop oral
cancer. This investigation referred only oral cancers that
developed in the same site as the OPL; 25% of the patients
positive for podoplanin developed cancer, compared with
4% of the patients negative for podoplanin; 24% of the
patients positive for deltaNp63 developed cancer, compared
with 7% of the patients negative for deltaNp63; and 40% of
the patients positive for all the biomarkers developed oral
cancer, compared with 9% of the patients with no, one, or
two positive biomarkers. The authors concluded that because
the measurement of the three biomarkers can be done in rou-
tine pathology laboratories, it can be useful for evaluating soft
tissue healing after OC removal and then patient survival.

Saintigny et al. [45] in a next investigation tried to deter-
mine the value of gene expression profiling in predicting oral
cancer development. Gene expression profile was measured
in 86 of 162 OPL patients who were enrolled in a clinical che-
moprevention trial that used the incidence of oral cancer
development as a prespecified endpoint. The results showed
that gene expression profiles might improve the prediction
of oral cancer risk in OPL patients. Moreover, the significant
genes identified may serve as potential targets for oral cancer
chemoprevention. Tumor progression from normal mucosa
to dysplastic mucosa and eventually cancer is the result of a
series of gene modifications affecting the normal functions
of genes such as protooncogenes and tumor suppressors.
Such alterations can be partly inherited but most are muta-
tions that develop ex novo and accumulate in precancerous
and cancerous tissue. These mutations can cause alterations
in cell cycle regulation, differentiation, proliferation, DNA
repair mechanisms, and cellular immunity. Chromosomal
aberrations such as deletions, amplifications, and structural
rearrangements are common in neoplasms and therefore also
in head and neck cancer.

All those clinical studies evaluated an alteration of geno-
mic proteins leading a tissue transformation directed to the
OC formation. The possibility of quickly knowing those
entire factors such as oral premalignant lesions (OPLs) may
help in quick diagnosis and management.

Unfortunately, among the studies taken into consider-
ation, few of those evaluate the same markers; thus, the risk
of bias of this review study is classified as “high.” It is not pos-
sible to make a real report of the statistics of the different
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studies, which, however, despite the small number of patients
have satisfactory statistical results. It is very interesting to
consider the possibility that these biomarkers represent a fac-
tor to intervene early in the pathology so as to make complex
reconstructions more rare [57]. Specifically in those cases,
clinicians should avoid the use of complex rehabilitations
placing dental implant fixtures increasing chronic inflamma-
tory process of the jaws and exposing the patient to a risk
[58]. In this way, the risk of psychological complications
can be reduced and it can affect the patients’ oral health
and quality of life [59]. It is interesting to highlight anomalies
in the crevicular fluid associated with the inflammatory state
of the mucosa therefore with precancerous lesions, benign
lesions, or OC [60, 61].

5. Conclusions

It is estimated that in the world, the annual cases of squa-
mous cell head/neck neoplasia are more than 640,000 (with
350,000 deaths). After the success in HER2-positive metasta-
tic breast cancer, lapatinib (a small oral molecule that is the
result of GSK research) has also opened an important path
in the treatment of head and neck cancer. These results tell
us that the use of a dual tyrosine kinase inhibitor such as
lapatinib may be clinically important not only in breast can-
cer but also probably in other tumors such as the head and
neck, where EGFR is overexpressed. Surely, the possibility
of identifying markers for a diagnosis of a primary oral cavity
tumor or a relapse, especially if early, can save the life of
numerous patients. The possibility of having a set of bio-
markers that represent a certain risk for OC and above all
the ease of sampling may constitute real screening for all
patients at risk (genetic predisposition or family history) or
exposed to environmental risks (alcohol, smoking, etc.).
The present systematic review of clinical studies discov-
ered genes and proteins associated with OC and strictly
related with the wound healing, the prognosis, and patients’
long-term survival. Due to high heterogeneity of the
researches, it was not possible to perform meta-analysis for
comparing the data of the selected papers. Due to poor mate-
rials and several parameters recorded, it is not possible to
establish biomarkers specific for oral cancer. The diagnostic
capabilities are also not sufliciently developed and used to
allow the use of these markers. However, the highlighted
papers demonstrated how the high, low, or moderate marker
expression might influence the clinical status and the final
prognosis of the patients. At this stage, it seems not possible
to define standard genetic patterns of tumor cells.
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Background. Osteosarcoma (OS) is the most common and most aggressive primary solid malignant bone tumor in children and
young adults and has high rates of recurrence and metastasis. The endoplasmic reticulum (ER) stress pathway is important in
regulating the chemo-responsiveness of cancer. However, the role of glucose-regulated protein 94 (GRP94) in regulating the
response of OS to chemotherapy has never been explored. Methods. In this study, two OS cell lines, MG63 and 143B
cells, were used to evaluate the mechanism by which GRP94 modulates the response of osteosarcoma to chemotherapy.
GRP94-knockdown (GRP94-KD) OS cells were generated using short hairpin RNAs, and the response to chemotherapy was
assessed using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was quantified
with propidium iodide (PI) staining and flow cytometry. Results. Silencing of GRP94 in MG63 and 143B cells did not influence
the growth and migration of the cells, but reduced the colony formation. GRP94-KD OS cells were more resistant to paclitaxel,
gemcitabine, and epirubicin treatments than cells transfected with the scrambled control, and more cells transfected with the
scrambled control underwent apoptosis after paclitaxel, gemcitabine, and epirubicin treatments than GRP94-KD cells.
Conclusions. Therefore, GRP94 silencing may increase the resistance of MG63 and 143B cells to paclitaxel, gemcitabine, and
epirubicin treatments by inhibiting the induction of apoptosis. Thus, GRP94 may be a key biomarker for the chemotherapeutic
response of OS.

1. Introduction

Osteosarcoma (OS) is the most common type of primary
solid malignant bone tumor in children and young adults
(nearly 5% of all cases of cancer in children), with 70-75%
of cases occurring between the ages of 10 and 25 years [1].

OS forms at the ends of the long bones of the body, such as
in the arms and in the legs, mainly near the knee [2].
OS is an aggressive disease with a high recurrence rate
after treatment and is highly metastatic to lungs and
bones, thus leading to a poor prognosis [1, 3]. Currently,
the standard therapeutic strategy for OS is surgical resection
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and chemotherapy. However, although several new drugs
have been developed in the past decade, the efficacy of these
treatments is not satisfactory [3]. Moreover, the lack of
prognostic biomarkers for early diagnosis and therapeutic
responses is a major issue in the management of OS.

Stress-related proteins such as glucose-related protein 94
(GRP94) play critical roles in tumor progression and thera-
peutic efficacy. GRP94 has been shown to aid cells in evading
lethal stresses, such as ischemic injury, radiation exposure,
and chemotoxicity [4-6]. As a member of the heat shock pro-
tein 90 (HSP90) family of molecular chaperones, GRP94 is
located in the ER. GRP94 is overexpressed in cancer tissues,
and this overexpression is associated with cancer aggressive-
ness, the metastatic potential, and chemotherapy responses
[7, 8]. Strategies targeting GRP94 have been shown to
enhance the degradation of GRP94 client proteins and to
induce cell apoptosis in different cancers [9, 10]. According
to previous clinical trials, a GRP94-targeting drug reduces
metastasis and improves the responses of specific cancers to
chemotherapy [11-13].

The roles of GRP94 in the progression and therapeutic
response of OS are not clear. Therefore, we aim to explore
the roles of GRP94 in OS to ultimately determine effective
approaches for managing the disease.

2. Materials and Methods

2.1. Chemicals, Reagents, and Cell Culture. Human OS cells
MG63 were purchased from ATCC and cultured in Eagle’s
minimum essential medium (MEM) (Gibco BRL, Grand
Island, NY, USA) containing 2mM L-glutamine, 1.5g/L
sodium bicarbonate, 10% fetal calf serum (Gibco BRL,
Grand Island, NY, USA), and 2% penicillin-streptomycin
(10,000 U/mL penicillin and 10 mg/mL streptomycin). The
143B cell line was provided by Dr. Pei-Ni Chen (Chung-Shan
Medical University) and cultured in RPMI supplemented
with 10% fetal bovine serum. Cells were incubated in a
humidified incubator (37°C, 5% CO,) and were either sub-
cultured or used before they reached 80% confluence. Triton
X-100, Tris-HCI, neomycin, trypan blue/EDTA, ribonucle-
ase-A, and dimethyl sulfoxide (DMSO) were obtained from
Sigma Chemical Co. (St. Louis, MO). Antibodies against
GRP9%4 and GAPDH were purchased from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA). Caspase 3, caspase 7,
and PARP antibodies were purchased from Cell Signaling
Technology (Danvers, MA, United States).

2.2. Generation of GRP94-Knockdown OS Cell Lines. The
expression of GRP94 in MG63 cells and 143B cells was
silenced using a small hairpin RNA (shRNA). A GRP94-
specific ShRNA was purchased from the National RNAi
Core Facility, Academia Sinica, Taiwan, and was described
in a previous study [14]. The target sequences for human
GRP94 mRNA (NM_003299) and a nontarget shRNA were
described in the same study. The GRP94-shRNA and
control-shRNA plasmids were transfected into MG63 cells
and 143B cells using a Neon® Transfection System (Life
Technologies, Grand Island, NY). The stably transfected cells
were selected using the antibiotic puromycin, as previously
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described [15, 16]. After 48 h, the expression of GRP94 was
verified by quantitative real-time PCR and Western blotting.

2.3. Protein Extraction and Immunoblot Analysis. Protein
abundance was determined using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and immu-
noblotting, as previously described [17]. Cells were washed
with cold PBS and lysed with cell lysis buffer containing
protease inhibitors (Boehringer Mannheim, Indianapolis,
IN). Equal amounts of proteins were separated on a 10%
SDS-PAGE gel under reducing conditions and transferred
onto PVDF membranes (Bio-Rad Laboratories, Hercules,
CA). Membranes were subsequently blotted using antibodies
against GRP94, caspase 3, caspase 7, PARP, or GAPDH and
horseradish peroxidase-conjugated secondary antibodies,
visualized using TOOLS Ultra ECL-HRP Substrate (BIO-
TOOLS Co., Ltd., Taiwan), and then detected using a
VersaDoc 5000 imaging system (Bio-Rad Laboratories).

2.4. Cell Viability Assay. Cells were plated in 24-well plates at
a density of 2 x 10* cells/well and incubated overnight. Cells
were incubated with different concentrations of paclitaxel
(0-600 ng/mL), gemcitabine (0-40ug/mL), or epirubicin
(0-2 ug/mL) for various periods to determine the dose that
resulted in 50% inhibition (IC;,). dH,O was used as a
vehicle control. The medium was aspirated at selected time
points. The remaining cells were further incubated with
0.25mg/mL MTT for 1h and subsequently extracted with
DMSO, and the color change in the extract was measured
at 515nm using a spectrophotometer (GE Healthcare).

2.5. DAPI Staining. Approximately 2 x 10° cells/well in a
four-well chamber slide were incubated with paclitaxel
(6 ng/mL), epirubicin (2ng/mL), or gemcitabine (4 ng/mL)
for 48 h. The cells were then fixed, stained with 4',6-diami-
dino-2-phenylindole (DAPI), and imaged using a fluores-
cence microscope.

2.6. Propidium Iodide (PI) Staining for Determining
Apoptosis. Cells (3 x10°) were seeded into six-well plates
and allowed to adhere overnight. Cells were incubated with
paclitaxel (6 ng/mL), gemcitabine (4ng/mL), or epirubicin
(2ng/mL) for 48h and then harvested and washed with
PBS at different time intervals. Then, the cells were fixed with
pure methanol, treated with RNase A at a final concentration
of 40 pg/mL, and stained with propidium iodide (40 pg/mL)
for 30 min at room temperature. The stained cells were
analyzed using Attune NxT Flow Cytometer (Thermo Fisher
Scientific, Waltham, MA, United States), and the DNA
content was quantified using the Modfit software (Verity
Software House, Inc., Topsham, ME). The percentage of
hypodiploid cells (sub-G,) was used to quantify dead cells.
The results were analyzed using FlowJo Software.

2.7. Transwell Migration Assay. In vitro cell migration was
investigated using an 8 ym BD Falcon™ culture insert (BD
Biosciences), as previously described [18]. Specifically, five
hundred cells were suspended in 500 yL of serum-free media
and then seeded into the upper compartment of the chamber.
The lower compartment was filled with 1mL of media
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containing 10% FCS. After 24h of incubation, the nonmi-
grating cells were scrubbed from the upper surface of the
membrane. The migrated cells on the reverse side of the
membrane were stained with 0.1% crystal violet, and the cells
were counted under a microscope at 100-fold magnification.

2.8. Colony Formation Assay. Cells were seeded in a 6-well
plate at a density of 10000 cells/well and cultivated for
2 weeks. Subsequently, cells were fixed and stained with
crystal violet. Crystal violet staining was observed and
quantified under a phase contract microscope.

2.9. Analysis of Caspase 3/7 Activity. Caspase 3/7 activity was
measured using a SensorLyte® Homogeneous AMC Caspase
3/7 assay kit, according to the manufacturer’s instructions
(AnaSpec, Inc., Fremont, CA). Fluorescence intensity was
measured using a Varioskan Flash (Thermo Fisher Scientific,
Waltham, MA) at an excitation wavelength of 354 nm and an
emission wavelength of 442 nm.

2.10. Statistical Analysis. All experiments were repeated a
minimum of three times. All data reported are presented as
means + SD. The data presented in the figures were obtained
from representative experiments and were quantitatively
similar to the replicate experiments. Statistical significance
of differences in data between two samples was determined
using Student’s ¢-test (two-tailed) with Microsoft Excel.

3. Results

3.1. GRPY%4 Silencing Did Not Influence the Proliferation or
Migration but Reduced the Colony Formation Ability of OS
Cells. GRP94 expression was knocked down with an shRNA,
and stably transfected cells were selected using antibiotics to
further dissect the role of GRP94 in OS. The knockdown
efficiency was confirmed by Western blotting, and GRP94
expression in knockdown cells was reduced by greater than
80% at both the transcriptional and translational levels
compared with that in cells transfected with the scrambled
control (Figure 1(a)). The growth of GRP94-KD and scram-
bled control MG63 cells was determined using the MTT
assay to analyze the biological effects of the downregulation
of GRP94 expression on MG63 cells and in 143B cells. As
shown in Figure 1(b), the growth of GRP94-KD cells and
scrambled control OS cells was similar. Moreover, the
transwell migration assay did not reveal differences in the
number of migrating cells between the GRP94-KD and
scrambled control MG63 and 143B cells (Figure 1(c)). Inter-
estingly, the numbers of colonies were dramatically reduced
in GRP94-KD cells compared with scrambled control cells
(Figure 1(d)). These results obtained after GRP94 silencing
suggest that GRP94 does not influence the growth or migra-
tion of MG63 and 143B cells but may mediate the ability of
OS cells to form colonies.

3.2. Knockdown of GRP94 Increased the Resistance of OS Cells
to Chemotherapy. Scrambled control and GRP94-KD cells
were treated with different doses of paclitaxel (0-600 ng/mL),
gemcitabine (0-40 ug/mL), or epirubicin (0-2 yug/mL), and
the 50% growth inhibition (IC.,) doses in the GRP94-KD

and scrambled control MG63 and 143B cells were deter-
mined to identify the role in mediating the cellular response
to chemotherapy. As shown in Figure 2, GRP94-KD cells
exhibited increased IC;, values for paclitaxel, gemcitabine,
and epirubicin compared with scrambled control cells.
Based on these results, GRP94 silencing may increase the
resistance of OS cells to paclitaxel, gemcitabine, and
epirubicin treatments.

3.3. Knockdown of GRP94 Inhibited Chemotherapy-Induced
Apoptosis in OS Cells. DAPI staining was performed to fur-
ther explore how GRP94 expression influences the cytotoxic
effects of paclitaxel, gemcitabine, and epirubicin on MG63
cells and 143B cells. Chemotherapy-induced apoptosis in
a greater number of scrambled control cells than in
GRP94-KD MG63 cells, as shown by the DAPI staining
(Figure 3(a)). In scrambled control cells, it shows lower cell
densities and higher apoptotic cell population upon exposure
to paclitaxel, gemcitabine, and epirubicin. We further
confirmed the cytotoxic effects of paclitaxel, gemcitabine,
and epirubicin on scrambled control and GRP94-KD OS
143B cells using PI staining. As shown in Figure 3(b), the
sub-G, population of scrambled control 143B cells was
increased after paclitaxel, gemcitabine, and epirubicin
exposure. However, the sub-G, population of GRP94-KD-
treated cells was reduced compared with that of scrambled
control-treated cells. Thus, GRP94 silencing may reduce
the sensitivity of OS cells to paclitaxel, gemcitabine, and
epirubicin treatments.

3.4. Determination of the Activity and Expression Levels of
Caspases 3/7. The activities of caspase 3 and caspase 7, which
are executor caspases that act together to facilitate apoptosis,
were determined in MG63 cells using a fluorometric assay to
further confirm these results. Briefly, in this assay, the
hydrolysis of a specific substrate results in the generation of
a fluorescent molecule, and thus, the fluorescence intensity
reflects the activities of caspases 3/7. Paclitaxel, gemcitabine,
and epirubicin treatment dramatically increased caspase 3/7
activities in scrambled control cells compared to GRP94-
KD cells (Figure 4(a)). Next, we confirmed the levels of the
caspase 3 and caspase 7 proteins by Western blotting. The
levels of cleaved caspases 3 and 7 were dramatically increased
in OS cells treated with paclitaxel, gemcitabine, and epirubi-
cin (Figure 4(b)). The levels of cleaved caspase 3, caspase 7,
and PARP were increased to a greater extent in scrambled
control-treated cells than in GRP94-KD cells. Based on these
data, GRP94 silencing induces chemotherapy resistance in
OS cells due to the suppression of the caspase-mediated
mitochondrial cell death pathway.

4. Discussion

OS is a highly aggressive malignant bone tumor, with
approximately 20% of all patients presenting with metastasis
at the initial visit [19]. Primary OS has been shown to be
resistant to high-dose chemotherapy, and its 5-year overall
survival rate has plateaued at 60-70% in the past two
decades [20-22]. Therefore, the identification of prognostic
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F1GURE 1: The effects of downregulating GRP94 expression on MG63 and 143B cells. (a) GRP94 was silenced using an shRNA. The levels of
GRPY4 in the control and GRP94-knockdown (GRP94-KD) MG63 and 143B cells were confirmed by Western blotting. (b) The growth of
GRP94-KD and scrambled control MG63 and 143B cells was determined using the MTT assay. (c) Migration was assessed using transwell
migration assays. (d) The colony formation assay was performed using scrambled control and GRP94-KD cells. The results reported were
obtained from at least three independently repeated experiments (**p < 0.01).

or therapeutic biomarkers that may enhance the therapeutic
response of OS and improve the management approaches
for this disease is critically needed. Higher levels of GRP94
are correlated with poor disease outcomes in different
cancers [23, 24], but there is limited information of the roles
of GRP9%4 in therapeutic response in OS. The current study
has demonstrated that GRP94 silencing does not influence
the proliferation or migration, but causes a reduction in
colony formation in both MG63 cells and 143B cells. The
finding that GRP94 may not be involved in the mechanism
regulating the growth and migration is unique to OS com-
pared with the findings from other cancers. In addition,
GRP94-KD reduced the colony formation ability, indicating
that GRP94 may be correlated with the malignant features
of OS. GRP94-KD also decreased cells’ sensitivity to chemo-
therapeutic drugs (paclitaxel, gemcitabine, and epirubicin).
GRPY4 is well known for its therapeutic and prognostic
roles in cancer. GRP94 is induced as a defense mechanism
for the survival of cancer cells exposed to stressful conditions
[10]. It is elevated as a response to the inhibition of glycosyl-
ation, Ca** pool depletion, and malfolded proteins and is
regulated through antiapoptotic (BCL-2) target proteins
[25, 26]. ER stress may induce apoptotic signaling pathways
as cells mount the unfolded protein response (UPR) as
a self-protective mechanism for ER function disruption
[27, 28]. This leads to the accumulation of different unfolded
or misfolded proteins in ER [28]. GRP78 and GRP94 expres-
sion are hallmarks of ER stress and UPR [29, 30]. Caspase-
mediated apoptosis is said to be an important mechanism
which regulates tumor progression [26]. McCormick et al.
observed that mouse lymphoma cells that fail to mount
GRP94 stress response are more susceptible to the inhibitor
of Ca** uptake into the ER, thapsigargin (TG) [31]; interest-
ingly, the inhibition of GRP94 stress response did not

enhance the cytotoxicity of the inhibitor of N-linked gly-
cosylation, tunicamycin (TN) [32]. This suggests that two
pathways may be involved in the regulation of GRP94:
glycosylation inhibition mediated and the one mediated
by Ca®" [31], where GRP94 expression promotes radio-
chemotolerance in cancer cells during the maintenance of
cellular Ca** homeostasis when combating ER stress, after
going through cleavage by calpain, simultaneously prevent-
ing apoptosis [9].

Fu et al. observed a similar phenomenon in multiple
myeloma (MM) where cells expressing low GRP94 and
GRP78 were resistant to bortezomib (BTZ). In this study,
inducing ER stress with tunicamycin reversed drug resistance
of MM cells by inhibiting the PI3K/Akt/mTOR signaling
pathway [33]. The same phenomenon has also been observed
in ovarian, breast, esophageal, and lung cancer cells treated
with different agents and radiotherapy [34-38]. Our previous
study also identified a novel pathway by which GRP94
regulates resistance, whereby GRP94 knockdown reduced
the sensitivity to taxanes by suppressing the caspase-
mediated mitochondrial cell death pathway and by altering
the activation of apoptosis and associated proteins [39].
Agreeing with these findings, we propose that GRP94-KD
OS cells were resistant to chemotherapy because of their
failure to respond to ER stress, which lead to reduced apopto-
sis and therefore treatment response.

In addition to the above discussion, knockdown of
GRP94 leads to AKT activation and the expansion of
hematopoietic stem cells (HSCs), which correspond with
the loss of surface expression of integrin 34 and HSC niche
attachment [40, 41]. The liver-specific knockout of GRP94
in mice disrupts cell adhesion, activates liver progenitor cells,
and accelerates liver tumorigenesis [42]. These observations
may partly explain our finding that GRP94-KD impaired
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analysis of the cell cycle was performed by staining DNA with PI. The results reported were obtained from at least three independently
repeated experiments.

anchorage-dependent colony formation. Therefore, GRP94 Although the mechanisms are not fully explored in the
protects cells from the host defense systems and promotes  present study, it has provided important insights into the role
tumor progression and therapeutic response through its  of GRP94 in OS, which are crucial for the management of OS
pro-proliferation and antiapoptotic functions [43]. and the development of novel drug targets.
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The mechanistic target of rapamycin (mTOR) drives several physiologic and pathologic cellular processes and is frequently
deregulated in different types of tumors, including glioblastoma (GBM). Despite recent advancements in understanding the
molecular mechanisms involved in GBM biology, the survival rates of this tumor are still disappointing, primarily due to the
lack of efficacious treatments. The phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3-kinase (PI3K)/protein
kinase B (AKT)/mTOR pathway has emerged as a crucial player in GBM development and progression. However, to date, all
the attempts to target this pathway with PI3K, AKT, or mTORCI inhibitors failed to improve the outcome of patients with
GBM. Despite these discouraging results, recent evidence pointed out that the blockade of mTORC2 might provide a useful
therapeutic strategy for GBM, with the potential to overcome the limitations that mTORCI inhibitors have shown so far. In this
review, we analyzed the rationale of targeting mTOR in GBM and the available preclinical and clinical evidence supporting the

choice of this therapeutic approach, highlighting the different roles of mMTORCI1 and mTORC2 in GBM biology.

1. Introduction

In the last decades, we witnessed important advancements in
understanding the molecular mechanisms involved in GBM
biology; however, GBM remains one of the deadliest types
of tumor worldwide [1]. Indeed, the paradigm of medical
treatment of chemotherapy plus radiation therapy has
reached an efficacy plateau and several drugs designed to tar-
get one of the most deregulated pathways in GBM (PTEN/
PI3K/AKT/mTOR) failed to improve the outcome of these
patients [2-4]. More in detail, the limited blood-brain barrier
penetration and the compensatory activation of collateral
signaling pathways caused the failure of PI3K inhibitors
[1, 4]. Additionally, the lack of mTORC2 inhibition that
results in AKT activation led to disappointing results of
mTORCI inhibitors in the clinical trials conducted to date
[5, 6]. On the other hand, emerging preclinical evidence
suggests that targeting mTORC2 might provide an effica-
cious therapeutic strategy for GBM as it can overcome the

limitations of mTORCI inhibitors and pave the way for a
personalized targeted treatment.

2. mTOR: A Brief Overview

2.1. mTORCI Composition, Upstream Activators, and
Downstream Targets. mTOR 1is a 289kDa serine/threonine
protein kinase localized in two structurally and function-
ally distinct multiprotein complexes known as mTORCI
and mTORC2 [7]. mTORCI is composed of regulatory-
associated protein of mTOR (RAPTOR), proline-rich AKT
substrate 40 kDa (PRAS40), mammalian lethal with Sec-13
protein 8 (mLST8) and DEP domain TOR-binding protein
(DEPTOR), and it is inhibited by rapamycin, a macrolide
produced by the bacterium Streptomyces hygroscopicus
(Figure 1(a)).

Rapamycin inhibits mTORC1 by binding the 12kDa
intracellular FK506-binding protein (FKBP12) that in turn
directly interacts with mTORCI1 but not with mTORC2 [7].
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mTORCI is activated by at least five cues: growth factors,
stress, energy status, oxygen, and amino acid concentration.
Growth factors, low energy status, low oxygen level, and
DNA damage converge on the tuberous sclerosis complex
1/2 (TSC1/2) that acts as a GTPase-activating protein for
the GTPase RAS homolog enriched in brain (RHEB), which
in turn directly binds mTORCI resulting into the stimulation
of its kinase activity [7] (Figure 1(b)).

Upon activation, mTORC1 promotes cell growth by
phosphorylating two downstream targets, namely, eukaryotic
translation initiation factor 4E- (eiF4E-) binding protein 1
and ribosomal protein S6 kinase (S6K) that drive protein

synthesis (Figures 1(c) and 1(d)). Indeed, S6K phosphory-
lates the 40S ribosomal subunit, thus triggering the
translation of mRNA transcripts with 5'-terminal oligopoly-
pyrimidine, and phosphorylates the eukaryotic translation
initiation factor (eIF)4B on serine 422, ultimately promoting
elF4B association with eIF3 and eIF4F complex formation.
On the other hand, mTORCI1-mediated phosphorylation of
4EBP1 causes the release of eIF4E from 4EBPI, allowing
eIF4E-elF4G association and cap-dependent translation [7].
Furthermore, mTORC1 contributes to protein synthesis
by activating the transcription intermediary factor 1-alpha
(TIF-1A) that induces RNA polimerase to transcribe rRNA
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genes and also by inhibiting a polimerase III repressor known
as MAFI, thus enabling 5sRNA and tRNA transcription
[8, 9] (Figure 1(c)). Another mTORCI target is the growth
factor receptor-bound protein 10 (GRB10), whose activation
is responsible for the degradation of the insulin receptor
substrate-1 (IRS-1) and the feedback inhibition of PI3K
[10] (Figure 1(c)). In addition to its extensively investi-
gated role in protein synthesis, mTORCI also participates
in lipid and nucleotide synthesis, whose rapid turnover is
a hallmark of tumors, including GBM (Figure 1(d)). More
in detail, mTORCI1 phosphorylates LIPIN-1 and prevents it
from entering the nucleus, resulting in the suppression of
the sterol regulatory element-binding protein 1/2 (SREBP1/
2), a transcription factor involved in fatty acid and choles-
terol synthesis [11] (Figure 1(c)). Instead, mTORCI contri-
bution to purine synthesis occurs through the induction of
the activating transcription factor 4 (ATF4) that in turn
triggers methylenetetrahydrofolate dehydrogenase (NADP+
dependent) 2, methenyltetrahydrofolate cyclohydrolase
(MTHFD2) expression, a key component of the mito-
chondrial tetrahydrofolate cycle [12] (Figure 1(c)). Lastly,
mTORC1 contributes to tumor cell growth by inhibiting
autophagy, a catabolic pathway that degrades aged or dam-
aged organelles (Figure 1(d)); mTORCI suppresses autoph-
agy directly by inhibiting the kinase complex unc-51-like
kinase 1/mammalian autophagy-related gene 13/focal adhe-
sion kinase family-interacting protein of 200kDa (ULK1/
Atgl13/FIP200) which is a key component required for the
autophagy induction and indirectly by modulating the
expression of death-associated protein 1 (DAP1), a novel
substrate of mTORCI that negatively regulates autophagy
[13, 14] (Figure 1(c)). Along with the aforementioned mech-
anisms, mTORCI also blocks autophagy induction through
the negative regulation of lysosome biogenesis; indeed,
mTORCI can inhibit the expression of genes involved in
lysosomal functions by phosphorylating the transcription
factor EB (TFEB) and preventing its nuclear entry [15, 16]
(Figure 1(c)).

2.2. mTORC2 Composition, Upstream Activators, and
Downstream Targets. Differently, mTORC2 is composed of
the rapamycin-insensitive companion of mTOR (RICTOR),
DEPTOR, mLSTS, stress-activated map kinase-interacting
protein 1 (mSIN1), and protein observed with RICTOR
(PROTOR) and is considered rapamycin insensitive because,
as previously mentioned, the complex rapamycin-FKBP12 is
not able to directly bind mTORC2 [7] (Figure 2(a)).
However, it has been demonstrated that prolonged
treatment with rapamycin might inhibit mTORC2 assem-
bly by sequestering mTOR in some cell cultures [17]. Dif-
ferently from mTORCI, less is known about mTORC2
upstream activators; it is triggered by growth factors but
does not respond to nutrients [7] (Figure 2(b)). Once
activated, mTORC2 drives cell proliferation, motility, and
survival primarily through the activation of different AGC
protein kinases (Figure 2(c)). In fact, mTORC2 phosphory-
lates protein kinase C (PKC)d, PKC{, PCKy, and PKCe
that are involved in cytoskeleton assembly and cell migra-
tion, besides AKT on serine 473 [18-21] (Figure 2(c)).

Intriguingly, it has recently been demonstrated that mMTORC2
triggers the activation of the serum and glucocorticoid-
regulated kinase 1 (SGK1), which is involved in ion transport
and cell survival [22] (Figures 2(c) and 2(d)).

The direct involvement of mTORC2 in GBM biology
clearly emerged in a Drosophila glioma model obtained by
hyperactivating the epidermal growth factor receptor
(EGFR), RAS and PI3K. In this model, it has been observed
that RICTOR and mSIN1 loss of function prevented tumor
formation [23]. Later on, Bashir et al. established that RIC-
TOR overexpression alone was sufficient to promote multifo-
cal infiltrating oligodendroglial tumors in the subventricular
zone and lateral ventricles of mice that showed an increased
mTORC2 activity that sustained cancer stem cell amplifi-
cation [24]. In addition to the role in tumor induction,
mTORC2 activation is also responsible for GBM growth
and progression. Indeed, Gulati el al. observed that treatment
of GBM cell lines with rapamycin not only resulted in a time-
dependent decrease of S6K phosphorylation but also caused a
paradoxical increase of AKT phosphorylation on serine 473
which is known to be responsible for cell proliferation. The
same authors reported that this paradoxical increase of
AKT phosphorylation can be reversed by RICTOR but not
RAPTOR knockdown by siRNA [25].

mTORC2 is also involved in the induction of the
Warburg effect, a metabolic process by which tumor cells
metabolize glucose via the aerobic glycolysis also in the pres-
ence of sufficient oxygen levels to supply the macromolecular
demand of rapidly growing cells (Figure 2(d)). Indeed, by
stimulating AKT phosphorylation on serine 473, mTORC2
triggers the expression of the glucose transporter type 4
(GLUT#4) and the activation of the glycolytic enzyme hexoki-
nase 2 (HK2) and phosphofruttokinase-1 (PFK-1) [26-28]
(Figure 2(c)). Moreover, mTORC2 phosphorylates and inac-
tivates class Ila histone deacetylases (HDACs) that causes
Forkhead box O (FOXO)1 and FOXO3 acetylation, result-
ing in c-MYC release from the suppressive miR-34-c [29]
(Figure 2(c)). More recently, it has been shown that the acetyl
coenzyme A (acetyl-CoA) derived from glucose and lactate
metabolism is used by GBM cells to induce RICTOR acet-
ylation that results in mTORC2 activation; this mechanism
creates an autoactivation loop by which mTORC2 trig-
gers cell proliferation and growth, bypassing growth factor-
activated upstream signaling and rendering GBM cells resis-
tant to receptor tyrosine kinase inhibitors [30]. Additionally,
mTORC2 has recently been reported to confer resistance to
the alkylating agent cisplatin via nuclear factor kappa-light-
chain-enhancer of activated B cell (NF-xB) activation in an
AKT-independent way [31] (Figures 2(c) and 2(d)). In this
study, Tanaka et al. demonstrated that NF-«B signaling is
upregulated in GBM cell lines and in GBM patients treated
with rapamycin and that the inhibition of both mTORCI
and mTORC2 with the mTOR kinase inhibitor PP242 sen-
sitizes EGFRvIII-mutant tumors to cisplatin-induced cell
death, confirming the direct involvement of mTORC2 activa-
tion in chemotherapy resistance [31]. As previously men-
tioned with regard to mTORCI, mTORC?2 also participates
in lipid synthesis (Figure 2(d)). In GBM, the cleavage of
SREBP1 that occurs on Golgi membranes and is triggered
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by mutant EGFR has been demonstrated to be rapamy-
cin insensitive. By contrast, mTORC2 induces SREBP1
cleavage through AKT-dependent and AKT-independent
mechanisms, resulting in the expression of acetyl-CoA
carboxylase, fatty acid synthase and acyl-CoA synthetase
genes, which are all involved in fatty acid and cholesterol
synthesis [32, 33].

3. Preclinical Data and Clinical Application of
mTOR Kinase Inhibitors

Despite the pivotal role of mTOR in GBM which is now
widely recognized, the first generation of mTORCI inhibi-
tors gave disappointing results in clinical trials. The magni-
tude of this failure is ascribable to the pharmacodynamic
properties of these compounds, as they only target mTORCI,
leading to an incomplete inhibition of mTORC1 downstream
targets and to the deregulation of a negative feedback follow-
ing mTORCI1 inhibition that results in PI3K reactivation

[10]. In addition, the lack of activity against mTORC2 rep-
resents another major clinical limitation to the efficacy
of rapamycin analogs (rapalogs) [34]. To overcome these
limitations, a new generation of ATP-competitive mTOR
kinase inhibitors has been developed. These compounds
include Torin1, PP242, PP30, Ku-0063794 (KuDOS Pharma-
ceuticals), WAY-600 (Wyeth), WYE-687 (Wyeth), WYE-354
(Wyeth), INK128 (Intellikine), CC214-1/2 (Celgene Corpo-
ration, San Diego, U.S.A.), AZD2014, AZD8855 (Astra-
Zeneca), and OSI-027 (OSI Pharmaceuticals) and have
been designed in order to target the mTOR kinase domain
and irreversibly block both mTORCI and mTORC2 activa-
tion [35]. Some of these compounds have been tested both
in vitro and in vivo and confirmed the pivotal role of
mTORC2 in GBM biology. Indeed, Gini et al. proved that
the mTOR kinase inhibitors CC214-1and CC214-2 (orally
available) (Celgene Corporation (San Diego, U.S.A.)) are able
to overcome the limitations of rapamycin and rapalogs and
to inhibit GBM growth by blocking mTORC2 activity
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in vitro and in vivo, respectively [36, 37]; moreover, the same
authors demonstrated that the sensitivity to CC214 com-
pounds is significantly increased in the presence of EGFRVIII
and PTEN loss and that the pharmacologic inhibition of
autophagy induced by CC214 sensitizes GBM cells to cell
death, preventing a cytostatic effect [37]. Furthermore, Kahn
et al. demonstrated that AZD2014 enhances the radiosensi-
tivity of glioblastoma stem cells (GSCs) in vitro and under
in vivo orthotopic conditions by inhibiting mTORC1/2
[38]. Additionally, our group has recently demonstrated that
the treatment of genetically different GBM cell lines with
PP242 but not with rapamycin induces a dramatic and per-
manent reduction of AKT phosphorylation on serine 473
that not only counteracts tumor growth and invasiveness
but also prevents GSC proliferation. Moreover, we also
proved that mTORC2 activation is independent from PI3K,
as the irreversible inhibition of PI3K with wortmannin is
not able to prevent mTORC2 activation, which is evaluable
analyzing mTOR phosphorylation on serine 2481 [39].

As preclinical studies confirmed the superiority of mTOR
kinase inhibitors compared to rapalogs and have revealed
the efficacy of mTORC2 inhibition in counteracting GBM
growth, invasiveness, and GSC proliferation, the mTOR
kinase inhibitors AZD8055 (AstraZeneca) and OSI-027
(OSI Pharmaceuticals) have already entered clinical trials
[40] (Figure 3). A phase I study of AZD8055 (AstraZeneca)
in advanced solid malignancies (NCT00973076) and in
recurrent GBM (NCT01316809) has completed the recruit-
ment, and results are eagerly awaited; a phase I study of
OSI-027 (OSI Pharmaceuticals) in advanced solid tumors
and lymphoma started in 2008 and is now completed
(NCT00698243). As single agent, OSI-27 has shown to be
well tolerated and evidence of activity has emerged [41].

4, Evaluation of mTOR Activation in
GBM Patients

Despite PTEN/PI3K/AKT/mTOR pathway is considered a
hallmark of GBM and the inhibition of this pathway repre-
sents to date an interesting strategy against this lethal tumor
[1, 42], the direct evaluation of this pathway activation in
GBM patients is not routinely performed or standardized
and results are still controversial. In this context, the first
analysis of PTEN/PI3K/AKT/mTOR pathway activation in
patient specimens was carried out on 45 untreated primary
GBM; immunohistochemistry analysis revealed that PTEN
loss correlated with AKT activation and that in turn AKT
phosphorylation significantly ~correlated with mTOR,
FOXOI1, FOX0O3a, FOXO4, and S6 activation [43]. More-
over, a tight relation between EGFRVIII expression and the
activation of PI3K downstream targets has been also
observed in this study [43] (Table 1).

Later on, Chakravarti et al. analyzed the expression of
total PI3K, AKT, and S6K in 92 gliomas with different malig-
nancy degree by western blot and did not find any difference
in the total expression of PI3K, AKT, and S6K between GBM
and non-GBM tumors. However, despite the total expression
of these protein kinases was unchanged between groups, the
authors reported that PI3K, AKT, and S6K phosphorylation

was significantly higher in GBM versus non-GBM tumors.
Moreover, the levels of PI3K, AKT, and S6K phosphorylation
were inversely related to the expression of the cleaved caspase
3 and correlated with radiation resistance and an adverse
outcome [44] (Table 1). The activation status of AKT and
in addition of NF-xB and STAT3 and their correlation
with tumor grade has also been analyzed in 259 diffuse
gliomas by Wang et al., by microarray and immunohisto-
chemistry. These authors described consistent AKT and
NF-«B activation in tumor samples but not in astrocytes or
oligodendrocytes of normal brain cortex and cerebellum;
moreover, these authors reported a positive correlation
between AKT, NF-«B activation, and tumor grade but not
between them and STAT3 [45] (Table 1). In another study,
Riemenschneider et al. reported the colocalization of TSC2,
mTOR, 4EBP1, S6K, S6, and STAT3 phosphorylation with
AKT activation, although only TSC2, S6K, and S6 phos-
phorylation has been found to correlate with AKT activa-
tion [46] (Table 1).

Contrariwise, Fiano et al. did not find any correlation
between AKT phosphorylation, cyclin D1, p27/Kipl, and
PTEN or EGFR mutations in 65 GBM surgical samples
[47]. Instead, Hlobilkova et al. found a strong relation between
EGFR expression and tumor grade in 89 samples of gli-
oma with different malignancy degree but they observed
comparable levels of AKT phosphorylation between low-
and high-grade gliomas [48] (Table 1).

Higher levels of AKT, mTOR, and S6K phosphorylation
in high-grade glioma compared with low-grade glioma have
been also reported by Li et al., who analyzed 87 tissue samples
and found that the percentage of patients with high AKT,
mTOR, and S6K phosphorylation, as detected by immuno-
histochemistry, was greater in grades III and IV than in
grades I and II glioma [49] (Table 1). Similarly, Korkolopou-
lou et al. analyzed the expression of mTOR, S6K, and 4EBP1
phosphorylation in 111 tissue samples (grades II-IV) by
immunohistochemistry and validated their analysis in 3
primary GBM cell cultures by western blotting analysis
[50] (Table 1). They found that while normal tissues had
no positivity for all the proteins considered, none of the
tumor samples was negative for mTOR, S6K, or 4EBP1 phos-
phorylation. With the exception of one sample, tissues that
showed mTOR positivity were also positive for S6K stain-
ing and all mTOR-positive specimens also showed 4EPBI
coexpression. Moreover, these authors demonstrated that
4EBP1 phosphorylation increased with the histological grade
and that mTOR phosphorylation was higher in grade III/IV
glioma compared with grade II. Of note, no significant differ-
ence in terms of S6K phosphorylation was reported accord-
ing to tumor grades. They next sought to investigate the
correlation between the level of mTOR/S6K/4EBP1 phos-
phorylation and survival and found that 4EBP1 expression
was an independent adverse prognostic index in all the
cohort analyzed, while the increased level of mTOR phos-
phorylation correlated with disease-free survival (DFS) [50]
(Table 1). More recently, Machado et al. demonstrated that
mTOR expression was significantly higher in wild-type
IDH]I primary GBM, when compared to healthy tissue, and
was also higher compared with R132H IDHI-mutant GBM
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[51]. In addition, these same authors proved that mTOR
phosphorylation on serine 2448 and S6 phosphorylation on
serine 240 and 244 were increased in wild-type IDHI GBM
compared with R132H IDHI-mutant GBM [51] (Table 1).
Compared with mTORCI and its upstream and down-
stream targets, the evaluation of mTORC2 activation in
GBM patients is further underestimated. The activation of
mTORC2 has been evaluated in 5 GBM cell lines, in 31
tumor samples and 5 normal brain tissues by Masri et al.
[52]. These authors observed that the expression of activated
mTORC2 was quite undetectable in normal brain tissue
while it was high in the tumor cell lines they analyzed. Con-
sistently, they observed increased RICTOR expression and
extent of AKT phosphorylation on serine 473 only in tumor
cells. Of note, RICTOR overexpression appeared to be inde-
pendent of PTEN status. In accordance with the in vitro data,
these same authors found that the 86% of tumor samples had
RICTOR overexpression and 70% of them showed high
mTORC2 activity [52] (Table 1). More recently, Alvarenga
et al. described RICTOR expression and AKT phosphoryla-
tion on serine 473 in 195 patients with brain tumors (38
grade I, 49 grade II, 15 grade III, and 93 grade IV astrocy-
toma) and correlated AKT activation with overall survival

(OS) [53]. They did not find any differences in AKT phos-
phorylation on serine 473 between low-grade glioma and
normal brain tissue but they observed a significant increase
in AKT phosphorylation in GBM patients compared with
normal brain tissue; moreover, the increased expression of
activated AKT correlated with a reduced OS [46]. These same
authors analyzed RICTOR expression, and although they did
not find an increased expression of this mTORC2 compo-
nent between normal brain tissue and all grade astrocytoma,
they observed nuclear localization of RICTOR in GBM that
might suggest a change of its binding partner and a possible
implication in tumor progression [53] (Table 1).

5. Discussion and Future Perspective

As discussed, mTOR pathway is certainly one of the most
compelling mechanisms driving GBM biology. However, to
date, there are still some cruxes that need to be unraveled
to translate the encouraging preclinical results reported in
the clinical management of GBM patients.

First of all, the direct evaluation of mTOR pathway
activation in GBM patients is not routinely performed
and results are affected by discrepancies due to different
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TasLE 1: Clinical evaluation of PTEN/PI3K/AKT/mTOR pathway activation in GBM patients.
No. of samples Methods Main findings Reference
Correlation between PTEN loss and AKT activation,
. . correlation between AKT phosphorylation and FOXO
4 Immunohistochemistry and S6 activation, and correlation between EGFRvIII 43
expression and PI3K pathway activation
No difference in PI3K AKT and S6K total expression
between GBM and non-GBM tumors; increased PI3K,
92 Western blot AKT, and S6K phosphorylation in GBM compared with 44
non-GBM tumors; correlation between PI3K, AKT,
and S6K phosphorylation and adverse outcome
AKT and NF-«B activation in tumor samples and not in
259 Microarray and immunohistochemistry normal brain and positive correlation between AKT and 45
NE-«B activation and tumor grade
29 Immunohistochemistry Correlation between AKT activation and TSC2, S6K, and 46
S6 phosphorylation
65 Western blot and immunohistochemistry No correlation between AKT activation and EGFR or 47
PTEN status
89 Immunohistochemistry No difference of AI;T phosphorxlatlon between low- and 48
igh-grade glioma
37 Immunohistochemistry Higher levels of AKT, mTQR, and S6K in .hlgh-grade glioma 49
compared with low-grade glioma
Absence of mTOR, S6K, and 4EBP1 positivity in normal
111 + 3 primary . . brain tissues; increase of mTOR and 4EBP1 phosphorylation
GBM cell Immunsv}::::ilirl?:try and with histological grade; correlation between 4EBP1 expression 50
cultures and adverse prognosis; correlation between mTOR
phosphorylation and disease-free survival
Higher mTOR expression in WT IDHI GBM compared
225 Immunohistochemistr with healthy tissues and R132H IDHI-mutant GBM and 51
Y increased mTOR and S6 phosphorylation in WT IDHI
GBM compared with RI132H IDHI-mutant GBM
3645 GBM Immunohistochemistry, western blot, Undetectable mTORC2 activation in normal cells
cell cultures real-time PCR, and cell proliferation and high expression in GBM cell cultures and correlation 52
and migration assays between RICTOR expression and mTORC?2 activation
Increased AKT phosphorylation in GBM compared with
196 Immunohistochemistry and western blot normal brain tissues and correlation between increased 53

AKT activation and reduced overall survival

methodologies of quantification applied by distinct laborato-
ries, which makes it challenging to select those patients that,
based on their molecular profile, might mainly benefit of
treatment with mTOR kinase inhibitors. As it is now widely
accepted that genetic background influences and predicts
the outcome of targeted therapy, one of the future challenges
for GBM treatment will be to improve the precision and
reproducibility of molecular analysis of mTOR pathway acti-
vation and standardize this evaluation among laboratories.
Another concern regarding the use of mTOR kinase
inhibitors in clinic is their potential immunosuppressive
activity, as the impairment of the immune system is widely
known to favor tumor growth and progression. However,
assays of adaptive immune functions of 1-3 weeks in leu-
kemia revealed that the anticancer properties of PP242
are dominant over its immunosuppressive activity compared
with those of rapamycin and another mTOR kinase inhibi-
tor known as PI103 but the outcome of prolonged treat-
ment with this compound and other mTOR kinase
inhibitors remains to be investigated [54]. Additionally, as

most of the clinical trials evaluating mTOR kinase inhibitors
in GBM are ongoing, data regarding the tolerability and the
safety profile of these drugs are still not available and the
results of these studies will further help to define the role of
mTOR as therapeutic target, hopefully providing a new tool
against GBM.
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(eIF4E-) binding protein
Eukaryotic translation initiation
factor

Transcription intermediary factor
1-alpha

Growth factor receptor-bound
protein 10

Insulin receptor substrate-1

Sterol regulatory element-binding
protein 1/2

Activating transcription factor 4
Methylenetetrahydrofolate
dehydrogenase (NADP+ dependent)
2, methenyltetrahydrofolate
cyclohydrolase

Unc-51-like kinase 1/mammalian
autophagy-related gene 13/focal
adhesion kinase family-interacting
protein of 200 kDa
Death-associated protein 1
Transcription factor EB
Rapamycin-insensitive companion
of mTOR

Stress-activated map kinase-
interacting protein 1

Protein observed with RICTOR
Protein kinase C

Serum and glucocorticoid-regulated
kinase 1

Epidermal growth factor receptor
Glucose transporter type 4
Hexokinase 2
Phosphofruttokinase-1

Histone deacetylases

Forkhead box O

Acetyl coenzyme A

Nuclear factor kappa-light-chain-
enhancer of activated B cells
Rapamycin analogs

Glioblastoma stem cell
Disease-free survival

Overall survival.
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Mutations in the “guardian of the genome” TP53 predominate in solid tumors. In addition to loss of tumor suppressor activity, a
specific subset of missense mutations confers additional oncogenic properties. These “gain-of-function” (GOF) mutations portend
poor prognosis across cancer types regardless of treatment. Our objective in this study was to identify novel therapeutic
opportunities to overcome the deleterious effects of GOF TP53 mutants. Using gynecologic cancer cell lines with known TP53
mutational status, we established that treatment with a proteasome inhibitor induced cell death in cells with two recurrent GOF
TP53 mutations (R175H and R248Q), and addition of a histone deacetylase inhibitor (HDACI) enhanced this effect. By contrast,
p53-null cancer cells were relatively resistant to the combination. Proteasome inhibition promoted apoptosis of cells with TP53
GOF mutations, potentially through induction of the unfolded protein response. In line with the reported hyperstabilization of
GOF p53 protein, cells treated with HDAC] exhibited reduced levels of p53 protein. Together, these data form the basis for
future clinical studies examining therapeutic efficacy in a preselected patient population with GOF TP53 mutations.

1. Introduction

The Cancer Genome Atlas (TCGA) project has substanti-
ated the long-held notion that the “guardian of the genome”
TP53 is the most mutated gene in tumors [1]. Certain tumor
types have an exceptionally high preponderance of muta-
tions in TP53: for example, mutations in TP53 occur in
96% of all serous ovarian tumors [2], and nearly all serous
and ~25% of high-grade endometrioid endometrial cancers
have mutations in TP53 [3]. The prevalence of TP53 muta-
tions is also particularly high in head and neck cancer and
breast cancer [1, 4].

While it is appreciated that TP53 mutations occur in a
substantial number of tumors, it is critically important to

note that varying types of p53 mutant proteins exist, with
different implications for chemosensitivity. Some mutations
are relatively inconsequential from the perspective of p53
function, and proteins of this type retain wild-type activity.
Other mutations are loss of function (LOF) or p53-null in
which single amino acid changes completely inactivate or
destabilize the protein. Finally, an interesting category is the
gain-of-function (GOF) or “oncogenic” TP53 mutations that
convert p53 from a tumor suppressor to an oncogene. The
majority of LOF and GOF TP53 mutations result in loss of
DNA binding to canonical p53 targets. However, GOF
mutants also have new protein: protein interactions and/or
transcriptional targets that confer an additional “oncogenic”
functions [5-8]. To date, eight missense mutations in human
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TP53 have been established as GOF mutations and result in
the following amino acid changes: P151S, Y163C, R175H,
L194R, Y220C, R248Q, R248W, R273C, R273H, R273L,
and R282W.

Substantial clinical and preclinical data from a wide range
of cancers demonstrate that GOF TP53 mutations predict
for poor response to treatment. In a recently published work,
we evaluated the relationship of the eight GOF TP53 muta-
tions with progression-free survival (PFS), risk of recurrence,
and response to standard platinum and taxane chemother-
apy in serous ovarian cancer [9]. We found that 21.2% of
serous ovarian cancer patients in TCGA cohort have a
GOF TP53 mutation, whereas 18.9% have LOF mutations
[9]. Ovarian cancer patients with GOF TP53 mutations have
worse clinical outcomes compared to patients with unclassi-
fied TP53 mutations (i.e., variants of unknown significance),
including a shorter PFS and a 60% greater risk of recurrence
[9]. These findings have important potential implications for
all cancers characterized by mutations in TP53.

Analysis of TP53 mutational status is now included in
many next-generation sequencing tests. An obvious ques-
tion, therefore, is how to convert these deadly oncogenic
mutations into actionable mutations. Herein, we identify
the combination of a proteasome inhibitor with an epige-
netic modulator (histone deacetylase inhibitor (HDACi))
as a potent therapeutic strategy to overcome the deleterious
effects of TP53 GOF mutations. These preclinical data serve
as the proof of concept for future trials evaluating specific
combinatorial therapies in patients whose tumors contain
TP53 GOF mutations.

2. Materials and Methods

2.1. Reagents. All antibodies were purchased from Cell Sig-
naling. Bortezomib, LBH589 (panobinostat), and MLN2238
(ixazomib) were purchased from Selleck Chemicals and sus-
pended in DMSO.

2.2. Cell Lines and Culture Conditions. All cell lines used
in this study were purchased from ATCC, except for Hec50
endometrial cancer cells that were kindly provided by
Dr. Erlio Gurpide (New York University) as previously
described [10]. Hec50 cells expressing R175H TP53 GOF
have been previously described [10]. All cell lines have been
authenticated using STR analysis by biosynthesis.

2.3. Cell Viability Assays. Beginning 24 h after plating equal
numbers of cells, cells were treated for 72h followed by
assessment of cell viability using the WST-1 assay per manu-
facturer’s instructions (Clontech). Data were quantitated rel-
ative to values obtained for control (untreated) cells, which
were set at 100% viability.

2.4. Western Blot Analysis. As previously described [10], cells
were plated in 100 mm dishes and were allowed to grow for
24 h prior to treatment. After treatment, cells were harvested,
lysed with extraction buffer (1% Triton X-100, 10 mM Tris-
HCl pH7.4, 5mM EDTA, 50 mM NaCl, 50 mM NaF, 20 ug/
ml aprotinin, 1 mM PMSF, and 2mM Na,VO,), and sub-
jected to three freeze/thaw cycles. Equal amounts of protein
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Viability (%)

Bortezomib (nM)

-~ KLE (R175H GOF p53)
~®- Hec50 (LOF p53)

FiGURE 1: Proteasome inhibitor bortezomib induces massive cell
killing in endometrial cancer cells with TP53 GOF mutation
R175H (KLE cells) but not LOF mutation (Hec50 cells). All
experiments were performed three times. IC50: KLE cells, 2.1+
0.3 nM; Hec50 cells, 19.4 + 1.0nM; *P < 0.05 by Student’s ¢-test.

(determined by the method of Bradford, BioRad) were
subjected to SDS-PAGE followed by transfer to nitrocellulose
membranes (BioScience). Membranes were probed with pri-
mary antibodies against cleaved caspase 3, Bip, a-tubulin,
P53, p21, or B-actin followed by incubation with correspond-
ing horseradish peroxidase-conjugated secondary antibody.
The signal was visualized by chemiluminescence using ECL
western blotting detection reagents (Pierce).

2.5. Statistical Analysis. All data were expressed as the mean
+SD. All statistical comparisons were performed using
GraphPad Prism software. A P value < 0.05 was considered
statistically significant.

3. Results

3.1. Sensitivity of Cancer Cells with Known p53 Status to
Proteasome Inhibitors. We first examined the sensitivity of
two well-characterized endometrial cancer cell lines with
known p53 mutational status to the proteasome inhibitor,
bortezomib (Velcade®). We made the unexpected discovery
that KLE cells with the R175H GOF mutation were highly
sensitive to the proteasome inhibitor bortezomib, whereas
Hec50 cells with LOF p53 mutation were relatively resistant
to bortezomib (Figure 1).

3.2. Addition of HDACi Enhances Sensitivity to Proteasome
Inhibitor Treatment in Cells with Endogenous TP53 GOF
Mutations. Next, we examined the impact of the addition of
a histone deacetylase inhibitor. The combination of bortezo-
mib with the HDACi LBH589 (panobinostat) further
increased cell killing in KLE cells (R175H GOF) as compared
to bortezomib alone (Figure 2(a)). Studies were also per-
formed in the OVCAR3 ovarian cancer cell line that contains
a different GOF TP53 mutation, R248Q. Consistent with our
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F1GURE 2: Gynecologic cancer cells with GOF TP53 are highly sensitive to proteasome inhibitors alone or in combination with LBH589/
panobinostat. Sensitivity (as measured by percent viability relative to untreated control) to bortezomib (a, b) or MLN2238/ixazomib (c, d)
alone or in combination with LBH589/panobinostat was examined in KLE endometrial cancer cells with R175H GOF mutant (a, c)
and OVCAR3 ovarian cancer cells with R248Q GOF mutant (b, d). The concentration of LBH589/panobinostat used in (a-d) was
based on sensitivity to LBH589/panobinostat alone in KLE (e) and OVCAR3 (f) cells. All experiments were performed three times.
**P<0.01; ****P <0.0001 by two-way ANOVA with Sidak’s multiple comparison test.

findings in endometrial cancer cells, OVCAR3 cells were
highly sensitive to bortezomib alone or in combination
with HDACi (Figure 2(b)). The specific dose of LBH589/
panobinostat was determined by assessing the sensitivity
of each cell line to treatment with LBH589/panobinostat
alone (Figures 2(e) and 2(f)). Since OVCAR3 cells contain

a different TP53 GOF mutation than KLE cells, these data
suggest that the sensitivity to proteasome inhibition is not
restricted to the R175H mutation.

Ixazomib (MLN2238) is a next-generation proteasome
inhibitor that has replaced bortezomib in the clinic for
multiple myeloma due to its improved activity and other
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FIGURE 3: Sensitivity to MLN2283/ixazomib and LBH589/panobinostat combination treatment is dependent on the expression of GOF TP53.
Sensitivity to MLN2238/ixazomib alone (a) or in combination with LBH589/panobinostat (b) was examined in parental Hec50 cells or Hec50
cells expressing the R175H GOF mutant. ***P < 0.001 by two-way ANOVA with Sidak’s multiple comparison test.

characteristics, such as oral bioavailability [11, 12]. There-
fore, we repeated the above experiments using ixazomib,
either alone or in combination with the HDACi LBH589/
panobinostat in KLE and OVCARS3 cells that express differ-
ent TP53 GOF mutations. Similar to the bortezomib studies,
both KLE and OVCARS3 cells responded well to MLN2238/
ixazomib (Figures 2(c) and 2(d)). Moreover, MLN2238/ixa-
zomib was highly synergistic with the HDACi.

3.3. Exogenous Expression of GOF TP53 in p53-Null Cells
Sensitizes Cells to Proteasome Inhibitor + HDACi Therapy.
To further address the specific role of TP53 GOF mutations
in response to proteasome inhibitor + HDACi treatment, we
introduced the p53 GOF mutant, R175H, in p53-null cells
by exogenous expression [10]. As compared to parental cells,
expression of p53R175H partially restored sensitivity to
MLN2238/ixazomib (Figure 3(a)), and the addition of the
HDACi LBH589 to the proteasome inhibitor backbone treat-
ment substantially increased cell death.

An established mechanism of action of proteasome
inhibitors is the induction of cell death via apoptosis [13].
In both KLE and OVCARS3 cells, treatment with MLN2238/
ixazomib promoted cleavage of caspase 3, a marker for
apoptosis (Figure 4). Others have shown that proteasome
inhibitors induce apoptosis by activating the unfolded pro-
tein response (UPR) pathway, a homeostatic mechanism that
is normally triggered by accumulation of misfolded proteins
in the endoplasmic reticulum [13]. A hallmark of the UPR
pathway is increased expression of Bip/GRP78, a chaper-
one protein that induces proper folding of misfolded pro-
teins such as GOF p53. Immunoblotting revealed that
treatment with MLN2238/ixazomib increased the expression
of Bip (Figure 4).

Mutant p53 has also been shown to interact with his-
tone deacetylases (e.g, HDAC2/6), which contributes to
its stabilization and aberrant functions [14, 15]. Published
evidence suggests that HDACI like LBH589/panobinostat
may decrease the stability of mutant p53 [14, 15]. Consistent
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FIGURE 4: Treatment with MLN2238/ixazomib promotes apoptosis,
potentially through the UPR pathway. Cells were treated for 0, 24, or
48 h with MLN2238/ixazomib and cell lysates analyzed by western
blotting with the indicated antibodies (a-tubulin served as a
loading control).
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FIGURE 5: Treatment with LBH589/panobinostat reduces p53
protein levels. Cells lacking p53 (LOF) or expressing the indicated
forms of p53 (WT or R175H GOF mutant) were treated with
20 nM panobinostat and levels of the indicated proteins measured
by western blotting. p21 served as a positive control for HDACi
activity. S-Actin served as a loading control.

with these results, we found that treatment with LBH589/
panobinostat caused a marked decrease in the total protein
levels of p53 in KLE cells with the R175H GOF mutant
(Figure 5). As a control for drug activity, we also examined
p21 levels, which are known to be increased following
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treatment with HDACi regardless of p53 expression [16].
LBH589/panobinostat increased p21 in all cell lines exam-
ined (Figure 5).

4. Discussion

Despite clear data in multiple cancer types that TP53 GOF
mutations predict for poor outcomes, including resistance
to therapy, to date no clinical trials have tested treatment
strategies designed to specifically overcome the effects of
TP53 GOF mutations. In fact, TP53 mutational status is
widely ignored when making treatment decisions. Herein,
we present a novel combinatorial strategy that effectively
induces cell death specifically in cancer cells bearing GOF
TP53 mutations. Of note is that the combinatorial strategy
of proteasome inhibitor plus HDACi was highly effective in
cells with different recurrent TP53 GOF mutations. We dem-
onstrate this effect with two different proteasome inhibitors,
bortezomib and ixazomib, indicating the potential generality
of the approach. These data set the stage for future clinical
studies in patients with GOF TP53 mutations.

The cornerstone of personalized medicine is designing
treatment strategies that overcome driver mutations in
patients. However, mutations in TP53 are not considered
actionable in the traditional sense. One strategy to make
TP53 mutations druggable is based upon the principles of
synthetic lethality, the term for a historical genetic observa-
tion that in the presence of certain single gene mutations,
blocking or mutating a second gene leads to cell death,
though neither mutation alone has a phenotype [17]. With
respect to cancer therapy, synthetic lethality means capitaliz-
ing on the presence of a driver mutation to design novel
treatments which block the compensatory survival pathways
activated as a result of the mutation. To create therapeutic
synthetic lethality, one must first know the driver mutation,
understand the compensatory survival pathway that has been
activated as a result of the mutation, and have an agent which
can block this critical pathway. In a series of published stud-
ies, our group has established that treatment with a tyrosine
kinase inhibitor (e.g., gefitinib, nintedanib, and cediranib)
sensitizes p53-null cancer cells to paclitaxel-containing che-
motherapy [10, 18, 19]. The mechanism is through abroga-
tion of the G2/M cell cycle checkpoint. Enforcing the G2/M
cell cycle checkpoint allows tumor cells to repair damaged
DNA before entering mitosis, leading to chemoresistance
[20-26]. Wild-type p53 normally maintains both the G1/S
and G2/M checkpoints. However, emerging data suggest that
p38MAPK can also maintain the G2/M checkpoint [27-29].
In cells with LOF p53, p38 is activated as an alternative
means to maintain the G2/M checkpoint [25]. Therefore,
treatment with an upstream agent that blocks p38 activation
(e.g., tyrosine kinase inhibitors) sensitizes p53-null cells to
paclitaxel, resulting in accumulation of cells in mitosis and
massive cell death via mitotic catastrophe [10, 18].

Unfortunately, this same combinatorial strategy is not
effective in cells with GOF p53. Specifically, our published
data from cell models with endogenous and exogenous
expression of GOF p53 mutants demonstrate that, in contrast
to LOF p53, GOF forms of p53 constitutively enhance the

G2/M checkpoint and are resistant to paclitaxel + tyrosine
kinase inhibitors [10, 18]. Others have reported that p53
GOF mutants R175H, R273H, and R280K aberrantly induce
P38 activation via transcriptional activation of MKK3 (an
upstream kinase of p38), thereby maintaining the G2/M
checkpoint [30]. Other established cancer therapeutics, such
as temozolomide and tamoxifen, likewise are ineffective
against tumor cells expressing TP53 GOF mutants due to
specific effects of mutant p53 on O6-methylguanine DNA-
methyltransferase (MGMT) and estrogen receptor expres-
sion, respectively [31]. Therefore, alternative strategies are
necessary to overcome the effects of GOF p53. One approach
is to use small molecule drugs to restore the wild-type p53
conformation and thereby restore normal p53 anticancer
function [31]. Our approach instead takes advantage of the
unique properties of GOF p53 mutants, namely, aberrant
folding and increased stability.

Here, we discovered that cells with GOF but not LOF
TP53 mutations are hypersensitive to proteasome inhibition,
and addition of an HDACi (here, panobinostat) further
enhanced cell killing. Both histone deacetylase inhibitors
(vorinostat, panobinostat) and proteasome inhibitors (borte-
zomib, ixazomib) have been extensively studied in preclinical
and clinical models of multiple cancer types [32]. Herein, we
extend these prior findings to our cell models of ovarian and
endometrial cancer, diseases for which new therapies are
urgently needed.

Studies in multiple myeloma have provided significant
mechanistic insight into why proteasome inhibitors are
highly toxic to the cancer cells. For example, proteasome
inhibition has been shown to promote apoptosis via terminal
UPR [13]. Consistent with these data, we found that ixazo-
mib treatment induced cleavage of caspase 3, a canonical
marker of apoptosis, as well as expression of Bip/GPR78, a
marker for ER stress. Since p53 GOF mutant protein is a mis-
folded protein, proteasome inhibition may induce cell death
through excessive accumulation of misfolded proteins. Sev-
eral studies have reported hyperstabilization of GOF p53
protein in cancer [33], which has been postulated to occur
through more than one mechanism [14, 15, 34]. First, p53
GOF proteins are unable to bind the E3 ligase Mdm2, which
negates the typical pathway of p53 ubiquitination and degra-
dation via the proteasomal pathway [34]. Instead, p53 GOF
protein is thought to be degraded by the lysosome in a pro-
cess termed “chaperone-mediated autophagy” (CMA) [35].
Intriguingly, inhibition of the proteasome results in a com-
pensatory induction of the activity of the CMA pathway
[35]. Second, mutant p53 can be stabilized through interac-
tions with heat shock proteins and histone deacetylases,
and published evidence suggests that HDACi may decrease
the stability of mutant p53 by disrupting its association with
heat shock proteins [14, 15]. Therefore, one possibility is that
HDACi potentiates the effects of the proteasome inhibitor by
removing components of the chaperone complex, improving
uptake in the lysosome, and leading to CMA-mediated
p53 GOF degradation. Supporting this notion, we observed
decreased total p53 protein levels upon treatment with pano-
binostat. In addition, histone deacetylase inhibitors have
been shown to induce cell cycle arrest at the G1/S transition



via upregulation of p21 [16], which we also demonstrate in
cells with both wild-type (Ishikawa cells) and p53 GOF
mutants (KLE, R175H p53). Whereas early studies with vor-
inostat suggested that G1/S cell cycle arrest is accomplished
through upregulation of p53 [36], others have established
that HDACi treatment destabilizes mutant p53, resulting in
a marked decreased in p53 levels [14]. Our data are in line
with the latter findings whereby treatment with LBH589/
panobinostat resulted in a 50% or greater decrease in both
GOF p53 (KLE cells) and wild-type p53 (Ishikawa cells).

Multiple myeloma is typified by accumulation of high
levels of immunoglobulin, and thus the cells are extremely
dependent upon proteasomal pathways for survival [37].
We speculate that GOF p53 mutants create a similar scenario
that also necessitates a functional proteasome to maintain
cell survival. Indeed, it has been suggested in the literature
that excessive accumulation of mutant p53 may be more sen-
sitive to proteasome and/or histone deacetylase inhibition
[38]. Inhibiting the proteasome pathway would create a reli-
ance on the lysosomal pathway for degrading the mutant
p53, which is recognized as a misfolded protein. In line with
this concept, we observed increased expression of Bip, a
marker of the misfolded protein response pathway.

It is possible that distinct GOF mutations may differen-
tially affect sensitivity to the single or combinatorial treat-
ment regimen presented in this manuscript. In contrast to
the findings presented herein, other studies have provided
evidence that bortezomib sensitivity is dependent on wild-
type p53 expression, whereby apoptosis is induced through
p53-mediated downregulation of the prosurvival factor sur-
vivin [39, 40]. Cells that express a mutant p53 or p53-null
cells were found to be resistant to bortezomib-induced apo-
ptosis through sustained expression of survivin [40]. How-
ever, the specific GOF p53 mutants included in a previous
study were R280K (MDA-MD-231 breast cancer cells) and
E285K (RPMI-8226 multiple myeloma cells). While our data
show similar results using cells expressing the R175H (Hec50
endometrial cancer cells) and R248Q (OVCARS3 ovarian can-
cer cells) mutants, a comprehensive analysis of cells express-
ing other recurrent p53 GOF mutants is warranted.

5. Conclusions

In summary, we present a novel therapeutic strategy for
tumors with GOF TP53 mutations using drugs that are
already being advanced in clinical trials. These data suggest
that p53 mutational status can be used as the foundation
for defining personalized treatments.
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