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Acute pancreatitis (AP) is a common acute abdominal disease with a mortality rate of about 30%. Acute lung injury (ALI) is a
common systemic complication of acute pancreatitis, with progressive hypoxemia and respiratory distress as the main
manifestations, which can develop into acute respiratory distress syndrome or even multiple organ dysfunction syndrome
(MODS) in severe cases, endangering human health. In the model of AP, pathophysiological process of the lung can be
summarized as oxidative stress injury, inflammatory factor infiltration, and alveolar cell apoptosis. However, the intrinsic
mechanisms underlying AP and how it leads to ALI are not fully understood. In this paper, we summarize recent articles
related to AP leading to ALI, including the signal transduction pathways and biomarkers of AP-ALI. There are factors or
pathway aggravating ALI, the JAK2-STAT3 signaling pathway, NLRP3/NF-κB pathway, mitogen-activated protein kinase, PKC
pathway, neutrophil protease (NP)-LAMC2-neutrophil pathway, and the P2X7 pathway, and there are important transcription
factors in the NRF2 signal transduction pathway which could give researchers better understanding of the underlying
mechanisms controlling AP and ALI and lay the foundation for finally curing ALI induced by AP.

1. Introduction

Acute pancreatitis (AP) is an acute inflammatory process of
the pancreas, which can injure not only local peripancreatic
tissue but remote organs and systems as well [1]. The acute
inflammatory state of the pancreas usually follows an infec-
tion, which may lead to multisystem organ dysfunction,
including acute lung injury (ALI) [2–4]. During this patho-
physiological process, cytokines and inflammatory media-
tors are released in large quantities, activating multiple
signaling pathways which cause damage to the body. How-
ever, the underlying mechanism is not completely clear. In
recent years, the signaling pathways mediating the occurrence
of severe AP (SAP) have become better known, and it has now
been shown that multiple signaling pathways are involved in
the biological processes of alveolar endothelial cell prolifera-
tion, differentiation, and apoptosis caused by AP. In this
paper, we summarize the roles of seven pathways and related
biomarkers in AP-ALI which have increased our understand-

ing of the development of the disease and provided novel ther-
apeutic approaches for its treatment.

2. JAK2-STAT3 Signaling Pathway

The Janus kinase/signal transducer and activator of tran-
scription (JAK/STAT) pathway has previously been shown
to play a role in tumorigenesis. Interleukin-6 (IL-6) is a pro-
inflammatory cytokine that preferentially activates STAT3
and has a role in both initiating and exacerbating the inflam-
matory process. During inflammation, adhesion molecules,
substances expressed on endothelial cells (ECs), contribute
to the recruitment and migration of leukocytes to the suben-
dothelial stroma [5].

AP can induce the expression of intercellular adhesion
molecule-1 (ICAM-1) through the JAK2/STAT3 signaling
pathway, and the induction of ICAM-1 is associated with
leukocyte adhesion and migration, leading to amplification
of endothelial cell injury and inflammatory response. In
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addition, AP can activate IL-6 and tumor necrosis factor
(TNF)-α, further activating the JAK2/STAT3 pathway, lead-
ing to ICAM-1 activation and promoting the upregulation of
nuclear factor-κB (NF-κB), which in turn induces the devel-
opment of ALI [6].

It has been suggested that high levels of tumor necrosis
factor alpha (TNF-α) and nuclear factor-κB (NF-κB) may
induce the expression of ICAM-1 and thus be involved
in the development of SAP-ALI [6]. Dexamethasone treat-
ment attenuates SAP-induced upregulation of TNF-α and
NF-κB [7]. Dexamethasone treatment may reduce cytokine
production by inhibiting ICAM-1, which may be a cause
of its anti-inflammatory effect [6]. IL-6 inhibits prolifera-
tion, promotes apoptosis, and contributes to lung injury
by activating the JAK2/STAT3 signaling pathway [8–10].
A short mutant peptide of hydrostatin-SN10 (peptide
sequence, DEQHLETELH) extracted from snake venom
inhibits AP-ALI by inhibiting IL-6 induced by JAK2/-
STAT3 signaling (Figure 1).

3. NLRP3/NF-κB Pathway

Protein 3 (NLRP3) inflammasome is a substance containing
NACHT, LRR, and PYD domains that leads to the produc-
tion of IL-1β and IL-18 by sensing pathogen and danger-
related molecular patterns (PAMPs and DAMPs) [11]. NF-
κB signaling is an important initial step in initiating NLRP3
activation, and reactive oxygen species (ROS) generated by
NF-κB-mediated inflammation are also a risk signal for
NLRP3 activation [12]. NLRP3 activation is followed by
ASC recruitment, activation of cysteine protease-1 (cas-
pase-1), and induction of pro-IL-1β or pro-IL-18 processing
and maturation [13, 14]. Thus, both signals, NLRP3 and NF-
κB, act together to induce the activation of cytokines (e.g.,
IL-1β) that promote ALI.

Lack of functional Toll-like receptor 4 (TLR4) leads to
a decreased NF-κB response and reduced production of
proinflammatory mediators, ameliorating lung inflamma-
tion in mice and alveolar macrophages [15]. In addition,
monocyte chemotactic protein-1 (MCP-1) is an important
factor that has been shown to induce AP as a direct target
of NF-κB [16, 17].

Surfactant protein D (SP-D) inhibits SAP-induced ALI
and pancreatic injury. It may do so through a pathway that
inhibits the activation of NLRP3, inflammasome, and NF-
κB signaling [18]. Isoflavonopoietin (ISL), a flavonoid
derived from licorice, can inhibit NLRP3 pathway by activat-
ing Nrf2, inhibiting NF-κB, and also inhibiting NLRP3 acti-
vation [19, 20]. Ethylpyruvate inhibits NF-κB activation and
downregulates downstream inflammatory cytokine expres-
sion in SAP rats and attenuates severe pancreatitis-
associated ALI [21] (Figure 2).

4. Mitogen-Activated Protein Kinase (MAPK)

Mitogen-activated protein kinase (MAPK), including
P38MAPK, c-Jun N-terminal kinase (JNK), and extracellular
signal-regulated kinase (ERK), is a member of the serine/-
threonine kinase family and plays an important role in
inflammation, tumorigenesis, cell proliferation, apoptosis,
differentiation, and stress responses [22–25]. ERK is acti-
vated in response to ischemic injury, such as hemorrhagic
shock and stroke, and its activation may lead to cell damage
and death [26]. The p38MAPK is an important signal trans-
duction enzyme that regulates gene transcription and trans-
lation by transducing extracellular signals into cells and is
primarily involved in the release of inflammatory cytokines/-
mediators in the pathogenesis of inflammatory diseases such
as ALI and AP [25, 27]. AP-activated TNF-α induces ALI via
p-JNK/MAPK and p-ERK/MAPK in the lung, while

DEX/hydrostatin-SN10

(-)

IL-6/TNF-αAP (+) (+) (+) (+) (+) (+)JAK2/STAT3 ICAM-1 NF-kB IL-6/IL-8 ALI

Figure 1: AP can activate IL-6 and TNF-α, further activating the JAK2/STAT3 pathway, leading to ICAM-1 activation and promoting the
upregulation of NF-κB, which in turn induces the development of ALI. DEX/hydrostatin-SN10 inhibits this pathway.

AP ALI

(+)

(+)
(+)

NF-kB

NF-kB

SP-D/EP

(-)
(-)

SP-D/ISL

ROS

NLRP3 Caspase-1

ASC

Pro-IL-1β/pro-IL-18

IL-1β

(+)

(+) (+)

(+)

(+) (+)
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Figure 2: AP may cause NF-κB signaling initiation and also NF-κB-mediated activation of ROS produced by inflammation, which leads to
activation of NLRP3 and consequent recruitment of ASC, activation of caspase-1, and induction of pro-IL-1β or pro-IL-18 into mature
forms, which can then induce the activation of cytokines (e.g., IL-1β) and thereby promote lung injury in ALI. ISL inhibits NLRP3
activation, and EP inhibits NF-κB activation, both of which attenuate severe pancreatitis-associated ALI.
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p38MAPK can be activated by a variety of extracellular stim-
uli, such as inflammatory mediators, heat injury, and ultravi-
olet light. p38MAPK is activated, and chemokines are
increased after hemorrhagic shock and can contribute to
the development of ALI [28].

MAPK activation can cause multiorgan dysfunction after
hemorrhagic shock (MODS) [29, 30]. Therefore, prevention
and control of the MAPK signaling pathway may be an
important way to prevent hemorrhagic shock-induced ALI
and multiorgan dysfunction. BML-111 blocks phosphoryla-
tion of JNK, ERK, and p38MAPK in hemorrhagic shock
[31]. AT-Lipoxin A4 inhibits the p-JNK/MAPK and p-
ERK/MAPK pathways [32]. Substance P (SP)/neurokinin-1
receptor (NK1R) may regulate pancreatitis leukotriene B4
(LTB4) production via the MAPK signaling pathway, and
LTB4 may regulate neutrophil reverse transendothelial
migration (rTEM) in AP, which further promotes AP-ALI
[32, 33]. Upregulation of microRNA-542-5p downregulates
the expression of P21-associated kinase 1 (PAK1), and
downregulation of PAK1 may contribute to inhibition of
the MAPK signaling pathway [33]. Lipoprotein A4 (LXA4)
blocks ALI by inhibiting the inflammatory pathways of
NF-κB and p38MAPK and by upregulating cytoprotective
heme oxygenase-1 (HO-1) [34] (Figure 3).

5. PKC Pathway

Protein kinase C (PKC) is a member of the family of
phospholipid-dependent serine/threonine kinases. It consists

of at least several isoforms [35, 36]. Conventional PKC alleles
(α, βI, βII, and β), novel PKC isoforms (δ, ε, η, and θ), and
other PKC isoforms (λ subclass, γ subclass), as well as four
PKC isoforms (α, δ, ε, and ζ), each with a unique activation
pattern, have been identified in pancreatic follicular cells
[37]. Experimental studies have shown that inflammatory
mediators are overproduced and released in the lung through
a PKC-dependent pathway [38]. The PKC pathway is an
important signaling pathway that can be activated by inflam-
matory cytokines. src-inhibited C kinase substrate (SSeCKS),
a PKC substrate and a major inflammatory response protein
that is significantly overexpressed in ALI, selectively binds to
signaling proteins such as PKC to disrupt endothelial cell per-
meability [39]. The PKC pathway regulates cytoskeletal protein
activity and endothelial cell barrier function by modulating its
downstream substrate SSeCKS. PKC-mediated upregulation
of SSeCKS activates F-actin, which leads to NF-κB activation
in HPMEC, resulting in ALI [40]. Because rescue of aquaporin
5 (AQP-5) and matrix metalloproteinase 9 (MMP-9) and inhi-
bition of apoptosis may lead to NF-κB attenuation [41], we
speculate that NF-κB may be a key mediator of apoptosis,
AQP-5/MMP-9, and PKC/SSeCKS/F-actin signaling pathways
during AP-induced ALI.

SP regulates LTB4 production via the PKCα/MAPK
pathway, which in turn promotes AP-ALI via neutrophil
rTEM [42]. LXA4 effectively promotes F-actin remodeling
and regulates its expression in pulmonary microvascular
endothelial cells both in vivo and in vitro by inhibiting the
PKC/SSeCKS signaling pathway [43] (Figure 4).

TNF-α

TLR-4

p-JNK/MAPK

p-ERK/MAPK

p38MAPK

AP ALI

HO-1 IL-10

IL-1β
(+)

(-)

AT-Lipoxin A4

BML-111/SP/NK1R

(-)

(+)
(+)(+)(+)

(+)
(+)

(+)

(+)

Figure 3: AP-activated TNF-α induces ALI via p-JNK/MAPK and p-ERK/MAPK. AP-activated TLR-4 induces ALI via p38MAPK-induced
upregulation of HO-1. AT-Lipoxin A4 inhibits the p-JNK/MAPK and p-ERK/MAPK pathways, BML-111 blocks phosphorylation of JNK,
ERK, and p38MAPK, and SP/NK1R may prevent ALI by regulating LTB4 production.

LXA4

(-)

PKCAP (+) (+) (+) (+) (+) (+)SSeCKS ICAM-1 NF-kB IL-6/IL-8 ALI

Figure 4: AP can cause PKC-mediated upregulation of SSeCKS leading to activation of F-actin and promote upregulation of NF-κB, which
in turn induces the development of ALI. LXA4 can inhibit this pathway.
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6. NPs-LAMC2-Neutrophil Pathway

Laminin gamma 2 (LAMC2) and Serpin Family A Member
1 (SERPINA1) are associated with collagen-containing
extracellular matrix, leukocyte-cell adhesion, and regulation
of endopeptidases [44]. It has been suggested that the
LAMC2 fragment is released by the cleavage of NP enzymes;
importantly, the released LAMC2 fragment in turn pro-
motes neutrophil recruitment [45]. This would induce the
production of NP in the acute phase. LAMC2 has been
reported to be overexpressed and associated with the early
stages of ALI. Thus, NPs, LAMC2, and neutrophils may
form positive-feedback loops in the pathogenesis of SAP-
ALI. Upregulation of LAMC2 expression in SAP-ALI lung
tissue may be due to increased expression of LAMC2 in
SAP-ALI lung tissue. SERPINA1 is a serine protease inhibi-
tor that negatively regulates the activity of NPs. The high
expression level of serine protease inhibitor B1 (serpinB1)
in SAP-ALI lung tissue and its possible association with
the aggregation of high numbers of neutrophils and mono-
cytes in the lung suggest that it may be a novel biomarker
of disease severity. Emodin may exert a protective effect by
negatively regulating NP activity and blocking NPs-
LAMC2 in SAP-ALI. Neutrophil-altered loops significantly
attenuate AP-induced ALI [46] (Figure 5).

7. P2X7 Pathway

SAP is a sterile inflammatory condition characterized by the
release of large amounts of proinflammatory cytokines from
damaged glandular follicle cells [47]. The purinergic recep-
tor P2X7 is a member of the P2X family of ATP-gated cation
channels and an important molecule involved in the inflam-
matory response [48]. Activation of P2X7 stimulates multi-
ple signaling pathways such as reactive oxygen species
(ROS), MAPKs, and NF-κB, which produce large amounts
of inflammatory mediators [49, 50]. Recent studies have
shown that P2X7 can effectively stimulate inflammatory
activation of NLRP3 [51–53]. Numerous studies have shown
that P2X7R is mainly expressed in rodent pancreatic ductal
cells and regulates calcium signaling and ion transport

[54–56]. Cabili et al. found evidence that NLRP3 receptors
are also expressed in the exocrine glands of animals. Alveoli
in the pancreas exhibit low functionality and a marked lack
of P2X7 receptors for purinergic receptor signaling, but pan-
creatic duct cells express high amounts of various P2 recep-
tors, especially P2X7 receptors [57]. In addition, SAP is
usually initially aseptic, which predisposes to necrosis of
the glandular follicle cells [58]. A sterile inflammatory
response mediated by damage-associated molecular patterns
(DAMP) released from necrotic glandular follicle cells pre-
disposes animals to pancreatic injury, which acts through
plasma membrane P2X7 receptors [59]. In addition, the
P2X7/NLRP3 pathway is activated 12 h after pancreatic
injury. However, inflammation is largely time-course depen-
dent, suggesting that induction of P2X7 is associated with
the severity of pancreatitis (Figure 6).

8. NRF2 Signal Transduction Pathway

The nuclear factor erythroid-2-related factor 2 (Nrf2) path-
way is thought to be a survival pathway for the mitigation
of oxidative damage. Nrf2 is a protective antioxidant that
regulates cellular oxidation and reduction homeostasis, and
for oxidative stress, the Nrf2 pathway can be modulated to
treat SAP [60–62]. Activation of Nrf2 is an important strat-
egy to inhibit ROS generation and control oxidative stress.
Furthermore, Nrf2 is an important regulator in ALI
[63–65]. Under basal conditions, Nrf2 is present in the cyto-
plasm as a component of the cell and binds to Kelch-like
ECH-associated protein 1 (Keap1), which is ultimately
degraded. However, when organisms are under oxidative
stress, Nrf2 dissociates from Keap1, a process that can be
achieved through various mechanisms such as oxidative
modification of cysteine thiols in classical Keap1 and phos-
phorylation of specific amino acid residues of Nrf2 through
multiple protein kinase pathways [66].

The intracellular energy sensor AMP-activated protein
kinase (AMPK) is a kinase which is considered to be
upstream of Nrf2 and is of interest because of the relation-
ship with redox homeostasis and energy metabolism [67].
In addition, another mechanism of AMPK-mediated Nrf2
activation may include Akt kinase and glycogen synthase
kinase 3 beta (GSK3β) [68]. TNF-α can activate the Nrf2
signaling pathway and its downstream gene HO-1; further-
more, LXA4 in HPMEC, as a potent anti-inflammatory

AP

NPs (+)

(+) (+)

(+)(+)
NEUT

ALI

LAMC2

SERPINA1

(-)

Figure 5: Enzymatic cleavage of NPs releases LAMC2 fragments
that in turn promote neutrophil recruitment and induce acute
phase NP production. LAMC2 has been reported to be
overexpressed and associated with ALI in its early stages. It can
negatively regulate the activity of NPs to attenuate AP-induced
ALI.

AP P2X7(+) (+) (+) (+)

(+)(+)

(+)

(+)

(+)

NF-kB

NLRP3 IL-1β

IL-6/IL-8

ROS

ALI

Figure 6: AP promotes the activation of P2X7, which stimulates
multiple signaling pathways, including ROS, NLRP3, and NF-κB,
the latter of which produces large amounts of inflammatory
mediators that induce the development of ALI.
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and novel antioxidant mediator, can further promote Nrf2
expression. LXA4 may attenuate AP-induced inflammation
and ROS by regulating the Nrf2 pathway. When injected
intraperitoneally, isoliquiritigenin, with a chalcone struc-
ture (4,20,40-trihydroxy chalcone), can treat ALI/Acute
Respiratory Distress Syndrome (ARDS) associated with
gram-negative bacterial infections by activating Nrf2 [69]
(Figure 7).

9. Summary and Outlook

AP leads to the continuous activation of various signaling
pathways in ALI, as shown in recent studies; ALI was
assessed as shown in the indices listed in Table 1. By inhibit-
ing the transduction of the aggravated AP-ALI pathway and
promoting the transduction of the attenuated AP-ALI path-
way, the secretion of proinflammatory factors can be
reduced, pulmonary edema can be reduced, and certain
therapeutic effects can be achieved. The discovery of precise
and effective target inhibitors still depends on the study of
genes and proteins involved in the pathway, but the study
of diagnostic genes and proteomics of inflammatory diseases
is still at a preliminary stage. Therefore, ALI induced by
more surgical critical care conditions needs to be more thor-
oughly explored, especially in ischemia/reperfusion [70, 71],
sepsis [72], trauma [73], and transfusion [74, 75]. In the
future, we plan to analyze the interaction between various
proteins and genes to deepen our understanding of the
mechanism of inflammatory diseases and provide for effec-
tive diagnosis and treatments.
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Assessing the length of hospital stay (LOS) in patients with coronavirus disease 2019 (COVID-19) pneumonia is helpful in
optimizing the use efficiency of hospital beds and medical resources and relieving medical resource shortages. This retrospective
cohort study of 97 patients was conducted at Beijing You’An Hospital between January 21, 2020, and March 21, 2020. A
multivariate Cox proportional hazards regression based on the smallest Akaike information criterion value was used to select
demographic and clinical variables to construct a nomogram. Discrimination, area under the receiver operating characteristic
curve (AUC), calibration, and Kaplan–Meier curves with the log-rank test were used to assess the nomogram model. The
median LOS was 13 days (interquartile range [IQR]: 10–18). Age, alanine aminotransferase, pneumonia, platelet count, and PF
ratio (PaO2/FiO2) were included in the final model. The C-index of the nomogram was 0.76 (95%confidence interval ½CI� = 0:69 –
0:83), and the AUC was 0.88 (95%CI = 0:82 – 0:95). The adjusted C-index was 0.75 (95%CI = 0:67 – 0:82) and adjusted AUC
0.86 (95%CI = 0:73 – 0:95), both after 1000 bootstrap cross internal validations. A Brier score of 0.11 (95%CI = 0:07 – 0:15) and
adjusted Brier score of 0.130 (95%CI = 0:07 – 0:20) for the calibration curve showed good agreement. The AUC values for the
nomogram at LOS of 10, 20, and 30 days were 0.79 (95%CI = 0:69 – 0:89), 0.89 (95%CI = 0:83 – 0:96), and 0.96
(95%CI = 0:92 – 1:00), respectively, and the high fit score of the nomogram model indicated a high probability of hospital stay.
These results confirmed that the nomogram model accurately predicted the LOS of patients with COVID-19. We developed and
validated a nomogram that incorporated five independent predictors of LOS. If validated in a future large cohort study, the
model may help to optimize discharge strategies and, thus, shorten LOS in patients with COVID-19.

1. Introduction

Coronaviruses (CoVs) are a large family of single-stranded
RNA viruses, and beta-CoVs have caused international out-
breaks of emerging respiratory diseases, including severe
acute respiratory syndrome coronavirus (SARS-CoV) in
2003 [1, 2] and Middle East respiratory syndrome-CoV
(MERS-CoV) in 2012 [3]. In December 2019, a novel severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection in Wuhan led to coronavirus disease 2019
(COVID-19), with more than 290,000 confirmed cases in
174 countries and approximately 12,000 deaths (as of March

21, 2020) [4, 5]. The infectious disease outbreak led to a sub-
stantial increase in the demand for hospital beds, a shortage
of medical equipment, and possible nosocomial infection
among medical staff. According to the clinical condition of
patients, physicians can evaluate the length of hospital stay
(LOS), which is helpful in relieving medical resource short-
ages. A recent study reported a model including five vari-
ables, namely, procalcitonin, heart rate, Wuhan traveling
history, lymphocyte count, and cough to predict prolonged
LOS (>14 days) [6]. However, the model could only predict
whether the LOS was >14 days. However, the “Wuhan trav-
eling history” variable limited the extrapolative application
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of this model because the COVID-19 epidemic had been
eliminated in Wuhan city.

We conducted a retrospective cohort study on the clinical
characteristics of cured and discharged patients with con-
firmed COVID-19 infection between January 21, 2020, and
March 21, 2020, in Beijing. We applied Cox proportional
hazards regression to analyze time- (LOS-) to-event (dis-
charge) data, which was able to provide individualized pre-
dictions of the estimated time to the event of interest. This
study is aimed at describing the clinical characteristics of
and develop and internally validate a predictive nomogram
for estimating the LOS in patients with COVID-19.

2. Materials and Methods

2.1. Cohort Construction. This was a single-center, retrospec-
tive cohort study enrolling consecutive COVID-19 pneumo-
nia patients aged over 18 years who underwent treatment at
Beijing You’An Hospital between January 21, 2020, and
March 21, 2020. All patients with COVID-19 pneumonia
were diagnosed and classified according to the new coronavi-
rus pneumonia diagnosis and treatment plan (trial version 6,
in Chinese) developed by the National Health Committee of
the People’s Republic of China (http://www.nhc.gov.cn/).
This study was approved by the Ethics Committee of Beijing
You’An Hospital, and informed consent was obtained from
all the patients.

2.2. Outcomes and Selection of Covariates. The primary out-
come was LOS, which was defined as the time in days from
hospital admission to discharge and was considered as “event
=1” in Cox analysis. Readmission within two weeks was con-
sidered a prolonged LOS, and it was counted from the first
hospitalization day. Death before discharge was also consid-
ered as a prolonged LOS and was estimated to be 800 days
(longer than the longest LOS) and censored with “event =
0” in Cox analysis. Patients who died within 24 h of admis-
sion to the hospital were excluded from the Cox analysis.
All patients were followed up for at least 6 months after
discharge.

We collected baseline data, including demographic char-
acteristics (age, sex, and comorbid diseases), epidemiological
history, laboratory tests (biochemical indicators, routine
blood testing, C-reactive protein, and chest radiograph or
computed tomography [CT] scan), treatment, and outcome
data. The data were extracted from the electronic medical
record system, laboratory information system, and picture
archiving and communication system.

2.3. Statistical Analysis. Continuous and categorical variables
are presented as medians with interquartile ranges (IQRs)
and n (%), respectively. We used Fisher’s exact test or the
chi-square test and the Mann–Whitney U test to make
between-group comparisons of the subjects in the three
groups. A backward stepwise method based on the smallest
Akaike information criterion (AIC) value was applied to
select covariates to be included in the Cox proportional haz-
ards models.

The nomogram was developed using the “rms” R pack-
age. The area under the time-dependent receiver operating
characteristic (ROC) curve was obtained using the “survival
ROC” package. Harrell’s C-index (concordance statistic, or
C-statistic) was used to assess the predictive capacity of the
nomogram. Bias-corrected calibration using the bootstrap-
ping method with 1000 resamples was used for internal vali-
dation of the nomogram. Based on the scores of each
variable, the total scores for each patient could be calculated
using the “pec” package in R. The fit score of the five-
covariate combination was used to stratify patients for
Kaplan–Meier curve analysis using the log-rank test to com-
pare the probability of hospital stay among the different
groups, and the “survminer” package was applied in this
regard. Statistical analyses were performed using R version
3.6.2. Extension packages, including “ggplot2,” “foreign,”
and “export,” were also employed.

3. Results

3.1. Patient Population. A total of 102 patients were diag-
nosed with COVID-19 between January 21, 2020, and March
21, 2020, and treated at Beijing You’An Hospital. One patient
who died within 24 h and four who were under 18 years of
age were excluded from the analysis. Therefore, a total of
97 patients, including 84 (86.6%) discharged and 13 undis-
charged patients (including four deceased and four read-
mitted patients), were included in this study (Figure 1(a)).
After at least 6 months of follow-up after discharge, there
was no death. The baseline demographic characteristics of
the study cohort are presented in Table 1. The median age
of the study patients was 51.51 years (IQR: 38–64), and
42.3% were men. The primary outcome was LOS, and the
median LOS was 13 days (IQR: 10–18). The LOS distribution
of the discharged COVID-19 pneumonia patients is shown in
Figure 1(b).

The LOS increased with age, and there was a significant
difference among the three groups. The percentage of neutro-
phils, percentage of lymphocytes, platelet-to-lymphocyte
ratio (PLR), and neutrophil-to-lymphocyte ratio (NLR) was
significantly different among the three groups (all p < 0:01).
The number of subjects with normal ALT and AST levels
(both < 40U/L) in the third group (LOS ≥ 19 days) was sig-
nificantly lower than those in the other groups (p = 0:009
and p ≤ 0:001, respectively). Myoglobin and lactate levels in
the third group (LOS ≥ 19 days) were significantly higher
than those in the other groups (p ≤ 0:001 and p = 0:004,
respectively).

3.2. Independent Predictors of LOS in Univariate and
Multivariate Analysis. We assessed the LOS using Cox pro-
portional hazard regression. Older age (≥50 years), high
levels of ALT and AST (both ≥ 40U/L), critical and severe
pneumonia, and high levels of myoglobin (≥100μg/L) signif-
icantly increased the chance of longer LOS (all p < 0:05). In
contrast, female sex, high platelet count (≥300 × 109/L), high
lymphocyte count (≥0:8 × 109/L), high PF ratio (≥300mmHg),
and gradual increase in the glomerular filtration rate were
significantly associated with shorter LOS (all p < 0:05). The
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other independent risk factors in the univariate analysis are
shown in Table 2.

After backward elimination andmodel selection based on
AIC, age (hazard ratio ½HR� = 0:49; 95%confidence interval ½
CI� = 0:29 – 0:83, p = 0:00734), pneumonia (HR = 0:31, 95%
CI = 0:18 – 0:52, p = 1:73e − 05), ALT (HR = 0:49, 95%CI =
0:29 – 0:83, p = 0:00697), PF ratio (HR = 1:45, 95%CI = 1:21
− 1:97, p = 0:0413), and platelet count (HR = 1:77, 95%CI
= 0:93 – 3:39, p = 0:082) were included in the final model
(smallest AIC value= 600.81) for the development of the
nomogram (Table 2).

3.3. Development and Internal Validation of LOS-Predicting
Nomogram. Five independently associated risk factors
were used to form an LOS risk-estimating nomogram
(Figure 2(a)). The nomogram demonstrated favorable accu-
racy in estimating the probability of hospital stay, with C-
index values of 0.76 (95%CI = 0:69 – 0:83) and AUC of 0.88
(95%CI = 0:82 – 0:95) (Figure 2(b)). The overfit of the model
was estimated by applying the bootstrap internal validation
method. The adjusted C-index was 0.75 (95%CI = 0:67 –
0:82) and adjusted AUC 0.86 (95%CI = 0:73 – 0:95) after
1000 bootstrap crossvalidation iterations (Figure 2(c)),
which represented the bias-corrected estimate of model
performance in the future and demonstrated favorable
predictive accuracy for the nomogram. A Brier score of
0.11 (95%CI = 0:07 – 0:15) and adjusted Brier score of
0.13 (95%CI = 0:07 – 0:20) for the calibration curve dem-
onstrated favorable agreement between prediction proba-
bility by nomogram and actual state of hospitalization
(Figure 2(c)).

Finally, the area under the time-dependent ROC curve
was used to validate the ability of the nomogram to discrim-
inate patients who were discharged within 10, 20, and 30 days
of hospital stay. The AUC values for the nomogram at 10, 20,
and 30 days were 0.79 (95%CI = 0:69 – 0:89), 0.89 (95%CI =
0:83 – 0:96), and 0.96 (95%CI = 0:92 – 1:00), respectively
(Figure 3(a)). The Brier score of the calibration curve for
the nomogram at 10, 20, and 30 days was 0.16 (95%CI =
0:10 – 0:21), 0.10 (95%CI = 0:07 – 0:14), and 0.06 (95%CI =
0:03 – 0:08), respectively (Figure 3(b)). The Kaplan–Meier

curves together with the log-rank test also demonstrated that
a high fit score nomogrammodel indicated a high probability
of long hospital stay in the training group (Figure 3(c), log-
rank p < 0:0001). These results confirmed that the nomo-
gram model accurately predicted the LOS of patients with
COVID-19.

4. Discussion

COVID-19 has emerged as a worldwide pandemic; at pres-
ent, the number of infected people continually increases sub-
stantially every day in most countries of the world. According
to patient clinical data, physicians can evaluate their length of
stay. It is beneficial to optimize the use efficiency of hospital
beds and medical resources and relieve medical resource
shortages.

In this retrospective cohort study, we found that the
median LOS was 13 days (IQR: 10–18). Age, ALT, PF ratio,
pneumonia, and platelet count were independently associ-
ated with LOS in patients with COVID-19, and they were
included in the final nomogram. The prognostic model dem-
onstrated a significantly higher predictive accuracy and dis-
criminative ability for the prediction of 10-, 20-, and 30-day
LOS for COVID-19-infected patients. Further, the nomo-
gram demonstrated favorable discrimination and superior
performance in internal validation. The nomogram model
with a high fit score indicated a high probability of hospital
stay. These results confirmed that the nomogram model
accurately predicted the LOS of patients with COVID-19.

Older age is an important independent predictor of mor-
tality [7]. Similar results were obtained for SARS [1, 8] and
MERS [9]. Both cell-mediated immunity and humoral
immune function evidently declined in elderly patients. Con-
comitantly, cytokine and chemokine signaling networks in
elderly patients changed; type 2 cytokine response tended
to be more sensitive than type 1 [10], and the proportion of
T cells producing IL-4, IL-8, and IL-10 increased with age
[11]. In these cases, viral replication and longer-lasting pro-
inflammatory responses were not controlled. In SARS-CoV
and MERS-CoV infection, uncontrolled induction of proin-
flammatory cytokines resulted in pathogenesis and disease

102 patients with COVID-19 pneumonia

5 patients excluded form this study

97 patients enrolled this study

Died within 24 hours (n = 1)
Less than 18 years old (n = 4)

•
•

•
•

Discharge (n = 84)
No discharge (n = 13, including 4
death and 4 readmission )

(a)

N
um

be
r o

f p
at

ie
nt

s

Length of hospital stay (days)
50403020100

0

5

10

15

20

25

30

(b)

Figure 1: (a) Flow diagram of patient enrollment. (b) Distribution of length of hospital stay of discharged COVID-19 pneumonia patients.
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Table 1: Summary statistics of patient demographics and clinical characteristics (by quartile of LOS).

Total ≤10 days (n = 26) 11–18 days (n = 49) ≥19 days (n = 22) p value

Demographic characteristics

Age, years (IQR) 51.5 (38–64) 41.0 (31,62.5) 49 (37–60) 63 (57–74.8) ≤0.001∗∗∗

Male sex, n (%) 41 (42.3) 9 (34.6) 18 (36.7) 14 (63.6) 0.069

Clinical findings

Pneumonia, n (%)

Mild 69 (71.1) 23 (88.5) 39 (79.6) 7 (31.8) ≤0.001∗∗∗

Severe 17 (17.5) 3 (11.5) 8 (16.3) 6 (27.3)

Critical 11 (11.3) 0 (0.0) 2 (4.1) 9 (40.9)

Fever (°C), n (%)

<37.3 24 (24.7) 11 (42.3) 11 (22.4) 2 (9.1) 0.045∗

37.3–38.5 50 (51.5) 13 (50.0) 24 (49.0) 13 (59.1)

>38.5 23 (23.7) 2 (7.7) 14 (28.6) 7 (31.8)

Cough 58 (59.8%) 13 (46.4%) 31 (62%) 15 (68.2%) 0.423

Sputum 25 (25.8%) 5 (19.2%) 12 (24.5%) 8 (36.4%) 0.384

Vomiting 4 (4.1%) 1 (3.8%) 2 (4.1%) 1 (4.5%) 0.993

Diarrhea 2 (2.1%) 1 (3.8%) 0 (0%) 1 (4.5%) 0.238

Lung CT(a) 85 (87.6%) 21 (80.8%) 44 (91.8%) 19 (86.4%) 0.384

Coexisting illnesses

Kidney disease 3 (3.1%) 1 (3.80%) 2 (4.1%) 0 (0.0%) 0.455

Hypertension 22 (22.7%) 2 (15.4%) 9 (18.4%) 9 (40.9%) 0.081

Hyperlipidemia 3 (3.1%) 1 (3.8%) 1 (2.0%) 1 (4.5%) 0.825

Diabetes 8 (8.2%) 2 (7.7%) 4 (8.2%) 3 (13.6%) 0.984

Heart disease 10 (10.3%) 2 (7.7%) 5 (10.2%) 2 (10.5%) 0.798

Lung disease 7 (7.2%) 2 (7.7%) 4 (8.2%) 1 (4.5%) 0.844

Surgery 22 (22.7%) 4 (15.4%) 12 (24.5%) 6 (27.3%) 0.564

Laboratory indicators

White blood cell count, ×109/L 4.4 (3.5–5.9) 4.1 (3.5–5.8) 4.4 (3.5–5.7) 5.0 (3.2–6.9) 0.583

<4 40 (41.2%) 12 (46.2%) 20 (40.8%) 8 (36.4%) 0.787

≥4 57 (58.8%) 14 (53.8%) 29 (59.2%) 14 (63.6%)

Hemoglobin, g/dL 136 (125–144) 131 (120.3–144.3) 135 (126–143.5) 139 (129–149) 0.157

Platelet count × 109/L 194 (160–238) 206 (161–298.3) 193 (144.5–245) 191 (147.5–226.3) 0.257

<100 5 (5.2%) 0 (0.0%) 2 (4.1%) 5 (10.2%) 0.071

100–300 80 (82.5%) 20 (76.9%) 42 (85.7%) 6 (23.1%)

>300 12 (12.4%) 6 (23.1%) 5 (10.2%) 1 (4.5%)

Lymphocyte count × 109/L 1.1 (0.77–1.53) 1.26 (0.93–1.61) 1.18 (0.80–1.54) 0.81 (0.70–1.21) 0.026∗

<0.8 26 (26.8%) 5 (19.2%) 11 (22.4%) 10 (45.5%) 0.90

≥0.8 71 (73.2%) 21 (80.8%) 38 (77.6%) 12 (54.5%)

Monocyte count×109/L 0.31 (0.21–0.44) 0.34 (0.22–0.42) 0.25 (0.16–0.39) 0.32 (0.19–0.51) 0.928

Neutrophil count × 109/L 2.69 (1.84–4.09) 2.37 (1.86–3.42) 2.69 (1.84–3.83) 3.71 (1.68–5.38) 0.067

<1.8 21 (21.6%) 5 (19.2%) 10 (20.4%) 6 (27.3%) 0.206

1.8–6.3 70 (72.2%) 21 (80.8%) 36 (73.5%) 13 (59.1%)

>6.3 6 (6.2%) 0 (0%) 3 (6.1%) 3 (13.6%)

Lymphocyte percentage 26.1 (17.9–34.5) 33 (21.7–37.8) 26.1 (19.3–34.3) 18.7 (19.3–34.5) 0.002∗∗

<20 29 (29.9%) 3 (11.5%) 14 (28.6%) 12 (54.5%) 0.007∗∗

20–40 58 (59.8%) 19 (73.1%) 29 (59.2%) 10 (45.5%)

>40 10 (10.3%) 4 (15.4%) 6 (12.2%) 0 (0.0%)
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Table 1: Continued.

Total ≤10 days (n = 26) 11–18 days (n = 49) ≥19 days (n = 22) p value

Neutrophil percentage 64.0 (51.8–72.3) 55.4 (49.2–69.1) 64 (53.1–72.7) 70.4 (60.4–79.6) 0.002∗∗

<75 78 (80.4%) 25 (96.2%) 39 (79.6%) 14 (63.6%) 0.018∗

≥75 19 (19.6%) 1 (3.8%) 10 (20.4%) 8 (36.4%)

NLR 2.4 (1.4, 3.9) 1.7 (1.3–3.1) 2.3 (1.6–3.8) 3.61 (1.8–6.3) 0.004∗∗

<2.75 56 (57.7%) 18 (69.2%) 31 (63.3%) 7 (31.8%) 0.018∗

2.75 41 (42.3%) 8 (30.8%) 18 (36.7%) 15 (68.2%)

LMR 3.7 (2.8, 5.3) 4.1 (2.9, 6.3) 3.9 (2.8, 5.4) 3.0 (2.3,4.8) 0.268

<2.63 20 (20.8%) 5 (19.2%) 7 (14.3%) 8 (38.1%) 0.096

≥2.63 76 (79.2%) 21 (80.8%) 42 (85.7%) 8 (61.9%)

PLR 177.3 (124.8–246.2) 132.7 (118.5–172.3) 188.1 (124.8–156.6) 221.5 (163.6–182.5) 0.018∗

<160 41 (42.3%) 15 (57.7%) 21 (42.9%) 5 (22.7%) 0.045

≥160 56 (57.7%) 11 (42.3%) 28 (57.1%) 17 (77.3%)

Prothrombin time, s 12.6 (12.1–131.1) 12.8 (12.2–13.4) 12.4 (11.9–12.87) 12.75 (12.1–13.42) 0.417

Prothrombin activity, percentage 75 (71–80) 73.5 (68.5–79.0) 76.0 (73.0–82.0) 74.0 (68.5–78.5) 0.459

<75 46 (48.4%) 15 (57.7%) 19 (39.6%) 12 (57.1%) 0.219

≥75 49 (51.6%) 11 (43.3%) 29 (60.4%) 9 (42.9%)

C-reactive protein, mg/L 14.7 (3.4–37.4) 12.7 (2.0–18.3) 16.8 (3.3, 41.15) 19.4 (10.0–54.13) 0.314

Procalcitonin, ug/L 0.11 (0.10–0.14) 0.10 (0.08–0.15) 0.11 (0.06, 0.15) 0.12 (0.10–0.14) 0.256

Fibrinogen, g/L 3.2 (2.5–4.3) 3.0 (2.5–4.3) 3.2 (2.5–4.1) 3.2 (2.5–4.4) 0.549

ALT, U/L 28 (20–45) 26.5 (20–39) 26 (20–42) 42 (19.7–52.7) 0.126

<40 65 (67.0%) 21 (80.8%) 35 (71.4%) 9 (40.9%) 0.009∗∗

≥40 32 (33.0%) 5 (19.2%) 14 (28.6%) 13 (59.1%)

AST, U/L 30 (21.5–42) 25.5 (20.5–34) 28.0 (21–40) 42.5 (22.75–64.5) 0.004∗∗

<40 70 (72.2%) 24 (92.3%) 38 (77.6%) 3 (36.4%) ≤0.001∗∗∗

≥40 27 (27.8%) 2 (7.7%) 11 (22.4%) 14 (63.6%)

AST/ALT 1.04 (0.76–1.35) 0.96 (0.60, 1.43) 1.02 (0.73–1.30) 1.30 (0.89, 1.71) 0.108

Total bilirubin, mmol/L 9.60 (7.10–13.05) 8.80 (6.13–12.10) 9.20 (6.80–12.60) 12.35 (9.38–14.75) 0.046∗

Albumin, g/L 36.8 (33–39.8) 37.60 (33.8–40) 36.6 (33.4–39.9) 36.2 (32.5–40) 0.158

<35 36 (37.1%) 8 (30.8%) 17 (34.7%) 11 (50.0%) 0.350

≥35 61 (62.9%) 18 (69.2%) 32 (65.3%) 11 (50.0%)

Glomerular filtration rate, (mL/min) 99.5 (91–113.75) 109.35 (94.8–119.7) 105.3 (94.2–117.6) 94.5 (80.3–97.4) 0.001∗∗

Carbon dioxide combining
power, mmol/L

26.8 (24.4–28.9) 25.70 (24.4–28.3) 27.2 (24.7–28.9) 27 (23–28.9) 0.428

Creatine kinase, U/L 72 (46–118) 59 (42–100.3) 72 (46–118) 118 (59.3–353) 0.203

<185 83 (85.6%) 25 (96.2%) 43 (87.8%) 15 (68.2%) 0.022∗

≥185 14 (14.4%) 1 (3.8%) 6 (12.2%) 7 (31.8%)

Creatine kinase isoenzymes,
CK-MB, ng/mL

0.34 (0.16–0.73) 0.29 (0.08–0.61) 0.28 (0.13–0.69) 0.57 (0.27–1.10) 0.008∗∗

<5 66 (68.0%) 17 (65.4%) 39 (79.6%) 10 (45.5%) 0.016∗∗

≥5 31 (32.0%) 9 (34.6%) 10 (20.4%) 12 (54.5%)

Myoglobin, μg/L 45 (30–66) 34 (27.5–50) 38 (29–60.5) 66 (49.5–187.5) ≤0.001∗∗∗

<100 84 (86.6%) 24 (92.3%) 46 (93.9%) 14 (63.6%) 0.004∗∗

≥100 13 (13.4%) 2 (7.7%) 3 (6.1%) 8 (36.4%)

Lactate, mmol/L 1.2 (0.9–1.7) 1.0 (0.9–1.2) 1.24 (0.9–1.7) 1.6 (1.2–1.9) 0.004∗∗

<1.7 69 (73.4%) 22 (88.0%) 37 (78.7%) 10 (45.5%) 0.02∗

≥1.7 25 (26.6%) 3 (12.0%) 10 (21.3%) 12 (54.5%)
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severity [12]. Several days after COVID-19 infection, patients
presented symptoms such as fever, coughing, sputum, vomit-
ing, and diarrhea, and they were diagnosed and treated in the
hospital. Fever (≥37.3°C) was an initial important event inte-
gral to immune response [13]; however, it was not signifi-
cantly associated with LOS in univariate analysis.

Platelets are part of the first line of defense against lung-
specific entry of SARS-CoV-2 [14], and among patients who
had the lowest platelet counts, mortality decreased with an
increase in platelet count [15]. The improvement in platelet
count might have indicated clinical improvement. Monitor-
ing of platelet counts is certainly beneficial to clinicians in

Table 1: Continued.

Total ≤10 days (n = 26) 11–18 days (n = 49) ≥19 days (n = 22) p value

PF ratio, mmHg 433.5 (311.4–527.4) 471.3 (293.5–530.8) 446 (370.8–572.9) 340 (223.4–447.4) 0.02∗

<300 20 7 4 9 0.003∗∗

≥300 77 19 45 13

Treatment

Antibiotics 30 (30.9%) 11 (42.3%) 13 (26.5%) 6 (27.3%) 0.340

Antiviral treatment 37 (38.1%) 10 (38.5%) 19 (38.8%) 8 (36.4%) 0.981

Chinese medicine treatment 74 (76.3%) 22 (84.6%) 36 (73.5%) 16 (72.7%) 0.505

Corticosteroids 19 (19.6%) 0 (0.0%) 8 (16.3%) 11 (50.0%) ≤0.001∗∗∗

Oxygen therapy 34 (35.1%) 4 (15.4%) 19 (38.8%) 11 (50.0%) 0.032∗

Ventilator 6 (6.2%) 0 (0.0%) 2 (4.1%) 4 (18.2%) 0.024∗

(a)Positive result: CT images showing multiple patchy ground-glass opacities along the peribronchial and subpleural lungs; NLR: neutrophil-to-lymphocyte
ratio; LMR: lymphocyte-to-monocyte ratio; PLR: platelet-to-lymphocyte ratio; ALT: alanine aminotransferase; AST: aspartate aminotransferase; PF ratio:
PaO2/FiO2 ratio. Significance codes: “

∗∗∗”0.001, “∗∗”0.01, “∗”0.05.

Table 2: Prognostic factors associated with LOS in COVID-19 pneumonia.

Variables
Univariate Multivariate

HR (95% CI) p value HR (95% CI) p value

Age, years (≥50 vs. < 50) 0.58 (0.33–1.01) 3.22e-04∗∗∗ 0.49 (0.29–0.83) 0.00734∗∗

Sex (female vs. male) 1.89 (1.71–3.25) 0.0077∗

ALT, U/L (≥40 vs. <40) 0.45 (0.33–0.87) 0.0065∗ 0.49 (0.29–0.83) 0.00697∗∗

AST, U/L (≥40 vs. <40) 0.42 (0.23–0.78) 3.34e-03∗∗

Fever (°C) (≥37.3 vs. < 37.3) 0.58 (0.35–1.08) 0.39

Pneumonia (critical + severe vs. mild) 0.33 (0.049–0.47) 1.52e-03∗∗ 0.31 (0.18–0.52) 1.73e-05∗∗∗

Hemoglobin, g/L (per unit) 0.97 (0.96–0.99) 0.034∗

Lymphocyte count × 109/L (≥0.8 vs.< 0.8) 1.55 (0.78–2.51) 0.026∗

Neutrophil count × 109/L (per unit) 0.96 (0.84–1.16) 0.047∗

Platelet count ×109/L (≥300 vs. <300) 2.52 (0.69–7.55) 0.012∗ 1.77 (0.93–3.39) 0.08201

NLR (≥2.75 vs. < 2.75) 0.77 (0.66–1.20) 0.22

C-reactive protein, mg/L (≥2.2 vs. < 2.2) 0.57 (0.33–1.15) 0.09.

PLR (≥160 vs. < 160) 0.68 (0.54–0.88) 0.478

Albumin (g/L) (≥35 vs. < 35) 0.79 (0.49–1.58) 0.692

GFR (mL/min) (per unit) 1.12 (1.11–1.13) 0.021∗

Creatine kinase, U/L (≥185 vs. < 185) 0.62 (0.36–1.22) 0.152

Creatine kinase isoenzymes MB, ng/mL) (≥5 vs. < 5) 1.46 (0.81–2.88) 0.447

Myoglobin, μg/L (≥100 vs. < 100) 0.21 (0.12–0.76) 1.65e-03∗∗

Lactate, mmol/L (≥1.7 vs. < 1.7) 0.77 (0.26–1.22) 0.194

PF ratio, mmHg (≥300 vs. < 300) 1.75 (0.99–3.12) 0.0405∗ 1.45 (1.21–1.97) 0.04133∗

ALT: alanine aminotransferase; AST: aspartate aminotransferase; NLR: neutrophil-to-lymphocyte ratio; PLR: platelet-to-lymphocyte ratio; GFR: glomerular
filtration rate; PF ratio: PaO2/FiO2 ratio. Significance codes: “∗∗∗”0.001, “∗∗”0.01, “∗”0.05, “.”0.1, “ ”1.
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rare resource environments, where the chance of laboratory
examination may be limited; however, the whole blood count
may be relatively easy [15, 16].

Acute respiratory distress syndrome (ARDS), character-
ized by hypoxemia with a PaO2/FiO2 ratio ðP/F ratioÞ ≤ 200
mmHg, is the primary cause of death due to COVID-19.

ARDS is a heterogeneous clinical syndrome, which is
mechanically induced by uncontrolled COVID-19 viral rep-
lication and host cytokine storm. COVID-19 has unique
ARDS characteristics in medical imaging and has been
reported as a variable in several diagnostic studies. Artificial
intelligence is a diagnostic tool that combines multiple
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Figure 2: The nomogram and its predictive accuracy and discriminative ability. (a) Nomogram for the estimation of the probability of
hospital stay of COVID-19 pneumonia patients. (b) Receiver operating characteristic curve of the nomogram. (c) The calibration curve
showed favorable agreement between prediction by the nomogram and actual observations. The adjusted values were calculated by the
bootstrap crossvalidation method, repeated 1000 times. ALT: alanine aminotransferase; PF ratio: PaO2/FiO2 ratio.
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imaging modalities, including lung CT, chest radiography,
and lung ultrasound [17]. Accordingly, AI assisted us to
comprehensively interpret clinical and multiomics data of
ARDS patients, and it is potentially advantageous in the
management of ARDS patients in the future with individual
treatment plans [18].

There are certain limitations to our study. First, this was a
single-center, retrospective cohort study involving approxi-
mately a quarter of the COVID-19 patients in Beijing on
March 21, 2020. This was not representative of the overall
COVID-19 treatment or LOS in this area. Second, owing to
low mortality (5/102), this study could not analyze the risk
factors for survival. Third, due to the retrospective cohort

design, laboratory tests were not performed for all cytokines.
For example, interferon-inducible protein-10 and IL-6 are
predictive factors for SARS [19] and COVID-19 [7] out-
comes, respectively; yet, they were excluded.

5. Conclusions

We successfully developed and validated a nomogram, which
incorporated five independent predictors of LOS. Provided a
future, large sample size cohort study that is used to validate
the model, it may be useful in optimizing discharge strategies,
hence shortening LOS in patients with COVID-19.
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Figure 3: Time-dependent receiver operating characteristic curve showing area under curve (AUC) values at 10 (red), 20 (blue), and 30
(black) days (a). The Brier score of the calibration curve for the nomogram at 10 (red), 20 (blue), and 30 (black) days (b). Kaplan–Meier
curves comparing the probability of hospital stay among the different patient groups, stratified by the fit score of the five-covariate
nomogram model (c). p values were calculated using the log-rank test.
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Objective. The prognostic value of the red cell distribution width (RDW) in patients with sepsis-induced acute respiratory distress
syndrome (ARDS) is still elusive. This study is aimed at determining whether RDW is a prognostic indicator of sepsis-induced
ARDS. Methods. This retrospective cohort study included 1161 patients with sepsis-induced ARDS. The datasets were acquired
from the Medical Information Mart for Intensive Care III database. The locally weighted scatter-plot smoothing technique, Cox
regression, Kaplan-Meier estimator, and subgroup analysis were carried out to evaluate the association between RDW and 90-
day mortality. Results. The RDW and mortality had a roughly linear increasing relationship. The Cox regression model results
were as follows: for level 2 (14:5% < RDW< 16:2%), hazard ratio ðHRÞ = 1:35, 95% confidence interval ðCIÞ = 1:03 – 1:77, and
for level 3 (RDW ≥ 16:2%), HR = 2:07, 95% CI = 1:59 – 2:69. The following results were obtained when RDW was treated as a
continuous variable: HR = 1:11, 95%CI = 1:06 – 1:15. The P values of the interaction between the RDW and covariates were
greater than 0.05. Conclusion. RDW is a new independent prognostic marker for patients with sepsis-induced ARDS.

1. Introduction

Sepsis is caused by an imbalance in a host’s response to infec-
tion and can lead to systemic multiple-organ dysfunction [1].
The lung is the first organ with the highest incidence rate of
sepsis, and acute lung injury (ALI) is the main manifestation.
ALI can further develop into acute respiratory distress syn-
drome (ARDS), an emergency and critical illness in the
intensive care unit (ICU). It can cause excessive and uncon-
trolled inflammatory reactions [2], resulting in a clinical
mortality rate (MR) as high as 35%–40% [3]. Therefore, early

discrimination of high-risk sepsis-induced ARDS patients
with worse prognoses is extremely important.

The red cell distribution width (RDW) is commonly
assessed as part of a complete blood count and is often used
to identify different types of anemia. RDW has received
much attention from the healthcare community as a new
diagnostic and prognostic indicator in recent years. Several
studies have shown a close association between RDW and
the prognosis of burns [4], pancreatitis [5], peritonitis [6],
hepatitis B-related diseases [7], cardiovascular diseases [8,
9], and cancer [10–13]. However, no study has reported on
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the association between RDW and the prognosis of sepsis-
induced ARDS patients. Moreover, clinical indicators for
evaluating the prognosis of sepsis-induced ARDS patients
are lacking. Therefore, this research is aimed at determining
the predictive value of RDW in the MR of sepsis-induced
ARDS patients.

2. Methods

2.1. Introduction to theMedical Database. TheMedical Infor-
mation Mart for Intensive Care III (MIMIC-III) V.1.4 data-
base is a freely accessible critical care database that contains
the clinical data of at least forty thousand critically ill patients
hospitalized at the Beth Israel Deaconess Medical Center of
Harvard Medical School between 2001 and 2012 (58,976
inpatients in total) [14]. The MIMIC-III database consists
of comprehensive patient data such as biochemical, demo-
graphic, and physiological data as well as clinical diagnostics
and medical treatment records. The MIMIC-III database not
only has a large sample size and rich data types but also high-
quality and high-reliability data. It is a treasure chest for clin-
ical research in the field of critical care medicine. Wang
obtained access to the database and was involved in data
extraction (Certification No. 36132199).

2.2. Selection Criteria. We focused on the patients who were
admitted to the ICUs from 2008 to 2012. All patients were
required to meet the diagnostic criteria for ARDS and sepsis
within 24 h of admission to the ICU. According to the recom-
mendations of the Surviving Sepsis Campaign in 2016 [15]

and the extraction method for sepsis-3 patients described
by Johnson and coworkers [16], this study included patients
suspected of having an infection during ICU admission
(within 24 h) with a Sequential Organ Failure Assessment
(SOFA) score of ≥2. Clinically suspected infection was diag-
nosed by bacterial culture positivity and antibiotic adminis-
tration. According to the Berlin diagnostic criteria of
ALI/ARDS, ARDS was defined by the following parameters:
(i) mechanical ventilation and positive end-expiratory pres-
sure or continuous positive airway pressure ≥ 5 cmH2O; (ii)
severe (PaO2/FiO2 ≤ 100mmHg), moderate (PaO2/FiO2 =
100 – 200mmHg), or mild (PaO2/FiO2 = 200 – 300mmHg);
and (iii) without pleural effusion, lung collapse, lung nodules,
or cardiogenic pulmonary edema. Since no cardiogenic pul-
monary edema information was available directly from the
database, the patients with a pulmonary capillary wedge pres-
sure (PCWP) of ≥18 cmH2O were considered to have cardio-
genic pulmonary edema.

Patients with the following criteria were excluded: (i)
younger than sixteen years, (ii) admitted to the ICU before,
(iii) admitted to the cardiothoracic surgery service, (iv)
stayed in the ICU for <24 h, (v) suspected with infection >
24 h before and after ICU admission, and (vi) no RDW data
available within 24 h of ICU admission or no data on
comorbidities.

2.3. Data Extraction and Patient Outcomes. The demo-
graphic characteristics (e.g., age, sex, and ethnicity), comor-
bidities (congestive heart failure, anemia, hypertension,
chronic respiratory disease, liver disease, and kidney failure)

23620 ICU admissions from 2008 to 2012

Exclude 3 patients < 16 years old
Exclude 7536 secondary admissions
Exclude 2298 patients to the cardiothoracic surgical service
Exclude 8000 patients without suspicion of infection or SOFA scores ≥ 2

5783 patients enrolled

5055 septic patients enrolled

1173 patients enrolled

1161 patients enrolled

Exclude 12 patients without RDW data within 24 h of
ICU admission or without data on comorbidities

RDW > 14.5% 
601 patients

RDW ≤ 14.5% 
560 patients

Exclude 728 patients staying in the ICU for less than 24 hours

Exclude 3882 patients without ARDS

Figure 1: Flow diagram of patient recruitment.
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and laboratory data (RDW, platelet count, white blood cell
count, blood glucose, urea nitrogen, and serum creatinine),
and severity of the disease (SOFA score, ARDS grade, and
vasopressin use) of the included patients were extracted from
the database. All laboratory parameters were selected for the
first measurement. The outcome measure was all-cause MR
during the 90 days of ICU admission.

2.4. Grouping. Since none of the patients had an RDW less
than the normal range (11.5%–14.5%), the patients were
categorized into the normal RDW (nRDW) group
(RDW ≤ 14:5%) and the increased RDW (iRDW) group
(RDW> 14:5%). Locally weighted scatter-plot smoothing
(LOWESS) analysis revealed approximately linearly increas-
ing relationship between the RDW and 90- or 30-day all-
cause mortalities. Therefore, the iRDW group was subdi-
vided into 2 subgroups using the median value of the RDW
as the threshold and then inputting it into the Cox regression
model to further explore the impact of an increased RDW
on mortality. The resulting three groups were level 1
(RDW ≤ 14:5%), level 2 (14:5% < RDW< 16:2%), and level
3 (RDW ≥ 16:2%).

2.5. Treatment of Missing Values. The missing values were
<5% for all the variables included in the present study.
The normally distributed variables were subjected to mean
imputation, while the nonnormally distributed variables
were subjected to median imputation. For the categorical
variables with missing values, the associated cases were
deleted directly.

2.6. Statistical Analysis. Categorical variables were analyzed
by the chi-square test, and the data are expressed as percent-
ages. Continuous variables were tested with Student’s t test
(normal distribution) or the Mann-Whitney U test, and the
results are presented as the mean ± standard deviation or
median (interquartile range (IQR)). The LOWESS method
was employed to assess the general association between
RDW and 90- or 30-day all-cause mortalities. The Kaplan-
Meier estimator was applied to construct the survival curves
of different RDWs, which were compared with the log-rank
test. Then, Cox regression was employed to analyze the prog-
nostic factors related to mortality. The variables with P <
0:05 in the univariate model were subjected to multivariate
Cox regression analysis. Covariate correction was performed

Table 1: Baseline data of the study subjects.

Variable Total (n = 1161) RDW ≤ 14:5% (n = 560) RDW> 14:5% (n = 601) P value

Age, year 64:2 ± 17:3 63:3 ± 17:9 65:0 ± 16:8 0.098

Male, n (%) 660 (56.8%) 340 (60.7) 320 (53.3) 0.010

Ethnicity, n (%) 0.749

White 811 (69.9) 394 (70.4) 417 (69.4)

Black 85 (7.3) 43 (7.7) 42 (7.0)

Other 265 (22.8) 123 (22.0) 142 (23.6)

SOFA, median (IQR) 7 (4–10) 6 (4–9) 5 (7–11) <0.001
ARDS stage, n (%) 0.018

Mild 326 (28.1) 148 (26.4) 178 (29.6)

Moderate 517 (44.5) 273 (48.8) 244 (40.6)

Severe 318 (27.4) 139 (24.8) 179 (29.8)

Vasopressin use, n (%) 609 (52.5) 269 (48.0) 340 (56.6) 0.004

Comorbidities, n (%)

Congestive heart failure 242 (20.8) 98 (17.5) 144 (24.0) 0.007

Chronic pulmonary 291 (25.1) 126 (22.5) 165 (27.5) 0.052

Hypertension 174 (15.0) 55 (9.8) 119 (19.8) <0.001
Renal failure 198 (17.1) 61 (10.9) 137 (22.8) <0.001
Liver disease 118 (10.2) 28 (5.0) 90 (15.0) <0.001
Anemia 299 (25.8) 121 (21.6) 178 (29.6) 0.002

Laboratory data

White blood cell, 109/L 10.6 (7.6–14.3) 10.9 (8.2–14.3) 10 (6.9–14.3) 0.006

Platelet, 109/L 202 (147–271) 212 (167–278) 186 (125–264) <0.001
Glucose, mg/dL 133 (107–175) 136 (110–178) 129 (104–173) 0.003

Creatinine, mg/dL 1.1 (0.8–1.7) 1.0 (0.8–1.5) 1.2 (0.8–2.1) <0.001
Urea nitrogen, mg/dL 22 (15–37) 19.5 (13.0–29.0) 26 (17–44) <0.001

Clinical outcome

30-day mortality, n (%) 318 (27.4) 104 (18.6) 214 (35.6) <0.001
90-day mortality, n (%) 379 (32.6) 122 (21.8) 257 (42.8) <0.001
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using the following models: Model 1 was corrected accord-
ing to age, sex, and ethnicity; Model 2 =Model 1 + ðARDS
grade, comorbidities, and vasopressin useÞ; Model 3 =Model
2 + ðRDW, platelet count, andwhite blood cell count as well
as levels of blood sugar, urea nitrogen, and serum creatinineÞ;
and Model 4 =Model 3 + ðthe SOFA scoresÞ. Multicollinear-
ity was examined by the variance-inflation factor (VIF),
and VIF ≥ 10 (severe multicollinearity) was not allowed in
the study.

In the Cox regression model, subgroup analysis was per-
formed according to the severity of illness during ICU admis-
sion [17], including the ARDS grade and in combination
with septic shock. However, identifying septic shock patients
in the aforementioned datasets was difficult because of the
lack of access to relevant information. Therefore, it was
substituted with vasopressin use within 24 h of ICU admis-
sion. Considering that RDW could be affected by the hemo-
globin level, another subgroup analysis was carried out
according to the association of RDW with anemia. To verify
the interaction between the RDW and these variables, the

regression model was incorporated with multiplicative inter-
action terms. The significance level was set at P value < 0.05.
All statistical tests were conducted with Stata v.16, SPSS v.24,
and R v.3.6.3.

3. Results

3.1. Baseline Characteristics. A total of 1161 patients with
sepsis-induced ARDS were included in this analysis. The
patient selection and data screening processes are illustrated
in Figure 1. The overall 90-day all-cause MR was 32.6%.
The baseline characteristics of the nRDW and iRDW groups
were compared and are presented in Table 1. The overall
mean age at ICU admission was 64.2 years, and 56.8% of
the patients were male. The frequency of vasopressin use in
the iRDW group was remarkably higher than that in the
nRDW group (56.6% vs. 48.0%, P = 0:004). Moreover, the
iRDW group showed a higher proportion of comorbidities,
such as congestive heart failure, anemia, high blood pressure,
liver disease, and kidney failure. The 90-dayMR in the iRDW
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Figure 2: Relationship between RDW and (a) 90-day or (b) 30-day mortality in sepsis-induced ARDS.
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group was remarkably higher than that in the nRDW group
(42.8% vs. 21.8%, P < 0:001).

3.2. Relationship between RDW and Mortality. An approxi-
mately increasing linear relationship was found between
RDW and mortality using the LOWESS technique
(Figure 2). When the RDW was in the range of 19.0%–
19.5%, the 90-day mortality rate was as high as 67%, and
the 30-day MR was 60%. Figure 3 represents the Kaplan-
Meier curve describing the association between RDW and
90-day MR in different RDW groups. For various time
periods, the level 1 group showed the highest survival rate
(P < 0:001), followed by the level 2 group.

In the extended multivariate Cox regression model, the
level 3 RDW was significantly correlated with the 90-day
MR (Table 2). Model 1 showed a hazard ratio (HR) of 2.68
with a 95% confidence interval (CI) of 2.11–3.40. Model 2
had an HR of 2.35 with a 95% CI of 1.83–3.01. Model 3
exhibited an HR of 2.14 with a 95% CI of 1.65–2.78. Model
4 had an HR of 2.07 with a 95% CI of 1.59–2.69. Level 2
exhibited similar results with smaller HR values. Supplemen-
tary Table 1 lists the HR values of all covariates in Model 4.

When RDW was regarded as a continuous variable, it could
also predict 90-day MR (HR, 1.11 per 1% increase; 95% CI,
1.06–1.15) (Table 3).

3.3. Subgroup Analysis. The results of the subgroup analysis
are shown in Figure 4. The P values of the interaction
between RDW and the degree of ARDS, use of vasopressors,
and anemia were 0.241, 0.719, and 0.911, respectively. There
were no obvious differences between the RDW and mortality
among patients with different degrees of ARDS, whether
vasopressin was used and whether anemia was present.
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Figure 3: Association between RDW and 90-day overall survival in sepsis-induced ARDS.

Table 2: HR values for the 90-day MR among the 3 RDWs.

RDW ≤ 14:5% 14:5% < RDW< 16:2% RDW ≥ 16:2%
HR (95% CI) P HR (95% CI) P HR (95% CI) P

Model 1 Reference — 1.61 (1.24–2.10) <0.001 2.68 (2.11–3.40) <0.001
Model 2 Reference — 1.50 (1.15–1.95) 0.003 2.35 (1.83–3.01) <0.001
Model 3 Reference — 1.45 (1.11–1.90) 0.006 2.14 (1.65–2.78) <0.001
Model 4 Reference — 1.35 (1.03–1.77) 0.028 2.07 (1.59–2.69) <0.001

Table 3: HR values for the 90-day MR with RDW as a continuous
variable.

RDW as a continuous
variable (per 1% increase)

HR (95% CI) P

Model 1 1.16 (1.47-2.23) <0.001
Model 2 1.13 (1.09-1.17) <0.001
Model 3 1.11 (1.07-1.16) <0.001
Model 4 1.11 (1.06-1.15) <0.001
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4. Discussion

In this study, massive amounts of data were obtained from
the MIMIC-III database to assess the prognostic significance
of RDW in sepsis-induced ARDS patients. The results dem-
onstrated that RDW and mortality had a roughly linear
increasing relationship. Multivariate Cox regression analysis
indicated that RDW was independently associated with the
high MR of sepsis-induced ARDS patients.

Our results were in good agreement with previous find-
ings that RDW demonstrated good predictive value for many
diseases, especially inflammatory diseases. In a retrospective
study of 610 patients with severe burns, RDW independently
correlated with the occurrence of ARDS. For every 1%
increase in RDW, the risk of ARDS was induced by 29%
[18]. Ganji et al. conducted a meta-analysis involving 7 stud-
ies with 976 patients with pancreatitis. They used the sum-
mary receiver operating characteristic (ROC) curve from a
bivariate model to predict the prognosis of RDW for patient
mortality and obtained an area under the curve (AUC) of
0.757 as well as pooled specificity and sensitivity of 90%
(95% CI: 73%–96%) and 67% (95% CI: 51%–80%), respec-
tively [19]. Interestingly, RDW might also be related to the
risk of death in the general population. In a study involving
15,852 adults living in the community, the researchers
followed up the community residents for 6–12 years and
found that the mortality increased twofold from the lowest
quintile of the RDW to the highest quintile [20]. Moreover,
RDW was also involved in the occurrence of cancers (HR,
1.28; 95% CI, 1.21–1.36), cardiovascular diseases (HR, 1.22;
95% CI, 1.14–1.31), and chronic respiratory diseases (HR,
1.32; 95% CI, 1.17–1.49) [20].

The correlation mechanism between increased RDW and
poor prognosis in patients with sepsis-induced ARDS
remains elusive. Sepsis-induced ARDS is a systemic inflam-
matory response syndrome [21]. To date, the link between
the inflammatory response and the increase in RDW has
been confirmed. Studies have shown a positive correlation
between RDW and certain inflammatory biomarkers (eryth-
rocyte sedimentation rate and C-reactive protein) [22, 23],

indicating that red blood cell heterogeneity implies the exis-
tence of inflammation. Inflammation has adverse effects on
bone marrow function, iron metabolism, and red blood cell
homeostasis, further leading to the production of a large
number of new reticulocytes related to RDW increase [24,
25]. In addition, the increase in oxidative stress boosted
RDW by reducing the survival rate of red blood cells and
releasing large numbers of premature red blood cells into
the circulation [26]. These possible mechanisms might also
explain the interaction between RDW and disease severity
to a certain extent because the more severe the sepsis-
induced ARDS is, the more remarkable the inflammatory
response and oxidative stress.

One of the strengths of this research was the large study
population, which was sufficient for further stratification
and subgroup analysis of RDW. Furthermore, adequate con-
founding factors were included that might interact with
RDW to produce more accurate results because RDW might
be affected by a series of factors [27], such as age, sex, anemia,
and liver and kidney dysfunction. Nevertheless, this research
had some limitations. First, it was not a multicenter retro-
spective study and hence could have selection bias. Second,
only the RDW data within 24 h of ICU admission were ana-
lyzed. Thus, follow-up data could be used to verify the find-
ings of this study. Third, identifying patients with septic
shock and cardiogenic edema in the datasets was difficult
because of the lack of assessments of relevant information;
they were replaced with vasopressin use and PCWP value.
Last, the MIMIC-III V.1.4 database only included inpatients
from 2001 to 2012 but did not include patients from more
recent years.

5. Conclusion

In summary, this study suggested that RDW is a promising
independent prognostic marker of sepsis-induced ARDS
and that increased RDW is significantly correlated with poor
prognosis. This study provided support for the risk stratifi-
cation of patients with sepsis-induced ARDS based on
RDWs. However, further multicenter prospective research
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Figure 4: Adjusted hazard ratio in the subgroup analysis.
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is required to assess the exact mechanism underlying the
correlation between RDW and MR and hence further verify
the findings.
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