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Coal and gas outburst is an important risk faced by coal seam mining in the Huainan region of China. In order to control gas
outburst, the gas is predrained by digging a floor gas drainage roadway. To study deformation due to dynamic pressure, the failure
characteristics of the floor, and their effect on the stability of the floor gas drainage roadway, a comprehensive monitoring method
combining Brillouin optical time-domain reflectometry- (BOTDR-) distributed fiber optics and self-potential exploration was
adopted. Dynamic data monitoring of the rock strata between the 11123 working face floor and the floor gas drainage roadway of a
mine in Huainan was carried out. )e field data obtained showed that, when stabilized by rock bolts and other fixed components in
the surrounding rock mass of the floor gas drainage roadway, under the influence of mining, the area of concentrated stress appeared
at a depth of 20.7m, when cracks eventually formed, but the overall structural stability of the surrounding rock mass remained good.
)e stress distribution and crack evolution of the bottom plate under the influence of dynamic pressure showed spatiotemporal
characteristics. Of these, the effect of the lead support stress was 107.48m, and the range of effect of the hysteresis stress was 34.42m.
When the working face mining position arrives and is far from the monitoring station, the failure depth of floor rock stratum shows
the following rule: unchanged in the early stage, deepened continuously in themiddle stage, and finally remained stable. It takes about
eight days for the dynamic adjustment of this process to finally stabilize. )e results of this study can provide guidance for devising
suitable procedures for carrying out intelligent green safety mining and for warning about the hazards of roadway damage.

1. Introduction

In coal and gas outburst mining areas [1], such as those
surrounding the city of Huainan, in north-central Anhui
Province, China, it is often necessary to design suitable floor
gas drainage roadways [2] in advance, at a certain depth
below the working face, and to carry out safety work related
to equipment system layouts, such as coal seam gas ex-
traction and ventilation. In the later stages of mining op-
erations, once the working face has been mined, the original
state of stress balance of the surrounding rock will be altered.
)e transfer of mining stress to the floor rock mass will

eventually lead to the deformation and destruction of rock
strata within a certain depth of the floor. At that time, if the
floor gas drainage roadway is located in the affected area and
the on-site support conditions are insufficient, this will
inevitably lead to the instability of the surrounding rock and
of the floor gas drainage roadway and even render the
operation of the roadway equipment system unsafe [3–5].
For these reasons, we chose to study and determine the
characteristics of floor failure under the influence of dy-
namic pressure and the effect on the stability of the rock
surrounding the floor gas drainage roadway. )e results
obtained in this study will be of great practical importance
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for safe and stable mining and for the support of roadways
under coal seam working faces in areas such as Huainan and
other high gas-rich mining areas.

In recent years, researchers in China and abroad have
carried out numerous studies of the damage and charac-
teristics of the floor under the influence of mining [6–12].
Song et al. [13] set up a mechanics calculation model of the
floor along the inclination of the working face against the
background of confined water mining in the 41503 working
face of a mine and derived, theoretically, the stress distri-
bution and failure characteristics of the floor. Zhang et al.
[14] used seismic computed tomography (CT) detection
technology to dynamically monitor the deformation and
failure of a floor during coal mining. Zhang et al. [15] used
the mutual verification method involving the field strain test
as well as numerical simulations to comprehensively study
the damage depth of a thick mined coal seam. By sorting and
analyzing a large quantity of field-measured data, Zhu et al.
[16] explored the different deformations and failure char-
acteristics of different lithologies and composite floor
structures under the influence of dynamic pressure.

)ere are also abundant research results relating to the
deformation and failure characteristics of rock structures
surrounding roadways [17–24]. Li et al. [25] used a numerical
simulation method to study the mechanism of roadway
failure caused by repeated caving in the Huaibei mining area
and proposed a new supporting scheme. Chen et al. [26] used
the true triaxial analog simulation method to study the
characteristics of strain evolution and fracture of the rock
surrounding a mining roadway under the gradient loading of
dynamic pressure. Hua and Yang [27] used a Brillouin optical
time-domain analysis- (BOTDA-) distributed fiber optical
sensor (DFOS) and close-range photographic technology to
monitor the deformation of the roadway floor during the
process of gob-side entry retaining (GSER) excavation, first
mining, retaining lane, and secondary mining. )e dynamic
evolution characteristics of the deformation of the floor of the
GSER with a large cross section in a deep mine were obtained.
Li et al. [28] used a high-precision microseismic monitoring
system and a roof dynamic monitoring instrument to de-
lineate the floor failure depth of the 2200 working face and
also studied the deformation and failure mechanism of the
4106 material roadway and transportation roadway below the
working face.

Based on the above research results, this study took the
11123 working face and the 11123 floor gas drainage
roadway of a mine in Huainan as an engineering case study.
Using the integrated monitoring method that combines
Brillouin optical time-domain reflectometry (BOTDR)-
DFOS and self-potential exploration, whole-process dy-
namic data monitoring was conducted. )e failure char-
acteristics of the 11123 working face floor were determined,
and the stability of the rock surrounding the 11123 floor gas
drainage roadway under the influence of dynamic pressure
was studied.

)e main contributions of this paper include the fol-
lowing: (1) a comprehensive monitoring technology con-
sisting of distributed strain fiber optics and spontaneous
potential tests was used to monitor the stability of the

surrounding rock under dynamic pressure, which over-
came the problems of single-test means and the small
quantity of measured data obtained in previous studies.)e
results obtained by comprehensive monitoring data are
self-verifying, which improves the reliability of the data; (2)
the response characteristics of the multiphysical field data
and the changes in the stability of the surrounding rock
under dynamic pressure were obtained, which will aid
future studies on the stability of the rock surrounding a
roadway; (3) it was found that the failure depth of floor
strata lags behind the secondary deepening of the coal wall
under the action of mining. According to the spatiotem-
poral evolution characteristics of floor fracture, the char-
acteristics of and time required from the moment of
dynamic adjustment to the formation of a stable stage were
determined.

2. Engineering Geological Conditions

)e 11123 working face of the mine is located in the
Huainan region, and the working face elevation was, at the
time of the study, in the range from −450 to −490m
(working face 11123 belongs to the #3 coal seam). )e
average buried depth of the working face was approximately
470m, the mining strike length of the working face was
approximately 1345m, and the inclined length was 155m.
)e average thickness of the coal seam was 5.5m, and the
average dip angle of the coal seamwas 10°.)e #3 and #1 coal
seams were both gas outburst seams. )e gas content of the
#3 coal seam was 6.6–7.7m3/t, the gas pressure was
1.76–2.44MPa, the gas content of the #1 coal seam was
5.2–6.5m3/t, and the gas pressure was 1.35–2.08MPa. In the
early stages of mining, gas pre-extraction treatment was
carried out for the #3 and #1 coal seams at the same time.
After the standard of gas extraction was reached, mining
operations on the #3 coal seam were carried out. Roof
management was strengthened during the initial caving
stage, and gas management and ventilation were strength-
ened during the mining process to prevent gas from being
trapped in the sandstone layer and causing the gas to exceed
the standard safety limit.

)e 11123 working face was mined to a thickness of
approximately 5m. )ere were no large faults or structures
in the working face. )e lithology and other related infor-
mation of the #3 coal seam are shown in Figure 1. )e 11123
floor gas drainage roadway was located in⑧ fine sandstone
and ⑨ sandy mudstone, with a width × height of
4600mm× 3500mm. )e top and bottom rock layers
consisted of hard and dense limestone. )e roadway was
used mainly for the placing and installation of safety
equipment and systems for gas drainage and ventilation.

)e support scheme of the 11123 floor gas drainage
roadway adopts the support form of “bolt + anchor
net + local anchor cable and grouting”. Some fractured or
weak surrounding rock sections are strengthened in ad-
vance. )e anchor is a strong pretensioned anchor, the
anchor is Φ20∗ 2500mm, the spacing is 700× 700mm, the
anchor cable is Φ21.8∗ 6500mm, and the spacing is
1900× 2000mm. )ree anchor cables are designed
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symmetrically in each roadway section according to the
central axis; the spray layer adopts C20 concrete with a
thickness of 100mm (Figure 2).

3. Integrated Monitoring Scheme

3.1. Distributed Fiber Optical Strain Monitoring Technology.
During the monitoring period, an AV6419-distributed op-
tical fiber tester was used for on-site data acquisition. )e
instrument realizes single-end measurements without a
double-end closed loop, which was very convenient and
meets the complex conditions of underground construction,
layout, and data acquisition.

When the fiber attached to the surface (or inside) of
the target is stretched or squeezed due to the deformation
and failure of the target, the frequency of the Brillouin
backscattered light reflected by the fiber in the strain
region will change. )e distributed optical fiber tester will
measure the received Brillouin backscattered light power

and then obtain the Brillouin frequency shift of each point
on the optical fiber. Finally, according to the linear re-
lationship between the Brillouin frequency shift and
strain, the strain distribution of each part of the target
body was obtained. When the temperature of the target
body changes by only a small amount during the moni-
toring period, the strain value of each point along the
optical fiber can be calculated by the following formula:

vB(ε) � vB(0) +
dvB(ε)
dε

ε, (1)

where ε is the strain value, vB(ε) is the Brillouin optical
frequency shift when the strain is ε, vB(0) is the Brillouin
frequency shift in the original state, and dvB(ε)/d(ε) is the
proportional coefficient, which is about 493MHz.

Some scholars [29–32] in China have introduced this
technology underground to study the deformation and
damage of the roof and the surrounding rock in the mining
process, and the test accuracy and data volume are better
than the conventional testing methods.

3.2. Self-Potential Monitoring Technology. )e data of the
geoelectric field during the monitoring period were tested
dynamically by the network parallel electrical instrument
[33], and the data of the self-potential change in the
monitoring section during the mining process of the
working face were obtained completely.

In the absence of an artificial power supply to the
geological body, the potential difference between any two
points can be observed by the instrument, indicating that
there was a natural electric field (self-potential field) inside
the geological body. However, the self-potential field in the
geological body will change dynamically due to the influence
of groundwater flow and rock mass deformation and
damage. It is believed that these effects will change the
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Figure 2: Cross-section design of the supporting scheme of 11123
floor gas drainage roadway.
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stability of the original charge structure inside the rock mass
and its distribution in space, accompanied by the separation,
movement, and aggregation of the charge at different po-
sitions of the rock mass and then form the dynamic change
of the self-potential field [34, 35].

3.3. System Construction. To understand the damage depth
of the 11123 working face under the influence of dynamic
pressure and its stability in relation to the lower floor gas
drainage roadway, site drilling was designed in the middle of
the⑧ fine sandstone rock layers on the sidewall of the floor
gas drainage roadway and inclined upwards to the initial
mining position of the working face (Figure 3 and Table 1).

Additionally, after the fiber optic cable and electric cable
were implanted into the hole to a predetermined depth by
means of the auxiliary tools, layered grouting was carried out
in the hole and allowed to set there for a period of time
(Figure 4 and Table 2). Each cable was then allowed to fully
couple and solidify in contact with the slurry and the sur-
rounding rock mass, and, once the slurry had reached the
desired strength, data acquisition began on-site.

4. Results and Analysis of Field Data

4.1. Field Data Collection. On-site monitoring took place
from October 31, 2018, to February 25, 2019. )e field data
were obtained during the entire monitoring period for a total
of 57 times and were of good quality.

According to the information provided by the mine
during the monitoring period and the observations of the
on-site personnel, there were no water leakages in the
working face and floor gas drainage roadway during the
entire monitoring period. We consider that the data col-
lected at the site were not disturbed by any seepage field,
such as groundwater. Because of the working shift of the coal
mining team and the interference due to the industrial
electric field, we chose to collect the field data at 2 p.m. each
day.

4.2. Characteristics of Floor Failure and Stability of the
Surrounding Rock in the Floor Gas Drainage Roadway

4.2.1. DFOS Monitoring Results. We selected 12 groups of
fiber optic strain data for processing during the monitoring
period and obtained the corresponding relationship between
the fiber optic strain distribution and the stratum (Table 3
and Figure 5). )e cloud diagram of the fiber optical strain
distribution during monitoring is shown in Figure 6. Fig-
ure 7 shows the cross section of the corresponding rela-
tionship between the support structure of the floor gas
drainage roadway and the stratum.

On October 31, 2018, the working face was still in the
nonmining stage, and at this time, the original stress state of
the surrounding rock had not changed. On November 12,
2018, the fiber optic data changed for the first time, and the
corresponding strain values were +416 and +347 με (areas I
and II). From the analysis of the stable composite rock beam
structure formed by the action of the anchor bolts and the

other fixed components in the surrounding rock of the floor
gas drainage roadway, it is considered that the stress dis-
tribution of the floor gas drainage roadway and its sur-
rounding rock mass under the mining position was changed
by the mining process on the working face. But, because the
floor gas drainage roadway and its surrounding rock mass
were strongly supported by anchoring, etc., they assumed a
combination of high-strength and damage-resistant char-
acteristics, which made the rock mass surrounding the floor
gas drainage roadway better able to transmit stress than the
other layers, over a greater distance, and with a greater
bearing capacity. On November 21, 2018, the tensile strain
values reached +3306 and +1003 με (areas I and II), indi-
cating that an area of concentrated stress had been formed in
the rock mass beyond the control range of the anchor bolts
above the floor gas drainage roadway. At the same time, the
internal stress of the ④ sandy mudstone layer (area III)
changed for the first time, and the tensile strain reached
+517 με. )is analysis shows that the mining lead stress of
the working face was transmitted to the monitoring area
through the ④ sandy mudstone layer under the mining
position.

As the working face advanced continuously and grad-
ually came closer to the monitoring section, the change in
stress of the bottom slate layer affected by mining gradually
increased. On December 12, 2018, the maximum strain
values reached +8149 and +2574 με (areas I and II) and the
strain value of the ④ sandy mudstone layer increased to
+1823 με (area III). )e internal stress of ⑤ fine sandstone
changed rapidly to +1005 με (area IV). According to the
analysis, the effect of the leading stress of the working face
mining position on the rock mass in the monitoring area
increased, and microcracks gradually emerged in the rock
mass. On December 22, 2018, the working face mining
position had just crossed the top of the monitoring hole at
5.9m. During this process, the changes in strain of areas V
and IV were the most obvious, increasing by 1173 and
1755 με, respectively, which showed that the evolution of the
floor crack under the influence of dynamic pressure had
spatiotemporal effects. )e tensile expansion of the floor in
the goaf was obvious.)emicrocracks in areas III, V, and IV
expanded further and joined together to produce macro-
scopic fractures. At the same time, the bottom drum ex-
pansion of the working surface was obvious. )e rock mass
in area I, with a significant concentration of stress, produced
a separation crack, which was developed in the upper part of
the control area of the anchor member (Figure 6). Although
the degree of strain in area II of the surrounding rock of the
roadway was large, it remained stable under the control of
the bolt member and no damage occurred. Further analysis
is carried out below in conjunction with the natural potential
and electrode current data.

Between December 22, 2018, and January 12, 2019, the
overlying rock mass of the goaf collapsed, and crushed and
squeezed the floor rock mass. Areas III and V rapidly de-
creased and stabilized at +601 με; the strain value of area IV
then decreased to +1304 με and remained stable. From
January 12, 2019, to February 25, 2019, the tensile strain in
the mudstone layer in area I gradually decreased and finally
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Figure 3: Plane layout sketch of the 11223 working face.

Table 1: Design parameters of the monitoring hole in the 11123 floor gas drainage roadway.

Technical parameter Monitoring hole Technical parameter Monitoring
hole

Angle with the roadway (°) 30 Drilling elevation angle (°) 20
Distance between orifice and initial mining position
(m) 129.18 Angle between borehole and inclined stratum (°) 24

Actual hole length (m) 46.2 Control vertical height (m) 18.79

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75

Electric cable
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Optical fiber cable
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31#

32#
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0
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Mining direction

40.78m

Figure 4: Schematic diagram of cable arrangement for the integrated monitoring system.

Table 2: Technical parameters of the integrated monitoring system.

Distributed optical fiber monitoring system Self-potential monitoring system
Diameter of fiber optic cable (mm) 5 Number of electrodes 32
Strain coefficient (MHz/%) 499.8 Electrode space (m) 1.5
Maximum break force (N) 2350 Effective length (m) 46.2
Strain fiber optic cable type High-strength metal-based fiber optic cable Control vertical height (m) 18.79
Effective length (m) 46.2 — —
Control vertical height (m) 18.79 — —
Electrode #32, which should be placed outside the monitoring orifice, was also fixed inside the orifice.
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stabilized at +5923 με. In this process, the internal strain in
the rock layer controlled by the anchor rod changed little
and remained at +2844 με. During this period, the stress in
the rock mass under the influence of mining continued to
adjust dynamically and finally formed a new stress equi-
librium state.

Next, we analyzed the process of deformation and failure
during the entire monitoring period through the fiber optic
strain nephogram (Figure 7). From this, it can be seen that
the strain value of area I (the vertical depth was 19.5–20.5m)
was larger than that of the other vertical depth positions.
From an analysis of Figures 5 and 6, area 1 was found to be
located in the ⑥ mudstone layer. Due to the low elastic
modulus of mudstone, which was not in the actual control
range of the anchor bolts, this position was controlled only
by part of the anchor cable. )erefore, the rock mass in this
area was affected not only by the mining of the working face
but also by the surrounding rock support of the roadway,
which first caused the stress to change in this area and then

Table 3: Working face propulsion data record table.

Date of collection Working face mining length (m) Distance between mining location and orifice (m)
2018-10-31 0 129.18
11–12 18.9 110.28
11–21 38.3 90.88
12–02 54.9 74.28
12–12 78.7 50.48
12–22 94.3 34.88
2019-1-02 110.4 18.78
1–12 122.1 7.08
1–21 140.9 −11.72
1–29 153.8 −24.62
2–18 163.6 −34.42
2–25 178.1 −48.92
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Figure 5: Corresponding relationship between strain distribution of the optical fibers and the stratum.
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Figure 6: Sectional view of the corresponding relationship between
the supporting structure of floor gas drainage roadway and the
stratum.
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formed an area of concentrated stress. When the stress in the
mudstone exceeded its bearing strength, the deformation
and failure of the rock mass in this area could not be
controlled and restrained effectively by the anchor cable.
Finally, it ruptured, producing stratified cracks. In area II,
however, which was also affected by many other factors, due
to effective control by the anchor bolts, even though the
internal strain in the surrounding rock that had a high elastic
modulus changed substantially, it still did not cause struc-
tural failure of the rock mass, and the surrounding rock
structure of the roadway as a whole remained relatively
stable [36, 37]. Areas III, V, and IV were only affected by
mining, and so, the strain amplitude of the rock mass was
relatively small.

4.2.2. Self-Potential Monitoring. Comparative analysis of
Figures 8(a) and 8(b) shows that the self-potential varied
considerably, both within and outside the range over which
damage occurred. )e current through each electrode in the
destruction zone decreased slowly as mining of the working
face continued during the monitoring period. When the
propulsion distance of the working face exceeded 58.9m, the
self-potential rose briefly and then dropped sharply, indi-
cating that microcracks had sprouted in the rock mass. )is
was followed by a large fluctuation in the continuous steep
rise and drop, with a maximum fluctuation of 600mA
(Figure 8(a)). When the rock mass was in a state of con-
tinuous damage, the development, penetration, and rupture
of the microcracks alternated and coexisted and the self-
potential signal generally decreased and fluctuated in a
pulse-like manner. Until the working surface advanced by a
distance of approximately 163.6m, that is, until it exceeded
the orifice of 34.42m, the whole structure was in a stable
state. In this process, the overall trend of each electrode was
clear and highly consistent. From Figure 8(b), it can be seen
that there was no obvious fluctuation due to the absence of
severe deformation and damage in the internal structure of
the rock mass, and the data in this range were less consistent
than the data shown in Figure 8(a).)e above results are also
consistent with the findings of researchers such as Liu et al.

[38] and Hao et al. [39]. )ese authors believed that the
amplitude of the self-potential field anomaly caused by the
crack tip discharge during rock rupture was much larger
than that caused by rock deformation. Judging from the self-
potential measured by the electrodes at different depths in
the borehole, the damage to the bottom plate was 0–20.7m
(electrodes #1–26 were inside the destruction zone). )e
self-potential data were basically consistent with the depth of
damage data, as measured by the fiber optics.

To further verify the above analysis, the electrode
current data obtained during monitoring were processed
into a cloud map (Figure 9). From this map, it can be seen
that as mining neared the monitoring hole, the electrode
current at the bottom plate at a depth of 0–20.5m de-
creased overall, indicating that the rock mass in this range
was deformed due to the difference in rock lithology.
)erefore, there were differences in how much the elec-
trode currents decreased in the various rock formations,
and stratification was obvious. By comparison with Fig-
ure 7, it can be seen that the electrode currents in areas I,
III, IV, and V begin to decrease, and the corresponding
fiber optic strain values begin to increase, which indicates
that the rock mass in this area was damaged by stress and
cracks; the strain value increased after the fiber optic was
pulled, and the electrode current decreased because of the
poor contact between the electrode and the rock mass.
With the mining of the working face exceeding the orifice,
the vertical depth of the floor was 0–20.5m in the failure
area, the electrode current increased, and the corre-
sponding strain decreased due to the collapse of the
overlying rock mass and the compression of the floor crack.
In the process of mining, the electrode current in area I
showed the largest decrease and the most obvious change
in the value of strain, which was caused by the concen-
tration of stress and the formation of separated layer
cracks. Compared with the electrode current data gathered
during the entire monitoring period, the electrode current
in the upper part of the floor gas drainage roadway was
increasing (area II). Although there was a certain amount
of stress in the surrounding rock of the bottom extraction
roadway, due to the anchoring effect of the anchor bolts, a
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Figure 7: Fiber optic strain distribution nephogram during the monitoring period.
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composite rock beam with enhanced damage resistance
and bearing capacity was formed, which was pulled on by
the deep anchoring end of the surrounding rock of the
roadway [40, 41]. By limiting its degree of deformation and
failure, the electrode current and strain in that region
increased at the same time.

According to the monitoring data and the actual ob-
servations of field personnel, there were no fracture and
collapse of the surrounding rock of the floor gas drainage
roadway under the strong supports, and the entire floor gas
drainage roadway remained relatively stable under dy-
namic pressure.
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Figure 8: Self-potential curves at different depths.
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4.2.3. Range of Effects of “Leading” and “Lagging” Stresses of
theWorking Face. Measurement points were selected at the
fiber optic positions corresponding to the electrode posi-
tions on the cable in order to extract and process the data,
which were combined with the natural potential and strain
data in order to analyze the range of effects of the “leading”
and “lagging” stresses of the working face (Figures 8 and
10).

By using natural potential exploration technology and
BOTDR-distributed fiber optic testing technology, we were
able to accurately measure and verify the deformation and
failure characteristics as well as the evolution trend of the
floor rock mass during the mining process of the 11123
working face. Our analysis shows that the mining distance
of the 11123 working face of 21.7m did no effect on the
rock strata in the monitoring section. Until the mining
distance was more than 21.7m, the leading stress did not
affect the surrounding rock mass of the floor gas drainage
roadway in the monitoring area and gradually formed the
area of concentrated stress. )e distance of the mining
working face was within 58.9m, and there was no obvious
fracture in or other damage to the rock floor. When the
propulsion distance exceeded 58.9m, the self-potential of
the rock mass in the failure zone of the floor plate had a
cyclical fluctuating pattern of a steep rise followed by a
steep drop, while the strain value increased rapidly at the
same time. During this process, the floor rock mass pro-
duced cracks and rapidly developed into the deep. Until the
mining face exceeded the orifice, the overlying rock mass
collapsed to fill the goaf and transferred the stress to the
floor rock mass, causing the expansion crack generated by
the original tension to gradually shrink. When the working
face mining distance exceeded 163.6m, the fluctuations in
the self-potential and the strain data tended to be stable,
indicating that the crack in the rock mass in the monitoring
section shrank to reach its final degree of stability during
this process.

According to this comprehensive analysis, we consider
that the effect of the lead stress on the 11123 working face
was 107.48m, and the range of effect of the lagging stress
was 34.42m.

4.3. Variation in Multiparameter Data at Different Mea-
surement Point Depths. By analyzing the strain, self-po-
tential, and electrode current data, the failure of the floor
under the influence of dynamic pressure and the stability of
the surrounding rock mass of the floor gas drainage roadway
are discussed. )e floor failure depth of the 11123 working
face was 0–20.7m (electrodes #1–26 were located in it), and
the surrounding rock structure of the floor gas drainage
roadway was relatively stable (electrodes #27–32 were lo-
cated in it). Further analysis of the variation in and rela-
tionship of the multiparameter data at different depths
under the influence of dynamic pressure reveals the dif-
ferences in dynamic evolution and the mechanism of
changes in the rock mass of the destruction zone and the
floor gas drainage roadway during the mining process. We
selected six groups of data from different measurement point
depths for analysis (Figure 11).

)e changes in data at each measurement point located
within the damage range of the floor (Figures 11(a)–11(d))
were observed. In the early stage of coal mining, the values of
the self-potential data obtained at each measurement point
gradually decreased by approximately 250mV. )e overall
decrease in amplitude of the electrode current was not
obvious and was approximately 3mA only. However, the
strain at each measuring point increased, but the range of
values was different because of the different rock lithologies.

When the mining distance of the working face exceeded
58.9m, the data collected from different measurement point
depths changed gradually and by a significant amount. )e
self-potential fluctuated considerably, with a maximum
amplitude of 400mV, and then the fluctuation weakened
before it finally stabilized. )e electrode current, in contrast,
showed a rapid decrease. )is process continued until the
working surface mining distance reached 118m, and the
electrode current value dropped by 18mA. By this stage, the
mining position had crossed the measuring point by ap-
proximately 26m. Subsequently, the current value climbed
quickly to 73mA until the late monitoring period, while the
current value slowly decreased and eventually stabilized at
68mA. )e strain value rose rapidly and then slowly de-
creased (Figure 11(a)).
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)e values obtained for the measurement points at
depths of 9.18 and 13.45m were similar. Affected by mining,
the self-potential in the rock also showed large fluctuations,
and the maximum fluctuation was approximately 550mV.

)e decrease in electrode current in this depth range was
small, at approximately 10mA. Subsequently, there was only
a small increase before a steady state was reached. )e strain
value rose rapidly and then fell (Figures 11(b) and 11(c)).
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)e #24 measurement point was located in the stress
concentration area under the base plate, and the maximum
value was 5800 με. )e strain value decreased only slightly
and finally stabilized at 5100 με (Figure 11(d)).)e change in
amplitude of the same parameter at different measurement
point depths was different, which was affected mainly by the
differences in the rock lithology and the depth from the
floor.

Under the influence of dynamic pressure, the defor-
mation and failure of the rock mass in the range of floor
failure were violent and obvious, and the dynamic changes in
the self-potential, electrode current, and strain value were
captured effectively at each measurement point depth. It
should be noted that there were significant differences be-
tween the electrode currents obtained at the #3 measuring
points close to the bottom plate and those obtained at the
other positions. It is believed that the cracks in the rock mass
were still developing and penetrating as the mining position
exceeded the upper part of the measuring point. During this
period, the compressive stress induced by the collapse of the
overlying rock mass was not transmitted to the bottom slate
layer, so that the electrode current was significantly reduced.
When the mining distance of the working face exceeded

118m, the electrode current stopped falling and then rose
rapidly. )is phenomenon shows that the stress in the
overlying rock mass could be transferred effectively to the
bottom plate when this happened, and this process took
eight days to complete. From this, we infer that, after mining,
there is a process of secondary failure and deepening in the
floor rock mass. After a period of time, the downward stress
of the overlying collapsed rock mass can be completely
transferred to the floor, making the cracks in the shallow
rock mass of the floor squeeze or close until the floor is
finally stable, and this process can last for eight days or
potentially longer. )erefore, attention should not only be
paid to the deformation and failure of the floor rock mass in
front of the mining but the failure of the floor rock mass
behind the mining should also continue to be monitored.

Finally, we observed the changes in the parameters
captured at two measuring points near the surrounding rock
mass of the floor gas drainage roadway and then analyzed
and determined the stability of the surrounding rock mass
(Figures 11(e) and 11(f)). In contrast to the above four data
plots, there were significant differences in the data presented
in Figures 11(e) and 11(f). It is clear that the electrode
currents obtained from these two measuring points do not

400

300

200

100

0

–100

–200

–300

Se
lf-

po
te

nt
ia

l (
m

V
)

0 20 40 60 80 100 120 140 160 180
Propulsion distance of 11123 working face (m)

1050

900

750

600

450

300

150

0

St
ra

in
 (μ

ε)

90

85

80

75

70

65

60

El
ec

tr
ic

 cu
rr

en
t (

m
A

)

Location of
3# measuring point Orifice

location

(a)

2000

1500

1000

500

0

St
ra

in
 (μ

ε)

400

300

200

100

0

–100

–200

–300

Se
lf-

po
te

nt
ia

l (
m

V
)

0 20 40 60 80 100 120 140 160 180
Propulsion distance of 11123 working face (m)

90

85

80

75

70

65

60

El
ec

tr
ic

 cu
rr

en
t (

m
A

)

Location of
8# measuring point Orifice

location

(b)
3000

2500

2000

1500

1000

500

0
St

ra
in

 (μ
ε)

400

300

200

100

0

–100

–200

–300

Se
lf-

po
te

nt
ia

l (
m

V
)

0 20 40 60 80 100 120 140 160 180
Propulsion distance of 11123 working face (m)

90

85

80

75

70

65

60

El
ec

tr
ic

 cu
rr

en
t (

m
A

)

Location of
15# measuring point Orifice

location

(c)

6000

5000

4000

3000

2000

1000

0

St
ra

in
 (μ

ε)

400

200

0

–200

–400

–600

Se
lf-

po
te

nt
ia

l (
Vm

)

0 20 40 60 80 100 120 140 160 180
Propulsion distance of 11123 working face (m)

90

85

80

75

70

65

60

El
ec

tr
ic

 cu
rr

en
t (

m
A

)

Location of
24# measuring point

Orifice
location

(d)

1000

800

600

400

200

0

St
ra

in
 (μ

ε)

–400

–500

–200

–300

–100

0

–600

Se
lf-

po
te

nt
ia

l (
m

V
)

0 20 40 60 80 100 120 140 160 180
Propulsion distance of 11123 working face (m)

98

96

94

92

90

88

El
ec

tr
ic

 cu
rr

en
t (

m
A

)

Location of
29# measuring point

Orifice
location

(e)

–400

–500

–200

–300

–100

0

–600

Se
lf-

po
te

nt
ia

l (
m

V
)

0 20 40 60 80 100 120 140 160 180
Propulsion distance of 11123 working face (m)

1000

800

600

400

200

0

St
ra

in
 (μ

ε)

104

102

100

98

96

94

El
ec

tr
ic

 cu
rr

en
t (

m
A

)

Location of
31# measuring point

Orifice
location

(f )

Figure 11: Multiparameter variation in the data obtained at different measuring point depths: (a) 6.13m; (b) 9.18m; (c) 13.45m;
(d) 18.94m; (e) 22.6m; (f ) 23.21m.
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show a slow decrease, then a significant decrease, followed
by an increase. In contrast, the electrode current shows a
step-by-step rising phenomenon. It should be noted that
each increase in electrode current is followed by a small
decrease. We believe this to be a dynamic self-adjustment
process of concentration and release of the stress in the
surrounding rock under the joint action of working face
mining and the roadway support structure. )e existence of
this process is an important indicator of the stability of the
surrounding rock structure of the floor gas drainage road-
way. In addition, the strain value during the entire moni-
toring period showed a slow rising trend, which finally
stabilized, and this process was basically controlled within
1000 με. Combined with the natural potential data, it can be
shown that the whole process fluctuated continuously within
a certain range, which was different from the changes in the
previous four measurement points.

5. Discussions

Based on the method using comprehensive monitoring of
BOTDR-distributed fiber optics and spontaneous potential
exploration, the floor failure characteristics and bottom
extraction roadway stability of the 11123 working face of a
coal mine in Huainan, Anhui Province, China were studied.
)e variations in the multiparameter data obtained at dif-
ferent depth measurement points were analyzed.

In summary, we find that the changes in the various
parameters of rock formation under the influence of dy-
namic pressure are obvious and can reflect the deformation
and failure process of the rock mass at different depths of the
bottom plate. )ere are still some differences between the
different depth measurement points in the failure range due
to the different lithologies of the rock strata and their lo-
cation relative to the floor. In the wake of coal mining, there
is a process of secondary failure and deepening of the floor
rock mass in the goaf. After a period of time, the downward
stress of the overlying collapsed rock mass can be fully
transmitted to the floor, making the cracks in the shallow
rock mass of the floor squeeze or close until the floor is
finally stable, and this process lasts approximately for eight
days. )e electrode current in the surrounding rock of the
floor gas drainage roadway showed a step-by-step rising
phenomenon. It should be noted that each increase in the
electrode current was followed by a small decrease. We
believe that this is a dynamic self-adjustment process of the
concentration and release of the stress in the surrounding
rock under the joint action of working face mining and the
roadway support structure. )e existence of this process is
an important indicator of the stability of the surrounding
rock structure of the floor gas drainage roadway.

Under the influence of dynamic pressure, the rock mass
will be deformed or even damaged macroscopically. Before
the macroscopic change, the microcosmic complex dynamic
process of physical and chemical fields will be formed in the
rockmass. It is difficult to effectively capture the information
in this stage by conventional testing methods (pressure
gauge, displacement gauge, borehole TV, etc.) [5, 42]. )e
comprehensive monitoring technology adopted in this study

can capture the change information of physical and chemical
fields of rock mass at macro- and microlevels
[8, 12, 29, 30, 34, 38]. Coal mining changes the original stress
field distribution in the rock body:

(1) In the stage of rock elastic deformation, the change of
stress field in rock mass is not obvious, but the
distributed strain sensing optical fiber can capture
the strain change greater than 25 με and can reflect
the compression or tension stress of rock mass
[12, 30, 31]. In addition, there are a large number of
primarymicrocracks in the deep rockmass under the
natural state. )e increase and decrease of the stress
change rate in the rock mass will cause the change of
the distance between the microcharges and then
cause the change of the density of the polarization
charge in the rock mass, forming the polarization
current, resulting in the movement of the free charge
and the change of the natural potential [34, 35, 38].

(2) With the increase of mining stress field, the rock
mass will have obvious deformation, the rock po-
rosity will also change, and the primary or secondary
microcracks will increase and expand. )e distrib-
uted strain sensing optical fiber and spontaneous
potential exploration can capture the macroscopic
and microscopic structural change characteristics of
rock mass in the whole process of stress [12, 30, 38].
Once the load of rock mass exceeds its bearing limit,
microcracks will connect with each other and pro-
duce macro cracks, that is, rock mass fracture and
instability. In this process, a large number of free
electrons leave the fracture area of rock mass in-
stantaneously, resulting in electrical property mu-
tation. When the rock mass is in a continuous
damage state, the spontaneous potential will form a
pulse-like fluctuation. During this period, the de-
formation and failure state of the rock mass can also
be captured by distributed strain sensing optical fiber
[35, 38, 39]. In addition, if there is fracture water flow
in the rock mass, the distribution range and flow
situation of the water body can be mastered by
means of electrical prospecting technology such as
spontaneous potential [43].

)e multifield monitoring method has the following
advantages compared with the conventional testing
methods: (1) the conventional test methods usually use a
single-test method, usually from the macromeasurement of
the movement and deformation of rock mass, the devel-
opment and fracture of rock mass, etc. Our research can
capture the response characteristics and change rules of
multifield data caused by deformation and damage of rock
mass in the process of mining from macro- and micro-
perspectives. Also, different sensors have their own ad-
vantages. )e results obtained by comparative analysis of
various data are more reliable. (2) )e conventional test
methods are mostly point acquisition, with less measure-
ment data and shorter sensor survival time, so it is difficult to
continuously obtain the data after the working face mining
exceeds the measurement point. In this study, the sensor has
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the advantages of strong anti-interference, high surviv-
ability, more data points, and large amount of data. It can
completely capture the multifield data information of rock
mass damage change in each stage of mining.

In this study, multiphysical field monitoring technology
is applied to monitor the stability of roadway surrounding
rock. In addition, this set of multifield monitoring system
can also be applied to the monitoring of roof and floor rock
deformation failure, protection of coal pillar stability, and
other related monitoring.

6. Conclusions

(1) )e extent of damage to the working face was
concentrated mainly in the upper mudstone layer of
the top anchor of the floor gas drainage roadway, and
the depth of damage was approximately 20.7m. )e
overall stability of the surrounding rock mass
structure of the floor gas drainage roadway was good.

(2) )e influence of mining pressure on the bottom plate
had the characteristics of “advance” and “lag” con-
tinuation over long distances. Of these, the range of
effect of the leading support stress of the 11123
working face was 107.48m and that of the lagging
stress was 34.42m.

(3) Under the influence of dynamic pressure, the evo-
lution of floor cracks showed spatiotemporal char-
acteristics. In the wake of coal mining, there is a
process of secondary failure and deepening of the
floor rockmass in the goaf. After a period of time, the
downward stress of the overlying collapsed rock
mass can be fully transmitted to the floor, making the
cracks in the shallow rock mass of the floor squeeze
or close until the floor is finally stable, and this
process lasts approximately for eight days.

(4) By installing a fiber optic cable and an electric cable
monitoring system in the monitoring hole, the
process of damage to the bottom plate was com-
pletely captured. A comprehensive technical evalu-
ation system with multiple physical fields and
parameters was designed and implemented. )e
results of this study can provide guidance for de-
vising suitable procedures, for carrying out intelli-
gent green safety mining, and for warning about the
hazards of roadway damage.

)e limitations of this study and the future direction of
this work are as follows: (1) only one monitoring hole is
designed on-site, and the data obtained can only objectively
reflect the actual situation of the area. )erefore, in the later
research work, it is necessary to design multiple monitoring
boreholes in different directions in the surrounding rock of
roadway, so as to obtain comprehensive and multiangle
deformation and failure of surrounding rock; (2) in the
study, the monitoring method of multiple physical fields is
used to obtain a large number of reliable data, but it still
needs to be compared with some traditional verification
methods. In the later research, we need to further strengthen

the relevant verification and comparison work; and (3) at
present, the field monitoring work generally relies on the
underground data collection of researchers, and the degree
of intelligent collection is not high. In the future, the un-
derground sensor monitoring system needs to be connected
to the ground remote automatic monitoring and early
warning platform through 5G network technology to realize
unmanned, automatic, intelligent and integrated data ac-
quisition, processing and analysis, forecasting, and early
warning.
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-e quality of in situ data is key to calculating resistance factor of bored piles. However, it is difficult to summarize accuracy data
due to various uncertainties in engineering. -is paper employs the Bayesian method and mathematical statistics theory to put
forward an estimation method for updating in situ data. A testing database (33 tests in noncohesive soils and 53 tests in cohesive
soils) of bored piles is summarized. -e model factor of bored piles is quantified as the ratio of the measured capacity to the
calculated capacity. -e proposed method is used to classify summarized data into three categories, which are “good data,”
“general data,” and “bad data.” -e “bad data” are discarded because of bad contribution to calculation, and Bayesian theory is
incorporated into updating the model factor statistics. -ree methods are used to calculate the reliability index and resistance
factor of bored piles, and the results show that the reliability index and resistance factor are sensitive to the quality of data. Finally,
the available values of resistance factors are proposed based on resistance factor design for bridge design specification, which can
offer references to revision relevant specifications. -e proposed method can be used to update other geotechnical data.

1. Introduction

Bored piles, especially large-diameter piles, are commonly
employed to support high-rise buildings and bridges in
China and other countries because of their ability to sustain
large load [1–5]. -e safety of bored pile foundation is
significantly important. Due to various uncertainties, the
design parameters should have random variances. However,
design parameters are described as constants by allowable
stress design (ASD) philosophy, which is unreasonable and
unscientific. To overcome the deficiencies, load resistance
factor design (LRFD) method is mandated by American
Association of State Highway and Transportation Officials
[6]. -erefore, resistance factor calculation of bored piles is
of engineering significance.

-e resistance factor is calculated incorporating in re-
liability analysis methods based on pile load test data [7, 8].
Enough-accuracy in situ data are necessary to calculate
resistance factor of bored piles. However, it is difficult to
collect accuracy in situ data to calculate reliability index and
resistance factor because of various uncertainties, for

example, parameter uncertainty, calculation model uncer-
tainty, testing random error, and systematic error. A large
number of investigations are carried out to calibrate resis-
tance factor of driven piles [7–16], and significant
achievements have been developed. However, few investi-
gations about resistance factor of bored piles have been
reported.

Parameter uncertainty and model uncertainty are two
troubles for pile foundation designers. Numerous investi-
gations are conducted to study parameter uncertainty, which
shows that parameter uncertainty contains random error of
monitor, system error, statistical uncertainty, and so on.
Model uncertainty is mainly caused by simplified calculation
model. European design specification of geotechnical en-
gineering (EN997-1) clearly suggests that a model revised
factor should be incorporated when the pile capacity is
calculated using the simplification model [17]. However, this
specification does not specify revised factor values and only
suggests that different countries should adopt different
values. Jones et al. [18], Kulhawy and Trutmann [19], Lacsse
and Nadim [20], Meyerhof [21], and Phoon and Kulhawy
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[22, 23] study model uncertainty based on lots of in situ data
of pile capacity, which shows that enough-accuracy data are
necessary to solve model uncertainty problem. However, it is
difficult to get enough-accuracy data due to various un-
certainties. In addition, the quality of collected data is not all
perfect, and some of them are considered as “bad data” or
“data outliers.” It is necessary that data optimization is
incorporated into calculating resistance factor of bored piles.

-is paper puts forward a Bayesian estimationmethod to
update the in situ data of bored piles, and three reliability
index calculation methods are incorporated into calculating
the reliability index of pile capacity using the processing
data. -en American LRFD for Bridge Design Specification
is used to estimate the resistance factor of bored piles.

2. Bayesian Optimization Method

Bayesian principle is a tool to update the probability dis-
tribution using new information. Assuming that the prior
distribution of a random variable (X) is fX

′(X), its posterior
distribution can be written as [24]

fX
″ (X) � K · L(X) · fX

′ (X), (1)

where fX
″(X) is posterior distribution of X; K is a nor-

malization constant; and L (X) is likelihood function.
Normal distribution and log-normal distribution are fre-
quently employed to fit probability distribution of pile ca-
pacity [25].

Assume that n values of X are collected from engi-
neering, which are described as X � (X1, X2, . . . , Xn). -e
mean (μp) and standard variance (σp) are

μP �
1
n



n

i�1
Xi,

σp �

����������������

1
n − 1



n

i�1
xi − μx( 

2




.

(2)

Assume that μK and σK are considered as the mean and
standard variance of likelihood function. If X obeys normal
distribution, the posterior mean (μU) and variance (σU) are

μU �
μPσK + μKσ

2
P

σ2P + σ2K
, (3)

σ2U �
σ2Pσ

2
K

σ2p + σ2K
. (4)

If X obeys log-normal distribution, it can be translated
into normal random variable through dealing X with natural
logarithm, which is described as ln X. -e mean (μlnX) and
standard variance (σ lnX) of lnX are

μlnX � exp μU + 0.5σ2U , (5)

σ2lnX � μlnX exp σ2U  − 1 . (6)

-emodel factor is frequently represented as the ratio of
the measured capacity to calculated capacity [1, 7, 8]:

λ �
Qm

Qp

, (7)

where λ is model factor of pile capacity; Qm is the measured
pile capacity; andQp is the calculated pile capacity. Numerous
investigations show that model factor is a random variable
and obeys log-normal distribution [1, 2, 7, 10, 13, 14].

To improve accuracy of collected data from engineering,
this paper employs the biased factor of λ, which is shown in
the following equation [26]:

ζ i �
λi − λR




λR

, 1≤ i≤ n, (8)

where λi is the ith model factor; ζ i is ith biased factor of λ;
and λR is the mean of λ.

Based on equation (8), the data are classified as follows
[26]:

(1) If ζ i < 0.25, the data are defined as “good data” be-
cause it is near to the fact data.

(2) If 0.25≤ ζ i < 0.5, the data are defined as “general
data.”

(3) If ζ i ≥ 0.5, the data are defined as “bad data.” “Bad
data” are identified as extreme values, which should
be discarded.

“Good data” are considered to be more reliable and
should be treated as the prior information in estimation of
the population statistics. However, the sample size of the
“good data” is not sufficient to represent the total.-is paper
employs Bayesian updating technique to evaluate the
probability characteristics of the resistance bias factor for
bored piles. -e “general data” are treated as prior infor-
mation, and the “good data” are treated as likelihood in-
formation. -en, the updating model factor statistics can be
obtained using equations (3)–(6).

3. Resistance Factor Estimation

-is paper summarizes various bored pile capacity data
shown in Tables 1 and 2 [1]. -e data are divided into two
groups, which are the data in noncohesive soil (D-NC) and
the data in cohesive soil (D-C).

Dithinde et al. [1] use load-displacement curves
(shown in Figure 1) to improve the quality of collected
data. -e characteristic of Case Numbers 25 curve is far
away from other curves; it falsely needs to be discarded. In
addition, Dithinde et al. [1] employ Box-Plots Method to
detect that Case Number 24 and Case Number 26 are
outliers. -erefore, Case Numbers 24, 25, and 26 should
be discarded. Figure 2 shows the scatter diagram of the
remaining data, which indicates that there are no data
deviating markedly from other data. However, it does not
mean that the remaining data are absolutely reliable. -is
paper will use the proposed method to update remaining
data.
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-e classified results are shown in Tables 3 and 4. -ere
are 21 and 38 pieces of data, of which bias factor is less than
0.25 in noncohesive soil and cohesive soil, respectively. -e
in situ uncertainties have little contribution to these data
classified as “good data.”-ere are 8 and 12 pieces of data, of
which bias factor is larger than 0.25 but less than 0.50 in
noncohesive soil and cohesive soil, respectively, considered
as “general data.” However, the bias factors of Case Number
15 in noncohesive soil and Cases Numbers 37, 68, and 69 in
cohesive soil are 0.5187, 0.5271, 0.7315, and 0.5203, re-
spectively. -ese data are classified as “bad data.” -ese data
can cause insecurity to engineering and should be discarded.

Log-normal distribution is used as the distribution of
model factor, and the model factor statistics are presented in
terms of the mean and coefficient of variation (COV). Based
on equations (5) and (6), the updating model factors sta-
tistics are obtained in Table 5 for reliability analysis and

resistance factor calculation. -e coefficient of variation of
updating data is minimum. -e coefficient of variation for “
general data” is maximum. In summary, the updating model
factors are reliable enough to calculate the reliability index
and resistance factor of bored piles.

According to reliability theory, the limit state equation of
bored pile capacity is [16]:

g R, QD, QL(  � R − QD − QL, (9)

where R is vertical pile capacity (kN); QD is dead load (kN);
and QL is live load (kN). -ree methods are employed to
calculate the reliability index.

3.1.First-OrderReliabilityMethod. If the three parameters in
equation (9) obey log-normal distribution, the calculation
formula of reliability index can be written as [6]

β �
ln λRFOS QD/QL(  + 1( ( / λQ D QD/QL(  + λQL  

��������������������������������
1 + COV2

QD + COV2
QL / 1 + COV2

R  



 
��������������������������������
ln 1 + COV2

R  1 + COV2
QD

+ COV2
QL 

 , (10)

Table 1: Load testing data of pile capacity in noncohesive soil.

Case number Ds (mm) DB (mm) L (m) s (mm) Qp (kN) Qm (kN) a b
1 430 430 8 0.42 1321 1375 0.06 0.99
2 600 750 9 0.76 3783 4600 0.74 0.94
3 750 600 11 1.2 2705 3000 0.40 0.97
4 360 350 7.8 35 1084 1050 7.98 0.61
5 400 400 9.5 5.6 1202 1357 1.40 0.89
6 400 400 9.5 10.1 1202 1380 1.45 0.92
7 400 400 8 6 1131 1050 0.80 0.92
8 400 400 9.5 5 1202 1225 1.97 0.84
9 400 400 3 11 1178 840 3.70 0.72
10 520 520 16.5 12.7 6754 5600 3.91 0.86
11 430 430 11.5 3.41 1287 1250 0.75 0.94
12 450 450 9 0.97 1145 1500 2.08 0.80
13 400 400 10 50 940 970 3.88 0.74
14 400 400 7 70 679 540 2.89 0.73
15 500 500 7.8 75 1226 600 10.93 0.46
16 500 500 10 77 1583 1175 5.29 0.59
17 400 400 11 41 605 800 5.92 0.72
18 400 400 9.2 57 472 480 7.87 0.58
19 500 500 9.5 60 793 625 8.13 0.44
20 500 500 11.8 62 1060 1025 10.46 0.51
21 500 500 12.3 60 916 1160 4.29 0.70
22 500 500 14.5 80 1132 1500 3.90 0.75
23 305 305 13 40.3 2028 2010 8.44 0.50
24 305 305 13 6.4 3051 6000 4.80 0.60
25 305 305 13 97 2028 1200 1.30 0.53
26 305 305 13 18.3 3051 4650 1.13 0.97
27 520 760 12.2 50 2563 1690 2.97 0.83
28 520 760 12.2 93 2478 1620 3.36 0.84
29 520 760 12 26.5 2111 1650 5.36 0.80
30 520 760 12 35 2451 2100 4.60 0.70
31 520 760 15 23.3 2974 2680 8.80 0.85
32 520 760 6 3.5 3644 3650 0.06 0.99
33 520 760 8 5 3739 5600 0.74 0.94
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where FOS is the factor of safety according to allowable stress
design method; λQD and λQL are the partial factors of dead load
and live load, respectively; COVQD and COVQL are the coef-
ficients of variation of dead load and live load, respectively;

Table 5 gives the means and coefficients of variation for
“updating data,” “good data,” and “general data,” and the
specifications give the load statistics; then the reliability index
can be calculated using equation (10), which is described as βMvF.

Table 2: Load testing data of pile capacity in cohesive soil.

Case number Ds (mm) DB (mm) L (m) s (mm) Qp (kN) Qm (kN) a b
34 600 600 9 0.59 4807 4800 0.48 0.96
35 600 600 11.5 2.7 6447 4100 2.87 0.82
36 750 750 21.8 2.34 6521 7100 3.55 0.71
37 350 350 17.3 0.18 1398 760 0.05 0.99
38 610 610 6.5 21.19 2062 2300 3.40 0.80
39 600 600 6.5 13.5 3280 3100 4.96 0.84
40 600 800 24 12 2545 3360 12.43 0.64
41 610 610 9 22.9 3040 2650 5.30 0.72
42 610 610 7 1.65 2235 1800 1.08 0.90
43 750 750 13 37 4179 3700 3.05 0.80
44 450 450 9 1.79 3658 2930 1.76 0.88
45 350 350 5 1.7 1196 1700 2.55 0.76
46 500 500 6 1.7 2333 1900 2.85 0.76
47 600 600 6 85.3 707 520 2.65 0.62
48 450 450 6 20.3 1225 1175 0.82 0.94
49 300 300 6 14.1 975 1080 1.19 0.86
50 600 600 9.6 4.4 3223 3500 2.92 0.80
51 400 400 8.7 2.9 1221 1240 0.82 0.93
52 350 350 8.7 9 834 825 1.76 0.84
53 410 410 11 0.95 1444 1450 1.45 0.87
54 615 615 12 36 2375 3000 4.83 0.75
55 615 615 12 35 1948 2450 3.92 0.74
56 610 610 7 25.4 1184 1400 2.43 0.72
57 610 610 1.5 17.8 462 510 1.00 0.93
58 500 500 7.8 5.58 2392 3600 2.67 0.84
59 430 430 6.5 4.49 907 1150 3.36 0.74
60 450 600 15.5 4.19 1818 2310 2.98 0.82
61 750 750 10.2 1.89 5869 8500 3.94 0.79
62 450 450 8 45.53 1292 1230 8.40 0.50
63 450 450 8 22.7 1292 1820 1.66 0.85
64 450 450 8 3.93 2110 2580 1.52 0.89
65 450 450 8 4.83 2110 2670 2.14 0.86
66 450 450 8 4.0 2110 2790 2.39 0.84
67 450 450 8 3.35 2110 2900 2.20 0.85
68 450 450 8 2.85 2110 4200 3.86 0.76
69 450 450 8 3.2 1602 2800 1.74 0.87
70 450 750 4.5 2.96 8906 9600 4.22 0.76
71 430 430 7 1.19 1156 1660 1.67 0.86
72 550 550 6 6.57 2916 4800 1.46 0.90
73 910 910 12 1.3 5088 7050 1.07 0.92
74 910 910 9 1.8 5088 5900 0.99 0.93
75 910 910 9 1.16 7648 9700 4.58 0.72
76 910 910 9 0.68 4721 7000 1.78 0.86
77 530 430 8 3.38 1955 1880 3.63 0.75
78 600 600 14.9 2.13 4230 5430 3.48 0.79
79 600 600 14.6 3.26 4196 3000 1.31 0.92
80 750 750 15.4 2.35 6153 6250 1.93 0.89
81 600 600 14.7 1.74 4207 4450 1.95 0.87
82 750 750 15.7 1.95 10172 13000 5.37 0.75
83 500 500 7.2 2.2 3294 3300 1.64 0.87
84 750 750 7.2 1.6 6266 4810 0.88 0.93
85 500 500 7.2 9.5 1901 2200 2.79 0.81
86 750 750 7.2 7.2 3515 5300 4.03 0.77
Note. Ds is the pile shaft diameter; DB is the pile bottom diameter; L is the pile length; s is the final settlement of load tests; a and b are two hyperbolic curve-
fitting parameters.
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3.2. Design PointMethod. -e limit-state function is linear
at a point on the failure surface; its performance function
is [6]

g � ln
FOS λR QD/QL(  + 1( 

λQD QD/Q L(  + λQL
 . (11)

All the parameters in equation (11) have the same
meanings as equation (10).-e calculation can be carried out
using MATLAB software, which is described as βAF.

3.3. Monte Carlo Simulation Method. Monte Carlo simu-
lation method is an accuracy method to calculate reli-
ability index, which is employed for comparison with the

Q
/Q
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Figure 1: Normalized load-settlement curves of load test data.
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Figure 2: -e scatter diagram of testing pile capacity and calculation pile capacity.

Table 3: Classified results of load test data in noncohesive soil.

Good data General data
Case number λR ζ i Case number λR ζ i Case number λR ζ i

1 1.04 0.02 14 0.80 0.22 9 0.71 0.30
2 1.22 0.20 18 1.02 0.00 12 1.31 0.29
3 1.11 0.09 19 0.79 0.22 16 0.74 0.27
4 0.97 0.05 20 0.97 0.05 17 1.32 0.30
5 1.13 0.11 21 1.27 0.24 22 1.33 0.30
6 1.15 0.13 23 0.99 0.03 27 0.66 0.35
7 0.93 0.09 29 0.78 0.23 28 0.65 0.36
8 1.02 0.00 30 0.86 0.16 33 1.50 0.47
10 0.83 0.18 31 0.90 0.11 — — —
11 0.97 0.04 32 1.00 0.00 — — —
13 1.03 0.01 — — — — — —
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accuracy of other calculation methods. Its performance
function is

g � FOS λR

QD

QL

+ 1  − λQD
QD

QL

+ λQL . (12)

-e calculation can be carried out using MATLAB
software; the times of simulation are 10 million, described as
βMCS.

-e values of λQD, λQL, COVQD, and COVQL can be
obtained according to LRFD for Bridge Design Specification.
3.69 is selected as the value of (Q D/Q L) [27].

Figures 3 and 4 show the calculation results of reliability
index. -e results indicate that the deviation of reliability
index for “good data” and “general data” is larger than 1.0,
which is caused by the quality of data. However, the

reliability index of “good data” is near to the reliability index
of “updating data.” In addition, reliability index is sensitive
to soil type. Reliability index in cohesive soil is larger than
that in noncohesive soil.

-e formula of load and resistance factor design method
is [6]

ϕRn ≥ η ciQi, (13)

where Rn is standard value of resistance (kN); Qi is standard
value of load (kN); ϕ is the resistance factor; and ci is load
factor.

Reliability analysis is the bias of resistance factor cal-
culation. Load and resistance factor design method proposes
the calculation formula shown in equation (14) based on
first-order reliability method [6]:

ϕ �
λ R cQD Q D/Q L(  + cQL 

��������������������������������

1 + COV
2
QD + COV

2
QL / 1 + COV

2
R  



λQD QD/Q L(  + λQL exp βT

��������������������������������

1 + COV
2
QD + COV

2
QL / 1 + COV

2
R  



 

, (14)

where βT is target reliability index of piles. 1.75 and 1.08 are
selected as the values of cQL

and cQD
according to LRFD for

Bridge Design Specification. -e resistance factor is de-
scribed as ϕMvF according to equation (14).

Table 4: Classified results of load test data in cohesive soil.

Good data General data
Case number λR ζ i Case number λR ζ i Case number λR ζ i

34 1.00 0.13 60 1.27 0.11 35 0.64 0.45
36 1.09 0.05 62 0.95 0.17 42 0.81 0.30
38 1.12 0.03 63 1.41 0.23 44 0.80 0.30
39 0.95 0.18 64 1.22 0.06 46 0.81 0.29
40 1.32 0.15 65 1.27 0.10 47 0.74 0.36
41 0.87 0.24 66 1.32 0.15 58 1.51 0.31
43 0.89 0.23 67 1.37 0.20 61 1.45 0.26
45 1.42 0.24 70 1.08 0.06 72 1.65 0.43
48 0.96 0.17 71 1.44 0.25 76 1.48 0.29
49 1.11 0.04 73 1.39 0.21 79 0.71 0.38
50 1.09 0.06 74 1.16 0.01 84 0.77 0.33
51 1.02 0.12 75 1.27 0.10 86 1.51 0.31
52 0.99 0.14 77 0.96 0.16 — — —
53 1.00 0.13 78 1.28 0.12 — — —
54 1.26 0.10 80 1.02 0.12 — — —
55 1.26 0.09 81 1.06 0.08 — — —
56 1.18 0.03 82 1.29 0.11 — — —
57 1.10 0.04 83 1.00 0.13 — — —
59 1.27 0.10 85 1.16 0.01 — — —

Table 5: -e updating model factor for pile capacity.

Model factor

Soil type
All data Good data General data Updating data

Mean COV Mean COV Mean COV Mean COV
Noncohesive soil 1.000 0.217 0.990 0.138 1.028 0.357 0.987 0.129
Cohesive soil 1.134 0.210 1.153 0.140 1.073 0. 372 1.134 0.132
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If the reliability index is calculated using equation 11),
the limit state equation for resistance factor calculation is

gφ � ln
λ R cQD QD/QL(  + cQL 

ϕ λQD QD/QL(  + λQL 
⎛⎝ ⎞⎠ � 0. (15)

-e resistance factor is described as ϕAF according to
equation (15).

If the reliability index is calculated using equation (12),
the limit state equation for resistance factor calculation is

g �
λR

ϕ
  cQD

QD

QL

+ cQL  − λQD
QD

QL

+ λQL  � 0. (16)

-e resistance factor is described as ϕMCS according to
equation (16).

2.0, 2.5, and 3.0 are selected as the target reliability index.
Based on equations (14)–(16), the calculation results of
resistance factor are shown in Table 6.

-e quality of data has distinct contribution to resistance
factor of bored piles. -e accuracies of design point method
and Monte Carlo simulation method are satisfactory, which
can be considered as the criterion to verify the accuracy of
proposed method.-e results based on twomethods are larger
than the results based on first-order reliability method, and the
difference are 6.9% and 18.3%, respectively. Meanwhile, the
difference between the two methods is near 0. -e accuracies
based on “good data” and “updating data” are better than the
accuracies based on “general data” and “all data.”

In summary, Table 7 shows the recommended values of
resistance factors. However, the reliability theory of pile
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Figure 3: Reliability index in noncohesive soil. (a) First-order reliability method. (b) Design point method. (c) Monte Carlo simulation
method.
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Figure 4: Reliability index in cohesive soil. (a) First-order reliability method. (b) Design point method. (c) Monte Carlo simulation method.

Table 6: Calculation results of resistance factor.

Target reliability, βT
Noncohesive soil Cohesive soil

ϕMvF ϕAF ϕMCS ϕMvF ϕAF ϕMCS

All data
2.0 0.440 0.452 0.450 0.461 0.476 0.475
2.5 0.375 0.389 0.389 0.387 0.396 0.394
3.0 0.336 0.354 0.353 0.344 0.362 0.360
General data
2.0 0.437 0.446 0.445 0.443 0.450 0.450
2.5 0.371 0.382 0.380 0.375 0.385 0.384
3.0 0.333 0.350 0.350 0.335 0.347 0.345
Good data
2.0 0.440 0.446 0.445 0.467 0.475 0.474
2.5 0.376 0.385 0.385 0.391 0.399 0.399
3.0 0.337 0.348 0.347 0.346 0.356 0.354

8 Advances in Civil Engineering



foundation is not perfect enough to be applied in engi-
neering fact. -e recommended values are proposed only
according to the calculation results and American LRFD for
Bridge Design Specification. Its application in engineering
field needs to be further studied.

4. Conclusions

From this study, some conclusions are presented:

(1) -e proposed method incorporating probability
theory and Bayesian method can not only classify the
in situ data but also overcome the deficiency caused
by small sample for accuracy data.

(2) Data classification has significant contribution to
reliability index and resistance factor. -e results
according to “good data” and “updating data” are
larger than the results according to “general data”
and “all data.” Meanwhile the difference of results
using two types of data is near 0. -erefore, “good
data” and “updating data” can be used as the basis of
resistance factor calculation.

(3) Reliability index and resistance factor are sensitive to
the type of soil, and the calculation results in cohesive
soil are larger than the results in noncohesive soil.

(4) -e recommended values are proposed only
according to the calculation results and American
LRFD for Bridge Design Specification. Its application
in engineering fact needs to be further studied.
However, the proposed method can be used to
update other geotechnical data.
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,e physical properties and mechanical characteristics of storage materials are significantly different from those of ordinary solids
and liquids. ,e distribution of dynamic wall pressure during silo discharge is quite complicated. Considering the nonlinear
relationship between the factors which affect the dynamic lateral pressure of silos, a prediction method of dynamic wall pressure
for silos based on support vector machine (SVM) is proposed here, and furthermore, the modified grid search method (GSM) is
incorporated in obtaining the optimal support vector machine parameters to improve the accuracy of the prediction. Comparing
the results of the proposed prediction model with the results of experiment methods and simulation methods, it can be found that
the SVM prediction model shows high accuracy and high generalization ability, and the prediction results of the model fit well
with the results of experiment and simulation methods. ,e proposed method can provide reference for the prediction of the
dynamic wall pressure of silos.

1. Introduction

Silos are widely used to store coals, grains, and gravels
because of their small footprint, large capacity, and low
cost. ,e dynamic wall pressure during silo discharge is
the main factor that causes silo damage [1]. ,e investi-
gations about static wall pressure of silos have been rel-
atively perfect [2, 3]. However, there is no widely accepted
theory and calculation method of dynamic wall pressure
for silos. Smith and Lohnes proposed the theory of lateral
grain expansion [4]. Su proposed the theory of instan-
taneous arching for grains [5]. Janssen proposed the
Janssen theory based on the continuous medium model
[6]. ,ese investigations present the theoretical basis for
the dynamic wall pressure of silos. Liu and Hao [7]
proposed a method for the calculation of dynamic lateral
pressure of silos based on the overall flow of stored
materials. Yuan et al. [8] proposed a method for the
calculation of lateral pressure on squat silo wall by con-
sidering the influence of silo diameter ratio, and the
methods are mainly used to solve the calculation of lateral

pressure of large shallow silos. Based on the unified
strength theory and by considering the common influence
of three principal stresses, Sun et al. [9] proposed a lateral
pressure coefficient which is applied to both the deep and
shallow silos. ,e dynamic lateral pressure of silos is
affected by various factors, and the relationships between
the influencing factors are nonlinear and complex. Tra-
ditional research methods (such as Jassen formula) only
consider one or a few factors [10], and it is not conducive
to the analysis and research of dynamic lateral pressure. In
this way, it is necessary to establish an efficient and simple
dynamic lateral pressure prediction method which takes
the various factors into consideration. Recently, with the
development of artificial intelligence, machine learning
has been widely applied in many research fields. As one of
the methods of machine learning, support vector machine
(SVM) has good generalization performance and is one of
the present investigation focus of artificial intelligent al-
gorithms [11]. ,e SVM is widely used for classification
and regression analysis, it is quite efficient in solving the
problems about which the characteristics are nonlinear,
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uncertain, small sample, and also, it has been widely
applied in civil engineering and shows its efficiency and
reliability in such problems. For example, Dai et al. [12]
proposed a support vector density-based importance
sampling for reliability assessment and showed its effi-
ciency. Also, the least squares support vector machine
(LSSVM) technology is applied to the reliability analysis of
soft clay foundation settlement in [13]. Wang et al. [14]
proposed a support vector machine basing model to
predicate the stability coefficient of slope, and the grid
search method is used to optimize the parameters.

,us, considering the efficiency of the support vector
machine in solving the problems of complex, nonlinear,
multifactor, small sample problems and its advantage in the
aspect of prediction, here, the support vector machine
method is employed to help the prediction of the dynamic
wall pressure for silos. First, the relevant factors affecting the
dynamic lateral pressure of silos are set as the input variables,
and the dynamic lateral pressure is set as the output value;
second, the penalty parameters and kernel function pa-
rameters are optimized, respectively, under the help of grid
search method, and the prediction model of dynamic lateral
pressure of silos is established. Compared with other
methods, the proposed model shows its prediction ability in
the measurement of dynamic lateral pressure of silos. It
provides a new method and basis for calculation and silo
design.

2. Support Vector Machine Principle and
Parameter Optimization

Support vector machine algorithm is based on statistical
theory. ,e advantage of this method is that it adopts the
principle of minimizing structural risk. Its model is [10, 15]

f(x) � ω · φ(x) + bf(x), (1)

where x is the input feature vector; f(x) is the output value;
φ(x) is the nonlinear function mapped to high-dimensional
feature space; ω is the weighted vector of the hyperplane; and
b is the bias vector.

,e solution of nonlinear regression is the key point to
support vector machine, and it can be solved by using the
optimal solution of the following equation:

min
w,b

1
2
‖w‖

2
+ c 

l

i�1
ξi + ξ∗( . (2)

Equation (2) satisfies the following constraints:

s.t. �

ω · xi(  + b − yi ≤ ε + ξi, i � 1, . . . , l,

yi − ω · xi(  − b≤ ε + ξi
∗
, i � 1, . . . , l,

ξi, ξi

∗ ≥ 0, i � 1, . . . , l.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where c is the penalty parameter; ε is the insensitive loss
parameter; and ξi and ξ ∗i are the slack variables.

,e Lagrange formula and Karush–Kuhn–Tucker con-
dition are employed to solve the optimal solution shown in
the following equation:

min
a,a∗

1
2



l

i,j�1
α∗i + αi(  α∗j − αj  xi · xi(  + ε

l

i�1
α∗i − αi( .

(4)

Equation (4) satisfies the following constraints:

s.t.

l

i�1
α∗i − αi(  � 0,

0≤ αi, α
∗
i ≤ c, i � 1, . . . , l.

⎧⎪⎪⎨

⎪⎪⎩
(5)

where αi and αi
∗ are the Lagrange multipliers.

Kernel function described as K(xi, yi) is incorporated to
solve high-dimensional equations according to support
vector machine algorithm. ,e radial basis function is used
as the kernel function due to its satisfactory prediction
accuracy, which is shown in the following equation:

K xi, yj  � exp −
xi − yj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠. (6)

According to equations (1) and (4)–(6), the regression
fitting function of support vector machine can be obtained:

f(x) � 
nsv

i�1
αi − α∗i( K xi, yj  + b. (7)

Here, the LIBSVN toolbox is employed to help imple-
ment the prediction based on support vector machine [16].

,e working principle of the grid search method is to
search all parameters to obtain the optimal parameters.
However, this algorithm is simple to implement but it seems to
be time consuming. ,is paper employs an improved grid
search method to evaluate the performance of each parameter
[17]. In detail, a coarse search is performed in a large range, and
a fine search is performed in a small range. ,en, all possible
parameters are found out and the optimal SVMparameters will
be chosen then. ,e calculation model is shown in Figure 1.

3. PredictionofDynamicWallPressure for Silos

,e geometric sizes of silos and the physical parameters of
storage materials have significant impacts on the dynamic
wall pressure of silos. In addition, during silo discharge, the
dynamic wall pressure is also different at different locations.
Usually, the scale model, numerical simulation, and theo-
retical analysis are often combined to study the dynamic
lateral pressure of silos, and it shows that results of the three
methods fit well and can be used as the basis for silo design
and dynamic lateral pressure research. Here, to verify the
efficiency of the proposed support vector machine-based
model on the prediction of the dynamic side pressure
prediction model of silos, a database of 505 dynamic side
pressures during silo central discharge is collected
[18–23].Some relevant parameters are presented in Table 1.

,is paper takes the depth of silos, inner diameter,
height-diameter ratio, discharge opening width, dip angle of
funnel, internal friction coefficient, external friction coeffi-
cient, gravity density, and measurement point position as
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No

GSM optimizing
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Figure 1: SVM prediction model of dynamic wall pressure for silos.

Table 1: Relevant parameters.

Sources Depth of
silos (m)

Inner
diameter

(m)

Height-
diameter
ratio

Dip angle of
funnel (°)

Width of
discharge

opening (m)

Internal
friction

coefficient

External
friction

coefficient

Gravity
density
(kg/m3)

Zhao [18] 1.2 0.7 1.71
50 0.1 0.3 0.3

100055 0.18 0.4 0.4
60 0.26 0.5 0.5

Ding [19] 1.2 0.7 1.71
55 0.12 0.25 0.35

200060 0.18 0.3 0.45
60 0.24 0.35 0.55

Yuan and
Liu [20] 5

1.5 2.9

50

0.3

0.58 0.4 816

2 2.2 0.4
2.5 1.76 0.5
3 1.47 0.6
3.5 1.28 0.7
4 1.1 0.8

Li [21]
5 1.5 3.3

50
0.3

0.5 0.4 8003.5 1 3.5 0.2
1.7 0.5 0.49 0.03

Wang et al.
[22] 1 0.5 2 0 0.1 0.6 0 970

Chen and
Liang [23] 3.6 1.5 2.4 60 0.3

0.53 0.4
8000.64 0.53

0.75 0.64
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input variables and the dynamic wall pressure of silos as the
output value. 400 data are randomly selected from the da-
tabase as training samples, and the remaining 105 data are
used as testing samples.,e data are described in the form of
a matrix, and each row is a set of data, and each column
corresponds to a variable. In order to ensure the accuracy

and reliability of the prediction model, the original data are
normalized as shown in the following equation:

xij �

xij − min
k

xkj 

max
k

xkj  − min
k

xkj 
, (8)

Table 2: Comparison of the SVM model and BP neural network.

MSE R2

BP neural network 0.0016884 0.95141
SVM method 0.00041866 0.98381

0

2

4

6

8

D
yn

am
ic

 w
al

l p
re

ss
ur

e (
kP

a)

0.2 0.4 0.6 0.8 1.0 1.20.0
Depth of experiment point (m)

Experiment values
Simulation values
SVM prediction values

(a)

0

2

4

6

8

D
yn

am
ic

 w
al

l p
re

ss
ur

e (
kP

a)
0.2 0.8 1.20.4 1.00.60.0

Depth of experiment point (m)

 Experiment values
 Simulation values
 SVM prediction values

(b)

0

4

8

12

16

20

D
yn

am
ic

 w
al

l p
re

ss
ur

e (
kP

a)

0.9 1.8 2.7 3.6 4.50.0
Depth of experiment (m)

Experiment values
Simulation values
SVM prediction values

(c)

0.9 1.8 2.7 3.6 4.50.0
Depth of experiment (m)

0

4

8

12

16

D
yn

am
ic

 w
al

l p
re

ss
ur

e (
kP

a)

 Experiment values
 Simulation values
 SVM prediction values

(d)

Figure 5: Comparisons with experiment values, simulation values, and prediction values. (a) For literature [18]. (b) For literature [19]. (c)
For literature [20]. (d) For literature [21].
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where max
k

(xkj) and min
k

(xkj) are the maximum and
minimum data, respectively.

,e prediction accuracy of the support vector machine
(SVM) model is sensitive to the penalty parameter c and
kernel parameter g. At present, for the support vector
machine (SVM) method, the relevant parameters are mainly
based on experiences and there is no unified mode. ,is
paper uses the improved grid search method to determine
the optimal values of c and g [24, 25]. ,e grid optimization
program is written by MATLAB program. ,e parameter
optimization process is as follows:

Step 1: the range and step size of c and g are first
initialized.
Step 2: c and g are cursorily chosen. ,e range of c and
g is set as [2−10, 210]. ,e default values are set as the
step sizes of c and g, and the default values are also set
as the number of cross validations and the step size of
the optimal mean square error.
Step 3: c and g are precisely chosen. ,e range of c and
g is set as [2−8, 28]. 0.8 is set as the step size of c and g.
3.0 is set as the number of the cross validations. 0.05 is
set as the step size of the optimal mean square error.
,e fine choosing results are shown in Figure 2.

According to the fine choosing results, 5.278 and 3.0314
are the optimal c and g values, respectively. ,e optimal c
and g values are substituted into the SVM prediction model
shown in Figure 1. ,e mean square error (MSE) and
correlation coefficient (R2) are employed as the evaluating
indicators. ,e prediction results of 105 testing samples are
shown in Figure 3. From Figure 3, MSE is 0.00041866 and R2

is 0.98381, which indicate that the testing sample curve
basically matches the predicted curve. ,e errors are shown
in Figure 4. ,e minimum and maximum errors are 1.1%
and 14.88%, and the average relative error is 7.21%.

In order to verify the applicability of the SVM prediction
model, the prediction result is compared with BP neural
network using the same data, and the results are shown in
Table 2. ,e results show that the support vector machine
method can describe well the complex nonlinear relation-
ship between the dynamic side pressure of silos and its
influencing factors.

In summary, the proposed SVM prediction model has
higher accuracy and can effectively predict the dynamic wall
pressure of silos.

4. Application Analysis

Relevant parameters in the literature are selected and
substituted into the proposed SVM prediction model
[18–21]. ,e results are shown in Figure 5.

It can be seen that the simulated values are slightly larger
than the predicted values in the early stage of silo discharge
and slightly smaller than the predicted values in the late stage
of silo discharge. ,e prediction accuracy is higher. ,e
testing values are higher than the predicted values. However,
with the increment of the depth for measurement points, the
dynamic wall pressures are roughly the same. ,e main

reason is that the training samples of the SVM prediction
model are from simulated values; therefore, the predicted
values are closer to the simulated values. Compared with the
PFC program, the proposed method not only improves the
calculation efficiency but also can provide a reference for the
investigation on dynamic wall pressure when the PFC
program cannot calculate the dynamic wall pressure of large
silos.

5. Conclusions

From this study, some conclusions are presented:

(1) An improved grid search method is used to optimize
the punish parameters (c) and kernel function (g) of
SVM. ,e optimal c and g are 5.278 and 3.0314,
respectively. ,e proposed method can avoid the
subjective view of relevant parameters based on
experiences.

(2) ,e mean square error (MSE) and the correlation
coefficient (R2) of the SVM prediction model are
close to 0 and 1.0, respectively, which indicates that
the accuracy of SVM prediction model is satisfied.

(3) ,e proposed prediction model can effectively solve
the nonlinear relationship between the dynamic side
pressure of silos and its influencing factors and
provide a novel method for the study of the dynamic
wall pressure of silos.
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Classification of the surrounding rock is the basis of tunnel design and construction. However, conventional classification
methods do not allow dynamic tunnel construction adjustments because they are time-consuming and do not consider the
randomness of rock mass. (is paper presents a new reliability rock mass classification method based on a least squares support
vector machine (LSSVM) optimized by a bacterial foraging optimization algorithm (BFOA).(e LSSVM is adopted to express the
implicit relationship between classification indicators and rock mass grades, which is a response surface function for reliability
evaluation. LSSVM parameters were optimized by the BFOA to form a hybrid BFOA-LSSVM algorithm. Using geological
prediction and rock strength resilience results as classification indicators, samples were developed to train the LSSVMmodel using
the hybrid algorithm. (e Monte Carlo sampling method of reliability classification was implemented and applied to the Suqiao
tunnel at the Puyan highway in the Fujian province of China; the influence of parameters on the performance of the algorithm is
discussed. (e results indicate that the new method is feasible for tunnel engineering; it can improve the classification accuracy of
surrounding rock exhibiting randomness, to provide an effective means of classifying surrounding rock in the dynamic design of
tunnel construction.

1. Introduction

Classification of surrounding rock is the basis of tunnel
design and construction; a complete classification system
should include two parts: a preconstruction survey classi-
fication and a modification classification during construc-
tion [1]. Limited by environmental conditions and technical
means, rock classification in the survey stage produces only a
relatively rough result. (us, it is essential to conduct a more
detailed and accurate classification through statistical pro-
cessing of rock mass disclosure information in the con-
struction process [2–4].

To date, researchers have proposed a variety of rockmass
classificationmethods, such as those ofWickham [5], Barton
et al. [6], Hoek et al. [7], and Palmström [8, 9]. Among these
classification methods, the most widely used method is the
rock mass rating (RMR) method, which was first proposed

by Bieniawski [10–12] and has been continuously improved
and applied since then [13–16]. (e basic quality (BQ)
method was proposed and widely applied in China [17–20].
(ese conventional rock classification methods are mostly
used in the preconstruction survey stage and are unable to
meet tunnel construction requirements because the classi-
fication indicators cannot be easily and rapidly obtained in
the construction process [21]. For most classification
methods, the mapping relationship between the indicators
and rock mass grades is not clear, and the randomness of
indicator distribution is not considered.

Much research has been conducted in the last few de-
cades to solve these problems. Geological advanced pre-
diction information is considered to reflect the properties of
rock masses, and prediction results are used as classification
indicators for the evaluation of rock mass grade [22–24]. To
find the optimal parameters of machine learning models,
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intelligent algorithms such as convolutional neural networks
[25] and support vector machines [26] can be used, or other
methods such as the PCA-ideal point method [27] and
rough set theory [28]. (ese studies analyzed the advanced
geological prediction characteristics and established a
nonlinear mapping relationship between indicators and rock
grade, partly solving the problem of acquiring indicators in
the rock mass classification process.

Among the intelligent algorithms used in these studies,
SVM has been widely used in geotechnical engineering in
recent years, owing to its excellent small-sample-learning
ability, including blasting vibration control [29], blasting
risk prediction [30], new material development [31], and
tunneling machine control [32].(e LSSVM [33] adopted in
this study is a type of SVM using the least squares linear
system as the loss function to replace the traditional qua-
dratic programming method of the support vector machine,
which has a more concise model group and higher com-
putational efficiency. However, the regression effect of the
LSSVM is significantly affected by the values of its key
parameters. To obtain better calculation accuracy, we
adopted a bacterial foraging optimization algorithm (BFOA)
[34] with good global optimization ability to optimize the
key parameters of the LSSVM, forming a BFOA-LSSVM
hybrid algorithm.

However, the randomness of spatial distribution still
exists in rock indicators. (us, the deterministic classifica-
tion method can lead to inaccurate calculation results. A
reliability algorithm can solve the problem [35] and is a
powerful method of obtaining a reliability classification
result. However, reliability theory based on conventional
indicators can only be evaluated after the excavation of the
target location, which produces a certain hysteresis and
cannot meet the needs of dynamic design for tunnel
engineering.

Research on surrounding rock classification has pro-
duced significant results, but there are still some problems to
be solved: (1) Conventional classification uses traditional
methods to obtain the classification indicators, which is
time-consuming and slows down construction progress. (2)
Conventional classification methods do not consider the
randomness of a rock mass; there has been little research on
rock mass classification using advanced prediction indica-
tors. (3) Machine learning algorithms have been used in
surrounding rock classification. However, human limita-
tions in the selection of the learning machine parameters
affect calculation accuracy.

Difficulty in quickly obtaining a grading evaluation
index and definitive grading result information makes the
current grading evaluation method of surrounding rock
insufficient and unpopular in the construction process.
Some tunnel construction still uses the artificial experi-
ence method to determine the state of surrounding rock.
In this study, a method of surrounding rock classification
is established based on advanced geological prediction.
(e classification indicators using this method are easy to
obtain, the operation difficulty is low, and it is convenient
in engineering applications. Reliability theory is intro-
duced to evaluate the classification results, and the

uncertainty of surrounding rock properties is fully con-
sidered, to provide a more comprehensive data reference
for project builders.

In this study, we established a reliability classification
method for surrounding rock based on reliability theory,
using an LSSVM optimized by the BFOA as the response
surface function. Samples were produced for LSSVM ma-
chine learning, including geological prediction and rock
strength resilience results as classification indicators. (e
Monte Carlo sampling method was used for calculation. To
verify its feasibility, the new reliability classification method
was applied to the Suqiao tunnel of the Puyan expressway in
Fujian province, China.

2. A New Reliability Classification Method of
Surrounding Rock

2.1. Reliability Classification Method. In the classification of
rock masses in tunnel engineering, the obtained classifica-
tion indicators are discrete and random due to instrument
operation, data statistics, and human error. Rock masses
surrounding the tunnel have certain variability, such as a
local broken zone or a weak layer, which leads to a large
variation in classification indicators and misjudgment of the
rock mass grade. (ere is a reliability issue in the rock mass
classification process; the probability of success or failure of
the final classification result is regarded as a two-category
classification problem. (e probability expression of the
classification result, the rock mass classification reliability
[35], is expressed by reliability theory to avoid prediction
error caused by the randomness of the classification
indicators.

(e surrounding rock is generally categorized into
grades I–V. As an example to introduce the reliability
classification method, rock mass grade IV is examined. To
evaluate the reliability of classification results belonging to
this grade, classification boundaries must be defined. (e
reliability function is shown as follows:

ZL
IV � Fi xi(  − Nu 

L
IV

ZR
IV � Fi xi(  − Nu 

R
IV

⎫⎬

⎭, (1)

where Fi(·) is the response surface function that expresses
themapping relationship between the evaluation value of the
rock mass and the classification indicators, xi is the rock
mass classification indicator group, xi � [x1, x2, ..., xn], and
[Nu]L

IV and [Nu]R
IV are the limit values of grade IV.

(e reliable probability calculation method for the
classification results relative to the two bounds of formula (1)
is shown as follows:

Ps
IVL � P ZL

IV ≥ 0(  �  
ZL
IV > 0

· · ·  h xi( dx1dx2 . . . dxn

Ps
IVR � P ZR

IV ≥ 0(  �  
ZR
IV > 0

· · ·  h xi( dx1dx2 . . . dxn

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(2)

where h(xi) is the joint probability density of the classifi-
cation indicator group.
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(e reliability classification evaluation result of a rock
mass of grade IV is expressed as

P
s
IV � P

s
IVL − P

s
IVR . (3)

In solving formula (2), it is difficult to integrate the joint
probability density h(xi). (e Monte Carlo sampling
method is used to solve the problem, with the number of
samples set at 105 [36]. Similarly, classification reliability
evaluation results for other rock mass grades can be
obtained.

2.2. BFOA-LSSVM Hybrid Algorithm

2.2.1. LSSVM Regression Model. In view of the short-
comings of traditional evaluation methods such as RMR
and BQ that cannot meet the demands of dynamic con-
struction, the geological prediction index has been used in
surrounding rock grading evaluation in recent years
[22–24]. (e mapping relationship between the new in-
dicators and the surrounding rock grade is complex and
nonlinear. In this study, the least squares support vector
machine (LSSVM) is used to express this implicit model,
as shown in Figure 1, and is used as the response surface
function Fi(·) in formula (1).

(e LSSVM is another form of SVM regression [37]; it
abstracts the nonlinear mapping into a process of fitting
known data by hyperplane [38]. Neural network training
easily falls into local optimization and the complexity of BP
network modeling. Quadratic programming problems re-
quiring training samples in SVM are avoided, which greatly
improves computational efficiency.

For a given N training samples xi, yi i�1...N, xi ∈ Rn is
the six-dimensional sample input of the grading indicator
group, and yi ∈ R1 is the one-dimensional sample output of
the rock mass evaluation value. (e LSSVM regression
model is shown as follows:

y(x) � 
N

k�1
αkK x, xk(  + b, (4)

where K(x, xk) is the radial basis kernel function,
K(x, xk) � exp (− ‖x − xk‖2/σ2) , σ2 is the square band-
width representing the influence degree of a single sample
vector, αk is the Lagrange operator, and b is the error term,
solved by

0 LT

L Ω + c− 1I
⎡⎣ ⎤⎦

b

α
  �

0

y
 , (5)

where y � [y1, y2, ..., yN], L is an n-dimensional array,
L � [1, 1, ..., 1], α � [α1, α2, ..., αN], Ω � φ(xk)Tφ(xl) � K

(xk, xl), k, l � 1, 2, ..., N, I is the unit vector, and c is the
canonical parameter that represents the fitting degree within
the interval.

(e computation speed improvement of the LSSVM is
due to the least square value function and equality con-
straint, which reduces the complexity of the solution pro-
cess. However, the sample training result is highly
dependent on the regular parameter c and the square

bandwidth σ2 of the kernel function. LSSVM theory does not
provide effective selection methods; parameter determina-
tion is somewhat arbitrary. (is study uses the BFOA to
optimize the parameters.

2.2.2. BFOA Optimizes LSSVM. (e bacterial foraging op-
timization algorithm (BFOA) is a computational method
that simulates human Escherichia coli foraging behavior and
searches for the optimal parameters through iterative cal-
culation [39–41]. It is a random search algorithm with good
overall performance; the search results do not easily result in
a local optimal solution. During the calculation, S bacterial
individuals were randomly generated within the value range
of the parameters to be optimized, and each individual
contained a group of numerical combinations of the
parameters:

θi � θ1i , θ2i , . . . , θD
i , (6)

where θiis the individual bacteria and i � 1, 2, ..., S. θD
i

represents the target parameter to be optimized.
All bacteria underwent Nc consecutive trending oper-

ations with a trend step size of C(i) and performed self-
replication optimization under the condition that the
minimum fitness value of the population did not meet the
expected value. After repeating the replication operation Nre
times, population migration was conducted with Ped as the
control probability, and the maximum migration was lim-
ited to Ned. (e iterative information of individual bacteria
is expressed as

θ(i, g + 1, n, m) � θ(i, g, n, m) + C(i)
Δ(i)

���������

ΔT(i)Δ(i)

 , (7)

where g, n, and m represent the current executed trend,
replication, and migration times, respectively. Δ represents a
random unit random vector on [− 1, 1].

(e adaptive value refers to the error between the
predicted result and the actual result using the parameters
represented by certain bacteria to calculate the test sample.
Many methods can be used to evaluate this error; the root
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Figure 1: Implicit mapping model expressed by LSSVM.
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mean square error evaluation method is adopted in this
study:

Fve �

��������������


S0
t�1 yt − yt

′( 
2

 



S0
, (8)

where yt and yt
′ represent the predicted and true values of

the test sample t, respectively, and S0 is the number of test
samples.

(e implementation process is shown in Figure 2.
For the LSSVM regression model, the BFOA is used to

optimize the parameters c and σ2; the optimization process
is as follows:

Step 1: In a certain optimization interval, the initial
population is randomly generated. In this study, the
number of optimal targets is two; the population is in a
two-dimensional space, and the dimensional coordi-
nates of each bacterial individual represent c and σ2,
respectively.
Step 2: (e current position information of the indi-
vidual is substituted into the LSSVM model, and the
sample group is tested for the trial calculation to obtain
the adaptive value of the current bacteria according to
formula (8). Comparing the global minimum adaption
value Fvmin with the expected adaption value Fve, if
Fvmin ≤Fve, then proceed to Step (7); otherwise, pro-
ceed to Step (3). In this study, Fve � 10− 2.
Step 3: Perform the bacterial trending operation. Within
the length of the [− 1, 1] interval, random vectors are
generated to adjust the position of each individual bac-
terium, and the adaptive values before and after adjust-
ment are compared. A smaller adaptive value is chosen to
maintain the position of the bacterium. A total of Nc

tendency operations are performed. In this study,Nc � 10.
Step 4: Perform the bacterial replication operation. (e
total number of bacteria was recorded as 2Sr, arranged
from large to small in accordance with the adaptive
value; Sr individuals with larger adaptive values were
deleted, and the remaining individuals were duplicated.
Return to Step (2) and record the number of replicates
Nre � Nre + 1.
Step 5: Perform the bacterial migration operation.
When the number of replication operations reaches the
maximum (Nremax � 15 in this study), all bacteria in
the current region are destroyed, and other regions are
randomly selected to reexecute Step (1). (is operation
effectively avoids the local optimal solution and gives
the BFOA a good global property.
Step 6: When the migration operation reaches the
expected limit, the iteration is stopped, and the min-
imum fitness of the current population is recorded. In
this study, the limited value of migration operation is
set as Nedmax � 5.
Step 7: Output the optimal parameters represented by
the bacteria dimension coordinate with the minimum
fitness, and use it as the LSSVM parameter to establish
the optimal regression model.

2.3. Learning Samples for BFOA-LSSVM

2.3.1. Classification Indicators. TSP203 is a geological
prediction system for tunnel engineering that can obtain
rock mass properties before excavation according to the
principle of echo measurement. (e propagation speed,
waveform, frequency, strength, and direction of the re-
flected wave signal of the TSP203 geological prediction
system are closely related to the corresponding properties
and distribution of the weak geological body [22–24]. (e
resilience value of the rock mass can characterize its
strength and supplement the lack of advanced geological
prediction results. Considering the feasibility and accuracy
of data acquisition in the process of tunnel construction,
combined with BQ and RMR classification standards, six
indicators were selected as evaluation factors, including
rock mass integrity coefficient, reflector distribution co-
efficient, Poisson’s ratio, Young’s modulus, groundwater
development state, and strength resilience of the rock mass.
(e classification indicator group established in this study
is faster and easier to obtain than traditional classification
indicators and more comprehensively reflects the prop-
erties of the rock mass.

(ese six indexes can be obtained by geological advance
prediction using TSP203 and measurement of strength
resilience of the rock mass. (e strength resilience of the
rock mass is measured by a springback instrument; the
testing time of a single sample point is approximately 30 s,
which is convenient. Geological prediction is a necessary
link in the tunnel construction process and is completed by a
professional survey team. (rough analysis and processing
of the predicted results data, the classification index infor-
mation can be obtained.

Considering construction efficiency and the accuracy of
prediction results, in the Suqiao tunnel project of the Puyan
expressway in Fujian province, China, the consistency in-
terval of the rock mass was verified through continuous

m = m + 1
m < Ned?

n = n + 1
n < Nre?

g = g + 1
g < Nc?

Trending
operation

Replication
operation

Migration
operation

Fvmin ≤ Fve

no
no

no

no

yes

yes

yes

yes

Output the result

Generating initial population

g = 0

n = 0

m = 0

Figure 2: BFOA optimization process.
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rebound measurement. In this study, the unit distance of
sample selection and prediction calculation was determined
to be 30m. (e specific calculation method of each index is
described as follows.

(1) Integrity coefficient of rock mass
(e two-dimensional interpretation results of the
advanced geological prediction of a tunnel are shown
in Figure 3.
(e integrity coefficient of the rock mass is calculated
as formula (9).

Kr �
Vp

Vr

 

2

, (9)

where Vp is the P wave velocity of the rock mass,
obtained from the interpretation results of geological
prediction. Vr is the rock block longitudinal wave
velocity, derived from field measurement.

(2) Reflector distribution coefficient
(e lower part of Figure 3 shows the negative re-
flection of seismic waves in the advanced geological
prediction forecast. (e position of negative reflec-
tion symbolizes the weak structural surface in the
rock mass; its strength is proportional to the
weakening degree of the rock mass. At present, there
is no clear evaluation method for the value of the
distribution coefficient of the reflection layer, and
quantitative evaluation is performed mostly in the
form of experience summary [42]. Quantitative
criteria for evaluation indicators are shown in
Table 1.

(3) Poisson’s ratio
In the two-dimensional interpretation results of
geological advance prediction, the equivalent Pois-
son’s ratio of the tunnel axial rock mass can be
obtained.

(4) Young’s modulus
Similar to the Poisson’s ratio, the Young’s modulus
can be obtained from the two-dimensional inter-
pretation of geological advance prediction.

(5) Groundwater development state
TSP prediction results can qualitatively reflect the
development state of groundwater to a certain extent
and can be quantified, as shown in Table 2. P and S
represent the transverse and longitudinal wave in-
tensities of geological prediction, respectively.

(6) Strength resilience of rock mass
(e strength resilience value represents the com-
pressive strength property of a material [1]. On the
working face in tunnel engineering, the rebound
strength of each section of the vault, spandrel, arch
waist, arch feet, and the intersection of each posi-
tion was measured to form a measurement group,
and the data distribution law was statistically
obtained.

2.3.2. Learning Sample Establishment. In the sampling area,
the mean values of the classification indicators were cal-
culated as the sample input before tunnel excavation. After
excavation at the same location, the grading value of sur-
rounding rock is calculated by the BQ method and used as
the sample output:

BQ � 90 + 3Rc + 250Kv − 100 K1 + K2 + K3( , (10)

where Rc, Kv, K1, K2, and K3 represent rock hardness, rock
mass integrity, groundwater development coefficient, oc-
currence of main weak structure surface, and initial stress
state, respectively. (ese parameters can be obtained
through experiments or field observation after tunnel ex-
cavation, and the measurement method is referred to in the
literature [1, 17, 29].

(is process is repeated N+ t times to establish learning
samples, including N training samples and t-test samples.
(e classification of rock mass in this study is subject to the
subclassification standard [43], as shown in Table 3.

2.4. Calculation Process of the Reliability Rock Mass
Classification. Based on the learning samples, an implicit
mapping model was established and used as a response
surface function for the surrounding rock reliability grading
calculation. (e calculation process is shown in Figure 4; the
specific steps are as follows.

Step 1: Establish learning samples. Refer to Section 2.3
for sample types and acquisition methods.
Step 2: Establish a nonlinear regression model between
classification indicators and rock mass grade using the
LSSVM, and select the optimal model parameters
through the BFOA.
Step 3: Based on the LSSVM regression model opti-
mized by the BFOA, establish a classification reliability
function and calculate using the Monte Carlo method.
Step 4: According to the geological prediction results of
the region to be classified, the classification indicators
(1)-(5) are read at an interval of 0.5m, and indicator (6)
is measured continuously. Obtain the probability density
function for each indicator using the distribution
characteristics statistics of the results. Classify the rock
mass by the reliability classification method established
in this study, and make corresponding construction
adjustments based on the classification result.

3. Engineering Applications

3.1. Description of the Study Project. (e YA15 section of
Puyan expressway connects the town of Zhongxian in Youxi
county with the town of Xinkou town in Sanyuan county and
the city of Sanming in Fujian province, China, as shown in
Figure 5. (e section is 9.55 km in length, including five
tunnels: Jishan tunnel, Suqiao tunnel, Wugongshan tunnel,
Mingxi tunnel, and Leshanting tunnel. (e Suqiao tunnel is
used as an example to verify the applicability of the rock mass
classification method. Suqiao tunnel is a double-hole separated
tunnel with a total length of 724m. It is located in a rock mass
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with relatively developed joints in surrounding rock and
abundant underground water. (e complexity of the con-
struction environment presents high construction difficulty,
and dynamic design is necessary in the construction process.

3.2. Sample Construction and LSSVM Machine Learning.
Using the method in Section 2.3, 80 learning samples were
established during the construction of the tunnels along the

Puyan expressway; partial learning samples are shown in
Table 4. Ten randomly selected samples marked with “∗” in
the table were used as test samples; the others were used as
training samples.

In the mapping relationship obtained through machine
learning, the key parameters of the LSSVMobtained through
the BFOA are c � 0.51 and σ2 � 1.8. An additional ten
samples were used to test the predictive effect of the model.
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Reflector distribution

Figure 3: Two-dimensional results map of advanced geological prediction.

Table 1: Selection rule of reflection surface coefficient.

Reflector distribution Not obvious Visible Obvious Strong Extremely obvious
Evaluation value 0∼ 0.2 0.2∼ 0.4 0.4∼ 0.6 0.6∼ 0.8 0.8∼1.0

Table 2: Selection rule of groundwater development state.

Reflected wave strength case S<P S≥P S>>P S>>P and Vp/Vs increases suddenly S>>P and Vp/Vs increases sharply
Evaluation value 0∼ 0.2 0.2∼ 0.4 0.4∼ 0.6 0.6∼ 0.8 0.8∼1.0

Table 3: Subclassification criteria of rock mass around tunnels.

Rock classification I II III1 III2 IV1 IV2 IV3 V1 V2

BQ interval ≥551 550∼ 451 450∼ 401 400∼ 351 350∼ 316 315∼ 285 284∼ 251 250∼ 211 210∼150

Building
learning samples

LSSVM training
calculated by formula (4)

Test sample
calculation

Fitness
evaluation

Implicit
mapping model

Trending operation
calculated by formula (4)Replication operationMigration operation

Statistics of parameter
distribution

Monte Carlo
sampling calculation

Probability evaluation of
calculated results

calculated by formula (3)
Output reliability

classification result

Step 1 Step 2

Step 3

Step 4

Calculated by formula (8)

Figure 4: Calculation flow chart.
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(e calculation results are verified, as shown in Table 5; the
adaptive value (root mean square error, calculated by for-
mula (7)) is 3.85. It is observed that the predicted result is
consistent with the real value; the maximum relative error is
− 3.26%, indicating that the parameter optimization is
effective.

3.3. Reliability Classification Result Analysis. According to
the method in Section 2.4, parameters are measured for
several typical sections; partial statistical results are shown in
Figure 6. (e bar chart shows the statistical measurement
results of the parameters. According to its characteristics,
Poisson’s ratio conforms to the exponential distribution law,
and the strength resilience conforms to the normal distri-
bution law. (e probability density function curve of pa-
rameter distribution is obtained through data fitting.

Combined with the LSSVM training results in Section
3.2, the reliability classification of surrounding rock was
calculated according to the method in Section 2.1. (e re-
liability distribution of the evaluation results in each section
is shown in Figure 7.

(e reliability classification results provide more com-
plete information than traditional methods. Figure 7(a)
shows that the surrounding rocks in the K94 + 653∼ 683
tunnel area belong to grade V1, and the subordinate
probability of this level is far greater than that of other levels.
(erefore, it is believed that the probability results of the
other levels are caused by measurement errors or geological
variations in small regions, and the engineering construction
can be conducted according to grade V1. In Figure 7(c), the
surrounding rocks in the K94 + 743∼ 773 tunnel area are of
similar probability in grade III2 and grade IV1, indicating
that some of the rock masses in this area have poor prop-
erties or weak zones. (erefore, when the tunnel is con-
structed according to grade III2, the construction plan
should be conservative.

It is observed from the data statistics and comparison in
Table 6 that there is a difference between geological survey
results before construction and evaluation results after ex-
cavation. (e reliability classification method proposed in
this study can obtain a grade of rock mass around tunnels
that is closer to actual conditions, achieve the dependent

probability of each grade, and meet the requirements of rock
mass quality evaluation during the construction process,
providing a basis for the dynamic adjustment of the con-
struction scheme.

(e probability density in the calculation results in
Table 6 is generally near 50%, which is not high from a
statistical perspective. (e reliability evaluation of the
surrounding rock is calculated according to the distri-
bution statistics of a series of indicators, such as rock mass
strength, joints and cracks, and groundwater. In this
study, the distribution characteristics of these parameters
generally exhibit exponential or normal distribution, and
the parameter values tend to be scattered. (erefore,
multiple probabilities that are subordinate to different
levels of the surrounding rocks often appear in the cal-
culation results, which is the main reason for the generally
low probability density, as shown in Figure 7. Another
reason for this phenomenon is that the subclass classifi-
cation standard is adopted in this paper, and the sur-
rounding rock is divided into 9 classes, so the probability
of reaching a certain class is not very high. In some areas,
the probability densities of two grades of the surrounding
rock are close to each other, as shown in Figures 7(c) and
7(d), indicating that the overall nature of the surrounding
rock in this area falls between two grades. (is result
demonstrates that the proposed method can fully reflect
the actual state of surrounding rock and provide more
abundant data reference for tunnel construction.

4. Discussion

To further clarify the influence law of the relevant param-
eters in the classification method established in this study,
the parameters of the LSSVM model, calculation conditions
of the BFOA, andMonte Carlo sampling times are discussed.

4.1. Influence of LSSVM Parameters on Regression Accuracy.
(eLSSVM is trained based on the data in Table 4. Adjusting
the values of the square root bandwidth σ2 and the regu-
larization parameter c, the relative error between the pre-
dicted results and the real results under different parameter
combinations was calculated, as shown in Figure 8.

Beijing

Suqiao tunnel
Sanming city, Fujian province,

China

Figure 5: Geographical location of the project.
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It is observed in Figure 8 that the accuracy of the re-
gression results is affected by the parameters, and the error
distribution is an irregular surface, indicating that it is
difficult to determine the values of LSSVM parameters in the
training process. (us, the BFOA is necessary to find the
optimal parameters.

4.2. Influence of BFOA Parameters on Convergence Speed.
(e learning process of samples in Table 4 is repeated,
adjusting the value of BFOA parameters to explore the

influence of the approach length C(i) and the probability
of migration Ped on the convergence result. According to
the sample characteristics, the population spatial di-
mension of the BFOA is six, represented by the six
classification parameters in Table 4. (e population size is
200, and the upper limit of trend, copy, and migration are
all set to 10.

Based on experience, Ped is fixed as 0.3; the convergence
curves under different C(i) are calculated as shown in
Figure 9. (e value of C(i) is the percentage of the total

Table 5: Verification of hybrid algorithm regression effect.

Serial number Predicted result BQ evaluation after excavation Relative error (%)
1 303.36 308 − 1.51
2 169.03 164 3.07
3 298.10 295 1.05
4 371.29 371 0.08
5 230.11 234 − 1.66
6 266.06 264 0.78
7 176.39 177 − 0.35
8 189.61 196 − 3.26
9 296.33 299 − 0.89
10 182.88 178 2.74

Table 4: Partial learning samples.

Serial
number

Input parameters Output parameter

Integrity
coefficient

Reflector
distribution
coefficient

Poisson’s
ratio

Young’s
modulus
(N/m2)

Groundwater
development state

Strength
resilience
(MPa)

BQ evaluation
after excavation

1 0.33 0.3 0.38 1.7 0.7 43.6 223
∗2 0.61 0.4 0.31 3.4 0.4 62.8 326
3 0.42 0.6 0.41 1.9 0.8 41.5 192
4 0.65 0.4 0.33 2.8 0.4 47.2 262
5 0.5 0.2 0.36 1.8 0.5 44.7 231
∗6 0.75 0.3 0.27 7.4 0.2 67.9 384
7 0.7 0.2 0.30 6.6 0.3 60.5 323
8 0.45 0.4 0.35 2.1 0.5 42.3 247
9 0.26 0.5 0.37 1.3 0.8 39.6 208
10 0.45 0.3 0.33 2.8 0.4 46.7 275
. . . . . . . .
. . . . . . . .
. . . . . . . .
∗31 0.55 0.1 0.27 8.4 0.2 59.1 368
32 0.4 0.5 0.43 2.1 0.6 44.8 183
∗33 0.44 0.3 0.37 2.6 0.4 47.2 282
34 0.57 0.3 0.33 3.5 0.4 52.5 312
35 0.23 0.2 0.45 1.4 0.2 41.2 169
36 0.43 0.4 0.37 2.2 0.4 41.8 232
37 0.35 0.2 0.33 3.1 0.4 50.6 292
38 0.55 0.1 0.26 7.6 0.2 59.9 378
∗39 0.23 0.5 0.36 1.7 0.4 42.5 224
40 0.54 0.4 0.34 2.7 0.3 48.5 268
. . . . . . . .
. . . . . . . .
. . . . . . . .
76 0.40 0.3 0.35 2.8 0.4 46.5 282
77 0.41 0.4 0.33 2.2 0.3 47.3 272
∗78 0.31 0.3 0.42 1.5 0.5 39.5 194
79 0.20 0.5 0.35 1.9 0.4 41.8 240
80 0.77 0.3 0.31 7.2 0.2 69.4 392
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Figure 6: Statistics of partial classification indicators of K94 + 713∼ 743.
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Figure 7: Probability classification results of surrounding rock. (a) K94 + 653∼ 683. (b) K94 + 713∼ 743. (c) K94 + 743∼ 773.
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length of the interval. It is observed that the convergence of
the algorithm is best when C(i) � 0.1%.

C(i) is fixed as 0.1%, and the convergence curve under
different Ped is calculated, as shown in Figure 9. (e results
show that, in this study, the best value of Ped is 0.25; the
convergence effect is weakened if Ped is too large or too
small.

4.3. Influence of Monte Carlo Sampling Times on the Stability
of Evaluation Results. On the basis of BFOA parameters,
the probability evaluation of rock mass grade is conducted
for Group 4 in Table 6 under different Monte Carlo sample
numbers. Calculations are repeated 20 times for each
sampling number; the root mean square error (RMSE) of
the calculated results is shown in Figure 10. It is observed
that, with increasing sample number, the calculated re-
sults gradually become stable. To obtain effective evalu-
ation results, the sample number should not be set less
than 105.

4.4. Computing Ability Evaluation of BFOA-LSSVM. (e
samples in Table 5 were calculated by SVM, LSSVM, and
BFOA-LSSVM.(e error was calculated using formula (11);
error analysis of the results is shown in Figure 11.

e �
BQP − BQR

BQR

× 100%, (11)

where e is the relative error, BQP is the predicted value, and
BQR is the measured value.

It is observed that SVM and LSSVM essentially have the
same computing power in terms of classification; the
computing accuracy of the LSSVM optimized by the BFOA
is effectively improved, demonstrating that the hybrid al-
gorithm established in this study can be effectively applied to
the grading evaluation of surrounding rock.

4.5. Application Scope of :is Study. (e reliability classifi-
cationmethod of tunnel surrounding rock established in this
study adopted the BQ standard as an example; the BQ value
after tunnel excavation is considered to evaluate the rock
mass state. In the process of reliability evaluation in Section
2.1, reliability formula (1) uses the BQ value as the classi-
fication boundary and the rock grade as the output of
LSSVM samples. Similarly, the method is also applicable to
other evaluation criteria (such as RMR). It would be nec-
essary to change Table 3 to the RMR criteria and modify the
boundary value of formula (1) accordingly. (e reliability
classification indicators established in Section 2.3 are limited
to the research results with current technological means.
With the development of geological prediction technology,
when more information can be obtained before tunnel
excavation, this indicator group can be reasonably
improved.

Table 6: Classification results verification of Suqiao tunnel.

Group number Tunnel mileage (YK) Survey results before excavation
Forecast results

BQ evaluation after excavation
Classification Probability (%)

1 K94 + 653∼K94+ 683 V1 V1 59.74 V1
2 K94 + 713∼K94+ 743 IV1 III2 51.83 III2
3 K94 + 743∼K94+ 773 IV1 III2 48.25 III2
4 K94 + 816∼K94+ 846 IV3 V1 40.36 V1
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5. Conclusions

We proposed a new reliability classification method based
on a hybrid algorithm BFOA-LSSVM, and it is applied to the
construction process of the Suqiao tunnel. (e following
conclusions are drawn from the study.

(1) (e new reliability classification method established
in this study uses the BFOA-LSSVM as the response
surface function, considers geological prediction and
rock strength resilience as classification indicators in
machine learning samples, and uses the Monte Carlo
sampling method to implement the calculation. (e
results show that this reliability classification method
has easy access to parameters and calculation ac-
curacy and can accurately determine the rock mass
grade in situ.

(2) (e calculation results of the classification method
are affected by the setting of relevant parameters.(e
key parameters of the LSSVM have significant in-
fluence on the accuracy of the regression model; and
the optimal values obtained from the BFOA are c �

0.51 and σ2 � 1.8. In the optimization process, the
parameters of the BFOA are recommended as C(i) �

0.1% and Ped � 0.25. To ensure the accuracy of the
reliability evaluation results, it is suggested that the
number of Monte Carlo samples should not be less
than 105.

(3) As a small-sample learning machine, the LSSVM
algorithm was introduced to establish the implicit
mapping relationship between classification indica-
tors and rock mass grade. Further, the BFOA was
used to automatically search for the best LSSVM
model parameters during the sample training pro-
cess, thereby effectively improving the generalization
performance of the LSSVM algorithm.

(4) For the randomness of the classification indicators,
the probability evaluation of rock mass classification
results was conducted based on reliability theory.
(is evaluation method effectively avoids the impact
of randomness of the classification indicators on the
classification results and provides more compre-
hensive reference for the project.

(e classification indicators and related methods of
this study are implemented in accordance with the spe-
cific engineering background. It should be further opti-
mized and improved according to specific characteristics
when applied to different engineering projects. If con-
ditions permit, the number of learning samples should be
further expanded, and as many distribution statistical
samples of grading indicators as possible should be
obtained.
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To inspect the quality of concrete structures, surface voids or bugholes existing on a concrete surface after the casting process
needs to be detected. To improve the productivity of the inspection work, this study develops a hybrid intelligence approach that
combines image texture analysis, machine learning, and metaheuristic optimization. Image texture computations employ the
Gabor filter and gray-level run lengths to characterize the condition of a concrete surface. Based on features of image texture,
Support Vector Machines (SVM) establish a decision boundary that separates collected image samples into two categories of no
surface void (negative class) and surface void (positive class). Furthermore, to assist the SVM model training phase, the state-of-
the-art history-based adaptive differential evolution with linear population size reduction (L-SHADE) is utilized. +e hybrid
intelligence approach, named as L-SHADE-SVM-SVD, has been developed and complied in Visual C#.NET framework. Ex-
periments with 1000 image samples show that the L-SHADE-SVM-SVD can obtain a high prediction accuracy of roughly 93%.
+erefore, the newly developed model can be a promising alternative for construction inspectors in concrete quality assessment.

1. Research Background

+e construction industry is widely known as a highly
competitive environment within which product quality is a
crucial element for a contractor’s survival [1]. In addition to
the project cost and schedule, quality is a key factor that
determines customer satisfaction [2]. Typically, for high-rise
concrete buildings, architects and project owners impose
strict specifications on the condition of the concrete surface.
+ese requirements often involve the delivery of high-
quality concrete surface with minimum presence of surface
voids or bugholes [3]. It is because the phenomenon of
excessive bugholes is one of the most serious and widely
encountered defects on a formed concrete surface [4] and is
often a subject of dispute between project owners, architects,
and construction contractors [3].

Surface voids (see Figure 1) generally refer to small
pits and craters on the concrete surface observed after the

process of formwork removal [5]. +ese defects are
brought about by the migration of an entrapped air
bubble to the interface between fresh concrete and
formwork [6]. +e diameter of these voids typically
ranges from several millimeters to 15 millimeters and
even 25 millimeters in some cases [4]. For more details on
the factors leading to the excessive presence of bugholes,
readers are guided to the technical paper compiled by
ACI [4]. In addition, bugholes are often distributed
scatteredly on the concrete surface [7].

A high density of surface voids can result in several
harmful effects on the performance of concrete structures:

(i) Bugholes obviously reduce the aesthetics of concrete
structures

(ii) +ese voids reduce the protective depth of concrete
structures and make the reinforcements inside them
more vulnerable to corrosion [6]
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(iii) For structures retrofitted by fiber-reinforced plastic
(FRP) material, excessive voids reduce the adhesion
properties of the FRP material applied to the
structure surface [8]

(iv) Recent works have pointed out that salt accumu-
lated in surface voids can lead to premature deg-
radation of reinforced concrete structures [6, 9]

(v) Existence of bugholes does increase the cost and
time of painting and finishing activities because

additional correctionsmust be performed to achieve
a flat concrete surface [5]

Consequently, project owners and architects demand
that the number of surface voids on concrete surfaces should
be limited to ensure the aesthetic appearance and durability
of concrete structures. Currently, in Vietnam, as well as
many other countries, inspection works on uncoated con-
crete surface are manually performed by human technicians.
+ese procedures rely heavily on domain knowledge and the

(a)

(b)

(c)

Figure 1: Concrete surface voids.
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experience of inspectors with very limiting assistances of
intelligent tools [4, 10–12]. +erefore, the current structure
condition assessment process is notoriously time-consum-
ing, laborious, and costly [7, 13–18]. It is due to the sheer
volume of surface area needed to be inspected, labeled, and
reported. Moreover, as pointed out by Perez et al. [19], the
manual procedure also brings safety threat to human in-
spectors since certain concrete surfaces cannot be reached
with ease, especially for those which are located at high/roof
levels and narrow space. +e current practice is also
problematic due to the unavoidable inconsistency in
inspecting outcomes. +e reason is that the assessment
process is dependent of subjective judgment of human
technicians [2, 3].

+erefore, project owners are increasingly seeking for
fast, effective, and consistent tools to better structure
condition assessment [19–24]. +e assessment outcomes
can also enhance communication between various
stakeholders regarding the condition of the buildings.
Image processing and machine learning with their fast
pace of improvement provide feasible means to achieve
such goals. Processed digital images and machine intel-
ligence are capable of automating the concrete surface
condition assessment, especially the task of detecting
surface voids.

Hence, in the recent years, various state-of-the-art
methods relying on these two aforementioned techniques
have been proposed to tackle the problem of interest. Zhu
and Brilakis [25] put forward an image processing approach
employing image segmentation and merging/splitting of
pixels to detect air pockets on the concrete surfaces. Santos
and Julio [26] presented an approach relying on the digital
image processing and laser scanning techniques to analyze
the roughness of the substrate surface. Fekri-Ershad and
Tajeripour [27] put forward a robust approach based on a
one-dimensional local binary pattern for recognizing surface
defect. da Silva and Štemberk [28] also employed image
processing (i.e., image binarization and morphological an-
alyses) and fuzzy logic to inspect the surface quality of self-
consolidating concrete for precast members with a focus on
the presence of bugholes. Tajeripour and Fekri-Ershad [29]
proposed novel one-dimensional local binary patterns used
for recognizing abnormalities in stone textures.

Kwasny et al. [30] investigated the influence of rheology
on the quality of surface finish of cement-based mortars; the
surface voids existing on concrete were then analyzed and
quantified via digital image processing. Sadowski and
Mathia [31] pointed out the needs of a more useful method
for characterizing properties of a heterogeneous concrete
surface; the authors also reviewed various image analyzing
tools including image filtering and transformation. +e
effectiveness of wavelet transform and Gaussian image fil-
tering in detecting surface defects were studied by Goı̈c et al.
[32]. Liu and Yang [33] extracted the features of bugholes on
a concrete surface via the utilization of the Otsu image
binarization method. A texture classification model that
incorporates of gray-level run-length matrix and robust
illumination normalization techniques has been constructed
by Dash and Senapati [34]. Khan et al. [35] relied on ground

penetrating radar to detect water inside the cavities of
concrete hollow core slabs.

Yoshitake et al. [36] relied on binary image and color
image analyses to detect bugholes distributed on sidewalls
and tunnel-lining concrete. Perez et al. [19] utilized the state-
of-the-art deep convolutional neural networks (DCNN) for
detecting and categorizing building surface defects. A novel
instance-level recognition and quantification for concrete
surface bughole based on the deep neural network has been
recently developed by Wei et al. [18]; this study demon-
strates a great capability of machine learning in identifying
concrete void surfaces accurately. Nevertheless, the imple-
mentation of deep learning models often requires a large
number of training samples and a capable computing
capability.

As can be seen in the current literature, previous works
have mainly relied on image thresholding methods for
detecting concrete surface voids. +ese methods require
substantial fine-tuning to adapt to variable characteristics of
heterogeneous concrete surface [31]. Due to the complexity
of concrete surface background and varying lighting con-
ditions, the accuracy and applicability of image thresholding
methods are generally limited. +erefore, image processing
techniques should be integrated with advanced machine
learning methods to deal with such issues. Hybrid image
processing and machine learning tools have demonstrated
their outstanding performances in detecting concrete sur-
faces in previous studies [15, 37–39]. However, too few
studies have dedicated to investigating hybrid image proc-
essing—machine learning models for the problem of con-
crete surface void detection. +erefore, the current work is
an attempt to fill this gap in the current literature.

In this study, image processing techniques including the
Gabor filtering and gray-level run lengths are employed to
compute image texture of a concrete surface with and
without voids.+e texture information is, then, employed by
the Support Vector Machines (SVM) to discriminate these
two groups of concrete surface. Furthermore, since the
training phase of the SVM-based bughole detection model
requires a proper setting of the hyperparameters including
the penalty coefficient and the kernel function parameter,
the history-based adaptive differential evolution with linear
population size reduction (L-SHADE) [40, 41] is used to
optimize the model training phase. It is because these two
hyperparameters strongly influence the learning and pre-
dicting performances of the SVM model. If the penalty
coefficient and the kernel function parameter are not de-
termined appropriately, the SVM-based surface void de-
tection model cannot deliver the desired due to either
overfitting or underfitting phenomena [42, 43].

+e subsequent parts of the study are organized in the
following order: +e second section reviews the research
methodology including the employed image processing and
computational tools, followed by the third section of the
collected image samples; the fourth section presents the
proposed hybrid model used for automatic detection of
concrete surface voids.+e fifth section reports experimental
results and concluding remarks of this research are stated in
the final section.
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2. The Employed Image Processing and
Computational Intelligence Methods

Since the surface of a concrete structure contains a diverse
form of texture (e.g., intact surface, cracks, bugholes, and
stains), texture information of an image region needs to be
analyzed to support the surface void detection process.
Accordingly, a large image is separated into a number of
disjoint image samples of 20× 20 pixels via image cropping
operations. Subsequently, numerical features are extracted
from these samples to construct the machine learning-based
surface void recognition model. In this study, the Gabor
filter and gray-level run-length methods are used for feature
extraction. A novel method combining the SVM and
L-SHADE is employed for data classification.

2.1. Gabor Filter (GF). Gabor filters have been widely used
for texture segmentation and feature extraction [44, 45]. Due
to the capability of optimal joint localization in both spatial
and spatial-frequency domains, Gabor filtering is an effective
method for recognizing abnormal regions regular textured
surfaces [46]. Various successful implementations of this
texture discrimination approach have been reported in the
literature [45–50]. Basically, a two-dimensional GF is a
complex sinusoidal wave modulated by a Gaussian envelope
[51].+is filter carries out a localized and oriented frequency
analysis of a two-dimensional signal. Mathematically, the
response of a GF can be given by the following equation [52]:

h(x, y)exp −
1
2

x2

σ2x
+

y2

σ2y
⎡⎣ ⎤⎦
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⎩

⎫⎬

⎭cos 2πu0x( , (1)

where u0 denotes the frequency of a sinusoidal plane wave
along the x-axis. σx and σy represent the space constants of
the Gaussian envelope along the x- and y-axis, respectively.

Notably, Gabor filters with different orientations can be
attained via a rigid rotation of the x-y coordinate system
[46]. +e Fourier transform of the Gabor function described
in equation (1) can be expressed as follows [52]:
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where σu � (1/2)πσx, σv � (1/2)πσy, and A � 2πσxσy. It is
noted that this Fourier transform of the Gabor function
determines the amount of each frequency component of the
original image that is altered by a GF [50].

Notably, to construct Gabor filters used for texture
computation, their tuning parameters including the orien-
tation angles and the radial frequency must be specified. As
suggested in the previous work of Jain and Farrokhnia [52],
0°, 45°, 90°, and 135° orientations can be used. Moreover,
given an image with a width of Nw pixels and Nw is a power
of 2, the commonly used radial frequency u0 are as follows:
1

�
2

√
, 2

�
2

√
, 4

�
2

√
, . . . , (Nw/4)

�
2

√
. Based on the response of the

GF operations, statistical measurements can be calculated
and employed as features for texture discrimination [53].

2.2. Gray-Level Run Lengths. In this study, the task of
concrete surface voids is formulated as image texture dis-
crimination. +erefore, information regarding a set of
connected image pixels with their distinctive pattern needs
to be analyzed. Due to the complex nature of concrete
surface, automatic texture discrimination is by no means an
easy task. To deal with such challenge, statistical texture
analysis models can be employed. Among the statistical
models, the gray-level run lengths (GLRL) [54] are very
effective to extract information of an image sample based on
sizes of homogeneous runs for each gray level [34].

+e GLRL was first proposed by Galloway [54] to distill
discriminative features from terrain images. +is method
was, then, applied and improved by various scholars for
classifying texture and other tasks in computer vision
[34, 55]. +is texture computation method relies on the fact
that image texture can be considered as a pattern of gray
intensity pixel in a particular direction from a reference
point [34]. Based on the analysis of second-order statistical
information, the GLRL computes the number of gray-level
runs which is a collection of linearly adjacent pixels with
similar gray intensities.

Given an image sample and a certain direction, a run-
length matrix p(i, j) stores the information regarding the
number of times that the sample contains a run length j of
gray level i [54]. Based on p(i, j) with different orientations
(e.g. 0°, 45°, 90°, 135°), a variety of texture information can be
obtained [56].

Based on a constructed run-length matrix, the Short Run
Emphasis (SRE), Long Run Emphasis (LRE), Gray-Level
Nonuniformity (GLN), Run-Length Nonuniformity (RLN),
and Run Percentage (RP) are computed according to the
following equations [54, 57, 58]:
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where M and N are the number of gray levels and the
maximum run length. Nr is the total number of runs, and Np
denotes the number of pixels in the image.

Furthermore, Chu et al. [55] extended the original
GLRL’s measurement with the indices of Low Gray-Level
Run Emphasis (LGRE) and High Gray-Level Run Emphasis
(HGRE):
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Additionally, Short Run Low Gray-Level Emphasis
(SRLGE), Short Run High Gray-Level Emphasis (SRHGE),
Long Run Low Gray-Level Emphasis (LRLGE), and Long
Run High Gray-Level Emphasis (LRHGE) are put forward
by Dasarathy and Holder [59]:
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2.3. 1e History-Based Adaptive Differential Evolution with
Linear Population Size Reduction. Differential Evolution
(DE) [60, 61] is unquestionably a powerful stochastic search
for solving numerical optimization. +is stochastic search
engine relies on a novel integrated mutation-crossover
operation to explore and exploit the search space. During the
last decade, various enhancements of the standard DE have
been put forward to improve its searching performance
[62–65].

Among these enhanced DE variants, the history-based
adaptive differential evolution with linear population size
reduction (L-SHADE) [40, 41] stands out to be a highly
successful version with competitive outcomes reported in
various comparative studies [66–69]. +erefore, this im-
proved version of the DE is selected in this study to optimize
the performance of the machine learning and image pro-
cessing-based concrete void detection model.

+e L-SHADE algorithm, proposed by Tanabe and
Fukunaga [41], improves the original DE algorithm via
several aspects. First, the mutation scale (F) and the
crossover probability (CR) are fine-tuned adaptively during
the optimization process instead of being fixed. Second, an
effective mutation strategy called DE/current-to-pbest/1 is
implemented to better explore the search space. +ird, a
population size shrinking strategy is used to both enhance
the convergence rate and reduce computational expense.

+e operational flow of the L-SHADE algorithm is
tersely presented in Figure 2. Since the L-SHADE inherits
the main characteristics of the standard DE, its searching
process can also be divided into four steps of population

initialization, mutation, crossover, and selection. In the first
step, based on the prespecified searched domain (lower and
upper boundaries), the number of decision variable (NDV),
and an initial number of members (NM), a population of NM
vectors is randomly created and expected to be distributed
evenly throughout the searched space. In the second step, a
new candidate solution called a mutated vector is generated
via the DE/current-to-pbest/1 strategy. +e DE/current-to-
pbest/1 strategy used for generating a new candidate solu-
tion is given by [40]

vi,g+1 � xi,g + Fi xr1,g − xr2,g  + Fi xpbest,g − xi,g . (6)

In the third step, the crossover operation is used to
combine the information of the newly created candidate and
its parent according to the following manner [60]:

uj,i,g+1 �
vj,i,g+1, if randj ≤Cr or j � rnb(i),

xj,i,g, if randj >Cr and j≠ rnb(i).

⎧⎨

⎩ (7)

In the last step, a greedy selection which compares the
fitness of the candidate solution and its parent is carried out.
It is noted that the L-SHADE employs archives of MF and
MCR which are vectors of a fixed length H; these two ar-
chives store the mean values of the mutation scale and the
crossover probability. Moreover, the two sets of SF and SCR
store all CR and F values that helped to yield child solutions
better than the parents. After each generation, the current
population size reduces via the removal of inferior solutions
[41].

2.4. Support Vector Machine. Support Vector Machines
(SVM), constructed on the basis of the statistical learning
theory, are a robust method for establishing pattern clas-
sification models. Introduced by Vapnik [70], the SVM have
gained popularity in the research community via various
works which reported their successful implementations
[71–73]. It is because this machine learning method features
significant advantages including resilience to noisy data via a
framework of maximummargin construction and capability
of handling nonlinearly separable data by means of kernel
tricks. Furthermore, the learning phase of the SVM is bolt
down to solving a convex optimization problem; this
guarantees a global convergence and avoids being trapped in
local optima [74].

+e concept of the SVM used for concrete surface void
detection is demonstrated in Figure 3. +e model deals with
nonlinearly separable data by mapping the data from the
original input space to a high-dimensional feature space; in
such high-dimensional feature space, linear separability can
become feasible.

Given a training dataset xk, yk 
N

k�1 with a numerical
feature xk ∈ Rn and corresponding class categories
yk ∈ −1, +1{ }, an SVM model establishes a classification
boundary to distinguish data from a positive class +1
(surface void) and a negative class −1 (nonsurface void). It is
noted that a numerical feature xk is actually texture infor-
mation extracted from an image sample using the Gabor
filter and the GLRL. To establish such classification
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boundary, it is required to solve the following nonlinear
programming problem [43]:

Minimize Jp(w, e) �
1
2
w

T
w + c

1
2



N

k�1
e
2
k

Subjected to yk wTφ xk(  + b( ≥ 1 − ek, k � 1, . . . , N, ek ≥ 0,

(8)

where w ∈ Rn is a normal vector to the classification hy-
perplane and b ∈ R represents the model bias; ek > 0 is slack
variables; c represents a penalty constant; and φ(x) denotes
the nonlinear data mapping used for dealing with nonlinear
separable data.

It is noted that the SVM does not necessitate an explicit
expression of the data mapping function φ(x). +e quantity
of interest is the product of φ(x) in the input space which is
defined as a Kernel function:

K xk, xl(  � φ xk( 
Tφ xl( . (9)

+e Radial Basis Function Kernel (RBFK) is often
employed and it is shown as follows:

K xk, xl(  � exp −
xk − xl

����
����
2

2σ2
⎛⎝ ⎞⎠, (10)

where σ represents a tuning parameter of the RBFK.
After solving the aforementioned nonlinear program-

ming, the SVM model used for data classification can be
tersely presented in the following equation:

y xl(  � sign 
SV

k�1
αkykK xk, xl(  + b⎛⎝ ⎞⎠, (11)

where αk denotes the solution of the dual form of the
aforementioned nonlinear programming. SV represents the
number of support vectors (the number of αk > 0).

3. The Image Samples of the Concrete Surface

To construct the SVM machine learning model used for
concrete surface void recognition, the set of image samples
capturing the texture of concrete structures must be pre-
pared. +is image set includes samples which contain
concrete bugholes and samples without such defect. Ac-
cordingly, a set of 1000 image samples with assigned ground

Population 
initialization Mutationg < MaxG Crossover

Population size 
reduction Selection

Optimized solution

No
g = 0 Yes

g = g + 1
Note:
g denotes the current generation
MaxG is the maximum number of
generations

Figure 2: +e operational flow of the L-SHADE algorithm.

Kernel function mapping

Φ (xu)

Φ (xv)

Φ (x)

Original input space High-dimensional feature space
Φ (xl)

Xi

Nonsurface void 
Surface void

Nonlinear decision boundary
Hyperplane used for data classification

Figure 3: Demonstration of an SVM model.
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truth categories has been manually collected via field trip to
several construction sites in Danang city (Vietnam). To
guarantee a balanced dataset, the numbers of the negative
(without surface voids) and positive (having surface voids)
samples are both 500. +e categories of image samples have
been determined by human inspectors. Herein, the label� -1
means the negative class and the label� 1 denotes a positive
class. It is noted that the collected images in this study have
been taken by using the Cannon EOSM10 (CMOS 18.0 MP)
andNikon D5100 (CMOS 16.2MP). To enhance the speed of
the texture computation phase and to ensure the consistency
of an image region, the image size has been set to be 20x20
pixels. +e image samples are illustrated in Figure 4. Ad-
ditionally, to better cope with the diversity of the concrete
surface, the negative class of nonsurface void deliberately
includes samples of sound concrete surface, cracks, and
stains.

4. The Proposed Hybridization of Image
Processing, Machine Learning, and
Metaheuristic for Detecting Concrete
Surface Voids

+e proposed hybridization of image processing, machine
learning, and metaheuristic optimization used for detection
of concrete surface voids is presented in this section of the
study. +e integrated model is denoted as L-SHADE-SVM-
SVD.+e overall model structure is graphically summarized
in Figure 5.+e L-SHADE-SVM-SVDmodel is developed in
the Visual C#.NETenvironment (Framework 4.6.2) and run
in ASUS FX705GE—EW165T (Core i7 8750H, 8GB Ram,
256GB solid-state drive).

+e L-SHADE-SVM-SVD operation can be divided into
three steps:

(i) Image texture computation: the step computes
texture information of concrete surface obtained
from image samples stored in training and testing
subsets. +e first subset includes 90% of the col-
lected samples and is used for model construction.
+e second set occupies 10% of the collected
samples and is reserved for validating the model
predictive capability. Image texture including the
Gabor filter and GLRL is computed and used as the
numerical feature.

(ii) +e L-SHADE metaheuristic optimization: as
mentioned earlier, the model training and pattern
classification phases of the SVM require appropriate
values of the penalty coefficient (c) and the kernel
function parameter (σ). +e former hyperparameter
dictates how the loss function of the SVM increases
due to misclassified data points. +e latter hyper-
parameter affects the smoothness of the decision
boundary. +erefore, these hyperparameters
strongly influence the learning and predictive
performance of the SVM-based bughole detection
model. +e selection of the penalty coefficient (c)
and the kernel function parameter (σ) can be

formulated as an optimization task within which
metaheuristic algorithms can be employed. Based
on the previous comparative works [41, 67, 68, 75],
this study employs the L-SHADE metaheuristic
algorithm for conducting the SVR model optimi-
zation. +is DE variant first generates an initial
population of hyperparameters in a random man-
ner. In each generation, the optimization algorithm
explores and exploits the search space to gradually
guide the population to a better solution repre-
senting SVM models with good predictive
capability.

(iii) +e SVM-based pattern classification: based on the
optimized solution of the model hyperparameters,
the SVM model is employed to construct a decision
surface that is capable of distinguish concrete sur-
face with and without voids. Notably, the SVM
model is constructed via a built-in function sup-
ported by the Accord.NET Framework [76].

It is also noted that, to optimize the SVM model
performance, a K-fold cross validation (with K � 5) is
used. Using this cross validation, the whole dataset is
separated into 5 mutual exclusive subsets. In each of the
five runs, one subset is used for model testing and the
other subsets are employed for model training. +e av-
erage predictive performance is used to quantify the
model generalization capability. Accordingly, the fol-
lowing cost function is used by the L-SHADE-SVM-SVD:

CF �


K
k�1 FNRk + FPRk( 

K
, (12)

where FNRk and FPRk denote the false negative rate (FNR)
and the false positive rate (FPR) obtained from kth run,
respectively.

+e FNR and FPR indices are computed as follows:

FNR �
FN

FN + TP
,

FPR �
FP

FP + TN
,

(13)

where FN, FP, TP, and TN are false negative, false positive,
true positive, and true negative data samples, respectively.

Moreover, it is noted that, to compute the Gabor filter,
it is necessary to convert the original image to grayscale
ones. Based on the recommendations of Jain and Far-
rokhnia [52], four values of orientations (0°, 45°, 90°, and
135°) and four values of radial frequency
(1

�
2

√
, 2

�
2

√
, 4

�
2

√
, 8

�
2

√
) have been employed to calculate the

Gabor filtering features. In this study, the Gabor filters are
implemented with the assistance of built-in functions
provided by the Accord.NET Framework [76]. Based on
the filtered image, the following statistical indices can be
measured to characterize image texture:

(i) +e mean of the Gabor filter response:
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MeanGaborFilter �


HIM−1
i�0 

WIM−1
j�0 GFR(i, j)

WIM × HIM
, (14)

where HIM and WIM are the width and height of an image
sample, respectively. GFR(i, j) denotes the Gabor filter re-
sponse at a pixel (i, j).

(ii) +e standard deviation of the Gabor filter response:

(a)

(b)

Figure 4: +e collected image samples: (a) nonsurface void and (b) surface void.
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Figure 5: +e proposed L-SHADE-SVM-SVD used for automatic detection of concrete surface voids.
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STDGaborFilter �


HIM−1
i�0 

WIM−1
j�0 GFR(i, j) − MeanGaborFilter 

2

WIM × HIM
.

(15)

(iii) +e skewness of the Gabor filter response [77]:

SkewnessGaborFilter �
1/ WIM × HIM( (  

HIM−1
i�0 

WIM−1
j�0 GFR(i, j) − MeanGaborFilter 

3

1/ WIM × HIM − 1( ( 
H−1
i�0 

W−1
j�0 GFR(i, j) − MeanGaborFilter 

2
 

3/2. (16)

(iv) +e entropy of the Gabor filter response:

EntropyGaborFilter � − 
NDV−1

i�0
FOHFilter × log2 PFilter , (17)

where FOHFilter represents the first-order histogram of the
Gabor filter response. Moreover, NDV� 256 denotes the
number of discrete gray intensity values for an 8 bit grayscale
image.

Because 16 Gabor filters are employed for computing
image texture and each filter has four statistical indices (the
mean, standard deviation, skewness, and entropy), the
number of Gabor filtering features is 64. Moreover, since
there are four orientations (0°, 45°, 90°, and 135°) used for
GLRL matrix construction and each GLRL matrix has 11
features, the number of GLRL features is 44 [57]. Accord-
ingly, the total number of features used for the SVM pattern
classification is 64 + 44�108.

Additionally, to facilitate the data classification based on
the SVM, the established dataset has been normalized by the
Z-score equation given by

XZN �
Xo − mX

sX

, (18)

where Xo and XZN represent the original and the stan-
dardized input feature, respectively. mX and sX denote the
mean and the standard deviation of the original input
feature, respectively.

5. Experimental Result and Comparison

As mentioned earlier, to train and validate the hybrid model
used for concrete surface void detection, the collected
dataset has been divided into two packages of training and
testing datasets. +e training dataset (90% of the original
dataset) is used for model construction, and the testing
dataset is reserved for evaluating the model performance
when predicting novel image samples. Moreover, to di-
minish the effect of randomness in data sampling and to
reliably assess the predictive capability of the newly devel-
oped method, the training/testing data sampling has been
performed 20 times. In each time of running, 10% of the
original dataset is randomly drawn out to form the testing
dataset; the rest of the original dataset is used for model

construction. +e datasets used for time of model running
are illustrated in Table 1. Herein, the column of sample index
expresses the number of data samples employed in the
training and testing datasets.

In addition, to quantify the predictive capability of the
proposed L-SHADE-SVM-SVD, the classification accuracy
rate (CAR), precision, recall, negative predictive value
(NPV), and F1 score are computed from the four basic
results of TP, TN, FP, and FN.+ese performance indicators
are presented as follows [78]:

CAR �
TP + TN

TP + TN + FP + FN
× 100%,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

NPV �
TN

TN + FN
,

F1 Score �
2TP

2TP + FP + FN
.

(19)

+e L-SHADE with an initial population size of 30 and a
maximum number of searching generations of 100 was
utilized to seek for the most appropriate set of the SVM
model’s hyperparameters. +e searching progress of the
L-SHADEmetaheuristic is graphically presented in Figure 6.
+e optimization process yields the penalty parameter (c)�

3.712 and the kernel function parameter (σ)� 6.031. In
addition, the statistical outcomes of the L-SHADE-SVM-
SVD (mean and standard deviation) using the hyper-
parameters found by the L-SHADE metaheuristic are re-
ported in Table 2. +e averaging values of the CAR,
precision, recall, NPV, and F1 score are 92.600%, 0.911,
0.942, 0.940, and 0.926, respectively. In addition, the average
runtime of the proposed approach is roughly 13.30 seconds.
Since there are 100 data samples in the testing set, the
computational time used for classifying one testing data
sample is approximately 0.13 seconds.

Furthermore, to demonstrate the predictive ability of
the newly developed L-SHADE-SVM-SVD model used for
concrete surface void recognition, the model performance
has been compared to those of Deep Convolution Neural
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Network (DCNN) models [79–81] with stochastic gradient
descent with momentum (Sgdm) [82], Adaptive Moment
Estimation (Adam) [83], and root mean square propaga-
tion (Rmsprop) [84]. +e three DCNN models are denoted
as DCNN-Sgdm, DCNN-Adam, and DCNN-Rmsprop and
are implemented via the MATLAB deep learning toolbox
[85]. Via a trial-and-error process, appropriate configu-
rations of the DCCN model are selected and shown in
Table 3.

Moreover, the minibatch Backpropagation Neural
Network (MB-BPNN) [86, 87] is also employed as a
benchmark method. +e MB-BPNN model has been de-
veloped in Visual C#.NET by the authors and trained with
the minibatch mode [87, 88]; the batch-size is selected to be
32. and the number of neurons in the hidden layer is set to be
(2/3)DX + CN, as suggested by Heaton [89]; DX and CN
denote the numbers of features and outputs, respectively.
+e MB-BPNN model is, then, trained with the sigmoidal

activation function with the maximum number of epoch-
s� 1000 epochs and the learning rate� 0.01.

+e prediction results of the proposed L-SHADE-SVM-
SVD model, as well as the benchmark models, are sum-
marized in Table 4 and graphically presented as box plots in
Figure 7. As can be seen from the prediction results, the
performance of the L-SHADE-SVM-SVD (CAR� 92.600%,
Precision� 0.911, Recall� 0.942, NPV� 0.940, and F1
score� 0.926) is better than that of the DCNN-Rmsprop

Table 1: +e training and testing datasets.

Datasets Sample index
Features

Class label
F1 F2 F3 . . . F106 F107 F108

Training

1 108.115 33.580 −15.236 . . . 6866.946 11.141 658.625 −1
2 109.645 33.763 −18.768 . . . 5026.965 11.007 381.245 −1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

899 106.063 32.555 −14.066 . . . 32167.854 10.600 640.701 1
900 108.305 33.135 −13.449 . . . 31379.524 10.674 1039.198 1

Testing

1 108.435 32.954 −16.630 . . . 9425.744 11.802 2016.670 −1
2 105.565 30.844 −16.665 . . . 8383.504 11.505 1440.862 −1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

99 107.228 32.628 −12.087 . . . 30558.259 10.551 631.624 1
100 107.223 32.418 −13.006 . . . 30292.417 10.575 514.372 1
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Figure 6: +e L-SHADE optimization process.

Table 2: Prediction performance of the L-SHADE-SVM-SVD.

Phases Indices CAR (%) TP TN FP FN Precision Recall NPV F1 score

Training Mean 97.417 437.200 439.550 9.550 13.700 0.979 0.970 0.970 0.974
Std. 0.222 4.938 5.753 1.605 1.302 0.004 0.003 0.003 0.002

Testing Mean 92.600 46.200 46.400 4.500 2.900 0.911 0.942 0.940 0.926
Std. 2.761 4.873 5.305 1.878 2.125 0.037 0.040 0.044 0.027

Table 3: Configurations of the DCNN models.

CNN layers
Convolution layers Pooling layers

Filter number Filter size Filter size
1 36 10 2
2 36 8 2
3 36 4 2
4 36 2 2
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(CAR� 88.350%,Precision� 0.929,Recall� 0.834,
NPV� 0.852,andF1score� 0.877),DCNN-Adam (CAR�

86.900%,Precision� 0.893, Recall� 0.844, NPV� 0.856, and
F1 score� 0.865),DCNN-Sgdm(CAR� 86.800%,Precision
� 0.909, Recall� 0.818, NPV� 0.839, and F1 score�

0.859),and MB-BPNN (CAR� 85.700%, Precision� 0.818,
Recall� 0.890, NPV� 0.896, and F1 score� 0.839).

In addition, the two-sample t-test [90] is utilized in this
study to better confirm the statistical significance of the
model predictive capabilities. +is statistical test is often
employed to inspect the null hypothesis that the model
prediction performances of two machine learning models
may be drawn from normal distributions with equal means.
Herein, the significant level (p value) of the test is set to be
0.05, and the results of the t-test are reported in Table 5. As
can be observed from this table, the p values <0.05 reliably
reject the null hypothesis. +is fact confirms that the pro-
posed L-SHADE-SVM-SVD is best suited for the task of
detecting concrete surface bugholes.

6. Conclusions

Detection of a concrete surface is crucial for inspecting
quality of cast-in-place concrete elements. To enhance the
productivity and eliminate subjective judgment of concrete
quality inspection works, this research proposes an intelli-
gent method that hybridizes state-of-the-art image pro-
cessing, machine learning, and metaheuristic methods.
Image texture is used as the input feature that characterizes
the states of a concrete surface. Gabor filter and GLRL-based
texture information is computed and employed by the SVM
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Figure 7: Box plots of model performances.

Table 4: Prediction result comparison.

Phase Indices
L-SHADE-SVM-

SVD DCNN-Rmsprop DCNN-Adam DCNN-Sgdm MB-BPNN

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

Training

CAR (%) 97.417 0.222 87.922 2.585 89.211 1.937 87.756 6.165 86.763 6.889
TP 437.200 4.938 369.000 25.984 390.250 17.693 375.650 40.359 333.900 63.570
TN 439.550 5.753 422.300 20.683 412.650 21.755 414.150 21.866 360.200 9.540
FP 9.550 1.605 27.700 20.683 37.350 21.755 35.850 21.866 66.100 63.570
FN 13.700 1.302 81.000 25.984 59.750 17.693 74.350 40.359 39.800 9.540

Precision 0.979 0.004 0.934 0.044 0.916 0.042 0.912 0.064 0.835 0.159
Recall 0.970 0.003 0.820 0.058 0.867 0.039 0.835 0.090 0.895 0.012
NPV 0.970 0.003 0.842 0.041 0.875 0.029 0.851 0.065 0.901 0.024

F1 score 0.974 0.002 0.871 0.030 0.889 0.019 0.870 0.075 0.852 0.132

Testing

CAR (%) 92.600 2.761 88.350 3.133 86.900 4.204 86.800 6.178 85.700 7.248
TP 46.200 4.873 41.700 3.246 42.200 3.792 40.900 4.767 40.900 8.130
TN 46.400 5.305 46.650 2.323 44.700 3.326 45.900 2.674 44.800 2.587
FP 4.500 1.878 3.350 2.323 5.300 3.326 4.100 2.674 9.100 8.130
FN 2.900 2.125 8.300 3.246 7.800 3.792 9.100 4.767 5.200 2.587

Precision 0.911 0.037 0.929 0.045 0.893 0.057 0.909 0.065 0.818 0.163
Recall 0.942 0.040 0.834 0.065 0.844 0.076 0.818 0.095 0.890 0.042
NPV 0.940 0.044 0.852 0.049 0.856 0.059 0.839 0.067 0.896 0.052

F1 score 0.926 0.027 0.877 0.036 0.865 0.044 0.859 0.076 0.839 0.137

Table 5: +e t-test outcomes of pairwise model comparisons.

Model comparison Test outcome p value
L-SHADE-SVM-SVD vs. DBNN-
Rmsprop Significant 0.00005

L-SHADE-SVM-SVD vs. DBNN-Adam Significant 0.00001
L-SHADE-SVM-SVD vs. DBNN-Sgdm Significant 0.00046
L-SHADE-SVM-SVD vs. MB-BPNN Significant 0.00030
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to construct a decision boundary that divides the input into
two categories of no surface void (negative class) and surface
void (positive class).

In addition, to optimize the SVM model training
phase, the L-SHADE metaheuristic is used. +is meta-
heuristic algorithm autonomously searched for the most
appropriate set of the SVM model’s hyperparameters
including the penalty coefficient and the kernel function
parameter. +e integrated model, named as L-SHADE-
SVM-SVD, has been developed and compiled in the
Visual C#.NET framework to ease its implementation.
+e experimental outcome using 1000 image samples and
a repeated data sampling with 20 runs demonstrate that
the newly developed L-SHADE-SVM-SVD is able to
attain good predictive performances (CAR � 92.600%,
Precision � 0.911, Recall � 0.942, NPV � 0.940, and F1
score � 0.926). +us, the L-SHADE-SVM-SVD can be a
helpful tool to assist construction inspectors in assessing
concrete surface quality.

Nevertheless, since the current L-SHADE-SVM-SVD
model aims at recognizing the status of no surface void and
surface void, the task of localizing surface voids on a con-
crete surface image can be performed in a future study. In
addition, other future directions of the current works may
include the extension of the collected image dataset to en-
hance the generalization of the developed machine learning
model, investigation of other advanced metaheuristic al-
gorithms to improve the surface void detection perfor-
mance, and employment of other performance
measurements such as model runtime [91].

Data Availability
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As a result of global climate change and urbanization, waterlogging disasters have occurred frequently around the world, and deep
foundation pit projects with lower terrain suffer evenmore.+is study puts forward amethod for the waterlogging risk assessment
of deep foundation pit projects via the combination of a projection pursuit model, particle swarm optimization, and an in-
terpolation algorithm. First, through a comprehensive analysis of the water circulation process in waterlogging and the char-
acteristics of deep foundation pit projects, a risk index system with 11 indicators is identified and constructed. +en, a projection
pursuit model optimized by particle swarm optimization is leveraged to determine the weights of the indicators and the best
projection values of evaluation objects, and the mathematical function between the best projection values and the risk levels is
constructed by an interpolation algorithm. Finally, three deep foundation pit projects of the Chengdu Metro Line 11 in China are
selected as case studies.+e results demonstrate that the frequency of storms, intensity of rainfall, preparation of emergency rescue
plans, and proportion of older workers have the greatest impacts on waterlogging risk in deep foundation pits. +e risk ranking of
the case studies is found to be consistent with the actual situations, which proves the objectivity and effectiveness of the
proposed method.

1. Introduction

In recent years, under the coupled effects of global climate
change and urbanization, urban rainstorms and floods have
frequently occurred and pose tremendous threats to public
safety [1, 2]. In July 2016, Wuhan, the capital city of Hubei
Province in China, suffered a serious waterlogging disaster.
+is catastrophe caused a direct economic loss of 351million
RMB, and transport and traffic were paralyzed [3]. In
January 2020, heavy rain and floods in Jakarta, the capital of
Indonesia, resulted in the death of 16 people and the
evacuation of 35,600 people. +e construction sites of deep
foundation pit projects are extremely low; rainwater
therefore naturally converges into these pits, making them
more vulnerable to waterlogging disasters. +us, conducting
the waterlogging risk assessment of deep foundation pit
projects will alleviate the injuries and property losses caused
by waterlogging. +is is of the highest guiding significance

for disaster prevention, mitigation, and preparedness work
in the project management of deep foundation pit
engineering.

+e assessment manner of waterlogging risk is to rate the
level of risk via an established mathematical model and
evaluation index. According to the key influencing factors of
waterlogging disaster risk and different risk levels, project
managers are able to implement different measures of
waterlogging prevention, mitigation, and preparedness.
Scholars have carried out substantial research on urban
waterlogging risk assessment. Hou [4] constructed a
stormwater management model by combining geographic
information system (GIS) and remote sensing (RS) tech-
nologies. +is model was used to simulate the changes of the
inundation range and accumulated water depth with the
increase of rainfall intensity in the large-scale area of Jinfeng
District, Yinchuan City, China. From the perspective of the
discipline of disaster science, Jia et al. [5] studied the risk
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level of waterlogging in prefecture-level cities in Henan,
China. +e results showed that the ability to prevent and
reduce disasters had a critical impact on rainfall and
waterlogging risk. Wu et al. [6] investigated the vulnerability
of Zhengzhou City to flood disasters from the perspective of
government management. Yu et al. [7] used an optimal
weighting method and fuzzy comprehensive evaluation
method to study waterlogging risk assessment in the con-
struction and operation of subway stations; however, this
indicator system was too simple and was unable both to
consider the water circulation process during waterlogging
and to effectively reflect the characteristics of subway sta-
tions. In addition, this study did not incorporate high-di-
mensional data that could be obtained before evaluation,
which reduces the application and popularization values of
the proposed model. In summary, existing related research
has been primarily focused on large-scale areas such as cities
and provinces, rather than small-scale areas such as projects
under construction. To the best of the authors’ knowledge,
research on the assessment of the waterlogging risk in deep
foundation pits has not yet been reported.

Currently, soft computing techniques are widely used in
risk assessment and have achieved excellent research results.
Mikael et al. [8] used the harmony search algorithm to ef-
fectively evaluate the geological disasters of railway tunnels.
Bui et al. [9] studied the flood forecasting by the multivariate
adaptive regression splits and PSO. +is paper pointed out
that PSO had better reliability and accuracy than other ar-
tificial intelligence algorithms. Artificial bee colony algorithm
was also used to evaluate the risks of tunnel projects [10].

+ere are numerous factors that affect the waterlogging
risk of deep foundation pits, and waterlogging risk assess-
ment data is therefore high-dimensional. Determining how
to effectively deal with this high-dimensional data is the key
for improving the objectivity and effectiveness of water-
logging risk assessment. +e projection pursuit model
(PPM) projects high-dimensional data into low-dimensional
space for analysis. In recent years, it has been used in-
creasingly more in the field of risk evaluation [11] and
decision-making [12] to effectively evaluate high-dimen-
sional data.

To effectively analyse complex indexes in the research of
gas outburst prediction, Liang [13] established a prediction
model by using a PPM optimized by a genetic algorithm
(GA). In this model, the one-dimensional projection values
calculated by the GA were used to indicate the potential gas
outburst risk, and the PPM was confirmed to be objective
and effective. Liu et al. [14] proposed a PPM improved by the
Ameliorative Moth-Flame Optimization (AMFO) algorithm
for high-dimensional data for the evaluation and spatial
change rule of surface water quality. +e empirical analysis
results showed that the proposed AMFO-PPE was stable and
reliable. To effectively evaluate the sustainability of pre-
fabricated parts, Jiang et al. [15] used a PPM optimized by
the Real-code Accelerated Genetic Algorithm (RAGA),
based on which a customer satisfaction evaluation algorithm
for an e-commerce platform was constructed [16].
According to the previous research results, the key step in
the processing of high-dimensional data by a PPM is to

determine the optimum projection direction, which is a
complex nonlinear optimization problem [17]. At present,
most researchers adopt the GA to solve this problem, though
it is characterized by some shortcomings including the
dependence on the initial population selection, a slow
convergence speed, and too many parameter settings
[18, 19]. Compared with a GA and ant colony optimization,
particle swarm optimization (PSO), which is also a typical
metaheuristic algorithm, is characterized by fast conver-
gence and fewer parameter settings [20]. Although PSO does
not require tedious mathematical operations, it has been
proven to better solve most optimizations. Dormishi et al.
[21] used a variety of metaheuristic algorithms to com-
prehensively evaluate cutting machine performance in the
mineral processing field, and the research results demon-
strated that the PSO exhibited advantages over a differential
evolution algorithm. Hasanipanah et al. [22] used the PSO
model and the other methods to, respectively, predict the
ground vibration caused by an explosion; the results also
revealed that the PSOmodel performed better than the other
methods.

According to the preceding analysis, the present paper
proposes a method of waterlogging risk assessment using the
combination of a PPM and PSO. +e main contributions of
this paper are as follows. (1) From the perspectives of the
fields of environmental science and civil engineering, a
rainstorm waterlogging disaster risk index system that can
reflect the characteristics of small-scale areas in deep
foundation pit engineering and construction project man-
agement is constructed for the first time. (2)+e PPM is used
to effectively deal with the problem of the high-dimensional
data of rainstorm waterlogging disaster risk, and PSO is used
to determine the optimum projection direction of the PPM.
(3)+is paper, for the first time, reveals that the frequency of
storms, intensity of rainfall, preparation of emergency rescue
plans, and proportion of older workers have the greatest
impacts on the waterlogging risk of deep foundation pits and
are the key factors in project management. +e series of
research in this paper provides a scientific basis for the
prevention, mitigation, and preparedness of waterlogging
disasters in deep foundation pit engineering.

+e remainder of this paper is organized as follows.
Section 2 details the research materials and methods, in-
cluding index selection and the risk assessment method. +e
process of the case analysis and discussion of the results are
presented in Section 3, and the research conclusions are
presented in Section 4.

2. Materials and Methods

2.1. "e Index System of Waterlogging Risk in Deep
Foundation Pits

2.1.1. Determination of Risk Factors of Waterlogging Risk in
Deep Foundation Pits. +e risk assessment of waterlogging
in deep foundation pits is a complicated and interdisci-
plinary issue. In the field of environmental science, water-
logging disasters are always provincial; thus, waterlogging
risk factors should be considered from the perspective of the
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water cycle process of waterlogging disasters in both deep
foundation pits and their surrounding areas [23]. +e factors
associated with the surrounding area reflect the characteristics
of waterlogging disasters in large-scale urban areas, while the
factors associated with deep foundation pits reflect the de-
tailed process of waterlogging disasters. +e factors that
clearly indicate the characteristics of deep foundation pit
engineering should then be selected from the perspective of
civil engineering; these factors should naturally reflect both
structural characteristics and project management charac-
teristics. Finally, the factors related to the capacity of disaster
prevention and mitigation should be chosen from the per-
spective of scientific fields such as disaster management.

In the project management practice of deep foundation
pit engineering, many construction and management mea-
sures are used to resist waterlogging. For example, a retaining
wall along the foundation pit is usually put in place to prevent
waterlogging; the higher the height of the retaining wall is, the
harder the floods to enter the construction site are, and the
less risk of waterlogging there is. Water pumps are also often
stored and utilized for draining in deep foundation pits; the
more the pumps there are, the faster the water is pumped out
and less the risk of waterlogging there is. In addition, the
waterlogging risk in deep foundation pit projects is related to
the population structure [24]; the public emergency capacity
of citizens over 50, namely, the elderly, is significantly hin-
dered; thus, these populations are more vulnerable when
faced with emergencies. In other words, the greater the
proportion of construction workers over the age of 50, the
greater the vulnerability the society has to waterlogging di-
sasters [25] and the higher the risk of waterlogging in deep
foundation pit projects.

Referring to previous research results [26, 27], the risk
factors associated with disaster prevention and mitigation
are the preparation of an emergency rescue plan, efficiency
of emergency rescue, proportion of relief workers, and re-
serve of emergency rescue materials. An emergency rescue
plan is the foundation for emergency management when
disasters and emergencies occur; the more fully prepared the
emergency plan, the stronger the disaster prevention and
mitigation capability. +e factors related to disaster re-
duction are divided into two categories, namely, emergency
rescue support factors and emergency rescue organization
factors. Copious professional rescue personnel and sufficient
relief materials are the foundations of successful emergency
response work. When natural disasters such as waterlogging
occur, the more complete the emergency rescue organiza-
tion, the faster the information communication, and the
higher the efficiency of emergency rescue.

2.1.2. Construction of Evaluation Index System. Taking fully
into account objectivity, systematism, availability, and in-
dependence, risk indicators that are representative of all risk
factors identified in Section 2.1.1 were chosen in this study.
An evaluation index system including 11 risk indicators was
constructed, as presented in Table 1.

In Table 1, X1, X2, X3, X5, X6, X7, and X10 are
quantitative indicators, and their data was obtained by field

research and the review of local water resources an-
nouncements, local yearbooks, etc. Considering the un-
availability of partial data in current engineering practice,
X4, X8, X9, and X11 are all qualitative indexes without
measurement units, and their scores were obtained by a
questionnaire survey. X1, X2, X3, and X7 are benefit-based
indicators; the greater the numerical values of these indi-
cators, the greater the level of waterlogging risk. +e
remaining indicators are cost-based; the smaller the nu-
merical values, the greater the level of waterlogging risk.

2.1.3. Assessment Standard of Waterlogging Risk.
Currently, there are no uniform standards for the assessment
of waterlogging risk [28, 29]. To meet the needs of deep
foundation pit project management practice, the risk as-
sessment levels in this study were classified by the different
risk response measures that should be taken. Four levels of
waterlogging risk, namely, low risk (I), moderate risk (II),
high risk (III), and extreme risk (IV), were identified. +e
low risk (I) category denotes that there is no need to take
further measures, only to check how existing measures are
implemented. Moderate risk (II) indicates that additional
measures should be developed to deal with the risk of
waterlogging. High risk (III) implies that there is no need to
stop the construction operation, but further measures must
be immediately formulated to reduce the level of water-
logging risk as soon as possible. Extreme risk (IV) signifies
that the construction task must be suspended immediately
and that project managers are obliged to promptly take
measures to decrease the waterlogging risk level.

As indicated in Table 1, the standards of different eval-
uation levels for the 11 indicators were established by com-
bining the expert experience of project managers and previous
research results [30, 31]. +e risk level descriptions of the four
qualitative indicators, X4, X8, X9, and X11, are divided into 2
components, namely, the qualitative language description and
corresponding quantitative score range. For example, the low
risk (I) level of X8 is “fully sufficient [90, 100];” “fully suffi-
cient” is a qualitative language description, and “90–100” is the
corresponding quantitative score range. If an expert judged
from experience that the situation of the X8 index to be
evaluated was fully sufficient, it would have been scored to be
between 90 and 100 in the questionnaire.

It must be pointed out that, to the best of the authors’
knowledge, there has been no study on the upper limit values
of X1, X2, X3, X5, and X6. To better generalize the index
system, the upper limits of these indexes are “+∞” in Ta-
ble 1. When this index system was used to carry out case
studies, their upper limit values would have been reasonably
selected in combination with deep foundation pit engi-
neering practice, rather than being considered to be +∞.

2.2. Risk Assessment Method ofWaterlogging Risk in the Deep
Foundation Pits

2.2.1. Projection Pursuit Model. +e PPM is a statistical
method for processing and analysing high-dimensional data.
+e method was originally coined by Friedman and Tukey
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from Stanford University in 1974 [32]. +e basic idea is
tantamount for projecting high-dimensional data into a low-
dimensional space. +erefore, this model can effectively
eliminate variable interference that is not related to the data
structure. Additionally, the objective weights of the indi-
cators were computed directly from the characteristics of the
sample data [33] in their application to system evaluation.

+e general steps of the PPM used in the system eval-
uation are as follows.

(1) Standardization of Data

Let the indicator sequence be [xij]m×n, where m is equal
to the number of samples and n is the number of indicators.

To eliminate the dimensional impact of the evaluation
indicators and ensure the generalizability of the modelling,
the extreme value normalization method was employed in
this study to standardize the data.

+e benefit-based indicators [34] are as follows:

x
∗
ij �

xij − min xj 

max xj  − min xj 
, (1)

and the cost-based indicators [34] are as follows:

x
∗
ij �

max xj  − xij

max xj  − min xj 
, (2)

where x∗ij indicates the value of the evaluation index after
standardization, max(xj) represents the maximum value of
indicator j, and max(xj) represents the minimum value of
indicator j.

(2) Construction of Projection Indicator Function

+e core idea of the PPM is to project [x ∗ij]m×n to obtain
the projection value z(i) according to projection indicators
� (a1, a2, · · · , am) [35]. +e projection indicator function is

Z(i) � 
m

j�1
ajx
∗
ij . (3)

Optimizing a requires that the distribution character-
istics of Z(i) are such that the projection points are locally as
dense as possible and overall spread out as much as possible.
+erefore, the best projection direction is determined by
maximizing the product of the standard deviation and the
local density. +e optimal projection function [36] is

Sz �

����������������


n
i�1 (Z(i) − E(z))2

n − 1



, (4)

where Sz is the standard deviation of Z(i) and E(z) is the
average of Z(i).

Dz � 
n

i�1


m

j�1
R − rij u R − rij , (5)

where Dz is the local density of Z(i), rij is the distance
between samples, R is the window radius of the local density,
and it is also the only parameter set in the PPM. Addi-
tionally, u(R − rij) is the unit step function. When
R − rij ≥ 0, u(R − rij) � 1; otherwise, u(R − rij) � 0.

(3) Optimizing the Projection Index Function

When the indicator sample set [xij]m×n is determined,Q(a)

only changes with the projection direction a. If the projection
direction is the best projection direction a∗,Q(a) must be at the
maximum value.+e low-dimensional data obtained in the best
projection direction a∗ can be best explained by the charac-
teristic structure of the original data [37].

Based on the preceding analysis, the method of finding
the maximum value of the projection index function was
employed to find the best projection direction.

Table 1: +e index system of waterlogging risk in the deep foundation pit projects.

Indicator level Unit I II III IV
Intensity of rainfall
X1 mm/24 h [0, 50) [50, 100) [100, 250) [250, +∞)

Frequency of storms
X2 times/year [0, 1) [1, 3) [3, 6) [6, +∞)

Distance to urban drains
X3 m [0, 50) [50, 200) [200, 500) [500, +∞)

Surrounding environment
X4 — No

[90, 100]

Few
[75, 90)

Moderate
[60, 75)

Many
[0, 60)

Height of retaining wall
X5 m [1.2, +∞) [0.6, 1.2) [0.3, 0.6) [0, 0.3)

Number of pumps
X6 /100m2 [0.5, +∞) [0.2, 0.5) [0.1, 0.2) [0, 0.1)

Proportion of older workers
X7 % [0, 5) [5, 10) [10, 20) [20, 100]

Preparation of emergency rescue plans
X8 — Fully sufficient

[90, 100]

Sufficient
[75, 90)

Basically insufficient
[60, 75)

Insufficient
[0, 60)

Efficiency of emergency rescue
X9 — Fully efficient

[90, 100]

Efficient
[75, 90)

Basically efficient
[60, 75)

Inefficient
[0, 60)

Proportion of relief workers
X10 % [30, 100] [20, 30) [10, 20) [0, 10)

Situation of emergency relief supplies
X11 — Fully efficient

[90, 100]

Efficient
[75, 90)

Basically efficient
[60, 75)

Inefficient
[0, 60)
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+e function to maximize the objective is [38]

maxQ(a) � Sz Dz


, (6)

and the constraint is



m

j�1
a
2
j � 1, 0≤ aj ≤ 1. (7)

(4) Solving the Optimum Projection Direction

Equations (6) and (7) are utilized to compute the optimal
projection vector. Generally, most scholars would use GA
[13, 15, 16] and other algorithms for the solution. However,
the GA has drawbacks, including the computing result
having certain dependence on the initial population selec-
tion, its slow convergence speed, and its excessive parameter
settings [18, 19]. In contrast, PSO is characterized by ad-
vantages including a fast convergence speed and fewer
parameter settings [20–22, 39]; thus, PSO was employed in
the present study to find the best projection vector a∗.

By substituting a∗ into (3), the projection vector Z∗(i)

can be solved.

2.2.2. Particle Swarm Optimization. PSO is a group-based
random search algorithm that is designed by simulating the
predation behaviour of bird swarms. Its basic idea is to start
from a random solution, find the optimal solution through
iteration, and then evaluate and determine the optimal
solution through fitness.

In each iteration of PSO, a particle updates its own
position by tracking the individual optimal solution and the
group optimal solution, thereby constantly adjusting its
position to approach the optimal position.

Let the population size of the particles be N; the velocity
update formula of the particle b is as follows:

vb(t + 1) � ωvb(t) + c1r qb(t) − ab(t)  + c2r g(t) − ab(t) .

(8)

+e velocity update formula is as follows:

ab(t + 1) � ab(t) + vb(t + 1), (9)

where ω is the inertia weight factor, c1 and c2 are the learning
factors, r is a random number within the interval [0, 1], q is
the individual optimal value, and g is the global optimum
value.

After reaching a certain condition in which the iteration
terminates, the best projection vector a∗ is obtained by the
position of the particle swarm aggregation.

2.2.3. Risk Assessment Method Construction. +e flow chart
of this evaluation method is illustrated in Figure 1.

+e specific steps of the construction of the risk as-
sessment method based on the PPM are as follows.

Step 1. Preparing Data
(1) According to Table 1, the random sampling method

is used to generate the standard sample set [xij]p×n,
where p is the number of standard samples obtained

by the random sampling method. Equation (1) or (2)
is leveraged to normalize it to obtain [x ∗ij]p×n. To
ensure the accuracy and stability of subsequent in-
terpolation function models, hundreds of standard
sample sets are extracted, so [x ∗ij]p×n is always high-
dimensional data. Because the standard sample set
[xij]p×n is generated according to the random
sampling method, the risk levels Y1(i) are also
known.

(2) Field research, theoretical computing, and ques-
tionnaires were used to obtain the evaluation indi-
cator set of the research object [xij]m×n. According to
the characteristics of each indicator, (1) or (2) is
adopted to standardize it and subsequently obtain
[x ∗ij]m×n.
Step 2. Calculating the Weights and Projection
Values by the PPM and PSO

(1) [x ∗ij]p×n and [x ∗ij]m×n are combined into a computing
set [x ∗ij](m+p)×n. +e projection index function Z(i) is
constructed according to (3).

(2) Equations (4) and (5) are used to find the maximum
objective function Q(a), and PSO is utilized to solve
the function Q(a).

(3) When the PSO reaches the convergence condition,
the optimal projection direction a∗ is obtained. Z(i)

is then computed, where i � 1, 2, 3, · · · , m + p. +e
projected value Z1(i) of the standard sample set
[x ∗ij]p×n and the projected value Z2(i) of the evalu-
ation indicator set [x ∗ij]m×n are both included in Z(i).

(4) Every element of a∗ is squared to obtain the objective
weight of each index [35].
Step 3. Obtaining Evaluation Levels by the Inter-
polation Algorithm

(1) According to the projection value of the standard
sample set Z1(i) and its default risk level Y1(i), the
interpolation method is used to construct the math-
ematical model of risk assessment as follows [40]:

Y � f Z1( . (10)

(2) By introducing the projection value of the evaluation
sample set Z2(i) into the mathematical model
Y � f(Z1), the waterlogging risk level of each
evaluation sample is computed.

From these steps, it is evident that this method is directly
motivated by data. Compared with functional mode eval-
uation methods, such as fuzzy comprehensive evaluation,
the proposed method effectively avoids the difficulty of
constructing the functional relationship between the eval-
uation index set and evaluation level.

3. Results and Discussion

3.1. Engineering Background. +e Chengdu Metro Line 11
project involves a total investment of about 16.5 billion yuan.
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It is about 22 km in length and comprises 22 station projects.
+is major project traverses the Chengdu Hi-tech Zone,
Tianfu New District, and Shuangliu District. +e landform
features are mostly plains, platforms, or a small number of
low hills. +e average annual rainfall in Chengdu is
879.3mm, and the maximum rainfall in 24 h is 167.6mm.
Waterlogging and droughts often occur in Chengdu.

+e deep foundation pit projects of Diaoyuzui Station,
Tianfu CBD North Station, and Xinchuan Science Park East
Station were selected as a case study. +e platforms of these
three stations are two-story islands.+e deep foundation pits
were all constructed by the open-cut method, and there are
no adverse geological effects or special geotechnical soil
within their construction scopes. However, among all 22
station projects on Chengdu Metro Line 11, these three
projects have the following differences.

(1) +e construction company used for Diaoyuzui
Station and Xinchuan Science Park East Station,
China Construction +ird Bureau Group Co., Ltd.,
has rich experience in subway construction; how-
ever, the construction company used for Tianfu CBD
North Station is China Railway Investment and
Construction Co., Ltd., which lacks experience in
subway.

(2) Diaoyuzui Station, which is located in the suburban
countryside, has almost no urban drains in its sur-
rounding area, which is characterized by environ-
mental elements that are prone to waterlogging, such
as flood canals and high slopes. Tianfu CBD North
Station is located in the CBD area that is under
construction, where the municipal drains are well
developed and there are no adverse environmental

elements. Xinchuan Science Park East Station is
situated in the suburban development zone, in which
there are fish ponds and a large number of gas
pipelines.

(3) Diaoyuzui Station is the largest station on Chengdu
Metro Line 11, with a total length of 340.40m, a total
width of 21.5m, and an excavation depth of
16.9–27.3m, all of which are the largest among the
three case study stations. Xinchuan Science Park East
Station is the smallest.

3.2. Sources of Data. Based on the hydrological and mete-
orological characteristics of Chengdu and the 22 deep
foundation pit projects of ChengduMetro Line 11, the upper
limit values of X1, X2, X3, X5, and X6 were, respectively,
determined to be 500, 12, 3000, 2.4, and 1.

+e quantitative indicator scores of these three deep
foundation pits were obtained by consulting the Chengdu
Water Resources Announcement, the project management
documents of the Chengdu Metro Line 11 project, and field
surveys. +eir scores are presented in Table 2. +e scores of
the quantitative indexes X4, X8, X9, and X11 were obtained
from a questionnaire survey of ten experts.

Among the ten experts, three were from universities, two
were from construction companies, and five were from
subway construction units. Seven experts had the title of
senior engineer or above, and the other three experts had
titles of associate senior engineer or associate professor. Six
experts were well aware of construction safety risks and have
produced related research. Seven experts were familiar with
the construction of ChengduMetro Line 11 and participated
in the construction of the project. SPSS 22 software was used
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Figure 1: Flow chart of the waterlogging risk evaluation method based on the PPM.
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to test the reliability of this questionnaire. +e value of
Cronbach’s α was found to be 0.743 and therefore met the
reliability requirement of a questionnaire survey [41]; thus,
the results of this questionnaire survey were reliable. +e
average of the scoring results of the 10 experts was the scores
of these quantitative indicators.

3.3. Mathematical Risk Assessment Model with the Interpo-
lation Algorithm. According to Table 1 and Figure 1, 100
standard evaluation objects in each risk level were generated
by the random sampling method [39]. +us, there were 400
standard evaluation objects obtained for the establishment
of a mathematical model of risk evaluation.+e data of these
400 standard evaluation objects (the standard sample data in
Figure 1) and the data of 3 units to be assessed (the eval-
uation sample data in Figure 1) were substituted into a self-
programmed program based on MATLAB R2016a software.
Referring to previous research results [42–45], the swarm
size was 200, the personal learning coefficient and global
learning coefficient were both 2, the inertia weights de-
creased linearly from 0.9 to 0.4, the minimum acceptance
accuracy was 0.00001, and the maximum number of itera-
tions was 1000. Although the minimum accuracy require-
ment was met when the iteration number reached about 200
in the case analysis, the population number and the max-
imum iteration number were set to be relatively large in this
study to ensure that the model could calculate more complex
problems. +e convergence curve of the 1000 iterations is
presented in Figure 2.

Following the optimization calculation process of PSO,
the error between the 194th iteration and 195th iteration was
greater than the minimum acceptance precision (0.00001),
and the error between the 195th iteration and 196th iteration
was less than that of the minimum acceptance precision
stage. After that, the errors of the calculation results were all
less than 0.00001. Based on the calculation termination
conditions of the algorithm, the calculation was arrested at
the 1000th iteration with a very small error. +ese findings
indicate that the PSO algorithm found the best projection
vector at the 196th iteration, which is illustrated by both
Figure 2 and Table 3.

After calculation, the best projection direction a∗ was
found to be (0.3642, 0.3784, 0.3225, 0.3207, 0.1765, 0.1887,
0.3340, 0.3481, 0.31860, 0.1004, 0.3258). +e scatter diagram
of the projection values Z1(i) of 400 standard evaluation
objects and the corresponding risk level Y1(i) is presented in
Figure 3.

As exhibited in Figure 3, the scatter diagram of the best
projection values and risk levels was a ladder-type and was
characterized by an increasing curve; the larger the pro-
jection value, the greater the waterlogging risk. +e pro-
jection values were aggregated rather than being
continuously distributed. +is graphic feature was deter-
mined by the basic idea of the PPM. Locally, the optimized
projection points should be clustered as much as possible.
On the whole, they should be spread as much as possible.
+is clustering phenomenon presented in Figure 3 was fairly
consistent with the results of previous classical literature
[46], and Figure 3 further demonstrates that the PPM uti-
lized in this study had been optimized.

+e maximum projection value in the low risk (I) level
was 0.3818. +e maximum projection value in the moderate
risk (II) level was 0.8562, and the minimum projection value
was 0.6079. +e maximum projection value in the high risk

Table 2: Indicators’ scores of three evaluation objects.

Indicator Diaoyuzui
Station

Tianfu CBD North
Station

Xinchuan Science and Technology
Park Data sources

X1 167.6 167.6 167.6 Chengdu Water Resources
Announcement

X2 3.125 3.125 3.125 Chengdu Water Resources
Announcement

X3 2600 150 50 Field research
X4 13.5 31 92 Field research and questionnaire survey
X5 0.6 1 0.4 Field research
X6 0.11 0.11 0.17 Field research
X7 8.61 9.09 11.72 Field research
X8 87.5 33 46.5 Field research and questionnaire survey
X9 73 70.5 80 Field research and questionnaire survey
X10 19.95 10.87 19.01 Field research
X11 73 72.5 79.5 Field research and questionnaire survey
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Figure 2: +e convergence curve of the PPM optimized by PSO.
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(III) level was 1.4125, and theminimum projection value was
1.1010. +e minimum projection value in the extreme risk
(IV) level was 1.9991. Using the piecewise linear interpo-
lation method, a mathematical model for the waterlogging
risk assessment of deep foundation pit engineering was
established:

y(i) �

1, z∗ ≤ 0.3818,

1 +
z∗ − 0.3818

0.6079 − 0.3818
, 0.3818< z∗ < 0.6079,

2, 0.6079≤ z∗ ≤ 0.8562,

2 +
z∗ − 0.8562

1.1010 − 0.8562
, 0.8562< z∗ < 1.1010,

3, 1.1010≤ z∗ ≤ 1.4125,

3 +
z∗ − 1.4125

1.9991 − 1.4125
, 1.4125< z∗ < 1.9991,

4, z∗ ≥ 1.9991.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

3.4. Analysis and Discussion. +is section analyses and
discusses the calculation results of the weights and risk levels
in detail. However, the waterlogging risk evaluation index
system presented in this work was constructed from the

perspectives of environmental science and civil engineering;
if this research had been carried out from the perspectives of
other disciplines, the index system and calculation results of
the weights and risk levels would have been different. Due to
the lack of academic research on the waterlogging risk as-
sessment of deep foundation pit engineering, the calculation
results are primarily compared and discussed with the actual
disaster situation of Chengdu Metro Line 11 in the 2018
flood season. In addition, while the PSO was successfully
employed to optimize the PPM in the present case study,
many other optimization calculation methods could be
applied for the optimization of the PPM. Depending on the
results of the case analysis, this section also presents detailed
measures suggested for addressing the waterlogging risk in
deep foundation pit engineering.

3.4.1. Weight Analysis. After squaring each element in the
calculated optimal projection direction [35], namely (0.3642,
0.3784, 0.3225, 0.3207, 0.1765, 0.1887, 0.3340, 0.3481,
0.31860, 0.1004, 0.3258), the objective weights of the 11
indicators were calculated and are presented in Table 4.

From Table 4, it is evident that X2 (frequency of storms)
and X1 (intensity of rainfall) had the greatest impacts on the
risk of waterlogging in deep foundation pit engineering.
+ese results were similar to the calculation results of a
previous study [47]. From the perspective of disaster science,
X1 and X2 were found to be the greatest indicators, which
demonstrates that disaster-causing factors have the greatest
impacts on waterlogging risk.

+e weight of X8 ranked third and was also the largest
among the indicators related to disaster prevention and
mitigation.+is further demonstrates that emergency rescue
plans form the basis of emergency management. +e weight
of X7 (proportion of older workers) ranked fourth and
therefore also has a great influence on the waterlogging risk.
It is worth noting that the superior weight of X7 might be
closely related to the aging phenomenon of Chinese con-
struction workers in the past decade.

+e weight analysis results were found to be in agree-
ment with the actual disaster situation of the deep foun-
dation pit project of Diaoyuzui Station during the flood
season of 2018. At the beginning of July 2018, a series of
torrential rainstorms in Chengdu led to the inflow of water
in the deep foundation pit of Diaoyuzui Station. When the
waterlogging disaster occurred, the project managers pri-
oritized saving lives, so the workers at the construction site
and in the living area, especially the older workers, were first
evacuated, resulting in a delay in the rescue of the site,
thereby enlarging the disaster losses.

Table 3: Precision level and calculation termination in the 1000th iteration.

Iteration (n) Fitness (n− 1) Fitness (n) Fitness (n)− Fitness (n− 1) Result
194 834.956821 834.956821 0< 0.00001 Continue
195 834.956821 834.956841 0.0000197> 0.0001 Continue
196 834.956841 834.956841 0< 0.0001 Continue
1000 834.956842 834.956842 0< 0.0001 Stop
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Figure 3: Scatter diagram of the standard evaluation object pro-
jection values and risk levels.
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Based on these results, some advice is provided for
project managers regarding the carrying out of the risk
management and decision-making related to waterlogging
disasters in deep foundation pit projects; focus should be
placed on X2 (frequency of storms), X1 (intensity of rain-
fall), X8 (preparation of emergency rescue plans), and X7
(proportion of older workers), while the investment of re-
sources in factors X5, X6, and X10 should be of secondary
concern.

3.4.2. Risk Level Analysis. +e best projected values for the
deep foundation pit projects of Diaoyuzui Station, Tianfu
CBD North Station, and Xinchuan Science Park East Station
were found to be 1.4524, 1.3275, and 1.0644, respectively. By
substituting these values into (11), the respective risk levels
were determined to be 3.0681, 3.0000, and 2.8505. +e
waterlogging risk level of the Diaoyuzui Station was between
the high risk (III) and the extreme risk (IV) levels. +e
waterlogging risk in Tianfu CBD station was at the high risk
(III) level and that of Xinchuan Science Park East Station was
between the moderate risk (II) and high risk (III) levels.
+us, the waterlogging risks in these three deep foundation
pits from greatest to least were found to be as follows:
Diaoyuzui Station>Tianfu CBD North Station>Xinchuan
Science Park East Station.

During the 2018 flood season in Chengdu, Diaoyuzui
Station was the most severely damaged of all the 22 station
projects. Tianfu CBD North Station was the second-most
damaged, but Xinchuan Science Park East Station was hardly
affected by this flood disaster. +e actual disaster situations
of the three deep foundation pit projects from greatest to
least were therefore as follows: Diaoyuzui Station>Tianfu
CBD North Station>Xinchuan Science Park East Station
Project. +is ranking obtained by the on-site investigation
was consistent with the waterlogging risk results calculated
by the method proposed in this study. +e consistency
proves that the proposed method is both objective and
effective.

3.4.3. Measures to Address Waterlogging Risk in Deep
Foundation Pit Projects

(1) To better ensure construction safety, the deep
foundation pit project of Diaoyuzui Station should
deal with risks in accordance with the extreme risk
(IV) level. Project managers should immediately
suspend construction tasks and take steps to reduce
the risk level. +e construction operations of Tianfu
CBD North Station and Xinchuan Science Park East
Station do not require termination, but their project
management staff should immediately formulate
further measures to address waterlogging risk and

decrease the level of waterlogging risk as soon as
possible.

(2) In the design and planning of the construction or-
ganization of deep foundation pit projects, the local
hydrometeorological data, especially the data of
regional annual rainfall frequency and the largest
rainfall intensity in history, should be fully investi-
gated. During construction, project managers should
consider future climate changes and adjust the
measures for waterlogging risk according to the
changes in weather.

(3) +e managers of deep foundation pit projects should
attach more importance to the preparation of
emergency rescue plans. Before the flood season,
they should conduct emergency rescue drills for
waterlogging, strengthen the construction of rescue
organizations, and improve the efficiency of emer-
gency rescue.

(4) +e proportion of older workers should be reduced
to mitigate the vulnerability of the local population.
However, in China, the aging of construction
workers has become increasingly more severe in the
past ten years, and it is a difficult task to reduce the
proportion of older employees. +erefore, as an al-
ternative measure, increasing emergency rescue
training is recommended.

4. Conclusions

+e intention of this study was to conduct an objective and
effective evaluation of waterlogging risk in deep foundation
pits based on the projection pursuit method. According to
the process of water circulation and the characteristics of
deep foundation pits, an evaluation index system with 11
indicators was constructed for the first time. +en, a
combination of the projection pursuit method, particle
swarm optimization, and the interpolation algorithm was
used to construct a waterlogging risk assessment method. In
this method, the projection pursuit method is used to handle
the high-dimensional data of waterlogging risk assessment,
and the optimal projection vector is solved by particle swarm
optimization, which is characterized by relatively rapid and
appropriate convergence. +e mathematical function be-
tween the best projection values and the risk levels was
constructed by an interpolation algorithm. Finally, three
typical deep foundation pits of ChengduMetro Line 11 were
analysed, and some risk response strategies were provided
based on the results of the case analysis. +e results of the
case study revealed that the frequency of storms, intensity of
rainfall, preparation of emergency rescue plans, and pro-
portion of older workers have the greatest impacts on the
waterlogging risk in deep foundation pits. +ese four factors

Table 4: Weights and rankings of all risk indicators.

Indicator X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
Weight 0.1327 0.1432 0.1040 0.1029 0.0312 0.0356 0.1116 0.1212 0.1015 0.0101 0.1061
Ranking 2 1 6 7 10 9 4 3 8 11 5
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were also the key factors in the waterlogging disaster of
Diaoyuzui Station during the 2018 flood season, and project
management personnel should place focus on them in future
waterlogging risk management and decision-making. +e
waterlogging risk ranking results of the three typical deep
foundation pits calculated by the proposed method were
basically congruent with the disaster situation in the 2018
flood season. Consequently, it can be concluded that the
proposed method based on the projection pursuit method is
both objective and effective. Future research will concentrate
on the establishment of a unified waterlogging risk evalu-
ation index system and the use of more soft computing
methods for waterlogging risk evaluation.
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In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial
compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo
press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was
quantitatively studied by using specific surface area and pore size analyzer.+emechanism of weakening mechanical properties of
single-hole yellow sandstone was expounded from the perspective of microstructure. +e results show the following. (1) +e
number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow
sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) +e
damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow
sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-
thaw cycles increases, different regions show different microscopic damage patterns. (3)+e damage degree of yellow sandstone is
different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also
accelerates the damage process of pores. (4) +e damage of the yellow sandstone by freeze-thaw is logarithmic function, and the
damage of the yellow sandstone is a power function. +e damage equation of the yellow sandstone with pores under the freezing
and thawing is a log-power function nonlinear change law and presents a good correlation.

1. Introduction

With the gradual implementation of the strategy of devel-
oping the western region, the cold area needs a lot of en-
gineering construction [1] and more and more rocks and
rock damage problems under the conditions of alternating
low temperature and temperature; the rock itself is a relative
water content. +e higher materials, combined with the
temperature difference between day and night, make the
freeze-thaw cycle appear, accompanied by the generation
and disappearance of the frost heaving force, which causes
cumulative damage to the rock mass structure. +erefore,
with the deepening of the development of the western re-
gion, it is of great theoretical and practical significance to

study the mechanism of rock mechanical deterioration
under the action of freeze-thaw cycles.

At present, scholars at home and abroad have made
corresponding research on the performance of rocks under
freeze-thaw cycles. Hall et al. [1, 2] studied the mechanical
properties of rocks under freezing and thawing; Yamabe
et al. [3–5] studied damage degradation of different types of
rocks under freeze-thaw cycles; Yang et al. [6, 7] used CT
scanning technique to study the mesoscopic damage
propagation mechanism inside rocks with different freezing
and thawing temperatures; DelRoa et al. [8] analyzed the
damage degradation mechanism of different types of granite
under the freeze-thaw cycle by ultrasonic wave monitoring
technology through ultrasonic monitoring technology; using

Hindawi
Advances in Civil Engineering
Volume 2020, Article ID 5921901, 13 pages
https://doi.org/10.1155/2020/5921901

mailto:tdxyrong2004@163.com
https://orcid.org/0000-0001-8478-1817
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5921901


CT scanning technology, CT image, scanning electron mi-
croscope by Wang et al. [9–11], the mechanical properties and
internal damage of rocks with different saturated states under
freeze-thaw cycles were studied. Zhang et al. [12–17] found that
the mechanical properties of sandstone deteriorated under the
combined action of freezing and thawing and load.+e speed is
accelerated; Huseyin [18] analyzed the deterioration of hard-
ness, wave velocity, and compressive strength of andesite after
freeze-thaw cycles; Li et al. [19], taking the rock mass under the
action of freeze-thaw cycles as research object, based on the
mesoscopic damage theory and macroscopic damage model,
established a single-fracture sandstone damage model under
freeze-thaw-load coupling. Zhou et al. [20] used NMR ex-
periments to study the compressive strength of sandstone
under freeze-thaw cycles. Reasons for the decrease are as
follows: Tian and Xu [21], based on the pore characteristics
inside the rock after freezing and thawing, established the
relationship between the mechanical properties of the rock and
the porosity during the freeze-thaw cycle.

Most scholars have studied the physical and microscopic
properties of rocks after freezing and thawing. +ere are few
studies on the properties of rock with pores and the apparent
damage characteristics after freezing and thawing by mi-
croscope. +is paper takes the construction of rock mass in
cold area as the background. +e saturated single-hole
yellow sandstone with pores is studied. +e mechanical
properties of saturated yellow sandstone with pores under
freezing and thawing are obtained by uniaxial compression
test. +e pores and yellows are described by stereo micro-
scope and pore size analyzer. +e microscopic damage
mechanism of sandstone provides a reference for the con-
struction of rock mass engineering in cold regions.

2. Test Overview

2.1. Sample Preparation andWorking Conditions. +e origin
of the yellow sandstone in this experiment is Sichuan. +e
main mineral components of the sandstone are quartz,
feldspar, muscovite, clay, and silty materials. +e apparent
crumbs are densely compacted and the cement is tightly
connected. According to the rock test standards and
specifications, a rectangular parallelepiped sample of
30mm× 60mm× 120 mm was prepared. +e selected test
conditions were as follows: single-hole yellow sandstone
samples with pore diameters of 0mm (control group), 6mm,
8mm, 10mm, and 12mm. +e freeze-thaw cycle test was
carried out at 0, 5, 10, 20, and 40 times. At the early stage,
5 samples were selected for each working condition. At
the later stage, 2 samples with relatively high dispersion
(mechanical properties were taken as the main reference)
were removed, and 3 samples with relatively small dispersion
were listed for analysis.

+e list of compressive strength and average value of
each sample was added, and samples close to the average
value were listed for microscopic analysis in this paper.

2.2. Test Methods and Principles. Freeze-thaw cycle test
method: using the freeze-thaw cycle test machine to simulate

the cold-thaw environment of the cold zone, set the freeze-
thaw cycle temperature to −20°C∼20°C, the temperature
from 20°C to −20°C, and then the constant temperature for 4
hours. After rising to 20°C, the temperature is kept constant
for 4 hours. By default, this process is one cycle.

German Zeiss 508 stereo microscope principle: the
microscope can clearly observe the surface and pore vari-
ation characteristics of yellow sandstone before and after
freezing and thawing by high magnification amplification
principle. One surface of yellow sandstone is selected as the
observation surface, and the observation surface is divided
into A and B. Two areas (B area is a square with a side length
of 10mm) and several points are uniformly selected in
different areas for observation, as shown in Figure 1; in order
to reduce the test error, two observations before and after the
freeze-thaw test ensure that the room is in a dark envi-
ronment, the only source of light is the instrument’s own
light, using the same light intensity, and the eyepieces use the
same magnification, to ensure that the two test conditions
are exactly the same.

+e principle of specific surface area and pore size an-
alyzer: its essence is nitrogen adsorption method, nitrogen
has good reversible adsorption characteristics, and nitrogen
molecules are used as measuring tools. Under constant
temperature and pressure, the surface of the sample forms
monomolecular nitrogen due to van der Waals force be-
tween molecules. In the adsorption layer, when the pressure
of the adsorption gas is changed, the curve of the adsorption/
desorption amount of the sample surface with the pressure
can be obtained, and the specific surface area and the pore
size distribution of the sample are calculated by the BET
method and the BJH method.

+e test is based on saturated yellow sandstone as
follows: ① +e prepared yellow sandstone is immersed in
water for 48 hours and then dried and weighed. ② +e
saturated sample is placed in a German Zeiss 508 stereo
microscope (as shown in Figure 2). +e apparent particle
and pore structure are observed under the microscope. ③
+e saturated sample observed by the microscope is placed
in the freeze-thaw cycle test machine in turn.④+e frozen
sample after freezing and thawing is taken out, weighed,
placed under the microscope again and observed and
compared with the apparent granules and pore structure of
the unfrozen and thawed samples.⑤ After the freeze-thaw
test, take a small number of samples under different freeze-
thaw cycles, using the specific surface area and pore size
analyzer (Figure 3). +e specific surface area and the
change of the pore diameter are detected. ⑥ +e sample
after the freeze-thaw and the microscopic observation is
subjected to uniaxial compression test to test the me-
chanical properties.

3. Mechanical Properties of Yellow
Sandstone before and after Freezing and
Thawing Cycles

3.1.PeakStrengthofDifferentDiameterYellowSandstoneafter
Freeze-:aw Cycle. Tables 1 and 2 in Appendix are lists of
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test samples for compressive strength and microscopic
analysis. +e average compressive strength is used for
mechanical properties analysis below.

Figure 4 is a graph showing the compressive strength of
different diameter yellow sandstones with the number of

freeze-thaw cycles. It can be seen from the figure that as the
number of freeze-thaw cycles increases, the compressive
strength of five groups of different diameter yellow sandstones
gradually decreases.When the freeze-thaw cycle is 0 times, the
compressive strength of the yellow sandstone with different
pore sizes is the largest. When the freeze-thaw cycle is 40
times, the compressive strength of the yellow sandstone with
different pore sizes is the smallest. +e case of the complete
12mm yellow sandstone with different freeze-thaw cycles is
taken as an example. Description: the compressive strength of
intact yellow sandstone is 60.07MPa when the freeze-thaw
cycle is 0 times, and the compressive strength is 54.89MPa,
51.38MPa, 48.07MPa, and 41.3MPa when the freeze-thaw
cycle is 5, 10, 20, and 40 times. Compared with freezing and
thawing, the intensity decreased by 8.62%, 14.47%, 19.98%,
and 31.25%, respectively. +e compressive strength of the
12mm yellow sandstone was 37.86MPa when frozen and
thawed, and the freeze-thaw cycle was 5, 10, 20, and 40 times.
When the compressive strength is 37.59MPa, 30.55MPa,
27.07MPa, and 19.05MPa, respectively, the strength is re-
duced by 0.71%, 19.3%, 28.5%, and 49.68%, respectively.

It is found that the compressive strength of the yellow
sandstone with the same pore diameter increases with the
increase of the number of freeze-thaw cycles, indicating that
the freezing and thawing effect is an important factor af-
fecting the compressive strength of the yellow sandstone.

In addition, the compressive strength of different di-
ameter yellow sandstones also showed different changes
under the same number of freeze-thaw cycles. When the
freeze-thaw cycle was 0 times, the compressive strength of
intact yellow sandstone was 60.07MPa, and with the in-
crease of the pore diameter, the strengths are 51.33MPa,
49.95MPa, 45.34MPa, and 37.86MPa, respectively. +e
strength is reduced compared with the intact yellow sand-
stone. When the freeze-thaw cycle is 40 times, the com-
pressive strength of the intact yellow sandstone is 41.3MPa.
With the increase of the pore size, the compressive strengths
are 38.64MPa, 34.83MPa, 29.79MPa, and 19.05MPa, re-
spectively, and the strengths are reduced by 6.4%, 15.67%,
27.43%, and 53.87%, respectively, compared with the intact
yellow sandstone, indicating that the pores reduce the
compressive strength of the yellow sandstone. And the larger
the aperture, the larger the reduction.

3.2. Elastic Modulus of Yellow Sandstone with Different Pore
Sizes after Freeze-:aw Cycles. +e elastic modulus is the
physical parameter that characterizes the yellow sandstone
resisting the external elastic deformation. Figure 5 is the
curve of the elastic modulus of the yellow sandstone with
different pore sizes as a function of the number of freeze-
thaw cycles. +e elastic modulus of the yellow sandstone
after different freeze-thaw cycles can be seen from the figure.
Similar to the compressive strength, the overall trend is
gradually decreasing. Under different freezing and thawing
cycles, the elastic modulus of intact yellow sandstone is
9.653GPa, 8.645GPa, 8.31GPa, 6.499GPa, and 6.32GPa,
respectively, compared with freezing and thawing 0 times.
+e reductions are 10.44%, 13.91%, 32.67%, and 34.53%,

Figure 2: German Zeiss 508 stereo microscope.

Figure 3: Specific surface area and pore size analyzer.

Area A
Area B

Figure 1: Single-hole yellow sandstone observation area.
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respectively. +e elastic modulus of the 12mm yellow
sandstone is 8.16GPa, 6.303GPa, 5.975GPa, 4.59GPa, and
3.658GPa, which is lower than that of freezing and thawing 0
times. +ey are 22.76%, 26.781%, 43.75%, and 55.17%, re-
spectively; with the increase of the number of freeze-thaw
cycles and the elastic modulus of yellow sandstone, the
amount is decreasing and the decline is increasing. +e
elastic modulus of different diameter yellow sandstones with
the same number of freeze-thaw cycles is analyzed. It can be
seen that the elastic modulus of yellow sandstone with
different pore sizes is the largest when the freeze-thaw cycle
is 0 times, which are 9.653GPa, 11.06GPa, 7.581GPa,
8.78GPa, and 8.16GPa, respectively. +e elastic modulus of
the 6mm yellow sandstone is the largest under the number
of freeze-thaw cycles, and the elastic modulus of the 8mm
yellow sandstone is the smallest, which indicates that the
yellow sandstone has no significant change with the hole.
However, as the number of freeze-thaw cycles increases, at
the freeze-thaw cycle 5, 10, 20, and 40, the yellow sandstones
with different pore sizes show that the elastic modulus
decreases with the increase of the pores.

Comparing themechanical properties of different diameter
yellow sandstones under different freeze-thaw cycles, it is found
that the damage of yellow sandstone caused by freezing and
thawing will increase the damage of yellow sandstone.

4. Microscopic Characteristics of Different
Diameter Yellow Sandstones after Freeze-
Thaw Cycles

4.1. Microscopic Damage Pattern Analysis. +e microscopic
pores and particle changes of different diameter yellow
sandstones under different freeze-thaw cycles observed by
microscope were summarized, and the five microscopic
damage modes shown in Table 1 were summarized.

4.2. Microscopic Qualitative Analysis. In order to more
clearly characterize the effects of freezing and thawing and
pore action on the granules and pores of the yellow sand-
stone, the micropictures of the yellow sandstones with

different freeze-thaw cycles and different pore sizes were
pretreated, and the particles were separated from the pores.
+e treatment effect is shown in Figure 6, showing that the
black areas represent pores and the white areas represent
particles.

+e freezing and thawing cycles cause different degrees of
damage inside the yellow sandstone.+e existence of the pores
divides the damage of the yellow sandstone into the A and B
regions as shown in Figure 1.With the increase of the diameter
of the holes, the A and B regions of the yellow sandstone have
the following characteristics. +e range is different, but the
damage mode remains unchanged. +is paper focuses on the
analysis of the difference of damage patterns in the A and B
regions under different freeze-thaw cycles.

Combined with Figures 7 and 8 and microscope ob-
servations, the following has been found: ① When the
freeze-thaw cycle is 5 times, the main damage mode of the
yellow sandstone in the A region is pore shrinkage, the
pores are filled by particles, and the main damage mode in
the B region is pore expansion, the number of freeze-thaw
cycles. Under the joint action of frost heaving force and
hole effect, the B area is seriously damaged and the pores
become large. +e A area suffers from the frost heaving
force on one hand, and the fine ice crystal particles fill the
pores. On the other hand, the B area has different effects on
the A area. +e degree of extrusion causes the pores in zone
A to become smaller. ② When the freeze-thaw cycle is 10
times, the main damage modes of the yellow sandstones in
the A and B regions are particle spalling. Under this cycle,
the surface of the yellow sandstone in the A and B regions
falls off and is exposed. +e internal particles and pores are
more serious. ③ When the freeze-thaw cycle is 20 times,
the main damage mode of the yellow sandstone in the A
area is pore expansion, and the main damage mode in the B
area is pore communication. Under the cycle number, the
yellow sandstone particles are affected by the frost heaving
force. +e intergelation is reduced, the continuous damage
in zone A leads to the increase of pores, the effect of pores in
zone B accelerates the failure of the rock sample around the
hole, and the surface of the yellow sandstone is

Table 1: Microdamage mode table.

Microscopic damage mode (1) Particle flaking (2) Pore is granules
filling (3) Pore expansion (4) Pore shrinkage (5) Pore

connectivity

Microscopic under the
microscope damage before

Microscopic under the
microscope damage after
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accompanied by pores. +e phenomenon of the pass: ④
When the freeze-thaw cycle is 40 times, the main damage
modes of the yellow sandstones in the A and B regions are
pore expansion and accompanied by particle spalling,
indicating that, under the cycle number, the high-order
circulation freeze-thaw causes the rock sample to have
larger pores. At the same time, micropores are continu-
ously generated inside. On the other hand, due to serious
damage, the pores inside the rock mass penetrate, resulting
in larger pores in the A and B regions.

4.3.MicroscopicQuantitative Study. In Figures 9 and 10, (a),
(b) and (c) are the pore volume sizes of the A and B regions
of the yellow sandstone containing pores measured by ni-
trogen adsorption, and from (d), (e), and (f) for the relative
change of pore volume of different pore sizes (compared
with the previous freeze-thaw cycle), the relative change
amplitude is used to characterize the response of different
types of microscopic pores to freeze-thaw.

As can be seen from (a), (b), and (c), that, as the number
of freezing-thawing cycles increased, the pore volumes of

0 10 20 30 40
Freeze-thaw cycles (n)

Complete yellow
sandstone
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Figure 4: Compressive strength curve of yellow sandstone under freeze-thaw cycles.
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Figure 5: Elastic modulus curve of yellow sandstone under freeze-thaw cycles.
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small holes, medium holes, and large holes in area A
(0~2 nm is micropores, 2~50 nm is medium holes, and holes
more than 50 nm are large holes according to the interna-
tional IUPAC definition) increased on the whole. Only the
mesopore volume decreased in the freeze-thaw cycle 5 times,
and the volume of small, medium, and large pores in the B
region increased overall. Analysis of (d), (e), and (f) com-
bined with microscopic observations shows that the re-
sponse of A and B regions of yellow sandstone to freezing
and thawing is different.①When the freezing and thawing
cycle is 5 times, the pore volume in the A region has the
following characteristics. +e relative decrease is −36.67%,
the relative volume of large pore volume is 0%, and the

relative increase of medium and large pore volume in B area
is 83.3% and 41.18%, respectively. Under the cycle number,
free mineral particles are produced on the surface of yellow
sandstone. In the A region, the pore volume is reduced due
to the shrinkage of the mesopores or by the filling of mineral
particles. +e expansion of the pores and the pores in the B
region leads to an increase in the volume of the mesopores
and macropores.②When the freeze-thaw cycle is 10 times,
the A region is small. +e relative increases in volume of
pores, mesopores, and macropores were 100%, 54.89%, and
16.67%, respectively. +e relative volume increases of small,
medium, and large pores in B region were 80%, 36.36%, and
4.17%. Under the number of times, the connection between

(a) (b)

Figure 6: Pore extraction.

(a) (b) (c) (d) (e)

Figure 7: Microporosity change diagram of A zone in yellow sandstone under freeze-thaw cycles. (a) Freeze-thaw 0 times. (b) Freeze-thaw 5
times. (c) Freeze-thaw 10 times. (d) Freeze-thaw 20 times. (e) Freeze-thaw 40 times.

(a) (b) (c) (d) (e)

Figure 8: Microporosity change diagram of B zone in yellow sandstone under freeze-thaw cycles. (a) Freeze-thaw 0 times. (b) Freeze-thaw 5
times. (c) Freeze-thaw 10 times. (d) Freeze-thaw 20 times. (e) Freeze-thaw 40 times.
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Figure 10: Pore volume and relative change amplitude of B in yellow sandstone under freeze-thaw cycles. (a) Micropore volume.
(b) Mesoporous volume. (c) Macropores volume. (d) Relative change in micropore volume. (e) Relative change in mesoporous volume.
(f ) Relative change in macropores volume.
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Figure 9: Pore volume and relative change amplitude of A in yellow sandstone under freeze-thaw cycles. (a) Micropore volume.
(b) Mesoporous volume. (c) Macropores volume. (d) Relative change in micropore volume. (e) Relative change in mesoporous volume.
(f ) Relative change in macropores volume.
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the aggregates of the yellow sandstone aggregates is loose,
and the pores in the A region increase. At the same time, due
to the spalling of the particles, the mesopores and macro-
pores are continuously generated. +e small pores in the B
region increase, while the mesopores and macropores do not
change significantly. ③ When the freeze-thaw cycle is 20
times, the pore volume in the A region has the following
characteristics. +e relative increase is 46.67%, the relative
increase of macropore volume is 33.33%, the relative in-
crease of pore volume in B region is 6.66%, and the relative
increase of macropore volume is 16%. +e volume of
mesopores andmacropores increases in A region due to pore
expansion. Severely, the volume of pores communicating
with mesopores and large pores increased slightly in the B
region due to particle spalling. ④ When the freeze-thaw
cycle was 40 times, the relative increases in the volume of
small pores, mesopores, and macropores in the A region
were 110%, 4.54%, and 42.8%, respectively. +e relative
increase of the volume of small holes, mesopores, and
macropores in B area was 177.78%, 21.87%, and 44.82%.+e
A and B areas were seriously damaged by freezing and
thawing, and the internal cracks were generated by new
cracks. +e decrease in force causes the particles to peel off
continuously, and the volume of small holes, mesopores, and
large pores increases.

In summary, the freezing and thawing cause the pores in
the yellow sandstone to increase continuously, the cohesive
force decreases, and the strength is continuously reduced,
but the single hole also causes damage. In zone A, freezing
and thawing 10 times are the threshold for the generation of
small holes, mesopores, and macropores in yellow sand-
stone. In the B region, the freezing and thawing 5 times are
the thresholds for the mesopores and macropores, and the
freezing and thawing 10 times are the thresholds for the
pores. Compared with the pores in the A and B regions, the
mesopores and macropores in the B region are significantly
better than the A regions. +e production time is earlier and
the quantity is more, which indicates that, under the action
of freezing and thawing and pores, the freezing and thawing
will damage the interior of the yellow sandstone, and the
pores will further accelerate the degradation of the yellow
sandstone, and then the mechanical properties will be
accelerated.

5. Yellow Sandstone Damage Function under
Freeze-Thaw Cycles

By studying the strength and microscopic properties of the
yellow sandstone containing pores after freezing and
thawing, it is known that both freezing and thawing and pore
effects cause significant damage to the rock. Figure 11 shows
the damage process of the yellow sandstone containing pores
after freezing and thawing. +e volume of the intact yellow
sandstone is assumed to be V1. +e effective volume of the
yellow sandstone in the hole is V1. +e effective volume of
the yellow sandstone containing pores under the freezing
and thawing is V2, so the damage value of the yellow
sandstone in the hole is D1. +e damage value of the frozen-
thawed yellow sandstone is D2, and the damage value of the

frozen-thawed yellow sandstone is the Dt.+e damage of the
yellow sandstone in different states is characterized by the
change of bulk density:

1 − D1 �
V1

V

1 − D2 �
V2

V1

1 − Dt �
V2

V
.

(1)

Among them,

Vα(e)

V1α d, e1( 

V2α d, e2( ,

(2)

where e is the pore volume of the intact yellow sandstone, e1
is the pore volume of the yellow sandstone containing the
pore, e2 is the pore volume of the yellow sandstone con-
taining the pore after freezing and thawing, and d is the
diameter of the pore of the yellow sandstone.

According to the above formula, the total damage for-
mula of the yellow sandstone containing pores under
freezing and thawing is

Dt � D1 + D2 − D1D2. (3)

+e rate of change of compressive strength of the yellow
sandstone containing pores after freezing and thawing is
taken as the measure of the damage degree of the yellow
sandstone, which is expressed as D. +en

D �
σ0 − σi

σ0
. (4)

Among them, σ0 and σi are the compressive strength of
yellow sandstone in the initial state (freezing and thawing 0
times, hole diameter is 0mm); the degree of damageD of the
yellow sandstone containing pores after freezing and
thawing is shown in Table 3.

+e yellow sandstone with a pore size of 0mm and the
damage curve of the yellow sandstone with zero-degree
freeze-thaw under the action of freezing and thawing alone
were fitted, and the graphs shown in Figures 12 and 13 were
obtained.

T

T

Complete yellow sandstone
lossless volume V

Hole yellow sandstone
effective volume V1

Effective volume V2 of pore-
bearing yellow sandstone

under freezing and thawing

Figure 11: Damage process of yellow sandstone with pores under
freezing and thawing.
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It can be seen from the figure that the damage law of the
frozen-thawed yellow sandstone accords with the logistic
function:

D2 � ln(1.03 + 0.009n), (5)

where is the number of freeze-thaw cycles.
+e damage of yellow sandstone with a pore diameter of

0mm under the action of freezing and thawing is defined as
D2, and the damage of yellow sandstone with zero freezing
and thawing under the action of pore is defined as D1. It can
be seen from the figure that the damage curve of frozen-
thawed yellow sandstone accords with the logistic function.
One has

D1 � 0.012 × d
1.35

, (6)

where d is the diameter of the hole.
Taking formulas (5) and (6) into (3), the nonlinear

equation for the number of freeze-thaw cycles n and the
diameter d of the hole is

Dt � a 0.012d
1.35

  + b ln(1.03 + 0.009n)

− c 0.012d
1.35

  × ln(1.03 + 0.009n),
(7)

where a, b, and c are the influence factors, respectively.
+e following is a fitting of the rock damage with pores

under the freeze-thaw cycle. Figure 14 shows the damage
curve of yellow sandstone under different freeze-thaw cycles
when the aperture is 6mm. Figure 15 shows the yellow
sandstone under different pore sizes when the number of
freeze-thaw cycles is 5. +e damage curve and the fitting
result are shown in Table 4. +e damage value of the yellow
sandstone containing pores under freezing and thawing is
represented by the equation. +e fitting curve returns the
scattered points into a function with certain physical
meaning and has good correlation.

+rough the analysis of the fitting curve, it is found that
the effects of freezing and thawing and pores have obvious
effects on the yellow sandstone. +is equation can better
reflect the damage degree of the yellow sandstone under the
freezing and thawing.

Li et al. [22] and Yuan et al. [23] studied the rock under
the combined action of freezing-thawing and crack (joint)
and showed that the total damage of rock sample increased
under the combined action of freezing-thawing times and
crack.+e damage is related to freezing-thawing times, crack
length, and inclination angle. +e macroscopic damage and
its coupling effect determine the obvious anisotropy of the
joint to the macroscopic damage of rock. With the increase
of the number of freeze-thaw cycles, the macroscopic an-
isotropy of the jointed rock samples is weakened, and the
degree of weakening is related to the joint properties and
freeze-thaw degree. +e anisotropy of rock samples aggra-
vated was verified.

According to the results of hole and freezing-thawing
test, this paper shows that, after 5 cycles of freezing-thawing,
large hole and middle hole begin to appear around the hole,
but far away from the hole area, it has not yet occurred (or
the production is few and cannot be monitored). After 10

Table 3: Damage degree of yellow sandstone with pores under
freezing and thawing.

Freezing and thawing times
Hole diameter (mm)

0 6 8 10 12
0 0.000 0.145 0.168 0.245 0.370
5 0.086 0.191 0.210 0.281 0.374
10 0.145 0.206 0.310 0.353 0.491
20 0.200 0.253 0.346 0.483 0.549
40 0.312 0.357 0.42 0.504 0.683
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Figure 12: Yellow sandstone damage curve under freezing and
thawing.
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Table 4: Fitting curve related parameters.

Test piece condition
Combined function

Dt � a(0.012d1.35) + b ln(1.03 + 0.009n) − c(0.012d1.35) × ln(1.03 + 0.009n)

a b c R2

Hole diameter d� 6mm 0.038 1.05 0.59 0.91
Hole diameter d� 8mm 0.85 1.01 0.94 0.8
Hole diameter d� 10mm 0.88 1.09 0.65 0.73
Hole diameter d� 12mm 0.98 1.2 0.37 0.92
Freezing and thawing times n� 5 0.94 1.06 1.86 0.94
Freezing and thawing times n� 10 1.05 1.01 0.55 0.87
Freezing and thawing times n� 20 1.13 0.84 0.28 0.85
Freezing and thawing times n� 40 1.18 0.79 0.45 0.71
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cycles of freezing-thawing, small holes begin to form around
the hole, and then large holes, middle holes, and small holes
begin to form when they are far away from the hole area.
+erefore, the macroscopic anisotropy of rock samples
changed by pore action can be divided into two stages: when
the number of freezing-thawing cycles is 0–10 times, the
pore patterns around the hole and away from the hole area
are different, and the change law is opposite. +e macro-
scopic anisotropy of the sample was enhanced by pore ac-
tion. When the freezing-thawing cycle was repeated for
10–40 times, the pore patterns around the hole and far away
from the hole area were the same, the variation law was the
same, and the macroscopic anisotropy of the sample
gradually weakened.

6. Conclusion

(1) With the increase of freezing and thawing times and
pore size, the compressive strength and elastic
modulus of yellow sandstone gradually decrease.

(2) +e rock sample with pores after freezing and
thawing is divided into two damage areas: the pe-
riphery of the hole and the distance from the hole;
five kinds of microdamage modes of the yellow
sandstone after freezing and thawing are as follows:
(1) particle peeling, (2) pores filled by particles, (3)
holes extended, (4) pore shrinkage, and (5) pore
communication.

(3) As the number of freeze-thaw cycles increases, the
damage pattern at the farther hole is different from
the damage pattern around the hole. +e damage
mode at the far hole is filled by pores and the pores
are filled with particles (5 times), particle peeling (10
times), pore expansion (20 times), and pore ex-
pansion and particle spalling transition (40 times);
damage pattern around the hole by pore expansion
(5 times), particle spalling (10 times), pore con-
nectivity (20 times), and pore expansion and par-
ticles peeling transition (40 times), and the
mesopores and macropores around the pore are
farther than the pores. +e time of occurrence is
earlier and the damage is more serious, indicating
that the freezing and thawing damage the yellow
sandstone, and the hole promotes the damage of the
yellow sandstone.

(4) Under the combined action of hole and freeze-thaw,
the sample anisotropy caused by hole is divided into
two stages: freezing-thawing cycle 0–10 times, the
macroscopic anisotropy of the sample was enhanced
by pore action; freezing and thawing times 10–40
times, the sample macroscopic anisotropy gradually
weakened.

(5) Under the same freezing and thawing frequency, the
total damage of rock sample increases with the in-
crease of hole diameter. With the same hole diam-
eter, the total damage of rock sample increases with
the increase of freezing-thawing times. +e damage

degree of yellow sandstone is closely related to the
number of freezing-thawing cycles and the pore size.
+e damage equation of the yellow sandstone with
pores under freezing and thawing is nonlinear. +e
equation can better reflect the damage of rock with
pores under freezing and thawing and provide ref-
erence for the long-term stability of damaged rock.
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Cemented paste backfill (CPB) is an eco-friendly composite containing mine waste or tailings and has been widely used as
constructionmaterials in underground stopes. In the field, the uniaxial compressive strength (UCS) of CPB is critical as it is closely
related to the stability of stopes. Predicting the UCS of CPB using traditional mathematical models is far from being satisfactory
due to the highly nonlinear relationships between the UCS and a large number of influencing variables. To solve this problem, this
study uses a support vector machine (SVM) to predict the UCS of CPB. (e hyperparameters of the SVM model are tuned using
the beetle antennae search (BAS) algorithm; then, the model is called BSVM.(e BSVM is then trained on a dataset collected from
the experimental results. To explain the importance of each input variable on the UCS of CPB, the variable importance is obtained
using a sensitivity study with the BSVM as the objective function. (e results show that the proposed BSVM has high prediction
accuracy on the test set with a high correlation coefficient (0.97) and low root-mean-square error (0.27MPa).(e proposedmodel
can guide the design of CPB during mining.

1. Introduction

Cemented paste backfill (CPB) is widely used for mining
operations in underground metal mines, in which tailings are
normally used as main aggregates and they are mixed with
cementitiousmaterial and water [1]. CPB is normally filled into
the underground stope, and thus, it plays a critical role in
supporting the roof and surrounding rock mass after a certain
period of dehydration and consolidation [2–5]. Comparedwith
other backfill materials, CPB is an eco-friendly and economic
mine composite due to themaximumutilization ofminewaste,
which attracts much attention these years [6–11].

Filling strength is the most important mechanical pa-
rameter that affects filling quality, and unconfined com-
pressive strength (UCS) is the most basic and key parameter
to evaluate the filling strength of CPB [12]. Generally, the
UCS of CPB is obtained in the laboratory, similar to the
strength evaluation of the concrete. However, when multiple
parameters are related to UCS of CPB, experimental

measurement is a tedious, time-consuming, and expensive
method [13, 14]. Many scholars have put forward many
methods to predict the strength of CPB such as empirical
formula estimation, numerical simulation, and elastic me-
chanics analysis [15, 16]. It should be pointed out that the
CPB is a multiphase composite and the mentioned methods
normally cannot obtain accurate prediction results. To ac-
curately predict the UCS of CPB, it is necessary to put
forward simple and reliable methods.

Recently, machine learning methods have been widely
used for predicting the mechanical properties of construc-
tion materials [12, 17–23]. (e assessment of the strength of
CPB by artificial intelligence methods has also been pre-
sented. For instance, artificial neural network (ANN) con-
sidering influencing variables of CPB has been used to model
the relationship between inputs and outputs [24, 25]. Fur-
thermore, the evolutionary ANN method, namely, ANN-
based methods, was proposed for estimating the UCS of
CPB, by which the hyperparameters such as the number of
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neurons and the structure of ANN are optimized by some
global optimization algorithms, i.e., particle swarm opti-
mization (PSO) and firefly algorithm (FA). Similarly, other
normally used machine learning methods such as the ran-
dom forest algorithm (RF) and RF-based models reported in
the literature are also used for predicting the UCS of CPB
[26]. Although the above artificial intelligence methods
(ANN, ANN-based, RF, and RF-based) were applied in
strength prediction of CPB, they are limited in calculating
efficiency and uncertain structures. Besides, there is no
intelligent model for the prediction of UCS of CPB con-
sidering the overall effect of cement-coarse tailings ratio,
solids-water ratio, fine tailings percentage, and curing time.

(erefore, in this paper, the machine learning algo-
rithms, support vector machine (SVM) that has the perfect
ability in regression and classification, and an excellent
global optimization algorithm, beetle antennae search al-
gorithm (BAS) that is used for selecting hyperparameters of
SVM, were combined. (erefore, an evolutionary support
vector machine model (BSVM) is proposed. Several con-
tributions to the literature can be concluded as follows:

(1) (e support vectormachine (SVM) and beetle antennae
search (BAS) algorithms were combined to establish the
evolutionary support vector machine model;

(2) (e strength properties of CPB was analyzed by
conducting the experiments considering the key
influencing variables, i.e., cement-coarse tailings
ratio, solids-water ratio, fine tailings percentage, and
curing time

(3) (e UCS of CPB was directly estimated by consid-
ering the combined effect of four key influencing
variables

(4) (e sensitive analysis of the mentioned influencing
variables of CBP was first analyzed and discussed

2. Materials and Methods

2.1. Mechanical Tests. To prepare the CPB specimen, the
grain size distribution of tailings and the mineralogical
composition are necessary to determine. (us, a laser dif-
fraction analyzer was utilized for determining the size dis-
tribution of coarse tailings and fine tailings. As we can see
from Figure 1, there are two different tailings of various sizes.
To analyze the influence of fine tailing on the strength of
CPB is critical. (e Portland cement P.O 32.5R was applied
as a binder. (e water obtained in this mine was used as the
mixing water. According to the field trial tests, coarse
tailings-cement ratio (T/C) was set as 4, 6, 8, and 10, and the
solids-water ratio (S/W) was set as 0.68, 0.70, and 0.72. (e
fine tailings are as an admixture, and its percentage (FTP)
was set as 0%, 10%, 15%, and 20%. (e blinder and ag-
gregates were mixed by using a mixer (UJZ-15) for 5min.
(en, the prepared mixture was poured into the molds
(70.1mm× 70.1mm× 70.1mm). (e curing time in this
study was set as 7, 28, and 60 days. (e detailed statistics of
variables of CPB are given in Table 1. A total of 435 spec-
imens were completed, and they were used for obtaining the

UCS values by conducting unconfined compressive tests
according to ASTM C 39.

2.2. Model of Evolutionary Support Vector Machine (BSVM)

2.2.1. Support Vector Machine (SVM). SVM is normally
applied for classifying the samples by the hyperplanes [26].
When the hyperplane canmake a largemargin in two classes, the
vectors corresponding to the hyperplanes are support vectors.
(e schematic diagram of the SVM is depicted in Figure 2.

Generally, the hyperplane equation is as follows:

f(x) � wT
g(x) + b, (1)

where wmeans an m-dimensional vector; b denotes the bias
term; and when w and b are obtained, the x can be classified
by the sign of f (x).

For linear separable data, the following equation can be
concluded as follows:

yi wT
g(x) + b  − 1≥ 0. (2)

(e support vectors are on the hyperplane:

yi wT
g(x) + b  � 1. (3)

To minimize the ‖w‖2, the hyperplane can be found (‖w‖

is the Euclidean norm of w).

2.2.2. Beetle Antennae Search (BAS). BAS is a very famous
metaheuristic algorithm, which is proposed recently [20]. It
can be used for global optimization problems. Nowadays,
BAS has been widely utilized in obtaining hyperparameters
in machine learning algorithms [20, 21]. In this algorithm, it
simulated the beetles’ behavior, and the objective of its
antennae is to find the odor with high concentration. A
typical flow chart of BAS is shown in Figure 3.

In this study, the hyperparameters of SVM (C, penalty
coefficient and c, kernel parameter) were tuned by BAS
instead of trial-and-error methods.
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Figure 1: Grain size distribution of coarse and fine tailings.
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2.3. Performance Evaluation. According to the suggestion in
previous studies, the training dataset and testing dataset are split
into 70% dataset and 30% dataset, respectively. A 10-fold cross-

validation method was applied. (e correlation coefficient (R)
and root-mean-square error (RMSE) for evaluating the per-
formance of the established model are defined as follows:

R �


N
i�1 y∗i − y∗(  yi − y( 

�������������


N
i�1 y∗i − y∗

2
 

 ������������


N
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∗
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Table 1: Statistics of influencing variables.

Variable Min Max Mean Standard deviation
Coarse tailings-cement ratio (T/C) 4 10 7 2.2
Solids-water ratio (S/W) 0.68 0.72 0.7 0.02
Fine tailings percentage (FTP) 0 0.2 0.11 0.07
Curing time 7 60 31.6 21.8

Separating hyperplane

Support vector

Margin

Figure 2: Diagram of SVM.
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Figure 3: Flow chart of BAS.
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where Nmeans the numbers in the dataset; y∗i and yi are the
expected values and real values, respectively; and y and y∗

indicate the mean predicted values and mean actual values,
respectively.

3. Results and Discussion

3.1. Results of UCS of CPB. Figure 4 shows the UCS of CPB
combined with different variables under different curing
times. It can be seen that the coarse tailings-cement ratio is
the main index for determining the strength of CPB. With
the increase of coarse tailings-cement ratio, the UCS of CPB
increased obviously. Similarly, the UCS of CPB improved
with the increase of the solids-water ratio. However, in terms
of the effect of fine tailing percentage on CPB strength, it
depends on the solids-water ratio. Specifically, when the
solids-water ratio is between 68% and 70%, with the increase
of the fine tailing percentage, the UCS of CPB increased to
the peak values and then declined. When the solids-water
ratio is 72%, the UCS of CPB decreased slightly with the
increase of fine tailing percentage. (e curing time played a
positive effect on the increase in the strength of CPB, which
is consistent with the previous studies.

3.2. Results of Hyperparameter Tuning. In this study, BAS is
applied to tune hyperparameters of SVM on the training set.
RMSE is selected as the objective function. Figure 5 shows
the RMSE versus iteration curve. It can be seen that RMSE
decreases significantly and is stable after 15 iterations, in-
dicating that the BAS is efficient in tuning hyperparameters.
(e final hyperparameters of SVM are tabulated in Table 2.

3.3. Assessment of the EstablishedModel. Figure 6 shows the
correlation between predicted UCS values and actual UCS
values on the training and test sets. A nearly linear rela-
tionship is observed with R values of 0.9701 and 0.973 on the
training and test sets, respectively, indicating that the pro-
posed SVMmodel can establish the relationship between the
UCS of CPB and its influencing variables successfully. Be-
sides, the low and similar RMSE values on the training
(0.1798) and test (0.2674) sets suggest that no underfitting or
overfitting phenomena are produced.

3.4. Analysis of the Variable Importance. (e relative im-
portance of the input variables is calculated using global
sensitivity study, as shown in Figure 7. It can be observed
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Figure 4: UCS test results of CPB in 4D: (a) 7 days; (b) 28 days; (c) 60 days.
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that the coarse tailings-cement ratio has the most significant
influence on the UCS of CPB with an influencing score of
4.46, followed by curing time (3.178) and solids-water ratio
(0.23), while fine tailings percentage is the least sensitive
variable with an influence score of 0.088. (is result agrees
well with the previous study. It should be noted that the
importance score is obtained by the dataset used in this
paper. More accurate results can be obtained if more data
samples are included in the dataset in the future.

4. Conclusions

(is study uses the BSVM for predicting the UCS of CPB.
(e hyperparameters of SVM are tuned by BAS. (e BSVM
can establish the relationship between the UCS of CPB and
its influencing variables successfully, indicated by high
correlation coefficients on the training (0.97) and test (0.973)
sets. Also, the calculated variable importance by sensitivity
analysis shows the coarse tailings-cement ratio is the most
important variable to UCS.

In future work, the dataset will be enlarged by including
more influencing variables and samples to improve the
generalizability of the proposedmodel. Also, a graphical user
interface will be implemented to facilitate the use of the
model in designing CPB mixtures.
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Table 2: (e obtained hyperparameters of RF.
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International construction projects (ICPs) have become more popular in the current wave of globalization. )e Building In-
formation Model (BIM) has been adopted in ICPs. However, the utility of the BIM in ICPs for effective risk control remains
unclear. )is paper maps the relationship between ICP risks and BIM use to improve the adoption and selection of the BIM. )e
results show that the BIM can effectively facilitate communication management, mitigating risks engendered by language barriers
among stakeholders, for instance, design errors. )e BIM can also effectively mitigate risks caused by particular and temporal
differences during the construction process. )is research highlights internal/technical ICP risks that can be effectively mitigated
by certain applications of the BIM; however, in contrast, external risks of ICPs cannot be mitigated by the BIM. However, some
risks need to be addressed by new BIM functions. For example, regarding legal risks, laws and regulations of various countries can
be included in the BIM information integration model to facilitate timely acquisition of legal provisions by project participants.
)is study complements prior risk-management research, which typically focused on the BIM as an advanced tool by which to
manage project risk, such as design errors, quality, and budget. Practically, the contractor and owner can select suitable BIM
applications for different project objectives and risks in the pre-project phase.

1. Introduction

)e rapid adoption and development of the Building In-
formationModel (BIM) has brought tremendous advantages
to construction enterprises. However, new risks exist due to
the characteristics of international construction, such as
cross-cultural differences, multiple stakeholders, and legal
and standards differences [1]. Although many BIMs have the
capability to address complex construction problems, BIMs
are still in the development stage, and new uses of BIMs are
constantly emerging [2, 3]. Previous studies have reviewed
various applications of BIMs, from 4D scheduling aspects
[4], 5D cost aspects [2, 5], facility management [6], sus-
tainability [7, 8], safety aspects [9], and general BIM tools for
construction management [10]. )ese important studies
provide useful references for end-users in selecting suitable

BIM applications for their projects. Most risk-management
research based on BIMs focused on the BIM as an advanced
tool by which to manage project risk, such as design errors,
quality, budget, and visual perspective, but did not typically
address ICPs’ risk management explicitly [9]; however, most
ICP risks related to proposed contract conflict and design
error are caused by language differences. However, very little
information is available as to select language barrier based
from the perspective of ICP risks. Furthermore, reviews of
BIM use in international construction risk management are
few in number. )erefore, BIM cannot currently be effec-
tively promoted and used in ICP management.

Hence, this studymaps the relationship between ICP risk
and BIM application to improve the adoption and selection
of the BIM. )e linkage between BIM application and ICP
risks helps provide effective control or prevention of risks
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and thereby improve project performance. )is study in-
volved two main research tasks. First, a critical review was
conducted to compile a list of ICP risks and BIM applica-
tions in construction projects. Subsequently, a panel dis-
cussion method was used to analyze the BIM applications in
association with ICP risks. Second, a meta-network method
was adopted to analyze which BIM applications would be of
utility in ICPs to help achieve project objectives in terms of
cost, time, quality, safety, and environment. )is paper is
organized into five sections. Section 1 explains the study’s
theoretical background. Section 2 describes the critical re-
view and research design. Section 3 explains the results of the
meta-network analysis. Section 4 discusses the study’s re-
search contributions. Section 5 summarizes the study’s re-
search findings, highlights its limitations, and presents
suggestions for future studies.

In recent years, the risks associated with ICPs have
gradually increased, due to the increased complexity and
requirements of these projects. )ere is a wide range of risks
associated with ICPs, such as structural risks, construction
risks, health and safety risks, financial risks, and environ-
mental risks. Risk management is critical to the success of
any construction project. Several studies [11, 12] have shown
that current risk management approaches largely depend on
experience and multidisciplinary knowledge.

Moreover, there is a lack of interaction among types of
risk information in current risk management approaches
[9]. )is may lead to information that is not effectively
shared, recorded, and updated during the development of a
project. Large amounts of risk information may be lost if
they are not properly recorded and communicated to other
project participants.

In recent years, information models have become in-
creasingly popular. )ese models offer the potential for col-
laboration and communication, increased productivity and
quality, and reduced project costs and implementation time
[13]. Data-based collaboration and communication environ-
ments help identify and mitigate risks early [14, 15]. BIMs have
become a systematic approach and process that have changed
the presentation of projects [16], design [17], and communi-
cation [18]. Many studies have proposed BIMs as a tool for
managing project risks, involving design errors, occupational
safety, quality, and budget, but they often do not directly
reference the concept of risk management. Risk management
will play a more important role as project participants begin to
use these latest technologies as part of their daily work.

Since BIM technology can integrate information in an
nD model [19], future BIM applications could process risk-
management data [20]. In the construction industry, BIMs
are continuing to develop; in practice, companies want to
advance implementation theory and make full use of BIM-
based tools to improve project performance and risk
management [10]. However, in the current construction
industry, the sharing and communication of risk informa-
tion are often incomplete and inconsistent; it is necessary to
integrate and visualize this information through BIMs.
However, there is little BIM-related research that has fo-
cused on international construction project risk
management.

Related studies of BIMs in international construction
risk management have illustrated that the 4D system can
visually simulate a proposed construction sequence, via
which planners could easily identify potential risks [21].
Additionally, 3D visualization has been deployed to re-
view and understand the degree and location of damaged
components of a building when assessing potential
hazards [22]. )e 5D automated cost estimating model
has been used to provide more accurate cash flow fore-
casts [23], and decision-making for workspace analysis
[24]. However, these studies have yet to address ICP’s
critical risks, such as those related to language barriers,
cultural barrier, and natural disaster. Furthermore, the
studies to date only independently discussed BIM ap-
plications for specific risks; however, in construction
projects, risks are often interrelated. )erefore, BIM
applications should be considered holistically with re-
spect to ICP risks.

2. Materials and Methods

)e main research framework and research process of this
study are shown in Figure 1. A detailed description of each
step and method is provided below.

2.1. Critical Review of ICP Risks and BIM Applications.
First, an in-depth literature review was conducted to de-
termine the research trends in this field and the major re-
search omissions, including the following aspects: (1)
selecting classic literature on risk definition and risk man-
agement in ICPs; (2) assessing the development and ap-
plication of BIMs in the construction industry, new BIM
software, and other relevant literature to analyze interna-
tional construction risk management and BIMs. Details of
the ICP risks are shown in Table 1.

To compile the list of BIM applications in construction
projects, more than one hundred peer-reviewed academic
publications and twenty-five (25) BIM guidelines were se-
lected and reviewed. PMBOK (2013) was also selected as a
main reference.)e details of BIM applications are shown in
Table 2.

2.2. Panel Discussion of BIMApplications from the Perspective
of ICPRisks. )e panel discussion assessed BIM applications
with respect to international construction risks. Twenty-four
core project managers discussed a scenario simulation, based
on grounded theory. )is enabled generation of an inter-
national construction project risk-correlation matrix. )is
component of the study consisted of preliminary analysis,
in-depth interviews, the establishment of an initial indicator
set, and panel discussions of BIM application with respect to
risk factors. )e profile of the respondents is shown in
Table 3.

)e panel discussions commenced with an introduction
of the discussion topic.)e purpose of the discussions was to
identify the role of BIM application in risk management of
international engineering projects. Each panelist first
assessed the identified BIM applications and verified
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whether the main uses of BIMs were represented. Second,
the utility and benefits of these BIM applications were
considered. )en, the particular role of these applications in
risk management of international construction projects was
discussed. Finally, the panelists’ comments were summa-
rized; panel discussion process is shown in Figure 2.

)e project managers then evaluated the correlation
between risks and BIM application, via a risk matrix. Re-
spondents were asked to directly score the matrix according
to the influence of BIM aspect X on risk Y. )e respondent
was asked to consider all possible relationships and their
directions. To quantify the relationships, respondents used a
scale from 1 to 5 to represent the impact of the influence as
well as the probability that this influence occurs [67]. If the
respondent considered that there was no relationship be-
tween two risks, a value of 0 was assigned.

To obtain the degree of interaction between different
risks and risk factors, a risk-structure matrix was used to
evaluate the relationship between risks, risk impact on
project objectives, and risk factors. To reflect the effect of the
two directions, risk A on risk B and vice versa, but this needs
to be stated explicitly for each type of bidirectional rela-
tionship, a numerical matrix corresponding to the two di-
rections was aggregated, using geometric averages. )e risk
management intensity matrix was then obtained as
R∗ij � (rij)n∗ n, among Rjj �

�������
Re

ij × Rc
ij


. According to

Yang and Zou’s method of measuring the degree of asso-
ciation of each risk node, Rj, Sj expressed the degree of
association of each risk node Rj, which was equal to the sum
of all the elements of the row vector in the risk matrix and all
the elements of the vector in the risk column.

Sj � 
n

j�1
rij + 

n

i�1
rij, i � 1, 2, . . . , n; j � 1, 2, . . . , n. (1)

Based on the panel discussion, the links between risks
and BIM for risks were assessed. First, matrices for different
network relationships were established, namely, the matrix
representing the impact of risk on project objectives, that
representing the interaction between risks, and that repre-
senting the impact of risk factors on risk. A total of 24
panelists’ comments were collected from the on-site panel
discussion with project managers.

2.3. Meta-Network Analysis. Finally, the assessment struc-
tures were inputted to a meta-network analysis tool (ORA-
NetScences), to establish a network of risk interactions in the
implementation phase of ICPs. From a network perspective,
important risks and risk factors that influence project ob-
jectives were identified and analyzed.

Meta-network theory describes the commitment of re-
sources, assignment, networks, and skills (PCANS),
according to a model developed by Krackhardt and Carley
[68]. )ese elements constitute a set of nodes, and rela-
tionships among these elements constitute a set of rela-
tionships. )e meta-network provides a promising way by
which to understand and visualize the complex interactions
in a project’s organizational network [69, 70]. )e meta-
network is multilayer, multilevel, and multimodal and can
reveal the complex network systems in a project and identify
the relationships between networks [69]. Recent network
analysis approaches only address “who” is in the network,
but the meta-network can simulate and analyze “who, when,
where, what, and why” [69]. In a project’s meta-network,
changes in one network cascade into changes in other
networks, thereby influencing the overall performance of the
project [71].

)e analysis was based on different types of nodes and
links. In particular, there were four types of nodes: project
objective (cost, time, quality, safety, and environment), 16
risk nodes (R1-R16, shown in Table 1), risk factors nodes
(F1–F84, shown in Table 1), and 25 BIM application nodes
(BC1-BC25, shown in Table 2).)e types of networks among
the different nodes were as follows: risk factor network
(risks× factors), risk event network (risks× risks), risk
mitigation network (BIM× risks), and risk influence net-
work (risks× objectives). )e links in the different networks
have different weights that reflect the degree of influence
transfer. )e purpose of this study was to determine the
overall risk network of the project and changes in the overall
risk network of the project given risk control measures, by
understanding the relationships between different risk fac-
tors and the impact of different risk factors.

To reflect the overall effect of the two directions, the
numerical matrix corresponding to the two directions was
aggregated using a geometric average, and the risk-man-
agement intensity matrix obtained. )e network connec-
tions in the meta-network were expressed by two directional
influence matrices. All numerical matrices corresponded to
the panel discussion results explained in Section 3.1. )e

Highlight BIM applications in ICP via
panel discussion 

Review and identify the
ICP risks

Literature review

Review and identify BIM
applications

Assess the risk mitigation
measures

Determine risk
mitigation matrix

Yes

Introduce
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comments
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Build the BIM-based
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Figure 1: Research map.
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Table 1: International construction project risks and risk factors.

Code Risks Codes/risk factors References

R1 Wars and civil unrest among
local population

F1 local political/social instability
F2 local government change KarimiAzari et al. [25]

F3 cultural and religious conflicts
Zayed et al. [26]F4 exchange rate changes

F5 poor availability of local foreign exchange

R2 Increasing costs of fuel, material,
equipment, and labour

F6 local currency changes

F7 local market price changes/inflation Xiaopeng and
pheng [27]

F8 lack of funding
F9 supply deficiencies (transport/delivery of materials, equipment, and

labour) Liu et al. [28]

F10 increase in bank interest rate Zhao et al. [29]

R3 Exchange rate change

F11 local and national tax increase (payment, evasion, implementation) Creedy et al. [30]

F12 new local government regulations (taxation, labour, safety, waste,
environment, etc.)

Santoso and
soeng [31]

Yildiz et al. [32]

R4 Project fund shortage
F13 no fund management system

F14 incorrect cash management/foreign exchange management
F15 excess monetary investment in early project stages

R5 )e local public objected to the
project

F64 communication conflicts between project employees and residents
(language barriers, use of translators, translation accuracy, etc.)

Zayed et al. [26]; yildiz
et al. [32]

F65 malicious attacks on individuals by project employees Dikmen and
Birgonul [33]

F66 construction has considerable impact on residents’ lives Liu et al. [28]

R6 Changes in laws and regulations

F61 contracts with local governments are mandatory Han et al. [34]

F62 local government departments/services are inefficient, slow to
respond, and bureaucratic

Hakami [35]
Tran and

molenaar [36]
F63 strict/different local business practices (business culture, systems,

geography, personality, assimilation requirements, etc.) Mathew et al. [37]

R7 Environmental damage caused
by construction

F80 construction pollution
F81 emission of hazardous chemicals and gases from construction Han et al. [34]

F82 improper disposal of construction waste Xiaopeng and
pheng [27]

F83 hazardous construction sites and materials
F35 no substitute supplier/subcontractor in case of failure or failure to

deliver
F36 aboriginal land rights and owners

F37 restrictions of local laws and regulations (including customs/export/
import restrictions, etc.)

F38 poor land conditions (mining activities, public facilities, historic
sites, pollutants, etc.)

F39 transport difficulties (poor local traffic conditions, traffic restrictions
by relevant departments)

F40 local government interference Han et al. [34]

R8 Regional disparity and climate
impacts

F41 imperfect supervision/control system (quality, cost, time) Xiaopeng and
pheng [27]

F46 employees refused to sign up F47 employee diseases (plague
F48 project labour absence/potential occupational liability/laziness Liu et al. [28]

F49 insufficient work experience of project employees in usingmaterials/
technologies/equipment (problems with the use of special materials and

new materials)
F50 lack of safety knowledge, skills, and training for employees

F51 poor accessibility of local materials/technologies/equipment (raw
materials and semi-finished products are unavailable)

F52 improper material/technology/equipment procurement plan
F19 poor quality of goods and services from suppliers/subcontractors

F41 imperfect supervision/control system (quality, cost, time) Liu et al. [28]
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Table 1: Continued.

Code Risks Codes/risk factors References

R9 Quality defects in construction
materials

F42 poor attitudes of field staff toward quality, cost, environment, safety,
trust, and opportunity

El-sayegh and
mansour [38]

F43 lack of sampling inspection/product contamination leading to
quality defects Zhao et al. [29]

F44 low quality, competence, reliability, and productivity of project
employees Lee et al. [39]

F45 insufficient identification of safety, quality, etc.
F30 insufficient technical resources, skills and knowledge of suppliers/

subcontractors
F53 errors in installation of construction equipment

R10 Damage to labour, materials,
equipment, and building

F54 equipment reliability/safety/low productivity Hakami [35]
F55 local natural disasters (heatwave, wind, rain, cold, damp, fire,
tsunami, volcano, earthquake, flood, storm, tornado, landslide,

lightning, etc.)

Liu et al. [28]
Santoso and soeng

[31]
F57 insufficient safety material and equipment Yildiz et al. [32]

F58 low accessibility/high maintenance cost for key components and
accessories

F60 construction equipment type mismatch
F36 aboriginal land rights and owners

F67 local government approval/intervention
F68 government expropriation, government nationalization restrictions

on business operations
F69 the scale of the project does not conform to the scale required

F70 innovation and development needs (standardization level,
technology/details/materials, etc.) Liu et al. [28]

R11 )e design changes of the project

F71 unclear expectations/requirements of owner/user/operator

El-sayegh and
mansour [38]

F72 owners’ overdependence on consultants/construction interventions
F74 design error

F75 imperfect databases, outdated information, late information,
inaccurate information, unusable information, incomprehensible

information
F76 design code conflicts with local code

F77 engineers’ corruption/unreasonable decisions
F78 engineer’s uncertainty about changes in the scope of work,

specifications, costs, duration, etc.
F39 transport difficulties (poor local traffic conditions, traffic restrictions

of relevant departments)
F42 poor attitudes of field staff toward quality, cost, environment, safety,

trust, and opportunity
F43 lack of sampling inspection/product contamination leading to

quality defects
F45 insufficient identification of safety, quality, etc.

F50 lack of safety knowledge, skills, and training for employees Hakami [35]
F53 error in installation of construction equipment Liu et al. [28]
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Table 1: Continued.

Code Risks Codes/risk factors References

R12 Accident occurrence

F54 equipment reliability/safety/low productivity Santoso and soeng
[31]

F55 local natural disasters (heatwave, wind, rain, cold, damp, fire,
tsunami, volcano, earthquake, flood, storm, tornado, landslide,

lightning, etc.)
Yildiz et al. [32]

F56 insufficient safety education tips on project construction site
F57 insufficient safety of material and equipment used

F58 low accessibility/high maintenance cost for key components and
accessories

F59 crisis preparedness—inadequate contingency planning
F60 construction equipment type mismatch
R9 quality defects in construction materials

F16 lack of communication among project participants
F17 unfair provisions in overseas contracts

F18 conflict in industrial relations
F19 poor quality of goods and services from suppliers/subcontractors
F20 supplier/subcontractor increased costs and delayed costs for goods

and services
F21 supplier/subcontractor goods without warranty service

F22 owner’s cash flow/arrears
F23 errors or omissions in quantities invoiced, inconsistent information

in practice, inaccurate budgets, etc. Hanna et al. [40]

R13 Contract disputes/termination
of contract

F24 project partner’s credit insufficiency Creedy et al. [30]
F25 owner’s requirement for technology/rights is too stringent Liu et al. [28]

F26 issues with contract terms (date of completion is not clear, etc.) Yildiz et al. [32]
F27 lack of guarantee or insufficient guarantee Mathew et al. [37]
F28 wrong expression of contract definition

F29 claim management is unclear
F30 insufficient technical resources, skills and knowledge of suppliers/

subcontractors
F31 potential litigation issues; complexity of contracts and documents
F33 owner’s attitude towards scope, norm, cost, duration, etc. is not clear
F34 owners’ requirements for environmental protection, safety, quality,

and time are too demanding
F35 no substitute supplier/subcontractor in case of failure or failure to

deliver
F19 poor quality of goods and services from suppliers/subcontractors
F20 supplier/subcontractor increased costs and delayed costs for goods

and services
F21 supplier/subcontractor goods without warranty service

F24 project partner’s credit insufficiency
Santoso and Soeng

[31]
Liu et al. [28]

R14 Subcontractor breach

F26 issues with of contract terms (date of completion is not clear, etc.)
F28 wrong expression of contract definition

F30 insufficient technical resources, skills and knowledge of suppliers/
subcontractors

F51 poor accessibility of local materials/technologies/equipment (raw
materials and semi-finished products are unavailable)

F22 owner’s cash flow/arrears
F24 project partner’s credit insufficiency

F26 issues with contract terms (date of completion is not clear, etc.)

R15 Client defaults on project

F28 wrong expression of contract definition
Xiaopeng and pheng

[27]
Yildiz et al. [32]

F31 potential litigation issues; complexity of contracts and documents
F33 owner’s attitude towards scope, norm, cost, duration, etc. is not clear
F34 owners’ requirements for environmental protection, safety, quality,

and time are too demanding

R16 Disease and health problems F47 employee diseases (plague) Yildiz et al. [32]
F84 unhygienic project site or staff dormitory, congenital diseases )weatt and long [41]
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outcome was a weighted graph G � (N, K), where N rep-
resents the total number of nodes (risks) and K the total
number of weighted links (relationships). )e stakeholder
category associated with each node is distinguished by color
in the figures shown here. )e thickness of each link rep-
resents its weight [72]. )e meta-network analysis visualizes
changes in the network, in network density, in the number of
links (link count), and in the number of nodes.

3. Results

3.1. BIM Application to ICP Risk Meta-Network. Figure 3
shows the BIM-based ICP risk network, including the risk
factor network (risks× factors), risk event network
(risks× risks), risk mitigation network (BIM× risks), and
risk influence network (risks× objectives); the network
statistics and network link count statistics are shown in
Tables 4 and 5. )e central network shows the most used
BIM applications (green nodes). In the middle network,
yellow nodes represent risk factors with a direct relationship
between BIM types and risk factors. Also shown are the five
project objectives, such as cost, time, quality, HS-health and
safety, and E-environment. )e whole circle of the network
shows the risks, five project objectives, risk factors, and BIM
uses.

)e main BIM application that affects risk displayed in
the meta-network center is 3D visualization and design. 3D
visualization and design: after establishing a 3D design
model with attribute information (e.g., for equipment,
pipeline, civil engineering) permitting full collision in-
spection, 3D audit, and 3D check, a BIM can directly
generate or extract 3D design drawings and bills of materials,

thereby preventing design errors, risk of material accounting
errors, and so forth.

Effective communication with the owner: due to the
language barriers associated with international engineering,
the contractor and foreign owner often cannot communicate
fully and effectively. Here, BIM technology may be used to
integrate the professional design content into a visual 3D
model. Regular review by the project manager and the owner
will not only facilitate the owner’s understanding of the real-

Table 3: Basic information of the participants.
Characteristic Category Proportion of respondents (%)

Age (years)

≤25 18 (39%)
26–30 17 (37%)
31–35 6 (15%)
≥36 4 (9%)

Experience of international construction projects (years)

1-2 27 (60%)
3-4 12 (27%)
5-6 5 (10%)
≥7 1 (3%)

Education

Bachelor’s degree 23 (51%)
Master’s degree 10 (22%)

High school degree and associates degree 2 (4%)
Other 10 (22%)

Job position

Administration office 3 (6%)
Materials and equipment department 2 (4%)

HSE management department 2 (4%)
Senior project leader (chief ) 3 (6%)

Design department 3 (6%)
Contract department 3 (6%)

Engineering management department 29 (66%)

Introduce
discussion purpose

Interview panelists
on core questions

Summarize panelists’
comments

Figure 2: Panel discussion process.

Figure 3: BIM-based ICP risk network.

Table 4: Network statistics.

Statistic Minimum Maximum Average Standard
deviation

Number of nodes 1 128 8.385 8.537
Number of links 0 510 26.469 53.356
Density 0 0.14 0.887 0.268
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time progress of the design but also facilitate communica-
tion and agreement between the owner and contractor in a
visual environment, effectively reducing the amount of re-
work on-site (e.g., preventing design changes, communi-
cation disputes, engineering disputes, rework, etc.).

Simulation and optimization of construction scheme: in
complicated projects, the difficulties and key points of the
construction can be found in advance, and the construction
scheme can be further optimized.

BIM visualization model and roaming use: textual
technical content can be expressed in a visual model, so that
construction personnel can more intuitively and deeply
understand technical content. )is may improve profes-
sional collaborative communication efficiency, avoid un-
necessary material and labor waste, and reduce the workload
associated with reading materials.

Construction progress auxiliary management: visual
management of the advance schedule of the construction
project can facilitate reasonable arrangement of construction
procedures, installation progress, reduction of waste, and
improving efficiency.

Composition and material control: statistical engineer-
ing, based on a 3Dmodel and construction organization, can
improve quota design, subproject quantity statistics, real-
time multicount comparison, and facilitating cost control.

)e model can obtain information on all materials,
physical quantities, and quotas to release materials, thereby
saving material usage and reducing costs. After the project is
completed, the actual material usage and planned material
usage will be automatically counted and analyzed, which
provides a reliable reference when costing similar projects in
future.

In the network analysis, the most influential BIM was the
5D model (Figure 4). )e BIM 5D cost estimate is centrally
located in the network and influences project costs and
schedule targets, especially for project contract risks, security
risks, and subcontractor risks. )is information can be used
to display virtual project builds for other stakeholders and
thereby discover project-relevant information. Additionally,
the model simplifies the concept of the project; misunder-
standings among stakeholders are reduced because they can
see the final design before the project starts. Any changes
that occur during the build process, such architectural al-
terations, are automatically transferred to the model, and
everyone can access the new information. )e greatest
benefit is that anyone involved in the project has access to

geometry, required resources, time, and cost, which enables
all stakeholders to make quick decisions and reduces any
misunderstandings that may occur.

)e meta-network also can show the different networks
relations. )e direct relationships between the four meta-
networks were demonstrated by node cross-analysis,
shown in Figure 4. BIM types (in the network node named
“Resources”) have the most nodes and connections
throughout the network, indicating that BIMs play a major
role in the risk-management network. Moreover, of all
relationships, that between BIM and risk factors was the
strongest.

Figure 5 shows the network simulation result based on
maximum likelihood estimation. Greater likelihood repre-
sents a greater chance that the event will occur under dif-
ferent conditions when the result is known.)e results show
that the central-hub assumptions in the network differed
from other probability assumptions.

After applying BIMs, the density of the entire risk
network was reduced by 69%. )e 5D BIM network con-
tained 164 links, which reduced risk by approximately 56%,
with nodes reducing in number by 36% (reasonable cost
planning, cost control). )e 3D BIM network contained 232
links, which reduced risk by c. 23%, with the number of
nodes reducing by 25%.)e disaster plan network contained
251 links, reducing risk by c. 17% (reduced risk of personnel
safety accidents), and nodes by 19%. )e communication
platform network contained 235 links, reducing risk by c.
22%, and nodes by 23% by promoting early risk identifi-
cation and risk communication.

)e best potential risk management paths were
identified by determining the shortest paths that could
control links. For example, for the 5D BIM to COST, the
shortest path length was 5, and the number of shortest
paths was 1. For the path Owner’s requirements unclear
(F71)⟶Technical and design changes (R11)⟶Cost
(6.16) affected value; in the initial contract, the owner’s
requirements are not clear or the owner does not docu-
ment requirements, which will lead to technical and de-
sign changes during project implementation, which will
increase workload and/or increase costs due to the need

Table 5: Network link count statistics.

Network Minimum Maximum Average Standard
deviation

Risk× risk 0 120 21.233 43.768
Risk× factors 1 45 4 7.203
Risk× objectives 4 44 23.714 13.292
Risk
factors×BIM 1 33 4.184 5.185

Risks

Risk factors

ObjectivesBIM applications

Figure 4: Node cross-analysis.
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for new designs. )e path Design errors (F74)⟶Tech-
nology and design changes (R11)⟶Cost (5.86) signifies
that design errors are also a primary factor in design
changes and continue to affect project costs.

4. Discussion

4.1. 8eoretical Contribution. )e meta-network revealed
that BIMs can control internal risks and technical risks in
ICPs, but they cannot control the external risks of ICPs.
Political risk can be reduced by reviewing the country risk
index (world political risk report). Social and cultural risks
can be reduced by purchasing insurance (MIGA/AIG/
KLIN). Legal risks can be addressed by including the laws
and regulations of various countries in the BIM infor-
mation-integration model to facilitate the timely acquisi-
tion of relevant legal provisions. Economic risk can be
addressed by including exchange rates between countries
and interest rate changes in a 5D BIM at regular intervals;
project financial managers or owners and contractors can
regularly check the relevant information and adjust the
project cost plan and construction plan according to
economic changes. Health risk can be ameliorated using a
safety management model to train staff on personal hy-
giene, and utilizing health screenings for timely detection
of physical illness among staff. Environmental risk can be
addressed via the platform or model of management of the
environment to be developed, with its associated envi-
ronmental management procedures and system
management.

Advantages of BIMs have been studied thoroughly,
and the rapidly available benefits contractors have ob-
tained have been categorized in detail [73]. )e process of
facilitating BIM adoption and the latent challenges are
being reciprocally studied [74, 75]. In practice, enterprises

need to advance implementation theories to fully use
BIM-based tools and thereby improve project function-
ality [10]. While some features of BIMs can help address
project risk, it is not possible to conduct comprehensive
risk management.

Most risk-management research based on BIMs has
focused on the BIM as an advanced tool by which to manage
project risk, such as design errors, quality, and budget, from
a visual perspective, but has rarely explicitly referenced ICP
risk management [9]. Most ICP risks related to the proposed
contract and design errors are caused by language differ-
ences; BIMs may help ameliorate the consequence of the
risks.

4.2. Practical Implications. )e practical implications of this
research can be discussed from three perspectives, namely,
shortage of talents, software issues, and government policy.
From the perspective of the shortage of talents, the lack of
individuals familiar with BIMs is the main problem un-
derlying the application of BIM technology in enterprises.
)is includes a lack of professionals qualified to implement
BIMs and a lack of systematic BIM technical training. BIM
talent is the primary issue that needs to be addressed before
BIM technology can be applied widely. Different national
stakeholders have different perceptions and knowledge of
BIMs. )erefore, it will take time for BIMs to be applied in
ICPs.

Regarding technology issues, each country has devel-
oped different software, and compatibility and usability of
packages differ.)erefore, before implementing a project, all
parties should determine the software that will be used and
the necessary standards. From an economic perspective, the
benefits of deep application of BIM technology for enter-
prises are uncertain. )e unclear long-term return on

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
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Figure 5: Network simulation results.
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investment and high input costs have hindered the wide
application of BIM technology.

From the perspective of government policy, there is
currently no relevant BIM standard in the industry; each
country has different BIM standards. )us, legal liability
discrepancies are unknown, which hinders the use of BIM
software and the deep application of BIM technology. At
present, the development of BIM technology needs further
research and improvement, and potentially even changes in
standards, processes, software, and policies because different
owners and contractors have different understanding of BIM
in different countries. As well as the aforementioned soft-
ware compatibility issues, there exist difficulties in model
management as data security differs among networks, as do
network speeds; these issues incur the risk of data loss. )e
unclear legal liability associated with the BIM system, in-
tellectual property issues, model ownership issues, and
ownership of data mean that BIM has a high short-term cost.
Further, many participants in international engineering
projects attach great importance to their interests and image,
and data input that intentionally conceals real data may
occur, reducing data reliability.

Finally, the main practical contribution of this research is
its suggestion of appropriate BIM applications to various
stakeholders, contractors, and project owners, according to
their own project objectives andmajor risks in the early stage
of the project.

5. Conclusion

)is study mapped the relationship between ICP risks and
BIM applications. A BIM project risk-mitigation network
was constructed. From the perspective of the ICP risk
network, the BIM has a notable ability to prevent design
errors and design change risks. BIM use has great potential
to prevent risks, as evidenced by the risk network, which
incorporated BIM architecture, management structure
model, quality and safety management, site analysis, and
collaborative management platform. BIMs can help users
visualize risk information and understand the exact location
of risk in the project, and help stakeholders understand risk
and its impact on project duration. BIMs potentially elim-
inate the risks caused by language barriers in international
engineering projects and improve risk communication and
risk information management. BIMs can also eliminate time
issues in information communication inherent to interna-
tional engineering projects. By combining specific BIMs,
stakeholders and contractors in different countries can view
relevant content in real time and change incorrect or
conflicting content in timely manner.

However, promoting the BIM use in international en-
gineering projects presents some difficulties. From a tech-
nical point of view, the software developed in different
countries lacks compatibility. Differences in data security
levels and network speeds among networks pose a risk of
data loss. In terms of management, difficulties may arise due
to differences in professional models used among countries,
owners, and contractors, who have different understandings
of BIMs. Further, different BIM standards and BIM

specifications will lead to information loss and affect co-
operation. )e legal liabilities associated with the BIM
system are not clear concerning intellectual property rights,
model ownership, data ownership, and so on. )ese prob-
lems should be addressed in the contract, to avoid later
conflicts.

Certain limitations need to be considered when inter-
preting the research findings. First, the results of the risk
assessment might only apply to Chinese international
project contractors. Other types of projects or contractors in
other countries may face different situations regarding risk
management of ICPs. Nevertheless, the meta-network ap-
proach itself is generalizable and can be used in other similar
risk management studies in different countries. Second, this
study did not consider the role of BIMs in international
project management from the perspective of BIM tech-
nology and software development. )e study only assessed
and interpreted the role of BIMs in ICP risk management
from a management perspective. Future research is needed
to combine management and technical aspects, which might
require the design and development of related BIM software.
Finally, the integrated management of the final risk miti-
gation strategy needs to be verified in an actual project.
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Earthquakes cause significant damage to bridges, which have a very strategic location in transportation services.+e destruction of
a bridge will seriously hinder emergency rescue. Rapid assessment of bridge seismic damage can help relevant departments to
make judgments quickly after earthquakes and save rescue time. +is paper proposed a rapid assessment method for bridge
seismic damage based on the random forest algorithm (RF) and artificial neural networks (ANN). +is method evaluated the
relative importance of each uncertain influencing factor of the seismic damage to the girder bridges and arch bridges, respectively.
+e input variables of the ANNmodel were the factors with higher importance value, and the output variables were damage states.
+e data of the Wenchuan earthquake were used as a testing set and a training set, and the data of the Tangshan earthquake were
used as a validation set. +e bridges under serious and complete damage states are not accessible after earthquakes and should be
overhauled and reinforced before earthquakes. +e results demonstrate that the proposed approach has good performance for
assessing the damage states of the two bridges. It is robust enough to extend and improve emergency decisions, to save time for
rescue work, and to help with bridge construction.

1. Introduction

Seismic events cause tremendous damage to humans and
socioeconomic impacts [1–4]. In order to reduce the loss, it
is necessary to formulate a postearthquake rescue plan in a
timely and scientific manner [5]. However, developing a
rescue plan requires an understanding of the traffic situation
around the disaster area [6]. +e small amount of infor-
mation obtained from the postearthquake field survey
cannot guide the rescue work alone. At the same time,
lifeline systems have been of growing concern, especially the
vulnerability to risk-induced damage [7].+e transportation
infrastructure is one of the most vital lifeline systems of
society [8]. If the earthquake damage assessment of the
bridge can be carried out before the disaster, the traffic
capacity can be quickly judged after the earthquake [9]. +is
can help the government and save valuable rescue time [6].
Moreover, accurate preearthquake assessments can also

identify areas of earthquake resistance in the region for
prevention and reinforcement, thereby reducing the po-
tential damage caused by the earthquake. Hence, how to
carry out accurate seismic damage assessment has become
an important practical issue.

Although there are many factors that affect the damage
of bridges, not each one has a vital role. Hence, it is vital to
choose an appropriate technique to assess the importance of
different factors. Linear methods are often applied to
evaluate factor importance [10]. Mangalathu et al. have
established the correlation between bridge fragility and
factors applying the linear technique [11]. However, because
of the ambiguity of each correlation feature [12], ensemble
models of machine learning are raised by some studies and
used for factor correlation evaluation problems [13–15] for
increasing the precise and generalized performance of the
empirical methods [16]. It has been proven that the results of
the ensemble models are better than the empirical methods
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[10]. A recent study has given the relative importance of each
uncertain input parameter on the fragility curves of skewed
bridges based on three-layer neural networks [11]. However,
no studies have used ensemble methods to assess the feature
importance in the seismic risk area. One of the most widely
used ensemble learning techniques is the RF method, which
has the best overall performance compared to other algo-
rithms, such as AdaBoost, logistic regression, and Classifi-
cation and Regression Tree (CART) [17].

Different methodologies have been proposed to assess
the fragility [18] or the damage of a bridge. Some of the
previous studies have evaluated individual bridges in detail
by using different methods, such as multipoint acceleration
measurement and ANNs [19], assessing the relative risks of
the failure modes of a bridge and the limitations of risk
priority numbers (RPNs) associated with individual failure
modes [20], as well as the Bayesian method [21]. Some
studies present the assessment methods of bridge compo-
nents [22]. However, emergency work needs a great deal of
evaluation results of bridges to be obtained in a short period
of time. Most studies used linear models or some evaluation
systems, for example, Risk Priority Numbers (RPNs) [20],
Hazards United States Multi-Hazard (HAZUS) [23], and the
Failure Mode and Effect Analysis (FMEA) system [24].
+ese evaluation systems can give a risk assessment of a
single bridge and give specific forms of damage, such as the
ineffective angle, ineffective position, and ineffective number
of structures. +e evaluation procedure of the seismic
performance of a highway bridge is divided into three
branches: topological analysis, vulnerability analysis, and
traffic flow analysis [6]. +e study can serve as a tool for the
decision-making of postemergency response management
and seismic retrofit of the highway bridge. Nevertheless,
statistical models often proposed linear techniques that were
assessed by establishing functions [25], which may be dif-
ficult to formulate for structures subjected to large inelastic
deformations [26]. +ese disadvantages can be overcome by
ANNs. ANNs have a good predictability even if all the at-
tributes are mixed together to estimate demand models [11].

Owing to their accuracy, versatility, and robustness,
ANNs have been applied to a variety of problems including
pattern recognition, data mining, and image processing [19].
With the rapid development of artificial intelligence, many
studies estimating fragility based on the ANN method have
begun to emerge [27]. It was used to assess the fragility of
some different bridges [11]. +e multiparameter fragility
methodology helps to generate fragility curves for a specific
skew angle and a set of bridge parameters. However, the
fragility curves are obtained in a complex manner and
cannot be obtained in a few minutes [11]. +e steps are as
follows: (1) estimating the demand based on the ANN, (2)
using the Latin Hypercube Sampling (LHS) method to es-
timate the capacity, and (3) using logistic regression to get
fragility curves. Hence, although the estimation can help the
bridge inspection workers to prioritize their recovery
methods following an earthquake, it cannot help the
emergency rescue work.

+is study presents an approach for the damage as-
sessment of girder bridges and arch bridges considering the

different importance of the features of seismic bridge
damage. Unlike previous studies on the application of ANN
for single or several bridges or bridge components assess-
ment [11], this research explores the use of ANN for esti-
mation of the damage state of most of the bridges in the
entire disaster area. Also, unlike previous studies on the
application of linear regression for bridge seismic assess-
ment [5], this research uses the machine learning techniques
to select features and propose the new model, which can
avoid making assumptions and using empirical formulas
and even can avoid the subjective impact of expert
experience.

+e main contribution of this paper includes the fol-
lowing: (1) considering the importance of features and
applying the RF algorithms as the calculation model, which
provides a different viewpoint for selecting the features as
the input variables; (2) the fact that the damage states of a
large quantity of bridges are obtained through improved
ANNmodels of several deep learning algorithms. It provides
an alternative method for developing the traditional pre-
earthquake maintenance of bridges and decision-making for
postearthquake emergency rescue.

+is study evaluates the importance of the features by
applying the RF model and using the data from the Wen-
chuan earthquake in 2008. +en, the ANN damage evalu-
ation model is processed according to the results of the
previous work on a girder bridge and the arch bridge, re-
spectively. To examine the accuracy and applicability of the
assessment model, this research selects the linear regression
model [5] and 40 bridges in the Tangshan earthquake in
1976. Finally, the future extensions and limitations of the
proposed method are discussed.

2. Data

+e 12 May, 2008, Mw7.9 Wenchuan earthquake, with wide
and significant influence, had great destructive power and
the aftershocks lasted for a long time. After the earthquake,
the China Earthquake Administration dispatched experts to
conduct on-site investigations and set up 4,150 investigation
sites with an investigation area of 500,000 square kilometers
[5]. +e survey data are comprehensive, standardized, de-
tailed, and complete in comparing the data of the Tangshan
earthquake and the Haicheng earthquake. +erefore, they
are suitable for statistical analysis, and this study used the
bridge data of the Wenchuan earthquake.

+e investigation scope of the Wenchuan earthquake
was based on the nationally identified severely affected areas,
the national trunk highways in extremely severe disaster
areas, and all the bridges on some county and township
roads. It covers 10 counties and cities in Sichuan, Shanxi,
and Gansu provinces: Wenchuan County, Beichuan County,
Mianzhu City, Shifang City, Qingchuan County, Mao
County, Anxian County, Dujiangyan City, Pingwu County,
and Pengzhou City, making a total of 47 highways and
national highways. +e survey area covers the intensity as
the VI–XI degree area. +e seismic precautionary intensity
of the bridges in most of the hardest and most severe areas
before the earthquake is VII. A total of 2,154 bridges were
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surveyed: 746 in the VI degree area, 287 in the VII area, 175
in the IX degree area, and 168 in the X and XI areas. Among
them, 1,525 were girder bridges and 590 were arch bridges,
and the remaining bridges were cable-stayed bridges and
suspension bridges. Hence, this paper chose the girder
bridges and arch bridges.

+e investigation is divided into three stages. (1) +e
emergency rushing stage was from 12 May, 2008, to 27 May,
2008. +e characteristic was that it enters the disaster area
for the first time after the earthquake. +e seismic damage
data obtained could best reflect the earthquake damage of
the highway bridge after the earthquake, and the timeliness
was strong. +e scope of investigation was limited to the life
passage leading to the most severely affected areas. Basically,
no equipment was used. Experts assessed the capacity of the
bridge through earthquake damage to meet emergency
traffic demand. (2) +e ensured bridge capacity stage was
from 23 May, 2008, to the end of July 2008. +e competent
transportation department coordinated and arranged this,
and the investigation was extensive and comprehensive,
including all highways and national and provincial trunk
highway bridges in the disaster area. In the investigation, the
instrument was used for comprehensive testing, and the
system’s postearthquake bridge test report was formed. (3)
+e supplementary investigation stage was from August
2008 toMay 2009. On the basis of the survey data and data of
the first two stages of the verification, a supplementary
investigation was conducted on some bridges in the first two
stages, where the earthquake damage investigation was in-
sufficient and the inaccessible areas were not included. At
this stage, some roads, bridges, and municipal bridges in
counties and townships were also investigated. At the same
time, the bridge design data, bridge coordinates, and bridge
axis directions were collected.

Table 1 shows the investigation of the main seismic
damage to the girder bridges and arch bridges. Figure 1
shows the damage pictures of a typical bridge in Wenchuan
County: the Caopo 3rd bridge. +e first picture is before the
earthquake, and the others are after the damage. +e second
picture in the first row presents the seventh span of the
bridge moving 32 cm to the left; the first picture in the
second row shows the rupture of the joint between the left
block and the coping of the pier coping girder. +e crack
developed from the top to the left (the root is cut and
penetrated). +e crack is about 0.7–1.2m, and the width is
about 0.15–0.35m. +e last picture shows that the cone
slopes on both sides of the abutment have local cracking,
some joints fell off, the cone slope sinks as a whole, and the
settlement height is 0.1–0.4m.

3. Features

3.1. Select Features. A crucial problem in seismic damage
estimation projects is whether or not the features are indeed
helpful for the evaluation. +ere are many features influ-
encing the damage of bridges [28–30], for example, the
intensity of seismic activity, the parameters of the bridge,
and the environment around the bridge. Nevertheless, some
features lack sufficient data. +is study selected some factors

as follows: structural types, bridge pier types, foundation
types, bearing types, bridge linear, bridge scales, the type of
site, soil, seismic precautionary intensity, and the practical
intensity of earthquakes. Table 2 presents the sorts of
features.

(I) Different structural types have different reasonable
spans, methods of force transmission, and prin-
ciples of bearing load. Girder bridges are classified
as the simply supported girder bridge, steel girder
bridge (continuous girder bridge), and cantilever
girder bridge in this study. A simply supported
girder bridge has the following characteristics: (1)
the force manners are simple and the method of
force transmission is clear; (2) the deformation of
the bridge cannot produce redistributed stress; and
(3) the bridges are mostly used for small spans. A
continuous girder bridge is suitable for larger
spans and the deformability is poor with negative
moment segments. Arch bridges are classified
according to the material of the arch rings

(II) A bridge pier with larger stiffness is not conducive
to absorbing vibration energy, and diagonal
cracks will occur under seismic conditions [18],
while a bridge pier with smaller stiffness is more
easily deformed than the standard and becomes
unstable. +erefore, the bridge pier, an important
component that transmits the load from the
superstructure to the foundation, has a very
important influence on the bridge damage. +e
piers of the girder bridge are classified as five
types: no pier, masonry solid pier, bent pier,
rectangular thin-wall pier, and single column pier

(III) +e influence of the foundation on the bridge’s
seismic damage is mainly due to the transmission
of force [31]. Compared with the spread foun-
dation, the open caisson foundation, and the
multirow piles foundation, the bent pile foun-
dation and tall platform pile foundation are prone
to broken piles and pile detachment under the
action of horizontal load. In addition, if the girder
falls, it is also possible for it to break the pier or
cover the pile cap. +erefore, the foundation is
vital to the bridge damage

(IV) +e bearings, important devices for transmitting
force from the main beam to the pier, are clas-
sified as rubber bearing, steel bearing, concrete
bearing, and tetrafluoroethylene bearing
according to the material. +e deformation ca-
pacity of the bearing has a certain influence on the
bridge damage, and it is also an important
component in the local seismic scheme [32–34].
For a bridge with bearing, the shock absorption
support is usually used to reduce the impact of the
earthquake on the bridge. +e shock absorption
bearing provides shock absorbers and uses the
damping force generated by the viscosity of the
medium or the elasticity of the rubber. Rubber
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bearing with a strong deformation ability is better
than a concrete bearing with poor deformation
ability. +erefore, the bearing type was also
considered a factor

(V) +e bridge linearity refers to the geometry of
the main beam and the type of intersection
angle with the riverbank. +e internal force
distribution of a skew bridge under external

Table 1: Investigation of main seismic damage to the girder bridges and arch bridges.

Girder
bridge

Superstructure and
bearing

Plane displacement of the girder body, with or without girder falling, with or without potential risk
of girder falling

Impact damage of joint bridges at expansion joints
Cracking of girder body, diaphragm, bridge deck, and hinge joint

Bearing damage, deformation, displacement, hanging in the air, and failure of seismic anchors
Damage of bridge deck pavement and displacement damage of expansion joint

Substructure

Damage and crack to coping, padstone blocks, etc.
Shearing, crushing, cracking, and tilting of the pier column

Impact damage, cracking of the platform, and destruction of the truncated cone slope of the
abutment

Foundation displacement of piers and abutments
Accessory structure

Arch bridge

Superstructure

Whether the main and spandrel arch rings collapse, crack, dislocate, etc.
Whether the vertical and horizontal connection of each arch box and the transverse connection of

the arch ribs are cracked
Whether the deck (girder) support of the girder type abdominal arch bridge is hanging in the air,

displaced, and destroyed
Whether the bridge deck is levelling and whether there is settlement on the arch fill

Whether the side wall is cracked, extraversed, and displaced
Whether the spandrel arch and the cross wall collapse or crack

Substructure

Whether cracks, overturning, collapse, and settlement occur in piers, skewback, and abutments
Cracking of the front wall and side wall of the abutment, and whether the abutment body is

deformed by the earthquake force
Whether the foundation has displacement

Accessory structure

(a) (b) (c)

(d)

Figure 1: +e damage pictures of the Caopo 3rd bridge (seriously damaged; the bridge length is 225 meters).
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force is very complicated, and there are large re-
actions and negative moments in the obtuse angle
region. +ere are large differences and uncoordi-
nated internal forces between the obtuse and acute
angle regions under dynamic loading in defor-
mation and internal force. +is can easily cause
damage to the bridge deck. +erefore, the seismic
performance of a skew bridge is much worse than
that of an orthogonal bridge

(VI) Due to the large mass, a bridge with a larger span
has greater inertia force under the action of seismic
acceleration. +e lateral load is larger, and lateral
slip occurs more easily. In addition, the mid-span
deflection of a bridge with a larger span is also large
under the vertical load, which makes it easy for the
main beam to crack or even break. Hence, the
bridge scale is vital to seismic damage [11]

(VII) Site soil refers to the soil layer where the bridge is
located. It can be classified as four categories. Site
soil affects the bearing capacity of the foundation
and the foundation failure. +e failure from the
class I site soil to the class IV site soil gradually
increased under the same seismic intensity. Ad-
ditionally, the foundation failure means that the
load from the superstructure is difficult to bear on
the foundation, which often causes serious
damage to the bridge. +erefore, the type of site
soil is also an important factor affecting the
earthquake damage of the bridge

(VIII) +e intensity scale consists of a series of certain key
responses such as people awakening, the move-
ment of furniture, damage to chimneys, and finally
total destruction. +e precautionary intensity re-
fers to the highest intensity of earthquakes in a

Table 2: Features table of the girder bridge and the arch bridge (L is the length of the bridge [35]).

Features
Classification

Girder bridge Arch bridge

Structural types
Simply supported girder bridge Masonry arch bridge

Continuous girder bridge (girder bridge of steel construction) Steel arch bridge
Cantilever girder bridge Combined arch bridge

Bridge pier types

No pier Masonry solid pierMasonry solid pier
Bent pier Other types of piersRectangular thin-wall pier

Single column pier No pierOther types of piers

Foundation types Shallow foundation
Deep foundation

Bearing types

Laminated rubber bearings
Basin rubber bearings

Tetrafluoroethylene bearings
Other types of bearing

No bearing

Bridge linear
Linear orthogonal bridge (curve bridge with large curve radius)

Curve orthogonal bridge
Skew bridge

Bridge scales

Small bridge (8≤ L≤ 30)
Medium bridge (30< L< 100)
Large bridge (100≤ L≤ 100)
Super large bridges (L> 1000)

+e type of site soil

I
II
III
IV

Seismic precautionary intensity (degree)

VI
VII
VIII
IX
VI
VII
VIII

Practical intensity (degree)
IX
X
XI
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certain area for many years and is the main in-
dicator for earthquake resistance in bridge con-
struction. Seismic precautionary intensity is an
indicator that comprehensively reflects the level of
bridge construction and seismic performance. It
involves the effects of seismic factors such as
seismic checking, layout, and local seismic com-
ponents. +ese factors cannot be divided in detail,
but they have a certain degree of influence on the
seismic performance of the bridge

(IX) +e practical seismic intensity is an important
factor affecting the degree of bridge damage. +is
means the designed seismic intensity and is not
associated with the design ground acceleration or
peak ground acceleration (PGA) of an earth-
quake. Obviously, from the overall trend, the
higher the seismic intensity under other condi-
tions, the more serious the damage of the bridge.
Although the results also include other factors,
the degree of intensity and damage is positively
correlated to the overall trend. In addition, the
earthquake damage assessment must give the
intensity. +erefore, the seismic intensity should
be used as a factor

3.2. Default Processing. +ere is default value in the data set.
+is study chose the K-Nearest Neighbor (KNN) algorithm
to treat the default value. KNN, a simple machine learning
algorithm, is mainly used to solve classification problems. In
the process of assuming a default value, it is necessary to
calculate the Euclidean distance (equation (1)) of all the data
sets for each predicted object. +e Euclidean distance can
describe the true distance (physical distance) of two points in
n-dimensional space. +ere are two n-dimensional vectors
x � (x1, x2, x3, . . . , xn) and y � (y1, y2, y3, . . . , yn), where x
is the default value and y is the data with complete features.
+e Euclidean distances of x and y are expressed as

d(x, y) �

�����������



n

i�1
xi − yi( 

2




. (1)

+e results are sorted, and the K points closest to the
predicted data are selected to form the decision set C. S is the
default value set. We fill in the default value by averaging

x �
1
K



K

k�1

S

C⎛⎝ ⎞⎠. (2)

3.3. Importance of Factors. +e damage states were divided
into five states as per previous studies [6, 36] (Table 3): no
damage, slightly damaged, moderately damaged, seriously
damaged, and completely damaged. +ere are many seismic
damage state assessment methods; for example, expert-
based/judgmental, empirical, experimental, analytical, and
hybrid methods. +e expert-based and empirical methods
do not need the demand/capacity ratio and ductility

deformation ratio. +e damage states of this study are based
on the in situ inspections and can obtain much information
about bridges quickly. +e RF algorithm was proposed by
Breiman [37] and had been proven to achieve suitable results
in the application of feature selection [38]. +e RF algorithm
was chosen as the classifier to assess the importance of nine
features, and the Classification and Regression Tree (CART)
algorithm was applied to classify the data [14]. CART is a
technique that is used in supervised learning for solving
classification and regression tasks; a CART model learns
simple decision rules that are inferred from the features by
using a tree-like graph to demonstrate the course of actions.
Each branch of a decision tree represents a possible decision,
occurrence, or reaction in terms of statistical probability.+e
Gini index (GIm) based feature selection can achieve both
dimension reduction and the elimination of noise from the
classification task [39]. +e RF model was processed along
with the Gini index in the Spyder module, which is a sci-
entific Python development environment. +e number of
trees was classified to be 82 according to the running tests.
+e steps of the RF model are as follows: find the contri-
bution of each feature on each tree in the RF, take an average,
and finally compare the contribution between the features.
+e contribution indicates the importance of a factor. +is
algorithm uses VIM to represent the variable importance
measures and GI to represent the Gini index. Suppose there
are m features X1, X2, X3, . . . , Xc. +en, each feature Xj is
calculated. +e Gini index score is VIM

(Gini)
jm , which is the

average change of the j-th feature’s node splitting impurity
in all RF decision trees.GIm is expressed as

GIm � 

|K|

k�1


k′≠k
PmkPmk′ � 1 − 

|K|

k�1
P
2
mk, (3)

where m is the number of the features (nodes), K is the
number of classifiers, and pmk is the proportion of k in m.
+e change in GIm before and after m is expressed as

VIM
(Gini)
jm � GIm − GIl − GIr, (4)

where VIM
(Gini)
jm is the change in GIm and GIl and GIr

indicate the Gini index of the two new nodes after the
branch, respectively. If the node where the feature j appears
in the decision tree is in the set M, then the importance
VIM

(Gini)
ij of the feature j at the ith number is

VIM
(Gini)
ij � 

m∈M
VIM

(Gini)
ij . (5)

If there are n trees of the RF model, the importance value
of the feature j, VIM

(Gini)
j , is expressed as

VIM
(Gini)
j � 

n

i�1
VIM

(Gini)
ij . (6)

Finally, all the importance scores normalized are
obtained:

VIMj �
VIMj


c
i�1VIMi

. (7)
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+e average accuracy (mean scores) of the classification
of the random forest algorithm is 0.8304, and the standard
deviation of random forest classifier is 0.0124. +is accu-
racy is greatly improved compared with the classification
accuracy of the logistic regression model, 0.7879, with the
same parameters. +e importance of different factors in
girder bridge and arch bridge seismic damage assessment is
presented in Figure 2. +e range is between 0.0 (min) and
1.0 (max) for the two types of bridges. +is is normalized
and the sum of all features equals 1.0. During the entire RF
model experiments, three experiments were selected ran-
domly. +e order of the features of the three experiments is
the same, and it can be seen that the results of each time are
almost the same. Figure 2 also shows the results of three
experiments.+e I–IX values on the abscissa represent nine
features, and the ordinate is the importance value of the
features. +is proves that the RF algorithm can obtain a
suitable evaluation of the problem of feature correlation [15].

4. Assessment Model

Seven features were selected as the variables of the girder
bridge and arch bridge assessment models, respectively
(Table 4). +e choice of the input parameters depended on
the importance of the priority, preferring more important
parameters. +e importances of structural types and bridge
linearity were 0.014 and 0.027 of the girder bridge model.
+e importances of the foundation types and bridge liners
were 0.004 and 0.031 for the arch bridge. +e features
mentioned above were not selected because of their low
importance.

+eWenchuan earthquake had several characteristics that
were higher than other huge earthquakes: intensity, scope of
impact, and level of data collection. +erefore, there were
1525 girder bridges and 590 arch bridges of the Wenchuan
earthquake in 2008 selected as the data set. +e samples were
preprocessed by the openpyxl function of the Anaconda
Navigator environment. In the girder bridges model, there
were 1300 bridges as the training set and 225 bridges as the
testing set. In the arch bridges model, there were 400 bridges
as the training set and 190 bridges as the testing set.

+e ANN consists of an input layer, multiple hidden
layers, and an output layer. Once the input data are given to
the ANN, the output values are computed sequentially along

the layers of the network. At each layer, the input vector
comprising the output values of each unit in the layer below
is multiplied by the weight vector for each unit in the current
layer to produce the weighted sum. +en, a nonlinear
function, such as a sigmoid, hyperbolic tangent, or rectified
linear unit (ReLU), is applied to the weighted sum to
compute the output values of the layer. +e computation in
each layer transforms the representations in the layer below
into slightly more abstract representations. Based on the
types of layers used in ANN and the corresponding learning
method, ANN can be classified into multilayer perceptrons,
which are based on the feed-forward neural network
(FFNN), Stacked AutoEncoders (SAEs), or deep belief
networks. For an intricate problem, the method can solve the
problem well when it has 5 to 20 layers [40]. A five-layer
ANN was decided due to the data set of the Wenchuan
earthquake. +e number of neurons in the middle layers was
selected to obtain suitable and satisfactory results [41]. In
order to obtain these, the running process started from 10, 3,
and 2, respectively. +e processes were repeated for more
neurons. +rough training, it was finally decided to take 40,
20, and 5 neurons as the number of neurons in the middle
layers for decreasing the difficulty and training time of the
method. +ere are several ways of controlling the training of
ANN to prevent overfitting in the training phase. +e most
common form of regularization, L2 regularization, was
chosen. Using the gradient descent parameter update, L2
regularization signifies that every weight will be decayed
linearly towards zero.+e hyperparameters were acquired as
presented in Table 5.

+emoving average model, adaptive moment estimation
(Adam), and small batch gradient descent were selected as
the optimization algorithms of the ANN model. +e Adam
method addressed problems in large data sets and high-
dimensional parameter spaces [42]. It could overcome the
shortcomings of random gradient descent and maintain a
single learning rate to update ownership, and the learning
rate did not change during the training process. It designed
an independent adaptive learning rate for the parameters.
+e mini-batch gradient descent can overcome the short-
comings of batch gradient descent and random gradient
descent [43] by dividing the data into some training pools
and update the parameters according to the pool. +erefore,
choosing the appropriate training pool size can achieve the

Table 3: +e characteristics of five damage states.

Damage degrees Characteristics

No damage Load-bearing and non-load-bearing components are intact, or individual load-bearing components are slightly
damaged and can be used without repair

Slightly damaged Visible cracks appear in individual load-bearing components; non-load-bearing components have obvious cracks;
can be used without repair or repair

Moderately
damaged

Most load-bearing members have slight cracks; some have obvious cracks; some nonbearing members are seriously
damaged; can be used after general repair

Seriously damaged Most of the load-bearing members are seriously damaged; nonbearing members are partially collapsed; the repair is
difficult

Completely
damaged

Most of the load-bearing components are severely damaged; the structure tends to collapse or have collapsed; no
repair is possible, and there is a need for reconstruction
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purpose of algorithm optimization, less computation, faster
calculation, improved proficiency, and accelerated conver-
gence [44] and cannot effectively control the data of tur-
bulence and gradient descent. +e number of samples of this
study was no more than 2000. +erefore, 16 bridges were
decided upon for the experimental pool.+emoving average
model is designed to avoid mutations as the process of
parameters updating [45]. +is can improve the accuracy of

the ANN model on the test set to a certain extent. +is is
achieved by the exponential moving average function in the
TensorFlow framework [46], which maintains a shadow
variable for each variable. +e initial value of the shadow
variable is the initial value of the corresponding variable, and
the values of the shadow variables (w and b) are updated.+e
decay rate determines the update speed of the model. +e
greater the attenuation, the greater the proportion of shadow
variables.

+e TensorFlow framework [46] was used for the model.
+e forward propagation, structure of the network, and
initial weights were decided. +e normal distribution and
the ReLU function [40] were chosen as the weight generating
function and the activation function, respectively. +e ReLU
function was applied in the second and third layers. It is
slightly faster to compute than other activation functions,
and gradient descent does not get stuck on plateaus as much
when compared to the logistic function or the hyperbolic
tangent function that usually saturates at 1. +e fourth layer
and the fifth layer were processed as the linear regression.
+e Adam technique was chosen as the back-propagation
method. +e mean square error loss function was chosen
because of the function usually being applied with the ReLU
activation function.

5. Results

+e results of the model were compared with those of
the linear regression model based on the Wenchuan

Table 4: Selected features of the girder bridge and arch bridge.

Girder bridge Arch bridge
Practical intensity of
earthquakes

Practical intensity of
earthquakes

Seismic precautionary
intensity

Seismic precautionary
intensity

+e type of site soil +e type of site soil
Bridge pier types Bridge pier types
Bridge scales Bridge scales
Bearing types Bearing types
Foundation types Structural types
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Figure 2: Processing of the girder bridge and arch bridge in random forest models: (a) girder bridge; (b) arch bridge.

Table 5: Hyperparameters of the girder bridge and arch bridge
models.

Hyper
parameters

Mini-
batch

Basic
learning
rate

Decay rate
of the
learning
rate

L2

Decay rate
of the
moving
average

Number 16 0.8 0.98 0.0001 0.99
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earthquake in 2008, and equation (8) presents the re-
gression equation (5):

lnY � ln c
n

i,j�1
a

Xij

ij
⎞⎠ � ln c + 

n

i,j�1
Xij ln aij,

⎛⎝ (8)

where Y is the damage index of the bridges, corresponding to
five damage levels, separately. +e indexes are as follows
from no damage to completely damaged: 0.00≤Y< 0.10,
0.10≤Y< 0.30, 0.30≤Y< 0.55, 0.55≤Y< 0.85, and
0.85≤Y< 1.00; c is the constant coefficient; and aij are the
regression coefficients in the j-th subclass of the i-th class in
the identified classification via Statistical Product and Ser-
vice Solutions software (SPSS). Because of the collinearity
problem between the independent variables, Yu selected one
of each feature to set an initial coefficient and then sub-
tracted the coefficient from the dependent variable [5]; xij is
the value of the parameter of the j-th subclass in the i-th class
of the bridge, the bridge meets the set parameter value of 1,
and the nonconformity is 0. Table 6 presents the comparative
results of the girder bridges and arch bridges between the
ANN model and the linear regression model. In actual
emergency rescue, it is acceptable to have a difference be-
tween the actual value and the predicted value (one level).
However, if the predicted result differs from the actual value
by two levels or even more than two levels, it will affect the
decision of the relevant government institution. +e results
of the study show that the optimization algorithms have
good performance in terms of improving running time. +e
precision of the ANN models (92.3% and 88.5%) is far
greater than those in the linear regressionmodels (71.9% and
71.5%) of an equal level. Similarly, the proportion of one
level difference (5.6% and 8.2%) is much smaller than the
linear model (26.4% and 27.6%). +e prediction precision of
the girder bridge is higher than the arch bridge for the ANN
models, and the results of the two types of bridges of the
linear regression model are similar.

+ere were 40 bridges including girder bridges and arch
bridges in the Tangshan earthquake in 1976 which were
chosen as the validation set. +e type of site soil was deleted
for the occurrence of sand liquefaction phenomena. Since
this earthquake happened more than 40 years ago, the
specification has been updated for generations. +erefore,
the seismic precautionary intensity and the bridge scale are
deleted because they are not applicable. Table 7 shows the
data of 40 bridges and the prediction results. Among them,
the results of a total of nine bridges are different from the
true value. However, all exhibit one-level difference. +e
result of the four bridges is that they were seriously damaged,
but the true values were moderately damaged; the other five
bridges resulted to be slightly damaged, with the true value
of the four bridges being moderately damaged and the other
being no damage. +e probability that the damage of the
simply supported girder bridge is different from the true
value is 5/19 (23.3%), that of the continuous girder bridge is
2/5 (40.0%), and the arch bridge is 2/16 (12.5%).

6. Discussions

6.1. Importance of Different Features. In this study, the
bridge data of theWenchuan earthquake were used to detect
the importance of different influencing factors of the two
bridges applying the random forest algorithm. When ana-
lyzing a single bridge or its components, it is possible to
analyze the importance of the influencing factors and take all
factors into account to get better results [19]. +e main
purpose of this study is to analyze a large number of bridges
in a certain area, so it is meaningful to conduct feature
importance analysis. +is fully proved the importance of the
practical intensity of earthquakes, seismic precautionary
intensity, the type of site soil, bridge pier types, bridge scales,
and bearing types of the girder bridges and arch bridges.+e
importance of the six factors is more than 90% for the two
bridges. +erefore, the six features mentioned above were
first as the input variables. +en, the seventh feature for each
of the two bridges will be discussed. +e orders of impor-
tance of the characteristics of the two bridges are similar.
+is is because, even though the type and construction
process of the bridge are different, the design principles of
the bridge are the same, the components are similar, and the
earthquake is the same, so the results are similar.

+e foundation type is ranked seventh for the girder
bridge and is ranked ninth for the arch bridge. +e foun-
dation type was used for the girder bridge model but not for
the arch bridge model because the feature importance is 5%
in the former and 0.4% in the latter. Besides, the results
accord with the experience of some researchers. Arch
structures are very sensitive to the deformations and the
strength of foundations, especially in the case of earthquake
(horizontal direction) load. +e foundation type is vital to
the seismic damage of an arch bridge. However, the result of
the RF model shows that this is not important, which is the
shortcoming of the model. +ere are many reasons for this
phenomenon: (1) the more classes are distinguished by a
feature, the more significant the feature is [15]. +ere are
only two types of foundation; (2) the RFmodel is a black box,
and the results might be different from the experience of
experts, which is one of the biggest flaws of themodel; (3) the
results obtained by this model are of relative importance
value and are the result of several feature comparisons and
not the importance of independence. +e structural type is

Table 6: +e comparison between the ANN models and the linear
regression models of the girder bridges and arch bridges (%). +e
results demonstrate the difference between the prediction value and
the actual value of level zero, level one, and the other levels.

Differences
ANN model Linear regression model

Girder
bridges

Arch
bridges

Girder
bridges

Arch
bridges

Equal 92.3 88.5 71.9 71.5
One level 5.6 8.2 26.4 27.6
≥two levels 2.1 3.3 1.7 0.9
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ranked ninth for the girder bridge (1%) and is ranked fifth
for the arch bridge (6%). +erefore, the structural type was
the factor for the arch bridge model but not for the girder
bridge model. In summary, the features selected by the RF
experiments are consistent with those used by other scholars
to study the earthquake damage of bridges [11]. +ere were
seven features for the two types of bridges, respectively. It
can also be seen from these results that it is still meaningful
to do this work. If the importance of these factors is not
analyzed, less important factors are taken into account. +is
will greatly affect the emergency rescue time, thus increasing
economic losses and casualties. At the same time, this study
only removed two factors that have less impact on the two
bridges. In practical applications, if a bridge in an earthquake
has some factors that cannot be obtained due to some
reasons, such as age, data loss, and other human factors, the

corresponding influencing factors can be deleted and the
model can be modified in a short time.

+e RF model performs better than the other ensemble
algorithms [17].+e reason for this may be that it works better
with categorical features than the other methods. Also, since it
uses implicit feature selection, overfitting was reduced sig-
nificantly. Using logistic regression is a convenient probability
score for observations. However, it does not perform well
when the feature space is large, and it does not handle a large
number of categorical features well. It also solely relies on
transformations for nonlinear features. Using a Support
Vector Machine (SVM) model, we would be able to handle a
large feature space with nonlinear feature interactions without
relying on the entire dataset. However, this is not very good
for a large number of observations. Nevertheless, it can
sometimes be difficult to find an appropriate kernel.

Table 7: +e data of the 40 bridges and the comparison of the true value and prediction results by the ANN model for the Tangshan
earthquake in 1976 (the arch bridges are specially marked and the girder bridges are not marked. “Intensity” means the practical intensity).

Structural type Bridge pier Foundation Bearing Intensity ANN True value
1 Simply supported Bent Deep Other X Seriously Moderately
2 Simply supported Masonary solid Deep Other X Seriously Moderately
3 Simply supported Masonary solid Deep Other X Seriously Moderately
4 Simply supported +in-wall Deep Other X Seriously Seriously
5 Continuous Bent Deep Other IX Seriously Moderately
6 Simply supported Masonary solid Deep Other IX Moderately Moderately
7 Simply supported Bent Deep Other IX Moderately Moderately
8 Continuous Bent Deep Other IX Moderately Moderately
9 Continuous Bent Deep Other VIII Moderately Moderately
10 Continuous Bent Deep Other VIII Seriously Seriously
11 Continuous Bent Deep Other VIII Moderately Moderately
12 Continuous Bent Deep Other VIII Moderately Moderately
13 Continuous Bent Deep Other VIII Moderately Moderately
14 Simply supported Bent Deep Other VIII Moderately Moderately
15 Simply supported Bent Deep Other VIII Moderately Moderately
16 Continuous Bent Deep Other VIII Moderately Moderately
17 Continuous Bent Deep Other VIII Moderately Moderately
18 Continuous Bent Deep Other VIII Seriously Seriously
19 Continuous Masonary solid Deep Other VIII Moderately Moderately
20 Simply supported Masonary solid Deep Other VIII Moderately Moderately
21 Simply supported Masonary solid Deep Other VIII Moderately Moderately
22 Continuous Bent Deep Other VIII Slightly Slightly
23 Simply supported Bent Deep Other VII Slightly Moderately
24 Simply supported Bent Deep Other VII Slightly No
25 Simply supported Bent Deep Other VII Slightly No
26 Simply supported Bent Deep Other VII Moderately Moderately
27 Simply supported Bent Deep Other VII Moderately Moderately
28 Simply supported Bent Deep Other VII Slightly Slightly
29 Continuous Bent Deep Other VII Slightly Slightly
30 Simply supported Bent Deep Other VII Slightly Slightly
31 Continuous Bent Deep Other VII Slightly Slightly
32 Simply supported Bent Deep Other VII Slightly Moderately
33 Continuous Bent Deep Other VII Slightly Slightly
34 Simply supported Bent Deep Other VII No No
35 Continuous Bent Deep Other VII Slightly No
36 Deck type (arch) No Deep No VIII Slightly Slightly
37 Deck type (arch) No Deep No VIII Slightly Moderately
38 Deck type (arch) Bent Deep No VIII Slightly Slightly
39 Deck type (arch) No Deep No VIII Slightly Moderately
40 Deck type (arch) No Deep No VIII Slightly Slightly
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6.2. Assessment Model of Bridge Damage. +is paper de-
veloped a bridge seismic damage state evaluation method
based on previous work. +e accuracy is the sum of the
predicted values, and the true values differ by one or the
same probability. +e accuracy of theWenchuan earthquake
test is as high as 97.9%, while the accuracy of the Tangshan
earthquake test is slightly reduced at 95%. +e data in the
training set come from the Wenchuan earthquake, so the
expression on the Wenchuan earthquake test set is better. In
general, this model can be used in the assessment of bridge
damage in other areas, and the accuracy is acceptable. +e
training effect on the arch bridge is not as good as that of the
girder bridge because the training set of the arch bridge is
less than the girder bridge. When the predicted value is
inconsistent with the true value, there is more chance of
moderate damage because it occurs most frequently in the
entire training set.+e results of the assessment of the IX and
X degrees of the practical intensity of earthquakes are always
lower than the actual damage. An earthquake with a
practical intensity greater than the VIII degree has a greater
destructive power, and the factors affecting bridge damage
are more complicated, such as earthquake secondary di-
sasters, the bridge being been damaged before the earth-
quake, geological impact, and scouring effect [5]. Even if
these factors have a certain impact on the bridge damage,
the model does not consider these factors. +is is because
these factors are very complicated. Secondary disasters are
difficult to obtain in the few minutes after the earthquake,
and the current technology cannot accurately predict this
in advance. Bridges may be eroded before the earthquake,
such as by construction defects, or they are sometimes not
repaired after damage from natural disasters. +ese con-
ditions can only rely on daily monitoring and relevant
departments should monitor the status of important
bridges in time. Geological factors cannot be obtained in a
short period of time, and some of themmay even need to be
investigated after the earthquake. +e scouring effect is not
considered in this study, which is one of the reasons leading
to the reduction of the accuracy of the model. Erosion may
cause reinforcement corrosion, spalling of concrete, and
damage to foundations and platforms. However, not all the
samples selected in this study were affected by scouring, so
they were not considered. Hence, these factors were
neglected.

+e accuracy of the two bridges in the prediction of the
equal level of failure and phase difference is much higher
than that of the linear model [5]. +e accuracy of being two
levels greater or equal level is slightly lower than the linear
model, but both are between 0% and 4%, which is within the
acceptable range in emergency work [5]. In summary, the
performance of the ANN model is better than the linear
model. +e reason for the small difference in accuracy be-
tween the two bridges of the linear model is that the re-
gression technique initially has some assumptions that
increase the accuracy. +e ANN model does not require any
assumptions throughout the process of establishment [47].
+e results of the linear model must be fully calculated
before they can be obtained. +e ANN model can improve
the training speed by setting the training rounds and steps

according to the accuracy and the requirements of the
specific situation, because it is more convenient and faster
than the linear model.

In the practical application of the whole method, there are
still some problems and challenges. (1) Since it is a rapid
assessment, in addition to the speed of the model calculation,
it is necessary to collect data faster. +is is very difficult in
practice and requires extensive experience from experts,
scholars, and engineers. (2) When a bridge is less damaged,
this method needs to be combined with experts and expe-
rienced decision-makers in order to improve the performance
of the ANN model. (3) In practice, it is necessary to combine
this method with the road to conducting an overall assess-
ment of the road network to obtain an optimal rescue path.

6.3. Main Contributions and Significance. +e method has
some significance in engineering and science. +e main
contributions and significance of this study are as follows:

(1) +e proposed method selects suitable and easily
available input features based on the RF ensemble
model rather than choosing features directly
according to expert experiences [5] or statistical
methods [11].

(2) +is study uses some optimization algorithms to
improve the performance of the ANNmodel, and the
accuracy, rationality, and speed are better than the
traditional back-propagation neural network [40].

(3) +is study shows that an estimation of the damage
states of many bridges in a few minutes can be
achieved, while previous studies usually evaluate the
performance of one bridge [21, 22] or some com-
ponents [19].

(4) +is method can be used under both preearthquake
and postearthquake conditions. When it is used
before an earthquake, the practical intensity of
earthquakes can be obtained according to the his-
torical maximum earthquake or seismological
predictions. When the government conducts di-
saster prevention and mitigation planning, the
formulation of relevant laws and regulations, bridge
seismic damage assessment can be carried out. +is
can help the organization to judge the damage of
bridges in the whole region on a macroscopic basis,
to plan and establish the lifeline facilities in ad-
vance, and to prevent the traffic capacity of the
traffic network from being affected by the damage of
the bridge after the earthquake. When evaluating
after the earthquake, it is possible to quickly assess
the damage of the bridge in the entire earthquake
zone and select the optimal path for rescue to save
valuable rescue time due to the impassibility of the
bridge.

7. Conclusions

+e intention of this research is to propose a new model using
the RF algorithm and ANNmethod for the evaluation of bridge
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damage states. +e features of girder bridges and arch bridges
are assessed using the RF algorithm. +e practical intensity of
earthquakes, seismic precautionary intensity, type of site, soil,
bridge pier type, and bridge scales are very important to the
damage of the two bridges. +e bearing types contribute more
than the foundation types of the girder bridge, and the opposite
is presented for the arch bridge. +e different features are se-
lected as the input variables in the ANN model through the
results of the assessment of the feature importance. +e output
variables are the five damage states.

+e results show that the RF model has good stability and
accuracy, the accuracy and calculation speed of the ANNmodel
are better than the linear model, and the model still performs
well for other earthquakes. +e proposed method of this study
can serve as a tool for disaster prevention and mitigation
planning, daily bridge maintenance inspections, and decision-
making for postearthquake emergency response projects.

+e limitations and future works of the method are as
follows. (1) +ere are only two types of bridges in the study:
girder bridges and arch bridges. Other bridges should be
further investigated to make the method more applicable,
such as suspension bridges and cable-stayed bridges. (2)
Some features are neglected for different reasons, which will
affect the applicability and accuracy of the method. +e
features ought to be further expanded upon to meet engi-
neering needs. (3) +e data come only from Wenchuan
earthquake and Tangshan earthquake. +e existing bridges
in the two earthquakes were used for many years, and the
performance deterioration of the materials due to corro-
sion and fatigue would decrease the load-bearing capacity
and the ductility of the structures, consequently reducing
the seismic performance and affecting the damage analysis
results of the bridges. +is issue should also be investigated
in the future to expand the available data. (4) +e RF model
is a black box operation and will be influenced by the data,
which might reduce the accuracy of the importance value.
+is issue also can be overcome by expanding the data set in
the future. +e model also can be improved by acting on
hyperparameters or changing its architecture. For a more
comprehensive analysis, additional study is needed to
extend the earthquake data and determine suitable features
of bridge damage.
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Rubberized concrete (RC) has attracted more attention these years as it is an economical and environmental-friendly construction
material. Normally, the uniaxial compressive strength (UCS) of RC needs to be evaluated before application. In this study, an
evolutionary random forest model (BRF) combining random forest (RF) and beetle antennae search (BAS) algorithms was proposed,
which can be used for establishing the relationship between UCS of RC and its key variables. A total number of 138 cases were
collected from the literature to develop and validate the BRF model. -e results showed that the BAS can tune the RF effectively, and
therefore, the hyperparameters of RF were obtained. -e proposed BRF model can accurately predict the UCS of RC with a high
correlation coefficient (0.96). Furthermore, the variable importance was determined, and the results showed that the age of RC is the
most significant variable, followed by water-cement ratio, fine rubber aggregate, coarse rubber aggregate, and coarse aggregate. -is
study provides a new method to access the strength of RC and can efficiently guide the design of RC in practice.

1. Introduction

Concrete has been themost widely used constructionmaterial
in civil engineering, and its demand still increases quickly due
to the rapid growth in urbanization and industrialization.
Reducing costs and maximizing the strength and durability of
concrete are quite challenging issues [1]. Hence, recycled
aggregate concrete (RAC) containing some recycling mate-
rials, such as plastic materials [2, 3], construction and de-
molition (C&D) wastes [4, 5], and waste tire rubber [6], has
been a hot research area. Given the rapid growth of tire rubber
waste and its harmful effect on the environment, using rubber
as a substitute in concrete not only contributes to economic
growth but also benefits the environment [7]. Considering its
ductility and strain behavior, rubber is normally utilized as
fine aggregates (FAs) and coarse aggregates (CAs) in concrete,
and therefore, the new cementitious composites, namely,
rubberized concrete (RC), can be applied in civil engineering.

RC has some special advantages such as reducing CO2
emissions and decreasing construction costs, and therefore, it

attracts many concerns of scholars recently [8–11]. To evaluate
the applicability of RC, some mechanical properties including
compressive strength and elastic modulus have been studied
[12–15]. Moreover, the uniaxial compressive strength (UCS) is
the key indicator that has been commonly used for assessing
the strength property of RC. Normally, with the increase in the
content of rubber in RC, the compressive strength decreases.
Some models considering the laboratory tests or compiled
databases of previous studies have been proposed to predict
the UCS of RC [16–18]. However, due to the limitations of
input parameters and the small number of obtained results,
these models are not generalizable and not convenient for
application. Consequently, systematical investigations are
necessary to evaluate the compressive strength of RC by more
economic and efficient techniques as per a compressive da-
tabase including various input parameters.

Nowadays, machine learning methods are considerably
used for the prediction of the mechanical properties of
cementitious materials [19–21]. -e estimation of the me-
chanical strength of RAC has also been considered. For
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example, the multilinear and nonlinear regression models
were proposed and used for evaluating the UCS of RAC [22].
-e artificial neural network (ANN) methods were applied
to assess the strength of RAC [23–25]. Genetic programming
(GA) methods were also introduced for nonlinear regression
in predicting mechanical properties of RAC [26, 27].
However, to the authors’ knowledge, there were no reports
of the prediction of RC by artificial intelligence approaches.
In addition, though the mentioned machine learning al-
gorithms (ANN, GA, etc.) were used for prediction in
concrete, they still had some limitations such as lower ef-
ficiency, time-consuming, and indefinite structures. -ere-
fore, more robust and simple machine learning models need
to be proposed and utilized in predicting the compressive
strength of RC. Nowadays, the random forest (RF) approach
has been employed in predicting the mechanical parameters
of concrete due to its excellent performance on nonlinear
regression and classification [28, 29]. However, no relative
studies to date used RF to predict the strength of RC. It
should be pointed out that some hyperparameters still need
to be optimized to reach its best predictive ability. In this
paper, a high-efficiency global optimization algorithm called
the beetle antennae search (BAS) algorithm was applied to
obtain the best parameters of RF [30].

-erefore, a robust machine learning technique (evolved
random forest, namely, BRF) was proposed for the evalu-
ation of the UCS of RC. Several contributions to the liter-
ature are as follows:

(1) -e random forest (RF) and beetle antennae search
(BAS) algorithms were combined to form the BRF
model

(2) -e strength of rubberized concrete (RC) was, for the
first time, predicted and analyzed considering 9 key
influencing variables

(3) -e variable importance that affected the UCS of RC
was first revealed

-e proposed method can be a fast tool for estimating
the strength of RC and efficiently guide the design and
application of RC in practice.

2. Materials and Methods

2.1. Model of Evolved Random Forest (BRF). As mentioned
above, the BRF is the combination of RF and BAS, in which
the RF was applied to obtain the nonlinear relationship in
datasets, while the BAS was used for hyperparameter tuning
of RF. In this part, the RF and BASwere introduced as follows.

2.1.1. Random Forest (RF). Random forest is a classification
algorithm that employs an ensemble of classification trees,
each of which is established by applying a bootstrap sample
of the data [31]. For tree building, the variables are selected
randomly as the candidate set of variables at each split. -e
other way is to use bagging which can combine unstable
learners successfully. -e random forest has outstanding
performance in classification tasks such as strong robustness
in terms of large feature sets, incorporation of interactions

among predictor variables, and high quality and free
implementations [32]. -e diagram of the structure of RF is
shown in Figure 1. -is method has been widely used for
dealing with the questions of classification and regression in
civil engineering.

2.1.2. Beetle Antennae Search (BAS). BAS algorithm is
proposed recently, which can be efficiently used for opti-
mizing the global problems and has been used for selecting
the optimum parameters of algorithms such as BPNN and
SVM [33, 34]. It simulates the behavior of beetles that utilize
two antennae to explore nearby areas randomly and turn to a
higher concentration of odor. -e flowchart of beetle an-
tennae search algorithms is depicted in Figure 2.

2.2. Performance Validation and Evaluation Methods. In
this paper, the proposed model was trained and validated on
the 70% dataset and tested on the other 30% dataset [21].
During the training and testing processes, all data were split
randomly. In addition, the predictive effect on the dataset
was assessed by the correlation coefficient (R) and root-
mean-square error (RMSE), which were widely used in the
previous literature. -e relevant equations are as follows:

R �


N
i�1 y∗i − y∗(  yi − y( 

�������������


N
i�1 y∗i − y∗( 

2
 ������������


N
i�1 yi − y( 

2
 ,

RMSE �

��������������

1
N



N

i�1
y
∗
i − yi( 

2




,

(1)

where N denotes the numbers in the collected dataset; y∗i
and yi are the expected values and real values, respectively;
and y and y∗ indicate the mean predicted values and mean
actual values, respectively.

Furthermore, to minimalize the bias, a 10-fold cross-
validation method was introduced [35]. Specifically, the
samples in the training dataset were divided into 10 subsets.
-en one of the 10 subsets was selected for validating the
overall performance of the proposed model, while the other
9 subsets were applied to train. -is process would be re-
peated for 10 times.

2.3.Procedures ofHyperparameterTuning. To obtain the best
structure of RF, the hyperparameter tuning is necessary. In
this paper, two key parameters (i.e., the number of the trees
(tree_num) and the minimum required samples at a leaf
node (min_sample_leaf) in RF) were tuned by BAS. By the
described 10-folder cross-validationmethod, the 9 subsets as
training sets were used for searching the ideal hyper-
parameters of RF by BAS for 50 times.-e smallest RMSE in
terms of the validation set can be chosen after 50 iterations,
which represents the best RF model in this fold. -erefore,
the best RF model and its corresponding optimum hyper-
parameters (tree_num and min_sample_leaf) were chosen
after 10-folds. -e performance of the RF model should be
verified by evaluating the test set due to the possibility of
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overfitting problems. -e flowchart of hyperparameter
tuning of RF by BAS in training and testing is shown in
Figure 3.

2.4. Dataset Description. -e dataset of RC was collected
from the literature [13, 15, 18, 36–38], which was used for
establishing and validating the BRF model for strength
prediction. A total number of 138 valid samples with 9 key
influencing variables were assembled in this study.
Generally, depending on the different sizes of rubber, the
crumb rubber is used for replacing the fine aggregate (FA)
in concrete, while the tire chips are used for replacing

coarse aggregate (CA). -e compressive strength nor-
mally decreased with different rates by replacing various
contents of rubber and different rubber types. -erefore, it
is necessary to distinguish the rubber into two types in RC,
i.e., fine rubber aggregate (FRA) and coarse rubber ag-
gregate (CRA). Moreover, the influencing variables and
their description in statistics are given in Table 1. -e
main objectives are to predict the UCS of RC that is
determined by its influencing variables. -e relative im-
portance of variables is to be further analyzed. To improve
the efficiency of the model, the collected data were nor-
malized into [0, 1]. According to the percentage split of
the dataset, 97 samples were randomly chosen as the

...

Input

Prediction 1 Prediction 2 Prediction n

Average all predictions

Random forest prediction

Tree 1 Tree 2 Tree n

Figure 1: General structure of the RF model.

Initialize the position of
beetle

Fitness function of
beetle

Is the current fitness
better than the
best position?

Update the best
position

Unchange

Set beetle direction and
calculate fitness of antennae

Fitness of left antennae >
fitness of right antennae

A step to right

Stopping criterionBest solution

Yes

No

No

Yes

No

Yes

A step to left

Figure 2: -e flowchart of beetle antennae search algorithm.
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training set and the remaining 41 samples were set as the
test set.

3. Results and Discussion

3.1. Results of Hyperparameter Tuning. In this study,
according to the RMSE obtained from 10-fold cross-valida-
tion, the hyperparameters were tuned on the testing set. -e
RMSE versus iterations during BAS tuning is shown Figure 4.
As can be seen, the RMSE decreased considerably, revealing
that the BAS can tune the RF effectively. -en, the RMSE
became stable at 15 iterations. Here, only 20 iterations were
shown. -e final hyperparameters of RF are given in Table 2.

3.2. Assessment of the EstablishedModel. -e comparison of
the predicted UCS of RC by the BRF model and actual
UCS of RC in datasets is depicted in Figure 5. As can be
seen, the predicted UCS values of RC were rather close to
the actual UCS, indicating that the BRF can establish the
nonlinear relationship between UCS of RC and input
variables successfully, and therefore, the model can
predict the strength accurately. In addition, the high R
values for the training set and test set were 0.985 and
0.959, respectively. -e low RMSE values of 2.24 in the
training set and 3.90 in the testing set were observed.
Overall, the above results showed that there is no
underfitting or overfitting phenomena by the proposed
BRF model.

3.3. Variable Importance of RC. Furthermore, the relative
importance of the input variables is shown in Figure 6. As
can be seen, the age of RC was the most important variable
with an important score of 1.42, and this result was con-
sistent with the strength development of cementitious
materials reported in the previous studies [12, 39]. -e
water-cement ratio also played a crucial role in the strength
of RC, and the superposition effect of water and cement in
this study was similar to the age. -is agrees well with some
studies that the water-cement ratio affects the strength
considerably [40, 41]. As can be seen, the FA ranked third
with an importance score of 1.23, which was more sensitive
than CA (importance score of 0.49) in RC. Correspondingly,
the FRA had a relatively larger influence on the UCS of RC
than CRA. It should be pointed out that both the FRA and
CRA affect the strength of RC obviously, and therefore, more
attention should be paid when adding rubber materials to
RC in practice. -e admixture of SP and SCMs had the least
influence on the strength of RC with the importance score of
0.27 and 0.24, respectively. -e obtained results can guide
the design of RC effectively and select the proper parameters

Table 1: -e input influencing variables in the BRF model.

No. Influencing
variables Min Max Average Standard

deviation
1 Cement (kg/m3) 131 550 368.1 73.9
2 Water (kg/m3) 150 225 187.6 24.3
3 aSCMs (kg/m3) 0 357.5 71.0 125.3

4 Superplasticizer
(%) 0 7.8 1.76 2.9

5 bCA (kg/m3) 0 1202.8 999.8 238.3
6 cCRA (kg/m3) 0 1160 63.1 186.7
7 dFA (kg/m3) 0 942 619.4 165.1
8 eFRA (kg/m3) 0 630 49.9 98.3
9 Ages (d) 1 91 26.6 25.7
aSupplementary cementitious materials; bcoarse aggregate; cfine aggregate;
dcoarse rubber aggregate; efine rubber aggregate.

Dataset

Training set (70%)

Testing set (30%)

10-fold CV BAS

RF

R, RMSE

R, RMSE

Training
results

Testing
results

Figure 3: -e flowchart of hyperparameter tuning of RF by BAS.
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Figure 4: RMSE versus iterations.

Table 2: -e obtained hyperparameters of RF.

Parameters Empirical scope Initial Results
tree_num [1, 10] 6 8
min_sample_leaf [1, 10] 6 1
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for optimizing RC. -e results can guide the accurate design
of RC and boost the application of RC.

4. Conclusions

-is paper presented an evolved random forest algorithm,
namely, BRF, for evaluating the UCS of RC. Based on the 138
samples collected from the previous literature and 9 key
influencing variables, the compressive strength of RC can be
determined by the independent variables by BRF. -e
hyperparameters of RF were tuned by using the BAS al-
gorithm and validated by 10-fold cross-validation. In ad-
dition, the performance of optimized BRF was examined by
R and RMSE. -e variable importance was first revealed and
discussed.-emain results are as follows: BAS can efficiently
tune the hyperparameters of RF and can be used in evolved
RF to establish the BRF prediction model; the proposed BRF
model can accurately predict the strength of RC, which can
guide the design of RC; on the testing set, R and RMSE were
0.96 and 3.9, respectively, meaning that the proposed BRF
model has a good prediction on the collected RC data; the
age of RC is the most significant variable for the strength,

followed by the cement ratio, FRA, CRA, and CA; the SP and
SCMs have the least influence on the strength of RC.

It should be pointed out that the results were limited by
the amount of the samples. If the larger dataset was obtained,
the more accurate results would be derived. In the future, we
would collect more samples and design a bigger dataset for
analysis by machine learning methods, which can signifi-
cantly promote the application of RC in the field.
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Abella, and J. L. Pérez-Ordóñez, “Prediction of the me-
chanical properties of structural recycled concrete using
multivariable regression and genetic programming,” Con-
struction and Building Materials, vol. 106, pp. 480–499, 2016.

[27] A. Gholampour, A. H. Gandomi, and T. Ozbakkaloglu, “New
formulations for mechanical properties of recycled aggregate
concrete using gene expression programming,” Construction
and Building Materials, vol. 130, pp. 122–145, 2017.

[28] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[29] E. Scornet, “On the asymptotics of random forests,” Journal of
Multivariate Analysis, vol. 146, pp. 72–83, 2016.

[30] X. Jiang and S. Li, “BAS: beetle antennae search algorithm for
optimization problems,” International Journal of Robotics and
Control, vol. 1, no. 1, pp. 1–3, 2018.

[31] A. Liaw and M. Wiener, “Classification and regression by
random forest,” R News, vol. 2, no. 3, pp. 18–22, 2002.

[32] S. Janitza, G. Tutz, and A.-L. Boulesteix, “Random forest for
ordinal responses: prediction and variable selection,” Com-
putational Statistics & Data Analysis, vol. 96, pp. 57–73, 2016.

[33] Y. Sun, J. Zhang, G. Li, Y. Wang, J. Sun, and C. Jiang,
“Optimized neural network using beetle antennae search for
predicting the unconfined compressive strength of jet
grouting coalcretes,” International Journal for Numerical and
Analytical Methods in Geomechanics, vol. 43, no. 4, pp. 801–
813, 2019.

[34] Y. Sun, J. Zhang, G. Li et al., “Determination of Young’s
modulus of jet grouted coalcretes using an intelligent model,”
Engineering Geology, vol. 252, pp. 43–53, 2019.

[35] J. Sun, J. Zhang, Y. Gu, Y. Huang, Y. Sun, and G. Ma,
“Prediction of permeability and unconfined compressive
strength of pervious concrete using evolved support vector
regression,” Construction and Building Materials, vol. 207,
pp. 440–449, 2019.

[36] M. M. Reda Taha, A. S. El-Dieb, M. A. Abd El-Wahab, and
M. E. Abdel-Hameed, “Mechanical, fracture, and microstruc-
tural investigations of rubber concrete,” Journal of Materials in
Civil Engineering, vol. 20, no. 10, pp. 640–649, 2008.

[37] S.-F. Wong and S.-K. Ting, “Use of recycled rubber tires in
normal-and high-strength concretes,” ACI Materials Journal,
vol. 106, no. 4, p. 325, 2009.

6 Advances in Civil Engineering



[38] Q. Dong, B. Huang, and X. Shu, “Rubber modified concrete
improved by chemically active coating and silane coupling
agent,” Construction and Building Materials, vol. 48,
pp. 116–123, 2013.

[39] F. Valadares, M. Bravo, and J. de Brito, “Concrete with used
tire rubber aggregates: mechanical performance,” ACI Ma-
terials Journal, vol. 109, no. 3, p. 283, 2012.

[40] Z. Chen, Y. Zhang, J. Chen, and J. Fan, “Sensitivity factors
analysis on the compressive strength and flexural strength of
recycled aggregate infill wall materials,” Applied Sciences,
vol. 8, no. 7, p. 1090, 2018.

[41] J. Tinoco, A. Gomes Correia, and P. Cortez, “Application of
data mining techniques in the estimation of the uniaxial
compressive strength of jet grouting columns over time,”
Construction and Building Materials, vol. 25, no. 3,
pp. 1257–1262, 2011.

Advances in Civil Engineering 7


