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The rapidly growing number of real aperture and synthetic
apertureradars (SARs) devoted to Earth observation pro-
vides today a very broad coverage across space, time, and
the electromagnetic spectrum. Very large quantities of data
and images are being systematically collected, processed,
and stored. The all-weather, day, and night capabilities of
these radar sensors permit acquisition of information under
conditions that are not possible with EO sensors. Radars can
monitor iceberg position, movement, and age to improve
safety at sea. They can provide useful information on oceans
and their currents. Radars can also explore vast areas of the
Earth, providing an inventory of potential mineral resources,
new transportation routes, freshwater supplies, sites for
agriculture, and so on.

The papers in this special issue reflect some of the many
varied applications of radar that are being researched today.

Synthetic aperture radar, whether from space or airborne
platforms, continues to attract much attention. Spatial reso-
lutions of the order of 1 m are currently available from space-
based SAR systems such as TerraSAR-X, whilst airborne
spotlight SAR systems can achieve resolutions of the order of
10 cm. Many space-based radars are now fully polarimetric,
and there is considerable scope for interferometric SAR
operation, either using repeat-pass methods or tandem
platforms. In their paper entitled “Scattering-based model
of the SAR signatures of complex targets for classification
applications,” G. Margarit and J. J. Mallorqui present a
method for analysing SAR imagery and the scattering from
complex targets. This has led to a proposed method for
classifying targets such as ships and urban buildings, using
features obtained from polarimetric and interferometric SAR
images.

Interferometric techniques can also be applied to analyse
the movement of targets in an SAR image. A. Budillon
et al. describe a technique for detecting radially moving
targets in an SAR image in their paper “Multi-channel along-
track interferometric SAR systems: Moving targets detection
and velocity estimation.” They consider the performance
of multichannel AT-InSAR systems in terms of moving
target detection and the accuracy of radial velocity estima-
tion.

Polarimetric data can also be successfully used for classi-
fication purposes in inverse synthetic aperture radar (ISAR)
images, as described by M. Martorella et el. in “CLEAN
technique for polarimetric ISAR.” This paper addresses the
problem of estimating the position and the scattering vector
of target scattering centres from polarimetric ISAR images.
The CLEAN techniques are used for reducing the data size
of the images without losing useful information, with the
aim of classifying and recognizing objects on the Earth
surface.

A very interesting area of research in the last few
years concerns the applications of passive SAR bistatic
systems. In the paper entitled “Experiences gained during
the development of a passive BSAR with GNSS transmitters
of opportunity,” M. Cherniakov et al. present an overview
of the research conducted at the University of Birmingham
in the area of space-surface bistatic synthetic aperture radar
(SSB-SAR) since 2003. The main aim of the research is to
experimentally demonstrate the feasibility and performance
of airborne SS-BSAR, utilizing the Global Navigation Satel-
lite System (GNSS) as the transmitter of opportunity. The
paper highlights and briefly discusses the various factors
that determine image quality, including various systems
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parameters (related to resolution, power budget, etc.), signal
processing algorithms (for imaging, synchronization, etc.),
and specific problems to be addressed (such as interference
and motion compensation).

The problem of the correct reconstruction of an image
is also the topic of the paper by Y. Shkvarko et al.
“Enhanced radar imaging in uncertain environment: A
descriptive experiment design regularization approach.” A
new robust technique is developed by the authors for
high-resolution reconstructive imaging, applied to enhanced
remote sensing (RS) with an imaging array radar and/or a
synthetic aperture radar (SAR), operating in an uncertain
RS environment. The operational scenario uncertainties are
associated with the unknown statistics of perturbations
of the signal formation operator (SFO) in a turbulent
medium, imperfect array calibration, finite dimensionality
of measurements, uncontrolled antenna vibrations and, in
the case of SAR, random platform trajectory deviations.
In that paper, the authors propose new descriptive exper-
iment design regularization (DEDR) approach to treat the
uncertain radar image enhancement/reconstruction prob-
lems.

Another important research area for remote sensing is
the application of satellite imagery for damage assessment.
G. Trianni and P. Gamba, in “Damage detection from SAR
imagery: application to the 2003 Algeria and 2007 Peru
earthquakes,” describe a method for fusing remotely sensed
radar imagery with geographic databases. The method is
illustrated by analysis of real radar imagery. It can provide
rapid assessment of earthquake damage although further
work is needed to improve the accuracy that can be achieved.

Real aperture radar also continues to play a fundamental
role in remote sensing of the environment. P. L. Herselman
et al. in “An analysis of X-band calibrated sea clutter and
small boat reflectivity at medium to low grazing angles” show
how accurate empirical modeling of sea clutter can provide
the basis for inference of local sea conditions from remote
low-grazing-angle radar returns. They have also analysed
the coherent signatures of small boats, which interact in a
complex way with the local clutter returns, and show how
this information can be used to provide improved target
detection methods.

The modeling of sea clutter is also the topic of the
paper “Non-linear dynamics of sea clutter,” by T. Field
and S. Haykin. In their paper, the authors expand on
the characterization of sea clutter as a nonlinear dynamic
process, using the stochastic differential equation (SDE)
theory. The stochastic dynamics of radar sea scattering are
derived in terms of a pair of coupled stochastic differential
equations for the received envelope and the radar cross-
section (RCS). The analysis presented by the authors leads to
the conclusion that, from both experimental and theoretical
points of view, the dynamics of sea clutter are nonlinear with
a consistent degree of nonlinearity that is determined by the
sea state.

This special issue represents a small selection of current
research. Nevertheless, this issue hascollected an interesting
cross-section of papers representing work from 7 different
countries. We would like to thank all the authors who

contributed to this special issue and, in particular, the many
anonymous referees who played such an important part.

Maria Greco
Simon Watts
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The modeling of complex target response in SAR imagery is the main subject of this paper. The analysis of a large database of
SAR images with polarimetric and interferometric capabilities is used to accurately establish how the different structural parts of
targets interact with the incident signal. This allows to relate the reflectivity information provided by SAR images with specific
geometries and to fix variation reflectivity patterns in terms of different imaging parameters such as image resolution, incidence
angle, or operating frequency. Most of the used images have been obtained from the SAR simulator of complex targets developed
at UPC, which is able to generate realistic data for a wide range of observation and environmental conditions. The result is a precise
scattering-based SAR model that opens the door, among others, to an alternative way for reliable geometry retrieval. Under this
approach, a novel SAR classification method for ships has been proposed. The preliminary evaluation in simulated scenarios shows
a notable classification capability even under strong clutter and ship motion conditions. Due to these promising results, the same
methodology is intended to be applied to urban areas. Concerns about possible model limitations and required improvements are
preliminarily treated.

Copyright © 2008 G. Margarit and JordiJ. Mallorqui. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

The proliferation of new SAR sensors with improved capabil-
ities in terms of system resolution and information channels
(polarimetry and interferometry) has increased the range
of products that can be obtained from SAR imagery [1].
Examples are characterization and classification of man-
made structures like ships or urban targets [2–5]. In the
past, the limitations of sensors’ performance have made it
almost impossible to precisely retrieve those physical and
geometrical parameters related with the imaged targets. This
trend is currently changing with the new generation of
airborne and orbital sensors.

Now, real data have higher diversity, as polarimetric
channels are available, and increased revisiting times. Their
adequate interpretation requires the development of new
models, where the SAR signatures of complex targets become
related with their geometries. The development of such
models with real imagery is difficult and arduous because
the required amount of data with the related ground-truth

is not always available and can be too expensive to generate.
A feasible alternative lies in the usage of realistic simulators,
where flexibility and reduced cost can overcome previous
limitations allowing to rapidly increase the knowledge in
target scattering.

In this context, the current paper provides a new
methodology for modeling the response of complex targets
in SAR imagery based on the analysis of large stacks of
simulated scattering maps [6]. By using an accurate and
realistic SAR simulator, the response of each structural
part of a target can be described in terms of the three-
dimensional position, the scattering properties (reflectivity
intensity and polarimetric behavior), and the dependence
of these properties with respect to key imaging parameters
(incidence angle and target orientation, resolution, operating
frequency, etc.). All this information can help to predict the
expected real SAR response for a given set of observation
conditions and, hence, geometrical and physical information
may be retrieved by simply inverting the relations established
within simulation environments. As a result, a new target
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model emerges, which can be exploited in a large number
of applications.

The previous modeling methodology has been applied
to ships [7] and urban targets [8]. This has been done
with GRECOSAR [9], a simulator able to realistically
simulate SAR images of complex targets within flexible and
controlled scenarios. It works with 3D high-frequency Elec-
troMagnetic (EM) calculations using physical optics (PO)
and physical theory of diffraction (PTD) [10, 11]. In a first
step, a large number of fully polarimetric scattering maps
(inverse SAR, ISAR) with resolution around centimeters have
been used to study the dispersion behavior of targets in
terms of their geometries and observation conditions. This
has allowed to observe a specific scattering pattern from
which the dispersion information can be linked with target
geometry for a large range of views. In a second step, the
signatures of targets have been analyzed in simulated SAR
images. For an adequate image resolution, it follows that
the previous scattering patterns can be related with the
observed structures or, in other words, targets’ geometry can
be inferred from the scattering patterns.

As a result, the proposed scattering-based model of com-
plex targets appears to be feasible for practical applications.
Its usefulness in real scenarios has been evaluated by testing
its potentialities for basing new classification/identification
approaches. Special attention is placed on ships where
the availability of robust algorithms is mandatory for
complementing new ship monitoring techniques devoted
to SAR platforms (see European IMPAST [12], DECLIMS
[13], and LIMES [14] projects). In this sense, the vessel
classification algorithm (VCA) working with polarimetric
interferometric SAR (PolInSAR) imagery is presented [6].
Its operating principle is briefly described and some tests
are carried out within simulated scenarios for the analyzed
real-like observation conditions. The results show notable
classification ratios even under adverse observation condi-
tions, mainly manifested by sea clutter and ship motions
[7]. Regarding urban environments, the conclusions derived
from the model are used to improve real-data interpretation
and the performance of interferometric-related applications
such as subsidence.

This paper is structured as follows. Section 2 describes
the modeling methodology stressing its advantages and
limitations with respect to classical approaches. Section 3
presents samples of the scattering maps used to relate the
model scattering behavior with its geometry. The reliability
of the derived scattering patterns in SAR images is assessed
in Section 4. They are exploited in Section 5, where the VCA
algorithm and new guidelines for helping to improve the
interpretation of urban data are introduced.

2. MODELING METHODOLOGY

Modeling the dispersion response of complex targets should
take into account what follows: (1) the measuring variables
(model inputs, i.e., polarimetric and interferometric data),
(2) the parameters to be inverted (model outputs), and (3)
the main application for which target modeling is sought.
In our context, complex target modeling is conceived for

characterization and classification and, hence, the retrieval of
key geometrical information is the main goal (model output).
To successfully do this process, accurate geometry-scattering
relations are mandatory so that the reflectivity information
of SAR images can be connected with specific geometrical
shapes. For such purpose, large datasets have to be analyzed
for the largest possible scenario diversity. In real scenarios,
this task is extremely complex as, besides the long and
costly measurement campaigns, the coordination between
the sensor and testing scenarios should be almost perfect for
reaching the planned observation conditions and acquiring
accurate ground-truth. In most situations, for instance, with
vessels at sea, this is almost impossible.

Recent works have suggested the possibility to exploit
numerical tools for carrying out, in a first stage, the previous
studies [7, 9]. Simulation presents two advantages: (1) the
capability to quickly process a wide range of scenarios for
which target models can be developed, and (2) the possibility
to plan measurement campaigns, where observation condi-
tions allow to efficiently test, improve, and/or validate the
proposed model. The combination of both can lead to better
models.

In this study, simulated images have been used. They
have been obtained from the GRECOSAR numerical tool
[9], which is able to reproduce in simple PC realistic SAR
images of complex targets. It is based on UPC’s GRaphical
Electromagnetic COmputing (GRECO) solver [10] that
estimates, for each single frequency, the radar cross-section
(RCS) of 3D targets via high-frequency methods (PO, PTD).
Targets are modeled with the CAD package GiD of the
International Center of Numerical Methods for Engineering
(CIMNE) [15]. Computer efficiency and scenario flexibility
are the main advantages of the simulator. This allows to
simulate any sensor for any operating band, mode, and reso-
lution with polarimetric and/or interferometric capabilities.
Target environment is configurable with dielectric materials,
relative sensor-to-target orientation, incidence angle, and, in
the case of vessels, speed, motion dynamics, and dynamic
sea surfaces [16, 17]. Exhaustive tests performed with both
canonical and complex targets have validated the code. Its
potentialities for complex target studies have been shown in
previous works devoted to ships [6, 7].

2.1. Model outputs

For classification applications, the parameters to be inverted
have to be related with target’s geometry. It would be
desirable to obtain from data the three-dimensional position
of all points defining the structure. However, this is not
possible with radars as only a reduced group of geometrical
shapes with high RCS is present in the image [2, 7, 18]. The
remaining scatterers are either cluttered by the stronger ones
due to the limited system resolution or have an RCS below
the noise floor.

In this framework, the model is focused to find the
3D position of a set of significant scatterers that sum-
marize the macroscale geometry of the different types of
targets, like those obtained from polarimetric decomposi-
tions. Such scatterers are termed as permanent polarimetric
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scatterers (PePSs) in the sense that they present similar
scattering properties within a wide range of observation
conditions. For each target model, particular combinations
of PePSs are selected according to the analysis of simulated
scattering maps derived for different observation conditions.
Mathematically, the feature vector for target j can be denoted
by

Θ j = {Θ j
i

}
for 1 < i < NPePS, (1)

whereNPePS points to the number of PePSs for that target and

Θ
j
i =

{
ai, gri,hi, pi

} j (2)

gathers the azimuth (ai) and ground-range (gri) locations
of scatter i, jointly with its height (hi) and related scat-
tering mechanism (pi). Scattering mechanisms are defined
according to the basic Pauli mechanisms [19], namely,
“trihedral” for those mechanisms with odd number of
reflections (sphere, flat planes, 3D corners, etc.), “dihedral”
for those mechanisms with even number of reflections
(2D corners), and “antisymmetric” for those mechanisms
without the symmetry property. All three follow the orthog-
onality property and have appeared to be indispensable
for increasing the discrimination capability among different
PePS configurations [6]. This explains the importance of the
polarimetric term pi in (2). Other polarimetric decomposi-
tions could also be used, but orthogonality helps to better
discriminate the interferometric phase information related
to each mechanism.

2.2. Model inputs

The retrieval of the previous information needs from polari-
metric interferometric SAR (PolInSAR) imagery. Certainly,
SAR imagery provides information about azimuth (ai) and
ground-range (gri) scatter locations, SAR interferometry
(InSAR) [20] about the relative height among scatterers (hi),
and, finally, SAR polarimetry (PolSAR) [19, 21, 22] about
the associated scattering mechanisms (pi). These relations
are valid if each resolution cell does not contain more than
one PePS with the same scattering mechanism. This implies
that (1) it is possible to discriminate a maximum of three
scatterers with different scattering mechanisms within the
same resolution cell, and (2) a minimum of resolution is
required for an adequate PePS discrimination. Different tests
have shown that a resolution around 3 m seems to be enough
for ship classification applications [6, 7].

The sensor requirements that imply the usage of PolIn-
SAR with high resolution are quite demanding [17]. Cer-
tainly, the management of six information channels in the
time slot of one synthetic aperture position increases the
hardware complexity and, even worst, imposes important
restrictions on the coverage (swath is severely limited if
compared with single-pol SAR). By now, this can only be
assumed by airborne sensors, despite the fact that the new
operating modes of TerraSAR-X and Radarsat-2 are close to
this goal if single-pass interferometry is not considered. In
order to make an efficient usage of the available information,

some alternatives are now under consideration, such as
alternate polarimetric (AP) modes or partial polarimetry (PP)
[23–25]. They allow to reduce the number of polarimetric
channels but at the expense of some model approximations
that in some cases cannot be applied, as in the case of ships
against strong clutter conditions [17].

2.3. Modeling scheme

The scheme of the adopted modeling methodology can be
summarized in the following points.

(i) Select a set of targets that can be considered as
representatives of the different types that can be
found.

(ii) Generate a large number of scattering maps with
numerical tools that help to fix the scattering
behavior of the different parts of targets’ structure.
These data have to be derived for a particular set
of observation conditions (Φk) and should evaluate
the impact of the surrounding environment. In a
first approach, Φk is defined for the incidence angle
(φ[◦]), relative target-to-sensor orientation (β[◦]),
and operating frequency ( f [Ghz]) taking different
values within a fixed range.

(iii) For a given set of observation conditions Φk = {φ,
β, f }k, define a particular feature set Θ j for the
type of target j. PePSs are selected by those scat-
terers presenting an RCS 10 dB higher than that of
the surrounding scatterers and a stable polarimet-
ric behavior within a solid angle of at least π/3
steradian (this is the solid angle subtended by a cone
of 30◦ of aperture). Three issues are important in this
definition: (1) stable polarimetric behavior for PePS i

means to take the same value of p
j
i within the selected

aspect angle (see (4) and (5)); (2) PePS 3D positions
are expressed with respect to a local coordinate
system within the target from which the migration to

SAR location parameters (a
j
i and gr

j
i ) is performed

according to the particular imaging geometry (see
Figure 1); (3) the threshold in the angular aperture
is selected by the response of typical canonical
scatterers, like trihedrals and dihedrals. This implies
that the modeling methodology is focused to locate
those structures with the closest scattering behavior
to canonical targets.

2.4. Inversion scheme

Model inversion implies basically to retrieve the information

of Θ
j
i for all the potential candidates of PePS. It assumes

that target signature has been previously isolated from the
environment with any of the currently available detection
methods (see [26, 27] for ships and [5, 28, 29] for urban
areas). In a first iteration, all local maxima present in target’s
signature for all polarimetric channels are selected (Nlm) (see

Section 5.1). For each one, 〈Θ j
n〉 is estimated according to (1)
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Sensor
Azimuth

φ

Ground-
range

Slant-
range r̂l

v̂t

z

x y

r̂t⊥r̂l
β

Figure 1: Local coordinate system used to define PePS within
targets. The center is located at target’s center of mass.

with 1 < n < Nlm. The formulae required for this process are
listed as follows. Regarding height,

〈
h
j
n
〉 = sinφ

[
cro

4π f B⊥
Δψ − Δr

tanφ

]
, (3)

where Δψ and Δr fix the interferometric phase and slant-
range difference of scatter n with respect to a fixed reference.
ro is the range, and B⊥ is the perpendicular baseline, both
known as radar parameters [20, 30]. Interferometric phase
corresponds to the phase of the pixel of the interferogram
related to scatter n. The interferogram is built by multiplying
the master image with the complex conjugate of the slave for
a particular polarimetric channel [20].

The polarimetric term pi is estimated according to the
significance of the Pauli scattering mechanism associated
with the analyzed scatter n. This implies the following
relations:

〈
p
j
n
〉 = 0 if

∣∣p
j
n,0

∣∣ >
∣∣p

j
n,1

∣∣,
∣∣p

j
n,2

∣∣,

〈
p
j
n
〉 = 1 if

∣
∣p

j
n,1

∣
∣ >

∣
∣p

j
n,0

∣
∣,
∣
∣p

j
n,2

∣
∣,

〈
p
j
n
〉 = 2 if

∣
∣p

j
n,2

∣
∣ >

∣
∣p

j
n,0

∣
∣,
∣
∣p

j
n,1

∣
∣,

(4)

where |p jn,xx| = p
j
n,xx/max{p jn,0, p

j
n,1, p

j
n,2} defines the nor-

malized significance of the three Pauli mechanisms:

p
j
n,0 =

1√
2

Snhh + Snvv
2

,

p
j
n,1 =

1√
2

Snhh − Snvv
2

,

p
j
n,2 =

1√
2
Snhv

(5)

for the elements of the monostatic master scattering matrix
[S]n measured in the pixel of scatter n :

[S]n =
[
Shh Shv

Shv Svv

]n

. (6)

The term xx = {0, 1, 2} is related to the “trihedral,”
“dihedral,” and “antisymmetric” Pauli mechanisms. Finally,
azimuth and ground-range locations are obtained from the

ΔΩ φ

v̂t

r̂t

β

r̂l

Figure 2: ISAR imaging geometry of GRECOSAR.

azimuth (a
j
n,SAR) and slant-range (sr

j
n,SAR) positions of scatter

n in the SAR image:

〈
a
j
n
〉 = a

j
n,SAR,

〈
gr

j
n
〉 = sr

j
n,SAR +

〈
h
j
n
〉

cosφ

sinφ
.

(7)

The inversion process ends by selecting those PePSs
whose combination better matches the list defined by Θ j .

3. SCATTERING MAPS

The modeling methodology starts with the generation of
stacks of scattering maps (Ωk

j ) defined for particular sets

of observation conditions (Φk) and targets’ types ( j). This
step has been done with GRECOSAR following the inverse
SAR imaging geometry shown in Figure 2. Some samples
are presented in this section for two different classes of
targets: ships and buildings. The intrinsic geometries of both
raise some particular scattering properties that can help to
make the modeling process more efficient. For instance, the
symmetric distribution of scatters in the normal direction
to the line of sight (LOS) [18] induces a higher scattering
stability within a wide range of views, and allows to use a
unique feature vector (Θ j) for characterizing the target. This
normally happens with symmetric targets like ships, which
appear to be specially suited for the modeling methodology
[7, 16].

All the presented scattering maps are fully polarimetric

and depict the normalized Pauli significance (|p jn,xx|) with an

RGB-based color code: red→|p jn,0| (first Pauli mechanism),

green→|p jn,1| (second Pauli mechanism), and blue→|p jn,2|
(third Pauli mechanism). They show the most representative
cases of all those generated (see [6] for further details).

3.1. Modeling ship responses

Figure 3 provides scattering maps at X, C, and L bands
for an incidence angle of φ= 20◦ and three different target
orientations, β= {295, 315, 335}◦. Three types of ships have
been considered: a Spanish fishing vessel of 30 m long and
7 m wide (target j = S0), an Icelandic fishing vessel of 70 m
long and 15 m wide (target j = S1), and a passenger ferry
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Table 1: Feature vectors for targets j = S0, j = S1, and j = S2
and ΦSO1 = {10 − 30◦, 280 − 350◦, 5.3 − 9.65 GHz}SO1. Heights (z)
are normalized with respect to the lowest value in order to match
interferometric height conventions.

ΘS0 ΘS1

ΘS0
i xi yi zi pi ΘS1

i xi yi hi pi

1 3.5 −10 0 0 1 3 −2 0 1

2 3.5 −5 0 0 2 −6 −14 6.5 1

3 −0.5 −8 2.5 1 3 −1 1 6.5 1

4 −0.5 −2 4.5 1 — — — — —

ΘS2 —

ΘS2
i xi yi zi pi —

1 12 −25 0 0 —

2 10 −25 0.5 1 —

3 9 8 2.5 1 —

4 9 −8 2.5 1 —

Table 2: Feature vectors for ΦUO1 = {20◦, 190◦, 9.65 GHz}SO1 and
targets j = U0 and j = U1. Heights (z) are normalized with
respect to the lowest value in order to match interferometric height
conventions.

ΘU0 ΘU1

ΘU0
i xi yi zi pi ΘU1

i xi yi hi pi

1 −8 2 5.5 0 1 −4 2 0 0

2 −7 −3 2.2 0 2 4 −8 9.5 0

3 −6 −8 0 0 3 8 −1 12.5 0

of 200 m long and 30 m wide (target j = S2). As observed,
each type of ship presents a particular distribution of strong
scatters, PePS candidates, which appear to be stable within a
specific range of views.

The selection criteria described in Section 2.3 have been
applied to these datasets and have confirmed that each
ship presents different PePS combination that leads to
the feature vectors summarized in Table 1. They mainly
correspond to dihedral interactions of cylindric structures
(like masts and funnels) and trihedral behaviors due to
corner geometries (like buttresses). Such vectors are valid for
the set of simulated observation conditions ΦSO1 = {10 −
30◦, 280−350◦, 5.3−9.65 GHz}SO1 that cover different range
of values for incidence, target orientation, and operating
frequency. The margin of validity in terms of incidence
angle and target orientation is notably large and opens
the door for characterizing a vessel with a reduced set of
feature vectors. In Table 1, PePS 3D positions are expressed
in the local coordinate system shown in Figure 3, from
which SAR location parameters are derived according to
the incidence and target orientation angles. Such conversion
needs the knowledge of vessels’ bearing that can be extracted
from any of the currently available methods [31, 32]. Note
also in Table 1 that the defined PePSs are valid for the
complementary range of orientation values owned to the
symmetry of the vessels’ structure.

3.2. Modeling urban responses

The same procedure is now being conducted for urban areas.
The presented results should be considered preliminarily as
the work is still in progress and the amount of simulated
images is not comparable with that currently available for
ships. In this sense, Figure 4 presents some scattering maps
similar to those introduced previously, but related to two
different classes of buildings ( j = U0 for the upper one and
j = U1 for the lower one). The structures of both buildings
are clearly depicted in Figure 6. They correspond to two
structures within a test site, where ground-based SAR (GB-
SAR) measurements were carried out by UPC [33, 34]. This
has provided accurate ground-truth about building structure
as well as external elements that may interfere. The images
have been obtained for φ= 60◦ and β= {190, 200}◦ at X
band in order to reproduce the observation conditions of the
GB-SAR sensor.

In the light of the obtained results, it follows that the
response of these targets can be also described by a set of
PePSs. The related feature vectors are summarized in Table 2
for which point positions are expressed in terms of the
coordinate system depicted in Figure 4. Such scatterers are
mainly related to frame points located in doors and windows
(trihedral) and punctual wall-street interactions (dihedral).
But now the scattering maps are not as stable as those
obtained from vessels. In general terms, the whole response
is appreciably modified (even by eye inspection) from one
orientation to another, despite the fact that some particular
PePSs can still be identified. The causes are the extremely
complex environments that make most of the details to be
able to contribute to the scattering map depending on the
incidence conditions.

Therefore, it appears that building discrimination via
target scattering is more difficult as the number of feature
vectors demanded for covering target dispersion increases
notably. However, due to the high realism achieved by
GRECOSAR in reproducing the scattering information of
real scenarios [8], other areas can take profit of these
results. Examples may be the development of differential
interferometry- (DInSAR-) related applications for subsi-
dence monitoring [5] and the inclusion of polarimetric data
provided by the new sensors, like TerraSAR-X or Radarsat-2.

4. MODEL ANALYSIS IN SAR IMAGES

This section tests the performance of the first model version
generated in the previous section for SAR images. For such
purpose, some of the previous simulations have been rerun
for the SAR imaging geometry of Figure 1. A PolInSAR X
band sensor covering the previously indicated incidences and
providing a resolution of 2.3 m in azimuth and 1.3 m in range
has been used.

4.1. Ship targets

Some ship samples are presented first in Figure 5 by express-
ing the significance of each Pauli mechanism in gray scale.
The scenario does not take target environment into account
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β = 295◦ β = 315◦ β = 335◦

X
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Z

L band

C band

X band

(a)
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ZL band

C band

X band

(b)

X
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Z

L band

C band
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(c)

Figure 3: Scattering maps obtained for the SPA (a), ICE (b), and FER (c) vessels at L, C, and X bands with β ∈ {295, 315, 335}◦ and φ= 20◦.
They have been analyzed with the Pauli CTD theorem for a dynamic range of 25 dB. The lengths of the SPA, ICE, and FER ships are 30, 70,
and 200 meters. Circles isolate the PePSs used in the feature vectors of Table 1.

so that qualitative data interpretation can be done. From all
the contemplated bearings (β = [295 : 10 : 355]), Figure 5
only presents two of them, β= 295, 315◦ (φ= 20◦), which
can be considered as representatives of the remaining ones.

The inspection of these images shows that the isolation of
those PePSs conforming the feature vectors is possible. They
are imaged with the same scattering properties found in the
scattering maps relative to polarimetric behavior, RCS, and
spatial distribution. This implies that the proposed model
can be inverted and, thus, valuable geometrical information
is retrieved. In fact, this process has been done following the
explanation of Section 2.4 and a confidence estimation of
around 80% has been found.

However, the previous case is ideal and, normally, real
scenes do not present such level of isolation between sea
clutter and target response. Their interaction is higher and
this leads to image corruption that can put PePS isolation
at risk [7, 17]. Next section will further treat this point
showing that a proper image post-processing can assure
reliable model inversion even under adverse observation
conditions.

4.2. Urban targets

Something similar has been done for the two building
targets. In this case, PePS analysis is not performed while
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Figure 4: Scattering maps obtained for two building models at X band with β ∈ {190, 200}◦ and φ= 20◦. They have been analyzed with the
Pauli CTD theorem for a dynamic range of 25 dB. The models cover a maximum area of 50 square meters. Circles isolate the PePSs used in
the feature vectors of Table 2.

thinking in classification (according to previous scattering
analysis), but in other applications, such as subsidence,
monitoring via PolInSAR is performed. There, the isolation
of a set of guide scatterers with stable scattering properties is
essential to retrieve accurate estimations of terrain deforma-
tion velocities along slant-range. So, the higher the scattering
characterization is, the better the confidence is achieved. In
single polarimetric SAR, this technique is mature, and now
it is being successfully exploited in real scenarios [35, 36].
However, it has not migrated yet to PolInSAR, and so the
current work would be helpful.

In contrast to the case with ships, SAR simulations
are presented in terms of a 3D scattering map, where the
relative scatter height is displayed jointly with the value of

|p jn,xx| (the previous RGB color code is also adopted here).
These maps are shown in Figure 6 (φ= 60◦, β= 190◦) and
allow the isolation of almost all the PePSs identified in
Section 3.2 with a confidence of ∼75%. With these maps,

a type of product similar to the ISAR one, but with less
sensor requirements, can be obtained for scattering analysis
[7]. One main advantage is the possibility to isolate different
scatterers within the same resolution cell. This is advanced
in Section 2.2 and related to the increased discrimination
capability supplied by polarimetric channels. This permits
to increase the accuracy in subsidence measurements due to
the subpixel resolution that may be reached in some cells (in
fact, those having PePSs, which can be considered as good
candidates for use as subsidence guide scatterers).

5. MODEL EXPLOITATION

Once it has been shown that the proposed model of
complex targets can be feasibly inverted in SAR images, the
exploration of what applications can benefit is useful. In the
case of ships, the application of this model can be considered
mature, from which the novel VCA method resulted [7]. For
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Figure 5: Pauli gray images showing the weight of each Pauli channel for the X band PolInSAR simulations of ships. The targets are j = S0
(a), j = S1 (b), and j = S2 (c) taking the bearing values of β = 295, 325◦. The arrows locate the reference PePSs gathered in the feature
vectors of Table 1, where positions are transformed into the SAR azimuth slant-range grid according to the user incidence and bearing angles.
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Figure 6: 3D scattering maps retrieved with PolInSAR for urban simulations (φ= 60◦, β= 190◦). Bold and normal numbers indicate
measured and expected heights for the highlighted scatterers. Model and data coregistration is made with a set of reference model points
and imaging geometry.

urban targets, the study is in a preliminary stage and some
guidelines for specific applications can be only provided.

5.1. Ship targets: VCA algorithm

The operating principle of VCA lies in analyzing the input
PolInSAR dataset with the quad-pol Pauli vector (due to
the fact that Pauli decomposition is a complete represen-

tation, the same simple mechanisms are isolated in any
basis, e.g., linear or circular). This leads to three different
interferograms (one per each Pauli mechanism), from which
local maxima are isolated. All of them are combined in
all possible permutations building estimated feature vectors
with different lengths. These vectors are then correlated
with the reference ones associated with specific ships, whose
relative distance is quantified by a similarity parameter, S,
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Figure 7: Scheme of the two-scale sea surface model.

Table 3: Scenario configurations for simulations in Section 4. Sea
parameters are hl = 1.5 m, hs = 0.1 m, λl = 100 m, λs = λ/(2 sinφ).

Scenario Bearings Motions Sea surface

0 [295 : 10 : 355]◦ No No

1 [295 : 10 : 355]◦ Table 4 No

2 [295 : 10 : 355]◦ No Two-scale

3 [295 : 10 : 355]◦ Table 4 Two-scale

Table 4: Rotational motions in the scenarios defined in Table 3.
First-order angular velocities are expressed in rad/s.

β δ̇roll δ̇pitch β δ̇roll δ̇pitch

295 −1.56 −0.26 335 −0.98 −1.16

305 −1.43 −0.52 345 −0.76 −1.32

315 −1.32 −0.76 355 −0.52 −1.43

325 −1.16 −0.98 — — —

based on an Euclidean norm [7]. The result is a quantitative
manner for identifying the imaged ship with one of those
within the available pattern base.

VCA performance is evaluated with a set of simulations
similar to those of Figure 5. The same X band sensor has been
used for a perpendicular baseline of B⊥ = 30 m and φ = 20◦,
and a resolution of 2.3 m in azimuth and 1.3 m in range [7].
The scenario considers the three types of ships for bearings
ranging from 295 to 355 in steps of 10 degrees, surrounded
by sea surface and experimenting ship motions. On the one
hand, sea clutter is modeled with a two-scale approach for
which a specific height profile is applied to the points of a
dielectric discrete surface [17, 37–39]. The adopted complex
dielectric permittivity is ε = 75 − j·27, which corresponds
to sea water with salinity of 35 psu and temperature of 25C
[40, 41]. On the other hand, rotational and translational
motions during image acquisition are considered by rotating
the CAD model at each azimuth position. In real scenarios,
ship motions can lead to important image distortions that are
characterized by azimuth shifts. They normally cause notable
geolocation errors and signature shape distortions [9, 42]. All
environmental conditions are summarized in Tables 3 and 4.
Sea main parameters are described in Figure 7, and pitching
and rolling angular velocities are defined counterclockwise
with respect to the rotation axis [9]. In all cases, ocean waves
travel parallel to the ship from stern to bow.

Table 5 shows the similarity table for the specified
bearings (the remaining ones provide similar results). They
gather the similarity values related to each feature vector

Table 5: VCA similarity values, 0 < S < 1, retrieved for the X band
PolInSAR simulations with sea and ship motions.

β= 295◦|β= 315◦ SPApat ICEpat FERpat

Processing SPA 0.57|0.44 0.15|0 0|0.25

Processing ICE 0.1|0.7 0.8|0.44 0.1|0.25

Processing FER 0.21|0 0.3|0 0.69|0.56

when each ship is processed in the given observation
conditions. As observed, all ships are well identified in
almost all situations preserving a reasonable identification
confidence against strong clutter. Two items are important:
(1) the azimuth shifts help in some cases to improve
the identification capability; (2) sea clutter appears to
be the most adverse factor dropping the identification
confidence. Specially adverse is for target j = S1whose
lack of PePSs in the first Pauli channel makes the presence
of the sea, with dominating sphere-like behaviors, increase
the confusion with respect to the remaining ships. In
general terms, VCA appears to be reliable enough as to
consider its application in real scenarios. Further simulation
studies give confidence to these asseveration and future
measurement campaigns, which should try to provide the
required framework for making the proper tests.

5.2. Urban targets: data interpretation

Section 4.2 has shown that the proposed model of complex
targets may be useful for complementing single-pol subsi-
dence studies, and may help in their possible migration to
PolSAR systems (rather than developing classification). In
this sense, the main advantage is the possibility to predict
for which situations and geometries PePSs can be observed
and considered as reliable guide scatterers for deformation
studies.

Historically, urban applications have been related to
orbital monitoring, because the velocity of changes can be
assumed by the revisiting time of satellites, and historical
databases for almost the same imaging geometry can be built.
As a result, most geometries are expected to be imaged for
a specific set of well-defined observation parameters and,
hence, target model can be defined in urban environments as
in ships. The only consideration is that feature vectors should
meet the imaging geometries of current sensors rather than
being expressed in terms of solid or radar aspect angles.
In this context, feature vectors take sense, which may help,
for example, to predict where the guide scatterers may be
located. Such result would give a complementary reliability
estimation of subsidence measurements, as well as refining
and making the searching criteria more efficient.

6. CONCLUSION

This paper has presented a new modeling methodology
for the SAR signatures of complex targets. The analysis of
stacks of simulated images related to diversified scenarios,
sensors, and types of targets is used to look for certain
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reference scatterers (PePSs). Such scatterers accomplish a
set of conditions focused to assure the discrimination
among different types of geometries. Their 3D position and
polarimetric scattering mechanism conform the bases of the
model feature vectors, which allows to link the reflectivity
information of SAR images with the macroscale structure of
targets.

One of the main advantages of the proposed modeling
approach is the minimization of the amount of real images
required for testing the model. Certainly, simulated images
can allow, in a first stage, the generation of preliminary
version of models with reduced costs. Following this, these
results would be used to define adequate measurement
campaigns and model tests, which can lead to more refined
solutions. In the current work, the first step has been tackled
with the SAR simulator GRECOSAR, which has appeared to
be an efficient tool for such scattering analysis.

GRECOSAR has been used to generate scattering maps
for three types of ships and two types of buildings. The
images have shown that PePS isolation is possible, but with
different scattering sensitivity in both types of targets. While
the same feature vector is valid for ships along a large set
of observation conditions, buildings have to be identified
with different vectors. The reason is their higher structure
complexity and lack of symmetry.

The analysis of these results in SAR images has con-
firmed that the current model can be useful for different
applications. In the case of ships, classification techniques
may benefit as target discrimination can be reached via a
quantitative and robust manner. This has been shown by
presenting the novel VCA method, which allows, according
to tests performed in simulated scenarios, high identification
ratios even against sea clutter and ship motions. In the
past, these items have become important limitations for
classical methods. For urban scenarios, the current model
is useful for fixing structures which are potential candidates
for use in subsidence applications. Improved interpretation
of interferometric data is also an important item, which may
benefit the development of height profiles or better real-data
analysis.

Therefore, the scattering-based model seems viable for
ships and urban-like targets. Its exploitation in SAR imagery
needs, however, from PolInSAR sensors with recommended
resolutions lower than 3 m so that PePSs can be properly
isolated. In the case of ships, single-pass modes are very
demanding as it is not clear whether satellite-based solutions
could be someday available. On the contrary, just launched
designs as TerraSAR-X and Radarsat-2 can provide repeat-
pass capabilities useful for urban applications. Future works
should devote efforts for evaluating the model in real images
so that definitive confidence to the model and related
applications can be reached.
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1. INTRODUCTION

In this paper, we review the problem of detecting the
presence of a ground moving target and estimating its radial
velocity by means of along-track inteferometric synthetic
aperture radar (AT-InSAR) systems, mounted on moving
platforms. This kind of systems can be used, for example, for
continuous (day and night and with any weather condition)
traffic monitoring [1, 2].

The detection of moving targets on the ground by means
of radar systems is addressed in literature as ground moving
target indication (GMTI). GMTI is a very difficult problem
due to the difficulty of separating the signal returned
from a moving target from the stationary background
(clutter) [3, 4]. Several methods, based on very different
approaches, have been proposed in literature. In some of
them, radar detection of moving targets on the ground is
accomplished by enhancing the target Doppler signature
against the competing ground clutter returns. Recent clutter
suppression techniques use space-time adaptive processing
(STAP) [5–7], requiring more than two channels, and time-
frequency processing [8], requiring high pulse repetition

frequency (PRF) values. While these techniques are effective
in improving the detection of fast targets, for slowly moving
targets the signal from clutter separation is more critical. In
particular, clutter reduction becomes more critical when the
Doppler frequency shift due to the target radial velocity falls
inside the clutter azimuth bandwidth. Since such bandwidth
increases with the ratio between the platform velocity and the
azimuth antenna dimension, which in satellite-borne case is
high, the range of target velocities values which are critical
to be estimated can be wide in the case of satellite systems.
Moreover, spectral separation requires increased PRF values,
which are not desirable for the very high data rates and PRF
ambiguity problems [9].

Other systems that can be used to detect ground moving
target are the AT-InSAR systems, initially introduced to study
ocean currents [10, 11], and then used to detect slow moving
objects (ships, ground vehicles) [12–15] and to estimate
their radial velocity. AT-InSAR systems use more than one
SAR antenna (typically two), mounted on the same platform
and displaced along the platform moving direction. The
information about the radial velocity of the moving target
is estimated from the interferometric phase of the images.
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The accuracy obtained for the estimation of ocean
currents velocity using airborne AT-InSAR sensors can be
of the order of few centimeters per second [10]. These
very satisfactory results can be obtained since the two
images acquired with a negligible time delay are very highly
correlated and all the scatterers within a resolution cell move
with the same velocity. In this case, the moving target is an
extended one (the sea surface), while the stationary clutter
is absent. The only disturbing signal to be considered is the
additive thermal noise.

Differently from the case of ocean currents estimation,
when AT-InSAR techniques are applied to the detection
and tracking of small targets, such as vehicles, the presence
of stationary clutter has to be considered. This heavily
affects the interferometric phase values and their statistical
distribution, thus degrading the performance of the moving
target detection and of the radial velocity estimation.

For the application of statistical techniques to the
detection and estimation steps, it is necessary to compute
the statistical distribution of the measured interferometric
phases. In the stationary image pixels, the interferometric
phase reduces to only phase noise, whose statistical distri-
bution is well known and depends on the interferometric
signals correlation (the coherence) [16]. In the image pixels
where a moving target is present, the phase statistical
distribution diverges from that of stationary pixels, and
strongly depends on the target velocity and on the statistical
model assumed for the target radar cross-section (RCS). The
higher the velocity, the larger the deviation, with respect to
the stationary case. Different models can be assumed for the
radar response of the target. In the following we will adopt
two different RCS models: a deterministic model [13], and a
zero mean Gaussian model [12], underlying differences and
analogies.

Another problem to be taken into account is that the
interferometric phase is measured in the interval (−π,π],
then a phase unwrapping (PhU) operation is required
to retrieve the target radial velocity. The PhU operation
presents solution ambiguities when only one phase inter-
ferogram (single-channel) is used. It has already been
shown in [13, 15] that the joint use of multichannel
configurations (derived from the use of more than two
interferometric images acquired with different baselines or
at different working frequencies) and of classical statistical
estimation techniques allows to obtain very accurate solu-
tions and to overcome the limitations due to the presence
of ambiguous solutions, intrinsic in the single-channel
configurations.

In this paper, we show that AT-InSAR systems based on
the use of more interferograms (multichannel) acquired with
frequency or baseline diversity outperform conventional AT-
InSAR systems using a single interferogram. In particular,
we show that even a dual-baseline system allows achieving
detection and estimation performance much better than
the one obtained by a single-baseline system. The results
obtained in the estimation process are partially a review
of what we have presented in [15]. The analysis, in terms
of moving target detection and radial velocity estimation
accuracy, is carried out varying the main AT-InSAR system
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Antenna 1
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trajectory

Figure 1: Along-track interferometry system geometry.

and target parameters, such as velocity values, signal-to-
clutter ratio (SCR), defined as the ratio between the power
received from the moving target and the background clutter
power, and clutter-to-noise ratio (CNR), defined as the
ratio between the power received from the background
clutter and the additive thermal noise power in the receiver.
The performances presented in the following sections have
been obtained considering two RCS models: deterministic
and Gaussian. Finally, a discussion about robustness of
the proposed model with respect to uncertainty on system
parameters has been also included.

2. ALONG-TRACK INTERFEROMETRIC SAR SYSTEMS

Consider an AT-InSAR system constituted by two antennas
moving along the direction x (azimuth) (see Figure 1), and
suppose that the two antennas are separated by the baseline b
along the azimuth direction x, such that b � H , where H is
the platform height. Assume a target on the ground moving
with a constant velocity vT = vTxx + vTrr, where vTx and vTr
are the velocity components along the azimuth and the line
of sight direction (range) r, respectively.

Both azimuth and range velocity components change the
Doppler history of the moving target (but in different ways)
in comparison to the stationary background. In order to
show this behavior, we have simulated an SAR image of a
stationary target shown in Figure 2(a) (the horizontal axis
represents azimuth and the vertical axis represents range).
In Figures 2(b) and 2(c), the images of a target moving
with only radial velocity and with only azimuth velocity
are shown, respectively. Finally, the image in Figure 2(d) is
related to a target moving with both radial and azimuth
velocity components. We can observe that the radial velocity
component vTr produces an azimuth displacement of the
target, due to a Doppler offset (see Figures 2(b) and 2(d)).
The azimuth velocity component vTx, instead, produces a
Doppler slope change [3, 5] causing a defocusing in the
moving target image (see Figures 2(c) and 2(d)) that can be
compensated by using autofocusing techniques [17]. These
effects can be exploited to separate moving target from
stationary background by means of Doppler filtering [4].
However, Doppler filtering is effective for fast moving targets



Alessandra Budillon et al. 3

and requires PRF values much higher than the Doppler
bandwidth for making available a certain visibility region
in the frequency domain and to achieve a consistent clutter
reduction.

To avoid excessive data rates and the PRF ambiguity
problem [9], it is desirable to work with low PRF values. In
this case, along-track interferometric systems allow the radial
velocity estimation exploiting phase information.

Suppose that |vTx|, |vTr| � |vP|, where vP = vPx is the
velocity of the flying platform and H � X and H � W ,
where X and W are the antenna footprint dimensions. Let
Z1 the complex SAR image be acquired by the first antenna
and let Z2 the complex SAR image of the same ground
region be acquired by the second antenna (we understand
the dependence on the pixel coordinates).

The two SAR complex images can be modeled as follows:

Z1 =
{
Zc1 +N1 + ZT1 in presence of moving target,

Zc1 +N1 in absence of moving target,

Z2 =
{
Zc2 +N2 + ZT2 in presence of moving target,

Zc2 +N2 in absence of moving target,
(1)

where Zc1 and Zc2 are the clutter signals acquired by the
two antennas, N1 and N2 represent the thermal noise at the
receivers, and ZT1 and ZT2 denote the SAR images of the
moving target produced by the two interferometric antennas.
The SAR target images will exhibit a phase factor related to
the radial velocity [10]:

ZT1 = A1, ZT2 = A2e
− jφv , (2)

where A1 and A2 are the target complex images and φv
is the nominal ATI phase which in the above-mentioned
assumptions is given by

φv =
〈

4πb
λ

vr∣∣vP∣∣
�

2π

=
〈

4πb
λ
ur

�
2π

, (3)

where 〈·〉2π is the modulo 2π operation, λ is the wavelength
corresponding to the working frequency f = c/λ of the
SAR system, and ur = vr/|vP| is the normalized radial
velocity, where the moving target is present vr /= 0 and φv /= 0.
From (3), it follows that there are several velocity values
which produce the same nominal ATI phase. The difference
between two velocity values that produce the same nominal
ATI phase is 2kur,amb, where k is an integer and ur,amb =
±λ/(4b) is the ambiguity velocity value corresponding to a
nominal ATI phase equal to ±π.

The SAR interferometric phase signal Φ is

Φ = ∠Z1Z
∗
2 , (4)

where ∠ denotes the principal phase value and∗ denotes the
conjugate.

Note that the measured interferometric phase φ differs
from the nominal ATI phase φv due to the presence of clutter
and noise signals.

It is well known that the SAR clutter signals Zc1 and
Zc2 can be assumed as random processes, whose real and

imaginary parts are mutually uncorrelated Gaussian signals,
with zero mean and same variance, since they are resulting
from the superposition of the signals backscattered from
many scattering centers lying in the resolution cell. N1 and
N2 can be modeled as two additive (to the clutter) zero mean
Gaussian complex processes independent of each other, and
independent on the clutter.

Then, when the moving target is absent, the two pro-
cesses Z1 and Z2 are Gaussian with zero mean and correlation
coefficient γ given by [18]

γ = E
[(
Z1 − E

[
Z1

])(
Z2 − E

[
Z2

])∗]
√

var
[
Z1

]
var

[
Z2

]

= E
[(
Zc1 +N1

)(
Zc2 +N2

)∗]
√
E
[∣∣Zc1 +N1

∣∣2]
E
[∣∣Zc2 +N2

∣∣2]
= γc(

1 + σ2
n/σ2

c

) = γc(
1 + 1/CNR

) ,

(5)

where E[ ] denotes the expectation operation, γc is the clutter
coherence, representing the correlation between images Zc1
and Zc2, and CNR is given by

CNR = σ2
c

σ2
n

, (6)

where 2σ2
c and 2σ2

n are the clutter and thermal noise powers
(the factor 2 is due to the sum of the powers of the real and
imaginary parts).

In ATI-InSAR space applications, γc is usually assumed
to be equal to one [12], since the two images are acquired
from the same antenna position with a time lag lower than 1
millisecond. In the case of bistatic systems, as next generation
satellite clusters, clutter coherence can, instead, assume
values smaller than 1. Moreover, a parasitic cross-track
baseline may introduce a height-induced interferometric
phase that needs to be taken into account. Anyway, it can be
partly compensated by exploiting a priori DEM knowledge.

In absence of targets, the pdf of the interferometric phase
can be expressed in closed form as [16]

fΦ
(
φ;φ0, γ

)

= 1
2π

1− |γ|2
1− |γ|2cos2

(
φ − φ0

)

×
{

1 +
|γ| cos

(
φ − φ0

)
cos−1

[− |γ| cos
(
φ − φ0

)]
[
1− |γ|2cos2

(
φ − φ0

)]1/2

}
,

φ ∈ (−π,π],
(7)

where φ0 is the phase of γ, that in this case is equal to zero,
being the coherence given by (5) real-valued since the real
and imaginary parts of the clutter signal are uncorrelated.

When the moving target is present, two different statisti-
cal models for ZT1 and ZT2 can be considered as follows:

(1) deterministic model: the target RCS is assumed to be
deterministic;

(2) Gaussian model: the target RCS is assumed to be
Gaussian distributed with zero mean.



4 International Journal of Navigation and Observation

R
an

ge

Azimuth

(a)

R
an

ge

Azimuth

(b)

R
an

ge

Azimuth

(c)

R
an

ge

Azimuth

(d)

Figure 2: (a) Stationary target, (b) target moving with radial velocity (vTr = 27.4 Km/h), (c) target moving with azimuth velocity (vTx =
−109.6 Km/h), and (d) target moving with both radial and azimuth velocities (vT = vTxx + vTrr).

2.1. Statistical distribution of AT-InSAR phase for
deterministic RCS

A deterministic model is applicable to the case of a target
whose RCS can be expressed by a deterministic function
of the incidenceangle. This model applies to canonical
scattering objects (such as corner reflectors, spheres), and
to complex or extended targets whose RCS does not rapidly
change between the interferometric acquisitions. Since the
RCS value of a given target mainly depends on incidence
angle and target aspect angle, which does not change in
the small time required to the SAR antenna to cover the
baseline length, the target RCS can be usually assumed to be
constant in the interferometric images. Such value influences
the signal-to-clutter ratio, and is not a priori known. This
is the model to be used in the interferograms simulation. It
can be adopted also in the velocity estimation procedure if a
precise knowledge of the RCS value is available. An accurate
knowledge of the average RCS values can be available only
for accurately characterized targets [19]. Moreover, this case
provides the reference pdfs of the interferometric phases
produced by a given complex target of known RCS. In this
assumption, we can put in (2) A1 = A2 = A, with A a
deterministic constant. Then, the two processes Z1 and Z2

are Gaussian, with nonzero mean (due to the presence of the
target) and the target RCS can be described in terms of |A|2.

The first-order probability density function (pdf) of the
interferometric phase Φ can be, in this case, numerically
computed via Monte Carlo techniques, since no closed form,
so far, has been found. The pdf depends on the clutter
coherence coefficient γc, on the target radial velocity (as
shown by (2) and (3)) and on CNR and SCR, where CNR
is given by (6) and SCR is given by

SCR = |A|2
2σ2

c
, (8)

Table 1: Main parameters of TerraSAR-X system.

TerraSAR-X

Height 514.8 Km

Platform velocity 7.6 Km/s

Along-track antenna dimension 4.8 m

Across-track antenna dimension 0.8 m

Along-track baseline 1.2 m

Working frequency X band—9.65 GHz

Wavelength 3.12 cm

Range bandwidth 150 MHz

where |A|2 is the signal power. In this case, the SCR values
do not affect the coherence γ between the signals Z1 and Z2,
which is still expressed by (5), but affect the shape of the
pdf, which cannot be expressed by (7). Figure 3 shows the
dependence of the pdf fΦ(φ) on SCR, CNR, and ur in the
case of a deterministic target, evaluated for γc = 1 and using
the TerraSAR-X parameters [20] of Table 1. In Figure 3(a),
the pdf shape is reported for the values CNR = 10 dB and
SCR = 0, 10, and 20 dB and a radial normalized velocity
ur = 3.25 × 10−3, corresponding to the nominal ATI phase
value φv = π/2. Figure 3(b) is related to the values SCR =
10 dB and CNR = 0, 10, and 20 dB and to the same value of
ur . In Figure 3(c), the pdfs are plotted for SCR = 10 dB and
CNR = 10 dB and by varying the normalized velocity ur .

Figure 3 shows that the measured phase pdfs are strongly
dependent on SCR values and assume a peak value in a
position which, for low SCR, is different from the nominal
ATI phase value (3), that in this case is given by π/2 and is
highlighted with a dot. The dependence on CNR is, instead,
less pronounced. The sensitivity of the pdfs shape with
respect to ur is significant, and the corresponding variances
gradually increase by increasing ur .
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Figure 3: (a) Pdf of the interferometric phase in presence of a deterministic target moving with a radial velocity such that φv = π/2 (the
dot on the φ axis), for γc = 1, CNR = 10 dB, and SCR = 0, 10, 20 dB, (b) SCR = 10 dB and CNR = 0, 10, 20 dB, and (c) SCR = 10 dB,
CNR = 10 dB, for seven radial velocities (urk = (k − 1)/6 ur,amb, k = 1, . . . , 7).

2.2. Statistical distribution of AT-InSAR phase for
Gaussian RCS

A Gaussian model is applicable when the RCS of the targets
A1 and A2 and then the signals ZT1 and ZT2 are assumed
to be zero mean (complex) Gaussian processes, as in [12].
This model allows to take into account the lack of knowledge
of the target RCS values (that can be described in terms of
variance σ2

T) and then of the SCR. It applies to complex
or extended targets which can be considered to consist of
a large number of isotropic scattering elements, randomly
distributed in a region whose dimensions are large compared
to the wavelength of the illuminating radiation, and all
contributing to the overall signal with the same weight [21].
When the number of the elementary scatterers in which
the target can be decomposed is small and/or some of
them are dominant with respect to the others, the pdf of
the backscattered signal is not zero mean Gaussian and is
difficult to derive [22]. However, even if this model could
not be always appropriate for the description of the signal
intensity distribution, it has the advantage of providing an
analytical form for the interferometric phase pdf, which
in many cases well approximates the true distribution.
Moreover, as it will be shown in the next section, the
adoption of a Gaussian model for the moving target RCS
instead of the actual deterministic model will not impair
significantly the GMTI performance.

Since the signals Z1 and Z2 acquired by the two
interferometric antennas are still zero mean Gaussian signals,
as happens when the target is absent, the pdf of the
interferometric phase can be expressed in the closed form
given by (7), where γ is the coherence coefficient between
the images Z1 and Z2, and φ0 is the phase of γ. Now, the
expression of γ is changed with respect to (5) and is given
by [12]

γ = E
[(
Zc1 +N1 + ZT1

)(
Zc2 +N2 + ZT2

)∗]
√
E
[∣∣Zc1 +N1 + ZT1

∣∣2]
E
[∣∣Zc2 +N2 + ZT2

∣∣2]
= γcσ2

c + σ2
TγT

σ2
c + σ2

n + σ2
T

= γc + γTSCR
1 + 1/CNR + SCR

,

(9)

where SCR = σ2
T/σ

2
c , and γT is the target (complex)

coherence and depends on the target velocity through the
nominal phase (1):

γT =
E
[
ZT1Z

∗
T2

]
√
E
[∣∣ZT1

∣∣2]
E
[∣∣ZT2

∣∣2]
= E

[
A1A

∗
2

]
√
E
[∣∣A1

∣∣2]
E
[∣∣A2

∣∣2]e jφv = γT0e
jφv ,

(10)

where γT0 is the target coherence for zero radial velocity,
equal to one. It has to be noted that φ0, the phase of γ, is
different from φv.

Figure 4 shows the dependence of the pdf fΦ(φ) on SCR,
CNR, and ur in the case of a Gaussian distributed target,
evaluated for γc = γT0 = 1 and using the TerraSAR-X
parameters [20] of Table 1. In Figure 4(a), the pdf shape is
reported for the values CNR = 10 dB and SCR = 0, 10, and
20 dB and a radial normalized velocity ur = 3.25 × 10−3,
corresponding to the nominal ATI phase value φv = π/2.
Figure 4(b) is related to the values SCR = 10 dB and CNR =
0, 10, and 20 dB and to the same value of ur . In Figure 4(c),
the pdfs are plotted for SCR = 10 dB and CNR = 10 dB and
by varying the normalized velocity ur .

Figure 4 shows that also in this case the measured phase
pdfs are not centered on the noise-free value highlighted with
a dot and given by (3), and that their shape strongly depends
on SCR and weakly on CNR. Moreover, we note that now the
pdfs have always a behavior that is symmetrical around the
phase φ0, contrarily to what happened in the deterministic
case (see Figure 3). The sensitivity of pdfs shape with respect
to ur is similar to the deterministic case and also in this case
the corresponding variances gradually increase by increasing
ur .

However, for high SCR (strongly reflective target), the
pdfs derived in the two cases are quite similar, as shown in
Figure 5, where we have reported the pdfs related to the two
models, (a) with SCR = 0 dB, (b) SCR = 10 dB, and (c)
SCR = 20 dB.



6 International Journal of Navigation and Observation

0

0.5

1

1.5

2

2.5

3

3.5

4

f Φ
(φ

)

−3 −2 −1 0 1 2 3

φ

SCR = 0 dB

SCR = 10 dB

SCR = 20 dBCNR = 10 dB
Gaussian target

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

f Φ
(φ

)

−3 −2 −1 0 1 2 3

φ

CNR = 0 dB

CNR = 10 dB
CNR = 20 dB

SCR = 10 dB
Gaussian target

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

f Φ
(φ

)

−3 −2 −1 0 1 2 3
φ

ur7 = ur,amb

ur1 = 0CNR = 10 dB
SCR = 10 dB
Gaussian target

(c)

Figure 4: (a) Pdf of the interferometric phase in presence of Gaussian target moving with a radial velocity such that φv = π/2 (the dot on
the φ axis), for γc = 1, CNR = 10 dB and SCR = 0, 10, 20 dB, (b) SCR = 10 dB and CNR = 0, 10, 20 dB, and (c) SCR = 10 dB, CNR = 10 dB,
for seven radial velocities (urk = (k − 1)/6 ur,amb, k = 1, . . . , 7).

Moreover, the availability of an analytical expression for
the pdf and for the coherence (see (7) and (10)) allows
to easily discuss the effects that CNR, SCR, and radial
velocity variations have on the interferometric measured
phase distribution. First of all, we note that the pdf behavior
changes according to the changes of |γ| and φ0. In particular,
when |γ| decreases, the spreading of the measured phase
values around φ0 increases, while the changes in the values
of φ0 determine a simple circular shift of the curves. The
first effect affects the velocity estimation accuracy, while the
latter introduces a phase polarization φ0-φv, which, if known,
can be implicitly taken into account and compensated in the
velocity estimation procedure.

We can easily analyze the pdf dependence on the system
and target parameters in three limit cases.

(i) Strong targets

SCR � 1 and CNR � 1; then, from (9) and (10), |γ| ∼= |γT0|
is independent on the velocity value and φ0

∼= φv, that is, the
pdf maximum position does not depend on SCR and CNR.
For high SCR values we expect that the velocity estimation
accuracy does not depend on the velocity value.

(ii) Camouflaged targets

SCR ∼= 1, CNR � SCR, and assume γc ∼= γT0; then, from (9)
and (10), γ ∼= γc(1 + exp( jφv))/2 = γc exp( jφv/2) cos(φv/2).
Consequently, |γ| ∼= |γc cos(φv/2)| and φ0

∼= φv/2. In
this case, the pdf spreading and the phase polarization are
strongly dependent on the velocity value.

(iii) Weak targets

SCR � 1; then, from (9) and (10), γ ∼= γc/(1 + CNR). In
this case φ0

∼= 0, the clutter term is dominant, and the pdf of
the phase is in practice independent on the velocity value. As
expected, the velocity estimation problem cannot be solved
for very low SCR values.

The behavior of |γ| and φ0 versus SCR using the
TerraSAR-X parameters, with φv = π/2 and CNR values

of 10, 20, and 30 dB, is shown in Figure 6. Note that φ0

is independent on CNR for the considered values of SCR,
while |γ| is practically independent on CNR for SCR values
larger than 0 dB. Then, we expect that for SCR values greater
than 0 dB, measurement errors on CNR will not influence
significantly the velocity estimation accuracy.

Note further that, for small changes of SCR around the
value SCR = 0 dB (SCR = 1), the curves exhibit strong
variations. This implies that small errors in the knowledge
of the SCR can affect the velocity estimation accuracy.

For the deterministic model the pdf is not given by
(6), and there is not a direct relation between |γ| and the
pdf spreading, and between φ0 and the position of the pdf
maximum. Even so, the general qualitative behavior of |γ|
and φ0 with respect to changes of SCR, CNR, γc, and γT0 is
similar to the one obtained in the Gaussian case.

3. MULTICHANNEL ALONG-TRACK
SAR INTERFEROMETRY

The along-track interferometric phase depends on radial
velocity, baseline, and wavelength as shown in (3). Phase
values outside interval (−π,π) wrap mod(2π), so that such
values are indistinguishable from the ones differing for 2π
multiples. The same holds for the corresponding radial
velocity values. The radial velocity ambiguity value ur,amb =
±λ/(4b), corresponding to the interferometric phase ±π, is
then the maximum velocity value that can be unambiguously
detected. Moreover, in the realistic case of noisy data, this
ambiguity problem can be present also for normalized radial
velocities smaller than ur,amb. Such effect can be particularly
critical either for detection applications or for velocity
estimation ones.

A method for overcoming these limitations, restoring the
solution uniqueness, consists in exploiting different datasets
acquired with different baselines, or with frequency diversity
[13, 15].

Different baseline datasets (at least two) can be generated
when the AT-InSAR system is constituted by more than
two antennas (at least three). Different frequency datasets
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Figure 5: Pdfs of the interferometric phase in presence of a deterministic and a Gaussian target moving with a radial velocity such that
φv = π/2 (the dot on the φ axis), for γc = 1CNR = 10 dB and (a) SCR = 0 dB, (b) SCR = 10 dB, and (c) SCR = 20 dB.
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Figure 6: TerraSAR-X parameters and Gaussian target model: (a) |γ| versus SCR, and (b) φ0 versus SCR, with CNR = 10 dB (dashed line),
CNR = 20 dB (solid line), CNR = 30 dB (dotted line), and γc = γT0 = 1. Note that the φ0 curves obtained for different values of CNR are
coincident.

can be generated in two ways. In the first, we can suppose
that the SAR sensors can operate at different working
frequencies, for instance in X and C bands simultaneously.
In the second, the multifrequency interferograms can be
obtained by subband filtering of the interferometric images
splitting the overall bandwidth as shown in Figure 7.
Azimuth band partition produces the conventional azimuth
looks, while range band partition produces different range
looks. Note that this second partition generates looks with
a small frequency diversity. Their generation is finalized
to phase noise suppression as in conventional multilook
procedure.

We will refer in the following to multifrequency and/or
multibaseline configuration as multichannel configuration.
The moving target detection and the radial velocity estima-
tion are performed from the knowledge of such multiple
wrapped interferometric phase (statistically independent)
signals obtained with different baselines or with different
working frequencies. It has to be noted that when the
channels originate by band partition, the multichannel

approach has a drawback, as the SCR is reduced, as we will
show in the following.

The CNR is given, in the case of a single-look SAR image,
by

CNRSLook = PClutter

PNoise

=
(
KaKr

)2(
PTxGAλ2/(4π)3R4

)(
δxδrσ0

)
KaKrPNoise

,

(11)

where Ka and Kr are the integratio samples along the
azimuth and the range direction, respectively, PTx is the
power transmitted by the SAR antenna, GA is the radar
antenna gain, R is the distance between the SAR antenna
and the ground region where this ratio is evaluated, σ0 is the
normalized radar cross-section relative to the background
(the clutter), δx and δr are the spatial resolutions of the
images, and PNoise is the thermal power at the receiver. Note
that the product (δxδrσ0) represents the RCS of a clutter
resolution cell.
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Figure 7: Partition of the dual-band spectrum of a hypothetical
SAR interferometric system. The two bands BI and BII are
subband filtered into Nr = 8 range subband (central frequencies
v1, v2, . . . , v8), and the Doppler band Bd into Na = 4 azimuth
looks (L1,L2,L3,L4). Each (n = 1, . . . ,N = Na × Nr = 32)
identifies a portion of the 2D frequency domain not overlapping
with the others. Absence of overlapping guarantees the statistical
independence of interferograms.

The SCR is given, in the case of a single-look radar image,
by

SCRSLook =
PTarget

PClutter
=

(
KaKr

)2(
PTxGAλ2/(4π)3R4

)
σTarget(

KaKr
)2(

PTxGAλ2/(4π)3R4
)(
δxδrσ0

)
= σTarget(

δxδrσ0
) ,

(12)

where σTarget is the moving target RCS.
In the case of a multichannel system, two cases have to be

distinguished: the case where more antennas (multibaseline)
or more working frequencies are used, and the case where
the overall system bandwidth is partitioned into different
subbands (multilook). In the first case, the spatial resolution
does not change, and supposing that the integration samples
are the same for each channel, the CNR and the SCR values
do not change. In the latter case, as the band partition
reduces the spatial resolution, and supposing that Na and
Nr are the number of azimuth looks and range looks,
respectively, the CNR and the SCR values change in

CNRMLook

=
(
KaKr/NaNr

)2(
PTxGAλ2/(4π)3R4

)(
NaδxNrδrσ0

)
(
KaKr/NaNr

)
PNoise

= CNRSLook,
(13)

SCRMLook =
σTarget(

NaδxNrδrσ0
) = 1(

NaNr
)SCRSLook. (14)

The multichannel (derived by band partition) along-track
SAR interferometry system scheme is depicted in Figure 8.

4. MULTICHANNEL AT-InSAR MOVING
TARGET DETECTION

The interferometric phase Φ is distributed according to a pdf
depending on several parameters:

fΦ
(
φ | ur ; λ, b, γc, SCR, CNR

)
. (15)

Of course, in the absence of a moving target (ur =
0, and SCR = 0), Φ reduces to pure phase noise.

A moving target can be detected by comparing the
interferometric phase Φ with a threshold φT in the interval
(−π,π]. We can evaluate the detection probability (PD) and
false alarm probability (PFA) in the following way:

PD =
∫ −φT
−π

fΦ
(
φ | ur ; λ, b, γc, SCR, CNR

)
dφ

+
∫ π

φT
fΦ

(
φ | ur ; λ, b, γc, SCR, CNR

)
dφ,

PFA = 2
∫ π

φT
fΦ

(
φ | 0; λ, b, γc, CNR

)
dφ.

(16)

The performance of the detection process is, as expected,
better for high values of SCR, that is, when the moving
targets power is significantly larger than the clutter power.
For moving targets mingling with the background clutter,
the detection capability worsens, so that if one wants low
values of PFA, the PD can decrease to very low values, not
consistent with the applications [23]. This approach, based
on a single interferogram value, does not provide the desired
results in terms of simultaneous low values of PFA and high
values of PD. An alternative improved detection strategy
is based on the use of multichannel interferograms. After
the application of the threshold to each channel, a binary
integration procedure can be adopted to combine single-
channel decisions.

We use a hypothetical dual-baseline system working at
the frequency f = 9.65 GHz, with three antennas separated
by the two baselines b1 = 1.2 m and b2 = 1.8b1 m. Both
interferometric signals are partitioned into 4 azimuth looks,
for a total of N = 8 channels. Note that the same effect
could be obtained with a dual frequency system, with a first
working frequency f1 and a second working frequency equal
to f2 = 1.8 f1 (e.g., C band and X band).

Suppose that the detection probability of one of the chan-
nels corresponding to the first baseline (or first frequency)
is equal to PD1, and that the detection probability of one of
the channels corresponding to the second baseline (or second
frequency) is equal to PD2; we can evaluate the probability
that the target is detected from (N/2 + j) channels ( j =
1, . . . ,N/2) on a total of N channels:

Pj =
N/2∑
k= j

⎡
⎢⎣
⎛
⎜⎝
N

2
k

⎞
⎟⎠PkD1

(
1− PD1

)N/2−k
⎤
⎥⎦

×

⎡
⎢⎢⎣
⎛
⎜⎜⎝

N

2
N

2
− k + j

⎞
⎟⎟⎠P

N/2−k+ j
D2

(
1− PD2

)k− j
⎤
⎥⎥⎦ .

(17)

We have developed two possible strategies and compared
them with the one based on a single interferogram. Strategy
1 consists in considering present the moving target when
the majority of the interferogram values are above prefixed
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Figure 8: Multichannel along-track SAR interferometry system scheme.

thresholds. We obtain the following estimated detection
probability:

PD>N/2 =
N/2∑
j=1

Pj . (18)

For the estimation of the false alarm probability, we have
used the same reasoning, using the single-channel false alarm
probabilities PFA1 and PFA2 in place of PD1 and PD2 in (17).

Strategy 2 consists in considering present the moving
target when more than 3/4 of the total interferogram values
are above prefixed thresholds. We obtain

PD>3N/4 =
N/2∑

j=n/4+1

Pj . (19)

In Figure 9, we have reported all the PD’s corresponding
to different operating conditions and in the case of the
deterministic model (the Gaussian model provides similar
results). We have reported also the estimation of PD adopting
Strategy 1 (dashed line) and Strategy 2 (solid line). The
single-channel detection probabilities are depicted with
dash-dotted and dotted lines. All the results refer to a moving
target with ur = 1 × 10−3, SCR = 10 dB, CNR = 10 dB, and
γc = 1. The PD’s have been plotted versus the velocity values
ur,T corresponding to the thresholds φT .

In Figure 10, we have reported all the PFA’s corresponding
to the same operating conditions, adopting Strategy 1

10−2

10−1

100

P
D

0 1 2 3 4 5 6

×10−3ur,T

Figure 9: PD’s adopting Strategy 1 (dashed line) and Strategy 2
(solid line), in presence of a moving target with ur = 0.001, SCR
= CNR = 10 dB, and γc = 1. Single-channel PD’s are depicted with
dash-dotted line (first baseline) and dotted line (second baseline).

(dashed line) and Strategy 2 (solid line). All the results are
evaluated in absence of a moving target and for CNR = 10 dB
and γc = 1.

In Figure 11, Strategies 1 and 2 are compared in terms
of PFA and PD. Following Strategy 2, it can be found that a



10 International Journal of Navigation and Observation

10−3

10−2

10−1

100

P
FA

0 1 2 3 4 5 6

×10−3ur,T

Figure 10: PFA’s adopting Strategy 1 (dashed line) and Strategy
2 (solid line), in absence of moving targets, CNR = 10 dB, γc =
1. Single-channel PFA’s are depicted with dash-dotted line (first
baseline) and dotted line (second baseline).
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Figure 11: PFA and PD adopting Strategy 1 (dashed line) and
Strategy 2 (solid line). ur = 1 × 10−3, SCR = CNR = 10 dB, and
γc = 1.

threshold exists where performances are quite good with PD
approaching 1 and PFA approaching 0.

Figure 11 has been plotted for a fixed velocity value
(ur = 1 × 10−3). When the velocity value changes,
the detection probability changes, while the false alarm
probability remains unchanged. In particular, considering
Strategy 2, in Figures 12(a) and 12(b) it can be appreciated
that, as expected, by increasing the velocity the detection
probability increases.

To better show this effect, the detection probability versus
velocity at fixed values of false alarm probability is shown in
Figures 13(a) and 13(b) for CNR = 10, γc = 1, with SCR = 10
(Figure 13(a)) and SCR = 20 (Figure 13(b)) for two different
fixed values of PFA(10−2 and 10−3).

It can be observed that in these examples a target can
be detected with probability approaching 1 starting from

normalized velocity values approximately equal to ur = 10−3,
also for PFA = 10−3. In this case, the phase thresholds
corresponding to ur = 10−3 and that guarantee PFA = 10−3

and PD ∼= 1 are φT1 = 4πb110−3/λ = 0.49 and φT2 =
4πb210−3/λ = 0.88. In general, the phase thresholds depend
on the minimum detectable velocity according to (3). The
velocities values that can be detected reduce significantly
when PFA increases, or when the target RCS increases.

5. MULTICHANNEL AT-InSAR MOVING TARGET
RADIAL VELOCITY ESTIMATION

As discussed in Section 2, the accuracy of the velocity
estimation, obtainable with a given AT-InSAR system con-
figuration, depends on the statistical model assumed for
the target image, on the target radial velocity, and on the
following parameters: SCR, CNR, γc, and γT0.

We have already presented the multichannel system
(multifrequency and/or multibaseline) configuration, pro-
viding the different phase measurements which are required
to find a reliable solution for the detection and estimation
problems [13, 15].

The ML estimation of the normalized radial velocity
from multichannel data is given by

ûr = arg max
ur

L
(
ur

)
,

L
(
ur

)= ∏
n=1,...,N
m=1,...,M

fΦ
(
φn,m | ur ; λn, bm, γc, γT0, SCR, CNR

)
︸ ︷︷ ︸

single channel likelihood function

,

(20)

where L(·) is the multichannel likelihood function, obtained
by multiplying the likelihood functions corresponding to the
central frequency of the subbands and/or to the different
baselines, and φn,m represent the wrapped phase values
relative to the N frequencies c/λn and to the M baselines
bm. The factorization (20) comes from the assumed statistical
independence of the multichannel interferograms.

We evaluate numerically the Cramer-Rao lower bound
(CRLB) of the estimated (normalized) velocity for the two
different target statistical models considered above, and we
estimate the target radial velocity using (20). We compare the
CRLB with the root mean square error (RMSE) values. It has
to be reminded that the CRLB represents the lower bound
for the variance of the estimated parameter (the normalized
radial velocity, in this case), whatever unbiased estimator
working on the available set of data (the wrapped phases)
may be considered [24].

We use the TerraSAR-X parameters introduced in
Table 1 for the numerical simulation, and we consider a
single-baseline system and a dual-baseline system (b1 =
1.2 m and b2 = 1.8b1 m), as in Section 4. For each baseline
we considered 2 subbands and 2 azimuth looks, in total
4 different channels [23]. For baseline b1 the maximum
radial velocity value that can be unambiguously detected is
|ur,amb1| = λ/(4b1) = 6.5 × 10−3 and for baseline b2 is
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Figure 12: PFA and PD adopting Strategy 2 for SCR = CNR = 10 dB, γc = 1, 0; (a) ur = 0.5× 10−3 and (b) ur = 1.5× 10−3.
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Figure 13: PD versus velocity for fixed values of PFA(10−2 and 10−3) for CNR = 10, γc = 1; (a) SCR = 10 and (b) SCR = 20.

|ur,amb2| = λ/(4b2) = 3.6 × 10−3. A correspondence table
between normalized and true radial velocity values in the
TerraSAR-X case is reported in Table 2.

The CRLB1/2 and RMSE values (in logarithmic scale) for
the deterministic case and for the Gaussian case, with γc = 1,
SCR = 0, 10, and 20 dB, CNR = 10 dB, and b1 = 1.2 m, are
reported in Figure 14. Of course, the SCR values are the ones
obtained after the subband filtering (14).

The CRLB values vary with the normalized velocity ur
to be estimated since the pdfs of the interferometric phase
change with it (see Figures 3(c) and 4(c)), as shown in
Section 2. In particular, in all cases considered, the CRLB
values increase with the increasing of velocity. Estimation of
velocity values is more accurate for small values of velocity
(the CRLB are lower), and less accurate when velocity
increases.

We observe also that, with the same SCR, CNR, and γc
values, the deterministic target model exhibits lower CRLB
values than the Gaussian model. This effect is due to the
different variance values corresponding to the deterministic
and Gaussian cases for the same SCR, CNR, and γc values
(see Figures 3(c) and 4(c)). The larger the variance (the larger
the phase noise), the larger the corresponding CRLB.

We observe further that in all considered cases the CRLB
values decrease by increasing SCR under the same CNR
and γc values. Then, as expected, velocity estimation is
more accurate when signal-to-clutter ratio is larger. It can
be noted that the RMSE values for velocities far from the
ambiguity value are only “slightly” larger than the CRLB1/2

ones and the RMSE values obtained using the deterministic
model, likewise the CRLB1/2, are lower than the RMSE in
the Gaussian case, as expected. This means that 4 channels
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Table 2: Correspondence between normalized and true velocity values in the TerraSAR-X case.

ur 1× 10−4 4× 10−4 7× 10−4 1× 10−3 2× 10−3 3× 10−3 4× 10−3 5× 10−3 6× 10−3

vr [m/s] 0.76 3.04 5.32 7.60 15.2 22.8 30.4 38.0 45.6

vr [km/h] 2.74 10.9 13.7 27.4 54.7 82.1 109.4 137.0 164.4
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Figure 14: CRLB1/2 (solid line) and RMSE (dashed line) values (in log scale) of the estimated target radial normalized velocity, with CNR =
10 dB, SCR = 0, 10, 20 dB, γc = 1, for a single-baseline system (b1 = 1.2 m) for (a) a deterministic modeled moving target and (b) a Gaussian
modeled moving target.

are sufficient, for the chosen values of CNR, SCR, and γc, to
obtain quality performance very close to the best theoretical
results when there are no ambiguity problems. Instead, it
can be noted that the RMSE for velocities approaching the
ambiguity value (from 4×10−3 to 6×10−3) and for low SCR
tends to deviate from the CRLB values. This behavior is more
pronounced in the Gaussian case.

In case we consider two baselines, we can obtain CRLB
and RMSE values less variable with velocity and less sensitive
to ambiguity problems. In particular, considering b1 = 1.2 m
and b2 = 1.8b1 m, γc = 1, SCR = 0, 10, and 20 dB, CNR =
10 dB, we get the CRLB1/2 and RMSE curves (in logarithmic
scale) shown in Figure 15, for the deterministic and Gaussian
cases.

It can be appreciated that the CRLBs are reduced with
respect to the single-baseline case, and that they are less vari-
able with the velocity. Differently from the single-baseline
system, in the dual-baseline system the RMSE values for all
the velocities considered are very close to the CRLBs at least
for high SCR values. Only for SCR = 0 dB it can be observed
that a degradation of the estimation performances exists.
The performance analysis shows that the considered AT-
InSAR system allows to estimate normalized radial velocity
with RMSE of the order of 10−4 (using two baselines and
4 channels for baseline) even for SCR = 10 dB. In traffic
monitoring applications, when the moving targets are cars
and trucks, the RCS can be of the order of, or larger than,

100 m2. In this case, the SCR can be significantly larger than
10 dB, allowing the application of this kind of sensors to
practical situations.

5.1. Multichannel ML velocity estimation
algorithm robustness

5.1.1. Robustness with respect to the target model

As discussed in Section 2, the deterministic target model
is less tractable because, so far, no analytical statistical
description has been obtained, but it is more realistic (targets
of interest—cars, trucks—exhibit RCSs that do not vary
significantly with the radar observation angles [19]). The
Gaussian target model is less realistic (it is rare that cars
and trucks response is a zero mean Gaussian signal which
varies significantly inside the synthetic aperture), but it
allows to perform the velocity estimation using analytical
likelihood functions, since an analytical expression for the
interferometric phase pdf is available with great advantages
in terms of the computational efficiency. For this reason,
we present the performance results in terms of RMSE
values obtained using data generated with deterministic RCS,
processed with the likelihood functions derived from the
Gaussian model. In other words, we process the AT-InSAR
data with a model different from the actual one used to
simulate them. We compare again the single-baseline system
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Figure 15: CRLB1/2 (solid line) and RMSE (dashed line) values (in log scale) of the estimated target radial normalized velocity, with CNR =
10 dB, SCR = 0, 10, 20 dB, γc = 1, for a dual-baseline system (b1 = 1.2 m, b2 = 1.8 b1 m) for (a) a deterministic modeled moving target and
(b) a Gaussian modeled moving target.
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Figure 16: RMSE values of the estimated target radial normalized velocity, for a deterministic target likelihood (solid line) and RMSE values
for a Gaussian target likelihood (dashed line), in log scale, with CNR = 10 dB, SCR = 0, 10, 20 dB, γc = 1 and for (a) a single-baseline system
(b1 = 1.2 m) and (b) for a dual-baseline system (b1 = 1.2 m, b2 = 1.8b1 m).

with the dual-baseline one. The RMSE values for CNR =
10 dB, SCR = 0, 10, 20 dB, and γc = 1 for a deterministic
modeled moving target obtained using a likelihood function
derived from the deterministic and the Gaussian models
are reported in Figure 16, for (a) the single-baseline system
(b1 = 1.2 m) and (b) the dual-baseline system (b1 = 1.2 m,
b2 = 1.8 b1 m).

It can be noted, quite surprisingly, that the RMSE
values processed with the likelihood functions derived from
the Gaussian model are very close to the ones relative
to the deterministic case. In such a way it is possible to
process efficiently actual data with a tractable estimation
algorithm without impairing significantly the estimation
performance.
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Figure 17: (a) Likelihood functions (21) versus SCR for a fixed radial velocity value; (b) square root of the CRLB for SCR.

Table 3: RMSE values of the estimated radial velocity relative to data generated with different values of SCR using the target deterministic
RCS model processed with Gaussian RCS-derived likelihood functions, using, respectively, the nominal value of SCR (SCRn), the estimated
(by (9)) value of SCR (SCRe), and a fixed value of SCR = 30 dB (SCR f ). All other parameters (CNR = 10 dB, γc = 1, etc.) are fixed.

SCR = 5 dB SCR = 10 dB SCR = 15 dB SCR = 20 dB

ur SCRn SCRe SCR f SCRn SCRe SCR f SCRn SCRe SCR f SCRn SCRe SCR f

1e−3 3.77e−4 4.24e−4 4.14e−4 1.73e−4 1.82e−4 2.26e−4 9.45e−5 9.68e−5 1.23e−4 5.07e−5 5.23e−5 6.33e−5

2e−3 5.37e−4 5.55e−4 6.48e−4 2.97e−4 2.99e−4 3.54e−4 1.46e−4 1.51e−4 1.93e−4 8.62e−5 8.98e−5 1.08e−4

3e−3 1.30e−3 1.15e−3 1.21e−3 3.58e−4 3.73e−4 4.75e−4 1.96e−4 1.97e−4 2.71e−4 1.05e−4 1.08e−4 1.42e−4

5.1.2. Robustness with respect to the system parameters

A further experiment directed to test robustness consists in
varying the parameters of the model that are not perfectly
known. In particular, while CNR and γc can be easily
obtained from the system characteristics (noise power of the
SAR sensor) and from the processed SAR images (clutter
power and coherence), the SCR value is unknown until the
target is unknown (we do not a priori know its position or
its RCS). Note also that it is not necessary to test robustness
against CNR since, as highlighted in the comments to Figures
3 and 4, errors on it do not influence significantly the
velocity estimation accuracy. Instead the role of SCR is quite
determinant in the target velocity estimation procedure with
respect to the other parameters, as shown by the pdf shapes
and in the CRLB and RMSE behaviors. For this reason, we
test the performance algorithm when the target RCS value is
not a priori known.

First of all, we note that the SCR can be estimated from
the data and the final estimation can be casted as a joint
estimation of velocity and SCR:[

ûr , SĈR
] = arg max

ur ,SCR
L
(
ur , SCR

)
,

L
(
ur , SCR

) = ∏
n=1,...,N
m=1,...,M

fΦ
(
φn,m | ur , SCR;ϑ

)
︸ ︷︷ ︸

single channel likelihood function

, (21)

where ϑ denotes the following parameters λn, bm, γc =
1, γT0 = 1, CNR0 is computed from the data. We assume
a Gaussian target model to derive the likelihood since it
allows to perform the velocity estimation using analytical
likelihood function and it does not degrade the estimation
performance, as previously seen, even if the data are
generated using a deterministic target model.

As far as the accuracy of the estimation of SCR is
concerned, we show in Figure 17(a) some cuts (relative
to different SCR values) of the likelihood function (21)
versus SCR for a fixed radial velocity value. Note that the
curves exhibit a similar shape since the axis of abscissas is
in log scale, while in linear scale they would appear very
different from each other, and their spreading increases
by increasing SCR. Consequently, as the best theoretical
obtainable accuracy (the Cramer-Rao lower bound (CRLB))
is directly connected to the spreading of the likelihood
function, the accuracy worsens increasing the SCR. The
complete behavior of the square root of the CRLB for SCR is
presented in Figure 17(b) and confirms the mentioned trend.

We analyze also the system performance in terms of
RMSE in the three following cases: (1) the estimation is
performed by adopting for SCR the nominal value SCRn;
(2) SCR is estimated in conjunction with the normalized
radial velocity; (3) the estimation is performed by adopting
for SCR a fixed value SCR f different from the true one. In
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Table 3, we report the RMSE values of the estimated radial
velocity using AT-InSAR images simulated with the system
parameters reported in Table 1, with CNR = 10 dB, SCR =
10 dB, γc = 1, and with normalized target velocities ur =
1 × 10−3, ur = 2 × 10−3, ur = 3 × 10−3. The multichannel
MLE algorithm (21) adopts a single baseline (b1 = 1.2 m)
and 4 different channels (the 2 subbands and 2 azimuth looks
used for the CRLB evaluation).

The best performance has been (of course) obtained
using the nominal SCR values (SCRn column) but the
adoption of the estimated SCR values through (21) (SCRe

column) or the fixed one (SCR f column) do not impair
significantly the velocity estimation performance, showing
that there is a weak sensitivity of the velocity estimation from
the SCR values. We have tested the robustness of the ML
algorithm with respect to an unknown SCR in the single-
baseline system but we expect a similar behavior in the dual-
baseline system.

6. CONCLUSIONS

In this paper, we presented the performance evaluation
of multichannel AT-InSAR systems in terms of moving
target detection ability and target radial velocity estimation
accuracy. The analysis has been performed with different
target statistical model and system parameters, such as radial
velocity, SCR, CNR, and number of system channels. In
particular, we compared a single-baseline system with a dual-
baseline system. Regarding the detection process, the use
of multichannel interferograms, after the application of a
threshold stage to each channel, allows to adopt a binary inte-
gration to combine single-channel decisions. Such a strategy,
compared with the one based on a single interferogram,
provides better results in terms of simultaneous low values
of PFA and high values of PD.

With reference to the target radial velocity estimation,
two target models have been considered: deterministic
target response and Gaussian target response. The first
model is more realistic and applies to well-characterized
targets, while the latter applies when the target RCS is not
accurately known. The use of the Gaussian model in the
velocity estimation procedure has proved to be particularly
appropriate to the case of realistic datasets, since it allows
to take into account the uncertainty on the knowledge of
the target RCS. The mean square errors obtained using the
Gaussian model are not very different from the lower bounds
which are obtained using a deterministic model exploiting a
very accurate knowledge of the target RCS. The estimation
errors obtained using the Gaussian model exhibit a low
sensitivity to the errors on the knowledge of the SCR value,
which is a parameter difficult to be estimated in the absence
of an accurate target characterization.

The analysis of performance which has been presented
evidences that a single-baseline AT-InSAR system allows
to obtain accurate radial velocity estimations approaching
the CRLB also in the case of a small number of channels
(only four, in the presented case) for velocities far from the
ambiguity value, while to solve ambiguities at least a dual-
baseline AT-InSAR system is required.

The present paper is focused on detection and estimation
of interferometric phase data in order to highlight the
performance improvement derived by the use of more
than one channel (baseline). The use of more than two
baselines would allow further performance improvement at
the expenses of growing system complexity and cost.
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1. INTRODUCTION

The CLEAN algorithm was introduced in radio astronomy
to reduce sidelobe-induced artefacts. In [1], the authors use
the CLEAN technique to alleviate two types of artefacts
introduced by the point spread function (PSF) sidelobes
in real aperture radar images. Such a technique iteratively
estimates the PSF of the brightest scatterer and removes it
from the formed image.The CLEAN technique was applied
later to inverse synthetic aperture radar (ISAR) imaging with
interesting results [2]. Recently, fully polarimetric radars
have been largely used for synthetic aperture radar (SAR)
application [3, 4] as well as, although less extensively, for
ISAR applications [5]. The advantage of fully polarimetric
data is due to the fact that scattering mechanisms and target
properties can be identified by measuring scattering matrices
[6–9]. Inverse synthetic aperture radar (ISAR) images prove
useful when used for classifying and recognising targets
[10, 11]. Nevertheless, the image data size is often too large
to implement real time classifiers. For this reason, algorithms
such as the CLEAN technique can be employed for reducing
the data size significantly without losing useful information.
The problem of reducing the amount of data without losing
useful information is even more critical when dealing with
polarimetric ISAR images, since the data size is three to four
times larger. An algorithm for scattering centre extraction
from polarimetric SAR (PolSAR) images was proposed in

[12]. In [12], the signal model was strongly based on the
SAR geometry, which is known a priori. In the ISAR case, the
non-cooperativity of the target does not allow using any such
knowledge. So a parametric model is introduced to account
for unknown target motions. Therefore, the problem of
estimating the model parameters and the scattering centre
extraction problem must be solved jointly. Moreover, in
typical ISAR scenarios, only the received radar echo is
presumed to be available (no ancillary data is used). In
this paper, a polarimetric CLEAN (Pol-CLEAN) technique
is proposed by extending the CLEAN technique in [2] in
order to extract target features such as the position of the
scattering centres and their scattering matrix. It is worth
pointing out that the novelty of the proposed Pol-CLEAN
technique, with respect to the CLEAN technique, lies on
the extension to polarimetric ISAR images and on a new
method for estimating the scattering centre point spread
function.

The signal model is introduced in Section 2 whereas
the Pol-CLEAN technique is detailed in Section 3. The
effectiveness of the proposed algorithm is tested on simulated
and real data and presented in Section 4.

2. SIGNAL MODEL

The polarimetric matrix of the received signal, in free space
conditions, can be written in a time-frequency domain by
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extending the signal model defined in [13]

SR( f , t) =W( f , t) exp
[
− j

4π f

c
R0(t)

]

·
∫
V
ζ(z) exp

{
− j

4π f

c

[
zT·i(z)

R0
(t)
]}

dz + N( f , t),

(1)

where SR( f , t) =
[ SHH

R ( f ,t) SHV
R ( f ,t)

SVH
R ( f ,t) SVV

R ( f ,t)

]
is expressed by means of a

polarimetric matrix, W( f , t) = rect[t/Tobs]rect[( f − f0)/B]
represents a rectangular window in the time-frequency
domain (t, f ), f0 is the carrier frequency, B is the trans-
mitted signal bandwidth, Tobs is the observation time, V
is the spatial domain where the scattering matrix ζ(z) =[ ζHH (z) ζHV (z)

ζVH (z) ζVV (z)

]
is defined, and N( f , t) =

[ NHH ( f ,t) NHV ( f ,t)

NVH ( f ,t) NVV ( f ,t)

]
is

the polarimetric matrix containing the noise. With reference
to Figure 1, z is the vector that locates a generic scatterer,
R0(t) is the modulus of vector R0(t), which locates the
focusing point O and i(z)

R0
(t) the unit vector of R0(t). The

function rect(x) is equal to 1 for |x| < 0.5, 0 otherwise.
Before proceeding, it is convenient to use a different

notation, as detailed in [7], and exploit the characteristic of
isotropic media that are encountered in ISAR applications.
Therefore, the polarimetric data that represents the received
signal can be written according to Pauli’s decomposition as
follows:

SR = 1√
2

[
SVV
R + SHH

R , SVV
R − SHH

R , 2SHV
R

]T = Ak, (2)

where A = |k| and where the dependence on ( f , t) is omitted
for notation simplicity. The polarimetric unit vector k is
defined as follows:

k = [cos αe jδ , sinαcos βe jγ, sinα sinβe jϕ
]
, (3)

where β represents the physical rotation of the scatterer
about the radar line of sight (LoS), δ, γ, and ϕ are the
scatterer phases in the three polarimetric channels, and α is
a scatterer internal degree of freedom, which ranges in the
interval [0◦, 90◦] . It must be pointed out that the angle α is
rotation invariant and therefore it is decoupled from β. An
interpretation of the internal degree of freedom α is given in
Figure 2.

It is worth noting that such a representation is meant to
highlight the physical properties of the scattering mechanism
induced by a given scatterer. Therefore, by defining the unit
vector k, it is possible to define a specific polarisation that
resonates with a scatterer with given physical properties.
It must also be pointed out that the same decomposition
applies for the target scattering matrix. Therefore, the
scattering vector obtained from the scattering matrix is
ζ(z) = [ζVV (z) + ζHH(z), ζVV (z)− ζHH(z), 2ζHV (z)].

2.1. Signal separation

The Range-Doppler technique is based on an approximation
that allows considering a rectangular support for the received
signal in the Fourier domain. Such an approximation also
leads to the separation of the domain in two independent
one-dimensional domains: a time and a frequency compo-
nent. Therefore, the received signal, relative to a single point-
like scatterer, can be written in terms of the product of a time
and a frequency component as follows:

s(i)
R (t, f ) = s(i)

1 (t)s(i)
2 ( f ), (4)

where

s(i)
1 (t) = Bi exp

(
j2π
(
η + fdt +

μ

2
t2
))

rect
(

t

Tob

)
, (5)

s(i)
2 ( f ) = Ai exp

(
j2π f τ0

)
rect
(
f − fo
B

)
, (6)

where the product AiBi represents the complex amplitude
in the ith Pauli channel, fd is the Doppler frequency, μ
is the chirp rate, and τ0 is the time delay associated with
the scattering centre. It is worth pointing out that the
parameter μ is related to the signal model, which accounts
for a quadratic radial motion, that is, it includes Doppler
acceleration. Therefore, it should not be confused with the
transmitted signal chirp rate if any is employed.

3. POL-CLEAN

The Pol-CLEAN technique is derived from the CLEAN
technique proposed in [2]. Specifically, the Pol-CLEAN
works iteratively by

(1) locating the brightest scattering centre in the polari-
metric ISAR image and therefore by finding its coor-
dinates in the delay-Doppler image plane (τ∗, ν∗),
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(2) extracting its polarimetric vector ks, and

(3) removing it from the ISAR image in order to extract
the next brightest scattering centre.

In order to eliminate a scattering centre from an ISAR
image, the scattering centre point spread function (PSF)
must be estimated and subtracted from the ISAR image. Let
S(1)( f , t), S(2)( f , t) and S(3)( f , t) be the received signal in
the three Pauli channels. After motion compensation, three
ISAR images, namely, I(1)(τ, ν), I(2)(τ, ν) and I(3)(τ, ν) are
obtained by means of a 2D Fourier Transform. The brightest
scattering centre (dominant scatterer) is found within the
three images. The range and cross-range indexes τ∗ and
ν∗ and the Pauli’s channel i∗, which corresponds to the
polarimetric channel that contains the brightest scattering
centre, are extracted by means of (7)(

τ∗, ν∗, i∗
) = arg max

(τ,ν,i)

{∣∣I(i)(τ, ν)
∣∣}, (7)

with i ∈ {1, 2, 3}, τ ∈ {1, 2, . . . ,M}, ν ∈ {1, 2, . . . ,N} and
where M and N are the number of range and cross-range
bins. The estimation of the PSF is performed by minimising
the image energy after scattering centre removal. In order
to find an efficient solution of the nonlinear optimisation
problem stated in (7), the received signal separation is
exploited.

3.1. Time component

By referring to (5), Bi (i ∈ {1, 2, 3}), fd, and μ are the
parameters to be estimated. The constant η can be neglected,
because it does not affect the shape of the PSF. The signal

s(i)
1 (t), which is an N-dimensional row vector, is Fourier

transformed to obtain a cross-range profile. A cost function
is defined by means of the energy remaining in the range
bin after scattering centre deletion. In order to treat the
optimisation problem in a real domain, the scattering centre
deletion is performed by considering the absolute value of
the range profile. Such an operation can be performed in a
single channel and then applied to the remaining channels by
adjusting the corresponding Bi parameter. It must be pointed
out that only the magnitude B̃ of B must be estimated at this
stage whereas the phase component is estimated separately
and directly from the image. In summary, the following
optimisation problem can be stated:{

f̂d, μ̂, ̂̃Bi∗
}
= arg min

( fd ,μ,B̃i∗ )

{
Edi∗
(
fd,μ, B̃i∗

)}
, (8)

where Edi∗ =
∫ |di∗(ν)|2dν is the energy of a Doppler section

in the i∗th Pauli channel, with di∗(ν) = |I(i∗)(τ∗, ν)| −
|S(i∗)

1 (ν)| and S(i∗)
1 (ν) the Fourier Transform of s(i∗)

1 (t). The
estimates f̂d and μ̂ are then used in the remaining Pauli
channels for estimating the complex amplitudes Bi (with
i /= i∗). The latter estimation problem is transformed into an
optimisation problem as follows:{̂̃Bi

}
= arg min

B̃i

{
Edi
(
f̂d, μ̂, B̃i

)
with i /= i∗

}
, (9)

where Edi =
∫ |di(ν)|2dν is the energy of a Doppler section

in the ith Pauli channel (i /= i∗) with di(ν) = |I(i)(τ∗, ν)| −
|S(i)

1 (ν)|.

3.2. Frequency component

A similar procedure is followed to estimate the frequency
component of the PSF. The signal component in (6) is an
M-dimensional column vector. After selecting a Doppler bin
and range compressing via the Fourier Transform, a section
of the ith channel ISAR image I(i)(τ, ν∗) can be obtained.
Then, the delay τ0 is jointly estimated with the magnitude
Ãi∗ (in the i∗th Pauli channel) as follows:

{
τ̂0, ̂̃Ai∗

} = arg min
(τ0,Ãi∗ )

{
Egi∗
(
τ0, Ãi∗

)}
, (10)

where Egi∗ =
∫ |dgi∗ (ν)|2dν is the energy of a delay section in

the i∗th Pauli channel, with gi∗(ν) = |I(i∗)(τ, ν∗)|− |S(i∗)
2 (τ)|

and S(i∗)
2 (τ) the inverse fourier transform of s(i∗)

2 ( f ).
The remaining two complex amplitudes are separately

estimated by solving two separate one-dimensional optimi-
sation problems:

Ãi = arg min
Ãi

{
Egi
(
τ̂0, Ãi

)}
with i /= i∗, (11)

where Egi =
∫ |dgi(ν)|2dν is the energy of a delay section

in the ith Pauli channel (i /= i∗) with gi(ν) = |I(i)(τ, ν∗)| −
|S(i)

2 (τ)|.

3.3. Scattering centre PSF

The scattering centre PSF in the ith Pauli channel is obtained
by calculating the two dimensional Fourier Transform of the
product of the time and frequency components multiplied
by the phase extracted from the ISAR image, as analytically
detailed in

I(i)
PSF(τ, ν) =

∣∣∣FT2
{
ŝ(i)

1 (t)ŝ(i)
2 ( f )

}∣∣∣·∠(I(i)(τ, ν)
)
. (12)

The scattering vector ks(τ∗, ν∗) relative to the considered
scattering centre is therefore available by calculating the three
scattering centre PSF centred in (τ∗, ν∗). Then, at the generic
kth iteration, the scattering centre must be eliminated from
the ISAR image via (13) in order to extract the following
brightest scatterer:

I(i)
k+1(τ, ν) = I(i)

k (τ, ν)− I(i)
PSFk

(τ, ν). (13)

The algorithm stops when the energy of the signal compo-
nent in the ISAR image at the kth iteration is lower than a
given threshold, λ. Such a threshold is typically set to 5% of
the initial energy, that is, the total energy of the polarimetric
ISAR image before any component removal. In mathematical
detail, the preset threshold depends on the energy content
and on the SNR of the initial ISAR image, as detailed in (14)

λ = K·E SNR
SNR + 1

, (14)



4 International Journal of Navigation and Observation

X50

5

10

Y

Figure 3: Six-point target geometry.

where E(I(τ,ν)) = ∑3
i=1E

(I(i)(τ,ν)), with E(I(i)(τ,ν)) = ∫∫ |I(i)(τ,
ν)|2dτ dν. It is worth pointing out that a coefficient
SNR/(SNR + 1) is used in order to account for the energy of
the signal component (noiseless image). Moreover, the SNR
can be estimated in the image domain by selecting image
areas where no target is present. It must also be noted that
the energy of the signal component of the ISAR image at each
iteration has to be compared to the energy threshold in (14).

Therefore, the iterations stop when E(I(τ,ν))
k (SNR/(SNR +

1)) < λ.

4. RESULTS

The algorithm performance is tested both by using simulated
and real data. The simulation test highlights the algorithm
effectiveness when extracting ideal point-like scatterers,
whereas the real data test shows an example of the output
when the Pol-CLEAN is applied to “real-world” data.

4.1. Simulation

The analysis of simulated data aims at testing the Pol-CLEAN
effectiveness when the target is composed of a number
of ideal point-like scatterers with different polarimetric
properties. Two separate tests are run. The first concerns
a six-point target with scatterers placed at a distance of 5
resolution cells from each other. The second experiment is
proposed to test the Pol-CLEAN robustness when the point-
like scatterers distance drops down to one resolution cell.

4.1.1. Six-point target

An X-band radar and a six-point target are considered for
the generation of the received signal. Each point is located
at a distance of 5 resolution cells from the others (as shown
in Figure 3). The scattering matrices relative to each point
are shown in Table 1, whereas the main radar parameters are
shown in Table 2.

The simulation is repeated by changing the zero padding
in order to test the algorithm robustness with respect to the
image oversampling. Specifically, zero padding factor (ZPF)
of 1, 2, 4, and 8 are considered (note that ZPF = 1 means “no
zero padding”). Gaussian noise has been added to the raw
data in order to have an SNR =−10 dB (in the data domain).

Table 1: Scattering centre characteristics.

Type Scattering matrix

S1

Surface(
α = 0◦

)
⎡⎣1 0

0 1

⎤⎦
S2

Dihedral(
α = 90◦, β = 0◦

)
⎡⎣1 0

0 −1

⎤⎦

S3

Dipole(
α = 45◦, β = 45◦

)
⎡⎢⎢⎢⎣

1 +

√
2

2

√
2

2√
2

2
1−

√
2

2

⎤⎥⎥⎥⎦

S4

Dihedral(
α = 90◦, β= 30◦

)
⎡⎢⎢⎢⎢⎣
√

3
2

1
2

1
2

−
√

3
2

⎤⎥⎥⎥⎥⎦
S5

Surface(
α= 0◦

)
⎡⎣1 0

0 1

⎤⎦

S6

Dipole(
α= 45◦, β= 60◦

)
⎡⎢⎢⎢⎢⎣

3
2

√
3

2
√

3
2

1
2

⎤⎥⎥⎥⎥⎦

The estimated scattering vectors are decomposed accord-
ing to (2) and (3) (only parameters α and β are shown).
The estimated type of scattering (α) matches the true values
as well as the estimated orientation angle (β), as shown in
Table 3, where the mean value of the couple of parameters
(α, β), obtained by generating 25 noise realisations, is shown.
It is worth noting that the estimated mean values are weakly
affected by the ZPF whereas the standard deviation decreases
when the zero padding increases, as shown in Figure 4, where
the root mean square error (RMSE) of α and β is plotted as a
function of the ZPF.

The original ISAR images and the ISAR images after
the first and the last scattering centre elimination are
shown in Figures 5, 6, and 7 for the three Pauli channels,
respectively. All ISAR images are obtained by using ZPF
= 8. It is worth noting that the first component removal
only affects the first Pauli channel (HH+VV) since the
extracted scatterer has zero-components in the other two
Pauli channels (VV-HH and 2HV) It can be pointed out
that, after the last elimination, the scatterer’s contribution is
significantly suppressed.

4.1.2. Robustness analysis with respect to
scatterer’s distance

An algorithm performance loss is expected when the distance
between the scatterers reduces. With the present experiment,
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Table 2: Radar parameters.

Central freq. ( f0) 10 GHz No. of radar sweeps (N) 96

Bandwidth (B) 400 MHz Cross-range res. 0.68 m

Freq. step (Δ f ) 3.15 MHz Range res. 0.375 m

No. of tx freq. (M) 128 SNR (data domain) −10 dB

Table 3: Estimated scattering parameters.

ZP S1 S2 S3 S4 S5 S6

1
α 55.5◦ 85.99◦ 45.53◦ 86.73◦ 6.55◦ 45.40◦

β — 0.07◦ 45.12◦ 29.88◦ — 61.39◦

2
α 5.02◦ 86.64◦ 45.43◦ 86.91◦ 5.64◦ 45.08◦

β — 0.23◦ 45.16◦ 29.51◦ — 61.44◦

4
α 5.06◦ 86.56◦ 45.20◦ 86.74◦ 5.52◦ 45.22◦

β — −0.13◦ 45.13◦ 29.47◦ — 61.52◦

8
α 4.97◦ 86.71◦ 45.37◦ 86.96◦ 5.44◦ 45.15◦

β — −0.09◦ 45.19◦ 29.71◦ — 61.43◦

1 2 4 8

Zero padding factor

2.5

3

3.5

4

4.5

R
M

SE
(d

eg
)

α

β

Figure 4: Standard deviation versus zero padding factor.

the algorithm robustness with respect to the interference
caused by the vicinity of other scatterers is tested. Specifically,
two scatterers close to each other are considered in order
to create such an interference. The scatterers chosen are S1
and S4 (from the previous experiment) and their scattering
matrices are shown in Table 1. Gaussian noise is added to
the generated data in order to obtain a SNR = −10 dB (in
the data domain). Both the vicinity along the range and
cross-range coordinate is tested. In particular, the scatterer’s
distance is varied within one to five range cells, first along
the range direction and then along the cross-range direction.
Figure 8 shows the results in terms of estimation error for
the parameters α and β against the distance in range (as
in the number of range resolution cells), whereas Figure 9
shows the similar results against the distance in cross-range
(as in number of cross-range resolution cells). The results are

shown in terms of the RMSE and they are obtained by using
a ZPF = 8.

As predicted, the performance of the algorithm decreases
when the distance between scatterers reduces. It can also
be pointed out that the same conclusions are reached when
considering range and cross-range directions. This effect is
mainly due to two reasons.

(1) Scatterers interfere with each other because of their
sidelobes. Although it would be tempting to use a
window in order to reduce the sidelobe level, the
inconvenient effect of widening the main lobe would
negatively affect the performance when the distance
is equal to one resolution cell.

(2) The cancellation of the scatterer under test is a non-
linear operation that affects the estimated scattering
matrix of the nearest scatterers.

4.2. Real data

The analysis of real data provides a clear example of the
results achievable when using the Pol-CLEAN. Since no
accurate target model is available, a direct error analysis is not
viable for this kind of experiment. Nevertheless, the results
are visually readable by comparing the extracted scatterers
with the Pol-ISAR image.

4.2.1. Data set description

The data used for this test is collected during a real turn-table
experiment. The data is obtained from the GTRI publicly
releasable data set. The experiment is run by using a stepped-
frequency fully polarimetric radar system arranged on a
tower and looking down to a turn-table. The illuminated
target is a T72 tank. The data file contains 79 radar sweeps
for a fixed elevation angle (θel = 29.9994◦). After each
radar sweep, the turn table is rotated by 0.05◦. Therefore,
a total azimuth angle variation of 3.9◦ is spanned about
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Figure 5: ISAR image on channel HH+VV before any cancellation
(a), after the first cancellation (b), and after the last cancellation (c).
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Figure 6: ISAR image on channel VV-HH before any cancellation
(a), after the first cancellation (b), and after the last cancellation (c).
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Figure 7: ISAR image on channel HV before any cancellation (a),
after the first cancellation (b), and after the last cancellation (c).
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Figure 8: RMSE against the distance in range.
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Figure 9: RMSE against the distance in cross range.

the central azimuth angle (θaz = 89.231◦). The central
frequency is equal to f0 = 9.6 GHz whereas the number of
transmitted frequencies is equal to 221, equally spaced by
3 MHz. The resultant bandwidth is equal to 660 MHz and
both the nominal range and cross-range resolutions are equal
to 0.3048 m.

The radar-target geometry is depicted in Figure 10,
whereas the target is shown in Figure 11. The radar parame-
ters are shown in Table 4.

4.2.2. Real data results

The image cross-range section cut across the scattering centre
peak (in blue) and the estimated cross-range section of the
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θaz(t)

θel(t)

Figure 10: Radar target geometry.

Figure 11: Target T72.

Table 4: Radar parameters.

Parameters Value

f0 9.6 Ghz

Frequency step 3 Mhz

N◦ transmitted frequencies 221

N◦ sweeps 79

Azimutal sampling rate 0.05◦

Total aspect angle for each file 3.9◦

Nominal range resolution 1 foot

Nominal cross-range resolution 1 foot

scattering centre PSF (in red) are shown, for all polarimetric
channels, in Figures 12, 13, and 14. Moreover, the cross-
range section after the scattering centre removal is shown in
green colour. It is worth noting that the estimated PSF cross-
range section is estimated quite accurately, and therefore
the scattering centre is removed from the image. The range
section of the same scattering centre, as well as the range
section of the estimated PSF, is shown in Figures 15, 16,
and 17. It can be noted that the results along the range
direction are similar to those along the cross-range direction.
Figures 18, 19, 21, 22, 24 and 25 show the ISAR image
before and after the cancellation of the first scatterer, for all
three polarimetric channel. Figures ??, 23, 26 how the ISAR
images after the cancellation of the last scatterer. By setting
the energy threshold defined in (14) to K = 0.05, a number
of 43 scatterers are extracted. The RGB ISAR image of the
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Figure 12: Polarimetric channel HH+VV.
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Figure 13: Polarimetric channel VV-HH.

target is also shown in Figure 27. The colored dots represent
the scattering centres extracted by means of the Pol-CLEAN.
The colour of each dot represents the polarimetric signature
of the extracted scattering centre in the Pauli basis. It should
be noted that the colour of the extracted dot is very close to
the colour of the underlying ISAR image, especially in the
case of bright scatterers. Weaker extracted scatterers do not
match perfectly the colour of the underlying ISAR image.
This can be explained by considering that

(1) weaker scatterers are partially masked by stronger
scatterer’s sidelobes (it can be read as an interference
problem);
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Figure 14: Polarimetric channel 2HV.
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Figure 15: Polarimetric channel HH+VV.

(2) even after stronger scatterers are removed, some
residuals remain that affect the extraction of weaker
scatterers and therefore lead to larger estimation
errors.

Nevertheless, classifiers would weight bright scatterers
more than weak scatterers and therefore such an effect would
not affect the classification performances significantly.

5. CONCLUSIONS

Scattering centre extraction from polarimetric ISAR images
can be achieved by extending the CLEAN technique, which
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Figure 16: Polarimetric channel VV-HH.
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Figure 17: Polarimetric channel 2HV.

was designed to perform scattering centre extraction from
single polarization ISAR images. The extension of the
CLEAN technique, namely, the Pol-CLEAN technique has
been first proposed in this paper and then tested on
simulated and real data. The results have shown that the
Pol-CLEAN technique is able to extract scattering centres
from noisy ISAR images and estimate their locations and
polarisation vectors. A table with essential information
is then obtained that contains only the positions and
polarimetric vectors of the extracted scatterers, which can be
used as a feature set for automated target classification and
recognition.
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Figure 18: Original ISAR image—polarimetric channel HH+VV.
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Figure 19: ISAR image after removing the first scattering centre—
polarimetric channel HH+VV.
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Figure 20: ISAR image after removing the last scattering centre—
Polarimetric channel HH+VV.
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Figure 21: Original ISAR image—polarimetric channel VV-HH.
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Figure 22: ISAR image after removing the first scattering centre—
polarimetric channel VV-HH.
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Figure 23: ISAR image after removing the last scattering centre—
Polarimetric channel VV-HH.
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Figure 24: Original ISAR image—Polarimetric channel 2HV.
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Figure 25: ISAR image after removing the first scattering centre—
polarimetric channel 2VH.
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Figure 26: ISAR image after removing the last scattering centre—
Polarimetric channel 2HV.
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Figure 27: RGB ISAR of the target—the colored spots represent the
scatterer extracted by the algorithm.
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1. INTRODUCTION

Synthetic aperture radar (SAR) works by collecting the
echo returns from many pulses along the flight path and
processing them into a single high-resolution radar image.
In a monostatic SAR, the transmitter and receiver are on
the same platform, whereas in a bistatic SAR (BSAR) the
transmitter and receiver are separated by a distance that
is comparable to the expected target distance. Examples
of BSAR include airborne systems, where the transmitter
and receiver are located on different aircrafts [1, 2]. In
a space-borne system, the transmitter and receiver are
based on two or more satellites [3, 4]. There is another
subclass of bisatic SAR known as space-surface bistatic
synthetic aperture radar (SS-BSAR). The SS-BSAR consists
of a spaceborne transmitter and a receiver mounted on or
near the earth’s surface, see Figure 1. The receiver could be
airborne, mounted on a ground vehicle, onboard a ship,
or even in a stationary position on the surface. For the
stationary receiver, a nongeostationary satellite should be
used to provide aperture synthesis.

The core of SS-BSAR systems is their asymmetric topol-
ogy [5]. This is in contrast to a more usual bistatic SAR
configuration, where the transmitter and the receiver are
moving along collinear trajectories. The basic operation of
SS-BSAR systems is much the same as the operation of other
BSAR systems, the differences being introduced mainly as a
consequence of the geometry employed.

University of Birmingham (UoB) has been carrying out
active research in the area of SS-BSAR since 2003. The main
aim of this research is to experimentally demonstrate the
feasibility and performance of airborne SS-BSAR, utilising
Global Navigation Satellite System (GNSS) as the transmitter
of opportunity.

The goal of this paper is to give the reader an overview
of the research conducted at the UoB. It highlights and
briefly discusses various systems parameters (for resolution,
power budget), problems (e.g., interference, motion com-
pensation), and signal processing algorithms (imaging, syn-
chronisation) required for successfully obtaining an image.
The GLONASS satellite is used for experiential confirmation
of the main results. All these results are presented and briefly
discussed.

It should be noted that although we are using a particular
satellite system, the structure and main parameters of the
radar system are generic and could be used with different
GNSS transmitters.

2. RESOLUTION

The GLONASS satellite was selected as the transmitter of
opportunity for experimentation, despite its rather poor
potential slant range resolution (30 m). This was due to
the fact that it was the only one available at the time of
experimentation. Another GNSS system (GPS) has a navi-
gation signal with twice the spectral width, and hence 15 m
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Table 1: The main parameters of different GNSS signals.

GNSS GLONASS GPS Galileo

Channels (code) L1(P) L2 (P) L1(P/M) L2 (P/M) L5 E5a/b E5 (E5a+E5b)

Central frequency (MHz) 1602–1615 1246–1257 1575.4 1227.6 1176 1191.79 1191.795

Minimum power (dBW) −161 −167
−158 (global beam) −154.9 −157 −154
−138 (spot beam)

Chip rate (Mcps) 5.11 5.11 10.23/5.11 10.23/5.11 10.23 10.23 10.23

Aggregated bandwidth (MHz) — — 20–30 20–30 — — 20–50

Range resolution (m) 30 30 5–8 5–8 15 15 3–8

Table 2: Potential target detection range for different GNSS signals.

Transmitter λ(cm) Va(m/s) η Ae(m2) Δaz(m) Ts(K)

Galileo E5 25.2

200 0.5 0.5 1 410
GPS L5 25.5

GPS spot beam 19

GLONASS L1 18.8

Radar channel

H
eterodyne channel

Moving or stationary
spaceborne transmitter

Moving
airborne receiver

Moving or stationary
ground-based receiver

Figure 1: SS-BSAR concept for imaging.

potential range resolution, but this is a coded signal and can
be used only with special authorisation. The most promising
GNSS for the considered purposes are the EU Galileo system
and the new proposed GPS signal structure [6]. Figure 2(a)
shows the signal spectrum of Galileo E5 signal. Two signal
components (E5a and E5b) in the E5 band are modulated
as a single wideband signal generated following the AltBOC
(15, 10) modulation. This wideband signal is centred at the
frequency of 1191.795 MHz and has a bandwidth of at least
50 MHz. Since the E5a and E5b signals transmit independent
information from each other, it is possible in theory to
develop a signal processing technique that combines the
received E5a and E5b signals in such a way to give a
resolution of 3–8 m. Similarly, the different signals (P-code
and M-code) of the modernised GPS L1/L2 channel can be
combined to achieve 20–30 MHz bandwidth or 5–8 m range
resolution. This makes GNSS (Galileo, GPS) based SS-BSAR
a prospective candidate for many practical applications.

Table 1 summarises some GNSS signal parameters and
their potential slant range resolution. The stated resolution
is for a quasimonostatic configuration. However, for other
configurations the resolution is dependent upon the geom-

etry of the system, that is, satellite-receiver-target positions
not relative to each other. The effect of the system’s geometry
on the resolution is comprehensively discussed in [7].

It should be noted that one of the key advantages of using
a GNSS satellite compared to other satellites (e.g., Geosta-
tionary TV satellite) is that the user can choose the desired
bistatic topology (low bistatic angle, i.e., negligible resolution
loss). This is due to the fact that 4 to 10 GNSS satellites are
simultaneously visible at any point on the earth. As a result,
a particular satellite in the best (or at least suitable) position
can be selected and there is no need for a very specific aircraft
trajectory to allow the observation of an area. On the other
hand, geostationary satellites are fundamentally positioned
above the equator and this requires a specific aircraft trajec-
tory for mapping a particular area and, in many or even most
situations, a vital loss in ground resolution may take place.

3. POWER BUDGET

The receiving part of the SS-BSAR consists of two channels:
the heterodyne channel (pointed directly towards the satel-
lite) is used for synchronisation and the radar channel is used
for receiving reflected signal from the target area. The power
budget of the radar channel is a determining parameter
for target detection, which is calculated for the time of
aperture synthesis and considering only targets that have
RCS independent of frequency and angle. For bistatic SAR,
the expression for SNR after range and azimuth compression
can be written as [8]

S

N
= ρAeσλη

4πRRKTSVaΔaz
, (1)

where ρ is power flux density of the transmitting signal in
target area, σ is the radar cross-section of the target, η is a
general loss factor, RR is the receiver-target range, Va is the
receiver velocity, Δaz is the potential azimuth resolution.

Table 1 shows the minimum received signal power by
0 dB omnidirectional antenna on the ground for different
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Figure 2: (a) Galileo E5 channel Spectrum, (b) GPS L1 or L2 channel Spectrum.
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GNSS signals. It can be noted that the Galileo E5 signal
and new GPS L5 signal provide at least 6 dB more power
compared to GLONASS L1 channel. In addition GPS after
modernisation will broadcast the signal from a high-gain
directional antenna, termed as spot beam, which generates
20 dB more power than its global beam and covers the
ground area of 1200 km × 1200 km that is enough for our
application.

Using the parameters provided in Tables 1, 2, and (1),
Figure 3 shows the potential range of SS-BSAR for different
GNSS signals. If we consider 10–13 dB SNR as the radar
detection threshold, targets with 50 m2 RCS can be detected
at the range of approximately 5 km using Galileo E5 or GPS

L5 signal. By using GPS spot beam (available in 2013), the
detection range can be extended to more than 50 km for
target with 50 m2 RCS.

It also should be noted that all the above range calcu-
lations were done using the minimum power received for
each signal. The minimum power level is received when the
satellite is near the horizon and the maximum when the
satellite is at an elevation of approximately 45◦. On average,
the difference between the minimum and maximum power
level is around 6 dB. Hence, one can expect four times more
improvement in the maximum range when a satellite at an
elevation of about 45◦.

4. INTERFERENCE

Using GNSS as an illuminator in SS-BSAR presents a specific
problem in signal detection. In addition to the desired
target echo, a number of interference signals are present
in the system. GNSS signals are modulated continuous
waves and the desired reflected signal has to be detected
against a continuous interference background. The first
type of such interference is direct path interference (DPI),
which is the signal received directly by the radar antenna
from the illuminating satellite. The second type is adjacent
channel interference (API) coming from another GNSS
satellite operating in the same frequency band. These
interference sources discussed in [8, 9] showed that the
signal-to-interference ratio (SIR) is high enough to detect
the desired signal. It was shown that the interference and
the desired signal are essentially the same process, and at the
output of the matched filter the interference level is specified
by the cross-correlation side-lobes. In addition, the SAR
algorithm itself acts as a spatial filter to these interference
sources. The fact that the interference signals are coherent
to the desired signal introduces some low-level false targets,
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but these false targets will be outside the observation area.
Figure 4 shows the SIR evaluated for a practical situation [9].

5. GLONASS SIGNAL STRUCTURE
AND SYNCHRONISATION

Figure 5 shows a simplified block diagram of the structure of
GLONASS signals transmitted in the L1 frequency band [10].
The C/A and P-code signals are in phase quadrature. The C/A
code rate is 511 KHz and the code period is 1 millisecond.
The C/A code sequence is added (mod 2) to a 100 Hz
navigation message. The P-code has a chip rate of 5.11 MHz
and is a truncated M-sequence repeated every 1 second. The
navigation message on the P-code has a clock rate of 50 Hz.

Mathematically the transmitted signal can be written as

Y = ApP(t)Dp(t)cos(ωct + φ) + ACC(t)Dc(t)cos(ωct + φ),
(2)

where Y is the signal at L1 frequency, Ap(t) is the amplitude
of the P-code, P(t) represents the polarity (±1) of the P-code,
Dp(t) is the binary (±1) P-code navigation message, ωc is the
L1 frequency, φ is the initial phase, Ac(t) is the amplitude of
the C/A code, C(t) represents the polarity (±1) of the C/A
code, Dc(t) is the binary (±1) C/A navigation message.

The P-code will be used for the purpose of imaging,
as it provides a reasonable range resolution of about 30 m
(quasimonostatic case) and is no longer encrypted. Usually,
in a radar signal processor, the range compression consists of
a correlation of the radar channel signal with the heterodyne
channel signal delayed for each range resolution cell in the
multichannel correlator. In our previous publication [7], it
was demonstrated that for GLONASS signal it is not possible
to directly correlate the heterodyne channel with the radar
channel. For a quick reminder, we briefly discuss the reason
below.

The signal received from the GLONASS satellite is a
superposition of the C/A code and P-code signals, the spectra
of which overlap; the P-code (5.11 MHz bandwidth) is used
for the purpose of imaging, as mentioned earlier. If the
heterodyne channel is directly correlated with the radar
channel, the P-code will be masked by the C/A code at the
output of the correlator. The bandwidth of the C/A code is
only one-tenth that of the P-code but even if the C/A code of
the desired satellite signal is filtered out in the heterodyne
channel, the signal correlation properties are degraded by
the C/A codes of interfering satellites (It should be noted
that this is a peculiarity of only GLONASS signal. In GPS,
C/A codes are transmitted on the same carrier frequencies
by different satellites. Therefore, the C/A code can be filtered
out for all the satellites in the heterodyne channel). It
was also demonstrated that, if the radar channel signal is
correlated with a locally generated signal containing only
the P-code, the effect of the C/A code could be suppressed.
However, this technique needs navigation message decoding
which, in turn, requires P-code synchronisation. Figure 6
shows the principles of the proposed range compression
algorithm.

The synchronisation compromises of tracking the satel-
lite in delay, Doppler, and phase in order to fully decode the
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Figure 7: Experimental setup for confirming synchronisation.

navigation message. The “block adjustment of synchronising
signal (BASS)” algorithm for Doppler extraction was used.
This algorithm is used in software GPS receivers and
is comprehensively discussed in [11]. For delay tracking
and algorithm based on conventional delayed-locked loop
was used [11]. It should be noted that a detailed dis-
cussion of the synchronisation algorithms is outside the
scope of this paper. Here, we only present the experiment
results.

Figure 7 shows the experimental setup for collecting
data from the satellite to verify the range compression and
synchronisation algorithms. The signal from the satellite was
directly received on two channels (radar and heterodyne
channels). The radar channel antenna was a stationary
omnidirectional antenna (6 dBi gain) and was separated
by some 3 m from the heterodyne channel antenna. This
topology corresponds to a target at “zero range.” For the
heterodyne channel, a directional spiral antenna with a
gain of 16 dBi was pointed towards the satellite. A satellite
transmitting on channel 10 (1607.625 MHz) was used.

Figures 8(a) and 8(b) shows the estimated frequency
and delay variation of the satellite. From Figure 8(b), it
is seen that the rate of frequency variation is around
0.4 Hz/sec. Figure 8(c) shows the decoded message signal
from the P-code after phase tracking. These results con-
firm the proper functioning of our algorithm. Figure 8(d)
represents the correlation obtained from the proposed
range compression algorithm shown in Figure 6. It is seen
that the algorithm gives a good correlation and confirms
our computer modelling result. As expected, the width
(first null) of the main lobe is 0.2 microsecond and the
RMS sidelobe level of −60 dB for 45 seconds integration
time.

6. HETERODYNE CHANNEL
DOPPLER COMPENSATION

Figure 9 shows the experimental setups used to verify the
imaging algorithm (discussed in the next section). The
first setup consisted of stationary heterodyne channel and
moving radar channel (for antenna synthesis). The second
experiment represents a more practical scenario, where both
the heterodyne and radar antennas are moving. It is obvious
that the only difference between the two setups is the
presence of extra Doppler shift in the moving heterodyne
channel. This Doppler shift can be large enough to introduce
a complete mismatch between the heterodyne channel and
the radar channel. Hence, one needs to compensate the
relative motion between transmitter and receiver.

First of all, we consider an instantaneous bistatic triangle
formed by the stationary heterodyne channel, shown in
Figure 10(a). The three arms of the bistatic triangle are
transmitter-to-receiver path (represented by B), transmitter-
to-target path (RT), and target-to-receiver (RR). Also, the
bistatic angle is denoted by β, the transmitter elevation angle
by ϕ, and the angle between B and RT by θTr . For our
experimentation with flight imitator we considered targets
at short ranges (maximum target range 600 m). The typical
transmitter-to-receiver range for GLONASS is ∼ 20000 km.
Therefore, the angular separation, θTr , is negligible. Hence,
for a stationary heterodyne channel, the Doppler shifts due
to satellite motion (FS) in the two paths are similar. The
residual Doppler variation after range compression is present
only due to receiver motion relative to target at RR. This
residual Doppler variation in the radar channel forms the
azimuth signature of a target. In the imaging algorithm, an
appropriate azimuth compression filter is designed for each
range bin accordingly.
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Figure 9: Experimental setups.

In a practical scenario, the heterodyne channel will be in
motion as it is mounted on a real aircraft. Figure 10(b) shows
the bistatic triangle for moving heterodyne channel. The only
difference compared to the stationary case is the additional
presence of Doppler variation (FRS) due to receiver motion
relative to the satellite in the heterodyne channel. It is clear
from the figure that the residual Doppler variation is FRS+FR.
The question whether FRS can be ignored when designing the
azimuth filter is discussed below.

For 20 seconds integration time, the maximum tolerable
frequency difference between the designed azimuth signature
and the actual received signal is ∼ 0.003 Hz (Considering
π/8 phase difference over the integration time.). The value
of FRS can range from 10–100 Hz for an aircraft moving with
a velocity of 30 m/sec. Hence, FRS should be estimated and
incorporated in the azimuth filter. It should be noted that this
problem is not faced in a monostatic SAR as the transmitter
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and receiver are colocated. The method we used to estimate
FRS is explained in the following section with the aid of an
experimental setup.

6.1. Experimental setup to estimate FRS and to verify
moving heterodyne synchronisation

Figure 11 shows the experimental setup for collecting data
from the GLONASS satellite to estimate FRS and to verify
the moving heterodyne synchronisation (We used GLONASS
satellite as GALILEO was not available at the time of
experimentation. However, this is a generic problem and
the analysis can be extended to any transmitter used in SS-
BSAR.). The signal from the satellite was directly received
on two channels (moving and stationary). The moving
channel antenna was an omnidirectional antenna and was
separated by some 3 m from the stationary channel antenna.
The moving channel corresponds to a moving heterodyne
channel and we assume the stationary antenna to be a target

at “zero range.” In this experiment, we are ignoring the radar
channel as the sole aim of the experimentation is to verify
whether we can correctly estimate the FRS.

The two channels were simultaneously fed to a micro-
wave receiver that down-converts the received signal through
appropriate filtering and amplification. The base-band signal
was then stored on a PC for off-line processing. The output
of the moving channel is also fed to a second “GNSS
receiver.” This receiver stores the navigation message of the
GPS/GLONASS satellite and receiver observation data. An
algorithm was developed that extracts the satellite and the
moving antenna positions from the stored data. From this
information we calculated the FRS, that is, Doppler variation
due to receiver motion relative to the satellite.

To test that whether we have correctly estimated the
FRS, first of all we correlated the moving and the stationary
channel without compensating FRS from the moving chan-
nel. Due to presence of Doppler difference (FRS) between
the two channels, one can expect degradation of correlation
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function and rise in sidelobe level. Figure 12(a) shows the
degradation of correlation function and Figure 12(c) shows a
rise in the sidelobe level (dotted line). Figure 12(b) shows the
correlations of the two channels after we have removed the
FRS from the moving channel. It is seen that after removing
the residual Doppler we obtain a good correlation function.
As expected, the width (first null) of the main lobe is 0.2
microsecond and the RMS sidelobe level of −64 dB for 35
seconds integration time (Figure 12(c)). Hence, our estimate
of FRS is correct.

7. SS-BSAR IMAGING

In this section, a conceptual description of the algorithm
used for SS-BSAR image formation will be provided, along
with some experimental results. A specific configuration
is assumed, where the transmitter is a GNSS satellite and
the receiver is airborne. A full description of the algorithm
can be found in [12, 13], along with detailed descriptions
of algorithms designed for other SS-BSAR configurations.
Results of our research in this area can also be found in
[14–17].

7.1. Algorithm description

Before proceeding into an explanation of the algorithm,
it is perhaps useful to state problems associated with SS-
BSAR image formation first. Traditional monostatic SAR
algorithms exploit similarities in echo returns from different
targets within the illuminated scene in order to reduce the
signal processing load. These similarities are usually present
in the range or azimuth target signatures and allow efficient
processing in the frequency domain. In BSAR, and partic-
ularly SS-BSAR, these similarities do not exist. Moreover,
the exact relationship between the azimuth-time signature
(a chirp signal) of a target and its Doppler frequency
spectrum is yet to be calculated analytically (at least without
some approximation). These features are impediments to
the derivation of efficient and accurate image formation
algorithms operating in the frequency domain.

A block diagram of the generalised SS-BSAR image
formation algorithm is shown in Figure 13. It may be noticed
that it is a modification of the standard Range-Doppler
algorithm, widely used in monostatic SAR image formation,
and thoroughly described in [18].

The first step in the algorithm is to equalize the Range
and Doppler histories of targets residing at the same range
from the receiver. This is achieved by applying a single
correction function to the SS-BSAR data, which removes
the time delay and associated phase due to the transmitter-
to-receiver range at each azimuth-time instant. The cor-
rection function is integrated with the range compression
step, hence the term “modified range compression.” The
modified range compression is performed in the range-
frequency, azimuth-time domain. At the output of this step,
the Range and Doppler histories of targets at the same
range, but different cross-range becomes very similar for a
wide range of possible geometries. Since the transmitter-
to-target and receiver-to-target ranges can normally be
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Table 3: Experimental parameters.

Parameter Stationary heterodyne Moving heterodyne

GLONASS satellite COSMOS 2394 COSMOS 2418

Carrier frequency (MHz) 1603.125 1603.125

Signal bandwidth (MHz) 5.11 5.11

Satellite’s azimuth angle (degree) 178.49 182

Satellite’s elevation angle (degree) 11.36 38

Bistatic angle (degree) 5.63 38

Receiver velocity (m/sec) 0.6 0.6

Receiver’s height above the ground (m) ∼25 ∼25

Receiver’s aperture length (m) 27 27

Integration time (s) 45 45

approximated using second-order Taylor series expansions
in SS-BSAR, it is also possible to derive signal expressions
in the frequency domain. Therefore, use of a modification
of the Range-Doppler algorithm is a convenient method to
form the image of an observation area. A secondary range
compression (SRC) is performed in the two-dimensional
frequency domain to compensate for the cross-coupling
between the range and azimuth frequencies. Before this
operation is executed, the Doppler ambiguity is resolved
(i.e., because the target azimuth signature could contain a
large Doppler centroid outside the range of sampled azimuth
frequencies). Range cell migration (RCM) is corrected in
the range-time, azimuth-frequency (or Range, Doppler)
domain, after RCM components due to the receiver motion
and residual RCM after the modified range compression
are calculated. For this operation, it is proposed to esti-
mate the receiver-to-target range from the range sum
(the difference between the total range history and the
transmitter-to-receiver range history) in order to identify
the individual RCM components mentioned above. Finally,
azimuth compression is performed in the range, Doppler
domain.

7.2. Experimental results

In this section, we present the SS-BSAR images obtained
by applying the proposed algorithm on experimental data
collected from the experimental setups shown in Figure 7. A
detailed description of our experimental hardware (includ-
ing the flight imitator) can be found in [19]. The experimen-
tal parameters are shown in Table 3. The geometry of the first
experiment is shown in Figure 14.

Figure 15(a) shows the SS-BSAR image obtained for a
stationary heterodyne channel (5.63◦ bistatic angle). The
image obtained from the observation area is superimposed
on a satellite photograph of the area. The color-scale is in dB,
where 0 dB represents the highest processed echo intensity.
It is important to note that the heterodyne channel was
stationary, so there was no need for the motion compensa-
tion described in Section 6. However, the signal synchroni-
sation described in Section 5 was required. Estimates of the
satellite’s instantaneous Doppler frequency and time delay
with respect to the heterodyne antenna (provided by the

synchronisation algorithm) were used for the modified range
compression. We can see from Figure 15(a) that the intensity
variation in the SS-BSAR image obtained corresponds to the
variation in the strength of echoes from the observed area.
More analysis and verification on the obtained image can be
found in [20].

Figure 15(b) shows the SS-BSAR image obtained for
moving heterodyne channel (38◦ bistatic angle). Therefore,
all the algorithms described in previous sections (synchro-
nisation, motion compensation, and imaging) were applied
to the acquired data. The experimental parameters are also
included in Table 3.

Comparing Figures 15(a) with 15(b) shows high level of
similarity. Strong reflections at the near field are observed in
both images. Also, targets at the range of 240 m, 350 m, 500 m
are visible in both images. Figures 16(b) and 16(c) show the
strong reflections from the building at 240 m in both images.
The dynamic range is almost same in both images, although
the signal strength in second image is lower than the first one.
This is due to possible bistatic RCS reduction.

Figure 17 shows cross-sections of the building shown in
Figure 16(a), taken along the azimuth direction for each of
the SS-BSAR images. It is observed that even though the
physical characteristics of the building have not changed,
image reflectivity has changed. This can be because the
imaging geometry between the two acquisitions is different.

8. CONCLUSIONS

This paper gave an overview of the research carried out by
University of Birmingham in the area of SS-BSAR, utilising
microwave emissions from GNSS transmitters as the ranging
signal. GLONASS satellite was used for experimentation.

In the paper, different GNSS transmitters (GPS,
GLONASS, and GALILEO) were compared on the basis
of resolution and power budget. It was highlighted that
GALILEO and the new GPS satellite are the most prospective
candidate for SS-BSAR. GALILEO E5 signal has potential
range resolution of 3–8 m and can detect targets with
50 m2 RCS at a range of approximately 5 km. On the other
hand, the new GPS signal can also provide the same range
resolution, but has 10 times more detection range compared
to GALILEO.
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Direction of Tx, Rx illumination

(a)

(b)

(c)

Figure 16: (a) Aerial photo of building at 240 m, (b) enlargement
of image area around the building at 240 m for 10◦ bistatic angle,
and (c) enlargement of image area around the building at 240 m for
40◦ bistatic angle.

Some of the practical problems (such as interference,
signal structure, synchronisation) were also briefly discussed.
One of the important problems was moving heterodyne
channel. It was discussed that the motion of the heterodyne
channel introduces a Doppler shift. This Doppler shift
needs to be estimated and incorporated in the azimuth
compression filter design. A method to estimate this Doppler
shift was described and experimentally verified.
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Figure 17: Azimuth cross-sections taken along the building at
240 m for the (a) moving heterodyne and (b) stationary heterodyne
images.

An imaging algorithm for SS-BSAR was briefly discussed
and experimentally tested. Using the flight imitator, bistatic
images were successfully obtained for moving and stationary
heterodyne channel. These images were also briefly analysed.
Comparison of moving heterodyne image with that of sta-
tionary heterodyne channel showed high level of similarity,
suggesting our new (moving heterodyne) configuration is
functioning properly. Finally, we can conclude that we can
obtain an SS-BSAR image for a moving heterodyne channel.
The next stage of our work will concentrate on obtaining
image using a real aircraft.
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the worst-case statistical performance (WCSP) optimization-based regularization. The MR objective functional is constrained
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the uncertain SAR imagery indicative of the significantly increased performance efficiency gained with the developed approach.
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1. INTRODUCTION

Modern applied theory of reconstructive radar imaging is
now a mature and well-developed research field, presented
and detailed in many works (see, e.g., [1, 2] and references
therein). The classical imaging with array radar or SAR im-
plies application of a method called “matched spatial filter-
ing” to process the recorded data signals [1, 3, 4]. Stated
formally [1], such a method implies application of the
adjoint signal formation operator (SFO) to the recorded
data, squared detection of the filter outputs, and their
averaging over the actually recorded samples (the so-
called snapshots [5]) of the independent data observations.
Although a number of authors have proposed different linear
and nonlinear postprocessing approaches to enhance the
images formed using such matched estimator (see, e.g., [3, 5–
8]), all those are not a direct inference from the Bayesian
statistically optimal estimation theory [4]. Other approaches
had focused primarily on designing the constrained regu-
larization techniques for improving the resolution of the
closely spaced components in the power spatial spectrum

pattern (SSP) obtained by ways different from the matched
spatial filtering [9–12], but again without aggregating the
regularization principles with the minimum risk estimation
strategy. Although the existing theory offers a manifold
of statistical and descriptive regularization techniques for
reconstructive imaging, in many application areas there still
remain some unresolved crucial theoretical and processing
problems related to large scale sensor array radar/SAR
reconstructive imaging in uncertain operational scenarios.

The predominant challenge of this study is to solve the
SSP reconstruction problem in context of the uncertain
environment. Thus, the problem of enhanced imaging of
the extended large-scale scenes remotely sensed with an
array radar/SAR operating in the uncertain remote sensing
(RS) environment is stated and treated as an ill-conditioned
statistical nonlinear inverse problem. The operational uncer-
tainties are associated with the unknown statistics of pertur-
bations of the SFO in the turbulent medium, imperfect array
calibration, finite dimensionality of measurements, uncon-
trolled antenna vibrations, and random carrier trajectory
deviations in the case of SAR. New descriptive experiment
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design regularization (DEDR) approach to radar imaging
in the uncertain environment is addressed to perform the
enhanced reconstruction of the power spatial spectrum pat-
tern (SSP) of the scattered wavefield from the uncertain data
measurements. The proposed DEDR incorporates into the
minimum risk (MR) nonparametric estimation strategy the
DEDR-motivated constraints of the observability of the ini-
tial scene scattering wavefield algorithmically coupled with
the worst-case statistical performance (WCSP) optimization-
based regularization. The MR objective function is con-
strained by the WCSP information, and the DEDR technique
for robust image reconstruction applicable to the scenarios
with the low-rank uncertain estimated data correlation
matrices is found. Pursuing such an approach, we establish
a family of the robust DEDR-related estimators that encom-
pass a manifold of the imaging techniques ranging from
traditional array matched spatial filtering to new DEDR-
related robust adaptive array beamforming. We also present
the robust DEDR-related imaging algorithms that manifest
enhanced resolution of the reconstructed array images with
substantially decreased computational load. The efficiency
of two general DEDR-related algorithms (the robust spatial
filtering (RSF) algorithm and the robust adaptive spatial
filtering (RASF) algorithm) is illustrated through computer
simulations of reconstructing the digital images provided
with the SAR operating in some typical uncertain remote
sensing scenarios.

2. DESCRIPTIVE EXPERIMENT DESIGN
REGULARIZATION FORMALISM

2.1. Problem model

Consider a coherent RS experiment in a random medium
and the narrowband assumption [1, 4, 6] that enables us to
model the extended object backscattered field by imposing its
time invariant complex scattering (backscattering) function
e(x) in the scene domain (scattering surface) X � x. The
measurement data wavefield u(y) = s(y) + n(y) consists of
the echo signals s and additive noise n and is available
for observations and recordings within the prescribed time-
space observation domain Y = T × P, where y = (t, p)T de-
fines the time-space points in Y . The model of the obser-
vation wavefield u is defined by specifying the stochastic
equation of observation (EO) of an operator form [1, 13]:
u = ˜Se + n; e ∈ E; u,n ∈ U; ˜S : E→U, in the Hilbert
signal spaces E and U with the metrics structures induced
by the inner products, [u1,u2]U = ∫

Yu1(y)u∗2 (y)dy and
[e1, e2]E =

∫

Xe1(x)e∗2 (x)dx, respectively. The operator model
of the stochastic EO in the conventional integral form [1, 13]
may be written as

u(y) = (˜Se
(

x)
)

(y) + n(y) =
∫

X

˜S(y, x)e(x)dx + n(y). (1)

The random functional kernel ˜S(y, x) of the stochastic
integral SFO ˜S given by (1) defines the signal wavefield for-
mation model. Its mean, S(y, x) = 〈˜S(y, x)〉, is referred to as
the nominal SFO in the RS measurement channel specified

by the time-space modulation of signals employed in a par-
ticular radar system [3, 8] and the variations about the mean
δS(y, x) = ˜S(y, x) − S(y, x) model the model uncertainties
and random perturbations of the wavefield at different
propagation paths (the so-called extended Rytov’s model
[1]).

We assume an incoherent nature of the backscattered
field e(x). This is naturally inherent to the RS experiments
and leads to the δ-form of the object field correlation
function, Re(x, x′) = b(x)δ(x − x′), where e(x) and b(x) =
〈|e(x)|2〉 are referred to as the scene random complex
scattering function and its average power scattering function
or spatial spectrum pattern (SSP), respectively. The radar

imaging problem is to derive an estimate ̂b(x) of the SSP

b(x) = (Be)(x) = Aver(2){e(x)
} = 〈e(x)e∗(x)

〉

(2)

(referred to as the desired RS image) by processing the
available finite dimensional array radar/SAR measurements
of the data wavefield u(y), where B defines the second-order
statistical averaging operator.

2.2. Projection formalism for data representation

Viewing it as an approximation problem leads one to a
projection concept for a reduction of the data field u(y) to
the M-D spatial-temporal data recordings:

u = vec
m

{

um =
[

u,hm
]

U; m = 1, . . . ,M
}

(3)

composed of the expansion/decomposition coefficients
{um = [u,hm]U; m = 1, . . . ,M}, where {hm(y)} defines
the set of orthogonal normalized basis functions in the M-
D data approximation subspace U(M) = PU(M)U [13]. These
are defined via corresponding compositions of the calibrated
antenna array tapering functions and sampling filters that
explicitly specify the corresponding data projection operator
PU(M) (see [13–15] for details).

In analogy to (3), one can define now the K-D vector-
form approximation of the scene random scattering function
as follows:

e = vec
k

{

ek =
[

e, gk
]

E; k = 1, . . . ,K
}

. (4)

The elements of vector (4) are composed of the decomposi-
tion coefficients {ek = [e, gk]E; k = 1, . . . ,K} with respect
to some chosen normalized orthogonal set of expansion
functions {gk(x)} that span such K-D signal approximation
subspace E(K) = PE(K)E and specify the corresponding scene
wavefield projection operator PE(K).

The descriptive experiment design (DED) aspects of the
SSP reconstruction problem involving the analysis of how to
choose the basis functions {gk(x)} that span the signal repre-
sentation subspace E(K) = PE(K)E = Span{gk} for a given
observation subspace U(M) = Span{hm} were investigated
in more details in the previous studies [13, 15]. Following
[15], in the rest of this study, we consider the conventional
(i.e., ordinary rectangular pixel format) representation basis
over a Kx2 × Kx1 regular pixel-formatted lattice [14, 16],
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where Kx1 defines the dimension of the rectangular grid over
the horizontal (azimuth) coordinate x1, and Kx2 defines its
dimension over the orthogonal (range) coordinate x2 (the
number of the slant range gates projected onto the scene
frame). Such regular lattice of points is next specified by
the ordered multi-index k = (kx1, kx2); kx1 = 1, . . . ,Kx1;
kx2 = 1, . . . ,Kx2; k = 1, . . . ,K = Kx1 × Kx2.

2.3. Uncertain finite-dimensional observations

In the DED formalism, an imperfect calibration of the array
(due to displacements of some array elements with respect
to the presumed nominal positions, as well as distorted
antennas shapes [4, 9]) is attributed to the unknown distur-
bances {δhm;m = 1, . . . ,M} in the decomposition functions

{˜hm = hm + δhm} in (3). In imaging SAR applications,
such disturbances incorporate the deviations of a carrier
from the nominal trajectory and antenna vibration [3, 17].
These disturbances and propagation perturbations result in
the uncertain SFO matrix:

˜S = S + Δ. (5)

In (5), the nominal M × K SFO matrix S is composed of
the elements {Smk = [Sgk,hm]U}, while all problem model
uncertainties are attributed to the distortion term, in which
the elements of the uncertainty matrix Δ are treated as
unknown values (realizations of random variables) with an
unknown probability density function (pdf) p(Δ).

2.4. Vector-form equation of observation

Now, we proceed from the stochastic integral-form EO (1) to
its finite-dimensional approximation (vector) form:

u = ˜Se + n = Se + Δe + n, (6)

in which the disturbed SFO matrix is defined by (5),
and e, n, u represent zero-mean vectors composed of the
decomposition coefficients ek, nm, and um, respectively.
These vectors are characterized by the correlation matrices:
Re = D = D(b) = diag{b} (a diagonal matrix with vector
b at its principal diagonal), Rn, and Ru = 〈˜SRe˜S+〉p(Δ) + Rn,
respectively, where 〈·〉p(Δ) defines the averaging performed
over the randomness of Δ characterized by the unknown
probability density function p(Δ). Vector b is composed of
the elements, bk = B(ek) = 〈eke∗k 〉 = 〈|ek|2〉; k = 1, . . . ,K
and is referred to as a K-D vector-form representation of the
SSP.

We refer to the estimate, ̂b, as a discrete-form represen-
tation of the desired SSP, that is, the brightness image of the
wavefield sources distributed over the pixel-formatted object
scene remotely sensed with an employed array radar/SAR.
Thus, the uncertain SSP reconstruction problem can be
reformulated now as follows: to derive an estimator for
reconstructing the K-D approximation:

̂b(K)(x) =
K
∑

k=1

̂bk
∣

∣gk(x)
∣

∣

2 = gT(x)diag
{

̂b
}

g(x) (7)

of the SSP distribution in the environment X � x. Note
that in applications, we employ the ordinary pixel expansion
format [16], while all theoretical results are valid also for any
feasible decomposition function basis, g(x) = vec

k
{gk(x)}, in

(7).

3. DEDR STRATEGY

3.1. Formulation of DEDR estimation strategy

In the descriptive statistical formalism, the desired SSP vector
̂b is recognized to be a vector of the principal diagonal of an

estimate of the correlation matrix Re(b), that is, ̂b = {̂Re}diag.

Thus, one can seek to estimate the desired SSP ̂b(K)(x) =
gT(x)diag{̂b}g(x) given the data correlation matrix Ru pre-
estimated via averaging of some J independent sampled
correlations [6]:

Y = ̂Ru = aver
j∈J
{

u( j)u+
( j)

} = 1
J

J
∑

j=1

u( j)u+
( j), (8)

and determining the solution operator (SO) F such that

̂b(K)(x) = gT(x)diag
{{

FYF+}

diag

}

g(x). (9)

To optimize the search for the desired SO F, we formulate
here the following DEDR strategy:

F = arg min
F

{

R(F)
}

(10)

subject to
〈‖Δ‖2〉

p(Δ) ≤ δ, (11)

where the conditioning term represents the worst-case statis-
tical performance (WCSP) regularizing constraint imposed
on the unknown second-order statistics 〈‖Δ‖2〉p(Δ) of the
random distortion component Δ of the SFO matrix (5), and
the DEDR “generalized risk” function is defined as

R(F) = tr
{〈

(

F˜S− I
)

A
(

F˜S− I
)+〉

p(Δ)

}

+ αtr
{

FRnF+},

(12)

where superscript + defines conjugate transpose. The DEDR
strategy (10), (11) implies the minimization of the α-
weighted sum of the systematic error measure (specified by
the first term in the risk function (12)) and noise error
(specified by the second term in the risk function (12)) in
the desired RSS estimate (9), in which the unknown distur-
bances of the SFO are treated through the WCSP bounding
constraint (11) imposed onto the averaged squared norm
of Δ. The selections (adjustments) of the regularization
parameter α and the diagonal-form weight matrix A (the so-
called metrics inducing matrix [13, 16]) with the diagonal
composed of positive numbers {akk > 0; k = 1, . . . ,K}
provide the additional DEDR “degrees of freedom” assigning
the weights akk to the particular SSP vector components
bk. These weights {akk} are the user-defined parameters
that may incorporate any descriptive metrics properties of
a solution [7, 8, 16]. In the simplest case of no preference
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to reconstruction of particular SSP components over the
observation scene frame, the uniform metrics is typically
induced by setting A = I, that is, the identity matrix. In
Section 3.2, we will consider the adaptive DEDR case and
specify the corresponding solution-dependent A. Neverthe-
less, independent on any feasible choice of α, A in the risk
function (12), the conditional optimization problem (10),
(11) can be reformulated as

F = arg min
F

max
〈‖Δ‖2〉p(Δ)≤δ

{

R(F)
}

. (13)

3.2. Decomposition of DEDR risk

To proceed with the derivation of the estimator (9), (13),
we now decompose the risk (12) incorporating directly the
WCSP uncertainty constraint into the DEDR strategy. The
first term in the risk function (12) specifies the systematic
error component as it measures “how far” the desired SO
F is from the pseudoinverse of ˜S in the averaged operator
metrics. We next, decompose this term into the following:

tr
{〈

(

F˜S− I
)

A
(

F˜S− I
)+〉

p(Δ)

}

= ∥∥FS− I
∥

∥

2
A +

〈∥

∥FΔ
∥

∥

2
A

〉

p(Δ),

(14)

where ‖C‖2
A = tr{CAC+} denotes the A-weighted squared

operator norm of a matrix, C. The second term in (14) has
the statistical meaning of the average noise energy in the
resulting solution (9); hence it specifies the fluctuation error
measure. This term can be bounded applying the Loewner
ordering [16] of the weight matrix A ≤ yI with the Loewner
ordering factor γ = min{γ : A ≤ γI} > 0 that yields

〈‖FΔ‖2
A

〉 ≤ γ
〈‖FΔ‖2〉 ≤ γ‖F‖2〈‖Δ‖2〉, (15)

where the second inequality follows from the Cauchy-
Schwarz inequality [16], and ‖C‖2 = ‖C‖2

I = tr{CC+} de-
fines a conventional squared norm of a matrix, C. Using the
constraint (11), we next evaluate the maximum value that
may take the last term in the inequality (15), that is,

max
〈‖Δ‖2〉p(Δ)≤δ

{

γ‖F‖2〈‖Δ‖2〉

p(Δ)

}

= ε‖F‖2 (16)

valid for any given bounding factor ε = δγ ≥ 0. With
this evaluation (16), the WCSP-constrained DEDR strategy
(13) is transformed into the following nonconstrained opti-
mization problem:

F = arg min
F

{

RDEDR(F)
}

(17)

with the aggregated DEDR risk functional:

{

RDEDR(F)
} = tr

{

(FS− I)A(FS− I)+} + αtr
{

FRΣF+},
(18)

where

RΣ = RΣ(β) = (Rn + βI
)

; β = ε

α
≥ 0. (19)

4. DEDR ESTIMATORS OF SSP

4.1. General-form SSP estimator

Routinely solving the minimization problem (17), we obtain
the desired DEDR-optimal SO:

FDEDR = KA,α,βS+R−1
Σ (20)

with the self-adjoint robust reconstruction operator:

KA,α,β =
(

S+R−1
Σ (β)S + αA−1)−1

(21)

dependent on three degrees of freedom: α, β, and A.
Note, that the derived robust SO (20) involves the Her-

mitian conjugate S+ of the regular SFO S (i.e., it satisfies the
DED-observability requirements [15]) and does not involve
the inversion of Y (i.e., it is applicable to the reconstructive
SAR imaging problems with only one-recorded realization
of the trajectory data signal available for further processing,
J = 1).

The general-form DEDR-optimal SO (20) enables us
now to derive the corresponding general-form robust SSP
estimator putting (20) into (9) that yields

̂b(K)(x)

= ̂b(K)(x | A,α,β)

= gT(x)diag
{

{

KA,α,βS+R−1
Σ (β)YR−1

Σ (β)SKA,α,β
}

diag

}

g(x).

(22)

This general-form DEDR estimator for the SSP can also be
represented in the alternative form as

̂b(K)(x) = gT(x)diag
{{

KA,α,βaver
j∈J
{

q( j)q+
( j)

}

KA,α,β

}

diag

}

g(x),

(23)

where q( j) = S+R−1
Σ u( j) is recognized to be an output of

the DEDR-regularized matched spatial processing algorithm
with noise whitening that assumes the given composed
correlation matrix, RΣ = RΣ(β). In practical RS scenarios,
it is a common practice [3–5, 14] to accept the robust white
observation noise model, that is, R−1

n = (1/N0)I and treat the
noise intensity N0 together with the uncertainty factor β in
the composed model of RΣ defined by (19).

4.2. Family of the DEDR-related algorithms

A family of the DEDR-related algorithms for estimating the
SSP can be derived now from (22) via controlling the reg-
ularization parameters α, β, and the weight matrix A that
constitute the degrees of freedom of the developed DEDR
method.

4.2.1. Robust spatial filtering algorithm

Consider the white zero-mean noise in observations and no
preference to any prior model information, that is, putting
A = I. Let the regularization parameter be adjusted as the
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Table 1: IOSNR gained with different DEDR-related reconstruction algorithms (results are reported for the first uncertain operational
scenario and second scene).

Scenario 1: ΔΨ(1)
a (x1) = 10; ΔΨr(x2) = 3; kΔ = β/N0 = 0.1

μ [dB]
Nonconstrained RSF Constrained RSF Nonconstrained RASF Constrained RASF (WCSP-optimized)

IOSNR(2) IOSNR(3) IOSNR(4) IOSNR(5)

5 1.85 2.158 2.2 2.45

10 2.4 2.68 2.32 2.89

15 2.56 2.76 2.67 3.4

20 2.73 3.37 3.02 4.2

25 3.47 4.23 3.1 5.32

30 3.85 4.95 3.64 5.46

Table 2: IOSNR gained with different DEDR-related reconstruction algorithms (results are reported for the second uncertain operational
scenario and second scene).

Scenario 2: ΔΨ(1)
a (x1) = 14; ΔΨr(x2) = 6; kΔ = β/N0 = 0.05

μ [dB]
Nonconstrained RSF Constrained RSF Nonconstrained RASF Constrained RASF (WCSP-optimized)

IOSNR(2) IOSNR(3) IOSNR(4) IOSNR(5)

5 1.71 2.17 1.9 2.41

10 1.85 2.61 1.92 2.88

15 1.9 2.9 2.2 3.45

20 1.93 3.4 2.18 4.16

25 2.01 3.78 2.6 4.56

30 2.11 4.3 3.08 5.32

inverse of the signal-to-noise ratio (SNR), that is, α = (N0 +
β)/b0, where b0 is the prior average gray level of the SSP, and
the uncertainty factor β is attributed to α. In that case, the SO
F is recognized to be the Tikhonov-type robust spatial filter
(RSF):

FRSF =
(

S+S +
((

N0 + β
)

/b0
)

I
)−1

S+. (24)

4.2.2. Matched spatial filtering algorithm

Consider the model from the previous example for an
assumption, α � ‖S+S‖, that is, the case of a priority of
the second error measure (suppression of noise) over the
systematic error in the optimization problem (17). In this
case, we can roughly approximate (20), (24) as the matched
spatial filter (MSF):

FMSF ≈ const. S+, (25)

where the normalizing constant is irrelevant as it specifies
the constant image scaling factor that does not influence the
overall reconstructed image pattern.

4.2.3. Robust adaptive spatial filtering algorithm

Consider the case of an arbitrary zero-mean noise with the
composed correlation matrix RΣ, equal importance of two
error measures in (18), that is, α = 1, and the solution-
dependent weight matrix A = ̂D = diag{̂b}. In this case, the

SO becomes the robust adaptive (i.e., solution-dependent)
spatial filter (RASF) operator:

FRASF = (S+R−1
Σ S + ̂D−1)

−1
S+R−1

Σ . (26)

The three SSP reconstruction techniques that employ the
SOs (24), (25), and (26) compose the family of the DEDR-
related estimators:

̂b
(p)
(K)(x) = gT(x)diag

{

{

F(p)YF(p)+}

diag

}

g(x), p = 1, 2, 3

(27)

with F(1) = FMSF, F(2) = FRSF, and F(3) = FRASF, respec-
tively. Any other feasible adjustments of the DEDR degrees
of freedom (the regularization parameters α, β, and the
weight matrix A) provide other possible DEDR-related SSP
reconstruction techniques numbered further on as p = 4, . . ..
As an important example, in the sequential subsection, we
show that such DEDR family encompasses also the celebrated
minimum variance distortionless response (MVDR) beam-
forming method transformed into the high-resolution RSS
estimation technique with the proper MVDR SO FMVDR =
F(4) specified further on by (31).

4.3. Relationship with the robust MVDR beamformer

The conventional MVDR beamformer [7] “reconstructs”
the RS image by minimizing the power or variance of the
adaptive array output for all search directions, k = 1, . . . ,K ,
under the constraint that the gain in the particular look
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(a) (b)

(c) (d)

(e) (f)

Figure 1: First operational scenario, first scene (μ = 20 dB): (a) artificially synthesized original scene; (b) degraded uncertain scene image
formed applying the MSF method; (c) image reconstructed applying the nonconstrained RSF algorithm; (d) image reconstructed with the
constrained RSF algorithm; (e) image reconstructed applying the nonconstrained RASF algorithm; and (f) image reconstructed applying the
constrained RASF (WCSP-optimized) algorithm.

direction is equal to a constant (one, for simplicity). This
results in the well-known conventional MVDR algorithm
[7, 10]:

̂bk =
(

s+
k Y−1sk

)−1
; k = 1, . . . ,K , (28)

where sk represents the so-called “steering vector” for the kth
look direction, which in our notations is essentially the kth
column vector of the nominal SFO matrix S.

For the purposes of establishing a relationship between
the MVDR beamformer and the DEDR-related SSP estima-
tors (27), we now rewrite the conventional MVDR algorithm
(28) as

̂bMVDR =
{

[

diag
{{

S+Y−1S
}

diag

}]−1
}

diag
(29)

that can be considered as a solution to the equation, ̂D =
̂DS+Y−1S ̂D. Expressing now Y−1 = Y−1YY−1 and using the
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Second operational scenario, first scene (μ = 20 dB): (a) artificially synthesized original scene; (b) degraded uncertain scene image
formed applying the MSF method; (c) image reconstructed applying the nonconstrained RSF algorithm; (d) image reconstructed with the
constrained RSF algorithm; (e) image reconstructed applying the nonconstrained RASF algorithm; and (f) image reconstructed applying the
constrained RASF (WCSP-optimized) algorithm.

second-form representation [15] for the operator, ̂DS+Y−1 =
(S+R−1

n S + ̂D−1)
−1

S+R−1
n , we obtain the alternative represen-

tation form for the MVDR algorithm (28), that is,

̂bMVDR =
{

FMVDRYF+
MVDR

}

diag (30)

with

FMVDR = F(4) = ̂DS+Y−1 = (S+R−1
n S + ̂D−1)

−1
S+R−1

n .
(31)

Examining the formulae (20), (21), and (31), one may
deduce that FMVDR = F(4) coincides with FDEDR for the non-
robust adaptive case, that is, β = 0, A = ̂D.

5. SIMULATIONS AND DISCUSSIONS

We simulated a conventional side-looking SAR with the
fractionally synthesized aperture, that is, the array was syn-
thesized by the moving antenna. The regular SFO of such
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SAR is factored along two axes in the image plane [17,
18]: the azimuth or cross-range coordinate (horizontal axis,
x1) and the slant range (vertical axis, x2). In the sim-
ulations, we considered the conventional triangular SAR
range ambiguity function (AF) Ψr(x2) and two approxi-
mations of the SAR azimuth AF: (i) “sinc” approximation,
Ψ(1)

a (x1) = |sinc(x1/a)|, and (ii) Gaussian “bell” approxima-
tion, Ψ(2)

a (x1) = exp (−(x1)2/a2), with the adjustable frac-
tional parameters a [15]. Note that in the imaging radar
theory [3, 8], the AF is referred to as the continuous-form
approximation of the ambiguity operator matrix Ψ = S+S
and serves as an equivalent to the point spread function
in the conventional image processing terminology [16, 19].
In this paper, we present the simulations performed with
two characteristic scenes. The fist one of the 512-by-512
pixel format was artificially generated. The second one of
the same 512-by-512 pixel format was borrowed from the
real world high-resolution terrain SAR imagery (south-west
Guadalajara region, Mexico [20]). The first scene was used
as a test for adjustment of the degrees of freedom of the
developed RSF and RASF algorithms to attain the desired
improvement in the image enhancement performances (the
IOSNR defined below). In the reported simulations, the
representation formats along the x2 (slant range) and x1

(cross range, i.e., azimuth) directions were adjusted to the
same effective pixel width. In the x1 direction, the fractional
parameter a was controlled to adjust different effective
widths ΔΨa(x1) of the azimuth AF. The corresponding
adjustment of different effective width of the range AF
ΔΨr(x2) was performed over the slant range direction (x2).

For the purpose of objectively testing the performances of
different DEDR-related SSP estimation algorithms, a quan-
titative evaluation of the improvement in the SSP estimates
(gained due to applying the DEDR-related reconstructive
solution operators F(p); p = 2, . . . , instead of the MSF, i.e.,
the adjoint operator F(1) = S+) was accomplished. In analogy
to image reconstruction quality metrics [16, 19], we adopt
here the quality metric defined as an improvement in the
output signal-to-noise ratio (IOSNR):

IOSNR(p) = 10 log10

∑K
k=1

(

̂b(MSF)
k − bk

)2

∑K
k=1

(

̂b
(p)
k − bk

)2 , p = 2, 3, 4, 5,

(32)

where bk represents a value of the kth element (pixel) of

the original SSP b, ̂b(MSF)
k represents a pixel value of the

kth element (pixel) of the rough SSP estimate ̂bMSF formed
applying the matched spatial filtering technique (conven-

tional matched beamformer with F(1) = S+), and ̂b
(p)
k

represents a value of the kth pixel of the SSP reconstructed
from the matched ̂bMSF applying one of the particular
developed DEDR-related SOs. In the simulation studies, four
different DEDR-related estimators were tested, renumbered
here as p = 2, 3, 4, and 5. The F(2) corresponds to the
nonconstrained FRSF, that is, to the RSF method adjusted
incorrectly to the scenario assuming no uncertainties in the
data (β = 0). The F(3) corresponds to the constrained
FRSF with the SFO uncertainty factor kΔ = β/N0 correctly

adjusted to two different uncertain scenarios (as specified in
Tables 1 and 2). The F(4) corresponds to the nonconstrained
RASF, that is, the RASF method adjusted incorrectly to the
scenario with no uncertainties in the data (β = 0). Last,
the F(5) corresponds to the constrained FRASF with the SFO
uncertainty factor kΔ = β/N0 correctly adjusted to two
different uncertain scenarios (as specified in Tables 1 and 2),
that is, the WCSP-optimized DEDR estimator. According to
the quality metric (32), the higher the IOSNR, the better the
improvement in the SSP estimate is, that is, the closer the
estimate is to the original SSP.

In this section, we report the qualitative simulation
results and the relevant quantitative performances evaluated
via the IOSNRs (32) (in the dB scale) gained with these four
robust DEDR-related estimators, in particular: IOSNR(2)

gained using the nonconstrained RSF in the uncertain sce-
nario; IOSNR(3) gained applying the constrained RSF in
the same uncertain scenario; IOSNR(4) gained using the
nonconstrained RASF; and IOSNR(5) gained applying the
constrained RASF (WCSP-optimized estimator) in the same
uncertain scenario. The simulation experiments were run for
two typical SAR systems that operate under different SNRs
levels μ = b0/N0, different fractionally synthesized apertures
(characterized by the width of the azimuth AFs ΔΨa(x1)),
and different uncertainty factors kΔ = β/N0 (as specified in
Tables 1 and 2) that bound via (11), (19) the impact of the
uncertainty SFO term. In particular, the simulated scenarios
are specified as follows.

(i) First uncertain operational scenario (simulation ex-
periment specifications):

(a) fractional azimuth AF width, ΔΨ(1)
a (x1) = 10

pixels of the 512 × 512 scene pixel format (at
the 0.5 from the peak value of the “sinc-type”

AF, Ψ(1)
a (x1) = |sinc(x1/a)| );

(b) range AF width, ΔΨr(x2) = 3 pixels (at the 0.5
from the peak value of the triangular Ψr(x2));

(c) SNRs range, μ = b0/N0 = 5 dB, . . . , 30 dB;

(d) SFO uncertainty factor, kΔ = β/N0 = 0.1.

(ii) Second uncertain operational scenario (simulation
experiment specifications):

(a) fractional azimuth AF width, ΔΨ(2)
a (x1) = 14

pixels (at the 0.5 from the peak value of the
“bell-type” AF, Ψ(2)

a (x1) = exp (−(x1)2/a2) );

(b) range AF width, ΔΨr(x2) = 6 pixels (at the 0.5
from the peak value of the triangular Ψr(x2));

(c) SNRs range, μ = b0/N0 = 5 dB, . . . , 30 dB;

(d) SFO uncertainty factor, kΔ = β/N0 = 0.05.

These specifications correspond to two typical uncertain
scenarios with airborne SAR sensor trajectory deviations
modelled in [17].

Figures 1(a) and 2(a) show the same artificially synthe-
sized test scene. Figures 3(a) and 4(a) show the second tested
original scene (borrowed from the real world high-resolution
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(a) (b)

(c) (d)

(e) (f)

Figure 3: First operational scenario, second scene (μ = 20 dB): (a) original scene; (b) degraded uncertain scene image formed applying
the MSF method; (c) image reconstructed applying the nonconstrained RSF algorithm; (d) image reconstructed with the constrained RSF
algorithm; (e) image reconstructed applying the nonconstrained RASF algorithm; and (f) image reconstructed applying the constrained
RASF (WCSP-optimized) algorithm.

SAR imagery [20]). The remaining images of Figure 1
through Figure 4 present the results of image formation
applying different DEDR-related SSP estimators as specified
in the figure captions. Figures 1(b) through 4(b) demonstrate
the images formed applying the conventional MSF for the
uncertain fractionally synthesized SAR scenarios. According
to the EO (6), the overall uncertain data degradations
ñ = Δe + n were composed of a mixture of conventional
white additive observation noise n and correlated (scene-
dependent) multiplicative noise Δe. Following the DEDR
methodology (detailed in Section 3), the SFO uncertainty

cannot be factorized into separate terms caused by the
environmental perturbations, SAR trajectory deviations,
or antenna vibrations. Thus, the composed multiplicative
degradation effect was modeled via simulating the MSF scene
image corrupted by the speckle noise via incorporating into
(9) with the SO (25), the uncertain operational scenario
factors, in particular, the uncertain data model correlation
matrix Y that corresponds to the degraded EO (6) with
the diagonal loaded noise augmented correlation matrix
(19). Figures 1(c) through 4(c) show the enhanced images
formed applying the unconstrained RSF, that is, the RSF
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Second operational scenario, second scene (μ = 20 dB): (a) original scene; (b) degraded uncertain scene image formed applying
the MSF method; (c) image reconstructed applying the nonconstrained RSF algorithm; (d) image reconstructed with the constrained RSF
algorithm; (e) image reconstructed applying the nonconstrained RASF algorithm; and (f) image reconstructed applying the constrained
RASF (WCSP-optimized) algorithm.

incorrectly adjusted to the uncertain scenario via ignoring
the uncertainty factor (β = 0). Figures 1(d) through 4(d)
present the enhanced images formed using the constrained
RSF properly adjusted to the particular uncertain scenario
(kΔ = β/N0 = 0.1 for the first scenario, and kΔ = β/N0

= 0.05 for the second scenario, respectively). The images
enhanced with the unconstrained RASF (β = 0) are shown
in Figures 1(e)–4(e), and the corresponding images recon-
structed with the constrained RASF (WCSP-optimized
method) are presented in Figures 1(f)–4(f), respectively.

From the presented simulation results, the advantage
of the well-designed imaging experiments (constrained
RSF and WCSP-optimized RASF) over the case of badly
designed experiment (nonrobust MSF and unconstrained
RSF) is evident. Due to the performed regularized inversions,
the resolution was substantially improved in all simulated
scenarios (as reported in Tables 1 and 2). The higher values of
IOSNR(3) > IOSNR(2) as well as IOSNR(5) > IOSNR(4) were
obtained with the constrained DEDR-related estimators, that
is, with the DEDR techniques adopted to the uncertain
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scenarios. Note that IOSNR (32) is basically a square-type
error metric. Thus, it does not qualify quantitatively the
“delicate” visual features in the reconstructed images; hence,
small differences in the corresponding IOSNRs reported in
Tables 1 and 2. In addition, both enhanced robust estimators
manifest the higher IOSNRs in the case of more smooth
azimuth AFs (larger ΔΨa(x1)) and higher SNRs μ. For the
DEDR-optimized RASF method, in addition, the ringing
(image speckle) effect was substantially reduced, while the
nonadaptive constrained RSF estimator requires consid-
erably less computational load. These results qualitatively
demonstrate that with proper adjustment of the degrees
of freedom in the developed DEDR estimators (24), (27),
one could approach the quality of the DEDR-optimal image
formation method (22) avoiding the cumbersome adaptive
computations required to implement the DEDR-optimal
algorithm [10, 15].

6. CONCLUSION

New descriptive experiment design regularization (DEDR)
approach for estimation of the spatial spectrum pattern
(SSP) of the wavefield power distribution in the uncertain
remotely sensed environment has been proposed as required
for the conventional array imaging radar, side-looking
airborne radar, and SAR. Unifying the DEDR and the worst-
case statistical performance (WCSP) optimization into the
aggregated WCSP-constrained minimum risk technique, the
inverse problem ill-posedness has been alleviated in a statis-
tically grounded fashion. The derived general-form DEDR
estimator does not involve the inversion of the estimated data
correlation matrix. This principal algorithmic-level result of
the undertaken study constitutes the crucial advantage of
the developed family of the DEDR-related estimators that
makes them applicable to the uncertain operational scenarios
with ill-conditioned (e.g., low-rank) estimates of the array
data correlation matrices, in particular, to the SAR imaging
scenarios where only one realization of the trajectory data
signal degraded due to the uncontrolled random carrier
trajectory deviation and antenna vibration is available for
further processing. Being nonlinear and solution-dependent,
the DEDR-optimal robust adaptive spatial filtering (RASF)
estimator requires rather complex signal processing. The
computational complexity arises due to the necessity to
perform simultaneously the solution-dependent operator
inversion operations and adaptive adjustments of the degrees
of freedom of the overall RASF technique. To reduce the
computational load, the simplified constrained robust spatial
filtering (RSF) algorithm was proposed and employed, which
manifests almost the same reconstruction performances as
the RASF in typical uncertain operational scenarios that was
verified in the simulation experiment.
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1. INTRODUCTION

One of the most important issues in disaster damage detec-
tion is time, and map timeliness is as important as precision.
As a consequence of that, every kind of data available is used
in order to provide information to emergency operators [1].
To this aim, remotely sensed imagery can be instrumental, as
well as geographical information system (GIS) layers, printed
maps, and historical datasets. However, while the use of
this kind of imagery has been constantly growing in the
past few years, image interpretation tools, though fast and
efficient even if not highly accurate, are still not used in many
applications.

Damage assessment is actually a big challenge, being
impossible to get the right data at the right time. For this
reason, the organizations such as the International Charter
on “Space and Major Disasters” are forced to consider a wide
range of sources. The need of rapid damage pattern estimate
requires information extraction about damages using quick
and possibly efficient approaches suited to the decided spatial
scale and the available data. So, the scale at which the analysis
can be carried out is determined by the spatial resolution of

the available data; for example, while SAR data can be useful
to extract damage information only at a parcel level, it should
be possible to recognize the single collapsed buildings from
HR images.

The aim of this work is to understand the viability of
radar satellite approaches to damage patterns by analyzing
many different disasters all around the world, looking also
at different scales of work. SAR data are becoming widely
available with more and more fine spatial resolution, and
thus with larger usability for urban area management. This
improvement actually allows a better match between the
growing requests for focused analysis in these areas (due to
the concentration of population) with the enhanced avail-
ability of dataset. Still, approaches to disaster management
in urban areas using SAR data are very limited, due to the
problems in data interpretation and the lack of automated or
semiautomated tools.

2. DAMAGE PATTERN ESTIMATE FROM SAR DATA

In recent technical literature, some works have already
suggested that multitemporal SAR data may provide, at
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Figure 1: Overall structure of the damage mapping procedure.
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Figure 2: Location of the urban area of Boumerdes in Algeria.

Table 1: Overall accuracy for maps in Figures 5–9.

Overall accuracy O.A. (4 classes)

Figure 5 MRF + GIS 56.51% 45.71%

Figure 5 FA + GIS 75.66%

Figure 6 MRF + GIS 66.98%

Figure 6 FA + GIS 65.08%

Figure 7 MRF + GIS 70.16% 44.44 %

Figure 7 FA + GIS 67.62%

Figure 8 MRF + GIS 69.84%

Figure 8 FA + GIS 68.25%

a proper temporal and spatial scale, interesting information
about disaster like earthquakes and floods. Most of these
works concerning earthquakes need data coming from
ground surveys to validate but also to initiate the process
of information extraction. For this reason, these strategies
are very useful in order to correlate damage patterns with
ground displacements and soil properties [2, 3], or to provide
precise 3D changes of the earth crusts [4], but offer very poor
results in terms of damage assessment and rapid damage
mapping of an affected area. However, it is important to
say that classification and change detection methodologies
solely used cannot provide immediately usable results to

the final user. Instead, these methods integrated with some
kind of ancillary data allow obtaining more precise and
understandable results. Moreover, damage analysis is almost
uniquely required in urban areas and human settlements in
general, where it is often easily feasible to collect layers of
Geographic Information System (GIS) data.

In this work, we apply a technique recently proposed in
[5] for the two test cases of the Bam (Iran) [6] and of the
Golcük (Turkey) earthquakes. The first aim of this work is
indeed to show that the proposed approach is valid in other
situations and produces useful results fro damage assessment
in different areas in the world. As a second objective, this
paper reports the results of an investigations about the
robustness of the approach to the lack of some of the features
originally used in the cited papers.

The overall methodologyof the data analysis is proposed
in Figure 1, even if, for sake of brevity, we do not recall
here all the details of the algorithm. The procedure involves
first of all the extraction of a suitable set of features from
the original multitemporal dataset comprising pre- and
postevent SAR imagery of the area under test. This feature
set is then input to a multiband supervised classifier, whose
output is a multiple class change detection map. Finally, a
postclassification fusion step is performed at the end of the
procedure involving the use of the above mentioned ancillary
data.
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(a)

(b)

Figure 3: Postevent SAR image (left) and available damage map
(right), where brown refers to highly damaged areas, orange to
medium damaged areas, and off-white to undamaged areas.

The set of feature extracted from the multitemporal
SAR images of the area under test depends on the trivial
assumption that radar returns in damaged areas are quite
different than in the original “undisturbed” configuration
of the buildings. There are studies showing that urban
areas show a remarkably strong coherence in complex
return values and correlation in amplitude/intensity values
during time. It is interesting therefore to use as hint to
damages the change in the complex coherence and in the
intensity correlation. In particular, intensity correlation has
been tested in technical literature for the Hyogoken-nambu
(Japan) and Bam (Iran) earthquakes. Following the paper
where this was originally proposed [2], each (complex) SAR
image of the available data sequence Xn, n = 1, 2, . . .,
is prefiltered with a Lee filter, and intensity correlation ri
between the ith image and the previous one in the temporal
sequence is computed according to the formula

ri =
∑

Wxixi−1 −Nxixi−1√(∑
Wx2

i −Nx2
i

)(∑
Wx2

i−1 −Nx2
i−1

) , (1)

where xi = ‖Xi‖ (recall that SAR data are complex values),
the

∑
W (·) notation means that computation is done for each

image element in a window W = N×X around it, and finally
the mean value xi is similarly computed in W.

Along with intensity correlation, another valuable input
feature is the difference between the logarithmic value of
the mean prefiltered data intensity di = 10 log10(xi) −
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Figure 4: Damage maps for the Boumerdes area: (a) using remotely
sensed data and change detection algorithm; (b) introducing the
GIS information about parcel borders in the urban area.

10 log10(xi−1), and the feature set is completed by the original
pre- and postevent pointwise intensities.

Of course, according to the dimension of the window
W and thus to the geographic area of computation of
the spatial features, multiple scales of analysis of the data
can be enhanced. A convenient value for the window size,
according to our past experience, depends on the ground
spatial resolution of the data and the mean dimension of
a meaningful block of buildings in the human settlement
under test. In all the considered cases, a value of N between
15 and 21 is equally valuable, when the SAR images have
spatial resolution in the 10 meters’ range.

The second step of the approach, as shown in Figure 1, is
a multiband classification, performed in this work compar-
ing two different approaches: a neuro-fuzzy per-pixel Fuzzy
ARTMAP (FA) classifier [7], and a contextual classifier based
on the assumption of a Markov random field (MRF) spatial
model [8]. Generally speaking, the neuro-fuzzy classifier has
been chosen because of its proven capability to provide good
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(a)

(b)

(c)

Figure 5: Postevent pan-sharpened image of the town of Pisco
(a) and GIS information (b) about the blocks in the town and
(c) damage map with three classes (from [9]): green (untouched),
yellow (light damage), and orange (medium/high damage).

results when performing a multiband per pixel classification,
while the MRF approach allows a spatially joint analysis.
Both algorithms are supervised, and as such a minimal
knowledge about the damages on the ground, their locations,
and level is required.

After classification, and due to the complex interactions
between radar waves and the urban environment, either
damaged or undamaged, it is very likely that the damage
classification map has a “blurred” or “fuzzy” appearance. To
improve the results, and to meaningfully focus the damage
map at a spatial scale of interest to the final user, a fusion step
between the map results and ancillary GIS data is performed.
To this aim, the best results between the two classification
methods are used to make a decision, by means of a decision
fusion process, about each of the areas detailed by the GIS
ancillary information. This processing step involves a data
fusion procedure which has been detailed in [5] and in this
work will be degraded to the simplest situation, that is,
majority voting. This basically means that the most voted
damage class in each block individuated by the GIS layer is
considered as representative of the whole block.

Following this procedure, in next section two different
testcases will be considered, referring to very different coun-
tries in different parts of the world. Moreover, different SAR
sensors are considered, and thus different scale of analysis
and data availability. With the results of the following section
we want to stress how much the simple procedure presented
here can be helpful in real situations, and compare how much
and how well different choices of the input feature set can
highlight the damage patterns in the area. The goal of having
more test cases and comparing with the originally studied
Bam (Iran) and Golcük (Turkey) cases is also a way to check
for the best combination (if any) for all of them.

3. APPLICATIVE TEST CASES

In order to test the proposed methodology, the aim of our
tests was to consider different SAR datasets, coming from
sensors on board of different satellites. The combination
of different bands of work, spatial resolution, polarization
information, availability or not of phase information was
meant to provide a method to test the robustness of the
approach and find where it has to be adapted. Moreover,
the very diverse damage patterns, connected to the original
spatial urban patterns and the effect of the earthquake, make
the two test site analyzed in the following. (in addition to the
2003 Bam test case in [5] and the 1999 Turkey case in [6] a
definitely valid series of applicative results.)

3.1. First test site: Boumerdes
(2003 Algeria earthquake)

The first results refer to the magnitude 6.8 earthquake
occurred in northern Algeria on May 21st, 2003. Centered
on the Boumerdes province (Figure 2) some 50 km east of
Algiers, the worst affected urban areas included the cities
of Boumerdes, Zemmouri, Thenia, Belouizdad, Rouiba, and
Reghaia. For this event, many different remotely sensed data
are available; in this work the analysis will be concentrated in
the urban area of Boumerdes, for which two ERS-2 have been
acquired, one pre-event acquired on July 27th, 2002, and one
postevent acquired on June 7th, 2003.
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Figure 6: Per-pixel damage maps and focused damage map using ancillary information for both the MRF and FA case. The input
multiband/multitemporal dataset is detailed on the left.
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Figure 7: Per-pixel damage maps and focused damage map using ancillary information for both the MRF and FA case. The input
multiband/multitemporal dataset is detailed on the left.

3.2. Second test site: Pisco (2007 Peru earthquake)

The second example refers to the test case of Peru, whose
central coast was stricken by a 7.9-magnitude earthquake on
August 15th, 2007. Among the affected cities, the city of Pisco

has been considered because it appears in two ALOS/PALSAR
fine beam double polarization (HH/HV) Precision images,
provided in geocorrected form and 12.5 meters posting. The
two images were acquired before (on August, 12th, 2007) and
after (on August 27th, 2007) the earthquake. Ancillary data
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Figure 8: Per-pixel damage maps and focused damage map using ancillary information for both the MRF and FA case. The input
multiband/multitemporal dataset is detailed on the left.
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Figure 9: Per-pixel damage maps and focused damage map using ancillary information for both the MRF and FA case. The input
multiband/multitemporal dataset is detailed on the left.

consist of a GIS layer depicting the borders of the parcels in
the urban area, and were obtained by manual digitalization
of the information in [9], and validated by comparison with
the same SPOT pre-event image used in that paper. From
the same paper, also the information related to damaged

areas obtained by in situ measurements was extracted (see
Figure 5).

Since the data have been provided as amplitude images,
no phase information could have been considered. This
prevents us from using the bands which were considered as
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the best choice in [5] for the problem of damage detection,
that is, pre- and postevent intensity, pre-post coherence and
difference between pre-post and pre-pre coherence. Instead,
from the available images only some intensity features have
been extracted, in particular the intensity correlation r and
the backscattering coefficient d and taking into account the
different spatial resolution of the ALOS/PALSAR scene than
the ERS and JERS data used in all the works on the same
subject so far. Other considered features are the pre- and
postevent intensities, computed from the original data after
despeckling with a 5× 5 Gamma filter. As in the first test case
the first classification by means of the above neuro-fuzzy per-
pixel classifier or the context-aware MRF classifier is followed
by a fusion with the GIS layer, where each parcel of the GIS is
assigned to the class to which the majority of mapped pixels
belong.

For this test case, a wider range of classification maps
is proposed in Figures 6–9 to allow a better comparison of
the combinations of features and classifiers, as well as to
appreciate the improvement in understanding the results by
using the data fusion final step. The need for this extended
result analysis is connected to the different spatial resolution
of ALOS/PALSAR with respect to the ERS/JERS data used
so far. This makes the classification map more precise at the
per-pixel level and allows defining spatial units smaller than
in the previous test site (compare Figures 5(b) with 3(b)).
Moreover, the lack of original complex data does not allow
computing the phase coherence, one of the most important
bands for the multiband/multitemporal damage assessment
classification step according to [5]. We thus intend to analyze
which, among the computed features, are the most viable
ones to get a rapid damage map in this situation.

Finally, Table 1 reports the overall accuracy for the maps
in the rightmost column in Figures 6–9 and allows to
improve the visual comparison with a quantitative assess-
ment.

A first comment to the results is that the information
fusion step is really mandatory to achieve results not only
with a decent mapping accuracy, but also understandable to
anyone looking to the map. A second comment is that the
accuracy values are in the same range as the one reported
for the first test case, the Algeria earthquake. Although
the ground truth in the present case is more detailed, the
higher spatial resolution of the SAR data allow matching the
accuracy values obtained from Boumerdes’ images.

According to the maps and the accuracy values, the
best result is obtained by using a combination of the
amplitude pre-event image (both polarizations HH and
HV) and the amplitude postevent image (again with both
polarizations), and the second best approach is the use of
the backscattering and the correlation computed between
the pre-event image (HH polarization) and the postevent
image (HV polarization), and the postevent image (with
both polarizations).

Since the ALOS/PALSAR image pre- and postevent image
pairs are alternate polarization (AP) images, it was also
possible to compare the effect of polarization with respect
to damage mapping task using the proposed approach.
However, it was found that no particular choice can be made,

and the problems in mapping the damage to the right extent
in some portion of the area are equally in place suing one or
the other of the two polarizations, or even a combination of
both.

A last comment is driven by the fact that the damage
maps in [9] involve four classes, instead of the three used in
our validation. In Figure 9, in fact, medium and high dam-
ages were considered as a single class, in orange. The reason
is that previous trials attempting to obtain maps with high
level of damage discrimination did fail. The highest accuracy
values, as reported in Table 1 for sake of completeness, were
around 45% at their best. The corresponding maps, where a
high level of damage is depicted in red, are reported in the last
row of Figures 6 and 8. Apparently, thereare limits inherent
to the structure of the artificial elements of the landscape,
the typology of earthquake, and the spatial resolution that
prevent the 7 m ALOS/PALSAR to be enough for this precise
recognition task.

4. CONCLUSIONS

In this paper, a rapid damage mapping approach is proposed,
based on the exploitation and interpretation of satellite SAR
data. The approach proves to be robust and useful to detect
the damage patterns. It is however imprecise with respect to
accuracy and needs improvements.

More specifically, although semiautomatic SAR data
interpretation in urban areas is an open research issue,
this paper shows that a combination (fusion) of remotely
sensed data and geographical databases may lead to a real
improvement in this interpretation, making the data more
useful for the end-user. Accuracy and robustness of the
procedure, together with its affordability, were proved by the
analysis of extreme events (notably, earthquakes) in many
different parts of the world.

There are some commonalities among the choices of
input features used in the cases presented in this work,
and the combination of the pre- and postevent intensity
data with the intensity correlation and the difference of
the logarithmic means achieves always better results. The
possibility to incorporate some phase information by means
of coherence, not exploited in this work but proposed in the
original paper [5], leads apparently to the best among these
multiple possible choices.

Very interesting and still open issues are those connected
to the analysis of additional spatial feature and the correla-
tion between the maps and the features itself to the actual,
on site generated, damage map.
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1. INTRODUCTION

There is a growing need for accurate, real-time instrumen-
tation of the sea surface for safe navigation of vessels in and
around harbours and shipping lanes. A commercial product,
wave and surface current monitoring system (WaMoS) [1],
can be connected to a conventional X-band marine radar.
WaMoS II processes the unfiltered sea clutter to estimate
the wave and surface current parameters in near real-time.
According to the manufacturers the instrumented range
is 0.1–3 km. At X-band operating frequencies, the main
scattering mechanism is that of Bragg scattering, associated
with the resonant capillary waves [2]. Capillary waves, in
turn, are generated by the local near-surface wind and
do not propagate beyond the breeze area. Only in a fully
developed sea can the wave height be directly related to the
present wind speed and can the significant wave height Hs

be accurately inferred from the average sea clutter reflectivity
[3]. In transient sea conditions, the best fit for the Georgia
Institute of Technology (GIT) mean sea clutter reflectivity
model [4] is found if the sea state is related to the local
mean wind speed rather than Hs [5, 6]. It can therefore
be deduced that it is possible to also infer local wind

conditions from X-band sea clutter. This article investigates
the temporal characteristics of coherent sea clutter, with
specific interest in the Doppler characteristics of sea clutter
and the relationship thereof to the local wind and wave
conditions (e.g., average wind speed, wind direction, and
wind gusts).

The significant increase in sea clutter reflectivity in rough
seas with strong winds, together with relatively small radar
cross section (RCS) of small boats (e.g., yachts, ski boats,
and rigid inflatable boats (RIBs)), has often been blamed
for disasters at sea where large ships collided with these
small boats [7]. In certain cases, the marine radar could not
discern the boat signature from the clutter, while in other
cases there were too many false tracks established leading to
the subsequent disabling of the automatic tracker. For safe
navigation it is pertinent that the detection capabilities of
marine radar in adverse conditions are improved. With the
introduction of cheaper, solid-sate, coherent marine radar
[8] a whole new class of coherent detection algorithms has
become applicable to marine navigation radar, for example,
[9–11]. Theoretical and first-order empirical analysis suggest
subclutter visibility [11]. Little work has been presented on
the performance of this class of detectors (often referred
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to as asymptotically optimal) on measured data of small
boats [12]. No reference is made to the performance as
a function of the type of manoeuvring of the boat and
the influence of the boat on the surrounding sea surface.
This article investigates the performance of the adaptive
linear quadratic (ALQ) detector [11] under different boat
manoeuvres for different types of RIBs, including the 4.2 m
pencilduck type that is often used for watersport racing.
This boat has a very small RCS, but since it has a racing
speed of up to 40 kts the local disturbance of the sea surface
often exceeds the boat RCS by up to 10 dB. With improved
subclutter visibility, the problem arises that first detections
are declared not only for small boats, but also for large birds
such as seagulls, with a typical RCS of 0.01–0.1 m2 [3], and
angels (flocks of birds flying together). Effective algorithms
to discard tracks established on birds have to be developed
[13].

Typical scanning surveillance systems (including mar-
itime radar) have to declare a detection using only a limited
number of pulses. Due to the long decorrelation time of sea
clutter [14] and the more often than not spiky amplitude
statistics [15], detection is quite difficult due to the short
dwell time. Persistent, ubiquitous surveillance has become a
top priority internationally. Typical entities of interest range
from small recreational watercraft to large tanker ships. One
of the characteristics of such systems, for instance, AwareNet
[16], is the ability to employ long dwell times at specific areas
of interest through the utilization of multiple, electronically
steered receiver channels. Improved discernibility of small
boats with long dwell times is therefore investigated in this
article.

Two sea clutter and boat reflectivity measurement trials
were conducted in 2006 and 2007 on the south western
coast of South Africa. The aim of these trials was firstly
to record datasets of sea clutter returns at different fre-
quencies, range resolutions, grazing angles, look angles, and
environmental conditions to validate current sea clutter
models. Secondly, the aim was to record boat reflectiv-
ity datasets for a number of small boats to investigate
its detectability with open literature detectors that will
hopefully lead to the development of improved detection
algorithms for radar systems employing adaptive dwell
times.

The layout of the article is as follows. Section 2 presents
an overview of the two measurement trials. The results
presented in this article were obtained from the analysis
of the data recorded during these trials. A description is
given of the different radar systems, the experimental set-
up, as well as the system and data integrity verification
procedures. Section 3 investigates a subset of the sea clutter
measurements, focusing on the amplitude statistics and
temporal characteristics for fixed frequency and frequency
agile waveforms. The RCS and temporal fluctuation of
a variety of small boats are investigated in Section 4 for
different manoeuvres. Of particular interest is the effect
of the boat manoeuvring on the local sea surface and its
subsequent reflectivity. Section 5 presents an analysis of
the detectability of these small boats, seagulls, as well as
angels.

Figure 1: Fynmeet deployed at OTB.

Figure 2: Radar deployed on Signal Hill with open view of sea.

2. OVERVIEW OF MEASUREMENT TRIALS

The first measurement trial was conducted with the Fynmeet
dynamic RCS measurement facility (Figure 1) at the Over-
berg Test Range (OTB). The site provided azimuth coverage
of 135◦ predominantly up-swell with well-developed waves
and with a significant variation in wind direction. Sea
clutter at grazing angles 0.3–3◦ were recorded. The second
measurement trial was conducted with an experimental,
monopulse, X-band radar (Figure 5) deployed on top of
Signal Hill in Cape Town. This site provided azimuth
coverage of 140◦ from up- to cross-swell, but with only two
predominant wind directions for the duration of the trial.
The sea was more representative of open sea conditions. Sea
clutter and littoral clutter at grazing angles 0.3–10◦ were
recorded. The experimental radar uses pulse compression to
increase the system gain and subsequently yields extended
range capabilities compared to Fynmeet.

2.1. Overberg test range 2006 trial

2.1.1. Radar and experimental set-up

The radar was deployed at OTB at location
34◦36′56.52′′S, 20◦17′17.46′′E, 67 m above mean sea
level (AMSL). The shortest distance to the coastline was
1.2 km due south. A plan overview of the deployment site
is depicted in Figure 2. The important specifications of
Fynmeet are listed in Table 1.

Local wind speed and direction (Figure 4(a)) were logged
with two weather stations separated by 1 km. The local wave
direction φwave, significant wave height Hs, maximum wave
height Hmax and wave period Twave (Figure 4(b)) were logged
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Figure 4: Environmental conditions during OTB trial: (a) wind,
and (b) wave.

with a directional recording wave buoy. The local wave
structure is influenced greatly by significant weather patterns
from the south west and further perturbed by the diffraction
patterns due to the cape, southwest of the deployment site
which is located in a small bay area with a sea bed depth
varying between 10–30 m at ranges of 3–10 km. The ground
truth tracks of the boats were estimated using a differential
processing global positioning system (GPS) receiver.

Table 1: Fynmeet system and performance specifications.

Transmitter

Frequency range 6.5–17.5 GHz

Peak power 2 kW

PRF range 0–30 kHz

Waveforms

100 and 300 ns pulsed
Continuous Wave (CW),
fixed/pulse-to-pulse frequency
agile (500 MHz)

Antenna

Type Dual offset reflector

Gain ≥30 dB

Beam width ≤2◦ (3 dB beam width)

Side lobes ≤ −25 dB

Receiver

Dynamic range
60 dB (instantaneous)/120 dB
(total)

Capture range 200 m–15 km

Range gates 1–64; ΔR = 15 m or 45 m

Sampler type
I/Q intermediate frequency
sampler

Image rejection ≤ −41 dBc

2.1.2. System and data integrity verification

For absolute RCS calibration the response from a sphere
suspended below a helicopter, tracked in range with a typical
α− β tracker and in angle with a video centroid tracker, was
measured and the calibration coefficient was calculated as

Ccal = 20 log10

(
1
N

N∑
n=1

∣∣∣∣∣
M(n)+1∑

m=M(n)−1

x(n,m)

∣∣∣∣∣AR
4

σcs

)
, (1)

whereN is the number of pulses transmitted,M(n) the range
gate with maximum return for the nth pulse, A the receiver
attenuation, and σcs the sphere RCS. A standard deviation of
1 dB was achieved. Daily stability verification measurements
were done with a corner reflector, exhibiting variations in the
order of about 1 dB across the measurement period.

Linearity of the quadrature receiver channels were ascer-
tained by the analysis of calibrated noise source, receiver
noise, and blue sky measurements taken throughout the trial.
This analysis included the estimation of channel skewness,
kurtosis as well as the 2nd to 4th normalized intensity
moments, I2 − I4. The amplitude and phase imbalance of
the quadrature channels were estimated as 0.03 dB and 1◦

resulting in a negative Doppler image of≤−41dBc. Addition-
ally, there were also harmonically related spurious responses
at a level of ≤−50dBc. A 5 MHz leak-through signal was
identified and removed from the data. The signal phase
was nondeterministic and therefore the amplitude and phase
were estimated from the dataset itself. Sea clutter with a
strong steady state component biases this estimate and the
best results were obtained by using a censored mean level
technique in the estimation process. The percentage of the
dataset censored was chosen such that the resultant estimate
yielded the lowest variance. Applying the discrete fourier
transform (DFT) to the corrected data, a 0 Hz frequency
bin with a comparable power density to adjacent frequency
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(a) (b) (c)

Figure 5: Boats deployed during OTB trial: (a) 5.7 m RIB, (b) ski
boat, and (c) chokka fishing vessel.

bins was obtained without suppressing the steady state clutter
response.

2.1.3. Trial summary

Sea clutter datasets were recorded over a period of 11 days,
with 112 fixed frequency and 38 stepped frequency datasets
centred at four transmit (Tx) frequencies over an azimuth
angle range from 90◦N to 225◦N and a grazing angle range
0.3–3◦. The local weather pattern may be described as
roughly following a 6-day cycle [17] as cold front systems
pass by from the west to the east. Over the trial period,
the average wind speed ranged between 1–20 kts, with a
maximum gust of 40 kts. Wind direction spanned 360◦, but
the high wind speeds were mainly from the south west. Hs

varied between 1–3.8 m, with a maximum recorded wave
height of 7.31 m. The wave direction was roughly 180◦N,
and slowly changed direction toward the end of the trial to
135◦N.

Even with a low wind speed of 1 kt, the significant wave
height was ≥1 m. This is due to the strong incoming south
westerly swell combined with the diffraction patterns of the
close-by cape and the reduction in sea depth. The illuminated
sea area can therefore not be defined as a fully developed
sea [3] and the standard tables relating wind speed and wave
height to sea state do not apply. In terms of the average wind
speed, sea states 1 to a low 5 were observed. In terms of
the wave height, sea states from a high 2 to a high 5 were
observed.

A 5.7 m RIB, a glass fibre ski boat and a wooden chokka
fishing vessel (Figure 4) were deployed on 4 days with
conditions ranging from calm to rough seas. The boats sailed
a number of manoeuvres at different ranges and azimuth
angles. A total of 55 fixed frequency and 43 stepped frequency
datasets were recorded centred at four Tx frequencies.

The recorded datasets have been made available to the
international research community. For information on the
available datasets and how to access these datasets, refer to
http://www.csir.co.za/small boat detection/.

2.2. Signal hill 2007 trial

2.2.1. Radar and experimental set-up

The experimental, X-band, monopulse radar was deployed
on Signal Hill at location 33◦55′15.62′′S, 18◦23′53.76′′E,
308 m AMSL, as indicated on the plan view in Figure 6. The
shortest distance to the coast line was 1250 m at a bearing of
288◦N. The site provided 140◦ azimuth coverage from 240◦N
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Figure 6: Plan overview of radar deployment site.

to 20◦N, of which a large sector spanned open sea whilst the
remainder looked towards the West Coast coastline from the
direction of the open sea. The radar had an open view of
Robben Island at a distance of 11 km. Grazing angles ranging
from 10◦ at the coastline to 0.3◦ at the radar instrumented
range of 60 km were obtained.

Local wind conditions (Figure 8(a)) were measured at
the radar, Robben Island, Cape Town Harbour as well as
Slangkop (south-southwest of the radar). The local wave
conditions (Figure 8(b)) were measured with a seabed-based
wave sensor at Camp’s Bay and a directional wave buoy
at Cape Point whilst numerically modelled at eight other
locations in Table Bay and around Robben Island. The tracks
of the instrumented boats (Figure 8) were estimated using a
differential-processing GPS receiver.

2.2.2. System and data integrity verification

Due to the similarity of the two radar systems, similar system
and data integrity verification process were followed as for
the Fynmeet radar described in Section 2.1.2. The exper-
imental radar employs matched filter pulse compression,
where pulse compression codes cpc are designed to yield a
specific pulse compression gain, sidelobe levels and blind
range. In the calibration procedure the height and range
of the helicopter carrying the calibration sphere over the
sea were restricted. The above-mentioned restrictions result
in not all codes being calibrated. It is possible however, to
estimate Ccal for the uncalibrated codes from the calibrated
codes by adding the relative pulse compression gain for the
uncalibrated code

Gpc =
∑N

n=1

∣∣cpc(uncal,n)
∣∣2

∑K
k=1

∣∣cpc(cal, k)
∣∣2 , (2)

whereN is the uncalibrated and K the calibrated code
lengths. Equation (2) is valid for a matched filter with
unit noise gain. Similarly, the Doppler processing gain
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(a) (b) (c) (d)

Figure 7: Boats deployed during Signal Hill trial: (a) Nadine Gordimer, (b) Rotary Endeavour, (c) pencilduck, and (d) SANParks RIB.
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Figure 8: Environmental conditions during Signal Hill trial: (a)
wind, and (b) wave.

can be estimated for the uncalibrated Doppler processing
coefficients cdp,

Gdp =
[∑L

l=1cdp(cal, l)2][∑M
m=1cdp(uncal,m)

]2

[∑L
l=1cdp(cal, l)

]2[∑M
m=1cdp(uncal,m)2] , (3)

where M is the uncalibrated and L the calibrated Doppler
processing coefficient lengths. For the experimental radar,
the image rejection and spurious response is sufficiently
below the noise floor. Pulse compression codes utilized
during the measurement trial yielded range sidelobe levels
in the order of −35 dB.

2.2.3. Trial summary

Sea clutter datasets were recorded on eight different days
over a period of thirteen days. The predominant wind
direction was northwestern, but with southeastern intervals.
The average wind speed varied between 0 kts and 40 kts,
with a maximum gust of 60 kts. The significant wave height
ranged in 1–4.5 m, whilst the swell direction varied between
230◦N and 270◦N.

Datasets of the instrumented boats depicted in Figure 8
were recorded on five different days.

The Nadine Gordimer is a 10 m Class A deep sea rescue
vessel with two MTU 1000 turbo diesel inboard motors and a
range of communication antennas. The Rotary Endeavour is
a Class 3 5.5 m RIB with two 60 hp Yamaha outboard motors
and a single VHF antenna. The South African National
Parks (SANParks) RIB is a 4.8 m RIB with a 60 hp Yamaha
outboard motor. The 4.2 m pencilduck has a single 50 hp
outboard motor with no antennas. In addition, datasets
were recorded for a large variety of noncooperative boats of
opportunity. Recordings were made using a range of fixed
frequency and stepped frequency waveforms.

3. SEA CLUTTER ANALYSIS

Various statistical properties are evaluated in this section
for seven sea clutter datasets recorded during the OTB 2006
measurement trial. These datasets represent low and high sea
states at grazing angles 1◦ and 0.5◦ for a single Tx frequency
and pulse widths of 100 nanoseconds and 300 nanoseconds.
The range-time intensity plot for the high sea state, 1◦, 100
nanoseconds dataset CFC16-001 is presented in Figure 9.

The strong underlying modulation caused by the well
developed waves is clearly visible for this up-swell config-
uration dataset. For cross-swell configurations and further
ranges coupling between the waves and the underlying
modulation becomes less pronounced as multiple waves
are contained within a resolution cell, which is defined by
the azimuth beamwidth and radar range resolution at low
grazing angles. The underlying modulation also becomes less
pronounced in weaker swell conditions.

3.1. Mean reflectivity and amplitude statistics

The mean reflectivity σ0 and clutter-to-noise ratio (CNR) for
the different OTB 2006 datasets are tabulated in Table 2 and
compared to the GIT and the hybrid (HYB) models [4]. In
both models the sea state S was derived from the mean wind
speed vwind using the empirical relation

vwind = 3.16S 0.8. (4)

From Table 2 it can be concluded that there is good
agreement between empirical σ̂0 and the HYB model, with
values generally between that of the HYB and the GIT. The
GIT typically underestimates σ0 at low grazing angles for low
sea states by a significant margin, as discussed in detail in
[4]. Of particular interest is the good fit found by matching
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Table 2: Empirical reflectivity [dBm2/m2] and CNR [dB].

Sea state Low Low Low Low High High

Grazing angle 1◦ 0.5◦ 1◦ 0.5◦ 1◦ 0.5◦

Resolution [m] 15 15 45 45 15 15

CNR [dB] 11 −3 17 5 21 7

Reflectivity [dBm2/m2] −48 −51 −51 −52 −39 −41

GIT model [dBm2/m2] −101 −115 −101 −115 −35 −39

HYB model [dBm2/m2] −47 −53 −47 −53 −36 −39

Range-time intensity (RCS (dBm2)) plot for dataset CFC16-001
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Figure 9: Range-time intensity plot for dataset CFC16-001.

Table 3: Empirical versus model amplitude statistics.

Sea state Low Low High High

Grazing angle 1◦ 0.5◦ 1◦ 0.5◦

I2 3.57 2.27 6.05 4.61

I3 24.88 9.47 72.32 63.75

I4 261.9 66.88 1238.6 1629.6

ν̂ 1.18 2 0.57 1.22

νmodel 1.88 1.79 0.92 0.88

sea state to local wind speed rather than Hs in transient sea
conditions (not fully developed).

The 2nd to 4th normalised intensity moments I2 − I4
and the estimated shape parameter ν̂ are tabulated in Table 3,
assuming a k-distributed envelope process and compared to
the shape parameter model νmodel [15]. In this estimation, the
theoretical relationship between the actual shape parameter ν̂
and the effective shape parameter ν̂eff in the presence of noise
is used [18]:

ν̂eff = ν̂
(

1 +
1

CNR

)2

. (5)

The non-Rayleigh envelope statistics is evident. Theoret-
ically spikiness should increase with a decrease in grazing
angle. However, this is contradicted in the empirical analysis
where a decrease in spikiness is observed with a decrease
in grazing angle. This may be due to well-developed waves
located closer to the radar (3 km) at the high grazing angles
yielding increased spikiness, with less developed waves at the
far-out ranges (8 km) where the low-grazing-angle sea clutter
data was recorded.

These observations are indicative of the highly complex
scattering environment and illustrate a still incomplete
understanding of sea clutter.

3.2. Average doppler characteristics

As the capillary waves are the main scattering mechanisms
at X-band and they are directly influenced by the near-
surface local wind [2], it can be expected that the Doppler
and autocorrelation properties of sea clutter are directly
influenced by the local wind. The sea clutter speckle
autocorrelation r(τ) [14] is plotted in Figure 10 for four
different datasets. From the magnitude response it is evident
that the speckle decorrelation time is 10–20 milliseconds,
which is consistent with literature [14]. It also indicates that
the decorrelation time is affected by sea state, where the
decorrelation time decreases as the sea state (roughness of
the sea) increases. An explanation for this may be the more
rapid deformation of the capillary waves in rough seas. The
complex autocorrelation is strongly coupled to the Doppler
characteristics of the sea clutter. Evaluation of the real and
imaginary components of r(τ) reveals that the second zero-
crossing of I{r(τ)} approximates 1/2 of the mean projected
Doppler period,

fd
(
φwind

) ≈ [2τ|(τ>0,I{r(τ)}=0)
]−1

. (6)

This together with the empirical model [3]

fd
(
φwind

) ≈ 2vwindcos
(
φwind

)
f0

4c
(7)

enables the estimation of the local projected wind speed from
an analysis of the estimated autocorrelation. With a complete
azimuth scan of the radar it would be possible to infer both
wind speed and direction. This lies outside the scope of this
paper and will be the subject of future research.

3.3. Spectrally inhomogeneous sea clutter

Section 3.2 provided empirical evidence that the average
wind speed can be inferred from the sea clutter speckle
autocorrelation, which is strongly correlated to the aver-
age Doppler response thereof. Experimental data suggests
however that the sea clutter spectrum is inhomogeneous in
both range and time in general. High Doppler resolution
spectrograms of three different geometrical configurations
and environmental conditions are presented in Figures 11–
13. In addition to the spectrograms I2 is plotted as a function
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Normalised autocorrelation for different datasets
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Figure 10: Speckle autocorrelation for different datasets: (a)
magnitude, (b) real, and (c) imaginary.

of Doppler frequency, yielding an indication of the spikiness
per Doppler resolution cell. The spectrogram in Figure 11
is representative of an up-swell sea (Hs = 3.4 m) with
strongly developed waves and up-wind (vwind = 15 kts)
configuration at a range of 3.8 km. From the spectrogram
the different individual waves can be distinguished as they
are propagating through the given range cell. The different
individual waves have very different Doppler spectra, which
results in a significantly raised I2 at the Doppler velocities
associated with localised wind gusts. Thus in the Doppler
domain these echoes will compete with those of real targets
and hence may have an adverse effect on the false alarm
rate. Since the individual waves are resolved, I2 is also higher
than 2 at the mean Doppler frequency. The spectrogram in
Figure 12 is representative of a 70◦ cross-swell sea (Hs =
2.8 m) and down-wind (vwind = 15 kts) configuration at a
range of 5.3 km. The sea was more representative of open sea
conditions. From the spectrogram it is clear that the short-
time Doppler spectrum is much more homogeneous and it is
impossible to distinguish individual waves or events. At the
mean Doppler frequency I2 tends to the theoretical value of
2 and is only slightly raised at the average Doppler spectrum
edges. The spectrogram in Figure 13 is representative of a

20◦ up-swell sea (Hs = 2.5 m) and up-wind (vwind = 7 kts)
configuration at a range of 5.6 km. Once again the sea was
representative of open sea conditions. For this dataset the
short-time Doppler spectrum is inhomogeneous compared
to the previous dataset, but not as severe as the first dataset
analysed in this subsection. For this up-swell configuration
there is evidence of individual waves propagating through
the range cell, but it is clear that more than one wave are
contained within the resolution cell. The events associated
with the broadened Doppler response may be associated
with whitecaps blown off the top of the waves by the higher
wind and/or gusts. The spikiness at the Doppler frequencies
associated with the local maximum wind speed is confirmed
by a significant raise in I2.

This brief analysis of the sea clutter Doppler spectrum
and I2( fd) suggests that it is possible to also infer the
existence and severity of whitecaps from the sea clutter.

3.4. Frequency agility

It is generally accepted that sea clutter speckle decorrelates
with frequency agility when the frequency step size exceeds
the pulse bandwidth, Δ fc ≥ B [3]. The correlation coefficient
ρ( f0, fn) is plotted for a coherent processing interval (CPI)
of 100 milliseconds at a fixed range cell over a period of
60 seconds—depicting the correlation between the base Tx
frequency f0 and an offset frequency of up to f0 + 130 MHz
for a pulse bandwidth of 10 MHz. From Figure 14 it can be
concluded that in general the sea clutter speckle decorrelates
whenever Δ fc ≥ B. However, there are a number of CPIs
where the speckle only decorrelates after a step size of
40 MHz. Discrete spike events can also be identified where
there is strong correlation for a step size of up to 130 MHz.
Most radar detection mechanisms will declare these spikes as
targets. It is important to note that these discrete spike events
have a typical lifetime of 0.5–2 seconds.

Thus, overall these observations show broad agreement
with those reported elsewhere and with the GIT and HYB
models. They also re-emphasise the complexity of the
scattering environment in which a target is required to be
detected. This aspect is examined further in the following
two sections.

4. SMALL BOAT REFLECTIVITY ANALYSIS

This section presents the results of the analysis of a range
of small instrumented boats deployed during the two trials
detailed in Section 2.

4.1. Small boat RCS and amplitude statistics

The mean RCS of the small boats, averaged over aspect angle,
have been estimated from the measured data and tabulated
in Table 4. Isolation of the boat signature from the sea clutter
was obtained by Doppler filtering, using the GPS-estimated
Doppler frequency as input. The responses of the three-
range cells closest to the GPS range were coherently added to
counter range-gate straddling losses. The effects of multipath
fading from smooth sea surfaces and of shadowing of the
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Spectrogram (dBm2/Hz) at range 3795 m. (range gate 54)
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Figure 11: Spectrogram and I2 for OTB dataset CFC16-001.

Spectrogram at range 5557.1527 m. (range gate 359)
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Figure 12: Spectrogram and I2 for spectrally homogeneous Signal Hill dataset.

Spectrogram at range 5587.132 m. (range gate 361)
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Figure 13: Spectrogram and I2 for spectrally inhomogeneous Signal Hill dataset.
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Correlation coefficient ρ( f0, fn) for dataset
TSC17-001, CPI = 0.108 s
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Figure 14: Sea clutter frequency agility decorrelation in the
presence of discrete spikes.

Reconstructed boat RCS (m2) time history for dataset TFC17-002
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Figure 15: Reconstructed chokka fishing vessel RCS signature.
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Figure 16: Empirical PDF of chokka fishing vessel and WaveRider
RIB compared to Swerling models 1 and 3.
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Figure 17: RIB non-coherent autocorrelation showing strong
correlation with sea waves.

Table 4: Small boat RCS [dBm2].

Boat description Length Width Engines RCS (m2)

Pencilduck 4.2 m 1.6 m 1× 50 hp ≈1

SANParks RIB 4.8 m 1.8 m 1× 60 hp 1–3

WaveRider RIB 6.5 m 2 m 2× 85 hp 1–5

Ski Boat 5.2 m 1.8 m 2× 85 hp 4–15

Chokka Fishing Vessel 6.2 m 2 m 1× inboard 5–16

boat in higher sea states on the RCS values were not corrected
for in the results presented in Table 4.

From Table 4 it is clear that the RCS of an RIB is related to
its physical size and ranges between 1–5 m2. The RCS of solid
boats are larger in general, with the mean RCS of the chokka
fishing vessel up to 16 m2. In addition to the mean RCS of
the small boat it is also critical for detection performance
calculation to have a good model for its RCS fluctuation. The
isolated boat RCS signature for the chokka fishing vessel is
plotted in Figure 15, with the empirical probability density
function (PDF) plotted for both the chokka fishing vessel and
the WaveRider RIB in Figure 16.

Slight differences between the PDFs of the two boats
are visible as well as the inability of the Swerling models
to accurately describe their amplitude distributions. A
characteristic of small boats in heavy sea is the fading of
the RCS as the boat steers into the troughs of the waves,
as indicated by the close-up view about 25–29 seconds in
Figure 15. This suggests a strong correlation of boat RCS
with the local sea waves and explains the poor fit of the
empirical PDFs to the Swerling models at low RCS values.
The noncoherent autocorrelation of a boat steering directly
into the waves (Figure 17) shows periodicity with the same
period as the mean sea wave period. This correlation of boat
RCS and sea clutter echo strength further complicates an
already challenging detection problem.

4.2. Small boat doppler bandwidth

The Doppler bandwidth of a target is an important design
parameter for optimal coherent detection. Coherent pro-
cessing gain is only achieved by an increase in the CPI
whilst it still remains less than or equal to the inverse of
the target Doppler bandwidth. High Doppler resolution
spectrograms have been computed for the different small
boats, with the results for CPI’s of 10 milliseconds and
200 milliseconds plotted in Figure 18 for the WaveRider
RIB.

The Doppler bandwidth for the WaveRider RIB can
be observed from the high-resolution spectrogram. As
for most of the other small boats, this is approximately
10 Hz. This yields an optimal CPI ranging between 100–200
milliseconds. As the CPI increases beyond this value, the boat
energy will start to spread over multiple Doppler resolution
cells, yielding no additional coherent processing gain. This is
a key consideration in the design of an optimal detector.
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Figure 18: High Doppler resolution spectrograms for different CPI’s: (a) 10 milliseconds, and (b) 200 milliseconds.

4.3. Highly manoeuverable small boats

Due to its small size, light weight and powerful engines,
the RIB class of small boats is highly manoeuvrable with
the ability to reach speeds of up to 40 kts for even the
small 4.2 m pencilduck. Especially in the design of coherent
detection and tracking algorithms, it is important to have a
good understanding of the anticipated manoeuvrability of
the target. In addition, the disturbance of the manoeuvring
boat on the local sea surface may also greatly influence
its detectability either adversely or positively. The high
Doppler resolution spectrograms of two different RIB’s are
plotted in Figure 19–21 for three different manoeuvres.
The narrow Doppler response of the drifting pencilduck
(Figure 19) is evident, as well as the slight movement of the
pencilduck due to the local waves. The drifting pencilduck
caused little disturbance on the local sea surface. The
WaveRider RIB steering radially outbound at a speed of
about 10 kts (Figure 20) had a narrow Doppler response,
with a local disturbance of the sea surface visible when the
RIB was crashing through the crests of the waves. This local
disturbance is observed as quite broad Doppler bandwidth
noise with Doppler velocities ranging from slightly higher
than the speed of the boat down to the Doppler velocity
of the local sea clutter speckle. The spectral density of the
disturbance is 20 dB lower than the boat signature. The
pencilduck racing at 40 kts radially outbound (Figure 21)
still had a narrow Doppler response for the body of the
boat, but caused a significant local disturbance of the sea
water (e.g., splashing waves and water spray by the propeller),
decreasing the localised signal-to-interference ratio (SIR) to
less than −10 dB. With such a low SIR, it becomes increas-
ingly difficult to detect the boat with clutter suppression
algorithms, even though the local disturbance of the sea
surface may be detected by a basic envelope thresholding
detector. However, there is still ample Doppler separation

between the boat and interference, and in principal a long
dwell time range-Doppler detector could be constructed that
will consistently declare detections for this fast moving boat.
Also of interest is the case where the boat is racing cross-
range. This still yields strong self-induced interference, but
the Doppler response of the body of the boat will be buried
within the interference and it will become extremely difficult
to detect.

From this subsection it can be concluded that the exact
manoeuvre of the small boat has a great influence on its
detectability, especially due to its potential disturbance to
the local sea surface. It is also clear that not only the speed,
but also the heading of small boats has to be modelled for
accurate performance prediction.

4.4. Frequency agility correlation for small boats

Theoretically the correlation coefficient ρ( f0, fn) for the RCS
of a point scatterer for different frequencies should be unity.
For a target that can be approximated as a point scatterer it
is assumed that |ρ( f0, fn)| → 1. In the presence of clutter and
multipath fading, the correlation will be adversely effected.
ρ( f0, fn) is plotted in Figure 22 for a CPI of 100 milliseconds
for the two range cells containing most of the energy for the
chokka fishing vessel.

The frequency agility correlation for the boat exceeded
0.5 with Δ fc = 100 MHz for 84% of the total time period,
compared to only 10% for sea clutter only as represented
in Figure 14. There were time periods when the correlation
coefficient dropped to similar levels as the sea clutter, which
coincided with low levels of SCR and/or SNR. For a 10 MHz
pulse bandwidth empirical evidence suggest that small boats
exhibit significant frequency agility correlation for frequency
step sizes up to and beyond 130 MHz. It is possible to design
a detection algorithm that uses ρ( f0, fn) as the basis for its
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High-resolution spectrogram of boat range cell (dBm2/Hz)
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Figure 19: High Doppler resolution spectrogram for drifting
pencilduck.
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Figure 20: High Doppler resolution spectrogram for radial out-
bound WaveRider RIB.

test statistics. This detector may still detect discrete spikes,
since they have similar characteristics as the small boats (e.g.,
at t ∈ (6, 51) s in Figure 14). Once again, these discrete spikes
only have a limited lifetime of less than 2 seconds.

5. DETECTABILITY OF SMALL BOATS

This section presents the detectability of small boats under-
going different manoeuvres using the ALQ detector as an
example of the asymptotically optimal class of detectors.

5.1. Overview of the ALQ detector

The ALQ detector is designed by extending the generalized
likelihood ratio test approach, as suggested by Kelly [9] for
Gaussian interference, to the spherically invariant random
process model for non-Gaussian interference [19]. Assume
that the radar transmits a coherent train of m pulses. The
associated m received complex samples can be constructed
as a vector z = [z(1), . . . , z(m)]T . Under the assumption
that M is known exactly, the ALQ detector can be expressed
mathematically as

∣∣pHM−1z
∣∣2(

pHM−1p
)(

zHM−1z
) H1

≷
H0
χt , (8)
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Figure 21: High Doppler resolution spectrogram for pencilduck
racing at 40 kts radially outbound.
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Figure 22: Frequency agility correlation for chokka fishing vessel:
(a) gate 10, and (b) gate 11.

where p is the steering vector typically constructed with
elements pi = e j2πi fdT [20], T the radar PRI and fd the target
Doppler frequency [11]. It is generally accepted that M is
highly dependent on the radar configuration, geometry, and
the environmental conditions and has to be estimated from
adjacent range gates that are not contaminated by the boat
itself. Various estimation techniques have been proposed
[21]. Gini and Greco [11] describe one such technique that
makes a good compromise between detection losses and
hardware processing requirements:

M̂AML(i + 1) = 1
K

K∑
k=1

m · zkzHk
zHk M̂AML(i)−1zk

, (9)

for i = 0, 1, 2, . . . ,Nit. During each iteration the approxi-
mately maximum likelihood (AML) estimation is normal-
ized such that its trace is equal to m. Since the ALQ detector
involves inversion of M, care has to be taken to ensure that
the matrix does not become singular. This can be ensured by
setting the number of independent sea clutter time vectors
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Figure 23: ALQ performance for drifting pencilduck: (a) spectro-
gram with detections, (b) test statistic χ, and (c) sliding window Pd.

at different range gates k equal to at least the length of the
test vector m, k ≥ m [9]. Detectability can be improved by
increasing this ratio, but at the expense of increased hardware
processing requirements.

5.2. ALQ performance for different RIB manoeuvres

In the first dataset evaluated, the 4.2 m pencilduck was
floating close the southwestern shore of Robben Island, with
Hs = 3 m and vwind = 6 kts NE. The radar look angle was
343◦N at range R = 11 km with grazing angle θ = 1.5◦.
SCR and CNR were 6 dB and 24 dB, respectively. Figure 23(a)
plots the spectrogram with a dwell time equal to that of
the ALQ detector with the Doppler-dependent thresholding
detections overlaid for PFA= 10−4. Figure 23(b) plots the test
statistic χ. Figure 23(c) plots the sliding window Pd with
window length L = 31, with E{Pd} = 23%. For such a
low SIR this is rather significant. The ability of the detector
to whiten the sea clutter is clear in Figure 23(b), whilst the
boat signature shows very little evidence of decorrelation.
The fading in target signature and the subsequent fading in
detectability may very well be due to shadowing of the boat
by the sea waves.

In the second dataset, the WaveRider RIB was steering
away from the radar into the well-developed waves at a speed
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Figure 24: ALQ performance for 10 kts WaveRider RIB: (a)
spectrogram with detections, (b) test statistic χ, and (c) sliding
window Pd.

of 10 kts at range R = 3.3 km. The radar look angle was
166◦N, whilst Hs = 3.2 m and vwind = 16 kts SSE. SCR and
CNR were 4 dB and 17 dB, respectively. The performance of
the ALQ detector for PFA= 10−4 is plotted in Figure 24, with
E{Pd} = 62%. Even though the SCR is lower than in the
previous case, a significant increase in Pd is observed. This
is most probably due to the increased Doppler separation.
Figure 24(c) indicates that low Pd is in general associated
with low SCR and/or low SNR.

With the observed increase in sensitivity with an increase
in Doppler separation, it can be expected that detectability
will increase even further for the high-speed pencilduck. The
performance of the ALQ detector is plotted in Figure 25
for the pencilduck racing at 40 kts radially outbound at a
range of 21.5 km. Even though the boat can be distinguished
in the high Doppler resolution spectrogram (Figure 21) the
ALQ detector only manages very intermittent detections.
The sea clutter and localised disturbance are whitened over
all Doppler, effectively masking the boat. In this case the
ALQ cannot be classified as an asymptotically optimal,
since a range-Doppler cell-averaging CFAR detector can be
configured to steadily detect the boat due to the separation
in Doppler of the interference and the boat signature and its
narrow Doppler spectrum.
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Figure 25: ALQ masking of fast moving pencilduck.
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Figure 26: Detection of seagulls and an angel with the ALQ
detector.

5.3. Detection of seagulls and angels

With improved subclutter visibility, the problem arises that
first detections are declared not only for small boats, but
also for large birds such as seagulls. ALQ detections for
the last dataset in Section 5.2 are overlaid on the range-
time intensity plot in Figure 26. Even though only inter-
mittent detections were declared for the racing pencilduck,
a large number of detections were declared for the entire
dataset. Examination of these detections reveals that they
coincide with scatterers yielding an RCS of approximately
0.01–0.1 m2 and a narrow Doppler spectrum with very
fast acceleration. Comparing this to the Doppler signatures
of birds in [13] and observation by the copilot of the
pencilduck led to the conclusion that these scatterers are
indeed seagulls.

Of particular interest in Figure 26 is the consistent
detections declared from a range of 21.9 km at t = 0 second
closing in to a range of 21.4 km. Closer inspection revealed
that this was a flock of about 6 seagulls flying in formation.
The combined RCS of this “angel” was 10 dB lower than the

pencilduck, but still yielded significantly higher Pd. The main
reason for this is the Doppler separation and that the seagulls
caused no local disturbance of the sea surface. The resultant
SIR for the angel was indeed higher than for the pencilduck.
As radar sensitivity is increased, this will become a more and
more significant problem.

6. CONCLUSIONS

Current commercial products provide near real-time esti-
mation of basic wave and surface current parameters using
the video output of standard X-band marine radar. This
paper investigated sea clutter and small boat reflectivity in
the littoral and proved that sea clutter reflectivity is related
to vwind rather than Hs. Temporal characteristics of sea
clutter were investigated, with empirical results suggesting
that vwind and φwind can be estimated from the sea clutter
speckle autocorrelation. The spectral inhomogeneity of sea
clutter was investigated for different sea conditions. The
brief analysis of the sea clutter Doppler spectrum and I2( fd)
suggested that it is possible to also infer the existence and
severity of whitecaps from the sea clutter. Discrete spikes
in sea clutter were clearly visible when the frequency agility
decorrelation was estimated.

For safe navigation, it is pertinent that the detection
capabilities of marine radar in adverse conditions are
improved, especially for small boats. This requires an
in-depth understanding of the dynamics and associated
reflectivity of these boats. The absolute RCS, amplitude
statistics, and temporal characteristics of a range of small
boats have been analysed using a comprehensive set of
recorded datasets. Of particular interest were the dependency
of the boat reflectivity on the local sea, deviation from
the Swerling RCS models, the perceived persistence of
reflectivity for short periods of time and the distinguishable
pulse-to-pulse frequency agility correlation properties of
small boats. It was shown using real data that the ALQ
detector can, under certain conditions, be subject to self-
masking. A definite contribution to the knowledgebase is
the importance of not only modelling the sea clutter and
boat reflectivity accurately, but also to model the local
disturbance caused by small boats, especially during fast
manoeuvring.
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1. INTRODUCTION

Haykin et al. [1] advocated a state-space formalism for the
processing of radar signals in the presence of sea clutter (i.e.,
radar backscatter from an ocean surface). Such a model not
only accounts for the temporal dimension of sea clutter in
an explicit manner but also for its statistical characterization.
Basic to this formalism is whether the underlying dynamics
of sea clutter are linear or nonlinear.

In the detailed experimental study reported in Haykin
et al., [1] it was also demonstrated that sea clutter is a
nonlinear dynamic process, with the degree of nonlinearity
increasing as the “sea state” becomes higher. The conclusion
reached on the nonlinearity of sea clutter was based on two
premises, using real-life data collected with an instrument-
quality coherent radar system.

(1) The characterization of sea clutter embodies two
forms of continuous-wave modulation:

(i) amplitude modulation (AM), which is linear, and

(ii) frequency modulation (FM), which is nonlinear.

The latter phenomenon is responsible for the nonlinear-
ity of sea clutter.

(2) The z-parameter, denoting the Mann-Whitney rank-
sum statistic, is less than the special value −3, which is a
strong indicator of nonlinearity.

With regards to point 1, it is also noteworthy that in
another study that focussed on the spectral characterization
of sea clutter using the Loève transform [2], it was discovered
for the first time that sea clutter is a cyclostationary process.
Cyclostationarity is ordinarily associated with modulation.
But knowing that sea clutter is cyclostationary, it does not tell
us the type of modulation involved in the characterization of
its waveform.

In this paper, we expand on the characterization of sea
clutter as a nonlinear dynamic process, using a principled
theoretical approach. In particular, the approach is rooted
in stochastic differential equation (SDE) theory. The issue of
the dynamics of radar scattering in a sea clutter environment
has been addressed in the literature independently from both
theoretical and experimental points of view. Perhaps most
notably in the former case, Field & Tough [3, 4] develop
a theoretical basis for the dynamics which is demonstrated
to agree with experimental data to a remarkable degree
of accuracy. In the latter case, Haykin et al. [1] study
experimental data to motivate a line of argument leading
to the conclusion that sea clutter is inherently nonlinear
(and indeed possibly chaotic). In the current paper, we bring
these two independent lines of development together in a
consistent way in order to establish the nonlinear nature of
sea clutter from both physical and mathematical viewpoints.
More precisely, the scattering dynamics can be derived from
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first principles in terms of a pair of stochastic differential
equations (SDEs) for the received envelope and the radar
cross-section (RCS) that feature a nonlinear coupling and
encode the statistical character of the sea state in terms of a
certain “shape parameter.” Examination of the differentiable
parts in this system of SDEs reveals a corresponding “noise-
free skeleton,” that is, a nonlinear vector process, with a
degree of nonlinearity dependent on the shape parameter
in a manner consistent with that shown experimentally by
Haykin and coworkers. This significant development affirms
the case for the nonlinear character of radar sea clutter.

The paper is organized as follows. Section 2 provides
a summary of the experimental study that led to the
formulation of a hybrid AM/FM model, and the conclusion
that sea clutter is a nonlinear dynamic process. Section 3
summarizes the essential ingredients of SDE theory necessary
for the basic interpretation of the SDE dynamics of radar sea
clutter. In Section 4 we apply this formalism to establish the
nonlinear character of the stochastic dynamics of the vector
process consisting of the radar cross-section (RCS) and
resultant back-scattered amplitude or “received envelope.”
This is achieved from first principles via an extended random
walk model. The extent of the nonlinearity in the resulting
SDE description is quantified in terms of a certain “shape
parameter” (the relative variance in the RCS, minus one)
that encodes the sea state. We conclude in Section 5 with
a discussion of the interplay between the two independent
lines of enquiry that lead to the common conclusions
concerning the nonlinear character of radar sea clutter. We
also indicate how our results may suggest which types of
experiments to perform to further substantiate and enhance
the theoretical framework, and discuss future prospects for
the investigation of chaotic dynamics.

We refer the reader also to the recent book by Haykin
[5], where the experimental results of the current paper are
mentioned in the broader context of adaptive radar signal
processing.

2. THE HYBRID AM/FM MODEL OF SEA CLUTTER

In an independent study reported in Gini & Greco [6], sea
clutter was viewed as a fast “speckle” process multiplied by
a “texture” component that represents the slowly varying
power level of the sea clutter signal; such a model is
perceptually satisfying. This is known as the K-distribution
model and is widely used in the literature. It is the model
that we will be concerned with in our dynamical description
of sea clutter throughout the paper. The slow variation of
the sea clutter power level was attributed to the large ocean
waves passing through the observed ocean patch. The speckle
was modeled as a stationary compound complex Gaussian
process, and the texture was modeled as a harmonic process.

Inspired by the Gino-Greco model of sea clutter, Haykin
and coworkers carried out an extensive physical study of
sea clutter collected by the instrument quality coherent IPIX
radar, where the radar data were recorded on the East Coast
of Canada [1]. In that paper, it was demonstrated that ampli-
tude modulation and frequency modulation play important
roles in the waveform description of sea clutter. The hybrid
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Figure 1: Z value versus NMAD (φ̇), computed for 78 data sets
measured by the IPIX radar at various experimental conditions.

AM/FM model of sea clutter has been substantiated further
in Greco & Gini [7].

To explain the physical presence of modulation in sea
clutter, we observe that when a large wave passes across a
patch of the ocean surface, it will first accelerate and then
decelerate the water’s motion on the ocean surface. The
continuous tilting of the ocean surface by the waves gives rise
to amplitude modulation.

Moreover, the ocean wave will cause a cyclic motion of
the instantaneous velocity of scatterers on the ocean surface,
thereby giving rise to frequency modulation as another
characteristic of the sea clutter waveform. When the mean
velocity of the scatterers is high at a given instant of time,
then the spectral spread (i.e., the bandwidth occupied by the
frequency modulation) around that mean is correspondingly
high, which is in perfect accord with modulation theory.

It is well known that, unlike amplitude modulation, fre-
quency modulation is a nonlinear process [8]. Therefore, the
presence of frequency modulation in the physical behavior
of the sea clutter waveform leads us to hypothesize that
sea clutter is a nonlinear dynamic process. To validate this
hypothesis, Haykin et al. use 78 different coherent radar data
sets to compute the z-parameter, which denotes the Mann-
Whitney rank-sum statistic [9]. The results of this test are
reproduced in Figure 1, where the z-parameter is plotted
against the spectral width modulation.

A value of z less than −3 is considered to be a strong
reason for rejecting the null hypothesis that the sea clutter
data under test can be described by linearly correlated noise.
In Figure 1, we clearly see that the large majority of the
experimental points lie below z = −3. Those points were in
actual fact representative of high sea states. Based on these
experimental results, Haykin et al. concluded that sea clutter
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is indeed a nonlinear dynamic process, with the degree of
nonlinearity increasing with increasing sea state.

3. ELEMENTS OF SDE THEORY

Stochastic differential equation (SDE) theory has significant
implications for statistical signal processing. It has recently
proven successful in this context in the application to radar
sea clutter [3, 4, 10]. In a more general physical context,
including optical propagation, the stochastic calculus has led
to substantial new theoretical developments in the subject of
electromagnetic scattering from random media [11–13].

More recently, SDE techniques have been applied to
wireless channel modelling [14] to include the effects of
phase fluctuations in multipath reception. The fact that
similar techniques are applicable to both the radar backscat-
tering and wireless propagation problems stems from the
fact that each is multipath in nature, with the only essential
difference being that for radar the receiver and transmitter
are colocated. This latter feature, however, does not affect
the structure of the mathematical model used to describe the
resulting amplitude signal.

In this paper, we will consider the RCS and received
envelope processes to evolve according to the dynamics
governed by a stochastic differential equation (SDE). In the
context of the radar cross-section, such dynamics arise from
taking the continuum limit of a generic population dynamic
model for the (discrete) number of component scatterers.
For the scattered radiation, the origin of the SDE dynamics
lies in the behavior of the component phases which are taken
to evolve in time according to a Wiener process Wt [15] on
a suitable (Rayleigh) timescale. Thus, as we will see explicitly
in Section 3, we are able to represent the essential ingredients
of the radar back-scatter temporally, in the form of a set
of continuous time SDEs, the basic mathematics of which
we now introduce. Consider an arbitrary continuous time
stochastic process, say qt, which evolves in time according to

dqt = btdt + σtdWt. (1)

Herein, bt is a random process referred to as the “drift,” and
represents the ordinary time derivative of the process qt in
the case that σ vanishes. The quantity σt, on the other hand,
is the amplitude of the noise or fluctuating part of qt, in
general a random process, and referred to as the “stochastic
volatility” of qt. In the cases we study, it will become apparent
that bt = b(t, qt) and σt = σ(t, qt) for some specific functions
b, σ , and accordingly the process qt is called a “diffusion.”

In contrast to the part of dqt containing bt , the σt term
contributes an essential part to qt that is not differentiable, in
the ordinary sense that ddt is well-defined. Nevertheless, the
(Ito) stochastic differential of qt can be well defined.

In the engineering physics literature, one is perhaps more
familiar with the “Langevin” equation for the time derivative

dq
dt
= bt + σtΓt (2)

in which Γt is the familiar white noise process and Γt has
the autocorrelation property 〈ΓtΓt′ = δ(t − t′)〉. For our

purposes, it will be sufficient to understand and interpret
from the dynamical equations for the RCS and the received
radar amplitude that, in a discrete-time setting,

δqti = btiδt + σtintiδt
1/2, (3)

where {ti} is a discrete set of observation times, δt = ti+1− ti,
and {nti} are a collection of independent N (0, 1) random
variables. Thus, in terms of the Wiener process, we make
the discrete time identification δWti = ntiδt

1/2. Moving from
(2) to (3), the same drift and volatility coefficients become
sampled at this discrete set of times.

Then the above properties of q and its time derivative
are evident. The essential distinguishing feature of the Ito
stochastic differential is that it refers to an integration of (3)
in which the volatility is to be evaluated at the left most point
of each time subinterval (see [15] for a detailed rigourous
account).

The essence of the approach taken is therefore to
postulate the exact dynamics in continuous time, and then
sample at a discrete set of times corresponding to the
physical measurements. This procedure is inevitably more
precise than an attempt at a model that is fundamentally
discrete time in nature, since the physical observables are not
quantized in time.

4. NONLINEAR DYNAMICS FROM SDE THEORY

We will assume the (dynamical extension of the) random
walk model for the resultant back-scattered amplitude or
“received envelope”

E (N)
t =

N∑

j=1

s( j)︷ ︸︸ ︷
aj exp[iϕ

( j)
t ] (4)

with (fluctuating) population size N , random phasor step
s( j), “form factors” aj , and component phases ϕ( j), wherein
the collection {N , aj ,ϕ( j)} is assumed to be mutually
independent. Our basic dynamical assumption is that the

component phases ϕ
( j)
t evolve according to a Wiener process

on a suitable (Rayleigh) timescale, that is, that dϕ
( j)
t =

BdW
( j)
t , which relation serves to define the constant B.

The key result of relevance to our discussion is obtained
by taking the (Ito) stochastic differential of (4), in the limit
that N , the number of component scatterers becomes large.
Accordingly we introduce the normalized amplitude process

Ψt = E (N)
t /N1/2, and a continuous valued RCS xt via N =

Nx, where N denotes the mean of the discrete scattering
population size. In terms of these quantities, we now provide
the following coupled stochastic dynamics of the RCS and
scattered amplitude/received envelope. (We can expressΨt =
It + jQt ( j = √−1), the familiar sum of its “in-phase” and
“quadrature phase” components.)

Proposition 1. The dynamics of the RCS and received enve-
lope for radar sea clutter, with shape parameter ν = α− 1, are
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given by the following set of nonlinearly coupled SDEs:

dxt =A(α− xt)dt + (2Axt)
1/2dW (x)

t , (5)

dΨt

Ψt
=
[
A
(

2(α− xt)− 1
4xt

)
− 1

2
B
]

dt

+
(

A

2xt

)1/2

dW (x)
t +

B1/2

γt
dξt,

(6)

in which γt is a unit power Rayleigh process, whose dynamics
are obtained by setting xt equal to a constant of unity and A =
0 in the above system.

This result pertains to (the simulation of) sea clutter
from a generic radar system.

Thus, in terms of the familiar K-distribution model
for sea clutter, the fast-speckle component is represented
by γt (or its modulus squared) which is multiplied by a
“texture” component, the RCS xt, according to the product
representationΨt = x1/2

t γt. Incidentally, the separation of the
radar scattering process into the RCS and received amplitude
(or intensity) components in this manner is introduced in a
statistical context in Jakeman [16], Jakeman & Tough [17]
and developed in a stochastic dynamical context in Field
& Tough [3, 4]. (The original proof of this result appears
as [4, Proposition 2.1], and we will omit the details of this
mathematical derivation which are outside the scope of this
paper.)

It is beneficial at this point, in relation to the above
proposition, to explain the roles of the various quantities
that occur in more familiar radar terminology. The shape
parameter ν used in the SDE model is the same as that
familiar from the standard K-distribution statistical model
of sea clutter. The quantity Ψ is the total radar backscattered
amplitude, or received envelope, incorporating both speckle
and texture components; its modulus squared is equal to
the total backscattered intensity, that is taken to be K-
distributed. The RCS or texture component is represented by
the correlated process xt.

Thus, the nonlinear SDE for Ψt is derived theoretically
from first principles beginning with the random walk model
for the scattered electric field under the assumption of a
uniform phase distribution. (The assumption of a uniform
phase distribution can be relaxed, and a corresponding
detailed dynamical description in terms of SDEs has been
given in [11].) An immediate consequence of this dynamical
equation is the “noise-free skeleton”, obtained by setting
the volatility coefficients of the fluctuating Wiener terms,
that is, those containing Wt, equal to zero. Accordingly, the
randomness of the process is eliminated and the residual
dynamics are deterministic and differentiable. Physically, this
corresponds to an evolution conditioned on the current
state of the system and then averaged over an ensemble.
(In other words, for an Ito process qt with SDE dqt =
btdt + σtdWt, the ensemble average evolution is determined
by E|t[dqt] = btdt, where E|t denotes the expectation
conditional on information at time t.) The concept of the
residual noise-free part is explored further below.

This set of coupled stochastic dynamical equations is
manifestly nonlinear by virtue of the reciprocal term in xt
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Figure 2: Normalized RCS time-series for low/moderate/high
values of the shape parameter; simulated data with Aδt = 0.001,
α = 1, 10, 100.

appearing in the amplitude equation, and only reduces to
linear dynamics in the special case that A vanishes, that is,
the scattering cross-section is constant (Rayleigh scattering).
It turns out that a natural quantifier of this nonlinearity,
in the context of the SDE model for K-distributed noise,
is the parameter α appearing in the coupled system of
Proposition 1, as discussed below and illustrated in Figure 2.

4.1. Radar parameters

In the present context, it is worth remarking on some of
the key salient features of the SDE theory, in relation to the
sensitivity analysis of sea clutter to certain radar parameters.
Most notably, this kind of description is illuminating in
respect of the following issues.

4.1.1. Correlation

The constants A, B in (5), (6) have the physical dimension
of frequency, so that their reciprocals represent correlation
timescales for the RCS modulation (texture) and unit power
Rayleigh (speckle) components, respectively. The constant
B is electromagnetic in origin with a value B∼c|k|, where
k is the wave vector of the carrier and c is the speed of
light. In radar situations, the illuminating radiation is such
that A � B, with the value of A being determined as an
intrinsic property of the statistics of the scattering surface,
independent of the electromagnetic wave. Accordingly, in
radar, the correlation time for the RCS is much longer
than that of the Rayleigh speckle (cf. also the discussion
of amplitude and frequency modulation in Section 5). The
pulse frequency of the radar is the reciprocal of δt in the dis-
crete implementation of the coupled system of Proposition 1,
and is assumed small compared to the Rayleigh correlation
timescale B−1, which amounts to the dimensionless criterion
Bδt� 1.
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4.1.2. Superposition

In light of the SDE theory, we may argue that the SDE of
sea clutter is independent of the amplitude profile of a trans-
mitted pulse, provided the transmit energy is maintained
constant. This property, which is derived explicitly in Field
[12], is related to the fact that the form factors (i.e., the
amplitude weightings) in (4) may be taken as a unity for
an asymptotically large population (cf. also [17] where the
emergent statistical properties are independent of the choice
of form factors).

For a radar pulse of constant amplitude, suppose that the
two halves of the pulse have transmit frequencies ω1 and ω2.
Then we may consider the correlation between the SDE of sea
clutter for the two portions as frequency ω1 increases relative
to ω2. The transmit frequencies are proportional to the
Rayleigh constant B appearing in (6) (B∼c|k|, as explained
above), and the relationship between the two SDEs, for
the two different transmit frequencies, is through (6). The
two terms involving the constant A are the same for both
SDEs. On the other hand, the terms involving the Rayleigh
constant have different B values corresponding to the two
transmit frequencies. Nevertheless, on physical grounds, the
two complex Wiener processes ξt for each transmit frequency
should be considered perfectly correlated. The reason for this
correlation is that the physical origin of the component phase
fluctuations φ( j) is (microscopic) Doppler—the Doppler
frequency ratio ω1/ω2 is a function of the radial velocity of
the jth member of the population, so the micro-Doppler
phase shift scales with the transmit frequency; the ξt process
is the same for any transmit frequency (assuming that these
are transmitted simultaneously) as this depends only on the
behavior of the component scatterer.

In a similar fashion, consider the simultaneous trans-
mission of two pulses of constant amplitude, with two
different frequencies as above, and the resulting SDE of
sea clutter received by a common antenna. Since Maxwell’s
equations of electromagnetism are linear, the resulting Ψ is
a linear superposition Ψ = κ1/2

1 Ψ(1) + κ1/2
2 Ψ(2), where κ1, κ2

are the relative intensities of the two transmit waveforms,
normalized so that κ1 + κ2 = 1, and Ψ(i) are the constituent
complex amplitude processes, both satisfying the SDE (6),
with different Rayleigh constants B corresponding to the
two transmit frequencies. Since the beams are simultaneous,
the ξ processes are perfectly correlated, with the remaining
parts of (6) involving the constant A, the same for both
transmit frequencies. Thus, the nonlinear dynamics do
not infringe the principle of superposition inherent in
Maxwell’s equations. (It is necessary to assume here that
the scattering populations N (1) and N (2) pertaining to the
different transmit frequencies are equal.)

4.1.3. Sea state and polarization

Next, consider the two different copolarizations “HH” and
“VV.” The SDE theory conveniently represents the spikiness
in the RCS of sea clutter due to “HH,” versus the noise-like
character due to “VV,” as follows.

The cross-section SDE (5) emerges as a large N limit
of an underlying discrete-valued model for the scattering
population, the so-called birth-death-immigration (BDI)
model [18], in which α occurs as the ratio of the immigration
and birth rates. A property of the continuum limit of this
population model, as represented by the SDE (5), is that
the distribution of xt is (univariate) gamma, with parameter
α. As a consequence, since the distribution of the modulus
amplitude for a given value of the RCS is Rayleigh (as
follows from (4) for fixed N), the intensity emerges as being
K-distributed (also parameterized by α). Thus, the BDI
population model is appropriate to an RCS that generates
K-distributed data. Now, for this gamma distribution, we
have Var[x] = E[x] = α. So the absolute magnitude of
fluctuations in the RCS, that give rise to the K-distribution
for the intensity (as opposed to the Rayleigh “noise-like”
distribution), becomes more appreciable as α increases.
However, the appropriate theoretical measure of “spikiness”
is the relative variance R given by

R = Var[x]

(E[x])2 , (7)

(E denotes the expectation functional) which is the physical
parameter of interest since it is dimensionless and invariant
under rescaling of the RCS. In the case of K-scattering that
we consider, R is equal to 1/α, and therefore the horizontal
copolarization “HH” has small α, with larger α for vertical
copolarization “VV.” The SDE theory explains that if the
ratio α of the immigration to birth rates is small, then
the sea clutter possesses spikes. It is therefore a natural
mathematical, as opposed to a detailed phenomenological,
way of encoding this physical property of the sea surface.
(However, the SDE theory does not explain why for “HH”
polarization one should expect the population to behave this
way, the phenomenological reasons for which we do not
describe here.) Correspondingly, there are two different K-
distributions for the intensity, indexed by different values
of the shape parameter ν = α − 1, for the respective
polarizations, where α is the SDE parameter appearing in
Proposition 1.

The situation as regards the extent of the temporal
fluctuations in the RCS for low/moderate/high values of the
shape parameter is illustrated in Figure 2, which has been
generated independently via a direct numerical integration
of (5) according to (3), for various values of the shape
encoding parameter α. The figure demonstrates the extreme
departures from the mean value for large R, which represents
in physical terms sea spikes or glints in the scattering surface.
As the sea state settles down to a low value, the (normalized)
RCS has small fluctuations away from its mean (unity),
so that there is no significant modulation of the Rayleigh
scattering time series—in other words, the scattering is of
constant local power. We remark also that spikiness should
also be more apparent at low grazing angles, represented by
corresponding small values of the shape parameter.

As the sea state diminishes, correspondingly in terms of
the SDE dynamics, the parameter α→∞ and the relative
variance in the RCS tend to zero. Thus in Figure 2 the
nonlinear term becomes less pronounced. Accordingly, as we



6 International Journal of Navigation and Observation

have seen in Section 2, so does the degree of nonlinearity as
measured by the z-parameter, which further substantiates the
experimental findings reported in Haykin et al. [1].

Our analysis therefore establishes the precise relationship
between the radar shape parameter, its statistical inter-
pretation, and the dynamical SDE theory, via the explicit
appearance of α in the coupled system of Proposition 1.

5. DISCUSSION

We have described a detailed analysis of radar sea clutter data,
whose primary purpose is to address the presence of non-
linearity, from real experimental data. A natural quantifier
for this nonlinearity is the z-parameter or Mann-Whitney
rank-sum statistic, which has been successfully applied in the
context of a hybrid AM/FM model for sea clutter. The SDE
dynamical model of radar sea clutter has also been verified
previously to a remarkable degree of accuracy, in terms of
real experimental data (see [3, Section 4(b)]). Moreover,
an independent theoretical account for such a model was
provided in Field & Tough [4], and has served as the basis
for other significant developments [11, 12]. As we have seen
in Section 4, this stochastic dynamic behavior is inherently
nonlinear, due to the broader timescale fluctuations in the
RCS. The extent of nonlinearity arises naturally in the SDE
description through the relative variance or shape parameter,
which encodes the sea state. Thus, from an SDE dynamical
perspective, the nonlinear character of radar sea clutter is
firmly established, both theoretically and experimentally.

Calculation of the z-parameter is from real data contain-
ing noise, the latter being akin to the stochastic fluctuating
terms present in (5), (6). However, z has the stochastic
element removed, that is, it is not a random variable.
Accordingly, some ensemble averaging takes place in the cal-
culation of z, and for this purpose, the statistical properties
of ergodicity and stationarity are assumed, legitimate over
realistic short timescales. In terms of the parameter A of
(5), such timescales are short enough that the assumption
of constant A is valid. Nevertheless, they should be long
enough (of the order of A−1) for the fluctuations in the
RCS (or equivalently, as we elucidate below, the frequency
modulation effect) to be appreciable so that nonlinearity can
indeed be detected.

From an engineering physics perspective, the dynamics
of sea clutter are perhaps more naturally viewed in terms of
amplitude (AM) and frequency modulation (FM). Studies
have indicated that the degree of nonlinearity is governed
by the extent of FM which, in turn, is more noticeable for
higher sea states (i.e., the shape parameter ν is large). To
relate this further to the SDE description of Section 4, it
is convenient to view the resultant amplitude process Ψt

in the product representation Ψ = x1/2γ, in which x is
the RCS and γ is a unit power Rayleigh process. Then, the
AM consists of the fluctuations of γt (Rayleigh “speckle”)
which is “frequency” modulated by the RCS process xt
over a much broader timescale. The FM/AM contributions
therefore have characteristic frequencies determined by A,
B, respectively. With zero FM, that is, xt constant, the

dynamics of the resultant amplitude are rendered linear,
according to Proposition 1.

It is worth emphasizing that the roles of α and A, B
are essentially different, both theoretically and in terms of
their radar significance. The parameter α determines the
associated gamma distribution for the RCS and correspond-
ing intensity K-distribution, and provides a scale invariant
measure of the spikiness of the backscatter. On the other
hand, the frequency constants A and B set the fluctuation
timescales of the respective texture and speckle processes,
and thus leave the (asymptotic) statistics invariant. In terms
of Figure 2, the adjustment of A can be considered as an
amplitude preserving dilation of the time series along the
temporal axis, with smaller values of A yielding longer
duration between peaks in the texture component.

Observe that, whereas the FM/AM characteristics of
the received envelope do not map to unique stochastic
dynamics, conversely the SDE description allows for explicit
extraction of both the FM/AM constituents (see [12]), and
therefore the SDE description is more fundamental than the
spectral one. Indeed, given the SDE dynamics, we are able
to extract all higher order statistical information through the
propagators obtained as solutions of the associated Fokker-
Planck equations [4, 19]. In this way, the SDE description of
sea clutter should be viewed as the most complete dynamical
description, which preserves the inherent randomness in the
physical processes involved.

We have seen that independent lines of enquiry, from the-
oretical and experimental perspectives, lead to the common
conclusion that radar sea clutter is nonlinear over appreciable
timescales such that the temporal variation in the RCS is
significant. The degree of nonlinearity is determined by the
sea state, which is represented by a certain “shape parameter”
ν that features in the SDE for the RCS. (More precisely, ν =
α − 1, where α is the parameter in the SDE for the RCS, and
α ≥ 0 arises from the parameters in the scattering population
model.) Consistently, the nonlinearity is also determined
by the extent of frequency modulation which, in terms of
real experimental data, has been quantified in terms of a
certain z-parameter representing the Mann-Whitney rank-
sum statistic.

From a theoretical point of view, the deterministic part
of the stochastic dynamics (5), (6) is nonlinear, and is
augmented with the addition of fluctuating Wiener terms in
the description of real experimental data, which is inherently
noisy (cf. the discussion of chaos surrounding [20, Figure 2],
and also [21, 22].) We recommend that further studies be
made on the noise-free skeleton of the coupled system (5),
(6), which is manifestly nonlinear, to establish the existence
or otherwise of an underlying deterministic chaotic behavior.
If chaos is present, then this system of nonlinearly coupled
SDEs is an instance of “stochastic chaos.” We remark in
this respect that the presence of the Wiener fluctuating
terms in the system has the effect of stabilizing the system,
so that any chaotic behavior may no longer be observable
experimentally. These issues will be pursued in a subsequent
paper.

It is worth emphasizing again that the SDE theory of
sea clutter is experimentally valid, in its own terms (see
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[3, Section 4(b)]), and has also succeeded in practical appli-
cations, such as radar anomaly detection, to a remarkable
degree of accuracy. The theory also provides a way of
generating synthetic data, over which we have direct control,
in terms of its dependence on the sea state. Thus, in principle,
we could measure the z-parameter for a data set simulated
using SDEs, for which the shape parameter is known, and
thereby develop the precise relationship between the z-
parameter and shape parameter quantifiers of nonlinearity. It
may, indeed, also be possible to relate the two parameters in
purely theoretical terms. We can also generate data with and
without noise, which forms the basis for further experiment.
We suggest that these two lines of enquiry could form the
basis of future developments in the investigation of the
nonlinear properties of radar scattering dynamics.

The novelty of the current paper can be summarized as
follows. In Haykin’s paper, it was experimentally demon-
strated that sea clutter becomes increasingly nonlinear as
the sea state increases. In this new paper, for the first time,
theoretical justification of this important result has been
presented based on the earlier results of Field.
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