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Revolutions in biotechnology and information technology
have produced enormous amounts of biomedical data.
Processing and analysis of these data are accelerating the
expansion of our knowledge of biological systems. These
advances are changing the way biomedical research, develop-
ment, and applications are done. Clinical data complement
the basic biology data, enabling detailed descriptions and
modeling of various healthy and diseased states, disease
progression, and the responses to therapies. The availability
of data representing various biological states, processes, and
their time dependencies enables the study of biological
systems at various levels of organization, from molecule to
whole organism, and even at population levels. Multiple
sources of data support a rapidly growing body of biomedical
knowledge; however, our ability to analyze and interpret
these data lags far behind data generation and storage
capacity. Computational models are increasingly used to
help interpret biomedical data produced by high-throughput
genomics, proteomics, and immunomics projects [1–3].
Advanced applications of computer models that enable
the simulation of biological processes are used to gener-
ate hypotheses and plan experiments [4–7]. Appropriately
interfaced with biomedical databases, computational models
enable rapid access to higher-level knowledge and its sharing
through data mining and knowledge discovery approaches.

In this special issue, we take an interest in the inves-
tigation of the physiology and pathology of the immune
responses, particularly the cellular and molecular processes.

The paper contributed by R. Carvalho et al. presents
an approach in which a computational model represents
the interaction of mycobacterium infection with the innate

immune system in zebrafish. They use the Petri Net for-
malism to model interaction between key host elements
involved in granuloma formation and infection dissemi-
nation, defining a qualitative model for the understanding
and description of causal relations within this dynamic
process. Their systems in biology framework incorporates
mathematical modeling to generate and test hypotheses, to
perform virtual experiments, and to make experimentally
verifiable predictions. This work demonstrates the use of
mathematical models that support the study of mechanisms
of tuberculosis infection.

The immune system is able to respond more vigorously
to the secondary contact with a given antigen than to the
priming contact. Vaccination protocols generally include at
least two doses, in order to obtain high antibody titers. In
particular, studies performed in transgenic mouse models
of Alzheimer’s disease have demonstrated that antibodies
against beta-amyloid are able to reduce plaques and improve
cognition. In mouse models as well as in clinical trials
in Alzheimer’s disease patients, induction of high titers of
anti-beta-amyloid antibodies correlates with the therapeutic
efficacy of vaccination. F. Castiglione et al. have analyzed
relations between the time elapsed from the first dose
(priming) and the second dose (boost) on the antibody titers,
coupling in vivo experiments with computer simulations to
asses the effect of delaying the second injection.

A major challenge in immunology is the translation
of data into knowledge given the inherent complexity and
dynamics of human physiology. The physiology and engi-
neering communities have rich histories in applying compu-
tational approaches to translate data obtained from complex
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systems into knowledge of system behavior. J. Klinke II and
Q. Wang review how two related engineering concepts,
specifically prototyping and “fitness for use,” can be applied
to overcome the pressing challenge in translating data into
higher-level knowledge of basic immunology for use in
practical applications, such as improvement of therapies.
These concepts are illustrated using two immunology-related
examples: behavior of beta cell mass at the onset of type 1
diabetes and the dynamics of dendritic cells in the lung.

M. Pennisi presents a mathematical model developed to
reproduce the immune response entitled with the combined
administration of activated OT1 cytotoxic T lymphocytes
(CTLs) and AntiCD137 monoclonal antibodies. This treat-
ment is directed against melanoma in B16 OVA mouse
models exposed to a specific immunotherapy strategy. In this
paper, two compartments have been modeled: the injection
point compartment where the treatment is administered
and the skin compartment where melanoma tumor cells
proliferate. The outcomes of the mathematical model are
in good agreement with the in vivo results. In particular
the sensitivity analysis highlighted the key role of OT1
CTLs and suggests that a possible reduction of the number
of injected antibodies should not affect substantially the
treatment efficacy.

Bacterial infections can be acute or chronic. The chronic
bacterial infections are characterized by a large bacterial load
or by an infection where bacteria grow rapidly. In these cases
the immune response is not capable of completely elimi-
nating the infection, leading to the formation of a pattern
known as microabscess (or abscess). The microabscess is
characterized by an area comprising fluids, bacteria, immune
cells (mainly neutrophils), and many types of dead cells.
This distinct pattern of formation can only be numerically
reproduced and studied by models that capture the spatio-
temporal dynamics of the human immune system. B. Pigozzo
et al. developed and implemented a computational model to
study the process of microabscess formation during bacterial
infection.

Cats infected with the feline immunodeficiency virus
(FIV) develop an acquired immunodeficiency syndrome
(AIDS), similarly to humans infected with HIV. FIV infection
causes an acute viremia, which decreases after several weeks,
and the appearance of a subpopulation of activated CD8+

T cells that we refer to as CD8βlow cells. The expansion of
this activated T cell population is recognized as an important
marker of FIV infection and disease. Characterization of
the CD8βlow population’s complex pattern of expansion,
including its correlation with other disease markers such as
viral load, is likely to increase researchers’ understanding
of FIV infection and AIDS pathogenesis. B. Ribba et al.
propose two simple independent mathematical equations
to analyze the time evolution of CD8βlow population size
and of viral load during primary infection in cats with FIV.
They developed the models using a population approach
and mixed-effects regression techniques, based on repeated
measurements in more than 100 cats infected with FIV.

Molecular dynamics (MD) simulations have to be suf-
ficiently long to draw reliable conclusions. However, no
method exists to prove that a simulation has converged.

In the paper contributed by W. Schreiner et al. a method
named “lagged RMSD-analysis” is proposed to determine if
an MD-simulation has provided a sufficiently precise model.
The analysis is based on RMSD values between pairs of
configurations separated by variable time intervals Dt.

In summary, these contributions present state of the
art modeling of the immune system. The research papers
appearing in this special issue will serve as a guide to current
developments and a guide to emerging applications in the
fascinating field of immune system modeling.

Ultimately, the utility of computational/mathematical
and other quantitative approaches will help provide better
healthcare. The seven papers in this volume demonstrate
various aspects of modeling of immune processes and
preclinical studies of immune responses.

Francesco Pappalardo
Vladimir Brusic
Holger Fröhlich
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In the study of complex patterns in biology, mathematical and computational models are emerging as important tools. In addition
to experimental approaches, these modeling tools have recently been applied to address open questions regarding host-pathogen
interaction dynamics, including the immune response to mycobacterial infection and tuberculous granuloma formation. We
present an approach in which a computational model represents the interaction of the Mycobacterium infection with the innate
immune system in zebrafish at a high level of abstraction. We use the Petri Net formalism to model the interaction between the key
host elements involved in granuloma formation and infection dissemination. We define a qualitative model for the understanding
and description of causal relations in this dynamic process. Complex processes involving cell-cell or cell-bacteria communication
can be modeled at smaller scales and incorporated hierarchically into this main model; these are to be included in later elaborations.
With the infection mechanism being defined on a higher level, lower-level processes influencing the host-pathogen interaction can
be identified, modeled, and tested both quantitatively and qualitatively. This systems biology framework incorporates modeling
to generate and test hypotheses, to perform virtual experiments, and to make experimentally verifiable predictions. Thereby it
supports the unraveling of the mechanisms of tuberculosis infection.

1. Introduction

Tuberculosis (TB) is an infectious disease responsible for
1.5 million deaths annually. About one-third of the world’s
population is infected with the pathogen that causes this
disease, Mycobacterium tuberculosis (Mtb). Most infections
are controlled by the host’s immune system and remain
asymptomatic. However, the Mtb is capable to persist in
the host inside granulomas, highly organized structures
characterized by the presence of differentiated macrophages,
lymphocytes, and other immune cells that contain, but
fail to eradicate, the pathogen [1, 2]. The key to success
of Mtb infection lies, at least in part, with the ability of
the bacteria to proliferate inside host macrophages despite
the antimicrobial properties of these cells. Some of the
infecting bacteria can survive for extended periods within
macrophages and in a granuloma, establishing long-term
infections that may resurface later, for example, when the

host’s immune system is compromised due to malnutrition,
HIV coinfection, or immunosuppressive treatment. Insight
in the mechanisms that contribute to this long and complex
relationship between the pathogen and the host is essential
to the understanding of the fundamental aspects of TB
[3].

Various animal models are used to mimic Mtb pathogen-
esis in humans, each having their specific strengths as well
as limitations. In the recent years, the zebrafish has emerged
as a valuable addition to the mammalian models. They are
genetically tractable and have an immune system with innate
and adaptive branches, very similar to the human immune
system. A particularly useful property is the transparency
of the embryos, which allows for real-time imaging of
the interaction between pathogens and host immune cells
[4–7]. Mycobacterium marinum (Mm), one of the closest
relatives of Mtb, is used to study mycobacterial pathogenesis
in zebrafish. It causes a systemic tuberculosis-like infection
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in zebrafish, with the formation of structured granulomas
that closely resemble those in human TB. The use of this
model has recently contributed important insights into the
function of the granuloma in expansion and dissemination
of mycobacteria during the early stages of infection [8].

Mathematical and computational modeling provides an
important additional avenue for the further exploration
of disease dynamics and offers powerful and complemen-
tary tools for the study of the host-pathogen interaction.
Gathering and analyzing the information from the animal
model in a computational modeling process makes it possible
to describe, simulate, analyze and predict the mechanism
and interactions behind the infection process in intuitive
and easily analyzable terms. The agent-based model (ABM)
is a computational formalism based on rules that govern
autonomous agents [9]; it can be used to model discrete
as well as stochastic events in biology. Pappalardo et al.
have implemented and simulated models using ABM and
cellular automata to study the vaccine administration and
immune response to cancer in mice [10–12]. Kirschner et al.
have utilized ABM to model and simulate the Mtb disease
and the host-pathogen interaction [13–15]. They suggest
the ABM as an appropriate method for exploring complex
spatiotemporal systems such as granuloma formation [16].
The Petri net (PN) formalism is another method providing
a natural and promising modeling technique useful for
modeling metabolic pathways and biological behavior [17].
The PN formalism is, typically, very suitable for systems
with a concurrent nature, that is, systems in which processes
occur in parallel. In essence, the PN is a mathematical
modeling language based on a directed bipartite graph. The
PN formalism has already been successfully applied on case
studies in biology to create, verify, and validate models. The
stochastic activity network (SAN) is an extended Petri net
model that uses probabilistic time and is in particular useful
for performance evaluation. Tsavachidou and Liebman [18]
have used SAN in modeling and quantitative evaluation of
the biological pathways involved in menopause. They use
biological pathways and experimental data in an accurate
quantitative model to simulate and compare to in vivo/in
vitro experiments. Peleg et al. [19] have used colored
hierarchical PNs to study the effects of mutations in tRNA
on the protein translation. They define qualitative models
of molecular function at different levels of granularity. The
application domain of tRNA was chosen due the abundant
literature on tRNA molecular structure as well as the diseases
that relate to abnormal structure. Regarding the process of
mycobacterial infection, the interaction with host-pathogen
is complex and much remains unknown and significance of
specific immune factors present on the mycobacterial infec-
tion process still poorly understood. To date, mathematical
and computational models applied to mycobacterial infec-
tion have been used to explore specific aspects at various bio-
logical scales (e.g., intracellular, cell-cell interactions, and cell
population dynamics) [14–16]. The mycobacterial infection
process thus is composed of numerous subprocesses, some of
which are mutually dependant, giving rise to a very complex
set of interactions. A model describing the process at a higher
level is missing, and therefore we take the construction of

a model of the infection mechanism at a higher level of
granularity as a starting point for our modeling efforts and
explorations. The availability of such a model enables to
connect and visualize the whole infection process. This top-
down approach allows identifying, modeling, and testing of
the lower-level processes in both qualitative and quantitative
manner. The input for these lower-level processes is obtained
from both empirical research and literature data.

The zebrafish model of Mycobacterium infection, based
on Mm infection, has been identified as very useful in
the understanding of host-mycobacteria interactions during
early stages of infection. This model system is used to
generate experimental data that elucidate the pathogenesis
as well as to transfer the findings to the human case.
The perspective of analysis from in vivo/in vitro studies
requires an integration layer so that experimental data can
be understood in the range of complex interactions that are
underlying the infection process. Therefore, we intend to
construct such integration layer from an in silico perspective
using the Petri net formalism as a modeling method to sim-
ulate bacteria-host interactions in early stages of tuberculous
granuloma formation. As indicated, our starting point is to
construct such a model from a higher level of abstraction.
We, therefore, designed a PN by first identifying the processes
in the infection process, that is, phagocytosis of mycobacteria
by macrophages, the migration of infected macrophages to
deeper tissue, the growth of mycobacteria within individual
macrophages, and the granuloma formation and matu-
ration. These processes were represented in a qualitative
colored Petri net (CPN) using the Snoopy software, a tool
for modeling and animating/simulating hierarchical graph-
based formalisms. The information analysis on the processes
was obtained from recent literature about the phases involved
in the early response to mycobacterial infection [8] and from
interviews with researchers.

From the processes as the major design elements, we
constructed a qualitative colored Petri net on a level of
abstraction that helps understanding and describing the
causal relations in a dynamic process. In addition to the
processes, we acknowledged entities such as the zebrafish,
the macrophage, the granuloma, and the bacteria. As such,
the phases of the infection process are addressed whilst,
for the moment, time and probability are not considered.
In this manner, our model explores the disease on a high
level of abstraction, modeling the factors that are crucial
to visualize the mycobacterial infection process and the
early immune response. Complex processes involving cell-
cell or cell-bacteria communication can be modeled in a
small-scale process and incorporated into the model as
a hierarchical layer. As intended, the model shows the
cause-effect relations that trigger the infection process. The
graphical representation of the CPN communicates that in
a manner a biologist can grasp immediately. Now, as the
model incorporates the process of infection, the toolbox of
the biologist is extended with an approach that allows to
perform “what-if” as part of the experimentation whereas
at the same time new experimental findings can be added
to the model in a close collaboration between empirical and
modeling scientists.
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Figure 1: Microscope image of a zebrafish larva infected with
Mycobacterium marinum by injection used for the study on
infection progression and immune system response. Image is
obtained with a Leica stereo fluorescence microscope commonly
used in zebrafish research. Here the microscope image is depicted
with an overlay of a fluorescent channel (red) in which the bacteria
are visualized. The arrows indicate granulomas that have been
developed after an induced infection with Mycobacterium marinum.

Starting from the abstract model of the global infection
process, future extensions, such as submodels representing
processes on tissue, cellular, and molecular scale, will hier-
archically connect as a single model. In close collaboration
with the empirical scientist and using the model, we intend to
perform in silico experiments that are otherwise impractical
or not feasible in vivo or in vitro, thereby predicting results
of new experiments and generate further hypotheses about
the immune system response to mycobacterial infection. The
CPN model presented in this paper is the cornerstone of that
process.

The remainder of this paper is structured as follows. In
Section 2, we discuss the pathogenesis of the Mycobacterium
infection in Zebrafish in more detail and next we introduce
the building blocks of the CPN and the software that we have
used to build the model. In Section 3, we provide a series of
design considerations to come to an implementation of the
model. Finally in Section 4, we end with the conclusion and
discussion.

2. Materials and Methods

2.1. The Zebrafish Model of Mycobacterial Pathogenesis. The
zebrafish is naturally susceptible to infections caused by M.
marinum (Mm), genetically closely related to M. tuberculosis
(Mtb). The Mm infection shares pathological hallmarks
with Mtb infection. Like other pathogenic mycobacteria,
Mm causes chronic infection of macrophages resulting
in tuberculous granulomas, making it a useful model to
study mycobacterial pathogenesis [20]. Zebrafish embryos
have functional innate immune cells (macrophages and
neutrophils), while their adaptive immune system is not
yet functional. The experimental infection of zebrafish
embryos is initiated by injected bacteria into the blood
circulation or into tissue. Macrophages that are attracted to
the site of infection take up the mycobacteria by a process
called phagocytosis. Real-time imaging of infected zebrafish
embryos has allowed the direct observation of the arrival of
phagocytes at the infection site and their uptake of bacteria.
The macrophages are the primary cell type infected with
Mm; however, also infected neutrophils have been observed
[6, 8] and were recently shown to play an important role in
Mm infection control [21]. In Figure 1, an Mm infection in a
zebrafish is depicted.

Inside the macrophage, bacteria can be exposed to bac-
tericidal mechanisms and degraded in lysosomes. However,
intracellular mycobacteria are predominantly distributed
between the early and late phagosomal compartments,
with some also escaping into the cytoplasm [22, 23].
Similar to Mtb, Mm escapes from lysosomal degradation
and its survival inside macrophages is facilitated through
the dynamic modulation of a range of cellular processes.
These include inhibition of pathways involved in the fusion
of the phagosome with lysosomes, antigen presentation,
apoptosis, and the activation of bactericidal responses [23–
25]. Mycobacterial interference with the host signaling
machinery severely compromises the immune defences, and
the multiplication of mycobacteria inside the macrophage
over time causes its death, thereby enabling further spreading
of the infection.

Once it has become infected with mycobacteria, the
macrophage starts to induce recruitment of uninfected
macrophages. Studies have established an important role for
a mycobacterial virulence factor, the ESX-1 secretion system,
in the recruitment of new macrophages to granulomas
and the expansion of infected macrophages [5, 25, 26].
These macrophages efficiently find and phagocytose infected
macrophages and bacteria that are released from dead
cells, but in this process these macrophages are getting
infected too. The aggregated macrophages become activated,
a transformation reflected by an increase in their size and
subcellular organelles, ruffled cell membranes, and enhanced
phagocytic and microbicidal capabilities. A common feature
of all Mycobacterium granulomas is the further differenti-
ation of the macrophages into epithelioid cells that have
tightly interdigitated cell membranes in zipper-like arrays
linking adjacent cells. Those aggregates grow into organized
structures that are referred to as granulomas, lumps of
immune cells that surround the infection [23].

Primary granulomas are capable of disseminating
infection throughout the body by egression of infected
macrophages which suggests that granuloma macrophages
constitute the major mechanism for dissemination of the
infection [5]. These granulomas are the hallmark of the
tuberculosis disease in both human and animal models. In
Figure 2, a schematic representation is depicted of the early
stages of the mycobacterial of the pathogenesis infection
process.

2.2. Computational Modeling. Experimental research has
generated a tremendous amount of insights into host-
pathogen interactions that occur during mycobacterial infec-
tions. Mathematical and computational models can offer
powerful and complementary methods in support for better
understanding the mechanisms behind the infection process
in intuitive and easily analyzable terms. Amongst these
methods, we can refer to modeling approaches such as
Brane calculi [28], π-calculus [29], agent-based modeling
(ABM) [16], and petri nets (PNs) [30]. These modeling
methods can be used to describe, simulate, analyze, and
predict the behavior of biological system by turning what
is known about the biology into equations and/or rules to
describe and ultimately understand the system. Previously,
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Figure 2: Schematic representation of the early stages of the immune response to the early stages of the mycobacterial infection process. This
figure is an authors’ rendition adapted from [27].

we proposed a system for modeling, simulating, and visual-
izing the Mycobacterium infection and granuloma formation,
addressing the basic layout and the modeling challenges
for this approach and evaluating between computational
methods the Petri net as an appropriate method for the
modeling of the infection process [31].

The Petri nets provide a formal and clear representation
of systems based on their firm mathematical foundation for
the analysis of system properties. The graphical notation
of Petri nets allows an easy and intuitive construction of
models of biological systems. To characterize the structure,
behavioral properties, and dynamics of a model, there are
several techniques to add time-dependent and space aspects
as well as data and probabilistic aspects [32]. Petri nets
have as their underlying structure a directed, finite, bipartite
graph, typically without isolated nodes. The four main
components of a general Petri net are as follows [33]:

(i) places: passive nodes that refer to conditions or local
states;

(ii) tokens: variable elements that represent current infor-
mation on a condition or local state;

(iii) transitions: active nodes that describe local state
shifts, events, and activities in the system;

(iv) directed arcs: connections that specify relationships
between transitions and places.

Standard PN models are discrete and have no notion
of time and as such are very useful for modeling processes
without time or probability. To model more complex
processes, extensions to the standard PN are used; in colored
Petri nets (CPNs), data values are assigned features using
different colors as data structure [34]; in stochastic Petri
nets (SPNs) probabilities are added to the transitions [35];

other extensions such as hybrid Petri nets (HPNs) and hybrid
functional Petri nets (HFPNs) allow for coexistence of both
continuous and discrete processes [36].

In order to create a flexible, compact, and parameteri-
zable model, we decided to use a CPN to model the early
stages of the infection process and granuloma formation.
Although standard Petri nets can be used to model parts
of our problem, such as reaction processes and biochemical
components, it becomes impractical to represent different
levels of abstraction, when in addition, other aspects have
to be taken into account such as the physical and spatial
organization of the organism, from the intracellular to
the intercellular level and beyond (molecular, cellular, and
tissues). Colored Petri nets allow the description of several
similar network structures in a concise and well-defined way,
providing a flexible template mechanism for network design-
ers. In colored Petri nets, tokens can be distinguished by their
colors. This allows one to discriminate levels (molecules,
metabolites, proteins, secondary substances, genes, etc.). In
addition, the token colors can be used to distinguish between
subpopulations of a species in different locations (cytosol,
nucleus, and so on).

For these reasons, we have chosen to model the early
stages of the Mycobacterium infection process and granuloma
formation and dissemination in terms of colored Petri nets.
The process consists of phagocytosis of the mycobacteria
by macrophages, migration of infected macrophages, and
bacterial replication in an individual macrophage as well as
the aggregation, granuloma formation, and dissemination of
the infection. In the following section, we give a definition
of CPN based on [34, 37] We use B to denote the Boolean
type, containing the elements {false, true} with the standard
operations from propositional and we use Type (Vars) to
denote a set of types {Type (v) | v ∈ Vars} of a typed set Vars.
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Definition 1. A multiset m over a nonempty set S
is a function m : S −→ N. An element s ∈ S is said to belong
to the multiset m if m(s) /= 0, and then we write s ∈ m. The
nonnegative integers {m(s) | s ∈ S} are called the coefficients
of the multiset m, and m(s) is called the coefficient of s. The
nonnegative integer m(s) ∈ N is the number of appearances
of the element s in the multiset m.

We may represent a multiset m by the formal sum:

∑

s∈S
m(s)′s. (1)

By SMS we denote the set of all multisets over S.

Definition 2. A colored Petri net is a tuple CPN = (Σ,P,T ,A,
C,G,E, I), where

(i) Σ is a finite nonempty set of types, called color sets;

(ii) P is a finite nonempty set of places;

(iii) T is a finite nonempty set of transitions such that

P ∩ T = ∅; (2)

(iv) A is a finite set of arcs such that

A ⊆ P × T ∪ T × P; (3)

(v) C is a color function; it is defined from P to Σ;

(vi) G is a guard function; it is defined from T to
expressions such that

∀t ∈ T :
[
Type (G(t)) = B ∧ Type (Var (G(t))) ⊆ Σ

]
; (4)

(vii) E is an arc expression function; it is defined from A
into expressions such that

∀a ∈ A :
[

Type (E(a)) = C
(
p(a)

)
MS

∧Type (Var(E(a))) ⊆ Σ
]

,
(5)

where p(a) is the place component of a;

(viii) I is an initialization function (initial marking); it is
defined from P into closed expressions such that

∀p ∈ P :
[

Type
(
I
(
p
)) = C

(
p
)

MS

]
. (6)

In general, a marking m is a function associating with
each place p a multiset m(p) of colors (tokens) from C(p).
Markings are the global states of the colored Petri net.

The Petri net semantics describes the behavior of the
net, based on a firing rule consisting of a precondition and
the effect of the occurrence (firing) of a single transition.
Whether or not a transition can fire depends on the marking
of its preceding-places and the arc expression on the input
arcs. A transition is enabled and is allowed to fire, if all
preceding-places, are sufficiently marked and if the binding
of the variables that appear in the arc expressions evaluates

to a multiset of token colors that is present on the corre-
sponding input place. The guards of the transition should
evaluate to true for the giving binding. If a transition has
no preceding-places, it is always enabled. When a transition
occurs with a given binding, a multiset of colored tokens are
taken from each preceding-place and added to later-places in
accordance with the arc expression on the arc leading to those
places. Repeatedly firing transitions lead to firing sequences
and determine the state space of the Petri net [33].

2.3. Software and Hardware Platform. Several tools are avail-
able to model biological systems using Petri nets, simulate
their dynamic behavior, and analyze their structure. The
Snoopy software provides an extensible, adaptive, and mul-
tiplatform framework to design, animate, and simulate Petri
nets [38]. Its design facilitates the modular implementation
of our CPN model allowing future extensions to be added
through hierarchical organization of Petri nets. We have used
the Snoopy software to implement and animate our net with
two different operating systems (OS): Windows 7 (HP Intel
core i7, 4 Gb RAM) and Mac OS 10.6 (MacBook Pro Intel
core i7, 4 Gb RAM). The main difference between the two
platforms is the additional features in the user interface for
the Windows implementation. The CPN model runs with
the same accuracy on both OS versions. This illustrates the
platform independency of the Snoopy software framework.

3. Results

We have modeled the role of the innate immune system in
the early stages of a mycobacterial infection. Our approach
is to provide a large-scale model that drives the infection
behavior. We have used the Snoopy tool, a framework
for modeling and animating/simulating hierarchical graph-
based formalisms [38], in order to create a qualitative colored
Petri net representing the relevant phases in the infection
process as depicted on Figure 2. In the following sections, we
present the color sets Σ, places P, transitions T , and the initial
marking I present in our CPN = (Σ,P,T ,A,C,G,E, I).

3.1. Set of Color Sets Σ. We have defined five simple color sets:
position, individual, status, and count and four compound
color sets: macrophage, bacteria, proliferation, Granuloma
composed of the basic color sets. They represent empirical
information from the infection process:

(i) position is an integer value representing the location
of a macrophage, bacteria, and/or granuloma;

(ii) individual is a string value (mm, mac) used to
identify bacteria and macrophages;

(iii) status is a Boolean value; it can represent the infection
status (healthy/infected) of a macrophage or the
saturation of a proliferation;

(iv) count is an integer value representing a threshold for
the simulation;

(v) macrophage is composed of position, individual,
and status colors and represents host macrophage
immune cells;
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(vi) bacteria is composed of position and individual
colors and represents M. marinum bacteria that will
be injected;

(vii) proliferation is composed of count, individual, and
status colors and represents the amount of infected
aggregated macrophages;

(viii) granuloma is composed of position, individual, and
count colors and represents granulomas with the
amount of macrophages.

3.2. Set of Places P. The set of places of our CPN is defined as

P = {Infection, ImmuneSystem, Phagocytosis,

Migration, BactGrowth, Checkpoint,

Condition, DeadMacrophage,

RecruitmentCount, AgregationAmount,

StopSignaling, Maturation, Dissemination
}
.

(7)

They represent population of cells and multicellular
complexes that are part of our model:

(i) C(Infection) = {Bacteria}: a place with the mycobac-
teria that intrude the host;

(ii) C(ImmuneSystem) = {Macrophage}: a place con-
taining the immune cells (healthy macrophages) that
will react to an infection signaling;

(iii) C(Phagocytosis)={Macrophage}: a place containing
the infected macrophages;

(iv) C(Migration) = {Macrophage} and
C(BactGrowth) = {Proliferation}: places containing
information about the bacterial replication within
one macrophage and its movement;

(v) C(DeadMacrophage) = {Macrophage} and
C(AgregationAmount) = {Granuloma}: places
containing dead macrophages and the aggregation of
recruited healthy macrophages (granuloma);

(vi) C(Maturation) = {Macrophage} and
C(Dissemination) = {count}: places containing
information about the infected aggregated
macrophages (intracellular bacterial spread) and the
control of the infection dissemination;

(vii) C(Checkpoint)= {status}, C(Condition)= {status},
C(RecruitmentCount) = {count} and
C(StopSignaling) = {count}: places controlling
the flow of the simulation.

3.3. Set of Transitions T . The set of transitions of our model
is defined as

T = {BacSignaling, MacSignaling, IntracelullarSpread,

Spread, t1, t2, t3, t4
}
.

(8)

They describe important events that govern the infection
process and refer to the molecular interaction, signaling

reaction and intracellular changes; they also regulate some
thresholds that control the simulation:

(i) BacSignaling represents the signaling process when
bacteria reach the host;

(ii) MacSignaling represents the signaling process of an
infected macrophage after its death (recruitment of
healthy macrophages);

(iii) IntracelullarSpread represents the bacterial repli-
cation among the aggregated macrophage in the
granuloma;

(iv) Spread represents the dissemination of granuloma
infection;

(v) t1, t2, t3, and t4 represent the control thresholds of
the simulation.

3.4. Initial Marking I . The initial marking in our model
determines for each place the number and type of colored
tokens initially present in the places. We have the condition
markings that are fixed and used to control the process and
the example markings which are used in our example and
can be modified without changing the workflow. They are
defined as follows.

Condition markings:

(i) I(Checkpoint) = 1′(true): initialized for checking
if the bacterial replication inside the macrophage
reaches its limits;

(ii) I(RecruitmentCount) = 1′(0): initialized for count-
ing the number of macrophages recruited to aggre-
gate into the dead macrophage;

(iii) I(BactGrowth) = 1′(1, mm, true): initialized to trig-
ger replicating the bacteria inside the macrophage;

(iv) I(Dissemination) = 1′(0): initialized to keep count
of the dissemination of the granuloma;

(v) I(Condition) = 1′(true): initialized to enable one
infected macrophage become dead and start the
signaling process.

Example markings:

(i) I(Infection) = 1′(1, mm) + 1′(2, mm) + 1′(3, mm)
defines the initial concentration of the mycobacteria
that will intrude the host. We have defined three
different positions to represent different injection
sites;

(ii) I(ImmuneSystem)=1′(1, mac, false)+1′(2, mac, false)
+ 1′(3, mac, false) + · · · + 1′(10, mac, false) defines
the initial concentration of healthy macrophages
in the host. The positions and amount of healthy
macrophages are empirical and used just to represent
their presence in the host.

All other places are initially empty, that is, there are no
tokens at the onset.
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Figure 3: Screenshot of the CPN modeling the early stages of the immune response to the mycobacterial infection process implemented in
Snoopy software.

3.5. Implementation and Execution of the Model. Our model
is motivated by the biology discussed in Section 2, and
it specifically focuses on the process of granuloma for-
mation and infection dissemination. The environment of
the model represents the innate immune response based
on the Mycobacterium marinum infection process in the
zebrafish embryo, although at this level, the CPN model
can be used to describe the early immune response to any
kind of mycobacterial infection process. The elements of
the Colored Petri Net described in the previous sections
represent key factors involved in the processes of infection,
innate immune response, and granuloma formation. The
rules of the model represent the biological interactions as
described in Section 2.1, that is,

(i) signaling of intruding bacteria detected by healthy
macrophages followed by phagocytosis;

(ii) migration and intracellular bacterial replication
within infected macrophages and their death;

(iii) recruitment and migration of healthy macrophages
in response to the dead macrophage signals;

(iv) the aggregation process and granuloma formation;

(v) the bacterial spread in the aggregate macrophage and
the infection dissemination.

Figure 3 shows the prototype model in a colored Petri
net implemented using the Snoopy software [38]. Arrows
labeled with a black dot as an arrow head are so-called testing
arcs: they represent two arcs in opposite directions between

the place and transition with an identical arc expression;
however, the tokens are not consumed, just tested for their
presence. Next, we will discuss the colored Petri net model in
more detail.

As initial conditions to our model, we have defined some
numbers as boundaries to check the behavior of the net
using the simulation mode in the Snoopy software. The
intracellular bacterial spread is limited to a concentration
of 255 bacteria. In the literature, no specific information
was found about the capacity of a macrophage or about its
absolute position. In early stages of the zebrafish embryos,
it is known where the macrophages are not present [6]. For
this reason we have defined 10 relative positions to represent
the presence of macrophages and their movement during the
infection process and granuloma formation. In order to keep
the model straightforward, we also limit the concentration of
aggregated macrophages (cf. Figure 5). Next, we have defined
a threshold concerning the infection dissemination; that is,
we limit the concentration of dissident macrophages that are
released from the granuloma. Although from in vivo/in vitro
experiments it seems that the dissemination is regulated by
the adaptive immune system [5, 15], we have not considered
this to be in the scope of our model.

The infection starts when the mycobacteria intrude
the host. In our model we concentrate on three different
positions of the mycobacteria (1, mm), (2, mm), (3, mm).
Each position represents different injection sites used in the
experiments with the zebrafish animal model (yolk, caudal
vein, or hindbrain ventricle). In our example, the bacteria are
detected by the innate immune system by signals to immune
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Figure 4: Screenshot of the infection detection and phagocytosis process.
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Figure 5: Screenshot of the migration and bacterial replication within macrophage causing its death.

cells, in our model healthy macrophage (1, mac, false),
(2, mac, false), (3, mac, false) . . . (10, mac, false), to take up
the bacteria (phagocytosis). Figure 4 shows this process.

After phagocytosis, the bacteria start to proliferate and
move within the macrophage; the macrophage changes
its position, moving to deep tissue while the bacteria
replicate inside the macrophage. The intracellular growth of
mycobacteria is modeled as bacterial multiplication until a
concentration of 255, causing the death of the macrophage.
Figure 5 depicts this process.

A dead macrophage starts to signal, recruiting new
healthy macrophages to take up the infected macrophage
and the bacteria. In this way aggregates of immune cells are
formed. The aggregates contain the bacteria but are unable
to get rid of them. This process is visualized in Figure 6
where a dead macrophage 1′(10, mac, true) is recruiting new
macrophages to aggregate. The recruitment of macrophages
is controlled by the MacSignaling transition that stops when
four healthy macrophages are recruited. The numbers of
macrophages that are recruited are set such that a minimal
number will give rise to the formation of a granuloma. The
latter is important in the development of the infection and

the disease in general. The number can be increased if a
particular scenario for an in silico experiment so requires.
It will not alter the general layout of the net rather creating
different balances. The place RecruitmentCount controls
that.

As these aggregates grow, structures develop that are
referred to as tuberculous granulomas, lumps of immune
cells that surround the infection. Figure 7 shows the repre-
sentation of this process in our model, where one granuloma
is formed at the position 10 with a concentration of five
macrophages 10 1′(10, mac, 5).

The intracellular mycobacterial spread in the granuloma
is visualized in our model by the process depicted in Figure 8.
There, all five immune cells that form the granuloma on
the position 10 {5′(10, mac, true)} get infected and start the
process of dissemination.

In the dissemination process, an infected macrophage
leaves the granuloma structure {3′(10, mac, true)} and starts
another infection, moving, hosting an intracellular mycobac-
terial replication, dying, and repeating the granuloma forma-
tion process on another position. This process is visualized in
Figure 9.



Computational and Mathematical Methods in Medicine 9

10
ImmuneSystem

Macrophage

(pos, mac, true)

(pos, mac, true)

Macrophage
true

true

true(pos, mac, infected)

k
RecruitmentCount

Condition
status

status
StopSignaling

(pos, mac, true)

count

1(1, mac, false)++
1(2, mac, false)++
1(3, mac, false)++
1(4, mac, false)++
1(5, mac,...

[k ≥ 5]0
MacSignalling DeadMacrophage

[i > 255]

[k = 4]true

[k < 5]k+1++

1
1(10, mac, true)

[k > 4](pos, mac, k) t4

t2

Figure 6: Screenshot of the dead macrophage signaling and aggregation process.
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Figure 7: Screenshot of the granuloma formation process.
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The outcome of our model reproduces the early stages of
the mycobacterial process and the innate immune response.
We used the animation mode available in the Snoopy
software to verify the dynamic behavior of our model. This
property allows to animate the token flow of the net as well
as to observe the causality of the model and its behavior. For
inspection and perusal, the animation sequence can be found
at http://bio-imaging.liacs.nl/galleries/cpn-mmarinum.

4. Conclusion and Discussion

A systems’ biology approach, integrating both modeling
and experimental aspects, has much to contribute to the
study of host-pathogen interactions. Biological processes
that are relevant to the immune response occur at different
scales or levels of resolution, that is, molecular, cellular,
and tissue levels [39, 40]. Development of multiscale, multi-
compartment models based on in vivo/in vitro experimental
data is essential to create a computational system that
reflects this biological behavior [40]. In our previous work
[31], we provide a basic layout addressing the modeling
challenges from the integration of imaging analysis data and
the Petri net formalism in different levels of abstraction,
from epidemiological to genetic levels in a multiple-scale
model.

The aim of this work is to introduce a modeling approach
new to the modeling of the innate immune response in a
model; this modeling represents the dynamic behavior of the
mycobacterial infection process. We consider our model to
represent a high level of abstraction in which the infection
process can be visualized in a large-scale model. Complex
processes involving cell-cell or cell-bacteria communication
can be modeled as small-scale processes and incorporated
in our model. We use the Petri net formalism as a formal
modeling method because of its extensible, modular, easy,
and intuitive construction properties different from other
and more broadly used modeling frameworks [32]. We have
developed a high-level abstraction of the infection process by
designing a PN by acknowledging the major processes of the
Mycobacterium infection together with the basic actors that
are involved in these processes.

As a result, we have delivered a CPN model that expresses,
at a high level of abstraction, the details that are involved
in the early disease of mycobacterial infection. Information
about the early mycobacterial infection process, the innate
immune response, and the infection dissemination can be
observed in our model. Through a parameterizable net
that assembles information about the host-pathogenesis
interaction phases, we can visualize the dynamics of the
infection process. The scalability of our model allows
extension on different levels of abstraction providing the
aggregation of independent and related model hierarchically,
that is, gene expression pathways, molecular process, cell-to-
cell interaction events, and so forth. In this manner allowing
experiments that simultaneously track molecular, cellular,
tissue, organism, and population scale events, biologists have
greatly appreciated the visualization of the processes through
the animation of the PN.

Several reliable tools have been developed to create and
investigate qualitative and quantitative properties of Petri
nets by structural analysis, simulation of time-dependent
dynamic behavior, and model checking. In the research
presented here, we have chosen the Snoopy software [38]
to implement and animate our model. This software is
extensible and adaptive through support of simultaneous use
of several models. Moreover, it is platform independent. Fur-
ther extensions are to investigate the quantitative properties
of the process. Such can be accomplished using the Charlie
tool [41] so as to verify and validate the net and further
analyze our model.

In summary, we have developed a straightforward model
to explore the early mycobacterial infection and the immune
response. Modeling the steps that regulate the infection
process requires further testing on both theoretical and
experimental levels. The results of these in silico experi-
ments/findings can become the input for further analysis. It
will support, for example, identification of key parameters
or mechanisms, interpretation of data, or comparison of
the capability of different mechanisms to (re)generate the
observed data. Finally, a model that successfully describes
existing experimental data may be used in the prediction
of results from new experiments and generation of further
hypotheses about the immune system response to mycobac-
terial infection helping to unravel the mechanisms of TB
infection [42]. In this manner it can contribute to treatment.
As indicated from the design of our CPN, the next steps in
the development of the net are to add lower-level processes
representing the tissue, cellular, and molecular interactions
relevant to the infection process. The CPN accommodates
this as hierarchical layers. Along with these layers, numerical
data will become available that will allow to elaborate on
the quantitative aspects of this process. The interplay of
hierarchical levels and quantitative information has the
potential to develop to a powerful tool for the research in
tuberculosis disease, and hopefully it will further mature in a
paradigm for integrated research to infection diseases.
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Bacterial infections can be of two types: acute or chronic. The chronic bacterial infections are characterized by being a large
bacterial infection and/or an infection where the bacteria grows rapidly. In these cases, the immune response is not capable
of completely eliminating the infection which may lead to the formation of a pattern known as microabscess (or abscess). The
microabscess is characterized by an area comprising fluids, bacteria, immune cells (mainly neutrophils), and many types of dead
cells. This distinct pattern of formation can only be numerically reproduced and studied by models that capture the spatiotemporal
dynamics of the human immune system (HIS). In this context, our work aims to develop and implement an initial computational
model to study the process of microabscess formation during a bacterial infection.

1. Introduction

The immune system is one of the most important and
complex system of our organism. Despite great advances in
recent years that shed light on its understanding and unravel
the underlying key mechanisms behind its functions, there
are still many functions of the human immune system (HIS)
that are not well understood. Computational models of HIS
dynamics can contribute to a better understanding of the
relationship between cells and molecules of the HIS.

In this study, we developed a mathematical model of
some cells and molecules of the HIS to reproduce the
spatiotemporal dynamics of the initial formation of microab-
scesses during an immune response to a bacteria.

To reproduce these dynamics, we introduce a mathe-
matical model composed of a system of partial differential
equations (PDEs) that extends our previous models [1, 2]
and defines the dynamics of representative cells and mol-
ecules of the HIS during the immune response to a
bacteria. The model presented is descriptive, mechanistic,
and deterministic; therefore, it enables the understanding of
how different complex phenomena, structures, and elements

interact during an immune response. In addition, the
model’s parameters reflect the physiological features of the
system, making the model appropriate for general use.

The remainder of this paper is organized as follows.
First, the necessary biological background is presented. Next,
related works are briefly discussed. This exposition is fol-
lowed by a description of the mathematical model proposed
in this work and the numerical scheme used to implement it.
Then simulation results obtained from the proposed model
are discussed, and, finally, our conclusions and plans for
future work are presented.

2. Biological Background

The initial response of the host to a diverse array of biological
stressors including bacterial infection, burns, trauma, and
invasive surgery is an inflammatory response. Despite the
growing understanding of the cellular and molecular mecha-
nisms of inflammation, the complexity of the inflammatory
response has challenged therapeutic development [3, 4].
A key reason for this conundrum has been speculated to
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be the difficulty of predicting the impact of manipulating
individual components of the highly complex, nonlinear,
and redundant inflammatory response [5]. Thus, progress
would require a greater understanding of how components
are organized. This makes systems biology based approaches
appealing [6].

Most inflammatory reactions begin as a suppurative or
purulent exudation process when the first line of cellular
defense, the neutrophils, accumulate in the area. A sup-
purative process is characterized by the presence of pus
(neutrophils mixed with cellular debris). Classically, there are
three requisites of suppuration:

(i) presence of neutrophils that release proteolytic
enzymes,

(ii) necrosis of some types,

(iii) liquefaction.

This suppurative process may lead to the formation of
microabscesses. A microabscess is a localized collection of
dead cells, body fluids, microbes, and other cells of the HIS.
The process of formation of a microabscess begins when a
cell of the HIS encounters bacteria and warn other cells that
there is a stranger in the host. Its “warn” is in the form of
a class of biochemicals called cytokines, which beckon other
HIS cells to come to the point of infection and surround the
enemy.

Most often all this goes unnoticed because the first few
immune system cells phagocytize (engulf and digest) the
invaders and the battle is finished. But every so often, an
invader has a trick to escape the immune response and
cannot be killed by the phagocytes. Those bacteria continue
to grow and to spew out whatever they do. More and more
immune system cells, mainly neutrophils, congregate at the
infection site trapping the pathogens in the center. If this
microabscess is close enough to the body surface, it can be
seen as a blob of pus under the skin. When a microabscess is
well developed, it has a wall or capsule of fibrous connective
tissue separating it from the surrounding tissue, helping
to prevent any microbes present in the microabscess from
spreading to other areas of the body. Thus, microabscesses
can be considered as a natural strategy used to fight against
infection.

Microabscesses are found in many different diseases,
for instance, the authers in [7–10] present animal studies
detailing the formation of liver microabscess and microab-
scess by different types of infections. Epidermal microabscess
formation by neutrophils was also evaluated in [11–14].
Infection of the heart by bacteria (bacterial myocarditis
[15]) or by viruses (viral myocarditis [16]) is also correlated
with microabscess formation by neutrophils. The interac-
tion between tumor cells and inflammatory cells plays an
important role in cancer initiation and progression and
was investigated in [17] for the case of tumor-infiltrating
neutrophils in pancreatic neoplasia, where the pattern of
microabscess formation by neutrophils was reported once
again.

3. Related Work

This section presents and discusses other mathematical and
computational models of the immune response. Essentially,
two distinct approaches are used: agent-based models and
ordinary differential equations (ODEs). These models have
some features in common with our model. All models
include representative cells and molecules of the innate
immune system. For example, neutrophils, macrophages,
and proinflammatory cytokines are modeled in the majority
of models. Some models as our model consider the impor-
tant interactions between endothelial cells, tissue cells, and
cytokines. Despite some similarities with our model, none of
the works focus on modeling microabscesses.

4. Models Based on Agents

In [18, 19], it was developed an agent-based model of
the dynamics of some cells, such as polymorphonuclear
leukocytes (PMNs) and mononuclear cells and molecules,
such as TNF-α and IL-1, during the initial inflammatory
response in the interface endothelium/blood at the capillary
level. Some characteristics of the model are as follows:

(i) all the cells are represented as agents whose behavior
is close to the real;

(ii) it considers the interactions between endothelial cells
and circulating inflammatory cells at the blood/blood
vessel-lining interface;

(iii) the initial injury number (IIN) defines the number of
tissue cells that are dead initially;

(iv) the oxygen concentration is one important variable
in the model;

(v) the total tissue damage is represented as a deficit in
the oxygen variable;

(vi) the injury state of an endothelial cell depends on the
available oxygen concentration;

(vii) proinflammatory mediators and endothelial cells sur-
face adhesion molecules are modeled by state vari-
ables;

(viii) it considers a generic pathogen that causes the infec-
tion.

The work aims to reproduce the time course of the
early inflammatory response associated with the Systemic
Inflammatory Syndrome Response (SIRS)/Multiple Organ
Failure (MOF) from massive trauma or large exposure to
endotoxin. The objective of the simulations were to compare
the results with the soluble TNF-receptor experiment [20]
where the soluble TNF-receptor is tested as a therapeutic
treatment for the sepsis. The author claims that his results
generally replicate the results of several large-scale clinical
trials of cytokine-directed antimediator agents.

In [6], an agent-based modeling (ABM) framework
is proposed to study the nonlinear dynamics of acute
inflammatory responses to LPS. Their work uses an agent-
based approach to elucidate molecular interactions involved
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Table 1: Initial conditions.

Parameter Value Unit

B0

⎧
⎪⎨
⎪⎩

70 : x = 2.5 mm, y = 2.5 mm

0 : otherwise
104 cells/mm3

BD0 0 : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 104 cells/mm3

RM0

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

10 : x = 1 mm, y = 1 mm

10 : x = 1 mm, y = 4 mm

10 : x = 4 mm, y = 2.5 mm

0 : otherwise

104 cells/mm3

AM0 0 : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 104 cells/mm3

N0 0 : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 104 cells/mm3

ND0 0 : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 104 cells/mm3

CH0 0 : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 104 cells/mm3

HT0 10 : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 cells/mm3

TD0 0 : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 104 cells/mm3
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Figure 1: Temporal evolution and spatial distribution of bacteria.
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Figure 2: Temporal evolution and spatial distribution of neutrophil.

in the NF-κβ signaling pathway, coupled with the spatial
orientation of various inflammation specific molecules and
cell populations such as macrophages and T-helper cells.
In their model, the propagation of LPS signaling across the
system is studied by considering the coupling between extra-
cellular signals and transcriptional response. Some relevant
characteristics considered in the model are as follows:

(i) molecular interactions,

(ii) cellular heterogeneity,

(iii) LPS/TLR4 signal transduction pathway,

(iv) transcriptional response.

The proposed in silico model is evaluated through its
ability to successfully reproduce a self-limited inflammatory
response as well as a series of scenarios: a persistent
(non)infectious response or innate immune tolerance and
potentiation effects followed by perturbations in intracellular
signaling molecules and cascades.

5. Models Based on ODEs

The model of [21] studies immunomodulatory strategies
for treating cases of severe sepsis. They introduced and

evaluated the concept of conducting a randomized clinical
trial in silico based on simulated patients generated from
a mechanistic mathematical model of bacterial infection,
acute inflammatory response, global tissue dysfunction, and
a therapeutic intervention. Trial populations are constructed
to reflect heterogeneity in bacterial load and virulence as
well as propensity to mount and modulate an inflammatory
response. They constructed a cohort of 1000 trial patients
submitted to therapy with one of three different doses of a
neutralizing antibody directed against tumor necrosis factor
(anti-TNF) for 6, 24, or 48 hrs. Their focus was to assess the
feasibility of using differential equation models to improve
the design of clinical trials. This paper replicates in silico the
general findings from actual clinical trials—that it is very
difficult to design a treatment strategy that is effective over
a broad range of sepsis patients.

6. Hybrid Models

In [22], a hybrid model that coupled an agent-based model
[18, 19] and a system dynamics/differential equation model
[21] was created using the System Dynamics tool within
Netlogo [23]. They developed an interface between the
agent-based and system dynamics models. The area of
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Figure 3: Temporal evolution and spatial distribution of cytokine.

initial infection and subsequent interactions at this point
were simulated with the agent-based model and certain
aspects primarily related to the production and life cycle of
circulating inflammatory cells was modeled with the system
dynamics model. They implemented a simple system dynam-
ics model that focused on systemic polymorphoneutrophils
(PMN) production, maturation, sequestration, and release.
Some of the flows inside the system dynamics model were
influenced by the conditions within the agent-based model.
The primary role of the system dynamics model was to
manifest a delay between the elevation of the cytokines in the
tissue and the increase in PMNs in the circulating blood. The
objective of the work was to reproduce some of the results of
the agent-based model [18, 19] using the hybrid model.

7. Mathematical Model

Our main objective is to develop a parameterized mathe-
matical model of the human innate immune system that
simulates the immune response occurring in a generic tissue.
To achieve this goal, we first build a model of the immune
response to LPS [1, 2]. In this work, we extend this model
to reproduce the spatiotemporal dynamics of a bacterial
infection and the process of microabscess formation.

The mathematical model simulates the temporal and
spatial behavior of bacteria (B), dead bacteria (BD),
macrophages, neutrophils (N), apoptotic neutrophils (ND),
proinflammatory cytokines (CH), healthy tissue cells (HT),
and dead tissue cells (TD). Macrophages are present in two
states of readiness: resting (RM) and hyperactivated (AM).
We must stress that the equations modeling proinflamma-
tory cytokines are generic in the sense that they model the
role of distinct cytokines taking part in the inflammatory
process. Equation parameters can be adjusted to model the
role of a specific proinflammatory cytokine.

The relationships among all of the model’s components
are described next. Neutrophils, resting macrophages, and
active macrophages phagocytose the bacteria. The neu-
trophils then undergo apoptosis, which may or may not
be induced by the phagocytosis process. In this different
state, apoptotic neutrophils cannot perform phagocytosis
or produce proinflammatory cytokines; as a result, apop-
totic neutrophils are eliminated from the body after being
phagocytosed by active macrophages. Apoptotic neutrophils
will die after a period of time, releasing cytotoxic granules
and degradation enzymes in the medium that cause tissue
damage destroying healthy tissue cells. Active neutrophils
and bacteria also cause tissue damage by producing toxic
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Figure 4: Temporal evolution and spatial distribution of apoptotic neutrophil.

products that are not modeled here. The infection site is
“cleaned” by resting and active macrophages that do the
phagocytosis of dead tissue cells. Healthy tissue cells in
contact with bacteria, neutrophils, and active macrophages
produce proinflammatory cytokines. The proinflammatory
cytokines increase the permeability of the blood vessels;
consequently, more neutrophils and monocytes are recruited
to the infected tissue. In addition, the proinflammatory
cytokines act as a chemoattractant substance to the resting
macrophages, active macrophages, and neutrophils.

Below, we provide the equations derived from the model.
Equation (1) provides the bacteria differential equation:

∂B

∂t
= rB · B · g(w)− μB · B − λN|B ·N · B

− λRM|B · RM · B − λAM|B · AM · B
+ DB · dif(B,w),

B
(
x, y, 0

) = B0,
∂B(·, t)
∂n

∣∣∣∣
∂Ω
= 0.

(1)

In this equation, rB · B · g(w) denotes the reproduction
term of the bacteria, where rB is the rate of reproduction
and g(w) is a function of the total density of cells w in a

discretized area of the two-dimensional space at a specific
time step. The w variable is defined as

w
(
x, y, t

) = B
(
x, y, t

)
+ BD

(
x, y, t

)
+ N

(
x, y, t

)

+ ND
(
x, y, t

)
+ RM

(
x, y, t

)
+ AM

(
x, y, t

)

+ CH
(
x, y, t

)
+ HT

(
x, y, t

)
+ TD

(
x, y, t

)
;

(2)

μB · B denotes the decay of bacteria, where μB is the rate
of decay. λN|B · N · B denotes the phagocytosis of bacteria
by neutrophils, where λN|B is the rate of this phagocytosis.
λRM|B ·RM·B denotes the phagocytosis of bacteria by resting
macrophages, where λRM|B is the rate of this phagocytosis.
λAM|B ·AM ·B denotes the phagocytosis of bacteria by active
macrophages, where λAM|B is the rate of this phagocytosis.
DB ·dif(B,w) denotes bacteria diffusion, where DB represents
the diffusion coefficient and dif(B,w) is calculated in the
following way:

dif(B,w) = ∇ · (g(w)∇( f (w)B
)− f (w)B∇g(w)

)
. (3)

The f function models the probability of a cell being pushed
from a site due to the pressure exerted by neighboring cells
[24, 25]. This population pressure is modelled by a Hill
equation [26]. It increases with the total density of cells w



Computational and Mathematical Methods in Medicine 7

4

3.5

3

2.5

2

1.5

1

0.5

0

4.5

y
(m

m
)

4 4.53.532.521.510.50

x (mm)

12

10

8

6

4

2

4

3.5

3

2.5

2

1.5

1

0.5

0

4.5

y
(m

m
)

4

3.5

3

2.5

2

1.5

1

0.5

0

4.5

y
(m

m
)

4

3.5

3

2.5

2

1.5

1

0.5

0

4.5

y
(m

m
)

4 4.53.532.521.510.50

x (mm)

4 4.53.532.521.510.50

x (mm)

4 4.53.532.521.510.50

x (mm)

25

20

15

10

5

0

11

10

9

8

7

6

5

4

3

2

1

30

25

20

15

10

5

Dead bacteria (time = 2 days, 0 hour) Dead bacteria (time = 4 days, 0 hour)

Dead bacteria (time = 7 days, 0 hour) Dead bacteria (time = 10 days, 0 hour)

Figure 5: Temporal evolution and spatial distribution of dead bacteria.

occupying the same position in space and has a saturation in
a high density of cells.

The f function is defined as

f (w) = 1 + α
w

β + w
. (4)

α and β are constant values.
The g function returns the percentage of free space in a

discretized area of the two-dimensional space and its use is
motivated by some important biological concepts such as
quorum sensing/volume sensing [24, 25, 27–29]. The idea is
that cells have a set of cell density sensing mechanisms and
changes its behavior in crowded regions. In the context of
our model it is used to limit the density of cells that occupy
a discretized area of our two-dimensional domain. The g
function is defined as

g(w) = 1− w

total
. (5)

The variable total represents the maximum density of cells
that fits in a discretized area of the tissue.

The differential equation corresponding to dead bacteria
(BD) is given as follows:

∂BD
∂t

= μB · B + λN|B ·N · B + λRM|B · RM · B

+ λAM|B · AM · B − λAM|BD · AM · BD

− λRM|BD · RM · BD + DBD · dif(BD,w),

BD
(
x, y, 0

) = B0,
∂BD(·, t)

∂n

∣∣∣∣
∂Ω
= 0.

(6)

Here, note that μB ·B, λN|B ·N ·B, λRM|B ·RM·B and λAM|B ·
AM · B were defined previously. λAM|BD · AM · BD denotes
the phagocytosis of dead bacteria by active macrophages,
where λAM|BD is the rate of phagocytosis. λRM|BD · RM ·
BD denotes the phagocytosis of dead bacteria by resting
macrophages, where λRM|BD is the rate of phagocytosis.
DBD · dif(BD,w) denotes dead bacteria diffusion, where DBD

represents the diffusion coefficient and the function dif was
defined previously.
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The differential equation corresponding to the resting
macrophage (RM) is given as follows:

PRM =
(
Pmax

RM − Pmin
RM

)
· CH(

CH + keqCH

) + Pmin
RM ,

sourceRM = PRM · (Mmax − (RM + AM)),

∂RM
∂t

= − μRM · RM− λB|RM · B · RM + sourceRM · g(w)

+ DRM · dif(RM,w)

− χRM · chemotaxis(RM, CH,w),

RM
(
x, y, 0

) = RM0,
∂RM(·, t)

∂n

∣∣∣∣
∂Ω
= 0.

(7)

PRM denote the increase in endothelium permeability and
its effects on monocyte extravasation. The permeability of
blood vessel endothelium is modeled by a Hill equation
[26], which also has been used to model drug dose-response
relationships [30]. The idea is to model the increase in
the permeability of the endothelium in accordance with
the number of proinflammatory cytokines deposited on the
endothelium.

The calculation of PRM involves the following parameters:
(a) Pmax

RM , the maximum endothelium permeability induced
by the proinflammatory cytokine; (b) Pmin

RM , the minimum
endothelium permeability induced by the proinflamma-
tory cytokine; (c) keqCH, the number of proinflamma-
tory cytokines that exert 50% of the maximum effect on
permeability. sourceRM · g(w) denotes the source term of
macrophages, which is related to the number of monocytes
that will enter into the tissue from the blood vessels. This
number depends on the endothelium permeability PRM and
on the number of monocytes appearing in the blood (Mmax).

μRMRM denotes resting macrophage apoptosis, where
μRM is the apoptosis rate. λB|RM·B·RM denotes the activation
of resting macrophages, where λB|RM is the rate of activation.
DRM · dif(RM,w) denotes resting macrophage diffusion,
where DRM represents the diffusion coefficient and the func-
tion dif was defined previously. χRM·chemotaxis(RM, CH,w)
denotes resting macrophage chemotaxis, where χRM is the
chemotaxis rate and chemotaxis(RM, CH,w) is calculated in
the following way:

chemotaxis(RM, CH,w) = ∇ · (RMg(w) f (w)∇CH
)
. (8)

The differential equation corresponding to the active macro-
phage (AM) is given as follows:

∂AM
∂t

= − μAM · AM + λB|RM · B · RM + DAM

· dif(AM,w)− χAM · chemotaxis(AM, CH,w),

AM
(
x, y, 0

) = AM0,
∂AM(·, t)

∂n

∣∣∣∣
∂Ω
= 0.

(9)

Table 2: Parameters.

Parameter Value Unit Reference

α 0.05 Adimensional Estimated∗

β 35 Cells/mm3 Estimated∗

Total 70 Cells/mm3 Estimated∗

Mmax 15000 Cells/mm3 [44]∗∗

Nmax 250000 Cells/mm3 [44]∗∗

Pmax
N 1 1/day [45]∗∗

Pmax
RM 1 1/day Estimated∗

Pmin
N 0.001 1/day Estimated∗

Pmin
RM 0.01 1/day Estimated∗

keqCH 5 Cells/mm3 Estimated∗

rB 4 1/day [46]

λB|HT 0.05 1/(cells/mm3)·day [47]

λAM|BD 0.6 1/(cells/mm3)·day [47]∗∗

λAM|ND 0.8 1/(cells/mm3)·day [44]

λAM|TD 0.6 1/(cells/mm3)·day [47]∗∗

λRM|BD 0.6 1/(cells/mm3)·day [47]∗∗

λRM|TD 0.6 1/(cells/mm3)·day [47]∗∗

λN|B 0.55 1/(cells/mm3)·day [44]

λB|N 0.24 1/(cells/mm3)·day [47]

λRM|B 0.25 1/(cells/mm3)·day [44]

λAM|B 0.8 1/(cells/mm3)·day [44]

μB 0.01 1/day [44]

μN 0.67 1/day [44]

μND 0.05 1/day [44]

μRM 0.0033 1/day [44]

μAM 0.07 1/day [44]

μCH 12 1/day [44]

DB 0.05 mm2/day [44]

DRM 5 mm2/day [44]

DAM 5 mm2/day [44]

DN 10 mm2/day [44]

DND 0.001 mm2/day [44]

DCH 6 mm2/day [44]

χN 10 mm2/day [44]

χRM 5 mm2/day [44]

χAM 7 mm2/day [44]

βCH|N 1 1/(cells/mm3)·day [48]∗

βCH|AM 1 1/(cells/mm3)·day [48]∗

βCH|HT 0.2 1/(cells/mm3)·day [48]∗

RMact 0.4 1/(cells/mm3)·day [44]

Here, note that λB|RM · B · RM was defined previously.
Above, μAM · AM, DAM · dif(AM,w), and χAM ·
chemotaxis(AM, CH,w) denote the active macrophage
apoptosis, diffusion, and chemotaxis, respectively, whereas
μAM, DAM, and χAM are the apoptosis rate, diffusion
coefficient, and chemotaxis rate, respectively.

The neutrophil differential equation (N) is given as
follows:

PN =
(
Pmax
N − Pmin

N

)
· CH

CH + keqCH
+ Pmin

N ,

sourceN = PN · (Nmax −N),
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∂N

∂t
= − μN ·N − λB|N · B ·N + sourceN · g(w)

+ DN · dif(N ,w)− χN · chemotaxis(N , CH,w),

N
(
x, y, 0

) = N0,
∂N(·, t)

∂n

∣∣∣∣
∂Ω
= 0. (10)

In this equation, PN denotes the increase in endothelium
permeability and its effects on neutrophil extravasation. In
the top equation, Pmax

N is the maximum endothelium per-
meability induced by proinflammatory cytokines, Pmin

N is the
minimum endothelium permeability induced by proinflam-
matory cytokines, and keqCH is the number of proinflam-
matory cytokines that exert 50% of the maximum effect on
endothelium permeability.

Here, μN · N denotes neutrophil apoptosis, where μN is
the rate of apoptosis. λB|N ·B·N denotes the neutrophil apop-
tosis induced by phagocytosis, where λB|N represents the
rate of this induced apoptosis. sourceN · g(w) represents the
source term of neutrophil, that is, the number of neutrophils
entering the tissue from the blood vessels. This number
depends on the endothelium permeability (PN ) and on the
number of neutrophils in the blood (Nmax).

DN · dif(N ,w) denotes neutrophil diffusion, where DN

represents the diffusion coefficient and the function dif
was defined previously. χN · chemotaxis(N , CH,w) denotes
neutrophil chemotaxis, where χN is the chemotaxis rate and
chemotaxis(N , CH,w) was defined previously.

The differential equation corresponding to the apoptotic
neutrophil (ND) is given as follows:

∂ND
∂t

= μN ·N + λB|N · B ·N − λND|AM ·ND · AM

− μNDND + DND · dif(ND,w),

ND
(
x, y, 0

) = ND0,
∂ND(·, t)

∂n

∣∣∣∣
∂Ω
= 0.

(11)

Here, note that μN ·N and λB|N ·B·N were defined previously,
whereas λND|AM · ND · AM denotes the phagocytosis of the
apoptotic neutrophil carried out by active macrophages, and
λND|AM is the rate of this phagocytosis. μNDND denotes the
neutrophil necrosis, where μND is the rate of necrosis. DND ·
dif(ND,w) denotes apoptotic neutrophil diffusion, where
DND represents the diffusion coefficient and the function dif
was defined previously.

The differential equation for the proinflammatory cyto-
kine (CH) is given in as follows:

∂CH
∂t

= − μCH · CH +
(
βCH|N ·N · B + βCH|AM · AM · B

+βCH|HT ·HT · B) · g(w)

+ DCH · dif(CH,w)

CH
(
x, y, 0

) = CH0,
∂CH(·, t)

∂n

∣∣∣∣
∂Ω
= 0.

(12)

In this equation, μCHCH denotes the proinflammatory
cytokine decay, where μCH is the decay rate. βCH|N · N · B
denotes the proinflammatory cytokine production by the
neutrophils, where βCH|N is the production rate. βCH|AM ·
AM · B denotes the proinflammatory cytokine production
by active macrophages, where βCH|AM is the production
rate. βCH|HT ·HT · B denotes the proinflammatory cytokine
production by healthy tissue cells in contact with bacteria,
where βCH|HT is the production rate. DCH · dif(CH,w)
denotes the proinflammatory cytokine diffusion, where DCH

represents the diffusion coefficient and the function dif was
defined previously.

The differential equation corresponding to the healthy
tissue (HT) is given as follows:

∂HT
∂t

= −μNDND− λB|HT · B ·HT,

HT
(
x, y, 0

) = HT0,
∂HT(·, t)

∂n

∣∣∣∣
∂Ω
= 0.

(13)

μNDND denotes the tissue damage caused by the release of
toxic products from necrotic neutrophils. λB|HT · B · HT
denotes the tissue damage caused by bacteria, where λB|HT

is the rate of damage.
The differential equation corresponding to the dead

tissue (TD) is given as follows:

∂TD
∂t

= μNDND + λB|HT · B ·HT− λRM|TD · RM · TD

− λAM|TD · AM · TD,

TD
(
x, y, 0

) = TD0,
∂TD(·, t)

∂n

∣∣∣∣
∂Ω
= 0.

(14)

μNDND and λB|HT · B ·HT were defined previously. λRM|TD ·
RM · TD denotes the phagocytosis of dead tissue cells by
resting macrophages, where λRM|TD is the rate of phagocy-
tosis. λAM|TD · AM · TD denotes the phagocytosis of dead
tissue cells by active macrophages, where λAM|TD is the rate
of phagocytosis.

The mathematical model presented here introduced
some modifications to our previous model [2] with the
aim to reproduce the microabscess formation. We included
equations for the dynamics of the tissue to take into
account some effects of infection such as tissue damage and
production of cytokines by tissue cells. We also replaced the
LPS equation in our previous model [2] by the bacteria
equation with a term for reproduction of bacteria. Besides
we modified the calculus of the diffusion and chemotaxis
terms [24] (a) to limit the number of cells that are allowed
to stay at the same time in the same area of the domain and
(b) to reduce the efficiency of the diffusion and chemotaxis
processes in overcrowded regions. More specifically, the
method we implemented incorporates the following general
mechanisms which may lead to dispersal of the population
[24].

(i) Population pressure: we assume that a high cell den-
sity results in increased probability of a cell being
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pushed from a site, for example, due to the pres-
sure exerted by neighboring cells. This is achieved
phenomenologically with the f function of our
mathematical model and the changes in diffusion and
chemotaxis calculus.

(ii) Limited space: here we assume that no more cells can
enter a site above a total cell density. In our model,
this is achieved with the incorporation of the g func-
tion in the diffusion and chemotaxis calculations.

(iii) Gradient detection: cells may detect and respond to a
local gradient in the cell density and as a consequence
cells can move to higher concentrations of the
attractant substance.

8. Implementation

The numerical method used to solve the mathematical model
was the Finite Difference Method [31], a method commonly
used in the numeric discretization of PDEs.

A complex part of the resolution of the PDEs is the
resolution of the convective term, the chemotaxis term. The
development of numerical methods to approximate convec-
tive terms (in most cases not linear) have been subject of
intense researches [32–35].

Different numerical approaches have been proposed for
the discretization of the chemotaxis term [36, 37]. Our
implementation is based on the finite difference method for
the spatial discretization and the explicit Euler method for
the time evolution. The discretization of the chemotaxis term
(∇· (χNN∇CH)) uses the First-Order Upwind scheme [38].
Therefore, the precision of our numerical implementation
is first-order in time (explicit Euler) and first-order in
space (upwind scheme). The upwind scheme discretizes the
hyperbolic PDEs through the use of differences with bias in
the direction given by the signal of the characteristics’ speeds.
The upwind scheme uses an adaptive or solution-sensitive
stencil to numerically simulate more precisely the direction
of information propagation.

In two-dimension, the upwind scheme approximates the
chemotaxis term as the sum of the flux in the x direction
(resX) with the flux in the y direction (resY). resX is the sum
of the flux left at the point x − deltaX/2 with the flux right
at the point x + deltaX/2 and resY is the sum of the flux up
at the point y − deltaY/2 with the flux down at the point
y + deltaY/2 in Algorithm 1.

In this code, ch represents the discretization of the
proinflammatory cytokine, n represents the discretization of
neutrophils, w is the total density of cells in a position of the
space, x and y are the positions in space, and deltaX and
deltaY are the spatial discretizations in x and y directions,
respectively. The test made is to define what is the signal of
the characteristic speed, where the speed of the movement of
N(y, x) is given by the term ∇CH. This value is then used to
choose between two schemes of finite differences: forward or
backward.

We decided to implement our own numerical method to
solve the systems of PDEs because (a) we have the possibility
to parallelize the code and (b) most of the numerical libraries

offer few functions that are suitable to our problem. The
sequential code was implemented in C.

9. Numerical Experiments

We performed several simulations in order to verify that
the model’s results are in agreement with what is described
in the literature. Our objective was to reproduce some
characteristics of the microabscess such as an accumulation
of dead cells and bacteria in the infection site.

The model’s initial conditions and parameters are given
in Tables 1 and 2, respectively.

In Table 2, parameters marked with ∗ were adjusted to
qualitatively reproduce the results obtained in several studies
of the immune response to LPS. In the case of the bacteria
(results not shown here), we adjust the equation parameters
in order to obtain an exponential decrease in time as shown
in [39]. The results of the concentration of proinflammatory
cytokines in time (results not shown here) are qualitatively
similar to those obtained in some experimental works [40–
42]. The parameters marked with ∗∗ were based on the
values given in the references but were adjusted due to the use
of distinct units (e.g., from liter to mm3) or to fit in a 25 mm2

tissue. In this paper, we obtained parameter values for
humans whenever they were available. The variables β and
total in (5) and (4) were defined based on the concentrations
of neutrophils and macrophages per liter given in [43] and
were adjusted (a) due to the use of distinct units (e.g., from
liter to mm3) and (b) to fit in a 25 mm2 tissue. The variable
total represents the maximum density of cells that fits in a
discretized area of the tissue.

In the next sections, we will show the results of the
simulation performed with the parameters given in Table 2.
In this simulation, we considered a 5 mm × 5 mm two-
dimensional domain representing a tissue with 25 mm2 of
area and a simulation time of 5 days. In our model, the
exchange between the vascular system (arterioles and vessels)
and tissue was assumed to occur only at the points (1, 1),
(1, 4), and (4, 2.5), In this point, immune cells (neutrophils
and macrophages) that are in the blood stream can enter
into the tissue. The communication between blood vessels
and tissue is modeled by permeabilities that vary in time
and may depend on the concentration of different cells and
molecules (in our model, the endothelium permeability of
neutrophils and macrophages depends on the concentration
of the proinflammatory cytokine).

10. Bacteria

In the case of bacteria (Figure 1), we observe that initially
the bacteria diffuses through the tissue causing tissue damage
without its presence to be noticed.

As soon as resting macrophages residents in the tissue
recognize the bacteria they start to produce proinflammatory
cytokines that will diffuse through the tissue reaching
the blood vessel. Once proinflammatory cytokines interact
with the endothelial cells an increase in the endothelium
permeability occurs allowing neutrophils and monocytes to
migrate to the tissue.
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float chemotaxis (float∗∗ n, float ∗∗ch, int x, int y, float ∗∗w)
{

flux left = 0;
flux right = 0;
if (x > 0)
{

if ((ch[y][x]− ch[y][x − 1]) > 0)
{

flux left = − (ch[y][x] – ch[y][x − 1])∗n [y][x − 1] ∗g(w [y][x − 1])∗ f (w[y][x − 1])/deltaX ;
}
else
{

flux left = − (ch[y][x] – ch[y][x − 1])∗n[y][x]∗ g(w[y][x])∗ f (w[y][x])/deltaX ;
}

}
if (x < (size − 1))
{

if ((ch[y][x + 1] – ch[y][x]) > 0)
{

flux right = (ch[y] [x + 1] – ch[y][x])∗n[y] [x]∗g(w [y][x])∗ f (w[y][x])/deltaX ;
}
else
{

flux right = (ch[y] [x + 1] – ch[y][x])∗n[y][x + 1]∗g(w [y][x + 1])∗ f (w [y][x + 1])/deltaX ;
}

}
resX = (flux left + flux right)/deltaX ;
flux up = 0;
flux down = 0;
if (y > 0)
{

if ((ch[y] [x] – ch[y − 1] [x]) > 0)
{

flux up = − (ch[y] [x] – ch[y − 1][x])∗n [y − 1][x]∗g(w [y − 1][x])∗ f (w[y − 1][x])/deltaY ;
}
else
{

flux up = − (ch[y] [x] – ch[y − 1][x])∗n [y] [x]∗g (w[y][x])∗ f (w[y][x])/deltaY ;
}

}
if (y < (size − 1))
{

if ((ch[y + 1] [x] – ch[y] [x]) > 0)
{

flux down = (ch[y + 1] [x] – ch[y] [x])∗n [y] [x]∗g(w [y][x])∗ f (w[y] [x])/deltaY ;
}
else
{

flux down = (ch[y + 1] [x] – ch[y] [x])∗n[y + 1] [x]∗g(w [y + 1] [x])∗ f (w [y + 1][x])/deltaY ;
}

}
resY = (flux up + flux down)/deltaY ;
return (resX + resY);

}

Algorithm 1

The bacteria starts to die a lot due to the presence of huge
numbers of neutrophils. However, the immune response can
not completely eliminate bacteria due to the formation of the
microabscess pattern. In the microabscess, there are bacteria
and a huge concentration of dead cells around it (Figures

4, 5, and 6). In this context, the cleaning process realized
by macrophages is very important to allow neutrophils
to reach bacteria and eliminate them. Macrophages are
responsible for phagocyte dead cells that accumulated in the
microabscess. The pattern of microabscess could have lasted
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Figure 6: Temporal evolution and spatial distribution of damaged tissue cells.

longer if we had considered the formation of fibrous tissue
around the microabscess.

11. Neutrophil

Neutrophils are initially attracted to the tissue by proin-
flammatory cytokines produced by activated resident
macrophages (Figure 2). Once a neutrophil encounters bac-
teria, it phagocytizes bacteria and starts to produce proin-
flammatory cytokines that will attract more neutrophils
and macrophages. The cytokine gradient will guide the
movement of neutrophils and macrophages in the direction
of the highest bacteria concentration.

After the microabscess formation, the immune system
cells lose contact with a high number of bacteria. As these
cells tend to move following the cytokine gradient, we can
observe an accumulation of them around the microabscess.

After a significant number of macrophages phagocyte
dead cells, the neutrophils can encounter the bacteria and
phagocyte them from the border to the center of the
microabscess area. As a consequence, a reduction in the
microabscess area is observed (Figure 1), which indicates
that the immune response is succeeding in controlling the
infection.

12. Cytokine

The cytokines in Figure 3 are produced primarily by resident
macrophages that are the first to recognize the bacteria
presence. The cytokines will increase the endothelium
permeability allowing neutrophils to migrate to the tissue.
The arrived neutrophils will produce even more cytokines
that will guide the movement of neutrophils and macrophage
cells in the direction of high concentrations of bacteria.

During the formation of the microabscess and after it,
the production of cytokines is higher in the regions where
neutrophils and macrophages have contact with the bacteria
that is surrounding the microabscess.

13. Apoptotic Neutrophils

In Figure 4, it can be observed that initially the neutrophils
that came from the blood vessel closer to the site of infection
died in large number than the neutrophils that came from
other sites. Then, after microabscess formation, a lot of
neutrophils start to die around the entire microabscess. This
phenomenon continues until the microabscess disappears.
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Figure 7: Temporal evolution and spatial distribution of healthy tissue cells.

14. Dead Bacteria

Figure 5 shows that initially more bacteria died near blood
vessels. After the formation of the microabscess, the bacteria
starts to die around the entire microabscess since this is the
area where the immune response is acting.

15. Tissue Cells

In Figure 6, it can be observed that a lot of tissue damage
by bacteria during the period the immune system took to
mount an effective immune response. The number of dead
tissue cells then reduces, because of the phagocytosis realized
by macrophages.

Figure 7 shows the evolution of the healthy tissue area
destroyed by the bacteria.

16. Microabscess Area

Figure 8 shows the microabscess area using a set of level
curves. We defined the microabscess as an area where the
concentration of bacteria plus concentration of dead bacteria
plus the concentrations of damaged tissue and apoptotic
neutrophil is higher. These results show that our model was

capable to reproduce the formation of the microabscess in
agreement with the observed characteristics of a microab-
scess [7, 14, 49–54].

17. Conclusions and Future Works

In this work, we presented a computational model for the
dynamics of representative types of cells and molecules
of the HIS during an immune response to a bacteria.
Despite the simplifications and limitations of the model,
our results showed that we were able to reproduce an initial
microabscess formation. The spatial results show a collection
of dead tissue cells, dead bacteria, and apoptotic neutrophil
in the microabscess region. This distinct pattern of formation
can only be reproduced by spatiotemporal models, such as
PDEs models.

As future work, we plan to perform a detailed sensitivity
analysis of our microabscess formation model. A previous
work [55] has given us some hints about the most sensitivity
parameter of the model. We also plan to validate our model
against experimental data.

We also plan to modify many aspects of the model to
make it more real. For example, we plan to consider a
more adequate model to represent the structure of the tissue
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Figure 8: Level curves highlighting the microabscess area at day 5
of the immune response.

and its constituents. The tissue can be better characterized
as a multiphasic porous medium subjected to stress and
deformation variations mainly during the inflammatory
process. This porous medium would comprise fluids, extra-
cellular matrix, cells, and molecules. We also plan to model
the mechanical behaviour of each of these phases and the
mechanical interactions between them.

We have interest in developing models for processes such
as vasodilation, coagulation, and others and analyse its effects
on the mechanical behaviour of immune system cells and the
consequences for the immune response.

With the aim to investigate better the formation of the
microabscess, we plan to add another features that con-
tribute to this formation such as the effects of extracellular
pH on immune response [56]. Acidic pH predominates
at inflammatory loci and other sites of immune activity.
Investigations on neutrophils demonstrate mainly inhibition
of chemotaxis, respiratory activity, and bactericidal capacity
at reduced pH. Besides diminished extracellular pH may
play a role in suppressing cytokine production and cytotoxic
activities by pulmonary macrophages [56].

Besides we plan to add to the model the process of
fibrous tissue formation around the microabscess. We plan
to investigate what factors determine if the fibrous tissue
will be produced or not. The production of fibrous tissue
as well as the coagulation process are ways of the immune
system to prevent the bacteria to spread throughout the
body doing damage with possible serious consequences,
for example, SIRS/MOF. In particular, we are interested
in modeling the participation of macrophages, fibroblasts,
tissue cells, endothelial cells, and many mediators in the
process of fibrous tissue formation. An important step in
this process is the production of collagen by fibroblasts
induced by the cytokine TGF-β produced by macrophages

[57, 58]. The macrophages has many roles in the processes
of wound healing and tissue repair. For example, during
the coagulation process, macrophages and endothelial cells
are responsible for the production of diverse growth factors
and chemotcatic substances that attracts and stimulates the
proliferation of tissue cells initiating tissue repair [59].
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Studies of the response of the immune system to feline immunodeficiency virus (FIV) during primary infection have shown that a
subpopulation of CD8+ T-cells with an activated phenotype and reduced expression of the CD8β chain (denoted CD8βlow T cells)
expands to reach up to 80% of the total CD8+ T cell count. The expansion of this subpopulation is considered to be a signature
of FIV and an indicator of immune system alteration. We use a simple mathematical formalism to study the relationships over
time between the dose of infection, the size of the CD8βlow population, and the circulating viral load in cats infected with FIV.
Viremia profiles are described using a combination of two exponential laws, whereas the CD8βlow percentage (out of the total
CD8+ population) is represented by a Gompertz law including an expansion phase and a saturation phase. Model parameters are
estimated with a population approach using data from 102 experimentally infected cats. We examine the dose of infection as a
potential covariate of parameters. We find that the rates of increase of viral load and of CD8βlow percentage are both correlated
with the dose of infection. Cats that develop strong acute viremia also show the largest degree of CD8βlow expansion. The two
simple models are robust tools for analysing the time course of CD8βlow percentage and circulating viral load in FIV-infected cats
and may be useful for generating new insights on the disease and on the design of therapeutic strategies, potentially applicable to
HIV infection.

1. Introduction

Cats infected with the feline immunodeficiency virus (FIV)
develop an acquired immunodeficiency syndrome (AIDS)
much like humans infected with HIV [1]. The infection
causes an acute viremia, which decreases after several weeks,
and the development of a partial immunity [2]. The acute
stage is followed by a chronic asymptomatic phase, often
persisting for years, during which the immune system is
progressively impaired. As in the case of HIV infection, the
more common signs of the asymptomatic phase are the

depletion of CD4+ peripheral T cells and the reduction of
the CD4/CD8 ratio [3]. At the end of the asymptomatic stage
of the disease, infected cats develop chronic opportunistic
infections and eventually die [4].

The immune response to FIV during acute infection is
well documented in the literature (see in particular [5–7]).
In addition to anti-FIV neutralizing antibodies and cytotoxic
and noncytotoxic CD8+ T cells, the primary (acute) stage
of infection is known to be characterized by the appearance
and expansion of a CD8+ T-cell subpopulation with an
activated phenotype showing reduced expression of the
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CD8β chain and the complete disappearance of the L-selectin
CD62L surface molecule [8]. These CD8βlow CD62L− T cells,
hereafter referred to as CD8βlow cells, persist throughout
the course of infection. The persistence of this activated
T-cell population, which has been shown to possess anti-
FIV activity, suggests a profound homeostatic disorder, as in
healthy animals activated CD8 cells are generally present only
during peak immune responses.

The observed expansion of the CD8βlow cell subpop-
ulation—which can reach, during the acute stage, up to 80%
of the total population of CD8+ T cells—may be driven by
CD8βlow cells’ sensitivity to apoptosis, a sensitivity that is
enhanced by antigen recognition [2]. CD8βlow cells might be
chronically activated as a result of persistent virus replication
and antigen recognition, die by apoptosis and get replenished
quickly. Thus, it is believed that FIV can alter the immune
homeostasis by inducing chronic activation of CD8+ T cells
into CD8βlow, driving their expansion, and, at the same time,
inducing cytotoxicity against infected CD4+ T cells.

The expansion of the CD8βlow subpopulation is con-
sidered to be an important marker of FIV infection and
disease [2]. A characterization of the process of expansion,
in addition to other markers of disease, is likely to increase
researchers’ understanding of FIV infection and AIDS
pathogenesis, thus facilitating the design of new therapeutic
strategies.

Mathematical models to describe longitudinal data from
HIV-infected patients have been extensively developed [9].
To describe the dynamics of viremia and CD4+ T cells,
numerous models have used systems of ordinary differential
equations based on the prey-predator modelling framework
[10–13]. In this type of model, viral particles infect healthy
CD4+ T cells, which later die, liberating new replicated virus
into the plasma. One of the most interesting aspects of this
mechanistic approach is that each model parameter has a
clear biological meaning, such as rate of infection of CD4+

T cells, the cell lifespan, or the virus replication rate. Such
models have been shown to correctly predict circulating viral
loads in HIV-infected patients undergoing antiviral therapies
[11]. Some variations of this modelling approach have been
discussed in the literature. For instance, the integration
of cytotoxic CD8+ T cells has been shown to potentially
describe with more accuracy the kinetics of viremia in HIV
patients [14]. Models based on the prey-predator framework
can provide interesting insights into the life cycle of the
virus and its interaction with the host. However, these
models tend to be complex, as they generally integrate a
large number of parameters and variables such as viral load,
CD4+ T cells of different status (e.g., uninfected, early-
stage infected, late-stage infected), and different types of
CD8+ T cells. Proper estimation of such parameters requires
a large number of observations (ideally, observations for
all variables should be available) for all individuals to be
analyzed. Obviously, these are difficult conditions to meet
in a clinical setting. Furthermore, it is known that the
immune response can vary significantly across subjects, and
it might therefore be too simplistic to assume parameters
to be constant in a given population of patients. The need
to integrate interindividual results adds an additional level

of complexity to the already complex mechanistic model.
Finally, to our knowledge, such models have not yet been
challenged with data from untreated primary infection (e.g.,
data from untreated HIV-infected patients or from FIV-
infected cats), so the information they provide regarding the
natural progression of disease may be limited.

In this study, we propose two phenomenological models
that correctly reproduce the time-evolution of the percentage
of CD8βlowCD62L− T cells and of circulating viral load
during the early primary infection phase in 102 cats infected
with various doses of FIV.

2. Materials and Methods

2.1. Ethic Statement. All animal experiments were conducted
in accordance with the European Community regulations,
and all procedures were supervised and approved by the
Merial Ethical Committee.

2.2. Animals. In this experiment, 102 cats (49 males and
53 females; mean age: 22.8 weeks, SD: 7.7, range: 13–
36.5) were randomized into 23 groups of 4 to 7 cats each.
Each group was assigned an FIV strain (Petaluma clade
A, Glasgow-8 clade A, or EVA clade B) and inoculum
size. Each cat was challenged with a single intramuscular
injection of 1 mL of viral suspension of one of the three FIV
strains examined. In preliminary in vitro experiments, the
three strains were observed to be comparable in terms of
viremia and impact on lymphocyte subpopulations. Virus
dilutions ranged from 1/90,000 to 1/3, and the infection
doses, expressed in log10/mL of cell culture infectious dose
50% (CCID50), ranged from 0.26 to 4.09 (median: 2.5, SD:
1.21).

2.3. Longitudinal Measurements. Viral load was measured
using quantitative real-time polymerase chain reaction. For
each cat, a measurement was taken at time 0, and, when
possible, additional measurements were taken at the ends
of weeks 1, 3, 4, 6, 9, 12, 15, 18, and 23. Values were
expressed as log10 of viral RNA copies per millilitre of
plasma. For these measurements, the detection threshold, or
the limit of quantification (LOQ), was 80 copies per mL,
which corresponds to 1.9 on the log10 scale. In total, 485
measurements were analyzed, but there was high variability
in the number of measurements per cat (mean = 4.75
measurements/cat, min = 1, max = 7, SD = 1.2). The values
themselves (all taken together) were also highly variable
(median = 3.95 log10 RNA copies/mL of plasma, min = 1.9
(LOQ), max = 6.91, SD = 1.37).

The number of CD8βlow cells and the total number
of CD8+ T cells were measured by flow cytometry as
described in [2]. However, data on these lymphocytes were
available for only 79 cats out of the total 102. The size of
the CD8βlowCD62L− subpopulation was expressed as the
percentage of CD8βlowCD62L− T cells in the entire CD8+

T-cell population. The analysis was carried out on 377
observations with an average of 4.8 observations per animal
(min = 3, max = 6, SD = 0.8). The median observed value of
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Figure 1: Time-evolution of circulating viral load, expressed as log10 of viral RNA copies per mL plasma (a); CD8βlow population size
expressed as the percentage of the CD8βlowCD62L− T-cell subpopulation out of the total population of CD8+ T cells (b). Time is expressed
as weeks after infection. Viral load was measured in 102 cats, but CD8βlow cell counts were measured in only 79 cats.

CD8βlow percentage was 22% (min = 1%, max = 96%, SD =
20.5). Figure 1 shows the time-evolution of viral load in all
102 cats (Figure 1(a)) and CD8βlow percentage in the 79 cats
(Figure 1(b)) for which lymphocyte counts were available.
The curves indicate high variability across cats in both viral
load and CD8βlow percentages.

2.4. Data Analysis. The high variability in the number of
available data points per animal, as well as the variability
across animals in the patterns of the data, required the
use of mixed-effects regression techniques. Mixed-effects
models take into account different forms of variability and,
in particular, interindividual variability [15]. More precisely,
they use the available information from all individuals of an
analyzed population to retrieve both population-level and
individual-level values for the dynamic parameters. As a
consequence, they are particularly suited for the analysis of
datasets with large numbers of individuals, even if data are
sparse for some of the individuals.

In their general form, such models can be written as
follows:

yi j = f
(
xi j ,φi

)
+ g
(
xi j ,φi

)
εi j , 1 ≤ i ≤ N ; 1 ≤ j ≤ ni,

(1)

where N is the number of animals, ni the number of obser-
vations for individual i, x the regression variable (e.g., time),
and y the observations. The term f represents deterministic
equations; in our case, these are simple phenomenological
laws. The residual error is g(xi j ,φi)εi j , where εi j ∼ N(0, σ2).
In what follows we will consider constant error models, that
is, g(xi j ,φi) = 1.

Each individual parameter φi can be defined as follows:

φi = h
(
μ + ηi

)
, ηi ∼ N(0,Ω), i = 1, . . . ,N , (2)

where ηi is a p-vector of random effects and h is some pre-
defined transformation. Here, we assume that the individual
parameters are log-normally distributed (i.e., h(u) = eu).
μ is a p-vector of fixed population parameters (i.e., h(μ)
is the median value across individuals for each of the p
parameters). Ω is the p× p variance-covariance matrix of the
random effects. We assume potential correlations between
the random effects, meaning that Ω is a full matrix.

The unknown set of parameters in the model is then

θ = (μ,Ω, σ2). (3)

The likelihood function related to this problem can be
written as follows:

L
(
θ, y

) =
N∏

i=1

Li
(
θ, yi

)
, (4)

with

Li
(
θ, yi

) =
∫
p
(
yi,ηi, θ

)
dηi

= C
∫
σ−ni|Ω|−1/2e−1/(2σ2)‖yi− f (xi,φi)‖2−(1/2)η′iΩ−1ηidηi.

(5)

If f is nonlinear with respect to the random effects,
the likelihood function cannot be easily computed and
maximized. One intuitive means of addressing this problem
is to analyze the data from each individual separately. This
approach, however, requires a large number of observations
per individual, and therefore it is clearly not feasible in
our case. An alternative method is the SAEM algorithm
(stochastic approximation of the EM algorithm [16]), which
can be used to calculate the maximum likelihood, without
any approximation of the likelihood function and to estimate
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population (θ) and individual (φi) parameters. We used
Monolix software (Lixoft) to estimate those parameters. The
software analyzes all individual data simultaneously. In a
first step, a likelihood function is minimized in order to
estimate the mean values of the model parameters as well
as their variability throughout the population. The resultant
estimates are referred to as the population parameters. In a
second step, information on the mean parameter values is
used to estimate, on the basis of each individual dataset, the
best model parameters for each individual. These are called
individual parameters.

Mixed-effects models also have the advantage of being
associated with a large panel of validation tools. The log-
likelihood (LLH) value (actually −2 × LLH) is generally
used to select the best model from among multiple models.
However, since a model with a greater number of parameters
is more likely to produce a better fit because it has more
degrees of freedom, a penalty term is generally added to the
likelihood function to account for the number of parameters.
Examples of criterion functions that include such penalty
terms are the Akaike information criterion (AIC):

AIC = −2× LLH + 2× n, (6)

where n is the number of free parameters to be estimated,
and the Bayesian information criterion (BIC):

BIC = −2× LLH + log(k)× n, (7)

where k is the sample size.
We tested different types of phenomenological models,

and we selected the best ones on the basis of three criterion
functions—namely, −2 × LLH, AIC, and BIC values—
goodness of fit, residual plots, and precision of parameter
estimates as relative standard errors. We assessed simulation-
based diagnostics through visual predictive check, that is, we
graphically compared the observed data and the simulated
data (using population parameters and both interindividual
and residual variability). We calculated ε-shrinkage and η-
shrinkage to evaluate the degree of shrinkage of individual
predictions towards the observations [17]. High values of
shrinkage (>30%) are considered to impair diagnostics based
on individual predictions and covariate analysis [17].

3. Results

3.1. Modelling Viremia. We first formulated a model to
describe the observed pattern of acute increase in viral load
followed by decay, as shown in Figure 1(a). The best model
we identified was a sum of two exponentials, describing,
respectively, the growth and decay parts of the curves:

V = A0kin

kin − kout

(
e−koutt − e−kint

)
, (8)

where V is the viral load, expressed as log10 of the number
of viral RNA copies per mL of plasma; kin and kout are
the two parameters regulating, respectively, the increase and
decay of viral load; A0 is a scaling adimensional parameter.
Figure 2(a) shows a schematic view and focuses on the effect

of changing the value of the parameter kin. The higher the
parameter value, the more rapid the increase in viral load.
Interanimal variability in the model parameters (A0, kin, kout)
was assumed to be log-normally distributed, and cat-specific
estimates are given as follows, for example, for kin:

kini = kine
η
kin
i , (9)

where kin is the typical value for the population (mean value)
and ηkin

i is an inter-animal random effect that follows a
normal distribution with mean 0 and variance ω2

kin
.

In a second step, the dose of infection and the virus strain
were evaluated as continuous and, respectively, categorical
covariates. We used a backward-stepwise method to test
how inclusion of these covariates affected the three model
parameters [18]. Virus strain had no significant effect on
the values of any of the three parameters, whereas dose of
infection, expressed in log10/mL of CCID50, affected the
constant rate of increase of viral load. Dose of infection
was successfully integrated into kin, which can be written as
follows:

kin = kine
βkin× DOSE. (10)

With this covariate integration, the objective function (−2×
LLH) was reduced by 58 points, the parameter βkin was
estimated with high precision (P < 0.001), and the variability
on the kin parameter decreased by 30%.

Consequently, the value of parameter kin increases as
the inoculum size increases, ranging from 0.074 weeks−1

for the lowest dose to 3.55 weeks−1 for the highest dose.
This result indicates that the higher the dose of infection,
the stronger the increase of viral load in the acute phase.
The parameter kout was estimated at 0.025 weeks−1, and
the scaling factor A0 at 5.56. All parameters were estimated
with low-standard errors. Table 1 presents the parameter
estimates of the model as mean values, with standard
deviation of random effects or inter-animal variability (IAV).
Figure 3 shows model diagnostics with a visual predictive
check, that is, the simulation of the population model with
95% of variability together with the data points (Figure 3(a))
and individual predictions plotted against the actual obser-
vations (Figure 3(b)). Correlation between predictions and
observations is good (r2 = 0.81, P < 0.001). In Figure 4, we
show individual predictions with a 95% confidence interval
around the predictions for six cats taken from the analyzed
population and who were challenged with infection doses
from 1.65 to 4.09 log10/mL. The model correctly predicts
the time-evolution of viral load in the individual cats, and a
relationship is demonstrated between the dose of infection
and the rate of increase of viral load in plasma during
the primary stage of infection. This correlation is shown
in Figure 5(a), where the estimated values of parameter kin

for all 102 cats are plotted against the actual values of the
infection dose (r2 = 0.73, P < 0.001).

3.2. Modelling CD8βlowCD62L−. In the study presented in
[2], the percentage of CD8βlow cells is shown to increase
in the weeks following infection, eventually reaching a
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Figure 2: Schematic view and basic simulations of selected models for viremia (a) and CD8βlow percentage (b). We highlight here the role
of the parameters regulating the increase of viremia and CD8βlow, respectively.

Table 1

Parameters Description Mean value (SE) IAV η-shrinkage

Viral load

kin Increase rate of viral load 0.06 week−1 (21%) 97% 21%

βkin Covariate (cell line) on parameter kin (exponential formulation) 1.01 (12%) —

kel Decay rate of viral load 0.02 week−1 (9%) 46% 66%

A0 Scaling parameter 5.56 (2%) 35% 26%

aV Parameter of the error residual model (constant formulation) 0.56 (5%) —

CD8βlow

λE Expansion rate of CD8βlow 0.07 week−1 (28%) 74% 35%

βλE Covariate (cell line) on parameter λE (exponential formulation) 0.77 (17%) —

K Maximal CD8βlow percentage 39.4 (6%) 56% 23%

E0 Scaling parameter 1.42 (6%) 54% 31%

aE Parameter of the error residual model (exponential formulation) 0.41 (5%) —
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Figure 3: Viremia model diagnostics. (a): Simulation of the population model with 95% of variability together with the data points (visual
predictive check). (b): Individual predictions versus the actual observations.
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Figure 4: Goodness of individual predictions of viral load. A 95% confidence interval around the prediction for six cats taken from the
analyzed population is shown. The corresponding infection doses, expressed as log10/mL of cell culture infectious dose 50% (CCID50), are
shown.

saturation level. We tested several laws, such as a sigmoid
function, in an attempt to reproduce this pattern. The best
model selected was the Gompertz equation. The model can
be written as follows:

E = Ke−E0e−λEt , (11)

where E represents the percentage of CD8βlow cells, and the
parameter E0 is involved in the expression of the percentage
of CD8βlow cells at time 0. More precisely, we set E(t = 0) =
Ke−E0 . λE is a constant term determining the expansion rate
and K is the maximal percentage of CD8βlow cells. The larger
the parameter λE, the sharper the expansion. Figure 2(b)
shows a schematic view of the model and highlights the
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Figure 5: (a) Correlations found between the dose of infection, expressed in log10/mL CCID50, and the increase rate of viral load. (b)
Resulting correlation between the rate of increase of viral load and CD8βlow expansion rate.
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Figure 6: CD8βlow model diagnostics. (a): Visual predictive check. (b): Individual predictions versus the actual observations.

impact of a change in the value of λE on the shape of the
curve. Inter-animal variability in the model parameters (E0,
λE, K) was assumed to be lognormal; the dose of infection
and virus strain were evaluated as before as covariates. Only
the dose of infection, expressed as log10/mL of CCID50, was
finally successfully integrated into the constant expansion
rate of CD8βlow. With this covariate integration, the objective
function was reduced by 33 points, and the variability on the
λE parameter decreased by 44%.

The mean value of the maximal percentage (K) was
estimated at 39.4%. The constant rate of CD8βlow expansion
increases as the dose increases, ranging from 0.08 weeks−1

for the lowest dose to 1.62 weeks−1 for the highest dose.
This range is very similar to the range of the rate of increase
of viral load. Consequently, we observe that the higher the

dose of infection, the stronger the expansion of CD8βlow.
Notably, we observe a linear relationship between the rate of
expansion of the CD8βlow population and the rate of increase
of viral load (Figure 5(a)). Figure 6, similarly to Figure 3,
shows model diagnostics with a visual predictive check
(Figure 6(a)) and individual predictions plotted against
actual observations (Figure 6(b)). Correlations between pre-
dictions and observations are fairly good (r2 = 0.80, P
< 0.001), although the highest observations seem to be
underestimated by the model. In fact, the proposed model
is able to reproduce only the expansion of the CD8βlow

percentage, whereas in many cases the highest observed
CD8βlow percentages were followed by lower percentages
at subsequent time points (see Figure 6(a)). The latter
observation might be attributable to technical variability in
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performing the laboratory measurements or to fluctuations
around a saturation point.

4. Discussion

FIV is a major pathogen affecting cats and is recognized as a
relevant model for the study of HIV infection. In particular,
during the primary infection phase, the clinical signs and
virus localization in FIV-infected cats have been shown to
be similar to those observed in HIV infection [1]. The study
of primary HIV infection is likely to shed new light on
the development of the disease, as a relationship has been
shown to exist between the characteristics of acute-stage HIV
infection and progression to death due to AIDS [19, 20]. As
primary infection in HIV might be difficult to document,
the study of the early phase of FIV infection could be an
alternative means of gaining insights into HIV that might
contribute to the design of new efficient therapy.

In addition to being a valuable model for HIV, FIV on
its own constitutes an important research interest. As a result
of the growing prevalence and severity of FIV infection, an
effective FIV vaccine is greatly needed in veterinary medicine
[2]. The issues that researchers have faced in the process of
FIV vaccine development are similar to those encountered
for HIV, and it is believed that effective vaccines against HIV
and against FIV will elicit cellular immune responses [21–
24].

We performed a longitudinal analysis of important
markers of FIV—that is, viral load and CD8βlow per-
centage—in cats undergoing primary infection. The analysis
was carried out retrospectively, using data from cats that were
infected in an experimental protocol.

This analysis led us to propose two phenomenological
models that correctly reproduced the time-evolution of
CD8βlow percentage and viremia during primary FIV infec-
tion in cats. These simple models allowed us to integrate, at
the level of the parameters, the intersubject variability that
often characterizes preclinical and clinical data.

Expansion of CD8βlow percentage was modelled with
a Gompertz law, and viremia was modelled using two
exponential laws to reproduce the initial burst of viral load
followed by decay. All model parameters were estimated
with low-standard errors, and, as expected, variability was
elevated for some of the parameters. Even if the models
are phenomenological, some of the parameters, and in
particular the rate of expansion of the CD8βlow population
and viral load, can be easily related to the shapes of the
curves (see Figure 2 for illustration), and so can be easily
interpreted. The dose of infection, expressed as log10/mL of
CCID50, was found to be a relevant covariate of the rate
of expansion of the CD8βlow population and the rate of
increase of viral load; this covariate explains a large part (up
to 30%) of the inter-animal variability on the distribution
of these two parameters. Finally, the rate of expansion of
viral load and the rate of expansion of CD8βlow percentage

were observed to be correlated (r2 = 0.73, P < 0.001; see
Figure 5(b)). Obviously, this correlation does not provide
any clues regarding the mechanism of action of CD8βlow

or the relationship between the CD8+ T-cell subpopulation
and viremia, but it reinforces the prevalent hypothesis that
CD8βlow percentage is a relevant marker of FIV progression.

The results we obtained with the proposed models may
provide insight into the time course of viremia or viral
load and the size of the CD8βlow population following
infection. Our study points to phenomenological models
as a potentially valuable complement to the numerous
mechanistic models used to study HIV infection and AIDS
progression. For example, researchers have identified a linear
relationship between a patient’s viral load, taken as the
average of all the patient’s viral load measurements (allegedly
compatible with the concept of a viral set point), and his
or her survival time [25, 26]. Our study provides evidence
that disease progression in patients can be well described by
a simple phenomenological model that does not rely on any
biological assumptions. The dynamic approach we adopted
here could provide insights into the link between viremia and
patient survival [26]. Indeed, the analysis of the time course
of viral load might be a better predictor of survival than the
average viral load parameter used by Arnaout et al. [25].

5. Summary

Cats infected with the feline immunodeficiency virus (FIV)
develop an acquired immunodeficiency syndrome (AIDS),
similarly to humans infected with HIV. FIV infection causes
an acute viremia, which decreases after several weeks, and
the appearance of a subpopulation of activated CD8+ T cells
that we refer to as CD8βlow cells. The expansion of this
activated T-cell population is recognized as an important
marker of FIV infection and disease. Characterization of
the CD8βlow population’s complex pattern of expansion,
including its correlation with other disease markers such as
viral load, is likely to increase researchers’ understanding
of FIV infection and AIDS pathogenesis. We propose two
simple and independent mathematical equations to analyze
the time-evolution of CD8βlow population size and of viral
load during primary infection in cats with FIV. We develop
the models using a population approach and mixed-effects
regression techniques, based on repeated measurements in
more than 100 cats infected with FIV.
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Molecular dynamics simulations have to be sufficiently long to draw reliable conclusions. However, no method exists to prove that
a simulation has converged. We suggest the method of “lagged RMSD-analysis” as a tool to judge if an MD simulation has not yet
run long enough. The analysis is based on RMSD values between pairs of configurations separated by variable time intervals Δt.
Unless RMSD(Δt) has reached a stationary shape, the simulation has not yet converged.

1. Introduction

Mathematical modeling and computational biology have
proved extremely successful in the efforts to understand the
mechanisms of immunologic reactions, for example, in mod-
eling the T-cell proliferation dynamics following hepatitis C,
HIV infection [1], or the growth of an immunogenic tumor
[2]. Methods of statistical mechanics may successfully be
applied in order to quantitatively understand the immune
system [3, 4], and different modeling approaches are ade-
quate for acquired immunity, as surveyed in a seminal paper
by Perelson and Weisbush [5]. Modeling and simulation
can be performed on different levels, starting at the top
level with agent-based models [6, 7] for the cooperation
of numerous large biomolecules in the formation of the
immune synapse [8–11] down to more detailed models of
antigen binding [12], recognition, and signaling [13–20].
T-cell proliferation modulated by interleukin 2 has been
simulated [21]. Applications aiming to predict the reaction
to epitopes [22] improved vaccine design [23], vaccination

against tumors [24], and for improved patient care have
been devised [25–27], also in personalized medicine [28].
In particular, the mechanisms how T-cell receptors (TCRs)
detect antigen peptides (p) presented by major histocom-
patibility complex (MHC) molecules can be investigated
by molecular dynamics (MD) on a molecular or even
atomic level [29–32]. However, TCRpMHC complexes are
huge protein complexes, which have to be studied in water,
which adds an even larger number of atoms to model and
simulate. For these reasons, sufficiently long simulations
are mandatory in order to obtain realistic results. This is
even more so since molecular recognition phenomena may
operate on rather long timescales as compared to the length
of usual MD trajectories. Hence, efforts to assess sampling
quality are mandatory in such simulations.

Given the trajectory of an actual MD simulation, it is
clear from first principles that no formal check whatsoever
can prove that complete sampling has been achieved. If
parts of the phase space have not been visited yet, there
is no possibility that this becomes evident from looking
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Figure 1: RMSD as a function of time for trajectory 1 (10 ns).
Black curve: RMSD between first configuration and all successive
ones. Blue curve: for a given configuration (t j), RMSD to each of
the other configurations of the same trajectory was computed and
averaged, yielding RMSD(t j). That value of t j for which RMSD(t j)
is maximum is then adopted as a reference (t1) to plot RMSD
values of the whole trajectory. Red curve: as blue curve, but for
minimum RMSD(t j). Note that the RMSD between the reference
configuration and itself is zero by definition.

only at data from those other parts that have been visited.
Zhang et al. [33] proposed a formal approach to decompose
the phase space into Voronoi polyhedra [34, 35].

At any rate, formal checks of sampling quality can
only draw on simulation data already produced and at
the most detect possible shortcomings of those trajecto-
ries. The situation is analogous to tests for the random-
ness of pseudorandom-number generators [36]. One can
never prove randomness as such. It is only possible to
detect specific deviations from randomness, such as serial
correlations—and any such detection works only with a
preselected error rate.

Likewise, MD trajectories may be investigated for specific
markers of nonrandomness, the most important type being
trends of energy and molecular deformations. This work
focuses on the latter, deviations in shape being quantified via
the root mean square deviation (RMSD) [37] at time t2 with
respect to a given reference structure at time t1:

RMSD(t1, t2) =
⎡
⎣ 1
N

N∑

i=1

‖xi(t2)− xi(t1)‖2

⎤
⎦

1/2

, (1)

where xi(t) is the position of atom i at time t and N is the
total number of atoms in the molecule.

Often, the first frame of a trajectory (t1) is used as a
reference, and values of RMSD(t1, t2) are computed for all
successive (t2 > t1) frames; see the black curve in Figure 1.
RMSD monitored this way shows large rapid fluctuations
on top of long-term variations and jumps. Generally, it is
difficult to identify such long-term variations, which may

relate to functional modes. A recent study [38] reflected the
insufficiency of visual RMSD inspection alone.

Extensive work has been published on using the RMSD
for the characterization of structural changes, drifts, and
trends; see [33] and the references cited therein. Grossfield
and Zuckerman [39] gives a seminal conceptual discussion
of ergodicity, absolute and relative convergence and proposes
checks for overall sampling quality. Block averaging was
proposed [40] to reduce short-term fluctuations and to
obtain more reliable indicators of long-term trends. How-
ever, averaging RMSD over all configurations within a block
involves many different time intervals Δt = t j − ti, thus
reducing the specificity of the resulting average for one
particular time interval.

For this reason we consider the RMSD between pairs
of configurations separated by a constant time lag Δt as
described in Section 2.2.1. In this way we obtain more stable
estimates (averages) which are nevertheless perfectly specific
for a given time interval Δt.

2. Materials and Methods

2.1. Molecular Dynamics Simulations

2.1.1. Employed Structures. We applied the proposed metho-
dology to a total of 6 MD simulations. For this purpose
we used 2 different TCRpMHC complexes: an immunogenic
wild-type peptide bound between TCR/MHC and the same
TCR/MHC with a less immunogenic mutant peptide. We
employed the crystal structure of the LC13 TCR bound
to HLA-B∗08 : 01 and the Epstein Barr Virus peptide
FLRGRAYGL. This structure is available from the Protein
Data Bank (PDB) [41] via PDB accession code 1mi5 [42]
and is referred to as wild-type. For the mutant complex we
substituted the side chain of tyrosine at position 7 of the
peptide to alanine (Y7A). This was performed using SCWRL
[43] since we could previously show that this tool is most
appropriate for mutations in pMHC complexes [44, 45].

The LC13 TCR in complex with the FLRGRAYGL peptide
and HLA-B∗08 : 01 is an ideal test set for molecular dynamics
simulations since this complex was crystallized and described
in its parts and as a whole. Initially Kjer-Nielsen et al.
crystallized the TCR [46] and the MHC [47] separately while
they published a structure of the whole TCRpMHC system
[42] afterwards. These available data give substantial insight
into the LC13/EBV/HLA-B∗08 : 01 system and led to the
choice of our wild-type and mutated system for this study.
The whole system is illustrated in Figure 2.

2.1.2. Molecular Dynamics Simulation Protocol. The wild-
type and the mutant complex were simulated in independent
runs for 10, 50, and 200 ns yielding a total of 6 simulations
(see Table 1). The following protocol for the simulations was
employed. First, we minimized the energy of the systems
using a steepest descent method. Then we immersed the
complexes in explicit SPC [48] artificial water baths allowing
for a minimal distance of 2 nm between the box boundary
and the protein. Next, we warmed the complex up to
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Table 1: Molecular dynamics simulation runs.

tmax (ns) Δtconfig (ps) Peptide n

Trajectory 1 10 3 FLRGRAYGL 3500

Trajectory 2 50 50 FLRGRAYGL 1000

Trajectory 3 200 50 FLRGRAYGL 4322

Trajectory 4 10 3 FLRGRAAGL 3500

Trajectory 5 50 50 FLRGRAAGL 1000

Trajectory 6 200 50 FLRGRAAGL 4322

Figure 2: Illustration of the LC13 TCR in complex with HLA-
B∗08 : 01. Blue: MHC, red: β2-microglobulin, gray: peptide, orange:
TCR alpha-chain, yellow: TCR beta-chain.

310 K using position restraints. Finally, we carried out the
simulations using GROMACS 4 [49] and the GROMOS96
force field [50]. All further parameters were set in accordance
with [51].

2.1.3. RMSD Calculation. After the simulations were fin-
ished, we calculated the RMSD values for each configuration
in a given trajectory with respect to every other configuration
of the same trajectory using the standard g rms function of
GROMACS. This yields an n × n matrix of RMSD values
where n is the number of configurations in the trajectory.

2.2. RMSD between Configurations of Trajectories

2.2.1. Averaging and Modeling of Lagged RMSD. Given one
configuration x(ti) of an MD simulation as a reference, the
RMSD to some other configuration x (t j) may be considered
a “distance measure” along the time interval Δt = t j− ti. IfΔt
is short enough, it may be shifted along the whole trajectory
and RMSD values be sampled. The average RMSD(Δt)
is characteristic for the difference between configurations
separated by Δt in the particular simulation run considered.

Small values of Δt characterize configurations close
to each other in time. Increasing Δt means to compare
configurations more distant to each other in time, which

are—intuitively speaking—“less related” to each other. This
fact should be reflected in RMSD(Δt) for increasing values of
Δt.

As Δt increases, dependences should diminish and
approach the level of “unrelated” or “independent” config-
urations. In order to quantify such a saturation trend, we
applied the Hill equation [52]:

RMSD(Δt) = a · Δtγ
ty + Δtγ

, (2)

where the parameter a reflects the maximum value to which
the function is asymptotic (“plateau value” RMSD(Δt →
∞)), τ is the time lag Δt for which RMSD(Δt) = a/2 (i.e.,
the value of Δt for which half-saturation is achieved), and
the Hill coefficient γ is a parameter that determines the shape,
that is, the level of sigmoidicity, of the model functions. The
parameters were estimated by fitting the Hill equation (2)
to the measured values of RMSD(Δt) using the nlinfit fun-
ction as implemented in the Statistics Toolbox of MATLAB
(Mathworks, Natick, MA, USA). The maximum time lag Δt
was chosen half the total simulation time of the respective
trajectory.

2.2.2. Assessing the Influence of Initial Conditions. The initial
phase t ≤ toffset of each MD simulation strongly depends
on the starting configuration, usually a crystal structure,
which can by no means be representative for a configuration
obtained from a trajectory. This is even true after energy
minimization and warming up. Hence, if the initial phase of
an MD trajectory is included in RMSD(Δt), a bias will result.
This is not only true for individual values of RMSD(Δt) but
also for the parameters estimated from the fit. In particular,
the limiting plateau value a = RMSD(Δt = ∞) will also be
biased and depend on toffset: in fact, a = a(toffset). We modeled
this dependence as

a(toffset) = a0 + β · exp(−λ · toffset), (3)

where a0 is the limiting value, a0 = a(toffset = ∞), and β
and λ are scaling parameters. Note that a0 is an extrapolated
estimate for RMSD(Δt = ∞) and toffset = ∞, that is,
the estimate for an RMSD between two totally unrelated
configurations of a trajectory, independent of initial phase
effects.

Values for toffset were selected in the interval 0 ≤ toffset ≤
tmax/2, where tmax denotes the total simulation time of the
respective trajectory.

3. Results and Discussion

3.1. Convergence of RMSD with Increasing Time Lag. Each
panel of Figure 3 shows a representative plot (for reasons
of conciseness we display results in the figures only for
trajectory 1–3) of mean RMSD values (red circles, y-axis)
obtained between configurations of one MD trajectory (see
figure caption and Table 1), separated by respective time lags
Δt (x-axis). As the time-lag between configurations increases,
mean RMSD approaches a plateau.
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Figure 3: Dependence of mean RMSD on the time lag Δt for toffset = 0. (a) 10 ns trajectory 1, (b) 50 ns trajectory 2, (c) 200 ns trajectory 3;
see Table 1. Note that due to the different total durations of the simulations, the maximum time lag considered (equal to half the simulation
length) varies. Vertical lines indicate the time interval τ, for which half-saturation is achieved; see also (2). The horizontal line indicates the
estimated plateau of the mean RMSD, corresponding to the parameter a in (2).

Fits of the model (2) to the values of RMSD(Δt) are
displayed as solid lines. Parameters obtained from the fits
can readily be interpreted as follows. The estimate for
parameter a in (2) represents the limiting value of RMSD(Δt)
and is indicated by the horizontal line. The estimate of
the parameter τ corresponds to a “characteristic” (“half-
saturation”) time interval Δt and is shown as a vertical line
in the plots.

Note that the initial phase of each trajectory strongly
determines the shape of RMSD(Δt) which should be
properly represented by the fitted model. In contrast, the
remainder of each trajectory is characteristic for the long-
term trend of RMSD(Δt). Although it shows much smaller
changes in RMSD, the remainder contains naturally by far
more data points as compared to the initial phase. To achieve
an appropriate balance, we increased the lag length in small
steps during an initial phase (cf. the initially dense succession

of red circles in Figure 3) and in larger steps (more loose
succession of circles) later on. This procedure puts increased
weight on the data points for the initial phase.

3.2. Influence of the Offset. Applying different temporal off-
sets toffset before starting to analyze the respective trajectories
changes the dependence of RMSD(Δt) as a function of the
time lag Δt; see the typical results displayed in Figure 4.

The larger the offset toffset from the start configuration,
the smaller the time lag Δt necessary for the system to
level off to its RMSD plateau. The exemplary display of
the dependence of fitted parameters on toffset, as shown
previously, is systematically analyzed as follows; see Figure 5.
With increasing toffset both the plateau value a and the
half-saturation parameter t decrease, whereas the shape



Computational and Mathematical Methods in Medicine 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

ea
n

 R
M

SD
 (

n
m

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time-lag Δt (ns)

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ea

n
 R

M
SD

 (
n

m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time-lag Δt (ns)

(b)

Figure 4: Dependence of mean RMSD on toffset for trajectory 1 (10 ns). (a): toffset = 0 ps, (b): toffset = 200 ps. Vertical lines indicate the time lag
τ, for which half-saturation is achieved; see also (2). The horizontal line indicates the estimated plateau of the mean RMSD, corresponding
to the parameter a in (2).

parameter γ is fairly constant and almost independent of
toffset.

In a next step the systematic dependence of the extrap-
olated plateau on toffset was fitted via (3); see Figure 6. The
monoexponential decay model of (3) represents the most
parsimonious choice, given the shape of the simulation
results as displayed in Figure 6.

Figures 6(a)–6(c) illustrates the influence of the offset
toffset from the start configuration on the respective RMSD
plateau values as estimated from the parameter a of the
model (2). RMSD plateau values tend to decrease with
increasing toffset.

4. Conclusions

For molecular dynamics simulations of proteins, questions of
“convergence” and sampling are important issues if sensible
conclusions are to be drawn from such simulations. Since
convergence of a particular simulation (in the sense that
statistical sampling of the phase space is complete enough
with respect to the specific phenomena studied) cannot be
judged in advance [39], various techniques have been advised
to demonstrate that a simulation has not yet converged
[37, 53–56].

Here, we propose a method to assess if a simulation
has not yet run long enough, based on RMSD analysis
of successive configurations of a given MD trajectory,
separated by time lags Δt of varying length (up to half
the total simulation time). As long as a simulation has not
yet converged, the shape of the function RMSD(Δt) still
considerably depends on toffset, that is, the time point along
the trajectory, where the analysis interval Δt starts. As toffset is
large enough, the shape of RMSD(Δt) becomes stationary;
that is, in Figure 4 the shape of the mean RMSD curve is
different in the left and right panel, but further increasing

toffset would not further change its overall appearance. This is
also reflected in the respective model parameters, converging
to constant values for large values of toffset; see Figure 5.

To describe this Δt dependence of the mean RMSD
values, RMSD(Δt), for a given toffset, the Hill function was
used. This function type is frequently applied in enzyme
kinetics to model saturation phenomena together with the
number of reactive sites on an enzyme. In the present
work, the Hill function proved flexible enough to model
the functional form of RMSD(Δt) and to identify the
respective parameters (plateau value, shape parameter, and
half-saturation time). Contrary to a simple exponential
saturation function, the Hill function is able to model
different levels of sigmoidicity.

In order to quantify the influence of the initial conditions
and the equilibration phase on RMSD(Δt), we systematically
increased the time toffset before starting to analyze each
trajectory. With the exception of the shape parameter γ all the
other parameters of the Hill function describing RMSD(Δt)
exhibit a distinctive dependence on the initial phase of the
trajectories and thus indicate that biased estimates would
result if the initial phase would be included in the analysis.

As pointed out in the introduction, the method proposed
here combines the smoothing effect of averaging, while
retaining the specificity of a precise time interval between
configurations being compared. For example, the height
of the extrapolated RMSD plateau a0 (see Figure 6) may
be interpreted as “configurational distance” between two
arbitrarily selected, totally unrelated configurations of the
particular part of phase space currently visited. If one
chooses an arbitrary configuration out of it as the reference,
all others visited by the trajectory will have an average
distance a0. In contrast, Figure 1 shows two limiting cases
of reference configurations: (i) the configuration with maxi-
mum average distance (i.e., RMSD) to all others (blue curve),
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Figure 5: Increasing toffset changes fitted parameters of RMSD(Δt), (2). (a) 10 ns trajectory, (b) 50 ns trajectory, (c) 200 ns trajectory; see
Table 1.

which represents the “maximum outlier” ever seen in this
trajectory and (ii) the configuration with minimum average
distance (i.e., RMSD) to all others (red curve), which is “most
central” within the trajectory.

Note that extrapolated plateau values are significantly
larger than the RMSD(Δt) actually reached in the trajec-
tories (see Figure 3). Only if we consider the extrapolated
plateau as a function of toffset, we obtain realistic (i.e.,
lower) estimates (see Figure 6) to aim at during actual
simulations. In this sense, we may attribute the proposed
fitting procedure some forecast capability regarding the level
of RMSD to be finally expected if the trajectory were carried
on. This extrapolated mean RMSD corresponds to pairs
of configurations separated by time intervals large enough
to consider such configurations approximately uncorrelated,

independent representatives of the configuration space of the
respective molecule.

Likewise, the “half-saturation time” τ obtained from the
fit decreases with increasing toffset. Thus, taking configura-
tions with large enough toffset as a reference, it takes only
a short time to get close to the RMSD plateau a0. In each
panel of Figure 5, the parameter τ approaches an almost
constant level at about half the maximum toffset considered
(i.e., 25% of the total simulation time). This might suggest
that—regardless of the total simulation length—the fraction
of usable (independent) configurations remains the same
(final 75% of the trajectory). As the length of the simulation
run increases, the criterion derived from the run itself gets
increasingly more stringent. From the 200 ns run the first
50 ns should be discarded, which is more than 5 times the
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Figure 6: Fit and extrapolation of RMSD plateau values for increasing toffset. (a) 10 ns trajectory 1, (b) 50 ns trajectory 2, (c) 200 ns trajectory
3; see Table 1. Red circles represent plateau values a(toffset) the error bars denote their asymptotic standard errors. The solid blue curve shows
a nonlinear least-squares fit of (3) to the plateau values a(toffset). From the latter fit the limiting plateau value a0 = a(toffset = ∞) was extracted
and is shown as a solid horizontal line together with its asymptotic standard error as obtained from the fit of (3).

total length of the 10 ns trajectory. If using the latter as a basis
of estimate, however, the last 7.5 ns seem to be trustable.

Although the analysis reported in the present work is
specific to TCRpMHC complexes, we expect the method of
lagged RMSD analysis to be applicable to similar molecular
systems, such as membrane proteins comparable in size
and structure. The approach presented here is designed to
assess the degree of convergence of MD simulations and
hence the statistical quality of conclusions drawn from such
simulations.
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The immune system is able to respond more vigorously to the second contact with a given antigen than to the first contact.
Vaccination protocols generally include at least two doses, in order to obtain high antibody titers. We want to analyze the relation
between the time elapsed from the first dose (priming) and the second dose (boost) on the antibody titers. In this paper, we couple
in vivo experiments with computer simulations to assess the effect of delaying the second injection. We observe that an interval of
several weeks between the prime and the boost is necessary to obtain optimal antibody responses.

1. Introduction

Immunological memory, defined as the capacity of the
immune system to respond more vigorously to the second
contact with a given antigen than to the first contact, is the
basis of the persistent protection afforded by the resolution
of some infections and is the goal of vaccination. Memory is
a system-level property of the immune system, which arises
from the increase in the frequency of antigen specific B and
T cells as well as from the differentiation of antigen specific
lymphocytes into memory cells, which are able to respond
faster to antigen and to self-renew [1–3].

The protection afforded by vaccines currently in use
correlates well with the magnitude of the antibody response.
The persistence of antigen-specific antibody titers over a
protective threshold and the ability to exhibit a “recall re-
sponse” to eencounter with antigen have long been the only
measurable correlates of vaccine “take” and immune mem-
ory. However, these methods for the evaluation of immune
memory suffer from the disadvantage of relying on long-
term monitoring of the immune response. Thus, optimizing
the vaccination schedule to obtain high and persisting

antibody titers, an important step in the development of
novel vaccines and immunotherapies, is a long trial and error
process [4, 5].

The magnitude of the immune response can usually be
increased by multiple administrations of vaccine; the notable
exception being represented by virus-vectored vaccines and
whereby immunity to the viral capsid induced by the first
dose prevents cell infection by subsequent doses.

When a new prototype vaccine is tested for the first
time in vivo, the injection schedule is designed empirically,
using a combination of immunological knowledge, previous
experience, and practical constraints, and it is refined
on the basis of the observed immunological responses
and protection. However, in vivo experimentation poses
practical limits to the number of different immunization
schedules that can be tried to find the protocol that
maximizes the antibody titer, while minimizing the number
of doses. Thus, in silico simulations of the kinetics of the
antibody response can be useful to generate predictions,
that can then be tested experimentally, and to generate
novel hypotheses on early correlates of immune mem-
ory.
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The vaccine used to generate the experimental data
reported in this study and described in Section 2, namely-(1-
11)E2, consists of “virus-like particles” formed by a domain
of the bacterial protein E2 that is able to self-assemble into
a 60-mer peptide [6]. Each particle displays on its surface 60
copies of peptide “DAEFRHDSGYE,” corresponding to the
first 11 N-terminal residues of beta-amyloid, a peptide that
forms aggregates in the brain of Alzheimer’s disease patients.

A single “prime” dose of the (1-11)E2 vaccine induces
measurable titers of anti-beta-amyloid antibodies in all
treated mice, and in 4/5 mice that received a “boost” dose 6
months later, we observed a clear memory response, namely,
a fast rise of anti-beta-amyloid antibody titers to a peak
serum concentration between 1 and 7 mg/mL.

Studies performed in transgenic mouse models of
Alzheimer’s disease have demonstrated that antibodies
against beta-amyloid are able to reduce plaques and improve
cognition (reviewed in [7–10]. In mouse models as well as in
clinical trials in Alzheimer’s disease patients, induction of a
high titer of anti-beta-amyloid antibodies correlates with the
therapeutic efficacy of vaccination [10, 11].

In this study, the effect of the time delay between the first
and the second injection of antigen on the peak antibody
titer is explored in an computer model of the immune system
response.

2. Materials and Methods

2.1. Animals. BALB/c mice were obtained from Charles River
Laboratory, Italy. Ethics Committee of the institution within
which the work was undertaken have approved the protocols
involving mice and these conform to the provisions of the
Declaration of Helsinki and Italian National Guidelines for
animal use in research.

2.2. Generation of Virus-Like Particles (VLP) (1-11)E2. Syn-
thetic complementary oligonucleotides encoding the se-
quence 1–11 (sequence DAEFRHDSGYE) of beta-amyloid
were cloned into the pETE2DISP vector cut with NcoI and
XmaI, to obtain plasmid pET(1-11)E2. Successful construc-
tion of the plasmid was confirmed by DNA sequence analysis.
(1-11)E2 VLP was produced and characterized as previously
described [5].

2.3. Immunizations. Mice were immunized intraperitoneally
with 200 μL of a 1 : 1 mixture of antigen and adjuvant. Com-
plete Freund’s Adjuvant (CFA) was used in the first injection,
and Incomplete Freund’s Adjuvant (IFA) in the second one.
Each mouse received an amount of antigen carrying 6 μg of
the beta-amyloid epitope. Blood was collected at indicated
time points, and ELISA was performed on serum.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA). Wells of
a 96-well Nunc Immunoplate were coated with streptavidin
at 37◦C over night until complete evaporation. Wells were
blocked with 0.5% bovine serum albumin in 20 mM TrisHCl
pH 7.3, and 120 mM NaCl, incubated with 50 ng biotinylated

peptide, incubated with mouse sera diluted in 0.25% bovine
serum albumin, 20 mM TrisHCl pH 7.3, 0.5 M NaCl, 0.05%
Tween 20, and detected with anti-mouse IgG peroxidase
conjugate (SIGMA A-2554).

All incubations were carried out for 1 hr at 37◦C, and
after each step wells were washed twice with Elisa wash buffer
(EWB) (20 mM TrisHCl pH 7.3, 130 mM NaCl, 0.05% Tween
20) and once with Tris buffered saline (TBS) (20 mM TrisHCl
pH 7.3, 0.5 M NaCl). Wells were incubated for 45 min at
room temperature with 0.4 mg mL−1 O-phenylenediamine
dihydrochloride dissolved in 30 mM citric acid, 70 mM
Na2HPO4, 0.8 mM H2O2. Absorbance was read at 492 nm,
after blocking color development was blocked with 0.8 M
sulfuric acid.

Each serum was tested against synthetic peptides 1–11 of
beta-amyloid (the synthetic peptide 23–29 of beta-amyloid
was used as a negative control). Titer of a serum was defined
as the highest dilution yielding an absorbance value equal
to twofold of the background value obtained against an
irrelevant antigen.

2.5. The Computational Model. The in silico experiments are
performed by a computational model of the immune system
[12] that uses binary strings to represent the binding site
of cells and molecules (i.e., lymphocytes receptors, BCRs,
TCRs, Major Histocompatibility Complexes MHC, antigen
peptides and epitopes, immunocomplexes IC, etc.).

The model is based on the agent-based modeling (ABM)
paradigm, in that all entities are individually represented
[13, 14] as in cellular automata models [15]. It includes
the major classes of cells of the lymphoid lineage, that is,
T helper lymphocytes, cytotoxic T lymphocytes, B lympho-
cytes, antibody-producer plasma cells, and natural killer cells
(NK) and some of the myeloid lineage, that is, macrophages
(Mφ) and dendritic cells (DC). These entities cooperate
following a set of algorithms (or logical rules) carrying out
the different phases of the immune recognition and response
to a generic pathogen. In particular, the model takes into
account phagocytosis, antigen presentation, cytokine release,
cell activation from inactive or anergic states to active states,
cytotoxicity, and antibody secretion. The model simulates a
simplified form of innate immunity and a more elaborate
form of adaptive immunity, including both humoral and
cytotoxic immune responses [16].

In the model, a single human lymph node (or a
portion of it) is mapped onto a three-dimensional ellipsoid
Cartesian lattice. The primary lymphoid organs thymus
and bone marrow are modeled apart: the thymus [17] is
implicitly represented by the positive and negative selection
of immature thymocytes before they enter into the lymphatic
system, while the bone marrow generates already mature B
lymphocytes. Hence, only immunocompetent lymphocytes
are represented on the primary lymphoid organ modeled.

This computational model can be seen as a collection of
working assumptions or theories, most of which are regarded
as established immunological mechanisms. In details, the
model includes: the clonal selection theory of Burnet [18];
the idiotypic network theory of Jerne [19]; the clonal deletion
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Table 1: Biological rules coding for interactions between cells or
among cells and molecules and other specific mechanisms of the
immune system. Each of the entries of this list corresponds to an
algorithm implementing a specific activity of the immune cells.

Interactions Activations

B phagocytosis of antigen Activation of Mφ

Mφ phagocytosis of antigen B cells anergy

DC phagocytosis of antigen TH cells anergy

B presentation to TH Priming of TH cells

Mφ presentation to TH TC cells anergy

DC presentation to TH Activation of TC cells

Formation of immunocomplexes
(IC)

Mφ phagocytosys

Infection of EP cells

Cytotoxicity of infected cells by TC

Antigen ingestion and presentation Other procedures

B exogenous pathway Clone divisions

Mφ exogenous pathway Hematopoiesis

DC exogenous pathway
Plasma secretion of
immunoglobulins

EP endogenous pathway Entity movement

Hypermutation of antibody

B: B cell, Mφ: macrophage, DC: dendritic cell, TC: cytotoxic CD8+ T cell,
Th: CD4+ T cell.

theory (i.e., thymus education of T lymphocytes, [20]);
the hypermutation of antibodies [21]; the danger theory of
Matzinger [22]; the replicative senescence of T cells, or the
Hayflick limit (i.e., a limit in the number of cell divisions,
[23]); T-cell anergy [24]; Ag-dose-induced tolerance in B
cells [25]. These features can be selectively toggled on or
off, allowing for general investigations of immunological
hypothesis. Moreover, other specific biological processes
can be added to the model with relatively little effort. For
example, customizations of the basic model have been used
to simulate different phenomena ranging from viral infection
(e.g., HIV, EBV [26, 27]) to type I hypersensitivity [28] and
cancer [29, 30].

A simulated time step is roughly equivalent to eight
hours. The interactions among the cells determine their
functional behavior (Table 1). Interactions are coded as
probabilistic rules defining the transition of each cell entity
from one state to another. Each interaction requires the
involved cellular entities to be in a specific state out of a
set of possible states (e.g., naı̈ve, active, resting, duplicating)
that is dependent on the cell type. Once these conditions
are fulfilled, the interaction is driven by a probability that
is directly related to the effective level of binding between
ligands and receptors.

Strings of 0s and 1s are used to represent specificity
elements like receptors and other molecular binding speci-
ficities (see Figure 1). The length of this string is specified as
a parameter �. Two bit-strings complement each other (or
are a perfect match) if every 0 in one corresponds to a 1 in

the other and conversely. More generally, an m-bit match is
defined as a pair where exactlym bits complement each other.
Therefore, in order to compute the binding probability, we
first define the function h(a, b) giving us the number of
matching bits between two strings a and b (i.e., the Hamming
distance in the space of the bit-strings). Then, we define the
function α(m) as the affinity of an m-bit match. To ensure
that perfect matches prevail over imperfect ones, we set α(�)
to a high value and α(m) (with m < �) to lower values. To
specify the vector α, one method is to specify it directly by
simply listing out its components. Another method uses the
additional parameter arguments m, that is, the minimum
match allowed, a = α(m), that is, the minimum level of
affinity, and δα a parameter specifying the gain in affinity
proportional to a one bit more match, to calculate in the
following way: (i) using the parameter m, set α(m) = a
whereas for m < m set α(m) to 0 (this provides a level below
which binding cannot occur); (ii) the increase of strength on
increasing a match by one bit is set to be the inverse of the
ratio of number of clones with match m+1 and m multiplied
by the parameter δα. In formula,

α(m + 1)
α(m)

= δα
(

�
m

)
(

�
m+1

) . (1)

This allows to set the lower end value of α(m) and the
steepness of its increase as the number of matching bits is
incremented. It is usually more convenient than supplying
the α vector directly. Generally, it is advisable to set m
somewhat close to � bits in order to restrict the range of
allowable matches to a few bits, so that the number of
antibodies raised in response to a given antigen remains
manageable.

Unlike the many immunological models, the present
one not only simulates the cellular level of the intercellular
interactions but also the intra-cellular processes of antigen
uptake and presentation. Both the cytosolic and endocytic
pathways are modeled. In the model, endogenous antigen
is fragmented and combined with MHC class I molecules
for presentation on the cell surface to CTLs receptors,
whereas the exogenous antigen is degraded into smaller
parts (i.e., peptides), which are then bound to MHC class
II molecules for presentation to the THs receptors (Table 1).
The affinity among MHC molecules and the antigen peptides
is computed in a slightly different manner than those
between cell receptors and antigenic epitopes. Firstly, the
match is computed over half bit string; secondly, there is no
minimum match. The affinity value between two half strings
whose match is m, for all m = 0, . . . , �/2, is defined as

β(m) =
(

1
2

)�/2−m
. (2)

The function β(m) represents the probability that a peptide
with match m to the MHC molecule binds and is presented
alongside with it on the cell surface for subsequent TCR
recognition.

While macroscopic entities like cells are individually rep-
resented (i.e., they are considered as agents), low-molecular,
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Figure 1: Molecular affinity is calculated on the basis of the Hamming distance of the binary strings representing the binding sites of the
interacting entities. In the figure a T lymphocyte receptor binds the MHC-peptide complex of an antigen presenting cell.

weight molecules, such as interleukins or chemokines, are
represented in terms of their concentration. The correspond-
ing dynamics is modeled by the following parabolic partial
differential equation that describes a uniform diffusion
process with the addition of a degradation term that takes
into account the finite half-life of molecules:

∂c

∂t
= D∇2c − λc + s(x, t), (3)

where c = c(x, t) is the concentration of chemokines, s(x, t) is
the source term, D is the diffusion coefficient, and λ = ln 2/τ
where τ is the half-life. We assume D = 3000μm2/min and
τ = 3 hrs for all chemokines [31, 32]. Differences in cell
mobility also are taken into account. TH cells are the fastest
with an average velocity of 11 μm/min, followed by B cells
with 6 μm/min and DC with a velocity of 3 μm/min [32].

The rules listed in Table 1 are executed for each time step.
The stochastic execution of these rules, as in a Monte Carlo
methods, produces a logical causal/effect sequence of events
culminating in the immune response and development of
immunological memory. The starting point of this series of
events is the injection of antigen (the priming).

The system is designed to maintain a steady state of the
global population of cells (homeostasis) if no infection is
applied. This is achieved by modeling the birth/death process
as a mean reverting process of the type:

dxi(t)
dt

= log2

τi
(xi(0)− xi(t)) + σ(t), (4)

where xi(t) is the population i at time i, τi is the specific half-
life parameter, and σ(t) is a Gaussian random noise.

Initially the system is naı̈ve in the sense that there
are neither T and B memory cells nor plasma cells and
antibodies. The various steps of the simulated immune
response depends on what is actually injected, for example,
a recombinant virus or bacteria.

The model contains a number of parameters whose
value has been determined as follows. These parameters

can be classified into three categories: (i) unknown values
or free parameters, which are set after a tuning procedure
that begins with an initial estimation of their values and
iteratively improves the results of the simulations by small
modifications of the parameters; (ii) parameters that cor-
respond to the initial conditions of the system and that
determine the problem under investigation; (iii) parameters
whose value is well known and available from immunology
literature.

Given the initial condition represented by the simulated
volume determining the number of cells populating the space
according to known leukocyte formulas, the model runs
in a metastable state assured by homeostasis. In absence
of antigenic stimulus, the populations of immune cells
randomly fluctuates around the average values given. Upon
an antigenic challenge performed by injecting a certain
amount of a pathogen, the system moves away from the
metastable state to recognize the insulting molecules and
to mount an immune response that may or not include
the deployment of both the humoral and the cytotoxic
artillery. Once the antigen is cleared, the system goes back
to an equilibrium state that is not the same as before as
it contains a shift in the system specificity amounting to
the immune memory. This memory allows for a faster and
stronger reaction to a later encounter of the same (or similar)
pathogen.

Figure 2 shows this dynamics as an example of a typical
immunization experiment consisting in injecting at day
zero and about ten weeks after a generic immunogenic
substance as a vaccine. The result of the priming is that
the antigen is cleared in about four days (panel up-left)
as the antibodies elicited peak within the second and the
third week (bottom-left panel). The different specificities
(i.e., binary strings) of the antibodies elicited are shown in
the same figure. The figure also shows the corresponding
antibody-producing plasma cells (bottom-right panel) and
the immunocomplexes titer (up-right panel) consisting of
antigen clotted with antibodies.
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Figure 2: The virtual experiments are conducted priming at day zero and later after a certain time interval. In this case the boost has been
performed after about ten weeks. While the antibodies are produced by plasma cells derived by expanding clones of B cells, the injected
antigen is cleared and immunocomplexes are formed. The secondary immune response to the boost is stronger and faster than the response
to the priming because of the immunological memory (not shown).

Whereas the immunogenicity of the injected substance is
the main responsible for the immune response, a secondary
but not less important factor is the timing. Indeed, as
anticipated above, the question investigated here is what is
the optimal timing for boosting in terms of higher antibody
titers. Intuitively, one expects a window of optimality since a
too close boost does not elicit a strong memory as it simply
add, (and compete for resources) to the prime, whereas
an overly delayed boost may fail to wake up the memory
simply because it already faded away. Computer simulations
allow to easily broadening the search for the optimality,

something that would be costly and time consuming with
animal models.

3. Validating the Model against
the Experimental Dataset

Before use, the simulator needs to be validated against
the specific experimental data available and described in
Section 2. Interestingly, matching experimental data was not
straightforward. Indeed, the first set of simulations did not
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yield reasonable fit with the data indicating that the model
was lacking of some specific mechanism.

In particular, the model failed to reproduce a correct
kinetic for both antigen clearance and antibody expansion
(it goes without saying that the two issues are connected)
as we obtained faster than experimentally observed rates.
Discussions pointed us to identify a mechanism of vaccine
delivery that was missing in the computational model and
could account for the divergence observed. Therefore, in
order to correct this inconsistency, we implemented two
mechanism: (i) one to implement what is called the “depot
effect,” that is, the gradual release of the vaccine so as
to cover a long period of antigen exposure, and (ii) a
mechanism accounting for immunocomplexes dissociation
actually providing a further longer exposition time to the
injected vaccine.

The modified model incorporating these two effects
effectively increased the targeted adherence to the exper-
imental data. Since the depot effect resulted in a minor
difference, we show hereafter the effects of implementing
the dissociation of immunocomplexes on the simulation
outcome. Note that the overall expected effect of the antigen-
antibody compound dissociation is to have a longer exposi-
tion to the antigen and also a better affinity maturation since
weak binders have a higher dissociation rate. Specifically,
the instability of immunocomplexes (ICs) favors re-ingestion
of the immunogenic peptides by antigen presenting cells
(APCs) and representation to specific lymphocytes, who,
on their side, opt for higher affinity ones. See Figure 3 to
compare the antibodies responses in three different cases:
without IC dissociation, with IC dissociation but no direct
ingestion and following presentation of IC by macrophages
and with both IC dissociation but no competing mechanism
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Figure 4: Comparison with mice data: antibody (IgG) titers as
average of four mice experiments with relative standard deviation.
Mice received a prime injection at day 0 and a boost six months
later.

of IC elimination by macrophages. We can see that without
IC dissociation, the antibody titers are low compared to
the case of higher antigen-antibody instability whereas the
effect of a direct ingestion and following presentation of IC
by macrophages does not account for the same big effect
but nevertheless shows that IC ingestion by Mφ actually
represents a suboptimal situation compared to the “neat” IC
dissociation because of the waste of antibodies bound to the
antigen in the complexes that are effectively thrown away by
macrophages upon ingestion.

After these modifications the simulator showed titers that
are comparable to that observed in real data. Figure 4 show
the fit with mice data calculated as average of four mice
experiments. Error bars show the standard deviation of IgG
antibodies receiving a vaccine priming at day zero and a
boost six months later. The solid line in Figure 3 show a
good agreement of the simulated mice with the experimental
data.

This data set allowed to fine tune the parameters of
the simulator. Further experiments have been performed
afterwards to investigate the relationships among the prime-
boost time distance and the magnitude of the immune
response measured as IgG antibody titers. This is show in the
next section.

4. Results

In order to investigate the relationship between the interdose
delay and the immune response, we have performed a set of
virtual experiments by running the simulation with different
initial conditions. In particular, we injected the antigen at
time step t1 = 0 and successively at t2. We performed
simulations for T time steps, corresponding to about T/3
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Figure 5: The lower panel shows that m1 is trivially independent
of t2 whereas the upper panel showing m2 tells that, overall, there
exists an optimal timing for the boost that is greater than 45 days.

days of real life. The delay δt = t2 − t1 is the free variable of
the experiment, whereas the outcome is the differences in the
amount of antibodies produced to the prime and the boost
vaccination. More specifically, we call ab(t) the antibody
titers at time t, m1 = max{ab(t) : t1 ∈ [t1, t2)} the maximum
level of ab relative to the injection of antigens at time t0 (i.e.,
the prime injection), and analogously m2 = max{ab(t) :
t ∈ [t2,T]} the maximum level of IgG antibodies relative to
the injection of antigens at time t2 (i.e., the boost injection).
We can assume that m1 ≤ m2 since the injected antigen is
the same for the two injections and, therefore, the immune
memory is such that the second immune response is faster
and stronger than the first [33, 34].

We call Δab = m2 −m1 the differences in the peak values
of antibody titers during the two responses. Since t1 is fixed,
t1 = 0 and m1 and m2 both depend on the time of the second
injection t2, we have that δt = t2, m2 ≡ m2(t2) and Δab ≡
Δab(t2).

In Figure 5, we show a boxplot to compare m1(0) and
m2(t2) for different values of δt = t2. This has been
computed averaging over 20 simulations of 10 micro liters
of volume. The lower panel of that figure shows that, apart
from large stochastic fluctuation, m1(t2) = const, that is, it is
independent of t2, whereas the upper panel showing m2(t2)
tells that, overall, there exists an optimal timing for the boost
that is greater than 45 days.
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Figure 6: When the boost is given in the first month after the prime,
our measure of the efficiency of the boost, Δab(δt), is quite low
whereas it increases when the second dose is given 45 to 90 days
after the prime.

The same information is better displayed in Figure 6 that
plots Δab(δt) as a function of δt = t2. In particular, an interval
of several weeks between the prime and the boost is necessary
to obtain an optimal humoral response, as hypothesized and
reported in experimental studies. Indeed, when the boost
is given in the first month after the prime, the difference
between the peaks of the secondary and primary responses,
that is a measure of the efficiency of the boost, is quite low.
The boost efficiency increases when the second dose is given
45 to 90 days after the prime, whereas further delaying the
boost does not improve the secondary antibody peak.

5. Discussion

Optimizing prime-boost regimens is key to developing
novel vaccines. What is the optimal time for boosting is
a fundamental question that remains unanswered [4]. It
has been suggested that an interval of at least 2-3 months
between the prime and the boost is necessary to obtain
optimal responses, as memory T cells with high proliferative
potential do not form until several weeks after the first
immunization, and memory B cells have to go through the
germinal center reaction and take several months to develop
[4].

Immunization schedules are designed empirically and
are then refined on the basis of the observed immunolog-
ical responses and protection. In some instances, different
countries that implement the same vaccine in their national
immunization programs use different schedules [35, 36].

The United States Advisory Committee on Immuniza-
tion Practices (ACIP) publishes each year a recommended
immunization schedules for licensed vaccines, to reflect
current recommendations [37, 38]. For individuals whose
vaccinations have been delayed, catch up schedules and
minimum intervals between doses are indicated [37]. For
most vaccines currently in use, the minimum recommended
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interval between dose 1 and dose 2, for children, is 4 weeks,
however, for some vaccines a minimum interval of 8 weeks,
3 months, or 6 months is recommended [37].

In preclinical experimentation of prototype vaccines, on
the other hand, shorter intervals between doses are often
used, to obtain a rapid rise in antibody titers above protective
values. In the case of vaccination against beta-amyloid in
mouse models of Alzheimer’s disease, a schedule that has
been used with a variety of prototype vaccines involves
doses at day 0, 2 weeks and 4 weeks, and monthly doses
thereafter. When multiple doses are administered within a
short timeframe, understanding the contribution of each
dose to the peak antibody titer can be practically impossible.

In this study we have analyzed the effect of the interval
between prime and boost injection on the antibody response
in a computational model of the immune system.

We have shown that in the computational model an
interval of several weeks between the prime and the boost
is necessary to obtain optimal responses, as hypothesized
and reported for real immune responses. In particular, in the
simulations, when the boost is given in the first month after
the prime, the difference between the peaks of the secondary
and primary responses, our measure of the efficiency of the
boost, is low. The boost efficiency increases when the second
dose is given 45 to 90 days after the prime, whereas further
delaying the boost does not improve the secondary antibody
peak (simulations of boosts administered up to 300 days after
the prime are shown in Figure 6).

Thus, the computational model displays the qualitative
features of real immune responses, and it can be useful to
understand which component of the immune system is in
charge for the time-dependent differences in boost efficacy
that are observed in vivo. Interestingly, the efficacy of the
boost does not parallel the number of T helper cells and B
cells. In the model, the number of T and B cells increases after
the prime, as cells are activated and duplicate. Cell numbers
then decline, as a consequence of cell death. Thus, at day 15
there are more T or B cells than at day 90. Interestingly, also
memory T cells are more abundant at the 15 and 45 time
point than at later time points, revealing that the better mem-
ory response obtained at later time points is not correlated to
higher numbers of memory T cell. On the contrary, the boost
is optimal at a time point when the populations generated by
the prime, in particular, activated cells, duplicating cells, and
also memory cells, have all contracted. The T and B cells that
are present in the system at late time points after the prime
are qualitatively different from earlier cells. It is important
here to emphasize that, in the model, a memory cell is a
cell that, having been activated by antigen, has increased
its average lifespan. Further encounters with antigen lead to
further increases in the lifespan. Thus, memory cells are not
all equal in their proliferative potential, and the memory of
the system matures over time, as cells with high proliferative
capacity are generated. This model, therefore, demonstrates
that cell populations dynamics, and a simple assumption,
namely the fact that a “survival signal” is received by
memory cells at each encounter with antigen, are sufficient
to reproduce the need for an optimal delay between prime
and boost, observed in vivo.

On the other hand, different vaccines are known to
have different requirements with respect to the minimum
interval between doses. The simulations reported in this
study refer to a “generic vaccine,” and the time scales that
were obtained, which are quite realistic, anyway do not refer
to a specific vaccine, although parameters have been set to fit
data obtained with a nonreplicating protein antigen, namely,
virus-like particle (1-11)E2 (6). The computational model
can be useful to explore the role of different features of the
primary response on the optimal time point for boost, and
on boost efficiency, at a set time point.

A deeper analysis of the overall system dynamics is
currently underway to pinpoint which immune component
is in charge for the observed behavior and will be published
in due course. Furthermore, vaccine specificities like the
number of peptides are likely to play a distinct role the quest
optimality and therefore they have to be incorporated in the
computer model as well.
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A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of
human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches
to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how
disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects
related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two
related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in
translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts
are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type
1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with
applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.

1. Introduction

One of the great challenges in the field of health science
is understanding how to integrate the knowledge obtained
about individual molecules and cells to predict integrated
system behavior [1]. Advances in the techniques associ-
ated with molecular biology during the twentieth century
provided immense insight into the individual components
of complex biological systems. Integration of this new
technology has also changed the nature of immunological
research—from static single measurements to large-scale
data-intensive assays obtained at multiple time points. As
highlighted in Figure 1, research costs associated with
these new techniques have escalated dramatically, but the
commercialization rate of new therapeutic products has been
unable to keep pace [2]. This increasing disconnect between

cost and commercialization also corresponds to a growing
awareness of the need to improve understanding of how
the identified biological parts function together in biological
systems and how dysfunction manifests itself as disease [3, 4].

Historically, engineering is an applied field in which
knowledge of how components of a system work, which
is obtained through basic research, is synthesized into
commercially viable products and processes. A fundamental
pillar in this field is the use of computational frameworks for
interpreting and predicting the behavior of complex systems
[6]. These computational frameworks integrate fragmented
knowledge and enable one to explore novel experimental
conditions, as a type of in silico screening. By recreating a
real system in silico, the predictive power of the simulation
(or lack thereof) may be used to infer hidden components
or unknown relationships among existing ones. Engineering
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Figure 1: Productivity metrics of the United States pharmaceutical
industry. Research and development spending by the United States
pharmaceutical industry has escalated dramatically during the last
several decades (solid line—left axis) [5]. However, the translation
of this increased research spending into new therapeutic products,
as represented by the number of new medical entities (NMEs)
approved by the Food and Drug Administration (circles—right
axis), has failed to keep pace [2].

can provide value to the drug development process by
translating observations of the state of a system, that is,
experimental data, into quantitative knowledge about how
biological systems work. In particular, this approach can aid
in understanding the implications of dynamic relationship
among biological components of a system and can identify
knowledge gaps in the collective understanding of a biologi-
cal system.

Interestingly, parallels can be drawn between the devel-
opment of the modern experimental techniques of molecular
biology and the advances in experimental chemistry during
the middle part of the 20th century. These advances in
experimental chemistry were critical driving forces for the
emergence of modern chemical engineering [7]. During this
period, modern chemical engineering played a central role
in developing computational tools that helped transform
chemistry from a qualitative into a predictive science. More
recently, chemical engineering is evolving to incorporate
molecular biology as another enabling science, in addition
to physics and chemistry [8]. Our increased ability to probe
the molecular basis for cellular response provides an intrigu-
ing context for applying engineering principles, such as
thermodynamics, transport phenomena, chemical kinetics,
and multiscale analysis. From the biology perspective, the
National Research Council in the United States identified a
need for deeper integration of theory into biological research
[9]. All immunologists, to some extent, act as theorists in
designing and interpreting experiments. However in this
context, theory is encoded in a computable form that
facilitates quantitative validation of the theory against data.
In fact, mathematical approaches have a rich history in
physiology (e.g., [10]). Computational frameworks are also
used quite extensively in engineering for interpreting and
predicting the behavior of complex systems [6]. However,
there are some nuances associated with mathematical model-
ing within the context of the engineering discipline that may

be helpful outside of the discipline. One of the challenges
facing the integration of engineering approaches into the
drug development process is that there is little understanding
of what engineers actually do [11]. To help bridge that gap,
the objective of this paper is to review how two related
concepts in engineering, namely prototyping and “fitness for
use”, are applied to improve understanding of immunology
in the context of human physiology.

2. What Are Prototyping
and “Fitness for Use”?

Engineers synthesize scientific and mathematical knowledge
to solve problems using an iterative process called engineer-
ing design. A traditional application of engineering design
includes developing a physical representation of the solution
in the form of a prototype, such as a scale-model of an
aircraft for use in a wind tunnel (see Figure 2). However, our
knowledge of the system of interest is invariably uncertain.
Uncertainties create options in the design process that one
must select among. Prototypes developed at intermediate
stages during the design process can represent alternative
solutions and thereby provide a mechanism for making
informed decisions. Informed decisions during the design
process guide researchers iteratively towards a global solution
to all of the design objectives. Collectively, the engineering
design process is a knowledge generating activity [12]. Thus,
these prototypes provide an essential role by improving
the understanding of the problem, by identifying gaps in
knowledge (i.e., uncertainties), by soliciting feedback from
end users, and by providing a mechanism to evaluate the
fitness of the solution against design objectives [13]. It is
this last role that relates to the term “fitness for use.” Fitness
for use is used to characterize how well an object fulfills
its intended purpose, no more or no less [14]. Details that
have no influence on fitness of the solution can be removed
from consideration. Conversely, clarity about the intended
purpose is required prior to creating a prototype. It is this
iterative back and forth between clarifying the purpose and
creating the prototype that enables reaching an optimal
succinct solution.

Prototypes can also include nonphysical objects, such
as a mathematical model. A mathematical model is a
complete and consistent set of mathematical equations
that describe the behavior of the system of interest [15].
The equations represent an explicit external description
of a mental solution to the problem of synthesizing new
knowledge from inspecting data. The process of constructing
a mathematical model forces the researcher to wrestle
with these same engineering design concepts (e.g., problem
definition, uncertainties, feedback, and fitness). Mathemat-
ical models can be particularly valuable in drug discovery
by improving the understanding of the problem and by
identifying uncertainties in domain knowledge relevant to
the target of interest. How uncertainties influence the ability
of a prototype to achieve the design objectives can be
quantified using well-defined techniques, such as sensitivity
analysis [16] or empirical Bayesian approaches for model-
based inference [17].
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Figure 2: A common example of a prototype. A prototype of a
blended wing body aircraft, the X-48B, is shown in a wind tunnel
at NASA’s research center in Langley Air Force Base, VA. The wind
tunnel was used by researchers to evaluate this prototype against
structural, aerodynamic, and operational design objectives for an
advanced aircraft concept (NASA photo/Jeff Caplan).

Interdisciplinary work can also be facilitated by using
“boundary” objects that reside between two different cul-
tures [18], such as engineering and health science. A
mathematical model, as a type of boundary object, imposes
formalism by requiring an explicit account of the interacting
elements and their relationships. In addition, boundary
objects facilitate common understanding through debate and
building consensus with regard to what should be included
or excluded from the model. By explicitly representing
knowledge associated with different scientific domains, the
process of modeling can also help improve problem defini-
tion.

In essence, the primary goal of making a mathematical
model is to make predictions: what do we expect to
happen in a particular interacting system under particular
conditions, given our current understanding of interactions
among components of the system? Similarities between the
simulated behaviors and observed data confirm our explicit
statements while differences highlight areas of uncertainty
in our understanding and provide the engine for scientific
progress [19]. By referring to mathematical models as
mathematical prototypes, it is the process that one uses to
generate the model (i.e., prototyping) that we are intending
to highlight rather than the product (i.e., a mathematical
model). In the following sections, two examples are pre-
sented where a mathematical prototype that was created to
address questions related to type 1 diabetes and the role of
dendritic cells in adaptive immunity.

3. Example 1: Beta Cell Mass and Onset
of Type 1 Diabetes

Type 1 diabetes mellitus is characterized by an impaired
ability to produce insulin due to the progressive and selective
destruction of beta cells in the pancreatic islets of Langerhans
by the immune system [20]. A reduction in endogenous
insulin production results in an increase in plasma glucose
(hyperglycemia). Chronic hyperglycemia exposes patients

with type 1 diabetes to an increased risk for death if left
untreated. Pathogenesis of the disease has been attributed
to a variety of environmental and genetic risk factors [21].
Yet, two of the most significant challenges facing the clinical
management of this disease is the increase in incidence of
type 1 diabetes mellitus across the globe [22] and the lack
of a cure.

One of the persistent challenges with understanding
the etiology of type 1 diabetes mellitus is the inability to
observe directly the events in the human pancreas that lead
to the onset of hyperglycemia. It is clear that a reduction
in endogenous insulin production precipitates the onset of
hyperglycemia. It is common wisdom that the onset of
hyperglycemia occurs when 80–95% of an individual’s beta
cells are destroyed [23, 24]. However, this wisdom is based
largely on a small number of biopsy studies from individuals
with recent disease onset who died soon after diabetes onset
(e.g., [25–27]). One might infer from this common wisdom
that the ability to enhance beta cell function or preserve
the remaining beta cells would have a limited therapeutic
potential [28]. As a result, the research effort has focused
on developing prognostic tools for identifying individual,
who will develop type 1 diabetes, prior to onset. Given the
clinical importance of this question, the objective of a recent
study [29] was to develop a mathematical model to test the
conceptual model for the pathophysiology of type 1 diabetes
mellitus against the histopathological evidence.

A meta-analysis was used to extract and assess the
significance of embedded trends within these landmark
studies. The data reported in these landmark studies provide
measurements of the remaining beta cells (i.e., beta cell mass)
at the time of death. Patients included in these studies died
between 0 and 69 months following diagnosis. While beta
cell mass or endogenous insulin production is not measured
directly following onset, C-peptide is used as a surrogate
measure of endogenous insulin production [30–32]. The
measurement of C-peptide in a cohort of patients with type
1 diabetes has been shown to vary nonlinearly with time
following onset. In the years subsequent to onset of type
1 diabetes, the beta cell mass slowly declines until there is
no endogenous insulin production. Therefore, inferring the
beta cell mass at onset must control for this variability in the
time of beta cell mass measurement. In this new analysis, the
length of time following diagnosis was controlled by limiting
the analysis to a subset of patients who died within three
weeks following diagnosis. As shown in Figure 3, a linear
regression of this subset of recent onset patients (dotted line)
revealed that the percent reduction in beta cell mass at onset
is not fixed but varies with age. This trend is significant
(P < 0.01) and suggests that, in a 20-year old individual,
as little as a 40% reduction in beta cell mass is sufficient to
precipitate clinical symptoms of type 1 diabetes. As this trend
is at odds with the existing model for the natural history of
the disease [21], a mathematical model was created to explain
this behavior [29].

The mathematical model was based on the observation
that the growth of the human body is a dynamic nonlinear
process where different parts of the body grow at different
rates. Of particular relevance to type 1 diabetes mellitus,
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Figure 3: Comparison between the predicted and measured excess
beta cell mass. Comparison of the excess beta cell mass predicted
by the mathematical model (solid curve) compared against the
trendline obtained by linear regression (dotted line) for the
measured reduction in beta cell mass in 63 patients that died within
three weeks of diagnosis of type 1 diabetes mellitus. Figure was
originally published in [29].

body weight changes [33] at a different rate than beta cell
mass [27]. One possible explanation for this observed trend
in extent of reduction in beta cell mass at onset could be
attributed to the dynamic imbalance between the number of
beta cells and the insulin requirements for a growing body.

A mathematical model was used to predict the “excess”
beta cell mass (EBCM) as a function of age by capturing
the dynamic balance between changes in body weight and
beta cell mass. The “excess” beta cell mass corresponds to
the reduction in beta cell mass that is required before hyper-
glycemia occurs and is directly related to the measurements
obtained in these landmark studies. This model, shown
schematically in Figure 4, is derived from a mass balance
on insulin and has a single adjustable parameter. Applying
a mass balance to a system of interest is a common theme
woven throughout the chemical engineering curriculum. In
this instance, the rate of change in insulin is equal to the
source of insulin, which is proportional to beta cell mass,
minus the sinks for insulin, which are proportional to body
weight [29]. The resulting model prediction for EBCM as
a function of age is shown in Figure 3 (solid line). The
trendline obtained by linear regression (dotted line) and the
observed reduction in beta cell mass in pancreata obtained
from the subset of recent onset patients (i.e., died within
three weeks of diagnosis) are also shown for comparison. The
EBCM relationship exhibits a similar dependence with age, as
the youngest patients exhibited an 85% reduction in beta cell
mass while only a 40% reduction was observed by the age
of 20. In other words, the beta cell mass initially grows at a
faster rate relative to the whole body. The beta cell mass peaks
at 8 years of age and remains constant while the overall body
weight peaks at 20 years of age. The net result of the different
growth dynamics is that the “excess” beta cell mass declines
with age. In addition, the mathematical model provides a

prediction of the beta cell mass required to maintain glucose
homeostasis. As a validation of the model, one finds that the
difference between the observed and predicted beta cell mass
(i.e., residual beta cell mass) parallels the observed changes
in C-peptide following diagnosis (see Figure 5), as described
in [34].

In summary, this model (i.e., prototype) suggests that
clinical presentation of the disease is not attributed solely
to the destruction of beta cell mass but is the result of a
dynamic balance between the production of insulin (i.e., beta
cell mass) and the size of the system (i.e., body weight).
The agreement between the model-based predictions and the
reported changes in C-peptide suggests two points. First, the
methods that were used in these landmark studies exhibit
a certain degree of accuracy in estimating beta cell mass,
while the methods may not have had good precision. By
using a mathematical model to interpret the trends in the
data, we are able to correct for the imprecision of the assays
used. Second, the similar dynamic trends suggest that the
natural history of the disease is similar across the collection
of clinical studies. While the biological details associated with
the autoimmune attack on the pancreas and regulation of
human metabolism are missing in this simplified model,
the model exhibits a fitness for use in that it is sufficiently
complex to answer the question posed. Using a mathematical
model to represent our prior knowledge of the biology,
the model provides a unique perspective to interpret these
landmark studies which challenges the common wisdom
in the field of type 1 diabetes. Improved understanding
of the natural history of the disease—as it helps suggest
causality—is a necessary prerequisite for improving the
clinical management of the disease. Understanding causality
is essential for developing new drugs that hold promise for a
cure.

4. Example 2: The Role of Dendritic Cells
in Adaptive Immunity

The human immune system provides the body with natural
defenses against the constant onslaught of overt and oppor-
tunistic pathogens. This defense against invading pathogens
is an emergent behavior of a collection of heterogeneous
cell subsets and typifies a complex system [35]. Individually,
each of these subsets have unique roles in orchestrating
an immune response. Together, these cell subsets inte-
grate information across a range of spatial and temporal
timescales. Despite the impressive advances in the field of
immunology in the past decades, we know relatively little
about the interplay between the individual components
responsible for immunity [1, 36]. A mathematical model
provides a quantitative framework where fragmented knowl-
edge can be synthesized to predict integrated behavior of
these components. In the remainder of this section, we will
discuss a prototype that focuses on a cell subset that plays a
central role in orchestrating an immune response—dendritic
cells (DC)—in the lung.

As the sentinels of the immune system, dendritic cells
(DCs) play an important role in initiating and maintaining
T-cell responses, such as T-helper cell polarization and
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Figure 5: Dynamic change in residual beta cell mass corresponds
to the dynamic change in plasma C-peptide following onset of
type 1 diabetes. The residual beta cell mass (x: right axis) and
plasma C-peptide (square [31], circle [32], and + [30]: left axis) are
shown as a function of time following clinical diagnosis of type 1
diabetes. A 9-point moving average of the residual beta cell mass is
shown for comparison (dotted line). The residual beta cell mass is
the difference between the observed beta cell mass and predicted
beta cell mass. The dynamic change in observed beta cell mass
was obtained from pancreata obtained from patients with type 1
diabetes [25–27]. The predicted beta cell mass is an estimate of the
minimum beta cell mass required to maintain glucose homeostasis.
Figure was originally published in [34].

crosspresentation of exogenous antigens to cytotoxic T cells
[37, 38]. The precise role played by DC in de novo activation
of T cells is the culmination of a series of steps distributed
across both space and time. These sequential steps include
the recruitment into a peripheral tissue, capture of antigen,
trafficking to a draining lymph node, and presentation of
antigen to T cells [37, 39]. A generalized schematic of
this process is shown in Figure 6. Human biopsy data

suggest that the majority of dendritic cells in the lung
epithelium are derived from either blood monocytes (BMs)
or blood dendritic (BD) cells [40]. Individually, BM and
BD represent 97% and 3% of the DC precursor population
in the blood. Although these DC precursor cells can be
easily assayed in the blood, their relative contributions to
the dendritic cell population within the lung epithelium and
their functional roles in driving an immune response are
unknown. Moreover, the role of BD has been largely ignored
due to its relative rarity as a DC precursor.

To explore the implications of DC precursor recruitment
into the lung, we created a mathematical model that captures
the dynamics and origin of tissue dendritic cells [41, 42]. The
dynamic model suggests that BDs are selectively enriched
within the lung as they comprise 20% of the DC population
in the lung [41]. While it is intriguing that BD may exhibit
a higher affinity for the recruitment stimuli compared to
BM, a more important question is whether this observation
is functionally significant. The structure of the model was
designed to capture an important aspects of dendritic cell
biology—an age-structure.

As a dendritic cell traverses from blood to lung to lymph
node, it turns on different “subroutines” encoded within its
genes enabling it to perform different functions within each
compartment. The dynamic execution of these subroutines
is represented by dynamic changes in proteins expressed
on the surface of a DC. The sequence of cellular changes
are collectively referred to as DC maturation. Proteins
expressed on the cell surface enable a cell to sense and
respond to its environment. These dynamic changes in DC
proteins indicate that the particular cellular response of a
DC to the environmental context is highly dependent on
the DC’s particular maturational age. In addition, the ability
of a DC to capture and process protein antigens derived
from invading pathogens is also highly dependent on the
maturational state of a DC. Given the dynamic nature of
the DC population, the appropriate computational paradigm



6 Computational and Mathematical Methods in Medicine

DC1

Blood

Blood DC
Blood Mo

DC4
DC5 DC6

DC8

DC3

DC2

Recruitment
signal

DC7

Lymph node

LN
DC8

LN
DC7

Antigen protein 

Program for 
dendritic cell 
maturation 

Aerosol challenge

Epithelial

microenvironment

Lung airway

Lung epithelium

+

+

Activation
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for representing DC populations is a model structured by
maturational age [41, 42].

While physiologically-structured models have been pro-
posed since the mid-1960s [43], they are seldom used to
describe cell populations due to the difficulty in obtain-
ing appropriate experimental data and the mathematical
complexity of the resulting models. Given appropriate data,
the additional complexity enables asking different questions.
The dynamic response of cell populations in the blood to
perturbations has been represented using physiologically-
structured models (e.g., [44, 45]). In this case, age-associated
differences in antigen processing ability of these two DC
precursor populations can be compared by explicitly tracking
the functionally unique subpopulations. Differences between
BM- and BD-derived DC become especially apparent when
antigen proteins also change with time. When antigen
proteins have a half-life in the tissue of 60 minutes, BD-
derived DC presents 250% more antigen peptide per cell
relative to the DC derived from BM. De novo activation of
T-helper cells requires that signals, including the density of
antigen peptides, exceed activation thresholds [46, 47]. If the
density of antigen peptides is averaged across all DC subsets,
the dynamic change in density of peptides may be below
the threshold required for activation of T-helper cells. By
explicitly accounting for variability in DC phenotypes, the
density of peptides presented by this minority DC subset
may exceed the threshold for activation. While these studies
highlight the importance of measuring DC heterogeneity,
they also highlight how computer models can be used to
integrate heterogeneous data into a quantitative picture of
the dynamic role of dendritic cells in coordinating immunity.

5. Reflecting Back: Goldilocks
and the Two Maxims

The use of models to aid in understanding system behavior
is a central theme in science that transcends disciplinary
boundaries [48]. In the previous sections, two examples
served to illustrate some of the nuances associated with
mathematical modeling from an engineering perspective,
namely, the concepts of prototyping and fitness for use.

In the case of the type 1 diabetes model, the two
competing theories are that the degree of beta cell reduction
at onset is a fixed value or that the observed reduction is a
result of a dynamic balance between beta cell mass and body
weight. From a mathematical perspective, the models exhibit
similar complexity as both models use a single adjustable
parameter to predict the observed behavior. The Akaike
Information Criterion [49–51], based upon information the-
ory, is used to distinguish between these competing models
using the available data. Intensive computing techniques, like
nonparametric bootstrap resampling [52, 53] and empirical
Bayesian methods [17], complement information-theoretic
metrics by assessing the uncertainty of those metrics, given
the inherent uncertainty in measuring biological systems.
Moreover, this simplified model was also able to compare
changes in beta cell mass to changes in C-peptide following
diagnosis [34]. Finally, one could construct a model that
includes more detail regarding the different timescales for
insulin production [54–56], insulin signaling [57], and beta
cell autoimmunity [58]. However, the simplified model
exhibits a fitness for use as inclusion of such detail is
unnecessary to test the prevailing theory.
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In the case of the dendritic cell trafficking study, a
new model is proposed to represent cellular heterogeneity
and to provide an estimate of its potential importance. In
contrast, existing models that assume that all dendritic cells
are homogeneous (e.g., [59]) are unable to capture with the
observed dynamic patterns of cell surface marker expres-
sion during dendritic cell maturation [60–62]. Additional
structure is required to represent this cellular heterogeneity
within the model. Using computational techniques, such as
parameter identification [63, 64], the increased cost, in terms
of parameters, associated with a more complex model that
captures a larger set of data is justified. Yet, the age-structured
modeling framework is not well suited to explore questions
related to the spatial organization of the lymph node or the
discrete nature of cell-to-cell interactions. The form of the
age-structured model, which is a set of coupled ordinary
differential equations, assumes that the age compartments
are well mixed, that is the cells are homogeneous within an
age compartment. Agent-based models of the lymph node
are better suited to such questions [65–68]. Historically,
agent-based models focus on cell population-level behavior
and neglect the molecular details associated with cellular
decision making, such as an evolution in cell phenotype due
to local changes in developmental cues. Although, models
that aim to combine cellular-level with population-level
behavior are emerging [69]. This highlights the iterative
nature of the engineering design process. As additional
data become available, the mathematical prototype can be
revised to reflect this new information. Moreover, the form
of the model may change depending on the fitness for use
of the particular mathematical framework (e.g., ordinary
differential equation-based or agent-based model) to address
the questions of interest.

Reminiscent of the notable children’s story “Goldilocks
and the Three Bears,” a common criticism of a particular
mathematical model is that it is either too complicated or
too simplistic. In many cases, these statements are subjective
as they are based upon the collective experience of the
critic [19]. One of the benefits of representing theory in
a computable form is that computational tools can be
used to assess objectively the complexity of the model.
Implied in the criticism is the question of model parsimony.
Conventionally, there are two maxims that bracket the
range of plausible explanations for observed phenomena:
Ockham’s Razor and Einstein’s Safety Shield. The concept
of Ockham’s Razor is that if there are a series of theories
and the available data cannot distinguish between the
different theories, then the simplest theory should receive
priority. The concept of Einstein’s Safety Shield is that one
should construct the simplest theory to explain observed
phenomena but no simpler. The emergence of information-
theoretic approaches provides a quantitative basis for these
maxims (see [70] for an introduction to the topic). While
these are important topics to consider when modeling
immunology [71], information-theoretic concepts have been
infrequently applied to modeling efforts in the field [72].
Recent developments in rule-based modeling [73–75], time
scale analysis [76], and in silico model-based inference [17]
all help reduce the barrier for integrating theory—in the

form of mathematical models and engineering concepts—
with experimental immunology. Within the domain of
cellular decision making, the combination of these three
modeling developments allow one to specify a mathematical
model with limited a priori bias in the model structure
and use the available data to determine objectively the
appropriate level of complexity, as illustrated in this sequence
of papers [76–78].

In summary, engineering is historically a field in which
basic research is translated into commercially viable products
and processes. The commercial synthesis of basic science data
is achieved using computational frameworks. Translating
data into knowledge is a major challenge facing contempo-
rary health science research. Two examples discussed in the
previous paragraphs aim to illustrate how the computational
toolkit of an engineer can be integrated into experimental
immunology via mathematical prototyping. These exam-
ples also serve to illustrate that embracing a quantitative
perspective provides an opportunity to integrate focused
experimentation into a larger mosaic that describes human
immunity. Through mathematical prototyping we are able to
represent explicitly our prior knowledge of the dynamics of
immunity and test this prior knowledge against experimental
data. Moreover, the process of creating a mathematical model
provides a roadmap for future experimental effort by iden-
tifying important knowledge gaps in the collective scientific
understanding. Ultimately, improved understanding of the
complexity of biological systems is essential for promoting
human health and restoring health through the rational
design of new therapeutics.
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We present a mathematical model developed to reproduce the immune response entitled with the combined administration
of activated OT1 cytotoxic T lymphocytes (CTLs) and Anti-CD137 monoclonal antibodies. The treatment is directed against
melanoma in B16 OVA mouse models exposed to a specific immunotherapy strategy. We model two compartments: the injection
point compartment where the treatment is administered and the skin compartment where melanoma tumor cells proliferate. To
model the migration of OT1 CTLs and antibodies from the injection to the skin compartment, we use delay differential equations
(DDEs). The outcomes of the mathematical model are in good agreement with the in vivo results. Moreover, sensitivity analysis
of the mathematical model underlines the key role of OT1 CTLs and suggests that a possible reduction of the number of injected
antibodies should not affect substantially the treatment efficacy.

1. Introduction

Melanoma is a malignant tumor caused by the mutation of
melanocytes, that is, the cells that produce the melanin and
are responsible of the color of the skin. Despite intensive
research, melanoma still represents one of the most aggres-
sive malignant cancers [1]. Many experimental approaches
are now focused on targeting cytotoxic T lymphocytes
(CTLs) against cancer. A common strategy to enable CTL
efficacy against tumor is to activate naı̈ve CTLs in vitro
through the use of cells engineered to present the tumor
antigen, and to reinject them in the host. However, even if
activated CTLs are able to infiltrate into tumor masses, in
most cases they remain unable to contrast cancer growth [2].
As experimental evidence suggests, tumor-infiltrating lym-
phocytes are rendered ineffective by coinhibitory molecules
expressed by tumor and stroma cells surfaces [3].

In order to gain complete rejection of tumors, injection
and stimulation of CTLs is not sufficient and should be,
therefore, coupled with complementary measures voted
at boosting CTLs migration inside tumor masses, and
conjugation and killing of target cells [4–6]. One way of
boosting CTLs actions is represented by stimulation through
the binding of costimulatory proteins expressed on CTLs

surface. Among possible surface proteins, Anti-CD137, also
known as 4-1BB, represents a valuable target. This protein
is expressed by multiple IS cells such as activated T, NK, B-
lymphocytes, dendritic cells and also by tumor endothelium
cells [7]. Its natural ligand (CD137L) can be found on
activated antigen-presenting cells surface [8].

The combined administration of monoclonal antibodies
specifically targeted to bind Anti-CD137 proteins and in
vitro activated-OT1 CTLs was demonstrated to be able to
prevent the melanoma formation in B16-OVA mouse models
[7]. Moreover, the combined treatment avoided appearing
of undesired side effects like the hepatotoxicity, observed
only under anti-CD137 only high-dosage treatment [9]. The
IS stimulation mechanisms of Anti-CD137 immunostimula-
tory monoclonal antibodies are multilayered and include the
improving of cytotoxicity, duplication rates, and chemotaxis
sensitivity of activated-OT1 CTLs [6, 10–12].

To reproduce the dynamics of this biological process,
a delay differential-equation-(DDE-) based model has been
developed. The model reproduces two different compart-
ments: the injection point compartment, where both anti-
bodies and OT1 cells are injected and the skin compartment
where melanoma develops.
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2. Biological Background

The in vivo experiment is carried on B16-OVA mice, mice
transduced with the chicken ovalbumin gene. The ovalbu-
min is used as a model tumor antigen. B16 melanoma cell
line was derived from an aggressive spontaneous melanoma
in pure C57BL6, and B16F10 was derived as a clonal variant
from a lung metastasis of this cell line. In tumor immunol-
ogy, these variants of melanoma are considered poorly
immunogenic in the sense that immune-mediated rejections
or growth retardations are difficult to achieve.

The experimental setup is oriented to model thera-
peutic synergy between anti-CD137 monoclonal antibodies
and adoptive T cell therapy in melanoma. B16-OVA is a
poorly immunogenic murine tumor. The treatment protocol
includes a single injection of anti-CD137 mAb and adoptive
T cell transfer of OVA-specific TCR-transgenic CD8 CTLs.

In vivo experiments have been executed by Professor
Melero and coworkers at the University of Navarra [13]. Mice
are divided in five different groups; all groups are composed
by five individuals. Each group is treated with a different
treatment: Untreated (control) mice, mice treated with naı̈ve
OT1 CTLs, mice treated with naı̈ve OT1 CTLs and Anti-
CD137 monoclonal antibodies, and mice treated with in
vitro activated OT1 CTLs, mice treated with Anti-CD137
monoclonal antibodies, mice treated with in vitro activated
OT1 CTLs and Anti-CD137 monoclonal antibodies. The
experiment runs for 30 days. At day 0, all B16-OVA mice
receive one injection of melanoma malignant cells. The
therapeutic treatment used during in vivo experiments is
composed by one single boost, and it is administered at
day 3. Melanoma surface measurements (mm2) are taken at
given times for each treatment and are used to estimate the
efficacy of each vaccination strategy. We note here that in
order to compare in vivo and in silico results we computed
the estimated mean surfaces entitled with the use of each
treatment. Among the tested treatments, only the combined
administration of activated OT1 CTLs and antibodies was
able to show complete depletion of the tumor burden,
whereas the other treatments remained almost ineffective
[13].

3. The Model

We realized a model with two compartments in order to
reproduce the dynamics of the process. The first compart-
ment is represented by the injection point compartment
where the treatment is administered, whereas the second one
is represented by the skin compartment where melanoma
tumor cells proliferate and where the cancer-IS competition
occurs. To this end, a system of seven delay differential
equations has been set up. The model takes into account
the following entities: injected activated OT1 CTLs (E) and
injected antibodies (Ab) for the injection point compart-
ment; melanoma cells (C), tumor antigens (A), activated
OT1 CTLs and antibodies that have reached the skin (Es and
As) and naı̈ve CTLs (N) for the skin compartment. It has
also been assumed that Injected OT1 CTLs, and antibodies
move from the injection point to the skin compartment

Table 1: Model variables. Each variable describes the total number
of the related entity in the associated compartment.

Variable Description compartment

E Injected activated OT1 CTLs injection point

Ab Injected anti-CD137 antibodies injection point

C Melanoma tumor cells skin

A Tumor antigens skin

Es Activated OT1 CTLs skin

As Injected anti-CD137 antibodies skin

N Naı̈ve CTLs skin

only. Figure 1 shows the conceptual model for the biological
problem; model entities are listed in Table 1.

(1) Activated OT1 CTLs (injection point compartment):

dE

dt
= Kin

(
t, p
)− α11E − α8E. (1)

Equation (1) refers to first compartment and represents
the time evolution of injected activated OT1 CTLs. In
(1), Kin(t, p) represents a known function that models the
number of inoculated entities r at the scheduled injection
time t. E cells migrate from the injection point compartment
to the skin compartment with given rates (−α11E) and are
subject to natural death (−α8E).

(2) Antibodies (injection point compartment):

dAb

dt
= Kin

(
t, q
)− α11Ab− α10Ab. (2)

Similary to (1), (2) refers to the first compartment and
represents the time evolution of antibodies (Ab). Ab are
injected at given times t and at given quantities q, according
to the function Kin(t, q), and can migrate and disappear from
the system by natural degradation at given rates (−α11Ab and
−α10Ab, resp.).

(3) Activated OT1 CTLs (skin compartment):

dEs

dt
= α7

[
As

As + k1

]
Es + α11E(t − τ) + α6NA− α8Es. (3)

Activated OT1 CTLs that reach the skin compartment
(Es) are modeled by (3). Antibodies in the skin compartment
(As) have multiple positive effects on activated OT1 CTLs
dynamics (Es). One of these effects is represented by the
ability of promoting Es duplication. This is modeled through
the Holling type II function α7[As/(As + k1)]Es, where α7 is
the maximum biological duplication rate of Es and k1 is a
tuned threshold. When the number of As is high enough, the
term [As/(As +k1)] tends towards 1, thus entitling maximum
duplication rates for Es. The term α11E(t−τ) is used to model
migration of OT1 CTLs from the injection compartment to
the skin compartment. We suppose here that migration from
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Figure 1: Conceptual model of the biological scenario. The model is composed by two compartments: the first compartment (bottom)
where the treatment is administered, and the skin compartment (top) where the immune-system-melanoma competition occurs. Arrows are
used to indicate the interaction between entities (i.e., the interaction between the antibodies and activated CTLs in the skin compartment),
the change of a particular condition of an entity (i.e., the activation of naı̈ve CTLs or the migration of antibodies from a compartment
to another), the introduction and disappearing of entities (i.e., the production of newborn naı̈ve CTLs by thymus or the disappearing of
antigens that are presented to naı̈ve CTLs). White boxes are used to better explain the meaning of the arrows. Both antibodies (Ab) and
activated OT1 CTLs (E) migrate to the skin compartment. In the skin compartment, antibodies (As) stimulate duplication and infiltration
into tumor mass of activated OT1 CTLs (Es), which kill melanoma cells (C). Killed melanoma cells release antigens (A) that are captured by
antigen presenting cells and presented to antigen-specific naı̈ve OT1 CTLs (N). Naı̈ve OT1 CTLs are then stimulated to become active CTLs
(Es).

the first compartment (E) to the second one (Es) entitles a
time delay of τ and occurs with a given rate α11.

The term α6NA models the activation of naı̈ve CTLs
N thanks to the presence of antigens (A) released by killed
cancer cells. The biological process that explains the presence
of this term is summarized as follows. Antigenic sequences
released by killed melanoma cells may be captured by antigen
presenting cells (APC) such as macrophages and dendritic
cells. These cells process the antigens and present them
on their cellular surface to naı̈ve CTLs (N). After this

presentation process, naı̈ve CTLs cells may be activated, and
if some complementary biological steps are accomplished
(i.e., stimulation by cytokines released by T helper cells),
they can become able to kill tumor cells. This process is not
modeled in depth since it involves the modeling of other
entities that are not considered fundamental for the problem.
The number of newly activated OT1 CTLs is instead directly
estimated on the basis of the quantity of released antigens.
The last term (−α8Es) is used to take into account natural
death of OT1 CTLs.
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(4) Melanoma cells:

dC

dt
= (α1 − α2 ln(C)) · C − α3

[
As + k2

As + k3

]
EsC. (4)

Equation (4) describes the melanoma cells (C) behavior
in the skin compartment. The first term ((a1 − a2 ln(C)) ·C)
represents a Gompertzian growth [14], whereas the second
term denotes killing of C by activated OT1 CTLs that are
already in the skin compartment (Es). One of the most
important actions accomplished by antibodies (As) is to
boost chemotaxis sensitivity of CTLs (Es) thus enabling
better infiltration into the tumor mass. This translates into
higher killing rates of melanoma cancer cells by activated
CTLs (Es). This is modeled through the term −α3[(As +
k2)/(As + k3)]EsC, where α3 is the maximum killing rate of
C by Es, and k2 and k3 (k2 � k3) are tuned constants. When
the number ofAs is high enough, the term [(As+k2)/(As+k3)]
tends towards 1, thus entitling maximum killing rates for Es.
In absence of antibodies, having k2 � k3, the term translates
into −α3k2/k3 < α3, which involves lower killing rates.

(5) Antigens:

dA

dt
= α4

[
α3

[
As + k2

As + k3

]
EsC

]
− α5A− α6NA. (5)

With (5), we describe the tumor-associated antigen (A)
dynamics. Antigens are released in the skin compartment by
killed melanoma cells (α4 · [α3[(As + k2)/(As + k3)]EsC]) and
are subject to natural degradation (−α5A). They can also be
captured by APC, which will present the antigen to naı̈ve
CTLs. As already stated in (3), capturing of the antigen by
APC is not modeled and the number of captured antigens is
estimated on the basis of naı̈ve CTLs (N) that are activated
by APC (−α6NA).

(6) Naı̈ve CTLs:

dN

dt
= h(M −N)− α6NA. (6)

Equation (6) models the behavior of naı̈ve OT1 CTLs
(N). It is supposed here that these cells are already present
in the skin compartment. The term h(M − N) is used to
model homeostasis. M is the number of circulating naı̈ve
CTLs under safe conditions given by the leukocyte formula.
If switching of naı̈ve CTLs to activated CTLs occurs, the
number of naı̈ve CTLs gets lower. As a consequence of that,
the naı̈ve population is repopulated with newborn cells and
tends towards M at a rate h. The second term (−α6NA)
models the CTLs state changing from naı̈ve to activated (Es),
thanks to presentation of the antigen by APC.

(7) Antibodies (skin compartment):

dAs

dt
= α11Ab(t − τ)− α9AsEs − α10As. (7)

Antibodies that have reached the skin compartment (As)
are modeled and described by (7). Antibodies in the skin
compartment are supposed to be proportional to the number
of antibodies in the injection point compartment (Ab) with a
proportionality constant α11 and a time delay of τ. They also
disappear by stimulating OT1 cells activities and are subject
to a natural degradation (−α9AsEs and −α10As).

According to the considered cell populations and inter-
actions, the mathematical model can be then represented
by the following system of seven nonlinear delay differential
equations:

dE

dt
= Kin

(
t, p
)− α11E − α8E,

dAb

dt
= Kin

(
t, q
)− α11Ab − α10Ab,

dEs
dt

= α7

[
As

As + k1

]
Es + α11E(t − τ) + α6NA− α8Es,

dAs

dt
= α11Ab(t − τ)− α9AsEs − α10As,

dN

dt
= h(M −N)− α6NA,

dC

dt
= (α1 − α2 ln(C)) · C − α3

[
As + k2

As + k3

]
EsC,

dA

dt
= α4

[
α3

[
As + k2

As + k3

]
EsC

]
− α5A− α6NA.

(8)

Since we consider mainly populations that appear in
the system as a consequence of treatment administrations
(except for melanoma and naı̈ve CTLs), the following
Cauchy initial conditions have been set for the equations:

E(0) = 0, Ab(0) = 0, Es(0) = 0, As(0) = 0, A(0) = 0,

N(0) =M, C(0) = C0.
(9)

The physical time-step Δ(t) has been chosen equal to 8
hours, and the integration time has been then computed up
to 102 ·Δ(t) ≈ 33 days. The reason of this choice is biological,
and it is given by the fact that in the in vivo experiment
it is not possible to observe relevant biological phenomena
in smaller time intervals. In particular, the minimum time
required for cell division, which represents one of the most
important biological phenomena, is usually not lower than
6–8 hours [15]. This may be not true in other in vivo setups,
such as in case of allergies, where the time scale varies from
seconds to minutes.

Some parameters appearing in the equations have been
estimated from the literature (see Table 2), and from meas-
urements made during the in vivo experiment.

In particular, melanoma growth rates have been esti-
mated from diameter measurements made at different times
in melanomas in five untreated mice. Melanomas have two
growth phases, radial and vertical [16]. The first phase is
represented by a radial growth, in which malignant cells
grow in a radial fashion in the epidermis. At later stages,
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Table 2: Model parameters. The “in vivo” label refers to parameters that have been chosen according to in vivo measurements and
observations. The “Estimated” label refers to free (unknown) parameters that have been tuned.

Param. Description Value (estimate) Ref.

α1 C growth parameter (Gompertz) 0.2165 Δ(t)−1 in vivo

α2 C shrink parameter (Gompertz) 0.01269 Δ(t)−1 in vivo

α3 C max killing rate by Es 0.00000033 Δ(t)−1 Estimated

α4 A release rate by Killed C 0.21 Δ(t)−1 Estimated

α5 A natural degradation rate ln(2)/9 Δ(t)−1 [19]

α6 Switch rate from N to Es thanks to A 0.1 Δ(t)−1 Estimated

α7 Es max duplication rate 0.095 Δ(t)−1 Estimated

α8 E and Es nautral death rate ln(2)/15 Δ(t)−1 [20]

α9 Ab death rate due to stimulation of Es 0.000001 Δ(t)−1 Estimated

α10 Ab and As natural degradation rate ln(2)/21 Δ(t)−1 [21, 22]

α11 migration rate from injection to skin compartment 0.009 Δ(t)−1 Estimated

h Reinjection rate of N by thymus 0.01 Δ(t)−1 Estimated

k1 Es duplication threshold due to As 10 Estimated

k2 C-Es min. killing rate threshold 1 Estimated

k3 C-Es max. killing rate threshold 50 Estimated

M Number of N in safe conditions (leukocyte formula) 196000 in vivo

C0 Initial number of C 180000 in vivo

p No. of injected E by treatment administration 760000 in vivo

q No. of injected Ab by treatment administration 1000000 in vivo

τ Delay value 1 in vivo

most melanomas progress to the vertical growth phase, in
which the malignant cells invade the dermis and develop the
ability to metastasize. In this case, we supposed that only the
radial growth phase is involved. By supposing a disk-shaped
layout for the melanoma and having knowledge of the mean
diameter of melanoma cancer cells, the number of cancer
cells (in the observed melanomas) has been estimated for
all the measurements made. This data has been used with a
curve fitting procedure to estimate the unknown parameters
needed to model the cancer growth kinetics under the
hypothesis of a Gompertzian growth for the tumor, used
successfully in our previous experience [13, 17, 18]. The
Gompertz law, which is commonly considered suitable for
describing populations growths, uses two factors: a constant
growth term and a shrink term that increases in time and is
related to antiangiogenic factors, giving as a result a sigmoid
shape to the curve. The initial number of injected cancer
cells C0, the number of injected OT1 CTLs and antibodies (p
and q), and the number of antigen-specific naı̈ve OT1 CTLs
under safe conditions (M) have been chosen into reasonable
ranges given by in vivo measurements.

Remaining parameters have been chosen in plausible
biological ranges in such a way to reproduce the set of
experimental data for the activated OT1 CTLs + Anti-CD37
Ab combined treatment, and counterchecked against the
other vaccine scenarios taken into account (Table 2).

4. Results

To reproduce the dynamics of the model, we took into
account four treatments that have been tested in vivo:

untreated (control), in vitro activated OT1 CTLs, Anti-
CD137 monoclonal antibodies, and in vitro activated OT1
CTLs + Anti-CD137 monoclonal antibodies.

Among such treatments, only the last one (treated
with activated CTLs + Anti-CD137 monoclonal antibodies)
showed complete eradication of the tumor burden, whereas
the other treatments remained almost ineffective.

Entities behaviors for all the analyzed treatments are
shown in Figure 2. In absence of therapy (blue dashed line),
there is no induced immune response and thus the number
of melanoma cells grows without any intervention from IS
cells, whose plots remain flat.

The same scenario arises when the Anti-CD137 mon-
oclonal antibodies treatment is administered (see Figure 2,
green dotted lines). The mechanism that triggers the IS
response is driven by the presence of activated OT1 CTLs
that can kill melanoma cells, which release antigens able to
further stimulate the IS response.

This fact can be partially seen if the treatment based upon
the administration of in vitro activated OT1 CTLs is used
(Figure 2, red dot-dashed lines). The Es plots show some
evidence of activated OT1 CTLs in the skin. These cells are
able to kill melanoma cells (C), which release antigens (A)
that are captured by APCs and then used to promote the
differentiation of newborn naı̈ve CTLs (N) to activated OT1
CTLs (Es). However, in absence of Anti-CD137 antibodies,
which promote both duplication and infiltration into tumor
masses of activated OT1 CTLs, recruitment of newborn naı̈ve
CTLs is too bland and tardy to stimulate an IS response able
to stop the melanoma.
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Figure 2: System behavior obtained with the use of different vaccination protocols: untreated (blue dashed line), activated OT1 CTLs (red
dot-dashed lines), Anti-CD137 monoclonal antibodies (green dotted lines), and activated OT1 CTLs + Anti-CD137 monoclonal antibodies
(black solid lines). From left to right, top to bottom: melanoma cells (C), tumor antigens (A), activated OT1 CTLs in the skin (Es), naı̈ve
CTLs (N), antibodies in the skin (As), antibodies in the injection point (Ab), and activated OT1 CTLs in the injection point (E).
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Only the combined action of activated CTLs + Anti-
CD137 monoclonal antibodies is able to to contrast the
melanoma growth (see Figure 2, black solid line). In this
case, both Anti-CD137 antibodies (Ab) and activated OT1
CTLs (E) are injected at day three and then migrate to the
skin compartment. Activated OT1 CTLs (Es) are stimulated
to duplicate and to infiltrate into tumor masses thanks to
the presence of antibodies in the skin compartment (As). As
a consequence of this, many more melanoma cells (C) are
killed, and copious number of antigens (A) is released, thus
promoting the activation of naı̈ve CTLs (N) to activated OT1
CTLs (Es), which further act against melanoma.

To qualitatively compare the model results with the in
vivo data, we estimated (using the number of cancer cells) the
melanoma surface given by the mathematical model under
the same assumptions made for estimating the Gompertz
growth parameters. We then compared the time evolution
of the melanoma surface given by the mathematical model
with the mean surface observed in the in vivo experiment
for the following cases: the untreated (control) case and
the activated CTLs + Anti-CD137 monoclonal antibodies
combined treatment case. The other cases are not presented
since they give back the same scenario observed in the
untreated case for both the experiments.

Comparison for the untreated case is shown in
Figure 3(a). As expected, since we only observe the mela-
noma growth, the mathematical model perfectly reproduces
the in vivo setup. Comparison for the combined treatment
case is shown in Figure 3(b). The mean in vivo melanoma
behavior is well reproduced by the mathematical model
that is able to quantitatively and qualitatively represent the
shape of the curve observed in the in vivo experiments.
In Figures 3(c) and 3(d), we show absolute and relative
differences between in silico and in vivo measurements
for the untreated and activated OT1 CTLs + Anti-CD137
combined treatments, respectively. Relative differences are
computed using the following metric: d(x, y) = |x − y|/
(1/2(|x| + |y|)).

It must be noted here that the initial gap between the
mathematical model and the in vivo experiment measure-
ments visible in Figures 3(b) and 3(d) is mainly due to
the different nature of measurements. In the simulations,
the total number of cells is always known and it is used to
estimate the melanoma surface. In the in vivo experiment,
melanoma surface is instead measured on mice skin. Even
if the injection of tumor cells is done at time 0, melanoma
needs some time to arise and become visible even if the
melanoma cells are all already present in mice.

5. Sensitivity Analysis

To understand how the system varies under different param-
eter values, it is important to analyze the sensitivity of
the model to variation of parameters. Classical sensitivity
analysis is done usually by varying a given parameter in
reasonable ranges and keeping the other ones fixed. The
results obtained are obviously dependent on the values of
the fixed parameters, and different sets of values may entitle
completely different results.

In order to overcome the limits of classical sensitivity
analysis, many techniques have been developed. One of
these is represented by Partial rank correlated coefficients
(PRCC) [23], a statistical sensitivity analysis technique,
which computes a partial correlation on rank-transformed
data between input and output values, represented in this
case by the model parameters (input) and the model entities
behaviors (output).

It important to note here that the obtained correlation
indexes do not depend on a given set of parameters, and
it is therefore possible to estimate how the variations of a
parameter may influence the results of the model, no matter
what the value of the other parameters is. PRCC returned
values varying in [−1, 1] and estimated the correlation
between input and output parameters. A value near 1
suggests a high (linear) positive correlation, whereas a value
near −1 indicates a negative correlation. Values around 0
usually indicate little or no correlation.

Using this methodology in conjunction with the Latin
Hypercube Sampling (LHS), which is used to sample the
parameters’ space, we analyze the effects of the input
parameters most influencing the growth of cancer cells
(C). We plot PRCCs versus the experiment time for the
most important parameters to see how the sensitivity of
parameters changes as the system dynamics progresses.

5.1. Impact Variation of the Treatment Quantities p and q
on the Number of Melanoma Cells. The two parameters p
and q refer to the number of activated OT1 effector cells
(E) and Anti-CD137 antibodies (Ab) injected as a single
boost treatment against the melanoma, according to the in
vivo experiment. In Figure 4, we show the PRCC time plots
for the two parameters. As expected, just after the injection
of the treatment, both the two parameters show a negative
correlation with the number of cancer cells. It is worth to
note that p shows good correlation in particular in the first
ten days, whereas a weaker and almost constant correlation is
related to q. This may suggest that the effects of the treatment
are mainly driven by the OT1 effector cells and, even if
antibodies are needed to obtain protection (as discussed
earlier and shown in Figure 2), a reduction in their quantity
may entitle similar treatment effectiveness.

5.2. Impact of Naı̈ve OT1 CTLs Initial Number (M) and
Recovery Rate (h) on the Number of Cancer Cells. The M
parameter indicates the initial number of antigen-specific
naı̈ve CTLs in the host, and the h parameter represents the
rate of newborn naı̈ve CTLs generated by thymus selection.
The M parameter negatively correlates over time with the
number of melanoma cells (Figure 5(a)), thus confirming
that the action of naı̈ve OT1 T cells induced by the treatment
administration is fundamental for treatment effectiveness.
Surprisingly it seems that the variation of the rate of
introduced newborn naı̈ve CTLs does not influence the
number of melanoma cells, since no correlation is shown
over time (see Figure 5(b)).

5.3. Impact of Activated OT1-T-Related Parameters on the
Number of Cancer Cells. The activated OT1 CTLs in the skin
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Figure 3: Comparison of melanoma surface (mm2) behavior over time between mean in vivo measurements (red lines) and simulations
(blue lines). (a) Comparison for the untreated case (no vaccination). (b) Comparison under the administration of the combined activated
OT1 CTLs + Anti-CD137 monoclonal antibodies treatment. In silico melanoma surfaces have been estimated from the total number of
melanoma cells by assuming only radial growth and a disk-shaped layout for the melanoma. (c) Absolute (orange line) and relative (green
line) differences between in vivo and in silico measurements for the untreated case (no vaccination). (d) Absolute (orange line) and relative
(green line) differences between in vivo and in silico measurements under the administration of the combined activated OT1 CTLs + Anti-
CD137 monoclonal antibodies treatment.

(Es) represent the number of entities that are directly able to
kill melanoma tumor cells. It is, therefore, trivial to see that
α3 and α8, which represent the rate of killed melanoma cells
by activated OT1 effector cells and the half-life of OT1 effec-
tor cells, have a strong negative and positive correlation with
the number of cancer cells, respectively, (see Figures 6(a)
and 6(b)). A negative correlation is also present for α7,
which represents the maximal duplication rate of (Es) (see
Figure 6(c)). However, in this case the correlation remains
weaker, thus suggesting how small variations on the cells
duplication rates, which can be associated with individual

diversity, do not influence considerably the total behavior of
cancer cells.

5.4. Impact of Antibody-Related Parameters on the Number
of Cancer Cells. The α4 parameter is used to represent
the rate of antigens released by killed C, whereas the α5

represents the specific antigen half-life. If the former has
a strong negative PRCC correlation with the number of
C (Figure 7(a)), particularly in the first period just after
treatment administration, the latter interestingly seems to be
not correlated with the number of C (Figure 7(b)).
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Figure 4: p (a) and q (b) PRCC plots computed on C. PRCC values are calculated with respect to the number of melanoma cells (C), plotted
over time (blue lines). PRCC time plot of Dummy parameter (red lines) is shown for comparison. Greyed areas represent the plot portions
where correlation is significant (P < 0.01).
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Figure 6: α3 (a), α7 (b), and α8 (c) PRCC plots computed on C. PRCC values are calculated with respect to the number of melanoma cells
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Figure 7: α4 (a) and α5 (b) PRCC plots computed on C. PRCC values are calculated with respect to the number of melanoma cells (C),
plotted over time (blue lines). PRCC time plot of Dummy parameter (red lines) is shown for comparison. Greyed areas represent the plot
portions where correlation is significant (P < 0.01).
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Figure 8: α1 (a) and α2 (b) PRCC plots computed on C. PRCC values are calculated with respect to the number of melanoma cells (C),
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5.5. Impact of the Tumor Growth and Shrink Parameters (α1

and α2) on the Number of Cancer Cells. The α1 and α2 param-
eters represent the Gompertz growth parameters used to
model the growth of melanoma. The range of variation for
these two parameters has been set equal to the confidence
range given by the curve fitting procedure used to estimate
the parameters’ values from in vivo measurements. In this
way, we reasonably take into account the possible melanoma
growths that may also be observed in the in vivo experiments.
PRCC plots over time are represented in Figures 8(a) and
8(b). Even if positive and negative PRCC correlations are
somewhat expected, there is a small time window just after
the treatment injection time where no correlation occurs.
This may be explained by the fact that variations of the
melanoma growth rate do not influence substantially (at least
initially) the effectiveness of the treatment.

6. Conclusions

We presented a mathematical model, which reproduces the
immune response against B16-melanoma induced by the
combined administration of activated OT1 CTLs and Anti-
CD 137 immunostimulatory monoclonal antibodies. The
model uses delay differential equations to reproduce the
presence of two different compartments: the injection point
compartment where the treatment is administered, and the
skin compartment, where the melanoma-Immune system
competition occurs.

The model proved to be able to coherently reproduce the
in vivo experiment results obtained with four vaccination
strategies (untreated, only activated OT1 CTLs, only mon-
oclonal Ab, OT1 CTLs + monoclonal Ab). Moreover, the
model is able to qualitatively and quantitatively reproduce
the time dynamics of melanoma under the administration
of the combined treatment. Results show that activated CTLs
+ Anti-CD137 monoclonal combined treatment acts in two
ways: directly by activated OT1 CTLs that are able to kill
melanoma and antibodies that boost CTLs activities and
indirectly by promoting activation of naı̈ve OT1 CTLs thanks
to the releasing of melanoma cells antigens.

Among some useful findings, sensitivity analysis under-
lined the important role of activated OT1 cytotoxic treat-
ment, suggesting that it would be in principle possible to
obtain similar effectiveness lowering the number of admin-
istered antibodies, which, however, remain fundamental to
gain effectiveness. Such kind of suggestions may be useful for
optimizing treatment effectiveness and minimizing the risk
of side effects.

Future work will be focused on studying analytically
a simplified model without delay and in comparing the
obtained results with Sim-B16, an agent-based model devel-
oped to reproduce the same in vivo experiment [13].
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