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Deformation prediction is significant to the safety of foundation pits. Against with low accuracy and limited applicability of a
single model in forecasting, a PSO-GM-BP model was established, which used the PSO optimization algorithm to optimize and
improve the GM (1, 1) model and the BP network model, respectively. Combining a small amount of measured data during the
excavation of a bottomless foundation pit in a Changsha subway station, the calculations based on the PSO-GMmodel, the PSO-
BP network model, and the PSO-GM-BP model compared. (e results show that both the GM (1, 1) and BP neural network
models can predict accurate results. (e prediction optimized by the particle swarm algorithm is more accurate and has more
substantial applicability. Due to its reliable accuracy and wide application range, the PSO-GM-BP model can effectively guide the
construction of foundation pits, and it also has certain reference significance for other engineering applications.

1. Introduction

In-depth foundation pit engineering is a general term for a
series of work carried out to ensure deep foundation pit
construction safety and the surrounding environment not
harmed. Safety construction and monitoring and early
warning are also included [1]. Since the foundation pit’s
design cannot be entirely consistent with the actual situa-
tion, the construction conditions are complex and
changeable.(e environment of the foundation pit is also for
various reasons. During the standard construction of the
foundation pit, some uncontrollable conditions will also
occur. When the deformation is severe, significant accidents
such as the foundation pit’s overall instability and the
collapse of surrounding buildings may occur [2–4]. (e
purpose of foundation pit deformation monitoring is to
ensure the smooth construction of foundation pit engi-
neering so that the foundation pit deformation is within a
safe and controllable range. Existing deformation evaluation
indicators compare the amount of change and control value
instead of using a more reasonable model to predict the

foundation pit’s deformation status to grasp the foundation
pit’s further development trend. So far, we have many
mature deformation analysis methods. (e more common
ones are the regression method, time series analysis model,
gray system analysis model, Kalman filter model, artificial
neural network model, spectrum analysis method, etc.
[5–10]. (e application of machine learning methods in
different engineering fields is becoming more and more
extensive [11].

(e deformation process of the foundation pit is an
uncertain system with many factors and complicated con-
struction conditions. (erefore, it could be regarded as a
gray information system [12]. (e GM (1, 1) model can
extract the chaotic data series. Trends, generate new data
columns and use them for predictive analysis [13]. Foun-
dation pit deformation is a complex and nonlinear problem.
(e self-learning and self-adaptive ability of neural networks
could be brought into full play. It has its unique advantages
in the analysis of foundation pit deformation. BP network is
a multilayer feedforward network used in deep foundation
pit deformation prediction due to its error backpropagation
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characteristics [14, 15]. Because of the deformation’s com-
plexity and the limitations of various forecasting models, it is
a trend to forecast deformation accurately by using practical
information of multiple models [16]. Due to some con-
straints of the prediction model itself, optimization algo-
rithms or evolutionary algorithms are applied to engineering
constructions [17–19].

(e GM (1, 1) model and BP neural network were used
for in-depth foundation pit prediction research because of
their unique advantages. However, in actual application, it
can be found that each model also has its shortcomings. (is
article will introduce a PSO algorithm to improve the two
models and compare the prediction accuracy of the im-
proved model and the original model.

2. PSO-GM (1, 1) Model

(e establishment of the GM (1, 1) model firstly needs to
accumulate the actual sequence once and generate the
seriesx(1) � (x(1)(1), x(1)(2), . . . , x(1)(n)), and use the
generated string for analysis and prediction. (e newly
developed sequence of numbers increases regularly, and
then an equation is established for prediction based on the
increased regularity.

(e time response of the GM (1, 1) model is as follows:

x
(1)

(k + 1) �
b

a
+ x

(0)
(1) −

b

a
 e

−ak
. (1)

It could be seen that the error of the GM (1, 1) model is
firstly due to the selection of initial values, and the other is
the estimation of gray parameters a and b.
u � a b 

T
� (BTB)−1BTY

(e estimated costs of a and b depend on the con-
struction method of the formula’s background valuez(1)(k).

(erefore, the GM (1, 1) model’s prediction error mainly
comes from the limited selection of the initial value and the
background value construction formula’s error. To reduce
the error and improve the model’s accuracy, the initial
conditions separately and construct the background value
was proposed to replace. Reselect the parameters used in the
formula to optimize the GM (1, 1) model.

x1(n) could x(1)(n)be selected as GM (1,
1)x(1)(n)x(0)(1)’s initial condition so that the established
model contains the best possible future predictions.

(en the time response sequence of GM (1, 1) is as
follows:

x
(1)

(k + 1) �
b

a
+ x

(1)
(n) −

b

a
 e

−a(k−n+1)
. (2)

(e simulated value is as follows:

x
(0)

(k + 1) � x
(1)

(k + 1) − x
(1)

(k) k � 1, 2, . . . , n. (3)

When using the GM model for modeling, the con-
struction formula of the background value is as follows:

z
(1)

(k) � 0.5x
(1)

(k) + 0.5x
(1)

(k − 1), (4)

If the cumulative sequence slope is slow and the growth
trend is not apparent, it is acceptable to use the trapezoidal
area to replace the curve’s shadow area on the interval. At
this time, there is little difference between the two. Still, if the
cumulative sequence slope is relatively high, if it is steep and
the growth rate is speedy, the trapezoidal area formed is
quite different from the interval curve’s shadow area.
(erefore, the background value construction formula is
unreasonable at this time and contains specific errors, as
shown in Figure 1.

(e background valuez(1)(k) is the critical area from the
curve in the interval [k− 1, k] to the geometric sense’s
abscissa axis. (e proper form of the background value that
can satisfy unbiasedness is as follows:

z
(1)

(k) � 

k

k−1

x
(1)dt. (5)

According to the integral median theorem, this is also
equivalent to the linear combination of x(1)(k − 1), x(1)(k)

and the parameter λ; that is, there is λ∈[0,1] makes the
following:

z
(1)

(k) � λx
(1)

(k − 1) +(1 − λ)x
(1)

(k). (6)

(e value of the parameter λ will have a direct impact on
the model prediction accuracy. At this time, we have a model
parameter optimization problem, combined with the
characteristics of the particle swarm algorithm that is good at
global optimization, so that complicated formula derivation
was avoided, and the thinking is clear and easy to
implement.

(e following is the process of the PSO algorithm to find
the optimal λ:

Step 1: Initialize the population. Randomly generate a
sequence on the interval [0, 1]:λ � (λ1, λ2, . . . , λn), each
of λ represents the possible weight of the randomly
generated background value.
Step 2: Calculate fitness. (e fitness function should
choose the mean square error function SSE, replace all
the generated λi to calculate the background value,
construct a new background value formula, and use it
in the GM (1, 1) model for prediction and the predicted
value. (e average value of the absolute value of the
relative error of the true value is used as the fitness value
of the corresponding individual.
Step 3: Compare the current fitness value of the particle
with the optimal historical value. If it is better than the
optimal historical value, replace its current position
with the best position of the particle; compare the
current fitness value of the particle with the optimal
group value, if it is excellent. If it is at the optimal value
of the group, its current position will replace the best
position of the group.
Step 4: Update the particles according to the following
formula:
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v
k+1
id � ω · v

k
id + c1 · rand( ) · p

k
i d − x

k
id 

+ c2 · rand( ) · p
k
g d − x

k
id ,

x
k+1
id � x

k
id + v

k+1
id ,

(7)

In the formula, c1 and c2 called learning factors or
acceleration factors; rand() is a random number be-
tween (0, 1); vk

id and xk
id are the velocity of the particle i

in the dth dimension in the kth iteration, respectively,
And position pk

id is the position of the extreme indi-
vidual value of the particle i in the dth dimension; pk

gd is
the position of the extreme global value of the group in
the dth dimension.
Step 5: If the fitness value is not sufficiently good or the
preset maximum number of iterations was not ob-
tained, return to step (2).

(rough the above steps, the optimal λi was found
through iteration, and then the optimal background value
construction formula is calculated, and then the next step is
predicted, as shown in Figure 2.

3. Determination of PSO-BP Network

(e combination of BP network and PSO algorithm uses the
global search and local search capabilities of both giving full
play to their respective advantages, preventing the network
from overfitting and falling into local extremums, and at the
same time obtaining a faster convergence speed. Randomly
initialize the position of the particles in the PSO algorithm.
(e position of each particle corresponds to a set of weights
and thresholds in the BP network. (e PSO algorithm was
used to iteratively train the network until the optimal
particle position is output, the optimal weight, and the
threshold. Finally, use this optimized network for prediction.
When simulating actual data, to minimize the neural net-
work’s average relative error, its fitness function is as follows:

E �
1
m



m

j�1
dj − yj 

2
. (8)

(e specific steps of the PSO-BP algorithm were de-
scribed as follows (see Figure 3):

(1) Initialization. Set the relevant parameters of the PSO-
BP network. Determine network structure, including
the number of layers of the system and the number of
neurons in each layer. Determine the particle group
related parameters, including the initial inertia
weight w, the learning factors c1 and c2, the maxi-
mum number of iterations T, and the number of
swarm N. When determining the number of pop-
ulations, the dimension D of the particles to be
optimized should be considered the total number of
weight thresholds. (e total number of weight
thresholds that the PSO algorithm needs to optimize
is the following:

D � (l + 1)
∗
n +(n + 1)

∗
m, (9)

l is the number of input neurons; n is the number of
hidden layer neurons;m is the number of neurons in
the output layer. Finally, the particle’s velocity and
position were randomly initialized.

(2) Calculating the fitness value of each particle
according to the fitness function selected by the
problem. (e fitness function is as follows:

E �
1
m



m

j�1
dj − yj 

2
. (10)

(3) Compare the current fitness value and the optimal
historical value of the particle. If it is better than the
optimal historical value, replace its current position
with the particle’s best position; compare its current
fitness value with the optimal amount of the group.
For the group’s optimal cost, replace its current
situation with the best part of the group.

(4) Iterative evolution of the velocity and position of the
particle according to the speed and position update
formula.

v
k+1
i d � ω · v

k
i d + c1 · rand( ) · p

k
i d − x

k
i d 

+ c2 · rand( ) · p
k
g d − x

k
i d ,

x
k+1
i d � x

k
i d + v

k+1
i d .

(11)

(5) If the excellent fitness value or the preset maximum
iteration number was not reached, then return to
step (2). If the condition was met, the global optimal
particle position of the output is the optimal BP
network weight and threshold.

(6) After the weight threshold is output, the neural
network training continued until the result is output.

4. PSO-GM-BP Model Combination Forecast

(e foundation pit’s deformation process is usually a
nonstationary process, which usually presents trend and
randomness characteristics. (erefore, the deformation
monitoring data could be decomposed into trend items and
random items. It is an effective method to use a suitable
prediction model to predict each decomposition item ac-
curately (see Figure 4).

(e gray forecast model is good at extracting the trend
item information contained in the deformation information.
It has its unique advantages for forecasting trend items by
accumulating and generating new data columns to enhance
the trend characteristics. Foundation pit deformation is a
complex and nonlinear problem, and the self-learning and
self-adaptive capabilities of the BP neural network could be
used well. (e randomness of deformation could be
extracted with high precision. (e combined prediction of
GM (1, 1) and BP network had been widely used in foun-
dation pit monitoring, but the two models participating in
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combined forecasts were connected with their shortcomings.
(ey also bring about some errors that could have been
avoided. (is paper adopts the optimized PSO-BP network
and PSO-GM (1, 1) model combination prediction under the
premise of small samples, comprehensively considering the
advantages of high precision and less information and an-
alyzing the foundation’s deformation data pits. Make ac-
curate predictions to guide the safe construction of
foundation pits.

(e modeling steps of combined forecasting are as
follows (see Figure 5):

(1) Use the PSO-GM (1, 1) model to fit and predict the
original data, extract the trend items contained
therein, and obtain the predicted value and the
corresponding residual sequence:

x
(0)

(k) � x
(0)

(1), x
(0)

(2), . . . , x
(0)

(n) , (12)

e(k) � x
(0)

(k) − x
(0)

(k) � e(1), e(2), . . . , e(n){ }. (13)

(2) Use the residual sequence to train the PSO-BP
network and obtain the residual after the second
correction:

e(k) � e(1), e(2), . . . , e(n){ }. (14)

(3) Finally, add the predicted value of the PSO-GM (1, 1)
model and the corrected residual to get the final
predicted value:

x(k) � x
(0)

(k) + e(k). (15)

x(1
) (k

)

x(1)(k)

C

B

A D
k k + 1

k

¦S¤

Figure 1: Error generating mechanism of background value.
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Figure 2: Flow chart of particle swarm optimization GM (1, 1) model.
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5. Engineering Application Example

5.1. Project Overview. Yingwanzhen Station is the tenth
station of the first phase of Changsha Metro Line 4 (Purui
Avenue∼Guihua Avenue), and it also is the interchange
station of Line 2 and Line 4. (e mileage of the significant
platform center of Yingwanzhen Station is DK27 + 192.000,
and the platform width is about 14m. (e station is located
in the Greenland Group’s development zone on the north
side of Fenglin 1 road and Lushan Road and passes through
Yingwan Road, which was arranged in a north-south di-
rection. Yingwanzhen Station is an island platform station
with four underground floors (partial three feet). (e total
length of outsourced stations is 272.7m, and the standard
section width is 23.3m. (e main body of Yingwanzhen
Station was constructed by the open-cut method. (e
foundation pit’s depth is 28.14m during construction, and
the depth of the support structure is up to 36.58m. (e
station’s enclosure structure to the south of the 13th axis
adopts a 1000mm underground continuous wall with a
standard section width of 6m; the north area adopts the
grading excavation + drilling pile support method, with a
pile diameter of 1200mm and a pile spacing of 1350mm. A
row of 34 vertical columns was set along the foundation pit’s
centerline, which reduces the span and improves the sup-
port’s bending performance. Two rows of uplift piles were
set along the foundation pit’s two sides of the centerline. (e
mounds have a diameter of 1500m and a total of 66 stacks.
(e depth can reach 50m. (e shield shaft at the north end
of the station uses two concrete supports, and the beam at
the south end uses five substantial supports; the standard
section uses seven supports for the −25 axis and four
supports for the 26 axes to the 34 axes. (e first and third
supports of the station are concrete supports, and the sec-
ond, fourth, and fifth supports are steel supports. Both ends
of the station are shield starting wells, with four securities
starting one after another. (e project is large, and the
construction period is tight. It is a control site on the whole
line.

5.2. Data Selection. Priority should be given to the analysis
of the high-risk supporting force and inclinometer data. (e
subsequent deformation trend could be effectively used to
ensure the safety of the foundation pit. (e actual mea-
surement data at 15m (after this referred to as B16) of the

support force monitoring point ZL2-7 in the regular
monitoring period and the wall inclinometer monitoring
point B16 during the alarm period were selected for analysis
and verification. (e monitoring data of ZL2-7 and B16 are
as follows, as shown in Tables 1 and 2.

As shown in Table 2, the B16 data is more significant
than 30mm from the 11th-period information, which be-
longs to the data exceeding the alarm value in the defor-
mation monitoring work and belongs to the orange warning
category. How to carry out the next construction while
ensuring that the monitoring data does not continue to
increase is a big problem. It is a more significant challenge
for the safety of the entire foundation pit.(erefore, accurate
prediction of the data at this point becomes particularly
important.

5.3. Support Force Prediction and Analysis

5.3.1. PSO-GM (1, 1) Model Prediction. (eGM (1, 1) model
and the optimized PSO-GM (1, 1) model were used to model
and analyze the measured data. (e data used is the 15-
period data of ZL2-7 monitoring points. Two models are
used to fit and analyze the first 12-period data to predict the
13th to 15th periods’ deformation and finally evaluate the
two models’ accuracy.

(e calculation results based on GM (1, 1) model and the
PSO-GM (1, 1) model are shown in Table 3, and the accuracy
evaluation results are shown in Table 4. (e prediction
results are based on the original grey model and based on the
PSO-GM (1, 1) model shown in Table 5.

(e posterior difference ratios based on the original gray
model and based on the PSO-GM (1, 1) model are 0.1424 and
0.1269. (e small error probability of the two models is both
1. (e original gray model’s accuracy evaluation results and
the PSO-GM (1, 1) model meet the prediction model’s
excellent standards. Still, the variance based on the PSO-GM
(1, 1) model is smaller, indicating that its prediction accuracy
is better. It can be seen from Table 5 that for the prediction
results, the relative errors of the GM (1, 1) model are 2.67%,
8.31%, and 8.59%, respectively, while the relative errors of
the PSO-GM (1, 1) model are 1.69 %, 5.73%, 5.06%. (e
prediction accuracy based on the PSO-GM (1, 1) model is
higher, and the model and prediction results are more stable
(see Figure 6). (e relative errors and posterior difference
ratios were significantly reduced, indicating that the

Original
observation

sequence

Use PSO-GM (1, 1) to
predict and extract

trend items

Use PSO-BP network to correct
the residual sequence and

extract random items

Residual
sequence

Second residual
sequence

Predictive
value

Final results

Figure 5: PSO-GM (1, 1) and PSO-BP network combination forecasting.
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accuracy and stability of the model have been greatly im-
proved. (e results show that the PSO algorithm is effective
and stable for the optimization of the GM (1, 1) model.

5.3.2. PSO-BP Model Prediction. (e BP network and the
PSO-BP network were used to predict and analyze the
monitoring data. (e data used is the 15th phase of the ZL2-
7 monitoring point. (e monitoring data of degrees 1–12
were used as training samples, and the data of the latter three
stages are test samples.

To avoid numerical problems and improve network
convergence, normalize the sample data before training. (e
input neuron was set to 5, and the output neuron was 1. (e
period 1–5 was used as the input, and the data of period six
was used as the output. After normalization, the result is
output. (e number of hidden layer neurons tested to find
that the prediction effect is the best when the number of
nodes is 6.

(e following are the training effect diagrams of the BP
network and the PSO-BP system (see Figures 7 and 8):

(e target error is achieved in the BP network training
diagram when the network training reaches 142 times. In the

PSO-BP network training diagram, the network converges
quickly because of the particle swarm algorithm’s optimal
initial weights and thresholds. (e training goal was reached
at the 68th training. It shows that the convergence of the BP
network optimized by PSO was strengthened.

When using the two systems for prediction, the training
effect is very close (see Figures 9 and 10). Still, in terms of
generalization ability, as shown in Figures 11 and 12, the
PSO-BP system has significantly improved compared to the
BP network. (e comparison of the overall data is as follows
(see Tables 6 and 7, and Figure 13). As shown in Tables 6 and
7, the relative errors of the BP network are 5.21%, 3.07%, and
4.47%, respectively, while the relative errors of the PSO- BP
network are 1.95 %, 2.00%, and 2.01%. (e relative errors
were significantly reduced, indicating that the accuracy and
stability of the model have been greatly improved. (e re-
sults show that the PSO algorithm is effective and stable for
the optimization of the BP network.

5.3.3. PSO-GM-BP Model Combination Forecast. It could be
seen from Table 6 that the monitoring value of ZL2-7 has an
apparent increasing trend, and there is also large volatility.
(erefore, the ZL2-7 monitoring value can be decomposed
into trend items and random items to establish a combined
forecasting model in the integrated forecasting. (e data
used is the 15-period data of the ZL2-7 monitoring point.
(e PSO-GM (1, 1) model is used to fit and analyze the first
12 periods’ data, and the trend item was predicted for the
13–15 periods. (e PSO-BP network is used for residual
error correction random item prediction (see Figures 14 and
15).

As shown in Tables 8 and 9, the relative errors of the
PSO-GM (1, 1) model were 1.69%, 5.73%, and 5.06%, and the
relative errors of the PSO-BP network were 1.95%, 2.00%,
and 2.01%, respectively, while the relative errors of the PSO-
BP network were 1.45%,0.60%, and 1.94%. (e average
relative errors of the three models were 4.16%,1.98%, and
1.33%. (e accuracy of the three models is sorted from high
to low as follows: PSO-GM-BPmodel, PSO-BP network, and
PSO-GM (1, 1) model. With the optimization of the PSO
algorithm, the accuracy, efficiency, and stability of the GM
(1, 1) model and BP network have been improved. (e PSO-
GM-BP model has the best prediction effect and can provide
effective and efficient data support for foundation pit
construction.

5.4. Inclination Data Prediction and Analysis

5.4.1. PSO-GM (1, 1) Model Prediction. (e original GM (1,
1) model and the optimized PSO-GM (1, 1) model were used
to model and analyze the measured data.(e data used is the
15-period data of the B16 monitoring point. (e calculation
results were shown in Table 10, and the accuracy evaluation
results shown in Table 11.

(rough the calculation results in Table 11, it could be
found that the posterior difference ratios based on the
original gray model and the PSO-GM (1, 1) model are 0.1508
and 0.1072, respectively, and the small error probability of

Table 1: ZL2-7 monitoring value.

Period Monitoring value (kN)
1 1091.74
2 1227.01
3 1343.88
4 1578.08
5 1757.89
6 1822.97
7 1828.44
8 1908.81
9 2061.54
10 2025.6
11 2151.51
12 2221.34
13 2350.88
14 2342.03
15 2455.03

Table 2: Cumulative value of B16 monitoring points.

Period Cumulative value (mm)
1 21.66
2 23.30
3 23.90
4 23.25
5 24.50
6 25.31
7 27.95
8 29.04
9 28.23
10 29.44
11 30.38
12 30.81
13 31.23
14 31.92
15 32.44
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the two models is both 1. (e original gray model’s accuracy
evaluation results and the PSO-GM (1, 1) model meet the
prediction model’s excellent standards. Still, the variance
based on the PSO-GM (1, 1) model is smaller, indicating that
its prediction accuracy is better. It can be seen from Table 5
that for the prediction results, the relative errors of the GM
(1, 1) model were 3.55%, 3.37%, and 3.62%, respectively,
while the relative errors of the PSO-GM (1, 1) model were
2.18 %, 1.98%, and 2.30%. (e prediction accuracy based on
the PSO-GM (1, 1) model is higher, and the model and
prediction results are more stable (see Figure 16). (e rel-
ative errors and posterior difference ratios were significantly
reduced, indicating that the accuracy and stability of the
model have been greatly improved.(e results show that the
PSO algorithm is effective and stable for the optimization of
the GM (1, 1) model.

5.4.2. PSO-BP Model Prediction. (e BP network and the
PSO-BP network were used to predict and analyze the
monitoring data. (e data used is the 15th phase of the B16
monitoring point.(emonitoring data of degrees 1–12 were
used as training samples, and the data of the latter three
stages are test samples.

To avoid numerical problems and improve network
convergence, normalize the sample data before training.
After normalization, the result is output. (e number of

hidden layer neurons was tested repeatedly to find that when
the number of nodes is 7, the prediction effect is the best.

(e following are the training effect diagrams of the BP
network and the PSO-BP system:

In the BP network training diagram, the target error was
achieved when the network training reaches 200 times; in the
PSO-BP network training diagram, the network perfor-
mance was degraded because of the particle swarm algo-
rithm’s optimal initial weight and threshold. (e training
goal was reached on the 128th training session. It shows that
the convergence of the BP network optimized by PSO was
strengthened (see Figures 17 and 18).

When using two networks for prediction, the training
data is not much different (see Figures 19 and 20). Still, in
terms of generalization ability, as shown in Figures 21 and
22, the PSO-BP system significantly improves the BP net-
work. (e comparison of the overall data is as follows (see
Tables 12 and 13 and Figure 23). As shown in Tables 12 and
13, the relative errors of the BP network were 9.54%, 6.21%,
and 3.93%, respectively, while the relative errors of the PSO-
BP network were 0.11%, 0.96%, and 0.82%. (e relative
errors were significantly reduced, indicating that the accu-
racy and stability of the model have been greatly improved.
(e results show that the PSO algorithm is effective and
stable for the optimization of the BP network.

5.4.3. PSO-GM-BP Model Combination Forecast. It could be
seen that the B16 monitoring value also has an obvious
increasing trend and considerable volatility. (erefore, in
combined forecasting, the B16 monitoring value can be
decomposed into trend items and random items to establish
a combined forecasting model. (e data used is the 15-
period data of the B16 monitoring point. (e PSO-GM (1, 1)
model is used to fit and analyze the first 12-period data, the
trend item was predicted for the 13–15 period, and the PSO-
BP network is used for residual. Correct the random thing
forecast (see Figures 24 and 25).

As shown in Tables 14 and 15, the relative errors of the
PSO-GM (1, 1) model were 2.18%, 1.98%, and 2.30%, and the
relative errors of the PSO-BP network were 0.11%, 0.96%,
and 0.82%, respectively, while the relative errors of the PSO-
BP network were 0.20%, 0.10%, and 0.20%. (e average

Table 4: Accuracy assessment table.

Model C P
GM (1, 1) 0.1424 1
PSO-GM (1, 1) 0.1269 1

Table 3: Actual value and model fitting value of ZL2-7.

Period Actual value
GM (1, 1) PSO-GM (1, 1)

Fitting value Relative error (%) Fitting value Relative error (%)
1 1091.74 1091.74 0 1022.855 −6.30
2 1227.01 1396.89 −13.85 1397.199 −13.82
3 1343.88 1468.10 −9.24 1469.021 −9.31
4 1578.08 1542.94 −2.23 1544.535 −2.12
5 1757.89 1621.59 −7.75 1623.931 −7.62
6 1822.97 1704.25 −6.51 1707.408 −6.33
7 1828.44 1791.12 −2.04 1795.176 −1.81
8 1908.81 1882.42 −1.38 1887.456 −1.11
9 2061.54 1978.38 −4.03 1984.479 −3.73
10 2025.6 2079.23 −2.65 2086.49 −3.00
11 2151.51 2185.22 −1.57 2193.745 −1.96
12 2221.34 2296.61 −3.39 2306.513 −3.83

Table 5: Comparison of actual and predicted values of ZL2-7.

Period 13 14 15
Actual value 2350.88 2342.03 2455.03

GM (1, 1) Predicted value 2413.68 2536.72 2666.03
Relative error (%) −2.67 −8.31 −8.59

PSO-GM (1, 1) Predicted value 2390.73 2476.32 2579.31
Relative error (%) −1.69 −5.73 −5.06
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relative errors of the three models were 2.15%, 0.63%, and
0.17%.(e accuracy of the three models are sorted from high
to low as follows: PSO-GM-BP model, PSO-BP network,
PSO-GM (1, 1) model. With the optimization of the PSO
algorithm, the accuracy, efficiency, and stability of the GM
(1, 1) model and BP network have been improved. (e PSO-
GM-BP model has the best prediction effect and can provide
effective and efficient data support for foundation pit
construction.

6. Results and Discussion

(1) (e average relative errors of the three models for
support force prediction were 4.16%, 1.98%, and
1.33%, and the average relative errors of the three
models for support force prediction were 2.15%,
0.63%, and 0.17%.
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Figure 6: Comparison of actual and predicted values.
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Figure 7: BP network training diagram.

0 10 20 4030 50 60 70
10–4

10–3

10–2

10–1
M

ea
n 

sq
ua

re
d 

er
ro

r (
m

se
)

68 epochs

Train
Best
Goal

Best training performance is 0.00099691 at epoch 68
100

Figure 8: PSO-BP network training diagram.

1 2 3 4 5 6 7 8 9 10 11 12
1000

1500

2000

2500

Serial number

Actual value
Predictive value

Training sample

Figure 9: BP network training sample.

Advances in Civil Engineering 9



(2) Analyze the error source of the GM (1, 1) model,
apply the global optimization feature of the PSO
algorithm to optimize the parameters of the

background value construction formula of the GM
(1, 1) model, and propose an optimized PSO-GM (1,
1) Model. Combining axial force and inclinometer
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Figure 11: BP network test sample.
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Figure 12: PSO-BP network test sample.
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Figure 10: PSO-BP network training sample.
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Table 6: ZL2-7 actual value and model fitting value.

Period Actual value
BP network PSO-BP network

Fitting value Relative error (%) Fitting value Relative error (%)
1 1091.74 1094.02 −0.21 1096.139 −0.40
2 1227.01 1221.387 0.46 1226.61 0.03
3 1343.88 1351.156 −0.54 1345.639 −0.13
4 1578.08 1567.732 0.65 1576.096 0.12
5 1757.89 1770.027 −0.69 1760.421 −0.14
6 1822.97 1810.918 0.66 1821.395 0.08
7 1828.44 1833.811 −0.29 1828.591 −0.01
8 1908.81 1926.841 −0.94 1908.798 0
9 2061.54 2014.674 2.27 2061.533 0
10 2025.6 2070.983 −2.24 2025.602 0
11 2151.51 2130.434 0.98 2151.51 0
12 2221.34 2225.197 −0.17 2221.34 0

Table 7: ZL2-7 actual value and predicted value comparison results table.

Period 13 14 15
Actual value 2350.88 2342.03 2455.03

BP network Predicted value 2228.461 2270.236 2564.764
Relative error (%) 5.21 3.07 −4.47

PSO-BP network Predicted value 2305.01 2388.83 2405.64
Relative error (%) 1.95 −2.00 2.01
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Figure 13: Comparison of actual and predicted values.
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Table 8: Comparison of three models.

Period Actual value
Predicted value

PSO-GM (1, 1) PSO-BP PSO-GM-BP
13 2350.88 2390.73 2305.01 2316.65
14 2342.03 2476.32 2388.83 2356.05
15 2455.03 2579.31 2405.64 2407.19

Table 9: Comparison of relative error of three models.

Period
Relative error (%)

PSO-GM (1, 1) PSO-BP PSO-GM-BP
13 −1.69 1.95 1.45
14 −5.73 −2 −0.60
15 −5.06 2.01 1.94
Average relative error 4.16 1.98 1.33

Table 10: Actual and simulated results of B16.

Period Actual value
GM (1, 1) PSO-GM (1, 1)

Fitting value Relative error (%) Fitting value Relative error (%)
1 21.66 21.6600 0.00 21.1069 2.55
2 23.30 22.8930 1.75 22.6821 2.65
3 23.90 23.6234 1.16 23.4549 1.86
4 23.25 24.3771 4.85 24.2521 4.32
5 24.50 25.1548 2.67 25.0804 2.37
6 25.31 25.9574 2.56 25.9350 2.47
7 27.95 26.7856 4.17 26.8186 4.05
8 29.04 27.6402 4.82 27.7323 4.50
9 28.23 28.5220 1.03 28.6772 1.58
10 29.44 29.4320 0.03 29.6543 0.73
11 30.38 30.3711 0.03 30.6646 0.94
12 30.81 31.3400 1.72 31.7094 2.92
13 31.23 32.3399 3.55 31.9099 2.18
14 31.92 32.9946 3.37 32.5515 1.98
15 32.44 33.6142 3.62 33.1876 2.3

Table 11: Accuracy assessment table.

Model C P
GM (1, 1) 0.1508 1
PSO-GM (1, 1) 0.1072 1
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Figure 19: BP network training sample.
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Figure 22: PSO-BP network test sample.

Table 12: B16 actual value and model fitting value results.

Period Actual value
BP network PSO-BP network

Fitting value Relative error (%) Fitting value Relative error (%)
1 21.66 21.6528 −0.03 21.6594 0.00
2 23.30 23.2941 −0.02 23.2997 0.00
3 23.90 23.8606 −0.16 23.8993 0.00
4 23.25 23.2772 0.12 23.2501 0.00
5 24.50 24.4945 −0.02 24.4982 −0.01
6 25.31 25.3054 −0.02 25.3095 0.00
7 27.95 27.9457 −0.01 27.9483 −0.01
8 29.04 29.0528 0.04 29.0400 0.00
9 28.23 28.2108 −0.07 28.2220 −0.03
10 29.44 29.4375 −0.01 29.4683 0.10
11 30.38 30.3777 −0.01 30.3346 −0.15
12 30.81 30.8088 −0.00 30.8323 0.07

Table 13: B16 actual value and predicted value comparison results.

Period 13 14 15
Actual value 31.23 31.92 32.44

BP network Predicted value 34.2091 33.9029 33.7154
Relative error (%) 9.54 6.21 3.93

PSO-BP network Predicted value 31.1965 31.6132 32.1754
Relative error (%) −0.11 −0.96 −0.82
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Figure 23: Comparison of the actual and predicted value.
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data, using GM (1, 1) model and PSO-GM (1, 1)
model, respectively, for prediction, PSO-GM (1, 1)
model has improved the prediction accuracy of the
two kinds of data, and Model stability is also better.

(3) (e PSO optimization algorithm is selected to op-
timize the weight and threshold, and the PSO-BP
network model was proposed. Combining the axial
support force and inclinometer data obtained on site,
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Figure 24: Residual training samples.
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Figure 25: Residual test sample.

Table 14: Comparison of three models.

Period Actual value
Predicted value

PSO-GM (1, 1) PSO-BP PSO-GM-BP
13 31.23 31.9099 31.1965 31.2924
14 31.92 32.5515 31.6132 31.8863
15 32.44 33.1876 32.1754 32.5039

Table 15: Comparison of relative error of three models.

Period
Relative error (%)

PSO-GM (1, 1) PSO-BP PSO-GM-BP
13 −2.18 0.11 −0.20
14 −1.98 0.96 0.10
15 −2.30 0.82 −0.20
Average relative error 2.15 0.63 0.17
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respectively, use the BP network and PSO-BP net-
work to predict. PSO-BP network has significantly
improved the prediction accuracy of the two kinds of
data, and the convergence speed is faster.

7. Conclusion

(1) Combine the advantages and disadvantages of the
PSO-GM (1, 1) model and the PSO-BP network to
construct a PSO-GM-BP model. (rough the
comparative analysis of the prediction results of
several models in this article, it could be concluded
that the GM (1, 1) model and the BP neural network
model can both predict more accurate results. With
higher accuracy and more substantial applicability,
the PSO-GM-BP model has the best predictive effect
and can effectively guide the construction of foun-
dation pit projects.

(2) (e PSO algorithm is used to optimize the GM (1, 1)
model and the BP network, which strengthens the
accuracy and applicability of the model, but at the
same time, there are some shortcomings and areas
for improvement. While continuing to study, we will
also consider amore in-depth comparison with other
methods to find a more reasonable solution suitable
for engineering intelligent applications.
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)is study aims at proposing a computer visionmodel for automatic recognition of localized spall objects appearing on surfaces of
reinforced concrete elements. )e new model is an integration of image processing techniques and machine learning approaches.
)e Gabor filter supported by principal component analysis and k-means clustering is used for identifying the region of interest
within an image sample. )e binary gradient contour, gray level co-occurrence matrix, and color channels’ statistical mea-
surements are employed to compute the texture of the extracted region of interest. Based on the computed texture-based features,
the logistic regression model trained by the state-of-the-art adaptive moment estimation (Adam) is utilized to establish a decision
boundary that delivers predictions on the status of “nonlocalized spall” and “localized spall.” Experimental results demonstrate
that the newly developed model is able to achieve good detection accuracy with classification accuracy rate� 85.32%, pre-
cision� 0.86, recall� 0.79, negative predictive value� 0.85, and F1 score� 0.82. )us, the proposed computer vision model can be
helpful to assist decision makers in the task of the periodic survey of structure heath condition.

1. Introduction

Public safety is a major concern of civil engineers who design
and maintain high-rise buildings. Despite considerable ef-
forts in design and advanced knowledge of building
structures, accidents can still happen in the built environ-
ment due to excessive usage, structural aging, and inclement
weather conditions [1]. Among the hazards occurred in
high-rise buildings, falling objects from overhead caused by
concrete spalling can be particularly dangerous and have a
high potential severity to occupants’ heath [2]. )e effect of
concrete debris can be devastating for human lives if it gets
broken off from surfaces of exterior wall systems of high-rise
buildings [3].

A concrete spall (Figure 1) is regarded as flakes of
concrete/mortar broken off from a concrete element (e.g.,
beam, wall, and ceiling) [4]. Spalling is typically caused by
stresses brought about by differential movement of

materials. Most often, spalling in concrete is due to cor-
rosion of steel reinforcement embedded in the structure. To
prevent such accidents and to ensure the safety and ser-
viceability of the built environment, periodic visual surveys
of structural heath condition and proper maintenance ac-
tivities are very crucial [5].

In developing countries, including Vietnam, manual
visual inspection is still the principal method for evaluating
structural heath conditions. )is activity is performed at
regular intervals to identify potential damages and guarantee
the service/safety requirements of high-rise buildings.
Provided the well-trained technicians experienced in
structural heath assessment, manual visual inspection is able
to providing accurate surveying outcomes. Nevertheless, due
to the increasing numbers of buildings needed to be
inspected periodically and the limited number of experience
technicians, timely evaluation of building elements becomes
infeasible and inspection deficiencies become a major
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concern of property owners. )erefore, there is a practical
need to substitute the unproductive manual visual survey
with a more effective approach.

Recently, due to the ease of access to low-cost and high-
quality visual sensing equipment including digital cameras,
computer vision-based models have been increasingly used
for automatic structural heath monitoring [6]. )ese ad-
vanced approaches have been proved to be viable alterna-
tives to replace the labor-intensive and subjective methods
relied on manual survey. With the use of advanced image
processing techniques operated on image samples collected
from digital cameras, the physical condition of civil struc-
tures can be continuously surveyed and reported to main-
tenance agencies. )is evaluation outcome can be effectively
used to support the decision-making process regarding
maintenance prioritization and funding allocation.

Due to such reasons, a large number of computer vision-
based approaches have been proposed to successfully detect
various forms of structural defects such as cracking and
spalling. Abdel-Qader et al. [7] employs a principle com-
ponent analysis-based model to recognize cracking defects
appeared on bridge surfaces; the principle component
analysis is utilized to support data cluster identification with
a large database of bridge images. O’Byrne et al. [8] utilizes
texture analysis for detecting damages appeared on infra-
structural elements; the texture-based image segmentation
relies on pixel intensity values and gray level co-occurrence
matrix. Subsequently, a support vector machines model is
then employed for the data classification task. Lattanzi and
Miller [9] rely on the data clustering approach for image
segmentation based on the Canny and k-means algorithm;
the research finds that the combined algorithms can deliver
good accuracy of crack recognition under different envi-
ronmental circumstances.

As can be seen from the literature, a large number of
previous studies have been dedicated to crack detection for
concrete structures [10–20]. Only recently, there is an in-
creasing focus on detecting other forms of damage including
concrete spalling [21–24]. German et al. [25] constructs a
combination of segmentation, template matching, and
morphological preprocessing for detecting spall appeared on
surfaces of concrete columns. Machine learning models

including support vector machines, Näıve Bayesian classi-
fier, and random forest have been employed to identify
concrete defects [8, 26]. A model for localization and
quantification of concrete spalling defects based on terres-
trial laser scanning has been proposed in [27]. Dawood et al.
[21] presented a computer vision-based model for spalling
detection used in environment of subway networks.

Hoang [28] relies on a steerable filter and machine
learning to recognize wall defects such as cracks and spalls. A
concrete spalling detection model for metro tunnel from
point cloud that employs a roughness descriptor has been
developed by Wu et al. [24]. Hoang [29] presents an image
processing approach for automatic detection of concrete
spalling using machine learning algorithms and image
texture analysis. Nevertheless, this model focused on ma-
chine learning-based texture discrimination and was not
capable of isolating the entire individual spall object.

Yao et al. [30] establishes a convolutional neural net-
work-based model for concrete bughole detection; a large
number (about 10,000) of image examples have been used as
a training dataset. Li et al. [31] proposed a model for
detecting exposed aggregate appeared on stilling basin slab
using the attention U-Net network. Chow et al. [32] employs
deep learning of a convolutional autoencoder for anomaly
detection of defects existing on concrete structures. A model
for recognizing damaged ceiling areas in large-span struc-
tures has been proposed by Wang et al. [33]; this model
employs a convolutional neural network for pattern rec-
ognition. Although deep learning-based models are capable
of performing feature extraction phase automatically, these
supervised learning models generally demand a large-size
training dataset and a meticulous process of data labeling
[34–36]. )is data labeling process itself can be time-con-
suming as well as error prone [5]. In addition, the deep
learning models also require experience and the trial-and-
error process to adjust a significant amount of model’s free
parameters.

An effort of combining unsupervised learning and
machine learning-based data classification has been recently
introduced in [37]. )e k-means clustering algorithm and
machine learning classifier have been integrated to form an
automatic approach for estimating stripping of asphalt

(a) (b) (c)

Figure 1: Spall objects on (a) ceiling, (b) beam, and (c) wall structures.
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coating. )e k-means clustering algorithm is utilized to
separate pixels with similar values on the surface of ag-
gregates; subsequently, machine learning models are used to
categorize the identified clusters into groups of asphalt-
coated and uncoated areas.

As pointed out by previous studies, the current chal-
lenges faced by computer vision-based concrete damage
detection including spall recognition are complex envi-
ronmental conditions (e.g., noisy background image) [5]
and the difficulty of the image labeling process [32]. More
efforts should be dedicated to automatically identify the
damage’s region of interest (ROI) via unsupervised learning
methods. Capable machine learning methods with few free
parameters should be investigated as viable alternatives to
sophisticated models used for data classification. It is be-
cause simple and manageable models significantly facilitate
the development and application of hybrid computer vision-
machine learning approaches for concrete spalling
detection.

Based on such motivation, this study proposes and
verifies an automated method for recognizing localized spall
objects based on an integration of a Gabor filter, k-means
clustering, image texture analysis, and logistic regression
pattern classification models. )e Gabor filter coupled with
the principal component analysis and the k-means clustering
are used synergistically for automatic identification of ROI
on concrete surface. )e image texture analysis combines
powerful texture discriminators of binary gradient contours,
color channels’ properties, and the gray level co-occurrence
matrix. )e logistic regression model trained by the state-of-
the-art adaptive moment estimation (Adam) optimizer is
employed for data classification.

)e subsequent sections of the study are organized as
follows: the second section reviews the research method-
ology. )e third section presents the image data collection
process. )e proposed integrated model used for concrete
spall detection is described in the next section, followed by
the experimental results and discussion. )e final section
summarizes the research findings with several concluding
remarks.

2. Research Methodology

2.1. Gabor Filter (GF). Image segmentation is the process of
separating an image into distinctive regions [38, 39]. )e GF
is a widely applied approach for segmenting image [40, 41].
)is approach is inspired by the multichannel operation of
the human visual system used for visual interpretation in
real-world circumstances [42–44]. Based on experimenta-
tion, it has been shown that the GF resembles simple cells in
the Mammalian vision system. )us, this filter can be a
reasonable model of how humans actually recognize and
discriminate areas characterized by different texture [45].

)e GF consists of two-dimensional Gabor filters which
can be described as complex sinusoidal waves modulated by
Gaussian envelopes [43]. )is filter carries out a localized
and oriented frequency analysis of a two-dimensional signal.
)e GF yields a response that can be mathematically given as
follows [45]:

h(x, y) � exp −
1
2
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2

σ2x
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y
2

σ2y
⎡⎢⎢⎣ ⎤⎥⎥⎦
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⎭cos 2πu0x( , (1)

where u0 denotes the frequency of a sinusoidal plane wave
along the x axis. σx and σy represent the space constants of
the Gaussian envelope along the x and y axes, respectively. It
is noted that the GF with arbitrary orientations can be
obtained via a rigid rotation of the x-y coordinate system.

)e frequency domain representation of the GF is given
by [45]

H(u, v) � A exp −
1
2

u − u0( 
2

σ2u
  +

v
2

σ2v
 

+ exp −
1
2

u + u0( 
2

σ2u
  +

v
2

σ2v
 ,

(2)

where σu � 1/2πσx, σv � 1/2πσy, and A � 2πσxσy.
It is worth noticing that it is necessary to specify tuning

parameters of the GF including the orientation angles and
the radial frequency. Based on the suggestions of Jain and
Farrokhnia [45], four values of orientations are often
employed: 0°, 45°, 90°, and 135°. Given an image with a width
of Nw pixels, the following values of radial frequency u0 can
be considered: 1
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2.2. .e K-Means Clustering Algorithm. In this study, the
unsupervised machine learning approach of k-means clus-
tering [46] is employed to divide an image into different
regions based on the analysis results obtained from the GF.
)is unsupervised machine learning method is simple yet
powerful algorithm for automatic data grouping [47]. Based
on such method, image pixels that have the similar prop-
erties can be grouped in one cluster. Accordingly, data
samples belonging to one cluster feature the smallest degree
of variation. )e iterative algorithm used to compute the
cluster centers is presented in Algorithm 1.

2.3. Image Texture Analysis

2.3.1. Binary Gradient Contours (BGC). )e BGC, proposed
by Fernández et al. [48], is a group of computationally simple
texture descriptors. Given a 3× 3 grayscale image patch,
these texture descriptors employs a set of eight binary
gradients between pairs of pixels all along a closed path
around the central pixel [49]. )e BGC includes three
versions which are single-loop, double-loop, and triple-loop
descriptors. Via experimentation, the BGC operator has
been found to achieve good texture discrimination
outcomes.

A matrix S which is the pixel intensity of an image patch
of the size 3× 3 is given as follows:

S �

I7 I6 I5

I0 Ic I4

I1 I2 I3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)
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where Ic denotes the central pixel. I0, I1, . . ., I7 are the
neighboring pixels.

)e schematic representations of BGC with three ver-
sions of single, double, and triple loops are presented in
Figure 2. In addition, to facilitate the mathematical for-
mulation of these texture descriptors, a square crop Sm,n is
given by

S �

Im−1,n−1 Im−1,n Im−1,n−1

Im,n−1 Im,n Im,n+1

Im+1,n−1 Im+1,n Im+1,n+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where Im,n represents the pixel at mth row and nth column.
Accordingly, the formulations of the single, double, and

triple-loop versions are given by [48]

(i) Single-loop version:

BGC1 � 
7

n�0
λ( In − I( n+1 )mod 8 ) × 2n

− 1. (5)

(ii) Double-loop version:

BGC2 � 15 × 
3

n�0
λ( I2n − I2( n+1 )mod 8 ) × 2n

+ 
3

n�0
λ( I2n+1 − I( 2n+3 )mod 8 ) × 2n

− 16.

(6)

(iii) Triple-loop version:

BGC3 � 

7

n�0
λ( I3nmod 8 − I3( n+1 )mod 8 ) × 2n

− 1,

where λ( x ) �
1, if x≥ 0,

0, if x< 0.


(7)

2.3.2. RGB Channels’ Properties. Since the color properties
of spall and nonspall objects are expected to be dissimilar,
this study employs the statistical measurements of three
color channels: red (R), green (G), and blue (B) as a means of
texture description. Given an image sample I, the first-order
histogram P(I) can be computed. Accordingly, the mean
(μc), standard deviation (σc), skewness (Sc), kurtosis (Kc),
entropy (Ec), and range (Rc) of the three color channels (R,
G, and B) can be calculated [29, 50].

2.3.3. Gray Level Co-Occurrence Matrix (GLCM). )e
GLCM [51, 52] is also an extensively employed approach for
characterizing image texture. )is approach focuses on
capturing the repeated occurrence of certain gray-level
patterns [53].)erefore, indices extracted from a GLCM can
be effectively utilized to evaluate the coarseness/fineness of
an image region. Let r and θ represent a distance and a
rotation relationship between two individual pixels. )e
GLCM, denoted as Pδ, denotes a probability of the two gray
levels of i and j having the relationship specifying by r and θ
[54]. Based on the recommendations of Haralick et al. [51],
the GLCM can be constructed with r� 1 and θ � 0°, 45°, 90°,
and 135°. Accordingly, for each matrix, four indices of
angular second moment (AM), contrast (CO), correlation
(CR), and entropy (ET) can be computed as follows [29, 55]:
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(8)

where Ng denotes the number of gray level values;
μX, μY, σX, and σY are the means and standard deviations of
the marginal distribution with respect to PN

δ (i, j).

2.4. Logistic Regression Model (LRM). )e LRM is a capable
method for solving binary classification problems
[29, 56–58]. )e task at hand is to construct a decision

Single loop

I7 I6 I5
I0 Ic I4
I1 I2 I3

Double loop Triple loop

Figure 2: )e graphical representation of BGC.

Determine the number of cluster k
Randomly assign k centers of data samples

(1) Loop
(2) Assign each data points to the cluster with the nearest mean
(3) Recalculate means for data points assigned to each cluster
(4) Until the data assignments are unchanged.

ALGORITHM 1: )e k-means clustering.
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boundary that categorizes the input data into two distinctive
regions. )erefore, given a vector of input data
xi � xi1, xi2, ..., xi D, where D is the number of the features
used for classification, the model is able to derive the class
output y with either y� 0 (for the negative class of nonspall)
and y� 1 (for the positive class of spall).

)e probability of the positive class hθ(xi) derived by a
LRM is given by [59]

hθ xi(  � hθ xi1, xi2, ..., xi D(  �
1

1 + exp −ηi( 

�
1

1 + exp −θT
xi 

,

(9)

where ηi � θ0 + θ1xi1 + θ2xi2 + · · · + θDxi D � θTxi. )e
vector θ � θ0, θ1, θ2, ..., θD is the model parameter.

As a supervised learning approach, a set of training
examples needs to be prepared so that the vector θ can be
adapted during the model training phase. A LRM can be
trained by either minimizing the least square loss function or
maximizing the log likelihood function.

)e least square loss function is given by [60]

Loss (θ) � 
M

i�1
yi − hθ xi( ( 

2
, (10)

where M is the number of training data.
)e log likelihood function is described as follows

[61, 62]:

Loss ( θ ) � log( L( θ ) ) � 

M

i�1
yilog( hθ( xi )

+( 1 − yi )( 1 − log( hθ( xi ) ).

(11)

A LRM can be trained via the stochastic gradient descent
framework [29]. If the least square loss function is used, the
update rule for adapting the model parameters is given by
[60]

θk � θk + Lr × y − hθ xi( (  × hθ xi(  1 − hθ xi( (  × xi,k,

(12)

where Lr denotes the learning rate parameter.
Meanwhile, if the log likelihood function is selected, the

update rule used that compute θ is given by [61, 62]

θk � θk + Lr × yi − hθ xi( ( xi,k. (13)

2.5. Adaptive Moment Estimation (Adam) Optimizer.
Adam, proposed by [63], is designed as an algorithm for
first-order gradient-based optimization of stochastic ob-
jective functions. )is algorithm is relied on adaptive esti-
mates of lower-order moments. Adam can be considered as
an extension of the stochastic gradient descent employed to
train machine learning models via an iterative weight
updating process [64]. It is noted that the conventional
stochastic gradient descent employs a constant learning rate
(Lr) for all weight updates. Adam seeks for improving the

model training phase by adaptively fine-tuning the Lr
parameter.

Adam harnesses information obtained from the average
of the second moments of the gradients. In detail, this
optimization algorithm computes an exponential moving
average of the gradient and the square gradient. Moreover, a
set of parameters (β1 and β2) is used to dictate the decay rates
of these moving averages [64]. Via experimentation, it can be
shown that the advantages of this optimizer include efficient
computation, straight forward implementation, no memory
requirements, and the capability of dealing with a large
number of optimized parameters [63].

In order to implement Adam to optimize a LRM, it is
necessary to compute the gradient (gt). )e gradient gt in
the case of using the least square loss function is given by
[60]

gt �
z Loss(θ)

zθk

� 2 y − hθ xi( (  × hθ xi(  × 1 − hθ xi( (  × xi,k.

(14)

If the log likelihood function is employed, the gradient gt

is given by [22, 61, 62]

gt �
z Loss(θ)

z θk( 
� yi − hθ xi( ( xi,k. (15)

Accordingly, the Adam procedure (illustrated in Algo-
rithm 2) used for training a LRM can be performed itera-
tively with the following steps:

(i) Compute gradient gt

(ii) Update the biased first and second raw moment
estimates

(iii) Compute the bias-corrected moment estimates
(iv) Adapt the optimized parameters

3. Collection of Image Samples

)e LRM used in this study belongs to the category of
supervised machine learning methods. To train this LRM
with the use of the aforementioned Adam optimizer, it is a
requisite to prepare a set of training image samples as well as
a set of testing image samples to verify the model con-
struction phase. )erefore, this study has carried out field
surveys at several high-rise buildings in Danang city
(Vietnam) to collect a set of 600 image samples. Among
them, 300 samples contain localized spall objects and 300
samples consist of nonlocalized spall objects. Notably, image
samples of the two class of nonspall (class label� 0) and spall
(class label� 1) have been assigned by a human inspector for
the purposes of model training and testing.)e Cannon EOS
M10 (CMOS 18.0 MP) and Nikon D5100 (CMOS 16.2 MP)
have been employed to collect image samples. In addition,
the image size has been standardized to be 64× 64 to fa-
cilitate the computation process. )e image set has been
collected so that a diverse background (e.g., cracks and
stains) can be included. )e collected image set is demon-
strated in Figure 3.
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4. The Proposed Hybrid Approach of Image
Processing and Machine Learning
Approach for Automatic Detection of
Concrete Spall

)is section of the study aims at describing the structure of
the proposed hybrid approach of image processing and
machine learning used for recognizing localized spall object.
)e overall structure of the proposed approach is presented
in Figure 4. It is noted that the hybrid model used for
automatic concrete spall detection has been developed in
Visual C#.NET environment (Framework 4.6.2) and
implemented with the ASUS FX705GE–EW165T (Core i7
8750H, 8GB Ram, 256GB solid-state drive).

)e model can be divided into several operational steps:

(i) Automatic ROI identification

(ii) Image texture computation
(iii) Machine learning-based pattern classification

4.1.AutomaticRegionof Interest (ROI) Identification. To deal
with the diverse shapes of localized spall objects, this study
relies on the techniques of GF to automatically identify ROIs
that contains the potential defects of interest. It is noted that
an image sample has been denoised by a median filter with a
window size of 4 pixels and converted to a grayscale one.
After the GFs with different orientations and radial fre-
quency are computed, the principal component analysis
(PCA) is performed to transform the set of GFs and reduce
the data dimensionality (Figure 5). )e number of the PCA
transformed data is selected corresponding to 99% of cu-
mulative variance explained. It is noted that the GF and the

(a)

(b)

Figure 3: Demonstration of the collected image samples: (a) images containing localized spall objects and (b) images containing non-
localized spall objects.

Define step size a� 0.001
Define exponential decay rates β1 � 0.9 and β2 � 0.9999
Define the objective function f(θ)
Randomly initialize the searched variable θ
Assign m0 � 0, v0 � 0, and t� 0

(1) While (θt not converged)
(2) t� t+ 1
(3) Compute gradient: gt � ∇θft(θt−1)

(4) Update biased 1st moment estimate
(5) mt � β1mt−1 + (1 − β1)gt

(6) Update biased 2nd raw moment estimate
(7) vt � β2vt−1 + (1 − β2)g2

t

(8) Calculate bias-corrected first moment estimate
(9) mt � mt/(1 − βt

1)

(10) Calculate bias-corrected 2nd raw moment estimate
(11) vt � vt/(1 − βt

2)

(12) Update the searched parameter
(13) θt � θt−1 − α × ( mt/

��
vt


+ ε)

(14) End While
(15) Return θt

ALGORITHM 2: )e Adam optimization procedure.
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PCA operations have been implemented via built-in func-
tions provided by the Accord.NET Framework [65].

Based on the PCA result, the k-means clustering algo-
rithm is used to segment the image sample. Via experi-
mentation, the suitable number of clusters for the collected
dataset is found to be 3. Subsequently, the morphological
operation of filling and removing small objects are utilized to
process the segmented image. Moreover, the operation of
background removal is performed to remove redundant
objects. In this study, an object within an image sample is
considered to be background if its width or height is equal to
that of the image sample.

Accordingly, each image cluster or segment is presented
as a binary image. )e connected component labeling al-
gorithm [66] is then used to analyze the position of the
binary-1 pixels and separate them into distinctive compo-
nent regions. Essentially, all pixels having value binary 1 and
are connected to each other are grouped into one object [38].
To remove crack objects, for each grouped pixels obtained
from the connected component labeling analysis, an object
slenderness index (OSI) is computed as follows:

OSI � Max
LOX

μOX

,
LOY

μOY

 , (16)

where LOX and LOY are the object lengths along the X axis
and Y axis, respectively. μOX and μOY denote the mean
thicknesses of the object along the X axis and Y axis,
respectively.

If the OSI of an object is greater than a certain threshold
(TOSI), this object is classified as a crack. Via several trial-and-
error experiments with the collected image sample, a suitable
value for the threshold TOSI is found to be 5. After the ROIs
have been identified, operations of image convolution and
cropping are employed to isolate the areas of interest within
the image sample. )e processes of ROI identification and
isolation are demonstrated in Figures 6 and 7.

4.2. Image Texture Computation. Based on ROIs obtained
from the previous step, image texture analysis consisting of
statistical measurements of BGC, RGB channels, and GLCM
is carried out. )e BGC texture descriptor includes all of the
three variants of single, double, and triple loops. Each of the
variants yields a histogram which describes the texture
property of an image sample. Accordingly, statistical indices
including mean, standard deviation, skewness, kurtosis, and
entropy can be computed for each histogram. )erefore, the
BGC results in 15 numerical features. As mentioned earlier,
the mean (μc), standard deviation (σc), skewness (Sc),
kurtosis (Kc), entropy (Ec), and range (Rc) of the three color
channels (R, G, and B) are used to represent the color
features of image samples. )us, there are 6× 3�18 addi-
tional numerical features. Moreover, properties of the

Logistic regression
model training 

Training samples

Image texture
computation Detected spall

objects

Image texture
computation

Binary gradient
contours

Gray level co-
occurrence matrix

Testing samples

Training images

Region of interest
(ROI) extraction

Gabor filter

Connected component
labeling operation

RGB channel’s
statistical properties

Testing images

K-Means
clustering

Adam-LL

Adam-LS

Training method
selection

Logistic regression
model prediction

Figure 4: )e proposed model structure.

Gabor filter

Principal component
analysis

�e 1st principal
component

�e 2nd principal
component

�e 3rd principal
component

RGB image Grayscale image

Figure 5: Image processed by the Gabor filter.
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GLCM including the four indices of angular secondmoment
(AM), contrast (CO), correlation (CR), and entropy (ET) are
used. It is noted that for each image sample, four GLCMs are
established. )us, the GLCM texture descriptor yields
4× 4�16 features. In total, there are 15 + 18 + 16� 49 nu-
merical features that can be extracted from the image texture
computation process.

4.3. Pattern Classification Using LRM Trained by the Adam
Optimizer. Using the extracted ROIs and the aforemen-
tioned texture descriptors, a dataset with 790 samples and 49
features can be constructed. )is dataset contains 465
nonlocalized spall samples and 325 localized spall samples.
As stated earlier, the output class is either 0 for the negative
class and 1 for the positive class. Moreover, in order to
standardize the input features’ range, the numerical texture
descriptors have been normalized by the Z-score equation as
follows:

XZN �
Xo − mX

sX

, (17)

where Xo and XZN represent the original and normalized
input data, respectively. mX and sX are the mean and the
standard deviation of the original input data, respectively.

Based on the aforementioned dataset, the LRM is trained
with the Adam optimizer using the least square and log
likelihood loss functions. )ese two LRM is denoted as

Adam-LS and Adam-LL. It is noted that 90% of the collected
dataset has been employed to construct the LRM model.
Meanwhile, the rest of the dataset is reserved to verify the
generalization capability of the model.

5. Research Findings and Discussion

As mentioned earlier, the whole collected dataset is divided
into two subsets: a training set (90%) and a testing set (10%).
Moreover, to diminish the effect of randomness brought
about by data sampling and to assess the generalization
capability of the integrated method reliably, the data sam-
pling process has been repeated 20 times. A partitioned
datasets used for model training and testing are demon-
strated in Table 1. In addition, the LRM trained with the
stochastic gradient descent algorithm with the least square
and log likelihood loss function are employed as benchmark
models. )e stochastic gradient descent models coupled
with the former and later loss function are denoted as LS-LR
and LL-LR, respectively. Furthermore, the two LRMs trained
with the Adam optimizer are denoted as Adam-LS-LR and
Adam-LL-LR. All of the LRMs have been trained with 1000
iterations.

In addition, the classification accuracy rate (CAR),
precision, recall, negative predictive value (NPV), and F1
score are computed to quantify the model predictive ac-
curacy. )ese performance measurement indices are pro-
vided as follows [67]:

Gabor filter Segmented image

Binarized segments Segmented objects 

Extracted ROIImage sample

(a)

Gabor filter Segmented image

Binarized segments Segmented objects 

Extracted ROIImage sample

(b)

Figure 6: ROI extraction for images containing localized spall objects: (a) one object and (b) multiple objects.
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Gabor filter Segmented image

Binarized segments Segmented objects 

Extracted ROIImage sample

(a)

Gabor filter Segmented image

Binarized segments Segmented objects 

Extracted ROI
Image sample

(b)

Figure 7: ROI extraction for images containing nonlocalized spall objects: (a) one object and (b) multiple objects.

Table 1: Demonstration of the collected dataset.

Set Case IF1 IF2 IF3 IF4 . . . IF46 IF47 IF48 IF49 Class label

Training

1 39.64 37.27 34.53 34.33 . . . 0.10 745.72 0.00 6.47 0
2 12.92 11.63 9.60 18.34 . . . 0.17 497.69 0.00 3.82 0
3 68.21 65.76 59.38 40.67 . . . 0.03 770.71 0.00 6.82 0
4 44.78 45.60 43.86 56.59 . . . 0.29 1835.96 0.00 4.39 0
5 65.40 64.84 66.24 60.02 . . . 0.12 2458.40 0.00 4.12 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

707 68.85 58.73 45.76 34.57 . . . 0.01 824.92 0.00 6.77 1
708 55.85 51.50 46.05 26.86 . . . 0.01 762.79 0.00 7.48 1
709 51.27 47.45 42.09 35.80 . . . 0.05 928.80 0.00 6.93 1
710 60.32 55.98 49.76 31.67 . . . 0.01 1340.14 0.00 6.67 1
711 73.54 65.91 62.20 44.11 . . . 0.02 1180.24 0.00 7.82 1

Testing

1 56.26 58.54 61.95 25.44 . . . 0.01 498.38 0.00 7.27 0
2 93.11 95.22 103.83 41.81 . . . 0.10 1353.60 0.00 3.32 0
3 85.93 83.79 93.25 49.92 . . . 0.07 3975.50 0.00 3.95 0
4 58.64 59.44 64.39 55.01 . . . 0.18 968.76 0.00 5.57 0
5 83.84 84.93 88.35 68.18 . . . 0.14 493.65 0.00 5.54 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75 62.98 47.68 28.07 32.93 . . . 0.03 244.76 0.00 7.79 1
76 46.17 44.28 39.69 33.57 . . . 0.08 467.10 0.00 6.35 1
77 51.47 46.08 37.80 20.61 . . . 0.01 370.11 0.00 8.62 1
78 34.17 30.02 24.89 29.42 . . . 0.10 413.32 0.00 6.74 1
79 44.89 37.54 27.15 56.16 . . . 0.32 528.69 0.00 5.10 1
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CAR �
TP + TN

TP + TN + FP + FN
× 100%,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

NPV �
TN

TN + FN
,

F1 score �
2TP

2TP + FP + FN
,

(18)

where FN, FP, TP, and TN denote the number of false-
negative, false-positive, true-positive, and true-negative
samples, respectively.

)e experimental results obtained from the repetitive
data sampling with 20 runs are reported in Table 2. As can be
seen from this table, the Adam-LL-LR has achieved the best
predictive accuracy in both of the training (CAR� 85.25%,
precision� 0.84, recall� 0.81, NPV� 0.86, and F1 score-
� 0.82) and testing phases (CAR� 85.32%, precision� 0.86,
recall� 0.79, NPV� 0.85, and F1 score� 0.82). Since the
prediction performances obtained from the training and
testing phases of the Adam-LL-LR are relatively similar, it
can be shown that this model has not suffered from over-
fitting. In addition, the LL-LR model is the second best
approach (with CAR� 81.90% and F1 score� 0.78), followed
by the Adam-LS-LL (with CAR� 72.03% and F1 score-
� 0.71) and the LS-LR (with CAR� 70.82% and F1 score-
� 0.70). Herein, the index of the F1 score is emphasized
because it presents the harmonic mean of the precision and
recall.

)e training and testing performances of the employed
models are graphically presented in Figures 8 and 9. )e
boxplot shown in Figure 10 demonstrates the testing

performances of LRMs. In addition, to confirm the statistical
difference of each pair of the localized spall detection
models, the Wilcoxon signed-rank test with a significance
level (p value)� 0.05 is employed in this section of the study.
)e test outcomes are reported in Table 3. Observably,
experimental results show that all of the p values are lower
than the significance level. )us, the null hypothesis shows
that the performances of the two models under testing are
statistically indifferent and can be confidently rejected. )is
hypothesis test asserts the superiority of the Adam-LL-LR
model over other benchmark approaches.

Based on the experimental result, the Adam-LL-LR
model is best suited for the collected dataset at hand. )e
performance of this model is further studied in this section.
Illustrations of correctly recognized spall objects yielded by
Adam-LL-LR are presented in Figure 11. As can be observed,
the model can deliver accurate detection results in the

Table 2: Prediction result comparison.

Phase Indices
Adam-LL-LR LL-LR Adam-LS-LR LS-LR

Mean Std. Mean Std. Mean Std. Mean Std.

Training

CAR (%) 85.27 1.76 84.52 3.82 72.52 1.69 71.81 2.52
TP 246.95 12.48 239.70 26.87 271.85 8.71 265.65 14.59
TN 359.30 13.68 361.25 14.25 243.75 13.76 244.90 11.57
FP 46.85 12.77 53.15 26.97 22.50 7.68 28.25 15.63
FN 57.90 14.13 56.90 14.71 172.90 12.92 172.20 10.72

Precision 0.84 0.04 0.82 0.09 0.92 0.03 0.90 0.05
Recall 0.81 0.04 0.81 0.04 0.61 0.02 0.61 0.02
NPV 0.86 0.03 0.86 0.03 0.58 0.03 0.59 0.03

F1 score 0.82 0.02 0.81 0.06 0.74 0.01 0.73 0.03

Testing

CAR (%) 85.32 4.64 81.90 4.06 72.03 5.37 70.82 5.92
TP 26.90 5.19 25.25 3.94 27.60 3.29 28.10 6.03
TN 40.50 5.68 39.45 4.78 29.30 3.45 27.85 5.17
FP 4.30 2.26 6.90 2.62 3.05 2.42 3.00 2.02
FN 7.30 2.76 7.40 2.91 19.05 4.34 20.05 3.73

Precision 0.86 0.07 0.79 0.08 0.90 0.07 0.90 0.09
Recall 0.79 0.08 0.78 0.06 0.59 0.07 0.58 0.09
NPV 0.85 0.06 0.84 0.07 0.61 0.08 0.58 0.07

F1 score 0.82 0.06 0.78 0.05 0.71 0.06 0.70 0.08

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

CAR Precision Recall NPV F1 score

Adam-LL-LR
LL-LR

Adam-LS-LR
LS-LR

Figure 8: Performance measurement indices for the training
phase.
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presence of a window (Figure 11(a)) and a minor defect on
the mortar surface (Figure 11(b)). Notably, the localized
spall objects can still be located well in the cases that there are
crack objects in the captured scenes (Figures 11(c)–11(e)).
Furthermore, Adam-LL-LR has also performed well in the
cases that there are multiple spall objects in the image
samples (Figures 11(f ) and 11(g)). In addition, the proposed

Adam-LL-LR model can be used to quantify the percentage
of damaged areas found in image samples; the computation
results are demonstrated in Figure 12.

Nevertheless, as shown in Figure 13, the newly developed
model has made incorrect detection results in the cases of
complex background. As observed in Figure 13(a), an area in
the background has the texture property similar to that of the
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Figure 10: Model performances obtained from the repetitive data subsampling process: (a) CAR (%) and (b) F1 score.
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Figure 9: Performance measurement indices for the testing phase.

Table 3: Wilcoxon signed-rank test results.

Indices Model comparison Test outcome p value

CAR (%)
Adam-LL-LR vs. LL-LR Significant 0.0184

Adam-LL-LR vs. Adam-LS-LR Significant 0.0001
Adam-LL-LR vs. LS-LR Significant 0.0001

F1 score
Adam-LL-LR vs. LL-LR Significant 0.0400

Adam-LL-LR vs. Adam-LS-LR Significant 0.0004
Adam-LL-LR vs. LS-LR Significant 0.0001
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Figure 11: Illustrations of correctly classified cases.
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spall object. )is can lead to a false-positive detection.
Complex background (Figure 13(b)) and irregular lighting
conditions (Figure 13(c)) also tend to reduce the model
accuracy. )ese phenomena can lead to false-negative cases.

6. Concluding Remarks

Localized spall is a common defect observed on surfaces of
reinforced concrete elements. Accurate detection of this
damage is crucial during the phase of the periodic structural
heath survey. )is study has developed and verified a
computer vision-based approach for automating the task of

localized spall recognition. )e newly developed model is a
hybridization of image processing and machine learning
approaches. Image processing methods of the GF coupled
with k-means clustering and morphological analyses are
used to automatically identify the ROIs that potentially
contain the defect. )e BGC, GLCM, and color channels’
properties are employed as texture descriptors. Based on the
computed image texture, the LRM optimized by the state-of-
the-art Adam is used to construct a decision boundary that
separate the data samples into two regions of nonlocalized
spall and localized spall. Experimental results show that the
LRM trained by the Adam optimizer can deliver the most

Original image Segmented image Detected objects Computation results

Percentage of damaged
area: 8.70%

Percentage of damaged 
area of the 1st object: 4.88%

Percentage of damaged 
area of the 2nd object: 4.84%

Figure 12: Demonstration of the calculation of the percentage of damaged areas.

Original
image
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image

Binary-detected
object

Falsely
detected/undetected

object

(a)

Undetected object

(b)

Undetected object

(c)

Figure 13: Illustrations of incorrectly classified cases.
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desired prediction accuracy. )erefore, the proposed inte-
grated model can be a useful tool to assist building main-
tenance agencies in the task of evaluating structure heath
condition.
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com/NhatDucHoang/LocalizedSpallDetection_AdamLRM.
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Warm Mix Asphalt (WMA) and Hot Mix Asphalt (HMA) are prepared at lower temperatures, making it more susceptible to moisture
damage, which eventually leads to stripping due to the adhesion failure. Moreover, the assessment of the adhesion failure depends on the
expertise of the investigator’s subjective visual assessment skills. Nowadays, image processing has gained popularity to address the
inaccuracy of visual assessment. To attain high accuracy from image processing algorithms, the loss of pixels plays an essential role. In high-
quality image samples, processing takesmore execution time due to the greater resolution of the image.+erefore, the execution time of the
image processing algorithm is also an essential aspect of quality.+is manuscript proposes a parallel kmeans for image processing (PKIP)
algorithm using multiprocessing and distributed computing to assess the adhesion failure in WMA and HMA samples subjected to three
different moisture sensitivity tests (dry, one, and three freeze-thaw cycles) and fractured by indirect tensile test. For the proposed ex-
periment, the number of clusters was chosen as ten (k� 10) based on k value and cost of kmeans function was computed to analyse the
adhesion failure.+e results showed that the PKIP algorithmdecreases the execution time up to 30% to 46% if comparedwith the sequential
kmeans algorithm when implemented using multiprocessing and distributed computing. In terms of results concerning adhesion failure,
the WMA specimens subjected to a higher degree of moisture effect showed relatively lower adhesion failure compared to the Hot Mix
Asphalt (HMA) samples when subjected to different levels of moisture sensitivity.

1. Introduction

+e image processing method has been widely used as a
nondestructive system to evaluate 2D or 3D geometry in
numerous scientific fields [1]. In the field of civil engi-
neering, image processing has been successfully applied in
multiple applications such as pavement distress assessment,
site evaluation using satellite imaging, and analysis of crack
propagation and microstructures in cement-based materials
[2]. Concerning asphalt pavement binders, a number of
computer-vision based system has been developed, which is
broadly categorized into field assessment and laboratory

applications. Concerning field assessment, algorithms were
developed for the identification of pavement distress type
and size [2–5]. Nonetheless, these algorithms also allow
identifying the fractured surfaces of asphalt mixtures such as
broken aggregates or the adhesion and cohesion failures at
the interface of failed specimens [1–3].

In this work, the type and degree of failure due to the
moisture effect is evaluated by image analysis for a series of
Warm Mix Asphalt (WMA) mixtures. WMA technology
uses lower temperatures in comparison with conventional
Hot Mix Asphalt (HMA). Even though in contrast with
conventional Hot Mix Asphalt (HMA), the WMA
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technologies are more environmentally friendly and cost-
effective; however, due to the lower production temperature,
the WMA mixtures have shown less resistance against
moisture damage [6–8]. Concerning distress or stripping
identification using a computer vision-based system, it is
essential to know that the distressed/stripped area pixel
always possesses a lower pixel intensity compared to the
unstripped area [9]. Conventional tests carried out to
identify moisture damage region of interest (ROI) in asphalt
mixtures include the use of visual assessment depending on
the perception of the investigator [10], [11]. In such a
scenario, the investigator might miss out to select some part
of the ROI, which finally hampers the end result. +erefore,
to further understand the mechanisms, it seems necessary to
use an image segmentation algorithm that can quantify these
failures more accurately. It is deemed necessary to note that
these types of image processing involve high-performance
computation because the high-end image processing cannot
be handled efficiently on single computing node. In this
regard, a framework is needed that allows the researchers to
concentrate on the image processing tasks and refrains by
getting them involved into complicated details of distributed
computing. Additionally, the framework should provide the
researchers with the familiar image processing tools.

+is work proposes an implementation of clustering on
high-resolution images of WMA broken samples using a
parallel k means for image processing (PKIP) algorithm. To
implement the k means algorithm parallelly, multiprocess-
ing on a single node and Map-Reduce based programming
on multiple nodes have been used [12].

An essential factor in the visual assessment of the
stripping is concerning to its representation. In terms of
pixel value intensity, the stripped and the unstripped area
must have a significant difference. In order to classify the
pixels with respect to different intensities or color similar-
ities, the k means clustering algorithm is widely used. Using
the kmeans algorithm, n observations can be segregated into
k classes based on a particular mean value. +e proximity of
each observation to the cluster is iteratively processed using
the nearest mean. +e variant of k means comprises k
median and k medoid (see Appendix section). It is worth to
be noted that k median is best suited for local optimization
problem, whereas kmeans algorithm is tailored for both, i.e.,
global and local optimization [13]. On the other hand, k
medoid has high algorithmic time complexity o(n2 ∗ k∗ i)

(see Appendix section), and thus, it is compute intensive
compared to k means o(n2 ∗ k∗ i) [14, 15].

After this short introduction, the manuscript is arranged
as follows, Section 2 describes the previous work carried out
on asphalt mixture analysis using conventional image
processing techniques and also describes the challenges in
terms of processing time required to analyse the high-end
image datasets using sequential kmeans clustering. Section 3
starts with WMA specimens’ preparation and proposes the
PKIP algorithm for central processing unit- (CPU-) based
multiprocessing execution and Map-Reduce based distrib-
uted computing, followed by a thresholding process to assess
the adhesion failure. Section 4 presents the results in terms of
the accuracy and performance of the proposed PKIP

algorithm. Section 5 presents the discussion related to the
outcome of the results. Finally, Section 6 summarizes the
most significant conclusions.

2. Background

WMA technology was developed to place the asphalt
mixture at a lower temperature compared to the conven-
tional mixture, and, in recent years, WMA has gained
prominence over conventional HMA approaches due to its
sustainability factor. Nevertheless, due to the lower pro-
duction temperature of WMA, the characteristics of prob-
able moisture damage are more essential to be considered
[7], [8]. In this sense, it is necessary to understand the effects
occurring at the interface of the mineral aggregate and the
asphalt binder. As per the observation of the National Center
for Asphalt Technology (NCAT), the reduced mixing
temperature used in the preparation of WMA leads to
improper drying of the aggregates, and less aging takes place.
Figure 1 shows the schematic diagram of moisture en-
trapment at the asphalt/aggregate interface during WMA
production. Digital image processing has become a powerful
tool to accurately accomplish the assessment of this type of
damage [11].

Generally, image processing experiments are divided
into destructive and nondestructive evaluations. In the case
of destructive testing, experiments are ought to be carried
out on specimen’s failure to assess the performance of the
material under different conditions by breaking it, whereas
in nondestructive testing, the sample is kept intact during its
analysis using digital image processing. In the work carried
out by Li et al. [17], an artificial neural network was used to
detect the cracks in the pavement whereby classification and
preprocessing step was performed, followed by Gaussian
filter utilization to smoothen the background. At the final
step, histogram transformation was applied to highlight the
region of crack. +e results obtained by image processing
were compared with the experimental parameters, which
were obtained in lab, and an accuracy of approximately 80%
was achieved [17]. Previous studies dealt with the modeling
of the microstructure of the asphalt mixture also included
sensitivity exploration of aggregate size inside sand mastic
[18]. Image analysis is also used for the characterization of
air void distribution in asphalt mixes utilizing X-ray
Computed Tomography [19, 20]. Moreover, the 3D mi-
crostructure of the asphalt concrete can also be recon-
structed from pieces of 2D X-ray computed tomography
graphics to obtain the required macroscopic specification
[21, 22].

Numerous studies and analysis present how to build up
and enhance the image processing technique research-based
commercial applications such as ImageJ, Image Processing,
and Analysis (IPas) or Photo Pro Plus [20, 23, 24] to be
implemented on specific domains. Generally, the sizes of
modern image collections are large (terabytes and petabytes
of data); such vast collections of data cannot be stored and
processed efficiently on a single machine. In addition,
current image processing algorithms are becoming very
challenging and, hence, computationally intensive.+ere are
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many compute intensive steps involved in processing large
and complex image datasets to derive modified products,
and several efforts are required towards integration of high-
performance computing models with image processing al-
gorithms. Although we can process the images batch-wise in
these single-processor systems, there will be problems with
such processing due to limited capabilities. Henceforth, a
parallel programming paradigm for high-end image pro-
cessing has become deemed necessary.

In image processing, the input image undergoes from
several modifications [25, 26]. Implementation of image
processing performs four steps: (i) image acquisition, (ii)
image enhancement, (iii) image restoration, and (iv) mul-
tiresolution processing. In order for an image to be seg-
mented and examined, initially it has to undergo a
thresholding process. In image processing of asphalt sample,
the image sample undergoes from several preprocessing
methods focused on image smoothening to remove the noise
from the image [27]. For the analysis of asphalt samples,
acquisition of high-quality image is a necessary parameter
and so is its intensive computation which is considerably
time-consuming using sequential processing. In order to
determine ROI in asphalt image sample, initially, the sample
image has to be smoothened to segregate the object that
determines fractured surface and the remaining unwanted
background. For example, to implement this process of
segregation, several image processing functions were applied
by Dong et al. [28] to analyse the cracks present in asphalt
samples. +ese image processing functions comprised of
implementation of filter (i.e., Kalman, Gaussian, Sobel,
polynomial, bilateral filter) to remove the noise and then the
implementation of thresholding process with Canny edge
detection [2] was done followed by morphological imple-
mentation operations to analyse contours. +resholding on
grayscale images were also applied to estimate stripping in
untreated and treated asphalt mixture [2]. +ere are limi-
tations of simple thresholding as it is a manual process and it
does not resonate well with the dark color aggregate sample.
Moreover, simple thresholding does not classify the shadow
area accurately [29]. In order to overcome these short-
comings, Lantieri et al. [30], proposed a method of color
space conversion, where they converted their sample image

from Red-Green-Blue (RGB) color space to YUV color space
(Y denotes luminance component, U and V are the chro-
minance color component).

+e conventional image segmentation algorithm pri-
marily contains the segmentation method depending on
threshold value, the segmentation method based on the
border, and the segmentation method based on the region
[31, 32]. However, in order to determine the dominance of
any pattern in the image, the k means clustering has turned
out to be an efficient method compared to other clustering
method as highlighted in Section 1. Cluster analysis is an
important aspect for pattern/behavioral analysis [33]. Using
k means algorithm, one can find out how to distinguish
different kinds of elements by continuously enhancing the
subliminal clustering pattern. Different clustering methods
are continuously proposed and enhanced with the help of k
means algorithm which are widely being used in medical
image analysis using both CPU and graphical processing
unit (GPU) computing [34]. +e clustering process in k
means algorithm is time-consuming and increases sub-
stantially with the increase in dataset size if implemented
sequentially. However, due to the high efficiency of k means
algorithm, it is widely utilized at the clustering of large-scale
data using GPU [35, 36]. At present, many algorithms are
extended and improved by keeping kmeans algorithm at the
pivot. Compared with the traditional kmeans procedure, the
adaptive k means algorithm used by Zheng et al. [29]
transforms an image to the LAB color space before seg-
mentation and places the luminance (l) into an adjusted
value to reduce the disturbance resulting from the back-
ground. In one of the recent studies, sequential k means
clustering and machine learning-based classification was
used to estimate the stripping in asphalt coating [2]. It is
essential to note that with respect to machine learning al-
gorithm, the training process could be time-consuming.
However, machine learning-based classification could be
helpful to predict the stripping in asphalt mixture sample. It
could be inferred from previous research that k means al-
gorithm has the capability to be executed in parallel to cut
down the execution time [37, 38]; therefore, a parallel
implementation of k means algorithm can considerably
enhance the execution time of image segmentation and

(a) (b) (c)

Aggregate

Moisture entrapped

Asphalt
Adhesion failure

Figure 1: Moisture damage in warm mix asphalt holding moist aggregates (adopted from [16]) (a) Asphalt mixture. (b) Binder aggregate
interface. (c) Damaged interface.
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additionally optimize the algorithm structure to a specific
extent on multiple cores. In order to estimate the average
count of pixels associated to region of interest (ROI) on
multiple image dataset, Akhtar et al. [39] implemented
parallel image segmentation using Map-Reduce framework.
In addition to this, Akhtar et al. [12], also made detailed
analysis of execution pattern with respect to CPU run time
and accuracy for the multiple input image dataset to be
segmented in batch. It was evident from their results that
higher-order dataset size scaled well with increasing number
of compute nodes or compute cores.

In contrast to supervised learning, clustering is seen as an
unsupervised learningmethod, as we do not have the ground
truth data in comparing the output of the cluster algorithm
with real labels to assess its performance. Numerous k
means-based clustering algorithms use distance measure-
ments to determine the similarity between data points
[40–42]; however, it is advisable to normalize the data to
have a zero average and standard deviation, as the char-
acteristics in each data set would almost have different
measurements. +e k means algorithm is good at capturing
data structures if clusters have a spherical shape [43, 44].
Moreover, in the field of artificial intelligence, k means
clustering is used for hard clustering problems. Before
discussing the methodology with respect to the k means
clustering, Sections 3.1 and 3.2 give a brief description re-
garding WMA sample preparation and moisture
conditioning.

3. Methodology

3.1. Asphalt Mixture Preparation. Conventional asphalt
binder PG-76 was utilized in this study. In Table 1, the
rheological properties of the PG-76 binder is summarized.
Aggregate-type granite provided by Kuad Quarry Sdn. Bhd.,
Penang, was utilized in the preparation of the mixtures. +e
midrange aggregate gradation, type AC 14, used was in
agreement with the Malaysian PWD gradation determina-
tions [45, 46] for asphalt concrete. To evaluate the impacts of
filler as anti-stripping agent in asphalt mixture, conventional
Ordinary Portland Cement (OPC) and Pavement Modifier
(PMD) were incorporated. PMD is a greyish-black powder
mineral filler created in Malaysia which is utilized as anti-
stripping agent. An incorporation of 5% of PMD by total
weight of mixture, act as mineral filler in mixtures prepared
[27].

Along with two HMA mixtures (with filler types OPC
and PMD), WMA mixtures were prepared at different
temperatures. +e test specimens were compacted to the
desired dimensions (height 63.5mm and diameter 100mm)
by using the Servopac Gyratory Compactor. Air voids of the
specimens for moisture sensitivity evaluation were kept at
7± 1%. All the specimens were prepared according to the
procedures defined by Asphalt InstituteManual (MS-2) [47].

In this study, the HMAmixtures taken as referencematerial
were prepared at 180 degree Celsius and compacted at 170
degree Celsius. However, the WMA specimens were produced
at a temperature of up to 30 degree Celsius lower than HMA as
shown in Table 2 along with mixture designations.

+e optimum binder content was determined as per the
procedure of Marshall Mix design ASTM D1559 [48] which
follows the the Malaysian Public Works Department (JKR)
guidelines [46] for mix type AC-14. Moreover, a gyratory
compactor was utilized corresponding to an assumed
30,000,000 equivalent single axle load [27]. Number of
gyrations corresponding to initial compaction (Ninitial),
design compaction (Ndesign), and maximum compaction
(Nmax) was respectively 8, 100, and 125. In mixture design,
the target air voids of (4± 0.1) % were used for all the
specimens. +e designed optimum binder content for both
HMA and WMA were obtained as 5.2%. Moreover, for
WMA, Cecabase® was used as warm mix additive at an
application rate of 0.3% by mass of binder.

3.2. Moisture Conditioning and Assessment. On compacted
asphalt specimens, moisture conditioning was performed to
assess the effect of accelerated water conditioning followed
by freeze-thaw cycles. For all compacted specimens, the
conditioning was carried out as per the guidelines of ASTM
D4867 [49]. +e only exception in the guideline was the
usage of distilled water with an addition of sodium carbonate
at 6.662 grams concentration. +is addition was used to
make the pH level high in order to enhance the stripping
rate/damage inside asphalt specimens [11]. +e specimens
were immersed in the solution and vacuumed for 15minutes
to achieve saturation levels between 55% and 80%. After-
wards, these specimens were exposed to freezing condition
at (−18± 3) degree Celsius for 16 hours and thawing at 60
degree Celsius for 24 hours as one cycle according to ASTM
D4867 [7, 49]. +ree sets of specimens, unconditioned dry,
conditioned after one freeze-thaw cycle (1FT), and condi-
tioned after thee freeze thaw cycles (3FT), were separated.

+e prepared specimens were then subjected to moisture
sensitivity test according to American Society for Testing
Materials (ASTM D4867) [7, 11, 45, 49]. +e indirect tensile
strength (ITS) test was used to assess the moisture sus-
ceptibility of mixtures at a test temperature of 20 degree
Celsius as per the guidelines of ASTM, 2006.

After WMA sample preparation and moisture condi-
tioning assessment, the next step was to develop a parallel
image processing-based methodology to determine the
adhesion failure in the WMA sample in the lowest possible
execution time. For the proposed experiment, we have
developed a parallel k means for image processing (PKIP)
algorithm to perform the clustering on the WMA sample.
Sections 3.3, 3.4, and 3.5 will illustrate the feature space,
linearization model, and the implementation of the PKIP
algorithm.

3.3. Features of the Input Image (Features Space). In image
processing, a kernel function is used as a linear classifier to
solve a nonlinear problem. For the classification of the kernel
function-based algorithm, input space comprises of the
original image, and feature space comprises the features of
corresponding input image. +e objective of applying the
kernel-based k means clustering on the WMA specimens to
distinguish between adhesion failure region and non-
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adhesion failure region is to bring down the value of its
expected square distance d (x) of the point from its center of
cluster:

d(x) �
1
Q



k

i�1


n

p�1
xp − c

2
i , (1)

where d (x) is the distance from the center of the cluster,Q is
the site of the training set, k is the number of clusters, xp is
the current pattern, and Ci is the cluster center within the
cluster i.

Now features of the input asphalt specimen (ϕ(x))

could be computed from input space X ∈ (x1, x2,

x3, . . . , xn) using

ϕ(x) � ϕ1(x), ϕ2(x), ϕn(x)( . (2)

At the ground reality, the value of X is unknown.
However, the inner product is known as kernel function (k)
shown below:

k(x, y) � 〈ϕ(x) · ϕ(y)〉, (3)

where ϕ(x) andϕ(y) represents the feature space in x and y
direction.

3.4. Apply Kernel Function to Linearize the Model.
Assuming in cluster Cp, the average features space ϕ(x)

could be rewritten as

ϕavg(X) �
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Now there may exist a point which lies at the outer
segment of ϕ(X) by appearing as an image to the input
space.

In that condition ϕ(X) becomes inaccessible, but it is
possible to compute its norm.

ϕavg(X)
2

� ϕavg Xi( ,ϕavg Xj  

�
1

C
2
i



Ci

i,j�1
ϕ xi( , ϕ xj   �

1
C
2
i



Ci

i,j�1
k,

(5)

where k� ϕ(xi), ϕ(xj).Now, assuming that, ϕavg(x) �

τ.+erefore,
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+en the distance dij when the input space is mapped to
the features space could be computed as

ϕ(x) − τ2 � d
2
ij

� ϕ xi(  , ϕ xj   − 2τϕ(x) +(τ · τ)

� k xi, xj  − 2τϕ(x) + τi, τj .

(7)

It is possible to kernelize the function in equation (7) by
using a median filter given by the function: k′ (m, n)�

median {x [i, j], (i, j) εW} (median filter function) where W

represents a neighborhood defined by the user which is
centered around location (m, n) in the image and x [i, j] is 2D
array of pixels comprising of ith row and jth column. In
addition to the aforementioned filters, there are other filters
as well, i.e., Gaussian filter, Bilateral blur filter, and Sigmoid
filter which may be used as per the applications requirement
[50, 51]. For the proposed experiment, the median filter has
been used to kernelize the equation (7).

3.5. Implementation of PKIP Clustering Algorithm. +is
section intends to highlight the execution of a streamlined
sequential and multicore CPU variant of the k means
clustering algorithm. +erefore, the proposed algorithm was
customized using multiprocessing programming to obtain
comparative outcomes between parallel and sequential ex-
ecution. +e algorithm was tried with different asphalt

Table 1: Properties of binder PG-76.

Property Penetration at 25 degree celsius, 100
grams, 5 seconds (0.1mm)

Softening point
(celsius)

Ductility at 25 degree
celsius (cm)

Flash and fire
point (celsius)

Solubility
(%)

Specific
gravity

Test
method ASTM D5 ASTM D36 ASTM D113 ASTM D92 ASTM

D2042 ASTM D70

PG 76 50 69 90 344 99.50 1.02

Table 2: Mixing and compaction temperature of asphalt mixtures.

Mixture type Filler Mixing temperature Compaction temperature Designation

HMA PMD 180 170 HP180
OPC 180 170 HO180

WMA

PMD 170 160 WP170
OPC 170 160 WO170
PMD 160 150 WP160
OPC 160 150 WO160
PMD 150 140 WP150
OPC 150 140 WO150
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mixture image dataset. +e image datasets were acquired
using a Nikon D800 model. +e dimensions of the image
samples were 5520 pixels (length) and 3680 pixelsl (width),
and the color space of each sample was maintained in RGB
prethresholding process. It is deemed necessary to detail out
the system configuration in terms of number of logical cores,
threading mechanism, and memory on which the PKIP
algorithm has to be implemented. +e work relied on OS X
10.1 64-bit operating system with a dual-core i5 (Hyper-
threading support) at 1.8GHz with a turbo boost of up to
2.9GHz having 3MB shared L3 cache and 8GB RAM. +e
proposed PKIP implementation was tested using 4 threads.
+e version of the C++ compiler used was 4.6.4, while the
version of OpenCV (image processing library) used was
3.4.2.

A clear sequential execution was initially performed
using the algorithm shown in Pseudocode 1; however, this
could not be viewed as an ideal execution on the grounds
that the algorithm had a few matrix-like relations which
were basic for getting better execution. +e matrix com-
putation was involved in the kernelization phase and in the
distance computation of each pattern with respect to center
of cluster as shown in the Pseudocode 1. In order to get
substantial speedup, iterative matrix multiplications could
be implemented in a computer environment where it could
be executed in parallel.

In the proposed algorithm shown in Pseudocode 1,
phase no. 5 holds the key to our algorithm. Phase number 5
could be categorized into two stages, stage I and stage II,
using which substantial speedup is obtained for the pro-
posed algorithm. Stage I involves the kernelization phase,
and stage II involves an iterative procedure to compute the
distance of every pattern to the different center of clusters.
Stage I includes registering of the kernel matrix, which uses
the kernel function that is connected for each matching
pattern. +is calculation is similar to matrix multiplication
with the exception that for the proposed experiment, several
task operations are involved rather than basic matrix
multiplication. Moreover, these task operations require
dependencies on the utilized kernel functions comprising of
subtraction, squaring, and division of the median filter
kernel function (Pseudocode 1).

+e distance computation between each pattern with
respect to the cluster center comprises of three terms as

distance (i, j) � k′k(x, x) −
2k′
ci



n

m�1
Lmj · τϕ(x)

+
k′

c
2
i



N

m�1


N

n�1
LmjLnj × τiτj .

(8)

For equation (8), the first term is computed in Stage
I. +e computation of Stage I comprises of Phase no. (1) to
Phase no. (4). +e second and third term were computed in
stage II. +e second term is a direct multiplication of ma-
trices, i.e., L and ϕ(x) followed by multiplication by (2k′/ci).
+e third term in the above equation depends upon the
number of cluster and is continuously computed for every

cluster. Since the third term is an iterative procedure and
requires immense matrix multiplication, it was parallelized
using multiprocessing programming. As a result, for
equation (8), serial execution was exploited to compute the
first term, whereas the second and the third term was
implemented parallely using multiprocessing as it involved
higher degree of iterative matrix multiplication.

In order to assess the performance of the PKIP algorithm
for the proposed experiment, we have implemented it using
C++ programming language by importing Open Computer
Vision (OpenCV) library, which is used for image pro-
cessing functions. +e sequential execution of k means
clustering can be further parallelized on multicore CPU.
+ere are numerous application programming interfaces
(API) available for parallel processing; however, for the
proposed experiment, we have used Open Multi-Processing
(OpenMP) for parallelizing the execution. OpenMP is an
API for multiprocessing programming which supports
shared memory architecture [52]. +e prime feature of
OpenMP is its vast instruction set i.e., OpenMP pragmas
which is used for auto parallelization. For the proposed
experiment, OpenMP pragma omp for was used to paral-
lelize the intensive matrix computation involved in stage II.
In order to divide the execution of Stage I between multiple
cores, OpenMP shared construct was used.

3.6. Parallelization of K-Means Using Map-Reduce. In order
to parallelize the k means clustering algorithm using Map-
Reduce program, Hadoop framework with Hadoop Inter-
face for Image Processing (HIPI) was used. Hadoop is an
Apache open source framework written using java pro-
gramming language by enabling distributed processing of
large datasets across clusters of computer nodes using simple
programming models [53]. +e environment in which
Hadoop works comprises of distributed storage and com-
putation across clusters of computer nodes. Hadoop is
designed to scale up from single node to thousands of nodes,
of which each node offers local computation and storage.

Maps are the individual tasks which converts input
records into an intermediate record. Any given input pair
may map towards a minimum of zero or a maximum of n
output pair. A Hadoop Map-Reduce structure spawn single
map task for each input split was produced by the Input-
format for the job. +e Reduce function of Hadoop
framework is the second phase. Reducer minimizes the set of
intermediate values passed by mapper and shares a similar
key. +e quantity of reduces for the job is set by the client by
means of the reduce task function. In general, Reducer
executions are passed the job configuration for the job
through the job configurable class. +e framework then calls
the function reduce () for each key-value pair for the
gathered inputs.

+eMap function operates on every point x on the given
image dataset. On a given point x, the squared distance
between x and every mean is calculated and subsequently the
mean Mi is determined which minimizes this distance. On
the basis of these parameters, a key-value pair gets emitted
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with an index of mean “i” as key and (x, 1) as the value.
+erefore, a map function could be framed as

kmeansmap (x) : compute argmini x − Mi

����
����
2
, (x, 1) .

(9)

On the other hand, the Reduce function is just a
pairwise summation performed on the values associated to
each key. For instance, if two value pairs [(x, q), (y, r)] are
associated to a particular key, then a combined formation is
possible by adding all elements in the given pair. In this
regard, k means reduce function could be formed as
follows:

kmeans Reduce (i, [(x, q), (y, r)]) : return (i, (xx + yy, qq + rr)).

(10)

Set of k values could be formed using the Map-Reduce
characteristic of two functions shown as

i, 
x∈Pi

x, Pi


⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (11)

where Pi denotes the set of points closest to mean Mi. Now
the updated means could be computed as

Mi⟵
1
Pi





x∈Pi

x. (12)

For the proposed experiment, initial cluster centres
(means) were determined using the canopy algorithm [54]

whereby a set of initial distance threshold, i.e., T1 and T2
were assigned for each sample image such that T1>T2. Post
threshold initialization, the mapper function selects a sample
vector randomly from the sample image and assigns it as a
central vector of the canopy, and accordingly, it traverses the
entire sample image. +e distance between the scene image
and the canopy central vector has to be less than T1 in order
to get classified as canopy. If it is less than T2, then it gets
discarded from the dataset. Finally, the output of the mapper
function gets processed by the reducer to integrate the
central vectors of the canopy.+is generates a new canopy of
the central vector which is considered as the initial clustering
center.

In order to calculate the distance between a point x and
each of the means using Map function, every compute node
must possess set of current values of means. +erefore, in
this regard, new means are circulated to all the compute
nodes after the completion of each iteration. If the con-
vergence is achieved after a specific iteration, then the ex-
ecution gets completed; else, the new means/centroid are
computed again using iterate () function.

Pseudocode 2 shows the implementation of k means
using Map-Reduce.

Our experimental setup consists of 4 machines com-
prising of 1 master and 3 slaves. +e master node is re-
sponsible to take the input image files. For the proposed
experiment, Hadoop (version 2.7.1) framework was used in
order to implement the parallel computation using 4 nodes.
Figure 2 shows the setup configuration. +e setting of
Hadoop parameters was amended as shown in Table 3.
Table 4 shows the specs of the nodes.

Input sample
k � number of cluster(c1, c2, . . . , ci)

Kernel function: k(x, y)←ϕ(xi), ϕ(xj)

Phase no
(1) Apply kernel function to transform the input sample k′ � (1/(ksize · width × ksize · height)) ×

1 1 1 · · · 1 1 1
1 1 1 · · · 1 1 1
1 1 1 · · · 1 1 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

(2) Compute distance matrix d2
i,j � ‖ϕ(x) − τ‖2

(3) List pattern to the cluster randomly using label matrix,Li,j Li,j � f(x) �
1, if Li in cluster j,

0, otherwise.

(4) Change← 0
(5) Distance computation b/w each pattern w.r.t center of cluster)

while change ≠0 do
for j � 1 to k do
compute cluster size ci

for i � 1 to N do
compute distance of each pattern from the cluster using:

k′k(xi, xj) − 2k′/ci 
n
m�1 Lmj · τϕ(x) + k′/c2i 

N
m�1 

N
n�1 LmjLnj × (τiτj).

end for
end for

Previous L� L
update label L
L�min. val of d along column
if Previous L� L then
change� 0

end if
end while

PSEUDOCODE 1: k-means using sequential execution.
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3.7. Fresholding of Processed Samples. For the analysis of
asphalt mixture specimens post k means clustering, HSV
thresholding was used (see Appendix section) [55].

In the proposed experiment, background and fore-
ground segregation was significant to gain clear visibility of
the ROI. For instance, the HSV color space for the boundary
condition {[0, 1], [0, 1], [0, 255]} belongs to {Hueinput,
Satinput, Valinput}, the region of interest (ROI) being a specific
tuned color object. +en the computation of the threshold
pairs, i.e., (Huelower, Hueupper), (Satlower, Satupper), and
(Vallower, Valupper) could be utilized to convert the HSV
color space image to the binary form using the below
equation:

C(x, y) � 1,Huelower <Hueinput(x, y)<Hueupper ,

Satlower < Satinput(x, y)< Satupper ,

Vallower ≤Valinput(x, y)≤Valupper ,

0,Otherwise.{

(13)

(1) Choose k initial value for the input image.
(2) Apply Map-Reduce ∀ k.

iterate (point, centroids)
{Assign points�> clustersmap {(point�> (point nearest to centroids) �> (point, 1), (point n, count n))}reduce {((point1,

count1), (point2, count2))�> (point1 + point2, count1 + count2)}Total_mapValues {(point_Total, count_Total)�> point_Total/
count_Total}

(3) Record the new means (Updated Centroid) post Map-Reduce.
(4) Circulate the updated centroid to each node in the cluster.
(5) If (converged (centroids, Updated_Centroids))

�en finish execution
Else iterate (points, Updated_Centroids)

PSEUDOCODE 2: k means using Map-Reduce.

Network  
switch with 
100Mbps link

Slave 3

Slave 1Master 

Slave 2

Figure 2: Experimental setup of Hadoop nodes.

Table 3: Configuration of Hadoop parameters.

Block
size
(MB)

Number
of task
mapping
per node

Number
of task
reducing
per node

Replication
factor

Scheduler
configuration

k
value

128 2 1 2 First-in-first-
out (FIFO) 10

Table 4: Configuration of nodes.

Nodes RAM
(GB)

Processor
(GHz)

Dedicated
hard disk

drive (HDD)
(GB)

No.
of

cores

Operating
system

Master

8 1.8 50 2 OS X 10.1Slave 1
Slave 2
Slave 3
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Here C (x, y) is the segmented part. +e equation (13)
illustrates that if the HSV values for the pixels of the input
image lies within the range of lower bound to upper bound
values, then its associated output pixel belongs to class object
1, otherwise it gets designated to null (0) [56].

+e flowchart in Figure 3 illustrates the HSV thresh-
olding along with computation of zero and nonzero pixels.
Figure 4 shows different images of specimens from the
WMA dataset (Dry, 1FT, and 3FT) and Figure 5 shows its
raw RGB model whereby it could be observed that the
variable intensities of the brown component represents the
adhesion failure in WMA samples. Figure 6 shows the
different images of specimens from the HMA dataset and
Figure 7 shows its associated raw RGB model. From the
visual assessment point of view, the white region within the
sample represents broken aggregates. If the RGB model is
observed minutely for WMA and HMA samples, then a
slight difference could be observed with respect to the brown
component pattern forWMA and HMA samples, i.e., higher
degree of the brown component is visible for HMA samples
if compared to WMA for all the three categories, i.e., Dry,
1FT, and 3FT. (Figures 4–7).

4. Results and Discussion

+e proposed work highlights the efficiency of PKIP
algorithm for CPU-based execution by testing several
datasets of asphalt mixtures. Analysis was done for the
performance of proposed algorithms in terms of exe-
cution time and accuracy. For this study, three categories
of dataset were evaluated, namely, dry, 1FT, and 3FT. At
the same time, the influence of the mixing temperature
(i.e., 180°C for HMA and 170°C, 160°C and 150°C for
WMA) and type of filler (OPC and PMD) were analysed
as well. +e details of the different datasets are shown in
Table 5.

In order to remove the noise, median filter was applied,
and subsequently, the images of WMA along with its RGB
color model and HMA samples along with its RGB color
model is shown in Figures 8, 9, 10, and 11. After having a
clear observation of the filtered images and its RGB color
model, it could be seen that substantial noise elements have
been blurred and the sample images has been polished. Post
the application of median filter, the process of k means
clustering becomes fine-tuned and thus helps in providing
the accurate results.

Before initiating the explanation of CPU-based perfor-
mance, it is required to highlight the accuracy of its exe-
cution timing result. With respect to execution time, it is
important to note that there were fluctuations in the reading
after each run of PKIP algorithm for every sample; therefore,
the recorded errors were the best-obtained ones post four
runs of the proposed algorithm. +is performance com-
parison is shown in Figure 12. +e fluctuation in the ob-
tained values was within the range of |5%| from the best
recorded value. Moreover, it is necessary to clarify that this
error is due to the communication overhead among the
threads (virtual version of CPU core) which results is extra
waiting time.

As mentioned earlier in Section 3.5, with respect to the
PKIP, the algorithm constitutes two stages, i.e., stage I in-
volves the kernelization phase and stage II involves iterative
procedure to compute the distance of every pattern to the
different center of clusters. As stage II is an iterative process,
it has to complete a predefined maximum number of iter-
ations to attain the convergence. With respect to the pro-
posed experiment, for each value of k, the cost of k means
function was computed using vegas-viz plot library for Scala
(see Appendix section) [57].+e best choice for kwas chosen
by observing the value which got minimized with little
return gain. For the proposed PKIP algorithm, the best
segregation was obtained by setting the cluster size to 10.
Figure 13 shows one of the specimens (WP170 subjected to
3FT) with varying number of clusters (k). It is observed from
each clustering stage that the different intensities of brown
color (adhesion failure) are getting normalized. By keeping
the value of k� 10, a fine segregation is achieved with respect
to different intensities of color component which makes it a
favorable factor for HSV thresholding. For the proposed
experiment, the noise was removed using median filter
function. From the visual assessment also, it is observed
from Figure 13 that post cluster 5, maximum degree of
segregation is achieved, or the intra-cluster variation has
reduced within the sample region. However, we have chosen
k� 10 as per the k value and cost of k means function as the
best case.

Figure 14 shows the RGB color model along with his-
togram in RGB and HSV color space for the sample input
image. In the RGB model, the encircled portion represents
the adhesion failure. It is important to note that before
initiating the clustering process, histogram equalization was
applied on input image to maintain the uniform luminosity.
It is observed from the histogram that most of the variation
in the RGB components corresponds to a uniform lower
range value of the pixel (low luminosity). However, at the
extreme right of the histogram, higher peaks of RGB is to be
seen, which clearly signifies clustered noise with high lu-
minosity. It is also essential to note that the more the lu-
minosity is, the higher the v value in HSV histogram is.

4.1. Discussion on CPU Implementation. In regard to the
CPU implementation of the proposed PKIP algorithm,
several ideas are noteworthy, especially with respect to the
parallel code which leverages on the number of CPU
thread(s) which is considered to be a virtual version of CPU
core. Figure 15 shows the effect of incrementing the threads
to execute PKIP clustering on different asphalt mixture
datasets for k� 10. As shown in Figure 15, increasing the
number of threads from 1 to 2 brings down the computa-
tional time in a nonlinear manner.+is is due to the fact that
all stages of computation involved in equation (8) do not
scale directly with the available cores. For equation (8), stage
I which does not possess iterative computation showed
higher degree of linear scaling compared to stage II. +is
particularly signifies that all the components of stage II were
not completely parallelized, and there was some composi-
tion of serial execution remaining in it. It is evident from the
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execution time of C program (serial execution) and
C+OpenMP (see Appendix section) program (parallel ex-
ecution) that there is an approximately 25% to 30% im-
provement in terms of execution time with respect to
C+OpenMP program, i.e., parallel execution of k means
clustering.

Moreover, when the number of threads is increased from
2 to 3, then it could be observed from the execution timing
results that there is not much difference between single
thread and triple thread results. In addition to this, when the

number of threads was increased from 3 to 4, then there was
an approximately 25% to 30% increment in the execution
time of C+OpenMP. +erefore, it is evident from the ob-
tained results that increasing the number of threads does not
always increase the execution time subjected to the speci-
fication of the CPU. With context to effect of hyper-
threading, refer to Appendix section.

Tables 6, 7, and 8 show the execution timing (sec) results
of PKIP algorithm implemented both sequentially and
parallelly on theWMA andHMA samples. Table 9 shows the

(a) (b)

(c)

Figure 4: Sample specimen of (a) Dry-WP170, (b) 1FT-WO170, (c) 3FT-WP170.

Input clustered
asphalt mix

image in RGB

Output the values
of required pattern

(%)

Calculate area of
required pattern of

white pixels

Write the image

RGB to HSV color
space conversion

Adjust HSV to extract
region of interest

Start

Stop

Analyze the number of
patterns (in white

pixels)

Figure 3: Process of image thresholding.
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Figure 5: RGB-model of (a) Dry-WP170, (b) 1FT-WO170, (c) 3FT-WP170.

(a) (b)

(c)

Figure 6: Sample specimen of (a) Dry-HP180, (b) 1FT-HO180, (c) 3FT-HP180.
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gain in speedup between sequential implementation using C
program (Serial Execution) and the parallel implementation
using C+OpenMP for k� 10.

It is inferred from Tables 6, 7 and 8 that when the
number of clusters (k) increases then PKIP algorithm
scales well if compared with the serial or sequential
programming for all the datasets. In particular, the best
timing difference was obtained for k � 2, between parallel
k means and sequential. It can be observed that for dry

conditions, a wider gap by considering lower execution
time for C +OpenMP is 9.49 sec, similarly for k � 4, 6, 8,
and 10, the associated timing difference is 14.84 sec,
22.30 sec, 30.73 sec, and 37.17 sec, respectively. For 1FT
condition specimens, the best timing difference for k � 2,
between parallel k means and sequential k means is
9.43 sec while for k � 4, 6, and 10 the associated timing
difference is 18.87 sec, 28.43 sec, 38.34 sec, and 47.47 sec,
respectively. Finally, for the specimens conditioned with
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Color inspector 3D

(b)
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0

Color inspector 3D

(c)

Figure 7: RGB-model of (a) Dry-HP180, (b) 1FT-HO180, (c) 3FT-HP180.

Table 5: Datasets of asphalt mixture samples.

Datasets
Dry 1FT 3FT

Sample Sample code Sample Sample code Sample Sample code
WP170 1 WP170 9 WP170 17
HP180 2 WP160 10 WP150 18
HO180 3 WO170 11 WO170 19
WO150 4 WO150 12 WO150 20
WO160 5 WP160 13 WP160 21
WO170 6 WO160 14 WO160 22
WP160 7 HO180 15 HO180 23
WP150 8 HP180 16 HP180 24
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(c)

Figure 8: Post median filter-sample specimen of WMA. (a) Dry-WP170, (b) 1FT-WO170, (c) 3FT-WP170.
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Figure 9: RGB-Model of median filtered. (a) Dry-WP170, (b) 1FT-WO170, (c) 3FT-WP170.
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Figure 11: RGB-Model of median filtered. (a) Dry-HP180, (b) 1FT-HO180, (c) 3FT-HP180.
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Figure 10: Post median filter-sample specimen of HMA. (a) Dry-HP180, (b) 1FT-HO180, (c) 3FT-HP180.
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Figure 12: Accuracy of PKIP using openMP.
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Figure 13: Continued.
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3FT, the best timing difference for k � 2, between par-
allel k means and sequential k means is 9.03 sec,
whereas for k � 4, 6, 8 and 10 the associated timing dif-
ference is 18.07 sec, 22.34 sec, 31.66 sec, and 45.18 sec,
respectively.

4.2. Map-Reduce-Based Implementation. Tables 10, 11, and
12 compare the execution timing result of Map-Reduce-
based implementation of PKIP algorithm over single node
and multiple nodes for Dry, 1FT, and 3FT image datasets.
Table 13 shows the speedup comparison of Map-Reduce-
based PKIP algorithm implementation with its sequential
implementation using C-program and parallel imple-
mentation using C+OpenMP. It could be inferred from the
results that the Map-Reduce based PKIP algorithm scales
well with the increase in nodes. For the execution with
respect to single-node implementation of PKIP algorithm,
an overhead resulted post splitting of algorithm in Map and
Reduce phase. It is also essential to note that Map-Reduce-
based PKIP algorithm implementation can outperform
C+OpenMP-based PKIP implementation by increasing the
number of compute nodes due to the fact that C +OpenMP
cannot be implemented over distributed nodes. After per-
forming the initial experiments, we observed that Hadoop
block sizes should depend upon the input image dataset. In
Hadoop, the data files are divided into blocks. When the
block size is too small, the number of data block collabo-
rations involved may increase, thereby affecting the overall
results [58].

If we closely observe the execution timing in
Tables 10–13, then we can see some similarity between the
execution timing of C +OpenMP and single-node imple-
mentation of PKIP algorithm for k� 10. Moreover, up to
26% reduction could be observed in execution timing for
k� 10, implemented over 4 nodes if compared to single-
node execution timing. However, only up to 4.3% reduction
could be observed in execution timing for k� 4, imple-
mented over 4 nodes if compared to single node execution
timing.

Obtained results illustrate the superiority of the pro-
posed Map-Reduce-based PKIP algorithm when applied to
different image datasets. Map-Reduce-based PKIP algorithm
enhanced the clustering response time by leveraging on
Hadoop framework characteristics. Impact of the number of
compute nodes used on the clustering algorithms can also be
studied for 3 categories of image dataset by increasing the
number of compute nodes (i.e., from 2 to n). Scalability of
Map-Reduce based PKIP algorithm can be tested by re-
searchers by maintaining the same type of sample image
datasets but varying the cluster size.

With respect to the measure in accuracy of execution
timing for PKIP implementation using Map-Reduce, the
recorded errors were the best-obtained ones post four runs
similar to the case of C +OpenMP implementation. Fig-
ure 16 shows the fluctuation or the accuracy in execution
time reading for Map-Reduce-based PKIP implementation.
For the PKIP implementation using Map-Reduce, the
fluctuation in the obtained values were within the range of
|1.8%| from the best recorded value. +e probable reason for

k = 7

(g)

k = 8

(h)

k = 9

(i)

k = 10

(j)

Figure 13: Clustered images of WP170 subjected to 3FT sample specimen. (a) Original. (b) k� 2. (c) k� 3. (d) k� 4. (e) k� 5. (f ) k� 6. (g)
k� 7. (h) k� 8. (i) k� 9. (j) k� 10.
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Figure 14: (a) RGB color model; (b) histogram for RGB and HSV color space.
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Figure 15: Execution time analysis by varying number of threads.

Table 7: Serial v/s parallel execution time (sec) for 1FT condition.

Sample
K� 2 K� 4 K� 6 K� 8 K� 10

Serial exec Parallel exec Serial exec Parallel exec Serial exec Parallel exec Serial exec Parallel exec Serial exec Parallel
exec

WP170 29.12 19.69 59.25 40.38 87.57 59.07 120.10 81.76 160.62 113.45
HP180 29.36 22.53 59.73 46.07 88.09 63.60 124.46 90.14 161.82 127.67
HO180 29.32 20.39 59.64 41.79 87.96 61.19 122.29 84.58 161.61 116.98
WO150 29.19 21.06 59.39 43.13 87.58 63.20 120.78 87.27 160.98 120.33
WO160 29.26 22.17 59.52 45.35 87.78 66.52 121.04 91.70 161.30 125.88
WO170 29.45 22.32 59.91 45.65 88.37 66.98 121.83 92.31 162.29 126.64
WP160 29.85 22.46 60.70 45.92 89.55 67.38 123.40 92.85 164.26 127.31
WP150 29.23 19.74 59.47 40.48 87.71 59.22 120.95 81.96 161.18 113.71

Table 6: Serial v/s parallel execution time (sec) for dry condition.

Sample
K� 2 K� 4 K� 6 K� 8 K� 10

Serial exec Parallel exec Serial exec Parallel exec Serial exec Parallel exec Serial exec Parallel exec Serial exec Parallel
exec

WP170 29.21 22.53 59.43 46.07 87.65 67.60 120.86 93.14 161.08 127.68
HP180 29.23 22.29 59.46 45.59 87.69 66.89 120.92 92.19 161.15 126.49
HO180 29.22 22.08 59.45 45.16 87.67 66.24 120.90 91.32 161.12 125.40
WO150 29.19 22.36 59.38 45.72 87.57 67.08 120.77 92.44 160.96 126.80
WO160 29.37 22.04 59.75 45.08 88.12 66.12 121.50 91.16 161.88 125.20
WO170 28.18 22.36 57.37 45.72 84.55 67.08 116.74 92.44 155.92 126.81
WP160 29.47 22.04 59.94 45.10 88.42 66.12 121.89 91.16 162.37 125.20
WP150 29.24 22.62 59.49 46.24 87.74 67.86 120.99 93.48 161.24 128.10

Table 8: Serial v/s parallel execution time (sec) for 3FT condition.

Sample
K� 2 K� 4 K� 6 K� 8 K� 10

Serial exec Parallel exec Serial exec Parallel exec Serial exec Parallel exec Serial exec Parallel exec Serial exec Parallel
exec

WP170 26.00 19.25 53.01 39.51 78.02 57.76 120.03 80.02 145.04 111.27
HP180 29.14 22.04 59.28 45.09 87.42 66.14 120.57 91.19 160.71 125.23
HO180 29.45 22.01 59.91 45.02 88.37 66.03 121.83 91.05 162.28 125.06
WO150 29.44 20.40 59.88 41.81 88.32 61.22 121.77 84.62 162.21 117.03
WO160 29.47 22.19 59.94 45.39 88.41 66.58 121.89 91.78 162.36 125.98
WO170 29.22 22.28 59.45 45.56 87.68 66.84 120.91 92.12 161.13 126.40
WP160 29.37 21.01 59.75 43.02 88.13 63.04 121.51 87.05 161.89 120.06
WP150 29.46 20.43 59.92 41.87 88.38 61.30 121.84 84.74 162.30 117.17
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this fluctuation is due to the communication cost of map-
ping and reducing. Moreover, in this regard, researchers are
free to explore the possibility of reducing this fluctuation by
optimized scaling and tight scheduling of Hadoop

parameters. It is also to be observed that the fluctuation in
the execution time reading is lower if compared to
C+OpenMP readings. +is shows the stability of Hadoop’s
Map Reduce framework when scaling is taken into account.

Table 9: Computation of speedup (k� 10).

Sample Execution time using C-Sequential (sec) Execution time using C+OpenMP (sec) Speedup
Dry dataset
WP170 161.087 127.680 1.26
HP180 161.153 126.498 1.27
HO180 161.129 125.403 1.28
WO150 160.964 126.808 1.26
WO160 161.883 125.204 1.29
WO170 155.927 126.810 1.22
WP160 162.370 125.200 1.29
WP150 161.240 128.107 1.25
1FT dataset
WP170 160.629 113.453 1.41
HP180 161.825 127.679 1.26
HO180 161.616 116.986 1.38
WO150 160.983 120.339 1.33
WO160 161.305 125.882 1.28
WO170 162.292 126.643 1.28
WP160 164.261 127.315 1.29
WP150 161.188 113.712 1.41
3FT dataset
WP170 145.048 111.279 1.30
HP180 160.713 125.238 1.28
HO180 162.289 125.065 1.29
WO150 162.214 117.035 1.38
WO160 162.365 125.981 1.28
WO170 161.139 126.401 1.27
WP160 161.896 120.068 1.34
WP150 162.309 117.178 1.38

Table 11: Single node v/s multiple Hadoop nodes execution time (sec) for 1FT condition.

Sample
K� 4 K� 10

Single node 4 nodes Single node 4 nodes
WP170 61.13 58.56 115.15 86.12
HP180 65.82 63.06 129.58 98.19
HO180 63.33 60.70 118.73 92.13
WO150 65.41 62.66 122.13 95.27
WO160 68.84 65.95 127.76 99.33
WO170 69.32 66.41 128.53 98.55
WP160 69.73 66.80 129.21 103.37
WP150 61.29 58.71 115.41 86.30

Table 10: Single node v/s multiple Hadoop nodes execution time (sec) for dry condition.

Sample
K� 4 K� 10

Single node 4 nodes Single node 4 nodes
WP170 69.96 67.02 129.59 103.67
HP180 69.23 66.26 128.38 98.85
HO180 68.55 65.59 127.28 99.27
WO150 69.42 66.44 128.70 102.96
WO160 68.43 65.49 127.07 98.81
WO170 69.42 66.51 128.71 98.85
WP160 68.43 65.55 127.07 96.45
WP150 70.23 67.28 130.02 101.01
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Table 12: Single node v/s multiple Hadoop nodes execution time (sec) for 3FT condition.

Sample
K� 4 K� 10

Single node 4 nodes Single node 4 nodes
WP170 59.78 57.27 112.93 83.57
HP180 68.45 65.57 127.10 94.911
HO180 68.34 65.39 126.93 95.21
WO150 63.36 60.64 118.78 89.23
WO160 68.91 65.98 127.86 96.19
WO170 69.17 66.27 128.29 94.93
WP160 65.24 62.50 121.86 90.59
WP150 63.44 60.78 118.92 95.14

Table 13: Computation of speedup (k� 10) for multiple Hadoop nodes v/s C-sequential & C+OpenMP.

Sample Execution time using
C-Sequential (sec)

Execution time using
C+OpenMP (sec)

Execution time using 4
nodes (sec)

Speedup (C+OpenMP/4
nodes)

Speedup (sequential-C/4
nodes)

Dry dataset
WP170 161.08 127.68 103.67 1.23 1.55
HP180 161.15 126.49 98.85 1.27 1.63
HO180 161.12 125.4 99.27 1.26 1.62
WO150 160.96 126.8 102.96 1.23 1.56
WO160 161.88 125.2 98.81 1.26 1.63
WO170 155.92 126.81 98.85 1.28 1.57
WP160 162.37 125.2 96.45 1.29 1.68
WP150 161.24 128.1 101.01 1.26 1.59
1FT dataset
WP170 160.62 113.45 86.12 1.31 1.86
HP180 161.82 127.67 98.19 1.30 1.64
HO180 161.61 116.98 92.13 1.26 1.75
WO150 160.98 120.33 95.27 1.26 1.68
WO160 161.30 125.88 99.33 1.26 1.62
WO170 162.29 126.64 98.55 1.28 1.64
WP160 164.26 127.31 103.37 1.23 1.58
WP150 161.18 113.71 86.30 1.31 1.86
3FT dataset
WP170 145.04 111.27 83.57 1.33 1.73
HP180 160.71 125.23 94.911 1.31 1.69
HO180 162.28 125.06 95.21 1.31 1.70
WO150 162.21 117.03 89.23 1.31 1.81
WO160 162.36 125.98 96.19 1.30 1.68
WO170 161.13 126.4 94.93 1.33 1.69
WP160 161.89 120.06 90.59 1.32 1.78
WP150 162.30 117.17 95.14 1.23 1.70
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Figure 16: Accuracy of PKIP using map-reduce.
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However, in terms of single-node implementation, OpenMP
may possess lesser degree of fluctuation if compared to
Hadoop subjected to the system specification.

4.3. Precision, Recall, and F-Measure Evaluation.
Precision, recall, and Fmeasure are known as the influencing
parameters for the evaluation purpose of the proposed PKIP
algorithm. +e dataset contains 600 image samples com-
prising of HMA andWMA.+e samples were categorized as
300 positive samples and 300 negative samples. +e positive
samples were the one with adhesion failure, whereas the
negative samples were the HMA samples with less than 0.5%
adhesion failure. +e sample images were cropped into
500× 500 pixels and its labelling was done using MS Paint.
For the training purpose, the sample images were randomly
divided.

Precision is the proportion of genuine positives to the
cases that are anticipated as positive. For the proposed
experiment, the genuine positives are the pixels that are
correctly identified. It is the level of chosen cases that are
correct and is computed as follows:

Precision �
correctly identified pixes

all detected pixels
. (14)

Recall is the proportion of genuine positives to the all
ground truth pixels. +e ground truth pixels were the all
segmented pixels. Recall is computed as follows:

Recall �
correctly identified pixes
all ground truth pixels

. (15)

To determine the weighted average of precision and
recall, the parameter of F-measure is used which is com-
puted as follows:

F − measure � 2∗
Precision∗Recall
Precision + Recall

. (16)

For the initial tests, different patch sizes considered as
the container of pixels were used with the dimensions 3× 3,
5× 5, and 9× 9. Table 14 shows the impact of patch size on
the influencing parameters. It could be clearly observed that
the precision, recall, and F value is almost same for 3× 3 and
5× 5. For 9× 9, the precision values are slightly greater than
the other two; however, the execution time is substantially
high if compared to 3× 3 and 5× 5. +erefore, for the
training evaluation, we have used 3× 3 patch for different
values of k. +e analysis of influencing parameters has been
implemented over single node using sequential processing.

Table 15 shows the impact of k value on the influencing
parameter, and it could be clearly observed that k� 10 gives
the highest F value.

4.4. Analysis of Adhesion Failure Using HSV Fresholding.
Tables 16, 17, and 18 represent the percentage of adhesion
failure after moisture conditioning (freeze-thaw cycles) and
indirect tensile tests for all the k means clustering-based
asphalt mixture image samples (i.e., WMA and HMA

prepared with PMD and OPC). +e images processed using
HSV image thresholding for a WMA sample image dataset
and HMA sample image dataset for all three moisture
sensitivity test is shown in Figures 17 and 18, where the
number of clusters has been set to ten (k� 10), and the
composition of nonzero and zero pixels were computed
using equation (13) to determine the percentage of adhesion
failure for all asphalt mixture datasets. For the proposed
experiment, Scala version 2.11 programming language has
been used for the zero and non-zero-pixel computation.

From Tables 16–18 it becomes evident that the per-
centage of adhesion failure in HMA and WMA sample
subjected to different level of moisture conditioning pro-
cess depends on mixing temperature and also the type of
fillers used. +e effect of lower mixing temperature on
percent adhesion failure of WMA mixtures has consistent
increment in adhesion failure at different levels of moisture
conditioning. Moreover, for both the categories, i.e., HMA
and WMA, the PMD filler comes out to be better if
compared with OPC filler, and in this regard, a difference in
adhesion failure for up to 4-5% could be observed in 3FT
condition. Section 5 discusses some of the key elements
regarding the outcome of the results pertaining to PKIP
implementation.

5. Discussion

With respect to the analysis of execution timing of PKIP
using C+OpenMP and sequentially, it was inferred from
Tables 6–8 that the best execution timings are obtained from
the processing of WP150, WP160, and WP170 samples.
Further research is required to find the reasoning behind the
faster execution time for these samples. From one of the
recent studies [2], it is essential to note that in terms of
stripping analysis using k means algorithm, the larger ex-
ecution time arises due to classification of dark shaded areas
in the image sample. +is reason prevails for the proposed
experiment also. Moreover, in order to reduce the execution
time of the k means clustering, it is not recommended to
downsize the resolution of image sample as it results in loss
of pixels which will ultimately affect the accuracy of the final
results significantly. From the speedup Table 9, it could also
be inferred that a maximum speedup of 1.41X is obtained for
WP150 andWP170 for the case of 1FTdataset which in turn
implies that execution time using C+OpenMP got reduced
up to 30% for these datasets.

After analysing the Map-Reduce implementation of
PKIP, it could be inferred from speedup Table 13, that for
single node implementation, C +OpenMP-based k means
implementation is a viable option if k is lesser than or equal
to 5 subjected to the specs of the system. However, if we want
to increase the number of clusters up to 10+, then Map-
Reduce-based implementation of PKIP algorithm is highly
suitable as it can give speedup up to 1.86X, i.e., 46.5% re-
duction in execution timing for the cases of WP150 and
WP170 in 1FT dataset category if compared directly with
sequential implementation of k means using C Program.
Higher gain in speedup is possible if more compute nodes
are added to the cluster. For the proposed experiment, only 3
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additional compute nodes were added. It is essential to note
that Hadoop framework has a vast set of scheduling con-
figuration. +erefore, users can exploit these configurations
to exploit the maximum resource benefits from Hadoop and
thus explore the possibilities of better execution timing
results compared to default scheduling algorithms. +is also

highlights the fact that more room of optimization prevails
in the Map-Reduce algorithms. It is deemed necessary to
understand that the execution timing plays a prominent role
in clustering process. +e proposed Map-Reduce-based
PKIP algorithm is well suited for clustering large datasets
compared to sequential k means algorithm.

Table 14: Impact of patch size on influencing parameters.

Size of patch Precision Recall F value Execution time (min)
3× 3 0.78 0.84 0.80 34
5× 5 0.78 0.85 0.81 46
9× 9 0.81 0.87 0.83 87

Table 15: Impact of k value on influencing parameters.

k value Precision Recall F value
2 0.75 0.80 0.77
4 0.76 0.81 0.78
6 0.77 0.81 0.78
8 0.78 0.84 0.80
10 0.79 0.84 0.81

Table 16: Computation for percentage of adhesion failure for dry condition.

Mixture type Filler Mixing temperature Compaction temperature Sample Adhesion failure (%)

HMA PMD 180 170 HP180 2.68
OPC 180 170 HO180 2.82

WMA

PMD 170 160 WP170 1.51
OPC 170 160 WO170 1.76
PMD 160 150 WP160 1.92
OPC 160 150 WO160 2.10
PMD 150 140 WP150 2.33
OPC 150 140 WO150 2.54

Table 17: Computation for percentage of adhesion failure for 1FT condition.

Mixture type Filler Mixing temperature Compaction temperature Sample Adhesion failure (%)

HMA PMD 180 170 HP180 4.20
OPC 180 170 HO180 4.52

WMA

PMD 170 160 WP170 3.00
OPC 170 160 WO170 3.30
PMD 160 150 WP160 3.43
OPC 160 150 WO160 3.77
PMD 150 140 WP150 3.65
OPC 150 140 WO150 3.98

Table 18: Computation for percentage of adhesion failure for 3FT condition.

Mixture type Filler Mixing temperature (°C) Compaction temperature (°C) Sample Adhesion failure (%)

HMA PMD 180 170 HP180 9.90
OPC 180 170 HO180 11.00

WMA

PMD 170 160 WP170 5.10
OPC 170 160 WO170 9.20
PMD 160 150 WP160 5.50
OPC 160 150 WO160 9.80
PMD 150 140 WP150 5.90
OPC 150 140 WO150 10.10
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It was also be depicted from Tables 16–18 that the WMA
specimens prepared using PMD fillers when subjected to
3FT condition show relatively less damage evolution in
percentage of adhesion failure if compared to 1FT and dry
condition. However, when HMA prepared using PMD filler
was subjected to 3FT condition, the evolution of the per-
centage of adhesion failure was only slightly higher if
compared to 1FTand dry conditions. It is to be noted that an
environment with indirect light condition should be used in
order to prevent light reflections. If such condition is inev-
itable to avoid, then a heavy usage of advanced filters will be
required which will consume higher processing time. A light

blue or cream background is suitable to use as a background
for the image analysis, as it becomes easier to differentiate
between the foreground and the background prior to the
implementation of thresholding process. For the proposed
experiment apart from differentiating the stripping using
adhesion failure, fractured surfaces due to broken aggregate
were also observed. Resultant image sample subjected to
different freeze-thaw cycles show that large areas of non-zero
pixels (brown color pixels) are reduced with the addition of
the Cecabase warm mix additive in general. +e results
therefore indicate that the surfactant-based chemical additive
has worked well to substantially reduce the exposure to

(a) (b)

(c)

Figure 17: +resholding applied on clustered samples. (a) Dry-WP170, (b) 1FT-WO170, (c) 3FT-WP170.

(a) (b)

(c)

Figure 18: +resholding applied on clustered samples. (a) Dry-HP180, (b) 1FT-HO180, (c) 3FT-HP180.
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moisture in mixes in particular with the use of PMD filler. In
addition, the average stripping rate of WMA blend treated
with PMD anti-stripping agents was less than 5.5 percent
compared to the maximum level of 11% attained by HMA
mixture using OPC filler after 3FT cycles. Amongst the dif-
ferent level of moisture conditioning (dry, 1FT, and 3FT)
cycles, both HMA and WMA mixtures with OPC filler have
shown the highest percentage of adhesive failure (Figure 1(a)).
On the other hand, the use of PMD anti stripping agent in
both HMA and WMA has shown relatively lower amount of
percent adhesion failure in comparison with OPC filler using
different conditioning cycles. +e analysis of the results in-
dicates that the amount of coating has been increased inmixes
that contain PMD filler using WMA additives irrespective of
the conditioning cycles used.

6. Conclusion

From the experimental results, it is concluded that the pro-
posed PKIP algorithm is a viable and effective alternative to
assess the percentage of adhesion failure in asphalt mixture and
thereby encourages an approach to identify the extent of
moisture damage in warm mix asphalt. It is important to be
noted that in this experiment, high-resolution (5520× 3680)
images of asphalt mixtures were used to keep the image quality
intact. +erefore, when PKIP algorithm was applied on high-
resolution asphalt mixture image using OpenMP and Map-
Reduce, the execution time got reduced up to 30% and 46% if
compared with sequential processing of k means clustering.
Nonetheless, researchers are encouraged to apply the proposed
PKIP algorithm on quadcore and octacore compute nodes to
exploit its efficiency to the best possible extent. Moreover, a
distributed version of kmeans clustering can also be applied in
3D image analysis of asphalt mixture by experimenting with
different types of filters [39].

From the results obtained in terms of adhesion failure,
with respect to HMA, WMA specimens prepared using
PMD filler in dry condition have higher moisture resistance.
It is also evident that HMA mixtures with OPC filler after
three freeze-thaw (3FT) cycles were more prone to moisture
damage. However, the WMA mixture with PMD filler was
considered more efficient if compared to 1FT and Dry
specimens, as the increase in percent adhesion failure was
not too high if compared to Dry and 1FT. +e percent
adhesion failures in WMA mixtures subjected to 3FT cycles
were more prevalent than unconditioned mixtures (Dry)
and mixtures subjected to 1FTconditioning, confirming that
PG-76 based WMA mixtures when subjected to 3FT con-
ditioning compared to HMA were more efficient. +erefore,
to analyse the adhesion failure in asphalt mixtures, PKIP
algorithm could potentially be used to quantify moisture
damage due to its high accuracy and lower execution time.

Appendix

Hue Saturation Value (HSV) Freshold. +e hue (H)
component of any color represents its similarity to any
of the purest form of color, while the saturation (S)
component of any color shows the non-white element

present in it. +e value (V) component of any color
shows its subsequent darkness or lightness.
k medians is a variation of k means where instead of
calculating mean to compute centroid of the cluster,
median is computed.
K-medoidminimizes the sum of dissimilarities between
points labelled to be in a cluster and a point designated
as the center of the cluster.
Note on Hyperthreading. It is essential to note that
the CPU having two physical cores have the capa-
bility to process four threads parallelly using hyper
threading. However, practically, one physical core is
designated to run only single thread but with the
help of hyper threading, the CPU is capable to ex-
ploit the idle pipeline stages to execute another
thread. By doing this, it gives an illusion of a separate
physical core to the Operating System. Certain
sections of the processor are duplicated to store the
architectural state, but the main execution resources
are not. A basic RISC processor instruction pipeline
comprises of five stages, namely, instruction fetch
(IF), instruction decode (ID), memory access
(MEM), execute (EX), and register write back (WB).
One thread can be in the MEM stage and another
thread can be in the IF stage. +ere are some hazards
though. If, for example, the MEM stage is dependent
on the EX stage, then it could cause problems. Hyper
threading aims at minimizing the number of de-
pendent instructions so that another thread may be
run in the idle pipeline stages without dependency
issues. With respect to OpenMP code parallelization,
data points and cluster centres were marked within
the shared construct. Moreover, under the shared
construct, the iterative matrix multiplication as
mentioned in equation (8) third term was imple-
mented using omp for construct.
OpenMP. Library to implement parallel programming
for shared-memory-processors.
Otsu’s threshold. An algorithm used for image
segmentation which returns a single-intensity
threshold which separates foreground and back-
ground pixels.
o(n2 ∗ k ∗ i). Here n is the number of objects, k is the
number of cluster and i is the number of iterations.
Scala. A general purpose programming language which
supports both object oriented and functional paradigm
of programming.

Data Availability

+e input image samples of asphalt mixtures used in this
study are available in the Mendeley data repository via the
link: https://data.mendeley.com/datasets/x8ptnsjd7x/1 DOI:
10.17632/x8ptnsjd7x.1. +e source code for PKIP is available
at https://github.com/nishatakhtar/PKIP.

24 Advances in Civil Engineering

https://data.mendeley.com/datasets/x8ptnsjd7x/1%20DOI:%2010.17632/x8ptnsjd7x.1
https://data.mendeley.com/datasets/x8ptnsjd7x/1%20DOI:%2010.17632/x8ptnsjd7x.1
https://github.com/nishatakhtar/PKIP


Conflicts of Interest

+e authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

+e proposed experiments have been carried out in School
of Aerospace Engineering and School of Civil Engineering of
Universiti Sains Malaysia. +e authors would like to ac-
knowledge technical staff of Highway Engineering Lab,
School of Civil Engineering, Universiti Sains Malaysia, for
their kind support in fulfilling this project. +e authors
would like to acknowledge the RU-Top-Down grant (1001.
PAERO.87052) and RUI grant (1001.PAERO.8014035)
provided by the Research Creativity and Management Of-
fice, Universiti Sains Malaysia, to support this research. In
addition, the authors would like to acknowledge Universiti
Teknologi Petronas and its Industrial Grant (015MD0-052).

References

[1] Y. Wu and H. Kim, “Digital imaging in assessment of con-
struction project progress,” in Proceedings of the 21st Inter-
national Symposium on Automation and Robotics in
Construction, IAARC, Jeju, Korea, pp. 537–542, January 2004.

[2] A. Sahari Moghaddam, E. Rezazadeh Azar, Y. Mejias, and
H. Bell, “Estimating stripping of asphalt coating using k-
means clustering and machine learning-based classification,”
Journal of Computing in Civil Engineering, vol. 34, no. 1,
Article ID 4019044, 2019.

[3] C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, and
P. Fieguth, “A review on computer vision based defect de-
tection and condition assessment of concrete and asphalt civil
infrastructure,” Advanced Engineering Informatics, vol. 29,
no. 2, pp. 196–210, 2015.

[4] N.-D. Hoang, “Image processing-based recognition of wall
defects using machine learning approaches and steerable
filters,” Computational Intelligence and Neuroscience,
vol. 2018, Article ID 7913952, 18 pages, 2018.

[5] M. O. Hamzah, S. Y. Teh, B. Golchin, and J. Voskuilen, “Use of
imaging technique and direct tensile test to evaluate moisture
damage properties of warm mix asphalt using response
surface method,” Construction and Building Materials,
vol. 132, pp. 323–334, 2017.

[6] W. Song, B. Huang, and X. Shu, “Influence of warm-mix
asphalt technology and rejuvenator on performance of asphalt
mixtures containing 50% reclaimed asphalt pavement,”
Journal of Cleaner Production, vol. 192, pp. 191–198, 2018.

[7] M. R. Kakar, M. O. Hamzah, and J. Valentin, “A review on
moisture damages of hot and warm mix asphalt and related
investigations,” Journal of Cleaner Production, vol. 99,
pp. 39–58, 2015.

[8] S. Xu, F. Xiao, S. Amirkhanian, and D. Singh, “Moisture
characteristics of mixtures with warm mix asphalt tech-
nologies—a review,” Construction and Building Materials,
vol. 142, pp. 148–161, 2017.

[9] T. Manzur, K. Mahmood Ehsan, S. Lamia Sultana, and
S. Mahmud, “Measurement of surface damage through
boundary detection: an approach to assess durability of ce-
mentitious composites under tannery wastewater,” Advanced

Engineering Materials, vol. 2016, Article ID 5368635, 13 pages,
2016.

[10] T. S. Yee and M. O. Hamzah, “Evaluation of moisture sus-
ceptibility of asphalt-aggregate constituents subjected to di-
rect tensile test using imaging technique,” Construction and
Building Materials, vol. 227, Article ID 116642, 2019.

[11] M. R. Kakar, M. O. Hamzah, and J. Valentin, “Analyzing the
stripping potential of warm mix asphalt using imaging
technique,” IOP Conference Series: Materials Science and
Engineering, vol. 236, no. 1, p. 012013, 2017.

[12] M. N. Akhtar, J. M. Saleh, and C. Grelck, “Parallel processing
of image segmentation data using Hadoop,” International
Journal of Integrated Engineering, vol. 10, no. 1, 2018.

[13] J. Li, S. Song, Y. Zhang, and Z. Zhou, “Robust k-median and
k-means clustering algorithms for incomplete data,” Math-
ematical Problems in Engineering, vol. 2016, Article ID
4321928, 8 pages, 2016.

[14] H. Song, J.-G. Lee, and W.-S. Han, “PAMAE: parallel k-
medoids clustering with high accuracy and efficiency,” in
Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1087–
1096, Halifax, Canada, August 2017.

[15] S. Garg, “Variation of k-mean algorithm: a study for high-
dimensional large data set,” Information Technology Journal,
vol. 5, pp. 1132–1135, 2006.

[16] M. O. Hamzah, M. R. Kakar, and M. R. Hainin, “An overview
of moisture damage in asphalt mixtures,” Jurnal Teknologi,
vol. 73, no. 4, pp. 125–131, 2015.

[17] L. Li, L. Sun, G. Ning, and S. Tan, “Automatic pavement crack
recognition based on BP neural network,” Promet-Traffic &
Transportation, vol. 26, no. 1, pp. 11–22, 2014.

[18] A. Cubero-Fernandez, F. J. Rodriguez-Lozano, R. Villatoro,
J. Olivares, and J. M. Palomares, “Efficient pavement crack
detection and classification,” EURASIP Journal on Image and
Video Processing, vol. 1, p. 39, 2017.

[19] B. Yu, X. Gu, F. Ni, and L. Gao, “Microstructure character-
ization of cold in-place recycled asphalt mixtures by x-ray
computed tomography,” Construction and BuildingMaterials,
vol. 171, pp. 969–976, 2018.

[20] J. Jiang, F. Ni, Q. Dong, Y. Zhao, and K. Xu, “Fatigue damage
model of stone matrix asphalt with polymer modified binder
based on tensile strain evolution and residual strength deg-
radation using digital image correlation methods,” Mea-
surement, vol. 123, pp. 30–38, 2018.

[21] N.-D. Hoang, “Detection of surface crack in building struc-
tures using image processing technique with an improved
otsu method for image thresholding,” Advances in Civil
Engineering, vol. 2018, Article ID 3924120, 10 pages, 2018.

[22] N.-D. Hoang, Q.-L. Nguyen, and D. Tien Bui, “Image pro-
cessing-based classification of asphalt pavement cracks using
support vector machine optimized by artificial bee colony,”
Journal of Computing in Civil Engineering, vol. 32, no. 5,
Article ID 4018037, 2018.

[23] J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri,
“+e imagej ecosystem: an open platform for biomedical
image analysis,” Molecular Reproduction and Development,
vol. 82, no. 7-8, pp. 518–529, 2015.

[24] S. Bhattacharya, S. Gupta, and K. S. Venkatesh, “Dehazing of
color image using stochastic enhancement,” in Proceedings of
the IEEE International Conference on Image Processing (ICIP),
pp. 2251–2255, Phoenix, AZ, USA, September 2016.

[25] Y. Chae, M. Nakazawa, and B. Stenger, “Enhancing product
images for click-through rate improvement,” in Proceedings of

Advances in Civil Engineering 25



the 2018 25th IEEE International Conference on Image Pro-
cessing (ICIP), pp. 1428–1432, Athens, Greece, October 2018.

[26] S. A. C. Nelson and S. Khorram, Image Processing and Data
Analysis with ERDAS IMAGINE®, CRC Press, Boca Raton,
FL, USA, 2018.

[27] M. O. Hamzah, M. R. Kakar, S. A. Quadri, and J. Valentin,
“Quantification of moisture sensitivity of warm mix asphalt
using image analysis technique,” Journal of Cleaner Produc-
tion, vol. 68, pp. 200–208, 2014.

[28] S. Dong, J. Zhong, P. Hao et al., “Mining multiple association
rules in LTPP database: an analysis of asphalt pavement
thermal cracking distress,” Construction and Building Mate-
rials, vol. 191, pp. 837–852, 2018.

[29] X. Zheng, Q. Lei, R. Yao, Y. Gong, and Q. Yin, “Image
segmentation based on adaptive k-means algorithm,” EUR-
ASIP Journal on Image and Video Processing, vol. 1, p. 68,
2018.

[30] C. Lantieri, R. Lamperti, A. Simone et al., “Use of image
analysis for the evaluation of rolling bottle tests results,”
International Journal of Pavement Research and Technology,
vol. 10, no. 1, pp. 45–53, 2017.

[31] Z. Li, G. Liu, D. Zhang, and Y. Xu, “Robust single-object
image segmentation based on salient transition region,”
Pattern Recognition, vol. 52, pp. 317–331, 2016.

[32] H. Zhu, F. Meng, J. Cai, and S. Lu, “Beyond pixels: a com-
prehensive survey from bottom-up to semantic image seg-
mentation and cosegmentation,” Journal of Visual
Communication and Image Representation, vol. 34, pp. 12–27,
2016.

[33] T. Liu, C. K. Liyanaarachchi Lekamalage, G.-B. Huang, and
Z. Lin, “An adaptive graph learning method based on dual
data representations for clustering,” Pattern Recognition,
vol. 77, pp. 126–139, 2018.

[34] M. Al-Ayyoub, S. Al Zubi, Y. Jararweh, M. A. Shehab, and
B. B. Gupta, “Accelerating 3D medical volume segmentation
using GPUs,” Multimedia Tools and Applications, vol. 77,
no. 4, pp. 4939–4958, 2018.

[35] M. Capó, A. Pérez, and J. A. Lozano, “An efficient approxi-
mation to the k-means clustering for massive data,” Knowl-
edge-Based Systems, vol. 117, pp. 56–69, 2017.

[36] M. Baydoun, H. Ghaziri, and M. Al-Husseini, “CPU and GPU
parallelized kernel k-means,” Fe Journal of Supercomputing,
vol. 74, no. 8, pp. 3975–3998, 2018.

[37] K. Kerdprasop and N. Kerdprasop, “Parallelization of
k-means clustering on multi-core processors,” in Proceedings
of the 10th WSEAS International Conference on Applied
Computer Science, pp. 472–477, Budapest, Hungary, De-
cember 2010.

[38] L. Bai, X. Cheng, J. Liang, H. Shen, and Y. Guo, “Fast density
clustering strategies based on the k-means algorithm,” Pattern
Recognition, vol. 71, pp. 375–386, 2017.

[39] M. N. Akhtar, J. M. Saleh, H. Awais, and E. A. Bakar, “Map-
reduce based tipping point scheduler for parallel image
processing,” Expert Systems with Applications, vol. 139, Article
ID 112848, 2020.

[40] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image
segmentation using k-means clustering algorithm and sub-
tractive clustering algorithm,” Procedia Computer Science,
vol. 54, pp. 764–771, 2015.

[41] T. Zhang and F. Ma, “Improved rough k-means clustering
algorithm based on weighted distance measure with gaussian
function,” International Journal of Computer Mathematics,
vol. 94, no. 4, pp. 663–675, 2017.

[42] K. Rajeswari, O. Acharya, M. Sharma, M. Kopnar, and
K. Karandikar, “Improvement in k-means clustering algo-
rithm using data clustering,” in Proceedings of the 2015 In-
ternational Conference on Computing Communication Control
and Automation, pp. 367–369, Pune, India, February 2015.

[43] S. Ding, N. Zhang, J. Zhang, X. Xu, and Z. Shi, “Unsupervised
extreme learning machine with representational features,”
International Journal of Machine Learning and Cybernetics,
vol. 8, no. 2, pp. 587–595, 2017.

[44] A. Mohan and S. Poobal, “Crack detection using image
processing: a critical review and analysis,” Alexandria Engi-
neering Journal, vol. 57, no. 2, pp. 787–798, 2018.

[45] M. R. Kakar, M. O. Hamzah, M. N. Akhtar, and J. M. Saleh,
“Evaluating the surface free energy and moisture sensitivity of
warm mix asphalt binders using dynamic contact angle,”
Advances in Civil Engineering, vol. 2019, Article ID 9153603,
15 pages, 2019.

[46] Public Works Department, Standard Specification for Road
Works in Malaysia, Section Four: Flexible Pavements, PWD,
Malaysia, 2008.

[47] Asphalt Institute, “Superpave mix design,” in Superpave
Series, No. 2 (SP-2), 3rd ed., Asphalt Institute, Lexington, KY,
USA, 2001.

[48] ASTM, ASTM D1559: Test Method for Resistance of Plastic
Flow of Bituminous Mixtures Using Marshall Apparatus.
ASTM, West Conshohocken, PA, USA, 2006.

[49] ASTM, ASTM D4867: Standard Test Method for Effect of
Moisture on Asphalt Concrete Paving Mixtures. ASTM, West
Conshohocken, PA, USA, 2006.

[50] D. Chen, N. Roohi Sefidmazgi, and H. Bahia, “Exploring the
feasibility of evaluating asphalt pavement surface macro-
texture using image-based texture analysis method,” Road
Materials and Pavement Design, vol. 16, no. 2, pp. 405–420,
2015.

[51] R. Chandel and G. Gupta, “Image filtering algorithms and
techniques: a review,” International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 3,
no. 10, 2013.
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.e scientific and effective prediction of the water consumption of construction engineering is of great significance to the
management of construction costs. To address the large water consumption and high uncertainty of water demand in project
construction, a prediction model based on the back propagation (BP) neural network improved by particle swarm optimization
(PSO) was proposed in the present work. To reduce the complexity of redundant input variables, this model determined the main
influencing factors of water demand by grey relational analysis. .e BP neural network optimized by PSO was used to obtain the
predicted value of the output interval, which effectively solved the shortcomings of the BP neural network model, including its
slow convergence speed and easy to fall into local optimum problems. In addition, the water consumption interval data of the
Taiyangchen Project located in Xinyang, Henan Province, China, were simulated. According to the results of the case study, there
were four main factors that affected the construction water consumption of the Taiyangchen Project, namely, the intraday amount
of pouring concrete, the intraday weather, the number of workers, and the intraday amount of wood used..e predicted data were
basically consistent with the actual data, the relative error was less than 5%, and the average error was only 2.66%. However, the
errors of the BP neural network model, the BP neural network improved by genetic algorithm, and the pluralistic return were
larger. .ree conventional error analysis tools in machine learning (the coefficient of determination, the root mean squared error,
and the mean absolute error) also highlight the feasibility and advancement of the proposed method.

1. Introduction

.e cost management of construction engineering is a
complex problem, and different cost management strategies
should be carried out according to the diverse characteristics
of construction materials [1]. .e cost management of
construction water has the following characteristics. (1) .e
unit price of water is low and almost constant..erefore, the
essence of cost analysis related to construction water is to
analyze the construction water demand. (2) .e total
amount of water used for construction is huge, and ensuring
the stability of the water supply during construction is,
therefore, of great significance to the smooth progress of
construction [2]. In addition, although the cost of con-
struction water accounts for a small proportion of the total
cost of construction projects, water plays a major role in the

construction process [3]. .e scientific and effective pre-
diction of construction water consumption can not only be
used to calculate the cost of construction water scientifically
and effectively but can also ensure the stability of the water
supply during construction as much as possible, which is
also of great significance to the smooth progress of
construction.

However, the prediction of construction water con-
sumption is complex. Almost all construction operations
require water. Operations such as on-site concrete con-
struction and formwork construction are characterized by
high water consumption. Moreover, construction engi-
neering has complex stages, and the water consumption in
different construction stages is very different.

.e traditional methods for the prediction of industrial
water consumption include parametric statistics and
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deterministic models, which have usually been incorporated
into models for engineering calculation or physical analysis
after quantifying the factors that affect construction water
consumption. He and Tao [4] established a coupled grey
system and multivariate regression model to predict water
consumption in Wuhan, which was marked by a clear
concept and simple structure. Via the power functionmodel,
the linear function model, the logarithmic function model,
and the parabolic function model, Zhang et al. [5] fitted the
curves of water consumption in China in 2015, 2020, and
2030. .e results showed that the correlation coefficient of
the parabolic curve fitting was the largest, the average ab-
solute percentage error was the smallest, and the fitting effect
was the best. Buck et al. [6] used a statistical sampling
method to predict residential water consumption in Cal-
ifornia. Nevertheless, these research methods were time-
consuming and prone to predict errors because they as-
sumed that the relationship between independent and de-
pendent variables was a simple linear process. However,
regarding water consumption in construction engineering,
the interaction of various variables constitutes a large and
compound system with continuous and nonlinear changes.
A simplified model would affect the accuracy of the analysis
results, thereby resulting in the prediction accuracy of water
consumption in construction engineering being unable to
meet the needs of engineering practice, and posing a sub-
stantial threat to the smooth progress of engineering proj-
ects. In addition, traditional water demand forecasting
methods need a large amount of complete statistical data to
obtain consistent research results. However, hefty amounts
of complete statistical data are difficult to obtain on con-
struction sites.

In recent years, the emergence of artificial intelligence
algorithms, such as artificial neural networks (ANNs), has
provided new ideas for conducting the real-time prediction
of the complex system of the water demand of construction
projects [7]. .e ANN method has a good self-adaptive
learning ability and nonlinear mapping ability and is able to
fully utilize the potential laws of input data, thereby dem-
onstrating significant advantages for the research and
analysis of complex systems with multifactor coupling.
When an ANN is applied to the water demand prediction of
building engineering construction, the model solves the
nonlinear problem of water demand prediction by simu-
lating the structural characteristics and action mechanism of
biological neurons and uses the limited data measured in the
field instead of a large amount of complete statistical data to
predict the water demand by using the data-driven method.
At present, relevant scholars have carried out research on
water demand forecasting and have obtained rich research
results.

Donkor et al. [8] summarized the research results related
to urban water demand forecasting and pointed out that
scientific and effective forecasting variables are the key to
successfully forecasting urban water demand. .ey also
pointed out that the soft computing method yielded valuable
research results in the short-term forecasting of water de-
mand. Piasecki et al. [9] compared the ANN and themultiple
linear regression (MLR) method, and a case study showed

that the ANNmethod was superior toMLR. Zhang et al. [10]
used the main influencing factors of the predicted daily
water consumption as the input and the predicted daily
water consumption as the output after noise reduction. In
this work, the multiscale chaotic genetic algorithm, which is
characterized by a strong global searching ability and fast
searching speed, was utilized to optimize the parameters of a
least-squares support vector machine. By using the ANN
method, Santos and Pereira [11] predicted the urban water
demand of São Paulo, Brazil. .e research indicated that the
ANN model could make accurate predictions with a large
amount of data, and it was marked by the best performance
and a small error. In addition, Santos considered the in-
fluences of weather variables on regional urban water
consumption. At present, the application of artificial in-
telligence prediction methods to water consumption pre-
diction mainly includes the following two ideas: a
multiparameter prediction model and a time series-based
model. Research on the prediction of drinking water de-
mand in Portugal has shown that the univariate time series
model based on historical data is useful and can be combined
with other prediction methods to reduce errors [12]. .e
previously mentioned research has demonstrated that soft
computing algorithms, such as ANNs, can better deal with
the nonlinear problems in water resource demand man-
agement. .erefore, the complex and nonlinear mapping
between the factors that affect water resource demand and
construction water resource demand can be identified by
ANNs.

At present, the back propagation (BP) neural network is
themost commonly used neural network [13].When applied
to complex system analysis, the traditional BP neural net-
work might contain the following shortcomings. (1) .e
traditional BP neural network is an optimization method of
local search, and it can easily fall into the local extremum.
.e weights can easily converge to local minima, which leads
to the failure of network training [14]. Furthermore, the BP
neural network is highly sensitive to initial network weights.
When the network is initialized with different weights, it
tends to converge to different local minima [15]. (2) .e
structure of the BP neural network can only be selected by
experience, and there is no unified and complete theoretical
guidance for the selection of a BP neural network structure.
If the selected network structure is too large, the training
efficiency will not be high and a fitting phenomenon may
occur [16], resulting in low network performance and re-
duced fault tolerance. If the selection is too small, the
network may not converge [17]. Based on the preceding
analysis, the traditional BP neural network should be
strengthened to develop a high-precision model.

Similar to other metaheuristic algorithms such as the
genetic algorithm (GA), particle swarm optimization (PSO)
is a population-based optimization tool that searches for the
optimal solution by updating generations. PSO has no
evolutionary operators such as crossover or mutation.
.erefore, the advantages of PSO are its very simple concept,
low calculation cost, and few parameters that require ad-
justment [18]. In the fields of bottom hole pressure pre-
diction, ground vibration prediction [19], and asphaltene
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precipitation prediction [20], PSO has been applied to op-
timize the initial weights and thresholds of the BP neural
network, which results in higher accuracy.

In addition, most of the existing research results related
to water demand forecasting have been aimed at large-scale
areas, such as cities [11–14]. To the best of the authors’
knowledge, research on the water demand forecasting for
construction projects has not yet been reported.

Hence, in this paper, a prediction model of the water
consumption of construction projects was established based
on grey relational analysis and the BP neural network im-
proved by PSO. .e main contributions of this paper are as
follows. (1) Previous relevant research has primarily focused
on the water demand prediction of large-scale areas, such as
cities. However, the present study focused on the water
demand prediction of construction projects in the con-
struction stage and presented a detailed case analysis of the
construction water of the Taiyangchen Project in Xinyang
City, Henan Province, China. .is provided new insight for
water management in construction engineering. (2) In this
paper, the grey relational analysis method was adopted to
identify the key factors that affect the construction water
consumption of building engineering and to reduce the
input variables of the BP model. By setting the threshold of
the grey relational degree, it was determined that the key
factors that affected the water consumption in the
Taiyangchen Project were the intraday amount of pouring
concrete, the intraday weather, the number of workers, and
the intraday amount of wood used. (3) In view of the
shortcomings of the BP neural network model, such as its
slow convergence speed and easy to fall into local optimum,
PSO, which is characterized by a fast convergence speed and
easy realization, was adopted to optimize the initial weights
and thresholds of the BP neural network, which effectively
solved these problems. Additionally, the error analysis in the
case study demonstrated that the calculation results of the
BP neural network improved by PSO achieved higher ac-
curacy than the classical BP neural network model, the BP
neural network improved by GA, and the pluralistic return.

.e remaining chapters of this paper are arranged as
follows. Section 2 presents the materials andmethods, and the
fundamental factor identification method based on grey re-
lational analysis and the BP neural network optimized by PSO
are constructed in detail to build a water demand prediction
model for construction projects. Section 3 presents the results
and discussion and makes a detailed case analysis of the
construction water of the Taiyangchen Project in Xinyang
City, Henan Province, China. .ree common error analysis
tools in machine learning are employed in this section to
compare the computational accuracy of different models, and
the influence of the topological structure of the BP network
model on the calculation results is discussed. Section 4
presents the conclusion, which summarizes the research re-
sults of this paper and indicates future research directions.

2. Materials and Methods

2.1. Identification of Key Factors Based on Grey Relational
Analysis. Grey system theory is a systematic scientific theory

put forward by Professor Deng Julong, a famous Chinese
scholar. Grey relational analysis is a quantitative description
and comparison method of system development and
changing situations. Its basic concept is tantamount to judge
whether factors are closely related by the geometric simi-
larity of reference data columns and several comparison data
columns, which reflect the correlation degree between
curves. In the fields of risk assessment and prediction, re-
lational analysis can determine the weight of each influ-
encing factor by comparing the compactness of each index
series with the benchmark series [21].

.e grey correlation method is in a position to analyze
the development trend of a system [22]. .is method can
extract the factors that have great influences on the system
index in a system with poor information and small samples.
Grey relational analysis can overcome the problems of the
calculation amount being too large, the samples not obeying
a certain probability distribution, and the calculations
having different quantitative and directional results.

.e steps for the use of grey relational analysis to find the
main factors that affect water consumption in construction
projects are reproduced below.

Step 1. Raw data processing.
In this paper, the interval-valued processing method is

used to process the original data of construction water and
its influencing factors [23].

Step 2. Calculate the grey correlation coefficient.
.e degree of correlation can reflect the shape of the

sequence, and the coefficient of the grey correlation of water
used for building engineering construction is

θmn �
ρΔnmax + Δnmin

ρΔnmax + Δmn(i)
, (1)

where Δnmax and Δnmin are the maximum and minimum
values in the water consumption data series of construction
projects, respectively, and ρ is a resolution function, the
function of which is to improve the significance of the
difference between correlation coefficients. Generally, a
satisfactory resolution result can be obtained when the value
is 0.5 [24]. Moreover, m is the reference sequence, n is the
comparison sequence, s is the sequence length, and Δmn(i) is
the absolute difference between the reference sequence m

and point i of the comparison sequence n.

Step 3. Calculate the correlation degree.
.e correlation degree calculation formula is as follows

[25]:

λ xm, yn(  �
1
s

  

s

i�1
θmn(i), (2)

where s is the length of the reference sequence, θmn(i) is the
correlation coefficient between the reference sequencem and
the i value of the comparison sequence n, and λ(xm, yn) is
the correlation degree between the reference sequence m on
the x curve and the comparison sequence n on the y curve.
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Step 4. Rank analysis of correlation degree.
.e correlation degree of each factor is sorted depending

on the numerical value and describes the relative changes of
the reference sequence and comparison sequence. Generally,
if the correlation degree between two factors is large, the
changes of construction water and the influencing factors are
essentially the same [25, 26].

2.2. Prediction Model of Water Demand Based on the BP
Neural Network Optimized by PSO

2.2.1. Introduction of the BP Neural Network. .e BP neural
network is an artificial neural network model with self-
learning and self-adapting abilities and composes of two
parts, namely, the forward propagation of input data and the
backward propagation of the error value. .e standard
neural network topology consists of input layer nodes,
hidden layer nodes, and output layer nodes that are con-
nected, and the nodes in the same layer do not interact with
each other. In this algorithm, n samples X � (x1, x2, . . . , xn)

are taken as the input nodes of the neural network, and the
expected result Y � (y1, y2, . . . , yn) is taken as the corre-
sponding output node. .e error value can be obtained by
comparing the predicted result with the actual result, and the
fitness function is employed to measure whether the error
value is consistent. For the calculation results that do not
meet the requirements, the network will use the gradient
descent method to carry out error back propagation in the
weight vector space, for which the correction amount of each
weight of the hidden layer and the output layer [27] is shown
in equation (3)..e error reaches the expected value through
repeated iteration, thus completing the establishment of the
BP neural network calculation model.

F(ψ,ω, θ, r) � 

N1

t�1


M

s�1
yt(s) − yt(s) ⎛⎝ ⎞⎠

− (1/2)

, (3)

where ψ is the error value in the BP neural network, ω, θ, and
r are the input layer, hidden layer, and output layer of the
neural network, respectively, N1 and M are the weight and
threshold number of nodes, respectively, yt(s) is the ex-
pected output of the neural network, yt(s) is the actual
output, t is a node that needs to optimize the connection
weight, and s is a node that needs to optimize the threshold.

2.2.2. Optimization of the BP Neural Network by PSO.
PSO was first proposed by Eberhart and Kennedy in 1995
[28]. Its basic concept originated from the study of birds’
foraging behavior, and PSO was inspired by this biological
population behavior to solve the optimization problem. In
PSO, each particle represents a solution of the problem and
corresponds to a fitness value. Particle velocity determines
the distance and direction of particle motion and is dy-
namically adjusted by the motion of itself and other par-
ticles, thus realizing the optimization process of individuals
in a solvable space.

In the process of adopting PSO, the error between the
capacity output and the expected capacity output obtained

by the forward learning of the BP neural network is first
initialized by the PSO to determine the individual extre-
mum and group extremum, i.e., to find the weights and
thresholds in the BP neural network. .e speed and po-
sition are then updated, as are the original individual ex-
tremum and group extremum after calculating the fitness.
Finally, the obtained optimal neural network weights and
thresholds are sent to the BP neural network for verification
[29].

Supposing that the particle swarm X � (X1, X2, . . . , Xn)

is composed of n particles, and the dimension of the particles
is usually Q. .ere are n particles in the swarm, each particle
is Q-dimensional, and the swarm composed of n particles
searches Q dimensions. Every particle is expressed as
Xi � (Xi1, Xi2, . . . , XiQ), which represents the position of
the particle i in the Q-dimensional search space and also a
potential solution to the problem. According to the objective
function, the fitness value corresponding to each particle
position Xi can be calculated [30]. .e velocity corre-
sponding to each particle can be expressed as
V � (Vi1, Vi2, . . . , ViQ), and each particle should consider
two factors when searching:

(1) .e historical optimal value Pi, Pi � (Pi1,

Pi2, . . . , PiQ), i � 1, 2, . . . , n.
(2) .e optimal value Pg, Pg � (Pg1, Pg2, . . . , PgQ),

found by all particles. It is worth noting that there is
only one Pg here.

During each iteration, particles update their own velocity
and position via the individual extremum and global ex-
tremum, and the update formula of position velocity opti-
mized by the PSO is as follows [31]:

v
k+1
id � ωv

k
id + c1r p

k
id − x

k
id  + c2r p

k
gd − x

k
id ,

x
k+1
id � x

k
id + v

k+1
id ,

(4)

where ω is the inertia weight, d � 1, 2, . . . , D, i� 1,2, . . ., n, k

is the current iteration number, vid is the velocity of particles,
c1 is the particle weight coefficient that tracks its own his-
torical optimum value, which represents the particle’s own
cognition and is called the acceleration factor, c2 is the
weight coefficient of the optimal value of the particle
tracking group, which represents the cognition of particles to
the whole group knowledge and is called the acceleration
factor, and r is a random number that is uniformly dis-
tributed in the interval [0, 1]. In addition, error analysis
should be carried out on the results.

Based on the preceding analysis, the calculation flow
chart of the proposed model is presented in Figure 1.

It can be observed in Figure 1 that, via the analysis of the
data, the historical data and several factors that have the
greatest influences on the water demand of building engi-
neering construction are input into the neural network.
After the neurons in each layer act on the influencing factors,
they generate the output. .e weights and thresholds of the
neural network are optimized by PSO, and the fitness value is
obtained to determine the individual with the best fitness.
After taking the output error as the objective function and
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correcting the error to meet the requirements, the trained
neural network can make predictions.

3. Results and Discussion

3.1. Selection of Influencing Factors. .ere are many factors
that affect water consumption in construction areas [32],
such as the number of workers (R1) [33], the intraday
amount of pouring concrete (R2) [34], the highest tem-
perature (R3) [35], the intraday weather (R4) [35], the in-
traday amount of wood used (R5) [34], and the intraday
amount of steel used (R6) [34].

In this paper, the data of the Taiyangchen Project in May
and June 2019 were collected in units of days. .e data of the
water use of the Taiyangchen Project was processed by grey
relational analysis, and the correlation coefficient and degree
were obtained. By comparing the sizes, the main factors that
affected the water use of the Taiyangchen Project were
determined and then used as input layers and input into the
neural network to predict the water use of the project.

.e daily water consumption of the Taiyangchen Project
in Xinyang City, Henan Province, China, is the research
object in this work. .e project consists of nine residential
buildings with frame-shear wall structures, all of which have
18 floors above ground and 1 floor underground. .e height
of each building is 52.90m, and the total construction area of
each building is 13449.68m2.

.e quantification of the evaluation factors is an im-
portant step in the selection and treatment of influencing
factors. .e number of workers (R1), the intraday amount of
pouring concrete (R2), the highest temperature (R3), the

intraday amount of wood used (R5), and the intraday
amount of steel used (R6) were all determined by actual field
investigation and statistics..e score of the intraday weather
(R4) is divided into four situations, namely, sunny (0.9),
cloudy (0.6), light rain (0.3), and heavy rain (0)..e values of
each factor are presented in Table 1. Due to the limitations of
the layout, only some samples are reported in Table 1.

.e correlation coefficients of the influencing factors
were calculated by equations (1) and (2), and the calculation
results are shown in Table 2.

It can be seen from Table 2 that the correlation degree of
the influencing factors from the greatest to the least is as
follows: the intraday amount of pouring concrete (R2)> the
intraday weather (R4)> the number of workers (R1)> the
intraday amount of wood used (R5)> the highest temper-
ature (R3)> the intraday amount of steel used (R6). .is
order can be explained by the content and characteristics of
the construction work. Concrete pouring is a typical wet
operation that requires a lot of water. .e weather is another
significant factor that affects construction. When it rains,
most of the work on the construction site will stop, and the
construction water consumption will decrease significantly.
.e more workers there are, the more water will be used for
construction and living. Timber for construction needs to be
watered and wetted to ensure that its moisture content is
near the optimum, which also requires a large amount of
water [36].

When the correlation degree is less than 0.6, the two
sequences are considered to be independent, and if the
correlation degree is greater than 0.8, the two sequences have
a good correlation. A correlation value between 0.6 and 0.8 is
beneficial [35]. In Table 2, the factors with a correlation degree
greater than 0.8 include the intraday amount of pouring
concrete (R2), the intraday weather (R4), the number of
workers (R1), and the intraday amount of wood used (R5), and
these are, therefore, the key factors that affect the water
consumption of building engineering construction.

3.2. Result of Water Demand Forecasting. In this work, the
construction water consumption of the Taiyangchen Project
in Xinyang City, Henan Province, China, was taken as the
research object, and the data used were sourced from the
monitoring data of the municipal pipe network water
consumption of the Taiyangchen Project and the on-site
construction log.

After the evaluation factor is quantified, the difference of
its numerical dimension slows the convergence speed of the
algorithm and affects the accuracy of the model. Because all
indicators are benefit-based, the data are normalized as
follows [37]:

x
∗
ij �

xij − min xj 

max xj  − min xj 
, (5)

where x∗ij indicates the value of the evaluation index after
standardization, max(xj) represents the maximum value of
indicator j, and max(xj) represents the minimum value of
indicator j.

Start

Input and preprocess the data of water demand of construction engineering  

Input possible influencing 
factors of water demand

Determine the main factors
 affecting the water use in the 

construction engineering in grey
 relational analysis

Determine the topological 
structure, weight, and threshold 
length of the BP neural network

Initialize parameters of the BP
neural network 

Initial population of neuron 
weight and threshold

Prediction results of water
 demand simulation

Meet terminal 
condition

Update weights and
 thresholds

Calculate error

Get the initial weight and
 threshold of the best neuron

Whether 
optimization 
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 are achieved

Calculate fitness of
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End

Yes
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No
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Figure 1: Flow chart of the prediction model of water demand.
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According to grey relational analysis, four main influ-
encing factors of water demand in the construction interval
of building engineering were obtained. .e number of input
nodes is m � 4, and the number of hidden layer nodes is
n � 2m + 1 � 9, so the structure of the BP neural network is
4-9-1 [38], as illustrated in Figure 2. It is worth noting that a
variety of BP neural network topologies were constructed in
this work, and the calculation results are exhibited in Table 3.

In the process of model formation using the BP neural
network, the available data should be divided into two
groups, which, respectively, represent training and testing
sets. .e data of the training set are used for training, while
the data of the testing set are used for checking the network.
Many researchers choose data in the respective proportions
of 90% and 10%, 80% and 20%, or 70% and 30% [39]. In this
study, the training set was data of the Taiyangchen Project
from May 1 to June 20, 2018, including a total of 51 days of
data. .e testing set was the data of the Taiyangchen Project
from June 21 to June 30, 2018, including a total of 10 days of
data. .e ratio of training set data to testing set data was
therefore 83.61%–16.39%.

To achieve a better prediction effect, the best parameters
of the BP neural network and the PSOwere set, including the
following: the number of training iterations was 1000, the
learning rate was 0.1, and the training target was 0.001. .e
calculation parameters [40] of PSO included 1000 iterations,
a population size of 50, the local learning factor c1 � 1.49445,
and the global learning factor c2 � 1.49445. .e maximum
error of iteration termination was 0.00001.

.e convergence curve obtained after calculation is
presented in Figure 3. In a case analysis, when the number of
iterations reaches about 500, the requirements are met. In
this study, the population number and the maximum
number of iterations were set to relatively large values to
ensure that the model could calculate more complex
problems. Figure 3 shows the convergence curve after 1000
iterations.

Following the optimization calculation process of PSO,
the error between the 498th iteration and 499th iteration was

greater than the minimum acceptable precision (0.00001),
while the error between the 499th iteration and 500th it-
eration was less than 0.00001. After that, the errors of the
calculation results were all less than 0.00001. .e calculation
was arrested at the 1000th iteration with a very small error.
.ese findings indicate that the PSO found the optimal
neural network weights and thresholds at the 500th iteration,
which is illustrated by both Figure 3 and Table 4. In addition,
it can be qualitatively judged from Figure 3 that the GA

Table 2: Correlation coefficients of influencing factors.

Factor R1 R2 R3 R4 R5 R6

Correlation coefficient 0.8454 0.8927 0.5150 0.8589 0.8117 0.4625
Mark Reserved Reserved Deleted Reserved Reserved Deleted

Correction of weight and threshold

R1

R2

R4

R5

Predicted
quantity

Training
quantity

Output layerHidden layer

…

Input layer

Figure 2: Topological structure diagram of the BP neural network.

Table 3: Comparison of three error representations.

Error representations R2 RMSE MAE
BP 0.7921 731.2692 45.4554
PSO-BP 0.9959 96.0900 15.7467
GA-BP 0.9853 130.1673 20.3815
Pluralistic return 0.3767 1938.1279 73.0130

Table 1: Numerical value of each factor and actual water consumption.

No. R1 R2 R3 R4 R5 R6 Actual water consumption
Unit — m3 °C — m3 t t
1 May 228 310.00 28 0.3 13.00 73.46 836.171
2 May 198 1050.00 24 0.6 57.10 72.67 1200.363
3 May 219 1200.00 26 0.6 9.10 83.07 1428.350
4 May 255 730.00 28 0.6 3.10 165.73 567.857
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
27 June 229 50.00 36 0.3 36.10 84.41 752.873
28 June 200 150.00 35 0.3 3.50 44.68 758.394
29 June 215 780.00 32 0.6 18.30 36.38 1601.371
30 June 219 250.00 32 0.3 4.90 107.60 702.361
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converged between 700 and 800 generations. .e PSO
converged faster than GA. .is is an advantage of PSO
compared with GA.

.e prediction results obtained by using the proposed
calculationmodel are reported in Table 5. In addition, the BP
model, the pluralistic return, and the BP model improved by
GA were also used to predict the results. .e parameters of
GA were set as follows: population size was 100, ending
evolution algebra was 1000, crossover probability was 0.5,
and mutation probability was 0.001.

In addition, this paper used the standard calculation
method which was commonly used in engineering practice,
and multivariate linear return method to calculate the
quantity used in the construction site.

According to Chinese national standard (the Code for
Fire Protection Design of Buildings, GB 50016-2014), the
calculation process of construction site water consumption
is as follows:

(1) Water consumption for site operation:

q1 � K1 
Q1 · N1

T1 · t
  ·

K2

8 × 3600
 , (6)

where q1 (L/s) is the water consumption of con-
struction site, K1 is the unexpected construction
water consumption coefficient, Q1 (L/s) is the annual
engineering quantity, N1 is the construction water
quota (L/m3), T1 (days) is the annual effective
working day, t (hours) is the number of working

shifts per day, and K2 is the imbalance coefficient of
water consumption.
According to the field investigation, K1 was 1.10, T1
was 300, and t was 8 in this project..e calculated Q1
and N1 were brought into equation (6), and the q1
was 0.52 L/s.

(2) Water for construction machinery:

q2 � K1  Q2 · N2 ·
K3

8 × 3600
 , (7)

where q2 is the water consumption of machinery, K1
is the unexpected construction water consumption
coefficient, Q2 is the same number of machinery, N2
is the water quota of construction machinery ma-
chine-team, and K3 is the water imbalance coeffi-
cient of construction machinery.
According to field investigation, K3 was 1.5.
According to the construction site statistics, Q2 and
N2 were taken into equation (8), and q2 � (0.04 L/s)
could be calculated.

(3) Domestic water consumption on the construction
site:

q3 �
P1 · N3 · K4

t × 8 × 3600
, (8)

where q3 is the domestic water consumption of the
construction site, P1 is the domestic water

Table 4: Precision level and calculation termination of PSO at the 1000th iteration.

Iteration (n) Fitness (n − 1) Fitness (n) Fitness (n) − Fitness (n − 1) Result
498 1.488344 1.488344 0< 0.00001 Continue
499 1.488344 1.455848356 0.032495395> 0.0001 Continue
500 1.455848356 1.455848356 0< 0.0001 Continue
1000 1.455848 1.455848 0< 0.0001 Stop
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Figure 3: .e convergence curve of PSO and GA.
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consumption of the construction site, N3 is the water
quota of the construction site, K4 is the imbalance
coefficient of the construction site, and t is the
number of working shifts per day.
According to the field investigation, K4 was 1.3 and t

was 1. With equation (8), q3 was 2.08 L/s.
(4) Domestic water consumption in living quarters:

q4 �
P2 · N4 · K5

24 × 3600
, (9)

where q4 is the domestic water consumption in the
living area, P2 is the number of residents in the living
area, N4 is the daily domestic water quota in the
living area, and K5 is the unbalanced coefficient of
water consumption in the living area.
After field calculation, P2 was 150 and K5 was 2.
Bringing complex N4 into equation (9), q4 was 0.8 L/s.

(5) Total water consumption Q:

Q � q1 + q2 + q3 + q4. (10)

Bring q1, q2, q3, and q4 into equation (10), and the Q is
3.44 L/s. It is worth mentioning that the fire water was not
considered in our calculation here because the fire water was
only used in the fire.

Considering that the daily construction time is 8 hours,
the water consumption calculated according to Chinese
construction codes was 990.72m3. Comparing the data in
Tables 1 and 5, the water consumption calculated by Chinese
construction codes was often less than the actual water
demand. .is situation would easily lead to water shortage
and shutdown in the construction site, which was one of the
important backgrounds of the research work in this paper.
In addition, under the constraints of limited time and
timeliness of data collection, it took a long time to investigate
the values of more than a dozen parameters by adopting
Chinese national calculation standard, which had the dis-
advantage of low calculation efficiency.

Using the return analysis function of Excel 2016 Soft-
ware, the expression of multivariate return was calculated as
follows:

Q � 211.1739 + 0.8247r1 + 0.1152r2 + 72.2757r4 + 1.6083r5.

(11)

Bring the data of the test set into equation (11), and the
prediction result is as shown in Table 5.

3.3. Analysis and Discussion of Calculation Results. Error
analysis was conducted to verify the accuracy of this algo-
rithm, and the relative error value was obtained according to
the predicted and actual values. .e formula is as follows:

E �
cp − ca





ca

, (12)

where E is the relative error, cp is the predicted value, and ca

is the true value.
According to equation (12), the relative error value can

be calculated by the values present in Table 6. Compared
with the actual water consumption, the error of the calcu-
lations of the proposed method was less than 5%, and the
average error was only 2.47%. .e average error of the GA-
BP model was 4.06%, and the maximum error was 8.36%. In
contrast, the error of the calculations of the BP model was
larger, the maximum error was 46.56%, and the average
error was 22.39%. .e maximum error of the results cal-
culated by multivariate return analysis was 75.47%, and the
average error was 41.61%. .is proves that the proposed
method is effective and advanced in predicting the water
demand of construction projects.

.e four calculation results of PSO-BP with the biggest
error appeared in the last four times..at was to say, the first
six predictions were very accurate, and the last four pre-
dictions had large errors.

To better compare the prediction results of the two
methods and highlight the advantages of the proposed PSO-
BP neural network model, three common error analysis
tools in machine learning were used to compare several
algorithms.

Table 5: Prediction results of different models.

Time Actual water consumption BP PSO-BP GA-BP Pluralistic return
21 June 1430.37 1397.56 1446.50 1449.50 967.29
22 June 860.32 605.91 857.48 883.10 554.43
23 June 610.36 702.29 581.46 633.88 571.73
24 June 604.13 876.12 615.22 557.52 516.61
25 June 1560.54 1367.86 1528.54 1619.99 463.06
26 June 1910.00 2315.52 1888.37 1876.97 468.56
27 June 752.87 618.75 786.22 779.86 485.53
28 June 758.39 722.45 763.90 746.23 420.71
29 June 1601.37 1409.33 1668.54 1719.87 551.14
30 June 702.36 1029.35 673.01 655.37 450.15
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.e determination coefficient (R2) indicates the degree
of correlation between the measured value and the predicted
value..e closer R2 is to 1, the higher the correlation. On the
contrary, the closer R2 is to 0, the lower the correlation. As
listed in Table 3, the R2 values of the BP model, the PSO-BP
model, the GA-PSO model, and the pluralistic return were
found to be 0.7921, 0.9959, 0.9853, and 0.3767, respectively,
thereby demonstrating that the PSO-BP model is better than
the BP model, the GA-BP model, and the pluralistic return.
.e root mean square error (RMSE) is an important stan-
dard by which to measure the prediction results of machine
learning models. .e RMSE of the PSO-BP model was
96.0900, which is notably less than the BP model, the GA-BP
model, and the pluralistic return. .e mean absolute error
(MAE) is the average of absolute errors, which can better
reflect the actual situation of predicted value errors. .e
RMSE of the PSO-BP model was 15.7467, which is notably
less than the BP model, GA-PSO, and pluralistic return. .e
comparative analysis of calculation errors indicates that the
PSO-BP model achieved better prediction accuracy and
optimization performance. .is excellent calculation result
is also consistent with previous benchmark test results [41].

.e number of hidden layers is another important factor
that affects the accuracy of the BP neural network [42].
.erefore, the influences of the topological structures of
different network models on the prediction results were also
analyzed [38].

Referring to the classical research results in related fields
[43], the topological structures of six different network
models were designed, and the related calculation results are
shown in Table 7.

It can be seen fromTable 3 that the calculation accuracy of
the PSO-BP neural network model was significantly higher
than that of the BP model or GA-BP model when the same
network model topology was adopted. Regardless of the to-
pology of the network model, the average error of the cal-
culation results of the PSO-BP neural networkmodel was very
small. .e calculation results demonstrate the effectiveness
and advancement of the PSO-BP neural network model in
forecasting the water demand of construction projects. In
addition, overfitting or underfitting is a qualitative phe-
nomenon that occurs in artificial neural network algorithms,
and there is no tool with which to quantitatively describe
them. Referring to the details of previous research studies
[41, 44], it is believed that the prediction accuracy of the PSO-

BP neural network model is higher than the calculation ac-
curacy of the BP neural network model, which also dem-
onstrates that the proposed model reduces the phenomenon
of overfitting or underfitting. After overfitting or underfitting,
the prediction accuracy is often inadequate [45].

Regarding the PSO-BP neural network model, with the
increase of the number of hidden layers, the average error
was considered to be further reduced. .ere are two hidden
layers, and the model with the 4-9-5-1 network structure
achieved the highest calculation accuracy. .e accuracy of
calculation with a hidden layer model was 2.47%, which was
the lowest in the PSO-BP neural network model and can also
meet the needs of engineering practice [46].

.is paper discussed the influence of the number of
input variables on the calculation results. .e analysis here
adopted the calculation model of PSO-BP, and the number
of hidden layer was 1..e average error and maximum error
are shown in Table 8.

When there were three input variables, the calculation
error of the PSO-BP model was obviously larger than that of
four input variables. When the input variables were increased
to 5 or 6, the calculation accuracy was not significantly im-
proved. Considering the availability of construction site data,
the field investigation time would increase significantly if
there were 5 or 6 input variables. .erefore, it could be
considered that the four input variables obtained by grey
relational analysis in this paper were reasonable.

4. Conclusions

.e purpose of this research was to use the BP neural
network to accurately predict the water consumption of

Table 6: Prediction results of different models.

Time BP (%) PSO-BP (%) GA-BP (%) Pluralistic
return (%)

21 June 2.29 1.13 1.32 32.38
22 June 26.10 0.33 2.58 35.55
23 June 15.06 0.73 3.71 6.33
24 June 45.02 1.84 8.36 14.49
25 June 12.35 2.05 3.67 70.33
26 June 21.23 1.13 1.76 75.47
27 June 17.82 4.43 3.46 35.51
28 June 25.53 4.74 1.63 44.53
29 June 11.99 4.19 6.89 65.58
30 June 46.56 4.18 7.17 35.91

Table 7: Calculation results of topological structures of different
network models.

Model Number of hidden layers Number of hidden
layer nodes

Average
error

BP
1 9 11.66
2 9-5 17.37
2 9-7 9.53

GA-BP
1 9 4.06
2 9-5 3.65
2 9-7 2.37

PSO-
BP

1 9 2.47
2 9-5 1.38
2 9-7 2.31

Table 8: Calculation results with different numbers of input
variables.

Input variables Average error (%) Maximum error (%)
r1, r2, r4, and r5 4.06 4.74
r1, r2, and r4 7.43 10.15
r1, r2, and r5 9.55 14.28
r1, r4, and r5 8.90 15.69
r2, r4, and r5 7.05 12.73
r1, r2, r3, r4, and r5 3.67 4.21
r1, r2, r3, r4, r5, and r6 3.31 3.96

Advances in Civil Engineering 9



construction projects. First, via the use of the data, it was
found that there are four factors that affect the water
consumption in construction projects, namely, the intraday
amount of pouring concrete, the intraday weather, the
number of workers, and the intraday amount of wood used.
.en, after taking these four key factors as the input layer
and using the optimal neural network weights and
thresholds obtained by PSO, a predictive model of con-
struction water consumption based on the neural network
model was constructed. Finally, a case study of the con-
struction water consumption of the Taiyangchen Project in
Xinyang City, Henan Province, China, revealed that, com-
pared with the actual water consumption, the error calcu-
lated by the proposed method was less than 5%, and the
average error was only 2.47%. In addition, the three com-
mon error analysis tools used in machine learning (the
coefficient of determination, the root mean squared error,
and the mean absolute error) all highlighted that the cal-
culation accuracy of the proposed method was significantly
higher than the BP algorithm, the GA-BP, and the pluralistic
return. .ere were two hidden layers in the PSO-BP neural
network model, and the model with the 4-9-5-1 network
structure was found to have the highest calculation accuracy.
.e calculation accuracy of the model with a hidden layer
and a network structure of 4-9-1 was 2.47%, which can also
meet the needs of engineering practice. .e model proposed
in this paper can effectively predict the water consumption
of building engineering construction and determine ab-
normal water in a timely manner to rationally dispatch the
water supply and ultimately achieve the purpose of saving
water. In future research, the sample set can be expanded,
the learning effect of the model can be improved, and a more
perfect predictionmodel of construction water consumption
can be trained.
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In this study, a hybrid machine learning (ML) technique was proposed to predict the bearing capacity of elliptical CFSTcolumns
under axial load. �e proposed model was Adaptive Neurofuzzy Inference System (ANFIS) combined with Real Coded Genetic
Algorithm (RCGA), denoted as RCGA-ANFIS.�e evaluation of the model was performed using the coefficient of determination
(R2) and root mean square error (RMSE). �e results showed that the RCGA-ANFIS (R2 � 0.974) was more reliable and effective
than conventional gradient descent (GD) technique (R2 � 0.952). �e accuracy of the present work was found superior to the
results published in the literature (R2 � 0.776 or 0.768) when predicting the load capacity of elliptical CFST columns. Finally,
sensitivity analysis showed that the thickness of the steel tube and the minor axis length of the elliptical cross section were the most
influential parameters. For practical application, a Graphical User Interface (GUI) was developed inMATLAB for researchers and
engineers and to support the teaching and interpretation of the axial behavior of CFST columns.

1. Introduction

In recent decades, composite concrete-filled steel tubular
(CFST) columns are considerably employed in the con-
struction of infrastructures thanks to their excellent struc-
tural behavior [1]. �ese structural members exhibit many
benefits than single material columns (i.e., concrete columns
or hollow steel columns).�ese advantages could be listed as
fire, axial capacity, and earthquake resistance [2, 3]. In
practical engineering, various cross section geometries of
CFST columns have been considered, such as circular [4],
square [5], or rectangular cross sections [6]. Recently, the
elliptical cross section was adopted in several works [3, 7, 8].
Indeed, the use of elliptical CFST columns has gained at-
tention from the scientific community and applied engi-
neering as it provides specific advantages compared to other
cross sections of CFST, including a better strength and ri-
gidity as well as fire resistance [9]. Due to its reasonable

distribution of the major-minor axis, elliptical CFSTcolumn
exhibits a better architectural aesthetic appearance and a
small fluid resistance coefficient [10, 11]. Moreover, the
prevention of local buckling in the elliptical CFST columns
could be well-established thanks to the concrete core
[12, 13]. �e elliptical section possesses aesthetic qualities
along with more effective bending resistance when com-
pared to circular section due to having different second
moments of area around its principal axes [14]. �erefore,
analyzing the structural behavior, especially the ultimate
load of elliptical CFST columns, is essential to facilitate the
use in civil engineering structures.

However, there are currently no standards or codes in
any countries for assessing the load-carrying capacity of
elliptical CFST columns [15]. Besides, there were several
empirical formulations in the available literature such as
Liu and Zha 2011 [16] and Shen et al. [17] for predicting
the ultimate load of elliptical CFST members. However,
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these equations were derived using assumptions and ex-
perimental observations, which led to a simplification of
the prediction model. Consequently, the application of
these models could not be extended to other results. All
these limit the application of elliptical CFST columns in
engineering practice. Although previous studies provided
significant contributions to the progress in modeling and
prediction of axial behavior of CFST members, a more
robust and efficient model should be developed to reduce
the cost and time consumed in experiments and field
works.

Recently, machine learning (ML) approaches have been
employed in various mechanical and civil engineering ap-
plications [18, 19], particularly for structural members under
compression [20, 21]. As an example, Sarir et al. [22] pro-
posed a tree-based and whale optimization model for pre-
dicting the load-bearing capacity of circular CFSTmembers.
Besides, Ahmadi et al. [23, 24] applied an artificial neural
network for predicting the axial capacity of circular CFST
short columns. In another work, Tran et al. [25] developed a
neural network-based model for predicting the load-bearing
capacity of square CFSTcolumns.�e obtained results in the
literature demonstrated that ML methods have a very
promising potential for predicting the mechanical behavior
of structural elements. Despite the importance of elliptical
CFST columns, most ML-based studies focused on circular
and square cross sections [22, 26, 27]. �erefore, more in-
vestigations should be carried out to assess the potential
applications of ML-based models for studying the axial
behavior of elliptical CFST columns.

�erefore, the primary objective of the present work
was to develop an ML-based model to predict the ultimate
load of elliptical CFST columns under axial loading. For
this purpose, a hybrid ML model, namely Adaptive
Neurofuzzy Inference System (ANFIS) combined with
Real Coded Genetic Algorithm (RCGA), was developed.
�e RCGA was chosen because of its higher optimization
capability than the conventional gradient descent (GD)
technique, as highlighted in this study. As the present
work mainly focused on elliptical CFST columns, the
input data included the length of the column, the major
and minor axis lengths of the elliptical cross section, the
thickness of the steel tube, and the mechanical properties
of steel and concrete (i.e., yield strength and compressive
strength, respectively). In order to train and validate the
developed hybrid ML model, statistical quality assess-
ments such as coefficient of determination (R2) and root
mean squared error (RMSE) were employed. Monte Carlo
simulations were also carried out in order to estimate the
robustness of the proposed ML model. A sensitivity
analysis was conducted to investigate the influence of
input variables on the prediction results. �e prediction
capacity of the RCGA-ANFIS model was also compared
with existing equations in the literature for estimating the
ultimate load of elliptical CFST columns. Finally, a
Graphical User Interface (GUI) based on the developed
ML model was provided, aiming at quick and efficient
estimation of the ultimate load of elliptical CFST
columns.

2. Materials and Methods

2.1. Database. In this work, a database was constructed by
extracting available datasets from experimental research of
Uenaka [28], Yang et al. [29], Liu et al. [30], Ren et al. [12],
Dai et al. [31], Jamaluddin et al. [32], Yang et al. [33],
McCann et al. [34], and Zhao and Packer [35]. From these
investigations, a total number of 94 configurations were
collected and summarized (Table 1), including the number
of data points and proportion (in %). As revealed in the
literature, the experimental procedure was conducted fol-
lowing the steps below:

(i) Design of specimens
(ii) Manufacturing of steel tube
(iii) Manufacturing of concrete core
(iv) Assembly of composite columns
(v) Loading and measurement (see Figure 1 for a

schematic description of the test as well as geo-
metrical parameters of the members)

In terms of the experimental studies, various geometrical
parameters, as well as mechanical properties of the con-
stituent materials, were considered in order to test the failure
of elliptical CFSTcolumns under axial compression. For that
reason, the input parameters of the problem regarding the
geometry were the length of the column (denoted by L), the
major axis length of the elliptical cross section (denoted by
D), the minor axis length of the elliptical cross section
(denoted by d), and the thickness of the steel tube (denoted
by δ). Regarding the mechanical properties of constituent
materials, the yield strength of the steel tube (denoted by fy)
and the compressive strength of the filled concrete (denoted
by fc
′) were considered. �e ultimate load of the column

under axial compression was the output of the problem,
denoted byQn. A primarily statistical analysis of the database
is indicated in Table 2, including the min, average, max,
standard deviation (StD), and coefficient of variation (CV)
values of all variables. It should be noticed that several
statistical correlation techniques such as Principal Com-
ponent Analysis [36] were applied, and no significant cor-
relations were found in the input space. �is confirmed that,
for the prediction problem, all input parameters in this study
were independent, and the selection of inputs was relevant.
Finally, all data were scaled into the range of [−1, 1] in order
to minimize numerical bias in the training phase.

2.2. Methods Used

2.2.1. Adaptive Neurofuzzy Inference System (ANFIS).
�e Adaptive Neurofuzzy Inference System, referred to as
ANFIS, is an ML model constructed from the combination
between a set of fuzzy if-then rules and the fuzzy inference
systems through an adaptive network [37, 38].�emain idea
of ANFIS is to construct a set of fuzzy if-then rules, including
suitable membership functions to create the stipulated
output and input variables [39, 40]. Supposing that the
ANFIS model has two input variables such as X and Y and
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one output variable such as Z, we apply the following Takagi
and Sugeno’s if-then rules [41, 42]:

If X isA1 andY isB1, then Z1 � a1X + b1Y + c1 (rule 1);

If X isA2 andY isB2, then Z2 � a2X + b2Y + c2(rule 2).

(1)

Here, A and B are linguistic labels characterized by ap-
propriate membership functions, and a, b, and c are the
linear output parameters.

Consider the above ANFIS model with two input var-
iables X and Y. Its structure can be divided into five main
layers as follows [43]:

Layer 1: each node in this layer corresponds to a node
function, which can be chosen to be bell-shaped with a
minimum value equal to 0 and a maximum value equal
to 1, for example, the Gaussian function, such that

μAi(x) � exp −
x − ai

bi

 

2
⎡⎣ ⎤⎦, (2)

where x is problem input and ai, bi are input
parameters.
In fact, any continuous and differentiable functions can
be chosen for the nodes in this layer.
Layer 2: each node in this layer is a node function that
multiplies the incoming inputs and sends the results to
the next layer:

wi � μC
1
i x1(  × μC

2
i x2(  × · · · × μC

n
i xn( . (3)

Layer 3: each node in this layer computes the ratio
between the ith rule’s firing strength and the sum of all
rules’ firing strength:

wi �
wi


n
k�1 wk

. (4)

Layer 4: each node in this layer is a node function
chosen such that

fi � wi c0 + 
n

k�1
ckXk

⎛⎝ ⎞⎠. (5)

Layer 5: the circle node in this layer calculates the sum
of all incoming results and exports as the overall output

Overall ouput � 
i

wifi. (6)

�e training algorithm uses a combination of the least-
squares and backpropagation gradient descent methods to
model the training dataset [44].

2.2.2. Real Coded Genetic Optimization Algorithm. Real
Coded Genetic Algorithm, referred to as RCGA, is a met-
aheuristic optimization technique which is inspired by the
principles of biological evolution. �e basic idea of RCGA is
to move a population of chromosomes, which are composed
of strings of ones and zeros (or genes), to a new one that
performs better than the old one [45].�ere are two primary
operations in RCGA, which are crossover and mutation
[46, 47]. Crossover is a phase where the chromosomes in the
population randomly share their features. �is is the most
significant operation in the RCGA, as more powerful off-
spring are created taking useful features from their parent’s
genes. Mutation is a process that is operated within each
offspring, meaning that some of the bits in the bit string can
be flipped. �e main objective of the mutation process is to
maintain the diversity of the population after new offspring
are created from crossover [48].

�e RCGA can be divided into five main steps as follows
[48, 49]:

(i) Initial population. In this step, a set of chromosomes
called population is defined. Each individual of the
population corresponds to a solution of the con-
sidered problem. Each chromosome is formed by
joining genes into a string. Typically, chromosomes
are composed of strings of ones and zeros.

(ii) Fitness function. In this step, the fitness score of
each individual in the population is calculated. It
defines how to fit the chromosome or the ability of
that chromosome to compete with others. A higher
fitness score means that the individual is more likely
to be reproduced.

(iii) Selection. In this step, the chromosomes with the
highest values of fitness score will be selected in
order to share their features in the next step.

(iv) Crossover. In this step, the crossover process will be
operated on the most fitting chromosomes. �eir
genes are randomly exchanged to create new
offspring.

Table 1: Organization of database.

Source of data Number of data
points

Proportion of data
(%)

Uenaka [28] 19 20.2
Yang et al. [29] 2 2.1
Liu et al. [30] 18 19.1
Ren et al. [12] 6 6.4
Dai et al. [31] 13 13.8
Jamaluddin et al.
[32] 17 18.1

Yang et al. [33] 9 9.6
McCann et al. [34] 2 2.1
Zhao and Packer
[35] 8 8.5

Total 94 100
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(v) Mutation. In this step, the mutation process is done
within each individual offspring to maintain the
diversity of the population.

�e algorithm is terminated when the model has con-
verged, meaning that the newly created offspring are not
different from the previous ones. In the literature, RCGA was
used mainly in hybrid ML approaches [49]. For instance, Kim
and Shin [50] used a hybrid approach based on neural net-
works and genetic algorithms for detecting temporal patterns,
Le et al. [51] in steel structures applications, or Yan et al. [52]
for engineering design problems. Finally, a complete review of
the RCGA technique could be found in Lee [53].

2.2.3. Random Sampling Technique: Monte Carlo Method.
�emain idea of the Monte Carlo method is that the output
is computed by repeating the sampling of variables ran-
domly from the input space [54–56].�at way, (i) the Monte

Carlo method is widely applied in order to propagate the
variability of inputs on the output response; (ii) based on
statistical analysis of output, several posttreatments such as
robustness and/or sensitivity analyses could be thoroughly
achieved [57] (see Figure 2 for a typical statistical problem
using the Monte Carlo method). As shown in Figure 2, each
input exhibits a probability distribution describing its var-
iability. Due to the variabilities of input variables, the re-
sponse also exhibits its statistical behaviors, which are
necessary to be characterized [58]. �e robustness of the
model and/or sensitivity of input variables could then be
deduced based on statistical analysis of output response
[59–61].

Using Monte Carlo simulation, the bigger the number of
realizations, the higher the reliability of the response ar-
chived. In this work, in order to optimize the number of
Monte Carlo runs, a statistical estimator of convergence was
applied, such as [62–65]

Axial
loading

L

δ

(a)

Steel
tube

Concrete
core

D

d

(b)

Axial shortening

Axial load

Qn

(c)

Figure 1: Schematization for (a) the CFST columns under axial loading, (b) the elliptical cross section, and (c) the load-axial shortening
curve (a drawing based on experimental curves of Uenaka [28]).

Table 2: Initial statistical analysis of the database.

Parameter Unit Notation Min Average Max StD CV (%)
Length of column mm L 160 991.86 3600 923.908 93.1
Major axis length of cross section mm D 136.5 177.281 318.5 35.986 20.3
Minor axis length of cross section mm d 63.1 93.693 155 21.466 22.9
�ickness of steel tube mm δm1 3.854 9.72 1.679 43.6
Yield strength of steel tube MPa fy 201 360.657 439.3 59.378 16.5
Compressive strength of concrete MPa fc

′ 13.18 48.638 102.26 20.843 42.9
Ultimate load kN Qn 413.3 1130.462 2607 484.164 42.8
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NMC

i�1
Wi, (7)

where W is the mean of the considered variableW and NMC
is the number of Monte Carlo runs.

2.3. Quality Assessment Criteria. In the present work, sta-
tistical criteria, namely, the coefficient of determination (R2)
and Root Mean Squared Error (RMSE), have been used in
order to validate and test the developed ML model. �e R2

allows us to identify the statistical relationship between two
data points. �is measurement of the linear correlation
yields a value between 0 and 1 inclusively, where 0 is no
correlation and 1 is total correlation. R2 could be calculated
using the following equation [66, 67]:

R
2

�


N
k�1 pk − p(  wk − w(  

2


N
k�1 pk − p( 

2


N
k�1 wk − w( 

2,
(8)

where N is the number of the observations, pk and p are
predicted and mean predicted values, and wk and w are
measured and mean measured values of ultimate load, re-
spectively (k � 1: N). �e formulation of RMSE is described
by the following equation [68–70]:

RMSE �

��������������

1
N



N

k�1
pk − wk( 

2




. (9)

Finally, the slope criterion is defined, such as the slope of
the linear regression fit between predicted and observed
vectors.

3. Results and Discussion

3.1. Optimization of ANFIS’s Weight Parameters. In this
section, the optimization of ANFIS’s weight parameters is
presented. Such optimization procedure was done using
both conventional GD and advanced RCGA techniques,
respectively, to identify the best training algorithm. Table 3
indicates the characteristics of ANFIS, including the type of
membership function, the number of weights per mem-
bership function, and the number of membership functions
per input as well as the number of nodes. It is seen that there
were 190 consequent and antecedent ANFIS parameters to
be optimized as ANFIS was generated using the c-means
clustering algorithm for the considered six-dimensional
input space [71, 72]. In this study, a maximum number of
iterations of 1000 was employed as the stopping condition
when optimizing. �e cost function was selected as RMSE.

Probability distribution
of input x

Probability distribution
of input y

Simulation model
Output = f (x, y)

yx Input space

Robustness
analysis

Sensitivity
analysis

28%

6%

33%

11%
22%

f(std)

0
Output f

Statistical analysis of output

Pr
ob

ab
ili

ty
 d

ist
rib

ut
io

n

Cu
m

ul
at

iv
e d

ist
rib

ut
io

n

0
10
20
30
40
50
60
70
80
90
100

5
10
15
20
25
30
35
40
45

Figure 2: Monte Carlo simulation taking into account variability in the input space for robustness and sensitivity analysis.
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�e parameters of RCGA during the training phase are also
indicated in Table 3. Figures 3(a) and 3(c) present the
evolution of RMSE during the optimization process, using
GD and RCGA, respectively. �e same illustration is pre-
sented in Figures 3(b) and 3(d), but for the evolution of R2. It
should be noticed that, in these figures, the value of RMSE
(i.e., R2) for training and testing data was also highlighted
during the learning phase. It is seen that at least 600 iter-
ations were needed for obtaining a convergence with respect
to both RMSE and R2. At the same time, the evolution of
RMSE and R2 is plotted using the testing data, which were
totally new when applied. Such evolution exhibits efficiency
during the training process; i.e., no overfitting or under-
fitting was observed.

�e values of all quality assessment criteria at the end of
the training process are indicated in Table 4, whereas the
results in terms of regression plots and error distribution are
shown in Figures 4(a)–4(c), respectively. As indicated in
Table 4, using the training data, RCGA-ANFIS provided the
highest value of R2, which is 0.971, while the R2 value of GD-
ANFIS is 0.933. In terms of RMSE, RCGA-ANFIS yielded
the smallest value, which is 70.379 kN, whereas the RMSE
value of GD-ANFIS is 105.428 kN. In terms of linear fit, the
RCGA-ANFIS model produced the highest value of slope
(0.98) corresponding to a slope angle of 44.425°, while the
slope value of GD-ANFIS was 0.937 corresponding to slope
angle of 43.125°. Regarding error analyses, using the training
data, the mean values are 1.409 and 0.972%, while the
corresponding standard deviation values are 11.082 and
8.497% for GD-ANFIS and RCGA-ANFIS, respectively. It
can be seen that the RCGA-ANFIS model yielded an error
mean, which is the closest to zero and the smallest standard
deviation value (see also Figure 4(c)). �e application of the
twoMLmodels to the validating data is presented in the next
section.

3.2. Validation of Model. �e previously developed GD-
ANFIS and RCGA-ANFIS models were applied to the
validating data for validation. As a result, Figures 5(a) and
5(b) present regression graphs between actual and predicted
ultimate load, whereas Figure 5(c)shows error distribution,

respectively. All quantitative values of quality assessment
criteria are indicated in Table 4. As indicated in Table 4,
using the validating data, GD-ANFIS provided R2 � 0.952,
RMSE� 130.065 kN, Meanerror � −0.456 kN,
StDerror � 8.967 kN, and slope� 0.920, whereas RCGA-
ANFIS provided R2 � 0.974, RMSE� 100.340 kN,
Meanerror � 2.541 kN, StDerror � 8.042 kN, and slope� 1.019,
respectively. �e same remarks were obtained for the
training data, RCGA-ANFIS yielded the best prediction
performance. It could be stated that the RCGA-ANFIS
model is validated because it performs well the prediction of
ultimate load using the validating data. �us, RCGA-ANFIS
model was selected as the final prediction model for esti-
mating the ultimate load of elliptical CFST columns.

3.3. Sensitivity Analysis. In this section, the influence of
input variables on the prediction of column load-carrying
capacity is presented. For this purpose, the probability
distribution of each input was characterized by 11 levels of
quantiles such as Q0, Q10, Q20, Q30, Q40, Q50, Q60, Q70, Q80,
Q90, and Q100. For a given input, a local influence index,
denoted by θ (in %), was computed by the following
equation:

θk
q �

Q
k
q − Q

all
median





Q
all
median

× 100, (10)

where Qall
median is the output, the ultimate load when all inputs

are equal to their Q50 values. Qk
q is the output of the ML

model when applying kth input at its qth levels (quantiles
from 0 to 100 every 10, respectively) (k� 1, . . ., 6 and q� 1,
. . ., 11).�at way, the global influence index of the kth input,
denoted by Mk, is calculated as follows:

M
k

� 
11

q�1
θk

q. (11)

Figures 6(a) and 6(b) present the global influence index
of all inputs parameters using GD-ANFIS and RCGA-
ANFIS, respectively (see the appendix for statistical con-
vergence of Monte Carlo simulations). It could also be

Table 3: Parameters of ANFIS and RCGA used in this study.

Parameter of ANFIS Value Parameter of RCGA Value
Number of inputs 6 Population size 100

Number of outputs 1 Length of
chromosome 190

Membership function Gaussian Fitness function Linear ranking
Number of parameters per membership function 2 Crossover type Random pair
Number of membership functions per input (rules) 10 Crossover probability 0.4
Number of nodes 149 Number of offsprings 12
Number of nonlinear parameters of the antecedent membership
function 120 Mutation type Random

Number of linear parameters of the consequent membership function 70 Mutation probability 0.7
Total number of parameters 190 Number of mutants 21
Cost function RMSE Mutation rate 0.15

Selection function Fitness proportionate
selection
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noticed that the bar graphs are reorganized in decreasing
order of the mean value for all six input variables. All values
are indicated in Table 5. It is clearly observed that all input
variables affect the axial capacity of structural members
considerably under axial compression from a minimum of
6.1% to a maximum of 22.5% on average. It is also seen that
the axial capacity is in function of inputs under a nonlinear
form (i.e., a linear equation could not join all mean values of
sensitivity index). It is seen that there are at least four levels
of influence ranking. Indeed, the two most important var-
iables are d and δ, which exhibit more than 20% of influence
each. Next, L and D could be classified in the second group,
which exhibit about 18% of influence each. �e third group

contains the compressive strength of concrete, whereas the
yield strength of steel has about 6% of influence and is in the
last group. Last but not least, it is seen that the fluctuation of
the influence index obtained by GD-ANFIS is higher than
the ones obtained by RCGA-ANFIS. �is points out that
RCGA-ANFIS is more robust and efficient than GD-ANFIS,
which confirms the higher performance of RCGA than GD,
as identified in Section 3.2.

3.4. Comparison with Existing Models. In this section, the
best prediction model, namely RCGA-ANFIS, is compared
with existing models in the literature for the axial capacity of
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Figure 3: Evolution during optimization process for RMSE using (a) GD and (c) RCGA; for R2 using (b) GD and (d) RCGA.

Table 4: Summary of prediction capability.

Data used Model R2 RMSE Meanerror (%) StDerror (%) Slope Slope angle (°)

Training GD-ANFIS 0.933 105.428 1.409 11.082 0.937 43.125
RCGA-ANFIS 0.971 70.397 0.972 8.497 0.980 44.425

Testing GD-ANFIS 0.952 130.065 −0.456 8.967 0.920 42.600
RCGA-ANFIS 0.974 100.340 2.541 8.042 1.019 45.536
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elliptical CFSTcolumns. Liu and Zha [16] have proposed the
following equation:

Q
Liu−2011
n �

1 + 1.5(d/D)
0.3

1 + As/Ac( 
×

Asfy

Ac

, (12)

where As and Ac are the cross-sectional area of the steel
tubular and the concrete core, respectively. Another formula
for predicting the axial capacity of elliptical CFST columns
was developed by Shen et al. [17], such as

Q
Shen−2015
n � fc

′ As + Ac(  0.0075 ×
Asfy

Acfc
′

 

3

+ 0.0624 ×
Asfy

Acfc
′

 

2

+ 0.7080 ×
Asfy

Acfc
′

  + 1.3625⎡⎣ ⎤⎦. (13)

Figures 7(a)–7(c) present the regression graph between
actual and predicted ultimate load, using Liu et al. 2011, Shen
et al. 2015, and RCGA-ANFIS model, respectively. All

performance indicators are also highlighted in Table 6. It is
seen in Figure 7 and Table 6 that the RCGA-ANFIS model
provided better performance than the literature, with respect
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Figure 4: Results after training process for (a) using GD, (b) using RCGA, and (c) distribution of errors.
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R2 = 0.952
RMSE = 130.065 kN
StDerror = 8.967%
Slope = 0.920
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Figure 5: Results after validating process for (a) using GD, (b) using RCGA, and (c) distribution of errors.
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Figure 6: Sensitivity analysis of input variables using (a) GD-ANFIS and (b) RCGA-ANFIS.
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to all error measurement criteria. In Table 6, the percentage
of gain is also indicated. �e percentage of gain is calculated
based on the following equation:

%Gain �

Ωthis− study
− 1  − Ωliterature − 1   × 100, in case of : R

2 and Slope;

Ωliterature −Ωthis− study
 

Ωliterature
⎛⎝ ⎞⎠ × 100, in case of : RMSE and ErrorStD.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

Table 5: Statistical analysis of global influence index (in %).

Parameter Model L D d δ fy fc
′

Mean GD-ANFIS 18.898 18.832 22.505 20.882 6.422 11.378
RCGA-ANFIS 17.692 17.788 21.344 22.264 6.151 13.210

StD GD-ANFIS 4.198 6.895 5.045 4.795 4.683 3.671
RCGA-ANFIS 4.085 4.300 3.807 3.839 3.682 4.113

R2 = 0.776
RMSE = 348.435 kN
StDerror = 33.817%
Slope = 1.121
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Figure 7: Regression graphs between predicted and actualQn (all data) using (a) Liu and Zha [16], (b) Shen et al. [17], and (c) RCGA-ANFIS
model.
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Figure 8 shows the comparison regarding the perfor-
mance indicators between RCGA-ANFIS and existing
models. Obviously, the RCGA-ANFIS model showed an
excellent performance in predicting the ultimate load of the
elliptical CFST columns.

3.5. Practical Application. For further application of RCGA-
ANFIS model, a Graphical User Interface (GUI) was de-
veloped in MATLAB 2018a [73]. Figure 9 presents the main
GUI, which is simple and easy to use. Users can enter the
values of input variables; the ultimate load of elliptical CFST
columns is then displayed directly by clicking the Start

Predict button. �e GUI is provided freely at https://github.
com/Tien-�inhLe/
EllipticalCFST_AxialCapacityPrediction.

3.6. Proposed Empirical Formula. It is not convenient for
researchers/engineers to employmachine learningmodels in
practice, because such a model contains weights, bias pa-
rameters, and transfer functions. �us, an empirical formula
based on the developed machine learning model should be
derived to be employed in the engineering field. Based on the
results obtained from the machine learning model, a
mathematical method was used to derive a practical

Table 6: Comparison between RCGA-ANFIS model and literature.

Parameter Model used R2 RMSE Meanerror StDerror Slope Slope angle (°)

Performance indicator
Liu et al. 2011 0.776 348.435 15.523 33.817 1.121 48.277
Shen et al. 2015 0.768 515.333 29.887 39.776 1.310 52.636

�is work 0.974 80.489 1.439 8.352 1.003 45.092

% of gain Liu and Zha [16] +19.8 +76.9 +90.7 +75.3 +11.8 +7.1
Shen et al. [17] +20.6 +84.4 +95.2 +79.0 +30.6 +16.8
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Figure 8: Comparison betweenRCGA-ANFISmodel and literature: (a) in terms ofR2 and slope, (b) in terms of RMSE, and (c) in terms of StDerror.
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equation for the prediction of ultimate load of elliptical
CFST columns. Such a procedure was inspired by a recent
development of Nikbin et al. [74] in deriving an empirical
formula for prediction of fracture energy of concrete based
on machine learning models. Figure 10 presents the diagram
of the procedure. More details could be found in Nikbin et al.
[74].

Based on the procedure presented in Figure 10, the
ultimate load of elliptical CFST columns can be predicted
using

Q
Proposed formula
n � CL × CD × Cd × Cδ × Cfy

× Cfc
′ , (15)

where

CL � −0.0075912 ×
L

1000
 

2
− 0.15675 ×

L

1000
  + 1.2827,

(16)

CD � −0.25383 ×
D

180
 

2
+ 1.313 ×

D

180
  − 0.016222,

(17)

Cd � 0.06122 × d
2

− 2.7245 × d + 501.50, (18)

Cδ � 0.11857 ×
δ
4

 

2

+ 0.1051 ×
δ
4

  + 0.83073, (19)

Cfy
� 0.51644 ×

fy

350
 

2

− 0.70249 ×
fy

350
  + 1.2644,

(20)

Cfc
′ � 0.015364 ×

fc
′

50
 

2

+ 0.25698 ×
fc
′

50
  + 0.80208.

(21)

�e coefficients presented in (16)–(21) were deduced based
on a least square optimization process (see also Nikbin et al.
[74]). In order to evaluate the performance of the proposed
equation, 94 experimental data points have been employed for
a comparison purpose. Details of the experimental dataset,
including input variables (geometric variables and strength of
constituent materials), output variable (measured ultimate
load), and three ratios (QLiu−2011

n /Qn), (QShen−2015
n /Qn),

(Q
Proposed formula
n /Qn), are indicated in Table 7. At the end of

Table 7, statistics of the three ratios are also indicated, including
the min, average, max, standard deviation, and coefficient of

Figure 9: MATLAB’s GUI for the prediction of the ultimate load of elliptical CFST columns based on RCGA-ANFIS model.
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Table 7: Comparison of performance between the proposed formula and existing equations.

L D d δ fy fc
′ Qn (QLiu−2011

n /Qn) (QShen−2015
n /Qn) (QProposed formula

n /Qn)

mm mm mm mm MPa MPa kN — — —
300 150.4 75.6 4.18 376.5 26.93 839 1.02 1.10 0.96
300 150.57 75.52 4.19 376.5 47.3 974 1.04 1.13 0.93
300 150.39 75.67 4.18 376.5 84.57 1265 1.02 1.20 0.86
300 150.12 75.65 5.12 369 26.93 981 0.99 1.14 0.88
300 150.23 75.74 5.08 369 47.3 1084 1.03 1.15 0.89
300 150.28 75.67 5.09 369 84.57 1296 1.07 1.27 0.90
300 148.78 75.45 6.32 400.5 26.93 1193 1.01 1.35 0.83
300 148.92 75.56 6.43 400.5 47.3 1280 1.07 1.27 0.88
300 149.53 75.35 6.25 400.5 84.57 1483 1.07 1.29 0.90
500 150.18 75.21 4.51 395 69.2 1075 1.16 1.32 0.96
500 150.49 75.26 5.41 358 69.2 1163 1.11 1.29 0.92
500 150.05 75.42 6.56 369 69.2 1310 1.11 1.33 0.92
600 200.21 100.12 5.2 397 69.2 1598 1.30 1.47 1.11
600 200 100.35 6.1 411 69.2 2068 1.10 1.25 0.95
600 200.6 100.02 8.17 383 69.2 2133 1.19 1.41 1.08
600 200.19 100.41 9.72 367 69.2 2290 1.19 1.46 1.15
698 220.7 110.7 6.16 421 48.2 2109 1.12 1.21 1.01
300 150.1 75 4.1 431.4 35.8 900 1.11 1.18 0.99
299 150.1 75.2 4.2 431.4 92.14 1239 1.16 1.36 0.97
398 197.8 100.1 5.1 347.9 36.87 1232 1.19 1.27 1.16
398 197.5 100.2 5.1 347.9 53.54 1737 0.97 1.08 0.90
398 197.4 100.1 5.1 347.9 102.26 2116 1.10 1.35 0.94
1497 150.9 75.4 4 431.4 17.9 650.8 1.32 1.54 1.03
1498 150.4 75.2 4.1 431.4 51.29 742.8 1.51 1.63 1.10
1496 150.3 75.2 4.1 431.4 77 923.2 1.42 1.62 1.01
1499 197.5 100.2 5.2 347.9 20.33 938.4 1.35 1.45 1.18

Start

Experimental
dataset

Machine learning
model

Determination of
reference values (based

on average values)

Determination of the most
sensitive parameter: minor axis

length of cross section (d)

Chart of relationship between
Qn and d

Determination of correction
factors for the rest of

variables

Final formula: comparison of
performance with existing

equations

End

Figure 10: Methodology flowchart for the development of empirical formula.
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Table 7: Continued.

L D d δ fy fc
′ Qn (QLiu−2011

n /Qn) (QShen−2015
n /Qn) (QProposed formula

n /Qn)

1498 197.7 100.1 5.1 347.9 77 1480 1.35 1.59 1.01
1785 150.7 75.2 4.2 431.4 51.67 663.2 1.72 1.87 1.18
1786 150.7 75.4 4.1 431.4 86.08 871.2 1.59 1.84 1.06
1785 197.6 100.2 5.1 347.9 31.32 967.5 1.44 1.52 1.15
1786 197.7 100.1 5.1 347.9 50.27 1237 1.33 1.46 1.00
1786 197.3 100 5.2 347.9 83.87 1411.2 1.49 1.77 1.05
2499 197.8 100.1 5.1 347.9 46.2 947 1.68 1.83 1.10
2498 197.7 100.1 5.1 347.9 87.28 1072.3 1.99 2.39 1.20
160 160 107.8 1 207 27.3 768.7 0.62 0.74 1.20
160 159.4 106.5 1.6 296 27.3 844 0.72 0.77 1.12
160 159.7 107.4 2.3 341 27.3 921.3 0.84 0.84 1.12
250 159.9 105.5 1 207 27.3 681.3 0.68 0.82 1.31
250 160.1 105.5 1.6 296 27.3 783.3 0.77 0.83 1.19
250 160.8 107 2.3 341 27.3 850.7 0.91 0.91 1.20
160 159.4 80.5 1.6 279 25 699.7 0.63 0.68 0.99
160 158.8 80.7 2.3 201 25 761.5 0.58 0.64 0.95
250 160.8 74.9 1 211 25 468.4 0.68 0.81 1.35
250 158.3 82 2.3 201 25 630.1 0.71 0.78 1.15
160 159.2 63.2 1 207 27.3 496 0.58 0.70 1.16
160 159.6 63.3 1.6 296 27.3 500.6 0.77 0.86 1.20
160 159.5 64.2 2.3 341 27.3 665.3 0.76 0.81 0.98
250 158.5 64.5 1 207 27.3 413.3 0.71 0.86 1.39
250 159.3 63.1 1.6 296 27.3 499.3 0.77 0.86 1.19
250 158.8 63.2 2.3 341 27.3 620.6 0.80 0.86 1.02
200 158.6 79.7 1 207 27.3 484.6 0.73 0.88 1.38
200 158 80.6 1.6 296 27.3 613.3 0.77 0.84 1.14
200 159.2 82.1 2.3 341 27.3 724 0.85 0.87 1.06
1678 150.4 75.2 4.1 410 45.64 743 1.40 1.51 1.00
1679 197.5 100 5.2 350 20.33 938 1.36 1.46 1.15
1678 197.7 100 5.1 350 77.2 1480 1.36 1.59 0.98
1965 150.5 75.4 4.1 410 13.18 484 1.65 2.20 1.21
1965 150.7 75.2 4.2 410 52.13 663 1.67 1.82 1.11
1966 150.7 75.4 4.1 410 86.18 871 1.55 1.81 1.00
1965 197.6 100 5.1 350 31.32 968 1.45 1.52 1.11
1966 197.7 100 5.1 350 50.27 1237 1.33 1.47 0.97
1966 197.3 100 5.2 350 84.17 1411 1.50 1.78 1.01
2681 150.1 75 4.1 410 86.18 547 2.45 2.86 1.35
2678 197.5 100 5.2 350 20.33 839 1.52 1.63 1.04
2679 197.8 100 5.1 350 46.56 947 1.69 1.84 1.06
2678 197.7 100 5.1 350 87.18 1072 1.99 2.39 1.15
3600 192 124 3.82 439.3 48.41 1121 1.68 1.73 0.89
3600 192 124 3.82 439.3 48.41 1157 1.63 1.67 0.86
2700 192 124 3.82 439.3 48.41 1389 1.36 1.39 0.93
2700 192 124 3.82 439.3 48.41 1322 1.43 1.46 0.98
1800 192 124 3.82 439.3 48.41 1896 0.99 1.02 0.83
1800 192 124 3.82 439.3 48.41 1829 1.03 1.06 0.86
2154 148.45 75.78 6.3 369.1 32 886.6 1.31 1.61 0.82
1154 148.37 75.63 6.3 369.1 33 1059.3 1.10 1.35 0.82
271 136.5 136.5 2.75 376.4 50.36 1296.3 1.03 1.05 1.16
271 137 137 2.75 376.4 50.36 1325.3 1.01 1.03 1.14
271 137.8 137.8 2.75 376.4 50.36 1343 1.01 1.03 1.14
338 170 112 2.75 376.4 50.36 1310.6 0.98 1.06 1.03
338 169.6 111 2.75 376.4 50.36 1299.2 0.98 1.06 1.03
338 168 112.5 2.75 376.4 50.36 1294.4 0.99 1.07 1.04
407 202 99 2.75 376.4 50.36 1298.7 1.01 1.13 1.01
407 199.8 100.8 2.75 376.4 50.36 1325 1.00 1.12 1.01
407 201.5 100.4 2.75 376.4 50.36 1381.1 0.96 1.07 0.97
475 236 95.8 2.75 376.4 50.36 1309.2 1.09 1.26 1.07
475 237.5 96 2.75 376.4 50.36 1364.6 1.06 1.22 1.03
475 236 96.5 2.75 376.4 50.36 1354.2 1.06 1.23 1.04
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Table 7: Continued.

L D d δ fy fc
′ Qn (QLiu−2011

n /Qn) (QShen−2015
n /Qn) (QProposed formula

n /Qn)

636 318 155 2.75 376.4 50.36 2607 1.06 1.24 1.21
636 318.5 151.5 2.75 376.4 50.36 2497.3 1.09 1.28 1.22
636 317 153.5 2.75 376.4 50.36 2521.5 1.08 1.27 1.23
279 139 68 2.75 376.4 50.36 687.2 1.06 1.16 1.04
279 138 68.2 2.75 376.4 50.36 688.1 1.05 1.15 1.04
279 137.5 68 2.75 376.4 50.36 699.2 1.03 1.13 1.02
2670.4 199.7 105.7 2.6 376.4 45 1140 1.11 1.22 0.79
1910.4 204.3 103.1 2.6 376.4 45 966 1.30 1.44 1.09

Min 0.58 0.64 0.79
Average 1.16 1.30 1.05
Max 2.45 2.86 1.39
StD∗ 0.34 0.40 0.13
CV∗∗ 29.27 30.62 12.55

StD: standard deviation, CV: coefficient of variation (%).
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Figure 11: Distribution of ratio predicted Qn/actual Qn using different equations.
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Figure 12: Continued.
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variation values. Finally, Figure 11 shows the probability
density distribution of the three ratios.

It is seen in Table 7 (statistics of the three ratios) and
Figure 11 that the prediction based on the proposed formula
exhibits the highest agreement with the experimental data
points or, in other words, the lowest error measurements (an
average value of 1.05 compared to 1.16, 1.30 using Liu and Shen
equations; a standard deviation value of 0.13 compared to 0.34,
0.40 using Liu and Shen equations; and a coefficient of variation
of 12.55% compared to 29.27, 30.62 using Liu and Shen
equations, respectively). It can be concluded that the prediction
performance based on the proposed formula is superior to
those available in the literature. �us, with a simple form, the
proposed formula can be used in practice. Moreover, if more
experimental data are available in the future, the model will be
improved (i.e., for a wider range of data).

4. Conclusions

�e research presented in this article proposed a robust
surrogate tool for the estimation of the ultimate load of
elliptical CFSTmembers under axial compression. Based on
the developments and analyses, the following conclusions
may be made:

(i) An experimental dataset was collected from the
available literature for the development of the
models including two groups of variables: geo-
metric dimensions of cross section and mechanical
properties of constituent materials (concrete and
steel).

(ii) Two hybrid ML models, namely, the conventional
GD-ANFIS and metaheuristic-based RCGA-
ANFIS, were proposed to predict the ultimate load
of the columns. �e results showed that the RCGA-
ANFIS model outperformed GD-ANFIS. In addi-
tion, the performance of the RCGA-ANFIS model
was superior to two empirical equations in the
literature.

(iii) �e robustness of the proposed models was assessed
by conducting Monte Carlo simulations taking into
account the variability in the input space.

(iv) Sensitivity analysis showed that the steel pipe wall
thickness and the short side length of the cross
section were the most critical parameters affecting
the bearing capacity of elliptical CFSTcolumns (i.e.,
22.264% and 21.344%, respectively).

(v) A Graphical User Interface was developed and
provided freely for researchers/engineers/interested
users. �e results of the present work could simplify
the design of elliptical CFSTcolumns. �e optimum
values obtained in this study could allow quick and
accurate determining of the bearing capacity of
elliptical CFST columns for practical purposes.

However, it is worth noticing that, in this research, only
elliptical CFST columns were considered. It is well-known
that the cross section of columns has other forms; thus, the
extension of the GUI to other cross sections would be the
main perspective of the next study. In further research, a
generic model should be developed for different types of
cross section (i.e., circular, rectangular, square, hexagonal,
etc.). Such a model can be highly beneficial for the research
and practical purposes. Finally, in terms of practical ap-
plication, a GUI based on Excel should be developed for
wider applicability.

Appendix

Convergence of Monte Carlo simulations

In this section, the convergence of the ML models in the
function of Monte Carlo runs is investigated (see Section
2.2.3). Figure 12 shows the convergence estimation in terms
of RMSE and R2, using the training and testing data, re-
spectively. Regarding the convergence of R2 for both training
and testing part, low order of fluctuation was observed
compared to RMSE. �e statistical convergence analyses
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Figure 12: Monte Carlo convergence for training data: (a) RMSE, (b) R2; for testing data: (c) RMSE, (d) R2.
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showed that at least 500 Monte Carlo simulations were
needed to obtain reliable results, particularly in terms of
RMSE.

Data Availability
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Due to many differences in the material, geometry, and assembly method of the commercially available beam-end-connectors in
steel storage pallet racks (SPR), no common numerical model has been universally accepted to accurately predict the M–θ
behavior of complex semirigid connections so far. Despite the fact that the finite element method (FEM) and physical experiment
have been used to obtain the mechanical performance of beam-to-column connections (BCCs), those methods have the dis-
advantages of high computational complexity and test cost. Taking, for example, the boltless steel connections, this paper proposes
a data-driven simulation model (DDSM) that combines the experimental test, FEM, and support vector machine (SVM)
techniques to determine the bending strength of BCCs by means of data mining from the engineering database. First, a three-
dimensional (3D) finite element (FE) model was generated and calibrated against the experimental results. Subsequently, the
validated FE model was further extended to perform parametric analysis and enrich the engineering case base of structural
characterization of BCCs. Based on theM–θ curve of the FE simulation, support vector machines (SVMs) were trained to predict
the flexural rigidity of beam-to-column joints. 2e predictive power of the SVM algorithms is estimated by comparison with
traditional ANNmodels via the root mean square error (RMSE), the mean absolute percentage error (MAPE), and the correlation
coefficient R. 2e results obtained indicate that the SVM algorithms slightly outperform the ANN algorithms, although both of
them are in good agreement with FEM and physical test. From the point of view of engineering application, DDM is able to
provide much more effective help for structural engineers to make rapid decisions on steel members design.

1. Introduction

With the rapid advancement of e-commerce, automated
storage and retrieval systems (AS/RS) have been so widely
applied in China that high-rise steel storage pallet racks
(SPR) have exhibited an explosive growth in production and
logistics system (Figure 1). Acting as one of the most im-
portant infrastructures for AS/RS, structural design for SPR
needs the elaborate decision-making between structural
systems and a variety of cold-formed steel members in such a
way that the stability and safety behave as intended by the
designer and satisfies the constraints imposed by capital
investment, environment, and so on. Opposite to traditional

civil engineering structures, the material of steel members in
storage pallet racking is thin and lightweight while the
racking system itself can usually carry live load many times
larger than the dead load with an extraordinary height.

Of all the members in the SPR, the beam-to-column
connections (BCCs) constitute the most critical part of the
assembly which largely determines the overall stability of
SPR in the down-aisle direction [1].2e details of the boltless
BCCs with the three rivets mostly used in industrial racking
system are shown as an example in Figure 2. Due to the great
variety of connector types and connected members, a
generalized analytical evaluation of the connection me-
chanical properties still appears to be very difficult [2]. One
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of main reasons for this is that the typical boltless steel
connections are essentially called “semirigid” or “partial-
strength” structure representing a strong nonlinear behavior
[3]. 2erefore, the most recent design codes, such as those of
the EN 15512 [4], RMI [5], and AS4084 [6], recommend
physical experiment method of the testing results to assess
the moment-rotation (M-θ) behavior of any SPR BCC.
Numerous studies in the last few years are available on the

experimental testing of SPR BCCs [7–11]. Apparently, these
investigations, dependent on experimental results, are rela-
tively accurate and reliable but their arrangements are too
expensive, and operations are too complicated to be utilized in
industrial production on a large scale. On the other hand, the
possibility of random or systematic errors in the experimental
investigations and the diversity of beam-end-connectors also
directed researchers towards the finite element (FE) modeling

Figure 1: High-rise steel pallet racks under construction in China.
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Figure 2: Details of SPR BCC. (a) Physical map. (b) Top view. (c) Isometric drawing.
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of connections [2, 12]. FEmodeling, which wasmade by using
different analysis software, has proven itself to be a powerful
tool to gain a more predictable performance of the con-
nections and the effects of various parameters on the overall
performance of SPR. Furthermore, a suitable solution was
proposed to derive a particular uniform M-θ relationship for
each connection type on the basis of BCCs geometric pa-
rameters through experimental investigations and finite el-
ement (FE) modeling [13]. From analytic point of view, Zhao
et al. and Gusella et al. proposed amechanical model based on
the component method to predict the initial rotational
stiffness of beam-to-upright connections [14, 15]. 2ose
analytical models are based on physical knowledge of stability
mechanics, which not only are very appealing but also give a
thorough insight into the deformationmechanism ofmultiple
components. However, to cope with the inherent complexity
of structural mechanics, some assumptions have to be in-
troduced into these models, among which, the assembly
relationship of the beam-to-column joints has not specially
been addressed in previous studies. 2is may ultimately affect
the prediction accuracy of analytical models and then result in
unexpected deviation from physical tests. 2e increasing
demands for cold-formed thin-walled steel in modern in-
dustry need to explore more reliable methods of accurate
prediction of the behavior of storage racks, which have a wide
range of adaptability and operational convenience in engi-
neering design. 2e proliferation of industrial “big data” has
created many exciting opportunities for those working in
various fields such as science, engineering, and business. 2e
machine learning (ML) and data mining (DM) from in-
dustrial big data have been rapidly developed as new disci-
plines of computer science and engineering application
[16, 17]. It has been gradually realized that those data from
engineering experiments and analysis not only can be used for
the engineering practice, but also have the potential to provide
insight and knowledge for the designer to improve the
construction quality itself. 2e data-driven approaches focus
on analysis and discovery of the potential pattern of design
process and can realize precise prediction of complex engi-
neering problems, usually including some metaheuristic
optimization algorithms such as the genetic algorithm and
particle swarm optimization, artificial neural network (ANN),
support vector machines, and Bayesian models [18]. Within
the constructional steel fields, the advantage of an ANN was
used to propose an intelligent finite element for viscoelastic
material behavior in [19]; Shah et al. [2] also proposed a
hybrid intelligence model based on linear genetic program-
ming (LGP), artificial neural networks (ANNs), and adaptive
neuro-fuzzy inference system (ANFIS) to predict the mo-
ment-rotation (M-θ) behavior of boltless steel connections
[20].

In recent years, a variety of machine learning methods
have been applied on a large scale in the modern industrial
and civil engineering field. Among them, convolutional
neural network (CNN) is one of the representatives of deep
learning algorithm, which is suitable for multipixel and
audio processing. Cha et al. [21] and Wang and Cha [22]
used these novel deep learning methods for damage de-
tection in structural-health monitoring for civil structures.

In addition, Santos et al. [23] compared four kernel-based
algorithms for damage detection under varying operational
and environmental conditions, namely, based on one-class
support vector machine, support vector data description,
kernel principal component analysis, and greedy kernel
principal component analysis. Langone et al. [24] came up
with a technique called adaptive kernel spectral clustering
(AKSC) which unifies the data normalization and damage
detection steps. Inspired by the idea of unsupervised feature
learning that uses artificial intelligence techniques to learn
features from raw data, a two-stage learning method is
proposed, with Moving Kernel Principal Component
Analysis (MKPCA) and Nyström methods, by Ghiasi and
Ghasemi [25] for intelligent health monitoring of civil en-
gineering structures. Besides, support vector machines
(SVMs) are also receiving increasing attention in different
application domains for which artificial neural networks
(ANNs) have had a prominent role, due to their many at-
tractive features and promising empirical performance. 2is
systematic approach, motivated by statistical learning the-
ory, led to a class of algorithms characterized by the use of
kernels, the absence of local examples, the sparseness of the
solution, and the capacity control obtained by acting on the
margin. Unlike traditional ANN models, SVM models are
based on the principle of structure risk minimization (SRM),
which equips the latter with greater potential to generalize.
Since the foundation of the SVMs paradigm was laid down
by Vapnik in mid-1998 [26], applications in many engi-
neering fields have emerged, such as architecture [27],
communication system [28], geology [29], and even fi-
nancial management [30]. However, reports about which
SVMs are used for predicting theM-θ behavior of SPR BCCs
have not been seen so far.

Taking the riveted BCCs as our research object, we present
a novel data-driven model, using an integrated experimental-
FEM-SVM methodology to overcome many difficulties
associated with the mechanical performance of semirigid
beam-to-upright joint modeling, which is the main contri-
bution of this paper. 2e objective of data-driven based
predictive models is the development of enabling tools for
designers to make rapid and effective decision when big
datasets are available on prediction and reasonable number of
predictors. Compared with existing references, the obvious
distinctions of our work lie in the fact that the finite element
simulation data based on physical test are utilized to train
SVM model and predict the bending strength of the complex
boltless steel connections with data mining method. 2e
results have undergone comparative analysis with those of the
traditional FEM and ANN. 2e preliminary investigation
demonstrates that the data-driven models have a reasonably
good accuracy in most of the cases and are more suitable for
the nonlinear mechanical behaviors. 2e outline of the
remaining content of this paper is as follows. Section2 briefly
describes data-driven model framework and integrated
methodology. Based on the data from physical performance
tests of BCCs, Section 3 develops a finite element model to
exactly simulate the flexural behavior under monotonic loads.
Section 4 introduces the SVM regression algorithm and data
mining process. 2e results and discussion of the case study
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are presented in Section 5. Finally, the conclusions and future
work are summarized in Section 6.

2. Data-Driven Based Methodology Framework

Generally speaking, the current models available to solve the
mechanical performance problem of the SPR BCCs can be
mainly categorized into two types: physical experiment
based analytical models and FE based numerical model.
However, the use of the two techniques for analyzing this
wide range of beam-to-upright assembly in massive engi-
neering practices could be inappropriate due to the great
amount of time and economic resources required. 2e
methodology proposed in our paper is based on a hybrid
approach of experimental, numerical (finite element
method), and machine learning (support vector machines)
techniques, which allows the obtainment of computational
efficient results for various design solutions to make rapid
and accurate evaluation. As shown in Figure 3, the data-
driven modeling framework includes three stages, and the
general task in each stage is described as follows.

Stage I: Data acquisition
2e task of this stage is to collect and transform the data
from the beam-to-column physical experiment and
finite element simulation into engineering database.
Because the physical experiments are so costly that
volume of real dataset is relatively limited, the finite
element simulation is employed to expand engineering
data as machine learning required. On the basis of the
test data, the finite element model in the commercial
software ANSYS is repeatedly calibrated and validated
in order to exactly simulate the blending process of the
cantilever beam experiment; then, using the so-called
virtual testing method, the different rotational stiffness
from finite element simulation for the existing joint
solutions is obtained instead of the real physical test.
Finally, the substantial data such as the geometric
features, assembly relationship, and corresponding
mechanical behavior on the diverse BCC joints are
stored in engineering analysis database.

Stage II: Machine learning
2is stage is the core module of data-driven modeling
which can cover the full machine learning pipeline
from data processing to result evaluation. Inmost cases,
those modeling data from the engineering database fall
within different ranges. It is highly essential to pre-
process the input data before applying them to the
machine learning models, so as not to affect the ob-
tained results. On the other hand, these raw data and
engineered features probably have a large number of
independent or redundant variables, which often make
models more complex and incomprehensible.2ere are
two main dimensionality reduction methods for data:
one is to extract the main features of the data by
destroying the original structure of the data. 2e other
is to conduct correlation analysis on the data and select
the attributes of the data according to certain rules to

achieve the purpose of dimensionality reduction.
Kernel methods belonging to the first type, such as the
kernel principal component analysis (KPCA), have the
ability to find nonlinear patterns from the data while
keeping the computational elegance of matrix algebra,
but they often take up a lot of memory and the cal-
culation is more complicated [31]. Here, the correlation
coefficient after Pearson R falls into the second type as
an easier feature extraction method is used to reduce
the data dimensionality and improve the generalization
performance of a predictive model. In the model
training, the normalized dataset is randomly divided
into separate train and test sets; on the basis of those
data, the control parameters of the SVM model are
continuously adjusted and optimized through iterative
loop mode until the predictive accuracy satisfies the
need of engineering practice as a whole.

Stage I

FEM

Validation

Virtual
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Model
modification Experiment

Feature
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Engineering analysis
database 
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Models
evaluation

Existing 
solutions

Column

Assembly
relation 

Beam

Beam-end-
connectors

BCCs

Model
parameter
turning 

Satisfy
New

solutions 

Intelligent prediction
models 

Result interpretation
& design decision

N

Y

Y

N

Stage II

Stage III

Figure 3: Methodology framework.
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Stage III: Design decision
Once the predictive model is trained well, new design
solutions for the BCC joint are input into it one by one,
and their mechanical performance can be quickly
obtained so that structural engineers can make more
reasonable decisions.
Unlike the existing programs and methods
[2, 14, 32, 33], the merits of data-driven model
framework lie in the following:

(i) SVM/ANN is a self-adaptive and data-driven
method in nature, so there is no need to make
some rigorous assumptions about the statistical
distribution on real engineering data.

(ii) SVMs are good at handling data with much more
features than samples, which makes it more ac-
curate for modeling complex data patterns, as
opposed to traditional modeling approaches based
on a large amount of test data.

(iii) Along with the growth of engineering data, the
proposed framework is very expandable and has
the capability of improving prediction accuracy by
system self-learning.

(iv) Robust reasoning machine in the intelligent pre-
diction model is utilized to optimize design pa-
rameters on the SPR BCCs as predictive model
calculating without consideration of the potential
rule collision from explicit design knowledge.

3. Experiments Based Finite
Element Simulation

2e flexural tests on the different BCCs are the foundation of
analyzing the mechanical performance of boltless connec-
tions. On the basis of the physical test, a refined finite el-
ement model on SPR BCCs was built to simulate the
cantilever test process as accurate as possible in this section.

3.1. Experimental Program. 2e cantilever testing method is
considered to be an efficient method to predict the strength
characteristics of SPR BCCs [34], which can give a precise
experimental evaluation of the flexural behavior of locally
manufactured beam-to-column connections when subjected
to increasing static hogging loading. In this method, both
ends of the column are kept rigidly fixed. 2e end of the
pallet beam attached to the end connector is inserted in the
perforations at the center of the column, and the other end is
left in cantilever. A lateral restraint is provided to prevent the
twisting of the beam end, and the beam is left free to move in
the loading direction. Loading should be applied 610mm
from the face of the column.2e consequent displacement in
the line of action of the applied load and/or the rotation near
the connector is observed.2e rotation is measured by either
transducers or inclinometers.

3.1.1. Material Properties. 2e material properties of the
column, beam, and beam-end-connector were obtained
through the tensile coupon test and are given in Table 1. 2e

test was conducted according to EN 15512 [4]. 2e standard
specifies that the testing specimens for tensile test should be
cut from the direction of rolling on samples of raw material
coil, in accordance with EN 10002-1 [35].

3.1.2. Specimen Details. 2e specimens were distinguished
by three different types of columns, four different beam-
end-connector thicknesses (Table 2, Figure 4), three
different beam positions (Figure 5), three different
clearances between the connectors and the column webs
(Figure 5), and other characteristics (see Section 5). All the
dimensions of the specimens are the measured values.

3.1.3. Testing Arrangement. Six groups of beam-to-columns
chosen in pallet racking have been tested and analyzed from
the existing experimental data which were collected from the
Shanghai Jingxing Logistics Equipment Engineering Co.,
Ltd, China. 2e experiment setup and supporting systems
are shown in Figure 6.

At the beginning of the test, an initial load F of 10% of the
expected failure load was preloaded at 400mm from the beam
flange surface to the column.2e purpose is tomake the rivets
on the beam-end-connector fully contact the column grooves,
then fix the components, and then unload. 2e measuring
instrument was reset, and then the force F was gradually
increased to the maximum load value until the BCCs failed.
During the test, load F was measured by a load cell, and the
vertical components of the displacements d1 and d2 at the
loaded section were directly monitored by the linear variable
displacement transducer (LVDT) of the testing machine.
LVDTs and wire-actuated encoders were connected to a
computer-aided data recording system and load cells.

3.1.4. .e Experimental Results and Moment-Rotation
Response. 2e stiffness of beam-to-column is obtained by
moment-rotation (M-θ) curve. 2e rotation may be mea-
sured by displacement transducers bearing onto a plate tack-
welded to the beam close to the connector, but with enough
clearance to allow for connector distortion. 2e moment M
and rotation θ were calculated by the following equations:

M � b · F, (1)

θ �
d1 − d2

k
, (2)

where F is the loading; b is the distance between the loading
jack and the surface of the column, which is 400mm; d1, d2
are the displacements; and k is the distance between d1 and d2.

According to the code EN 15512 [4], the yield stress and
thickness of the materials of the beam, upright and con-
nector in Table 2 are used to calibrate the observed value of
M and θ of the test. 2e acquisition of stiffness requires an
over coordinate origin line at the M-θ polynomial fitting
curve (Figure 7), which, with the line of design moments
Mt,Rd, divides the test curve into two equal parts (A1 andA2).
Apparently, the bending strength of beam-to-column is
determined by the slope of the line.
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3.2. Finite Element Simulation. 2e goal of the finite element
(FE) model of the BCCs in our work is the flexibility to
represent the complex cross-sectional geometry of the
component and the ability to assign semirigid behavior to
the seam and take into account the effects of local defor-
mation, as well as flexural buckling of the ultimate bearing
capacity of the structure. With reference to the finite element
(FE) modeling of storage rack system [20], the commercial
finite element software ANSYS R17 is used for the model
development and analysis presented in this paper.

3.2.1. Establishment of Geometric Model. Firstly, the 3D
models are established based on the real value of the tested
samples using the SolidWorks software. It is noticed that the
cross section and the hole setting are not simplified to ensure
the accuracy of the finite element model, but the chamfer
and fillet have been simplified accordingly.2e beam and the
measuring plate on the beam are welded in the actual test, so

the beam and the measuring plate are integrally modeled
during the three-dimensional modeling, as shown in
Figure 8. Different finite element types in the ANSYS
software package are used in the modeling of beams,
columns, connectors, and rivets. Among them, SHELL163 (4-
node 3D elastic shell) was used to model beams, columns, and
connectors. SOLID45 (8-node 3D structural solid) was used
to model rivets and load plates. 2e spar elements carry only
axial forces, and any shear on the interface between the
connector and the column flange will be transferred through
the friction allowed by the contact elements. Specific element
characteristics are shown in Table 3.

3.2.2. Material Properties and Mesh. 2e materials on the
tested samples were set as nonlinear steel for subsequent
buckling analysis by the ANSYS Workbench with Structural
Steel NL.2ematerial properties of all the three components
listed in Table 1 were imported to the FE model (FEM).

Table 2: Specimen from the columns, beams, and connectors.

Structural elements Web length/beam width Flange width/beam height Mean thickness tt,m (mm) Mean yield strength fy,m (N/mm2)

Column 94 77 2.023 339.8
100 100 2.055 375.8

Beam 48 100 1.51 348
Connector 4.030 358.5

Web length
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Figure 4: Cross section of the connection components. (a) Column. (b) Beam. (c) Beam-end-connector.

Table 1: Material properties of the specimens.

Structural elements Young’s modulus E (GPa) Poisson’s ratio v Yield strength fy (N/mm2) Ultimate strength fu (N/mm2)
Column

210 0.3
376 562

Beam 348 496
Beam-end-connector 359 528

Clearance

Beam position

(a) (b)

Figure 5: Assembly parameters. (a) Beam position of BCC. (b) Clearance of BCC.
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Meshing is the basis of finite element analysis. Rea-
sonable meshing can reduce the use of computer memory,
and the results are more accurate. Firstly, the 3D assembly
model of beam-column joint is sliced in the geometry
module, and the column, connector beam weldment, and
rivet are manually split into three independent parts.
2en the independent parts are from new part processed,
and the model is divided into 20-node full hexahedron
units. As the main structures for transmitting torque, the
open hole parts of the upright posts, connectors, and rivet
structures are more prone to deformation, so the grids of
these parts are more finely divided. Numerical trials using
different mesh sizes have shown that mesh size of 10mm
is more appropriate to achieve accurate results. After
division, Figure 9 shows the meshing of the entire
connection.

3.2.3. Surface Interaction. 2e beam-column joints are
semirigid assemblies with welded and riveted components and
different contact surfaces between members. 2e accuracy
of simulation results will be affected by surface-to-surface
contacts directly.2erefore, different contact settings are made
for the contact surfaces that interfere when the beam-column
joints are stressed. As shown in Figure 10, in the assembly of
beam-column joints, except for the welded beams and
mounting plates, the mounting plates and rivets with inter-
ference fit are not required to be set as a whole by default. 2e
contact surface of each rivet matching with the column hole is
shown in Figure 10(a). 2e contact surface on which the
hanging plate and the column may deform under stress is
shown in Figure 10(b). 2e contact between the rivet and the
column hole is set to friction so that the connection between
the beam and the column is loose and meets the semirigid
property of the BCCs. Frictional parameters were set at 0.3 by
referring to GB 50017-2003 steel structure design specification.
During the simulation process, the contact surface between the
column and the connector may be deformed without inter-
fering with each other; in order to ensure the simulation ac-
curacy, the contact surface parameters need to be set to the
“adjust to touch” option (contact only).

3.2.4. Loading and Boundary Conditions. In the experi-
mental setup, the bolt-type fixed connection was used to
completely restrain the six degrees of freedom of the column.
Further, the fixed frame was used to limit the displacement
of the beam perpendicular to the column. 2erefore, similar
boundary conditions were applied to the end of the column
and the beam. For the test setup, a force loading was applied
to the beam at a distance of 400mm from the contact surface
of the column and the connector. Similar loading protocol

was adopted for the FE analysis. 2e load was applied to the
top of the beam which causes compression in the top of the
beam-end-connector and tension at the bottom. All node
displacements of the bottom plates on column and side
plates on beam in the negative Y axis have been set to zero
(Figure 11). Two probe points were placed on the top flanges
of the beams on either side to observe the deflection in the
beams.2e stiffness of FEM simulation could be obtained by
M-θ curve as shown in Figure 7.

3.2.5. Validation of the FE Model. 2e simulation results of
beam-column joints when the load F reaches 1000N are
shown in Figure 12. Referring to the method of obtaining
stiffness value of beam-column joint in mechanical per-
formance test, the four measuring points are, respectively,
placed at four corners of beam measuring plate, corre-
sponding to displacement sensors in mechanical perfor-
mance test. Among them, the average value of the results of
the two measuring points A and B is taken as the value of d1
in formula (2), the average value of the results of the two
measuring points C and pointD is taken as the value of d2 in
formula (2), the M and θ values under the corresponding
loads are obtained according to the calculation method in
Section 3.1, and theM-θ curve of the finite element model is
obtained by curve-fitting finally.

A comparison of the M–θ graphs plotted for the ex-
perimental and finite element studies is provided in
Figures 13(a)–13(d). Four specimens with varying column
thickness values and column cross-sectional areas were
compared to illustrate the agreement between the experi-
mental and FE analysis results. It was found that the stiffness
of the specimens was on the verge of that in the experimental
result even though the ultimate moment capacity of the
connection obtained from the FE model for specimen was
slightly higher than that from the experiments. 2is is be-
cause the imperfections from material and fabrication are
not considered by the FE model [1]. Moreover, due to the
assembly defect between rivets and columns and the small
applied load at the initial stage of the test, there is a deviation
between the two M-θ curves near the origin. According to
formulas (2) and (3), the stiffness values of M-θ are cal-
culated, and it is found that the stiffness values are not much
different, and the average error of the four groups is about
4.6%.

During the mechanical performance test and finite el-
ement simulation, three failure modes of beam-column
joints were observed.2e failure modes are shown in Table 4:
(i) yielding of the beam-end-connectors, (ii) tearing of the
column material, especially the holes, and (iii) fracture or
yielding of the rivets. When the beam-column joint is under

Table 3: Element characteristics of SHELL163 and SOLID45.

Name SHELL163 SOLID45
Position Column, beam, connector Rivet
Character Elastic shell element 3D solid structural unit
Node number 4 8
Nodal freedom UX, UY, UZ and ROTX, ROTY, ROTZ UX, UY, UZ
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compression, the rivet will bear the shear force opposite to
the direction of the connector and the column, resulting in
plastic deformation. 2e three simulated failure modes

basically agree with the mechanical performance test, which
verifies the validity of the simulation results. It is shown from
the above diagrams that the FE model can predict the

(a) (b)

Rivet-hole interface 
Column-connector

interface

Figure 10: (a) 2e interaction between surface of column and surface of beam-end-connectors. (b) 2e interaction between surface of rivet
and holes of column.
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Figure 9: Diagram of mesh.

B: static structural
Static structural
Time: 1s
2017/4/14 18:48

Force: 1000N
Fixed support
Displacement

X
Y

Z

A
B

B

C

C A

0.000 0.200

0.100 0.300

0.400 (m)

Figure 11: Boundary condition and loading.
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Figure 13: Comparison between experiment and finite element analysis. (a) Column: 90/77/2.0; beam/connector: 100/48-3 rivets. (b)
Column: 100/90/2.5; beam/connector: 100/48-3 rivets. (c) Column: 100/100/2.0; beam/connector: 100/48-3 rivets. (d) Column: 120/94/2.0;
beam/connector: 100/48-3 rivets.
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experimental behavior well as a whole, and the physical test on
the BCCs can be replaced by the FE simulation from the
perspective of engineering structure design. Consequently,
with similar FE simulationmethod, 432 bending tests of beam-
to-column joints were carried out by selecting representative
columns includingM90B,M100A, andM100B, which are the
most widely used in industrial application. 2e detailed pa-
rameters and specific simulation data are shown in the
Supplementary Material (available here).

4. Empirical Studies

To validate prediction performances on the SPR BCCs used
by the proposed data-driven methods, some empirical cases
are conducted in this study. 2is section first argues the
mapping relationship of predictive model between the input
data and output data. 2en, it describes how the empirical
cases were carried out. Finally, it provides a description of
how the search for the parameter that achieves the best
possible performance was made.

5. SVM Regression Algorithms

Support vector machines (SVMs) are based on principles
of convex optimization and statistical learning theory
proposed by Vapnik and Izmailov [36]. 2e main idea of
the SVM regression algorithm is to estimate the output
variable y from original input data vector x mapped into a
higher-dimensional feature space through nonlinear

transformation, and extract the information and regu-
larity contained among the data. 2e SVM regression
function is defined as

y � f(x) � w
Tφ(x) + b, (3)

where f(x) denotes the estimated value, w the weight vector,
b a constant known as “bias”, and φ(x) a mapping function
that maps the input data vector x into a high-dimensional
feature space. Minimized risk function can avoid overfitting
and thereby improving the generalization capability while
obtaining the weight vector wT, as shown in

min
1
2

w
T
w + c 

T

t�1
ζt + ζ ∗t( 

s.t. w
Tφ xt(  + b≤ϕ + ζ ∗t (i � 1, 2, . . . , T),

yt − w
Tφ xt(  + b ≤ϕ + ζt(i � 1, 2, . . . , T),

(4)

where c is penalty parameter, and ζt and ζ ∗t are the sizes of
the stated excess positive and negative deviations which are
termed nonnegative “slack” variables, as shown in Figure 14.
It is important to note that the feature φ(x) need not be
computed; rather, what is needed is the kernel function that
has to satisfy Mercer’s condition. Some of the mostly used
kernels include polynomial, radial basis function (RBF), and
sigmoid. In this study, RBF is used which is relatively simple
and suitable for high-dimensional feature sets, as shown in

Table 4: Comparison of failure modes between the experimental test and FEM.

Failure mode Experiment FEM

Yielding of the connectors

Tearing of the column

Fracture of the rivets
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where σ represents width of the RBF. Correct selection of
kernel function parameters is critical to the performance and
compensation accuracy of SVMs, which are described in
detail in [37]. Some advances and more detailed description
of SVM for regression can be found in [27, 36].

5.1. .e Relational Mapping of Predictive Model Data.
2e construction of the prediction model only depends on
the mapping relationship between input and output data,
so the determination of input and output indexes of the
prediction model plays an important role in the model
construction. 2e only output of each prediction model
based on data-driven method was the bending strength
(BS) of boltless BCCs in our study. According to the
properties of parameters, the performance parameters
that may affect the BCCs are divided into two categories:
structural parameters and assembly parameters. 2e
influence of structural parameters such as column-related
parameters, beam-related parameters, and connector-
related parameters is considered, respectively, as the model
inputs with reference to the existing analytical model
[14, 38]. On the other hand, according to the proposal in
[39], the flexural rigidity of boltless BCC is largely affected
by the different wielding positions between the connector
and the stub beam. In fact, the boltless BCC is made up
from the beam and the connector with the welding tech-
nology. 2e connector has an interference fit to the rivet,
which makes the rivet in clearance fit with the column.
Accordingly, in this paper, two additional assembly vari-
ables such as the beam position (BP) and the clearance
between the connector and the column web (CL2) are also
supposed to be utilized as the predictive model inputs so as
to make it as close as possible to the practical application.
2e general relational mapping of predictive model data
and its description are listed in Table 5.

5.2. Model Train

5.2.1. SVM Model Train. In this work, the regression pre-
diction model of support vector machine is established by
compiling relevant programs using the “Regression Learner
App” in Matlab2017a [33]. A total of 432 sets of data were
collected from finite element simulations of beam-column
joints, of which 400 sets were used for model establishment
and the remaining 32 sets were used for model result veri-
fication. 2e establishment of support vector machine pre-
diction model includes the selection of verification methods,
kernel functions, loss accuracy, and related parameters.

(1) Choose Verification Scheme. Choose a validation method
to examine the predictive accuracy of the fitted models. Val-
idation estimates model performance on new data, helps
choose the best model, and protects against overfitting. A
model that is too flexible and suffers from overfitting has a
worse validation accuracy. Choosing a validation scheme be-
fore training anymodels can allow comparing all the models in
the session using the same validation scheme. Each round of
cross-validation involves randomly partitioning the original
dataset into a training set and a testing set. 2e training set is
then used to train a supervised learning algorithm, and the
testing set is used to evaluate its performance. 2is process is
repeated several times, and the average cross-validation error is
used as a performance indicator. 2is paper uses the K-fold
validation method provided in the “Regression Learner App.”

(2) Selection of Kernel Function. 2e app can train regression
support vector machines (SVMs) in Regression Learner. For
greater accuracy on low-through medium-dimensional
datasets, train an SVM model using “fitrsvm” function. 2e
predictive results applying different core functions including
Linear SVM, Quadratic SVM, Cubic SVM, Fine Gaussian
SVM, Medium Gaussian SVM, and Coarse Gaussian SVM
are shown in Table 6. By comparison with the root mean
square error (RMSE), R-squared, mean squared error
(MSE), and mean absolute error (MAE), the Cubic SVM is
selected as the best core function of the model.

(3) Advanced SVM Options. 2e remaining advanced SVM
options in Matlab App are demonstrated as follows. 2e box
constraint is set to 4500, the epsilon to 450, and the kernel
scale to 2. 2e model training results are shown in Figure 16.

After training a regression model, the predicted vs.
simulated response plot (as shown in Figure 17) is used to
check model performance, which is used to understand how
well the regression model makes predictions for different
response values. A perfect regression model has a predicted
response equal to the true response, so all the points lie on a
diagonal line. 2e vertical distance from the line to any point
is the error of the prediction for that point. A good model has
small errors, and so the predictions are scattered near the line.

2e residual plot (as shown in Figure 18) is used to check
model performance.2e residual plot displays the difference
between the predicted and simulated responses. Usually a
good model has residuals scattered roughly symmetrically
around zero.
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Figure 14: Diagram of support vector machine.
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Table 5: 2e input feature indicators.

Related category Indicators Descriptions Notes

Column CT 2e types of the columns On the basis of research by Shah et al. [14, 38],
as shown in Figure 15CT1 2e column thickness

Beam

BH 2e beam height Referring to the research by Zhao et al. [11],
the beam structure can be simplified to a rectangle for the

convenience of modeling and analysis,
as shown in Figure 4

BW 2e beam width

BT 2e beam thickness

Connector
OPC 2e opening position of connector On the basis of research by Markazi et al. [39],

as shown in Figure 4NT 2e number of the rivets
CT2 2e thickness of connector

Assembly
parameters

BP 2e beam position 2is paper proposed assembly parameters as input indicators,
as shown in Figure 5CL 2e clearance between the connector

and the column web

Table 6: Comparison of prediction models of different kernel functions.

Name RMSE R-squared MSE MAE
Linear SVM 7306.48 0.21 53422823.02 4186.19
Quadratic SVM 4597.41 0.68 21327775.39 3911.93
Cubic SVM 1227.21 0.98 1522405.96 847.19
Fine Gaussian SVM 6099.04 0.45 37151937.61 4036.13
Medium Gaussian SVM 4577.70 0.69 20947018.98 2672.64
Coarse Gaussian SVM 7490.49 0.17 56083875.77 4300.80
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Figure 15: Section details of column.
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5.2.2. ANNModel Train. Artificial neural network (ANN) is
a powerful data-modeling tool that is able to capture and
represent any kind of input-output relationships. BP is
widely used in engineering because of its simple model and
high prediction accuracy [40].

2e design of BP model program adopts the artificial
neural network app in Matlab2017a. 2e model training
uses the same 400 sets of training data as SVM model.
Similarly, the datasets from BCCs virtual test are divided
into two groups of training data and testing data. 2e
training process of the model includes the determination
of hidden layer number, the selection of transfer function,
and the preset number of neurons in hidden layer. 2e
error of observation results can be modified by adjusting
the above parameters, until the expected results are
obtained.

In the light of Bishop’s report, more than one hidden
layer is usually not necessary. 2erefore, the ANN archi-
tecture for thin-walled steel design has only one hidden
layer. As proposed in the literature [41], the node number of
hidden layers was obtained as 8 by

s �

��������������������������������������

0.43mn + 0.12n
2

+ 2.54m + 0.77n + 0.35 + 0.51


,

(6)

wherem is the number of neurons in the input layer and n is
the number of neurons in the output layer.

2e BP network toolbox in Matlab2017a has a variety of
transfer functions for modeling, including linear function,
nonlinear function, and other error surface functions. In this
paper, “logsig” is selected as the model transfer function,
which is a differentiable logarithmic s-type transfer function,
which maps the input range of neurons (−∞, +∞) to the
interval of (0, +1), and its equation is

logsig(n) �
1

1 + e
− n. (7)

2e detailed parameter settings of the ANN prediction
model are summarized in Table 7.

5.3. Results and Discussion. After the establishment of the
model, it still needs to be verified, so it is compared with the
results of the four groups of mechanical properties tests, as
shown in Table 8. It can be seen that both SVM model and
BP model are close to the test value, with mean absolute
error (AE) of over 3% and correlation coefficient R close to 1.
2e accuracy of the model is preliminarily verified. Because
the training set of the prediction model comes from the
calculation results of the numerical model, the overall value
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Table 7: 2e selection of ANN model parameters.

Name Parameters
Hidden layer node number 8
Hidden layer number 1
Transfer function logsig

Table 8: Comparison between the test values, SVM predicted
values, and ANN predicted values.

Number Test SVM AE (%) ANN AE (%)
1 34870.00 35033.05 0.47 36607.54 4.98
2 49890.00 51735.48 3.70 50863.15 1.95
3 60640.00 60463.71 0.29 62736.40 3.46
4 65170.00 65553.39 0.59 64236.76 1.43
MAE 40.7625 434.385
RMSE 950.06 1519.20
MAPE 0.12% 1.19%
Correlation
coefficient R 0.9978 0.9959

R-squared 0.9956 0.9919
Cases with an error
of more than 3% 1 2

Note. 2e unit of bending strength is kNmm/rad.
AE � |(Test − Predicted)/x0| × 100% . MAE � (1/N) 

N
n�1 AEn
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is higher than the experimental value. 2e final results are
listed in Table 9, where “FEM,” “SVM,” and “ANN” refer to
the finite element values, the SVM predicted values, and
ANN predicted values, respectively. Statistical parameters,
such as the mean absolute error (%) and correlation coef-
ficient R between the expected and real value, are used to
judge the predictive power of the data-driven models. It is
evident that the accuracy of all the predictive models is
relatively high (R> 95%), while the SVM model, in terms of
the mean absolute error and the ratio of the cases with more
than 5% error, is lower than the ANN model. It is evident
from Table 9 that the predictive power of the SVMmodel the
predictive power of the SVM model is the better of the two
models considered here.

6. Conclusion

Due to computational complexity and accuracy, the analytical
expressions for the moment-rotation stiffness of thin-walled
steel beam-to-column connections are not widely used for steel
member design so far. In this paper, the M-θ behavior pre-
dictions from a novel data-driven model with the integrated
experimental-FEM-SVM methodology are compared with
those obtained from the traditional FEM and ANNmodel. It is
noted that the data-driven model based on SVM technique is
very efficient because the prediction performance is much
closer to the physical test and FEM than those obtained from
the ANNmodels. Here, we only demonstrate that, trained with
the engineering datasets from experiment and simulation, the
data-driven model is able to predict the M-θ behavior of
different BCCs through self-learning, which can help engineers
to make quick and effective decisions for complicated rack
design. 2e results of our paper appear to be preliminary and
limited to boltless BCCs situations, but it has been found that
data-driven models for solving complex semirigid component
design problems are very promising. Future research should

focus on the following aspects: (1) expansion of the engineering
analysis database to improve the flexibility of the data-driven
model and then optimize the design configuration among a
large number of beam-to-column joints; (2) development of
new methodologies that can effectively explain the results of
these apparently incomprehensible models. We believe that
this research can be finally fused together with other pioneering
analytic or experimental studies. With advancement of data
mining and cloud computing techniques, many of the pro-
ducers’ subjective intuitions in steel pallet rack industry will
finally be replaced by smart and friendly expert systems in the
near future.
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Table 9: Comparison between the FEM values, SVM predicted values, and ANN predicted values.

Number FEM SVM AE (%) ANN AE (%)
1 43945.22 45042.03 2.50 48907.54 11.29
2 52853.68 53755.41 1.71 52873.51 0.04
3 56572.25 56453.72 0.21 56736.45 0.29
4 53116.89 56553.71 6.47 54236.05 2.11
5 56792.16 56853.3 0.11 57766.89 1.72
6 62064.84 61920.47 0.23 62083.12 0.03
7 47064.88 47399.29 0.71 45548.75 3.22
8 51237.39 50781.86 0.89 49606.38 3.18
9 55195.33 54033.37 2.11 54038.4 2.10
. . .

31 51897.03 51306.61 3.59 50754.98 4.63
32 55933.86 54525.76 1.78 55121.01 0.71
MAE 25.51 115.40
RMSE 2329.36 1806.92
MAPE 0.06% 0.24%
Correlation coefficient R 0.9560 0.9651
R-squared 0.9140 0.9315
Cases with an error of more than
5% 3 7

Note: the unit of bending strength is kNmm/rad.
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In this paper, an intelligent modeling approach is presented to predict the shear strength of the internal reinforced concrete (RC)
beam-column joints and used to analyze the sensitivity of the influence factors on the shear strength. -e proposed approach is
established based on the famous boosting-family ensemble machine learning (ML) algorithms, i.e., gradient boosting regression
tree (GBRT), which generates a strong predictive model by integrating several weak predictors, which are obtained by the well-
known individual ML algorithms, e.g., DT, ANN, and SVM. -e strong model is boosted as each weak predictor has its own
weight in the final combination according to the performance. Compared with the conventional mechanical-driven shear strength
models, e.g., the well-known modified compression field theory (MCFT), the proposed model can avoid the complicated
derivation process of shear mechanism and calibration of the involved empirical parameters; thus, it provides a more convenient,
fast, and robust alternative way for predicting the shear strength of the internal RC joints. To train and test the GBRTmodel, a total
of 86 internal RC joint specimens are collected from the literatures, and four traditional ML models and the MCFTmodel are also
employed as comparisons. -e results indicate that the GBRTmodel is superior to both the traditional ML models and MCFT
model, as its degree-of-fitting is the highest and the predicting dispersion is the lowest. Finally, the model is used to investigate the
influences of different parameters on the shear strength of the internal RC joint, and the sensitivity and importance of the
corresponding parameters are obtained.

1. Introduction

Reinforced concrete (RC) beam-column joint or connection
is one of the most critical and vulnerable components in RC
structures. -e failure of the RC beam-column joints could
seriously affect the overall safety of the structures. Especially,
it will suffer from the shear failure if there are insufficient
transverse reinforcements and/or the material properties are
deteriorated due to the aging effects. As it is known to all,
shear failure is a brittle failure type without any warnings.
-erefore, it is vital to accurately predict the shear strength
of the RC beam-column joints to avoid shear failure in
design procedures in order to ensure the safety of the
structures.

In general, there are three commonly used approaches to
assess shear strength of the RC joints, i.e., experimental
study, numerical simulation, and theoretical analysis. -e
experimental study is the most direct and classical way,
which can be traced back to 1970s [1]. However, it is costly in
both time and money and difficult to operate. -e numerical
simulation, e.g., finite element method (FEM), is also widely
adopted for its low cost [2, 3]. Nevertheless, it usually has
several simplifications and some of the mechanisms are hard
to be reflected in the FEM framework, e.g., multistress state
behavior, shear behavior, and interfacial bond-slip behavior.
Apart from the experimental and numerical studies, nu-
merous theoretical models were also proposed to evaluate
the performance of the RC beam-column joints, for instance,
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the well-known modified compression field theory (MCFT)
[4], the strut-and-tie method (STM) [5], etc. -ese models
are actually derived based on the shear mechanisms of
fundamental RC elements and can be widely used to evaluate
the behavior of any type of shear-dominated RC members,
including the beam-column joints [6]. A detailed review of
the theoretical and empirical models for the RC joints can be
found in [7].

In recent five years, there are some latest development on
RC joint models. Eom et al. [8] developed an energy-based
hysteresis model for RC beam-column joints by using the
energy function and the existing backbone curve of ASCE/
SEI 41-06 [9]. Hwang et al. [10] proposed a shear strength
degradation model for performance-based design of interior
beam-column joints. In the model, all possible failure
mechanisms of beams and joints, including flexural yielding
of the beam end, diagonal cracking and concrete crushing in
the joint panel, bar bond-slip, and bar elongation, are
considered. Later, Hwang and Park [11] developed design
equations of the joint shear strength and hoop requirement
for the performance-based design of interior RC beam-
column joints by considering the diagonal strut mechanism
and truss mechanism. -e target drift ratio and bar bond
parameters are defined as the requirements of the joint shear
strength and hoop strength. More recently, Hwang and Park
[12] modified the shear strength degradation model for
interior RC joints and applied it to exterior RC joints with
standard hooked bars. Hwang et al. [13] simplified the
softened strut-and-tie model to facilitate design practice for
the strength prediction of discontinuity regions such as the
RC beam-column joints. -e shear-resisting mechanisms as
suggested by the softened strut-and-tie model are considered
in the simplified model. Similarly, Huang and Kuang [14]
proposed a shear strength model for exterior RC wide beam-
column joints by introducing the softened strut-and-tie
concept. Hassan and Moehle [15] collected a database of
exterior and corner beam-column joints without transverse
reinforcement. Based on the database, they evaluated several
existing shear strength models and developed a strut-and-tie
model based on the ACI 318 [16] strut-and-tie modeling
provisions and an empirical model by considering the effects
of joint aspect ratio, column axial load, and concrete
compressive strength.

Although the above empirical or theoretical approaches
offer simple and clear explanation of the shear mechanism,
they also introduce empirical assumptions which will reduce
their accuracy. Moreover, the derivations seem to be
complicated since the iteration process is likely involved and
some of the parameters are empirical that needed to be
determined according to the users’ experience.

In recent years, with the flourishment of artificial in-
telligence (AI), a brand new way is come to people’s hori-
zons, i.e., using machine learning (ML) techniques to predict
the shear strength of the RC beam-column joints. ML is a
type of AI, which has various functions, e.g., classification,
regression, and clustering. ML can learn the characteristics
of a certain type of data according to the existing database
and then classify, summarize, and predict the things of
interest. Prediction of the shear strength of the RC joints is

essentially a regression problem. -ere are already some
successful applications of prediction using ML in structural
engineering, for instances, evaluating the cement strength
via fuzzy logic, artificial neutral network (ANN), and gene
expression programming (GEP) [17, 18], modeling the
concrete properties via ANN and support vector machine
(SVM) [19–23], simulating the failure of brittle anisotropic
materials such as masonry via ANN [24, 25], predicting the
structural member capacities via hybrid ML algorithms
[26, 27], detecting the structural damage via GEP [28, 29],
etc. A detailed state-of-art of the application of ML in
structural engineering was summarized in [30].

However, the majority of the ML algorithms used in the
previous studies were individual-type learning algorithms
such as ANN family [31], SVM family [32], and decision tree
(DT) family [33]. -e disadvantages of the individual-type
learning algorithms are instable and with low accuracy. To
improve their performance, a new type of learning algo-
rithms known as ensemble learning algorithms has been
recently proposed and successfully applied in various fields.
-e basic idea of the ensemble learning is to combine several
weak learners generated by individual learning algorithms
into a strong one. In brief, the ensemble learning algorithms
are more stable and accurate compared to the individual
learning algorithms [34]. -ere are mainly two categories of
ensemble learning algorithms: bagging and boosting. For the
bagging family, the weak learners are produced in parallel
while they are produced in sequence for the boosting family.
-eoretically, bagging is more efficient and can effectively
reduce the variance of the prediction, and boosting is rel-
atively less efficient in reducing the bias. In practice, boosting
is superior to bagging in terms of accuracy for general cases.
-erefore, one of the most typical boosting ensemble
learning algorithms referred to as gradient boosting re-
gression tree (GBRT) [35] algorithm is used in this study.

In this paper, we aim to develop a GBRT-based intel-
ligent method for predicting the shear strength of the RC
beam-column joints and make comparisons between the
proposed data-driven model and some traditional ML-based
models as well as the conventional mechanical-driven
MCFTmodel. Firstly, some individual-type ML techniques,
including linear regression (LR), SVM, ANN, and DT, are
briefly reviewed. -en, the mathematical background and
implementation of GBRT are introduced. Afterwards, the
shear strength data of 86 internal RC beam-column joints
are collected from the literature. Based on the database, the
prediction results from the GBRT-based model are verified
by a 10-fold validation test and compared with those from
the individual-type ML models. In addition, one of the
representative conventional mechanical-driven approaches,
i.e., MCFT, is briefly summarized and also used as com-
parison with the GBRTmodel. Finally, sensitivity analysis of
input variables is conducted for the GBRTmodel to quantify
the influences of different parameters.

2. Review of the Traditional ML Techniques

2.1. Linear Regression (LR). Linear regression (LR) is one of
the most widely used statistical analysis techniques in
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determining the qualitative relationship between two or
more variables. In general, the least square method is
adopted to solve the LR problem. If only one independent
variable and one dependent variable are considered and the
relationship between them is approximately linear, then this
type of regression analysis is called simple linear regression
(SLR). On the contrary, if two ormore independent variables
are included and the relationship between the independent
and dependent variables are approximately linear, then this
regression analysis is called multiple linear regression
(MLR). For the prediction problem considered in this study,
more than two input parameters should be assigned as the
independent variables, so it belongs to MLR.

2.2. Support Vector Machine (SVM). Based on the statistical
learning theory proposed by Vapnik [36], the support vector
machine (SVM) is an effective optimizing tool to improve
the generalization performance and obtain the globally
optimal and unique solution. In implementing the SVM
regression, the primary goal is to minimize an upper bound
of the generalization error based on the structural risk
minimization. -e essence of the SVM regression is to map
the input variables into a high-dimensional feature space by
a nonlinear mapping and then conduct linear regression in
the space.

2.3. Artificial Neural Networks (ANN). -e artificial neural
network (ANN) is a complex information processing system
composed of a huge number of interconnected processing
elements (neurons) arranged in layers. It is the abstraction,
simplification, and simulation of the structure and mech-
anism of biological nervous systems such as human brains.
Just as the learning process in biological systems, the ANN
involves adjustments to the synaptic connections between
the neurons. When it is applied to solve engineering
problems, a neural network can be a vector mapper which
maps input vector(s) to an output one(s).

2.4. Decision Trees (DT). Decision tree (DT) is one of the
basic classification and regression methods. -e DT re-
gression approach mainly refers to one of the binary tree
structures, i.e., classification and regression tree (CART)
algorithm, in which the characteristic values of internal
nodes are only yes or no. -e main task for CART is to
divide the characteristic space into several units. Every
unit has a certain output. As each node is judged by yes or
no, the divided boundary is parallel to the coordinate
axis. Any testing data can be fallen into a unit according
to its characteristic and thus obtain its corresponding
output.

3. Boosted ML Approach: Gradient Boosting
Regression Tree (GBRT)

-ough the abovementioned traditional ML methods have
already been applied in several aspects of structural engi-
neering, including predicting the behavior of structural

members, there still exist some drawbacks. For some cases, a
“best” model may not be easily obtained using those algo-
rithms. Meanwhile, models by different algorithms will have
their own hypotheses, which may lead to great model un-
certainty. -erefore, this paper employs the ensemble
learning algorithms to generate the predictive model for the
joint shear strength. Specifically, the boosting family gra-
dient boosting regression tree (GBRT) is adopted. -e en-
semble learning method is superior to the individual
learning method since it offers a powerful framework to
obtain a strong estimator (or learner) by integrating several
weak estimators (or learners) produced by the individual
learning method, so the accuracy and robustness are both
enhanced.-e boosting idea is reflected in the weights of the
weak learners: the one with higher score will get higher
weight in the final strong learner. -e fundamental and
theoretical backgrounds, as well as the implementation
procedure, are all presented herein.

3.1. Gradient Boosting Framework of Ensemble ML. As
mentioned before, ensemble learning is not an individual-
type ML method. It is accomplished by integrating multiple
weak learners into a strong one. Boosting is a major group of
ensemble learning algorithms, which generates the weak
learners subsequently and can be interpreted as an opti-
mization algorithm on a suitable cost function. -e basic
idea of boosting is to update the weight of each weak learner
by its learning error. If a weak learner has a large learning
error, it will be assigned a large weight so that it could be paid
more attention in the subsequent training process. Like
other boosting methods, the gradient boosting integrates
several weak learners into a single strong learner in an it-
erative way.

Supposing it requires M steps to find out the final strong
learner and at the m-th(m ∈ [1, M]) step we have an im-
perfect modelfm(x)which is the sum of weak learners in the
previous steps,

fm(x) � 
m−1

i�1
αihi(x), (1)

where x is the vector containing the input variables; hi(x)

and αi are the weak learner and the corresponding weight at
step i ∈ [1, m].

-e imperfect model can be improved by adding a new
weak learner hm(x) as fm+1(x) � fm(x) + hm(x). -en, the
optimization problem becomes how to find hm(x). -e
solution of gradient boosting starts with the observation that
a perfect hm(x) would imply

fm+1(x) � fm(x) + hm(x) � y, (2)

where y is the target output or the tested value of the output.
Equation (2) can be equivalently expressed as

hm(x) � y − fm(x). (3)

-erefore, in the following gradient boosting algorithm
fits hm(x) with the residual y − fm(x). Like other members
of the boosting algorithms, fm+1(x) is attempted to correct
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the errors of its predecessor fm(x). It is observed that the
residual y − fm(x) is the negative gradient of the squared
loss function 1/2[y − fm(x)]2, so the negative gradient can
be extended to other kinds of loss functions. In other words,
the gradient boosting algorithm is a gradient descent al-
gorithm, which can be generalized by varying the loss
function and the gradient.

3.2. Gradient Boosting Regression Tree (GBRT). As can be
seen in the previous section, gradient boosting is actually a
framework for ensembling numerous weak learners, rather
than a specific learning algorithm. -eoretically, any indi-
vidual algorithms from the ANN, SVM, and DTfamilies can
be used to train the weak learners. However, unlike other
boosting algorithms, the individual algorithm for training
the weak learners in gradient boosting is restricted to the DT
algorithms, thus it is called as GBRT. In each step (or it-
eration), a new DT is established by fitting the negative
gradient of the loss function. -e number of DT is deter-
mined by the iteration number.

-e GBRT model superimposes multiple DTs and is
expressed as

fM(x) � 
M

m�1
T x;Θm( , (4)

where T(x;Θm) represents the weak learner by DT; Θm

denotes the parameters of m-th DTmodel; M is the number
of DTs, respectively.

For a dataset D � (x1, y1), (x2, y2), . . . , (xN, yN) 

where N denotes the number of the samples, the essence of
training the boosting DT model is selecting the optimal
parameters of DTs Θ � Θ1,Θ2, . . . ,ΘM  to minimize the
loss function 

N
i�1 L[yi, fM(xi)], i.e.,

arg min
Θ



N

i�1
L yi, fM xi(   � arg min

Θ


N

i�1
L yi, 

M

m�1
T x;Θm( ⎡⎣ ⎤⎦.

(5)

Here, the loss function is used to reflect the difference
between the sample real value yi and the output of the GBRT
fM(xi).

Note that the GBRT model in equation (4) can also be
written in a forward step way and expressed as

fm(x) � fm−1(x) + T x;Θm( , m � 1, 2, . . . , M. (6)

-erefore, training of the GBRTmodel can be achieved
by M iteration steps. Specifically, at the initial step, we define
f1(x) � 0, and for the m-th iteration step, a new T(x;Θm) is
generated. -e parameters Θm of T(x;Θm) should be ob-
tained to minimize the loss function

Θm � arg min
Θm



N

i�1
L yi, fm−1 xi(  + T xi;Θm(  , (7)

where Θm are the optimal DT parameters.
If the squared loss function is used, then one obtains

L yi, fm−1 xi(  + T xi;Θm(   � yi − fm− 1 xi(  − T xi;Θm(  
2

� rm,i − T xi;Θm(  
2
,

(8)

where rm,i � yi − fm−1(xi) represents the residual of the
model fm−1(x).

-erefore, the solution of equation (8) converts to the
selection of appropriateΘm to minimize the difference of the
residual rm,i of the DT and the output T(x;Θm) or,
equivalently, (xi, rm,i) 

i�1,2,...,N
can be used as the sample set

of the decision tree T(x;Θm), and the optimal parameters
Θm are obtained according to the conventional DT gener-
ation process.

Moreover, in a more generalized sense, the negative
gradient of the loss function can be used to represent the
residual of the model, i.e.,

rm,i � −
zL yi, f xi( ( 

zf xi( 
 

f(x)�fm−1(x)

. (9)

With (xi, rm,i) 
i�1,2,...,N

, we can fit the m-th DT hm,
whose leaf nodes can be represented by Rm,j, j � 1, 2, . . . , J,
where J indicates the number of leaf nodes of the DT. For
each leaf node of the regression tree hm, calculate the optimal
fitting value cm,j:

cm,j � argmin
c


xi∈Rm,j

L yi, fm−1 xi(  + c , j � 1, 2, . . . , J.

(10)

-en, the weak learner for this step can be written as

Tm(x) � 

J

j�1
cm,jI x ∈ Rm,j , (11)

and the updated strong learner till this step is

fm(x) � fm−1(x) + Tm(x) � fm−1(x) + 

J

j�1
cm,jI x ∈ Rm,j .

(12)

After M steps, the strong learner is finally obtained by

fM(x) � 
M

m�1


J

j�1
cm,jI x ∈ Rm,j . (13)

-e procedure of the GBRT algorithm can be summa-
rized as follows:

(1) Initialization of the function for the weak learner
f0(x) � arg min

c


N
i�1 L(yi, c)

(2) For the m-th iteration (m � 1, 2, . . . , M):

(a) For each sample (xi, yi), i � 1, 2 . . . , N, the
negative gradient is calculated using equation (9)

(b) Train the m-th DT hm by using
(xi, rm,i) 

i�1,2,...,N
, and the corresponding areas
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of the i − th leaf nodes are denoted as Rm,j, j �

1, 2, . . . , J

(c) For each leaf node of the regression tree hm,
calculate the optimal fitting value cm,j using
equation (10)

(d) Update the learner fm(x) � fm−1(x) + 
J
j�1

cm,jI(x ∈ Rm,j)

(3) After M iterations, the strong learner is obtained
using equation (13)

3.3. Implementation of GBRT. In this study, one of the most
widely used DT, i.e., CART, is employed as the individual
learning algorithm.-e implementation of the GBRTcan be
summarized as the following four steps:

(1) Collect and process the data, such as the setting of
input/output variables and the grouping of the
training/testing datasets

(2) Train the regression model using the GBRTwith the
training dataset

(3) Validate the trained model with the testing dataset
(4) Apply the model to the realistic problems

-e flowchart of the abovementioned procedure is
depicted in Figure 1.

Another important issue associated with the imple-
mentation of GBRT is the determination of model param-
eters, which have two levels, i.e., the framework level and the
level for the individual learning algorithm. At the framework
level, there are two main parameters, i.e., the number of
iteration (number of weak learners) and the learning rate,
which is used to avoid the overfitting problem. At the single
learning algorithm level, there are four primary parameters,
i.e., the maximum depth of the tree, the minimum samples
for split, the minimum samples of leaf node, and the
minimum change in impurity. -e selected values of these
parameters are determined based on previous studies in
literature and practical modeling experience, as shown in
Table 1.

4. Collection of Experimental Data for Shear
Strength of Internal RC Beam-Column Joints

In implementing the ML techniques for prediction of the
shear strength for RC joints, an experimental database is
required to train the predictive model and validate the
model. -erefore, a database including the experimental
results of 86 internal RC beam-column joints was col-
lected for this purpose in this study. In the database, there
are 10 input parameters covering material properties and
geometric dimensions and reinforcing details of the test
specimens, i.e., the concrete strength fc, the section width
of column bc, the section height of column hc, the section
width of beam bb, the section height of beam hb, the
yielding strength of beam longitudinal bar fy,b, the
yielding strength of column longitudinal bar fy,c, the
yielding strength of joint transverse bar fyv, the transverse
bar ratio ρv, and the axial load ratio n. -e only output is

the joint shear strength τ. -e statistical information of
these parameters, e.g., mean and standard deviation
(St.D.), and the distributions of the aforementioned pa-
rameters are illustrated in Table 2 and Figure 2. -e details
of the tested specimens in the database are given in
Table 3.

5. Results and Discussion

5.1. 10-Fold Cross-Validation Results. To validate the pro-
posed method, the 10-fold cross-validation method is
firstly used to evaluate the model’s performance. -e 10-
fold cross-validation method is developed to minimize the
bias associated with random sampling of the training and
testing datasets. It divides the experimental data samples
into 10 subsets, and for each run, 9 are set as training
subsets and 1 is set as validating subset. It is believed that
repeating this for 10 times is able to represent the gen-
eralization and reliability of the predictive model.
Moreover, three commonly used indicators are intro-
duced to assess the prediction performance, which are
respectively defined as

Coefficient of determination R-squared (R2):

R
2

� 1 −


N

i�1 Pi − Ti( 
2


N

i�1 Ti − T( 
2 . (14)

Root mean squared error (RMSE):

RMSE �

�������������


N

i�1 Pi − Ti( 
2

N



. (15)

Mean absolute error (MAE):

MAE �


N

i�1 Pi − Ti




N
, (16)

where Pi and Ti are the predicted and tested values, re-
spectively; T is the mean value of all the tested values; N is
the total number of the samples in the dataset.

Among the three indicators, R2 indicates the degree of
the linear correlation between the predicted and tested
values. RMSE shows the deviation between the predicted
and tested values. MAE reflects the ratio of the prediction
error to the tested values. -e closer the R2 to 1, the smaller
the RMSE or MAE, the better performance the prediction
model possesses. Table 4 shows the 10-fold cross-validation
statistic results of the GBRT model.

It can be drawn from Table 4 that the average de-
termination coefficient R2 for the 10-fold results is 0.875,
which is close to 1; the average RMSE and MAE are
0.948MPa and 0.722MPa, respectively, which are small.
-e standard derivations (St.D.) for R2, RMSE, and MAE

Advances in Civil Engineering 5



are 0.082, 0.347, and 0.245, respectively, which means the
prediction performance has low variance. All of these
indices demonstrate that the proposed method has ex-
cellent performance in predicting the shear strength of
internal RC joints.

5.2. Prediction Results of Different ML Models. To demon-
strate the prediction performance of the GBRT model, the
four general ML models, i.e., LR, SVM, ANN, and DT, are
also used to predict the shear strength of the 86 specimens.
-e optimized parameters of the fourmodels are determined

Collect data

Database

•••

Testing dataset

Training dataset

Weak learner

Learning

Weight

Weak learner

Learning

Weight

Weak learner

Learning

Weight
Update Update

Validate

Strong learner

∑

Figure 1: Flowchart of implementation of GBRT.

Table 1: Model parameters of GBRT.

Level Parameter Setting

Framework Maximum iteration number 100
Learning rate 0.03

Single learning algorithm

Maximum depth of the tree 10
Maximum leaf nodes 200

Minimum samples for split 6
Minimum samples of leaf node 5

Table 2: Statistics of parameters for the internal RC beam-column joints.

Parameter Unit Maximum Minimum Mean St.D. Type
f c MPa 116.90 16.57 43.31 19.07 Input
b c mm 458.00 200.00 268.12 66.03 Input
h c mm 458.00 200.00 277.23 81.72 Input
b b mm 406.00 150.00 194.74 64.60 Input
h b mm 500.00 250.00 322.59 56.96 Input
f y,b MPa 1456.00 314.00 457.48 179.87 Input
f y,c MPa 1456.00 314.00 458.09 150.46 Input
fyv MPa 1374.00 276.00 451.73 262.08 Input
ρv % 2.00 0.18 0.66 0.38 Input
n — 1.18 0.00 0.25 0.23 Input
τ MPa 14.87 2.85 7.30 2.81 Output
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Figure 2: Statistic distribution of the input and output parameters. (a) Concrete strength (MPa). (b) Section width of column (mm).
(c) Section height of column (mm). (d) Section width of beam (mm). (e) Section height of beam (mm). (f ) Yielding strength of beam
longitudinal bar (MPa). (g) Yielding strength of column longitudinal bar (MPa). (h) Yielding strength of joint transverse bar (MPa).
(i) Transverse bar ratio (%). (j) Axial load ratio. (k) Joint shear strength (MPa).
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Table 3: Main data of the internal RC beam-column joint tests.

References Specimen fc (MPa) bc × hc (mm×mm) bb × hb (mm×mm) fy,b (MPa) fy,c (MPa) fyv (MPa) ρv n τ (MPa)

[37]

I 24.70 250× 250 150× 350 391.1 353.8 277.5 0.36 0.226 4.15
I-1 27.20 250× 250 150× 350 379.4 366.0 301.1 0.36 0.204 4.16
I-2 31.95 250× 250 150× 350 379.4 366.0 301.1 0.36 0.173 5.10
SJ1-1 31.78 250× 250 150× 350 366.3 349.0 300.9 0.42 0.173 5.53
SJ1-2 34.48 250× 250 150× 350 366.3 349.0 300.9 0.42 1.180 5.82
SJ1-4 29.80 250× 250 150× 350 380.3 380.3 300.9 0.42 0.440 7.32
SJ2-2 28.40 250× 250 150× 350 366.3 349.0 300.9 1.50 0.174 6.17
SJ5-1 37.88 250× 250 150× 350 366.3 349.0 300.9 0.42 0.178 6.47
SJ-3 34.48 250× 250 150× 350 462.0 404.6 340.0 1.26 0.125 6.41
SJ-B 27.00 450× 450 250× 500 326.0 388.0 384.0 0.76 0.167 5.49

[38]

J3-50 46.12 200× 200 150× 300 390.0 385.0 307.0 0.83 0.285 7.14
J4-50 47.40 200× 200 150× 300 390.0 385.0 307.0 0.83 0.361 7.83
J4-30 46.74 200× 200 150× 300 390.0 385.0 307.0 1.33 0.374 7.92
J5-80 46.71 200× 200 150× 300 328.0 405.0 307.0 0.66 0.467 8.80
J5-50 48.16 200× 200 150× 300 328.0 405.0 307.0 0.83 0.449 8.98
J6-80 46.94 200× 200 150× 300 328.0 405.0 307.0 0.66 0.558 9.26
J6-50 43.60 200× 200 150× 300 328.0 405.0 307.0 0.83 0.514 8.29
J6-30 48.12 200× 200 150× 300 328.0 405.0 307.0 1.33 0.540 9.07
J7-80 43.60 200× 200 150× 300 328.0 405.0 307.0 0.66 0.716 7.91
J7-50 48.42 200× 200 150× 300 328.0 405.0 307.0 0.83 0.636 8.98
J7-30 43.81 200× 200 150× 300 328.0 405.0 307.0 1.33 0.712 8.84
J8-50 49.45 200× 200 150× 300 328.0 405.0 307.0 0.83 0.744 9.22
J8-30 43.81 200× 200 150× 300 328.0 405.0 307.0 1.33 0.814 8.38

[39]
ZHJ4 27.36 200× 200 150× 250 360.2 360.2 350.0 1.00 0.330 6.91
ZHJ5 27.36 200× 200 150× 250 360.2 360.2 350.0 1.21 0.330 6.93
ZHJ6 27.36 200× 200 150× 250 360.2 360.2 350.0 1.81 0.330 7.07

[40]

J-1 27.36 200× 200 150× 250 380.0 380.0 350.0 1.04 0.330 6.78
J-2 27.36 200× 200 150× 250 380.0 380.0 350.0 1.12 0.330 6.84
J-3 16.57 200× 200 150× 250 473.0 473.0 375.0 1.30 0.270 6.49
J-4 19.53 200× 200 150× 250 473.0 473.0 375.0 2.00 0.23 6.55
JL1 21.43 250× 250 150× 300 314.0 314.0 276.0 0.58 0.21 5.32

[41] SJ-3 29.34 350× 350 175× 350 354.7 348.0 381.5 0.50 1.06 6.88

[42]
J4 25.7 300× 300 200× 300 401 401 368 0.28 0.30 4.22
J5 28.7 300× 300 200× 300 401 401 368 0.28 0.07 5.04
C2 25.6 300× 300 200× 300 324 422 368 0.90 0.08 5.36

[43]

U1 26.2 331× 458 280× 458 449 457 409 0.50 0.40 5.38
U2 41.8 331× 458 280× 458 449 449 409 0.50 0.25 7.87
U3 26.6 331× 458 280× 458 449 402 409 0.50 0.39 6.03
U4 36.1 458× 331 406× 458 449 449 409 0.50 0.29 7.17
U5 35.9 331× 458 280× 458 449 449 409 0.50 0.04 7.57
U6 36.8 331× 458 280× 458 449 449 409 0.50 0.48 8.15
U7 37.2 458× 331 406× 458 449 449 409 0.50 0.46 7.24

[44]

J1 70.0 300× 300 200× 300 718 718 955 0.75 0.12 10.84
J3 107.0 300× 300 200× 300 718 718 955 0.75 0.12 13.75
J4 70.0 300× 300 200× 300 718 718 955 0.75 0.12 11.44
J5 70.0 300× 300 200× 300 718 718 955 0.75 0.12 11.26
J6 53.5 300× 300 200× 300 718 718 955 0.75 0.12 9.98

[45]

J1 81.2 300× 300 240× 300 638 638 1374 0.38 0.11 11.58
J2 81.2 300× 300 240× 300 1456 1456 1374 0.38 0.11 12.43
J4 72.8 300× 300 240× 300 515 515 1374 0.38 0.13 11.94
J5 72.8 300× 300 240× 300 839 839 1374 0.38 0.13 13.38
J8 79.2 300× 300 240× 300 370 370 775 0.38 0.12 14.01
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by using the grid search after setting the initial values. -e
total dataset is divided into for training and testing as 8-2,
i.e., 80% of the data is used for training and 20% of the data is
used for testing. Figure 3 shows the prediction results of the
GBRTmodel and the four general ML models for the testing

dataset. It is clear that the GBRTmodel has stronger linear
correlation compared with other four ML models. -e
reason is that the GBRT is an ensemble learning algorithm
with strong learner, while other four models use individual-
type learning algorithms with weak learners.

Table 4: 10-fold cross-validation statistic results.

Fold R2 RMSE (MPa) MAE (MPa)
1 0.827 1.217 0.937
2 0.926 0.816 0.704
3 0.937 0.726 0.619
4 0.682 1.621 1.008
5 0.819 0.967 0.800
6 0.910 0.873 0.579
7 0.952 0.531 0.394
8 0.962 0.637 0.460
9 0.905 0.649 0.525
10 0.833 1.443 1.192
Average 0.875 0.948 0.722
St.D. 0.082 0.347 0.245

Table 3: Continued.

References Specimen fc (MPa) bc × hc (mm×mm) bb × hb (mm×mm) fy,b (MPa) fy,c (MPa) fyv (MPa) ρv n τ (MPa)

[46]

Aa-4 30.4 200× 200 150× 300 419 419 350 0.22 0.06 3.19
Aa-7 38.1 200× 200 150× 300 400 400 350 0.22 0.05 3.08
Aa-8 38.1 200× 200 150× 300 400 400 350 0.22 0.10 3.19
Aa-1 41.1 200× 200 150× 300 400 400 350 0.22 0.05 3.10
Aa-2 41.1 200× 200 150× 300 400 400 350 0.22 0.10 2.97
Ab-1 41.1 200× 200 150× 300 400 400 350 0.22 0.05 3.06
Ab-2 41.1 200× 200 150× 300 400 400 350 0.22 0.10 2.85

[47]
HNO3 88.7 400× 400 300× 400 442 442 681 0.86 0.17 13.01
HNO4 88.7 400× 400 300× 400 605 610 681 0.86 0.17 14.87
HNO5 116.9 400× 400 300× 400 623 610 681 0.86 0.13 12.39

[48] S3 24 300× 300 200× 300 465 450 390 0.36 0.05 3.64

[49]
A1 40.2 220× 220 160× 250 1069 644 291 0.43 0.08 5.25
A2 40.2 220× 220 160× 250 409 388 291 0.43 0.08 4.87
A3 40.2 220× 220 160× 250 1069 644 291 0.43 0.23 5.25

[50]

LIJ1 25.5 343× 457 343× 343 440 470 400 0.61 0 3.79
LIJ2 32.8 343× 457 343× 343 440 470 400 0.61 0 4.86
LIJ3 31.1 343× 457 343× 343 440 470 400 0.61 0 4.61
LIJ4 34.3 343× 457 343× 343 440 470 400 0.61 0 5.03

[51]
BCJ2 30.3 254× 254 203× 305 414 448 414 0.52 0 5.55
BCJ3 27.4 305× 254 203× 305 414 448 414 0.43 0 5.08
BCJ4 27.2 356× 254 203× 305 414 448 414 0.37 0 5.11

[52]

HSLCJ-1 48.6 260× 260 150× 300 435 421 449 0.18 0.15 7.25
HSLCJ-2 48.9 260× 260 150× 300 435 421 449 0.22 0.15 7.5
HSLCJ-3 49.5 260× 260 150× 300 435 421 449 0.18 0.25 7.76
HSLCJ-4 48.2 260× 260 150× 300 435 421 449 0.22 0.25 7.82

[53]

JD1 41.9 250× 250 150× 300 427 443 318 0.33 0.147 7.28
JD2 43.95 250× 250 150× 300 427 443 318 0.84 0.147 7.38
JD3 43.34 250× 250 150× 300 427 443 318 1.44 0.147 7.46
JD5 41.06 250× 250 150× 300 427 443 318 0.84 0.059 6.35
JD6 44.35 250× 250 150× 300 427 443 318 0.84 0.235 8.05

[54] MZJD-1 37.2 300× 300 200× 400 320 331 318 0.67 0.1 5.85
MZJD-2 37.2 300× 300 200× 400 320 331 318 0.67 0.3 7.29

[55] 8-3 54.17 250× 250 200× 300 479.6 479.6 479.6 0.49 0.1 9.86
8-5 55.34 250× 250 200× 300 479.6 479.6 479.6 0.49 0.1 11.29
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Figure 3: Prediction results of different ML models: (a) GBRT. (b) LR. (c) SVM. (d) ANN. (e) DT.
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Table 5 exhibits the prediction performance of the five ML
models by providing the average statistical indices of the 10-
fold cross-validation results. Obviously, the GBRT model has
the closest R2 to 1 and smallest values of RMSE and MAE
among the five MLmodels. It further verifies the superiority of
the GBRTmodel over the general individual-type ML models.

6. Comparison with Conventional Mechanical-
Driven Approach

6.1. Typical Mechanical-Driven Approach: MCFT. In this
section, the derivation of MCFT is briefly summarized as it is a
representative conventional mechanical-driven shear strength
prediction method. A basic assumption for MCFT is that the
crack direction of a RC plane element is in accordance with the
principal compressive stress and varies accordingly. -e def-
initions of stress, strain, rotational angle, and principal di-
rection are illustrated in Figure 4, where the x-y coordinate
system is the local system and the 1-2 coordinate system in-
dicates the principal tensile strain-principal compressive strain
system.-e strain vector and stress vector of the RC element in
the local system are denoted as εx εy cxy 

T
and

fx fy vxy 
T
, respectively.

-e derivation of the MCFT includes three parts, i.e.,
compatibility equations, equilibrium equations, and constitu-
tive equations. -e detailed formulations are given as follows.

6.1.1. Compatibility Equations. According to Mohr’s circle
of strain, the principal tensile strain ε1 and the principal
compressive strain ε2 of the element are calculated as

ε1 �
εx + εy 

2
+

����������������

εx − εy 
2

4
+

cxy 
2

4
,



ε2 �
εx + εy 

2
−

����������������

εx − εy 
2

4
+

cxy 
2

4



.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Accordingly, the rotational angle θ from the principal
strain direction to the x-axis can be obtained by

tan2θ �
εx − ε2
εy − ε2

�
ε1 − εy

ε1 − εx

�
ε1 − εy

εy − ε2
�
εx − ε2
ε1 − εx

. (18)

6.1.2. Equilibrium Equations. -e basic element consists of a
steel bar and concrete such that its equilibrium condition
can be derived from the stress state as shown in Figure 4,
which can be expressed as

fx � σcx + ρsxσsx,

fy � σcy + ρsyσsy,

vxy � τcxy,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

where σcx and σcy are the normal stresses of concrete in the x
and y directions, respectively; τcxy is the shear stress of
concrete; ρsx and ρsy denote the reinforcement ratios in the x

and y directions, respectively; σsx and σsy are the normal
stresses of the steel bar in the x and y directions, respectively.

Considering the condition of Mohr’ circle of stress, the
normal stresses and shear stress of concrete are obtained by

σcx �
σc1 − τcxy

tan θ
,

σcy � σc1 − τcxy tan θ,

τcxy � σc1 − σc2( sin θ cos θ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where σc1 and σc2 are the principal stresses in the 1 and 2
directions.

6.1.3. Constitutive Equations. With equations (19) and (20),
it is found that the stress vector of the RC element can be
obtained by the stress states of concrete and steel. -ere-
fore, the constitutive stress-strain relations of these two
materials are necessary for the state determination of the
element. Especially, the steel bars are assumed in uniaxial
stress state and the concrete is subjected to biaxial stress
state, which can be described in the two principal
directions.

For reinforcement steel, the uniaxial elastic perfectly-
plastic model is adopted, which is given by

σsx � Esxεsx ≤fyx,

σsy � Esyεsy ≤fyy,

⎧⎪⎨

⎪⎩
(21)

where Esx, εsx, and fyx are the elastic modulus, strain, and
yielding strength of the steel bar in the x direction, re-
spectively; Esy, εsy, and fyy are the elastic modulus, strain,
and yielding strength of the steel bar in the y direction,
respectively.

For concrete, the shear stress state is distinctly different
from the uniaxial stress state. In consideration of the tensile
stress perpendicular to the principal compressive direction
having influences on the compressive behavior of concrete, it
is recommended using the modified uniaxial stress-strain
relationships to represent the stress-strain relationship of the
RC plane element subjected to combined stress state, which
are

Stress-strain relationship in the tensile principal
direction

σc1 �

Ecε1, ε1 ≤ εcr,

ft

1 +
�����
200ε1

 , ε1 > εcr.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

Stress-strain relationship in the compressive principal
direction
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σc2 � fc2max 2
ε2
ε0

  −
ε2
ε0

 

2
⎡⎣ ⎤⎦, (23)

with

fc2max

fc
′ �

1
0.8 − 0.34 ε1/ε0( 

≤ 1, (24)

where Ec is the elastic modulus of concrete; ft and fc
′ are the

tensile and compressive strengths of concrete, respectively;
εcr and ε0 are the strains corresponding to the tensile
strength and the compressive strength, respectively; fc2max
is the maximum compressive stress in the principal com-
pressive direction. It is clear that the modification equation
(24) considers the reduction of concrete compressive
strength due to the existence of tensile stress.

6.1.4. Crack Check. Note that the abovementioned equa-
tions handle with the global behavior of the element in an
average sense, while it cannot provide the local behavior
description. -e local equilibrium across a crack should also
be satisfied, say,

ρsx σsxcr − σsx(  �
σc1 + fci + vci

tan θ
,

ρsy σsycr − σsy  � σc1 + fci + vci tan θ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(25)

where σsxcr and σsycr are the steel stress at the crack; fci and
vci are the local compressive and shear stresses at the crack,

respectively. -e abovementioned equation can be satisfied
if there are no local compressive and shear stresses, say,

ρsx σsxcr − σsx(  � ρsy σsycr − σsy  � σc1. (26)

However, a constrain should be ensured that the steel
stresses at the crack should not exceed the yield strength of
the steel, i.e., (σsxcr/σsycr)< (fyx/fyy). -erefore, if this
condition is not satisfied, the local stresses should be cal-
culated iteratively. -e expressions for the local stresses are

vci � 0.18vci,max + 1.64fci − 0.82
f
2
ci

vci,max
,

vci,max �

����
−fc



(0.31 + 24w)/(a + 16)
,

(27)

where w is the crack width; a is the maximum aggregate size;
fci is calculated according to ref [4].

-e whole process of using MCFT applied to the shear
strength of internal RC joints can be depicted in Figure 5.
More details can also be found in [4].

6.2. Comparison between GBRT and MCFT. To further
evaluate the performance of the GBRT model, the con-
ventional MCFT is also used to predict the shear strength of
the 86 RC internal beam-column joints. -e statistic results
from the MCFTmodel are compared with the GBRTmodel
and shown in Table 6. Note that to fairly compare the
performance of the two models, the prediction results in the
10 testing sets of the 10-fold cross-validation process are
used for the GBRT model.

Table 5: Comparisons of predictive performance between GBRT and general ML models.

Model R2 RMSE (MPa) MAE (MPa)
GBRT 0.875 0.948 0.722
LR 0.747 1.443 1.038
SVM 0.798 1.257 0.813
ANN 0.626 1.729 1.019
DT 0.802 1.285 0.840

vxy

fy

fx

y

fx

fy

vxy

vxy

vxy

x

(a)

1

1

εy

εx

γxy

(b)

y

x

2 1

θ

(c)

Figure 4: -e basic RC element state. (a) Stress state. (b) Strain state. (c) Principal direction.
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As can be seen from Table 6, the determination coefficient
of the GBRTmodel has been improved by 25.4% and closer to
1 compared to the mechanical-driven MCFT model, and all
the other two indicators have been dropped more than 50%.
In other words, the ML-based method has obviously better
performance than the MCFT-based method. Furthermore,
the predicted and tested values are also plotted in Figure 6.
Evidently, the GBRT results match the experimental results
much better than those of the MCFT model.

Table 7 gives the statistic results of predicted value/tested
value ratios for the MCFT and GBRT models. It can be
concluded from Table 7 that the GBRT model statistically
underestimates the shear strength because the mean value is
less than 1, while the MCFTmodel slightly overestimates the
shear strength. Apparently, the mean predicted value/tested
value ratios for the GBRT approach is closer to 1 with less
dispersion (St.D.) compared to the MCFT method.

Figure 7 further illustrates the predicted value/tested
value ratios for the GBRTandMCFTmodels. -e solid line,
the top dotted line, and the bottom line represent the mean
value, mean value plus St.D., and mean value minus St.D.,
respectively. Evidently, better prediction performance is
achieved by the GBRT model.

7. Model Sensitivity Analysis

7.1. Sensitivity of Input Parameters. With the developed
GBRT model, it is convenient for us to investigate the in-
fluences of different parameters on the shear strength of the
internal RC joint and even quantify the influences. In this
study, 10 input variables with different value ranges are
adopted to conduct a comprehensive parametric analysis. In
the parametric analysis, the control variable method is used,
i.e., one control parameter varies, while other parameters are
fixed.-e specimen J6 of [44] is used as the reference model.
-e numerical ranges of the 10 inputs are shown in Table 8.

Figure 8 shows the predicted shear strength of the
internal RC joints with different input variables by using
the GBRT model. It can be drawn from Figure 8 that
among all the input variables, concrete strength fc is the
most significant parameter affecting the shear strength.
With the increasing of concrete strength fc, beam width bb,
column width bc, column height hc, yielding strength of
column longitudinal bar fy,c, yielding strength of joint
transverse bar fyv, transverse bar ratio ρv, or axial load
ratio n, the shear strength has a general ascending trend.
On the contrary, yielding strength of beam longitudinal

Given the strain state of the joint
(εx, εy, γxy)T

Calculate the principal direction θ
using Eq. (18)

Calculate the principal strains
(ε1, ε2, γ12)T using Eq. (17)

Calculate the concrete stress
(σc1, σc2)T

Calculate the steel stress
(σsx, σsy)T

Concrete model
Eqs. (22)–(24)

Steel model
Eq. (21)

Calculate local stress at the crack
(fci, vci)T using Eq. (27)

Check if
σsxcr/σsycr < fyx/fyy

Integrate the stress state
(σx, σy, τxy)T using Eq. (19)

Calculate steel stress at the crack
(σsxcr, σsycr)T using Eq. (25)

End

Yes

No

Figure 5: Flowchart of implementation of MCFT in calculating shear strength of internal RC joints.

Table 6: Comparisons of predictive performance between GBRT and MCFT models.

Model R2 RMSE (MPa) MAE (MPa)
MCFT 0.765 1.355 1.066
GBRT 0.960 0.562 0.380
(GBRT-MCFT)/MCFT (%) 25.4 −58.5 −64.3
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bar fy,b has negative effects on the shear strength. -e
influence of beam height hb on the shear strength is
negligible.

7.2. Feature Importance. Feature importance, which is used
to quantify the importance of the input variables (or fea-
tures), is conducted to further investigate the sensitivity of
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Figure 7: Comparisons of the predicted value/tested value for the GBRT and MCFT models. (a) GBRT results. (b) MCFT results.

Table 7: Statistic results of predicted value/tested value ratios for the MCFT and GBRT models.

Model Mean value St.D.
MCFT 0.961 0.180
GBRT 1.012 0.092
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Figure 6: Comparisons of shear strength of RC joints by the GBRTpredictive model and MCFTmodel. (a) GBRTresults. (b) MCFTresults.

Table 8: Numerical ranges of input variables.

f c (MPa) b c (mm) h c (mm) b b (mm) h b (mm)
[20 : 20 :100] [200 :100 : 500] [200 :100 : 500] [150 :100 : 450] [200 :100 : 500]
f y,b (MPa) f y,c (MPa) fyv (MPa) ρv (%) n
[300 :140 :1000] [300 :140 :1000] [300 :140 :1000] [0.2 : 0.2 :1.0] [0 : 0.1 : 0.6]

14 Advances in Civil Engineering



13

12

11

10

9

8

7

6

τ (
M

Pa
)

20 40 60 80 100
fc (MPa)

(a)

τ (
M

Pa
)

9.91

9.9

9.89

9.88

9.87

9.86
200 300 400 500

bc (mm)

(b)

9.91

9.905

9.9

9.895

9.89

τ (
M

Pa
)

200 300 400 500
hc (mm)

(c)

150 200 250 300 350 400 450

τ (
M

Pa
)

bb (mm)

10

9.98

9.96

9.94

9.92

9.9

(d)

11

10.5

10

9.5

9

8.5

τ (
M

Pa
)

hb (mm)
200 300 400 500

(e)

τ (
M

Pa
)

10

9.98

9.96

9.94

9.92

9.9

fy,b (MPa)
400 600 800 1000

(f )

Figure 8: Continued.
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each input variable on the shear strength of the internal RC
joints. -e calculation of feature importance can be summa-
rized as follows. Firstly, some out-of-bag (OOB) samples are
selected. Secondly, the values of the target input variable are
randomly shuffledwhile other inputs remain unchanged.-en,
the feature importance can be calculated as the accuracy dif-
ference of the two predictions using the GBRTmodel. Figure 9
shows the relative feature importance of all input variables. It is
clear that concrete strength fc is the key feature determining the
shear strength of the internal RC joints, which is in accordance
with the conclusion obtained from the previous subsection.-e
influences of the yielding strength of joint transverse bar fyv,
transverse bar ratio ρv, and axial load ratio n on shear strength
are subdominant. -e remaining input variables are insig-
nificant features. -e feature importance results are also in
accordance with the sensitivity results performed before.
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8. Conclusions

-is paper presents a ML-based approach to predict the
shear strength of internal RC beam-column joints. One of
the famous ensemble learning methods, GBRT, is employed
to solve the prediction problem. A database of 86 sets of
internal RC joint tests is collected from the literature. Some
individual-type ML methods and the conventional MCFT
method are adopted for comparisons of the developed GBRT
prediction model. -e model sensitivity analysis of input
parameters is conducted for the proposed GBRT-based
model. Based on the results, the following conclusions can be
drawn:

(1) -e GBRT model can accurately and efficiently
predict the shear strength of internal RC beam-
column joints with given input variables.

(2) If 80% of the whole dataset is used to train the GBRT
model, the average determination coefficient R2 of
the 10-fold cross-validation is 0.875, which means
that the prediction error is low. Meanwhile, the
average RMSE and MAE are 0.948MPa and
0.722MPa, indicating that the prediction model has
a low prediction deviation.

(3) Among all the ML-based prediction models used in
this study, the GBRT model performs best with the
closest R2 to 1 and smallest values of RMSE and
MAE. It indicates that the GBRTmodel is superior to
the individual-type ML algorithms.

(4) -e GBRTmodel has better prediction performance
compared with the conventional MCFT model in
both average sense and variance sense and exhibits a
significant superiority in terms of the three perfor-
mance indicators.

(5) Among all the input variables, concrete strength fc is
the most critical feature affecting the shear strength
of the internal RC joints. With the increasing of the
concrete strength, the shear strength significantly
increases. Other input variables are relatively sub-
ordinate or even unimportant.
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)e residual shear strength of liquefied soil is critical to estimating the displacement of lateral spreading. In the paper, an Artificial
Neural Network model was trained to predict the residual shear strength ratio based on the case histories of lateral spreading.
High-quality case histories were analyzed with Newmark sliding block method. )e Artificial Neural Network model was used to
predict the residual shear strength of liquefied soil, and the post-liquefaction yield acceleration corresponding with the residual
shear strength was obtained by conducting limit equilibrium analysis. Comparing the predicted residual shear strength ratios to
the recorded values for different case histories, the correlation coefficient, R, was 0.92 and the mean squared error (MSE) was 0.001
for the predictions by the Artificial Neural Network model. Comparison between the predicted and reported lateral spreading for
each high-quality case history was made. )e results showed that the probability of the lateral spreading calculated with the
Newmark sliding block method using the residual shear strength was 98% if a lateral spreading ratio of 2.0 was expected and a
truncated distribution was used. An exponential relationship was proposed to correlate the residual shear strength ratio to the
equivalent clean sand corrected SPT blow count of the liquefied soil.

1. Introduction

Liquefaction is the phenomenon whereby saturated sandy
soil behaves like a liquid during the shaking by earthquakes.
In the saturated sandy soil, the strength of the soil is lost
when the pore water pressure builds up and approaches the
total pressure due to the cyclic shear loading. During the past
earthquakes, widespread damage caused by liquefaction
includes the damage to buildings, pipelines, coastal slopes,
and the ground deformations.

)e limited deformation of gently sloping ground is
defined as lateral spreading. To adopt proper mitigation
measures, the displacement magnitude of lateral spreading
needs to be determined. )e residual shear strength, which
corresponds to the minimum shear strength at which the
lateral spreading is mobilized, is one of the main factors to

determine the lateral spreading induced by seismic
liquefaction.

Several methods have been proposed to estimate the
residual strength of liquefied soil based on the back-calcu-
lation of the case histories or laboratory tests. Compared to
the laboratory test, the case histories make it possible to
consider the effect of voids redistribution, inertial effect,
geometry effect, and the other factors on the residual shear
strength of liquefied soil, so the method estimating the
residual shear strength back-calculated from the case his-
tories is widely used in the seismic displacement calculation
and stability analysis of the level or sloping ground.

)ere are disadvantages when utilizing the residual shear
strength relationship developed from case histories. As the
development of the estimation methods is based on in-site
investigation and the soil resistance parameters (Standard
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Penetration Test or Cone Penetration Test values of the
liquefiable soil) of case histories, the limited number of the
case histories will result in the uncertainties in estimating the
residual shear strength. On the other hand, the back-cal-
culation of residual shear strength is depending on the case
histories of flow failures, initially proposed by Seed [1] and
then modified by the other researchers. )e displacement of
flow failures can be more than several meters as the soil
above the liquefied soil is still moving even after the
earthquake stops. )e postliquefaction residual shear
strength of the liquefied soil is smaller than the driving force
provided by the static stress. Regarding the lateral spreading,
the postliquefaction residual shear strength is usually greater
than the static driving force, so the movement of the soil
above the liquefied soil will cease once the earthquake stops.
It may not be appropriate to use the residual shear strength
of liquefied soil derived from the case histories of flow
failures to calculate the residual shear strength of liquefied
soil at the lateral spreading sites. Although Olson and
Johnson [2] stated that “lateral spreads back analyzed using
the Newmark sliding block procedure exhibit mobilized
strength ratios essentially identical to liquefied strength
ratios back calculated from flow failures,” the residual shear
strength of liquefied soil in the lateral spreading cases needs
to be evaluated carefully for assessing the deformation of
lateral spreading in different analyses such as limit equi-
librium analysis, finite difference analysis, or finite element
analysis.

Recently, the Artificial Intelligence techniques, such as
Artificial Neural Network [3], Support Vector Machine [4],
and Genetic Programming [5], have been used in different
fields of engineering. Among these Artificial Intelligence
techniques, Artificial Neural Network is a powerful tool to
describe the relationship between the residual shear strength
and soil resistance parameters. By training the data given to
the training system, the Artificial Neural Network will
identify the relationship between the input and output
variables.

When the residual shear strength of liquefied soil, which
is corresponding with the minimum strength that the lateral
spreading is mobilized, is determined, a postliquefaction
yield acceleration using the residual shear strength could be
obtained. As the lateral spreading is the horizontal dis-
placement of soil underlain by liquefied soil after the trig-
gering of liquefaction, the displacement of lateral spreading
can be calculated with Newmark sliding block method. )e
mechanism of liquefaction-induced lateral spreading can be
described as follows: )e downslope displacement accu-
mulates when the seismic force is oriented to downslope
direction, and the liquefied soil retains the residual shear
strength during the accumulation of the displacement. )e
failure is driven by the combined static shear stress and the
seismic force, which is greater than the residual shear
strength, while the static stress is less than the residual shear
strength, so the displacement of lateral spreading ceases
when the earthquake ends. Such an accumulation of dis-
placement can be calculated by the Newmark sliding block
method if the soil above the liquefied soil is treated as a rigid
block and it slides over the sliding surface existing in the

liquefied soil. Despite that the application of the Newmark
sliding block method in lateral spreading has been proposed
and conducted by Baziar et al. [6], Taboada et al. [7], and
Kavazanjian [8], systematic research on its application by
analyzing more case histories of lateral spreading is needed.

In this paper, firstly, the Artificial Neural Network model
was trained to predict the residual shear strength ratio (the
ratio of residual shear strength to the effective shear stress) in
terms of equivalent clean sand corrected SPT value of the
liquefiable soil. A database of lateral spreading was used for
training the neurons to recognize the patterns between the
residual shear strength ratio and equivalent clean sand
corrected SPT blow count of the liquefied sand. )e sta-
tistical performance of the model was evaluated based on the
two parameters including correlation coefficient, R, and
mean square error (MSE).)e cumulative probabilities were
calculated for different ratios (i.e., the ratio of the predicted
residual shear strength to the observed residual shear
strength). By computing the root mean square error
(RMSE), the Artificial Neural Network model was compared
with the Olson and Johnson model [2]. A high-quality
database of lateral spreading was established based on the
case histories used in the process of training the Artificial
Neural Network model. )e residual shear strength pre-
dicted by the Artificial Neural Network model for high-
quality case histories of lateral spreading was subsequently
analyzed in the limit equilibrium analysis [9] to obtain
postliquefaction yield acceleration. )e Newmark sliding
block analysis implemented in a computer code (SLAM-
MER) [10] was conducted for high-quality case histories. By
applying a truncated normal distribution to describe the
distribution of lateral spreading ratio (the ratio of predicted
lateral spreading to observed lateral spreading), a statistical
analysis was conducted to evaluate the accuracy of the
Newmark sliding block method. Based on the residual shear
strength values of the high-quality case histories, an expo-
nential equation was proposed to represent the relationship
between the residual shear strength ratio and the equivalent
clean sand corrected SPT blow count of the liquefied soil.

1.1. Residual Shear Strength of Liquefied Soil. )e residual
shear strength of liquefied sand could be estimated by
empirical models based on the SPT (Standard Penetration
Test) blow counts of the soil. Seed [1] back-analyzed limited
cases of liquefaction flow failures. )e available residual
shear strengths of liquefied sand and equivalent clean sand
(N1)60-cs values were summarized, and a relationship be-
tween the residual shear strength and equivalent clean sand
(N1)60-cs values was proposed in a form of a chart. Seed and
Harder [11] updated the chart of Seed [1], and with more
case histories data put in the database, the inertial effects
were taken into consideration in the back-analysis. )e
relationship based on field data provides an estimation of the
undrained shear strength of liquefied sands by Standard
Penetration Test corrected blow count, with an upper bound
and a lower bound of residual shear strength for the specific
(N1)60-cs value. Idriss [12] proposed a relationship between
the undrained residual shear strength and equivalent clean
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sand corrected SPT blow count by modifying the database of
Seed and Harbor [11]. )e relationship was expressed in
terms of a single exponential curve, the residual shear
strength could be obtained from a specific SPT value, and
error bars were used for indicating the uncertainty in cal-
culating residual shear strength. Stark andMersi [13] defined
the ratio of back-calculated residual shear strength to the
initial vertical effective stress as Sr/σ’vo for 20 case histories
and developed the ratio as a function of SPT blow count.
Olson and Stark [14] updated the database with more case-
history data and expressed the residual shear strength ratio
as a function of equivalent clean sand corrected SPT blow
count (N1)60 and CPT resistance qc1. )e fines content
correction was not considered in development of the rela-
tionships. Idriss and Boulanger [15, 16] developed a rela-
tionship between the residual shear strength ratio Sr/σ’vo and
the equivalent clean sand corrected SPT blow count (N1)60-cs
using the databases of Seed [1], Seed and Harder [11], and
Olson and Stark [14]. )e unreliable cases were removed
from the database. )e relationship was expressed in a curve
including two branches: one branch for the condition that
the void redistribution is expected to be significant and one
for the condition that void redistribution effects are expected
to be negligible. Kramer and Wang [17, 18] developed a
hybrid relationship that defined the ratio of residual shear
strength to preearthquake vertical effective stress as a
nonlinear function of normalized SPT resistance; the ef-
fective-stress-dependent approach combined classical and
normalized strength approaches and was calibrated with the
case histories of flow failures. Fines content correction was
not suggested due to the lack of systematic variation in the
residual shear strength with fines content. Olson and
Johnson [2] back-analyzed a database consisting of 39 well-
documented lateral spreads induced by liquefaction with
Newmark sliding method. )e relationship between back-
calculated strength ratio Sr/σ ’vo and either normalized cone
penetration resistance or standard penetration resistance
(with no fines content correction) was developed. Olson and
Johnson [2] found that the mobilized strength ratio was
independent of lateral displacement magnitude and shaking
intensity. Özener [19] summarized the database of lateral
spreading and proposed the estimation relationship devel-
oped from the shear wave velocity and residual shear
strength ratio. As a summary, the residual shear strength can
be estimated by taking account of the effective overburden
stress and the soil resistance parameters such as SPT blow
count and cone penetration resistance. )ese researches
suggested that the residual shear strength was related to the
soil resistance parameters (such as SPT blow count or CPT
resistance value) and effective overburden stress. )e effect
of overburden effective stress on the residual shear strength
was minimized in these researches via the use of the residual
shear strength ratio.

By analyzing the reported SPT blow counts and the
residual shear strength ratios for the liquefied soil from the
database of lateral spreading, it provides an opportunity to
investigate the residual shear strength of the liquefied soil
using Artificial Neural Network model. It has to be noticed
that, except for the residual shear strength relationship

proposed by Olson and Johnson [2] and Özener [19], the
other relationships or empirical models used to calculate the
residual shear strength of liquefied soil are developed based
on the case histories of flow failures. Due to the difference
between residual shear strength of liquefied soil for lateral
spreading and flow failures, it is more suitable to use the
empirical model of residual shear strength of liquefied soil
developed based on the case histories of lateral spreading
solely when lateral spreading is analyzed. )e variances of
reported residual shear strength, the effective overburden
stress, and the SPT blow count are induced by instruments
and different means of measurements, which further induce
the uncertainties of these parameters in the research liter-
ature. In the paper, the median values of the residual shear
strengths, the effective overburden stress, and the SPT blow
counts are used to minimize uncertainties and obtain the
best estimation of the relationship between the residual
shear strength ratio (the ratio of the residual shear strength
to the effective overburden stress) and the SPT blow count.

)e fines content correction equation of liquefied sand
by Seed [1] is used to consider the influence of fines content
on the SPT blow count and the residual shear strength. )e
equivalent clean sand corrected SPT blow count can be
obtained in equation (1), where (N1)60-cs is the equivalent
clean sand SPT blow count and Ncr is the fines content
correction for the SPT blow count recommended by Seed
[1], as shown in Table 1:

N1( 60−cs � N1( 60 + Ncr. (1)

2. Introduction to Artificial Neural Network

In the field of biology, the human brain processes the in-
formation via a neural network, which is formed by billions
of interconnected neurons. )e Artificial Neural Network is
an information system developed based on the information-
processing characteristics of the human brain. In Figure 1,
the structure of an Artificial Neural Network with two
hidden layers is shown. )e hidden pattern between the
input and the output layers can be described in different
forms by introducing the hidden layers. )e values of the
input variables are represented by the input layer, and the
response of the Artificial Neural Network is represented by
the output layer. )e hidden layer includes the weights of
input variables, the biases, and the transfer functions, re-
sponsible for training the interconnected neurons and
recognizing the relationship between the input layer and the
output layer. By using the transfer functions, the input
weight is obtained by a trial-and-error procedure when the
predicted output is approaching the observed output, and
the coverages reach a local or global optimum. An error
function needs to be minimized during the learning process
to avoid overfitting of the variable weight. After the training
is finished, the Artificial Neural Network can be tested with a
set of test data.

In this paper, a two-layer feedforward neural network
with sigmoid hidden neurons and linear output neurons [20]
is used. A total of 39 hidden neurons are used. A Bayesian
regularization method is used as a backpropagation
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algorithm, which requires a solution to a Hessian matrix. An
objective function incorporating parameters α and β and a
function consisting of the mean square error of weights and
biases are used to realize the regularization [21]. In equation
(2), the objective function is expressed, where α and β are
objective function parameters. )e parameters α and β are
computed using Gauss–Newton approximation of the
Hessian matrix of the objective function in Bayesian
framework:

F � αEW + βED, (2)

where EW is the function consisting of the mean square error
of weights and biases and it is expressed in equation (3),
where wi is the variable weight and M is the number of
interconnected neurons:

EW �
1

M


M

i�1
w

2
i , (3)

where ED is the sum of squared errors between the target
value and the output value generated by the neural network,
which is expressed in equation (4), where yi is the target
value and yi is the output value generated by the neural
network:

ED � 
M

i�1

1
2

yi − yi( 
2
. (4)

2.1. Case Histories of Liquefied Sand in Lateral Spreading and
ArtificialNeuralNetworkResults. )e case histories from the
different research literature, which are also reported by

Olson and Johnson [2] and Özener [19], are used to develop
the database for developing and training an Artificial Neural
Network model. Referring to the initial research literature
for each case history, a total of 43 records were used. Among
the 43 case histories, 35 records were used for training the
model, 4 records were used for validation, and the rest of
records were used for testing the model. )e residual shear
strength ratio and SPT blow count of the liquefied soil were
used as input variables. In Table 2, for each case history of
lateral spreading, the earthquake event, site location, residual
shear strength ratio, SPT blow count of liquefied soil, fines
content, median residual shear strength ratio of the liquefied
soil, and the equivalent clean sand corrected SPT blow count
of liquefied soil for each case history reported by the lit-
erature research are summarized. )e references used for
summarization are also listed in Table 2.)e SPT blow count
of the liquefied soil was corrected to equivalent clean sand
corrected SPT blow count based on the Seed relationship [1]
shown in equation (1). For equivalent clean sand corrected
SPT blow count, the maximum value, minimum value,
average value, and the standard deviation value are 21, 2.7,
11.1, and 3.7, respectively. )e maximum value, minimum
value, average value, and the standard deviation values of the
residual shear strength ratios are 0.75, 0.02, 0.11, and 0.11,
respectively.

In Figure 2, the observed and predicted values of residual
shear strength ratios are shown to illustrate the performance
of the proposed Artificial Neural Network model. )e
correlation coefficient, R, is 0.92 and the mean squared error
(MSE) is 0.001 for the training results. In (5), the mean
square error is expressed:

Input layer ∈ R5 Hidden layer ∈ R8 Hidden layer ∈ R8 Output layer ∈ R1

Figure 1: Illustration of Artificial Neural Network.

Table 1: Ncr for fines content.

Fines content (passing No. 200 sieve) 10% 25% 50% 75%
Ncr 1 2 4 5
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Table 2: Case histories of lateral spreading used for training Artificial Neural Network model.

Case
no.

Location of
lateral spreading

Earthquake
event

Residual
shear

strength
ratio

SPT
blow
count

Fines
content
(%)

Median
residual
shear

strength
ratio

Equivalent
clean sand
blow count

Reference

1 Heber road 1979 Imperial
Valley 0.03–0.12 1.0 20 0.075 2.7

Davis et al. [22]; Castro
[23]; Youd and Bennett
[24]; Olson and Johnson

[2]; Özener [19]

2 Wildlife site
1987

Superstition
Hills

0.06–0.10 10.3 30 0.08 12.7

Holzer et al. [25];
Boulanger et al. [26]; Idriss
and Boulanger [27]; Olson
and Johnson [2]; Özener

[19]

3

Moss Landing,
MBARI Bldg. 4,
Sandholdt rd.

(SI-2)

1989 Loma
Prieta

0.14–0.19 10.0 5 0.17 10.5
Boulanger et al. [28]; Olson
and Johnson [2]; Özener

[19]

4

Moss Landing,
MBARI Bldg. 4,
Sandholdt rd.

(SI-5)

0.11–0.19 15 <5 0.15 15.0
Boulanger et al. [28]; Olson
and Johnson [2]; Özener

[19]

5
Moss Landing,
MLML Bldg.,

westward spread
0.06–0.14 14.6 4 0.1 15.0 Mejia [29]; Olson and

Johnson [2]; Özener [19]

6 Marina District 0.06–0.08 10.5 14–41 0.07 12.7 Olson and Johnson [2];
Özener [19]

7 Miller Farm 0.05–0.16 11.5 5–38 0.11 13.3
Holzer et al. [30]; Olson
and Johnson [2]; Özener

[19]

8
Treasure Island,

Perimeter
(T1N3)

0.07–0.22 10.0 10 0.15 11.0 Power et al. [31]; Olson and
Johnson [2]; Özener [19]

9
Magsaysay

Bridge E. Bank,
u/s (DD) 1990 Luzon,

Philippines

0.02–0.06 6 15–20 0.04 7.5 Ishihara et al. [32]; Özener
[19]

10
Magsaysay

Bridge E. Bank,
u/s (EE)

0.03–0.09 9 15–20 0.06 9.5 Ishihara et al. [32]; Özener
[19]

11 Hotel Sapanca

1999 Kocaeli,
Turkey

0.05–0.11 13.4 6.2 0.08 7.0 Cetin et al. [33]; Özener
[19]

12 Police station 0.07–0.10 5 24.55 0.09 7.0 Cetin et al. [33]; Özener
[19]

13 Soccer field 0.05–0.10 7 34 0.08 9.7 Cetin et al. [33]; Özener
[19]

14 Yalova Harbor 0.14–0.20 14.53 20.8 0.17 16.3 Cetin et al. [33]; Özener
[19]

15 Wufeng site C
(A-A′)

1999 Chi-Chi,
Taiwan

0.05–0.12 3.5 25.5 0.09 6.5 Chu et al. [34]; Özener[19]

16 Wufeng site C
(B-B′) 0.10–0.23 3.5 22 0.17 5.3 Chu et al. [34]; Özener [19]

17 Wufeng site B 0.05–0.11 10 22 0.08 11.8 Chu et al. [34]; Özener [19]
18 Nantou Site N 0.16–0.23 9 16.45 0.20 10.4 Chu et al. [34]; Özener [19]

19 Norswig drive 2003 San
Simeon

0.16–0.11 7.2 5 0.14 7.7 Olson and Johnson [2];
Özener [19]

20 Juanita Avenue 0.03–0.10 9.2 5 0.07 9.7 Olson and Johnson [2];
Özener [19]

21 Snow River
Bridge 1964 Alaska 0.02 5–10 10–30 0.02 9.2 Özener [19]

22 Juvenile Hall 1971 San
Fernando 0.02–0.08 6.9 35 0.05 9.7 Bennett [35]; Olson and

Johnson [2]; Özener [19]
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MSE �
1

M


M

i�1
yi − yi( 

2
, (5)

where MSE is the mean squared error between the target
value and output value generated by the neural network,M is

the number of observations, yi is the target value, and yi is
the output value generated by the neural network.

It can be seen from Figure 2 that the data of the predicted
residual shear strength ratio lie within the range of 85%
prediction. Figure 3 shows the cumulative probability of the

Table 2: Continued.

Case
no.

Location of
lateral spreading

Earthquake
event

Residual
shear

strength
ratio

SPT
blow
count

Fines
content
(%)

Median
residual
shear

strength
ratio

Equivalent
clean sand
blow count

Reference

23 Whiskey Sprins
Fan

1983 Borah
Peak 0.05–0.12 13.0 22 0.08 14.8

Andrus and Youd [36];
Olson and Johnson [2];

Ozener [19]

24 Landing Road
Bridge 1987

Edgecumbe,
New Zealand

0.01–0.1 5–10 8–18 0.06 8.7 Olson and Johnson [2];
Ozener [19]

25 James Street
Loop 0.01–0.09 4.8–9.2 10 0.05 9.5 Olson and Johnson [2];

Özener [19]

26 Whakatane Pony
Club 0.02–0.07 3–12 15–18 0.05 8.9 Olson and Johnson [2];

Özener [19]

27 Nalband Railway
Station 1988 Armenia 0.08–0.10 3.6–23 25 0.05 15.3 Yegian [37]; Olson and

Johnson [2]; Özener [19]

28 Farris Farm

1989 Loma
Prieta

0.04–0.13 9–24 5–38 0.09 18.3 Olson and Johnson [2];
Özener [19]

29 Leonardini Farm 0.02–0.11 10.0 10% 0.07 11.0 Olson and Johnson [2];
Özener [19]

30 Sea Mist Farm 0.03–0.08 7–11 16–29 0.06 10.8 Olson and Johnson [2];
Özener [19]

31
Moss Landing,
MLML Bldg.,

eastward spread
0.07–0.12 14.6 4 0.09 15.0 Mejia [29]; Olson and

Johnson [2]; Özener [19]

32 Rudbaneh Town
Canal

1990 Manjil,
Iran 0.05–0.19 8.63 4.6 0.12 9.1

Ishihara et al. [38]; Yegian
et al. [39]; Olson and

Johnson [2]; Özener [19]

33
Magsaysay

Bridge E. Bank,
u/s (AA)

1990 Luzon,
Philippines

0.02–0.08 2–9 20–30 0.05 7.5
Ishihara et al. [40]; Olson
and Johnson [2]; Özener

[19]

34 Nable Street
West (B-B) 0.03–0.09 4.2–10 17.5–27.5 0.06 8.9

Ishihara et al. [40]; Olson
and Johnson [2]; Özener

[19]

35 Nable Street
West (C-C) 0.02–0.07 4–8.5 10–20 0.05 7.6

Ishihara et al. [40]; Olson
and Johnson [2]; Özener

[19]

36 Pogo Chico W.
Bank 0.03–0.10 6–11 11.3–20 0.07 9.9

Ishihara et al. [40]; Olson
and Johnson [2]; Özener

[19]
37 Balboa Blvd.

1994
Northridge

0.11–0.19 17.0 52 0.15 21.0 Holzer et al. [41]

38 Wynne Avenue 0.09–0.20 11.6 33 0.15 14.2

Holzer et al. [41]; Olson
and Johnson [2]; Idriss and
Boulanger [27]; Özener

[19]

39 Potrero Canyon 0.09–0.21 5–17 39–75 0.15 15.28 Lumbantoruan [42];
Özener [19]

40 Seymen Tea
Garden 1999 Kocaeli,

Turkey

0.04–0.08 6–12 20–40 0.06 11.4 Lumbantoruan [42];
Özener [19]

41 Esme Nose 0.06–0.11 5–13 10–30 0.09 10.33 Lumbantoruan [42];
Özener [19]

42 Wufeng site C1 1999 Chi-Chi,
Taiwan

0.10–0.18 11–18 22 0.14 16.3 Olson and Johnson [2];
Chu et al. [34]; Özener [19]

43 Wufeng site M 0.07–0.15 11.5 12 0.11 12.6 Olson and Johnson [2];
Chu et al. [34]; Özener [19]
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ratio of the predicted residual shear strength to the observed
residual shear strength for the Artificial Neural Network
model, where Robs is the observed residual shear strength
ratio and Rpre is the predicted the residual shear strength
ratio. )e 50% cumulative probability is close to 1.0, and the
90% cumulative probability is 1.15, which is less than 1.5;
thus, the model shows slight underestimation at 50%
probability, and the value of the residual shear strength ratio
at 90% probability indicates a small variance for the total
predictions.

2.2. Prediction Comparison. Olson and Johnson [2] pro-
posed an estimation method that was used to describe the
relationship between the residual shear strength ratio (the
ratio of residual shear strength to overburden stress) and the
SPT blow count of the liquefied sand based on lateral
spreading case histories. As shown in equation (6), Su is the
mobilized strength (i.e., residual shear strength), σv′ is the

prefailure vertical effective stress (i.e., effective overburden
stress), and (N1)60 is the SPT blow count of the liquefied
sand. In the empirical model proposed by Olson and
Johnson [2], the fines content was not considered for cal-
culating residual shear strength ratio, and value of (N1)60 was
assumed to be less than 16.0:

Su

σv′
� 0.03 + 0.0075 N1( 60  ± 0.03. (6)

)e predicted residual shear strength using the Artificial
Neural Network model was compared with the median
residual shear strength ratio by the Olson and Johnson
estimation method [2]. Figure 4 shows the predicted residual
shear strength ratios by the two methods. To show the
variance of the predicted residual shear strength ratio, the
root mean square error (RMSE), expressed in equation (7), is
used:

RMSE �
1

M


M

i�1
yi − x

2
i , (7)

where RMSE is the root mean square error between the
target value and output value of prediction,M is the number
of observations, yi is the target value, and xi is the output
value of prediction.

)e root mean square errors (RMSE) are 0.0783 and
0.0697 for Olson and Johnson estimationmethod [2] and the
Artificial Neural Network model, respectively. )e smaller
root mean square error (RMSE) from the Artificial Neural
Network model indicates a better prediction is made by the
Artificial Neural Network model.

2.3. Newmark Displacement of Lateral Spreading Using Re-
sidual Shear Strength. )e Newmark sliding block method,
which was proposed by Newmark [43], has been widely used
in evaluating the permanent displacement of slopes, em-
bankments, and landfills. )e seismic lateral spreading can
be used by the Newmark sliding block method [6–8], in
which the soil above the liquefied soil is regarded as a perfect
rigid sliding block and the yield acceleration is calculated
based on the limit equilibrium analysis. )e block is sliding
at the constant yield acceleration.)e displacement of lateral
spreading begins to accumulate when the acceleration of the
ground soil above the liquefied soil is greater than the yield
acceleration. Once the relative velocity of the ground soil to
the sliding surface, which is corresponding with the liquefied
soil layer, equals to zero, the displacement of lateral
spreading stops to accumulate.

)e residual shear strength is the minimum shear
strength that is corresponding to the worst-case scenario, so
the use of residual shear strength can evaluate the post-
liquefaction stability of soil deposits for lateral spreading and
determine the magnitude of lateral spreading induced by
liquefaction. In this section, the residual shear strength is
predicted by the Artificial Neural Network model and used
in the yield acceleration calculation, which is calculated by
the limit equilibrium method. )e lateral spreading is cal-
culated by the Newmark sliding block method using the
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Figure 2: )e observed and predicted values of residual shear
strength ratio.
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Figure 3: Cumulative probability of the ratio (Rpre/Robs) for Ar-
tificial Neural Network model.

Advances in Civil Engineering 7



postliquefaction yield acceleration corresponding to the
residual shear strength of liquefied soil.

)e high-quality case histories of lateral spreading are
used to apply the Newmark sliding block method. Among
the 43 case histories that are used for training the Artificial
Neural Network model, the case histories with detailed site
investigation and available earthquake motions are classified
into the group of high-quality case histories. A total number
of 23 case histories grouped as high-quality case histories are
selected from Table 2 when the SPT blow count of liquefied
soil, the thickness of liquefied soil, the soil profiles, soil
classifications, and site-specific earthquake motions or the
earthquake motions close to the site are recorded or are
available in the research literature. Applying the Morgen-
stern-Price method, two-dimensional soil profile and the
residual shear strength of liquefied soil are used in the limit
equilibrium method to obtain the postliquefaction yield
acceleration. )e soil parameters for the nonliquefiable soil
used in the limit equilibrium analysis are based on the soil
classifications and reasonable values for different types of
soil are assigned. In Table 3, the case histories used in the
Newmark sliding block method, the PGA of the site, the
effective stress, the residual shear strength of the liquefied
soil predicted by the Artificial Neural Network model, and
the corresponding yield acceleration from limit equilibrium
method are listed for each case history. )e average pre-
dicted lateral spreading for each case using the motions is
also listed in Table 3. Table 4 lists the calculated lateral
spreading based on the Newmark sliding block analysis and
for each case history using different earthquake motions. In
Table 4, the normal displacement and inverse displacement
are representing the displacements for each case when the
two different directions of the motion were used.

To illustrate the calculation process of applying the
Newmark sliding block method in calculating lateral
spreading, the case history of Treasure Island was analyzed
and shown in the paper. )e Treasure Island is a manmade

island created by hydraulically placing sand fill over soft
sedimentary deposits. Sand boils and ground cracks induced
by liquefaction were observed at the site. In Figure S1, the
cross section of the subsurface used in the limit equilibrium
analysis is shown. )e recorded lateral spreading was 0.25m
based on Power et al. [31]. )e laboratory tests were con-
ducted on the samples from the drilled boreholes and Cone
Penetration Resistance Test was conducted. )e site con-
sisted of four layers of soil from the ground surface to the
bottom layer: hydraulically placed sand fill, native Yerba
Buena shoals sand and clay, bay mud, and older bay sedi-
mentary deposits. )e sand fill was poorly graded silty sand
with clayey sand zones. )e sand fill was underlain by Yerba
Buena shoals which were clayey sand with clay layers and
had similar engineering characteristics to sand fill. Both the
sand fill and shoal sand were loose and susceptible to the
liquefaction under the earthquake. During the earthquake,
the sand fill was found to liquefy. Below the Yerba Buena
shoals sand, the bay mud consisted of soft to stiff olive-gray
silty clay and the older bay sedimentary deposits consisted of
brownish and greenish-gray, very stiff sandy, silty, and peaty
clay and dense sand, which were insusceptible to lateral
movements or settlements. )e bay mud was normally
consolidated and the strength was increased by the over-
burden from sand fill and shoals. )e groundwater table was
affected by tidal fluctuations. (N1)60 of the liquefiable soil on
the island was between 5 and 15 blows/ft, so a median of 10.0
and a fines content of 10% were used to estimate the residual
shear strength. Based on the effective stress of 43.99 kPa and
the equivalent clean sand corrected SPT blow count of 11.0,
the residual shear strength for the liquefied soil is 4.83 kPa.
)e soil parameters for nonliquefiable soil and the liquefied
soil used to calculate the postliquefaction yield acceleration
are listed in Table S1. A postliquefaction acceleration of
0.052 g was obtained for the Treasure Island case based on
the limit equilibrium analysis, as shown in Figure S2.

)e peak acceleration was estimated to be 0.16 g; two
motions recorded at Yerba Buena Island from PEER (Pacific
Earthquake Engineering Research Center) database [45]
were used to calculate the lateral spreading induced by
seismic liquefaction. )e PGAs of the two motions were
scaled to 0.16 g to conduct the Newmark sliding block an-
alyses. )e site classification of the soil where the strong-
motion station was located was Class E, of which the shear
wave velocity was less than 180m/s based on NEHRP site
classification [46].)e average displacement for the Treasure
Island case is listed in Table 3 and calculated lateral
spreading is listed in Table 4. )e normal and inverse dis-
placement represents the two displacements corresponding
to two directions of the input motion. In Figure S3, the
Newmark displacements using the two motions are plotted.
Figure S3(a) showed the variation of normal-direction
displacement versus time and Figure S3(b) showed the
variation of inverse-direction displacement versus time for
the Treasure Island case. )e average lateral spreading was
0.13m, which was 52% of the recorded lateral spreading.
Table S2 lists the earthquake motions used in the Newmark
sliding block analysis. In Table S2, there are 41 total motions
used for the analyses, which were available in the motion
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Figure 4: )e predicted values by Artificial Neural Network model
and Olson and Johnson method [2].
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Table 3: )e average predicted and recorded lateral spreading for each case history.

Case Site location Earthquake
event

PGA
(g)

Effective
stress
(kPa)

Residual
shear

strength
(kPa)

Yield
acceleration

(g)

Predicted
lateral

spreading
(m)

Recorded
lateral

spreading
(m)

Displacement
ratio Reference

1 Juvenile hall
San

Fernando
(1971)

0.7 86.56 5.80 0.06 1.72 1.5 1.15 Bennett [35]

2 Heber road Imperial
Valley (1979) 0.8 61.97 4.65 0.03 1.68 2.1 0.80

Castro [23];
Youd and

Bennett [24]

3 Whiskey
Springs fan

Borah Peak
(1983) 0.6 107.41 8.38 0.023 1.50 0.75 2.00 Andrus and

Youd [36]

4 Wildlife site Superstition
Hills (1987) 0.21 61.65 4.62 0.01 1.70 0.18 9.44

Holzer et al.
[25];

Boulanger
et al. [26];
Idriss and
Boulanger

[27]

5
Moss

Landing
Bldg. 4

Loma Prieta
(1989) 0.25 63.73 10.90 0.11 0.05 0.28 0.18 Boulanger

et al. [28]

6
Moss

Landing
Bldg. 3

Loma Prieta
(1989) 0.25 84.03 16.05 0.10 0.07 0.25 0.28 Boulanger

et al. [28]

7
MLML
eastward
(A-A)

Loma Prieta
(1989) 0.25 71.87 8.19 0.08 0.11 0.45 0.24 Mejia [29]

8
MLML
eastward
(B-B)

Loma Prieta
(1989) 0.25 139.86 15.94 0.14 0.02 0.45 0.04 Mejia [29]

9 Leonardini
Farm

Loma Prieta
(1989) 0.16 29.97 4.92 0.23 N.A. 0.25 N.A. Charlie et al.

[44]

10 Treasure
Island

Loma Prieta
(1989) 0.16 43.99 4.83 0.052 0.13 0.25 0.52 Power et al.

[31]

11 Rudbaneh
Town Canal

Manjil, Iran
(1990) 0.15 232.52 27.30 0.05 0.70 1.0 0.70 Yegian et al.

[39]

12 Balboa
Blvd.

Northridge
(1994) 0.85 109.12 16.37 0.16 0.64 0.5 1.28 Holzer et al.

[41]

13 Wynne Ave Northridge
(1994) 0.51 124.28 18.64 0.168 0.16 0.15 1.07

Holzer et al.
[41]; Olson
and Johnson
[2]; Idriss

and
Boulanger

[27]

14 Wufeng site
C (A-A)

Chi-Chi,
Taiwan
(1999)

0.81 80.18 5.45 0.09 2.43 2.05 1.19 Chu et al.
[34]

15 Wufeng site
C (B-B)

Chi-Chi,
Taiwan
(1999)

0.81 80.81 13.74 0.30 0.09 0.49 0.18 Chu et al.
[34]

16 Wufeng site
C1

Chi-Chi,
Taiwan
(1999)

0.81 76.79 11.90 0.12 1.41 1.24 1.14 Chu et al.
[34]

17 Wufeng site
B

Chi-Chi,
Taiwan
(1999)

0.81 67.64 5.41 0.06 4.38 2.96 1.48 Chu et al.
[34]

18 Wufeng site
M

Chi-Chi,
Taiwan
(1999)

0.81 59.83 6.58 0.15 0.84 1.62 0.52 Chu et al.
[34]

Advances in Civil Engineering 9



Table 4: Summarization of calculated lateral spreading.

Case no. Motion name Normal displacement (m) Inverse displacement (m) Observed (m)

1

PAS-000 1.48 1.41

1.50PAS-090 2.12 1.98
PDL-120 2.63 2.47
PDL-210 0.86 0.85

2

AGR-003 1.97 1.61

2.10BCR-140 1.79 1.91
BCR-230 1.82 1.62
SHP-270 1.36 1.39

3 BOR000 1.70 1.88 0.75BOR090 1.29 1.12

4 WSM-090 1.67 1.99 0.18WSM-180 1.41 1.73

5

GOF-160 0.03 0.02

0.28

GOF-250 0.01 0.01
HCH-090 0.06 0.01
HCH-180 0.23 0.11
HDA-165 0.02 0.04
HDA-225 0.06 0.04

6

GOF-160 0.04 0.03

0.25

GOF-250 0.02 0.02
HCH-090 0.07 0.01
HCH-180 0.29 0.14
HDA-165 0.03 0.05
HDA-225 0.07 0.05

7

AND-250 0.07 0.03

0.45

AND-340 0.07 0.04
G02-000 0.03 0.06
G02-090 0.08 0.09
HCH-090 0.12 0.06
HCH-180 0.45 0.24

8

AND-250 0.01 0.01

0.45

AND-340 0.01 0.01
G02-000 0.00 0.01
G02-090 0.01 0.01
HCH-090 0.04 0.00
HCH-180 0.08 0.05

Table 3: Continued.

Case Site location Earthquake
event

PGA
(g)

Effective
stress
(kPa)

Residual
shear

strength
(kPa)

Yield
acceleration

(g)

Predicted
lateral

spreading
(m)

Recorded
lateral

spreading
(m)

Displacement
ratio Reference

19 Nantou Site
N

Chi-Chi,
Taiwan
(1999)

0.42 30.59 5.49 0.11 0.27 0.25 1.08 Chu et al.
[34]

20 Hotel
Sapanca

Kocaeli,
Turkey
(1999)

0.4 35.77 5.34 0.055 1.40 2.0 0.70 Cetin et al.
[33]

21 Police
station

Kocaeli,
Turkey
(1999)

0.4 29.73 2.53 0.02 4.44 2.4 1.85 Cetin et al.
[33]

22 Soccer field
Kocaeli,
Turkey
(1999)

0.4 43.48 3.05 0.125 0.20 1.2 0.17 Cetin et al.
[33]

23 Yalova
Harbor

Kocaeli,
Turkey
(1999)

0.3 82.03 12.71 0.11 0.30 0.3 1.00 Cetin et al.
[33]
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database of PEER (Pacific Earthquake Engineering Research
Center). For each motion, the distance from the motion to
the site and the site classification are included in Table S2.

For Case 9, the postliquefaction yield acceleration is
greater than the reported PGA [44]; thus the analysis was not
conducted for this case. )e predicted lateral spreading for
11 case histories is greater than that for the observed values,
and the ratios of the rest of case histories are larger or equal
to 1.0.)e average ratio of the 22 case histories is 1.23, which
indicates that the Newmark sliding displacement of lateral
spreading using the residual shear strength overall is greater
than the observed lateral spreading. For the case of Wildlife
Site, the displacement ratio is 9.44, of which the value may be
too large compared to the other case histories. If the Wildlife
Site case is not accounted for in the calculation of the average
ratio of lateral spreading, the average value for the rest of the
21 case histories is 0.836, with a standard deviation of 0.56.
Due to the limited case histories, the standard deviation of
the lateral spreading ratio is still large. In Figure 5, the
predicted lateral spreading and observed lateral spreading
are plotted, and the prediction limit lines representing the

lateral spreading ratio of 0.5 and 2 are shown, respectively.
)ere are 6 out of the 22 case histories having a lateral
spreading ratio less than 0.5, and 15 out the 22 case histories
having a lateral spreading ratio less than 2.0 and greater than
0.5.)e cumulative distribution of the lateral spreading ratio
calculated with the Newmark sliding block method can be
obtained if the frequency counts of the lateral spreading
ratios are obtained and proper distribution relationship is
used. As the lateral spreading ratio is always greater than 0.0,
the truncated normal distribution is derived from a normally
distributed random variable by defining the range of the
random variable. Assume that the range of the lateral
spreading is from 0.0 to infinite; when applying a truncated
normal distribution to describe the distribution of lateral
spreading ratio, a probability of 98% is obtained if a lateral
spreading ratio of 2.0 is expected.

2.4. Fitting Relationship between the Residual Shear Strength
Ratio and SPTValue. A fitting curve is proposed to describe
the relationship between the residual shear strength ratio

Table 4: Continued.

Case no. Motion name Normal displacement (m) Inverse displacement (m) Observed (m)

9

G02-000 0.00 0.00

0.25G02-090 0.00 0.00
HCH-090 0.00 0.00
HCH-180 0.00 0.00

10 TRI-000 0.06 0.14 0.25TRI-090 0.11 0.20

11 MANJIL-188040 0.41 0.39 1.00MANJIL-188310 1.11 0.86

12

PAR-L 0.55 0.70

0.50PAR-T 1.13 1.05
SYL-090 0.64 0.22
SYL-360 0.52 0.31

13

CNP-106 0.13 0.09

0.15
CNP-196 0.12 0.19
SCE-288 0.11 0.17
STC-090 0.08 0.09
STC-180 0.29 0.28

14 TCU065-000 3.08 2.95 2.05TCU065-090 2.12 1.59

15 TCU065-000 0.14 0.16 0.49TCU065-090 0.08 0.00

16 TCU065-000 1.96 1.75 1.20TCU065-090 1.14 0.79

17 TCU065-000 5.14 4.89 2.96TCU065-090 3.89 3.59

18 TCU065-000 1.27 1.05 1.62TCU065-090 0.65 0.39

19 TCU076-000 0.27 0.14 0.25TCU076-090 0.34 0.33

20 YPT-060 2.19 1.60 2.00YPT-330 0.87 0.94

21 YPT-060 6.26 5.98 2.40YPT-330 3.02 2.49

22 YPT-060 0.30 0.19 1.20YPT-330 0.13 0.16

23 YPT-060 0.48 0.28 0.30YPT-330 0.21 0.23
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and the equivalent clean sand corrected SPT blow count in
Figure 6. )e average value of the residual shear strength
ratios is used for the condition that one equivalent clean
sand corrected SPT blow count of the liquefied soil is
corresponding to various ratios. An exponential function is
used to correlate the residual shear strength ratio to
equivalent clean sand corrected SPT blow count of liquefied
soil. In equation (8), the exponential function used for fitting
is shown:

R � exp 0.0004∗ N1( 60−cs + 0.0008∗ N1( 60− cs( 
2

− 2.170 ,

(8)

where R is the residual shear strength ratio, (N1)60-cs is the
equivalent clean sand corrected SPT blow count of the
liquefied soil, and the fines content correction values of the
SPT blow count are based on values recommend by Seed [1].

3. Discussion

Although the residual shear strength ratio was successfully
predicted by the Artificial Neural Network model, with a
good correlation coefficient for the predicted values, there
are still uncertainties that are limiting the further application
of Artificial Neural Network. )e number of case histories
used in the analysis is limited. )ere are 43 case histories in
total in the development of Artificial Neural Networkmodel,
and the median values for the residual shear strength ratio
and the equivalent clean sand corrected SPT blow count
cannot represent the variance of the soil parameters andmay
induce errors when training Artificial Neural Network
model. Furthermore, the value of equivalent clean sand
corrected SPT blow count varies when different instruments
and testing standards are used.

)e nonlinear dynamic response of the sliding mass
above the sliding surface has been analyzed by several re-
searchers [47–49], and the effects of the deformable sliding
mass and bedrock or the soil below the sliding surface need

to be considered if the displacement of lateral spreading or
other Earth structures are desired. Regarding the conven-
tional Newmark sliding block method used in this paper, the
intact soil above the liquefied soil is assumed to be a perfectly
rigid block, the sliding surface used in the limit equilibrium
analysis may not be consistent with the location where the
liquefaction occurred, and the deformation of the slidingmass
is omitted, so the inaccuracy of the predicted lateral spreading
is too attributed to the fact that the dynamic response of the
sliding mass is not considered. Moreover, the yield acceler-
ation changes as the inclination (downward movement of
sliding mass) decreases [50, 51], the change of the geometry
for the slidingmass [52] is affecting the yield acceleration, and
these two factors can be referred to as the ration effects of the
sliding mass. Still, the perfectly-rigid-block assumption of the
conventional Newmark sliding block method will yield to a
constant yield acceleration, and the omitting of rotation ef-
fects of the sliding mass would result in the uncertainty of the
lateral spreading and cause the inaccurate predictions. )e
measurement of the observed lateral spreading reported in the
research literature and the ground motions used in the an-
alyses are also contributing to the uncertainties of the pre-
dicted lateral spreading.

)e Artificial Neural Network model proposed in this
paper is providing an insight of the residual shear strength of
lateral spreading case histories, while various uncertain
factors used in terms of developing the Artificial Neural
model need to be paid more attention and the residual shear
strength of liquefied soil needs to be used with caution when
calculating lateral spreading with Newmark sliding block
method.

4. Conclusions

)e evaluation of lateral spreading induced by liquefaction
requires the evaluation of the residual strength of the liq-
uefied soil, but it is difficult to determine the residual shear
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Figure 6:)e relationship between the residual shear strength ratio
and the equivalent clean sand corrected SPT blow count.
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strength of liquefiable soil in engineering practice. In this
paper, the residual shear strength ratio of liquefied soil is
predicted by the Artificial Neural Network model based on
the case histories of lateral spreading. To apply the prediction
model of the Artificial Neural Network model, a set of high-
quality case histories was reanalyzed. )e lateral spreading
was calculated with Newmark sliding block method and the
yield acceleration for each case was calculated with limit
equilibrium method using the residual shear strength of
liquefied soil predicted by the Artificial Neural Network
model. Based on the predictions of residual shear strength
ratio predicted by the Artificial Neural Network model and
lateral spreading calculated with the Newmark sliding block
method, the following conclusions can be drawn.

By taking account of the residual shear strength ratio and
the equivalent clean sand corrected SPT blow count of
liquefied soil for 43 case histories of lateral spreading, an
Artificial Neural Network model was proposed in terms of
residual shear strength ratio, the correlation coefficient of
the proposed Artificial Neural Network model is 0.92, and
the mean squared error (MSE) is 0.001. )e value of the
residual shear strength ratio at 90% probability indicates a
small variance for the total predictions when applying the
proposed Artificial Neural Network model.

Comparing the Artificial Neural Network model to the
residual shear strength model by Olson and Johnson, a root
mean square error (RMSE) of 0.0697 shows that the pro-
posed Artificial Neural Networkmodel predicts a better ratio
compared to Olson and Johnson model, the root mean
square error (RMSE) of which is 0.0783.

)e lateral spreading calculated by Newmark sliding
block method and the postliquefaction yield acceleration
based on the residual shear strength from the proposed
Artificial Neural Network model for high-quality case his-
tories show that the average ratio of lateral spreading (the
ratio of predicted lateral spreading to observed lateral
spreading) is 0.836, with a standard deviation of 0.56. When
a truncated normal distribution is used to describe the
distribution of lateral spreading ratio, the confidence level
with a probability of 98% is obtained if a lateral spreading
ratio of 2.0 is expected. Based on the high-quality case
histories, an exponential fitting curve is proposed to describe
the relationship between the residual shear strength ratio
and the equivalent clean sand corrected SPT blow count.
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