
Journal of Mathematics

Innovative Applications of
Fractional Calculus

Lead Guest Editor: Ahmet Ocak Akdemir
Guest Editors: Zakia Hammouch and Aliev Fikrat

 



Innovative Applications of Fractional Calculus



Journal of Mathematics

Innovative Applications of Fractional
Calculus

Lead Guest Editor: Ahmet Ocak Akdemir
Guest Editors: Zakia Hammouch and Aliev Fikrat



Copyright © 2021 Hindawi Limited. All rights reserved.

is is a special issue published in “Journal of Mathematics.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.



Chief Editor
Jen-Chih Yao, Taiwan

Algebra
SEÇİL ÇEKEN  , Turkey
Faranak Farshadifar  , Iran
Marco Fontana  , Italy
Genni Fragnelli  , Italy
Xian-Ming Gu, China
Elena Guardo  , Italy
Li Guo, USA
Shaofang Hong, China
Naihuan Jing  , USA
Xiaogang Liu, China
Xuanlong Ma  , China
Francisco Javier García Pacheco, Spain
Francesca Tartarone  , Italy
Fernando Torres  , Brazil
Zafar Ullah  , Pakistan
Jiang Zeng  , France

Geometry
Tareq Al-shami  , Yemen
R.U. Gobithaasan  , Malaysia
Erhan Güler  , Turkey
Ljubisa Kocinac  , Serbia
De-xing Kong  , China
Antonio Masiello, Italy
Alfred Peris  , Spain
Santi Spadaro, Italy

Logic and Set Theory
Ghous Ali  , Pakistan
Kinkar Chandra Das, Republic of Korea
Jun Fan  , Hong Kong
Carmelo Antonio Finocchiaro, Italy
Radomír Halaš, Czech Republic
Ali Jaballah  , United Arab Emirates
Baoding Liu, China
G. Muhiuddin  , Saudi Arabia
Basil K. Papadopoulos  , Greece
Musavarah Sarwar, Pakistan
Anton Setzer  , United Kingdom
R Sundareswaran, India
Xiangfeng Yang  , China

Mathematical Analysis

Ammar Alsinai  , India
M.M. Bhatti, China
Der-Chen Chang, USA
Phang Chang  , Malaysia
Mengxin Chen, China
Genni Fragnelli  , Italy
Willi Freeden, Germany
Yongqiang Fu  , China
Ji Gao  , USA
A. Ghareeb  , Egypt
Victor Ginting, USA
Azhar Hussain, Pakistan
Azhar Hussain  , Pakistan
Ömer Kişi  , Turkey
Yi Li  , USA
Stefan J. Linz  , Germany
Ming-Sheng Liu  , China
Dengfeng Lu, China
Xing Lü, China
Gaetano Luciano  , Italy
Xiangyu Meng  , USA
Dimitri Mugnai  , Italy
A. M. Nagy  , Kuwait
Valeri Obukhovskii, Russia
Humberto Rafeiro, United Arab Emirates
Luigi Rarità  , Italy
Hegazy Rezk, Saudi Arabia
Nasser Saad  , Canada
Mohammad W. Alomari, Jordan
Guotao Wang  , China
Qiang Wu, USA
Çetin YILDIZ  , Turkey
Wendong Yang  , China
Jun Ye  , China
Agacik Zafer, Kuwait

Operations Research
Ada Che  , China
Nagarajan DeivanayagamPillai, India
Sheng Du  , China
Nan-Jing Huang  , China
Chiranjibe Jana  , India
Li Jin, United Kingdom
Mehmet Emir Koksal, Turkey
Palanivel M  , India

https://orcid.org/0000-0002-7578-9320
https://orcid.org/0000-0001-7600-994X
https://orcid.org/0000-0003-4702-6155
https://orcid.org/0000-0002-5436-7006
https://orcid.org/0000-0003-2891-1124
https://orcid.org/0000-0002-2156-2569
https://orcid.org/0000-0003-3263-0616
https://orcid.org/0000-0003-1055-0279
https://orcid.org/0000-0003-4987-6962
https://orcid.org/0000-0002-5649-4500
https://orcid.org/0000-0002-7063-1882
https://orcid.org/%200000-0002-8074-1102
https://orcid.org/0000-0003-3077-8772
https://orcid.org/0000-0003-3264-6239
https://orcid.org/0000-0002-4870-7908
https://orcid.org/0000-0003-3289-8954
https://orcid.org/0000-0003-1683-2373
https://orcid.org/0000-0001-5316-3063
https://orcid.org/0000-0001-8451-3484
https://orcid.org/0000-0002-1196-8119
https://orcid.org/0000-0002-5596-5841
https://orcid.org/0000-0001-6519-895X
https://orcid.org/0000-0001-5322-6060
https://orcid.org/0000-0002-9792-9566
https://orcid.org/0000-0002-5221-0574
https://orcid.org/0000-0002-0291-3327
https://orcid.org/0000-0002-5436-7006
https://orcid.org/0000-0002-3755-5320
https://orcid.org/0000-0002-4987-7415
https://orcid.org/0000-0002-6093-0475
https://orcid.org/0000-0003-4501-9269
https://orcid.org/0000-0001-6844-3092
https://orcid.org/0000-0002-7148-0019
https://orcid.org/0000-0001-5028-1363
https://orcid.org/0000-0002-2644-6997
https://orcid.org/0000-0002-5129-848X
https://orcid.org/0000-0003-3381-6690
https://orcid.org/0000-0001-8908-5220
https://orcid.org/0000-0003-4335-6990
https://orcid.org/0000-0002-9530-5098
https://orcid.org/0000-0002-6490-2877
https://orcid.org/0000-0001-7197-8581
https://orcid.org/0000-0002-8302-343X
https://orcid.org/0000-0002-6378-0732
https://orcid.org/0000-0003-2841-6529
https://orcid.org/0000-0002-8133-4058
https://orcid.org/0000-0001-8396-7388
https://orcid.org/0000-0003-0248-9316
https://orcid.org/0000-0002-0252-9712
https://orcid.org/0000-0002-1225-0301


Stanislaw Migorski  , Poland
Predrag S. Stanimirović  , Serbia
Balendu Bhooshan Upadhyay, India
Ching-Feng Wen  , Taiwan
K.F.C. Yiu  , Hong Kong
Liwei Zhang, China
Qing Kai Zhao, China

Probability and Statistics
Mario Abundo, Italy
Antonio Di Crescenzo  , Italy
Jun Fan  , Hong Kong
Jiancheng Jiang  , USA
Markos Koutras  , Greece
Fawang Liu  , Australia
Barbara Martinucci  , Italy
Yonghui Sun, China
Niansheng Tang  , China
Ehymios G. Tsionas, United Kingdom
Bruce A. Watson  , South Africa
Ding-Xuan Zhou  , Hong Kong

https://orcid.org/0000-0002-3299-9168
https://orcid.org/0000-0003-0655-3741
https://orcid.org/0000-0001-8900-761X
https://orcid.org/0000-0002-7523-4069
https://orcid.org/0000-0003-4751-7341
https://orcid.org/0000-0001-8451-3484
https://orcid.org/0000-0001-9250-2371
https://orcid.org/0000-0001-5160-2405
https://orcid.org/0000-0003-1034-2349
https://orcid.org/0000-0001-8340-4200
https://orcid.org/0000-0001-7033-3845
https://orcid.org/0000-0003-2403-1752
https://orcid.org/0000-0003-0224-9216


Contents

Shape Preserving Piecewise KNR Fractional Order Biquadratic  Spline
Syed Khawar Nadeem Kirmani, Muhammad Bilal Riaz  , Fahd Jarad  , Hayder Natiq Jasim, and Aytekin
Enver
Research Article (9 pages), Article ID 9981153, Volume 2021 (2021)

Construction of Generalized k-Bessel–Maitland Function with Its Certain Properties
Waseem Ahmad Khan  , Hassen Aydi  , Musharraf Ali, Mohd Ghayasuddin, and Jihad Younis 

Research Article (14 pages), Article ID 5386644, Volume 2021 (2021)

Sine Half-Logistic Inverse Rayleigh Distribution: Properties, Estimation, and Applications in
Biomedical Data
M. Shrahili  , I. Elbatal, and Mohammed Elgarhy 

Research Article (10 pages), Article ID 4220479, Volume 2021 (2021)

On Multi-Index Mittag–Leffler Function of Several Variables and Fractional Differential Equations
B. B. Jaimini  , Manju Sharma  , D. L. Suthar  , and S. D. Purohit 

Research Article (8 pages), Article ID 5458037, Volume 2021 (2021)

Some Inequalities of Generalized p-Convex Functions concerning Raina’s Fractional Integral
Operators
Changyue Chen  , Muhammad Shoaib Sallem  , and Muhammad Sajid Zahoor
Research Article (9 pages), Article ID 3089553, Volume 2021 (2021)

A Novel Method for Developing Efficient Probability Distributions with Applications to Engineering
and Life Science Data
Alamgir Khalil, Abdullah Ali H. Ahmadini  , Muhammad Ali, Wali Khan Mashwani  , Shokrya S.
Alshqaq, and Zabidin Salleh 

Research Article (13 pages), Article ID 4479270, Volume 2021 (2021)

Fractional Versions of Hadamard-Type Inequalities for Strongly Exponentially -Convex
Functions
Shasha Li  , Ghulam Farid  , Atiq Ur Rehman  , and Hafsa Yasmeen
Research Article (23 pages), Article ID 2555974, Volume 2021 (2021)

Properties and Bounds of Jensen-Type Functionals via Harmonic Convex Functions
Aqeel Ahmad Mughal, Hassan Almusawa  , Absar Ul Haq, and Imran Abbas Baloch 

Research Article (13 pages), Article ID 5561611, Volume 2021 (2021)

Optical Solutions of the Date–Jimbo–Kashiwara–Miwa Equation via the Extended Direct Algebraic
Method
Ghazala Akram  , Naila Sajid, Muhammad Abbas  , Y. S. Hamed  , and Khadijah M. Abualnaja 

Research Article (18 pages), Article ID 5591016, Volume 2021 (2021)

Fractional Entropy-Based Test of Uniformity with Power Comparisons
Mohamed S. Mohamed  , Haroon M. Barakat  , Salem A. Alyami, and Mohamed A. Abd Elgawad 

Research Article (7 pages), Article ID 5331260, Volume 2021 (2021)

https://orcid.org/0000-0001-5153-297X
https://orcid.org/0000-0002-3303-0623
https://orcid.org/0000-0002-4681-9885
https://orcid.org/0000-0003-4606-7211
https://orcid.org/0000-0001-7116-3251
https://orcid.org/0000-0003-3456-8393
https://orcid.org/0000-0002-1333-3862
https://orcid.org/0000-0001-9689-7331
https://orcid.org/0000-0003-3824-3545
https://orcid.org/0000-0001-9978-2177
https://orcid.org/0000-0002-1098-5961
https://orcid.org/0000-0003-1159-0299
https://orcid.org/0000-0002-0050-6760
https://orcid.org/0000-0002-9740-7207
https://orcid.org/0000-0002-5081-741X
https://orcid.org/0000-0001-5877-9051
https://orcid.org/0000-0003-1661-0789
https://orcid.org/0000-0002-4103-7745
https://orcid.org/0000-0002-7368-0700
https://orcid.org/0000-0001-5024-866X
https://orcid.org/0000-0001-8941-2527
https://orcid.org/0000-0003-0288-9299
https://orcid.org/0000-0002-0491-1528
https://orcid.org/0000-0002-0365-0282
https://orcid.org/0000-0002-2908-1807
https://orcid.org/0000-0003-0617-6835
https://orcid.org/0000-0002-6212-432X
https://orcid.org/0000-0001-9540-9439


Hermite-Hadamard, Jensen, and Fractional Integral Inequalities for Generalized -Convex Stochastic
Processes
Fangfang Ma  , Waqas Nazeer  , and Mamoona Ghafoor
Research Article (9 pages), Article ID 5524780, Volume 2021 (2021)

Composition Formulae for the -Fractional Calculus Operator with the -Function
Hagos Tadesse  , Haile Habenom  , Anita Alaria  , and Biniyam Shimelis 

Research Article (12 pages), Article ID 7379820, Volume 2021 (2021)

Numerical Solution of Fractional Order Anomalous Subdiffusion Problems Using Radial Kernels and
Transform
Muhammad Taufiq and Marjan Uddin 

Research Article (9 pages), Article ID 9965734, Volume 2021 (2021)

Certain Properties of Generalized M-Series under Generalized Fractional Integral Operators
D. L. Suthar  , Fasil Gidaf  , and Mitku Andualem 

Research Article (10 pages), Article ID 5527819, Volume 2021 (2021)

Integral-Type Fractional Equations with a Proportional Riemann–Liouville Derivative
Nabil Mlaiki 

Research Article (7 pages), Article ID 9990439, Volume 2021 (2021)

Approximate Symmetries Analysis and Conservation Laws Corresponding to Perturbed Korteweg–de
Vries Equation
Tahir Ayaz, Farhad Ali, Wali Khan Mashwani  , Israr Ali Khan, Zabidin Salleh  , and Ikramullah
Research Article (11 pages), Article ID 7710333, Volume 2021 (2021)

Qualitative Analysis of Class of Fractional-Order Chaotic System via Bifurcation and Lyapunov
Exponents Notions
Ndolane Sene 

Research Article (18 pages), Article ID 5548569, Volume 2021 (2021)

Application of Green Synthesized Metal Nanoparticles in the Photocatalytic Degradation of Dyes and Its
Mathematical Modelling Using the Caputo–Fabrizio Fractional Derivative without the Singular Kernel
S. Dave  , A. M. Khan  , S. D. Purohit  , and D. L. Suthar 

Research Article (8 pages), Article ID 9948422, Volume 2021 (2021)

Weighted Estimates for Commutator of Rough -Adic Fractional Hardy Operator on Weighted -Adic
Herz–Morrey Spaces
Naqash Sarfraz, Doaa Filali, Amjad Hussain  , and Fahd Jarad 

Research Article (14 pages), Article ID 5559815, Volume 2021 (2021)

https://orcid.org/0000-0001-7220-0675
https://orcid.org/0000-0002-5488-0467
https://orcid.org/0000-0002-8832-6034
https://orcid.org/0000-0002-9884-6666
https://orcid.org/0000-0002-4107-9259
https://orcid.org/0000-0001-8654-2545
https://orcid.org/0000-0001-6225-8312
https://orcid.org/0000-0001-9978-2177
https://orcid.org/0000-0002-8691-7287
https://orcid.org/0000-0002-1417-9721
https://orcid.org/0000-0002-7986-886X
https://orcid.org/0000-0002-5081-741X
https://orcid.org/0000-0001-5877-9051
https://orcid.org/0000-0002-8664-6464
https://orcid.org/0000-0002-2510-7678
https://orcid.org/0000-0001-8928-0122
https://orcid.org/0000-0002-1098-5961
https://orcid.org/0000-0001-9978-2177
https://orcid.org/0000-0002-5840-0846
https://orcid.org/0000-0002-3303-0623


Contents

Multivariate Dynamic Sneak-Out Inequalities on Time Scales
Ammara Nosheen  , Aneeqa Aslam, Khuram Ali Khan  , Khalid Mahmood Awan  , and Hamid Reza
Moradi 

Research Article (17 pages), Article ID 9978050, Volume 2021 (2021)

Uniform Treatment of Jensen’s Inequality by Montgomery Identity
Tahir Rasheed, Saad Ihsan Butt  , Đilda Pečarić, Josip Pečarić  , and Ahmet Ocak Akdemir 

Research Article (17 pages), Article ID 5564647, Volume 2021 (2021)

:e Hermite–Hadamard–Jensen–Mercer Type Inequalities for Riemann–Liouville Fractional Integral
Hua Wang  , Jamroz Khan  , Muhammad Adil Khan  , Sadia Khalid  , and Rewayat Khan 

Research Article (18 pages), Article ID 5516987, Volume 2021 (2021)

Efficient Exponential Time-Differencing Methods for the Optical Soliton Solutions to the Space-Time
Fractional Coupled Nonlinear Schrödinger Equation
Xiao Liang   and Bo Tang 

Research Article (10 pages), Article ID 5575128, Volume 2021 (2021)

-Hermite–Hadamard Inequalities for Generalized Exponentially -Preinvex Functions
Hua Wang  , Humaira Kalsoom  , Hüseyin Budak  , and Muhammad Idrees 

Research Article (10 pages), Article ID 5577340, Volume 2021 (2021)

On Some Classes with Norms of Meromorphic Function Spaces Defined by General Spherical
Derivatives
A. El-Sayed Ahmed   and S. Attia Ahmed
Research Article (9 pages), Article ID 5588626, Volume 2021 (2021)

Image Denoising of Adaptive Fractional Operator Based on Atangana–Baleanu Derivatives
Xiaoran Lin, Yachao Wang  , Guohao Wu, and Jing Hao
Research Article (16 pages), Article ID 5581944, Volume 2021 (2021)

On Strongly Convex Functions via Caputo–Fabrizio-Type Fractional Integral and Some Applications
Qi Li  , Muhammad Shoaib Saleem, Peiyu Yan, Muhammad Sajid Zahoor, and Muhammad Imran
Research Article (10 pages), Article ID 6625597, Volume 2021 (2021)

Generalized Conformable Mean Value :eorems with Applications to Multivariable Calculus
Francisco Martínez, Inmaculada Martínez, Mohammed K. A. Kaabar  , and Silvestre Paredes
Research Article (7 pages), Article ID 5528537, Volume 2021 (2021)

Some Formulas for New Quadruple Hypergeometric Functions
Jihad A. Younis  , Hassen Aydi  , and Ashish Verma
Research Article (10 pages), Article ID 5596299, Volume 2021 (2021)

https://orcid.org/0000-0002-1627-4503
https://orcid.org/0000-0002-3468-2295
https://orcid.org/0000-0001-8401-4407
https://orcid.org/0000-0002-0233-0455
https://orcid.org/0000-0001-7192-8269
https://orcid.org/0000-0002-5510-2085
https://orcid.org/0000-0003-2466-0508
https://orcid.org/0000-0002-8575-042X
https://orcid.org/0000-0002-5438-5829
https://orcid.org/0000-0001-5373-4663
https://orcid.org/0000-0003-4274-9936
https://orcid.org/0000-0003-2962-6691
https://orcid.org/0000-0002-4757-6467
https://orcid.org/0000-0001-8054-884X
https://orcid.org/0000-0002-8575-042X
https://orcid.org/0000-0002-5835-3349
https://orcid.org/0000-0001-8843-955X
https://orcid.org/0000-0002-9839-3601
https://orcid.org/0000-0002-0568-9121
https://orcid.org/0000-0002-9831-7983
https://orcid.org/0000-0001-6422-5020
https://orcid.org/0000-0003-2260-0341
https://orcid.org/0000-0001-7116-3251
https://orcid.org/0000-0003-4606-7211


Hadamard and Fejér–Hadamard Inequalities for Further Generalized Fractional Integrals Involving
Mittag-Leffler Functions
M. Yussouf, G. Farid  , K. A. Khan, and Chahn Yong Jung 

Research Article (13 pages), Article ID 5589405, Volume 2021 (2021)

Inequalities for Riemann–Liouville Fractional Integrals of Strongly -Convex Functions
Fuzhen Zhang  , Ghulam Farid  , and Saira Bano Akbar
Research Article (14 pages), Article ID 5577203, Volume 2021 (2021)

-Extended Struve Function: Fractional Integrations and Application to Fractional Kinetic Equations
Haile Habenom  , Abdi Oli  , and D. L. Suthar 

Research Article (10 pages), Article ID 5536817, Volume 2021 (2021)

A Nonlinear Implicit Fractional Equation with Caputo Derivative
Ameth Ndiaye 

Research Article (9 pages), Article ID 5547003, Volume 2021 (2021)

Existence and Stability for a Nonlinear Coupled -Laplacian System of Fractional Differential Equations
Merfat Basha  , Binxiang Dai  , and Wadhah Al-Sadi 

Research Article (15 pages), Article ID 6687949, Volume 2021 (2021)

Quantum Inequalities of Hermite–Hadamard Type for -Convex Functions
Xuexiao You, Hasan Kara, Hüseyin Budak  , and Humaira Kalsoom
Research Article (14 pages), Article ID 6634614, Volume 2021 (2021)

Nonlocal Fractional Hybrid Boundary Value Problems Involving Mixed Fractional Derivatives and
Integrals via a Generalization of Darbo’s :eorem
Ayub Samadi, Sotiris K. Ntouyas  , and Jessada Tariboon 

Research Article (8 pages), Article ID 6690049, Volume 2021 (2021)

https://orcid.org/0000-0002-4103-7745
https://orcid.org/0000-0002-4504-6200
https://orcid.org/0000-0002-8824-8099
https://orcid.org/0000-0002-4103-7745
https://orcid.org/0000-0002-9884-6666
https://orcid.org/0000-0001-5944-2442
https://orcid.org/0000-0001-9978-2177
https://orcid.org/0000-0003-0055-1948
https://orcid.org/0000-0001-6208-7031
https://orcid.org/0000-0003-2802-0743
https://orcid.org/0000-0002-8284-8026
https://orcid.org/0000-0001-8843-955X
https://orcid.org/0000-0002-7695-2118
https://orcid.org/0000-0001-8185-3539


Research Article
Shape Preserving Piecewise KNR Fractional Order
Biquadratic C2 Spline

Syed Khawar Nadeem Kirmani,1 Muhammad Bilal Riaz ,1,2 Fahd Jarad ,3,4

Hayder Natiq Jasim,5 and Aytekin Enver6

1Department of Mathematics, University of Management and Technology, Lahore, Pakistan
2Institute for Groundwater Studies, University of the Free State, Bloemfontein 9300, South Africa
3Department of Mathematics, Çankaya University, Etimesgut, Ankara, Turkey
4Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
5Faculty of Science for Women, Baghdad University, Baghdad, Iraq
6Department of Mathematics, Gazi University, Teknikokullar, Ankara, Turkey

Correspondence should be addressed to Fahd Jarad; fahd@cankaya.edu.tr

Received 13 March 2021; Accepted 21 October 2021; Published 23 November 2021

Academic Editor: Ahmet Ocak Akdemir

Copyright © 2021 Syed Khawar Nadeem Kirmani et al. +is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

In a recent article, a piecewise cubic fractional spline function is developed which produces C1 continuity to given data points. In
the present paper, an interpolant continuity class C2 is preserved which gives visually pleasing piecewise curves. +e behavior of
the resulting representations is analyzed intrinsically with respect to variation of the shape control parameters t and s. +e data
points are restricted to be strictly monotonic along real line.

1. Introduction

Among the various methods in computer aided geometric
designing, piecewise spline-based techniques are the con-
ventional methods. In many applications, one inclines in-
terpolate or approximate univariate data by spline functions
possessing certain geometric properties or shapes such as
monotonicity, convexity, or nonnegativity. Due to the verity
of spline algorithm, designers do not find any strain to adopt
these techniques. Ample work has been done in this regard
and researchers are still working on varied techniques by
refining them to make it more and more diverse. +e aim of
spline interpolation is to get an interpolation formula that is
continuous and smooth in both within the intervals and at
the interpolating points. In recent past, a hatful of work have
been done in the field of piecewise polynomial spline curve
[1–4], rational spline [5], trigonometric spline [6], expo-
nential spline [7], and spline-based surfaces which are used
to preserve the C2 continuity. +is paper is a continuation of
a previous paper [8] in which piecewise C1 continuity is

preserved. +e fractional biquadratic spline is represented in
terms of first and second order derivative values at the knots
and provides an alternative to the ordinary spline.+is paper
is an attempt to embrace a novel technique on piecewise
biquadratic polynomial.

Fractional calculus has been an Annex of ordinary
calculus that encapsulated integrals and derivatives that are
defined for arbitrary real orders. +e journey of fractional
calculus commenced in seventeenth century and under-
scored different derivatives [1] with significant pros and cons
ranging from Riemann–Liouville, Hadamard, and
Grünwald–Letnikov to Caputo, and so forth. Selecting apt
fractional derivatives is pertinent to its considered systems;
therefore, fractional operators were also a prevalent focus of
various research works. Concurrently, studying generalized
fractional operators is also indispensable in the field of
computer graphics [9–11].

Fractional order derivatives are rapid emerging concept
in different fields of mathematics, physics, and engineering
in recent years [12–15]. Due to application of new approach
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of fractional order derivative, the computational cost is
reduced. In this paper, an efficient and intuitive technique
which is able to produce piecewise smooth curves in each
given subinterval, [xi, xi+1], i � 0, 1, 2, 3, . . . n, ∀xi ∈ R, is
adopted by combining both concepts of spline and Capu-
to–Fabrizio fractional order derivatives. With biquadratic
piecewise polynomial assistance, higher accuracy is ensured.

+e paper is organized in the following way. In Section 2,
the formula using continuity condition is established. In
Section 3, all the results are included, and in Section 4,
discussion related to the novel technique is highlighted.

2. Preliminaries

+ere are heaps of definitions of fractional integral and
derivatives; among them, few are Riemann–Liouville, Riesz,
Caputo [8], Riesz–Caputo, Hadamard, Weyl,

Grünwald–Letnikov, Chen, etc. Here, we are discussing
Riemann–Liouville and Caputo.+e proofs of results may be
found in [16, 17].

Let g: [a, b]⟶R be a function, α a positive real
number, n the integer satisfying n − 1≤ α< n, and Γ the
Euler gamma function [11]. +en, the left and right Rie-
mann–Liouville fractional integrals of order α are defined,

aI
α
yg(y) �

1
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y
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respectively.
+e left and right Riemann–Liouville fractional deriv-

atives of order α are defined by
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+erefore, the right and left Caputo fractional derivatives
of order α are defined by
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y
(−1)

m
(τ − y)

m− α− 1
g

(m)
(τ)dτ.

(3)

Intrinsically, there exists a relation between Caputo
fractional and Riemann–Liouville derivatives, and as a
consequence, we have the following relations:

If g(a) � g′(a) � . . . � g(m− 1)(a) � 0, then
C
a D

α
yg(y) � aIαyg(y);

If g(b) � g′(b) � . . . � g(m− 1)(b) � 0, then
C
y D

α
b
g(y) � yDα

b
g(y).

If g ∈ Cm[a, b], then the right and left Caputo derivatives
are continuous on [a, b]. +ere are some properties which
are valid for integer integration and integer differentiation
which are also reflected in fractional integration and dif-
ferentiation [18].

3. Piecewise KNR Fractional Order
Biquadratic C2 Spline

Let Pi(x), i � 1, 2, 3, . . . , n, be a piecewise polynomial in a
subinterval [xi, xi+1] for x ∈ [xi, xi+1]:

Pi(x) � ai x − xi( 
4

+ bi x − xi( 
3

+ ci(x − x)i
2

+ di x − xi( 

+ ei, i � 0, 1, 2, 3, . . . , n, x ∈ xi, xi+1 ,

(4)

where ai, bi, ci, di, and ei are unknown constants which
need to be calculated by means of the given continuity and
differentiability conditions:

Pi xi+1(  � Pi+1 xi+1( ,

Pi
′ xi+1(  � Pi+1′ xi+1( ,

Pi
″ xi+1(  � Pi+1″ xi+1( ,

P
α
i xi+1(  � −P

α
i+1 xi+1( , 1< α< 2.

(5)

+e parameter α that appears in the above conditions is
known as fractional order derivative. It is quite evident from
the given conditions that the resulting piecewise curves will
be smooth in each segment and will possess C2 continuity.
+e fractional order derivative of a function
f(x) ∈ ACn[a, b] such that f is absolutely continuous of
order α with n − 1< α≤ n, where n denotes the order of
derivative, which is

CD
α
af( (ξ) �

1
Γ(n − α)


x

a

f
(n)

(ξ)

(x − ξ)
α−n+1dξ, x> a, (6)
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where

Γ(α) ≔ 
∞

0
e

− u
u
α− 1du. (7)

Let Pi(x) and Pi+1(x) be two piecewise spline polyno-
mials with common point at x � xi+1. +e application of the

above continuity and differentiability conditions will result
in ten unknown constants which need to be evaluated for
practical applications. Since the spline curve passes through
the given data points, it will result in ei � yi and ei+1 � yi+1.
+e remaining eight unknowns can be calculated by ap-
plying Caputo fractional and derivative conditions.

1
Γ(2 − α)


xi+1

t

pi
″(τ)

xi+1 − τ( 
α−1dτ � −

1
Γ(2 − α)


s

xi+1

pi+1″(τ)

τ − xi+1( 
α−1dτ, 1< α≤ 2. (8)

+e given system of linear equations is of the form

aiAαj
+ biBαj

+ ciCαj
� − ai+1Eαj

+ bi+1Fαj
+ ci+1Gαj

 ,

Aαj
� −

12(−t + x[i + 1])
2− αj (K + L − M + N)

−4 + αj  −3 + αj  −2 + αj 
,

(9)

where

K � 2x[i + 1]
2

+ 2x[i]x[i + 1] −4 + αj , L � x[i]
2

−4 + αj  −3 + αj ,

M � 2t x[i + 1] + x[i] −4 + αj   −2 + αj , N � t
2

−3 + αj  −2 + αj ,

Bαj
� −

6(−t + x[i + 1])
2− αj −x[i + 1] − x[i] −3 + αj  + t −2 + αj  

−3 + αj  −2 + αj 
,

Cαj
� −

2(−t + x[i + 1])
2− αj

−2 + αj

, Eαj
�
12(s − x[i + 1])

4− αj

4 − αj

, Fαj
�
6(s − x[i + 1])

3− αj

3 − αj

,

Gαj
�
2(s − x[i + 1])

2− αj

2 − αj

, j � 1, 2, 3 , and 4.

(10)

We will have four linear equations.
+e other four linear equations can be derived from

continuity and differentiability conditions as follows:

aih
4
i + bih

3
i + cih

2
i + dihi � yi+1 − yi,

ai+1h
4
i+1 + bi+1h

3
i+1 + ci+1h

2
i+1 + di+1hi+1 � yi+2 − yi+1,

4aih
3
i + 3bih

2
i + 2cihi + di � di+1,

12aih
2
i + 6bihi + 2ci � 2ci+1,

(11)

where hi � xi+1 − xi and hi+1 � xi+2 − xi+1.
+e above system of linear equations will give rise to a

unique solution of unknowns ai, bi, ci, di, ai+1,

bi+1, ci+1, anddi+1.
As an example, for a given set of data points, we have a

piecewise biquadratic fractional spline curve. In Figures 1

and 2, we have two kinds of curves: one is concave while the
other one is convex. +e fractional order derivatives used in
both curves are given by Table 1. +ese figures also indicate
the potency of the technique at the bending points. We also
have a liberty to control the bending due to the introduction
of two parameters denoted by t and s.

t ∈ xi, xi+1( , s ∈ xi+1, xi+2( . (12)

+ey both will serve as shape control parameters. Dif-
ferent choices of these parameters will cause changes in the
final shapes.+e piecewise curve (Figure 3) shows a C2 KNR
biquadratic fractional spline curve, whereas Figure 4 indi-
cates the exact location of the points and Figure 5 indicates
the concentration of the points.

In this method, we have the liberty to modify the path
of the curve. Figures 6–9 are good examples of different
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values of shape parameters t and s. As these parameters
move away from the connecting point xi+1, the curve starts
to flatten at the point and will have effect on the final shape
of the curve.

Figures 10–12 indicate the evidence for the effective-
ness of the novel technique. +e data equally reflect back
after application of the newly adopted technique. +e
straight lines can also be graphed accordingly. Constant

function (in y-values) as shown in Figure 11 and monotone
increasing data as shown in Figure 12 can also be pre-
served, which indicates the accuracy of the technique. In
all these shapes, Table 1 is used. Effect on final shape can
also be observed if the fractional order derivatives are
changed.

4. Comparison of KNR Biquadratic Fractional
Spline with Ordinary Cubic Spline

Since ordinary cubic spline is a conventional tool for curve
generation, the given comparison indicates that the newly
adopted technique coincides with the ordinary one.

For different choices of shape parameters t and s,
Figures 13––15 show that the given piecewise curves can be
manipulated by the choice of shape parameters. +e slight
adjustment of the shape parameters can give rise to different
shapes. It also indicates that a small change can be made in
final shape by altering these parameters.

Geometrically, we have t ∈ (xi, xi+1) and
s ∈ (xi+1 , xi+2), which gives us better control on curve’s
path. Different values of these parameters can change the
whole geometry/pattern of the curves. Although the given
fractional spline curve will pass through the given data
points, but still we can have improved control on the curve.

5. Application of Fractional Spline to n
Data Points

Let (xi, yi), i � 0, 1, 2, . . . , n, be a set of n data points. Using
first three data points, we can find two patches of curves as
defined in this paper above. Since all the unknown constants
of these two patches are already known, they can be used to
find three or more patches of the curves.
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Figure 1: Convex function.
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Figure 2: Concave function.
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Figure 3: C2 KNR biquadratic fractional spline curve.

Table 1: Order of fractional derivatives used for both curves.

α1 α2 α3 α4
1.87 1.9 1.92 1.95
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By applying continuity and differentiability conditions,
we have the following system of linear equations in three
unknowns, namely, ai+1, bi+1, and ci+1.

ai+1h
4
i+1 + bi+1h

3
i+1 + ci+1h

2
i+1 � yi+2 − yi+1 − di+1hi+1,

ai+1Eαj
+ bi+1Fαj

+ ci+1Gαj
� − aiAαj

+ biBαj
+ ciCαj

 , j � 1, 2,

(13)

where hi+1 � xi+2 − xi+1, di+1 � 4aih
3
i + 3bih

2
i + 2cihi − di,

Aαj
, Bαj

, Cαj
, Eαj

, Fαj
, and Gαj

are already calculated in the
previous section.

+e above system involves three linear equations for two
values of j. In each subsequent segment of curves, we will
repeatedly solve the above system for n−1 segments of curve.
Hence, the above system is true for i � 1, 2, . . . , n − 1.

In Figure 16, curve segments in [x0, x1] and [x1, x2]

intervals can easily be calculated by the algorithm as defined
prior, whereas the curve segment in interval [x2, x3], in
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Figure 5: Concentration of the points.

Figure 4: Location of the points.
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Figure 6: An example of different values of shape parameters t and
s.
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Figure 7: Impact of shape parameters t and as it moves away from
connecting point.
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Figure 8: Impact of shape parameters t and as it moves away from connecting point.
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Effect of s and t

Figure 9: Impact of shape parameters t and as it moves away from connecting point.
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which x2 is the connecting point, can be evaluated by the
following way:

P2 x2(  � P3 x2( ,

P2′ x2(  � P3′ x2( ,

P2″ x2(  � P3″ x2( ,

P3 x3(  � y3,

P
α
2 x2(  � −P

α
3 x2( .

(14)

Here, in polynomial P3(x), we have five unknowns which
can easily be calculated by the abovementioned conditions.
Similarly, in Figure 17, one more curve segment is included by
aforesaid way.
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Figure 12: Monotone increasing data are preserved.
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Figure 11: Constant functions are preserved.
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Figure 13: Piecewise curves can be manipulated by the choice of
shape parameters 1.
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Figure 10: After application of the newly adopted technique.
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.e main motive of this study is to present a new class of a generalized k-Bessel–Maitland function by utilizing the k-gamma
function and Pochhammer k-symbol. By this approach, we deduce a few analytical properties as usual differentiations and integral
transforms (likewise, Laplace transform, Whittaker transform, beta transform, and so forth) for our presented k-Bessel–Maitland
function. Also, the k-fractional integration and k-fractional differentiation of abovementioned k-Bessel–Maitland functions are
also pointed out systematically.

1. Introduction and Preliminaries

.e computation of fragmentary integrals of special func-
tions is significant from the mark of perspective on the value
of these outcomes in the assessment of generalized integrals,
and the solution of differential and integral equations.
Fractional integral formulas involving the Bessel function
have been created and assume a significant part in a few
physical problems. .e Bessel function is significant in
examining the solutions of differential equations, and they
are related to a wide scope of problems in numerous regions
of mathematical physics, likewise radiophysics, fluid dy-
namics, and material sciences. .ese contemplations have
driven different specialists in the field of special functions to
investigating the possible expansions and also applications
for the Bessel function. Valuable speculation of the Bessel
function called the k-Bessel function has also been presented
by Diaz et al. [1–3] and Suthar et al. [4]. .ey have presented
k-beta, k-gamma, k-zeta functions, and Pochhammer

k-symbol (rising factorial). Additionally, they demonstrated
some of their properties and inequalities for the above-said
functions. .ey have likewise considered k-hypergeometric
functions based on k-rising factorial.

Such functions play a discernible role in a variety of
appropriate fields of science and engineering. During the past
several years, several researchers have obtained various k-type
function (such as k-gamma, k-beta, and k-Pochhammer)..is
subject has received attention of various researchers and
mathematicians during the last few decades..e k symbols are
well known from many references related to finite difference
calculus (see, [5–11], see additionally [12–16]). Recently,
k-type functions and k-type operators have been considered
in the literature by various authors. For this purpose, we start
with the following properties in the literature.

For our current assessment, we survey here the definition
of some known functions and their generalizations. .e
integral representations of k-gamma and k-beta functions
are as follows (see [1–3]):
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Γk(x) � k
(x/k)− 1Γ

x

k
  � 

∞

0
t
x− 1

e
− tk/k( )dt, R(x)> 0, k> 0,

(1)

Bk(x, y) �
1
k


1

0
t
(x/k)− 1

(1 − t)
(y/k)− 1dt, x> 0, y> 0,

(2)

where

Bk(x, y) �
1
k

B
x

k
,
y

k
 ,

Bk(x, y) �
Γk(x)Γk(y)

Γk(x + y)
.

(3)

.e variety of the functions likewise k-Zeta function,
k-Mittag–Leffler function for two and three parameters,
k-Wright, and k-hypergeometric functions could be char-
acterized by the following formulas (see also
[4, 12, 13, 16–20]):

ξk(z, p) � 
∞

n�0

1
Γ(z + nk)

p, k, z> 0, p> 1,

Ek,α,β(z) � 
∞

n�0

z
n

Γk(αn + β)
, α, β> 0,

E
c

k,α,β(z) � 
∞

n�0

(c)n,k

Γk(αn + β)n!
z

n
, k ∈ R, α, β, c ∈ C,R(α)> 0,R(β)> 0,

W
c

k,α,β(z) � 
∞

n�0

(c)n,k

Γk(αn + β)(n!)
2z

n
, k ∈ R, α, β, c ∈ C;R(α)> 0,R(β)> 0,R(c)> 0,

Fk((β, k); (c, k); z) � 
∞

n�0

(β)n,k

(c)n,kn!
z

n
, k ∈ R, β, c ∈ C;R(β)> 0,R(c)> 0.

(4)

Definition 1. Let f be a sufficiently well-behaved function
with support in R+ and let α be a real number α> 0. .e
k-Riemann–Liouville fractional integral of order α, Iα+f is
given by (see [21–23])

I
α
k,a(f(z)) �

1
kΓk(α)


z

a
(z − t)

(α/k)− 1
f(t)dt. (5)

.is definition unmistakably reduces the definition
defined by Mubeen and Habibullah (see [14]):

I
α
k(f(z)) �

1
kΓk(α)


z

0
(z − t)

(α/k)− 1
f(t)dt. (6)

It is clear that the case k � 1 of (6) yields the traditional
Riemann–Liouville fractional integral:

I
α
(f(z)) �

1
Γ(α)


z

0
(z − t)

α− 1
f(t)dt. (7)

Definition 2. Let β be a real number. .en, k-Rie-
mann–Liouville fractional derivative is defined by (see
[21–23])

D
β
k(f(t)) �

d

dt
I
1− β
k f(t)dt, (0< β≤ 1), (8)

where

I
1− β
k (f(x)) �

1
kΓk(1 − β)


z

0
(z − t)

(1− β/k)− 1
f(t)dt. (9)

Definition 3. For u ∈ φ(R), the fractional Fourier transform
(FFT) of order α is defined as (see [21–23])

ua(w) � 5a[u](w) � 
R
e

iw1/αt
u(t)dt, (0< α≤ 1). (10)

It is effectively observed that, for α � 1, (10) reduces at
the conventionally Fourier transform which is given by

5[φ](z) � 
+∞

− ∞
e

iztφ(t)dt. (11)

For w> 0, (10) easily recovers the FFT presented by
Luchko et al. [24].

In 2018, Ghayasuddin and Khan [25] presented gener-
alized Bessel–Maitland functions by
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J
μ,q,p

],c,δ (z) � 
∞

n�0

(c)qn(− z)
n

Γ(μn + ] + 1)(δ)pn

, (12)
where μ, ], c, δ ∈ C, R(μ)> 0,R(])> − 1,R(c)> 0,

R(δ)> 0; p, q> 0, and q<R(μ) + p.
For bj, j � 1, q different from nonpositive integers, the

series (see [26, 27])

pFq

a1, . . . , ap

b1, . . . , bq

|z
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ � 
n≥0

a1( n a2( n, . . . , ap 
n

b1( n b2( n, . . . , bq 
n

z
n

n!
� 

n≥0


p

j�1 aj 
n


q
j�1 bj 

n

z
n

n!
(13)

is the generalized hypergeometric series, where the Poch-
hammer symbol

(a)μ ≔
Γ(a + μ)

Γ(a)
�

1, if μ � 0; a ∈ C\ 0{ },

a(a + 1), . . . , (a + n − 1), if μ � n ∈ N; a ∈ C,

⎧⎪⎨

⎪⎩
(14)

and by convention (a)0 � 1. When p≤ q, the generalized
hypergeometric function converges for all complex values of
z, that is, pFq[z] is an entire function. When p> q + 1, the
series converges only for z � 0, unless it terminates (as when
one of the parameters aj, j � 1, p is a negative integer) in
which case it is just a polynomial in z. When p � q + 1, the
series converges in the open unit disk |z|< 1 and also for
|z| � 1 provided that

R 

q

j�1
bj − 

p

j�1
aj

⎛⎝ ⎞⎠> 0. (15)

.e summed up k-Wright function is addressed as
follows (see details [7, 27]):

pΨ
k
q

α1, A1( , . . . , αp, Ap ;

β1, B1( , . . . , βq, Bq ;

z
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � pΨ
k
q αj, Aj 1,p

; bj, βj 1,q
; z 

� 
∞

n�0

Γk α1 + A1n( , . . . , Γk αp + Apn 

Γk β1 + B1n( , . . . , Γk βq + Bqn 

z
n

n!
,

(16)

where k ∈ R+; z ∈ C and

R 

q

j�1
Bj − 

p

j�1
Aj

⎛⎝ ⎞⎠> 0. (17)

Motivated essentially by the demonstrated potential for
applications of these extended generalized k-Wright
hypergeometric functions, we extend the generalized
k-Bessel–Maitland function (18) by means of the generalized
k-Pochhammer symbol (1) and investigate certain basic
properties including differentiation formulas, integral rep-
resentations, Euler-Beta, Laplace, Whittaker, and fractional
Fourier transforms with their several special cases and re-
lations with the k-Bessel–Maitland function. We also derive

the k-fractional integration and differentiation of k-Bes-
sel–Maitland function.

2. Generalized k-Bessel–Maitland Function

.is section deals with the new development of k-Bes-
sel–Maitland function J

μ,c,δ
k,],q,p(z) and its associated

properties.

Definition 4. Let k ∈ R, μ, ], c, δ ∈ C, R(μ)> 0,

R(])≥ − 1,R(c)> 0,R(δ)> 0; p, q> 0, and q<R(μ) + p.
.e generalized k-Bessel–Maitland function is defined as

J
μ,c,δ
k,],q,p(z) � 

∞

n�0

(c)qn,k(− z)
n

Γk(μn + ] + 1)(δ)pn,k

. (18)
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Remark 1. We note that the case k � 1 in (18) leads to the
generalized Bessel–Maitland function defined by Ghaya-
suddin and Khan [25], which further for δ � p � 1 gives the
Bessel–Maitland function given by Singh et al. [20].

Theorem 1. If k ∈ R, μ, ], c, δ ∈ C,R(μ)> 0,

R(])≥ − 1,R(c)> 0,R(δ)> 0; p, q> 0 and q<R(μ) + p,
then we have

(] + 1)J
μ,c,δ
k,]+k,q,p(z) + μz

d

dz
J
μ,c,δ
k,]+k,q,p(z) � J

μ,c,δ
k,],q,p(z) (19)

and

J
μ,c+k,δ+k

k,],q,p (z) − J
μ,c,δ
k,],q,p(z) � z

δq(c)q,k

cp(δ)p,k

J
μ,c+qk,δ+pk

k,μ+],q,p (z). (20)

Proof. With the help of (18) on the L.H.S of (19), we get

(] + 1)J
μ,c,δ
k,]+k,q,p(z) + μz

d

dz
J
μ,c,δ
k,]+k,q,p(z),

� (] + 1) 
∞

n�0

(c)qn,k

Γk(μn + ] + k + 1)(δ)pn,k

(− z)
n

+ μz
d

dz


∞

n�0

(c)qn,k

Γk(μn + ] + k + 1)(δ)pn,k

(− z)
n

� (] + 1) 
∞

n�0

(c)qn,k

Γk(μn + ] + k + 1)(δ)pn,k

(− z)
n

+ μz 
∞

n�0

(c)qn,k

Γk(μn + ] + k + 1)(δ)pn,k

n(− z)
n− 1

(] + 1)J
μ,c,δ
k,]+k,q,p(z) + μz

d

dz
J
μ,c,δ
k,]+k,q,p(z) � 

∞

n�0

(c)qn,k

Γk(μn + ] + k + 1)(δ)pn,k

(− z)
n
(μn + ] + 1).

(21)

In view of Γk(z + k) � zΓk(z), we acquire at our stated
result (19).

Using Definition 3 on the L.H.S of (20), we get

J
μ,c+k,δ+k

k,],q,p (z) − J
μ,c,δ
k,],q,p(z) � 

∞

n�0

(c + k)qn,k

Γk(μn + ] + 1)(δ + k)pn,k

(− z)
n

− 
∞

n�0

(c)qn,k

Γk(μn + ] + 1)(δ)pn,k

(− z)
n

� 
∞

n�0

(− z)
n

Γk(μn + ] + 1)

(c + k)qn,k − (c)qn,k

(δ + k)pn,k − (δ)pn,k

 .

(22)

Now, by using the result given in [6], we get

J
μ,c+k,δ+k

k,],q,p (z) − J
μ,c,δ
k,],q,p(z) � 

∞

n�1

(− z)
n

Γk(μn + ] + 1)

δqnk(c)qn,k

cpnk(δ)pn,k

 

� 
∞

n�0

(− z)
n+1

Γk(μ(n + 1) + ] + 1)

δq(c)q(n+1),k

cp(δ)p(n+1),k

 .

(23)
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Using the result (see [6]), we get

J
μ,c+k,δ+k

k,],q,p (z) − J
μ,c,δ
k,],q,p(z) � z

δq

cp


∞

n�0

(− z)
n

Γk(μ(n + 1) + ] + 1)

(c)q,k(c + qk)qn,k

(δ)p,k(δ + pk)pn,k

 

� z
δq(c)q,k

cp(δ)p,k



∞

n�0

(− z)
n

Γk(μ(n + 1) + ] + 1)

(c + qk)qn,k

(δ + pk)pn,k

 

J
μ,c+k,δ+k

k,],q,p (z) − J
μ,c,δ
k,],q,p(z) � z

δq(c)q,k

cp(δ)p,k

J
μ,c+qk,δ+pk

k,μ+],q,p (z),

(24)

which is our stated result (20). □

Theorem 2. Let k ∈ R, μ, ], c, δ ∈ C,R(μ)> 0,

R(])≥ − 1,R(c)> 0,R(δ)> 0; p, q> 0 and q<R(μ) + p,
then for m ∈ N, we have

d

dz
J
μ,c,δ
k,],q,p(z)  �

(c)q,k

(δ)p,k

(n + 1)J
μ,c+qk,δ+pk

k,μ+],q,p (z) (25)

and

d

dz
 

m

J
μ,c,δ
k,],q,p(z) �

(c)qm,k

(δ)pm,k

(n + 1)mJ
μ,c+qm,δ+pm

k,μm+],q,p (z). (26)

Proof. With the help of (18) on the L.H.S of (25), we get

d

dz
J
μ,c,δ
k,],q,p(z)  �

d

dz


∞

n�0

(c)qn,k(− z)
n

Γk(μn + ] + 1)(δ)pn,k

� 
∞

n�1

(c)qn,k(− n)(− z)
n− 1

Γk(μn + ] + 1)(δ)pn,k

� 
∞

n�0

(c)q(n+1),k (− 1)
n+1

(n + 1)(z)
n

Γk(μn + μ + ] + 1)(δ)p(n+1),k

d

dz
J
μ,c,δ
k,],q,p(z)  �

(c)q,k

(δ)p,k



∞

n�0

(− 1)
n+1

(c + qk)qn,k(n + 1)z
n

Γk(μn + μ + ] + 1)(δ + pk)pn,k

,

�
(c)q,k

(δ)p,k

(n + 1)J
μ,c+qk,δ+pk

k,μ+],q,p (z),

(27)

which is our stated result (25). Now, by using Definition 3 on the L.H.S of (26), we get
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d

dz
 

m

J
μ,c,δ
k,],q,p(z) �

d

dz
 

m



∞

n�0

(c)qn,k

Γk(μn + ] + 1)(δ)pn,k

(− z)
n

� 
∞

n�m

n(n − 1), . . . , (n − m + 1)(c)qn,k(− 1)
n
z

n− m

Γk(μn + ] + 1)(δ)pn,k

� 
∞

n�0

(n + m)(n + m − 1), . . . , (n + 1)(c)q(n+m),k(− 1)
(n+m)

z
n

Γk(μ(n + m) + ] + 1)(δ)p(n+m),k

d

dz
 

m

J
μ,c,δ
k,],q,p(z) �

(c)qm,k

(δ)pm,k



∞

n�0

(n + 1)m(c + qm)qn,k(− z)
n

Γk(μ(n + m) + ] + 1)(δ + pm)pn,k

�
(c)qm,k

(δ)pm,k

(n + 1)mJ
μ,c+qm,δ+pm

k,μm+],q,p (z),

(28)

which is our stated result (26). □

3. Integral Transform of a Generalized
k-Bessel–Maitland Function

.is section manages with some integral transforms likewise
Laplace transform, Whittaker transform, beta transform,
Hankel transform, K-transform, and fractional Fourier
transform as follows.

Theorem 3 (k-beta transform). Let k ∈ R,
μ, ], β, c, δ ∈ C,R(μ)> 0,R(])≥ − 1, R(c)> 0,R(δ)> 0,

R(β)> 0, p, q> 0, and q<R(μ) + p, then we have

1
Γk(β)


1

0
t
v/k

(1 − t)
(β/k)− 1

J
μ,c,δ
k,],q,p zt

μ/k
 dt � J

μ,c,δ
k,]+β,q,p(z)

(29)

and
1
Γk(β)


x

t
(x − s)

(β/k)− 1
(s − t)

v/k
J
μ,c,δ
k,],q,p z(s − t)

μ/k
 ds

� (x − t)
β+]/k

J
μ,c,δ
k,]+β,q,p z(x − t)

μ/k
 .

(30)

Proof. By using (18) on the L.H.S of (29) and rearranging in
reference to integration and summation (which is ensured
under the condition), we acquire

1
Γk(β)


1

0
t
v/k

(1 − t)
(β/k)− 1

J
μ,c,δ
k,],q,p zt

μ/k
 dt �

1
Γk(β)



∞

n�0

(c)qn,k

Γk(μn + ] + 1)(δ)pn,k

(− z)
n


1

0
t
]+μn/k

(1 − t)
β/k− 1dt

�
1
Γk(β)



∞

n�0

(c)qn,k

Γk(μn + ] + 1)(δ)pn,k

(− z)
n
Bk(μn + ] + 1, β)

� J
μ,c,δ
k,]+β,q,p

(z),

(31)
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which is our stated result (29).
In the event that we set the transformation

w � s − t/x − t on the L.H.S of equation (30) and using
Definition 3, we acquire

(x − t)
β+]/k


1

0
w

v/k
(1 − w)

(β/k)− 1
J
μ,c,δ
k,],q,p z(w(x − t))

μ/k
 dw

� (x − t)
β+]/k



∞

n�0

(c)qn,k − z(x − t)
μ/k

 
n

Γk(μn + ] + 1)(δ)pn,k


1

0
w

μn+]/k
(1 − w)

(β/k)− 1dw

� (x − t)
β+]/k



∞

n�0

(c)qn,k − z(x − t)
μ/k

 
n

Γk(μn + ] + 1)(δ)pn,k

Bk(μn + ] + 1, β)

� (x − t)
β+]/k



∞

n�0

(c)qn,k − z(x − t)
μ/k

 
n

Γk(μn + ] + 1)(δ)pn,k

Γk(μn + ] + 1)Γk(β)

Γk(μn + β + ] + 1)
,

(32)

which is our stated result (30). □ Theorem 4 (Laplace Transform). Let k ∈ R,
μ, ], α, β, c, δ ∈ C,R(μ)> 0,R(])≥ − 1, R(c)> 0,R(δ)> 0,

R(α)> 0,R(β)> 0, p, q> 0, and q<R(μ) + p, then we have


∞

0
z
α− 1

e
− sz

J
μ,c,δ
k,],q,p xz

β
 dz �

Γ(δ/k)

sαΓ(c/k)3
Ψ2

((c/k), q), (α, β), (1, 1)

− xk
q− p− μ/k

s
β

] + 1
k

,
μ
k

 ,
δ
k

, p 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

Proof. By using (18) and the definition of Laplace transform

L[f(t)] � 
∞

0
e

− st
f(t)dt, (34)

we get


∞

0
z
α− 1

e
− sz

J
μ,c,δ
k,],q,p xz

β
 dz � 

∞

n�0

(c)qn,k(− x)
n

Γk(μn + ] + 1)(δ)pn,k


∞

0
e

− sz
z
α+βn− 1dz

� 
∞

n�0

(c)qn,k(− x)
n

Γk(μn + ] + 1)(δ)pn,k

Γ(α + βn)

s
α+βn


∞

0
z
α− 1

e
− sz

J
μ,c,δ
k,],q,p xz

β
 dz �

Γ(δ/k)

s
αΓ(c/k)



∞

n�0

k
qnΓ((c/k) + qn)(− x)

n

k
μn/kΓ(μn + ] + 1/k)k

pnΓ((δ/k) + pn)

Γ(α + βn)

s
βn

.

(35)
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Summing up the above the series with the help of (1), we
easily arrive at our stated result (33). □

Theorem 5 (Hankel transform). If k ∈ R, μ, ], β, c, δ, η,

λ ∈ C,R(μ)> 0,R(])≥ − 1,R(c)> 0,R(δ)> 0, R(β)> 0,

R(η)> 0,R(λ)> 0; a, b> 0, p, q> 0, and q<R(μ) + p, then
we have


∞

0
z
η− 1

Jλ(az)J
μ,c,δ
k,],q,p bz

β
 dz �

2η− 1Γ(δ/k)

a
ηΓ(c/k)k

(]+1/k)− 1

×3Ψ3

c

k
, q ,

λ + η
2

,
β
2

 , (1, 1)

k
q− p− μ/k

− b
2
a

 
β

] + 1
k

,
μ
k

 ,
δ
k

, p , 1 +
λ − η
2

, −
β
2

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(36)

Proof. Applying Definition 3, we have


∞

0
z
η− 1

Jλ(az)J
μ,c,δ
k,],q,p bz

β
 dz

� 
∞

n�0

(c)qn,k(− b)
n

Γk(μn + ] + 1)(δ)pn,k


∞

0
z
η+βn− 1

Jλ(az)dz.

(37)

By following the given formula [13],


∞

0
t
s− 1

J](αt)dt �
2s− 1α− sΓ(] + s/2)

Γ(1 + ] − s/2)
,R(])<R(s)<

3
2
, α> 0,

(38)

we get


∞

0
z
η− 1

Jλ(az)J
μ,c,δ
k,],q,p bz

β
 dz �

2η− 1Γ(δ/k)

a
ηΓ(c/k)k

(]+1/k)− 1

· 
∞

n�0

k
qnΓ(c/k + qn)(− b)

n

k
μn/kΓ(μn + ] + 1/k)k

pnΓ(δ/k + pn)

×
2βnΓ(λ + η + βn/2)

a
βnΓ(1 +(λ − η − βn/2))

.

(39)

In view of (16), we get our stated result (36). □

Theorem 6 (K-transform). Let k ∈ R, μ, ], c, δ, η,

λ ∈ C,R(μ)> 0,R(])≥ − 1,R (c)> 0,R(δ)> 0, R(η ± λ)

> 0; a> 0, b> 0, w> 0, p, q> 0, and q<R(μ) + p, then we
have


∞

0
z
η− 1

Kλ(az)J
μ,c,δ
k,],q,p bz

w
( dz �

2η− 2Γ(δ/k)

a
ηΓ(c/k)k

]+1/k− 1

×3Ψ2

c

k
, q ,

η ± λ
2

,
w

2
 , (1, 1)

− bk
q− p− μ/k 2

a
 

w

] + 1
k

,
μ
k

 ,
δ
k

, p 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(40)

Proof. Applying Definition 3, we have


∞

0
z
η− 1

Kλ(az)J
μ,c,δ
k,],q,p bz

w
( dz

� 
∞

n�0

(c)qn,k(− b)
n

Γk(μn + ] + 1)(δ)pn,k


∞

0
z
η+wn− 1

Kλ(az)dz.

(41)

By using the following integral (given in [13])


∞

0
x
ρ− 1

K](x)dx � 2ρ− 2Γ
ρ ± ]
2

 , (42)

in the above equation, we arrive at
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∞

0
z
η− 1

Kλ(az)J
μ,c,δ
k,],q,p bz

w
( dz �

2η− 2Γ(δ/k)

a
ηΓ(c/k)k

(]+1/k)− 1

× 
∞

n�0

k
qnΓ(c/k + qn)(− b)

n

k
μn/kΓ(μn + ] + 1/k)k

pnΓ(δ/k + pn)

2wn

a
wn Γ

η + wn ± λ
2

 .

(43)

In view of (16), we get our stated result (40). □

Theorem 7 (Whittaker transform). Let k ∈ R,
μ, ], α, c, δ, λ, ρ ∈ C,R(μ)> 0,R(])≥ − 1,R

(c)> 0,R(δ)> 0,R(α ± m)> − (1/2); p, q> 0; and
q<R(α) + p, then we have


∞

0
t
α− 1

e
− st/2

Wλ,m(st)J
μ,c,δ
k,],q,p wt

ρ
( dt �

Γ(δ/k)

s
αΓ(c/k)k

]+1/k− 1

×4Ψ3

c

k
, q ,

1
2
± m + α, ρ , (1, 1)

k
q− p− μ/k

−
w

s
ρ 

] + 1
k

,
μ
k

 ,
δ
k

, p , (1 − λ + α, ρ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(44)

Proof. Applying Definition 3 on the L.H.S of (44) and by
setting st � z, we get


∞

0
e

− (z/2) z

s
 

α− 1
Wλ,m(z)J

μ,c,δ
k,],q,p w

z

s
 

ρ
 

dz

s

� s
− α



∞

n�0

(c)qn,k − w/sρ( 
n

Γk(μn + ] + 1)(δ)pn,k

× 
∞

0
e

− (z/2)
z
α+ρn− 1

Wλ,m(z)dz.

(45)

By using the following formula (given in [11])


∞

0
e

− (x/2)
x
]− 1

Wλ,m(x)dx �
Γ(1/2 ± m + ])

Γ(1 − λ + ])
, (46)

we get


∞

0
e

− (z/2) z

s
 

α− 1
Wλ,m(z)J

μ,c,δ
],q,p w

z

s
 

ρ
 

dz

s
�
Γ(δ/k)

s
αΓ(c/k)k

(]+1/k)− 1

× 
∞

n�0

k
qnΓ(c/k + qn) − w/sρ( 

n

k
μn/kΓ(μn + ] + 1/k)k

pnΓ(δ/k + pn

Γ(1/2 ± m + α + ρn)

Γ(1 − λ + α + ρn)
.

(47)
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In view of (16), we get our stated result. □ Theorem 8. Let k ∈ R, μ, ], α, c, δ, λ, ρ ∈ C, R(μ)> 0,

R(])≥ − 1,R(c)> 0,R(δ)> 0,R(α + m)> − (1/2), p, q

> 0, and q<R(μ) + p, then we have


∞

0
t
α− 1

e
− st/2

Mλ,m(st)J
μ,c,δ
k,],q,p wt

ρ
( dt

�
Γ(2m + 1)Γ(δ/k)

s
αΓ(c/k)Γ(m + λ + 1/2)k

(]+1/k)− 1

×4Ψ3

c

k
, q , m + α +

1
2
, ρ , (λ − α, − ρ), (1, 1)

k
q− p− μ/k

−
w

s
ρ 

] + 1
k

,
μ
k

 ,
δ
k

, p , m − α +
1
2
, − ρ 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(48)

Proof. Applying Definition 3 on the L.H.S of (48) and by
setting st � z, we get


∞

0
e

− (z/2) z

s
 

α− 1
Mλ,m(z)J

μ,c,δ
k,],q,p w

z

s
 

ρ
 

dz

s

� s
− α



∞

n�0

(c)qn,k − w/sρ( 
n

Γk(μn + ] + 1)(δ)pn,k


∞

0
e

− (z/2)
z
α+ρn− 1

Mλ,m(z)dz.

(49)

By using the following integral (given in [13])


∞

0
e

− (x/2)
x
]− 1

Mλ,m(x)dx

�
Γ(2m + 1)Γ(m + ] + 1/2)Γ(λ − ])

Γ(m − ] + 1/2)Γ(m + λ + 1/2)
,

(50)

we get


∞

0
e

− (z/2) z

s
 

α− 1
Mλ,m(z)J

μ,c,δ
k,],q,p w

z

s
 

ρ
 

dz

s

� s
− α



∞

n�0

(c)qn,k − w/sρ( 
n

Γk(μn + ] + 1)(δ)pn,k

Γ(2m + 1)Γ(m + α + ρn + 1/2)Γ(λ − α − ρn)

Γ(m − α − ρn + 1/2)Γ(m + λ + 1/2)


∞

0
e

− (z/2) z

s
 

α− 1
Mλ,m(z)J

μ,c,δ
k,],q,p w

z

s
 

ρ
 

dz

s

�
Γ(2m + 1)Γ(δ/k)

s
αΓ(c/k)Γ(m + λ + 1/2)k

(]+1/k)− 1 

∞

n�0

k
qnΓ((c/k) + qn) − w/sρ( ( 

n

k
μn/kΓ(μn + ] + 1/k)k

pnΓ(δ/k + pn)

×
Γ(m + α + ρn + 1/2)Γ(λ − α − ρn))

Γ(m − α − ρn + 1/2)
.

(51)

Finally, by applying Definition 1.17, we get our stated
result. □

Theorem 9. Let k ∈ R, μ, ], α, c, δ, ρ ∈ C,R(μ)> 0,

R(])≥ − 1,R(c)> 0,R(δ)> 0,R(α)> − 1,R(α/2 ± m)>
− 1,R(α/2 ± λ)> − 1; p, q> 0; and q<R(μ) + p, then we
have
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∞

0
t
α− 1

Wλ,m(st)W− λ,m(st)J
μ,c,δ
k,],q,p wt

ρ
( dt

�
Γ(δ/k)

s
αΓ(c/k)k

(]+1/k)− 1 5Ψ4

c

k
, q ,

α
2
± m + 1,

ρ
2

 , (α + 1, ρ), (1, 1)

k
q− p− μ/k

−
w

s
ρ 

] + 1
k

,
μ
k

 ,
δ
k

, p , 1 +
α
2
± λ,

ρ
2

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(52)

Proof. Applying Definition 3 on the L.H.S of (44) and by
setting st � z, we get


∞

0

z

s
 

α− 1
Wλ,m(z)W− λ,m(z)J

μ,c,δ
k,],q,p w

z

s
 

ρ
 

dz

s

� s
− α



∞

n�0

(c)qn,k − w/sρ( 
n

Γk(μn + ] + 1)(δ)pn,k

· 
∞

0
z
α+ρn− 1

Wλ,m(z)W− λ,m(z)dz.

(53)

By using the integral given in [11]


∞

0
x
]− 1

Wλ,m(x)W− λ,m(x)dx �
Γ((] + 1/2) ± m)Γ(] + 1)

Γ(1 +(v/2) ± λ)
,

(54)

we get

�
Γ(δ/k)

s
αΓ(c/k)k

]+1/k− 1 

∞

n�0

k
qnΓ(c/k + qn) − w/sρ( 

n

k
μn/kΓ(μn + ] + 1/k)k

pnΓ(δ/k + pn)

·
Γ(α + ρn + 1/2 ± m)Γ(α + ρn + 1)

Γ(1 +(α + ρn/2) ± λ)
.

(55)

Now, by summing up the above series with the help of
(16), we get our stated result. □

Theorem 10 (fractional Fourier transform). De FFT of the
generalized k-Bessel–Maitland function for t< 0 is given by

5α J
μ,c,δ
k,],q,p(z)  � 

∞

n�0

n!(c)qn,ki
− n− 1

w
− (n+1)/α

Γk(μn + ] + 1)(δ)pn,k

. (56)

Proof. From (11) and (18), we have

5α J
μ,c,δ
k,],q,p(z)  � 

R
e

iw1/αz


∞

n�0

(c)qn,k

Γk(μn + ] + 1)(δ)pn,k

(− z)
ndz

� 
∞

n�0

(c)qn,k(− 1)
n

Γk(μn + ] + 1)(δ)pn,k


0

− ∞
e

iw1/αz
z

ndz.

(57)

On changing variables iw1/αz � − t and iw1/αdz � − dt,
we arrive at

5α J
μ,c,δ
k,],q,p(z)  � 

∞

n�0

(c)qn,ki
− n− 1

w
− (n+1)/α

Γk(μn + ] + 1)(δ)pn,k


∞

0
e

− t
t
ndt

� 
∞

n�0

n!(c)qn,ki
− n− 1

w
− (n+1)/α

Γk(μn + ] + 1)(δ)pn,k

,

(58)

which is our stated result (56). □

4. K-Fractional Integration and
K-Fractional Differentiation

Recently, k-fractional calculus gained more attention due to
its wide variety of applications in various fields [14, 17]. .e
k-fractional calculus of various types of special functions is
used in many research papers [4, 28]. For more details about
the recent works in the field of dynamic system theory,
stochastic systems, non-equilibrium statistical mechanics,
and quantum mechanics, we refer the interesting readers to
[9, 17, 24]. In this section, we deduce the outcomes for
k-fractional integration and k-fractional differentiation of
the above-said function in an orderly way.

Theorem 11 (K-fractional integration). If k, η ∈ R;
c, δ, μ, ], ∈ C, R(c)> 0,R(δ)> 0,R(μ)> 0,R(])≥ − 1,
p, q> 0, and q<R(μ) + p, then
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I
η
k z

(v/k)− 1
J
μ,c,δ
k,]− 1,q,p z

μ/k
   � z

(]+η/k)− 1
J
μ,c,δ
k,]+η− 1,q,p z

μ/k
 .

(59)

Proof. From (9) and (18), we have

I
η
k z

v/k− 1
J
μ,c,δ
k,]− 1,q,p z

μ/k
   �

1
kΓk(η)


z

0
(z − t)

η/k− 1


∞

n�0

(c)qn,k

Γk(μn + ])(δ)pn,k

t
(μn+]/k)− 1dt

�
1

kΓk(η)


∞

n�0

(c)qn,k

Γk(μn + ])(δ)pn,k


z

0
(z − t)

(η/k)− 1
t
(μn+]/k)− 1dt.

(60)

Putting t � zx and dt � zdx in the above equation, we
get

�
1

kΓk(η)


∞

n�0

(− 1)
n
(c)qn,k

Γk(μn + ])(δ)pn,k

z
(μn+]+η/k)− 1


1

0
(1 − x)

(η/k)− 1
x

(μn+]/k)− 1dx

�
1

kΓk(η)


∞

n�0

(− 1)
n
(c)qn,k

Γk(μn + ])(δ)pn,k

z
μn+]+η/k− 1

B
η
k

,
μn + ]

k
 

�
1

kΓk(η)


∞

n�0

(− 1)
n
(c)qn,k

Γk(μn + ])(δ)pn,k

z
μn+]+η/k− 1Γ(η/k)Γ(μn + ]/k)

Γ(μn + ] + η/k)
.

(61)

By using Definition 2, we have

I
η
k z

(v/k)− 1
J
μ,c,δ
k,]− 1,q,p z

μ/k
   �

1
kΓk(η)



∞

n�0

(− 1)
n
(c)qn,k

Γk(μn + ])(δ)pn,k

z
(μn+]+η/k)− 1k

(μn+]+η/k)− 1Γk(η)Γk(μn + ])

k
(μn+]+η/k)− 2Γk(μn + ] + η)

I
η
k z

(v/k)− 1
J
μ,c,δ
k,]− 1,q,p z

μ/k
   � z

(]+η/k)− 1
J
μ,c,δ
k,]+η− 1,q,p z

μ/k
 ,

(62)

which is our stated result. □

Theorem 12 (K-fractional differentiation). If k, η ∈ R;
c, δ, μ, ] ∈ C, R(c)> 0,R(δ)> 0,R(μ)> 0,R(])≥ − 1,
p, q> 0, and q<R(μ) + p, then

D
η
k z

(v/k)− 1
J
μ,c,δ
k,]− 1,q,p z

μ/k
   �

z
(]− η+1/k)− 2

k
J
μ,c,δ
k,]− η− k− 1,q,p z

μ/k
 .

(63)

Proof. From (8), (9), and (18), we have

D
η
k z

]/k− 1
J
μ,c,δ
k,]− 1,q,p z

μ/k
   �

1
kΓk(1 − η)

d

dz


z

0
(z − t)

(1− η/k)− 1


∞

n�0

(− 1)
n
(c)qn,k

Γk(μn + ])(δ)pn,k

t
(μn+]/k)− 1dt

�
1

kΓk(1 − η)

d

dz


∞

n�0

(− 1)
n
(c)qn,k

Γk(μn + ])(δ)pn,k


z

0
(z − t)

(1− η/k)− 1
t
(μn+]/k)− 1dt.

(64)

Putting t � zx and dt � zdx in the above equation, we
get
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∞
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n
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Γk(μn + ])(δ)pn,k

d

dz
z

(μn+]− η+1/k)− 1

1

0
(1 − x)

(1− η/k)− 1
x

(μn+]/k)− 1dx

�
1

kΓk(1 − η)


∞

n�0
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n
(c)qn,k

Γk(μn + ])(δ)pn,k

d
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z
μn+]− η+1/k− 1

B
1 − η

k
,
μn + ]
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�
1

kΓk(1 − η)


∞

n�0

(− 1)
n
(c)qn,k

Γk(μn + ])(δ)pn,k

μn + ] − η + 1
k

− 1 z
μn+]− η+1/k− 2 Γ(1 − η/k)Γ(μn + ]/k)

Γ(μn + ] − η + 1/k − 1 + 1)
.

(65)

Using Definition 2 and the result Γ(n + 1) � nΓ(n) in the
above expression, we get

�
1

Γk(1 − η)


∞

n�0
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n
(c)qn,k

Γk(μn + ])(δ)pn,k
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z
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·
k
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k
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�
z
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∞

n�0

(− 1)
n
(c)qn,k

Γk(μn + ] − η − k + 1)(δ)pn,k

z
μn/k

D
η
k z
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J
μ,c,δ
k,]− 1,q,p z

μ/k
   �

z
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k
J
μ,c,δ
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μ/k
 .

(66)

.is completes the proof. □

5. Concluding Remarks

In the present article, we have established generalized
k-Bessel–Maitland function J

μ,c,q

k,],δ,p(z) and its intriguing
properties. Also, we have pointed out several integral
transform such as beta transform, Laplace transform,
Whittaker transform, K-transform, and fractional Fourier
transform. In the last section, we deduced the outcomes for
k-fractional integration and k-fractional differentiation of
k-Bessel–Maitland function. Various special cases of the
papers related results may be analyzed by taking appropriate
values of the relevant parameters. For example, as given in
Remarks 1.5, 1.6, and 1.7, we obtain the undeniable result
due to Nisar et al. [15]. For several other special cases, we
refer to [4, 12, 23, 24, 26, 28, 29] and leave the findings to
interested readers.
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A new lifetime distribution with two parameters, known as the sine half-logistic inverse Rayleigh distribution, is proposed and
studied as an extension of the half-logistic inverse Rayleigh model. )e sine half-logistic inverse Rayleigh model is a new inverse
Rayleigh distribution extension. In the application section, we show that the sine half-logistic inverse Rayleigh distribution is more
flexible than the half-logistic inverse Rayleigh and inverse Rayleigh distributions. )e statistical properties of the half-logistic
inverse Rayleigh model are calculated, including the quantile function, moments, moment generating function, incomplete
moment, and Lorenz and Bonferroni curves. Entropy measures such as Rényi entropy, Havrda and Charvat entropy, Arimoto
entropy, and Tsallis entropy are proposed for the sine half-logistic inverse Rayleigh distribution. To estimate the sine half-logistic
inverse Rayleigh distribution parameters, statistical inference using the maximum likelihood method is used. Applications of the
sine half-logistic inverse Rayleigh model to real datasets demonstrate the flexibility of the sine half-logistic inverse Rayleigh
distribution by comparing it to well-known models such as half-logistic inverse Rayleigh, type II Topp–Leone inverse Rayleigh,
transmuted inverse Rayleigh, and inverse Rayleigh distributions.

1. Introduction

In recent years, inverse and half-inverse problems are
studied in general operator theory [1–3], and many statis-
ticians are focusing on generated families of distributions
such as Kumaraswamy-G [4], T-X family [5], sine-G [6],
type II half logistic-G [7], Weibull-G [8], the Burr type X-G
[9], a new power Topp–Leone-G [10], truncated Cauchy
power-G [11], beta generalized Marshal-
l–Olkin–Kumaraswamy-G [12], transmuted odd Fréchet-G
[13], new Kumaraswamy-G [14], Kumaraswamy Kumar-
aswamy-G [15], generalized Kumaraswamy-G [16], sine
Topp–Leone-G [17], generalized transmuted exponentiated
G [18], and Kumaraswamy transmuted-G [19].

A new generated family of distributions which is called
the Sine-G (SG) family was introduced in [6]. )e distri-
bution function (CDF) of SG is

F(x; ε) � sin
π
2

G(x; ε) , x ∈ R, (1)

where G(x; ε) is the CDF of baseline model with parameter
vector ε and F(x; ε) is the CDF derived by the T-X generator
proposed in [3]. )e probability density function (PDF) of
the SG is

f(x; ε) �
π
2

g(x; ε)cos
π
2

G(x; ε) , x ∈ R, (2)

respectively.
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)e inverse Rayleigh (IR) distribution is a useful model
for calculating lifetimes. Several authors have developed a
number of extensions for the IR distribution in recent years,
using various methods of generalization (see, for example,
beta IR in [20], transmuted IR (TIR) in [21], modified IR in
[22], transmuted modified IR in [23], Kumaraswamy
exponentiated IR in [24], weighted IR in [25], odd Fréchet IR
in [26], and half-logistic IR (HLIR) in [27]).

)e CDF and PDF of HLIR distribution are given by

G(x; λ, α) �
1 − 1 − e

− (α/x)2

 
λ

1 + 1 − e
− (α/x)2

 
λ, x, λ, α> 0, (3)

and

g(x; λ, α) �
4λα2x− 3

e
− (α/x)2 1 − e

− (α/x)2

 
λ− 1

1 + 1 − e
− (α/x)2

 
λ

 

2 , x, λ, α> 0,

(4)

where α is a scale parameter and λ is a shape parameter.
We now present the sine half-logistic IR (SHLIR) dis-

tribution, a new lifetime model with two parameters.
Inserting (3) into (1) yields the cdf of the SHLIR distribution
as

F(x; λ, α) � sin
π
2

1 − 1 − e
− (α/x)2

 
λ

1 + 1 − e
− (α/x)2

 
λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x, λ, α> 0.

(5)

)e corresponding PDF to (5) is

f(x; λ, α) �
2πλα2x− 3

e
− (α/x)2 1 − e

− (α/x)2

 
λ− 1

1 + 1 − e
− (α/x)2

 
λ

 

2 cos
π
2

1 − 1 − e
− (α/x)2

 
λ

1 + 1 − e
− (α/x)2

 
λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x, λ, α> 0. (6)

)e SHLIR distribution’s survival function (SF), hazard
rate function (HRF), reversed HRF, and cumulative HRF are
as follows:

R(x; λ, α) � 1 − sin
π
2

1 − 1 − e
− (α/x)2

 
λ

1 + 1 − e
− (α/x)2

 
λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

h(x; λ, α) �

2πλα2x− 3
e

− (α/x)2 1 − e
− (α/x)2

 
λ− 1

cos (π/2) 1 − 1 − e
− (α/x)2

 
λ

 /1 + 1 − e
− (α/x)2

 
λ

  

1 + 1 − e
− (α/x)2

 
λ

 

2

1 − sin (π/2) 1 − 1 − e
− (α/x)2

 
λ

 / 1 + 1 − e
− (α/x)2

 
λ

    

, (8)

τ(x; λ, α) �
2πλα2x− 3

e
− (α/x)2 1 − e

− (α/x)2

 
λ− 1

1 + 1 − e
− (α/x)2

 
λ

 

2 cot
π
2

1 − 1 − e
− (α/x)2

 
λ

1 + 1 − e
− (α/x)2

 
λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)
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H(x; λ, α) � − ln 1 − sin
π
2

1 − 1 − e
− (α/x)2

 
λ

1 + 1 − e
− (α/x)2

 
λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(10)

Figures 1 and 2 show plots of the SHLIR PDF and HRF
for various parameter values.

We can conclude from Figures 1 and 2 that the PDF of
the SHLIR distribution can be unimodel and right skewed.
SHLIR distribution HRF can be J-shaped and increasing.

)e remainder of this paper is structured as follows.
Section 2 discusses some of the structural characteristics of
the SHLIR distribution, such as the quantile function,
moments, incomplete moments, Lorenz and Bonferroni
curves, and various measures of entropy. Section 3 discusses
maximum likelihood (ML) parameter estimators for the
SHLIR distribution. Section 4 implements simulation
schemes. In Section 5, two sets of real-world data

applications are used to demonstrate the potential of the
SHLIR distribution in comparison to other distributions.
)e article concludes with some closing remarks.

2. Statistical Characteristics

Some statistical properties of the SHLIR distribution are
obtained in this section.

2.1. Linear Representation. In this section, we will go over
the most important linear PDF combinations for SHLIR
distribution.

)e sine function’s series:

sin(Z) � 
∞

i�0

(− 1)
i

(2i)!
Z
2i

. (11)

By inserting (11) in (6), we get

f(x) � 
∞

i�0

(− 1)
iπ2i+1

(2i)!22i− 1

λα2x− 3
e

− (α/x)2 1 − e
− (α/x)2

 
λ− 1

1 − 1 − e
− (α/x)2

 
λ

 

2i

1 + 1 − e
− (α/x)2

 
λ

 

2(i+1)
, (12)

where f(x) � f(x; λ, α).

Consider the following well-known binomial expansions
(for 0< a< 1):

(1 + a)
− n

� 
∞

j�0
(− 1)

i n + j − 1
j

 a
j
. (13)

)us, inserting (13) in (12), we get

f(x) � 
∞

i,j�0

λα2(− 1)
i+jπ2i+1

x
3
(2i)!22i− 1

2i + j + 1

j

⎛⎝ ⎞⎠e
− (α/x)2 1 − e

− (α/x)2

 
λ(j+1)− 1

1 − 1 − e
− (α/x)2

 
λ

 

2i

. (14)

Again, we can using the binomial expansion in the
following term:

1 − 1 − e
− (α/x)2

 
λ

 

2i

� 
∞

k�0
(− 1)

k 2i

k
  1 − e

− (α/x)2

 
kλ

.

(15)

)erefore, by inserting (15) in (14),

f(x) � 
∞

i,j,k�0

(− 1)
i+j+kπ2i+1

(2i)!22i− 1

2i + j + 1

j

⎛⎝ ⎞⎠
2i

k

⎛⎝ ⎞⎠λα2x− 3
e

− (α/x)2 1 − e
− (α/x)2

 
λ(k+j+1)− 1

. (16)

Again, we can using the binomial expansion in the
following term:
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1 − e
− (α/x)2

 
λ(k+j+1)− 1

� 

∞

m�0
(− 1)

m λ(k + j + 1) − 1
m

 e
− m(α/x)2

. (17)

)erefore, by inserting (17) in (16), we can write the PDF
of SHLIR as

f(x) � 2α2 

∞

i�0
Δmx

− 3
e

− (m+1)(α/x)2
, (18)

where Δm � 
∞
i,j,k�0((− 1)i +j + k + mπ2i+1)/((2i) !22i)

2i + j + 1
j

 
2i

k
 

λ(k + j + 1) − 1
m

 λ.
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Figure 1: PDF plots for SHLIR distribution.
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Figure 2: HRF plots for the SHLIR distribution.
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2.2. Quantile Function. By inverting (5), we can obtain the
quantile function of the SHLIR distribution, say Q(u) �

F− 1(u) of X, as follows:

Q(u) �
α

������������������������������������������

− ln 1 − 1 − (2/π)sin− 1
u / 1 +(2/π)sin− 1

u  
1/λ

 

 ,
(19)

where u is thought of as a uniform random variable on (0, 1).

2.3. Moments. If X has PDF (6), then its moment can be
calculated using the following relation.

μ\
r � E X

r
(  � 

∞

0
x

r
f(x)dx. (20)

Substituting (18) into (20) yields

μ\
r � 2α2 

∞

m�0
Δm 
∞

0
x

r− 3
e

− (m+1)(α/x)2dx. (21)

Let y � (α/x)2; then,

μ\
r � αr



∞

m�0
Δm 
∞

0
y

− r/2
e

− (m+1)ydy. (22)

)en, μ\
r becomes

μ\
r � αr



∞

m�0
Δm

Γ(1 − (r/2))

(m + 1)
1− (r/2)

,
r

2
< 1. (23)

)e SHLIR distribution’s moment generating function is
given by

MX(t) � 
∞

r�0

t
r

r!
E X

r
(  � αr



∞

r,m�0
Δm

t
r

r!

Γ(1 − (r/2))

(m + 1)
1− (r/2)

,
r

2
< 1. (24)

)e incomplete moments of SHLIR are defined by

ϕs(t) � 
t

0
x

s
f(x)dx. (25)

Using (18), φs(t) will be

φs(t) � 2α2 

∞

m�0
Δm 

t

0
x

s− 3
e

− (m+1)(α/x)2dx � αs


∞

m�0
Δm

Γ 1 − (s/2), (m + 1)(α/t)2 

(m + 1)
1− (s/2)

, (26)

where Γ(s, t) � 
t

0 xs− 1e− xdx is the lower incomplete
gamma function.

)e Lorenz and Bonferroni curves are obtained as
follows:

LF(x) �
φ1(x)

E(X)
�
α
∞
m�0Δm Γ (1/2), (m + 1)(α/t)2  /(m + 1)

1/2
 


∞
m�0Δm (α

��
π

√
)/(m + 1)

1/2
 

�

∞
m�0 ΔmΓ (1/2), (m + 1)(α/t)2  /(m + 1)

1/2
 


∞
m�0 Δm

��
π

√
( /(m + 1)

1/2
 

,

(27)

and

BF(x) �
LF(x)

F(x)
�


∞
m�0 ΔmΓ(1/2), (m + 1)(α/t)2 /(i + 1)

1/2

sin (π/2) 1 − 1 − e
− (α/x)2

 
λ

 / 1 + 1 − e
− (α/x)2

 
λ

   
∞
m�0 Δm

��
π

√
( /(m + 1)

1/2
.

(28)
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2.4. Entropies. )e entropy of the SHLIR model can be
measured by various measures such as Rényi entropy (RE)
[28], Havrda and Charvat entropy (HCE) [29], Arimoto
entropy (AE) [30], and Tsallis entropy (TE) [31]. )ese
measures of entropy are mentioned in Table 1.


∞
0 fc(x)dx is very complicated to calculate, so it will be

solved numerically.

3. Maximum Likelihood Estimation

To obtain the ML estimators (MLEs) of the SHLIR model
with parameters α and λ, let X1, . . ., Xn be observed values
from this distribution. As a result, the log-likelihood
function can be written as

ℓ � n log 2 π + n log λ + 2n log α − 3
n

i�1
log xi(  +(λ − 1) 

n

i�1
log Ti(  − 2

n

i�1
log 1 + Ti 

λ
  + 

n

i�1
log cos

π
2

1 − Ti 
λ

1 + Ti 
λ

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(29)

)eML equations of the SHLIR distribution are given by

zℓ
zα

�
2n

α
+ 2α(λ − 1) 

n

i�1

e
− α/xi( )

2

x
2
i Ti( 

− 4αλ
n

i�1

e
− α/xi( )

2

Ti 
λ− 1

x
2
i 1 + Ti 

λ
 

+ 2παλ
n

i�1

e
− α/xi( )

2

Ti 
λ− 1

x
2
i 1 + Ti 

λ
 

2 tan
π
2

1 − Ti 
λ

1 + Ti 
λ

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (30)

and

zℓ
zλ

�
n

λ
+ 
∞

i�0
log Ti(  − 2 

∞

i�0

Ti 
λ ln Ti 

1 + Ti 
λ + 2

n

i�1

Ti 
λ ln 1 − e

− α/xi( )
2

 

1 + Ti 
λ

 
2 tan

π
2

1 − Ti 
λ

1 + Ti 
λ

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (31)

where Ti � 1 − e− (α/xi)
2
. Equating zl/zα and zl/zλ with zeros

and solving simultaneously, we obtain the ML estimators of
α and λ.

4. Numerical Results

A numerical result is evaluated and compared to evaluate
and compare the behaviour of the estimates in terms of their
mean square errors (MSEs). From the SHLIR model, we
generate 5000 random samples X1, . . ., Xn of sizes n� 10, 20,
30, 50, 100, and 200. Four distinct sets of parameters are
taken into account, and their ML estimates (MLEs) are
computed. )e MSEs of the estimated unknown parameters
are then computed. In Table 2, the simulated outcomes are
listed, and the following observations are found.

For all estimates, theMSEs decrease as sample sizes increase.

5. Applications

Two data analyses are provided in this section to assess the
goodness of fit of the SHLIR model in comparison to some
known distributions such as type II Topp–Leone IR (TII-
TLIR) in [32], TIR, and IR distributions.

Maximized likelihood (A1), Akaike information criterion
(A2), consistent Akaike information criterion (A3), Bayesian
information criterion (A4), and Hannan–Quinn information

criterion (HQIC) were used to compare the models. )e
model with the lowest values of A1, A2, A3, A4, and A5 is
thought to be the best fit for the proposed data.

Data I: Bjerkedal [33] observed and reported the sur-
vival times (in days) of 72 guinea pigs infected with
virulent tubercle bacilli.
Data II: they represent the waiting times (in minutes)
before service of 100 bank customers, observed and
reported by Ghitany et al. [34].

Figures 3 and 4 show the fitted cumulative function
(ECDF) of the SHLIR distribution, as well as the ECDFs of
the compared models (HLIR, TIITLIR, TIR, and IR) for the
first and second datasets.

According to Figures 3 and 4, the SHLIR distribution is
the best fit when compared to the other models mentioned
above for the two datasets.

Tables 3 and 4 show the ML estimates and standard
errors (SEs) for the SHLIR model when compared to some
known distributions such as HLIR, TIITLIR, TIR, and IR.
Tables 5 and 6 also show the corresponding measures of fit
statistic using A1, A2, A3, A4, and A5.

Also, Tables 5 and 6 confirm that the SHLIR distribution
is the best fit among the other models for the two datasets, as
the SHLIR distribution has the lowest values of A1, A2, A3,
A4, and A5.
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Table 1: Various measures of entropy for a distribution with PDF f(x) at c.

)e measures Formula
RE IR(c) � (1/1 − c)Log[

∞
0 fc(x)dx], c≠ 1, c> 0.

HCE HCR(c) � (1/(21− c − 1))[
∞
0 fc(x)dx − 1], c≠ 1, c> 0.

AE AR(c) � (c/1 − c)[(
∞
0 fc(x)dx)1/c − 1], c≠ 1, c> 0.

TE TR(c) � (1/c − 1)[1 − 
∞
0 fc(x)dx], c≠ 1, c> 0.

Table 2: MLEs and MSEs of SHLIR distribution.

n
α � 1.5, λ � 0.8 α � 1.5, λ � 0.5 α � 1.5, λ � 1 α � 0.5, λ � 0.5

MLEs MSEs MLEs MSEs MLEs MSEs MLEs MSEs

10 1.716 0.305 1.825 0.617 1.699 0.266 0.609 0.072
0.994 0.290 0.618 0.091 1.317 0.708 0.618 0.091

20 1.630 0.133 1.685 0.214 1.619 0.105 0.564 0.026
0.907 0.082 0.557 0.024 1.139 0.127 0.557 0.024

30 1.570 0.068 1.593 0.107 1.558 0.058 0.533 0.015
0.859 0.037 0.539 0.017 1.089 0.077 0.539 0.017

50 1.548 0.040 1.560 0.059 1.540 0.035 0.522 6.335∗
0.841 0.023 0.520 6.079∗ 1.046 0.036 0.520 6.076∗

100 1.526 0.021 1.525 0.028 1.516 0.017 0.510 2.775∗
0.820 8.132∗ 0.510 2.736∗ 1.020 0.016 0.510 2.736∗

200 1.510 8.196∗ 1.519 0.014 1.514 6.478∗ 0.508 1.225∗
0.810 4.216∗ 0.507 1.178∗ 1.012 5.964∗ 0.507 1.178∗

∗ indicates that the value has multiplied by 10− 3.
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Figure 3: Fitted CDFs of models for data I.
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Table 3: )e MLE and SE of the model parameters for data I.

Model MLEs and SEs

SHLIR (α, λ)
0.439
(0.05)

0.487
(0.061)

HLIR (α, λ)
0.436
(0.05)

0.579
(0.07)

TIITLIR (α, λ)
0.325
(0.036)

0.404
(0.058)

TIR (α, λ)
0.352
(0.426)

− 0.942
(0.351)

IR (α)
0.68
(0.04)

Table 4: )e MLE and SE of the model parameters for data I.

Model MLEs and SEs

SHLIR (α, λ)
2.419
(0.226)

0.499
(0.052)

HLIR (α, λ)
2.404
(0.226)

0.589
(0.06)

TIITLIR (α, λ)
1.824
(0.162)

0.43
(0.051)

TIR (α, λ)
9.978
(1.136)

− 0.812
(0.085)

IR (α)
3.619
(0.181)
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Figure 4: Fitted CDFs of models for data II.

Table 5: )e values of A1, A2, A3, A4, and A5 for data I.

Goodness-of-fit criteria
Model A1 A2 A4 A5 A3
SHLIR 223.087 227.087 226.802 228.9 227.261
HLIR 260.586 264.586 264.301 266.399 264.76
TIITLIR 280.492 284.492 284.207 286.305 284.666
TIR 280.538 284.538 284.253 286.351 284.712
IR 327.518 329.518 329.375 330.424 329.575

8 Journal of Mathematics



6. Conclusion

)is article investigates a new two-model distribution
known as the sine half-logistic inverse Rayleigh (SHLIR).
Some fundamental statistical properties of the SHLIR model
are calculated and discussed, including the quantile func-
tion, moments, moment generating function, incomplete
moment, and Lorenz and Bonferroni curves. Entropy
measures such as Rényi entropy, Havrda and Charvat en-
tropy, Arimoto entropy, and Tsallis entropy are investigated.
)e model parameter estimation is discussed using the ML
method. Applications to two real datasets show that the
SHLIR model outperforms other well-known competitive
models such as the HLIR, TIITLIR, TIR, and IR models in
terms of fit.
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In this paper, we have studied a unified multi-index Mittag–Leffler function of several variables. An integral operator involving
this Mittag–Leffler function is defined, and then, certain properties of the operator are established. *e fractional differential
equations involving the multi-index Mittag–Leffler function of several variables are also solved. Our results are very general,
and these unify many known results. Some of the results are concluded at the end of the paper as special cases of our
primary results.

1. Introduction

Recently, Mittag–Leffler (M-L) functions have demonstrated
their special connection to fractional calculus, with a par-
ticular emphasis on fractional calculus problems arising
from implementations. Several new special functions and
implementations have been discovered over the last few
decades. *e advancement of research in the new era of
special functions and their applications in mathematical
modelling continues to attract many scientists from various
disciplines (see recent papers; [1–13]).

*e Mittag–Leffler function is extended to multi-index
function in the following form [14, 15]:

Ec,K α1, β1( , . . . , αm, βm( ; z  � 
∞

n�0

(c)Knz
n


m
j�1 Γ βj + nαj n!

,

(1)

where αj, βj, c ∈ C; R(αj)> 0; R(βj)> 0 (j � 1, . . . , m);

R(
m
j�1 αj)> 0; and K is an arbitrary complex number, i.e.,

K ∈ C.
If we make c � K � 1 in (1) it reduces to the multi-index

M-L function studied by Kiryakova [16, 17].
A multivariable extension of Mittag–Leffler function

widely studied by Gautam [18], and also by Saxena et al. ([19],
p. 547, Equation (7.1)), is defined and represented as follows:
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cr( ), lr( )
ρr( ),λ z1, . . . , zr(  � 

∞

k1 ,...kr�0

c1( l1k1
. . . cr( lrkr

Γ λ + k1ρ1 + · · · + krρr( 

z
k1
1 . . . z

kr

r

k1! . . . kr!
,

(2)

where λ, cj, lj, ρj ∈ CR(ρj)> 0; R(lj)> 0; λ ∉ Z−
0 � 0, −1,{

−2, . . .}; and j � 1, 2, . . . , r.
Motivated by the work on these functions, we consider

here the subsequent multivariable and multi-index Mit-
tag–Leffler function:

E
cr( ), lr( )
ρ(r)

1( ),..., ρ(r)
m( );β1 ,...,βm

z1, . . . , zr  � 
∞

k1 ,...,kr�0


r
i�1 ci( liki


m
j�1 Γ βj + 

r
i�1 ρ

(i)
j ki 

z
k1
1

k1!
. . .

z
kr

r

kr!
, (3)

where βj, ci, li, ρ
(i)
j ∈ C; R(ρ(i)

j )> 0; R(li)> 0; βj ∉ Z−
0 �

0, −1, −2, . . .{ }; (ρ(r)
j ) ≡ ρj

′, ρj
″, . . . , ρ(r)

j ; i � 1, . . . , r; and j �

1, . . . , m.

We have also studied here, the integral operator in-
volving the function defined by (3), as follows:

E
cr( ), lr( )
ρ(r)
1( ),..., ρ(r)

m( );β1 ,...,βm;ωr;a+
ψ (x)

� 
x

a
(x − t)

β1− 1
E

cr( ), lr( )
ρ(r)
1( ),..., ρ(r)

m( );β1 ,...,βm

ω1(x − t)
ρ1′, . . . ,ωr(x − t)

ρ(r)
1 ψ(t)dt,

(4)

with ωi, ρ
(i)
j , ci, li, βj ∈ C; x> a; |ωi (x − t)ρ

(i)
1 |< 1;

R(ρ(i)
j )> 0; j � 1, . . . , m; and i � 1, . . . , r.
*e Riemann–Liouville fractional derivative operator

Dα
0+ is defined as follows [20]:

D
α
a+ψ( (x) �

d

dx
 

n

I
n−α
a+ ψ( (x), (α ∈ C;R(α)> 0; n � |R(α)| + 1),

(5)

where (Iαa+ψ)(x) is the fractional integral operator defined
by

I
α
a+ψ( (x) �

1
Γ(α)


x

a

ψ(t)

(x − t)
1−αdt. (6)

*e elementary definitions are also required to be
mentioned as follows.

*e Laplace transform of fractional derivative
(Dα

0+f)(x) is given as

L D
α
0+f; s(  � s

α
F(s) − 

n

k�1
s

k−1
D

α−k
0+ f(0+), (R(s)> 0; (n − 1< α< n)). (7)

Also, the formula for Laplace transform is

d
n

ds
n [L y(x): (s) ] � (−1)

n
L x

n
y(x) (s). (8)

2. Results Required

*e integral for the generalized M-L function defined in (3)
is given by

1
Γ(σ)


x

0
(x − t)

β1− 1
t
σ− 1

E
cr( ), lr( )
ρ(r)

1( ),..., ρ(r)
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� x
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1 .

(9)
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*e result in (9) is established in view of definition in (3)
and using the elementary beta integral.

*e Laplace transform of E
(cr),(lr)

(ρ(r)
1 ),...,(ρ(r)

m );β1 ,...,βm

(ω1x
ρ1′, . . . ,ωrx

ρ(r)

1 ) defined in (3), easily obtained here, is as
follows:
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where α, βj, ρ
(i)
j , ci, li,ωi ∈ C; R(s)> 0; R(ρ(i)

j )> 0; R(βj);

R(li)> 0; j � 1, . . . , m; i � 1, . . . , r; and (βj: ρj
′, . . . ,

ρ(r)
j )2,m ≡ (β2; ρ2′, . . . , ρ2 (r)), . . . , (βm; ρm

′, . . . , ρ(r)
m ).

Here, F[ω1s
− ρ1′, . . . ,ωrs

− ρ(r)

1 ] is the generalized Lauricella
function ([21], p. 37, Equations (21–23)).

3. Main Results

Theorem 1. Let a ∈ R+; α, βj, ρ
(i)
j , ci, li,ωi ∈ C; R

(α)> 0; R(ρ(i)
j )> 0; R

(βj)> 0; andR(li)> 0 (j � 1, . . . , m; i � 1, . . . , r).
9en, for x> a, we have
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and
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If α, βj, ci, li,ωi ∈ C; R(α)> 0; R (ρ(i)
j )> 0; R(βj)> 0;

R(li)> 0; j � 1, . . . , m; and i � 1, . . . , r with the initial
condition (I1−α

0+ y)(0+) � c (c is an arbitrary constant) and
solution of differential equations existing in the space
L(0,∞), then 9eorems 2–4 are stated in the following form.

Theorem 2. If

D
α
0+y( (x) � λ E
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Theorem 3. If
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then its solution is given by
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Proof. In *eorem 1, let the left-hand side of result (11) be
Δ1, i.e.,
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i�1 ci( liki

ωi( 
ki 


m
j�1 Γ βj + 

r
i�1 ρ

(i)
j ki  

r
i�1 ki!( 

D
α
a+ (t − a)

β1+
r

i�1 ρ
(i)

1 ki− 1
 (x). (20)

On using the fractional derivative of power function
(t − a)β1+

r

i�1 ρ
(i)

1 ki−1 ([20], p. 36, Equation (2.26)), we have

Δ1 � (x − a)
β1− α− 1



∞

k1 ,...,kr�0


r
i�1 ci( liki

ωi( 
ki (x − a)


r
i�1 ρ

(i)
1 ki


m
j�2 Γ βj + 

r
i�1 ρ

(i)
1 ki Γ β1 − α + 

r
i�1 ρ

(i)
1 ki  

r
i�1 ki!( 

. (21)
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On interpreting multiple series by the definition of
E

(cr),(lr)

(ρ(r)

1 ),...,(ρ(r)
m );β1 ,...,βm

[·], we at once arrive at (11).

*e proof of (12) follows the proof of (11) using (6) and
([20], p. 40, Equation (2.44)) therein.

*eorem 2 is proved as follows.
Use the definition of operator (E

(cr),(lr)

(ρ(r)

1 ),...,(ρ(r)
m );β1 ,...,βm;ωr;a+

ψ)

(x) (at a � 0 and ψ(x) � 1) and result (9) (at σ � 1) in (13),
we have

D
α
0+y( (x) � λx

β1E
cr( ), lr( )
ρ(r)
1( ),..., ρ(r)

m( );β1+1,β2 ,...,βm

ω1x
ρ1′, . . . ,ωrx

ρ(r)

1  + f(x).

(22)

Taking Laplace transform of (22) and then using formula
(7) (for n� 1) and (10), therein we have

y(s) � cs
−α

+ λs
−β1−1−α



m

j�2

1
Γ βj 

⎛⎝ ⎞⎠

× F
0 : 1;. . .;1
m − 1 : 0;. . .; 0

− : c1, l1( ; . . . ; cr, lr(  ;

βj; ρj
′, . . . , ρ(r)

j 2,m
: −; . . . ; − ;

ω1s
− ρ1′, . . . ,ωrs

− ρ(r)
1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ + f(s)s

−α
.

(23)

In view of the definition of generalized Lauricella
function ([21], p. 37, Equations (21–23)), we have the form

y(s) � cs
−α

+ λ

∞
k1,...,kr�0 

r
i�1 ci( liki

ωi( 
ki s

− β1− 1− α− 
r
i�1 ρ

(i)
j ki 


m
j�2 Γ βj + 

r
i�1 ρ

(i)
j ki  

r
i�1 ki!( 

+ f(s)s
− α

. (24)

Applying inverse Laplace transform on both sides of (24)
and using convolution theorem, we find

y(x) � c
x
α− 1

Γ(α)
+ λ 

∞

k1 ,...,kr�0


r
i�1 ci( liki

ωi( 
ki 


m
j�1 Γ βj + 

r
i�1 ρ

(i)
j ki  

r
i�1 ki!( 

x
β1+α+ 

r
i�1 ρ

(i)
j ki

Γ β1 + 1 + α + 
r
i�1 ρ

(i)
j ki 

+
1
Γ(α)


x

0

f(t)

(x − t)
1−αdt.

(25)

Now, on interpreting the multiple series using (3), we at
once arrive at desired result (14). □

Proof. of*eorem 3.We use (at a � 0 and ψ(x) � 1) and (9)
(at σ � 1) in (15), and it takes the following form:

D
α
0+y( (x) � (λ + p)x

β1E
cr( ), lr( )
ρ(r)

1( ),..., ρ(r)
m( );β1+1,β2 ,...,βm

ω1x
ρ1′, . . . .,ωrx

ρ(r)
1 . (26)
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On both sides of (26), we take Laplace transform and
then using formula (7) (for n� 1) and (10) therein, we obtain

y(s) � cs
− α

+(λ + p)s
− β1− 1− α

� 
m

j�2

1
Γ βj 

⎛⎝ ⎞⎠

× F
0:1;. . .; 1
m − 1: 0; . . . ; 0

− : c1, l1( ; . . . ; cr, l( r ;

βj; ρj
′, . . . , ρ(r)

j 2,m
: −; . . . ; − ;

ω1s
− ρ1′, . . . ,ωrs

− ρ(r)
1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(27)

In view of the definition of generalized Lauricella
function ([21], p. 37, Equations (21–23)), we have

y(s) � cs
− α

+(λ + p) 
∞

k1 ,...,kr�0


r
i�1 ci( liki

ωi( 
ki s

− β1− 1− α− 
r
i�1 ρ

(i)
j ki 


m
j�1 Γ βj + 

r
i�1 ρ

(i)
j ki  

r
i�1 ki!( 

. (28)

Applying inverse Laplace transform on (28), we have

y(x) � c
x
α− 1

Γ(α)
+(λ + p) 

∞

k1 ,...,kr�0


r
i�1 ci( liki

ωi( 
ki 


m
j�2 Γ βj + 

r
i�1 ρ

(i)
j ki  

r
i�1 ki!( 

×
x

β1+α+ 
r
i�1 ρ

(i)
j ki 

Γ β1 + 1 + α + 
r
i�1 ρ

(i)
j ki 

.

(29)

On interpreting the multiple series using (3), we at once
arrive at result (16). □

Proof. of *eorem 4. We use operator
(E

(cr),(lr)

(ρ(r)
1 ),...,(ρ(r)

m );β1 ,...,βm;ωr;a+
ψ)(x) (at a � 0 and ψ(x) � 1) and

(9) (at σ � 1) in (17), and we have the following form:

x D
α
0+y( (x) � λx

β1E
cr( ), lr( )
ρ(r)

1( ),..., ρ(r)
m( );β1+1,β2,...,βm

ω1x
ρ1′, . . . ,ωrx

ρ(r)

1 .

(30)

On both sides of (30), we take Laplace transform and use
formulae (8) and (10) (for n� 1); then, we obtain

d

ds
y(s) +

α
s

y(s) � −λs
− β1− 1− α



m

j�2

1
Γ βj 

⎛⎝ ⎞⎠

× F
0: 1; . . . ; 1
m − 1:0; . . . ; 0

− : c1, l1( ; . . . ; cr, l( r ;

βj; ρj
′, . . . , ρ(r)

j 2,m
: −; . . . ; − ;

ω1s
− ρ1′, . . . ,ωrs

− ρ(r)

1
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(31)
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In view of the definition of generalized Lauricella
function ([21], p. 37, Equations (21–23)), we have

d

ds
y(s) +

α
s

y(s) � −λ 
∞

k1 ,...,kr�0


r
i�1 ci( liki

ωi( 
ki 


m
j�2 Γ βj + 

r
i�1 ρ

(i)
j ki  

r
i�1 ki!( 

s
− β1− 1− α− 

r

i�1 ρ
(i)

j
ki 

. (32)

Since this is a linear differential equation of first order
and first degree,

y(s) � λ 
∞

k1,...,kr�0


r
i�1 ci( liki

ωi( 
ki 


m
j�2 Γ βj + 

r
i�1 ρ

(i)
j ki  

r
i�1 ki!( 

(s)
− β1− α− 

r
i�1 k1ρ

(i)
1 

β1 + 
r
i�1 kiρ

(i)
1 

+ cs
− α

. (33)

Taking inverse Laplace transform of (33), we have

y(x) � λ 
∞

k1,...kr�0


r
i�1 ci( liki

ωi( 
ki 


m
j�2 Γ βj + 

r
i�1 ρ

(i)
j ki  

r
i�1 ki!( 1/ β1 + 

r
i�1 kiρ

(i)
1 

× L
− 1

(s)

− α− β1− 

r

i�1
k1ρ

(i)
1

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ cL

− 1
s

− α
( .

(34)

In view of convolution theorem, we obtain

y(x) �
λ
Γ(α)



∞

k1 ,...kr�0


r
i�1 ci( liki

ωi( 
ki 


m
j�2 Γ βj + 

r
i�1 kiρ

(i)
j  

r
i�1 ki!(  1/Γ β1 + 1 + 

r
i�1 kiρ

(i)
j  .

× 
x

0
t
α− 1

(x − t)
β1− 1+ 

r

i�1kiρ
(i)
1 dt +

c

Γ(α)
x
α− 1

.

(35)

Now, on interpreting the multiple series in view of (3),
we obtain the result in (18).

4. Conclusion

Here, we conclude further interesting known results:

(1) Our main results for m � 1, respectively, give the
known results provided by Gupta and Jaimini ([22],
pp. 145–146, Equations (1–10)).

(2) If in result (10) and in *eorem 2, we take
r � 1 (i.e., ω2 �, . . . , � ωr � 0), then result (10) re-
duces to the known result provided by Saxena et al.

([23], p. 10, Equation (50)) and *eorem 2 gives the
correct form (at ] � 0) of the theorem provided by
Saxena et al. ([23], p. 10, *eorem (5.1)).

(3) For m � 1 and r � 1, *eorems 1 to 4 reduce, re-
spectively, to the known results (at ] � 0) provided
by Srivastava and Tomovski [24].

(4) If in *eorem 1, we take m � 1 and
l1 � l2 �, . . . , � lr � 1, then these results, respec-
tively, reduce to the known results provided by
Gautam ([18], pp. 201–202, Equations (4.64)–(4.65)).

(5) If in *eorems 1 to 4, we take m � 1,
l1 � l2 �, . . . , � lr � 1, and ρ1′ � ρ′′1 �, . . . , � ρ(r)

1 � 1,
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then these, respectively, reduce to the results for
function ϕ(r)

2 (·) provided by Gupta ([25], pp.
250–253, Equations (4.9.19)–(4.9.27)).

*erefore, the results presented in the article would
immediately yield a large number of results that include a
wide range of special functions occurring in issues of sci-
entific research, computer science, and applied mathematics,
among others.
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Convex functions play an important role in pure and applied mathematics specially in optimization theory. In this paper, we will
deal with well-known class of convex functions named as generalized p-convex functions. We develop Hermite–Hadamard-type
inequalities for this class of convex function via Raina’s fractional integral operator.

1. Introduction

)e subject of fractional calculus got rapid development in
the last few decades. As a matter of fact, fractional calculus
give more accuracy to model applied problems in engi-
neering and other sciences then classical calculus. In order to
model recent complicated problems, scientists are using
fractional inequalities and fractional equations. For more on
this, we refer the books [1, 2]. )e models with fractional
calculus have been applied successfully in ecology, aero-
dynamics, physics, biochemistry, environmental science,
and many other branches. For more about fractional cal-
culus and models, we refer [3–5].

Fractional integral inequalities are considered one of the
important tools to study the behavior and properties of
solutions of various fractional problems [6–14]. )ere are
many interesting generalization of fractional derivatives as
per need of practical problems or some theoretical approach,
for example, Raina’s fractional integral operator, Caputo-
Fabrizio fractional integral, and extended Caputo-Fabrizio
fractional integral. For recent work on it, we refer [15–20].

Convex functions also play an important role in pure and
applied mathematics specially in optimization theory.
Classical convexity does not fulfil needs of modern

mathematics; therefore, several generalizations of convex
functions are presented in literature. s-convex function [21],
M-convex functions [22], and h-convex function [23] are
some examples of generalized convex functions. It is always
interesting to study properties of some generalized convex
function in the setting of fractional integral operators. )is
paper is an effort in this direction. In this paper, we study the
p-convex functions and present some of its properties in the
setting of Raina’s fractional integral operators.

)e paper is organized as follows. In Section 2, we
present some basic definition and properties of Raina’s
fractional integral operator. Section 3 is devoted for Her-
mite–Hadamard type inequalities for generalized p-convex
functions in terms of Raina’s fractional integral operators.

2. Preliminaries

Here, we present some basic definitions and known results.

Definition 1 (convex function). A function ϕ: I⟶ R is
said to be convex function if the following inequality holds:

ϕ(ϑx +(1 − ϑ)y)≤ ϑϕ(x) +(1 − ϑ)ϕ(y), (1)

for ∀x, y ∈ I and ϑ ∈ [0, 1].
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One of the novel generalization of convexity is η-con-
vexity introduced by M. R. Delavar and S. S. Dragomir in
[24].

Definition 2. A function ϕ: I⟶ R is said to be generalized
convex function with respect to η: A × A⟶ B for ap-
propriate A, B⊆R if

ϕ(ϑx +(1 − ϑ)y)≤ ϕ(y) + ϑη(ϕ(x), ϕ(y)), (2)

for ∀x, y ∈ I and ϑ ∈ [0, 1]

In [25], Zhang and Wan gave definition of p-convex
function as follows.

Definition 3. Let I be a p-convex set. A function f: I⟶ R

is said to be p-convex function if

ϕ ϑx
p

+(1 − ϑ)y
p

 
1/p

 ≤ ϑϕ(x) +(1 − ϑ)ϕ(y), (3)

holds, for all x, y ∈ I and ϑ ∈ [0, 1].

In [26], the authors gave the definition of the generalized
p-convex function as follows.

Definition 4. A function ϕ: I⟶ R is said to be generalized
p-convex function with respect to η: A × A⟶ B for ap-
propriate A, B⊆R if

ϕ ϑx
p

+(1 − ϑ)y
p

( 
1/p ≤ ϕ(y) + ϑη(ϕ(x), ϕ(y), (4)

for ∀x, y ∈ I, p> 0 and ϑ ∈ [0, 1].

For some important properties and results about gen-
eralized p-convexity, see [26]. Moreover, in [26], the fol-
lowing Hermite–Hadamard type inequality for p-convex
functions can be found.

Theorem 1. Let ϕ: I⟶ R be generalized p-convex func-
tion for ξ1, ξ2 ∈ I with condition ξ1 < ξ2; then, we obtain the
inequality

ϕ
ξp
1 + ξp

2
2

 

1/p

−
p

2 ξp
2 − ξp

1 

ξ2

ξ1
x

p− 1η ϕ ξp
1 + ξp

2 − x
p

 
1/p

,ϕ(x) dx

≤
p

ξp
2 − ξp

1

ξ2

ξ1
x

p− 1ϕ(x)dx≤
ϕ ξ1(  + ϕ ξ2( 

2
+
1
4

η ϕ ξ1( ,ϕ ξ2( (  + η ϕ ξ2( , ϕ ξ1( (  .

(5)

In [27], the author introduced a class of functions de-
fined formally by

F
σ
ρ,λz � F

σ(0),σ(1),...
ρ,λ z � 

∞

k�0

σ(k)

Γ(ρk + λ)
z

k
, (6)

where ρ, λ> 0, |z|<R (R is the set of real numbers), and
σ � (σ(1), . . . , σ(k), . . .) is a bounded sequence of positive
real numbers.

Using (6), in [28], the authors defined the following left-
sided and right-sided fractional integral operators,
respectively:

J
σ
ρ,λ,ξ+

1 ;wϕ (z) � 
z

ξ1
(z − ϑ)

(λ− 1)
F

σ
ρ,λz w(z − ϑ)

ρ
 ϕ(ϑ)dϑ, z> ξ1( ,

J
σ
ρ,λ,b− ;wϕ (z) � 

z

ξ1
(ϑ − z)

(λ− 1)
F

σ
ρ,λz w(ϑ − z)

ρ
 ϕ(ϑ)dϑ, z< ξ2( ,

(7)

where ρ, λ> 0,ω ∈ R, and ϕ is such that the integral on the
right side exits.

It is easy to verify that (Jσ
ρ,λ,ξ+

1 ;w
ϕ)(z) and (Jσ

ρ,λ,ξ−
2 ;wϕ)(z)

are bounded integral operators on Lp(ξ1, ξ2), (1≤p≤∞) if

M :� F
σ
ρ,λ+1 w ξ2 − ξ1( 

ρ
 ≤∞. (8)

In fact, for ϕ ∈ Lp(ξ1, ξ2), we have

J
σ
ρ,λ,ξ+

1 ;wϕ 
�����

�����p
≤M‖ϕ‖p,

J
σ
ρ,λ,ξ−

2 ;wϕ 
�����

�����p
≤M‖ϕ‖p,

(9)

where

‖ϕ‖p � 
ξ2

ξ1
|ϕ(z)|

pdz 

1/p

. (10)

)e importance of these operators stems indeed from
their generality. Many useful fractional integral operators
can be obtained by specializing the coefficient σ(k). Let
ϕ ∈ L[ξ1, ξ2]. )e right-hand side and left-hand side Rie-
mann–Liouville fractional integral of order α> 0 with
ξ2 > ξ1 > 0 are defined by
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J
α
ξ1+ϕ(z) �

1
Γ(α)


z

ξ1
(z − k)

α− 1ϕ(k)dk, x> ξ1,

J
α
ξ2− ϕ(z) �

1
Γ(α)


ξ2

z
(k − z)

α− 1ϕ(k)dk, z< ξ2,

(11)

respectively, where Γ(α) is the Gamma function defined as
Γ(α) � 

∞
0 e− kkα− 1dk.

Lemma 1 (see [29, 30]). Let λ, ρ> 0,ω ∈ R, and σ be a se-
quence of nonnegative real numbers. Let ϕ: [ξ1, ξ2]⟶ R be
a differentiable mapping on (ξ1, ξ2) with ξ1 < ξ2 and λ> 0. If
ϕ′ ∈ L[ξ1; ξ2], the following equality for the fractional integral
operator holds:

ϕ ξ1(  + ϕ ξ2( 

2
−

1
2 ξ2 − ξ1( 

λ
F

σ
ρ,λ+1 w ξ2 − ξ1( 

ρ
 

J
σ
ρ,λ,ξ−

2 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ+

1 ;wϕ  ξ1(  

�
ξ2 − ξ1

2 ξ2 − ξ1( 
λ
F

σ
ρ,λ+1 w ξ2 − ξ1( 

ρ
 


1

0
(1 − ϑ)

λ
F

σ
ρ,λ+1 w ξ2 − ξ1( 

ρ
(1 − ϑ)

ρ
 ϕ′ ϑξ1 +(1 − ϑ)ξ2( dϑ

− 
1

0
(ϑ)

λ
F

σ
ρ,λ+1 w ξ2 − ξ1( 

ρ
(ϑ)

ρ
 ϕ′ ϑξ1 +(1 − ϑ)ξ2( dϑ.

(12)

3. Main Results

In this section, we establish new Hermite–Hadamard type
inequalities for generalized p-convex functions in terms of
Raina’s fractional integral operators.

Theorem 2. Let ϕ: I⟶ R be generalized p-convex func-
tion and provided η (.,.) is bounded from above on ϕ(I) ×

ϕ(I) and ϕ ∈ L[ξ1, ξ2] with ξ1 < ξ2 and p> 0. @en, following
fractional integral inequality holds:

ϕ
ξp
1 + ξp

2
2

 

1/p
⎛⎝ ⎞⎠ − Nη ≤

p J
σ
ρ,λ,ξ−

2 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ+

1 ;wϕ  ξ1(  

2 ξp
2 − ξp

1 
λ
F

σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 

,

≤
ϕ ξ1(  + ϕ ξ2( 

2
+
F

σ1
ρ,λ+2 w ξp

2 − ξp
1 

ρ
 

F
σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 

Mη,

(13)

where σ1(k) � σ(k)(kρ + λ), for all k � 0, 1, 2, . . . and
Nη andMη are bounds of ϕ.

Proof. From inequality (6), we have

ϕ
xp + yp

2
 

1/p

−
Nη

2
≤
ϕ(x) + ϕ(y)

2
+

Nη

2
, (14)

where Nη are bounds of ϕ. Substitute xP � ϑξp
1 + (1 − ϑ)ξp

2
and yp � (1 − ϑ)ξp

1 + ϑξp
2 ; then, (6) can be written as

2ϕ
ξp
1 + ξp

2
2

 

1/p

− Nη ≤ ϕ ϑξp
1 +(1 − ϑ)ξp

2 
1/p

+ ϕ (1 − ϑ)ξp
1 + ϑξp

2 
1/p

+ Nη. (15)

Multiplying both sides by ϑλ− 1Fσ
ρ,λ[w(ξp

2 − ξp
1 )ρϑρ], we

obtain

2ϕ
ξp
1 + ξp

2
2

 

1/p

− Nη
⎡⎣ ⎤⎦ϑλ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ ≤ ϑλ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ ϕ ϑξp

1 +(1 − ϑ)ξp
2 

1/p

+ ϑλ− 1
F

σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ ϕ (1 − ϑ)ξp

1 + ϑξp
2 

1/p
+ ϑλ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ Nη.

(16)
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Integrate over ϑ ∈ [0, 1], we obtain

2ϕ
ξp
1 + ξp

2
2

 

1/p

− Nη
⎡⎣ ⎤⎦F

σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 ≤ 

1

0
ϑλ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ ϕ ϑξp

1 +(1 − ϑ)ξp
2 

1/p
dϑ

+ 
1

0
ϑλ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ ϕ (1 − ϑ)ξp

1 + ϑξp
2 

1/p
dϑ + 

1

0
ϑλ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ Nηdϑ.

(17)

With the convenient change of the variable, we can
observe that


1

0
ϑλ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ ϕ ϑξp

1 +(1 − ϑ)ξp
2 

1/p
dϑ

�
− p

ξp
2 − ξp

1

ξ1

ξ2

ξp
2 − xp

ξp
2 − ξp

1
 

λ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ ξp
2 − xp

ξp
2 − ξp

1
 

ρ

 ϕ(x)x
p− 1dx

�
p

ξp
2 − ξp

1 
λ 

ξ2

ξ1
ξp
2 − x

p
 

λ− 1
F

σ
ρ,λ w ξp

2 − ξp
1 

ρ ξp
2 − xp

ξp
2 − ξp

1
 

ρ

 ϕ(x)x
p− 1dx

�
p

ξp
2 − ξp

1 
λ J

σ
ρ,λ,ξ+

1 ;wϕ  ξ2( .

(18)

Similarly, the second integral can be written as


1

0
ϑλ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ ϕ (1 − ϑ)ξp

1 + ϑξp
2 

1/p
dϑ �

p

ξp
2 − ξp

1 
λ J

σ
ρ,λ,ξ−

2 ;wϕ  ξ1( . (19)

Now, equation (17) becomes

2ϕ
ξp
1 + ξp

2
2

 

1/p

− Nη
⎡⎣ ⎤⎦F

σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 ≤

p

ξp
2 − ξp

1 
λ J

σ
ρ,λ,ξ+

1 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ−

2 ;wϕ  ξ1(   + F
σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 Nη

ϕ
ξp
1 + ξp

2
2

 

1/p

− Nη ≤
p

2 ξp
2 − ξp

1 
λ
F

σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 

J
σ
ρ,λ,ξ+

1 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ−

2 ;wϕ  ξ1(  ,

(20)
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which is the left-hand side of inequality (13). To prove right-
hand side of (13), using the Definition 4 of generalized p-
convex function,

ϕ ϑξp
1 +(1 − ϑ)ξp

2 
1/p
≤ ϕ ξ2(  + ϑη ϕ ξ1( ,ϕ ξ2( ( ,

ϕ ϑξp
2 +(1 − ϑ)ξp

1 
1/p
≤ ϕ ξ1(  + ϑη ϕ ξ2( ,ϕ ξ1( ( .

(21)

Multiplying both inequalities by
ϑλ− 1Fσ

ρ,λ[w(ξp
2 − ξp

1 )ρϑρ] and then adding, we obtain

ϑλ− 1
F

σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ ϕ ϑξp

1 +(1 − ϑ)ξp
2 

1/p
+ ϑλ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ ϕ ϑξp

2 +(1 − ϑ)ξp
1 

1/p

≤ ϑλ− 1
F

σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ  ϕ ξ2(  + ϑη ϕ ξ1( ,ϕ ξ2( (   + ϑλ− 1

F
σ
ρ,λ w ξp

2 − ξp
1 

ρ
ϑρ  ϕ ξ1(  + ϑη ϕ ξ2( , ϕ ξ1( (  .

(22)

Integrate over ϑ ∈ [0, 1], we obtain

p J
σ
ρ,λ,ξ+

1 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ−

2 ;wϕ  ξ1(  

ξp
2 − ξp

1 
λ ≤ ϕ(a) + ϕ ξ2(  F

σ1
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 

+ F
σ
ρ,λ+2 w ξp

2 − ξp
1 

ρ
  η ϕ ξ1( ,ϕ ξ2( (  + η ϕ ξ2( , ϕ ξ1( (  

p J
σ
ρ,λ,ξ+

1 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ−

2 ;wϕ  ξ1(  

2 ξp
2 − ξp

1 
λ
F

σ1
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 

≤
ϕ ξ1(  + ϕ ξ2(  

2
+
F

σ
ρ,λ+2 w ξp

2 − ξp
1 

ρ
 

F
σ1
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 

Mη,

(23)

where σ1(k) � σ(k)(kρ + λ). )is completes the proof.

Corollary 1. Let ϕ: I⟶ R be generalized p-convex func-
tion and provided η (.,.) is bounded from above on ϕ(I) ×

ϕ(I) and ϕ ∈ L[a, ξ2] with a< ξ2 and p> 0. @en, the fol-
lowing inequality holds:

ϕ
ξp
1 + ξp

2
2

 

1/p
⎛⎝ ⎞⎠ − Nη ≤

pΓ(α + 1) I
α
ξ+
1
ϕ  ξ2(  + I

α
ξ−
2
ϕ  ξ1(  

2 ξp
2 − ξp

1 
α ,

≤
ϕ ξ1(  + ϕ ξ2( 

2
+

α
α + 1

Mη,

(24)

where Nη andMη are bounds of ϕ.

Proof. By taking λ � α, σ � (1, 0, 0, . . .), w � 0, and
p � 1, we obtain

F
σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
  � 

∞

k�0

σ(k)

Γ(ρk + λ + 1)
�

1
Γ(α + 1)

,

F
σ
ρ,λ+2 w ξp

2 − ξp
1 

ρ
  �

α
Γ(α + 2)

,

J
σ
ρ,λ,ξ+

1 ;wϕ (x) � I
α
ξ+
1
ϕx,

J
σ
ρ,λ,ξ−

2 ;wϕ (x) � I
α
ξ−
2
ϕx.

(25)
Making the substitution in (13), we obtain (26).

Remark 1. In Corollary 1, if we take η(x, y) � x − y, λ � α,
σ � (1, 0, 0, . . .), w � 0, and p � 1, then we get )eorem 1.4
of [29, 31].

Theorem 3. Let ϕ: [ξ1, ξ2]⟶ R be a differentiable func-
tion on (ξ1, ξ2) with ξ1 < ξ2. If |ϕ′| is a generalized p-convex
function on [ξ1, ξ2], then the following inequality for frac-
tional integral operator holds:

ϕ ξ1(  + ϕ ξ2( 

2
−

p J
σ
ρ,λ,ξ−

2 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ+

1 ;wϕ  ξ1(  

2 ξp
2 − ξp

1 
λ
F

σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 





≤
ξp
2 − ξp

1 F
σ1
ρ,λ+2 w ξp

2 − ξp
1 

ρ
 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 

2 ϕ′ ξ2( 


 + η ϕ′ ξ1( 


, ϕ′ ξ2( 


  ,

(26)
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where σ1(k) � σ(k) � (1 − (1/2)kρ+λ). Proof. Using Lemma 1 and definition of generalized p-
convexity of |ϕ′|, we have

ϕ ξ1(  + ϕ ξ2( 

2
−

p J
σ
ρ,λ,ξ−

2 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ+

1 ;wϕ  ξ1(  

2 ξp
2 − ξp

1 
λ
F

σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 





�
ξp
2 − ξp

1 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 

| 

∞

k�0

σ(k)

Γ(ρk + λ + 1)
w

k ξp
2 − ξp

1 
kρ

 


1

0
(1 − ϑ)

kρ+λϕ′ ϑξp
1 +(1 − ϑ)ξp

2 
1/2
dϑ − 
∞

k�0

σ(k)

Γ(ρk + λ + 1)
w

k ξp
2 − ξp

1 
kρ

  
1

0
ϑkρ+λϕ′ ϑξp

1 +(1 − ϑ)ξp
2 

1/p
dϑ|

�
ξp
2 − ξp

1 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 



∞

k�0

σ(k)

Γ(ρk + λ + 1)
w

k ξp
2 − ξp

1 
kρ

  × 
1

0
(1 − ϑ)

kρ+λ
− ϑkρ+λ

  ϕ′ ϑξp
1 +(1 − ϑ)ξp

2 




≤
ξp
2 − ξp

1 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 



∞

k�0

σ(k)

Γ(ρk + λ + 1)
w

k ξp
2 − ξp

1 
kρ

  × 
1/2

0
(1 − ϑ)

kρ+λ
− ϑkρ+λ

  ϕ′ ξ2( 


 + ϑη ϕ′ ξ1( 


, ϕ′ ξ2( 


  dϑ 

+ 
1

1/2
ϑkρ+λ

− (1 − ϑ)
kρ+λ

  ϕ′ ξ2( 


 + ϑη ϕ′ ξ1( 


, ϕ′ ξ2( 


  dϑ .

(27)

It is easy to verify that


1/2

0
(1 − ϑ)

kρ+λ
− ϑkρ+λ

 dϑ �
1 − (1/2)

kρ+λ

kρ + λ + 1
,


1/2

0
(1 − ϑ)

kρ+λ
− ϑkρ+λ

 ϑdϑ �
1/2

kρ + λ + 1
−

1
kρ + λ + 2

,


1

1/2
ϑkρ+λ+1

− ϑ(1 − ϑ)
kρ+λ

 dϑ �
1

kρ + λ + 2
−

1
2(kρ + λ + 1)

.

(28)

Equation (27) becomes

ϕ ξ1(  + ϕ ξ2( 

2
−

p J
σ
ρ,λ,ξ−

2 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ+

1 ;wϕ  ξ1(  

2 ξp
2 − ξp

1 
λ
F

σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 





≤
ξp
2 − ξp

1 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 



∞

k�0

σ(k)

Γ(ρk + λ + 1)
w

k ξp
2 − ξp

1 
kρ

 

× 2 ϕ′ ξ2( 



1 − (1/2)

kρ+λ

kρ + λ + 1
+ η ϕ′ ξ1( 


, ϕ′ ξ2( 


 
1 − (1/2)

kρ+λ

kρ + λ + 1
 .

(29)

Finally, we can write it as

ϕ ξ1(  + ϕ ξ2( 

2
−

p J
σ
ρ,λ,ξ−

2 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ+

1 ;wϕ  ξ1(  

2 ξp
2 − ξp

1 
λ
F

σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 





≤ ,
ξp
2 − ξp

1 F
σ1
ρ,λ+2 w ξp

2 − ξp
1 

ρ
 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 

2 ϕ′ ξ2( 


 + η ϕ′ ξ1( 


, ϕ′ ξ2( 


  , (30)
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where σ1(k) � σ(k) � (1 − (1/2)kρ+λ), which is our required
result.

Corollary 2. Let ϕ: [ξ1, ξ2]⟶ R be a differentiable func-
tion on (ξ1, ξ2) with ξ1 < ξ2. If |ϕ′| is a generalized p-convex
function on [ξ1, ξ2]; then, the following inequality for frac-
tional integral operator holds:

ϕ ξ1(  + ϕ ξ2( 

2
−

pΓ(α + 1) I
α
ξ−
2
ϕ  ξ1(  + I

α
ξ+
1
ϕ  ξ2(  

2 ξp
2 − ξp

1 
α





≤
ξp
2 − ξp

1 

2(α + 1)
1 −

1
2α

  2 ϕ′ ξ2( 


 + η ϕ′ ξ1( 


, ϕ′ ξ2( 


  . (31)

Proof. By taking λ � α, σ � (1, 0, 0, . . .), w � 0, and
p � 1, we obtain

F
σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
  �

1
Γ(α + 1)

,

F
σ
ρ,λ+2 w ξp

2 − ξp
1 

ρ
  �

1 − 1/2α

Γ(α + 2)
,

J
σ
ρ,λ,ξ+

1 ;wϕ (x) � I
α
ξ+
1
ϕx,

J
σ
ρ,λ,b− ;wϕ (x) � I

α
ξ−
2
ϕx.

(32)

Making the substitution in (35), we obtain (31).

Remark 2. In Corollary 2, if we take η(x, y) � x − y, λ � α,
σ � (1, 0, 0, . . .), w � 0, and p � 1, then we obtain )eorem
1.5 in [29, 31].

Theorem 4. Let ϕ: [ξ1, ξ2]⟶ R be a differentiable func-
tion on (ξ1, ξ2) with ξ1 < ξ2. If |ϕ′|q1 is a generalized p-convex
function on [ξ1, ξ2] with q1 � p1/p1 + 1 for some fixed p1 > 0,
then the following inequality for fractional integral operator
holds:

ϕ ξ1(  + ϕ ξ2( 

2
−

p J
σ
ρ,λ,ξ−

2 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ+

1 ;wϕ  ξ1(  

2 ξp
2 − ξp

1 
λ
F

σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 





≤
ξp
2 − ξp

1 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 



∞

k�0

σ1(k)

Γ kρ1 + λ1 + 1( 
w

k ξp
2 − ξp

1 
1/p

 
kρ1

 

×
ϕ′ ξ2( 



q1

2
+ ϑ

η ϕ′ ξ1( 



q1 , ϕ′ ξ2( 



q1 

8
⎡⎣ ⎤⎦dϑ⎛⎝ ⎞⎠

1/q1

+
ϕ′ ξ2( 



q1

2
+ ϑ

η ϕ′ ξ1( 



q1 , ϕ′ ξ2( 



q1 

8
⎡⎣ ⎤⎦dϑ⎛⎝ ⎞⎠

1/q1

,

(33)

where ρ1 � ρp, λ1 � λp, and

σ1(k) � σ(k)
1 − (1/2)(kρ+λ)p1+1

(kρ + λ + 1)p1 + 1
 

1/p1

, (34)

for all k � 0, 1, 2 . . ..

Proof. Using Lemma 1, definition of generalized
p-convexity of ϕ, and Hölder inequality, we have
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ϕ ξ1(  + ϕ ξ2( 

2
−

p J
σ
ρ,λ,ξ−

2 ;wϕ  ξ2(  + J
σ
ρ,λ,ξ+

1 ;wϕ  ξ1(  

2 ξp
2 − ξp

1 
λ
F

σ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 





≤
ξp
2 − ξp

1 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 



∞

k�0

σ(k)

Γ(ρk + λ + 1)
w

k ξp
2 − ξp

1 
kρ

 

× 
1/2

0
(1 − ϑ)

kρ+λ
− ϑkρ+λ

 
p1dϑ 

1/p1


1/2

0
ϕ′ ξ2( 



q1 + ϑη ϕ′ ξ1( 



q1 , ϕ′ ξ2( 



q1  dϑ 

1/q1
⎡⎣ ⎤⎦

+ 
1
1
2

ϑkρ+λ
− (1 − ϑ)

kρ+λ
 

p1dϑ⎡⎢⎢⎢⎢⎢⎣ ⎞⎟⎠

1/p1


1

1/2
ϕ′ ξ2( 



q1 + ϑη ϕ′ ξ1( 



q1 , ϕ′ ξ2( 



q1  dϑ 

1/q1
⎛⎜⎜⎝ ⎤⎥⎥⎥⎥⎥⎦

≤
ξp
2 − ξp

1 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 



∞

k�0

σ(k)

Γ(ρk + λ + 1)
w

k ξp
2 − ξp

1 
kρ

 

× 
1/2

0
(1 − ϑ)

(kρ+λ)p1 − ϑ(kρ+λ)p1 dϑ 

1/p1


1/2

0
ϕ′ ξ2( 



q1 + ϑη ϕ′ ξ1( 



q1 , ϕ′ ξ2( 



q1  dϑ 

1/q1
⎡⎣ ⎤⎦

+ 
1

1/2
ϑ(kρ+λ)p1 − (1 − ϑ)

(kρ+λ)p1 dϑ 

1/p1


1

1/2
ϕ′ ξ2( 



q1 + ϑη ϕ′(a)



q1 , ϕ′ ξ2( 



q1  dϑ 

1/q1
⎛⎝ ⎤⎦

≤
ξp
2 − ξp

1 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 



∞

k�0

σ(k)

Γ(ρk + λ + 1)
w

k ξp
2 − ξp

1 
kρ

 
1 − (1/2)(kρ+λ)p1+1

(kρ + λ + 1)p1 + 1
 

1/p1

×
ϕ′ ξ2( 



q1

2
+ ϑ

η ϕ′ ξ1( 



q1 , ϕ′ ξ2( 



q1 

8
⎡⎣ ⎤⎦dϑ⎛⎝ ⎞⎠

1/q1

+
ϕ′ ξ2( 



q1

2
+ ϑ

η ϕ′ ξ1( 



q1 , ϕ′ ξ2( 



q1 

8
⎡⎣ ⎤⎦dϑ⎛⎝ ⎞⎠

1/q1

≤
ξp
2 − ξp

1 

2Fσ
ρ,λ+1 w ξp

2 − ξp
1 

ρ
 



∞

k�0

σ1(k)

Γ kρ1 + λ1 + 1( 
w

k ξp
2 − ξp

1 
1/p

 
kρ1

 

×
ϕ′ ξ2( 



q1

2
+ ϑ

η ϕ′ ξ1( 



q1 , ϕ′ ξ2( 



q1 

8
⎡⎣ ⎤⎦dϑ⎛⎝ ⎞⎠

1/q1

+
ϕ′ ξ2( 



q1

2
+ ϑ

η ϕ′ ξ1( 



q1 , ϕ′ ξ2( 



q1 

8
⎡⎣ ⎤⎦dϑ⎛⎝ ⎞⎠

1/q1

,

(35)

which completes the proof.
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In this paper, a new approach for deriving continuous probability distributions is developed by incorporating an extra parameter
to the existing distributions. Frechet distribution is used as a submodel for an illustration to have a new continuous probability
model, termed as modified Frechet (MF) distribution. Several important statistical properties such as moments, order statistics,
quantile function, stress-strength parameter, mean residual life function, and mode have been derived for the proposed dis-
tribution. In order to estimate the parameters of MF distribution, the maximum likelihood estimation (MLE) method is used. To
evaluate the performance of the proposed model, two real datasets are considered. Simulation studies have been carried out to
investigate the performance of the parameters’ estimates. *e results based on the real datasets and simulation studies provide
evidence of better performance of the suggested distribution.

1. Introduction

In the last few years, the literature of distribution theory has
become rich due to the induction of additional parameters in
the existing distribution.*e inclusion of an extra parameter
has shown greater flexibility compared to competitive
models. *e inclusion of a new parameter can be performed
either using the available generator or by developing a new
technique for generating new improved distribution com-
pared to classical baseline distribution. Azzalini [1] proposed
a modified form of the normal distribution by inserting an
extra parameter, known as skew normal distribution, which
indicated greater flexibility over normal distribution.
Mudholkar and Srivastava [2] introduced exponentiated
Weibull distribution by introducing a shape parameter in

two-parameter Weibull distribution. Its cumulative distri-
bution function is as follows:

G(y; α, λ, β) � 1 − e
− λxα

 
β
, x, α, λ, β> 0. (1)

*is model provides greater flexibility compared to the
base line distribution. Note that, for β� 1, the exponentiated
Weibull distribution and base line distribution coincide.
Later on, various researchers have introduced different
forms of exponentiated distributions; see, for example, the
work of Gupta et al. [3]. Marshall and Olkin [4] introduced
another technique to add an extra parameter to a probability
distribution. Eugene et al. [5] suggested the beta-generated
technique and applied this method to beta distribution and
proposed beta-generated distribution by incorporating an
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extra parameter in beta distribution. Alzaatreh et al. [6]
proposed a new technique and produced T-X class of
continuous probability models by interchanging the prob-
ability density function of beta distribution with a proba-
bility density function, g(t), of a continuous random
variable and used a function W (F (x)) which fulfills some
particular conditions. Recently, Aljarrah et al. [7] introduced
T-X class of distributions using quantile functions. For more
details about new techniques to produce probability dis-
tributions, see the works of Lee et al. [8] and Jones [9]. Al-
Aqtash et al. [10] proposed a new class of models using the
logit function as a baseline and obtained the particular case
referred to as Gumbel–Weibull distribution. Alzaatreh et al.
[11] studied the gamma-X class of distributions and rec-
ommended the particular case using the normal distribution
as a baseline distribution. Abid and Abdulrazak [12] in-
troduced truncated Frechet-G class of distributions. Kork-
maz and Genc [13] presented a generalized two-sided class
of probability distributions. Alzaghal et al. [14] worked on
the T-X class of distributions. Aldeni et al. [15] used the
quantile function of generalized lambda distribution and
introduced a new family. For more details, see the works of
Cordeiro et al. [16], Alzaatreh et al. [17], and Nasir et al. [18].
*e more recent modified Weibull distributions are intro-
duced by Abid and Abdulrazak [12], Korkmaz and Genc
[13], Aldeni et al. [15], Cordeiro et al. [16], and Pe and Jurek
[19].

Pearson [20] used the system of differential equation
technique and produced new probability distributions. Burr
[21] also proposed a new method by using the differential
equation method, which may take on a wide variety of forms
of the continuous distributions. Since 1980, methodologies
of suggesting new models moved to the inclusion of extra
parameters to an existing family of distributions to increase
the level of flexibility. *ese include Weibull-G presented by
Bourguignon et al. [22], Garhy-G proposed by Elgarhy et al.
[23], Kumaraswamy (Kw-G) proposed by Cordeiro and de
Castro [24], Type II half-logistic-G by Hassan et al. [25],
exponentiated extended-G suggested by Elgarhy et al. [26],
the Kumaraswamy–Weibull introduce by Hassan and
Elgarhy [27], exponentiated Weibull by Hassan and Elgarhy
[28], odd Frechet-G introduced by Haq and Elgarhy [29],
and Muth-G by Almarashi and Elgarhy [30]. For a short
review, one can study the work of Kotz and Vicari [31].
Recently, Mahdavi and Kundu [32] developed a new
technique for proposing probability distributions which is
referred as alpha power transformation (APT) technique,
defined by the cumulative distribution function (CDF) as
follows:

FAPT(x) �

αF(x)
− 1

α − 1
, if α> 0, α≠ 1,

F(x), if α � 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

*e core purpose of introducing new family of distri-
butions is to overcome the difficulties that are present in the
existing probability distributions. In this study, we suggest a
new method for obtaining new continuous probability

distributions. Frechet distribution is used as a submodel to
have a new probability distribution which is referred as
modified Frechet (MF) distribution. Our proposed family of
distributions also models monotonic and nonmonotonic
hazard rate function and provides increased flexibility as
compared to the already available probability distribution in
the literature.

2. The Proposed Class of Distributions

*e proposed class of probability distributions is termed as
modified Frechet class (MFC) of distributions. *e cumu-
lative distribution function (CDF) and probability density
function (PDF) of the suggested class of distributions are
given by the following expressions:

GMFC(x) �
e

− (F(x))α
− 1

e
− 1

− 1 
, x> 0, (3)

gMFC(x) �
αf(x)(F(x))

α− 1
e

− (F(x))α

1 − e
− 1

 
, x> 0, (4)

where F (x) and f (x) are the CDF and PDF of the baseline
distribution and α is the shape parameter. *e method in (3)
is used to produce a new model referred as modified Frechet
(MF) distribution with the aim to attain more flexibility in
modeling life time data. *e derivation of MF distribution is
given in Section 2.1.

2.1. 5e Proposed Distribution. *e CDF of Frechet distri-
bution is as follows:

F(x) � e
− x− β

, x> 0, (5)

where β is the shape parameter.
*is portion of the manuscript is concerned with in-

troducing a subclass of MF class of distributions using the
cumulative distribution function of Frechet distribution.*e
resultant distribution is what we call modified Frechet (MF)
distribution.

Definition 1. A random variable X is said to have MF
distribution with two parameters α and β if its PDF is given
as follows:

fMF(x) �
αβx

− (β+1)
e

− αx− β− e− αx− β

1 − e
− 1

 
, x> 0. (6)

Its CDF is given by

FMF(x) �
e

− e− αx− β
( 

− 1
e

− 1
− 1 

, x> 0. (7)

*e hazard rate function of MF distribution is as follows:

hMF(x) �
αβx

− (β+1)
e

− αx− β− e− αx− β

e
− 1

− 1 

e
− 1

− e
− e− αx− β
( 

  1 − e
− 1

 

. (8)
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*e survival function of the MF model is given by

SMF(x) �
e

− 1
− e

− e− αx− β
( 

e
− 1

− 1
. (9)

*ese four functions have been plotted in Figures 1 and 2
.

Lemma 1. If f(x) is decreasing function, then fMF(x) is also
decreasing function for 0≤ α< 1 and β> 0.

Proof. If f(x) is a differentiable function and if f′(x)< 0 or
(d/dx)ln f(x)< 0 for all X, then f(x) is a decreasing
function and vice versa.

Taking first derivative of ln fMF(x), we have

d
dx

ln fMF(x) �
d
dx

ln
αβx

− (β+1)
e

− αx− β− e− αx− β

1 − e
− 1

 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

d
dx

ln fMF(x) � −
β
x

−
1
x

− αβx
− β− 1

e
− αx− β

− 1 .

(10)

*us, for 0≤ α< 1 and β> 0, (d/dx)ln fMF(x)< 0. *is
concludes the lemma. □

Lemma 2. For α< 1, if f(x) is log-convex and decreasing
function, then hMF(x) is a decreasing function.

Proof. If the second-order differential of f(x) exists and
(d2/dx2)ln f(x)> 0, then f(x) is said to be log-convex.
Taking second-order derivative of equation (10), we obtain

d2

dx
2 ln fMF(x) �

d
dx

−
β
x

−
1
x

− αβx
− β− 1

e
− αx− β

− 1  ,

d2

dx
2 ln fMF(x) �

β
x
2 +

1
x
2 + αβx

− β− 2
(− β − 1) e

− αx− β
− 1  + αβx

− β
e

− αx− β
 .

(11)

When 0≤ α< 1 and β> 0, then (d2/dx2)ln fMF(x)> 0.
*erefore, for 0< α< 1, fMF(x) is log-convex [33]. □

2.1.1. Quantile Function. Let X ∼ MF(α, β); then, the
quantile function is as follows:

F(X) � U⟹ X � F
− 1

(U), (12)

where U is uniformly distributed random variable. *e
quantile function of the MF model is given as

Xp � −
1
α
ln − ln u e

− 1
− 1  + 1   

(− 1/β)

. (13)

2.1.2. Median. Median of MF distribution is obtained by
substituting u � 1/2 in equation (13), that is,

Median � −
1
α
ln − ln

1
2

e
− 1

+ 1    
(− 1/β)

. (14)

2.1.3. Mode. Mode of MF is obtained by solving the fol-
lowing equation for x.

d
dx

fMF(x) � 0, i.e.
d
dx

αβx
− (β+1)

e
− αx− β− e− αx− β

1 − e
− 1

 
⎛⎝ ⎞⎠ � 0,

x
− β

e
− αx− β

− 1  �
− (β + 1)

αβ
.

(15)

Mode of the distribution satisfies the above equation.

2.2. rth Moment of MF Distribution. Let X ∼ MF(α, β); and
the rth moment of X is as follows:

μr/ � E X
r

(  � 
∞

0
x

rαβx
− (β+1)

e
− αx− β− e− αx− β

1 − e
− 1

 
dx. (16)

Using x− β � y and then e− αy � z in (16), the expression
will take the following form:

μr/ � E X
r

(  � −
(− 1/α)

m

1 − e
− 1

 

1

0
(ln z)

m
e

− zdz, (17)

where m � (− r/β).
Again substituting log z � u in (17) and after some

simplification, the expression becomes
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Figure 1: Graph of CDF and PDF of the MF model.
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Figure 2: Graph of survival function and hazard function of MF distribution.
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μr/ � E X
r

(  �
(− 1/α)

m

e
− 1

− 1 

0

− ∞
u

m
e

− eu

e
udz. (18)

Using series notation e− eu

� 
∞
r�0((− eu)k/k!) in (18), we

obtain

μr/ � E X
r

(  �
(− 1/α)

m

e
− 1

− 1 


∞

k�0

(− 1)
k

k!
lim − it
b⟶− ∞


0

b
u

m
e

u(k+1)dz,

μr/ � E X
r

(  �
(− 1/α)

m

e
− 1

− 1 


∞

k�0

(− 1)
k

k!
lim − it
b⟶− ∞

Γ(m + 1, − bk − b) − Γ(m + 1, 0)

(− k − 1)
m

(k + 1)
 ,

(19)

where b> 0.

2.3. Moment Generating Function. Let X ∼ MF(α, β); then,
the moment generating function is given by

Mx(t) � E e
tx

  � 
∞

0
e

tx αβx
− (β+1)

e
− αx− β− e− αx− β

1 − e
− 1

 
dx. (20)

Using series etx � 
∞
r�0(trxr/r!) in (20) and simplifying,

we have

Mx(t) �
(− 1/α)

m

e
− 1

− 1 


∞

k�0


∞

r�0

t
r
(− 1)

k

r!k!
lim − it
b⟶− ∞

Γ(m + 1, − bk − b) − Γ(m + 1, 0)

(− k − 1)
m

(k + 1)
 , (21)

where m � (− r/β) and b> 0.

2.4. Order Statistics. Let X1, X2, . . . , Xn be a random sample
taken from MF distribution, and let X(1) ≤X(2) ≤ · · · ≤X(n)

denote the order statistics. *en, the probability density
function of Xi: n is given by

fi: n(x) �
n!

(i − 1)!(n − i)!
f(x) [F(x)]

i− 1
[1 − F(x)]

(n− i)
.

(22)

Substitute PDF and CDF of MF in equation (22), and we
obtain distribution of ith order statistic as

fi: n(x) �
n!

(i − 1)!(n − i)!

αβx
− (β+1)

e
− αx− β− e− αx− β

1 − e
− 1

 
⎛⎝ ⎞⎠

e− e− αx− β
(  − 1
e− 1 − 1

⎡⎢⎢⎣ ⎤⎥⎥⎦

i− 1

1 −
e− e− αx− β

(  − 1
e− 1 − 1

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

(n− i)

,

fi: n(x) �
n!

1 − e
− 1

 (i − 1)!(n − i)!

1

e
− 1

− 1 
n− 1 e

− e− αx− β
( 

− 1 
(i− 1)

αβx
− (β+1)

e
− αx− β− e− αx− β

e
− 1

− e
− e− αx− β
( 

 
(n− i)

.

(23)

Lemma 3. 5e Renyi entropy of X ∼ MF(α, β) is given as

REX(v) �
1

(1 − ])
log

α((1− ])/β)β]− 1
(− 1)

l

1 − e
− 1

 
] 

∞

k�0

(− ])
k

k!
lim − it
b⟶− ∞

Γ(l + 1, − b] − bk + b) − Γ(l + 1, 0)

(− ] − k + 1)
l
(] + k − 1)

 ⎡⎢⎢⎣ ⎤⎥⎥⎦, (24)

where l � ((β + 1)(] − 1)/β) and b> 0. Proof. *e Renyi entropy of MF is given by

REX(v) �
1

1 − v
log 

+∞

− ∞
f(x)

v dx  �
1

1 − v
log 

∞

0

αβx− (β+1)e− αx− β− e− αx− β

1 − e− 1( )
⎛⎝ ⎞⎠

v

dx⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (25)
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Put e− αx− β
� y in (25); the expression will take the form

REX(v) �
1

(1 − ])
log

β]− 1

1 − e
− 1

 
]α

((1− ])/β)
(− 1)

l

1

0
(ln y)

l
y
]− 1

e
− ]ydy⎡⎢⎢⎣ ⎤⎥⎥⎦, (26)

where l � ((β + 1)(] − 1)/β). Using series notation e− ]y �


∞
k�0((])k(− y)k/k!) in (26), the expression will take the

following form:

REX(v) �
1

(1 − ])
log

α((1− ])/β)β]− 1
(− 1)

l

1 − e
− 1

 
] 

∞

k�0

(− ])
k

k!

1

0
(ln y)

l
y
]− 1+kdy⎡⎢⎢⎣ ⎤⎥⎥⎦. (27)

Again substituting ln y � z in (27) and simplifying, we
obtain

REX(v) �
1

(1 − ])
log

α((1− ])/β)β]− 1
(− 1)

l

1 − e
− 1

 
] 

∞

k�0

(− ])
k

k!
lim − it
b⟶− ∞


0

b
z

l
e

z(]− 1+k)dz⎡⎢⎢⎣ ⎤⎥⎥⎦,

REX(v) �
1

(1 − ])
log

α((1− ])/β)β]− 1
(− 1)

l

1 − e
− 1

 
] 

∞

k�0

(− ])
k

k!
lim − it
b⟶− ∞

Γ(l + 1, − b] − bk + b) − Γ(l + 1, 0)

(− ] − k + 1)
l
(] + k − 1)

 ⎡⎢⎢⎣ ⎤⎥⎥⎦,

(28)

where l � ((β + 1)(] − 1)/β) and. b> 0. □

2.5. Mean Residual Life Function. Let X be the lifetime of an
object having MF distribution. *e mean residual life
function is the average remaining life span that a component
has survived until time t. *e mean residual life function,
say, μ(t), has the following expression:

μ(t) �
1

P(X> t)

∞

t
P(X> x)dx, t≥ 0,

μ(t) �
1

S(t)
E(t) − 

t

0
xf(x)dx  − t, t≥ 0.

(29)

Note that


t

0
xf(x)dx �

1
1 − e

− 1
 

− 1
α

 
l



∞

k�0

(− 1)
k

k!
lim − it
b⟶− ∞

Γ l + 1, (αk + α)/tβ   − α/tβ 
l

(k + 1) (αk + α)/tβ 
l

−
b

lΓ(l + 1, (− bk − b))

(− bk − b)
l
(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (30)

E(t) �
α− l

(− 1)
l

1 − e
− 1

 


∞

k�0

(− 1)
k

k!
lim − it
b⟶− ∞

Γ(l + 1, − bk − b) − Γ(l + 1, 0)

(− k − 1)
l
(k + 1)

 , (31)

where l � (− 1/β). Put equation (9), (30), and (31) in (29),
and we obtain
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μ(t) �
e

− 1
− 1 

e
− 1

− e
− e− αx− β
( 

 

1
1 − e

− 1
 

− 1
α

 
l



∞

k�0

(− 1)
k

k!
lim − it
b⟶− ∞
∗

Γ(l + 1, − bk − b) − Γ(l + 1, 0)

(− k − 1)
l
(k + 1)

  −
Γ l + 1, (αk + α)/tβ   − α/tβ 

l

(k + 1) (αk + α)/tβ 
l

−
b

lΓ(l + 1, (− bk − b))

(− bk − b)
l
(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ − t.

(32)

*is is the final expression of mean residual life function.

2.6. Stress-Strength Parameter. Let X1 and X2 be two in-
dependently and identically distributed variables such that
X1 ∼ MF(α1, β) and X2 ∼ MF(α2, β). *en, the stress-
strength parameter is defined by

R � 
+∞

− ∞
f1(x)F2(x)dx. (33)

Using equation PDF and CDF of MF in the above ex-
pression, the stress-strength parameter is given as

R � 
∞

0

αβx
− (β+1)

e
− α1x− β− e− α1x− β

1 − e
− 1

 
⎛⎝ ⎞⎠

e
− e− α2x− β
( 

− 1
e

− 1
− 1 

⎛⎝ ⎞⎠dx,

R �
1

e
− 1

− 1  1 − e
− 1

 

∞

0
α1βx

− β− 1
e

− α1x− β− e− α1x− β

e
− e− α2x− β
( dx −

1
e

− 1
− 1 

.

(34)

Substituting x− β � y in (34), we obtain

R �
1

e
− 1

− 1  1 − e
− 1

 

∞

0
α1e

− α1y
e

− e− α1y

e
− e− α2y( )dy −

1
e

− 1
− 1 

.

(35)

Again putting e− α1y � z in (35), it will take the following
form:

R �
1

e
− 1

− 1 
2 

1

0
e

− z
e

− e− α2 − ln z/α1( )( dz −
1

e
− 1

− 1 
. (36)

Using series representation e− z � 
∞
k�0((− z)k/k!) and

e− (e− α2(− ln z/α1)) � 
∞
m�0((− e(α2 ln z/α1))m/m!) in (36), we get the

expression as follows:

R �
1

e
− 1

− 1 
2 

∞

k�0


∞

m�0

(− 1)
k+m

k!m!

1

0
z

k
e

n ln zdz −
1

e
− 1

− 1 
,

(37)

where n � m(α2/α1). Using series representation
en ln z � 

∞
i�0((n ln z)i/i!) in (52), after simplification, we get

the following expression:

R �
1

e
− 1

− 1 
2 

∞

k�0


∞

m�0


∞

i�0

(− 1)
k+m

n
i

k!m!i!

1

0
z

k
(ln z)

idz −
1

e
− 1

− 1 
.

(38)

Again substituting ln z � u in (38) and simplifying, we
obtain

R �
1

e
− 1

− 1 
2 

∞

k�0


∞

m�0


∞

i�0

(− 1)
k+m

n
i

k!m!i!

0

− ∞
u

i
e

u(k+1)du −
1

e
− 1

− 1 
,

R �
1

e
− 1

− 1 
2 

∞

k�0


∞

m�0


∞

i�0

(− 1)
k+m

n
i

k!m!i!
lim − it
b⟶− ∞


0

b
u

i
e

u(k+1)du −
1

e
− 1

− 1 
,

R �
1

e
− 1

− 1 
2 

∞

k�0


∞

m�0


∞

i�0

(− 1)
k+m

n
i

k!m!i!
lim − it
b⟶− ∞

Γ(i + 1, − bk − b) − Γ(i + 1)

(− k − 1)
i
(k + 1)

  −
1

e
− 1

− 1 
,

(39)

where n � m(α2/α1) and b> 0.
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Lemma 4. 5e mean waiting time, say μ(t), of MF distri-
bution is given by

μ(t) � t +
1

e
− e− αt− β( 

− 1 

− 1
α

 
l



∞

k�0

(− 1)
k

k!
lim − it
b⟶− ∞

Γ l + 1, (αk + α)/tβ   − α/tβ 
l

(k + 1) (αk + α)/tβ 
l

−
b

lΓ(l + 1, (− bk − b))

(− bk − b)
l
(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦. (40)

Proof. By definition, the mean waiting time of MF distri-
bution is

μ(t) � t −
1

F(t)


t

0
x f(x)dx . (41)

*e final expression of mean waiting time of MF dis-
tribution is obtained. By substituting


t

0
xf(x)dx �

1
1 − e

− 1
 

− 1
α

 
l



∞

k�0

(− 1)
k

k!
lim − it
b⟶− ∞

Γ l + 1, (αk + α)/tβ   − α/tβ 
l

(k + 1) (αk + α)/tβ 
l

−
b

lΓ(l + 1, (− bk − b))

(− bk − b)
l
(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (42)

and F(t) � ((e− (e− αt− β ) − 1)/(e− 1 − 1)), in (41), we obtain

μ(t) � t +
1

e
− e− αt− β( 

− 1 

− 1
α

 
l



∞

k�0

(− 1)
k

k!
lim − it
b⟶− ∞

Γ l + 1, (αk + α)/tβ   − α/tβ 
l

(k + 1) (αk + α)/tβ 
l

−
b

lΓ(l + 1, (− bk − b))

(− bk − b)
l
(k + 1)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦. (43)

□
2.7. Parameters’ Estimation. Let X1, X2, . . . , Xn be a random
sample of size n selected from MF(α, β); then, the log-
likelihood function of MF distribution is given as

ln l(α, β) � n ln(αβ) − n ln 1 − e
− 1

  − β
n

i�1
log xi − 

n

i�1
log xi − α

n

i�1
x

− β
i − e

− α
n

i�1
x

− β
i . (44)

Differentiating equation (44) with respect to α and β and
equating them to 0, we obtain

z ln l(α, β)

zα
�

n

α
− 

n

i�1
x

− β
i + e

− α
n

i�1
x

− β
i 

n

i�1
x

− β
i � 0, (45)

z ln l(α, β)

zβ
�

n

β
− 

n

i�1
log xi − α

n

i�1
x

− β
i log xi + αe

− α
n

i�1
x

− β
i 

n

i�1
x

− β
i log xi � 0. (46)

Solving (45) and (46) together, we get the estimates of α
and β. *e Newton–Raphson method or the bisection
method is used to get solution of the above equations as an
analytical solution which is not possible. *e maximum

likelihood estimators (MLE) are asymptotically normally
distributed, that is,

�
n

√
(α − α, β − β) ∼ N2(0,Σ), where Σ is

variance covariance matrix and can be obtained by inverting
the observed Fisher information matrix F given below:
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F �

z
2log l

zα2
z
2log l

zα zβ

z
2log l

zα zβ
z
2log l

zβ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

*e second derivative of equations (45) and (46) with
respect to α and β yields (48)–(50) given as

z
2 ln l

zα2
� −

n

α2
− e

− α
n

i�1
x

− β
i 

n

i�1
x

− β
i

⎛⎝ ⎞⎠

2

, (48)

z
2 ln l

zβ2
� −

n

β2
− α

n

i�1
x

− β
i log xi log xi + αe

− α
n

i�1
x

− β
i − e

− α
n

i�1
x

− β
i log xi , (49)

and

z
2 ln l

zα zβ
� 

n

i�1
x

− β
i log x

− β
i e

− α
n

i�1
x

− β
i − αe

− α
n

i�1
x

− β
i − 1 .

(50)

Asymptotic (1 − ζ)100% confidence intervals of the
parameters of the proposed distribution can be obtained as

α ± Zζ/2
���
Σ11


,

β ± Zζ/2
���
Σ22


,

(51)

where Zζ is the upper ζ
th percentile of the standard normal

distribution.

3. Simulations’ Studies

In order to measure the performance of MLE of the pa-
rameters of MF distribution, their mean square error (MSE)
and bias are calculated using simulation study. We consider
W� 100 samples of sizes n � 50, 70, and 100 generated from
the MF model. Bias and MSE are calculated using the
expressions:

Bias �
1
W



w

1�1

bi − b ,

MSE �
1
W



w

1�1

bi − b 
2
, where b � (α, β).

(52)

Simulation results have been obtained for different
values of α and β. *e MSEs and bias are presented in
Table 1. *e consistency behavior of MLE can be easily
verified from these results as the MSEs and bias of the es-
timates decrease for all parameter combinations with in-
creasing sample size. Hence, we conclude that MLE
procedure executes very well in estimating the parameters of
MF distribution.

4. Applications

Two practical datasets are used to assess the performance of
MF distribution compared to Frechet distribution (FD),

exponential distribution (ED), Weibull distribution (WD),
alpha power inverse Weibull distribution (APIWD) [34],
alpha power Weibull distribution (APWD) [35], and
Kumaraswamy inverse Weibull distribution (KIWD) [36].

4.1. Dataset 1. *e performance of the suggested model is
assessed using two datasets. *e first dataset is taken from
the work of Gross and Clark [37] which consists of 20
observations of patients receiving an analgesic and is given
as follows:

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7 4.1 1.8 1.5 1.2 1.4 3.0 1.7 2.3 1.6 2.0 . (53)

4.2. Dataset 2. *e second dataset consists of 40 wind-re-
lated catastrophes used by Hogg and klugman [38]. It

includes claims of $2,000,000. *e sorted values, observed in
millions, are as follows:
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2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 6 8 8 9 15 17 22 23 24 24 25 27 32 43 .

(54)

In order to compare the MF model with other models,
some standard model selection criteria such as Akaike’s
information criteria (AIC), consistent Akaike’s infor-
mation criteria (CAIC), Bayesian information criterion

(BIC), Hannan–Quinn information criteria (HQIC),
Kolmogorov–Smirnov (K-S), and P value are used. Ta-
bles 2 and 3 demonstrate results based on dataset 1 and 2,
respectively.

Table 1: MSE and bias of MLE.

Parameters N MSE (α) MSE (β) Bias (α) Bias (β)

α� 5.557197
β� 7.558804

50 2.067219 0.9272915 0.5047117 0.2639728
70 0.9708544 0.7031859 0.3088091 0.2101214
100 0.7753223 0.372835 0.2578149 0.1197992

α� 6.457197
β� 3.558804

50 2.026492 0.2259845 0.4415551 0.1637077
70 1.550174 0.1505096 0.4327197 0.1085847
100 0.8022496 0.1029645 0.1910671 0.03691258

α� 5.457197
β� 3.558804

50 1.190428 0.2059653 0.4247818 2.342903
70 0.8619716 0.1373483 0.2461313 2.341802
100 0.4419579 0.08574337 0.04261996 2.333286

α� 6.457197
β� 2.558804

50 2.518832 0.09526091 0.7185321 0.1320379
70 1.728531 0.09429495 0.4747864 0.07025322
100 0.8006676 0.04351014 0.1573213 0.01418112

α� 4.557197
β� 4.558804

50 0.9564051 0.2857103 0.2557071 0.1324175
70 0.3593258 0.2089236 0.08780059 0.04002267
100 0.2750382 0.14968 0.02739781 0.01301724

α� 6.557197
β� 1.558804

50 3.244032 0.04392251 0.5185741 0.03279788
70 1.495698 0.02470381 0.3520218 0.02578572
100 0.9790736 0.01922724 0.09188152 0.02093735

α� 5.557197
β� 7.558804

50 2.067219 0.9272915 0.5047117 0.2639728
70 0.9708544 0.7031859 0.3088091 0.2101214
100 0.7753223 0.372835 0.2578149 0.1197992

α� 2.557197
β� 7.558804

50 0.1693338 1.094077 0.1063671 0.3148875
70 0.08930482 0.4333755 0.08538295 0.1227512
100 0.06259663 0.3701105 0.02511625 0.03947369

Table 2: Goodness of fit results for dataset 1.

Distribution MLE of the parameters AIC CAIC BIC HQIC K–S P value
MF 6.4571 3.5588 34.88 35.59 36.87 35.27 0.107 0.9759
FD 2.2255 59.16 59.39 60.16 59.36 0.473 0.0003
ED 0.5263 67.67 67.89 68.66 67.86 0.439 0.0009
WD 2.7843 2.1271 45.17 45.87 47.16 45.56 0.183 0.5104
APIWD 1.7688 4.1692 5.4473 36.79 38.29 39.77 37.37 0.124 0.9644
APWD 10.9388 2.0312 0.4230 46.58 48.08 49.57 47.16 0.162 0.6678
KIWD 1.5668 1.2318 3.7669 3.5843 38.80 41.47 42.78 39.58 0.134 0.9540
*e bold values indicate that the proposed distribution is more significant as compared to other existing distributions.

Table 3: Goodness of fit results for dataset 2.

Distribution MLE of the parameters AIC CAIC BIC HQIC K–S P value
MF 6.1151 1.2558 234.65 234.99 237.98 235.85 0.190 0.1194
FD 0.7779 280.98 281.09 282.64 281.58 0.558 5.61e − 11
ED 0.1130 250.03 250.15 251.70 250.64 0.202 0.08195
WD 1.0013 8.8585 252.04 252.37 255.36 253.23 0.2017 0.0836
APIWD 2.0394 1.4913 4.9249 237.33 238.01 242.32 239.12 0.2011 0.1049
APWD 10.7622 0.69493 0.4071 255.18 255.86 260.17 256.97 0.2201 0.0458
*e bold values indicate that the proposed distribution is more significant as compared to other existing distributions.
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Figure 3: Plots of MF distribution for dataset 1.
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Figure 4: Plots of MF distribution for dataset 2.
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It is evident from the results in Tables 2 and 3 that the
proposed MF distribution executes well as compared to
other competitive distributions.

Figures 3 and 4 represent various graphs of MF distri-
bution for dataset 1 and dataset 2.

5. Conclusion

In this paper, a new method for deriving new continuous
probability distributions has been offered which we called
modified Frechet Class (MFC) of distributions. Also, a new
probability model has been proposed using MFC. We called
it modified Frechet (MF) distribution. Several statistical
properties of the said distribution were derived and inves-
tigated for MF distribution. *e MLE method was adopted
to estimate the parameters of the proposed distribution.
Simulation results showed that these estimates were con-
sistent. In order to check the performance of the AFF model,
two real datasets.*e results based on these datasets revealed
promising performance of the suggested model compared to
some other distributions existing in the literature.
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In this article, we prove some fractional versions of Hadamard-type inequalities for strongly exponentially (α, h − m)-convex
functions via generalized Riemann–Liouville fractional integrals. *e outcomes of this paper provide inequalities of strongly
convex, strongly m-convex, strongly s-convex, strongly (α, m)-convex, strongly (s, m)-convex, strongly (h − m)-convex, strongly
(α, h − m)-convex, strongly exponentially convex, strongly exponentially m-convex, strongly exponentially s-convex, strongly
exponentially (s, m)-convex, strongly exponentially (h − m)-convex, and exponentially (α, h − m)-convex functions. *e error
estimations are also studied by applying two fractional integral identities.

1. Introduction

Fractional calculus is the study of derivatives and integrals of
any arbitrary real or complex order. It is the generalization of
ordinary calculus in which operations are mainly focused on
integers. Its history starts when Leibniz and l’Hospital
discussed the meaning of fractional order in 1695.*is is the
first discussion of fractional calculus. Many mathematicians
devoted their efforts to make the foundation of fractional
calculus. At that time, it was considered only in mathematics

but now it has several applications in Science and Engi-
neering, signal processing, mathematical biology, and rhe-
ology. In mathematics, many fractional integral operators
have been introduced by researchers, see [1, 2]. Using these
fractional operators, extensive inequalities are established
for different types of convexity, see [3–5] and reference
therein. *e convex function is defined as follows:

A function f: I⟶ R, where I is an interval in R, is
called the convex function if the following inequality holds:

f(xt +(1 − t)y)≤ tf(x) +(1 − t)f(y), t ∈ [0, 1] andx, y ∈ I. (1)

Hadamard inequality is geometrical interpretation of the
convex function, and it is stated as follows:

f
a + b

2
 ≤

1
b − a


b

a
f(])d]≤

f(a) + f(b)

2
. (2)

*is inequality gives estimates of the mean value of
a convex function. Recently, many mathematicians

investigated different versions of Hadamard inequality
and discussed its basic properties with corresponding
fractional integral operators (see [6–9] and reference
therein). Our aim is to establish Hadamard inequalities
for the strongly exponentially (α, h − m)-convex function
via generalized Riemann–Liouville fractional integrals.
Also, we have obtained error estimations for this con-
vexity by using two fractional integral identities. Now, we
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recall the definition of the strongly exponentially
(α, h − m)-convex function.

Definition 1 (see [10]). Let J⊆R be an interval containing
(0, 1), and let h: J⟶ R be a nonnegative function. A

function f: [0, b]⟶ R is called a strongly exponentially
(α, h − m)-convex function if f is nonnegative and for all
x andy ∈ [0, b], t ∈ (0, 1), η ∈ R, and (α, m) ∈ (0, 1]2, with
modulus λ≥ 0, one has

f(tx + m(1 − t)y)≤ h t
α

( 
f(x)

e
ηx + mh 1 − t

α
( 

f(y)

e
ηy −

mλ
e

(x+y)η h t
α

( h 1 − t
α

( |y − x|
2
. (3)

*e above definition provides some kinds of exponential
convexities as follows:

Remark 1

(i) If we substitute α � 1, λ � 0 and h(t) � ts, then the
exponentially (s, m)-convex function in the second
sense introduced by Qiang et al. in [11] can be
obtained

(ii) If we substitute α � 1, λ � 0, h(t) � ts, and m � 1,
then the exponentially s-convex function intro-
duced by Mehreen et al. in [12] can be obtained

(iii) If we substitute α � 1, λ � 0, h(t) � t, and m � 1,
then the exponentially convex function introduced
by Awan et al. in [13] can be obtained

*e classical Riemann–Liouville fractional integrals are
given as follows:

Definition 2 (see [14]). Let f ∈ L1[a, b]. *en, left-sided and
right-sided Riemann–Liouville fractional integrals of a
function f of the order ξ ∈ C and R(ξ)> 0 are given by

I
ξ
a+ f(x) �

1
Γ(ξ)


x

a
(x − t)

ξ− 1
f(t)dt, x> a,

I
ξ
b− f(x) �

1
Γ(ξ)


b

x
(t − x)

ξ− 1
f(t)dt, x< b,

(4)

where R(ξ) denotes the real part of ξ and
Γ(ξ) � 

∞
0 e− zzμ− 1dz.

Following two theorems are the fractional versions of
Hadamard inequalities via Riemann–Liouville fractional
integrals.

Theorem 1 (see [15]). Let f: [a, b]⟶ R be a positive
function with 0≤ a< b and f ∈ L1[a, b]. If f is a convex
function on [a, b], then the following fractional integral in-
equality holds:

f
a + b

2
 ≤

Γ(ξ + 1)

2(b − a)
ξ I

ξ
a+ f(b) + I

ξ
b− f(a) ≤

f(a) + f(b)

2
,

(5)

with ξ > 0.

Theorem 2 (see [16]). Under the assumptions of Theorem 1,
the following fractional integral inequality holds:

f
a + b

2
 ≤

2ξ− 1Γ(ξ + 1)

(b − a)
ξ I

ξ
(a+b/2)+ f(b) + I

ξ
(a+b/2)− f(a) ≤

f(a) + f(b)

2
, (6)

with ξ > 0.

Following theorem is the error estimation of inequality
(5).

Theorem 3 (see [15]). Let f: [a, b]⟶ R be a differentiable
mapping on (a, b) with a< b. If |f′| is convex on [a, b], then
the following fractional integral inequality holds:

f(a) + f(b)

2
−
Γ(ξ + 1)

2(b − a)
ξ I

ξ
a+ f(b) + I

ξ
b− f(a) 





≤
b − a

2(ξ + 1)
1 −

1
2ξ

  f′(a)


 + f′(b)


 .

(7)

*e k-analogue of the Riemann–Liouville fractional
integral is defined as follows:
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Definition 3 (see [17]). Let f ∈ L1[a, b]. *en, k-fractional
Riemann–Liouville integrals of order ξ, where R(ξ)> 0 and
k> 0, are defined as

kI
ξ
a+ f(x) �

1
kΓk(ξ)


x

a
(x − t)

(ξ/k)− 1
f(t)dt, x> a,

kI
ξ
b− f(x) �

1
kΓk(ξ)


b

x
(t − x)

(ξ/k)− 1
f(t)dt, x< b,

(8)

where Γk(.) is defined by [18]:

Γk(ξ) � 
∞

0
t
ξ− 1

e
− tk/k( )dt, R(ξ)> 0. (9)

Two k-fractional versions of Hadamard inequality are
given in next two theorems.

Theorem 4 (see [19]). Let f: [a, b]⟶ R be a positive
function with 0≤ a< b. Iff is a convex function on [a, b], then
the following inequality for k-fractional integral holds:

f
a + b

2
 ≤

Γk(ξ + k)

2(b − a)
(ξ/k) kI

ξ
a+ f(b) + kI

ξ
b− f(a) ≤

f(a) + f(b)

2
. (10)

Theorem 5 (see [20]). Under the assumptions of 7eorem 4,
the following inequality for k-fractional integral holds:

f
a + b

2
 ≤

2(ξ/k)− 1Γk(ξ + k)

(b − a)
(ξ/k) kI

ξ
(a+b/2)+ f(b)+kI

ξ
(a+b/2)− f(a) ≤

f(a) + f(b)

2
. (11)

*e error estimation of inequality (10) is given in the
following theorem.

Theorem 6 (see [19]). Let f: [a, b]⟶ R be a differentiable
mapping on (a, b) with 0≤ a< b. If |f′| is convex on [a, b],
then the following inequality for k-fractional integral holds:

f(a) + f(b)

2
−
Γk(ξ + k)

2(b − a)
(ξ/k) kI

ξ
a+ f(b) + kI

ξ
b− f(a) 





≤
b − a

2((ξ/k) + 1)
1 −

1
2(ξ/k)

  f′(a)


 + f′(b)


 .

(12)

Now, we recall generalized Riemann–Liouville fractional
integrals by a monotonically increasing function.

Definition 4 (see [21]). Let f ∈ L1[a, b]. Also let ψ be an
increasing and positive monotone function on (a, b]; further, ψ
has a continuous derivative ψ′ on (a, b). *erefore, left as well
as right fractional integral operators of order ξ whereR(ξ)> 0
of f with respect to ψ on [a, b] are defined by

I
ξ,ψ
a+ f(x) �

1
Γ(ξ)


x

a
ψ′(t)ψ(x) − ψ(t)

ξ− 1
f(t)dt, x> a,

I
ξ,ψ
b− f(x) �

1
Γ(ξ)


b

x
ψ′(t)ψ(t) − ψ(x)

ξ− 1
f(t)dt, x< b.

(13)

*e k-analogue of generalized Riemann–Liouville frac-
tional integrals is defined as follows.

Definition 5 (see [22]). Let f ∈ L1[a, b]. Also let ψ be an
increasing and positive monotone function on (a, b]; fur-
ther, ψ has a continuous derivative ψ′ on (a, b). *erefore,
left as well as right k-fractional integral operators of order ξ
where R(ξ)> 0 of f with respect to ψ on [a, b] are defined
by

kI
ξ,ψ
a+ f(x) �

1
kΓk(ξ)


x

a
ψ′(t)ψ(x) − ψ(t)

(ξ/k)− 1
f(t)dt, x> a,

(14)

kI
ξ,ψ
b− f(x) �

1
kΓk(ξ)


b

x
ψ′(t)ψ(t) − ψ(x)

(ξ/k)− 1
f(t)dt, x< b.

(15)

For more details of fractional integrals, see
[14, 23, 24]. We will utilize the following well-known
hypergeometric, Beta, and incomplete Beta functions in
our results [25]:

2F1[a, b; c; z] �
1

B(b, c − b)

1

0
t
b− 1

(1 − t)
c− b− 1

· (1 − zt)
− adt, c> b> 0 and |z|< 1,

B(x, y) � 
1

0
t
x− 1

(1 − t)
y− 1dt �

Γ(x)Γ(y)

Γ(x + y)
,

B(x, y; z) � 
z

0
t
x− 1

(1 − t)
y− 1dt.

(16)
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In Section 2, we established Hadamard inequality for
strongly exponentially (α, h − m)-convex functions via
generalized Riemann–Liouville fractional integrals. *e
special cases of these inequalities are associated with pre-
viously published papers. In Section 3, error estimations of
fractional Hadamard inequality for strongly exponentially
(α, h − m) are obtained with the help of two fractional in-
tegral identities. *e outcomes of this article are connected
with already established results given in
[15, 16, 19, 20, 26–37].

2. Main Results

*is section is concerned with two fractional versions of
Hadamard inequalities for strongly exponentially
(α, h − m)-convex functions. One of them is given in the
following theorem.

Theorem 7 Let f: [a, b]⟶ R be a positive function with
0≤ a<mb and f ∈ L1[a, b]. Also, suppose that f is the
strongly exponentially (α, h − m)-convex function on [a, b]

with modulus λ≥ 0. 7en, for k> 0 and (α, m) ∈ (0, 1]2, the
following k-fractional integral inequality holds for operators
given in (14) and (15):

f
a + mb

2
  +

mg1(η)λh 1/2α( h 2α − 1/2α( 

(ξ + k)(ξ + 2k)
ξ(ξ + k)(b − a)

2
+ 2k

2 a

m
− mb 

2


+2kξ(b − a)
a

m
− mb ≤

Γk(ξ + k)

(mb − a)
(ξ/k)

· g2(η)h
1
2α

 kI
ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(mb)  + g3(η)h
2α − 1
2α

 m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1 a

m
   

≤
ξ
k

h 1/2α( g2(η)f(a)

e
ηa +

mh 2α − 1/2α( g3(η)f(b)

e
ηb

  
1

0
h t

α
( t

(ξ/k)− 1dt

+
mξ
k

h 1/2α( g2(η)f(b)

e
ηb

+
mh 2α − 1/2α( g3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦ 
1

0
t
(ξ/k)− 1

h 1 − t
α

( dt

−
mλξ

k

g2(η)h 1/2α( (b − a)
2

e
η(a+b)

+
mg3(η)h 2α − 1/2α(  b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ 
1

0
h t

α
( h 1 − t

α
( t

(ξ/k)− 1dt,

(17)

where ξ > 0 and

g1(η) �
e

− η(a+b)
, if η> 0,

e
− η(mb+(a/m))

, if η< 0,

⎧⎨

⎩

g2(η) �
e

− ηmb
, if η< 0,

e
− ηa

, if η> 0,

⎧⎨

⎩

g3(η) �
e

− ηb
, if η< 0,

e
(− ηa/m)

, if η> 0.

⎧⎨

⎩

(18)

Proof. From strongly exponentially (α, h − m)-convexity of
f, we have

f
x + my

2
 ≤ h

1
2α

 
f(x)

e
ηx + mh

2α − 1
2α

 
f(y)

e
ηy −

mλ
e
η(x+y)

h
1
2α

 h
2α − 1
2α

 |y − x|
2
. (19)
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By setting x � at + m(1 − t)b and y � (a/m)(1 − t) + bt,
t ∈ [0, 1], in (19), multiplying the resulting inequality with
t(ξ/k)− 1, and then integrating with respect to t, we get

k

ξ
f

a + mb

2
 ≤ h

1
2α

  
1

0

f(at + m(1 − t)b)

e
η(at+m(1− t)b)

t
(ξ/k)− 1dt + mh

2α − 1
2α

 

× 
1

0

f((a/m)(1 − t) + bt)

e
η((a/m)(1− t)+bt)

t
(ξ/k)− 1dt − mλh

1
2α

 h
2α − 1
2α

 

× 
1

0

(t(b − a) +(1 − t)((a/m) − mb))
2

e
η(t(a+b)+(1− t)(mb+(a/m)))

t
(ξ/k)− 1dt.

(20)

Let

g1(t) � e
− η(t(a+b)+(1− t)(mb+(a/m)))

,

g1′(t) � η(1 − m)
a

m
− b e

− η(t(a+b) +(1− t)(mb+(a/m)))
.

(21)

Now one can see that g1 will be increasing if η< 0 and
decreasing if η> 0. *erefore, from inequality (20), we can
have

k

ξ
f

a + mb

2
 ≤ h

1
2α

  
1

0

f(at + m(1 − t)b)

e
η(at+m(1− t)b)

t
(ξ/k)− 1dt + mh

2α − 1
2α

 

× 
1

0

f((a/m)(1 − t) + bt)

e
η((a/m)(1− t)+bt)

t
(ξ/k)− 1dt −

mkg1(η)λ
ξ(ξ + k)(ξ + 2k)

h
1
2α

 h
2α − 1
2α

  ξ(ξ + k)(b − a)
2



+2k
2 a

m
− mb 

2
+ 2kξ(b − a)

a

m
− mb .

(22)

By setting ψ(u) � at + m(1 − t)b and ψ(v) � (a/m)(1 −

t) + bt in (22), we get the following inequality:

k

ξ
f

a + mb

2
 ≤

1
(mb − a)

(ξ/k)
 h

1
2α

  
ψ− 1(mb)

ψ− 1(a)

f(ψ(u))

e
η(ψ(u))

(mb − ψ(u))
(ξ/k)− 1ψ′(u)du

+mh
2α − 1
2α

  
ψ− 1(b)

ψ− 1(a/m)

f(ψ(v))

e
η(ψ(v))

ψ(v) −
a

m
 

(ξ/k)− 1
ψ′(v)dv −

mkg1(η)λ
ξ(ξ + k)(ξ + 2k)

× h
1
2α

 h
2α − 1
2α

  ξ(ξ + k)(b − a)
2

+ 2k
2 a

m
− mb 

2
+ 2kξ(b − a)

a

m
− mb  .

(23)

Journal of Mathematics 5



Further, multiplying by (ξ/k) and using Definition 5, we
get

f
a + mb

2
 ≤

Γk(ξ + k)

(mb − a)
(ξ/k)

g2(η)h
1
2α

 kI
ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(mb) 

+g3(η)m
(ξ/k)+1

h
2α − 1
2α

 kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1 a

m
   −

mg1(η)λ
(ξ + k)(ξ + 2k)

× h
1
2α

 h
2α − 1
2α

  ξ(ξ + k)(b − a)
2

+ 2k
2 a

m
− mb 

2
+ 2kξ(b − a)

a

m
− mb  .

(24)

*e above inequality leads to the first inequality of (17).
Again, using strongly exponentially (α, h − m)-convexity of
f, for t ∈ [0, 1], we have

g2(η)h
1
2α

 f(at + m(1 − t)b) + mg3(η)h
2α − 1
2α

 f
a

m
(1 − t) + bt 

≤ h t
α

( 
h 1/2α( g2(η)f(a)

e
ηa +

mh 2α − 1/2α( g3(η)f(b)

e
ηb

 

+ mh 1 − t
α

( 
h 1/2α( g2(η)f(b)

e
ηb

+
mh 2α − 1/2α( g3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦

− mλh t
α

( h 1 − t
α

( 
g2(η)h 1/2α( (b − a)

2

e
η(a+b)

+
mg3(η)h 2α − 1/2α(  b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(25)

By integrating (25) over the interval [0, 1] after multi-
plying with t(ξ/k)− 1, we get

g2(η)h
1
2α

  
1

0
f(ta + m(1 − t)b)t

(ξ/k)− 1dt

+ mg3(η)h
2α − 1
2α

  
1

0
f

a

m
(1 − t) + tb t

(ξ/k)− 1dt≤
h 1/2α( g2(η)f(a)

e
ηa +

mh 2α − 1/2α( g3(η)f(b)

e
ηb

 


1

0
h t

α
( t

(ξ/k)− 1dt + m
h 1/2α( g2(η)f(b)

e
ηb

+
mh 2α − 1/2α( g3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦


1

0
t
(ξ/k)− 1

h 1 − t
α

( dt − mλ
g2(η)h 1/2α( (b − a)

2

e
η(a+b)

+
mg3(η)h 2α − 1/2α(  b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦


1

0
h t

α
( h 1 − t

α
( t

(ξ/k)− 1dt.

(26)

Again using substitutions as considered in (22), the
above inequality leads to the second inequality of (17).

In the following remark, we give the connection of in-
equality (17) with already established results. □
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Remark 2
(i) If we take η � 0, λ � 0, α � 1, and ψ as the identity

function in (17), then the inequality stated in
*eorem 2.1 in [29] is obtained

(ii) If we take η � 0, k � 1, h(t) � t, m � 1, λ � 0,
α � 1, and ψ as the identity function in (17), then
*eorem 1 is obtained

(iii) If we take η � 0, h(t) � t, m � 1, α � 1, λ � 0, and
ψ as the identity function in (17), then refinement
of *eorem 1 is obtained

(iv) If we take α � 1, ξ � 1, k � 1, h(t) � t, m � 1,
η � 0, λ � 0, and ψ as the identity function in (17),
then Hadamard inequality is obtained

(v) If we take η � 0, m � 1, α � 1, λ � 0, and h(t) � t

in (17), then the inequality stated in *eorem 1 in
[26] is obtained

(vi) If we take η � 0, m � 1, α � 1, and h(t) � t in (17),
then the inequality stated in *eorem 10 in [32] is
obtained

(vii) If we take η � 0, k � 1, m � 1, α � 1, λ � 0, and
h(t) � t in (17), then the inequality stated in
*eorem 2.1 in [34] is obtained

(viii) If we take α � 1, k � 1, h(t) � t, η � 0, λ � 0, and ψ
as the identity function in (17), then the inequality
stated in *eorem 2.1 in [31] is obtained

(ix) If we take α � 1, λ � 0, h(t) � ts, and ψ as the
identity function in (17), then the inequality stated
in *eorem 2 in [36] is obtained

(x) If we take α � 1, η � 0, λ � 0, and h(t) � ts in (17),
then the inequality stated in Corollary 1 in [35] is
obtained

(xi) If we take η � 0 and k � 1 in (17), then the in-
equality stated in *eorem 4 in [37] is obtained

(xii) If we take η � 0, k � 1, and α � 1 in (17), then the
inequality stated in Corollary 1 in [37] is obtained

(xiii) If we take λ � 0 in (17), then the inequality stated in
*eorem 7 in [38] is obtained

Now, we give inequality (17) for strongly exponentially
(h − m)-convex, strongly exponentially (s, m)-convex,
strongly exponentially m-convex, and strongly exponentially
convex functions.

Corollary 1. If we take α � 1 in (17), then the following
inequality holds for strongly exponentially (h − m)-convex
functions:

f
a + mb

2
  +

mg1(η)λh
2
(1/2)

(ξ + k)(ξ + 2k)
ξ(ξ + k)(b − a)

2
+ 2k

2 a

m
− mb 

2


+2kξ(b − a)
a

m
− mb ≤

h(1/2)Γk(ξ + k)

(mb − a)
(ξ/k)

g2(η)kI
ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(mb) 

+g3(η)m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1 a

m
  ≤

h(1/2)ξ
k

g2(η)f(a)

e
ηa +

mg3(η)f(b)

e
ηb

 

× 
1

0
h(t)t

(ξ/k)− 1dt +
mh(1/2)ξ

k

g2(η)f(b)

e
ηb

+
mg3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦ 
1

0
t
(ξ/k)− 1

h(1 − t)dt

−
mλh(1/2)ξ

k

g2(η)(b − a)
2

e
η(a+b)

+
mg3(η) b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ 
1

0
h(t)h(1 − t)t

(ξ/k)− 1dt.

(27)

Corollary 2. If we take α � 1 and h(t) � ts in (17), then the
following inequality holds for strongly exponentially
(s, m)-convex functions:
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f
a + mb

2
  +

mg1(η)λ
22s

(ξ + k)(ξ + 2k)
ξ(ξ + k)(b − a)

2
+ 2k

2 a

m
− mb 

2


+2kξ(b − a)
a

m
− mb ≤

Γk(ξ + k)

2s
(mb − a)

(ξ/k)
g2(η)kI

ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(mb) 

+g3(η)m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1 a

m
  ≤

ξ
2s

(ξ + sk)

g2(η)f(a)

e
ηa +

mg3(η)f(b)

e
ηb

 

+
mξB(1 + s, (ξ/k))

2s
k

g2(η)f(b)

e
ηb

+
mg3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦ −
mλξB(1 + s, s +(ξ/k))

2s
k

×
g2(η)(b − a)

2

e
η(a+b)

+
mg3(η) b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(28)

Corollary 3. If we take α � 1 and h(t) � t in (17), then the
following inequality holds for strongly exponentially m-con-
vex functions:

f
a + mb

2
  +

mg1(η)λ
4(ξ + k)(ξ + 2k)

ξ(ξ + k)(b − a)
2

+ 2k
2 a

m
− mb 

2


+2kξ(b − a)
a

m
− mb ≤

Γk(ξ + k)

2(mb − a)
(ξ/k)

g2(η)kI
ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(mb) 

+g3(η)m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1 a

m
  ≤

ξ
2(ξ + k)

g2(η)f(a)

e
ηa +

mg3(η)f(b)

e
ηb

 

+
mk

2(ξ + k)

g2(η)f(b)

e
ηb

+
mg3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦ −
mλξk

2(ξ + k)(ξ + 2k)

g2(η)(b − a)
2

e
η(a+b)

+
mg3(η) b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(29)

Corollary 4. If we take α � 1, m � 1, and h(t) � t in (17),
then the following inequality holds for strongly exponentially
convex functions:

f
a + b

2
  +

g1(η)k
2λ

2(ξ + k)(ξ + 2k)

≤
Γk(ξ + k)

2(b − a)
(ξ/k)

g2(η)kI
ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)  + g3(η)kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)  ,

≤
ξ

2(ξ + k)

g2(η)f(a)

e
ηa +

mg3(η)f(b)

e
ηb

  +
k

2(ξ + k)

g2(η)f(b)

e
ηa +

mg3(η)f(a)

e
ηb

 

−
λξk(b − a)

2
g2(η) + g3(η)( 

2(ξ + k)(ξ + 2k)e
η(a+b)

.

(30)
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*e next theorem is another version of Hadamard in-
equality for strongly exponentially (α, h − m)-convex
functions.

Theorem 8. Under the assumptions of 7eorem 7, the fol-
lowing k-fractional integral inequality holds:

f
a + mb

2
  + h

1
2α

 h
2α − 1
2α

 

mλg1(η)

4(ξ + k)(ξ + 2k)
ξ(ξ + k)(b − a)

2
+ ξ2 + 5kξ + 8k

2
 

a

m
− mb 

2
+ 2ξ(ξ + 3k)(b − a)

a

m
− mb  

≤
2(ξ/k)Γk(ξ + k)

(mb − a)
(ξ/k)

g2(η)h
1
2α

 kI
ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + g3(η)h
2α − 1
2α

 m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

≤
ξ
k

h 1/2α( g2(η)f(a)

e
ηa +

mh 2α − 1/2α( g3(η)f(b)

e
ηb

 


h

0
h

t
α

2α
 t

(ξ/k)− 1dt +
ξm

k

h 1/2α( g2(η)f(b)

e
ηb

+
mh 2α − 1/2α( g3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦


1

0
h

2α − t
α

2α
 t

(ξ/k)− 1dt −
mλξ

k

h 1/2α( g2(η)(b − a)
2

e
η(a+b)

+
mh 2α − 1( /2α( g3(η) b − a/m2

 
2

e
η a/m2+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦


1

0
h

t
α

2α
 h

2α − t
α

2α
 t

(ξ/k)− 1dt,

(31)

where ξ > 0 and

g1(η) �
e

(− η/2)(a(1+(1/m))+b(1+m))
, if η> 0,

e
− η(mb+(a/m))

, if η< 0,

⎧⎨

⎩

g2(η) �
e

− ηmb
, if η< 0,

e
− η(a+mb/2)

, if η> 0,

⎧⎨

⎩

g3(η) �
e

− η(a+mb/2m)
, if η< 0,

e
(− ηa/m)

, if η> 0.

⎧⎨

⎩

(32)

Proof. By setting x � (at/2) + m(2 − t/2)b and
y � (a/m)(2 − t/2) + (bt/2), t ∈ [0, 1], in (19), multiplying
the resulting inequality with t(ξ/k)− 1, and then integrating
with respect to t, we get

k

ξ
f

a + mb

2
 ≤ h

1
2α

  
1

0

f((at/2) + m(1 − (t/2))b)

e
η((at/2)+m(1− (t/2))b)

t
(ξ/k)− 1dt

+ mh
2α − 1
2α

  
1

0

f((a/m)((2 − t)/2) +(bt/2))

e
η((a/m)((2− t)/2)+(bt/2))

t
(ξ/k)− 1dt − mλg1(η)h

1
2α

 h
2α − 1
2α

 

× 
1

0

(t(b − a) +(1 − t)(a/m) − mb)
2

e
η((t/2)(a+b)+(1− (t/2))(mb+(a/m)))

t
(ξ/k)− 1dt.

(33)
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Let

g1(t) � e
− η((t/2)(a+b)+(1− (t/2))(mb+(a/m)))

,

g1′(t) �
η
2

(1 − m)
a

m
− b e

− η((t/2)(a+b)+(1− (t/2))(mb+(a/m)))
.

(34)

Now one can see that g1 will be increasing if η< 0 and
decreasing if η> 0. *erefore, from inequality (33), we can
have

k

ξ
f

a + mb

2
 ≤ h

1
2α

  
1

0

f((at/2) + m(1 − (t/2))b)

e
η((at/2)+m(1− (t/2))b)

t
(ξ/k)− 1dt

+ mh
2α − 1
2α

  
1

0

f((a/m)((2 − t)/2) +(bt/2))

e
η((a/m)(2− t/2)+(bt/2))

t
((ξ/k)− 1)dt − mλg1(η)h

1
2α

 h
2α − 1
2α

 

×
k

4ξ(ξ + k)(ξ + 2k)
ξ(ξ + k)(b − a)

2
+ ξ2 + 5kξ + 8k

2
 

a

m
− mb 

2
+ 2ξ(ξ + 3k)(b − a)

a

m
− mb  .

(35)

By setting ψ(u) � (at/2) + m(2 − t/2)b and
ψ(v) � (a/m)(2 − t/2) + (bt/2) in (35), we get the following
inequality:

k

ξ
f

a + mb

2
 ≤

2(ξ/k)

(mb − a)
(ξ/k)

h
1
2α

  
ψ− 1(mb)

ψ− 1(a+mb/2)

f(ψ(u))

e
η(ψ(u))

(mb − ψ(u))
(ξ/k)− 1ψ′(u)du + m

(ξ/k)+1
h

2α − 1
2α

  
ψ− 1(a+mb/2m)

ψ− 1(a/m)

f(ψ(v))

e
η(ψ(v))

ψ(v) −
a

m


(ξ/k)− 1

ψ′(v)dv⎡⎢⎣ ⎤⎥⎦

− mλg1(η)h
1
2α

 h
2α − 1
2α

 

k

4ξ(ξ + k)(ξ + 2k)
ξ(ξ + k)(b − a)

2
+ ξ2 + 5kξ + 8k

2
 

a

m
− mb 

2
+ 2ξ(ξ + 3k)(b − a)

a

m
− mb  .

(36)

Further, multiplying above inequality by (ξ/k) and using
Definition 5, we get

f
a + mb

2
 ≤

2(ξ/k)Γk(ξ + k)

(mb − a)
(ξ/k)

g2(η)h
1
2α

 kI
ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + g3(η)h
2α − 1
2α

 m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

− h
1
2α

 h
2α − 1
2α

 
mλg1(η)

4(ξ + k)(ξ + 2k)

ξ(ξ + k)(b − a)
2

+ ξ2 + 5kξ + 8k
2

 
a

m
− mb 

2
+ 2ξ(ξ + 3k)(b − a)

a

m
− mb  .

(37)
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*e above inequality leads to the first inequality of (31).
Again using strongly exponentially (α, h − m)-convexity of
f, for t ∈ [0, 1], we have

g2(η)h
1
2α

 f
at

2
+ m

2 − t

2
 b  + mg3(η)h

2α − 1
2α

 f
a

m

2 − t

2
  +

bt

2
 

≤ h
t
α

2α
 

h 1/2α( g2(η)f(a)

e
ηa +

mh 2α − 1/2α( f(b)

e
ηb

 

+ mh
2α − t

α

2α
 

h 1/2α( g2(η)f(b)

e
ηb

+
mh 2α − 1/2α( g3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦

− mλh
t
α

2α
 h

2α − t
α

2α
 

h 1/2α( g2(η)(b − a)
2

e
η(a+b)

+
h 2α − 1/2α( g3(η) b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(38)

By integrating (38) over [0, 1] after multiplying with
t(ξ/k)− 1, the following inequality holds:

g2(η)h
1
2α

  
1

0
f

at

2
+ m

2 − t

2
 b t

(ξ/k)− 1dt

+ mg3(η)h
2α − 1
2α

  
1

0
f

a

m

2 − t

2
  +

bt

2
 t

(ξ/k)− 1dt

≤
h 1/2α( g2(η)f(a)

e
ηa +

mh 2α − 1/2α( g3(η)f(b)

e
ηb

  
1

0
h

t
α

2α
 t

(ξ/k)− 1dt

+ m h 1/2α( g2(η)f(b)/eηb
+ mh 2α − 1/2α( g2(η)f a/m2

 /e
ηa

m2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ 
1

0
h

2α − t
α

2α
 t

(ξ/k)− 1dt

− mλ
h 1/2α( g2(η)(b − a)

2

e
η(a+b)

+
h 2α − 1/2α( g3(η) b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ 
1

0
h

t
α

2α
 h

2α − t
α

2α
 t

(ξ/k)− 1dt.

(39)

Again, using substitutions as considered in (35), the
above inequality leads to the second inequality of (31).

In the following remark, we give the connection of in-
equality (31) with already established results. □

Remark 3

(i) If we take η � 0 and k � 1 in (31), then the in-
equality stated in *eorem 5 in [37] is obtained

(ii) If we take η � 0 and α � 1 in (31), then the in-
equality stated in Corollary 3 in [37] is obtained

(iii) If we take α � 1, h(t) � t, m � 1, λ � 0, k � 1,
η � 0, and ψ as the identity function in (31), then
*eorem 2 is obtained

(iv) If we take α � 1, m � 1, h(t) � t, λ � 0, η � 0, and
ψ as the identity function in inequality (31), then
refinement of *eorem 2 is obtained

(v) If we take h(t) � t, m � 1, λ � 0, k � 1,
ξ � 1, η � 0, α � 1, and ψ as the identity function
in (31), then the Hadamard inequality is obtained

(vi) If we take h(t) � t, m � 1, α � 1, and η � 0 in (31),
then the inequality stated in *eorem 11 in [32] is
obtained

(vii) If we take α � 1, h(t) � t, k � 1, λ � 0, η � 0, and ψ
as the identity function in (31), then the inequality
stated in *eorem 2.1 in [30] is obtained

(viii) If we take λ � 0, α � 1, h(t) � ts, and η � 0 in (31),
then the inequality stated in Corollary 3 in [35] is
obtained

Journal of Mathematics 11



(ix) If we take λ � 0 in (31), then the inequality stated in
*eorem 8 in [38] is obtained

Now, we give inequality (31) for strongly exponentially
(h − m)-convex, strongly exponentially (s, m)-convex,
strongly exponentially m-convex, and strongly exponentially
convex functions.

Corollary 5. If we take α � 1 in (31), then the following
inequality holds for strongly exponentially (h − m)-convex
functions:

f
a + mb

2
  +

mh
2
(1/2)λg1(η)

4(ξ + k)(ξ + 2k)
ξ(ξ + k)(b − a)

2
+ ξ2 + 5kξ + 8k

2
 

a

m
− mb 

2
+ 2ξ(ξ + 3k)(b − a)

a

m
− mb  

≤
h(1/2)2(ξ/k)Γk(ξ + k)

(mb − a)
(ξ/k)

g2(η)kI
ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + g3(η)m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

≤
h(1/2)ξ

k

g2(η)f(a)

e
ηa + m

g3(η)f(b)

e
ηb

  × 
1

0
h

t

2
 t

(ξ/k)− 1dtr

+
h(1/2)ξm

k

g2(η)f(b)

e
ηb

+
mg3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦ 
1

0
h

2 − t

2
 t

(ξ/k)− 1dt

− mλh
1
2

 
g2(η)(b − a)

2

e
η(a+b)

+
g3(η) b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ 
1

0
h

t

2
 h

2 − t

2
 t

(ξ/k)− 1dt.

(40)

Corollary 6. If we take α � 1 and h(t) � ts in (31), then the
following inequality holds for strongly exponentially
(s, m)-convex functions:

f
a + mb

2
  +

2− 2s
mλg1(η)

4(ξ + 2k)(ξ + k)
ξ(ξ + k)(b − a)

2
+ ξ2 + 5kξ + 8k

2
 

a

m
− mb 

2
+ 2ξ(ξ + 3k)(b − a)

a

m
− mb  

≤
2(ξ/k)− sΓk(ξ + k)

(mb − a)
(ξ/k)

g2(η)kI
ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + g3(η)m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

≤
ξ

22s
(ξ + k)

g2(η)f(a)

e
ηa +

g3(η)f(b)

e
ηb

  + m2F1 − s,
ξ
k

,
ξ
k

+ 1;
1
2

 
g2(η)f(b)

e
ηb

+
mg3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦

−
2(ξ/k)− s

mλξB(1/2, s +ξ/k, 1 + s)

k
×

g2(η)(b − a)
2

e
η(a+b)

+
g3(η) b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(41)

Corollary 7. If we take α � 1 and h(t) � t in (31), then the
following inequality holds for strongly exponentially m-con-
vex functions:
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f
a + mb

2
  +

mλg1(η)

16(ξ + 2k)(ξ + k)
ξ(ξ + k)(b − a)

2
+ ξ2 + 5kξ + 8k

2
 

a

m
− mb 

2
+ 2ξ(ξ + 3k)(b − a)

a

m
− mb  

≤
2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k)

g2(η)kI
ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + g3(η)m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

≤
ξ

4(ξ + k)

g2(η)f(a)

e
ηa +

mg3(η)f(b)

e
ηb

  +
m(ξ + 2k)

4(ξ + k)

g2(η)f(b)

e
ηb

+
mg3(η)f a/m2

 

e
ηa/m2

⎡⎣ ⎤⎦

−
mλξ(ξ + 3k)

8(ξ + k)(ξ + 2k)

g2(η)(b − a)
2

e
η(a+b)

+
g3(η) b − a/m2

  
2

e
η a/m2( )+b( )

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(42)

Corollary 8. If we take α � 1, m � 1, and h(t) � t in (31),
then the following inequality holds for strongly exponentially
convex functions:

f
a + b

2
  +

λk
2
g1(η)

2(ξ + 2k)(ξ + k)

≤
2(ξ/k)− 1Γk(ξ + k)

(b − a)
(ξ/k)

g2(η)kI
ξ,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)  + g3(η)kI
ξ,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)  ,

≤
ξ

4(ξ + k)

g2(η)f(a)

e
ηa +

g3(η)f(b)

e
ηb

  +
(ξ + 2k)

4(ξ + k)

g2(η)f(b)

e
ηb

+
g3(η)f(a)

e
ηa 

−
λ(b − a)

2ξ(ξ + 3k) g2(η) + g3(η)( 

8(ξ + k)(ξ + 2k)e
η(a+b)

.

(43)

3. Error Estimations of Hadamard
Inequalities for Strongly Exponentially
(α, h−m)-Convex Functions

*is section deals with error bounds of Hadamard in-
equalities for strongly exponentially (α, h − m)-convex
functions using generalized Riemann–Liouville fractional
integrals. Estimations obtained here provide refinements of

several well-known inequalities for different types of con-
vexity. *e following identity is used to prove the next
theorem.

Lemma 1 (see [26]). Let a< b and f: [a, b]⟶ R be a
differentiable mapping on (a, b). Also, suppose that
f′ ∈ L1[a, b]. 7en, for k> 0, the following identity holds for
the operators given in (14) and (15):

f(a) + f(b)

2
−
Γk(ξ + k)

2(b − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)  + kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)  

�
b − a

2

1

0
(1 − t)

(ξ/k)
− t

(ξ/k)
 f′(ta +(1 − t)b)dt.

(44)

Theorem 9. Let f: [a, b]⟶ R be a differentiable mapping
on (a, b) such that f′ ∈ L1[a, b]. Also, suppose that |f′| is
strongly exponentially (α, h − m)-convex on [a, b]. 7en, for

k> 0 and α, m ∈ (0, 1]2, the following k-fractional
integral inequality holds for the operators given in (14) and
(15):
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f(a) + f(b)

2
−
Γk(ξ + k)

2(b − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)  + kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)  





≤
b − a

2

f′(a)




e
ηa 

(1/2)

0
h t

α
(  (1 − t)

(ξ/k)
− t

(ξ/k)
 dt + 

1

(1/2)
h t

α
(  t

(ξ/k)
− (1 − t)

(ξ/k)
 dt 

+
m f′(b/m)




e
ηb/m 

(1/2)

0
h 1 − t

α
(  (1 − t)

(ξ/k)
− t

(ξ/k)
 dt + 

1

(1/2)
h 1 − t

α
(  t

(ξ/k)
− (1 − t)

(ξ/k)
 dt 

−
mλ(b − a)

2

e
η(a+b)


(1/2)

0
h t

α
( h 1 − t

α
(  (1 − t)

(ξ/k)
− t

(ξ/k)
 dt − 

1
1
2

h t
α

( h 1 − t
α

(  t
(ξ/k)

− (1 − t)
(ξ/k)

 dt⎛⎜⎝ ⎞⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(45)

where ξ > 0. Proof. From Lemma 1, it follows that

f(a) + f(b)

2
−
Γk(ξ + k)

2(b − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)  + kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)  





≤
b − a

2

1

0
(1 − t)

(ξ/k)
− t

(ξ/k)


 f′(ta +(1 − t)b)


dt.

(46)

By using strongly exponentially (α, h − m)-convexity of
|f′| and for t ∈ [0, 1], we have

f′(ta +(1 − t)b)


≤ h t
α

( 
f′(a)




e
ηa + mh 1 − t

α
( 

f′(b/m)




e
ηb/m −

mλh t
α

( h 1 − t
α

( 

e
η(a+(b/m))

b

m
− a 

2

. (47)

Using (47) in (46), we get

f(a) + f(b)

2
−
Γk(ξ + k)

2(b − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)  + kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)  





≤
b − a

2

1

0
(1 − t)

(ξ/k)
− t

(ξ/k)


 h t
α

( 
f′(a)




e
ηa + mh 1 − t

α
( 

f′(b/m)




e
ηb/m

−
mλh t

α
( h 1 − t

α
( 

e
η(a+(b/m))

b

m
− a 

2
⎤⎦ �

b − a

2
f′(a)




e
ηa 

(1/2)

0
h t

α
(  (1 − t)

(ξ/k)
− t

(ξ/k)
 dt

+
1

(1/2)
h t

α
(  t

(ξ/k)
− (1 − t)

(ξ/k)
 dt +

m f′(b/m)




e
ηb/m 

(1/2)

0
h 1 − t

α
(  (1 − t)

(ξ/k)
− t

(ξ/k)
 dt

+
1

(1/2)
h 1 − t

α
(  t

(ξ/k)
− (1 − t)

(ξ/k)
 dt −

mλ(b − a)
2

e
η(a+(b/m))


(1/2)

0
h t

α
( h 1 − t

α
(  (1 − t)

(ξ/k)
− t

(ξ/k)
 dt

+ 
1

(1/2)
h t

α
( h 1 − t

α
(  t

(ξ/k)
− (1 − t)

(ξ/k)
 dt.

(48)
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In the following remark, we give the connection of in-
equality (45) with already established results. □

Remark 4

(i) If we take η � 0 and k � 1 in (45), then the in-
equality stated in *eorem 6 in [37] is obtained

(ii) If we take η � 0 and α � 1 in (45), then the in-
equality stated in Corollary 7 in [37] is obtained

(iii) If we take h(t) � t, m � 1, α � 1, and η � 0 in (45),
then the inequality stated in *eorem 12 in [32] is
obtained

(iv) If we take m � 1, α � 1, η � 0, λ � 0, and h(t) � ts

in (45), then the inequality stated in *eorem 2 in
[26] is obtained

(v) If we take m � 1, α � 1, λ � 0, h(t) � t, η � 0, and
ψ as the identity function in (45), then *eorem 6
is obtained

(vi) If we take k � 1, m � 1, α � 1, λ � 0, h(t) � t,
η � 0, and ψ as the identity function in (45), then
*eorem 3 is obtained

(vii) If we take k � 1, α � 1, ξ � 1, λ � 0, h(t) � t,
m � 1, η � 0, and ψ as the identity function in (45),
then the inequality stated in *eorem 2.2 in [27] is
obtained

(viii) If we take η � 0, α � 1, λ � 0, and h(t) � ts in (45),
then the inequality stated in Corollary 5 in [35] is
obtained

(ix) If we take α � 1, h(t) � t, m � 1, and η � 0 in (45),
then the inequality stated in *eorem 12 in [32] is
obtained

(x) If we take λ � 0 in (45), then the inequality stated
in *eorem 9 in [38] is obtained

Now, we give inequality (45) for strongly exponentially
(h − m)-convex, strongly exponentially m-convex, and
strongly exponentially convex functions.

Corollary 9. If we take α � 1 in (45), then the following
inequality holds for strongly exponentially (h − m)-convex
functions:

f(a) + f(b)

2
−
Γk(ξ + k)

2(b − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)  + kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)  





≤
b − a

2


f′(a)




e
ηa 

(1/2)

0
h(t) (1 − t)

(ξ/k)
− t

(ξ/k)
 dt + 

1

(1/2)
h(t) t

(ξ/k)
− (1 − t)

(ξ/k)
 dt 

+
m f′(b/m)




e
ηb/m 

(1/2)

0
h(1 − t) (1 − t)

(ξ/k)
− t

(ξ/k)
 dt + 

1

(1/2)
h(1 − t) t

(ξ/k)
− (1 − t)

(ξ/k)
 dt 

−
mλ(b − a)

2

e
η(a+b)


(1/2)

0
h(t)h(1 − t) (1 − t)

(ξ/k)
− t

(ξ/k)
 dt − 

1

(1/2)
h(t)h(1 − t) t

(ξ/k)
− (1 − t)

(ξ/k)
 dt .

(49)

Corollary 10. If we take α � 1 and h(t) � t in (45), then the
following inequality holds for strongly exponentially m-con-
vex functions:

f(a) + f(b)

2
−
Γk(ξ + k)

2(b − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)  + kI
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)  





≤
b − a

2((ξ/k) + 1)
1 −

1
2(ξ/k)

 
f′(a)




e
ηa +

m f′(b/m)




e
ηb/m  −

λ((b/m) − a)
3 1 − ((ξ/k) + 4)/ 2((ξ/k)+2)

  

e
η((b/m)+a)

((ξ/k) + 2)((ξ/k) + 3)
.

(50)

Corollary 11. If we take α � 1, m � 1, and h(t) � t in (45),
then the following inequality holds for strongly exponentially
convex functions:
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f(a) + f(b)

2
−
Γk(ξ + k)

2(b − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a)+ (f ∘ψ) ψ− 1

(b)  + kIk
ξ,ψ
ψ− 1(b)− (f ∘ψ) ψ− 1

(a)  





≤
b − a

2((ξ/k) + 1)
1 −

1
2(ξ/k)

 
f′(a)




e
ηa +

f′(b)




e
ηb

  −
λ(b − a)

3 1 − ((ξ/k) + 4)/ 2((ξ/k)+2)
  

e
η(b+a)

((ξ/k) + 2)((ξ/k) + 3)
.

(51)

The following integral identity is useful to get our next
theorem.

Lemma 2 (see [35]). Let f: [a, b]⟶ R be a differentiable
mapping on (a, b) such that f′ ∈ L1[a, b]. 7en, for k> 0 and
m ∈ (0, 1], the following integral identity holds for operators
given in (14) and (15):

2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

−
1
2

f
a + mb

2
  + mf

a + mb

2m
   �

mb − a

4

1

0
t
(ξ/k)

f′
at

2
+ m

2 − t

2
 b dt − 

1

0
t
(ξ/k)

f′
a

m

2 − t

2
  +

bt

2
 dt .

(52)

Theorem 10. Let f: [a, b]⟶ R, [a, b] ⊂ [0, b], be a dif-
ferentiable mapping on (a, b) such that f′ ∈ L1[a, b]. Also
suppose that |f′|q is a strongly exponentially

(α, h − m)-convex function on [a, b] for q≥ 1. 7en, for k> 0
and (α, m) ∈ (0, 1]2, the following fractional integral in-
equality holds for operators given in (14) and (15):



2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

−
1
2

f
a + mb

2
  + mf

a + mb

2m
  


≤

mb − a

4((ξ/k) + 1)
1− (1/q)

f′(a)



q

e
ηa 

1

0
h

t
α

2α
 t

(ξ/k)dt

+
m f′(b)



q

eηb

1

0
h

2α − tα

2α
 t

(ξ/k)dt −
mλ(b − a)2

eη(a+b)

1

0
h

tα

2α
 h

2α − tα

2α
 t

(ξ/k)dt

(1/q)

+
m f′ a/m2

 



q

e
ηa/m2 

1

0
h

2α − t
α

2α
 t

(ξ/k)dt +
m f′(b)



q

e
ηb


1

0
h

t
α

2α
 t

(ξ/k)dt⎛⎝

−
mλ b − a/m2( ( 

2

eη a/m2( )+b( )

1

0
h

tα

2α
 h

2α − tα

2α
 t

(ξ/k)dt

(1/q)

⎤⎥⎥⎥⎦.

(53)

Proof. We divide the proof in two cases: Case 1 (for q � 1). Applying Lemma 2 and using
strongly exponentially (α, h − m)-convexity of |f′|, we
have
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2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

−
1
2

f
a + mb

2
  + mf

a + mb

2m
  


≤

mb − a

4

1

0
t
(ξ/k)

f′
at

2
+ m

2 − t

2
 b 




dt

+ 
1

0
t
(ξ/k)

f′
a

m

2 − t

2
  +

bt

2
 




dt≤

mb − a

4
f′(a)




e
ηa +

f′(b)




e
ηb

  
1

0
h

t
α

2α
 t

(ξ/k)dt

+ m
f′(b)




e
ηb

+
f′ a/m2

 




e
ηa/m2

⎛⎝ ⎞⎠ 
1

0
h

2α − t
α

2α
 t

(ξ/k)
− mλ

(b − a)
2

e
η(a+b)

+
b − a/m2

  
2

e
η a/m2( )+b( )

⎛⎝ ⎞⎠

× 
1

0
h

t
α

2α
 h

2α − t
α

2α
 dt.

(54)

Case 2 (for q> 1). From Lemma 2 and using power
mean inequality, we get



2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

−
1
2

f
a + mb

2
  + mf

a + mb

2m
  


≤

mb − a

4

1

0
t
(ξ/k)dt 

1− (1/q)


1

0
t
(ξ/k)

f′
at

2
+ m

2 − t

2
 b 





q

dt 

(1/q)

+ 
1

0
t
(ξ/k)

f′
a

m

2 − t

2
  +

bt

2
 





q

dt 

(1/q)

⎡⎢⎣ ⎤⎥⎦

≤
mb − a

4((ξ/k) + 1)
1− (1/q)

⎡⎣
f′(a)



q

e
ηa 

1

0
h

t
α

2α
 t

(ξ/k)dt +
m f′(b)



q

e
ηb


1

0
h

2α − t
α

2α
 t

(ξ/k)dt

−
mλ(b − a)2

eη(a+b)

1

0
h

tα

2α
 h

2α − tα

2α
 t

(ξ/k)dt

(1/q)

+
m f′ a/m2

 



q

e
ηa/m2

⎛⎝⎛⎝ 
1

0
h

2α − t
α

2α
 t

(ξ/k)dt

+
f′(b)



q

eηb

1

0
h

tα

2α
 t

(ξ/k)dt −
mλ b − a/m2( ( 

2

eη a/m2( )+b( )

1

0
h

tα

2α
 h

2α − tα

2α
 t

(ξ/k)dt

(1/q)

⎤⎥⎥⎥⎦.

(55)

Hence, equation (53) is obtained.
In the following remark, we give the connection of in-

equality (53) with already established results. □

Remark 5

(i) If we take λ � 0 in (53), then the inequality stated
in *eorem 10 in [38] is obtained

(ii) If we take η � 0, α � 1, λ � 0, and h(t) � ts in (53),
then the inequality stated in Corollary 7 in [35] is
obtained

(iii) If we take h(t) � t, k � 1, η � 0, α � 1, λ � 0, and ψ
as the identity function in (53), then the inequality
stated in *eorem 2.4 in [30] is obtained

(iv) If we take η � 0, h(t) � t, m � 1, α � 1, and ψ as the
identity function in (53), then the inequality stated
in *eorem 3.1 in [20] is obtained

(v) If we take h(t) � t, m � 1, η � 0, k � 1, α � 1,
λ � 0, and ψ as the identity function in (53), then
the inequality stated in *eorem 5 in [16] is
obtained

(vi) If we take q � 1, h(t) � t, m � 1, η � 0, k � 1,
ξ � 1, α � 1, λ � 0, and ψ as the identity function in
(53), then the inequality stated in *eorem 2.2 in
[33] is obtained

(vii) If we take η � 0, α � 1, m � 1, and h(t) � t in (53),
then the inequality stated in *eorem 13 in [32] is
obtained
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(viii) If we take η � 0 and k � 1 in (53), then the in-
equality stated in *eorem 7 in [37] is obtained

(ix) If we take η � 0, k � 1, and α � 1 in (53), then the
inequality stated in Corollary 10 in [37] is obtained

Now, we give inequality (53) for strongly exponentially
(h − m)-convex, strongly exponentially (s, m)-convex,

strongly exponentially m-convex, and strongly exponentially
convex functions.

Corollary 12. If we take α � 1 in (53), then the following
inequality holds for strongly exponentially (h − m)-convex
functions:



2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + m
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kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

−
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2
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2m
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q
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t
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(ξ/k)dt
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q
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2
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(ξ/k)dt)
1/q
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m f′ a/m2

 



q

e
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⎛⎝ 
1

0
h
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2
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(ξ/k)dt +
f′(b)



q

e
ηb


1

0
h

t

2
 t

(ξ/k)dt −
mλ b − a/m2

  
2

e
η a/m2( )+b( )

× 
1

0
h

t

2
 h

2 − t

2
 t

(ξ/k)
dt

(1/q)
.

(56)

Corollary 13. If we take α � 1 and h(t) � ts in (53), then the
following inequality holds for strongly exponentially
(s, m)-convex functions:



2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

−
1
2

f
a + mb

2
  + mf
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2m
  


≤
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4((ξ/k) + 1) 2s
((ξ/k) + s + 1)( 

(1/q)


((ξ/k) + 1) f′(a)



q

e
ηa

+
2s

m f′(b)



q
((ξ/k) + s + 1)2F1(− s, 1 +(ξ/k), 2 +(ξ/k); (1/2))

e
ηb

−
21+s+(μ/k)mλ(b − a)2B((1/2), 1 + s +(μ/k), 1 + s)((ξ/k) + 1)((ξ/k) + s + 1)

eη(a+b)


(1/q)

+
2s

m2F1(− s, 1 +(ξ/k), 2 +(ξ/k); (1/2))((ξ/k) + s + 1) f′ a/m2
 




q

e
ηa/m2

⎛⎝ +
((ξ/k) + 1) f′(b)



q

e
ηb

−
21+s+(μ/k)mλ(b − a)2B((1/2), 1 + s +(μ/k), 1 + s)((ξ/k) + 1)((ξ/k) + s + 1)

eη(a+b)


(1/q)

⎤⎥⎦.

(57)

Corollary 14. If we take α � 1, m � 1, and h(t) � t in (53),
then the following inequality holds for strongly exponentially
m-convex functions:
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2(ξ/k)− 1Γk(ξ + k)

(b − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+b/2)+ (f ∘ψ) ψ− 1

(b)  + kI
ξ,ψ
ψ− 1(a+b/2)− (f ∘ψ) ψ− 1

(a)   − f
a + b

2
 





≤
b − a

4((ξ/k) + 1)(2((ξ/k) + 2))
(1/q)


((ξ/k) + 1) f′(a)



q

eηa
+

f′(b)



q
((ξ/k) + 3)

eηb
−
λ(b − a)2((ξ/k) + 1)((ξ/k) + 4)

2eη(a+b)((ξ/k) + 3)
 

(1/q)

+
((ξ/k) + 3) f′ a/m2( ( 



q

eηa/m2 +
((ξ/k) + 1) f′(b)



q

eηb
−
λ(b − a)2((ξ/k) + 1)((ξ/k) + 4)

eη(a+b)((ξ/k) + 3)
 

(1/q)

.

(58)

Corollary 15. If we take α � 1, k � 1, m � 1, q � 1, ξ � 1,
h(t) � t, and ψ as the identity function in (53), then the
following inequality is obtained:

1
(b − a)


1

0
f(ξ)dξ − f

a + b

2
 




≤

b − a

8
f′(a)




e
ηa +

f′(b)




e
ηb

−
5λ(b − a)

2

12e
η(a+b)

 . (59)

Theorem 11. Let f: [a, b]⟶ R, [a, b] ⊂ [0, b], be a dif-
ferentiable mapping on (a, b) with a< b. Also, suppose that
|f′|q is the strongly exponentially (α, h − m)-convex function

on [a, b] for q> 1. 7en, for k> 0 and (α, m) ∈ (0, 1]2, the
following fractional integral inequality holds for the operators
given in (14) and (15):



2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

−
1
2

f
a + mb

2
  + mf

a + mb

2m
  


≤

mb − a

4((ξp/k) + 1)
(1/p)


f′(a)




eηa


q


1

0
h

t
α

2α
 dt

+
m f′(b)



q

eηb

1
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h

2α − tα

2α
 dt −

mλ(b − a)2

eη(a+b)

1

0
h

tα

2α
 h

2α − tα

2α
 dt

(1/q)

+
m f′ a/m2

 



q

e
ηa/m2

⎛⎝ 
1

0
h

2α − t
α

2α
 dt +

f′(b)



q

e
ηb


1

0
h

t
α

2α
 dt

−
mλ b − a/m2( ( 

2

eη a/m2( )+b( )

1

0
h

tα

2α
 h

2α − tα

2α
 dt

(1/q)
,

(60)

with (1/p) + (1/q) � 1. Proof. Applying Lemma 2 and using the property of
modulus, we get



2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

−
1
2

f
a + mb

2
  + mf

a + mb

2m
  


≤

mb − a

4
 

1

0
t
(ξ/k)

f′
at

2
+ m 1 −

t

2
 b 




dt

+ 
1

0
t
(ξ/k)

f′
a

m
1 −

t

2
  +

bt

2
 




dt.

(61)

Now applying Hölder’s inequality for integrals, we get
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2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

−
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2

f
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2
  + mf
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0
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dt 

(1/q)

+ 
1

0
f′

a

m

2 − t

2
  +
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2
 





q

dt 

(1/q)

.

(62)

Using strongly exponentially (α, h − m)-convexity of
|f′|q, we get



2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
ψ− 1(a+mb/2)+ (f ∘ψ) ψ− 1

(mb)  + m
(ξ/k)+1

kI
ξ,ψ
ψ− 1(a+mb/2)− (f ∘ψ) ψ− 1 a

m
   

−
1
2

f
a + mb

2
  + mf

a + mb

2m
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4((ξp/k) + 1)
(1/p)

f′(a)




eηa

q


1
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 dt +

m f′(b)



q
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 dt −
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1

0
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2α
 dt 

(1/q)

⎡⎢⎢⎣

+
m f′ a/m2( 



q

eηa/m2 
1

0
h 1 −

tα

2α
 dt +

f′(b)



q

eηb

1

0
h

tα

2α
 dt −

mλ b − a/m2( ( 
2

eη a/m2( )+b( )

1

0
h

tα

2α
 h

2α − tα

2α
 dt 

(1/q)

⎤⎥⎥⎥⎦.

(63)

In the following remark, we give the connection of in-
equality (60) with already established results. □

Remark 6

(i) If we take λ � 0 in (60), then the inequality stated
in *eorem 11 in [38] is obtained

(ii) If we take η � 0 and k � 1 in (60), then the in-
equality stated in *eorem 8 in [37] is obtained

(iii) If we take η � 0 and α � 1 in (60), then the in-
equality stated in Corollary 12 in [37] is obtained

(iv) If we take h(t) � t, k � 1, η � 0, α � 1, λ � 0, and ψ
as the identity function in (60), then the inequality
stated in *eorem 2.7 in [30] is obtained

(v) If we take η � 0, λ � 0, h(t) � t, α � 1, m � 1, and
ψ as the identity function in (60), then the in-
equality stated in *eorem 3.2 in [20] is obtained

(vi) If we take k � 1, h(t) � t, m � 1, η � 0, ξ � 1, α � 1,
λ � 0, and ψ as the identity function in (60), then the
inequality stated in *eorem 2.4 in [33] is obtained

(vii) If we take η � 0, α � 1, and h(t) � ts in (60), then
the inequality stated in Corollary 9 in [35] is
obtained

(viii) If we take α � 1, m � 1, h(t) � t, and η � 0 in (60),
then the inequality stated in *eorem 14 in [32] is
obtained

Now, we give inequality (60) for strongly exponentially
(h − m)-convex, strongly exponentially (s, m)-convex,
strongly exponentially m-convex, and strongly exponentially
convex functions.

Corollary 16. If we take α � 1 in (60), then the following
inequality holds for strongly exponentially (h − m)-convex
functions:
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2(ξ/k)− 1Γk(ξ + k)
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(ξ/k) kI

ξ,ψ
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 dt
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.

(64)

Corollary 17. If we take α � 1 and h(t) � ts in (60), then the
following inequality holds for strongly exponentially
(s, m)-convex functions:



2(ξ/k)− 1Γk(ξ + k)

(mb − a)
(ξ/k) kI

ξ,ψ
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(65)

Corollary 18. If we take α � 1 and h(t) � t in (60), then the
following inequality holds for strongly exponentially m-con-
vex functions:



2(ξ/k)− 1Γk(ξ + k)
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⎤⎥⎥⎥⎦.

(66)

Corollary 19. If we take α � 1, m � 1, and h(t) � t in (60),
then the following inequality holds for strongly exponentially
convex functions:
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2(ξ/k)− 1Γk(ξ + k)
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(ξ/k) kI

ξ,ψ
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−
2λ b − a/m2( ( 

2

3eη(a+b)


(1/q)

⎤⎦.

(67)

4. Conclusion

In this paper, we have proved fractional versions of the
Hadamard inequality and their estimations for strongly
exponentially (α, h − m)-convex functions via generalized
Riemann–Liouville fractional integrals. *e outcomes of this
article give refinements and generalizations of fractional
integral inequalities for different types of convex functions
deducible from the definition of the exponentially
(α, h − m)-convex function. [39–41].
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Dragomir introduced the Jensen-type inequality for harmonic convex functions (HCF) and Baloch et al. studied its different
variants, such as Jensen-type inequality for harmonic h-convex functions. In this paper, we aim to establish the functional form of
inequalities presented by Baloch et al. and prove the superadditivity and monotonicity properties of these functionals. Fur-
thermore, we derive the bound for these functionals under certain conditions. Furthermore, we define more generalized
functionals involvingmonotonic nondecreasing concave function as well as evince superadditivity andmonotonicity properties of
these generalized functionals.

1. Introduction

Convexity is natural and simple notion which has found
applications in business, industry, and medicine. During the
study of convexity, many researchers have been fascinated
by generalization of this class and have tried to find out those
classes of functions which have close relation with this class
(but not convex in general). Harmonic convex functions
(HCFs) [1], harmonic (α, m)-convex functions [2], har-
monic (s, m)-convex functions [3, 4], and harmonic
(p, (s, m))-convex functions [5] are among these classes. For
a quick glance on importance of these classes and appli-
cations, see [6–9] and references therein. )e class of har-
monic convex functions (HCFs) and its different variants are
very important classes that gained prominence in the theory
of inequalities and applications as well as in other branches
of mathematics. Many researchers have been working on the
class of harmonic convex functions (HCFs) due to its sig-
nificance and have been trying to explore about it more and

more. During this study, recently different generalizations of
the class of harmonic convex functions (HCFs) have been
found, for example, see [10–13] and references therein.

)e importance of the class of HCFs continuously en-
courages us and many other researchers to explore more
about it, and the following paper is a link to it. For the better
understanding of the results of present paper, we first recall
some basic definitions.

Definition 1. Consider I ⊂ R\ 0{ }. A function f: I⟶ R is
HCF on I if

f
w1w2

tw1 +(1 − t)w2
 ≤ tf w2(  +(1 − t)f w1( , (1)

holds, for all w1, w2 ∈ I and t ∈ [0, 1]. If we reverse the above
inequality, the function f becomes harmonic concave.

Remark 1 (see [14]).
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(i) )e function f(w) � ln w is a HCF on the interval
(0,∞), but it is not a convex function.

(ii) )e function

f(w) �

1 − w

w
, 0<w≤ 1,

0, 1<w≤ 2,

w − 2
w

, w> 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

is another example of HCF, which is neither convex nor
concave.

Baloch et al., in [7], observed some remarkable facts for
the class of HCFs.

Proposition 1. For I⊆R\ 0{ }, a function f: I⟶ R, we
have the following facts:

(1) If I ⊂ (0,∞) and f is nondecreasing and convex
function, then f is HCF

(2) If I ⊂ (0,∞) and f is nonincreasing function and
harmonically convex, then f is convex function

(3) If I ⊂ (− ∞, 0) and f is nondecreasing function and
harmonically convex, then f is convex function

(4) If I ⊂ (− ∞, 0) and f is nonincreasing function and
convex, then f is HCF

Varošanec, in [15], proposed the concept of h-convexity
(also, see [16–18]) to unify numerous generalized aspects of
convex functions. In a similar fashion, harmonic h-convexity
unifies the various types of harmonic convexities.

Definition 2 (see [19]). Consider a nonnegative function
h: [0, 1]⟶ R+. )en, the function
f: I⊆R\ 0{ }⟶ (0,∞) is said to be harmonic h-convex on
I if the inequality

f
w1w2

tw1 +(1 − t)w2
 ≤ h(t)f w2(  + h(1 − t)f w1( , (3)

holds, for all w1, w2 ∈ I and t ∈ [0, 1]. Furthermore, if we
reverse inequality (3), then f becomes harmonic h-concave.

Remark 2. We provide few examples of harmonic h-convex
(concave) functions as follows:

(i) Obviously, with h(t) � t, the class of nonnegative
harmonic convex (concave) functions on I become
a particular case of the class of harmonic h-convex
(concave) functions on I.

(ii) Let t ∈ (0, 1) and h(t) � t2. Consider a function
f: [− 1, 0)∪ t(0, 1]⟶ R defined by f(x) � 1,
which is neither nonincreasing nor nondecreasing

h-convex function. )erefore, f is a harmonic
h-convex function by Proposition 1 given in [7].

(iii) Let t ∈ (0, 1) and h: (0, 1)⟶ (0,∞) be a real-
valued function such that h(t)≥ t on (0, 1). )en, the
following four functions, h1(t) � t, h2(t) � ts(s ∈
(0, 1)), h3(t) � 1/t, and h4(t) � 1, satisfy the con-
ditions of the function h mentioned above. )erefore,
f is a harmonic hα-convex function for α � 1, 2, 3, 4 if
f: I⊆ (0,∞)⟶ (0,∞) is a nondecreasing convex
function, or harmonic s-convex function, or harmonic
Godunova–Levin function or harmonic P-function.

(iv) Let f: (0,∞)⟶ (0,∞) be a nondecreasing
continuous function and h: [0, 1]⟶ (0,∞) be a
continuous self-concave function such that
f(tw1 + (1 − t)w2)≤ h(t)f(w1) + (1 − t)f(w2),
for some t ∈ (0, 1) and all w1, w2 ∈ (0,∞). )en, f

is a h-convex function by Lemma 1 of [20], and
hence, f is a harmonic h-convex function by
Proposition 1 of [7].

Definition 3. A function h: I⊆R⟶ R is said to be a
submultiplicative function if

h w1w2( ≤ h w1( h w2( , (4)

for allw1, w2 ∈ I. If inequality (4) is reversed, then h is said to
be supermultiplicative function. If just equality holds in
relation (4), then h is said to be multiplicative function.

Definition 4. A function h: I⊆R⟶ R is said to be a
subadditive function if

h w1 + w2( ≤ h w1(  + h w2( , (5)

for allw1, w2 ∈ I. If inequality (5) is reversed, then h is said to
be superadditive function. If just the equality holds in re-
lation (5), then h is said to be additive function.

Jensen-type inequality for HCFs is proposed by Drag-
omir [21].

Theorem 1. Let I⊆ (0,∞) be an interval. If f: I⟶ R is
HCF, then

f
1

1/Bn(  
n
α�1 bα/wα

 ≤
1

Bn

  

n

α�1
bαf wα( , (6)

Holds, for all w1, . . . , wn ∈ I and b1, . . . , bn ≥ 0 with


n
α�1 bα � Bn.

In [22], Baloch et al. derived the following results:

Theorem 2. Let I⊆R\ 0{ }. If f: I⟶ R is HCF, then, for
any finite positive sequence (wα)n

α�1 ∈ I and b1, . . . , bn ≥ 0
with 

n
α�1 bα � Bn, we have

f
1

1/w1(  + 1/wn(  − 1/Bn(  
n
α�1 bα/wα

 ≤f w1(  + f wn(  − 1/Bn(  

n

α�1
bαf wα( . (7)
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Theorem 3. Let b1, . . . , bn be positive real numbers (n≥ 2)
and Bn � 

n
α�1 bα. If h: I⊇(0, 1)⟶ R is a nonnegative

supermultiplicative function and if f is harmonic h-convex
function, (wα)n

α�1 ∈ I, then

f
1

1/Bn(  
n
α�1 bα/wα

 ≤ 
n

α�1
h

bα

Bn

 f wα( . (8)

Theorem 4. Let h: I⊇(0, 1)⟶ R be a nonnegative
supermutiplicative function on I. Let b1, . . . , bn be positive
real numbers (n≥ 2) such that Bn � 

n
α�1 bα and


n
α�1 h(bα/Bn)≤ 1. If f is harmonic h-convex on I⊆R\ 0{ },

then, for any finite positive increasing sequence (wα)n
k�1 ∈ I,

we have

f
1

1/w1(  + 1/wn(  − 1/Bn(  
n
α�1 bα/wα

 ≤f w1(  + f wn(  − 
n

α�1
h

bα

Bn

 f wα( . (9)

If h is a submultiplicative function, 
n
α�1 h(bα/Bn)≥ 1

and f is harmonic h-concave then inequality (9) is reversed.

Remark 3. Importance of the class of HCFs can be guessed
by the following applications in the field of mathematics:

(i) Harmonic convexity provides a useful analytic tool
to calculate several known definite integrals such as


b

a
(ew/xn)dw, 

b

a
ew2dw, 

b

a
(sin w/wn)dw, and 

b

a

(cos w/wn)dx∀n ∈ N, where a, b ∈ (0,∞), see [7]
(ii) Inequality (6) provides a very short proof of the

discrete form of Hölder’s inequality (see [22])

(iii) By inequalities (6) and (7), we can easily prove
weighted HGA inequality (see [14])

Many researchers considered the functionals related to
Jensen’s inequality and tried to find properties and bound
for these functionals (for example, see [23–30]). In the se-
quel, the set of all nonnegative n-tuples b � (b1, . . . , bn),
such that Bn ≔ 

n
α�1 bα > 0, will be denoted with B0

n.
)e difference between the right-hand and the left-hand

side of inequalities (6)–(9) defines the following functionals:

M1(f,w, b) ≔ 
n

α�1
bαf wα(  − Bnf

1
1/Bn(  

n
α�1 bα/wα

 , (10)

M2(f,w, b) ≔ Bn f w1(  + f wn(   − 
n

α�1
bαf wα(  − Bnf

1
1/w1(  + 1/wn(  − 1/Bn(  

n
α�1 bα/wα

 , (11)

M3(f,w, b) ≔ 
n

α�1
h

bα

Bn

 f wα(  − f
1

1/Bn(  
n
α�1 bα/wα

 , (12)

M4(f,w, b) ≔ f w1(  + f wn(  − 
n

α�1
h

bα

Bn

 f wα(  − f
1

1/w1(  + 1/wn(  − 1/Bn(  
n
α�1 bα/wα

 . (13)

For a fixed function f and n-tuple w, M1(f,w, .),
M2(f,w, .),M3(f,w, .), andM4(f,w, .) can be considered
as functions on B0

n, which is a convex subset in Rn. Fur-
thermore, because of inequalities (6)–(9), we haveM1(f,w,

b)≥ 0,M2(f,w, b)≥ 0,M3(f,w, b)≥ 0, andM4(f,w, b)≥
0, for all b ∈B0

n.

2. Main Results

In this section, we establish some properties of functionals
related to Jensen-type inequalities for HCFs.

Theorem 5. Let b � (b1, . . . , bn) and c � (c1, . . . , cn) be two
n-tuples fromB0

n. Let I⊆ (0,∞) be an interval. If f: I⟶ R

is a HCF, h: I⊇ (0, 1)⟶ R is a nonnegative multiplicative
and additive function on J, and if w � (w1, . . . , wn) ∈ In,
h(α) + h(1 − α)≥ 2, then Mi(f,w, .), for i � 1, 2, 3, 4, de-
fined by (10)–(12) are superadditive on B0

n, i.e.,

Mi(f,w, b + c)≥Mi(f,w, b) + Mi(f,w, c)≥ 0, (14)

for i � 1, 2, 3, 4.

Proof. Take i � 1 in (28) and starting from definition, we have
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M1(f,w, b + c) � 
n

α�1
bα + cα( f wα(  − Bn + Cn( f

1
1/Bn + Cn(  

n
α�1 bα + cα/wα

 

� 
n

α�1
bαf wα(  + 

n

α�1
cαf wα(  − Bn + Cn( f

1
1/Bn + Cn(  

n
α�1 bα + cα/wα

 ,

(15)

while, after arranging and harmonic convexity of f, yields

f
1

1/Bn + Cn(  
n
α�1 bα + cα/wα

  � f
1

Bn/Bn + Cn( . 1/Bn(  
n
α�1 bα/wα + Cn/Bn + Cn( . 1/Cn(  

n
α�1 cα/wα

 

≤
Bn

Bn + Cn

f
1

1/Bn(  
n
α�1 bα/wα

  +
Cn

Bn + Cn

f
1

1/Cn(  
n
α�1 cα/wα

 .

(16)

Finally, combining relation (15) and inequality (16), we
obtain

M1(f,w, b + c)≥ 
n

α�1
bαf wα(  + 

n

α�1
cαf wα(  − Bnf

1
1/Bn( 

n
α�1bα/wα

 

− Cnf
1

1/Cn( 
n
α�1cα/wα

  � M1(f,w, b) + M1(f,w, c).

(17)

Now, taking i � 2 in (28) and starting from the defini-
tion, we have

M2(f,w, b + c) � Bn + Cn(  f w1(  + f wn(   − 
n

α�1
bα + cα( f wα( 

− Bn + Cn( f
1

1/w1(  + 1/wn(  − 1/Bn + Cn(  
n
α�1 bα + cα/wα

 

� Bn f w1(  + f wn(   + Cn f w1(  + f wn(  

− 
n

α�1
bαf wα(  − 

n

α�1
cαf wα(  − Bn + Cn( 

f
1

1/w1(  + 1/wn(  − 1/Bn + Cn(  
n
α�1 bα + cα/wα

 ,

(18)

while, after arranging and harmonic convexity of f, yields
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f
1

1/w1(  + 1/wn(  − 1/Bn + Cn(  
n
α�1 bα + cα/wα

  � f
1

1/Bn + Cn(  
n
α�1 bα + cα(  1/w1(  + 1/wn(  − 1/wα( ( 

 

� f
1

Bn/Bn + Cn(  
n
α�1 bα/Bn(  1/w1(  + 1/wn(  − 1/wα( (  + Cn/Bn + Cn(  

n
α�1 cα/Cn(  1/w1(  + 1/wn(  − 1/wα( ( 

 

≤
Bn

Bn + Cn

f
1


n
α�1 bα/Bn(  1/w1(  + 1/wn(  − 1/wα( ( 

  +
Cn

Bn + Cn

f
1


n
α�1 cα/Cn(  1/w1(  + 1/wn(  − 1/wα( ( 

 

�
Bn

Bn + Cn

f
1

1/w1(  + 1/wn(  − 1/Bn(  
n
α�1 bα/wα

  +
Cn

Bn + Cn

f
1

1/w1(  + 1/wn(  − 1/Cn(  
n
α�1 cα/wα

 .

(19)

Finally, combining relation (18) and inequality (19), we
obtain

M2(f,w, b + c)≥Bn f w1(  + f wn(   + Cn f w1(  + f wn(   − 
n

α�1
bαf wα( 

− 
n

α�1
cαf wα(  − Bn + Cn( .

Bn

Bn + Cn

f
1

1/w1(  + 1/wn(  − 1/Bn(  
n
α�1 bα/wα

 

− Bn + Cn( .
Cn

Bn + Cn

f
1

1/w1(  + 1/wn(  − 1/Cn(  
n
α�1 cα/wα

  � M2(f,w, b) + M2(f,w, c).

(20)

Taking i � 3 in (28) and starting from the definition, we
have

M3(f,w, b + c) � 
n

α�1
h

bα + cα

Bn + Cn

 f wα(  − f
1

1/Bn + Cn(  
n
α�1 bα + cα/wα

 

� 
n

α�1
h

bα

Bn + Cn

 f wα(  + 
n

α�1
h

cα

Bn + Cn

 f wα( 

− f
1

1/Bn + Cn(  
n
α�1 bα + cα/wα

 

� 
n

α�1
h

Bn

Bn + Cn

 h
bα

Bn

 f wα(  + 
n

α�1
h

Cn

Bn + Cn

 h
cα

Cn

 f wα( 

− f
1

1/Bn + Cn(  
n
α�1 bα + cα/wα

 ,

(21)

while, after arranging and harmonic h-convexity of f, yields
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f
1

1/Bn + Cn(  
n
α�1 pi + cα/wα( 

  � f
1

Bn/Bn + Cn( . 1/Bn(  
n
α�1 bα/wα(  + Cn/Bn + Cn( . 1/Cn(  

n
α�1 cα/wα

 

≤ h
Bn

Bn + Cn

 f
1

1/Bn(  
n
α�1 bα/wα

  + h
Cn

Bn + Cn

 f
1

1/Cn(  
n
α�1 cα/wα

 

� h
Bn

Bn + Cn

 f
1

1/Bn(  
n
α�1 bα/wα

  + h
Cn

Bn + Cn

 f
1

1/Cn(  
n
α�1 cα/wα

 .

(22)

Finally, combining relation (21) and inequality (22), we
obtain

M3(f,w, b + c)≥ h
Bn

Bn + Cn

  

n

α�1
h

bα

Bn

 f wα(  + h
Cn

Bn + Cn

  

n

α�1
h

cα

Cn

 f wα( 

− h
Bn

Bn + Cn

 f
1

1/Bn(  
n
α�1 bα/wα

  − h
Cn

Bn + Cn

 f
1

1/Cn(  
n
α�1 cα/wα

 

� h
Bn

Bn + Cn

  

n

α�1
h

bα

Bn

 f wα(  − f
1

1/Bn(  
n
α�1 bα/wα

 ⎡⎣ ⎤⎦

+ h
Cn

Bn + Cn

  

n

α�1
h

cα

Cn

 f wα(  − f
1

1/Cn(  
n
i�1 cα/wα

 ⎡⎣ ⎤⎦

≥ 
n

α�1
h

bα
Bn

 f wα(  − f
1

1/Bn(  
n
α�1 bα/wα( 

 ⎡⎣ ⎤⎦ + 
n

α�1
h

cα
Cn

 f wα(  − f
1

1/Cn(  
n
α�1 cα/wα

 ⎡⎣ ⎤⎦

� M3(f,w, b) + M3(f,w, c).

(23)

Similarly, it can be proved that

M4(f,w, b + c)≥M4(f,w, b) + M4(f,w, c). (24)
□

Theorem 6. Let b � (b1, . . . , bn) and c � (c1, . . . , cn) be two
n-tuples from B0

n such that b≥ c, (i.e., bα ≥ cα, α � 1, . . . , n).
Let I⊆ (0,∞) be an interval. If f: I⟶ R is a HCF and if
w � (w1, . . . , wn) ∈ In, then Mi(f,w, .), for i � 1, 2, 3, 4,
defined by (10)–(12) satisfy the following inequality:

Mi(f,w, b)≥Mi(f,w, c), (25)

on B0
n.

Proof. )e monotonicity property follows directly from
superadditivity. Since b≥ c, b can be represented as the sum
of two n-tuples: b − c and c. Applying (28), we have

Mi(f,w, b) � Mi(f,w, (b − c) + c)≥Mi(f,w, (b − c)) + Mi(f,w, c). (26)

Finally,Mi(f,w, (b − c))≥ 0 by (10)–(12). So, we have that
Mi(f,w, b)≥Mi(f,w, c), which proves the theorem. □

Theorem 7. Let b � (b1, . . . , bn) and c � (c1, . . . , cn) be two
n-tuples from B0

n. Let m and M be real constants such that

m≥ 0, bα − mcα ≥ 0,

Mcα − bα ≥ 0, α � 1, . . . n.
(27)

Let I⊆ (0,∞) be an interval. If f: I⟶ R is a HCF and
if w � (w1, . . . , wn) ∈ In be any n-tuple, then

MMi(f,w, c)≥Mi(f,w, b)≥mMi(f,w, c), (28)

for i � 1, 2, 3, 4.

Proof. Since m≥ 0, bα − mcα ≥ 0 andMcα − bα ≥ 0, α � 1,

. . . n, this implies that b − mc and Mc − b are in B0
n. )en,

by )eorem 5, we obtain
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Mi(f,w, b)≥Mi(f,w, (b − mc)) + Mi(f,w, mc)

≥mMi(f,w, c).
(29)

Similarly, we obtain

Mi(f,w, b)≤MMi(f,w, c), (30)

that is,

MMi(f,w, c)≥Mi(f,w, b)≥mMi(f,w, c). (31)
□

Corollary 1. Let b,w, f, and functionalMi be as inCeorem
5. Cen,

max
1≤k≤n

bα M
N
i (f,w) ≥Mi(f,w, b)≥ min

1≤k≤n
bα M

N
i (f,w) (for i � 1, 2), (32)

where

M
N
1 (f,w) � 

n

α�1
f wα(  − nf

1
(1/n) 

n
α�1 1/wα

 ,

M
N
2 (f,w) � n f w1(  + f wn(   − 

n

α�1
f wα(  − nf

1
1/w1(  + 1/wn(  − (1/n) 

n
α�1 1/wα

 .

(33)

Proof. Let bmin ∈B
0
n be a constant n-tuple, i.e.,

bmin � min
1≤k≤n

bα , . . . , min
1≤k≤n

bα  . (34)

)en, for any b ∈B0
n, we have b≥ bmin. So, by applying

)eorem 6, we have

Mi(f,w, b)≥Mi f,w, bmin( . (35)

On the contrary,

M1 f,w, bmin(  � min
1≤k≤n

bα  

n

α�1
f wα(  − nf

1
(1/n) 

n
α�1 1/wα

 
⎧⎨

⎩

⎫⎬

⎭,

M1 f,w, bmin(  � min
1≤k≤n

bα  n f w1(  + f wn(   − 
n

α�1
f wα(  − nf

1
1/w1(  + 1/wn(  − (1/n) 

n
α�1 1/wα

 
⎧⎨

⎩

⎫⎬

⎭,

(36)

i.e., M1(f,w, bmin) � min1≤k≤n bα MN
i (f,w). So, it proves

the right-hand side of inequality (35). )e left-hand in-
equality is obtained similarly by exchanging the role of min
and max.

To present our next results, we need to introduce the
following notations:

J(R) ≔ {b � bα k∈N: bα ∈ R are such that
BK ≔ α∈Ibα ≠ 0, for all K ∈ Pf(N)}

F+(C,R) ≔ {f ∈ F(C,R): f(x)> 0, for all x ∈ C}
J+(R) ≔ {b ∈ J(R): bα ≥ 0, for all k ∈ N}
J∗(R) ≔ {w � wα α∈N: wα ∈ C, for all k ∈ N}
Pf(N) ≔ {K ⊂ N: K is finite}
HConv(C,R) ≔ the cone of all HCFs on C
F(C,R) ≔ the linear space of all real functions on C

Now, we consider more general functionals:
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D1(f, K, b,w;Ψ) ≔ BKΨ
1

BK


α∈K

bαf wα(  − f
1

1/BK( α∈Kbα/wα
 ⎡⎣ ⎤⎦,

D2(f, K, b,w;Ψ) ≔ BKΨ f W1(  + f X2( 
1

BK


α∈K

bαf wα(  − f
1

1/w1(  + 1/x2(  − 1/BK( α∈Kbα/wα
 ⎡⎣ ⎤⎦,

D3(f, K, b,w;Ψ) ≔ Ψ 
α∈K

h
bα

BK

 f wα(  − f
1

1/BK( α∈Kbα/wα
 ⎡⎣ ⎤⎦,

D4(f, K, b,w;Ψ) ≔ Ψ f W1(  + f X2( 
1

BK


α∈K

h
bα

BK

 f wα(  − f
1

1/w1(  + 1/x2(  − 1/BK( α∈Kbα/wα
 ⎡⎣ ⎤⎦,

(37)

where f ∈ HConv(C,R), K ∈ Pf(N), b ∈ J+(R), w ∈ J∗
(C), and Ψ: (0,∞)⟶ R is a convex function whose
properties will determine the behavior of functional
Di, i � 1, 2, 3, 4, as follows. Obviously, for Ψ(t) � t, we re-
capture, from functionalDi, the functionalMi considered in
)eorem 5.

First of all, we observe that, by Jensen-type inequality,
the functionalDi is well defined and positive homogenous in
the third variable, that is,

Di(f, K, mb,w;Ψ) � mDi(f, K, b,w;Ψ), (38)

for any m> 0 and b ∈ J+(R).
)e following result concerning the superadditivity and

the monotonicity of the functionalDi, i � 1, 2, as function of
weights holds. □

Theorem 8. Let f ∈ HConv(C,R), K ∈ Pf(N), w ∈ J∗(C),
and Ψ: (0,∞)⟶ R be monotonic nondecreasing and
concave function.

(i) If b, c ∈ J+(R), then

Di(f, K, b + c,w;Ψ)≥Di(f, K, b,w;Ψ) + Di(f, K, c,w;Ψ).

(39)

Cat is, Di is superadditive as a function of weights.
(ii) If b, c ∈ J+(R), with b≥ c, meaning that bi ≥ ci, for

each i ∈ N and Ψ: (0,∞)⟶ (0,∞), then

Di(f, K, b,w;Ψ)≥Di(f, K, c,w;Ψ)≥ 0. (40)

Cat is, Di is monotonic nondecreasing as function of
weights.

Proof

(i) Let b, c ∈ J+(R); then, by the harmonic convexity of
f on C,

1
BK + CK


α∈K

bα + cα( f wα(  − f
1

1/BK + BK( α∈K bα + cα( /wα
 

�
BK 1/BK( α∈Kbαf wα( (  + CK 1/CK( α∈Kcαf wα( ( 

BK + CK

− f
1

BK/BK + CK( . 1/BK( α∈Kbα/wα + CK/BK + CK( . 1/CK( α∈Kcα/wα
 

≥
BK 1/BK( α∈Kbαf wα( (  + CK 1/CK( α∈Kcαf wα( ( 

BK + CK
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−
BKf 1/ 1/BK( α∈Kbα/wα(  + CKf 1/ 1/CK( α∈Kcα/wα( 

BK + CK

�
BK 1/BK( α∈Kbαf wα(  − f 1/ 1/BK( α∈Kbα/wα(  

BK + CK

+
CK 1/CK( α∈Kcαf wα(  − f 1/ 1/CK( α∈Kcα/wα(  

BK + CK

.

(41)

Since Ψ is monotonically nondecreasing and con-
cave, then, by (40),

Ψ
1

BK + CK


α∈K

bα + cα( f wα(  − f
1

1/BK + BK( α∈K bα + cα( /wα
 ⎡⎣ ⎤⎦

≥
BKΨ 1/BK( α∈Kbαf wα(  − f 1/ 1/BK( α∈Kbα/wα(  

BK + CK

+
CKΨ 1/CK( α∈Kcαf wα(  − f 1/ 1/CK( α∈Kcα/wα(  

BK + CK

,

(42)

which, by multiplication with BK + CK > 0, produces
the desired result (39) for i � 1.
Similarly, we can easily verify result (39), for i � 2.

(ii) If b≥ c, then by (i),

Di(f, K, b,w;Ψ) � Di(f, K, (b − c) + c,w;Ψ)

≥Di(f, K, (b − c),w;Ψ) + Di(f, K, c,w;Ψ)≥Di(f, K, c,w;Ψ),
(43)

since Di(f, K, (b − c),w;Ψ)≥ 0. □

Corollary 2. Let f ∈ HConv(C,R), K ∈ Pf(N), w ∈ J∗(C),
and Ψ: (0,∞)⟶ R be a monotonically nondecreasing and
concave function.

If there exist the numbers m and M with M≥m≥ 0 such
that M c≥ b≥mc, then

MCKΨ
1

CK


α∈K

cαf wα(  − f
1

1/CK( α∈Kcα/wα
 ⎡⎣ ⎤⎦

≥BKΨ
1

BK


α∈K

bαf wα(  − f
1

1/BK( α∈Kbα/wα
 ⎡⎣ ⎤⎦

≥mCKΨ
1

CK


α∈K

cαf wα(  − f
1

1/CK( α∈Kcα/wα
 ⎡⎣ ⎤⎦.

(44)

In particular,
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M

m
Ψ

1
CK


α∈K

cαf wα(  − f
1

1/CK( α∈Kcα/wα
 ⎡⎣ ⎤⎦

≥Ψ
1

BK


α∈K

bαf wα(  − f
1

1/BK( α∈Kbα/wα
 ⎡⎣ ⎤⎦

≥
m

M
Ψ

1
CK


α∈K

cαf wα(  − f
1

1/CK( α∈Kcα/wα
 ⎡⎣ ⎤⎦.

(45)

For a function Φ: (0,∞)⟶ (0,∞), we now consider
the functionals

D1(f, K, b,w;Ψ,Φ) ≔ 
α∈K
Φ bα( Ψ

1
α∈KΦ bα( 


α∈K
Φ bα( f wα(  − f

1
1/α∈KΦ bα( ( α∈KΦ bα( /wα

 ⎡⎣ ⎤⎦,

D2(f, K, b,w;Ψ,Φ) ≔ 
α∈K
Φ bα( Ψ f w1(  + f wn(  − 1/

α∈K
Φ bα( ⎛⎝ ⎞⎠ 

α∈K
Φ bα( f wα( ⎡⎢⎢⎣

− f
1

1/w1(  + 1/wn(  − 1/α∈KΦ bα( ( α∈KΦ bα( /wα
 ,

(46)

where f ∈ HConv(C,R), K ∈ Pf(N), w ∈ J∗(C), and
b ∈ J+(R). Now, if we denote by Φ(b) the sequence
Φ(bα) k∈N, then we observe that, for i � 1, 2,

Di(f, K, b,w;Ψ,Φ) � Di(f, K,Φ(b),w;Ψ). (47)

)e following result may be stated.

Corollary 3. Let f ∈ HConv(C,R), K ∈ Pf(N), w ∈ J∗(C),
and Ψ: (0,∞)⟶ (0,∞) be monotonically nondecreasing

and concave function. If Φ: (0,∞)⟶ (0,∞) is concave,
then Di(f, K, .,w;Ψ,Φ) is also concave on J+(R), for
i � 1, 2.

Proof. Utilizing the properties of monotonicity, super-
additivity, and positive homogeneity of functional
Di(f, K, .,w;Ψ), we have

Di(f, K, tb +(1 − t)c,w;Ψ,Φ) � Di(f, K,Φ(tb +(1 − t)c),w;Ψ)

≥Di(f, K, tΦ(b) +(1 − t)Φ(c),w;Ψ)

≥Di(f, K, tΦ(b),w;Ψ) + Di(f, K, (1 − t)Φ(c),w;Ψ)

� tDi(f, K,Φ(b),w;Ψ) +(1 − t)Di(f, K,Φ(c),w;Ψ)

� tDi(f, K, b,w;Ψ,Φ) +(1 − t)Di(f, K, c,w;Ψ,Φ),

(48)

for any b, c ∈ J+(R) and t ∈ [0, 1], which proves the
statement.

)e following result concerning the superadditivity and
monotonicity of the functional Di(f, K, b,w;Ψ), for
i � 1, 2, as an index set function holds. □

Theorem 9. Let f ∈ HConv(C,R), K ∈ Pf(N), w ∈ J∗(C),
and b ∈ J+(R). Assume that Ψ: (0,∞)⟶ (0,∞) is a
monotonically nondecreasing and concave function.

(i) If K, L ∈ Pf(N) with K∩ L≠ϕ,

Di(f, K∪ L, b,w;Ψ)≥Di(f, K, b,w;Ψ) + Di(f, L, b,w;Ψ). (49)

Cat is,Di(f, K, .,w;Ψ) is superadditive as an index
set function on Pf(N).

(ii) If K, L ∈ Pf(N) with L ⊂ K and Ψ: (0,∞)⟶
(0,∞), then
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Di(f, K, b,w;Ψ)≥Di(f, L, b,w;Ψ)(≥ 0). (50)

)at is,Di(f, K, .,w;Ψ) is monotonically nondecreasing
as an index set function on Pf(N).

Proof

(i) Let K, L ∈ Pf(N) with K∩L≠ϕ. By the harmonic
convexity of f on C, we have

1
PK∪L


j∈K∪L

bαf wα(  − f
1

1/PK∪L( j∈K∪Lbα/wα
 

�
BK 1/BK( α∈Kbαf wα( (  + PL 1/PL( l∈Lqlf xl( ( 

BK + PL

− f
1

BK/BK + PL( . 1/BK( α∈Kbα/wα + PL/BK + PL( . 1/PL( l∈Lql/xl

 

≥
BK 1/BK( α∈Kbαf wα( (  + PL 1/PL( l∈Lqlf xl( ( 

BK + PL

−
BKf 1/ 1/BK( α∈Kbα/wα(  + PLf 1/ 1/PL( l∈Lql/xl( 

BK + PL

�
BK 1/BK( α∈Kbαf wα(  − f 1/ 1/BK( α∈Kbα/wα(  

BK + PL

+
PL 1/PL( l∈Lqlf xl(  − f 1/ 1/PL( l∈Lql/xl(  

BK + PL

.

(51)

Since Ψ is monotonically nondecreasing and con-
cave, then, by (50),

Ψ
1

PK∪L


j∈K∪ L

bαf wα(  − f
1

1/PK∪L( j∈K∪Lbα/wα
 ⎡⎢⎢⎣ ⎤⎥⎥⎦

≥
BKΨ 1/BK( α∈Kbαf wα(  − f 1/ 1/BK( α∈Kbα/wα(  

BK + PL

+
PLΨ 1/PL( l∈Lqlf xl(  − f 1/ 1/PL( l∈Lqlf xl( (  

BK + PL

,

(52)

which, by multiplication with BK + PL > 0, produces
the desired result (48) for i � 1.
Similarly, we can easily verify result (48), for i � 2.

(ii) Let K, L ∈ Pf(N) with L ⊂ K; then,

Di(f, K, b,w;Ψ) � Di(f, (K\L)∪L, b,w;Ψ)≥Di(f, K\L, b,w;Ψ) + Di(f, L, b,w;Ψ)

≥Di(f, L, b,w;Ψ)(≥ 0),
(53)

since Di(f, K\L, b,w;Ψ)≥ 0. □

Journal of Mathematics 11



3. Conclusion

First of all, we have presented the refinement of Jensen-type
inequality, and further, we have discussed several important
aspect of functionals associated with Jensen-type inequalities
for the HCFs. On the basis of ideas discussed in this paper
along with the literature present on HCFs, we encourage
the interested researcher to explore more interesting results
for this class of functions.
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equalities of Hadamard inequality,” Soochow Journal of
Mathematics, vol. 21, no. 3, pp. 335–341, 1995.

[25] S. S. Dragomir, “Bounds for the normalized Jensen func-
tional,” Bulletin of the Australian Mathematical Society,
vol. 74, no. 3, pp. 471–478, 2006.
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In this study, the solutions of (2 + 1)-dimensional nonlinear Date–Jimbo–Kashiwara–Miwa (DJKM) equation are characterized,
which can be used in mathematical physics to model water waves with low surface tension and long wavelengths. *e integration
scheme, namely, the extended direct algebraic method, is used to extract complex trigonometric, rational and hyperbolic
functions. *e complex-valued solutions represent traveling waves in different structures, such as bell-, V-, and W-shaped
multiwaves.*e results obtained in this article are novel andmore general than those contained in the literature (Wang et al., 2014,
Yuan et al., 2017, Pu and Hu 2019, Singh and Gupta 2018). Furthermore, the mechanical features and dynamical characteristics of
the obtained solutions are demonstrated by three-dimensional graphics.

1. Introduction

Nonlinear evolution equations (NLEEs) can represent var-
ious nonlinear problems that occur in a wide range of
scientific fields such as nonlinear optics, mathematical
physics, superconductivity, biophysics, optical fiber, modern
optics, solid state physics, fluid mechanics, fluid dynamics,
plasma physics, chemical physics, and chemical kinetics. In
the literature, various effective approaches have been pro-
posed to calculate the exact solutions for NLEEs [1–3], such
as the Hereman–Nuseir method [4], inverse scattering
transformation [5], Painlevé technique [6], Bäcklund
transformation [7], extended modified auxiliary equation
mapping method [8], Darboux transformation [9], Exp-
function method [10], binary-bell-polynomial scheme [11],
modified Khater method [12], ansatz method [13], sine-
Gordon expansion method [14], trial equation method
[15, 16], extended direct algebraic method [17], and auxiliary
equation method [18].

In this study, the nonlinear DJKM equation [19] is in-
vestigated to construct various solitary wave solutions. In the
integrable systems of KP hierarchy, the Jimbo–Miwa
equation is the second equation used to explain such in-
teresting (2 + 1)-dimensional waves in physics. *e DJKM
equation can be used in mathematical physics to model
water waves with low surface tension and long wavelengths
with weakly nonlinear restoring forces and frequency dis-
persion. Firstly, Hu and Li [19] applied bilinear Bäcklund
transformations and nonlinear superposition formula for
nonlinear DJKM equations, and after a gap of more than two
decades, Wang et al. [20] used the bell polynomials to study
the integrable properties of nonlinear DJKM equations such
as Lax system, Bäcklund transformations, and infinite
conservation laws along with multishock wave. Yuan et al.
[21] presented Grammian- and Wronskian-type solutions
by the Hirota method, and other types of solution are also
obtained like auxiliary variables, the bilinear Bäcklund
transformation, and N-soliton. Pu and Hu [22] employed
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the sine-Gordon expansion method in finding the traveling
wave solutions of nonlinear DJKM equations and obtained
hyperbolic, trigonometric, and complex solutions. Singh and
Gupta [23] used the direct method and nonlinear self-
adjointness to find the Painlevé analysis, symmetric prop-
erties, and conservation laws of the nonlinear DJKM
equation. Sajid and Akram [24] utilized exp(− Φ(ξ))-ex-
pansion method and derived some exact traveling wave
solutions including trigonometric, hyperbolic, and rational
functions and W-shaped soliton of the DJKM equation. *e
proposed research analyzes some more new exact solutions
such as bell-, V-, and W-shaped multiwave types of the
nonlinear DJKM equation which are not yet found in the
literature. To our utmost understanding, the DJKM equa-
tions were not analyzed using the extended direct algebraic
method. *erefore, the benefits of this article included
evaluating a wide range of advanced and contextual solu-
tions to the considered wave equations by the use of the
extended direct algebraic method. Furthermore, this bene-
ficial and powerful approach can be used to investigate other
NLEEs which frequently emerge in different scientific real-
world applications.

*e novelty of this paper lies in the following: (i)
complex-valued solutions and solitons are in different
shapes and (ii) 3-dimensional figures are first presented by
the extended direct algebraic method. *e limitations of this
work include that the solution methods for the construction
of exact solutions to the equation involve various parame-
ters. Such parameters show up in the final precise solution
expressions and create hurdles in some physical situations.
*ese are resolved with a careful selection of appropriate
parametric values which is possible through graphical in-
terpretation and testing of the solution expressions.

*e structure of this paper is organized as follows: in
Section 2, detailed explanation of the extended direct al-
gebraic method has been presented. Section 3 illustrates the
method to solve the (2 + 1)-dimensional DJKM equation. In
Section 3.1, the physical explanation of the solutions by
mechanical features and dynamical characteristics is dem-
onstrated. Finally, conclusion is given in Section 4.

1.1. Governing Model. Considering the governing model,
(2 + 1)-dimensional nonlinear DJKM equation, as

Φxxxxy + 4ΦxxyΦx + 2ΦxxxΦy + 6ΦxyΦxx +Φyyy − 2Φxxt � 0, (1)

where Φ � Φ(x, y, t) is the real-valued function. *e DJKM
equation belongs to the well-known KP hierarchy [25, 26]
which can be obtained from the first two bilinear equations
using transformation u � 2(log τ)x. *e KP hierarchy is an
infinite set of nonlinear PDEs.

2. Extended Direct Algebraic Method [27]

According to extended direct algebraic method, we have the
following.

Step 1. Consider NLEE in three independent variables x, y,
and t of the form, as

P Φ,Φx,Φy,Φt,Φxx,Φxy,Φxt,Φyy,Φyt,Φtt, . . .  � 0,

(2)

whereΦ � Φ(x, y, t) and P is the polynomial inΦ. Using the
wave transformation

Φ(x, y, t) � U(ξ),

ξ � ω(x + μy − kt),
(3)

where ω is the wave number. After applying the transfor-
mation, equation (2) can be converted into the nonlinear
ODE, as

Q U,ωU′,ωμU′, − ωkU′,ω2
U″,ω2μU″, − ω2

kU″,ω2μ2U″, − ω2μkU″,ω2
k
2
U″, . . .  � 0, (4)

where prime denotes the derivatives w.r.t. ξ.

Step 2. Consider that the formal solution of equation (4) has
a form, as follows:

U(ξ) � 
N

j�0
bjQ

j
(ξ), bN ≠ 0, (5)

where b0, b1, . . . , bN are constants and Q(ξ) satisfies the
auxiliary equation, as

Q′(ξ) � Ln(A) α + βQ(ξ) + σQ
2
(ξ) , A≠ 0, 1, (6)

where σ, α, and β are constants.*e solutions of equation (6)
are given in the following.
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Family 1. If β2 − 4ασ < 0 and σ ≠ 0, then the solutions are
given as

Q1(ξ) � −
β
2σ

+

����������
− β2 − 4ασ 



2σ
tanA

����������
− β2 − 4ασ 



2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠.

Q2(ξ) � −
β
2σ

−

����������
− β2 − 4ασ 



2σ
cotA

����������
− β2 − 4ασ 



2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠,

Q3(ξ) � −
β
2σ

+

����������
− β2 − 4ασ 



2σ
⎛⎜⎜⎝ ⎞⎟⎟⎠ tanA

����������

− β2 − 4ασ 



ξ  ±
���
pq


secA

����������

− β2 − 4ασ 



ξ  ,

Q4(ξ) −
β
2σ

−
− β2 − 4ασ 

2σ
⎛⎝ ⎞⎠ cotA

����������

− β2 − 4ασ 



ξ ∓
���
pq


cscA

����������

− β2 − 4ασ 



ξ  ,

Q5(ξ) � −
β
2σ

+

����������
− β2 − 4ασ 



4σ
⎛⎜⎜⎝ ⎞⎟⎟⎠ tanA

����������
− β2 − 4ασ 



4
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠ − cotA

����������
− β2 − 4ασ 



4
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠.

(7)

Family 2. If β2 − 4ασ > 0 and σ ≠ 0, then the solutions are
given as

Q6(ξ) � −
β
2σ

−

�������

β2 − 4ασ


2σ
tanhA

�������

β2 − 4ασ


2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠,

Q7(ξ) � −
β
2σ

−

�������

β2 − 4ασ


2σ
cothA

�������

β2 − 4ασ


2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠,

Q8(ξ) � −
β
2σ

−

�������

β2 − 4ασ


2σ
⎛⎜⎜⎝ ⎞⎟⎟⎠ tanhA

�������

β2 − 4ασ


ξ ∓i
���
pq


sec hA

�������

β2 − 4ασ


ξ  ,

Q9(ξ) � −
β
2σ

−

�������

β2 − 4ασ


2σ
⎛⎜⎜⎝ ⎞⎟⎟⎠ cothA

�������

β2 − 4ασ


ξ ∓
���
pq


csc hA

�������

β2 − 4ασ


ξ  ,

Q10(ξ) � −
β
2σ

−

�������

β2 − 4ασ


4σ
⎛⎜⎜⎝ ⎞⎟⎟⎠ tanhA

�������

β2 − 4ασ


4
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠ + cothA

�������

β2 − 4ασ


4
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠.

(8)
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Family 3. If β � 0, and ασ > 0, then the solutions are given as

Q11(ξ) �

��
α
σ



tanA(
���
ασ

√
ξ),

Q12(ξ) � −

��
α
σ



cotA(
���
ασ

√
ξ),

Q13(ξ) �

��
α
σ



tanA(2
���
ασ

√
ξ) ±

���
pq


secA(2

���
ασ

√
ξ) ,

Q14(ξ) � −

��
α
σ



cotA(2
���
ασ

√
ξ)∓

���
pq


cscA(2

���
ασ

√
ξ) ,

Q15(ξ) �
1
2

��
α
σ



tanA

���
ασ

√

2
ξ  − cotA

���
ασ

√

2
ξ  .

(9)

Family 4. If β � 0 and ασ < 0, then the solutions are given as

Q16(ξ) � −

���

−
α
σ



tanhA(
����
− ασ

√
ξ),

Q17(ξ) � −

���

−
α
σ



cothA(
����
− ασ

√
ξ),

Q18(ξ) � −

���

−
α
σ



tanhA(2
����
− ασ

√
ξ)∓i

���
pq


sec hA(2

����
− ασ

√
ξ) ,

Q19(ξ) � −

���

−
α
σ



cothA(2
����
− ασ

√
ξ)∓

���
pq


csc hA(2

����
− ασ

√
ξ) ,

Q20(ξ) −
1
2

���

−
α
σ



tanhA

����
− ασ

√

2
ξ  + cothA

����
− ασ

√

2
ξ  .

(10)

Family 5. If β � 0 and σ � α, then the solutions are given as

Q21(ξ) � tanA(αξ),

Q22(ξ) � − cotA(αξ),

Q23(ξ) � tanA(2αξ) ±
���
pq


secA(2αξ),

Q24(ξ) � − cotA(2αξ) ±
���
pq


cscA(2αξ),

Q25(ξ) �
1
2

tanA

α
2
ξ  − cotA

α
2
ξ  .

(11)

Family 6. : If σ � − α and β � 0, then the solutions are given
as

Q26(ξ) � − tanhA(αξ),

Q27(ξ) � − cothA(αξ),

Q28(ξ) � − tanhA(2αξ) ± i
���
pq


sec hA(2αξ),

Q29(ξ) � − cothA(2αξ) ±
���
pq


csc hA(2αξ),

Q30(ξ) � −
1
2

tanhA

α
2
ξ  + cothA

α
2
ξ  .

(12)

Family 7. If β2 � 4ασ, then the solution is given as

Q31(ξ) �
− 2α(βξLnA + 2)

β2ξLnA
. (13)

Family 8. If β � l, σ � 0, and α � ml(m≠ 0), then the so-
lution is given as

Q32(ξ) � A
lξ

− m. (14)

Family 9. If β � 0 � σ, then the solution is given as

Q33(ξ) � αξLnA. (15)

Family 10. If β � α � 0, then the solution is given as

Q34(ξ) �
− 1

αξLnA
. (16)

Family 11. If β≠ 0 and α � 0, then the solutions are given as

Q35(ξ) � −
pβ

σ coshA(βξ) − sinhA(βξ) + p( 
,

Q36(ξ) � −
β sinhA(βξ) + coshA(βξ)( 

σ sinhA(βξ) + coshA(βξ) + q( 
.

(17)

Family 12. If β � l, α � 0, and σ � ml(m≠ 0), then the
solution is given as

Q37(ξ) �
pA

lξ

q − mpA
lξ . (18)

Remark 1. *e generalized triangular functions and hy-
perbolic functions [28] are defined as follows:
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sinhA(ξ) �
pA

ξ
− qA

− ξ

2
,

coshA(ξ) �
pA

ξ
+ qA

− ξ

2
,

tanhA(ξ) �
pA

ξ
− qA

− ξ

pA
ξ

+ qA
− ξ ,

cothA(ξ) �
pA

ξ
+ qA

− ξ

pA
ξ

− qA
− ξ ,

sec hA(ξ) �
2

pA
ξ

+ qA
− ξ ,

csc hA(ξ) �
2

pA
ξ

− qA
− ξ ,

sinA(ξ) �
pA

iξ
− qA

− iξ

2i
,

cosA(ξ) �
pA

iξ
+ qA

− iξ

2
,

tanA(ξ) � − i
pA

iξ
− qA

− iξ

pA
ξ

+ qA
− ξ ,

cotA(ξ) � i
pA

iξ
+ qA

− iξ

pA
iξ

− qA
− iξ ,

secA(ξ) �
2

pA
iξ

+ qA
− iξ ,

cscA(ξ) �
2i

pA
iξ

− qA
− iξ ,

(19)

where p, q > 0 and ξ is an independent variable.

Step 3. Using homogeneous balancing principle in equation
(4), the value of N can be determined. Substituting equation
(6) along with equation (5) into equation (4), collecting the
coefficients of each power Qj(ξ) (j � 0, 1, 2, . . .), and then
setting each coefficient to zero give a system of equations.

Step 4. Unknowns can be found by calculating the system of
equations. Putting the unknowns in equation (6), the re-
quired solutions of equation (2) are obtained.

3. Application to the DJKM Equation

*e extended direct algebraic scheme is presented to obtain
the optical solitons and other solutions to equation (1). After
utilizing the transformation Φ(x, y, t) � V(ξ), where
ξ � ω(x + μy − kt), to equation (1), we obtain nonlinear
ODE as follows:

μω2
V

(4)
+ 6μωV′V″ + μ3 + 2k V″ � 0. (20)

Setting U � V′, we obtain

μω2
U
‴

+ 6μωUU′ + μ3 + 2k U′ � 0. (21)

Balancing U‴ with UU′ in equation (21) gives N � 2.
*us, the solution can be written as

U(ξ) � b0 + b1Q(ξ) + b2Q
2
(ξ), (22)

where b0, b1, and b2 are constants to be determined.
Substituting equations (22) into (21), collecting all terms
with the same power of Q(ξ)i (i� 0, 1, 2, 3, 4, 5), and
equating the coefficients of each polynomial to zero will
yield a set of algebraic equations for b0, b1, b2, and ω as
follows:

2kb1Ln(A)α + 2μω2
b1(Ln(A))

3σα2 + 6μωb0b1Ln(A)α

+μω2
b1(Ln(A))

3β2α + 6μω2
b2(Ln(A))

3βα2 + μ3b1Ln(A)α � 0,

16μω2
b2(Ln(A))

3σα2 + 4kb2Ln(A)α + μ3b1Ln(A)β

+2kb1Ln(A)β + 8μω2
b1(Ln(A))

3βσα + μω2
b1(Ln(A))

3β3

+2μ3b2Ln(A)α + 6μωb0b1Ln(A)β + 12μωb0b2Ln(A)α

+6μωb
2
1Ln(A)α + 14μω2

b2(Ln(A))
3αβ2 � 0,

μ3b1Ln(A)σ + 6μωb0b1Ln(A)σ + 18μωb1b2Ln(A)α

+8μω2
b1(Ln(A))

3σ2α + 52μω2
b2(Ln(A))

3αβσ + 4kb2Ln(A)β

+2μ3b2Ln(A)β + 2kb1Ln(A)σ + 7μω2
b1(Ln(A))

3β2σ

+8μω2
b2(Ln(A))

3β3 + 6μωb
2
1Ln(A)β + 12μωb0b2Ln(A)β � 0,

38μω2
b2(Ln(A))

3β2σ + 18μωb1b2Ln(A)β + 4kb2Ln(A)σ

+2μ3b2Ln(A)σ + 12μω2
b1(Ln(A))

3βσ2 + 40μω2
b2(Ln(A))

3ασ2

+12μωb
2
2Ln(A)α + 6μωb

2
1Ln(A)σ + 12μωb0b2Ln(A)σ � 0,

18μωb1b2Ln(A)σ + 54μω2
b2(Ln(A))

3βσ2

+6μω2
b1(Ln(A))

3σ3 + 12μωb
2
2Ln(A)β � 0,

24μω2
b2(Ln(A))

3σ3 + 12μωb
2
2Ln(A)σ � 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

Solving system (23) for b0, b1, b2, and ω gives

b0 �
− 1

6 μω2
(Ln(A))

2β2 + 8μω2
(Ln(A))

2σα + 2k + μ3/μω 
,

b1 � − 2ω(Ln(A))
2βσ,

b2 � − 2ω(Ln(A))
2σ2, ω � ω.

(24)

Five families of traveling wave solutions of the DJKM
equation can be obtained, as shown in the following.

Family 13. When β2 − 4ασ < 0 and σ ≠ 0, the dark, com-
bined dark-bright, singular, combined dark-singular, and
combined singular solutions are obtained, as follows:
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Φ1 �
− 1

6 ξ − 5μω(Ln(A))
2β2 + 2k + 8μω(Ln(A))

2σα + μ3 /μω 

+(Ln(A))
2tanhA

1
2 �

c
√ ξ

 
�
c

√
+(Ln(A))

2ξ − β2 + 2ασ ,

Φ2 �
− 1

6 ξ − 5μω(Ln(A))
2β2 + 2k + 8μω(Ln(A))

2σα + μ3 /μω 

+(Ln(A))
2cothA

1
2 �

c
√ ξ

 
�
c

√

+ 2
(Ln(A))

2
− β2 + 2ασ arctan hA cothA(1/2

�
c

√
ξ)( 

�
c

√ ,

Φ3 �
1

6 ξ − μω(Ln(A))
2β2 − 2k + 4μω(Ln(A))

2σα − μ3 /μω 

+
1

2(Ln(A))
2tanhA(

�
c

√
ξ)

�
c

√
(1 + pq)

− i
(Ln(A))

2 ����
pqc



coshA(
�
c

√
ξ)

,

Φ4 �
1

6 ξ − μω(Ln(A))
2β2 − 2k + 4μω(Ln(A))

2σα − μ3 /μω 

+
1

2(Ln(A))
2 �

c
√

cothA(
�
c

√
ξ)(1 + pq)

−
(Ln(A))

2 ����
pqc



sinhA(
�
c

√
ξ)

.

Φ5 �
1

6 ξ − μω(Ln(A))
2β2 − 2k + 4μω(Ln(A))

2σα − μ3 /μω 

+
1

2(Ln(A))
2tanhA(1/4

�
c

√
ξ)

�
c

√ +
1

2(Ln(A))
2cothA(1/4

�
c

√
ξ)

�
c

√ .

(25)

Family 14. When β2 − 4ασ > 0 and σ ≠ 0, the singular, dark,
and combined dark-singular solutions are obtained, as
follows:

Φ6 �
− 1

6 ξ − 5μω(Ln(A))
2β2 + 2k + 8μω(Ln(A))

2σα + μ3 /μω 

+
�
c

√
(Ln(A))

2tanhA

1
2 �

c
√ ξ

 

−
(Ln(A))

2
− β2 + 2ασ  Ln tanhA(1/2

�
c

√
ξ) − 1(  − Ln tanhA(1/2

�
c

√
ξ) + 1( ( 

�
c

√ ,
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Φ7 �
− 1

6 ξ − 5μω(Ln(A))
2β2 + 2k + 8μω(Ln(A))

2σα + μ3 /μω 

+
�
c

√
(Ln(A))

2cothA

1
2 �

c
√ ξ

 

−
(Ln(A))

2
− β2 + 2ασ  Ln cothA(1/2

�
c

√
ξ) − 1(  − Ln cothA(1/2

�
c

√
ξ) + 1( ( 

�
c

√ ,

Φ8 �
1

6 ξ − μω(Ln(A))
2β2 − 2k + 4μω(Ln(A))

2σα − μ3 /μω 

− (Ln(A))
2
i

���
pq

 �
c

√
coshA(

�
c

√
ξ)

− (Ln(A))
2βi

���
pq


arctanA sinhA(

�
c

√
ξ)(  − 2 arctanA e

�
c

√ ξ
  

+
1

2(Ln(A))
2tanhA(

�
c

√
ξ)

�
c

√
(1 + pq)

+
(Ln(A))

2
i

����
pqc


sinhA(

�
c

√
ξ)( 

2

coshA(
�
c

√
ξ)

,

Φ9 �
1

6 ξ − μω(Ln(A))
2β2 − 2k + 4μω(Ln(A))

2σα − μ3 /μω 

+(Ln(A))
2 ���

pq
 �

c
√

sinhA(
�
c

√
ξ)

− (Ln(A))
2β

���
pq


Ln tanhA

1
2 �

c
√ ξ

   + 2 arctan hA e
�
c

√ ξ
  

+
1

2(Ln(A))
2cothA(

�
c

√
ξ)(1 + pq)

�
c

√ −
(Ln(A))

2 ����
pqc


coshA(

�
c

√
ξ)( 

2

sinhA(
�
c

√
ξ)

,

Φ10 �
1

6 ξ − μω(Ln(A))
2β2 − 2k + 4μω(Ln(A))

2σα − μ3 /μω 

+
1

2(Ln(A))
2tanhA(1/4

�
c

√
ξ)

�
c

√ +
1

2(Ln(A))
2cothA(1/4

�
c

√
ξ)

�
c

√ .

(26)

Family 15. When ασ > 0 and β � 0, the periodic-singular
solutions are obtained as

Φ11 �
− 1

6 ξ 2k + 8μω(Ln(A))
2σα + μ3 /μω 

− 2(Ln(A))
2

���
ασ

√
tanA(

���
ασ

√
ξ) −

���
ασ

√
ξ( ,

Φ12 �
− 1

6 ξ 2k + 8μω(Ln(A))
2σα + μ3 /μω 

+(Ln(A))
2 ���

ασ
√

2 cotA(
���
ασ

√
ξ) − π + 2

���
ασ

√
ξ( ,

Φ13 �
1

6 ξ − 2k + 4μω(Ln(A))
2σα − μ3 /μω 

− 2
(Ln(A))

2 �����
pqασ



cosA(2
���
ασ

√
ξ)

− (Ln(A))
2 ���

ασ
√

tanA(2
���
ασ

√
ξ)(1 + pq),
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Φ14 �
1

6 ξ − 2k + 4μω(Ln(A))
2σα − μ3 /μω 

− 2
(Ln(A))

2 �����
pqασ



sinA(2
���
ασ

√
ξ)

+(Ln(A))
2 ���

ασ
√

cotA(2
���
ασ

√
ξ)(1 + pq),

Φ15 �
1

6 ξ − 2k + 4μω(Ln(A))
2σα − μ3 /μω 

− (Ln(A))
2 ���

ασ
√

tanA

1
2

���
ασ

√
ξ

  − cotA
1

2
���
ασ

√
ξ

  .

(27)

Family 16. When ασ < 0 and β � 0, the singular, dark,
combined dark-bright, combined dark-singular, and com-
bined singular solutions are obtained, as follows:

Φ16 �
− 1

6 ξ 2k + 8μω(Ln(A))
2σα + μ3 /μω 

+(Ln(A))
2 ����

− ασ
√

Ln
tanhA(

����
− ασ

√
ξ) − 1

tanhA(
����
− ασ

√
ξ) + 1

  

+ 2(Ln(A))
2 ����

− ασ
√

tanhA(
����
− ασ

√
ξ),

Φ17 �
− 1

6 ξ 2k + 8μω(Ln(A))
2σα + μ3 /μω 

+(Ln(A))
2 ����

− ασ
√

Ln
cothA(

����
− ασ

√
ξ) − 1

cothA(
����
− ασ

√
ξ) + 1

  

+ 2(Ln(A))
2 ����

− ασ
√

cothA(
����
− ασ

√
ξ),

Φ18 �
− 1

6 ξ 2k − 4μω(Ln(A))
2σα + μ3 /μω 

+(Ln(A))
2 ����

− ασ
√

tanhA(2
����
− ασ

√
ξ)(1 + pq) + 2

i(Ln(A))
2 ������

− pqσα


coshA(2
����
− ασ

√
ξ)

,

Φ19 �
− 1

6 ξ 2k − 4μω(Ln(A))
2σα + μ3 /μω 

+(Ln(A))
2

����
− ασ

√
cothA(2

����
− ασ

√
ξ)(1 + pq) + 2

(Ln(A))
2 ������

− pqασ


sinhA(2
����
− ασ

√
ξ)

,

Φ20 �
− 1

6 ξ 2k − 4μω(Ln(A))
2σα + μ3 /μω 

+(Ln(A))
2

����
− ασ

√
tanhA

1
2

����
− ασ

√
ξ

  +(Ln(A))
2 ����

− ασ
√

cothA

1
2

����
− ασ

√
ξ

 .

(28)
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Family 17. When β � 0 and σ � α, the periodic-singular
solutions are obtained as follows:

Φ21 �
− 1

6 ξ 2k + 8(Ln(A))
2α2μω + μ3 /μω 

− 2(Ln(A))
2α tanA(αξ) − αξ( ,

Φ22 �
− 1

6 ξ 2k + 8(Ln(A))
2α2μω + μ3 /μω 

+ 2(Ln(A))
2α cotA(αξ) −

1
2π

+ αξ ,

Φ23 �
− 1

6 ξ 2k − 4(Ln(A))
2α2μω + μ3 /μω 

− (Ln(A))
2αtanA(2αξ)(1 + pq)

− 2
(Ln(A))

2α
���
pq



cosA(2αξ)
,

Φ24 �
− 1

6 ξ 2k − 4(Ln(A))
2α2μω + μ3 /μω 

+(Ln(A))
2αcotA(2αξ)(1 + pq)

− 2
(Ln(A))

2α
���
pq



sinA(2αξ)
,

Φ25 �
− 1

6 ξ 2k − 4(Ln(A))
2α2μω + μ3 /μω 

−

(Ln(A))
2α tanA

1
2αξ

  − cotA
1
2αξ

  .

(29)

Family 18. When β � 0 and σ � − α, the singular dark,
combined dark-bright, combined dark-singular, and com-
bined singular solutions are obtained, as follows:

Φ26 �
− 1

6 ξ 2k − 8(Ln(A))
2α2μω + μ3 /μω 

+(Ln(A))
2

α 2tanhA(αξ) + Ln
tanhA(αξ) − 1
tanhA(αξ) + 1

  ,

Φ27 �
− 1

6 ξ 2k − 8(Ln(A))
2α2μω + μ3 /μω 

+(Ln(A))
2

α 2cothA(αξ) + Ln
cothA(αξ) − 1
cothA(αξ) + 1

  ,

Φ28 �
− 1

6 ξ 2k + 4(Ln(A))
2α2μω + μ3 /μω 

+(Ln(A))
2αtanhA(2αξ)

(1 + pq) − 2
(Ln(A))

2αi
���
pq



coshA(2αξ)
,
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Φ29 �
− 1

6 ξ 2k + 4(Ln(A))
2α2μω + μ3 /μω 

+(Ln(A))
2αcothA(2αξ)

(1 + pq) −
2(Ln(A))

2α
���
pq



sinhA(2αξ)
,

Φ30 �
− 1

6 ξ 2k + 4μω(Ln(A))
2α2 + μ3 /μω 

+(Ln(A))
2

α tanhA

1
2αξ

  + cothA

1
2αξ

  .

(30)

Family 19. When β2 � 4ασ, the rational solution is ob-
tained, as

Φ31 �
− 1

6 (x + μy − kt) 2k + μ3 /μω 
+

2ω
(x + μy − kt)

.

(31)

Family 20. When β � l, σ � 0, and α � ml(m≠ 0), the ra-
tional solution is obtained, as follows:

Φ32 �
− 1

6 (x + μy − kt) (Ln(A))
2
l
2μω + 2k + μ3 /μω 

.

(32)

Family 21. When β � σ � 0, the rational solution is obtained
as

Φ33 �
− 1

6 2k + μ3 (x + μy − kt)/μω 
. (33)

Family 22. When β � α � 0, the rational solution is ob-
tained as

Φ34 �
− 1

6 2ξ2k + μ3ξ2 − 12μω/μωξ 
. (34)

Family 23. When α � 0 and β≠ 0, the singular and dark-
singular combo solitons solutions are obtained, as follows:

Φ35 �
− 1

6 ξ μω(Ln(A))
2β2 + 2k + μ3 /μω 

−

4
(Ln(A))

2
pβ

(p − 1) tanhA(1/2βξ)p − tanhA(1/2βξ) + 1 + p( 
,

Φ36 �
− 1

6 ξ μω(Ln(A))
2β2 + 2k + μ3 /μω 

−

4
(Ln(A))

2β
p(− 1 + p) − tanhA(1/2βξ) + tanhA(1/2βξ)p − p − 1( 

+ 2(Ln(A))
2βLn sinhA(βξ) + coshA(βξ) + p( 

+ 2(ln(A))
2βLn tanhA

1
2βξ

  − 1 

− 2(Ln(A))
2βLn − tanhA

1
2βξ

  + tanhA(1/2βξ)p − p − 1 .

(35)
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Family 24. When β � l, α � 0, and σ � ml(m≠ 0), the ra-
tional solution is obtained, as follows:

Φ37 �
− 1

6 ξ (Ln(A))
2
l
2μω + 2k + μ3 /μω 

+ 2Ln(A)lLn
q − mpA

lξ

− q + mpA
lξ

⎛⎝ ⎞⎠ + 2
Ln(A)lq

− q + mpA
lξ , (36)

where c � β2 − 4ασ and ξ � ω(x + μy − kt).

3.1. Physical Description of Solutions. A solitary wave is a
restricted gravity wave that maintains its finite amplitude
and propagates with consistent speed and constant shape.
Solitons are the solitary wave with an elastic dispersive
property. Solitons are the consequence of a delicate balance
between nonlinear and dispersive impact in the medium. If
the solution is in the form of tangent, secant, cotangent, and
cosecant hyperbolic, then the solution is called dark, bright,
singular, singular-soliton solutions, respectively. *e solu-
tion of hyperbolic tangent plus hyperbolic secant form is

called combined dark-bright soliton solution. *e solution
of hyperbolic cotangent plus hyperbolic cosecant form is
called combined singular soliton solution, and the solution
of hyperbolic tangent plus hyperbolic cotangent form is
called dark-singular combo soliton solution.

Figure 1 demonstrates the solutions of |Φ1|, |Φ2|,
|Φ3|, |Φ4|, and |Φ5| for the particular parameters α � 1.5,
β � 2, k � y � 1, ω � 0.5, p � q � 0.9, μ � 0.25, σ � 0.75,
and A � 2.5. *e complex plane represents multiwaves
having positive or negative jumps time to time.*emodulus
of this solution represents periodic long waves with positive
amplitudes.

*e solutions of |Φ6|, |Φ7|, |Φ8|, |Φ9|, and |Φ10| are
depicted in Figure 2 for some particular choice of the
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Figure 1: 3D profile of Family 13 with α � 1.5, β � 2, k � y � 1, ω � 0.5, p � q � 0.9, μ � 0.25, σ � 0.75, and A � 2.5. (a) |Φ1|. (b) |Φ2|.
(c) |Φ3|. (d) |Φ4|. (e) |Φ5|.
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parameters such as α � 1.5, β � 2, k � y � 1, ω � 0.5,
p � q � 0.9, μ � 0.25, σ � 0.5, and A � 2.5. In Figure 3, the
solutions of |Φ11|, |Φ12|, |Φ13|, |Φ14|, and |Φ15| are plotted in
the finite domain for the parameters α � 1.5, β � 0,
k � y � 1, ω � 0.5, p � q � 0.9, μ � 0.25, σ � 0.75, and
A � 2.5. Figure 4 demonstrates the solutions of
|Φ16|, |Φ17|, |Φ18|, |Φ19|, and |Φ20| for the particular pa-
rameters α � 1.5, β � 0, k � y � 1, ω � 0.5, p � q � 0.9,
μ � 0.25, σ � − 0.75, andA � 2.5. Figure 5 demonstrates the
solutions of |Φ21|, |Φ22|, |Φ23|, |Φ24|, and |Φ25| for the

particular parameters α � 1.5 � σ, β � 0, k � y � 1, ω � 0.5,
p � q � 0.9, μ � 0.25, and A � 2.5. Figure 6 demonstrates
the solutions of |Φ26|, |Φ27|, |Φ28|, |Φ29|, and |Φ30| for the
particular parameters α � 1.5, β � 0, k � y � 1, ω � 0.5,
p � q � 0.9, μ � 0.25, σ � − 1.5, and A � 2.5. Figure 7
demonstrates the 3D graphics of the solutions of
|Φ31|, |Φ32|, and |Φ33| under the particular values α � 1.5,
k � y � 1, ω � 0.5, μ � 0.25, and A � 2.5 for |Φ31| with β � 1
and σ � 0.5, |Φ32| with β � 1, σ � 0, l � 1, and m � 0.5, and
|Φ33| with β � 0 � σ. Figure 8 demonstrates the 3D graphics
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Figure 2: 3D profile of Family 14 with α � 1.5, β � 2, k � y � 1, ω � 0.5, p � q � 0.9, μ � 0.25, σ � 0.5, and A � 2.5. (a) |Φ6|. (b) |Φ7|.
(c) |Φ8|. (d) |Φ9|. (e) |Φ10|.
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Figure 3: 3D profile of Family 15 with α � 1.5, β � 0, k � y � 1, ω � 0.5, p � q � 0.9, μ � 0.25, σ � 0.75, and A � 2.5. (a) |Φ11|. (b) |Φ12|.
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Figure 4: 3D profile of Family 16 with α � 1.5, β � 0, k � y � 1, ω � 0.5, p � q � 0.9, μ � 0.25, σ � − 0.75, and A � 2.5. (a) |Φ16|. (b) |Φ17|.
(c) |Φ18|. (d) |Φ19|. (e) |Φ20|.
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Figure 5: 3D profile of Family 17 with α � 1.5 � σ, β � 0, k � y � 1, ω � 0.5, p � q � 0.9, μ � 0.25, and A � 2.5. (a) |Φ21|. (b) |Φ22|. (c) |Φ23|.
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of the solutions |Φ34|, |Φ35|, |Φ36|, and |Φ37| under the
particular values α � 0, k � y � 1, ω � 0.5, σ � 0.5, μ � 0.25,
andA � 2.5 for |Φ34|with β � 0, |Φ35| and |Φ36| with β � 0.5,
and |Φ37| with β � 0.5 � l, σ � 1, and m � 2. Families 13, 14,
15 and 16 represent the singular, dark, combined dark-
bright, combined dark-singular, combined singular, and
solitary wave solutions. Families 15 and 17 represent the
exact periodic traveling wave solutions, whereas the Families
19, 20, 21, 22, 23, and 24 show the rational solutions.

4. Conclusion

To investigate the (2 + 1)-dimensional DJKM equation for
exact solutions, the extended direct algebraic method is
applied. By the extended direct algebraic method, many
new exact solitary wave solutions are constructed in-
cluding the singular, dark, combined dark-bright, peri-
odic-singular, combined dark-singular, combined
singular, and rational kinds. Such observations show that
the suggested approaches are highly helpful and efficient
in solving the NEEs. *e complex-valued solutions rep-
resent traveling waves in different structures. Even though
some are of the well-known forms such as bell-, V-, and
W-shaped multiwaves, the shape of some others are
completely different from them which were not found in
the previous literature. *e results of this investigation
can be useful in illustrating the physical meaning of the
studied model by 3D graphics. *e performance of the
method is reliable and a computerized mathematical
approach to conduct other NLEEs in the field of math-
ematical physics and applied sciences.
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In the present paper, we use the fractional and weighted cumulative residual entropy measures to test the uniformity. 'e limit
distribution and an approximation of the distribution of the test statistic based on the fractional cumulative residual entropy are
derived. Moreover, for this test statistic, percentage points and power against seven alternatives are reported. Finally, a simulation
study is carried out to compare the power of the proposed tests and other tests of uniformity.

1. Introduction

Rao et al. [1] suggested a nonnegative measure of uncertainty
and called it the cumulative residual entropy (CRE). For any
nonnegative continuous random variable (RV) X with a
cumulative distribution function (CDF) F(x) � P(X<x),
the CRE is defined by

CRE(F) � − 
∞

0
F(x)ln(F(x))dx, (1)

where F(x) � 1 − F(x) is the reliability function. Rao et al.
[1] revealed many salient features of the CRE. For example,
the CRE possesses more general mathematical properties
than the Shannon entropy, and it can be easily computed
from sample data, and these computations asymptotically
converge to the true values. Moreover, the CRE deals with
the quantity of information in residual life. For the standard
uniform distribution, denoted by U(0, 1), Rao et al. [1]
showed that the value of the CRE is 1/4. 'e literature

abounds with many different results for Shannon’s entropy
and its modifications. Interested readers may refer to [1–17].

Xiong et al. [16] suggested the fractional cumulative
residual entropy (FCRE) to extend the CRE to the case of
fractional order. For any 0≤ q≤ 1, the FCRE for the RV X is
defined by

CREq
(F) � 

∞

0
F(x)[− ln(F(x))]

qdx. (2)

'emeasure CREq(F) is a nonadditive and nonnegative.
Moreover, it is a convex function of the parameter q,
CRE0(F) � E(X), and CRE1(F) � CRE(F). Xiong et al. [16]
derived the FCRE for some well-known distributions; for
example, FCRE of the CDF U(0, 1) is Γ(q + 1)/2q+1.

Misagh et al. [15] proposed a weighted form of CRE,
which is shift-dependent. 'is information-theoretic un-
certainty measure is called the weighted cumulative residual
entropy (WCRE), and it is defined by
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CREw(F) � − 
∞

0
xF(x)ln(F(x))dx. (3)

Later, Mirali et al. [12] and Mirali and Baratpour [13]
studied several properties of this measure including its
dynamic version. It is easy to observe that the WCRE of the
U(0, 1) is 5/36.

Stephens [18] offered a practical guide to goodness-of-fit
tests using statistics based on the empirical CDF. Moreover,
in [18], the power comparisons of some uniformity tests
were carried out. Dudewicz and Van der Meulen [9] in-
vestigated the power properties of an entropy-based test
when used for testing uniformity. Moreover, via a com-
parison with other tests of uniformity, Dudewicz and Van
der Meulen [9] showed that the entropy-based test possesses
good power properties for many alternatives. Noughabi [14]
constructed a test for uniformity based on the CRE and
studied some of its properties. Moreover, he reported the
percentage points and power comparison against seven
alternative distributions. As a natural extension of the results
obtained by Noughabi [14], we study the FCRE and WCRE
for testing the uniformity. A result of a simulation study
shows that the test based on FCRE andWCRE is competitive
with the test based on CRE in terms of power. 'is fact gives
a satisfactory motivation of our study.

'roughout this paper, we obtain the percentage points
under the WCRE and FCRE by using the Monte Carlo
method via the simulation and the normality asymptotic, as
well as the beta approximation, respectively. Moreover, a
power comparison is performed between the FCRE and
WCRE and other tests. 'e rest of this work is systematic as
follows. In Section 2, we introduce the FCRE test statistic for
uniformity and discuss some of its properties. In Section 3,
we propose the methods of finding the percentage points of
FCRE and illustrate the WCRE test statistics for uniformity.
In addition, we calculate the percentage points of FCRE and
WCRE. 'en, in Section 4, we use Monte Carlo simulation
to perform the power comparison of uniformity of different
tests against seven alternative distributions. Section 5 is
devoted to the conclusions. Everywhere in what follows, the

symbols (⟶
p

n
), (⟶d

n
) and (⟶a.s.

n
) stand for convergence in

probability, convergence in distribution, and almost surely,
as n⟶∞.

2. Theoretical Aspects and Test Statistic

To establish our test of the null hypothesis H0, we need the
following theorem, which shows that, for a CDF with
support [0, 1], one always has 0≤CREq(F)≤ e− q, and for the
distribution U(0, 1), we have FCRE � Γ(q + 1)/2q+1, and this
value is uniquely attained by the uniform distribution,
whenever q is fixed.

Theorem 1. Let X be a nonnegative RV with an absolutely
continuous CDF F with a support [0, 1]. From (2), it holds
0≤CREq(F)≤ e− q, and CREq(F) � Γ(q + 1)/2q+1 is uniquely
acquired by the distribution U(0, 1).

Proof. Since 0≤F(x)[− ln(F(x))]q ≤ 1, and the function
f(x) � x(− lnx)q has a maximum at x � e− q, 0< x≤ 1, we
get 0≤CREq(F)≤ e− q. On the other hand, using the strict
convexity of f(x) � x(− lnx)q, it is easy to see that FCRE is a
concave function of distribution (with support [0, 1]). 'is
shows that CREq(F) � Γ(q + 1)/2q+1 is uniquely acquired by
the distribution U(0, 1). 'is completes the proof.

Let X1, X2, . . . , Xn be a random sample with a contin-
uous CDF F, with support [0, 1]. Furthermore, let
X(1) ≤X(2) ≤ · · · ≤X(n) be the corresponding order statistics
X1, X2, . . . , Xn. According to (2), we can obtain the em-
pirical FCRE as an estimator of FCRE(F) by

CREq
Fn(  � 

∞

0
Fn(x) − ln Fn(x)(  

qdx, (4)

where Fn(x) � 1 − Fn(x) and Fn(x) is the empirical CDF,
which is defined by

Fn(x) � 
n− 1

i�1

i

n
I X(i) ,X(i+1)[ )(x) + I X(n) ,∞[ )(x), x ∈ R, (5)

where IA(x) is the indicator function, i.e., IA(x) � 1, x ∈ A;
IA(x) � 0, x ∉ A.

To perform a consistent test of the hypothesis of uni-
formity, we suggest the consistent statistic test

R
q
n � CREq

Fn(  � 
n− 1

i�1
1 −

i

n
  − ln 1 −

i

n
  

q

X(i+1) − X(i) 

� 
n− 1

i�1
AiWi,

(6)

where Ai � (1 − (i/n))(− ln(1 − (i/n)))q and Wi � (X(i+1) −

X(i)), i � 1, 2, . . . , n − 1, 0≤ q≤ 1.
Xiong et al. [16] proved that CREq(Fn)⟶

p

n
CREq

(F).
Moreover, under the null hypothesis H0, we get R

q
n ⟶

p

n
Γ

(q + 1)/2q+1. On the other hand, under the alternative
hypothesis (that F is any continuous CDF with support [0,
1], which is not the uniform), we have CREq(Fn)⟶

p

n
r,

where r is a smaller or larger number than
Γ(q + 1)/2q+1. □

Theorem 2. 8e test based on the sample estimate R
q
n is

consistent.

Proof. From Glivenko–Cantelli theorem (see Tucker [19]),
we have supt|Fn(t) − F(t)|⟶a.s.

n
0. On the other hand,

'eorem 3 in Xiong et al. [16] asserts that
CREq(Fn)⟶a.s.

n
CREq

(F), which proves the theorem. □

Theorem 3. Suppose that the random sample X1, X2, . . . , Xn

has been drawn from an unknown continuous CDF F defined
on [0, 1]. 8en, from (6), we have 0≤R

q
n ≤ e− q.

Proof. Since the function f(p) � p(− lnp)q, 0<p< 1, has a
maximum value at e− q, 0≤ q≤ 1; therefore,
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0≤R
q
n � CREq

Fn(  � 
n− 1

i�1
1 −

i

n
  − ln 1 −

i

n
  

q

X(i+1) − X(i) 

≤ 
n− 1

i�1
e

− q
X(i+1) − X(i)  � e

− q
X(n) − X(1) ≤ e

− q
.

(7)

'is completes the proof of the theorem. □

Theorem 4. Under H0, from (6), the mean and the variance
of R

q
n are, respectively,

E R
q
n(  �

1
n + 1



n− 1

i�1
Ai, (8)

Var R
q
n(  �

n

(n + 1)
2
(n + 2)



n− 1

i�1
A
2
i . (9)

Proof. 'e proof directly follows by noting that, for any
i � 1, 2, . . . , n − 1, the RV Wi � (X(i+1) − X(i)), based on the
CDF U(0, 1), has beta distribution, i.e., Wi ∼ Beta(1, n) (cf.
[20]). 'is completes the proof. □

Remark 1. Under H0, from (6), (8), and (9), we have
limn⟶∞E(R

q
n) � Γ(q + 1)/2q+1 � CREq(U) and limn⟶∞

Var(R
q
n) � 0, where CREq(U) is the FCRE of the CDF

U(0, 1).
'e critical region, which describes the test procedure, is

given by the following two inequalities:

CREq
Fn( ≤CRE∗qα/2 ≔ lower or CREq

Fn( 

≥CRE∗q1− (α/2) ≔ upper,
(10)

where α is the desired level of significance, and CRE∗qα is the
α− quantile of the asymptotic, or approximated, CDF of the
test statistic CREq(Fn), under H0. In the next section, we
derive the asymptotic and approximated CDF of the test
statistic CREq(Fn). 'ese quantiles are computed by using
the Monte Carlo method.

3. Percentage Points of the Test Statistic

In this section, we obtain the asymptotic distribution of R
q
n

under H0. From (6), we can write R
q
n � 

n− 1
i�1 Ti, where

Ti � AiWi, i � 1, 2, . . . , n − 1, and Wi ∼ Beta(1, n). 'us, we
can see that Ti’s have the following probability density
function (PDF):

fTi
(t) �

n

Ai

1 −
t

Ai

 

n− 1

, i � 1, 2, . . . , n − 1. (11)

'e mean and variance of Ti are, respectively,

μi � E Ti(  � AiE Wi(  �
Ai

n + 1
,

σ2i � Var Ti(  � A
2
i Var Wi(  �

nA
2
i

(n + 1)
2
(n + 2)

.

(12)

According to Lyapunov central limit theorem (see
Billingsley [21]), we have 

n− 1
i�1 (Ti − μi)/

������


n− 1
i�1 σ2i



� (R
q
n −

E(R
q
n)/

�������
Var(R

q
n)


)⟶d

n
N, whereN is the standard normal

RV (in the sequel, the standard normal distribution will be
denoted by N(0, 1)). 'erefore, under H0, the percentage
point (α− quantile) CRE∗qα is approximated according to the
asymptotic normality of R

q
n for large n by

CRE∗qα � E R
q
n(  +

�������

Var R
q
n( 



Zα, (13)

where Zα corresponds to the quantile (α × 100) of the CDF
N(0, 1).

Johannesson and Giri [22] proposed an approximation
of the CDF of linear combination of the finite number of
beta RVs. Noughabi [14] used this approximation to obtain
approximately the percentage points of the CRE for finite n.
By adopting the same procedure of Noughabi [14], we can
obtain an approximation of R

q
n for finite n as follows:

R
q
n ≈ 

n− 1

i�1
Ai

⎛⎝ ⎞⎠ Y, (14)

where the RV Y has Beta(a, b) distribution,

a �
(n + 2) 

n− 1
i�1 Ai 

2

(n + 1) 
n− 1
i�1 A

2
i 

−
1

n + 1
,

b �
n

n + 1
(n + 2) 

n− 1
i�1 Ai 

2


n− 1
i�1 A

2
i

− 1⎛⎝ ⎞⎠,

(15)

and Ai � (1 − (i/n))(− ln(1 − (i/n)))q, 0≤ q≤ 1, i � 1, 2, . . . ,

n − 1. According to (14), the mean and variance of R
q
n are,

respectively,

E R
q
n(  � 

n− 1

i�1
Ai

⎛⎝ ⎞⎠
a

a + b
,

Var R
q
n(  � 

n− 1

i�1
Ai

⎛⎝ ⎞⎠

2
ab

(a + b)
2
(a + b + 1)

.

(16)

Now, by using this approximation of R
q
n, the quantiles of

order α/2 and 1 − (α/2) of the approximated CDF of the test
statistic CREq(Fn) under H0 are, respectively,

lower ≔ 
n− 1

i�1
Ai

⎛⎝ ⎞⎠F
− 1 α

2
 ,

upper ≔ 
n− 1

i�1
Ai

⎛⎝ ⎞⎠F
− 1 1 −

α
2

 ,

(17)
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where F− 1(.) is the quantile function of the CDF F, F is the
Beta(a, b) distribution, and a and b are defined in (15).

3.1. Empirical Weighted Cumulative Residual Entropy.
From (3), Misagh et al. [15] proposed the empirical WCRE
by

CREw Fn(  � − 
n− 1

i�1

X
2
(i+1) − X

2
(i)

2
⎛⎝ ⎞⎠ 1 −

i

n
 ln 1 −

i

n
 

� 
n− 1

i�1
A
′

i
Ui,

(18)

where A
′

i
� X2

(i+1) − X2
(i)/2, Ui � − (1 − (i/n))ln(1 − (i/n)),

i � 1, 2, . . . , n − 1.
We suggest the following statistic of a consistent test

based on (18):

T
w
n � CREw Fn(  � 

n− 1

i�1
A
′

i
Ui. (19)

Theorem 5. 8e test based on the sample estimate Tw
n is

consistent.

Proof. From Mirali et al. [12] and by using Gli-
venko–Cantelli theorem, (see Tucker [19]), we have
CREw(Fn)⟶a.s.

n
CREw(F), which proves the theorem. □

Theorem 6. Let X1, X2, . . . , Xn be a random sample drawn
from an unknown continuous CDF F defined on [0, 1]. 8en,
from (18), we get 0≤Tw

n ≤ 1/2e.

Proof. Since the function f(p) � − p lnp, 0<p< 1, has a
maximum value at 1/e; therefore,

0≤T
w
n � CREw Fn(  � − 

n− 1

i�1

X
2
(i+1) − X

2
(i)

2
⎛⎝ ⎞⎠ 1 −

i

n
 ln 1 −

i

n
 

≤
1
2


n− 1

i�1

1
e

X
2
(i+1) − X

2
(i)  �

1
2e

X
2
(n) − X

2
(1) ≤

1
2e

.

(20)

'is completes the proof. □

3.2.PercentagePoints. We generate 50, 000 samples of size n,
where n � 10, 20, 30, 40, 50, 70, 100, from U(0, 1). Using (6),
the test statistic R

q
n is estimated by the empirical R

q
n for each

sample and the same for Tw
n . Moreover, we can see that

CRE0.1(U) � 0.4438, CRE0.5(U) � 0.3133, CRE0.9(U) �

0.2576 and CREw(U) � 0.1388, where CREq(U) and
CREw(U) are the FCRE and WCRE of the CDF U(0, 1),
respectively. Consequently, for R

q
n, we present the per-

centage points of the Monte Carlo method, asymptotic
normality, and beta approximation by using (10), (13), and
(17), respectively. 'e result of this study is given in Table 1,
where we note that the difference between the percentage

points decreases when n increases. Besides, for R
q
n, the ac-

curacy of the Monte Carlo method is more than the other
two methods.

Figures 1–4 represent the empirical PDF’s of the test
statistics using Monte Carlo samples with
n � 10, 20, 30, 50, 100. When n increases, it turned out that
the test statistics are nearer to the exact values, which implies
that the bias and the variance decrease with increasing n.

4. Power Analysis

In this section, we study the power test of Monte Carlo study
under alternative distributions. 'e power of R

q
n is estimated

by the proportion of the generated samples falling into the
critical region. Under seven alternative distributions, the
power of the test statistic R

q
n is calculated by the Monte Carlo

study of generating 50,000 samples each of size n, where
n � 20, 30, 50. 'e alternative CDFs proposed by Stephens
[18] in power study of uniformity tests are as follows:

Al: F(y) � 1 − (1 − y)
l
, 0≤y≤ 1, l � 1.5, 2,

Bl: F(y) �
2l− 1

y
l
, 0≤y≤ 0.5,

1 − 2l− 1
(1 − y)

l
, 0.5≤y≤ 1, l � 1.5, 2, 3,

⎧⎨

⎩

Cl: F(y) �
0.5 − 2l− 1

(0.5 − y)
l
, 0≤y≤ 0.5,

0.5 + 2l− 1
(y − 0.5)

l
, 0.5≤y≤ 1, for l � 1.5, 2.

⎧⎨

⎩

(21)

In Table 2, based on the Monte Carlo study, we recorded
the power values of the proposed test statistics R

q
n, Tw

n ,
Kolmogorov–Smirnov (K-S), Kuiper (V), Cramer-vonMises
(W2), Watson (U2), and Anderson-Darling (A2), for n �

10, 20, 30 and α � 0.05. From Table 2, we can conclude the
following:

(1) If q increases and tends to 1 (q⟶ 1), the power of
CREq test, for alternative Al(Bl)(Cl), decreases
(increases) (increases), and vice versa, if q decreases
and tends to 0 (q⟶ 0).

(2) If q⟶ 1, the CREq test, for alternative Al(Bl), gives
the worst (best) performance compared with the
other tests.

(3) To compare the performance between CREq and
CREw tests, we observe that:

(a) For the alternative Al, q⟶ 1, CREw performs
better than CREq and vice versa if q⟶ 0, n

increases.
(b) For the alternative Bl, q⟶ 1, CREq performs

better than CREw, and vice versa, if q⟶ 0, n

increases.
(c) For the alternative Cl, q⟶ 0, CREw performs

better than CREq, and vice versa, if q⟶ 1.

Stephens [18] noted that V and U2 tests will reveal a
change at variance. 'erefore, we observe the
following:

(1) For alternative Al, q⟶ 0, CREq performs better
than V and U2, and vice versa, if q⟶ 1.
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Table 1: Percentage points of the proposed test statistics R
q
n and Tw

n at level α � 0.05.

n q

R
q
n

Tw
nMonte Carlo method Normal approximation Beta approximation

Upper Lower Upper Lower Upper Lower Upper Lower

10
0.1 0.5131 0.2282 0.6165 0.1293 0.6495 0.1672

0.1574 0.06690.5 0.3522 0.1818 0.4481 0.1065 0.47003 0.1315
0.9 0.2964 0.14901 0.3732 0.0873 0.3916 0.1084

20
0.1 0.50608 0.3041 0.6012 0.2144 0.6217 0.2368

0.1544 0.09570.5 0.3458 0.2341 0.4282 0.1632 0.4415 0.1777
0.9 0.2892 0.1901 0.3549 0.1335 0.3661 0.1458

30
0.1 0.4995 0.3357 0.58407 0.2556 0.5987 0.2715

0.15275 0.10680.5 0.3422 0.2544 0.4135 0.19007 0.423 0.2002
0.9 0.2853 0.2066 0.34207 0.1555 0.35009 0.1641

40
0.1 0.4945 0.3541 0.5709 0.2809 0.5824 0.2931

0.1515 0.11260.5 0.3393 0.2646 0.40309 0.2064 0.4104 0.2142
0.9 0.2823 0.2153 0.3331 0.16902 0.3393 0.1756

50
0.1 0.4905 0.3653 0.5607 0.2983 0.5701 0.3082

0.1506 0.11630.5 0.3374 0.2712 0.3953 0.2177 0.4013 0.2241
0.9 0.2808 0.2207 0.3265 0.1783 0.3316 0.1837

70
0.1 0.4854 0.3801 0.5461 0.3213 0.553 0.3285

0.1492 0.12060.5 0.3345 0.2796 0.3844 0.2326 0.3888 0.2372
0.9 0.2776 0.2276 0.3172 0.1906 0.32103 0.1945

100
0.1 0.4799 0.3919 0.5317 0.3418 0.5367 0.3469

0.14805 0.12420.5 0.3317 0.2859 0.37404 0.2459 0.3772 0.2492
0.9 0.27508 0.2335 0.3085 0.2016 0.3112 0.2044
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(2) For the alternative Bl, q⟶ 1, CREq performs better
than V and U2, and vice versa, if q⟶ 0, n increases.

(3) For the alternative Cl, q⟶ 0, V and U2 performs
better than CREq.

(4) CREw performs better than V and U2 against the
alternative Al.

(5) CREw performs better than V and U2 against the
alternative Bl, n increases. But, V and U2 perform
better than CREw against the alternative Cl.

Consequently, based on alternatives with a change to-
ward a smaller variance, the tests CREw and CREq, q⟶ 1,
are the best. Meanwhile, under alternatives with a change
toward a larger variance, the tests CREw and CREq, q⟶ 0,
are weaker.

5. Conclusion

For the CDFs with support [0, 1], we exhibited that the
values of CREq and CREw are within [0, e− q] and [0, 1/2e],
respectively. Moreover, the test of uniformity was proposed
by calculating the percentage points and power analysis of
CREq and CREw. Besides, for CREq, we obtained the per-
centage points by using the Monte Carlo method via the
simulation and the normality asymptotic, as well as the beta
approximation. Moreover, for CREw the percentage points
were derived by using the Monte Carlo method via the
simulation. A power comparison was performed between
the FCRE andWCRE and other tests, where, by changing the
value of q, we indicated when the test has higher and lower
power compared with the other tests.
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.e stochastic process is one of the important branches of probability theory which deals with probabilistic models that evolve
over time. It starts with probability postulates and includes a captivating arrangement of conclusions from those postulates. In
probability theory, a convex function applied on the expected value of a random variable is always bounded above by the expected
value of the convex function of that random variable. .e purpose of this note is to introduce the class of generalized p-convex
stochastic processes. Some well-known results of generalized p-convex functions such as Hermite-Hadamard, Jensen, and
fractional integral inequalities are extended for generalized p-stochastic convexity.

1. Introduction

A stochastic process is a mathematical tool commonly de-
fined as a set of random variables in various fields of
probability. Verifiably, random variables were related to or
listed by a lot of numbers, normally as focuses in time, giving
the translation of a stochastic process, speaking to numerical
estimations, some systems randomly changing over time,
such as the growth of bacterial populations, fluctuations in
electrical flow due to thermal noise, or the production of gas
molecules. Stochastic systems are commonly used as sci-
entific models of systems that tend to alter in an arbitrary
manner. .ey have applications in various fields, especially
in sciences, for instance, chemistry, physics, biology, neu-
roscience, and ecology, in addition to technology and en-
gineering fields, for example, picture preparing,
cryptography, signal processing, telecommunications, PC
science, and data theory. Furthermore, apparently, arbitrary
changes in money-related markets have inspired the broad
utilization of stochastic processes in fund.

Convex stochastic processes and their applications have
a fundamental significance in mathematics and in proba-
bility. Nikodem [1] in 1980 proposed the idea of convex

stochastic processes in his article. In 1992, λ-convex and
Jensen-convex stochastic processes were initiated by
Skowronski [2]. More recently, Kotrys presented in [3] the
results on convex stochastic processes.

For more details, refer to [4]. Many studies in the lit-
erature have been performed on some extensions of convex
stochastic processes and on Hermite-Hadamard type in-
equalities for these extensions [5].

In the present note, we purpose to investigate the idea of
generalized p-convex stochastic processes. .e notion of
inequality as convexity has a significant place in literature
[6], as it yields a broader setting in order to investigate the
mathematical programming and optimization problems.
.erefore, Schur type, Hermite-Hadamard, Jensen, and
fractional integral inequalities and some important results
for the above said processes will be obtained in this study.

We start by definition of the stochastic process [7].

Definition 1 (see [3]). Assume a probability space (Ω,A, P).
A random variable is the function ξ: Ω⟶ R if ξ is
A-measurable; whereas, a stochastic process is the function
ξ: I ×Ω⟶ R if ξ(t, .) is a random variable for every t ∈ I.
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Let us review some basic notions about stochastic
processes.

Definition 2 (see [3]). .e stochastic process ξ: I× Ω⟶ R

is as follows:

(1) Continuous on I, if for all u∘ ∈ I,

P − lim
u⟶u∘

ξ(u, .) � ξ u∘, .( , (1)

where P − lim represents the limit in the probability;
(2) Mean-square continuous on I, if for every u∘ ∈ I,

lim
u⟶u∘

E ξ(u, .) − ξ u∘, .( ( 
2

� 0, (2)

Where E[ξ(u, .)] represents an expectation of the
random variable ξ.
It is obvious in probability that if a stochastic process
is mean-square continuous, then it is also continu-
ous, but the converse is not true;

(3) Mean square is differentiable at t ∈ I, if there is a
random variable ξ′(v, .): I × Ω⟶ R, such that for
every u∘ ∈ I,

ξ′ u∘, .(  � P − lim
u⟶u∘

ξ(u, .) − ξ u∘, .( 

u − u∘
. (3)

Definition 3 (see [3]). Consider ξ: I × Ω⟶ R, a stochastic
process with E[ξ(t, .)2]<∞. We say a random variable
]: Ω⟶ R to be the mean-square integral of the process ξ
on [a1, a2] if for each normal sequence of partitions of
[a1, a2], a1 � u∘ < u1 < · · · < un � a2, and for all
Θk ∈ [uk− 1, uk], we have

lim
n⟶∞

E 
n

k�1
ξ Θk, .(  uk − uk− 1(  − ](.)⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ � 0. (4)

.en, ](.) is written as

](.) � 
a2

a1

ξ(s, .)ds, (a.e). (5)

For more on mean-square integrable stochastic pro-
cesses, refer [8].

Theorem 1 (see [3]). Let us consider the Jensen-convex
stochastic process ξ: I ×Ω⟶ R that is mean-square con-
tinuous on I; then, we have

ξ
a1 + a2

2
, . ≤

1
a2 − a1


a2

a1

ξ(u, .)du≤
ξ a1, .(  + ξ a2, .( 

2
, (a.e),

(6)
for all a1, a2 ∈ I, a1 < a2. 3e above inequality is Hermite-
Hadamard inequality for stochastic convexity.

Let us present some important generalizations of convex
stochastic processes.

Definition 4 (see [9]). A stochastic process ξ: I × Ω⟶ R

is said to be generalized convex if for θ ∈ [0, 1] and u, v ∈ I,

ξ(θu +(1 − θ)v, .)≤ ξ(v, .) + θη(ξ(u, .), ξ(v, .)), (a.e). (7)

Definition 5 (see [10]). An interval I is a p-convex set if
[θup + (1 − θ)vp](1/p) ∈ I for all u, v ∈ I, θ ∈ [0, 1], and
p� 2m+ 1 or p � (r/n), r� 2s+ 1, n� 2t+ 1, and m, s, t ∈ N.

Definition 6 (see [10]). A function f: I⟶ R is p-convex,
if for θ ∈ [0, 1] and u, v ∈ I, we have

f θu
p

+(1 − θ)v
p

 
(1/p)

 ≤ θf(u) +(1 − θ)f(v), (8)

where I is a p-convex set.

Remark 1 (see [11]). If I ⊂ (0,∞) be a real interval and
p ∈ R 0{ }, then

tx
p

+(1 − t)y
p

 
(1/p) ∈ I, for allx, y ∈ I and t ∈ [0, 1].

(9)

According to Remark 1, we can give a different version of
the definition of p-convex function as follows:

Definition 7 (see [11]). If I ⊂ (0,∞) be a real interval and
p ∈ R 0{ }. A function f: I⟶ R is said to be a p-convex
function if

f tx
p

+(1 − t)y
p

 
(1/p)

 ≤ tf(x) +(1 − t)f(y), (10)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality (10) is reversed,
then f is said to be p-concave.

Definition 8 (see [12]). A process ξ: I × Ω⟶ R, where I is
a p-convex set, is said to be a p-convex stochastic process if
for θ ∈ [0, 1] and u, v ∈ I, we have

ξ θu
p

+(1 − θ)v
p

 
(1/p)

, . ≤ θξ(u, .) +(1 − θ)ξ(v, .), (a.e).

(11)

In [13], the following functions are defined.

Definition 9

β(u, v) � 
1

0
θu− 1

(1 − θ)
v− 1dθ, u, v> 0. (12)

Definition 10. For w> v> 0, |z|< 1,

2F1(u, v; w; z) �
1

β(v, w − v)

1

0
θv− 1

(1 − θ)
w− v− 1

(1 − zθ)
− udθ.

(13)

Now, we are in position to define the main notion of this
article.

Definition 11. A stochastic process ξ: I ×Ω⟶ R is said to
be generalized p-convex, if for θ ∈ [0, 1] and , we have
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ξ θu
p

+(1 − θ)v
p

 
(1/p)

, . ≤ ξ(v, .) + θη(ξ(u, .), ξ(v, .)), (a.e).

(14)
If the inequality in (14) is reversed, then ξ is the gen-

eralized p-concave.

Remark 2. It is obvious that the inequality (14) reduces to
the convex stochastic process for p � 1 and η(x, y) � x − y.

Example 1. Consider a stochastic process ξ: (0,∞) ×

Ω⟶ R defined by ξ(u, .) � up, p≠ 0, and η(x, y) � x − y;
then, ξ is the generalized p-convex.

We organize our study as follows. First we derive some
basic properties for this generalization. In next section,
Schur type inequality is obtained. .e third, fourth, and fifth
sections are devoted to Hermite-Hadamard, Jensen, and
fractional integral inequalities for generalized p-convex
stochastic processes.

Proposition 1. Let ξ1, ξ2: I ×Ω⟶ R be two generalized
p-convex stochastic processes:

(1) If η is additive, then ξ1 + ξ2: I × Ω⟶ R is also a
generalized p-convex stochastic process

(2) If η is nonnegatively homogeneous, then λξ1:
I × Ω⟶ R, for any λ≥ 0, is the generalized
p-convex stochastic process

.e proof Proposition 1 is straightforward.

Theorem 2. Assume a nonempty collection
ξj: I × Ω⟶ R, j ∈ J  of generalized p-convex stochastic
processes, such that

(1) 3ere exist α ∈ [0,∞] and β ∈ [− 1,∞], such that
η(u, v) � αu + βv for all u, v ∈ R

(2) For each u ∈ I,maxj∈Jξj(u, .) exists in R; then, the
stochastic process defined by ξ(u, .) � maxj∈Jξj(u, .)

for all u ∈ I is the generalized p-convex.

Proof. For any u, v ∈ I and θ ∈ [0, 1], we have

ξ θu
p

+(1 − θ)v
p

 
(1/p)

, .  � max
j∈J

ξj θu
p

+(1 − θ)v
p

 
(1/p)

, . 

≤ max
j∈J

ξj(v, .) + θη ξj(u, .), ξj(v, .)  

� max
j∈J

ξj(v, .) + θ αξj(u, .) + βξj(v, .)  

� max
j∈J

(1 + βθ)ξj(v, .) + αθξj(u, .) 

≤ (1 + βθ)max
j∈J

ξj(v, .) + αθmax
j∈J

ξj(u, .)

� (1 + βθ)ξ(v, .) + αθξ(u, .)

� ξ(v, .) + θ(αξ(u, .) + βξ(v, .))

� ξ(v, .) + θη(ξ(u, .), ξ(v, .)),

(15)
which is as required. □

2. Schur Type Inequality

Theorem 3. For I ⊂ (0,∞) and p> 0, let ξ: I × Ω⟶ R is
the generalized p-convex stochastic process. 3en,
∀u1, u2, u3 ∈ I, such that u1 < u2 < u3 and u

p
3 − u

p
1 , u

p
3 −

u
p
2 , u

p
2 − u

p
1 ∈ (0, 1), and we have

ξ u3, .(  u
p
3 − u

p
1  − ξ u2, .(  u

p
3 − u

p
1 

+ u
p
3 − u

p
2 η ξ u1, .( , ξ u3, .( ( ( ≥ 0, (a.e).

(16)

Proof. Let u1, u2, u3 ∈ I be given. .en, we can easily see
that

u
p
3 − u

p
2

u
p
3 − u

p
1
,

u
p
2 − u

p
1

u
p
3 − u

p
1
∈ (0, 1),

u
p
3 − u

p
2

u
p
3 − u

p
1

+
u

p
2 − u

p
1

u
p
3 − u

p
1

� 1.

(17)

Setting θ � (u
p
3 − u

p
2 /(u

p
3 − u

p
1 )), u

p
2 � θu

p
1 + (1 − θ)u

p
3 .

As ξ is generalized p-convex, so

ξ u2, .( ≤ ξ u3, .(  +
u

p
3 − u

p
2

u
p
3 − u

p
1
η ξ u1, .( , ξ u3, .( ( ( (18)

By assuming u
p
3 − u

p
1 > 0 and multiplying the above

inequality by u
p
3 − u

p
1 , we get inequality (16). □

3. Hermite-Hadamard Type Inequality

Theorem 4. For I ⊂ (0,∞) and p> 0, let a mean-square
generalized p-convex stochastic process ξ: [u1, u2]

×Ω⟶ R, which is integrable. 3en, for any u1, u2 ∈ I,
(u1 < u2), the following inequality holds almost everywhere:

ξ
u

p
1 + u

p
2

2
 

(1/p)

, .⎛⎝ ⎞⎠ −
p

2 u
p
2 − u

p
1 



u2

u1

x
p− 1η

ξ u
p
1 + u

p
2 − x

p
 

(1/p)
, . , ξ(x, .) dx

≤
p

u
p
2 − u

p
1



u2

u1

x
p− 1ξ(x, .)dx

≤
ξ u1, .(  + ξ u2, .( 

2
+
1
4

η ξ u1, .( , ξ u2, .( ( 

+ η ξ u2, .( , ξ u1, .( ( ].

(19)

Proof. Take xp � θu
p
1 + (1 − θ)u

p
2 and yp � (1 − θ)

u
p
1 + θu

p
2 ; so,

ξ
u

p
1 + u

p
2

2
 

(1/p)

, .⎛⎝ ⎞⎠ � ξ
xp + yp

2
 

(1/p)

, .⎛⎝ ⎞⎠. (20)
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Since ξ is the generalized p-convex, so we have

ξ
u

p
1 + u

p
2

2
 

(1/p)

, .⎛⎝ ⎞⎠ � ξ
1
2

θu
p
1 +(1 − θ)u

p
2 

(1/p)
, . 

p



+
1
2

(1 − θ)u
p
1 + θu

p
1 

(1/p)
 

p



≤ ξ (1 − θ)u
p
1 + θu

p
2 

(1/p)
, . 

+
1
2
η ξ θu

p
1 +(1 − θ)u

p
2 

(1/p)
, . ,

ξ (1 − θ)u
p
1 + θu

p
2 

(1/p)
, . ).

(21)

Integrating w.r.t “θ,” the above inequality on [0, 1],

ξ
u

p
1 + u

p
2

2
 

(1/p)

, .⎛⎝ ⎞⎠≤ 
1

0
ξ (1 − θ)u

p
1 + θu

p
2 

(1/p)
, . dθ

+
1
2


1

0
η ξ θu

p
1 +(1 − θ)u

p
2 

(1/p)
, . ,

ξ θu
p
1 +(1 − θ)u

p
2 

(1/p)
, . )dθ,

(22)

which implies

ξ
u

p
1 + u

p
2

2
 

(1/p)

, .⎛⎝ ⎞⎠ −
p

2 u
p
2 − u

p
1 

× 
u2

u1

x
p− 1η ξ u

p
1 + u

p
2 − x

p
 

(1/p)
, . , ξ(x, .) dx

≤
p

u
p
2 − u

p
1


u2

u1

x
p− 1ξ(x, .)dx.

(23)

Now,


u2

u1

x
p− 1ξ(x, .)dx

�
u

p
2 − u

p
1

p

1

0
ξ θu

p
1 +(1 − θ)u

p
2 

(1/p)
, . dθ

≤
u

p
2 − u

p
1

p
ξ u2, .(  + 

1

0
θη ξ u1, .( , ξ u2, .( ( dθ ,

(24)

which implies
p

u
p
2 − u

p
1


u2

u1

x
p− 1ξ(x, .)dx

≤ ξ u2, .(  + 
1

0
θη ξ u1, .( , ξ u2, .( ( dθ.

(25)

Similarly,
p

u
p
2 − u

p
1


u2

u1

x
p− 1ξ(x, .)dx

≤ ξ u1, .(  + 
1

0
θη ξ u2, .( , ξ u1, .( ( dθ.

(26)

Adding (25) and (26),
p

u
p
2 − u

p
1


u2

u1

x
p− 1ξ(x, .)dx

≤
ξ u1, .(  + ξ u2, .( 

2

+
1
4

η ξ u1, .( , ξ u2, .( (  + η ξ u1, .( , ξ u2, .( (  .

(27)

Combining (23) and (27), we obtain the inequality
(22). □

Remark 3. For p � 1 and η(u, v) � u − v in (22), we get
Hermite-Hadamard inequality (6) for the convex stochastic
process.

4. Jensen Type Inequality

.e following result will be helpful in the derivation of
Jensen’s type inequality for the generalized p-convex sto-
chastic process.

Lemma 1. Let w1, . . . , wn be the positive real numbers
(n≥ 2). Assume ξ: I × Ω⟶ R be a generalized p-convex
stochastic process and u1, u2, . . . , un ∈ I; then, we have almost
everywhere

ξ
1

Wn



n

i�1
wiu

p
i

⎡⎣ ⎤⎦
(1/p)

, .⎛⎝ ⎞⎠

� ξ
Wn− 1

Wn



n− 1

i�1

wi

Wn− 1
u

p

i +
wn

Wn

u
p
n

⎡⎣ ⎤⎦

(1/p)

, .⎛⎝ ⎞⎠

≤ ξ un, .(  +
Wn− 1

Wn

η ξ 
n− 1

i�1

wi

Wn− 1
u

p
i

⎡⎣ ⎤⎦

(1/p)

, .⎛⎝ ⎞⎠, ξ un, .( ⎛⎝ ⎞⎠,

(28)

where Wn � 
n
i�1 wi.

Theorem 5 (Jensen type inequality). Let ξ: I ×Ω⟶ R be
a generalized p-convex stochastic process and
η: A × B⟶ R be nondecreasing, nonnegatively sublinear in
the first variable; then, we have almost everywhere

ξ
1

Wn



n

i�1
wiu

p
i

⎡⎣ ⎤⎦
(1/p)

, .⎛⎝ ⎞⎠≤ ξ un, .(  + 
n

i�1

Wi

Wn

 ηξ ui, ui+1, . . . , un, .( ,

(29)
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where Wn � 
n
i�1 wi and ηξ(ui, ui+1, . . . , un, .) � η(ηξ(ui,

ui+1, . . . , un− 1, .), ξ(un, .)) and ηξ(u, .) � ξ(u, .)∀u ∈ I.
Proof. Since η is nondecreasing, nonnegatively sublinear in
the first variable, so using Lemma 1, we get

□

ξ
1

Wn



n

i�1
wix

p
i

⎡⎣ ⎤⎦
(1/p)

, .⎛⎝ ⎞⎠ � ξ
wn

Wn

u
p
n + 

n− 1

i�1

wi

Wn

u
p
i

⎡⎣ ⎤⎦

(1/p)

, .⎛⎝ ⎞⎠

� ξ
Wn− 1

Wn



n− 1

i�1

wi

Wn− 1
u

p
i +

wn

Wn

u
p
n

⎡⎣ ⎤⎦

(1/p)

, .⎛⎝ ⎞⎠

≤ ξ un, .(  +
Wn− 1

Wn

η ξ 

n− 1

i�1

wi

Wn− 1
u

p
i

⎡⎣ ⎤⎦

(1/p)

, .⎛⎝ ⎞⎠, ξ un, .( ⎛⎝ ⎞⎠

� ξ un, .(  +
Wn− 1

Wn

η ξ
Wn− 2

Wn− 1


n− 2

i�1

wi

Wn− 2
u

p
i +

wn− 1

Wn− 1
u

p
n− 1

⎡⎣ ⎤⎦

(1/p)

, .⎛⎝ ⎞⎠, ξ un, .( ⎛⎝ ⎞⎠

≤ ξ un, .(  +
Wn− 1

Wn

η ξ un− 1, .(  +
Wn− 2

Wn− 1
η × ξ 

n− 2

i�1

wi

Wn− 2
u

p
i

⎡⎣ ⎤⎦

(1/p)

, .⎛⎝ ⎞⎠, ξ un− 1, .( ⎛⎝ ⎞⎠, ξ un, .( ⎛⎝ ⎞⎠

≤ ξ un, .(  +
Wn− 1

Wn

η ξ un− 1, .( , ξ un( (  +
Wn− 2

Wn

η

× η ξ 
n− 2

i�1

wi

Wn− 2
u

p

i
⎡⎣ ⎤⎦

(1/p)

, .⎛⎝ ⎞⎠, ξ un− 1, .( ⎛⎝ ⎞⎠, ξ un, .( ⎛⎝ ⎞⎠

≤ · · · ≤ ξ un, .(  +
Wn− 1

Wn

η ξ un− 1, .( , ξ un, .( (  +
Wn− 2

Wn

× η η ξ un− 2, .( , ξ un, .( ( , ξ un, .( ( 

+ · · · +
W1

Wn

η η . . . η ξ u1, .( , ξ u2, .( ( , ξ u3, .( (  . . .( , ξ un− 1, .( , ξ un, .( 

� ξ un, .(  +
Wn− 1

Wn

ηξ un− 1, un, .(  +
Wn− 2

Wn

ηξ un− 2, un− 1, un, .( 

+ · · · +
W1

Wn

ηξ u1, u2, . . . , un− 1, un, .( 

� ξ un, .(  + 
n− 1

i�1

Wi

Wn

 ηξ ui, ui+1, . . . , un, .( .

(30)
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5. Fractional Integral Inequalities

Lemma 2 (see [12]). Assume a stochastic process ξ: I ⊂
(0,∞) ×Ω⟶ R which is mean-square differentiable on Io

and u1, u2 ∈ Io with u1 < u2. If ξ′ ∈ L[u1, u2], then we have
almost everywhere

ξ u1, .(  + ξ u2, .( 

2
−

p

u
p
2 − u

p
1


u2

u1

ξ(x, .)

x
1− p

dx

�
u

p
2 − u

p
1

2p

1

0

1 − 2θ

θu
p
1 +(1 − θ)d

p
 

1− (1/p)

× ξ′ θu
p
1 +(1 − θ)u

p
2 

(1/p)
, . dθ.

(31)

Theorem 6. For I ⊂ (0,∞) and p> 0 and under the as-
sumptions of Lemma 2 with |ξ′|q, a generalized p-convex
stochastic process on [u1, u2] for q≥ 1, then we have almost
everywhere

ξ u1, .(  + ξ u2, .( 

2
−

p

u
p
2 − u

p
1


u2

u1

ξ(x, .)

x
1− p

dx





≤
u

p
2 − c

p

2p
L
1− (1/q)
1 L1 ξ′ u2, .( 



q



+ L2 η ξ′ u1, .( 



q
, ξ′ u2, .( 



q

  
(1/q)

,

(32)

where

L1 u1, u2; p(  �
1
4

u
p
1 − u

p
2

2
 

(1/p)− 1

2F1 1 −
1
p

, 2, 3:
u

p
1 − u

p
2

u
p
1 + u

p
2

 

+ 2F1 1 −
1
p

, 2, 3:
u

p
2 − u

p
1

c
p

+ u
p
2

 ,

L2 u1, u2; p(  �
1
24

u
p
1 + u

p
2

2
 

(1/p)− 1

2F1 1 −
1
p

, 2, 4:
u

p
1 − u

p
2

u
p
1 + u

p
2

 

+ 2F1 1 −
1
p

, 2, 4:
u

p
2 − u

p
1

u
p
1 + v

p .

(33)

Proof. Bymaking use of Lemma 2 and power mean-integral
inequality, we have

ξ u1, .(  + ξ u2, .( 

2
−

1
u

p
2 − u

p
1


u2

u1

ξ(x, .)

x
1− p

dx





≤
u

p
2 − u

p
1

2p

1

0

1 − 2θ

θu
p
1 +(1 − θ)u

p
2 

1− (1/p)





× ξ′ θu
p
1 +(1 − θ)u

p
2 

(1/p)
, . 




dθ

≤
u

p
2 − u

p
1

2p

1

0

|1 − 2θ|

θu
p
1 +(1 − θ)u

p
2 

1− (1/p)
dt⎛⎜⎝ ⎞⎟⎠

1− (1/q)

× 
1

0

|1 − 2θ|

θu
p
1 +(1 − θ)u

p
2 

1− (1/p)
ξ′ θu

p
1 +(1 − θ)u

p
2 

(1/p)
, . 





q

dθ⎛⎜⎝ ⎞⎟⎠

(1/q)

.

(34)

Hence, by generalized p-convexity of |ξ′|q on [u1, u2], we
have

ξ u1, .(  + ξ u2, .( 

2
−

1
u

p
2 − u

p
1


b

a

ξ(x, .)

x
1− p

dx





≤
u

p
2 − u

p
1

2p

1

0

|1 − 2θ|

θu
p
1 +(1 − θ)u

p
2 

1− (1/p)
dt⎛⎜⎝ ⎞⎟⎠

1− (1/q)


1

0

|1 − 2θ| ξ′ u2, .( 



q

+ θη ξ′ u1, .( 



q
, ξ′ u2, .( 



q

  

θu
p
1 +(1 − θ)u

p
2 

1− (1/p)
dt⎛⎜⎝ ⎞⎟⎠

(1/q)

≤
u

p
2 − u

p
1

2p
L
1− (1/q)
1 L1 ξ′ u2, .( 



q



+ L2 η ξ′ u1, .( 



q
, ξ′ u2, .( 



q

  
(1/q)

.

(35)

It is easy to check that


1

0

|1 − 2θ|

θu
p
1 +(1 − θ)u

p
2 

1− (1/p)
dθ � L1 u1, u2; p( ,


1

0

|1 − 2θ|θ

θu
p
1 +(1 − θ)u

p
2 

1− (1/p)
dθ � L2 u1, u2; p( .

(36)

□

Remark 4. By setting η(u1, u2) � u1 − u2 in (32), we get
.eorem 4 of [12].

We will get the following Corollary by taking q � 1 in
(32).
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Corollary 1. If |ξ′| is generalized p-convex on [u1, u2], then
we have almost everywhere

ξ u1, .(  + ξ u2, .( 

2
−

p

u
p
2 − u

p
1


u2

u1

ξ(x, .)x
1− pdx





≤
u

p
2 − u

p
1

2p
L1 ξ′ u2, .( 


 + L2 η ξ′ u1, .( 


, ξ′ u2, .( 


   ,

(37)

where L1 and L2 are defined in 3eorem 6.

Remark 5. If we take η(u1, u2) � u1 − u2 in (37), then we
have Corollary 4 of [12].

Theorem 7. For I ⊂ (0,∞) and p> 0 and under the as-
sumptions of Lemma 2 with |ξ′|q, a generalized p-convex
stochastic process on [u1, u2] for 1< q, (1/r) + (1/q) � 1, then
we have almost everywhere

ξ u1, .(  + ξ u2, .( 

2
−

p

u
p
2 − u

p
1


u2

u1

ξ(x, .)

x
1− p

dx





≤
u

p
2 − u

p
1

2p

1
r + 1

 
(1/r)

L4 ξ′ u2, .( 



q

+ L5 η ξ′ u1, .( 



q
, ξ′ u2, .( 



q

   
(1/q)

,

(38)

where

L3 � L3 u1, u2; p; q( 

�

1
u

qp− q
1

· 2F1 q −
q

p
, 1; 2; 1 −

u2

u1
 

p

 , if p< 0,

1
u

qp− q
2

· 2F1 q −
q

p
, 1; 2; 1 −

u1

d
 

p

 , if p> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L4 � L4 u1, u2; p; q( 

1
2u

qp− q
1

· 2F1 q −
q

p
, 1; 3; 1 −

u2

u1
 

p

 , if p< 0,

1
2u

qp− q
2

· 2F1 q −
q

p
, 2; 3; 1 −

u1

u2
 

p

 , if p> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(39)

Proof. By making use of Lemma 2, Holder’s inequality, and
generalized p-convexity of |ξ′|q on [u1, u2], we have
ξ u1, .(  + ξ u2, .( 

2
−

p

u
p
2 − u

p
1


u2

u1

ξ(x, .)

x
1− p

dx

≤
u

p
2 − u

p
1

2p

1

0
|1 − 2θ|

rdt 

(1/r)

× 
1

0

1

θu
p
1 +(1 − θ)u

p
2 

q− (q/p)
ξ′ θu

p
1 +(1 − θ)u

p
2 

(1/p)
, . 





q

dt⎛⎜⎝ ⎞⎟⎠

(1/q)

≤
d

p
− u

p
1

2p

1
r + 1

 
(1/r)

× 
1

0

ξ′ u2, .( 



q

+ θη ξ′ u1, .( 



q
, ξ′ u2, .( 



q

 

θu
p
1 +(1 − θ)u

p
2 

q− (q/p)
dθ⎛⎜⎝ ⎞⎟⎠

(1/q)

,

(40)
where an easy calculation gives


1

0

1

θu
p
1 +(1 − θ)u

p
2 

q− (q/p)
dθ � L3 u1, u2; p; q( , (41)


1

0

θ

θu
p
1 +(1 − θ)u

p
2 

q− (q/p)
dθ � L4 u1, d; p; q( . (42)

Substituting equations (41) and (42) into (38), the proof
is completed. □

Remark 6. By taking η(u1, u2) � u1 − u2 in .eorem 7, then
we obtain .eorem 6 of [12].

Theorem 8. For I ⊂ (0,∞) and p> 0 and under the as-
sumptions of Lemma 2 with |ξ′|q, a generalized p-convex on
[u1, u2] for 1< q, (1/r) + (1/q) � 1, then we have almost
everywhere

ξ u1, .(  + ξ u2, .( 

2
−

p

u
p
2 − u

p
1


u2

u1

ξ(x, .)

x
1− p

dx





≤
u

p
2 − u
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1

2p
L

(1/r)
5

1
q + 1

 

(1/q)
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q

+
1
2
η ξ′ u1, .( 



q
, ξ′ u2, .( 



q

  
(1/q)

,

(43)

where
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L5 � L5 u1, u2; p; r( 

�

1
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1

· 2F1 r −
r

p
, 1; 2; 1 −

u2

u1
 

p

 , if p< 0,

1
u

pr− r
2

· 2F1 r −
r

p
, 1; 2; 1 −

u1

u2
 

p

 , if p> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Proof. From Lemma 2, Holder’s inequality, and generalized
p-convexity of |ξ′|q on [u1, u2], we have
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u1

ξ(x, .)

x
1− p

dx





≤
u

p
2 − u

p
1

2p

1

0

1

θu
p
1 +(1 − θ)u

p
2 

q− (q/p)
dθ⎛⎜⎝ ⎞⎟⎠

(1/r)

× 
1

0
|1 − 2θ|

q ξ′ θu
p
1 +(1 − θ)u

p
2 

(1/p)
, . 





q

dθ 

(1/q)

≤
u

p
2 − u

p
1

2p
L

(1/r)
6

1
q + 1

 

(1/q)

ξ′ u2, .( 



q

+
1
2

η ξ′ u1, .( 



q
, ξ′ u2, .( 



q

   
(1/q)

,

(45)

where an easy calculation gives


1

0

1

θu
p
1 +(1 − θ)u

p
2 

q− (r/p)
dθ � L5 c, u2; p; r( , (46)


1

0
|1 − 2θ|

qdθ �
1

(q + 1)
. (47)

Substituting (46) and (47) into (43), we obtain the re-
quired result. □

6. Conclusion

.ere are many applications of stochastic processes, for
instance, the Kolmogorov–Smirnoff test on equality of
distributions. .e other application includes sequential
analysis and quickest detection. In this study, we have
presented a new class of convex stochastic processes which
are generalized p-convex and established Jensen, Hermite-
Hadamard, and fractional integral inequalities for this class.
Our conclusions are applicable, since the expected value of a
random variable is consistently bounded above by the ex-
pected value of the convex function of that random variable.
It will be interesting to find parallel results by using the
proposed definition in this study in the setting of other
fractional integrals [14, 15].
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In this study, the S-function is applied to Saigo’s k-fractional order integral and derivative operators involving the k-hypergeometric
function in the kernel; outcomes are described in terms of the k-Wright function, which is used to represent image formulas of integral
transformations such as the beta transform. Several special cases, such as the fractional calculus operator and the S-function, are also listed.

1. Introduction and Preliminaries

Fractional calculus was first introduced in 1695, but only in
the last two decades have researchers been able to use it
efficiently due to the availability of computing tools. Sig-
nificant uses of fractional calculus have been discovered by
scholars in engineering and science. In literature, many
applications of fractional calculus are available in astro-
physics, biosignal processing, fluid dynamics, nonlinear
control theory, and stochastic dynamical system. Further-
more, research studies in the field of applied science [1, 2],
and on the application of fractional calculus in real-world
problems [3, 4], have recently been published. A number of
researchers [5–15] have also investigated the structure,
implementations, and various directions of extensions of the

fractional integration and differentiation in detail. A detailed
description of such fractional calculus operators, as well as
their characterization and application, can be found in re-
search monographs [16, 17].

Recently, a series of research publications with respect to
generalized classical fractional calculus operators was
published. Mubeen and Habibullah [18] broughtout
k-fractional order integral of the Riemann–Liouville version
and its applications. Dorrego [19] introduced an alternative
definition for the k-Riemann–Liouville fractional derivative.

Gupta and Parihar [20] introduced the left and right
sides of Saigo k-fractional integration and differentiation
operators connected with the k-Gauss hypergeometric
function which are as follows:

I
ϑ,ς,c
0+,kf (x) �

x
(− ϑ− ς)/k

kΓk(ϑ)


x

0
(x − t)

(ϑ/k)− 1
2F1,k (ϑ + ς, k), (− c, k); (ϑ, k); 1 −

t

x
  f(t)dt;

(R(ϑ)> 0, k> 0),

(1)

I
ϑ,ς,c
− ,k f (x) �

1
kΓk(ϑ)


∞

x
(t − x)

(ϑ/k)− 1
t
(− ϑ− ς)/k

2F1,k (ϑ + ς, k), (− c, k); (ϑ, k); 1 −
x

t
  f(t)dt;

(R(ϑ)> 0, k> 0).

(2)
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Mubeen and Habibullah [18] defined 2F1,k((ϑ, k), (ς, k);

(c, k); x), i.e., the k-Gauss hypergeometric function for
x ∈ C, |x|< 1,R(c)>R(ς)> 0:

2F1,k((ϑ, k), (ς, k); (c, k); x) � 
∞

n�0

(ϑ)n,k(ς)n,kx
n

(c)n,kn!
. (3)

Equations (1) and (2) are the left and right sides of
fractional differential operators involving k-Gauss hyper-
geometric function, respectively:

D
ϑ,ς,c
0+,kf (x) �

d
dx

 

n

I
− ϑ+n,− ς− n,ϑ+c− n

0+,k f (x);R(ϑ)> 0, k> 0; n � [R(ϑ) + 1]

�
d
dx

 

n
x
ϑ+ς/k

kΓk(− ϑ + n)


x

0
(x − t)

− ϑ/k+n− 1
× 2F1,k (− ϑ − ς, k), (− c − ϑ + n, k); (− ϑ + n, k); 1 −

t

x
  f(t)dt,

(4)

D
ϑ,ς,c
− ,k f (x) � −

d
dx

 

n

I
− ϑ+n,− ς− n,ϑ+c

− ,k f (x);R(ϑ)> 0, k> 0; n � [R(ϑ) + 1]

� −
d
dx

 

n 1
kΓk(− ϑ + n)


∞

x
(t − x)

− ϑ+n/k− 1
t
ϑ+ς/k

× 2F1,k (− ϑ − ς, k), (− c − ϑ, k); (− ϑ + n, k); 1 −
x

t
  f(t)dt,

(5)

where x> 0, ϑ ∈ C,R(ϑ)> 0, k> 0 and [R(ϑ)] is the integer
part of R(ϑ).

Remark 1. When we set k � 1 in equations, operators (1),
(2), (4), and (5) reduce into Saigo’s fractional integral and
derivative operators, as stated in [9], respectively.

We consider the following basic results for our study.

Lemma 1 (see p. 497, equation 4.2, in [20]). Let
ϑ, ς, c, ε ∈ C,R(ε)>max[0,R(ς − c)]; then,

I
ϑ,ς,c
0+,kt

(ε/k)− 1
 (x) � 

∞

n�0
k

n Γk(ε)Γk(ε − ς + c)

Γk(ε − ς)Γk(ε + ϑ + c)
x

(ε− ς/k)− 1
.

(6)

Lemma 2 (see p. 497, equation 4.3, in [20]). Let
ϑ, ς, c, ε ∈ C,R(ϑ)> 0, k ∈ R+(0,∞) and R(ε)>max[R

(− ς),R(− c)]; then,

I
ϑ,ς,c
− ,k t

− (ε/k)
 (x) � 

∞

n�0
k

n Γk(ε + ς)Γk(ε + c)

Γk(ε)Γk(ε + ϑ + ς + c)
x

− ε− ς/k
.

(7)

Lemma 3 (see p. 500, equation 6.2, in [20]). Let
ϑ, ς, c, ε ∈ C, n � [R(ϑ)] + 1, k ∈ R+(0,∞) such that
R(ε)>max[0,R(− ϑ − ς − c)]; then,

D
ϑ,ς,c
0+,kt

(ε/k)− 1
 (x) � 

∞

n�0
k

n Γk(ε)Γk(ε + ς + c + ϑ)

Γk(ε + c)Γk(ε + ς + n − nk)
x

(ε+ς+n/k)− n− 1
. (8)

Lemma 4 (see p. 500, equation 6.3, in [20]). Let ϑ, ς, c, ε ∈ C
and n � [R(ϑ)] + 1, k ∈ R+, R(ε)>max[R(− ϑ − c),

R(ς − nk + n)]; then,

D
ϑ,ς,c
− ,k t

− (ε/k)
 (x) � 

∞

n�0
k

nΓk(ε − ς − n + nk)Γk(ε + ϑ + c)

Γk(ε)Γk(ε − ς + c)
x

(− ε+ς+n/k)− n
. (9)

Recent time, the S-function is defined and studied by
Saxena and Daiya [21], which is generalization of k-Mittag-

Leffler function, K-function, M-series, Mittag-Leffler
function (see [22–25]), as well as its relationships with other
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special functions. )ese special functions have recently
found essential applications in solving problems in physics,
biology, engineering, and applied sciences.

)e S-function is defined for ϑ′, δ′, c′ε ∈ C, R(ϑ′)> 0,
k ∈ R, R(ϑ′)> kR(ε), li(i � 1, 2, . . . , p), mj(j � 1, 2,

. . . , q), and p< q + 1 as

S
ϑ′ ,δ′ ,c′ ,ε,k
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; x  � 

∞

n�0

l1( n . . . lp 
n

c′( nε,k

m1( n . . . mq 
n
Γk nϑ′ + δ′( 

x
n

n!
. (10)

Here, Di
�

az and Pariguan [26] introduced the k-Poch-
hammer symbol and k-gamma function as follows:

c′( n,k �

Γk c′ + nk( 

Γk c′( 
, k ∈ R, c′ ∈ C/ 0{ },

c′ c′ + k(  . . . c′ +(n − 1)k( , n ∈ N, c′ ∈ C( ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

as well as the relationship with the classic Euler’s gamma
function:

Γk c′(  � k
c′/k( )− 1Γ

c′
k

 , (12)

where c′ ∈ C, k ∈ R, and n ∈ N. Refer to Romero and
Cerutti’s papers [27] for more information on the k-Poc-
hammer symbol, k-special functions, and fractional Fourier
transforms.

)e following are some significant special cases of the
S-function:

(i) For p � q � 0, the generalized k-Mittag-Leffler
function [28]

E
c′ ,ε
k,ϑ′ ,δ′(x) � S

ϑ′ ,δ′ ,c′ ,ε,k
(0,0) [− ; − ; x] � 

∞

n�0

c′( nε,k

Γk nϑ′ + δ′( 

x
n

n!
,R

ϑ′
k

  − ε >p − q. (13)

(ii) Again, for k � ε � 1, the S-function is the general-
ized K-function [29]:

K
ϑ′,δ′ ,c′
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; x  � S

ϑ′,δ′ ,c′ ,1,1
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; x 

� 
∞

n�0

l1( n . . . lp 
n

c′( n

m1( n . . . mq 
n
Γ nϑ′ + δ′( 

x
n

n!
, R ϑ′( >p − q.

(14)

(iii) For ε � k � c′ � 1, the S-function reduced to gen-
eralized M-series [30]:

M
ϑ′ ,δ′
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; x  � S

ϑ′ ,δ′,1,1,1
(p,q) l1, l2, . . . , lp; m1, m2, . . . , mq; x 

� 
∞

n�0

l1( n . . . lp 
n

m1( n . . . mq 
n
Γ nϑ′ + δ′( 

x
n

n!
, R ϑ′( >p − q − 1.

(15)

For our purpose, we recall the definition of generalized
k-Wright function pΨ

k

q
(x), defined by Gehlot and Prajapati

[31], for k ∈ R+; x, ai, bj ∈ C, ϑi, ςj ∈ R(ϑi, ςj ≠ 0; i � 1, 2,

. . . , p; j � 1, 2, . . . , q) and (ai + ϑin), (bj + ςjn) ∈ C\kz− , as

pΨ
k

q
(x) � pΨ

k

q

ai, ϑi( 1,p

bj, ςj 1,q

; x
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 
∞

n�0


p
i�1 Γk ai + ϑin( 


q
j�1 Γk bj + ςjn 

(x)
n

n!
,

(16)
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which satisfies the condition



q

j�1

ςj

k
− 

p

i�1

ϑi

k
> − 1. (17)

2. Saigo k-Fractional Integration in Terms of
k-Wright Function

In this section, the results are displayed based on the
k-fractional integrals associated with the S-function.

Theorem 1. Let ϑ, ς, c, ϑ′, ς′, c′, ε, ε ∈ C; k ∈ R+, c ∈ R and
v> 0, such that R(ϑ)> 0, R(ε)>max[0,R(ς − c)],

R(ε + c − ς)> 0, ai(i � 1, 2, . . . , p), bj(j � 1, 2, . . . , q),
R(ϑ′)> kR(ε); p< q + 1. If condition (17) is satisfied and
I
ϑ,ς,c
0+,k is the left-sided integral operator of the generalized

k-fractional integration associated with S-function, then (18)
holds true:

I
ϑ,ς,c
0+,k t

(ε/k)− 1
S
ϑ′ ,ς′,c′ ,ε,k
(p,q) a1, . . . , ap; b1, . . . , bq; ct

v/k
   (x)

�
x

(ε− ς/k)− 1

Γk c′( 


q
j�1Γ bj 


p
i�1Γ ai( 

k


q

j�1
bj− 

p

i�1
ai

×p+3Ψ
k
q+3

a1k, k(  . . . apk, k , c′, εk( , (ε, v), (ε + c − ς, v),

b1k, k(  . . . bqk, k , ς′, ϑ′( , (ε − ς, v), (ε + ϑ + c, v),

kcx
v/k⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(18)

Proof. We indicate the R.H.S. of equation (18) by I1; in-
voking equation (10), we have

I1 � I
ϑ,ς,c
0+,k t

(ε/k)− 1


∞

n�0

a1( n . . . ap 
n

c′( nε,k

b1( n . . . bq 
n
Γk ς′ + ϑ′n( 

ct
v/k

 
n

n!
⎛⎝ ⎞⎠(x)

� 
∞

n�0

a1( n . . . ap 
n

c′( nε,k

b1( n . . . bq 
n
Γk ς′ + ϑ′n( 

c
n

n!
I
ϑ,ς,c
0+,k t

(ε+vn/k)− 1
 (x).

(19)

Now, applying equation (6) and (11), we obtain

I1 �
x

(ε− ς/k)− 1

Γk c′( 


∞

n�0

a1( n . . . ap 
n
Γk c′ + nεk( Γk(ε + vn)Γk(ε + c − ς + vn)

b1( n . . . bq 
n
Γk ς′ + ϑ′n( Γk(ε − ς + vn)Γk(ε + ϑ + c + vn)

kcx
v/k

 
n

n!
. (20)

Using (12) and some important simplifications on the
above equation, we obtain

I1 �
Γ b1(  . . . Γ bq 

Γ a1(  . . . Γ ap 

x
(ε− ς/k)− 1

Γk c′( 
k

b1+···+bq( − a1+···+ap( 

× 
∞

n�0

Γk a1k + nk(  . . . Γk apk + nk Γk c′ + nεk( Γk(ε + vn)Γk(ε + c − ς + vn)

Γk b1k + nk(  . . . Γk bqk + nk Γk ς′ + ϑ′n( Γk(ε − ς + vn)Γk(ε + ϑ + c + vn)

kcx
v/k

 
n

n!
.

(21)

Interpreting the definition of Wright hypergeometric
function (16) on the above equation, we arrive at the desired
result (18). □

Theorem 2. Let ϑ, ς, c, ϑ′, ς′, c′, ε, ε ∈ C; k ∈ R+, c ∈ R, and
v> 0, such that R(ϑ)> 0, R(ϑ′)> 0, and R(ε + ϑ)>
max[− R(ς), − R(c)], with R(ς)≠R(c), ai(i � 1, 2,
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. . . , p), bj(j � 1, 2, . . . , q), R(ϑ′)> kR(ε), and p< q + 1. If
condition (17) is satisfied and I

ϑ,ς,c
− ,k is the right-sided integral

operator of the generalized k-fractional integration associated
with S-function, then (22) holds true:

I
ϑ,ς,c
− ,k t

− ϑ− ε/k
S
ϑ′ ,ς′,c′,ε,k
(p,q) a1, . . . , ap; b1, . . . , bq; ct

− v/k
   (x) � k


q

j�1
bj− 

p

i�1
ai


q

j�1 Γ bj 


p
i�1 Γ ai( 

x
− ϑ− ε− ς/k

Γk c′( 

× p+3Ψ
k
q+3

a1k, k(  . . . apk, k , c′, εk( , (ϑ + ε + ς, v), (ϑ + ε + c, v),

b1k, k(  . . . bqk, k , ς′, ϑ′( , (ϑ + ε, v), (2ϑ + ε + ς + c, v),

kcx
− v/k⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(22)

Proof. )e proof is parallel to that of )eorem 1. )erefore,
we omit the details. □

)e results given in (18) and (22), being very general, can
yield a large number of special cases by assigning some

suitable values to the involved parameters. Now, we dem-
onstrate some corollaries as follows.

Corollary 1. If we put p � q � 0, then (18) leads to the
subsequent result of S-function:

I
ϑ,ς,c
0+,k t

ε/k− 1
E

c′,ε
k,ϑ′ ,δ′ ct

v/k
   (x) �

x
(ε− ς/k)− 1

Γk c′( 
×3Ψ

k
3

c′, εk( , (ε, v), (ε + c − ς, v),

ς′, ϑ′( , (ε − ς, v), (ε + ϑ + c, v),

kcx
v/k⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (23)

Corollary 2. If ε � k � 1, in (18), we obtain the subsequent
result in term of S-function as

I
ϑ,ς,c
0+ t

ε− 1
K

ϑ′ ,ς′,c′
(p,q) a1, . . . , ap; b1, . . . , bq; ct

v
   (x) �


q
j�1 Γ bj 


p
i�1 Γ ai( 

x
ε− ς− 1

Γ c′( 

× p+3Ψq+3

a1, 1(  . . . ap, 1 , c′, 1( , (ε, v), (ε + c − ς, v),

b1, 1(  . . . bq, 1 , ς′, ϑ′( , (ε − ς, v), (ε + ϑ + c, v),

cx
v⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(24)

Corollary 3. If we set ε � 1, c′ � 1, and k � 1, in equation
(18), we obtain the following formula:

I
ϑ,ς,c
0+ t

ε− 1
M

ϑ′ ,ς′
(p,q) a1, . . . , ap; b1, . . . , bq; ct

v
   (x) �


q
j�1 Γ bj 


p
i�1 Γ ai( 

x
ε− ς− 1

× p+3Ψq+3

a1, 1(  . . . ap, 1 , (ε, v), (ε + c − ς, v), (1, 1),

b1, 1(  . . . bq, 1 , ς′, ϑ′( , (ε − ς, v), (ε + ϑ + c, v),

cx
v⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(25)
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Corollary 4. Letting p � q � 0 in equation (22), then

I
ϑ,ς,c
− ,k t

− ϑ− ε/k
E

c′ ,ε
k,ϑ′ ,δ′ ct

− v/k
   (x) �

x
− ϑ− ε− ς/k

Γk c′( 

× 3Ψ
k
3

c′, εk( , (ϑ + ε + ς, v), (ϑ + ε + c, v),

ς′, ϑ′( , (ϑ + ε, v), (2ϑ + ε + ς + c, v),

kcx
− v/k⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(26)

Corollary 5. Setting ε � 1, k � 1, then equation (22) becomes

I
ϑ,ς,c
− t

− ϑ− ε
K

ϑ′ ,ς′,c′
(p,q) a1, . . . , ap; b1, . . . , bq; ct

− v
   (x) �


q
j�1 Γ bj 


p

i�1 Γ ai( 

x
− ϑ− ε− ς

Γk c′( 

× p+3Ψq+3

a1, 1(  . . . ap, 1 , c′, 1( , (ϑ + ε + ς, v), (ϑ + ε + c, v),

b1, 1(  . . . bq, 1 , ς′, ϑ′( , (ϑ + ε, v), (2ϑ + ε + ς + c, v),

cx
− v⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(27)

Corollary 6. If we put ε � 1, c′ � 1, and k � 1 in equation
(22), then equation becomes

I
ϑ,ς,c
− t

− ϑ− ε
M

ϑ′,ς′
(p,q) a1, . . . , ap; b1, . . . , bq; ct

− v
   (x) �


q
j�1 Γ bj 


p
i�1 Γ ai( 

x
− ϑ− ε− δ

× p+3Ψq+3

a1, 1(  . . . ap, 1 , (ϑ + ε + ς, v), (ϑ + ε + c, v), (1, 1),

b1, 1(  . . . bq, 1 , ς′, ϑ′( , (ϑ + ε, v), (2ϑ + ε + ς + c, v),

cx
− v⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(28)

3. Saigok-FractionalDifferentiation inTermsof
k-Wright Function

In this section, the results are displayed based on the
k-fractional derivatives associated with the S-function.

Theorem 3. Let ϑ, ς, c, ϑ′, ς′, c′, ε, ε ∈ C; k ∈ R+, c ∈ R, and
v> 0, such that R(ϑ)> 0, R(ϑ′)> 0, R(ε)>max[0,

R(− ϑ − ς − c)],R(ε + c + ς)> 0, ai(i � 1, 2, . . . , p), bj(j �

1, 2, . . . , q),R(ϑ′)> kR(ε), and p< q + 1. If condition (17) is
satisfied and D

ϑ,ς,c
0+,k is the left-sided differential operator of the

generalized k-fractional integration associated with S-func-
tion, then (29) holds true:

D
ϑ,ς,c
0+,k t

ε/k− 1
S
ϑ′ ,ς′ ,c′ ,ε,k
(p,q) a1, . . . , ap; b1, . . . , bq; ct

v/k
   (x) �

x
(ε+ς/k)− 1

Γk c′( 


q
j�1 Γ bj 


p
i�1 Γ ai( 

k


q

j�1
bj− 

p

i�1
ai

× p+3Ψ
k
q+3

a1k, k(  . . . apk, k , c′, εk( , (ε, v), (ε + ς + c + ϑ, v),

b1k, k(  . . . bqk, k , ς′, ϑ′( , (ε + c, v), (ε + δ, 1 − k + v),

cx
(v+1/k)− 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(29)

Proof. For the sake of convenience, let the left-hand side of
(29) be denoted by I2. Using definition (10), we arrive at
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I2 � 
∞

n�0

a1( n . . . ap 
n

c′( nε,k

b1( n . . . bq 
n
Γk ς′ + ϑ′v( 

c
n

n!
D

ϑ,ς,c
0+,k t

(ε+vn/k)− 1
 (x).

(30)

Now, applying equation (8) and (11), we obtain

I2 �
x

(ε+ς/k)− 1

Γk c′( 


∞

n�0

a1( n . . . ap 
n
Γk c′ + εnk( 

b1( n . . . bq 
n
Γk ς′ + ϑ′n( 

×
Γk(ε + vn)Γk(ε + ς + c + ϑ + vn)

Γk(ε + c + vn)Γk(ε + ς + n − nk + vn)n!
cx

(v+1/k)− 1
 

n
. (31)

Using (12) and simplifications on the above equation, we
obtain

I2 � k
b1+···+bq( − a1+···+ap( Γ b1(  . . . Γ bq 

Γ a1(  . . . Γ ap 

x
(ε+ς/k)− 1

Γk c′( 


∞

n�0

Γk c′ + nεk( 

Γk ς′ + ϑ′n( 

×
Γk a1k + nk(  . . . Γk apk + nk Γk(ε + vn)Γk(ε + ς + c + ϑ + vn)

Γk b1k + nk(  . . . Γk bqk + nk Γk(ε + c + vn)Γk(ε + ς + n − nk + vn)n!
cx

(v+1/k)− 1
 

n
.

(32)

In accordance with (16), we obtain the required result
(29). )is completed the proof of )eorem 3. □

Theorem 4. Let ϑ, ς, c, ϑ′, ς′, c′, ε, ε ∈ C; k ∈ R+, c ∈ R, and
v> 0, such thatR(ϑ)> 0,R(ϑ′)> 0,R(ε)>max[R(ϑ + ς) +

n − R(c)], andR(ϑ + ς − c) + n≠ 0, where n � [R(ϑ) + 1],
ai(i � 1, 2, . . . , p), bj(j � 1, 2, . . . , q),R(ϑ′)> kR(ε), and
p< q + 1. If condition (17) is satisfied and D

ϑ,ς,c
− ,k is the right-

sided differential operator of the generalized k-fractional
integration associated with S-function, then (33) holds true:

D− , k
ϑ,ς,c

t
ϑ− ε/k

S
ϑ′ ,ς′,c′ ,ε,k
(p,q) a1, . . . , ap; b1, . . . , bq; ct − v/k   (x) �

x
ϑ− ε+ς/k

Γk c′( 


q
j�1 Γ bj 


p
i�1 Γ ai( 

k


q

j�1
bj− 

p

i�1
ai

× p+3Ψ
k
q+3

a1k, k(  . . . apk, k , c′, εk( , (ε − ϑ − δ, v + k − 1), (ε + c, v),

b1k, k(  . . . bqk, k , ς′, ϑ′( , (ε − ϑ, v), (ε − ϑ − ς + c, v),

cx
(− v+1/k)− 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(33)

Proof. )e proof is parallel to that of )eorem 3. )erefore,
we omit the details. □

)e results given in (29) and (33) are reduced as special
cases by assigning some suitable values to the involved

parameters. Now, we demonstrate some corollaries as
follows.

Corollary 7. If p � q � 0, then (29) holds the following
formula:

D
ϑ,ς,c
0+,k t

(ε/k)− 1
E

c′ ,ε
k,ϑ′,δ′ ct

− v/k
   (x) �

x
(ε+ς/k)− 1

Γk c′( 

× 3Ψ
k
3

c′, εk( , (ε, v), (ε + ς + c + ϑ, v),

ς′, ϑ′( , (ε + c, v), (ε + δ, 1 − k + v),

cx
(v+1/k)− 1⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(34)

Corollary 8. If we put ε � 1 and k � 1, then (29) gives the
result in term of S-function as follows:
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D
ϑ,ς,c
0+ t

(ε/k)− 1
K

ϑ′ ,ς′ ,c′
(p,q) a1, . . . , ap; b1, . . . , bq; ct

v
   (x) �

x
ε+ς− 1

Γ c′( 


q

j�1 Γ bj 


p
i�1 Γ ai( 

× p+3Ψq+3

a1, 1(  . . . ap, 1 , c′, 1( , (ε, v), (ε + ς + c + ϑ, v),

b1, 1(  . . . bq, 1 , ς′, ϑ′( , (ε + c, v), (ε + δ, v),

cx
v⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(35)

Corollary 9. If we put ε � 1, c′ � 1, and k � 1, in equation
(29), then

D
ϑ,ς,c
0+ t

(ε/k)− 1
M

ϑ′,ς′
(p,q) a1, . . . , ap; b1, . . . , bq; ct

v
   (x) �


q
j�1 Γ bj 


p
i�1 Γ ai( 

x
ε+ς− 1

× p+3Ψq+3

a1, 1(  . . . ap, 1 , (ε, v), (ε + ς + c + ϑ, v), (1, 1),

b1, 1(  . . . bq, 1 , ς′, ϑ′( , (ε + c, v), (ε + δ, v),

cx
v⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(36)

Corollary 10. If we set p � q � 0, then (33) provides the
result as

D
ϑ,ς,c
− ,k t

ϑ− ε/k
E

c′ ,ε
k,ϑ′ ,δ′ ct

− v/k
   (x) �

x
(ϑ− ε+ς/k)− 1

Γk c′( 

� 3Ψ
k
3

c′, k( , (ε − ϑ − δ, v + k − 1), (ε + c, v),

ς′, ϑ′( , (ε − ϑ, v), (ε − ϑ − ς + c, v),

cx
(− v+1/k)− 1⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(37)

Corollary 11. By letting ε � 1 and k � 1, in equation (33),
then

D
ϑ,ς,c
− t

ϑ− ε
K

ϑ′ ,ς′,c′
(p,q) a1, . . . , ap; b1, . . . , bq; ct

− v
   (x) �

x
ϑ− ε+δ

Γ c′( 


q
j�1 Γ bj 


p
i�1 Γ ai( 

× p+3Ψq+3

a1, 1(  . . . ap, 1 , c′, 1( , (ε − ϑ − ς, v), (ε + c, v),

b1, 1(  . . . bq, 1 , ς′, ϑ′( , (ε − ϑ, v), (ε − ϑ − ς + c, v),

cx
− v⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(38)

Corollary 12. When ε � 1, c′ � 1, and k � 1, in equation
(33), then equation becomes
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D
ϑ,ς,c
− t

ϑ− ε
M

ϑ′,ς′
(p,q) a1, . . . , ap; b1, . . . , bq; ct

− v
   (x) �


q
j�1 Γ bj 


p

i�1 Γ ai( 
x
ϑ− ε+δ

× p+3Ψq+3

a1, 1(  . . . ap, 1 , (ε − ϑ − δ, v), (ε + c, v), (1, 1),

b1, 1(  . . . bq, 1 , ς′, ϑ′( , (ε − ϑ, v), (ε − ϑ − ς + c, v),

cx
− v⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(39)

4. Image Formulas Associated with
Integral Transforms

In this section, we establish some theorems involving the
results obtained in previous sections pertaining with the
integral transform. Here, we defined k-beta function as
follows.

)e k-beta function [32] is defined as

Bk(g, h) �
1
k


1

0
z

(g/k)− 1
(1 − z)

(h/k)− 1dz, g> 0, h> 0.

(40)

)ey have the following important identities:

Bk(g, h) �
1
k

B
g

k
,
h

k
  �

Γk(g)Γk(h)

Γk(g + h)
. (41)

Now, we define k-beta function in the form

Bk(f(z); g, h) �
1
k


1

0
z

(g/k)− 1
(1 − z)

(h/k)− 1
f(z)dz,

g> 0, h> 0.

(42)

Theorem 5. Let ϑ, ς, c, ϑ′, ς′, ε, c′, ε ∈ C; k ∈ R+, c ∈ R, and
v> 0, such that R(ϑ)> 0, R(ε)>max[0,R(ς − c)],

andR(ε + c − ς)> 0; then, the leading fractional order in-
tegral holds true:

Bk I
ϑ,ς,c
0+,k t

(ε/k)− 1
S
ϑ′ ,ς′ ,c′ ,ε,k
(p,q) a1, . . . , ap; b1, . . . , bq; c(zt)

v/k
   (x); g, h  �

x
(ε− ς/k)− 1Γk(h)

Γk c′( 


q
j�1 Γ bj 


p
i�1 Γ ai( 

k


q

j�1
bj − 

p

i�1
ai

× p+4Ψ
k
q+4

a1k, k(  . . . apk, k , c′, εk( , (ε, v), (ε + c − ς, v), (g, v),

b1k, k(  . . . bqk, k , ς′, ϑ′( , (ε − ς, v), (ε + ϑ + c, v), (g + h, v),

kcx
v/k⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(43)

Proof. Let I3 be the left-hand side of (43), and using (42), we
have

I3 �
1
k


1

0
z

(g/k)− 1
(1 − z)

(h/k)− 1
I
ϑ,ς,c
0+,k t

(ε/k)− 1
S
ϑ′ ,ς′,c′ ,ε,k
(p,q) a1, . . . , ap; b1, . . . , bq; c(zt)

v/k
   (x)dz, (44)

which, using (10) and changing the order of integration and
summation, is valid under the conditions of )eorem 1 and
yields

I3 � 
∞

n�0

a1( n . . . ap 
n

c′( nε,k

b1( n . . . bq 
n
Γk ς′ + ϑ′n( 

c
n

n!
I
ϑ,ς,c
0+,k t

(ε+vn/k)− 1
 (x) ×

1
k


1

0
z

(g+vn/k)− 1
(1 − z)

(h/k)− 1dz. (45)

From Lemma 1 and substituting (41) in (45), we obtain
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I1 � k
b1+···+bq( − a1+···+ap( x

(ε− ς/k)− 1

Γk c′( 

Γ b1(  . . . Γ bq 

Γ a1(  . . . Γ ap 


∞

n�0

Γk a1k + nk(  . . . Γk apk + nk 

b1k + nk(  . . . Γk bqk + nk 

×
Γk c′ + nεk( Γk(ε + vn)Γk(ε + c − ς + vn)Γk(g + vn)Γk(h)

ΓkΓk ς′ + ϑ′n( Γk(ε − ς + vn)Γk(ε + ϑ + c + vn)Γk(g + h + vn)

kcx
v/k

 
n

n!
.

(46)

Using the definition of (16) in the right-hand side of (46),
we arrive at result (43). □

Theorem 6. Let ϑ, ς, c, ϑ′, ς′, c′, ε, ε ∈ C; k ∈ R+, c ∈ R, and
v> 0, such that R(ϑ)> 0, R(ϑ′) > 0, and R(ε + ϑ)>
max[− R(ς), − R(c)], with R(ς)≠R(c); then, the following
fractional integral holds true:

Bk I
ϑ,ς,c
− ,k t

− ϑ− ε/k
S
ϑ′ ,ς′ ,c′ε,k
(p,q) a1, . . . , ap; b1, . . . , bq; c(zt)

− v/k
   (x); g, h  � k


q

j�1
bj− 

p

i�1
ai


q
j�1 Γ bj 


p
i�1 Γ ai( 

Γk(h)x
− ϑ− ε− ς/k

Γk c′( 

× p+4Ψ
k
q+4

a1k, k(  . . . apk, k , (g, − v), c′, εk( , (ϑ + ε + ς, v), (ϑ + ε + c, v),

b1k, k(  . . . bqk, k , (g + h, − v), ς′, ϑ′( , (ϑ + ε, v), (2ϑ + ε + ς + c, v),

kcx
− v/k⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(47)

Proof. )e proof is similar of)eorem 5.)erefore, we omit
the details. □

Theorem 7. Let ϑ, ς, c, ϑ′, ς′, c′, ε, ε ∈ C; k ∈ R+, c ∈ R, and
v> 0, such that R(ϑ)> 0, R(ϑ′)> 0, R(ε)>max[0,

R(− ϑ − ς − c)], andR(ε + c + ς)> 0; then, the following
fractional derivative holds true:

Bk D
ϑ,ς,c
0+,k t

(ε/k)− 1
S
ϑ′,ς′ ,c′,ε,k
(p,q) a1, . . . , ap; b1, . . . , bq; c(zt)

v/k
   (x); g, h  �

Γk(h)

Γk c′( 


q

j�1 Γ bj 


p

i�1 Γ ai( 
x

(ε+ς/k)− 1
k


q

j�1
bj− 

p

i�1
ai

× p+4Ψ
k
q+4

a1k, k(  . . . apk, k , c′, εk( , (ε, v), (ε + ς + c + ϑ, v), (g, v),

b1k, k(  . . . bqk, k , ς′, ϑ′( , (ε + c, v), (g + h, v), (ε + δ, 1 − k + v),

cx
(v+1/k)− 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(48)

Proof. Let I4 be the left-hand side of (48), and using the
definition of Beta transform, we have

I4 �
1
k


1

0
z

(g/k)− 1
(1 − z)

(h/k)− 1
D

ϑ,ς,c
0+,k t

(ε/k)− 1
S
ϑ′ ,ς′ ,c′ ,ε,k
(p,q) a1, . . . , ap; b1, . . . , bq; c(zt)

v/k
  (x)dz, (49)

which, using (10) and changing the order of integration and
summation, is reasonable under the conditions of)eorem 3
and yields

I4 � 
∞

n�0

a1( n . . . ap 
n

c′( nε,k

b1( n . . . bq 
n
Γk ς′ + ϑ′v( 

c
n

n!
D

ϑ,ς,c
0+,k t

(ε+vn/k)− 1
 (x) ×

1
k


1

0
z

(g+vn/k)− 1
(1 − z)

(h/k)− 1dz. (50)
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From Lemma 3 and substituting equation (41) in (50),
we obtain

I4 � k
b1− a1( )+···+ bq− ap( Γ b1(  . . . Γ bq 

Γ a1(  . . . Γ ap 

x
(ε+ς/k)− 1

Γk c′( 


∞

n�0

Γk c′ + nεk( Γk a1k + nk(  . . .

Γk ς′ + ϑ′n( Γk b1k + nk(  . . .

×
Γk apk + nk Γk(ε + vn)Γk(ε + ς + c + ϑ + vn)Γk(g + vn)Γk(h)

Γk bqk + nk Γk(ε + c + vn)Γk(ε + ς + n − nk + vn)Γk(g + h + vn)n!
cx

v+1/k− 1
 

n
.

(51)

Using the definition of (16) in the above equation, we
obtain the required result (48). )is completed the proof of
)eorem 7. □

Theorem 8. Let ϑ, ς, c, ϑ′, ς′, c′, ε, ε ∈ C; k ∈ R+, c ∈ R, and
v> 0, such thatR(ϑ)> 0,R(ϑ′)> 0,R(ε)>max[R(ϑ + ς) +

n − R(c)], andR(ϑ + ς − c) + n≠ 0, where n � [R(ϑ) + 1];
then, the following fractional derivative holds true:

Bk D
ϑ,ς,c
− ,k t

ϑ− ε/k
S
ϑ′ ,ς′ ,c′ ,ε,k
(p,q) a1, . . . , ap; b1, . . . , bq; c(zt)

− v/k
   (x) �

Γk(h)

Γk c′( 


q
j�1 Γ bj 


p
i�1 Γ ai( 

x
(ϑ− ε+ς/k)− 1

k


q

j�1
bj− 

p

i�1
ai

× p+4Ψ
k
q+4

a1k, k(  . . . apk, k , c′, εk( , (ε − ϑ − δ, v + k − 1), (g, − v)(ε + c, v),

b1k, k(  . . . bqk, k , ς′, ϑ′( , (g + h, − v), (ε − ϑ, v), (ε − ϑ − ς + c, v),

cx
(− v+1/k)− 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(52)

Proof. )e proof is identical to that of )eorem 7. As a
result, we exclude the specifics. □

5. Conclusion

)e strength of generalized k-fractional calculus opera-
tors, also known as general operators by many scholars, is
that they generalize classical Riemann-Liouville (R-L)
operators and Saigo’s fractional calculus operators. For
k⟶ 1, operators (1) to (5) reduce to Saigo’s [9] frac-
tional integral and differentiation operators. If we set
δ � − ϑ, operators (1) to (5) reduce to k-Riemann-Liouville
operators as follows:

I
ϑ,− ϑ,c

0+,k f (x) � I
ϑ
0+,kf (x),

I
ϑ,− ϑ,c

− ,k f (x) � I
ϑ
− ,kf (x),

D
ϑ,− ϑ,c

0+,k f (x) � D
ϑ
0+,kf (x),

D
ϑ,− ϑ,c

− ,k f (x) � D
ϑ
− ,kf (x).

(53)

On the account of the most general character of the
S-function, numerous other interesting special cases of re-
sults (18), (22), (29), 2and (33) can be obtained, but for lack
of space, they are not represented here.
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By coupling of radial kernels and localized Laplace transform, a numerical scheme for the approximation of time fractional
anomalous subdiffusion problems is presented. *e fractional order operators are well suited to handle by Laplace transform and
radial kernels are also built for high dimensions. *e numerical computations of inverse Laplace transform are carried out by
contour integration technique. *e computation can be done in parallel and no time sensitivity is involved in approximating the
time fractional operator as contrary to finite differences. *e proposed numerical scheme is stable and accurate.

1. Introduction

In the last decades, many researchers have studied the
fractional calculus [1–3]. Differential equations of fractional
order have many applications in the field of science and
engineering [4–7]. Analytical solution of many fractional
differential equations is not possible or very hard to find, so
we need a new numerical technique to find its approximate
solution. Various phenomena in viscoelastic materials,
economics, chemistry, finance, control theory, hydrology,
physics, cosmology, solid mechanics, bioengineering, sta-
tistical mechanics, and control theory can be mathematically
modeled from fractional calculus [8–17]. In literature,
various numerical approaches are available for modeling
anomalous diffusive behavior such as Carlo simulations [18].
An introduction of diffusion equations can be found in
[19–21].

Recently, RBF-based methods were used in solving
fractional partial differential equations (FPDEs) [22–24].
*ese methods have been employed in approximation of
partial differential equations with complex domains. An
implicit meshless technique based on the radial basis
functions for the numerical simulation of the anomalous

subdiffusion equation can be found in [25].*e convergence
and stability of these mesh-free methods can be found in
[26, 27]. *ese globally defined RBF methods cause ill-
condition systemmatrices [28]. To overcome the problem of
ill-conditioning, local RBF techniques were used in [29–31].
Unlike global RBF methods, the RBF method in local setting
uses center points in each subdomain area of influence,
surrounding each spatial point due to which there is re-
duction in the computational cost.

Recently, Laplace transform is combined with RBF
method in [32, 33]. In [34–37], the authors use Laplace
transform as tool in spectral method and other mesh-based
methods such as finite element methods and finite difference
method. To avoid the issues of computational efficiency and
instability of the system matrix, we introduce a new tech-
nique Laplace transform-based local RBF method in solving
the time fractional modified anomalous subdiffusion
equations in irregular domain.

Here, we consider the following modified anomalous
subdiffusion equation of fractional order [38]:

zw(x, t)

zt
� ]1D

(1−α)
t + ]2D

(1−β)
t Δw(x, t) + f(x, t), (1)
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where x � (x, y) ∈ Ω ⊂ Rd, d≥ 1, t> 0, subject to the fol-
lowing boundary and initial conditions:

Bw(x, t) � h(x, t),

x � (x, y) ∈ zΩ ,
(2)

w(x, 0) � w0, x ∈ Ω, (3)

respectively, where α, β ∈ (0, 1), t ∈ [0, T], ]1, ]2 are positive
constants, Δ is the Laplace operator, and f(x, t) is some
given function.

2. Preliminaries

Here, we introduce some fundamental definitions related to
fractional calculus [39, 40].

Definition 1. Let n − 1< α< n ∈ Z+ and α> 0, then the
Caputo derivative of fractional order is defined as

D
α
t w(t) �

1
Γ(n − α)


t

0

1
(t − z)

α+1− n

dn

dz
n w(z)dz. (4)

Definition 2. Let w(t), t≥ 0, be a given function, then its
Laplace transform is defined by

w(z) � L w(t){ } � 
∞

0
e

−zt
w(t)dt, (5)

provided this integral converges.

Lemma 1. If w(t) ∈ Cp[0,∞), with α ∈ (n − 1, n) ∈ Z+,
then the Laplace transform of the fractional order Caputo
derivative is given by

L D
α
t w(t) (z) � z

α
w − 

n−1

i�0
z
α− i− 1

w
(i)

(0). (6)

Theorem 1. the Bromwich inversion theorem [41]). Let w(t)
have a continuous derivative and let |w(t)|<Kect, where K

and c are positive constants. Define

w(z) � 
∞

0
e

−zt
w(t)dt, Re(z)> c, (7)

then

w(t) �
1
2πi


ξ+i∞

ξ−i∞
w(z)e

ztdz. (8)

3. Description of the Method

3.1. Time Discretization. Here, we apply Laplace transform
to models (1)–(3) which gives

zI − υ1z
1−α

+ υ2z
1−β

   w(x, z) � w(x, 0)

− ]1z
−α

+ ]2z
−β

 Δw(x, 0) + f(x, z), x � (x, y) ∈ Ω ⊂ Rd
,

B(w(x, z)) � h(z), x � (x, y) ∈ zΩ.

(9)

In more compact form, we have

L(w(x, z)) � g(x, z), x ∈ Ω, (10)

B(w(x, z)) � h(x, z), x ∈ zΩ. (11)

*e transformed problems (10) and (11) will be solved
for the solution w(x, z) using local RBF method. *e so-
lution w(x, t) of the given models (1)–(3) will be found by
using numerical inversion.

3.2. Local Radial Basis Functions Method. Here, the linear
operators B and L are discretized by using local RBF [42,
43]. Consider the centers xi, i � 1 . . . , N  ⊂ Ω ⊂ Rd, d≥ 1,
where Ω is the bounded domain. For each point
xi, i � 1, 2, 3, . . . , N, we can find a subdomain Ωj such that
n<N. *e unknown function w(x, t) can be approximated
with RBF in each local subdomain Ωi, i � 1, 2, . . . , N, by the
following equation:

w xi, t(  ≈ w xi, t(  � 
n

j�1
λi

ij
ϕi xi − xj

�����

����� , xj ∈ Ωj, (12)

where λi � [λi
1, λ

i
2, . . . , λi

n] are the unknown coefficients, and
rij � ‖xi − xj‖ is the norm between nodes xi and xj, ϕ(r),
r≥ 0 is a radial kernel (multiquadric radial basis function),
and Ωj ⊂ Ω is a local domain for around each xi, containing
n neighboring nodes around the node xi. So, we have N

small size linear systems each of order n × n given by

w
i
1

w
i
2

⋮

w
i
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

ϕi
11 ϕi

12 · · · ϕi
1n

ϕi
21 ϕi

22 . . . ϕi
2n

⋮ ⋮ ⋱ ⋮

ϕi
n1 ϕi

n2 . . . ϕi
nn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

λi
1

λi
2

⋮

λi
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, i � 1, 2, . . . , N,

(13)

which can be denoted by

Wi
� Siλi

, i � 1, 2, . . . , N, (14)

where ϕi
jk � ϕi(‖xij

− xik
‖), xij

, xik
∈ Ωi, and matrix Si is the

system matrix.
Now, applying the operator L to (12) gives

Lw xi(  � 
n

j�1
λi

ij
Lϕi

xi − xij

�����

����� , xij
∈ Ωi. (15)

*e vector form of (15) is given by

Lw xi(  � Gi
· λi

, (16)

where Gi is given by
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Gi
� Lϕi

xi − xij

�����

����� , xi, xij
∈ Ωi. (17)

From equation (14), the unknown coefficients λi are
given by

λi
� Si

 
−1 Wi

, (18)

and by inserting the values of λi in (16), we have

Lw xi(  � Gi Si
 

−1 Wi
� Ni Wi

, (19)

where

Ni
� Gi Si

 
−1

. (20)

Hence, the discretized form is given by

Lw ≡ H W, (21)

where matrix H is called the sparse differentiation matrix of
order N × N.

4. Numerical Inversion Technique

In this section, the numerical inversion of Laplace transform
for approximating the given models (1)–(3) is as follows:

w(x, t) �
1
2πι



ξ+ι∞

ξ−ι∞
w(x, z)e

ztdz

�
1
2πι


Ψ

e
zt

w(x, z)dz, ξ > ξ0,

(22)

where Ψ is the suitable path joining ξ − ι∞ to ξ + ι∞. *is
Bromwich integral is numerically solved by using the fol-
lowing hyperbolic contour [37]:

z(η) � ω + λ(1 − sin(σ − ιη)), for η ∈ R, (23)

with λ> 0, ω≥ 0, 0< σ < β(1/2)π, and (1/2)π < β< π.
Integral in (22) gives

w(x, t) �
1
2πι


∞

−∞
e

z(η)t
w(x, z(η))z

�
(η)dη. (24)

Next applying trapezoidal rule for approximation of
(24), we have

wk(x, t) �
k

2πι


M

j�−M

w x, zj e
zjt

z
�

j, zj � z ηj , ηj � jk,

(25)

where k is the step size.

5. Application of the Method

In this section, the proposed numerical scheme is applied to
multidimensional problems. We solved four test problems
and used various domain points N ∈ Ω, stencils points
n ∈ Ωj, and quadrature points M. *ree error formulas, the
error estimate, Lest � e(− cM/log(M)), L∞, and L2 norms are
used. *e radial kernel used in our computations is
ϕ(r, ε) �

�������
1 + ε2r2

√
. *e shape parameter ϵ is optimized by

the uncertainty rule related to RBFs.

Problem 1. Consider models (1)–(3) to the following form
[38]:

zw(x, t)

zt
� D

1−α
0t + D

1−β
0t 

z
2
w(x, t)

zx
2  + f(x, t),

f(x, t) � exp(x) (1 + α)t
α

−
Γ(2 + α + β)

Γ(1 + 2α + β)
t
2α+β

−
Γ(2 + α + β)

Γ(1 + α + 2β)
t
α+2β

 ,

(26)

with the following boundary and initial conditions:

w(0, t)) � t
(1+α+β)

,

w(1, t) � et
(1+α+β)

, 0< t≤T,

w(x, 0) � 0, x ∈ (0, 1),

(27)

respectively, where the actual solution is given by

w(x, t) � exp(x)t
1+α+β

. (28)

In our numerical scheme, we used the hyperbolic con-
tour (23). *e optimal parameter values are taken as

λ �
θrbN

bT
,

b � cosh− 1 1
θτ sin(σ)

 ,

ω � 2,

σ � 0.3812,

xk � hk,

(29)

rb � 2πr, r � 0.3431, h � b/N, τ � t0/T, t0 � 0.5, t � 1, and
T � 5.*is test problem is solved in the domain (0, 1). Here,
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the number of points in domain Ω is denoted by N, the
points in local subdomain zΩj are denoted by n, and the
number of quadrature points relates to M. *e numerical
solutions are shown in Table 1 with various values of
fractional order α and β and nodal points N. For com-
paratively smaller values of fractional order α and β, better
results in terms of L∞ and L2 error norms are obtained. In
the upper part of Table 1, condition number increases, as we
increase nodal points N. Error versus various quadrature
points M at N � 21, n � 9, and t � 1 and various values of α
and β are shown in Figure 1. *e error estimate Lest for c � 1
is well matched with L∞ and L2 error norms, as shown in
Figure 1. Hence, our proposedmethod is stable and accurate.

Problem 2. Consider models (1)–(3) corresponding to the
form [38]

zw(x, t)

zt
�
1
2

z
1−α

w(x, t)

zt
1−α +

z
1−β

w(x, t)

zt
1−β 

z
2
w(x, t)

zx
2  + f(x, t),

f(x, t) � exp(x) (1 + α)t
α

−
Γ(2 + α)

Γ(1 + 2α)
t
2α

+(1 + β)t
β

−
Γ(2 + β)

Γ(1 + 2β)
t
2β

 ,

(30)

initial and boundary conditions given by

w(x, 0) � 0, x ∈ (0, 1),

w(0, t) � t
(1+α)

+ t
(1+β)

,

w(1, t) � exp(1) t
(1+α)

+ t
(1+β)

 , 0< t≤ 1.

(31)

*e actual solution is

w(x, t) � exp(x) t
(1+α)

+ t
(1+β)

 . (32)

*e same domain and same parameter values as used in
Problem 1 are incorporated. *e numerical results are
shown in Table 2 with the same as well as with various values
of fractional order α and β and nodal points N. For

comparatively identical values of fractional order α and β,
better results in terms of L∞ and L2 error norms are ob-
tained. In the upper part of Table 2, condition number of the
system matrix is fixed for 11≤N≤ 71. Error versus various
quadrature points M at N � 41, n � 9, and t � 1 and various
values of α and β are depicted in Figure 2. *e error estimate
Lest for c � 0.7 is well agreed with L∞ and L2error norms, as
shown in Figure 1. *e results obtained by our proposed
numerical scheme are comparatively identical with the re-
sults in Table 2 [38].

Problem 3. Next, we consider models (1)–(3) corresponding
to the form [44]

zw(x, y, t)

zt
� D

(1−α)
0t + D

(1−β)
0t 

z
2
w(x, y, t)

zx
2 +

z
2
w(x, y, t)

zy
2  + f(x, t), (33)

where

f(x, y, t) � 2t sin(2πx)sin(2πy)

1 +
8π.

2

Γ(2 + α)
t
α

+
8π.

2

Γ(2 + β)
t
β

 ,

(34)

initial and boundary conditions given by

w(x, y, 0) � 0, x, y ∈ Ω,

w(0, t) � 0,

w(1, t) � 0, t> 0.

(35)

*e exact solution is

w(x, y, t) � t
2 sin(2πx)sin(2πy). (36)

Table 1: Numerical results using the proposed numerical scheme
corresponding to Problem 1.

M � 50, n � 7 α � 0.2, β � 0.1
N L∞ L2 κ
11 8.9603e− 004 0.0021 2.2091e + 021
21 8.5582e− 004 0.0028 9.6329e + 021
31 8.4544e− 004 0.0034 2.2821e + 022
41 8.8689e− 004 0.0041 4.4923e + 022
51 8.6646e− 004 0.0045 7.5954e + 022
71 9.2962e− 004 0.0057 1.6860e + 023
M � 50, n � 7, N � 21 L∞ L2 κ
(α, β) � (0.2, 0.6) 0.0141 0.0462 1.0025e + 021
(α, β) � (0.2, 0.4) 0.0072 0.0236 3.6776e + 020
(α, β) � (0.2, 0.1) 8.5582e− 004 0.0028 9.6329e + 021
(α, β) � (0.6, 0.3) 0.0079 0.0258 3.1036e + 020
(α, β) � (0.4, 0.3) 0.0063 0.0207 3.1036e + 020
(α, β) � (0.1, 0.3) 0.0035 0.0116 9.2023e + 021
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*is problem is solved over the domain Ω � [0, 1]. In
Table 3, for various nodal points N and stencils points n �

11, 15 and with various values of α and β, the L∞ error norm
is well matched with L2 error norm.*e condition number is

increasing steadily as we decrease both the values of α and β
at the same time.

Problem 4. Finally, we consider models (1)–(3) corre-
sponding to the form [38]

zw(x, y, t)

zt
� D

(1−α)
0t + D

(1−β)
0t 

z
2
w(x, y, t)

zx
2 +

z
2
w(x, y, t)

zy
2  + f(x, t), 0< t≤ 1, 0< x, y< 1,

f(x, y, t) � exp −
(x − 0.5)

2

c
−

(y − 0.5)
2

c
  f1(x, y, t) + f2(x, y, t) ,

(37)
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Figure 1: Error versus quadrature points M at t � 1 and various values of α, β corresponding to Problem 1.
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Table 2: Numerical results using the proposed numerical scheme corresponding to Problem 2.

M � 80, n � 9 α � 0.5, β � 0.5
N L∞ L2 κ
11 5.4148e− 005 1.2209e− 004 5.0986e + 033
21 1.3432e− 004 2.7509e− 004 5.0985e + 033
31 1.1372e− 004 3.2761e− 004 5.0985e + 033
41 8.6091e− 005 3.1340e− 004 5.0985e + 033
51 1.2453e− 004 5.3029e− 004 5.0985e + 033
71 4.5906e− 005 2.1446e− 004 5.0985e + 033
M � 80, n � 9, N � 41 L∞ L2 κ
(α, β) � (0.2, 0.6) 0.0072 0.0331 5.1040e + 033
(α, β) � (0.2, 0.4) 0.0019 0.0089 5.1040e + 033
(α, β) � (0.2, 0.1) 5.1121e− 004 0.0023 2.6797e + 035
(α, β) � (0.6, 0.3) 0.0039 0.0179 5.0985e + 033
(α, β) � (0.4, 0.3) 4.3443e− 004 0.0019 5.0985e + 033
(α, β) � (0.1, 0.3) 0.0021 0.0096 2.1983e + 034
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Figure 2: Error versus quadrature points M at N � 41, n � 9, and t � 1 and various values of α, β corresponding to Problem 2.
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Table 3: Numerical results using the proposed numerical scheme corresponding to Problem 3.

M � 50, n � 11 α � 0.5, β � 0.5
N L∞ L2 κ
15 7.3893e− 004 0.0050 3.1023e + 020
20 0.0025 0.0232 3.1024e + 020
26 0.0029 0.0344 3.0989e + 020
41 8.6091e− 005 3.1340e− 004 5.0985e + 033
M � 50, n � 15, N � 20 L∞ L2 κ
(α, β) � (0.6, 0.5) 2.2399e− 004 0.0017 3.1000e + 020
(α, β) � (0.5, 0.3) 2.2409e− 004 0.0017 5.0520e + 021
(α, β) � (0.3, 0.2) 2.2419e− 004 0.0017 1.1756e + 024

Table 4: Numerical results using the proposed numerical scheme corresponding to Problem 4.

M � 50, n � 9 α � 0.5, β � 0.3, c � 0.2
N L∞ L2 κ
11 0.0069 0.0249 1.3362e + 021
15 0.0022 0.0102 2.7478e + 021
21 4.4497e− 004 0.0057 6.7578e + 021
25 7.8109e− 004 0.0112 1.3745e + 022
M � 50, N � 20, n � 11 L∞ L2 κ
(α, β) � (0.2, 0.2) 6.2477e− 004 0.0060 9.6487e + 025
(α, β) � (0.5, 0.5) 6.2141e− 004 0.0060 3.1021e + 020
(α, β) � (0.7, 0.7) 6.1740e− 004 0.0059 3.0989e + 020
(α, β) � (0.9, 0.9) 6.1134e− 004 0.0058 3.0989e + 020
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Figure 3: Error versus quadrature points M at N � 20, n � 11, and t � 1 and various values of α, β corresponding to Problem 4.
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where

f1(x, y, t) � (1 + α + β)t
α+β

+ 2
Γ(2 + α + β)

Γ(1 + 2α + β)
t
2α+β2

c
+ 2
Γ(2 + α + β)

Γ(1 + α + 2β)
t
α+2β2

c
,

f2(x, y, t) � −4
Γ(2 + α + β)

Γ(1 + 2α + β)
t
2α+β

+
Γ(2 + α + β)

Γ(1 + α + 2β)
t
α+2β

 
(x − 0.5)

2

c
2 +

(y − 0.5)
2

c
2 .

(38)

*e exact solution is

w(x, y, t) � t
1+α+β exp −

(x − 0.5)
2

c
−

(y − 0.5)
2

c
 . (39)

Here, the problem is solved over the domain
Ω � [0, 1] × [0, 1]. In the upper section of Table 4, the ℓ∞
and ℓ2 error norms are decreasing with α � 0.5, β � 0.3,
n � 9, and c � 0.2 and for nodal points 11≤N≤ 25. In the
lower section of Table 4, for same values of α and β, the ℓ∞
and ℓ2 error norms are decreasing steadily at N � 20, n � 11,
and M � 50.*e results are comparatively identical with the
results of the paper [38]. Figure 3 shows the error with
varying quadrature points M and various values of α and β at
N � 20, M � 50, and c � 0.2. *e error L∞ is well matched
with estimate Lest for c � 0.5 and L2 error norm, as shown in
Figure 3. *e present method is stable and accurate in
multidimensional fractional order partial differential
equations.

6. Conclusion

In this work, a numerical scheme is constructed which is
based on Laplace transform and radial basis functions in the
local setting. *e proposed numerical scheme efficiently
approximated time fractional anomalous subdiffusion
equation. *e supremacy of this method particularly for
fractional order equations is its nonsensitive nature in time
as contrary to finite difference approximation for fractional
order operators. Since the fractional order derivative is of
integral convolution type and suited to handle by Laplace
transform, the spatial operators in multidimensions can be
approximated by RBF in the local setting which generates
small size differentiation matrices in local subdomains and
these are assembled as a single sparse matrix in the global
domain. So, large amount of data can be manipulated very
easily and accurately.
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*e data supporting the results are available within the
article.
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)e aim of this study is to introduce new (presumed) generalized fractional integral operators involving I-function as a kernel. In
addition, two theorems have been developed under these operators that provide an image formula for this generalized M-series
and also to study the different properties of the generalized M-series. )e corresponding assertions in terms of Euler and Laplace
transform methods are presented. Due to the general nature of the I-function and the generalized M-series, a number of results
involving special functions can be achieved only by making appropriate values for the parameters.

1. Introduction

Recently, in a short note, Sharma and Jain [1] introduced
and studied a new special function called as generalized
M-series, which is a particular case of the Wright gener-
alized hypergeometric function pψq

(.) ([2], p. 56, equation
(1.11.14)) and Fox’s H-function [3–5]. )e generalized
M-series is important because its basic cases are followed by
the Mittag-Leffler function and hypergeometric function,

and all these functions have actually discovered key
implementations in solving problems in applied sciences,
chemistry, physics, and biology. A number of researchers
[6–10] have also investigated the structure, implementa-
tions, and various directions of extensions of the fractional
integration and differentiation in detail. )e series is defined
for z,φ, ς ∈ C, R(φ)> 0, and αi, βj ∈ R(−∞,∞), (αi: i �

1, 2, . . . , p; βj ≠ 0: j � 1, 2, . . . , q) as

pM
φ,ς

q
(z) � pM

φ,ς

q
α1, . . . , αp; β1, . . . , βq; z  � 

∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

z
k

Γ(φk + ς)
, (1)

where (αj)k, (βj)k are showing the results for Pochhammer
symbols. )e series (1) is defined when none of the pa-
rameters βjs, (j � 1, . . . , q) is a negative integer or zero; if
any numerator parameter αj is a negative integer or zero,
then the series terminates to a polynomial in z. )e series in
(1) is convergent for all z if p≤ q, it is convergent for |z|< ϑ �

φφ if , and it is divergent if p> q + 1. When p � q + 1 and
|z|< ϑ, the series can converge on conditions depending on

the parameters ([2], for the general theory of the Wright
function). )e summation of the convergent series is

denoted by the symbol pM
φ,ς

q
(.).

Some essential special cases of the generalized M-series
are mentioned in the following:

(1) For φ � ς � 1, the generalized M-series is the gen-
eralized hypergeometric function [11, 12].
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pF
q

α1, . . . , αp

β1, . . . , βq

; z
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ � pM
1,1

q
α1, . . . , αp; β1, . . . , βq; z  � 

∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

z
k

k!
. (2)

(2) When p � q � 0 and ς � 1, we have

Eφ(z) � 0M
φ,1

0(−; −; z) � 
∞

k�0

z
k

Γ(φk + 1)
, (φ> 0), (3)

Where the symbol Eφ(z) denotes the Mittag-Leffler
function [13].

(3) Again, for p � q � 0, we have

Eφ,ς(z) � 0M
φ,ς

0(−; −; z) � 
∞

k�0

z
k

Γ(φk + ς)
, (φ> 0, ς> 0),

(4)

Where the symbol Eφ,ς(z) denotes the two-index
Mittag-Leffler function introduced by Wiman [14].

(4) Furthermore, if we put p � q � 1, α1 � σ ∈ C, β1 � 1,
the generalized M-series reduces to the generalized
Mittag-Leffler function [12, 15] as follows:

E
σ
φ,ς(z) � 1M

φ,ς

1(σ; 1; z) � 
∞

k�0

(σ)k

(1)k

z
k

Γ(φk + ς)

� 
∞

k�0

(σ)k

Γ(φk + ς)
z

k

k!
.

(5)

In the present study, our aim is to study some funda-
mental properties of generalized M-series defined by (1), for
which, we consider the two generalized fractional integral
operators involving the I-function as kernel, which is de-
scribed in the next section.

2. Generalized Fractional Integral Operators

In this section, we are introducing new (presumed) gen-
eralized fractional integral operators involving I-function as
kernel, which are the extensions of Saxena and Kumbhat
operators [16, 17]:

S
μ,ϑ
0,x;r[f(x)] � rx

− μ− rϑ− 1


x

0
t
μ

x
r

− t
r

( 
ϑ

× I
m,n
pi,qi: r λU|

aj, Aj 1,n
; aji, Aji 

n+1,pi

bj, Bj 1,m
; bji, Bji 

m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦f(t)dt (6)

and

S
ε,ϑ
x,∞;r[f(x)] � rx

ε

∞

x
t
− ε− rϑ− 1

t
r

− x
r

( 
ϑ

× I
m,n
pi,qi: r λV|

aj, Aj 1,n
; aji, Aji 

n+1,pi

bj, Bj 1,m
; bji, Bji 

m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦f(t)dt, (7)

where

U �
tr

xr
 

τ

1 −
tr

xr
 

v

andV �
xr

tr
 

τ

1 −
xr

tr
 

v

; τ, ]> 0.

(8)

)e sufficient conditions of these operators are

(i) 1≤p, q<∞, p− 1 + q− 1 � 1;
(ii) R(μ + rτ(bj/Bj))> − q− 1;R(ϑ + rτ(bj/Bj))>

−q− 1;

R ε + ϑ + rτ
bj

Bj

  > − p
− 1

; j � 1, 2, . . . , m. (9)

(iii) f(x) ∈ Lp(0,∞)

(iv) |argλ|≤ πΘ/2, Θ> 0

Θ � 
m

j�1
Ai(  + 

n

j�1
Bi(  − max

1≤i≤r


pi

j�n+1
Aji  + 

qi

j�m+1
Bji ⎡⎢⎢⎣ ⎤⎥⎥⎦.

(10)

where the I-function, which is more general than Fox’s
H-function, is defined by Saxena [18], by means of the
following Mellin-Barnes type contour integral:

I[z] � I
m,n
pi,qi;r

z|

aj, Aj 1,n
; aji, Aji 

n+1,pi

bj, Bj 1,m
; bji, Bji 

m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
1

2πω


L
φ(ζ)z

ζdζ,

(11)

where ω �
���
−1

√
and
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φ(ζ) � 
m
j�1 Γ bj − Bjζ 


n
j�1 Γ 1 − aj + Ajζ 


r
j�1 

qi

j�m+1 Γ 1 − bji + Bjiζ 
pi

j�n+1 aji − Ajiζ ,
(12)

pi, qi(i � 1, . . . , r), m, n are the integers satisfying
0≤ n≤pi, 0≤m≤ qi; Aj, Bj, Aji, Bji are the real and positive
numbers, and aj, bj, aji, bji are the complex numbers. L is a
suitable contour of the Mellin-Barnes type running from c −

iφ to c + iφ (c is real) in the complex ζ-plane. Details re-
garding existence conditions and various parametric re-
strictions of I-function are provided by Saxena [18].

For r � 1, (11) reduces to Fox’ H-function:

I
m,n
pi,qi;1 z|

aj, Aj 1,n
; aji, Aji 

n+1,pi

bj, Bj 1,m
; bji, Bji 

m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ � H

m,n
pi,qi

z|
aj, Aj 1,n

; aj, Aj 
n+1,p

bj, Bj 1,m
; bj, Bj 

m+1,q

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦. (13)

3. Images of Generalized M-Series under the
Generalized Fractional Integral Operators

In this section, we established the image formula for the
generalized M-series (1) under the generalized fractional

integral operators (6) and (7) in terms of the I-function as
the kernel. )e results are given in )eorems 1 and 2.

Theorem 1. Let a> 0, x> 0;φ, ς, η, ξ ∈ C,R(φ)> 0,R

(ξ)> 0,R(η)> 0,R(ς)> 0, 1≤p≤ 2, then

S
μ,ϑ
0,x;r t

η− 1
pM
φ,ς

q
at

ξ
  (x) � x

η− 1


∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

ax
ξ

 
k

Γ(φk + ς)

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(μ + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(μ + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(14)

provided the conditions, stated with operator (6), are satisfied.

Proof. We assume Ω1 be the on the left-hand side of (14);
using the definition of generalized M-series (1) and the

generalized fractional integral operator (6) on the left-hand
side of (14), we have

Ω1 � rx
− μ− rϑ− 1


x

0
t
μ+η− 1

x
r

− t
r

( 
ϑ 1
2πω


l
φ(ζ)(λU)

ζdζ  × 
∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

at
ξ

 
k

Γ(φk + ς)
dt. (15)

Now, by changing the order of the integration which is
valid under the given with theorem, we get

Ω1 � rx
− μ− rϑ− 1



∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

a
k

Γ(φk + ς)
×

1
2πω


L
φ(ζ)λζxrϑ− rτζ


x

0
t
μ+η+ξk+rτζ− 1 1 −

tr

xr
 

ϑ+vζ

dt
⎧⎨

⎩

⎫⎬

⎭dζ. (16)

Let the substitution tr/xr � w and then t � xw1/r in (16),
we get
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Ω1 � x
η− 1



∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

ax
ξ

 
k

Γ(φk + ς)
×

1
2πω


L
φ(ζ)λζ 

1

0
w

((μ+η+ξk)/r+τζ)− 1
(1 − w)

ϑ+vζdw dζ. (17)

Using the definition of the well-known beta function in
the inner integral, we have

Ω1 � x
η− 1



∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

ax
ξ

 
k

Γ(k + ς)
1

2πω


L
φ(ζ)λζ
Γ(μ + η + ξk/r + τζ)Γ(1 + ϑ + vζ)

Γ(1 + ϑ + μ + η + ξk/r +(τ + v)ζ)
dζ. (18)

Interpreting the right-hand side of (18), in view of the
definition (11), we arrive at the result (14). □

Theorem 2. Let a> 0, x> 0;φ, ς, η, ξ ∈ C,R(φ)> 0,R

(ξ)> 0,R(η)> 0,R(ς)> 0, 1≤p≤ 2, then

S
ε,ϑ
x,∞;r t

− η
pM
φ,ς

q

a

t
ξ  (x) � x

− η


∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

a/xξ
 

k

Γ(φk + ς)

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(ε + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(ε + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(19)

provided the conditions, stated with operator (7), are satisfied. Proof. On the left-hand side of (19), letΩ2, using (1) and (7)
on the left-hand side of (19), we have

Ω2 � rx
ε

∞

x
t
− ε− η− rϑ− 1

t
r

− x
r

( 
ϑ 1
2πω


L
φ(ζ)(λV)

ζdζ  × 
∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

a/tξ 
k

Γ(φk + ς)
dt. (20)

Now, by changing the order of the integration which is
valid under the given stated theorem, we get

Ω2 � rx
ε



∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

a
k

Γ(φk + ς)
×

1
2πω


L
φ(ζ)λζxrτζ


∞

x
t
− ε− η− ξk− rτζ− 1 1 −

xr

tr
 

ϑ+vζ

dt
⎧⎨

⎩

⎫⎬

⎭dζ. (21)

Let the replacement xr/tr � w and then t � x/w1/r in
(21), we get

Ω2 � x
− η− 1



∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

a
k
x

− ξk

Γ(φk + ς)
×

1
2πω


L
φ(ζ)λζ 

1

0
w

(ε+η+ξk/r)+τζ− 1
(1 − w)

ϑ+vζdw dζ. (22)

By beta function, we have
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Ω2 � x
− η+rφ



∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

ax
− ξ

 
k

Γ(φk + ς)
1

2πω


L
φ(ζ)λζ ×

Γ((ε + η + ξk/r) + τζ)Γ(1 + ϑ + vζ)

Γ((ε + η + ξk/r) + 1 + ϑ +(τ + v)ζ)
dζ. (23)

Interpreting the right-hand side of (23), in view of the
definition (11), we arrive at the result (19). □

4. Special Cases

(1) If we put φ � ς � 1 in )eorems 1 and 2, we obtain
the following interesting results on the right, and it is
known as the generalized hypergeometric function.

Corollary 1. For φ � ς � 1, equation (14) reduces in the
following form:

S
μ,ϑ
0,x;r t

η− 1
pM
1,1

q
α1, . . . , αp; β1, . . . , βq; at

ξ
  (x) � x

η− 1
pF

q

α1, . . . , αp

β1, . . . , βq

; ax
ξ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(μ + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(μ + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(24)

Corollary 2. For φ � ς � 1, equation (19) reduces in the
following form:

S
ε,ϑ
x,∞;r t

− η
pM
1,1

q
α1, . . . , αp; β1, . . . , βq;

a

t
ξ  (x) � x

− η
pF

q

α1, . . . , αp

β1, . . . , βq

;
a

x
ξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(ε + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(ε + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(25)
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(2) If we put p � q � 0 inAeorems 1 and 2, we obtain the
following interesting results on the right, and it is
known as the two-index Mittag-Leffler function.

Corollary 3. For p � q � 0, equation (16) reduces in the
following form:

S
μ,ϑ
0,x;r t

η− 1
0M
φ,ς

0 −; −; at
ξ

  (x) � x
η− 1

Eφ,ς ax
ξ

 

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(μ + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(μ + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

Corollary 4. For p � q � 0, equation (19) reduces in the
following form:

S
ε,ϑ
x,∞;r t

− η
0M
φ,ς

0 −; −;
a

t
ξ  (x) � x

− η
Eφ,ς

a

x
ξ 

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(ε + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(ε + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(27)

(3) If we put p � q � 1, α1 � σ ∈ C, β1 � 1 in Aeorems 1
and 2, we obtain the following interesting results on
the right, and it is known as the generalized Mittag-
Leffler function.

Corollary 5. For p � q � 1, a1 � ξ ∈ C, b1 � 1, equation (14)
reduces in the following form:

S
μ,ϑ
0,x;r t

η− 1
1M
φ,ς

1 σ; 1; at
ξ

  (x) � x
η− 1

E
σ
φ,ς ax

ξ
 

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(μ + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(μ + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(28)

Corollary 6. For p � q � 1, α1 � σ ∈ C, β1 � 1, equation
(19) reduces in the following form:
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S
ε,ϑ
x,∞;r t

− η
1M
φ,ς

1 σ; 1;
a

t
ξ  (x) � x

− η
E
σ
φ,ς

a

x
ξ 

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(ε + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(ε + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(29)

5. Certain Integral Transforms

In this section, with the aid of the results developed in the
prior segment, we will provide some very important out-
comes of several theorems connected with the transforms of

Euler and Laplace. To this end, we would like to define these
transforms first.

Definition 1. )e well-known Euler transform (e.g., [19]) of
a function f(t) is defined as

B f(t); c, d  � 
1

0
t
c− 1

(1 − t)
d− 1

f(t)dt; (c, d ∈ C,R(c)> 0,R(d)> 0). (30)

Definition 2. )e Laplace transform (e.g., [19]) of the
function f(t) is defined, as usual, by

L f(t); s  � 
∞

0
e

− st
f(t)dt; (R(s)> 0). (31)

)is section would establish the following fascinating
outcomes in the form of theorems. As these findings are

direct implications of Definitions 1 and 2 and )eorems 1
and 2, they are provided without evidence here.

Theorem 3. Ae Euler transform of the Aeorem 1 gives the
following result:

B S
μ,ϑ
0,x;r t

η− 1
pM
φ,ς

q
at

ξ
  ; c, d  � 

∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

a
k

Γ(φk + ς)
B(c + η − 1 + ξk, d)

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(μ + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(μ + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(32)

provided that the conditions mentioned with the operator and
Euler transform are satisfied.

Theorem 4. Ae Euler transform of the Aeorem 2 gives the
following result:

B S
ε,ϑ
x,∞;r t

− η
pM
φ,ς

q

a

t
ξ  ; c, d  � 

∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

a
k

Γ(φk + ς)
B(c − η − ξk, d)

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(ε + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(ε + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(33)
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provided that the conditions mentioned with the operator and
Euler transform are satisfied.

Theorem 5. Ae Laplace transform of the Aeorem 1 gives
the following result:

L S
μ,ϑ
0,x;r t

η− 1
pM
φ,ς

q
at

ξ
  ; s  � s

− η


∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

Γ(η + ξk)

Γ(φk + ς)
as

− ξ
 

k

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(μ + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(μ + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(34)

provided that the conditions mentioned with the operator and
Laplace transform are satisfied.

Theorem 6. Ae Laplace transform of the Aeorem 2 gives
the following result:

L S
ε,ϑ
x,∞;r t

− η
pM
φ,ς

q

a

t
ξ  ; s  � s

η− 1


∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

Γ(1 − η − ξk)

Γ(φk + ς)
as

ξ
 

k

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(ε + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(ε + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(35)

provided that the conditions mentioned with the operator and
Laplace transform are satisfied.

6. Properties of Generalized Fractional
Integral Operators

Here, we establish some properties of the operators as
consequences of )eorems 1 and 2. )ese properties show
compositions of the power function.

Theorem 7. Following all the conditions on parameters as
stated in Aeorem 1 with R(ψ + η)> 0, then the following
result holds true:

x
ψ
S
μ,ϑ
0,x;r t

η− 1
pM
φ,ς

q
at

ξ
  (x) � S

μ−ψ,ϑ
0,x;r t

ψ+η− 1
pM
φ,ς

q
at

ξ
  (x).

(36)

Proof. Let us use (14) in the left-hand side of (36), and we
get

x
ψ
S
μ,ϑ
0,x;r t

η− 1
pM
φ,ς

q
at

ξ
  (x) � 

∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

(a)
k

Γ(φn + ς)
x
η+ψ+ξk− 1

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(μ + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(μ + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(37)

Again, using (14) in the right-hand side of (37), we get
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S
μ−ψ,ϑ
0,x;r t

ψ+η− 1
pM
φ,ς

q
at

ξ
  (x) � 

∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

(a)
k

Γ(φk + ς)
x
η+ψ+ξk− 1

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(μ + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(μ + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

It seems that )eorem 6 readily follows due to (37) and
(38). □

Theorem 8. Follow all the conditions on parameters as stated
inAeorem 2 withR(1 − ψ + η)< 1; then, the following result
holds true:

x
−ψ

S
ε,ϑ
x,∞;r t

− η
pM
φ,ς

q

a

t
ξ  (x) � S

ε−ψ,ϑ
x,∞;r t

−ψ− η
pM
φ,ς

q

a

t
ξ  (x).

(39)

Proof. From (14) in the left-hand side of (39), we get

x
−ψ

S
ε,ϑ
x,∞;r t

− η
pM
φ,ς

q

a

t
ξ  (x) � 

∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

(a)
k

Γ(φk + ς)
x

− η−ψ− ξk

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(ε + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(ε + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(40)

Again, using (14) in the right-hand side of (39), we get

S
ε−ψ,ϑ
x,∞;r t

−ψ− η
pM
φ,ς

q

a

t
ξ  (x) � 

∞

k�0

α1( k . . . αp 
k

β1( k . . . βq 
k

(a)
k

Γ(φk + ς)
x

− η−ψ− ξk

× I
m,n+2
p+2,q+1;r

λ| aj, Aj 1,n
; aji, Aji 

n+1,pi

, 1 −
(ε + η + ξk)

r
, τ , (−ϑ, v)

−ϑ −
(ε + η + ξk)

r
, τ + v , bj, ςj 1,m

; bji, ςji 
m+1,qi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(41)

It seems that )eorem 7 readily follows due to (40) and
(41). □

7. Concluding Remark and Observations

In this study, we introduced and studied the properties of
generalized M-series under the new (presumed) generalized
fractional integral operators which are defined in equations
(6) and (7) and also developed some new images. )e results
established in this study contain various special cases, such
that if we take r � 1, we recover the known results recorded
in [20]. Furthermore, we can present certain very interesting

results in the form of several theorems associated with
Mellin, Whittaker, and K-transforms. We left this as an
exercise to the interested reader.
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In this paper, we present the necessary conditions where integral-type fractional equations with a proportional Riemann–Liouville
derivative have a unique solution. Also, we give an example to illustrate our work.

1. Introduction

Lately, many researchers have been focusing on the study of
various types of fractional problems; we refer the reader to
[1–17]. 'e fixed point and the monotone iterative tech-
niques can be very useful tools to prove the existence and

uniqueness of a solution to this type of problems; see [1]. In
this manuscript, inspired by the work of Jankowski in [1], we
investigate the existence and uniqueness of a solution to the
following problem:

D
α,ρξ(t) � g t, ξ(t), 

t

0
K(t, τ)ξ(τ)dτ  ≡ Fξ(t), t ∈ J0 � (0, a]; a> 0,

ξ(0) � p,

(1)

where Dα,ρξ(t) denotes a proportional Riemann–Liouville
fractional derivative for ρ ∈ [0, 1] and 0< α< 1. Also,
g ∈ C(J × R × R,R), J � [0, a], and ξ(0) � t1− αe(ρ− 1/ρ)t

ξ(t)|t⟶0+
. Now, we remind the reader of the definition of the

proportional Riemann–Liouville fractional integral and
derivative.

Definition 1 (see [18]). Let α ∈ C;Re(α)≥ 0, 0< ρ≤ 1, and
t> 0.

(i) 'e following integral is called the proportional
Riemann–Liouville fractional integral:

I
α,ρ

f(t) ≔
1

ραΓ(α)


t

0
e

[ρ− 1/ρ](t− τ)
(t − τ)

α− 1
f(τ)dτ.

(2)

(ii) 'e following derivative is called the proportional
Riemann–Liouville fractional derivative:

D
α,ρ

f( (t) � D
n,ρ

I
n− α,ρ

f(t)

�
D

n,ρ
t

ρn− αΓ(n − α)


t

0
e

[ρ− 1/ρ](t− τ)
(t − τ)

n− α− 1
f(τ)dτ,

(3)

Hindawi
Journal of Mathematics
Volume 2021, Article ID 9990439, 7 pages
https://doi.org/10.1155/2021/9990439

mailto:nmlaiki@psu.edu.sa
https://orcid.org/0000-0002-7986-886X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9990439


where n � [Re(α)] + 1 and D
1,ρ
t � (1 − ρ)f(t) + ρf′(t).

Next, we present the following proposition.

Proposition 1 (see [18]). If α, c ∈ C, where Re(α)> 0 and
Re(c)> 0, then for any 0< ρ≤ 1, we have
Iα,ρ(tc− 1e(ρ− 1/ρ)t)(x) � (Γ(c)/ραΓ(α + c))xc+α− 1e(ρ− 1/ρ)x.

In Section 2, we prove the existence and uniqueness of a
solution to problem (1) using the fixed point technique. In
Section 3, we prove the existence and uniqueness of a so-
lution to problem (1) using the monotone iterative method.
In the conclusion, we present an open question.

2. Fixed Point Approach

First of all, let C1− α(J,R) � f ∈ C([0, a),R)|t1− α

f ∈ C(J,R)}. Now, define the following two weighted
norms:

‖f‖
∗

� max
[0,a]

t
1− α

|f(t)|,

‖f‖∗ � max
[0,a]

t
1− α

e
− λt

|f(t)| for fixed λ> 0.
(4)

Theorem 1. Let 0< α< 1, 0< ρ≤ 1, and g ∈ C(J×

R × R,R), K ∈ C(J × J, ×R). Let β: � (ρ − 1/ρ). Also, as-
sume the following two hypotheses:

(1) 3ere exist nonnegative constants H, V, andW such
that |K(t, s)|<H and

g t, u1, u2(  − g t, v1, v2( 


≤V v1 − u1


 + W v2 − u2


.

(5)

(2) b ≡ (aα/Γ(2α)ρα) [V + (HWa/2α)]< 1, for α ∈
(0, (1/2)].

3en, initial value problem (1) has a unique solution.

Proof. First, let Sξ(t) � t1− αe(ρ− 1/ρ)tp+ (1/ραΓ(α)) 
t

0
e[(ρ− 1/ρ)(t− τ)](t − τ)α− 1Fξ(τ)dτ. Note that if S has a unique
fixed point and that is Sξ(t) � ξ(t), then initial value
problem (1) has a unique solution, i. e., it will be enough to
show that S is a contraction map. So, let ξ,Y ∈ C1− α(J,R);
we have two cases:

Case 1: α ∈ (0, (1/2)].

Sξ(t) � t
1− α

e
βt

p +
1

ραΓ(α)


t

0
e
β(t− τ)

(t − τ)
α− 1

Fξ(τ)dτ,

‖Sξ − SY‖
∗

�
1

ραΓ(α)
max

t∈J
t
1− α


t

0
e
β(t− τ)

(t − τ)
α− 1

|Fξ(τ) − FY(τ)|dτ

≤
1

ραΓ(α)
max

t∈J
t
1− α


t

0
e
β(t− τ)

(t − τ)
α− 1

V|ξ(τ) − Y(τ)|

+W 
τ

0
|‖K(t, s)ξ(s) − Y(s)|ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dτ

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

≤
1

ραΓ(α)
‖ξ − Y‖

∗max
t∈J

t
1− α


t

0
e
β(t− τ)

(t − τ)
α− 1

Vτα− 1
+ HW 

τ

0
s
α− 1ds dτ 

�
1

ραΓ(α)
‖ξ − Y‖

∗max
t∈J

t
1− α


t

0
e
β(t− τ)

(t − τ)
α− 1

Vτα− 1
+ HW

τα

α
 dτ

≤
1

ραΓ(α)
‖ξ − Y‖

∗max
t∈J

t
1− α

e
− βt


t

0
e
β(t− τ)

(t − τ)
α− 1

Ve
βττα− 1

+ HWe
βττ

α

α
 dτ

�
1

ραΓ(α)
‖ξ − Y‖

∗max
t∈J

t
1− α

e
− βt

I
α,ρ

Vt
α− 1

e
βt

  + I
α,ρ HW

α
t
α
e
βt

  

�
Γ(α)a

α

Γ(α)Γ(2α)ρα
V +

HWa

2α
 ‖ξ − Y‖

∗

� b‖ξ − Y‖
∗
.

(6)

Hence, S is a contractionmap.'erefore, S has a unique
fixed point as desired.
Case 2: α ∈ ((1/2), 1); in this case, we use ‖ · ‖∗ with the
positive constant λ> 0 such that

�����

λ − β


> b1 ≡
e

− βa
(Vα + HWa)Γ(2α − 1)

�����

a
2α− 1



αραΓ(α)
�����������
Γ(2(2α − 1))

 . (7)
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It is not difficult to see the following:

(1) 
t

0 e2(λ− β)τdτ ≤ (e2(λ− β)t/2(λ − β))

(2) t1− α
��������������������


t

0 (t − τ)2(α− 1)τ2(α− 1)dτ


� (Γ(2α − 1)
�����
a2α− 1

√
/�����������

Γ(2(2α − 1))


)

Also, recall the Schwarz inequality for integrals:


t

0
|f(τ)‖g(τ)|dτ ≤

����������


t

0
f
2
(τ)dτ

 ���������


t

0
g
2
(τ)dτ



,

‖Sξ − SY‖∗ �
1

ραΓ(α)
max

t∈J
t
1− α

e
− λt


t

0
e
β(t− τ)

(t − τ)
α− 1

|Fξ(τ) − FY(τ)|dτ

≤
1

ραΓ(α)
‖ξ − Y‖∗max

t∈J
t
1− α

e
− λt


t

0
e
β(t− τ)

(t − τ)
α− 1

Ve
λττα− 1

  + HWe
λτ


τ

0
s
α− 1dsdτ 

≤
1

ραΓ(α)
‖ξ − Y‖∗max

t∈J
t
1− α

e
− λt


t

0
e
β(t− τ)

(t − τ)
α− 1

Vτα− 1
e
λτ

+ HW
τα

α
e
λτ

 dτ 

≤
Vα + HWa

αραΓ(α)
‖ξ − Y‖∗max

t∈J
t
1− α

e
− λt


t

0
e
β(t− τ)

e
λτ

(t − τ)
(α− 1)τα− 1dτ 

�
Vα + HWa

αραΓ(α)
‖ξ − Y‖∗max

t∈J
t
1− α

e
− λt


t

0
e
β(t− τ)+λτ

(t − τ)
(α− 1)τα− 1dτ 

≤
Vα + HWa

αραΓ(α)
‖ξ − Y‖∗max

t∈J
t
1− α

e
− λt

×

��������������������


t

0
(t − τ)

2(α− 1)τ2(α− 1)dτ

 �������������


t

0
e
2β(t− τ)+2λτdτ


⎧⎨

⎩

⎫⎬

⎭

≤
Vα + HWa

αραΓ(α)
‖ξ − Y‖∗max

t∈J
t
1− α

e
− λt

×

��������������������


t

0
(t − τ)

2(α− 1)τ2(α− 1)dτ

 �����������


t

0
e
2(λ− β)τdτ


⎧⎨

⎩

⎫⎬

⎭

≤
b1�����
λ − β

 ‖ξ − Y‖∗.

(8)

'us, S is a contraction map. 'erefore, S has a unique
fixed point as required. □

As an application to 'eorem 1, consider the following
problem:

D
α,ρ

y(t) � − L(t)y(t) + ξ(t),

ξ(0) � r.
(9)

If

a
α

ραΓ(2α)
max

t∈J
|L(t)|< 1, for 0< α≤

1
2
, (10)

then it is not difficult to see that, by using 'eorem 1,
problem (9) has a unique solution. In closing of this section,
the following linear problem is considered:

D
α,ρξ(t) � − L(t)ξ(t) + z(t), t ∈ J0,

ξ(0) � r.
(11)

Now, we introduce the following hypothesis.

Hypothesis 1 (H1)

(1) L(t) � L, t ∈ J or
(2) 'e function L is nonconstant on J and

a
α

ραΓ(2α)
max

t∈J
|L(t)|< 1 only if α ∈ 0,

1
2

 . (12)

'e following lemma is a consequence of 'eorem 1.

Lemma 1. If α ∈ (0, 1), L ∈ C(J,R), z ∈ C1− α(J,R), and
hypothesis (H1) holds, then problem (11) has a unique
solution.

We would like to bring to the reader’s attention that, in
[1], in the hypothesis ρ should be as follows: ρ ≡
(Tq/Γ(2q))[K + (WLT/2q)] which he used to prove the case
where q ∈ (0, (1/2)]. 'is way, his result will be stronger or
he can just change the last equality to the inequality.
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3. Monotone Iterative Method

First of all, we start by introducing the following hypothesis.

Hypothesis 2 (H2)

(1) L(t) � L, t ∈ J or
(2) 'e function L is nonconstant, and if L(t) is negative,

then there exists L which is nondecreasing, where
− L(t)≤L(t) on J and for every x ∈ J, we have

e
βx

ραΓ(α)


a

0
(a − τ)

α− 1
e
β(a− τ)

L(τ)dτ < 1. (13)

Now, for our purpose, we prove the following useful
lemma.

Lemma 2. Let α ∈ (0, 1) and L ∈ C(J, [0,∞)) or
L ∈ C(J, (− ∞, 0]). Also, denote by β: � (ρ − 1/ρ). Assume
that q ∈ C1− α(J,R) is a solution to the following problem:

D
α,ρ

q(t)≤ − L(t)q(t), t ∈ J0,

q(0)< 0.
(14)

If (H2) holds, then q(t)≤ 0 for all t ∈ J.

Proof. Assume that our lemma is false, that is, there exist
x, y ∈ [0, a) such that q(x) � 0, q(y)> 0, and q(t)≤ 0 for
t ∈ (0, x]; q(t)> 0 for t ∈ (x, y]. Let x0 be the first maximal
point of q on [x, y].

Case 1: assume that L(t)≥ 0 for all t ∈ J. 'us,
Dα,ρq(t)≤ 0 for t ∈ [x, y]. Hence,


x0

x
D

α,ρ
q(t)≤ 0. (15)

'erefore, B ≡ Iρ,1− αq(x0) − Iρ,1− αq(x)≤ 0, but

B �
1

ρ1− αΓ(1 − α)


x0

0
e
β x0− τ( ) x0 − τ( 

− α
q(τ)dτ − 

x

0
e
β(x− τ)

(x − τ)
− α

q(τ)dτ 

�
1

ρ1− αΓ(1 − α)


x

0
e
β x0− τ( ) x0 − τ( 

− α
− e

β(x− τ)
(x − τ)

− α
 q(τ)dτ + 

x0

x
e
β x0− τ( ) x0 − τ( 

− α
q(τ)dτ 

>
1

ρ1− αΓ(1 − α)


x0

x
e
β x0− τ( ) x0 − τ( 

− α
q(τ)dτ > 0,

(16)

which leads us to a contradiction given the fact that
B≤ 0.
Case 2: assume that L(t)≤ 0 for all t ∈ J, and consider L

to be nondecreasing on J. Now, if we apply Iα,ρ on
problem (14), we obtain

q(t) − q(0)
e
βt

t
α− 1

ρα− 1Γ(α)
≤ − I

α,ρ
[L(t)q(t)], for t ∈ x, x0 .

(17)

Notice that q(0)(eβttα− 1/ρα− 1Γ(α))≤ 0 which is due to
the fact that q(0)≤ 0. 'us,
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q x0( ≤ −
1

ραΓ(α)


x0

0
x0 − τ( 

α− 1
e
β x0− τ( )L(τ)q(τ)dτ

� −
1

ραΓ(α)


x0

0
x0 − τ( 

α− 1
e
β x0− τ( )L(τ)q(τ)dτ + 

x0

x
x0 − τ( 

α− 1
e
β x0− τ( )L(τ)q(τ)dτ 

< −
q x0( 

ραΓ(α)


x0

0
x0 − τ( 

α− 1
e
β x0− τ( )L(τ)dτ, let σ �

τ
x0

� −
q x0( e

βx0x
α
0

ραΓ(α)

1

0
(1 − σ)

α− 1
e
β(1− σ)

L σx0( dσ

≤
q x0( e

βx0x
α
0

ραΓ(α)

1

0
(1 − σ)

α− 1
e
β(1− σ)L(σa)dσ

�
q x0( e

β x0+(1/a)( )x
α
0

ραΓ(α)a
α 

a

0
(a − τ)

α− 1
e
β(a− τ)L(τ)dτ

≤
q x0( e

β x0+(1/a)( )

ραΓ(α)


a

0
(a − τ)

α− 1
e
β(a− τ)L(τ)dτ.

(18)

Hence, q(x0)[1 − (eβ(x0+(1/a))/ ραΓ(α)) 
a

0 (a − τ)α− 1

eβ(a− τ) L(τ)dτ]≤ 0. Using hypothesis (H2) implies that
q(x0)≤ 0, which leads us to a contradiction, and this con-
cludes our proof. □

We say that y is a lower solution of problem (1) if

D
α,ρ

y(t)≤Fy(t), t ∈ J0, y(0)≤ 0, (19)

and we say that y is an upper solution of problem (1) if

D
α,ρ

y(t)≥Fy(t), t ∈ J0, y(0)≤ 0. (20)

Next, the following hypothesis is defined.

Hypothesis 3. (H3). 'ere exists a function L ∈ C(J,R)

where

g t, u1, u2(  − g t, v1, v2( 


≤L(t) v1 − u1


 wheneverx0 ≤ u1 ≤ v1 ≤y0 and u2 ≤ v2. (21)

Theorem 2. Assume that x0 is a lower solution of problem (1)
and y0 is an upper solution of problem (1), where
x0, y0 ∈ C1− α(J,R). Moreover, assume that hypotheses
H1, H2, and H3 hold; problem (1) has solutions in [x0, y0] �

y ∈ C1− α(J,R)|x0(t)≤y(t)≤y0(t), t ∈ J0, x0(0)≤ y(0)≤
y0(0)}.

Proof. Using Lemmas 1 and 2, the proof is similar to the
proof of 'eorem 2 in [1]. □

Now, we present the following example.

Example 1. Let 0< α< 1, 0< ρ≤ 1, β � (ρ − 1/ρ), and
A,B ∈ C([0, 1], (0,∞)) such that A(t)≤B(t) for t ∈ [0, 1].
Now, consider the following problem:

D
α,ρξ(t) ≡ Fξ(t), t ∈ J0 � (0, 1],

ξ(0) � 0,
(22)

where

Fξ(t) �
ραe

βt
t
1− α

Γ(2 − α)
+ A(t) te

βt
− 1 − ξ(t) 

3
+

β
e
βt

− 1
B(t) 

t

0
[sin(tτ)]

4ξ(τ)dτ. (23)
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Now, let x0(t) � 0 and y0(t) � teβt; first, note that x0(t)

is a lower solution of problem (22). Next, we show that y0(t)

is an upper solution of problem (22):

Fy0(t) �
ραe

βt
t
1− α

Γ(2 − α)
− A(t) +

β
e
βt

− 1
B(t) 

t

0
[sin(tτ)]

4τe
βτdτ

≤
ραe

βt
t
1− α

Γ(2 − α)
− A(t) +

β
e
βt

− 1
B(t) 

t

0
e
βτdτ

�
ραe

βt
t
1− α

Γ(2 − α)
− A(t) +

β
e
βt

− 1
B(t)

e
βt

β
−
1
β

 <
ραe

βt
t
1− α

Γ(2 − α)

� D
α,ρ

y0(t).

(24)

'us, y0(t) is an upper solution of problem (22). Now, it
is not difficult to see that all the hypotheses of 'eorem 2 are
satisfied. 'erefore, problem (22) has solutions in [x0, y0] if
α ∈ ((1/2), 1), and for α ∈ (0, (1/2)], we need to assume that
(1/ραΓ(2α))maxt∈[0,1]|A(t)|< 1.

4. Conclusion

In closing, note that the results of Jankowski [1] are a special
case of our work which is by taking ρ � 1. Also, we would
like to bring to the reader attention the following open
question.

What are the necessary and sufficient conditions for
problem (1) to have a unique solution if ρ is not constant ,
but it is a function of $t$ say g(t), so that the problem
involves Dα,g(t)?
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,e Korteweg–de Vries (KdV) equation is a weakly nonlinear third-order differential equation which models and governs the
evolution of fixed wave structures. ,is paper presents the analysis of the approximate symmetries along with conservation laws
corresponding to the perturbed KdV equation for different classes of the perturbed function. Partial Lagrange method is used to
obtain the approximate symmetries and their corresponding conservation laws of the KdV equation. ,e purpose of this study is
to find particular perturbation (function) for which the number of approximate symmetries of perturbed KdV equation is greater
than the number of symmetries of KdV equation so that explore something hidden in the system.

1. Introduction

Differential equations (DEs) are ubiquitous in modeling an
extensive class of physical phenomena involving variation
with respect to one or more independent variables. ,ere-
fore, DEs are broadly divided into ordinary DEs (ODEs) and
partial DEs (PDEs). In different sectors of science and
technology, PDEs have played a significant role. PDEs have
numerous applications in mathematics, physics, fluid dy-
namics, mechanics, and physical chemistry. Modeling of
PDEs under special conditions and constraints is advanta-
geous in different situations for an effective manipulation of
the varying phenomenon. ,e majority of real-world
problems are almost nonlinear in nature, having no ana-
lytical solutions. In order to solve nonlinear problems,
various approximations and techniques are used to gain high
accuracy. In this regard, the approximate symmetrymethods
play a significant role. We have used the method of ap-
proximate Lie symmetry [1, 2], for PDEs to deal with the
dynamical system more accurately. In the 1980s, the method
of approximate Lie symmetry was developed by Baikov et al.

[3, 4]. In obtaining the approximate solutions to such
perturbed PDEs, the approximate symmetry method is an
effective one. ,e extension of Lie’s theory was mainly the
basic reason behind the development of approximate
symmetry, which deals with the systems by introducing
small perturbation [5]. Symmetry applications to physical
problems play a pivotal role in the development of con-
servation laws [6, 7]. ,e widely recognized KdV equation is
a mathematical model for the depiction of weak nonlinear
long wavelength waves in various branches of engineering
and physics. It explains how waves evolve due to comparable
effects of weak nonlinearity and dispersion. A perturbed
nonlinear wave equation is a class of approximate sym-
metries which is computed using two newly developed
methods. For both methods, the associated invariant solu-
tion with the approximate symmetries is constructed. By
discussing the advantages and disadvantages of each
method, the symmetries and solutions are compared. So, the
Lie group technique in finding the exact solution of a dif-
ferential equation has lost its importance. But an approxi-
mate Lie group technique has been implemented and used in
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various methods for obtaining additional related informa-
tion of differential equation. Perturbation analysis is one of
the techniques which is used particularly for nonlinear
systems.

,is study is framed in the followingmanner: Section 2 is
devoted to the development of exact symmetries and exact
conservation laws of the KdV equation. ,e method to
handle the approximate part of the KdV equation is de-
veloped in Section 3. ,e method so developed is applied to
tackle the approximate part of the KdV equation for dif-
ferent cases and their corresponding conservation laws in
Section 4.,e work is concluded by describing the highlights
in Section 5.

2. Exact Symmetries and Conservation Laws of
the Korteweg–de Vries (KdV) Equation

,e exact symmetries and conservation laws in the current
study for the work considered in [8, 9] are worked out as
follows:

,e Korteweg–de Vries (KdV) equation which is a third-
order nonlinear partial differential equation is

μt − 6μμx + μxxx � 0. (1)

,e infinitesimal symmetry operator is

X[3]
� ϕ

z

zx
+ ϱ

z

zt
+ φ

z

zμ
+ φt z

zμt

+ φx z

zμx

+ φxx z

zμxx

+ φxt z

zμxt

+ φtt z

zμtt

+ φxxx z

zμxxx

.

(2)

Applying this symmetry operator on (1),

X[3] μt − 6μμx + μxxx(  � 0, (3)

we get

φt
− 6μφx

− 6φμx + φxxx
� 0. (4)

,e expanded form of equation (4) is

φt − ϕtμx + φμ − ϱt μt − ϕμμxμt − ϱμμ2t  − 6μ φx + φμ − ϕx μx − ϱxμt − ϕμμ
2
x − ϱxμxμt 

− 6φμx + φxxx + 3φμxx − ϕxxx μx − ϱxxxμt + 3φμμx − 3ϕxxμ 

μ2x − 3ϱμxxμxμt + 3φμx − 3ϕxx μxx − 3ϱxxμxt + φμμμ − ϕμμx μ3x

− 3ϱμμxμ
2
xμt + 3φμμ − 9ϕμx μxμxx − 6ϱxμμxμxt − 3ϱμxμtμxx + φμ − 3ϕx μxxx

− 3ϱxμxxt − ϕμμμμ
4
x − ϱμμμμ

3
xμt − 6ϕμμμ

2
xμxx − 3ϱμμμ

2
xμxt − 3ϱμμμxμtμxx

− 4φμμxμxxx − 3ϱμμxμxxt − 3ϕμμ
2
xx − 3ϱμμxxμxt − ϱμμtμxxx � 0.

(5)

Substituting equation (1) in equation (5), we get

φt − ϕtμx + φμ − ϱt μt − ϕμμxμt − ϱμμ
2
t − 6φμx − 6μ φx + φμ − ϕx μx − ϱxμt − ϕμμ

2
x − ϱμμxμt 

+ φxxx + 3φxxμ − ϕxxx μx − ϱxxxμt + 3φxμμ − 3ϕxxμ μ2x

− 3ϱxxμμxμt + 3φxμ − 3ϕxx μxx − 3ϱxxμxt + φμμμ − ϕxμμ μ3x − 3ϱxμμμ
2
xμt

+ 3φμμ − 9ϕxμ μxμxx − 6ϱxμμxμxt − 3ϱxμμtμxx + 6μ φμ − 3ϕx μx − φμ − 3ϕx μt

− 3ϱxμxxt − ϕμμμμ
4
x − ϱμμμμ

3
xμt − 6ϕμμμ

2
xμxx − 3ϱμμμ

2
xμxt − 3ϱμμμxμtμxx

− 24μϕμμ
2
x + 4ϕμμxμt − 3ϱμμxμxxt − 3ϕμμ

2
xx − 3ϱμμxxμxt − 6μϱμμxμxt + ϱμμ

2
t � 0.

(6)
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Comparing the coefficients of various terms, we get the
coefficients and monomials, as shown in Table 1.

Table 1 yields the required set of PDEs as follows:

ϱμ � 0, (7)

ϕμ � 0, (8)

ϱx � 0, (9)

3ϕx − ϱt � 0. (10)

Form (10),

ϕxx � 0

⇒φxxμ � ϕxxx

⇒φxxμ � 0,

φ �
− 1
6
ϕt − 2μϕx.

(11)

As

ϕx �
1
3
ϱt, (12)

therefore,

φ � −
1
6
ϕt −

2
3
μϱt,

φt � −
1
6
ϕtt −

2
3
μϱtt,

φx � −
1
6
ϕxt −

2
3
μϱtx,

φxxx � 0,

(13)

ϕtt � 0, (14)

ϱtt � 0. (15)

Let

ϱ � A(t)

⇒Att(t) � 0.
(16)

Integrating twice with respect to t yields

⇒At(t) � k1

⇒A(t) � k1t + k2

⇒ϱ � k1t + k2.

(17)

From (10),

3ϕx − ϱt � 0,

ϕμ � 0⇒ϕ � B(x)t,

ϕx �
1
3
ϱt

⇒ϕx �
1
3
k1.

(18)

Integrating with respect to “x,”

⇒ϕ �
1
3
k1x + D(t)

⇒ϕtt � Dtt(t) � 0

⇒D(t) � k3t + k4

⇒ϕ �
1
3
k1x + k3t + k4.

(19)

From (13),

φ � −
1
6
ϕt −

2
3
μϱt

� −
1
6
k3 −

2
3
k1μ.

(20)

,e general solution is

φ � −
2
3
k1μ −

1
6
k3,

ϱ � k1t + k2,

ϕ �
1
3
k1x + k3t + k4.

(21)

Hence, the Lie symmetry generators for the KdV
equation are given, as shown in Table 2.

3. A New Procedure to Find the
Approximate Symmetries

,is section explains the development of the method for the
approximate symmetries of the KdV equation. ,e KdV (1)
is perturbed with the function f(x, t, μ(x, t), μ(t, x)) as

μt − 6μμx + μxxx + εf(x, t, μ(x, t), μ(t, x)) � 0, (22)

where ε is a small parameter, causing the required pertur-
bation in the KdV equation. ,e exact and approximate
parts of (22) are

Ee � μt − 6μμx + μxxx,

Ea � f(x, t, μ(x, t)).
(23)
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Equation (22) can now be written in a more compact
form as

Ee + εEa � 0. (24)

On similar footing, we can combine the exact and ap-
proximate Lie symmetries as

X � Xe + εXa. (25)

Here,

Xe � ϕe

z

zx
+ ϱe

z

zt
+ φe

z

zμ
, (26)

is the exact Lie symmetry generator, and

Xa � ϕa

z

zx
+ ϱa

z

zt
+ φa

z

zμ
(27)

is the approximate Lie symmetry generator. Furthermore, ϕ,
ϱ, and φ are the unknown functions of x, t, and μ,
respectively.

Now, applying the generator X on (24), we have

Xe + εXa(  Ee + εEa(  � 0, (28)

which yields

XeEe + ε XaEe + XeEa(  + O ε2  � 0. (29)

,e comparison of coefficients of ε0 and ε1, respectively,
yields the exact and approximate symmetries of the corre-
sponding PDEs as in the following:

XeEe � 0,

XaEe + XeEa � 0.
(30)

,e latter equation additionally gives the approximate
Lie symmetries, which will not only provide the approximate
conservation laws involved in the dynamics of the KdV
equation but will also give the unknown function
f(x, t, μ(x, t), μi(t, x)) [8, 10].

4. Approximate Symmetries andCorresponding
Conservation Laws of the KdV Equation

In this section, we apply the developed method to find out
the approximate symmetries. ,is method is applied and
discussed for different cases. Considering the perturbed KdV
equation [6, 11, 12],

μt − 6μμx + μxxx + εf x, y, n, t, nt, nx, mt, mx(  � 0. (31)

By employing the method developed in [13–15] for the
expansion of μ,

μ � m + εn. (32)

Using this expansion in (31),

Table 1: ,e exact symmetries of the given partial differential equation (PDE).

Coefficients Monomials
φt − 6μφx + φxxx � 0 1
− ϕt − 6φ − 6μ(φμ − ϕx) + 3φxxμ − ϕxxx + 6μ(φμ − 3ϕx) � 0 μx

− ϕμ + 6μϱμ − 3ϱxxμ + 4ϕμ � 0 μxμt

φμ − ϱt + 6μϱx − ϱxxx − (φμ − 3ϕx) � 0 μt

− ϱμ + ϱμ � 0 μ2t
6μϕμ + 3φxμμ − 3ϕxxμ − 24μϕμ � 0 μ2x
3φxμ − 3ϕxx � 0 μxx

− 3ϱxx � 0 μxt

φμμμ − ϕxμμ � 0 μ3x
− 3ϱxμμ � 0 μ2xμt

3φμμ − 9ϕxμ � 0 μxμxx

− 6ϱxμ − 6μϱμ � 0 μxμxt

− 3ϱxμ � 0 μtμxx

− 3ϱx � 0 μxxt

ϕμμμ � 0 μ4x
ϱμμμ � 0 μ3xμt

ϕμμ � 0 μ2xμxx

ϱμμ � 0 μ2xμxt

ϱμμ � 0 μxμtμxx

ϱμ � 0 μxμxxt

ϕμ � 0 μ2xx

ϱμ � 0 μxxμxt

Table 2: Lie symmetry generator of KdV equation.

Lie symmetry generators
X1 � (1/3)x(z/zx) + t(z/zt) − (2/3)μ(z/zμ)

X2 � (z/zt)

X3 � (z/z)

X4 � (z/zx)
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mt + εnt(  − 6(m + εn) mx + εnx(  + mxxx + εnxxx(  � εf x, y, n, t, nt, nx, mt, mx( ,

mt + εnt − 6mmx − 6εmnx − 6εnmx − 6ε2nnx + mxxx + εnxxx � εf x, y, n, t, nt, nx, mt, mx( ,

mt − 6mmx + mxxx(  + ε nt − 6mnx − 6nmx + nxxx(  + ε2 − 6nnx(  � εf x, y, n, t, nt, nx, mt, mx( .

(33)

Equation (33) in more compact form is (neglecting
higher power of ϵ )

Δe + εΔa � 0. (34)

,e comparison of the coefficients of ϵ0 and ϵ1 in (33)
gives

Δe ≔ mt − 6mmx + mxxx � 0,

Δa ≔ nt − 6mnx − 6nmx + nxxx − f x, y, n, t, nt, nx, mt, mx(  � 0.
(35)

,e Lie symmetry generator is

X � Xe + εXa � 0. (36)

Here,

Xe � ϕe

z

zx
+ ϱe

z

zt
+ φe

z

zm
+ ϕe

z

zn
,

Xa � ϕa

z

zx
+ ϱa

z

zt
+ φa

z

zm
+ ϕa

z

zn
.

(37)

Applying the Lie generator,

X Δe + εΔa(  � 0,

Xe + εXa(  Δe + εΔa(  � 0,
(38)

which gives us

XeΔe + ε XaΔe + XeΔa(  + o ε2  � 0,

XeΔe � 0,

XaΔe + XeΔa � 0.

(39)

We now discuss the following cases in a bit detail.

Case I. Let

f x, y, n, t, nt, nx, mt, mx(  � − mt − nt. (40)

,en, determining the system of PDEs from (35),

ϱtt � 0,

ϱm � 0,

ϕt � 0,

ϱn � 0,

ϕn � 0,

ϕm � 0,

ϱx � 0,

ϕx �
3
ϱt

,

φ �
− 2
3

mϱt,

ϕ � −
2
3
ϱtn.

(41)

As

zϱ
zm

� 0,

zϱ
zn

� 0,

zϱ
zx

� 0,

(42)
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which implies that “ϱ” is the function of “t” alone.,erefore,

ϱtt � 0. (43)

Integrating the above equation twice with respect to “t”
yields

ϱ � c1t + c2. (44)

Also,

zϕ
zt

� 0,

zϕ
zm

� 0,

zϕ
zn

� 0,

(45)

which shows that “ϕ” is the function of “x” alone. ,erefore,

zϕ
zx

�
1
3
ϱt. (46)

Putting the value of “ϱt” in (46), we get

zϕ
zx

�
1
3
c1. (47)

Integrating (47), we get

ϕ �
1
3
c1x + c3. (48)

Now,

φ � −
2
3

mϱt. (49)

Putting the value of “ϱt” in (49),

φ � −
2
3

mc1. (50)

By taking

ϕ � −
2
3
ϱtn, (51)

and putting the value of “ϱt” in (51),

ϕ � −
2
3
c1n. (52)

,erefore,

ϕ �
1
3
c1x + c3,

ϱ � c1t + c2,

φ �
− 2
3

mc1,

ϕ �
− 2
3

c1n.

(53)

,e corresponding symmetry generators are tabulated in
Table 3.

4.1. Conservation Laws. ,e conservation laws are devel-
oped as in the following:

X1 ψ x, y, n, t, nt, nx, mt, mx( (  � 0,

1
3

x
z

zx
+ t

z

zt
−
2
3

z

zn
−
2
3

m
z

zm
 ψ � 0,

1
3

xψx + tψt −
2
3
ψn −

2
3

mψm � 0,

3
dx

x
�

dt

t
�

dn

(− 2/3)
�

− 3
2

dm

m
�

dψ
0

.

(54)

Now, by taking

3
dx

x
�

dt

t
⇒x

3
� c1t⇒ c1 �

x
3

t
,

3
dx

x
�

dn

(− 2/3)
⇒ ln x

3
� −

2
3

n + c2⇒ c2 � x
3
e

(3/2)
n,

3
dx

x
�

− 3
2

dm

m
⇒x

3
� c3m

− 3
2
⇒ c3 � x

3
m

(3/2)
,

dt

t
�

dn

(− 2/3)
⇒ ln t � −

2
3

n + c4⇒ c4 � te
(3/2)

n,

dt

t
�

− 3
2

dm

m
⇒ t � c5m

− 3
2
⇒ c5 � tm

3
2
,

dn

(− 2/3)
�

− 3
2

dm

m
⇒ n + c6 � ln m⇒ c6 � me

− n
,

(55)

so

ψ � c1 + c2 + c3 �
x
3

t
+ x

3
e

(3/2)
n + x

3
m

(3/2)

+ te
(3/2)

n + tm
3
2

+ me
− n

.

(56)

Furthermore,

X2 ψ x, y, n, t, nt, nx, mt, mx( (  � 0,

ψt � 0⇒ψ � c,

X3 ψ x, y, n, t, nt, nx, mt, mx( (  � 0,

ψx � 0⇒ψ � c.

(57)

Following are the symmetries and their corresponding
conservation laws of Case 1.

Case 2. Let

f x, y, n, t, nt, nx, mt, mx(  � − mx. (58)
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From (35), we get after comparing the coefficients of ϵ0
and ϵ1,

mt − 6mmx + mxxx � 0,

nt − 6mnx − 6nmx + nxxx − mx � 0.
(59)

Applying (36) to (59) yields the following system of
PDEs:

ϕt � 0,

ϕn � 0,

ϕm � 0,

ϕm � 0,

ϕn �
6ϕ

n + 1
,

ϕx �
1
3
ϱt,

ϕx � 0,

ϱm � 0,

ϕtt � 0,

ϱn � 0,

φ �
− 2
3
ϱtm −

1
6
ϕtϱx � 0,

ϱtt � 0.

(60)

Solving the above system of PDEs, we get the following
results:

φ �
− 2
3

c1m −
1
6
c4,

ϕ � 6c3n + c3,

ϱ � c1t + c2,

ϕ �
1
3
c1x + c4t + c5.

(61)

,e approximate symmetries and their corresponding
conservation laws in this case are given in Table 4.

Case 3. For this case, take

f x, y, n, t, nt, nx, mt, mx(  � − nx. (62)

From (35), we get after comparing the coefficients of ϵ0
and ϵ1,

mt − 6mmx + mxxx � 0,

nt − 6mnx − 6nmx + nxxx − nx � 0.
(63)

,is results in the following equations:

ϕt � 0,

ϕtt � 0,

ϕm � 0,

ϕx � 0,

ϕn �
ϕ
n

,

ϕn � 0,

ϕx � 0,

ϱt � 0,

ϕm � 0,

ϱm � 0,

φ �
− 1
6
ϕtϱn � 0,

ϱx � 0,

φ �
− 1
6

c1,

ϕ � c3n,

ϱ � c4,

ϕ � c1t + c2.

(64)

Following are the symmetries and corresponding con-
servation laws of this Case 3.

Case 4. For this case, take

f x, y, n, t, nt, nx, mt, mx(  � mn, (65)

then the system defined in (35) gives

mt − 6mmx + mxxx � 0,

nt − 6mnx − 6nmx + nxxx + mn � 0.
(66)

Applying (36) to (66), we get the following set of PDEs:

Table 3: Lie symmetry generators.

Lie symmetry generators
X1 � (1/3)x(z/zx) + t(z/zt) − (2/3)(z/zn) − (2/3)m(z/zm)

X2 � (z/zt)

X3 � (z/zx)
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ϱt � 0,

ϕt �
1
6

nϕt,

ϕx � 0,

ϕm � 0,

ϱx � 0,

ϕn �
ϕ
n

,

ϕtt � 0,

ϕx � 0,

ϱm � 0,

ϕm � 0,

ϱn � 0,

ϕn � 0,

φ � −
1
6
ϕt.

(67)

,e above equations yield

ϕ � c1t + c2,

ϱ � c3,

φ �
− 1
6

c1,

ϕ �
1
6

n c1t + 6c4( .

(68)

Following are the symmetries and corresponding con-
servation laws of Case 4.

Case 5. Let

f x, y, n, t, nt, nx, mt, mx(  � − n, (69)

then the system defined in (35) gives

mt − 6mmx + mxxx � 0,

nt − 6mnx − 6nmx + nxxx − n � 0.
(70)

Applying (36) to (70) produces the following set of PDEs:

ϕt � ϱtn,

ϕn � 0,

ϕm � 0,

ϕm � 0,

ϕn �
ϕ
n

,

ϱtt � 0,

ϕx � 0,

ϱm � 0,

ϕx �
1
3
ϱtϱn � 0,

ϱx � 0.

(71)

Solving the above equations, we get

ϕ �
c1x

3
+ tc3 + c4,

ϱ � c1t + c2,

φ �
− 2
3

mϱtc1 −
1
6
ϕtc3,

ϕ � n c1t + c5( .

(72)

Following are the symmetries and corresponding con-
servation laws of Case 5.

Case 6. Assume

f x, y, n, t, nt, nx, mt, mx(  � − nmt, (73)

then the system defined in (35) gives

mt − 6mmx + mxxx � 0,

nt − 6mnx − 6nmx + nxxx − nmt � 0.
(74)

Applying (36) to (74) results in the following set of PDEs:

Table 4: Lie symmetry generators and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � (1/3)x(z/zx) + t(z/zt) − (2/3)m(z/zm) ψ1 � (x3/t) + (x

��
m

√
)3 + tm(3/2)

X2 � (z/zt) ψ2 � f(x, y, n, nt, nx, mt, mx)

X3 � (6n + 1)(z/zn) ψ3 � g(x, y, t, nt, nx, mt, mx)

X4 � t(z/zx) − (1/6)(z/zm) ψ4 � (x/t) + 6m

X5 � (z/zx) ψ5 � h(y, n, t, nt, nx, mt, mx)
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Table 6: Lie symmetry generator and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � (1/3)x(z/zx) + t(z/zt) − (2/3)(z/zn) − (2/3)m(z/zm) ψ1 � (x3/t) + x3e(3/2)n + x3m(3/2) + te(3/2)n + tm(3/2) + me− n

X2 � (z/zt) ψ2 � f(x, y, n, nt, nx, mt, mx)

X3 � (z/zx) ψ3 � g(y, n, t, nt, nx, mt, mx)

Table 7: Lie symmetry generators and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � (− 1/6)(z/zx) + t(z/zt) ψ1 � (e− 6x/t)
X2 � x(z/zx) ψ2 � f(y, n, t, nt, nx, mt, mx)

X3 � n(z/zn) ψ3 � g(x, y, t, nt, nx, mt, mx)

X4 � (z/zt) ψ4 � h(x, y, n, nt, nx, mt, mx)

Table 8: Lie symmetry generator and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � t(z/zx) + (1/6)nt(z/zn) − (1/6)(z/zm) ψ1 � (e(x/t)/n6) + nem + (x/t) + 6m

X2 � (z/zx) ψ2 � f(y, n, t, nt, nx, mt, mx)

X3 � (z/zt) ψ3 � g(x, y, n, nt, nx, mt, mx)

X4 � n(z/zn) ψ4 � h(x, y, t, nt, nx, mt, mx)

Table 9: Lie symmetry generators and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � n(z/zn) ψ1 � f(x, y, t, nt, nx, mt, mx)

X2 � (z/zt) ψ2 � g(x, y, n, nt, nx, mt, mx)

X3 � (z/zx) ψ3 � h(y, n, t, nt, nx, mt, mx)

Table 5: Lie symmetry generators and corresponding conservation laws.

Lie symmetry generators Corresponding conservation laws
X1 � (1/3)x(z/zx) + t(z/zt) + nt(z/zn) − (2/3)m(z/zm) ψ1 � (x3/t) + x3 + x3m(3/2) + etn + tm(3/2)

X2 � (z/zt) ψ2 � f(x, y, n, t, nt, nx, mt, mx)

X3 � (z/zx) − (1/6)(z/zm) ψ3 � x + 6m

X4 � (z/zx) ψ4 � g(y, n, t, nt, nx, mt, mx)

X5 � n(z/zn) ψ5 � h(x, y, t, nt, nx, mt, mx)
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ϱtx � 0,

ϕt � 0,

ϕx � 0,

ϕm � 0,

ϕn � 0,

ϕn �
ϕ
n

,

ϕm � 0,

ϱn � 0,

ϕx � 0,

ϱt � 0,

ϕt � 0,

ϱm � 0.

(75)

Solving the above set of equations, we get

ϕ � c3,

ϱ � c2,

φ � 0,

ϕ � c1n.

(76)

Following are the symmetries and corresponding con-
servation laws of Case 6.

5. Conclusion

,e KdV equation is a 3rd order nonlinear partial differ-
ential equation which is modeled for waves on the surface of
shallow water. It admits four Lie symmetries given in Ta-
ble 2. In this paper, approximate symmetry techniques are
used for finding some classes of the KdV equations that
admit more symmetries as compared to the exact KdV
equations. We perturbed the KdV equation by different
particular functions and found the corresponding Lie
symmetries. We found two important classes for the per-
turbed KdV equation that admits five Lie symmetries. ,e
Lie symmetries along with their conservation laws are given
in Tables 2, 4 and 5. In both the tables, we have an extra
symmetry which corresponds to an extra conservation law.
,is extra conservation law is an extra information hidden in
the system, the perturbation procedure explored it. Some-
times, the symmetry does not exist for the exact equation,
but perturbation enables the equation to admit a symmetry.
We saw this phenomenon in this research work by com-
paring Tables 2–6. Table 1 contains the determining PDEs
which provide the set of Lie symmetries admitted by the
given PDE. We have 4 Lie symmetries given in Table 2 for
exact PDE, while Tables 3 and 6 contain only three Lie

symmetries; in these cases, we lose one symmetry (one
conservation law). Tables 7 and 8 consist of four Lie sym-
metries which means that all the conservation laws are
recovered in these cases. Table 9 includes the lie symmetry
generators and corresponding conservation laws.
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)is paper presents a modified chaotic system under the fractional operator with singularity.)e aim of the present subject will be to
focus on the influence of the new model’s parameters and its fractional order using the bifurcation diagrams and the Lyapunov
exponents. )e new fractional model will generate chaotic behaviors. )e Lyapunov exponents’ theories in fractional context will be
used for the characterization of the chaotic behaviors. In a fractional context, the phase portraits will be obtained with a predictor-
corrector numerical scheme method.)e details of the numerical scheme will be presented in this paper. )e numerical scheme will
be used to analyze all the properties addressed in this present paper. )e Matignon criterion will also play a fundamental role in the
local stability of the presented model’s equilibrium points. We will find a threshold under which the stability will be removed and the
chaotic and hyperchaotic behaviors will be generated. An adaptative control will be proposed to correct the instability of the
equilibrium points of the model. Sensitive to the initial conditions, we will analyze the influence of the initial conditions on our
fractional chaotic system. )e coexisting attractors will also be provided for illustrations of the influence of the initial conditions.

1. Introduction

In the recent years, modeling chaotic and hyperchaotic
systems occupy an important place in the literature and have
many applications in physics, biology, electrical circuits, and
many other fields [1–4]. )e most used fields for the ap-
plications of chaos are modeling electrical circuits, and there
exist many papers related to the implementation of the
chaotic systems in this domain. Many phenomena in the
real-world problems are complicated to be predicted and
justify the use of chaotic models. Nowadays, there appear
many tools for analyzing the chaotic systems as the phase
portraits of the system using the numerical discretizations,
the bifurcation diagrams to understand the influence of the
models’ parameters on the dynamics of the chaotic models,
and the Lyapunov exponents used to determine the nature of
the chaos. )ere exists some chaos as chaotic behaviors and
hyperchaotic behaviors. As tools, we can also cite the
bicoherence and the Poincare map; there is also an algorithm
to focus on the initial conditions’ influence. It is known that

the chaos systems are sensitive to the variation of the initial
conditions. Influencing initial conditions can generate a loss
of chaotic behaviors or hyperchaotic behaviors. Fractional
calculus has attracted much attention these years, and many
fractional operators have been introduced in this new field.
As operators in this field, we can cite the Riemann–Liouville
derivative . We can cite the Caputo derivative [5, 6], which is
the most used operator in fractional calculus due to its
physical adequacy with physical problems. Other fractional
operators with Mittag–Leffler kernel [7, 8] and exponential
kernel exist [9] and continue to impress all the community in
fractional calculus [10]. For the use of the Atangana–Baleanu
derivative, see [11]. Many of them have advantages in
modeling real-world problems. Modeling chaotic systems
and hyperchaotic systems to capture the memories effects
have constituted a new direction of research in the recent
years; see [8, 12]. For the advancement of fractional calculus
and its application, the readers can refer to the following
papers: in [13], the authors address a new numerical scheme
for solving fractional differential equations described by
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Gomez–Atangana–Caputo derivative; in [14], the authors focus
on the characterization of two differential fractional operators
without singular kernels; and, in [15], the authors analyze an
epidemic spreading model described by a fractional operator
with Mittag–Leffler kernel. For recent works on numerical
methods applied to partial differential equations, see [16–19].

Modeling chaotic and hyperchaotic systems are focused
on the literature with integer-order derivative and the non-
integer-order derivatives. We make a review of the literature
in this paragraph. In [1], the authors focus on the chaotic
Chua electrical circuit in the fractional version. In [20], the
authors discuss and prove the algorithm to get the Lyapunov
exponents in a fractional version. In [21], the authors discuss
the fractional-order chaotic system and its suppression in
some specific order of the fractional derivative. In [22], the
authors discuss the so-called hyperchaotic chameleon sys-
tem with the aid of fractional-order derivative and propose
its electrical implementation. In [23], the authors propose
investigations in the fractional chaotic system used in fi-
nance; the findings were interpreted financially and eco-
nomically. In [24], finance and chaotic system were also
interpreted in this paper. In [25], the authors investigated on
fractional-order exponential jerk system and presented its
electrical implementation. In [2], the authors presented a
new chaotic system in integer version with multiple
attractors. In [3], the authors propose a new chaotic system
with a self-excited attractor. In [4], the authors proposed
investigations on hidden attractors in the context of dy-
namical systems. In [26], the authors proposed a new simple
chaotic system but with admitting a line equilibrium. In [27],
the authors propose synchronization investigations using
the 4D hyperchaotic jerk system. In [28], the authors pro-
pose a chaotic system with infinite equilibria located on a
piecewise linear curve. In [12], the authors model the
hyperchaotic system using fractional derivative with Mit-
tag–Leffler kernel and fractional derivative with exponential
derivative. In [8], the authors introduce chaos in a cancer
modeling using fractional derivatives with exponential decay
and Mittag–Leffler law. In [29], Baskonus et al. propose
active control to stabilize a fractional-order macroeconomic
model using Lyapunov direct method. See more investiga-
tions related to fractional modeling of chaotic systems using
Caputo derivative, bifurcation, and Lyapunov analysis in
[30], modeling class of fractional-order chaotic or hyper-
chaotic system with Caputo derivative in [31], analysis of a
four-dimensional hyperchaotic system described by Capu-
to–Liouville derivative in [32], modeling Chua’s electrical
circuit in the fractional context in [33], andmodeling chaotic
processes with Caputo fractional-order derivative in [34].

In this paper, we model a chaotic system using the
Caputo derivative. )e main contributions of this paper are
mentioned in this paragraph. First, the phase portraits are
obtained using the famous predictor-corrector method valid
in the fractional differential equations’ discretizations.
Second, the numerical scheme as the predictor-corrector
method is the main contribution of this present work. )ird,
the small changes in our introduced fractional chaotic model
have been analyzed in terms of the bifurcation diagrams.
Different values of the Caputo derivative are considered; at

all these values, it will be important to give the chaos’s
nature. In other words, we will use the Lyapunov exponents
in the fractional context to decide whether we have chaotic
behaviors or not. )is analysis is fundamental because the
Lyapunov exponents’ classical theories are not valid all time
in a fractional context. For example, there exist hyperchaotic
systems described by the fractional operators with one
positive Lyapunov exponent instead of two positive Lya-
punov exponents. Fourth, we observed in our investigation
that the presence of zero as the Lyapunov exponent is quasi-
impossible in a fractional context. )e proof of this as-
sumption will be subject to further investigations in the
future. Another contribution addressed in this paper is
related to the local stability of the fractional chaotic system’s
equilibrium points. Due to the chaotic behaviors, all the
points are not stable. Alternatively, we propose feedback
control to stabilize the fractional error system after com-
bining the slave chaotic system and the master’s chaotic
systems. Another contribution of the present paper is that
we provide the coexisting attractors for specific values of the
model’s parameters at two different initial conditions.

)e remainder of this paper is organized as follows. In
Section 2, we recall the fractional tools used in the inves-
tigations. In Section 3, we introduce the fractional chaotic
model by using the Caputo derivative. Section 4 presents the
predictor corrector method proposed in the literature to
discretize our fractional chaotic model. In Section 5, the
phase portraits considering different fractional-order de-
rivative values are proposed for our fractional model. In
Section 6, the bifurcation diagrams for the small variation of
the model’s parameters are presented. In Section 7, the
natures of the chaos are characterized using the Lyapunov
exponents’ calculation in the context of fractional calculus.
In Section 8, we analyze the influence of the initial condition
in the chaotic behaviors. In Section 9, the stability analysis of
the fractional chaotic model’s equilibrium point has been
proposed, and the feedback control is presented. In Section
10, final remarks for our works are presented.

2. Fractional Operators

In this section, we make a brief recall of the fractional
operators which we will use through our investigation. In
this section, we will define the Caputo derivative and the
Riemann–Liouville derivative.

Definition 1 (see [5, 6]). We define the Riemann–Liouville
fractional integral for the function x: [0, +∞[⟶ R in the
form described by

I
α
x( (t) �

1
Γ(α)


t

0
(t − s)

α− 1
x(s)ds, (1)

with Γ(.) representing the Gamma Euler function and we set
the order as α> 0.

Definition 2 (see [5, 6]). We define the Riemann–Liouville
fractional derivative with the order α ∈ (0, 1) for the
function x: [0, +∞[⟶ R in the form described by
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D
α
x(t) �

1
Γ(1 − α)

d
dt


t

0
(t − s)

− α
x(s)ds, (2)

with Γ(.) representing the Gamma Euler function and we set
the order as α ∈ (0, 1).

Due to the inconveniences of the Riemann–Liouville
operator, we will focus on our paper with the Caputo de-
rivative. )e description of this derivative is given in the
following definition.

Definition 3 (see [5, 6]). )e Caputo fractional derivative
operator of order α ∈ (0, 1) is symbolized as the following
form when we consider a function x: [0, +∞[⟶ R in the
form described by

D
α
c x(t) �

1
Γ(1 − α)


t

0
(t − s)

− α
x′(s)ds, (3)

where the function Γ(.) represents the Gamma Euler
function.

For readers’ interest, the Laplace transform is also
fundamental for solving the fractional differential equations
analytically. )e following relation expresses the Laplace
transform of the Caputo derivative:

L D
α
c x( (t)  � s

α
L x(t){ } − s

α− 1
x(0). (4)

We set the order α with the relation α ∈ (0, 1). )e
Caputo derivative’s properties as the composition with the
fractional integral, the derivative of a constant function, or
the derivative of the Mittag–Leffler function can be found
with more pieces of information in [5, 6]. In this paper, the
fractional integral in Riemann–Liouville sense will play an
important role in the discretization because the proposed
method comes from the numerical scheme of this derivative;
the discretization details will be found in the next sections.

3. Modeling the Fractional-Order System

In this section, we introduce our model, which we will study
in the next section. An integer version of this model is a
chaotic system and has been subject to investigation since
2018 in [2] and is described by the following equations [2]:

x′ � ax − dyz, (5)

y′ � −by + xz, (6)

z′ � −cz + xyz + k, (7)

with initial conditions x(0) � 1, y(0) � 1, and z(0) � 1. )e
strange attractor is obtained with the following values for the
parameters of the previous model a � 4, b � 9, c � 4, d � 1,
and k � 4. Our new advancement here is to study the same
chaotic system, but we consider its fractional version de-
scribed particularly with the Caputo derivative.)erefore, in
this paper, we consider the fractional differential system
described as follows:

D
α
c x � ax − dyz, (8)

D
α
c y � −by + xz, (9)

D
α
c z � −cz + xyz + k. (10)

We impose the initial conditions as the following forms:

x(0) � 1,

y(0) � 1,

z(0) � 1.

(11)

In the above modeling, the Caputo derivative is used
instead of the classical Riemann–Liouville derivative
because we want to use physical initial conditions. )e
Riemann–Liouville derivative does not have physical
initial conditions. Furthermore, the Riemann–Liouville
derivative of constant value does not give zero. )ese
inconveniences also explain in this section the use of the
Caputo derivative. As it will be noticed in the phase
portraits, there exist many types of chaos according to the
fractional operator’s order. To prove that the fractional
order plays an important role in the chaos systems, no-
tably, it allows having new attractors, contrary to the
model with the integer-order derivative, where a new type
of chaotic system is obtained with the variation of the
models’ parameters.

4. Predictor-Corrector Applied on Fractional-
Order System

)is section describes the numerical method that we will
use to obtain the phase portraits of the fractional-order
chaotic system (5)–(7). )e discretizations are classical in
the literature; we try to apply discretization to our model.
In fractional calculus, many numerical schemes and an-
alytical methods can be used as the homotopy methods, a
domain decomposition method, the Chebyshev method,
and many others. But many inconveniences of the cited
methods are still to be solved due to the inconveniences in
the stability and the convergences of the approximate
solutions. )e use of the predictor-corrector method in
our system has the advantages of having Matlab codes,
fundamental in chaotic and hyperchaotic systems. In the
rest of this section, we use the predictor-corrector method
reported by Garrappa in his review article [35]. )e fol-
lowing can describe the solution of the fractional differ-
ential system (5)–(7):

x(t) � x(0) + I
αϕ t, x1( ,

y(t) � y(0) + I
αφ t, x1( ,

z(t) � z(0) + I
αϑ t, x1( .

(12)

We set the following functions from our fractional-order
system (5)–(7):
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ϕ t, x1(  � ax − dyz,

φ t, x1(  � −by + xz,

ϑ t, x1(  � −cz + xyz + k,

(13)

as well as point tn; then, according to the numerical scheme
named the predictor-corrector method, equations (9)–(11)
can be rewritten in the following forms:

x tn(  � x(0) + h
α κ(α)

n ϕ(0) + 
n−1

j�1
κ(α)

n−jϕ tj, x1j  + κ(α)
0 ϕ tj, x

P
1n ⎡⎢⎢⎣ ⎤⎥⎥⎦,

y tn(  � y(0) + h
α κ(α)

n φ(0) + 

n−1

j�1
κ(α)

n−jφ tj, x1j  + κ(α)
0 φ tj, x

P
1n ⎡⎢⎢⎣ ⎤⎥⎥⎦,

z tn(  � z(0) + h
α κ(α)

n ϑ(0) + 
n−1

j�1
κ(α)

n−jϑ tj, x1j  + κ(α)
0 ϑ tj, x

P
1n ⎡⎢⎢⎣ ⎤⎥⎥⎦.

(14)

Furthermore, the predictor has the following form in our
fractional system:

x
P

tn(  � x(0) + h
α



n−1

j�1
κ(α)

n−j−1ϕ tj, x1j ,

y
P

tn(  � y(0) + h
α



n−1

j�1
κ(α)

n−j−1φ tj, x1j ,

z
P

tn(  � z(0) + h
α



n−1

j�1
κ(α)

n−j−1ϑ tj, x1j .

(15)

In the above formula, h denotes the step size, and the
parameters of the discretization are defined in the following
forms:

κ(α)
n �

(n − 1)
α

− n
α
(n − α − 1)

Γ(2 + α)
, (16)

and when the indices n describe the condition n � 1, 2, . . .,
we set the parameters as the following expressions:

κ(α)
0 �

1
Γ(2 + α)

,

κ(α)
n �

(n − 1)
α+1

− 2n
α+1

+(n + 1)
α+1

Γ(2 + α)
.

(17)

)e approximation of the functions in our model step by
step is given by the expressions described in the forms

ϕ t, x1j  � axj − dyjzj,

φ t, x1j  � −byj + xjzj,

ϑ t, x1j  � −czj + xjyjzj + k.

(18)

Before ending this section, we give a brief review con-
cerning the method’s stability and convergence; more pieces
of information can be found in Garrappa’s paper.We set that
x(tn), y(tn), and z(tn) are the approximate solutions of the
fractional system under Caputo derivative (5)–(7) and the
exact solution of our model denoted by xn, yn, and zn; then

the residual functions as described are given in the following
forms:

x tn(  − xn


 � O h

min α+1,2{ }
 ,

y tn(  − yn


 � O h

min α+1,2{ }
 ,

z tn(  − zn


 � O h

min α+1,2{ }
 .

(19)

It is not hard to see that when the step size converges to
zero, we get the convergence of the approximate solution to
the exact solutions. )e predictor-corrector methods’ sta-
bility can be obtained from the Lipschitz conditions of the
drift functions ϕ, φ, and ϑ of our model.

)e method of discretization described in this section
has many advantages. Firstly, the method is stable and
convergent; the Matlab implementation is useful and simple.
Note that the convergence and the stability are essential in
the numerical methods; comparing our method with the
homotopy analysis methods, we can affirm that our method
is more useful because, with the homotopy methods, we
cannot determine precisely after how many iterations we
have the convergence and the stability of the method. )e
numerical discretization described in this section is also
more useful than the Laplace transform method. )ere are
many nonlinear differential equations where the Laplace
transform cannot be applied due to the complexity of the
equations’ forms, contrary to our described method in this
section which is applicable. In the resolution of the diffusion
equation, too, the use of the green function is not trivial, and
here also the numerical method can be used.

5. Phase Portraits versus Fractional-
Order Derivative

)is section is devoted to observing via different phase
portraits the Caputo derivative’s influence in the dynamics
of our fractional system (5)–(7). )is section will illustrate
the predictor-corrector procedure as well. To arrive at our
end, we take different values of the fractional-order deriv-
ative. We consider the following values of the fractional
derivative α � 0.91, α � 0.93, α � 0.95, α � 0.98, and
α � 0.995. )e evolution of the chaos will be observed with
these different orders. We begin the representation of the
phase portraits of the fractional-order system with the order
α � 0.95. )e graphical representations in different planes
are assigned in Figure 1: (x − y − z) and (y − z) planes. In
these first graphical representations, the considered order is
α � 0.95.

)e graphical representations in different planes are
assigned in Figure 2: (x − z) and (x − y) planes.

We continue this section with the order α � 0.98. We
will see the difference existing when the order of the frac-
tional derivative varies. )e graphical representations in
different planes are assigned in Figure 3: (x − y − z) and
(y − z) planes.

)e graphical representations in different planes are
assigned in Figure 4: (x − z) and (x − y) planes.

)e first difference in the phase portrait can be observed,
and we confirm the existence of new attractors. )erefore,
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Figure 1: Phase portraits of the fractional system with α � 0.95.
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Figure 2: Phase portraits of the fractional system with α � 0.95.
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Figure 3: Phase portraits of the fractional system with α � 0.98.
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the fractional order can play an interesting role in the be-
haviors of the solutions. )e graphical representations in
different planes are assigned in Figure 5: (x − y − z) and
(y − z) planes at the order α � 0.995.

)e graphical representations in different planes are
assigned in Figure 6: (x − z) and (x − y) planes.

We finish the phase portrait section by observing the
behaviors that happened behind α � 0.95; in the next figures,
we work with the order α � 0.93. We notice in Figures 7 and
8 significant difference from the previous phase portraits,
and our remark is that the chaotic behavior is not removed
in the dynamics. )e graphical representations in different
planes are assigned in Figure 7: (x − y − z) and (y − z)

planes.
)e graphical representations in different planes are

assigned in Figure 8: (x − z) and (x − y) planes.
)e figures in this section illustrate the impact of the

order of the Caputo derivative as well; this impact can be
seen in the geometries of the attractors which are different
in the cases considered in this section. )e phase portraits
represented in this section will be classified using the
bifurcation maps and the Lyapunov exponents. We will
notice new characterizations of chaos using the Lyapunov
exponents. As will be remarked, the nature of the chaos
depends on the Caputo derivative’s order. In other words,
the new order of the Caputo derivative generates new
types of chaos.

6. Bifurcation Diagrams

In this section, we analyze the sudden qualitative changes in
the nature of the solutions due to the variation of the pa-
rameters of the fractional-order system equation (5)–(7). In
this section, we also illustrate the qualitative changes of the
solutions of our model with the phase portraits.

In the first section, we suppose that the first parameter a
of our fractional model varies in the small interval precisely
in (3, 4). In Figure 9 the bifurcation diagram according to
the variation of parameter a is represented.

Figure 9 informs that we notice high chaotic behaviors
into the interval (3, 4). )at is, the chaotic behaviors are not
removed when the order is maintained to α � 0.95 and the
parameter has small variation. For more details, we depict
phase portraits 10 of the model with parameter a � 3.5. )e
graphical representations in different planes are assigned in
Figure 10: (x − y − z) and (y − z) planes.

)e graphical representations in different planes are
assigned in Figure 11: (x − z) and (x − y) planes.

We continue with the variation of parameter b into the
interval (9.10). In Figure 12, we represent the bifurcation
diagram according to the variation of parameter b.

Figure 12 informs that there exist chaotic behaviors into
this interval (9.10) when parameter b has small variation. To
illustrate the chaotic behaviors due to the small changes of b,
we represent graphically phase portraits 13, with b � 9.5.)e
graphical representations in different planes are assigned in
Figure 13: (x − y − z) and (y − z) planes.

)e graphical representations in different planes are
assigned in Figure 14: (x − z) and (x − y) planes.

)e variation of parameter c is now considered. We
suppose that the parameter varies into the interval (3, 4). In
Figure 15, the bifurcation diagram due to the variation of
parameter c is represented.

Same conclusion, the chaotic behavior is present in the
considered interval and is illustrated in the following phase
portraits 16, with the set c � 3.5. )e graphical represen-
tations in different planes are assigned in Figure 16: (x −

y − z) and (y − z) planes.
)e graphical representations in different planes are

assigned in Figure 17: (x − z) and (x − y) planes.
Bifurcation diagram 18 due to the variation of parameter

k � e into the interval (4, 5) is represented in Figure 18 and
we confirm the changes with phase portraits.

Phase portraits 19 are represented to illustrate the
changes in the behaviors of the dynamics of our model when
the parameter is into (4.5). )e graphical representations in
different planes are assigned in Figure 19: (x − y − z) and
(y − z) planes.
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Figure 4: Phase portraits of the fractional system with α � 0.98.
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Figure 5: Phase portraits of the fractional system with α � 0.995.
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Figure 6: Phase portraits of the fractional system with α � 0.995.

6 420 2 0 –2 –4 –6

40

10

30

0

20

–10

10

–20
0

z

x

y

(a)

0

5

10

15

20

25

30

35

z

–4 –2 0 2 4 6–6
y

(b)

Figure 7: Phase portraits of the fractional system with α � 0.93.
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Figure 8: Phase portraits of the fractional system with α � 0.93.
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Figure 9: Bifurcation diagram according to the variation of parameter a.
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Figure 10: Phase portraits of the fractional system with a � 3.5 and α � 0.95.
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Figure 11: Phase portraits of the fractional system with a � 3.5 and α � 0.95.
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Figure 12: Bifurcation diagram according to the variation of parameter b.
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Figure 13: Phase portraits of the fractional system with b � 9.5 and α � 0.95.
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Figure 14: Phase portraits of the fractional system with b � 9.5 and α � 0.95.
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Figure 15: Bifurcation diagram according to the variation of parameter c.
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Figure 16: Phase portraits of the fractional system with c � 3.5 and α � 0.95.
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)e graphical representations in different planes are
assigned in Figure 20: (x − z) and (x − y) planes.

)e final observation using bifurcation diagrams 9, 12,
15, and 18 is that our system has chaotic behaviors. But the
changes generated by parameters a, b, c, and k are ap-
proximately the same. )is conclusion can be observed in
the phase portraits presented in this section, which in
general do not have many differences between them.

7. Chaos Detection via Lyapunov Exponents

For chaos detection, we try in this section to characterize the
nature of chaos when the order of the fractional derivative
varies. We calculate in particular the Lyapunov exponents at
the orders α � 0.91, α � 0.93, α � 0.95, α � 0.98, and
α � 0.995. In the second part, we will localize the interval
where chaotic or hyperchaotic attractors are obtained. We
also calculate the dimension of the Lyapunov exponents.
According to the values of the Lyapunov exponents at the
order previously considered, we will calculate the sum of the
Lyapunov exponents to verify whether our fractional model

is dissipative or not. Before the calculations of the Lyapunov
exponents, we recall the Jacobian matrix necessary for the
algorithm to obtain the Lyapunov exponents; we have the
following matrix:

J �

a −dz −dy

z −b x

yz xz −c + xy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (20)

In Table 1, the Lyapunov exponents of the fractional-
order system (5)–(7) are assigned according to the variations
of the parameters of the fractional-order derivative.

)e first remark is that the Lyapunov exponents confirm
the results in the bifurcation section; that is, our fractional
model has chaotic behaviors. It is because there exists one
positive Lyapunov exponent. )e theory of Lyapunov ex-
ponents is very complex in the context of the use of the
fractional operators because zero as the value of the Lya-
punov exponent seems very difficult to be obtained using the
algorithms to get Lyapunov exponents. )is result is correct
due to the complexity of the numerical scheme of the
fractional operators. )e second remark is that, for all
considered fractional-order derivatives into (0.9, 1), the sum
of the Lyapunov exponents is negative, which means that the
fractional-order chaotic system (5)–(7) considered in this
paper is dissipative. We continue our analysis by considering
the Lyapunov exponents at the order α � 0.93. )e Lya-
punov exponents are given as follows:

LE1 � 1.6200,

LE2 � −0.5351,

LE3 � −9.4414.

(21)

)eir associated Kaplan–Yorke dimension is given as
follows:

dim(LE) � 2 +
LE1 + LE2

|LE3|
� 2.1149. (22)

)e second case is the Lyapunov exponents at the order
α � 0.95 given by the following numbers:
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Figure 17: Phase portraits of the fractional system with c � 3.5 and α � 0.95.
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Figure 18: Bifurcation diagram according to the variation of
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LE1 � 2.9693,

LE2 � −0.1235,

LE3 � −10.2837.

(23)

)eir associated Kaplan–Yorke dimension is given as
follows:

dim(LE) � 2 +
LE1 + LE2

|LE3|
� 2.2767. (24)

)e third case is the Lyapunov exponents at the order
α � 0.98 given by the following numbers:

LE1 � 1.7822,

LE2 � −0.0245,

LE3 � −8.2439.

(25)

)eir associated Kaplan–Yorke dimension is given as
follows:

dim(LE) � 2 +
LE1 + LE2

|LE3|
� 2.2132. (26)

)e last case is the Lyapunov exponents at the order α �

0.995 given by the following numbers:
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Figure 19: Phase portraits of the fractional system with k � 5 and α � 0.95.
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Figure 20: Phase portraits of the fractional system with k � 5 and α � 0.95.

Table 1: Lyapunov exponents according to order α.

α LE1 LE2 LE3
0.9 3.0972 −0.7120 −12.2030
0.91 2.2534 −0.7227 −10.4137
0.92 3.0524 −0.6030 −11.0109
0.93 1.6200 −0.5351 −9.4414
0.94 1.8800 −0.0595 −9.5865
0.95 2.9693 −0.1235 −10.2837
0.96 2.3080 −0.4528 −8.8529
0.97 2.2218 −1.1499 −7.9692
0.98 1.7822 −0.0245 −8.2439
0.99 1.8597 −0.6370 −7.0201
0.995 2.0933 −0.5649 −7.3253
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LE1 � 2.0933,

LE2 � −0.5649,

LE3 � −7.3253.

(27)

)eir associated Kaplan–Yorke dimension is given as
follows:

dim(LE) � 2 +
LE1 + LE2

|LE3|
� 2.2086. (28)

We can notice that the chaotic attractor is more sig-
nificant at the order α � 0.95 because the positive Lyapunov
exponents and the Lyapunov dimension are large. In
comparison between the chaotic behaviors at α � 0.98 and
α � 0.995, we notice by observations of the phase portraits
that the chaotic behaviors are more significant when the
order converges to α � 0.995. )is behavior is explained by
the fact that the positive Lyapunov exponent is larger at the
order α � 0.995. )e same comparison can be made for the
order α � 0.95, where the chaotic behaviors are more im-
portant than those at the order α � 0.93. )ese differences
can be observed with the Lyapunov exponents’ values and
the Lyapunov dimensions, which are larger at α � 0.95.

8. Initial Conditions Influence and
Coexistence Attractors

In this section, we analyze the impact of the initial condition.
In other words, what the initial conditions give in the nature
of the dynamics of our fractional system will be analyzed.
)e study of the changes of the initial conditions is im-
portant because chaotic and hyperchaotic systems are very
sensitive to the changes in the initial conditions. We con-
sider many cases in the initial conditions; first, we influence
x(0) from x(0) � 1 to x(0) � 1.0001. )e illustration of this
case is represented in Figure 21.

In Figure 21, the initial condition (1, 1, 1) is in blue color
and the initial condition (1.0001, 1, 1) is in red color. We
notice that significant changes can be generated by the
variation of the initial condition related to x(0). We con-
tinue by influencing y(0) from y(0) � 1 to y(0) � 1.0001.
)e illustration of this case is represented in Figure 22.

In Figure 22, the initial condition (1, 1, 1) is in blue color
and the initial condition (1, 1.0001, 1) is in red color. We
notice that significant changes can be generated by the
variation of the initial condition related to y(0). We finish by
the influence generated at the last variable z(0) from z(0) �

1 to z(0) � 1.0001.)e illustration of this case is represented
in Figure 23.

In Figure 23, the initial condition (1, 1, 1) is in blue color
and the initial condition (1, 1, 1.0001) is in red color. We
notice that significant changes can be generated by the
variation of the initial condition related to z(0).

)e general conclusion is that the initial conditions
generate many changes in attractors. )us, due to the fact
that the Lyapunov exponents are sensitive to the initial
conditions too, the values of the Lyapunov exponents will
vary according to the changes in the initial conditions.
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Figure 21: Sensitivity due to the variation of x(0) from x(0) � 1 to
x(0) � 1.0001.
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Figure 22: Sensitivity due to the variation of y(0) from y(0) � 1 to
y(0) � 1.0001.
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Figure 23: Sensitivity due to the variation of z(0) from z(0) � 1 to
z(0) � 1.0001.
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Considering the influence of the initial conditions, we
end this part by analyzing the coexisting attractors. We have,
for example, the presence of two pairs of attractors when
parameters a � 3, b � 9, c � 2.9, d � 1, and k � 4 at the order
α � 0.995 and two initial conditions which are given by
(1, 1, 1) (blue color) and (−1, −1, −1) (red color). )e figures
of the coexisting attractors are represented in Figures 24 and
25. )e graphical representations in different planes are
assigned in Figure 24: (x − y − z) and (y − z) planes.

)e graphical representations in different planes are
assigned in Figure 25: (x − z) and (x − y) planes.

)e order of the fractional operator plays an important
role in the existence of pairs of attractors. To observe this
influence, we maintain parameters a � 3, b � 9, c � 2.9,
d � 1, and k � 4 and change the order to α � 0.93; see
Figures 26 and 27. )e graphical representations in different
planes are assigned in Figure 26: (x − y − z) and (y − z)

planes.
)e graphical representations in different planes are

assigned in Figure 27: (x − z) and (x − y) planes.

9. Stability Analysis and Feedback Control

In this last section of our investigation, we focus on the local
stability of the equilibrium points of the fractional chaotic
model (5)–(7). )e equilibrium points of our fractional
model are given by E0 � (0, 0, 1), E1 � (2.236, 1.490, 6), and
E2 � (−2.236, −1.490, 6). At the first point E0, the Jacobian
matrix in the previous section is given as follows:

J �

4 −1 0

1 −9 0

0 0 −4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (29)

)e eigenvalues are given as follows: λ1 � 3.9226,
λ1 � −8.9226, and λ3 � −4. )e second and the last eigen-
values have negative real part and thus satisfy the Matignon
criterion [36], but |arg(λ1)| � 0< απ/2. )us, the equilib-
rium point E0 is not stable. At the second equilibrium point
E1, the Jacobian matrix in the previous section is given as
follows:

J �

4 −6 −1.49

6 −9 2.236

8.94 13.416 −0.66836

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (30)

)e eigenvalues are given as follows:
λ1 � 2.6239 + 6.0881i, λ2 � 2.6239 − 6.0881i, and
λ3 � −10.9161. )e last eigenvalue has negative real part and
thus satisfies the Matignon criterion, but the first and the
second eigenvalues do not satisfy the Matignon criterion as
α> 0.9. )us, the equilibrium point E1 is not stable when
α> 0.9. At the last equilibrium point E2, the Jacobian matrix
in the previous section is given as follows:

J �

4 −6 1.49

6 −9 −2.236

−8.94 −13.416 −0.66836

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (31)

We obtain the same eigenvalues as in the previous point.
)e eigenvalues are given as follows: λ1 � 2.6239 + 6.0881i,
λ2 � 2.6239 − 6.0881i, and λ3 � −10.9161. )e last eigen-
value has negative real part and satisfies the Matignon
criterion, but the first and the second eigenvalues do not
satisfy the Matignon criterion as α> 0.9. )us, the equi-
librium point E2 is not stable when α> 0.9.

In the last part, we propose a feedback control to stabilize
our chaotic system because, as we observe, all the equilib-
rium points are not stable when the fractional-order de-
rivative exceeds α> 0.9. Let the slave fractional chaotic
system be defined by the following equation:

D
α
c x1 � ax1 − x2x3,

D
α
c x2 � −bx2 + x1x3,

D
α
c x3 � −cx3 + x1x2x3 + k,

(32)

and the master system is given by the following equation:

D
α
c y1 � ay1 − y2y3 + u1,

D
α
c y2 � −by2 + y1y3 + u2,

D
α
c y3 � −cy3 + y1y2y3 + k + u3,

(33)

where ui represents the exogenous input, which attracts our
attention. Let us define the error terms given by the fol-
lowing equations:

e1 � y1 − x1,

e2 � y2 − x2,

e3 � y3 − x3.

(34)

)en, considering the slave system and the master
system, we get the following fractional differential error
system. )en, considering the slave system and the master
system, we get the following fractional differential error
system:

D
α
c e1 � ae1 − e2e3 − e2x3 − e3x2 + u1, (35)

D
α
c e2 � −be2 + e1e3 + e1x3 + e3x1 + u2, (36)

D
α
c e3 � −ce3 + f e1, e2, e3, x1, x2, x3(  + u3. (37)

)en, here, to stabilize the fractional error equation, we
choose feedback control defined by

u1 � −ae1 + e2x3 + e3x2, (38)

u2 � −e1x3 − e3x1, (39)

u3 � −f e1, e2, e3, x1, x2, x3( . (40)

)us, the fractional differential equation defined by
equations (35)–(37) becomes as follows:

D
α
c e1 � −e2e3,

D
α
c e2 � −be2 + e1e3,

D
α
c e3 � −ce3.

(41)
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Figure 24: Coexisting attractors in (x, y, z) and (x, y) planes at α � 0.995.
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Figure 25: Coexisting attractors in (x, z)(y, z) planes at α � 0.995.
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Figure 26: Coexisting attractors in (x, y, z) and (x, y) planes at α � 0.93.
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Let the Lyapunov function be defined by
V(e1, e2, e3) � 1/2(e21 + e22 + e23). From the derivative of
function V along the trajectories of the fractional errors
equations (38)–(40) we get the following relationship:

D
α
c V � −be

2
2 − ce

2
3,

D
α
c V � − be

2
2 + ce

2
3 .

(42)

Using Lyapunov characterization of the global asymp-
totic stability, we get the global asymptotic stability of the
trivial equilibrium point of the fractional system (38)–(40),
which in turn implies that

lim
t⟶+∞

‖e‖ � lim
t⟶+∞

‖y − x‖ � 0. (43)

10. Final Remarks

)is paper studies the fundamental properties of a class of
fractional-order systems in terms of chaotic behaviors,
Lyapunov exponents for characterizing the chaotic or
hyperchaotic behaviors, the Lyapunov dimensions, and the
stability of the equilibrium points of themodel in the context
of the Matignon criterion. We find that our system admits
chaotic behaviors with all fractional-order derivatives into
the interval (0.9, 1) as can be observed in the figures in
Section 5. )e fractional chaotic system’s equilibrium points
are not stable due to the chaotic behaviors, but we find
feedback control to stabilize the model’s error term. )e
different figures of the dynamics of the model represented in
this paper were possible with the proposed numerical dis-
cretization aid, including the Riemann–Liouville derivative
discretization. )e numerical method is specially called the
predictor-corrector method applied in our system because it
is already reported in the literature. )e impact of the pa-
rameters of the introduced model is analyzed via the bi-
furcation concept. )e main conclusions of this paper are
summarized as follows: we find a region where the frac-
tional-order system exhibits chaotic behaviors; the bifur-
cation diagrams in Section 6 and the Lyapunov exponents

inform us that the fractional-order derivative has a signif-
icant impact on the dynamics because new attractors are
generated when the order of the fractional derivative varies;
the effectiveness of all the analysis in the paper is possible
with the aid of the numerical scheme.)e paper also informs
us that the present chaotic system admits coexisting
attractors when the initial conditions vary and with specific
parameters; see the figures in Section 8. )e paper also
contributes to proposing adaptative control for global as-
ymptotic stability. For future research directions, the Lya-
punov exponents, the bifurcation diagrams, the stability
analysis, the synchronization, and the electrical imple-
mentation of the model used in this paper can be focused on
as regards Caputo derivative terms with different values of
the fractional orders. )e fractional chaotic systems with the
nonsingular derivatives can also be focused on in the future.
)is paper addresses numerical schemes; it will be inter-
esting in the future research to draw the circuit associated
with the present chaotic model and analyze the simulations
obtained in the oscilloscopes. )e circuits’ schematic can be
done with both the integer-order version and the fractional-
order version of our present system.)e Poincare map of the
present chaotic system in fractional version is also the
perspective of new research papers.
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Textile dyes are untreated discharge into the environment which results in a significant increase in water pollution levels
worldwide. Due to the continuous addition of toxic organic dyes, a necessary strategic model is required for the complete
degradation of dyes in textile effluent. (is paper considers the possibility of biological synthesis of silver and iron nano-
particles and their use in photocatalytic degradation. (e immediate change of silver nitrate solution occurring from colorless
to brown is observed after the addition of the aqueous leaf extract, indicating the successive reduction of Ag+ ions to the Ag
nanoparticles. (ese formed Ag nanoparticles were subjected to examine the photocatalytic activity under the solar radiation
for the degradation of methyl orange. Green synthesized Ag nanoparticles were found to successfully degrade methyl orange up
to 95% between 70 hours than the initial exposure time.(e absorbance of methyl orange was measured at 465 nm.(e present
paper is focused on fractional mathematical modelling of dye degradation in textile effluents using the Caputo–Fabrizio
fractional derivative without the singular kernel. (e iterative Laplace transform method is employed to obtain an analytic
solution for the absorption transport equation. (e obtained experimental results showing significant removal of dyes from
textile wastewater are compared using modelling results. (e innovative approach is in outstanding agreement with the
findings of the experiment. (e mathematical modelling for the dye removal process helps to design suitable environmental
management studies to reduce the adverse effect caused by toxic wastewater. Model validation has been shown by comparing
analytical simulated solutions with experimental results for photocatalytic degradation using silver and iron nanoparticles as
eco-friendly and low-cost agents.

1. Introduction

Dyes are the most important type of synthetic organic ma-
terials utilized in various industries such as textiles, food, and
pharmaceuticals. (e basic strategy for the remediation of
these dye compounds from manufacturing effluents has been
accompanied by the use of chemical reagents, physical as-
pects, and biological processes. However, these methods are
laborious and inefficient and have issues with disposal as well.

Recently, in [1], photocatalytic activity by metal nanoparticles
sought significant attention due to the fact that it has the
characteristic properties of degrading organic compounds
under solar light illumination in the case of metal catalysts.
Compared to traditional approaches, this process is low cost
and does not produce toxic goods. Nanotechnology allows the
development of nanoparticles with regulated size, design, and
variance of materials at the nanometer scale length, with the
aim of using them to enhance human health. Metal
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nanoparticles, among all nanoparticles, have a broad variety
of applications in areas such as bioimaging, sensor growth,
and data processing and novel applications in the biomedical
research sector. (e late application of metallic silver and
silver nanoparticles as antimicrobial operators in various
products started, for example, powder and paint, animal feed,
covering of the catheter tube, wound patch dressingmaterials,
and water purifying treatments [2], with a negligible danger of
toxification in human beings. (e green methodology of
nanoparticles prepared from natural substances is gaining
incredible popularity because it is more environmentally
friendly, less harmful, and less time consuming; at present,
plant materials are utilized for nanoparticles’ formation be-
cause they are more perfect than the microorganism-medi-
ated nanoparticles’ procedure since they are difficult to
handle.

Plant extract-based synthesis of nanoparticles is having
tremendous success due to its compatibility, environmentally-
friendly, and least time consuming properties [3–5]. In a
recent study, silver nanoparticles were effectively fabricated
using the Cordia dichotoma (common name: gonda) leaf
extract, and the silver and iron nanoparticles synthesized were
used in the degradation of dyes. A flowering plant Cordia
dichotoma is species from the family of borage, and it is
boraginaceous which is native to the regions of western
Melanesia, northern Australia, and Indomalayan realm.
Common vernacular names include Indian cherry, bird lime
tree, pink pearl, glue berry, anonang, cumming cordia, snotty
gobbles, fragrant manjack, and lasoda (gunda), respectively.
Cordia dichotoma is a deciduous tree with a short bole and a
spreading crown that grows to be small to intermediate in
height. (e stem bark is greyish brown in color and can be
smooth or wrinkled over its base. (e flowers are short
stalked, whitish, and open only at night. (e fruit is smooth,
green-yellow, or pink-yellow globose that becomes black after
ripening, and the pulp becomes viscid. Figure 1 depicts plants
and their leaves found in tropical and subtropical regions. It
can be found in a variety of forests, from the dry deciduous
forests of Rajasthan to the wet deciduous forests of the
Western Ghats and the coastal forests of Myanmar. Fabri-
cated silver nanoparticles under exposure to sunlight have
been exposed to dye degradation operation. (ough a lot of
work has been done to measure the performance of many
adsorbents for dye degradation from industries, yet very little
work has been done to model the dye degradation process to
evaluate the effect of various parameters on the dye degra-
dation process. In [6], modelling enables the future prediction
and indicates the importance of various factors in the real
system. (e numerical iterative Laplace transform method is
employed to simulate the degradation process of dyes from
wastewater. (e findings achieved by the proposed model
could help to refine the wastewater management strategy.

2. Experimental

In order to assess the validity of the numerical modelling for
the analysis of wastewater dye degradation, the simulated
findings are compared with the results of the experimental

studies. In the laboratory test, the following materials and
methods were followed.

2.1. Preparation of the Plant Extract. Leaves of Cordia
dichotoma (common name: gonda) were collected from the
JIET campus. 10 g of fresh leaves were sliced into thin pieces
and washed vigorously with double-distilled water. (e
leaves’ content was added with 100mL of double-distilled
water and kept for boiling at 60°C for 10min. (en, the
filtrate was obtained by passing the boiled mixture through
Whatman No. 1 filter paper and kept in a clean container at
4°C for further nanoparticle synthesis process.

2.2. Biosynthesis of Silver Nanoparticles. About 1 millimolar
silver nitrate aqueous salt solution was prepared in double-
distilled water that was procured from Sigma-Aldrich grade
salt. Appropriately, 5mL of the freshly prepared leaf extract
was mixed with 45mL of aqueous silver nitrate salt solution.
For the method of reducing the silver ion to silver nano-
particles, the mixture was held for incubation at room
temperature. (e formation of silver NPs was identified
visibly as the solution turns colorless to brown and later
identified using the UV-vis spectrum analysis. (e variation
in pH of the leaf extract was altered to examine the effect of
the production of silver nanoparticles (Figure 2).(eUV-vis
spectrophotometer measured the formation of silver
nanoparticles at a wide range of wavelengths. (e method
followed is described in the earlier work published by Dave
[7].

2.3. Biosynthesis of IronNanoparticles. Aqueous salt solution
of ferrous sulphate was formulated using double-distilled
water at a concentration of 1mM of 5mL of the newly
developed leaf extract which was applied to 45mL of
aqueous salt solution of ferrous sulphate and stored at room
temperature for the reduction of Fe nanoparticles (Figure 3).

2.4. Characterization of Biosynthesized Silver Nanoparticles
UsingUV-Vis Spectroscopy. (e purified silver nanoparticles
were obtained using repeated centrifugation method at
7000 rpm for 15min followed by drying at 100°C. (e
successive reduction of silver nitrate into silver NPs was
subjected to the double-beamUV-vis spectrophotometer for
measuring the spectrum at a differential wavelength from
360 nm to 700 nm, respectively.

2.5. Photocatalytic Degradation of Dye

2.5.1. Using Silver Nanoparticles. From the biosynthesized
silver nanoparticles, 5mg Ag NPs was added to the test flask
containing 50mL of methyl orange dye solution.(e control
test bottle was also preserved without the inclusion of silver
nanoparticles. Until exposure to sunlight irradiation, the
reaction suspension was thoroughly combined with mag-
netic stirring for 30min to clearly align the operating test
solution. Subsequently, the dispersed solution was put under
sunlight and monitored for color change significant to the
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production of Ag NPs. At specific time intervals, aliquots of
2-3mL from the suspension were screened and used to
analyze the photocatalytic degradation activities of the dye
using the UV-vis spectrophotometer at various frequencies.
(e degrading (Figure 4) concentration of the dye during the
degradation operation was determined by observing the
suspension solution value at 660 nm.

2.5.2. Using Iron Nanoparticles. For reactions similar to
Fenton oxidation, iron nanoparticles were prepared using
ferrous sulphate as a precursor, and 1ml of colloidal iron
nanoparticles along with 1ml of 3% H2O2 was added to 9ml
of 50 ppm methyl orange in a test tube. Five replicates were
prepared for each sample. A new blank (control) was also
included in each round of dye degradation, containing the
same volume of the dye and H2O2 but without colloidal
water replacing the colloidal nanoparticles. (e concen-
tration was measured using a UV-vis spectrophotometer.
(e percentage of dye degradation was calculated using the
preceding formula where the initial concentration of dye

solution and concentration of dye solution are present after
photocatalytic degradation (Figure 5).

3. Mathematical Modelling Using the
Caputo–Fabrizio Fractional
Derivative without the Singular Kernel

In this article, we based on a fractional-order mathematical
model to investigate the transport of relevant textile industry
effluents by using the Caputo–Fabrizio fractional derivative
without the singular kernel (see also [8]). (e concentration
of analytical solution is obtained by the iterative Laplace
transform technique, and the concentration is plotted for
different input parameters. For more modern fractional-
order mathematical model developments, the reader can
refer to [9–16].

(e transport equation due to Doulati Ardejani et al. [17]
for the absorption process is given as

R
zC

dt
� −KSρd, (1)

where

C: the concentration of solution
S: the quantity of absorbed mass on the surface
R: the retardation factor
K: the delay constant
ρd: the bulk density of the medium

(e relationship between C and S due to the Langmuir
isotherm [18] is given as

Figure 1: (e plant and its leaf.

Figure 2: Synthesis of silver nanoparticles.

Figure 3: Synthesis of iron nanoparticles.

Figure 4: Dye degradation using silver nanoparticles.
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S �
Q0KLC

1 + KLC
, (2)

where

Q0: the maximum absorption capacity
KL: the Langmuir constant

Using (1) and (2), we have

R
zC

dt
� −

KKLQ0ρdC

1 + KLC
, (3)

with C(0) � C0.
Let L(a, b) � f: f ∈ L2(a, b) andf′ ∈ L2(a, b) , where

L2(a, b) is the space of square-integrable functions on in-
terval (a, b). Furthermore, H(0, b) � f: f ∈ L2(0, b) and

f′ ∈ L2(0, b)}, with b> 0.

Definition 1. Let 0< α< 1; the fractional Caputo–Fabrizio
[19, 20] derivative of order α for a function f(t) ∈ H(0, b)

with b> 0 is given by

CF
D

α
t f(t) �

(2 − α)M(α)

2(1 − α)


t

0
f′(x)exp

−α
1 − α

(t − x) dx,

t≥ 0,

(4)

where M(α) is the normalization function.

Definition 2. Let 0< α< 1; the fractional integral of order α
for a function f is defined as

CF
J

α
f(t) �

2(1 − α)

(2 − α)M(α)
f(t)

+
2α

(2 − α)M(α)


t

0
f(x)dx, t≥ 0.

(5)

Remark 1. Note that, from the definition in equation (5), the
fractional integral of the Caputo–Fabrizio type of function f

of order 0< α≤ 1 is a mean between the function f and its
integral of order one, which means

2(1 − α)

(2 − α)M(α)
+

2α
(2 − α)M(α)

� 1, (6)

and therefore,

M(α) �
2

2 − α
, 0< α≤ 1. (7)

(e advantage of the Caputo–Fabrizio operator over
classical Caputo is that there is no singularity for t � s.

Definition 3. Due to Caputo and Mauro [19], the Laplace
transform for the Caputo–Fabrizio fractional derivative
operator of order 0< α≤ 1, M ∈ N, is given by

L
CF
D

M+α
t f(t) (s) �

1
1 − α

L f
(M+1)

(t) L exp
−α
1 − α

t  

�
s

M+1
L(f(t)) − s

M
f(0) − S

M− 1
f′(0) + · · · + f

M
(0)

s + α(1 − s)
.

(8)

If M � 0, we get

L
CF
D

α
t f(t) (s) �

sL(f(t))

s + α(1 − s)
. (9)

(e fractional form of equation (3) is given as

CF
D

α
t C +

KKLQ0ρdC

R 1 + KLC( 
� 0. (10)

4. Iterative Laplace Transform

(e nonhomogeneous Caputo–Fabrizio fractional differ-
ential equation is given as

CF
D

M+α
t f(x, t) � u(x, t) + ϕ(f(x, t)) + ψ(f(x, t)),

M − 1< α≤M, M ∈ N,

(11)

Figure 5: Dye degradation using iron nanoparticles.
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with the given condition

D
K
t (x, 0) � θK(x), K � 0, 1, 2, . . . , M − 1, (12)

where u(x, t) is a known term, ϕ is the linear operator, and ψ
is the nonlinear operator.

Applying Laplace transform (8) to both sides of equation
(11) yields

L(f(x, t)) � λ(x, s) +
s + α(1 − s)

s
n+1 L(ϕf(x, t)

+ ψf(x, t)),

(13)

where

λ(x, s) �
1

s
n+1 s

nθ0(x) + s
n− 1θ1(x) + · · · + θn(x)  +

s + α(1 − s)

s
n+1 u(x, s),

f(x, t) � λ(x, t) + L
− 1 s + α(1 − s)

s
n+1 L(ϕf(x, t) + ψf(x, t)) .

(14)

Now, applying the new iterative method [21] yields the
solution as an infinite series:

f(x, t) � 
∞

j�0
fj(x, t). (15)

Here, linear function ϕ is given as

ϕ 
∞

j�0
fj(x, t)⎛⎝ ⎞⎠ � 

∞

j�0
ϕ fj(x, t) . (16)

Furthermore, nonlinear ψ is decomposed as

ψ 
∞

j�0
fj(x, t)⎛⎝ ⎞⎠ � ψ f0(x, t)( 

+ 
∞

j�1
ψ 

j

i�0
fi(x, t)⎛⎝ ⎞⎠ − ψ 

j−1

i�0
fi(x, t)⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(17)

In view of equations (15)–(17), equation (14) is equiv-
alent to



∞

j�0
fj(x, t) � λ(x, t) + L

− 1 s + α(1 − s)

s
n+1 L 

∞

j�0
ϕfj(x, t)⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ L
− 1 s + α(1 − s)

s
n+1 L ψ f0(x, t)(  + 

∞

j�1
ψ 

j

i�0
fi(x, t)⎛⎝ ⎞⎠ − ψ 

j−1

i�0
fi(x, t)⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(18)
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(e recurrence relation is given as

f0(x, t) � λ(x, t),

f1(x, t) � L
− 1 s + α(1 − s)

s
n+1 L ϕ f0(x, t)(  + ψ f0(x, t)( (  ,

fp+1(x, t) � L
− 1 s + α(1 − s)

s
n+1 L ϕ fr(x, t)(  + ψ 

p

i�0
fi(x, t)⎛⎝ ⎞⎠ − ψ 

p−1

i�0
fi(x, t)⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(19)

(e p-term approximate solution is given as

f � f0 + f1 + f2 + · · · + fp−1. (20)

5. Results and Discussion

5.1.OpticalObservation. In the beginning, by adding the leaf
extract to 1mm silver solution, color of the solution turned
brown, indicating the immediate and rapid formation of
silver nanoparticles. (is transformation of color occurs due
to the excitation of SPR (surface plasmon resonance) of the
silver nanoparticles. Similar results were obtained in an
experiment using the root extract of Curculigo orchioides by
Dave and Das [6], and the color change observed was
brownish yellow to dark brown.

5.2. UV-Vis Spectrophotometer. At the preliminary state, the
degradation was identified by color change. (e catalytic
activity of silver nanoparticles on the degradation of dyes
was confirmed using methyl orange as a sample dye. In solar
light, silver nanoparticles were used for the degradation of
methyl orange, and the amount of dye left was measured at
different time intervals. Initially, color of the dye shows deep
orange color which changed into light yellow after one hour
of incubation along with silver nanoparticles.(e absorption
spectrum recorded has shown a decrease in the peak at
varied time intervals. Calculation shows that the percentage
of degradation efficiency of silver nanoparticles was 95.8% at
70 h (Table 1). When the exposure time of the dye and silver
nanoparticle complex placed in sunlight was increased, the
absorption peak also had a decrease.(e absorption peak for
methyl orange was canter at 660 nm in the visible region
which was reduced, and at last, it disappeared when the
reaction time was increased. (e whole process was com-
pleted after 70 hours of incubation and was recognized by
the change of reaction mixture color to colorless (Table 2).

5.3. Photocatalytic Degradation of Dye

5.3.1. Visual Observation. Photocatalytic degradation of
methyl orange was carried out by using green synthesized

silver nanoparticles under solar light. Dye oxidation was
initially detected by a shift of hue. Initially, color of the
pigment reveals deep orange color modified to light yellow
after 1 h of incubation with silver nanoparticles when ex-
posed to sunlight. (en, the hue changed from bright yellow
to pale yellow, and the solution gradually became colorless.
Finally, the degradation process was completed at 70 h and
was recognized by the change of reaction mixture color to
colorless.

6. Modelling

From equation (10), the fractional-order transport equation
for the absorption process is given as

CF
D

α
t C +

KKLQ0ρdC

R 1 + KLC( 
� 0, (21)

with C0 � c0e
− βt, β is a constant which depends on initial dye

concentration.
(e second-term approximate solution is given as

C(t) � c0e
− βt

−
Pc0

λ
(1 − α) 1 +

eβt

λ
 

− 1

+ 2αt +
2α
β
loge

λ + 1
λ + e

βt
 ⎡⎣ ⎤⎦,

(22)

where

λ � c0KL,

P �
KKLQ0ρd

R
,

e
βt

λ




< 1.

(23)

Figure 6 gives simulated results of solution (22), with
parameters Q0 � 10.718, KL � 0.308, R2 � 0.9762, K � 0.1,
R � 0.4035 × 1020, ρd � 0.001, and c0 � 1.7 × 104.

We conclude that concentration decays exponentially
with faster rates for initial time and takes long time to reduce
for higher initial values.
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7. Conclusion

Green synthesis of silver and iron nanoparticles has been
carried out using the plant extract of a locally available plant
Cordia dichotoma (common name: gonda). Photocatalytic
degradation of the dyes using these silver and iron metallic
nanoparticles was successfully carried out in the laboratory.
(e exposure time of the amount of degradation of dye using
iron nanoparticles and Fenton-like oxidation was tested, and
it was found that it is much lesser with iron nanoparticles
compared to the amount of degradation of dye using silver
nanoparticles. A numerical fractional model for the trans-
port equation for the concentration process involving
Caputo–Fabrizio fractional-order derivatives has been de-
veloped to simulate the dye degradation from industry ef-
fluents. Iterative Laplace transform method is deployed to
solve the model. Model validation has been shown by
comparing the analytical simulated solution with experi-
mental results using photocatalytic degradation using silver
and iron nanoparticles as eco-friendly and low-cost ad-
sorbents. (e simulated results of the model are in good
agreement with the experimental results. It is observed that
the adsorption process by iron nanoparticles could be well
described by the fractional model (Figures 6 and 7). Fur-
thermore, it is clear that the rate of degradation of dye is very
sensitive to the initial concentration of dye. From the present
study, it is found that iron nanoparticles can be used ef-
fectively as low-cost and eco-friendly material for developing
large-scale water treatment strategies to remove the toxic
dyes in the effluent.

Data Availability

No data were used to support this study.

Table 1: Exposure time of the amount of degradation of dye (%)
using silver nanoparticles.

Exposure time
(hrs.)

Amount of degradation of dye (%) using silver
nanoparticles

1 2.5± 0.15
2 4.7± 0.45
3 7.3± 0.55
4 15.5± 0.47
10 19.5± 0.15
21 25.3± 0.14
22 39.5± 0.65
24 44.2± 0.34
41 47.9± 0.21
42 55.2± 0.22
44 65.2± 0.45
45 75.5± 0.65
46 83.2± 0.37
48 88.9± 0.18
65 89.1± 0.23
66 93.6± 0.88
70 95.8± 0.67

Table 2: Exposure time of the amount of degradation of dye (%)
using iron nanoparticles and Fenton-like oxidation.

Exposure time
(hrs.)

Amount of degradation of dye (%) using iron
nanoparticles and Fenton-like oxidation

1 55± 0.35
2 78± 0.15
3 88.3± 0.25
4 95.2± 0.15
10 99
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Figure 6: Comparison of numerical results with experimental
results using iron nanoparticles and Fenton-like oxidation.
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,e current article investigates the boundedness criteria for the commutator of rough p-adic fractional Hardy operator on
weighted p-adic Lebesgue and Herz-type spaces with the symbol function from weighted p-adic bounded mean oscillations and
weighted p-adic Lipschitz spaces.

1. Introduction

For a fixed prime p, it is always possible to write a nonzero
rational number x in the form x � pc(m/n), where p is not
divisible by m, n ∈ Z and c is an integer. ,e p-adic norm is
defined as |x|p � p− c ∪ 0{ }: c ∈ Z . ,e p-adic norm | · |p
fulfills all the properties of a real norm along with a stronger
inequality:

|x + y|p ≤max |x|p, |y|p . (1)

,e completion of the field of rational number with
respect to | · |p leads to the field of p-adic numbersQp. In [1],
it can be seen that any x ∈ Qp\ 0{ } can be represented in the
formal power series form as

x � p
c



∞

j�0
βjp

j
, (2)

where βj, c ∈ Z, βj ∈ (Z/(pZp)), β0 ≠ 0. ,e convergence of
series (2) is followed from |pcβkpj|p � p− c− j.

,e n-dimensional vector space Qn
p � Qp × · · · × Qp

consists of tuples x � (x1, x2, . . . , xn), where
xi ∈ Qp, i � 1, 2, . . . , n, with the following norm:

|x|p � max
1≤i≤n

xi


p. (3)

,e ball Bc(a) and the corresponding sphere Sc(a) with
center at a ∈ Qn

p and radius pc in non-Archimedean ge-
ometry are given by

Bc(a) � x ∈ Qn
p: |x − a|p≤p

c
 ,

Sc(a) � x ∈ Qn
p: |x − a|p � p

c
 .

(4)

When a � 0, we write Bc(0) � Bc, Sc(0) � Sc.
Since the space Qn

p is locally compact commutative
group under addition, it cements the fact from the standard
analysis that there exists a translation invariant Haar
measure dx. Also, the measure is normalized by


B0

dx � B0


H � 1, (5)

where |E|H represents the Haar measure of a measurable
subset E of Qn

p. Furthermore, one can easily show that
|Bc(a)|H � pnc, |Sc(a)|H � pnc(1 − p− n), for any a ∈ Qn

p.
,e last several decades have seen a growing interest in

the p-adic models appearing in various branches of science.
,e p-adic analysis has cemented its role in the field of
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mathematical physics (see, for example, [2–4]). Many re-
searchers have also paid relentless attention to harmonic
analysis in the p-adic fields [5–11]. ,e present paper can be
considered as an extension of investigation of Hardy-type
operators started in [6, 7, 12–16].

,e one-dimensional Hardy operator

Hf(x) �
1
x


x

0
f(y)dy, x> 0, (6)

was introduced by Hardy in [17] for measurable functions
f: R+⟶ R+ which satisfies the inequality

‖Hf‖Lq R+( ) ≤
q

q − 1
‖f‖Lq R+( ), 1< q<∞, (7)

where the constant q/(q − 1) is sharp. In [18], Faris proposed
an extension of an operator H on higher dimensional space
Rn by

Hf(x) �
1

|x|
n 

|y|≤|x|
f(y)dy, (8)

where |x| � (
n
i�1 x2

i )(1/2) for x � (x1, . . . , xn). In addition,
Christ and Grafakos [23] obtained the exact value of the
norm of an operator H defined by (8). Over the years, Hardy
operator has gained a significant amount of attention due to
its boundedness properties [19–22]. For complete under-
standing of Hardy-type operators, we refer the interested
readers to study [12, 23–29] and the references therein.

In what follows, the n-dimensional p-adic fractional
Hardy operator

H
p
αf(x) �

1
|x|

n− α
p


|y|p≤|x|p

f(y)dy, (9)

was defined and studied for f ∈ Lloc
1 (Qn

p) and 0≤α< n in
[15]. When α � 0, the operator H

p
α transfers to the p-adic

Hardy operator (see [30] for more details). Fu et al. in [30]
acquired the optimal bounds of p-adic Hardy operator on
Lq(Qn

p). On the central Morrey spaces, the p-adic Hardy-
type operators and their commutators are discussed in [16].
In this link, see also [6, 7, 14, 27].

From now on, we turn our attention towards the rough
kernel version of an operator which recently received a
substantial attention in analysis (see for instance
[11, 31–37]). ,e roughness of Hardy operator was first time
studied by Fu et al. in [12]. Motivated from the results of
rough Hardy-type operators in Euclidean space, we define a
special kind of rough fractional Hardy operator and its
commutator in the p-adic field.

Let f: Qn
p⟶ R, b: Qn

p⟶ R and Ω: S0⟶ R be
measurable functions and let 0< α< n. ,en, for x ∈ Qn

p∖ 0{ },
we define a rough p-adic fractional Hardy operator H

p

Ω,α and
its commutator H

p,b

Ω,α as

H
p

Ω,αf(x) �
1

|x|
n− α
p


|y|p≤|x|p

Ω |y|py f(y)dy, (10)

H
p,b

Ω,αf(x) �
1

|x|
n− α
p


|y|p≤|x|p

(b(x) − b(y))Ω |y|py f(y)dy,

(11)

whenever


|y|p≤|x|p

Ω |y|py f(y)


dy <∞, (12)


|y|p≤|x|p

b(y)Ω |y|py f(y)


dy <∞. (13)

Remark 1. Obviously

|y|p: y ∈ Qn
p  � p

c
: c ∈ Z ∪ 0{ }, (14)

holds for every integer n≥ 1 and prime p≥ 2. Since the
inclusion

0{ }∪ p
c
: c ∈ Z ⊆Qp, (15)

holds andQn
p is a linear space over fieldQp, the product |y|py

is correctly defined. Moreover, if a nonzero y ∈ Qn
p has a

form y � (y1, . . . , yn) and

yi � p
ci β0,i + β1,ip + β2,ip

2
+ · · · , i � 1, . . . , n, (16)

(see (2)), then there is i0 ∈ 1, . . . , n{ } such that

yi0



p
� p

− ci0 ≥p
− ci � yi


p, (17)

whenever yi ≠ 0. Using (3), we obtain |y|p � p− ci0 . Now from
(16) and (17), it follows that

|y|py


p
� max

1≤i≤n
yi≠0

p
ci − ci0


p � max

1≤i≤n
yi≠0

p
ci0− ci � p

ci0− ci0 � 1.

(18)

,us, for every nonzero y ∈ Qn
p, the vector |y|py belongs

to the sphere

S0(0) � y ∈ Qn
p: |y|p � 1 . (19)

From (12), it directly follows that H
p

Ω,α ∈ R for every
nonzero x ∈ Qn

p, and using (12) and (13), we have

H
p,b

Ω,αf(x)


≤
|b(x)|

|x|
n− α
p


|y|p≤|x|p

Ω |y|py f(y)


dy

+
1

|x|
n− α
p


|y|p≤|x|p

b(y)Ω |y|py f(y)


dy <∞,

(20)

for every x ∈ Qn
p∖ 0{ }. Consequently, the operators H

p

Ω,α and
H

p,b

Ω,α are correctly defined.
,e aim of the present paper is to study the weighted

central mean oscillations (CMO) and weighted p-adic
Lipschitz estimates of H

p,b

Ω,α on weighted p-adic function
spaces like weighted p-adic Lebesgue spaces, weighted
p-adic Herz spaces and p-adic Herz–Morrey spaces.
,roughout this article, the letter C represents a constant
whose valuemay differ at all of its occurrence. Before turning
to our key results, let us define and denote the relevant
p-adic function spaces.
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2. Notations and Definitions

Suppose w(x) is a weight function on Qn
p, which is non-

negative and locally integrable function onQn
p.,e weighted

measure of E is denoted and defined as w(E) � 
E
w(x)dx.

Let Lq(w,Qn
p), (0< q<∞) be the space of all complex-

valued functions f on Qn
p such that

‖f‖
Lq w,Qn

p 
� 

Qn
p

|f(x)|
q
w(x)dx 

(1/q)

<∞. (21)

Definition 1. Suppose 1≤q<∞ and w is a weight function.
,e p-adic space CMOq(w,Qn

p) is defined as follows:

‖f‖
CMOq w,Qn

p 
� sup

c∈Z

1
w Bc 


Bc

f(x) − fBc




q
w(x)

1− qdx⎛⎝ ⎞⎠

(1/q)

,

(22)

where

fBc
�

1
Bc






Bc

f(x)dx. (23)

Definition 2 (see [5]). Suppose α ∈ R, 0<p, q<∞ and w1
and w2 are weight functions.,en, the weighted p-adic Herz
space K

α,p
q (w1, w2) is defined by

K
α,p
q w1, w2(  � f ∈ L

q

loc w2,Q
n
p\ 0{ } : ‖f‖K

α,p
q w1 ,w2( )<∞ ,

(24)

where

‖f‖K
α,p
q w1 ,w2( ) � 

∞

k�− ∞
w1 Bk( 

((αp)/n)
fχk

����
����

p

Lq w2 ,Qn
p 

⎛⎝ ⎞⎠

(1/p)

(25)

and χk is the characteristic function of the sphere
Sk � Bk∖Bk− 1.

Remark 2. Obviously K
0,q
q (w1, w2) � Lq(w2,Q

n
p).

Definition 3 (see [5]). Let α ∈ R, 0<p, q<∞, w1 and w2 be
weight functions and λ be a non-negative real number.,en,
the weighted p-adic Herz–Morrey space MKα,λ

p,q(w1, w2) is
defined as follows:

MK
α,λ
p,q w1, w2(  � f ∈ L

q

loc w2,Q
n
p\ 0{ } : ‖f‖MKα,λ

p,q w1 ,w2( )<∞ ,

(26)

where

‖f‖MKα,λ
p,q w1 ,w2( ) � sup

k0∈Z
w1 Bk0

 
(− λ/n)



k0

k�− ∞
w1 Bk( 

((αp)/n)
fχk

����
����

p

Lq w2 ,Qn
p 

⎛⎝ ⎞⎠

(1/p)

. (27)

Remark 3. It is evident that MKα,0
p,q(w1, w2) � K

α,p
q (w1, w2).

Now, we define the weighted p-adic Lipschitz space.
Definition 4. Suppose 1≤ q<∞, 0< c< 1 and w is a weight
function. ,e p-adic space Lipc(w,Qn

p) is defined as

‖f‖
Lipc w,Qn

p 
� sup

B⊂Qn
p

1
w(B)

(c/n)

1
w(B)


B

f(x) − fB



q
w(x)

1− qdx 

(1/q)

, (28)

where

fB �
1

|B|


B
f(x)dx. (29)

Muckenhoupt introduced the theory of Aq weights on
Rn in [38]. Let us define the Aq weights in the p-adic field.

Definition 5. A weight function w ∈ Aq(1≤q<∞), if there
exists a constant C free from choice of B ⊂ Qn

p such that

1
|B|


B
w(x)dx 

1
|B|


B
w(x)

− (1/(q− 1))dx 

(1/q)

≤ C. (30)

For the case q � 1, w ∈ A1, we have

1
|B|


B
w(x)dx ≤Cess inf

x∈B
w(x), (31)

for every B ⊂ Qn
p.

Remark 4. A weight function w ∈ A∞ if it undergoes the
stipulation of Aq(1≤ q<∞) weights.

3. Weighted CMO Estimates of H
p,b

Ω,α on
Weighted p-Adic Herz-Type Spaces

,e present section discusses the boundedness of H
p,b

Ω,α on
weighted p-adic Lebesgue spaces as well as on the weighted
p-adic Herz-type spaces. We begin the section with some
useful lemmas to prove our main results.
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Lemma 1 (see [39]). Suppose w ∈ A1; then, there exists
constants C1, C2 and 0< μ< 1 such that

C1
|A|

|B|
≤

w(A)

w(B)
≤C2

|A|

|B|
 

μ

, (32)

for measurable subset A of a ball B.

Remark 5. If w ∈ A1, then it follows from Lemma 1 that
there exists a constant C and μ(0< μ< 1) such that
(w(Bk)/w(Bi))≤Cp(k− i)n as i< k and
(w(Bk)/w(Bi))≤Cp(k− i)nμ as i≥ k.

Lemma 2. Suppose w ∈ A1 and b ∈ CMOq(w,Qn
p); then,

there is a constant C such that for i, k ∈ Z,

bBi
− bBk



≤C(i − k)‖b‖
CMOq w,Qn

p 

w Bk( 

Bk




. (33)

Proof. Firstly, we consider

b2Bc
− bBc



≤
1

Bc






Bc

b(x) − b2Bc



dx

≤
1

Bc





2Bc

b(x) − b2Bc



dx

≤
C

Bc




‖b‖

CMOq w,Qn
p 

w 2Bc .

(34)

We assume without loss of generality that i> k; then,
using Lemma 1, we are down to

bBi
− bBk



≤ bBi
− bBi− 1



 + · · · + bBk+1
− bBk





≤
1

Bi− 1





Bi

b(x) − bBi



dx + · · · +
1

Bk





Bk+1

b(x) − bBk+1



dx

≤C‖b‖
CMOq w,Qn

p 

w Bi( 

Bi− 1



+ · · · +

w Bk+1( 

Bk




 

≤C(i − k)‖b‖
CMOq w,Qn

p 

w Bk( 

Bk




.

(35)

Lemma 3. Suppose w ∈ A1; then for 1< q<∞,


B
w(x)

1− q′dx≤C|B|
q′

w(B)
1− q′

, (36)

where (1/q) + (1/q′) � 1.

Proof. Since A1 ⊂ Aq(q> 1), w satisfies the Aq conditions

1
|B|


B
w(x)dx 

1
|B|


B
(w(x))

− (1/(q− 1))dx 

q− 1

dx≤C,

(37)

for every B ⊂ Qn
p.

From here, we easily get


B
w(x)

1− q′dx≤C|B|
q′

w(B)
1− q′

. (38)

Theorem 1. Let 1≤p, q<∞, w ∈ A1, (α/n) + 1 � (1/s′);
then

H
p,b

Ω,αf
�����

�����
Lq w1− q,Qn

p 
≤C‖b‖

CMOpmax q,q′{ } w,Qn
p 

‖f‖
Lq w,Qn

p 
,

(39)

holds for all b ∈ CMOpmax q,q′{ }(w,Qn
p), Ω ∈ Ls(S0(0)),

1< s<∞ and f ∈ Lloc(Q
n
p).

Now we state the results about the boundedness of
commutator of rough p-adic fractional Hardy operator on
weighted p-adic Herz-type spaces.

Theorem 2. Let 0<p1≤p2 <∞, 1≤p, q<∞ and let w ∈ A1,
(α/n) + 1 � 1/s′.

If β< (nμ/q′), then the inequality

H
p,b

Ω,αf
�����

����� _K
β,p2
q w,w1− q( )

≤C‖b‖
CMOpmax q,q′{ } w,Qn

p 
‖f‖ _K

β,p1
q (w,w)

(40)

holds for all b ∈ CMOpmax q,q′{ }(w,Qn
p), Ω ∈ Ls(S0(0)),

1< s<∞ and f ∈ Lloc(Q
n
p).

Remark 6. If β � 0, p1 � p2 � q, then ,eorem 1 becomes a
special case of ,eorem 2.

Theorem 3. Let 0<p1 ≤p2 <∞, 1≤p, q<∞ and let
w ∈ A1, (α/n) + 1 � (1/s′) and λ> 0. If β< (nμ/q′) + λ, then

H
p,b

Ω,αf
�����

�����M _K
β,λ
p2 ,q w,w1− q( )

≤C‖b‖
CMOpmax q,q′{ } w,Qn

p 
‖f‖

M _K
β,λ
p1 ,q(w,w)

,

(41)

holds for all b ∈ CMOpmax q,q′{ }(w,Qn
p), Ω ∈ Ls(S0(0)),

1< s<∞ and f ∈ Lloc(Q
n
p).

Proof. of ,eorem 2. By definition, we firstly have
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H
p,b

Ω,αf χk

�����

�����
q

Lq w1− q,Qn
p 

� 
Sk

|x|
− q(n− α)
p 

|y|p≤|x|p

Ω |y|py f(y)(b(x) − b(y))dy




q

w(x)
1− qdx

≤Cp
− kq(n− α)


Sk


|y|p≤pk

Ω |y|py f(y)(b(x) − b(y))


dy 

q

w(x)
1− qdx

≤Cp
− kq(n− α)


Sk



k

j�− ∞


Sj

f(y)Ω p
jy  b(x) − bBk

 


dy⎛⎝ ⎞⎠

q

w(x)
1− qdx

+ Cp
− kq(n− α)


Sk



k

j�− ∞


Sj

f(y)Ω p
jy  b(y) − bBk

 


dy⎛⎝ ⎞⎠

q

w(x)
1− qdx

� I + II.

(42)

For j, k ∈ Z with j≤ k, we get


Sj

Ω p
jy 




s
dy � 

|z|p�1
|Ω(z)|

s
p

jndz≤Cp
kn

. (43)

Also, since w ∈ A1 ⊂ Aq, by the application of Hölder’s
inequality (((1/q) + (1/q′)) � 1) together with Lemma 3, we
have


Sj

f(y)dy ≤ 
Sj

|f(y)|
q
w(y)dy 

(1/q)


Sj

w(y)
− q′/q( )dy 

1/q′( )

≤C fχj

�����

�����
Lq w,Qn

p 
Bj



w Bj 
(− 1/q)

.

(44)

To estimate I, we make use of Hölder’s inequality, Re-
mark 5, and (α/n) + 1 � (1/s′) along with (43) and (44) to
have

I≤Cp
− kq(n− α)


Bk

b(x) − bBk




q

× 
k

j�− ∞


Sj

|f(y)|
s′dy 

1/s′
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Ω p
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s
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⎫⎪⎬

⎪⎭

q

w(x)
1− qdx

≤Cp
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‖b‖
q

CMOq w,Qn
p 

w Bk(  

k

j�− ∞
p
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⎧⎪⎨
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⎫⎪⎬

⎪⎭

q
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k
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⎪⎩
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p 
 

q
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(45)
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Now, we turn our attention towards estimating II.

II≤Cp
− kq(n− α)
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k

j�− ∞


Sj

f(y)Ω p
jy  b(y) − bBj

 




dy⎛⎝ ⎞⎠

q
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q
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(46)

In order to evaluate II1, we need the following prepa-
ration. Apply Hölder’s inequality at the outset to deduce


Sj

f(y) b(y) − bBj
 




dy

≤ 
Sj

|f(y)|
q
w(y)dy 

(1/q)


Sj
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− q′/q( )dy 

1/q′( )
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fχj

�����
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Lq w,Qn
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‖b‖

CMOq′ w,Qn
p 

.

(47)

We imply Hölder’s inequality, inequality (47), Lemma 3,
and Remark 5 to estimate II1.

II1 ≤Cp
− kq(n− α)


Sk



k

j�− ∞


Sj
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q
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(48)
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In a similar fashion, we can estimate II2. Using Hölder’s
inequality, Lemmas 2 and 3, Remark 5, and inequality (44),
we get

II2 ≤Cp
− kq(n− α)

× 
Sk



k

j�− ∞


Sj

f(y)Ω p
jy (j − k)‖b‖
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p 
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q
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q
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q
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(49)

From (45), (48), and (49) together with Jensen in-
equality, we have
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H
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� S.

(50)

Consequently,

S
p1 ≤C‖b‖

p1
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(51)

From here on in the proof we consider couple of cases,
0<p1≤1 and p1 > 1. □

Case 1. When 0<p1≤1, noticing that β< (nμ/q′), we pro-
ceed as follows.
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(52)
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Case 2. When p1 > 1, applying Hölder’s inequality with
β< (nμ/q′), we get

S
p1 ≤C‖b‖
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(53)

,erefore, the proof of theorem is completed. Proof of ,eorem 3. From ,eorem 2, we have
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p 
. (54)

By definition of weighted p-adic Herz–Morrey space and
Jensen inequality together with β< (nμ/q′) + λ, λ> 0 and
1<p1 <∞, it follows that
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(55)
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4. Weighted Lipschitz Estimates for the
Commutator of Rough p-Adic Fractional
Hardy Operator on Herz–Morrey Spaces

In this section, we obtain the weighted p-adic Lipschitz
estimates for the commutator of rough p-adic fractional
Hardy operator on p-adic Lebesgue spaces and p-adic Herz-
type spaces. We begin the section with a useful lemma which
can be proved in the similar lines as Lemma 2.

Lemma 5. Suppose w ∈ A1 and b ∈ Lipc(w,Qn
p); then, there

is a constant C such that for i, k ∈ Z,

bBi
− bBk



≤C(i − k)‖b‖
Lipc w,Qn

p 
w Bi( 

c/nw Bk( 

Bk




. (56)

Theorem 4. Let 1≤p, q<∞, (1/q1) − (1/q2) � (c/n),
w ∈ A1, (α/n) + 1 � (1/s′); then,

H
p,b

Ω,αf
�����

�����
Lq w1− q,Qn

p 
≤C‖b‖

Lipc w,Qn
p 

‖f‖
Lq w,Qn

p 
, (57)

holds for all b ∈ Lipc(w,Qn
p), Ω ∈ Ls(S0(0)), 1< s<∞, and

f ∈ Lloc(Q
n
p).

Now we state the results about the boundedness of
commutator of rough p-adic fractional Hardy operator on
weighted p-adic Herz-type spaces.

Theorem 5. Let 0<p1≤p2 <∞, 1≤q1, q2 <∞, (1/q1)−
(1/q2) � (c/n) and let w ∈ A1, (α/n) + 1 � (1/s′). If
β< (nμ/q1′), then the inequality

H
p,b

Ω,αf
�����

����� _K
β,p2
q2

w,w1− q2( )
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‖f‖ _K
β,p1
q1

(w,w)
, (58)

holds for all b ∈ Lipc(w,Qn
p), Ω ∈ Ls(S0(0)), 1< s<∞, and

f ∈ Lloc(Q
n
p).

Remark 7. If β � 0, p1 � q1 � p and p2 � q2 � q, then
,eorem 4 can easily be obtained from ,eorem 5.

Theorem 6. Let 0<p1≤p2 <∞, 1≤q1, q2 <∞, (1/q1)−
(1/q2) � (c/n) and let w ∈ A1, (α/n) + 1 � (1/s′), and λ> 0.

If β< (nμ/q1′) + λ, then
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(59)

holds for all b ∈ Lipc(w,Qn
p), Ω ∈ Ls(S0(0)), 1< s<∞, and

f ∈ Lloc(Q
n
p).

Proof of,eorem 5. Following the same pattern of,eorem
2, we have
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To estimate J, we make use of Hölder’s inequality, Re-
mark 5, (α/n) + (1) � (1/s′), (c/n) � (1/q1) − (1/q2), and
w ∈ A1 ⊂ Aq1

along with (43) and (44) to have
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(61)
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For the estimation of JJ, we need to decompose it as

JJ≤Cp
− kq2(n− α)
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We need the following preparation to estimate JJ1.
Apply Hölder’s inequality to get
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(63)

We imply Hölder’s inequality, inequality (63), Lemma 3,
and Remark 5 to estimate JJ1.

JJ1 ≤Cp
− kq2n((1− α)/(n− 1)/s)
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Now we turn towards JJ2. Using once again Hölder’s
inequality, Lemmas 5 and 3, Remark 5, and inequality (44),
we get

JJ2 ≤Cp
− kq2n((1− α)/(n− 1)/s)
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(65)

Rest of the proof is similar to the proof of ,eorem 2.
,us, we come to an end of proof.

Proof of ,eorem 6. Let β< nμ/q1′ + λ. By the definition of
weighted p-adic Herz–Morrey spaces along with inequalities
(61), (64), and (65), we are down to

H
p,b

Ω,αf
�����

�����M _K
β,λ
p2 ,q2

w,w1− q2( )
≤C‖b‖

Lipc w,Qn
p 

sup
k0∈Z

w Bk0
 

− λ/n


∞

k�− ∞
w Bk( 

βp2( )/n 

k

j�− ∞
p

(j− k)n/q1′ fχj

�����

�����
Lq1 w,Qn

p 
⎛⎝ ⎞⎠

p2

⎛⎝ ⎞⎠

1/p2

+ C‖b‖
Lipc w,Qn

p 
sup
k0∈Z

w Bk0
 

− λ/n


∞

k�− ∞
w Bk( 

βp2( )/n( ) 

k

j�− ∞
p

(j− k)nμ/q2′ fχj

�����

�����
Lq1 w,Qn

p 
⎛⎝ ⎞⎠

p2

⎛⎝ ⎞⎠

1/p2

+ C‖b‖
Lipc w,Qn

p 
sup
k0∈Z

w Bk0
 

− λ/n


∞

k�− ∞
w Bk( 

βp2( )/n 

k

j�− ∞
(k − j)p

(j− k)nμ/q1′ fχj

�����

�����
Lq1 w,Qn

p 
⎛⎝ ⎞⎠

p2

⎛⎝ ⎞⎠

1/p2

� L1 + L2 + L3.

(66)

Next by applying the similar arguments as in,eorem 3,
we get

L1 ≤C‖b‖
Lipc w,Qn

p 
‖f‖

M _K
β,λ
p1 ,q(w,w)

, β<
n

q1′
+ λ,

L2 ≤C‖b‖
Lipc w,Qn

p 
‖f‖

M _K
β,λ
p1 ,q(w,w)

, β<
nμ
q2′

+ λ,

L3 ≤C‖b‖
Lipc w,Qn

p 
‖f‖

M _K
β,λ
p1 ,q(w,w)

, β<
nμ
q1′

+ λ.

(67)
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,erefore, we conclude the proof.
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In this study, we extend some “sneak-out” inequalities on time scales for a function depending on more than one parameter. (e
results are proved by using the induction principle and time scale version of Minkowski inequalities. In seeking applications, these
inequalities are discussed in classical, discrete, and quantum calculus.

1. Introduction

Bennett and Grosse-Erdmann [1] introduce the “sneak-out”
principle concerned with the equivalence of two series.
Bohner and Saker [2] extended the sneak-out principle on
time scales and proved some new dynamic sneak-out in-
equalities and their converses on time scales which, as special
cases, with T � N, contain the discrete inequalities obtained
by Bennett and Grosse-Erdmann (Section 6 in [1]). How-
ever, the sneak-out principle on time scales can be applied to
formulate the corresponding integral inequalities by
choosing T � R. (e paper aims to extend the work given by
Bohner and Saker in [2] for functions depending on more
than one parameter. Some other inequalities, such as Hardy-
type, Hardy-Copson, and Copson-Leindler-type inequal-
ities, are also studied for functions of more than one pa-
rameter [3–5] via time scales’ calculus. Some literature
concerning with time scale can be seen in [6–13].

(e paper is organized as follows. Section 2 provides
some basics from time scales’ calculus. Section 3 features two
dynamic inequalities of the Copson type, which are needed
to prove further results. In Section 4, we present sneak-out
inequalities on time scales for functions depending on more
than one parameter.

2. Preliminaries

A time scale T as well as close set inR are nonempty [14, 15].
Some examples of time scales are Z, R, and Cantor set.
Assume that infT � ϕ, where ϕ is empty set and sup T �∞.
A time-scale interval is denoted by [t0,∞)T ≔ [t0,∞)∩ T ,
for t0 ∈ T .

(e operators σ: T⟶ T defined by
σ(l) ≔ inf b ∈ T ; b> l{ } and ρ: T⟶ T defined by
ρ(l) ≔ sup b ∈ T ; b< l{ } are forward as well as backward
jump operators, respectively, for l ∈ T . (e point l ∈ T is
right-scattered if it satisfies σ(l)> l, and left-scattered if
ρ(l)< l. (e points which are at the same time left-scattered
as well as right-scattered are called isolated. Furthermore, the
point l ∈ T is right-dense if it satisfies l< Sup T and σ(l) � l,
and left-dense if it satisfies l> infT and σ(l) � l; further-
more, the point is called dense if it is left-dense as well as
right-dense at the same time. A function μ: T⟶ [0,∞),
defined by μ(l) ≔ σ(l) − l, is called the graininess function.

If a function g: T⟶ R is continuous at all right-dense
points, the left-hand limits exist and are finite at left-dense
points in T ; then, it is right-dense continuous (rd-contin-
uous) on T . (e set denoted by Cr d(T) contain all rd-
continuous functions on T .
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Consider a function β: T⟶ R, and define the number
βΔ(ς) if it exists with the property that, for given ε> 0, there
is a neighborhood U of ς which satisfies

β(σ(ς)) − β(r) − βΔ(ς)(β(ς) − r)


≤ ε|σ(ς) − r|, ∀r ∈ U,

(1)

then βΔ(ς) is delta derivative of function β(ς) at ς ∈ T .
Notation: ζσ(ς) � ζ(σ(ς)) for any function

ζ ≔ T⟶ R.

(1) Product and quotient rule for delta derivative
((eorem 1.20 in [14]): assume ζ, η: T⟶ R are
differentiable; then,

(i)(ζη)
Δ

� ζΔη + ζσηΔ � ζηΔ + ζΔησ ,

(ii)
ζ
η

 

Δ

(ς) �
ζΔ(ς)η(ς) − ζ(ς)ηΔ(ς)

η(ς)ησ(ς)
, η(ς)≠ 0, ς ∈ T .

(2)

(2) Integration by parts formula ((eorem 1.77 in [14]):
for two delta differentiable functions g, h: T⟶ R,

and ς, a, m ∈ T , we have


m

a
g(ς)hΔ(ς)Δς � g(ς)h(ς)|ma − 

m

a
g
Δ

(ς)hσ
(ς)Δς.

(3)

(3) Minkowski inequality ((eorem 6.16 in [14]): for
three rd-continuous functions f: T⟶ R,
g: T⟶ R, and h: T⟶ R, we have


b

a
|h(t)||f(t) + g(t)|

p
 

(1/p)

≤ 
b

a
|h(t)||f(t)|

pΔt 

(1/p)

+ 
b

a
|h(t)||g(t)|

pΔt 

(1/p)

, (4)

where p> 1 and a, b, t ∈ T .
(4) Fubini’s theorem [16]: let there exist two time scales’

measure spaces (], M, ϕΔ) and (υ, N,φΔ) which have
finite dimensions. If η: ] × υ⟶ R is a ϕΔ × φΔ
which is an integrable function and the function
ψ1(m) � ]η(l, m)Δl exists for almost every m ∈ υ
and ψ2(l) � υη(l, m)Δm exists for almost every
l ∈ ], then ψ1 is φΔ integrable on υ, ψ2 is ϕΔ inte-
grable on ], and


]
Δl

υ
η(l, m)Δm � 

υ
Δm

v
η(l, m)Δl. (5)

Notation:
z

Δτk

g τ1, . . . , τk, . . . , τn(  � g
Δk τ1, . . . , τk, . . . , τn( , 1≤ k≤ n.

(6)

Some preliminary inequalities [2]: suppose g: T⟶ R

is differentiable. Let β ∈ R, if gΔ is monotone, i.e., either
always negative or always positive, then

βg
Δ

g
β− 1

 
σ
≤ g

β
 
Δ
≤ βg
Δ

g
β− 1

, if 0≤ β≤ 1, (7)

βg
Δ
g
β− 1 ≤ g

β
 
Δ
≤ βg
Δ

g
β− 1

 
σ
, if β≥ 1, (8)

and if gΔ is positive, then

g
β

 
Δ
≤ gΔ g

β− 1
 

σ
, if 0≤ β≤ 1,

g
β

 
Δ
≤g
Δ

g
β− 1

 
σ
, if β≥ 1.

(9)

3. Dynamic Copson-Type Inequalities for Finite
Numbers of Parameters

We assume throughout that all the functions are nonneg-
ative and the integrals considered exist. For h ∈ N,
ι ∈ 1, 2, . . . , h{ }, let T ι be time scales.

Presume 1:

H1 �

Sup T ι �∞, bι ∈ (0,∞)T ι
,

υι: T ι⟶ R
+ is rd − continuous,

Aι τι(  ≔ 
τι

bι

υι sι( Δsι, for τι ∈ T ι.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

Theorem 1. Assume H1. Suppose g: T1 × · · · × Th⟶ R+ is
such that

ϕ τ1, . . . , τh(  ≔ 
∞

τ1
· · · 
∞

τh



h

ι�1

υι sι( 

Aι σι sι( ( 
g s1, . . . , sh( Δsh · · ·Δs1,

(11)

is well defined and m≥ 1. �en,
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∞

b1

· · · 
∞

bh



h

ι�1
υι τι( ϕm τ1, . . . , τh( Δτh · · ·Δτ1⩽(m)

hm

∞

b1

· · · 
∞

bh



h

ι�1
υι τι( g

m τ1, . . . , τh( Δτh · · ·Δτ1. (12)

Theorem 2. Assume H1. Suppose g: T1 × · · · × Th⟶ R is
such that

ϕ ς1, . . . , ςh(  ≔ 
∞

ς1
· · · 
∞

ςh



h

ι�1
υι sι( g s1, . . . , sh( Δsh · · ·Δs1, ς1, . . . , ςh(  ∈ T1 × · · · × Th, (13)

is well defined. Let m≥ 1 and 0≤ cι < 1. �en,


∞

a1

· · · 
∞

ah



h

ι�1

υι ςι( 

A
cι
ι σι ςι( ( 

ϕm ς1, . . . , ςh( Δςh · · ·Δς1 ≤
h

ι�1

m

1 − cι
 

m


∞

a1

· · · 
∞

ah



h

ι�1
υι ςι( A

m−cι
ι σι ςι( ( g

m ς1, . . . , ςh( Δςh · · ·Δς1.

(14)

Proofs of (eorem 1 and (eorem 2 are after sneak-out
inequalities.

4. Dynamic Sneak-Out Inequalities for Finite
Numbers of Parameters

Let i, j, r ∈ 1, . . . , h{ } and (i1, . . . , ih) � (j1, . . . , jh) �

(1, . . . , h).

Presume 2:

H2 �

x: T1 × · · · × Th⟶ R+ is rd − continuous,

y τi1
, . . . , τih

  ≔ 
∞

τi1

· · · 
∞

τih

x si1
, . . . , sih

 Δsih
· · ·Δsi1

, τi1
, . . . , τih

  ∈ T1 × · · · × Th,

ψ τi1
, . . . , τih

  ≔ 
∞

τi1

· · · 
∞

τih



h

ik�1
A
αik

ik
σik

sik
  x si1

, . . . , sih
 Δsih

· · ·Δsi1
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Lemma 1. Let T ι be the time scales for ι ∈ 1, 2, . . . , h{ }, under
H1 and H2, and we have

ψ τi1
, . . . , τih

 ≤
h

k�1
A
αik

ik
σik

τik
  y τi1

, . . . , τih
 +


1≤ j1 < ···< jr ≤ h



r

m�1
αjm

⎛⎝ ⎞⎠ 

h−r

m�1
A
αim

im
σim

τim
   × 

∞

1≤j1 < ···< jr ≤ h
τjm



r

m�1
A
αjm

−1
jm

σjm
sjm

  υjm
sjm

 y τi1
, . . . , τih−r

, sj1
, . . . , sjr

  Δ
1≤j1 < ···< jr ≤ h

jm

sjm

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(16)

Proof. For h � 1, (16) is true by (eorems 4.1 in [2], i.e., ψ τ1( ≤A
α1
1 σ1 τ1( ( y τ1(  + α1 

∞

τ1
υ1 s1( A

α1−1
1 σ1 s1( ( y s1( Δs1.

(17)
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Suppose (16) is true for 1≤ h≤p. To prove for h � p + 1,
by using H2, we have defined as

ψ τi1
, . . . , τip+1

  � 
∞

τi1

· · · 
∞

τip



p

k�1
A
αik

ik
σik

sik
   × 

∞

τip+1

A
αip+1
ip+1

σip+1
sip+1

  y
Δ1 ···Δp+1 si1

, . . . , sip+1
 Δsip+1

⎧⎨

⎩

⎫⎬

⎭Δsip
· · ·Δsi1

. (18)

Denote

Zip+1
� 
∞

τip+1

A
αip+1
ip+1

σip+1
sip+1

  y
Δ1···Δp+1 si1

, . . . , sip+1
 Δsip+1

.

(19)

Use integration by parts’ formula (3) in (19) to obtain

Zip+1
� −A

αip+1
ip+1

sp+1 y
Δ1 ···Δp si1

, . . . , sip+1
 





∞

τp+1

− 
∞

τip+1

−
z

Δτip+1

A
αip+1
ip+1

sip+1
  y

Δ1 ···Δp si1
, . . . , sip+1

 Δsip+1
. (20)

Use the right-hand side part of inequality (8) with
Aip+1
≤A

σip+1
ip+1

in (20)

Zip+1
≤A

αip+1
ip+1

σip+1
τip+1

  y
Δ1 ···Δp si1

, . . . , sip
, τip+1

  + αip+1

∞

τip+1

υip+1
sip+1

 A
αip+1−1
ip+1

σip+1
sip+1

  y
Δ1 ···Δp si1

, . . . , sip+1
 Δsip+1

.

(21)

Substitute (21) in (18):

ψ τi1
, . . . , τip+1

  � 
∞

τi1

· · · 
∞

τip



p

k�1
A
αik

ik
σik

sik
   A

αip+1
ip+1

σip+1
τip+1

  y
Δ1 ···Δp si1

, . . . , sip
, τip+1

  Δsip
· · ·Δsi1

+ αip+1

∞

τi1

· · · 
∞

τip



p

k�1
A
αik

ik
σik

sik
  

× 
∞

τip+1

υip+1
sip+1

 A
αip+1−1
ip+1

σip+1
sip+1

  y
Δ1 ···Δp si1

, . . . , sip+1
 Δsip+1

⎧⎨

⎩

⎫⎬

⎭Δsip
· · ·Δsi1

.

(22)

Use (5) “p times” in second term of (22):

ψ τi1
. . . τip+1

 ≤A
αip+1
ip+1

σip+1
τip+1

   
∞

τi1

· · · 
∞

τip



p

k�1
A
αik

ik
σik

sik
  y

Δ1 ···Δp si1
, . . . , sip

, τip+1
 Δsip

· · ·Δsi1

+ αip+1

∞

τip+1

υip+1
sip+1

 A
αip+1−1
ip+1

σip+1
sip+1

  

(23)

× 
∞

τi1

· · · 
∞

τip



p

k�1
A
αik

ik
σik

sik
  y

Δ1 ···Δp si1
, . . . , sip+1

 Δsip
· · ·Δsi1

⎧⎨

⎩

⎫⎬

⎭Δsip+1
. (24)
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Use induction hypothesis for ψ(τi1
, . . . , τip+1

) with fix
τip+1

, sip+1
∈ T ip+1

(instead for ψ(τi1
, . . . , τip

)) in (23) and (25)
to obtain

ψ τi1
. . . τip+1

 ≤A
αip+1
ip+1

σip+1
τip+1

  

×



p

k�1
A
αik

ik
σik

τik
  y τi1

, . . . , τip+1
  + 

1≤ j1 < ···< jr ≤p



r

m�1
αjm

⎛⎝ ⎞⎠ 

p−r

im�1
A
αim

im
σim

τim
  

× 
∞

1≤j1 < ···< jr ≤p
τjm



r

m�1
A
αjm

−1
jm

σjm
sjm

  υjm
sjm

 y τi1
, . . . , τip+1−r

, sj1
, . . . , sjr

  Δ
1≤j1 < ···< jr ≤p

jm

sjm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ αip+1

∞

τip+1

υip+1
sip+1

 A
αip+1−1
ip+1

σip+1
sip+1

  

×



p

k�1
A
αik

ik
σik

τik
  y τi1

, . . . , τip
, sip+1

  + 
1≤ j1 < ···< jr ≤p



r

m�1
αjm

⎛⎝ ⎞⎠ 

p−r

m�1
A
αim

im
σim

τim
  

× 
∞

1≤j1 < ···< jr ≤p
τjm



r

m�1
A
αjm

−1
jm

σjm
sjm

  υjm
sjm

 y τi1
, . . . , τip−r−1

, sj1
, . . . , sjr

  Δ
1≤j1 < ···< jr ≤p

jm

sjm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δsip+1
.

(25)

By applying (5) “p times” on (25) and making simpli-
fication, we obtain

� 

p

k�1
A
αik

ik
σik

τik
  

× A
αip+1
ip+1

σip+1
τip+1

  y τi1
, . . . , τip+1

  + αip+1

∞

τip+1

y τi1
, . . . , τip

, sip+1
 Δsip+1

y τi1
, . . . , τip

, sip+1
 Δsip+1

⎡⎣ ⎤⎦

+ 
1≤ j1 < ···< jr ≤p



r

m�1
αjm

⎛⎝ ⎞⎠ 

ip−r

m�1
A
αim

im
σim

τim
   

∞

1≤j1 < ···< jr ≤p
τjm



r

m�1
A
αjm

−1
jm

σjm
sjm

  υjm
sjm

 

×

A
αip+1
ip+1

σip+1
τip+1

  y τi1
, . . . , τip+1−r

, sj1
, . . . , sjr

 

+αip+1

∞

τip+1

υip+1
sip+1

 A
αip+1−1
ip+1

σip+1
sip+1

  y τi1
, . . . , τip−r−1

, sj1
, . . . , sjr

 Δsip+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Δ

1≤j1 < ···< jr ≤p
jm

sjm
.

(26)
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Hence, by using (17) for τip+1
∈ Tp+1, we obtain

ψ τi1
, . . . , τip+1

 ≤

p+1

k�1
A
αik

ik
σik

τik
  y τi1

, . . . , τip+1
  + 

1≤ j1 < ···< jr ≤p+1


r

m�1
αjm

⎛⎝ ⎞⎠ 

p+1−r

m�1
A
αim

im
σim

τim
  ⎡⎢⎢⎣

×
∞

1⩽j1 < ··· < jr⩽p+1τjm



r

m�1
A
αjm

−1
jm

σjm
sjm

  υjm
sjm

 y τi1
, . . . , τip+1−r

, sj1
, . . . , sjr

  Δ
1⩽j1 < ···< jr⩽p+1 jmsjm

.

(27)

(us, by mathematical induction, (16) holds for all
h ∈ N, which completes the proof. □

Remark 1. If we chose h � 3 in Lemma 1, then (16) becomes
the following inequality:

ψ τ1, τ2, τ3( ≤A
α1
1 σ1 τ1( ( A

α2
2 σ2 τ2( ( A

α3
3 σ3 τ3( ( y τ1, τ2, τ3( 

+ α1A
α2
2 σ2 τ2( ( A

α3
3 σ3 τ3( (  

∞

τ1
A
α1−1
1 σ1 s1( ( a1 s1( y s1, τ2, τ3( Δs1

+ α2A
α1
1 σ1 τ1( ( A

α3
3 σ3 τ3( (  

∞

τ2
A
α2−1
2 σ2 s2( ( a2 s2( y τ1, s2, τ3( Δs2

+ α3A
α1
1 σ1 τ1( ( A

α2
2 σ2 τ2( (  

∞

τ3
A
α3−1
3 σ3 s3( ( a3 s3( y τ1, τ2, s3( Δs3

+ α1α2A
α3
3 σ3 τ3( (  

∞

τ2
A
α2−1
2 σ2 s2( ( a2 s2(  

∞

τ1
A
α1−1
1 σ1 s1( ( a1 s1( y s1, s2, τ3( Δs1Δs2

+ α1α3A
α2
2 σ2 τ2( (  

∞

τ1
A
α1−1
1 σ1 s1( ( a1 s1(  

∞

τ3
A
α3−1
3 σ3 s3( ( a3 s3( y s1, τ2, s3( Δs3Δs1

+ α2α3A
α1
1 σ1 τ1( (  

∞

τ2
A
α2−1
2 σ2 s2( ( a2 s2(  

∞

τ3
A
α3−1
3 σ3 s3( ( a3 s3( y τ1, s2, s3( Δs3Δs2

+ α1α2α3 
∞

τ3
A
α3−1
3 σ3 s3( ( a3 s3(  

∞

τ2
A
α2−1
2 σ2 s2( ( a2 s2(  

∞

τ1
A
α1−1
1 σ1 s1( ( a1 s1( y s1, s2, s3( Δs1Δs2Δs3.

(28)

Theorem 3. Assume H1, H2, and l, αι ≥ 1, ∀ ι ∈ 1,{

2, . . . , h}, h ∈ N. �en,


∞


h

m�1 bjm



h

jm�1
υjm

τjm
 ψl τj1

, . . . , τjh
  Δ


h

m�1 jm

τjm
≤ 1 + 

1≤ j1 < ···< jr ≤ h

l
r



r

m�1
αjm

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

l

× 
∞


h

m�1 bjm



h

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
  y

l τj1
, . . . , τjh

  Δ


h

m�1 jm

τjm
.

(29)

Proof. We prove the result by using mathematical induc-
tion. For h � 1, statement is true by (eorems 4.1 in [2].
Assume for 1≤ h≤p, (29) holds. To prove the result for
h � p + 1, take L.H.S of (29) in the following form:


∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 ψl τj1

, . . . , τjp+1
  Δ


p+1
m�1jm

τjm
. (30)

Using (27) in (30) for h � p + 1,
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∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 ψl τj1

, . . . , τjp+1
  Δ


p+1
m�1jm

τjm

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/l)

≤ 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
  Ip+1 

l Δ


p+1
m�1jm

τjm
.

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/l)

, (31)

where

Ip+1 � 

p+1

k�1
A
αik

ik
σik

τik
  y τi1

, . . . , τip+1
  + 

1≤ j1 < ···< jr ≤p+1


r

m�1
αjm

⎛⎝ ⎞⎠ 

p+1−r

m�1
A
αim

im
σim

τim
  

× 
∞

1≤j1 < ···< jr ≤p+1τjm



r

m�1
A
αjm

−1
jm

σjm
sjm

  υjm
sjm

 y τi1
, . . . , τip+1−r

, sj1
, . . . , sjr

  Δs
Π1≤j1 < ···< jr ≤p+1

.

(32)

Apply Minkowski’s inequality (4) on (31) to obtain


∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 ψl τj1

, . . . , τjp+1
  Δ


p+1
m�1jm

τjm

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/l)

≤ 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
  y

l τj1
, . . . , τjp+1

  Δ

p+1

m�1
jm

τjm

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1/l)

+ 
1≤ j1 < ···< jr ≤p+1



r

m�1
αjm

⎛⎝ ⎞⎠ 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
  Ip+1 

l
Δ


p+1

m�1
jm

τjm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1/l)

,

(33)

where

Ip+1 � 

p+1−r

m�1
A
αim

im
σim

τim
   × 

∞

1≤j1 < ···< jr ≤p+1τjm



r

jm�1
A
αjm

−1
jm

σjm
sjm

  υjm
sjm

 y τi1
, . . . , τip+1−r

, sj1
, . . . , sjr

  Δs
Π1≤j1 < ···< jr ≤p+1

. (34)

Denote

Wp+1 � 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
  Ip+1 

l
Δ


p+1
m�1jm

τjm
, (35)

and one has that
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Wp+1 � 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
  

p+1−r

m�1
A

lαim

im
σim

τim
  

× 
∞

1≤j1 < ···< jr ≤p+1τjm



r

jm�1

υjm
sjm

 

Ajm
σjm

sjm
  

A
αjm

jm
σjm

sjm
  y τi1

, . . . , τip+1−r
, sj1

, . . . , sjr
  Δs

Π1≤j1 < ···< jr ≤p+1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

l

× Δ


p+1
m�1jm

τjm
.

(36)

Use (eorem 1 in (36) by taking g(sj1
, . . . , sjr

) �


r
jm�1 A

αjm

jm
(σjm

(sjm
))y(τi1

, . . . , τip+1−r
, sj1

, . . . , sjr
) to obtain

Wp+1 ≤ (l) 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
  y

l τj1
, . . . , τjp+1

  Δ


p+1
m�1jm

τjm
. (37)

Substitute (37) in (33) and take power l on both sides to
obtain


∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 ψl τj1

, . . . , τjp+1
  Δ


p+1
m�1jm

τjm
≤ 1 + 

1≤ j1 < ···< jr ≤p+1
l
r



r

m�1
αjm

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

l

× 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
  y

l τj1
, . . . , τjp+1

  Δ


p+1
m�1jm

τjm
.

(38)

(us, by mathematical induction, (29) holds for all
h ∈ N. □

Example 1. Let T ι � N and bjm
� 1, ∀j, m ∈ 1, . . . , h{ } and

njm
, kjm

, h ∈ N ∀ jm . In this case, (29) in (eorem 3 takes
the form



∞

kj1�1
· · · 
∞

kjh
�1



h

m�1
υjm

kjm
  

∞

nj1�kj1

· · · 
∞

njh
�kjh



h

m�1
A
αjm

jm
njm

+ 1 x nj1
, . . . , njh

 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

l

≤ 1 + 
1≤ j1 < ···< jr ≤p+1

l
r



r

m�1
αjm

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

l



∞

kj1�1
· · · 
∞

kjh
�1



h

m�1
υjm

kjm
 A

αjm
l

jm
kjm

+ 1 

× 
∞

nj1�kj1

· · · 
∞

njh
�kjh

x nj1
, . . . , njh

 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

l

,

(39)

where

Ajm
kjm

  � 

kjm
−1

njm
�1
υjm

njm
 , kjm

∈ N. (40)

Note that (39) is extension of Example 4.4 in [2].

Example 2. Let T ι � R∀j, m ∈ 1, . . . , h{ }, in (eorem 3. In
this case, (29) takes the form
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∞


h

m�1 bjm



h

jm�1
υjm

τjm
  

∞


h

m�1 bjm



h

m�1
A
αjm

jm
sjm

 x sj1
, . . . , sjh

  d


h

m�1 jm

sjm

⎛⎝ ⎞⎠

l

d


h

m�1 jm

τjm

≤ 1 + 
1≤ j1 < ···< jr ≤p+1

l
r



r

m�1
αjm

⎛⎝ ⎞⎠)
l

∞


h

m�1 bjm



h

jm�1
υjm

τjm
 A

αjm
l

jm
τjm

  × 
∞



h

m�1
τjm

x sj1
, . . . , sjh

  d


h

m�1 jm

sjm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

l

d


h

m�1 jm

τjm
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(41)

where

Ajm
τjm

  � 
τjm

bjm

υjm
sjm

  d


h

m�1 jm

sjm
, τjm
∈ R. (42)

Note that (41) is extension of Example 4.3 in [2].

Example 3. Let T ι � q
N0
ι , qjm
> 1, and ∀j, m ∈ 1, . . . , h{ }, in

(eorem 3. In this case, (29) takes the form



∞

kj1�1
· · · 
∞

kjh
�1



h

jm�1
υjm

q
kjm

jm
  q

kjm
l

jm
  

∞

nj1�kj1

· · · 
∞

njh
�kjh



h

m�1
q

njm

jm
A
αjm

jm
q

njm
+1

jm
 x q

nj1
j1

, . . . , q
njh

jh
 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

l

≤ 1 + 
1≤ j1 < ···< jr ≤p+1

l
r



r

m�1
αjm

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

l

× 

∞

kj1�1
· · · 

∞

kjh
�1



h

jm�1
υjm

q
kjm

jm
 A

αjml

jm
q

kjm
+1

jm
 q

kjm
l

jm


∞

nj1�kj1

· · · 

∞

njh
�kjh



h

m�1
q

njm

jm
x q

nj1
j1

, . . . , q
njh

jh
 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

l

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(43)

where

Ajm
q

kjm

jm
  � 

kjm
−1

njm
�1
υjm

q
njm

jm
 q

njm

jm
qjm

− 1 , kjm
∈ N0.

(44)

Lemma 2. Let T ι be the time scales for ι, j, r ∈ 1, 2, . . . , h{ },

under H1 and H2, we have

y τi1
, . . . , τih

 ≤
h

k�1
A

−αik

ik
σik

τik
  ψ τi1

, . . . , τih
  + 

1≤j1 < ...< jr ≤ h



h−r

m�1
A

−αim

im
σim

τim
  ⎛⎝

× 
∞

1≤j1 < ··· < jr ≤ h
τjm



r

m�1
A

−αjm
−1

jm
σjm

sjm
  υjm

sjm
 ψ τi1

, . . . , τih−r
, sj1

, . . . , sjr
  Δ

1≤j1 < ···< jr ≤ h
jm

sjm
.

(45)
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Proof. For h � 1, (45) is true by (eorems 4.6 in [2], i.e.,

y τ1( ≤A
−α1
1 σ1 τ1( ( ψ τ1(  + 

∞

τ1
υ1 s1( A

α1−1
1 σ1 s1( ( ψ s1( Δs1.

(46)

Suppose (45) is true for 1≤ h≤p. To prove for h � p + 1,
by using H2, we have

y τi1
, . . . , τip+1

  � 
∞

τi1

· · · 
∞

τip



p

k�1
A

−αik

ik
σik

sik
   × 

∞

τip+1

A
−αip+1
ip+1

σip+1
sip+1

  ψΔ1 ···Δp+1 si1
, . . . , sip+1

 Δsip+1

⎧⎨

⎩

⎫⎬

⎭Δsip
· · ·Δsi1

.

(47)

Denote

Zip+1
� 
∞

τip+1

A
−αip+1
ip+1

σip+1
sip+1

  ψΔ1 ···Δp+1 si1
, . . . , sip+1

 Δsip+1
.

(48)

Use integration by parts formula (3) in (48) to obtain

Zip+1
� −A

−αip+1
ip+1

sp+1 ψΔ1 ···Δp si1
, . . . , sip+1

 





∞

τp+1

− 
∞

τip+1

−
z

Δτip+1

A
−αip+1
ip+1

sip+1
  ψΔ1···Δp si1

, . . . , sip+1
 Δsip+1

. (49)

Use ψ(si1
, . . . , sip

,∞) � 0 and the right-hand side part of
inequality (8) with Aip+1

≤A
σip+1
ip+1

in (49)

Zip+1
≤A

−αip+1
ip+1

σip+1
τip+1

  ψΔ1 ···Δp si1
, . . . , sip

, τip+1
  + 

∞

τip+1

υip+1
sip+1

 A
−αip+1−1
ip+1

σip+1
sip+1

  ψΔ1 ···Δp si1
, . . . , sip+1

 Δsip+1
.

(50)

Substitute (50) in (47)

y τi1
, . . . , τip+1

  � 
∞

τi1

· · · 
∞

τip



p

k�1
A

−αik

ik
σik

sik
   A

−αip+1
ip+1

σip+1
τip+1

  ψΔ1 ···Δp si1
, . . . , sip

, τip+1
  

× Δsip
· · ·Δsi1

+ 
∞

τi1

· · · 
∞

τip



p

k�1
A

−αik

ik
σik

sik
  

× 
∞

τip+1

υip+1
sip+1

 A
−αip+1−1
ip+1

σip+1
sip+1

  ψΔ1···Δp si1
, . . . ,Δsip+1

 Δsip+1

⎧⎨

⎩

⎫⎬

⎭Δsip
· · ·Δsi1

.

(51)

Use (5) “p times” on (51):

y τi1
, . . . , τip+1

 ≤A
−αip+1
ip+1

σip+1
τip+1

   
∞

τi1

· · · 
∞

τip



p

k�1
A

−αik

ik
σik

sik
  ψΔ1 ···Δp si1

, . . . , sip
, τip+1

 Δsip
· · ·Δsi1

+ 
∞

τip+1

υip+1
sip+1

 A
−αip+1−1
ip+1

σip+1
sip+1

   
∞

τi1

· · · 
∞

τip



p

k�1
A

−αik

ik
σik

sik
  ψΔ1 ···Δp si1

, . . . , sip+1
 Δsip

· · ·Δsi1

⎧⎨

⎩

⎫⎬

⎭ × Δsip+1
.

(52)
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Use induction hypothesis for y(τi1
, . . . , τip+1

) with fix
τip+1

, sip+1
∈ T ip+1

(instead for y(τi1
, . . . , τip

)) in (52) to obtain

y τi1
, . . . , τip+1

 ≤A
−αip+1
ip+1

σip+1
τip+1

   × 

p

k�1
A

−αik

ik
σik

τik
  ψ τi1

, . . . , τip+1
  + 

1≤ j1 < ···< jr ≤p



p−r

m�1
A

−αim

im
σim

τim
  ⎡⎢⎢⎣

× 
∞

1≤j1 < ··· < jr ≤p
τjm



r

m�1
A

−αjm
−1

jm
σjm

sjm
  υjm

sjm
 ψ τi1

, . . . , τip+1−r
, sj1

, . . . , sjr
  Δ

1≤j1 < ··· < jr ≤p
jm

sjm

⎤⎥⎥⎥⎦

+ 
∞

τip+1

υip+1
sip+1

 A
−αip+1−1
ip+1

σip+1
sip+1

   × 

p

k�1
A

−αik

ik
σik

τik
  ψ τi1

, . . . , τip
, sip+1

 ⎡⎣

+ 
1≤ j1 < ···< jr ≤p



p−r

m�1
A

−αim

im
σim

τim
  

× 
∞

1≤j1 < ···< jr ≤p
τjm



r

m�1
A

−αjm
−1

jm
σjm

sjm
  υjm

sjm
 ψ τi1

, . . . , τip−r−1
, sj1

, . . . , sjr
  Δ

1≤j1 < ···< jr ≤p
jm

sjm
Δsip+1

,

� 

p

k�1
A

−αik

ik
σik

τik
   × A

−αip+1
ip+1

σip+1
τip+1

  ψ τi1
, . . . , τip+1

 

+ 
∞

τip+1

υip+1
sip+1

 A
−αip+1−1
ip+1

σip+1
sip+1

  ψ τi1
, . . . , τip

, sip+1
 Δsip+1

⎤⎦

+ 
1≤ j1 < ···< jr ≤p



p−r

m�1
A

−αim

im
σim

τim
   

∞


1≤j1 < ···< jr ≤p

τjm



r

m�1
A

−αjm
−1

jm
σjm

sjm
  υjm

sjm
 

× A
αip+1
ip+1

σip+1
τip+1

  ψ τi1
, . . . , τip+1−r

, sj1
, . . . , sjp

 

+ 
∞

τip+1

υip+1
sip+1

 A
−αip+1−1
ip+1

σip+1
sip+1

  ψ τi1
, . . . , τip−r−1

, sj1
, . . . , sjp

 Δsip+1
Δ

1≤j1 < ···< jr ≤p
jm

sjm
.

(53)

Hence, by using (46) for τip+1
, we obtain

y τi1
, . . . , τip+1

 ≤

p+1

k�1
A

−αik

ik
σik

τik
  ψ τi1

, . . . , τip+1
 

+ 
1≤ j1 < ···< jr ≤p+1



ip+1−r

m�1
A

−αim

im
σim

τim
   × 

∞

1≤j1 < ···< jr ≤p+1τjm



r

m�1
A

−αjm
−1

jm

⎡⎢⎢⎢⎣

· σjm
sjm

  υjm
sjm

 ψ τi1
, . . . , τp+1−r, sj1

, . . . , sjr
  Δ

1≤j1 < ···< jr ≤p+1jm

sjm

⎤⎥⎥⎥⎦.

(54)

(us, by mathematical induction, (54) holds for all
h ∈ N, which completes the proof. □

Theorem 4. Assume H1, H2, and l, αι ≥ 1. for
ι ∈ 1, 2, . . . , h{ }, h ∈ N. �en,
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∞


h

m�1 bjm



h

jm�1
υjm

τjm
 ψl τj1

, . . . , τjh
  Δ


h

m�1 jm

τjm
≥ 

1≤ j1 < ···< jr ≤p+1

1 + lr 
r
m�1 αjm

1 + lr 
r
m�1 αjm

+ lr
 

l

× 
∞


h

m�1 bjm



h

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
  y

l τj1
, . . . , τjh

  Δ


h

m�1 jm

τjm
.

(55)

Proof. We prove the result by using mathematical induc-
tion. For h � 1, statement is true by (eorems 4.6 in [2].
Assume for 1≤ h≤p, (55) holds. To prove the result for
h � p + 1, take L.H.S of (55) with h � p + 1 in the following
form:


∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
  y

l τj1
, . . . , τjp+1

  Δ


p+1
m�1jm

τjm
.

(56)

Use (27) in (56) for h � p + 1:


∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
  y

l τj1
, . . . , τjp+1

  Δ


p+1
m�1jm

τjm
.

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/l)

≤ 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
   Ip+1 

l Δ


p+1
m�1jm

τjm

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/l)

,

(57)

where

Ip+1 � 

p+1

k�1
A

−αik

ik
σik

τik
  ψ τi1

, . . . , τip+1
  + 

1≤ j1 < ···< jr ≤p+1


p+1−r

m�1
A

−αim

im
σim

τim
  

× 
∞

1≤j1 < ···< jr ≤p+1τjm



r

m�1
A

−αjm
−1

jm
σjm

sjm
  υjm

sjm
 ψ τi1

, . . . , τip+1−r
, sj1

, . . . , sjr
  Δs

Π1≤j1 < ···< jr ≤p+1

.

(58)

Apply Minkowski’s inequality (4) on (57) to obtain


∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
  y

l τj1
, . . . , τjp+1

  Δ


p+1
m�1jm

τjm

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/l)

≤ 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

− lαjm

jm
σjm

τjm
  A

lαjm

jm
σjm

τjm
  ψl τj1

, . . . , τjp+1
  Δ


p+1
m�1jm

τjm

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/l)

+ 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
   Ip+1 

l
Δ


p+1
m�1jm

τjm

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

(1/l)

,

(59)

where
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Ip+1 � 

p+1−r

m�1
A

−αjm

im
σim

τim
   × 

∞

1≤ j1 < ···< jr ≤p+1
σjm

sjm
 υjm

sjm
 ψ τi1

, . . . , τip+1−r
, sj1

, . . . , sjr
  Δs

Π1≤j1 < ···< jr ≤p+1

. (60)

Denote

Wp+1 � 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
   Ip+1 

l
Δ


p+1
m�1jm

τjm
, (61)

and one has that

Wp+1 � 
∞


p+1
m�1bjm



p+1

jm�1

υjm
τjm

 

A
−lαim

im
σim

τim
  

× 
∞

1≤j1 < ···< jr ≤p+1τjm



r

jm�1
υjm

sjm
 A

− αjm
− 1

jm
σjm

sjm
  ψ τi1

, . . . , τip+1−r
, sj1

, . . . , sjr
  Δs

Π1≤j1 < ···< jr ≤p+1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

l

× Δ


p+1
m�1jm

τjm
.

(62)

Use (eorem 2 in (62) by taking g(sj1
, . . . , sjr

) �


r
jm�1 A

−αjm−1
jm

(σjm
(sjm

))ψ(τi1
, . . . , τip+1−r

, sj1
, . . . , sjr

) and c �

(
r
m�1 αjm

)l:

wp+1 ≤
lrl

1 + lrl 
r
m�1 αjm

 

l


∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

αjm
l

jm
σjm

τjm
  ψl τj1

, . . . , τjp+1
  Δ


p+1
m�1jm

τjm
. (63)

Substitute (63) in (59) and take power l on both sides to
obtain


∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 ψl τj1

, . . . , τjp+1
  Δ


p+1
m�1jm

τjm
≥ 

1≤ j1 < ···< jr ≤p+1

1 + lr 
r
m�1 αjm

1 + lr 
r
m�1 αjm

+ lr
 

l

× 
∞


p+1
m�1bjm



p+1

jm�1
υjm

τjm
 A

lαjm

jm
σjm

τjm
  y

l τj1
, . . . , τjp+1

  Δ


p+1
m�1jm

τjm
.

(64)

(us, by mathematical induction, (55) holds for all h,
which completes the proof. □

Example 4. Let T ι �N and bjm
� 1, ∀j,m ∈ 1, ... ,h{ } and njm

,

kjm
,h ∈N∀jm, in (eorem 4. In this case, (55) takes the form
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∞

kj1�1
· · · 
∞

kjh
�1



h

m�1
υjm

kjm
  

∞

nj1�kj1

· · · 
∞

njh
�kjh



h

m�1
A
αjm

jm
njm

+ 1 x nj1
, . . . , njh

 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

l

≥ 
1≤ j1 < ···< jr ≤p+1

1 + lr 
r
m�1 αjm

1 + lr 
r
m�1 αjm

+ lr
 

l



∞

kj1�1
· · · 
∞

kjh
�1



h

m�1
υjm

kjm
 A

αjm
l

jm
kjm

+ 1  × 
∞

nj1�kj1

· · · 
∞

njh
�kjh

x nj1
, . . . , njh

 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

l

,

(65)

where

Ajm
kjm

  � 

kjm
−1

njm
�1
υjm

njm
 , kjm

∈ N. (66)

Note that (65) is extension of Example 4.7 in [2].

Example 5. Let T ι � R∀j, m ∈ 1, . . . , h{ }, in (eorem 4. In
this case, (55) takes the form


∞


h

m�1 bjm



h

jm�1
υjm

τjm
  

∞


h

m�1 τjm



h

m�1
A
αjm

jm
sjm

 x sj1
, . . . , sjh

  d


h

m�1 jm

sjm

⎛⎝ ⎞⎠

l

d


h

m�1 jm

τjm

≥ 
1≤ j1 < ···< jr ≤p+1

1 + lr 
r
m�1 αjm

1 + lr 
r
m�1 αjm

+ lr
 

l


∞


h

m�1 bjm



h

m�1
υjm

τjm
 A

αjm
l

jm
τjm

  × 
∞


h

m�1 τjm

x sj1
, . . . , sjh

  d


h

m�1 jm

sjm

⎛⎝ ⎞⎠

l

d


h

m�1 jm

τjm
,

(67)

where

Ajm
τjm

  � 
τjm

bjm

υjm
sjm

  d


h

m�1 jm

sjm
, τjm
∈ R. (68)

Note that (67) is extension of Example 4.8 in [2].

Example 6. Let T ι � q
N0
ι , qjm
> 1, and ∀j, m ∈ 1, . . . , h{ }., in

(eorem 4. In this case, (55) takes the form



∞

kj1�1
· · · 
∞

kjh
�1



h

jm�1
υjm

q
kjm

jm
  q

kjm
l

jm
  

∞

nj1�kj1

· · · 
∞

njh
�kjh



h

m�1
q

njm

jm
A
αjm

jm
q

njm
+1

jm
 x q

nj1
j1

, . . . , q
njh

jh
 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

l

≥ 
1≤ j1 < ···< jr ≤p+1

1 + lr 
r
m�1 αjm

1 + lr 
r
m�1 αjm

+ lr
 

l

× 
∞

kj1�1
· · · 
∞

kjh
�1

· 

h

jm�1
υjm

q
kjm

jm
 A

αjml

jm
q

kjm
+1

jm
 q

kjm
l

jm


∞

nj1�kj1

· · · 

∞

njh
�kjh



h

m�1
q

njm

jm
x q

nj1
j1

, . . . , q
njh

jh
 ⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

l

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦,

(69)

where
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Ajm
q

kjm

jm
  � 

kjm
−1

njm
�1
υjm

q
njm

jm
 q

njm

jm
qjm

− 1 , kjm
∈ N0.

(70)

Proof. We use mathematical induction to prove the result.
For h � 1, (12) is true by (eorem 3.1 in [2]. Assume for
1≤ h≤p, and (12) holds. To prove the result for h � p + 1,
take L.H.S of (12) in the following form:


∞

b1

· · · 
∞

bp



p

ι�1
υι τι(  × 

∞

bp+1

υp+1 τp+1 ϕm τ1, . . . , τp+1 Δτp+1 Δτp · · ·Δτ1. (71)

Denote

Ip+1 � 
∞

bp+1

υp+1 τp+1 ϕm τ1, . . . , τp+1 Δτp+1. (72)

Use (eorem 3.1 in [2] in (72) with respect to
τp+1 ∈ Tp+1 for fix (τ1, . . . , τp) ∈ T1 × · · · × Tp to obtain

⇒ Ip+1 
m
≤m

m

∞

bp+1

υp+1 τp+1 ϕm
p τ1, . . . , τp+1 Δτp+1,

(73)

where

ϕp τ1, . . . , τp+1  � 
∞

τ1
· · · 
∞

τp



p

ι�1

υι sι( 

Aι σι sι( ( 
g s1, . . . , sp, τp+1 Δsp · · ·Δs1. (74)

Substitute (73) in (71) and use (5) “p times” in resultant
inequality to obtain


∞

b1

· · · 
∞

bp+1



p+1

ι�1
υι τι( ϕm τ1, . . . , τp+1 Δτp+1 · · ·Δτ1 ≤m

m

∞

b1

· · · 
∞

bp



p

ι�1
υι τι( 

· 
∞

bp+1

υp+1 τp+1 ϕm
p τ1, . . . , τp+1 Δτp+1 Δτp · · ·Δτ1.

(75)

Use induction hypothesis for ϕp(τ1 . . . τp+1) with fix
τp+1 ∈ Tp+1, instead for ϕp(τ1 . . . τp) to obtain


∞

b1

· · · 
∞

bp+1



p+1

ι�1
υι τι( ϕm τ1, . . . , τp+1 Δτp+1 · · ·Δτ1

≤m
(p+1)m


∞

b1

· · · 
∞

bp+1



p+1

ι�1
υι τι( g

m τ1, . . . , τp+1 Δτp+1 · · ·Δτ1.

(76)

(us, by mathematical induction, (12) holds for all
h ∈ N. □

Proof. We prove the result by using mathematical induc-
tion. For h � 1, statement is true by (eorem 3.3 in [2].
Assume for 1≤ h≤p, (14) holds. To prove the result for
h � p + 1, left-hand side of (14) can be written as


∞

a1

· · · 
∞

ap



p

ι�1

υι ςι( 

A
cι
ι σι ςι( ( 


∞

ap+1

υp+1 ςp+1 

A
cp+1
p+1 σp+1 ςp+1  

ϕm ς1, . . . , ςp+1 Δςp+1
⎧⎨

⎩

⎫⎬

⎭Δςp · · ·Δς1. (77)
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Denote

Ip+1 � 
∞

ap+1

υp+1 ςp+1 

A
cp+1
p+1 σp+1 ςp+1  

ϕm ς1, . . . , ςp+1 Δςp+1.

(78)

Use(eorem 3.3 in [2] in (72) with respect to ςp+1 ∈ Tp+1
for fix (ς1, . . . , ςp) ∈ T1 × · · · × Tp to obtain

Ip+1 
m
≤

m

1 − cp+1
 

m


∞

ap+1

υp+1 ςp+1 A
m−cp+1
p+1 σp+1 ςp+1  ϕm

p ς1, . . . , ςp+1 Δςp+1, (79)

where

ϕp ς1, . . . , ςp+1 ≐
∞

ς1
· · · 
∞

ςp



p

ι�1
υι sι( g s1, . . . , sp, ςp+1 Δsp · · ·Δs1. (80)

Substitute (79) in (77) and use fd5(5) “p times” in re-
sultant inequality to obtain


∞

a1

· · · 
∞

ap



p

ι�1

υι ςι( 

A
cι
ι σι ςι( ( 


∞

ap+1

υp+1 ςp+1 

A
cp+1
p+1 σp+1 ςp+1  

ϕm ς1, . . . , ςp+1 Δςp+1
⎧⎨

⎩

⎫⎬

⎭Δςp · · ·Δς1

≤
m

1 − cp+1
 

m


∞

ap+1

υp+1 ςp+1 A
m−cp+1
p+1 σp+1 ςp+1  Δςp+1 × 

∞

a1

· · · 
∞

ap



p

ι�1

υι ςι( 

A
cι
ι σι ςι( ( 

ϕm
p ς1, . . . , ςp+1 Δςp · · ·Δς1.

(81)

Use induction hypothesis for ϕp(ς1, . . . , ςp+1) with fix
ςp+1 ∈ Tp+1, instead for ϕp(ς1, . . . , ςp), to obtain


∞

a1

· · · 
∞

ap+1



p+1

ι�1

υι ςι( 

A
cι
ι σι ςι( ( 

ϕm ς1, . . . , ςp+1 Δςp+1 · · ·Δς1

≤

p+1

ι�1

m

1 − cι
 

(p+1)m


∞

a1

· · · 
∞

ap+1



p+1

ι�1
υι ςι( A

m−cι
ι σι ςι( ( g

m ς1, . . . , ςp+1 Δςp+1 · · ·Δς1.

(82)

Hence, by mathematical induction, (14) is true for all
h ∈ N. □
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Correspondence should be addressed to Ahmet Ocak Akdemir; aocakakdemir@gmail.com

Received 26 February 2021; Revised 2 April 2021; Accepted 12 April 2021; Published 17 May 2021

Academic Editor: Xiaolong Qin

Copyright © 2021 Tahir Rasheed et al.'is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We generalize Jensen’s integral inequality for real Stieltjes measure by using Montgomery identity under the effect of n−convex
functions; also, we give different versions of Jensen’s discrete inequality along with its converses for real weights. As an application,
we give generalized variants of Hermite–Hadamard inequality. Montgomery identity has a great importance as many inequalities
can be obtained fromMontgomery identity in q−calculus and fractional integrals. Also, we give applications in information theory
for our obtained results, especially for Zipf and Hybrid Zipf–Mandelbrot entropies.

1. Introduction

Convex functions have a great importance in mathematical
inequalities, and the well-known Jensen’s inequality is the
characterization of convex functions. Jensen’s inequality for
differentiable convex functions plays a significant role in the
field of inequalities as several other inequalities can be seen
as special cases of it. One can find the application of Jensen’s
discrete inequality in discrete-time delay systems in [1].

Taking into consideration the tremendous applications
of Jensen’s inequality in various fields of mathematics and
other applied sciences, the generalizations and improve-
ments of Jensen’s inequality have been a topic of supreme
interest for the researchers during the last few decades as
evident from a large number of publications on the topic (see
[2–4] and the references therein).

'e well-known Jensen’s inequality asserts that for the
function Γ it holds that

Ψ
1

Pm



m

J�1
pJxJ

⎛⎝ ⎞⎠≤
1

Pm



m

J�1
pJΨ xJ , (1)

if Ψ is a convex function on interval I ⊂ R, where pJ are
positive real numbers and xJ ∈ I(J � 1, . . . ,m), while
Pm � 

m
J�1 pJ.

However, the well-known integral analogue of Jensen’s
inequality is as follows.

Theorem 1. Let Z: [a, b]⟶ [α, β] be a continuous func-
tion and λ: [a, b]⟶ R be an increasing and bounded
function with λ(a)≠ λ(b). =en, for every continuous convex
function Ψ: [α, β]⟶ R, the following inequality holds:

Ψ(Z)≤


b

a
Ψ(Z(ζ))dλ(ζ)


b

a
dλ(ζ)

, (2)

where

Z �


b

a
Z(ζ)dλ(ζ)


b

a
dλ(ζ)

∈ [α, β]. (3)

'ere are several inequalities coming from Jensen’s
inequality both in integral and discrete cases which can be
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obtained by varying conditions on the function Z and
measure λ defined in 'eorem 1.

Montgomery identity is used in quantum calculus or
q−calculus. 'ere are different identities of Montgomery,
and several inequalities of Ostrowski type were formulated
by using these identities. Budak and Sarikaya established the
generalized Montgomery-type identities for differential
mappings in [5]. Applications of Montgomery identity can
be found in fractional integrals as well as in quantum integral
operators. Here we utilize Montgomery’s identity for the
generalization of Jensen’s inequality. In [6], Cerone and
Dragomir developed a systematic study which produced
some novel inequalities. Several interesting results related to
inequalities and different types of convexity can be found in
[7–21]. 'e class of convex functions is a very useful concept
that has become a focus of interest for researchers in sta-
tistics, convex programming, and many other applied dis-
ciplines, as well as in inequality theory. 'e readers can find

some motivated findings related to convex functions and
some new integral inequalities in [22–27].

In [28], Khan et al. have mentioned about n-convex
functions as follows.

Definition 1. A function f: I⟶ R is called convex of
order n or n-convex if for all choices of (n + 1) distinct
points xi, . . . , xi+n we have Δ(n)f(xi)≥ 0.

If n-th order derivative f(n) exists, then f is n−convex if
and only if f(n) ≥ 0. For 1≤ k≤ (n − 2), a function f is
n−convex if and only if f(k) exists and is (n − k)−convex.

In the present paper, we will use Montgomery identity
that is presented as following.

Theorem 2. Let n ∈ N, Ψ: I⟶ R be such that Ψ(n−1) is
absolutely continuous, I ⊂ R is an open interval, and α, β ∈ I,
α< β. =en, the following identity holds:

Ψ(x) �
1

β − α

β

α
Ψ(t)dt + 

n−2

ℓ�0

Ψ(ℓ+1)
(α)

ℓ!(ℓ + 2)

(x − α)
ℓ+2

β − α
− 

n−2

ℓ�0

Ψ(ℓ+1)
(β)

ℓ!(ℓ + 2)

(x − β)
ℓ+2

β − α
+

1
(n − 1)!


β

α
Rn(x, s)Ψ(n)

(s)ds, (4)

where

Rn(x, s) �

−
(x − s)

n

n(β − α)
+

x − α
β − α

(x − s)
n− 1

, α≤ s≤x,

−
(x − s)

n

n(β − α)
+

x − β
β − α

(x − s)
n− 1

, x< s≤ β.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

2. Generalization of Jensen’s Integral
Inequality by Using Montgomery Identity

Before giving our main results, we consider the following
assumptions that we use throughout our paper:

A1 Let Z: [a, b]⟶ R be continuous function.
A2 Let λ: [a, b]⟶ R be a continuous function or the
functions of bounded variation such that λ(a)≠ λ(b).

2.1. New Generalization of Jensen’s Integral Inequality. In
our first main result, we employ Montgomery identity to
obtain the following real Stieltjes measure’s theoretical
representations of Jensen’s inequality.

Theorem 3. Let g, λ be as defined in A1, A2 such that
Z([a, b]) ⊂ [α, β]. Also, let Ψ: [α, β]⟶ R be such that for
n≥ 1, Ψ(n−1) is absolutely continuous. If Ψ is n−convex such
that

Rn(Z, s)≤


b

a
Rn(Z(ζ), s)dλ(ζ)


b

a
dλ(ζ)

, s ∈ [α, β], (6)

with Z and Rn(x, s) as defined in (3) and (5), respectively,
then we have

Ψ(Z) −


b

a
Ψ(Z(ζ))dλ(ζ)


b

a
dλ(ζ)

≤ 
n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

×

Ψ(ℓ+1)
(α) (Z − α)

(ℓ+2)
−


b

a
(Z(ζ) − α)

(ℓ+2)dλ(ζ)


b

a
dλ(ζ)

⎛⎝ ⎞⎠ − Ψ(ℓ+1)
(β) (Z − β)

(ℓ+2)
+


b

a
(Z(ζ) − β)

(ℓ+2)dλ(ζ)


b

a
dλ(ζ)

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(7)

2 Journal of Mathematics



Proof. AsΨ(n−1) is absolutely continuous for (n≥ 1), we can
use the representation of Ψ using Montgomery identity (4)
and can calculate

Ψ(Z) �
1

β − α

β

α
Ψ(ζ)d(ζ) + 

n−2

ℓ�0

Ψ(ℓ+1)
(α)

ℓ!(ℓ + 2)

(Z − α)
ℓ+2

β − α
− 

n−2

ℓ�0

Ψ(ℓ+1)
(β)

ℓ!(ℓ + 2)

(Z − β)
ℓ+2

β − α
+

1
(n − 1)!


β

α
Rn(Z, s)Ψ(n)

(s)ds. (8)

'e integration of the composition of functionsΨ ∘ Z for
the real measure λ on [a, b] gives


b

a
Ψ(Z(ζ))dλ(ζ)


b

a
dλ(ζ)

�
1

β − α

β

α
Ψ(ζ)d(ζ) + 

n−2

ℓ�0

Ψ(ℓ+1)
(α)

ℓ!(ℓ + 2)


b

a
(Z(ζ) − α)

(ℓ+2)dλ(ζ)

(β − α) 
b

a
dλ(ζ)

− 
n−2

ℓ�0

Ψ(ℓ+1)
(β)

ℓ!(ℓ + 2)


b

a
(Z(ζ) − β)

(ℓ+2)dλ(ζ)

(β − α) 
b

a
dλ(ζ)

+
1

(n − 1)!

β

α
Rn(Z(ζ), s)Ψ(n)

(s)ds.

(9)

Now computing the difference Ψ(Z) − 
b

a
Ψ(Z(ζ))

dλ(ζ)/
b

a
dλ(ζ), we get the following generalized identity

involving real Stieltjes measure:

Ψ(Z) −


b

a
Ψ(Z(ζ))dλ(ζ)


b

a
dλ(ζ)

� 
n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

× Ψ(ℓ+1)
(α) (Z − α)

(ℓ+2)
−


b

a
(Z(ζ) − α)

(ℓ+2)dλ(ζ)


b

a
dλ(ζ)

⎛⎝ ⎞⎠ − Ψ(ℓ+1)
(β) (Z − β)

(ℓ+2)
+


b

a
(Z(ζ) − β)

(ℓ+2)dλ(ζ)


b

a
dλ(ζ)

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

+
1

(n − 1)!

β

α
Rn(Z, s) −


b

a
Rn(Z(ζ), s)dλ(ζ)


b

a
dλ(ζ)

⎛⎝ ⎞⎠Ψ(n)
(s)ds.(GI.1).

(10)

Finally, by our assumption, Ψ(n−1) is absolutely con-
tinuous on [α, β]; as a result, Ψ(n) exists almost everywhere.
Moreover, Ψ is supposed to be n−convex, so we have
Ψ(n)(x)≥ 0 almost everywhere on [α, β]. 'erefore, by
taking into account the last term in generalized identity
(GI.1) and integral analogue of Jensen’s inequality that is
given in (6), we get (7). □

In the later part of this section, we will vary our con-
ditions on functions g and Stieltjes measure dλ to obtain
generalized variants of Jensen–Steffensen, Jensen–Boas,
Jensen–Brunk, and Jensen-type inequalities. We start with

the following generalization of Jensen–Steffensen inequality
for n−convex functions.

Theorem 4. Let Ψ defined in =eorem 3 be n−convex and Z

defined in M1 be monotonic. =en, the following results hold.

(i) If λ defined in M2 satisfies

λ(a)≤ λ(x)≤ λ(b), ∀x ∈ [a, b], λ(b)> λ(a), (11)

then for even n≥ 3, (6) is valid.
(ii) Moreover, if (6) is valid and the function

H(x) ≔ 
n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

  Ψ(ℓ+1)
(α)(x − α)

ℓ+2
− Ψ(ℓ+1)

(β)(x − β)
ℓ+2

  (12)
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is convex, then we get inequality (2) which is called
generalized Jensen–Steffensen inequality for
n−convex function.

Proof. (i) By applying second derivative test, we can show
that the function

Rn(x, s) is convex for even n> 3. Now using the
assumed conditions, one can employ Jensen–
Steffensen inequality given by Boas (see [29] or [30],
p. 59) for convex function Rn(x, s) to obtain (6).

(ii) Since we can rewrite the R.H.S. of (7) in the
difference

H(Z) −


b

a
H(Z(ζ))dλ(ζ)


b

a
dλ(ζ)

, (13)

for convex function H and by our assumed conditions on
functions Z and λ, this difference is non-positive by using
Jensen–Steffensen inequality difference [29]. As a result, the
R.H.S. of inequality (7) is non-positive and we get gener-
alized Jensen–Steffensen inequality (2) for n−convex
function. □

Now, we give similar results related to Jensen–Boas
inequality [30], p. 59], which is a generalization of Jen-
sen–Steffensen inequality.

Corollary 1. Let Ψ defined in =eorem 3 be n−convex
function. Also, let Z be as defined in M1 with
a � y0 <y1 < . . . <yk < . . . <ym−1 <ym � b and Z be
monotonic in each of the m intervals ((yk−1, yk)). =en, the
following results hold.

(i) If λ as defined in M2 satisfies

λ(a)≤ λ x1( ≤ λ y1( ≤ λ x2( ≤ λ y2( ≤ . . . ≤ λ ym−1( ≤ λ xm( ≤ λ(b), (14)

∀xk ∈ (yk−1, yk) and λ(b)> λ(a), then for even n≥ 3,
(6) is valid.

(ii) Moreover, if (6) is valid and the function H(·) defined
in (18) is convex, then again inequality (2) holds and
is called Jensen–Boas inequality for n−convex
function.

Proof. We follow the similar argument as in the proof of
'eorem 4, but under the conditions of this corollary, we
utilize Jensen–Boas inequality (see [29] or [24], p. 59) instead
of Jensen–Steffensen inequality.

Next, we give results for Jensen–Brunk inequality. □

Corollary 2. Let Ψ defined in =eorem 3 be n−convex and Z

defined in M1 be an increasing function. =en, the following
results hold.

(i) If λ defined in M2 with λ(b)> λ(a) and


x

a
(Z(x) − Z(ζ))dλ(ζ)≥ 0, (15)

and


b

x
(Z(x) − Z(ζ))dλ(ζ)≤ 0, (16)

∀x ∈ [a, b] holds, then for even n≥ 3, (6) is valid.
(ii) Moreover, if (6) is valid and the function H(·) defined

in (18) is convex, then again inequality (2) holds and
is called Jensen–Brunk inequality for n−convex
function.

Proof. We proceed with the similar idea as in the proof of
'eorem 4, but under the conditions of this corollary, we
employ Jensen–Brunk inequality (see [31] or [30], p. 59])
instead of Jensen–Steffensen inequality. □

Remark 1. 'e similar result in Corollary 2 is also valid
provided that the function Z is decreasing. Also, assuming
that the function Z is monotonic, one can replace the
conditions in Corollary 2(i) by

0≤ 
x

a
|Z(x) − Z(ζ)|dλ(ζ)≤ 

b

x
|g(x) − Z(ζ)|dλ(ζ).

(17)

Remark 2. It is interesting to see that by employing similar
method as in 'eorem 4, we can also get the generalization
of classical Jensen’s inequality (2) for n−convex functions by
assuming the functions Z and λ along with the respective
conditions in 'eorem 1.

Another important consequence of 'eorem 3 can be
given by setting the function Z as Z(ζ) � ζ. 'is form is the
generalized version of L.H.S. inequality of the Hermite-
Hadamard inequality.

Corollary 3. Let λ: [a, b]⟶ R be a function of bounded
variation such that λ(a)≠ λ(b) with [a, b] ⊂ [α, β] and
ζ � 

b

a
ζdλ(ζ)/ 

b

a
dλ(ζ) ∈ [α, β]. Under the assumptions of

=eorem 3, if Ψ is n−convex such that

Rn(Z, s)≤


b

a
Rn(Z(ζ), s)dλ(ζ)


b

a
dλ(ζ)

, s ∈ [α, β], (18)

then we have
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Ψ(ζ)≤


b

a
Ψ(ζ)dλ(ζ)


b

a
dλ(ζ)

+ 
n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

× Ψ(ℓ+1)
(α) (ζ − α)

(ℓ+2)
−


b

a
(ζ − α)

(ℓ+2)dλ(ζ)


b

a
dλ(ζ)

⎛⎝ ⎞⎠ − Ψ(ℓ+1)
(β) (ζ − β)

(ℓ+2)
+


b

a
(ζ − β)

(ℓ+2)dλ(ζ)


b

a
dλ(ζ)

⎛⎝ ⎞⎠⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(19)

If the inequality (18) holds in reverse direction, then (19)
also holds reversely.

'e special case of above corollary can be given in the
form of following remark.

Remark 3. It is interesting to see that substituting λ(ζ) � ζ
gives 

b

a
dλ(ζ) � b − a and ζ � a + b/2. Using these substi-

tutions in (2) and by following remark (20), we get the L.H.S.
inequality of renowned Hermite–Hadamard inequality for
n−convex functions.

2.2. New Generalization of Converse of Jensen’s Integral
Inequality. In this section, we give the results for the

converse of Jensen’s inequality to hold, giving the conditions
on the real Stieltjes measure dλ, such that λ(a)≠ λ(b),
allowing that the measure can also be negative, but
employing Montgomery identity.

To start with we need the following assumption for the
results of this section:

A3 Let m,M ∈ [α, β](m≠M) be such that
m≤ Z(ζ)≤M for all ζ ∈ [a, b] where Z is defined in A1.

For a given function Ψ: [α, β]⟶ R, we consider the
difference

CJ Ψ, Z m,M{ }; λ  �


b

a
Ψ(Z(ζ))dλ(ζ)


b

a
dλ(ζ)

−
M − Z

M − m
Ψ(m) −

Z − m
M − m
Ψ(M), (20)

where Z is defined in (3).
Using Montgomery identity, we obtain the following

representation of the converse of Jensen’s inequality.

Theorem 5. Let Z, λ be as defined in A1, A2 and let
Ψ: [α, β]⟶ R be such that for n≥ 1, Ψ(n−1) is absolutely
continuous. If Ψ is n−convex such that

CJ Rn(x, s), Z m,M{ }; λ ≤ 0, s ∈ [α, β], (21)

or


b

a
Rn(Z(ζ), s)dλ(ζ)


b

a
dλ(ζ)

≤
M − Z

M − m
Rn(m, s)(  +

Z − m
M − m

Rn(M, s)( , s ∈ [α, β], (22)

then we get the following extension of the converse of Jensen’s
difference:


b

a
Ψ(Z(ζ))dλ(ζ)


b

a
dλ(ζ)

≤
M − Z

M − m
Ψ(m) +

Z − m
M − m
Ψ(M) + 

n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

 

× Ψ(ℓ+1)
(α)CJ (x − α)

ℓ+2
, Z m,M{ }; λ  − Ψ(ℓ+1)

(β)CJ (x − β)
ℓ+2

, Z m,M{ }; λ  ,

(23)

where Rn(·, s) is defined in (5).
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Proof. AsΨ(n−1) is absolutely continuous for (n≥ 1), we can
use the representation of Ψ using Montgomery identity (4)
in the difference CJ(Ψ, Z m,M{ }; λ):

CJ Ψ, Z m,M{ }; λ  � CJ
1

β − α

β

α
Ψ(ζ)dζ , Z m,M{ }; λ 

+ 
n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

 Ψ(ℓ+1)
(α)CJ (x − α)

ℓ+2
, Z m,M{ }; λ 

− 
n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

 Ψ(ℓ+1)
(β)CJ (x − β)

ℓ+2
, Z m,M{ }; λ  +

1
(n − 1)!


β

α
CJ Rn(x, s), Z m,M{ }; λ Ψ(n)

(s)ds.

(24)

After simplification and following the fact that
CJ(Ψ, Z m,M{ }; λ) is zero for Ψ to be constant or linear, we get
the following generalized identity:

CJ Ψ, Z m,M{ }; λ j � 
n−2

ℓ�0

.

ℓ!(ℓ + 2)(β − α)
 

× Ψ(ℓ+1)
(α)CJ (x − α)

ℓ+2
, Z m,M{ }; λ  − Ψ(ℓ+1)

(β)CJ (x − β)
ℓ+2

, Z m,M{ }; λ  

+
1

(n − 1)!

β

α
CJ Rn(x, s), Z m,M{ }; λ Ψ(n)

(s)ds.(CGI.1).

(25)

Now using characterizations of n−convex functions like
in the proof of 'eorem 3, we get (23). □

'e next result gives converse of Jensen’s inequality for
higher-order convex functions.

Theorem 6. Let Ψ defined in =eorem 5 be n−convex and Z

be as defined in A3. =en, the following results hold.

(i) If λ is non-negative measure on [a, b], then for even
n≥ 3, (22) is valid.

(ii) Moreover, if (22) is valid and the function H(·)

defined in (12) is convex, then we get the following
inequality for n−convex function to be valid:


b

a
Ψ(Z(ζ))dλ(ζ)


b

a
dλ(ζ)

≤
M − Z

M − m
Ψ(m) −

Z − m
M − m
Ψ(M). (26)

Proof. 'e idea of the proof is similar to that of (6), but we use
converse of Jensen’s inequality (see [32] or [30], p. 98). □

2.3. Applications of Jensen’s Integral Inequality. In this sec-
tion, we give applications of Jensen’s integral inequality.

Another important consequence of 'eorem 3 is by
setting the function Z as Z(ζ) � ζ gives generalized version of
L. H. S. inequality of the Hermite–Hadamard inequality.

Corollary 4. Let λ: [a, b]⟶ R be a function of bounded
variation such that λ(a)≠ λ(b) with [a, b] ⊂ [α, β] and
ζ � 

b

a
ζdλ(ζ)/ 

b

a
dλ(ζ) ∈ [α, β]. Under the assumptions of

=eorem 5, if Ψ is n−convex such that


b

a
Rn(ζ, s)dλ(ζ)


b

a
dλ(ζ)

≤
b − ζ
b − a

Rn(a, s)(  +
ζ − a

b − a
Rn(b, s)( , s ∈ [α, β],

(27)

then we have
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b

a
Ψ(ζ)dλ(ζ)


b

a
dλ(ζ)

≤
b − ζ
b − a
Ψ(a) +

ζ − a

b − a
Ψ(b) + 

n−2

ℓ�0

.

ℓ!(ℓ + 2)(β − α)
 ×

Ψ(ℓ+1)
(α)CJ (x − α)

ℓ+2
, id a,b{ }; λ  − Ψ(ℓ+1)

(β)CJ (x − β)
ℓ+2

, id a,b{ }; λ  .

(28)

If the inequality (27) holds in reverse direction, then (28)
also holds reversely.

'e special case of above corollary can be given in the
form of following remark.

Remark 4. It is interesting to see that substituting λ(ζ) � ζ
and by following 'eorem 6, we get the R.H.S. inequality of
renowned Hermite–Hadamard inequality for n−convex
functions.

3. Generalization of Jensen’s Discrete
Inequality by Using Montgomery Identity

In this section, we give generalizations for Jensen’s discrete
inequality by using Montgomery identity. 'e proofs are
similar to those of continuous case as given in previous
section; therefore, we give results directly.

3.1. Generalization of Jensen’s Discrete Inequality for Real
Weights. In discrete case, we have that pJ > 0 for all
J � 1, 2, . . . ,m. Here we give generalizations of results

allowing pJ to be negative real numbers. Also, with usual
notations for pJxJ(J � 1, 2, . . . ,n), we notate

x � x1, x2, . . . , xm(  and p � p1, p2, . . . , pm(  (29)

to be m−tuples.

Pv � 
v

J�1
pJ, Pv � Pm − Pv−1 (v � 1, 2, . . . ,m), (30)

and

x �
1

Pm



m

J�1
pJxJ. (31)

Using Montgomery identity (4), we obtain the following
representations of Jensen’s discrete inequality.

Theorem 7. Let Ψ: [α, β]⟶ R be such that for n≥ 1,
Ψ(n−1) is absolutely continuous. Also, let xJ ∈ [a, b]⊆[α, β],
pJ ∈ R(J � 1, . . . ,m) be such that Pm ≠ 0 and x ∈ [α, β].

(i) =en, the following generalized identity holds:

Ψ(x) −
1

Pm



m

J�1
pJΨ xJ  � 

n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

 ×

Ψ(ℓ+1)
(α) (x − α)

ℓ+2
−

1
Pm



m

J�1
pJ xJ − α 

ℓ+2⎛⎝ ⎞⎠ − Ψ(ℓ+1)
(β) (x − β)

ℓ+2
−

1
Pm



m

J�1
pJ xJ − β 

ℓ+2⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

+
1

(n − 1)!

β

α
Rn(x, s) −

1
Pm



m

J�1
pJRn xJ, s ⎡⎢⎢⎣ ⎤⎥⎥⎦Ψ(n)

(s)ds, (DGI.1),

(32)

where Rn(·, s) is defined in (5).
(ii) Moreover, if Ψ is n−convex and the inequality

Rn(x, s)≤
1

Pm



m

J�1
pJRn xJ, s  (33)

holds, then we have the following generalized inequality:

Ψ(x) −
1

Pm



m

J�1
pJΨ xJ ≤ 

n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

 ×

Ψ(ℓ+1)
(α) (x − α)

ℓ+2
−

1
Pm



m

J�1
pJ xJ − α 

ℓ+2⎛⎝ ⎞⎠ − Ψ(ℓ+1)
(β) (x − β)

ℓ+2
−

1
Pm



m

J�1
pJ xJ − β 

ℓ+2⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭.

(34)

Journal of Mathematics 7



If inequality (33) holds in reverse direction, then (34) also
holds reversely.

Proof. Similar to that of 'eorem 3.
In the later part of this section, we will vary our con-

ditions on pJxJ(J � 1, 2, . . . ,n) to obtain generalized
discrete variants of Jensen–Steffensen, Jensen’s, and Jen-
sen–Petrovic type inequalities. We start with the following
generalization of Jensen–Steffensen discrete inequality for
n−convex functions. □

Theorem 8. Let Ψ be as defined in =eorem 7. Also, let x be
monotonic n−tuple, xJ ∈ [a, b]⊆[α, β], and p be a real
n−tuple such that

0≤Pv ≤Pm, (v � 1, 2, . . . ,m − 1), Pm > 0 (35)

is satisfied.

(i) If Ψ is n−convex, then for even n≥ 3, (33) is valid.
(ii) Moreover, if (33) is valid and the function H(·) de-

fined in (12) is convex, then we get the following
generalized Jensen–Steffensen discrete inequality:

Ψ(x)≤
1

Pm



m

J�1
pJΨ xJ . (36)

Proof. It is interesting to see that under the assumed con-
ditions on tuples x and p, we have that x ∈ [a, b]. For
x1 ≥x2 ≥ . . . ≥xm,

Pm x1 − x(  � 
m

J�2
pJ x1 − xJ  � 

m

v�2
xv−1 − xv(  Pm − Pv−1( ≥ 0.

(37)

'is shows that x1 ≥ x. Also, x≥ xn, since we have

Pm x − xm(  � 

m−1

J�1
pJ xJ − xm  � 

m−1

v�1
xv − xv−1( Pv ≥ 0.

(38)

For further details, see the proof of Jensen–Steffensen
discrete inequality ([24], p. 57). 'e idea of the rest of the
proof is similar to that of 'eorem 3, but here we employ
'eorem 7 and Jensen–Steffensen discrete inequality. □

Corollary 5. Let Ψ be as defined in =eorem 7 and let
xJ ∈ [a, b]⊆ [α, β] with p being a positive n−tuple.

(i) If Ψ is n−convex, then for even n≥ 3, (34) is valid.
(ii) Moreover, if (33) is valid and the function H(·) de-

fined in (12) is convex, then again we get (36) which is
called Jensen’s inequality for n−convex functions.

Proof. For pJ > 0, xJ ∈ [a, b] (J � 1, 2, 3, . . . ,m) ensures
that x ∈ [a, b]. So, by applying classical Jensen’s discrete

inequality (1) and idea of'eorem 8, we will get the required
results. □

Remark 5. Under the assumptions of Corollary 5, if we
choose Pm � 1, then Corollary 5 (ii) gives the following
inequality for n−convex functions:

Ψ 
m

J�1
pJxJ

⎛⎝ ⎞⎠≤ 
m

J�1
pJΨ xJ . (39)

Nowwe give following reverses of Jensen–Steffensen and
Jensen-type inequalities.

Corollary 6. Let Ψ be as defined in =eorem 7. Also, let x be
monotonic m−tuple, xJ ∈ [a, b]⊆[α, β], and p be a real
m−tuple such that there exist m ∈ 1, 2, . . . ,m{ } such that

0≥Pv, for v<m and 0≥Pv, for v>m, (40)

where Pm > 0 and x ∈ [α, β].

(i) If is n−convex, then for even n≥ 3, then reverse of
inequality (33) holds.

(ii) Moreover if (33) holds reversely and the function H(·)

defined in (12) is convex, then we get reverse of
generalized Jensen–Steffensen inequality (36) for
n−convex functions.

Proof. We follow the idea of 'eorem 8, but according to
our assumed conditions, we employ reverse of Jensen–
Steffensen inequality to obtain results. □

In the next corollary, we give explicit conditions on real
tuple p such that we get reverse of classical Jensen inequality.

Corollary 7. Let Ψ be as defined in =eorem 7 and let
xJ ∈ [a, b]⊆[α, β] such that x ∈ [α, β]. Let p be a real n−tuple
such that

0<p1, 0≥p2, p3, . . . , pm, 0<Pm (41)

is satisfied.

(i) If Ψ is n−convex, then for even n≥ 3, the reverse of
inequality (33) is valid.

(ii) Also, if reverse of (33) is valid and the function H(·)

defined in (12) is convex, then we get reverse of (36).

Proof. We follow the idea of 'eorem 8, but according to
our assumed conditions, we employ reverse of Jensen in-
equality to obtain results. □

In [33] (see also [30]), one can find the result which is
equivalent to the Jensen–Steffensen and the reverse Jen-
sen–Steffensen inequality together. It is the so-called
Jensen–Petrović inequality. Here, without the proof, we give
the adequate corollary which uses that result. 'e proof goes
the same way as in the previous corollaries.
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Corollary 8. Let Ψ be as defined in =eorem 7 and let
xi ∈ [a, b]⊆[α, β] be such that xm ≥ xm−1, . . . , x2 ≤x1. Let p
be a real m−tuple with Pm � 1 such that

0≤Pv, for 1≤ v<m − 1 and 0≤Pv, for 2≤ v<m,

(42)

is satisfied. =en, we get the equivalent results given in
=eorem 8 (i) and (ii), respectively.

Remark 6. Under the assumptions of Corollary 8, if there
exist m ∈ 1, 2, . . . ,n{ } such that

0≥Pv, for v<m and 0≥Pv, for v>m, (43)

and x ∈ [α, β], then we get the equivalent results for reverse
Jensen–Steffensen inequality given in Corollary 6 (i) and
(ii), respectively.

Remark 7. It is interesting to see that the conditions on
pJ,J � 1, 2, . . . ,m given in Corollary 8 and Remark 6 are
coming from Jensen–Petrović inequality which become
equivalent to conditions for pJ,J � 1, 2, . . . ,m for Jen-
sen–Steffensen results given in 'eorem 8 and Corollary 6,
respectively, when Pm � 1.

Now we give results for Jensen and its reverses for
n−tuples x and p when n is an odd number.

Corollary 9. Let Ψ be as defined in =eorem 7 and let
xJ ∈ [a, b]⊆[α, β] for J � 1, 2, . . . ,m be such that x, p be
realm−tuples,m � 2m + 1, m ∈ N and x � 1/2k+1

J�1 pJ
2k+1
J�1

pJxJ ∈ [α, β] for all k � 1, 2, . . . , m. If for every
k � 1, 2, . . . , m, we have

(i∗) p1 > 0, p2k ≤ 0, p2k + p2k+1 ≤ 0, 
2k
J�1pJ ≥ 0,


2k+1
J�1 pJ > 0

(ii∗) x2k ≤x2k+1, 
2k+1
J�1 pJ (xJ − x2k+1)≥ 0,

then we have the following statements to be valid.
(i) If Ψ is n−convex, then for even n≥ 3, the inequality

Rn(x, s)≥
1

P2m+1


2m+1

J�1
pJRn xJ, s . (44)

(ii) Also if (44) is valid and the function H(·) defined in
(12) is convex, then we get the following generalized
inequality:

Ψ(x)≥
1

P2m+1


2m+1

J�1
pJΨ xJ . (45)

Proof. We employ the idea of the proofs of 'eorems 7 and
8 for n � odd along with inequality of Vasić and Janic
[34]. □

Remark 8. We can also discuss the following important
cases by considering the explicit conditions given in [34].

We conclude this section by giving the following im-
portant cases:

(Case 1)
Let the condition (i∗) hold and the reverse inequalities
in condition (ii∗) hold. 'en, again we can give in-
equalities (44) and (45), respectively, given in Corollary
9.
(Case 2)
If in case of conditions (i∗) and (ii∗), the following are
valid:
(iii∗) p1 > 0, p2k+1 ≥ 0, p2k + p 2k+1 ≥ 0, 

2k
J�1pJ ≥ 0,


2k+1
J�1 pJ > 0

(iv∗) x2k ≤x2k+1, 
2k−1
J�1 pJ(xJ − x2k)≤ 0,

then we can give reverses of inequalities (44) and (45),
respectively, given in Corollary 9.
(Case 3)
Finally, we can also give reverses of inequalities (44)
and (45), respectively, given in Corollary 9 provided
that the condition (iii∗) holds and the reverse in-
equalities in condition (iv∗) hold.

'e result given in (Case 3) is type of generalization of
inequality by Szegö [35].

3.2. Generalization of Converse Jensen’sDiscrete Inequality for
RealWeights. In this section, we give the results for converse
of Jensen’s inequality in discrete case by using the Mont-
gomery identity.

Let xJ ∈ [a, b]⊆[α, β], a≠ b, pJ ∈ R(J � 1, . . . ,n) be
such that Pm ≠ 0. 'en, we have the following difference of
converse of Jensen’s inequality for Ψ: [α, β]⟶ R:

CJdis(Ψ) �
1

Pm



m

J�1
pJΨ xJ  −

b − x

b − a
Ψ(a) −

x − a

b − a
Ψ(b).

(46)

Similarly, we assume the Giaccardi difference [36] given
as

Gcardi(Ψ) � 
m

J�1
pJΨ xJ  − AΨ 

m

J�1
pJxJ

⎛⎝ ⎞⎠ − B 
m

J�1
pJ − 1⎛⎝ ⎞⎠Ψ x0( , (47)

where

Journal of Mathematics 9



A �


m
J�1 pJ xJ − x0  


m
J�1 pJxJ − x0 

, B �


m
J�1 pJxJ


m
J�1 pJxJ − x0 

and 
m

J�1
pJxJ ≠ x0. (48)

Theorem 9. Let Ψ: [α, β]⟶ R be such that for n≥ 1,
Ψ(n−1) is absolutely continuous. Also, let
x0, xJ ∈ [a, b]⊆[α, β], pJ ∈ R(J � 1, . . . ,m), be such that


m
J�1 pJxJ ≠ x0.

(i) =en, the following generalized identity holds:

CJdis(Ψ) � 
n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

  Ψ(ℓ+1)
(α)CJdis xJ − α 

ℓ+2
  − Ψ(ℓ+1)

(β)CJdis xJ − β 
ℓ+2

  

+
1

(n − 1)!

β

α
CJdis Rn xJ, s  Ψ(n)

(s)ds, (DC.GI),

(49)

where Rn(·, s) is defined in (5).
(ii) Moreover, if Ψ is n−convex and the inequality

CJdis Rn xJ, s  ≤ 0 (50)

holds, then we have the following generalized inequality:

CJdis(Ψ)≤ 
n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

  Ψ(ℓ+1)
(α)CJdis xJ − α 

ℓ+2
  − Ψ(ℓ+1)

(β)CJdis xJ − β 
ℓ+2

  . (51)

If inequality (50) holds in reverse direction, then (51) also
holds reversely.

Theorem 10. Let Ψ: [α, β]⟶ R be such that for n≥ 1,
Ψ(n−1) is absolutely continuous. Also, let xJ ∈ [a, b]⊆[α, β],
pJ ∈ R(J � 1, . . . ,m), be such that Pm ≠ 0 and x ∈ [α, β].

(i) =en, the following generalized Giaccardi identity
holds:

Gcardi(Ψ) � 
n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

  Ψ(ℓ+1)
(α)Gcardi xJ − α 

ℓ+2
  − Ψ(ℓ+1)

(β)Gcardi xJ − β 
ℓ+2

  

+
1

(n − 1)!

β

α
Gcardi Rn xJ, s  Ψ(n)

(s)ds, (GIA.GI),

(52)

where Rn(·, s) is defined in (5).
(ii) Moreover, if Ψ is n−convex and the inequality

Gcardi Rn xJ, s  ≤ 0 (53)

holds, then we have the following generalized Giaccardi
inequality:

Gcardi(Ψ)≤ 
n−2

ℓ�0

1
ℓ!(ℓ + 2)(β − α)

  Ψ(ℓ+1)
(α)Gcardi xJ − α 

ℓ+2
  − Ψ(ℓ+1)

(β)Gcardi xJ − β 
ℓ+2

  . (54)

If inequality (53) holds in reverse direction, then (54) also
holds reversely.

In the later part of this section, we will vary our con-
ditions on pJxJ (J � 1, 2, . . . ,m) to obtain generalized
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converse discrete variants of Jensen’s inequality and Giac-
cardi inequality for n−convex functions.

Theorem 11. Let Ψ be as defined in =eorem 9. Also, let
xJ ∈ [a, b]⊆ [α, β] and p be a positive m−tuple.

(i) If Ψ is n−convex, then for even n≥ 3, (50) is valid.
(ii) Moreover, if (50) is valid and the function H(·) de-

fined in (12) is convex, then we get the following
generalized converse of Jensen’s inequality:

1
Pm



m

J�1
pJΨ xJ ≤

b − x

b − a
Ψ(a) +

x − a

b − a
Ψ(b). (55)

Proof. We follow the idea of 'eorem 8, but according to
our assumed conditions, we employ converse of Jensen’s
inequality (see [32] or [30], p. 98) to obtain results. □

Finally, in this section, we give Giaccardi inequality for
higher-order convex functions.

Theorem 12. Let Ψ be as defined in =eorem 9. Also, let
x0, xJ ∈ [a, b]⊆[α, β] and p be a positive m−tuple such that



m

J�1
pJxJ ≠x0 and xv − x0(  

m

J�1
pJxJ − xv

⎛⎝ ⎞⎠≥ 0, (v � 1, . . . ,m). (56)

(i) If Ψ is n−convex, then for even n≥ 3, (53) is valid.
(ii) Moreover, if (53) is valid and the function H(·) de-

fined in (12) is convex, then we get the following
generalized Giaccardi inequality:



m

J�1
pJΨ xJ ≤AΨ 

m

J�1
pJxJ

⎛⎝ ⎞⎠ + B 
m

J�1
pJ − 1⎛⎝ ⎞⎠Ψ x0( ,

(57)

where A and B are defined in (47).

Proof. We follow the idea of 'eorem 8, but according to
our assumed conditions, we employ Giaccardi inequality
(see [36] or [37], p. 11) to obtain results. □

3.3. Applications in Information =eory for Jensen’s Discrete
Inequality. Jensen’s inequality plays a key role in infor-
mation theory to construct lower bounds for some notable
inequalities, but here we will use it to make connections
between inequalities in information theory.

Let Ψ: R+⟶ R+ be a convex function and let
p ≔ (p1, . . . , pm) and q ≔ (q1, . . . , qm) be positive proba-
bility distributions; then, Ψ-divergence functional is defined
(in [38]) as follows:

IΨ(p, q) � 
m

J�1
qJΨ

pJ

qJ
 . (58)

Horváth et al. in [39] defined the generalized Csiszár
divergence functional as follows.

Definition 2. Let I be an interval in R and Ψ: I⟶ R be a
function. Also, let p ≔ (p1, . . . , pm) ∈ Rm and
q ≔ (q1, . . . , qm) ∈ (0,∞)m such that

pJ

qJ
∈ I, J � 1, . . . ,m. (59)

'en, let

IΨ(p, q) � 
m

J�1
qJΨ

pJ

qJ
 . (60)

In this section, we write Jensen’s difference here that we
use in upcoming results:

F p, xJ,Ψ  � Ψ(x) −
1

Pm



m

J�1
pJΨ xJ . (61)

Theorem 13. Under the assumptions of =eorem 9 (ii), let
(51) hold and Ψ be n−convex. Also, let
p ≔ (p1, . . . , pm) inRm and q ≔ (q1, . . . , qm) ∈ (0,∞)m;
then, we have the following results:
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IΨ(p, q)≥PmΨ(1) − Pm 

n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

  × Ψ(ℓ+1)
(α) F q,

pJ

qJ
, (x − α)

ℓ+2
   − Ψ(ℓ+1)

(β) F q,
pJ

qJ
, (x − β)

ℓ+2
   .

(62)

Proof. From 'eorem 9 by following Jensen’s difference
(61), we can rearrange (34) as

Ψ(x) −
1

Pm



m

J�1
pJΨ xJ ≤ 

n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

  × Ψ(ℓ+1)
(α) F p, xJ, (x − α)

ℓ+2
   − Ψ(ℓ+1)

(β) F p, xJ, (x − β)
ℓ+2

   .

(63)

Now replace pJ with qJ and xJ with pJ/qJ, and we get
(62). □

For positive n-tuple q � (q1, . . . , qm) such that


m
J�1 qJ � 1, the Shannon entropy is defined by

S(q) � − 
m

J�1
qJ ln qJ. (64)

Corollary 10. Under the assumptions of =eorem 9 (ii), let
(51) hold and Ψ be n−convex.

(i) If q ≔ (q1, . . . , qm) ∈ (0,∞)m, then



m

J�1
qJ ln qJ ≤Pm 

n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

  ×
(−1)

ℓ+1ℓ!
α(ℓ+1)

F q,
1

qJ
, −ln(·)  −

(−1)
ℓ+1ℓ!

β(ℓ+1)
F q,

1
qJ

, −ln(·) 
⎧⎨

⎩

⎫⎬

⎭. (65)

(ii) We can get bounds for the Shannon entropy of q, if we
choose q ≔ (q1, . . . , qn) to be a positive probability
distribution.

S(q)≤Pm 

n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

  ×
(−1)

ℓ+1ℓ!
α(ℓ+1)

F q,
1

qJ
, −ln(·)  −

(−1)
ℓ+1ℓ!

β(ℓ+1)
F q,

1
qJ

, −ln(·) 
⎧⎨

⎩

⎫⎬

⎭. (66)

Proof. (i) Substituting Ψ(x) ≔ − lnx and using
p ≔ (1, 1, . . . , 1) in 'eorem 13, we get (65).

(ii) Since we have 
m
J�1 qJ � 1, by multiplying −1 on

both sides of (65) and taking into account (64), we
get (66).

'e Kullback–Leibler distance [40] between the positive
probability distributions p � (p1, . . . , pm) and
q � (q1, . . . , qm) is defined by

D(q ‖ p) � 

m

J�1
qJ ln

qJ

pJ

 . (67)

□

Corollary 11. Under the assumptions of Corollary 10,

(i) If q ≔ (q1, . . . , qm), p ≔ (p1, . . . , pm) ∈ (0,∞)m,
then



m

J�1
qJ ln

qJ

pJ

 ≤Pm 

n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

  ×
(−1)

ℓ+1ℓ!
α(ℓ+1)

F q,
pJ

qJ
, −ln(·)  −

(−1)
ℓ+1ℓ!

β(ℓ+1)
F q,

pJ

qJ
, −ln(·) 

⎧⎨

⎩

⎫⎬

⎭. (68)

(ii) If q ≔ (q1, . . . , qm), p ≔ (p1, . . . , pm) are positive
probability distributions, then we have
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D(q ‖ p)≤Pm 

n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

  ×
(−1)

ℓ+1ℓ!
α(ℓ+1)

F q,
pJ

qJ
, −ln(·)  −

(−1)
ℓ+1ℓ!

βℓ+1
F q,

pJ

qJ
, −ln(·)  . (69)

Proof.

(i) UsingΨ(x) ≔ − lnx (which isn-convex for evenn)
in 'eorem 13, we get (68) after simplification.

(ii) It is a special case of (i). □

3.4. Results for Zipf and Hybrid Zipf–Mandelbrot Entropy.
One of the basic laws in information science is Zipf’s law
[41,42] which is highly applied in linguistics. Let c≥ 0, d> 0,
and N ∈ 1, 2, . . .{ }; Zipf–Mandelbrot entropy can be given as

ZM(H, c, d) �
d

H
N
c,d



N

J�1

ln(J + c)

(J + c)
d

+ ln H
N
c,d , (70)

where

H
N
c,d � 

N

σ�1

1
(σ + c)

d
. (71)

Consider

qJ � Ψ(J; N, c, d) �
1

(J + c)
d
H

N
c,d 

, (72)

where Ψ(J; m, c, d) is discrete probability distribution
known as Zipf–Mandelbrot law. Zipf–Mandelbrot law has
many application in linguistics and information sciences.
Some of the recent study about Zipf–Mandelbrot law can be
seen in the listed references (see [39, 43]). Now we state our
results involving entropy introduced by Mandelbrot law by
establishing the relationship with Shannon and relative
entropies.

Theorem 14. Let q be Zipf–Mandelbrot law as defined in
(72) with parameters c≥ 0, d> 0, and N ∈ 1, 2, . . .{ }, and we
have

ZM(H, c, d) � S(q)≤N × 

n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

 ×

(−1)
ℓ+1ℓ!

α(ℓ+1)
F q, (J + c)

d
H

N
c,d , −ln(·)  −

(−1)
ℓ+1ℓ!

β(ℓ+1)
F q, (J + c)

d
H

N
c,d , −ln(·) 

⎧⎨

⎩

⎫⎬

⎭.

(73)

Proof. It is interesting to see that for qJ defined in (72),


N
J�1 qJ � 1. 'erefore, using above qJ in Shannon entropy

(64), we get Mandelbrot entropy (70):

S(q) � − 

N

J�1
qJ ln qJ � − 

N

J�1

1
(J + c)

d
H

N
c,d 

ln
1

(J + c)
d
H

N
c,d 

�
d

H
N
c,d 



N

J�1

ln(J + c)

(J + c)
d

+ ln H
N
c,d . (74)

Finally, substituting this qJ � 1/((J + c)dHN
c,d) in

Corollary 10 (ii), we get the desired result. □
Corollary 12. Let q and p be Zipf–Mandelbrot law with
parameters c1, c2 ∈ [0,∞), d1, d2 > 0, and let
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HN
c1 ,d1

� 
N
σ�1 1/(σ + c1)

d1 and HN
c2 ,d2

� 
N
σ�1 1/(σ + c2)

d2 .
Now using qJ � 1/(J + c1)

d1HN
c1 ,d1

and
pJ � 1/(J + c2)

d2HN
c2 ,d2

in Corollary 11 (ii), the following
holds:

D(q ‖ p) � 
N

J�1

1
J + c1( 

d1H
N
c1,d1

ln
J + c2( 

d2H
N
c2 ,d2

J + c1( 
d1H

m
c1 ,d1

⎛⎝ ⎞⎠

� −Z H, c1, d1(  +
d2

H
N
c1 ,d1



N

J�1

ln J + c2( 

J + c1( 
d1

+ ln H
m
c2,d2

 

≤N 
n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

  ×
(−1)

ℓ+1ℓ!
α(ℓ+1)

F q,
J + c1( 

d1H
N
c1 ,d1

J + c2( 
d2H

N
c2 ,d2

, −ln(·)⎛⎝ ⎞⎠ −
(−1)

ℓ+1ℓ!
β(ℓ+1)

F q,
J + c1( 

d1H
N
c1,d1

J + c2( 
d2H

N
c2,d2

, −ln(·)⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(75)

=e Next Result for Hybrid Zipf–Mandelbrot Entropy. Fur-
ther generalization of Zipf–Mandelbrot entropy is Hybrid

Zipf–Mandelbrot entropy. Let N ∈ 1, 2, . . .{ }, c≥ 0ω> 0;
then, Hybrid Zipf–Mandelbrot entropy can be given as

ZM H
∗
, c, d,ω(  �

1
H
∗
c,d,ω



N

J�1

ωJ

(J + c)
d
ln

(J + c)
d

ωJ
  + ln H

∗
c,d,ω , (76)

where

H
∗
c,d,ω � 

N

J�1

ωJ

(J + c)
d
. (77)

Consider

qJ � Ψ(J; N, c, d,ω) �
ωJ

(J + c)
d
H
∗
c,d,ω

, (78)

which is called Hybrid Zipf–Mandelbrot law. =ere is a
unified approach, maximization of Shannon entropy [44],

that naturally follows the path of generalization from Zipf’s to
Hybrid Zipf’s law. Extending this idea, Jakšetic et al. in [45]
presented a transition from Zipf–Mandelbrot to Hybrid
Zipf–Mandelbrot law by employing maximum entropy
technique with one additional constraint. It is interesting that
examination of its densities provides some new insights of
Lerch’s transcendent.

Theorem 15. Let q be Hybrid Zipf–Mandelbrot law as
defined in (78) with parameters c≥ 0, d,ω> 0, and
N ∈ 1, 2, . . .{ }, and we have

ZM H
∗
, c, d,ω(  � S(q)≤N 

n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

 ×

(−1)
ℓ+1ℓ!

α(ℓ+1)
F q,

(J + c)
d
H
∗
c,d,ω

ωJ
, −ln(·)⎛⎝ ⎞⎠ −

(−1)
ℓ+1ℓ!

β(ℓ+1)
F q,

(J + c)
d
H
∗
c,d,ω

ωJ
, −ln(·)⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(79)
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Proof. It is interesting to see that for qJ defined in (78),


N
J�1 qJ � 1. 'erefore, using above qJ in Shannon en-

tropy (64), we get Hybrid Zipf–Mandelbrot entropy (76):

S(q) � − 
N

J�1
qJ ln qJ � − 

N

J�1

ωJ

(J + c)
d
H
∗
c,d,ω

ln
ωJ

(J + c)
d
H
∗
c,d,ω

�
−1

H
∗
c,d,ω



N

J�1

ωJ

(J + c)
d

ln
ωJ

(J + c)
d

  + ln
1

H
∗
c,d,ω

  

�
1

H
∗
c,d,ω



N

J�1

ωJ

(J + c)
d

ln
(J + c)

d

ωJ
  + ln H

∗
c,d,ω  

�
1

H
∗
c,d,ω



N

J�1

ωJ

(J + c)
d
ln

(J + c)
d

ωJ
  + ln H

∗
c,d,ω .

(80)

Finally, substituting this qJ � ωJ/(J + c)dH∗c,d,ω in
Corollary 10 (ii), we get the desired result. □

Corollary 13. Let q and p be Hybrid Zipf–Mandelbrot
law with parameters c1, c2 ∈ [0,∞),ω1,ω2, d1, d2 > 0. Now
using qJ � ωJ

1 /(J + c1)
d1H∗c1 ,d1 ,ω1

and pJ � ωJ
2 /

(J + c2)
d2H∗c2 ,d2 ,ω2

in Corollary 11 (ii), the following holds:

D(q ‖ p) � 
N

J�1

ωJ
1

J + c1( 
d1H
∗
c1 ,d1 ,ω1

ln
ωJ
1 J + c2( 

d2H
∗
c2 ,d2 ,ω2

ωJ
2 J + c1( 

d1H
∗
c1 ,d1 ,ω1

⎛⎝ ⎞⎠

� −ZM H
∗
, c1, d1,ω1(  +

1
H
∗
c1 ,d1 ,ω1



N

J�1

ωJ
1

J + c1( 
d1
ln

J + c2( 
d2

ωJ
2

⎛⎝ ⎞⎠ + ln H
∗
c2 ,d2 ,ω2

 

≤N 
n−2

ℓ�2

1
ℓ!(ℓ + 2)(β − α)

  ×
(−1)

ℓ+1ℓ!
α(ℓ+1)

F q,
ωJ
2 J + c1( 

d1H
∗
c1 ,d1 ,ω1

ωJ
1 J + c2( 

d2H
∗
c2 ,d2 ,ω2

, −ln(·)⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

−
(−1)

ℓ+1ℓ!
β(ℓ+1)

F q,
ωJ
2 J + c1( 

d1H
∗
c1 ,d1 ,ω1

ωJ
1 J + c2( 

d2H
∗
c2 ,d2 ,ω2

, −ln(·)⎛⎝ ⎞⎠
⎫⎪⎬

⎪⎭
.

(81)

Remark 9. Similarly, we can give results for Shannon
entropy, Kullback–Leibler distance, Zipf–Mandelbrot
entropy, and Hybrid Zipf–Mandelbrot entropy by using
generalized Giaccardi inequality defined in (54) on the
same steps.

4. Concluding Remarks

In this paper, we gave generalization of Jensen’s inequality as
well as converse of Jensen’s inequality by using Montgomery
identity. We also formulate results for other inequalities like

Jensen–Steffensen inequality, Jensen–Boas inequality, and
Jensen–Brunk inequality. We can obtain Jensen–Steffensen
inequality, Jensen–Boas inequality, and Jensen–Brunk in-
equality by changing the assumption of Jensen’s inequality.
At the end, we gave applications in information theory for
our obtained results, especially we gave results for Hybrid
Zipf–Mandelbrot entropy for our obtained results [46].

Data Availability

No data were used to support this study.

Journal of Mathematics 15



Conflicts of Interest

'e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

'is research is supported by H.E.C. Pakistan under NRPU
Project 7906 and RUDN University Strategic Academic
Leadership Program.

References

[1] X. L. Zhu and G. H. Yang, “Jensen inequality approach to
stability analysis of discrete-time systems with time-varying
delay,” in Proceedings of the American Control Conference,
pp. 1644–1649, Seattle, WA, USA, June 2008.

[2] S. I. Butt, M. Klaričić Bakula, Ð. Pečarić, and J. Pečarić,
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In this paper, we give Hermite–Hadamard type inequalities of the Jensen–Mercer type for Riemann–Liouville fractional integrals.
We prove integral identities, and with the help of these identities and some other eminent inequalities, such as Jensen, Hölder, and
power mean inequalities, we obtain bounds for the difference of the newly obtained inequalities.

1. Introduction

(e concept of convex functions plays a vital role in both
pure and applied mathematics. Convex functions also have
many applications in other branches of science such as fi-
nance, economics, and engineering.

Definition 1 (see [1]). A function ψ: [m, M]⟶ R is
convex if

ψ(sx +(1 − s)y)≤ sψ(x) +(1 − s)ψ(y), (1)

for all x, y ∈ [m, M] and s ∈ [0, 1].
If the inequality in (1) is strict for x≠y, then ψ is said to

be a strictly convex function, and if − ψ is convex, then ψ is
said to be a concave function [2, 3].

Many important inequalities such as Jensen, Jen-
sen–Mercer, Hermite–Hadamard, and support line in-
equalities hold for convex functions. (e classical Jensen’s
inequality is among the most prominent inequalities stated
as follows [4, 5].

If ψ: [m, M]⟶ R is convex, then

ψ 
n

i�1
wixi

⎛⎝ ⎞⎠≤ 
n

i�1
wiψ xi( , (2)

for all xi ∈ [m, M] and wi ∈ [0, 1](i � 1, 2, . . . , n) with


n
i�1 wi � 1.
In [6], Mercer presented a type of Jensen’s inequality

called Jensen–Mercer inequality.

Theorem 1. If ψ: [m, M]⟶ R is convex, then

ψ m + M − 
n

i�1
wixi

⎛⎝ ⎞⎠≤ψ(m) + ψ(M) − 
n

i�1
wiψ xi( ,

(3)

for each xi ∈ [m, M] and wi ∈ [0, 1](i � 1, 2, . . . , n) with


n
i�1 wi � 1.
For a convex function, there exist at least one line lies on

or below the graph of the function.

Definition 2 (see [7]). A function ψ: I⟶ R has a support
at x0 ∈ I if

ψ x0(  + c u − x0( ≤ψ(u), (4)
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for all x0 ∈ I and for each u ∈ [m, M] ⊂ I. Inequality (4) is
said to be the support line inequality.

(e following theorem connects the support line in-
equality with convex functions.

Theorem 2 (see [7]). İe function ψ: [m, M]⟶ R is convex
if and only if ψ has at least one line of support at each
x0 ∈ [m, M].

(e Hermite–Hadamard inequality is one of the most
investigated inequality in the theory of convex functions due
to its geometrical significance and applications. Because of
the importance of Hermite–Hadamard inequality, there is
an ample amount of research work dedicated to the ex-
tensions, generalizations, refinements, and applications of
the Hermite–Hadamard inequality. (e Hermi-
te–Hadamard inequality is given below [8].

Let ψ: I⟶ R be a convex function, where I is an
interval and m, M ∈ I such that m<M. (en,

ψ
m + M

2
 ≤

1
M − m


M

m
ψ(x)dx≤

ψ(m) + ψ(M)

2
. (5)

If ψ is concave, then (5) holds in the reversed direction.
For more results associated with Hermite–Hadamard in-
equality, see [9–18].

(e Hermite–Hadamard inequality has been extended
by means of fractional integral operators. Most popular of
them is the Riemann–Liouville fractional operator given in
the following definition [19–22].

Definition 3 (see [23, 24]). Let ψ be an integrable function
defined on [m, M]. (en, the integrals Jαm+ψ(x) and
JαM− ψ(x) defined by

J
α
m+ψ(x) �

1
Γ(α)


x

m
(x − s)

α− 1ψ(s)ds, x>m, (6)

J
α
M− ψ(x) �

1
Γ(α)


M

x
(s − x)

α− 1ψ(s)ds, x<M, (7)

are called the left and right Riemann–Liouville fractional
integrals of order α> 0 respectively. Here, Γ represents
gamma function defined by Γ(α) � 

∞
0 e− ssα− 1ds.

In [25, 26], authors used the following lemmas to obtain
trapezoidal and midpoint type inequalities.

Lemma 1 (see [25]). Let ψ: I∘ ⟶ R (where I∘ is the interior
of I ) be a differentiable function and m, M ∈ I ∘ such that
m<M. If ψ′ ∈ L[m, M], then

ψ(m) + ψ(M)

2
−

1
M − m


M

m
ψ(u)du �

M − m

2

1

0
(1 − 2s)ψ′(sm +(1 − s)M)ds. (8)

Lemma 2 (see [26]). Let all the assumptions of Lemma 1
hold. 7en,

1
M − m


M

m
ψ(u)du − ψ

m + M

2
 

� (M − m) 
(1/2)

0
sψ′(sm +(1 − s)M)ds + 

1

(1/2)
(s − 1)ψ′(sm +(1 − s)M)ds .

(9)

In this article, we establish fractional Hermi-
te–Hadamard–Jensen–Mercer type inequalities. We give
identities involving fractional integrals, and from these iden-
tities, we derive trapezoidal and midpoint type inequalities.

(roughout this article, α represents a positive real
number.

2. Main Results

We begin this section with our first main result.

Theorem 3. Suppose ψ: [m, M]⟶ R is a convex function
and x, y ∈ [m, M] such that x<y. 7en,
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ψ m + M −
αx + y

α + 1
 ≤ψ(m) + ψ(M) −

Γ(α + 1)

(y − x)
αJ

α
x+ψ(y)

≤ψ(m) + ψ(M) − ψ
αx + y

α + 1
 ,

(10)

ψ m + M −
αx + y

α + 1
 ≤

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)

≤
αψ(m + M − x) + ψ(m + M − y)

α + 1

≤ψ(m) + ψ(M) −
αψ(x) + ψ(y)

α + 1
.

(11)

Proof. Since ψ is convex, it has support line at each point
x0 ∈ [m, M], that is,

ψ x0(  + c u − x0( ≤ψ(u), (12)

for each u ∈ [m, M]. Substituting x0 � m + M −

(αx + y)/(α + 1) and u � m + M − sx − (1 − s)y, where
s ∈ [0, 1], in inequality (12), we obtain

ψ m + M −
αx + y

α + 1
  + c − sx − (1 − s)y +

αx + y

α + 1
 

≤ψ(m + M − sx − (1 − s)y).

(13)

Multiplying (13) with αsα− 1 and integrate with respect to
s, we obtain

ψ m + M −
αx + y

α + 1
  + c −

αx + y

α + 1
+
αx + y

α + 1
 

≤ α
1

o
s
α− 1ψ(m + M − sx − (1 − s)y)ds

⟹ψ m + M −
αx + y

α + 1
 ≤ α

1

o
s
α− 1ψ(m + M − sx − (1 − s)y)ds.

(14)

Using Mercer’s inequality, we obtain

ψ m + M −
αx + y

α + 1
 ≤ α

1

o
s
α− 1

(ψ(m) + ψ(M) − (sψ(x) +(1 − s)ψ(y)))ds

⟹ψ m + M −
αx + y

α + 1
 ≤ψ(m) + ψ(M) − α

1

o
s
α− 1

(sψ(x) +(1 − s)ψ(y))ds.

(15)

Since ψ is convex, we have − (sψ(x) + (1 − s)ψ(y))≤
− ψ(sx + y(1 − s)) and (15) becomes

ψ m + M −
αx + y

α + 1
 ≤ψ(m) + ψ(M) − α

1

o
s
α− 1ψ(sx +(1 − s)y)ds. (16)
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Substituting sx + (1 − s)y � w in (16), we obtain

ψ m + M −
αx + y

α + 1
 ≤ψ(m) + ψ(M) −

α
(y − x)

α 
y

x
(y − w)

α− 1ψ(w)dw

⟹ψ m + M −
αx + y

α + 1
 ≤ψ(m) + ψ(M) −

Γ(α + 1)

(y − x)
αJ

α
x+ψ(y).

(17)

Now, we prove the second inequality of (10). Put x0 �

(αx + y)/(α + 1) and u � sx + (1 − s)y in (12), we obtain

ψ
αx + y

α + 1
  + c sx +(1 − s)y −

αx + y

α + 1
 ≤ψ(sx +(1 − s)y).

(18)

Multiplying the above inequality with αsα− 1 and inte-
grating and using 

1
0 sα− 1ds � 1/α and 

1
0 sαds � 1/(α + 1),

we obtain

ψ
αx + y

α + 1
 ≤ α

1

0
s
α− 1ψ(sx +(1 − s)y)ds. (19)

Put sx + (1 − s)y � w, and we obtain

ψ
αx + y

α + 1
 ≤

α
(y − x)

α 
y

x
(y − w)

α− 1ψ(w)dw

⟹ψ
αx + y

α + 1
 ≤

Γ(α + 1)

(y − x)
αJ

α
x+ψ(y)

⟹ −
Γ(α + 1)

(y − x)
αJ

α
x+ψ(y)≤ − ψ

αx + y

α + 1
 .

(20)

Adding ψ(m) + ψ(M) on both sides of (20), we obtain

ψ(m) + ψ(M) −
Γ(α + 1)

(y − x)
αJ

α
x+ψ(y)≤ψ(m) + ψ(M) − ψ

αx + y

α + 1
 ,

(21)

and on combining (17) and (21), we obtain (10).
Now, we prove the inequalities in (11). Let u � m + M −

sx − (1 − s)y⟹ s � (u − m − M + y)/(y − x) and (14)
become

ψ m + M −
αx + y

α + 1
 ≤ α

m+M− x

m+M− y

u − m − M + y

y − x
 

α− 1

ψ(u)
du

y − x

�
αΓ(α)

(y − x)
α

1
Γ(α)


m+M− x

m+M− y
(u − (m + M − y))

α− 1ψ(u)du

⟹ψ m + M −
αx + y

α + 1
 ≤

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y).

(22)

Now, we prove the other two inequalities of (11). As ψ is
a convex function, we have

ψ(m + M − sx − (1 − s)y) � ψ(s(m + M − x) +(1 − s)(m + M − y))

⟹ψ(m + M − sx − (1 − s)y)≤ sψ(m + M − x) +(1 − s)ψ(m + M − y)

≤ψ(m) + ψ(M) − sψ(x) − (1 − s)ψ(y).

(23)
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Multiplying with αsα− 1 and integrating, we obtain

α
1

0
s
α− 1ψ(m + M − sx − (1 − s)y)ds

≤ αψ(m + M − x) 
1

0
s
αds + αψ(m + M − y) 

1

0
s
α− 1

− s
α

 ds

≤ψ(m) + ψ(M) − αψ(x) 
1

0
s
αds − αψ(y) 

1

0
s
α− 1

− s
α

 ds

⟹ α
1

0
s
α− 1ψ(m + M − sx − (1 − s)y)ds

≤
αψ(m + M − x) + ψ(m + M − y)

α + 1

≤ψ(m) + ψ(M) −
αψ(x) + ψ(y)

α + 1
.

(24)

By changing of variable, (24) becomes

α
m+M− x

m+M− y

u − m − M + y

y − x
 

α− 1

ψ(u)
du

y − x

≤
αψ(m + M − x) + ψ(m + M − y)

α + 1
≤ψ(m) + ψ(M) −

αψ(x) + ψ(y)

α + 1

⟹
αΓ(α)

(y − x)
α

1
Γ(α)


m+M− x

m+M− y
(u − (m + M − y))

α− 1ψ(u)du

≤
αψ(m + M − x) + ψ(m + M − y)

α + 1
≤ψ(m) + ψ(M) −

αψ(x) + ψ(y)

α + 1

⟹
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)

≤
αψ(m + M − x) + ψ(m + M − y)

α + 1
≤ψ(m) + ψ(M) −

αψ(x) + ψ(y)

α + 1
,

(25)

and on combining (22) and (25), we obtain (11). □
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Remark 1. If we put α � 1 in(eorem 3 and in the obtained
expressions substitute u � sx + (1 − s)y and u � m + M − v,
respectively, we obtain

ψ m + M −
x + y

2
 ≤ψ(m) + ψ(M) − 

1

0
ψ(sx +(1 − s)y)ds

≤ψ(m) + ψ(M) − ψ
x + y

2
 ,

(26)

ψ m + M −
x + y

2
 ≤

1
y − x


y

x
ψ(m + M − v)dv

≤
ψ(m + M − x) + ψ(m + M − y)

2

≤ψ(m) + ψ(M) −
ψ(x) + ψ(y)

2
,

(27)

respectively. Inequalities (26) and (27) have been proved in
[27].

Remark 2. Substituting α � 1, x � m, and y � M in (11),
one can obtain Hermite–Hadamard inequality.

3. Bounds for the Difference of
Hermite–Hadamard–Jensen–Mercer
Type Inequalities

(roughout this section, we consider ψ: [m, M]⟶ R is a
differentiable function. To give the bounds for the difference

of Hermite–Hadamard–Jensen–Mercer type inequalities,
first, we present the following lemmas.

Lemma 3. Let x, y ∈ [m, M] such that x<y and let
ψ′ ∈ L[m, M]. 7en,

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)

�
y − x

α + 1

1

0
(α + 1)s

α
− 1( ψ′(m + M − sx − (1 − s)y)ds.

(28)
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Proof. Using the techniques of integration, we have

y − x

α + 1

1

0
(α + 1)s

α
− 1 ψ′(m + M − sx − (1 − s)y)ds

� (y − x) 
1

0
s
αψ′(m + M − sx − (1 − s)y)ds

−
y − x

α + 1

1

0
ψ′(m + M − sx − (1 − s)y)ds

� s
αψ(m + M − sx − (1 − s)y)|

1
0 − α

1

0
s
α− 1ψ(m + M − sx − (1 − s)y)ds

−
1

α + 1
ψ(m + M − sx − (1 − s)y)|

1
0,

(29)

�
αψ(m + M − x) + ψ(m + M − y)

α + 1
− α

1

0
s
α− 1ψ(m + M − sx − (1 − s)y)ds

�
αψ(m + M − x) + ψ(m + M − y)

α + 1

−
α

(y − x)
α 

m+M− x

m+M− y
(u − (m + M − y))

α− 1ψ(u)du

�
αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y).

(30)

□
Remark 3. Substituting α � 1, x � m, and y � M in (28), we
obtain (8).

Lemma 4. Let all the assumptions of Lemma 3 hold. 7en,

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 

� (y − x) 
1

α/(α+1)
1 − s

α
( ψ′(m + M − sx − (1 − s)y)ds − 

α/(α+1)

0
s
αψ′(m + M − sx − (1 − s)y)ds .

(31)
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Proof. Using techniques of integration, we have

(y − x) 
1

α/(α+1)
1 − s

α
( ψ′(m + M − sx − (1 − s)y)ds

− (y − x) 
α/(α+1)

0
s
αψ′(m + M − sx − (1 − s)y)ds

� (y − x) 
1

α/(α+1)
ψ′(m + M − sx − (1 − s)y)ds 

− (y − x) 
1

0
s
αψ′(m + M − sx − (1 − s)y)ds 

� ψ(m + M − sx − (1 − s)y)|
1
α/(α+1) − s

αψ(m + M − sx − (1 − s)y)|
1
0

+ α
1

0
s
α− 1ψ(m + M − sx − (1 − s)y)ds

� − ψ m + M −
αx + y

α + 1
  + α

1

0
s
α− 1ψ(m + M − sx − (1 − s)y)ds

�
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 .

(32)

□
Remark 4. If we put α � 1, x � m, and y � M in (31), we
obtain (9).

We use Lemmas 3 and 4 and obtain bounds for the
difference of the inequalities in (11).

Theorem 4. Let |ψ′| be a convex function defined on [m, M]

and let x, y ∈ [m, M] such that x<y. 7en,

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1
P1(α) ψ′(m)


 + P1(α) ψ′(M)


 − P2(α) ψ′(x)


 − P3(α) ψ′(y)


 ,

(33)

where

P1(α) �
2α

(α + 1)
(α+1)/α,

P2(α) �
α 2 +(α + 1)

2/α
 

2(α + 2)(α + 1)
2/α,

P3(α) �
α 4(α + 2)(α + 1)

(1/α)− 1
− (α + 1)

2/α
− 2 

2(α + 2)(α + 1)
2/α .

(34)
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Proof. From Lemma 3, we have

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1

1

0
(α + 1)s

α
− 1


 ψ′(m + M − sx − (1 − s)y)


ds.

(35)

Since |ψ′| is convex, using Mercer’s inequality, we obtain

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1

1

0
(α + 1)s

α
− 1( 


 ψ′(m)


 + ψ′(M)


 − s ψ′(x)


 − (1 − s) ψ′(y)


 ds

�
y − x

α + 1

1/(α+1)1/α

0
1 − (α + 1)s

α
(  ψ′(m)


 + ψ′(M)


 − s ψ′(x)


 − (1 − s) ψ′(y)


 ds

+
1

1/(α+1)1/α
(α + 1)s

α
− 1(  ψ′(m)


 + ψ′(M)


 − s ψ′(x)


 − (1 − s) ψ′(y)


 ds,

(36)

equivalent to

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1
L1(α) + N1(α)  ψ′(m)


 + L1(α) + N1(α)  ψ′(M)




− L2(α) + N2(α)  ψ′(x)


 − L3(α) + N3(α)  ψ′(y)


,

(37)

where

Journal of Mathematics 9



L1(α) � 
1/(α+1)1/α

0
1 − (α + 1)s

α
 ds �

α
(α + 1)

(α+1)/α,

L2(α) � 
1/(α+1)1/α

0
1 − (α + 1)s

α
 sds �

α
2(α + 2)(α + 1)

2/α,

L3(α) � 
1/(α+1)1/α

0
1 − (α + 1)s

α
( (1 − s)ds �

α 2(α + 2)(α + 1)
(1/α)− 1

− 1 

2(α + 2)(α + 1)
2/α ,

N1(α) � 
1

1/(α+1)1/α
(α + 1)s

α
− 1 ds �

α
(α + 1)

(α+1)/α,

N2(α) � 
1

1/(α+1)1/α
(α + 1)s

α
− 1 sds �

α (α + 1)
2/α

+ 1 

2(α + 2)(α + 1)
(2/α)

,

N3(α) � 
1

1/(α+1)1/α
(α + 1)s

α
− 1 (1 − s)ds

�
α 2(α + 2)(α + 1)

(1/α)− 1
− (α + 1)

2/α
− 1 

2(α + 2)(α + 1)
2/α .

(38)

Substituting these values in (37), we get (33). □

Remark 5. If we put α � 1, x � m, and y � M in (33), we get
the inequality given in (eorem 2.2 of [25].

Theorem 5. Let |ψ′|q be a convex function for q≥ 1 and let
x, y ∈ [m, M] such that x<y. 7en,

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1
P1(α)( 

1− 1/q

× P1(α) ψ′(m)



q

+ P1(α) ψ′(M)



q

− P2(α) ψ′(x)



q

− P3(α) ψ′(y)



q

 
1/q

,

(39)

where P1(α), P2(α), and P3(α) are the same as defined in
7eorem 4.

Proof. From Lemma 3, we have (35). Applying power mean
inequality, we obtain

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1

1

0
(α + 1)s

α
− 1


ds 

1− 1/q

× 
1

0
(α + 1)s

α
− 1( 


 ψ′(m + M − sx − (1 − s)y)



qds 

1/q

.

(40)
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Since |ψ′|q is convex, using Mercer’s inequality, we have

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1

1/(α+1)1/α

0
1 − (α + 1)s

α
 ds + 

1

1/(α+1)1/α
(α + 1)s

α
− 1 ds 

1− 1/q

× 
1

0
(α + 1)s

α
− 1( 


 ψ′(m)



q

+ ψ′(M)



q

− s ψ′(x)



q

− (1 − s) ψ′(y)



q

 ds 

1/q

�
y − x

α + 1
2α

(α + 1)(α+1)/α 

1− (1/q)

× 
1/(α+1)(1/α)

0
1 − (α + 1)s

α
(  ψ′(m)



q

+ ψ′(M)



q

− s ψ′(x)



q

− (1 − s) ψ′(y)



q

 ds

+ 
1

1/(α+1)(1/α)
(α + 1)s

α
− 1(  ψ′(m)



q

+ ψ′(M)



q

− s ψ′(x)



q

− (1 − s) ψ′(y)



q

 ds

1/q

.

(41)

(is implies that

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1
2α

(α + 1)(α+1)/α 

1− (1/q)

L1(α) + N1(α)(  ψ′(m)



q

+ L1(α) + N1(α)(  ψ′(M)



q



− L2(α) + N2(α)(  ψ′(x)



q

− L3(α) + N3(α)(  ψ′(y)



q

1/q

(42)

Substituting the values of L1, L2, L3, N1, N2, and N3 as
given in the proof of (eorem 4 in (42), we get (39). □

Remark 6. If we put α � 1, x � m, and y � M in (39), we
obtain the inequality proved in (eorem 1 of [28].

In the following theorem, we derive trapezoidal type
inequality.

Theorem 6. Let p, q> 1 and |ψ′|q be a convex function, and
let x, y ∈ [m, M] such that x<y. 7en,

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1
L4(α, p)( 

1/p ψ′(m)



q

+ ψ′(M)



q

−
ψ′(x)



q

+ ψ′(y)



q

2
 

1/q

,

(43)

where L4(α, p) � 
1
0 |(α + 1)sα − 1|pds such that (1/p) +

(1/q) � 1.
Proof. Using Lemma 3, we have (35). Applying Hölder’s
inequality, we obtain
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αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1

1

0
(α + 1)s

α
− 1



pds 

1/p


1

0
ψ′(m + M − sx − (1 − s)y)



qds 

1/q

≤
y − x

α + 1
L4(α, p)( 

1/p

1

0
ψ′(m)



q

+ ψ′(M)



q

− s ψ′(x)



q

− (1 − s) ψ′(y)



q

 ds 

1/q

�
y − x

α + 1
L4(α, p)( 

1/p ψ′(m)



q

+ ψ′(M)



q

−
ψ′(x)



q

+ ψ′(y)



q

2
 

1/q

.

(44)

□
Remark 7. Substituting α � 1, x � m, and y � M in (eo-
rem 6, we obtain (eorem 2.3 of [25].

Theorem 7. Let |ψ′| be a convex function and let
x, y ∈ [m, M] such that x<y. 7en,

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x) P5(α) ψ′(x)


 + P6(α) ψ′(y)


 ,

(45)

where

P5(α) �
− α

2(α + 2)(α + 1)
2,

P6(α) �
α

2(α + 2)(α + 1)
2.

(46)

Proof. Using Lemma 4, we have

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x) 
1

α/(α+1)
1 − s

α
(  ψ′(m + M − sx − (1 − s)y)


ds

− (y − x) 
α/(α+1)

0
s
α ψ′(m + M − sx − (1 − s)y)


ds.

(47)

Since |ψ′| is convex, using Mercer’s inequality, we obtain

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x) 
1

α/(α+1)
1 − s

α
(  ψ′(m)


 + ψ′(M)


 − s ψ′(x)


 − (1 − s) ψ′(y)


 ds

− (y − x) 
α/(α+1)

0
s
α ψ′(m)


 + ψ′(M)


 − s ψ′(x)


 − (1 − s) ψ′(y)


 ds,

(48)

which implies that

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x) N5(α) − L5(α)(  ψ′(x)


 + N6(α) − L6(α)(  ψ′(y)


 ,

(49)
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where

L5(α) � 
1

α/(α+1)
1 − s

α
( sds �

α(α + 1)
α

+ 2αα+2

2(α + 2)(α + 1)
α+2,

L6(α) � 
1

α/(α+1)
1 − s

α
( (1 − s)ds �

4αα+1
− α(α + 1)

α

2(α + 2)(α + 1)
α+2,

N5(α) � 
α/(α+1)

0
s
α+1ds �

αα+2

(α + 2)(α + 1)
α+2,

N6(α) � 
α/(α+1)

0
s
α
(1 − s)ds �

2αα+1

(α + 2)(α + 1)
α+2.

(50)

Substituting these values in (49), we get (45).
In next theorem, we use power mean inequality and

derive midpoint type inequality. □

Theorem 8. Let |ψ′|q be a convex function for q≥ 1 and let
x, y ∈ (m, M) such that x<y. 7en,

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x) L8(α)( 
1− (1/q)

× L8(α) ψ′(m)



q

+ L8(α) ψ′(M)



q

− L5(α) ψ′(x)



q

− L6(α) ψ′(y)



q

 
1/q



− L8(α) ψ′(m)



q

+ L8(α) ψ′(M)



q

− N5(α) ψ′(x)



q

− N6(α) ψ′(y)



q

 
1/q

,

(51)

where

L8(α) � 
1

α/(α+1)
1 − s

α
( ds � 

α/(α+1)

0
s
αds �

αα+1

(α + 1)
α+2,

(52)

and L5(α), L6(α), N5(α), and N6(α) are given in the proof of
7eorem 7.

Proof. Using power mean inequality in (47), we obtain

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x) 
1

α/(α+1)
1 − s

α
( ds 

1− (1/q)


1

α/α+1
1 − s

α
(  ψ′(m + M − sx − (1 − s)y)



qds 

1/q

− (y − x) 
α/(α+1)

0
s
αds 

1− (1/q)


α/(α+1)

0
s
α ψ′(m + M − sx − (1 − s)y)



q
ds 

1/q

.

(53)
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Since |ψ′|q is convex, using Mercer’s inequality, we
obtain

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x)
αα+1

(α + 1)α+2 

1− (1/q)

× 
1

α/(α+1)
1 − s

α
(  ψ′(m)



q

+ ψ′(M)



q

− s ψ′(x)



q

− (1 − s) ψ′(y)



q

 ds 

1/q
⎛⎝

− 
α/(α+1)

0
s
α ψ′(m)



q

+ ψ′(M)



q

− s ψ′(x)



q

− (1 − s) ψ′(y)



q

 ds 

1/q
⎞⎠

� (y − x) L8(α)( 
1− (1/q)

× L8(α) ψ′(m)



q

+ L8(α) ψ′(M)



q

− L5(α) ψ′(x)



q

− L6(α) ψ′(y)



q

 
1/q

− L8(α) ψ′(m)



q

+ L8(α) ψ′(M)



q

− N5(α) ψ′(x)



q

− N6(α) ψ′(y)



q

 
1/q

.

(54)

□
Remark 8. Substituting α � 1, x � m, and y � M in (eo-
rem 8, we obtain the following midpoint type inequality:

1
M − m


M

m
f(u)du − ψ

m + M

2
 





≤
M − m

8
ψ′(m)



q

+ 2 ψ′(M)



q

3
 

1/q

−
2 ψ′(m)



q

+ ψ′(M)



q

3
 

1/q
⎛⎝ ⎞⎠.

(55)

Another midpoint type inequality is presented in the
following theorem.

Theorem 9. Let p, q> 1 and |ψ′|q be convex, and let
x, y ∈ [m, M] such that x<y. 7en,

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x) L9(α, p)( 
1/p

×
1

α + 1
ψ′(m)



q

+
1

α + 1
ψ′(M)



q

−
2α + 1

2(α + 1)2
ψ′(x)



q

−
1

2(α + 1)2
ψ′(y)



q

 

1/q

− (y − x) L10(α, p)( 
1/p

×
α

α + 1
ψ′(m)



q

+
α

α + 1
ψ′(M)



q

−
α2

2(α + 1)2
ψ′(x)



q

−
α(α + 2)

2(α + 1)2
ψ′(y)



q

 

1/q

,

(56)
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where L9(α, p) � 
1
α/(α+1)

(1 − sα)pds and

L10(α, p) � 
α/(α+1)

0 sαpds such that (1/p) + (1/q) � 1.

Proof. Applying Hölder’s inequality in (47), we have

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x) 
1

α/(α+1)
1 − s

α
( 

pds 

1/p


1

α/(α+1)
ψ′(m + M − sx − (1 − s)y)



qds 

1/q

− (y − x) 
α/(α+1)

0
s
αpdt 

1/p


α/(α+1)

0
ψ′(m + M − sx − (1 − s)y)



qds 

1/q

.

(57)

As |ψ′|q is convex, applying Mercer’s inequality, we
obtain

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x) L9(α, p)( 
1/p

× 
1

α/(α+1)
ψ′(m)



q

+ ψ′(M)



q

− s ψ′(x)



q

− (1 − s) ψ′(y)



q

 ds

1/q

− (y − x) L10(α, p)( 
1/p

× 
α/(α+1)

0
ψ′(m)



q

+ ψ′(M)



q

− s ψ′(x)



q

− (1 − s) ψ′(y)



q

 ds

1/q

� (y − x) L9(α, p)( 
1/p

×
1

α + 1
ψ′(m)



q

+
1

α + 1
ψ′(M)



q

−
2α + 1

2(α + 1)2
ψ′(x)



q

−
1

2(α + 1)2
ψ′(y)



q

 

1/q

− (y − x) L10(α, p)( 
1/p

×
α

α + 1
ψ′(m)



q

+
α

α + 1
ψ′(M)



q

−
α2

2(α + 1)2
ψ′(x)



q

−
α(α + 2)

2(α + 1)2
ψ′(y)



q

 

1/q

.

(58)

Remark 9. Substituting α � 1, x � m, and y � M in (eo-
rem 9, we obtain

1
M − m


M

m
f(u)du − ψ

m + M

2
 





≤
M − m

4(p + 1)
1/p

ψ′(m)



q

+ 3 ψ′(M)



q

4
 

1/q

−
3 ψ′(m)



q

+ ψ′(M)



q

4
 

1/q
⎛⎝ ⎞⎠.

(59)
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Theorem 10. Let x, y ∈ [m, M] such that x<y. If |ψ′| is
concave on [m, M], then

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1
L1(α) ψ′ m + M − L11(α)x − L12(α)y( 




+N1(α) ψ′ m + M − L13(α)x − L14(α)y( 


,

(60)

where L1 and N1 are given in the proof of 7eorem 4 and

L11(α) �
(α + 1)

1− (1/α)

2(α + 2)
,

L12(α) �
(α + 1)

1− (1/α) 2(α + 2)(α + 1)
(1/α)− 1

− 1 

2(α + 2)
,

L13(α) �
(α + 1)

1− (1/α)
(α + 1)

2/α
+ 1 

2(α + 2)
,

L14(α) �
(α + 1)

1− (1/α) 2(α + 2)(α + 1)
(1/α)− 1

− (α + 1)
2/α

− 1 

2(α + 2)
.

(61)

Proof. Lemma 3 implies that

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1

1

0
(α + 1)s

α
− 1


 ψ′(m + M − sx − (1 − s)y)


ds

�
y − x

α + 1

1/(α+1)1/α

0
1 − (α + 1)s

α
(  ψ′(m + M − sx − (1 − s)y)


ds

+ 
1

1/(α+1)1/α
(α + 1)s

α
− 1(  ψ′(m + M − sx − (1 − s)y)


ds.

(62)
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Since |ψ′| is concave, using Jensen’s inequality, we obtain

αψ(m + M − x) + ψ(m + M − y)

α + 1
−
Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y)





≤
y − x

α + 1

1/(α+1)1/α

0
1 − (α + 1)s

α
( ds × ψ′


1/(α+1)1/α

0 1 − (α + 1)s
α

( (m + M − sx − (1 − s)y)ds


1/(α+1)1/α

0 1 − (α + 1)s
α

( ds

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠





⎛⎜⎜⎜⎝

+ 
1

1/(α+1)1/α
(α + 1)s

α
− 1( ds × ψ′


1
1/(α+1)1/α

(α + 1)s
α

− 1( (m + M − sx − (1 − s)y)ds


1
1/(α+1)1/α

(α + 1)s
α

− 1( ds

⎛⎜⎝ ⎞⎟⎠





⎞⎟⎠.

�
y − x

α + 1
L1(α) ψ′ m + M − L11(α)x − L12(α)y( 




+N1(α) ψ′ m + M − L13(α)x − L14(α)y( 


.

(63)

□
Theorem 11. Let |ψ′| be a concave function, and let
x, y ∈ [m, M] such that x<y. 7en,

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x)
αα+1

(α + 1)
α+2  ψ′ m + M − L15(α)x − L16(α)y( 




− ψ′ m + M − L17(α)x − L18(α)y( 


,

(64)

where

L15(α) �
(α + 1)

α
+ 2αα+1

2αα(α + 2)
,

L16(α) �
4αα − (α + 1)

α

2αα(α + 2)
,

L17(α) �
α

α + 2
,

L18(α) �
2

α + 2
.

(65)

Proof. From Lemma 4, we have (47). As |ψ′| is concave,
using Jensen’s inequality, we obtain

Γ(α + 1)

(y − x)
αJ

α
(m+M− x)− ψ(m + M − y) − ψ m + M −

αx + y

α + 1
 





≤ (y − x) 
1

α/(α+1)
1 − s

α
( ds ψ′


1
α/(α+1)

1 − s
α

( (m + M − sx − (1 − s)y)ds


1
α/(α+1)

1 − s
α

( ds

⎛⎜⎝ ⎞⎟⎠





− (y − x) 
α/(α+1)

0
s
αds ψ′


α/(α+1)

0 s
α
(m + M − sx − (1 − s)y)ds


α/(α+1)

0 s
αds

⎛⎝ ⎞⎠





� (y − x)
αα+1

(α + 1)
α+2  ψ′ m + M − L15(α)x − L16(α)y( 




− ψ′ m + M − L17(α)x − L18(α)y( 


.

(66)

□
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4. Conclusion

In this paper, we establish the fractional Hermite–Hadamard
type inequalities of Mercer type by using support line in-
equality. We expect that this work will lead to the new
fractional integral studies for Hermite–Hadamard in-
equality. It is an open problem to prove inequalities (10) and
(11) by any other method.
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+e coupled nonlinear Schrödinger equation is used in simulating the propagation of the optical soliton in a birefringent fiber.
Hereditary properties and memory of various materials can be depicted more precisely using the temporal fractional derivatives,
and the anomalous dispersion or diffusion effects are better described by the spatial fractional derivatives. In this paper, one-step
and two-step exponential time-differencing methods are proposed as time integrators to solve the space-time fractional coupled
nonlinear Schrödinger equation numerically to obtain the optical soliton solutions. During this procedure, we take advantage of
the global Padé approximation to evaluate the Mittag-Leffler function more efficiently. +e approximation error of the Padé
approximation is analyzed. A centered difference method is used for the discretization of the space-fractional derivative. Extensive
numerical examples are provided to demonstrate the efficiency and effectiveness of the modified exponential time-
differencing methods.

1. Introduction

+e coupled nonlinear Schrödinger equation (CNLSE) can be
employed in simulating the propagation of the optical soliton
in a birefringent fiber [1–3]. A soliton is a solitary pulse which
can travel at a constant speed and keep a stationary shape due
to the balancing of the self-phase modulation and the group
velocity dispersion effect in fiber optics [4]. According to
Agrawal [5], in a fiber communication system, the input pulse
may be orthogonally polarized in a birefringent fiber. +e
polarized components can form solitary waves, which are
named as vector solitons. Because of the nonlinear coupling
effect, the vector solitons can propagate undistorted even when
the components have different widths or peak powers.

During the last few decades, researchers have found that
hereditary properties and memory of various materials can
be depicted more precisely using the temporal fractional
derivatives [6–8]. It is also shown in [9, 10] that the

anomalous dispersion or diffusion effects are better de-
scribed by the spatial fractional derivatives. +e anomalous
effects reflect the Lévy-type particle movement, different
from Brownian motion, which depicts the classical random
movement of particles. +erefore, the space-time fractional
coupled nonlinear Schrödinger equation (FCNLSE) is useful
in modeling solitons in fractional fiber optics.

In this article, we consider the FCNLSE given as follows
[11]:

iD
α
t u + D

β
xu + δ |u|

2
+ c|v|

2
 u � 0, x ∈ R, 0< t≤T,

iD
α
t v + D

β
xv + δ |v|

2
+ c|u|

2
 v � 0, x ∈ R, 0< t≤T,

(1)
with the initial conditions

u(0, x) � u0(x),

v(0, x) � v0(x),
(2)
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and homogeneous Dirichlet boundary conditions on
[xL, xR], where i �

���
− 1

√
and complex functions u and v

represent the amplitudes of orthogonally polarized waves in
a birefringent optical fiber. Dα

t u � zαu/ztα is the Caputo
derivative of u in time, Dβ

xu � zβu/zxβ is the Riesz derivative
of u in space, 0< α≤ 1, 0< β≤ 2, and the parameters δ and ρ
are some real constants.

Both analytical treatments and numerical methods have
been investigated for the fractional Schrödinger equations
and some novel types of nonlinear Schrödinger equations. In
[12], an extended sinh-Gordon equation expansion method
is adopted to solve the space-time fractional Schrödinger
equation analytically. In [13], a modified residual power
series method is implemented on the fractional Schrödinger
equation. In [14], the L1 scheme together with the Four-
ier–Galerkin spectral method is employed to discretize the
time-fractional Schrödinger model. In [15], a Fourier
spectral exponential splitting scheme is constructed to solve
the space-fractional initial boundary value problems. In [16],
a generalized exponential rational function method is ap-
plied to a new extension of the nonlinear Schrödinger
equation. In [17], a cubic-quartic nonlinear Schrödinger
equation is solved analytically for the dark, singular, and
bright-singular soliton solutions. In [18], a modified ex-
pansion function method and an extended sinh-Gordon
method are proposed for theM-fractional paraxial nonlinear
Schrödinger equation to obtain soliton solutions.

However, to the best of our current knowledge, nu-
merical methods for the coupled space-time fractional
Schrödinger equations are rarely considered. In this paper,
we modify the exponential time-differencing (ETD) method
for the time-fractional nonlinear PDEs, introduced in [19],
by applying the Padé approximation. +en, we combine the
modified ETD scheme with a fourth-order fractional
compact scheme in space. During this procedure, the
nonlinear term of the equation is computed explicitly, and
the calculation of the fractional exponential time integral is
undertaken more efficiently.

2. Discretization in Space

+e spatial Riesz derivative is defined in [10] as

D
β
xu(t, x) �

z
β

zx
β u(t, x) −

1
2 cos πβ/2 − ∞D

β
xu(t, x) + xD

β
+∞u(t, x) ,

(3)

where 1< β< 2. − ∞D
β
xu(t, x) and xD

β
+∞u(t, x) are the left

and right Riemann–Liouville derivatives:

− ∞D
β
xu(t, x) �

1
Γ(2 − β)

z
2

zx
2 

x

− ∞

u(t, ξ)

(x − ξ)
β− 1dξ,

xD
β
+∞u(t, x) �

1
Γ(2 − β)

z
2

zx
2 

+∞

x

u(t, ξ)

(ξ − x)
β− 1dξ,

(4)

in which Γ(·) is the gamma function.
It is stated in [20] that the approximation of the left

derivative − ∞D
β
xv(t, x) is calculated using matrix B

(β)

M :

v
(β)

M v
(β)

M− 1 . . . v
(β)
1 v

(β)
0 
⊤

� B
(β)

M vM vM− 1 . . . v1 v0 
⊤

,

(5)

where

B
(β)

M �
1
h
β

ω(β)
0 ω(β)

1 ⋱ ⋱ ω(β)

M− 1 ω(β)

M

0 ω(β)
0 ω(β)

1 ⋱ ⋱ ω(β)

M− 1

0 0 ω(β)
0 ω(β)

1 ⋱ ⋱

· · · · · · · · · ⋱ ⋱ ⋱

0 · · · 0 0 ω(β)
0 ω(β)

1

0 0 · · · 0 0 ω(β)
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ω(β)

j � (− 1)
j

β

j

⎛⎝ ⎞⎠,

(6)

with x � jh (j � 0, 1, . . . , M), where h is a single spatial step.
Similarly, the approximation of the right derivative

xD
β
+∞v(t, x) is calculated using matrix L

(β)

M :

v
(β)

M v
(β)

M− 1 · · · v
(β)
1 v

(β)
0 
⊤

� L
(β)

M vM vM− 1 · · · v1 v0 
⊤

.

(7)

Matrices L
(β)

M and B
(β)

M are transposes to each other in (5)
and (6).

Furthermore, we use the centered difference method for
the fractional derivative to approximate the Riesz derivative
in the following way [21]:

v
(β)

M v
(β)

M− 1 · · · v
(β)
1 v

(β)
0 
⊤

� H
(β)

M vM vM− 1 · · · v1 v0 
⊤

,

(8)

where

H
(β)

M �
1
h
β

ω(β)
0 ω(β)

1 ω(β)
2 ω(β)

3 · · · ω(β)

M 

ω(β)
1 ω(β)

0 ω(β)
1 ω(β)

2 · · · ω(β)

M− 1

ω(β)
2 ω(β)

1 ω(β)
0 ω(β)

1 · · · ω(β)

M− 2

⋱ ⋱ ⋱ ⋱ · · · · · ·

ω(β)

M− 1 ⋱ ω(β)
2 ω(β)

1 ω(β)
0 ω(β)

1

ω(β)

M ω(β)

M− 1 ⋱ ω(β)
2 ω(β)

1 ω(β)
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ω(β)

j �
(− 1)

jΓ(β + 1)cos(βπ/2)

Γ(β/2 − j + 1)Γ(β/2 + j + 1)
, j � 0, 1, . . . , M.

(9)

Noticed that scheme (8) is second-order convergent in
space, Ding et al. [22] generated a compact scheme to
improve the order of convergence:

2 Journal of Mathematics



z
β
v(t, x)

zx
β �

1
h
β

β
24
Δβhv(t, x − h) − 1 +

β
12

 Δβhv(t, x)

+
β
24
Δβhv(t, x + h)] + O h

4
 

� −
1
h
β 1 −

β
24
δ2x Δβhv(t, x) + O h

4
 

� −
1
h
β 1 +

β
24
δ2x 

− 1

Δβhv(t, x) + O h
4

 ,

(10)

where δ2xv(t, x) � v(t, x − h) − 2v(t, x) + v(t, x + h) and
− Δβhv(t, x)/hβ is the second-order approximation (8). As
been proved by +eorem 11 in [22], compact scheme (10) is
fourth-order convergent spatially.

3. The Exponential Time Integrator

We obtain a system of time-fractional equations after dis-
cretizing FCNLSE (1) in space:

z
α

zt
α U(t) + AU(t) � F(U(t)), (11)

where zα/ztα denotes the Caputo derivative, A is the Mx ×

Mx matrix in the Riesz derivative approximation,
F: RMx⟶ RMx contains the nonlinear function and
the boundary conditions, and U(t) � (U1(t),

U2(t), . . . , UMx
(t))T with Uj(t) � u(xj, t), j � 1, . . . , Mx,

and the initial condition is U(0) � U0.
As been computed using the variation of constant for-

mula in [23], system (11) has an analytical solution:

U(t) � eα,1(t; A)U0 + 
t

0
eα,α(t − s; A)F(U(s))ds, (12)

where eα,β(t; λ) denotes the inverse function of the Laplace
transform sα− β/(sα + λ) to A, and eα,β(t; λ) can be calculated

taking advantage of the Mittag-Leffler (ML) function
Eα,β(z):

eα,β(t; λ) � t
β− 1

Eα,β − t
αλ( , Eα,β(z) � 

∞

k�0

z
k

Γ(αk + β)
. (13)

Formula (12) can be written in a discrete form after
discretization on [0, T] with an equal-spaced mesh-grid
tn � nτ, n � 0, 1, . . .:

U tn(  � eα,1 tn; A( U0 + 
n− 1

j�0


tj+1

tj

eα,α tn − s; A( F(U(s))ds.

(14)

+en, the ETD scheme can be denoted as [19, 23]

Un � eα,1 tn; A( U0 + 
n− 1

j�0
Wn,jF Uj , (15)

where Uj is the numerical approximation to U(tj), and the
convolution weights Wn,j can be computed as

Wn,j � eα,α+1 tn − tj; A  − eα,α+1 tn − tj+1; A . (16)

Scheme (15) is called the one-step ETD scheme.
Garrappa and Popolizio proved in [19] that the one-step

ETD scheme (15) has the absolute approximation error
Errn � ‖U(tn) − Un‖ satisfying

U tn(  − Un

����
����≤Cτ, n � 1, . . . , M, (17)

where M is the temporal step number and C is a constant
relating to T and α. +is inequality tells us that ETD scheme
(15) is first-order convergent temporally.

+e two-step ETD scheme is also constructed in [19]:

Un � eα,1 tn; A( U0 + W
(1)
n F U0(  + 

n− 1

j�0
W

(2)
n,j F Uj 

− W
(2)
n,n F Un− 2(  + 2W

(2)
n,n F Un− 1( ,

(18)

where

W
(1)
n � eα,α+2 tn− 1; A(  + eα,α+1 tn; A(  − eα,α+2 tn; A( ,

W
(2)
n,j �

eα,α+2 t1; A( , n � j,

eα,α+2 tn − tj+1; A  − 2eα,α+2 tn − tj; A  + eα,α+2 tn − tj− 1; A , n> j.

⎧⎨

⎩

(19)

Garrappa and Popolizio also proved in [19] that the two-
step ETD scheme (18) has the absolute approximation error
Errn � ‖U(tn) − Un‖ satisfying

U tn(  − Un

����
����≤Cτ1+α

, n � 1, . . . , M, (20)

where M is the temporal step number and C is a constant
relating to T and α. +is inequality tells us that ETD scheme
(18) is 1 + α{ }-order convergent temporally.

To relief the burden of computing the function eα,β(t; A),
we transform it using the multiplication of eigenvectors and
functions of eigenvalues [23]:
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f(A) � Zf(D)Z
− 1

� Z

f λ1( 

f λ1( 

⋱

f λ1( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Z
− 1

,

(21)

where A is diagonalizable, with λk’s to be its eigenvalues, Z is
the composition of A’s eigenvectors, and
D � diag(λ1, λ2, . . . , λm). Using this decomposition, we
avoid the computation of the ML function of matrices,
which is really time consuming. We only need to calculate
the ML function with inputs of numbers and multiply the
matrices, which reduces the time of computation
significantly.

Moreover, we use the Padé approximation R3,2
α,β to

compute the value of the ML function [24, 25]:

Eα,β(− x) ≈ R
3,2
α,β(x) �

1
Γ(β − α)x

·
p1 + x

q0 + q1x + x
2, (22)

with coefficients

p1 � cα,β Γ(β)Γ(β + α) −
Γ(β + α)Γ2(β − α)

Γ(β − 2α)
 ,

q0 � cα,β
Γ2(β)Γ(β + α)

Γ(β − α)
−
Γ(β)Γ(β + α)Γ(β − α)

Γ(β − 2α)
 ,

q1 � cα,β Γ(β)Γ(β + α) −
Γ(β − α)Γ2(β)

Γ(β − 2α)
 ,

cα,β �
1

Γ(β + α)Γ(β − α) − Γ2(β)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

After simplification, formula (22) becomes

Eα,β(− x) ≈ R
3,2
α,β(x) �

α
Γ(1 + α) + 2Γ(1 − α)

2/Γ(1 − 2α)x + Γ(1 − α)x
2. (24)

+e Padé approximation (24) to the ML function can be
applied to the one-step and two-step ETD schemes (15) and
(18) to enhance the efficiency.

4. Approximation Error Analysis

+e approximation error of formula (24) is defined as [24]

e
3,2
α,β(x) ≔ Eα,β(− x) − R

3,2
α,β(x), x> 0. (25)

+en, we have

Eα,β(− x) �
1

sα,β(x)
Eα,β(x), (26)

where

sα,β(x) �
Γ(β − α)x, β> α,

− Γ(− α)x
2
, β � α,



Eα,β(x) �

E
0
α,β(x) + O x

m
( , asx⟶ 0, m≥

2, β> α,

3, β � α,


E
∞
α,β x

− 1
  + O x

− n
( , asx⟶∞, n≥

1, β> α,

2, β � α,


⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

in which
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E
0
α,β(x) �

Γ(β − α)x 
m− 2

k�0

(− x)
k

Γ(β + αk)
, β> α,

− Γ(− α)x
2



m− 3

k�0

(− x)
k

Γ(α + αk)
, β � α,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
∞
α,β x

− 1
  �

− Γ(β − α)x 
n

k�1

(− x)
k

Γ(β − αk)
, β> α,

Γ(− α)x
2



n

k�1

(− x)
− (k+1)

Γ(− αk)
, β � α.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

+en, we compute the error of approximation as

e
3,2
α,β(x) � Eα,β(− x) − R

3,2
α,β(x) �

1
sα,β(x)

Eα,β(x) −
p(x)

q(x)
  �

1
sα,β(x)

O x
3

  + O(x)  �

O(1), β> α,

O x
− 1

 , β � α,

⎧⎪⎨

⎪⎩
asx⟶ 0,

e
3,2
α,β(x) � Eα,β(− x) − R

3,2
α,β(x) �

1
sα,β(x)

Eα,β(x) −
p(x)

q(x)
  �

1
sα,β(x)

O x
− 2

  �

O x
− 3

 , β> α,

O x
− 4

 , β � α,

⎧⎪⎪⎨

⎪⎪⎩
asx⟶∞.

(29)

As stated by Sarumi et al. [24], to make the approxi-
mation of Rm,n

α,β reliable for β≠ α, we need to have m≥ n + 1.
+is is why we use R3,2

α,β to approximate the Mittag-Leffler
function.

5. Numerical Experiments

We tested the ETD schemes with Padé approximation on an
initial boundary value problemwith analytical solutions.+e
numerical errors in this section are computed as

err(τ) � U tn(  − Un

����
����L2

. (30)

+e rate of convergence in time is computed as

p �
log err τk( /err τk+1( ( 

log τk/τk+1( 
. (31)

+e experiments were compiled on an Intel Core i5-
6200U 2.30GHz workstation, and MATLAB R2016b was
chosen as computation software.

Firstly, we consider the following FCNLSE as suggested
by Esen et al. [12]:

iD
α
t u + D

β
xu + δ |u|

2
+ c|v|

2
 u � 0,

iD
α
t v + D

β
xv + δ |v|

2
+ c|u|

2
 v � 0,

(32)

with initial conditions

u(x, 0) � μ

��������

−
2

δ(1 + c)



sech μ
x
β/2

β/2
  e

i − k
xβ/2

β/2
+ p 

,

v(x, 0) � − μ

��������

−
2

δ(1 + c)



sech μ
x
β/2

β/2
  e

i − k
xβ/2

β/2
+ p 

,

(33)

and homogeneous Dirichlet boundary conditions on
[− 20, 20], where the parameters can be chosen as c � 0.25,
μ � 0.45, δ � − 0.35, p � 1.5, k � −

������
μ2 − ω


, and ω � − 3.

+e analytical solutions to FCNLSE (32) are given in [12]
as

u(x, t) � μ

��������

−
2

δ(1 + c)



sech μ
x
β/2

β/2
+ 2k

t
α

α
  e

i − kxβ/2/β/2+ωtα/α+p( ),

v(x, t) � − μ

��������

−
2

δ(1 + c)



sech μ
x
β/2

β/2
+ 2k

t
α

α
  e

i − kxβ/2/β/2+ωtα/α+p( ),

(34)
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where k � −
������
μ2 − ω


and μ2 − ω> 0 for valid solitons.

We plot the traces of numerical solutions to FCNLSE
(32) with initial conditions (33) using the one-step ETD
scheme (15) and the central difference method (8) for dif-
ferent α and β values in Figures 1–4. It can be seen from the
plots that |u|2 and |v|2 travel in the same pace and direction.
+is is due to the fact that u and v model vector solitons in a
birefringent fiber. Because of the nonlinear coupling effect,
the vector solitons can propagate undistorted even when the
components have different widths or peak powers.

In Tables 1 and 2, the temporal convergence rates of the
two-step ETD scheme (18) are computed according to

formulas (30) and (31). +e spatial step size is chosen as
h � 0.001 which is relatively small. +e experiments are
performed for both α � 0.6 and α � 0.8. It can be noticed
from the convergence rates that the order of convergence for
α � 0.6 is around 1.6, and the order of convergence for α �

0.8 is around 1.8, which means the two-step ETD scheme
(18) has a temporal order of 1 + α{ }.

Secondly, we solve FCNLSE (32) with initial
conditions

u(x, 0) � sech(x),

v(x, 0) � − sech(x),
(35)
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Figure 1: +e trace of the solution to |u|2 of FCNLSE (32) with α � 0.6 and β � 1.4.
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Figure 2: +e trace of the solution to |v|2 of FCNLSE (32) with α � 0.6 and β � 1.4.
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Figure 3: +e trace of the solution to |u|2 of FCNLSE (32) with α � 0.8 and β � 1.6.
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and homogeneous Dirichlet boundary conditions on
[− 10, 10], where the parameters are chosen as δ � − 1 and
c � 1.

In Figures 5–12, the evolution traces of solutions to
FCNLSE (32) with initial conditions (35) are depicted
with different values of α and β, using the two-step ETD
scheme (18) in time and the compact scheme (10) in
space. It can be observed from the mesh plots that the
absolute values of u and v remain the same, which means

the magnitudes of the pulses remain identical, while the
real parts of u and v remain opposite to each other. It can
also be seen from the evolution profiles that different α
and β values result in different diffusion effects and time
delay effects.

In Table 3, the computation time is recorded solving
FCNLSE (32) using the two-step ETD scheme (18) taking
advantage of the Padé approximation (24) for different α and
β values by counting the CPU time used in MATLAB. As we

1
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0.5

0 20
0

–20

|v
|2

t
x

α = 0.6, β = 1.4

Figure 4: +e trace of the solution to |v|2 of FCNLSE (32) with α � 0.8 and β � 1.6.

Table 1: Temporal convergence rates of the two-step ETD scheme with Padé approximation for FCNLSE (32) with α � 0.6.

τ err(τ) for β � 1.4 Order p err(τ) for α � 1.8 Order p

0.1 2.3309e − 3 — 2.2265e − 3 —
0.05 7.6231e − 4 1.6124 7.2183e − 4 1.6250
0.025 2.4983e − 4 1.6094 2.3503e − 4 1.6188
0.0125 8.1755e − 5 1.6116 7.6287e − 5 1.6233

Table 2: Temporal convergence rates of the two-step ETD scheme with Padé approximation for FCNLSE (32) with α � 0.8.

τ err(τ) for β � 1.4 Order p err(τ) for α � 1.8 Order p

0.1 1.8527e − 3 — 1.7532e − 3 —
0.05 5.3631e − 4 1.7885 4.9810e − 4 1.8155
0.025 1.5159e − 4 1.8229 1.3967e − 4 1.8344
0.0125 4.2812e − 5 1.8241 3.9562e − 5 1.8198
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Figure 5: +e trace of the solution to |u| of FCNLSE (32) with α � 0.6 and β � 1.8.
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Figure 10:+e trace of the solution to the real part of uwith α � 0.8
and β � 1.2.
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Figure 6: +e trace of the solution to the real part of u with α � 0.6
and β � 1.8.
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Figure 8: +e trace of the solution to the real part of v with α � 0.6
and β � 1.8.
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Figure 9: +e trace of the solution to |u| of FCNLSE (32) with
α � 0.8 and β � 1.2.
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Figure 7: +e trace of the solution to |v| of FCNLSE (32) with
α � 0.6 and β � 1.8.
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Figure 11: +e trace of the solution to |v| of FCNLSE (32) with
α � 0.8 and β � 1.2.
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Figure 12:+e trace of the solution to the real part of v with α � 0.8
and β � 1.2.

Table 3: Computation time (CPU time in s) needed for solving
FCNLSE (32) with initial conditions (35) via the two-step ETD
scheme (18) utilizing the Padé approximation (24), taking h � 0.05
and τ � 0.01.

α 0.3 0.3 0.3 0.6 0.6 0.6
β 1.2 1.5 1.8 1.2 1.5 1.8
t� 0.25 2.452 2.445 2.360 2.313 2.388 2.426
t� 0.5 4.736 4.823 4.633 4.577 4.579 4.752
t� 0.75 7.305 7.537 7.345 7.292 7.334 7.436
t� 1 9.238 9.426 9.332 9.443 9.563 9.573
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took the similar experiments without using the Padé ap-
proximation, the CPU time needed for the computation is
about 15 times longer. +is indicates the efficiency and
necessity of the Padé approximation for the ETD schemes.

6. Conclusion

To solve the space-time fractional coupled nonlinear
Schrödinger equation efficiently, we employed exponential
time-differencing schemes for the fractional derivative in
time. During this process, the Mittag-Leffler function is
computed using the Padé approximation. It has been shown
in the numerical experiments that the Padé approximation
reduces the computational time markedly compared to the
original exponential time-differencing scheme. +e error of
the Padé approximation to the Mittag-Leffler function has
been analyzed, and the convergence rates of the schemes
have been computed and demonstrated in the Numerical
Experiments section. Figures 1–4 express the bright soliton
solutions, and Figures 5–12 depict orthogonally polarized
optical waves in a birefringent fiber. +e main contribution
of this paper is the modification of the exponential time-
differencing methods by applying the Padé approximation,
as well as obtaining the soliton solutions to the fractional
coupled nonlinear Schrödinger equation, which might be
applicable in the industry of fiber optics.
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In this article, we introduce a new extension of classical convexity which is called generalized exponentially (s, m; η)-preinvex
functions. Also, it is seen that the new definition of generalized exponentially (s, m; η)-preinvex functions describes different new
classes as special cases. To prove our main results, we derive a new mκ2q-integral identity for the twice mκ2q-differentiable function.
By using this identity, we show essential new results for Hermite–Hadamard-type inequalities for the mκ2q-integral by utilizing
differentiable exponentially (s, m; η)-preinvex functions. -e results presented in this article are unification and generalization of
the comparable results in the literature.

1. Introduction and Preliminaries

In mathematics, quantum calculus is equivalent to usual
infinitesimal calculus without the concept of limits or the
investigation of calculus without limits (quantum is from the
Latin word “quantus,” and literally, it means how much, in
Swedish “Kvant”). It has two major branches: q-calculus and
h-calculus. And both of them were worked out by Cheung
and Kac [1] in the early twentieth century. In the same era,
Jackson started to work on quantum calculus or q-calculus,
but Euler and Jacobi had already figured out this type of
calculus. A number of studies have recently been widely used
in the field of q-analysis, beginning with Euler, due to the
vast necessity for mathematics that models of quantum
computing q-calculus exist in the framework between
physics and mathematics. In 2013, Tariboon and Ntouyas
introduced the κ1Dq-difference operator [2, 3]. -is inspired
other researchers, and as a consequence, numerous novel
results concerning quantum analogues of classical mathe-
matical results have already been launched in the literature.
In various mathematical fields, it has many applications,

such as theory of numbers, combinations, orthogonal
polynomials, basic hypergeometric functions and other
subjects, quantum mechanics, physics, and the principle of
relativity. Many important aspects of quantum calculus are
covered in the articles by Humaira et al. [4–7]. -e quantum
calculus is currently a subfield of the more general scientific
field of time-scale calculus. New developments have recently
been made in the research and methodology of dynamic
derivatives on time scales. -e research offers a consolida-
tion and application of traditional differential and difference
equations. Moreover, it is a unification of the discrete theory
with the continuous theory, from the theoretical perspective.
Recently, in 2020, Bermudo et al. introduced the notion of
the κ2Dq-derivative and integral [8]. For more details, see
[9–15] and references cited therein.

-e discussion and application of convex functions has
become a very rich source of motivational material in pure
and applied science. -is vision not only promoted new and
profound results in many branches of mathematical and
engineering sciences but also provided a comprehensive
framework for the study of many problems. Many scholars
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have studied various classes of convex sets and convex
functions; see [16, 17]. -e concept of convexity has been
extended in several directions, since these generalized ver-
sions have significant applications in different fields of pure
and applied sciences. One of the convincing examples on
extensions of convexity is the introduction of invex function,
which was introduced by Hanson [18] Weir and Mond [19]
explored the idea of preinvex functions and actualized it to
the foundation of adequate optimality conditions and du-
ality in nonlinear programming.

-e Hermite–Hadamard inequality was introduced by
Hermite and Hadamard; see [20]. It is one of the most
recognized inequalities in the theory of convex functional
analysis, which is stated as follows.

Let 5: Q⊆R⟶R be a convex mapping and κ1, κ2 ∈ Q
with κ1 < κ2. -en,

5
κ1 + κ2

2
 ≤

1
κ2 − κ1


κ2

κ1
5(ϰ)dϰ ≤

5 κ1(  + 5 κ2( 

2
. (1)

If 5 is concave, both inequalities hold in the reverse
direction.

-e important objective of this paper is to introduce an
exponentially generalized definition of (s, m; η)-preinvex
functions. Furthermore, the new mκ2q-integral identity is
determined. By using this new identity, we provedmany new
estimates of bounds for it, essentially based on the concept of
quantum calculus.

2. Preliminaries

In this section, we derive a new definition of the generalized
exponentially (s, m; η)-preinvex function. Also, we present
all necessary concepts related to quantum calculus.

First of all, letQ ⊂Rn be a nonempty set, 5: Q⟶R be
a continuous function, and η: Q × Q × (0, 1]⟶R∖ 0{ }

and ϑ: Q × Q × (0, 1]⟶Rn be two continuous functions.

Definition 1. A set Q⊆Rn is supposed to be η-invex con-
cerning η(·, ·, ·) and ϑ(·, ·, ·) with some fixed m ∈ (0, 1] if

mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m(  ∈ Q, (2)

for all κ1, κ2 ∈ Q and k ∈ [0, 1].
If η(κ1, κ2, m) � 1, the above equation is called the

convex set, and ϑ(κ1, κ2, m) � κ1 − mκ2 is an invex set;
however, the reverse is not possible.

Example 1. Consider Q � [− 3, − 2]∪ [− 1, 2] and

ϑ κ1, κ2, m(  �

κ1 − mκ2 if 2≥ κ2 ≥ − 1, 2≥ κ1 ≥ − 1,

κ1 − mκ2 if − 3≤ κ2 ≤ − 2, − 3≤ κ1 ≤ − 2,

− 1 − mκ2 if − 3≤ κ2 ≤ − 2, − 1≤ κ1 ≤ 2,

− 3 − mκ2 if − 1≤ κ2 ≤ 2, − 3≤ κ1 ≤ − 2.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

As one can see, Q is also an invex set for ϑ, but not a
convex set.

Definition 2. A function 5: Q⟶R is said to be a gen-
eralized exponentially (s, m; η)-preinvex function if there
exist η(·, ·, ·) and ϑ(·, ·, ·), χ ≥ 1, and nonpositive α such that

5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 

≤ k
s5 κ1( 

χακ1
+(1 − k)

s5 mκ2( 

χαmκ2 ,

(4)

for all κ1, κ2 ∈ Q and k ∈ [0, 1] and for some fixed
s, m ∈ (0, 1].

Remark 1. In Definition 2,

(1) If we choose α � 0 or χ � 1, then the definition of the
generalized exponentially (s, m; η)-preinvex func-
tion is converted into the definition of the gener-
alized (s, m; η)-preinvex function

(2) If we choose α � 0 and η(κ1, κ2, m) � 1, then we get
the definition of (s, m)-preinvexity

(3) If we choose α� 0, η(κ1,κ2,m) � 1, and ϑ(κ1,κ2,m) �

κ1 − mκ2, then we get the definition of
(s,m)-convexity

(4) If we choose m � 1 and ϑ(κ1, κ2, m) � 1, we get the
definition in [21]

(4) If we choose χ � e, then we have the definition of
exponentially (s, m; η)-preinvex functions, stated as
follows

Definition 3. A function 5: Q⟶R is called exponentially
(s, m; η)-preinvex if there exist η(·, ·, ·), ϑ(·, ·., ·), and non-
positive α such that

5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 

≤ k
s5 κ1( 

e
ακ1 +(1 − k)

s5 mκ2( 

e
αmκ2 ,

(5)

for all κ1, κ2 ∈ Q and k ∈ [0, 1] and for some fixed
s, m ∈ (0, 1].

Many researchers proved several results about the im-
portance and development in the theory of exponentially
convex functions and their applications. For more details,
see [22–25] and references cited therein.

Jackson derived the q-Jackson integral in [12] from 0 to
κ2 for 0< q< 1 as follows:


κ2

0
5(ϰ) dqϰ � (1 − q)κ2 

∞

n�0
q

n
5 κ2q

n
( , (6)

provided the sum converges absolutely.
-e q-Jackson integral in a generic interval [κ1, κ2] was

given by Jackson in [12] and defined as follows:


κ2

κ1
5(ϰ) dqϰ � 

κ2

0
5(ϰ) dqϰ − 

κ1

0
5(ϰ) dqϰ . (7)

Definition 4 (see [3]). We suppose that 5: [κ1, κ2]⟶R is
an arbitrary function. -en, the qκ1-derivative of 5 at
ϰ ∈ [κ1, κ2] is defined as follows:
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κ1Dq5(ϰ) �
5(ϰ) − 5 qϰ +(1 − q)κ1( 

(1 − q) ϰ − κ1( 
, ϰ≠ κ1. (8)

Since 5 is an arbitrary function from [κ1, κ2] to R,
κ1Dq5(κ1) � limϰ⟶κ1 κ1

Dq5(ϰ) . -e function 5 is said to
be q-differentiable on [κ1, κ2] if κ1Dq5(t) exists for all
ϰ ∈ [κ1, κ2]. If κ1 � 0 in (3), then 0Dq5(ϰ) � Dq5(ϰ) , where
Dq5(ϰ) is a familiar q-derivative of 5 at ϰ ∈ [κ1, κ2] defined
by the following expression (see [1]):

Dq5(ϰ) �
5(ϰ) − 5(qϰ)

(1 − q)ϰ
, ϰ≠ 0. (9)

Definition 5 (see [8]). We suppose that 5: [κ1, κ2]⟶R is
an arbitrary function; then, the qκ2 -derivative of 5 at
ϰ ∈ [κ1, κ2] is defined as follows:

κ2Dq5(ϰ) �
5 qϰ +(1 − q)κ2(  − 5(ϰ)

(1 − q) κ2 − ϰ( 
, ϰ≠ κ2. (10)

Definition 6 (see [3]). We suppose that 5: [κ1, κ2]⟶R is
an arbitrary function; then, the qκ1-definite integral on
[κ1, κ2] is defined as follows:


κ2

κ1
5(ϰ)κ1dqϰ � (1 − q) κ2 − κ1(  

∞

n�0
q

n
5 q

nκ2 + 1 − q
n

( κ1( 

� κ2 − κ1(  
1

0
5 (1 − t)κ1 + tκ2( dqt.

(11)

In [10], Alp et al. established the qκ1-Hermite–Hadamard
inequalities for convexity, which are defined as follows.

Theorem 1. Let 5: [κ1, κ2]⟶R be a convex differentiable
function on [κ1, κ2] and 0< q< 1. >en, q-Hermite–
Hadamard inequalities are as follows:

5
qκ1 + κ2

[2]q

 ≤
1

κ2 − κ1

κ2

κ1
5(ϰ)κ1dqϰ≤

q5 κ1(  + 5 κ2( 

[2]q

. (12)

On the contrary, the following new description and
related Hermite–Hadamard-form inequalities were given by
Bermudo et al.

Definition 7 (see [8]). Let 5: [κ1, κ2]⟶R be an arbitrary
function. -en, the qκ2 -definite integral on [κ1, κ2] is defined
as


κ2

κ1
5(ϰ)κ2dqϰ � (1 − q) κ2 − κ1(  

∞

n�0
q

n
5 q

nκ1 + 1 − q
n

( κ2( 

� κ2 − κ1(  
1

0
5 tκ1 +(1 − t)κ2( dqt.

(13)

Theorem 2 (see [8]). Let 5: [κ1, κ2]⟶R be a convex
function on [κ1, κ2] and 0< q< 1. >en, q-Hermi-
te–Hadamard inequalities are as follows:

5
κ1 + qκ2

[2]q

 ≤
1

κ2 − κ1

κ2

κ1
5(ϰ)κ2dqϰ≤

5 κ1(  + q5 κ2( 

[2]q

.

(14)

From -eorems 1 and 2, one can achieve the following
inequalities.

Corollary 1 (see [8]). For any convex function
5: [κ1, κ2]⟶R and 0< q< 1, we have

5
qκ1 + κ2

[2]q

  + 5
κ1 + qκ2

[2]q

 ≤
1

κ2 − κ1

κ2

κ1
5(ϰ)κ1dqϰ + 

κ2

κ1
5(ϰ)κ2dqϰ ≤ 5 κ1(  + 5 κ2( , (15)

and

5
κ1 + κ2

2
 ≤

1
2 κ2 − κ1( 


κ2

κ1
5(ϰ)κ1dqϰ + 

κ2

κ1
5(ϰ)κ2dqϰ 

≤
5 κ1(  + 5 κ2( 

2
.

(16)

Alp and Sarikaya, by using the area of trapezoids, in-
troduced the following generalized quantum integral which
we will call as κ1Tq-integral.

Definition 8 (see [11]). Let 5: [κ1, κ2]⟶R be an arbitrary
function. For ϰ ∈ [κ1, κ2],


κ2

κ1
5(ξ)κ1d

T
q �

(1 − q) κ2 − κ1( 

2q

· [2]q 

∞

n�0
q

n
5 q

nκ2 + 1 − q
n

( κ1(  − 5 κ2( ⎡⎣ ⎤⎦,

(17)

where 0< q< 1.

Theorem 3 (q-Hermite–Hadamard; see [11]). Let
5: [κ1, κ2]⟶R be a convex continuous function on [κ1, κ2]
and 0< q< 1. >en, we have
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5
κ1 + κ2

2
 ≤

1
κ2 − κ1


κ2

κ1
5(ϰ)κ1d

T
qϰ≤

5 κ1(  + 5 κ2( 

2
.

(18)

Definition 9 (see [11]). For any real number n, the q ana-
logue of n is defined as

[n]q �
1 − q

n

1 − q
. (19)

Definition 10 (see [11]). Let k, p> 0. -en, Bq(k, p) is de-
fined by

Bq(k, p) � 
1

0
x

k− 1
(1 − qx)

p− 1
q dqx. (20)

3. A New mκ2q-Integral Identity

In this section, we present a new mκ2q-integral identity.

Lemma 1. For m ∈ (0, 1] with 0< q< 1, let there be an
arbitrary function 5: Q⟶R such that mκ2D

q
25 is

mκ2q-integrable on Q. >en, one has

mκ2Lq κ1, κ2, m, x(  �
5 mκ2 + η κ1, κ2, m( ϑ κ1, κ2, m( (  + q5 mκ2( 

[2]q

−
1

η κ1, κ2, m( ϑ κ1, κ2, m( 


mκ2

mκ2+η κ1 ,κ2 ,m( )ϑ κ1 ,κ2 ,m( )
5(x)

mκ2 dqx

�
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( dqk.

(21)

Proof. We suppose that


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( dqk

� 
1

0
k(1 − qk)

q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 

k
2
q(1 − q)

2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 
−

[2]q5 mκ2 + qkη κ1, κ2, m( ϑ κ1, κ2, m( (  + 5 mκ2 + q
2
kη κ1, κ2, m( ϑ κ1, κ2, m(  

k
2
q(1 − q)

2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

⎧⎨

⎩

⎫⎬

⎭dqk

�
q 
∞
n�0 5 mκ2 + q

nη κ1, κ2, m( ϑ κ1, κ2, m( (  − [2]q 
∞
n�0 5 mκ2 + q

n+1η κ1, κ2, m( ϑ κ1, κ2, m(  

q(1 − q)η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 
+


∞
n�0 5 mκ2 + q

n+2η κ1, κ2, m( ϑ κ1, κ2, m(  

q(1 − q)η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

− q
q(1 − q)η κ1, κ2, m( ϑ κ1, κ2, m(  

∞
n�0 q

n
5 mκ2 + q

nη κ1, κ2, m( ϑ κ1, κ2, m( ( 

q(1 − q)
2η3 κ1, κ2, m( ϑ3 κ1, κ2, m( 



−
[2]q(1 − q)η κ1, κ2, m( ϑ κ1, κ2, m(  

∞
n�0 q

n+1
5 mκ2 + q

n+1η κ1, κ2, m( ϑ κ1, κ2, m(  

q
2
(1 − q)

2η3 κ1, κ2, m( ϑ3 κ1, κ2, m( 

+
(1 − q)η κ1, κ2, m( ϑ κ1, κ2, m(  

∞
n�0 q

n+2
5 mκ2 + q

n+2η κ1, κ2, m( ϑ κ1, κ2, m(  

q
3
(1 − q)

2η3 κ1, κ2, m( ϑ3 κ1, κ2, m( 

�
q 5 mκ2 + η κ1, κ2, m( ϑ κ1, κ2, m( (  − 5 mκ2( (  − 5 mκ2 + qη κ1, κ2, m( ϑ κ1, κ2, m( ( 

q(1 − q)η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

+
5 mκ2( 

q(1 − q)η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 
−

[2]q

q
2η3 κ1, κ2, m( ϑ3 κ1, κ2, m( 


mκ2

mκ2+η κ1,κ2,m( )ϑ κ1,κ2 ,m( )
5(x)

mκ2dqx

−
q
2

+ q − 1 5 mκ2 + η κ1, κ2, m( ϑ κ1, κ2, m( ( 

q
2
(1 − q)η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

+
5 mκ2 + qη κ1, κ2, m( ϑ κ1, κ2, m( ( 

q(1 − q)η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

�
5 mκ2 + η κ1, κ2, m( ϑ κ1, κ2, m( (  + qΛ mκ2( 

q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

−
[2]q

q
2η3 κ1, κ2, m( ϑ3 κ1, κ2, m( 


mκ2

mκ2+η κ1 ,κ2,m( )ϑ κ1 ,κ2,m( )
5(x)

mκ2dqx.

(22)
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Multiplying both sides of the above equality by
q2η2(κ1, κ2, m)ϑ2(κ1, κ2, m)/[2]q, we get the required
result. □

4. Hermite–Hadamard Inequalities for
Generalized Exponentially
(s, m; η)-Preinvex Functions

Theorem 4. We assume that the conditions of Lemma 1 with
χ ≥ 1 and α ∈R hold. If |mκ2D2

q5|u is a generalized expo-
nentially (s, m; η)-preinvex function and u≥ 1, then for some
fixed s, m ∈ (0, 1], we have

mκ2Lq κ1,κ2,m,x( 


≤
q
2η2 κ1,κ2,m( ϑ2 κ1,κ2,m( 

[2]
2− 1/u
q

· Ω1
mκ2D2

q5 κ1( 

χακ1





u

+Ω2
mκ2D2

q5 mκ2( 

χαmκ2





u

⎛⎝ ⎞⎠

1/u

,

(23)

where

Ω1 � Bq(s + 2,u + 1), (24)

Ω2 � 21− s
Bq(2,u + 1) − Bq(s + 2,u + 1). (25)

Proof. By utilizing conditions of Lemma 1 and the famous
power mean inequality, we obtain

mκ2Lq κ1, κ2, m, x( 




�
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( dqk





≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 



dqk

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
kdqk 

1− 1/u

× 
1

0
k(1 − qk)

u mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 




u
dqk 

1/u

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]
2− 1/u
q


1

0
k(1 − qk)

u
k

s
mκ2D2

q5 κ1( 

χακ1





u

+(1 − k)
s

mκ2D2
q5 mκ2( 

χαmκ2





u

⎡⎣ ⎤⎦dqk⎛⎝ ⎞⎠

1/u

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]
2− 1/u
q


1

0
k(1 − qk)

u

q
k

s
mκ2D2

q5 κ1( 

χακ1





u

+(1 − k)
s
mκ2D2

q5 mκ2( 

χαmκ2





u

⎡⎣ ⎤⎦dqk⎛⎝ ⎞⎠

1/u

�
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]
2− 1/u
q

Ω1
mκ2D2

q5 κ1( 

χακ1





u

+Ω2
mκ2D2

q5 mκ2( 

χαmκ2





u

⎛⎝ ⎞⎠

1/u

,

(26)

where

Ω1 � 
1

0
k

s+1
(1 − qk)

u
q dqk � Bq(s + 2,u + 1), (27)

and

Ω1 � 
1

0
k 21− s

− k
s

 (1 − qk)
u
q dqk

� 21− s
Bq(2,u + 1) − Bq(s + 2,u + 1)≥ 0

(28)

due to 21− s − ks ≥ 0 for all k ∈ [0, 1] and s ∈ (0, 1].
We proved our result. □
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Theorem 5. We assume that the conditions of Lemma 1 with
χ ≥ 1 and α ∈R hold. If |mκ2D2

q5|u is a generalized
exponentially (s, m; η)-preinvex function and u> 1 with
p− 1 + u− 1 � 1, then for some fixed s, m ∈ (0, 1], we obtain

mκ2Lq κ1, κ2, m, x( 


≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

1/p
Bq(2, p + 1)

[2]q

×
[2]q

mκ2D2
q5 κ1( /χακ1




u

+ 21− s[s + 2]q − [2]q  mκ2D2
q5 mκ2( /χαmκ2




u

[2]q[s + 2]q

⎛⎝ ⎞⎠

1/u

.

(29)

Proof. By utilizing conditions of Lemma 1 and the famous
Hölder inequality, we obtain

mκ2Lq κ1, κ2, m, x( 




�
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( dqk





≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 



dqk

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

pdqk 

1/p

× 
1

0
k

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 




u

dqk 

1/u

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

p
qdqk 

1/p

× 
1

0
k k

s
mκ2D2

q5 κ1( 

χακ1





u

+(1 − k)
s
mκ2D2

q5 mκ2( 

χαmκ2





u

⎡⎣ ⎤⎦dqk⎛⎝ ⎞⎠

1/u

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( B

1/p
q (2, p + 1)

[2]q

×
[2]q

mκ2D2
q5 κ1( /χακ1




u

+ 21− s[s + 2]q − [2]q  mκ2D2
q5 mκ2( /χαmκ2




u

[2]q[s + 2]q

⎛⎝ ⎞⎠

1/u

.

(30)

-is completes the proof. □

Theorem 6. We assume that the conditions of Lemma 1 with
χ ≥ 1 and α ∈R hold. If |mκ2D2

q5|u is a generalized

exponentially (s, m; η)-preinvex function and u> 1 with
p− 1 + u− 1 � 1, then for some fixed s, m ∈ (0, 1], we obtain

mκ2Lq κ1, κ2, m, x( 


≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q

· Bq(u + s + 1,u + 1)
mκ2D2

q5 κ1( 

χακ1





u

+ 21− s
Bq(u + 1,u + 1) − Bq(u + s + 1,u + 1) 

mκ2D2
q5 κ1( 

χαmκ2





u

⎛⎝ ⎞⎠

1/u

.⎛⎝

(31)

Proof. By utilizing conditions of Lemma 1 and the famous
Hölder inequality, we obtain
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mκ2Lq κ1, κ2, m, x( 




�
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( dqk





≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( dqk

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
1dqk 

1/p

× 
1

0
k
u

(1 − qk)
u mκ2D

2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 




u

dqk 

1
u

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q

× 
1

0
k
u

(1 − qk)
u

k
s

mκ2D2
q5 κ1( 

χακ1





u

+(1 − k)
s

mκ2D2
q5 mκ2( 

χαmκ2





u

⎡⎣ ⎤⎦dqk⎛⎝ ⎞⎠

1/u

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q

Bq(u + s + 1,u + 1)
mκ2D2

q5 κ1( 

χακ1





u

⎛⎝

+ 21− s
Bq(u + 1,u + 1) − Bq(u + s + 1,u + 1) 

mκ2D2
q5 mκ2( 

χαmκ2





u

⎛⎝ ⎞⎠

1/u

,

(32)

where

21− s
Bq(u + 1,u + 1) − Bq(u + s + 1,u + 1)≥ 0. (33)

We proved our result. □

Theorem 7. We assume that the conditions of Lemma 1 with
χ ≥ 1 and α ∈R hold. If |mκ2D2

q5|u is a generalized expo-
nentially (s, m; η)-preinvex function and u> 1 with
p− 1 + u− 1 � 1, then for some fixed s, m ∈ (0, 1], we obtain

mκ2Lq κ1,κ2,m,x( 


≤
q
2η2 κ1,κ2,m( ϑ2 κ1,κ2,m( B

1/p
q (p+1,p+1)

[2]q

× ϑ1
mκ2D2

q5 κ1( 

χακ1





u

+ϑ2
mκ2D2

q5 mκ2( 

χαmκ2





u

⎛⎝ ⎞⎠

1/u

,

(34)

where

ϑ1 �
1 − q

1 − q
s+1 �

1
[s + 1]q

,

ϑ2 � (1 − q) 
∞

n�0
q

n 1 − q
n

( 
s
.

(35)

Proof. By utilizing conditions of Lemma 1 and the famous
Hölder inequality, we obtain

mκ2Lq κ1, κ2, m, x( 




�
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( dqk





≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 



dqk

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k

p
(1 − qk)

p
dqk 

1/p

× 
1

0

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 




u

dqk 

1/u

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( B

1/p
q (p + 1, p + 1)

[2]q

× 
1

0
k

s
mκ2D2

q5 κ1( 

χακ1





u

+(1 − k)
s

mκ2D2
q5 mκ2( 

χαmκ2





u

⎡⎣ ⎤⎦dqk⎛⎝ ⎞⎠

1/u

.

(36)
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Applying the definition of quantum integral, we get

ϑ1 � 
1

0
k

s
0dqk �

1 − q

1 − q
s+1 �

1
[s + 1]q

,

ϑ2 � 
1

0
(1 − k)

s
0dqk � (1 − q) 

∞

n�0
q

n 1 − q
n

( 
s
.

(37)

-is completes the proof. □

Theorem 8. We assume that the conditions of Lemma 1 with
χ ≥ 1 and α ∈R hold. If |mκ2D2

q5|u is a generalized expo-
nentially (s, m; η)-preinvex function and u> 1 with
p− 1 + u− 1 � 1, then for some fixed s, m ∈ (0, 1], we obtain

mκ2Lq κ1, κ2, m, x( 


≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q[p + 1]
1/p
q

× ω1
mκ2D2

q5 κ1( 

χακ1





u

+ ω2

mκ2D2
q5 mκ2( 

χαmκ2





u

⎛⎝ ⎞⎠

1/u

, (38)

where

ω1 � (1 − q) 
∞

n�0
q

n(s+1) 1 − q
n+1

 
u

,ω2 � (1 − q) 
∞

n�0
q

n 1 − q
n

( 
s 1 − q

n+1
 

u
. (39)

Proof. By utilizing conditions of Lemma 1 and Hölder’s
inequality, we have

mκ2Lq κ1, κ2, m, x( 




�
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( dqk





≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 



dqk

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k
p
dqk 

1/p

× 
1

0
(1 − qk)

u mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 




u

dqk 

1/u

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q[p + 1]
1/p
q

× 
1

0
(1 − qk)

u
k

s
mκ2D2

q5 κ1( 

χακ1





u

+(1 − k)
s

mκ2D2
q5 mκ2( 

χαmκ2





u

⎡⎣ ⎤⎦dqk⎛⎝ ⎞⎠

1/u

.

(40)

Applying the definition of quantum integral, we get

ω1 � 
1

0
k

s
(1 − qk)

u
0dqk �(1 − q) 

∞

n�0
q

n(s+1) 1 − q
n+1

 
u

,ω2 � 
1

0
(1 − k)

s
(1 − qk)

u
0dqk �(1 − q) 

∞

n�0
q

n 1 − q
n

( 
s 1 − q

n+1
 

u
.

(41)

-is completes the proof. □

8 Journal of Mathematics



Theorem 9. We assume that the conditions of Lemma 1 with
χ ≥ 1 and α ∈R hold. If |mκ2D2

q5|u is a generalized
exponentially (s, m; η)-preinvex function and u> 1 with
p− 1 + u− 1 � 1, then for some fixed s, m ∈ (0, 1], we obtain

mκ2Lq κ1, κ2, m, x( 


≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( B

1/p
q (1, p + 1)

[2]q

× σ1
mκ2D2

q5 κ1( 

χακ1





u

+ σ2
mκ2D2

q5 mκ2( 

χαmκ2





u

⎛⎝ ⎞⎠

1/u

, (42)

where

σ1 �
1

[s + u + 1]q

,

σ2 � (1 − q) 
∞

n�0
q

n(1+u) 1 − q
n

( 
s
.

(43)

Proof. By utilizing conditions of Lemma 1 and the famous
Hölder inequality, we obtain

mκ2Lq κ1, κ2, m, x( 




�
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( dqk





≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
k(1 − qk)

mκ2D
2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 



dqk

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( 

[2]q


1

0
(1 − qk)

p
dqk 

1/p

× 
1

0
k
u mκ2D

2
q5 mκ2 + kη κ1, κ2, m( ϑ κ1, κ2, m( ( 




u

dqk 

1/u

≤
q
2η2 κ1, κ2, m( ϑ2 κ1, κ2, m( B

1/p
q (1, p + 1)

[2]q

× 
1

0
k
u

k
s

mκ2D2
q5 κ1( 

χακ1





u

+(1 − k)
s

mκ2D2
q5 mκ2( 

χαmκ2





u

⎡⎣ ⎤⎦dqk⎛⎝ ⎞⎠

1/u

.

(44)

Applying the definition of quantum integral, we get

σ1 � 
1

0
k

s+u
0dqk �

1
[s + u + 1]q

,

σ2 � 
1

0
k
u

(1 − k)
s
0dqk � (1 − q) 

∞

n�0
q

n(1+u) 1 − q
n

( 
s
.

(45)

-is completes the proof. □

5. Conclusion

In this article, we established the new definition of gener-
alized exponentially (s, m; η)-preinvex functions and proved
a new modified mκ2q-integral identity. Using this new
identity, we have been able to obtain new estimates of the
quantum bounds applying the concept of generalized ex-
ponentially (s, m; η)-preinvex functions. It is worth to
mention here that if we take χ � e, then all of the main results
reduce to the results for exponentially (s, m; η)-preinvex
functions. For further research, we could expand the

inequality-based analysis to other fields, including the in-
equality-based theory, quantum calculus, machine learning,
robotics, weather forecasting, and optimizations.
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(e main concerned target of this article is to define and study some concerned classes of meromorphic function spaces using the
general spherical derivatives.(e general Besov-type classes of meromorphic functions as well as the general normal functions are
considered intensively and both are compared deeply with each other. Specifically, multiple results concerning general mer-
omorphic-type classes as well as non-normal classes are obtained by the help of general spherical derivatives. (e concerned
results are proved by constructing some specific mild conditions on the sequences of points belonging to the concerned
meromorphic-type classes. (e obtained results generalize and improve the corresponding previous results in some concerned
respects. (e concerned proofs and methods are simply presented.

1. Introduction

(e area of complex function spaces is fundamental and
essential in many branches of pure and applied mathematics.
Some decades ago, there have been obvious interests on
meromorphic function classes, from concerned point of view
of their singularities. For various studies on meromorphic
function spaces, we may refer to all citations therein. As a
concerned result, some new general classes of meromorphic
functions shall be introduced by using the general spherical
derivatives, which will be associated to obtain the new classes
of meromorphic function spaces. Fundamental concerned
properties of these concerned aforementioned meromor-
phic-type classes which include generalizations of mero-
morphic Besov spaces as well as normal function classes shall

be studied and intensively discussed. As a concerned con-
sequence of our investigation, some relevant special cases
can be pointed out. Furthermore, to capture some new
generalized results under the current concerned proofs,
some new concepts and definitions are introduced. Let U �

w: |w|< 1{ } be the open unit disk in the complex planeC and
let dm(w) be the usual Euclidean area element on U. (e
symbol M(U) stands for the concerned class of all mero-
morphic functions in U. (e pseudohyperbolic metric be-
tween the pointsw and z is defined by d(z, w) � |φz(w)|. For
0<R< 1, assume that U(a, R) � w ∈ U: d(w, a)< r{ } defines
the concerned pseudohyperbolic disc which is centered
a ∈ U with the specific radius R. For 0< q<∞ and 0< s<∞,
the classes M#(p, q, s) are defined by (see [1] pp.10)

M
#

(p, q, s) � h ∈M(U): sup
a∈U

B
U

h
#

(w) 
p

1 − |w|
2

 
q
1 − φa(w)



2

 
s
dm(w)<∞, (1)
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where h#(w) � (|h′(w)|/(1 + |h(w)|2)) is the usual spher-
ical derivative of h. (emeromorphic M#(q, q − 2, 0) classes

are called the meromorphic Besov classes and denoted by
B#q , for which

B
#
q � h ∈M(U): sup

a∈U
B

U
h
#

(w) 
q

1 − |w|
2

 
q− 2

dm(w)<∞. (2)

For the analytic corresponding classes of Besov spaces,
we cite [2–7]. In this article, the general meromorphic
Besov-type classes always refer to the concerned classes
B#(q, q − 2, s; n). Using the general spherical derivative

(|h(n)(w)|/(1 + |h(w)|n+1)) (see [8]), we give the following
general meromorphic spaces.

Let n ∈ N, 0< q<∞, 0< s<∞. (en, the general mer-
omorphic Besov-type spaces are defined by

B
#

(q, q − 2, s; n) � h ∈M(U): sup
a∈U


U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φa(w)



2

 
s
dm(w)<∞ , (3)

where the concerned weight function is (1 − |w|2)q− 2

(1 − |φa(w)|2)s and w ∈ U. Here, φa(w) denotes the usual
Möbius transformation φa(w) � ((a − w)/(1 − aw)). Also,

h
(n)

(w) �
dn

h(w)

dw
n , that is,wehave “n” times derivatives, n ∈ N.

(4)

(e concerned meromorphic counterpart of the Bloch-
type space is the class of all concerned normal functions N
(see [1, 9]); this class of meromorphic functions can be
extended to the following concerned class.

Definition 1. Assume that h is a meromorphic function in U.
When

‖h‖Nn
� sup

w∈U
1 − |w|

2
 

h
(n)

(w)




1 +|h(w)|
n+1 <∞, (5)

h ∈Nn of concerned normal functions.

Definition 2. Suppose that the function h stands for a
concerned meromorphic function in U. (e concerned
sequence of points am (|am|⟶ 1) in U is called a
q(N,n)-sequence if

lim
m⟶∞

h
(n)

(w)




1 +|h(w)|
n+1 1 − am



2

  � +∞. (6)

In Definitions 2, by letting n � 1, we obtain the class of all
usual normal functions N (see [1, 9]). For more interesting
various studies on different meromorphic function classes,
we refer to [10–15] and others. (e following definitions can
be introduced.

Definition 3. Assume that h is a meromorphic function in U.
For 2< q<∞ and 0< s<∞, the concerned sequence of
points am (|am|⟶ 1) in U is called a b(q,n)-sequence if

lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞. (7)

2. Families of b(q,n)- and q(N,n)-Type Sequences

Theorem 1. Let h ∈M(U). Suppose that am  defines the
q(N,n)− type sequence, thus any sequence of points cm  in U,
such that d(am, cm)⟶ 0 is a b(q,n)-type sequence for all
values of q with 2< q<∞.

Proof. In view of [16], we can find two concerned sequences
cm  ⊂ U and dm  ⊂ R+, with d(am, cm)⟶ 0 with

dm

1 − cm



2

 
⟶ 0, (8)

where the concerned sequence of functions
hm(t)  � h(bm + dmt)  has uniformly converging type on
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each concerned compact subset of C to a concerned non-
constant meromorphic function G(t). (us,

sup
cm∈U

B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φcm
(w)




2

 
s

dm(w)

≥B
U cm,(1/e)( )

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φcm
(w)




2

 
s

dm(w)

≥B
U(0,r)

h(n)
m (t)




1 + hm(t)



n+1

⎡⎢⎣ ⎤⎥⎦

q

1 − cm + dmt



2

 
q− 2

1 − φcm
cm + dmt( 




2

 
s

d2− q
m dm(t)

� B
U(0,r)

h(n)
m (t)




1 + hm(t)



n+1

⎡⎢⎣ ⎤⎥⎦

q 1 − cm + dmt



2

dm

⎛⎝ ⎞⎠

q− 2

×
cm − cm + dmt( 

1 − cm cm + dmt( 





2

 

s

dm(t)

� B
U(0,r)

h(n)
m (t)




1 + hm(t)



n+1

⎡⎢⎣ ⎤⎥⎦

q 1 − cm + dmt



2

dm

⎛⎝ ⎞⎠

q− 2

× 1 −
1

1 − cm



2

 /dmt  − cm





2

⎛⎝ ⎞⎠

s

dm(t).

(9)

Using the uniform convergence techniques, we deduce
that

B
U(0,r)

h(n)
m (t)




1+ hm(t)



n+1

⎡⎢⎣ ⎤⎥⎦

q

dm(t)⟶B
U(0,r)

G
#
n (t) 

q

dm(t),

(10)

where the last defined integral is positive, since G(t) is a
concerned nonconstant meromorphic function. Further, by
(6), when m⟶∞, we conclude that

1 −
1

1 − cm



2

 /dmt  − cm





2

⟶ 1. (11)

(erefore, we can obtain that

B
U(0,r)

h(n)
m (t)




1 + hm(t)



n+1

⎡⎢⎣ ⎤⎥⎦

q 1 − am + dmt



2

dm

⎛⎝ ⎞⎠

q− 2

1 −
1

1 − am



2

 /dmt  − am





2

⎛⎝ ⎞⎠

s

dm(t)⟶∞. (12)

Hence, when 2< q<∞, we have that

B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φcm
(w)




2

 
s

dm(w)⟶∞,

(13)

(us, cm  ∈ U is a b(q,n)-type sequence for all q, with
2< q<∞. (e proof of (eorem 1 is completely
finished. □

Theorem 2. We can find a concerned non-normal function h

and a concerned sequence am  in U which is a b(q,n)-sequence
for all q, with 2< q<∞, whereas am  is not a
q(N,n)-sequence.

Proof. Assume that the function h(w) � exp(i/(1 − w)) is a
non-normal function where i �

���
− 1

√
. Considering the

concerned sequence cm  � m2/(1 + m2) , after simple
computation, we deduce that

lim
m⟶∞

1 − cm



2

 
h

(n)
cm( 





1 + h cm( 



n+1 � +∞. (14)

Applying (eorem 1 for any concerned sequence of
specific points am  in U, with d(am, cm)⟶ 0, we get

lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

· 1 − φam
(w)




2

 
s

dm(w) � +∞,

(15)

for all q, with 2< q<∞. Let am  � (m2/(1 + m2)) −

(i/(m + m3))}, and note that d(am, cm)⟶ 0. But

lim
m⟶∞

1 − am



2

 
h

(n)
am( 





1 + h mm( 



n+1 � 0. (16)

Hence, the concerned sequence am  is our needed se-
quence of points. □
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Theorem 3. Let h ∈M(U) and suppose that 2< q1 < q<∞
and 0< s1 < s<∞. For a concerned sequence of points am  in
the disc U, when

lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞, (17)

lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q1

1 − |w|
2

 
q1− 2

1 − φam
(w)




2

 
s1
dm(w) � +∞. (18)

Proof. When condition (17) holds, then for 2< q1 < q<∞
and 0< s1 < s<∞, using the known inequality of Hölder, we
conclude that

B
U

h(n)(w)




1 +|h(w)|n+1 

q1

1 − |w|
2

 
q1− 2

1 − φam
(w)




2

 
s1
dm(w)

≤ B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) 

q1/q( )

× B
U

1 − φam
(w)




2

 
s1− sq1/q( )( ) q/ q− q1( )( )

1 − |w|
2

 
− 2
dm(w) 

1− q1/q( )( )

� B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) 

q1/q( )

× B
U

1 − |w|
2

 
s1q− sq1( )/ q− q1( )− 2( )dm(w) 

1− q1/q( )( )
.

(19)

It is obvious to see that ((s1q − sq1)/(q − q1) − 2) �

(η − 2)> − 1, for η> 1, and we obtain

B
U

1 − |w|
2

 
s1q− sq1( )/ q− q1( )− 2( )dm(w) � B

U
1 − |w|

2
 

(η− 2)
dm(w)<C1 <∞, (20)

where C1 > 0. (erefore, B#(q, q − 2, s; n) ⊂
B#(q1, q1 − 2, s1; n).

(us, the following inequality can be followed:

 
U

h(n)(w)




1 +|h(w)|n+1 

q1

1 − |w|
2

 
q1− 2

1 − φam
(w)




2

 
s1
dm(w)

≥  
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞.

(21)
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(en, condition (18) must be verified. (us, the proof is
established completely. □

Remark 1. Using the specific condition (17), we deduce that
the function h not in the classes B#(q, q − 2, s; n), this be-
cause the concerned meromorphic classes B#(q, q − 2, s; n)

have a specific nesting property and the meromorphic
function h is not belong to the meromorphic classes

B#(q1, q1 − 2, s1) when 2< q1 < q<∞ and 0< s1 < s<∞.
Nevertheless, (eorem 3 shows further details on this case
which clearing that the similar concerned sequence of points
am , for which B#(q, q − 2, s; n)-condition can be excluded,
also it excludes the B#(q1, q1 − 2, s1; n)− condition.

Remark 2. From the concerned proof of (eorem 3, we can
clearly show that for a fixed ρ0, 0< ρ0 < 1 and ρ> 0, when

lim
m⟶∞

B
U am,ρ0( )

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞. (22)

(us, we can find a concerned sequence of points cm  in
Δn
ρ � w: (1 − |φa(w)|2)> ρ , for which

lim
m⟶∞

1 − cm



2

 
h

(n)
cm( 





1 + h cm( 



n+1 � +∞. (23)

Theorem 4. Let h ∈M(U). For a concerned sequence of
points am  ⊂ U, when

lim
m⟶∞

1 − am



2

 
h

(n)
am( 





1 + h am( 



n+1 � +∞, (24)

for the same concerned sequence am , we have

lim
m⟶∞

B
U am,ρ( )

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞, (25)

for all values of q, s where 2< q<∞ and 0< s<∞ as well as
ρ, with 0< ρ< 1.

Proof. Assume that condition (25) holds. (en, we have ρ0,
0< ρ0 < 1, such that

lim
m⟶∞

supB
U am,ρ0( )

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � K< +∞. (26)

(us, we can find a concerned subsequence amk
  of

am , for which

B
U amk

,ρ0 

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φamk

(w)





2
 

s

dm(w)≤K + 1, (27)

this can be verfied for sufficiently large k. Let ρ1, 0< ρ1 < ρ0,
U(amk

, ρ1) � w ∈ U: |φamk

(w)|< ρ1 , which verifies that

K + 1

1 − ρ2 
s+q− 2 <

π
2

. (28)

(is implies that

B
U amk

,ρ1 

h(n)(w)




1 +|h(w)|n+1 

q

dm(w)≤
K + 1

1 − ρ21 
s+q− 2 <

π
2

,

(29)

where (1 − |φamk

(w)|2)≥ (1 − ρ21). Applying the theorem of
Dufresngy (see [15]), we deduce that

1 − amk




2

 
h

(n)
amk

 




1 + h amk
 




n+1 ≤

1
ρ1

, (30)

and this is a contradiction of the concerned assumption.
(erefore, the concerned proof of(eorem 4 is finished. □

Theorem 5. Suppose that h ∈M(U). For q, s ∈ (0,∞), we
can find a concerned sequence of points am  ⊂ U, for which
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lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞. (31)

Hence, for any concerned sequence of points cm  in U

such that d(am, cm)⟶ 0, we have

lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φcm
(w)




2

 dm(w) � +∞. (32)

Proof. Let K1 and K2 be two specific positive constants
satisfying K2 <K1. Suppose that

U
m
K1

� w: 1 − φam
(w)




2

 >K1  and

U
m
K2

� w: 1 − φam
(w)




2

 >K2 .

(33)

(us, when w ∈ Um
K1

and w ∈ U\Um
K2
, we have that

C(1 − |φan
(w)|2)≤ (1 − |φan

(w)|2 for some specific constant
C> 0. (us, for all m, we conclude that

B
U\Um

M2

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φcm
(z)




2

 
s

dm(w)

≥C
sB

U\Um
K2

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w).

(34)

(is inequality holds for any concerned sequence of
points cm  in U with d(am, cm)⟶ 0. When

lim
m⟶∞

supB
U\Um

K2

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞. (35)

(erefore, using (10), we obtain

lim
m⟶∞

supB
U\Um

K2

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φcm
(w)




2

 
s

dm(w) � +∞, (36)

If

lim
m⟶∞

supB
Um

K2

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞. (37)

(us, we can consider two cases. □
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Case 1. In this case, we can find a concerned sequence of
points cm  in Um

K2
, such that d(am, cm)⟶ 0, for which

lim
m⟶∞

1 − cm



2

 
h

(n)
cm( 





1 + h cm( 



n+1 � +∞, (38)

or we can consider the following case.

Case 2. We can find R0, 0<R0 < e− K2 ; also, there exists λ> 0,
for which

1 − |w|
2

 
h

(n)
(w)





1 +|h(w)|
n+1 ≤ λ, (39)

where we consider all w ∈ U(am, R0). If Case 1 is verified, by
(eorem 1, for the aforementioned sequence cm  such that
d(am, cm)⟶ 0, we deduce that

lim
m⟶∞

supB
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φcm
(w)




2

 
s

dm(w) � +∞. (40)

(is is because d(am, cm)⟶ 0. Also, when Case 2
holds, using the same concerned conclusions for the con-
cerned weight functions, we obtain that necessarily

condition for any concerned sequence of points cn  such
that d(am, cm)⟶ 0,

lim
m⟶∞

supB
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φcm
(w)




2

 
s

dm(w) � +∞. (41)

(is is the end of the concerned proof.
Now we are dealing with the following interesting

question:

Assume that 2< q<∞ for any concerned sequence am 

and assume also that

lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞. (42)

Is the following equation correct?

lim
m⟶∞

supB
U

h(n)(w)




1 +|h(w)|n+1 

q1

1 − |w|
2

 
q1− 2

1 − φam
(w)




2

 
s

dm(w) � +∞, (43)

for q1 with q< q1.
We give the answer of this important question by in-

troducing (eorem 6 with its concerned proof.

Definition 4. Let am  be any concerned sequence of points
in U; then, am  is said to be a m(q,n)− sequence, when

lim
m⟶∞

supB
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − φam
(w)




2

 
q

dm(w) � +∞. (44)

Theorem 6. Let q ∈ (2,∞) and assume that

lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞. (45)
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When the concerned sequence of points am  in U is not
a concerned m(q,n)− sequence, for any q1 with q< q1, we
conclude that

lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q1

1 − |w|
2

 
q1− 2

1 − φam
(w)




2

 
s

dm(w) � +∞. (46)

Proof. As in [1], we can deduce thatNn ∩B#q,q− 2,;n. Also, we
have

(i) B#(q, q − 2, s; n) ⊂Nn for all q, with 2< q<∞ and
0< s< 1.

(ii) For all values of q, q1, 2< q<∞, 0< s< 1 with
q1 + s> 1, we have that

∪ 2<q<q1B
#

(q, q − 2, s; n)⊊B
#

q1, q1 − 2, s; n( . (47)
□

(erefore, it is obvious to get that

lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q1

1 − |w|
2

 
q1− 2

1 − φam
(w)




2

 
s

dm(w) � +∞. (48)

Remark 3. (e recent developments of fractional calculus as
well as its applications are more essential to complex function
spaces with the specific arbitrary fractional order derivatives.
For some recent interesting studies on the subject of fractional
calculus, we can here refer to [17–19] and others. To the best of
our knowledge, a few number of manuscripts researched some
certain classes of analytic function spaces by the help of general
fractional derivatives (see [20]). For further research work, the
following specific interesting question can be considered:

How one can define and study the Besov spaces of
general meromorphic functions by using the general frac-
tional derivatives?

3. Conclusions

Certain concerned weighted classes of meromorphic func-
tion spaces using the general spherical derivatives are
studied and discussed in this article. (e general Besov-type
classes of meromorphic functions as well as the general
normal functions are considered intensively and both are
compared deeply with each other. For a concerned non-
normal function h, the concerned families of points am  and
cm , for which

lim
m⟶∞

1 − am



2

 
h

(n)
am( 





1 + h am( 



n+1 � +∞, n ∈ N,

lim
m⟶∞

B
U

h(n)(w)




1 +|h(w)|n+1 

q

1 − |w|
2

 
q− 2

1 − φam
(w)




2

 
s

dm(w) � +∞

(49)

are introduced and discussed. Several connections between
families (sequences) of b(q,n) and q(N,n) type are established.
(e obtained results improve, extend, and generalize nu-
merous results in [21–23].

Remark 4. Quite recently there are some important en-
joyable research studies on hyperbolic function classes (see
[24, 25]). For more interesting research, how we can con-
struct some workable conditions on some hyperbolic-type

sequences of points that make guarantee to belong to some
specific hyperbolic-type classes?
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A fractional integral operator can preserve an image edge and texture details as a denoising filter. Recently, a newly defined
fractional-order integral, Atangana–Baleanu derivatives (ABC), has been used successfully in image denoising. However, de-
termining the appropriate order requires numerous experiments, and different image regions using the same order may cause too
much smoothing or insufficient denoising. -us, we propose an adaptive fractional integral operator based on the Atanga-
na–Baleanu derivatives. Edge intensity, global entropy, local entropy, and local variance weights are used to construct an adaptive
order function that can adapt to changes in different regions of an image.-en, we use the adaptive order function to improve the
masks based on the Grumwald–Letnikov scheme (GL_ABC) and Toufik–Atangana scheme (TA_ABC), namely, Ada_GL_ABC
and Ada_TA_ABC, respectively. Finally, multiple evaluation indicators are used to assess the proposed masks. -e experimental
results demonstrate that the proposed adaptive operator can better preserve texture details when denoising than other similar
operators. Furthermore, the image processed by the Ada_TA_ABC operator has less noise and more detail, which means the
proposed adaptive function has universality.

1. Introduction

-e theory of fractional-order derivatives has been applied in
many fields, such as physics, fluid mechanics, physiology,
medical science, and epidemic diseases [1–4]. With the de-
velopment of information science, fractional operators have
gained incomparable advantages over integral operators in
many fields. A fractional derivative recurrent neural network
can effectively improve estimation accuracy in parameter
identification [5]. Complex behaviors in fractional-order fi-
nancial systems can provide theoretical basis for the gov-
ernment [6]. Fractional-order control systems perform more
accurately and elegantly than traditional systems [7]. In signal
processing, the characteristics of fractional differential op-
erators, such as “nonlocality,” “memorability,” and “weak
derivatives,” are also applied [8–10]. -ese properties can
improve the high frequency of an image while preserving the
performance of the low and medium frequencies. In other
words, methods based on fractional calculus for enhanced

images can enhance the texture details while preserving the
texture details of the smooth region in images [11, 12].
-erefore, many scholars are engaged in research on the
application of fractional operators in image enhancement and
denoising. -e most representative scholar is Y.F. Pu, who,
with his team, constructed image enhancement and denoising
operators by fractional calculus [10, 13]. Based on the
Grunwald–Letnikov (GL) approximation, a medical image
enhancement method was proposed by Guan et al. [14]. An
adaptive image enhancement operator based on fractional-
differential and image gradient feature was proposed by Lan
[15]. Arian Azarang inferred different structure mask to
image fusion [16]. An adaptive fractional-order integral filter
was presented for echocardiographic image denoising [17].

-e basic theory of abovementioned fractional operators
is mainly the definitions of GL and Riemann–Liouville (RL).
-e Caputo derivative is another definition of fractional
order that is widely studied and applied; it includes the
numerical solutions of fractional equations and the
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properties of systems [18, 19]. New fractional derivatives and
applications based on the frame of the Caputo derivative
have received much attention from experts. -e existence
and stability of Belouso–Zhabotinskii reaction systems with
Atangana–Baleanu fractional-order derivatives are dis-
cussed in [20]. In [21], the locally and globally asymptotically
stable of symbiosis system modelling by the Atanga-
na–Baleanu derivative are analyzed. With the development
of research, fractional-differential operators with nonlocal
and nonsingular kernels are used to image filters [22–24].
Furthermore, an AB-fractional differential mask based on
the Gaussian kernel has been introduced to detect blood
vessels in retinal images [25]. Behzad Ghanbari and Abdon
Atangana designed an ABC-fractional derivatives mask that
is used for image denoising. -e ABC-fractional derivatives
mask is computationally efficient and has excellent per-
formance in the denoising of nosy images [26]. In the
process of denoising, many experiments are required to
determine the order of the mask. Moreover, because using a
fixed order may lead to excess or deficiency for denoising
effect, an adaptive fractional operator based on Atanga-
na–Baleanu derivatives is proposed in this paper, which is
called Ada_GL_ABC.We consider the gradient of the image,
local entropy, global entropy, and local variance weights to
construct a function for solving the adaptive order. -e
starting point of this idea is removing the image noise while
preserving the edge and texture details of the image as much
as possible. -e adaptive function proposed by us is different
from that of other studies. We consider both global and local
information, the adaptive function contains more com-
prehensive information when determining the order, and
the order used for denoising is more appropriate. And, the
adaptive function designed by us has a certain generality.
-e function can be applied not only to GL_ABC mask but
also to TA_ABC mask, which is rarely seen in the previous
literature.

-e remainder of this paper is organized as follows: the
basic definitions of fractional derivatives and the structure of
fractional-masks are introduced in Section 2. In Section 3,
the function of the adaptive fractional-order integral op-
erator based on Atangana–Baleanu derivatives is described.
-e performance of the proposed adaptive operator is
discussed in Section 4. In Section 5, the conclusions are
elaborated.

2. Preliminaries

2.1. Definitions of the Fractional Derivatives. Many basic
definitions of fractional derivatives exist [27]. Recently, the

Mittag–Leffler function was introduced to compute frac-
tional derivatives. -is new definition is named the Atan-
gana–Baleanu fractional derivative; it is based on the
definition of Liouville–Caputo (ABC) and can be defined as
follows [28]:

ABC
0 D

c

t f(t) �
A(c)

1 − c


t

0
Ec − β

(t − τ)
c

1 − c
  _f(τ)dτ, 0< c≤ 1.

(1)

-e Atangana–Baleanu fractional integral with order β
can be depicted as

ABC
0 J

c

t f(t) �
1 − c

A(c)
f(t)

+
c

Γ(c)A(c)


T

0
f(τ)(t − τ)

c− 1dτ, 0< c≤ 1,

(2)

where A(∗ ) is a normalization function, and this function
satisfies A(0)�A(1)� 1. It can be described by

A(c) � 1 − c +
c

Γ(c)
. (3)

-e ABC derivative inherits the memory of the Mit-
tag–Leffler function, which, with index c, is denoted as

Ec(t) � 
∞

k�0

t
k

Γ(ck + 1)
, c> 0. (4)

-eGL definition is one of the best-known definitions of
discrete fractional calculus and is widely applied to image
processing. Details of the GL definition are expounded in
Definition 1.

Definition 1. -e GL definition of fractional calculus for-
mula with α-order of [29] is described as

0D
α
bf(x) � lim

h⟶0

1
h
α 

[(b− a)/h]

j�0
(− 1)

j
β

j

⎛⎝ ⎞⎠f(x − jh), (5)

where h is the step, [∗ ] represents the rounded operation,
β
j

  � ((Γ(β + 1))/(j!Γ(β − j + 1))), and Γ(β) is Gamma

function.
Equation (5) can be further decomposed as follows:

D
α
GLf(x) � lim

h⟶0

1
h
α f(t) +(− α)f(t − h) +

(α)(α + 1)

2
f(t − h) + · · · +

Γ(α + 1)

k!Γ(α − N + 1)
f(t − jh) . (6)

We know that equation (6) is the fractional derivative
operator with α> 0, and it takes a part of the fractional

integral operator with α< 0. When α> 0, we set c � − α, and
the integral GL of order c using equation (6) is described as
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J
c

GLf(x) ≈
1
Γ(c)


t

0

f(τ)

(t − τ)
1− c

dτ � lim
h⟶0

1
h

− c f(t) + cf(t − h) +
(− c)(− c + 1)

2
f(t − h) + · · · +

Γ(− c + 1)

k!Γ(− c − N + 1)
f(t − jh) .

(7)

From the above discussion, the ABC-fractional integral
can be described by equation (7):

ABC
0 J

β
t (t) �

1 − c

A(c)
f(t) +

c

Γ(c)A(c)


T

0
f(τ)(t − τ)

c− 1dτ

≈
1 − c

A(c)
f(t) +

c

A(c)
h

− c
f(t) + cf(t − h) +

(− c)(− c + 1)

2
f(t − h) + · · · .

(8)

In [26], the newly defined fractional order integral is
mentioned. It can be approximated to the following as t � tn:

ABC
0 J

c

t tn(  �
1 − c

A(c)
f(t) +

c

Γ(c)A(c)


tn

0
f(τ)(t − τ)

c− 1dτ

�
1 − c

A(c)
f(t) +

c

Γ(c)A(c)


N

k�0


tk+1

tk

f(τ)(t − τ)
c− 1dτ.

(9)

-e function f(τ) can be described by a two-step
Lagrange polynomial interpolation as follows:

f(τ) �
f tk( 

h
τ − tk− 1(  +

f tk− 1( 

h
τ − tk( . (10)

Using equation (10), equation (9) can be discretized as
follows:

ABC
0 J

c

t tn(  �
(1 − c)Γ(c + 2) + ch

c
(β + 2)

A(c)Γ(c + 2)
 f tn(  +

ch
c

A(c)

− 2∗ c +(c + 3)2c
− 4

Γ(c + 2)
  f tn− 1( 

+
ch

c
− 2c+1

c +(c + 4)3c
+ a − 6∗ 2c

+ 2 

A(c)Γ(c + 2)
⎡⎣ ⎤⎦f tn− 2(  + · · · .

(11)

2.2. 0e Mask Based on Grunwald–Letnikov (GL_ABC) and
Toufik–Atangana (TA-ABC). In an image, the distance
between two pixels can be assumed to be 1. -is distance is

the same as h in equation (7).-erefore, the GL integral with
fractional-order in the x and y directions [30] are described
by equations (12) and (13):

x
J

c

GLf(x, y) ≈
1

A(c)
f(x, y) +

c
2

A(c)
f(x − 1, y) +

c
3

− c
2

2A(c)
f(x − 2, y) + · · · , ( 0< c≤ 1), (12)

y
J

c

GLf(x, y) ≈
1

A(c)
f(x, y) +

c
2

A(c)
f(x, y − 1) +

c
3

− c
2

2A(c)
f(x, y − 2) + · · · , (0< c≤ 1). (13)
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-e TA_ABC integral with fractional-order [31] in the x
and y directions is presented as equations (14) and (15):

x
J

c

TA− ABCf(x, y) ≈
(1 − c)Γ(c + 2) + c(c + 2)

A(c)Γ(c + 2)
 f(x, y)

+
ch

c

A(c)

− 2∗ c +(c + 3)2c
− 4

Γ(c + 2)
  f(x − 1, y) +

c − 2c+1
c +(c + 4)3c

+ a − 6∗ 2c
+ 2 

A(c)Γ(c + 2)
⎡⎣ ⎤⎦f(x − 2, y),

(14)

y
J

c

TA− ABCf(x, y) ≈
(1 − c)Γ(c + 2) + c(c + 2)

A(c)Γ(c + 2)
 f(x, y)

+
ch

c

A(c)

− 2∗ c +(c + 3)2c
− 4

Γ(c + 2)
  f(x, y − 1) +

c − 2c+1
c +(c + 4)3c

+ a − 6∗ 2c
+ 2 

A(c)Γ(c + 2)
⎡⎣ ⎤⎦f(x, y − 2).

(15)

with equations (12)–(15), the 5∗ 5 fractional integral mask
can be constructed as follows:

-is 5∗ 5 mask is used in image denoising as the filter.
-e mask is rotation-invariant mainly because it is obtained
by superimposition of fractional integral in eight directions.
-us, we can use different fractional-order integrals for
airspace filtering to denoise images. -erefore, the coeffi-
cients of GL_ABC and TA_ABC mask are described by
equations (16) and (17), respectively (Table 1).

Η0 �
1

A(c)
,

Η1 �
c
2

A(c)
,

Η2 �
c
3

− c
2

2A(β)
,

(16)

Η0 �
(1 − c)Γ(c + 2) + c(c + 2)

A(c)Γ(c + 2)
,

Η1 �
c

A(c)

− 2c +(c + 3)2c
− 4

Γ(c + 2)
 ,

Η2 �
c − 2c+1

c +(c + 4)3c
+ a − 6∗ 2c

+ 2 

A(c)Γ(c + 2)
.

(17)

3. Adaptive Fractional Operators Based on
Atangana–Baleanu Derivatives

For an image with noise of different intensities and in
different regions, one fixed order in the fractional integral
operator is insufficient to achieve a good denoising effect.
-erefore, this paper proposes an adaptive fractional op-
erator for image denoising. -e edge intensity coefficient,
image entropy, local entropy, and local variance weight are
used to construct the expression of the adaptive fractional

order. -e image gradient represents the image edge in-
tensity information. In this paper, -e Kirsch algorithm is
applied to calculate the image edge intensity. However, the
Kirsch algorithm can suppress image noise [32].

G[I(x, y)] � max 1,max 5rk − 3sk


, k � 0, 1, . . . , 7  .

(18)

Here, rk � Wk + Wk− (π/4) + Wk− (π/2); sk � Wk− (3π/4)+

Wk− π + Wk− (5π/4) + Wk− (3π/2) + Wk− (7π/4). Moreover, when
k � (0, (π/4), (π/2), (3π/4), π, (5π/4), (3π/2), (7π/4)), the
eight directions of masks are depicted as follows:

W0 �

− 3 − 3 5

− 3 0 5

− 3 − 3 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

W(π/4) �

− 3 5 5

− 3 0 5

− 3 − 3 − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

W(π/2) �

5 5 5

− 3 0 − 3

− 3 − 3 − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

W(3π/4) �

5 5 − 3

5 0 − 3

− 3 − 3 − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Wπ �

5 − 3 − 3

5 0 − 3

5 − 3 − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

W(5π/4) �

− 3 − 3 − 3

5 0 − 3

5 5 − 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
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W(3π/2) �

− 3 − 3 − 3

− 3 0 − 3

5 5 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

W(7π/4) �

− 3 − 3 − 3

− 3 0 5

− 3 5 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(19)

Image entropy determines how much information an
image contains. -e smaller the entropy is, the more in-
formation it contains [31].

El � − 

255

L�1
P Ij,k log2 P Ij,k , (20)

P is the probability that an image pixel will appear. -e local
variance weight can not only measure the local gray change
of an image but also reflect the importance of the image local
change rate in the whole image. -e larger the difference in
partial pixel values is, the greater the local variance weight.
Conversely, the smaller the changes are, the smaller the value
of the local variance weight [33].

St(h) �
1

Num


Num

i�1

σ2I(h′)
σ2I(h)

, (21)

where Num represents the number of image pixels, I is the
image to be processed, h is the local pixel, h’ is the local pixel
of the current window, and σ2I(h′) is the variance in the pixel
value in the current window.

-e function established in this paper takes the global
entropy of the image as a measure of the overall image
characteristics. -e order value should be small to maintain
the texture details. We consider taking the product of three
measures of frequency information, to ensure that the
fractional-order is inversely proportional to high frequency
information such as edges and texture details. -e adaptive
order function is as follows:

a dav � Et ∗ ε − G∗ St∗El, (22)

where Et represents the entropy of the whole image, ε is the
coefficient of Et and take 0.22 in the experiment, and
G∗ St∗El is the product of the local information entropy,
local gradient, and local variance. -en, the entropy of the
global image is subtracted from the product. -e results are
small in the region of the edge and texture and high in the
region of smoothness. According to this equation, the orders

of different local textures of the image vary. As shown in
Figure 1, the order used in the edge and texture details is
relatively small, while the order used in the smooth area is
larger. In this way, the obtained orders are reduced in the
edge and texture detail region and enhanced in the smooth
region so that the edge and texture detail information can be
preserved as much as possible while denoising.

4. Numerical Examples

In this paper, the peak signal-to-noise ratio (PSNR), entropy,
and structural similarity index measurement (SSIM) are
used to assess the performance of the proposed operator.-e
PSNR is the most popular assessment criterion to evaluate
the performance of denoising algorithms. In general, the
value of the PSNR is higher when the image quality is better.
-e PSNR is defined as follows [34]:

PSNR � 10lg
2552

MSE
, (23)

MSE �
1

M∗N


M

j�1


N

k�1
[I′(j, k) − I(j, k)]

2
, (24)

whereM andN are the size dimensions of the original image.
I(j, k) and I′(j, k) are the original and denoised images,
respectively. -e SSIM is also a well-known criterion among
image quality assessment metrics [35] defined as

SSIM �
2φpφq + ρ1  2σpq + ρ2 

φ2
p + φ2

q + ρ1  σ2p + σ2b + ρ2 
, (25)

where p and q represent different images; φp and φq rep-
resent the mean of images p and q; σ2p and σ2b represent the
variances of p and q, respectively; σpq is the covariance of p
and q; and ρ1 and ρ2 are constants added to maintain sta-
bility. -e value of the SSIM represents how similar two
images are. When the SSIM value is higher, the pixel values
of the two images are closer. -e range of this index is [0, 1].
If the value of this index is closer to one, the two images are
more approximate.

In the experiments, we employed five grayscale images to
test the proposed mask: “Lena,” “Elaine,” “Goldhill,”
“Peppers,” and “Cameraman,” with 512∗ 512 pixels each.
We use the proposed adaptive function to improve the
TA_ABC and GL_ABC mask. -e improved mask “Ada_-
TA_ABC” and “Ada_GL_ABC” compare the “GL_ABC
mask” [31], “TA_ABCmask” [30], and the method proposed
in [36]. -e orders c in “GL_ABC mask” and “TA_ABC
mask” are from literature [30]. In the experiments, we added
noise with different variances σ ∈ 15, 20, 25{ } to the test
images, respectively. Figures 2–16 show the results for image
denoising by the different methods. Tables 2–7 show the
PSNR, SSIM and entropy of these test images for the dif-
ferent algorithms. From Figures 1–16, we find that the test
images lost image details when TA_ABC mask was applied.
-e method proposed by [36] has a poor denoising ability.
-e Ada_TA_ABC mask performs better than the TA_ABC
mask, the order of which is determined by our proposed

Table 1: 5∗5 mask.
H2 0 H2 0 H2
0 H1 H1 H1 0
H2 H1 8 H0 H1 H2
0 H1 H1 H1 0
H2 0 H2 0 H2
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method, as depicted by equation (15). -e test images
processed by the GL_ABC mask and Ada_GL_ABC mask
contain less noise and more details. -e Ada_GL_ABCmask
is better than the GL_ABC mask. From another perspective,
this result shows that the adaptive function proposed by us
has certain universality. -is result is verified in Tables 2–6.
-e PNSR of images proposed by the Ada_GL_ABC mask is

higher than that of the other methods. -is outcome means
that the quality of images processed by the Ada_GL_ABC
mask is better than that delivered by other methods.
Meanwhile, the images processed by the Ada_GL_ABC
mask are closer to the original images. -is conclusion can
be confirmed by the higher SSIM, which indicates the
similarity between two images. Additionally, we calculated

(a) (b)

Figure 1: A map of the adaptive order. (a) Lena. (b) Peppers.

(a) (b) (c)

(d) (e) (f )

Figure 2: Comparison of different operators on “Lena” under Gaussian noise with variance σ � 15.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Comparison of different operators on “Lena” under Gaussian noise with variance σ � 20.

(a) (b) (c)

(d) (e) (f )

Figure 4: Comparison of different operators on “Lena” under Gaussian noise with variance σ � 25.
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(a) (b) (c)

(d) (e) (f )

Figure 5: Comparison of different operators on “Elaine” under Gaussian noise with variance σ � 15.

(a) (b) (c)

(d) (e) (f )

Figure 6: Comparison of different operators on “Elaine” under Gaussian noise with variance σ � 20.
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(a) (b) (c)

(d) (e) (f )

Figure 7: Comparison of different operators on “Elaine” under Gaussian noise with variance σ � 25.

(a) (b) (c)

(d) (e) (f )

Figure 8: Comparison of different operators on “Goldhill” under Gaussian noise with variance σ � 15.
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(a) (b) (c)

(d) (e) (f )

Figure 9: Comparison of different operators on “Goldhill” under Gaussian noise with variance σ � 20.

(a) (b) (c)

(d) (e) (f )

Figure 10: Comparison of different operators on “Goldhill” under Gaussian noise with variance σ � 25.
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(a) (b) (c)

(d) (e) (f )

Figure 11: Comparison of different operators on “Pepper” under Gaussian noise with variance σ � 15.

(a) (b) (c)

(d) (e) (f)

Figure 12: Comparison of different operators on “Pepper” under Gaussian noise with variance σ � 20.
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(a) (b) (c)

(d) (e) (f )

Figure 13: Comparison of different operators on “Pepper” under Gaussian noise with variance σ � 25.

(a) (b) (c)

(d) (e) (f )

Figure 14: Comparison of different operators on “Cameraman” under Gaussian noise with variance σ � 15.
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(a) (b) (c)

(d) (e) (f )

Figure 15: Comparison of different operators on “Cameraman” under Gaussian noise with variance σ � 20.

(a) (b) (c)

(d) (e) (f )

Figure 16: Comparison of different operators on “Cameraman” under Gaussian noise with variance σ � 25. (a) Noisy image, (b) TA_ABC,
(c) GL_ABC, (d) Method in [38], (e) Ada_TA_ABC, (f ) Ada_GL_ABC.
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Table 2: Comparison of the effectiveness of different fractional operators for the Lena image.

Noisy image Method in [36] TA_ABC Ada_TA_ABC GL_ABC Ada_GL_ABC

σ � 15 PSNR 24.6047 25.8887 26.6857 28.3095 30.6827 31.2764
SSIM 0.4466 0.498 0.6325 0.7147 0.7498 0.8126

σ � 20 PSNR 22.1006 23.6471 26.0032 27.6077 29.2995 29.9716
SSIM 0.3392 0.3953 0.556 0.6524 0.6924 0.7482

σ � 25 PSNR 20.1839 22.0718 25.3131 27.0041 28.3211 28.7544
SSIM 0.2682 0.3296 0.4895 0.5979 0.6516 0.6845

Table 3: Comparison of the effectiveness of different fractional operators for the Elaine image.

Noisy image Method in [38] TA_ABC Ada_TA GL_ABC Ada_GL_ABC

σ � 15 PSNR 24.602 25.8 29.1284 30.5185 31.5693 32.5138
SSIM 0.4239 0.4754 0.6484 0.7174 0.7575 0.8033

σ � 20 PSNR 22.1297 23.4999 28.0504 29.5162 30.4062 30.8692
SSIM 0.3101 0.363 0.574 0.66 0.714 0.739

σ � 25 PSNR 20.1507 21.7676 26.9874 28.542 28.8114 29.3865
SSIM 0.233 0.2867 0.5048 0.6024 0.6385 0.6719

Table 4: Comparison of the effectiveness of different fractional operators for the Goldhill image.

Noisy image Method in [38] TA_ABC Ada_TA_ABC GL_ABC Ada_GL_ABC

σ � 15 PSNR 24.6053 25.5984 25.8959 26.7892 29.265 29.8402
SSIM 0.5246 0.562 0.5339 0.6021 0.7312 0.7831

σ � 20 PSNR 22.0996 23.2623 25.2557 26.3092 28.5353 28.9227
SSIM 0.4058 0.449 0.4725 0.5579 0.7035 0.7343

σ � 25 PSNR 20.1693 21.6197 24.6607 25.8326 27.6622 27.9387
SSIM 0.3205 0.3707 0.4226 0.5176 0.6634 0.6823

Table 5: Comparison of the effectiveness of different fractional operators for the Pepper image.

Noisy image Method in [38] TA_ABC Ada_TA_ ABC GL_ABC Ada_GL_ABC

σ � 15 PSNR 24.6089 25.5672 26.6575 27.508 29.9746 30.3144
SSIM 0.4525 0.4913 0.6472 0.7039 0.7407 0.7979

σ � 20 PSNR 22.1164 23.3792 26.0054 27.0188 28.8524 29.3238
SSIM 0.3451 0.3904 0.576 0.6504 0.6927 0.7383

σ � 25 PSNR 20.1598 21.6034 25.2919 26.4364 27.72 28.2121
SSIM 0.2723 0.3178 0.5095 0.5944 0.6326 0.6733

Table 6: Comparison of the effectiveness of different fractional operators for the Cameraman image.

Noisy image Method in [38] TA_ABC Ada_TA_ ABC GL_ABC Ada_GL_ABC

σ � 15 PSNR 24.6171 25.7532 25.724 28.3601 30.9423 31.5346
SSIM 0.4084 0.4524 0.6394 0.7668 0.7398 0.8214

σ � 20 PSNR 22.1178 23.6034 25.1439 27.7603 29.5537 30.0694
SSIM 0.3116 0.3615 0.5502 0.7002 0.6902 0.7429

σ � 25 PSNR 20.1543 21.7478 24.5397 26.8904 28.3857 28.7435
SSIM 0.2465 0.2923 0.4724 0.6241 0.635 0.6674

Table 7: Comparison of the entropy of different fractional operators for all images.

Lena Elaine Goldhill Peppers Cameraman
Σ 15 20 25 15 20 25 15 20 25 15 20 25 15 20 25
Original
image 7.4456 7.5001 7.4778 7.5715 7.0480

Method in
[36] 7.6008 7.6512 7.6891 7.5873 7.6181 7.6525 7.6079 7.6478 7.6744 7.6767 7.6973 7.7121 7.3948 7.4416 7.4843

TA_ABC 7.44 7.4675 7.4989 7.4760 7.4874 7.5084 7.4494 7.4734 7.4956 7.6141 7.6268 7.6412 7.2339 7.2925 7.3342
Ada_TA_
ABC 7.4298 7.4515 7.4788 7.4734 7.4808 7.4979 7.4427 7.4621 7.4800 7.6071 7.6183 7.6302 7.1802 7.2381 7.2886

GL_ABC 7.4878 7.5028 7.5189 7.5118 7.5125 7.5303 7.5285 7.5197 7.5248 7.6269 7.6329 7.6444 7.2693 7.2965 7.3226
Ada_GL_ABC 7.4508 7.4744 7.5038 7.4944 7.5042 7.5205 7.7405 7.4901 7.5101 7.6101 7.6224 7.6365 7.2111 7.2674 7.3085
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the entropy of test images, as shown in Table 7. -e entropy
of images processed by the Ada_GL_ABC mask is closer to
that of the original images than that got by other masks, but
it is also higher than that of the original images. -e results
demonstrate that the detailed information of images is
preserved while denoising. For Figures 2–16, (e) and (f) are
clearer than the others by visual evaluation. TA_ABC and
GL_ABC have been improved by the proposed adaptive
function. According to the quantitative indicators shown in
the tables, the Ada_GL_ABC mask has better denoising and
detail-preserving ability than other masks. Furthermore,
Ada_GL_ABC and Ada_TA_ABC masks are robust for
different intensity noise by the analysis of the results. -e
effectiveness of our proposed adaptive operator can be
proved from the two aspects of vision and evaluation index.

5. Conclusions

In this paper, the adaptive denoisingmask is proposed based on
Atangana–Baleanu derivatives. -e key to this method is the
calculation of order.-e order is determined by the intensity of
the gradient, global entropy, local entropy, and local variance.
-ese variables represent the whole and local information of
the image. To protect the texture details, we design the adaptive
order integral operator considering global and local infor-
mation.-is operator can produce smaller orders in the image
edge and texture details while larger orders in the smooth
region.-e proposed function is used to improve the GL_ABC
mask and TA_ABCmask operator. We test the effectiveness of
our proposed algorithm on multiple images. From a visual
point of view, the denoising ability of Ada_TA_ABC and
Ada_GL_ABC are reliable. Compared with other operators by
the evaluation indicators, the Ada_GL_ABC operator works
better. And, the PSNR and the SSIM are all higher under
different intensities of noise. -e information entropy index of
the image processed by Ada_TA_ABC and Ada_GL_ABC
operators is closer to the original images.-e entropy of image
filtered by Ada_GL_ABC mask is slightly larger, which indi-
cates that Ada_GL_ABC mask can preserve texture details.
-ese experimental results confirm that GL_ABC and
TA_ABC have all been improved. And, the proposed adaptive
function has a certain degree of universality.
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and J. Reyes-Reyes, “Blood vessel detection based on frac-
tional Hessian matrix with non-singular Mittag-Leffler
Gaussian kernel,” Biomedical Signal Processing and Control,
vol. 54, Article ID 101584, 2019.

[26] B. Ghanbari and A. Atangana, “A new application of frac-
tional Atangana-Baleanu derivatives: designing ABC-frac-
tional masks in image processing,” Physica A Statistical
Mechanics & Its Applications, vol. 542, Article ID 123516,
2019.

[27] G. Huang, L. Xu, and Y. Pu, “Summary of research on image
processing using fractional calculus,” Application Research of
Computers, vol. 29, no. 2, pp. 414–426, 2012.

[28] A. Atangana and D. Baleanu, “New fractional derivatives with
nonlocal and non-singular kernel: theory and application to
heat transfer model,” 0ermal Science, vol. 20, no. 2,
pp. 763–769, 2016.

[29] K. B. Oldham and J. Spanier, “-e fractional calculus,”
Mathematical Gazette, vol. 56, no. 247, pp. 396–400, 1974.

[30] J. Yu, L. Tan, S. Zhou et al., “Image denoising algorithm based
on entropy and adaptive fractional order calculus operator,”
IEEE Access, vol. 5, pp. 12275–12285, 2017.

[31] J. Prehl, F. Boldt, K. H. Hoffmann et al., “Symmetric fractional
diffusion and entropy production,” Entropy, vol. 18, no. 8,
p. 275, 2016.

[32] B. Qiao, L. Jin, and Y. Yang, “An adaptive algorithm for grey
image edge detection based on grey correlation analysis,” in
Proceedings of the International Conference on Computational
Intelligence & Security, pp. 470–474, Wuxi, China, December
2017.

[33] W. Xie, M. You, and Y. Zhou, “Guided image filter and
application based on adaptive fractional-order differential,”
Application Research of Computers, vol. 34, no. 001,
pp. 283–286, 2017.

[34] N. He, J.-B. Wang, L.-L. Zhang, and K. Lu, “An improved
fractional-order differentiation model for image denoising,”
Signal Processing, vol. 112, pp. 180–188, 2015.

[35] W. Zhou, A. C. Bovik, H. R. Sheikn et al., “Image quality
assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612,
2004.

[36] B. Li and W. Xie, “Image enhancement and denoising
algotithms based on adaptive fractional differential and in-
tegral,” Systems Engineering and Electronics, vol. 38,
pp. 185–192, 2016.

16 Journal of Mathematics



Research Article
On Strongly Convex Functions via Caputo–Fabrizio-Type
Fractional Integral and Some Applications

Qi Li ,1 Muhammad Shoaib Saleem,2 Peiyu Yan,1 Muhammad Sajid Zahoor,2

and Muhammad Imran2

1Basic Teaching Department, Shandong Huayu University of Technology, Dezhou 253034, Shandong, China
2Department of Mathematics, University of Okara, Okara, Pakistan

Correspondence should be addressed to Qi Li; hyxylq@163.com

Received 1 January 2021; Revised 5 March 2021; Accepted 19 March 2021; Published 2 April 2021

Academic Editor: Ahmet Ocak Akdemir

Copyright © 2021 Qi Li et al. ,is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,e theory of convex functions plays an important role in the study of optimization problems. ,e fractional calculus has been
found the best to model physical and engineering processes. ,e aim of this paper is to study some properties of strongly convex
functions via the Caputo–Fabrizio fractional integral operator. In this paper, we present Hermite–Hadamard-type inequalities for
strongly convex functions via the Caputo–Fabrizio fractional integral operator. Some new inequalities of strongly convex
functions involving the Caputo–Fabrizio fractional integral operator are also presented. Moreover, we present some applications
of the proposed inequalities to special means.

1. Introduction

,e theory of fractional calculus got rapid development, and
it has brought the attention of many researchers from
various disciplines [1–3]. In the last few years, it was ob-
served that fractional calculus is very useful for modeling
complicated problems of engineering, chemistry, mechanics,
and many other branches. Various interesting notations of
fractional calculus exist in the literature, for example, the
Riemann–Liouville fractional integral and Caputo–Fabrizio
fractional integral [4–14].

Among these notions, Riemann–Liouville and Caputo
involve the following singular kernal [11]:

K(ζ , x) �
(ζ − x)

− ς

Γ(1 − ς)
, 0< ς< 1. (1)

However, it was observed by Caputo and Fabrizio in [8]
that certain phenomena cannot be modelled by the already
existing definition in the literature. ,at is why, they pro-
posed a more general fractional derivative in [8] and named
it as the Caputo–Fabrizio fractional integral operator. It
mainly involves the following nonsingular kernal:

K(ζ , x) � e
− ς(ζ− x)/(1−ς)

, 0< ς< 1. (2)

Nowadays, many researchers of applied sciences are
using the Caputo–Fabrizio fractional integral operator to
model their problem. For more details about the fractional
integral with a nonsingular kernal, we refer [15–19] to the
readers.

,e theory of inequalities also plays an important role in
applied as well as in pure mathematics. ,e Hermi-
te–Hadamard inequality is the most important inequality in
the literature, and this inequality has been studied for dif-
ferent classes of convex functions, see [20–24]. ,e classical
version of the Hermite–Hadamard inequality for convex
functions is stated as follows:

If ϱ: I � [a, b] ⊂ R⟶ R is an integrable and contin-
uous convex function, then its mean value remains between
the value of ϱ at (a + b)/2 of interval I � [a, b] and arith-
metic mean value of ϱ at the endpoints a, b ∈ I � [a, b]. In
other words, it means that

ϱ
a + b

2
 ≤

1
b − a


b

a
ϱ(x)x≤

ϱ(a) + ϱ(b)

2
. (3)
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Inequality (3), in the literature, is generalized by several
fractional integral operators to meet the desired results, see,
for instance, [25–28]. In this paper, we present the Her-
mite–Hadamard inequality for a strongly convex function in
the setting of the Caputo–Fabrizio fractional integral op-
erator. We also present some new inequalities for strongly
convex functions in the setting of the Caputo–Fabrizio
fractional integral operator. We also give some applications
of the presented inequalities in special mean.

2. Preliminaries

In this section, we present some definitions from the
literature.

Definition 1. A function is convex if

ϱ(ζx +(1 − ζ)y)≤ ζϱ(x) +(1 − ζ)ϱ(y), (4)

for every x, y ∈ I and ζ ∈ [0, 1].

Definition 2 (see [29]). Assume λ≥ 0. A function ϱ: I⟶ R

is strongly convex if

ϱ(ζx +(1 − ζ)y)≤ ζϱ(x) +(1 − ζ)ϱ(y) − λζ(1 − ζ)(x − y)
2
,

(5)

for every x, y ∈ I and ζ ∈ [0, 1].

Remark 1. Setting λ � 0 in inequality (5), we obtain convex
function (4).

Definition 3 (see [8]). Let ϱ ∈ H1(a, b), a< b, ς ∈ [0, 1];
then, the left Caputo–Fabrizio fractional derivative is de-
fined by

CF
a D

ςϱ (ζ) �
B(ς)

(1 − ς)
∈ ζζaϱ′(x)e

− ς(ζ− x)ς/(1−ς)dx, (6)

and the left Caputo–Fabrizio fractional integral is defined by

CF
a I

ςϱ (ζ) �
(1 − ς)
B(ς)
ϱ(ζ) +

ς
B(ς)
∈ ζζaϱ(x)dx, (7)

where B(ς)> 0 is a normalization of function with
B(0) � B(1) � 1.

Definition 4 (see [8]). Let ϱ ∈ H1(a, b), a< b, ς ∈ [0, 1];
then, the right Caputo–Fabrizio fractional derivative is
defined by

CF
D

ς
bϱ (ζ) �

−B(ς)
(1 − ς)
∈ ζb

ζϱ′(x)e
− ς(x− ζ)ς/(1−ς)dx, (8)

and the right Caputo–Fabrizio fractional integral is defined
by

CF
I
ς
bϱ (ζ) �

(1 − ς)
B(ς)
ϱ(ζ) +

ς
B(ς)
∈ ζb

ζϱ(x)dx, (9)

where B(ς)> 0 is a normalization of function with
B(0) � B(1) � 1.

3. Hermite–Hadamard-Type Inequalities via
Caputo–Fabrizio Fractional Integrals for
Strongly Convex Functions

Theorem 1. Assume ϱ: I⟶ R to be a strongly convex
function with modulus λ≥ 0 and ϱ ∈ L1[a, b]; then, the
inequality

ϱ
a + b

2
  +

λ
12

(b − a)
2

≤
B(ς)

ς(b − a)

CF
a I

ςϱ (ζ) +
CF

I
ς
bϱ (ζ) −

2(1 − ς)
B(ς)
ϱ(ζ) 

≤
ϱ(a) + ϱ(b)

2
−
λ
6
(b − a)

2
,

(10)

holds, where B(ς)> 0 is a normalization function, ς ∈ [0, 1],
and ζ ∈ [0, 1].

Proof. Since ϱ is strongly convex function, we have

ϱ
a + b

2
  −

λ
12

(b − a)
2 ≤

1
b − a


b

a
ϱ(x)dx

≤
ϱ(a) + ϱ(b)

2
−
λ
6
(b − a)

2
.

(11)

,e left side of inequality (11) yields

2ϱ
a + b

2
  −

λ
6
(b − a)

2 ≤
2

b − a


b

a
ϱ(x)dx,

�
2

b − a

ζ

a
ϱ(x)g(x)dx + 

b

ζ
ϱ(x)g(x)dx .

(12)

Multiplying ς(b − a)/2B(ς) on both sides of the
abovementioned inequality, adding (2(1 − ς)/B(ς))ϱ(ζ)

g(ζ) and rearranging the terms, we obtain

ϱ
a + b

2
  +

λ
12

(b − a)
2

≤
B(ς)

ς(b − a)

CF
a I

ςϱ (ζ) +
CF

I
ς
bϱ (ζ) −

2(1 − ς)
B(ς)
ϱ(ζ) ,

(13)

which is the left side of ,eorem 1.
Now, to prove the right side of ,eorem 1, we use the

right side of (11), which is

2
b − a


b

a
ϱ(x)dx≤ ϱ(a) + ϱ(b) −

λ
3
(b − a)

2
. (14)

Applying the same operations on the abovementioned
inequality as on (12) yields the right side of ,eorem 1,
which is
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≤
B(ς)

ς(b − a)

CF
a I

ςϱ (ζ) +
CF

I
ς
bϱ (ζ) −

2(1 − ς)
B(ς)
ϱ(ζ) 

≤
ϱ(a) + ϱ(b)

2
−
λ
6
(b − a)

2
.

(15)

,e combination of (13) and (15) completes the
proof. □

Theorem 2. Assume that ϱ, g: I⟶ R are two strongly
convex functions with modulus λ≥ 0 and f, g ∈ L1[a, b];
then, the inequality

2B(ς)
ς(b − a)

CF
a I

ςϱg (ζ) +
CF

I
ς
bϱg (ζ) −

2(1 − ς)
B(ς)
ϱ(ζ)g(ζ) 

≤
2
3

P(a, b) +
1
3

Q(a, b) −
λ
3
(b − a)

2
R(a, b) −

λ
5
(b − a)

2
 ,

(16)

holds with normalization function B(ς)> 0, ς ∈ [0, 1], and
ζ ∈ [0, 1], where P(a, b) � ϱ(a)g(a) + ϱ(b)g(b), Q(a, b) �

ϱ(a) g(b) + ϱ(b)g(a), and R(a, b) � ϱ(a) + g(a) + ϱ(b)

+g(b).

Proof. Since ϱ and g are strongly convex functions defined
on I, by definition, we have

ϱ(ζa +(1 − ζ)b)≤ ζϱ(a) +(1 − ζ)ϱ(b) − λζ(1 − ζ)(b − a)
2
,

(17)

g(ζa +(1 − ζ)b)≤ ζg(a) +(1 − ζ)g(b) − λζ(1 − ζ)(b − a)
2
,

(18)

for all a, b ∈ I and ζ ∈ [0, 1].
Multiplying (17) and (18), we have

ϱ(ζa +(1 − ζ)b)g(ζa +(1 − ζ)b)

≤ ζ2ϱ(a)g(a) +(1 − ζ)
2ϱ(b)g(b)

+ ζ(1 − ζ)[ϱ(a)g(b) + ϱ(b)g(a)]

− λζ(1 − ζ)
2
(b − a)

2
[ϱ(b) + g(b)]

− λζ2(1 − ζ)g(a)(b − a)
2

− λζ2(1 − ζ)(b − a)
2
[ϱ(a) + g(a)]

+ λ2ζ2(1 − ζ)
2
(b − a)

4
.

(19)

Integrating the abovementioned inequality w.r.t “ζ” over
[0, 1], we obtain

2
b − a


b

a
ϱ(x)g(x)dx ≤

2
3

[ϱ(a)g(a) + ϱ(b)g(b)] +
1
3

[ϱ(a)g(b) + ϱ(b)g(a)]

−
λ
3
(b − a)

2
[ϱ(a) + ϱ(b) + g(a) + g(b)] −

λ
5
(b − a)

2
,

2
b − a


b

a
ϱ(x)g(x)dx

≤
2
3

[P(a, b)] +
1
3

[Q(a, b)] −
λ
3
(b − a)

2
[R(a, b)] −

λ
5
(b − a)

2
.

(20)

Multiplying ς(b − a)/2B(ς) on both sides and adding
(2(1 − ς)/B(ς))ϱ(ζ)g(ζ), we obtain

ς
B(ς)


ζ

a
ϱ(x)g(x)dx + 

b

ζ
ϱ(x)g(x)dx  +

2(1 − ς)
B(ς)
ϱ(ζ)g(ζ)

≤
ς(b − a)

2B(ς)
2
3

[P(a, b)] +
1
3

[Q(a, b)] −
λ
3
(b − a)

2
[R(a, b)] −

λ
5
(b − a)

2
 

+
2(1 − ς)

B(ς)
ϱ(ζ)g(ζ).

(21)

Now, the use of (7) and (9) and rearrangements of the
terms of abovementioned inequality complete the
proof. □

Theorem 3. Assume that f, g: I⟶ R are two strongly
convex functions with modulus λ≥ 0 and f, g ∈ L1[a, b];
then, the inequality
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2ς
B(ς)
ϱ

a + b

2
 g

a + b

2
  −

1
(b − a)

CF
a I

ςϱg (ζ) +
CF

I
ς
bϱg (ζ) 

+
2(1 − ς)

B(ς)(b − a)
ϱ(ζ)g(ζ)

≤
ς

2B(ς)
2
3

Q(a, b) +
1
3

P(a, b) −
λ
3
(b − a)

2
R(a, b) −

λ
5
(b − a)

2
−

(b − a)
2

2
−
1
5

  

(22)

holds with normalization function B(ς)> 0, ς ∈ [0, 1], and
ζ ∈ [0, 1], where P(a, b) � ϱ(a)g(a) + ϱ(b)g(b), Q(a, b) �

ϱ(a)g(b) + ϱ(b) g(a), and R(a, b) � ϱ(a) + g(a) + ϱ(b) +g

(b).

Proof. Since ϱ and g be the two strongly convex functions,
so for ζ � 1/2, we have

ϱ
a + b

2
 ≤

ϱ(ζa +(1 − ζ)b) + ϱ(ζa +(1 − ζ)a)

2
−
λ
4

(2ζ − 1)(b − a)
2
, (23)

g
a + b

2
 ≤

g(ζa +(1 − ζ)b) + g(ζa +(1 − ζ)a)

2
−
λ
4

(2ζ − 1)(b − a)
2
, (24)

for all a, b ∈ I and ζ ∈ [0, 1]. Multiplying (23) and (24), we obtain

ϱ
a + b

2
 g

a + b

2
 

≤
1
4

[ϱ(ζa +(1 − ζ)b)g(ζa +(1 − ζ)b) + ϱ(ζa +(1 − ζ)a)g(ζa +(1 − ζ)a)

+ ζ2 +(1 − ζ)
2

 [ϱ(a)g(b) +(b)g(a)] + 2ζ(1 − ζ)[ϱ(a)g(a) + ϱ(b)g(b)]

− λ(b − a)
2 ζ2(1 − ζ) + ζ(1 − ζ)

2
 [ϱ(a) + g(b) + ϱ(b) + g(a)]

+ 2λ2ζ2(1 − ζ)
2
(b − a)

2
+ 2λ2ζ(1 − ζ)(2ζ − 1)

2
(b − a)

4
+
λ
2
(2ζ − 1)

2
(b − a)

4

−
λ
2
(2ζ − 1)

2
(b − a)

2
R(a, b).

(25)

Integrating the abovementioned inequality w.r.t “ζ” over
[0, 1] and using the technique of change of variable, we
obtain

4ϱ
a + b

2
 g

a + b

2
 ≤

2
b − a


b

a
ϱ(x)g(x)dx +

1
3

P(a, b) +
2
3

Q(a, b)

−
λ
3
(b − a)

2
R(a, b) −

λ
5

−
(b − a)

2

2
−
1
5

 .

(26)
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Multiplying ς(b − a)/2B(ς) on both sides and sub-
tracting (2(1 − ς)/B(ς))ϱ(ζ)g(ζ), we obtain

2ς(b − a)

2B(ς)
ϱ

a + b

2
 g

a + b

2
 

≤
ς

B(ς)

ζ

a
ϱ(x)g(x)dx + 

b

ζ
ϱ(x)g(x)dx  −

2(1 − ς)
B(ς)
ϱ(ζ)g(ζ)

+
ς(b − a)

2B(ς)
1
3

P(a, b) +
2
3

Q(a, b) −
λ
3
(b − a)

2
R(a, b) −

λ
5

−
(b − a)

2

2
−
1
5

  

−
2(1 − ς)

B(ς)
ϱ(ζ)g(ζ).

(27)

Now, the use of (7) and (9) and rearrangements of the
terms of the abovementioned inequality complete the
proof. □

4. Some New Caputo–Fabrizio Fractional
Integral Inequalities for Strongly
Convex Functions

Lemma 1 (see [28, 30]). Assume that ϱ: I⟶ R is a dif-
ferentiable mapping on I°, where a, b ∈ I with a< b. If
ϱ′ ∈ L1[a, b], then the inequality

b − a

2
∈ ζ01(1 − 2ζ)ϱ′(ζa +(1 − ζ)b)dζ −

2(1 − ς)
ς(b − a)

ϱ(ζ)

�
ϱ(a) + ϱ(b)

2
−

B(ς)
ς(b − a)

CF
a I

ςϱg (ζ) +
CF

I
ς
bϱg (ζ) 

(28)

holds, where B(ς)> 0 is a normalization function, ς ∈ [0, 1],
and ζ ∈ [0, 1].

Theorem 4. Assume that ϱ: I⟶ R is a differentiable
positive mapping on I°, where a, b ∈ I with a< b. If
ϱ′ ∈ L1[a, b] and |ϱ′| are two strongly convex functions, then
the inequality

ϱ(a) + ϱ(b)

2
+
2(1 − ς)
ς(b − a)

ϱ(ζ) −
B(ς)

ς(b − a)



CF
a I

ςϱg (ζ) +
CF

I
ς
bϱg (ζ) 



≤
(b − a) ϱ′(a)


 + ϱ′(b)




8
−

λ
32

(b − a)
3

(29)

holds, where B(ς)> 0 is a normalization function, ς ∈ [0, 1],
and ζ ∈ [0, 1].

Proof. By using Lemma 1, convexity of |ϱ′|, and the property
of absolute value, we get

ϱ(a) + ϱ(b)

2
+
2(1 − ς)
ς(b − a)

ϱ(ζ) −
B(ς)

ς(b − a)

CF
a I

ςϱg (ζ) +
CF

I
ς
bϱg (ζ) 




,

�
b − a

2
∈ ζ10(1 − 2ζ)ϱ′(ζa +(1 − ζ)b)dζ





≤
b − a

2
∈ ζ10(1 − 2ζ) ϱ′(ζa +(1 − ζ)b)


dζ

≤
b − a

2
∈ ζ10|(1 − 2ζ)| t ϱ′(a)


 +(1 − ζ) ϱ′(b)


 − λζ(1 − ζ)(b − a)

2
 dζ ,

�
(b − a) ϱ′(a)


 + ϱ′(b)




8
−

λ
32

(b − a)
3
.

(30)
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,is completes the proof. □

Theorem 5. Assume ϱ: I⟶ R to be a differentiable pos-
itive mapping on I°, a, b ∈ I with a< b, and
(1/p) + (1/q) � 1. If ϱ′ ∈ L1[a, b] and |ϱ′|q is a strongly
convex function, then the inequality
ϱ(a) + ϱ(b)

2
+
2(1 − ς)
ς(b − a)

ϱ(ζ) −
B(ς)

ς(b − a)



CF
a I

ςϱg (ζ) +
CF

I
ς
bϱg (ζ) 



≤
b − a

2(p + 1)
1/p
ϱ′(a)



p/(p− 1)

+ ϱ′(b)



p/(p− 1)

2
−
λ
6
(b − a)

2⎡⎢⎣ ⎤⎥⎦

(p− 1)/p

(31)

holds, where B(ς)> 0 is a normalization function, ς ∈ [0, 1],
and ζ ∈ [0, 1].

Proof. We start the proof by using Lemma 1, convexity of
|ϱ′|q, the property of absolute value, where (1/p) + (1/q)

� 1, and Holder’s inequality to obtain

ϱ(a) + ϱ(b)

2
+
2(1 − ς)
ς(b − a)

ϱ(ζ) −
B(ς)

ς(b − a)

CF
a I

ςϱg (ζ) +
CF

I
ς
bϱg (ζ) 




,

�
b − a

2
∈ ζ10(1 − 2ζ)ϱ′(ζa +(1 − ζ)b)dζ





≤
b − a

2
∈ ζ10|(1 − 2ζ)| ϱ′(ζa +(1 − ζ)b)


dζ

≤
b − a

2
∈ ζ10|(1 − 2ζ)|

pdζ 
1/p


1

0
ϱ′(ζa +(1 − ζ)b)



qdζ 

1/q

≤
b − a

2
∈ ζ10|(1 − 2ζ)|

pdζ 
1/p


1

0
t ϱ′(a)


 +(1 − ζ) ϱ′(b)


 − λζ(1 − ζ)(b − a)
2

 dζ 

1/q

,

�
b − a

2(p + 1)
1/p
ϱ′(a)



q

+ ϱ′(b)



q

2
−
λ
6
(b − a)

3
 

1/q

,

�
b − a

2(p + 1)
1/p
ϱ′(a)



p/(p− 1)

+ ϱ′(b)



p/(p− 1)

2
−
λ
6
(b − a)

3⎛⎝ ⎞⎠

(p− 1)/p

,

(32)

where 
1
0 |1 − 2ζ|pdζ � 

1/2
0 (1 − 2ζ) pdζ + 

1
1/2 (1 − 2ζ)pdζ

� 2
1/2
0 (1 − 2ζ)pdζ � 1/(p + 1). ,is completes the

proof. □

5. Some Applications of Caputo–Fabrizio
Fractional Integral Inequalities to
Special Means

Means are important in applied and pure mathematics;
especially, they are used frequently in numerical approxi-
mation. In the literature, they are ordered in the following
way:

H≤G≤L≤ I≤A. (33)

,e special means of two numbers a and b in the order
of b> a are known as arithmetic mean, geometric mean,

harmonic mean, power mean, logarithmic mean,
p-logarithmic mean, and identric mean. ,ey are listed
below from (34)–(40), respectively.

A(a, b) �
a + b

2
, (34)

G(a, b) �
��
ab

√
, (35)

H(a, b) �
2ab

a + b
, (36)

Mp(a, b) �
ap + bp

2
 

1/p
⎡⎣ ⎤⎦, p≠ 0, (37)
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L(a, b) �
b − a

ln(b) − ln(a)
, (38)

Lp(a, b) �
bp+1 − ap+1

(p + 1)(b − a)
 

1/p
⎡⎣ ⎤⎦, p ∈ R∖ − 1, 0, (39)

I(a, b) �
1
e

bp

ap
 

1/(b− a)

. (40)

,ere are several results connecting these means, see [31]
for some new relations; however, very few results are known
for arbitrary real numbers. For this, it is clear that we can
extend some of the abovementioned means as follows:

A(a, b) �
a + b

2
, a, b ∈ R,

L(a, b) �
b − a

ln|b| − ln|a|
, a, b ∈ R∖ 0{ },

Ln(a, b) �
bn+1 − an+1

(n + 1)(b − a)
 

1/n
⎡⎣ ⎤⎦. n ∈ N, n≥ 1, a, b ∈ R, a< b.

(41)

Now, we shall use the results of Sections 3 and 4 to prove
the following new inequalities connecting the above-
mentioned means for arbitrary real numbers.

Proposition 1. Suppose a, b ∈ R+, a< b and n ∈ N, n≥ 2.
8en, the following inequality holds:

A a
n
, b

n
(  − L

n
n(a, b)


≤

b − a

8
nA |a|

n− 1
, |b|

n− 1
  −

λ
4
(b − a)

2
 .

(42)

Proof. Insertion of ϱ(x) � xn, where n ∈ N, n≥ 2, with ς � 1
and B(ς) � B(1) � 1 in,eorem 4 completes the proof. □

Proposition 2. Suppose a, b ∈ R+, a< b and n ∈ N, n≥ 2.
8en, the following inequality holds:

A a
n
, b

n
(  − L

n
n(a, b)




≤
n(b − a)

2(p + 1)
1/p nA |a|

(n− 1)(p/(p− 1))
, |b|

(n− 1)(p/(p− 1))
 

−
λ(b − a)2

6np/(p−1)


(p− 1)/p

.

(43)

Proof. Insertion of ϱ(x) � xn, where n ∈ N, n≥ 2, with ς � 1
and B(ς) � B(1) � 1 in,eorem 5 completes the proof. □

Proposition 3. Suppose a, b ∈ R+, a< b and n ∈ N, n≥ 2.
8en, the following inequality holds:

A
− 1

(a, b) +
λ
12

(b − a)
2 ≤L

− 1
(a, b)

≤A a
− 1

, b
− 1

  +
λ
6
(b − a)

2
.

(44)

Proof. Insertion of ϱ(x) � xn, where n ∈ N, n≥ 2, with ς � 1
and B(ς) � B(1) � 1 in,eorem 1 completes the proof. □

Proposition 4. Suppose a, b ∈ R+, a< b and n ∈ N, n≥ 2.
8en, the following inequality holds:

A a
− 1

, b
− 1

  − L
− 1

(a, b)




≤
b − a

4
A |a|

− 2
, |b|

− 2
  −

λ
32

(b − a)
3
.

(45)

Proof. Insertion of ϱ(x) � x− 1, where x ∈ [a, b], with ς � 1
and B(ς) � B(1) � 1 in,eorem 4 completes the proof. □

Proposition 5. Suppose a, b ∈ R+, a< b and n ∈ N, n≥ 2.
8en, the following inequality holds:

A a
− 1

, b
− 1

  − L
− 1

(a, b)




≤
b − a

2(p + 1)
1/p A |a|

− 2p/(p−1)
, |b|

− 2p/(p−1)
  −

λ
6
(b − a)

2
 

(p− 1)/p

.

(46)

Proof. Insertion of ϱ(x) � x− 1, where x ∈ [a, b], with ς � 1
and B(ς) � B(1) � 1 in,eorem 4 completes the proof. □

6. Some Applications of Caputo–Fabrizio
Fractional Integral Inequalities to the
Trapezoidal Formula

Suppose d is the division of interval [a, b],
d: a � x0 < x1 < · · · <xn−1 <xn � b, and consider the trap-
ezoidal formula

T(ϱ, d) � 
i�1

i�0

ϱ xi(  + ϱ xi+1( 

2
xi+1 − xi( . (47)

It is well known that if the mapping ϱ: I⟶ R is twice
differentiable on (a, b) and M � maxx∈(a,b)[ϱ″(x)]<∞,
then


b

a
ϱ(x)dx � T(ϱ, d) + E(ϱ, d), (48)

where the approximation error E(ϱ, d) of the integral


b

a
ϱ(x)dx by the trapezoidal formula T(ϱ, d) satisfies

|E(ϱ, d)|≤
M

12


n−1

i�0
xi+1 − xi( 

3
. (49)

It is clear that if the mapping f is not twice differentiable
or the second derivative is not bounded on (a, b), then (49)
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cannot be applied. In recent studies [30, 32–35], Dragomir
and Wang showed that the remainder term E(ϱ, d) can be
estimated in terms of the first derivative only. ,ese esti-
mates have a wider range of applications. Here, we shall
propose some new estimates of the remainder term E(ϱ, d)

which supplement, in a sense, those established in
[30, 32–35].

Proposition 6. Assume that ϱ: I⟶ R is a differentiable
positive mapping on I°, a, b ∈ I with a< b. If ϱ′ ∈ L1[a, b] and
|ϱ′| is a strongly convex function, then for every division d of
[a, b], the following inequality holds:

|E(ϱ, d)|≤
1
8



i�1

n−1
xi+1 − xi( 

2 ϱ′ xi( 


 + ϱ′ xi+1( 


  −
λ
4



i�1

n−1
xi+1 − xi( 

2⎡⎣ ⎤⎦

≤
1
4



i�1

n−1
xi+1 − xi( 

2 max |ϱ′(a)|, ϱ′(b)


   −
λ
8



i�1

n−1
xi+1 − xi( 

2⎡⎣ ⎤⎦.

(50)

Proof. Applying subinterval [xi, xi+1], i � 0, . . . , n − 1, of
the division d from ,eorem 4, we obtain

ϱ xi(  + ϱ xi+1( 

2
xi+1 − xi(  − 

xi+1

xi

ϱ(x)dx





≤
xi+1 − xi( 

2

4
ϱ′ xi( 


 + ϱ′ xi+1( 


 

2
−

λ
16

xi+1 − xi( 
2⎡⎣ ⎤⎦.

(51)

Summing over i � 0, . . . , n − 1 and taking that |ϱ′| is a
strongly convex function, then by using (47), (48), and
triangular inequality, we complete the proof. □

Proposition 7. Assume that ϱ: I⟶ R is a differentiable
positive mapping on I°, a, b ∈ I with a< b and
(1/p) + (1/q) � 1. If ϱ′ ∈ L1[a, b] and |ϱ′|q is a strongly
convex function, then for every division d of [a, b], the fol-
lowing inequality holds:

|E(ϱ, d)|≤
1

2(p + 1)
1/p 

i�1

n−1
xi+1 − xi( 

2 ϱ′ xi( 



p/(p− 1)

+ ϱ′ xi+1( 



p/(p− 1)

2
⎛⎝ ⎞⎠ −

λ
6



i�1

n−1
xi+1 − xi( 

2⎡⎢⎢⎣ ⎤⎥⎥⎦

p/(p− 1)

≤
1

2(p + 1)
1/p 

i�1

n−1
xi+1 − xi( 

2 max |ϱ′(a)|, ϱ′(b)


   −
λ
6



i�1

n−1
xi+1 − xi( 

2⎡⎣ ⎤⎦.

(52)

Proof. Applying subinterval [xi, xi+1], i � 0, . . . , n − 1, of
the division d, we obtain from ,eorem 5

ϱ xi(  + ϱ xi+1( 

2
xi+1 − xi(  − 

xi+1

xi

ϱ(x)dx





≤
xi+1 − xi( 

2

2(p + 1)
1/p

ϱ′ xi( 



p/(p− 1)

+ ϱ′ xi+1( 



p/(p− 1)

 

2
−
λ
6

xi+1 − xi( 
2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(p− 1)/p

.

(53)

Summing over i � 0, . . . , n − 1 and taking that |ϱ′|q, where
(1/p) + (1/q) � 1, is a strongly convex function, then by using
(47), (48), and triangular inequality, we complete the proof. □

7. Conclusions

,e convex functions play an important role in approxi-
mation theory, and the fractional calculus has been found

the best to model physical and engineering processes. Some
properties of strongly convex functions via the Capu-
to–Fabrizio fractional integral operator have been studied in
this paper. Precisely speaking, Hermite–Hadamard-type and
some new inequalities for strongly convex functions via the
Caputo–Fabrizio fractional integral operator are proved, and
applications of the proposed inequalities to special means
are also presented in this paper.
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*e conformable derivative and its properties have been recently introduced. In this research work, we propose and prove some
new results on the conformable calculus. By using the definitions and results on conformable derivatives of higher order, we
generalize the theorems of the mean value which follow the same argument as in the classical calculus. *e value of conformable
Taylor remainder is obtained through the generalized conformable theorem of the mean value. Finally, we introduce the
conformable version of two interesting results of classical multivariable calculus via the conformable formula of finite increments.

1. Introduction

*e history of fractional calculus goes back to the late
seventeenth century when L’Hospital proposed the frac-
tional-order derivative. With the introduction of fractional
calculus, various newly proposed definitions have been in-
troduced. Some of the common definitions are the Caputo,
Riesz, Riesz-Caputo, and Riemann-Liouville fractional ones
(refer to [1, 2] for more information about fractional defi-
nitions, and see [3, 4] for research studies on the mathe-
matical analysis of fractional calculus). A new local-type
fractional definition [5] of derivative and integral has been
recently proposed by Khalil et al. in [6]. Conformable de-
rivative is basically considered as a natural extension of the
classical derivative that satisfies the properties of usual de-
rivative. In addition, conformable derivative is a generalized
version of q-derivative or fractal derivative (refer to the
introduction section in [7] for discussion about this rela-
tionship). Almeida et al. (2016) discussed in [8] that con-
formable derivative is an interesting topic of research that
deserves to be studied further. In addition, both Zhao & Luo
(2017) and Khalil et al. (2019) presented the physical and

geometrical meaning of conformable derivative in [9, 10],
respectively. Tuan et al. [11] investigated the mild solutions’
existence and regularity of the proposed initial value
problem for time diffusion equation in the sense of con-
formable derivative. *is main goal of this newly introduced
definition is to overcome the difficulties associated with
obtaining the solutions for the equations formulated in the
sense of nonlocal fractional definitions [12]. Motivated by
the introduction of this definition, several research works
have been conducted on the mathematical analysis of
functions of a real variable formulated in the sense of
conformable definition such as chain rule, mean value
theorem, Rolle’s theorem, power series expansion, and in-
tegration by parts formulas [6, 12–14]. *e conformable
partial derivative of the order α ∈ (0, 1] of the real-valued
functions of several variables and the conformable gradient
vector has been defined as well as the conformable Clairaut’s
theorem for partial derivative has also been studied in [15].
*e conformable Jacobian matrix has been proposed in [16],
and the chain rule for multivariable conformable derivative
has also been proposed.*e conformable Euler’s theorem on
homogeneous has been successfully defined in [17].

Hindawi
Journal of Mathematics
Volume 2021, Article ID 5528537, 7 pages
https://doi.org/10.1155/2021/5528537

mailto:mohammed.kaabar@wsu.edu
https://orcid.org/0000-0003-2260-0341
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5528537


Furthermore, many research studies have been con-
ducted on the theoretical and practical elements of con-
formable differential equations shortly after the proposition
of this new definition [5, 7, 12, 18–35]. Conformable de-
rivative has also been applied in modeling and investigating
phenomena in applied sciences and engineering [12] such as
the nonlinear Boussinesq equation’s travelling wave solu-
tions [36], the coupled nonlinear Schrödinger equations [34]
and regularized long wave Burgers equation [35] deter-
ministic and stochastics forms, the approximate long water
wave equation’s exact solutions [37], the (1 + 3)-Zakharov-
Kuznetsov equation with power-law nonlinearity analytical
and numerical solutions [38], the (2 + 1)-dimensional
Zoomeron equation [39, 40] and 3rd-order modified KdV
equation analytical solutions [39], and the exact solutions for
Whitham-Broer-Kaup equation’s three various models in
shallow water [41].

*e paper is organized as follows: *e main concepts of
the conformable calculus are presented in the next section.
After that, with the help of the definitions and results on
conformable derivatives of higher order, the theorems of the
mean value are generalized which follow the same argument
as in the classical calculus. We also introduce the value of
conformable Taylor remainder via the generalized con-
formable theorems of the mean value. Finally, we charac-
terize the functions of several variables in which one of their
conformable partial derivatives is null, and we also obtain
the first conformable formula of finite increments.

2. Basic Definitions and Tools

Definition 1. Given a function f: [0,∞)⟶ R. *en, the
conformable derivative of order α [6] is defined by

Tαf( (t) � lim
ε⟶0

f t + εt1− α
  − f(t)

ε
, (1)

for all t> 0, 0< α≤ 1. If f is α differentiable in some (0, a),
a> 0, and limt⟶0+ (Tαf)(t) exists, then it is defined as

Tαf( (0) � lim
t⟶0+

Tαf( (t). (2)

Theorem 1 (see [6]). If a function f: [0,∞)⟶ R is
α-differentiable at t0 > 0, 0< α≤ 1, then f is continuous at t0.

Theorem 2 (see [6]). Let 0< α≤ 1, and let f, g be α dif-
ferentiable at a point t> 0. 0en, we have

(i) Tα(af + bg) � a(Tαf) + b(Tαg), ∀a, b ∈ R.
(ii) Tα(tp) � ptp− α, ∀p ∈ R.
(iii) Tα(λ) � 0, for all constant functions f(t) � λ.
(iv) Tα(fg) � f(Tαg) + g(Tαf).
(v) Tα(f/g) � (g(Tαf) − f(Tαg)/g2).
(vi) If, in addition, f is differentiable, then

(Tαf)(t) � t1− α(df/dt)(t).

*e conformable derivative of certain functions using
the above definition is given as follows:

(i) Tα(1) � 0.
(ii) Tα(sin(at)) � at1− α cos(at).
(iii) Tα(cos(at)) � −at1− α sin(at).
(iv) Tα(eat) � aeat, a ∈ R.

Definition 2. *e (left) conformable derivative starting from
a of a given function f: [a,∞)⟶ R of order 0< α≤ 1 [13]
is defined by

T
a
αf( (t) � lim

ε⟶0

f t + ε(t − a)
1− α

  − f(t)

ε
. (3)

When a � 0, it is expressed as (Tαf)(t). If f is α dif-
ferentiable in some (a, b), then the following can be defined
as

T
a
αf( (a) � lim

t⟶a+
T

a
αf( (t). (4)

Theorem 3 Chain Rule (see [13]). Assume
f, g: (a,∞)⟶ R be (left) α differentiable functions, where
0< α≤ 1. By letting h(t) � f(g(t)), h(t) isα differentiable for
all t≠ a and g(t)≠ 0; therefore, we have the following:

T
a
αh( (t) � T

a
αf( (g(t)) · T

a
αg( (t) · (g(t))

α−1
. (5)

If t � a, then we obtain

T
a
αh( (a) � lim

t⟶a+
T

a
αf( (g(t)) · T

a
αg( (t) · (g(t))

α−1
.

(6)

Theorem 4 Rolle’s *eorem (see [6]). Let a> 0, α ∈ (0, 1],
and f: [a, b]⟶ R be a given function that satisfies

(i)- f is continuous on [a, b].
(ii) f is α-differentiable on (a, b).

(iii)- f(a) � f(b).

*en, there exists c ∈ (a, b) such that (Tαf)(c) � 0.

Corollary 1 (see [14]). Let I ⊂ [o,∞), α ∈ (0, 1], and
f: I⟶ R be a given function that satisfies

(i)- f is α differentiable on I.
(ii)- f(a) � f(b) � 0 for certain a, b ∈ I.

*en, there exists c ∈ (a, b), such that (Tαf)(c) � 0.

Theorem 5 Mean Value 0eorem (see [6]). Let a> 0,
α ∈ (0, 1], and f: [a, b]⟶ R be a given function that
satisfies

(i) f is continuous on [a, b].
(ii)- f is α differentiable on (a, b).

*en, there exists c ∈ (a, b), such that

Tαf( (c) �
f(b) − f(a)

b
α/α(  − a

α/α( 
. (7)
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Theorem 6 (see [14]). Let a> 0, α ∈ (0, 1], and
f: [a, b]⟶ R be a given function that satisfies

(i) f is continuous on [a, b].
(ii)- f is α differentiable on (a, b).

If (Tαg)(t) � 0 for all t ∈ (a, b), then f is a constant on
[a, b].

Corollary 2 (see [14]). Let a> 0, α ∈ (0, 1], and
F, G: [a, b]⟶ R be functions such that (TαF)

(t) � (TαG)(t) for all t ∈ (a, b). 0en, there exists a constant
C such that

F(t) � G(t) + C. (8)

Theorem 7 Extended Mean Value Theorem (see [14]). Let
a> 0, α ∈ (0, 1], and f, g: [a, b]⟶ R be functions that
satisfy

(i) f, g are continuous on [a, b].
(ii) f, g are α differentiable on (a, b).
(iii) (Tαg)(t)≠ 0 for all t ∈ (a, b).
(iv) g(b)≠g(a).
(v) (Tαf)(t) and (Tαg)(t) not annulled simultaneously

on [a, b].

*en, there exists c ∈ (a, b), such that

Tαf( (c)

Tαg( (c)
�

f(b) − f(a)

g(b) − g(a)
. (9)

Remark 1. Observe that *eorem 5 is a special case of this
theorem for g(t) � (tα/α).

Theorem 8 (see [14]). Let a> 0, α ∈ (0, 1], and
f: [a, b]⟶ R be a given function that satisfies

(i) f is continuous on [a, b].
(ii) f is α-differentiable on (a, b).

*en, we have the following:

(i) If (Tαf)(t)> 0 for all t ∈ (a, b), then f is increasing
on[a, b].

(ii) If (Tαf)(t)< 0 for all t ∈ (a, b), then f is decreasing
on[a, b].

Theorem 9 (see [13]). Assume f is infinitely α differentiable
function, for some 0< α≤ 1 at the neighborhood of a point t0.
0en, f has the following fractional power series expansion:

f(t) � 
∞

k�0

(k)
T

t0

α  t0( 

αk
k!

t − t0( 
kα

, t0 < t< t0 + R
(1/α)

.

(10)

Here, ((k)T
t0
α )(t0) means the application of the con-

formable derivative k times.
Finally, the conformable partial derivative of a real-

valued function with several variables is defined as follows.

Definition 3 (see [15, 16]). Let f be a real-valued function
with n variables and a � (a1, . . . , an) ∈ Rn be a point whose
ith component is positive. *en, the limit can be expressed as
follows

lim
ε⟶0

f a1, . . . , ai + εa1−α
i , . . . , an  − f a1, . . . , an( 

ε
, (11)

if the above limit exists, then we have the ith conformable
partial derivative of f of the order α ∈ (0, 1] at a, denoted by
(zα/zxα

i )f(a).

3. Main Results

From the definitions and results on conformable derivatives
of higher order, the theorems of the mean value are easily
generalized which follow the same argument as in the
classical calculus [42].

Theorem 10. Let a> 0, α ∈ (0, 1], and f, g: [a, b]⟶ R be
functions that satisfy

(i)- f, g ∈ C(n− 1)α([a, b]).
(ii)- (nTαf)(t) and (nTαg)(t) exist for all t in [a, b).

In addition, the following n − 1 equations are assumed:

k
Tαf (a)[g(b) − g(a)] �

k
Tαg (a)[f(b) − f(a)], for k � 1, 2, . . . , n − 1. (12)

*en, there exists c ∈ (a, b), such that
n
Tαf( (c)[g(b) − g(a)] �

n
Tαg( (c)[f(b) − f(a)]. (13)

Proof. Consider the following function:

F(t) � f(t)[g(b) − g(a)] − g(t)[f(b) − f(a)], ∀t ∈ [a, b].

(14)

Since F is continuous on [a, b], α differentiable on (a, b),
and F(a) � F(b), then by *eorem 4, there exists c1 ∈ (a, b)

such that
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Tαf(  c1( [g(b) − g(a)] − Tαg(  c1( [f(b) − f(a)] � 0.

(15)

Let us now consider the following function:

TαF( (t) � Tαf( (t)[g(b) − g(a)]

− Tαg( (t)[f(b) − f(a)], ∀t ∈ a, c1 ,

(16)

which is continuous on [a, c1], α differentiable on (a, c1),
and it is null at the extremes of interval [a, c1], by virtue of
the above equation and hypothesis. *en, by *eorem 4,
there exists c2 ∈ (a, c1) such that

2
Tαf  c2( [g(b) − g(a)] −

2
Tαg  c2( [f(b) − f(a)] � 0.

(17)

So, we reiterate this process until we obtain the following
equality:

n−1
Tαf  cn−1( [g(b) − g(a)] −

n−1
Tαh  cn−1( [f(b) − f(a)] � 0.

(18)

*en, we consider functions: n−1Tαf and n−1Tαg, that are
continuous on [a, cn−1], and α differentiable on (a, cn−1). So,
by *eorem 7, there exists c ∈ (a, cn−1) ⊂ (a, b) with

n
Tαf( (c)[g(b) − g(a)] �

n
Tαg( (c)[f(b) − f(a)].

(19)

*is completes the proof of the theorem. □

Remark 2. *e generalized conformable formula of ex-
tended mean value theorem is derived from previous the-
orem by taking g(t) � (tα − aα)n.

Theorem 11. Let a0 > 0, a ∈ (a0, b) α ∈ (0, 1], and
f: (a0, b]⟶ R be a function that satisfies

(i) f is continuous on [a, b].
(ii)- f is n − 1 times α differentiable on (a, b).
(iii)- (nTαf)(t) exist for all t in [a, b).

In addition, the following n − 1 equations are assumed:

Tαf( (a) �
2
Tαf (a) � · · · �

n−1
Tαf (a) � 0. (20)

*en, there exists c ∈ (a, b), such that

f(b) − f(a) �

n
Tαf( (c)

αn
· n!

t
α

− a
α

( 
n
. (21)

Remark 3. A generalization of the conformable formula of
mean value of Cauchy is also obtained.

Theorem 12. Let a0 > 0, a ∈ (a0, b), α ∈ (0, 1], and
f, g: (a0, b]⟶ R be functions that satisfy

(i) f, g are continuous on [a, b].
(ii) f, g are n − 1 times α differentiable on (a, b).
(iii) (nTαf)(t) and (nTαg)(t) exist for all t in [a, b).
(iv)- (nTαg)(t)≠ 0 ∀t ∈ (a, b).

In addition, the following n − 1 equations are assumed:

k
Tαf (a)[g(b) − g(a)] �

k
Tαg (a)[f(b) − f(a)], for k � 1, 2, . . . , n − 1. (22)

*en, there exists c ∈ (a, b), such that
n
Tαf( (c)

n
Tαg( (c)

�
f(b) − f(a)

g(b) − g(a)
. (23)

Proof. Using the formula (21) and the fact that (nTαg)(t)≠ 0
∀t ∈ (a, b), it follows that g(b) − g(a)≠ 0.

Dividing the two members of equality
n
Tαf( (c)[g(b) − g(a)] �

n
Tαg( (c)[f(b) − f(a)],

(24)

by the product (kTαg)(c)[g(b) − g(a)], the desired result is
obtained.

We end this section by obtaining the value of con-
formable Taylor remainder through the generalized con-
formable theorems of the mean value. □

Definition 4. Let an open set X ⊂ R, a ∈ X, α ∈ (0, 1], and
f: X⟶ R be a function that satisfies

(i)- f is n − 1 times α differentiable on a neighborhood
of a point a.

(ii)- (nTαf)(a) exists.

*en, the conformable Taylor remainder is defined by

R(t) � f(t) − pn(x) � f(t) − 

n

k�0

k
Tαf (a) ·

t
α

− a
α

( 
k

αk
· k!

, ∀t ∈ X.

(25)

Theorem 13. Let an open set X ⊂ R, a ∈ X, α ∈ (0, 1], and
f: X⟶ R. If f is n + 1 times α differentiable on [a, t] ⊂ X,
0en, there exists c ∈ (a, t), such that

R(t) �
n+1

Tαf (c) ·
t
α

− a
α

( 
n+1

αn+1
· (n + 1)!

, (26)

where R is called the conformable Lagrange form of the
remainder.
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Proof. By applying*eorem 12 to a functionR � f − pn and
using the fact that (n+1TαR)(t) � (n+1Tαf)(t) and
(kTαR)(a) � 0 for k � 1, 2, . . . , n, our result is followed. □

4. Applications to Multivariable Calculus

In this section, we will introduce the conformable version of
two interesting classical results on functions of several
variables [42]. Using the conformable formula of finite
increments [16], these results will be proven.

Theorem 14. Let α ∈ (0, 1], f: X⟶ R be a real-valued
function defined in an open and convex set X ⊂ Rn, such that
for all x � (x1, . . . , xn) ∈ X, each xi > 0. If the conformable
partial derivative of f with respect to xi exists and is null on
X, then f(x) � f(x′) for any points x � (x1,

. . . , xi, . . . , xn), x′ � (x1, . . . , xı́′, . . . ., xn) ∈ X, for i � 1, 2,

. . . , n.

Proof. Since x′ is a convex set and x � (x1, . . . xi, . . . ,

xn), x′ � (x1, . . . , xı́′, . . . , xn) ∈ X, all points of the line
segment [x, x′] are also in X, so the function g is defined in
the interval of endpoints xi and xı́′:

t↦g(t) � f x1, . . . , xi−1, t, xi+1, . . . ., xn( . (27)

*is function is α differentiable on the above interval,
and its derivative at a point t is given by

Tαg( (t) �
z
α
f x1, . . . , t, . . . , xn( 

zx
α
i

. (28)

*erefore, by applying *eorem 5, there is a point ci

between xi and xı́′, such that

g xı́′(  − g xi(  �
x
′α
ı́
α

−
x
α
ı́
α

⎛⎝ ⎞⎠ · Tαg(  ci( . (29)

Since point c � (x1, . . . , ci, . . . ., xn) ∈ X; therefore,
(zαf(c)/zxα

i ) � 0, and the above equality leads to

f x′(  − f(x) � xı́′ − xi(  ·
z
α
f(c)

zx
α
i

, (30)

then f(x) � f(x′), for i � 1, 2, . . . , n, as we wanted to prove.
Finally, we introduce the first formula of finite incre-

ments for functions of several variables, involving con-
formable partial derivatives. □

Theorem 15. Let a � (a1, a2, . . . , an), b � (b1, b2, . . . , bn) ∈
Rn, x0, x1, . . . , xn be points xi � (b1, . . . , bi, ai+1, . . . ., an)

(note that x0 � a and xn � b), and line segment Si � [xi−1, xi],
for i � 1, 2, . . . , n. Let α ∈ (0, 1], and f: X⟶ R be a real-
valued function defined in an open set X ⊂ Rn containing line
segments S1, S2, . . . , Sn, such that for all x � (x1, . . . , xn) ∈ X,
each xi > 0. If the conformable partial derivative of f with
respect to xi exists on X, then there is a point ci between ai and
bi, for i � 1, 2, . . . , n, such that

f b1, b2, . . . bn(  − f a1, a2, . . . , an(  � 
n

i�1

b
α
i

α
−

a
α
i

α
  ·

z
α
f b1, . . . , bi−1, ci, ai+1 . . . , an( 

zx
α
i

. (31)

Proof. First, we will express the difference f(b) − f(a) as
follows:

f(b) − f(a) � f xn(  − f x0(  � 

n

i�1
f xi(  − f xi−1(  .

(32)

Let us now consider, for i � 1, 2, . . . , n, the real function
gi of the real variable t, defined on the closed interval of
endpoints ai and bi, by

t⟼gi(t) � f b1, . . . , bi−1, t, ai+1, . . . ., an( . (33)

Since the conformable partial derivative of f with respect
to xi exists on X and Si ⊂ X, then gi is α differentiable on the
above interval, and its derivative at a point t, is given by

Tαgi( (t) �
z
α
f b1, . . . , bi−1, t, ai+1, . . . , an( 

zx
α
i

. (34)

*erefore, by applying *eorem 5, there is a point ci

between ai and bi, such that

gi bi(  − gi ai(  �
b
α
i

α
−

a
α
i

α
  · Tαgi(  ci( . (35)

*en, it is verified that

f xi(  − f xi−1(  �
b
α
i

α
−

a
α
i

α
  ·

z
α
f b1, . . . , bi−1, t, ai+1, . . . ., an( 

zx
α
i

.

(36)

By taking the above expression to equation (32), our
result is followed. □

5. Conclusion

In this research work, some new results regarding the con-
formable mean value theorems have been proposed. As in
classical calculus, higher-order derivatives have been applied to
generalize the mean value theorems. Likewise, the Lagrange
expression has been established for the Taylor conformable
remainder. In the context of the calculus of functions of several
variables, according to the conformablemean value theorem, the
functions in which one of its conformable partial derivatives is
null have been characterized, and the first conformable formula
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of finite increments has been obtained. *e findings of this
investigation indicate that the results obtained in the sense of the
conformable derivative coincide with the results obtained in the
classical case of integer order. Finally, our obtained results, in
addition to a theoretical interest, show great potential to be
applied in a future research work concerning various applica-
tions in the field of natural sciences and engineering.
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In this paper, we aim to introduce six new quadruple hypergeometric functions. )en, we investigate certain formulas and
representations for these functions such as symbolic formulas, differential formulas, and integral representations.

1. Introduction

Hypergeometric functions of several variables play an important
role in diverse areas of science and engineering. )e develop-
ments in appliedmathematics, mathematical physics, chemistry,
combinatorics, statistics, numerical analysis, and other areas
have led to increasing interest in the study of multiple hyper-
geometric functions. Many authors have studied a number of
formulas involving hypergeometric functions (see, e.g., [1–6]).

In [7], Exton presented twenty-one complete hyper-
geometric functions in four variables denoted by symbols
K1, K2, . . . , K21. In [8], Sharma and Parihar defined eighty-
three complete quadruple hypergeometric functions,
namely, F

(4)
1 , F

(4)
2 , . . . , F

(4)
83 . Bin-Saad and Younis [9] gave

thirty new quadruple hypergeometric functions given by
X

(4)
1 , X

(4)
2 , . . . , X

(4)
30 . In [10], the authors discovered the

existence of twenty additional complete hypergeometric
functions in four variables X

(4)
31 , X

(4)
32 , . . . , X

(4)
50 . Each qua-

druple hypergeometric function in [7–10] is of the form

X
(4)

(.) � 
∞

m,n,p,q�0
Ω(m, n, p, q)

x
m

m!

y
n

n!

z
p

p!

u
q

q!
, (1)

where Ω(m, n, p, q) is a certain sequence of complex
parameters, and there are twelve parameters in each
series of X(4)(.) (eight a′s and four c′s ). )e 1st, 2nd, 3rd,
and 4th parameters in X(4)(.) are connected with integers
m, n, p, and q, respectively. Each repeated parameter in
the series X(4)(.) points out a term with double param-
eters in Ω(m, n, p, q). For example, X(4)(a1, a1, a2, a2,

a3, a3, a4, a5) means that (a1)m+n(a2)p+q(a3)m+n(a4)p(a5)q

includes the term. Similarly, X(4)(a1, a1, a1, a2, a1,

a1, a2, a3) points out the term (a1)2m+2n+p(a2)p+q(a3)q, and
X(4)(a1, a1, a2, a3, a1, a2, a3, a4) shows the existence of the
term (a1)2m+n(a2)n+p(a3)p+q(a4)q. )us, it is possible to
form various combinations of indices. )ere seems to be
no way of independently establishing the number of
distinct Gaussian hypergeometric series for any given
integer n≥ 2 without explicitly stating all such series.
)us, in every situation with n � 4, one ought to begin by
actually constructing the set just as in the case n � 3 (see
[11]).

By using the conventions and notations above, we now
introduce further quadruple hypergeometric functions as
follows:
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X
(4)
85 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c3, c1; x, y, z, u(  � 

∞

m,n,p,q�0

a1( 2m+n a2( n+p a3( p+q a4( q

c1( m+q c2( n c3( p
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m

m!

y
n

n!

z
p

p!

u
q

q!
,

X
(4)
86 a1, a1, a2, a3, a1, a2, a3, a4; c2, c1, c3, c1; x, y, z, u(  � 

∞

m,n,p,q�0

a1( 2m+n a2( n+p a3( p+q a4( q

c1( n+q c2( m c3( p
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m

m!

y
n
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z
p

p!

u
q

q!
,

X
(4)
87 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c2; x, y, z, u(  �� 

∞

m,n,p,q�0

a1( 2m+n a2( n+p a3( p+q a4( q

c1( m+p c2( n+q
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m
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p

p!

u
q

q!
,

X
(4)
88 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c2, c1; x, y, z, u(  � 

∞

m,n,p,q�0

a1( 2m+n a2( n+p a3( p+q a4( q

c1( m+q c2( n+p

x
m
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q!
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X
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∞

m,n,p,q�0

a1( 2m+n a2( n+p a3( p+q a4( q
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X
(4)
90 a1, a1, a2, a3, a1, a2, a3, a4; c, c, c, c; x, y, z, u(  � 

∞

m,n,p,q�0

a1( 2m+n a2( n+p a3( p+q a4( q

(c)m+n+p+q

x
m

m!

y
n

n!

z
p

p!

u
q

q!
,

(2)

for

|x|<
1
4
, |y|< 1, |z|< 1, |u|< 1 . (3)

Here, (a)m is the Pochhammer symbol defined (for
a, m ∈ C), in terms of the familiar Gamma function Γ, by
(see, e.g., [11], p. 2 and p. 5)

(a)m ≔
Γ(a + m)

Γ(a)
, a + m ∈ C \Z

−
0( 

�

1, (m � 0),

a(a + 1) . . . (a + m − 1), (m � n ∈ N),

⎧⎪⎨

⎪⎩

(4)

where C,Z−
0 , and N denote the sets of complex numbers,

nonpositive integers, and positive integers, respectively.

We recall the Gauss hypergeometric function [12] which
is defined by

2F1(a, b; c; x) � 
∞

n�0

(a)n(b)n

(c)n

x
n

n!
, (|x|< 1). (5)

Appell’s double hypergeometric function F2 is defined as
follows [13]:

F2(a, b, c; d, e; x, y) � 
∞

m,n�0

(a)m+n(b)m(c)n

(d)m(e)n

x
m

m!

y
n

n!
. (6)

In [14], Exton established twenty distinct triple hyper-
geometric functions, which are denoted by X1, X2, . . . , X20.
We introduce the definitions of five of these functions in the
following:

X15 a1, a2, a3; c2, c1; x, y, z(  � 

∞

m,n,p�0

a1( 2m+n a2( n+p a3( p

c1( n+p c2( m

x
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m!

y
n

n!

z
p

p!
,

X16 a1, a2, a3; c1, c2; x, y, z(  � 

∞
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a1( 2m+n a2( n+p a3( p

c1( m+p c2( n
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y
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n!
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p

p!
,

X17 a1, a2, a3; c1, c2, c3; x, y, z(  � 

∞
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c1( m c2( n c3( p
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p
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,

X18 a1, a2, a3, a4; c; x, y, z(  � 
∞

m,n,p�0

a1( 2m+n a2( n a3( p a4( p

(c)m+n+p

x
m

m!

y
n

n!

z
p

p!
,

X20 a1, a2, a3, a4; c1, c2; x, y, z(  � 
∞

m,n,p�0

a1( 2m+n a2( n a3( p a4( p

c1( m+p c2( n

x
m

m!

y
n

n!

z
p

p!
.

(7)

2 Journal of Mathematics



)e Lauricella functions of three variables
FM, FN, Fp, FS, and FT are defined in [11, 15]:
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∞

m,n,p�0
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∞
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x
m
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y
n

n!

z
p

p
,
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∞
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c1( m c2( n+p

x
m

m!

y
n

n!

z
p

p
,

FS a1, a2, a2, b1, b2, b3; c, c, c; x, y, z(  � 
∞

m,n,p�0

a1( m a2( n+p b1( m b2( n b3( p

(c)m+n+p

x
m

m!

y
n

n!

z
p

p
,

FT a1, a2, a2, b1, b2, b1; c, c, c; x, y, z(  � 
∞

m,n,p�0

a1( m a2( n+p b1( m+p b2( n

(c)m+n+p

x
m

m!

y
n

n!

z
p

p
.

(8)

)e structure of this paper is as follows. In Sections 2 to
5, we obtain several symbolic formulas, differentiation
formulas, operator formulas, and integral representations
for the hypergeometric functions of four variables
X

(4)
85 , X

(4)
86 , . . . , X

(4)
90 .

2. Symbolic Formulas

First of all, we recall the following symbolic operators (see
[16]):

D
m
δ δ

s
�
Γ(s + 1)

Γ(s − m + 1)
δs− m

, (9)

D
− m
δ δs

�
Γ(s + 1)

Γ(s + m + 1)
δs+m

, (10)

for

m ∈ N∪ 0{ }, s ∈ C − − 1, − 2, . . .{ }, (11)

where Dδ and D− 1
δ are the derivative and integral operator,

respectively.
Now, we find the following formulas.

Theorem 1. 2e following results hold true:

1 − Dα1Dα2β
− 1

D
− 1
β c

− 1
D

− 1
c α1α2 u 

− a
X17 a1, a2, a3; c1, c2; βx, y, α1z( 

× αa3− 1
1 αa4− 1

2 βc1− 1
c

a− 1
  � αa3− 1

1 αa4− 1
2 βc1− 1

c
a− 1

X
(4)
85 a1, a1, a2, a3, a1, a2, a3, a4c1, c2, c3, c1; βx, y, α1z, u;( ,

(12)

1 − Dα1Dα2β
− 1

D
− 1
β c

− 1
D

− 1
c α1α2 z 

− a
X20 a1, a2, a3, a4; c1, c2; x, α1y, α2u( 

× αa2− 1
1 αa3− 1

2 βc3− 1
c

a− 1
  � αa2− 1

1 αa3− 1
2 βc3− 1

c
a− 1

X
(4)
85 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c3, c1; x, α1y, z, α2u( .

(13)

Proof. To prove the result in equality (12) asserted in
)eorem 1, let ∅ denote the left-hand side of equality (12).

)en, employing the series representation of x17 and by
using (9) and (10), we have

∅ � 
∞

m,n,p,q�0

a1( 2m+n a2( n+p a3( p(a)q β
− q

c
− q

c1( m c2( n c3( pm!n!p!q!
x

m
y

n
z

p
u

q
× D

q
α1D

q
α2D

− q

β D
− q
c αa3+p+q− 1

1 αa4+q− 1
2 βc+m+q− 1

c
a− 1

 

� αa3− 1
1 αa4− 1

2 βc1− 1
c

a− 1


∞

m,n,p,q�0

a1( 2m+n a2( n+p a3( p+q a4( q

c1( m+q c2( n c3( p

(βx)
m

m!

(y)
n

n!
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p
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� αa3− 1
1 αa4− 1

2 βc1− 1
c

a− 1
X

(4)
85 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c3, c1; x, y, z, u( , (14)

which completes the proof. Similarly, one can prove for-
mulas (13) and (20). □

Theorem 2. 2e following results hold true:

1 − D
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αβ
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D

− 1
β c

− 1
D
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c α2 x 

− a
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Theorem 3. 2e following results hold true:
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Theorem 4. 2e following results hold true:
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Theorem 5. 2e following results hold true:
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2 βc1− 1

c
a− 1

X
(4)
89 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c1; βx, y, α1βz, u( ,

1 − Dα1Dα2β
− 1

D
− 1
β c

− 1
D

− 1
c α1α2 y 

− a
FS

a1

2
, a3, a3,

a1 + 1
2

, a2, a4; c1, c1, c1; 4α1x, α2z, u 

× αa1− 1
1 αa2− 1

2 βc2− 1
c

a− 1
  � αa1− 1

1 αa2− 1
2 βc2− 1

c
a− 1

X
(4)
89 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c1; α1x, y, α2z, u( .

(18)
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Theorem 6. 2e following results hold true:

1 − Dα1Dα2β
− 1

D
− 1
β c

− 1
D

− 1
c α1α2 z 

− a
X18 a1, a2, a3, a4; c; βx, α1βy, α2βu( 

× αa2− 1
1 αa3− 1

2 βc− 1
c

a− 1
  � αa2− 1

1 αa3− 1
2 βc− 1

c
a− 1

X
(4)
90 a1, a1, a2, a3, a1, a2, a3, a4; c, c, c, c; βx, α1βy, z, α2βu( ,

(19)

1 − D
2
αβ

− 1
D

− 1
β c

− 1
D

− 1
c α2 x 

− a
FT a4, a2, a2, a3, a1, a3; c, c, c; βu, αβy, βz( 

× αa1− 1βc− 1
c

a− 1
  � αa1− 1βc− 1

c
a− 1

X
(4)
90 a1, a1, a2, a3, a1, a2, a3, a4c, c, c, c; x, αβy, βz, βu;( .

(20)

3. Differentiation Formulas

)e results of this section can be derived from formula (9) by
a direct evaluation.

Theorem 7. 2e following derivative formulas hold true:

D
a1− c
w1

D
a2− c′
w2

w
a1− 1
1 w

a2− 1
2 X

(4)
85 c, c, c′, a3, c, c′, a3, a4; c1, c2, c3, c1; w

2
1x, w1w2y, w2z, u  

�
Γ a1( Γ a2( 

Γ(c)Γ c′( 
w

c− 1
1 w

c′− 1
2 X

(4)
85 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c3, c1; w

2
1x, w1w2y, w2z, u ,

D
a2− c
w1

D
a3− c′
w2

w
a2− 1
1 w

a3− 1
2 X

(4)
85 a1, a1, c, c′, a1, c, c′, a4; c1, c2, c3, c1; x, w1y, w1w2z, w2u(  

�
Γ a2( Γ a3( 

Γ(c)Γ c′( 
w

c− 1
1 w

c′− 1
2 X

(4)
85 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c3, c1; x, w1y, w1w2z, w2u( ,

D
a3− c
w1

D
a4− c′
w2

w
a3− 1
1 w

a4− 1
2 X

(4)
85 a1, a1, a2, c, a1, a2, c, c′; c1, c2, c3, c1; x, y, w1z, w1w2u(  

�
Γ a3( Γ a4( 

Γ(c)Γ c′( 
w

c− 1
1 w

c′− 1
2 X

(4)
85 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c3, c1; x, y, w1z, w1w2u( .

(21)

Theorem 8. 2e following differentiation formulas hold:

D
a1− c
x x

a1− 1
X

(4)
86 c, c, a2, a3, c, a2, a3, a4; c2, c1, c3, c1; x

2
, xy, z, u  

�
Γ a1( 

Γ(c)
x

c− 1
X

(4)
86 a1, a1, a2, a3, a1, a2, a3, a4; c2, c1, c3, c1; x

2
, xy, z, u ,

D
a1− c
x D

a2− c′
y x

a1− 1
y

a2− 1
X

(4)
86 c, c, c′, a3, c, c′, a3, a4; c2, c1, c3, c1; x

2
, xy, yz, u  

�
Γ a1( Γ a2( 

Γ(c)Γ c′( 
x

c− 1
y

c′− 1
X

(4)
86 a1, a1, a2, a3, a1, a2, a3, a4; c2, c1, c3, c1; x

2
, xy, yz, u ,

D
a4− c
u u

a4− 1
X

(4)
86 a1, a1, a2, a3, a1, a2, a3, c; c2, c1, c3, c1; x, y, z, u(  

�
Γ a4( 

Γ(c)
u

c− 1
X

(4)
86 a1, a1, a2, a3, a1, a2, a3, a4; c2, c1, c3, c1; x, y, z, u( .

(22)

Journal of Mathematics 5



Theorem 9. 2e following derivative formulas hold true:

D
a2− c
w D

a3− c′
z w

a2− 1
z

a3− 1
X

(4)
87 a1, a1, c, c′, a1, c, c′, a4; c1, c2, c1, c2; x, wy, wz, uz(  

�
Γ a2( Γ a3( 

Γ(c)Γ c′( 
w

c− 1
z

c′− 1
X

(4)
87 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c2; x, wy, wz, uz( ,

D
a1− c
w D

a2− c′
y D

a3− c″
z w

a1− 1
y

a2− 1
z

a3− 1
X

(4)
87 c, c, c′, c″, c, c′, c″, a4; c1, c2, c1, c2; w

2
x, wy, yz, uz  

�
Γ a1( Γ a2( Γ a3( 

Γ(c)Γ c′( Γ c″( 
w

c− 1
y

c′− 1
z

c″− 1
X

(4)
87 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c2; w

2
x, wy, yz, uz ,

D
a1− c
w1

D
a4− c′
w2

w
a1− 1
1 w

a4− 1
2 X

(4)
87 c, c, a2, a3, c, a2, a3c′; c1, c2, c1, c2; w

2
1x, w1y, z, w2u  

�
Γ a1( Γ a4( 

Γ(c)Γ c′( 
w

c− 1
1 w

c′− 1
2 X

(4)
87 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c2; w

2
1x, w1y, z, w2u .

(23)

Theorem 10. 2e following derivative formulas hold true:

D
a2− c
y y

a2− 1
X

(4)
88 a1, a1, c, a3, a1, c, a3, a4; c1, c2, c2, c1; x, y, yz, u(  

�
Γ a2( 

Γ(c)
y

c− 1
X

(4)
88 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c2, c1; x, y, yz, u( ,

D
a2− c
z z

a2− 1
X

(4)
88 a1, a1, c, a3, a1, c, a3, a4; c1, c2, c2, c1; x, yz, z, u(  

�
Γ a2( 

Γ(c)
z

c− 1
X

(4)
88 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c2, c1; x, yz, z, u( ,

D
a1− c
w1

D
a2− c′
w2

D
a3− c′′
w3

D
a4− c′′′
w4

w
a1− 1
1 w

a2− 1
2 w

a3− 1
3 w

a4− 1
4 X

(4)
88 c, c, c′, c″, c, c′, c″, c

‴
; c1, c2, c2, c1; w

2
1x, w1w2y, w2w3z, w3w4u  

�
Γ a1( Γ a2( Γ a3( Γ a4( 

Γ(c)Γ c′( Γ c″( Γ c
‴

 

w
c− 1
1 w

c′− 1
2 w

c″− 1
3 w

c‴− 1
4

× X
(4)
88 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c2, c1; w

2
1x, w1w2y, w2w3z, w3w4u .

(24)

Theorem 11. 2e following derivative formulas hold true:

D
a1− c
y y

a1− 1
X

(4)
89 c, c, a2, a3, c, a2, a3, a4; c1, c2, c1, c1; xy

2
, y, z, u  

�
Γ a1( 

Γ(c)
y

c− 1
X

(4)
88 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c1; xy

2
, y, z, u ,

D
a1− c
y D

a2− c′
w y

a1− 1
w

a2− 1
X

(4)
89 c, c, c′, a3, c, c′, a3, a4; c1, c2, c1, c1; xy

2
, wy, wz, u  

6 Journal of Mathematics



�
Γ a1( Γ a2( 

Γ(c)Γ c′( 
y

c− 1
w

c′− 1
X

(4)
89 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c1; xy

2
, wy, wz, u ,

D
a1− c
x D

a2− c″
w1

D
a3− c‴

z D
a4− c‴

w2
x

a1− 1
w

a2− 1
1 z

a3− 1
w

a4− 1
2 X

(4)
89 c, c, c′, c″, c, c′, c″, c″; c1, c2, c1, c1; x

2
, w1xy, w1z, w2uz  

�
Γ a1( Γ a2( Γ a3( Γ a4( 

Γ(c)Γ c′( Γ c″( Γ c
‴

 

x
c− 1

w
c′− 1
1 z

c″− 1
w

c‴− 1
2 × X

(4)
89 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c1; x

2
, w1xy, w1z, w2uz .

(25)

Theorem 12. 2e following derivative formulas hold true:

D
a2− c′
z D

a3− c′′
u z

a2− 1
u

a3− 1
X

(4)
90 a1, a1, c′, c″, a1, c′, c″, a4; c, c, c, c; x, yz, uz, u(  

�
Γ a2( Γ a3( 

Γ(c)Γ c′( 
z

c′− 1
u

c″− 1
X

(4)
90 a1, a1, a2, a3, a1, a2, a3, a4; c, c, c, c; x, yz, uz, u( ,

D
a2− c′
y D

a3− c″
w D

a4− c‴

u y
a2− 1

w
a3− 1

u
a4− 1

X
(4)
90 a1, a1, c′, c″, a1, c′, c″, c

‴
; c, c, c, c; x, y, wyz, wu  

�
Γ a2( Γ a3( Γ a4( 

Γ c′( Γ c″( Γ c
‴

 

y
c′− 1

w
c′′− 1

u
c‴− 1

X
(4)
90 a1, a1, a2, a3, a1, a2, a3, a4; c, c, c, c; x, y, wyz, wu( ,

D
a1− c′
w1

D
a3− c′′
z D

a4− c′′′
w2

w
a1− 1
1 z

a3− 1
w

a4− 1
2 X

(4)
90 c′, c′, a2, c″, c′, a2, c″, c

‴
; c, c, c, c; w

2
1x, w1y, z, w2uz  

�
Γ a1( Γ a3( Γ a4( 

Γ c′( Γ c″( Γ c
‴

 

w
c− 1
2 z

c″− 1
w

c‴− 1
2 X

(4)
90 a1, a1, a2, a3, a1, a2, a3, a4; c, c, c, c; w

2
1x, w1y, z, w2uz .

(26)

4. Integral Representations

In this section, we give integral representations of Laplace
type for our new hypergeometric functions of four variables.

Theorem 13. Each of the following integral representations
holds true:

X
(4)
85 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c3, c1; x, y, z, u( 

�
1

Γ a1( Γ a3( 

∞

0

∞

0
×e

− (s+t)
s

a1− 1
t
a3− 1Φ3 a4; c1; tu, s

2
x Ψ2 a4; c2, c3; sy, tz( dsdt Re a1( > 0,Re a3( > 0( ,

(27)

X
(4)
86 a1, a1, a2, a3, a1, a2, a3, a4; c2, c1, c3, c1; x, y, z, u(  �

1
Γ a1( Γ a2( Γ a3( 

· 
∞

0

∞

0

∞

0
×e

− (s+t+v)
s

a1− 1
t
a2− 1

v
a3− 1Φ3 a4; c1; vu, sty( 0F1 − ; c2; s

2
x 0F1 − ; c3; tvz( dsdtdv

· Re a1( > 0,Re a2( > 0,Re a3( > 0( ,

(28)

X
(4)
87 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c2; x, y, z, u(  �

1
Γ a1( Γ a2( Γ a3( 

· 
∞

0

∞

0

∞

0
×e

− (s+t+v)
s

a1− 1
t
a2− 1

v
a3− 1

0F1 − ; c1; s
2
x + tvz Φ3 a4; c2; vu, sty( dsdtdv

· Re a1( > 0,Re a2( > 0,Re a3( > 0( ,

(29)
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X
(4)
88 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c2, c1; x, y, z, u(  �

1
Γ a1( Γ a3( 

· 
∞

0

∞

0
×e

− (s+t)
s

a1− 1
t
a3− 1Φ3 a4; c1; tu, s

2
x 1F1 a2; c2; sy + tz( dsdt Re a1( > 0,Re a3( > 0( ,

(30)

X
(4)
89 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c1; x, y, z, u(  �

1
Γ a1( Γ a2( Γ a4( 

· 
∞

0

∞

0

∞

0
×e

− (s+t+v)
s

a1− 1
t
a2− 1

v
a4− 1Φ3 a3; c1; tz + vu, s

2
x 0F1 − ; c2; sty( dsdtdv Re a1( > 0,Re a2( > 0,Re a4( > 0( ,

(31)

X
(4)
90 a1, a1, a2, a3, a1, a2, a3, a4; c, c, c, c; x, y, z, u(  �

1
Γ a1( Γ a3( 

· 
∞

0

∞

0
×e

− (s+t)
s

a1− 1
t
a3− 1Φ(3)

3 a2, a4; c; sy + tz, tu, s
2
x dsdt Re a1( > 0,Re a3( > 0( ,

(32)

where 0F1, 1F1,Ψ2,Φ3, and Φ
(3)
3 are the confluent hyper-

geometric functions defined by (see [11])

0F1(− ; c; x) � 
∞

m�0

1
(c)m

x
m

m!
,

1F1(a; c; x) � 
∞

m�0

(a)m

(c)m

x
m

m!
,

Ψ2(a; b, c; x, y) � 
∞

m�0

(a)m+n

(b)m(c)n

x
m

m!

y
n

n!
,

Φ3(a; c; x, y) � 
∞

m,n�0

(a)m

(c)m+n

x
m

m!

y
n

n!
,

Φ(3)
3 (a, b; c; x, y, z) � 

∞

m,n�0

(a)m(b)n

(c)m+n+p

x
m

m!

y
n

n!

z
p

p!
.

(33)

Proof. It is noted that each of the integral representations
(27) to (32) can be proved mainly by expressing the series
definition of the involved special functions in each inte-
grand, changing the order of the integral sign and the
summation, and finally using the following well-known
integral formula [12, 17]:

Γ(z) � 
∞

0
e

− t
t
z− 1dt, (R(z)> 0). (34)

□

5. Operator Formulas

Here, we establish some operator identities for functions
X

(4)
85 , X

(4)
86 , . . . , X

(4)
90 . We begin by recalling the following

reciprocally inverse operators (see [3, 18]):

Ht1 ,...,ti
(a, b) ≔

Γ(b)Γ a + δ1 + · · · + δi( 

Γ(a)Γ b + δ1 + · · · + δi( 

� 
∞

k1 ,...,ki�0

(b − a)k1+···+ki
− δ1( k1

. . . − δi( ki

(b)k1+···+ki
k1! . . . ki!

,

Ht1 ,...,ti
(a, b) ≔

Γ(a)Γ a + δ1 + · · · + δi( 

Γ(b)Γ a + δ1 + · · · + δi( 

� 
∞

k1 ,...,ki�0

(b − a)k1+···+ki
− δ1( k1

. . . − δi( ki

1 − a − δ1 − · · · − δi( k1+···+ki
k1! . . . ki!

,

(35)

where δj ≔ tj(z/ztj), j � 1, . . . , i; i ∈ N ≔ 1, 2, 3, . . .{ }.

Theorem 14. 2e following identities hold true:

X
(4)
85 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c3, c1; x, y, z, u(  � Hy,z a2, a( X

(4)
85 a1, a1, a, a3, a1, a, a3, a4; c1, c2, c3, c1; x, y, z, u( ,

(36)

X
(4)
85 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c3, c1; x, y, z, u(  � Hz c, c3( X

(4)
85 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c, c1; x, y, z, u( .

(37)
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Theorem 15. 2e following identities hold true:

X
(4)
86 a1, a1, a2, a3, a1, a2, a3, a4; c2, c1, c3, c1; x, y, z, u(  � Hz,u a, a3( X

(4)
86 a1, a1, a2, a, a1, a2, a, a4; c2, c1, c3, c1; x, y, z, u( ,

(38)

X
(4)
86 a1, a1, a2, a3, a1, a2, a3, a4; c2, c1, c3, c1; x, y, z, u(  � Hx c2, c( X

(4)
86 a1, a1, a2, a3, a1, a2, a3, a4; c, c1, c3, c1; x, y, z, u( .

(39)

Theorem 16. 2e following identities hold true:

X
(4)
87 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c2; x, y, z, u(  � Hu a4, a( X

(4)
87 a1, a1, a2, a3, a1, a2, a3, a; c1, c2, c1, c2; x, y, z, u( , (40)

X
(4)
87 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c2; x, y, z, u(  � Hx,z c, c1( Hy,u c′, c2( X

(4)
87 a1, a1, a2, a3, a1, a2, a3, a4; c, c′, c, c′; x, y, z, u( .

(41)

Theorem 17. 2e following identities hold true:

X
(4)
88 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c2, c1; x, y, z, u(  � Hy,z a, a2( Hu a′, a4( X

(4)
88 a1, a1, a, a3, a1, a, a3, a′; c1, c2, c2, c1; x, y, z, u( ,

(42)

X
(4)
88 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c2, c1; x, y, z, u(  � Hx,u c, c1( X

(4)
88 a1, a1, a2, a3, a1, a2, a3, a4; c, c2, c2, c; x, y, z, u( . (43)

Theorem 18. 2e following identities hold true:

X
(4)
89 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c1; x, y, z, u(  � Hx,z,u c, c1( X

(4)
89 a1, a1, a2, a3, a1, a2, a3, a4; c, c2, c, c; x, y, z, u( ,

(44)

X
(4)
89 a1, a1, a2, a3, a1, a2, a3, a4; c1, c2, c1, c1; x, y, z, u(  � Hx,z,u c1, c( X

(4)
89 a1, a1, a2, a3, a1, a2, a3, a4; c, c2, c, c; x, y, z, u( .

(45)

Theorem 19. 2e following identities hold true:

X
(4)
90 a1, a1, a2, a3, a1, a2, a3, a4; c, c, c, c; x, y, z, u(  � Hu a, a4( X

(4)
90 a1, a1, a2, a3, a1, a2, a3, a; c, c, c, c; x, y, z, u( , (46)

X
(4)
90 a1, a1, a2, a3, a1, a2, a3, a4; c, c, c, c; x, y, z, u(  � Hz,u a3, a( X

(4)
90 a1, a1, a2, a, a1, a2, a, a4; c, c, c, c; x, y, z, u( . (47)

Proof. Relations (37) to (47) can be proved by means of
Mellin and Mellin–Barnes integral representation methods
for hypergeometric functions (see [19]).)e details of proofs
are omitted. □
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In this paper, generalized versions of Hadamard and Fejér–Hadamard type fractional integral inequalities are obtained.
By using generalized fractional integrals containing Mittag-Leffler functions, some well-known results for convex and
harmonically convex functions are generalized. -e results of this paper are connected with various published fractional
integral inequalities.

1. Introduction

First we give definitions of fractional integral operators
which are useful in establishing the results of this paper. In
the following, we give fractional integral operators defined
by Andrić et al. in [1] via an extended generalized Mittag-
Leffler function in their kernels.

Definition 1 (see [1]). Let ω, τ, δ, ρ, c ∈ C, R(τ),R(δ)> 0,
R(c)>R(ρ)> 0 with p≥ 0, σ, r> 0 and 0< k≤ r + σ. Let
φ ∈ L1[ε1, ε2] and x ∈ [ε1, ε2]. -en, the generalized frac-
tional integral operators ϵρ,r,k,c

σ,τ,δ,ω,ε+
1
φ and ϵρ,r,k,c

σ,τ,δ,ω,ε−
2
φ are defined

by

ερ,r,k,c

σ,τ,δ,ω,ε+
1
φ (x; p) � 

x

ε1
(x − t)

τ− 1
E
ρ,r,k,c

σ,τ,δ ω(x − t)
σ
; p( φ(t)dt,

ερ,r,k,c

σ,τ,δ,ω,ε−
2
φ (x; p) � 

ε2

x
(t − x)

τ− 1
E
ρ,r,k,c

σ,τ,δ ω(t − x)
σ
; p( φ(t)dt,

(1)

where

E
ρ,r,k,c

σ,τ,δ (t; p) � 
∞

n�0

βp(ρ + nk, c − ρ)(c)nkt
n

β(ρ, c − ρ)Γ(σn + τ)(δ)nr

, (2)

is the extended generalized Mittag-Leffler function and βp is
the extension of beta function which is defined as follows:

βp(x, y) � 
1

0
t
x− 1

(1 − t)
y− 1

e
− (p/t(1− t))dt, (3)

where x, y, p are positive real numbers.
Recently, Farid defined elegantly a unified integral op-

erator in [2] (see, also [3]) as follows.

Definition 2. Let φ, θ: [ε1, ε2]⟶ R, 0< ε1 < ε2 be the
functions such that φ be positive and φ ∈ L1[ε1, ε2] and θ be a
differentiable and strictly increasing function. Also, let χ/x
be an increasing function on [ε1,∞) and ω, τ, δ, ρ, c ∈ C,
R(τ),R(δ)> 0, R(c)>R(ρ)> 0 with p≥ 0, σ, r> 0, and
0< k≤ r + σ.

-en, for x ∈ [ε1, ε2], the integral operators (θΥ
χ,ρ,r,k,c

σ,τ,δ,ε+
1
φ)

and (θΥ
χ,ρ,r,k,c

σ,τ,δ,ε−
1
φ) are defined by
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θΥ
χ,ρ,r,k,c

σ,τ,δ,ε+
1
φ (x; p) � 

x

ε1

χ(θ(x) − θ(t))

θ(x) − θ(t)
E
ρ,r,k,c

σ,τ,δ ω(θ(x) − θ(t))
σ
; p( φ(t)d(θ(t)),

θΥ
χ,ρ,r,k,c

σ,τ,δ,ε−
2
φ (x; p) � 

ε2

x

χ(θ(t) − θ(x))

θ(t) − θ(x)
E
ρ,r,k,c

σ,τ,δ ω(θ(t) − θ(x))
σ
; p( φ(t)d(θ(t)).

(4)

-e following definition of generalized fractional inte-
gral operators containing extended Mittag-Leffler function
in the kernel can be extracted from Definition 2. It is
generalization of Definition 1 by a monotonically increasing
function.

Definition 3. Let φ, θ: [ε1, ε2]⟶ R, 0< ε1 < ε2 be the
functions such that φ be positive and φ ∈ L1[ε1, ε2] and θ be a
differentiable and strictly increasing function. Also, let
ω, τ, δ, ρ, c ∈ C,R(τ),R(δ)> 0,R(c)>R(ρ)> 0 with p≥ 0,
σ, r> 0 and 0< k≤ r + σ. -en, for x ∈ [ε1, ε2], fractional
integral operators are defined by

θΥ
ρ,r,k,c

σ,τ,δ,ωε+
1
φ (x; p) � 

x

ε1
(θ(x) − θ(t))

τ− 1
E
ρ,r,k,c

σ,τ,δ ω(θ(x) − θ(t))
σ
; p( φ(t)d(θ(t)), (5)

θΥ
ρ,r,k,c

σ,τ,δ,ωε−
2
φ (x; p) � 

ε2

x
(θ(t) − θ(x))

τ− 1
E
ρ,r,k,c

σ,τ,δ ω(θ(t) − θ(x))
σ
; p( φ(t)d(θ(t)). (6)

-e following remark provides connection of Definition
3 with existing fractional integral operators.

Remark 1

(i) If we set p � 0 and θ(x) � x in equations (5) and
(6), then these reduce to fractional integral opera-
tors defined by Salim and Faraj in [4].

(ii) If we set δ � r � 1 and θ(x) � x in equations (5) and
(6), then these reduce to the fractional integral
operators θΥ

ρ,1,k,c

σ,τ,1,ω,ε+
1

and θΥ
ρ,1,k,c
σ,τ,1,ω,ε−

1
containing

generalized Mittag-Leffler function E
ρ,1,k,c
σ,τ,1 (t; p)

defined by Rahman et al. in [5].
(iii) If we take p � 0, δ � r � 1 and θ(x) � x in equa-

tions (5) and (6), then these reduce to fractional
integral operators containing extended generalized
Mittag-Leffler function introduced by Srivastava
and Tomovski in [6].

(iv) If we set p � 0, δ � r � k � 1 and θ(x) � x in
equations (5) and (6), then these reduce to fractional
integral operators defined by Prabhaker in [7].

(v) For p � ω � 0 and θ(x) � x in equations (5) and
(6), these reduce to renowned Riemann–Liouville
fractional integral operators [8].

-e Riemann–Liouville fractional integrals for a func-
tion φ ∈ L1[ε1, ε2] of order τ ∈ R (τ > 0) are defined by

I
τ
ε+
1
φ(x) �

1
Γ(τ)


x

ε1
(x − t)

τ− 1φ(t)dt, x> ε1,

I
τ
ε−
2
φ(x) �

1
Γ(τ)


ε2

x
(t − x)

τ− 1φ(t)dt, x< ε2.

(7)

After introducing generalized fractional integral oper-
ators, now we define notions of functions for which

generalized fractional integral operators are utilized to get
main results of this paper.

Definition 4 (see [9]). A function φ: [ε1, ε2]⟶ R is said to
be convex if

φ tx1 +(1 − t)x2( ≤ tφ x1(  +(1 − t)φ x2( , (8)

holds for all x1, x2 ∈ [ε1, ε2] and t ∈ [0, 1].

Definition 5 (see [10]). Let I be an interval such that I⊆R+.
-en, a function φ: I⟶ R is said to be harmonically
convex, if

φ
ab

ta +(1 − t)b
 ≤ tφ(b) +(1 − t)φ(a), (9)

holds for all a, b ∈ I and t ∈ [0, 1].

Definition 6 (see [11]). Let J ⊂ (0,∞) be a real interval and
p ∈ R\ 0{ }. -en, a function φ: J⟶ R is said to be
p-convex, if

φ tεp
1 +(1 − t)εp

2 
1/p

 ≤ tφ ε1(  +(1 − t)φ ε2( , (10)

holds for ε1, ε2 ∈ J and t ∈ [0, 1].
It is easy to see that for p � 1 and p � − 1, the p-con-

vexity reduces to convexity and harmonical convexity,
respectively.

Definition 7 (see [11]). Let p ∈ R\ 0{ }. -en, a function
φ: [ε1, ε2] ⊂ (0,∞)⟶ R is said to be p-symmetric with
respect to [(εp

1 + εp
2 )/2]1/p if

φ t
1/p

  � φ εp
1 + εp

2 − t 
1/p

 , (11)
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holds, for t ∈ [ε1, ε2].
Convex functions are equivalently studied by the

Hadamard inequality.

Theorem 1. Let φ: [ε1, ε2]⟶ R be a convex function such
that ε1 < ε2. >en, the following inequality holds:

φ
ε1 + ε2

2
 ≤

1
ε2 − ε1


ε2

ε1
φ(x)dx≤

φ ε1(  + φ ε2( 

2
. (12)

-e Fejér–Hadamard inequality is a weighted version of
the Hadamard inequality given by Fejér in [12].

Theorem 2. Let φ: [ε1, ε2]⟶ R be a convex function and
g: [ε1, ε2]⟶ R be non-negative, integrable, and symmetric
about (ε1 + ε2)/2. >en, the following inequality holds:

φ
ε1 + ε2

2
  

ε2

ε1
g(x)dx≤ 

ε2

ε1
φ(x)g(x)dx

≤
φ ε1(  + φ ε2( 

2

ε2

ε1
g(x)dx.

(13)

In recent decades, the Hadamard and the
Fejér–Hadamard fractional integral inequalities have been
studied extensively for different kinds of convex functions
(see [1, 3, 13–21]). In this paper, we find Hadamard and
Fejér–Hadamard inequalities for a generalized fractional
integral operator involving an extended generalized Mittag-
Leffler function.

In the upcoming section, we give two versions of the
Hadamard inequality as well as two versions of the
Fejér–Hadamard inequality. -eir special cases are also dis-
cussed along with noticing connections with published results.

2. Main Results

First we give the following version of the Hadamard
inequality.

Theorem 3. Let φ, θ: [ε1, ε2] ⊂ (0,∞)⟶ R, Range
(θ) ⊂ [ε1, ε2] be the functions such that φ be positive and
φ ∈ L1[ε1, ε2], and θ be a differentiable and strictly increasing
function. If φ is p-convex, p ∈ R\ 0{ }, then the following
inequalities for fractional integral operators (5) and (6) hold:

(i) If p> 0, then

φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

1  θ− 1 θp ε2( ( ; p 

≤
1
2 θΥ

ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )−

φ ∘ψ  θ− 1 θp ε1( ( ; p 

≤
φ θ ε1( (  + φ θ ε2( ( 

2 θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

1  θ− 1 θp ε2( ( ; p ,

(14)

where ω′ � ω/(θp(ε2) − θp(ε1))
σ and ψ(t) � θ1/p(t)

for all t ∈ [εp
1 , εp

2 ].
(ii) If p< 0, then

φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠ ερ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )−

1  θ− 1 θp ε2( ( ; p 

≤
1
2 θΥ

ρ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε2( )( )+

φ ∘ψ  θ− 1 θp ε1( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )−

φ ∘ψ  θ− 1 θp ε2( ( ; p 

≤
φ θ ε1( (  + φ θ ε2( ( 

2 θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )−

1  θ− 1 θp ε2( ( ; p ,

(15)

where ω′ � ω/(θp(ε1) − θp(ε2))
σ and ψ(t) � θ1/p(t)

for all t ∈ [εp
2 , εp

1 ].
Proof. (i) Since φ is p-convex over [ε1, ε2], for all x, y ∈ I,
we have
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φ
θp(x) + θp(y)

2
 

1/p
⎛⎝ ⎞⎠≤

φ(θ(x)) + φ(θ(y))

2
. (16)

Setting θ(x) � (tθp(ε1) + (1 − t)θp(ε2))
1/p and θ(y) �

(tθp(ε2) + (1 − t)θp(ε1))
1/p in above inequality, we have

φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

≤
φ tθp ε1(  +(1 − t)θp ε2( ( 

1/p
  + φ tθp ε2(  +(1 − t)θp ε1( ( 

1/p
 

2
.

(17)

Multiplying both sides of (17) by 2tτ− 1E
ρ,r,k,c

σ,τ,δ (ωtσ ; p) and
then integrating over [0, 1], we have

2φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠ 

1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( dt

≤ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ tθp ε1(  +(1 − t)θp ε2( ( 

1/p
 dt

+ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ tθp ε2(  +(1 − t)θp ε1( ( 

1/p
 dt.

(18)

By choosing θ(x) � tθp(ε1) + (1 − t)θp(ε2) and θ(y) �

tθp(ε2) + (1 − t)θp(ε1) in (18), we have

2φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠ 

θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θp ε2(  − θ(x)( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω′ θp ε2(  − θ(x)( 
σ
; p 1d(θ(x))

≤ 
θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θp ε2(  − θ(x)( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω′ θp ε2(  − θ(x)( 
σ
; p φ θ(x)

1/p
 d(θ(x))

+ 
θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θ(y) − θp ε1( ( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω′ θ(y) − θp ε1( ( 
σ
; p φ θ(y)

1/p
 d(θ(y)),

(19)

where ω′ � ω/(θp(ε2) − θp(ε1))
σ . -is implies

2φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠ ερ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε1( )( )+

1  θ− 1 θp ε2( ( ; p 

≤ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )−

φ ∘ψ  θ− 1 θp ε1( ( ; p .

(20)

To prove the second inequality of (14), again from
p-convexity of φ over [ε1, ε2] and for t ∈ [0, 1], we have

φ tθp ε1(  +(1 − t)θp ε2( ( 
1/p

 

+ φ tθp ε2(  +(1 − t)θp ε1( ( 
1/p

 ≤φ θ ε1( (  + φ θ ε2( ( .

(21)

Multiplying both sides of (21) by tτ− 1E
ρ,r,k,c

σ,τ,δ (ωtσ ; p) and
then integrating over [0, 1], we have


1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ tθp ε1(  +(1 − t)θp ε2( ( 

1/p
 dt

+ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ tθp ε2(  +(1 − t)θp ε1( ( 

1/p
 dt

≤ φ θ ε1( (  + φ θ ε2( ( (  
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( dt.

(22)

Setting θ(x) � tθp(ε1) + (1 − t)θp(ε2) and
θ(y) � tθp(ε2) + (1 − t)θp(ε1) in (22), we have
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θΥ
ρ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε1( )( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε2( )( )−

φ ∘ψ  θ− 1 θp ε1( ( ; p 

≤ φ θ ε1( (  + φ θ ε2( ( ( 

· θΥ
ρ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε1( )( )+

1  θ− 1 θp ε2( ( ; p .

(23)

By combining (20) and (23), we get (14).
(ii) Proof is similar to the proof of (i). □

Remark 2

(i) By setting p � ω � 0 and θ � I, -eorem 9 of [11] is
obtained.

(ii) By setting p � 0, p � − 1, and θ � I, -eorem 2.1 of
[22] is obtained.

(iii) By setting θ � I and p � − 1, -eorem 2.1 of [23] is
obtained.

(iv) By setting ω � p � 0, p � − 1, and θ � I, -eorem 4
of [18] is obtained.

(v) By setting p � − 1, -eorem 2.1 of [24] is obtained.
(vi) By setting p � − 1 and ψ(x) � x, Corollary 2.3 of

[24] is obtained.

Corollary 1. In (15), if we take ω � p � 0, p � − 1, and θ � I,
then we get the following Hadamard inequality for the RL
fractional integrals:

φ
2ε1ε2
ε1 + ε2

 ≤
Γ(τ + 1)

2
ε1ε2

ε2 − ε1
 

τ

· I
τ
1\ε1 − φ ∘ψ 

1
ε2

  + I
τ
1\ε1+φ ∘ψ 

1
ε1

  

≤
φ ε1(  + φ ε2( 

2
.

(24)

Now we obtain Fejér–Hadamard type fractional integral
inequalities for p-convex function via generalized fractional

integral operators; for this, first we prove the following
lemma.

Lemma 1. Let φ, θ: [ε1, ε2] ⊂ (0,∞)⟶ R, Range
(θ) ⊂ [ε1, ε2] be the functions such that φ be positive and
φ ∈ L1[ε1, ε2], ε1 < ε2, and θ be a differentiable and strictly
increasing function. If φ is p-convex, p ∈ R\ 0{ }, and
φ(θ1/p(x)) � φ((θp(ε1) + θp(ε2) − θ(x))1/p), then for gen-
eralized fractional integral operators (5) and (6), we have

(i) If p> 0, then

θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε1( )( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

� θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε2( )( )−

φ ∘ψ  θ− 1 θp ε1( ( ; p 

�
1
2 θΥ

ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε1( )( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε2( )( )−

φ ∘ψ  θ− 1 θp ε1( ( ; p ,

(25)

with ψ(t) � θ1/p(t), t ∈ [εp
1 , εp

2 ].
(ii) If p< 0, then

θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε2( )( )+

φ ∘ψ  θ− 1 θp ε1( ( ; p 

� θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε1( )( )−

φ ∘ψ  θ− 1 θp ε2( ( ; p 

�
1
2 θΥ

ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε2( )( )+

φ ∘ψ  θ− 1 θp ε1( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )−

φ ∘ψ  θ− 1 θp ε2( ( ; p ,

(26)

with ψ(t) � θ1/p(t), t ∈ [εp
2 , εp

1 ].

Proof. (i) By definition of generalized fractional integral
operators (5) and (6), we have

θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε1( )( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

� 
θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θp ε2(  − θ(x)( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω θp ε2(  − θ(x)( 
σ
; p φ ∘ψ(x)d(θ(x))

� 
θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θp ε2(  − θ(x)( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω θp ε2(  − θ(x)( 
σ
; p φ θ(x)

1/p
 d(θ(x))

� 
θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θp ε2(  − θ(x)( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω θp ε2(  − θ(x)( 
σ
; p φ θp ε1(  + θp ε2(  − θ(x)( 

1/p
 d(θ(x)).

(27)
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Setting θ(t) � θp(ε1) + θp(ε2) − θ(x) in the above
equation and using φ(θ1/p(x)) � φ((θp(ε1)+
θp(ε2) − θ(x))1/p), we have

θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε1( )( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

� 
θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θ(t) − θp ε1( ( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω θ(t) − θp ε1( ( 
σ
; p φ θ(t)

1/p
 d(θ(t))

� 
θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θ(t) − θp ε1( ( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω θ(t) − θp ε1( ( 
σ
; p φ ∘ψ(t)d(θ(t)).

(28)

-is implies

θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε1( )( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

� θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε2( )( )−

φ ∘ψ  θ− 1 θp ε1( ( ; p .
(29)

By adding (θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1(θp(ε1))+

φ ∘ψ)(θ− 1(θp(ε2)); p) on
both sides of (29), we have

2 θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε1( )( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

� θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε1( )( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω,θ− 1 θp ε2( )( )−

φ ∘ψ  θ− 1 θp ε1( ( ; p .

(30)

From equations (29) and (30), the required result can be
obtained.

(ii) Proof is on the same lines as the proof of (i). □

Theorem 4. Let φ, θ, h: [ε1, ε2] ⊂ (0,∞)⟶ R, Range (θ),
Range (h) ⊂ [ε1, ε2] be the functions such that φ be positive
and φ ∈ L1(ε1, ε2), ε1 < ε2, and θ be a differentiable and
strictly increasing function where h is a non-negative and
integrable function. If φ is p-convex, p ∈ R\ 0{ }, and
φ(θ1/p(x)) � φ((θp(ε1) + θp(ε2) − θ(x))1/p), then the fol-
lowing inequalities for generalized fractional integral oper-
ators (5) and (6) hold:

(i) If p> 0, then

φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

· θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

h ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε2( )( )−

h ∘ψ  θ− 1 θp ε1( ( ; p 

≤ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

φh ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε2( )( )−

φh ∘ψ  θ− 1 θp ε1( ( ; p 

≤
φ θ ε1( (  + φ θ ε2( ( 

2

· θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

h ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )−

h ∘ψ  θ− 1 θp ε1( ( ; p ,

(31)

where ω′ � ω/(θp(ε2) − θp(ε1))
σ and ψ(t) � θ1/p(t)

for all t ∈ [εp
1 , εp

2 ].
(ii) If p< 0, then

φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )+

h ∘ψ  θ− 1 θp ε1( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )−

h ∘ψ  θ− 1 θp ε2( ( ; p 

≤ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )+

φh ∘ψ  θ− 1 θp ε1( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )−

φh ∘ψ  θ− 1 θp ε2( ( ; p 

≤
φ θ ε1( (  + φ θ ε2( ( 

2 θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )+

h ∘ψ  θ− 1 θp ε1( ( ; p  + θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )−

h ∘ψ  θ− 1 θp ε2( ( ; p  ,

(32)

6 Journal of Mathematics



where ω′ � ω/(θp(ε1) − θp(ε2))
σ and ψ(t) � θ1/p(t)

for all t ∈ [εp
2 , εp

1 ].
Proof. (i) Multiplying both sides of (17) by
2tτ− 1E

ρ,r,k,c

σ,τ,δ (ωtσ ; p)h((tθp(ε1) + (1 − t)θp(ε2))
1/p) and then

integrating over [0, 1], we have

2φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠ 

1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( h tθp ε1(  +(1 − t)θp ε2( ( 

1/p
 dt

≤ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ tθp ε1(  +(1 − t)θp ε2( ( 

1/p
 h tθp ε1(  +(1 − t)θp ε2( ( 

1/p
 dt

+ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ tθp ε2(  +(1 − t)θp ε1( ( 

1/p
 h tθp ε1(  +(1 − t)θp ε2( ( 

1/p
 dt.

(33)

By choosing θ(x) � tθp(ε1) + (1 − t)θp(ε2), that is,
θp(ε1) + θp(ε2) − θ(x) � tθp(ε2) + (1 − t)θp(ε1), in (33)

and using φ(θ1/p(x)) � φ((θp(ε1) + θp(ε2) − θ(x))1/p), we
have

2φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

· 
θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θp ε2(  − θ(x)( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω′ θp ε2(  − θ(x)( 
σ
; p h ∘ψ(x)d(θ(x))

≤ 
θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θp ε2(  − θ(x)( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω′ θp ε2(  − θ(x)( 
σ
; p φh ∘ψ(x)d(θ(x))

+ 
θ− 1 θp ε2( )( )

θ− 1 θp ε1( )( )
θ(x) − θp ε1( ( 

τ− 1
E
ρ,r,k,c

σ,τ,δ ω′ θ(x) − θp ε1( ( 
σ
; p φh ∘ψ(x)d(θ(x)).

(34)

-is implies

2φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

h ∘ψ  θ− 1 θp ε2( ( ; p 

≤ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

φh ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )−

φh ∘ψ  θ− 1 θp ε1( ( ; p .

(35)

Using Lemma 1 (i) in above inequality, we have
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φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

θΥ
ρ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε1( )( )+

h ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )−

h ∘ψ  θ− 1 θp ε1( ( ; p 

≤ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

φh ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε2( )( )−

φh ∘ψ  θ− 1 θp ε1( ( ; p .

(36)

To prove the second inequality of (31), multiplying both
sides of (21) by tτ− 1E

ρ,r,k,c

σ,τ,δ (ωtσ ; p)h((tθp(ε1) + (1 − t)θp

(ε2))
1/p) and then integrating over [0, 1], we have


1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ tθp ε1(  +(1 − t)θp ε2( ( 

1/p
 h tθp ε1(  +(1 − t)θp ε2( ( 

1/p
 dt

+ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ tθp ε2(  +(1 − t)θp ε1( ( 

1/p
 h tθp ε1(  +(1 − t)θp ε2( ( 

1/p
 dt

≤ φ θ ε1( (  + φ θ ε2( ( (  
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( h tθp ε1(  +(1 − t)θp ε2( ( 

1/p
 dt.

(37)

Setting θ(x) � tθp(ε1) + (1 − t)θp(ε2) and using
φ(θ1/p(x)) � φ((θp(ε1) + θp(ε2) − θ(x))1/p) in (37) and
after simplification, we have

θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

φh ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )−

φh ∘ψ  θ− 1 θp ε1( ( ; p 

≤ φ θ ε1( (  + φ θ ε2( ( (  θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε1( )( )+

h ∘ψ  θ− 1 θp ε2( ( ; p .

(38)

Using Lemma 1 (i), inequality (38) becomes

θΥ
ρ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε1( )( )+

φh ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )−

φh ∘ψ  θ− 1 θp ε1( ( ; p 

≤
φ θ ε1( (  + φ θ ε2( ( ( 

2

· θΥ
ρ,r,k,c

σ,τ,δ,ω′,θ− 1 θp ε1( )( )+

h ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,ω′ ,θ− 1 θp ε2( )( )−

h ∘ψ  θ− 1 θp ε1( ( ; p .

(39)

By combining (36) and (39), we get (31).
(ii) Proof is similar to the proof of (i) by using (ii) of

Lemma 1. □

Remark 3

(i) By setting p � 0 and θ � I, -eorem 2.2 of [25] is
obtained.

(ii) By setting p � ω � 0 and θ � I, -eorem 9 of [11] is
obtained.

(iii) By setting p � 0, h(x) � 1, p � − 1, and θ � I,
-eorem 2.1 of [22] is obtained.

(iv) By setting θ � I, h(x) � 1, and p � − 1, -eorem 2.1
of [23] is obtained.

(v) By setting ω � p � 0, h(x) � 1, p � − 1, and θ � I,
-eorem 4 of [18] is obtained.

(vi) By setting p � − 1, -eorem 2.5 of [24] is obtained.

Corollary 2. If we put p � − 1, p � 0, and θ � I in>eorem 4
(ii), we get the following Fejér–Hadamard inequalities for
harmonically convex function via generalized fractional in-
tegral operators:

8 Journal of Mathematics



φ
2ε1ε2
ε1 + ε2

  θΥ
ρ,r,k,c

σ,τ,δ,ω′ , 1/ε2( )
+ h ∘ψ 

1
ε1

  + θΥ
ρ,r,k,c

σ,τ,δ,ω′ , 1/ε1( )
− h ∘ψ 

1
ε2

  

≤ θΥ
ρ,r,k,c

σ,τ,δ,ω′ , 1/ε2( )
+φh ∘ψ 

1
ε1

  + θΥ
ρ,r,k,c

σ,τ,δ,ω′ , 1/ε1( )
− φh ∘ψ 

1
ε2

 

≤
φ ε1(  + φ ε2( 

2 θΥ
ρ,r,k,c

σ,τ,δ,ω′, 1/ε2( )
+ h ∘ψ 

1
ε1

  + θΥ
ρ,r,k,c

σ,τ,δ,ω′ , 1/ε1( )
− h ∘ψ 

1
ε2

  .

(40)

Now we give another version of the Hadamard
inequality.

Theorem 5. Let φ, θ: [ε1, ε2] ⊂ (0,∞)⟶ R, Range
(θ) ⊂ [ε1, ε2] be the functions such that φ be positive and

φ ∈ L1[ε1, ε2], ε1 < ε2, and θ be a differentiable and strictly
increasing function. If φ is p-convex, p ∈ R\ 0{ }, then for
generalized fractional integral operators (5) and (6), we have

(i) If p> 0, then

φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

θΥ
ρ,r,k,c

σ,τ,δ,2σω′,θ− 1 θp ε1( )+θp ε2( )( )/2( )+

1  θ− 1 θp ε2( ( ; p 

≤ θΥ
ρ,r,k,c

σ,τ,δ,2σω′ ,θ− 1 θp ε1( )+θp ε2( )( )/2( )+

φ ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,2σω′,θ− 1 θp ε1( )+θp ε2( )( )/2( )−

φ ∘ψ  θ− 1 θp ε1( ( ; p 

≤
φ θ ε1( (  + φ θ ε2( ( 

2 θΥ
ρ,r,k,c

σ,τ,δ,2σω′,θ− 1 θp ε1( )+θp ε2( )( )/2( )+

1  θ− 1 θp ε2( ( ; p ,

(41)

where ω′ � ω/(θp(ε2) − θp(ε1))
σ and ψ(t) � θ1/p(t)

for all t ∈ [εp
1 , εp

2 ].
(ii) If p< 0, then

φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

θΥ
ρ,r,k,c

σ,τ,δ,2σω′,θ− 1 θp ε1( )+θp ε2( )( )/2( )−

1  θ− 1 θp ε2( ( ; p 

≤ θΥ
ρ,r,k,c

σ,τ,δ,2σω′ ,θ− 1 θp ε1( )+θp ε2( )( )/2( )+

φ ∘ψ  θ− 1 θp ε1( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,2σω′,θ− 1 θp ε1( )+θp ε2( )( )/2( )−

φ ∘ψ  θ− 1 θp ε2( ( ; p 

≤
φ θ ε1( (  + φ θ ε2( ( 

2 θΥ
ρ,r,k,c

σ,τ,δ,2σω′,θ− 1 θp ε1( )+θp ε2( )( )/2( )−

1  θ− 1 θp ε2( ( ; p ,

(42)

where ω′ � ω/(θp(ε1) − θp(ε2))
σ and ψ(t) � θ1/p(t)

for all t ∈ [εp
2 , εp

1 ].
Proof. (i) Setting θ(x) �((t/2)θp(ε1) + ((2 − t)/2)θp (ε2))

1/p

and θ(y) �((t/2)θp(ε2) + ((2 − t)/2))θp(ε1))
1/p in (12), we

have
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φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

≤
φ ((t/2)θp ε1(  +((2 − t)/2)θp ε2( 

1/p
  + φ ((t/2)θp ε2(  +((2 − t)/2)θp ε1( 

1/p
 

2
.

(43)

Multiplying both sides of (43) by 2tτ− 1E
ρ,r,k,c

σ,τ,δ (ωtσ ; p) and
then integrating over [0, 1], we have

2φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠ 

1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( dt

≤ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ

t

2
θp ε1(  +((2 − t)/2)θp ε2(  

1/p
 dt

+ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ

t

2
θp ε2(  +((2 − t)/2)θp ε1(  

1/p
 dt.

(44)

By choosing θ(x) � (t/2)θp(ε1) + ((2 − t)/2)θp(ε2) and
θ(y) � (t/2)θp(ε2) + ((2 − t)/2)θp(ε1) in (44) and by (5)
and (6), we get first inequality of (41).

To prove the second inequality of (41), again from
p-convexity of φ over [ε1, ε2] and for t ∈ [0, 1], we have

φ
t

2
θp ε1(  +

2 − t

2
 θp ε2(  

1/p
 

+ φ
t

2
θp ε2(  +

2 − t

2
 θp ε1(  

1/p
 

≤φ θ ε1( (  + φ θ ε2( ( .

(45)

Multiplying both sides of (45) by tτ− 1E
ρ,r,k,c

σ,τ,δ (ωtσ ; p) and
then integrating over [0, 1], we have


1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ

t

2
θp ε1(  +

2 − t

2
 θp ε2(  

1/p
 dt

+ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ

t

2
θp ε2(  +

2 − t

2
 θp ε1(  

1/p
 dt

≤ φ θ ε1( (  + φ θ ε2( ( (  
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( dt.

(46)

Setting θ(x) � (t/2)θp(ε1) + ((2 − t)/2)θp(ε2) and
θ(y) � (t/2)θp(ε2) + ((2 − t)/2)θp(ε1) in (46) and using (5)
and (6), we get second inequality of (41).

(ii) Proof is similar to the proof of (i). □

Remark 4

(i) By setting p � 0, p � − 1, and θ � I, -eorem 2.3 of
[22] is obtained.

(ii) By setting θ � I and p � − 1, -eorem 2.3 of [23] is
obtained.

(iii) By setting p � − 1, -eorem 2.7 of [24] is obtained.

Now we obtain another Fejér–Hadamard type fractional
integral inequality for p-convex function via generalized
fractional integral operators (5) and (6).

Theorem 6. Let φ, θ, h: [ε1, ε2] ⊂ (0,∞)⟶ R, Range (θ),
Range (h) ⊂ [ε1, ε2] be the functions such that φ be positive
and φ ∈ L1(ε1, ε2), ε1 < ε2, and θ be a differentiable and
strictly increasing function where h is a non-negative and
integrable function. If φ is p-convex, p ∈ R\ 0{ }, and
φ(θ1/p(x)) � φ((θp(ε1) + θp(ε2) − θ(x))1/p), then the fol-
lowing inequalities for generalized fractional integral oper-
ators (5) and (6) hold:

(i) If p> 0, then
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φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

θΥ
ρ,r,k,c

σ,τ,δ,2σω′ ,θ− 1 θp ε1( )+θp ε2( )( )/2( )+

h ∘ψ  θ− 1 θp ε2( ( ; p 

≤ θΥ
ρ,r,k,c

σ,τ,δ,2σω′ ,θ− 1 θp ε1( )+θp ε2( )( )/2( )+

φh ∘ψ  θ− 1 θp ε2( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,2σω′ ,θ− 1 θp ε1( )+θp ε2( )( )/2( )−

φh ∘ψ  θ− 1 θp ε1( ( ; p 

≤
φ θ ε1( (  + φ θ ε2( ( 

2 θΥ
ρ,r,k,c

σ,τ,δ,2σω′ ,θ− 1 θp ε1( )+θp ε2( )( )/2( )+

h ∘ψ  θ− 1 θp ε2( ( ; p ,

(47)

where ω′ � ω/(θp(ε2) − θp(ε1))
σ and ψ(t) � θ1/p(t)

for all t ∈ [εp
1 , εp

2 ].
(ii) If p< 0, then

φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

θΥ
ρ,r,k,c

σ,τ,δ,2σω′ ,θ− 1 θp ε1( )+θp ε2( )( )/2( )−

h ∘ψ  θ− 1 θp ε2( ( ; p 

≤ θΥ
ρ,r,k,c

σ,τ,δ,2σω′ ,θ− 1 θp ε1( )+θp ε2( )( )/2( )+

φh ∘ψ  θ− 1 θp ε1( ( ; p 

+ θΥ
ρ,r,k,c

σ,τ,δ,2σω′ ,θ− 1 θp ε1( )+θp ε2( )( )/2( )−

φh ∘ψ  θ− 1 θp ε2( ( ; p 

≤
φ θ ε1( (  + φ θ ε2( ( 

2 θΥ
ρ,r,k,c

σ,τ,δ,2σω′ ,θ− 1 θp ε1( )+θp ε2( )( )/2( )−

h ∘ψ  θ− 1 θp ε2( ( ; p ,

(48)

where ω′ � ω/(θp(ε1) − θp(ε2))
σ and ψ(t) � θ1/p(t)

for all t ∈ [εp
2 , εp

1 ].

Proof. (i)

Multiplying (43) by 2tτ− 1E
ρ,r,k,c

σ,τ,δ (ωtσ ; p)h(((t/2) θp(ε1) +

((2 − t)/2)θp(ε2))
1/p) and then integrating over [0, 1], we

have

2φ
θp ε1(  + θp ε2( 

2
 

1/p
⎛⎝ ⎞⎠

· 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( h

t

2
θp ε1(  +

2 − t

2
 θp ε2(  

1/p
 dt

≤ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ

t

2
θp ε1(  +

2 − t

2
 θp ε2(  

1/p
 h

t

2
θp ε1(  +

2 − t

2
 θp ε2(  

1/p
 dt

+ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ

t

2
θp ε2(  +

2 − t

2
 θp ε1(  

1/p
 h

t

2
θp ε1(  +

2 − t

2
 θp ε2(  

1/p
 dt.

(49)

By choosing θ(x) � (t/2)θp(ε1) + ((2 − t)/2)θp(ε2), that
is, θp(ε1) + θp(ε2) − θ(x) � (t/2)θp(ε2) + ((2 − t)/2)θp(ε1),
in (49) and using the condition φ(θ1/p(x)) � φ ((θp

(ε1) + θp(ε2) − θ(x))1/p), one can get first inequality of (47).

To prove the second inequality of (47), multiplying both
sides of (45) by tτ− 1E

ρ,r,k,c

σ,τ,δ (ωtσ ; p)h(((t/2) θp(ε1)+
((2 − t)/2)θp(ε2))

1/p) and then integrating over [0, 1], we
have
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1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ

t

2
θp ε1(  +

2 − t

2
 θp ε2(  

1/p
 h

t

2
θp ε1(  +

2 − t

2
 θp ε2(  

1/p
 dt

+ 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( φ

t

2
θp ε2(  +

2 − t

2
 θp ε1(  

1/p
 h

t

2
θp ε1(  +

2 − t

2
 θp ε2(  

1/p
 dt

≤ φ θ ε1( (  + φ θ ε2( ( ( 

· 
1

0
t
τ− 1

E
ρ,r,k,c

σ,τ,δ ωt
σ
; p( h

t

2
θp ε1(  +

2 − t

2
 θp ε2(  

1/p
 dt.

(50)

Setting θ(x) � (t/2)θp(ε1) + ((2 − t)/2)θp(ε2) in (38)
and using the condition
φ(θ1/p(x)) � φ((θp(ε1) + θp(ε2) − θ(x))1/p), one can get
second inequality of (47).

(ii) Proof is similar to the proof of (i). □

Remark 5

(i) By setting p � − 1, p � 0, and θ � I, -eorem 2.6 of
[22] is obtained.

(ii) By setting θ � I and p � − 1, -eorem 2.6 of [23] is
obtained.

(iii) By setting p � − 1, -eorem 2.10 of [24] is obtained.

Corollary 3. When we set p � − 1, ω � p � 0, and θ � I in
>eorem 6, then we get the following inequalities via RL
fractional integrals.

φ
2ε1ε2
ε1 + ε2

  I
τ

ε1+ε2( )/2ε1ε2( )
+ h ∘ψ 

1
ε1

  + I
τ

ε1+ε2( )/2ε1ε2( )
− h ∘ψ 

1
ε2

  

≤ I
τ

ε1+ε2( )/2ε1ε2( )
+φh ∘ψ 

1
ε1

  + I
τ

ε1+ε2( )/2ε1ε2( )
− φh ∘ψ 

1
ε2

 

≤
φ ε1(  + φ ε2( 

2
I
τ

ε1+ε2( )/2ε1ε2( )
+ h ∘ψ 

1
ε1

  + I
τ

ε1+ε2( )/2ε1ε2( )
− h ∘ψ 

1
ε2

  .

(51)

3. Conclusion

We have established Hadamard and Fejér–Hadamard
fractional integral inequalities for generalized fractional
integrals of p-convex functions. -e results of this paper
hold simultaneously for convex and harmonically convex
functions for different fractional integral operators con-
taining Mittag-Leffler functions.
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[14] M. K. Bakula and J. Pečarić, “Note on some Hadamard-type
inequalties,” Journal of Inequalities in Pure and Applied
Mathematics, vol. 5, no. 3, p. 74, 2004.

[15] H. Chen and U. N. Katugampola, “Hermite-Hadamard and
Hermite-Hadamard-Fejér type inequalities for generalized
fractional integrals,” Journal of Mathematical Analysis and
Applications, vol. 446, no. 2, pp. 1274–1291, 2017.

[16] F. Chen and S. Wu, “Fejér and Hermite-Hadamard type
Inequalities for harmonically convex functions,” Journal of
Applied Mathematics, vol. 2014, Article ID 386806, 2014.

[17] I. Iscan, “Ostrowski type inequalities for p-convex functions,”
New Trends in Mathematical Science, vol. 4, no. 3, p. 140, 2016.

[18] I. Iscan and S. Wu, “Hemite-Hadamard type inequalities for
harmonically convex functions via fractional integrals,” Applied
Mathematics and Computation, vol. 238, pp. 237–244, 2014.

[19] S. Kang, G. Abbas, G. Farid, and W. Nazeer, “A generalized
Fejér-Hadamard inequality for harmonically convex func-
tions via generalized fractional integral operator and related
results,” Mathematics, vol. 6, no. 7, p. 122, 2018.

[20] M. Kunt, I. Iscan, N. Yazi, and U. Gozutok, “On new in-
equalities of Hermite-Hadamard-Fejér type inequalities for
harmonically convex functions via fractional integrals,”
Springer Plus, vol. 5, no. 1, pp. 1–19, 2016.

[21] Y. Rao, M. Yussouf, G. Farid, J. Pečarić, and I. Tlili, “Further
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+e results of this paper provide two Hadamard-type inequalities for strongly (s, m)-convex functions via Riemann–Liouville
fractional integrals and error estimations of well-known fractional Hadamard inequalities. +eir special cases are given and
connected with the results of some published papers.

1. Introduction

+e most prominent inequality for convex functions is the
well-known Hadamard inequality stated in the following.

Theorem 1 (see [1]). Let f: I ⊂ R⟶ R be a convex
function on the interval I, where x, y ∈ I with x<y. .en, the
following inequality holds:

f
x + y

2
 ≤

1
y − x


y

x
f(u)du≤

f(x) + f(y)

2
. (1)

Convex functions are extended, generalized, and refined
in different ways to define new types of convex functions.
For instance, s-convex, m-convex, (s, m)-convex, strongly
convex, and strongly (s, m)-convex functions are extensions
of convex functions. +e aim of this paper is to establish
integral inequalities by using the class of strongly
(s, m)-convex functions. We give definitions of
(s, m)-convex and strongly (s, m)-convex functions as
follows.

Definition 1 (see [2]). A function f: [0,∞)⟶ R is called
(s, m)-convex in the second sense, if the following inequality
holds:

f(tx + m(1 − t)y)≤ t
s
f(x) + m(1 − t)

s
f(y), (2)

for every x, y ∈ [0,∞), t ∈ [0, 1] and [s, m) ∈ (0, 1] × [0, 1).

Definition 2 (see [3]). A function f: [0,∞)⟶ R is called
strongly (s, m)-convex in the second sense with modulus
C≥ 0, if the following inequality holds:

f(tx + m(1 − t)y)≤ t
s
f(x) + m(1 − t)

s
f(y)

− Cmt(1 − t)(y − x)
2
,

(3)

for every x, y ∈ [0,∞), t ∈ [0, 1] and [s, m) ∈ (0, 1] × [0, 1).

By setting (s, m) � (s, 1), (s, m) � (1, m), and (s, m) �

(1, 1) in (2), we get s-convex [4], m-convex [5], and convex
functions, respectively, while by setting (s, m) � (s, 1),
(s, m) � (1, m), and (s, m) � (1, 1) in (3), we get strongly
s-convex [6], strongly m-convex [7], and strongly convex [6]
functions, respectively.

Next we give definition of Riemann–Liouville fractional
integrals Jαx+ f and Jαy− f which are utilized to get the desired
results of this paper.

Definition 3 (see [8]). Let f ∈ L1[x, y]. +en, Rie-
mann–Liouville fractional integral operators of order α> 0
are given by
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J
α
x+ f(u) �

1
Γ(α)


u

x
(u − t)

α− 1
f(t)dt, u>x,

J
α
y− f(u) �

1
Γ(α)


y

u
(t − u)

α− 1
f(t)dt, u<y,

(4)

where Γ(α) � 
∞
0 e− ttα− 1dt is the gamma function and

J0x+ f(u) � J0y− f(u) � f(u).

+e following special functions are also involved in the
findings of this paper.

Definition 4. +e beta function, also referred to as first type
of Euler integral, is defined by

β(α, s) � 
1

0
t
α− 1

(1 − t)
s− 1dt, (5)

where Re(α),Re(s)> 0.

Close association of the beta function to the gamma
function is an important factor of the beta function

β(α, s) �
Γ(α)Γ(s)

Γ(α + s)
. (6)

+e beta function is symmetric, i.e., β(α, s) � β(s, α). A
generalization of the beta function, called the incomplete
beta function, is defined by

β(b; α, s) � 
b

0
t
α− 1

(1 − t)
s− 1dt, (7)

where Re(α),Re(s)> 0 with 0< b< 1. +e incomplete beta
function β(b; α, s) weakens to the ordinary β(α, s) (beta
function) by setting b � 1.

In [8], the Hadamard inequality is studied for Rie-
mann–Liouville fractional integrals which is stated in the
following theorem.

Theorem 2. Let f: [x, y]⟶ R be a positive function with
0≤x<y and f ∈ L1[x, y]. If f is convex function on [x, y],
then the following inequality for fractional integrals holds:

f
x + y

2
 ≤

Γ(α + 1)

2(y − x)
α J

α
x+ f( (y) + J

α
y− f (x) 

≤
f(x) + f(y)

2
,

(8)

with α> 0.

+e inequality stated in the aforementioned theorem
motivates the researchers to work in this direction by
establishing other kinds of inequalities for Riemann–Liou-
ville fractional integrals. In the past decade, several classical
inequalities have been extended via different kinds of
fractional integral operators. +e Hadamard inequality is
one of the most studied inequalities for fractional integral
operators. For some recent work, we refer the readers to
[3, 8–17].

+is paper is organized as follows. In Section 2, two
versions of the Hadamard inequality for strongly
(s, m)-convex functions via Riemann–Liouville fractional
integrals are given. +eir connection with the well-known
results is established in the form of corollaries and remarks.
In Section 3, the error estimations of Hadamard inequalities
for Riemann–Liouville fractional integrals are obtained by
using differentiable strongly (s, m)-convex functions.

2. Main Results

Theorem 3. Let f ∈ L1[x, y] be a positive function with
0≤x<y. If f is strongly (s, m)-convex function on [x, my]

with modulus C≥ 0, m≠ 0, 0< s≤ 1, then the following
fractional integral inequality holds:

2s− 1
f

x + my

2
  +

2s− 3
Cmα

α + 2
(x − y)

2
+
2(my − (x/m))

2

α(α + 1)
+
2(x − y)(my − (x/m))

(α + 1)
 

≤
Γ(α + 1)

2(my − x)
α J

α
x+ f(my) + m

α+1
J
α
y− f

x

m
  ≤

α(f(x) + mf(y))

2(α + s)

+
mαβ(α, s + 1) f(y) + mf x/m2

  

2
−

Cmα (y − x)
2

+ m y − x/m2
  

2
 

2(α + 1)(α + 2)
,

(9)

with α> 0.

Proof. Since f is strongly (s, m)-convex function, for
u, v ∈ [x, y], we have

f
u + mv

2
 ≤

f(u) + mf(v)

2s −
Cm

4
|u − v|

2
. (10)

By setting u � xt + m(1 − t)y and v � yt + (1 − t)(x/m),
we have

f
x + my

2
 ≤

1
2s f(xt + m(1 − t)y) +

m

2s f yt +(1 − t)
x

m
 

−
Cm

4
t(x − y) +(1 − t) my −

x

m
 





2
.

(11)

By multiplying inequality (11) with tα− 1 on both sides
and then integrating over the interval [0, 1], we get
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f
x + my

2
  

1

0
t
α− 1dt≤

1
2s 

1

0
f(xt + m(1 − t)y)t

α− 1dt

+
m

2s 
1

0
f yt +(1 − t)

x

m
 t

α− 1dt −
Cm

4

1

0
t(x − y) +(1 − t) my −

x

m
 





2
t
α− 1dt.

(12)

By change of variables, we will get

1
α

f
x + my

2
 ≤

Γ(α)

2s
(my − x)

α
1
Γ(α)


x

my
(my − u)

α− 1
f(u)du +

m
α+1

Γ(α)


· 
y

(x/m)
v −

x

m
 

α− 1
f(v)dv −

Cm

4
(x − y)

2

α + 2
+
2(my − (x/m))

2

α(α + 1)(α + 2)
+
2(x − y)(my − (x/m))

(α + 1)(α + 2)
 .

(13)

Further, the above inequality takes the following form:

2s− 1
f

x + my

2
 ≤

Γ(α + 1)

2(my − x)
α J

α
x+ f(my) + m

α+1
J
α
y− f

x

m
  

−
2s− 1

Cmα
4

(x − y)
2

α + 2
+
2(my − (x/m))

2

α(α + 1)(α + 2)
+
2(x − y)(my − (x/m))

(α + 1)(α + 2)
 .

(14)

From the definition of strongly (s, m)-convex function
with modulus C, for t ∈ [0, 1], we have the following
inequality:

f(tx + m(1 − t)y) + mf yt +(1 − t)
x

m
 

≤ t
s
(f(x) + mf(y)) + m(1 − t)

s
f(y) + mf

x

m
2  

− Cmt(1 − t) (y − x)
2

+ m y −
x

m2 
2

 .

(15)

By multiplying inequality (15) with tα− 1 on both sides
and then integrating over the interval [0, 1], we get


1

0
f(tx + m(1 − t)y)t

α− 1dt + m 
1

0
f yt +(1 − t)

x

m
 t

α− 1dt

≤ (f(x) + mf(y)) 
1

0
t
s+α− 1dt + m f(y) + mf

x

m
2   

1

0
t
α− 1

(1 − t)
sdt

− Cm (y − x)
2

+ m y −
x

m2 
2

  
1

0
t
α
(1 − t)dt.

(16)
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By change of variables, we will get

Γ(α)

(my − x)
α

1
Γ(α)


x

my
(my − u)

α− 1
f(u)du +

m
α+1

Γ(α)


y

(x/m)
v −

x

m
 

α− 1
f(v)dv 

≤
f(x) + mf(y)

α + s
+ m f(y) + mf

x

m
2  β(s + 1, α) −

Cm (y − x)
2

+ m y − x/m2
  

2
 

(α + 1)(α + 2)
.

(17)

Further, the above inequality takes the following form:

Γ(α+1)

2(my − x)
α J

α
x+ f(my) + m

α+1
J
α
y− f

x

m
  

≤
α(f(x) + mf(y))

2(α+ s)
+

mα
2

f(y) + mf
x

m
2  β(s +1,α)

−
Cmα (y − x)

2
+ m y − x/m2

  
2

 

2(α+1)(α+2)
.

(18)

From inequalities (14) and (18), one can get inequality
(9). □

Remark 1

(i) For s � 1 in (9), we have the result for strongly
m-convex function [18].

(ii) For m � 1 and s � 1 in (9), we have the result for
strongly convex function.

(iii) For m � 1, s � 1, and C � 0, we get [[16], +eorem
2]

(iv) For m � 1, s � 1, α � 1, and C � 0, we get the
classical Hadamard inequality.

(v) For m � 1 and C � 0, we get [[17], +eorem 3].

Corollary 1. For m � 1, we have the result for Rie-
mann–Liouville fractional integrals of strongly s-convex
functions:

2s− 1
f

x + y

2
  +

2s− 1
Cα(y − x)

2 α2 − α + 2 

4(α + 1)(α + 2)

≤
Γ(α + 1)

2(y − x)
α J

α
x+ f(y) + J

α
y− f(x) 

≤
f(x) + f(y)

2
α

α + s
+
Γ(α + 1)Γ(s + 1)

Γ(α + s + 1)
  −

Cα(y − x)
2

(α + 1)(α + 2)
.

(19)

Corollary 2. For α � 1 and m � 1, the following inequality
holds for strongly s-convex function:

2s− 1
f

x + y

2
  +

2s− 1
C(y − x)

2

12

≤
1

y − x


y

x
f(u)du≤

f(x) + f(y)

s + 1
−

C(y − x)
2

6
.

(20)

In the next theorem, we give another version of the
Hadamard inequality.

Theorem 4. Under the assumptions of .eorem 3, the fol-
lowing fractional integral inequality holds:

2s− 1
f

x + my

2
 

+
Cmα
24− s

(x − y)
2

2(α + 2)
+

(my − (x/m))
2 α2 + 5α + 8 

2α(α + 1)(α + 2)
+

(x − y)(my − (x/m))(α + 3)

(α + 1)(α + 2)
⎡⎣ ⎤⎦

≤
2α− 1Γ(α + 1)

(my − x)
α J

α
((x+my)/2)+ f (ym) + m

α+1
J
α
((x+ym)/2m)− f 

x

m
  

≤
α(f(x) + mf(y))

2s+1
(α + s)

+ 2α− 1
mα f(y) + mf

x

m
2  β

1
2
; s + 1, α 

−
Cmα (y − x)

2
+ m y − x/m2

  
2

 (α + 3)

8(α + 1)(α + 2)
,

(21)
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with α> 0. Proof. Let t ∈ [0, 1]. Using strong (s, m)-convexity of
function f for u � x(t/2) + m((2 − t)/2)y and v � ((2
− t)/2)(x/m) + y(t/2) in inequality (10), we have

f
x + my

2
 ≤

1
2s f x

t

2
+ m

2 − t

2
 y  +

m

2s f
2 − t

2
 

x

m
+ y

t

2
 

−
Cm

4
t

2
(x − y) +

2 − t

2
my −

x

m
 





2
.

(22)

By multiplying (22) with tα− 1 on both sides and making
integration over [0, 1], we get

f
x + my

2
  

1

0
t
α− 1dt≤

1
2s 

1

0
f x

t

2
+ m

2 − t

2
 y t

α− 1dt

+
m

2s 
1

0
f

2 − t

2
 

x

m
+ y

t

2
 t

α− 1dt

−
Cm

4

1

0

t

2
(x − y) +

2 − t

2
my −

x

m
 





2
t
α− 1dt.

(23)

By using change of variables and computing the last
integral, from (23), we get

2s

α
f

x + my

2
 

≤
2αΓ(α)

(my − x)
α

1
Γ(α)


((x+my)/2)

my
(my − u)

α− 1
f(u)du +

m
α+1

Γ(α)


((ym+x)/2m)

(x/m)
v −

x

m
 

α− 1
f(v)dv 

−
2s

Cm

4
(x − y)

2

4(α + 2)
+

(my − (x/m))
2 α2 + 5α + 8 

4α(α + 1)(α + 2)
+

(x − y)(my − (x/m))(α + 3)

2(α + 1)(α + 2)
⎡⎣ ⎤⎦.

(24)

Further, it takes the following form:

2s− 1
f

x + my

2
 ≤

2α− 1Γ(α + 1)

(my − x)
α J

α
((x+my)/2)+ f (ym) + m

α+1
J
α
((ym+x)/2m)− f 

x

m
  

−
2s− 1

Cmα
4

(x − y)
2

4(α + 2)
+

(my − (x/m))
2 α2 + 5α + 8 

4α(α + 1)(α + 2)
+

(x − y)(my − (x/m))(α + 3)

2(α + 1)(α + 2)
⎡⎣ ⎤⎦.

(25)

+e first inequality of (21) can be seen in (25). Now we
prove the second inequality of (21). Since f is strongly

(s, m)-convex function and t ∈ [0, 1], we have the following
inequality:
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f x
t

2
+ m

2 − t

2
 y  + mf

2 − t

2
 

x

m
+ y

t

2
 ≤

t

2
 

s

(f(x) + mf(b))

+ m
2 − t

2
 

s

f(y) + mf
x

m
2   −

Cmt(2 − t)

4
(y − x)

2
+ m y −

x

m2 
2

 .

(26)

By multiplying inequality (26) with tα− 1 on both sides
and making integration over [0, 1], we get


1

0
f x

t

2
+ m

2 − t

2
 y t

α− 1dt + m 
1

0
f

2 − t

2
 

x

m
+ y

t

2
 t

α− 1dt

≤
1
2s (f(x) + mf(y)) 

1

0
t
s+α− 1dt +

m

2s f(y) + mf
x

m
2   

1

0
(2 − t)

s
t
α− 1dt

−
Cm

4
(y − x)

2
+ m y −

x

m
2   

1

0
t
α
(2 − t)dt.

(27)

By using change of variables and computing the last
integral, from (27), we get

2αΓ(α)

(my − x)
α

1
Γ(α)


((x+my)/2)

my
(my − u)

α− 1
f(u)du +

m
α+1

Γ(α)


((my+x)/2m)

(x/m)
v −

x

m
 

α− 1
f(v)dv 

≤
f(x) + mf(y)

2s
(α + s)

+ 2αm f(y) + mf
x

m
2  β

1
2
: s + 1, α 

−
Cm (y − x)

2
+ m y − x/m2

  
2

 (α + 3)

4(α + 1)(α + 2)
.

(28)

Further, it takes the following form:

2α− 1Γ(α + 1)

(my − x)
α J

α
((x+my)/2)+ f (ym) + m

α+1
J
α
((x+ym)/2m)− f 

x

m
  

≤
α(f(x) + mf(y))

2s+1
(α + s)

+ 2α− 1
mα f(y) + mf

x

m
2  β

1
2
: s + 1, α 

−
Cmα (y − x)

2
+ m y − x/m2

  
2

 (α + 3)

8(α + 1)(α + 2)
.

(29)
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From inequalities (25) and (29), we have inequality (21). □

Remark 2

(i) For s � 1 in (21), we get the result for strongly
m-convex function [18].

(ii) Form � 1, s � 1, and C � 0, we get [[16],+eorem 2]

(iii) For m � 1, s � 1, α � 1, and C � 0, we get the
classical Hadamard inequality.

Corollary 3. For m � 1 and s � 1 in (21), we have the result
for Riemann–Liouville fractional integrals of strongly convex
function:

f
x + y

2
  +

C(y − x)
2

2(α + 1)(α + 2)

≤
2α− 1Γ(α + 1)

(y − x)
α J

α
((x+y)/2)+ f (y) + J

α
((x+y)/2)− f (x) 

≤
f(x) + f(y)

2
−

Cα(y − x)
2
(α + 3)

4(α + 1)(α + 2)
.

(30)

Corollary 4. For m � 1 in (21), we get the result for Rie-
mann–Liouville fractional integrals of strongly s-convex
function:

2s− 1
f

x + y

2
 

+
2s

C(x − y)
2

4(α + 1)(α + 2)
≤
2α− 1Γ(α + 1)

(y − x)
α J

α
((x+y)/2)+ f (y) + J

α
((x+y)/2)− f (x) 

≤ α(f(x) + f(y))
1

2s+1
(α + s)

+ 2α− 1β
1
2
; s + 1, α   −

Cα(y − x)
2
(α + 3)

4(α + 1)(α + 2)
.

(31)

Corollary 5. For m � 1 and C � 0 in (21), we get the result
for Riemann–Liouville fractional integrals of s-convex
function:

2s− 1
f

x + y

2
 ≤

2α− 1Γ(α + 1)

(y − x)
α J

α
((x+y)/2)+ f (y) + J

α
((x+y)/2)− f (x) 

≤ α(f(x) + f(y))
1

2s+1
(α + s)

+ 2α− 1β
1
2
; s + 1, α  .

(32)

Corollary 6. For m � 1 and α � 1 in (1), we have the
Hadamard inequality for strongly s-convex function:

2s− 1
f

x + y

2
  +

2s
C(x − y)

2

24
≤

1
y − x


y

x
f(u)du

≤
f(x) + f(y)

s + 1
−

C(y − x)
2

6
.

(33)

3. Error Estimations of Riemann–Liouville
Fractional Integral Inequalities

+e following two lemmas are very useful to obtain the
results of this section.

Lemma 1 (see [8]). Let f: [x, y]⟶ R be a differentiable
mapping on (x, y) with x<y. If f′ ∈ Ł[x, y], then the fol-
lowing fractional integral equality holds:
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f(x) + f(y)

2
−
Γ(α + 1)

2(y − x)
α J

α
x+ f( (y) + J

α
y− f (x) 

�
y − x

2

1

0
(1 − t)

α
− t

α
 f′(tx +(1 − t)y)dt.

(34)

Lemma 2 (see [10]). Let f: [x, y]⟶ R be a differentiable
mapping on (x, y) with x<y. If f′ ∈ [x, my], m ∈ (0, 1],
then the following equality for fractional integrals holds:

2α− 1Γ(α + 1)

(my − x)
α J

α
((x+my)/2)+ f (my) + m

α+1
J
α
((x+my)/2m)− f 

x

m
  

−
1
2

f
x + my

2
  + mf

x + my

2m
  |

�
mb − a

4

1

0
t
α
f′ x

t

2
+ m

2 − t

2
 y dt + 

1

0
t
α
f′ y

t

2
+

2 − t

2
 

x

m
 dt .

(35)

Theorem 5. Let f: [x, y]⟶ R be a differentiable mapping
on (x, y) with x<y. If |f′| is a strongly (s, m)-convex

function on [x, my] with modulus C≥ 0, m≠ 0, and 0< s≤ 1,
then the following fractional integral inequality holds:

f(x) + f(y)

2
−
Γ(α + 1)

2(y − x)
α J

α
x+ f( (y) + J

α
y− f (x) 





≤
y − x

2
f′(x)


 β

1
2
; α + 1, s + 1  − β

1
2
; s + 1, α + 1  +

1 − (1/2)
α+s

α + s + 1
 

+ m f′
y

m
 




β

1
2
; α + 1, s + 1  − β

1
2
; s + 1, α + 1  +

1 − (1/2)
α+s

α + s + 1
 

−
2Cm((y/m) − x)

2

(α + 2)(α + 3)
1 −

α + 4
2α+2 ,

(36)

with α> 0. Proof. Since |f′| is strongly (s, m)-convex function on
[x, y], for t ∈ [0, 1], we have

f′(tx +(1 − t)y)


≤ t
s

f′(x)


 + m(1 − t)
s

f′
y

m
 




− Cmt(1 − t)

y

m
− x 

2
. (37)
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By using Lemma 1 and (37), we have

f(x) + f(y)

2
−
Γ(α + 1)

2(y − x)
α J

α
x+ f( (y) + J

α
y− f (x) 





≤
y − x

2

1

0
(1 − t)

α
− t

α
 f′ tx + m(1 − t)

y

m
 




dt

≤
y − x

2

1

0
(1 − t)

α
− t

α
 t

s
f′(x)


 + m(1 − t)

s
f′

y

m
 




− Cmt(1 − t)

y

m
− x 

2
 dt

≤
y − x

2


(1/2)

0
(1 − t)

α
− t

α
(  t

s
f′(x)


 + m(1 − t)

s
f′

y

m
 




− Cmt(1 − t)

y

m
− x 

2
 dt

+ 
1

(1/2)
t
α

− (1 − t)
α

(  t
s

f′(x)


 + m(1 − t)
s

f′
y

m
 




− Cmt(1 − t)

y

m
− x 

2
 dt

≤
y − x

2
f′(x)


 β

1
2
; α + 1, s + 1  − β

1
2
; s + 1, α + 1  +

1 − (1/2)
α+s

α + s + 1
  + m f′

y

m
 






· β
1
2
; α + 1, s + 1  − β

1
2
; s + 1, α + 1  +

1 − (1/2)
α+s

α + s + 1
  −

2Cm((y/m) − x)
2

(α + 2)(α + 3)
1 −

α + 4
2α+2 .

(38)

After simplifying the last inequality of (38), we get
(36). □

Remark 3

(i) By setting C � 0 in inequality (36), one can get result
for (s, m)-convex function.

(ii) By setting s � 1 in inequality (36), we get [[18],
+eorem 8].

Corollary 7. By taking m � 1 in (36), we have the result for
Riemann–Liouville fractional integrals of strongly s-convex
function:

f(x) + f(y)

2
−
Γ(α + 1)

2(y − x)
α J

α
x+ f( (y) + J

α
y− f (x) 





≤
y − x

2
f′(x)


 β

1
2
; α + 1, s + 1  − β

1
2
; s + 1, α + 1  +

1 − (1/2)
α+s

α + s + 1
 

+ f′(y)


 β
1
2
; α + 1, s + 1  − β

1
2
; s + 1, α + 1  +

1 − (1/2)
α+s

α + s + 1
 

−
2C(y − x)

2

(α + 2)(α + 3)
1 −

α + 4
2α+2 .

(39)

Corollary 8. By takingm � 1 and s � 1 in inequality (36), we
have the result for Riemann–Liouville fractional integrals of
strongly convex function:

f(x) + f(y)

2
−
Γ(α + 1)

2(y − x)
α J

α
x+ f( (y) + J

α
y− f (x) 





≤
y − x

2
1 − (1/2)

α

(α + 1)
f′(x)


 + f′(y)


  −

2C(y − x)
2

(α + 2)(α + 3)
1 −

α + 4
2α+2  .

(40)
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Corollary 9. By taking m � s � 1 and α � 1 in inequality
(36), we get the following inequality:

f(x) + f(y)

2
−

1
y − x


y

x
f(u)du




≤

y − x

8
f′(x)


 + f′(y)


  −

C(y − x)
3

32
. (41)

Inequality (41) provides the refinement of [[19], +eo-
rem 2.2].

Theorem 6. Let f: [x, y]⟶ R be a differentiable mapping
on (x, y) with x<y. If |f′|q is strongly (s, m)-convex on
[x, my] with modulus C≥ 0, (s, m) ∈ (0, 1]2 for q≥ 1, then
the following inequality for fractional integrals holds:

2α− 1Γ(α + 1)

(my − x)
α J

α
((x+my)/2)+ f (my) + m

α+1
J
α
((x+my)/2m)− f 

x

m
  



−
1
2

f
x + my

2
  + mf

x + my

2m
   ≤

my − x

4(α + 1)
(1/p)



·
f′(x)



q

2s(α + s + 1)
+ 2α+1

m f′(y)



qβ

1
2
; s + 1, α + 1  −

Cm(y − x)2(α + 4)

4(α + 2)(α + 3)
 

(1/q)

⎡⎢⎢⎣

+
f′(y)



q

2s(α + s + 1)
+ 2α+1

m f′
x

m2 





q

β
1
2
; s + 1, α + 1  −

Cm x/m2(  − y( 
2
(α + 4)

4(α + 2)(α + 3)
 

(1/q)

⎤⎥⎥⎥⎦.

(42)

Proof. By applying Lemma 2 and strong (s, m)-convexity of
|f′|, we have

2α− 1Γ(α + 1)

(my − x)
α J

α
((x+my)/2)+ f (my) + m

α+1
J
α
((x+my)/2m)− f 

x

m
   −

1
2

f
x + my

2
 



+ mf
x + my

2m
 


≤

my − x

4

1

0
t
α
f′

t

2
x + m

2 − t

2
 y 




dt

+ 
1

0
t
α
f′

2 − t

2
 

x

m
+

t

2
y 




dt≤

my − x

4
f′(x)


 + f′(y)




2s  
1

0
t
α+sdt

+
m

2s f′(y)


 + f′
x

m
2 




  

1

0
t
α
(2 − t)

sdt −
Cm

4
(y − x)

2
+

x

m2 − y 
2

 

· 
1

0
t
α+1

(2 − t)dt �
my − x

4
f′(x)


 + f′(y)




2s
(α + s + 1)

  + 2α+1
m f′(y)


 + f′

x

m
2 




 

· β
1
2
; s + 1, α + 1  −

Cm(α + 4)

4(α + 2)(α + 3)
(y − x)

2
+

x

m2 − y 
2

 .

(43)
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Now, for strong (s, m)-convexity of |f′|q, q> 1, using
power mean inequality, we get

|
2α− 1Γ(α + 1)

(my − x)
α J

α
((x+my)/2)+ f (my) + m

α+1
J
α
((x+my)/2m)− f 

x

m
   −

1
2

f
x + my

2
 

+ mf
x + my

2m
 |≤

my − x

4

1

0
t
αdt 

1− (1/q)


1

0
t
α

f′
t

2
x + m

2 − t

2
 y 





q

dt 

(1/q)

⎡⎣

+ 
1

0
t
α

f′
2 − t

2
 

x

m
+

t

2
y 





q

dt 

(1/q)

⎤⎦≤
my − x

4(α + 1)
(1/p)

|f(x)|q

2s

1

0
t
α+sdt +

m f′(y)



q

2s

1

0
t
α
(2 − t)

sdt −
Cm(y − x)2

4

1

0
t
α+1

(2 − t)dt 

(1/q)

+
f′(y)



q

2s

1

0
t
α+sdt +

m

2s
f′

x

m2 





q


1

0
t
α
(2 − t)

sdt −
Cm x/m2(  − y( 

2

4

1

0
t
α+1

(2 − t)dt 

(1/q)

≤
my − x

4(α + 1)
(1/p)

f′(x)



q

2s(α + s + 1)
+ 2α+1

m f′(y)



qβ

1
2
; s + 1, α + 1  −

Cm(y − x)2(α + 4)

4(α + 2)(α + 3)
 

(1/q)

⎡⎢⎢⎣

+
f′(y)



q

2s(α + s + 1)
+ 2α+1

m f′
x

m2 





q

β
1
2
; s + 1, α + 1  −

Cm x/m2(  − y( 
2
(β + 4)

4(β + 2)(β + 3)
 

(1/q)

⎤⎥⎥⎥⎦.

(44)

Hence, we have inequality (42). □

Remark 4

(i) For s � 1 in inequality (42), we have the result for
strongly m-convex function [18].

(ii) For s � 1,m � 1, andC � 0 in inequality (42), we get
[[16], +eorem 5].

(iii) For s � 1, m � 1, C � 0, and α � 1 in inequality (42),
we get the inequality proved by Kirmaci in [20].

Corollary 10. For s � 1 and m � 1 in inequality (42), we
have the result for Riemann–Liouville fractional integrals of
strongly convex function:

2α− 1Γ(α + 1)

(y − x)
α J

α
((x+y)/2)+ f (y) + J

α
((x+y)/2)− f (x)  − f

x + y

2
 




≤

y − x

4(α + 1)(2α + 4)
(1/q)

· f′(x)



q
(α + 1) + f′(y)



q
(α + 3) −

C(y − x)2(α + 1)(α + 4)

2(α + 3)
 

(1/q)

⎡⎢⎣

+ f′(y)



q
(α + 1) + f′(x)



q
(α + 3) −

C(y − x)2(α + 1)(α + 4)

2(α + 3)
 

(1/q)

⎤⎥⎦.

(45)
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Corollary 11. For m � 1 in inequality (42), we have the
result for Riemann–Liouville fractional integrals of strongly
s-convex function:

2α− 1Γ(α + 1)

(y − x)
α J

α
((x+y)/2)+ f (y) + J

α
(x+y)/2− f (x)  − f

x + y

2
 





≤
y − x

4(α + 1)
(1/p)

f′(x)



q

2s(α + s + 1)
+ 2α+1

f′(y)



qβ

1
2
; s + 1, α + 1  −

C(y − x)2(α + 4)

4(α + 2)(α + 3)
 

(1/q)

⎡⎢⎢⎣

+
f″(y)



q

2s(α + s + 1)
+ 2α+1

f′(x)



qβ

1
2
; s + 1, α + 1  −

C(y − x)2(α + 4)

4(α + 2)(α + 3)
 

(1/q)

⎤⎥⎥⎦.

(46)

Theorem 7. Let f: [x, y]⟶ R be a differentiable mapping
on (x, y) with x<y. If |f′|q is strongly (s, m)-convex function

on [x, my] with modulus C≥ 0, (s, m) ∈ (0, 1]2 for q> 1,
then the following fractional integral inequality holds:

2α− 1Γ(α + 1)

(my − x)
α J

α
((x+my)/2)+ f (my) + m

α+1
J
α
((x+my)/2m)− f 

x

m
   −

1
2

f
x + my

2
 



+ mf
x + my

2m
  ≤

(my − x) 2s
(s + 1)( 

(1/p)− 1

4(αp + 1)
(1/p)


f′(x)



q

+ m 2s+1
− 1  f′(y)



q



−
2sCm(s + 1)(y − x)2

6


(1/q)

+ m 2s+1
− 1  f′

x

m2 





q

+ f′(y)



q



−
2sCm(s + 1) x/m2(  − y( 

2

6


(1/q)

⎤⎥⎥⎥⎦≤
(my − x) 2s

(s + 1)( 
(1/p)− 1

4(αp + 1)
(1/p)

f′(x)


 + f′(y)




+ m 2s+1
− 1  f′

x

m
2 




+ f′(y)


  −

2s
Cm(s + 1)

6
(y − x)

2
+

x

m2 − y 
2

 ,

(47)

where α> 0. Proof. By applying Lemma 2 and then using Hölder in-
equality and strong (s, m)-convexity of |f′|q, we get

|
2α− 1Γ(α + 1)

(my − x)
α J

α
((x+my)/2)+ f (my) + m

α+1
J
α
((x+my)/2m)− f 

x

m
   −

1
2

f
x + my

2
 

+mf
x + my

2m
 |≤

my − x

4

1

0
t
pαdt 

1/p


1

0
f′ x

t

2
+ m

2 − t

2
 y 





q

dt 

1/q
⎡⎣

+ 
1

0
f′ y

t

2
+

2 − t

2
 

x

m
 





q

dt 

1/q
⎤⎦≤

my − x

4
1

αp + 1
 

1/p

f′(x)



q


1

0

t

2
 

s

dt

+m f′(y)



q


1

0

2 − t

2
 

s

dt −
Cm(y − x)2

4

1

0
t(2 − t)dt

1/q

+ f′(y)



q


1

0

t

2
 

s

dt
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+m f′
x

m2 





q


1

0

2 − t

2
 

s

dt −
Cm x/m2(  − y( 

2

4

1

0
t(2 − t)dt

1/q
⎤⎥⎥⎦ �

(my − x)(s + 1)
(1/p)− 1

22− s((1/p)− 1)
(αp + 1)

(1/p)

f′(x)



q

+ m f′(y)



q 2s+1

− 1  −
2sCm(s + 1)(y − x)2

6
 

1/q

+ m f′
x

m2 





q

2s+1
− 1 ⎡⎣

+ f′(y)



q

−
2sCm(s + 1) x/m2(  − y( 

2

6


1/q
⎤⎥⎥⎦≤

(my − x) 2s
(s + 1)( 

(1/p)− 1

4(αp + 1)
(1/p)

f′(x)


 + f′(y)




+ m 2s+1
− 1  f′(y)


 + f′

x

m
2 




  −

2s
Cm(s + 1)

6
(y − x)

2
+

x

m2 − y 
2

 .

(48)

We have used Aq + Bq ≤ (A + B)q, for A≥ 0, B≥ 0. +is
completes the proof. □

Remark 5

(i) For s � 1 in inequality (47), we get [[18], +eorem
10].

(ii) For s � 1 and C � 0 in inequality (47), we get [[10],
+eorem 2.7].

(iii) For s � 1,m � 1, andC � 0 in inequality (47), we get
[[16], +eorem 6].

Corollary 12. For α � 1 and m � 1, we have the result for
s-convex function:

1
y − x


y

x
f(u)du − f

x + y

2
 




≤

(y − x) 2s
(s + 1)( 

(1/p)− 1

4(p + 1)
(1/p)

· f′(x)



q

+ 2s+1
− 1  f′(y)



q

−
2sC(s + 1)(y − x)2

6
 

1/q
⎡⎣

+ 2s+1
− 1  f′(x)



q

+ f′(y)



q

−
2sC(s + 1)(y − x)2

6
 

1/q
⎤⎦

≤
(y − x) 2s

(s + 1)( 
(1/p)− 1

4(p + 1)
(1/p)

2s+1
f′(x)


 + f′(y)


  −

2s
C(s + 1)

3
(y − x)

2
 .

(49)

Corollary 13. For α � 1 and m � q � 1, we have

1
y − x


y

x
f(u)du − f

x + y

2
 





≤
y − x

4(s + 1)
2 f′(x)


 + f′(y)


  −

C(s + 1)

3
(y − x)

2
 .

(50)

Corollary 14. For α � 1 and m � q � s � 1, we have

1
y − x


y

x
f(u)du − f

x + y

2
 





≤
y − x

4
|f′(x)| + f′(y)


  −

C

3
(y − x)

2
 .

(51)
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In this paper, the generalized fractional integral operators involving Appell’s function F3(·) in the kernel due to Mar-
ichev–Saigo–Maeda are applied to the (p, q)-extended Struve function.(e results are stated in terms of Hadamard product of the
Fox–Wright function rψs(z) and the (p, q)-extended Gauss hypergeometric function. A few of the special cases (Saigo integral
operators) of our key findings are also reported in the corollaries. In addition, the solutions of a generalized fractional kinetic
equation employing the concept of Laplace transform are also obtained and examined as an implementation of the
(p, q)-extended Struve function. Technique and findings can be implemented and applied to a number of similar fractional
problems in applied mathematics and physics.

1. Introduction

(e Struve functions are interesting special functions that
also provide solutions to a variety of issues formulated in
terms of discrete, integral, and differential equations of
fractional order; thus, many authors have recently become
interested in the domain of fractional calculus and its
implementations. (erefore, an extremely large number of
authors (for details, see [1–7]) have also researched, in detail,
the features, implementations, and numerous extensions of
different fractional calculus operators. (e research
monographs by Miller and Ross [8] can be referred to for

comprehensive overview of fractional calculus operators
(FCOs) together with their characteristics and potential
applications. (e (p, q)-variant (when p � q, p-variant)
associated with a set of similar higher transcendental
hypergeometric style special functions (see [9–13]) has re-
cently been investigated by several authors. In specific,
Maŝireviĉ et al. [14] introduced and analysed the
(p, q)-extended Struve function Hμ,p,q(z) of the first kind of
order δ withR(δ)> (− 1/2) and min p, q ≥ 0 when p � q �

0 in this manner:

Hδ,p,q(z) �
2(z/2)

δ+1

��
π

√
Γ(δ +(1/2))



∞

k�0
(− 1)

k
B k + 1, δ +

1
2
; p, q 

z
2k

(2k + 1)!
, (1)

�
z
δ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)

(3/2)k B(1, δ +(1/2))k!

− z2

4
 

k

. (2)
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Choi et al. [15] introduced the (p, q)-extended beta
function as

B(ς, ϑ: p, q) � 
1

0
t
ς− 1

(1 − t)
ϑ− 1

e
− ((p/t)+(q/1− t))dt,

(min R(ς),R(ϑ){ }> 0; min R(p),R(q) ≥ 0).

(3)

(e more details and generalized form of the definitions
(3) are considered in [16]. It is clear that the case p � 0 � q

automatically reduces the classical Struve function Hδ(z) of
the first kind (see, e.g., [17] p. 328, equation (2)):

Hδ(z) � 
∞

k�0
(− 1)

k (z/2)
2k+δ+1

Γ(δ +(3/2))Γ(δ + k +(3/2))
. (4)

(e Struve function is widely studied in the reference to
properties and applications in several papers (see details
[18–22]).

FCO involving different special functions have estab-
lishedmajor significance and requirements in the simulation
of related structures in diverse domain of engineering and
science, such as quantummechanics and turbulence, particle
physics, nonlinear optimization system, and nonlinear
control theory, controlled thermonuclear fusion, nonlinear
natural processes, image processing, quantum mechanics,
and astrophysics.

In the context of the success of Saigo operators [23, 24],
in their study of different function spaces and their use in
differential equations and integral equations, Saigo and
Maeda [25] presented the corresponding generalized frac-
tional differential and integral operators in any complex
order with Appell’s function F3(·) in the kernel as follows.
Let ς, ς′, ϑ, ϑ′,ϖ ∈ C and x> 0, then the generalized frac-
tional calculus operators are defined by the following
equations:

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
0+ f (x) �

x
− ς

Γ(ϖ)


x

0
(x − t)

ϖ− 1
t
− ς′

, (5)

× F3 ς, ς′, ϑ, ϑ′;ϖ; 1 −
t

x
, 1 −

x

t
 f(t)dt, (R(ϖ)> 0)

�
d

dx
 

k

I
ς,ς′ ,ϑ+k,ϑ′ ,ϖ+k
0+ f (x),

(6)

(R(ϖ)≤ 0; k � [− R(ϖ)] + 1);

I
ς,ς′,ϑ,ϑ′ ,ϖ
− f (x) �

x
− ς′

Γ(ϖ)

∞

x
(t − x)

ϖ− 1
t
− ς

,
(7)

× F3 ς, ς′, ϑ, ϑ′;ϖ; 1 −
x

t
, 1 −

t

x
 f(t)dt, (R(ϖ)> 0)

� −
d

dx
 

k

I
ς,ς′ ,ϑ,ϑ′+k,ϖ+k
− f (x),

(8)

(R(ϖ)≤ 0; k � [− R(ϖ)] + 1),

D
ς,ς′ ,ϑ,ϑ′,ϖ
0+ f (x) � I

− ς′ ,− ς,− ϑ′,− ϑ,− ϖ
0+ f (x),

(9)

�
d

dx
 

k

I
− ς′ ,− ς,− ϑ′+k,− ϑ,− ϖ+k
0+ f (x),

(R(ϖ)> 0; k � [R(ϖ)] + 1);

D
ς,ς′ ,ϑ,ϑ′ ,ϖ
− f (x) � I

− ς′,− ς,− ϑ′ ,− ϑ,− ϖ
− f (x)

� −
d

dx
 

k

I
− ς′ ,− ς,− ϑ′ ,− ϑ+k,− ϖ+k
− f (x),

(R(ϖ)> 0; k � [R(ϖ)] + 1).

(10)
(e interested reader may refer to the monograph by

Srivastava and Karlsson [26] for the concept of Appell
function F3(·).

(e image formulas for a power function, under oper-
ators (5) and (7), are given by Saigo and Maeda [25] as
follows:

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
0+ x

τ− 1
 (x) � x

τ− ς− ς′+ϖ− 1

× Γ
τ, τ + ϖ − ς − ς′ − ϑ, τ + ϑ′ − ς′

τ + ϑ′, τ + ϖ − ς − ς′, τ + ϖ − ς′ − ϑ
⎡⎣ ⎤⎦,

(11)

where R(τ)>max 0,R(ς + ς′ + ϑ − ϖ),R(ς′ − ϑ′)  and
R(ϖ)> 0.

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
− x

τ− 1
 (x) � x

τ+ϖ− ς− ς′− 1

×
Γ 1 − τ − ϖ + ς + ς′( Γ 1 − τ + ς + ϑ′ − ϖ( Γ(1 − τ − ϑ)

Γ(1 − τ)Γ 1 − τ + ς + ς′ + ϑ′ − ϖ( Γ(1 − τ + ς − ϑ)
,

(12)

where R(c)> 0,R(ϖ)< 1 + min R({ − ϑ),R(ς + ς′ − ϖ),
R(ς + ϑ′ − ϖ)}.

Here, we used the Γ · · ·· · ·  symbol, which represents a
fraction of several of the Gamma functions.

We will need the definition of the Hadamard product (or
convolution) of two analytical properties for our present
investigation. It will help us decompose a newly generated
function into two existing functions. In fact, if one of the two
power series defines a whole function, then the Hadamard
product series also defines a whole function. In reality, let

f(z) � 
∞

l�0
alz

l
|z|<Rf ,

g(z) � 
∞

l�0
blz

l
|z|<Rg ,

(13)

be two given power series whose radii of convergence are
given by Rf and Rg, respectively. (en, their Hadamard
product is a power series defined by

2 Journal of Mathematics



(f∗g)(z) � 
∞

l�0
alblz

l
� (g∗f)(z)(|x| <R), (14)

whose radius of convergence R is

1
R

� lim
l⟶∞

sup albl


 

(1/l)
≤ lim sup al


 

(1/l)

l⟶∞

⎛⎝ ⎞⎠ lim
l⟶∞

sup bl


 

(1/l)
  �

1
Rf · Rg

,

R≥Rf · Rg.

(15)

(e results in (eorems 1 and 2 will be expressed in a
Hadamard product of (p, q)-extended Gauss hyper-
geometric function (see [15], p. 354, equation (8)):

pF
q
(c, b; a; z) � 

∞

l�0

B(b + l, a − b; p, q)

B(b, a − b)

z
l

l!
(|z|< 1,R(a)>R(b)> 0), (16)

where B(c, b) is the classical beta function [27] and Fox–
Wright function pΨq(z)(p, q ∈ N0) [28].

pΨq

ς1, P1( , . . . , ςp, Pp ;

ϑ1, Q1( , . . . , ϑq, Qq ;

z
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 
∞

k�0

Γ ς1 + P1n( , . . . , Γ ςp + Ppn 

Γ ϑ1 + Q1n( , . . . , Γ ϑp + Qpn 

z
k

k!
,

Pj ∈ R
+
(j � 1, . . . , p), Qj ∈ R

+
(j � 1, . . . , q); 1 + 

q

j�0
Qj − 

p

j�0
Pj ≥ 0⎛⎝ ⎞⎠,

(17)

where the convergence condition holds true for

|z|<∇ � 

p

j�1
P

− Pj

j
⎛⎝ ⎞⎠ · 

q

j�1
Q

Qj

j
⎛⎝ ⎞⎠. (18)

In this paper, we aim to investigate compositions of the
generalized fractional integration operators involving
(p, q)-extended Struve function Hδ,p,q(z). Also, we consider
(2) to achieve the solution of the generalized fractional
kinetics equations (FKEs). Our approach here is based on
Laplace transformation, and we plan to broaden our results
by using the Sumudu transformation in a future career.

2. Fractional Integrations Approach

For this section, we assume that ς, ς′, ϑ, ϑ′,ϖ, τ, δ,ω ∈ C such
that R(ϖ)> 0, min R(p),R(q) > 0,R(δ)> (− 3/2). Fur-
thermore, let the constants satisfy the condition ςi, ϑj ∈ C,

and Pi, Qj ∈ R(Pi, Qj ≠ 0i � 1, 2, . . . , p; j � 1, 2, . . . , q),
such that condition (17) is also satisfied.

2.1. Left-Sided Generalized Fractional Integration of
(p, q)-Extended Struve Function. In this segment, we es-
tablish image formulas for the (p, q)-extended Struve
function involving left-sided operators of M-S-M fractional
integral operators (5), in terms of the Hadamard product of
the Fox–Wright function rψs(z) and the (p, q)-extended
Gauss hypergeometric function. (ese formulas are set out
in the preceding theorems.

Theorem 1. If R(ϖ)> 0, R(τ + δ + 1)>max 0,R(ς + ς′+

ϑ − ϖ),R(ς′ − ϑ′)}, then the generalized fractional integra-
tion I

ς,ς′ ,ϑ,ϑ′,ϖ
0+ of the (p, q)-extended Struve function Hδ,p,q(z)

is given by
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I
ς,ς′ ,ϑ,ϑ′,ϖ
0+ t

τ− 1
Hδ,p,q(ωt)   �

��
π

√
x
τ− ς− ς′+ϖ+δ (ω/2)

δ+1

Γ(δ +(3/2))

× pFq

1, 1;

δ +(3/2);

−
ω2

x
2

4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦∗ 3Ψ4

τ + δ + ϖ − ς + ς′ − ϑ + 1, 2( ,

((3/2), 1), τ + δ + ϑ′ + 1, 2( ,

⎡⎢⎢⎢⎢⎣

τ + δ + ϑ′ − ς′ + 1, 2( , (τ + δ + 1, 2);

τ + δ + ϖ − ς − ς′ + 1, 2( , τ + δ + ϖ − ς′ − ϑ + 1, 2( ;

−
ω2

x
2

4
⎤⎥⎥⎥⎥⎦,

(19)

where ∗ indicates the Hadamard product in (14). Proof. By applying (2) and (5), on the left side of (19), we
have

I
ς,ς′,ϑ,ϑ′ ,ϖ
0+ t

τ− 1
Hδ,p,q(ωt)  (x) �

ωδ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(3/2); p, q)

(3/2)kB(1, δ +(1/2))k!
−
ω2

4
 

k

× I
ς,ς′ ,ϑ,ϑ′ ,ϖ
0+ t

τ+δ+1+2k− 1
  (x),

(20)

upon using the image formula (11):

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
0+ t

τ− 1
Hδ,p,q(ωt)  (x)

�
x
τ+δ− ς− ς′+ϖωδ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(3/2); p, q)

(3/2)k B(1, δ +(1/2))k!

− x2ω2

4
 

k

×
Γ τ + δ + ϖ − ς + ς′ − ϑ + 2k + 1( Γ τ + δ + ϑ′ − ς′ + 2k + 1( Γ(τ + δ + 2k + 1)

Γ τ + δ + ϑ′ + 2k + 1( Γ τ + δ + ϖ − ς − ς′ + 2k + 1( Γ τ + δ + ϖ − ς′ − ϑ + 2k + 1( 
.

(21)

Presenting the last summation in (21) in terms of the
Hadamard product (14) with the functions (16) and (17), we
get the right side of (19).

Now, we discuss the special cases of (19) as follows.
For ς � ς + ϑ, ς′ � ϑ′ � 0, ϑ � − β,ϖ � ς, we obtain the

following relationship:

I
ς,ς′ ,ϑ,ϑ′,ϖ
0+ f (x) � I

ς,ϑ,β
0+ f (x), (22)

where the operator I
ς,ϑ,β
0+ (·) express the Saigo fractional in-

tegral operator [23], which is defined by

I
ς,ϑ,β
0+ f (x) �

x
− ς− ϑ

Γ(ς)


x

0
(x − t)

ς− 1
2 F1 ς + ϑ, − β; ς; 1 −

t

x
 f(t)dt, R(ς)> 0. (23)

□
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Corollary 1. Let R(ς)>0,R(τ+δ+1)>max[0,R(ϑ − β)],
then there holds the following formula:

I
ς,ϑ,β
0+ t

τ− 1
Hδ,p,q(ωt)   �

��
π

√
x
τ+δ− ϑ (ω/2)δ+1

Γ(δ +(3/2))p

Fq

1, 1;

δ +(3/2);

−
ω2

x
2

4
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

∗ 2Ψ3

(τ + δ − ϑ + β + 1, 2), (τ + δ + 1, 2);

3
2
, 1 , (τ + δ − ϑ + 1, 2), (τ + δ + ς + β + 1, 2);

−
ω2

x
2

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(24)

2.2. Right-Sided Generalized Fractional Integration of the
(p, q)-Extended Struve Function. In this portion, we es-
tablish image formulas for the (p, q)-extended Struve
function containing right-sided operators of M-S-M frac-
tional integral operators (7), in terms of the Hadamard
product of the Fox–Wright function rψs(z) and the

(p, q)-extended Gauss hypergeometric function. (ese
formulas are set out in the preceding theorems.

Theorem 2. If R(τ − δ)< 2 + min R(− ϑ),R(ς + ς′ − ϖ),

R(ς − ϑ′ − ϖ)}, R(ϖ)> 0, then the generalized fractional
integration Iς,ς′ ,ϑ,ϑ′,ϖ

− of the (p, q)-extended Struve function
Hδ,p,q(z) is given by

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
− t

τ− 1
Hδ,p,q

ω
t

    �
��
π

√
x
τ− ς− ς′+ϖ− δ− 2 (ω/2)

δ+1

Γ(δ +(3/2))

×pFq

1, 1;

δ +(3/2);
−

ω2

4x
2

⎡⎢⎣ ⎤⎥⎦∗ 3Ψ4
2 − τ + δ − ϖ + ς + ς′, 2( ,

((3/2), 1), (2 − τ + δ, 2),

⎡⎢⎢⎣ ⎤⎥⎥⎦

2 − τ + δ + ς + ϑ′ − ϖ, 2( , (2 − τ + δ − ϑ, 2);

2 − τ + δ − ϖ + ς + ς′ + ϑ′, 2( , (2 − τ + δ + ς − ϑ, 2);
−

ω2

4x
2
⎤⎥⎥⎦.

(25)

Proof. By applying (2) and (7) on the left-hand side of (25), we
get

I
ς,ς′ ,ϑ,ϑ′ ,ϖ
− t

τ− 1
Hδ,p,q

ω
t

   (x) �
ωδ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(3/2); p, q)

(3/2)k B(1, δ +(1/2))k!
−
ω2

4
 

k

× I
ς,ς′ ,ϑ,ϑ′ ,ϖ
0− t

τ− δ− 2k− 2
  (x),

(26)

and upon using the image formula (12) yields

I
ς,ς′,ϑ,ϑ′ ,ϖ
− t

τ− 1
Hδ,p,q(ωt)  (x)

�
x
τ+δ− ς− ς′+ϖωδ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(3/2); p, q)

(3/2)kB(1, δ +(1/2))k!

− x2ω2

4
 

k

×
Γ 2 − τ + δ − ϖ + ς + ς′ + 2k( Γ 2 − τ + δ + ς + ϑ′ − ϖ + 2k( Γ(2 − τ + δ − ϑ + 2k)

Γ(2 − τ + δ + 2k)Γ 2 − τ + δ − ϖ + ς + ς′ + ϑ′ + 2k( Γ(2 − τ + δ + ς − ϑ + 2k)
.

(27)
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Interpreting the right-hand side of (27) in terms of the
Hadamard product (14) with the functions (16) and (17), we
get the right side of (25).

When we let ς � ς + ϑ, ς′ � ϑ′ � 0, ϑ � − β,ϖ � ς, then we
obtain the relationship

I
ς,ς′ ,ϑ,ϑ′,ϖ
− f (x) � I

ς,ϑ,β
− f (x), (28)

where the Saigo fractional integral operator [23] is repre-
sented as

I
ς,ϑ,β
− f (x) �

1
Γ(ς)


∞

x
(t − x)

ς− 1
t
− ς− ϑ
2 F1 ς + ϑ, − β; ς; 1 −

x

t
 f(t)dt. (29)

□
Corollary 2. If R(ς)> 0,R(τ − δ)< 2 + min[R(ϑ),R(β)],
then we have

I
ς,ϑ,β
− t

τ− 1
Hδ,p,q

ω
t

    �
��
π

√
x
τ− ϑ− δ− 2 (ω/2)δ+1

Γ(δ +(3/2))p

Fq

1, 1;

δ +(3/2);

−
ω2

4x
2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

∗ 2Ψ3

(2 − τ + δ + ϑ, 2), (2 − τ + δ + β, 2);

3
2
, 1 , (2 − τ + δ, 2), (2 − τ + δ + ς + ϑ + β, 2);

−
ω2

4x
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(30)

In the next part, we derived the generalized fractional
kinetic equations (FKEs) and take into account the Laplace
transformation technique to produce outcomes.

3. Generalized Fractional Kinetic Equations
Involving (p, q)-Extended Struve Function

(e generalized FKEs involving the (p, q)-extended Struve
function with the Laplace transform (LT) is derived in this
section. FKEs were extensively reviewed in a variety of ar-
ticles [29–35].

LetN(t) be an arbitrary reaction that depends on time, d
is a destruction rate, and p is a production rate ofN, then the
mathematical representation of these three ratios is de-
scribed by Haubold and Mathai [36] as a fractional differ-
ential equation:

dN
dt

� − d Nt(  + p Nt( , (31)

where Nt(t∗) � N(t − t∗) for t∗ > 0. Also, [36] have
researched that equation (31) would become the following
differential equation if spatial fluctuation or inhomogenei-
ties in quantity N(t) are ignored:

dNi

dt
� − ciNi(t), (32)

with Ni(t � 0) � N0. Solution of equation (32) is given by

Ni(t) � N0e
− cit. (33)

Alternatively, if we eliminate the index i and integrate
(32), we get

N(t) − N0 � c0D
− 1
t N(t), (34)

where 0D
− 1
t is the standard integral operator. (e fractional

generalization of equation (34) was defined by Haubold and
Mathai [36] as

N(t) − N0 � c
v
0D

− v
t N(t), (35)

where 0D
− v
t is given by

0D
− v
t f(t) �

1
Γ(v)


t

0
(t − x)

v− 1
f(x)dx, R(v)> 0.

(36)

Definition 1. (e Mittag–Leffler function is generalized by
Wiman [28] in the following form:

Eς,ϑ(z) � 

∞

l�0

z
l

Γ(ςl + ϑ)
, (z, ς, ϑ ∈ C;R(ς)> 0,R(ϑ)> 0).

(37)

(e results of this section, solutions of generalized
FKESs, will be expressed based on the generalized Mit-
tag–Leffler function which is defined in (37).

Theorem 3. If d> 0, v> 0, with min p, q ≥ 0 and R(δ)> −

(1/2), the solution of fractional kinetic equation

N(t) − N0Hδ,p,q(t) � − d
v
0D

− v
t N(t) (38)

becomes
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N(t) � N0
t
δ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)Γ(δ + 2k + 2)

(3/2)kB(1, δ +(1/2))k!

− t2

4
 

k

× Ev,δ+2k+2 − d
v
t
v

( .

(39)

Proof. (e LT of the Riemann–Liouville (RL) fractional
integral operator is given by Srivastava and Saxena [37] as

L 0D
− v
t f(t); s  � s

− v
F(s). (40)

Now, applying the LT to both sides of (38) and using (2)
and (40), we have

L N(t); s{ } � N0L Hδ,p,q(t); s  − d
v
L 0D

− v
t N(t); s , (41)

which gives

N(s) � N0 
∞

0
e

− st t
δ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)

(3/2)kB(1, δ +(1/2))k!

− t
2

4
 dt − d

v
s

− v
N(s), (42)

which implies that

N(s) + d
v
s

− v
N(s) �

N0

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)

(3/2)k B(1, δ +(1/2))k!

(− 1)
k

4k

× 
∞

0
e

− st
t
2k+δ+1dt.

(43)

After some simple calculation, we get

N(s) 1 + d
v
s

− v
(  �

N0

2δΓ(δ +(3/2))


∞

k�0

− 1
4

 
kB(k + 1, δ +(1/2); p, q)

(3/2)k B(1, δ +(1/2))k!

Γ(δ + 2k + 2)

s
δ+2k+2 ,

N(s) �
N0

2δΓ(δ +(3/2))


∞

k�0

− 1
4

 
k B(k + 1, δ +(1/2); p, q)Γ(δ + 2k + 2)

(3/2)kB(1, δ +(1/2))k!

× s
− (δ+2k+2)



∞

l�0
(1)l

− (s/d)
− v

 
l

l!
.

(44)

Taking inverse LT on both sides of (44) and using
L− 1(s− v) � (tv− 1/Γ(v)) for R(v)> 0, we get

N(t) �
N0

2δΓ(δ +(3/2))


∞

k�0

− 1
4

 
k B(k + 1, δ +(1/2); p, q)Γ(δ + 2k + 2)

(3/2)kB(1, δ +(1/2))k!

× 
∞

l�0
(− 1)

l
d

vl t
δ+2k+vl+1

Γ(δ + vl + 2k + 2)
.

(45)

□

Journal of Mathematics 7



Interpreting the right-hand side of (45) in the view of
(37), we obtain the needful result (39).

Theorem 4. If d> 0, v> 0, with min p, q ≥ 0 and R(δ)> −

(1/2), then the solution of

N(t) − N0Hδ,p,q d
v
t
v

(  � − d
v
0D

− v
t N(t) (46)

is given by

N(t) � N0
d

v
t
v

( 
δ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)Γ(2vk + δv + v + 1)

(3/2)kB(1, δ +(1/2))k!

− dvtv( )
2

4
 

k

× Ev,δv+2vk+v+1 − d
v
t
v

( .

(47)

Proof. Taking the LT on both sides of (46), using the def-
inition of (p, q)-extended Struve functions (2) and (40), and
after doing simple calculation and taking inverse LT term
written in the view of (37), we obtain the needful result
(47). □

Theorem 5. If d> 0, v> 0, with min p, q ≥ 0, a≠ d and
R(δ)> − (1/2), the solution of fractional kinetic equation

N(t) − N0Hδ,p,q d
v
t
v

(  � − a
v
0D

− v
t N(t) (48)

becomes

N(t) � N0
d

v
t
v

( 
δ+1

2δΓ(δ +(3/2))


∞

k�0

B(k + 1, δ +(1/2); p, q)Γ(2vk + δv + v + 1)

(3/2)k B(1, δ +(1/2))k!

− dvtv( )
2

4
 

k

× Ev,δv+2vk+v+1 − a
v
t
v

( .

(49)

Proof. In similar way of proof of (eorem 4, we can get
solution (49). (erefore, we omitted the proof.

Now by setting p � 0, q � 0, on equation (3), then results
of (eorems 3–5 are adjusted on Corollaries 3–5. □

Corollary 3. If d> 0, v> 0, andR(δ)> − (1/2), the solution
of fractional kinetic equation

N(t) − N0Hδ,0,0(t) � − d
v
0D

− v
t N(t) (50)

becomes

N(t) � N0
t
δ+1

Γ(δ +(3/2))


∞

k�0

Γ(δ + 2k + 2)

Γ(δ + k +(3/2))

− t2

4
 

k

× Ev,δ+2k+2 − d
v
t
v

( .

(51)

Corollary 4. If d> 0, v> 0, withmin p, q ≥ 0 andR(δ)> −

(1/2), then the solution of

N(t) − N0Hδ,p,q d
v
t
v

(  � − d
v
0D

− v
t N(t) (52)

is given by

N(t) � N0
d

v
t
v

( 
δ+1

Γ(δ +(3/2))


∞

k�0

Γ(2vk + δv + v + 1)

Γ(δ + k +(3/2))

− dvtv( )
2

4
 

k

× Ev,δv+2vk+v+1 − d
v
t
v

( .

(53)

Corollary 5. If d> 0, v> 0, with min p, q ≥ 0, a≠ d and
R(δ)> − (1/2), the solution of fractional kinetic equation

N(t) − N0Hδ,p,q d
v
t
v

(  � − a
v
0D

− v
t N(t) (54)

becomes

N(t) � N0
d

v
t
v

( 
δ+1

2δΓ(δ +(3/2))


∞

k�0

Γ(2vk + δv + v + 1)

Γ(δ + k +(3/2))

− dvtv( )
2

4
 

k

× Ev,δv+2vk+v+1 − a
v
t
v

( .

(55)

4. Conclusion

In this article, the authors have established the generalized
fractional integrations of the (p, q)-extended Struve func-
tion. (e achieved results are expressed in terms of Hada-
mard product of the Fox–Wright function rψs(z) and the
(p, q)-extended Gauss hypergeometric function. (e solu-
tions of fractional kinetic equations are obtained with the
support of Laplace transforms to show the possible appli-
cation of the (p, q)-extended Struve function. As the so-
lution of the equations is common and can derive several
new and existing FKE solutions involving different types of
special functions, the results obtained in this study are
significant.
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In this paper, we study a nonlinear implicit differential equation with initial conditions. 'e considered problem involves the
fractional Caputo derivatives under some conditions on the order. We prove an existence and uniqueness analytic result by
application of Banach principle. 'en, another result that deals with the existence of at least one solution is delivered and some
sufficient conditions for this result are established by means of the fixed point theorem of Schaefer. At the end, we discuss two
examples to illustrate the applicability of the main results.

1. Introduction

'e theory of differential equations of fractional order and
fractional calculus is very important since they can be used
in analyzing and modeling real word phenomena. Recently,
several researchers are interested in the important progress
of differential equations of fractional order. For more in-
formation on these works and their applications, one can
consult the references [1–9]. In particular, research on the
existence of unique solutions for fractional differential
equations is of big importance since it helps physicians to
better understand the behaviour of real phenomena. See, for
more details, the references [10–14].

'e motivation for this work arises from both the de-
velopment of the theory of fractional calculus itself and its
wide applications to various fields of science, such as physics,
chemistry, biology, electromagnetism of complex media,
robotics, and economics.

Much attention has been paid to the existence and
uniqueness of solutions of fractional dynamical systems
[15–18] due to the fact that existence is the fundamental
problem and a necessary condition for considering some
other properties for fractional dynamical systems, such as
controllability and stability. Chai [19] provided sufficient
conditions for the existence of solutions to a class of anti-
periodic boundary value problems for fractional differential
equations, while Sheng and Jiang [20] considered a class of
initial value problems for fractional differential systems.
'ere are several operators studied in the field of fractional
calculus, for example, see [21–26], but the difference in this
work is that the operator considered is in the sense of Caputo
derivative.

Motivated by the works of Benchohra et al. [27], we will
establish in this paper existence and uniqueness results of the
solutions of the fractional dynamical system with Caputo
fractional derivative
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D
α
x(t) − AD

β
x(t) � f t, x(t), D

β
x(t), D

α
x(t) , t ∈ I � [0, 1],

x(0) � x0,

x′(0) � x0′,

x″(0) � x0″,

x″′(0) � x
″′
0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Dα is in the sense of Caputo, f: I × Rn × Rn⟶ Rn

is a given function, x0, x0′, x0″ ∈ R
n, A is an n × n matrix, and

1< β< 2, 3< α< 4, with β + 2< α.
Rest of the paper is organised as follows: in Section 2, we

recall some results and definitions which we use for the proof
of our main results. In Section 3, we give and prove the main
theorems of this paper, and we discuss some illustrative
examples.

2. Preliminaries

In this section, we introduce some definitions, lemmas, and
preliminaries facts which are used throughout this paper. See
[7] for more information. Let |.| be a suitable norm inRn and
‖.‖ be the matrix norm. We denote by C(I,Rn) the Banach
space of continuous functions from I to Rn with the norm

‖x‖∞ � sup |x|, x ∈ I{ }. We denote by L1(I,Rn) the space of
Lebesgue-integrable function x: I⟶ Rn with the norm

‖x‖L1 � 
1

0
|x(t)|dt. (2)

Let

X �
x ∈ C J,R

n
( ,

x″ ∈ C I;R
n

( 

⎧⎨

⎩

⎫⎬

⎭, (3)

with the norm

‖x‖X � ‖x‖∞ + x″
����

����∞. (4)

Definition 1. 'e Riemann–Liouville integral of order α> 0
for a continuous function φ ∈ L1((0, 1],R) is given by

I
αφ(t) �

1
Γ(α)


t

0
(t − τ)

α− 1φ(τ)dτ, ∀t ∈ (0, 1], (5)

with Γ(α): � 
∞
0 e− uuα− 1du. Definition 2. If φ ∈ Cn([0, 1],R) and n − 1< α≤ n, then the

Caputo fractional derivative is given by

D
αφ(t) � I

n− α d
n

dt
n (φ(t)) �

1
Γ(n − α)


t

0
(t − s)

n− α− 1φ(n)
(s)ds. (6)

Lemma 1. Let n ∈ N∗ and n − 1< α< n, then the general
solution of Dαu(t) � 0 is given by

u(t) � 
n− 1

i�0
cit

i
, (7)

such that ci ∈ R, i � 0, 1, 2, . . . , n − 1.

Lemma 2. Taking n ∈ N∗ and n − 1< α< n, we have

I
α
D

α
u(t) � u(t) + 

n− 1

k�0

u
(k)

(0)

k!
t
k
, (8)

with t> 0, n − 1< α< n.

Lemma 3. Let 1< β< 2 and 3< α< 4. -en, it holds

I
α
D

β
u(t) � I

α− β
u(t) −

u(0)t
α− β

Γ(α − β + 1)
−

u′(0)t
α− β+1

Γ(α − β + 2)
. (9)
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Proof. For this proof, we use the same method in [28]. We
have

I
α
D

β
u(t) �

1
Γ(α)Γ(2 − β)


t

0
(t − τ)

α− 1


t

0
(τ − s)

1− β
u″(s)dsdτ,

�
1

Γ(α)Γ(2 − β)


t

0
u″(s)ds 

t

s
(t − τ)

α− 1
(τ − s)

1− βdτ.

(10)

With the change of variable τ � s + (t − s)η, we have


t

s
(t − τ)

α− 1
(τ − s)

1− βdτ �
Γ(α)Γ(2 − β)

Γ(α − β + 2)
(t − s)

α− β+1
. (11)

Now, we get

I
α
D

β
u(t) �

1
Γ(α − β + 2)


t

0
(t − s)

α− β+1
u″(s)ds � I

α− β
u(t) −

u(0)t
α− β

Γ(α − β + 1)
−

u′(0)t
α− β+1

Γ(α − β + 2)
. (12)

□
Definition 3. Let X be a Banach space. 'en, a map
T: X⟶ X is called a contraction mapping on X if there
exists q ∈ [0, 1) such that

‖T(x) − T(y)‖≤ q‖x − y‖, (13)

for all x, y ∈ X.

Theorem 1 (Banach’s fixed point theorem, see [29]). Let Ω
be a nonempty closed subset of a Banach space X. -en, any
contraction mapping T of Ω into itself has a unique fixed
point.

Theorem 2 (Schaefer’s fixed point theorem, see [29]). Let X

be a Banach space, and let N: X⟶ X be a completely
continuous operator. If the set

E � y ∈ X: y � λNy for some λ ∈ (0, 1)  is bounded, then
N has fixed points.

3. Main Results

We begin this section by some results that help us for solving
the problem considered in (1).

Lemma 4. For any x ∈ X and 1< β< 2, we have

D
β
x

�����

�����∞
≤

1
Γ(3 − β)

x″
����

����∞ ≤
1
Γ(3 − β)

x″
����

����X
. (14)

Proof. By the definition of the operator Dβ, we have

D
β
x(t)



∞
�

1
Γ(2 − β)


t

0
(t − s)

1− β
x″(s)ds




≤ x″

����
����∞

1
Γ(2 − β)


1

0
(1 − s)

1− βds≤
1
Γ(3 − β)

x″
����

����∞. (15)
□
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Lemma 5. Let 1< β< 2, 3< α< 4, and G ∈ C(I,Rn). -en,
we can state that the problem,

D
α
x(t) − AD

β
x(t) � G(t), t ∈ I � [0, 1],

x(0) � x0,

x′(0) � x0′,

x″(0) � x0″,

x″′(0) � x
″′
0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

has for solution the following function

x(t) � x0 + x0′t +
1
2
x0″t

2
+
1
6
x
″′
0t

3
−

At
α− β

Γ(α − β + 1)
x0 −

At
α− β+1

Γ(α − β + 2)
x0′

+
A

Γ(α − β)


t

0
(t − s)

α− β− 1
x(s)ds +

1
Γ(α)


t

0
(t − s)

α− 1
G(s)ds.

(17)

Proof. By applying Iα to both sides of equation (16), we have

I
α
D

α
x(t) − AI

α
D

β
x(t) � I

α
G(t), (18)

and using the property established in Lemmas 2 and 3, we
find that

x(t) � x(0) + x′(0)t +
1
2
x″(0)t

2
+
1
6
x″′(0)t

3
−

At
α− β

Γ(α − β + 1)
x(0) −

At
α− β+1

Γ(α − β + 2)
x′(0)

+
A

Γ(α − β)


t

0
(t − s)

α− β− 1
x(s)ds +

1
Γ(α)


t

0
(t − s)

α− 1
G(s)ds.

(19)

Some of the initial conditions allow us to have the result.
Conversely, assume that x(t) satisfy the equation (16),

then we see easily the initial conditions.
We use the fact DαIαG(t) � G(t) and DαC � 0, where C

is a constant; we get

D
α
x(t) − AD

β
x(t) � G(t), t ∈ I � [0, 1]. (20)

Let us now transform the above problem to a fixed point
one. Consider the nonlinear operator T: X⟶ X defined
by

Tx(t) � x0 + x0′t +
1
2
x0″t

2
+
1
6
x
″′
0t

3
−

At
α− β

Γ(α − β + 1)
x0 −

At
α− β+1

Γ(α − β + 2)
x0′

+
A

Γ(α − β)


t

0
(t − s)

α− β− 1
x(s)ds +

1
Γ(α)


t

0
(t − s)

α− 1
f t, x(t), D

β
x(t), D

α
x(t) ds.

(21)

To prove the main results, we need to work with the
following hypotheses:

(H1) 'e function f defined on I × R3n is continuous.

(H2) 'ere exist nonnegative constants c1, c2, and c3 < 1
such that, for any t ∈ I, x1, x2, x3, x∗1 , x∗2 , x∗3 ∈ R

n,

f t, x1, x2, x3(  − f t, x
∗
1 , x
∗
2 , x
∗
3( 


≤ c1 x1 − x

∗
1


 + c2 x2 − x

∗
2


 + c3 x3 − x

∗
3


. (22)
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Also, we consider the quantities

D1 �
‖A‖

Γ(α − β + 1)
+

c1Γ(3 − β) + c3‖A‖ + c2

1 − c3( Γ(α + 1)Γ(3 − β)
,

D2 �
‖A‖

Γ(α − β − 1)
+

c1Γ(3 − β) + c3‖A‖ + c2
1 − c3( Γ(α − 1)Γ(3 − β)

.

(23)

'e first main result deals with the existence of a unique
solution for (1). It is based on the application of Banach fixed
point theorem for contraction mappings. □

Theorem 3. If the conditions (H1) and (H2) are satisfied and
D< 1 (D: � D1 + D2), then problem (1) has a unique so-
lution on I.

Proof. It is sufficient for us to prove that H is a contraction
mapping.

Let (x, y) ∈ X2. 'en, we can write

|Tx(t) − Ty(t)|≤
‖A‖

Γ(α − β)


t

0
(t − s)

α− β− 1
|x(s) − y(s)|ds +

1
Γ(α)


t

0
(s − t)

α− 1
|g(s) − h(s)|ds, (24)

where g, h ∈ C(I,Rn) defined by
g(t) � f(t, x(t), Dβx(t), g(t) + ADβx(t)) and
h(t) � f(t, y(t), Dβy(t), h(t) + ADβy(t)).

From (H2) for each t ∈ I, we have

|g(t) − h(t)|≤ c1|x(t) − y(t)| + c2 D
β
(x(t) − y(t))



 + c3|g(t) − h(t)| + c3‖A‖|x(t) − y(t)|, (25)

and using Lemma 4, we have

|g(t) − h(t)|≤
c1Γ(3 − β) + c3‖A‖ + c2

1 − c3( Γ(3 − β)
‖x − y‖X. (26)

'erefore, we have for each t ∈ I,

‖Tx − Ty‖∞ ≤
‖A‖

Γ(α − β + 1)
+

c1Γ(3 − β) + c3‖A‖ + c2

1 − c3( Γ(α + 1)Γ(3 − β)
 ‖x − y‖X ≤D1‖x − y‖X. (27)

On the other hand, we have

(Tx)″(t) � x0″ + x
″′
0t −

At
α− β− 2

Γ(α − β − 1)
x0 −

At
α− β− 1

Γ(α − β)
x0′ +

A

Γ(α − β − 2)


t

0
(t − s)

α− β− 3
x(s)ds

+
1
Γ(α − 2)


t

0
(t − s)

α− 3
f t, x(t), D

β
x(t), D

α
x(t) ds,

(28)
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which is clear in C(I,Rn). 'en, with the same arguments as before, we have

(Tx)″ − (Ty)″
����

����∞ ≤
‖A‖

Γ(α − β − 1)
+

c1Γ(3 − β) + c3‖A‖ + c2

1 − c3( Γ(α − 1)Γ(3 − β)
 ‖x − y‖X ≤D2‖x − y‖X. (29)

'us, we have

‖Tx − Ty‖X ≤ D1 + D2( ‖x − y‖X. (30)

Since D< 1, then the operator T is contraction. Hence,
by Banach’s contraction principle, T has a unique fixed point
which is the unique solution of problem (1).

'e following main result deals with the existence of at
least one solution of the studied problem. □

Theorem 4. Under the hypotheses (H1) and (H2), problem
(1) has at least one solution u(t), t ∈ I.

Proof. Let us prove the result by considering the following
steps:

Continuous of T: if the proof is trivial, then it is omitted
(we just apply the fact that f is continuous.
Uniform boundness of T: let us take r> 0 and consider
the (bounded) ball Br: � x ∈ X; ‖x‖X ≤ r . For y ∈ Br,
we can write

|Ty(t)|≤ x0


 +
1
2

x0″


 +
1
6

x0″


 +
‖A‖ x0




Γ(α − β + 1)
+

‖A‖ x0′




Γ(α − β + 2)
+

‖A‖

Γ(α − β − 1)
‖y‖∞ +

1
Γ(α + 1)

‖g‖∞. (31)

With a simple calculus, we get

‖g‖∞ ≤
c1Γ(3 − β) + c3‖A‖ + c2

1 − c3( Γ(3 − β)
‖y‖X + m

∗
, (32)

where m∗ � supt∈I|f(t, 0, 0, 0)|.
'en, we have

‖Ty‖∞ ≤ x0


 +
1
2

x0″


 +
1
6

x0″


 +
‖A‖ x0




Γ(α − β + 1)
+

‖A‖ x0′




Γ(α − β + 2)
+

m
∗

Γ(α + 1)
+ D1r< +∞, (33)

and also we have

(Ty)″
����

����∞ ≤ x0″


 + |x
″′
0 +

‖A‖ x0




Γ(α − β − 1)
+

‖A‖ x0′




Γ(α − β)
+

m
∗

Γ(α − 1)
+ D2r< +∞. (34)

'e above two inequalities show that ‖Ty‖X < +∞.

Consequently, T is uniformly bounded.
Equicontinuity of T: we prove that, for any bounded set
Br for instance, we obtain that T(Br) is an equi-
continuous set of X.

Take t1, t2 ∈ [0, 1], t1 < t2 and consider the above
(bounded) ball Br of X. So, by considering y ∈ Br, we
can state that

Ty t2(  − Ty t1( 


≤ x0′


 t2 − t1


 +
1
2

x0″


 t
2
2 − t

2
1


 +

1
6

x
″′
0



 t
3
2 − t

3
1


 +

‖A‖ x0′




Γ(α − β + 1)
t
α− β
2 − t

α− β
1





+
‖A‖ x0″




Γ(α − β + 2)
t
α− β+1
2 − t

α− β+1
1



 +
‖A‖r

Γ(α − β + 1)
t
α− β
2 − t

α− β
1



 +
M

Γ(α + 1)
t
α
2 − t

α
1


,

(35)
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where M � (c1Γ(3 − β) + c3‖A‖ + c2
/(1 − c3)Γ(3 − β))r + m∗.

As t2⟶ t1, the right-hand side of the above inequality
tends to zero, and we have also

(Ty)″ t2(  − (Ty)″ t1( 


≤ x
″′
0



 t2 − t1


 +
‖A‖ x0′




Γ(α − β − 1)
t
α− β− 2
2 − t

α− β− 2
1



 +
‖A‖ x0″




Γ(α − β)
t
α− β− 1
2 − t

α− β− 1
1





+
‖A‖r

Γ(α − β − 1)
t
α− β− 2
2 − t

α− β− 2
1



 +
M

Γ(α − 1)
t
α− 2
2 − t

α− 2
1


.

(36)

As t2⟶ t1, the right-hand side of the above inequality
tends to zero. From a consequence of the Ascoli-
Arzela's theorem, we conclude that T is completely
continuous.
Boundness of Ac: the set
Ac: � x ∈ X: x � c Tx, c ∈ ]0, 1[  is bounded.

Let y ∈ Ac. 'en, we have y � cTy for some 0< c< 1.
Hence, we can write

‖y‖∞ ≤ c x0


 +
1
2

x0″


 +
1
6

x0″


 +
‖A‖ x0




Γ(α − β + 1)
+

‖A‖ x0′




Γ(α − β + 2)
+

m
∗

Γ(α + 1)
+ D1r , (37)

(y)″
����

����∞ ≤ c x0″


 + x
″′
0



 +
‖A‖ x0




Γ(α − β − 1)
+

‖A‖ x0′




Γ(α − β)
+

m
∗

Γ(α − 1)
+ D2r . (38)

From (37) and (38), we state that ‖y‖X <∞. 'e set is
thus bounded.

Consequently, thanks to Schaefer fixed point theorem,
we deduce that T has at least one fixed point. 'us, problem
(1) has a solution. □

Example 1. Let us consider the following example:

D
α
x(t) − AD

β
x(t) � f t, x(t), D

β
x(t), D

α
x(t) , t ∈ I � [0, 1],

x(0) �
1
2
, 0 ,

x′(0) � 0,
1
2

 ,

x″(0) �
1
2
, 0 ,

x″′(0) � 0,
1
2

 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)
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where

f: [0, 1] × R
2

× R
2

× R
2⟶ R

2
,

(t, u, v, w)↦
1

10e
t+5

(1 +‖u‖ +‖v‖ +‖w‖)
,

1
10e

t+7
(1 +‖u‖ +‖v‖ +‖w‖)

 ,

(40)

with ‖u‖ � max x1, x2 , u � (x1, x2). We take

A �
(1/20) 0

0 0 , α � (15/4), and β � (3/2).

We can see clearly that the function f is continuous.

For any u, v, w, u, v, w ∈ R2 and t ∈ [0, 1],

1
10e

t+5
(1 +‖u‖ +‖v‖ +‖w‖)

−
1

10e
t+5

(1 +‖u‖ +‖v‖ +‖w‖)




≤

1
10e

5 (|u − u| +|v − v| +|w − w|),

1
10e

t+7
(1 +‖u‖ +‖v‖ +‖w‖)

−
1

10e
t+7

(1 +‖u‖ +‖v‖ +‖w‖)




≤

1
10e

7 (|u − u| +|v − v| +|w − w|),

(41)

which give

|f(t, u, v, w) − f(t, u, v, w)|≤ c1|u − u| + c2|v − v| + c3|w − w|, (42)

where c1 � c2 � c3 � (1/10e5).
Hence, the hypotheses (H1) and (H2) are satisfied.
With a simple computation, we get D1 � 0, 0807 and

D2 � 0, 24, which imply D< 1.
'us, all the assumptions from (H1)–(H3) are satisfied.

From'eorem 3, we conclude that equation (1) has a unique
solution.

4. Conclusion

In this work, we consider a nonlinear implicit fractional
differential equation and we use the Caputo derivative
operator. We prove two theorems and an example to il-
lustrate our results. In the first theorem, we prove the ex-
istence and uniqueness of the solution and the second
theorem deals with the existence of at least one solution. 'e
methods used are the Banach’s fixed point theorem and
Schaefer’s fixed point theorem. Here, two Caputo derivative
operators of different fractional orders were used in the
considered equation and it would be relevant to generalize
this idea by considering several Caputo operators of different
fractional orders.
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In this paper, we study the nonlinear coupled system of equations with fractional integral boundary conditions involving the
Caputo fractional derivative of orders θ1 and θ2 and Riemann–Liouville derivative of orders 91 and 92 with the p-Laplacian
operator, where n − 1< θ1, θ2, 91, 92 ≤ n, and n≥ 3. With the help of two Green’s functions (Gϱ1(w,I), Gϱ2(w,I)), the considered
coupled system is changed to an integral system. Since topological degree theory is more applicable in nonlinear dynamical
problems, the existence and uniqueness of the suggested coupled system are treated using this technique, and we find appropriate
conditions for positive solutions to the proposed problem. Moreover, necessary conditions are highlighted for the Hyer–Ulam
stability of the solution for the specified fractional differential problems. To confirm the theoretical analysis, we provide an
example at the end.

1. Introduction

*e theoretical development of fractional calculus and its
applications is more important to model nonlinear complex
problems with the arbitrary fractional order. *e subject of
fractional differential equations (FDEs) has become an
important area in real life because of their ability to model a
lot of physical phenomena associated with rapid and concise
changes with their significance in science and engineering
through the past three decades, such as chemistry, physics,
biology, engineering, visco-elasticity, electrotechnical, signal
processing, electrochemistry, and controllability (see the
details, [1–9], and the reference therein). In the near time,
the nonlinear fractional partial differential equations are the
most applied research area in which most authors and
scientists are focused for their investigation. In this case, the
Caputo derivative plays a great role to analyze the specific
application of nonlinear PDEs. in [10], the authors have
studied the cancer treatment model based on Capu-
to–Fabrizio fractional derivative. After integrating themodel
into the Caputo–Fabrizio fractional derivative, they have

analyzed the existence of the solution as well. *e Capu-
to–Fabrizio fractional derivative is implemented in [11] for
the modeling and characterizing of the alcoholism. By ap-
plying the fixed-point theorem, they have studied the ex-
istence and uniqueness of the alcoholism model. *e spread
of the SIQR model is investigated by [12] using the Caputo
derivative.*ey have justified the stability and uniqueness of
the nonvirus equilibrium and virus equilibrium point.

For this problem, different authors proposed different
numerical solution techniques. *e analysis with the non-
linear time-fractional HIV/AIDS transmission model is
considered in [13], in which the numerical solution is found
using the fractional variational iteration method with
convergence analysis. *e nonlinear garden equation is
studied in [14] based on the Atangana–Baleau Caputo de-
rivative. He has highlighted the fixed-point theorem for
proving the existence and uniqueness of the garden
equation.

One of the main difficulties for the solution of the
nonlinear fractional PDEs is to analyze the existence theory
of solutions. Sufficient conditions for the existence and
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uniqueness of solutions (EUS) have been obtained by using
different nonlinear analysis techniques and fixed-point
theorems (for more details, read [15–18]). Also, the
boundary value problems with various boundary conditions
for many ordinary differential equations are studied [19–23].
However, the theory of boundary value problems for
nonlinear FDEs is still not discussed more, and many
problems of this theory require to be explored. On the
contrary, the investigation of coupled systems of the dif-
ferential equations is also significant because systems of this
kind appear in various applied nature problems (refer
[24–28]).

*e topological degree theory is a useful tool in non-
linear analysis with numerous applications to operatorial
equations, optimization theory, fractal theory, and other
topics. We will see the following consideration of topological
degree theory with boundary conditions based on the
Caputo fractional derivative by different authors. Isaia [29]
applied the topological degree theory to establish sufficient
conditions for the existence of a solution for the following
nonlinear integral equations:

π(w) � Z(w, π(w)) + 
b

a
Q(w,I, π(I))dI, w ∈ [a, b],

(1)

where Z: [a, b] × IR⟶ IR and Q: [a, b] × [a, b] ×

IR⟶ IR are continuous functions. In their study [30],

Wang et al. used the topological degree method to obtain
some existence conditions of the solution for the following
nonlocal Cauchy problem:

c
D
ϱπ(w) � Z(w, π(w)), 0≤w≤W,

π(0) + h(π) � π0,
 (2)

where cDϱ denotes the Caputo fractional derivative with
order ϱ ∈ (0, 1) and Z: C([0, w],R)⟶ R and π0 ∈ R are
continuous. *e nonlocal term h: C([0, w],R)⟶ R is a
given function. Proceeding on the same fashion, Shah and
Khan [31] proved the EUS for a coupled system under the
fractional derivatives by using the technique of degree theory
given as follows:

cD
ϱ1π1(w) � Z1 w, π1(w), π2(w)( , w ∈ [0, 1],

cD
ϱ2π2(w) � Z2 w, π1(w), π2(w)( , w ∈ [0, 1],

α1π1(0) − β1π1(θ) − δ1π1(1) � ϕ1 π1( ,

α2π2(0) − β2π2(ϑ) − δ2π2(1) � ϕ2 π2( ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where ϱ1, ϱ2, θ, ϑ ∈ (0, 1), Z1,Z2 ∈ [0, 1] × R2⟶ R, and
ϕ1, ϕ2: C([0, 1],R)⟶ R are continuous. Khan et al. [32]
used the above-mentioned method to study the following
coupled system in the sense of Caputo derivatives with
p-Laplacian:

D
θ1
0+

ϕp D
ϱ1
0+
π1(w)   + Z1 w, π2(w)(  � 0,

D
θ2
0+ ϕp D

ϱ2
0+
π2(w)   + Z2 w, π1(w)(  � 0,

D
ϱ1
0+
π1(0) � ϕp D

ϱ1
0+
π1(w)  ′|w�0 � D

δ1
0+
π1(w)|w�η1 � 0,

π1(1) �
Γ 2 − δ1( 

η1− δ1
1

J
ϱ1− δ1ϕq J

θ1
0+
Z1 w, π2(w)(  |w�η1,

D
ϱ2
0+
π2(0) � ϕp D

ϱ2
0+
π1(w)  ′|w�0 � D

δ2
0+
π2(w)|w�η2 � 0,

π2(1) �
Γ 2 − δ2( 

η1− δ2
2

J
ϱ2− δ2ϕq J

θ2
0+
Z1 w, π1(w)(  |w�η2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where ϱi, θi ∈ (1, 2] and δi, ηi ∈ (0, 1], for i � 1 and 2. *e
study of positive solutions to boundary value problems for
fractional-order differential equations using the topological
degree theory technique is rarely available in the literature,
so this research field needs further elaboration. Most papers
that dealt the topological degree theory with fractional or-
ders belong to (0, 1) or (1, 2]. For the uniqueness and

existence analysis of nonlinear fractional differential equa-
tions, the case only Caputo fractional derivative is used
frequently.

*us, our motivation to this study is developing a suf-
ficient condition for the coupled nonlinear fractional de-
rivative that is based on both Caputo and Riemann–Liouville
derivatives. *e fractional order in our study is expanded to
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(n − 1, n], and we have used a technique of topological
degree theory for the analysis of existence and uniqueness of
our coupled system defined below. Besides, we have in-
vestigated Hyers–Ulam stability to the nonlinear coupled
system of fractional-ordered ordinary differential equations
with boundary conditions designed by the following:

cD
θ1 ϕp

R
D
ϱ1π1(w)   � Z1 w, π2(w)( , w ∈ [0, 1],

cD
θ2 ϕp

R
D
ϱ2π2(w)   � Z2 w, π1(w)( , w ∈ [0, 1],

ϕp
R
D
ϱ1π1(w)  

(i)
|w�0 � 0, i � 0, 1, 2, . . . , n − 1,

I
k− ϱ1π1(w)|w�0 � 0, k � 1, 2, 4, . . . , n,

D
λπ1(w)|w�1 �

1
Γ(λ)


W

0
(W − I)

λ− 1φ π1(I)( dI,

ϕp
R
D
ϱ2π2(w)  

(j)
|w�0 � 0, j � 0, 1, 2, . . . , n − 1,

I
h− ϱ2π2(w)|w�0 � 0, h � 1, 2, 4, . . . , n,

D
σπ2(w)|w�1 �

1
Γ(σ)


W

0
(W − I)

σ− 1ϖ π2(I)( dI,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where 91, 92, θ1, θ2 ∈ (n − 1, n], n≥ 3, 1< λ, σ ≤ 2, cDθ1 and
cDθ2 denote the Caputo fractional derivatives, RDϱ1 and RDϱ2

are the Riemann–Liouville fractional derivatives, and
Z1,Z2: [0, 1] × IR⟶ IR are nonlinear functions, and the
boundary functions φ,ϖ ∈ L[0, 1]. ϕp represents the
p-Laplacian operator such that ϕp(]) � ]|]|p− 2, andϕq �

ϕ− 1
p denotes the inverse of p-Laplacian, where

(1/p) + (1/q) � 1. Since it is difficult to find the exact so-
lution of the nonlinear differential equations, stability and
uniqueness have played a great role to get the approximate
solution for the given nonlinear problems. *erefore, sci-
entists and researchers have given attention to study the
various forms of stability to the nonlinear problems in the
sense of Ulam and their multiple types in the last few de-
cades. We observe that the concept of Hyers–Ulam stability
is fundamental in realistic problems, such as numerical
analysis, biology, and economics (see [33–38]).

*e remaining part of this manuscript is structured as
follows. In Section 2, we have introduced some basic defi-
nitions and lemmas that we need to prove our main results.
By using the topological degree theory, the results of exis-
tence and uniqueness for the solutions are obtained in
Section 3. In Section 4, we investigate the stability of
Hyers–Ulam to our proposed coupled system. *e theo-
retical results are demonstrated by providing an example in
Section 5, and finally, we have drawn the conclusion in
Section 6.

2. Preliminaries

In this section, we introduce some basic notions, definitions,
and important lemmas which are used in this article.LetΠ �

C([0, 1], IR) be a Banach space for all continuous functions
π: [0, 1]⟶ IR with the norm ‖π‖ � sup |π(w)|: 0≤w≤ 1{ }.
Further, Ω � Π × Π is also a Banach space under the norms
‖(π1, π2)‖ � ‖π1‖ + ‖π2‖ and |(π1, π2)| � max ‖π1‖, ‖π2‖ .
*e family of each bounded set of P(Ω) symbolized by B.

Definition 1. For Z(w): (0, +∞)⟶ R, the Caputo frac-
tional derivative of noninteger order ϱ > 0 is known by

c
D
ϱ
Z(w) �

1
Γ(n − ϱ)


w

0
(w − I)

n− ϱ− 1
Z

(n)
(I)dI, (6)

where n − 1< ϱ< n, the integral in the right side is pointwise
defined on (0,∞), and Z(w) is a continuous function.

Definition 2. For Z(w): (0, +∞)⟶ R, the Rie-
mann–Liouville fractional derivative of noninteger order
ϱ > 0 is known by

R
D
ϱ
Z(w) �

1
Γ(n − ϱ)

d
dw

 

n


w

0
(w − I)

n− ϱ− 1
Z(I)dI,

(7)

where n − 1< ϱ< n, the integral in the right side is pointwise
defined on (0,∞), and Z(w) is a continuous function.

Definition 3. For Z(w): (0, +∞)⟶ R, the Rie-
mann–Liouville fractional integral of order ϱ > 0 is defined
by

I
ϱ
Z(w) �

1
Γ(ϱ)


w

0
(w − I)

ϱ− 1
Z(I)dI, (8)

where the integral on the right side is pointwise defined on
(0, +∞) and Γ(ϱ) indicates the Gamma function defined as

Γ(ϱ) � 
∞

0
e

− I
I
ϱ− 1dI. (9)

Lemma 1 (see [39]). Let ϱ > 0 and Z ∈ C(0, 1)∩L1(0, 1).
7en, the general solution of the fractional differential
equation DϱZ(w) � π(w) is given by

Z(w) � π(w) + c0 + c1w + c2w
2

+ · · · + cn− 1w
n− 1

, (10)

for ci ∈R, i � 0, 1, 2, . . . , n − 1.

Lemma 2 (see [2, 8]). Let θ ∈ (n − 1, n],Z ∈ Cn− 1, and cDθ

is the fractional derivative for Caputo, then

I
θc

D
θ
Z(w) � Z(w) + a1 + a2w + a3w

2
+ a4w

3
+ · · · + anw

n− 1
,

(11)

for ai ∈R and i � 1, 2, 3, 4, . . . , n.

Lemma 3 (see [2, 8]). Let ϱ ∈ (n − 1, n],Z ∈ Cn− 1, and RDϱ

is the fractional derivative for Riemman–Liouville, then
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I
ϱR

D
ϱ
Z(w) � Z(w) + b1w

ϱ− 1
+ b2w

ϱ− 2
+ b3w

ϱ− 3

+ a4w
ϱ− 4

+ · · · + bnw
ϱ− n

,
(12)

for bi ∈R and i � 1, 2, 3, 4, . . . , n.

Lemma 4 (see [22]). For ϱ, ε> 0, the following relations are
satisfying:

D
ϱξε �
Γ(ε + 1)

Γ(1 + ε − ϱ)
ξε− ϱ,

I
ϱξε �
Γ(ε + 1)

Γ(1 + ε + ϱ)
ξε+ϱ.

(13)

Definition 4. *eKuratowski measure of noncompactness is
the map ϑ: B⟶ (0,∞) known as ϑ(B) � inf d> 0: B{

which admits a finite cover by sets of diameter ≤d}, where
B ∈ B.

Proposition 1 (see [40]). 7e Kuratowski measure of ϑ
satisfies the following properties:

(a) 7e Kuratowski measure ϑ(B) � 0; for a relative
compact B

(b) ϑ is a seminorm, i.e., ϑ(μB) � |μ|ϑ(B), μ ∈ IR, and
ϑ(B1 + B2)≤ ϑ(B1) + ϑ(B2)

(c) B1 ⊂B2 implies ϑ(B1)≤ ϑ(B2); ϑ(B1⋃B2) �

sup ϑ(B1), ϑ(B2) 

(d) ϑ(convB) � ϑ(B)

(e) ϑ(B) � ϑ(B)

Definition 5. Suppose that the function F: Ψ⟶Π is a
continuous and bounded map, where Ψ ⊂ Π. F is called
ϑ− Lipschitz with η≥ 0, and if ϑ(F(B))≤ ηϑ(B), ∀B ⊂ Ψ is
bounded.

Moreover, if η< 0, thenF will be a strict ϑ− contraction.

Definition 6. *e function F is called ϑ− condensing, and if
ϑ(F(B))< ϑ(B),∀B ⊂ Ψ is bounded with ϑ(B)> 0.

In other words,ϑ(F(B))≥ ϑ(B) implies ϑ(B) � 0.
We indicate that the class of each ϑ− condensing map-

pings F: Ψ⟶Π by Cϑ(Ψ) and the class of each strict
ϑ− contractions F: Ψ⟶Π by ζCϑ(Ψ).

We remark that Cϑ(Ψ)ζCϑ(Ψ), and every F ∈ Cϑ(Ψ) is
ϑ− Lipschitz with η � 1. As well, we recall thatF: Ψ⟶Π is
Lipschitz if ∃ η> 0 such that
‖F(π) − F(π)‖≤ η‖π − π‖, and∀π, π ∈ Ψ. Also, F is a
strict contraction under the condition η< 1.

Proposition 2 (see [31]). LetF,G: Ψ⟶Π be ϑ− Lipschitz
operators with constants η1 and η2, respectively, then F +

G: Ψ⟶Π is ϑ− Lipschitz with constants η1 + η2.

Proposition 3 (see [41]). 7e operator F: Ψ⟶Π is
compact if and only if F is ϑ− Lipschitz with η � 0.

Proposition 4 (see [31]). 7e operator F: Ψ⟶Π is
Lipschitz with constant η if and only if F is ϑ− Lipschitz with
constant η.

Lemma 5 (see [39]). Let ϕp be a nonlinear p-Laplacian
operator.

(1) If 1<p≤ 2, j1j2 > 0, and |j1|, |j2|≥ ρ> 0, then

ϕp j1(  − ϕp j2( 


≤ (p − 1)ρp− 2
j1 − j2


. (14)

(2) If p> 2 and |j1|, |j2|≤ ρ∗, then

ϕp j1(  − ϕp j2( 


≤ (p − 1)ρ∗p− 2
j1 − j2


. (15)

Theorem 1 (see [29]). Let F: Ω⟶Ω be a ϑ− contraction,
and Ξ � ω ∈ Ω: ∃, 0≤ ρ≤ 1 such that ω � ρFω. If Ξ ⊂ Ω is a
bounded set, there exists r> 0 such that Ξ ⊂Br(0), then the
degree deg(I − ρF,Br(0), 0) � 1,∀ρ ∈ [0, 1].

*us, F has at least one fixed point, and the set of the
fixed points of F lies in Br(0).

*e above theorem that wementioned plays a substantial
role in obtaining our main results.

3. Main Results

In the current section, we establish some appropriate con-
ditions for proposed coupled system (5).

Theorem 2. Let Z: [0, 1]⟶ IR be a ϱ1 times’ integrable
function. 7en, for ϱ1 ∈ (3, n] and positive integer n≥ 4, the
solution of the boundary value problem is as follows:

cD
θ1 ϕp

R
D
ϱ1π1(w)   � Z1 w, π2(w)( , w ∈ [0, 1],

ϕp
R
D
ϱ1π1(w)  

(i)
|w�0 � 0, i � 0, 1, 2, . . . , n − 1,

I
k− ϱ1π1(w)|w�0 � 0, k � 1, 2, 4, . . . , n,

D
λπ1(w)|w�1 �

1
Γ(λ)


W

0
(W − I)

λ− 1φ π1(I)( dI,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

is given by

π1(w) �
Γ ϱ1 − λ − 2( w

ϱ1− 3

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1φ π1(I)( dI

+ 
1

0
G
ϱ1(w,I)ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( dτ dI,

(17)

where Gϱ1(w,I) is the Green’s function provided by
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G
ϱ1(w,I) �

(w − I)
ϱ1− 1

Γ ϱ1( 
−
Γ ϱ1 − λ − 2( w

ϱ1− 3
(1 − I)

ϱ1− λ− 1

Γ ϱ1 − 2( Γ ϱ1 − λ( 
, 0≤I≤w≤ 1,

− Γ ϱ1 − λ − 2( w
ϱ1− 3

(1 − I)
ϱ1− λ− 1

Γ ϱ1 − 2( Γ ϱ1 − λ( 
, 0≤w≤I≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Proof. Applying the integral operator Iθ1 and using Lemma
2 on (16), we get

ϕp
R
D
ϱ1π1(w)  � I

θ1Z1 w, π2(w)(  + a1 + a2w

+ a3w
2

+ a4w
3

+ · · · + anw
n− 1

.
(19)

Using the condition (ϕp[RDϱ1π1(w)])(i)|w�0 � 0, for i �

0, 1, 2, . . . , n − 1, in (19), we obtain a1 � a2 � a3 �

· · · � an � 0, and then, we get

ϕp
R
D
ϱ1π1(w)  � I

θ1Z1 w, π2(w)( . (20)

From (20), we have
R
D
ϱ1π1(w) � ϕq I

θ1 Z1( w, π2(w)(  . (21)

Applying the operator Iϱ1 and using Lemma 3 in (21), we
get

π1(w) � I
ϱ1 ϕq I

θ1 Z1 w, π2(w)( (    + b1w
ϱ1− 1

+ b2w
ϱ1− 2

+ b3w
ϱ1− 3

+ b4w
ϱ− 4

+ · · · + bnw
ϱ1− n

.

(22)

Using the condition Ik− ϱ1π(w)|w�0 � 0, k � 1, 2, 4, . . . , n,

we get b1 � b2 � b4 � . . . � bn � 0, and then, we obtain

π1(w) � I
ϱ1 ϕq I

θ1 Z1 w, π2(w)( (    + b3w
ϱ1− 3

. (23)

Using the condition Dλπ1(w)|w�1 � 0I
λ
Wφ(π1) �

(1/Γ(λ)) 
W

0 (W − I)λ− 1φ(π1(I))dI and Lemma 4 in (22),
we get

b3 �
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2(  0I
λ
Wφ π1(  − I

ϱ1− λ ϕq I
θ1 Z1 1, π2(1)( (    .

(24)

Putting the value of b3 in (23), we get

π1(w) �
1
Γ ϱ1( 


w

0
(w − I)

ϱ1− 1ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( dτ(  dI

+
Γ ϱ1 − λ − 2( w

ϱ1− 3

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1φ π1(I)( dI

−
Γ ϱ1 − λ − 2( w

ϱ1− 3

Γ ϱ1 − 2( Γ ϱ1 − λ( 

1

0
(1 − I)

ϱ1− λ− 1ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( dτ dI,

(25)

which can be written after rearranging as follows:

π1(w) �
Γ ϱ1 − λ − 2( w

ϱ1− 3

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1φ π1(I)( dI

+ 
1

0
G
ϱ1(w,I)ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( dτ(  dI,

(26)

where Gϱ1(w,I) is the Green’s function defined in (18). □

In view of *eorem 2, the identical coupled system of
Hammerstein-kind integral equations to fractional differ-
ential equation coupled system (5) is given as follows:

π1(w) �
Γ ϱ1 − λ − 2( w

ϱ1− 3

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1φ π1(I)( dI

+ 
1

0
G
ϱ1(w,I)ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( dτ dI,

π2(w) �
Γ ϱ2 − σ − 2( w

ϱ2− 3

Γ ϱ2 − 2( Γ(σ)


W

0
(W − I)

σ− 1ϖ π2(I)( dI

+ 
1

0
G
ϱ2(w,I)ϕq

1
Γ θ2( 


I

0
(I − τ)

θ2− 1
Z2 τ, π1(τ)( dτ dI,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

where Gϱ2(w,I) is the Green’s function provided by
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G
ϱ2(w,I) �

(w − I)
ϱ2− 1

Γ ϱ2( 
−
Γ ϱ2 − σ − 2( w

ϱ2− 3
(1 − I)

ϱ2− σ− 1

Γ ϱ2 − 2( Γ ϱ2 − σ( 
, 0≤I≤w≤ 1,

− Γ ϱ2 − σ − 2( w
ϱ2− 3

(1 − I)
ϱ2− σ− 1

Γ ϱ2 − 2( Γ ϱ2 − σ( 
, 0≤w≤I≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(28)

From Gϱ1(w,I) and Gϱ2(w,I) obviously,

max
w∈[0,1]

G
ϱ1(w,I)


 �
Γ ϱ1 − λ − 2( (1 − I)

ϱ1− λ− 1

Γ ϱ1 − 2( Γ ϱ1 − λ( 
,

max
w∈[0,1]

G
ϱ2(w,I)


 �
Γ ϱ2 − σ − 2( (1 − I)

ϱ2− σ− 1

Γ ϱ2 − 2( Γ ϱ2 − σ( 
, I ∈ [0, 1].

(29)

We define the operators F1: Π1⟶Π1 andF2:

Π2⟶Π2 as

F1 π1( (w) �
Γ ϱ1 − λ − 2( w

ϱ1− 3

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1φ π1(I)( dI,

F2 π2( (w) �
Γ ϱ2 − σ − 2( w

ϱ2− 3

Γ ϱ2 − 2( Γ(σ)


W

0
(W − I)

σ− 1ϖ π2(I)( dI,

G1,G2: Ω⟶Ω,

(30)

as

G1 π2( (w) � 
1

0
G
ϱ1(w,I)ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( dτ dI,

G2 π1( (w) � 
1

0
G
ϱ2(w,I)ϕq

1
Γ θ2( 


I

0
(I − τ)

θ2− 1
Z2 τ, π1(τ)( dτ dI.

(31)

*erefore, we have F(π1, π2) � (F1,F2)(π1,

π2),G(π1, π2) � (G1,G2)(π1, π2), and T(π1, π2) �

F(π1, π2) + G(π1, π2). *us, the equivalent operator
equation for the toppled system of Hammerstein-kind in-
tegral equations (27) is provided by

π1, π2(  � T π1, π2(  � F π1, π2(  + G π1, π2( . (32)

Consequently, the solutions of system (27) are the fixed
points of operator equation (32).

Now, we need to list the following assumptions to
complete our results.

(H1) For Z, π1, ℓ, π2 ∈ IR, the nonlocal functions
φ andϖ satisfy ‖φ(Z) − φ(π1)‖≤Kφ‖Z − π1‖ and ‖ϖ
(ℓ) − ϖ(π2)‖≤Kϖ‖ℓ − π2‖ such that Kφ, Kϖ ∈ [0, 1)

(H2) With the positive constants given
Cφ, Cϖ, Nφ, Nϖ, and q1 ∈ [0, 1), the nonlocal functions
φ andϖ for π1, π2 ∈ IR satisfy the following growth
conditions |φ(π1)|≤Cφ|π1|

q1 + Nφ and |ϖ(π2)|≤Cϖ
|π2|

q1 + Nϖ

(H3) With the presence of constants g, h, NZ1
, NZ2

,
and q2 ∈ [0, 1), the nonlinear functions Z1 andZ2 for
π1, π2 ∈ IR satisfy the following growth conditions:

Z1 w, π2( 


≤ϕp g π2



q2 + NZ1

 ,

Z2 w, π1( 


≤ ϕp h π1



q2 + NZ2

 .
(33)

(H4) For Z, π1, ℓ, π2 ∈ IR, there exists positive con-
stants LZ1

andLZ2
such that

Z1(w, ℓ) − Z1 w, π2( 


≤ LZ1
ℓ − π2


,

Z2(w, Z) − Z2 w, π1( 


≤ LZ2
Z − π1


.

(34)

Theorem 3. Assume that (H1) and (H2) hold true.7en, the
operator F is Lipschitz and satisfies the following growth
condition:

F π1, π2( 
����

����≤CF π1, π2( 
����

����
q1 + NF, ∀ π1, π2(  ∈ Ω.

(35)
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Proof. By assumption (H1), we get

F1 π1( (w) − F1 π1( (w)


 �
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1 φ π1(  − φ π1(  dI




≤
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1 φ π1(  − φ π1( 


dI,

(36)

which yields

F1 π1(  − F1 π1( 
����

����≤Kφ π1 − π1
����

����, (37)

where

Kφ �
KφΓ ϱ1 − λ − 2( W

λ

Γ ϱ1 − 2( Γ(λ + 1)
∈ [0, 1). (38)

To get the growth condition, consider

F1 π1( (w)


 �
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1φ π1(I)( dI




≤
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1 φ π1(I)( 


dI,

(39)

which means that

F1π1
����

����c
≤
Γ ϱ1 − λ − 2( W

λ

Γ ϱ1 − 2( Γ(λ + 1)
Cφ π1

����
����

q1
c

+ Nφ . (40)

In a similar manner, we have

F2 π2( (w)


 �
Γ ϱ2 − σ − 2( 

Γ ϱ2 − 2( Γ(σ)


W

0
(W − I)

σ− 1ϖ π2(I)( dI




≤
Γ ϱ2 − σ − 2( 

Γ ϱ2 − 2( Γ(σ)


W

0
(W − I)

σ− 1 ϖ π2(I)( 


dI,

(41)

which implies that

F2π2
����

����c
≤
Γ ϱ2 − σ − 2( W

σ

Γ ϱ2 − 2( Γ(σ + 1)
Cϖ π2

����
����

q1
c

+ Nϖ . (42)

Now,

F π1, π2( 
����

����c
≤
Γ ϱ1 − λ − 2( W

λ

Γ ϱ1 − 2( Γ(λ + 1)
Cφ π1

����
����

q1
c

+ Nφ 

+
Γ ϱ2 − σ − 2( W

σ

Γ ϱ2 − 2( Γ(σ + 1)
Cϖ π2

����
����

q1
c

+ Nϖ 

≤
Γ ϱ1 − λ − 2( W

λ

Γ ϱ1 − 2( Γ(λ + 1)
Cφ π1

����
����

q1
c



+
Γ ϱ2 − σ − 2( W

σ

Γ ϱ2 − 2( Γ(σ + 1)
Cϖ π2

����
����

q1
c



+
Γ ϱ1 − λ − 2( W

λ
Nφ

Γ ϱ1 − 2( Γ(λ + 1)
+
Γ ϱ2 − σ − 2( W

σ
Nϖ

Γ ϱ2 − 2( Γ(σ + 1)
⎛⎝ ⎞⎠.

(43)

*us,

F π1, π2( 
����

����c
≤CF π1

����
����

q1 + π2
����

����
q1  + NF

� CF π1, π2( 
����

����
q1 + NF,

(44)

where

CF � max
Γ ϱ1 − λ − 2( W

λ

Γ ϱ1 − 2( Γ(λ + 1)
Cφ,
Γ ϱ2 − σ − 2( W

σ

Γ ϱ2 − 2( Γ(σ + 1)
Cϖ ,

NF �
Γ ϱ1 − λ − 2( W

λ
Nφ

Γ ϱ1 − 2( Γ(λ + 1)
+
Γ ϱ2 − σ − 2( W

σ
Nϖ

Γ ϱ2 − 2( Γ(σ + 1)
.

(45)

□
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Theorem 4. Suppose that (H3) is satisfied. 7en, the op-
erator G is continuous and satisfies the following growth
condition:

G π1, π2( 
����

����≤Λ π1, π2( 
����

����
q2 + Θ, for all π1, π2(  ∈ Ω,

(46)

where Λ � c(g + h) and Θ � c(NZ1
+ NZ2

) such that

c � max
1

Γ ϱ1 + 1( 
+
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ ϱ1 − λ + 1( 
 

1
Γ θ1 + 1( 

 

q− 1

,
⎧⎨

⎩

·
1

Γ ϱ2 + 1( 
+
Γ ϱ2 − σ − 2( 

Γ ϱ2 − 2( Γ ϱ2 − σ + 1( 
 

1
Γ θ2 + 1( 

 

q− 1⎫⎬

⎭.

(47)

Proof. Let Br � (π1, π2) ∈ Ω: ‖(π1, π2)‖≤ r  be a bounded
set with a sequence (π1n

, π2n
) converging to (π1, π2) inBr. In

order to show that G is continuous, we have to prove that

‖G(π1n
, π2n

) − G(π1, π2)‖⟶ 0 as n⟶∞. Let us choose
the following:

G1 π2n
  − G1 π2(  (w)





� | 
1

0
G
ϱ1(w,I)ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2n

(τ) dτ dI

− 
1

0
G
ϱ1(w,I)ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)dτ( dI |

≤ 
1

0
G
ϱ1(w,I)

����
����ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2n

(τ)dτ  

− ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)dτ(  |dI

≤ (q − 1)ρq− 2
1 

1

0
G
ϱ1(w,I)

����
����

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2n

(τ)dτ 

−
1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)dτ( |dI

≤ (q − 1)ρq− 2
1 

1

0
G
ϱ1(w,I)




1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2n

(τ)  − Z1 τ, π2(τ)( 


dτ dI.

(48)

*e continuity of Z1 implies that
|Z1(τ, π2n

(τ) − Z1(τ, π2(τ))|⟶ 0 as n⟶∞, and then,

G1 π2n
 (w) − G1 π2( (w)

�����

�����⟶ 0, as n⟶∞, (49)

and also, we can in the same way prove that

G2 π1n
 (w) − G2 π1( (w)

�����

�����

≤ (q − 1)ρq− 2
2 

1

0
G
ϱ2(w,I)




1
Γ θ2( 


I

0
(I − τ)

θ2− 1
|Z2 τ, π1n

(τ) 

− Z2 τ, π1(τ)( |dτdI.

(50)
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*e continuity of Z2 implies that
|Z2(τ, π1n

(τ) − Z2(τ, π1(τ))|⟶ 0 as n⟶∞, and then,

G2 π1n
 (w) − G2 π1( (w)

�����

�����⟶ 0, as n⟶∞. (51)

*us, from (49) and (51), we have

G π1n
, π2n

 (w) − G π1, π2( (w)
�����

�����

≤ (q − 1)ρq− 2
1 

1

0
G
ϱ1(w,I)




1
Γ θ1( 


I

0
(I − τ)

θ1 − 1
|Z1 τ, π2n

(τ) 

− Z1 τ, π2(τ)( |dτdI

+(q − 1)ρq− 2
2 

1

0
G
ϱ2(w,I)




1
Γ θ2( 


I

0
(I − τ)

θ2− 1
|Z2 τ, π1n

(τ) 

− Z2 τ, π1(τ)( |dτdI.

(52)

From the continuity of Z1 andZ2 and (52), we have

G π1n
, π2n

 (w) − G π1, π2( (w)
�����

�����⟶ 0 as n⟶∞.

(53)

To calculate (46) forG, using assumption (H3) and (29),
we obtain

G1 π2( (w)


 � 
1

0
G
ϱ1(w,I)ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)dτ( dI 





≤ 
1

0
G
ϱ1(w,I)


ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( 


dτ dI

≤ 
1

0
G
ϱ1(w,I)


ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1ϕp g π2



q2 + NZ1

  dI

≤
1

Γ ϱ1 + 1( 
+
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ ϱ1 − λ + 1( 
 

1
Γ θ1 + 1( 

 

q− 1

g π2



q2 + NZ1

 .

(54)

From assumption (H3) and (29), we get

G2 π1( (w)


 � 
1

0
G
ϱ2(w,I)ϕq

1
Γ θ2( 


I

0
(I − τ)

θ2− 1
Z2 τ, π1(τ)dτ(  dI





≤ 
1

0
G
ϱ2(w,I)


ϕq

1
Γ θ2( 


I

0
(I − τ)

θ2− 1
Z2 τ, π1(τ)( 


dτ dI

≤ 
1

0
G
ϱ2(w,I)


ϕq

1
Γ θ2( 


I

0
(I − τ)

θ2− 1ϕp h π1



q2 + NZ2

 dτ dI.

(55)

*en,

G2 π1( (w)


≤ 
1

0
G
ϱ2(w,I)


ϕq

1
Γ θ2( 


I

0
(I − τ)

θ2− 1ϕp h π1



q2 + NZ2

 dτ dI

≤
1

Γ ϱ2 + 1( 
+
Γ ϱ2 − σ − 2( 

Γ ϱ2 − 2( Γ ϱ2 − σ + 1( 
 

1
Γ θ2 + 1( 

 

q− 1

h π1



q2 + NZ2

 .

(56)
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By the help of (54) and (55), we have obtained

G π1, π2( 
����

���� � G1 π2( 
����

���� + G2 π1( 
����

����

≤ c g π2
����

����
q2 + NZ1

  + c h π1
����

����
q2 + NZ2

 

≤ c(g + h) π2
����

����
q2 + π1

����
����

q2  + c NZ1
+ NZ2

 

� Λ π1, π2( 
����

����
q2 +Θ.

(57)□

Theorem 5. 7e operator G: Ω⟶Ω is ϑ− Lipschitz with
constant zero and is compact.

Proof. Take a bounded set E and a sequence (π1n
, π2n

) such
that E ⊂ Br ⊆Ω. *en, using (46), we have

G π1n
, π2n

 
�����

�����≤Λ π1, π2( 
����

���� + Θ, for all π1, π2(  ∈ Ω,

(58)

which means that G is bounded. Now, for all (π1n
, π2n

) ∈ E,
we have, for 0≤w1 <w2 ≤ 1,

G1π2n
w1(  − G1π2n

w2( 




� | 
1

0
G
ϱ1 w1,I( ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( dτ( dI 

− 
1

0
G
ϱ1 w2,I( ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( dτ( dI |

≤ 
1

0
G
ϱ1 w1,I(  − G

ϱ1 w2,I( 


ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1ϕp g π1
����

����
q2 + NZ1

 dτ dI.

(59)

Hence, it follows that

G1π2n
w1(  − G1π2n

w2( 




≤
w
ϱ1
1 − w

ϱ1
2( 

Γ ϱ1 + 1( 
+

w
ϱ1− 3
1 − w

ϱ1− 3
2 

Γ ϱ1 − 2( Γ ϱ1 − λ + 1( 
⎡⎢⎣ ⎤⎥⎦

1
Γ θ1 + 1( 

 

q− 1

× g π1
����

����
q2 + NZ1

 .

(60)

Similarly, we have

G2π1n
w1(  − G2π1n

w2( 




≤
w
ϱ2
1 − w

ϱ2
2( 

Γ ϱ2 + 1( 
+

w
ϱ2− 3
1 − w

ϱ2− 3
2 

Γ ϱ2 − 2( Γ ϱ2 − σ + 1( 
⎡⎢⎣ ⎤⎥⎦

1
Γ θ2 + 1( 

 

q− 1

× h π2
����

����
q2 + NZ2

 .

(61)

Both the right sides of (55) and (61) tend to be zero as
w1⟶ w2. *erefore, the operators G1 andG2 are equi-
continuous, and hence, G � (G1,G2) is equicontinuous on
E. *us, G(E) is compact by the theorem of Arzela–Ascoli.
Moreover, through Proposition 3, G is ϑ− Lipschitz with
constant zero. □

Theorem 6. Suppose that (H1)–(H3) are satisfied with
Λ + CF ≤ 1. 7en, the toppled system (5) has at least one
solution (π1, π2) ∈ Ω. Furthermore, the set of solutions of (5)
is bounded in Ω.

Proof. With the help of *eorem 3, F is ϑ− Lipschitz with
constant 0≤CF < 1, andG is ϑ− Lipschitz with constant zero
by *eorem 5. *us, T is strictly ϑ− condensing with
constant η by Proposition 2. Now, let us set that we have to
show that B is bounded in Ω. In fact,

π1, π2( 
����

���� � κT π1, π2( 
����

����≤ T π1, π2( 
����

����

≤ F π1, π2( 
����

���� + G π1, π2( 
����

���� 

≤CF π1, π2( 
����

����
q1 + NF + Λ π1, π2( 

����
����

q2 + Θ

� CF + Λ(  π1, π2( 
����

����
q3 + NF + Θ,

where q3 � max q1, q2 .

(62)

Obviously, ‖π1, π2‖ is bounded. If not correct, take
‖π1, π2‖ � S such that S⟶∞ and q3 ∈ (0, 1).
Consequently,

1≤ CF + Λ( 
π1, π2( 

����
����

q3

π1, π2( 
����

����
+

NF + Θ
π1, π2( 

����
����
,

1≤
CF + Λ( S

q3

S
+

NF + Θ
S

,

1≤
CF + Λ( 

S
1− q3

+
NF + Θ

S
⟶ 0 asS⟶∞,

(63)

which is a contradiction. So, B is bounded. *us, by *e-
orem 7, we conclude that T has at least one fixed point and
that is a solution of system (5), and the set of solutions is
bounded in Ω. □
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Theorem 7. Suppose that (H1)–(H4) hold and χ < 1, where

χ �
KφΓ ϱ1 − λ − 2( W

λ

Γ ϱ1 − 2( Γ(λ + 1)
+

KϖΓ ϱ2 − σ − 2( W
σ

Γ ϱ2 − 2( Γ(σ + 1)

+(q − 1)ρq− 2
1 LZ1

1
Γ ϱ1 + 1( 

+
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ ϱ1 − λ + 1( 
 

1
Γ θ1 + 1( 

 

+(q − 1)ρq− 2
2 LZ2

1
Γ ϱ2 + 1( 

+
Γ ϱ2 − σ − 2( 

Γ ϱ2 − 2( Γ ϱ2 − σ + 1( 
 

1
Γ θ2 + 1( 

 .

(64)

*en, toppled system (5) has a unique solution. Proof. Let (π1, π2) and (π1, π2) ∈ Ω are two solutions, then

T π1, π2(  − T π1, π2( 


 � F π1, π2(  + G π1, π2(   − F π1, π2(  + G π1, π2(  




≤ F π1, π2(  − F π1, π2( 


 + G π1, π2(  − G π1, π2( 


,
(65)

and after simplification, we obtain

T π1, π2(  − T π1, π2( 
����

����

≤
KφΓ ϱ1 − λ − 2( W

λ

Γ ϱ1 − 2( Γ(λ + 1)
+

KϖΓ ϱ2 − σ − 2( W
σ

Γ ϱ2 − 2( Γ(σ + 1)
⎛⎝

+(q − 1)ρq− 2
1 LZ1

1
Γ ϱ1 + 1( 

+
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ ϱ1 − λ + 1( 
 

1
Γ θ1 + 1( 

 

+ (q − 1)ρq− 2
2 LZ2

1
Γ ϱ2 + 1( 

+
Γ ϱ2 − σ − 2( 

Γ ϱ2 − 2( Γ ϱ2 − σ + 1( 
 

1
Γ θ2 + 1( 

 

× π1, π2(  − π1, π2( 
����

����,

(66)

which implies that

T π1, π2(  − T π1, π2( 
����

����≤ χ π1, π2(  − π1, π2( 
����

����. (67)

*us, the operatorT is a contraction as χ < 1, and by the
Banach fixed-point theorem,T has a unique fixed point, and
then, considered toppled system (5) has a unique
solution. □

4. Hyers–Ulam Stability

In this section, we investigate the stability of Hyers–Ulam for
the suggested toppled system.

Definition 7. We say that the toppled system of Hammer-
stein-kind integral equations (27) is Hyers–Ulam stable if
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there exists positive constants a, b, c, andd such that, for
each ξ1, ξ2 > 0 and any solution (π∗1 , π∗2 ) of the system


π∗1(w) −

Γ ϱ1 − λ − 2( w
ϱ1− 3

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1φ π∗1(I)( dI

+ 
1

0
G
ϱ1(w,I)ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π∗2(τ)( dτ dI


≤ ξ1,


π∗2(w) −

Γ ϱ2 − σ − 2( w
ϱ2− 3

Γ ϱ2 − 2( Γ(σ)


W

0
(W − I)

σ− 1ϖ π∗2(I)( dI

+ 
1

0
G
ϱ2(w,I)ϕq

1
Γ θ2( 


I

0
(I − τ)

θ2− 1
Z2 τ, π∗1(τ)( dτ dI


≤ ξ2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(68)

there exists (π1, π2) which is the unique solution of (27)
satisfying that

π1(w) − π∗1(w)


≤ aξ1 + bξ2,

π2(w) − π∗2(w)


≤ cξ1 + dξ2.
(69)

Theorem 8. 7e toppled system (5) is Hyers–Ulam stable
under hypotheses (H1)–(H4).

Proof. With the help of Definition 7 and *eorem 7, sup-
pose that (π1, π2) to be the correct solution and the pair
(π∗1 , π∗2 ) be the other solution of system (27). *en, we have,
from the first equation of (27),

π1(w) − π∗1(w)


 � |
Γ ϱ1 − λ − 2( w

ϱ1− 3

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1φ π1(I)dI(

+ 
1

0
G
ϱ1(w,I)ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( dτ dI

−
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1φ π∗1(I)dI(

− 
1

0
G
ϱ1(w,I)ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π∗2(τ)( dτ dI|

≤
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1 φ π1(  − φ π∗1( ( dI

+ 
1

0
G
ϱ1(w,I)

����
����ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π2(τ)( dτ 

− ϕq

1
Γ θ1( 


I

0
(I − τ)

θ1− 1
Z1 τ, π∗2(τ)( dτ |dI

≤
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ(λ)


W

0
(W − I)

λ− 1 φ π1(  − φ π∗1( ( 


dI

+(q − 1)ρq− 2
1 

1

0
G
ϱ1(w,I)




1
Γ θ1( 


I

0
(I − τ)

θ1− 1


× Z1 τ, π2(τ)(  − Z1 τ, π∗2(τ)( 


dτdI.

(70)
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*en,

π1(w) − π∗1(w)


≤
Γ ϱ1 − λ − 2( W

λ
Kφ

Γ ϱ1 − 2( Γ(λ + 1)
π1(w) − π∗1(w)

����
����

+(q − 1)ρq− 2
1 LZ1

1
Γ ϱ1 + 1( 

+
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ ϱ1 − λ + 1( 
 

1
Γ θ1 + 1( 

 

× π2(w) − π∗2(w)
����

����≤ aξ1 + bξ2,

(71)

where

a �
Γ ϱ1 − λ − 2( W

λ
Kφ

Γ ϱ1 − 2( Γ(λ + 1)
,

b � (q − 1)ρq− 2
1 LZ1

1
Γ ϱ1 + 1( 

+
Γ ϱ1 − λ − 2( 

Γ ϱ1 − 2( Γ ϱ1 − λ + 1( 
 

1
Γ θ1 + 1( 

 .

(72)

Similarly, we get

π2(w) − π∗2(w)


≤ cξ1 + dξ2, (73)

where

c �
Γ ϱ2 − σ − 2( W

σ
Kϖ

Γ ϱ2 − 2( Γ(σ + 1)
,

d � (q − 1)ρq− 2
2 LZ2

1
Γ ϱ2 + 1( 

+
Γ ϱ2 − σ − 2( 

Γ ϱ2 − 2( Γ ϱ2 − σ + 1( 
 

1
Γ θ2 + 1( 

 .

(74)

Hence, by (71) and (73), integral equations’ toppled
system (27) is Hyers–Ulam stable. *us, proposed toppled
system (5) is Hyers–Ulam stable. □

5. Illustrative Example

In this section, we introduce an application of our results,
which were proved in Sections 3 and 4.

Example 1. Consider the following toppled fractional sys-
tem with the p-Laplacian operator and integral boundary
conditions for n� 5:

cD
14/3 ϕ4

R
D

13/3π1(w)  �
− 21w

12
+

1
10

cos π2(w)( , w ∈ [0, 1],

cD
14/3 ϕ4

R
D

13/3π2(w)  �
32
15

+
1
10

sin π1(w)( , w ∈ [0, 1],

ϕ4
R
D

13/3π1(w)  
(i)

|w�0 � 0, i � 0, 1, 2, 3, 4,

I
k− (13/3)π1(w)|w�0 � 0, k � 1, 2, 4, 5,

D
3/2π1(w)|w�1 �

1
Γ(3/2)


1

0

(1 − I)
(1/2) cos π1( 

6
dI,

ϕ4
R
D

13/3π2(w) 
(j)




w�0

� 0, j � 0, 1, 2, 3, 4,

I
h− (13/3)π2(w)|w�0 � 0, h � 1, 2, 4, 5,

D
(3/2)π2(w)|w�1 �

1
Γ(3/2)

 
1

0

(1 − I)
(1/2) cos π2( 

6
dI,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(75)
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where θ1 � θ2 � (14/3), p � 4, ϱ1 � ϱ2 � (13/3), and λ �

σ � (3/2). *en, we obtain Kφ � Kϖ � (1/6) and
LZ1

� LZ2
� (1/10). Via simple calculation and taking

ρ1 � ρ2 � (1/2), we get χ � 0.1767< 1. Hence, by*eorem 7,
toppled system (75) has a unique solution. With comparable
fashion, it is easy to verify the fulfillment of the conditions of
*eorem 6. Likewise, the conditions of *eorem 8 can be
easily confirmed, and consequently, the solution of system
(75) is Hyers–Ulam stable.

6. Conclusion

In this study, we analyzed the stability and uniqueness
solution of Caputo and Riemann–Liouville fractional de-
rivatives with fractional orders n − 1< θ1, θ2, ϱ1, ϱ2 ≤ n, and
n≥ 3. By using the topological degree theory, we have proved
sufficient conditions for the EUS of the coupled system of
fractional differential equations with integral boundary
conditions involving the p-Laplacian operator. Also, we
have found appropriate conditions for Hyers–Ulam stability
of the solution for the considered system. At the end, we
have provided an example that supported our results as we
have done in Section 5 to confirm the theoretical analysis.

Data Availability

No data were used to support this study.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was supported by the National Natural Science
Foundation of China (no. 11871475).

References

[1] R. P. Agarwal, D. O’Regan, and S. Staněk, “Positive solutions
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In this present study, we first establish Hermite–Hadamard type inequalities for r-convex functions via qκ2 -definite integrals.
-en, we prove some quantum inequalities of Hermite–Hadamard type for product of two r-convex functions. Finally, by using
these established inequalities and the results given by (Brahim et al. 2015), we prove several quantum Hermite–Hadamard type
inequalities for coordinated r-convex functions and for the product of two coordinated r-convex functions.

1. Introduction

Quantum calculus research is an unlimited analysis of
calculus and is known as q-calculus. We get the initial
mathematical formulas in q-calculus as q reaches 1− . -e
commencement of the analysis of q-calculus was initiated by
Euler (1707–1783). -e aforementioned results lead to an
intensive investigation on q-calculus in the twentieth cen-
tury. -e concept of q-calculus is used in many areas in
mathematics and physics such as theory, orthogonal poly-
nomials, integration, basic hypergeometric functions, me-
chanical theory, and quantum and relativity theory. For
more information about q-calculus, one can refer to [1–10].

Mathematically, convexity is very simple and natural
which plays a very important role in various fields of pure
and applied science, such as in the field of practicality,
engineering science, and management science. In the recent
past, the classical concept of convexity has been extended
and generalized in different directions. Another factor that
makes the theory of the most popular convex works is its
relationship to the concept of inequality. Many inequalities
can be achieved using the definition of convex functions.
One of the widely studied inequalities involving convex
works is the Hermite–Hadamard inequality, which is the
first basic result of convex design with natural geometric

descriptions and multiple uses and has attracted great in-
terest in elementary mathematics. Many mathematicians
have devoted their efforts to generalization, refinement,
modelling, and multiplication of various fields of work such
as the use of convex mappings (see, e.g., [11], p.137, and
[12]).

-e classical Hermite–Hadamard inequality states that if
5: I⟶ R is a convex function on the interval I of real
numbers and κ1, κ2 ∈ I with κ1 < κ2, then

5
κ1 + κ2

2
 ≤

1
κ2 − κ1


κ2

κ1
5(ϰ)dϰ ≤

5 κ1(  + 5 κ2( 

2
. (1)

-e inequality holds in the reversed direction if 5 is
concave. We see that the Hermite–Hadamard inequality can
be regarded as a refinement of the concept of integration and
is easily followed by Jensen’s inequality. -e Hermi-
te–Hadamard inequality of convex works has received
renewed attention in recent years and has been studied in
significant and practical variations.

In [13], Pachpatte proved the following inequalities for
products of convex functions.

Theorem 1. Let 5 and G be real-valued, nonnegative, and
convex functions on [κ1, κ2]. 2en, we have
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1
κ2 − κ1


κ2

κ1
5(ϰ)G(ϰ)dϰ ≤

1
3
A κ1, κ2(  +

1
6
B κ1, κ2( , (2)

25
κ1 + κ2

2
 G

κ1 + κ2
2

 ≤
1

κ2 − κ1

κ2

κ1
5(ϰ)G(ϰ)dϰ

+
1
6
A κ1, κ2(  +

1
3
B κ1, κ2( ,

(3)

where A(κ1, κ2) � 5(κ1)G(κ1) + 5(κ2)G(κ2) and
B(κ1, κ2) � 5(κ1)G(κ2) + 5(κ2)G(κ1).

A positive function is called r-convex on [κ1, κ2], if for all
ϰ, y ∈ [κ1, κ2] and ξ ∈ [0, 1],

5(ξϰ +(1 − ξ)y)≤
ξ(5(ϰ))r

+(1 − ξ)(5(y))
r

( 
1/r

, if r≠ 0,

5(ϰ)ξ5(y)
(1−ξ)

, if r � 0.

⎧⎨

⎩

(4)

It is obvious if r � 1, then the inequality classical convex
functions. It should be noted that if 5 is r-convex function,
then 5 is convex function. We have that 0-convex functions
are simply log-convex functions and 1-convex functions are
ordinary convex functions [14].

In [15], the definition of r-convex functions on coor-
dinates is given, such that

Definition 1. A function 5: Δ: � [κ1, κ2] × [κ3, κ4]⟶ R+

will be called r-convex on Δ for all ξ, λ ∈ [0, 1] and
(ϰ, y), (u, v) ∈ Δ, if the following inequality holds:

5(ξϰ +(1 − ξ)y, λu +(1 − λ)v)

≤
ξλ5

r
(ϰ, u) + ξ(1 − λ)5

r
(ϰ, v) +(1 − ξ)λ5

r
(y, u) +(1 − ξ)(1 − λ)5

r
(y, v) 

1/r
, if r≠ 0,

5
ξλ

(ϰ, u)5
ξ(1− λ)

(ϰ, v)5
(1− ξ)λ

(y, u)5
(1− ξ)(1− λ)

(y, v), if r � 0.

⎧⎨

⎩

(5)

It is simply to see that if we choose r � 0, we have co-
ordinated log-convex functions and if we choose r � 1, we
have coordinated convex functions. In [15], Ekinci et al. also
prove several Hermite–Hadamard type inequalities for co-
ordinated r-convex functions. In literature, many studies
have been done on r-convex functions. For some of them,
one can see [16–23].

2. Preliminaries of q-Calculus and
Some Inequalities

In this section, we present some required definitions and
related inequalities about q-calculus. For more information
about q-calculus, one can refer to [1–10, 24, 25]. Also, here
and further, we use the following notation (see [5]):

[n]q �
1 − q

n

1 − q
� 1 + q + q

2
+ · · · + q

n− 1
, q ∈ (0, 1). (6)

In [4], Jackson gave the q-Jackson integral from 0 to κ2
for 0< q< 1 as follows:


κ2

0
5(ϰ)dqϰ � (1 − q)κ2 

∞

n�0
q

n
5 κ2q

n
( , (7)

provided the sum converges absolutely.

Jackson in [4] gave the q-Jackson integral in a generic
interval [κ1, κ2] as


κ2

κ1
5(ϰ)dqϰ � 

κ2

0
5(ϰ)dqϰ − 

κ1

0
5(ϰ)dqϰ. (8)

Definition 2 (see [9]). For a continuous function
5: [κ1, κ2]⟶ R, then q-derivative of 5 at ϰ ∈ [κ1, κ2] for
0< q< 1 is characterized by the expression

κ1Dq5(ϰ) �
5(ϰ) − 5 qϰ +(1 − q)κ1( 

(1 − q) ϰ − κ1( 
, ϰ≠ κ1. (9)

Since 5: [κ1, κ2]⟶ R is a continuous function, thus we
haveκ1Dq5(κ1) � lim

ϰ⟶κ1
κ1Dq5(ϰ). -e function 5 is said to

be q-differentiable on [κ1, κ2] if κ1Dq5(ξ) exists for all
ϰ ∈ [κ1, κ2]. If κ1 � 0 in (9), then 0Dq5(ϰ) � Dq5(ϰ), where
Dq5(ϰ) is familiar q-derivative of 5 at ϰ ∈ [κ1, κ2] defined
by the expression (see [5])

Dq5(ϰ) �
5(ϰ) − 5(qϰ)

(1 − q)ϰ
, ϰ≠ 0. (10)

Definition 3 (see [9]). Let 5: [κ1, κ2]⟶ R be a continuous
function. -en, the qκ1-definite integral on [κ1, κ2] and
0< q< 1 are defined as
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κ2

κ1
5(ϰ)κ1dq ϰ � (1 − q) κ2 − κ1(  

∞

n�0
q

n
5 q

nκ2 + 1 − q
n

( κ1(  � κ2 − κ1(  
1

0
5 (1 − ξ)κ1 + ξκ2( dqξ. (11)

In [26], Alp et al. proved the following qκ1-Hermi-
te–Hadamard inequality for convex functions in the setting
of quantum calculus.

Theorem 2. If 5: [κ1, κ2]⟶ R is a convex differentiable
function on [κ1, κ2] and 0< q< 1. 2en, q-Hermi-
te–Hadamard inequalities are as follows:

5
qκ1 + κ2
1 + q

 ≤
1

κ2 − κ1

κ2

κ1
5(ϰ) κ1dqϰ≤

q5 κ1(  + 5 κ2( 

1 + q
.

(12)

On the other hand, Bermudo et al. gave the following
new definition and related Hermite–Hadamard type
inequalities.

Definition 4 (see [27]). Let 5: [κ1, κ2]⟶ R be a contin-
uous function. -en, the qκ2 -definite integral on [κ1, κ2] for
0< q< 1 is defined as


κ2

κ1
5(ϰ)κ2dqϰ � (1 − q) κ2 − κ1(  

∞

n�0
q

n
5 q

nκ1 + 1 − q
n

( κ2( 

� κ2 − κ1(  
1

0
5 ξκ1 +(1 − ξ)κ2( dqξ.

(13)

Theorem 3 (see [27]). If 5: [κ1, κ2]⟶ R is a convex dif-
ferentiable function on [κ1, κ2] and 0< q< 1. 2en, q-Her-
mite–Hadamard inequalities are as follows:

5
κ1 + qκ2
1 + q

 ≤
1

κ2 − κ1

κ2

κ1
5(ϰ) κ2dqϰ≤

5 κ1(  + q5 κ2( 

1 + q
.

(14)

From -eorem 2 and -eorem 3, one can get the fol-
lowing inequalities.

Corollary 1 (see [27]). For any convex function
5: [κ1, κ2]⟶ R and 0< q< 1, we have

5
qκ1 + κ2
1 + q

  + 5
κ1 + qκ2
1 + q

 ≤
1

κ2 − κ1

κ2

κ1
5(ϰ)κ1dqϰ + 

κ2

κ1
5(ϰ)κ2dqϰ ≤ 5 κ1(  + 5 κ2( , (15)

5
κ1 + κ2

2
 ≤

1
2 κ2 − κ1( 


κ2

κ1
5(ϰ)κ1dqϰ + 

κ2

κ1
5(ϰ)κ2dqϰ ≤

5 κ1(  + 5 κ2( 

2
. (16)

Brahim et al. prove the following lemma and theorem for
r-convex functions.

Lemma 1 (see [28]). For p≥ 1 and 0< q< 1, the following
inequality is valid:


1

0
(1 − ξ)

p
dqξ ≤

q

[p + 1]q

. (17)

Theorem 4 (see [28]). Let 5: [κ1, κ2]⟶ R+ be r1-convex
on [κ1, κ2]. 2en, the following inequality holds for 0< r1 ≤ 1
and 0< q< 1:

1
κ2 − κ1


κ2

κ1
5(ϰ)κ1dqϰ≤

1
1/r1 + 1 q

q5 κ1(  
r1 + 5 κ2(  

r1( 
1/r1 .

(18)
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Theorem 5 (see [28]). Let 5,G: [κ1, κ2]⟶ R+ be
r1-convex and r2-convex functions, respectively, on [κ1, κ2].
2en, the following inequality holds for 0< r1, r2 ≤ 2 and
0< q< 1:

2
κ2 − κ1


κ2

κ1
5(ϰ)G(ϰ)κ1dqϰ≤

1
2/r1 + 1 q

· q
1/2

5 κ1(  
r1

+ 5 κ2(  
r1 

2/r1

+
1

2/r2 + 1 q

q
1/2
G κ1(  

r2
+ G κ2(  

r2 
2/r2

.

(19)

Theorem 6 (see [28]). Let 5,G: [κ1, κ2]⟶ R+ be
r1-convex and r2-convex functions, respectively, on [κ1, κ2]
and 0< q< 1.2en, the following inequality holds if r1 > 1 and
1/r1 + 1/r2 � 1:

1
κ2 − κ1


κ2

κ1
5(ϰ)G(ϰ)κ1dqϰ≤

q5 κ1(  
r1 + 5 κ2(  

r1

[2]q

 

1/r1

·
qG κ1(  

r2 + G κ1(  
r2

[2]q

 

1/r2
.

(20)

In [29], Latif defined the qκ1κ3-integral and related
properties for two variable functions as follows.

Definition 5. Suppose that 5: Δ⟶ R is continuous
function and 0< q1, q2 < 1. -en, the definite qκ1κ3-integral
on Δ is defined by


ϰ

κ1


y

κ3
5(ξ, s)κ3dq2

s κ1dq1
ξ � 1 − q1(  1 − q2(  ϰ − κ1(  y − κ3(  × 

∞

n�0


∞

m�0
q

n
1q

m
2 5 q

n
1ϰ + 1 − q

n
1( κ1, q

m
2 y + 1 − q

m
2( κ3( , (21)

for (ϰ, y) ∈ Δ.

In [29], Latif et al. also proved a q-Hermite–Hadamard
inequality for coordinated convex functions.

By Definitions 4 and 5, Budak et al. defined the following
q
κ4
κ1 , q

κ2
κ3 and qκ2κ4 integrals.

Definition 6 (see [30]). Suppose that 5: Δ⟶ R is a con-
tinuous function and 0< q1, q2 < 1. -en, the following q

κ4
κ1 ,

q
κ2
κ3 , and qκ2κ4 integrals on Δ are defined by


ϰ

κ1

κ4

y
5(ξ, s)

κ4dq2
s κ1dq1

ξ � 1 − q1(  1 − q2(  ϰ − κ1(  κ4 − y(  × 
∞

n�0


∞

m�0
q

n
1q

m
2 5 q

m
2 ϰ + 1 − q

m
2( κ1, q

n
1y + 1 − q

n
1( κ4( ,


κ2

ϰ


y

κ3
5(ξ, s) κ3dq2

s
κ2dq1

ξ � 1 − q1(  1 − q2(  κ2 − ϰ(  y − κ3(  × 
∞

n�0


∞

m�0
q

n
1q

m
2 5 q

m
2 ϰ + 1 − q

m
2( κ2, q

n
1y + 1 − q

n
1( κ3( ,

(22)


κ2

ϰ

κ4

y
5(ξ, s)

κ4dq2
s
κ2dq1

ξ � 1 − q1(  1 − q2(  κ2 − ϰ(  κ4 − y(  × 
∞

n�0


∞

m�0
q

n
1q

m
2 5 q

m
2 ϰ + 1 − q

m
2( κ2, q

n
1y + 1 − q

n
1( κ4( ,

(23)

respectively, for (ϰ, y) ∈ Δ.

Budak et al. also proved some quantum Hermi-
te–Hadamard type inequalities for coordinated convex func-
tions. For other similar quantum inequalities, please see [31,32].

In this paper, we first prove the new variant of results of
Brahim et al. for qκ2 -integrals. We also obtain quantum
versions of the inequalities in [15].

3. Quantum Hermite–Hadamard Type
Inequalities for r-Convex Functions

In this section, we obtain some quantum inequalities of
Hermite–Hadamard type for r-convex functions and for
product of two r-convex functions.

Theorem 7. Let 5: [κ1, κ2]⟶ R+ be a r1-convex function
on [κ1, κ2]. 2en, the following inequality holds for 0< r1 ≤ 1:

1
κ2 − κ1


κ2

κ1
5(ϰ)κ2dqϰ ≤

1
1/r1 + 1 q

5 κ1(  
r1 + q5 κ2(  

r1( 
1/r1 ,

(24)

where 0< q< 1.

Proof. According to definition r1-convex, for all ξ ∈ [0, 1],
we have

5 ξκ1 +(1 − ξ)κ2( ≤ ξ 5 κ1(  
r1 +(1 − ξ) 5 κ2(  

r1( 
1/r1 .

(25)

By integrating the inequality on [0, 1], we obtain
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1

0
5 ξκ1 +(1 − ξ)κ2( dqξ ≤ 

1

0
ξ 5 κ1(  

r1 +(1 − ξ) 5 κ2(  
r1( 

1/r1dqξ.

(26)

From Definition 4, we get


κ2

κ1
5(ϰ)κ2dqϰ≤ 

1

0
ξ 5 κ1(  

r1 +(1 − ξ) 5 κ2(  
r1( 

1/r1dqξ.

(27)

Using Minkowski’s inequality for right side of inequality
(26),


1

0
ξ 5 κ1(  

r1 +(1 − ξ) 5 κ2(  
r1( 

1/r1dqξ

≤ 
1

0
ξ1/r1dqξ 

r1

5 κ1(  
r1 + 

1

0
(1 − ξ)

1/r1dqξ 

r1

5 κ2(  
r1 

1/r1
.

(28)

By Lemma 1, we have


1

0
ξ1/r1dqξ 

r1

�
1

1/r1 + 1 q

 

r1

, (29)


1

0
(1 − ξ)

1/r1dqξ 

r1

≤
q

1/r1 + 1 q

 

r1

. (30)

-us, by substituting (29) and (30) in (28), we obtain


κ2

κ1
5(ϰ)κ2dqϰ≤

1
1/r1 + 1 q

 

r1

5 κ1(  
r1 +

q

1/r1 + 1 q

 

r1

5 κ2(  
r1 

1/r1

≤
1

1/r1 + 1 q

5 κ1(  
r1 + q

r1 5 κ2(  
r1( 

1/r1 .

(31)

-e proof is completed. □

Remark 1. If we take the limit q⟶ 1− in -eorem 7, then
-eorem 7 reduces to -eorem 2.1 in [33].

Remark 2. If we choose r1 � 1 in-eorem 7, then inequality
(24) reduces to the second inequality in (14).

Theorem 8. Let 5,G: [κ1, κ2]⟶ R+ be r1-convex and
r2-convex functions, respectively, on [κ1, κ2]. 2en, the fol-
lowing inequality holds for 0< r1, r2 ≤ 2:

2
κ2 − κ1


κ2

κ1
5(ϰ)G(ϰ)κ2dqϰ≤

1
2/r1 + 1 q

5 κ1(  
r1 + q

1/2
5 κ2(  

r1
 

2/r1
+

1
2/r2 + 1 q

G κ1(  
r2 + q

1/2
G κ2(  

r2
 

2/r2
, (32)

where 0< q< 1.

Proof. By the assumptions that 5 is an r1-convex function
and G is an r2-convex function, we can write

5 ξκ1 +(1 − ξ)κ2( ≤ ξ 5 κ1(  
r1 +(1 − ξ) 5 κ2(  

r1( 
1/r1 ,

(33)

G ξκ1 +(1 − ξ)κ2( ≤ ξ G κ1(  
r2 +(1 − ξ) G κ2(  

r2( 
1/r2 ,

(34)

for all ξ ∈ [0, 1] and r1, r2 > 0.
-en,

5 ξκ1 +(1 − ξ)κ2( G ξκ1 +(1 − ξ)κ2( 

≤ ξ 5 κ1(  
r1 +(1 − ξ) 5 κ2(  

r1( 
1/r1

· ξ G κ1(  
r2 +(1 − ξ) G κ2(  

r2( 
1/r2 .

(35)

Integrating both sides with respect to ξ on [0, 1] and
from Definition 4, we obtain
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1
κ2 − κ1


κ2

κ1
5(ϰ)G(ϰ)κ2dqϰ

≤ 
1

0
ξ 5 κ1(  

r1 +(1 − ξ) 5 κ2(  
r1( 

1/r1 ξ G κ1(  
r2 +(1 − ξ) G κ2(  

r2( 
1/r2dqξ.

(36)

Using Cauchy’s inequality for right side of inequality
(36), we obtain


1

0
ξ 5 κ1(  

r1 +(1 − ξ) 5 κ2(  
r1( 

1/r1 ξ G κ1(  
r2 +(1 − ξ) G κ2(  

r2( 
1/r2dqξ

≤
1
2


1

0
ξ 5 κ1(  

r1 +(1 − ξ) 5 κ2(  
r1( 

2/r1dqξ +
1
2


1

0
ξ G κ1(  

r2 +(1 − ξ) G κ2(  
r2( 

2/r2dqξ.

(37)

By using Minkowski’s inequality, we have


1

0
ξ 5 κ1(  

r1 +(1 − ξ) 5 κ2(  
r1( 

2/r1dqξ

≤ 
1

0
ξ2/r1dqξ 

r1/2

5 κ1(  
r1 + 

1

0
(1 − ξ)

2/r1dqξ 

r1/2

5 κ2(  
r1⎛⎝ ⎞⎠

2/r1

�
1

2/r1 + 1 q

 

r1/2

5 κ1(  
r1 + +

q

2/r1 + 1 q

 

r1/2

5 κ2(  
r1⎛⎝ ⎞⎠

2/r1

.

(38)

Similarly, we have


1

0
ξ G κ1(  

r2 +(1 − ξ) G κ2(  
r2( 

2/r2dqξ

≤
1

2/r2 + 1 q

 

r2/2

G κ1(  
r2⎛⎝

+
q

2/r2 + 1 q

 

r2/2

G κ2(  
r2⎞⎠

2/r2

.

(39)

-us, from the inequalities (36)–(39), we obtain the
desired result. □

Remark 3. If we take the limit q⟶ 1− in -eorem 8, then
-eorem 8 reduces to -eorem 2.3 in [33].

Corollary 2. If we choose r1 � r2 � 2 in 2eorem 8, then we
have the inequality

2
κ2 − κ1


κ2

κ1
5(ϰ)G(ϰ)κ2dqϰ

≤
5 κ1(  

2
+ q 5 κ2(  

2

[2]q

+
G κ1(  

2
+ q G κ2(  

2

[2]q

.

(40)

Particularly, if 5(ϰ) � G(ϰ) for all ϰ ∈ [κ1, κ2], thenwe get

1
κ2 − κ1


κ2

κ1
[5(ϰ)]2κ2dqϰ≤

5 κ1(  
2

+ q 5 κ2(  
2

[2]q

. (41)

Theorem 9. Let 5,G: [κ1, κ2]⟶ R+ be r1-convex and
r2-convex functions, respectively, on [κ1, κ2]. 2en, we get the
following inequality:

1
κ2 − κ1


κ2

κ1
5(ϰ)G(ϰ)κ2dqϰ

≤
5 κ1(  

r1 + q5 κ2(  
r1

[2]q

 

1/r1 G κ1(  
r2 + qG κ2(  

r2

[2]q

 

1/r2
,

(42)

where 0< q< 1 and 1/r1 + 1/r2 � 1 with r1 > 1.
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Proof. From (36), we have

1
κ2 − κ1


κ2

κ1
5(ϰ)G(ϰ)κ2dqϰ

≤ 
1

0
ξ 5 κ1(  

r1 +(1 − ξ) 5 κ2(  
r1( 

1/r1 ξ G κ1(  
r2 +(1 − ξ) G κ2(  

r2( 
1/r2dqξ.

(43)

Using Hölder inequality for quantum integrals, we have

1
κ2 − κ1


κ2

κ1
5(ϰ)G(ϰ)κ2dqϰ

≤ 
1

0
ξ 5 κ1(  

r1 +(1 − ξ) 5 κ2(  
r1( dqξ 

1/r1

1

0
ξ G κ1(  

r2 +(1 − ξ) G κ2(  
r2( dqξ 

1/r2

�
5 κ1(  

r1 + q5 κ2(  
r1

[2]q

 

1/r1 G κ1(  
r2 + qG κ2(  

r2

[2]q

 

1/r2
.

(44)

-is completes the proof. □

Remark 4. If we take the limit q⟶ 1− in -eorem 9, then
-eorem 9 reduces to -eorem 2.6 in [33].

Corollary 3. If we choose r1 � r2 � 2 in 2eorem 9, then we
have the inequality

1
κ2 − κ1


κ2

κ1
5(ϰ)G(ϰ)κ2dqϰ≤

�����������������

5 κ1(  
2

+ q5 κ2(  
2

[2]q




������������������

G κ1(  
2

+ qG κ2(  
2

[2]q




. (45)

Particularly, if 5(ϰ) � G(ϰ) for all ϰ ∈ [κ1, κ2], then we
get

1
κ2 − κ1


κ2

κ1
[5(ϰ)]2κ2dqϰ≤

5 κ1(  
2

+ q5 κ2(  
2

[2]q

. (46)

4. Quantum Hermite–Hadamard Type
Inequalities for Coordinated r

-Convex Functions

In this section, we present several Hermite–Hadamard type
inequalities for coordinated r-convex functions via qκ2κ4 , qκ4κ1 ,
q
κ2
κ3 , and qκ1κ3 integrals. We also prove some quantum in-
equalities of Hermite–Hadamard type for the product of two
coordinated r-convex functions.where 0< r1 ≤ 1 and
0< q1, q2 < 1.

Theorem 10. Suppose that 5: Δ⟶ R+ is a positive coor-
dinated r1-convex function on Δ. 2en, one has the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)

κ2dq1
ϰκ4dq2

y

≤
1

1/r1 + 1 q2

1
2 κ2 − κ1( 


κ2

κ1
5 ϰ, κ3(  

r1 + q25 ϰ, κ4(  
r1( 

1/r1κ2dq1
ϰ

+
1

1/r1 + 1 q1

1
2 κ4 − κ3( 


κ4

κ3
5 κ1, y(  

r1 + q15 κ2, y(  
r1( 

1/r1κ4dq2
ϰ,

(47)

Proof. Since 5: Δ⟶ R+ is a coordinated r1-convex
function, then the partial mappings,

5ϰ: κ3, κ4 ⟶ R+, 5ϰ(v) � 5(ϰ, v), (48)

5y: κ1, κ2 ⟶ R+, 5y(u) � 5(u, y), (49)
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are r1-convex. By inequality (24), we can write
1

κ4 − κ3

κ4

κ3
5ϰ(y)κ4dq2

y

≤
1

1/r1 + 1 q2

5ϰ κ3(  
r1 + q25ϰ κ4(  

r1( 
1/r1 ,

(50)

i.e.,

1
κ4 − κ3


κ4

κ3
5(ϰ, y)κ4dq2

y

≤
1

1/r1 + 1 q2

5 ϰ, κ3(  
r1 + q25 ϰ, κ4(  

r1( 
1/r1 .

(51)

Dividing both sides of the inequality (κ2 − κ1) and
qκ2 -integrating with respect to ϰ on [κ1, κ2], we get

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)

κ2dq1
ϰκ4dq2

y

≤
1

1/r1 + 1 q2

1
κ2 − κ1


κ2

κ1
5 ϰ, κ3(  

r1 + q25 ϰ, κ4(  
r1( 

1/r1κ2dq1
ϰ .

(52)

By a similar argument for the mapping

5y: κ1, κ2 ⟶ R+, 5y(u) � 5(u, y), (53)

we have

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)

κ2dq1
ϰκ4dq2

y

≤
1

1/r1 + 1 q1

1
κ4 − κ3



κ4

κ3

5 κ1, y(  
r1 + q15 κ2, y(  

r1( 
1/r1κ4dq2

y
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(54)

By adding inequalities (52) and (54), we can obtain
inequality (47). □

Remark 5. If we take the limit q1⟶ 1− and q2⟶ 1− in
-eorem 10, then-eorem 10 reduces to -eorem 5 in [15].

Remark 6. If we choose r1 � 1 in -eorem 10, then in-
equality (47) reduces to the third inequality of -eorem 3.6
in [30].

Theorem 11. Suppose that 5: Δ⟶ R+ is a positive coor-
dinated r1-convex function on Δ. 2en, one has the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)κ1dq1

ϰκ3dq2
y

≤
1

1/r1 + 1 q2

1
2 κ2 − κ1( 


κ2

κ1

· q25 ϰ, κ3(  
r1 + 5 ϰ, κ4(  

r1( 
1/r1

κ1dq1
ϰ

+
1

1/r1 + 1 q1

1
2 κ4 − κ3( 


κ4

κ3

· q15 κ1, y(  
r1 + 5 κ2, y(  

r1( 
1/r1

κ3
dq2

y,

(55)

where 0< r1 ≤ 1 and 0< q1, q2 < 1.

Proof. -e proof is similar to the proof of -eorem 10 by
using -eorem 4. □

Theorem 12. Suppose that 5: Δ⟶ R+ is a positive coor-
dinated convex function on Δ . 2en, one has the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)κ1dq1

ϰκ4dq2
y

≤
1

1/r1 + 1 q2

1
2 κ2 − κ1( 


κ2

κ1

· q25 ϰ, κ3(  
r1 + 5 ϰ, κ4(  

r1( 
1/r1

κ1
dq1
ϰ

+
1

1/r1 + 1 q1

1
2 κ4 − κ3( 


κ4

κ3

· 5 κ1, y(  
r1 + q15 κ2, y(  

r1( 
1/r1

κ4dq2
y,

(56)

where 0< r1 ≤ 1 and 0< q1, q2 < 1.

Proof. -e proof is similar to the proof of -eorem 10 by
using -eorems 4 and 7. □
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Theorem 13. Suppose that 5: Δ⟶ R+ is a positive coor-
dinated r1-convex function on Δ. 2en, one has the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(χ, y)

κ2dq1
χκ3dq2

y

≤
1

1/r1 + 1 q2

1
2 κ2 − κ1( 


κ2

κ1

5 χ, κ3(  
r1 + q25 χ, κ4(  

r1( 
1/r1κ2dq1

χ

+
1

1/r1 + 1 q1

1
2 κ4 − κ3( 


κ4

κ3

q15 κ1, y(  
r1 + 5 κ2, y(  

r1( 
1/r1
κ3

dq2
,

(57)

where 0< r1 ≤ 1 and 0< q1, q2 < 1.

Proof. -e proof is similar to the proof of -eorem 10 by
using -eorems 4 and 7. □

Theorem 14. Suppose that 5,G: Δ⟶ R+ is a coordinated
r1-convex function and coordinated r2-convex function, re-
spectively, on Δ. 2en, we have the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2
y
κ2dq1
ϰ

≤
1

4 2/r1 + 1 q2

1
κ2 − κ1


κ2

κ1
5 ϰ, κ3(  

r1 + q
1/2
2 5 ϰ, κ4(  

r1
 

2/r1
dq1
ϰ

+
1

4 2/r2 + 1 q2

1
κ2 − κ1


κ2

κ1
G ϰ, κ3(  

r2 + q
1/2
2 G ϰ, κ4(  

r2
 

2/r2κ2dq1
ϰ

+
1

4 2/r1 + 1 q1

1
κ4 − κ3


κ4

κ3
5 κ1, y(  

r1 + q
1/2
1 5 κ2, y(  

r1
 

2/r1κ4dq2
y

+
1

4 2/r2 + 1 q1

1
κ4 − κ3


κ4

κ3
G κ1, y(  

r2 + q
1/2
1 G κ2, y(  

r2
 

2/r2κ4dq2
y,

(58)

where 0< r1, r2 ≤ 2, and 0< q1, q2 < 1.

Proof. Since 5: Δ⟶ R+ is a coordinated r1-convex on Δ,
then the partial mappings,

5ϰ: κ3, κ4 ⟶ R+, 5ϰ(v) � 5(ϰ, v),

5y: κ1, κ2 ⟶ R+, 5y(u) � 5(u, y),
(59)

are r1-convex on Δ. On the other hand, ifG is a coordinated
r2-convex function, then the partial mappings,

Gϰ: κ3, κ4 ⟶ R+,Gϰ(v) � G(ϰ, v),

Gy: κ1, κ2 ⟶ R+,Gy(u) � G(u, y),
(60)

are r2-convex on Δ. From inequality (32), we get

2
κ4 − κ3


κ4

κ3
5ϰ(y)Gϰ(y)

κ4dq2
y≤

1
2/r1 + 1 q2

5ϰ κ3(  
r1 + q

1/2
2 5ϰ κ4(  

r1
 

2/r1

+
1

2/r2 + 1 q2

Gϰ κ3(  
r2 + q

1/2
2 Gϰ κ4(  

r2
 

2/r2
,

(61)

i.e.,
2

κ4 − κ3

κ4

κ3
5(ϰ, y)G(ϰ, y)κ4dq2

y

≤
1

2/r1 + 1 q2

5 ϰ, κ3(  
r1 + q

1/2
2 5 ϰ, κ4(  

r1
 

2/r1

+
1

2/r2 + 1 q2

G ϰ, κ3(  
r2 + q

1/2
2 G ϰ, κ4(  

r2
 

2/r2
.

(62)

Dividing both sides of the inequality (κ2 − κ1) and
qκ2 -integrating with respect to ϰ on [κ1, κ2], we have

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2
y
κ2dq1
ϰ

≤
1
2

1
2/r1 + 1 q2

1
κ2 − κ1




κ2

κ1
5 ϰ, κ3(  

r1 + q
1/2
2 5 ϰ, κ4(  

r1
 

2/r1κ2dq1
ϰ

+
1
2

1
2/r2 + 1 q2

1
κ2 − κ1




κ2

κ1
G ϰ, κ3(  

r2 + q
1/2
2 G ϰ, κ4(  

r2
 

2/r2κ2dq1
ϰ.

(63)

By a similar argument, we obtain
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1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2
y
κ2dq1
ϰ

≤
1
2

1
2/r1 + 1 q1

1
κ4 − κ3



κ4

κ3

5 κ1, y(  
r1 + q

1/2
1 5 κ2, y(  

r1
 

2/r1κ4dq2
y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
1
2

1
2/r2 + 1 q1

1
κ4 − κ3



κ4

κ3

G κ1, y(  
r2 + q

1/2
1 G κ2, y(  

r2
 

2/r2κ4dq2
y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(64)

By adding inequalities (63) and (64), we obtain the re-
quired result. □

Remark 7. If we take the limit q1⟶ 1− and q2⟶ 1− in
-eorem 14, then-eorem 14 reduces to -eorem 6 in [15].

Corollary 4. If we choose r1 � r2 � 2 in2eorem 14, then we
have the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2
y
κ2dq1
ϰ

≤
1

4 κ2 − κ1( 

κ2

κ1

5 ϰ, κ3(  
2

+ q2 5 ϰ, κ4(  
2

[2]q2

 
κ2dq1
ϰ

+
1

4 κ2 − κ1( 

κ2

κ1

G ϰ, κ3(  
2

+ q2 G ϰ, κ4(  
2

[2]q2

 
κ2dq1
ϰ

+
1

4 κ4 − κ3( 

κ4

κ3

5 κ1, y(  
2

+ q1 5 κ2, y(  
2

[2]q1

 
κ4dq2

y

+
1

4 κ4 − κ3( 

κ4

κ3

G κ1, y(  
2

+ q1 G κ2, y(  
2

[2]q1

 
κ4dq2

y.

(65)

Particularly, if 5(ϰ, y) � G(ϰ, y) for all (ϰ, y) ∈ Δ, then
we get

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
[5(ϰ, y)]

2κ4dq2
y
κ2dq1
ϰ

≤
1

2 κ2 − κ1( 

κ2

κ1

5 ϰ, κ3(  
2

+ q2 5 ϰ, κ4(  
2

[2]q2

 
κ2dq1
ϰ

+
1

2 κ4 − κ3( 

κ4

κ3

5 κ1, y(  
2

+ q1 5 κ2, y(  
2

[2]q1

 
κ4dq2

y.

(66)

Theorem 15. Suppose that 5,G: Δ⟶ R+ is a coordinated
r1-convex function and coordinated r2-convex function, re-
spectively, on Δ. 2en, we have the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)κ3dq2

y
κ2dq1
ϰ

≤
1

4 2/r1 + 1 q2

1
κ2 − κ1


κ2

κ1
5 ϰ, κ3(  

r1 + q
1/2
2 5 ϰ, κ4(  

r1
 

2/r1κ2dq1
ϰ

+
1

4 2/r2 + 1 q2

1
κ2 − κ1


κ2

κ1
G ϰ, κ3(  

r2 + q
1/2
2 G ϰ, κ4(  

r2
 

2/r2κ2dq1
ϰ

+
1

4 2/r1 + 1 q1

1
κ4 − κ3


κ4

κ3
q
1/2
1 5 κ1, y(  

r1
+ 5 κ2, y(  

r1 
2/r1

κ3dq2
y

+
1

4 2/r2 + 1 q1

1
κ4 − κ3


κ4

κ3
q
1/2
1 G κ1, y(  

r2
+ G κ2, y(  

r2 
2/r2

κ3dq2
y,

(67)
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where 0< r1, r2 ≤ 2, and 0< q1, q2 < 1.

Proof. -e proof is similar to the proof of -eorem 14 by
using -eorems 5 and 8. □

Theorem 16. Suppose that 5,G: Δ⟶ R+ is a coordinated
r1-convex function and coordinated r2-convex function, re-
spectively, on Δ. 2en, we have the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)κ3dq2

yk1
dq1
ϰ

≤
1

4 2/r1 + 1 q2

1
κ2 − κ1


κ2

κ1
q
1/2
2 5 ϰ, κ3(  

r1
+ 5 ϰ, κ4(  

r1 
2/r1

k1
dq1
ϰ

+
1

4 2/r2 + 1 q2

1
κ2 − κ1


κ2

κ1
q
1/2
2 G ϰ, κ3(  

r2
+ G ϰ, κ4(  

r2 
2/r2

k1
dq1
ϰ

+
1

4 2/r1 + 1 q1

1
κ4 − κ3


κ4

κ3
q
1/2
1 5 κ1, y(  

r1
+ 5 κ2, y(  

r1 
2/r1

κ3
dq2

y

+
1

4 2/r2 + 1 q1

1
κ4 − κ3


κ4

κ3
q
1/2
1 G κ1, y(  

r2
+ G κ2, y(  

r2 
2/r2

κ3
dq2

y,

(68)

where 0< r1, r2 ≤ 2, and 0< q1, q2 < 1.

Proof. -e proof is similar to the proof of -eorem 14 by
using -eorem 5. □

Theorem 17. Suppose that 5,G: Δ⟶ R+ is a coordinated
r1-convex function and coordinated r2-convex function, re-
spectively, on Δ. 2en, we have the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2
yk1

dq1
ϰ

≤
1

4 2/r1 + 1 q2

1
κ2 − κ1


κ2

κ1
q
1/2
2 5 ϰ, κ3(  

r1
+ 5 ϰ, κ4(  

r1 
2/r1

k1
dq1
ϰ

+
1

4 2/r2 + 1 q2

1
κ2 − κ1


κ2

κ1
q
1/2
2 G ϰ, κ3(  

r2
+ G ϰ, κ4(  

r2 
2/r2

k1
dq1
ϰ

+
1

4 2/r1 + 1 q1

1
κ4 − κ3


κ4

κ3
5 κ1, y(  

r1 + q
1/2
1 5 κ2, y(  

r1
 

2/r1κ4dq2
y

+
1

4 2/r2 + 1 q1

1
κ4 − κ3


κ4

κ3
G κ1, y(  

r2 + q
1/2
1 G κ2, y(  

r2
 

2/r2κ4dq2
y,

(69)

where 0> r1, r2 ≤ 2, and 0< q1, q2 < 1.

Proof. -e proof is similar to the proof of -eorem 14 by
using -eorems 5 and 8. □

Theorem 18. Suppose that 5,G: Δ⟶ R+ is a coordinated
r1-convex function and coordinated r2 -convex function,
respectively, on Δ. 2en, we have the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2

κ2dq1
ϰ

≤
1
2

1
κ2 − κ1


κ2

κ1

5 ϰ, κ3(  
r1 + q25 ϰ, κ4(  

r1

[2]q2

 

1/r1
κ2dq1
ϰ⎛⎝ ⎞⎠

×
1

κ2 − κ1

κ2

κ1

G ϰ, κ3(  
r2 + q2G ϰ, κ4(  

r2

[2]q2

 

1/r2
κ2dq1
ϰ⎛⎝ ⎞⎠

+
1
2

1
κ4 − κ3


κ4

κ3

5 κ1, y(  
r1 + q15 κ2, y(  

r1

[2]q1

 

1/r1
κ4dq2

⎛⎝ ⎞⎠

×
1

κ4 − κ3

κ4

κ3

G κ1, y(  
r2 + q1G κ2, y(  

r2

[2]q1

 

1/r2
κ4dq2

⎛⎝ ⎞⎠.

(70)

where 0< q1, q2 < 1, and 1/r1 + 1/r2 � 1 with r1 > 1.

Proof. By applying inequality (42) for the partial mapping 5ϰ
and Gϰ, we can write
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1
κ4 − κ3( 


κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2
y

≤
5 ϰ, κ3(  

r1 + q25 ϰ, κ4(  
r1

[2]q2

 

1/r1

·
G ϰ, κ3(  

r2 + q2G ϰ, κ4(  
r2

[2]q2

 

1/r2
.

(71)

By using qκ2 -integral, we obtain
1

κ2 − κ1(  κ4 − κ3( 

κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2
y
κ2dq1
ϰ

≤
1

κ2 − κ1( 

κ2

κ1

5 ϰ, κ3(  
r1 + q25 ϰ, κ4(  

r1

[2]q2

 

1/r1
κ2dq1
ϰ⎛⎝ ⎞⎠

×
1

κ2 − κ1( 

κ2

κ1

G ϰ, κ3(  
r2 + q2G ϰ, κ4(  

r2

[2]q2

 
κ2dq1
ϰ .

(72)

Similarly, by applying inequality (42) for the partial
mapping 5y and Gy, we can write

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2
y
κ2dq1
ϰ

≤
1

κ4 − κ3( 

κ4

κ3

5 κ1, y(  
r1 + q15 κ2, y(  

r1

[2]q1

 

1/r1
κ4dq2

y⎛⎝ ⎞⎠

×
1

κ4 − κ3( 

κ4

κ3

G κ1, y(  
r2 + q1G κ2, y(  

r2

[2]q1

 

1/r2
κ4dq2

y⎛⎝ ⎞⎠.

(73)

By adding inequalities (72) and (73), we obtain the
desired result (70). □

Remark 8. If we take the limit q1⟶ 1− and q2⟶ 1− in
-eorem 18, then-eorem 18 reduces to -eorem 7 in [15].

Corollary 5. If we choose r1 � r2 � 2 in2eorem 18, then we
have the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2
y
κ2dq1
ϰ

≤
1
2

1
κ2 − κ1


κ2

κ1

����������������������

5 ϰ, κ3(  
2

+ q25 ϰ, κ4(  
2

[2]q2




κ2dq1
ϰ⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

×
1

κ2 − κ1

κ2

κ1

�����������������������

G ϰ, κ3(  
2

+ q2G ϰ, κ4(  
2

[2]q2




κ2dq1
ϰ⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+
1
2

1
κ4 − κ3


κ4

κ3

����������������������

5 κ1, y(  
2

+ q15 κ2, y(  
2

[2]q1




κ4dq2
y

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

×
1

κ4 − κ3

κ4

κ3

�����������������������

G κ1, y(  
2

+ q1G κ2, y(  
2

[2]q1




κ4dq2
y

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(74)

Theorem 19. Suppose that 5,G: Δ⟶ R+ is a coordinated
r1-convex function and coordinated r2-convex function, re-
spectively, on Δ. 2en, we have the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)k3

dq2
y
κ2dq1
ϰ

≤
1
2

1
κ2 − κ1( 


κ2

κ1

5 ϰ, κ3(  
r1 + q25 ϰ, κ4(  

r1

[2]q2

 

1/r1
κ2dq1
ϰ⎛⎝ ⎞⎠

×
1

κ2 − κ1( 

κ2

κ1

G ϰ, κ3(  
r2 + qG ϰ, κ4(  

r2

[2]q2

 

1/r2
κ2dq1
ϰ⎛⎝ ⎞⎠

+
1
2

1
κ4 − κ3( 


κ4

κ3

q15 κ1, y(  
r1 + 5 κ2, y(  

r1

[2]q1

 

1/r1

k3
dq2

y⎛⎝ ⎞⎠

×
1

κ4 − κ3( 

κ4

κ3

q1G κ1, y(  
r2 + G κ2, y(  

r2

[2]q1

 

1/r2

k3
dq2

y⎛⎝ ⎞⎠.

(75)

where 0< q1, q2 < 1, and 1/r1 + 1/r2 � 1 with r1 > 1.

Proof. -e proof is similar to the proof of -eorem 18 by
using -eorems 6 and 9. □

Theorem 20. Suppose that 5,G: Δ⟶ R+ is a coordinated
r1-convex function and coordinated r2-convex function, re-
spectively, on Δ. 2en, we have the inequality

1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)

κ4dq2
yκ1

dq1
ϰ

≤
1
2

1
κ2 − κ1( 


κ2

κ1

q25 ϰ, κ3(  
r1 + 5 ϰ, κ4(  

r1

[2]q2

 

1/r1

κ1
dq1
ϰ⎛⎝ ⎞⎠

×
1

κ2 − κ1( 

κ2

κ1

q2G ϰ, κ3(  
r2 + G ϰ, κ4(  

r2

[2]q2

 

1/r2

κ1
dq1
ϰ⎛⎝ ⎞⎠

+
1
2

1
κ4 − κ3( 


κ4

κ3

5 κ1, y(  
r1 + q15 κ2, y(  

r1

[2]q1

 

1/r1
κ4dq2

y⎛⎝ ⎞⎠

×
1

κ4 − κ3( 

κ4

κ3

G κ1, y(  
r2 + q1G κ2, y(  

r2

[2]q1

 

1/r2
κ4dq2

y⎛⎝ ⎞⎠,

(76)

where 0< q1, q2 < 1, and 1/r1 + 1/r2 � 1 with r1 > 1.

Proof. -e proof is similar to the proof of -eorem 18 by
using -eorems 6 and 9. □

Theorem 21. Suppose that 5,G: Δ⟶ R+ is a coordinated
r1-convex function and coordinated r2 -convex function,
respectively, on Δ. 2en, we have the inequality
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1
κ2 − κ1(  κ4 − κ3( 


κ2

κ1

κ4

κ3
5(ϰ, y)G(ϰ, y)κ3dq2

yκ1
dq1
ϰ

≤
1
2

1
κ2 − κ1( 


κ2

κ1

q25 ϰ, κ3(  
r1 + 5 ϰ, κ4(  

r1

[2]q2

 

1/r1

κ1dq1
ϰ⎛⎝ ⎞⎠

×
1

κ2 − κ1( 

κ2

κ1

q2G ϰ, κ3(  
r2 + G ϰ, κ4(  

r2

[2]q2

 

1/r2

κ1
dq1
ϰ⎛⎝ ⎞⎠

+
1
2

1
κ4 − κ3( 


κ4

κ3

q15 κ1, y(  
r1 + 5 κ2, y(  

r1

[2]q1

 

1/r1

κ3dq2
y⎛⎝ ⎞⎠

×
1

κ4 − κ3( 

κ4

κ3

q1G κ1, y(  
r2 + G κ2, y(  

r2

[2]q1

 

1/r2

κ3
dq2

y⎛⎝ ⎞⎠.

(77)

where 0< q1, q2 < 1, and 1/r1 + 1/r2 � 1 with r1 > 1.

Proof. -e proof is similar to the proof of -eorem 18 by
using -eorem 6. □

5. Conclusions

In this study, we present several quantum Hermi-
te–Hadamard type inequalities for r-convex functions and
coordinated r-convex functions. We also give some quan-
tum inequalities for the product of two r-convex functions
and for the product of two coordinated r-convex functions.
In the future work, we can establish the similar quantum
inequalities by using generalized r-convex functions.
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In this work, a new existence result is established for a nonlocal hybrid boundary value problem which contains one left Caputo
and one right Riemann–Liouville fractional derivatives and integrals. *e main result is proved by applying a new generalization
of Darbo’s theorem associated with measures of noncompactness. Finally, an example to justify the theoretical result is
also presented.

1. Introduction

In the past years, fractional differential equations have attracted
a lot of attention from many research studies as they have
played a key role in many basic sciences such as chemistry,
control theory, biology, and other arenas [1–3]. In addition,
boundary conditions of differential models are the strongest
tools to extend applications of those equations [4–6]. In fact,
fractional differential equations can be extended by creating
different types of boundary conditions. Newly, many authors
have studied various types of boundary conditions to obtain
new results of differential models.

*e following hybrid differential equation was studied by
Dhage and Lakshmikantham [7]:

d
dt

x(t)

h(t, x(t))
  � ω(t, x(t)), a.e t ∈ J,

x t0(  � x0 ∈ R,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

where h and ω are continuous functions from J × R into
R∖ 0{ } and R, respectively. Based on the above work, the
Caputo hybrid boundary value problem of the form

C
D

p

0+

x(t)

h(t, x(t))
  � ω(t, x(t)), a.e t ∈ I ≔ [0, L],

a1
x(0)

h(0, x(0))
+ a2

x(L)

h(L, x(L))
� d,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

was studied by Hilal and Kajouni [8] in which 0<p< 1, h

and ω are continuous functions from J × R into R∖ 0{ } and
R, respectively, and a1, a2, and d are real constants with
a1 + a2 ≠ 0. For some recent results on hybrid fractional
differential equations, see [9–12].

In [13], the authors proved the following integro-differential
equation:
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c
D

α1
1−

RL
D

α2
0+

u(t) + θI
p
− 1I

q
0+

f1(t, u(t)) � f(t, u(t)), t ∈ [0, 1],

u(0) � u(ξ) � 0,

u(1) � δu(μ), 0< ξ < μ< 1,

(3)

where cD
α1
1−

and RLD
α2
0+

indicate right Caputo and left
Riemann–Liouville fractional derivatives of orders
α1 ∈ (1, 2] and α2 ∈ (0, 1], respectively,
f1, f2: [0, 1] × R⟶ R are continuous functions, and the
symbols I

p
− 1 and I

q
0+ denote both right and left Rie-

mann–Liouville fractional integrals of orders p, q> 0,
respectively. Ahmad et al. [13] applied Banach and
Krasnosel’skĭı fixed point theorems as well

Leray–Schauder nonlinear alternative to obtain main
results. We point out that fractional differential equations
containing mixed fractional derivatives appear in the
study of variational principles [14].

For some recent results for boundary value problems
involving left or/and right fractional derivatives, we refer to
the papers [15–31] and references therein.

In the present paper, we combine mixed fractional de-
rivatives and hybrid fractional differential equations. More
precisely, we investigate the existence of solutions for the
following hybrid boundary value problem which contains
both left Caputo and right Riemann–Liouville fractional
derivatives and integrals and nonlocal hybrid conditions of
the form:

c
D

α1
1−

RL
D

α2
1+

u(t)

g(t, u(t))
+ θI

p
− 1I

q
0+ f1(t, u(t)) � f2(t, y(t)), t ∈ J ≔ [0, 1],

u(0)

g(0, u(0))
�

u(ξ)

g(ξ, u(ξ))
� 0,

u(1)

g(1, u(1))
� δ

u(μ)

g(μ, u(μ))
, 0< ξ < μ< 1,

(4)

where cD
α1
1−

and RLD
α2
0+

are right Caputo and left Rie-
mann–Liouville fractional derivatives of orders α1 ∈ (1, 2]

and α2 ∈ (0, 1], respectively, and the symbols I
p
− 1 and I

q
0+

denote both right and left Riemann–Liouville fractional
integrals of orders p, q> 0, respectively,
f1, f2 ∈ C(J × R,R), g ∈ C(J × R,R∖ 0{ }), and δ, θ ∈ R. An
existence result is obtained via a new extension of Darbo’s
theorem associated with measures of noncompactness.

*e structure of the paper has been organized as follows.
Section 2 presents some basic definitions and lemmas which
will be applied in the future. In Section 3, we prove an
existence result for problem (4). Finally, we present an
example to illustrate the obtained result.

2. Preliminaries

Now, some basic notations are recalled from [2].

Definition 1. For an integrable function ϕ: (0,∞)⟶ R,
we define the left and right Riemann–Liouville fractional
integrals of order β> 0, respectively, by

I
β
0+ϕ(t) � 

t

0

(t − s)
β− 1

Γ(β)
ϕ(s)ds,

I
β
1− ϕ(t) 

1

t

(s − t)
β− 1

Γ(β)
ϕ(s)ds.

(5)

Definition 2. For the function ϕ: (0,∞)⟶ R in which
ϕ ∈ Cn(0,∞), we define the left Riemann–Liouville

fractional derivative and the right Caputo fractional deriv-
ative of order β ∈ (n − 1, n], respectively, by

RL
D

β
0+ϕ(t) �

dn

dt
n 

t

0

(t − s)
n− β− 1

Γ(n − β)
ϕ(s)ds,

c
D

β
1− ϕ(t) � (− 1)

n

1

t

(s − t)
n− β− 1

Γ(n − β)
ϕ(n)

(s)ds.

(6)

Lemma 1. If p> 0 and q> 0, then the following relations hold
almost everywhere on [a, b]:

I
p
1− I

q
− 1f(x) � I

p+q
1− f(x),

I
p
0+ I

q
0+ f(x) � I

p+q
0+ f(x).

(7)

As the technique of measure of noncompactness will be
applied to obtain our main result, we recall some basic facts
about the notion of measure of noncompactness.

Assume that Z is the real Banach space with the norm
‖ · ‖ and zero element θ. For a nonempty subset X of Z, the
closure and the closed convex hull of X will be denoted by X

and Conv(X), respectively. Also, MZ and NZ denote the
family of all nonempty and bounded subsets of Z and its
subfamily consisting of all relatively compact sets,
respectively.

Definition 3 (see [32]). We say that a mapping
h: MZ⟶ [0,∞) is a measure of noncompactness, if the
following conditions hold true:
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(1) *e family Kerh � X ∈MZ: h(X) � 0  is nonempty
and Ker h⊆NZ

(2) X1⊆ Y1 ⇒ h(X1)≤ h(Y1)

(3) h(X) � h(X)

(4) h(Conv(X)) � h(X)

(5) h(αX + (1 − α)Y)≤ αh(X) + (1 − α)h(Y) for
α ∈ [0, 1]

(6) For the sequence Xn  of closed sets from MZ in
which Xn+1⊆Xn for n � 1, 2, . . . and
limn⟶∞h(Xn) � 0, we have ∩∞n�1Xn ≠∅

In [33], some generalizations of Darbo’s theorem have
been proved by Samadi and Ghaemi. Also, in [34], Darbo’s
theorem was extended, and the following result was pre-
sented which is basis for our main result.

Theorem 1. Let T be a continuous self-mapping operator on
the set D, where D denotes a nonempty, bounded, closed, and
convex subset of a Banach space Z. Assume that, for all
nonempty subset X of D, we have

θ1 (h(X)) + θ2(h(T(X))) ≤ θ2(h(X))( , (8)

where h is an arbitrary measure of noncompactness defined in
Z and (θ1, θ2) ∈ U. -en, T has a fixed point in D.

In *eorem 1, let U indicate the set of all pairs (θ1, θ2)
where the following conditions hold true:

(U1) θ1(tn)↛0 for each strictly increasing sequence tn 

(U2) θ2 is strictly increasing function

(U3) If αn  be a sequence of positive numbers, then
limn⟶∞αn � 0 ⇔ limn⟶∞θ2(αn) � − ∞
(U4) Let ln  be a decreasing sequence in which ln⟶ 0
and θ1(ln)< θ2(ln) − θ2(ln+1), then we have 

∞
n�1 ln <∞

Next, the definition of a measure of noncompactness in
the space C([0, 1]) is recalled which will be applied later. Fix
Y ∈MC[0,1], and for ε> 0 and y ∈ Y, we define

φ(y, ε) � sup |y(t) − y(s)|: t, s ∈ [0, 1], |t − s|≤ ε ,

φ(Y, ε) � sup φ(y, ε): y ∈ Y ,

φ0(Y) � lim
ε⟶0

φ(Y, ε).
(9)

Banas and Goebel [32] proved that φ0(Y) is a measure of
noncompactness in the space C([0, 1]).

Lemma 2 (see [32]). -e measure of noncompactness φ0 on
C(I) satisfies the following condition:

φ0(XY)≤ ‖X‖φ0(Y) +‖Y‖φ0(X), (10)

for all X, Y⊆C(I).

3. Main Existence Result

In this section, an existence result of problem (4) is in-
vestigated. In view of [13], Lemma 2, we present the fol-
lowing lemma which is an essential tool in our
consideration.

Lemma 3. Let H1, F1 ∈ C[0, 1]∩L(0, 1), g ∈ C([0, 1],

R∖ 0{ }), and Λ≠ 0. -en, the solution of the problem

c
D

α1
1−

RL
D

β
0+

u(t)

g(t, u(t))
+ λI

p
− 1I

q
0+

H1(t) � F1(t), t ∈ [0, 1],

u(0)

g(0, u(0))
�

u(ξ)

g(ξ, u(ξ))
� 0,

u(1)

g(1, u(1))
� δ

u(μ)

g(μ, u(μ))
, 0< ξ < μ< 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

has the form:

u(t) � g(t, u(t))


t

0

(t − s)
α2− 1

Γ α2( 
I
α
1−

F1(s) − λI
α1+p
1−

I
q
0+

H1(s) ds + a1(t)

δ
μ

0

(μ − s)
α2− 1

Γ α2( 
I
α
1−

F1(s) − λI
α1+p
1−

I
q
0+

H(s) ds

− 
1

0

(1 − s)
α2− 1

Γ α2( 
I
α1
1−

F1(s) − λI
α1+p
1−

I
q
0+

H1(s) ds

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+a2(t) 
ξ

0

(ξ − s)
α2− 1

Γ α2( 
I
α1
1−

F1(s) − λI
α1+p
1−

I
q
0+

H1(s) ds
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,

(12)
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where

a1(t) �
1
Λ

ξα2+1
t
α2 − ξα2tα2+1

 ,

a2(t) �
1
Λ

t
α2 1 − δμα2+1

  − t
α2+1 1 − δμα2(  ,

Λ � ξα2+1 1 − δμα2(  − ξα2 1 − δμα2+1
 .

(13)

Now, the hypotheses which will be applied to prove the
main result of this section are presented.

(H1) g: [0, 1] × R⟶ R∖ 0{ } is a continuous function,
and there exists a positive real number d> 0 provided
that

g t, x1(  − g t, x2( 


≤ e
− d

x1 − x2


, (14)

where t ∈ I and x1, x2 ∈ R. Moreover, assume that
g � sup |g(t, 0)|; t ∈ [0, 1] .
(H2) f1, f2: [0, 1] × R⟶ R are continuous func-
tions provided that

f1(t, u)


≤M1,

f1(t, u) − f1(t, v)


≤ k1|u − v|,

f2(t, u)


≤M2,

f2(t, u) − f2(t, v)


≤ k2|u − v|,

(15)

where M1, M2, k1, k2 ≥ 0 and u, v ∈ R.
(H3) *e inequality

e
− d

r0 + g 
M1

Γ α1 + 1( 
+

|θ|M2

Γ α1 + p + 1( Γ(q + 1)
 Δ≤ r0,

(16)

has a positive solution r0. Also, assume that

M1

Γ α1 + 1( 
+

|θ|M2

Γ α1 + p + 1( Γ(q + 1)
 Δ< 1, (17)

where

Δ �
1

Γ α2 + 1( 
1 + a1 |δ|μα2 + 1(  + a2ξ

α2 ,

a1 � max
t∈[0,1]

a1(t)


,

a2 � max
t∈[0,1]

a2(t)


.

(18)

Theorem 2. Suppose that the hypotheses (H1) − (H3) are
true.-en, the hybrid boundary value problem (4) has at least
one solution on [0, 1].

Proof. Due to Lemma 3, assume that the operatorT has been
defined on C(I), I ≔ [0, 1] as follows:

T1(u)(t) � F1u(t) + F1u(t)(  G1u(t)( , (19)

where

G1u(t) � g(t, u(t)),

F1u(t) � 
t

0

(t − s)
α2− 1

Γ α2( 
I
α1
1−

f2(s, u(s)) − θI
α1+p
1−

I
q
0+

f1(s, u(s)) ds,

F1u(t) � a1(t)

δ
μ

0

(μ − s)
α1− 1

Γ α2( 
I
α1
1−

f2(s, u(s)) − θI
α1+p
1−

I
q
0+

f2(s, u(s)) ds

− 
1

0

(1 − s)
α2− 1

Γ α2( 
I
α1
1−

f2(s, u(s)) − θI
α1+p
1−

I
q
0+

f1(s, u(s)) ds

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

+ a2(t) 
ξ

0

(ξ − s)
α2− 1

Γ α2( 
I
α1
1−

f2(s, u(s)) − θI
α1+p
1−

I
q
0+

f1(s, u(s)) ds.

(20)

First, we show that T1u ∈ C(I) in which u ∈ C(I). In
view of assumption (H1), we conclude that G1u ∈ C(I),
u ∈ C(I). Consequently, by proving F1u, F2u ∈ C(I), the

claim is obtained. Let ln be a sequence in [0, 1] such that
ln⟶ l. *en, due to our assumptions, we get
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F1u ln(  − F1u(l)


≤


l

0

ln − s( 
α2− 1

− (l − s)
α2− 1

 

Γ α2( 
I
α1
1−

f2(s, u(s)) − θI
α1+p
1−

I
q
0+

f1(s, u(s)) ds

+ 
ln

l

ln − s( 
α2− 1

Γ α2( 
I
α1
1−

f2(s, u(s)) − θI
α1+p
1−

I
q
0+

f1(s, u(s)) ds





≤
M1

Γ α2( 


ln

0
ln − s( 

α2− 1
− (l − s)

α2− 1
 I

α1
1− (1)ds





+ M1
1
Γ α2( 


ln

l
ln − s( 

α2− 1
I
α1
1− (1)ds




+

|θ|M2

Γ α2( 


l

0
ln − s( 

α2− 1
− (l − s)

α2− 1
 I

α1+p
1−

I
q
0+

(1)ds





+
|θ|M2

Γ α2( 


ln

l
ln − s( 

α2− 1
I
α1+p
1−

I
q
0+

(1)ds




≤

M1

Γ α1 + 1( Γ α2 + 1( 
+

|θ|M2

Γ(q + 1)Γ α2 + 1( c α1 + p + 1( 
 

× 2 ln − l( 
α2 + l

α2
n − l

α2


 ⟶ 0.

(21)

Hence, F1u ∈ C(I). To obtain that F1u ∈ C(I), by the
definitions of a1 and a2, we have |a1(ln) − a1(l)|⟶ 0 and
|a2(ln) − a2(l)|⟶ 0. Hence, we have
|F1u(ln) − F1u(l)|⟶ 0. Consequently, T1u ∈ C(I) for all
x ∈ C(I).

Now, we prove that the ball Dr0
� u ∈ C(I): ‖u‖≤ r0  is

mapped into itself by the operator T. Let us fix u ∈ C(I).
Hence, due to existence assumptions, for t ∈ I, we have

T1u( (t)


≤ e
− d

|u(t)| + g 

·


t

0

(t − s)
α2− 1

Γ α2( 
I
α1
1−

f2(s, u(s)) − θI
α1+p
1−

I
q
0+

f1(s, u(s)) ds





+

a1(t)

δ
μ

0

(μ − s)
α2− 1

Γ α2( 
I
α1
1−

f2(s, u(s)) − θI
α1+p
1−

I
q
0+

f2(s, u(s)) ds

− 
1

0

(1 − s)
α2− 1

Γ α2( 
I
α1
1−

f2(s, u(s)) − θI
α1+p
1−

I
q
0+

f1(s, u(s)) ds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+a2(t) 
ξ

0

(ξ − s)
α2− 1

Γ α2( 
I
α1
1−

f2(s, u(s)) − θI
α1+p
1−

I
q
0+

f1(s, u(s)) ds
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≤ e− d
r0 + g 

M1

Γ α1 + 1( 
+

|θ|M2

Γ α1 + p + 1( Γ(q + 1)
 Δ.

(22)

Consequently, according to assumption (H3) we con-
clude that T maps the ball Dr0

into itself.
Now, the continuity property of the operator T is

considered on the ball Dr0
. To do this, fix ε> 0 and take

u, v ∈ Dr0
such that ‖u − v‖≤ ε. *en, for t ∈ I, we have
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T1u( (t) − T1v( (t)


 � F1u(t)G1u(t) − F1v(t)G1v(t) + F1u(t)G1u(t) − F1v(t)G1v(t)




≤ F1u(t)G1u(t) − F1v(t)G1u(t)


 + F1v(t)G1u(t) − F1v(t)G1v(t)




+ F1u(t)G1u(t) − F1v(t)G1u(t)


 + F1 v(t)G1u(t) − F1v(t)G1v(t)




≤ g(t, u(t)) − g(t, v(t)) F1v(t)
����

���� +|g(t, u(t))|F1u(t) − F1v(t)




+ g(t, u(t)) − g(t, v(t)) F1v(t)
����

���� +|g(t, u(t))|F1u(t) − F1v(t)


.

(23)

*en, we have

T1u( (t) − T1v( (t)


≤ e
− dε F1v(t) + F1v(t)(  +|g(t, u(t))|ε 

t

0

(t − s)
α2− 1

Γ α2( 
k1I

α1
1−

(1) + k2|θ|I
α1+p
1−

I
q
0+

(1) ds 

+|g(t, u(t))|ε

a1(t)




δ
μ

0

(μ − s)
α2− 1

Γ α2( 
k1I

α1
1−

(1) + k2|θ|I
α1+p
1−

I
q
0+

(1) ds

+ 
1

0

(1 − s)
α2− 1

Γ α2( 
k1I

α1
1−

(1) + k2|θ|I
α+p
1−

I
q
0+

(1) ds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

+|a2(t)| 
ξ

0

(ξ − s)
α2− 1

Γ α2( 
k1I

α1
1−

(1) + k2|θ|I
α1+p
1−

I
q
0+

(1) ds
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≤ ε
k1

Γ α1 + 1( 
+

|θ|k2

Γ α1 + p + 1( Γ(q + 1)
  e

− dΔ + e
− d

r0 + g (Δ + 1) .

(24)

Consequently, the continuity property of T is obtained
on the ball Dr0

.
To finish the proof, condition (8) of*eorem 1 is proved.

Consider X as a nonempty subset of the ball Dr0
and assume

that u ∈ X, ε> 0 be arbitrarily constant. Choose l1, l2 ∈ [0, 1]

such that l1 < l2 and |l2 − l1|< ε. Taking into account our
assumptions, we get

G1u(  l1(  − G1u(  l2( 


  � g l1, u l1( (  − g l2( , u l2( 




≤ g l1, u l1( (  − g l1( , u l2( 




+ g l1, u l2( (  − g l2( , u l2( 




≤ e
− dφ(X, ε) + φ(g, ε),

(25)

where

φ(g, ε) � sup g l1, u(  − g l2, u( 


; l1, l2 ∈ I, l1 − l2




< ε, u ∈ − r0, r0 .
(26)

Consequently,

φ G1X, ε( ≤ e
− dφ(X, ε) + φ(g, ε). (27)

As g is uniformly continuous on I × [− r0, r0], we have
φ(g, ε)⟶ 0 as ε⟶ 0. *us, from (27), we conclude that

φ0 G1X( ≤ e
− dφ0(X). (28)

Next, we estimate φ0(F1X) and φ0(F1(X)). In view of
(21), since F1x is uniformly continuous on [0, 1], then for
fixed ε> 0, there exists δ > 0 such that, for l1, l2 ∈ I with
|l2 − 11|< δ ≤ ε, we have

φ0 F1X( ≤ ε. (29)

Besides, since a1 and a2 are uniformly continuous on
[0, 1], for l1, l2 ∈ [0, 1] with |l2 − 11|< δ ≤ ε, we have
|a2(l2) − a2(l1)|< ε and also |a1(l2) − a1(l1)|< ε. Conse-
quently, we conclude that φ0(F1(X)) � 0. Now, we esti-
mate φ0(T1X) for X⊆Dr0

. By applying (28) and (29) and
Lemma 2 and using the fact that φ0(F1(X)) � 0, we get
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φ0 T1X(  � φ0 G1( X F1( (X) + F1((X))

≤ F1X
����

���� + F1(X)
����

���� φ0 G1X( 

+ G1X
����

���� φ0(  F1X(  + φ0 F1( ((X))

≤ e
− dφ0(X)

M1

Γ α1 + 1( 
+

|θ|M2

Γ α1 + p + 1( Γ(q + 1)
 Δ.

(30)

Consequently, we derive that

d + ln φ0 T1X( ( ≤ ln φ0(X)( . (31)

*us, we conclude the contractive condition in*eorem
1 with θ1(t) � d and θ2(t) � ln(t). *us, by *eorem 1, at
least one solution is obtained for the operator T in Dr0

which
is a solution of problem (4) and the proof is completed. □

Now, the following example is investigated to show the
applicability of the obtained result.

Example 1. Consider the following hybrid boundary value
problem:

D
(3/2)
1− D

(1/2)
0+

u(t)

e
− d/1 + t + |u(t)| 

+ 2I
4/3
1− I

5/4
0+

e
− t

100
cosu(t) �

e
− t

100
sinu(t),

u(0)

e
− d/1 + |u(0)| 

�
u(2/3)

e
− d/t + 1 +|u(2/3)| 

� 0,
u(1)

e
− d/2 + |u(1)| 

�
1
2

u(3/4)

e
− d/1 +(3/4) +|u(3/4)| 

� 0.

(32)

By putting

g(t, u(t)) �
e

− d

1 + t +|u(t)|
,

f1(t, u(t)) �
e

− t

100
cosu(t),

f2(t, u(t)) �
e

− t

100
sinu(t),

(33)

in problem (4), we conclude the above hybrid boundary
value problem as a special case of problem (4). Now, the
conditions of *eorem 2 are checked. For all l ∈ [0, 1] and
u1, u2 ∈ R, we have

g l, u1(  − g l, u2( 


≤ e
− d

u1 − u2


. (34)

Moreover, we have g � sup |g(l, 0); l ∈ [0, 1]  � e− d.
Besides, the functions f1 and f2 are continuous, and for all
l ∈ [0, 1] and u, v ∈ R, we have

f2(t, u)


≤
1
100

,

f2(t, u) − f2(t, v)


≤
1
100

|u − v|,

f1(t, u)


≤
1
100

,

f1(t, u) − f1(t, v)


≤
1
100

|u − v|.

(35)

In this example α1 � 3/2, α2 � 1/2, θ � 2, p � 4/3,
q � 5/4, μ � 3/43/4, δ � 1/2, and ξ � 2/3. Hence, |Λ| ≈ 0.242,
a1 � 1.121 and a2 � 1.168. Consequently, the existent in-
equality in condition (H3) has the form:

e
− d

r0 +
1
100

 
(1/100)

Γ(5/2)
+

(2/100)

Γ(23/6)Γ(9/4)
 Δ≤ r0. (36)

Obviously, the above inequality has the positive solution
r0, for example r0 � 1. Moreover, according to the obtained
values we have

M1

Γ α1 + 1( 
+

|θ|M2

Γ α1 + p + 1( Γ(q + 1)
 Δ< 1. (37)

*us, we conclude all conditions of *eorem 2, and
hence at least one solution of the mapping T1 is obtained on
[0, 1] which is a solution of problem (32).

4. Conclusion

We have studied a nonlocal hybrid boundary value problem
which contains both left Caputo and right Riemann–Liouville
fractional derivatives and integrals and nonlocal hybrid con-
ditions. An existence result is proved by applying a new
generalization of Darbo’s fixed point theorem associated with
measures of noncompactness.*e result obtained in this paper
is new and significantly contributes to the existing literature on
the topic.
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