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)e functional classification system (FCS) of roads means categorizing roads based on their service characteristics. )e two
primary considerations in classifying highway and street networks are accessibility and mobility, where by increasing the role of
one, the other’s role is reduced. In this paper, besides the conventional variables such as geometric design characteristics, parking
lots, land use features, and accessibility; the Sydney Coordinated Adaptive Traffic System (SCATS) data following the real-time
traffic flow and average speed of vehicles collected by Location-Based Services (LBS) are considered as new variables for estimating
the FCS. Linear regression is used to model the importance of the variables. )e chi-square test compared the observational and
predicted speeds in the five categories of roads in Tehran, the capital of Iran. Results show that on-street parking has the highest
impact and the land use variable has the lowest impact on speed that changes the FCS. Moreover, the presented classification was
one to two categories compared with the conventional FCS presented in manuals in the case of Tehran’s transportation network as
a developing city.

1. Introduction

Various functional classification systems (FCS) are defined
based on different criteria including road geometry design,
volume and type of traffic, and origin-destination (OD) of
trips. )ese are beneficial in developing the standard road
network. Roads can have a functional classification that
expresses their functional importance in the whole network.
Classifying volume and type of roads can be presented as a
result of traffic assignment. Moreover, sometimes an envi-
ronmental classification could be considered heavy vehicles
and transportation’s harmful impacts on the environment
[1].

According to the two types of services that roads carry
out, two main criteria are used to classify them, which are
accessibility and mobility level. In fact, these are two criteria
by which different types of roads are created based on
changes in each of them [2]. )e two criteria of accessibility

and mobility are inversely related, so increasing accessibility
means reducing mobility and vice versa.

)e conflict between providing mobility for traffic
movements and spreading origins and destinations in a city
requires countless roads with different functions to respond
to the generated demand [3]. )e leading purpose of the
highway is to provide mobility that is defined at different
levels. For example, mobility on the highway can mean
riding comfort and privation of speed changes. However,
due to the importance of sustainable transportation, at-
tention to accessibility has become more important in these
days and it can be used as an indicator to define the reliability
of services in the transportation system [4]. Of course, it
should be noted that access is not the only factor in achieving
sustainable transport, and the public transport networkmust
also support it [5]. In this regard, balancing mobility based
on accessibility concerns is essential for managing the urban
traffic network.
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Many factors describe accessibility. Generally, it consists
of traffic characteristics and geometric design features such
as volume, angle of access, the distance of access points from
each other, access control and access management, turning
radius of the access point, entering speed from the access
point to the roadway, location of bus and taxi stations, total
ramp density, number of lanes, lane widths, type of median,
on-street parking, the distance between intersections, de-
celeration and acceleration lanes, and types of land use [3, 6].

In addition to those conventional attributes, we consider
more recent data source including Location-Based Services
(LBS) and Sydney Coordinated Adaptive Traffic System
(SCATS) to investigate the accurate classification of road-
ways by fusion of their data to conventional on-field at-
tributes. LBS are applications on mobile portable devices
(e.g., smartphones) that provide information depending on
the location of the device and the user through mobile
networks [7, 8]. Rapid advances in LBS with the continuous
evolution of mobile devices and telecommunication tech-
nologies were presented just in a few years. )us, LBS be-
came more popular in outdoor and indoor environments
(shopping malls, museums, airports, and big transport
hubs). Moreover, LBS was applied in services like emergency
services, tourism services, navigation guidance, intelligent
transportation systems (ITS), entertainment (gaming),
assistive services, healthcare/fitness, and social networking
[9–11]. )is service could be used as a tool for investigating
and comparing traffic patterns [12], evaluating the Origin-
Destination (OD) trips [13], and even verifying the accuracy
of conventional traffic assignment methods [14]. In addition
to this data, traffic volumes are gathered by installed de-
tectors based on SCATS. SCATS is a traffic management
system designed to optimize traffic flow [15] and metering
the internal/external traffic during the rush hour to mini-
mize the queue lengths at intersections [16].

2. Material and Methods

In this study, the variables extracted from the accessibility
were selected as independent variables, and the effect of these
variables on the spot speed was evaluated using linear re-
gression. Furthermore, the data of real-time traffic charac-
teristics have been used in addition to the conventional data
like roadway’s geometric design features. )e roadway data
for geometric design features are the angle of access, total
ramp density, number of lanes, on-street parking, decelera-
tion and acceleration lanes, and types of land usage. In ad-
dition, the traffic characteristics data for the roadway are spot
speed and volume. In this study, each independent variable’s
effect on the dependent variable is measured using linear
regression, and the effects of all variables on each other are
measured by using the correlation matrix. )en the observed
and predicted speeds were compared by the chi-square test.

2.1. Process. Generally, this study’s collected data were
geometric design features and traffic characteristics by
considering roadside land use. In the first step, the functional
systems for urban areas used in the American Association of

State Highway Officials (AASHTO) were selected. )e four
functional highway systems for urban areas used in con-
ventional functional classification are principal arterial,
minor arterial, collector streets, and local streets [3].
Functional systems for urban areas are schematically shown
in Figure 1.

According to the classification of Figure 1, for each of the
functional systems, roadways of Tehran were selected as a
case study, which is shown in Figure 2 that is gathered from
Tehran Trafficþ Maps (https://map.tehran.ir). For the
principal arterial, Ayatollah Hashemi Rafsanjani (Niyayesh)
was selected (Figure 2(a)). For the minor arterial, Resalat
Expressway was selected (Figure 2(b)). In Niyayesh and
Resalat expressways, both directions were selected, west to
east and east to west. For the collector, two case studies were
selected. One of them was Mofatteh Street (Figure 2(c)), and
the other one was Motahhari Street (Figure 2(d)). )e case
study selected for the local street was Mehrdad Street
(Figure 2(e)). )ere are 360 access points in case studies that
affected accessibility.

In the next step, each of these roadways was divided into
ten segments with equal length. )e number of segments in
the case study is 61. And then, the required data were
collected from the available segments. Finally, modeling was
done by selecting the appropriate regression model, and its
results were extracted.

Angles of access data were obtained with AUTO CAD,
CIVIL 3D, and ENGAUGE DIGITIZER software. )e
collected number of angles is equal to the number of access
points. )e geometric design features of the roadways, like
the number of lanes and on-street parking, are gathered by
observation of field studies and checked by Tehran Trafficþ
Maps (https://map.tehran.ir). )e deceleration and accel-
eration lanes data were collected by referencing AASHTO
standards and the field study. )e ArcGIS software has been
used to collect the land use data based on Tehran’s spatial
land use data. )e collected data, deceleration and accel-
eration lanes, and land use data are qualitative, and other
research data have been quantitatively and numerically
introduced in the model.

3. Theory/Calculation

Highways’ classification methods, Location-Based Service
applications, and real-time traffic characteristics are used to
find the proposed model in this section.

3.1. Highways’ Classification. Highways classify into differ-
ent operating systems based on functional classes or geo-
metric types. Functional classification, the grouping of
highways by the service they provide, was developed for
transportation planning purposes. )e FCS provides the
starting point for assigning highways to different access
categories. FCS is applied to categorize streets and highways
according to their role [3, 6].

)e urban roads have six primary roles:

(i) Providing mobility for motor vehicles (mobility
role).
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(ii) Providing access to motor vehicles and facilities
(accessibility role).

(iii) Creating a platform for social communication such
as working, traveling, playing, and meeting (social
roles).

(iv) Formation of urban architecture (urban architec-
tural role).

(v) Impact on the environment weather surrounding
the road (climate effect role).

(vi) Impact on city economics (economic role).

Roads usually take more than one role, and some of these
roles conflict with another one. )e role of mobility can be
measured by the speed and amount of traffic volume. In
general, in the six parts, the three roles of mobility, acces-
sibility, and social role are the main criteria for calculating
urban roads.

Various classification schemes have been applied for
distinct purposes in different rural and urban regions. )is
research will examine whether traffic characteristics such as
volume and speed corresponding to it can be combined with
other geometric properties and use statistical methods such
as regression to produce a favorable result in urban areas’
functional systems. )e questions are the following: Is there
a meaningful relationship between each of the independent
and dependent variables? Is there a simultaneous effect of
independent variables with the decreasing effect of the
dependent variable’s speed value?

Moreover, the assumptions used in this research are as
follows:

(i) )e minimum width of the lane is 3.67m.
(ii) All vehicles in the traffic flow are passenger cars.
(iii) )e inclement weather conditions are ignored.
(iv) )e level of service in roadways is not E or F.

)e American Institute of Architects (AIA), with ten
classes, includes all streets within a city or town based on
differing degrees of suitability for traffic movement, pe-
destrian activity, and building types [17]. )e proposed
system is shown in Table 1.

In road classification research, Qin et al. [19, 20] pre-
sented a straightforward and yet accurate methodology
named speed-independent road classification strategy
(SIRCS). )is method is based on the sole measurement of
unsprung mass acceleration. )e framework was proposed
with two phases named offline and online. In the offline
phase, in two stages, the transfer function from acceleration
to mobility is first formulated.)e frequency range based on
the random forest is then classified according to the ISO
8608 road standard definition. In the online phase, first, the
mass acceleration and velocity of the vehicle are combined to
calculate the appropriate road profile in the area.)e second
step is to classify the two-stage road mobility based on the
power spectral density criterion (PSD) [20]. In this paper,
the harmony superposition function generates the road
profile in the time domain based on [19, 20]

Figure 2: Location of case studies-Tehran Trafficþ Maps (https://map.tehran.ir).

Functional Systems
For Urban Areas

Arterials Collector Local 

Principal Minor

Figure 1: Functional system for urban areas schematic diagram.
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where U is the total number of the time-frequency com-
ponents; fmid−u is uth middle frequency in Hz, Gq(fmid−u) is
the PSD of fmid−u in m3; Vu−l is the independent and
identically distributed (IID) random phase over (0.2π). f1
and f2 are 0.33 Hz and 28.3 Hz, respectively [19].

Adafer and Bensaibi [21] developed a methodology based
on determining a numerical indicator called the Vulnerability
Index (VI). )e vulnerability index also can be used for
seismic vulnerability assessment for roads. )e main pa-
rameters are identified, especially on past Algerian earth-
quakes and worldwide seismic feedback experiences. To
quantify the identified parameters and define an analytical
expression of the “VI”, Analytical Hierarchy Process (AHP) is
used. According to the obtained Vulnerability Index value,
the classification of road sections’ seismic vulnerability is
proposed. )is study’s analysis and evaluation are number of
lanes, pavement type, height, compaction quality, slope,
ground type, landslides potential, pavement conditions, and
slope protection measures. According to the vulnerability
index, landslides potential, pavement conditions, and the
number of lanes were the essential components.

In another study, Friedrich [22] describes the general
methodology of the German Guideline for Integrated
Network Planning (GGINP). He presented the approach and
its methodology, including the form of transportation
networks and the characteristics of the network elements
and showed some examples of applying it. Examples of such
characteristics are alignment speed, number of lanes, and the
control type at intersections. In this research, the relation-
ship between travel time, length, connectivity function level,

and length in build-up areas or sensitive areas with im-
pedance was investigated by the regression model. )e re-
lationship is [22]

wl � β0 + β1 · CFL1 + β2 · bl( 􏼁 · tl + β3 · sl, (2)

where wl is the impedance of link l, tl is the travel time of link l,
sl is the length of link l, CFLl is the connectivity function level
of link l (0≤CFL≤ 5), bl is the share of link length in build-up
areas or sensitive areas (0≤ bl≤ 1), β0 is the parameter that
describes the influence of travel time, i.e., the accessibility, β1
is the parameter that describes the influence of the road
hierarchy, i.e., the bundling of traffic flows, β2 is the parameter
that describes the influence of sensitive areas, i.e., the com-
patibility of environment, and β3 is the parameter that de-
scribes the influence of length, i.e., the directness [22].

3.2. Location-Based Services (LBS). Compared with other
traditional geographic information systems (GIS) and web
mapping applications, LBS is more adaptable to the contents
and presentation according to its users’ context [23]. )us
LBS is more dynamic and more probable to develop other
GIS applications and open many research questions beyond
the scientific field of geographic information science
(GIScience) [24]. Geopositioning smartphones have
attracted new application development, which utilizes the
user’s location information to provide valuable services.
)ese applications are called LBS applications [25].

LBS need infrastructure like an internet network that can
provide positioning tools for trough mobile devices [26].
Today, the tool that can supply access to LBS is mobile
devices that users can send requests and retrieve results
through. LBS need applications that providers develop just
for them. )ese applications would download and install
mobile devices like Personal Data Assistants (PDAs),

Table 1: AIA street classification system [18].

Classification Scale Speed Location Specific feature
Highway Long-distance Medium Open country Free of intersections, driveways, and adjacent buildings

Boulevard Long-distance Medium Urbanized area Buildings line, expansive parking, and sidewalk inside
and planting trees in center

Avenue Short-distance Medium Urban area Ends with a significant building or monument

Drive
Edge of the urban area
and beside of natural

zone
Medium Along a waterfront, park, or

headland

One side of the drive, boulevard, with sidewalk and
buildings, while the other has the qualities of a parkway,

with naturalistic planting and rural detailing

Street Small-scale Low
Access to higher density

areas like business zones or
rowhouses

Raised curbs, wide sidewalks, closed drainage, parallel
parking, trees in individual planting areas, and

buildings aligned on short setbacks

Road Small-scale Low Frontage of low-density
buildings such as houses

Rural landscape with open areas, plantings and narrow
sidewalks

Alley Narrow access route — Servicing the rear of
buildings on a street

Usually paved to their edges, with center drainage via an
inverted crown

Lane Narrow access route — Access to houses’ backyard
Useful for accommodating utility runs, enhancing the
privacy of rear yards, and providing play areas for

children

Passage Narrow, pedestrian-
only connector — Cutting between buildings Access from the middle of long blocks and connect

frontage and backyard of blocks

Path Narrow pedestrian and
bicycle connector — A park or the open country

Emerge from the sidewalk network, necessary along
highways but not required to supplement boulevards,

streets, and roads

4 Journal of Advanced Transportation



laptops, and mobile phones [27]. Figure 3 shows the process
that an LBS works. In step one, a request is sent through an
application on a mobile device. )en in step two, requests
and the user’s current location data is sent to the server. In
steps three and four, the service server gets the necessary
information from databases. Finally, in steps five and six, the
required information is sent to the user [27].

In this research, eight independent variables and one
dependent variable have been defined and counted. )e
independent variables used were: volume (maximum 15-
minute count in hour), angle of access, total ramp density,
number of lanes from the access point to the roadway,
number of lanes in the roadway, on-street parking, decel-
eration and acceleration lanes, land use; and the dependent
variables used in this research was spot speed as a traffic
characteristic.

3.3. Traffic Characteristics. Traffic characteristics in this
research included speed and volume data. )ese data were
collected and recorded with the help of Tehran Traffic
Control Company (TTCC) based on LBS. Global Posi-
tioning System (GPS) tracking data and SCATS data at
intersections. LBS collected speed data. Tracking data
calibrated by floating car and volume data was collected
based on visually counted and rechecked by recorded
video and SCATS data, especially for arterials with

intersections. An example of LBS’s collecting speed data,
which Rajman Information Structures Company (RISC)
developed, and volume data by SCATS software is shown
in Figure 4.

)e data collection was started on Monday, February 26,
2018, and was completed on Tuesday, May 28, 2019.)ese data
were collected onMondays andTuesdays of eachweek between
9 a.m. and 11 a.m. for about more than one year in case of
typical weather conditions. In this study, about 8600 data
points were recorded for speed and volume by data sources.

3.4.Modeling. )ere are several ways to check the normality
of speed data. In this study, skewness, kurtosis, and histo-
gram, Kolmogorov-Smirnov, and Shapiro–Wilk tests were
examined [28]. )ey confirmed the normality of the speed
data. )e histogram of speed for the normality test is shown
in Figure 5.

With linear regression, we can estimate the linear equation’s
coefficients and for this, we used one or more independent
variables to calculate the dependent variable value [28]. )e
speed data, the dependent variable in this research, is quanti-
tative and numerical and the used model is linear regression.
SPSS software was used for modeling and a significant level of
95% was considered. A chi-square test was used to compare
observational speed and predicted speeds. Finally, the rela-
tionship between all variables is shown in the correlationmatrix.
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system
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(i) Mobile 
device with 
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application
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data 
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Comunicatio
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on mobile
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Figure 3: LBS process.

(a) (b)

Figure 4: RISC Map View by Location-Based Service (LBS) data model (a), and SCATS software environment (b) for one sample
(Motahhari-Mofatteh) used intersection.
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4. Results

Initially, the independent variables were fitted separately to
the linear regression model’s spot speed-dependent variable.
)e results are presented in Table 2.

)en, using the multiple linear regression analysis, the
simultaneous effect of independent variables on speed was

measured. In this test, two to four independent variables’
simultaneous effect is shown on the dependent variable. )e
number of independent variables causes an increasing
number of prediction models. )e results of the test are
shown in Table 3.

In the final multiple regression analysis, which is the
purpose of the research, the simultaneous effects of all

Table 2: Linear regression model, the effect of independent variables on the dependent variable separately.

Tests Independent variable Dependent
variable

Standard regression
coefficient (β)

Significant level (p-value <
0.05)

1 Angle of access Spot speed −0.49 Ok
2 Total ramp density Spot speed −0.25 Ok

3 Number of lanes from the access point to the
roadway Spot speed −0.17 Ok

4 Number of lanes in the roadway Spot speed −0.014 Not ok
5 Volume Spot speed −0.15 Ok
6 On-street parking Spot speed −0.67 Ok
7 Deceleration and acceleration lanes Spot speed 0.58 Ok
8 Land use Spot speed −0.51 Ok
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eq
ue
nc
y

Figure 5: Histogram of gathered speed for normality test.

Table 3: Linear regression model, the simultaneous effect of two or more independent variables on the dependent variable.

Tests Independent variable Dependent variable Standard regression coefficient R2 adjust (%)

9 • Angle of access Spot speed −0.48–0.116 26
• Volume

10
• Angle of access

Spot speed −0.46–0.091–0.12 27• Volume
• Total ramp density

11
• Volume

Spot speed 0.10–0.12–0.64 47• Total ramp density
• On-street parking

12
• Total ramp density

Spot speed −0.13–0.48 0.24 50• On-street parking
• Deceleration and acceleration lanes

13

• Total ramp density

Spot speed −0.1–0.14–0.099–0.56 50• Angle of access
• Volume

• On-street parking
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independent variables on speed are measured, and the final
result is shown in (3) and Tables 4 and 5. )e prediction rate
of the model is 52%.

y � α + βx1 + θx2 + cx3 + δx4 + μx5 + πx6 + τx7 + ρx8,

(3)

where y is the dependent variable, which is Spot speed, x1 is
the angle of access, x2 is the total ramp density, x3 is the

number of lanes from the access point to the roadway, x4 is
the number of lanes in the roadway, x5 is the volume
(maximum 15-minute count in an hour), x6 is the on-street
parking, x7 is the deceleration and acceleration lanes, and x8
is the land use.

)e effect of all the variables used in this study on each
other is shown in the correlation matrix. )e correlation
matrix is shown in Table 6. In this matrix,A is the spot speed,
B is the angle of access, C is the total ramp density, D is the

Table 4: Results of the final regression model.

Factors Standard regression coefficient t P-value VIF
Angle of access β� −0.059 −1.13 0.26 1.9
Total ramp density θ� −0.069 −1.58 0.11 1.3
Number of lanes from access point to the roadway c � 0.039 −0.88 0.37 1.4
Number of lanes in roadway δ � 0.072 1.57 0.11 1.5
Volume μ� −0.099 −1.97 0.049 1.9
On-street parking π � −0.5 −8.2 <0.001 1.2

Deceleration and acceleration lanes 0 — — — —
1 τ � −0.23 −4.06 <0.001 2.2

Land use Commercial or administrative — — — —
Residential ρ� 0.019 0.27 0.7 2.9

Table 5: ANOVA table.

Model Sum of square df Mean square F Sig
Regression 42039.87 8 5254.98 46.97 <0.001
Residual 39269.41 351 111.87 — —
Total 81309.28 359 — — —
R2 � 0.52;R2 adjust� 0.5; Durbin-Watson� 1.4

Table 6: )e correlation matrix.

Correlation matrix A B C D E F G H L
A 1 −0.49 −0.25 −0.66 −0.16 −0.01 −0.15 0.57 −0.51
B −0.49 1 0.23 0.56 0.17 0.12 0.07 −0.65 0.47
C −0.25 0.23 1 0.16 −0.12 −0.39 0.22 −0.14 0.22
D −0.66 0.56 0.16 1 0.35 0.15 0.03 −0.65 0.64
E −0.16 0.17 −0.12 0.35 1 0.42 −0.08 −0.3 0.22
F −0.01 0.12 −0.39 0.15 0.42 1 −0.06 −0.21 0.13
G −0.15 0.07 0.22 0.03 −0.08 −0.06 1 −0.07 0.53
H 0.57 −0.65 −0.14 −0.65 −0.3 −0.21 −0.07 1 −0.54
I −0.51 0.47 0.22 0.64 0.22 0.13 0.53 −0.54 1

Table 7: Chi-square test based on design speed.

Functional
systems

Local frequency
(percent)

Collector
frequency
(percent)

Minor arterial
frequency (percent)

Major arterial
frequency (percent)

Total frequency
(percent)

Chi-square test
result

Observed 8 (2.25%) 109 (30.25%) 142 (39.45%) 101 (28.05%) 360 (100%) χ2 � 291.5
P< 0.001Predicted 186 (51.67%) 45 (12.5%) 129 (35.83%) 0 (0%) 360 (100%)

Table 8: Chi-square test based on permissible speed.

Functional
systems

Local frequency
(percent)

Collector
frequency
(percent)

Minor arterial
frequency (percent)

Major arterial
frequency (percent)

Total frequency
(percent)

Chi-square test
result

Observed 8 (2.25%) 109 (30.25%) 142 (39.45%) 101 (28.05%) 360 (100%) χ2 � 139.6
P< 0.001Predicted 5 (1.38%) 225 (62.5%) 129 (35.82%) 1 (0.3%) 360 (100%)
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on-street parking, E is the number of lanes from the access
point to the roadway, F is the number of lanes in the
roadway, G is the volume, H is the deceleration and ac-
celeration lanes, and L is the land use.

To compare the criteria before and after modeling, chi-
square test was used. A comparison of speed frequencies has
been made based on the design speeds and permissible
speed, and the results are shown in Tables 7 and 8.

5. Discussion and Conclusion

According to the tests, it can be concluded that the most
influential independent variable is the on-street parking,
which, due to the negative standard coefficient, has an in-
verse effect on the dependent variable. Among the inde-
pendent variables, land use had the lowest impact on the
dependent variable. )e standard regression coefficient of
this variable is positive. It had a direct impact on the de-
pendent variable. In multiple linear regression models, the
number of lane variables from the access point to the
roadway, the number of lanes in the roadway, and land use
were variables that directly correlated with other variables.
)e relationship of the dependent variable with other var-
iables was indirect.

By analyzing the on-street parking data, an unexpected
result was obtained. In the parts of the roadway where there
was on-street parking but was not being used, the speed was
increased compared to the previous one and one of the
reasons is that users use these lanes as passing lanes.

)e observational speeds before the study were com-
pared with the predicted speeds after modeling using the
chi-square test. According to Table 7, at first, these values
were compared with the design speed, with the initial values
for local streets equal to 8 (2.25%), for collector streets equal
to 109 (30.25%), for minor arterial streets equal to 142
(39.45%), and for s, 101 (28.05%). After modeling and
comparing with design speed, their values were as follows:
186 (51.67%) for local streets, 45 (12.5%) for collector streets,
129 (35.83%) for minor arterial streets, and zero for principal
arterials. )en, these values were compared with the per-
missible speed. According to Table 8, the results of the chi-
square test based on permissible speed are as follows: for
local streets it is equal to 5 (1.38%), for collector streets it is
equal to 225 (62.5%), for minor arterial streets it is equal to
129 (35.82%), and for principal arterials it is equal to one
(0.3%).

)e predicted and the Nash–Sutcliffe test measured
observational speeds to measure the modeling’s prediction
accuracy. )e Nash–Sutcliffe model efficiency coefficient
value was obtained at 96.8%. )is means that the predicted
speeds were close to the observational speeds, and the re-
gression model’s prediction has been corrected. However, in
Tehran, the actual function of the roadways differed from
their nominal function. All speed numbers entered in the
chi-square test were coded. Finally, only one number among
the speeds was in the design speeds range and the principal
arterials’ permissible speeds.

According to the chi-square test results, two general
results can be extracted: Firstly, in Tehran, as our case study,

each of the urban FCS does not match the current situation
of traffic characteristics and geometric design features by
considering roadside land use. )e actual functional clas-
sification is remarkably different from the conventional
functional classification named in the references. In most
cases, the obtained classification was one to two categories
less than the conventional nominal classification. Secondly,
considering the SCATS and LBS data encode the real-time
traffic flow and average speeds, it can be used as a new
method to determine themore accurate FCS of each segment
in the urban transportation network.
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Public transport is amongst critical infrastructures in modern cities, especially megacities, home to millions of people. /e
reliability of these systems is highly crucial for both citizens and service providers. If service providers overlook system reliability, a
considerable amount of expenses will be wasted. Several factors such as vehicle failure, accident, lack of budget weather factors,
and traffic congestion cause unreliability, among which vehicle failure plays a prominent role. /e brake system is the most
vulnerable and vital component of a public transportation bus. Brake reliability depends on driver’s expertise, component quality,
passenger loading, line situation, etc. Driver’s expertise and components’ quality are the most important factors for brake system
reliability. /is study aims to implement a hybrid machine learning and optimization model to minimize the total investment and
reliability-related costs in a bus rapid transit (BRT) system. A regression analysis method is proposed to capture the main
attributes of a joint brake system, including the level of education, training, and drivers’ experience./e failure rate is modeled as a
linear function of ETE and the quality of brake system subcomponents using a Lasso regression model. MILP optimization is then
provided for optimizing the total expected costs for a bus rapid transit (BRT) system. Furthermore, a practical case is studied to
investigate whether this optimization can reduce costs. /e results confirm the efficiency of the hybrid optimization approach.

1. Introduction

Nowadays, cities are growing in size, and their populations
are increasing rapidly. As citizens need to travel inside their
cities more frequently, public transportation systems are
getting ever-increasing importance in society. Many pas-
sengers travel by bus rapid transit (BRT), a left-side door bus
operating in a fully separated lane. BRTreliability studies are
pivotal because an interruption in such systems would result
in passenger dissatisfaction and stakeholders would have to
deal with vast economic losses. To overcome this challenge,
the reliability of this transportation system is analyzed and
then optimized. Reliability refers to the probability that a
device performs its purpose adequately for the period
intended under the operating conditions encountered [1]. A

high level of reliability would be an excellent incentive for
citizens to choose public transport [2]. Several works ana-
lyzed in detail in the next section aim to quantify and en-
hance the reliability of urban bus systems as a backbone to
public transport.

/ere are several reasons for BRT system irregularity,
including suboptimal scheduling, accident, bus failure, etc.
Based on the analysis of historical data, the main reason for
BRT irregularity and latency is bus failures, which is due to
brake failure in most cases. Not only is brake failure the
primary reason for bus failure, but also it completely in-
terrupts the bus. /e driver cannot even take the bus to the
repair shop. /erefore, brake component reliability opti-
mization is vital in enhancing overall reliability. However,
system owners have limited financial resources; therefore,
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such enhancements should be constrained to available
budgets and prospective future costs. To the best of our
knowledge, this paper, for the first time, presents an ana-
lytical cost-benefit optimization for the brake system reli-
ability considering the total costs imposed on the owners. At
the first step, the brake failure rate is modeled as a function
of subcomponent types and the education, training, and
experience (ETE) indicators of the drivers. /e former
represents that a high-quality subcomponent lasts longer,
while the latter represents the effect of driver skills in a better
brake system. /is is followed by modeling the primary
investment, operation, and maintenance costs, including
repair, replacement, HR training, and salary. Finally, convex
mixed-integer linear programming (MILP) is provided to
decide on the type of brake subcomponents of buses ac-
quired for BRT lines and the ETE indicator of their drivers.
/e objective is to minimize the total cost, including in-
vestment, driver salaries, replacement costs, and economic
loss due to bus interruptions and failures. To summarize, the
main contributions of this paper are as follows:

(i) Modeling the brake failure rate based on subcom-
ponents and associated drivers

(ii) Modeling various brake-related investments, op-
eration, and maintenance costs

(iii) Optimizing subcomponents and driver planning to
minimize total costs

/e rest of this paper is organized as follows: related
research materials are reviewed in Section 2; the general
structure of the proposed approach is briefly introduced in
Section 3; in Section 4, the failure rate is modeled as a
function of the ETE indicator and the brake system quality;
the formulation of the optimization problem is discussed in
Section 5; a case study for a practical BRTsystem is presented
in Section 6; results and Section 7 presents results and
discussion, and finally, the conclusion is drawn in Section 8.

2. Related Works

Several types of research in the literature concentrated on the
reliability of the public transportation system. /ose works
either modeled or proposed reliability enhancement solu-
tions using online or offline methods. In the following
sections, those research works are reviewed.

2.1. Reliability Modeling and Quantification. /e first stage
in reliability studies is modeling and quantification. Public
transportation services are categorized into two groups:
frequency-based and scheduling-based [3]. While schedul-
ing-based services operate on predefined schedules, only
headway time is of interest within the systemmanagement in
frequency-based services. Moreover, passengers are divided
into two types: commuters, who regularly travel for business
or education purposes, and noncommuters, who use public
transport for occasional travels in that specific pathas. Also,
they analyzed the methods of computing headway and
expected waiting time. Liu and Sinha [4] introduced three
reliability metrics: “travel time reliability,” “headway

reliability,” and “passenger wait time reliability.” In [5], a set
of reliability indicators from the viewpoint of customers are
introduced. /e latter expects that the indicators satisfy the
four attributes “measurability,” “ease of availability,” “speed
of availability,” and “interpretability,” in addition to being
customer-oriented. In [6], the quality of service and transit
reliability for older people (more than 65 years), counted as
vulnerable users, are computed. A data-driven reliability
study of public transportation for the Netherlands is pre-
sented in [7]. /e automatic vehicle location (AVL) data are
used for offline measuring time reliability in [8]. In [9], the
percent of passengers receiving regular service (PPR) and
percent of passengers receiving punctual service (PPP) using
AVL data are computed. /ree performance measures of
punctuality index based on routes (PIR), deviation index
based on stops (DIS), and evenness index based on stops
(EIS) have been introduced and implemented for the Beijing
transportation system in [10]./e probability that the public
transport system performance is within the acceptable range
for Beijing’s transport system reliability is computed. /e
impact of ridership on the reliability of the public trans-
portation system is modeled in [11]. A review of all influ-
ential factors in reliability, in addition to reliability metrics,
is briefly discussed in [12]. It divides the factors into two
groups: demand-side factors, including traffic flow, pas-
senger route-wise demand, and directional flow at inter-
sections, and supply-side factors, including facility design,
accidents, driver behavior, traffic management scheme,
vehicle breakdown, and weather. Next, the reliability of the
Ahmedabad city is computed using gathered GPS data. A
methodology for estimating the value of travel time reli-
ability is presented in [13]. Bunker [14] presented a prob-
abilistic reliability model for sections (the distance between
stops). Although that model investigates the financial aspects
of reliability, it does not discuss the improvement strategy.

2.2. Reliability Enhancement. Optimal reliability enhance-
ment can substantially reduce system expenses. Moosavi
et al. [15] categorized reliability enhancement strategies into
three main groups: prioritizing, operational, and control.
Prioritization approaches are those that give priority to the
public within the city. Dedicating a separate lane to buses is
an example of prioritization policies. Operational strategies
include long-term accomplishments such as driver training
and restructuring of bus routes (offline methods). Control
strategies are real-time decisions such as skipping stops
(online methods). /e impacts of various control strategies
on transportation reliability are then simulated. /e paper
does not model the economic aspects of reliability. /ere-
fore, the approach does not give the stakeholder a vision for
the financial benefits of reliability enhancement. An ana-
lytical control strategy optimization is suggested in [16]./is
approach ensures the global optimality of final results. AVL
data are utilized in [17–19] to identify routes that need
assistance and reliability enhancement. Wang et al. [20]
proposed a data-driven bus scheduling optimization to
enhance the reliability of transportation systems. In [21],
how headway variations cause an extra cost to passengers
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and how total cost (operator and user costs) will be opti-
mized by bus stop placement and dispatching headway are
discussed.

/e papers mentioned above discussed the effect of path
and control strategies on public transport reliability.
However, for a BRT service in which a specific lane is
dedicated to buses, the unwise path selection and suboptimal
control strategies are not the primary cause of unreliability.
/ese systems are highly reliable, especially in peak hours
[22]. Breakdowns of buses are the main cause of interrup-
tions and compromises to the service. A bus consists of
several vulnerable components, of which brake systems are
responsible for most interruptions.We checked the accuracy
of this fact by comparing the reasons for a practical BRT
system interruption. /e historical data confirm that brake
failure accounts for most of the buses’ interruptions. Data
analysis in [23] also confirms that the main factor that causes
an urban bus being downtime in repair is the brake system
failure. A fuzzy rule-based study of the Istanbul BRT system
also indicates that the brake component is one of the vital
components for retaining the reliability of the BRT system
[24].

Furthermore, upon brake malfunctions, a severe risk is
imposed on passengers and drivers. In this regard, the brake
system functionality is also a key to safety [25]. Hence,
analyzing the reliability of brake systems and their impact is
an important subject.

Yusupov [25] presented a serial reliability model for
brake systems. /e reliability of the brake system is then
computed based on the reliability of each subcomponent. A
maximum likelihood estimation (MLE) method is presented
in [26] for estimating the failure distribution of brake
subcomponents. Moreover, the reliability of the brake sys-
tem is computed using a fault tree. A Petri-net model for
computing the reliability of mechatronic systems is pre-
sented in [27]. /e critical reliability metrics, which are
failure rate, mean time between failures, mean time to repair,
and the brake system availability, are modeled in [28]. /e
shape of the brake piston ring is redesigned to improve the
reliability in [29]. Yusupov et al. [30] first identified the
subcomponents with the credible value of failure rates./en,
the relationship between these values and the brake com-
ponent reliability was modeled. Finally, the method was
simulated for the ABS brake system. None had studied the
brake system reliability impact on the overall bus reliability.

To conclude, none of those above papers analyzed and
optimized the brake system reliability as part of the whole.
As a result, financial studies and the cost-benefit optimi-
zation for reliability enhancement are also missed. To fulfill
this research gap, this paper presents a model for brake
failure. /e costs BRT systems endure due to brake failures
are modeled, and the BRT system’s total costs related to
brake failures are optimized.

3. Proposed Methodology: Big Picture

To enhance the reliability of the brake components, first,
the influential factor should be identified, as depicted in
Figure 1. /e drivers’ expertise and subcomponents’ quality

are discussed in Section 4. Experts can provide an ap-
proximately precise score for drivers and subcomponents.
/e relationship between the failure rate and these scores
can be modeled with machine learning (ML). Increasing the
score for these factors inevitably causes a decrease in the
failure rate. However, this increase requires extra investment
either in components or salary and training costs. Due to
limitations in available budget, the total cost, covering re-
liability enhancement budget and interruption, and opera-
tion and management (O&M) costs should be optimized.
Since O&M cost computation requires every subcomponent
failure and replacement cost, the decomposition overall
failure rate to subcomponent failure rate is necessary.

4. Failure Rate Model

To model the brake system failure rate, the features con-
tributing failure rate value should be extracted. /ese are the
features that must be modeled and qualified. /e main
reasons for brake system failure are low-quality brake
components and careless drivers. /erefore, the features are
the driver expertise score and the quality of the brake system.
A machine learning model is then trained to estimate the
failure rate based on these two features. /ese features are
brake quality scores and drivers’ expertise scores. Obviously,
the better the quality of the brake and the more skillful the
driver are, the less the failure rate of the brake component is.
/e following sections introduce both the features and
model. /is model is exploited inside our optimization
problem in Section 5.

4.1. Brake Quality Score. Subcomponent types have a sig-
nificant contribution to the failure rates of a component./e
better the subcomponents, the longer the component sur-
vives. For example, the brake system is composed of several
subcomponents, four of which are responsible for most
failures: pedal, retarder, ABS, and pad. Each falls within one
of the following quality bands: A (highest quality), B, and C
(lowest quality), with scores of 15, 10, and 5, respectively. In
the end, the sum of the subcomponent scores is scaled
between 0 and 100.

4.2. Driver Expertise Score. Highly skilled drivers can better
maintain and manage the brake system, and therefore, this
can be regarded as an influential factor in calculating the
failure rate. /is paper introduces the ETE indicators
representing the level of education, annual training hours,
and total years of driving experience. To calculate ETE, the
score of education level and experience are calculated
according to Table 1. /e values in Table 1 are based on the
filled surveys. /e training score is then calculated
according to (1). In this formula, hmin is the minimum
hour of required training and Sh is the coefficient of
training hour in ETE score. Finally, the sum of these three
scores is scaled between 0 and 100.

training_score � Sh ∗ h − hmin( 􏼁. (1)
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4.3. Failure Rate Model. Failure rate (f) is estimated as a
function of ETE and brake quality score (Q) as shown in the
following equation:

􏽢f � g(ETE, Q). (2)

/ere is no analytical formula that relates ETE and Q to
the failure rate. /us, a data-driven model is used instead.
/e g function is estimated using machine learning
methods. Machine learning includes various models such as

linear regression, decision tree, and artificial neural network.
In this paper, the Lasso method, which fits a linear function
to an input-output relationship [31], is employed to model
failure. /e learner minimizes the mean square error be-
tween the actual and predicted output. To regularize the
coefficients and prevent overfitting, a term of the first-order
norm of the coefficients is added to the objective function
according to (3) [31]. /is trained linear failure rate model is
later used in MILP cost optimization.

Section 4

• Identifying the most influential Factors For Brake Component Failure Rate: (i) 
Subcomponent Quality, (ii) Driver Expertise

Section 4 

• Collecting Surveys from Experts to Find a Quantification Framework for Both 
Subcomponent Quality and Driver Expertise.

Section 4

• Collecting Historical Data for Drivers and Subcomponents for every Bus in 
addition to Their Failure Rate.

Section 4

• (i) Presenting a Machine Learning Model for Brake System Failure Rate 
Modeling

• (ii) Decomposing the Overall Failure Rate to Subcomponent Failure Rate

Section 5

• Identifying and Modeling the Main Costs Related to Brake Component 
Reliability: Investment Cost, Human resource cost, Outage Cost, and Replament 

Cost.

Section 5

• Optimizing the Total Cost

Figure 1: /e general structure of the brake reliability-related cost minimization approach.

Table 1: Score table for education and years of experience.

Education level Under high school High school diploma Associate degree Bachelor Master Ph.D.
Score 2 3 4 6 8 10
Years of experience 0–5 5–10 10–15 15–20 20–25 25–30
Score 2 3 4 6 8 10
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Min
1

M
􏽘

M

m�1
fm − β0 + β1 ∗ETEm + β2 ∗Qm( 􏼁􏼂 􏼃

2
+ λ∗ β0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + β1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + β2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭, (3)

where β1 and β2 are the coefficients of ETE and Q in the
linear fitted function, and λ is the regularization factor,
which is a hyperparameter. Hyperparameters should be
assigned a value before the training task. M is the total
number of samples, and m is the index of samples. /is
optimization is solved via the scikit-learn package in the
python programming language.

/e brake component failure rate can be approximately
decomposed into subcomponent failure rates by multiplying
the failure rate with a fraction of the failure rate of that
subcomponent.

5. Modeling and Optimizing Total Cost

/is section presents the mathematical optimization model
to minimize the investment and reliability-related costs in a
BRT system under the risk of braking failure. /e main idea
is to optimize brakes and ETE factors before operating new
buses in a BRT system. It is expected that the optimized
operating plan could significantly improve the reliability of
the operations and reduces the total cost of the BRT system.
To do so, the main pillars of costs and constraints must first
be identified. /e total cost has four pillars:

(i) Investment cost (IC): the amount of money used to
buy subcomponents, subject to budget availability.

(ii) Human resource cost (HRC): driver salaries and
training costs, depending on driver education and
experience.

(iii) Outage cost (OC): cost of an interruption in bus
operations due to failure in brake components. /is
would undoubtedly incur costs as fewer passengers
are served.

(iii) Replacement cost (RC): the cost of replacing a failed
or damaged brake subcomponent with a new one.

/e objective function is the sum of the investment,
human resource, outage, and replacement costs, as asserted
in equation (4). In the following sections, details of com-
puting each cost and associated constraints are explained.

Min IC + HRC + RC + OC{ }. (4)

5.1. Investment Cost. /e investment cost is the sum of
subcomponent costs. Referring back to Section 4, the four
subcomponents pedal, retarder, ABS, and pad are respon-
sible for the majority of brake failures. /e indices of p, r, a,
and d are used as notations for the mentioned elements. /e
set of pedal types is symbolized as P, retarder types as R, ABS
types as A, and pad types as D. Equation (5) represents the
investment cost for N buses. /e symbol |.| in this equation
and successive equations refers to the size of the set. /e
binary variable B(i,e) indicates whether a subcomponent of
type e is bought for bus i. /e parameter C (.) is the cost of
subcomponents.

IC � 􏽘
N

i�1
􏽘

|P|

p�1
B(i, p)∗C(p) + 􏽘

|A|

a�1
B(i, a)∗C(a) + 􏽘

|R|

r�1
B(i, r)∗C(r) + 􏽘

|D|

d�1
B(i, d)∗C(d)⎛⎝ ⎞⎠. (5)

Since only one subcomponent type can be installed in a
bus, constraints (6)–(9) should be satisfied.

􏽘

|P|

p�1
B(i, p) � 1 ∀i, (6)

􏽘

|A|

a�1
B(i, a) � 1 ∀i, (7)

􏽘

R

r�1
B(i, r) � 1 ∀i, (8)

􏽘

|D|

d�1
B(i, d) � 1 ∀i, (9)

/e supplier can provide a limited quantity for each type
of subcomponent. /e situation is asserted in (10)–(13). /e

parameterMaxe is the maximum number of subcomponents
(of general type e) that can be supplied.

􏽘

N

i�1
B(i, p)≤Maxp ∀p, (10)

􏽘

N

i�1
B(i, a)≤Maxa ∀a, (11)

􏽘

N

i�1
B(i, r)≤Maxr ∀r, (12)

􏽘

N

i�1
B(i, d)≤Maxd ∀d, (13)

/ere is a limited amount of investment budget as stated
in (14):
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IC≤ ICmax. (14)

5.2. Human Resource Cost. Driver salaries and training
during Y years constitute the total human resource cost.
Equation (15) formalizes this fact for N buses. /is formula
neglects the fixed HR costs. In this equation, ed is the index
of education that belongs to set ED� {Under high school,
High school diploma, Associate degree, Bachelor, Master,
Ph.D.}. /e binary variable EDUi,ed indicates whether the
level of education of the ith bus driver is equal to ed. /e

index x represents the index of experience level. It can take
quantitative values of Table 1. /e set of these values is
denoted as X. EXPi,x is a binary variable, which equals one if
the driver of the ith bus has an experience level of x. /e
continuous variable hi is the total training hours of the ith bus
driver. Ch is the annual cost per hour of training. C(ed) and
C(x) are the additional monthly income that system owners
should pay to a driver with an education level of ed and
experience of x.

HRC � Y. 􏽘
N

i�1
Ch ∗ hi − hmin( 􏼁 + 12 􏽘

|E D|

e d�1
EDUi,e d ∗C(e d) + 12 􏽘

|X|

x�1
EXPi,x ∗C(x)s⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭. (15)

Constraint (16) asserts there is a lower and upper band
for training hours.

hmin ≤ hi ≤ hmax ∀i . (16)

Each driver has only one specific level of education and
experience. /is fact is mathematically modeled in (17) and
(18).

􏽘

|ED|

e d�1
EDUi,e d � 1 ∀i, (17)

􏽘

|X|

exp�1
EXPi,x � 1 ∀i. (18)

Since regulations and policies limit the number of
employed drivers who possess a specific level of education,
constraint (19) sets the maximum number of drivers within
each level of education. In this equation, Maxed is the
maximum number of drivers with an education level of ed
that policies allow to hire.

􏽘

N

i�1
EDUi,e d ≤Maxe d ∀ed. (19)

/e transportation service company would prefer not to
dedicate a tremendous amount of money to HR. /erefore,

the human resource cost is bounded as represented in
constraint (20).

HRC≤HRCmax. (20)

5.3. Outage Cost. Equation (21) states that the outage cost is
the multiplication of total duration years (Y), the brake
system failure rate of bus i (fi), the average time a bus stays in
a repair shop due to brake failure (μ), and the bus inter-
ruption cost per hour (Ii).

OC � 􏽘
N

i�1
Y∗fi ∗ μ∗ Ii( 􏼁. (21)

/e failure rate is estimated with a linear model, as
discussed in Section 4. It is stated in (22):

fi � β0 + β1 ∗ETEi + β2 ∗Qi ∀i. (22)

ETE and Q, introduced in more detail in Section 4, are
calculated through equations (23) and (24). In these equa-
tions, Sx and Sed are the scores of experiences and education
for the experience level of x and education level of ed
according to Table 1 in Section 4. According to Table 1, the
maximum ETE and Q scores are 40 and 60. To scale these
scores between 0 and 100, they are multiplied by ratios 100/
40 and 100/60. /ese two coefficients can change if a dif-
ferent scoring schema is used.

ETEi �
100
40

􏽘

|ED|

e d�1
Se d ∗EDUi,e d + 􏽘

|X|

x�1
Sx ∗EXPi,x + Sh ∗ hi − hmin( 􏼁⎡⎣ ⎤⎦ ∀i, (23)

Qi �
100
60

􏽘

|P|

p�1
Sp ∗B(i, p) + 􏽘

|A|

a�1
Sa ∗B(i, a) + 􏽘

|R|

r�1
Sr ∗B(i, r) + 􏽘

|D|

d�1
Sd ∗B(i, d)⎡⎢⎢⎣ ⎤⎥⎥⎦ ∀i. (24)

/e total available ETE is limited due to issues such as a
limited number of high-quality candidates. Similarly, the

total quality of the brake system is limited. Constraints (25)
and (26) restate this fact.
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􏽘

N

i�1
ETEi ≤ SUM ETEmax ∀i, (25)

􏽘

N

i�1
Qi ≤ SUM Qmax ∀i. (26)

5.4. Replacement Cost. Replacement cost is the sum of the
expected cost of replacing each subcomponent after it fails.
/is fact is mathematically asserted in equation (27). /e
replacement cost for each component equals the cost of a
single component multiplied by the expected damages over
Y years. It can be rewritten as (28)–(31).

RC � 􏽘
N

i�1
􏽘

|P|

p�1
RCi,p + 􏽘

|A|

a�1
RCi,a + 􏽘

|R|

r�1
RCi,r + 􏽘

|D|

d�1
RCi,d

⎡⎢⎢⎣ ⎤⎥⎥⎦ ∀i,

(27)

RCi,p � Y∗fi ∗ vP ∗B(i, p)∗C(p) ∀i, p, (28)

RCi,a � Y∗fi. ∗ vA ∗B(i, a)∗C(a) ∀i, a, (29)

RCi,r � Y∗fi ∗ vR ∗B(i, r)∗C(r) ∀i, r, (30)

RCi,d � Y∗fi ∗ vD ∗B(i, d)∗C(d) ∀i, d. (31)

In (28), the parameter vP is the relative failure frequency
of the pedal. /is parameter is approximated by analyzing
historical data. It can be estimated using historical data.
Other variables inside (28)–(31) are introduced in previous
sections. In (28), the multiplication of the continuous var-
iables fi and B(i,p) is nonlinear. /e same happens in
(29)–(31) for ABS, retarder, and pad, respectively. To lin-
earize these equations, a conversion, introduced in [32], is
used. According to this conversion, equation (32) is line-
arized by replacing it with (33) and (34) [32]. /is con-
version is applied to (28)–(31) for them to linearize.

multiplication � binary ∗ continuous, (32)

0≤multiplication≤ binary ∗ continuousmax, (33)

continuous +(binary − 1)∗ continuousmax

≤multiplication≤ continuous.
(34)

To summarize, the optimization problem is modeled as a
mixed-integer linear program (MILP) with the objective
function of equation (4) and constraints (5)–(27) and lin-
earized (28)–(31). Decision variables are the types of sub-
components chosen for bus brakes and driver education and
experience and training.

6. Case Study

To verify the efficiency of the method, a real case study of a
BRT service is presented. /e first BRT system in Tehran,
Iran, was initiated in 2007. Currently, ten routes are oper-
ating in Tehran. Buses operate in specially dedicated routes

in which other vehicles are not allowed. Moreover, in the
case of a junction, BRT buses have priority. Additional
routes are planned and added as required./e data for brake
system failures, subcomponent types, and drivers of 183
buses were collected. However, costs were modified for
security reasons. /is case will decide the types of sub-
components and ETEs for ten buses planned to be
exploited in three BRT lines for 20 years. Subcomponent
prices are shown in Table 2. Recall from Section 4 that
types A, B, and C components have 15, 10, and 5 scores,
respectively. Due to the supplier limitations, no more than
two subcomponents of type A can be provided. /e av-
erage repair times for each subcomponent and relative
failure frequencies are listed in Table 3. /e brake system
average repair time is the average repair time for each
subcomponent weighted by the relative failure frequen-
cies. Each hour of training per year costs 6.7 USD. /e
maximum training hours per year for each driver is
120 hours. /e salaries of drivers are listed in Table 4. /e
company’s policy allows a maximum of one Ph.D. driver,
two masters, and three holding any other degrees.

/e transportation company has a budget of 1,800,000
USD for driver salaries and training over 20 years. Sim-
ilarly, no more than 9000 USD is available for the brake
system of these ten buses. Each hour of bus interruption
costs 201.289 USD for line 1, 196.2 USD for line 2, and 150
USD for line 3. /erefore, the maximum total score of 900
is considered available for both subcomponents and
driver ETEs.

7. Results and Discussion

As demonstrated in Table 5, the training is at the maximum
possible level. It is mainly because training is relatively
cheaper. Subcomponents of type A are only installed at buses
4 and 5, belonging to line 1. On the contrary, buses 9 and 10
possess subcomponents of less quality. /is is because the
interruptions in line 3 result in lower outage costs. In the
optimal strategy, the salary and brake investment costs are
1,799,427.795 and 8,970.461 USD, close to their maximum
values. /e total expected replacement and outage costs are
2,857,811.418 and 5,690,168.350 USD, respectively. /ere-
fore, the total cost is 10,356,378.86 USD.

7.1. Sensitivity Analysis. /e transport company may hy-
pothesize whether increasing the brake system investment or
training and salaries would lower total costs over 20 years. To
investigate this, several cases of sensitivity analysis are
performed. First, the effect of brake investment limitation is
investigated. Next, an analysis is performed to identify
whether an enhancement in the HR cost limitation would
change the optimal total cost. It is assumed that the sum of
brake investment and HR costs is constant. Finally, the
effects on the total expected cost are evaluated.

7.1.1. Brake Investment Limitations. If constraint (14),
which limits the brake investment cost, is omitted, the
total cost would be 10,064,524.85 USD, and the
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investment cost would be 10350.356 USD, which is
1350.365 USD more than the current investment budget.
/erefore, if the transportation service provides an ad-
ditional 1350.365 USD financial resources for investing in
the brake system, the total cost would decrease by
291,854.01 USD. Figure 2 depicts the effect of changing
the brake investment cost on the total expected cost over
20 years.

7.1.2. HR Cost Limitations. Similar to the procedure used
in the previous section, constraint (20) is omitted to
analyze the effects of HR cost limitations. In this case, the
HR cost would be 2587994.854 USD, and the total ex-
pected cost would be 9275496.72 USD. /erefore, an
increase of 787,994.854 USD in the HR cost would result
in 1,080,882.14 USD benefits in the total expected cost.
Since the interval of spending HR and total expected costs
are almost simultaneous, the BRT service can revise its
policy based on the results of this optimization. /e
variation of total expected cost during 20 years versus the
HR cost during the same interval is depicted in Figure 3.

7.1.3. HR Cost Limitation and Brake Investment Budget Joint
Analysis. As seen in previous sections, an increase in HR
limitation or brake investment would decrease the expected
cost. If the transport company questions whether decreasing
one limitation in favor of the other would reduce the ex-
pected cost, another sensitivity analysis should be per-
formed. Table 6 provides more insights into this question. It

Table 2: Price of subcomponents (USD).

Subcomponent Type A Type B Type C
Retarder 247.678 201.238 154.798
Pad 77.399 68.111 61.919
ABS 773.99 619.19 495.35
Pedal 120.3591 100.399 20.8235

Table 3: Repair times and relative failure frequencies.

Subcomponent Repair time (hr) Relative failure frequency
Retarder 2.5785 0.1766
Pad 2.8197 0.2470
ABS 0.783 0.3114
Pedal 4.258033 0.2649

Table 4: Salary per month of drivers (USD).

Education level Under high school High school diploma Associate degree Bachelor Master Ph.D.
Salary 544.892 557.276 603.715 650.155 743.034 1083.591
Years of experience 0–5 5–10 10–15 15–20 20–25 25–30
Salary 80.49535 100.7430 140.9907 182.9102 241.9814 322.4767

Table 5: Results.

Bus # Edu. Training Exp. ETE Retarder Pad ABS Pedal Q
1 High school diploma 120 5–10 65.0 B B C B 58.33
2 Bachelor 120 5–10 72.5 B B C B 58.33
3 Associate degree 120 5–10 67.5 B B C B 58.33
4 Bachelor 120 5–10 72.5 A A B A 91.66
5 Bachelor 120 5–10 72.5 A A B A 91.66
6 High school diploma 120 5–10 65.0 B B C B 58.33
7 Under high school 120 5–10 62.5 B B C B 58.33
8 High school diploma 120 5–10 65.0 B B C B 58.33
9 Under high school 120 0–5 60.0 B B C B 58.33
10 Under high school 120 0–5 60.0 B B C C 50.00
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Figure 2: Brake investment sensitivity analysis.

8 Journal of Advanced Transportation



10,320,000.00

10,330,000.00

10,340,000.00

10,350,000.00

10,360,000.00

10,370,000.00

10,380,000.00

HR Cost Limitation (USD)

Effect of HR limitation Variation

1,
79

4.
00

0
1,

79
5.

00
0

1,
79

7.
00

0
1,

79
7.

50
0

1,
79

8.
00

0
1,

79
8.

50
0

1,
79

9.
00

0
1,

79
9.

50
0

1,
80

0.
00

0
1,

80
0.

50
0

1,
80

1.
00

0
1,

80
1.

50
0

1,
80

2.
00

0
1,

80
3.

00
0

1,
80

4.
00

0
1,

80
5.

00
0

1,
80

6.
00

0
1,

80
7.

00
0

1,
80

9.
00

0
1,

80
8.

00
0

To
ta

l E
xp

ec
te

d 
C

os
t (

U
SD

) 

Figure 3: HR cost sensitivity analysis.

Table 6: HR cost and brake investment limitations trade-off.

Case # Brake investment limitation HR cost limitation Total cost
1 8,000 1,801,000 10,924,940.31
2 8,500 1,800,500 10,551,420.18
3 (Base case) 9,000 1,800,000 10,356,378.86
4 9,500 1,799,500 10,213,323.76
5 10,000 1,799,000 10,118,665.99

Table 7: Related notations.

Indexes
a Index of ABS types p Index of pedal type
d Index of pad types r Index of retarder types
ed Index of level of education x Index of level of experience
i Index of buses

Sets
A Set of ABS types P Set of pedal type
D Set of pad types R Set of retarder types
ED Set of the of education X Set of levels of experience

Parameters
β0 Constant value in failure rate model Ii Cost of an hour of interruption of bus i

β1 Coefficient of ETE in failure rate model Maxe
Maximum available of item e (e could be a subcomponent

type or education level or experience level)

β2 Coefficient of Q in failure rate model Se
/e score of item e (e could be a subcomponent type or

education level, or experience level)

M Number of samples for failure rate modeling vg

/e relative failure rate of item e (e could be a pedal, pad,
retarder, or ABS)

N Number of buses Y Total years of planning

C(e) Cost of item e (e could be a subcomponent type or education
level or experience level)

Ch /e annual cost of an hour of training μ Average buses’ brake repair time
Variables

B(i,e) A binary variable indicating whether item e is bought for bus i
(e could be a pedal, pad, retarder, or ABS) HRC Human resource cost

EDUi,ed
Binary variable indicating whether education level of the

driver of bus i is ed IC Investment cost

ETEi Education, training, and experience score of bus i’s driver OC Outage cost

EXPi,x
Binary variable indicating whether the experience level of the

driver of bus i is x RC Replacement cost

fi /e failure rate of bus i Qi Brake of ith bus’s quality score
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can be observed that increasing brake investment limitation
while keeping the sum of brake investment and HR cost
constant would decrease the total expected cost. Notice that
HR cost is spent in the broader interval of time. /erefore,
supplying the financial resources for HR costs is easier.

8. Conclusions

/is paper presented a joint brake system and driver em-
ployment and training optimization for buses in BRT systems.
/e objective function was to minimize the brake reliability-
related costs plus investment costs. It has been observed that
both qualities of the brake system subcomponents and driver
ETE (education, training, and experience) indices are influential
factors for the failure rate and, in consequence, the total ex-
pected cost. However, there are limited financial resources for
these two factors, which should bemodeled. Also, overspending
on these two factors may put an unnecessary extra cost on the
shoulders of service providers. /erefore, sensitivity analysis
and optimization should be performed. A case study has been
presented and analyzed to verify the efficiency of the method.
/e results assert that better subcomponents and drivers should
be dedicated to bus lines with more interruption costs per hour.
It has also been shown that if enough budgets are provided for
brake systems, the total expected cost will decrease noticeably.

Furthermore, sufficient spending for the ETE would
reduce costs. Providing a budget for the brake system is a
challenging task. However, the ETE expenses are spread over
many years; therefore, they are more practical to provide.
Moreover, the saved money, which should have been
expended as interruption losses, can be dedicated to ETE.
/e results have been presented to the abovementioned
practical BRT system owner. After analyzing the strategy,
they agreed to implicate HR employment, training, and
subcomponent supply results in their planning and opera-
tions programs.

Nevertheless, considering the role of other factors, in-
cluding seasonal factors and loading, in brake system reli-
ability results in a more precise cost modeling and
optimization in practice. For the future stream of research,
co-optimizing the total expected brake-related expenses with
repair staff employment is suggested./e optimal number of
repair staff is employed to decrease expected outage dura-
tions and expected outage cost in consequence.

9. Summary of Notions

Table 7 contains a summary of all indices, variables, and
parameters that have beenmentioned throughout this paper.
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As the number of vehicles continues to grow in China, the problem of urban traffic congestion gets more serious, particularly at
intersections. As a new type of unconventional intersection, the displaced left-turn (DLT) intersection has been widely recognized
to improve the efficiency of intersections with heavy left-turn traffic flows. Converting an existing intersection into an intersection
with additional DLT lanes is a valuable solution. However, the studies on DLT intersections mainly focus on performance,
applicability, and safety.(e guidelines on the specific engineering design process mostly come from experience, and the study on
the considering multifactor design method is still insufficient. (erefore, this paper proposed an evaluation and analysis model of
the lengths of added DLT lanes based on the entropy evaluation method, in which VISSIM and Surrogate Safety Assessment
Model (SSAM) software were adopted for simulation. A design process for the length of the added DLT lanes was proposed with
this model. An urban intersection in Xi’an was taken as a case study, and the application of the model and the design process was
studied in detail. After selecting four evaluation indicators, the model was applied to calculate and analyze the optimal length of
the added DLT lanes under 45 different traffic volume combinations.(e recommended lengths of different situations were within
the range recommended in the guidebook published by Federal Highway Administration.(e results of the case study proved that
the model proposed in this paper was advanced, reasonable, and practical.

1. Introduction

Since the beginning of the 21st century, the process of ur-
banization has accelerated and the size of cities has grown in
China. Subsequently, the number of vehicles continues to
rise, and the urban road traffic congestion problem is getting
ever more serious. By the end of 2020, the “2020 China
Urban Traffic Report” showed that the traffic congestion
problem was still severe, among which the average speed of
vehicles was basically around 30 km/h during the peak
commuting hours [1]. (is undoubtedly presented that the
traffic efficiency of urban roads in peak hours still needed to
be improved immediately, and the reduction of traffic ef-
ficiency also has a certain impact on the economic and social
development of the whole city. (erefore, it is still a

significant need for the study to alleviate the problem of
urban traffic congestion.

As an important joint of a road network, intersections
are essential for improving the traffic efficiency of the entire
road network. Some researchers have pointed out that the
operational efficiency of an entire urban road network is
often affected by some bottleneck sections. Moreover, urban
intersections are often the bottleneck sections of urban roads
[2]. To alleviate the congestion problem of urban road in-
tersections, many scholars have studied how to improve the
efficiency of intersections with different aspects, such as the
new geometric form of intersections, signal timing opti-
mization, and new traffic management technologies. Some
scholars have studied the performance of the new U-turn
intersections [3, 4], fan-shaped intersections [5], double-
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torsional intersections [6], and parallel flow intersections
[7]. (e different characteristics of various new alternative
intersections have also been summarized [8]. For signal
timing control, some scholars have proposed some simple
intersection signal control strategies based on different
methods [9, 10]. (en, with the development of Internet of
Vehicles and autonomous driving technology, some scholars
have proposed signal models with the trajectory data of
autonomous driving and Internet of Vehicles to optimize
signal control [11]. In addition, as the “people-oriented”
concept has gradually become a consensus, the signal control
method of optimization has been proposed to compre-
hensively consider the total delay of pedestrians and vehicles
passing an intersection [12]. (ere have also been attempts
to improve the traffic conditions at intersections with the
new traffic management. For traffic management, some
scholars have used Internet of (ings technology to propose
a real-time optimization control model of the intersection
traffic flow [13, 14], while some researchers have also studied
how to use the Internet of (ings technology to enhance the
efficiency of intersections [15].

In addition to the above methods of the overall im-
provement of the intersection, left-turning traffic flows are
essential to improving the crossing capacity and safety in the
range of intersections because left-turning traffic flows are
most likely to cause conflicts when running in intersections.
Some scholars have conducted a detailed investigation and
analysis on the operation of left-turning vehicles at inter-
sections [16]. (ere were also a lot of results of solving the
problem of left-turning traffic flows at intersections. To be
more specific, some scholars have studied the improvement
effect of VISSIM-based simulation and evaluated the oper-
ational impact of left-turn waiting areas at signalized inter-
sections [17, 18]. Some studies have proposed to set up
reasonable modeling for left-lane line extensions [19]. A
method for the dynamic use of the left-turn lane for opposite
through traffic to improve the efficiency of a signalized in-
tersection has also been proposed [20]. Some scholars have
studied the effect of U-turn facilities [21], while other scholars
have specialized in optimizing the phase of left-turn signals at
intersections to improve left-turning traffic problems [22].

(e displaced left-turn (DLT) intersection is the new
type of unconventional intersection and focuses on im-
proving the operation of left-turning traffic flows. (e DLT
intersection is also referred to as the continuous flow in-
tersection (CFI) in many studies. (e core design concept of
a DLT intersection is to set up a subintersection before left-
turning vehicles enter the main intersection so that left-
turning vehicles can change to the outside of the opposite
lanes in advance and eliminate the conflicts between left-
turning traffic flows and the opposite straight traffic flow at
the main intersection [23]. Due to the elimination of con-
flicts between left-turning traffic flows and opposite straight
traffic flows, straight and left-turning vehicles at the main
intersection can be green at the same time. To date, some
scholars have carried out meaningful studies on DLT in-
tersections, such as the applicability of displaced left-turn
intersections, and have put forward two forms: partial and
complete DLT intersections [7].(rough observation data of

actual DLT intersections, the advantages of DLT intersec-
tions with improving traffic safety in turning can be found
[24]. In addition, other scholars have also studied the safety
of DLT intersections by using before-and-after comparison
group and cross-sectional analysis methods and then
pointed out that DLT intersections need to be equipped with
traffic signs and traffic-calming facilities to achieve better use
results [25]. Some scholars have put forward signal timing
optimization models for DLT intersections applying the
Monte Carlo method [26] and traffic progression method
[27]. Others have investigated a dynamic and optimized
method of traffic signal timing parameters to improve the
integrated performance index of DLT intersections [28].
Besides, researchers have developed a left-hand excursion
plane crossing design process [29]. Because of the increasing
popularization of low-carbon travel in China, researchers
have proposed a displaced left-turning bicycle lane based on
the concept of a DLT lane [30]. Some scholars have put
forward a new simplified DLT intersection (called CFI-Lite)
on the basis of a DLT intersection and have verified its
practicability [31]. Further, some scholars have made a
comprehensive comparison of DLT intersections with other
new type intersections with the operation and safety and
have further explained the characteristics of DLT intersec-
tions [32]. Some researchers have investigated the coordi-
nation of consecutive DLT intersections under
heterogeneous traffic conditions with a case study [33].
Other scholars have also evaluated alternative pedestrian
and bicycle crossing schemes at continuous flow intersec-
tions [34]. (ere was a wealth of studies on the suitability,
safety, and optimization of the DLT intersections.

However, the current design guidelines for unconven-
tional DLT intersections were mostly from engineering
experience and mathematical analysis methods [29]. (ey
still lack detailed and specific guidance. At present, most of
the studies on DLT intersections are about its applicability
and performance or put forward the formula of queue length
and delay on the basis of experience regression analysis. (e
design of intersections usually needs to take into account
functions, such as traffic efficiency, safety, and environ-
mental protection. Studies on considering the multifactor
design method of reconstructing unconventional DLT in-
tersections are still insufficient. (e analytic hierarchy
process (AHP) is often used to solve the multiobjective and
comprehensive evaluation problem of the current engi-
neering field. But this involves the participation of human
factors, which is often controversial.(e entropymethod is a
weighting method utilizing objective data and has been
applied to the field of scientific research. Focused on this,
this paper proposes a DLT lane lengths’ analysis and eval-
uation model based on the entropy method that can be used
to guide the design. (e usage of simulation analysis in
models is an important scientific research method [35, 36].
Since VISSIM and SSAM are simulation software that have a
wide range of applications in engineering and research
[37–39], they have been applied to this design model. Taking
an urban arterial road intersection in Xi’an as a case study,
the proposed model is exactly applied to test its advance-
ment, rationality, and practicability.
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Xi’an, the capital of Shaanxi Province, is also one of the
top five cities in China in the 2020 Commuter Peak Con-
gestion Index. (erefore, this paper takes an intersection on
an urban arterial road with a high left-turning traffic volume
as a case study. Built on the current form of intersections, a
new intersection with DLT lanes on the outside of the in-
tersection is proposed, which includes the gradual widening
of the intersection. In addition, different DLT lane lengths
are proposed to be improved by using equal-length intervals.

(e remainder of this paper is arranged as follows:
Section 2 introduces the DLT lane length evaluation and
analysis model based on the entropy method that can
provide guidance for intersection reconstruction design.
Section 3 shows the case study about an intersection on
urban arterial roads in Shaanxi Xi’an and outlines the model
calibration. (en, Section 4 provides the sensitivity analysis
of the VISSIM simulation and explains the scheme evalu-
ation and comparison. Last but not least, Section 5 puts
forward the research conclusions of this paper.

2. Model

(e purpose of this paper is to come up with a new eval-
uation and analysis model for the reconstruction of added
DLT lanes intersection. It can make the design scientific and
help the designers to determine the appropriate length of the
externally increased DLT lanes.

2.1. Preliminaries. Before the establishment of the model,
specific requirements should be put forward for the actual
engineering conditions to which the model is applicable.(e
prerequisites for using the model are as follows:

(i) Reconstruction of urban road intersection project
and enough space for reconstruction

(ii) (e number of added DLT lanes is the same as the
number of left-turn lanes at the existing intersec-
tion, so the impact caused by changes in the number
of lanes can be ignored

(iii) Regarding the independent urban cross intersec-
tion, the distance from the adjacent intersection
upstream and downstream is large enough, and
coordinated control is not considered

2.2. Entropy Method. In the process of analysis and calcu-
lation, how to operate a unified standard comparison to
select the recommended length scheme is an essential issue
that must be solved. And, this involves a scientific com-
parison between multiple parameters and multiple data.

(e analytic hierarchy process (AHP), which is widely
used in multiple parameters’ comparison, is one of the
weight evaluation methods. (is includes expert scoring.
However, the expert scores to determine the weight of in-
dicators mainly rely on the subjective judgment of experts,
which is controversial. In order to avoid this problem, the
model in this paper adopts the entropy evaluation method
(EEM) to calculate the weight.

(e EEM is an effective method to solve multiparameter
and multidata processing problems objectively. It comes from
the concept of information entropy. Information entropy
describes the average amount of information on the data,
which means the more chaotic the system and the greater the
amount of information carried. Comparing with other
common weight calculation methods, the EEM cannot only
realize the comparison of multiple parameters and multiple
data between different schemes but also avoids the contro-
versy caused by the participation of human factors. And, the
EEM has been widely employed in many scientific fields such
as electrical engineering [40], environment engineering [41],
and water conservancy projects [42]. (erefore, the EEM is
applied to the model in this paper as an important part.

(e specific calculation process with EEM is as follows:

A � An×k,

B � Bn×k,

G � Gn×k,

(1)

where A, B, and G represent the three different indexes,
respectively, n means the total number traffic volume
combination, and k represents the total scheme number.
First, the same index of all the evaluated schemes should be
converted into a matrix. (en, we take processing A matrix
as an example.

Matrix A contains n× k simulation results (i represents
the traffic volume combination number; j represents the
scheme number):

A �

A1(1) A2(1) · · · Ak(1)

A1(2) A2(2) · · · Ak(2)

⋮ ⋮ Aj(i) ⋮

A1(n) A2(n) · · · Ak(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

(en, the best value of each row in matrix A is selected
(the smaller the value of the index one, the better the
performance, so the minimum value of each row is selected
as the optimal. On the contrary, the larger the value, the
better, so the maximum value of each row is selected). For
instance, if the value in the A index is smaller, the better,
then the minimum value of each row in the A matrix is the
best. (erefore, a new matrix Am is generated as follows:

Am �

minAj(1)

minAj(2)

⋮

minAj(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, j � 1 to k. (3)

(e rest of the evaluation index matrices also repeat the
above process:

Am(i) � minAj(i),

Bm(i) � minBj(i),

Gm(i) � minGj(i),

i � 1 to n, j � 1 to k.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)
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(e third step is to combine the above matrices into an
overall matrixM with n rows and p columns, and the weight
of each index can be calculated:

M �

Am(1, j) Bm(1, j) Gm(1, j)

Am(2, j) Bm(1, j) Gm(1, j)

⋮ ⋮ ⋮
Am(n, j) Bm(1, j) Gm(1, j)

j � 1 to k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Each element in the matrix M can be expressed as

M �

m11 m12 m13

m21 m22 m23

⋮ ⋮ ⋮

mn1 mn2 mn3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

(e column vector in matrix M is represented as

mj � m1t, m2t, . . . , mkt􏼂 􏼃
T
, t � 1, 2, . . . , q, (7)

where q denotes the total number of the index type:

M � m1, m2, . . . , mq􏽨 􏽩. (8)

Units for the different indexes in the matrix M are not
the same. To further use the entropy method to process the
data, all values should be standardized before the next step
because the various indexes are not uniform. (e absolute
value is converted to the relative value to solve the nor-
malization problem of the different property indexes. (e
specific calculation is as follows:

mit
′ �

mit − min m1t, . . . , mnt􏼈 􏼉

max m1t, . . . , mnt􏼈 􏼉 − min m1t, . . . , mnt􏼈 􏼉
, (9)

where mit
′ represents the normalization value.

In equation (9), the greater the gap between the indexes
mit, the greater the effect ofmit. On the contrary, if the index
value is the same as another, it means that the index value
had no influence on the final evaluation.

We obtain the newmatrixM′ for the forward procession:

M′ �

m11′ m12′ m13′

m21′ m22′ m23′

⋮ ⋮ ⋮

mn1′ mn2′ mn3′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

(e weight of index j of scheme i is calculated as follows:

pit �
mit
′

􏽐
n
i�1 mit
′
, i � 1 to n, t � 1 to 3. (11)

(e entropy value of index j is calculated as follows:

et � −h 􏽘
n

i�1
pit ln pit( 􏼁, (12)

where h� 1/ln(n) and satisfies et≥ 0. (e entropy redun-
dancy is calculated as follows:

dt � 1 − et. (13)

(e weights of each index are calculated as follows:

pt �
dt

􏽐
3
t�1 dt

. (14)

(e weights of all indices are calculated and denoted as
row vector W:

W � p1, p2, p3􏼂 􏼃. (15)

2.3. Process of the Model. (e specific content of the model
purposed in this paper is shown in Figure 1:

(e evaluation and analysis model of the reconstructed
urban intersections with added DLT lanes consists of three
parts. (e first part is collecting existing intersection data.
(e collected data are mainly divided into two categories:
traffic data and geometry of existing intersection. Traffic data
is the basic functional goal that the new type of intersection
must achieve, and the geometry of an intersection is the basic
engineering condition for the reconstruction.

(e second part is to design improved schemes and
obtain various evaluation parameters of existing and im-
proved intersection schemes. PTV VISSIM is widespread in
the field of microscopic traffic simulation, and SSAM is
officially designated by the Federal Highway Administration
(FHWA) as the agency’s safety evaluation software [43, 44].
(e SSAM is a safety analysis software and classic in traffic
simulation. At the same time, it can be compatible with the
vehicle trajectory file obtained by VISSIM simulations and
can evaluate the safety situation in the simulation process by
identifying and analyzing the vehicle trajectory. In addition,
the SSAM software also has built-in statistical analysis
functions based on the frequency and severity of conflicts,
which can help designers design safe transportation facili-
ties. During this part, PTV VISSIM and SSAM software are
used to construct simulation models of traditional inter-
sections and improved schemes for simulation experiments.

Finally, the last part is sensitivity analysis and schemes’
evaluation. (e collected traffic volume is the traffic volume
of the existing intersection for a limited period of time, and
the actual traffic volume is constantly evolving. (erefore, it
is necessary to simulate the performance of various traffic
volume combinations and analyze and compare the per-
formance of each scheme.

(e calculation of the scheme evaluation is as follows:
From the matrix of equation (5), we can extract the

scheme number j of each element to generate a new matrix J:

J �

j11 j12 j13

j21 j22 j23

⋮ ⋮ ⋮

jn1 jn1 jn1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Corresponding to each combination of traffic volume
(each row), the score of each scheme can be calculated.
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Taking the score of Scheme 1 as an example, the calculation
is as follows:

xi1 �
􏽘

3

t�1
pt · j1t, j1t � 1, i � 1, 2, 3, . . . , n,

0, j1t ≠ 1.

⎧⎪⎪⎨

⎪⎪⎩
(17)

After calculating the score results of k schemes under n
traffic volume conditions, we can generate a new matrix
Xn×k, as shown below:

X �

x11 x12 · · · x1k

x21 x22 · · · x2k

⋮ ⋮ xij ⋮

xn1 xn2 · · · xnk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Extract each row vector in matrix X as xi:

xi � xi1, xi2, . . . , xik􏼂 􏼃. (19)

Record the column with the highest score in each row
vector as ri:

ri � j, if xij � max xi􏼈 􏼉, j � 1, 2, . . . , k. (20)

Finally, the column vector R of the recommended op-
timal length scheme under n different traffic volume con-
ditions can be obtained:

R � r1, r2, . . . , rn􏼂 􏼃
T
. (21)

3. Case Study

In this part, we introduce the process and methodology of
the case study in this paper.

3.1. Problem Statement. Xi’an, as an ancient capital with a
thousand years of history, has become one of the cities with
the most serious traffic problems in China. With the con-
tinuous development of modernization and urbanization,
the number of vehicles of Xi’an city has continued to rise.
According to China’s congestion rankings on 2020 by Baidu
map, Xi’an city is the fourth of this rank. Relieving the
congestion problem of the intersections in Xi’an has the
essential reference for other cities.

(e focus is on an intersection of Xi’an city. As shown in
Figure 2, the intersection is located where Electronic Road
and Taibai South Road meet; as can be seen, this is the
junction of two major arteries in Xi’an city. (is junction
consists of a signalized intersection. And, there is a lot of left-
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Design the improvement DLT schemes

Build the VISSIM Model

VISSIM CalibrationSSAM
Software

Safety
Analysis

Sensitive
Analysis

Scheme
Evaluation

Select the
Recommended

DLT Lane Length
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Operation
Analysis
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Yes
Feasibility Analysis of the

Improvement Scheme

Traffic Data Data
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Geometric
Parameters

Part 1

Part 2

Part 3

Is It
Accurecy?

Figure 1: (e flowchart of the evaluation and analysis model based on entropy evaluation method for the design process.
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turning traffic at this intersection, especially in the east-west
direction.

Left-turning traffic has always been an essential issue of
efficiency and safety at intersections.(us, we focused on the
left-turning traffic problem at this intersection in the east-
west direction. Because of the heavy left-turning traffic of
this intersection, the left-turning traffic flows from the east
and west entrances often have high delays when passing
intersections. It takes a lot of time for drivers to go through
the intersection, especially during the evening rush hour.
(e manner in which to improve the operation of left-
turning traffic flows at this intersection has become a
problem that urgently needs to be solved.

3.2. DataCollection. Figure 3 shows the present intersection
of Taibai South Road and Electronic Road in Xi’an. (e
traffic volume of left-turning traffic in the east-west direction
is very high, especially in the evening rush hours. Left-
turning vehicles in the east-west direction queue for a long
time when passing through the intersection. At this inter-
section, the speed limit for the basic section in the east-west
direction is 70 km/h and for the basic section in the north-
south direction is 60 km/h. (e east entrance of the inter-
section has five lanes from east to west, and there are four
lanes from west to east; the west entrance of the intersection
has five lanes from west to east and three lanes from east to
west. (ere are collector-distributor lanes on both sides. (e
north entrance has five lanes from north to south and three
lanes from south to north; meanwhile, the south entrance
has five lanes from south to north and three lanes from north
to south. (e width of each lane is 3m.

Step 1. Selecting data collection time.
Figure 4 shows a 24-hour traffic congestion coefficient

map of Xi’an on 21 October 2020, indicating the peak and

low-traffic periods of the day. It can be seen from the figure
that the morning peak time was from 7:00 a.m. to 9:00 a.m.,
while the evening peak time was from 5:00 p.m. to 7:00 p.m.,
and the noon trough time was from 11:00 a.m. to 1:00 p.m.
(e experimental data were collected in one hour during the
morning and evening peak and midday trough periods.

Step 2. Preparing experimental equipment.
Data collection required the use of Unmanned Aerial

Vehicles (UAV), mobile phones, radars, laptops, radar data
and power cables, a drone battery and a controller, and a
mobile power supply (for radar and laptop charging).

Step 3. Choice of instrument installation position.
As shown in Figure 5, when measuring the speed of

vehicles, in order to ensure that the speed of each lane of the
entrance in each direction of the intersection could be
measured as accurately as possible, the installation of the
radar should be very close to the direction of the vehicles,
and the erection position on the roadside should be as high
as possible. (e height of the radar should exceed 2m to
ensure that there are no fixed obstacles in the measurement
range; when there was a suitable overpass near the inter-
section, it was best to measure the vehicle directly on the
overpass.

Step 4. Specific experimental operations.
First, we turned on the remote control of the drone; then,

the drone should be turned on. (e power cord of the radar
and laptop were connected to the mobile power supply to
ensure normal power supply, and the data cable of the radar
was inserted into the USB port of the laptop. (en, the
following items were clicked on in sequential order: “Check”
to see if the radar is working properly, “Settings” to syn-
chronize the time of the radar and the notebook, and the
original data to delete it. Finally, the investigation could be
started, and the radar would officially begin to measure data.

Step 5. Inspecting during data collection.
During the radar data collection period, the real-time

inspection interface of the software open should always be
retained, and the radar measurement should be checked
every 5mins to ensure it is normal.

Step 6. Processing analysis.
When the data collection was finished, the data were

downloaded as a spreadsheet with a designated name, and
the video data taken by the drone were copied. Tables 1–3
show the traffic volume data during the morning, midnoon,
and evening periods. As shown in the table, in the evening
rush hour, the east-west entrance left-turn traffic has the
highest proportion and is the most congested period of
urban traffic.

3.3.Designof ImprovementDLTSchemes. Left-turning traffic
flows at intersections often conflict with oncoming direction
traffic flows. To improve the efficiency of left-turning traffic
in the east-west direction, adding DLT lanes is one of the

Figure 2: (e location of the investigated intersection. (e in-
vestigated intersection is a traditional cross intersection.
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effective solutions. Advanced design schemes for extending
the DLT lanes on the outside of the current east-west en-
trance were put forward in this paper.

As shown in Figure 6, the specific design method of the
advanced schemes with added DLT lanes is as follows:

(i) Survey and collect the design data and construction
parameters of existing intersections, including the
number of lanes, lane width, transition section
length, and existing signal timing plans. Figure 6(a)
shows the existing intersection. (ere is a 60m long
transition section at the west entrance. Both the east
entrance and the west entrance include two left-turn
lanes. According to the usage conditions of the
model, the above parameters are consistent with the
status quo.

(ii) As shown in Figure 6(b), keep the number of basic
lanes and the number of left-turn lanes at the
existing intersection unchanged, and change the
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Figure 4: (e congestion index in Xi’an on 2020.10.21. (e real-time congestion index can be gathered from Autonavi Company web page
at https://report.amap.com/detail.do?city�610100.

Figure 3: (e actual situation of the investigated intersection. (e investigated intersection is located in the center of Xi’an Yanta district.
(e east-west street is Dianzi Road, and the north-south street is Taibai South Road.

Figure 5:(e radar survey at the intersection.(is figure was taken
at 34.2174°N, 108.9125°E. (e figure shows the radar erect at the
south entrance of the intersection. When measuring, the radar
speed measurement direction must be as parallel as possible to the
driving direction of the vehicles and facing the front of the vehicles
and must the same for the other three entrances.
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Table 1: Collected data during the peak hour of 8:00 a.m. to 9:00 a.m. on 21 October 2020.

Flow Flow number Car (veh/h) Truck (veh/h) Bus (veh/h) Max speed (km/h) Min speed
(km/h)

Average speed
(km/h)

East entrance
(rough 1 546 12 42 60 0 19
Left turn 2 366 12 6 84.5 0 25
Right turn 3 84 0 36 62 0 21.5

West entrance
(rough 4 708 0 48 63 0 22
Left turn 5 372 0 0 69 0 29
Right turn 6 84 0 0 62.8 0 24

South entrance
(rough 7 1458 24 48 52.4 0 12
Left turn 8 132 6 0 46 0 23
Right turn 9 246 6 0 50 0 13

North entrance
(rough 10 1554 12 48 58.5 0 18
Left turn 11 150 0 18 50 0 25
Right turn 12 294 6 0 53.5 0 18.5

Table 2: Collected data during the peak hour of 11:00 a.m. to 12:00 a.m. on 21 October 2020.

Flow Flow number Car (veh/h) Truck (veh/h) Bus (veh/h) Max speed (km/h) Min speed
(km/h)

Average speed
(km/h)

East entrance
(rough 1 332 21 28 62 0 18
Left turn 2 282 21 7 83.5 0 25
Right turn 3 233 14 28 64 0 20

West entrance
(rough 4 600 56 49 60 0 24.5
Left turn 5 268 0 0 70 0 30
Right turn 6 106 21 0 62.6 0 25

South entrance
(rough 7 1956 49 57 52.2 0 9.9
Left turn 8 148 0 0 48 0 22
Right turn 9 282 21 0 51 0 13

North entrance
(rough 10 2196 49 71 56.5 0 17.9
Left turn 11 268 7 21 52 0 24.5
Right turn 12 226 0 7 54.5 0 18

Table 3: Collected data during the peak hour of 5:00 p.m. to 6:00 p.m. on 21 October 2020.

Flow Flow number Car (veh/h) Truck (veh/h) Bus (veh/h) Max speed (km/h) Min speed
(km/h)

Average speed
(km/h)

East entrance
(rough 1 474 20 60 54 0 18.7
Left turn 2 294 7 0 63.7 0 26.6
Right turn 3 160 20 27 56 0 21.7

West entrance
(rough 4 787 20 47 61.2 0 29.5
Left turn 5 313 13 0 70.6 0 37
Right turn 6 133 7 0 63 0 31.5

South entrance
(rough 7 1481 47 87 22.7 0 9
Left turn 8 100 7 7 29.9 0 21.6
Right turn 9 253 7 0 24 0 12

North entrance
(rough 10 1661 67 67 46.8 0 15.1
Left turn 11 220 0 40 54 0 20.16
Right turn 12 253 0 0 48 0 17.2
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Figure 6: Continued.
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left-turn lanes at the original entrance to allow
through vehicles to pass.(en, add DLT lanes to the
outside of the opposite straight lanes, and set a
smooth transition section to ensure a reasonable
transition. After that, put forward some possible
improvement reconstruction schemes according to
the actual land conditions and the length of the
existing left-turn lane.

(iii) Complete the design of traffic facilities for each
possible improvement scheme, including the design

of traffic signs and markings, main intersection
signal timing, and preintersection signal timing.
(is safeguards that the vehicles can safely and
smoothly pass through the intersection
(Figure 6(c)).

(iv) Analyze the operation and safety of possible im-
provement schemes and the existing intersection.
(en, the sensitivity analysis and evaluation of
possible improvement schemes by using the eval-
uation and analysis model based on the entropy

Transition section
Transition section

Traffic signals at
pre–intersection

Traffic signals at

Traffic markings

pre–intersection
Stop line

(c)

Transition section
Transition section

Pre-intersection

Pre-intersection

The recommended length of added DLT lanes

The recommended length of added DLT lanes

Recommended design scheme based on
the evaluation analysis model

Main intersection

(d)

Figure 6: (e design method of the DLT scheme. (a) Existing traditional situation. (b) Put forward some possible improvement schemes.
(c) Traffic facilities design. (d) Determine the final recommended design scheme.
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evaluation method are carried out. Finally, the
recommended design scheme with the recom-
mended length of the extra DLT lane is obtained
(Figure 6(d)).

(e results of simulation experiments for each scheme
are shown in Figure 7.

In the case study of this paper, there were two DLT lanes
at the east entrance and also two at the west entrance. It kept
the number of DLT lanes consistent with the left-turn lanes
in the current situation. (e main variable included in this
study was the length of the DLT lanes. (e present length of
the entrance was 45m, while the longest length that could be
expanded at this stage was 145m. (e lengths of the DLT
lanes in schemes 1–5 changed at equal intervals, which are
45, 70, 95, 120, and 145m.

After adding DLT lanes at the intersection, was it ef-
fective? If there were improvements in some fields, what
were the percentages of advancement? What was the rec-
ommended length of the DLT lanes on the operating
conditions? To solve these problems, we used the entropy-
based model proposed in this paper for definite evaluation
and analysis.

3.4. VISSIM Calibration. (e parameters of the VISSIM
simulationmodel needed to be calibrated before the simulation
of an intersection improved scheme, so as to assure the ac-
curacy of the VISSIM simulation model. (e specific cali-
bration of the VISSIMmodel is as follows. First, the parameters
were input into the VISSIM software according to the current
field investigation at the intersection of South Taibai Road and
Dianzi Road, such as operating speed and vehicle composition
proportion. Next, we selected the governing car following
model in VISSIM. (e governing car following model is the
classic model proposed by German Professor Wiedemann,
which belongs to the psycho-physiological model. (ere are
two types in the Wiedemann model by default: Wiedemann99
andWiedemann74. Previous studies found thatWiedemann74
was more consistent with the vehicle behavior on urban roads,
and the Wiedemann74 model was also selected for simulation
in this study. After selecting the Wiedemann74 model, key
parameters such as the average stopping distance and the
desired time headway were modified, relying on the actual
survey data. (en, the simulation was calibrated with the
capacity indicators, which could comprehensively reflect the
similarity between the effect of the whole simulationmodel and
the actual intersection situation.

(en, the VISSIM simulation model was run 30 times
under each circumstance, and the average value of the traffic
volume of each inlet and direction was taken. Finally, the
relationship between the traffic volume data obtained from
the simulation and the traffic volume data obtained from the
actual survey at the intersection was compared. (e error
was characterized by the mean absolute percent (MAPE)
value. According to relevant studies, when the MAPE value
of the traffic volume in each direction is less than 15%, the
simulation results of the VISSIM simulation model are
considered to be effective. (e MAPE was calculated as
follows:

MAPE �
1
q

􏽘

q

i�1

C
i
v − C

i
f

C
i
f

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (22)

where q denotes the 12 different flows in this study, Ci
v is the

capacity (number of vehicles crossing the intersection per
unit time) simulated in the VISSIMmodel (veh/h), and Ci

f is
the capacity of the investigation (veh/h).

After running the realistic model of the intersection in
VISSIM 30 times, the calculated results of the average hourly
traffic volume, the actual collected traffic volume at the
intersection, and the MAPE value are summarized in
Table 4.

As shown in Table 4, the MAPE value of traffic flow in
the 12 directions was 6.43% in total. Because the traffic
volume error in total was less than 15%, the constructed
model met the requirements of simulation accuracy. (us,
the calibration accuracy of the VISSIM model was rea-
sonable [45, 46].

3.5. Operation Analysis. (e east-west direction is the main
road. Because of the high volume of left-turning traffic
during peak hours, it is also the direction for the imple-
mentation of the DLT schemes; the north-south direction is
the secondary road, and the north-south direction remains
the actual crossroad mouth form. It is the main development
goal of the current intersection that increasing traffic ca-
pacity and improving delays. And, environmental protection
is also one of the common goals of today’s engineering
projects. (erefore, the indexes selected in this case were the
capacity, delays, number of stops, and NOx emissions.

Capacity refers to the number of vehicles passing
through the entire intersection in a unit hour. Delays mean
the difference between the actual travel time and the ex-
pected travel time. In this study, delays include stop delay
and travel delay, and it is calculated as follows:

D � d1 + d2, (23)

where D denotes the total delay, d1 denotes the stop delay,
and d2 denotes the travel delay. (e number of stops in-
dicates the average number of stops for each vehicle passing
the intersection; NOx emissions represent the total amount
of nitrogen oxide emitted by vehicles passing through the
intersection within an hour. (ere were five groups of ad-
vanced models and one existing intersection model, and
each group ran 30 random seeds to obtain more scientific
and reliable results from the statistical significance. (ere-
fore, 180 simulations were performed in the case of existing
traffic volume. (e results are stated below in Table 5.

It was evident that, in the simulation results, Scheme 0
was much higher than the other situations in terms of the
delays, number of stops, and NOx emissions. (ey all had a
similar trend, with the degree of development gradually
increasing from Scheme 1 to Scheme 4, but with no dis-
tinction when the improvement changes from Scheme 4 to
Scheme 5. (is indicated that the difference resulting from
changing the length of the added DLT lanes had a regular
influence on the results. However, the capacity for each
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scheme did not differ between the six schemes. (is meant
there were no obvious advantages between the different
schemes under the present investigated traffic volume.

3.6. Safety Analysis. A complete evaluation should con-
clude with both an operation and safety evaluation. With
the calibration of VISSIM already completed, the mi-
croscopic vehicle simulation of the VISSIM model al-
ready has a high degree of agreement with the actual

situation. We took the number of cross-conflicts present
in the one-hour intersection vehicle operation video
investigated under actual conditions and compared it
with the safety simulation results. (en, we found that
there were 4 cross-conflicts in the video. (e deviation
between simulation and reality was within the acceptable
range. (erefore, the simulation results of SSAM were
considered reliable.

(e safety analysis was applied to the six schemes with
evening peak hours’ data. (e results are shown below.
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Figure 7: Simulation results of the experiments. (a) Capacity. (b) Delays. (c) Number of stops. (d) NOx emissions.

Table 4: VISSIM simulation calibration results with the collected data. MAPE, mean absolute percent.

Flow number Investigate capacity (veh/h) Simulated capacity (veh/h) Individual MAPE (%) Total MAPE (%)
i� 1 554 486 12.27

6.43

i� 2 301 270 10.30
i� 3 207 198 4.35
i� 4 847 756 10.74
i� 5 326 288 11.66
i� 6 140 144 2.86
i� 7 1615 1971 22.04
i� 8 114 108 5.26
i� 9 260 279 7.31
i� 10 1795 2088 16.32
i� 11 260 225 13.46
i� 12 253 288 13.83
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Table 6 shows the results of the safety analysis of the six
schemes, including the existing traditional scheme. (e
results show that compared to the new type of intersection
with additional DLT lanes, the traditional intersection had
significantly higher safety risks in the rear end and lane
change. Compared to the proposed improvement plan, the
value for the item “rear end” was 70%∼100% higher, and the
value for the item “lane change” was 100%∼200% higher
than the improvement plan. However, due to the sub-
intersections set up at DLT intersections, the traditional
intersections in the column of the crossing had advantages
and their values were lower than the other five improved
schemes. In general, the sum of the three potential safety
risks shows that the improved DLT intersection scheme
should outperform the existing traditional intersections in
terms of safety performance. Moreover, the five improved
schemes achieved relatively close safety effects.

4. Results and Discussion

4.1. Sensitivity Analysis. Sensitivity analysis can reflect the
improvement ratio of each advancement scheme compared
to the present scheme. Capacity, delays, number of stops,
and NOx emissions are the four indexes. Based on the
maximum capacity under different lane numbers in the
Highway Capacity Manual (HCM) [47], multiplying by the
certain coefficients, different traffic volume parameters were
obtained. All volume parameters in VISSIM are shown in
Table 7.

(e next step was to calculate the signal timing plan. As
Figure 8 shows, the signal timing of the existing intersection
consists of four stages and the phasing of the improvement
schemes consists of three stages. (e added DLT lanes
eliminate the conflicts between left-turning vehicles and
straight vehicles at the main intersection, and the straight
and left-turning vehicles on the same entrance at the main
intersection can be released at the same time.

Synchro7 is a signal optimization software using the
NEMA signal timing structure. We input the number of
signal stages, the traffic volume of each direction, and lane
allocation plan in synchro7; then, the synchro7 calculated
and output the recommended signal timing plans. After-
ward, we input the signal timing calculated by synchro7 into
VISSIM.

For the development schemes of the different DLT lanes
lengths, the improvements in the indicators between them
and the present intersection scheme were compared and
analyzed one by one. (e DLT lane length was 45m in

Scheme 1, 70m in Scheme 2, 95m in Scheme 3, 120m in
Scheme 4, and 145m in Scheme 5. And, the traditional
intersection was represented as Scheme 0.

Figure 9 shows the improvement in the capacity under
the five development schemes. As shown in this picture
when the traffic volume in the east-west direction was less
than 1029 veh/h, there was no obvious advancement effect of
the five advanced schemes compared to the traditional cross
intersection. When the east-west traffic volume continued to
develop, the advantage of setting DLT lanes began to show.
In Scheme 1, when the east-west traffic volume reached the
maximum value of 3430 veh/h in the test process, the effect
of improving the capacity was most obvious, reaching a
maximum of 22%. In Scheme 2, when the east-west traffic
volume reached the maximum combined traffic volume of
3430 veh/h, the enhancement effect peaked at 31.5%. In the
case of Scheme 3, as the input traffic volume in the east-west
direction increased after exceeding 1029 veh/h, the im-
provement rates also increased. In this simulation experi-
ment, when the maximum combined traffic volume was
3430 veh/h, the maximum percentage of the enhancement
effect was able to reach 36%. For Scheme 4, the simulation
results show that, with the growth of the traffic volume in the
east-west direction after exceeding 1029 veh/h, the advan-
tages of the Scheme 4 became gradually clear. When the
traffic volume in the east-west direction reached the max-
imum value of 3430 veh/h, the maximum percentage of the
improvement effect was able to reach 42%. (e maximum
improvement percentage under Scheme 5 was 36%, which
was generated when the input traffic volume in the east-west
direction was 3430 veh/h and the input traffic volume in the
north-south direction was 3656 veh/h.

In summary, there was no improvement in the capacity
of all five development schemes in the case of low traffic in
the east-west direction. When the traffic volume was greater
than 1029 veh/h, the enhancement effect gradually increased
as the traffic volume increased. From Scheme 2 to Scheme 5,
as the lengths of the DLT lanes increased, the maximum
improvement effect of the capacity gradually increased,
while in terms of the change from Scheme 4 to Scheme 5, as
the lengths of the DLT lanes increased from 120 to 145m,
the maximum advancement effect of the capacity slightly
reduced.

Figure 10 shows the advance in the average vehicle delay
index under the five scenarios. In the case of Scheme 1, the
average vehicle delay upgrade ratios were concentrated
between 5% and 30% and the maximum improvement
percentage was 31%. In Scheme 2, the average delay upgrade

Table 5: VISSIM results of the six selected schemes with evening peak hour data.

Item Capacity (veh/h) Average delays (s) Number of stops NOx emission
(gallons/h)

Scheme 0 7083 53.23 0.99 2543.31
Scheme 1 6840 −3.43% 25.9 51.34% 0.77 22.22% 1965.42 22.72%
Scheme 2 6849 −3.30% 28.74 46.01% 0.85 14.14% 2098.35 17.50%
Scheme 3 6885 −2.80% 25.24 52.58% 0.76 23.23% 1955.52 23.11%
Scheme 4 6876 −2.92% 25.02 53.00% 0.75 24.24% 1943.46 23.59%
Scheme 5 6849 −3.30% 25.46 52.17% 0.77 22.22% 1963.8 22.79%
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percentages were concentrated between 10% and 35%. (e
maximum improvement percentage was 37% when the
traffic volume in the east-west direction was 2744 veh/h and
1828 veh/h in the north-south direction. In Scheme 3, there
was also positive growth in each traffic volume. (e average
percentage of the vehicle delay improvement was up to 41%
under the same traffic volume with Scheme 2. In the case of
Scheme 4, the average delay upgrade percentages were
mainly in the range of 15%–45%. And, the highest ad-
vancement percentage was 46.4% also in the case where
Scheme 2 reaches its maximum improvement ratio. In
Scheme 5, the advance ratios were also concentrated be-
tween 15% and 45% compared to a traditional intersection
and reached a maximum of 45.8% in the same case as
Scheme 2.

In other words, the comparative analysis showed that, as
the added DLT lanes gradually increased from 45 to 120m,

the improvement percentage of the average vehicle delay
also increased. When the DLT lanes exceeded 120m and
increased to 145m, there was a slight decrease.

Figure 11 shows the improvement in the number of stops
for the five advanced schemes compared to the traditional
situation. For all the five schemes when the input traffic
volume in the east-west direction was less than 1029 veh/h, a
development in the average number of stops was not evi-
dent, but when the traffic volume in the east-west direction
exceeded 1029 veh/h and gradually increased, the im-
provement effect of the scheme became gradually distinct. In
the case of Scheme 1, the number of stops’ upgrade ratios
was concentrated between 5% and 40%. When the traffic
volume in the east-west direction was 2744 veh/h and
1828 veh/h in the north-south direction, the advancement
percentage was up to 43.8%. In Scheme 2, the range of the
upgrade ratios was similar to that of Scheme 1, while the
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Figure 8: Signal timing stage diagram for existing intersection and improvement schemes with added DLT lanes. (a) Existing intersection.
(b) Improvement intersections with added DLT lanes. EB, WB, NB, and SB denote Eastbound, Westbound, Northbound, and Southbound,
respectively. LT and ( denote Left-Turn and (rough, respectively.

Table 6: Safety analysis of the six simulations by the surrogate safety assessment model (SSAM).

Scheme number Item Crossing Rear end Lane change Total
0 Present intersection 5 120 52 177
1 DLT 45m 9 69 25 103
2 DLT 70m 15 71 19 105
3 DLT 95m 12 60 20 92
4 DLT 120m 8 63 19 90
5 DLT 145m 13 65 17 95

Table 7: (e traffic volume combinations of the sensitivity analysis (veh/h).

Item Value
East/west volume 686/1029/1372/1715/2058/2401/2744/3087/3430
North/south volume 1828/2285/2742/3199/3656
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development percentage was up to 47.6% at the same traffic
volume as Scheme 1. In the case of Scheme 3, the average
number of stops’ improvement percentages is mainly in the
range of 5%–50%, and the upgrade ratio was up to 53.8% at
the same traffic volume as Scheme 2. In Scheme 4, the
upgrade ratio reached a maximum of 60% under the same
traffic volume as the three previous schemes. In Scheme 5,
like the four advanced schemes mentioned above, the ratios
increased with the increase in east-west traffic volume. (e
biggest enhancement percentage occurred in the same cir-
cumstance. And, the increasing percentage at this time was
55.7%.

In short, for all five advanced schemes, regardless of the
lengths of the DLT lanes, there was no significant growth in
the number of stops for vehicles when the traffic volume in the
east-west direction was low. On the one hand, as the traffic
volume in the east-west direction gradually increased, ad-
vantages of increasing the DLT improvement program
gradually emerged. On the other hand, a horizontal com-
parison showed that, as the lengths of the DLT lanes increased
from 45 to 120m, the enhancement effect increased with the
increase in length; however, when the lengths of the DLT
lanes increased from 120 to 145m, and there was a small
decrease in the improvement in the average number of stops.

Figure 12 shows the improvements in the NOx emissions
indicators of the five progressive schemes compared to the
traditional intersection. It was found that the enhancement
effects of the five improved schemes were roughly the same
as those of the current traditional intersections. (e upgrade
effects were not obvious in the 45 combinations of traffic
volume, and negative changes were shown inmost cases.(e
maximum improvement percentages of the schemes
appeared when the traffic volume in the east-west direction
was 2058 veh/h and 1828 veh/h in the north-south direction.
(e improvement percentages gradually increased from
Scheme 1 to Scheme 4, i.e., 10.6%, 12.9%, 18.2%, and 21%.
Meanwhile, the maximum percent of Scheme 5 was 17.6%.
Generally speaking, because the traffic capacity of the ad-
vanced scheme was higher than that of the traditional
scheme, the nitrogen oxide content emitted by vehicles in
the entire intersection area did not significantly improve
compared to the traditional intersection scheme for the same
duration. (ere was even a slight increase in emissions.

Corresponding to the east-west traffic flow with DLT
lanes, this part focuses on comparing and analyzing the
differences in the travel time of the east-west imported left-
turning vehicles under different traffic volume combinations
for the east-west traffic flow with DLT lanes.
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Figure 9: Improvement ratios of capacity. (a) Scheme 1. (b) Scheme 2. (c) Scheme 3. (d) Scheme 4. (e) Scheme 5. E-W volume means the
same traffic volume of east entrance and west entrance. N-S volume means the same traffic volume of north entrance and south entrance.
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Figure 13 shows the travel time of left-turning vehicles at
the west entrance. (e travel time was recorded from the
point where the vehicle reached 100m before the main
intersection to the point where the vehicle drove 100m away
from the main intersection. In Scheme 1, the simulation
experiment results showed negative changes under all 45
traffic volume combinations. (is is because the DLT lane
has subintersections and left-turning vehicles pass through
the entire level intersection, meaning that vehicles need to
pass through two signal-controlled intersections. On the
contrary, it also showed that the length of the 45m DLT lane
was set too short to reduce the travel time of left-turning
vehicles. In Scheme 2, the travel time of left-turning vehicles
at the west entrance could be obviously improved under
most traffic conditions, with the highest advancement
percentage reaching 30%. In Scheme 3, the improvement
effect of the driving time of left-turning vehicles at the west
entrance was more distinct than that in the second scheme.
(e enhancement percentage under most traffic conditions
was more than 30%, and the largest advancement percentage
reached 62.5%. In Scheme 4, the enhancement percentage of
the driving time of left-turning vehicles at the west entrance
also exceeded 30% in most cases, and the maximum im-
provement percentage reached 65.8%. When the lengths of

the DLT lanes increased to 145m, the maximum en-
hancement percentage of the driving time of left-turning
vehicles at the west entrance was 55.8%.

Figure 14 shows the improvement in the driving time of
left-turning vehicles at the east entrance. In Scheme 1, the
driving time of left-turning vehicles at the east entrance was
similar to the situation at the west entrance, and Scheme 1
showed a negative change compared to the traditional
scheme. Additionally, the largest negative upgrade ratio
even reached −90%. In Scheme 2, the driving time of left-
turning vehicles showed a positive development in most
cases, and the percentage of enhancement was concen-
trated in the range of 10%∼20%. In the case of Scheme 3, the
advancement effect of the driving time of left-turning
vehicles was more obvious. Under various traffic volume
combinations, the driving time of left-turning vehicles
improved, and the growth percentage was concentrated in
the 30%∼50% range. In the case of Scheme 4, the driving
time of left-turning vehicles also improved under all cir-
cumstances, and the increasing percentage was concen-
trated in the 40%∼60% range. When using Scheme 5, the
development under the 45 traffic volume combinations was
positive, and the advancement percentage was mostly
between 40% and 70%.
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Figure 10: Improvement ratios of delays. (a) Scheme 1. (b) Scheme 2. (c) Scheme 3. (d) Scheme 4. (e) Scheme 5. E-W volume means the
same traffic volume of east entrance and west entrance. N-S volume means the same traffic volume of north entrance and south entrance.
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4.2. Weight of Four Indexes Based on Entropy Method. As
mentioned above, four commonly used indicators were
selected for the scheme comparison and selection of this
part:

C � C45×6,

D � D45×6,

S � S45×6,

N � N45×6,

(24)

whereC denotes the matrix of capacity,D denotes the matrix
of average vehicle delays, S denotes the matrix of the number
of stops, and N denotes the matrix of NOx emissions.

(e above four indexes’ simulation results of the six
schemes with 45 different traffic combinations were calcu-
lated step by step according to equations (2)–(15). (e
weights of the four indexes are shown in following Table 8:

4.3. Scheme Comparison. According to equation (6), pro-
cessing the simulation results generates the matrix J. And, in
this case study, the first row J1 of the matrix J could be
obtained as follows:

J1 � [2, 5, 5, 1]. (25)

(en, the first row X1 of the matrix X can be obtained
from equations (17) and (18) as follows:

X1 � [0.3341, 0.1595, 0, 0, 0.5064, 0]. (26)

(e first column represents the score of Scheme 0, the
second column represents the score of Scheme 1, and so on;
the last column represents the score of Scheme 5. And, the
results in the first row show the recommended length of the
DLT lanes for Scheme 4 under the first traffic volume
combination.

(e first element of the matrix R is

r1 � 4. (27)

Finally, the matrix R contains 45 scheme numbers that
represent the best scheme for each combination of traffic
volumes. Matrix Rwas transposed into a new 9× 5 matrix R’,
and the final result is shown in Figure 15:

Figure 15 shows a comparison of the six scenarios for all
45 traffic volume combinations, and the color block in the
figure shows a clear regularity. In the lower-left corner,
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Figure 11: Improvement ratios of the number of stops. (a) Scheme 1. (b) Scheme 2. (c) Scheme 3. (d) Scheme 4. (e) Scheme 5. E-W volume
means the same traffic volume of east entrance and west entrance. N-S volume means the same traffic volume of north entrance and south
entrance.
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Figure 12: Improvement ratios of the NOx emissions. (a) Scheme 1. (b) Scheme 2. (c) Scheme 3. (d) Scheme 4. (e) Scheme 5. E-W volume
means the same traffic volume of east entrance and west entrance. N-S volume means the same traffic volume of north entrance and south
entrance.
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Figure 13: Continued.
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Figure 13: Improvement ratios of the left-turning time at the west entrance. (a) Scheme 1. (b) Scheme 2. (c) Scheme 3. (d) Scheme 4.
(e) Scheme 5. E-W volume means the same traffic volume of east entrance and west entrance. N-S volume means the same traffic volume of
north entrance and south entrance.
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Figure 14: Improvement ratios of the left-turning time at the east entrance. (a) Scheme 1. (b) Scheme 2. (c) Scheme 3. (d) Scheme 4.
(e) Scheme 5. E-W volume means the same traffic volume of east entrance and west entrance. N-S volume means the same traffic volume of
north entrance and south entrance.

Table 8: Weights of the four indexes.

Index C D S N Sum
Weight 0.1595 0.2905 0.2159 0.3341 1
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either Scheme 4 or Scheme 3 performed well when the traffic
volume in both the east-west and north-south directions was
small. However, when the traffic volume in both the east-
west and north-south directions was getting larger, Scheme 5
showed its advantages in improving pollutant emission and
became the recommended scheme. In general, Scheme 4 was
the recommended solution for most cases because of its
superior overall performance. In the final results of the
recommended scheme, Scheme 3/Scheme 4/Scheme 5�1:
38:6. (e recommended length obtained using the evalua-
tion and analysis model met the recommended range of
300–500 feet in the guidebook on DLT intersections pub-
lished by Federal Highway Administration [48], indicating
that the results obtained from the model are scientific and
reasonable.

5. Conclusions

(e expanding urbanization exacerbates the problem of
urban road congestion in China. Upgrading urban road
intersections is one of the keys to solving this problem. (e
DLT intersection has been widely recognized as an un-
conventional intersection, which can improve traffic effi-
ciency when the left-turn traffic flow is heavy. However, the
current design of this unconventional intersection mainly
relies on empirical methods and mathematical methods, and
there are many deficiencies needed to be further overcome.

(is paper investigated a model for determining the
recommended length of added DLT lanes by using the
VISSIM traffic simulation model and SSAM security eval-
uation model. Both VISSIM and SSAM were calibrated to
ensure reliability, which could provide meaningful support
for designing more efficient and safer DLT intersections.
Considering the multiobjective decision on intersection
design, the EEM was utilized in the model not only to solve
the problem of multiparameter processing but also to ensure
objectivity and avoid the controversy of artificial interfer-
ence.(e research carried out in this paper took a traditional
cross intersection located in Xi’an, Shaanxi Province, China,
as a case study. Only the west entrance had obvious tran-
sition and widening sections. (e specific situation was
shown in Figure 3. (ere was a large amount of left-turning

traffic flows in the east-west direction of the present in-
tersection. (en, we designed development schemes with
different lengths of added DLT lanes to deal with this
problem. (ey performed better in efficiency and safety. (e
results showed that the development intersections with
added DLT lanes significantly reduced the number of
conflicts compared with the existing intersection, especially
in the “rear end” and “lane change.” Another important
finding was that the change in the number of conflicts was
not obvious as the length of the DLT lanes changed. Af-
terward, we conducted a sensitivity analysis of the improved
schemes and the existing scheme under 45 different traffic
combinations.

Using the model, the length of the 120m long added
DLT lanes at the crossing intersection which was recom-
mended under most of the traffic volume combinations in
this case. (is was probably because setting 120m added
DLT lanes provided the superb balance of increasing ca-
pacity, reducing delays, and environmental protection.

And, the recommended length should not be less than
95m under all of the 45 traffic conditions. (is was probably
because the additional DLT lanes were too short to meet the
demand of vehicles that need to turn left, and the new
schemes added subintersection, which might have negative
changes compared to the traditional intersections.

(e research proves that the added DLT lane length
evaluation and analysis model proposed in this paper can
eliminate the controversy of subjective human factors and
achieve multiobjective optimization projects. It also proves
that the evaluation and analysis model is advanced, rea-
sonable, and maneuverable, and the considering multifactor
design process for determining the recommended length of
added DLT lanes with applying the analysis model also has
good practicability. It can provide meaningful guidance for
the designers in the design of the reconstructed DLT
intersections.

Some issues in this paper that need to be further enriched
and improved.

(i) Budget constraints can be added to the model to
select the recommended scheme

(ii) In the future, the model also needs to consider how
to compare schemes of different lane lengths when
the number of DLT lanes’ changes
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Short-term traffic flow prediction can provide a basis for trafficmanagement and support for travelers to make decisions. Accurate
short-term traffic flow prediction also provides necessary conditions for the sustainable development of the traffic environment.
Although the application of deep learning methods for traffic flow prediction has achieved good accuracy, the problem of
combining multiple deep learning methods to improve the prediction accuracy of a single method still has a margin for in-depth
research. In this article, a combined deep learning prediction (CDLP) model including two paralleled single deep learning models,
CNN-LSTM-attention model and CNN-GRU-attention model, is established. In the model, a one-dimensional convolutional
neural network (1DCNN) is used to extract traffic flow local trend features and RNN variants (LSTM and GRU) with attention
mechanism are used to extract long temporal dependencies trend features. Moreover, a dynamic optimal weighted coefficient
algorithm (DOWCA) is proposed to calculate the dynamic weights of CNN-LSTM-attention and CNN-GRU-attention with the
goal of minimizing the sum of squared errors of the CDLP model. )en, the neuron number, loss function, optimization al-
gorithm, and other parameters of the CDLP model are discussed and set through experiments. Finally, the training set and test set
for the CDLPmodel are established through the processing of traffic flow data collected from the field.)e CDLPmodel is trained
and tested, and the prediction results of traffic flow are obtained and analyzed. It indicates that the CDLPmodel can fit the change
trend of traffic flow very well and has better performance. Furthermore, under the same dataset, the results from the CDLP model
are compared with baseline models. It is found that the CDLP model has higher prediction accuracy than baseline models.

1. Introduction

With the economic development, the number of motor ve-
hicles in the urban area has increased rapidly, and traffic
congestion and traffic accidents have become increasingly
serious. In order to mitigate the urban traffic problem, intel-
ligent transportation systems have been widely implemented
[1–4]. Among them, short-term traffic flow prediction is one of
the core parts of an intelligent transportation system, which
provides the basis for traffic management, traffic control, and
traffic guidance and also provides support for traveler’s deci-
sion-making. Prediction of short-term traffic flow has always
been a hot topic for scholars in the field of traffic engineering.

For short-term traffic flow forecasting, early research
mainly focused on statistical learning methods based on
traditional mathematical models. Under the assumption of a
certain probability distribution, the parameters of the sta-
tistical forecasting model are estimated through theoretical
inference, and the model’s forecasting results have a better
strong explanatory. )e traditional methods mainly include
Kalman filter models, time series models, and nonpara-
metric regression models.

Okutani and Stephanedes [5] proposed two prediction
models based on the Kalman filter theory to predict the
traffic flow of streets in Nagoya. In the models, the newest
prediction error and the traffic data of multiple adjacent road
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sections are considered to improve the prediction accuracy.
Xie et al. [6] used the discrete wavelet decomposition
method to denoise the traffic flow data and then established a
Kalman filter model to predict the traffic flow, which re-
duced the interference of local noise on the original data and
obtained better prediction results. Guo et al. [7] proposed an
adaptive Kalman filter model, which uses the adaptive up-
date method of variance to improve the parameters of the
model, and verified that the prediction accuracy of themodel
is better than the traditional Kalman filter model through a
large amount of highway traffic data. Emami et al. [8]
proposed a fade memory Kalman filter model based on real-
time data from the Internet of vehicles and Bluetooth de-
tectors. )is model considers the influence of weights and
reduces the errors caused by the measurement method.
Experiments show that the model can improve the accuracy
of the forecast data.

)e autoregressive integrated moving average (ARIMA)
model is widely used in traffic flow prediction. Ahmed and
Cook [9] investigated the ARIMA model in representing
freeway time series data and found ARIMA was more ac-
curate than moving average, double-exponential smoothing
models. Hamed et al. [10] applied the ARIMA model to
forecast traffic volume in urban arterials, and it turned out to
be the most adequate model in reproducing all original time
series and is computationally tractable. In addition to the
ARIMA model, the autoregressive integrated moving av-
erage model with explanatory variables, seasonal autore-
gressive moving average model and other variant structures
ARIMA models have also been applied in the field of traffic
flow forecasting [11, 12].

)e K-nearest neighbors (KNN) method does not re-
quire complex prior knowledge and precise function ex-
pressions. It has the advantages of a simple algorithm and
good portability and has been applied in the field of traffic
flow prediction. Zhang et al. [13] used the mean KNN and
weighted KNN to establish traffic flow prediction models
and comparative analysis was made. Cheng et al. [14]
proposed an adaptive spatiotemporal KNN model, which
comprehensively considers spatiotemporal weights, time
windows, and other parameters, and simulation results
demonstrated that the prediction effect of traffic flow has
been further improved. )e core content of the KNN is to
design an appropriate search mechanism, and its prediction
results rely on historical data. When the historical data are
large, the search efficiency of this method will have a greater
impact on the real-time performance of the prediction
model.

)e basic idea of the support vector machine (SVM)
method for traffic flow prediction is to map the original
traffic flow data to the high-dimensional feature space
through the kernel function and to find the linearly divided
plane from the mapping space to solve nonlinear problems
in traffic flow data. Yang et al. [15] proposed a short-term
traffic flow prediction model based on spatiotemporal
correlation and adaptive multicore SVM for the nonlinearity
and randomness of traffic flow. Luo et al. [16] used the
method of least square SVM to predict the traffic flow, in
which a hybrid optimization algorithm is proposed to select

the optimal parameters, and the experimental results show
the model can improve the prediction ability and compu-
tational efficiency. Tang et al. [17] proposed a traffic flow
prediction model that combines denoising schemes and
SVM algorithms to improve the prediction accuracy. Results
show the model outperforms that without denoising strat-
egy. In addition to the traditional SVM model, variant SVM
algorithms, such as seasonal SVM [18], which considers
traffic data seasonality, and Online-SVR [19], which deals
with special events, have also been applied in traffic flow
prediction and good results are obtained.

)e development and wide applications of traffic in-
formation collection technology, such as inductive detector,
geomagnetic detectors, radio frequency identification
technology, radar detection, video detection, and floating car
detection [20–24], provide a large amount of data for traffic
flow prediction. At the same time, with the rapid devel-
opment of artificial intelligence technology, deep learning,
which has powerful data feature mining and nonlinear data
fitting capabilities, has been successfully applied in many
fields, such as image processing and speech recognition
[25–27], and gradually used in traffic parameter forecasting
[28–31].

Moreover, the key point of traffic flow forecasting re-
search has also shifted from traditional statistical learning
forecasting methods and shallow neural networks [32–34] to
deep learning forecasting methods. )e shallow neural
networks, which only have a single hidden layer, cannot
learn the deeper features of traffic flow data and their
prediction accuracy is often lower than that of the deep
learning network. )e deep learning methods have been
gradually applied to the field of traffic flow prediction.

Deep belief network (DBN) is an earlier deep learning
method used for traffic flow prediction. Huang et al. [35]
designed a combined prediction model with unsupervised
learning DBN at the bottom layer and multitask learning
layer at the top layer for supervised prediction.)emultitask
learning layer can make full use of the weight sharing in
DBN and outperform predicted results. Koesdwiady et al.
[36] incorporated weather conditions and traffic flow data
into the feature space at the same time and designed a DBN
network for unsupervised pretraining, and relevant data
from San Francisco are used to conduct experiments to
verify the effectiveness of the proposed method. Xu and
Jiang [37] proposed a DBN-support vector regression model
for short-term traffic flow, in which DBN is used to learn the
internal characteristics of traffic flow and support vector
regression to predict the traffic flow. Experiments show that
the model can effectively predict traffic flow and has fine
prediction accuracy. Han and Huang [38] proposed a traffic
flow predictionmodel combining DBN and a kernel extreme
learning classifier, in which the internal characteristics of
traffic flow data are extracted by DBN and the kernel ex-
treme learner is used to predict traffic flow. Experiments
show that the model can improve the accuracy of traffic flow
prediction and reduce simulation time.

Convolutional neural network (CNN) is also a typical
structure of deep learning. It is a feedforward neural network
used to solve data problems similar to a grid structure. It can
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accurately extract data features while reducing the com-
plexity of the model. )is efficient local feature extraction
capability is conducive to better find the spatial correlation
between traffic flow data, and then it is widely used in traffic
flow prediction [39]. Zhang et al. [40] proposed a short-term
traffic flow prediction model based on CNN, in which a
spatiotemporal feature selection algorithm determines the
optimal input data time lags and amounts of traffic flow data;
then, CNN learns these spatiotemporal features. )e ef-
fectiveness of the model was verified by comparing the
prediction results with actual traffic data. An et al. [41]
proposed a fuzzy-based CNN traffic flow prediction model,
in which the fuzzy approach is used to represent the features
of traffic accidents. )e experimental results show that the
model has superior performance. Liu et al. [42] proposed a
CNN-attention model to predict traffic speed. Experimental
results show that the model has a great advantage in traffic
flow prediction and the impact of different traffic flow
temporal and spatial data on traffic flow can be found
through visualizing the weights generated by the attention
model. Peng et al. [43] proposed a spatial-temporal inci-
dence dynamic graph recurrent CNN to predict urban traffic
passenger flow and experiments show that the predictive
performance of this network is superior to traditional
predictive methods.

LSTM network is a deep learning structure and also a
variant of recurrent neural network (RNN). RNN can be
applied to the relevant forecasting field of time series data
[44]. However, RNN has a problem of the disappearance of
the gradient, which can be overcome by LSTM [45]. LSTM
has been applied in the field of traffic flow prediction. Ma
et al. [46] applied the LSTM to establish a traffic speed
prediction model. )e results show that the LSTM network
effectively captures the time correlation and nonlinearity of
the traffic state, and the prediction accuracy is better than
most statistics methods. Zhao et al. [47] proposed a traffic
forecast model based on LSTM considering temporal-spatial
correlation in traffic systems. )e results validate that the
model can obtain better prediction performance compared
with other representative forecast models. Tian et al. [48]
proposed a multiscale smoothing method to fill in the
missing values in traffic flow data and established an LSTM
model to predict traffic flow. Experiments show that the
LSTM model has better prediction performance than other
prediction methods. Zhao et al. [49] established the LSTM
model to predict traffic flow speed and validated that the
prediction accuracy is higher than that of the support vector
regression prediction method. Wang et al. [50] constructed
an LSTM encoding and decoding model based on the at-
tention mechanism for time series prediction, which in-
cludes periodic mode and recent time mode. Experiments
show that the model is effective and reliable in long-term
prediction of time series.

In addition, combination algorithms for traffic flow
prediction, especially deep learning algorithms, have re-
ceivedmore attention from scholars and produced a series of
achievements. Zhou et al. [51] combined LSTM and SVR to
build a model for short-term traffic flow prediction, in which
a genetic algorithm is used to optimize the parameters of

SVR. )e results indicate that the prediction model has
higher accuracy than LSTM and CNN. Zhang et al. [52]
proposed a model for short-term traffic forecasting, which
integrates a graph convolution operator and a residual
LSTM structure. )e model is evaluated on a traffic speed
dataset and better prediction results than six baselines are
obtained. Li et al. [53] developed a deep learning-based
method, including CNN and LSTM, for real-time move-
ment-based traffic volume prediction at signalized inter-
sections. In the model, CNN is applied to learn the spatial
features of traffic volume and LSTM to learn the temporal
dependencies. Xia et al. [54] proposed a distributed LSTM
weighted model combined with a time window and normal
distribution to enhance the prediction capability for traffic
flow. Furthermore, the experimental results indicate that the
model achieved accuracy improvement.

In summary, the deep learning methods have been
widely applied to short-term traffic flow prediction and
achieved series of results. Moreover, from the above liter-
ature researches, it can be found that the combination of
multiple deep learning methods, such as a combination of
CNN and LSTM, can improve the performance of the
prediction model. LSTM is a variation of RNN, which can
obtain the time series characteristics of traffic flow. Mean-
while, there is another variant of RNN, namely GRU, which
can also obtain the time series characteristics of traffic flow
and make traffic flow prediction [55, 56]. )e combined
model of LSTM and GRU is used to predict traffic flow
parameters, which has been discussed and applied in
[57, 58], and its outstanding performance in both prediction
accuracy and stability has been proved. In the two works of
literature, LSTM and GRU are serial structures. LSTM is
firstly used to learn the spatial-temporal characteristics of
data, and then GRU is used to predict traffic parameters or
LSTM is firstly used to predict value and then encoder with
GRUs further captures the relationship between the input
sequence and the output sequence. However, the sequential
combination structure of LSTM and GRU does not si-
multaneously use the advantages of the two to complement
each other, and it also lacks CNN’s guidance on the local
trend of traffic flow. It is necessary to apply the combination
of three deep learning methods to study the prediction of
traffic flow. In addition, the attentionmechanism theory [59]
has the function of improving the data extraction capabilities
of deep learning by imitating human vision to assign weights
to data features and has been widely used in image pro-
cessing and speech recognition [60–63]. Applying it to CNN,
LSTM, and GRU deep learnings for traffic flow prediction is
also worthy of discussion.

In this article, a DOWCA is presented, and a combined
prediction model with CNN, LSTM, GRU, and attention
mechanism for short-term traffic flow is proposed and
discussed. )e main contributions of this study are as
follows:

(1) In order to build a combined traffic flow prediction
model, a dynamic optimal weighted coefficient al-
gorithm (DOWCA), is proposed, in which the
weights of each single prediction method are
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calculated dynamically following new prediction
results added.

(2) A combined deep learning model for short-term
traffic flow prediction, namely CDLP, is established
based on the CNN, LSTM, GRU, and attention
mechanism, which includes paralleled CNN-LSTM-
attention model and CNN-GRU-attention model. In
CDLP, the dynamic weights for the two single
models are calculated by DOWCA.

(3) After parameter setting through experiment com-
parison and analysis, the CDLP model is trained and
tested using traffic flow data from the field. )e
results indicate that the CDLP model outperforms
baseline models.

)e rest of the article is organized as follows. In Section
2, the methodologies of CNN, LSTM, GRU, and attention
mechanism are introduced. In Section 3, a DOWCA is
proposed and the CDLP model is constructed. In Section 4,
the experiment results and analysis are presented. Finally, a
brief conclusion and recommendations for future work are
presented in Section 5.

2. Methodology

2.1. CNN. CNN is a feedforward neural network with a deep
structure and mainly composed of convolution layer,
pooling layer, and full connection layer [64]. Among them,
the convolutional layer is the most important part of CNN,
which uses the convolution kernel to carry out a convolu-
tional calculation for data from the input layer and outputs
the convolutional characteristics of the data. If the CNN
model contains multiple convolutional layers, then the
number of output characteristic parameters by the con-
volutional layer is large. In order to reduce the number of
parameters, the pooling layer is often used to carry out
subsampling operations on the convolutional features of the
data to extract part of the information and prevent themodel
from overfitting. )e fully connected layer is usually used at
the end of the CNN model to reduce unnecessary feature
loss, in which all features are integrated and calculated as the
final output.

2.2. LSTM Network. LSTM is a variant structure of RNN,
which can solve the problem of gradient disappearance and
gradient explosion in RNN and can better realize the pre-
diction of time series sequence. )e LSTM network is
composed of a series of basic cells. )e basic cell structure is
shown in Figure 1, which includes three gate structures:
input gate, output gate, and forget gate.

)e orange lines in Figure 1 represent the input gate.
)e main function of the input gate is to control the input
process of all information at time t. )e information
input process mainly includes two parts. One part is the
process of updating the current time information
through the tanh function to obtain a new state vector,
and the other part is superimposing the current input
and the output information of the hidden layer at the

previous time through the sigmoid function. )e specific
implementation process can be expressed as follows:

it � σ Wiht−1 + Uixt + bi( 􏼁,

􏽥Ct � tanh Wcht−1 + Ucxt + bc( 􏼁,
(1)

whereWi,Wc,Ui, andUc are the weights of the input gates; bi
and bc are the biases of the input gates; and σ and tanh are
activation function, and their formulas are as follows:

tanh(x) �
e

x
− e

− x

e
x

+ e
−x ,

σ(x) �
1

1 + e
− x.

(2)

)e red lines in Figure 1 represent the forget gate, whose
main function is to determine the redundant information to
be discarded in the unit.)e input of the forget gate includes
inputXt and output ht− 1 of the unit at the previous time.)e
output process is shown in formula (3).

ft � σ Wfht−1 + Ufxt + bf􏼐 􏼑, (3)

where Wf and Uf are the weight of the forget gate and bf
represents the bias of the forget gate.

)e forget gate uses the sigmoid function to superimpose
the input values Xt and ht− 1, and the output value is limited
to the range of [0, 1]; finally, the output value is multiplied by
the output unit stateCt− 1 at the previous moment.When the
output value is 0, it means that the information will be
completely discarded. When the output value is 1, it means
that the information will be completely retained.

)e output information of the forget gate and the input
gate is, respectively, multiplied and superimposed on each
other to obtain the current unit output state. )e specific
calculation process is as follows:

Ct � ft ⊗Ct−1+it ⊗ 􏽥Ct. (4)

It can be seen from this formula that Ct represents the
long-term memory of all historical information at the
current moment.

)e purple lines in Figure 1 represent the output gate.
)e output gate determines the output result of the entire
basic cell, which is related to the cell output state Ct at the

Ct–1 Ct

ht

ft it
σ σ σtanh

tanh

yt

otCt
~

ht–1

Xt

Figure 1: )e basic unit structure of LSTM.
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current moment. First, use the sigmoid function to process
part of the information of the input unit to obtain the output
Ot of the output gate and then use the tanh function to
process the information in Ct. After the two sets of processed
information are multiplied, the final output ht is obtained.
)e specific calculation formula is as follows:

Ot � σ Woht−1 + Uoxt + bo( 􏼁,

ht � Ot ⊗ tanh Ct( 􏼁.
(5)

2.3. GRU Network. Similar to LSTM, GRU is also a variant
structure of the RNN algorithm, and it also has the function
of dealing with the problem of gradient disappearance in
RNN and ineffective long-term sequence memory. Com-
pared with LSTM, GRU reduces the complexity of the
structure by reducing the gates in the architecture.)e cyclic
structure of GRU consists of two gate structures, an update
gate (purple lines) and a reset gate (red lines), and its cell
structure is shown in Figure 2.

)e update gate zt can determine the memory infor-
mation at the previous time and the remaining part of the
information at the current time and continue to transfer the
remaining information to the future time so as to obtain the
long-term dependence in the entire network transmission
process. )e reset gate rt is mainly used to obtain short-term
time dependence, control the operation of the hidden state
information ht−1 and the current input value xt at the
previous moment, and decide to forget the amount of in-
formation in the past.

Formulas (6)–(9) represent the calculation process of
each state within each time step in GRU cell.

zt � σ Wzxt + Uzht−1 + bz( 􏼁, (6)

rt � σ Whxt + Uhht−1 + br( 􏼁, (7)

gt � tanh Wgxt + Ug rt ⊗ ht−1( 􏼁 + bg􏼐 􏼑, (8)

ht � zt ⊗ ht−1 + 1 − zt( 􏼁⊗gt, (9)

where Wz, Wh, and Wg are input-related weight matrices;
Uz, Uh, and Ug are cyclically connected weight matrices; and
bz, br, and bg are related biases.

2.4. AttentionMechanism. Attention mechanism focuses on
important information by assigning different weights to
input features. )e process of focusing on important in-
formation is shown as the calculation process of weight. )e
higher the importance of information is, the larger the
weight is allocated. In the application of attention mecha-
nism in deep learning model, the calculation process of
context vector and weight involved is as follows.

)e output hidden state of the deep learning model is
supposed as h1, h2, . . . , hi, . . . , ht, and the context vector Ct
can be calculated as follows:

Ct � 􏽘
t

i�1
αt,ihi. (10)

In formula (10), αt,i is the weight for hi, and the sum of
the weights is 1. It can be calculated as follows:

αt,i �
exp et,i􏼐 􏼑

􏽐
T
i�1 exp et,i􏼐 􏼑

, (11)

where et,i is an alignment model, and its calculation formula
is as follows:

et,i � tanh Wast−1 + Uahi + ba( 􏼁, (12)

where Wa, Ua, and ba are the network parameters of deep
learning model and st−1 can be calculated as follows:

st−1 � g st−2, yt−2, ct−1( 􏼁, (13)

where g(·) denotes the deep learning network.
Based on formula (13), the output of the attention

mechanism is expressed as follows:

yt � softmax st( 􏼁, (14)

where softmax is activation function.

3. Model

3.1. Dynamic Optimal Weighted Coefficient Algorithm.
Compared with a single prediction model, the combined
prediction model can comprehensively utilize the advan-
tages of multiple prediction models, improve the accuracy of
prediction results, and has better robustness. In the com-
bined prediction model, the calculation of the weighted
coefficient of each single prediction model is the key.
Generally, the optimal weighted coefficient algorithm
(OWCA) is used, in which the weighted coefficient of each
single prediction method is calculated with the goal of
minimizing the sum of squared errors of the combined
prediction [65–68]. )e calculation principle is as follows.

Suppose there are m prediction methods; the prediction
value of the ith method at time t is yit, where i� 1, 2, . . ., m;
t� 1, 2, . . ., N. )en, the prediction error eit of the ith
prediction method can be expressed by the following:

ht

rt  t

ht–1

Xt

σ σ tanh

1–

Figure 2: )e basic unit structure of GRU.
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eit � yt − yit. (15)

Let l1, l2, . . ., lm be the weighted coefficients of m pre-
diction methods, respectively, and l1 + l2 + · · · + lm � 1. )e
prediction result of the combined prediction method, la-
beled as 􏽢yt, can be calculated as follows:

􏽢yt � l1y1t + l2y2t + · · · + lmymt, (16)

and the prediction error et for the combined prediction
method at time t can be obtained:

et � 􏽘
m

i�1
lieit. (17)

Let J represent the sum of squared errors of the com-
bined prediction method, then the problem of solving the
optimal weight at time t can be expressed as the following
optimization model:

Min J � 􏽘
N

t�1
􏽘

m

i�1
􏽘

m

j�1
liljeitejt. (18)

Formula (18) can be expressed in matrix form as follows:

Min J � L
T

EL

s.t. R
T
L � 1,

(19)

where L� (l1, l2, . . ., lm)T represents the weighted coefficient
column vector; R� (1, 1, . . ., 1)T represents the m-dimen-
sional column vector with all 1 elements; E is the combined
prediction information error matrix, E� (Eij)m×m and Eij is
expressed as follows:

Eij � e
T
i ej, i, j � 1, 2, · · · , m, (20)

where ei represents the prediction error column vector of the
ith single prediction method, and ei � (ei1, ei2, . . ., eiN)T.

If the prediction error vector group of m prediction
methods is linearly independent, then the combined pre-
diction information error matrix E is an invertible matrix.
According to the Lagrange multiplier method [69], the
optimal solution of model (18) can be obtained as follows:

L
∗

�
E

− 1
R

R
T
E

−1
R

, (21)

where L∗ is the optimal weight vector, namely, the optimal
weighted coefficients of m prediction methods.

According to the OWCA and the historical prediction
error of each single prediction method, the optimal weighted
coefficient of each single prediction method can be obtained
so as to carry out the combined prediction. In the OWCA,
the weighted coefficient of each single prediction method is
fixed. However, in the prediction of time data sequences,
such as traffic flow, with the increase of time, the prediction
results of each single prediction method also increase. More
importantly, the prediction errors of each single prediction
method also vary. If the weighted coefficient of each single
prediction method is invariable, it cannot reflect the in-
fluence of the newly increased prediction results of each

single prediction method on the combined forecasting,
which also affects the accuracy of the combined forecasting
results.

)erefore, based on the optimal weighted coefficient
algorithm, a dynamic optimal weighted coefficient algo-
rithm, namely, DOWCA, is proposed. In the DOWCA, with
the increase of time, the amount of historical prediction
error data increases continuously, the weighted coefficient of
each single prediction method, namely, the dynamic
weighted coefficient, labeled as l1t l2t . . . lmt, is recalculated
by the OWCA. )e dynamic weighted coefficients are ap-
plied to each single prediction method and the combined
prediction results are obtained. )e whole process of the
DOWCA is shown in Figure 3, and the pseudocode of
DWOCA is shown in Algorithm 1.

3.2.CombinedDeepLearningPredictionModel. CNNhas the
ability to obtain local trend features of data sequences, while
LSTM and GRU have the ability to obtain long-term de-
pendent features of data sequences. At the same time, the
attention mechanism can make the deep learning model pay
attention to important features. Based on this, a combined
deep learning prediction model with CNN, LSTM, GRU,
and DOWCA is designed for traffic flow prediction, namely,
CDLP model.

In the CDLP model, CNN, LSTM, and attention are
connected sequentially and become the sequential combi-
nation structure, which is named as CNN-LSTM-attention
model, i.e., one single traffic flow prediction model in the
CDLP model. Moreover, CNN, GRU, and attention are also
designed as the sequential combination structure and named
as CNN-GRU-attention model, i.e., another single traffic
flow prediction model in the CDLP model. )en, the two
sequential combination structures are paralleled and com-
bined by DOWCA. From a layer standpoint, the CDLP
model has three layers, input layer, hidden layer, and output
layer. )e hidden layer includes four layers, CNN layer,
LSTM and GRU layer, attention layer, and dropout layer.
)e whole structure of the CDLPmodel is shown in Figure 4.

)e input layer of the CDLP model is the processed
traffic flow data sequence, including training set and test set,
which is simultaneously inputted to two paralleled CNN
layers in the hidden layer of the CDLP model.

)e hidden layer of CDLP includes two CNN layers,
LSTM and GRU layers, two attention layers, and two
dropout layers in sequence. Moreover, all of them are
paralleled. About the CNN layer, due to the periodicity and
sequence of traffic flow data, 1DCNN is used and the output
of 1DCNN is computed by the activation function ReLu.)e
formula of ReLu is as follows:

ReLu(x) �
x, x> 0,

0, otherwise.
􏼨 (22)

About LSTM and GRU layers, if too many network
layers are selected, the calculation of the entire network will
be large andmore training time will be needed. According to
[70], when both the accuracy of the predictionmodel and the
training time are considered, the two LSTM network layers
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are suitable, so two network layers in LSTM are selected.
Similarly, two network layers are selected in GRU.)e input
of the first LSTM and GRU network layer is local trend
features extracted by 1DCNN and its output is the state of
the neural unit of the current LSTM and GRU layer. )e
second LSTM and GRU network layer mines the charac-
teristics of the data and outputs the hidden layer state to the
attention layer.

About the attention layer, the input state h1, h2, . . . ,

hi, . . . , ht comes from LSTM and GRU. Correspondingly,
g(·) in formula (13) denotes LSTM and GRU.

)e last layer in the hidden layer, the dropout layer, is
designed to prevent the occurrence of overfitting after the
attention layer, which is the output from the hidden layer of
CDLP to the output layer. Moreover, the input of the
dropout layer is the output y1, . . ., yt−1, yt from the attention
layer.

)e CDLP model is aimed to predict the traffic flow at
the next moment based on the historical data. )erefore, the
output layer includes two paralleled neural units, which are
actually the outputs of two single models, CNN-LSTM-

attention model and CNN-GRU-attention model, respec-
tively. )e two output neural units are fully connected with
the dropout layer. In addition, the output layer of the CDLP
model also includes weight calculation for the outputs of the
CNN-LSTM-attention model and CNN-GRU-attention
model, in which the DOWCA is used. Finally, the traffic flow
prediction values and the dynamic optimal weights for
outputs of CNN-LSTM-attention and CNN-GRU-attention
are obtained.

4. Experiment

4.1. Data Processing and Dataset. )e traffic flow data at the
intersection of Jiangxi Road and South Fuzhou Road in
Qingdao, China, are collected through inductive detector as
the dataset for the verification of the CDLP model. )e
original dataset contains three consecutive months of traffic
flow data for each entrance road segment at the intersection
from February 15, 2019, to May 15, 2019. )e statistical time
interval of these data is 5 minutes, and a total of 25920 pieces
of data are obtained.

Combined
prediction

information error
matrix E

Optimal weighted
coefficient
algorithm

Combination
prediction results

yt

Weights of each
single prediction

algorithm

The measured
value yt at time t

The prediction
value of each single

prediction algorithm

The predictive
value error of m
single prediction

algorithms

l1t l2t ... lmt

e1t
e2t

.

.

.
emt

⋮ ⋮

⋯

⋱

⋯

e11

em1

e12

em2

e1t

emt

Figure 3: )e process of DOWCA.

Input: the predicted value of different single model at time yit(i � 1, 2, · · · , m, t � 1, 2, · · ·) and actual data yt
Output: combined prediction value 􏽢yt

(1) begin
(2) calculate the prediction error eit of the i th prediction method by equation (15)
(3) for t � 1, 2, . . . do
(4) construct the combined prediction information error matrix E by equation (20)
(5) R← (1, 1, . . . , 1)T

(6) calculate inverse matrix E− 1

(7) calculate optimal weights by equation (21)
(8) calculate combination prediction results 􏽢yt by equation (16)
(9) output 􏽢yt

(10) end
(11) end

ALGORITHM 1: )e pseudocode of DWOCA
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First, the abnormal and missing data in the original data
are processed, in which the abnormal data are regarded as
missing data. )e Lagrangian interpolation method is used
to process themissing data. In the process, four adjacent data
before and after the missing datum are selected for inter-
polation to ensure the reliability of the interpolation data.

)en, the Min-Max method is used to normalize the
data, and the calculation formula is as follows:

y′ �
y − ymin

ymax − ymin
, (23)

where ymin and ymax are the minimum and maximum values
of traffic flow, respectively and y and y′ are the traffic flow
data before and after being normalized, respectively.

)e normalized data are divided into the training set and
test set. )e data from February 15, 2019, to May 1, 2019, are
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used as the training set, and the dataset fromMay 2, 2019, to
May 15, 2019, is the test set.

4.2. Experimental Environment and Selection of Evaluation
Indicators. )e hardware and software conditions in the
experimental environment of this article are shown in
Table 1.

In order to evaluate the traffic flow prediction perfor-
mance of the CDLP model, three evaluation indicators are
selected: MAPE, MAE, and RMSE. )eir calculation for-
mulas are as follows:

MAPE �
1
n

􏽘

n

i�1

yi − 􏽢yi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100,

MAE �
1
n

􏽘

n

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

RMSE � 􏽘
n

i�1

yi − 􏽢yi( 􏼁
2

n
⎛⎝ ⎞⎠

1/2

,

(24)

where n is the total number of samples in the test set, yi is the
ith actual value of sample, and 􏽢yi is the predicted value of the
ith sample.

4.3. CDLP Model Parameter Setting

4.3.1. Loss Function. )e loss function quantifies how close a
given neural network is to the ideal state it is trained on. )e
average absolute error function and the mean square error
function are used as loss functions commonly. Because of the
convenient calculation of the mean square error function, in
the CDLP model, the mean square error function is selected
as a loss function and the calculation formula is as follows:

L(y, 􏽢y) �
1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁, (25)

where yi is the actual value, n is the total number of samples,
and 􏽢yi is the prediction value.

4.3.2. ;e Neuron Number in the CDLP Model. )e neuron
numbers of the input layer and hidden layer should be set
before the model is trained (the number of neurons in the
output layer has been determined in Section 3.2). )e fol-
lowing is the process of setting the number of neurons in the
input layer and the hidden layer.

In order to obtain the appropriate neuron number of the
input layer, 6, 12, 18, and 24 are selected, respectively, to
train the model, and the optimal neuron number is obtained
through error analysis of the test set. Similarly, for the setting
of the neuron number of LSTM layers and GRU layers, four
numbers of 16, 32, 64, and 128 are selected, respectively, to
train the model. Moreover, the optimal neuron number is
determined through the error analysis of the test set.

Regarding the error analysis of the test set, MAPE is
selected as the main evaluation indicator, while MAE and

RMSE are used as auxiliary evaluation indicators. )e
evaluation indicator results of the test set under different
neuron numbers in input and LSTM layers are obtained,
which include the MAPE, MAE, and RMSE, as shown in
Table 2.

From Table 2, it can be seen that when the neuron
number of the input layer is set to 12 and the neuron
numbers of the two LSTM layers are set to 128 and 128,
respectively; the MAPE, MAE, and RMSE of the model test
set are all the smallest. It indicates that the neuron numbers
of the input layer and hidden layer are the best for the model
training effect under this setting. Moreover, the neuron
numbers of the two GRU layers are the same as those of
LSTM, i.e., 128 and 128, respectively.

4.3.3. Optimization Algorithm. In the training process of the
deep learning model, an optimization algorithm is used to
iterate the model parameters to reduce the loss function
value so that the training process of the model tends to be
stable as the number of iterations increases. )e optimi-
zation algorithms mainly include RMSprop and Adam. )e
two algorithms are applied to train the CDLP model and the
better one is selected as an optimization algorithm according
to the prediction results. After training of CDLP model
under RMSProp algorithm and Adam algorithm, respec-
tively, the results of three evaluation indicators are obtained
and shown in Table 3.

It can be found from Table 3 that when the Adam al-
gorithm is used to train the CDLP model, the MAPE, MAE,
and RMSE are less than those of the RMSProp algorithm. It
indicates that the Adam algorithm is more effective than the
RMSProp algorithm and is selected as the optimization
algorithm of the CDLP model.

4.3.4. Other Parameters. In the 1DCNN layer, the convo-
lution operation is implemented by convolution kernels,
and 64 convolution kernels with a size of 2 ×1 are used,
i.e., filters � 64, size � 2. In the dropout layer, the loss rate
of the dropout function is set as 20%. In addition, the
epoch is set as 500 iterations, and the batch size is set as
128.

4.4. Results and Analysis. )e CDLP model is trained and
tested with a designed training set and test set after the above
model parameters are determined. At the same time, in
order to verify the advantages of the CDLP model, the
prediction results from the single CNN-LSTM-attention
model and single CNN-GRU-attention model are extracted
during the process of training and testing for the CDLP

Table 1: Experimental environment.

Software and hardware configuration Configuration parameter
CPU Intel i5-8250U @1.60GHz
RAM 8G
Programming language Python 3.7.0
Deep learning framework Tensorflow 1.14
Deep learning library Keras 2.3.1
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model. Moreover, the corresponding results are obtained.
Figure 5 shows the loss function curve of the training set and
test set of CNN-LSTM-attention and CNN-GRU-attention.
Figure 6 shows the prediction results of the CDLP model for
the test set.

From Figure 5(a), it can be seen that the loss function of
the training set of the CNN-LSTM-attention decreases
rapidly and steadily as the number of iterations increases and
finally tends to a stable state. )en, the loss function of the
test set goes through initial fluctuations as the iteration
progresses, quickly tends to the loss function of the training
set, and is in a stable state. It can be seen from Figure 5(b)
that similar to the CNN-LSTM-attention, the loss function
of the training set of the CNN-GRU-attention network
decreases rapidly and steadily and finally tends to a stable
state and the loss function of the test set also gradually tends
to the training set after initial fluctuations. Finally, the loss
function is in a stable state. )e loss function curves of the
training set and test set of CNN-LSTM-attention and CNN-
GRU-attention show that the design of CNN-LSTM-at-
tention and CNN-GRU-attention network in the CDLP
model is reasonable.

Figure 6 contains a comparison of the traffic flow
predicted results of the CDLP model with the actual value
(top figure) and the error of predicted traffic flow (below
figure). From the top figure, it can be found that the CDLP
model fits the change trend of traffic flow very well, in-
dicating that the model learns the time change charac-
teristics of the traffic flow series and realizes the better
prediction. Moreover, from Figure 6, it can be seen that
the overall errors remain stable and most of them change
in a certain range of -20 and 20. Moreover, based on the
error of predicted traffic flow, the MAPE curve is obtained

and shown in Figure 7. From the figure, it can be found
that the trend of the MAPE curve first quickly rises to the
maximum value, then quickly decreases, and gradually
becomes stable. Finally, the MAPE curve tends to be
5.12%. )is shows that the CDLP model has excellent
robustness and obtains small error, further showing that
the CDLP model can better realize the prediction of traffic
flow.

Furthermore, in order to further verify the prediction
effect of the CDLP model, Figure 8 shows the absolute error
comparison of the traffic flow predicted values of the CDLP
model, CNN-LSTM-attention model, and CNN-GRU-at-
tention models. Figures 8(a) and 8(b) show the traffic flow
prediction errors of the first week and the second week in the
test set under three models. As can be seen from the figure,
the fluctuation range of the prediction error curve of the
CDLP model is the smallest, followed by CNN-LSTM-at-
tention and CNN-GRU-attention. )is indicates that the
prediction accuracy of the CDLP model is better than that of
CNN-LSTM-attention or CNN-GRU-attention and also
shows the advantages of the combination model compared
to a single model.

Meanwhile, some baseline models published in recent
years, which are LSTM, GRU, CNN, CNN-LSTM, CNN-
GRU, CNN-LSTM-attention, and CNN-GRU-attention,
are used to verify the accuracy of the CDLP model. )e
evaluation indicators of the CDLP and baseline models,
which are MAPE, MAE, and RMSE, are obtained, as shown
in Table 4. Moreover, the training times of CDLP and
baseline models are shown in Table 5. It can be seen from
Table 4 that the evaluation indicators of the CDLP model
are the smallest, followed by baseline models. )is shows
that the prediction accuracy of the CDLP model is the best.

Table 2: Evaluation indicator results under different neuron numbers of input and LSTM layer.

Neuron number in the network MAPE (%) MAE RMSE
(6,16,16,1) 25.52 24.92 35.77
(6,32,32,1) 12.99 19.85 29.54
(6,64,64,1) 10.60 12.52 19.40
(6,128,128,1) 12.07 9.68 14.03
(12,16,16,1) 12.86 20.68 31.48
(12,32,32,1) 24.06 19.93 28.90
(12,64,64,1) 9.24 8.65 13.00
(12,128,128,1) 7.33 5.12 8.25
(18,16,16,1) 15.59 20.84 31.93
(18,32,32,1) 10.78 13.60 20.48
(18,64,64,1) 14.47 9.29 13.53
(18,128,128,1) 12.86 7.10 9.92
(24,16,16,1) 13.35 20.88 32.02
(24,32,32,1) 12.59 12.98 19.65
(24,64,64,1) 22.54 11.37 15.66
(24,128,128,1) 21.84 7.81 11.42

Table 3: Comparison of three evaluation indicators between RMSProp and Adam.

Optimization algorithm MAPE (%) MAE RMSE
Adam 7.31 5.21 9.06
RMSprop 8.21 5.60 9.73
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Moreover, it can be found from Table 5 that the training
time of the CDLP model is as long as the time of the CNN-
LSTM-attention model, but its prediction accuracy is
higher than that of CNN-LSTM-attention model. )e
training time of the CNN model is the shortest, but the
prediction accuracy is the lowest, so the robustness of the
CDLP model is relatively high.

In addition, according to the DOWCA, the weights of
CNN-LSTM-attention model and CNN-GRU-attention
model in the CDLP model are calculated, as shown in
Figure 9.

Figure 9 shows that the weights of CNN-LSTM-attention
and CNN-GRU-attention are dynamic and constantly
changing, which indicates the two methods have different
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Figure 5: Loss function curves of the training set and test set: (a) CNN-LSTM-attention; (b) CNN-GRU-attention.
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Figure 6: )e prediction results of the CDLP model for the test set.
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prediction results for the same traffic flow data. Moreover, it
can be seen from Figure 8 that the weights of the two models
gradually decrease from a large change at the beginning and
eventually become stable, which reflects the systematic
feasibility of the dynamic weighted coefficient algorithm,
namely, the convergence. Furthermore, it shows that the
weights of the CNN-LSTM-attention model are greater than
those of the CNN-GRU-attention model, indicating that the
prediction accuracy of the CNN-LSTM-attention model is
higher than the CNN-GRU-attention model, which is
consistent with the results in Table 4.
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Figure 8: Error comparison of CDLP, CNN-LSTM-attention, and CNN-GRU-attention: (a) error of the first week in test set; (b) error of the
second week in the test set.
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Figure 7: MAPE curve of CDLP model for the test set.

Table 4: Comparison of three evaluation indexes of CDLP and baseline models.

Model MAPE (%) MAE RMSE
LSTM 8.40 5.34 8.29
GRU 10.79 8.61 12.03
CNN 15.80 20.91 32.41
CNN-LSTM 7.67 4.64 6.66
CNN-GRU 7.48 4.21 6.43
CNN-LSTM-attention 6.64 4.81 7.69
CNN-GRU-attention 7.10 4.97 7.98
CDLP 5.12 3.26 6.52

Table 5: Comparison of model training time of CDLP and baseline
models.

Model Training time (min)
LSTM 48
GRU 42
CNN 35
CNN-LSTM 57
CNN-GRU 51
CNN-LSTM-attention 64
CNN-GRU-attention 60
CDLP 64
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5. Conclusion and Future Work

Traffic flow prediction is an important part of the intelligent
transportation system. In this article, a dynamic weighted
coefficient algorithm for combinational prediction model is
presented, namely, DOWCA. Furthermore, based on CNN,
LSTM, GRU, and DOWCA, a combined deep learning
model for short-term traffic flow prediction is proposed,
namely, CDLP model. )e structure of the CDLP model
with an input layer, a hidden layer, and an output layer is
designed. From the point of the combined model, the CDLP
model includes two paralleled single models, i.e., CNN-
LSTM-attention model and CNN-GRU-attention model.
)e parameters of CDLP model are determined by exper-
iment, which includes loss function, the neuron number,
and optimization algorithm.

)e data from a field intersection are collected, and the
dataset for the CDLPmodel is obtained through abnormal and
missing data processing and normalization processing, which is
divided into the training set and test set. )e CDLP model is
trained and tested.)e results obtained show that the feasibility
of the CDLP model can predict traffic flow with high accuracy.
Moreover, in order to further verify the performance of the
established model, based on the same dataset and the same
parameter settings as the CDLPmodel, the baselinemodels are,
respectively, used to predict the traffic flow. After analyzing the
prediction results of these models, the results show that the
accuracy of the CDLP model is higher than the baseline
models. And DOWCA is validated to obtain the optimal
weighted coefficients for CNN-LSTM-attention and CNN-
GRU-attention in the CDLP model dynamically.

)e structure of a CDLP model is designed and its
parameters are set in this article. However, some parameters,
for example, the number of nodes in the input layer and
hidden layer in the model is obtained through experiments
based on the selection of short-term traffic flow parameters
in the past. How to optimize the parameters in a combined
deep learning model needs to be further studied. Further-
more, traffic flow prediction involves several parameters; the
deep learning structures based on the combinatorial algo-
rithm can be expanded to multidimensional input variables,
such as traffic speed and occupancy.
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An important objective for train operating companies is to let users, especially commuters, directly query the ICT system about
trains’ availability calendar, based on an online approach, and give them clear and brief information, expressed through “in-
telligent” phrases instead of bit maps. )is paper provides a linear programming model of this problem and a fast and flexible
heuristic algorithm to create descriptive sentences from train calendars. )e algorithmic method, based on the “Divide and
Conquer” approach, takes the calendar period queried in its whole and divides it into subsets, which are successively processed one
by one. )e dominant limitation of previous methods is their strong dependence on the size and complexity of instances. On the
contrary, our computational findings show that the proposed online algorithm has a very limited and constant computation time,
even when increasing the problem complexity, keeping its processing time between 0 and 16ms, while producing good quality
solutions that differ by an average surplus of 0.13 subsentences compared to benchmark state-of-art solutions.

1. Introduction

)e European rail sector faces a number of important
challenges that constitute together serious barriers for the
enhancement of its attractiveness and competitiveness on
the global market. )is can be done through a compre-
hensive and coordinated approach to research and inno-
vation and focusing not only on the needs of the rail system
providers but also on the needs of the users.

)erefore, as reported in the Shift2Rail master plan [1],
one of these is a quality of service challenge: rail still does not
come across as a user-friendly transport mode, with 19% of
Europeans simply avoiding taking trains because of acces-
sibility issues. In today’s hyper-connected society, railway
customer service needs a radical rethinking to be adapted to
the constant and rapid evolution of quality expectations of
travellers.

Into the Shift2Rail framework, we can identify five main
asset-specific Innovation Programmes (IPs), covering all
the different structural and functional subsystems of the

rail system, as illustrated in Figure 1. )ese five IPs are not
independent of one another and, into each of them, cus-
tomer satisfaction represents one of the major keys. By
means of this interdependence, evolutions in the tech-
nology in one part of the system can lead to changes in
performance in another part. Starting from this new
viewpoint, optimization covers each phase of the railway
organization process moving toward perceived service
quality by rail customers.

Many examples of this new research approach can be
recognized in the literature: to improve travel safety, Yin
et al. [2] propose a mathematical formulation to minimize
the crowdedness of stations during peak hours to syn-
chronously generate the optimal coordinated train time-
tables; “To Wait or Not to Wait?” is the question submitted
by Schanchtebeck and Schöbel [3] for the delay manage-
ment problem, in order to satisfy two different customer
categories; analyzing and seeking an equilibrium point
between the optimization of reordering choices of train
dispatchers and the route choice of passengers in the
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available services of the railway transport network is rather
the aim of Corman [4]; Hong et al. [5] define a method to
solve train rescheduling and passenger reassignment si-
multaneously to facilitate real-time re-ticketing; somemore
research papers that aim to improve quality service ex-
perienced by users were selected by the special issue by
D’Ariano et al. [6]; like Li et al. [7] where smart card data
transactions are converted to a model of route choice,
throughout the network, to improve the amount of insight
into the travellers’ behavior; D’Acierno et al. [8] aim to
provide operations’ parameters for metro systems so as to
support the planning and implementation of energy-saving
strategies while maintaining a targeted service level; a
scalable method for dynamic profiling is introduced by
Toader et al. [9] that aims to discover knowledge, like travel
habits, from data in motion, and provide faster sharing
mobility services in dynamic contexts; Botte et al. [10] focus
on a Neighborhood Search Algorithm for optimal inter-
vention strategies in the case of a metro system failure with
the purpose to keep a certain service quality level; European
journals themselves began to actively promote an ongoing
special issue in order to “provide the highest quality with
minimal travel cost and time to satisfy the ultimate needs of
customers” (as mentioned in the call for papers of Journal
of Advanced Transportation: Advances in Modelling and
Data-Driven Optimization of Urban Transport and
Logistics).

)e problem studied in this paper belongs to IP2 and IP4
programmes of Shift2Rail. )ese two IPs aim to increase
punctuality and the use of accurate and real-time data for
improved passenger information, to minimize travellers’
inconvenience. Based on the user’s preferences, personal and
secure mobile Travel Companion will store and share their
personal preferences in a wallet, providing personalized
journey and messaging help.

One of the most important and basic information for
users about railways services’ availability is the train cal-
endar, which is seen by travellers as the final result of
several different and complex organization processes, from

train routing to scheduling, timetable generation, and so on
[11–14]. Along with basic information, such as arrival and
departure times, the first data that users need to know is on
which days the service is offered. Due to the present-day
pace of life, it could be too much effort for a person to check
a train calendar if it is expressed in the numerical form.)is
could bring in mistakes and forgetfulness, leading to
travellers’ inconvenience.)erefore, we desire to generate a
more readable way to communicate trains’ availability in
order to ease its comprehension and memorization by
users. Actually, railway companies, such as Trenitalia
S.p.A., already use web services to provide trains avail-
ability information related to predetermined time-lapse
through bit maps accompanied by descriptive sentences.
Nevertheless, this time-lapse is defined by the company, so
the customer cannot directly query the ICT system about a
specific period of interest. Our purpose is to develop an
online train calendar generation tool that permits, espe-
cially commuters, to ask when service is offered into an
arbitrary period. Even if the problem is a niche one, the
little previous literature has approached it mostly through
linear programming, developing mathematical models that
give optimal solutions based on assumptions made, but
with temporal complexity strongly depending on the sizes
and characteristics of the instances. To avoid this negative
scalability feature, we propose to solve the problem with a
new fast algorithmic method, developed through C pro-
gramming language, which has shown constant complexity
and produces good quality solutions. To test the effec-
tiveness of this method, we have compared its performance
on 264 instances, with a mathematical model strongly
inspired by the third and most efficient one proposed by
Amorosi et al. [14], noting how the algorithm returns
similar solutions while reducing the average processing
time from 381ms to 2.32ms.

In addition to this improvement in temporal perfor-
mances, the flexibility provided by this new approach allows
it to print out more detailed and suitable sentences, based on
the specific transport field considered, by modulating the
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Figure 1: )e five IPs of the Shift2Rail framework (source: Shift2Rail master plan).
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core body of the algorithm code but without altering the
computational complexity. A natural extension in the ap-
plication of this approach can be the literal description of
urban rail and bus systems’ calendars, where a periodicity on
the service availability also exists. In this case, given the
smaller scale of instances, one could enrich the sentences’
descriptions by considering, besides days’ timetables, hours’
ones as well, in order to share more compact availability
information with passengers and to better satisfy the cus-
tomer needs, which is the ultimate goal of train operating
companies.

)emajor contribution of this paper lies in a new solving
method applicable to quickly generate descriptive sentences
from event calendars expressed through bit maps, in a
quicker and more adaptable way than the earlier ones, in
order to be applied as an online tool. )erefore, the tech-
nique presented can be extended to any application for
online textual description service availability, also in other
transport fields such as airplanes, ferry, and long trip buses.
But this technique can be also adopted to describe the
frequency of any event having a certain periodicity like
sports events, opening days of commercial activities, and so
forth.

To summarize, this paper considers the problem of
generating descriptive sentences from train calendars, es-
pecially for commuters.)e state of the art proposed a linear
programming model which inspired us to create an im-
proved model that can be easily transformed into an online
tool. )e main challenge of this modeling approach is the
strong dependence of processing times on the complexity of
the instances. To fill this gap, we propose a fast heuristic
algorithm based on the “Divide and Conquer” approach,
which is implemented in C language.)is has been tested on
264 instances. )e results report processing time much
shorter than the ones required by CPLEX to solve the model,
thus proving a better propensity to be used as a practical
online tool.

We next introduce a brief overview of the paper
structure: Section 2 reviews the most related literature,
specifically the third model proposed by Amorosi et al. [15],
as this is the only available research paper (to the best of our
knowledge) that considers the specific train calendar gen-
eration problem in the context of the Italian railways;
Section 3 describes how the ICT system works and at what
point of the process of sharing our algorithm is inserted, and
provides the Integer Linear Programming (ILP) model in-
troduced to model the studied problem, which will be
compared in Section 4 with the developed online algorithmic
method (i.e., the heuristic algorithm) and outlines the
proposed method in all its key phases through a high-level
flowchart; Section 4 shows numerical simulations per-
formed, arguing some observations about the performance
values achieved by the heuristic algorithm and the ILPmodel
and defining strengths and weaknesses of each approach;
Section 5 concludes the paper by summarizing the main
findings, by suggesting directions to improve the heuristic
algorithm, and by summing up other possible applications of
the proposed tool.

2. Literature Review

)is section is mainly focused on the third model presented
by Amorosi et al. [15]. )e reason is related to three different
considerations: first, the problem is a niche one, so there is
very little material about possible solving methods [16]);
second, this paper is the only one that considers the Italian
railway context, with its particular passenger timetables;
third, the third model is the fastest of the three models
presented in their paper. Furthermore, the simulations
studied in Amorosi et al. [15] are created with the active
participation of Trenitalia, so they can be considered as
practical cases, in which real-world characteristics have been
considered for the 264 instances used in our numerical
experiments.

)e idea underlying the method proposed by Amorosi
et al. [15] consists of several phases. First of all, the method
takes as input a periodicity, which is a binary vector that
represents the availability of the train in the time-window
queried, and associates with each of its entry a progressive
index (we will discuss these input data more in detail in
section 3). )en, from the periodicity, only some days, in
which the service is available, are extracted.)e periodicity is
decomposed based on 46 typologies of binary vectors, called
clusters, which refer to a particular availability frequency,
such as “all Mondays,” “all Tuesdays,” . . ., “Holidays” and so
on, currently adopted by the main Trenitalia’s ICT systems.
An example of this relevant passage for the train calendar
can be seen in Figure 2, considering the only “Weekends”
and “Wednesdays-/ursdays” clusters.

Once all the clusters are created for the periodicity in the
input, some copies are replicated for each cluster.)ese copies
are eventually used in the case of a particular cluster that is
used to represent more than one subperiod of the periodicity.
)e simulations show that a number of 5 copies should be
enough for any kind of instance. )e input data are given to a
mathematical model implemented in the solver IBM ILOG
CPLEX, which returns the minimum number of sub-vectors
extracted from the clusters-copies chosen.

To choose from which cluster-copy the sub-vectors must
be extracted, the following information is defined:

(i) A quality threshold α, forcing the minimum per-
centage of ones that a sub-vector must contain to be
feasible

(ii) )e minimum length l of the sub-vector extracted
(iii) )e start date YI

c,k of the sub-vector extracted from
the cluster c copy k, which is an integer variable

(iv) )e final date YF
c,k of the sub-vector extracted from

the cluster c copy k, which is an integer variable too

)e adopted solver generates from each cluster c copy k all
feasible subvectors based on the first two parameters α and l.
)en, defining the start date YI

c,k and the final date YF
c,k, the

solver decides from which cluster c copy k to extract the most
suitable sub-vectors for each sub-period of the periodicity. If the
sub-vector chosen is populated by some zeros, those are de-
scribed in the corresponding sentence as exceptions.
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In the absence of the original implementation, to build
up a comparison as accurate as possible and directly check
the strengths and weaknesses of this approach, we have
personally developed a mathematical model strongly in-
spired by the Amorosi et al.’s [15] model (a detailed de-
scription of this model will be given in section 4).)is model
has three fundamental differences with the work done in
Amorosi et al. [15]:

(1) Our model is implemented through Python,
importing and using the docplex module, and it can
thus be thought of as a stand-alone tool, imple-
mented into a single environment. On the contrary,
Amorosi et al.’s [15] model was being fed through
data generated in Microsoft .NET, solved in IBM
ILOG CPLEX, and the numerical solutions were then
translated into train calendars by an external script.
Using the docplex module, we have linked our op-
timization model with the preprocessing and post-
processing phases, effectively making it an online
tool, which receives input data about periodicity
queried by the users and returns the corresponding
descriptive sentence (Figure 3).

(2) Before giving any input data to Amorosi et al.’s [15]
model, the previous approach applied preprocessing
functions that allow their model to know when a
specific day was associated with a cluster and when it
was not associated. On the contrary, in the new
model presented in this paper, this information is
expressed by a binary data c∗d,c,k . When c∗d,c,k for the
day d, cluster c, copy k is equal to 1, this means that
day d is covered by that cluster-copy, 0 otherwise.
)is additional input data allow our model to avoid
using a preprocessing phase and directly transfer the
information on whether or not a day belongs to a
cluster.

(3) In our model, the parameter l considered by
Amorosi et al. [15] to extract sub-vectors is removed,
along with constraints (1). )e removal of this pa-
rameter allows to lighten the model of |C|∗ |K|

constraints, where C is the set of clusters and K the
set of the clusters-copies used by the model.

Y
F
c,k − Y

I
c,k ≥ (l − 1)∗xc,k ∀ c ∈ C ∀k ∈ K. (1)

In constraints (1), to consider single scattered days also,
we need to set the parameter l equal to 1, resulting in the
argument to the right to be set equal to zero. With this
setting, the only case in which any of constraints (1) can be
violated is when the difference between YF

c,k and YI
c,k is

negative, that is, when YI
c,k is associated with a date pre-

ceding the one associated with YF
c,k. However, this case is not

allowed by constraints (4) and (5) in our model. As a result,
there is no reason to enforce constraints (1), and we thus
remove them from our model.

)e simulations in Amorosi et al. [15] showed four main
limitations of their approach:

(i) )e processing times are strongly dependent on the
size and complexity of instances in the input, and
this is not so good for an online tool. In Figure 4, we
can see a scatter plot of the processing time for each
of the 264 instances, expressed in milliseconds. )e
chart shows significant variability in the distribution
of the values, with peaks up to 4.5 sec. )ese peaks
correspond to instances populated by single scat-
tered days. )is fact is one of the weaknesses of their
approach along with the low-quality solutions as-
sociated with some instances.

(ii) )e use of a percentage threshold α (based on the
size of the sub-vector considered) could be a double-
edged sword as, if the periodicity is quite long, the
solver could not extract the most properly cluster,
and add many exceptions to the sentence printed in
output. During the simulations, we tried out α
values equal to 80% and 90%, noting that: in the first
case, the solver does not tend to extract the most
suitable descriptive clusters and/or add several ex-
ceptions, when the periodicity size is particularly
extended.)is tendency is illustrated by Figure 5; in
the second case, decreasing the number of excep-
tions permitted, their model has difficulties in the
processing instances, which are characterized by
single scattered days, both in terms of quality and
computation time. For example, if the briefest de-
scription for the periodicity is “/e service is pro-
vided fromMonday to Saturday from x/y to z/w” but
the time window considered is wide enough, their
model solution could take a sub-vector of the
cluster-copy “Monday-Friday”, while the corre-
sponding solver prints out “/e service is provided
from Monday to Friday from x/y to z/w except for
Saturday t/y, Saturday h/y. . .”. However, for the
comparison between the different methods, we fixed
the threshold to 90%, in order to prevent the solver
from using too many exceptions, lowering the
quality-related performance.

(iii) )eparameter l, being a fixed value,must be equal to 1,
in order to cover the periodicity populated by single
days as well. Due to this necessity, their model has
several difficulties both in the timely processing and in
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Figure 2: Examples of “Weekends” (a) and “Wednesdays-)ursdays” (b) clusters extracted from the practical case.
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the association of sentences with instances with single
scattered days. When their model has to process these
types of instances, we observe both a considerable
increase in processing times and the following solver’s
decision has to extract whatever cluster-copy that
covers those days, simply by modulating the start and
final dates of the sub-vector. For example, if in a week
the service is available only onWednesday, theirmodel
could take a copy of the cluster “Working days,” while
the corresponding solver prints out “/e service is
provided on working days from 13th May to 13th May.”
Even though the last sentence is correct, the sentence is
clearly not so effective and might confuse the users.

(iv) )eir model does not consider the possibility of
inserting new clusters without involving a signif-
icant increase in processing times or storing and

adding extra days to the subsentences, instead of
using one or more additional clusters. During a
subperiod of the periodicity, for example, if the
service is provided on Monday, Tuesday and
Saturday, the sentence in output will be “/e service
is provided onMonday and Tuesday from x/y to z/w;
on Saturday from x/y to z/w,” that is, the solver will
consider two different clusters-copies. On the
contrary, we could insert new clusters such as
“Monday-Tuesday and Saturday” to use one cluster
only and make the sentence more readable and
effective. Why was this not performed in the ap-
proach proposed in the literature? Probably be-
cause considering all possible combinations among
the week days would significantly increase the
computational complexity of their approach.
Otherwise, if the extra day concerning the cluster
associated with that week is exactly one, we could
print “/e service is provided on Monday and
Tuesday from x/y to z/y including Saturday t/y” in
output.

)ese limitations and new features can be, respectively,
eliminated and realized through the speed and flexibility of
our algorithmic method, which is based on C programming
language, as described in Section 3.

3. Materials and Methods

As we anticipated in the previous section, starting from a
train calendar expressed through a bit map (Figure 6), we
want to query a defined time window and generate the
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clearest and briefest sentence describing the train avail-
ability. Within the ICTsystem, the calendars are represented
by binary vectors, in which the zeros correspond to the days
on which the service is not provided and the ones on which it
is provided.

)e binary vector based on the time window of interest
and extracted from this calendar form is called periodicity.
Figure 7 is an example of periodicity referred to the time
window introduced in Figure 6. Due to the intersection
between mathematical and natural language domains, there
are many different ways to express the same periodicity.

In this case, for example, to represent the periodicity
through a sentence, we can use the positive way,

“)e service is provided on working days from 1st May to
30th June.”

Or the negative one,

“)e service is not provided on weekends from 1st May to
30th June.”

However, throughout this paper, the positive way is
used. For the positive way itself, different representations of
the same information could be implemented for the same
instance. We could say that “/e service is provided from
Monday to /ursday from 1st May to 30th June except for 1st
May, 8th May,. . .” and so on, or, as we reported above, “/e
service is provided on working days from 1st May to 30th June.”

)e most readable among them is for sure the second
one. For this reason, we want to develop a fast tool that can
automatically recognize which representation is better and
prints it out. According to our study as well as previous
studies, the cleverest descriptive phrase is the briefest one,
which is more readable and storable.

Obviously, if a service is available always or on Monday
all year long, there is no need at all for optimization.

However, the use of a heuristic algorithm or mathematical
programming approach is motivated by complex cases of
service availability, where a nonoptimized sentence can be
very long and not easy to understand. )is can thus be even
useless in some cases for the customers. )e practice case
considers the distribution of service availability during the
year depending on many variables, such as customer de-
mand, holidays, the number of trains, limited resources, and
operational constraints [5, 17].

Following the practical case (as shown in Figure 8), we
can see a more likely train calendar queried, along with its
periodicity, populated by different subperiods of train
availability and by exceptions and days in surplus.

)e most concise descriptive phrase for the periodicity
below could be:

“/e service is provided on the weekends from 3rd July to
18th July except for Saturday 17th July; on Wednesdays and
/ursdays from 21st July to 5th August including Friday 6th
August; on working days from 9th August to 20th August.”

We generate this type of sentence by inserting the train
calendar’s periodicity as input, which is a binary vector. In
Section 2, we mentioned the ILP model implemented to
solve the studied problem, in order to compare the literature
approach with the algorithmic approach presented in this
paper. In the following, we provide its description.

3.1. Notations and Mathematical Formulation. We consider
the following input data:

O � set of operating days associated with the periodicity
(in which the service is provided).
C � set of clusters.
Cc,k � k-th copy of cluster c ∈ C.
d∗d,c,k � (position of the date d in Cc,k) +1.
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Figure 5: Percentages of the number of exceptions printed out by the model when the solutions differ.
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c∗d,c,k � 1, if the date d is covered by the copy􏼈

Cc,k of cluster c, 0, otherwise.
α�minimum percentage of ones that the sub-vectors
must have to be feasible.
Tot� cardinality of the periodicity.
M � big integer.

We define the following decision variables.

(i) Integer variables:

YI
c,k � integer representing the start position of

the sub-vector extracted from the copy Cc,k of
cluster c

YF
c,k � integer representing the final position of the

sub-vector extracted from the copy Cc,k of cluster c

(ii) Binary variables:

Kd,c,k � 1, if the date􏼈 d is covered in the
solution by the copy Cc,k of cluster c, 0, otherwise.
xc,k � 1, if the the copy􏼈 Cc,k

of cluster c is chosen in the solution, 0, otherwise.

)rough these input data and decision variables, we
present the following ILP model:

min 􏽘
c∈C,k

xc,k. (2)
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Figure 6: Example of a train calendar.
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Figure 8: A practical case.
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subject to

􏽘
d∈O

Kd,c,k ∗ c
∗
d,c,k ≥ α∗ xc,k + Y

F
c,k − Y

I
c,k􏼐 􏼑 ∀c ∈ C ∀k

(3)

Y
F
c,k ≥ d

∗
d,c,k ∗ Kd,c,k ∀d ∈ O ∀c ∈ C ∀k (4)

Y
I
c,k ≤ (1 − M)∗ d

∗
d,c,k ∗ Kd,c,k + d

∗
d,c,k ∗M ∀d ∈ O c ∈ C ∀k

(5)

􏽘
c∈C,k

Kd,c,k ∗ c
∗
d,c,k ≥ 1 ∀d ∈ O (6)

xc,k ≥
􏽐d∈OKd,c,k

Tot
∀c ∈ C ∀k (7)

As we can see in the mathematical models (2)–(7), the
objective function minimizes the number of sub-vectors
extracted, represented by xc,k, the binary variable associated
with the cluster c and copy k (2). )e following constraints
explain, respectively, that the percentage of ones into a feasible
sub-vector must be greater than or equal to the threshold α (3);
constraints (4) and (5) impose that the two integer variables,
YI

c,k and YF
c,k, of a feasible sub-vector take progressive indexes,

respectively, before the first date and after the last date covered
by the sub-vector that they are associated with; every date in
which the service is available must be covered at least one time
(6); if a cluster c and copy k are chosen in the solution to cover
at least one date of the periodicity, the variable xc,k associated
with this must be activated (7). Based on preliminar numerical
simulations, we have set the threshold α equal to 0.9 . )e
reason is that if we set this threshold to a lower value, the solver
would generate a less fitting sub-vector along with many ex-
ceptions; on the contrary, if we set it to a higher value, the solver
would take too much time in processing the tested instances.

We will next refer to this mathematical model as “the
model,” in order to get the reading smoother.

At this point, we can describe the proposed heuristic
algorithm. First of all, as an online tool, it interacts with users
by accepting the input data queried: start and final dates of
the time window of interest. To avoid the use of external one-
time filled calendars, as happened in previous literature, the
second step plans to generate an internal calendar through
mathematical formulas. )en, the periodicity generated by
the ICT systems is taken and divided into the weeks that
make it up. We can see how the algorithm approach is quite
different from the previous one, indeed; while the model
considers the periodicity as a whole, the algorithm follows
the “Divide and Conquer” approach [18]: taking the problem
in its entirety and dividing it into less complex subproblems.
)e idea here comes from the Work Breakdown structure
[19] activity, used to divide large projects into project seg-
ments, called leaves, to be assigned to each operating unit.

Our algorithmic method is implemented in C language.
)e decision to utilize a programming language, like C, is
related to two different reasons: this is a specific request of

the train operating company; it is a compiled one, therefore
it is faster than a programming language interpreted [20].
Our first aim was to mitigate the variability and the duration
of processing time employed by past literature, in order to
develop a more practical tool. Furthermore, we wanted the
possibility to insert more clusters based on the particular
railway context to improve the briefness of sentences printed
and the chance to create useful functions, such as the one
related to extra days. But how does the heuristic algorithm
work? )e code is divided into two macro-phases: a pre-
paratory one that manipulates the periodicity, and the next
one that processes the periodicity itself. )e main phases of
the proposed heuristic are illustrated by the flowchart in
Figure 9.

After we have carefully manipulated the input data, we
need a tool that transforms the subperiods of initial peri-
odicity into sentences. )is one is a classical C data structure
called the Box. )e Box is like a single machine that receives
theWIPs, that is the weeks, through a conveyor belt and does
something and pulls out the final products, which are the
sentences. )e conveyor belt is represented by a while loop,
which is the core of the second phase. )e exit condition for
the while loop is connected with the number of weeks of the
input periodicity: the while loop goes on until the last week
has not been processed.

What does the machine do exactly to generate a solution
to the studied problem? Into the Box, the weeks are stored
three at a time. A descriptive cluster of the days, on which the
service is offered, is assigned with the week in the first
position. Later, the weeks stored in the second and third
positions are compared with the one in the first position,
depending on the case, to check if they are different, similar,
or equal.

)is comparison is done based on the days of the week in
which the service is available:

(i) If two weeks have the same days on, this means that
the service is offered on the same days and so the
compared weeks can be considered as equal. )e
second week is thus “incorporated” into the first
one. )is means that the cluster associated with the
first week is also associated with the second one, and
when the sentence, which describes the service
availability of these two weeks (based on the cluster
associated) is printed out, a specific time window
will be considered, which starts from the first day of
availability of the first week to the last day of
availability of the second week.

(ii) If two weeks differ from each other by only one day of
unavailability or availability, this means that this day
could be, respectively, an exception or an extra day. If
this is the case, theseweeks can be considered as similar.
To check if it is true, we compare also the first week,
with the third one, and if they are the same, the
similarity is confirmed. )e second week is thus in-
corporated into the first one, and the day apart is la-
beled as an extra one or an exception, based on the case.
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(iii) If two weeks differ from each other by two or more
days of unavailability or availability, we consider
these as different. In this case, we do not incorporate
the second week with the first one, and we represent
the two weeks, and the ones incorporated with
them, with different clusters. )erefore, the algo-
rithm will print out different sentences from these
two subperiods.

An example for each case is shown in Figure 10. Once we
know if the week in the second position of the Box is dif-
ferent (c), similar (b), or equal (a) to the one in the first
position, a function scrolls the weeks in order to sequentially
process all the weeks of the periodicity.

Once all the weeks have been processed and the sentences
associated with the subperiods have been printed out, the code
exits from the while loop. However, for the practical use of this

User input

Generation of an
internal calendar

Division of
periodicity into

weeks

While loop until all
weeks have been

processed

Is the last week of
periodicity processed?

Is the week in the first
position of the “Box” equal to the

one in the second position?

Is the week in the first
position of the “Box” similiar to the

one in the second position?

Is the week in the first
position of the “Box” different from the

one in the second position?

Incorporate the week in the
second position to the one in

the first position?

Is the week in position
three of the “Box” equal to the

one in the second position?

Treat the day apart
like an exception or

an extra day

Incorporate the week in
the second and third
position to the one in

the first position

Print the sentence associated
with the week in the first position

and, eventually, with the weeks
incorporated in this one

Exit from code
Yes

Yes

Yes Yes

Yes

No

No

No No

Shi� the weeks

Figure 9: Flowchart of the proposed heuristic algorithm.
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tool, we will consider the implementation of an infinite loop,
such as a while True, containing the whole code along with a
break condition. Another important feature (that solved an
important limitation of the previous method) is that, thanks to
the flexibility of the C programming language, we inserted
other clusters in addition to the starting 46, such as the cluster
“Monday-Tuesday and Saturday” and all possible combinations
between different days of the week, without altering the
computational complexity, as for the code they are only strings
to search.)is added feature allows us to reduce the number of
clusters used to print out a solution. As we will discuss in the
next section, this approach ensures that a good constructive
solution is generated with constant complexity and the clusters
are adapted to the specific rail context in which the train
operating company is part.

To better explain how the workflow of our algorithm
operates, a step-by-step description of the activities per-
formed on a trial instance is presented. We assume that the
period queried by a user is composed of only four weeks,
from 1st March to 28th March (Figure 11).

First of all, the algorithm takes the input data, start and final
dates of the time window, along with the periodicity associated
with the specific train requested, and creates the internal
calendar, which is amatrix.)en, the periodicity is divided into
its weeks based on the weekdays assigned to each progressive
index through the following mathematical formula. )e var-
iables in this formula are described in Table 1.

dw � mod
y +(y − 1/4) − (y − 1/100) +(y − 1/400) + dc

7
􏼠 􏼡.

(8)

For example, to figure out which day of the week cor-
responds to 10th January 2020, we will consider y � 2020
and dc � 10, obtaining a dw equal to 6, that is, Friday.

)e data structure “Box” takes the first three weeks,
associates the cluster “Monday-Wednesday” with the week
in the first position, and starts the comparison between the
latter and the one in the second position (Figure 12).

Since they are not equal but differ by one day only,
Wednesday 10th March, the algorithm checks if they could
be similar or different by comparing the week in the first
position with that in the third position. )e latter is equal to
the week in the first position, so the similarity is confirmed.
Consequently, the weeks in the second and third positions
are incorporated with the one in the first position.
Wednesday 10th March is stored as an exception and the
time-lapse of cluster “Monday-Wednesday” is updated,
starting fromMonday 1st March to the last day of the week in
the third position, which is Wednesday 17th March. )e
weeks in the second and third positions are scrolled, and the
fourth week enters the “Box.”)e latter is compared with the
week in the first position and, as they have only two days on
in common, they are classified as “different.” )e cluster
associated with the week in the first position is then printed
out as a subsentence of the periodicity, the fourth week is
inserted in the first position of the “Box,” and a new cluster is
attached with it, that is, the cluster “on Weekends” on
Saturday 27th and Sunday 28th March.

Since all the weeks are processed, the counter meets the
exit condition and the while loop ends. )e sentence con-
nected to the periodicity is thus displayed, as we can see in
Figure 13.

Once the algorithm has been described, some differences
with the literature approach can be identified:

(i) )e modeling approach looks at the instance in its
entirety and creates the clusters-copies over the
overall time window queried. )is leads to an in-
crease in the computational effort to compute the
best possible solution. On the contrary, the heuristic
algorithm looks at the instance week by week,
generating and associating, when required, a cluster
of seven days with the week in the first position of
the box (Figure 14). )is cluster is compared with
the weeks ahead, and no new cluster is generated
until there exists a significant difference between
two weeks, in terms of days of service availability.
)is trade-off in the view and segmentation of the
periodicity allows to sharply reduce the processing
times.

(ii) )rough the modeling approach, introducing a new
cluster c1 to improve the solution quality would lead
to the computation of that cluster over the whole
instance along with the replication of all its copies.
Differently, the proposed heuristic algorithm im-
plements clusters through strings and, therefore, the
most considerable strain lies in the association of
each week with a cluster, performed through the
sorting of arrays of a length of seven. )is allows to
easily insert new clusters with a considerably re-
duced computational effort compared to the model,
in order to improve the quality of descriptive
sentences.

(iii) Another relevant difference between the model and
the algorithm is the introduction of a function that
considers extra days between weeks. Let us assume
that, in the period of interest, the service is offered
with the same frequency, except for some scattered
weeks, in which there is an extra day, as in the case
of festivities. In this case, the modeling approach
will associate at least two clusters with the peri-
odicity, and therefore, two subsentences. )rough
the extra days’ function implemented in the algo-
rithm, these days will be stored as extra days and
added to the single cluster choices to describe the
periodicity. )is sample function is an example of
the flexibility of this type of tool and its potential to
be adapted to different public transport contexts, to
increase the service quality perceived by the users.

4. Results and Discussion

In order to compare how the two methods are presented in
this work, we tested them on 264 instances imported from a
.csv file. While the model was developed and executed on the
IDE Pycharm 2020.3.3, for the heuristic algorithm we used
Code:Blocks 20.03. All tests were performed on a Windows
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operative system Intel i7 processor with 2.6GHz and 16GB
of RAM. )e whole 264 instances are created based on the
ones presented in the study of Amorosi et al. [15] and on the
potential weakness of eachmethod, that are, respectively, the
less effective processing of the descriptive cluster “Every
day,” when it is used as a solution by the heuristic algorithm;
the poor performances, in terms of efficiency and effec-
tiveness, generated by the model approach in processing
periodicities populated by single scattered days.

We test the ILP model and the heuristic algorithm for
various possible situations in order to quantitatively evaluate
their potential. We also investigate the exponential time and
the high number of clusters used by the model of Section 3 to
process periodicity populated by single days. )is creates
“rare events” that significantly alter the performance indexes
employed. )erefore, the periodicities described in whole or
in part by the cluster “Every day” represent 24%, while the
ones populated by single days are 4% of all the tested cases.

)e experiments consist of three different sets of peri-
odicities, updated to 2020: the first one is composed of 62
instances ranging from 13th September to 24th November
2020; the second one contains 88 instances ranging from 3rd
May to 2nd August 2020; the last one is made up of 113
instances from 2nd February to 20th May 2020. So, the sets
cover, respectively, segments with a length equal to two,
three, and almost four months.

We considered both temporal and quality indexes,
precisely: average, maximum, and minimum processing
times; average, maximum, and minimum numbers of de-
scriptive clusters used. )e values obtained for each index
are indicated in Table 2.

Two other important indexes that we can consider are: the
number of different clusters used by each method when two
different solutions are printed out; the number of exceptions
used by each method when the solutions differ by the number
of clusters used. )is last index is important due to the
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Figure 11: Train calendar and periodicity of the trial instance.

Table 1: List of symbols used in mathematical formula (8).

Symbol Description

dw

Values ranging from 0 to 6, where 0 is associated with the day of week “Saturday” and 6 with “Friday”. )erefore, for “Monday”
this value will be equal to 2.

y Current year. For the simulations, we consider this value equal to 2020.
x )e integer portion quotient x inside the brackets.
dc )e number of the year-to-date days, starting from 1st January to which we associate the value 1.
mod )e modulo operator, which returns the remainder of the division inside the round brackets.
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limitation identified with the use of a percentage threshold by
the model. In fact, what can happen is that the model may use
fewer clusters, but along with many more exceptions.

As we can see in Figure 15, the percentage of periodicities
to which the two methods associate different number of
clusters is 30% of the whole tests. Eighty-two percent of the
solutions of this 30% differ by one cluster, 9% differ by two
clusters, and the other 9% differ by three or more clusters.

However, the latter 9% can be traced back to the diffi-
culties of the model to process instances populated by single
days. )e following figure (Figure 5), rather, represents the
percentages of the number of exceptions inserted in the
sentences printed out by the model when the two methods
used a different number of clusters to describe each
periodicity.

)e following plots (Figure 16) consider, respectively,
the processing time of each periodicity tested, and the
number of clusters used to print out the solution by each
method.

)e results in Figure 16 show how the proposed heuristic
algorithm solves our initial research questions and the
limitations identified from the past literature. First, we were
looking for an online tool that could interact with rail users.
Due to this specific feature, the tool has to be very fast. To
achieve this goal, the past literature made use of external
tools, such as.NET and scripts in addition to their model,
thus increasing the resulting processing times. )e model

and the heuristic algorithm proposed in this paper are both
stand-alone tools. Figure 17 illustrates the distribution of
processing times into specific time frames and, as we can see,
40% of them exceeds the seconds up to 4.3. )is can be a
problem in practice, to maintain fast response times, while
considering the time required for transfer of information to
and from the server. Unlike the model, the heuristic algo-
rithm maintains a constant complexity, as proved by Fig-
ure 16 and Table 2, which is independent from the length or
complexity of the considered instance, with processing times
ranging from 0 to 16ms and an average processing time of
2.32ms. A constant computational complexity means that
developing an online tool based on our algorithm would not
be subject to significant variability of the response times to
the users’ queries.

Second, the number of clusters used by the model is up
to 6 per instance, while the one used by our heuristic
algorithm is up to 5 per instance. Even though this is a
slight difference, to properly assess the quality of the
provided solutions, we should consider which clusters are
used to print out the descriptive sentences as well. Indeed,
looking at Figure 18 on the distribution of the number of
clusters, in correspondence with the solutions that exceed
the three clusters used by the model, there are instances
populated by single scattered days, for which the solver
tends to extract whatever cluster covers the corresponding
single day, regardless if this is the most proper one, by

Table 2: Values measured for each method based on the performance indexes considered.

Time ILP model Heuristic algorithm
Average 1000 2.32
Max 4334 16
Min 300 0
Number of clusters
Average 1.19 1.32
Max 6 5
Note: time is expressed in ms.
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Figure 13: )e sentence printed out for the considered trial instance.
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modulating the endpoints YI
c,k and YF

c,k. )is leads to a
lowering of solution-quality and an increase in the like-
lihood of confusing the users. Differently, the algorithm
works very well with single days, since this does not require
the use of any threshold value, which could insert many
exceptions, to minimize the studied objective function.
Furthermore, our algorithm returns the most effective
descriptive cluster that could be associated with these
subperiods, keeping away from the modulation of the start
and final dates of whatever cluster covers them. For ex-
ample, if the single day on which the service is offered is
Wednesday, the algorithm will associate the cluster

“Wednesday” with that week instead of using the cluster
“Working days” and thus choosing the YI

c,k and YF
c,k values

which correspond to that particular Wednesday.
When looking at the quality performance measurements in

Table 2 and Figure 18, the heuristic algorithmmakes use of 0.13
extra clusters compared to the model, which computes the
optimal solution. Furthermore, even though the distribution of
the instanceswith two clusters is higher in the solutions provided
by the heuristic algorithm compared to the ones computed by
themodel, the algorithm avoids exceeding three clusters to solve
these benchmark instances. )is means that the algorithm
behaves more consistently, avoiding rare events that lead to
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Figure 14: Methodological differences between the model (a) and the heuristic algorithm (b).

70% 24%30%

=2

>=3

3%

3%

Same solution

=1

Figure 15: Percentage of different solutions used by each method, along with the number of different clusters used.
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important disservices, while sharing information with the users.
Furthermore, the algorithm identifies more descriptive clusters
and introduces new and more flexible functions (e.g., infor-
mation on the extra days) without increasing the overall pro-
cessing time. )is additional flexibility reduces the number of
clusters associated with each solution and improves the resulting
solution quality. Differently, in the modeling approach, these

additional functionsmight lead to new constraints and variables,
thus potentially increasing the computational complexity.

However, there are two main limitations that we have
met: the “Every day” cluster is worked more effectively by
the model, while the algorithm tends to unpack the be-
ginning and end times of each period. For example, if the
solution generated by the model is “/e service is provided
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every day from x/y to z/w,” the heuristic algorithm, which
works week by week, could break it down into two dif-
ferent clusters; the second limitation is actually linked to
the characteristics requested by the train operating
company itself. In fact, while the model can work on a
periodicity over the years, the algorithm can only consider
one year at a time. )is is because the train operating
company requests a tool that would work from six months
to six months.

5. Conclusions

In this paper, we developed a fast and flexible alternative
method to the approach of state-of-the-art for train calendars’
textual generation that mainly allows us to maintain a con-
stant computation time, return good quality solutions, and
introduce new functions to enhance the effectiveness of the
sentences to be printed out. )eoretical and practical con-
tributions lie in a new ILP model along with a fast heuristic

algorithm for solving the online train calendar generation
problem. )e ILP model has three main differences with
Amorosi et al.’s [15] model: our model considers a new data
c∗d,c,k with the aim of avoiding preprocessing functions which
were used by Amorosi et al. [15] to filter input data; the
parameter l in their model, employed to define a bond to the
length on the subsentences extracted, is not considered in our
model along with the |C|∗ |K| constraints involving this
parameter; our model is embedded in Python, which allows
the integration both of a preprocessing phase of the input data
and a postprocessing phase of output data into a single en-
vironment, thus improving the online interaction with the
users and the speed of generating train calendar descriptive
sentences that were performed by an external script in
Amorosi et al. [15].

Regarding the algorithmic contribution, the heuristic
proposed in our paper exploits a “Divide and Conquer” logic
to tame the whole periodicity through the generation of
week-by-week solutions. From the computational
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experiments, our algorithm presents, on average, a strong
(equal to 99.8%) processing time reduction compared to the
modeling approach, while remaining below 1.32 sub-
sentences per periodicity. Due to its fast response time and
its ability to compute good quality solutions, the proposed
algorithm can be considered as the best choice to develop a
valid online tool for train calendar generation.

Is it possible to go further in this direction? Of course, there
are some open issues. )e first thing that we could improve is
the processing of the “Every day” cluster, giving the algorithm
the possibility to predict that. What we mean is to allow the
algorithm to intelligently understand if a subperiod that can be
effectively described by the “Every day” cluster has begun.)is
should further reduce the average number of clusters used.

Another important way to improve the current results
could be to reconsider the initial assumptions on what we
consider a readable and intelligent sentence based on a more
realistic perceived quality by the user, for example, through
the perceived service quality model proposed by [21]. What
if the minimum number of clusters is not a quality pa-
rameter for the sentences? Before we began developing the
current algorithm, we intended to start a survey campaign
among university commuter students, but this was not fully
possible due to the restrictions imposed by the covid-19
situation. )is could have allowed us to confirm our logical
assumptions or reshape them based on new considerations
from the perceived quality of service.

Moreover, the flexibility demonstrated by the proposed
algorithm enables it to be adopted to develop online tools for
event calendars’ description in other public transport contexts
with different problem specifications and descriptive sentences
to be printed out. From the ground to air transport, the pro-
cedural method expressed by the main body of the algorithm
could be populated by additional features, and be addressed not
only to external users but also to the transfer of information for
internal staff, as in the case of freight transport sector.
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Bicycle scheduling is the essential strategy for balancing the demand for the public bicycle system (PBS). Existing literature pays
more attention to bike schedulingmodels and their solutions, but seldom discusses the dispatch area and depot center. Reasonable
dockless public bicycle dispatch area and optimal dockless bike dispatch depot location in the service area were discussed from the
existing shared bicycle operation data in this paper. We proposed a feasible framework including bike trip network segmentation,
mean-shift clustering based on the point position, VRP model, genetic algorithm, and TOPSIS evaluation method. +e ef-
fectiveness and superiority of the division of the dispatch area are verified. +e main evidence for this article is (1) although the
cycling networks of bicycles are different at different times of the day, the results of community division are relatively stable and
have great similarities. (2)+e plan of the dispatch area has impacted on the operation efficiency of the PBS. For a scheduling area,
the target value of the optimal scheduling strategy corresponding to different dispatch centers is obviously different.+erefore, the
location of the dispatch center has a great impact on the quality of the scheduling strategy. +e dispatch area determined by bike
trip OD community detection has stable characteristics of scheduling costs. (3) +is work is an attempt to combine big data and
model technology to assist city management. We build a feasible framework to serve a balanced strategy for FFBS which can
provide reasonable dispatch area, optimal dispatch depot location, dispatch truck’s route length, load action, and time window.
Our proposed framework provides new ideas for regional traffic dispatching for the traffic management department and FFBS
operator, which has certain practical reference significance.

1. Introduction

Public bike system (PBS), also called a bicycle-sharing
system (BSS), which was born in 1965 in Europe, has been
developed for three generations [1]. +e concept of the PBS/
BSS is simple: a user arrives at a station, takes a bike, uses it
for a while, and then returns it to another station. It is
economical, eco-friendly, and healthy, has ultralow carbon
emissions, is more equitable, has increasingly received at-
tention in the last decade, and has rapidly emerged in many
cities all over the world [2]. Since 2016, a relatively new
model of the PBS, known as the free-float bike-sharing
(FFBS) system, has increasingly gained its popularity. +e
FFBS is based on the mobile app and GPS which eliminates
stations and docks (also called dockless bike). Passengers can

easily pick up and drop off the bike anywhere using their cell
phone. +is system is quite spread nowadays through en-
terprises as OFO and Mobike since early 2016 in China.

+e FFBS is an innovative bike-sharing model. FFBS
saves on start-up cost, in comparison to station-based bike
sharing (SBBS), by avoiding the construction of expensive
docking stations and kiosk machines. FFBS prevents bike
theft and offers significant opportunities for smart man-
agement by tracking bikes in real time with built-in GPS.
Despite the convenience and flexibility provided to users and
their contribution to the sustainability of urban trans-
portation, FFBS systems also face numerous challenges. For
SBBS, the lack of resources is the major issue: a user can
arrive at a station that has no bike available or wants to
return her bike at a station with no empty spot. Like SBBS,
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the success of FFBS depends on the efficiency of its reba-
lancing operations to serve the maximal demand as possible.
It is not easy to maintain an effective balance in the dis-
tribution of bikes. +e relationship between the supply and
demand of free-float bikes is more complicated because of
no restrictions on the use time and location. Owing to the
fluctuating and asymmetric demand for rides throughout
the day, the spatial distribution of bikes is highly imbal-
anced. Some scholars have studied the mobility patterns and
imbalance characteristics of FFBS by analyzing its historical
trip [3–5]. +eir studies provide insights to assist the system
operator to make more informed decisions. +ere are many
research studies on public bicycle balance strategies. A
widely adopted rebalancing tactic is the operator-based
approach, characterized by a fleet of trucks and staff dedi-
cated to manually transferring bikes across different regions.
+e strategy generally includes three contents: (1) deter-
mining the scope of the rebalance area; (2) determining the
location of the dispatch center; and (3) finding the optimal
dispatch strategy. Among them, the research on optimal
dispatching strategies is the most concerned issue for
scholars, and the scheduling objectives and solving algo-
rithms have obtained rich results. However, a reasonable
dispatching area is necessary for effective dispatching work.
For those bicycle stations included in a dispatch area, if most
stations in the area need to drop off bicycles, the bikes on the
dispatch vehicle may be insufficient and need to return to the
dispatch center for loading; if most stations in the area need
to pick up bicycles, then the dispatching vehicle cannot
quickly and effectively load these bicycles away. +e rea-
sonable dispatch area should maintain a balanced rela-
tionship between pickup and drop-off bikes.

In this study, we mainly paid more attention to the
dispatching range and the location of the dispatching center
for the FFBS. +is paper is the first to comprehensively
consider the scope of the rebalance area, dispatching route,
and dispatching centers to provide a balanced strategy for
FFBS system operators.+e framework involves the network
community structure, vehicle balancing problem, and
multiobjective decision-making as shown in Figure 1. Two
issues are discussed from the existing shared bicycle oper-
ation data: (1) how to determine a reasonable dockless public
bicycle dispatch area? (2) How to find an optimal dockless
bike dispatch depot location in the service area? In the
framework, first, a network was established based on real
bike trip OD data. Second, the social network theory was
used to analyze the trip network structure by the community
detection algorithm. +e subgroups of the trip network can
be obtained. +e number of bicycles flowing between sub-
group grids is relatively stable at a certain time. +erefore,
the results of subgroup grids can be considered as a scope of
the rebalance area. +ird, for the rebalance area (grids of a
subgroup), each grid is considered a potential dispatch
center. We built a vehicle route problem model with two
optimal objectives: the minimal vehicle cost and the max-
imum grid rebalance rate. +e genetic algorithm mixed with
Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS) was used to find the optimal rebalanced
strategy, and each potential dispatch depot’s best rebalanced

strategy records the vehicle path, vehicle cost, and maximum
grid rebalanced rate. Last, bringing together the best
strategies of all potential dispatch centers in a rebalance area,
TOPSIS was applied again to select the best dispatch center
by considering vehicle costs and grid rebalancing rates. Our
proposed framework provides new ideas for regional traffic
dispatching for the traffic management department and
FFBS operator, which has certain practical reference
significance.

+e rest part of this paper is organized as follows: Section
2 presents a literature review on community detection and
rebalancing operations in bike-sharing systems. In Section 3,
we described the community detection algorithm, the ve-
hicle balance problem model, and the genetic algorithm
used. In Section 4, we described the data of the OFO bicycle
trip and the establishment of the OD network in Shenzhen.
In Section 5, we analyzed community identification of the
OFO bike trip network subgroup in Shenzhen and dem-
onstrated the process of the framework to select the optimal
dispatch center and its corresponding rebalanced strategy.
Finally, Section 5 summarizes the results of this study and
provides direction in future studies.

2. Literature Review

Sharing bike involved in many areas of research, and it is
broadly based on two perspectives: user perspective and
system perspective. In the remainder of this section, we
mainly review the literature on community detection and
rebalancing operations in the PBS.

2.1. Community in Networks. Newman and Girvan [6] gave
widely accepted and used definitions: a community is a
subgraph containing nodes which are more densely linked to
each other than to the rest of the graph. A graph has a
community structure if the number of links into any sub-
graph is higher than the number of links between those
subgraphs. Very promising research on complex network
theory attains the detection of communities [7]. A graph
consists of edges and vertices such as G � G(V, E). Com-
munity detection is the identification of nc≥ 1 communities
inG such that the vertices of a community form an overlay of
V. C � C1, C2, . . . , Gnc􏼈 􏼉. If the intersection of the vertices of
any two communities is empty, C is called a disjoint
community; otherwise, it is called an overlapping com-
munity. Traditionally, community detection in graphs aims
at identifying the modules only based on the topology. +e
problem has a long tradition, and it has appeared in various
forms in several disciplines. New advances also propose the
study of detection of communities in weighted networks
where not only the topology influences the shaping of
clusters but also the weight of each link. Many authors have
proposed methods and algorithms to detect communities in
networks. +e literature indicates three main methods: di-
visive algorithms, optimization methods, and spectral
methods.

Community detection in transportation network re-
search is mostly used to discover urban activity structures.
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De Montis et al. [8] adopted an algorithm based on the
maximization of the weighted modularity of the commuter
network to detect productive basins composed of munici-
palities. Du et al. [9] observed the dynamic mobility flows
using community snapshots of different spatial stations over
time using Shanghai as a case study. Zhang et al. [10] used
community detection to evaluate the bus network topo-
logical structure. Austwick and Zaltz [11] employed com-
munity detection in the bicycle-sharing network to explore
usage in cities. Borgnat et al. [12] discussed how Lyon’s
shared bicycle system, called Velo’v, is a dynamical complex
network and how using community detection methods gives
interesting results. Yao [13] constructed the public bicycle
networks of different urban areas based on the real-time data
of the Nanjing public bicycle system. Secondly, we analyzed
and compared degree, strength, radiation distance, and
community structure of the networks to understand the
internal relations of the public bicycle system. In the next
section, we illustrate the Louvain algorithm as proposed by
Blondel et al. [14]. +erefore, we apply it to detect territorial
clusters shaped by commuting in the center area of
Shenzhen.

2.2. Bike-Sharing Rebalancing Strategies. Bike rebalancing
strategies can be classified into user-based and operator-
based. User-based approaches promote customers to select
more appropriate origins/destinations to realize a more
balanced system. Operator-based approach emphasizes the
optimal dispatching of trucks to manually transferring bikes
across different areas which is a widely adopted rebalancing
tactic.

2.2.1. 1e User-Based Strategies. Fare discounts or pricing
schemes are the most used means to motivate users to
change destinations for improving the operational perfor-
mance of the PBS [15, 16]. +e optimized price vector de-
termines the level of incentives that can persuade users to
ride a bike from or stop at neighboring stations, thereby
strategically reducing the number of unbalanced stations.
Patel et al. [17] developed a discrete event simulation model
of a real-world PBS to evaluate the effectiveness of incentives
in rebalancing the system. +eir job can consider profit and
service levels to choose the best incentive plan. Reiss and
Bosenberger [18] studied a user-based approach to a FFBS
system and discussed the advantages and applicable

scenarios for both operator-based and user-based relocation
strategies. Wu et al. [19] employed user-based tactics by
incentivizing users to perform repositioning activities and
constructed a more detailed quantitative model which can
derive the optimal incentive scheme for the FFBS system.
Some studies considered both user-based and operator-
based strategies. Pfrommer et al. [20] used the model-based
predictive control principle to examine the combination of
dynamic truck routing and incentive scheme design in bi-
cycle redistribution. Li and Shan [21] proposed two types of
users in the BSS: leisure travelers and commuters. Operators
and governments can adopt a bidirectional incentive model
to improve their redistribution service levels. Ghosh and
Varakantham [22] proposed a potentially self-sustaining and
environment-friendly system of dynamic repositioning,
which moves idle bikes during the day with the help of bike
trailers.+eir work can provide an optimization formulation
that generates “repositioning” tasks.

2.2.2. 1e Operator-Based Strategies. +e goal of the oper-
ator-based bike rebalancing problem is usually to find a
minimum cost route for a vehicle and restore the inventory
level at every bike station to its target value by picking up and
delivering bicycles as necessary. +e problems are classified
into static bike rebalancing problem (SBRP) and dynamic
bike rebalancing problem. +e SBRP concerns the task of
repositioning bikes among stations when traffic is low, and
the PBS is idle [23]. +e term static refers to the assumption
that the number of bicycles at each station is known in
advance and will not change during the pickup and transfer
operations. +e bike numbers cannot be adjusted in real
time. Contrary to the static problem, for dynamic reposi-
tioning, the number of bicycles may change during the
operations due to users renting and returning bicycles.
Operator transfers and user trips occur simultaneously, so
more real-time information must be considered in dynamic
repositioning [24, 25].+ere are variousmodels and solution
methods proposed to address the repositioning problem.
Cruz [26] dealt with the SBRP of one single vehicle available,
and the objective is to find a least-cost route that meets the
demand of all stations and does not violate the vehicle
capacity limits in the tour. An iterated local search-based
heuristic was used to solve the problem. Based on the in-
vestigation of the net flow of each bike-sharing station in
Jersey City, Zhang [27] proposed an integer linear
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Figure 1: +e workflow of this study.
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programming formulation to model bike-sharing static
rebalancing. +e formulation considers the problem intro-
duced by the need to collect bicycles in need of repair, and a
hybrid discrete particle swarm optimization algorithm is
used to solve the model. Tang [28] proposed a bilevel
programming model to formulate the SBRP, which can be
used to determine the number of bikes loaded and unloaded
at each station and the optimal truck routes in bike-sharing
systems. Chemla et al. [29] presented efficient algorithms to
solve the SBRP. Similar studies are available in the literature
[30–32]. +e multiple-vehicle balancing problem (MVBP)
has the same objective that requires to design a set of routes
and pickup and delivery operations along each route with
multiple vehicles available. Casazza et al. [33] dealt with the
MVBP and proposed an integer linear programming for-
mulation obtaining proven optimal solutions for MVBP
instances with up to 25 stations and an unbounded number
of vehicles. Ho and Wai [34] proposed a hybrid large
neighborhood search for solving the MVBP. +eir heuristic
is evaluated on three sets of instances with up to 518 sta-
tions and five vehicles. Júnior [35] presented an integer
programming formulation, implemented under a branch-
and-cut scheme, in addition to an iterated local search
metaheuristic that employs efficient move evaluation pro-
cedures. Ghosh et al. [36] proposed an optimization for-
mulation to reposition bikes using vehicles while also
considering the routes for vehicles and future expected
demand. +ey decomposed the problem (bike repositioning
and vehicle routing) and aggregated bike stations to reduce
the computation time significantly. Szeto and Shui [37]
investigated the routes of the repositioning vehicles and the
loading and unloading quantities at each bike station to
firstly minimize the positive deviation from the tolerance of
total demand dissatisfaction and then service time. +is set
of strategies is then embedded into an enhanced artificial bee
colony algorithm to solve the BRP.

For the FFBS, the research on the bike balance problem is
growing. Pal and Yu [38] presented a novel mixed-integer
linear program for solving the SBRP in a series of studies of
FFBS planning and management. +e proposed formulation
can not only handle single as well as multiple vehicles but
also allows for multiple visits to a node by the same vehicle.
+ey used a hybrid nested large neighborhood search with
variable neighborhood descent algorithm, which is both
effective and efficient in solving static complete rebalancing
problems for large-scale bike-sharing programs. Aiming at
the BRP scheduling with travel uncertainty, a multiobjective
integer programming model was established based on the
consideration of the static demand of fix time period, station
capacity limit, penalty cost, and other practical factors by
Zhang and Zhang [39]. An algorithm based on “ant colony
algorithm” is then given to solve the model. Liu [40] studied
the FFBS bike repositioning problem with multiple depots,
multiple visits, and multiple heterogeneous vehicles. Easily
and hardly access nodes with different penalties are defined
to represent different convenience levels of getting bikes
from the FFBS. +e objective of the repositioning is to
minimize the weighted sum of the inconvenience level of
getting bikes from the system and the total unmet demand

and the total operational time. To solve this problem, an
enhanced version of chemical reaction optimization is
developed.

From the previous review, the research on the bike-
sharing rebalancing problem can be distinguished from the
objective of the balanced strategy and the algorithm for
solving it. +e dispatching area and dispatching center are
rarely discussed. For the FFBS, since the dockless bicycle
does not have a centralized station, the starting and ending
position of the vehicle are only related to the user’s personal
travel destination.+is may result in different characteristics
of bicycles using and influencing factors from the PBS. Our
work complements previous research. +is paper compre-
hensively considers the scope of the rebalance area, dis-
patching route, and dispatching centers to provide a
balanced strategy for FFBS system operators.

3. Method and Data

3.1. Community Detection

3.1.1. 1e Modularity. In this paper, we mainly used the
Louvain algorithm proposed by Blondel et al. [14] to identify
the community structure of the bike trip network. +e
Louvain algorithm is an optimization method based on the
maximization of an objective function called modularity [6],
defined as follows for the case of weighted networks:

Qw �
1
2W

× 􏽘
ij

wij −
sisj

2W
􏼒 􏼓 × δ ci, cj􏼐 􏼑. (1)

In equation (1), Wij is the weight of the edge connecting
node i and node j. si � 􏽐jwij (called node strength) is the
sum of the weights of the edges attached to node i. sj � 􏽐iwij

is the sum of the weights of the edges attached to node j.
W � 1/2􏽐ijwij is the sum of all the edge weights. δ(ci, cj) is a
function. When vertices i and j belong to the same com-
munity, δ(ci, cj) is equal to 1; otherwise, its value is 0. +e
modularity is used to quantify how good is a community
subdivision among all possible ones. For a particular sub-
division, how many edges are there inside the communities
with respect to the number of edges among them can be
measured by computing modularity. Its values range from
− 1 to +1. +e 0 value occurs when a certain subdivision has
no more intracommunity edges that one would expect by
random chance. A negative value means that there is no
advantage in splitting the network in communities, and the
best solution is one community.

3.1.2. 1e Louvain Algorithm. +e Louvain algorithm allows
one to approach two critical issues of optimization methods:
detecting communities in large networks in a short time and
considering the hierarchical community structure. +e al-
gorithm is based on an iterative process and can be used for
both weighted and unweighted networks. For a network, the
steps to community detection using the Louvain algorithm
are as follows:

Step 1: each node is assigned to a unique single
community.
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Step 2: neighbor nodes of each target node are pref-
erentially included in the same community if the
variation of the modularity ΔQw is positive. +e ΔQw

function measures the level of performance of the
partition associated to the displacement of a node from
a community C to another.
Step 3: this aggregation process proceeds until the
modularity function Qw reaches a maximum.
Step 4: a new network is then built whose nodes cor-
respond to the communities obtained in Step 3; each
link connecting a pair of communities is featured by a
weight equal to the sum of the weights of the external
links originally between them. +e internal links are
represented by a self-loop, whose weight is equal to the
sum of their internal weights.
Step 5: Step 1 applies to the last network.

3.1.3. 1e Adjusted Rand Index. In order to measure bike
trip network community changes over time, this study in-
troduces the Rand index. From a mathematical standpoint,
Rand index is related to the accuracy, but is applicable even
when class labels are not used. +e Rand index is computed
as the ratio of the number of pairs of objects having the same
label relationship in two partitions. +e Rand index has two
shortcomings: it does not take a constant value for two
random partitions and does not provide suitable results
when the data comprise categories that overlap with each
other to some degree. As the adjusted Rand index (ARI),
Hubert and Arabie [41] extended the basic Rand index and
provided a method able to handle two partitions R and Q of
the same dataset. +e adjusted Rand index is defined as the
following equation:

ωa � a −
(a + c)(a + b)/d

(a + c) +(a + b)/2 − (a + c) +(a + b)/d
. (2)

In equation (2), a is the number of pairs of objects
belonging to the same class in R and to the same cluster inQ.
b is the number of pairs of data objects belonging to the same
class in R and to different clusters in Q. c is the number of
pairs of objects belonging to different classes in R and to the
same cluster in Q. d is the number of pairs of objects be-
longing to different classes in R and to different clusters inQ.
+e adjusted Rand index gives the degree of agreement
between two partitions of a dataset by a value bounded above
by 1. A high adjusted Rand index indicates a high level of
agreement, while a value of 1 suggests a perfect agreement.
In the case of random partitions, the adjusted Rand index
gives a value of 0.

3.2.VRPModel. Vehicle routing problem (VRP) is generally
defined as follows: for a series of loading points and
unloading points, organize appropriate driving routes to
pass them in an orderly manner, while meeting certain
constraints (such as the demand for goods, the amount of

delivery, and the time of delivery), vehicle load capacity, total
route length, demand time window, etc., to achieve the goal
of a certain problem (such as the shortest distance, the least
cost, the least time, and the least number of vehicles). Be-
cause the demand of bicycles will change, this study es-
tablishes a multivehicle and multitime window VRP model
based on considering the time demand and location demand
of bicycles.

3.2.1. 1e Working Conditions and Boundaries of the VRP
Model. We set some of our model working conditions and
boundaries:

(1) +e bicycle demand of the service center is updated
every hour. In a time, if the service center needs to be
rebalanced, the demand of this bike service center is
unchanged during the dispatch process.

(2) For a truck, the start and end of its dispatch route are
in the same depot.

(3) If the service center needs to be rebalanced, it has one
and only one dispatch truck to serve.

(4) +e service center’s bike demand is complemented as
much as possible by taking advantage of demand
differences between service centers. Bicycle dispatch
operation logic when the truck reaches grid i can be
expressed by the following equation:

qi �
max Di, Ci − Gmax( 􏼁 whenDi < 0,

min Di, Ci( 􏼁 whenDi > 0.
􏼨 (3)

In equation (3), qi is the drop/collect demand of
bicycles in service center i. Di represents the needs of
service center i; Ci is the bike number loaded by the
truck when the truck arrives at service center i.
Di > 0 means need to drop bikes. If bicycles loaded
by the truck are more than the demand, then the
drop number of bikes is Di; otherwise, the dropped
number is Ci. If Di < 0, the truck needs to collect the
bikes and transfer them to other service centers as
much as the truck capacity allows. Gmax is the truck
capacity of the bicycle.

(5) When the dispatch truck departs from the depot, the
initial number of shared bicycles loaded is deter-
mined according to the drop/collect number of bi-
cycles of the first service center D1. If D1 < 0, the
initial number of shared bicycles loaded is 0. And if
D1 > 0, the initial number is min(D1, Gmax).

3.2.2. 1e Objectives of the VRP Model. +e dispatch ob-
jectives in the VRP of this studymainly consider two aspects:

(a) Minimal total route length of all dispatch trucks
(b) Maximum demand satisfaction rate

+e objective function is given in the following formula:
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

S1 is the route length of all dispatch trucks. k is the kth
dispatch truck. xijk � 1 or 0. xijk represents whether truck k is
from service center i to service center j. Its value is 1 or 0. dij is
the distance between service center i and center j. d0i is the
distance from the depot to service center i. Sik represents
whether service center i is the first destination of truck k. dj0 is
the distance from the depot to service center j. Ejk represents
whether service center j is the last destination of truck k. S2 is
the ratio of drop/collect bike number to drop/collect demand.

+e input variables and output variables of the model are
shown in Table 1.

3.2.3. 1e Algorithm of Solving the VRP. Genetic algorithm
is one of the commonly used methods to solve the VRP. In
this study, an elite strategy was introduced into the genetic
algorithm to directly add the best individuals from the
previous generation to the next generation of the population.
+e evolution direction of the evolution operator is one way,
that is, it only accepts the evolution of the scheduling cost in
the lower direction.

Step 1: generate the initial population. Let the number
of iterations z� 0, use an integer arrangement to encode
N grids, and use the coding sequence as the grid access
order.
Step 2: randomly generate a series of demand points,
and then add each demand point to the current
dispatch route in turn. +e individual coding se-
quence in the population corresponds to a deter-
mined scheduling route. +e NP sequence individuals
of length N are randomly generated to form the initial
population.
Step 3: check whether the truck meets the conditions
for returning to the depot center:① the truck capacity
reaches full load, and the next service center needs to
collect bikes;② the truck is empty, and the next service
center needs to drop bikes;③ the time when the truck
arrives at the next center is not within the time window
of the center that needs to serve.
If they are met, add the demand point to the next
delivery route; if not, add it to the current delivery route
as shown in Figure 2.
Step 4: calculate fitness values for all individuals in the
z-generation population. Individuals to be evolved are
selected through roulette. +e greater the fitness, the
greater the probability that individuals will be selected.
Step 5: let z� z+ 1; increase the maximum fitness of the
z-generation to the z+ 1-generation population. De-
termine whether it has reached the number of iterations

z�NG; if yes, output the current population, that is, the
optimal population, and execute Step 6.
Step 6: find the scheduling cost S1 and delivery rate S2
of the routes corresponding to all individual sequences
in the optimal population. According to the optional
range of cost and delivery rate provided by the decision
maker, a set of candidate routes U that satisfy the
decision limit is screened. Establish a feature matrix
based on the route set and corresponding target values,
and use TOPSIS to determine the optimal route.
Step 7: TOPSIS (Technique for Order Performance by
Similarity to an Ideal Solution) is based on simulta-
neous minimization of distance from an ideal point
(IP) and maximization of distance from a nadir point
(NP), and the optimal route is selected according to the
length and demand satisfaction rate of each route by
using TOPSIS. Here, we omit the evaluation process of
TOPSIS and directly list the evaluation results of the
strategy.

3.3. Data. A network was established based on real bike trip
OD data.+e analysis was conducted employing trip data for
the OFO bicycle-sharing system. We scanned the working
status of these bicycles every 15 minutes in one week of
September 2017. +ere are about 57.6 million bicycle status
records in a day. For a bicycle ID, we first judge whether the
bicycle is used by comparing whether its position has
changed. If changed, we saved the time and position of the
bicycle. +en, according to the average travel speed and a
travel distance of the bicycle, the abnormal bicycle use re-
cord is rejected. Figure 3 is a summary of the number of
times the shared bicycles are used in 24 hours. Based on the
data presented in Figure 3, we extracted the four periods of
the day (morning: 07:00–10:00; noon: 11:00–14:00; after-
noon: 15:00–18:00; evening: 19:00–22:00).

First, since there are no fixed stations for the dockless
bike, we refer to the methodology for assessing the impact of
floating traffic [42]. +e service area of FFBS is divided into
grids. Because 71.25% of bicycle trips have more than 500
meters of trip distance, 500 meters is selected as the scale for
dividing the grid of Shenzhen. Our final dataset comprises
220,042 unique bicycle trips distributed over 619 grids in
Shenzhen (see Figure 4). Second, the bike trips were sorted
in time sequences including trip ID, pickup time and lo-
cation, and drop-off time and location.+e involved location
is merged into the grid closest to it. +ird, aggregated on a
grid level, our data can be used to compile an origin-des-
tination (OD) matrix. In the last step, a spatial network is
constructed from the ODmatrix, taking grids as nodes, trips
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between locations as edges, and the number of trips as the
weight of edges. +e nodes in the network are clustered
according to the tightness of the connection, and the
community division of the traffic network is obtained. We
can then formulate a graph G with each grid describing a
network nodeN, linked to every other grid in the network by
a set of directed edges E weighted by a flow equal to the
number of trips observed, given in the OD matrix.

4. Results and Discussion

4.1. 1e Structure and Stability of Bike OD Network
Communities. In this section, we present an application of
the community detection methodology described in Section
3 to support determining a reasonable dockless public bi-
cycle dispatch area. Figure 5 shows the spatial distribution of
community detection in four periods. In the figure, the same

Table 1: +e input variables and output variables of the VRP model.

+e input +e output

1 Road network for calculating route length and the time spent on the
road 1 Optimal location of the depot

2 Speed of the dispatch truck 2 Number of trucks
3 Capacity of the truck 3 Number of bikes loaded/collected at each service center point
4 Operation time of dropping/collecting bikes at the service center 4 Each truck’s route length
5 Locations of the potential depot 5 Total route length of all dispatch trucks
6 Locations of the service center and their demands 6 Time schedule of the dispatch truck
7 Time window of the service center needs to be rebalanced 7 Rebalance rate of all service centers

6 3 16 11 7 17 14 8 5 15 1 2 4 18 14 9 10 12

Truck 1 Truck 2 Truck 3 Truck 4

0 0 0 0 0

0

0

0

The truck capacity reaches
full load, and the next service
center needs to collect bikes

The truck is empty, and the next
service center needs to drop

bikes

The time when the truck arrives at
the next center is not within the time
window of the center which needs to

serve

Figure 2: +e conversion of demand point series into truck routes.

0

10

20

30

40

50

60

70

80

90

100

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Bike trips
Cumulative percentage

%

Figure 3: Floating bicycle riding trips’ distribution across time within one day (24 hours).

Journal of Advanced Transportation 7



Grid_center_degree
2–22
23–37
38–54
55–73
74–107

Grid

Plants

Water

Built area

0 5 102.5 kilometers

N

10–24
25–45
46–75
76–115
116–210

Edge_weight

Figure 4: +e OD network in Shenzhen.

0 5 102.5 kilometers
N

(a)

0 5 102.5 kilometers
N

(b)

0 5 102.5 kilometers
N

(c)

0 5 102.5 kilometers
N

(d)
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color grid indicates that it belongs to the same community.
In the four time periods, the boundaries between most
communities are very clear and obvious. +ese obvious
boundaries are mainly due to the division of high-level roads
and other natural terrains. In addition, the grids of a
community are also spatially adjacent to each other, and it is
rare for a community to contain other community grids.
+is is because public bikes are mainly for short-distance
travel, and there are few long-distance cross-regional cycling
records. A few small grids that are spatially isolated from
most grids will form a small community. In Table 2, we
summarize and compare the number of communities for
four periods. For the modularity, the community modularity
of the four periods mostly exceeds 0.7 except for the evening
period. +is shows that the OD network community
structure is good. In the morning and evening peak hours,
the average degree of nodes (the number of pickup and
drop-off in the grid) exceeds 100, and the other two periods
are around 70. Judging from the number of communities,
the number of communities in the four periods is very close,
which is between 9 and 11.

In Table 3, the values of the adjusted Rand index for the
case study are reported. +e results in Table 4 show that the
period 11:00–14:00 and the period 15:00–18:00 (values
around 0.7951) show the best performance in the adjusted
Rand index analysis. Partitions of the two periods have the
highest similarities. +e community similarity between
evening peaks and afternoons is the lowest (values around
0.6073), which indicates that the difference of the bike spatial
mobility pattern between evening peaks and afternoons is
the largest during a day. In general, the communities in the
four periods are compared in pairs, the ARI are all above 0.6,
and the community structure is relatively stable. By the
application of the Louvain method to the bike OD network
of Shenzhen, we have shown that the mobility structure of
the FFBS is obvious and stable. +is high-quality and stable
community division could suggest a bike dispatch area
configuration of service area in a work day.

4.2.1eOptimalDispatchDepot andRoute in aDispatchArea

4.2.1. 1e Demo Dispatch Area. Based on the results in
Section 5, a community of morning peak in Luohu was
chosen as a dispatch area to analyze the optimal dispatch
depot and route for the bike balance. +e community
contains a total of 28 grids; see Figure 5(a) for the location of
the example community. Any two grids are connected, and
the distance between the grids is the straight-line distance
between their centroids. We used the mean-shift clustering
method to identify the clustering area of bicycles based on
the position of the bicycle by each hour in 07:00–10:00 [43].
When the bandwidth is 300 meters, a total of 78 bicycle
gathering areas are obtained. Figure 6 shows the bicycle
gathering area identified by mean-shift clustering. In Fig-
ure 6, each cluster has a center point, and the buffer analysis
was proposed to obtain the range of the bicycle gathering
area. 300 meters of buffers were established by ArcGIS based

on all cluster center points, thus to calculate the balance
status of bikes in the bicycle gathering area.

We calculate the number of arrivals and departures of
bicycles in each cluster and set a threshold. In a period, when
the difference between arrival and departure times is more
than 20, the bicycle gathering area is considered to need
rebalancing service. By setting the threshold, there are 23
bicycle gathering areas that need to be rebalanced, called
demand center, as shown in Figure 7. Different colors
represent the time window requirements for rebalancing.
+e white number is the grid ID and represents a potential
dispatch center. Table 4 lists the coordinates, requirements,
and time of each demand center. In the drop/collect bike
demand column, the negative sign indicates that the bicycle
needs to be added, and the positive sign indicates that the
bicycle needs to be transferred.

4.2.2. 1e Generation of the Optimal Strategy for the Dispatch
Area. +e initial variables set are as follows: the speed of the
truck is 30 km/h, and it can load up to 100 bicycles. It takes
12–15 minutes for the demand center to collect bicycles. +e
algorithm of the VRP is implemented using MATLAB, and
the algorithm iterations are 200. Every generation of pop-
ulation has 100 individuals, and everyone represents a
dispatch route. +e evolution rate and mutation rate are 0.8
and 0.05, respectively. +e algorithm starts with taking grid
ID 4182 in Figure 7 as a potential dispatch center to find the
best dispatch route. +e best dispatch route is selected by
comparing objectives of the VRPmodel. Figure 8 is a process
diagram of finding the optimal dispatching strategy when
the dispatching depot is set on grid ID 4182. Figure 8(a)
records the change in the minimum number of trucks in
each generation. With the iteration of the algorithm, the
vehicle number quickly decreased from 6 to 3. After 130
iterations, the minimum number of vehicles is stable at 3.
Figure 8(b) records the change in minimum total route
length in each generation. +e convergence process is very
fast, and finally, it is stable at about 33 km. +e demand
satisfaction rate in Figure 8(c) is also stable at about 99%. It is
worth noting that dispatch routes corresponding to the three
optimal objectives are not the same dispatch route, so
TOPSIS is needed for choosing the best strategy. After
TOPSIS comprehensive evaluation, when grid ID 4182 is
used as the dispatch center, the best strategy result is 3 trucks
and 35.8 km route length with 86.63% of demand satisfac-
tion rate.

Table 2: +e number of communities for each period in the center
Shenzhen bike network.

Time Community
number Modularity Average

degree Trips

07:00–10:00 11 0.717 102 63,665
11:00–14:00 11 0.764 63 39,097
15:00–18:00 11 0.744 80 49,830
19:00–22:
00 10 0.698 108 67,450
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After the above calculation process for each potential
dispatch center in Figure 7, finally, we obtained 28 records of
the best strategy. It can be considered that there are 28
dispatch center options, and the optimal dispatch center is
evaluated based on the truck number, route length, and
demand satisfaction rate corresponding to the dispatch
center. Here, the TOPSIS method is used again. Table 5
records the corresponding values of the top five dispatch
centers and the last five dispatch centers. We can find that
the best dispatch center is grid ID 913.+e target value of the
optimal scheduling strategy corresponding to different
dispatch centers is obviously different. +erefore, the lo-
cation of the dispatch center has a great impact on the
quality of the scheduling strategy.

Figure 9 is the optimal scheduling route for demo dis-
patch area 0 represents the dispatch center which is grid ID
913, and other numbers represent demand centers. +e
optimal scheduling strategy requires three trucks.+e routes
of the truck and details of operation and time at the demand
center are shown in Table 6. +e departure time of the three
trucks from the dispatch center and the number of bicycles
loaded are not the same. +e time window of the demand
center is all satisfied, and the demand satisfaction rate of
each demand center is counted.

4.3. 1e Validation of Optimal Dispatch Divisions. Luohu
District was used to verify the effectiveness of using the trip
network community detection to determine the dispatch
area. In the morning peak hours, the bicycle trip network of
Luohu is divided into four communities according to the
best modularity as shown in Figure 10(a). So, we use manual
grouping (Figures 10(b) and 10(c)) to generate four com-
parison groups. Grids with same color indicate that they
belong to the same scheduling area. Manual grouping en-
sures that each dispatch area is about the same size with a
clear boundary, and no dispatch area is contained by another
scheduling area.

Table 7 shows the scheduling cost of different division
groups of dispatch area in Luohu District. First, for
demand satisfaction rate, the total demand satisfaction
rate of three division methods was not much different
with all exceeding 90%. +e largest demand satisfaction
rate is the result obtained by M2, which is close to 93%,
but the gap with the average demand satisfaction rate of
CD is only 2%. Second, for the VRP route length, the total
dispatch route length of CD is the shortest, about
233.23 km. +e total dispatch route length of M1 and M2
is about 250 km, at least 15 km more than CD. +ird, for
the dispatch truck number, CD needs 18 dispatch trucks,

Table 3: +e adjusted Rand index for different periods.

ARI 07:00–10:00 11:00–14:00 15:00–18:00 18:00–22:00
07:00–10:00 — 0.6659 0.6397 0.6129
11:00–14:00 0.6659 — 0.7951 0.6358
15:00–18:00 0.6397 0.7951 — 0.6073
18:00–22:00 0.6129 0.6358 0.6073 —

Table 4: +e spatial coordinates and requirements of the demand center in the demo dispatch area.

Demand center X Y Drop/collect demand Time window
1 12701734.11 2578973.88 − 32 06:00-07:00
2 12701795.72 2578366.42 − 27 07:00-08:00
3 12701474.83 2579484.32 33 07:00-08:00
4 12701722.34 2578711.72 − 25 07:00-08:00
5 12702581.54 2579159.77 73 07:00-08:00
6 12703056.19 2579551.61 − 39 07:00-08:00
7 12702346.15 2578537.59 39 07:00-08:00
8 12702957.21 2578930.22 − 37 07:00-08:00
9 12700627.12 2579357.52 − 27 07:00-08:00
10 12702186.49 2578514.40 87 08:00-09:00
11 12701879.39 2578922.07 − 63 08:00-09:00
12 12701553.92 2579136.82 32 08:00-09:00
13 12702440.59 2578885.01 130 08:00-09:00
14 12701450.30 2579466.74 − 38 08:00-09:00
15 12701073.24 2578938.58 80 08:00-09:00
16 12702980.11 2579419.16 − 74 08:00-09:00
17 12702978.05 2579848.00 − 48 08:00-09:00
18 12702416.17 2579948.83 − 40 08:00-09:00
19 12701963.87 2579839.53 − 25 08:00-09:00
20 12702922.36 2578921.61 − 56 08:00-09:00
21 12702473.52 2578904.86 59 09:00-10:00
22 12702413.21 2578535.34 43 09:00-10:00
23 12702971.81 2579505.02 − 82 09:00-10:00
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while M1 and M2 need 19. In other words, in order to
achieve the same demand satisfaction rate of the com-
munity detection group, manual group 1 and manual

group 2 need to pay a lot of cost in the dispatch distance
and truck. By comparing the results of scheduling
strategies in different situations, we found that the
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0.5 1 2 kilometers
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Figure 6: +e bicycle gathering area identified by mean-shift clustering in four hours.
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Table 5: +e corresponding values of the top 5 and the last 5 dispatch centers.

Order Depot grid ID Truck number Route length (km) Demand satisfaction rate (%)

Top 5

1 913 3 20.80 91.04
2 5128 3 26.81 92.52
3 4182 3 35.99 90.15
4 1972 3 26.18 90.10
5 9801 3 25.27 90.09

Last 5

5 3819 4 30.91 88.86
4 4591 4 24.22 88.43
3 5141 4 32.09 86.82
2 1705 4 23.61 85.48
1 4636 4 33.10 78.89
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Figure 9: +e optimal scheduling route of dispatch center 913. (a) Truck 1 route. (b) Truck 2 route. (c) Truck 3 route.

Table 6: +e routes of the truck and details of operation and time at the demand center.

Truck Route Arrive/leave Time window Drop/collect bike number Drop/collect demand Demand satisfaction

1

0 — — 25 —
4 6:58/7:13 07:00-08:00 − 25 − 25 100%
7 7:18/7:33 07:00-08:00 39 39 100%
22 7:38/7:53 09:00-10:00 43 43 100%
18 8:00/8:15 08:00-09:00 − 40 − 40 100%
12 8:20/8:35 08:00-09:00 32 32 100%

2

0 — — 27 — —
2 6:58/7:12 07:00-08:00 − 27 − 27 100%
21 7:13/7:25 09:00-10:00 59 59 100%
20 7:26/7:38 08:00-09:00 − 56 − 56 100%
19 7:40/7:52 08:00-09:00 − 3 − 27 11.10%
10 7:55/8:09 08:00-09:00 87 87 100%
16 8:10/8:22 08:00-09:00 − 74 − 74 100%
13 8:24/8:36 08:00-09:00 87 130 66.92%
17 8:38/8:50 08:00-09:00 − 48 − 48 100%
23 8:52/9:04 09:00-10:00 − 52 − 82 63.41%

3

0 — — 32 — —
1 5:59/6:11 06:00-07:00 − 32 − 32 100%
3 6:12/6:24 07:00-08:00 33 33 100%
9 6:26/6:38 07:00-08:00 − 27 − 27 100%
15 6:39/6:51 08:00-09:00 80 80 100%
11 6:53/7:05 08:00-09:00 − 63 − 63 100%
14 7:06/7:18 08:00-09:00 − 23 − 38 60.52%
5 7:21/7:33 07:00-08:00 73 73 100%
6 7:34/7:46 07:00-08:00 − 39 − 39 100%
8 7:47/7:59 07:00-08:00 − 34 − 37 91.89%

Total length 20.8 km Demand satisfaction rate 91.04%
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dispatch area determined by bike trip OD community
detection has stable characteristics of scheduling costs. In
general, the scheduling strategy found through the trip
OD community detection is optimal. +is shows that the
division of the scheduling area is a very important issue,
which has a great impact on the dispatch cost. +e
method proposed in this paper can provide a reference for
dividing the scheduling area.

5. Conclusions

+is paper establishes a network based on the bike trip
data and then uses a community discovery algorithm to
segment the cycling network. +e vehicle routing problem
model with the shortest dispatch route and satisfaction
rate dual goals is established and solved, and the effec-
tiveness and superiority of the division of the dispatch
area are verified. +e main evidence for this article is as
follows:

(1) Many studies have shown that the bicycle riding has
tidal characteristics, but our research found that the
results of the community division of bicycle net-
works for different dispatches in a day are very
similar, indicating that the flow of dockless shared
bicycles is very stable and its range of activities has a
clear boundary. From the perspective of the spatial
characteristics of shared bicycle networks, the results
of community division rarely show cross-regional
phenomena. +e interior of a community space will
not contain another community, or a community
will not be spatially separated by other communities.
+is provides the necessary basis for the division of
bicycle dispatching areas.

(2) +e plan of the dispatch area has impacted on the
operation efficiency of the PBS. Our research shows
that, for a scheduling area, the target value of the
optimal scheduling strategy corresponding to dif-
ferent dispatch centers is obviously different.

Sub dispatch area
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Figure 10: +ree division groups of the dispatch area in Luohu District at morning peak.

Table 7: +e scheduling cost of different division groups of the dispatch area in Luohu District.

Dispatch division Subdispatch area Depot grid Truck number Route length (km) Demand satisfaction (%)

CD

1 913 3 20.80 91.04
2 3128 7 109.92 89.80
3 6221 6 64.01 86.37
4 9764 2 38.50 93.99

Total 18 233.23 90.3

M1

1 6122 9 119.85 87.27
2 1972 4 48.71 85.91
3 8237 2 30.21 96.77
4 223 4 60.09 95.62

Total 19 258.87 91.39

M2

1 5817 9 113.64 88.58
2 930 4 57.00 92.77
3 5307 2 28.75 95.93
4 7356 4 49.81 93.56

Total 19 249.20 92.71
CD: community detection; M1: manual group 1; M2: manual group 2.
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+erefore, the location of the dispatch center has a
great impact on the quality of the scheduling
strategy. By comparing the results of scheduling
strategies in different situations, the dispatch area
determined by bike trip OD community detection
has stable characteristics of scheduling costs. In
general, the scheduling strategy found through the
trip OD community detection is optimal. +e divi-
sion of the scheduling area is a very important issue,
which has a great impact on the dispatch cost.

(3) +is work is an attempt to combine big data and
model technology to assist city management. We
build a feasible framework to serve a balanced
strategy for FFBS integrating dispatching area, route,
and depot.+is framework includes the construction
of the bike trip network and subnet segmentation,
mean-shift clustering based on the point position,
VRP model, genetic algorithm, and TOPSIS evalu-
ation method, which can provide reasonable dis-
patch area, optimal dispatch depot location, dispatch
truck’s route length, load action, and time window.
Our work provides new ideas for regional traffic
dispatching for the traffic management department
and FFBS operator, which has certain practical
reference significance.

Our study also has some limitations. First, the working
day operational data used only contain one week, so the
results of the analysis may be biased. +e data we analyzed
did not include data for nonworking days. Second, in the real
world, there are many restrictions on decision-making.
Although the VRP model we adopt was considering time,
truck capacity, and driving speed, it cannot handle complex
situations such as multiple dispatch centers, real-time road
condition information, and more detailed dispatch opera-
tion time. +ird, in our proposed framework, the result of
subnet segmentation is crucial to the generation of sched-
uling strategies. +e construction of cycling networks at
different times will affect the division of communities, and
further exploration is needed in the future.
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Transit network simulation models are often used for performance and retrospective analysis of urban rail systems, taking
advantage of the availability of extensive automated fare collection (AFC) and automated vehicle location (AVL) data. Important
inputs to such models, in addition to origin-destination flows, include passenger path choices and train capacity. Train capacity,
which has often been overlooked in the literature, is an important input that exhibits a lot of variabilities. )e paper proposes a
simulation-based optimization (SBO) framework to simultaneously calibrate path choices and train capacity for urban rail
systems using AFC and AVL data. )e calibration is formulated as an optimization problem with a black-box objective function.
Seven algorithms from four branches of SBO solving methods are evaluated. )e algorithms are evaluated using an experimental
design that includes five scenarios, representing different degrees of path choice randomness and crowding sensitivity. Data from
the Hong Kong Mass Transit Railway (MTR) system is used as a case study. )e data is used to generate synthetic observations
used as “ground truth.”)e results show that the response surface methods (particularly constrained optimization using response
surfaces) have consistently good performance under all scenarios. )e proposed approach drives large-scale simulation ap-
plications for monitoring and planning.

1. Introduction

Urban rail systems are important components of the urban
transportation system. Given their high reliability and large
capacity, they have attracted high passenger demand.
However, high demand also leads to problems such as
overcrowding and disruptions, which decrease the level of
service and impact passengers. Tomaintain service reliability
and develop efficient response strategies, it is crucial for
operators to better understand passenger demand and flow
patterns in the network.

Transit network loading (or simulation) models for
metro systems, powered by automated collected data, pro-
vide a useful instrument for network performance

monitoring. )ey enable operators to characterize the level
of service andmake decisions accordingly. A typical network
loading model requires origin-destination (OD) matrix,
supply information, and path choice fractions as input. )e
supply information includes the transit network topology,
actual vehicle movement data, and vehicle capacity. )anks
to the wide deployment of automated fare collection (AFC)
and automated vehicle location (AVL) systems, the OD
demand and train movement data can be directly obtained.
However, obtaining the corresponding path choices and
quantifying reasonable vehicle capacity remains a challenge.
According to Liu et al. [1] and Preston et al. [2], train ca-
pacity, defined as the maximum train load when remaining
passengers in the platform denied boarding, may vary
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depending on the crowding levels in trains and on platforms
and passenger attitudes. )e calibration of path choices and
train capacity can improve the accuracy of network loading
models for performance monitoring. )us, these models can
provide better information to operators to adjust operating
strategies, relieve congestion, and improve efficiency.

Traditionally, path choices are inferred with data from
on-site surveys that are used to estimate path choice models.
However, surveys are time-consuming and labor-intensive,
limiting their real-world usage. To overcome these disad-
vantages, path choice estimation methods based on AFC
data have been proposed in the literature. AFC systems
provide the exact locations and times of passengers’ entry
and exit transactions, which can be used to extract OD
demand and passengers’ journey times. )ey provide rich
information for analyzing passenger behavior [3].

In an urban rail system operated near its capacity, five
critical parameters are correlated with each other: OD de-
mand, journey time, left behind (or denied boarding), path
choices, and train capacity. )e relationship of these pa-
rameters can be explained in Figure 1. OD demand is the
input and journey time is the output (OD exit flow is a
combination of the two), which can both be observed from
the AFC data. Path choices, train capacity, and left behind
are not observable in the AFC data. Journey time is directly
affected by path choices and left behind (left behind can
increase the waiting time). Left behind is directly affected by
path choices and train capacity. )is figure indicates the
complexity of path choice estimation using AFC data. )e
dependencies of different parameters (e.g., path choices vs.
train capacity) should be captured.

In the context of path choice estimation, the AFC data-
based methods can be categorized into two groups: path-
identification methods [4–7] and parameter-inference
methods [8–12]. )e former studies aim to identify the exact
path chosen by each user and even the train they boarded.
Path attributes are used to evaluate how likely a path is
chosen for a passenger’s trip from their observed
origins to their observed destinations. )e latter
studies formulate probabilistic models to describe passen-
gers’ decision-making behavior. Bayesian inference is usu-
ally used to estimate the corresponding parameters and thus
derive the path choice fractions. Despite using different
methods, the key components for those AFC data-based
studies are similar. )ey all attempt to match the model-
derived journey times with the observed journey times from
AFC data. However, many of these studies either assume a
known constant train capacity or specify a known link-
impedance function. As shown in Figure 1, journey times
depend on both path choices and train capacity. An un-
reasonable setting of train capacity may cause calibration
bias of path choices. Simultaneous calibration of both pa-
rameters is more reasonable.

Train capacity is a vague concept. Normally trains may
not reach their designed physical capacity for various rea-
sons (e.g., passengers may decide not to board due to the
crowding Liu et al. [1]. )erefore, assuming a fixed physical
capacity or fixed link-impedance function (in many previous
studies) may not be a reasonable assumption in real-world

situations, only a few studies have explored the calibration of
actual train capacity in the rail system. Liu et al. [1] proposed
the concept of “willingness to board” (WTB) to describe the
varied capacity in a bus system and estimated passengers’
WTB using a least square method. Xu and Yong proposed a
passenger boarding model which revealed that the number
of actually boarding passengers in a crowded train was
closely related to the number of queuing passengers and
train load. Mo et al. [13] proposed an effective capacity
model that recognized train capacity may vary across sta-
tions depending on the corresponding number of queuing
passengers and train load.)e calibration of train capacity or
WTB usually requires the AFC data with passengers’
boarding and journey time information. However, this in-
formation may also be affected by path choices, which were
neglected in previous studies.

To fill these research gaps, we propose a simulation-
based optimization (SBO) model to calibrate path choices
and train capacity simultaneously and also explore the ef-
ficiency of typical SBO solution algorithms. )e calibration
problem is formulated as an optimization problem using
AFC and AVL data. )e formulation can capture the in-
teraction among these variables and their impact on journey
times. Seven optimizers (solving algorithms) from four
branches of SBO-solving methods are implemented for
comparative analysis. )ey include generic algorithm (GA),
simulated annealing (SA), Nelder–Mead simplex algorithm
(NMSA), mesh adaptive direct search (MADS), simulta-
neous perturbation stochastic approximation (SPSA),
Bayesian optimization (BYO), and constrained optimization
using response surfaces (CORS). We compare these SBO
solving algorithms within a limited computational budget,
defined by the number of function evaluations. Data from
the Hong KongMass Transit Railway (MTR) system provide
the foundation for a realistic case study. )e major con-
tribution of this paper is twofold:

(i) Proposing an optimization model to simultaneously
estimate path choices and train capacities using AFC
and AVL data, it addresses the typical assumption of
fixed and known train capacities in existing path
choice estimation studies using smart card data

(ii) Validating the model using a busy urban rail net-
work and analyzing the performance of SBO solu-
tion algorithms using systematic experiments, it
represents different degrees of users’ randomness in
path choice and their sensitivity to crowding

)e remainder of the paper is organized as follows. In
Section 2, we illustrate the SBO problem formulation.

Path choicesOD demand

Journey time

Train capacity

Left behind

Figure 1: Relationship among critical parameters in urban rail
systems.
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Section 3 briefly describes the various SBO methods used in
this study. )e proposed framework is used in a case study
with data from the Hong Kong MTR network in Section 4.
)e results are used to compare the performance of different
algorithms. Section 5 concludes the paper by summarizing
the main findings and discussing future research directions.

2. Methodology

)e paper aims to calibrate simultaneously the train capacity
and path choices using readily available data in the closed
fare payment systems (require ticket validation at both tap-
in and tap-out stations). To capture the interaction among
different variables in Figure 1, we use a schedule-based
network loading model with capacity constraints (described
in Section 2.1). It outputs a list of performance metrics given
a set of inputs including OD demand, timetables/AVL,
network, train capacity, and path choices. )e calibration of
path choice and capacity is formulated as an optimization
model that attempts to minimize the error between network
loading model outputs (e.g., journey time, which is a
function of path choices and train capacity) and the cor-
responding quantities directly observed from the AFC data.

2.1.TransitNetworkLoadingModel. Transit network loading
(TNL) models aim to assign passengers over a transit net-
work given the (dynamic) OD entry demand and path
choices. In this study, we adopt an event-driven schedule-
based TNL model proposed by Mo et al. [13]. )e model
takes OD entry demand (number of tap-in passengers by
time), path choices, train arrival and departure times from
stations, train capacity, and infrastructure information (e.g.,
network topology) as inputs and outputs the passengers’ tap-
out times, train loads, waiting times, and other network
performance indicators of interest.

Figure 2 illustrates the main functions of the TNL model
[13]. )ree objects are defined: train, waiting queue (on the
platform), and passengers. An event is defined as a train
arrival at, or departure from, a station. Events are ordered
chronologically. New and transferring passengers join the
waiting queue on the platform and board a train based on a
first-come-first-board (FIFB) discipline. )e number of
successfully boarding passengers depends on the available
train capacity.

)e TNL model works by generating a train event list
(arrivals and departures) based on the actual train move-
ment data (AVL) and then sequentially processing the or-
dered events until all events are processed for the time period
of interest. )e processing of an individual event is based on
the following rules:

(i) If the event is an arrival (Figure 2(a)), the train
offloads passengers and updates its state (e.g., train
load and in-vehicle passengers). Alighting passen-
gers who need to transfer are assigned to the waiting
queues on the corresponding transfer platforms (e.g.,
passengers transferring to platform B in Figure 2(a)).
Passengers who tap out will be removed from the
system. New tap-in passengers who entered the

station between two events are added into the queue
(e.g., new tap-in passengers in platform A in
Figure 2(a)). )en, the waiting queue objects for all
platforms are updated accordingly.

(ii) If the event is a departure (Figure 2(b)), passengers
board trains based on a FIFB priority rule. If the on-
board passengers reached the train capacity, the
remaining passengers at the platform will be denied
boarding and wait for the next available train. Fi-
nally, the state of the train (train load and in-vehicle
passengers) and the waiting queue at the platform
are updated accordingly.

More specifically, for each passenger in the simulation
model, we first calculate his/her probability of choosing each
available path based on the path’s attributes and path choice
parameters (see Section 2.2, for details). Path attributes
include in-vehicle time, number of transfers, and transfer
walking time. )en, each passenger is assigned with a
specific path based on the choice probability. Based on the
path information, the passenger walks to a specific platform,
joins the waiting queue, and waits for available trains to
board. )e boarding and alighting behavior are as described
above.

2.2. Problem Formulation. Consider a general urban rail
network in a specific time period T, represented as
G � (S, A), where S is the set of stations and A is the set of
directed links. We divide T into several time intervals with
equal length τ (e.g., τ � 15 min). Denote the set of all time
intervals as T � 1, 2, . . . , T/τ{ }. Define a time-space (TS)
node as im, where i ∈ S and m ∈ T. im represents station i in
time interval m.

For an OD pair (i, j) (i, j ∈ S), the OD entry flow (qim,j)
represents the number of passengers entering station i

during time interval m and exiting at station j. Let the set of
all OD entry flows be qe. )e OD exit flow (qi,jn) represents
the number of passengers who exit at station j in the time
interval n with origin i. qim,j and qi,jn are inputs and outputs
of the TNL model, respectively.

Let the set of all paths between (i, j) be R(i, j). We
assume that the path choice behavior can be formulated as a
C-logit model [14], which is an extension of the multinomial
logit (MNL) model to correct the correlation among paths
due to overlapping [15]. )e path choice fraction for path
r ∈R(i, j) in time interval m (pim,j

r ) is formulated as follows:

p
im,j
r �

e
μ βX ·Xr,m+βCF ·CFr( )

􏽐r′∈R(i,j)e
μ βX ·X

r′ ,m+βCF ·CF
r′􏼐 􏼑

, ∀r ∈R(i, j), m ∈ T, i, j ∈ S,

(1)

where μ is the scale parameter of the Gumbel distribution of
the error term [16], which is usually normalized to 1. Larger
(smaller) μmeans the choice behavior is more deterministic
(random). Xr,m is the vector of attributes for path r in time
interval m (e.g., in-vehicle time, number of transfers, and
transfer walking time). CFr is the commonality factor of
path r which measures the degree of similarity of path r with
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the other paths of the same OD. βX and βCF are the cor-
responding coefficients to be estimated. Let β be the vector
that combines βX and βCF (i.e., β � [βX, βCF]).

CFr is defined as follows:

CFr � ln 􏽘

r′∈R(i,j)

Dr,r′

DrDr′
􏼠 􏼡

c

, (2)

where Dr,r′ is the number of common stations of path r and
r′, Dr and Dr′ are the number of stations for path r and r′,
respectively, and c is a fixed positive parameter. Let the set of
all path choice fractions be p.

)e values of β can be bounded from above and below.
)e boundaries can be obtained from the prior knowledge

and previous survey results. Denote the upper bound as Uβ
and lower bound as Lβ (Lβ ≤ β≤Uβ), where Uβ and Lβ are
both vectors with the same cardinality as β.

According to Mo et al. [13], the actual train capacity
utilized by passengers is determined by three factors: (a)
waiting passenger distribution on the platform, (b) train load
and distribution across the train, and (c) passengers’ will-
ingness to board a crowded train. )us, train capacity is not
constant. Instead, it is dynamic and changes across stations
and trains depending on the crowding level of the train and
the platform. Mo et al. [13] model the capacity of train k at
station i (Ck,i) is as

Ck,i �
θ0ni + θ1Hk,i + θ2Qk,i if station $i$ is in the list of congested stations,

θ0ni otherwise,
􏼨 ∀k, i, (3)

Queuing
passengers 

On‐board passengers On‐board passengers

Platform A

Transfer
passengers

Tap‐out
passengers 

Queuing
passengers

Platform A

Platform B

New tap‐in
passengers

(a)

On‐board passengers

Queuing 
passengers

Platform A

On‐board passengers

Platform A

Denied boarding
passengers

(b)

Figure 2: Main functions of the event-based transit network loading model. (a) Train arrival. (b) Train departure.
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where ni is the number of cars of train i, Hk,i is the load of
train k when it arrives at station i, Qk,i is the number of
passengers waiting on the platform when train k arrives at
station i, and θ0, θ1, and θ2 are parameters to be estimated
(θ0, θ1, θ2 > 0). Specifically, θ0 is ameasure of service standard.
θ0ni can be seen as the base capacity, that is, the train load that
represents acceptable service standards. At uncongested
stations, passengers are assumed not to board when the train
load is greater than θ0ni. At congested stations, passengers
may still board a train even if it is already crowded [1], which
makes the effective train capacity higher than θ0ni. θ1 captures
the effect that the effective capacity is higher when train load is
higher. )is is because passengers may worry if they did not
board this crowded train, and they cannot board the following
trains as well [1]. θ2 captures the effect that more waiting
passengers at the platform may push more passengers to
board, leading to higher effective capacity.

In the discussion that follows, let θ be the vector of these
three parameters. We assume that the values that these
parameters can take is Lθ ≤ θ ≤Uθ, where Lθ and Uθ are the
corresponding lower and upper bounds, respectively.

)e goal is to calibrate θ and β vectors (used by the TNL
model) based on indirect observations. Two sets of obser-
vations are used for the calibration: observed OD exit flows
and observed journey time distribution (JTD). Both of them
can be obtained from the AFC data.

Let the ground truth (observed) OD exit flow be 􏽥qi,jn . Let
fi,jt

(x) be the model-derived JTD of passengers with origin i

who exit at station j during time interval t. Let 􏽥fi,jt
(x) be the

corresponding observed JTD extracted from the AFC data.
Since fi,jt

(x) and 􏽥fi,jt
(x) are estimated from passengers’

journey time observations, only theODpairs withmore thanE

passengers exiting in a specific time interval are considered,
where E is a predetermined threshold to ensure enough
sample size. Denote the set of corresponding ODpairs and exit
time intervals as E, where E � (i, jn): 􏽥qi,jn , qi,jn >E, ∀i,􏼈

j ∈ S, n ∈ T}.
)e calibration problem is formulated as an optimiza-

tion problem:

min
β,θ

w1 􏽘
i,j∈S,m∈T

q
i,jn − 􏽥q

i,jn􏼐 􏼑
2

+ w2 􏽘

i,jn( )∈Ε

DKL fi,jn

�����
􏽥fi,jn

􏼒 􏼓,

(4a)

q
i,jn � TNL p, qe, θ( 􏼁 ∀i, j ∈ S, m ∈ T, (4b)

fi,jn
(x) � TNL p, qe, θ2( 􏼁 ∀ i, jn( 􏼁 ∈ E,

(4c)

p
im,j
r �

e
μ βX ·Xr,m+βCF·CFr( )

􏽐r′∈R(i,j)e
μ βX ·X

r′ ,m+βCF·CF
r′􏼐 􏼑
∀pim,j

r ∈ p, (4d)

Lβ ≤ β≤Uβ, (4e)

Lθ ≤ θ≤Uθ. (4f)

)e objective function (equation (4)) has two parts: the
square error between model-derived OD exit flows and the
corresponding observations and the difference between
model-derived and observed JTD. w1 and w2 are weights
used to balance the scale and the importance of the two
parts. )e difference of the two distributions is expressed
using Kullback–Leibler (KL) divergence (DKL):

DKL fi,jn

�����
􏽥fi,jn

􏼒 􏼓 � 􏽚
x
fi,jn

(x) · log
fi,jn

(x)

􏽥fi,jn
(x)

dx. (5)

TNL(p, qe, θ) is the black-box function that corresponds
to the TNL model, which can output the model-derived OD
exit flows and JTD for a given set of path choices and train
capacity. Since the TNL model has no analytic form,
equation (4) is a SBO problem with upper and lower bound
constraints. In the following section, we discuss seven dif-
ferent algorithms appropriate for the solution of SBO
problems. )ese algorithms belong to four general ap-
proaches of SBO solving methods.

It is worth noting that Xr,m (i.e., the path attributes
vector) is known and fixed in this study. It is assumed to
represent the historical path conditions based on which
passengers make their habitual choices. Different from
typical transit/traffic assignment problems where path
choices are estimated by assuming user equilibrium (for
planning purposes), the AFC data-based estimation aims to
find the actual realized path choices based on real-world
observations (i.e., OD entry-exit flows). Since passengers
make decisions before knowing the actual travel or waiting
times, Xr,m should reflect passengers’ historical perceptions
of path attributes and should not change within the model
estimation process. )erefore, though Ck,i captures the ac-
tual path crowding information, it should not be included in
the path choice formulation as passengers make decisions
before knowing the actual crowding.

3. Simulation-Based Optimization Algorithms

)ere are four major classes of methods for solving the SBO
problems, including the heuristic methods, direct search
methods, gradient-based methods, and response surface
methods (Osorio and Bierlaire [17]; Amaran et al. [18]).
Heuristic methods are partial search algorithms that may
provide a sufficiently good solution to an optimization
problem, especially with incomplete or imperfect infor-
mation or limited computation capacity. Direct search
methods are derivative-free methods that are based on the
sequential examination of trial points generated by a certain
strategy. )ey are attractive as they are easy to describe and
implement. More importantly, they are suitable for objective
functions where gradients do not exist everywhere. Gradi-
ent-based approaches (or stochastic approximation
methods) attempt to optimize the objective function using
estimated gradient information. )ese methods aim to
imitate the steepest descent methods in derivative-based
optimization. Finite difference schemes can be used to es-
timate gradients but they may involve a large number of
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expensive function evaluations if the number of decision
variables is large. Response surface methods are useful in the
context of continuous optimization problems.)ey focus on
learning input-output relationships to approximate the
underlying simulation by a predefined functional form (also
known as a metamodel or surrogate model). )is functional
form can then be used for optimization leveraging powerful
derivative-based optimization techniques.

In this study, we use seven representative algorithms
belonging to these four classes of SBO methods to address
the aforementioned path choice and train capacity cali-
bration problem. Table 1 summarizes the main characteristic
of these algorithms. )e summary of all algorithms is de-
scribed in Table 1.

In the discussion that follows, let Θ be the combined
vector of β and θ (i.e., Θ � [β, θ] is the vector of all coef-
ficients to be estimated). Let N be the dimension of Θ (i.e.,
Θ ∈ RN).

3.1. Genetic Algorithm (GA). GA is a heuristic method for
solving both constrained and unconstrained optimization
problems, which belongs to the larger class of evolutionary
algorithms inspired by natural selection, the process that
drives biological evolution. )e GA repeatedly modifies a
population of individual solutions as an evolution process
[26]. )e GA can be used to solve a variety of optimization
problems that are not well suited for standard optimization
algorithms, such as the SBO problem where the objective
function (or constraints) is nondifferentiable and highly
nonlinear.

)e evolution starts from a population of randomly
generated individuals and is an iterative process, with the
population in each iteration called a generation. In each
generation, the genetic algorithm selects individuals at
random from the current population to be parents and uses
them to produce the children for the next generation. Over
successive generations, the population “evolves” toward an
optimal solution. )e genetic algorithm uses three main
procedures at each step to create the next generation from
the current population. (1) Selection: select the individuals,
called parents, who contribute to the population of the next
generation. Individuals with better objective function values
are more likely to be selected. (2) Crossover: combine two
parents to form children for the next generation. (3) Mu-
tation: apply random changes to individual parents to form
children.

In this study, we adopted a blend crossover and Gaussian
mutation methods. )e probability of crossover is set as 0.8
and the probability of mutating is set as 0.4. And, the
population size is set as 6 given the limited computational
budget. )e algorithm is implemented by the Python deap
package [19].

3.2. Simulated Annealing (SA). SA is a heuristic method for
solving optimization problems [27]. )e method is based on
the physical process of heating a material and then slowly
lowering the temperature to decrease defects, thus mini-
mizing the system energy.

At each iteration of the SA algorithm, a new point is
randomly generated. )e distance of the new point from the
current point, or the extent of the search, is based on a
probability distribution with a scale proportional to the
temperature. A distorted Cauchy–Lorentz visiting distri-
bution is used in this study [20]. )e algorithm accepts not
only all new points that lower the objective function but also,
with a certain probability, points that raise the objective
function. By accepting points that raise the objective
function, the algorithm avoids being trapped in local
minima. An annealing schedule is selected to systematically
decrease the temperature as the algorithm proceeds. As the
temperature decreases, the algorithm reduces the extent of
its search to converge to a minimum.

In this study, the SA algorithm in Python Scipy package
is adopted for the implementation with all model parameters
set as default [28].

3.3. Nelder–Mead Simplex Algorithm (NMSA). NMSA is a
simplex method for finding a local minimum [29]. NMSA in
N dimensions maintains a set of N + 1 test points arranged
as a simplex. Denote the initial value of Θ as Θini. )e initial
simplex set (N + 1 points) is generated as
Θ: Θ � Θini + ei, ∀i � 1, . . . , N􏼈 􏼉􏼈 􏼉∪ Θini􏼈 􏼉, where ei ∈ RN

is the unit vector in the ith coordinate and σ is the step size
which is set as 0.05 in this study [21].

Based on the initial simplex, the model evaluates the
objective function for each test point, in order to find a new
test point to replace one of the old test points. )e new
candidate can be generated through simplex centroid re-
flections, contractions, or other means depending on the
function value of the test points. )e process will generate a
sequence of simplexes, for which the function values at the
vertices get smaller and smaller. )e size of the simplex is
reduced, and finally, the coordinates of the minimum point
are found.

Four possible operations, reflection, expansion, con-
traction, and shrink, are associated with the corresponding
scalar parameters: α1 (reflection), α2 (expansion), α3 (con-
traction), and α4 (shrink). In this study, we set the value of
these parameters as α1, α2, α3, α4􏼈 􏼉 � 1, 2, 0.5, 0.5{ } as sug-
gested in [21]. )e algorithm is implemented by the Python
scikit-learn package with all parameters set as default. Since
NMSA is designed for unconstrained problem, we turned
the bound of Θ into a big penalized term in the objective
function for this algorithm. For more details regarding the
NMSA, one can refer to [21].

3.4. Mesh Adaptive Direct Search (MADS). )e MADS al-
gorithm is a direct search framework for nonlinear opti-
mization [30]. It seeks to improve the current solution by
testing points in the neighborhood of the current point (the
incumbent). )e neighborhood points are generated by
moving one step in each direction from the incumbent on an
iteration-dependent mesh. Each iteration of MADS consists
of a SEARCH stage and an optional POLL stage. )e
SEARCH stage evaluates a finite number of points proposed
by the searching strategy (e.g., moving one step around from
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the current point). Whenever the SEARCH step fails to
generate an improved mesh point, the POLL step is invoked.
)e POLL step conducts local exploration near the current
incumbent, which also intends to find an improved point on
the mesh. Once an improved point is found, the algorithm
updates the current point and constructs a new mesh.
According to [30], the mesh size parameters approach zero
as the number of iteration approaches infinity, which
demonstrates the convergence of the MADS algorithm.

In this paper, we use a variant of the MADS method
called ORTHO-MADS, which leverages a special orthogonal
positive spanning set of polling directions. More details
regarding the algorithm can be found in [22]. NOMAD 3.9.1
[31] with the Python interface is used for the MADS al-
gorithm application. )e hyperparameters are tuned based
on the NOMAD user guide. )e direction type is set as
orthogonal, with N + 1 directions generated at each poll.
Latin hypercube search is not applied.

3.5. Simultaneous Perturbation Stochastic Approximation
(SPSA). SPSA is a descent directionmethod for finding local
minimums. It approximates the gradient with only two
measurements of the objective function, regardless of the
dimension of the optimization problem. Denote the ob-
jective function in equation (4) as Z(Θ). )e estimated
parameters in the kth iteration is denoted as Θ(k). )en, one
iteration for the SPSA is performed as

Θ(k+1)
� Θ(k)

− ak · 􏽢∇Z Θ(k)
􏼐 􏼑, (6)

where

􏽥∇Z Θ(k)
􏼐 􏼑 �

Z Θ(k)
+ ckΔk􏼐 􏼑 − Z Θ(k)

− ckΔk􏼐 􏼑

2ckΔk

, (7)

ak �
a

(k + 1 + A)
α, (8)

ck �
c

(k + 1)
c, (9)

where Δk is a random perturbation vector, whose elements are
obtained from a Bernoulli distribution with the probability
parameter equal to 0.5. α, c, a, c, A􏼈 􏼉 are tuned as
0.602, 0.101, 0.001, 0.007, 0.1M{ } in this study according to
the numerical tests and guidelines from prior empirical studies
of Gomez-Dans [32].M is themaximumnumber of iterations.

3.6. Bayesian Optimization (BYO). BYO constructs a prob-
abilistic model of the objective function and exploits this
model to determine where to evaluate the objective function
for the next step. )e philosophy of BYO is to use all of the
information available from previous evaluations, instead of
simply relying on the local gradient and Hessian approxi-
mations. )is enables BYO to find the minimum of difficult
nonconvex functions with relatively few function evaluations.

BYO assumes a prior distribution for the objective
function values and uses an acquisition function to deter-
mine the next point to evaluate. In this study, we use the
Gaussian process as the prior distribution for the objective
function due to its flexibility and tractability. For the ac-
quisition function, we tested three common criteria: prob-
ability of improvement (POI), expected improvement (EI),
and upper confidence bound (UCB) [24]. )e EI criterion is
used in this path choice calibration problem due to its best
performance in our problem. )e BYO is implemented in
Python with the bayes_opt package. More details regarding
the BYO can be found in [24].

3.7. Constrained Optimization Using Response Surfaces
(CORS). CORS is a response surface method for global op-
timization. In each iteration, it updates the response surface
model based on all previously probed points and selects the
next point to evaluate. )e principles for the next point se-
lection are (a) finding new points that have lower objective
function value and (b) improving the fitting of the response
surface model by sampling feasible regions where little in-
formation exists. Hence, the next point is selected by solving
the minimization problem of the current response surface
function subject to constraints that the next point should be
more than a certain distance away from all previous points [25].

An algorithm following the CORS framework requires
two components: (a) a scheme for selecting an initial set of
points for objective function evaluation and (b) a procedure
for globally approximating the objective function (i.e., a
response surface model). In this study, the initial sampling is
conducted using the Latin hypercube methods, with the
initial sampling number equal to 0.2× the total number of
function evaluations allowed. )e radial basis function
(RBS) is used as the response surface model. For the sub-
sequent sampling, a modified version of the CORS algorithm
with space re-scaling is used. Details about the algorithm can
be found in [25, 33].

Table 1: Algorithms’ summary.

Type Algorithm Constraints Stochastic Source

Heuristic method Genetic algorithm (GA) Yes Yes Fortin et al. [19]
Simulated annealing (SA) Yes Yes Tsallis and Stariolo [20]

Direct search Nelder–Mead simplex algorithm (NMSA) No No Gao and Han [21]
Mesh adaptive direct search (MADS) Yes Yes Abramson et al. [22]

Gradient-based Simultaneous perturbation Yes Yes Spall et al. [23]Stochastic approximation (SPSA)

Response surface
Bayesian optimization (BYO) Yes Yes Snoek et al. [24]
Constrained optimization using Yes Yes Regis and Shoemaker [25]Response surfaces (CORS)
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4. Case Study

)e proposed modeling framework is tested using data from
the Hong Kong MTR network. MTR is the operator of the
Hong Kong urban rail network, which provides services for
the urbanized areas of Hong Kong Island, Kowloon, and the
New Territories. )e system currently consists of 11 lines
with 218.2 km (135.6 miles) of rail, serving 159 stations
including 91 heavy rail stations and 68 light rail stops. It
serves over 5 million trips on an average weekday. Most of
the passengers use a smart card fare payment system named
Octopus. For the urban heavy rail lines, trip transactions are
recorded when passengers enter and exit the system, pro-
viding information about the tap-in and tap-out stations and
corresponding timestamps.

4.1. Experimental Design. We use AFC data on a typical
weekday afternoon peak period (18 : 00–19 : 00) in March
2017 for the model application. Li [34] conducted a revealed-
preference (RP) path choice survey of more than 20,000
passengers in the MTR system and used them to estimate a
path choice model. )e estimation results are shown in
A. )e following attributes were used in the specification of
the model: (a) total in-vehicle time, (b) the number of
transfer times, (c) relative walking time (total walking time
divided by total path distance), and (d) the commonality
factor (equation (2)). Future research may consider more
path choice attributes such as perceived crowding levels and
estimated waiting times.

As the real-world path choice information and train
capacity are usually unavailable, we validate the models with
synthetic data. To generate the synthetic data, we first extract
the OD entry flow (qim,j) from the real-world AFC records.
We assume a synthetic Θ as the “true” path choice and train
capacity parameters. )e TNL model with the true OD entry
flow, train timetable, and synthetic Θ as inputs is used to
simulate the travel of passengers in the system and record
people’s tap-in and tap-out time. )e input timetable is
treated as the synthetic AVL data. )e resulting passengers’
tap-in and tap-out times are treated as the synthetic AFC data.
)e synthetic data, including “true” passenger path choices
and train capacity, are used to evaluate the performance of the
model under the various solution algorithms. All OD pairs of
the whole network are considered in the experiments.

To compare the different SBO solving algorithms, we
design five test scenarios summarized in Table 2. Each
scenario has a different synthetic Θ. )e selection of syn-
thetic Θ can represent different assumptions about pas-
sengers’ choice behavior and sensitivity to crowding. For the
reference scenario, we use the path choice parameters in
Table 3 as the synthetic β and use the estimated train capacity
parameters in [13] as the synthetic θ.

Passengers’ actual path choice behavior is assumed to be
random (each path is equally likely to be selected) or de-
terministic. For the random path choice scenario, we set all
synthetic choice parameters as 0, which means all available
paths are equally likely to be chosen. For the deterministic
(the word “deterministic” here just represents the degree of

randomness is low. )e “truly” deterministic corresponds to
all parameters go to⟶ −∞) path choice scenario, we
set all synthetic choice parameters as the lower bounds (i.e.,
the maximum absolute value possible). Under this scenario,
a slight difference in attributes between two paths can lead to
a high difference in choice probability (i.e., this is close to
passengers following the shortest path). As for the train
capacity, the synthetic θ for these two scenarios is the same
as the reference scenario.

Passengers’ sensitivity to crowding may also vary. If all
passengers are not sensitive to the crowding, train capacity
can be modeled as a fixed value. However, if passengers
become more sensitive to the crowding, the actual train
capacity may largely depend on the crowding level in the
train and on the platform. )erefore, passengers’ sensitivity
to crowding can be reflected by the scale of θ1 and θ2 [13].
For the crowding-sensitive scenario, we set the synthetic
train capacity parameters as θ0 � 225, θ1 � 0.2, and θ2 � 0.2.
Compared to the reference scenario, θ1 and θ2 are higher to
represent higher sensitivity. And, θ0 is decreased to offset the
capacity increase caused by the increase of θ1 and θ2. As for
the crowding-insensitive scenario, we set the synthetic train
capacity parameters as θ0 � 235, θ1 � 0, and θ2 � 0, which
can be seen as a fixed-capacity model.

4.2. Case Study Settings. )e lower and upper bounds of all
parameters (Lβ, Uβ, Lθ, Uθ) are shown in Table 2. Θini is set as
(LΘ + UΘ)/2 for all scenarios. To compare different algo-
rithms, a fixed computational budget, 100 function evaluations,
is applied to all algorithms. All algorithms except for NMSA
(deterministic algorithm) are replicated for 5 times (with
different random seeds) to decrease the impact of randomness.

4.3. Reference Scenario Results. )e convergence results of
the reference scenario are depicted in Figure 3. Each point
represents the average value over all replications. We found
that the performance of different algorithms varied. Given
the limited number of function evaluations, CORS, BYO,
and SPSA converge to a relatively small objective function.
GA, MADS, and SA have relatively large objective function
values upon termination. In terms of convergence speed, the
response surface methods (BYO and CORS) have the fastest
convergence speed. )ey also reach the lowest objective
function value. )is is consistent with conclusions regarding
the performance of the SBO algorithms when used in the
transportation domains [17, 35–37].

Figure 3 also summarizes the behavior of the algorithm
stability. )e vertical line indicates the 1/4× standard de-
viations over the five replications. NMSA is a deterministic
algorithm and not affected by randomness. BYO and CORS
show high randomness in the first half iterations. However,
as the number of function evaluations increases, the stan-
dard deviation of the objective function decreases, and the
results become stable. GA, SA, and MADS are unstable
compared to other algorithms. )is means that the heu-
ristic algorithms (GA and SA) are not suitable for the
calibration problem studied in this paper. )e instability of
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MADS may be because it may converge to nonstationary
points [38].

Table 4 compares the parameters estimated by different
algorithms with the synthetic ones. Although some algo-
rithms can reach similar objective function values, they
result in different estimated parameters. For example, CORS
and SPSA have similar objective function values. However,
SPSA performs better in path choice estimation, while CORS
performs better in train capacity estimation.We also observe
that the train capacity parameters are relatively harder to
estimate. )is may be because most of the stations in the rail

system are not congested and all passengers can board the
trains. )us, the objective function is not very sensitive to
train capacity parameters.

4.4. Sensitivity Analysis

4.4.1. Impact of Randomness in Path Choice Behavior.
Figure 4 shows the estimation results for the two path
choice-related scenarios: random and deterministic. )e
estimated parameters are shown in Tables 5 and 6. For the
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Figure 3: Convergence results of reference scenario. )e error bar indicates 1/4× standard deviation. NMSA has no error bar because it is a
deterministic algorithm.

Table 2: Scenario design.

Parameter category Synthetic Θ
Scenarios

Bound
Reference

Path choice Train capacity
Random Deterministic Crowding-sensitive Crowding-insensitive

Path choice

In-vehicle time −0.147 0 −2.0 −0.147 −0.147 [−2, 0]
Relative walking time −1.271 0 −5.0 −1.271 −1.271 [−5, 0]
Number of transfers −0.573 0 −3.0 −0.573 −0.573 [−3, 0]
Commonality factor −3.679 0 −10.0 −3.679 −3.679 [−10, 0]

Train capacity
θ0 232 232 232 225 235 [220, 260]
θ1 0.0732 0.0732 0.0732 0.2 0 [0, 0.2]
θ2 0.0607 0.0607 0.0607 0.2 0 [0, 0.2]

Table 3: Path choice model estimation results.

Estimate Std. error t-value
In-vehicle time –0.147 0.011 –13.64 ∗∗∗

Relative walking time –1.271 0.278 –4.56 ∗∗∗

Number of transfers –0.573 0.084 –6.18 ∗∗∗

Commonality factor –3.679 1.273 –2.89 ∗∗

ρ2 � 0.54
∗∗∗: p< 0.01; ∗∗: p< 0.05.
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Table 4: Estimation results of the reference scenario.

Category Variable name “True”
Estimated parameters

GA SA NMSA MADS SPSA BYO CORS

Path choice

In-vehicle time −0.147 −0.392 −0.327 −0.342 −0.454 −0.170 −0.207 −0.229
Relative walking time −1.271 −2.205 −3.010 −3.020 −0.302 −2.257 −2.493 −2.486
Number of transfers −0.573 −1.143 −0.787 −0.389 −1.248 −0.598 −0.776 −0.756
Commonality factor −3.679 −6.482 −6.851 −7.250 −7.834 −4.419 −5.434 −5.716

Train capacity
θ0 232 239 243 259 252 241 234 243
θ1 0.073 0.117 0.118 0.146 0.040 0.162 0.110 0.069
θ2 0.061 0.069 0.110 0.080 0.080 0.163 0.100 0.086

Objective function — 676,392 416,923 359,663 773,526 245,269 258,688 203,885
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Figure 4: Algorithm performance in the two path choice scenarios. (a) Random. (b) Deterministic.
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Table 5: Estimation results of the random path choice scenario.

Category Variable Name “True”
Estimated Parameters

GA SA NMSA MADS SPSA BYO CORS

Path choice

In-vehicle time 0 0 −0.072 −0.050 0 −0.108 −0.037 0
Relative walking time 0 −2.151 −1.139 −1.807 −1.000 −1.719 −3.725 −0.702
Number of transfers 0 −0.348 −0.185 −0.435 −1.334 −0.631 −0.207 0
Commonality factor 0 −5.997 −1.945 −9.991 −5.432 −5.127 −4.155 −8.000

Train capacity
θ0 232 243 224 254 232 241 248 223
θ1 0.073 0.067 0.050 0.124 0.048 0.106 0.079 0.016
θ2 0.061 0.037 0.072 0.136 0.134 0.112 0.159 0.072

Objective function — 1,202,761 756,321 1,399,836 1,365,291 1,429,942 1,203,696 855,627

Table 6: Estimation results of the deterministic path choice scenario.

Category Variable Name “True”
Estimated Parameters

GA SA NMSA MADS SPSA BYO CORS

Path choice

In-vehicle time −2 −1.240 −1.243 −1.205 −1.160 −1.544 −1.537 −1.830
Relative walking time −5 −3.180 −3.358 −2.819 −2.480 −3.728 −3.807 −4.492
Number of transfers −3 −1.575 −1.551 −1.419 −1.524 −1.786 −1.761 −2.661
Commonality factor −10 −5.307 −5.251 −4.735 −4.920 −6.346 −6.379 −8.819

Train capacity
θ0 232 237 232 228 237 239 232 237
θ1 0.073 0.095 0.076 0.095 0.180 0.097 0.110 0.123
θ2 0.061 0.101 0.069 0.091 0.062 0.110 0.106 0.093

Objective function — 125,100 128,157 118,915 135,922 113,805 124,448 63,220

1.4

1.2

1.0

0.8

0.6

0.4

0.2

O
bj

ec
tiv

e f
un

ct
io

n

0 20 40 60 80 100

NMSA
GA

SA
MADS

SPSA
BYO

CORS

Number of function evalutions

×106

(a)

Figure 5: Continued.
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random scenario, all “true” (synthetic) path choice pa-
rameters are set as zero, which means all paths are equally
likely to be chosen. We observe that, in this scenario
(Figure 4(a)), CORS and SA algorithms perform the best
with the lowest objective function. Compared to the

reference scenario in Section 4.3, the decreased performance
of BYO and SPSA may be due to the “true” β is close to the
upper bound (Uβ � 0). )e Gaussian posterior distribution
in BYO and gradient estimation in SPSA can suffer from
instability in the boundary. From Table 5, we observe the
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Figure 5: Algorithm performance in the two train capacity scenarios. (a) Crowding-insensitive. (b) Crowding-sensitive.

Table 7: Estimation results of the crowding-insensitive train capacity scenario.

Category Variable Name “True”
Estimated Parameters

GA SA NMSA MADS SPSA BYO CORS

Path choice

In-vehicle time −0.147 −0.392 −0.181 −0.254 −0.460 −0.191 −0.197 −0.177
Relative walking time −1.271 −2.153 −2.044 −2.636 −2.294 −2.284 −2.469 −2.025
Number of transfers −0.573 −1.127 −1.614 −1.279 −0.490 −0.760 −0.908 −1.011
Commonality factor −3.679 −6.489 −6.500 −7.492 −7.750 −5.299 −5.474 −5.130

Train capacity
θ0 235 239 245 249 230 241 238 236
θ1 0 0.088 0.109 0.096 0.050 0.096 0.093 0.084
θ2 0 0.05 0.058 0.108 0.050 0.150 0.078 0.063

Objective function — 700,441 418,196 277,835 553,765 241,533 305,846 277,212

Table 8: Estimation results of the crowding-sensitive train capacity scenario.

Category Variable Name “True”
Estimated Parameters

GA SA NMSA MADS SPSA BYO CORS

Path choice

In-vehicle time −0.147 −0.472 −0.217 −0.228 −0.332 −0.177 −0.195 −0.196
Relative walking time −1.271 −2.533 −1.575 −2.735 −1.568 −2.118 −1.763 −2.534
Number of transfers −0.573 −0.759 −1.169 −1.323 −0.816 −0.495 −0.892 −0.734
Commonality factor −3.679 −6.489 −6.324 −7.040 −7.834 −4.361 −6.046 −5.021

Train capacity
θ0 225 238 244 238 245 244 237 237
θ1 0.2 0.166 0.149 0.121 0.112 0.140 0.085 0.099
θ2 0.2 0.080 0.114 0.125 0.144 0.129 0.123 0.110

Objective function — 765,621 320,745 231,228 502,341 199,753 335,558 169,057
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parameters of in-vehicle time and number of transfers are
better estimated than those of relative walking time and
commonality factors.

Figure 4(b) shows the results of the deterministic sce-
nario. )e initial objective function is relatively small
(1.5 × 105) compared to the reference scenario (1.5 × 106).
All algorithms only reduce the objective function by around
1/3 except for the CORS algorithm. )e good performance
of CORS may come from global searching with the Latin
hypercube method. It is better suited to explore the points
near boundaries. Although the objective function does not
decrease too much, the estimated parameters are still ac-
ceptable (see Table 6).

4.4.2. Impact of Crowding Sensitivity. Figure 5 shows the
estimation results of the two scenarios related to train ca-
pacity (i.e., crowding-sensitive and crowding-insensitive). In
the crowding-insensitive scenario (Figure 5(a)), the con-
clusions are similar to the reference scenario. CORS, BYO,
NMSA, and SPSA converge to low objective function values
and outperform other algorithms. )e performance of
NMSA and MADS is improved compared to the reference
scenario. In the crowding-sensitive scenario, we still observe
a good performance by the CORS, NMSA, and SPSA al-
gorithms. )e performance of BYO is slightly reduced. )e
results shown in Tables 7 and 8 indicate that θ0 (base ca-
pacity) is hard to estimate. )is may be because trains at
most stations do not reach the capacity. )erefore, for many
OD pairs, the OD exit flows (directly related to the objective
function) are not sensitive to the base capacity parameter.

5. Conclusion

In this paper, we propose an SBO framework to calibrate
train capacity and path choice model parameters simulta-
neously for metro systems using AFC and AVL data. )e
advantage of the proposed framework lies in capturing the
collective effect of both path choices and train capacity on
passenger journey times. Seven representative algorithms
from four main branches of SBO methods are applied and
compared with respect to their solution accuracy, conver-
gence speed, and stability. We applied the proposed
framework using data from the Hong Kong MTR network
and compared the performance of the different algorithms.
Overall, the results show that some algorithms result in a
reasonable estimation of the parameters of interest. )ese
results also support the effectiveness of the proposed SBO
framework for calibrating these key parameters using AFC
and AVL data. Especially, the response surface methods
(particularly CORS) exhibit consistently good performance.
)e SBO framework is flexible to accommodate a wide range
of path choice and train capacity models in transit simu-
lation models.

)is paper has some limitations. First, we validate the
framework and evaluate the algorithmic performance only
using synthetic AFC and AVL data. )erefore, the com-
plexities of noise and uncertainties in actual data do not play
any role. )is is caused by the absence of real-world path

choice and train capacity information. Future research can
collect real-world path choice and train capacity data to
conduct more realistic model validation. Second, we as-
sumed that the path choice behavior is similar for the whole
network (same β values). Given the real-world path choice
behavior is possibly more diverse and heterogeneous, future
research can explore clustering different OD pairs with
different β values based on individual mobility character-
istics [39].

Appendix

(A). Passenger Path Choice Model for
MTR System

)ese results are from [34].)e C-logit model formulation is
the same as equations (1) and (2). A total number of 31,640
passengers completed the questionnaire. After filtering
duplicate responses, 26,996 responses were available. )e
model results are shown in Table 3. )e main explanatory
variables are the total in-vehicle time, relative transfer
walking time, and number of transfers. All variables are
statistically significant with the expected signs. Paths with
high in-vehicle time, walking time, and number of transfers
are less likely to be chosen by passengers.

Data Availability
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+is paper analyzes government subsidies based on the service design (i.e., headway) and fare structures of an urban rail transit
system while considering necessary financial support from the government. To capture the interactions among the operator
performance, government subsidies, and passengers in an urban rail transit system, a profit maximizationmodel with nonnegative
profit constraint is formulated to determine the optimal fare and headway solutions. +en, the social welfare that results from the
operator profit maximization model is analyzed. Finally, a numerical example from Changsha, China, is employed to verify the
feasibility of the proposed model. +e major results consist of optimized solutions for decision variables, i.e., the fares and train
headways, as well as subsidies to the operator. +e fare elasticity factor under two fare structures significantly affects fares and
demand. As the fare elasticity factor increases, the social welfare gradually decreases and a deficit occurs at low fares and demand,
while subsidies rise from 0 to ¥24658.00 and ¥38089.16 under the flat fare and distance-based fare structures.

1. Introduction

In recent decades, large-scale investment by local authorities
in China has greatly promoted the pace of urban rail transit
(URT) construction and operation. According to the “An-
nual Statistics and Analysis Report of URT 2019”, up to the
end of 2019, there were 208 URT lines in (mainland) China,
distributed in 40 cities, including Shanghai, Beijing,
Guangzhou, and Nanjing, with a total length of 5180.6 km in
operation, and the ridership has exceeded 237.1 billion
passengers per year. In general, operators in most cities are
overdependent on the government’s subsidies (data source:
China Association of Metros, 2019 [1]).

A comprehensive review of the transportation issues was
conducted by Farahani et al. [2], which discussed and
compared the models and solution methods of trans-
portation network design problem. Although many studies
have investigated the optimization of public transportation,

the literature on methods for optimizing URT system op-
eration with subsidy constraints while considering different
fare structures is still relatively scarce. For instance, Li and
Love [3] conducted a retrospective analysis of a rail line that
was procured using a public-private partnership in con-
junction with land value capture. +ey showed that the
economic viability of that URT system could be ensured by
considering the land value capture. Canca et al. [4] devel-
oped a mathematical programing model that maximized net
profit by simultaneously determining the infrastructure
network and line planning problem. +e effect of a sur-
charge-reward scheme relieving crowding and queuing
congestion in a URT system was investigated in Tang et al.
[5], who formulated a bilevel model to design and optimize
the surcharge-reward scheme. Since fares are closely related
to operator profit and subsidies, the implementation of fare
differentiation is one of the practical policies adopted in
public transport management [6]. Further studies on the
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relations between fares and operator performance as well as
passenger travel behavior have been conducted. For ex-
ample, a model was developed to optimize the transit fare
structure with demand elasticity, but with a fixed service
frequency [7]. +en, Chien and Spasovic [8] proposed a
model that optimized fares by considering demand without
excessively simplifying spatial characteristics and demand
patterns. +e work of Chien and Spasovic [8] was extended
by Sharaby and Shiftan [9], who studied the impacts of fares
on demand and travel behavior. +e optimization of fares
has often been related to the service frequency (or its inverse,
the headway, in this study), which has been investigated by
many researchers. Chien and Tsai [10] constructed an op-
timization model for maximizing profits and considered the
impact of varying demand on headway and fare. Jin et al.
[11] proposed a social welfare maximization model for
optimizing fare levels by considering the demand and service
quality of public transport. Wang and Deng [12] developed a
model for optimizing distance-based fare structure (DBF)
and headway by considering the maximum operator profit
and minimum per capita subsidy for passengers. Besides,
passengers consider many factors in their travel choices,
including service levels, generalized travel time, and fares
[13].+ese factors can be subsumed into the passenger travel
behavior of public transportation systems.

Different fare structures are mainly used as one of the
indicators for evaluating passenger travel behavior, operator
performance, and other aspects. For flat fare structure (FF)
optimization, Wang et al. [14] investigated public transit
service (i.e., flat fare and frequency) operation strategies in a
bimodal network. Jin et al. [11] focused on a flat fare
structure and found that low fares are preferable from the
viewpoint of maximizing social welfare. For DBF optimi-
zation, Tsai et al. [15] proposed a profit maximization model
for maximizing DBF and service headway. +rough sensi-
tivity analyses, the results indicate that the optimized fare
and headway decrease as the demand increases, which re-
sults in a profit increase. In addition, some studies also
proposed models that optimized other fare structures, such
as a zonal fare [13], a sectional fare [16], and an Origin-
Destination (OD) fare [17]. Besides, several papers have
discussed the feasibility and importance of FF and DBF [18].
+e present study only considers FF andDBF since these two
are the most widely used fare structures in public
transportation.

Another stream of the literature related to our work
focuses on operator performance and passenger travel be-
havior. A series of studies have been conducted to analyze
the operators’ performance. A model that optimizes oper-
ator performance such as frequency and vehicle fleet sizes
with financial policies was formulated by Jara-Dı́az and
Gschwender [19], which investigated the effect that overall
economic policies may have on the operation of public
service. +e efficiency of and the substitutability between
different management policies have been analyzed in [20].
+e model features operator performance between cars and
transit. Several studies have analyzed the passengers’ travel
characteristics. Gkritza et al. [21] pointed out that riders are
sensitive to changes in absolute fare levels as well as relative

price. Considering the effect of fares on passenger travel
behavior, Nassi and Costa [22] evaluated a region’s optimal
fare system by using the analytic hierarchy process (AHP).
Table 1 highlights the novelties of the model proposed in this
paper through comparison with previous studies.

As reviewed above, previous studies have optimized fare
structures and subsidies separately, but no published study
has compared the impact of subsidies for different fare
structures by considering social welfare. More related to our
study, several scholars have investigated operation perfor-
mance with subsidy constraints. To explore different fi-
nancial constraints, Zhou et al. [23] proposed a maximum
social welfare model for optimizing bus transit systems.
+rough numerical study, the results showed that the effects
of subsidies on social welfare differed for fixed and flexible-
route bus systems. Wang and Deng [12] studied the impact
of per capita subsidy on passengers and proposed an effi-
ciency-oriented model for maximizing the efficiency of per
capita subsidy. A break-even subsidy model for optimizing
fares and headways has been developed by Wang et al. [24].
+is study identified the effect of two fare structures and
headway on operational subsidies.

We recognize that the subsidy to operators may be re-
lated to operator performance and fare structures. Our work
is extended from Zhou et al. [23] and Wang et al. [24] by
considering the impact of fare structures and operator
performance on operations. +erefore, we formulate a profit
maximization model for operators who charge fares that
optimize social welfare and determine the headway opti-
mized in response to the government’s financial constraints.
+e major contributions of this paper are summarized as
follows:

(i) +is research comprehensively considers subsidy
constraints and fare structures of URT system op-
timization to determine the operator performance
and passenger travel behavior. A profit maximiza-
tion model, with a many-to-many demand pattern,
for optimizing fares and headways to maximize the
operator profit is developed by considering flat fare
(FF) and distance-based fare (DBF) structures as
well as a subsidy constraint.

(ii) +is paper compares the performance of FF and
DBF structures through numerical studies. It is
found that FF requires more subsidies and is more
attractive for long-distance passengers, while DBF is
more profitable and attractive for short-distance
passengers.

(iii) We investigate the operator performance under the
government’s subsidy constraints and different fare
structures and compare the effectiveness of the two
fare structures at attracting passenger demand and
maximizing social welfare. +rough the operator
profit maximization model with fare structures and
subsidy constraints, we obtain the levels of the
demand and fares that require no subsidy.

(iv) We obtain the optimal function of fare and head-
way. Besides, the fare levels significantly affect op-
erator performance, thus affecting subsidies to
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operators. Comparing the effects of changes in fare
elasticity factor on subsidies, we find that the fare
elasticity factor affects the DBF fare rate (i.e., the
variable component of DBF fare) more than the FF
fare and affects the revenue more than the operating
cost under FF and DBF.

+e paper is organized as follows. In the next section,
preliminaries are described, including the URT network
characteristics and important functions related to optimi-
zation models. Section 3 presents the operator profit models
under FF and DBF and provides the solution discussion for
two models. +e performance and application of our pro-
posed models are evaluated through numerical experiments
in Section 4. Finally, conclusions with major findings as well
as prospective research directions are provided in Section 5.

2. Preliminaries

In this paper, a URT line is represented by (S, E), which
contains the station set and section set. Let S � 1, 2, . . . , N{ }

be the set of nodes for stations and let E � eij|i, j ∈ S􏽮 􏽯 be the
set of sections for the line. For each section eij ∈ E, the
distance between stations i and j (i, j ∈ S) is dij. Let DS, S �

1, 2, . . . , N represent the total length of the line between the
OD stations. +e following assumptions are made before
formulating the models.

(i) Assumption 1. +e URT trains are assumed to have
the same number of railcars and the same fixed
dwell times at each station.

(ii) Assumption 2. +e study period is assumed to be
one hour, i.e., demand is an average hourly pas-
senger flow of the day. We neglect here the dif-
ferences between peak and off-peak hours in order
to focus on subsidies, fare structures, and operator
profit maximization model.

(iii) Assumption 3. All revenue of operators is obtained
from fares, and no other revenue sources are
considered (e.g., advertisement revenue). +is
means that the subsidies found here are only related
to operations.

(iv) Assumption 4. +e average waiting time of pas-
sengers at all stations along a URT line is the same
constant fraction of the headway, i.e., usually half of
the headway if passengers and trains arrive uni-
formly over time.

2.1. Fare Structures. Since FF and DBF are considered here
the fare per passenger trip can be written as follows:

P �
􏽥P, (for FF),

􏽢P � p0 + 􏽢pdij, (forDBF),

⎧⎨

⎩ (1)

where the fare, 􏽢P, for DBF includes a fixed component p0
and a variable component, 􏽢p.

2.2. Elastic Demand Function. Let Qij be the URTpassenger
volume from stations i to j and qij be the potential demand
during the study period. Referring to Wang and Deng [12]
and Wang et al. [24], we can obtain the passenger elastic
demand function:

Qij � qij 1 − ewwt − errt − epP􏼐 􏼑, (2)

where wt, rt are the waiting time per passenger and train
riding time, respectively, and ew, er, eP are parameters for
waiting time, riding time, and fare, respectively.

+e total riding time of passengers between stations i and
j is the sum of the train running time, (dij/v), and train
dwell time, |j − i − 1| · t0, where t0 is the average train dwell
time at each station. +e passenger riding time, rt, can be
expressed as

rt �
dij

v
+|j − i − 1| · t0. (3)

According to assumption 4, the average passenger
waiting time is wt � σ · H, where σ � 0.5 is the waiting time
parameter. +us, (2) can be rewritten as

Qij � qij 1 − ewσH − errt − epP􏼐 􏼑. (4)

To ensure the nonnegativity of the demand, the elastic
demand function should satisfy the following condition:

Table 1: Related studies.

Citation Considering social welfare
Fare

structures Considering subsidy Demand pattern

FF DBF Many-to-many elastic demand
Chien and Spasovic [8] ✓ ✓ — — ✓
Chien and Tsai [10] — ✓ ✓ — ✓
Wang and Deng [12] — ✓ ✓ ✓
Huang et al. [17] — ✓ ✓ ✓
Jara-Dı́az and Gschwender [19] ✓ ✓ — ✓ —
Basso and Silva [20] — ✓ — ✓ —
Zhou et al. [23] — ✓ — ✓ —
Wang et al. [24] — ✓ ✓ ✓ ✓
Sun et al. [25] ✓ ✓ — ✓ —
Ling et al. [26] — ✓ — ✓ —
+is study ✓ ✓ ✓ ✓ ✓
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0≤ 1 − ewσH − errt − epP≤ 1. (5)

2.3. Operating Costs Function. Following Wang et al. [24],
the total operating cost consists of three components: train
operating cost (CT), rail line maintenance and operation cost
(CL), and station service and operation cost (CS); i.e.,

C � CT + CL + CS. (6)

+e train operating cost includes the variable cost, NcO

(i.e., the cost of trains operating on the line), and the fixed
cost, βεNcO (i.e., the cost of reserve trains waiting to be
operated), which can be expressed as

CT � NcO + βεNcO. (7)

+e number and cost of reserve trains are, respectively, ε
times and β times those of the operating trains. In (7), the
number of operating trains, N � (TR/H), equals the train
round trip time, TR, divided by the headway, H. +e train

round trip time is TR � 2((Ds/v) + LSt0) + tz, comprising
the nonstop line-haul travel time (Ds/v), dwell time, LSt0,
and the train reversing time tz.

+e second term is the sum of the variable cost, (c1/H)

(the cost for line use related to the operating frequency 1/H)
and the fixed cost c0Ds (i.e., the cost of the rail line
maintenance related to the total length of the line), which
can be expressed as

CL � c0Ds +
c1

H
. (8)

+e last term comprises the fixed cost for a station
operating and variable cost (i.e., the number of passengers
served per hour). +e service costs grow linearly with the
passenger volume at each station, which can be expressed as

CS � Λ0LS + Λ1 􏽘
i,j∈S

qij 1 − ewσH − errt − epP􏼐 􏼑. (9)

+en, the operating cost function (C) under FF and DBF
can be reformulated as follows:

C �

􏽥C � (1 + βε)
TR

􏽥H
· cO + c0Ds +

c1
􏽥H

􏼒 􏼓 + Λ0LS + Λ1 􏽘
i,j∈S

Qij, (for FF),

􏽢C � (1 + βε)
TR

􏽢H
· cO + c0Ds +

c1
􏽢H

􏼒 􏼓 + Λ0LS + Λ1 􏽘
i,j∈S

Qij, (forDBF).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

2.4. Revenue Function. According to assumption 3, the
revenue of the URT system is a sum of the fares paid by all
passengers. +e revenue function (R) under FF and DBF can
be expressed as

R �

􏽥R � 􏽥P · 􏽘
i,j∈S

qij 1 − ewσ 􏽥H − errt − ep
􏽥P􏼐 􏼑, (for FF),

􏽢R � 􏽘
i,j∈S

􏽢P · qij 1 − ewσ 􏽢H − errt − ep
􏽢P􏼐 􏼑, (forDBF).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

3. Model Formulation

3.1. Operator Profit Maximization Model. In this section,
operator profit maximization model is analyzed with a
subsidy constraint under two fare structures (i.e., FF and
DBF). +e decision variables are headway H and fare P. In
view of (1)–(11), the operator profit (􏽥π( 􏽥H, 􏽥P) or 􏽢π( 􏽢H, 􏽢P))
maximization problem can be formulated as follows. For FF,

􏽥π( 􏽥H, 􏽥P) � 􏽥P · 􏽘
i,j∈S

qij 1 − ewσ 􏽥H − errt − ep
􏽥P􏼐 􏼑

− (1 + βε)
TR

􏽥H
· cO + c0Ds +

c1
􏽥H

􏼒 􏼓 + Λ0LS + Λ1 􏽘
i,j∈S

qij 1 − ewσ 􏽥H − errt − ep
􏽥P􏼐 􏼑⎛⎝ ⎞⎠,

(12)

subject to
􏽥R − 􏽥C + 􏽥Sflat ≥ 0. (13)
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For DBF,

􏽢π( 􏽢H, 􏽢P) � 􏽘
i,j∈S

􏽢P · qij 1 − ewσ 􏽢H − errt − ep
􏽢P􏼐 􏼑

− (1 + βε)
TR

􏽢H
· cO + c0Ds +

c1
􏽢H

􏼒 􏼓 + Λ0LS + Λ1 􏽘
i,j∈S

qij 1 − ewσ 􏽢H − errt − ep
􏽢P􏼐 􏼑⎛⎝ ⎞⎠,

(14)

subject to
􏽢R − 􏽢C + 􏽢Sdistance ≥ 0. (15)

Constraint (i.e., R − C + S≥ 0) guarantees the non-
negativity of the operator profit. +us, the profit should be
nonnegative after the government’s subsidies.

3.2. Solution Discussion. It is easy to verify that the operator
profit function is concave with respect to decision variables,
i.e., fare and headway (more details are shown in Appendix
A.). +erefore, we consider the first-order conditions of (12)
or (14); i.e., set to zero the partial derivative of the objective
function 􏽥π( 􏽥H, 􏽥P) (or 􏽢π( 􏽢H, 􏽢P)) with respect to 􏽥H (or 􏽢H) and
􏽥P (or 􏽢P), and obtain the functions for the optimal fare and
headway as follows.

For FF,

􏽥P
∗

�
􏽐i,j∈Sqij 1 − ewσ 􏽥H − errt + Λ1ep􏼐 􏼑

2ep􏽐i,j∈Sqij

,

􏽥H
∗

�

�����������������
(1 + βε)TR · cO + c1

ewσ 􏽥P − Λ1( 􏼁􏽐i,j∈Sqij

􏽳

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

For DBF,

􏽢P
∗

�
􏽐i,j∈Sdijqij 1 − ewσ 􏽢H − errt + epΛ1􏼐 􏼑

2ep􏽐i,j∈Sqijdij

,

􏽢H
∗

�

�������������������������
(1 + βε)TR · cO + c1

ewσ􏽐i,j∈Sqij p0 + 􏽢pdij􏼐 􏼑 − Λ1􏼐 􏼑

􏽳

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

In the subsidization scheme, a government provides
subsidies to compensate for operating deficit if and when the
operator faces a negative profit [27]. +e subsidy should
satisfy the following.

For FF,

􏽥Sflat � max 􏽥C − 􏽥R, 0􏽮 􏽯. (18)

For DBF,
􏽢Sdistance � max 􏽢C − 􏽢R, 0􏽮 􏽯. (19)

Substituting (16) and (17) into (18) and (19), we can
obtain the subsidy to an operator under for FF and DBF as
follows.

For FF,

􏽥S
∗
flat � max (1 + βε)

cOTR

􏽥H
∗ + c0Ds +

c1
􏽥H
∗􏼒 􏼓 + Λ0LS􏼚

+ Λ1 − 􏽥P
∗

􏼐 􏼑 􏽘
i,j∈S

qij 1 − ewσ 􏽥H
∗

− errt − ep
􏽥P
∗

􏼐 􏼑, 0
⎫⎪⎬

⎪⎭
.

(20)

For DBF,

􏽢S
∗
distance � max (1 + βε)

cOTR

􏽢H
∗ + c0Ds +

c1
􏽢H
∗􏼠 􏼡 + Λ0LS􏼨

+ 􏽘
i,j∈S
Λ1 − 􏽢P

∗
􏼐 􏼑qij 1 − ewσ 􏽢H

∗
− errt􏼐

− ep p0 + 􏽢pdij􏼐 􏼑􏼑, 0􏼩.

(21)

In general, the user surplus is computed as the integral of
the fare function (that is, the inverse of the demand func-
tion) concerning the total passenger volume. Following Sun
et al. [25], let B(P) be the inverse demand function of the
elastic demand function [28].

B(P) � Q
− 1
ij �

1 − ewwt − errt − Q/􏽐i,j∈Sqij􏼐 􏼑

ep

. (22)

+en, the user surplus U can be expressed as follows:
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U �

􏽥U � 􏽚
Qij

0
(B(􏽥P) − 􏽥P)dq �

1
2ep

􏽘
i,j∈S

qij 1 − ewσ 􏽥H − errt − ep
􏽥P􏼐 􏼑

2
, (for FF),

􏽢U � 􏽚
Qij

0
(B(􏽢P) − 􏽢P)dq �

1
2ep

􏽘
i,j∈S

qij 1 − ewσ 􏽢H − errt − ep
􏽢P􏼐 􏼑

2
, (forDBF).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

We now compute the social welfare resulting from the
fare and headway obtained by the profit maximization
model with subsidy constraints. Combining profit and user
surplus, social welfare (Y(􏽥P, 􏽥H) or Y(􏽢P, 􏽢H)) can be written
as follows.

For FF,

Y(􏽥P, 􏽥H) � 􏽥P − Λ1( 􏼁 · 􏽘
i,j∈S

qij 1 − ewσ 􏽥H − errt − ep
􏽥P􏼐 􏼑

− (1 + βε)
TR

􏽥H
· cO − c0DS +

c1
􏽥H

􏼒 􏼓

− Λ0LS +
1
2ep

􏽘
i,j∈S

qij 1 − ewσ 􏽥H − errt − ep
􏽥P􏼐 􏼑

2
.

(24)

For DBF,

Y(􏽢P, 􏽢H) � 􏽘
i,j∈S

􏽢P − Λ1􏼐 􏼑 · qij 1 − ewσ 􏽢H − errt − ep
􏽢P􏼐 􏼑

− (1 + βε)
TR

􏽥H
· cO − c0DS +

c1
􏽢H

􏼒 􏼓

− Λ0LS +
1
2ep

􏽘
i,j∈S

qij 1 − ewσ 􏽢H − errt − ep
􏽢P􏼐 􏼑

2
.

(25)

4. Numerical Study

We illustrate an application of the proposed models for
Changsha’s Metro Line 2 in China. A numerical study in-
vestigates the effects of the key model variables and subsidies
for different fare structures. In the following analysis, the
baseline values of parameters are set as follows:

+e average speed is assumed to be 40 km/h, while the
average train dwell time, train reserving time, and passenger
waiting time at each station are set to be 1/120 h, 0.08 h, and
0.5 h, respectively. +e hourly operating cost is ¥1950/ve-
hicle-hour, the unit fixed cost of the line is ¥ 3800/km, and
the unit fixed cost of each station is ¥ 4200/km-hr. +e
demand elasticity parameters for waiting time, riding time,
and fare are set at 0.6, 0.15, and 0.1, respectively. +e upper
and lower boundary of the train operating headway are set at
1/30 (or 2 minutes) and 1/5 (or 12 minutes), while those of
the fare are set at 0 and 12, respectively. +e values of other
input parameters are shown in Table 2. Note that additional
references for these parameters can be found in Wang and
Deng [12], Wang et al. [24], and China Railway Fourth

Survey and Design Institute Group Co., Ltd. [29]. +e values
for the demand elasticity parameters are estimated based on
historical data [12, 24]. +e actual data of Changsha’s URT
line 2 are obtained from a survey conducted during the
planning period, as shown in [29].

4.1. Numerical Results. +e optimized results for the oper-
ator profit (OP) models under FF and DBF are presented in
Table 3. +e results are slightly different for two fare
structures, while the headways and fare levels are extremely
sensitive to the objective. For comparison, optimized so-
lutions are provided from the OPmodels with fare structures
and subsidy constraints. Decision variables at which the OP
model maximizes profit are ¥ 4.88 for fare and 8.56min for
headway under FF. For DBF, the corresponding optimized
values are ¥ (1.97 + 0.294dij) for fare and 9.82min for
headway.

+e subsidy is zero and fares are at a higher level for both
FF and DBF under the OP models in this numerical study,
which means that the subsidy constraint is not binding. For
comparison, it must be noted that the problem studied in
Sun et al. [25] differs from the one presented here. Sun et al.
[25] reported that the financial constraint is binding at
optimality in public transit subsidization, and the operators
break even after subsidies. However, the subsidy constraint
is not binding at optimality when considering the OP
models, i.e., 􏽥Sflat � 0 (or 􏽢Sdistance � 0). +us, when the OP is
positive, no subsidy is needed. In the case of high demand
and fares, this is reasonable because operators seek to
maximize their profits. +e previous study considered the
situation where the optimal profit was negative and pro-
posed an efficiency-oriented subsidy optimization method
that seeks tomaximize the per capita subsidy, so there was an
operating deficit in Case [12]12.

4.2. Fare Structures Discussion. +e elastic demand function
used in this paper is sensitive to the trip length. +e travel
behavior (i.e., demand and trip length) of passengers under
FF and DBF is shown in Figure 1, which plots the demand
and fares vs. trip length. When a passenger’s trip length is
9.93 km, FF and DBF fares are equal. When the trip is below
9.93 km, the demand with DBF exceeds that with FF, but the
fare with DBF is lower than with FF.

Taking the maximum demand gap for example, in the
first set of the data (i.e., the first bars indicating demands
under FF and DBF in Figure 1(a)), DBF demand is 1.5 times
that under FF, whereas FF fare is 2.25 times that under DBF.
+erefore, the FF revenue is higher than that under DBF (as
shown in Table 1). In Figure 1(b), the DBF demand declines
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Table 2: Notation.

Parameters Description Baseline value
cO Average train operating cost per hour (¥/h-vehicle) 1950
ew Elasticity parameter for wait time (1/h) 0.6
er Elasticity parameter for riding time (1/h) 0.15
ep Elasticity parameter for the fare (1/¥) 0.1
LS Number of stations 19
Pw Lower boundary of the fare (¥) 0
Pw Upper boundary of the fare (¥) 7
t0 Train dwell time at each station (h) 1/120
tZ Train reversing time (h) 0.08
v Train speed (km/h) 40
β Idle trains multiplier (the cost of the nonoperating trains is β-times of the operating trains) 0.24
c0 Fixed maintenance costs per line kilometer (¥/km) 3800
c1 Cost parameter related to the rail line frequency (¥/h) 525
ε Reserve factor (the nonoperating trains are ε-times the number of the operating trains) 0.25
σ Ratio of waiting time to headway (1/h) 0.5
τ Lower boundary of the headway (h) 1/30 h (or 2 minutes)
τ Upper boundary of the headway (h) 1/5 h (or 12 minutes)
Λ0 Fixed cost parameter for each station (¥/km) 4200
Λ1 Service cost parameter per passenger at each station (¥) 0.5

Table 3: Optimized solution.

Optimized solution FF DBF
Fare (¥) 4.88 1.97 + 0.294dij

Headway (min) 8.56 9.82
Revenue (¥/h) 283754.21 245907.52
Operating costs (¥/h) 214949.64 218266.28
Operator profit (¥/h) 68804.57 27641.24
Passenger surplus (¥/h) 146131.37 225264.98
Total social welfare (¥/h) 214935.94 252906.22
Subsidy (¥/h) 0 0
Demand (pass./h) 57967 70989
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Figure 1: Demand and fare for a given operation plan.

Journal of Advanced Transportation 7



when the trip exceeds 9.93 km. +e DBF demand is almost
zero when the trip exceeds 17 km, but there are still some
passengers under FF. +is occurs because the profit loss
caused by the reduction in demand exceeds the profit gain
caused by the increase in fares (i.e., the increase in the fare is
not enough to compensate for the reduction in demand). For
example, the DBF fare is about ¥5.88 when the trip is 17 km,
which is 1.32 times higher than FF, but the demand is less
than 0.5 of that under FF (in Figure 1).

4.3. Subsidy Discussion and Operator Performance

4.3.1. Effects of Subsidies on Operator Profit. Figures 2(a) and
2(b) show the changes in subsidies as the fares and headway
change under FF and DBF. +e trend under the two fare
structures is similar, and the subsidy has a negative corre-
lation with fare and headway, as expected. As can be seen,
the subsidy under DBF decreases faster as the headway
increases, compared to the change of the subsidy with the

change of the fare. In contrast, the subsidy under FF changes
more significantly as the fare changes. +e blue part of
Figure 2 shows the operator needs a lower subsidy, while the
red part shows the operator needs a higher subsidy. In
contrast, at the same headway, higher fares increase revenue.
Note that the vertical scale in Figure 2 extends below zero, to
allow for a possible negative profit.

Figures 3 and 4 show numerical results associated with
various subsidies under FF and DBF. Considering the re-
lation between subsidy and fare with fixed optimal headway
􏽥H
∗ (see Figure 3(a)), as FF fare increases, the subsidy de-

creases from a peak value towards a minimum value,
dropping to zero when 􏽥P1 � 2.60. However, the subsidy
reaches its vertex (minimum value of ¥ − 68804.57) when the
FF fare is ¥ 4.88 (i.e., the operator needs no subsidies when
the profit exceeds ¥ 0.0). Beyond the value of FF fare at the
vertex, the subsidy rises in a parabolic form from its min-
imum value, crossing the point of zero value where
􏽥P2 � 7.16. For a fixed optimal fare 􏽥P

∗ (see Figure 3(b)), the
subsidy becomes zero when 􏽥H � 0.0314 h. +e graph shows
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Figure 2: Decision variables vs. subsidy under FF and DBF. (a) FF. (b) DBF.
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Figure 5: Subsidy vs. fare and headway under FF ((a) and (b)) and DBF ((c) and (d)) with three fare elasticity parameters.
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the subsidy attains a minimum value of ¥ − 68804.57 at a
headway of 0.143 hours (8.56 minutes).

For DBF (see Figure 4), a similar trend is observed to that
for FF. For a fixed optimized headway 􏽢H

∗ (see Figure 4(a)),
the optimized subsidy is ¥ − 27641.24 when the fare is ¥
(1.97 + 0.294dij). When 􏽢P

∗
� E1.97 + 0.108dij and 􏽢P

∗
� E

1.97 + 0.479dij, the subsidy is zero. +e reason is similar to
that for FF. For a fixed optimized fare 􏽢P

∗ (see Figure 4(a)),
when the subsidy is minimal, the headway is 0.164 hours
(9.82 minutes). When 􏽥H � 0.0558 h, the subsidy is zero.

4.3.2. Effects of Fare Parameter on Operator Performance.
+e fare levels significantly affect operator performance [7],
thus affecting subsidies. +erefore, we explore the effects of
fare elasticity parameter on subsidy. Figures 5(a)–5(d)
compare the subsidies with the change of fare and head-
way for three elasticity factors: ep � 0.05, ep � 0.10, and
ep � 0.15.

Note that Figures 5(a) and 5(b) represent the changes of
subsidy for different fare and headway under FF, while
Figures 5(c) and 5(d) represent the changes under DBF. +e
effects of the fare and headway on the subsidy under FF and
DBF show similar trends, but the fare and headway trends
are somewhat different. It is found that a larger ep-value
requires higher subsidies. A smaller ep-value indicates
higher demand and fares, and hence a more profitable
operation.

Table 4 further presents the optimized URT system
solutions for three elasticity factors: ep � 0.05, ep � 0.10, and
ep � 0.15. Comparing the effects of changes in fare elasticity
factor on operator performance, passenger behavior, and
subsidies under FF and DBF, the fare elasticity factor has a
more significant effect on fares and demand, and thus the
subsidy varies more widely. For FF, the comparison shows
that the FF fare decreases by 65.8%; i.e., the FF fare decreases
from ¥9.64 to ¥3.3 for fare elasticity factors of ep � 0.05 and
ep � 0.15, respectively. For DBF, the fare elasticity factor has
a more significant effect on the variable component of DBF
fare which decreases by 83.3%, i.e., the variable component
of DBF fare decreases from ¥0.78/dij to ¥0.13/dij for fare
elasticity factors of ep of 0.05 and 0.15, respectively.

When ep remains at the same level, it has a similar effect
on the subsidies under the two fare structures. As ep in-
creases, the social welfare gradually decreases and a deficit

occurs at the lower fare and demand. +erefore, the sub-
sidies rise from zero to ¥24658.00 and ¥38089.16 under the
FF and DBF. In addition, the revenues of two fare structures
differ greatly (reduced by 68.53% and 61.24%), whereas the
operating cost of FF and DBF decrease by only 8.14% and
8.04%. +e reason is that ep significantly affects fares and
demand, which have a greater effect on revenue than on
operating cost. It is found that the subsidy is zero when ep is
0.05 or 0.10 because if the fare and demand are high, the
revenue exceeds the operating cost. +e same is true for
DBF.

5. Conclusions

+is study focuses mainly on service design and subsidy
issues and investigates subsidies to URT operators. +e
operator profit (OP) model primarily considers demand and
train operation plan to pursue operating profit. +is study
extends the existing literature on operator performance and
passenger characteristics under subsidy constraints by
considering fare structures. +e numerical examples explore
the operator performance and passenger characteristics by
comparing different fare structures. Operator performance
is mainly measured by service level (e.g., service frequency)
and operational subsidies needed from the government,
while the comparative analysis under FF and DBF reflects
the passengers’ behavior. By analyzing the OP model, this
paper provides some important findings.

(1) +is paper analyzes the operator’s profit with fare
structures and subsidy constraints while comparing
the impact and performance of FF and DBF through
proposed models and numerical results. Assuming
that the passengers’ travel behavior is homogenous,
the results for different fare structures are slightly
different (as in Table 2). +e influence of decision
variables on the operational subsidies under FF
exceeds that under DBF (shown in Figures 3 and 4).
In general, DBF is more attractive for short-distance
passengers, while FF is more attractive for long-
distance passengers (see Figure 1).

(2) +e subsidy is zero under the OP models in this
numerical study, which means that the subsidy
constraint is not binding. Profit maximization does

Table 4: Optimal solutions with different fare parameters.

Optimal solution
ep � 0.05 ep � 0.10 ep � 0.15

FF DBF FF DBF FF DBF

Fare (¥) 9.64 1.97 + 0.78dij 4.88 1.97 + 0.29dij 3.3 1.97 + 0.13dij

Headway (minute) 5.93 7.07 8.56 9.82 10.71 11.79
Revenue (¥/h) 585051.39 447631.76 283754.21 245907.52 184112.53 173515.54
Operating cost (¥/h) 227269.12 230116.67 214949.64 218266.28 208770.53 211604.70
Operator profit (¥/h) 357782.27 217515.09 68804.57 27641.24 − 24658.00 − 38089.16
Passenger surplus (¥/h) 316619.46 549028.77 146131.37 225264.98 90194.69 123887.64
Social welfare (¥/h) 674401.73 766543.86 214935.94 252906.22 65536.69 85798.48
Subsidy (¥/h) 0 0 0 0 24658.00 38089.16
Demand (Pas./h) 60527 77814 57967 70989 55621 64951
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not require subsidies. If profit is negative when the
social welfare is positive, then a subsidy may raise the
profit to zero (“break-even”) but should not raise it
further. Wang and Deng [12] considered the situa-
tion where the optimal profit was negative and
proposed an efficiency-oriented subsidy optimiza-
tion method that seeks to maximize the per capita
subsidy, so there is an operating deficit in that case.

(3) +e fare structures and levels significantly affect
operator performance, thus affecting subsidies to
operators. Comparing the effects of changes in the
fare elasticity factor on subsidies under FF and DBF,
we find that a larger fare parameter value requires
higher subsidies. A smaller fare parameter value
indicates higher demand, so the operation is more
profitable (see Figure 5 and Table 4).

Although the proposed model provides useful insights
into operation and policy evaluation of URT, it neglects
some important URT characteristics that should be con-
sidered in the future. In further studies, work should be
pursued in the following areas.

(1) In this paper, the subsidy is computed based on the
headways and fares, which means the subsidy is
treated as a financial constraint. From the perspec-
tive of management, it represents a cost-plus con-
tract widely applied in China, in which operating
losses are fully covered by the government. Future
studies may consider additional policies and in-
centive mechanisms to induce operators to reduce
operating costs and improve services.

(2) +e models presented here focus on the operator
profit with subsidy constraints but ignore the effects
of passenger choices and behaviors on subsidies. +e
current study may be extended to consider the effects
of service levels and passenger travel choices on
subsidies.

(3) A linear form of elastic demand function is used in
this paper, which depends on the travel times and
fares (FF and DBF). +e fares are the same for all
passengers under FF while they vary with the trip
length under DBF. In the future, fares that vary over
time or for different passenger types (e.g., students,
the elderly, and the disabled) may be considered.

Appendix

A. Proof Progress

To obtain the optimal solutions for the headway and fare, we
set the partial derivative of the objective function 􏽥π( 􏽥H, 􏽥P)

(or 􏽢π( 􏽢H, 􏽢P)) with respect to 􏽥H (or 􏽢H) and 􏽥P (or 􏽢P) to zero.
For FF,

z􏽥π( 􏽥H, 􏽥P)

z􏽥P
� 􏽘

i,j∈S
qij 1 − ewσ 􏽥H − errt − 2ep

􏽥P + epΛ1􏼐 􏼑 � 0,

z􏽥π( 􏽥H, 􏽥P)

z 􏽥H
� ewσ 􏽘

i,j∈S
qij Λ1 − 􏽥P( 􏼁 +

(1 + βε)TR · cO + c1

􏽥H
2 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.1)

For DBF, we have

z􏽢π( 􏽢H, 􏽢P)

z􏽢P
� 􏽘

i,j∈S
dijqij 1 − ewσ 􏽢H − errt − 2ep p0 + 􏽢pdij􏼐 􏼑 + epΛ1􏼐 􏼑 � 0,
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(A.2)

+en, we obtain the optimality conditions.
For FF,

􏽥P
∗

�
􏽐i,j∈Sqij 1 − ewσ 􏽥H − errt + Λ1ep􏼐 􏼑

2ep􏽐i,j∈Sqij
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�����������������
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ewσ 􏽥P − Λ1( 􏼁􏽐i,j∈Sqij
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.
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(A.3)

For DBF,

􏽢P
∗

�
􏽐i,j∈Sdijqij 1 − ewσ 􏽢H − errt + epΛ1􏼐 􏼑

2ep􏽐i,j∈Sqijdij
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.
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(A.4)

Substituting (A.3) and (A.4) into objective functions (12)
or (13), and considering the constraint 􏽥Sflat � max 􏽥C − 􏽥R, 0􏽮 􏽯

or 􏽢Sdistance � max 􏽢C − 􏽢R, 0􏽮 􏽯, we obtain the subsidy to an
operator under FF and DBF as follows.
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For FF,

􏽥S
∗
flat � max (1 + βε)

cOTR
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. (A.5)

For DBF,
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+e second-order partial derivatives of 􏽥π( 􏽥H, 􏽥P) (or
􏽢π( 􏽢H, 􏽢P)) and with respect to 􏽥H (or 􏽢H) and 􏽥P (or 􏽢P) can be
derived as follows. For FF,
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For DBF,
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According to (A.7) and (A.8), we can obtain the fol-
lowing Hessian matrices under FF and DBF, respectively.
For FF,
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For DBF,
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As shown in Figure 6, all values of the Hessian matrices 􏽥π
and 􏽢π are greater than zero, that is, Hessian (􏽥π)> 0 and
Hessian(􏽢π)> 0. We can find that the Hessian matrices are
negative definite through specific numerical analysis, but the
sign of the Hessian matrices cannot be determined in the
analytical solution. +is implies that there is at least one
feasible solution for operator profit (OP) models, and we can
derive optimality conditions about the fare, headway, and
subsidy from (A.3)–(A.6).
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