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*is study developed and verified a travel speed predictionmodel based on the travel speed and work zone statistics collected from
the advanced trafficmanagement system (ATMS) real-time data in Daegu, South Korea. A clustered K-nearest neighbors (CKNN)
algorithm was used to predict travel speed, resulting in a 6.9% average mean absolute percentage error (MAPE) using the data
from 1,815 work zones. Furthermore, road network impact due to road work was calculated by comparing the travel speed
prediction results obtained from the historical speed data.*e predicted travel speed data in a work zone generated from this study
is expected to allow drivers to select optimized paths and use them for traffic management strategies to operate in a work
zone efficiently.

1. Introduction

A downside involved in road works is the reduction in the
capacity of a road, leading to traffic congestion and in-
conveniencing drivers. In Daegu Metropolitan City, South
Korea, an average of 20 road works are carried out per day
with limited information provided in advance, such as
construction schedules. Other essential details, including
expected traffic congestion and estimated travel time based
on road works, are not disclosed. *erefore, drivers navi-
gating or near the work zone may experience significantly
longer travel times than expected due to the restricted
notices. Predicting the network impact of road constructions
can provide drivers with opportunities to choose detours
[1, 2] and allow road managers to use it as data for estab-
lishing traffic operation strategies in case of traffic conges-
tion. It is necessary to have a system that predicts the impact
of work on traffic flow to reduce congestion caused by
frequent road works while providing information to drivers
or road managers ahead of time. In addition, an algorithm

for predicting the speed of neighboring road links after road
work and a method for understanding the effect of road
construction on the network should be developed.

Daegu Metropolitan City operates the advanced traffic
management system (ATMS) to provide traffic condition
information on urban roads. However, the data generated by
the system does not reflect real-time traffic information, so
inconsistencies in the actual road conditions arise. It is
necessary to provide the system’s users with estimated travel
speed or time to change their travel plans appropriately
based on the provided traffic information. Meanwhile,
numerous studies have been conducted to predict traffic
conditions in urban networks [3], but studies on predicting
traffic conditions, particularly in urban construction sec-
tions, are relatively insufficient [4]. *is study aims to de-
velop an algorithm to predict traffic speed after road work in
an urban area and present a method for determining
whether the road network is affected. *e travel speed
prediction model for the work area was developed through
the clustered K-nearest neighbors (CKNN) algorithm using
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traffic statistics collected from Daegu ATMS and work data
gathered from the urban traffic information system (UTIS).
Furthermore, road network impact due to road construction
was calculated by comparing the driving speed prediction
results obtained from the historical speed data.

*is study is composed of five sections. Section 2 reviews
previous studies related to this study, while Section 3 de-
scribes data used for this study and its preprocessing.
Moreover, Section 4 describes how to design and verify a
CKNN model, and Section 5 discusses the research result
and the follow-up study.

1.1. Literature Review. Predicting travel speed or travel time
has been an active research topic for decades, and as a result,
various predictive models have been developed [5]. In early
studies, parametric methods such as autoregressive moving
average (ARMA), Kalman filter [6], autoregressive inte-
grated moving average (ARIMA) [7, 8], and seasonal
autoregressive integrated moving average (SARIMA) [9]
were utilized [10, 11]. However, parametric methods were
difficult to implement in real-time traffic systems due to
some problems such as model calibration, validation, and
computational challenges [5]. In addition, they have been
proven to encounter poor performance compared to non-
parametric methods in unstable traffic conditions and
complex road settings [12, 13]. Neural network (NN),
K-nearest neighbors (KNN) [14], Bayesian network (BN)
[15], and support vector machine (SVM) [10, 16] are the
representatives of nonparametric algorithms [17]. Such
approaches were advantageous as they are free of assump-
tions regarding the underlying model formulation and the
uncertainty in estimating the model parameters [18]. Re-
cently, studies using deep learning techniques have been
conducted to improve the prediction accuracy of traffic
conditions [17, 19]. *ese include long short-term memory
(LSTM) [20, 21], deep belief network (DBN) [22], stacked
autoencoder (SAE) [23, 24], and convolutional neural
network (CNN) [25], which were widely used and had
achieved good results in predicting traffic conditions [26].
Nevertheless, a large amount of traffic data was required to
utilize nonparametric methods and deep learning strategies,
which increased algorithm execution times, making it dif-
ficult to present prediction results in real-time [27, 28].

*is study considered two factors when selecting the
travel speed prediction algorithm. First, the travel speed
prediction algorithm must be implemented in the traffic
information and management systems. Second, the algo-
rithm should be easily understandable through a traffic
manager’s level of knowledge and experience. *e para-
metric process was unsuitable for this study because of its
complications in implementing it in the system based on
these two points. Conversely, a nonparametric method was
easier to apply and provided superior prediction perfor-
mance than a parametric method in unstable traffic con-
ditions. In particular, due to their excellent prediction
results, neural networks and KNN algorithms have been
used in related studies for a long time. However, it was
difficult for analysts and managers to understand neural

network models since they use numerous neurons, complex
structures, and nonlinear functions [29–31]. *erefore, a
KNN model implemented in a real-time traffic system that
traffic managers can easily understand would be more
appropriate.

KNN algorithms could perform relatively accurate
predictions as the data increases, but computation time
becomes longer. Liu et al. [32] recognized this problem and
used a clustering method to improve it. Clustering is a
procedure for grouping data with similar characteristics, and
when used in the KNN algorithm, it shortens prediction
times and maintains good performance [33]. Hence, a
clustering method was applied to the KNN algorithm to
compress prediction times and improve the accuracy.

Most previous studies on travel speed prediction in work
zones were conducted on highways [34–38]. Prior studies
focused on work zones of urban arterial roads, but these
were limited to specific links or routes [4, 39]. Based on the
cited studies emphasizing the efficacy and potential of the
KNN algorithm, this study aims to develop an algorithm that
predicts traffic speeds based on changing traffic conditions
caused by work zones on urban roads. It also aims to present
a method to understand its effect on the road network. *is
study is not limited to a specific link or route but conducts a
travel speed prediction targeting all arterial roads in Daegu
Metropolitan City. In addition, this study presents a dif-
ference in that few studies suggest a method for judging the
effect on networks due to construction on urban arterial
roads.

2. Data Description and Preparation

2.1. StandardNode LinkData. Standard node link is Korea’s
standard transportation network database with a unified
identification (ID) system. Among them, link data includes
various road information (link ID, number of lanes, road
name, speed limit, etc.), as shown in Table 1. In Daegu, the
two major systems that collect, process, and provide traffic
information are UTIS and ATMS, which efficiently use
standard node link-based link IDs to match data between
systems. *e calculation time of the travel speed prediction
algorithm in a work zone was shortened, and the accuracy of
the prediction result was improved by clustering 1,672 links
according to their attributes’ similarities.

2.2. ATMS Data. Daegu Metropolitan City provides real-
time traffic information to road users by building ATMS, a
part of intelligent transportation systems (ITS). ATMS
collects individual vehicle travel information such as vehicle
IDs and detection time through dedicated short-range
communication (DSRC) when a vehicle equipped with an
onboard unit (OBU) passes through roadside equipment
(RSE) installation points. *e collected traffic speed data was
generated using the vehicle detection times. Meanwhile, the
distance between the roadside devices was then processed
into traffic speed data in units of five minutes for each road
link. As shown in Table 2, ATMS data fields include standard
node link-based ID (STD_LINK_ID), aggregated time
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(GENERATEDDATE), and speed (SPEED) calculated by
aggregating data collected over five minutes. In this study,
the traffic speed of the work zone was predicted using ATMS
data collected for a total of eight months, from November
2018 to June 2019.

2.3. UTIS Data. UTIS contains event information such as
traffic accidents, road construction, events, and weather
conditions that happened on the road. Table 3 shows the
UTIS data, including various information such as event ID,
link ID based on standard node link, event start and end
date, event information, and location of occurrence. After
collecting the UTIS data from November 2018 to June 2019,
the results were used to extract (1,815 cases) ATMS data at
the time of road work through link ID matching.

2.4. Data Preprocessing. *is study applied travel speed data
on arterial roads (1,672 links) collected through ATMS and
road works statistics (1,815 cases) for eight months (No-
vember 2018 to June 2019). For the same links, ATMS speed
data was classified into days with or without road works, and
some links showed that road work was performed twice or
more within eight months. Since the day of the week was one
of the many factors that affect the travel speed, details were
constructed by classifying the days from Sunday to Saturday
so that the characteristics of the day can be reflected in the
travel speed prediction model for the work zones. *e
network statistics with road works in progress were
extracted and used as training data, and the statistics on the
networks under the normal condition without road works
were utilized to analyze the network impact caused by these
construction or maintenance activities.

Because the traffic data generates random noise of
measured values from its stochastic characteristics, it is
required to remove the noise in historical speed data through
smoothing [40]. *us, moving average, which is considered
a smoothing method, was implemented using five-minute
time intervals (travel speed for ten minutes before and after
including the speed of the i-th time) as in equation (1). *e
historical speed data was transformed into a smoother form

of the time series data with outliers removed, as shown in
Figure 1.

Vt �
1
5



i�2

i�−2
V

h
t+i, for all samples. (1)

In equation (1), Vt is the speed in time t at which the
smoothing operation was performed, and Vh is the historical
speed data.

3. Methodology

3.1. ClusterAnalysis. Cluster analysis refers to grouping data
having a similar pattern [33]. In this study, cluster analysis
was performed to improve the accuracy of prediction results
and the computation time required for prediction. Travel
speed, which is affected by various factors such as road
environment (e.g., speed limit, number of lanes, etc.), can be
predicted more accurately because the noise from incon-
sistent data can be removed when clustered by links with
similar road environments [33]. Moreover, it is possible to
improve the prediction speed of the KNN algorithm by
grouping data, which deteriorates as the number of samples
increases [32, 41].

As a partitional clustering method, the k-means clus-
tering algorithm was applied because the concept is rela-
tively simple, making it easier for traffic managers to
understand. *e calculation time is short, making it ef-
fortless to use in a real-time information system [42]. *e
number of lanes and speed limit were used as input variables
for k-means clustering. As seen in Table 1, the link contains
numerous pieces of information, but the input variables used
for k-means clustering analysis are limited. For example,
since the road grade or road type means the hierarchy of
roads (expressway/general road, highway/urban road/rural
road, etc.) rather than link information, it is challenging to
use them to cluster similar links. Conversely, the number of
lanes and speed limit affect the capacity of the construction
section network [43, 44] since network capacity is related to
the traffic speed [45]. *erefore, similar links were classified
as k-means clustering input variables using the number of
lanes and speed limit.

Table 2: Field items of advanced traffic management system (ATMS) data.

Field name Description
STD_LINK_ID Link ID
GENERATEDDATE Collected time
SPEED Speed

Table 1: Field items of standard link data.

Field name Description Field name Description
LINK_ID Link ID ROAD_NAME Road name
F_NODE Start node ID ROAD_TYPE Road type
T_NODE End node ID MAX_SPD Max. speed limit
LANES Number of lanes REST_VEH Restricted vehicle
ROAD_RANK Road grade REST_W Restricted width
ROAD_NO Road number REST_H Restricted height

Journal of Advanced Transportation 3



Next, the optimal number of clusters (k) was determined.
Various methods for determining k include elbow method,
gap statistic, silhouette coefficient, and canopy [42]. *e
elbow method is utilized in this study, which is the most
frequently used k determination method. It is used to select k
as the point at which cluster variability (within-cluster sum
of squares) becomes smooth with an increase in the number
of clusters [46]. For that reason, it was appropriate when the
value of k is 3, which is the inflection point of the graph, as
illustrated in Figure 2. *e three clusters classified through
this can be characterized as follows: Cluster 1 is a road with a
speed limit of 50 km/h or slower and three lanes or less.
Meanwhile, Cluster 2 is a road with a speed limit of 60 km/h
or higher and four lanes or more, and Cluster 3 is a road with
a speed limit of 60 km/h or higher and three lanes or less.*e
cluster analysis result was used to find the travel speed
pattern most similar to the past when predicting the travel
speed of the work zone through the KNN algorithm.

3.2. CKNN Algorithm. *e KNN algorithm is a nonpara-
metric method used for classification or regression. It
predicts situations by referring to the K training data, which
is most similar to the input data [33]. *e measure of
similarity usually uses the Euclidean distance, which is
preferred in predicting a short-term traffic condition be-
cause its basic model and calculation time are short, with
data matching based on simple similarity. In particular, its
prediction is excellent for complex nonlinear problems and
can reflect traffic conditions with incidents or traffic jams.

Moreover, the KNN algorithm used in this study pre-
dicted the speed up to the forecast duration by referring to
the training data of K numbers. *is was most similar to the
travel speed pattern data during the lag duration before the
road work’s starting time (t).*e detailed analysis procedure
of the KNN algorithm is presented in Figure 3. When de-
signing the KNN algorithm, 1,453 out of 1,815 units of data
were used as training data for predictive model design, and
362 units of data were utilized as test data for finding the K
and algorithm verification.

d �

�����������������������������������������������������

V
c
t − V

h
t 

2
+ V

c
t−1 − V

h
t−1 

2
+ V

c
t−2 − V

h
t−2 

2
+ · · · + V

c
t−l − V

h
t−l 

2


. (2)

Data with the same day of the week and link cluster
number as the input data is filtered from historical travel
speed statistics to find the most similar travel speed pattern
to the past. *is study referred to the CKNN algorithm
because the cluster results were used to find similar travel
speed patterns [33]. *en, equation (2) was used to calculate
the Euclidean distance between travel speeds of lag duration,
and K training data was selected in order of the smallest
Euclidean distance.

Here, d is Euclidean distance, Vt is speed data at the road
work start time t, Vc is real-time speed data, Vh is historical
speed data, and l is lag duration.

Finally, the travel speed for each period (in five-minute
intervals) since the start of road work of the most similar K
training data was reflected in equation (3) to predict travel
speed after the current road work commenced. *e method
for pattern matching using Euclidean distance is shown in
Figure 4.

Table 3: Field items of urban traffic information system (UTIS) data.

Field name Description Field name Description
INCIDENTID Event ID TROUBLEGRADE Event grade
LINKID Link ID INCIDENTTITLE Event title
STARTDATE Start date INCIDENTINFO Event information
ENDDATE End date INCIDENTCODE Event type
COORDX Longitude INCIDENTSUBCODE Event subtype
COORDY Latitude LOCATION Address
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Figure 1: Smoothed historical speed data. (a) Raw data. (b) Smoothed data.
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In equation (3), Vp is the predicted travel speed, Vh is the
historical speed data, V(i) is i-th nearest neighbor speed, K is
the number of nearest neighbors, and j is the prediction
horizon (every five minutes).

3.3. Selection of Optimal K and Appropriate Lag Duration (in
CKNN Algorithm). When designing the CKNN algorithm,
it is imperative to determine the lag duration required for
Euclidean distance calculation and the optimal K and
forecast duration. *e lag duration and K can be selected
using mean absolute percentage error (MAPE), mean
absolute error (MAE), and root mean square error (RMSE),
which are methods for evaluating the predictive power of a
model. In this study, predictions were performed by
varying the lag duration and K value using test data, and the
results were compared to select the most suitable lag du-
ration and K for the model. *e lag duration and the
optimal K were chosen based on the prediction accuracy of
the CKNN algorithm using equations (4)–(6) or the three
error criteria.
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. (6)

Here, Va is actual speed data, Vp is the predicted travel
speed, V(i) is i-th work zone link speed, n is the number of
data on the road works, and m is the number of time in-
tervals for forecast duration.

3.4.Determination of the Impact ofRoadWorkon theNetwork
and Travel Speed Degradation. Road work in an urban area
may or may not reduce the network traffic speed depending
on the scale or type of work. *us, a probability distribution
model was applied to determine whether the actual road
work causes the decrease in the travel speed under road
work. *e impact of road work on the network was de-
termined by comparing the speed under normal network
conditions with speed predicted through the CKNN algo-
rithm by checking if the confidence level at 95% is met.
Assuming that speeds under normal conditions were the
standard normal distribution when the predicted value
satisfied the 95% confidence level of the average speed under
normal conditions, the road work had no impact on the
network.

z �
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p
i − v

h
i

σ




. (7)

In equation (7), Vp
i is the predicted travel speed in time i,

vh
i is the average speed in time i, and σ is the standard
deviation in normal speed in time i.
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Figure 5: Impact of lag duration and number of candidates on prediction error. (a) Forecast duration: 1 hour. (b) Forecast duration: 2 hours.
(c) Forecast duration: 3 hours.
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If the z-score calculated through equation (7) is higher
than z0.025, or the critical value of the 95% confidence in-
terval of the average travel speed at normal conditions, the
road work affected the network. When calculating the
predicted network degradation caused by road work,
equation (8) must be applied to determine the speed deg-
radation against the average speed.

speed degradation(%) �
V

p
i − v

h
i

v
h
i

× 100. (8)

3.5. Case Study. In this section, the forecast accuracy of the
prediction algorithm was evaluated by selecting the
optimal K and lag duration when predicting the travel speed
of the work zone. *e predicted speed during road work and
the normal speed without road work were determined,
including the work zone’s impact on network and travel
speed degradation.

First, the CKNN algorithm and 362 test data were used to
select the optimal K and lag duration. Based on the three
error criteria presented above (equations (4)–(6)), the ac-
curacy of the CKNN algorithm was analyzed according to
the increase in K and lag duration for each prediction time
(one hour, two hours, three hours), as illustrated in Figure 5.

Second, the prediction accuracy based on the three error
criteria was most appropriate when the lag duration was 20
minutes.*us, the speed pattern for the previous 20 minutes
should be used when designing the CKNN algorithm.
Forecast duration was less accurate when forecasting for a
long time, so one hour was identified as the most suitable.
Lastly, to find the optimal K, a predictive power evaluation
was performed according to the change of the K value when
the lag duration was 20 minutes and the forecast duration
was 1 hour (Figure 6).

Table 4 shows the values of MAPE, MAE, and RMSE
when K has values from 1 to 10. Figure 6 shows that when
the K value is ten or more, the value of each criterion
continues to increase upward; hence it is unable to find the
minimum value. As a result, MAPE obtained the minimum
value when K was 5, MAE reached the minimum value
when K was 2, and RMSE acquired the minimum value
when K was 2 and 5. Since the difference between the MAE
values when K was 2 and 5 was detected as small and with

scale-dependent errors, the K value was then identified as 5,
which minimized MAPE.

*e test details were used as the input data to verify the
model for predicting travel speed in a work zone and the
travel speed for an hour after the road work was predicted.
*e result is presented in Figure 7.

As a result of predicting the test set using the CKNN
algorithm, the average MAPE, 6.9%, exhibited excellent
predictive power, as indicated in Table 5. In some cases, the
MAPE for the predicted value exceeded 15%, but most of
them were predictable within 10%.*us, the model accuracy
was considered high [47].

Table 6 specifies the results of analyzing the network
impact due to the road work carried out at 10:25 am on
Friday, February 15, 2019. *e network was classified as
Cluster 1. Using the CKNN algorithm, the travel speed one
hour after road work was predicted and compared with the
network under normal conditions.

Consequently, there was no difference between the speed
predicted by CKNN and the normal speed at the beginning
of the road work. It was found that the network effect oc-
curred from about 25 minutes after the start of the work, and
the speed decreased by about 11%–17% compared to normal
conditions, suggesting that road or traffic managers need to
establish a strategy to reduce congestion about 30 minutes
after starting. Predicting the speed and judging the network
impact can also forecast congestion intensity by time, en-
abling more active and preemptive traffic and congestion
management.
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Figure 6: Optimal K given the lag duration is 20min.

Table 4: Mean absolute percentage error (MAPE), mean absolute
error (MAE), and root mean square error (RMSE) according to K
values when lag duration is 20 minutes.

K MAPE (%) MAE RMSE
1 7.54 2.35 2.66
2 7.02 2.20 2.48
3 7.02 2.21 2.49
4 6.97 2.23 2.50
5 6.90 2.22 2.48
6 6.97 2.26 2.52
7 6.98 2.28 2.53
8 7.05 2.29 2.54
9 7.12 2.32 2.57
10 7.26 2.37 2.61
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4. Conclusion

It is crucial to prepare an appropriate traffic management
strategy for the expected congestion level by predicting the
travel speed after road work to prevent congestion caused by
road works. *is study developed a model that predicts the
travel speed of the work zone using the CKNN algorithm.
Furthermore, a method to grasp how much the traffic speed
decreases due to road work was compared with the normal
speed pattern.

Most proposed methodologies for short-term speed pre-
diction presented by several existing studies were methods for
predicting speed in normal road conditions. Since roads in the
work zone were entirely or partially blocked, a speed pattern
differed from normal road conditions. Applying the proposed
methodology through a case study can accurately predict the
speed from the start of road construction up to an hour later.
Furthermore, it was likewise feasible to provide useful infor-
mation for preemptive traffic congestion management by
detecting the timing of link speed degradation caused by ca-
pacity reduction due to road work.

However, this study had limitations that need im-
provement through future studies. First, the established
model for predicting travel speeds in a work zone filtered the
data using the day of the week and link clusters classified
according to road characteristics. Still, it is necessary to use
work type as a filter. For example, road works that block or
occupy roads largely affect traffic conditions. However, work
conducted on drains or sidewalks will only slightly influence
traffic conditions. *erefore, better results can be achieved if
the travel speed of the work zone can be predicted by
considering the work type.

Second, a prediction model was developed using eight-
month data for major arterial roads installed with traffic
information collection devices. Although the amount of data
was not small, it was still insufficient for securing details
similar to the input data.

*ird and last, this study used only the CKNN algorithm
for speed prediction. However, evaluating the appropriateness
of themethodology proposed in this study compared to results
predicted by other clustering methods such as support vector
machines, random forests, and neural networks is required.
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Figure 7: Mean absolute percentage error (MAPE) results at 1-hour prediction (k� 5, lag duration� 20min).

Table 5: Prediction reliability based on mean absolute percentage error (MAPE).

MAPE Prediction reliability
0%≤MAPE< 10% Very accurate prediction
10%≤MAPE< 20% Accurate prediction
20%≤MAPE< 50% Reasonable prediction
50%>MAPE Not accurate prediction

Table 6: Impact analysis result of road work based on actual data.

Time Predicted travel
speed (km/h)

Average travel speed at
normal conditions

(km/h)

Standard deviation of
travel speed at normal
conditions (km/h)

z-score
Whether the

construction affects
the speed

Speed
degradation (%)

t+ 1 10:30 19.36 21.29 1.51 1.28 No —
t+ 2 10:35 19.48 21.65 1.50 1.45 No —
t+ 3 10:40 19.52 21.65 1.45 1.47 No —
t+ 4 10:45 19.48 21.77 0.92 2.49 No —
t+ 5 10:50 19.44 21.97 1.35 1.87 Yes −11
t+ 6 10:55 19.28 21.58 1.12 2.06 No —
t+ 7 11:00 18.84 21.84 1.21 2.47 Yes −11
t+ 8 11:05 18.64 22.35 1.60 2.32 Yes −14
t+ 9 11:10 18.60 22.39 1.60 2.36 Yes −17
t+ 10 11:15 18.56 22.45 1.43 2.71 Yes −17
t+ 11 11:20 18.72 21.94 0.89 3.60 Yes −15
t+ 12 11:25 19.04 22.10 0.79 3.87 Yes −14
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Passenger crowding in a city bus is uneven and the most crowded area always appears in the wheelbase of the carriage.*e present
study aimed to provide a sensitive indicator of the most crowded area to schedule bus headways online using a binocular camera
sensor. *e algorithm of standee density in the wheelbase area (SDWA) was given by a nonlinear regression model considering
standees’ preferences for the standing area, and its goodness of fit and continuity were tested. Considering the characteristics of
city bus operation, the proportion of the number of interstops determined from the SDWA was used as a judgment index for
passenger crowding. Based on the SDWA algorithm and the judgment index, an online headway model of city buses was
proposed, and the feasibility of such a model was verified through a case study in Xi’an city. *e proposed model might be
beneficial to bus scheduling, seating provision, and bus design.

1. Introduction

Standee density refers to the number of standing passengers
in a unit effective area. It is an important indicator that
reflects whether the bus selected matches the line and
whether the headway is rational. *e limit load of a city bus
in Europe and the United States is 5–6 pax/m2 [1, 2], while
the number of standees approved in China is 8 pax/m2 [3].
According to surveys, the standee density in a bus in Xi’an
city during peak hours reaches 9–10 pax/m2 and often ex-
ceeds the threshold of 8 pax/m2; however, in actual opera-
tion, this reduces ride comfort and overloads buses.

*e standee density at various positions within the
carriage is actually uneven, and sparsely populated areas at
the front and in a rear aisle might affect the true standee
density characteristics and impair sensitivity to changes in
the standee flow. *erefore, the number of standees cannot
truly reflect the maximum passenger crowdedness. *e

position preference of passengers on each bus line can be
determined. According to the passengers’ preference for
selecting a standing position, this study proposed some
important areas to synthesize a standee density algorithm
that could sensitively express the most crowded areas in
buses to schedule the headway of the bus in real time [4].

Currently, to meet passengers’ travel requirements, a
drivers’ workload on a bus line is fixed for a period of time by
public transport enterprises in China, notwithstanding the
operational cost. Likewise, the total scheduling frequency is
also assigned based on the fixed workload on the line, but the
headway varies; the fixed workload refers to that the de-
parture frequency of each bus is constant to ensure the
demands of operation. Public transport enterprises in China
are totally state-owned enterprises. Regardless, if they are in
debt, local governments pay it by the end of the year, as long
as they guarantee the necessary services. Consequently, in
this case, different headways per day have a slight impact on
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the operational cost. In the bus scheduling station, the
dispatchers are unable to obtain information on the real-
time passenger flow. As a consequence, many problems
arise, such as personal judgment subjectivity in attendance
and the headway not being rational to the bus line [5, 6].
*erefore, overcrowding of passengers often occurs. *e
main problem, therefore, is the allocation of online head-
ways in the trough hour, off-peak hour, and peak hour.

Similar studies considered the operational cost and
passenger waiting time as a balance index for determining
the offline bus headway. *e main objective of the present
study was to determine the online bus headway without the
operational cost; correspondingly, the passenger waiting
time would surely be a unique index. As the arrival time of
each passenger at the bus stop is random and the passenger
waiting time is hard to determine online, this study pro-
posed introducing passenger crowding instead of the
waiting time. For online scheduling, first, the online pas-
senger flow data obtained by the collector equipped on the
front and rear doors of the bus were used. Second, the
number of standees was obtained in real time, which
represented passenger discomfort during the ride. *ere-
fore, the aforementioned problem led to another problem:
determining the online headway according to the standee
density.

Due to standee density at various positions being actually
uneven, standee density in city buses cannot truly display the
most crowded area. In the present study, the number of
standees on the bus floor was allocated for each specified
area to evaluate the most crowded area. A method for de-
termining the bus headway was established based on the
areas of higher standee density on the bus. *is model was a
pragmatic approach to improve the efficiency of bus
transportation and increase the bus travel sharing rate of bus
lines with large passenger groups in every city of China.

2. Literature Review

In recent years, considerable attention has been given to
witnessing an increased interest in the model of scheduling
frequency on public transport. Many bus scheduling models
have been established based on offline passenger flow data,
resulting in positive effects on the public transport quality of
service. In terms of multidimensional analysis of passenger
crowdedness, Tirachini optimized the scheduling frequency
of subway vehicles considering passenger demand and the
supply and operation of public transport [7]. From the
standpoint of cost, passenger travel and operational costs
were integrated into the newsboy model by Herbon and
Hadas [8], who proposed the simulation results of the
scheduling frequency of subway vehicles. *e standee
density is a multipurpose indicator used in pricing strategy,
seat capacity, and scheduling arrangement [9]. A route
planning and scheduling model has also been proposed
based on passenger density and travel distance [10]. In
particular, Jara-Dı́az proposed an extension of Jansson’s
model for a single period based on the effect of vehicle size
on operational costs and that of crowdedness on the value of
time [11].

Assuredly, the impact of standee density on the bus
design and travel cost was evaluated from different per-
spectives. Tirachini developed a social welfare maximization
model with externalities of crowdedness, exposing the in-
terplay between congestion and crowdedness in the design
of bus systems [12]. *e concept of passenger crowdedness
involved sitting passengers and standees. It was a coordi-
nating algorithm for the number of passengers in the car-
riage. In addition, the crowdedness cost had an internal
relationship with passenger crowdedness by estimating the
willingness of passengers to choose a moderately relaxed trip
at different standee densities [13]. However, with a larger
scale passenger flow, the standee density was related to the
serviceability of the subway. *erefore, a model for calcu-
lating the standee density was entrenched, and conclusive
recommendations for its standard were proposed [14].

Furthermore, studies discussed the formation mecha-
nism of standee density and key influencing factors in
terms of bus door position and passenger preference in
choosing a standing area. In addition, a crowd behavior
control model was established, simulation studies were
conducted at various crowd densities, and the results were
used in the decision support tool of crowd control systems
[15]. A follow-up survey proposed that door crowdedness
was affected by multiple bus design parameters, including
door placement, aisle length, presence of a front seating
area, and service type [16].

However, the number of standees during morning and
evening peak hours is significantly greater than that of sitting
passengers in China, and standees have little chance of
getting a seat on the buses. Passengers can get on and off a
subway from the same door, although they are allowed only
to get on from the front door and off from the rear door of
almost all buses in China. Hence, the passing flow on board
is difficult to determine, which is the root cause of un-
evenness in standee density [17, 18]. A train mock-up was
especially constructed to examine the impact of door width,
seat type, platform edge doors, and horizontal gap on the
time taken by passengers to board and alight [19].

Batarce explained that the public transport selection
preference showed the application requirements of crowd-
edness cost, and a random discrete selection probability
model was established [20]. Moreover, a baseline-category
logit model for selecting standing areas was created consid-
ering the travel distance of passengers and the standee density
in subways; it was also closely related to the door position [21].

In summary, many studies have reported the character-
istics of standee density and offline headway. However, few
studies have been conducted on the unevenness of standee
density to define the most crowded area, aiming to establish
an online bus headway model. Most of the aforementioned
studies proposed the calculation method of standee density,
determined its threshold, and analyzed the travel mode se-
lection and cost-benefit issue based on passenger crowded-
ness [22]. *us, these studies considered the operational cost
and passenger waiting time tomodify the offline bus headway.
*e present study proposed a model to overcome these
challenges to determine the online headway in trough, off-
peak, and peak hours according to the standee density.

2 Journal of Advanced Transportation



3. Data Collection

3.1. Online Data Collection. For better efficiency of getting
off a bus, usually, the operation mode is paying the bus fare
in cash or by a prepaid card without limit. Consequently, the
data for the number of passengers getting off are lost. To
overcome this problem, the passenger flow data collector
was introduced. It automatically collected the number of
standees getting on and off the bus at every bus stop to
determine the online scheduling arrangement.

*e data collector consisted of an analyzer and two
binocular camera sensors (Figures 1(a) and 1(b)). It used the
human head calibration algorithm.*e cameras installed on
the front and rear doors of the bus collected video images
(Figures 1(c) and 1(d)).*e number of passengers getting on
and off the bus was processed and transmitted to the
monitoring host through the CAN system and then to the
information processing platform via 3G/4G wireless com-
munication [23, 24].

*e data collection system must be verified manually for
the accuracy of passenger flow. After the system started to
run, the data collector was arranged for 12 surveys on the bus,
although 28 bus stops existed on the surveyed line (Table 1).

*e accuracy of data collection slightly reduces when the
passenger flow is dense, but the accuracy can still reach 98.8%.
A bus line in Xi’an has 20 buses equipped with data collectors,
and an increasing number of bus enterprises have adopted
binocular camera sensors tomonitor passenger traffic inChina.

3.2. Manual Survey Data Collection. A manual survey was
adopted due to the unevenness of standee density in each
area and the inability of passenger flow data collectors to
collect the number of standees in each area of a bus carriage.
*is featured high precision but involved a high labor cost
[25]. According to the stipulation in Xi’an, each bus is
operated by 2 drivers for 6 round trips per day, and each bus
line is equipped with at least 20 buses. When the bus reaches
the highest speed between two bus stops, the standee density
is relatively stable. Every two investigators were appointed to
investigate the number of standees in the designated areas of
one bus [26]. After a survey, 79 round-trip passenger flow
data points were obtained in this study. *e standees moved
to the rear door in basically four areas (Table 2).

Since Areas 2 and 3 were close to rear doors, the changes in
the standee density in both areas were more sensitive than those
inAreas 1 and 4. Although the cost of amanual survey was high,
the number of standees in each area of the bus could be flexibly
mastered [27]. Each area of the bus floor was measured during
the manual survey process. Basically, the standing area within
the wheelbase, Areas 2 and 3, was spacious.

4. Methodology

4.1. Headways Based on the Standee Density. *e headway is
closely related to the time of the first and last buses, the
number of buses available, the scheduling task, and the trough,
off-peak, and peak hours [28, 29]. Generally, the public
transport company’s operation workload is fixed to ensure the

operational needs of the bus line and the annual review of the
vehicle production task [30]. For example, for public transport
companies in Xi’an city, it is stipulated that the bus runs six
round trips per day and three round trips per driver, and it is
recorded as C. If a bus line has m buses and the ratio of the
number of buses being repaired and rested per day to the total
number of buses is d, then the scheduling frequency available
to the dispatcher per day is Cm(1 − d) times [31].

Suppose that the time difference between the first and
last buses of the line is Td (min) and that the parking time of
the first and last buses is Tc. *e first and last buses are
scheduled outside of Td − Tc according to dispatchers, in
which the scheduling frequency of the number of buses
available for the dispatcher is Cm(1 − d) − 2. *erefore, the
headway of the bus line during off-peak hours η0 is

η0 �
Td − Tc( 

[Cm(1 − d) − 2]
. (1)

*e result obtained in equation (1) is actually the average
headway of a day, which is the headway of off-peak hours.
However, the actual online scheduling arrangement cannot
be implemented only by this value, and it also needs to be
processed based on the standee density, which means that η0
will vary with the standee density. If the standee density is
high during peak hours, the appropriate reduction should be
made to η0, shortening the headways. Conversely, η0 should
be appropriately increased to reduce the frequency of
scheduling in trough hours.

*e problem is that the standee density of each area
shows unevenness, and a key indicator is needed to deter-
mine online headway according to the density of the most
crowded areas. Actually, the areas on the bus floor desig-
nated for passenger seating and standing are limited.
Standing in a spacious area is an instinct response of pas-
sengers. *e wheelbase area is spacious enough and often
more crowded than the other areas. *e standing area is
divided into four areas with different densities of standees
[32]. According to the manual survey, Figure 2 shows the
division of the standing area.

Defining the interstop as the bus line between every two
stops, i(i � 1, 2, . . . , n) refers to the interstops, and j(j �

1, 2, 3, 4) refers to the designated areas. *e premise of the
standee density algorithm is the number of standees present
in the interstop, which is described as follows:

Qi � 

n

i�1
Qui − Qdi(  − Qa − 1( ,

Qi � 
4

j�1
Qij,

S � 
4

j�1
Sj,

ρij �

Qij

Sj

, if Qij > Sj,

0, if Qi ≤ Sj,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

Journal of Advanced Transportation 3



where Qi is the number of standees; Qij is the number of
standees in area j; ρijis the standee density in area j; Qui and
Qdi are the number of passengers getting on and getting off

the bus, respectively; Qa is the seating capacity of the bus,
including one driver’s seat; S is the total standing area
supplied; and Sj is the j area supplied, which comes from
field measurement.

4.2.ASuitable StandeeDensity for Scheduling. Standing areas
are suitable as the key indicator for scheduling buses needs to
be defined. According to the manual survey, changes in ρij

were asynchronous. Figure 3 reveals the propensity of
passengers to choose each standing area with a gradual
increase in Qi.

(a) (b)

(c) (d)

Figure 1: Passenger flow data collection system. (a) Passenger flow analyzer. (b) Binocular camera sensor. (c) Front door installation
position. (d) Rear door installation position.

Table 1: Statistical results of each survey period.

Survey
period

Data collected by the instrument (pax) Data collected by manual validation (pax)
Relative accuracy

(%)Number of get-on
passengers

Number of get-off
passengers

Number of get-on
passengers

Number of get-off
passengers

07:30–09:00 653 649 647 647 99.1
10:00–11:30 474 474 474 474 100.0
13:00–14:30 501 498 501 501 99.4
18:0–19:30 729 726 720 720 98.8

Table 2: Description of each standing area.

Area ID Description of each area Area reversibility
1 From the front door to the end of the horizontal seat Irreversible
2 From the end of the horizontal seat to the rear door Irreversible
3 From the beginning of the rear door to the end of it Irreversible
4 From the end of the rear door to the end of the rear aisle Reversible

Area 1 Area 2 Area 3 Area 4

Figure 2: Position of each standing area.

4 Journal of Advanced Transportation



Qi did not exceed 45; the proportion of passengers
choosing to stand in Areas 1 and 4 was basically maintained
within 20%. ρi1 and ρi4 both had a tendency to slow down
with the increase in Qi. *is result indicated that if less
standing space was available, passengers would seek another
area to stand.WhenQi did not exceed 18, Area 2 diverted the
passenger flow of Area 3.When it was more than 45, the flow
tended to divert to Areas 3 and 4. *erefore, Areas 2 and 3
were critical positions and both were in the wheelbase area.
*erefore,Qi could not give the true expression of the
crowdedness degree of the truly crowded area of the car-
riage, as Areas 1 and 4 were disruptive factors. *erefore,
factors unrelated to the standee density in the wheelbase area
(SDWA) were excluded.

According to the manual survey, the discrete values of
surveys ρi2 and ρi3 were positively correlated with Qi, but the
growth trends varied in different Qiranges. After nonlinear
regression, the change rule of the discrete values of surveys
ρi2 and ρi3 can be described as follows:

ρi2 �

0, 0<Qi ≤ 1.8,

0.13Qi − 0.20, 1.8<Qi ≤ 9,

1.86 ln Qi − 3.11, 9<Qi ≤ 45,

2.03e
0.016Qi − 0.03, Qi > 45,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρi3 �

0.20Qi + 0.38, 0<Qi ≤ 9,

1.36e
0.034Qi + 0.34, 9<Qi ≤ 45,

7.42 ln Qi − 21.63, Qi > 45.

⎧⎪⎨

⎪⎩
(3)

*e Pearson correlation coefficient was introduced to
test the goodness of fit of ρi2 and ρi3with the discrete value
ρsj of the corresponding area. *e number of samples was
N, and the correlation between ρij and ρsj was expressed
by the product difference correlation coefficient Rj as
follows:

Rj �
N  ρijρsj −  ρij  ρsj

���������������

N  ρ2ij −  ρij 
2



·

���������������

N  ρ2sj −  ρsj 
2

 . (4)

In the grade correlation coefficient Rj level, the closer the
absolute value of Rj to 1.0, the greater the correlation [33].
When Qi ∈ (0, 9], Qi ∈ (9, 45], and Qi ∈ (45, +∞), the
goodness-of-fit values tested were 0.997, 0.905, and 0.951 in
Area 2 and 0.996, 0.996, and 0.970 in Area 3, indicating that
the correlation between ρi2 and ρi3with the discrete values of
the survey was extremely good, and the goodness-of-fit test
results were significant.

ρi2 and ρi3 were not reciprocal independent indicators,
and neither could fully reflect the true level of the SDWA.
Although a weighted algorithm could be introduced to
synthesize ρi2 and ρi3, both of them were segmented func-
tions of different distribution types. *e difference between
the SDWA values calculated with ρi2 and ρi3conformed to
the trend of the logarithmic curve when Qi ∈ (9, 45], and the
SDWA algorithm was continuous at the turning points. As a
result, based on the two indicators, the SDWA indicator was
established as follows:

ρi0 �
αρi2 + βρi3( 

(α + β)
+ c ln

Qi

9
 , (5)

where α and β are the weight coefficients of ρi2 andρi3 ac-
cordingly, and α + β � 1.0; c is the allocation factor of Qi. If
c � 0, according to the definition of the continuity of the
segmented function, considering Qi � 9 and Qi � 45 in the
first derivative of equation (5), two weight coefficients were
obtained, with α1 � 0.68, β1 � 0.32, α2 � 0.72, and β2 � 0.28.
However, Qi calculated with the two weight coefficients was
not continuous when Qi � 45. As the difference between ρi2
and ρi3 conformed to the logarithmic curve, when
Qi ∈ (9, +∞), c≠ 0. Moreover, when the first derivative of
ρi0 was continuous at Qi � 45, c � 0.08 could be obtained. In
summary, ρi0 could be expressed as follows:

ρi0 �

0.16Qi − 0.02, 0<Qi ≤ 9,

0.43e
0.034Qi + 1.26 ln Qi − 1.94, 9<Qi ≤ 45,

1.46e
0.016Qi + 2.14 ln Qi − 6.34, Qi > 45.

⎧⎪⎪⎨

⎪⎪⎩
(6)
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Figure 3: Changes in the proportion of passengers choosing each area.
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Figure 4 shows the plotted curve of ρi0 to test and
compare the numerical stability of ρi0 and the sensitivity to
changes in passenger flow.

When Qi ∈ (0, 45], let ρi0 � Qi/9, and Qi could be 39.
Moreover, ρi0 >Qi/9 in the range ofQi ∈ (0, 39). In the range
of Qi ∈ (0, 45], due to the influence of Areas 1 and 4 on
passenger flow, the larger the value of ρi0 is, the more
crowded the areas. In the range of Qi ∈ (0, 15], the first
derivative greater than 0 indicated that the index had great
volatility. When Qi ≤ 15, passengers were basically free to
select positions and had a higher propensity for Areas 2 and
3. In summary, the judgment performance of ρi0 as an in-
dicator was better than that of Qi.

4.3. Judgment Logic of the Status on the Bus Line. As the
transit capacity and quality of service manual mentions, it is
suitable for a new public transport system to define the peak
hours by a passenger density of 2 pax/m2 in America.
However, the code for the design of metros in China rec-
ommends that the passenger crowding density should be
within 5 pax/m2, and the proportion of interstops (referring
to the section between every two bus stops) with a passenger
crowding density exceeding 5 pax/m2 should be controlled
within 20% of the total based on ergonomics [3]. As a result,
a statistical indicator was introduced.

*e proportions of the number of interstops λk falling
into ρi0 ≤ 1, 1< ρi0 ≤ 5, and ρi0 > 5 to the total number of
interstops were taken as the statistical indicator to define the
peak hour, off-peak hours, and tough hours online and avoid
personal judgment subjectivity:

λk �


n
i�1 aik

n − 1
,

aik �

1, ρi0 ≥ 5,

0, ρi0 < 5
, k � 1, 2, 3,

⎧⎪⎨

⎪⎩

(7)

where k � 1, 2, 3 refers toρi0 ≤ 1, 1< ρi0 ≤ 5, and ρi0 > 5 ac-
cordingly; aik is the number of interstops based on k.

Based on the 79 round-trip passenger flow data points
of the manual survey with large passenger traffic during
off-peak hours in Xi’an, which were surveyed, the pro-
portion of the number of stops classified was based on ρi0
(Table 3).

When ρi0 ∈ (1, 5], the corresponding proportion of
interstops λ2 fluctuated approximately 50%, indicating the
index properties of the SDWA in the off-peak hours. λ2 �

50% was set as the state judgment threshold. *e real-time
judgment logic of the passenger flow data collection system
was proposed (Table 4).

Importantly, the threshold λ2 � 50% is the reference
value; it is necessary to determine the specific conditions
of the bus lines. *e aforementioned judgment result
only applies to the bus executing its task during the
operation period but does not indicate an increase or
decrease in the extent of η0. Hence, it is also necessary to
determine the online headways for the trough and peak
hours.

4.4. Online Headways Based on the Standee Density.
According to the judgment logic of λk and η0, the division of
peak, off-peak, and trough hours was performed based on
the key threshold of the proportion of interstops.

As λ1 + λ2 + λ3 � 100%, interstops of proportion in
trough hours λ1 � 30% could be derived. However, the
calculated η0, ηpeak, and ηtrough were not integers. Hence,
using the rounding function INT(η) to integrate the original
noninteger headway, the headways during the trough and
peak hours were obtained. To achieve better passenger flow
dissipation effects during peak hours and higher trans-
portation efficiency during off-peak and trough hours, the
rounding function was appropriately decreased for ηpeak and
increased for η0 and ηtrough.

During the peak hours, the headway ηpeak was shortened,
resulting in ηpeak < η0, but ηpeak could not be shortened
without limit. Equation (1) shows that when all buses were
put into operation (d � 0), that is, no repaired or rested
buses were present, the minimum value was taken. Hence,
the online headway during peak hours ηpeak was as follows:

INT ηpeak  �

0.2η0
λ3

, ηpeak > ηmin,

ηmin �
Td − Tc

Cm − 2
, ηpeak ≤ ηmin,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

INT η0(  � η0 + X0, (9)

INT ηpeak  � ηpeak − Xpeak, (10)

where ηmin is the minimum headway and X0 and Xpeak are
the rounded decimal places of η0 and ηpeak, respectively, with
values greater than zero.

*e headway was prolonged during trough hours,
resulting in ηmin > η0, but to meet the passengers’ travel
requirements and bus operation tasks, ηtrough could not be
extended without limit. Equation (1) shows that when only
70% of the buses were put into operation (d � 30%), that is,
repaired and rested buses accounted for 30% of the number
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of buses in the line, the maximum value was taken. Hence,
the online headway during the trough hours ηtrough was as
follows:

INT ηtrough  �

λ1η0
0.3

, ηtrough < ηmax,

ηmax �
Td − Tc

Cm(1 − d) − 2
, ηtrough ≥ ηmax,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

INT η0(  � η0 − X0, (12)

INT ηtrough  � ηtrough + Xtrough, (13)

where ηmax is the maximum headway and Xtrough is the
rounded decimal place of ηtrough, with a value greater than
zero.

5. Numerical Example and Sensitivity Analysis

5.1. Field Validation. A bus line with the largest passenger
flow in Xi’an city was considered as an example. It was used
to verify the feasibility of the headway model and measure
the parameter range of the headway model [34]. *e time of
the first and last buses on the line was 6:00 a.m. and 12:00
p.m.; the number of buses available on the line was 20; and
the number of bus interstops was 24 in total. *e bus had 37
seats, and S was 8.96m2 [35, 36]. Moreover, 85% of the buses
operated during off-peak hours. *e passenger flow data
were collected during the peak hours of a working day
(Table 5). *e calculation result of the SDWA was obtained
from equation (6).

When Qi increased from 0 to 36, the maximum deviation
rate of ρi0 relative to Qi/S was 40.52%, which was due to the
passengers diverting from Areas 1 and 4 to Areas 2 and 3.
However, at this time, Qi increased slowly and was not
sensitive enough to the standee flow. When Qi exceeded 36,
the maximum deviation rate was −6.14% because Areas 1
and 4 diverted the passenger flow from Areas 2 and 3, al-
leviating the crowdedness of the SDWA. ρi0 embodied the
SDWA after the passenger flows of Areas 2 and 3 were

diverted so that ρi0 was slightly lower than Qi/S. *erefore, it
was more desirable to reflect the crowdedness of standees by
using ρi0 rather than Qi.

*e scheduling time length was 1080min. As the
number of buses during off-peak hours was 85% of the total
number of buses, η0 calculated using equation (1) was
10.8min. *erefore, the headway in the off-peak hours was
11min. According to the values (Table 5), λ1, λ2, and λ3
were calculated according to equation (5) to be 12.5%,
50.0%, and 37.5%, respectively. As λ3 was the preferred
judgment index and exceeded 20.0%, it was determined to
be the peak hours of passenger flow, and the judgment
conclusion was consistent with the judgment logic. At this
time, the bus line dispatched all the buses into operation,
and the minimum headway of the evening peak hours was
9min.

5.2. Value Analysis. Xi’an public transport enterprises have
clear regulations on the daily running tasks of buses and the
number of buses available for scheduling. Each bus runs six
round trips per day, which is completed by two drivers. *e
number of buses available for scheduling should be main-
tained at more than 70% of the total buses. According to the
aforementioned provisions, the minimum and maximum
headways of buses can be calculated.

To avoid the phenomenon of dispatch overload on the
bus line, that is, when d � 0, according to the data provided
by the bus line, the lower limit ηmin of ηpeak was calculated to
be 9min. Let INT(ηpeak) � INT(ηmin). As the number of
buses during off-peak hours was 85% of the total number of
buses, it was obtained by equation (8).

When λ3 approached 25% from 20%, that is, approached
the scheduling load in the peak hours, the headway was
scheduled by INT(0.2η0/λ3).

When λ3 exceeded 25%, the headway was still scheduled
at 9min to reach the bus scheduling load, and all buses ran
on the line.

To meet the basic passenger’s travel requirements and
bus operation tasks, that is, when d � 30%, according to the
data provided by the bus line, the upper limit ηmax of ηtrough
was calculated to be 14min. Let INT(ηtrough) � INT(ηmax);
as the number of buses in the off-peak period was 85% of the
total number of buses, it was obtained by equation (11).

When λ1 approached 30% from 42%, that is, approached
the dispatching load in the peak hours, the headway was
scheduled by INT(λ1η0/0.3).

When λ1 exceeded 42%, the headway was scheduled to
be 14min according to INT(ηmax).

Table 3: Proportion of interstops classified during off-peak hours.

Off-peak hours Proportion of stops λ1 when ρi0 ≤ 1
(%)

Proportion of stops λ2 when 1< ρi0 ≤ 5
(%)

Proportion of stops λ3 when ρi0 > 5
(%)

9:00–11:30 a.m. 51.87 43.90 4.23
11:00 a.m.–1:00
p.m. 52.67 47.33 0.00

1:00–3:00 p.m. 42.34 57.66 0.00
8:00–10:00 p.m. 39.89 52.24 7.87

Table 4: *e real-time judgment logic.

Operational period Judgment logic Headway control
Peak hours λ3 ≥ 20% Shorten η0
Off-hours λ3 < 20% and λ2 ≥ 50% Continue η0
Trough hours λ3 < 20% and λ2 < 50% Increase η0
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*e aforementioned calculations assumed the number of
buses available on the line to be 20. If the number of buses
allocated to the line could be increased on this basis, the
value taking a range of λk was eased.

By examining the real-time passenger flow data obtained
from the collector, Qi of each interstop was given in real
time. Taking Qi as a dependent variable, a more sensitive
indicator, ρi0, was obtained. By the end of each bus in
operation, the proportion of the number of interstops was
calculated using the model. *en, the proportion of inter-
stops was used to determine the headway of the bus being set
out. *e headway model was simple, and it was easy to
realize the automatic arrangement of the headway. *e
model was based on the standee density algorithm, which
was more suitable for bus lines with variations in passenger
flow.

6. Conclusions

*e present study proposed the SDWA for determining the
online headway; additionally, the feasibility of the method
was verified by numerical examples.

First, after discussing the unevenness of the standee
density on the bus floor, the SDWA was capable of sensi-
tively reflecting the variation in standee flow. Passengers
were more likely to choose the wheelbase area for standing if
no seat was available. If the number of standees did not
exceed 5S, the proportion of passengers who chose to stand
in the wheelbase area surely exceeded 80%.

Second, the interstop proportion based on the SDWA
exceeding 5 pax/m2 should be given priority. Taking the

proportions of interstops as the evaluation criterion for
determining the headway of the bus being set out was surely
objective and feasible.

Finally, as the arrival time of each passenger at the bus
stop was hard to determine, using the proportion of
interstops of the former bus to determine the headway of the
buses to schedule online enabled the elimination of acci-
dental factors. *is method might be of great benefit to the
bus headway, passenger evacuation, seat layouts, and
emergency security.

Further studies should concentrate on evaluating the
matching degree of seat layout and standee density to de-
termine the criteria for guiding bus selection for public
transport enterprises.
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Conflicts of Interest

*e authors declare that they have no conflicts of interest to
this work and do not have any commercial or associative
interest that represents conflicts of interest in connection
with the work submitted.

Acknowledgments

*is study was supported by the Natural Science Basic
Research Program of Shaanxi (2021JQ-292), Natural Science
Foundation of Zhejiang Province (LQ19E080003), the

Table 5: Passenger flow data collected during peak hours.

Bus stop
ID

Number of get-on
passengers (pax)

Number of get-off
passengers (pax)

Number of passengers on
board (pax)

Number of standees
(pax)

SDWA,
ρi0 (pax/m

2)

1 34 — 34 0 0.00
2 16 0 50 13 2.03
3 18 0 68 31 3.74
4 19 0 87 50 5.56
5 9 5 91 54 5.95
6 12 10 93 56 6.14
7 0 3 90 53 5.85
8 2 1 91 54 5.95
9 13 5 99 62 6.73
10 13 14 98 61 6.63
11 3 19 82 45 5.08
12 2 4 80 43 5.08
13 1 2 79 42 4.76
14 0 2 77 40 4.56
15 1 3 75 38 4.37
16 0 0 75 38 4.37
17 0 3 72 35 4.10
18 4 8 68 31 3.74
19 2 13 57 20 2.77
20 3 4 56 19 2.67
21 5 14 47 10 1.63
22 2 4 45 8 1.31
23 0 4 41 4 0.65
24 — 41 0 0 0.00

8 Journal of Advanced Transportation



National Natural Science Foundation of China (Grant
52002282), and the MOE (Ministry of Education in China)
Project of Humanities and Social Sciences(21YJCZ790137).
And the authors also thank the Transportation Science
Institute of Chang’an University and the Key Laboratory for
Automotive Transportation Safety Enhancement Technol-
ogy of the Ministry of Communication PRC.

References

[1] Transportation Research Board, Capacity and Quality of
Service Manual, Transportation Research Board, Washington
DC, USA, 2nd edition, 2003.

[2] American Public Transportation Association, Standard Bus
Procurement Guidelines RFP, American Public Transportation
Association Standards, Washington, DC, USA, 2013.

[3] Ministry of Housing and Urban-Rural Development of the
People’s Republic of China, Code for Design of Metro, China
Architecture Publishing & Media Co., Ltd., Beijing, China,
2013.

[4] S. Yan and R. Xiao, “Development of driving cycle of Xi’an
bus and CNG consumption verification,” Journal of Chang’an
University (Natural Science Edition), vol. 35, no. 3, pp. 136–
141, 2015.

[5] S. M. Amiripour, A. Ceder, and A. S. Mohaymany, “Hybrid
method for bus network design with high seasonal demand
variation,” Journal of Transportation Engineering, vol. 140,
no. 6, pp. 1–11, 2014.

[6] B. Alonso, J. L. Moura, A. Ibeas, and F. J. Ruisánchez, “Public
transport line assignment model to dual-berth bus stops,”
Journal of Transportation Engineering, vol. 137, no. 12,
pp. 953–961, 2012.

[7] A. Tirachini, D. A. Hensher, and J. M. Rose, “Crowding in
public transport systems: effects on users, operation and
implications for the estimation of demand,” Transportation
Research Part A: Policy and Practice, vol. 53, no. 7, pp. 36–52,
2013.

[8] A. Herbon and Y. Hadas, “Determining optimal frequency
and vehicle capacity for public transit routes: a generalized
newsvendor model,” Transportation Research Part B: Meth-
odological, vol. 71, no. 1, pp. 85–99, 2015.

[9] A. de Palma, M. Kilani, and S. Proost, “Discomfort in mass
transit and its implication for scheduling and pricing,”
Transportation Research Part B: Methodological, vol. 71, no. 1,
pp. 1–18, 2015.

[10] E. Nasibov, A. C. Diker, and E. Nasibov, “A multi-criteria
route planning model based on fuzzy preference degrees of
stops,” Applied Soft Computing, vol. 49, no. 12, pp. 13–26,
2016.

[11] S. Jara-Dı́az and A. Gschwender, “Towards a general mi-
croeconomic model for the operation of public transport,”
Transport Reviews, vol. 23, no. 4, pp. 453–469, 2003.

[12] A. Tirachini, D. A. Hensher, and J. M. Rose, “Multimodal
pricing and optimal design of urban public transport: the
interplay between traffic congestion and bus crowding,”
Transportation Research Part B: Methodological, vol. 61, no. 3,
pp. 33–54, 2014.

[13] L. Haywood and M. Koning, “*e distribution of crowding
costs in public transport: new evidence from Paris,” Trans-
portation Research Part A: Policy and Practice, vol. 77, no. 7,
pp. 182–201, 2015.

[14] Q. Wu, F. Chen, and Y. Gao, “Computation model of
standing-passenger density in urban rail transit carriage,”

Journal of Traffic and Transportation Engineering, vol. 15,
no. 4, pp. 101–109, 2015.

[15] M. Kapałka, “Simulation of human behavior in different
densities as a part of crowd control systems,” Lecture Notes in
Computer Science, Springer, vol. 9012, no. 3, pp. 202–211,
Berlin, Germany, 2015.

[16] D. Katz and L. Garrow, “*e impact of bus door crowding on
operations and safety,” Journal of Public Transportation,
vol. 15, no. 2, pp. 71–93, 2012.
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Data quality is essential for its authentic usage in analysis and applications. )e large volume of automated collection data
inevidently suffers from data quality issues including data missing and invalidity. )is paper deals with an invalid data problem in
the automated fare collection (AFC) database caused by the erroneous association between the fare machines and metro stations,
e.g., a fare machine located at Station A is wrongly associated with Station B in the AFC database. It could lead to inappropriate
fare charges in a distance-based fare system and cause analysis bias for planning/operation practice. We propose a tensor
decomposition and isolation forest-based approach to detect and correct the invalid associated fare machines in the system. )e
tensor decomposition extracts features of passenger flows and travel times passing through fare machines. )e isolation forest
coupled with a neural network (NN) takes these features as inputs to detect the wrongly associated fare machines and infer the
correct association stations. Case studies using data from ametro system show that the proposed detection approach achieves over
90% accuracy in detecting the invalid associations for up to 35% invalid associations. )e inferred association has a 90% accuracy
even when the invalid association ratio reaches 40%. )e proposed data-driven invalid data detection method is useful for large-
scale data management in terms of data quality check and fix.

1. Introduction

Smart card data collected from the automatic fare collection
(AFC) system (i.e., AFC data) enable many beneficial ap-
plications in the public transportation system such as col-
lective and individual mobility analysis, system state
monitoring, and operation planning and control [1]. )e
usefulness of these analysis applications is highly dependent
on the data quality.)eAFC data are collected online and in a
large scale that may inevitably encounter data quality issues
such as data missing and invalidity.

Data problems are prone to happen due to the following
reasons:

(i) Human factors: in the AFC system, the transaction
records may be missing if passengers fail to tap in/
out properly.

(ii) Infrastructure failure: for example, AFC records are
triggered when a passenger taps in/taps out through
an entrance/exit fare machine. )e malfunctioning
of fare machines may lead to issues of missing data
(machine fails to record or upload transactions) and
invalid data (erroneous transactions).

(iii) Inadequate data management. Daily data manage-
ment for transportation systems is a complex
practice. Missing and invalid data may happen in
the process of database merging, maintenance, or
system update.

Among those data problems, missing and invalid data
problems are the most critical and common ones. Figure 1
illustrates the characteristics of these two problems and also
their difference. )e missing data are cognizable and clearly
identifiable via the data structure. For example, some AFC
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transactions may have missing data on tap-out records
(empty cells). However, the invalid data are impossible to be
directly recognised since the data structure is exactly the
same as the valid data. Generally, the invalid data problem
can be divided into two categories: data record and asso-
ciation errors. )e data record error originates from the
facility malfunctioning in the AFC system as mentioned
above. )e data association error occurs in the process of
merging different sources of data (e.g., AFC fare machine
records and station dictionaries). )e data association error
may come from the incomplete information inference and
invalid information matching.

)e paper deals with the invalid data problem to detect
the hidden association errors of the complete and seemingly
valid data. Specifically, it aims to detect the invalid associ-
ation between fare machines and stations in the AFC data.
For example, fare machine 001# is located in Metro Station
A, but wrongly associated to Station B in the AFC database
(Figure 2). )e problem is prone to happen as the fare
machines are frequently added, replaced, etc. in the metro
systems, but the fare machine-station dictionary may fail to
update timely. )e consequences of invalid associations
could be significant, e.g., under/over charging for a large
amount of passengers. In addition, it is costly to fix this
problem by manpower. One should manually check all the
machines in metro stations to rebuild the correct association
between fare machines and stations. Especially, it is im-
possible to manually detect such problem in the historical
dataset since the fare machine distribution may not con-
sistent with the current system.

We develop a data-driven approach, based on tensor
decomposition and machine learning techniques, to auto-
matically detect such invalid associations using AFC data,
and also infer the correct association stations that a fare
machine belongs to. )e approach works in two steps: the
tensor decomposition is utilized to extract the flow volume
and travel time patterns of each fare machine. )en, the
isolation tree technique and NN models are designed to
detect the incorrect linked fare machines and infer their
correct association stations based on the extracted features
from tensor decomposition.

)e remaining is organised as follows: Section 2 reviews
the relevant studies on data quality issues, including over-
view of data quality problems, feature extraction techniques,
and anomaly detection; the problem formulation and
methodology are presented in Section 3; Section 4 reports
the case study using the AFC data from a large metro system;
the final section concludes the paper and discusses potential
further studies and applications.

2. Related Work

2.1. Data Quality Problems. Data quality is one of the most
important issues in big data area. Low or bad data quality is
costly. For example, it is reported that bad data or poor data
quality costs US businesses 600 billion dollars annually [2].
For metro systems, AFC systems collect massive transaction
data of metro passengers. )e literature has reported plenty
of data quality problems related to AFC data. Robinson et al.
[3] reported that the reasons of AFC data quality problems
can be grouped into 4 categories: (1) software; (2) data; (3)
hardware; (4) user. A recurrent information missing
problem of the boarding station in Beijing Metro has been
reported by Ma et al. [4]. Liu et al. [5] reported a time
synchronisation problem of the AFC and AVL system,
which causes the recorded boarding time information to be
invalid in a large scale. Network, scheduling, fare table, etc.
are important data stored in the AFC database. Errors in
these data will lead to significant consequences. For example,
the London Oyster smart card system crashed on Saturday
12th July 2008 due to erroneous data resulting in over 40,000
Oyster cards having to be replaced [6].

Although many studies deal with missing data in
transportation, to the best of our knowledge, there is no
study on detecting or fixing the association errors in
transportation or other related areas, particularly the fare
machine-station invalid association problem.

2.2. Feature Extraction Techniques. )e key idea for a data-
driven detection approach is to extract the passenger flow or/
and travel time patterns between fare machines and stations.

User ID Origin Tap-in time Destination Tap-out time

User ID Origin Tap-in time Destination Tap-out time

User ID Origin Tap-in time Destination Tap-out time

XXXX A 01/01/2021 8:00 B 01/01/2021 8:10
YYYY B 01/01/2021 8:05 F 01/01/2021 8:10

Missing data problem

Invalid data problem

AFC data

XXXX A 01/01/2021 8:00 B 01/01/2021 8:10
YYYY B 01/01/2021 8:05 ? ?

XXXX A 01/01/2021 8:00 B 01/01/2021 8:10
YYYY B 01/01/2021 8:05 D 01/01/2021 9:10

Figure 1: Missing and invalid data problems in the AFC dataset.
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Feature extraction is one of the most important issues in the
machine learning field. Feature extraction reduces the re-
sources required to characterize a large set of data or/and a
huge dimensions of input information. Plenty of methods
are proposed in the machine learning community dealing
with the feature extraction. )ese methods can be roughly
divided into two parts: conventional statistical learning
methods and deep learning-based method. Conventional
statistical learning methods such as principle component
analysis (PCA) [7], Isomap [8], and partial least squares
(PLS) regression [9] mainly based on the statistical learning-
based algorithms. )e advantages of these methods are they
are robust to small dataset, i.e., do not need large amount of
samples to maintain the performance. However, the dis-
advantages are also critical. For example, they are not robust
to noisy samples, and the feature extraction quality is highly
dependent on specific tricks in different tasks, thus which are
less generalized. Deep learning-based feature extraction
methods become more and more popular recently. Variety
forms of neural networks, e.g., convolutional neural network
(CNN) [10] and long short-term memory (LSTM) [11]
neural network. can be treated as feature extraction models.
Different from the statistical learning-based algorithms, they
extract the features in a latent, end-to-end manner. )e
advantage is that the extracted features are more repre-
sentative and comprehensive. However, these models always
require a large dataset in the training procedure; thus, they
are not suitable in the few-shot scenario. In conclusion, there
is no a generalized feature extractionmethod for all the tasks.
Feature extraction methods should be designed based on the
characteristics of the focused problem.

In our problem, passenger flow and travel time patterns
are related to multiple modes, e.g., time and location. Tensor
is a nature choice to represent and capture these patterns.
Tensor is a multidimensional extension of matrix [12].
Tensor has been widely used in transportation area to deal
with multidimension data. Tan et al. [13] utilized a tensor
decomposition approach to capture the multimode

correlations in traffic data and recover missing traffic data by
reconstructing the traffic flow tensor. )e results show that
the proposed algorithm performs well even when the
missing ratio is high. Chen et al. [14] proposed singular value
decomposition (SVD)-combined tensor decomposition
framework to complete the traffic data using traffic speed
information. Sun and Axhausen [15] utilize a probabilistic
tensor decomposition method to mine the urban mobility
patterns. Mobility patterns of different passenger groups
(e.g., students, adults, and elders) are explored. In our study,
we also use tensor decomposition to extract the flow pattern
related to each fare machine.

2.3. Anomaly Detection. )e invalid associations (between
fare machines and stations) are treated as anomalies.
Anomaly detection is an important topic in data mining.)e
anomaly detection could be roughly divided into three
categories, statistical, machine learning, and deep learning
models.

(1) Statistical method: statistical methods are the early
explorations of the anomaly detection. )e methods
in this category first make assumptions of the dis-
tribution of the studied dataset.)e samples with low
probabilities are treated as anomalies. Rousseeuw
and Driessen [16] proposed an anomaly detection
method based on the Gaussian assumption of the
data. )e performance of statistical anomaly detec-
tion methods highly depends on the fitting between
the assumption and the reality, thus exhibiting
limited performance.

(2) Machine learning-based methods: the most widely
used anomaly detection methods are the machine
learning-based methods, which generally have two
categories: supervised and unsupervised methods.
Supervised methods [17, 18] refer to the models
applying to the dataset that the training data are

User ID Entrance machine ID Exit machine ID Entry time Exit time
XXXXX 001# 002# 01/01/2020 09:00:00 01/01/2020 09:20:00

Machine ID Station name

002# C
001# B

User ID Entrance machine ID Origin station Exit machine ID Destination station
XXXXX 001# B 002# C

Machine-station dictionary 

Original trip record

Trip record with station information

001# locates in
A but wrongly
recorded as B 

...

...
...

...

...

...

Figure 2: Invalid association problem between fare machine and metro station.
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labeled with “nominal” or “anomaly.” )e models
are trained with the labeled data and use to identify
new instances. Unsupervised methods deal with the
dataset without labels. )ese methods automatically
detect the anomalies based on certain criteria.
Popular unsupervised methods include LOF [19],
DBSCAN [20], k-means [21], and the isolation forest
[22] method.

(3) Deep learning-based methods: the emerging deep
learning models bring new opportunities to better
solve the anomaly detection problem. Hundman et al.
[23] propose an LSTM network-based framework for
anomaly detection; [24] utilized a generative adver-
sarial network (GAN) to detect the anomalies in time
series data. Nguyen et al. [25] detect the anomalies by
constructing the model snapshot and outputting the
ensembles of the NN models. Deep learning-based
methods tend to have more a promising performance
compared to other techniques. However, these
methods require a large amount of training data to
produce reasonable results. Its performance is low in
scenarios with a small set of training data, e.g., the fare
machine-station association problem studied in this
paper.

3. Methodology

3.1. Problem Formulation. Let m be a fare machine, and
Sm, Sm ∈ Δ its actual station and current association station
in the AFC dataset, respectively, where Δ � S1, S2, . . . , Ss 

contains all the stations in the metro system. Note that
different fare machines could share the same station, i.e.,
located in the same station. If S � S, fare machine m is
defined as valid association fare machine; if S≠ S, fare
machine m is defined as invalid association fare machine.
)e fare machine-station association detection problem is
defined as follows.

Given an AFC dataset D and a set of fare machines Φ
recorded in D, detect invalid association fare machines and
infer their associated stations for fare machines m in Φ.

Mathematically, the problem is defined as follows:

(i) Invalid Association Detection. Find ϕ ⊂ Φ, s.t.

ϕ � m
S⟶S

|S≠ S , and Φ − ϕ � m
S⟶S

|S � S 

(ii) Station Inference. For each fare machine m in ϕ, find
S s.t. S � S

3.2. Fare Machine Features. For convenience, we define the
concept of fare machine-related passenger flow (MRF). For
an entrance fare machine, MRF refers to the passenger flow
tapping in an entrance fare machine of the origin station and
tapping out at a destination station (using any machine)
during a certain time slot. For an exit fare machine, MRF
represents the passenger flow tapping in at an origin station
(using any machine) and tapping out at an exit fare machine
during a certain time slot. MRF can be characterized using
different features, such as flow volume and travel time.
Indicators extracted from the MRF features can be used to

characterize fare machines. )e hypothesis is that MRF
features share more similar patterns if the fare machines are
located at the same station than at different stations.

)e flow volume and travel time are selected to char-
acterize the MRFs of fare machines. )ese two features
reflect system dynamics from both the demand (mobility
patterns) and supply (network and operations) points of
view as well as their interactions. )ey provide comple-
mentary knowledge and therefore give a more compre-
hensive view of the MRF patterns. )ey are defined for
entrance and exit fare machines separately:

(i) For entrance fare machines, MRF flow volume
measures the number of passengers passing through
each fare machine at an origin station and going to a
destination station. For exit fare machines, it rep-
resents the number of passengers entering the metro
system at an origin station and tapping out through
an exit fare machine. MRF flow volume reflects the
mobility behavior of passengers.

(ii) MRF travel time indicates the average travel time
from a fare machine to a destination station for
entrance fare machines and from an origin station to
a fare machine for exit fare machines. It reflects the
supply characteristics of the metro system, e.g.,
geographical relationship between stations and
scheduling, but also demand characteristics of cer-
tain stations as it includes time waiting to board a
train under capacity constraints.

Figure 3 shows the overview of the proposed framework.
It consists of three modules: MRF feature extraction, invalid
association detection, and associated station inference:

(i) MRF feature extraction module: it constructs the
MRF flow volume and travel time tensors to
characterize fare machines and extracts latent MRF
flow and travel time features using the tensor de-
composition technique.

(ii) Invalid association detection module: it detects the
invalid associations (between fare machines and
stations) in two steps. )e valid and invalid asso-
ciations are initially detected using the isolation
forest method. )en, the invalid associations are
reinspected (the feedback arrow) using neural
networks (trained with the valid association data).

(iii) Association station inference: it infers the station
that a fare machine (detected as invalid association)
belongs to using the trained neural networks.

3.3. MRF Tensor Construction. For data representation,
tensors are used to characterize the MRF flow volume and
travel time. A tensor is a high-order generalization of a
matrix. )e multiway property of a tensor fits the nature of
MRF features. For example, MRF flow volume can be
characterized by “machine mode” (M), “time mode” (T),
“day mode” (D), and “station mode” (S). For entrance fare
machines, “machine mode” denotes the related fare machine
ID, “time mode” represents the time interval of a day (e.g., 6:
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00 to 7:00 AM), “day mode” denotes the date, and “station
mode” denotes a destination station ID. For exit fare ma-
chines, the definitions of tensor modes are the same with
entrance fare machines, except for the “station mode.” )e
“station mode” of an exit fare machine is the origin station
ID. In this way, two 4-way tensors are used to represent the
MRF flow volume of entrance and exit fare machines, re-
spectively. For example, an entry: 50 at (A, 8:00 to 9:00 AM,
January 1, B) of entrance machine tensor represents “the
passenger flow volume passing through entrance machine A
in the interval 8:00 to 9:00 AM on January 1 and exiting at
Station B is 50 passengers.” )e methodology for fare ma-
chine-station association is the same for entrance and exit
fare machines. Entrance fare machines are used to illustrate
the proposed framework. Unless stated, the “fare machines”
and “MRF tensors” refer to entrance fare machines and
entrance MRF tensors, respectively.

To construct the MRF flow volume tensor, the mode
variables above are transformed into numerical indices:

(i) Machinemode: the fare machines are labeled from 1
to M. )en, the machine IDs belong to a set
M � 1, 2, . . . , M{ }, where M represents the total
number of fare machines.

(ii) Time mode: the hourly interval is used to represent
the tap-in time T � 1, 2, . . . , T{ }. Note that only the
operating hours of the metro system are considered,

where the ith element in T denotes the ith operating
hour of the day.

(iii) Day mode: day mode represents the date, thus D �

1, 2, . . . , D{ } where 1 and D represent the first and
the last day of the studied time span, respectively.

(iv) Station mode: the stations are labeled from 1 to S
S � 1, 2, . . . , S{ }, where S denotes the set of stations
in the metro system.

)e MRF flow volume is represented by a size M × T ×

D × S tensor V. Figure 4 shows the structure of the MRF
flow volume tensor. Each entry of V, denoted as Vmt ds,
represents the MRF flow volume entering through fare
machinem and exiting at destination station s during the tth

time interval of day d. For the exit fare machines, the tensor
construction procedure is the same as the entrance ma-
chines. Accordingly, the entry Vmtds

′ denotes the MRF
volume entering though station s and tapping out though
fare machine m during the tth time interval of day d.

Similarly, the MRF travel time tensor is denoted as
T ∈ RM×T×D×S. An entryTmtds inT represents the average
travel time of all passengers entering through fare machine
m and traveling to destination station s during the tth time
interval of day d.

)e properties of MRF flow volume and travel time
tensors are different, though they share the same structure.
)e difference stems from the tensor cells that have no AFC

AFC data

MRF feature extraction

Time mode Machine mode Day mode Station mode

MRF feature vectors

Isolation forest

Station-NNs

Invalid association set Valid association set

TrainTest

Matched stations

Station inference

Invalid association detection

Figure 3: Overview of the proposed framework.
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observation. For the MRF flow volume tensor, the value of
such cells is 0 since the MRF flow volume for the corre-
sponding [m, t, d, s] is 0 (no passenger flow). However, for
the travel time tensor, cells having no observation cannot be
directly filled with a zero. No observation in the MRF travel
time tensor only means that no passengers traveled for the
specified [m, t, d, s] case. However, the corresponding travel
time cannot be 0. An initial idea is filling these cells using the
average travel time of such OD pairs in the historical data.
Unfortunately, nonobservation cells always account for a
large ratio of the MRF travel time tensor (e.g., 63.5% in the
studied AFC dataset). )erefore, it is hard to estimate a
reasonable average travel time for each cell based on limited
information. Instead, “NaN” values are used to fill those cells
to represent the unknown travel times.

3.4. Tensor Decomposition. Tensor decomposition is used to
extract fare machine features from theMRF flow volume and
travel time tensors. Given the different properties of these
two tensors, different tensor decomposition methods are
developed to extract the MRF flow volume and travel time
features, respectively.

3.4.1. Tensor Decomposition of MRF Flow Volume. For MRF
flow volume tensorV, the CANDECOMP/PARAFAC (CP)
decomposition [12] is used to extract the fare machine
features. CP decomposition factorizes a tensor into a
summation of a series of rank-1 tensors. A rank-1 tensor
V ∈ RI1×I2×···×In (Ii is the dimension of mode i) is an outer
product of N vectors: X � a(1) ∘ a(2) ∘ · · · ∘ a(n), where
Xi1i2...in

� a
(1)
i1

a
(2)
i2

, . . . , a
(n)
in
, a(i) denotes a vector, a(i)

k denotes
the kth element of a(i), and the symbol ∘ denotes the outer
product of vectors.

)e CP decomposition of V ∈ RM×T×D×S can be for-
mulated as follows:

V � 
R

r�1
mr ∘ tr ∘dr ∘ sr

, (1)

where R represents the total number of components,
mr ∈ RM, tr ∈ RT, dr ∈ RD, and sr ∈ RS represent the
component vector of the machine, time, day, and station

modes, respectively. Figure 5 illustrates the process of CP
decomposition of V.

Computing the CP decomposition ofV can be treated as
an optimization problem. )e goal is to find a CP decom-
position V � 

R
r�1 mr ∘ tr ∘dr ∘ sr with R components that

could best approximate V. )e decomposition V is the so-
lution of the following optimization problem, i.e., find

V
∗

� argmin
V

‖V − V‖F,
(2)

where ‖ · ‖F denotes the Frobenius norm. )is optimization
problem can be solved using the alternating least squares
(ALS) method [26]. Details of the solution procedure can be
found in [12].

)e feature matrix MV � [m1,m2, . . . ,mR] is con-
structed utilizing all the component vectorsmr in V

∗
. Since

each entry in V
∗
is calculated as the outer product of all the 4

component vectors, MV could be treated as an indicator of
the hidden information of all the other 3 modes. )e entries
in V
∗
that are related to the ith fare machine are calculated

only using the elements in ith row of MV. )erefore, each
row ofMV can be used as a latent feature vector to represent
each fare machine’s MRF flow volume pattern.

3.4.2. Tensor Decomposition of MRF Travel Time. CP de-
composition cannot be applied directly to extract travel time
features. )is is because the travel time tensor has nonnu-
merical (i.e., NaN) entries, which makes the operation T −
T infeasible. A variation of CP decomposition, CP
Weighted OPTimization (CP-WOPT) [27], is used to deal
with the MRF travel time tensor decomposition. CP-WOPT
is widely used to recover tensors with missing entries. CP-
WOPT utilizes a weight tensor to indicate the location of
NaN entries. )e formulation is as follows:

T
∗

� argmin
T

‖W∗ (T − T)‖F.
(3)

)e weight tensorW ∈ RM×T×D×S has the same shape as
T and is defined as

Wmtds �
0, if Tmtds is NaN,

1, otherwise.
 (4)

In the initialization phase, NaN cells are filled with
random values. As these values are multiplied by 0 during
the optimization, they do not influence the results of the
optimization objective (optimal solution). After optimiza-
tion, T

∗
can represent features of the observed travel time

data well. As there exists strong relationship between the
cells in T, the features of the entries without observations
can also be represented in the reconstructed tensor T

∗
. A

feature matrix MT is constructed using the machine mode
component vectors in T

∗
to represent the multimode travel

time features of fare machines. Details about the CP-WOPT
method can be found in [27].

)e MRF flow volume and travel time feature vectors of
each fare machine are concatenated into one single vector to
characterize the corresponding fare machine.

m d

s

t

Figure 4: Structure of MRF flow volume tensor. MRF flow volume
tensor consists of 4 modes, i.e., time (t) mode, day (d) mode, station
(s) mode, and machine (m) mode.
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3.5. Fare Machine-Station Association. As fare machines at
the same station share similar surrounding Point of Interests
(POIs), the MRF features of these fare machines tend to be
similar. )erefore, we should first extract the MRF feature of
each station. )en, the MRF feature of each machine is
compared to the station MRF feature. If a fare machine has a
similarMRF feature with a station, then this station is likely to
be the association station of the fare machine. We divide the
inference process into two successive problems P1 and P2.

3.5.1. P1: Invalid Association Fare Machine Detection. To
solve P1, we first give two assumptions: (1) the MRF features
of the invalid associations are anomalies to their recorded
stations. More formally, let C(·) be the count function,
anomaly means C(mS1⟶S2

)≪C(mS2⟶ S2
) for

∀S1 ∈ Φ, S1 ≠ S2. )is indicates that the number of fare
machines with association station S1 but recorded station S2
should be far less than the number of valid association fare
machines in S2. Note that this assumption does not mean the
total number of invalid association fare machines of S2 is less
than the valid fare machines. We only restrict that fare
machines recorded as S2 but actually associated with S1
should beminority to S2.)is assumption is reasonable since
the error leads to fare machine-station invalid association
tends to be random; for example, it is unlikely to have many
fare machines located in the same station wrongly recorded
as another station simultaneously. (2) )e invalid associa-
tions happen randomly. )is assumption indicates that for a
fare machine m in station S, it experiences equal probability
being wrongly associated to all the other stations in the
system. )is assumption is reasonable since the invalid
associations mainly because of the inadequate data man-
agement in the process of database merging, maintenance,
or system update.

Based on this assumption, the isolation forest method is
adopted to solve P1. )e isolation forest model is an un-
supervised model for anomaly detection, which could be

directly used for the contaminated dataset. )e only re-
quirement of this method is that the outlier should be few
and different with the normal instances. )is exactly fits the
aforementioned assumption. )e isolation forest detects the
outliers using a special measurement: partitions. )e iso-
lation forest “isolates” observations by randomly selecting a
dimension of the MRF feature vector and then randomly
splitting the space between the maximum and minimum
values of the selected dimension. Since recursive partitioning
can be represented by a tree structure, the number of
splittings required to isolate an MRF feature is equivalent to
the path length from the root node to the terminating node.
)is path length, averaged over a forest of such random
trees, is a measure of normality. Random partitioning
produces noticeably shorter paths for anomalies. Hence,
when a forest of random trees collectively produce shorter
path lengths for particular fare machines, they are highly
likely to be anomalies [22].

Based on the results from the isolation forest, we can
divide the fare machine MRF feature vectors into two parts:

Fϕ contains all theMRF feature vectors that are inferred
as invalid (i.e., abnormal) by the isolation forest
Fϕ contains all the MRF feature vectors that inferred as
valid (i.e., normal) by the isolation forest

)e fare machines with their MRF features in Fϕ are
detected as valid, while the fare machines in Fϕ are rein-
spected in the process of solving P2.

3.5.2. P2: Association Station Inference. In P2, a reinspection
of the fare machines in Fϕ is conducted to refine the de-
tection results from P1. )e reinspection detects which
associations are wrongly detected as invalid in Fϕ. In
practical applications, the inference provides a certain sense
about the data quality in their AFC database. )e model
outputs the potential association stations of the detected
invalid association fare machines, which facilities effective
field investigation and reduces manpower.

Neural network (NN) is used to model the station MRF
feature using the MRF features in Fϕ (detected as valid). As
the number of samples (i.e., fare machines) are limited (e.g.,
2000 fare machines in the studied network), the NN training
may face underfitting issues. We built one shallow neural
network for each station, which denotes as the station-NN.
For a certain station-NN Ni of station Si, we label the fare
machines with the recorded station Si in Fϕ as 1 and label
other fare machines in Fϕ as 0. It is inadequate to directly
train the station-NN with the labeled features. Since a metro
system has many stations (e.g., 90 stations in the studied
metro system), for one certain station, the number of
positive samples (i.e., MRF features labeled as 1) is much less
than the negative samples (MRF features labeled as 0), which
will lead to the learning bias. We utilize the adaptive syn-
thetic sampling (ADASYN) [28] approach to oversample the
positive samples, ensuring that the number of the over-
sampled positive samples is similar with the number of
negative ones.Ni is then trained with the oversampled MRF
features and their corresponding labels. After Ni is well-
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Figure 5: CP decomposition of the MRF flow volume tensor.
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trained, the output of the network will be the probability that
the input fare machine MRF feature belongs to this station.

For an MRF feature v in Fϕ, we input it into all the well-
trained station-NNs. Let P � [P1, P2, . . . , PS] denote the
output probability from each station-NN, and
Pπ � [Pπ(1), Pπ(2), . . . , Pπ(S)] is the descend order permu-
tation of P, where Pπ(i) >Pπ(j), given i< j. )e top-k stations
K � π(1), π(2), . . . , π(k){ } would be the most possible
association station of the corresponding fare machine of v.

Using K, the reinspection for P1 is conducted for the
fare machine in Fϕ with the following rule: given a fare
machine mS⟶s ∈ Fϕ, if s ∉K, m is inferred as invalid,
otherwise as valid. For the fare machines inferred as invalid
after the reinspection, the top-k station K is treated as the
potential association stations set. In the implementations,
one can first check the stations in this set to find if this fare
machine is there.

4. Case Study

We utilize AFC data from an urban metro system to evaluate
the proposed detection and inference approach. )e data
cover 7 days from January 15 to 21 in 2018. )e fare ma-
chine-station association information is carefully checked to
ensure its validity for benchmarks. Figure 6 illustrates the
statistic of the number of machines in the metro system
during the studied time span.

4.1. Experimental Setup. We randomly select 1000 entrance
fare machines and 1000 exit fare machines and collect the
corresponding AFC transaction records to construct the
experimental dataset. We randomly choose a set of fare
machines and modify their associated stations (invalid as-
sociations). )e proposed approach is validated with the
ratio of invalid associated fare machines ranging from 5% to
40%. )e approach runs 20 times per scenario to avoid
random errors. Table 1 summarizes the model parameters
used in the experiments.

4.2. Performance Evaluation. Table 2 shows the tabularised
relations between truth/falseness of the detection and valid/
invalid association.

A set of performance metrics is used to comprehensively
evaluate the model performance, including accuracy (Accu),
true positive rate (TPR), and false positive rate (FPR):

Accu �
NT

NPN
, (5)

where NPN is the total number of associations (or fare ma-
chines) and NT the number of correctly detected associations
(between fare machines and stations). )e correctly detected
fare machines include cases that are truly positive and negative:

TPR �
NTP

NP

, (6)

where NTP is the number of truthfully detected invalid
association (correctly inferred an invalid association as

invalid), and NP is the number of invalid associations. TPR
measures the model’s sensitivity towards invalid
associations:

FPR �
NFP

NN

, (7)

where NFP is the number of falsely detected valid associa-
tions (falsely inferred a valid association as invalid) and NN

is the total number of valid associations. FPR measures the
misjudgement rate of the valid associations.

4.2.1. Evaluation of Invalid Association Detection (P1).
Figure 7 shows the detection results of associations with the
invalid association ratio ranging from 5% to 40%.)e results
indicate that the isolation forest model is robust to the
invalid associations when the invalid association ratio is less
than 20% (the detection accuracy is over 96%). It can still
achieve a detection accuracy of 87%, and even 40% of the
fare machines are wrongly associated with stations in the
data.)e TPR is an essential characteristic of the detection of
invalid associations in P1, since there is no reinspection of
the invalid associations in Fϕ in the following procedures of
the approach. )at is, the wrongly associated fare machines
in Fϕ will remain undetected which may eventually impact
practical applications in reality. Also, it is favorable to detect
more invalid associations to ensure a clean MRF feature set
for each station, which benefits the correction of invalid
associations in P2. )e TPR is over 90% when the invalid
association is less than 20%, which indicates the promising
performance of the proposed approach in detecting the
invalid associations. )e falsely detected valid associations
(FPR) is very low (less than 5%), and it decreases with the
increase of the invalid association ratio as expected.

4.2.2. Evaluation of Association Inference (P2). For the P2
evaluation (rematching wrongly associated fare machines to
stations), we quantify the model’s capability to effectively
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Figure 6: Number of entrance and exit fare machines in the studied
metro system.
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allocate large probabilities to the correctly matched stations.
We use the top-k accuracy measure. Depending on different
k values, it measures the probability that the inferred set of
the top-k stations (ordered by probabilities) includes the
actual associated station in reality:

top − kAccuracy �
Nc

NFϕ
, (8)

where Nc is the number of fare machines in F∗ϕ with their
matched station contained in [π(1), π(2), . . . , π(k)] and
NF∗ϕ

is the number of fare machines in F∗ϕ .
Table 3 summarizes the model performance of P2 with

varied levels of invalid association ratios in the dataset.

)e results show that the top-k accuracy exceed 90%
when k is greater than 3, regardless the invalid association
ratio. It indicates that the top 3 inferred stations from the

Table 2: Confusion matrix of the valid association detection.

Invalid association (positive) Valid association (negative)
True detection (true) True positive (TP) True negative (TN)
False detection (false) False positive (FP) False negative (FN)
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Figure 7: Model detection performance (a) TPR, (b) FPR, and (c) accuracy with invalid association ratio ranging from 0.05 to 0.6.

Table 3: Model performance in rematching invalid associated fare
machines.

Invalid association ratio (%)
5 10 15 20 25 30 35 40

Top-1 76.4 77.8 77.1 78.9 75.7 74.1 70.9 69.1
Top-2 86.8 87.1 87.2 88.5 87.4 85.1 82.1 81.4
Top-3 90.8 91.1 91.7 91.8 91.7 89.9 88.3 87.7
Top-4 93.1 93.4 94.4 93.6 93.9 92.5 90.9 91.0
Top-5 94.1 95.0 95.9 95.3 95.1 94.1 92.9 93.3

Table 1: Model parameters.

Tensor decomposition Optimal value (potential values)
Number of components (R) 8 (1–15)

Optimization algorithm ALS (ALS refers to the alternating least squares
algorithm)

Error tolerance 1e− 6 (1e− 3–1e− 8)
Maximum number of iterations 100 (10, 100, 500, 1000)
Isolation forest Value
)reshold score (the threshold score is calculated with the decision_function in
sklearn.IsolationForest package under Python 3.7) 0

Number of estimators 1000 (200, 500, 1000, 1500)
Station-NN Value
)e number of top stations in P1 reinspection 5
Number of hidden layers 2 (1–5)

Optimizer Adam (Adam refers to the optimization
algorithm proposed in [29])

Number of neurons (16, 5)
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model are highly likely to include the correctly associated
station of the studied fare machine. )is provides an im-
portant implication for further field investigations to these
probable stations in practice, i.e., checking the most likely
stations that the invalid associated fare machines may belong
to.

4.3. Latent Feature Analysis. )e foundation of the detection
or inference model being effective is the quality of the MRF
features. )at is, the fare machines at different stations are
preferable to have significantly different MRF features. To
explore the feature quality, we utilize the principle component
analysis (PCA) [7] to reduce the dimension of the MRF
feature vector to two. We randomly choose 5 stations in the
studied metro system, select one station as the reference
station, and compare its MRF feature vector to that of the
other 4 stations, respectively.

Figure 8 shows the MRF feature visualization results. )e
results show that the MRF features between stations exhibit
significant differences, which indicates a high quality. )is
benefits the model to formulate relatively distinct MRF fea-
ture for each station, thus which is effective to detect the
invalid associations and infer the associated station of the fare
machines. For different stations, the MRF feature of fare
machines appears different patterns. For example, the MRF
features ofmachines in Station E (Figure 8(d)) are very similar
to each other, while the MRF features of Station B
(Figure 8(a)) appear a distributed manner. )e reason partly
lays in the different layout of the stations. For some large
stations (e.g., transfer stations in the commercial center),
there are many gates entering/exiting the stations, which may
lead to variances in travel time between the same OD pairs. It
would be the main reason for the miss and wrongly detection
of the proposed model.

5. Conclusion

Ensuring data quality is essential for its effective use in
practice. )e paper proposes a model to detect the invalid
data in the AFC dataset, caused by the erroneous association
between fare machines and stations (e.g., due to delayed
updating dictionaries or incorrect data merging). It com-
bines tensor decomposition, isolation forest, and NN

methods to detect the invalid associations in the recorded
dataset and infer the correct association station that a fare
machine belongs to.

)e model is validated using the AFC data in a busy
metro system. )e experiment results show that the invalid
association can be detected with more than 90% accuracy
when the invalid association ratio is low. Also, the model is
robust to invalid associations and it can still achieve 69.62%
accuracy in the extreme case when the invalid association
ratio is 55%. )e association station inference results in-
dicate that the top 3 inferred stations from the model are
highly likely to include the correctly associated station of the
studied fare machine (around 90%). )is provides an im-
portant implication for further field investigations to these
probable stations in practice.

)e proposed model provides useful knowledge for the
AFC data management in terms of data quality check and
fixing invalid data. )ough the study focuses on the invalid
data detection problem, the model is general and can be
generalized to inference applications, e.g., inferring the
alighting stations for the bus system having only the
boarding records. As the extracted MRF features are
meaningful, further studies could focus on the analysis based
on the MRF features, for example, analysing the different
utilization of fare machines in different gates of the same
station to improve the infrastructure efficiency.

Data Availability

)e AFC data used to support the findings of this study are
available from the corresponding author upon request.
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China Coastal Bulk Coal Freight Index (CBCFI) reflects how the coastal coal transporting market’s freight rates in China are
fluctuated, significantly impacting the enterprise’s strategic decisions and risk-avoiding. ,ough trend analysis on freight rate has
been extensively conducted, the property of the shipping market, i.e., it varies over time and is not stable, causes CBCFI to be hard
to be accurately predicted. A novel hybrid approach is developed in the paper, integrating Long Short-TermMemory (LSTM) and
ensemble learning techniques to forecast CBCFI. ,e hybrid LSTM-based ensemble learning (LSTM-EL) approach predicts the
CBCFI by extracting the time-dependent information in the original data and incorporating CBCFI-related data, e.g., domestic
and overseas thermal coal spot prices, coal inventory, the prices of fuel oil, and crude oil. To demonstrate the applicability and
generality of the proposed approach, different time-scale datasets (e.g., daily, weekly, and monthly) in a rolling forecasting
experiment are conducted. Empirical results show that domestic and overseas thermal coal spot prices and crude oil prices have
great influences on daily, weekly, and monthly CBCFI values. And in daily, weekly, and monthly forecasting cases, the LSMT-EL
approaches have higher prediction accuracy and a greater trend complying ratio than the relevant single ensemble learning
algorithm. ,e hybrid method outperforms others when it works with information involving a dramatic market recession,
elucidating CBCFI’s predictable ability. ,e present work is of high significance to general commerce, commerce-related, and
hedging strategic procedures within the coastal shipping market.

1. Introduction

Nowadays, 90% of global trades are completed via sea
transportation [1]. Sea transport is critical to the business
system on the globe and also in the domestic trade system.
China Coastal Bulk Coal Freight Index (CBCFI) [2] is built
for timely reflecting how coastal coal transporting market’s
freight rates in China are fluctuated, by complying with the
present mechanism of China Coastal Bulk Freight Index
(CBFI) [3]. ,is system can publicize the complex index and
spot ratios in terms of various routes/kinds pertaining to
vessels of the coastal coal service market on a day-to-day
basis. China (Coastal) Bulk Freight Index Panelist offers
CBCFI freight data per weekday (Shanghai Shipping

Exchange publicizes CBCFI at the official website and as well
as http://www.chineseshipping.com.cn at 15:00 (Beijing
Time) on each index publication day).

CBCFI represents the voyage-charter freight rate con-
ditions pertaining to the market of bulk coal shipping in
coastal areas. ,is indicates the unstable property pertaining
to the coal bulk shipping market, as well as reflecting the
developing states pertaining to the China economic con-
dition and domestic business tendency. ,us, it refers to the
“weatherglass” pertaining to the market of bulk coal ship-
ping in coastal areas. Due to the mentioned feature, nu-
merous internal personnel and specialists attempt at
estimating the subsequent tendency pertaining to the market
of bulk coal shipping in coastal areas by accurately
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predicting the bulk coal freight index for guiding company
strategy decisions. Additionally, forecasting CBCFI value
enables operating personnel and decision-making personnel
for managing market trends and avoiding risks inside the
coastal coal shipping market. Furthermore, it helps indus-
tries and manufactories with the domestic shipping system.

Previous studies indicate that the shipping freight index
usually presents complicated instability features to be un-
certain, cyclical, and nonlinear properties [4–6]. To achieve
the satisfactory freight index prediction, a variety of freight
indices predicting methods developed previously, where the
econometric time series predicting approaches exhibit
drawbacks in nonstationary and nonlinear properties, while
the single neural network (NN) methods show disadvan-
tages in overfitting, local minimum point, and parameter
selection problems. Because both single econometric and
NN approaches are limited in freight index prediction, re-
cently, empirical studies consistently demonstrate the
adaptability of hybrid techniques. Hybrid approaches are
capable of combining individual approaches and make the
respective advantage remedy others’ deficiencies.

Recently, ensemble learning algorithms are extensively
employed for analyzing the multivariable prediction. En-
semble learning algorithms (e.g., random forest (RF) and
gradient boosting regression tree (GBRT)) are effective in
determining the essential variables of a time series and
investigate the inner relations among variables [7]. Over the
past few years, ensemble learning algorithms have been
extensively employed for studying the mentioned time series
to be stock prices, Baltic Dry Index, and traffic flow, leading
to the production of essential outcomes [8–10].

Ensemble learning algorithms’ fast advancement pres-
ents one novel idea for the way of utilizing multidata and
improves the readability from the original data. We here
combine AI and ensemble learning algorithms for formu-
lating one emerging hybrid approach, an ensemble learning
(LSTM-EL) approach (e.g., LSTM-GBRT and LSTM-RF) by
exploiting Long Short-Term Memory (LSTM) for CBCFI
forecasting. Inside the approach, the LSTM layer obtains
details dependent on time within the data, and the GBRT/RF
layer shows great robustness of ensemble learning in terms
of the training of approach.

,e present work has the following organization. Section
2 presents the review of the analyses of the market of
shipping freight. Section 3 presents the designed approaches.
Section 4 introduces the data collection. In Section 5, the
approach performance receives the comparison and anal-
ysis. Lastly, Section 6 gives the concluding remarks.

2. Literature Review

Since freight rates are uncertain and unstable, the ap-
proaches to quantitatively analyze the rates arouse long
concern from the shipping industry. As a result, increasing
literature proposes approaches to predict freight rates, many
of which use the Baltic Dry Index (BDI) [11]. Both BDI and
CBCFI are shipping indices that effectively assess the current
situation or shipping market, and they have some similar
features. First, CBCFI and BDI are both daily number-issued

leading indicators that measure the costs of shipping raw
materials. Specifically, BDI mainly measures shipping costs
for dry bulk commodities, including coal, grain, iron ore,
and metals, while CBCFI mainly measures shipping costs for
coal; second, in terms of the composition, BDI takes 23
shipping routes measured on a time charter and voyage basis
while CBCFI takes 14 shipping routes measured on a voyage
basis; third, as for the type of vessel, BDI looks at the ships
that can carry 15,000 deadweight tons (DWT)–80,000 DWT
of cargo (90 percent of the global fleet), while CBCFI focuses
on the ships that can carry 15,000 DWT–60,000 DWT
[3, 12, 13]. As the BDI and CBCFI share these similar
features, we refer to the abundant research of the BDI to
obtain a clear view of current prediction approaches. ,e
analytic methodology of BDI among others is split into three
types.

Traditional econometric approaches are initially cov-
ered, including vector error correction (VEC), generalized
autoregressive conditional heteroskedasticity (GARCH),
vector autoregression (VAR), and the autoregressive inte-
grated moving average (ARIMA) approaches. Cullinane
et al. [14] first developed a Baltic Dry Bulk Index (BDI) study
approach method through the ARIMA approach. Kavus-
sanos and Alizadeh-M [15] developed one season-related
ARIMA approach for one independent variant as well as one
VAR approach for investigating seasonality in the dry bulk
shipping market. Batchelor et al. [16] discussed the per-
formances of VAR and ARIMA as well as vector equilibrium
correction (VECM) approaches for the prediction of spot
and forward freight rates. To improve the accuracy of BDI
forecasts, Tsioumas et al. [17] developed a multivariate
vector autoregressive approach with exogenous variables
(VARX) approach and the results demonstrate that the
VARX approach outperforms the ARIMA approach. Chen
et al. [18] applied the ARIMA and the VAR approaches to
predict the spot rates of several dry bulk routes and found
out that the VAR approach performed better than the
ARIMA approach in test-sample forecasts. Adland et al. [19]
showed a cointegration-based method for analyzing regional
ocean freight rates’ dynamic properties.

According to Stopford [20], sea prediction is difficult for
statistical and traditional econometrical approaches for
capturing the nonlinearity of dry bulk freight rates [21].
Accordingly, a second type of analytic approach currently
employs several nonlinearity and artificial intelligence (AI)
approaches, comprising artificial neural network (ANN),
machine learning algorithm, and nonlinear methods. Li and
Parsons [22] applied neural systems to predict monthly
tanker freight rates from the short to the long term and
found the neural systems outperforming the ARIMA time
sequence approach for prediction in the long run. Yang et al.
[23] investigated and predicted the freight rate instability
alarming pertaining to China Coastal Bulk Freight Index
(CCBFI), China Containerized Freight Index (CCFI), and
Baltic Freight Index (BFI) by exploiting support vector
machine (SVM). ,alassinos et al. [24] adopted a chaos
approach for predicting the BDI using the invariable coef-
ficients pertaining to the strange attractor under recon-
struction, governing the system’s evolving process. Guan
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et al. [25] developed one SVM-based multistep prediction
approach to predict weekly Baltic Supermax Index (BSI)
data. Şahin et al. [26] develop three ANN approaches based
on BDI data and results show that their performances are
close, whereas the highest consistency pertains to the ANN
by exploiting the past two weekly observations of the BDI
data. Among the deep-learning approaches, the long short-
term memory (LSTM) neural network is regarded as a
practical technique for handling time series problems
[27–29]. For example, Nelson et al. [27] employed the LSMT
network to predict the future trends of stock prices based on
the historical price, alongside technical analysis indicators;
Duan et al. [30] implemented the LSTMmodel for multistep
ahead travel time prediction. ,e above studies demon-
strated that NN methodologies generate more effective
forecasting performance than conventional time series and
econometric approaches.

,ough NNs are capable of handling nonlinearity and
show better robustness, it is hard to determine the config-
uration of the NN algorithm; in addition, it tends to fall into
over or lacked training, easily resulting in local minimum
trapping [11]. ,is prompts one shift into the third category
hybrid methodologies, which usually integrates one noise-
reducing method by adopting one NN-based algorithm.
Leonov and Nikolov [31] proposed a hybrid approach of
wavelets and neural networks to investigate the fluctuation
in the freight rates of the Baltic Panamax routes 2A and 3A.
Bulut et al. [32] established one vector autoregressive fuzzy
combined logical predicting approach in terms of time
charter rates. Zeng et al. [33] propose a hybrid approach of
empirical mode decomposing process (EMD) as well as
ANN. Uyar et al. [34] presented one trained recurrent fuzzy
neural system with the use of a genetic algorithm for im-
proving long-term dry cargo freight rates prediction to be
more accurate. As an efficient strategy to improve the
forecasting ability of a single model, ensemble learning has
been widely used to improve the model performance
[35–38]. For example, Kamal et al. [35] developed a deep
ensemble recurrent network of recurrent neural network
(RNN), long-short-term memory (LSTM), and gated rec-
tified unit neural network (GRU) to improve the BDI
predictive performance, and results showed that the en-
semble method outperforms the single deep-learning ap-
proach. Tan et al. [37] proposed an LSTM-based deep
ensemble learning model that combined bagging, random
subspace, and boosting to forecast ultra-short-term indus-
trial power demand, and they found out that the proposed
model obtains higher accuracy and robustness than LSTM,
eXtreme Gradient Boosting (XGBoost), and other time
series methods. Liu et al. [36] proposed a deep air pollution
model for forecasting PM2.5 concentrations based on a
wind-sensitive attention mechanism, LSTM, and XGBoost,
and experiments illustrate that the proposed approach is
superior to a single multilayer perceptron (MLP), SVM,
LSTM, and XGBoost.,e above studies indicate that models
combining machine learning and neural networks usually
obtain better predictive results than any single model.

Althoughmuch research has been conducted to solve the
shipping indices forecasting issues, most do not consider

different spot rates or other related factors information.
Accordingly, these methods cannot effectively reflect the
critical factors that contribute to strengthening the pre-
dictive performance. To address this issue, we propose a
hybrid model of LSTM and ensemble learning algorithm to
handle the CBCFI forecasting problems. ,e LSTM ap-
proach has the ability to acquire the data determined by time
and noticeably impacts the predicting process of time series,
whereas this approach fails to appropriately mine the im-
plicit relations between exogenous variables in predicting
inflection point data. ,us, to better utilize feature infor-
mation, it is necessary to incorporate an applicable ensemble
learning algorithm to optimize the feature combination in
order to construct the feature set that reflects the short/long-
term trend of the CBCFI. For the ensemble learning part,
boosting and bagging are two of the important ideas; they
both combine a set of weak learners to create a strong learner
that obtains better performance. In all kinds of machine
learning methods, Gradient Boosting Regression Tree
(GBRT) [39] and Random Forest (RF) [40] have received
much attention and are often used as representatives of
ensemble learning algorithms. GBRT and RF are decision-
tree-based ensemble learning algorithms that use a boosting
and bagging framework, respectively. Because of the
implementation of a gradient boosting algorithm or a
bootstrap sampling method, GBRT or RF can handle vari-
ables fast, making it suitable for complicated tasks. Ac-
cordingly, this study adopts GBRT and RF as ensemble
learning algorithms for CBCFI forecasting.

3. Data Description

,is section firstly presents the data source. As this dataset
includes both historical freight index and other impacted
variables, variable correlations are introduced and con-
ducted in this section as well.

3.1. Data Source. All datasets in the present study are
supported by theWind Economic Database [41]. Wind pairs
more than 1.3 million macroeconomy-related and industry
time series based on effective graphics and data study
equipment for elucidating China’s economy to finance-re-
lated professionals.

,e China (Coastal) Bulk Coal Freight Index (CBCFI) is
a compound weekday index (null on holiday and weekend)
that considers 14 shipping routes [2]. It takes 1st September
2011 as the base period, and the base index is 1,000 points.
Now, CBCFI is extensively employed by practitioners of
industry and considered a vital economic indicator in coastal
coal transportation. Figure 1 displays the composite routes
of CBCFI and its corresponding weights. It can be seen that
CBCFI mainly describes the shipping market of transporting
coal from the north to the south. According to the histogram
at the bottom of Figure 1, we notice that six routes whose
weights are over 10% hold dominant positions, in which
most of them depart from Qinhuangdao Port. For easily
reading, in Figure 1, the dominant routes are plotted in red,
and for those weight values less than 10% but nonzero,
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routes are marked in dark grey, while those with zero
weights are in light grey.

Previous studies of traditional shipping index (e.g., BDI)
generally discuss the daily, weekly, and monthly forecasting
cases to evaluate the performance of approaches in short-,
mid-, and long-term predictions [11, 16, 22]. ,us, in this
paper, daily, weekly, and monthly forecasting experiments
are conducted and the full available CBCFI data from
January 2012 to October 2020 are employed as the experi-
mental datasets, with 2129 daily observations, 422 weekly
observations, and 10 yearly observations.

According to Figure 2, the CBCFI fluctuations exhibit
irregular properties and high frequencies as well as large
amplitudes. In the long run, from 2012 to the first half of
2016, CBCFI had a few inflection points. And in the fourth
quarter of 2013, CBCFI reached the highest value of 1450.39
since its release and then returned to the low level at the end
of the year. From the second half of 2016 to now, CBCFI has
experienced a large fluctuation range, especially from 2017 to
2020. Compared with the previous years, the rise and fall of

freight rates have beenmuch larger, and the frequency of rise
and fall also increases obviously, which reflects the
changeable market situation of coastal coal transport.
Moreover, the global Coronavirus Disease 2019 (COVID-
19) outbreak has generated a public health crisis that started
in December 2019, which has certain consequences for the
economics of the shipping industry. For seasonal fluctua-
tions, from the trend of each year, except for 2014, CBCFI
shows the phenomenon that its index rises in summer and
winter in other years, but the increase rate is different each
year.,emain reason is that demand for coal tends to rise in
summer and winter, traditionally the peak seasons for
electricity use, leading to a seasonal rise in coal transport
prices. Although not every summer or winter in the past 7
years has seen an increase in rates, historical statistics in-
dicate a high probability of rates rising in both summer and
winter each year.

To justify the uncertain and nonlinear characteristics of
the CBCFI series, descriptive statistics of the daily CBCFI
and its rate of change are provided, and the results are listed

0.00%
0.00%

2.50%
5.00%
5.00%

7.50%
7.50%
7.50%

10.00%
10.00%
10.00%
10.00%

12.50%
12.50%

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0

12
.0

0

14
.0

0
Qinghuangdao port-fuzhou port (30,000 – 40,000 DWT)

Tianjin port-zhenjiang port (10,000 – 15,000 DWT)
Qinghuangdao port-xiamen port (50,000 – 60,000 DWT)
Qinghuangdao port-ningbo port (15,000 – 20,000 DWT)

Tianjin port-zhenjiang port (20,000 – 30,000 DWT)
Qinghuangdao port-zhangjia port (20,000 – 30,000 DWT)

Huanghua port-shanghai port (30,000 – 40,000 DWT)
Qinghuangdao port-nanjing port (30,000 – 40,000 DWT)

Qinghuangdao port-guangzhou port (50,000 – 60,000 DWT)
Qinghuangdao port-guangzhou port (60,000 – 70,000 DWT)

Jingtang port, caofeidian port-ningbo port (40,000 – 50,000 DWT)
Qinghuangdao port-zhangjia port (40,000 – 50,000 DWT)
Qinghuangdao port-shanghai port (50,000 – 60,000 DWT)

Tianjing port-shanghai port (20,000 – 30,000 DWT)

Weights (%)

Co
m

po
sit

io
n 

of
 C

BC
FI

Xinjiang

Tibet

Qinghai

Beijing

Yunnan

Sichuan

Guangdong

Zhejiang

Henan

Hubei

Guizhou

Guangxi

Hunan Jiangxi

Shanghai

Fujian

Hebei

Shanxi

Tianjin

Ningxia

Gansu

Inner Mongolia

Shanxi

Liaoning

Heilongjiang

Jilin

Anhui

Jiangsu

Shandong

Chongqing

Qinghaungdao Port

Caofeidian Port

Shagnhai Port

Tianjin Port

Nanjing Port

Ningbo Port

Guangzhou Port

Zhenjiang Port

Xiamen Port

Fuzhou Port

Zhangjia Port

Huanghua Port

Jingtang Port

Hainan

Taiwan

Figure 1: Illustration of the CBCFI composition and the corresponding shipping routes (DWT in bracket represents the “deadweight
tonnage (DWT)” of the ship).
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in Table 1. ,e rate of change for the CBCFI is
Rt � ((yt − yt−1)/yt−1).

From the above statistics, it can be observed that, in
terms of the skewness and kurtosis, the skewness of CBCFI
series and its rate of change series are greater than zero, and
the kurtosis of each is either less than or greater than three.
,erefore, the daily CBCFI and its rate of change series are
left-skewed and right-skewed, respectively, which indicates
that they have the characteristics of a sharp peak and a thick
tail. In addition, the J-B test results indicate that both time
series do not follow a normal distribution because they reject
the hypothesis of the Jarque-Bera (J-B) statistic at 5% sig-
nificant level. Moreover, both daily CBCFI and its rate of
change series are indicated to be nonstationary, based on the
results of the augmented Dickey–Fuller (ADF) unit root test;
specifically, the t-statistics values summarized in Table 1 are
less than the value of the critics (−2.86)). Furthermore, the
Ljung-Box statistics to the squared residuals (also known as
Q-Statistics of Square Residuals) is applied to test the
nonlinearity of the CBCFI and its rate of change series. For
both series at lag 6, we reject the hypothesis of no auto-
correlation at the 5% significance level. Autocorrelated
squared residuals are indications of nonlinearity [2]. ,e
above statistics indicate that the CBCFI has the uncertain,
nonstationary, and nonlinear properties, and those com-
plicated features justify the need for the proposed ensemble
approach.

3.2. CBCFI Impact Factor Data. Within other markets,
freight rates inside the shipping industry receive the for-
mation based on the interacting processes pertaining to
various factors, such as the prices of the transported cargo,
the demand and supply, and the cost. ,us, if these elements
influence the CBCFI, then they should be investigated. ,e
demand for coastal transport arises from the need of ex-
porters and importers to transport the coal to specifically
domestic destinations. ,e “derived” demand is mainly
affected by domestic economy and trade, such as the Import
and Export Trade (IET), the industry production, domestic
coal inventory, the contract rates, and spot rates of domestic
thermal coal. As the domestic economy is improved,

domestic trade will be promoted, and shipping transport will
be more demanded. Moreover, random shocks based on
emergency events (e.g., 2015 Tianjin explosions and 2019
COVID-19 outbreak) and cyclical and seasonal market
movements of the coal transported by sea further sub-
stantiate that the demand for shipping transport depends on
macroeconomic factors. Besides, transportation consump-
tion and costs constitute other CBCFI determinates. On the
promise of collecting data, the relevant data of the CBCFI are
considered maximally, which could roughly be classified
into three categories:

(i) Domestic and Overseas /ermal Coal Spot Prices. It
is worth mentioning that Qinhuangdao Port is the
greatest coal export port on the globe, and the routes
of CBCFI are the dominant carriers for thermal coal
transportation from north to south. ,us, the spot

Table 1: Descriptive statistics of daily CBCFI and rate of change of
CBCFI.

Statistic Daily CBCFI Rate of change for CBCFI
Mean 722.6500 −0.0002
Median 675.4800 −0.0012
Standard deviation 223.8494 0.0228
Maximum 1,706.2000 0.1186
Min 370.9900 −0.1337
Kurtosis 1.7801 5.6084
Skewness 1.2186 0.2550
J-B 658.9484 626.4104
p value 0.000 0.000
ADF [lags] −4.5298 [12] −11.3960 [12]
p value 0.0130 0.0164
Q [lags] 26.571 [6] 15.95 [6]
p value 0.000 0.000
Observation 2129 2128
Note. J-B represents the Jarque-Bera (J-B) test in which a goodness-of-fit test
is performed for examining whether the time series follows a normal
distribution [42]. ADF represents the augmented Dickey-Fuller (ADF) test
with a null hypothesis of the existence of autocorrelation in the sample
series [43]. Q represents the Ljung-Box statistics to the squared residuals
(also known asQ-Statistics of Square Residuals) in which a nonlinearity test
[44] under the null hypothesis of linearity and residuals of a properly
specified linear model should be independent [45].
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Figure 2: Tendency of daily CBCFI dataset adopted for predicting process.
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price of thermal coal is considered as one of the
critical factors affecting the fluctuation of CBCFI.
Furthermore, with the enlarged opening of the
market, the influence of the international market on
the domestic market will be increasingly intensified,
and the correlation between the domestic and
foreign markets will be further enhanced. Even at
this stage, the price of thermal coal in the inter-
national market will affect the export of coal, which
will be reflected through the price of thermal coal.

(ii) Coal Inventory. Coal inventory refers to a critical
element that impacts the coal price based on the
economic new normal [46]. Coal inventory is the
result of coal production, transportation, con-
sumption, and other factors. It is basically the same
as the factors of price formation and has a leading
effect on the price change of thermal coal. In recent
years, Qinhuangdao coal inventory has become the
weathervane of thermal coal price change [47].

(iii) Fuel Oil and Crude Oil Prices. On the one hand, fuel
oil prices have a significant impact on coal prices as
fuel oil prices influence the cost of shipping. When
the price of fuel oil increases, the shipping cost will
increase; when the price of fuel oil declines, the
shipping cost will decrease. On the other hand, coal
and crude oil are the most basic energy sources, and
the sharp rise in oil prices has also contributed to the
rise in thermal coal prices [48]. ,e influence of
crude oil price on thermal coal price is reflected in
the following aspects. First, crude oil, that is, one
type of vital fossil energy source, refers to a dom-
inant substitute to coal. ,us, crude oil price in-
stability can impact coal demand and price in a
corresponding manner [49]. When crude oil rises in
price, the demand for coal would rise as the sub-
stitute. ,e fluctuation of coal price will influence
the bulk coal shipping cost somehow and thus in-
fluence the CBCFI values. Note that the “prices”
discussed in the present study contain the spot
prices and futures prices (a spot price is an offer to
complete a commodity transaction immediately,
while a future contract locks in a price for future
delivery). Table 2 summarizes the abovementioned
factors in the basic feature set and will be optimized
later. Variables are numbered sequentially for the
feature description.

3.3. Variables Correlation Analysis. To give a clear and
simple view of the correlations between CBCFI and relevant
impact factors, the Pearson correlation coefficient [50] is
calculated and the results are presented in Table 2. Domestic
and overseas thermal coal spot rates (u1∼u8) show obvious
correlation with CBCFI, particularly, “Qinhuangdao Port-
Q5000 Index-FOB,” “Jintang Port-Q5000 Index-FOB,” and
“Guangzhou Port-Q5500 Index (Indian Coal)-EXT” with
the largest Pearson correlation values; on the other hand,
coal inventories (u9 ∼ u12) show negative correlations with
the CBCFI series. Based on the results, we remove two

variables with the smallest Pearson coefficient value (u9 and
u11), and the rest of the 22 variables are selected as the input
variables.

In addition, to demonstrate the necessary property for
selecting the ensemble learning algorithm to deal with the
CBCFI prediction problem, the relationships between the 24
variables and CBCFI are checked. ,en, one color-coded
Pearson correlationmatrix is generated.,e numerical value
one with the expression of dark blue indicates one overall
positive linear correlation of two characteristics, whereas
chartreuse indicates zero, demonstrating no linear corre-
lation. As is shown in Figure 3, there is an interrelation of
different degree between the 24 variables. For example, fuel
oil spot and futures prices (u14 ∼ u19) are highly correlated
with crude oil spot and futures prices (u20 ∼ u24). ,erefore,
the ensemble learning algorithms dealing with multidata
relations are considered to solve the CBCFI prediction
problem.

4. Methodology

In this section, we first give a problem statement to present
an overview of the prediction problem researched in this
work. ,en, the core concept and the flowchart with al-
gorithm pseudocode of the proposed hybrid model structure
are presented. At last, the prediction accuracy measurements
are described.

4.1. Problem Statement. ,e goal of this work is to predict
the CBCFI values of the next day given historical data. We
define the historical observations of the target CBCFI as
Y � (y1, . . . , yt, . . . , yT)T ∈ RT, where T represents time
window size and yt is the CBCFI value at time t. Similarly,
auxiliary factors are represented by
X � (X1, . . . , Xt, . . . , XT)T ∈ RT×D, where D specifies the
number of related factors. Xt ∈ RD is the values of all D

related factors at time t, and Xd ∈ RT is the value of the dth

factor in time window T. ,us, the prediction target yT+1
could be defined as follows:

yT+1 � F y1, . . . , yt, . . . , yT; X1, . . . , Xt, . . . , XT( , (1)

where F(·) is the mapping function we are aiming to learn.

4.2. PreparingData. Given a CBCFI time series s with length
N, s � s(ti) 

N
i�1, the time series firstly should be pre-

processed. Data cleaning and data normalization are the key
data preparation tasks for further forecasting tasks. As the
given time series has no missing value and to preserve the
characteristics of real-world data, no noise reduction or data
smoothing was performed on data. In this study, we only
normalized the data with min–max normalization algo-
rithm. ,e time series s(ti) is normalized and the resulting
normal data are expressed as s � s(ti) 

N
i�1:

s ti(  �
s ti(  − min(s)

max(s) − min(s)
, (2)
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where min(s) is the minimum value of s and max(s) is the
maximum value of s.

4.3. LSTM-Ensemble Learning (LSTM-EL) Approaches for
CBCFI Forecasting. Traditional freight indices prediction
methods usually use the historical time series data of the
target with ignorance of other impact factors. Generally
speaking, the trend of CBCFI is reflected in two ways:
historical CBCFI information and impact factor informa-
tion. ,e historical time series information sometimes is
sparse and thus not enough to produce accurate prediction,
while some close impact factor information could reflect the
movement of CBCFI from different aspects to a certain
extent and with the support of the powerful database of
Wind Economic Database (Wind Economic Database, refer
to https://www.wind.com.cn/en/edb.html).

Our proposed LSTM-EL model is composed of two
layers: in the first layer, a cluster of LSTMs is constructed to

generate the embedding features, and in the second layer, an
ensemble learning method for final CBCFI prediction.

Figure 4 illustrates the overall framework of the bilevel
hybrid LSTM-EL configuration; it consists of an LSTM
method and two parallel ensemble learning methods. Note
that the LSTM-EL model includes two different hybrid
models, LSTM-GBRT and LSTM-RF. GBRT behaves simi-
larly to RF in the manner of fitting multiple trees, but it
instead fits them in a sequential manner, and hence another
expectation of this paper aims to explore which ensemble
algorithm fits the CBCFI forecasting problem better. For
detailed descriptions of single RF, GBRT, and LSTM ap-
proaches, see Appendix A.

In the first layer, the dataset is first split into the in-
sample and the out-of-sample. ,e preliminary embedded
LSTM focuses on extracting the time-dependency infor-
mation from variables of the in-sample and generates em-
bedding features from the last LSTM layer, GBRT/RF is
taken as an ensemble learning method to make the final

Table 2: Impact factors description and the corresponding Pearson coefficient values.

Variable category Variable description Feature
number

Pearson
coefficient values

Domestic and overseas
thermal coal spot rates

Qinhuangdao Port-Q5500 Index-FOB (a spot price is an offer to complete
a commodity transaction immediately, while a futures contract locks in a

price for future delivery. It leaves its point of origin)
u1 0.550

Qinhuangdao Port-Q5000 Index-FOB u2 0.575
Qinhuangdao Port-Q5500K Index-FOB u3 0.512
Qinhuangdao Port-Q5000K Index-FOB u4 0.530

Jintang Port-Q5500 Index-FOB u5 0.554
Jintang Port-Q5000 Index-FOB u6 0.571

Guangzhou Port-Q5500 Index (Australian Coal)-EXT (EX-tank (EXT)
refers to the price of coal shipped from the warehouse, including the price
before the coal is put into the warehouse and the warehouse usage fee)

u7 0.545

Guangzhou Port-Q5500 Index (Indian Coal)-EXT u8 0.571

Coal inventories

Qinhuangdao Port u9 0.007
Caofeidian Port u10 −0.157
Guangzhou Port u11 −0.021
Tianjin Port u12 −0.295
Jintang Port u13 −0.197

Fuel oil prices

Fuel Oil 180 Singapore-FOB u14 0.202
Fuel Oil 380 Singapore-FOB u15 0.205

China fuel oil futures closing price (a closing price is the final price at
which it trades during regular market hours on any given day)

(continuous contract (a continuous contract is a reinsurance contract that
does not have a fixed contract end date, which will continue to be renewed
and be in effect until one of the parties in the contract terminates it.

Continuous contracts are different from standard reinsurance contracts in
that they do not provide coverage for only a fixed period of time))

u16 0.265

China fuel oil futures closing price (active contract (an active contract
means that this future contract can be traded for a specific amount of

time))
u17 0.272

China fuel oil futures settlement price (the settlement price is the average
price at which a contract trades, calculated at both the open and close of

each trading day) (continuous contract)
u18 0.266

China fuel oil futures settlement price (active contract) u19 0.273

Crude oil prices

Brent crude oil spot price u20 0.152
West Texas Intermediate (WTI) crude oil spot price u21 0.157

Dubai crude oil spot price u22 0.152
WTI crude oil futures settlement price u23 0.181
Brent crude oil futures settlement price u24 0.187
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predictions by combining preliminary embedding features
from LSTM, and the prediction values of each individual tree
are summed up to get the final value. ,e details of the
proposed LSTM-EL model are illustrated in Algorithm 1.

,e idea behind GBRT is that each iterator is used to
reduce the previous residual. To reduce these residuals, a
new tree in the direction of the gradient descent of the loss
function is created. After LSTM forms the training samples,
the recursive form regression tree is as the equation to
calculate Fg,m(st+1′) in Algorithm 1.

Before building the bilevel LSTM-EL prediction archi-
tecture, several hyperparameters should be determined. For
the upstream model LSTM, the LSTM network with opti-
mization of multiple hyperparameters has achieved ac-
ceptable performance when applied on sequence data [51].
For the time series problem, the key hyperparameters in-
clude the number of LSTM layers, the number of nodes in
each LSTM layer, the number of fully connected layers, and
the time-lags, and for ensemble learning algorithm, the
number of trees and the maximum depth of a tree are the

most essential parameters. In our work, the time-lag and
embedding size are the most important hyperparameters.

(1) Time-lag: the time-lag parameter has a significant
impact on the performance of time series forecasting
[52], as it determines the length of the historical
sequence that should be included for the training.

(2) Embedding size: that is, the number of neurons for
the last layer in the LSTM network represents the
input-data dimension of the downstream ensemble
learning models and further determines the com-
plexity of GBRTand RF. If the embedding size is very
high, then the LSTM will be overfitting on training
instances and increase the training difficulties of the
downstream models, and if its size is too small, then
it will be unable to memorize the time-dependency
information collected from the time-lag sequences.

However, to the best of our knowledge, there are no
general rules to choose the time-lag and the hidden layers’
size. ,erefore, we investigated the effect of key parameters
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Figure 3: ,e Pearson correlation matrix of all features.
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Figure 4: Structure diagram of LSTM-EL approach.

Input: historical observations: X1, . . . , Xt, . . . , XT; Y1, . . . , Yt, . . . , YT , Xt � (xt, xt−1, . . . , xt−τ+1), Yt � (yt, yt−1, . . . , yt−τ+1),
Xt ∈ Rτ×D, Yt ∈ Rτ×1, xt ∈ RD, yt ∈ R; Length of input sequence (time-lag): τ; Feature size: D (i.e., 22 in this paper).
Output: learned LSTM-EL model.
//construct training instance
for all available time interval t(1≤ t≤T) do:

St � (Xt; Yt), St ∈ Rτ×(D+1)//Embedding part- LSTM model to extract the features with time-dependent information.
Given a training instance St:
Step 1. Embedding features:

st+1′ � LSTM(St)//embedding features produced by LSTM, which fused the temporal and internal correlations of St into a new
vector st+1′ with lower dimension, st+1′ ∈ R

d′ (d′ equals to the number of units in the last LSTM layer and the last dense layer only has
one unit). st+1′ is then being used to predict yt+1 in the second layer.
Step 2. LSTM prediction:

yt+1′ � Dense(LSTM(St))//yt+1′ ∈ R is the prediction value given by LSTM part. Note that we just use yt+1′ to optimize the
parameters of the embedding part and the final prediction of our method is obtained by the downstream methods, GBRT and RF.
Step 3. Optimization:
minθ‖yt+1 − yt+1′ ‖

2
2//,e embedding part is trained by minimizing the objective function shown above and its parameters θ are

updated via backpropagation. //GBRT or RF is taken as downstream method to make the final predictions.
//Model 1: GBRT part
Given the embedding features st+1′ generated from St:
Input: training set st+1′ 

T

t�1, differentiable loss function L(yt+1, Fg(st+1′ )), and the maximum number of trees M. //Fg is the decision
tree mapping function, and the optimal Fg can be obtained through minimizing the loss function.
For m� 1 to M, do
For t� 1 to N, do

Fg,m(st+1′ ) � Fg,m−1(st+1′ ) + lr∗ ρmgm(st+1′ ). //ρm is the step-size, gm is the base learner, and lr is the learning rate. For each step, a
new decision tree is aimed at correcting the error made by its previous base learner.
Output model yt+1 � GBRT(st+1′ )//
//Model 2: RF part
Step 4: given the embedding features st+1′ generated from St

Input: training set st+1′ 
T

t�1, the number of trees in forest M
For m� 1 to M, do

Dk � Boostrap(D)//D is the training set
hk �Decision Tree with random feature selection (Dk, f)//f denotes the number of attributes to use at each node, picked

uniformly at random new features for every split
Prune tree to minimize out-of-bag error

Average all M Trees
Output model yt+1 � RF(st+1′ ).

ALGORITHM 1: LSTM-EL.
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while keeping the other parameters fixed, and grid search
[53] was applied to find the optimum hyperparameters. To
do so, our model requires some basic settings. In our work,
we built our model using two LSTM layers and one fully
connected layer. ,e number of the neurons for the first
layer is equal to that of the second layer. ,e search space of
the above four critical parameters is illustrated in Table 3.

For each combination of the time-lag and embedding
size, the LSTM-EL model is designed and trained, and the
corresponding optimal combination of the number of trees
and depth of trees is selected using the grid search. Here, for
the sake of brevity, different combinations of the time-lag τ
and the embedding size d′ are evaluated by root mean
square error (RMSE) and mean absolute percentage error
(MAPE) and the results are shown in Figures 5 and 6.
According to previous studies, Li et al. [54] showed that a
small time-lag cannot guarantee enough long-term memory
inputs for our LSTM-EL model; thus, the model cannot fully
exploit the LSTM for long-term memory modeling. Large
time-lags permit an increased number of unrelated inputs,
which increases the model’s complexity and the difficulty of
learning useful features. It can be observed that the effect of
the number of nodes in each neuron layer shows that, with
the increase in the number of neuron nodes, the prediction
performance improves slightly. ,us, we set different time-
lag τ and embedding size in the successive experiment to
optimize both accuracy and time efficiency for both LSTM-
GBRTand LSTM-RF, as indicated by the RMSE and MAPE.
Based on the results of the experiments, Table 4 summarizes
the best parameters of the obtained model.

4.4. Accuracy Measurement. For measuring the prediction
precision pertaining to the developed approach, several
evaluation criteria are implemented, such as the RMSE as
well as the MAPE. Generally, with the decline of MAPE and
RMSE, the approach will be more precise. However, it is well
known that, for a given prediction, actual outcomes above
and below the prediction are treated asymmetrically when
using MAPE and RMSE [55]. For the mentioned reason, to
measure the data fluctuations (e.g., upward, stable, or
downward), direction matching rate (Dsta) is employed. In
addition, we utilize mean absolute scaled error (MASE) to
assess if the developed prediction approach outclasses the
naı̈ve prediction method [56]. For detailed description of
MAPE, RMSE, Dsta, and MASE criteria, see Appendix B.

5. Empirical Results

5.1. Daily, Weekly, and Monthly CBCFI Forecasting. After
determining the best network architecture for the prediction
task, the training set was utilized to train our LSTM-EL
model until convergence. Evaluations were conducted using
the test set. To analyze the generality of the hybrid LSTM-EL
structure, we use a dataset with day-to-day, week-to-week,
and month-to-month bases. Specifically, the weekly and
monthly data are calculated as the average of daily CBCFI. In
addition, to avoid overfitting problem, early stopping and
validation sets are utilized in the present study, and the

percentages for training, testing, and validating sets are 60%,
20%, and 20%, respectively.

In our prediction of each forecasting approach, LSTM-RF,
LSTM-GBRT, GBRT, and RF models are applied, all of which
are evaluated by calculating MAPE, RMSE, Dsta, and MASE.
A rolling approach is implemented to conduct a next-day/
weekly/monthly CBCFI forecast.,e approach uses the actual
value of the predictor variable in the previous period for
making a prediction in the testing set. Note that the time-lag is
fixed, and new data are added for further t+1 prediction.
Figure 7 displays how the rolling approach works.

Note that, in weekly forecasting, each point represents
the weekly CBCFI value and a new weekly CBCFI value is
calculated by every new 5 daily CBCFI values (only workdays
data). Likewise, in monthly forecasting, each point repre-
sents the monthly CBCFI value and a new monthly CBCFI
value is calculated by the working days in each new month,
automatically excluding weekends (Saturday and Sunday).

We next conduct the daily, weekly, and monthly CBCFI
forecasting experiments, respectively. ,e CBCFI data from
January 2012 to October 2020 are sample data. To evaluate
the predictive performance of LSTM-EL models, we split the
data into training data, validating data, and testing data. ,e
ratio for each dataset is 6:2:2. Figure 8 shows the learning
curves of mean square error (MSE) for the validation data
and training data for 100 epochs in daily, weekly, and
monthly forecasting cases. ,e learning curves show a good
fit because of the decrease in training and validation loss to
one stable data with a minimal gap between the two final loss
values.

Table 5 compares the predictive performance of two
hybrid LSTM-EL approaches with the corresponding single
EL approaches in the rolling forecasting approaches. For
daily CBCFI forecasting cases, we found that the predictive
performances for orientation matching and errors are
enhanced through the introduction of the proposed hybrid
structure. And all the values of MASE less than 1 indicate
that four approaches outperform the average one-step
naı̈ve forecast. Note that the predictive performance in
MAPE, RMSE, and Dsta is improved by considering hybrid
structure forecasting. Compared to the predictive perfor-
mances of corresponding single approaches, the im-
provement percentages (the improvement percentage is
calculated by the difference between the evaluation index
value of the hybrid model and the conventional model over
that of the conventional model) in MAPE of LSTM-GBRT
and LSTM-RF are 22.47% and 24.59%, respectively, of
RMSE are 41.54% and 24.73%, respectively, and of Dsta are
72.84% and 69.36%, respectively. ,e above results indicate
that LSTM-GBRT exhibits the most significant improve-
ment level.

Table 3: Value specified for key hyperparameters.

Hyperparameters Search range
Time-lag τ [2, 4, 6, 8, 10]
Embedding size d′ [16, 32, 64, 128]
Number of trees [1, 1000]
Depth of trees [1, 50]
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For weekly CBCFI forecasting cases, consistent with
daily CBCFI predicting processes, performance enhance-
ment rates are positive for both errors and Dsta. ,e im-
provement percentages in MAPE of LSTM-GBRT and
LSTM-RF are 54.62%, 39.48%, respectively, of RMSE are
32.12% and 11.77%, respectively, and of Dsta are 50.91% and
67.17%, respectively. Moreover, the improvement in MAPE
for all two LSTM-EL approaches shows higher significance
for the weekly CBCFI predicting processes than the daily
prediction. ,us, using a hybrid structure to extract the

time-dependent characteristics between features in LSTM-
based prediction enhances accuracy. In comparison with
daily information, the hybrid approach shows significant
improvements for the weekly CBCFI predicting process.

Since predicting long-term CBCFI with low-frequency
time-scale data raises several challenges, this study examines
how the hybrid approach promotesmonthly data forecasting
to be accurate. Consistent with daily and weekly forecasting,
hybrid approaches outperform the single ensemble learning
approaches. Notably, the hybrid structure promotes the
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Figure 5: Key parameter sensitivity analysis for LSTM-GBRT under three time scales: (a) daily, (b) weekly, and (c) monthly CBCFI
forecasting.
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Figure 6: Key parameter sensitivity analysis for LSTM-RF under three time scales: (a) daily, (b) weekly, and (c) monthly CBCFI forecasting.

Journal of Advanced Transportation 11



precision noticeably, MAPE improvement for GBRTand RF
are 53.72% and 61.40%, respectively. RMSE improvements
for LSTM-GBRT and LSTM-RF are 50.32% and 57.83%,
respectively. Moreover, the MASE of the monthly data of
hybrid approaches is less than 1, indicating that hybrid
approaches in this approach outperform the average one-
step naı̈ve forecast.

Table 6 compares the general predictive performances of
hybrid LSTM-EL approaches over three time scales. ,e
MAPE and RMSE values indicate that hybrid LSTM-EL
approaches perform best in weekly CBCFI forecasting and
achieve the most obvious improvement of accuracy in
monthly forecasting. And the performance indicators of
different approaches (Table 5) show that the LSTM-GBRT
approach outperforms LSTM-RF in daily forecasting while
LSTM-RF achieves a higher accuracy in weekly and monthly
forecasting, which indicates that LSMT-GBRT is better
capable of dealing with high-frequency data while LSTM-RF
is more suitable for mid- or low-frequency data.

Figure 9 shows the comparisons between the real CBCFI
values and the predicted values produced by LSTM-EL
approaches and their corresponding single EL approaches.

,e inset square of Figure 9(a) shows how the hybrid and
single EL approaches perform at the uptrend, bottom, and
downtrend. It is found that four approaches are capable of
predicting the daily, weekly, and monthly tendency of
CBCFI, but the outputs from LSTM-EL approaches derive
less than from the actual CBCFI values. In the three situ-
ations, single EL predictions show obvious fluctuations that
actual CBCFI values do not have. For example, in situation I
beginning in January 2019, the GBRT and RF predictions
display heavily up and down while they do not happen in the
actual CBCFI trend, LSTM-GBRT and LSTM-RF still keep
close to the real CBCFI values, and similar phenomena are
observed in situations II and III.

Figures 9(b) and 9(c) show that single GBRT and RF
models produce large errors in weekly and monthly fore-
casting, especially at the bottom or top of the trendline. In
contrast, the hybrid LSTM-EL forecasting approach re-
produces CBCFI trends and generates relatively small errors.
For example, in weekly forecasting beginning in December
2019, the CBCFI dropped from approximately 1,000 points
to a historic low of roughly 450 points, since the outbreak of
COVID-19 hits the economy across the globe. And the
CBCFI was kept at a low point until May 2020, despite the
epidemic was gradually under control. In this case, only
LSTM-GBRT and LSTM-RF predictions reproduce the
CBCFI trend, while other approaches display large fluctu-
ations not existing in the actual CBCFI itself. Likewise, in the
monthly forecasting, the single EL approaches GBRTand RF
predictions deviate, and the LSTM-GBRT and LSTM-RF
predictions are very close to the actual CBCFI.

5.2. Diebold–Mariano (DM) Test. To evaluate whether there
is any statistically significant difference between the hybrid

Table 4: ,e best configurations of the proposed model and benchmark models.

Algorithm Best configurations
Forecasting cases

Daily Weekly Monthly

LSTM-GBRT

LSTM layer
Time-lag 8 10 6

Number of hidden layers 2 2 2
Number of units in the hidden layers 64 16 32

GBRT layer
Number of trees 101 31 41
Depth of trees 1 1 1

LSTM-RF

LSTM layer
Time-lag 8 10 6

Number of hidden layers 2 2 2
Number of units in the hidden layers 64 16 32

RF layer
Number of trees 41 11 21
Depth of trees 11 11 1

GBRT Number of trees 191 11 11
Depth of trees 21 1 1

RF Number of trees 11 31 11
Depth of trees 1 1 1

LSTM
Time-lag 8 10 8

Number of hidden layers 2 2 2
Number of units in the hidden layers 64 32 64

Window 1:

Window 2:

Window T – 3:
s1 s2 s3 s4

s1 s2 s3

s1 s2 s8 y9

y10

st sT–8 sT–2 sT–1 yT

s9

Time length (stride = 1; time-lag = 8)

Figure 7: Illustration of rolling forecasting.
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and conventional models, the Diebold–Mariano (DM) test
[57] is implemented to compare the testing-sample pre-
diction results. ,e DM test is widely used in determining
whether the differences of time series predicting accuracy by
different models are substantially crucial from a statistical
perspective [58]. Table 7 summarizes the results of the DW
test for the daily, weekly, and monthly CBCFI datasets,
respectively. p value less than 0.05 indicates the rejection of
the null hypothesis that there is no difference between the
two compared forecasting models. It can be seen that LSTM-
EL models have significantly different accuracies when
compared to other benchmarks. For the daily dataset,
LSTM-RF and LSTM-GBRTpresent statistical differences in
predictive performance when compared with other models
but there is no statistical difference in accuracies between
LSTM-RF and LSTM-GBRT. Similarly, in weekly and
monthly forecasting cases, the predictive improvement of-
fered by incorporating ensemble learning algorithms is
statistically significant while the predictive improvements
between different conventional ensemble learning algo-
rithms or LSTM-based hybrid models do not display sta-
tistically predictive performances.

5.3. Feature Importance Analysis. Moreover, Figure 10
presents the features ranked by complying with the clari-
fied variance the respective feature facilitates the LSTM-
GBRTapproach. In this case, the features are plotted against
their relative importance, that is, the percent significance
regarding the critical feature. For brevity, Figure 10 only
presents the top 6 features with the sum of feature im-
portance over 98%. It can be clearly seen that coal inventory
at Tianjin Port influences the monthly CBCFI values but less
important for daily and weekly data, which indicates that
coal inventory is more likely to impact the long-term
forecasting but not short- or midterm forecasting. In ad-
dition, domestic and overseas thermal coal spot rates and
crude oil prices have obvious impacts on daily, weekly, and
monthly CBCFI values, while coal inventory and fuel oil
price are less important for daily and weekly CBCFI. Spe-
cifically, Guangzhou Port-Q5500 Index (Australian Coal)-
EXT shows a great impact on daily, weekly, and monthly
CBCFI values. Moreover, WTI crude oil spot price has an
obvious impact on daily CBCFI values, while weekly CBCFI
is more sensitive to Dubai crude oil spot price. ,is may
result from these two crude oil indices that mainly serve
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Figure 8: MSE for validation and training data for (a) daily, (b) weekly, (c) monthly forecasting cases.
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Table 5: Predictive performance of hybrid LSTM-EL and benchmark models for CBCFI prediction.

Methods MAPE (%) RMSE MASE Dsta
Daily CBCFI forecasting
Training period: 2012/1/4∼2017/4/10
Testing period: 2019/1/7∼2020/10/13
LSTM 9.15 0.2419 1.1532 0.5703
GBRT 7.84 0.2342 0.8915 0.5145
LSTM-GBRT 6.00 0.1369 0.9132 0.8893
RF 8.62 0.2034 0.8370 0.5042
LSTM-RF 6.50 0.1531 0.9560 0.8539
Weekly CBCFI forecasting
Training period: 2012/1/9∼2017/3/24
Testing period: 2019/1/21∼2020/9/28
LSTM 9.47 0.1931 1.6532 0.4303
GBRT 8.99 0.1815 0.6173 0.5324
LSTM-GBRT 4.08 0.1232 0.9835 0.8034
RF 7.32 0.1673 0.5525 0.4853
LSTM-RF 4.43 0.1476 0.8941 0.8113
Monthly CBCFI forecasting
Training period: 2012/1/4∼2017/3/4
Testing period: 2019/4/1∼2020/10/13
LSTM 11.53 0.2571 1.0126 0.5863
GBRT 10.89 0.2212 0.7940 0.5932
LSTM-GBRT 5.04 0.1099 0.9203 0.9024
RF 11.01 0.2236 0.7864 0.6072
LSTM-RF 4.25 0.0943 0.8825 0.9043

Table 6: Predictive performance of hybrid LSTM-EL over three time scales.

Forecasting accuracy Improvement percentage
Daily forecasting Weekly forecasting Monthly forecasting Daily forecasting Weekly forecasting Monthly forecasting

MAPE 6.25% 4.26% 4.65% 23.53% 47.05% 57.56%
RMSE 0.1450 0.1354 0.1021 33.14% 21.95% 54.08%
Note. MAPE and RMSE represent the average values of MAPE and RMSE. Each average MAPE/RMSE is calculated by the average MAPE/RMSEs of LSTM-
GBRT and LSTM-RF from Table 5.
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Figure 9: Continued.
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Figure 9: Actual CBCFI and forecasting results through LSTM-EL approaches and corresponding EL approaches for (a) daily, (b) weekly,
and (c) monthly data.

Table 7: DM test results for hybrid models and the benchmarks.

Data type Tested model
Reference model

LSTM GBRT RF LSTM-RF LSTM-GBRT

Daily CBCFI forecasting

LSTM —
GBRT 2.4328∗∗ —
RF 2.4103∗∗ −1.6784 —

LSTM-RF 2.5123∗∗ 2.2341∗∗ 2.1231∗∗ —
LSTM-GBRT 2.2763∗∗ 2.2910∗∗ 2.8723∗∗ −1.2432 —

Journal of Advanced Transportation 15



Table 7: Continued.

Data type Tested model
Reference model

LSTM GBRT RF LSTM-RF LSTM-GBRT

Weekly CBCFI forecasting

LSTM —
GBRT −2.7084∗∗ —
RF 2.2034∗∗ −1.6110 —

LSTM-RF 2.2361∗∗ 2.3414∗∗ 2.6535∗∗ —
LSTM-GBRT 2.2276∗∗ 2.3012∗∗ 2.5541∗∗ 2.6287 —

Monthly CBCFI forecasting

LSTM —
GBRT −4.5123∗∗ —
RF −5.2341∗∗ −1.9883 —

LSTM-RF −5.2011∗∗ −6.1094∗∗ −5.3312∗∗ —
LSTM-GBRT −5.1998∗∗ −6.2014∗∗ −6.4234∗∗ −2.6536 —

Note. ∗∗,e value is significant at 5%.
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different regions. China, the world’s biggest oil importer, has
ramped up purchases of American crude for years [59]. WTI
crude oil refers to oil extracted from wells in the US and sent
via pipeline to Cushing, Oklahoma, which is the main
benchmark for oil consumed in the United States [60].
Crude oil as a substitute for coal and thus Chinese domestic
crude oil price would be more sensitive to the daily changes
of the US crude oil prices. In addition, because crude oil is a
substitute for coal, the fluctuation of coal price will influence
the bulk coal shipping cost somehow, and thus the CBCFI
values will be sensitive to the WTI crude oil prices in the
short time scale. On the other hand, as Dubai crude oil price
index is the main reference for Persian Gulf oil delivered to
the Asian market and roughly half (44.8%) of Chinese
imported crude oil originates from nine Middle Eastern
nations [61], the CBCFI index will be affected by the fluc-
tuation of Dubai crude oil price as well. Moreover, Nanovsky
[62] introduced an oil price-distance interaction variable to
explain how global trade behaves as a result of oil price
changes. He found that when oil prices increase, interna-
tional trade becomes more localized in that countries begin
trading relatively more with their neighbors. In contrast,
when they decrease, trade becomes more dispersed in that
the distance between countries becomes less relevant. ,us,
the price of crude oil usually presents volatility in one week,
and thus, the weekly Chinese coastal shipping cost may look
at the price of the Asian crude oil market more.

5.4. /e Impact of the Supply and Demand on CBCFI. As
CBCFI is an index for shipping price, in addition to the factors
discussed above, supply and demand are essential factors. For
CBCFI, the supply should be available bulk fleet and the de-
mand should be the amount of coal that needs to be shipped.

On the supply side, specifically, according to the routes
and ports of CBCFI, the supply should be the available bulk

fleet at Tianjin Port, Jintang Port, Qinhuangdao Port,
Caofeidain Port, and Huanghua Port. However, we did not
find any available open-source fleet data.

On the demand side, specifically, the CBCFI represents
the coal transportation need mainly from northern China to
southern China. ,e national statistics (Figure 11) indicate
that most of the coal was used for thermal power generation
(56.40%) and steel-making (18.1%). ,erefore, the southern
thermal power generation and steel production are con-
sidered as indexes of the CBCFI-related demand. However,
we only found the above data on a nationwide basis and
cannot get the data only for southern China. To estimate the
demand, we use the sum of utility electricity consumption of
the southern coastal provinces with at least one port city
included in the CBCFI routes, including Shanghai, Jiangsu,
Zhejiang, Fujian, and Guangdong, as a substitution to the
southern thermal power generation. For the steel produc-
tion, we use the total domestic steel production as a sub-
stitution index of southern provinces’ steel production.

Besides, the coal sources in China consist of 90% self-
produced mainly from northern China and 10% coal im-
ports [47]. ,e coal production and coal imports also may
have impacts on the CBCFI-related demand. Specifically,
both the coal production increase and coal imports decrease
may increase the CBCFI-related demand. ,erefore, do-
mestic coal production and coal imports are also considered
as the demand-related factors.

Note that the above demand and demand-related factors
are only available on a monthly basis. Accordingly, southern
utility electricity consumption, domestic steel production,
domestic coal production, and coal imports are added to the
monthly forecasting model.

Table 8 displays the improvement percentage of monthly
predictive performance with adding demand and demand-
related factors. It is found that the predictive performances
of different models have positive improvements with adding
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Figure 10: Feature importance for (a) daily, (b) weekly, and (c) monthly CBCFI forecasting cases.
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demand and demand-related factors, particularly an obvious
improvement in MAPE (12.67%) and RMSE (10.01%) of
LSTM. And for hybrid models, the improvement percent-
ages in MAPE of LSTM-GBRTand LSTM-RF are 5.32% and
5.16%, respectively, and of RMSE are 5.18% and 5.01%,
respectively. Figure 12 presents the top 7 features with the
sum of feature importance over 98%. Southern utility

electricity consumption ranks the top, followed by
Guangzhou Port-Q5500 Index (Australian Coal)-EXT, do-
mestic steel consumption, and coal inventory at Tianjin Port.
As not all self-produced coal needs to be transported, do-
mestic coal production shows little importance for CBCFI
forecasting. ,e above results illustrate that demand factors
could lead to a higher monthly predictive accuracy.
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Figure 11: Energy consumption in China. (a) China’s energy consumption by source (data source: Samantha. W. Energy consumption in
China from 2009 to 2019, by source. Available at https://www.statista.com/statistics/278669/energy-consumption-in-china-by-source/); (b)
China’s coal consumption by end market in 2020 (Data source: National Bureau of Statistics. Available at http://www.stats.gov.cn/tjsj/).
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6. Conclusion

,e present study attempted at enhancing the forecasting
accuracy of the CBCFI by formulating a novel hybrid LSTM-
EL approach, which is capable of extracting the useful time-
dependent information in the data by combining the LSTM
technique and ensemble learning algorithms. A rolling
forecasting approach is developed for assessing LSTM-EL’s
forecasting accuracy in comparison with its corresponding
single ensemble algorithms. Furthermore, critical factors
that influence CBCFI values are discussed and experiments
under daily, weekly, and monthly time scales in the rolling
forecasting approach are conducted in order to test the
performance generality of LSTM-EL approaches.

,e major intellectual advantages here consist of the
emerging method by exploiting artificial neural network and
ensemble learning methods to be the useful approach to
obtain the shipping freight market’s nonlinear and non-
stationary features. According to the empirically achieved
outcomes, domestic and overseas thermal coal spot rates and
crude oil prices have obvious impacts on daily, weekly, and
monthly CBCFI values, while coal inventory and fuel oil
price are less important for daily and weekly CBCFI. In
terms of forecasting accuracy, LSTM-EL approaches out-
perform the single EL models in three time-scale forecasting
cases and generate better results than the näıve forecasts.
Moreover, the accuracy improvement by LSTM-EL ap-
proaches for different CBCFI time-scale datasets is validated.
Results indicate that hybrid LSTM-EL approaches perform
best in daily CBCFI forecasting but achieve the most obvious

improvement of accuracy in weekly forecasting. In addition,
a DM test is implemented to evaluate whether there is any
statistically significant difference between the hybrid and
conventional models, and the results illustrate that LSTM-
based hybrid models present statistical difference in pre-
dictive performance when compared with other models but
there is no statistical difference in accuracies between LSTM-
RF and LSTM-GBRT, so do the weekly and monthly
forecasting cases. Overall, the LSTM-EL method has a high
prospect to predict the CBCFI index in an accurate manner.

,e mentioned emerging method is capable of acting to
be one effective tool to make the decisions regarding
chartering and shipping based on uncertain properties and
further being incorporated into management toolkit by
shipping industry practitioners. ,e developed method and
outcomes widen freight rates forecasting study and indicate
probable subsequent study in relevant aspects fields.

Appendix

A. Basic Model Theory

,e deep-learning approach exhibits one prominent per-
formance as opposed to the conventional statistics-related
approach since it is capable of mapping the initial infor-
mation for a nonlinear approach, which generates more
effective influence. And long short-term memory (LSTM)
based on the concept of recurrent neural network (RNN)
presents an outstanding ability in time series predictions. On
the other hand, ensemble learning methods refer to machine

Table 8: Improvement percentage of predictive performance with adding demand and demand-related factors.

Evaluation criteria Models Improvement percentage of monthly forecasting (%)

MAPE

LSTM 12.67
GBRT 9.97

LSTM-GBRT 5.32
RF 9.81

LSTM-RF 5.16

RMSE

LSTM 10.01
GBRT 8.90

LSTM-GBRT 5.18
RF 7.87

LSTM-RF 5.01
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Figure 12: Feature importance for CBCFI monthly forecasting with adding demand and demand-related factors.
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learning technique that combines several bases approaches
in order to minimize the causes of error in learning ap-
proaches, such as noise, bias, and variance, for improving the
overall predictive performance of the approach. In this
paper, two prevailing approaches are focused on, (i) Random
Forest (RF) and (ii) gradient boosting regression tree
(GBRT).

(1) Long short-term memory (LSTM)
LSTM, developed by Hochreiter and Schmidhuber,
refers to on e special type of recurrent neural networks
(RNN) [63]. LSTM consists of a unique set of memory
cells that trains the data through a time back-
propagation algorithm, capable of solving the long-
term dependence problems of RNN, and thus is
suitable for time series problems. ,e schematic dia-
gram of the LSTM approach is displayed in Figure 13.
LSTM has options for adding or deleting the data of
its cell condition, as achieved with the use of cell
gates. ,e standard LSTM can be expressed as fol-
lows. ,e respective step t and its corresponding
input sequence are denoted as X � x1, x2, . . . , xt ,
and the three types of gates are input gate it, output
gate ot, and forget gate ft. ,e passed information
can be determined whether to be remembered or
forgotten by the output of the hidden layer ht−1 and
input xt of the current layer. ,e activation function
for limiting the outputted data inside the range of [0,
1] is as follows:

ft � σ Wf · ht−1, xt  + bf . (A.1)

,e input gate aims at determining the appropriate
input information (ht−1, xt) to the cell. Its activated
function is to set the forgetting gate. Ct denotes a
“candidate” hidden state determined from the pre-
vious hidden state and the current input. Ct ex-
presses the internal memory of the unit. For
achieving the purpose of retaining the corresponding
information, Ct integrates the previous memory,
under the multiplication from the gate that is for-
gotten, and the newly hidden state below under the
multiplication from the input gate.

it � σ Wi · ht−1, xt  + bi( ,

Ct � tan h Wc · ht−1, xt  + bc( ,

Ct � ft · Ct−1 + it · Ct.

(A.2)

,e output gate controls the data able to be out-
putted. Likewise, the activation function aims at
setting the gate this is forgotten. After the memory
cell state gets updated by the tan h activation func-
tion, the multiplication of dot determines the to-be-
output information.

ot � σ Wo · ht−1, xt  + bo( ,

ht � ot ∘ tan h Ct( ,
(A.3)

where Wi, Wf, and Wo denote the matrices of
weight and bi, bf, bc, and bo express biased vectors.

(2) Random Forest (RF)
RF expresses one combined learning algorithm
containing decision trees, introduced by Breiman
[40]. ,us, each tree of RF receives the training in a
separate manner on an independent training set
under the selection in a random manner. As op-
posed to the conventional decision tree, RF supe-
riority has the reflection within two aspects. On the
one hand, the trees built show inconsistency as
generated in various training sets of a bootstrap
subsampling and various random subdivided sets
pertaining to characteristics for the split in terms of
the respective tree node. On the other hand, the
subsets of features are selected randomly. In this
case, RF can achieve both low bias and low variance
output and is not easy to fall into overfitting [64].
For regression, the final prediction is the average of
the predictions from the set of decision trees. In RF,
out-of-bag (OOB) error rate generally serves to be
one way for measuring evaluation indices’ signifi-
cance [64].

(3) Gradient boosting regression tree (GBRT)
In terms of an established set D with n examples and
m features D � (xi, yi) (|D| � n, xi ∈ R

m, yi ∈ R),
a tree ensemble approach applies K additive func-
tions for predicting the output.

yi � ϕ xi(  � 
K

K�1
fk xi( , fk ∈ Γ, (A.4)

where Γ � f(x) � ωq(x) (q: Rm⟶ T, ω ∈ RT)

denotes the regression tree space. Specifically, q

denotes the configuration of the respective tree
mapping one instance to the relevant leaf index, T
expresses the number of leaves in the tree, and the
respective fk represents one single tree structure q

and leaf weight ω. Inconsistent with decision trees,
the respective regression tree covers one continuous
score on the respective leaf, and ωi is used for
representing the score on the ith leaf.

ht

Ct

ht

xt

ft it ot
tanh

Ct–1
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σ

Figure 13: LSTM structure diagram.
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B. Evaluation Criteria

Model performance evaluation criteria MAPE and
RMSE have the following formulation:

MAPE �
1
n



n

t�1

Yr − Yp

Yr




,

RMSE �

�������������


n
t�1 Yr − Yp 

2

n



,

(B.1)

where n denotes the size pertaining to the dataset under
the testing process andYr andYp represent the actual and
forecasted data at time t, separately. Generally, the lower
the RMSE and MAPE data are, the more accurate the
approach will be. Nevertheless, specific to a set predicting
process, practical results over and under the forecast
receive the asymmetrical treat when using MAPE and
RMSE [55]. ,us, direction matching rate (Dsta) is used
to measure the data fluctuations (e.g., upward, stable, or
downward), which is defined by

Dsta �
1
n



n

t�1
u(t),

u(t) �
1, Yr(t + 1) − Yr(t)( ∗ Yp(t + 1) − Yr(t) ≥ 0,

0, otherwise.

⎧⎪⎨

⎪⎩

(B.2)

,e range of Dsta value is [0, 1]. ,e more approaching
the Dsta data is to 1, the greater the precision pertaining
to the direction-related predicting process concerned
with the approach will be, and vice versa.
In addition, we utilize mean absolute scaled error
(MASE) for assessing whether the proposed predicting
approach outperforms naı̈ve forecasting method [56].

MASE � mean
et




(1/(N − 1)) 
N
i�2 Yp − Yp−1








, (B.3)

where et denotes the prediction error determined to be
(Yr − Yp) and (Yp − Yp−1) refers to the näıve forecast’s
error. ,at is, MASE less than 1 indicates that the
approach generates a more effective prediction than the
calculated naı̈ve predictions.
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As high-speed railways continue to be constructed, more maintenance work is needed to ensure smooth operation. However, this
leads to frequent accidents involving maintenance workers at the tracks. Although the number of such accidents is decreasing,
there is an increase in the number of casualties.When amaintenance worker is hit by a train, it invariably results in a fatality; this is
a serious social issue. To address this problem, this study utilized the tunnel monitoring system installed on trains to prevent
railway accidents. *is was achieved by using a system that uses image data from the tunnel monitoring system to recognize
railway signs and railway tracks and detect maintenance workers on the tracks. Images of railway signs, tracks, and maintenance
workers on the tracks were recorded through image data. *e Computer Vision OpenCV library was utilized to extract the image
data. A recognition and detection algorithm for railway signs, tracks, and maintenance workers was constructed to improve the
accuracy of the developed prevention system.

1. Introduction

With increasing construction of new high-speed railways,
more railway maintenance work is necessary to ensure
seamless operation. *is, however, is accompanied by the
frequent occurrence of accidents involving maintenance
workers on the tracks.

According to a press release [1] from the Ministry of
Land, Infrastructure and Transport, from 2007 to 2017, the
number of railway accidents decreased by 14.6%, although
the overall length of railway tracks had increased. However,
the number of casualties continues to increase every year.
*e victims of such casualties are predominantly mainte-
nance workers who are hit by a running train.

According to the Korea Transport Safety Authority, the
majority of domestic railway accidents are either railway
casualty accidents or railway safety accidents. *e casualty
accidents involve railway track workers accounting for about
60% of all accidents in a year. *is suggests that workers are
not adequately protected by existing safety management

systems. In addition, a report from the Korea Transport
Safety Authority shows that the fatality rate for domestic
railway workers is approximately three times that for the
leading European countries. Accordingly, appropriate rail-
way safety measures are urgently required. As new high-
speed railways are constructed and existing railways are
improved, more maintenance work is required; thus,
maintenance workers are more frequently exposed to unsafe
situations that often result in accidents. When a mainte-
nance worker is hit by a train, it almost always results in a
casualty, which is a serious concern. *e main safety
measures for maintenance work are installing signs—which
are expected to be recognized by train drivers—to mark a
work zone and allocate a safety guard who notifies train
drivers of the work zone. In other words, the existing safety
measures rely heavily on human capacity. Unfortunately, it
is entirely possible for a train driver to miss a work zone sign,
and safety guards at the track side can also be exposed to
accidents, along with maintenance workers. *us, these
measures are essentially incapable of preventing railway
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accidents. With the objective of preventing railway acci-
dents, this study attempted to develop an improved safety
system for maintenance workers on the tracks by utilizing
the tunnel monitoring system installed on trains and railway
vehicles. Image data of the tunnel monitoring system are
obtained from PTZ (Pan-Tilt-Zoom) cameras installed
throughout a train. *e tunnel monitoring system monitors
detect electric car lines and railway tracks in real time, as the
train is running. *is study involved constructing an al-
gorithm for extracting images of railway signs, tracks, and
track workers from the image data of a tunnel monitoring
system by means of Computer Vision OpenCV library and
recognizing those images. As the proposed method can
detect track workers, tracks, and work zone signs as objects,
it is expected to provide train or railway vehicle drivers with
track information in advance, thus alerting them to the
possibility of an accident.

*is study was conducted on trains running on the
Shinbundang Line. *e total length of this line is 31.1 km,
extending from Gangnam station in Seoul to Gwanggyo
station in Gyeonggi-do. *is study utilized images stored by
the tunnel monitoring systems in trains running on the
Shinbundang Line. Image data obtained between April 15
and 21, 2019, were used in this study. Images were stored in
the tunnel monitoring system for one week.

1.1. Literature Review. *e existing management methods
for railway maintenance work can be classified as follows: (i)
GPS-based notification systems that inform maintenance
workers of a train or railway vehicle approaching a work
zone near the track. However, these systems are inefficient
for underground or tunnel sections. *ere are also problems
related to communication fees and security licenses. (ii)
Wireless communication system that alerts workers to
approaching trains or railway vehicles by means of infrared
sensors. *ese systems require a separate detector for
approaching trains or railway vehicles to be installed.
Moreover, as the number of work zones increases, the cost of
installing detectors also increases. (iii) Frequency-based
methods to inform railway maintenance workers of the
approach of a train or railway vehicle. As these methods
require a separate frequency transmitter/receiver to be in-
stalled, they are expensive to construct and maintain. (iv) A
safety fence is installed for works that are carried out near
tracks on which trains and railway vehicles are running. *e
safety fence should be installed only in a work zone, and a
safety manager and other staff should be available to warn
maintenance workers of an approaching train or railway
vehicle. *is method becomes impractical when there are
several work zones.

*e four aforementioned railway safety measures and
the studies that have been conducted on them have
common limitations regarding human error. *ese existing
systems are dependent on the working conditions of
maintenance workers and, thus, have drawbacks related to
human error and efficiency. As workers need to attach an
alert device both on the safety helmet and on their body
while they are working with their tools, the efficiency of

maintenance work is severely affected. Among existing
studies on this issue, in order to prevent casualty accidents
caused by large construction machines, Nieto developed an
alert system in which GPS receivers are attached to large
construction machines, and an alarm is sent to all workers
when such a machine is approaching [2]. As each large
construction machine is equipped with a camera system
and a GPS receiver, if there is a worker in a predetermined
work zone, an alarm is sent to the driver so that an ap-
propriate action can be taken. Teizer proposed a system
(that uses radio frequency (RF)) that sends an alarm to the
driver of a construction machine and to a construction
worker when the machine is approaching the worker,
thereby preventing an accident [3]. RTSA (2012) developed
automatic track warning systems to enhance the safety of
track workers. Saito’s system utilizes GPS to send an alarm
to track workers through a mobile radio when a train
approaches [4]. Hjort proposed an electronic data-trans-
mission software program (ETW) using GPS in order to
improve the safety of track workers [5]. D’Arco demon-
strated that GNSS (Global Navigation Satellite System)
produced fewer time and distance errors than GPS in
railway maintenance sites. *e GNSS improved the error of
GPS in the measurement of distance. Besides, the GNSS
achieved a higher estimation accuracy than GPS by com-
bining relative distance estimates, and each track worker
had to wear a receiver. Eirini Konstantinou (2019) elimi-
nated noise with Kalman Filter, an algorithm for computer
vision, and suggested using support vector machines
(SVMs) to track, control, and monitor workers’ locations.
Mingyuan Zhang (2020) proposed a method to assess the
safety level of construction workers based on computer
vision and fuzzy reference, noting that construction
workers have accidents in the environment of the con-
struction site.

Existing studies have focused mainly on alerting
workers to approaching trains. However, the working
conditions (such as noise) near tracks and unauthorized
works continue to cause accidents during maintenance
works. Maintenance workers at the track side and a train
driver cannot be relaxed until the train completely passed
through the work zone. All of them are under heavy
pressure. *is study aimed to improve the environment of
maintenance work done either on or near railway tracks on
which trains would be running. To achieve this, an algo-
rithm was developed to detect objects on or near the tracks,
thereby avoiding accidents and facilitating the safe passage
of a train through the work zone.

*is study presents a method that is different from those
used in earlier studies. *e target train of this study was
equipped with PTZ (Pan-Tilt-Zoom) cameras both at the
front and the back. *e PTZ camera-based object image
detection data were utilized to show objects such as
maintenance workers, tracks, and work zone signs to the
train driver. *is study developed an evacuation system that
gives such railway track information to the train driver and
helps the workers and the train avoid any contact. *is
would help the driver take appropriate action to avoid an
accident.
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*is study is distinguishable from earlier studies in the
following three ways.

First, text information of maintenance (work) signs was
detected from PTZ camera images and provided to the train
driver in advance. *is study focused on the fact that the
maintenance work signs should be installed 500m before the
work zone.

Second, the railway track was recognized and mainte-
nance workers on or near the tracks were detected as objects
by using PTZ camera images. Information thus obtained was
provided to the train driver.

*ird, the region of interest (ROI) for the recognition of
railway tracks was set in order to detect other objects, in
addition to maintenance workers. Information was provided
to the train driver in real time so that the train could pass
safely through the work zone.

Intel’s OpenCV library and OpenCV_Python 3.6 were
used for image processing and object detection.

2. Methods

*is study constructed three algorithms by utilizing the
OpenCV library. To construct these algorithms, a license-
plate extraction algorithm, a lane-detection algorithm, and a
vehicle and object-recognition algorithm were utilized.
*ese algorithms are being actively studied in the field of
intelligent transport system.*e details of the method of this
study can be summarized as follows. First, existing studies
on text and license-plate extraction algorithms were
reviewed. Considering that maintenance (work) signs are
installed 200 and 500m before the work zone, an algorithm
was constructed, which extracts the text “500m from work
zone” and provides it to the driver of a train or railway
vehicle before the train or vehicle enters the work zone.
Second, the lane-detection algorithm, which had been ex-
tensively studied in the field of intelligent transport service,
was utilized to construct a railway-track-detection algo-
rithm.*ird, the vehicle and object recognition algorithm of
the intelligent transport service was utilized to construct an
object-detection algorithm to detect maintenance workers
near tracks.

2.1. Algorithm to Detect and Recognize Railway Signs. For
sign recognition, there are two methods: shape recognition
and color recognition. As the shape-recognition method is
highly likely to capture similar shapes in the background, the
recognition efficiency is poor and the recognition itself takes
a long time. However, this method has a faster processing
rate than the RGB color-recognition method and is less
affected by the surroundings. Accordingly, a template-
matching algorithm was adopted as the railway-sign rec-
ognition and detection algorithm, as it is less affected by the
surroundings of railway tracks and can quickly detect and
recognize specific signs (work sign).

Template matching is a technique for finding a specific
image from an original image. In this study, the original
image and a target image were processed by using gray scale.
Subsequently, the target image was detected and recognized

by using a specific red-color box. *e template-matching
function was used to recognize a work sign in a railway sign
image. *e process of template matching is presented in
Figure 1.

*e template-matching function was effective in
detecting a work sign image using the original image.
However, although this matching function could solve the
problem of translation, recognition of rotated and scaled
objects proved to be difficult, even with template rotation
and scaling. Accordingly, this study utilized the RANSAC
(Random Sample Consensus) algorithm, which accurately
filters the matching result of key points between two images.
*e RANSAC algorithm assumes the existence of homog-
raphy transformation between two images. *is algorithm
filters out incomplete matching results and retains only the
results satisfying the motion model between two images [6].
*e principle of the RANSAC algorithm is to create a model
by random sampling from the data and determine how
different the model is supported by, i.e., howmany data have
a distance from the model less than a constant value (T). *e
RANSAC algorithm is applied in the following order:

Two points are selected randomly.
F (x) of the straight line passing between the two points
is obtained.
*e number of datasets C′ is calculated, in which the
distance of the above F (x) ri � |ui − f(ε)| is Tand less.
In case C is larger than the saved C′, a new C is saved.
After the above process is iterated N times, the optimal
C is returned to F (x).
A result is derived by applying the least-squares method
to datasets satisfying F (x).
Here, N is to be selected so that at least one dataset
among all available datasets can satisfy the probability
Q consisting of a model and inlier (appropriate point).
If the probability of all data being inlier is u, the
probability of all data being outlier is v � 1 − u. From
this, N can be calculated as follows:

N �
log(1 − Q)

log (1 − v)
n. (1)

*e above process is iterated N times to determine the
ultimate model [7]. When images were rotated and then
matched by means of the RANSAC algorithm, target images
that had not been shown by template-matching could be
detected. After rotating the image picture using the RAN-
SAC algorithm, the image was not detected in the template
matching, but the RANSAC algorithm was detected, as
shown in Figure 2.

2.2. Algorithm to Detect and Recognize Railway Tracks.
*e majority of the existing studies on lane detection have
used conventional cameras to acquire images and survey the
road in front and set it as ROI, before applying the lane-
detection algorithm [8]. *e lanes are then detected using
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edge detection [9], Hough transform [10], template
matching [11], and so on. Template matching is the most
widely used technique. *is method detects lanes by con-
structing a top-hat filter, which utilizes the brightness dif-
ference between lane and road and applies the
corresponding template to the ROI. However, this method is
not as effective in detecting curved lanes as it is in detecting
straight lanes. A few attempts have been made to solve this
problem by dividing an image into multiple sections and
applying the Hough transform to each section [12]. Ac-
cordingly, this study constructed a Hough transform algo-
rithm to detect railway tracks. Unlike road lanes, railway
tracks cannot be distinguished by colors. For this reason,
various methods, including the Gaussian filter, were used to
construct an algorithm to detect and recognize the features
of railway tracks.

*ere are various color models, such as RGB, YUV, and
HSV. As road lanes are clearly distinguished by yellow and
white, they are suitable for a color model. On the other hand,
railway tracks are difficult to distinguish by colors. Ac-
cordingly, various color modes were applied, and the HSV
model was selected to detect railway tracks. HSV is a color
space that expresses images by hue (H), saturation (S), and
value (V).*e darkness and lightness of a color are expressed
by the saturation channel, and the brightness is determined
by the value. *e HSV color space does not indicate a
combination of colors; it indicates the color itself. It thereby
achieves good intuitiveness. In case an object needs to be
detected from an image by using colors, the HSV space
seems to be more appropriate than the RGB space [13].
Railway track images were converted to the HSV color space
using the OpenCV library, and the railway tracks were

extracted fromHSV. All objects other than the railway tracks
were colored black; Figure 3 shows the result. *ere was a
loss of railway track. To obtain a clearer image, an ROI
(Region Of Interest) was set. By setting the ROI, the irrel-
evant objects were expressed in black, and, thus, the railway
track images were detected and extracted. Straight railway
tracks were clearly recognized in images. However, all the
tracks were not straight. *us, HSV alone was not sufficient.
To solve this problem, a different HSV color model and the
edge detection algorithm were used in conjunction.

Among various edge detection methods, the Canny edge
operator is most widely used as it is the most clearly defined.
*is method is recognized as the best optimized edge de-
tection method from the following aspects, which are the
conventional criteria for evaluating the performance of edge
detection operators: efficiency of edge detection (Good
Detection), locality of edge detection (Good Localization),
and single response to an edge [14]. *is study utilized
Canny edge detection to address the insufficiency of HSV-
based detection. However, it was necessary to recognize
curved tracks in a different way from straight tracks. Ac-
cordingly, a Hough transform algorithm was implemented
to detect representative lines, which were then applied to
curved tracks.

2.3. Algorithm to Recognize Maintenance Workers. In the
field of intelligent traffic service, several algorithms have
been developed to detect pedestrians, and several other
methods are still being studied.*is study used HOG [1] and
SVM [2] algorithms, which are most widely used and ver-
ified in the field of intelligent traffic service, to recognize
maintenance workers on tracks. *e details of the process
were as follows: first, an image was inputted for recognition,
and a feature vector was extracted by using the HOG feature.
After that, a pretrained SVM was used to distinguish
maintenance workers on the tracks. In the next step, images
for training were inputted. After a HOG feature vector was
extracted from the inputted training images, the SVM was
trained, and training data were extracted and then utilized to
recognize workers. Generally, maintenance workers always
wear a uniform during work. If this feature is extracted,
classified, and detected, the processing rate may be
accelerated according to image background, and the workers
can be recognized more quickly.

*e flow chart for recognizing maintenance workers at
the tracks using HOG descriptor and SVM algorithms is
presented in Figure 4.

When only the HOG descriptor algorithm was imple-
mented, only one of two workers at the trackside was de-
tected. To address this and accurately detect workers at the
tracks, the features of workers were classified using the SVM
classifier.

2.4. Experimental Application and Evaluation of Algorithms.
After algorithms were constructed based on images of
railway signs, tracks, and maintenance workers, they were
applied to real images for verification. For images of actual
railways, the image data stored by the railway image

Input:
PTZ image data

Feature detection Descriptor Matching

Cv2.drawkeypoints () Cv2.drawmatches ()

DescriptormatcherFeature 2D

Figure 1: Template matching.
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Figure 2: Result of application of RANSAC algorithm.
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recording device of the Shinbundang Line were used. *e
algorithms were applied to the image data and were verified.
*is study attempted to recognize and detect railway signs,
tracks, and maintenance workers while focusing on the
safety of the workers. Template matching, RANSAC, and
OCR were implemented for railway sign recognition. Color
transform HSV, Canny edge, Gaussian blue, ROI, and
Hough transform algorithms were applied to railway track
images. An HOG descriptor and SVM model were imple-
mented for detection of maintenance workers at the tracks
by using the OpenCV library. Color images having a res-
olution of 1920×1080 pixels were converted to 800× 600-
pixel images to evaluate the constructed algorithms. *e test
images were trackside images captured either during day-
time (in the open) or in a tunnel.

2.5. Application of Algorithm to ImageData. *e recognition
and detection of railway signs were evaluated using images
stored by the image-recording device of a train running
through tunnels on the Shinbundang Line. Figure 5 rep-
resents the application of algorithm to image data. To detect

maintenance workers at the tracks, a morphological oper-
ation was used to remove noise, detect outlines, and apply
the Gaussian blur. Moving objects in binary images were
detected and recognized and were marked with red squares.
Initially, there were several errors in detection. However,
with continued use, the maintenance workers, who were
classified by using the SVM classifier, could be recognized
and detected.

3. Results of Algorithm Verification

To numerically evaluate the algorithms, this study adopted
the concepts of precision and recall, which have been used
for performance verification and evaluation of object-rec-
ognition and detection algorithms in several studies.

Precision is a measure of accuracy. Precision is the ratio
of true detections to all detection results. It can be expressed
by the following equation:

precision �
TP

TP + FP
�

TP
all detections

. (2)

HSV transformation image Removed noise of railway track

Setting of ROI zone Recognizing and detection image in curve tracks 

Figure 3: Process of algorithm to detect and recognize railway tracks.
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Figure 4: HOG descriptor and SVM algorithms.
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Here, TP stands for true positive, which indicates ac-
curate detection, while FP stands for false positive, which
indicates incorrect detection. Hence, precision is the per-
centage of the accurate detections among all the detections
made by an algorithm. If an object detection algorithm
detects five objects, of which four are TPs, the precision is 4/
5� 0.8.

Recall denotes a detection rate or a recall rate. In other
words, it is the ratio of true detections to all the targets.
Recall can be expressed by

recall �
TP

TP + FN
�

TP
all ground truth

. (3)

Here, FN stands for false negative, which indicates
objects that are to be detected but have not been detected yet.
TP (true positive) refers to a case where a target object is
accurately detected. FP (false positive) refers to a case where
a nontarget object is wrongly recognized or detected. FN
(false negative) refers to a case where a target object has not
been recognized and detected. TN (true negative) refers to a
case where a wrong thing that is not a target is accurately
sensed and has not been recognized and detected. *e above
classification can be summarized in Table 1.

It is not sufficient to use only precision or only recall for
performance evaluation of an object-detection algorithm.
Let us assume that there are 10 objects and four out of 5
objects are correctly detected.*en, precision� 4/5� 0.8 and
recall� 4/10� 0.4. Precision indicates good performance but
recall does not. It is noteworthy that the values of precision
and recall are always between 0 and 1, and, when the
precision is high, the recall tends to be low and vice versa.
Accordingly, it is almost the same to evaluate the perfor-
mance of an algorithm using either of these parameters. It is
necessary to apply both of them for evaluating an algorithm
accurately. In this regard, the precision-recall curve and AP
are needed. Furthermore, there is a criterion to judge

whether an object has been detected correctly: this criterion
is the intersection over union (IoU). *is study utilized the
performance verification index for object-detection algo-
rithms, which was proposed by Everingham [15]. *is
method is IoU (Intersection over Union). As shown in
Figure 6, let us assume that there is an image labelled with a
ground truth boundary box.*e ground truth boundary box
wraps the object that is to be recognized and detected. When
the ground truth box of the image was not given, the
boundary box was detected by an object-recognition and
detection algorithm, as follows.

IoU measures the area of overlap between a recognized
and detected boundary box and the ground truth boundary
box and then divides the overlapped area by the union area.
*e equation is presented below. If the IoU value is 0.5 and
above, the result is judged to be true. Otherwise, if the IoU
value is less than 0.5, the result is judged to be false.

IoU �
R∩  G( )

R∪  G( )
. (4)

Here, R is the boundary box detected by algorithm and G is
the ground truth.

*e performance of the algorithm for recognizing and
detecting railway signs was verified by analyzing image data
in real time. *e data were acquired by the railway track and
tunnel-monitoring system. *e focus of the performance
verification was whether the algorithm could recognize and

Original image Processing image of
gaussian blur 

Image of removed
noise 

Recognizing sign and
detection image 

Step 1. recognizing railway signs

(a)

Original image Image of straight
tracks 

Image of curve
tracks 

Image of entry
platform 

Step 2. recognizing railway tracks

(b)

Original image
Image of removed

morphology
noise

Detection image of
object 

Recognition and
detection of

trackside worker
Step 3. recognizing railway signs

(c)

Figure 5: Application of algorithm to image data.

Table 1: Definition of precision and recall.

Ground truth
Predict result

Positive Negative
Positive TP (true positive) FN (false negative)
Negative FP (false positive) TN (true negative)
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detect railway signs while the train was running at 50 km/h,
70 km/h, and 90 km/h in a tunnel.

*e number of false negatives is that of railway signs
that were not recognized and detected. *e number of false
positives is that of fluorescent lights or trains on the op-
posite side, which were recognized and detected. In other
words, objects other than railway signs were also recog-
nized and detected. *e detection rate is the number of
detected railway signs among all the railway signs. When a
train was running on Shinbundang Line, the algorithm was
evaluated using the image data of the real-time tunnel
monitoring system.

When the recognition and detection algorithm for
railway signs was applied for 0–50 km/h image data, there
were no false negatives. However, there was one false
positive where a fluorescent light in the tunnel was de-
tected instead of a railway sign. When the train was
moving at 51–70 km/h, there was one false negative, and
there were three false positives. *e traffic control system
at the trackside and fluorescent lights in the tunnel were
wrongly detected. When the train was moving at
71–90 km/h, there were two false negatives and four false
positives. Table 2 presents the results of false negatives and
false positives.

*e algorithm for recognizing and detecting mainte-
nance workers cannot be verified according to the velocity
of train. For this reason, this object-detection algorithm
was verified by classifying cases as follows: first, the workers
were scattered or grouped (gathered). Second, they were
gathered in the longitudinal direction. And third, they were
gathered within a facility on the ground as shown in
Table 3.

Although a worker was recognized and detected, when the
object detection IoU was <0.5, the result was false. When the
workers were scattered (i.e., they were a certain distance away
from each other), the algorithm showed neither any false
negatives nor any false positives. However, when the workers
were arranged in the longitudinal direction, false negatives
were obtained. In addition, when the workers at the trackside
were grouped together, their faces, arms, legs, and bodies were
concealed such that the number of the workers could not be
accurately detected in some cases. Although false positives
and false negatives were obtained, the algorithm showed
performance indices of 0.5 and above. *us, it can be con-
cluded that the algorithm for recognizing and detecting
workers at the trackside performs sufficiently well.

4. Conclusions and Further Scope

Appropriate signs should be installed 200 and 500m before a
work zone, in order to alert train drivers in advance. Drivers
are expected to pay careful attention while operating their
trains or railway vehicles; a guard should also be available to
send a signal to all drivers. However, not only maintenance
workers at the trackside but also the guards are often hit by
trains and become victims of casualty accidents. Accord-
ingly, to prevent such accidents, this study utilized the tunnel
monitoring system installed on trains to recognize and
detect maintenance workers at the tracks. *is study
attempted to develop an algorithm to recognizing a work
zone and warn or even stop an approaching train, in ad-
dition to the existing alert system that lets maintenance
workers know of any approaching trains.

However, this study cannot perfectly ensure the safety of
maintenance workers at the tracks. It has limitations that
need to be addressed in the future. An image-processing
library was used to recognize and detect workers at the
trackside. However, not all trains are equipped with the
tunnel-monitoring system. In addition, urban railways
undergo maintenance work only at night, which imposes a
time limitation. *e functions, models, and library, which
were used to recognize and detect railway signs, tracks, and
workers, are not final solutions. As there are several ongoing
research and development projects, various methods need to
be considered. Nevertheless, this study is significant as it
developed a new approach. Existing systems only alert
maintenance workers to the approach of a train or a railway
vehicle. *e proposed system enables train drivers to rec-
ognize and detect a work zone in advance and to be prepared
for an emergency. *erefore, this study contributes to en-
hancing the safety of workers at railway tracks.

*is study has the following limitations that need to be
addressed. First, the proposed algorithm of this study is
difficult to generalize. In order to address this, various
methods need to be applied and analyzed. Second, this
system recognized and detected objects at the trackside
(railway signs, railway tracks, and maintenance workers) by
using only the image data of the tunnel-monitoring system.
However, it is necessary to collect diverse data and extend
the spatial scope of research. *ird, this study collected and
utilized only the data of Shinbundang Line as the image data
of the tunnel-monitoring system. As urban railways are
equipped with various tunnel-monitoring systems, the scope

(a) (b)

Figure 6: Ground truth boundary box: (a) ground truth and (b) the boundary box detected by algorithm.
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of research needs to be extended by using data of the tunnel-
monitoring systems of other railway lines. In spite of these
limitations, this study will contribute to preventing accidents
caused by the mistakes of train or railway vehicle drivers.
Moreover, this study provides a basis for future studies
aimed at preventing maintenance workers from being hit by
trains or railway vehicles.

Data Availability

Image data of the tunnel monitoring system are obtained
from PTZ (Pan-Tilt-Zoom) cameras installed throughout a
train.
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Table 2: Verification of recognizing and detecting algorithm railway signs.

Classification Railway sign True positive False negative False positive Precision (TP/TP + FP) Recall (TP/TP + FN)

0∼90 km/h 95 84 3 8 0.96 0.91
0∼50 km/h 40 39 — 1 0.98 1.0
51∼70 km/h 35 31 1 3 0.91 0.97
71∼90 km/h 20 14 2 4 0.78 0.86

Table 3: Verification of recognizing and detecting algorithm trackside workers.

Classification # of trackside
workers

True
positive

False
negative

False
positive

Precision
(TP/TP + FP)

Recall
(TP/TP + FN)

# of trackside workers

1 1 — — 1.0 1.0
2 2 — — 1.0 1.0
5 4 1 — 1.0 0.8

6∼7 4 3 — 1.0 0.57
Trackside workers (longitudinal) 4 2 2 — 1.0 0.5
Trackside workers + ground facility 7 5 1 1 0.83 0.83
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A correct lane-changing plays a crucial role in traffic safety. Predicting the lane-changing behavior of a driver can improve the
driving safety significantly. In this paper, a hybrid neural network predictionmodel based on recurrent neural network (RNN) and
fully connected neural network (FC) is proposed to predict lane-changing behavior accurately and improve the prospective time
of prediction.+e dynamic time window is proposed to extract the lane-changing features which include driver physiological data,
vehicle kinematics data, and driver kinematics data. +e effectiveness of the proposed model is validated through the experiments
in real traffic scenarios. Besides, the proposed model is compared with five prediction models, and the results show that the
proposed prediction model can effectively predict the lane-changing behavior more accurate and earlier than the other models.
+e proposed model achieves the prediction accuracy of 93.5% and improves the prospective time of prediction by about 2.1 s
on average.

1. Introduction

Driver lane-changing behavior is a key factor in driving safety.
An improper lane-changing behavior may cause a vehicle col-
lision [1, 2] or even a traffic accident [3–5]. In [6], it was in-
dicated that nearly 18% of the total number of traffic accidents
were caused by improper lane changing. Using a prediction
model in the Advanced Driver Assistance Systems (ADASs)
[7–9] could reduce the risk of accidents. +erefore, a model for
accurate prediction of a driver lane-changing behavior using
multiple data fusion is needed. Substantial research regarding the
lane-changing prediction has been conducted. At present, there
are twomainstream groups of methods for predictionmodels of
lane-changing, namely, mathematical methods and artificial
intelligence approaches. One of the lane-changing prediction
models based on a mathematical method was introduced in
[10, 11]. Also, in [12],the logistic regressionmethodwas used in a
lane-changing prediction model, wherein the distances to the
front and adjacent rear vehicles, forward time-to-collision
(TTC), and turn signal were taken into account, and the results
showed that this model performed well in certain circumstances.

Baumann et al. [13] improved a cognitive model to characterize
driver behavior in an automotive environment and proved the
correlation between drivers’ cognitive processes and their driving
movements. Salvucci [14] introduced an adaptive control of
rational cognitive structures to monitor the lane-changing
process in a multilane highway environment, and their model
demonstrated how cognitive architectures could facilitate un-
derstanding of driver behavior.However, someof thementioned
studies were conducted in specific traffic scenarios such as
highway entrance and ramp; besides, a part of the traffic sce-
narios was simulated instead of a real one. +erefore, those
studies may not consider the lane-changing behavior in real
traffic scenarios. Moreover, the above studies achieved the
prediction accuracy ranges from 80% to 85%, so it has con-
siderable space for improvement.

With the aim to build a more intelligent lane-changing
prediction model, researchers have adopted machine
learning. A lane-changing behavior prediction model based
on the support vector machine (SVM) classifier and
Bayesian filtering (BF) was proposed in [15], and it was
shown that this model could predict driver lane-changing
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behavior 1.3 s in advance. In addition, a lane-changing
behavior and trajectory prediction model based on the
Hidden Markov Model (HMM) was presented in [16], and
the results showed that this model predicted the lane-
changing trajectories very well,which makes it suitable for
prediction of human-like lane-changing maneuvers. Hou
et al. [17] proposed a lane-changing prediction model based
on fuzzy logic, which was developed for the case of a forced
lane-changing under the lane-descending conditions. +e
prediction accuracy of this model for nonmerging behavior
and merging behavior was 86.3% and 87.5%, respectively.
Furthermore, a novel lane-changing intention recognition
algorithm which combines the HMM and BF models was
proposed in [18], where the model input consisted of three
signals from the CAN bus (steering angle, lateral accelera-
tion, and yaw rate), and the output was behavior classifi-
cation. +e results revealed that the HMM-BF could achieve
an average recognition accuracy of 91.9%. Zheng et al. [19]
proposed a machine learning-based segmentation and
classification algorithm consisting of three stages. +e first
stage includes data preprocessing and prefiltering, and its
function is to reduce noise and remove clear left and right
turning events. +e second stage employs a spectral time
frequency analysis segmentation approach to generalize all
potential time-variant lane-changing and lane-keeping
candidates. +e third stage includes two possible classifi-
cations: lane-changing and lane-keeping.+e results showed
that the average accuracy of this three-stage algorithm
exceeded 83.22%. Furthermore, in [20], a dynamic Bayesian
network (DBN) was used to predict the lane-changing
maneuvers,and the test using the real data showed that the
lane changing was detected 1 s in advance. However, the
machine learning methods are not suitable for multisource
data fusion, and even a single-input data may result in lower
accuracy.

In recent years, the deep learning algorithms have been
widely used in lane-changing prediction because of its
powerful high-dimensional data processing and autono-
mous learning capabilities, which is in sharp contrast with
conventional mathematical methods. Xie et al. [21] proposed
a deep learning-based method to predict the future trajec-
tory of vehicles and achieved good results. It is demonstrated
that the deep learning model can mine potential features
from high-dimensional data and also indicated the feasibility
of deep learning in lane-changing research. In [22], a
backpropagation (BP) neural network was used as a con-
troller of an automatic vehicle system, and a camera image
was used as a neural network input to construct a lane-
changing model. +e results showed that one hidden layer
was enough to provide good performance of a time-varying
nonlinear dynamic system. Tomar et al. [23] proposed a
method based on a multilayer perceptron to predict a lane-
changing trajectory accurately. +e prediction results
showed that this model was able to predict the future path
accurately only for discrete patches of a trajectory, but not
for the complete trajectory. Ding et al. [24] developed a BP
neural network-based model to predict the lane-changing
trajectories, and they compared prediction results of the BP

neural network with that of the Elman network. It was found
that the BP neural network-based model achieved better
prediction performance under different sectionsand gen-
erated more reliable simulation results than the Elman
network-based model. In [25], a fully connected neural
network was applied to predict the lane-changing behavior
of drivers; especially, the network model input consisted of
multivehicle data, and the prediction accuracy of more than
90% was achieved. Moreover, a multifeature fusion neural
network [26] that takes into account the physiological
factors such as driver’s head rotation was proposed to
predict driver lane change behavior and the prediction
accuracy exceeded 85%, while the prospective time was 1.5 s.
Dou et al. [27] introduced a prediction model based on the
SVM and BP neural network, which combined the results of
SVM and BP neural network to improve the prediction
accuracy, and the results showed that the average combined
accuracy exceeded 92%. Furthermore, an MTSDeepNet
using a convolution kernel to process the multivariate time
series data and a fully connected neural network to classify
the lane-changing behavior were designed to predict the lane
changing in [28], and the accuracy of this model exceeded
91.0%. Considering the driver’s driving style, Li et al. [29]
proposed a lane-changing intention estimation model based
on Bayesian network and Gaussian mixture model, which
achieved a good prospective time, but its accuracy is low.
However, the lane-changing process is determined by both
the driver and traffic environment, but the aforementioned
research studies did not consider all the factors affecting the
driver lane-changing behavior. Also, using a fully connected
network for lane-changing prediction may cause data loss
which further reduces model performance.

In summary, the existing studies have the limitations of
low prediction accuracy and short prospective time. Two
reasons for these limitations are “data problem” and “pre-
diction model structure problem.” Aiming at these two
problems, a hybrid neural network driven by multiple types
of data is proposed. +e first level of the hybrid network is
composed of Seq2Seq, a variant of RNN [30, 31], which is
mainly used for time series data processing to reduce in-
visible data loss. +e second level consists of a fully con-
nected neural network for data fusion and lane-changing
classification. +ere are three contributions of this study. (1)
+ree different types of data including vehicle kinematics
data, driver kinematics data, and driver physiological data
are collected and used. (2) A hybrid network with a two-level
trainingmodel is proposed to deepen the number of network
layers while avoiding the problem of gradient dispersion. (3)
A dynamic time window algorithm is proposed to ensure the
consistency and homogeneity of the model input data and
extend the prediction prospective time.

+e remainder of the paper is organized as follows.
Section 2 describes the data source and introduces the data
processing method. Section 3 elaborates the working
principle and structure of the proposed Seq2Seq-FC neural
network, as well as its mathematical relationships. Section 4
validates the model generalization ability. Lastly, Section 5
concludes the paper.
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2. Data Collection and Processing

Since the data used in this study was derived from real traffic
scenarios and different sensing equipment, the original data
was first filtered and segmented, and then, the timestamp
alignment was conducted, and the data with the same label
was extracted by a time window.

2.1.DataCollection. In the data collection process, the speed
and acceleration of a vehicle were collected by the Cohda-
wireless dedicated short-range communication (DSRC)
installed on the vehicle. +e steering angle and angular
velocity of the steering wheel were obtained by a corner
tester mounted at the steering wheel. +e electroencepha-
logram (EEG) and driver’s head movement data were ob-
tained by the brain wave analyzer. Besides, the
electrocardiogram (ECG) stemmed from a heart rate tester.
+e number of driver’s head rotations in the horizontal
direction was determined using the driving video obtained
by a driving recorder. +e equipment used for data acqui-
sition is shown in Figure 1. Also, a different data was used for
model training and validating. +e data was collected in the
same way but using different traffic routes. +e route used
for the collection of training data is presented in Figure 2,
and the route started at the Chang’An University going
through the main roads in Xi’an and ended at Xi’an
Cheng’nan Passenger Transport Center. During the process
of data collection, the procedure was repeated for several
times. Since all data collection equipment are connected to
the same PC, a timestamp is added to the header of each data
based on Beijing time to synchronize the data collected by
different equipment. In addition, the purchased brainwave
analyzer and DSRC equipment have supporting data re-
ceiving software, which can denoise and filter the data and
other self-designed equipment receive data using the serial
communication protocol, and the data are denoised using
the period-average padding method and PauTa criterion
built into hardware. +erefore, the data output by a different
equipment has been denoised and can be used directly.

It should be noted that, during the research, we found
the impact of other factors on the subject vehicle (such as
surrounding environmental factors,traffic environmental
factors, and driving purpose) will ultimately be reflected in
the driver’s control of the vehicle. For example, if the
number of vehicles around the subject vehicle increases, the
speed of the subject vehicle will decrease. If the subject
vehicle is driving on a slippery road, its overall speed will be
significantly lower than the speed on a normal road.
+erefore, only the subject vehicle’s own data and the
driver’s own data were collected.

2.2. Features Extraction. +e time window is the basis for
data processing, and the data in time window should contain
the data referring to the entire lane-changing process,not
only a part of it. As shown in Figure 3, during the lane-
changing process, the β bands of brain wave signal change
greatly at the beginning of the lane-changing, and vehicle’s
steering angle tends to become stable at the end of the lane-

changing process. +erefore, the point where the β bands
change drastically is recorded as the starting point of the
time window, and the stable point of the steering angle after
the lane changing is completed and is recorded as the end
point of the time window. Because the time taken for each
lane changings is different, each lane-changing behavior has
its corresponding time window. Considering the prospective
time of the prediction model, the method of time window
shrinking is adopted in this work. As shown in Figure 3,
without considering the prediction accuracy, the endpoint of
time window 2 has longer prospective time than that of the
endpoint 1. +erefore, in the process of model training, the
model is verified by shrinking the time window while
comparing the accuracy. During data processing,the data

Steering wheel
angle measuring

equipment
Brain wave

analyzer
Heart rate measuring

equipment
Cohda_wireless

DSRC

Data collection vehicle

Figure 1: Equipment used for data collection.

Figure 2: Data collection route.
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Figure 3: Lane-changing process.
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length of a current time window is important because the
RNN-Seq2Seq used in this work requires input data of a
fixed dimension. However,since a dynamic time window is
used, a data extractionmethod is needed.+e data extraction
method not only ensures the consistency of input data but
also minimizes data loss. Besides, the maximum speed of a
driver’s head in a three-dimensional space and the number
of driver’s head rotations in the horizontal direction within a
time window are directly fed to the input of the fully
connected neural network without being processed by the
RNN-Seq2Seq.

2.3. Data Processing. Vehicle kinematics data processing.
+e length of the time window was dynamically adjusted,
to ensure that the dimension of data extracted from each
time window was equal, during the vehicle kinematics
data processing, for each time series data in a time
window, the maximum, minimum, average, and variance
values were used. Table 1 shows the characteristic of data
within a time window which were used for further data
processing. When the time window was gradually shrunk,
the label data of the Seq2Seq was a caudal data of the
original time window, but the processing method stayed
the same. As can be seen in Table 1, 15 data features were
extracted and used. +ere are two reasons for selecting
these 15 features. +e first is that such feature extraction
method can ensure the same dimension and consistency of
model input. +e second is that the selected 15 features
can reflect the vehicle movement situation in a time
window no matter how long the time window is, which is
also the meaning of those 15 features.

Driver’s physiological and kinematics data processing.
+e EEG data were filtered by a bandpass filter which was a
Chebyshev type II filter with a lower cut-off frequency of
4Hz and an upper cut-off frequency of 30Hz.+e δ bands of
1–3Hz in the EEG with an amplitude of 20–200 μV were
removed because the δ wave appears in the human infant
stage or immature mental development period or when an
adult is under extreme fatigue and lethargy or anesthesia.
+erefore, these bands do not change significantly when the
driver considers the lane-changing. In addition, the θ bands
with a frequency of 4–7Hz and an amplitude of 5–20 μV, the
α bands with a frequency of 8–13Hz and an amplitude of 20-
100 μV, and β bands with a frequency of 14–30Hz and an
amplitude of 100–150 μV were needed. Namely, the wave-
forms corresponding to these three bands types changed
significantly when people are in the depression state, normal
state, and excited state, so they should be used as input to the
prediction model because they are changeable and impor-
tant pointers to the people emotions and states. Similarly,
the average, maximum, and minimum values and the var-
iance of θ, α, and β bands of the EEG data within a time
window were included. Six frequency domain features are
extracted from each of the three EEG channels: θ/(θ + α),
α/(θ+ α), (θ+ α)/β, α/β, (θ+ α)/(θ+ β), and θ/β. +e reason
for selecting these six features is that Martensson’s research

[32] shows that these six features can reflect the driver’s
brain activity at a certain time and can also reflect the
driver’s thinking while driving. Like the method of vehicle
kinematics data extraction, the selected 18 brainwave data
related features can reflect the driver’s brain thinking when
performing lane changing.

+e heart rate signal was processed similarly as the other
data, and the maximum, minimum, and average values and
variance of the heart rate in a time window were taken as the
input data regarding the motion data of a driver’s head in a
time window, and we used the speed maximum value in a
three-dimensional space and the number of rotations of a
driver’s head in the horizontal direction. +ese four features
were not processed by the RNN, instead they were fed di-
rectly to the input of the fully connected network because, to
a certain extent, the maximum speed of head movement can
reflect the urgency of the driver to change lanes. For ex-
ample, if the driver frequently turns his head during driving
and the speed is high, the driver has a higher probability of
performing lane changing. In summary, 26 data features
were extracted and used as input parameters for data pro-
cessing. +e extracted features and their labels are shown in
Table 2. And, the 26 data features in Table 2 can reflect the
driving situation of the vehicle in two aspects (vehicle and
driver) when input as a model. It also ensures that the di-
mensions of the input data are not affected by the length of
the time window.

After the original data was processed as described above,
the dimension of the input data will be the same in every
time window regardless of its length. In this way, data
consistency during model training and testing was ensured.
In Figures 4 and 5, the vehicle kinematic data and the brain
wave during the lane-changing process are presented, re-
spectively. +e reason why the steering angle shown in
Figure 4 does not have a negative value is, when designing
the steering wheel angle measuring equipment, we set its
equilibrium state (middle value) to 0 and design it as a
positive value regardless of turning to the right or turning to
the left.

3. Proposed Model

As already mentioned, the proposed model is based on an
RNN-Seq2Seq network and a fully connected neural
network. +e RNN-Seq2Seq network is used to extract the
features of the original data and predict the value of the

Table 1: Vehicle kinematics data processing method.

Feature Process method

Speed Maximum, minimum, average, and
variance

Acceleration Maximum, minimum, and average

Steering angle Maximum, minimum, average, and
variance

Steering angular
velocity

Maximum, minimum, average, and
variance
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next point which will be used as an input for the following
fully connected neural network. In this work, 41 features
are extracted and used for data processing. Except the data
related to the driver’s head rotation, the others features

are subjected to the RNN-Seq2Seq processing. +erefore,
the Seq2Seq has 37 inputs and 37 outputs. In addition, the
fully connected neural network has 41 inputs and 2
outputs. +e data processing procedure is shown in
Figure 6. It should be noted that when the entire pre-
diction model is trained, the accuracy and prospective
time of the model are compared by shrinking the time
window.

3.1. Seq2SeqLayer. RNN is a kind of neural network that can
model data sequences. +e main advantage of this neural
network type is that it can process time series data well. Since
the lane-changing behavior often lasts for a long period of
time, if the time series data is directly processed by a fully
connected neural network, there will be inevitable data loss,
which will decrease model accuracy. Additionally, when
processing the time series data, an RNN considers the
correlation between data in the data sequence, so the use of a
data in a time window can be maximized.

Since our goal is to develop the prediction model whose
input is consisted of time sequence data, an RNN structural
variant, and the Seq2Seq structure, containing the encoder
and decoder, is chosen, which represents an enhanced
version of a normal RNN and consists of an encoder and a
decoder. +e computational kernel of both encoder and
decoder is an LSTM (long short-term memory unit) or a
GRU (gated recurrent unit).

Typical Seq2Seq structure denotes the encoder-decoder
framework shown in Figure 7. +e working mechanism of a
Seq2Seq structure uses the encoder to map the input data to
the semantic space to get a decoding vector c which rep-
resents the semantics and then use the decoder to obtain the
required output.

As shown in Figure 7, the encoder-decoder framework
has two inputs: one is x � x1, x2, . . . xn  which represents
the encoder input and the other is y � y1, y2, . . . , yn  which
represents the decoder input. +e inputs x and y are se-
quentially passed to the network in the respective order.

Assuming that the input sequence of the encoder is
x1, x2, . . . xn  and according to the RNN characteristics, the
hidden state at time t in the input process is a function of the

Table 2: +e extracted features and labels.

Parameters Definition
θmax θmin θave θvar Maximum, minimum, average and variance of theta bands
amax amin aave avar Maximum, minimum, average, and variance of alpha bands
βmax βmin βave βvar Maximum, minimum, average, and variance of beta bands
pmax pmin pave pvar Maximum, minimum, average, and variance of heart rate
(θ/(θ + α))( α/(θ + α))

Six absolute power of theta, alpha, and beta bands(((θ + α)/βα)/β)

(θ + α)/((θ + β) θ/β)

ωmax ωmin ωave ωvar Maximum, minimum, average, and variance of steering angle
ωamax ωamin ωaave ωavar Maximum, minimum, average, and variance of angular velocity
vmaxvminvavevvar Maximum, minimum, average, and variance of vehicle speed
amaxaminaave Maximum, minimum, average, and variance of vehicle acc
HxmaxHymaxHzmax Maximum speed of the head in three dimensions
Hc Number of rotations of the head within the time window
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current input signal and the hidden layer output in the
previous given as

ht � f ht−1, xt( , (1)

where f is a nonlinear activation function and the decoding
vector c is the last state of ht. Finally, a fixed-length decoding
vector c is obtained. +e decoder can be regarded as another
RNN. When the decoding vector c is sequentially fed to the
decoder, the decoder output at the time t can be expressed as

ht � f ht−1, yt−1,c . (2)

+en, the conditional probability ofy at time t is given by

p yt|yt−1, yt−2, . . . , y1, c(  � g ht, yt−1, c( . (3)

where f and g are the given activation functions, and it must
produce a valid probability. +e two components of the
encoder-decoder structure are jointly trained to maximize
the conditional log-likelihood which is given by

max
θ

1
N



N

n�1
log pθ yn|xn( , (4)

where θ is the set of model parameters and xn yn  denotes
the data pair in the training dataset.

+us, in the Seq2Seq training, y participates in loss
calculation and node operation, unlike general RNN, which

is used for loss supervision. Assuming the encoder input is
xn yn , the calculation process is as follows:

ht� zht−1 +(1 − z)ht
′,

ht
′� tanh Wxt  + U rht−1(  ( ,

z � σ Wzxt  + Uzht−1 ( ,

r � σ Wrxt  + Urht−1 ( .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

In the above formulas, ht
′, z, and r represent the in-

termediate variables,W and U are the training parameters,
and σ is the activation function.When the hidden state of the
encoding process is completed, the decoding vector is given
by

c � tan h Vh
n

( , (6)

where hn is the final value of the encoder output after n

epochs and V is the training parameter. After the decoding
vector c is obtained, the decoder starts the decoding process
initializing the initial hidden state h’’

0 which is given by

h0″ � tanh(V′c). (7)

+e hidden state of the decoder at time t is given by

ht
″� z′ht−1″ +(1 − z′)ht,

ht� tan h W′yt−1  + r′ U′h
″′
t−1 + Cc  ,

z′� σ Wz
′yt−1  + Uz

′ht−1″  + Czc( ,

r′� σ Wr
′yt−1  + Ur

′ht−1″  + Crc( ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where W, U, andC and its deformations are variable
training parameters. After obtaining the last hidden state,
the condition probability is calculated by

p yt|yt−1, . . . , y1, X(  �
exp gst( 


k
1 exp gst( 

, (9)

where k is the output dimension. Also, it holds that

st � max s1s2, . . . , sk ,

si � Ohht
″ + Oyyt−1 + Occ , (i � 1, 2, . . . , k),

(10)

where Oh, Oy, andOc are variable training parameters.
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Once the Seq2Seq finishes processing a given data se-
quence, its output is directly fed to the input of the fully
connected neural network to perform lane-changing
classification.

3.2. Fully Connected Layer. A fully connected network is the
most basic and simple neural network, yet such a network
performs well in the multiparameter fusion, so it is generally
used in the complex nonlinear classification tasks. Since the
lane-changing classification represents a nonlinear task
including a large-amount input data, a fully connected
network is used as a classification network.

In Figure 8, x(1), x(2), . . . , x(n − 1), x(n) are the fully
connected layer inputs that are from the Seq2Seq layer
output and wl

ji represents the weight of the ith synapse of the
jth neuron in the lth layer. +e induced local domain in the
lth layer is

v
l
j(n) � 

i

w
l
ji(n)y

(l−1)
i (n), (11)

where y
(l−1)
i (n) is the output of the ith neuron in the pre-

vious layer (i.e., the (l − 1)th layer) after n iterations. For
i � 0, it holds that y

(l−1)
0 (n) � 1and W

(l)
j0 (n) � b

(l)
j (n), where

b
(l)
j denotes the bias of the jth neuron in the lth layer. Using

the SoftMax function as an activation function, the output of
the jth neuron in the lth layer is given by

y
(l)
j � φj vj(n) . (12)

If the neuron j is in the first hidden layer, then it holds
that

y
(0)
j � xj(n), (13)

where xj(n)is the jth element of the input vector x(n).
Besides, if neuron j is in the output layer (l � L, L is the

depth of the network), then it holds that

y
(L)
j � oj(n). (14)

+erefore, the error is given by

ej(n) � dj(n) − oj(n), (15)

where dj(n) is the jth element of the expected response
vectord(n).

After the forward propagation is completed, the back-
propagation is performed to complete the weight optimi-
zation. +e backpropagation is given by

δ(l)
j (n) �

e
(L)
j (n)φj

′ v
(L)
j (n) , Output layer L neurons j,

φj
′ v

(L)
j (n)  

k

δ(l+1)
k (n)w

(l+1)
kj (n), Hidden layerL neurons j.

⎧⎪⎪⎨

⎪⎪⎩
(16)

where δj(n)is the local gradient and φj
′ is the differentiation

of an independent variable. After the local gradient is ob-
tained, the weight updating process is performed.+eweight
updating process in the nth iteration is given by

w
(l)
ji (n + 1) � w

(l)
ji (n) + α w

(l)
ji (n − 1)  + ηδ(l)

j (n)y
(l−1)
i (n),

(17)

where α is the momentum constant and η is the learning
rate.

3.3. Model Training. According to the survey statistic
[33, 34], most drivers are more inclined to the car-fol-
lowing behavior than to the lane changing, so there are
not a lot of lane-changing data. +erefore, we had to
collect the data needed for the prediction model training
and testing. During the data collection process, to avoid
the situation where drivers deliberately change the lanes,
drivers were not told the true purpose of their trip before
the driving started. In addition, uncertain factors such as
the driver’s driving skills, driving style, and travel pur-
pose will affect the predictive performance of the
model. +erefore, in the process of data collection, the
research team will provide the driver with some brief
driving information (such as recreational driving or
emergency driving) when inviting the driver and to make

the data more generalized. Different drivers were
invited to participate in the data collection process in
order to collect as many diverse data as possible under
different conditions. After data collection, 7000 features
of the lane-changing behavior were extracted from the
collected dataset. Since the amount of data was not large,
the model was trained and validated by the 10-fold cross-
validation method whose pseudocode is shown in
Algorithm 1.

We used Google’s open source deep learning library
TensorFlow to build the hybrid neural network described
above. +e computational kernel of Seq2Seq was GRU;
during the backpropagation training, the Adam optimizer in
TensorFlow was used, which automatically adjusts the
learning rate parameters during training to avoid overfitting.
+e initial weights of the entire network were filled with
several sets of data obeying the positive distribution, and the
initial learning rate is 0.005.

+e model training process and its discussion items are
shown in Figure 9. As the time window shrinks, the model
training process advances. +e first step in training is to use
the original time window; since the time window is not
shrunk, there is no label data for the Seq2Seq. +e fully
connected neural network is added after the Seq2Seq, and
since the lane-changing signs are the label of the entire
network, only the accuracy is shown in this step. +e second
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step is shrinking the time window to 2/5 of the original one,
and then, the model’s prospective time and accuracy are
determined. Similarly, the third step denotes the time
window shrinking to 1/5 of the original size and then de-
termines the new model’s prospective time and accuracy.
After shrinking the time window, the new prediction per-
formance of the Seq2Seq is also displayed. +is time window
shrink mechanism enables the model to predict lane-
changing behavior using only a small part of the header data
of the entire lane-changing data, instead of using all lane-

changing data for lane-changing recognition. At the same
time, when processing the data, we found that, within 1/5 of
the data of the original window, lane-changing behavior did
not occur from a macroperspective. +erefore, it is rea-
sonable to use this part of data to predict whether the vehicle
will change lanes in the future.

When there is no middle label in the model, only the
accuracy is discussed. +e proposed model structure is
presented in Figure 10, and the loss and the accuracy after
the iteration are displayed in Figure 11.
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Figure 8: Fully connected neural network data flow diagram.

Input: training set and validation set
Output: classification results

(1) +e entire dataset is randomly divided into 10 parts
(2) Use one of 10 parts as a test set and the other 9 as a training set, and loop beginning at this step
(3) Train the model with 9 training sets and record the relevant data
(4) Test the model with the test set and record the relevant data
(5) Return to 2, select new test set and training set, the sets must differ from the previous ones, and repeat this process until all 10 parts

are used as a test set, and the loop ends
(6) Compare the real value and prediction value and calculate the prediction accuracy of each training and validation step
(7) Model training/verification complete

ALGORITHM 1: 10-fold cross-validation method.
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As presented in Figure 11, after iterating for 20,000
times, the model achieves the convergence state with the
accuracy of 0.9858 and the loss of 0.11, which shows that the
proposed model can recognize the driver’s lane-changing
behavior more accurately.

+e training process of the entire model after shrinking
the time window is given in Figure 9. Seq2Seq uses front data

of a time window to predict the caudal data. Because there
are series of different input and output data as well the
Seq2Seq layer which predicts the driver and vehicle status at
the next time point, so the Euclidean distance is used to
estimate the level of regression of the prediction result to the
real result. +e calculation formula is

Average deviation �

��������������������������������������������������������������

actual value1 − predictive value1( 
2

+ · · · + actual valuen − predictive valuen( 
2



n
. (18)

In Figure 12, the average Euclidean distance of the model
training for once and twice shrunk time window is pre-
sented. It can be noticed that, after 200 iterations, the average
deviation began to converge, and the deviation fluctuated
within a small range, which shows that the Seq2Seq achieved
a good prediction performance. Next, as already explained,
the Seq2Seq prediction results were fed to the input of the
fully connected network and subjected under the 10-fold
cross-validation method. +e obtained prediction accuracy
and the loss for once shrunk time window are presented in
Figure 13. When the number of iterations reached 20,000,
the model converged with the accuracy of 0.935 and the loss
of 0.12. +e model accuracy was reduced due to the data loss
caused by time window shrinking, but the prospective time
was extended. +e accuracy and the loss for twice shrunk
time window are presented in Figure 14, where the accuracy
increased to 0.938 and the loss was reduced to 0.11.

In Figures 15 and 16, the prospective time for once and
twice shrunk time window is, respectively, presented.
t1 andT1 denote the time needed that a vehicle changes a
lane, t2 andT2 are the data extraction window for the
Seq2Seq training and testing, t3 + t4 andT3 + T4 are the label
extraction window for the Seq2Seq training and testing, and
t3 andT3 are the time for predicting the lane changing,
which is also the prospective time. When T3 > t3, the pre-
diction method presented in Figure 16 had a longer pro-
spective time than that presented in Figure 15.

In the model verification, the method presented in
Figure 15 achieved the prediction accuracy of 0.935, and the
model presented in Figure 16 achieved the prediction ac-
curacy of 0.938. +us, the latter method had better pre-
diction performance. Besides, after statistical analysis of the
data used in the paper, we came up with such a mathematical
relationship:

T2 � T4 �
1
5
T1,

T3 �
3
5
T1.

(19)

+e time cost and the corresponding number of lane
changings are presented in Table 3, where the lane changing
conducted in the interval 3-4s accounted for 47% of the total
number of lane changings, which means the prospective
time was 1.8-2.4s. +erefore, the average perspective time of

the model is 2.1s. +is result indicates that the model could
predict the lane changing well and achieve a high prediction
accuracy. +e comparison between the time cost of lane
changing and the prediction time cost after sampling 50
times in all lane changing is presented in Figure 17, and the
presented result shows that the prediction time was much
shorter than the lane-changing time.

4. Model Validation

After the model was trained, all the weight parameters in the
prediction model were optimized. In order to test the
generalization ability of the developed model, a different
data was used for model training and testing. Also, different
drivers were invited to drive vehicles to collect data on
another route to obtain the test data. +e routes used for
validation data acquisition is presented in Figure 18. +is
route also started at the Chang’an University but ended at
the Xi’an Chengbei Passenger Station, and the route di-
rection was different compared with the one used for col-
lection of training data presented in Figure 2. In addition,
according to the data scale, the detailed structure and pa-
rameters of the cascade model, as shown in Table 4, were
determined.

+e model was validated using the same data pro-
cessing method as that used for model training, but the
validation included only one input data, without any label,
the data was used as the network input, and the focus was
on the comparison between the lane changing predicted
by the network and the real data. +e cross-validation was
performed using the data of 3000 lane changings. +e
accuracy of each validating batch and the average accuracy
are presented in Figure 19, where the model accuracy
decreased in the first few validating batches, but the
overall performance was good, and the average accuracy
of the test exceeded 93.5%. Moreover, the prospective
time was the same as that of the training. +e prospective
time for randomly extracted 50 adjacent lane-changing
data was 1/5 of the entire lane-changing time, as shown in
Figure 20.

+e proposed model was compared with the five most
commonly used prediction models. +e comparison results
are presented in Figure 21 and Table 5. +e performance
parameters of MST-Net all come from the literature [27],
so Table 5 does not include the calculation time of
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MTSDeepNet. +e accuracy of the Dynamic Bayesian
Network, the Decision Tree, and the SVM prediction was
75.0%, 84.0%, and 91.1%, respectively, and the accuracy of
the BP neural network and the MTSDeepNet was 91.6% and
92.0%, respectively. +e accuracy of the proposed Seq2Seq-
FC structure was 93.5%, which was better than that of the

other five algorithms. Furthermore, although the compu-
tation time of the proposed model is higher than several
other methods, the microsecond-level increase does not
affect applications such as vehicle anticollision which are
built on it.

To better illustrate the superiority of the model proposed
in the paper, it is necessary to illustrate the data and al-
gorithms used in the six comparison models. As shown in
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Figure 17: +e time cost for different numbers of lane changes in testing.

Table 4: Cascade model structure during validation.

Level Layer name Number of nodes
1 Encoder-repeat-decoder 37-20-37
2 Input Hidden1 Hidden2 output 41-25-8-2

Table 3: Number of lane changes and time cost.

TC 0-1 s 1-2 s 2-3 s 3-4 s 4-5 s
NoLC 70 1372 1848 3290 420
TC : time cost; NoLC : number of lane changing.

Figure 18: Validation data collection route.
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Table 6, it is the detailed information of the six models in the
experimental process.

+e word “other” means that the algorithms and data
used in the comparison model are from other literatures; on

the contrary, “this paper” indicates that the algorithms and
data used are all derived from this paper. +e accuracy of
MSTDeepNet comes from [28], and the BP, SVM, DBN, and
decision tree use the data which is extracted in this paper and
the algorithms used in other literatures. In the experiment,
we input the 41 values which are from second shrinking of
the time window into different classification algorithms to
obtain the above accuracy.+e comparison results show that
this paper has certain advantages in terms of data or pre-
diction model.

5. Conclusion

In this paper, a Seq2Seq-FC neural network for prediction of
driver lane-changing behavior is introduced. +e proposed
model has two levels, where the first level denotes the
Seq2Seq network whose function is to process the time series
data and the second level denotes a fully connected neural
network which works as a nonlinear classifier. In the pro-
posed prediction model, the vehicle kinematics data (VKA),
the drivers’ kinematics data (DKA), and the drivers’ phys-
iology data (DPA) are used as input data for the fully
connected network. In addition, a dynamic time window is
proposed to extract the features of the lane-changing

4

3

2

1

0

Ti
m

e c
os

t (
s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Lane-changing number

Time cost of predicting
Time cost of lane change

Prospective time comparison

Figure 20: Time cost for different numbers of lane changes in validating.
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Table 6: Details of the six comparison models.

Prediction
model

Data used in the
model

Algorithm used in
model

MSTDeepNet Other [28] Other [28]
BP +is paper Other [22]
SVM +is paper Other [15]
DBN +is paper Other [20]
Decision tree +is paper Other [35]
Proposed model +is paper +is paper

Table 5: Calculation time of different prediction models.

Prediction model Signal data calculation time Batch time (ms)
SVM 75us 22.8
DBN 64us 19.7
Decision tree 81us 24.7
Proposed model 160us 47.6
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process, and the method of time window shrinking is
successively used to train the prediction model and improve
the prospective time. Moreover, model testing was per-
formed by data different from that used for model training to
evaluate the model generalization ability. +e test results
showed that the proposed prediction model achieved a good
performance.

In the data collection process, 35 drivers took part, and
different routes were used for training and test data. +e
collected data consisted of 10,000 lane-changing samples, of
which 7000 samples were used formodel training, and the rest
was used for model validating. +e validating results proved
the effectiveness and stability of the proposed model.
Moreover, the proposed Seq2Seq-FC model was compared
with five common prediction models: BP neural network,
SVM, dynamic Bayesian network, decision tree, and
MTSDeepNet. +e comparison results showed that the
Seq2Seq-FC network achieved higher prediction accuracy and
longer prospective time than other models. +e results pre-
sented in this study can be helpful to improve the practical
effect of the ADAS and enhance lane-changing safety.

In our future research, we will improve the proposed
model from several aspects. Firstly, many researchers have
demonstrated that driver’s decision to change a lane is also
affected by vehicle type and driver’s driving skills [36, 37];
for instance, a car has different lane-changing factor com-
pared with a bus. However, in this study, we did not consider
vehicle type because we used the vehicles of the same type.
+erefore, in our future work, we will take different types of
vehicles into account. Secondly, although many different
road conditions were included in the traffic route, some of
the road types such as rugged mountain road and country
road were still not included, but they will be considered in
our future research. +irdly, since the neural network
considers the fuzzy relationship between input and output,
input data redundancy can be caused, and model calculation
speed can be reduced. However, the sensitivity analysis can
be used to eliminate some variables that have little effect on
model classification, which may make the model more
optimized and concise.
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As a result of the rapid growth of international trade, atmospheric pollution from transportation has been more topical than ever,
especially in dense hub port-cities. -e shipping industry should pay more attention corresponding to its contribution to local
atmospheric pollution.-is paper supports the application of data collected from the vessel tracking service systemwith a bottom-
up approach to generate a comprehensive 2019 local ship emission inventory at Port of Incheon. -e calculated emission
inventory presented the dominance of CO2 emission and the considerable contribution of NOx and SOx emissions, the significant
contribution of auxiliary engines during the hotelling at berth during the year of 2019. -en, based on calculated emission
inventory, this study suggested and simulated applicable green policies in the practice: (1) local emission control area realization,
(2) vessel speed reduction program, (3) application of cold ironing, and (4) establishment of a national integrated emission
platform. -e combination of the three first policies could help reduce the significant volume of emitted CO (29%), NOx (30%),
SOx (93%), PM10 and PM2.5 (64%), VOC (28%), NH3 (30%), and CO2 (30%).

1. Introduction

Transportation has been considered a remarkable contrib-
utor to atmospheric pollution [1]. -e recent decades have
detected a growing consideration of a leading global an-
thropogenic emissions contribution from in-port traffic [2].
With 90% of the global transport volume being carried by
ship, maritime air pollution has exacerbated local society’s
health because of the high volume of emissions exhausted as
well as the geographical condition. Approximately 70% of
ship emissions are discharged within a radius of 400 km
from the coastline [2]. As the result of the hub-port trend,
ships often concentrate on well-located ports, where they
often are situated close to busy industrial zones and densely
populated cities. In-port ship emissions could supply
55–77% of total local emissions [3, 4]. -erefore, these port-
cities and their hinterlands are grappling with a great burden
from transport emissions and infrastructure [5]. It is esti-
mated that approximately 230 million people, living in the
top 100 world ports, are directly affected by exhaust shipping

emissions [6]. -us, the port industry has kept the mo-
mentum in green reform by reducing ship emissions and
performs more of their social responsibility under higher
pressure from public authorities [7, 8].

More much than it seems, it is stated that there are 450
different air pollutants which are emitted by ship engine
combustion [9]. Greenhouse gases (GHGs), carbon mon-
oxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx),
and particulate matter (PM) are stated as key ship-source air
pollutants [10, 11]. Shipping SOx and NOx contribute
markedly roles compared to other air pollutants in total
national emissions [12]. Besides a negative affection to global
climate, numerous research articles have proved a consid-
erable negative tie between closed-to-land ship emissions
and the local community’s health (lead to asthma, respi-
ratory and cardiovascular diseases, lung cancer, and pre-
mature death) [13]. Exhausted PM emissions from shipping
activities are considered the main reason for the annual
60,000 cardiopulmonary and lung cancer deaths in Europe,
East Asia, and South Asia littoral regions [14].
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To reduce air pollution from ships, emission control
legislations were contemplated by international regulation-
making agencies. Likewise, the International Maritime
Organization (IMO) is reducing ship emission through its
International Convention on the Prevention of Pollution
from Ships (MARPOL) Annex VI. -e sulphur content in
the fuel used onboard is reduced from 3.5% m/m to 0.5% m/
m from 1 January 2020 [15]. -e sulphur directive in the
European Union (EU), the fourth federal standard, also
called Tier 4, in the United States (U.S.), and emission
control areas (ECAs) in China are promulgated to follow this
regulation [16–18]. It is reported that the implementation of
these regulations helped reduce 77% SOx, 23% NOx, and
27% PM10 emissions in the EU by 2017, compared with 2000
[19]. Despite the expected expansion in shipping, stricter
emissions regulations could reduce the volume of SOx,
PM2.5, and NOx emissions by 87%, 92%, and 56%, re-
spectively, between 2015 and 2050 [20].

In Korea, the public has been enhancing national air
quality through its 10-year comprehensive plans since the
1990s. Air quality management basic plan during 2015–2024
is established to manage an integrated air management
system. Besides, in 2017, an other comprehensive plan of
particular matter management was announced with an
epicenter of 30% PM emission reduction and reinforcement
control of the volatile organic compounds (VOCs) until
2022. [21] From December 2019, a vessel speed reduction
(VSR) program has been conducted to reduce the PM level
during winter in five key ports of Korea, including Port of
Incheon (POI). A VSR area in each port spans 20 nm in
radius [22]. However, almost all national policies and green
measures are decided with the support of annual national
emission inventories provided in the clean air policy support
system (CAPSS), using national fuel supply statistics.
However, these inventories revealed inconsistency and
uncertainty with other local academic research articles,
because of no actual traffic data [23]. Quantifying emitted
emissions from shipping activities is a stride to explore the
cause and scale of marine pollution [24]. It also provides
valuable statistics to anticipate the future trend of pollution
and then establishes counter-measures and policies [25].
-erefore, generating a more reliable in-port ship emission
inventory is a pressing issue for producing appropriate
regional policies and measures related to air pollutant
management at ports.

In this study, a comprehensive annual ship emission
inventory of target pollutants of CAPSS at POI in 2019 was
estimated, according to geographical areas, operational
phases, and ship types. -is study applied another ship
tracking system named vessel tracking service (VTS), op-
erated by port authorities or coast guards to keep track of
ship traffic and ensure navigational safety in the port area.
-is emission inventory applied a bottom-up approach with
both EO and FC methods to see the difference in the es-
timating results of the two methods and then achieved a
comprehensive multidimensional understanding of air
pollutants from in-port ship operation. -en, applicable
green policies for the POI situation in the practice will be
suggested and simulated to evaluate their effects based on the

calculated emission inventory.-e remainder of this study is
grouped as follows: Section 2 summarizes the previous
studies related to ship-related emissions and then points out
the research demand of this paper. Materials preparation is
introduced in Section 3. Section 4 describes two applied
methodologies for ship emission prediction. Section 5
presents and discusses calculation results. Several policies to
reduce the volume of emissions emitted from ships operated
at POI are suggested and simulated in Section 6 and Section
7 is the conclusion of this study.

2. Literature Review

Numerous previous studies have suggested estimation
methods to generate ship emissions. -e mainstream
methods to prepare ship emission inventory can be broadly
categorized into two main approaches: top-down approach
(fuel-based) and bottom-up approach (activity-based). In
the top-down approach, exhausted ship emissions are es-
timated from analyzed statistically marine fuel sales and
fuel-related emission factors [26]. -e marine fuel sale re-
ports are mainly published by the Energy Information
Administration, the International Energy Agency, and the
United Nations Framework Convention on Climate Change
[27]. -is approach is recommended for a low level of traffic
data availability situation. Due to the positive correlation
between fuel consumption and emissions discharged from
engine combustion, this approach would be the most ac-
curate method if researchers could be confident about the
marine fuel sales data collected. However, it proved that
there is a significant discrepancy between banker fuel sales
statistics and the actual fuel used by the global fleets [28].-e
main reasons behind this difference could be the practice of
offshore tinkering or the inaccurate fuel statistics in several
countries [27].

Due to difficulties in collecting reliable inputs for the
top-down approach, the bottom-up approach is recom-
mended as another choice if accurate sailing statistics (e.g.,
actual travel distance with speed and port calling records
with real-time operations) are available. Also, this method
requires a higher level of input parameters such as detailed
ship technical data (e.g., ship types, engine characteristics,
and design information). An amount of emitted emissions is
calculated for each specific ship activity and then scaled up
over activities and trips to figure out the total volume of
emissions [29]. -e generic emission estimation equation of
bottom-up can be expressed in the following equation:

E � Energy.EF(.CF), (1)

where E is the emission amount of certain pollutants from
the ship’s engines; Energy is the energy demand; EF is the
emission factor; and CF is a controlling factor used when the
ship is equipped with reduction technologies or fuel cor-
rection factors. In general, the estimation of energy demand
can be dichotomized into the following:

(a) -e total energy output (EO) of operated engines
during the operating time, by applying the following
equation:
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Energy � P.LF.T. (2)

(b) -e total engines’ fuel consumption (FC) during the
operating time, using the following equation:

Energy � SFOC(.LF).T, (3)

where P denotes engine power; LF denotes load factor; T
denotes activity time; and SFOC denotes specific fuel
consumption.

Bottom-up approach ship-related emission studies since
2009 are summarized in Table 1. As shown in Table 1, the EO
method dominated the bottom-up approach for estimating
ship-related emissions, especially from 2014. -e most
considered pollutants in previous studies are CO2, NOx, CO,
SOx, and PM.

It is widely agreed that the bottom-up approach is
generally more accurate than the former [52]. -erefore,
over the last two decades, the latter has been adopted fre-
quently by researchers [26]. Inaccuracy estimation from the
top-down approach at the national level could lead to a
completely different understanding and measures at the
regional air quality management level. -erefore, at the
regional level, the bottom-up approach is recommended to
be a reliable source to establish effective green policies for
better air condition [40, 53, 71, 72]. However, for larger
scales, applications of the bottom-up approach have been
finite because of data gaps and anomalies [52, 54]. Also, the
diversity and details in input information could help im-
prove the reliability of results; however, its corresponding
complexity also increases the level of uncertainty, which is
associated with the different applied models and assump-
tions, and how to collect the set of inputs [27, 29]. Especially,
on a global scale, the use of average input parameters such as
different load factors, operational activity time, and emission
factors for a different size, age, and type of ships leads to
considerable uncertainty in estimation [54, 73].

Recently, a vessel tracking system named automatic
identification system (AIS), proposed in the IMO Interna-
tional Convention of Safety of Life at Sea (SOLAS) for better
identification of ships, has been widely applied in the stream
to enhance estimations [44, 46, 49, 51, 52, 56, 74] and
considered as “the best method to report the activities and
movements of ships” [26]. -is system is equipped com-
pulsively on passenger ships of all sizes and commercial
ships with 300 gross tonnage (GT) or more operated at sea.
-erefore, high-resolution ship movement AIS data could be
a fount of reliable relative ship operational profile as vessel
travel time and average speed between waypoints on the sea
at short-time intervals and identify ship routes. Also, AIS
collects and transmits ship characteristics as IMO identifi-
cation number, size, weight, etc. [52]. Hence, ship’s activities
are better geographically characterized and analyzed, and
consequently, it improves the reliability of emission in-
ventory investigation. Despite the abovementioned benefits,
the AIS system does not cover ships with less than 300GT.
Besides, with ships greater than or equals to 300GT, in
several cases, AIS data could not be fully accessible. Time

gaps also occur in several cases if temporary signal dis-
ruption happens, resulting in erroneous position reports.

During the last decades, several investigations about
Korean port-related ship emissions have been conducted
domestically. At the national level, under CAPSS, national
air pollutants emission inventories, including in-port ship
emissions, had been updated annually, and the latest update
is for the year 2016 [75]. However, CAPSS only considers
hotelling at anchorage and berth and maneuvering process
in port emission. -e equations with values of parameters,
provided by NIER [76], follow a top-down approach based
on fuel consumption and are shown in the following
equations:

E � 
ph

FCph × EF,
(4)

FChotelling � N × DF × 0.79 × 0.2, (5)

FCmanoeuvring �
(2 × N × D)

FE
, (6)

where FC represents fuel consumption; N represents annual
total ship call; DF is average daily fuel consumption by ship
type (ton/day); D represents average travel distance in port
(km); FE represents average fuel economy by ship tonnage
(km/kL); 0.79 is the average hotel time of a ship call per day;
and 0.2 means the fuel consumption of hotelling at an-
chorage and berth will be assumed as 20% of the fuel
consumption of full operation.

At the regional level, Shin and Cheong [39] generated the
GHGs ship emissions at Port of Busan (POB) with a top-
down approach. Chang et al. [44] firstly used the bottom-up
approach to assess the GHGs emissions from ship operations
at the Port of Incheon (POI) from January to October 2012
based on the FC method. Later, Chang et al. [49] continued
to apply the FC method to update NOx, SOx, and PM
emissions released from ships at POI during the same pe-
riod. With the same method, Khan et al. [61] collected ship
traffic data at POI from the AIS system to figure out ship
GHG emissions, however, during only October 2014. Kwon
et al. [1] developed a system for emission estimation and
then considered the amount of CO, NOx, SOx, and PM10
emitted from ships around POI only in December 2017. Lee
et al. [70] estimated a non-CO2 emission inventory in POI
during 2017 using VTS data and the EO method.

-is paper supports the idea of the application of VTS
data in the bottom-up approach studies as a promising
confident alternative suggested by Lee et al. [70]. However,
the contribution of this paper is that

(1) On one face, this paper considers an FC method,
which was used to estimate emissions in POI several
times before by Chang et al. [44], Chang et al. [49],
and Khan et al. [61]. However, all of these three
papers did not provide an up-to-date and full-year
estimation. On the other hand, this paper also
considers the EO method applied by Lee et al. [70];
however, this paper investigates additionally CO2
emission, which is the most important pollutant but
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Table 1: Summary of bottom-up approach studies.

Author Method Operation modes Considered pollutants General estimating
equation

Kwon et al. [1] EO Cru, Man, Hot NOx, CO, SOx, PM10 E� P. LF. T. EF

Song [2] EO Cru, Man, Hot NOx, CO, SOx, CO2, CH4, N2O, HC, PM10,
PM2.5 E� P. LF. T. EF. CF

Sanabra et al. [5] EO Cru, Man, Hot SO2, PM2.5, NOx, VOCs E� P. LF. T. EF
Merk [6] EO Cru, Man, Hot CH4, CO, CO2, NOx, PM10, PM2.5, SOx E� P. LF. T. EF

EEA [12] EO Cru, Man, Hot NOx, CO, SOx, NMVOC, TSP, PM10,
PM2.5,. . .

E� P. LF. T. EF

Song and Shon [23] EO Cru, Man, Hot SO2, NOx, CO2, VOC, PM E� P. LF. T. EF

ICF International [30] EO Cru, Dec, Man, Hot NOx, CO, SOx, CO2, HC, CH4, PM10, PM2.5,
N2O

E� P. LF. T. EF

Corbett et al. [31] FC N/a CO2 E� SFOC. LF. T. EF
Joseph et al. [32] EO Cru, Man, Hot NOx, SO2, TSP, PM10 E� P. LF. T. EF
Deniz and Kilic [33] FC Cru, Man, Hot NOx, SO2, CO, CO2, VOC, PM E� SFOC. T. EF
Deniz et al. [34] EO Cru, Man, Hot NOx, SO2, CO2, HC, PM E� P. LF. T. EF
Howitt et al. [35] FC N/a CO2 E�P. LF. SFOC. T. EF
Kiliç and Deniz [36] EO Cru, Man, Hot NOx, SO2, CO2, HC, PM E�P. T. EF
Lonati et al. [37] FC Man, Hot NOx, SOx, CO, VOC, PM10 E� SFOC. T. EF
Tzannatos [38] EO Man, Hot NOx, SO2, PM E� P. LF. T. EF

Shin and Cheong [39] FC Man, Hot CO2, N2O, CH4

Man: E�D. FE-1. EF
Hot: E� (FC. 0.2). 0.79.

EF
Villalba and Gemechu [40] EO Man, Hot CO2 E� P. LF. T. EF
Chang and Wang [41] FC Dec NOx, SO2, CO2, HC, PM E� SFOC. LF. T. EF
Berechman and Tseng [42] EO Hot NOx, CO, SO2, CO2, HC, VOC, PM10, PM2.5 E� P. LF. T. EF
Yau et al. [43] EO Cru, Dec, Man, Hot NOx, SO2, PM10 E� P. LF. T. EF
Chang et al. [44] FC Cru, Man, Hot CO2 E� SFC. LF. T. EF
McArthur and Osland [45] EO Cru, Dec, Man, Hot NOx, SO2, PM10 E� P. LF. T. EF
Ng et al. [46] EO Cru, Dec, Man, Hot SO2, NOx, CO, VOC, PM10 E� P. LF. T. EF
Saraçoğlu et al. [47] EO Cru, Man, Hot NOx, SO2, CO2, HC, PM E� P. LF. T. EF
Tai and Lin [48] FC Cru, Man, Hot NOx, SO2, CO2, HC, PM E�T. FE. EF
Chang et al. [49] FC Cru, Man, Hot NOx, SO2, PM E� SFC. LF. T. EF
Liu et al. [50] FC, EO Man, Hot SO2 E� FC. EF
E� P. LF. T. EF. CF
Goldsworthy and Goldsworthy
[51] EO Cru, Man, Hot NOx, CO, SO2, CO2e, PAH, VOC, PM10,

PM2.5 E� P. LF. T. EF

Coello et al. [52] EO N/a CO2, NOx, CO, NMVOC, SOx, PM E� P. LF. T. EF
Tichavska and Tovar [53] EO Cru, Man, Hot CO2, NOx, CO, SOx, PM2.5 E� P. LF. T. EF
Maragkogianni et al. [54] EO Man, Hot NOx, SOx, PM E� P. LF. T. EF
Cullinane et al. [55] EO Man, Hot NOx, CO, SO2, CO2, HC, PM10, PM2.5 E� P. LF. T. EF

Fan et al. [56] EO N/a NOx, CO, SO2, NMVOC, PM10, PM2.5, OC,
EC, V, Ni E� P. LF. T. EF. CF

Papaefthimiou et al. [57] EO Man, Hot NOx, SO2, PM2.5 E� P. LF. T. EF
Chen et al. [58] EO Cru, Man, Hot NOx, CO, SO2, HC, PM10, PM2.5 E� P. LF. T. EF. CF
Styhre et al. [59] EO Cru, Dec, Man, Hot CO2e E� P. LF. T. EF
Alver et al. [7] EO Cru, Man, Hot NOx, SO2, HC, PM10 E� P. LF. T. EF
Knežević et al. [60] EO Man, Hot NOx, SOx, VOC, PM E� P. LF. T. EF
Khan et al. [61] FC Cru, Man, Hot CO2 E� SFC. LF. T. EF
Sun et al. [62] EO Cru, Dec, Man, Hot NOx, CO, HC, CO2 E� P. LF. T. EF
Cao et al. [63] EO Cru, Man, Hot NOx, CO, SO2, CO2, HC, PM10, PM2.5 E� P. LF. T. EF. CF

Zhang et al. [64] EO Cru, Dec + Man,
Hot NOx, CO, SOx, CO2, HC, PM10, PM2.5 E� P. LF. T. EF. CF

Ivce et al. [65] EO Cru, Man, Hot CO2 E� P. LF. T. EF
Wan et al. [66] EO Cru, Dec, Man, Hot SOx, NOx, PM10 E� P. LF. T. EF. CF
Stazić et al. [67] EO Cru, Man, Hot SOx, CO2, VOC, PM E� P. LF. T. EF

Wan et al. [68] EO Cru, Dec, Man, Hot NOx, CO, SOx, CO2, HC, CH4, NMVOC,
PM10, PM2.5 E� P. LF. T. EF. CF

Ekmekçioğlu et al. [69] EO Cru, Man, Hot CO, CO2, NOx, SO2, PM, VOC E� P. LF. T. EF
Lee et al. [70] EO Cru, Man, Hot CO, NOx, SOx, PM, VOC, NH3 E� P. LF. T. EF
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was not considered by Lee et al. [70]. -en, the paper
compares the results from the two methods to figure
out the gap between them. Hence, it provides a
comprehensive annual ship emission inventory by
different calculating methods, which covers all ships
operated at the port during all months in one cal-
endar year as well as focuses on all key pollutants of
CAPSS [77]: CO2, CO, NOx, SOx, PM (including
PM10 and PM2.5), VOCs, and ammonia (NH3);

(2) -is paper suggests several available policy impli-
cations to reduce the local ship-related emissions and
then simulated the effects of them if they will be
conducted in the future.

3. Materials Preparation

3.1. Geographical Scope. Incheon metropolitan city is South
Korea’s third most populous city after Seoul and Busan and
also is the gateway of the northwestern area and Seoul
capital area, the world’s fourth-largest metropolitan area by
population, with the Yellow Sea. After becoming an in-
ternational port in 1883, POI has been the country’s lo-
gistics hub that handles and distributes both general
cargoes and containers. It is ranked as the global 27th
busiest port in terms of cargo volume and the 50th biggest
container port [78]. Currently, POI has expanded into 125
berths, with a total of 26,031 meters of berth length, dis-
tributed to five main component ports as North Port, Inner
Port, Coastal Port, South Port, and New Port. -e North
Port is an industrial port specialized in managing raw
materials as scrap iron, feed-by products, hardwood, etc.
With a lock-gate, a calm water level in the Inner Port is
available for handling semiconductor equipment, auto-
mobiles, and precision machine parts. It also is a multi-
purpose port that serves other cargoes as grain, fruit, and
general cargo. -e South Port is available for handling
small and medium containers and general cargoes. -e
New Port is under-constructed and specialized for han-
dling medium and large containers. -e Coastal Port, with
international passenger and ferry terminals, focuses on
serving passenger cruise ships and car ferries. Also, around
these component ports, POI operates three smaller spe-
cialized ports named Geocheom-do Port, Song-do Port,
and Yeongheung-do Port. -e Song-do Port is specialized
in fossil energy products, while the Geocheom-do Port is
used for handling sand. -e Yeongheung-do Port is con-
structed to support Yeongheung -ermal Power Plants.
-e capacity of POI is described in Table 2.

-e POI geographical segments are presented in Fig-
ure 1. -e study not only covered ship operation inside the
port boundary but also the “affected zone” (within 5 km
from the port boundary) to consider the effect of close-to-
port emitted ship emissions, following EPA [80].

3.2. Activity Phase. A typical ship call often contains con-
secutive activity phases, which consist of a series of con-
tinuous activities that have similar features, categorized as
“cruising, “maneuvering,” “hotelling at anchorage,” and

“hotelling at berth.” Due to the VSR program was applied for
a few last days in December 2019, the “decelerating phase” is
assumed as not considered in this study. As defined in ICF
[30] and by Song [2], at the “cruising” phase, the ship moves
inside the port boundary, and all engines keep running.
“Maneuvering” is the time that the ship transits between the
breakwater (intersection of open sea and inland waterway)
and berths at a slower speed. Even with tug assist, the
propulsion engines are still in operation. “Hotelling at an-
chorage” is a period of waiting for berth call while “hotelling
at berth” is the time that ships are docking at berth. In both
“hotelling at anchorage” and “hotelling at berth” phases,
only auxiliary engines (including boilers) still work with a
peak load for providing on-board power. In the “hotelling at
berth” phase, the ship can use shore power instead of turning
on auxiliary engines, called cold ironing; however, cold
ironing has been still not implemented in POI yet. -e
average speed and travel distance in each phase were pro-
vided by a local pilot company. Table 3 summarizes detailed
activity phases information in POI.

3.3. Ship Classification. Ship characteristics (e.g., speed,
engine size, and usage) vary considerably depending on the
ship type. Previous studies classified ships in different ways;
however, the common standard applied is a type of cargoes
carried on the ship. -is study followed ICF’s classification
with 11 types of ships [30]. However, in POI, there are eight
types available, involving bulk carrier, container ship, cruise
ship, general cargo, reefer, roll-on/roll-off (RORO), tanker,
and miscellaneous.

3.4. Data Collection and Analysis

3.4.1. Data Source. Due to the limitations of the AIS system
mentioned above, in this study, in-port ship traffic data were
collected from the VTS-based Korean Port Management
Information System (Port-MIS) to consider ships with GT
less than 300. A total of 16,677 ship calls were recorded from
Port-MIS, as shown in Table 4. Tanker fleet dominated ship
calls at POI in 2019 with 42.6% of the total ship calls, fol-
lowing by the general cargo fleet and container ship fleet
with 20.2% and 17.3%, respectively. Reefer fleet only con-
tributed negligibly to total ship calls with 0.02% of total ship
calls.

3.4.2. Data Cleaning and Make-Up. A total of 47,626 sta-
tuses describing the entire marine traffic at POI during 2019
were collected. -ese statuses were noted in order of oc-
currence inside POI, which is different from the ship call’s
timeline format. Two consecutive events in the same ship call
usually are several hours apart; then, a ship call can last from
a few hours to a few days. Also, a high level of traffic ex-
aggerated the complexity level of the original data and made
it an arduous task to handle nagging details. -erefore, a
code, combined from call sign and time points, was applied
to resort original data corresponding to the timeline of each
ship call.
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Waypoints are used to present ship activities in data. A
typical ship call contains waypoints as (1) entrance, clearance
from the port area; (2) anchoring, collecting anchor; (3)
berthing, unberthing; and (4) shift within the port area
between berths (if need). A combination of two consecutive
waypoints identifies a corresponding activity phase of the
ship call. -e time information of each waypoint is provided
in the YYYY/MM/DD HH: MM format. -e time of an
activity phase is identified as the subtractions of 2 corre-
sponding waypoints’ time. -e average moving time and
distance of the cruising and maneuvering process for each
target port were calculated. In several cases, when only
arrival and departure times were reported in the data, the
total time of ship spent on the port is the difference between
arrival time and departure time. Later, the corresponding
average moving time and distance for the target port are
applied, and then the hotelling time at the berth of that ship
is the subtraction of average cruising and maneuvering time
from the total time.

3.4.3. Ship Basic Data. Basic information about the ship,
involving name, ship type, engine type, propulsion engine
power, weight tonnage, and design speed, was obtained from
the Korea Ship Safety Technology Authority and Korean
Register. For missing propulsion engine power data, a simple
linear approach to modeling the relationship between ship
weight tonnage and propulsion engine power is applied by
ship types. Linear models are shown in Figure 2. -e co-
efficients of determination (R2) are relatively high (>0.85),
showing the high reliability of prediction.

Besides, installed auxiliary engine power also was not
collected completely because there is a lack of information
from manufacturers. However, it is impossible to apply a
linear approach to estimate auxiliary engine power because
there is no connection between installed auxiliary engine
power and speed [51]. Also, it is difficult to recognize the
using level of auxiliary engines in each activity phase during
a ship call in the practice. -erefore, in previous studies,
installed auxiliary engine power is commonly estimated by
applying the default ratios by ship types with the total
propulsion engine power of the ship [51]. -is study applied
the ratios revised from ICF [30], which is shown in Table 5.

Lastly, the real values of revolutions per minute (RPM)
of engines also were obtained from the Korea Ship Safety
Technology Authority and Korean Register. RPM value of
the engine helps to classify those engine speed designations:
high-speed diesel (HSD), medium-speed diesel (MSD), and
slow-speed diesel (SSD). -en, based on engine speed
designations, proper EF values are matched in the calcu-
lation. In the case of missing values, they were made up of
average values, as shown in Table 6.

3.4.4. Activity Time. -e ship transit time was calculated
with the actual speed of the ship and the representative travel
distance of each port (from border to berth). -e average
transit time by the port is shown in Table 7. Among ports in
POI, Inner Port shows the largest value because of a lock-
gate.

-e actual times in hotelling at anchorage and berth were
obtained from the difference in time between anchoring,
collecting anchor, and berthing, unberthing. To avoid
anomalies, the ceilings are applied as 7 days (168 hours) for
hotelling at anchorage and 14 days (336 hours) for hotelling
at berth. -e average docking time by ship type after ap-
plying ceilings is shown in Table 8. Almost average values by
ship type (except container ship’s average time) are con-
siderably greater than the national average time applied in
CAPSS (0.79 days∼18.96 hours). -ese differences may lead
to considerable variances between estimated results and
national estimations, especially tankers, general cargo ships,
and container ships dominated the total number of ship calls
at POI with the north of 80%.

4. Methodology

To provide a multidimensional overview of in-port ship
pollution, this study applied both EO and FC methods to
figure out port emissions emitted in POI during 2019 with
the activity time data collected from the VTS system. -e
methodology of the bottom-up approach was developed by
improving the general estimation equations from the pre-
vious works, which are reviewed in the literature review.-e
total volume of emissions discharged from a ship call is the
aggregation of emissions from the combustion of all engines
operated in all activity phases. -en, emission results from
calls were scaled up to reach the entire POI emission in 2019.
Also, CF is used for adjusting emission factors, and in this
study, CF will be assumed to be 1, meaning there are no
emission reduction technologies installed on ships.

4.1. EOMethod. EOmethod adheres to the generic equation
mentioned in the literature review part. -e energy demand
here considers the energy output of the engine over the
operating time. -e equation for the EO method applied in
this study considers all activity phases, air pollutants, and
engines in a ship call as follows:

Es,i � 
ph,j

Ts,ph 
j

Ps,j × LFs,j × EFi,j,ph ⎡⎢⎢⎣ ⎤⎥⎥⎦, (7)

where E represents the total volume of emission emitted over
a complete ship call (g); T represents activity time (hour); P
represents engine power (kW); LF represents load factor
(%); EF represents emission factor (g/kWh); s represents
ship call; i represents pollutant; ph represents the activity
phase of a ship call (hotelling at anchorage, cruising, ma-
neuvering, and hotelling at berth); and j represents engine
type (propulsion engine and auxiliary engine).

-e propeller law is applied to calculate the propulsion
engine load factor (LFm), as shown in the following equation:

LFm �
AS
MS

 
3
, (8)

where AS� ship actual speed (knots) and MS� ship maxi-
mum speed (knots), which is defined by the manufacturer.
In the case of the auxiliary engine load factor (LFa), because
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it varies by ship type and activity phases, and the data
sources are limited, therefore, ICF [30] also suggested default
LFa assumptions in his study. -is study referred to these
values for calculation.

-e non-CO2 EFs used here were referred from Lee et al.
[70]. For CO2 emission, the carbon fraction in the fuel used
is defined at 86.8% by weight, and a factor of molecular
weight of C and CO2 equals 44/12. Using SFCs referred from
ICF [30], the EFs for CO2 emission are calculated as

CO2 EF � 0.868.
44
12

.SFC. (9)

As an international hub port, most ships visited POI are
defined as international ocean-going ships; therefore, in-
ternational EFs estimation methods suggested in them are
deemed adaptable for this study. Applied EFs in the EO
method are summarized in Table 9.

4.2. FCMethod. Similar to the EO method, the FC method’s
equation adheres to the generic equation and considers fuel
consumption of the engine over the operating time to figure
out energy demand. -e detailed equation for fuel con-
sumption applied in this study is referred from Corbett et al.

Table 2: Summary of POI’s capacity. Source: [79].

No. Port
Handling Capacity

Main productsMax. Ship
DWT Berths Berth length

(m)
Bulk

(1000RT)
Container
(1000TEU)

1 Inner Port 50,000 46 9,838 38,161 General cargo, iron, grains
2 South Port 100,000 25 3,642 17,600 762 Chemical, cement, sand
3 Coastal Port 50,000 9 1,429 Passenger, oil, LPG

4 North Port 100,000 26 6,421 13,900 Oil, general cargo, wood
product

5 New Port 3,000 6 1,600 2,100 Container
6 Song-do 75,000 4 1,300 LPG, oil

7 Yeongheung-
do 200,000 5 1,126 14,690 Bituminous coal, limestone

8 Geocheom-do 5,000 4 675 8,320 Sand
Summary 125 26,031 92,671 2,862 28,735.5

Northern port

Floodgate
Inner port

Southern port

Passenger terminal

Incheon new port

Phase 1 of incheon
new port

Figure 1: Geographical segments of Port of Incheon. Note: images were downloaded from the Internet and Incheon Port Authority (IPA)
website.

Table 3: Ship activity segments and features in POI.

Phase category Propulsion engine Auxiliary engine Boiler Avg. speed (knots) Travel distance (nm)
1 Hotelling at anchorage Off On On 0 0
2 Cruising On On Off 12 Varies by berth
3 Maneuvering On On On Around 3.5 1
4 Hotelling at berth Off On On 0 0
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[31]; then, the final equation for the FC method is formed
and shown in the following equation:

Es,i,ph � 
ph,j

FCph,j × EFj,i,ph

� 
ph

Tph × MFph ×
AS
MS

 
3

× EFm,i,ph + AFph × EFa,i,ph  .

(10)

5. Results and Discussion

-is section reports a multidimensional bottom approach in-
port ship emission inventory in POI during 2019, including
two inventories estimated under the two methods mentioned
above.-ese inventories figured out in-port ship emissions in
seven geographical segments (at sea, five main ports, and
other specialized ports), by eight types of air pollutants and by
four ship activity phases. -ere was considerable variance
between results from the two methods. EO method reported
201,612.26 tonnes of CO2, 323.85 tonnes of CO, 4,097.79
tonnes of NOx, 1,237.92 tonnes of SOx, 145.06 tonnes of
PM10 (including PM2.5), 133.32 tonnes of PM2.5, 136.21
tonnes of VOCs, and 0.44 tonne of NH3, while FC method
showed 193,981.71 tonnes, 452.88 tonnes, 3,573.27 tonnes,
1,224.01 tonnes, 88.21 tonnes, 82.33 tonnes, 116.09 tonnes,
and 0.43 tonne, respectively. -e total fuel consumption for
ships at POI during 2019 (reported in FC method) was nearly
61,193 tonnes.

In general, the EO method reported higher values than
the FC method’s value with almost all pollutants, except for
CO emissions. Also, there are big gaps (in percentage)
between the calculated volumes of NOx, CO, and PM
emissions of the two inventories. However, both inventories
mutualized in the rank of emitted pollutants in POI’s
emission inventory. CO2 was the dominating air pollutant in
both inventories at POI during 2019, accounting for about
97% of the total amount of emitted emissions. Among the
rest, NOx was the most serious air pollutant in both in-
ventories at POI during 2019, which covers over 64% of the
total amount of non-CO2 emissions, followed by SOx
emissions with over 20%. -e contribution of CO ranged
from 5–8%. NH3 just accounted for nearly 0.01% of the total
amount of non-CO2 emissions. Other pollutants’ shares in
both inventories were also insignificant with less than 2.5%

of the total non-CO2 volume.-e comparison of EOwith FC
methods about non-CO2 emissions is shown in Figure 3.

Figure 4 presents the inventories of ship emission by
geographical areas during 2019, considering the sea area
(when ships moved on the area of the sea from affected zone
to berths) and port areas (when ships docked at berths,
involving five main component ports and three others). Both
inventories agreed that almost all ship emissions were
exhausted on sea area. Also, the big difference between the
two inventories happened in sea area (7%), while they
showed similar volumes at berths. -e emission share on sea
area is 53–55% of the total amount of emissions. Among port
areas, Inner Port was the most polluted port, accounting for
14% of the ship emissions, followed by North Port and South
Port with a ratio of 9% and 7%, respectively. Coastal Port
shared the smallest proportion, compared to five main
component ports, with almost 4% of the total amount of
emission.

-e great contribution of Inner Port, North Port, and
South Port to the air pollution at POI has been anticipated
because they are the most important and busiest ports at
POI. With a lock-gate, the Inner Port is the ideal port for
handling car ferries; therefore, the RORO fleet (mainly car
ferries) supplies mainly for the first rank of Inner Port. -e
tanker fleet was distributed in all ports of POI; however, the
concentration in a large number of tankers in North Port
pushed it to become the second polluted port at POI. In the
case of South Port, general cargo and container ship fleets are
the main emission contributors there.

Next, Figure 5 illustrates the emission contribution by
ship types at POI during 2019. Tanker fleet was agreed as the
most polluted fleet at POI, with around 29% of total in-port
emission volume, followed by general cargo, RORO, and
container ship. However, two inventories show a dissimilar
view in the ranks of these three groups. While EO inventory
reports that second rank belongs to container ship fleet,
which contributed up to 20.1% of emission volume, followed
closely by RORO fleet and general cargo fleet with the ratio
of 19.8% and 19.6%, respectively; in case of FC inventory, the
RORO fleet raised to occupy the second position with 20.3%,
pushed general cargo fleet down to the third rank with
19.8%, and container ship fleet only contributed 19.7% of the
total amount of emissions, ranked fourth.-e top-4 polluted
fleets supplied 88.7% of the total emission volume. In both
inventories, the bulk carrier fleet also was a considerable
polluted source, which contributed over 8.8% of the total

Table 4: Ship call statistics (unit: ship call). Source: Port-MIS.

Ship types North Port Inner Port Coastal Port South Port New Port Others Total
Bulk carrier 253 304 — 104 — — 661
Container ship 27 13 7 968 1,871 — 2,886
Cruise ship 6 3 6 7 — 1 23
General cargo 1,056 696 149 1,406 47 20 3,374
RoRo 2 777 738 330 — — 1,847
Reefer 2 — 1 1 — — 4
Tanker 4,144 473 639 836 165 847 7,104
Miscellaneous 113 61 77 204 29 294 778
Total 5,603 2,327 1,617 3,856 2,112 1,162 16,677
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amount of emission, ranked fifth. Other fleets present minor
contributions, fewer than 2%. -erefore, IPA should focus
on emission reduction from tanker, general cargo, RORO,
and container ship.

-en, Figure 6 shows ship emission inventories by ac-
tivity phases. Although the rankings and contribution (in
percentage) of cruising and hotelling at berth are inter-
changed in two inventories, however, it is undeniable that
they overshadowed others in total emitted emissions. During
hotelling at berth, the propulsion engine is in respite, and
then auxiliary engines monopolize in emitting all emissions.

-erefore, besides the implementation of ECA, to reduce the
volume of in-port ship emissions, efforts to cut down
emissions during cruising and hotelling at berth phases are
indispensable.

6. Ship-Related Emissions Reduction
Policies at POI

As discussed above, several policies are designed to reduce
the volume of emissions emitted from ships operated at POI
as (1) local ECA realization, (2) VSR program motivation,
(3) application of cold ironing, and (4) establishment of a
national integrated emission platform. In this study, the
above-calculated EO emission inventory is adopted as the
baseline emission inventory and solutions (1)–(3) are sim-
ulated and evaluated based on EO method if assuming that
these suggested policies are applied at POI. -e potential
benefit of solution (4) also is discussed.

6.1. Assessing the Environmental Benefit of Designating the
Local ECA. -e great contribution of NOx and SOx emis-
sions among non-CO2 emissions to air pollution at POI
suggests the necessity of designating a local NOx and SOx

Table 5: -e ratio for estimating auxiliary engine power. Source:
ICF [30].

Ship type Auxiliary to propulsion ratio
Bulk carrier 0.222
Container ship 0.220
Cruise ship 0.278
General cargo 0.191
RORO 0.259
Reefer 0.406
Tanker 0.211
Others 0.100

y = 0.1404x + 3808.3
R2 = 0.87

Bulk carrier

y = 0.8878x –1673.8
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Figure 2: Linear regression of missing main engine data by ship type.
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emission control area (ECA). In ECA, ships will be required
to follow strictly Tier III in Regulation 13 of Annex VI of
MARPOL 73/78 about reducing NOx emissions and the
sulphur contents in the fuel used will be reduced to 0.1%.
-is idea was suggested firstly by Chang et al. [49]; however,
it has not been implemented yet in Incheon or any other
Korean ports. As of 2019, the required fuel used inside the
POI area was MGO with the maximum sulphur content at
1.0% by mass. -en, with SOx ECA, ships have to switch
from high sulphur content fuel (1.0%) to a very lower one
(0.1%). Assuming that energy efficiency is unchanged, since
the volumes of SOx and PM emissions released are de-
pendent critically on the sulphur content in the fuel used
according to estimating equations applied in Lee et al. [70],
the SOx ECA could help decrease 10 times the amount of
SOx emission and nearly 2.5 times the amount of PM
emission. -e cutdown volume of emissions will be 1114.12
tonnes of SOx and 71.07 tonnes of PM10 (including 65.25
tonnes of PM2.5) if the SOx ECA is established.

Different from SOx emission, in the case of NOx emission,
the abatement is implemented mostly by technology im-
provement in the engine’s combustion and selective catalytic
reduction (SCR) system equipped onboard. Due to the limi-
tation of the estimating method, it is difficult to simulate and
estimate the expected reduction inNOx emission; therefore, the
reduction of NOx is not considered in this study.

6.2. Assessing the Environmental Benefit of the VSR Program.
In the last few days of December 2019, the Korean Ministry
of Oceans and Fisheries started designating the “Vessel
Speed Reduction Program” in five Korean main ports, in-
cluding POI, to lessen PM levels during winter. Ships are
motivated to transit slower than certain speeds (12 knots for
container ships and car-carriers and 10 knots for others). To

facilitate the analysis, it is assumed that there was no RSZ in
POI during 2019 when calculating the baseline emission
inventory and then simulating the effect of RSZ if it is
designated. With lower cruising speed (10 knots), the ships
will take more cruising time but lower load factor for
propulsion engines (see equation (6)).-en, an RSZ can help
reduce 7-8% amount of each pollutant: 22.77 tonnes of CO,
295.83 tonnes of NOx, 87.03 tonnes of SOx, 10.45 tonnes of
PM10 (including 9.61 tonnes of PM2.5), 11.15 tonnes of
VOC, 0.03 tonne of NH3, and 14,167.93 tonnes of CO2.

6.3. Assessing the Environmental Benefit of Applying Cold
Ironing. In the case of hotelling at berth, emission could be
cut down through reducing docking time or cut-downing
emissions from docking time. In practice, reducing docking
time is complicating and challenging because it is related to
overhauling, optimizing, and scheduling the operation of a
chain including other port facilities such as quay cranes,
internal trucks, and yard cranes. In contrast, reducing
emissions from docking time could be achieved easily by
using an on-shore power supply. Assuming that 50% of
hotelling time in each port is applied this technology, it will
help reduce 22-23% amount of each pollutant: 72.26 tonnes
of CO, 913.14 tonnes of NOx, 278.54 tonnes of SOx, 32.19
tonnes of PM10 (including 29.56 tonnes of PM2.5), 27.59
tonnes of VOC, 0.1 tonne of NH3, and 45,375.03 tonnes of
CO2.

If three of them are conducted together, this will help cut
down 95.03 tonnes of CO, 1208.97 tonnes of NOx, 1150.68
tonnes of SOx, 92.51 tonnes of PM10 (including 84.97 tonnes
of PM2.5), 38.74 tonnes of VOC, 0.13 tonne of NH3, and
59,542.96 tonnes of CO2 corresponding to 29%, 30%, 93%,
64% (64%), 28%. 30% and 30% of the total emitted amount
of each pollutant in the 2019 baseline inventory.

6.4. Establishment of aNational IntegratedEmissionPlatform.
Besides counter-measures, a good assessment and man-
agement system is indispensable for managing green reform
at ports. With the widespread Internet, the combination of
the platform industry and assessments of environmental
situations around seaport would be an interesting and
promising research topic shortly. With the platform, users
can access and interact with the system actively and easily.
-is study suggests an idea about a national integrated
platform that can standardize and systematize procedures in

Table 6: Average RPM values.

Ship type Average RPM values of propulsion engines Average RPM values of auxiliary engines
Bulk carrier 103 843
Container ship 131 847
Cruise ship 484 895
General cargo 271 1,225
RoRo 105 787
Reefer 311 1,043
Tanker 286 1,147
Miscellaneous 490 1,037

Table 7: Average transit time in POI 2019 (unit: hour).

Port Average transit time
North Port 2.2
Inner Port 3.0
Coastal Port 1.6
South Port 1.7
New Port 1.4
Song-do Port 1.4
Geocheom-do Port 2.5
Yeongheung-do Port 0.75
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Figure 3: Non-CO2 emissions comparison between FC and EO methods (unit: tonnes).
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Figure 4: POI 2019 ship emission inventories by geographical areas (Unit: tonnes).

Table 8: Average time in hotelling at anchorage and berth in POI 2019 (unit: hour).

Types of ship Average time in hotelling (hour) Compare to the national avg. time in CAPSS (%)
Bulk carrier 83.3 439.3
Container ship 13.6 71.7
Cruise Ship 50.3 265.3
General cargo 39.9 210.4
RORO 25.9 136.6
Reefer 89.0 469.4
Tanker 22.0 116.0
Miscellaneous 51.9 273.7

Table 9: Applied EFs for EO method (unit: g/kWh). Source: Lee et al. [70].

Engine type Phase CO CO2 NOx SOx PM10 PM2.5 VOCs NH3 BSFC
Propulsion-HSD Cruising 1.1 646.14 12.0 3.97 0.47 0.43 0.21 0.0014 203
Propulsion-MSD Cruising 1.1 646.14 13.2 3.97 0.47 0.43 0.63 0.0014 203
Propulsion-SSD Cruising 0.5 588.85 17.0 3.62 0.45 0.42 0.53 0.0013 185
Propulsion-HSD Maneuvering 2.2 709.8 9.6 4.36 0.50 0.46 0.63 0.0016 223
Propulsion-MSD Maneuvering 2.2 709.8 10.6 4.36 0.50 0.46 1.58 0.0016 223
Propulsion-SSD Maneuvering 1.0 649.32 13.6 3.99 0.47 0.44 1.90 0.0014 204
Auxiliary All 1.1 690.71 13.9 4.24 0.49 0.45 0.42 0.0015 217
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monitoring harmful ship-related emissions released from
ports in Korea. -is platform will provide three main
functions: (1) data collection and analysis; (2) estimation,
modification, and visualization; and (3) prediction. -e
abovementioned three functions are proposed to ensure and
emphasize the systematicness to generate a better air pol-
lutant assessment and management.

-e necessary input data for emission estimation is
linked with and automatic-synchronized simultaneously
from the national Port-MIS system.-en, based on collected
data, the system analyses, estimates, and visualizes the
volume of emissions emitted or environment indexes
promptly to warn the port operator if the negative impacts

on the local community from in-port emissions exceed a
certain “safe” level. -en, input data adjustment in the
modification function allows port operators to adjust or
reschedule the port operation, through suppositions and
corresponding input adjustment, to reduce geographic
emissions to the “safe” level. Also, by machine-learning
algorithms and statistical analyses, the prediction function
helps port operators predict the trend of air pollution at
ports and then plan port operations appropriately. Also, the
researchers use modification and prediction function in
annual or seasonal emission inventory with their recom-
mended air management policies or counter-measures to
assess the performances of them.
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Figure 5: POI 2019 ship emission inventory by ship type (unit: tonnes).
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Figure 6: POI 2019 ship inventory by ship activity phase (unit: tonnes).
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7. Conclusion

As a result of the quick spreading of global trade, atmo-
spheric pollution from transportation has been more topical
than ever, especially in dense hub port-cities. Given envi-
ronmental legislation that is enforced currently, the shipping
industry has not been paid adequate attention to its relatively
considerable volume of emitted emissions. Besides pub-
lished national reports, the awareness of atmospheric pol-
lution from growing port traffic has invoked reliable and up-
to-date regional comprehensive assessments of egregious
environmental impacts from in-port ship traffic with timely
counter-measures. -is study contributes to the stream of
in-port ship emission research both theoretically and
practically. Besides the sole application of AIS for inputs in
the bottom-up approach studies, VTS could be considered as
a promising confident alternative. In Korea, with support
from the government, the VTS-based Port-MIS system
would be a reliable data source for local studies.

-is study generated a comprehensive annual ship
emission inventory at POI in 2019, according to geo-
graphical areas, operational phases, and ship types by the
bottom-up approach. Although there are small differences
between the results of the two methods EO and FC, and it is
impossible to demonstrate which one is better, however, two
inventories agree about the dominance of CO2 emission and
the considerable volume of NOx and SOx emissions in the
total volume of port emissions, the significant contribution
of auxiliary engines during hotelling at berth phase and the
4-most polluted ship types at POI during the year of 2019.
Also, this study suggests and simulates the effects of four
applicable green policies for the POI situation in the practice.
-e combination of the three abovementioned policies could
help slash the significant volume of emitted CO (29%), NOx
(30%), SOx (93%), PM10 and PM2.5 (64%), VOC (28%),
NH3 (30%), and CO2 (30%).

Given most ships visited POI could be considered as
international waterborne navigation, using default inputs in
the estimation process (e.g., EF, auxiliary characteristics
data, and engine load factor), that referred from interna-
tional studies, is deemed acceptable. Moreover, boilers also
were not collected completely and considered because there
is a lack of information from manufacturers and ship
owners. -erefore, for better estimation, the authors also
recommend the adoption of local values to reduce uncer-
tainty. However, currently, Korean data are limited; there-
fore, it garners the attention of investigating local-specific
inputs. Moreover, an idea of the automatic input collecting
system be synchronized with our proposed integrated sys-
tem could be another interesting topic for further research.

Although both inventories also reported an insignificant
volume of PM emissions, in terms of weight contribution,
however, if compared their size and weight to other pol-
lutants, they would be a potential threat to the port envi-
ronment as well as the local community. -erefore, besides
figuring out the weight of the total volume of PM emitted,
the evaluation of spatial seasonal PM dispersion in the port
area would be extremely necessary. -is evaluation will
contribute considerably to ship emission inventory and the

deep understanding of the affection of in-port ship PM
emissions.

Finally, the port operation also contains other important
activities with various types of cargo handling equipment,
railcars, and drayage trucks, and they contribute signifi-
cantly to port pollution. -erefore, a broader view of a
comprehensive in-port emission inventory or a port-scale
integrated system, which presents emissions not only from
ships but also from other port-related land-based vehicles,
should be considered soon to understand completely about
port pollution. Of course, this complete inventory would be
a great baseline for other in-port environment evaluating
studies in Incheon as well as other similar regions.
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Modelling route choice behaviours are essential in traffic operation and transportation planning. Many studies have focused on
route choice behaviour using the stochastic model, and they have tried to construct the heterogeneous route choice model with
various types of data. -is study aims to develop the route choice model incorporating travellers’ heterogeneity according to the
stochastic route choice set. -e model is evaluated from the empirical travel data based on a radio frequency identification device
(RFID) called dedicated short-range communication (DSRC).-e reliability level is defined to explore the travellers’ heterogeneity
in the choice set generation model. -e heterogeneous K-reliable shortest path- (HKαRSP-) based route choice model is
established to incorporate travellers’ heterogeneity in route choice behaviour. -e model parameters are estimated for the mixed
path-size correction logit (MPSCL)model, considering the overlapping paths and the heterogeneous behaviour in the route choice
model. -e different behaviours concerning the chosen routes are analysed to interpret the route choice behaviour from revealed
preference data by comparing the different coefficients’ magnitude.-ere are model validation processes to confirm the prediction
accuracy according to travel distance. -is study discusses the policy implication to introduce the traveller specified route travel
guidance system.

1. Introduction

Many studies have focused on the modelling behaviours of
choosing routes usingmathematical and empirical solutions.
-ey have used various stochastic models to provide
mathematical approaches for searching the available paths
and choosing the most feasible routes [1–4]. Also, trans-
portation researchers have attempted to formulate the route
choice behaviours using empirical data. Recently, the de-
velopment of intelligent transportation system (ITS), such as
the vehicle detection system (VDS), automatic video system
(AVS), closed-circuit television (CCTV), and variable
message sign (VMS), has made it possible to collect and
process the various data. -ese various types of travel in-
formation provide drivers’ judgement about alternative
routes [5].

Nevertheless, many travellers usually acquire limited
information from experienced travel time [6]. -e
enormous amounts of data have allowed researchers to
analyse travel behaviours and consider mathematical
solutions. -e process of generating a set of routes has
been constructed using the travellers’ cognitive process in
choosing a route, and a reasonable number of routes have
been derived from increasing the accuracy of the mod-
elling process [7]. Furthermore, the researcher’s interest
in travel time reliability has increased during the last
decades. -e travel time reliability problem has required
consideration of individuals’ perceptions of the uncer-
tainty of the travel time. -e travel time perceived by an
individual has been defined as a cumulative distribution
function based on travellers’ experiences [8, 9]. -e
concepts of perceived travel time and travel time
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reliability have been widely used to evaluate the traffic
states in transportation operation.

Each traveller has a perceived travel time for a specific
origin and destination (OD) pair to set up the travel time
with travel time uncertainty when they start to travel. Even
though there are several effective routes, travellers choose
another route due to their travel experience. -e process of
generating a choice set involves modelling the cognitive
process incorporating traveller’s heterogeneity.-e previous
models based on rationality are somewhat limited in their
ability to explain irrational choice behaviours. -is problem
results from the limited information about alternative
routes. Many studies have recently explored these personal
characteristics in the models, e.g., prospect theory, bounded
rationality, and choice inertia. -e route choice behaviour
modelling should incorporate travellers’ heterogeneity in the
choice set generation and the route choice model. -is study
aims to construct the route choice model accommodating
heterogeneous route choice behaviour for travel time reli-
ability. -e route choice model is developed through the
heterogeneous K-α-reliable shortest path searching
(HKαRSP) method using the reliability level derived by
comparing the travel time budget (TTB) of the network of
the individuals. Section 2 of this study reviews the choice set
generation model and the route choice model comparing
travel time reliability studies. In Section 3, the definitions of
the terms are presented to establish the models. Section 4
introduces the methodology of determining the size of the
choice set and the modelling of route choice behaviour
which is developed using the concept of travel time reli-
ability. An empirical analysis is conducted in Section 5 to
estimate the route choice behaviour using processed travel
data. Section 6 is the conclusion, which summarises the
results of this study and discusses future research.

2. Literature Review

-e traditional K shortest paths were modelled to determine
the shortest paths concerning the travel time, assuming the
determined link travel time. However, link travel times in the
network have consistently been observed to have stochastic
characteristics recognised by travellers. Several methodolo-
gies have been proposed to measure travel time reliability,
e.g., the probability of on-time arrival, the TTB, α-reliable
mean-excess travel time, and α-reliable travel time for gen-
erating the route choice set [10]. Among thesemethodologies,
the on-time arrival probability was applied to the route choice
model. -e probability distribution function enabled calcu-
lating the probability of occurrence for each path, and it
generated K paths according to their probabilities [11].
Mathematical modelling has been introduced to determine
the optimal path from the sum of the distribution proba-
bilities of the link travel time with the TTB [12, 13]. Re-
searchers have employed the label-correcting algorithm to
analyse the time-dependent problem and search for reliable
paths [14]. -e deviation-based path set generation models
have defined the distribution of link travel time as normal
distribution and constructed the stochastic travel time be-
tween the OD pairs to compare the network’s reliable paths.

-ese studies made it possible to remove nondominant paths
and derive dominant paths through the various constraints
[15, 16]. Other studies derived a user equilibrium model by
dividing the travel time variation into predictable and un-
predictable travel times in the route choice process using the
α-reliable, mean-excess approach [17, 18]. A route choice
model was constructed which reflected risk-aversion char-
acteristics by generating the probability using the TTB
[19, 20]. -e other stochastic travel time-based models
employed the TTB for travel time reliability to reflect indi-
viduals’ heterogeneous risk-averse characteristics [21, 22].
-e α-reliable travel time was used to determine the optimal
path based on travellers’ risk preference using the TTB. -e
models classified individual risk preference levels into risk-
seeking, risk-neutral, and risk-averse travellers to derive the
optimal paths for each scenario [16, 23]. -ere was other
research dealing with the system optimum model reflecting
the fuzzy network theory. Research has considered the
perceived travel time and risk-taking properties in traffic
assignment problem by incorporating fuzzy utility theorem.
-ey discussed the differences between conventional and
fuzzy network theory-based equilibrium model [24–29].

Numerous studies have been conducted to reflect the
individual’s choice behaviour in the model. McFadden
(1973) developed the multinomial logit (MNL)model, which
is a general form of the random utility-based choice model
[30]. In transportation demand analysis, theMNLmodel has
been applied at the mode choice stage before using the route
choice model. -e probit model and the MNL model also
were used in stochastic or probabilistic assignment models
[31, 32]. Many researchers have used explanatory variables
tomake themodels more feasible, such as landmark dummy,
percentage of the major road, percentage of uninterrupted
flow, and delay percentage [1, 3, 33–35]. -e MNL model
had some drawbacks in the route choice model, i.e., (1) it
does not consider the identification of an individual trav-
eller’s choice set, (2) it does not reflect the overlapping links
in routes, and (3) it does not consider travellers’ hetero-
geneity in choice behaviour. Several models have been
proposed to improve the MNL model, including extended
logit models to overcome overlapping links among routes.
-ese models were composed of a deterministic term and a
random error term that includes the additional overlapping
term in the utility function. A modified MNL model, called
the C-logit model, was proposed by subtracting the utility
function’s commonality [5]. Researchers have developed the
implicit availability/perception (IAP) logit model by ag-
gregating the path generation model and the route choice
model using travellers’ perceptions of routes [36]. -e most
considered route choice model to overcome the overlapping
problem was the path-size logit model (PSL).-e PSL model
was introduced to modify the MNL model and considered
the degree of overlapping of the routes in the MNL model
[37–39]. -e other researchers also proposed an improved
PSL model, known as the path-size correction logit model
(PSCL), by suggesting detailed and systematic derivations of
the assumption for correcting the path-size factor [35].
-ere were other types of models based on the generalised
extreme value (GEV) theory that considers the hierarchical
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structure for choices to capture the error component of
overlapping links. Such models included the paired com-
binational logit (PCL) model [40, 41], the cross nested logit
(CNL) model [34, 41, 42], the generalised nested logit (GNL)
model [34, 43, 44], and the mixed multinomial logit
(MMNL) model [45, 46] summarised in Table 1.

Since individual travellers have different travel expe-
riences, they have different characteristics in determining
choice sets and route choice behaviours. -is study con-
tributes a new approach for the generation of choice sets
that incorporate individual travel behaviours and uses
actual travel data to validate the choice behaviour. Sig-
nificant differences compare the shortest path problem by
perceived travel time from the previous research [16, 29].
-e different methodologies of choice set generation are
compared to improve the accuracy of route choice models,
i.e., the k shortest paths-based choice model (KSP), the k
reliable shortest paths-based choice model (KαRSP), and
the heterogeneous k reliable shortest paths-based choice
model (HKαRSP). -e route choice models are used to
compare the accuracy of choice probability according to
the choice set generation methodologies from various
choice models, i.e., MNL, PSL, PSCL, CNL, PCL, and
MMNL models. -e route choice model makes it possible
to determine whether the choice set generation models are
well-formulated.

3. Measuring of Individual Travel
Time Reliability

3.1. Travel Time Budget (TTB). Travel time reliability is
generated from the travel experience of individual travellers
in specific OD pairs. It defines the distribution function of
perceived travel time to obtain the probability of on-time
arrival. -e TTB is introduced to identify the risk prefer-
ences from the distribution as the value determined by the
confidence level. -e TTB has been defined the minimum
total travel time threshold satisfied the reliability require-
ment with constraints, concerning the percentile of total
travel time distribution specified by decision-makers using
the confidence level, α. -e meaning of this definition is
interpreted as the value derived from the distribution of
travel time by using the predetermined confidence level
[9, 47]. Based on actual travel data and previous research, a
lognormal distribution, a nonnegative and asymmetrical
distribution, represents the stochastic travel time [16, 47].
-erefore, the travel time distributions for OD pairs are
assumed to follow a lognormal distribution,
lognormal (μ, σ), represented to the probability density
function (PDF) and cumulative distribution function (CDF).
In this study, TTB means that travellers plan for the travel
time before departure to achieve their requirement of travel
time reliability, which is expressed by the distribution of
travel time experienced in the network for the confidence
level, α, and the reliability level, αl. -ere are three kinds of
TTBs, i.e., TTB in the network, TTB of route k, and TTB for
an individual. -e TTB is required to achieve an α confi-
dence level in the network from the origin, i, to the desti-
nation, j. -e TTB in the network is TTBTij (α) in equation

(1). TTB of the kth path required achieving the α confidence
level from the origin, i, to the destination, j. -e TTB of
route k in the network is TTB

T
ij

k

(α) in equation (2).-e TTB
required to achieve the α confidence level for individual l

from the origin node i to the destination node j. -eTTB for
individuals is TTBTijl (α) in equation (3):

TTBTij (α) � exp μij
+Φ−1

Tij (α) × σij
 , (1)

TTB
T

ij

k

(α) � exp μij

k +Φ−1
T

ij

k

(α) × σij

k , (2)

TTBTijl (α) � exp μijl
+Φ−1

Tijl (α) × σijl
 , (3)

where i is the origin, j is the destination, k is the order of the
α-reliable path or the predetermined number of the route
choice set, l is the individual traveler, α is the confidence level
(i.e., on-time arrival probability), μij is the mean of the travel
time distribution from the origin, i, to the destination, j, μij

k

is themean of the travel time distribution of the kth α-reliable
path from the origin, i, to the destination, j, μijl is the
perceived mean of travel time distribution for individual, l,

from the origin, i, to the destination, j, σij is the standard
deviation of travel time distribution from the origin, i to the
destination, j, σij

k is the standard deviation of the travel time
distribution of the kth α-reliable path from the origin, i, to the
destination, j, and σijl is the perceived standard deviation of
the travel time distribution for individual, l, from the origin,
i, to the destination, j.

3.2. Risk Preferences. -e TTB has a structure combined
with the predictable travel time in the travel time distri-
bution. Travellers accept the predictable risk from their
experiences to meet the predetermined travel time, which is
defined as the TTB in the OD pair. Individual travellers set
up a TTB for a specific OD pair using the perceived travel
time based on their experience.-e distribution of perceived
travel time is expressed more clearly as individual travellers
accumulated travel time for a specific OD pair. -e travel
time distribution in the network causes individual travellers
to incur late arrivals because the distribution of the indi-
vidual travel time is different from the distribution of the
travel time determined by the network.

Reliability level (αl) means that individuals determine
the value of the probability of on-time arrival by cumulative
distribution for a specific OD pair in the network based on
repeated travels. When the TTB of an individual at the
confidence level α has the same TTB of the network for a
specific OD pair, the TTB represents the reliability level, αl

on the cumulative distribution of the network.-e reliability
level, α, is expressed as the on-time arrival probability for an
individual’s perceived TTB from the travel time distribution
in this study. Risk preference is defined that the travellers
have the characteristics of risk-taking for travel failure or
delay due to travel time reliability. Since individual travellers
have different risk preferences based on their travel expe-
riences for each specific OD pair (i, j), the reliability level, αl,
are determined individual risk preference. -e
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characteristics of individual travellers were categorised, as
shown below [16]:

αl > 0.5, risk-averse for on-time arrival
αl � 0.5, risk-neutral for on-time arrival
αl < 0.5, risk-seeking for on-time arrival

Risk preference is an essential factor in the choice set
generation model. -e process of choice set generation
modelling is formulated using the reliability level, αl, which
is referred to as risk preference. -e reliability level, αl, is
determined according to the difference between the indi-
vidual’s perceived travel time and the travel time provided by
the network, so a difference occurred in generating the
choice set. -is analysis develops a route choice model that
reflected travellers’ behaviour according to whether they
were risk-seeking or risk-averse in Figure 1. When the TTB
for an individual is derived from the confidence level, α,
according to the mean and standard deviation in the travel
time distribution, it is possible to compare the TTB for the
individual and the network confidence level, α. In other
words, when the travel time experienced by an individual is
less than the travel time in the network, the traveller would
be concerned about late arrival based on the perceived travel
time, in case of which it is defined as the risk-seeking

characteristic. However, individual travellers’ experiences
indicate that they have more travel time than the network’s
travel time because they have experienced more travel time
for the specific OD pair (i, j). Risk preference makes trav-
ellers calculate the TTB to arrive on time, which is a
characteristic of risk-averse travellers.

4. Model Specifications

4.1. Route Choice Behaviour. -e travel behaviour models
have developed the following structure by dividing the
choice set generation and route choice model. Researchers
have tried to construct the modelling framework of route
choice behaviour [7, 46]. -e model is constructed to
determine the size of the consideration set and individual
choice set. Consideration choice set is derived by the
number of experienced routes using the observed data from
the universal set occurring in the network for a specific OD
pair. A modelling process also includes a different choice
set for individuals using TTB and risk preference in the
individual choice set generation. -e route choice model
using the individual choice set is derived from the collective
individual travel data. -e individual choice set is a set of
routes for incorporating traveller’s heterogeneity. It is

Table 1: Summary of route choice models.

Contents Model Description Study

MNL

MNL
(multinomial

logit)
P(r|Qd) � (eVr /r′∈Qd

eV
r′ ) —

Dial [1], Fisk [3],
Bekhor et al. [33],
Prato and Bekhor

[34]

C-logit PP(r|Qd) � (eVr− αCFr /r′∈Qd
eV

r′− αCF
r′ )

Subtracting
commonality factor

Cascetta et al. [36],
schussler and
Axhausen [5],
zhou et al. [18]

PSL (path-size
logit) P(r|Qd) � (eVr+βrln(PSr)/r′∈Qd

eV
r′+βr ln(PS

r′ ))
Adding ln(size)

(path size)

Frejinger et al.
[38], schussler and
Axhausen [5], Li

et al. [39]
PSCL (path-size
correction logit) P(r|Qd) � (eVr+βrln(PSCr)/r′∈Qd

e(V
r′+PSCr′ ))

Adding PSC (path
size correction) Bovy et al.(2008)

GEV

PCL (paired-
combinational

logit)
P(r|Qd) � e(μVr/1− σr)/r′∈Qd

e(μV
r′ /1−σ

r′ )
Multiplications of

unobserved
probability(Pij)

Bliemer and Bovy
[35]

CNL (cross-
nested logit) P(r|Qd) � (κmreμVr /r′∈Qd

κmr′e
μV

r′ )

Multiplications of
Marginal(nested)

probability

Prato and bekhor
[34], bliemer and

Bovy [35]
GNL

(generalized
nested logit)

P(r|Qd) � (αmreμVr /r′∈Qd
αmr′e

e
μV

r′ )

Including the
allocation

parameter(m, αnm)

Prato and bekhor
[34], wen and
Koppelman [44]

MNW

C-weibit Prs
h (crs) � (e− θ(crs

h
+cfrs

h
)/l∈crs e− θ(crs

l
+cfrs

l
)) Weibull distribution

based model (open
form)

Xu et al. [47]

PSW (path-size
weibit) Pik � ((ci

k − ξ0i )− βi /s∈Ki
(ci

k − ξ0i )− βi )

Castillo et al. [52],
kitthamkesorn and

Chen [53]

Mixed
logit

MMNL (mixed
multinomial

logit)
Pk � Λ(k|ζ) � (exp(μ(Xkβ) + FkTζ)/r′∈Qd

exp(μ(Xr′β) + Fr′Tζ))
Factor analytic
specification

Ramming [51],
Prato and Bekhor
[34], Alizadeh et al.
[54], Lee et al. [55]
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important to determine the choice set by the different travel
behaviour for individuals. Likewise, travellers consist of
their own considered choice set of routes from information
and experience. -ey set for their own choice set to choose
the proper route of the travel. In comparison between the
cognitive and modelling process, the constructing set of
choice is crucial for interpreting route choice behaviour.
-e cognitive process and modelling process for route
choice behaviour is shown in Figure 2:

4.2. Choice Set GenerationModel. Since there are millions of
alternatives in the network, it is time-consuming to analyse
using all alternatives in the choice set, and travellers do not
consider the enormous size of the choice set for travel.
Determining the choice set in the route choice model is
essential because it affects the prediction accuracy in
modelling results [41]. Since it is important to know the
routes considered in the network, this study employs actual
travel data to derive the size of the consideration set and the
individual choice set. Travellers identify the choice set for

their travel by travelling the known routes and determining
the alternative routes. -e travellers recognise the optimal
path between specific OD pairs according to their individual
experiences, and the individuals choose the observed route
from their optimal choice sets. -us, all observed choice sets
could be the optimal paths experienced by individuals for the
OD pairs. Travellers repeat creating and determining a route
from the set of choices by considering their specific
situations.

-e route searching algorithm is developed to generate a
choice set for individuals using TTB and risk preference. -is
algorithm generates a set of considered paths using the CDF
of travel times. A set of individual paths is determined
according to the number of paths specified in advance. It is
necessary to generate the choice set with an appropriate size to
estimate the choice probability. -ere are experienced paths
that could be used to determine the proper size of the choice
set, making it possible to know the exact path for each
traveller. Also, the single alternative chosen by a traveller is
one of the experienced paths. Fiorenzo-Catalano [48] men-
tioned the importance of determining the choice set by
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Figure 1: Distributional characteristics for risk preferences: (a) risk-seeking travellers; (b) risk-averse travellers.
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considering the researchers’ perspectives because there are
differences between travellers’ perspectives and researchers’
perspectives [48]. Since the researchers do not know indi-
vidual travellers’ choice sets, some assumptions are required
in the choice set generation model. Two sets identify the
appropriate choice set in the route choice model, i.e., the
consideration set and the individual choice set. -e consid-
eration set includes the paths that most travellers are likely to
choose. Besides, individual choice sets have the proper size for
individual travellers to make their route choices.

-e k-α-reliable shortest path searching algorithm for
generating an individual choice set is consisted of eight
steps, as shown below. First, the observed travel time is
extracted from the database for a specific OD pair. Next,
confidence level, α, is specified for the travel time reliability
to achieve network performance with the value of 0.9 or
more, as suggested in the previous study [16, 49]. -en, it is
necessary to calculate the travel time distribution in the
network and the TTB to derive the reliability level, αl

(TTBTij (α)). Next, the travel time distribution is formed for
each route TTB (TTB

T
ij

k

(α)). From this process, the reli-
ability level, αl, is calculated according to the individual
travel time distribution from the individual TTB
(TTBTijl (α)). Finally, the choice set for an individual is
derived by calculating TTB according to reliability level, αl.
-e algorithm for searching choice set includes the pro-
cedure for probabilistic reliable path searching algorithm
for k-α-reliable shortest paths (PRPSA-KαRSP).
(Algorithm 1)

Figure 3 illustrates an example to understand the
differences in travel time budgets. -ere are five alter-
natives to choose the proper route for the traveller. Some
travellers choose the dominant route A among the al-
ternatives due to the fastest mean travel time; on the
contrary, the other travellers are willing to choose route B
for the reason of reliable travel route. In addition, the
travellers varied with the formations of different choice

sets considering travel experiences with reliability level,
αl.

-e above algorithm is revised to generate the individual
route choice set considering the observed route travels.
Generating individual choice sets among various OD pairs
should be repeated to model travellers’ heterogeneity. Due to
the different characteristics of individuals’ observed choice
set, it is possible to implement and derive the different
perceived choice sets using the algorithm above. Even
though the same travellers are on the other OD pairs, they
would have different choice sets between the OD pairs due to
their different experiences. -e models are compared to the
other models to evaluate each model’s accuracy by devel-
oping the route choice model based on the choice set
generation models.

4.3. RouteChoiceModel. -ere are various choice models to
deal with the overlapping problems and cognitive process
in the models. We explored which types of models are
suitable for using data types and behavioural differences.
-ere are overlapping problems in the route choice model,
so it is necessary to propose an appropriate form. Also, a
model that incorporated the heterogeneity of the travellers’
route choice behaviour was suggested. -ere are various
types of models, such as MNL [33], PSL and PSCL [35, 41],
GNL [34], MMNL [45, 46], and MPSCL, based on the three
kinds of choice set generation models. We compare those
types of choice models considering data type and goodness-
of-fit indexes.

Researchers tried to develop the improvedmodel form in
the overlapping problem. -ey developed the path-size logit
model (PSL) for the improved MNL model, considering the
degree of overlapping links. Bovy et al. proposed the im-
proved path-size logit model [35]. Since there is no satis-
factory derivation based on theoretical arguments, it is
necessary to employ the correction terms. -e model
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Figure 2: Modelling process for route choice behaviours.
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considers the impact of choice set in the route choice model
in equations (4) and (5):

P i|An(  �
e

Vin+βPSC ∗ PSCin

j∈An
e

Vjn+βPSC ∗ PSCjn
, (4)

PSCi � − 
a∈Γi

la

Li

 ln 
j∈An

δaj),
⎛⎝ (5)

where V is the An by K matrix of variables, β is the column
vector of K unknown parameters for variables, PSCin is the
An by one vector of path-size correction term, Li is the length
of the travelled route of alternative i, la is the overlapped link
a, and δaj is the binary variable if the link a exists in route Li,
1, otherwise 0.

Moreover, researchers have proposed a mixed logit
model to overcome the limitations of the logit model by
adding error terms in the equation to account for the
correlation among routes [39]. Since travellers’ perceived
routes are correlated, the error term is added to illustrate the
relationship based on the topology of paths.-e error term is
divided into two parts in the model. One part represents
correlation and heterogeneity, and the other part describes
i.i.d (independently identically differentiated) extreme value.
-e equation of MPSCL is presented as

Pn(i) � Λ(i|ξ) �
exp μ Xinβ + FinTξ(  + ln PSCin( ( 

J∈Cn
exp μ Xjnβ + FjnTξ  + ln PSCjn  

,

(6)

whereX isCn byKmatrix of variables, β is the column vector
of K unknown parameters for variables, FinTξ is Cn by one
vector of error terms, F is the Cn byM factor loading matrix,
T is M by M lower triangular matrix of unknown param-
eters, ζ isM by one vector of i.i.d standard normal variables
as unobservable factors, ] isM byM lower triangular matrix
of unknown parameters, and Γ(k | ζ) is the probability of
chosen route k with given ζ.

5. Revealed Preference Routing Data

5.1. Data Descriptions. A case study was performed to apply
the proposed methodology to solve the HKαRSP problem.
-e actual travelled data were used on the road network in
the Daegu metropolitan area in South Korea.-e actual path
travel data were constructed by processing the information
collected by the roadside equipment (RSE) installed on the
intersections between arterial roads. Information of vehic-
ular travel was collected using telecommunications between
the RSE device installed on the road and the on-board unit
(OBU) device installed in vehicles by a dedicated short-range
communication (DSRC) device.

Step 1. Choosing the OD pair to observe the path (i, j)
Step 2. Setting the confidence level, α, for the satisfaction of the level of service, i.e.,α � 0.9
Step 3. Building the distribution of travel time (Tij) for travel from origin i to destination j, and calculating the TTB (TTBTij (α)),
concerning the confidence level, α
Step 4. Building the distribution of travel time for the kth path (Tij

k ), ∀k ∈ (1, . . . , U), for each observed travel from origin i to
destination j
Step 5. Building the distribution of travel time for individual l (Tijl) for each traveller from origin i to destination j
Step 6. Evaluating the reliability level, αl, for each traveller l, αl � ΦTijl (ln(TTBTij (α) − μijl)/σijl), normal distribution
Φ(x) � (1/2)[1 + erf(x/

�
2

√
)], where erf� error function

Step 7. Calculating the TTB (TTB
T

ij

k

( αl)), for each path concerning the reliability level, αl

Step 8. Choosing the K-α-reliable shortest paths for individual l

ALGORITHM 1: PRPSA-KαRSP.
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TTBTA
OD(0.9) = exp(2.6 + 1.282 × 0.5) = 25.56

TTBTB
OD(0.9) = exp(3.0 + 1.282 × 0.1) = 22.83

TTBTC
OD(0.9) = exp(2.8 + 1.282 × 0.3) = 24.16

TTBTD
OD(0.9) = exp(2.9 + 1.282 × 0.3) = 26.70

TTBTE
OD(0.9) = exp(3.1 + 1.282 × 0.2) = 28.69

Figure 3: Route choice behaviour from perceived travel time.
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-e DSRC was a useful technique for collecting traffic
information, such as the number of vehicles passing by a
specific location. -e data were more accurate than the GPS
data used in previous research. However, since it collected
point data, a conversion process was required to track the
OBU ID of an individual vehicle observed from the RSE to
convert the data into individual route data. -e model in-
cluded a process of generating routes to track an individual’s
chosen routes. It used the route data with the high frequency
for a specific OD pair to model an individual’s perceived
travel time. From a brief analysis of the data, basic statistics
and study area are shown in Table 2.

5.2.Data Processing andMissingCorrection. Since the DSRC
data was a type of point-based data observed at an inter-
section of the arterial roads, it was necessary to convert them
into route data. -e process for tracking the travellers with
the same vehicle ID (OBU ID) was conducted to identify
each route. -e model was constructed based on methods of
classifying and generating route data by tracking individual
vehicles.

It was necessary to identify the individual vehicles to
change from point data to route data. -e observed-time
variable was used to construct this process. If the observed
times for individuals on RSE were arranged in order, it was
possible to produce the individuals’ route data. -e link
travel time was calculated while moving from node to node,
and it included checking whether the path was configured
using the link travel time. To generate the route travel time
for specific OD pairs, it is necessary to produce the route
travel data from point observation data. When the link
travel time was excessive from a certain marginal value
(divided by 10 minutes), it was divided into different travels
[50]. We also scattered the plot using the observed travel
time to separate the route travel, including about 98% of
travels in 10 minutes. -e route data process has presented
the step by step to generate each travellers’ route travel,
sequentially listing the data observed at the point (see
Figure 4(a)). However, it was impossible to confirm
whether the link between the two nodes is connected or
not. -ere were the following three types of missing data.
(1) Missing data between nodes on an arterial road by
straightway, (2) missing data between nodes for the type of
road with the uninterrupted flow, and (3) observation of
one node on two different observations. It was necessary to
define the links between the nodes to ensure whether they
were related links. If the produced route data were the case
of missing data, it was necessary to identify the target nodes
or links. With the missing correction method, the route
data were connected with the other node. -is process was
performed using all of the missing data. -e developed
algorithm performed the missing correction procedures
(see Figure 4(b)).

6. Results

6.1. Structure ofRouteChoiceModel. -e specifiedmodel has
required the actual data to generate individual choice sets

based on the distribution of perceived travel times. -e
individual choice set was a set of paths that incorporated the
travellers’ heterogeneity. -e choice set generation model
determines the individual choice sets based on the different
travel experiences.-e route choice model that incorporated
the heterogeneous choice set generation model was used to
compare the travel behaviours.

-ere were more than 30 thousands of possible OD pairs
among nodes. It was necessary to choose the feasible data for
analysis of route choice behaviour. Since some OD pairs
were too close or far away to analyse the travel behaviours,
available OD pairs were selected, having more than twenty
thousand observed trips and proper distances within 5 km to
25 km between OD pairs. -e 76 OD pairs were chosen for
the analysis to describe the heterogeneous travel behaviours.
From the observations, 40 thousands travellers having fre-
quent observed trips were selected for the final analysis. As
mentioned before, it was important to determine the ap-
propriate set to be considered from the thousands of al-
ternatives. A methodology was established for choosing the
choice set to be considered using actual travel data. -e
consideration choice sets should include all of the possible
choice sets for most of the travellers. According to the as-
sumptions presented above, we determined the possible
number of consideration set and the individual’s number of
the choice set (K) using the observed data. Since the use of all
observed paths was against the assumption, the size of the
consideration set was determined to 16 observed paths
considering 90% of the coverage probability as consideration
choice set. It is necessary to determine how many travelled
paths were chosen in the choice set for individuals from the
observed data. To determine the alternative K for each in-
dividual, the 80% observed routes for each individual were
calculated on average 3.12 routes except for observed at
once, and the number of individual choices set was deter-
mined as four paths in the model.

-e developed model used the actual travel data to
analyse the route choice model. -e NLOGIT 6.0 program,
which is generally used for econometric analysis, was used to
analyse the route choice model in this study. -e MNL
model was developed for estimating the parameters in the
choice model with maximum likelihood estimation (MLE)
methods. Generally, the more explanatory variables make a
better goodness-of-fit index, but the correlated variables
decrease the accuracy of parameter estimation. Even though
there are many other kinds of variables from the raw data, it
is necessary to analyse the correlation among variables to
identify the effects of parameters appropriately. -e ex-
planatory variables were compared to whether the variables
improve the goodness-of-fit or multicollinearity, and
Pearson correlation analysis was employed to choose the
appropriate variables. -e model was developed to compare
the relative size of variables between alternatives in the
model without alternative specific constants (ASCs). It was
necessary to retain the dummy variables to avoid biasedness
[51]. Since travellers tended to consider more travel attri-
butes than an immanent attribute of alternatives in route
choice, the additional variables were needed instead of ASCs
in the model. -e variables were used to analyse the route
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choice model using the DSRC data, i.e., travel time, buffer
time, distance, ratio of uninterrupted flow road, tolls, and
number of bridges. -e final model was established with the
several chosen variables of the following equation:

Vk � β1μ
ij

k + β2BT
ij

k + β3DIST
ij

k + β4UNINT
ij

k + β5TOLL
ij

k

+ β6BRIDGE
ij

k ,

(7)
where Vk is the utility function for alternative k, βi are the
parameters, μij

k is the mean travel time for alternative k from
origin i to destination j, BTij

k is the buffer travel time for
alternative k from origin i to destination j, DISTij

k is the
distance travelled for alternative k from origin i to desti-
nation j, UNINTij

k is the ratio of uninterrupted flow for
alternative k from origin i to destination j, TOLLij

k is the toll
for alternative k from origin i to destination j, and BRIDGEij

k

is the number of bridges for alternative k from origin i to
destination j.

6.2. Heterogeneous Route Choice Models. -e model was
determined by evaluating the data, modelling structure, and
goodness-of-fit index among the various other models, i.e.,
MNL, PSL, PSCL, MMNL, and MPSCL. -is research

employed the MPSCL model reflecting the overlapping links
and considering the traveller’s heterogeneity. -e MPSCL
model is necessary to analyse the route choice behaviour
considered the route overlapping, which has a significant
impact on themodel’s estimation, and themodel had amuch
improved ρ2 compared to the other models. -e result
showed the route choice model based on the different choice
set generation model. -e results of the model comparison
are presented in Table 3.

-e proposed model provided the most precise pre-
diction of a route’s choice probability using choice set
generation with traveller heterogeneity. Due to the coinci-
dence of consideration set generation and path-size cor-
rection term, the model had better model fitness indexes.
Consideration of identified choice set for travellers was
adopted in the MPSCL model. -e model had a better ac-
curacy of prediction for route choice probability in HKαRSP
model than the KαRSP and KSP model.

-e estimated model parameters had the appropriate
value in the model and drew the significance at 1% level for
most models. -e parameters represented the variables’
variations; in other words, the variables had a different effect
on the choice for individual travellers, which is modelled by
the random parameters. -e mean and standard deviation
parameters of travel time affected the model in the MPSCL

Table 2: Data description and empirical study area (Daegu metropolitan area).
Division Value Unit
# of observed travellers About 0.6 million per month Travellers
# of OD pair 31,152 Pair
Mean of travelled route About 30 million per month Trips
Mean of link distance 1.25 Km
Mean of OD trips 6,015 Trips

Start

Data input

Data indexing (OBU_SN)

Data ordering (observed time)

T = Count (Data)

Node selection (Origin) n = 1

n < T

Yes
Calculating link travel time

Link travel time
≥ 10min?

Yes
Data extracting calculating

route travel time

Node selection(Destination)
n = node count

Data print

Finish

Output data

No

Input data

n = n + 1
No

(a)

Start

Data input

T = Count (node)

Node selection (origin) n=1

No
T > 1?

Yes

Link check?

No
Missing data correcting

Link definition

Calculating shortes path
between OD

n = n + 1
Yes

Yes
n = T?

No
Data extracting

Output data Data print

Finish

Input data

(b)

Figure 4: Data processing and correction: (a) algorithm for route data processing; (b) algorithm for the correction of missing data.
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model, whichmeans that travel timemakes the differences in
choice probability with traveller heterogeneity. -e random
parameters positively affected the log-likelihood estimation
compared to basic models to improve parameters’ accuracy.
All parameters of the models had the appropriate values and
were significant at 1%. From the HKαRSP model result,
there was the effect of the level of service and attribute
network variables in the route choice model. Travellers
considered the variation of mean travel time (β1 constant:
−0.3121/standard deviation: 1.3852) by the heterogeneous
choice behaviour. Travellers had the tendency not to increase
the mean travel time, but they also were sensitive to the
variation of travel time for the travel. -e model is more
sensitive to travel time reliability (BT, β2: −0.3129) than
average travel time (β1: −0.3121). -e ratio of uninterrupted
flow road (β4: 4.5800) had a significant positive effect on
route choice behaviour due to the convenience of driving.
-ey tended to choose the routes having many ratios of the
uninterrupted travel route. Also, travellers did not want to
choose the route with the bridges (β6: −1.1636), and it
seemed to make congestion on the bridges.

-ere was an impact on the level of service attribute
variables in the route choice model. -e use of buffer time
derived the better goodness of fit than the standard de-
viation of travel time for travel time reliability. -e model
had more sensitive to the travel time reliability (buffer time;
BT) than average travel time (μij

k ). Less distance made the
better model fit than the mean of travel time in route
choice. Furthermore, there was an impact of additional
network attribute variables in the route choice model. -e
higher ratio of uninterrupted flow revealed a higher choice
probability in the model. -ere was a tendency for less
preference to use of toll road for travel in the urban area.
Travellers tended to avoid crossing the bridge in the model

due to traffic congestion. Reflecting the traveller hetero-
geneity in the mixed logit model made the accuracy of
estimations.-is was due to the consistency of the structure
for a choice set generation model and route choice model.
Also, we evaluated the best fit for the MPSCL model with
HKαRSP choice set generation model. -e model had
better model fitness indexes which resulted from the co-
incidence of consideration set generation and path-size
correction term.

Many studies have recently been conducted to provide a
new concept of transportation services such as smart mo-
bility, mobility-as-a-service (MaaS), and an autonomous
vehicle. -ese studies focused on identifying individual
preferences and providing more convenient service by
combining various travel modes suitable for those prefer-
ences. From this perspective, analysing route choice be-
haviour based on individual travel experience would be an
important process in introducing new transportation ser-
vices. -e results derived through this study were judged to
establish a more efficient transportation operation strategy
by providing information on the reliable route for an in-
dividuals’ preference. -e provision of transportation ser-
vices should provide faster information from individuals’
experiences, and such information makes the entire system
operate efficiently.

6.3.ModelValidation. We validated the prediction accuracy
for the route choice probability using the estimated pa-
rameters. -ere are differences according to the distance
between OD pairs, and it is necessary to divide with the three
categories based on the distance (short/medium/long dis-
tance). -e prediction results were calculated by the ob-
served travel attributes for each OD pair considering types of

Table 3: Result of MPSCL model with truncated normal distribution.

Explanatory variables HKαRSP KαRSP KSP
Level of service (LOS) attribute variable

Mean travel time (μij

k )
Constant −0.3121∗∗∗ −0.0404∗∗∗ −0.0343∗∗∗
Standard deviation 1.3852∗∗∗ 0.3073∗∗∗ 0.2865∗∗∗

Buffer time (BTij

k ) −0.3129∗∗∗ −0.2300∗∗∗ −0.4009∗∗∗
Travel distance (DISTij

k ) −0.5840∗∗∗ −1.1117∗∗∗ −0.9177∗∗∗

Network attribute variable
-e ratio of uninterrupted flow road (UNINTij

k ) 4.5800∗∗∗ 2.4270∗∗∗ —
Toll fare (TOLLij

k ) (100won) −0.0959∗∗∗ — −0.0454∗∗∗
Number of bridge (BRIDGEij

k ) −1.1636∗∗∗ −0.9013∗∗∗ −0.0508∗∗∗
Path-size correction (PSC) −4.0237∗∗∗ −3.5107∗∗∗ −1.7035∗∗∗

Goodness of fit
Observations 40,000 40,000 40,000
# of parameters 8 8 8
LL(0) −55,451.8 −55,451.8 −55,451.8
LL(β) −35,558.1 −36,551.9 −44,550.1
ρ2 0.3588 0.3408 0.1966
ρ2 0.3586 0.3407 0.1964
∗ is 10% significance level, ∗∗ is 5% significance level, ∗∗∗ is 1% significance level.
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Figure 5: Model validation considering travel distance.
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choice set generation methods. -e validation results are
shown in Figure 5.

7. Conclusion

In this study, the distributional characteristics were employed
to model the uncertainty concerning the travel time for in-
dividual travellers. We used the concept of TTB and the
probability that travellers would arrive at their destinations on
time. -e definition of risk preference was introduced
according to the difference between the TTB considered by
individual travellers and the TTB presented in the network.
-ere was a process for generating an individual choice set
based on the accumulated experience of individuals. -e
process of route choice was performed to consider a different
choice set for each traveller. -e reliability level, αl, generated
a path set by the cumulative travel time distribution for each
path.We constructed amodel for generating the choice set for
individual travellers to incorporate the traveller’s heteroge-
neity. -e results obtained from actual path travel data
showed that most travellers might consider the dominant
path and select alternative paths similar to it if one dominant
path exists. Also, travellers chose reliable paths to ensure on-
time arrivals by the generated choice set.

-e travellers were more sensitive to travel distance than
travel time in the level of service attributes. -e coefficients
of travel time were in the range from −0.3121 to 0.0077, and
the coefficients of travel distance were in the range from
−1.1117 to −0.5840 in the level of service attributes. -e
travellers tended to have preferences for the use of unin-
terrupted flow and bridges, and they preferred not to use toll
roads. -e coefficients of the ratio of uninterrupted flow
were in the range from −0.1099 to 4.7544, the estimation
result of toll roads was in the range from −0.0959 to −0.0342,
and the parameters of bridges were in the range from
−1.1636 to −0.0508. -e model had a better accuracy of
prediction for route choice probability in the HKαRSP
model than the KαRSP and KSP models. We derived better
prediction according to the different travel distances. -e
results are applicable to transportation planning and traffic
management by clarifying the choice set considered in the
existing network. Moreover, it was possible to establish a
strategy for providing route information using individuals’
behavioural characteristics concerning transportation op-
eration. Depending on the individual’s risk preference, a
different set of paths was considered, and a set of paths was
established to provide information that is tailored to the
individual reliability level, αl. -is study contributes to in-
creasing the efficiency of traffic operation and planning
according to individuals’ route attributes.

-ere is further research from the additional improve-
ments in modelling.-e choice set generation model derives
the appropriate number of sets as a necessary process for
constructing the route choice model. It is necessary to
compute travel time distribution following the time-de-
pendent model to compare the differences in the choice sets.
Also, the methodology for estimating the route travel time
can be developed based on the difference between an in-
dividual’s actual travel time on a given route and the

estimated route travel time from the link travel time dis-
tribution. Finally, this research can extend the stochastic
user equilibrium model according to travellers’ risk pref-
erences using the route choice model, such as the fuzzy
traffic assignment model.
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Shared mobility is a service that allows users to share various transportation modes and use them with reservations when
necessary. It started with private automotive car-sharing and ride-sharing services. Currently, it operates on a wider range,
including personal mobility devices such as electric bicycles and scooters. +e purpose of this study is to derive a direction for
providing future shared mobility services through analysis of factors affecting the usage intention of both current and prospective
users.+e survey targets 753 citizens living in Gyeonggi Province, Korea.+e survey period is from February 12, 2020, to February
26, 2020. In this study, a logistic regression analysis is conducted to investigate the factors affecting the use intention of shared
mobility. +e analysis results show that gender, car ownership, and education, among variables reflecting socio-demographic
characteristics, have significant effects on intention to use shared mobility. Moreover, we find that experience factors, including
mainly used transportationmodes, ownership of sharedmobility device, past experience in similar services, satisfaction of existing
shared mobility services, and distance from the home to the nearest bus stop, are also statistically influential. +e analysis results
are expected to lay the foundation for the introduction of shared mobility services and can be used as data for planning smart
mobility services in the future.

1. Introduction

As negative impacts of autoownership have gradually in-
creased, such as significant energy consumption, traffic
congestion, inefficient land use, and excessive vehicle pur-
chasing and operating costs, drivers have begun to look for
alternatives [1]. Accordingly, shared mobility, a service that
allows users to share various transportation modes and use
them when necessary [2], has emerged as a major solution to
existing transportation problems [1, 3–5]. +is can be fur-
ther divided into conventional automotive vehicle-sharing
and personal mobility-sharing services in terms of types of
vehicles to share [6]. +e former involves car-sharing and
ride-sharing services [7]: car sharing is when people share
vehicles instead of using private vehicles (e.g., Drivy and
Zipcar), often associated with a subscription fee, and ride
sharing is when multiple passengers share their routes either
partially or completely by a single vehicle (e.g., BlaBlaCar
and Via).

Car sharing was introduced in Zurich, Germany, in
1948, as a car rental service, but it did not gain much
popularity until in the late 1980s [1]. Besides this, personal
mobility-sharing services were first introduced in Amster-
dam, the Netherlands, in 1965, in a system that allowed
people to share public bicycles; however, it was difficult to
proceed with long-term planning as a result of bicycle
damage or theft issues [8]. However, demand for alternative
mobility has been continuously increasing according to its
advantages (e.g., low cost, autonomy, flexibility, and rental in
recent years) [9] and the disadvantages of owning personal
cars (e.g., increased urban problems and uncertainty in
future operation expenses) [1].

In recent years, with the successful introduction of
sharedmobility service in Europe thanks to advancements in
telecommunication systems, many related studies have been
carried out from different perspectives such as infrastructure
planning for car-sharing and bicycle-sharing services
[10, 11], estimation of benefits and impacts [12–16], social
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norms [17–19], infrastructure resiliency and influence of
social networks [20–22], and user demand and character-
istics analysis [23–25].

Especially, analysis of the user’s intentions is attracting
much attention in which it is closely related to future de-
mand forecasting and economic evaluation. For example,
Simsekoglu and Klöckner analyzed psychological attitudes
and social determinants of electric bicycle use through
structural equation modeling analysis [23]. Matyas and
Kamargianni used a stated preference survey method to
obtain initial insight into whether sharingmodes can be used
as a successful or feasible mobility tool [24]. Most recently,
Ho et al. investigated user preferences for shared mobility.
+ey identified the impact of current on-demand mobility
services and obtained insight from customer demand
analysis in terms of socio-economic conditions and travel
needs [25]. However, such studies of user intention still have
limitations in which they usually focused on a single specific
shared mobility mode.

While the spread of shared mobility has increased, most
user-related studies have analyzed factors influencing the use
of shared transportation modes that are already widely used.
In the analysis based on the shared mobility services already
implemented, there is a possibility that established services
did not fully reflect future user intention in the planning
stages.+us, such post-hoc analyses can be biased in terms of
what potential users actually want and need, varying
according to their individual situations. +us, to predict the
correct direction of the provision of a service based on the
exact needs of users, it is necessary to analyze the intention to
use a shared mobility system that has not been implemented
yet.

To fill this research gap, we have conducted an online
survey for citizens living in Gyeonggi Province, Korea, and
carried out an ex-ante analysis of intention to use types of
shared mobility services through a logistic regression model.
+e intended contributions of this study can be summarized
threefold:

(1) We conduct an ex-ante analysis of potential user
needs for shared mobility services to overcome the
biases possibly inherent in the previous post-hoc
analyses

(2) We identify factors that influence user needs based
on their statistical significance and quantify the
extent of influence using survey data collected from
Gyeonggi Province, Korea

(3) We qualitatively suggest the direction of provision of
shared mobility service in consideration of potential
users’ intention

+e following section describes the questionnaire and
sample characteristics used in this study. In addition, this
section shows the statistics of the current usage status of various
transportation modes. Section 2 presents the statistical method
used to analyze the collected data. +e results are documented
Section 3. Section 4 summarizes the findings and suggests
policy directions to enhance the effectiveness and efficiency of
shared mobility plans for the future.

2. Data Description

2.1. Survey Overview and Questionnaire Design. An online
survey has been conducted to analyze the characteristics and
factors affecting the potential user’s intention of shared
mobility services. It targets people aged from 19 to 65 who
live in Gyeonggi Province, Korea, and its survey period is
from February 12, 2020, to February 26, 2020. +is province
is characterized by dense traffic zones that are satellite cities
connected to Seoul City, the capital of Korea. Each of the
province and the capital city is home tomore than 10million
people, and there are a large number of people commuting to
Seoul City from the surrounding satellite cities. While 781
responses were collected, we select a total of 753 samples due
to the incompleteness of responses [26, 27]. In detail,
samples are excluded in the following cases: (i) if there is no
response to a question that needs to be answered and (ii) if
multiple responses are made to a question that requires one
answer.

+e survey is comprised of three parts. +e first part is a
respondent socio-demographic characteristic (e.g., gender, age,
job, household size, household income, and residential area)
[28].+e second part is about the current and recent past use of
conventional transportation modes and existing shared mo-
bility services in the province. Specifically, the survey provides a
detailed description of the shared mobility services (Table 1)
and asks if the respondents are currently using or have used
them and how satisfied they are to understand how their past
experiences affect the future intention. +e reason we consider
only the past month’s experiences is twofold. First, conven-
tional transportation modes are mainly for commuting. +us,
the one-month survey can reflect the actual usage patterns.
Second, the sharedmobility services and their penetration rates
are rapidly changing and still at a pilot phase, so the current
perception of shared mobility services could not be highly
influenced by old experiences obtained when the service en-
vironments were different from now. Since satisfaction is
difficult to observe and measure explicitly, it is collected using
the Likert scale [28, 29]. +e third part is a future preference
survey assuming that shared mobility services will be provided.
+e survey questionnaire is summarized in Table 2.

2.2. Sample Characteristics. An analysis of respondent
characteristics confirms that the composition of the re-
spondents reflects the entire socio-demographic character-
istics of commuters in Korea. +e sample numbers for
different gender are almost even. Moreover, all age groups
except for the 60s have almost the same sample number. As
for the job, full-time workers occupy the majority of the
respondents, so the collected sample reflects commuter
traffic well [9]. Table 3 shows the statistical characteristics of
the collected samples.

2.3. Usage Status of Transportation Modes and Shared Mo-
bility Services. We survey the usage status of conventional
transportation modes and shared mobility services, focusing
on the experiences of respondents. We focus on the fre-
quently used transportationmodes in the past month of each
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Table 1: Description of the shared mobility services.

Service Concept How to use

Car sharing A short-term rental service for members

(1) Search for nearby parking lot using the smartphone
app

(2) Select and reserve a vehicle
(3) Park in the parking lot after use

Ride sharing A service that pays for and boards privately owned vehicles
during rush hours

(1) Enter departure point, boarding time, and
destination using the smartphone app

(2) Take the vehicle and use it

Personal mobility
sharing

A sharing service for single-person transportation modes
powered by electric batteries

(1) Search for nearby electric bicycle or scooter using the
smartphone app

(2) Select and reserve an electric bicycle or scooter
(3) Park freely after use

Table 2: Summary of survey questionnaire.

Part Variables description
<Part 1>
Sample socio-demographic factors

Gender, age, job, education, household size, household income,
residence, etc.

<Part 2>
Usage status and experiences of transportation and sharedmobility
service

Usage status of transportation in the past month

Usage status of shared mobility service in the past month

<Part 3>
Preference of shared mobility service Intention to use the shared mobility

Table 3: Characteristics of the respondents.

Sample attributes Number of the samples %

Gender Male 438 58.2
Female 315 41.8

Age

20’s 169 22.4
30’s 174 23.1
40’s 176 23.4
50’s 146 19.4
60’s 88 11.7

Job

Professional/technical worker 156 20.7
Administrative/office worker 381 50.6

Service worker 56 7.4
Production worker 38 5.0

Self-employed worker 76 10.2
Student 46 6.1

Education High school 87 11.6
University or higher 666 88.4

Household size

1 100 13.3
2 119 15.8
3 208 27.6
4 265 35.2

5 and above 61 8.1

Household income

Under 2,000,000 KRW∗ 53 7.0
2,000,000∼2,999,999 KRW 129 17.1
3,000000∼4,999,999 KRW 242 32.1
5,000,000∼6,999,999 KRW 176 23.4
7,000,000∼9,999,999 KRW 106 14.1
10,000,000 KRW and above 47 6.2

Population

600,000 and above 290 38.5
300,000∼599,999 197 26.2
Under 300,000 220 29.2
County area 46 6.1

∗ denotes South Korean won.
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respondent. Driving an owned vehicle is the most common
mobility mode, followed by using conventional public
transit such as subways, buses, and railroads. KTX presented
in Table 4 is an abbreviation of the “Korea Train express”
operated by Korail, a Korean railway company. +e use of
car-sharing and shared personal mobility services occupies
around 1%, much lower than that of other conventional
transportation modes. +us, it means that this study focuses
on people’s intentions who live in cities where shared
mobility is not prevailing. In Table 4, the vehicle-sharing
system, so-called macromobility, includes car sharing and
ride sharing, and the personal mobility-sharing system, a
component of micromobility, involves electric bicycle and
scooter sharing.

We analyze the usage status and characteristics of re-
spondents who have experienced sharedmobility servicesmore
than once, which are documented in Tables 5 and 6, respec-
tively. +e results show car sharing has the highest number of
once-experienced users, followed by shared electric bicycle, ride
sharing, and shared electric scooter. For the purpose of usage,
leisure/tourism has the highest proportion for each type of
service, but the total usage for commuting is relatively low [30].
Furthermore, as can be intuitively expected, the travel distance
and time per usage are longer in car sharing and ride sharing
than personal mobility modes.

2.4. Analysis Method. Linear regression analysis reveals the
correlation between one dependent variable and multiple
independent variables if we assume that the dependent
variable changes linearly by independent variables [31].
However, it is not suitable for dealing with binomial or
discrete events. In contrast, logistic regression can analyze
the nonlinear relationship between the dependent variable
and independent variables that are binary or discrete.
+erefore, it has the advantage of being able to understand
the relationship between the binary dependent variable and
several independent variables affecting various shared mo-
bility choices [31]. For a shared mobility service, the will-
ingness-to-use of a potential user, denoted by p, is
mathematically expressed as equation (1). It is obviously a
nonlinear function of n potentially influential factors
indexed by i, x1, . . . , xn, coupled with their coefficients,
β0, β1, . . . βn. Even if the expression of p is nonlinear, the
estimation of the coefficients can be efficiently done by
transforming it to a linear form. +e odds of p is p/(1 − p),
and the logarithm of it is defined as the logit of p, Logit(p).
As shown in equation (2), Logit(p) is a linear function of the
inputs, so we can apply a linear regression to estimate the
coefficients, β0, β1, . . . βn. In this paper, SPSS Statistics 25.0
software is used for the calculation:

p �
e

β0+  βixi( 

1 + e
β0+  βixi( 

, (1)

Logit(p) � log
p

1 − p
� β0 + β1x1 + β2x2 + · · · + βixi. (2)

In this study, the collected data about socio-demo-
graphic characteristics and past transportation usage sta-
tistics are considered as potential influential factors
(x1, . . . , xn). +e user intention of using a shared mobility is
set as a dependent variable (p). Table 7 shows the input types
of variables used in the model.

+e detailed description of each variable is as follows:
gender is divided into male and female; mainly, used
transportation means whether you primarily use a vehicle
or transportation when commuting; car ownership means
you possess a vehicle that you can drive freely; ownership
of shareable vehicle means respondents have at least one
extra private vehicle that can be shared with other users;
ownership of personal mobility device means respondents
have electric bicycle or scooter; the education level is
divided into twofold: high-school graduation and uni-
versity or higher; previous experience refers to whether
respondents have been used vehicle-sharing or personal
mobility-sharing services; age is as natural number var-
iables; distance from home to the nearest bus stop is as
continuous variables in kilometers; satisfaction is mea-
sured on 5-point scale to show how satisfied the re-
spondents were when they used the existing shared
mobility services.

To identify variables associated with a significant cor-
relation, we perform Pearson’s correlation analysis. Fur-
thermore, a multicollinearity test has been conducted to
check if the selected variables are free from multicollinearity
with other variables. +e analysis results through the cor-
relation and the multicollinearity analysis are presented in
Figure 1 and Table 8, respectively.

+e titles of the rows and columns in Figure 1 means the
following. Transportation is mainly used transportation; Car
refers to car ownership; SV means ownership of sharable
vehicle; PMD indicates ownership of personal mobility device;
PEVS denotes previous experience in vehicle sharing; PEPMS
represents previous experience in mobility-sharing; Distance
stands for distance from home to bus stop.

Figure 1 shows the results of extracting significant
variables related to user intention. In this figure, the overall
result has a weak correlation, as the correlation is lower than
or equal to 0.3 [32]. A few variables exceed 0.3, but we can
consider them as moderate correlations since they are below
0.7 [32].

Table 4: Usage status of transportation as the primary mode.

Transportation modes Number of the samples %
Privately owned vehicle 333 44.2
Subway 193 25.6
City bus 134 17.8
Intercity bus 52 6.9
Shuttle bus 16 2.1
On foot 5 0.7
KTX 3 0.4
Vehicle-sharing system 9 1.2
Personal mobility-sharing system 8 1.1
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Table 5: Usage status of shared mobility services.

Sample attributes Number of the samples %

Usage

Car sharing Yes 117 23.5
No 576 76.5

Ride sharing Yes 72 9.6
No 681 90.4

Shared electric bicycle Yes 139 18.5
No 614 81.5

Shared electric scooter Yes 55 7.3
No 698 92.7

Purpose of usage

Car sharing

Commuting 42 23.7
Business 34 19.2

Leisure/tourism 98 55.4
Others 3 1.7

Ride sharing
Commuting 20 27.8
Business 17 23.6

Leisure/tourism 35 48.6

Shared electric bicycle

Commuting 37 26.6
Business 17 12.2

Leisure/tourism 84 60.4
Others 1 0.7

Shared electric scooter

Commuting 14 25.5
Business 15 27.3

Leisure/tourism 23 41.8
Others 3 5.5

Table 6: Usage characteristics of shared mobility services.

Sample attributes Average number of use Distance per use (km) Time per use (mins)
Car sharing 3.4 38.9 101.5
Ride sharing 3.2 16.3 34.4
Shared electric bicycle 3.2 10.6 38.4
Shared electric scooter 4.1 13.7 30.9

Table 7: Variable format of the estimation model.

Classification Variables Data format

Independent variable

Discrete variable

Gender Female: 0
Male: 1

Mainly used transportation Vehicle: 0
Public transportation and others: 1

Car ownership No: 0
Yes: 1

Ownership of shareable vehicle No: 0
Yes: 1

Ownership of personal mobility device No: 0
Yes: 1

Education High school: 0
University or higher: 1

Previous experience in vehicle sharing No: 0
Yes: 1

Previous experience in personal mobility sharing No: 0
Yes: 1

Continuous variable
Age 19∼65

Satisfaction 1(Unsatisfied)∼5(Satisfied)
Distance from home to the nearest bus stop In kilometers

Discrete variable Intention to use the shared mobility No: 0
Yes: 1
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For the variables with high significance shown in
Figure 1, their VIF values are derived as shown in Table 8.
VIF is a measure that calculates the association between a
fixed independent variable and the other independent
variables. If the VIF of a certain variable is 10 or more, we
can understand that multicollinearity exists with the var-
iable. Moreover, if this value exceeds 5, it is considered that
attention is needed. In this case, it is inappropriate to put it
into the model because the highly correlated variables can
affect the model and result in undesirable biases [33]. As a
result of the analysis, all estimated VIF values are lower
than 5, so we find that multicollinearity does not exist.

A detailed description of each notation is in Table 1. B is
a predicted value, meaning influence of the variable and Beta
is the standardized value of B; S.E is the standard error,
which estimates the variability; t is a value that is the dif-
ference between the predicted value divided by standard
error, which compares the differences according to vari-
ability; Sig. judges whether it is valid within the significance
level (95% confidence level in this study); allowance and
variance inflation factor (VIF) are indicators of
multicollinearity.

In general, the model is evaluated using R2 of Cox and
Snell and R2 of Nagelkerke in regression analysis. How-
ever, for logistic regression, R2 is generally low and de-
pends on the dependent variable, so it is not appropriate

to evaluate the adequacy of model [34, 35]. +us, Hosmer
and Lemeshow test, which is a goodness-of-fit method
that performs a verification of the degree of agreement
between a predicted value and an observed value using a
chi-square distribution [34], is used to test the fit of the
proposed model. If the results are greater than the set
significance level, it can describe that the model is well
estimated.

We set the final estimationmodel using the variables that
are selected by using the backward elimination method,
which has been known to be appropriate to prevent re-
moving statistically meaningful variables related to the
dependent variable compared to the alternative, the forward
elimination method [36]. Table 9 shows the description and
detailed verification results of the model through the
Hosmer and Lemeshow test. +e chi-square measure is
estimated as 8.718, and the significance level is 0.367, which
is greater than the standard, 0.05. +us, the estimated model
is statistically suitable to represent intention to use shared
mobility services.

3. Discussion

Table 10 describes the model estimation results. +e detailed
description of notation is as follows: Wald means how
important a variable is to describe a model; d.f is the degree
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Figure 1: Result of correlation.
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of freedom, which means the used amount of data infor-
mation when estimating statistics; Exp(B) means how much
influence a variable has; 95% C.I for exp(B) is a confidence
interval in which a parameter is included.

As a result of model estimation, age, which is a re-
spondent characteristic variable, is removed because it
presents no significant effect on the intention to use shared
mobility. In other words, people do not have heterogeneous
preferences and use intentions to shared mobility services
for different age groups. Gender (B � 0.337 and p � 0.029),

mainly used transportation (B � 0.514 and p � 0.009),
possession of a car (B � 0.589 and p � 0.008) or shared
mobility (B � 0.738 and p � 0.007; B � 1.000 and p � 0.009,
education (B � 0.608 and p � 0.019), thoughts on shared
mobility (B � 0.468 and p � 0.027; B � 1.179 and
p � 0.0003), satisfaction when using shared mobility
(p � 0.003), and distance to the nearest bus stop from home
(B � 0.065 and p � 0.032) are found to have significant ef-
fects. Especially, early adopters who have owned personal
mobility devices (B �1.000 and p � 0.009) or already

Table 8: Result of multicollinearity.

Variables
Nonstandard
coefficient Standard coefficient t Sig.

Collinearity value

B S.E Beta Allowance VIF
Constant −0.121 0.111 1.082 0.280
Gender 0.074 0.036 0.075 2.080 0.038 0.900 1.111
Mainly used transportation 0.097 0.039 0.099 2.462 0.014 0.727 1.376
Car ownership 0.103 0.048 0.091 2.129 0.034 0.631 1.584
Ownership of shareable vehicle 0.124 0.050 0.088 2.468 0.014 0.924 1.082
Ownership of personal mobility device 0.144 0.061 0.085 2.356 0.019 0.902 1.108
Education 0.131 0.054 0.085 2.431 0.015 0.950 1.053
Previous experience in vehicle sharing 0.107 0.042 0.097 2.510 0.012 0.774 1.293
Previous experience in personal mobility sharing 0.213 0.048 0.176 4.456 0.0001 0.750 1.334
Age 0.002 0.002 0.045 1.134 0.257 0.747 1.339
Satisfaction 0.016 0.017 0.032 0.927 0.354 0.953 1.050
Distance from home to the nearest bus stop 0.014 0.006 0.082 2.345 0.019 0.955 1.047

Table 9: Model verification.

Variables Value

Model summary Cox and Snell R2 0.162
Nagelkerke R2 0.219

Hosmer and Lemeshow test
x2 8.718

Degree of freedom 8
Significance 0.367

Table 10: Model estimation.

Variable B S.E Wald d.f Sig. Exp (B)
95% C.I for

exp(B)
Lower Upper

Constant −0.643 0.430 2.235 1 0.135 0.526
Gender 0.377 0.173 4.750 1 0.029 0.686 0.489 0.963
Mainly used transportation 0.514 0.196 6.883 1 0.009 1.671 1.139 2.453
Car ownership 0.589 0.224 6.925 1 0.008 1.802 1.162 2.794
Ownership of shareable vehicle 0.738 0.272 7.363 1 0.007 2.091 1.227 3.564
Ownership of personal mobility device 1.000 0.381 6.902 1 0.009 2.719 1.289 5.735
Education 0.608 0.258 5.541 1 0.019 1.837 1.107 3.048
Previous experience in vehicle sharing 0.468 0.212 4.884 1 0.027 1.598 1.054 2.421
Previous experience in personal mobility sharing 1.179 0.269 19.284 1 0.0003 3.252 1.921 5.504
Satisfaction 16.320 4 0.003
Satisfaction (1) −0.640 0.472 1.840 1 0.175 0.527 0.209 1.329
Satisfaction (2) −0.323 0.364 0.786 1 0.375 0.724 0.354 1.479
Satisfaction (3) −1.025 0.329 9.689 1 0.002 0.359 0.188 0.684
Satisfaction (4) −0.521 0.331 2.467 1 0.116 0.594 0.310 1.138
Distance from home to the nearest bus stop 0.065 0.030 4.596 1 0.032 1.067 1.006 1.132
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experienced shared services (B �1.179 and p � 0.0003) tend
to think the future of shared mobility positively, as inferred
from their highest B values.

In the case of gender, since the coefficient has a positive
value (B � 0.337), it can be determined that men are more
willing to use shared services than women. According to the
sign of the coefficient, people have a higher intention to use
shared mobility in the following cases: using public trans-
portation as their primary mode, owning a private car or
extra vehicle to share, with higher education level than high-
school graduation, experienced sharedmobility at least once,
having high satisfaction with past usage of shared mobility
services, and suffering from long distance from home to
nearest bus stop. It is because people who mainly use public
transportation will get more benefits by mitigating the ac-
cessibility-related inconvenience, and these benefits should
be greater if the current accessibility is low. Last, those who
own an extra car have a high intention because this vehicle
can be used for vehicle sharing.

+ese findings can be summarized by the following.
First, the experience of using or owning personal mobility
devices, introduced relatively recently compared to other
transportation modes, has the most positive effect on the
user intention. +us, to promote shared mobility services to
public, it is considerable to offer free or cheap opportunities
to use such personal mobility devices. Second, we find which
groups of people are more willing to use shared mobility
services, so this knowledge can be used in two ways: we need
to (i) focus on providing services to the groups with higher
intentions in order to increase usage rate or (ii) advertise the
services to the groups with less intentions to increase the
potential population of future users. Last, if there is an
inconvenience in using existing public transportation
modes, there is a high possibility of becoming a potential
user of shared mobility. It means that we need to first in-
troduce shared mobility services on the sites associated with
low accessibility to public transportation systems.

4. Conclusions

We conduct an online survey on sharedmobility and analyze
factors affecting user intention. Correlation and multi-
collinearity analyses are performed to reveal hidden rela-
tions among measures of intention to use and potentially
influential factors. +is study aims to better understand the
intent of using shared mobility for practitioners, which can
be developed into various policy proposals for future mo-
bility dissemination. Additionally, factors affecting future
intention to use shared mobility services are quantitatively
analyzed through logistic regression, which can estimate
willingness to use according to individual characteristics and
usage conditions.

For the factors reflecting socio-demographic charac-
teristics, the analysis results show that gender, possession of
a car, and education have significant effects on future in-
tention, while age has no significant effect. Furthermore, for
the indicators related to past transportation usage, mainly
used transportation modes, possession of a shared mobility

device, past related experiences, satisfaction when using
shared mobility, and distance from home to the nearest bus
stop are shown to have significant effects on intention to use.

Among them, previous experience is identified as one of
the most important factors determining its intention to use.
It appears that people who have a shareable vehicle or have
experienced shared transportation have a high intention to
use such systems.+is also can affect the satisfaction of users
with the use of sharedmobility.+us, citizens who have been
exposed to shared mobility services in the past lower hurdles
to use in the future. Past experiences and satisfaction can
reduce uncertainty and anxiety about the introduction of
new modes. It will raise expectations for the introduction of
shared mobility services. +erefore, it is important to es-
tablish a social environment that can easily deliver the
benefits of shared mobility to potential users when intro-
ducing new mobility.

+ey also have a high intention to use when they have
been mainly using public transit services, and this intention
becomes higher as the distance from their home to the
nearest bus stop increases. +is is another notable finding in
this study. +e expectations of people’s future use of shared
mobility are closely tied to the location of existing public
transport facilities. +us, if the installation of public
transport is sparse or the distance between transfers of public
transport is far, introducing shared mobility can increase the
likelihood of choosing this. +erefore, policymakers may
need to consider introducing shared mobility services when
a number of citizens are in such situations.

It is possible to propose a more effective policy if we
consider the analysis results of the user intention and the
existing usage of transportation modes at the same time. We
find that existing shared mobility is mainly used for leisure/
tourism purposes rather than commuting. +erefore, in
order to increase the utilization of shared mobility, intro-
ducing a service at a leisure or tourist complex may be
considered. Moreover, it is found that vehicle-sharing
mobility is more effective than personal mobility when trip
distance is long. Likewise, personal mobility can be effec-
tively introduced when the distance is relatively low, such as
last-mile trips.

Coupled with the limitations of this study, we can
consider some future research directions. +is study focuses
only on analyzing user intention in the future, assuming that
shared mobility services are not currently settled and
established. However, in many places in the world, services
are in wide use, and their long-term usage and satisfaction
statistics can be analyzed together to provide better services
in the future. Moreover, to implement a shared mobility
service in practice and suggest a policy, forecasting user
intention and demand is not enough. A next step, a decision-
making process, is needed to determine the scale and type of
services. For this, both qualitative and quantitative methods
can be adopted. As a qualitative method, it is possible to
study cases of existing services based on the user demand,
provided services, and user satisfaction. As a quantitative
method, we can use an optimal decision-making framework
to determine the most desirable scale and type of a newly
introduced shared mobility service based on predicted
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demand and intentions. Last, in the current study, we
identify which factors are actually influential, so it will be
worth focusing on them for further detail. For example,
education is shown to be significant in user intention. +e
group with a bachelor’s degree or above, which accounts for
88.4% of respondents, can be subdivided into groups with
Bachelor, Master, and Ph.D. degrees to see how much levels
of higher education affect the awareness and use intention of
various kinds of shared mobility services [37].
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Understanding choice behavior regarding travel mode is essential in forecasting travel demand. Machine learning (ML) ap-
proaches have been proposed to model mode choice behavior, and their usefulness for predicting performance has been reported.
However, due to the black-box nature of ML, it is difficult to determine a suitable explanation for the relationship between the
input and output variables. +is paper proposes an interpretable ML approach to improve the interpretability (i.e., the degree of
understanding the cause of decisions) of ML concerning travel mode choice modeling. +is approach applied to national
household travel survey data in Seoul. First, extreme gradient boosting (XGB) was applied to travel mode choice modeling, and the
XGB outperformed the other ML models. Variable importance, variable interaction, and accumulated local effects (ALE) were
measured to interpret the prediction of the best-performing XGB. +e results of variable importance and interaction indicated
that the correlated trip- and tour-related variables significantly influence predicting travel mode choice by the main and cross
effects between them. Age and number of trips on tour were also shown to be an important variable in choosing travel mode. ALE
measured the main effect of variables that have a nonlinear relation to choice probability, which cannot be observed in the
conventional multinomial logit model. +is information can provide interesting behavioral insights on urban mobility.

1. Introduction

+e recent emergence of new travel modes such as ride-
sourcing, ride-hailing, and autonomous vehicles and the
evolution of new mobility services such as mobility as a
service and mobility on demand (known as MaaS and MoD,
respectively) is changing travel behavior significantly [1].
+ese emerging technologies present new sources of big data
for understanding travel behavior and system performance
[2]. New methods that leverage this big data are needed to
analyze travel behavior changes and predict travel mode
choices. +e multinomial logit (MNL) model has dominated
travel mode choice analysis due to its simplicity and read-
ability. +e simple MNL model and its variants have been
applied to consider various effects in the context of travel
mode choice based on the expert-designed model as-
sumptions. Linear relationships in parameters of the simple
MNL model can be intuitively interpreted as weights of the
variables. Even nonlinear relationships in parameters such as

willingness-to-pay for reduced travel time variability can be
captured by combining the conventional utility functional
form with a probability weighting function [3]. However,
this approach requires prior assumptions for the functional
form of the weighting function. +e MNL can capture the
interaction effects between correlated variables by adding
appropriate interaction parameters that are based on em-
pirical or experimental knowledge [4], but considering all of
the interactions becomes impossible as the number of
variables increases. Although the simple MNL model as-
sumes the independence of irrelevant alternatives (IIA)
causing misleading predictions, the correlations between
travel modes have been addressed by the advanced structure
of the MNL model such as the nested logit and mixed logit
model [5]. However, it is very difficult to design an ap-
propriate model structure of the MNL model that effectively
captures a high degree of complexity in a dataset [6]. In
summary, the existing MNL and its variants can take into
account the various effects in the mode choice situations;
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however, they rely on the model assumptions that should be
determined by the subjective judgment of the researcher,
and these assumptions affect the parameter estimates and
the prediction performance.

Machine learning (ML) approaches are promising al-
ternatives to the MNL-based model for modeling travel
mode choice. It can represent complex relationships be-
tween mode choices and input variables in a data-driven
manner rather than making strict assumptions about the
data [7]. Many previous studies have reported the use of an
ML approach to model travel mode choice [1, 6–11]. +ese
authors have generally reported improvements in the pre-
diction performance of ML approaches compared to MNL-
based models. Recently, Wang et al. established an empirical
benchmark by using 86ML models to predict travel mode
choice based on a 2017 U.S. national household travel survey
dataset [12]. +e authors found that ensemble models such
as boosting, bagging, and random forest models exhibit
performances superior to those of all other ML methods,
including deep neural networks. However, due to the black-
box nature of ML models, the authors could not explain the
prediction results, making it difficult to find a suitable ex-
planation for the relationship between the input variables
and travel mode choices.

Several studies have performed additional analyses of the
prediction results to complement the evaluation of perfor-
mance. Wang and Ross proposed an extreme gradient
boosting (XGB) model for predicting travel mode choice [1].
Using a relatively comprehensive dataset, the authors
measured the relative importance of variables in the training
process of the XGB and estimated the importance of cor-
related variables that cannot be explained using the MNL
model. Hagenauer and Helbich measured the permutation-
based importance of variables in predicting the choice of
each travel mode, and their result showed that the critical
variables varied with the predicted travel modes [7]. Lee et al.
developed a choice model for alternatives related to au-
tonomous vehicles using a gradient boosting machine
(GBM) [10]. +ey measured the partial dependence (PD),
which captures the marginal effects of attributes repre-
senting the relationship between the input variables and
predicted output. Although the above researchers who
conducted these three studies tried to explain the prediction
results of their ML models with several meaningful inter-
pretations, there is room for improvement by the application
of various interpretation methods to reveal details of the
characteristics of travel behavior.

In this study, model-agnostic interpretation methods
were applied to explain the prediction results of ML models
concerning mode choice behavior. XGB, random forest
(RF), and artificial neural network (ANN) models were
employed to predict travel mode choices from national
household travel survey (NHTS) data in Seoul. Trip- and
tour-related attributes were extracted from the NHTS data to
construct the variable set. +e tour refers to interconnected
trips (i.e., trip chain) during a day. +is dataset is enriched
with traffic analysis zone (TAZ)-level spatial information.
+e performance of the models was evaluated regarding
their prediction of each travel mode. +en, the best-

performed XGB prediction results were analyzed to reveal
choice behavior for urban travel modes. In doing so, two
crucial issues were addressed, which are difficult to inves-
tigate using a conventional MNL model, i.e., (i) how each
variable interacted with other variables and (ii) how the
variable related to the probability of travel mode choice.

+e remainder of this paper is organized as follows. In
Section 2, the dataset and data-processing procedure applied
in this study are described.+en, the MLmodels and model-
agnostic interpretation methods are discussed in detail. In
Section 3, performance evaluation of the ML models and
interpretation of the XGB prediction results are presented.
Finally, concluding remarks and future research directions
are presented in Section 4.

2. Materials and Methods

2.1. Data Descriptions. +e primary source of data for this
study was a 2016 NHTS dataset in the Seoul, Korea [13].
+ese data included individual travel diaries that recorded
every daily trip taken, with multiple trips on a given day
expressed as a trip chain. +e chained trips were divided by
their trip purpose and established the major travel modes of
the trip’s purpose. For example, a person who uses the
subway to go to work must first access the subway station on
foot and then use the subway. In this case, the two chained
trips, walking and subway, are combined into one subway
trip as the primary travel mode. Walking is considered a
primary travel mode only if it is used as the sole travel mode,
but not as a means to access another travel mode. Seoul
operates a public transit unified fare system for buses and
subways, whereby charges are levied as if the person is using
a single travel mode when transferring between these two
forms of public transit. +erefore, this study makes no
distinction between a bus and a subway, whereby the
chained trips of a bus and subway with a transfer are
considered to be one trip by public transit.

Table 1 describes the variables included in the travel
mode choice model. Four categories of variables are used to
train and test the mode choice model. Trip-related, tour-
related, and individual attributes are extracted from the
NHTS data, and built environment attributes are obtained
from national spatial data [14] and population census [15] in
Korea. +e departure and arrival locations of NHTS data are
recorded in the TAZ unit, which is within a radius of about
1 km; thereby, the NHTS data are merged with built envi-
ronment attributes according to TAZ. +e dependent var-
iable is for primary travel modes: car, bike, transit, and
walking. A single mode, which is assumed, is used for an
entire tour because 89.9% of the respondents in the NHTS
data used the one primary travel mode rather than a
combination of modes. Trip-related attributes are extracted
from single or sequential individual trips. +e duration of an
activity is calculated by the difference between the arrival
time on the previous trip and the departure time on the next
trip. +e duration of activity on the last trip (i.e., the return
trip home) is calculated by the difference between the arrival
time of the last trip and the departure time of the first trip.
Travel time includes in-vehicle and out-of-vehicle time, such
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as waiting time and access time. Departure time is divided
into peak and nonpeak categories. Trip type is defined by the
characteristics of the origin and destination, such as home,
work, or other places. Tour-related attributes are extracted
from all the trips of individuals during a single day. +e sum
of activity durations of trips is calculated, excluding the last
trip, and the sum of travel time and the number of trips
includes all the trips made during a day. Tour types are
defined by the combination of trip types included in a tour.
+e Home-Other-Home (HOH) type includes the tour with
more than three trips (e.g., H-O-O-H). Individual attributes
include age, gender, car owner, driver’s license, and income,
and all of those attributes are directly collected in the NHTS
data. Built environment attributes describe the spatial
characteristics of a trip’s destination (D). +e variables for
land use are defined as the ratio of a residential or com-
mercial area to the total area. Population density, number of
workers, number of bus stops, and number of subway stops
are also used to characterize the destination in the TAZ unit.
Although travel cost is an important variable in the travel
mode choice, the NHTS data used in this study did not
include the respondents’ travel cost such as fuel cost, parking
cost, and transit fares.+erefore, the effect of travel cost does
not consider in the analysis like other studies using the

NHTS data [1, 7, 8]. After a data-cleaning process, in which
the trips were removed with very long activity duration and
travel time, a total of 172,889 trips taken by 76,190 indi-
viduals were used. 75% of the NHTS data was used for
training and 25% of those data for the test.

Table 2 shows the descriptive statistics of the variables.
+e distribution of the travel mode is imbalanced in that
trips by walking, transit, car, and bike are 43.7%, 35.3%,
18.5%, and 2.5%, respectively. +e mean activity duration is
490.2 minutes, which is slightly longer than the standard
working time of eight hours, and the mean travel time of
each trip is 21.7 minutes. +e number of trips during a peak
time is comparable to the number of trips at a nonpeak time.
In terms of trip type, the percentage of HBW, HBO, NHBO,
and RH are 31.8%, 16.7%, 4.8%, and 46.7%, respectively,
indicating that more than 20% of noncommuting trips are
included in the data. +e sum of activity duration and the
sum of travel time have a mean value of 509.2 minutes and
51.6 minutes, respectively. While 70.9% of travelers make
two trips during a day, 29.1% make more than three trips.
+e people who made more than three trips may have tour
types of HOH or HOWH, which are 27.0% and 21.4% of
total tours, respectively. +e percentages of females, car
owners, driver’s licenses, and those with a high income are

Table 1: Description of the independent and dependent variables.

Variable name Explanation Data types
Travel mode Chosen travel mode for the trip (dependent variable): 1� car, 2� bike, 3� transit, and 4�walking Categorical
Trip-related attributes
Activity duration Duration of the activity Numeric
Travel time Travel time of the trip Numeric

Departure time 1� the trip occurs in the morning or evening peak hours (8 A.M.–10 A.M. or 5 P.M.–7 P.M.);
0� otherwise Dummy

Trip type Context of the trip: 1� home-based work (HBW); 2� home-based others (HBO); 3� non-home-
based others (NHBO); 4� return home (RH) Categorical

Tour-related attributes
Sum of activity duration Sum of activity duration during a day excluding the last trip Numeric
Sum of travel time Sum of travel time during a day Numeric
Number of trips Number of trips that occurred during a day Categorical

Tour type Context of the tour: 1� home-work-home (HWH); 2� home-other-home (HOH); 3� home-
work-other-home (HOWH) Categorical

Individual attributes
Age Age of the traveller in years Numeric
Gender 1� the traveller is male; 2� the traveller is female Dummy
Car owner 1� the household of traveller owns a car; 0� otherwise Dummy
Driver’s license 1� the traveller has a driver’s license; 0� otherwise Dummy
Income Monthly household income of the traveller (million KRW): low� income< 5; high� income≥ 5 Dummy

Built environment
attributes
Land use in D:
residential +e ratio of residential area to the total area at D in TAZ unit Numeric

Land use in D:
commercial +e ratio of commercial area to the total area at D in the TAZ unit. Numeric

Population density at D Density of the population (people/km2) at the destination in the TAZ unit Numeric
Number of workers at D Number of workers at the destination in the TAZ unit Numeric
Number of bus stops at
D Number of bus stops at the destination in the TAZ unit Numeric

Number of subway
stops at D Number of subway stops at the destination in the TAZ unit Numeric

Note. D� destination of a trip; 1,000KRW� 0.84USD.
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51.7%, 72.0%, 54.7%, and 33.0%, respectively. While the car
owner indicates whether the household owns a private car,
the driver’s license indicates whether the individual owns a
driver’s license. +e descriptive statistics of built environ-
ment attributes are also presented in Table 2.

2.2. Machine Learning Model for Predicting Travel Mode
Choice. +reeMLmodels, XGB, RF, and ANN, were applied
to predict travel mode choices. Given a set of values of the

input variable, the model predicts the probability that a
specific travel mode will be chosen. To account for class
imbalance, weight to the data instance is applied in inverse
proportion to the frequency distribution of each class, and
those class-specific weights are commonly used to train ML
models. A hyperparameter is a parameter that controls the
training process of the ML model. Since the hyperparameter
affects the speed and quality of the training process,
hyperparameter tuning is an essential task for evaluating an
ML model’s performance. +e major hyperparameters of

Table 2: Descriptive statistics of the variables.

Variable name Category % Mean Standard deviation

Travel mode

Car 18.5
Bike 2.5

Transit 35.3
Walking 43.7

Trip-related attributes
Activity duration (min) 490.2 251.1
Travel time (min) 21.7 15.9

Departure time Peak 50.6
Nonpeak 49.4

Trip type
HBW 31.8
HBO 16.7
NHBO 4.8
RH 46.7

Tour-related attributes
Sum of activity duration (min) 509.2 235.6
Sum of travel time (min) 51.6 33.4

Number of trips

2 70.9
3 10.5
4 16.4
5 1.4
6 0.8

Tour type HWH 51.6
HOH 27.0
HOWH 21.4

Individual attributes
Age 44.6 20.0

Gender Female 51.7
Male 48.3

Car owner Yes 72.0
No 28.0

Driver’s license Yes 54.7
No 45.3

Income High 33.0
Low 67.0

Built environment attribute
Land use in D: residential 0.49 0.20
Land use in D: commercial 0.29 0.20
Population density at D 42,862 11,771
Number of workers at D 32,787 75,271
Number of bus stops at D 125.2 85.5
Number of subway stops at D 1.0 1.2

Note. D� destination of a trip.
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each ML model were tuned using a grid search technique
based on 4-fold cross-validation. A comparable degree of a
set of hyperparameter combinations is considered for each
ML model.

2.2.1. Random Forest. +e decision tree is a popular ML
model due to its ability to capture complex structures in the
data, although it suffers from an overfitting problem. To
address this issue, ensemble models have been proposed.+e
RF [16] is a tree-based ensemble method related to the
bagging approach, which averages noisy but approximately
unbiased models to reduce the variance. An ensemble of
independent trees on a random subset of a training dataset
with randomly selected variables can achieve better gener-
alized performance [9, 17].+e RF has also shown promising
performance for predicting travel mode choice in previous
studies [7, 8]. +ere are four significant hyperparameters
used to tune the learning process of an RF model: the
number of trees, the number of variables to split in each
node, the maximum depth of each tree, which determines
the model complexity of each tree, and the data-sampling
rate used for training each tree. +e RF model is imple-
mented using the “ranger” package in R [18].

2.2.2. Extreme Gradient Boosting Model. +e GBM is an-
other tree-based ensemble method that has been successfully
used to predict travel mode choice [1, 10]. Unlike the RF, the
GBM builds a sequence of the low-depth decision tree,
where each tree is trained to put more weight on the in-
correct prediction of the previous trees [19].+e results of all
the estimated trees collectively determine the result of the
ensemble model. To implement GBM, an eXtreme Gradient
Boost (XGB) proposed by Chen et al. [20] is employed. XGB
is an efficient algorithm for constructing boosted trees using
regularization terms and parallel processing. +e five major
hyper parameters of XGB are tuned, including the learning
rate, maximum depth of each tree, number of variables
considered in each tree, number of samples considered in
each tree, and minimum value of the sum of instance weight
of a node. +e XGB model is implemented using the
“xgboost” package in R [20].

2.2.3. Artificial Neural Network. +e ANN is a widely used
ML model for the training classification model. +e
promising performance of ANN rather than MNL for
modeling travel mode choice has been reported in previous
studies [6, 7]. A multilayer perceptron (MLP) is a con-
ventional neural network including an input layer, one or
more hidden layers, and an output layer. Nonlinear rela-
tionships in the data can be naturally captured by the MLP
since it iteratively adjusts the weights and biases between
neurons’ interactions in multiple layers [21]. +is study
adopts an MLP with a single hidden layer, and a standard
backpropagation algorithm with a decay term was used to
train the MLP. +e number of neurons in the hidden layer
and a decay term are tuned.+e ANNmodel is implemented
using the “nnet” package in R [22].

2.3. Model-Agnostic Interpretation Methods.
Interpretability is defined as the degree of understanding the
cause of prediction [23]. Traditional interpretable models,
such as logistic regression and decision tree, sacrifice pre-
diction performance due to a simple model structure that
improves interpretability. Recently, model-agnostic inter-
pretation methods have been applied to make machine
learning interpretable. +ose interpretation methods com-
monly measure changes in prediction performance
according to changes in the value of input variables. By
doing so, the marginal effect of the variables is estimated to
deduce the importance and interaction of variables. Also, the
complex relationship between the input and outcome can be
estimated. +e target of the interpretation methods is di-
vided into two perspectives: the entire model behavior (i.e.,
global interpretability) and a single prediction (i.e., local
interpretability) [24]. +is study focuses on the former by
applying three model-agnostic interpretation methods.

2.3.1. Permutation-Based Variable Importance. When
values of a variable are permutated so that their relationship
with the predicted outcome is broken, the prediction error
will increase. By calculating the increases in the model’s
prediction error, the importance of the variable is obtained.
+is study measures the importance based on the algorithm
proposed by Fisher et al. [25]. +e permutation-based
variable importance can naturally consider all interactions
with other variables (i.e., the sum of main and cross effects)
by permutation. +erefore, highly correlated variables also
can be directly interpreted. For the input variable matrix X,
the original error (eorig) of the ML model (f) is estimated by
the defined loss function (L) between the predicted value
(f(X)) and the true value (y), as in equation (1). +en, the
input matrix, including the permutated variable j (Xpermj) is
used to compute the permutated error (epermj), and the
importance of variable j (VIMPj) is calculated by
(epermj /eorig), as shown in equation (2):

e
orig

� L(y, f(X)), (1)

VIMPj �
L y, f Xpermj(  

e
orig �

e
permj

e
orig . (2)

To measure the importance of the multiclass classifi-
cation, the balanced accuracy of each travel mode (see
equation (3)) is used as a L between the predicted value and
the true value:

Specificity �
TN

TN + FP
,

Sensitivity �
TP

TP + FN
,

Balanced accuracy �
Specificity + Sensitivity

2
,

(3)

where TN, FN, TP, and FP are the true negative, false
negative, true positive, and false positive, respectively.
Compared with the accuracy, the balanced accuracy can
serve as a better judge of performance for the imbalanced
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classification problem where the difference in the number of
negative and positive samples for each class is large [26]. +e
balanced accuracy in this study also measures the prediction
performance of the ML model.

2.3.2. Variable Interaction. When variables are correlated,
the effect of one variable depends on the value of other
variables. +e change in the prediction error also can be
used to measure those correlations (i.e., variable interac-
tion). Friedman’s H-statistic is used to estimate the
strength of the variable interaction quantitatively. +is
measurement indicates how much the variation in the
prediction depends on the interaction of the variables [27].
+e marginal effect of a variable on the model’s prediction
is represented by the partial dependence (PD) function, as
in

PDj xj  �
1
n



n

i�1

f xj, x
(i)
−j ,

PDjk xj, xk  �
1
n



n

i�1

f xj, xk, x
(i)
−j−k ,

(4)

where PDj(xj) is the PD function of a single variable j,
PDjk(xj, xk) is the 2-way PD function of two variables j and
k, n is the total number of data points, i is a certain data point
used to estimate the marginal effect, xj and xk are the
variables used to calculate the marginal effects, and x−j and
x−j−k are the other variables used in the ML model (f).
Mathematically, the interaction between variables j and k
(i.e., two-way interaction) is estimated as in equation (5),
and the interaction between variable j and any other vari-
ables (i.e., total interaction) is estimated as in equation (6)
[28]:
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where PD−j(x
(i)
−j ) is the PD function that depends on all

variables except the jth variable. While the two-way inter-
action in equation (5) indicates the amount of the variance
explained by the interaction between the two variables xj

and xk among the variance of the output of the PD, the total
interaction in equation (6) indicates the amount of the
variance explained by the interaction between variables xj

and any other variable x−j among the variance of the output
of the entire function [28]. +erefore, if the H-statistic is
zero, there is no interaction at all, and if all the effect of
variables is applied as an interaction, the statistic would be
one. When the H-statistic is larger than one, the interpre-
tation would be difficult. In the case of two-way interaction,
this can happen when the variance of two-way interaction is
larger than the variance of the two-dimensional PD In the

case of total interaction, this can happen when the variance
of interaction between one variable and other variables is
larger than the variance of the ML model.

2.3.3. Accumulated Local Effect. +e promising perfor-
mance of the ML model suggests that complex relationships
exist between the input variables and predicted outcome in
the real data, which may be nonlinear or polynomial. To
represent these relationships, the ALE value was used, which
shows the changes in the probability of a travel mode choice
by the specific value (or category) of a variable. Generally,
the marginal effect of the variables can be obtained using the
PD function [10, 17]. However, the PD function assumes
that the variables are not correlated with each other, which is
unrealistic in real data. When the variables are highly
correlated, the PD function includes unrealistic data when
averaging the prediction results, which can substantially bias
the estimated effect of the variable [28]. To address this issue,
the accumulated local effect (ALE) is used, which is the
unbiased alternative to PD [29]. +e value of ALE can be
interpreted as the main effect of the variable at a specific
value compared to the average prediction value of the data.
+e ALE plots can depict any relationship, whether linear,
monotonic, or more complex, between a variable and the
predicted outcome. +e ALE calculates the change in pre-
diction results by replacing the target variable with grid
values z. +e average change in prediction is the effect for a
specific interval, and its effect accumulates across all in-
tervals as [29]

fj,ALE xj  � 

kK
j

(x)

k�1

1
nj(k)



i: x
(i)

j
∈Nj(k)

f z
K
k,j, x

(i)
−j  − f z

K
k−1,j, x

(i)
−j  ,

(7)

where zK
k,j is the partition of the minimum and maximum of

xj into K interval and kK
j (x) � k if x ∈ (zK

k−1, zK
k,j], the av-

erage effects of all instances within an interval (Nj(k)) are
calculated by dividing the sum of the difference of the
prediction, i.e., 

i: x
(i)

j
∈Nj(k)

[f(zK
k,j, x

(i)
−j ) − f(zK

k−1,j, x
(i)
−j )], by

the number of instances in this interval (nj(k)). +e ALE is
centered on having a zero mean, as shown in

fj,ALE,cent xj  � fj,ALE xj  −
1
n



n

i�1

fj,ALE x
(i)
j . (8)

While the intervals can be defined by the distribution of
the numeric variables, the intervals for the categorical
variables are determined by the similarity of categories since
the categorical variables do not have a natural order. +e
similarity of the two categories is calculated by the sum of
distances over the other variables. While the distance be-
tween the target category and other numeric variables is
calculated by Kolmogorov–Smirnov distance, the distance
between target category and other categorical variables is
calculated by the relative frequency tables. More details are
described in [28].
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3. Results and Discussion

3.1. Prediction Performance. Since the travel modes are
imbalanced, the prediction performance of the RF, XGB, and
ANN models are evaluated using three metrics: specificity,
sensitivity, and balanced accuracy, as shown in equation (3).
Table 3 compares the prediction performances of the three
models. Overall, the RF and XGB models exhibit better
performance than the ANN model. Although class-specific
weight was applied for training the ML models, all models
show poor performance for the prediction of bike choice that
is minority class (i.e., 2.5% of total). +e performance of the
XGB is comparable to that of RF and exhibited better
performance for some travel modes and metrics. Compared
with the RF, XGB shows slightly lower performance for
predicting the choices of car and bike but shows better
performance for predicting the choice of transit and walking.
For all travel modes, the XGB shows the best performance
for all metrics.

+e number of FN explains the low sensitivity of the
XGB for minor classes (i.e., car and bike). For example, in
the case of car, the number of FN is 2,635, including 1,489
transit, followed by 1,111 walking and 35 bike. +is result
indicates that consideration of trip- and tour-related attri-
butes cannot successfully identify the choice of car and
public transit. +is may be because the competitiveness of
public transit (i.e., relative travel time for given OD) in Seoul
is as high as that of cars [30]. +e FN caused by walking
indicates that car and walking share some travel charac-
teristics. +is result can be explained by travel patterns in
Seoul where short-distance driving (i.e., trips of 5 km or less)
represent 44% of all car driving [31]. +e short-distance
driving can indicate similar travel time to walking trip. In the
case of bike, the number of FN is 754, including 401 walking,
219 transit, and 134 car. It also indicates that the travel
characteristics of walking are similar to those of bike, such as
travel time and trip type. To develop an understanding of
mode choice behavior, the prediction results of the best-
performing XGB model were analyzed using three model-
agnostic interpretation methods in the following section.

3.2. Variable Importance. +e permutation-based variable
importance was measured based on the XGB model. Since
decision makers have different objectives and application
plans for each travel mode, the importance was measured for
each travel mode. Figure 1 shows box plots of the impor-
tance of the top ten variables for each travel mode, which was
calculated from 50 simulations to consider the randomness
introduced by the permutation. Since this importance
considers both the main and cross effects of a variable, it
cannot be interpreted as the main effect of variables like the
coefficient of MNL.

Although some variables are commonly important in
predicting all mode choice, the ranking of other variables is
somewhat different. Travel time and activity duration are
important for all travel modes, and their influence is more
significant on a tour level than on a trip level. +e result can
explain the recent success of the tour-based model in travel

demand forecasting, compared with the trip-based model
[32, 33]. While age, travel time, and activity duration
commonly rank highly in importance among all travel
modes, car owner, land use, and number of trips only in-
fluence a specific travel mode. +is implies that policy-
making needs to be carried out by focusing on different
factors for each travel mode, based on the mode-specific
analysis.

Regarding car, age is the most important variable in
determining choice, which may indicate the varying pref-
erence for comfort and value of time by age [34]. Car
ownership, of course, is the second important variable for
the choice of a car. Two tour-related attributes, the sum of
travel time and the sum of activity duration, are more critical
than two corresponding trip-related attributes, travel time
and activity duration.

Regarding bike, the small number of positive samples of
bike results in a higher variance of importance than other
travel modes. Low performance of the XGB may cause those
variances, and the proposed box plot is useful in the case of
those high variances. Similar to car, the age, sum of travel
time, and sum of activity duration rank highly in terms of
importance for bike, followed by gender. Unlike other travel
modes, two land-use variables show considerable impor-
tance, indicating that land use affecting accessibility and
mobility would influence the use of bikes [35].

Transit and walking present similar patterns of impor-
tance ranking. Both travel time for a trip and tour are
important variables for the choice of transit and walking,
followed by age and activity duration. As for walking, travel
time is a dominant factor since only a short distance can be
travelled, and, as for transit, travel time is a critical criterion
for determining competitiveness over car and bike [36]. Both
travel modes are significantly affected by the number of trips
on tour and how the number of trips affects the choice of
transit and walking is discussed in a later section using ALE.

3.3.Variable Interaction. Variable interaction was measured
for each travel mode using the H-statistic. As shown in
equations (5) and (6), the variable interaction can be divided
into two cases, i.e., total interaction and two-way interaction.
+e left side of Figure 2 shows the total interaction of the top
ten variables for the choice of each travel mode. Further
investigation of total interaction is conducted by two-way
interaction, as shown in the right side of Figure 2.

Regarding car, age, sum of activity duration, activity
duration, sum of travel time, and travel time are found to
have high interaction with other variables. +e two-way
interactions also indicate that their high interactions are
caused mainly within them. +is result reveals that their
effects on prediction consist of main and significant cross
effects, which cause the high variable importance of those
variables (see Figure 1). For example, interaction strength
between the sum of travel time and travel time is 0.37, which
means 37% of the effect of those two variables on the
prediction comes through the interaction. On the contrary,
the car owner has a low interaction but high importance,
indicating that the effect of the car owner appears mainly as
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Figure 1: Permutation-based variable importance for each travel mode choice: (a) car, (b) bike, (c) transit, and (d) walking.

Table 3: Comparison of prediction performances of the ML models.

Travel modes
Specificity Sensitivity Balanced accuracy

ANN RF XGB ANN RF XGB ANN RF XGB
Car 0.806 0.881 0.920 0.752 0.713 0.670 0.779 0.797 0.795
Bike 0.985 0.990 0.993 0.116 0.338 0.291 0.550 0.664 0.642
Transit 0.879 0.887 0.883 0.515 0.639 0.744 0.697 0.763 0.813
Walking 0.819 0.834 0.850 0.739 0.826 0.856 0.779 0.830 0.853
All 0.882 0.909 0.923 0.647 0.727 0.768 0.764 0.818 0.845
Note. ANN� artificial neural network; RF� random forest; XGB� extreme gradient boosting.

Land use in D residential
Number of bus stops at D

Car owner
Driver’s license

Population density at D
Travel time

Activity duration
Sum of activity duration

Age
Sum of travel time

0.0 0.1 0.2 0.3 0.4 0.5
Overall interaction strength

Car

Number of bus stops at D
Age

Sum of activity duration
Activity duration

Travel time

0.0 0.1 0.2 0.3

Sum of travel time
Gender

Sum of activity duration
Travel time

Driver’s license

0.0 0.1 0.2
Overall interaction strength

Age

Sum of travel time

(a)

Figure 2: Continued.
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the main effect. Since the car owner indicates whether the
household owns a private car, it can have low interaction
with other individual attributes. Age shows the highest
interaction with driver’s license due to age restrictions on
driver’s license, although the car owner is more important
for the choice of car than the driver’s license. High inter-
action between age and gender indicates that gender, which
is not top ten important variables, affects prediction mainly
through interaction (i.e., cross effect).

Regarding bike, total interactions are higher than one,
indicating that the variance of total interaction is larger than
the variance of the ML model. +is result can be caused by
the low specificity (0.291) of the XGB model to bike choice,
of which the changes in the value of a variable cannot
thoroughly explain the changes in the class probability of
bike.+erefore, it is difficult to extract significant meaning to

the interpretation of the total interaction of the bike. Al-
though the two-way interactions for bike have interaction
strength smaller than one, significant interpretation is still
challenging due to the result of total interaction.

Transit and walking show similar patterns of variable
interaction, just like variable importance. Travel time, ac-
tivity duration, and age have high total interactions for both
travel modes. +e two-way interaction of travel time for
transit and walking choice indicate that, like car choice, the
effects of travel time that are of high importance are derived
from the significant cross effects among travel time, activity
duration, and age. +e number of trips is found to have high
interaction with travel time for both transit and walking
choice.+is reveals that the use of transit and walking can be
determined by a combination of travel time and the number
of trips on tour, which measure the travel fatigue. Unlike
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Figure 2: Variable interactions between one and other variables and between two variables, in predicting travel mode choice of (a) car,
(b) bike, (c) transit, and (d) walking.
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other variables presenting a similar pattern for transit and
walking, trip type has high total interaction for walking,
while low total interaction for transit. Further investigation
by two-way interactions shows that trip type is highly
correlated with departure time, number of workers at D,
activity duration, and land use, which are closely related to
trip purpose [37]. +e fact that walking includes both trip
type and tour type in ten important variables also supports
this result. +is may be because the choice of walking is
significantly linked to eating out and social/recreational trips
or going school trip of the student [38].

3.4. Relationship between Variable and Travel Mode Choice.
Although the variable importance and interaction tell us the
magnitude of the importance and interactions, they do not

present how they work. Based on variable importance and
interaction, the significant variables are selected for further
investigation by the ALE plots, as in Figure 3. While variable
importance measures the total effect, including the cross and
main effect, the value of ALE measures the main effect of a
variable at a specific value (or specific category) on the
prediction. +erefore, as shown in Figure 3, age that has a
relatively high interaction and importance, and the number
of trips that have relatively low interaction and importance
can have a similar magnitude of ALE.

Age represents notable patterns of ALE for each travel
mode. +e choice probability of car gradually increases as
age increases from the 20s to 60s, and decreases after the
mid-60s, which may suggest a relationship between physical
ability or social status and choice of car [38, 39]. +e choice
of bike gradually increases as age increases, but the
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Figure 3: +e ALE values of variables for predicting each travel mode: (a) car, (b) bike, (c) transit, and (d) walking.
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difference is tiny. +is result is caused by the lack of ex-
planatory power of the XGBmodel in predicting bike choice.
+e choice of transit rises steadily until the mid-20s when
people graduate from university and then decreases. Teen-
agers and older people in the study prefer walking as a travel
mode more than those of other ages. +e choice of walking,
after reaching a high in the teenage years, declines toward
the 30s and subsequently increases gradually. +e peak ALE
value of 0.15 among 14 year olds means the probability of
walking being chosen is 15% higher for people who are 14
years old than the average age. +e above nonlinear rela-
tionship between age and travel mode choice is valuable
information that cannot be observed from conventional
MNL assuming a linear relationship.

+e ALE of the categorical variable is also calculated. As
the number of trips increases, the choice probability of car
and walking increases while the choice probability of transit
decreases. +is indicates that the number of trips would be a
barrier to transit use as it is generally more burdensome to
undertake multistop tours [40]. Meanwhile, a large number
of trips would include trips of a relatively short distance,
such as leisure and shipping trips, so the choice probability
of walking would have increased. For bike, near-zero ALE
appears, similar to age.

As the sum of travel time and the sum of activity duration
increase, the tendency to choose car increases, while the
tendency to choose transit decreases. Specifically, when the
sum of travel time is more than 50 minutes, the choice
probability of car and transit is symmetrical, and this pattern is
also observed in the ALE of the sum of activity duration. +is
result intuitively indicates that car and transit are alternative to
each other, depending on travel time and activity duration.
When the sum of travel time and activity duration increases,
the choice probability of car increases while those of transit
decreases. +e tendency to use walking as a travel mode
decreases as the sum of travel time increases and is maintained
after a slight rebound. +is rebound may be related to the
interaction between the number of trips and the travel time
since a large number of trips would include more short-dis-
tance trips. People who perform activities for more than 500
minutes a day tend to use a car and walk more than transit.
Considering that eight hours are regarded as the average
number of working hours, the sum of activity duration is also
an indicator for an additional trip activity after/before work,
which would be short-distance trip. +erefore, the choice
probability of walking continues to increase as the sum of
activity duration increases.

4. Conclusions

+is paper proposed interpretable ML approaches to pre-
dicting and analyzing travel mode choice. +e XGB model
performed best in the prediction of travel mode choice
relative to the RF and ANN models. Understanding the

decisions made by the XGB model is valuable both for
improving prediction performance and providing insight to
the practitioner. +e three model-agnostic interpretation
methods, i.e., permutation-based variable importance,
H-statistic-based variable interaction, and ALE, were applied
to investigate the influence of variables in predicting travel
mode choices. +ese methods uncovered the correlated and
nonlinear relationships between the behavioral attributes
and travel mode choice.

Some interesting findings were highlighted by the results
of three interpretation methods. +e results of variable im-
portance revealed that age, travel time, and activity duration
have high importance for all travel modes. +e interactions of
those variables explained that such high importance is caused
by large cross effects among those variables.+ese interrelated
aspects of the significant variables revealed why theMLmodel
considering the complex relationship of variables outper-
forms the traditional statistical models in predicting travel
mode choice, as reported in the previous studies [1, 6–8].
Also, the tour-related attributes showed high interaction and
importance for the choice of all travel modes, indicating that
the tour-based analysis is necessary for mode choice, as re-
ported in a modern travel demand forecasting model [41].
+ese findings regarding the complexity of mode choice
emphasized the need to shift from the existing MNLmodel to
a flexible ML model. +e varying importance of some vari-
ables such as the car owner, tour type, land use, and number
of trips according to travel mode indicated that mode-specific
analysis should be conducted for targeting each travel mode.
For example, to accurately predict the walking trips in the
location, trip purpose-related attributes such as land use and
activity duration should be collected. +e ALE successfully
represented the nonlinear relationship between the variables
and the change in the choice probability of each travel mode,
which is difficult to derive from a conventional MNL. +e
ALE intuitively showed the alternative patterns of travel mode
through the symmetric patterns between travel modes. +ese
results revealed the detailed modal shift patterns according to
the behavior attributes such as age and the sum of travel time,
which could be used to guide how to divide people into
subgroups for predicting travel demand of each mode.

In future research, a proposed interpretation method is
needed to extend a more in-depth and broader under-
standing of travel behavior. Bivariate ALE can be applied to
represent the cross effect between variables that separated
from the main effect, and it can enrich the explanation of
variable interaction. Comparing the interpretation results of
ML models with an advanced parametric model, such as a
mixed logit model, would also be valuable to validate the
model further. Deep learning models [11, 42] are reasonable
alternatives for the XGB and RF and the proposed model-
agnostic interpretation methods can still available for those
models. Local interpretation methods such as local inter-
pretable model-agnostic explanations (LIME) and Shapley
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additive explanations (SHAP) can contribute to better
representation of the heterogeneity of individuals and
groups [43, 44], which has also been a critical subject of
behavior analysis. Although this study only considers a
single primary mode due to the regional travel pattern, a
tour-based mode choice model considering the exact
combination of modes has been recently proposed to
consider the dynamics among trips within the tour [45, 46].
Applying the proposed ML and interpretation methods to
those complex modeling tasks would be meaningful future
research in the regions with a high rate of multimodal trips.
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)is study aims to investigate the key feature variables and build an accurate decision model for merging behavior during the
execution period by using a data-driven method called random forest (RF). To comprehensively explore the feature variables
during merging execution period, nineteen candidate variables including speeds, relative speeds, gaps, time-to-collisions (TTCs),
and locations are extracted from a dataset including 375 noise-filtered vehicle trajectories. After the variable selection process, an
RF model with 9 key feature variables is finally built. Results show that the gap between the merging vehicle and its putative
following vehicle and the ration of this gap to the total accepted gap are the two most important feature variables. It is because
merging vehicle drivers can easily observe the putative leading vehicles and control the relative speeds and positions to the putative
leading vehicles and they tend to leave more space for their putative following vehicles. Relative speed between the merging vehicle
and its following vehicle in the auxiliary lane is the only variable related to the vehicles in the auxiliary lane, which means merging
vehicles mainly focus on the traffic condition in the adjacent main lane. Evaluation of the performance in comparison with the
state-of-the-art method reveals that the proposed method can obtain much more accurate results in both training and testing
datasets, which means RF is practical for predicting the merging decision behavior during execution period and has
better transferability.

1. Introduction

As a basic driving task, lane changing has drawn great at-
tention recently. Lane changing behavior was considered to
be an important reason for traffic oscillations and accidents
[1–4]. It was estimated that lane change crashes account for 4
to 10% of all crashes in the US [5]. Lane-changing behavior is
complicated and risky because it is influenced by vehicles in
both the current lane and the target lane. Several factors such
as velocities and gaps should be taken into account during
the lane changing process.

Luckily, with the rapid development of communication
technology, driving assistance systems have been developed
to help drivers to make safer decisions [6, 7]. Lane-changing
decision assistance is one of the key functions of driving
assistance systems. It can help drivers make safer decisions
to start a lane change. )rough the Vehicular Ad-hoc
Network (VANET), vehicles can communicate with the

surrounding vehicles and roadside unites [8–10]. )e lane-
changing decision assistance systems can well deal with the
situation of discretionary lane-changing by using the data
from surrounding vehicles and roadside unites. However,
for merging areas on freeway, the judgment rules might be
not applicable [11]. In merging areas, drivers need to change
to the adjacent main lane within the limited distance, which
may result in traffic congestions and even breakdowns
[12–17].

As a sequential decision process, the whole merging
process can be simplified as a sequential two-step model
(gap searching and merging execution) or a three-step
model (gap searching, merging position searching, and
merging execution) [18–21]. However, most previous
studies focused on the gap searching process but
neglected the merging execution period. Several seconds
are needed to execute the merging behavior and the traffic
condition may change dynamically during the whole
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merging execution period. )e ignorance of the merging
execution process would lead to reduction of accuracy of
traffic simulation and autonomous driving. )us, there is
a critical need to model the merging decision behavior
during the execution period. During the merging exe-
cution period, the merging vehicles have interactions
with putative leading (PL) and putative following (PF)
vehicles in the adjacent main lane and the leading (L) and
following (F) vehicles in the auxiliary lane. Various
influencing factors might be considered for merging
decision and should be analyzed in depth. However,
previous studies [17] showed that there is multi-
collinearity between the variables. It was pointed by Balal
et al. [22] that most of the lane changing related variables
are highly correlated, implying that only a few repre-
sentative or key variables might be sufficient to describe
the interactions of vehicles. However, the selection of key
variables is not an easy work. )erefore, the variable
selection process should be conducted before building
parametric models such as logit model. Improper se-
lection of the key variables might make the performance
of the model deteriorate too seriously to be applied to
merging assistance systems.

Recently, data mining techniques have received a lot of
attention in transportation fields due to their ability to deal
with the large-scale data. Some of them can naturally
overcome the multicollinearity problem andmake full use of
the training data. )us, this study tried use a famous ma-
chine learning technique, random forest (RF), to model the
merging decision behavior during execution period. It can
not only produce more accurate prediction results but also
excavate the hidden information among the data. More
importantly, RF can effectively select the key variables. )e
main contribution can be summarized as follows: first, this
study gives a comprehensive analysis of the influencing
variables of merging decision. Second, the proposed RF
method can accurately predict the merging decision during
execution period, which can improve the safety and comfort
level of driving assistance system if it could be incorporated
into lane changing assistance system. )ird, a key feature
selection process is conducted to investigate the influencing
factors. )ese contributions can not only help understand
the diverse influences of different variables on the merging
decision but also shed new insights for driver assistance
systems and autonomous driving.

)e remainder of the paper is organized as follows.
Section 2 will provide a state-of-the-art review on the
existing studies followed by section 3, which gives the
methodology to build a RF model. Section 4 describes the
NGSIM data used in this paper and comprehensively ana-
lyzes the influencing variables. Results and discussions are
presented in section 5. Finally, the concluding remarks are
presented in section 6.

2. Literature Review

Predicting merging decision has always been one of the
focuses of transportation researches. A great number of
models have been developed based on different theories. )e

first comprehensive lane changing framework was devel-
oped by Gipps [23] based on gap acceptance theory. )en,
similar frameworks were adopted in other studies [24–27].
However, the gap acceptance theory has been criticized that
it cannot reflect the real behavior of drivers. To overcome the
deficiency, logistic and logit models were introduced by
some researchers [15, 28, 29]. To account for the hetero-
geneity among drivers, mixed models were proposed by
Weng et al. [30] and Li [31]. Game theory models were also
developed to model the merging behavior [32, 33]. However,
the prediction accuracy of the parametric models is barely
satisfactory and the collinearity of influencing variables
makes it difficult for researchers to choose appropriate
variables to build accurate models [22].

Recently, data-driven methods, such as classification
and regression tree (CART), Bayesian network, and fuzzy
logic models, were used in building merging models or
lane changing models and achieved promising results
[16, 34–38]. CART was applied by Weng et al. [11] to
model the merging decision in work zone area during
execution period, in which time-to-collision (TTC) was
considered as a risky factor. Considering the difference
between cars and heavy vehicles, Moridpour et al. [39]
presented the lane changing model based on fuzzy logic
for heavy vehicles. A cooperative merging strategy was
developed by Xu et al. [40] for vehicles with V2V and V2I
networks, which is applicable to cooperative merging
operations under saturated traffic conditions. However,
the majority of previous studies separately considered
speeds, relative speeds, and gaps as the influencing
variables and ignored the interaction of variables. In
addition, considering the complexity of merging be-
havior, a comprehensive analysis of all possible influ-
encing factors should be conducted to better understand
the merging decision during execution period.

Previous studies showed that the variables of lane
changing behaviour were highly correlated with each other
[17, 22, 31]. )us, selecting some representative or key
variables might better describe the interactions of vehicles.
However, feature selection has never been an easy work.
Feature selection methods can be classified into statistics
based methods [41], information theory [42], manifold [43],
and rough set [44]. Besides, data-driven methods are also
widely used for feature selection [34, 45, 46]. In this study, a
popular data-driven method called random forest was ap-
plied in this paper to model the merging decision during the
execution period. Compared with other models in the lit-
erature, the RF has several unique features and advantages.
First, it is able to handle multisource heterogeneous data
without long-time data processing. Second, as an ensemble
machine learning technique based on CART, RF inherits the
advantage of CART that can automatically accommodate
missing data of independent variables. )ird, RF overcomes
the deficiency of CART and can automatically resist outliers
and is not easy to be affected by small perturbations in the
training data. Finally, RF can select the key variables from
high dimension data by the importance of all independent
variables [45, 47]. RF has been successfully used in traffic
prediction and produced promising results [48–51].
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3. Methodology

Predicting merging decision can be simplified as a
classification problem. Some classical machine learning
techniques, such as CART, are very suitable for modeling
merging decision. )ough CART is efficient and easy-to-
use, it is also easy to be affected by small perturbations in
the training data [52]. To improve the robustness and
generalization capacity of CART, an ensemble learning
technique called random forest, which combines the
bagging technique, CART, and random subspace
method, was proposed by Breiman [45]. RF is an en-
semble classifier composed of a group of decision tree
classifiers and gets the prediction result by a simple
majority vote. )e RF model can improve the prediction
accuracy of merging decision as well as help connected
and autonomous vehicles (CAVs) make safer decisions
during merging process. A brief description of random
forest is given in this section and detailed fundamentals
of mathematics can be referred to Breiman [45].

In RF, bootstrap aggregating (bagging) is the most basic
theory. Suppose we have a training dataset (X, Y) with N

training samples (X1, y1), (X2, y2), . . . , (XN, yN) , where
Xi � x1

i , x2
i , . . . , xK

i  and yi represent the feature vector and
the response variable of the sample i, respectively. )rough
bagging, RF generates B new training sets (Xb, Yb) by
sampling from (X, Y) uniformly and with replacement for
N times. By sampling with replacement, some observations
may be repeated in each data set (Xb, Yb) and some may not
appear. )e probability that each sample in (Xb, Yb) not
selected is (1 − (1/N))N.

)en, we can get

lim
N⟶∞

1 −
1
N

 
N

�
1
e
≈ 0.368. (1)

Equation (1) indicates that about 36.8% of the samples
are not used in the training process, which is called OOB
(Out of Bag) data. )ese data can be used for validation.
)us, cross-validation or separate test data are not necessary
like other machine learning methods. In RF, the OOB error
has been proved to be an unbiased estimation of general-
ization error.

)e random subspace method is also used in RF. It can
also be called attribute bagging or feature bagging, which
means each tree is constructed based on a random subset of
the feature variables. )is method is designed to reduce the
correlation between the trees and improve the generalization
accuracy because the RF uses a simple majority vote of all the
trees.

Combining the above two methods and CART, the basic
steps of RF can be shown in Figure 1 and summarized as
follows:

(I) Initiate the algorithm, set b � 1.
(II) Use the bootstrap sampling method to obtain a new

data set (Xb, Yb) by random sampling with re-
placement for N times, and the data that are not
sampled will form a set called OOB set.

(III) Randomly select m feature variables (m< J) and
use the selected variables for splitting to train a
decision tree Tb based on the new sample set
(Xb, Yb). )e decision tree will grow the deepest
and is not pruned.

(IV) For b � 2, . . . , B, repeats steps II-III.

)e importance of the variables can be sorted by OOB
data. RF can screen out important variables in the complex
feature variable space, which is conducive to deepen the
understanding of the research object. Assuming that the
sample subset obtained by bootstrap method is
b � 1, 2, . . . , B, the process of using RF to calculate the
importance of variable xj is as follows:

(1) Suppose b � 1, and determine the OOB data LOOB
b,j .

(2) Use Tb to predict OOB data LOOB
b,j , and get the

number of accurate predicted samples ROOB
b .

(3) For the feature variable xj, j � 1, . . . , J, the following
calculations are adopted:

(a) Randomly change the variable values xj in LOOB
b

to get a new data set LOOB
b,j

(b) Use Tb and LOOB
b for prediction and get the

number of correct classification ROOB
b

(c) Calculate the reduction value of classification
accuracy, ROOB

b − ROOB
b,j

(4) For b � 2, . . . , B, repeat steps (1–3), and calculate the
average value of the reduced value of the classifi-
cation accuracy to obtain the importance measure-
ment of the variable xj:

Training 
data

Bootstrap 
sampling

New 
dataset 1

New 
dataset 2

New 
dataset N...

Randomly select m features 
for each new dataset

Bulid 
CART 1

Bulid 
CART 2

Bulid 
CART N...

Vote for prediction

Figure 1: Flow chart of random forest.
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B

b

R
OOB
b − R

OOB
b,j . (2)

Previous studies have shown that the merging decision
could be influenced by a number of highly correlated var-
iables [22, 35]. )us, the feature selection process must be
conducted before building parametric merging decision
models. By bagging and random space method, RF can
naturally overcome the collinearity of influencing variables.
Furthermore, the importance values can be utilized to rank
the influencing variables and select the key feature variables
through a forward stepwise or backward stepwise elimi-
nation process, which will be described in section 5.3.

4. Data Preparation

4.1. Data Description and Processing. In this section, vehicle
trajectory data collected by the Federal Highway Admin-
istration (FHWA) in the NGSIM project are adopted to
verify the proposed RF model. As an open-source dataset,
the NGSIM dataset can provide rich and accurate vehicle
trajectory data collected on both freeway and urban road
[14]. It has been widely used in traffic studies such as traffic
flow analysis and driving behavior modeling [18, 37, 53, 54].

Previous studies have shown that the US-101 dataset had
the best accuracy and consistency [18, 55]. )us, this dataset
is chosen in this study. Figure 2 shows schematic diagram of
data collecting site. One can find that the chosen 640 meters
long segment is located between an on-ramp and an off-
ramp with five main lanes and one auxiliary lane. Videos

were captured from 7:50 a.m. to 8:35 a.m. on June 15, 2005,
which was a sunny day.)e dataset is updated at a resolution
of 10 fps (frames per second) and contains three subsets
containing 15 minutes trajectory data [56]. Table 1 shows the
aggregate statics of speed and volume for every subset. )e
coordinates, speed, and acceleration of every vehicle at any
instant can be easily obtained from the NGSIM dataset.
Previous studies have shown that some random noises
existed in the NGSIM data [55, 57]. Filtering and smoothing
techniques should be adopted before using. In this study, a
data smoothing technique called symmetric exponential
moving average filter (sEMA) proposed by )iemann et al.
[57] is applied before further data analysis. In addition, the
local coordinates of three subsets are unified to filter the
inconsistency of the local coordinates. Detailed steps of data
processing can be referred to Li and Sun [17], Li [31], and Li
and Cheng [15]. After processing, trajectories of 375
merging vehicle trajectories are extracted from the dataset.
All of the vehicles are passenger cars with lengths from 2.5m
to 7.8m.

4.2. Data Extraction. After selecting the accepted gap, one
merging vehicle needs several seconds to find the right time
to merge into the adjacent lane and the driver may keep on
adjusting the speed and relative position through acceler-
ation deceleration during the execution period. At any time,
a merging driver can either choose to continue merging or
complete merging as shown in Figure 3. Let yt

n define the nth

merging vehicle’s decision at time t. Obviously, yt
n is a binary

variable, shown in the following equation:

y
t
n �

1merging vehicle n selects to completemerging at time t

0merging vehicle n select to continue adjusting at time t
 , n � 1, . . . , N, t � 1, . . . , Tn. (3)

Previous studies showed one second is suitable for a
driver to make decisions [11, 28, 34, 37]. )us, we also
choose one second in this study. )en, Tn represents the
total time to complete merging for vehicle n. Obviously, a
merging vehicle can have several observations of yt

n � 0, but
only have one observation of yt

n � 1. By extracting the
trajectory data of 375 merging vehicles, 1583 observations
are obtained in this paper, that is, 375 observations are
selecting to merge (yt

n � 1) and 1208 observations are not
(yt

n � 0). It means that it takes 3.23 seconds on average for a
vehicle to complete merging after making the decision of gap
selection.

During the process of merging execution, it has some
certain influence on the additional lane and the main lane.
At the same time, themerging behavior is also affected by the
traffic flow state of the two lanes and the surrounding ve-
hicles. )erefore, the main factors that affect the decision-
making of merging vehicles are the speeds, relative speeds,
and gaps in the adjacent main lane and the auxiliary lane.

However, previous models considered the above vari-
ables separately and ignored the interaction between vari-
ables. Some studies showed that the gaps between the
merging vehicle and PF vehicle in adjacent main line were
linearly related to the total gap during the merging process
[20]. Figure 4 shows the scatter plots of the PF gaps and the
accepted gaps according to the dataset used in this study. A
strong linear relationship can be found in Figure 4. One can
also find that the range of the ratio of the PF gap to the
accepted gap for yt

n � 1 is rather smaller than that for yt
n � 0,

indicating that this ratio might be an important factor for
merging decision. )erefore, the ratio of the PF gap to the
accepted gap is also considered as the influence variable in
this paper.

In addition, a surrogate safety measure combining ve-
hicle speeds, space gap, and time-to-collision (TTC) was also
considered, because merging driver needs to control vehicle
to avoid rear end accidents with the surrounding vehicles.
TTC is defined as
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TTC �
xL − xF − L

VF − VL

, (4)

where xL and xF are the longitudinal position coordinates of
the front bumper of the leading and following vehicle, re-
spectively; VL and VF are the speeds of leading and following
vehicle, respectively; and L is the length of leading vehicle.

Figure 5 shows the interactions between a merging
vehicle and its surrounding vehicles. Table 2 shows the
candidate variables and their explanations. It should be
pointed out that TTC is negative when the following vehicle
moves slower than the leading vehicle, which means that the
collision would never occur. In addition, when the speed of
the following vehicle is equal to or slightly larger than the

M

PF PL

M
F M L

Figure 3: Merging decision during from the start to the end of the execution process.

Table 1: Aggregate statics of three subsets.

Time period
Main lane Auxiliary lane

Volume (vph) Time mean speed (km/h) Volume (vph) Time mean speed (km/h)
7:50 a.m.∼8:05 a.m. 8148 44.00 464 63.99
8:05 a.m.∼8:20 a.m. 7552 38.80 464 59.26
8:20 a.m.∼8:35 a.m. 7108 33.61 496 55.44

Direction of traffic

On-ramp Off-ramp

Study area
640m

Figure 2: Schematic diagram of U.S. Highway 101.
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Figure 4: Relationship between the lag gap and the accepted gap in the main line.
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leading vehicle, TTC will be infinite or too large. In order to
restrict these situations, we will set the TTC range to
(0, 100 s], that is, when TTC is negative or greater than 100 s,
it is set to 100 s.

Table 3 shows the main statistical characteristics of the
candidate variables for merging behavior. One can find that
the merging vehicles move faster than both PF and PL
vehicles and the PF vehicles have the lowest average speed.
Both the leading and following vehicles in the auxiliary lane
move faster than the merging vehicles. Additionally, the
average speed of merging vehicles reduces from 12.477m/s
to 12.086m/s during the merging process to accommodate
for the mainline traffic speed, which can also be reflected by
changes of average ΔVPL and ΔVPF. It is interesting to find
that GapPF increases from 9.616m to 16.081m while GapPL
does not change much. It means GapPF plays an important
role and the PF vehicles tend to yield to the merging vehicles
during the merging execution period. One can also find that
the TTCPL has the lowest average value during the merging
process, indicating that the traffic conflicts between the
merging vehicles and PL vehicles might be the most serious.

A Pearson’s correlation analysis is conducted to corre-
lation coefficients between dependent variable and

independent variables, as shown in Table 4. Bold values are
the insignificant correlation coefficients at 0.95 confidence
level. One can find that the dependent variable yt

n has
significant correlations with several independent variables,
such as VPL and GapPF. It is interesting to find that there is
no significant correlation between GapPL and yt

n.
(GapPF/Gap) has the strongest correlation with yt

n.

5. Modelling Results

After extracting enough data, the RF model is trained and
tested in this section to verify the effectiveness. A data mining
software called Salford Predictive Modeler is used in this study
[16]. )e data is randomly divided into two parts: 80% of the
lane change cases are randomly selected as the training data,
and the remaining 20% is used as the test data for validation.
)ough RF can use the OOB data for validation, we still do this
for comparison with the state-of-the-art methods.

5.1. Parameter Determination. )e number of decision
trees B is an important parameter of RF. When building
decision trees, RF does not prune it. )us, the modeling

VM

VPF

VF

VPL

VL

GapPF GapPL
Gap

GapLGapF
Y

LM

PL

F

PF

Figure 5: Schematic diagram of candidate variables.

Table 2: Candidate variables and explanations.

Candidate variables Descriptions
VM (m/s) )e speed of merging vehicle
VPL (m/s) )e speed of putative leading vehicle
VL (m/s) )e speed of putative following vehicle
ΔVPL (m/s) )e relative speed between merging vehicle and its putative leading vehicle
ΔVPF (m/s) )e relative speed between merging vehicle and its putative following vehicle
GapPL (m) )e gap size between merging vehicle and its putative leading vehicle
GapPF (m) )e gap size between merging vehicle and its putative following vehicle.
(GapPF/Gap) )e ratio of GapPF to the total gap
VL (m/s) )e speed of leading vehicle in the auxiliary lane
VF (m/s) )e speed of following vehicle in the auxiliary lane
ΔVL (m/s) )e speed difference between merging vehicle and its leading vehicle in the auxiliary lane
ΔVF (m/s) )e speed difference between merging vehicle and its following vehicle in the auxiliary lane
GapL (m) )e gap size between merging vehicle and its leading vehicle
GapF (m) )e gap size between merging vehicle and its following vehicle
TTCPL (s) )e TTC between merging vehicle and putative leading vehicle
TTCPF (s) )e TTC between merging vehicle and putative following vehicle
TTCL (s) )e TTC between merging vehicle and leading vehicle in the auxiliary lane
TTCF (s) )e TTC between merging vehicle and following vehicle in the auxiliary lane
Y (m) )e longitudinal position of merging vehicle
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accuracy of RF will increase rapidly with the increase of
the number of decision trees at first. However, after
reaching a certain number, generating more trees would
not improve the model accuracy but increase the com-
putational burden. Previous studies showed that the total
number of trees should be set at 200–500 [45, 50]. To
ensure the reliability of the modeling results, this paper
sets the number of trees at 500.

In RF, a randomly selected subset of features is used to
build each single tree. Reducing the number of sampled fea-
turesm would bring down the correlation among decision tree,
leading to less generalization error. However, a too small m

would also make the single tree suffer from large prediction

error. Different m has been used in different studies [49, 58];
thus, the number of sampled features m should be selected
carefully. To select the best m, RF models are trained with an
increasing number of m from 1 to 10. Table 5 shows the OOB
errors with a different number ofm. One can find that theOOB
error has the lowest value when m is 3. )us, the number of
randomly sampled features m is set at 3 in this study.

5.2. Variable Importance. )e variable importance can be
easily obtained by RF according to equation (2). )e rank
and importance values of independent variables are shown
in Table 6.

Table 3: Statistics of candidate influencing variables.

Candidate variables
yt

n � 0 yt
n � 1

Average Standard deviation Maximum Minimum Average Standard deviation Maximum Minimum

VM (m/s) 12.477 3.610 23.389 1.539 12.086 3.269 23.265 2.481
VPL (m/s) 10.997 3.324 19.839 1.578 11.454 3.129 19.967 1.794
ΔVPL (m/s) 1.480 2.233 13.089 − 5.481 1.092 1.928 10.895 − 5.247
GapPL (m) 13.699 16.781 172.256 0.491 13.821 15.507 152.789 0.631
VPF (m/s) 10.320 3.157 18.681 0.501 10.912 2.925 18.868 1.923
ΔVPF (m/s) − 2.157 2.247 4.344 − 12.554 − 1.175 1.845 4.113 − 11.484
GapPF (m) 9.616 13.660 129.836 0.202 16.081 14.100 134.491 0.410
(GapPF/Gap) 0.316 0.274 1.241 0.001 0.452 0.1864 0.900 0.040
VL (m/s) 14.864 3.541 23.543 3.661 15.550 3.106 21.909 6.610
ΔVL (m/s) − 2.103 3.135 5.656 − 13.708 − 3.173 3.396 − 15.255 7.837
GapL (m) 54.27 38.87 186.94 1.030 56.08 39.54 189.46 2.260
VF (m/s) 13.282 3.161 21.730 2.585 13.764 3.108 21.566 2.387
ΔVF (m/s) 0.980 3.010 13.445 − 11.474 1.082 3.070 10.741 − 12.470
GapF (m) 46.84 46.12 105.83 1.610 43.52 43.64 0.66 192.96
TTCPL (s) 38.63 42.67 100 0.02 42.98 42.96 100 0.38
TTCPF (s) 80.54 35.92 100 0.01 71.21 41.17 100 0.82
TTCL (s) 85.94 29.09 100 0.36 83.07 30.99 100 0.42
TTCF (s) 75.61 37.92 100 0.06 68.94 41.33 100 0.06
Y (m) 82.96 68.45 350.86 0.05 94.50 74.49 361.15 0.97

Table 4: Correlation coefficients between dependent variables and independent variables.

Correlation Coefficient P value
VM −0.047 0.062
VPL 0.059 0.019
VPF 0.081 0.001
ΔVPL − 0.164 0.0001
ΔVPF 0.190 0.0001
GapPL 0.003 0.901
GapPF 0.196 0.0001
(GapPF/Gap) 0.224 0.0001
VL 0.084 0.013
VF − 0.065 0.021
ΔVL − 0.140 0.0001
ΔVF 0.014 0.618
GapL 0.020 0.564
GapF −0.031 0.270
TTCPL 0.043 0.086
TTCPF − 0.106 0.0001
TTCL −0.043 0.210
TTCF − 0.076 0.007
Y 0.072 0.004
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According to Table 6, it can be seen that GapPF and
(GapPF/Gap) are the most two important variables, whose
importance values are much greater than other variables.
)e reason is probably that merging vehicle drivers can
easily observe the PL vehicles and control the relative speeds
and positions with them.)us, they tend to leave more space
for their PF vehicles. )is finding is consistent with that of
the previous studies [20].

5.3. Feature Variable Selection. From Table 6, one can find
that the relative importance values of several variables are
rather low, such as TTCL (0.18%), indicating that there are
some redundant or irrelevant variables in the RF model.
)erefore, a feature variable selection process introduced by
Genuer et al. [59] is applied in this study. )e basic steps are
shown as follows:

(1) Build a RF model with all candidate variables and
rank the variables with the relative importance values
in descending order

(2) Delete the variable with the lowest relative impor-
tance value and create a new variable set

(3) Build a new RF model with the new variable set and
rank the variables with the relative importance values
in descending order

(4) Repeat steps (2) and (3) until only one variable
remains

(5) Rank all the RF models established in steps (1) to (4)
according to the OOB error, and select the model
and feature variable set with the lowest error

After feature variable selection, nine feature variables are
remained and the OOB error is reduced from 9.1% to 8.9%,
indicating that reducing the number of feature variables will
not reduce the prediction performance. )e values of var-
iable importance in the model are shown in Table 7. It is easy
to know from Table 7 that GapPF and (GapPL/Gap) are still
the two most important factors. ΔVF is the only variable
related to the vehicles in the auxiliary lane, which means
merging vehicle drivers mainly focus on the traffic condition
in the main lane.

5.4. Accuracy of the Model. Table 8 shows the prediction
accuracy for training data and testing data. For comparison,
a binary logit model and a CARTmodel are also built based
on the same dataset. Significant variables are selected by
stepwise selection method. )e final binary logit model is
shown as

P y
t
n  �

1
1 + exp 1.710 − 0.0829ΔVPL − 0.1481ΔVPF + 0.1321ΔVL − 0.01551GapPL − 2.076 GapPF/Gap(  − 0.0405Y( 

. (5)

Table 5: OOB errors with different m.

m 1 2 3 4 5 6 7 8 9 10
OOB error 9.6% 9.4% 9.1% 9.5% 9.5% 9.4% 9.7% 10.1% 10.4% 10.8%

Table 6: Rank of variable importance.

Rank Variables Importance value (%)
1 GapPF 27.35
2 (GapPF/Gap) 23.33
3 GapPL 9.82
4 Y 8.68
5 ΔVPF 6.82
6 TTCPL 5.77
7 TTCPF 3.69
8 ΔVPL 3.46
9 ΔVF 2.58
10 GapF 1.36
11 VPF 1.31
12 VF 1.28
13 VM 1.28
14 VL 1.03
15 ΔVL 1.02
16 VL 0.98
17 TTCF 0.95
18 GapL 0.68
19 TTCL 0.18
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)e results show that the prediction accuracy of the RF
model is much better than the binary logit model for both
training data and test data. One can also find that CART has
the highest prediction accuracy in training data. However,
the performance of CART in testing data is much poorer
than RF, indicating that RF has better ability to deal with
problem of overfitting than CART. In addition, due to the
influence of collinearity of variables, only six variables are
included in the binary logit model. Some variables that may
affect the merging decision behavior in a certain range are
ignored by the binary logit model, such as TTCPL and ΔVF.
It is clear that RF can overcome the collinearity problem and
deeply explore the complicated nonlinear relationships
between merging decision and influencing variables. One
can also find that the reduction of the accuracy in training
and testing dataset is also much smaller than the logit model
and CARTmodel, showing that RF is practical for predicting
the merging decision during execution period and has better
transferability.

6. Conclusions

)is study conducts a comprehensive analysis of the influ-
encing variables of merging decision and employs the random
forest (RF) to model the merging decision behavior during the
execution period. )e proposed RF method can accurately
predict the merging decision during the execution period and
investigate important influencing factors. )e US-101 vehicle
trajectory data are used to train and validate the RF model. To
comprehensively explore the influencing factors during
merging execution, 19 candidate variables are extracted in-
cluding speeds, relative speeds, gaps, time-to-collisions (TTCs),
and locations.

)e modeling results show that GapPF and (GapPF/Gap)

are the most two important variables, whose importance
values are much greater than other variables. It is probably
because that the merging vehicle drivers can easily observe
the PL vehicles and control the relative speeds and positions

with them and thus, they tend to leave more space for their
PF vehicles. To select the effective variables, a feature variable
selection process is adopted and 9 variables are selected in
the RF model finally. GapPF and (GapPF/Gap) are still the
two most important feature variables. ΔVF is the only
variable related to the vehicles in the auxiliary lane, which
means merging vehicles mainly focus on the traffic condition
in the adjacent main lane. Evaluation of the performances in
comparison with the state-of-the-art method reveals that the
proposed method can obtain much more accurate results in
both training ant testing datasets. )e reduction of the
accuracy in training and testing dataset is also much smaller
than that of logit model, showing that RF is practical for
predicting the merging decision behavior during execution
period and has better transferability.

Furthermore, it is obvious that merging drivers face
more challenges and may make improper decisions under
congested traffic conditions, which might cause long delays.
In future, if vehicles can receive the real-time information
about the traffic environment via VANETs, the proposed RF
models can help the merging vehicles make safer decisions.
)us, the results of this study can also improve the safety and
comfort of driving assistance systems and autonomous
driving systems.
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