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In this paper, we analyze the existence and uniqueness of remotely almost periodic solutions for systems of ordinary differential
equations. &e existence and uniqueness of remotely almost periodic solutions are achieved by using the results about the
exponential dichotomy and the Bi-almost remotely almost periodicity of the homogeneous part of the corresponding systems of
ordinary differential equations under our consideration.

1. Introduction and Preliminaries

&e notion of an almost periodic function was introduced by
a Danish mathematician H. Bohr around 1925 and later
generalized by many others. Let I � R or I � [0,∞), let X be
a complex Banach space, and let f: I⟶ X be continuous.
Given ε> 0, we call τ > 0 an ε-period for f(·) if and only if

‖f(t + τ) − f(t)‖≤ ε, t ∈ I. (1)

by ϑ(f, ε) we denote the set of all ϵ-periods for f(·). We say
that f(·) is almost periodic if and only if, for each ϵ> 0, the
set ϑ(f, ε) is relatively dense in [0,∞), which means
that there exists l> 0 such that any subinterval of [0, ∞) of
length l meets ϑ(f, ε). For further information about almost
periodic functions and their applications, see [1–10].

It is well known that Sarason defined the notion of a
scalar-valued remotely almost periodic function in [11]. &e
class of vector-valued remotely almost periodic functions
defined on Rn was introduced by Yang and Zhang in [12],
where the authors have provided several applications in the
study of existence and uniqueness of remotely almost

periodic solutions for parabolic boundary value problems
(for some results about parabolic boundary value problems,
one may refer to [13–15] and references cited therein). In
Propositions 2.4–2.6 in [16], the authors have examined the
existence and uniqueness of remotely almost periodic so-
lutions of multidimensional heat equations, while the main
results of Section 3 are concerned with the existence and
uniqueness of remotely almost periodic type solutions of the
certain types of parabolic boundary value problems (see also
[17, 18], where the authors have investigated almost periodic
type solutions and slowly oscillating type solutions for
various classes of parabolic Cauchy inverse problems).
Concerning applications of remotely almost periodic
functions, research articles [19] by Zhang and Piao, where
the authors have investigated the time remotely almost
periodic viscosity solutions of Hamilton–Jacobi equations,
and [20] by Zhang and Jiang, where the authors have in-
vestigated remotely almost periodic solutions for a class
systems of differential equations with piecewise constant
argument, should be mentioned, see [21] and the research
articles [22–29], for more details about the subject.
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&e problem of finding (pseudo) almost periodic solu-
tions for certain classes of ordinary differential equations has
been treated by many authors (see e.g., [5, 30–32]). In the
existing literature, we can find numerous results about the
existence, uniqueness, stability, applications in biology, etc.
(concerning the last issue, see, e.g., the research articles by
Xu et al. [16, 33–38] as well as the references cited therein).

&e strong motivational point for the genesis of this
paper lies in the fact that, with the exception of [20] by
Zhang and Liang, no one else has applied remotely almost
periodic functions in the theory of ordinary differential
equations. &e class of remotely almost periodic functions
is enormously larger than the usually considered class of
almost periodic functions, and the interest for studying
remotely almost periodic solutions of ordinary differential
equations exists. Concerning some practical applications of
our theoretical results obtained, we would like to note that
we specifically analyze here (see Section 3.1) the Chapman-
Richards type equations with external perturbations. It is
well known that the Chapman-Richards functions and
equations have an important role in the mathematical
biology. &e Chapman-Richards functions generalize
commonly used growth functions as monomolecular
functions and Gompertz functions, while the Chapman-
Richards equations generalize the logistic equations. &e
Chapman-Richards model has been widely applied in
forestry, thanks to its flexibility and many important an-
alytical features.

&e organization and main ideas of this paper can be
briefly described as follows. We consider the following
systems of differential equations:

dx

dt
� A(t)x(t), (2)

dx

dt
� A(t)x(t) + f(t), (3)

where A(t) is a complex-valuedmatrix of format n × n for all
t ∈ R. After repeating some necessary facts about remotely
almost periodic functions, we consider the notion of
(α, K, P)-exponential dichotomy (see Definition 2) for
equation (2) as well as the notion of exponential bi-almost
periodicity and the notion of integro bi-almost periodicity of
the associated Green’s function G(t, s) of (2) (see Definition
3 and Definition 4). After that, we introduce the notion of
α-exponentially bi-remotely almost periodicity and the
notion of integro bi-remotely almost periodicity of the as-
sociated Green’s function G(t, s) of (2) in Definition 5 and
Definition 6, respectively. &e main results of Section 2,
which also contains several important lemmas needed for
our further investigations, are &eorem 1 and&eorem 2. In
Section 3, we investigate the existence and uniqueness of
remotely almost periodic solutions to (2) and (3). We open
this section with an important theoretical result, &eorem 3,
in which we clarify that, under certain conditions, a unique
bounded solution of (3) is remotely almost periodic; see also
&eorems 4 and 5. Before we proceed to Section 3.1, in which
we analyze the existence and uniqueness of positive remotely

almost periodic solutions to the Chapman-Richards equa-
tion with external perturbations, we clarify some corollaries,
examples, and technical lemmas. &e main result of Section
3.1 is &eorem 6, where we show that, under hypotheses
(H1)-(H3) clarified below, equation (41) has a unique
positive remotely almost periodic solution for small values of
nonnegative real parameter μ.

Regarding the previous works of authors in this field, we
would like to emphasize that the techniques applied here
were born of the classical monographs on this field [5, 8].
However, we deal with the inherent new problems of the
remotely almost periodic functions, and some of these
problems can be found in [11, 20]. For example, the well-
known notion of bi-almost periodicity of the Green function
for almost periodic system [5] inspired us to introduce and
analyze here the definition of bi-remotely almost periodic
function in the remotely almost periodic systems. Fur-
thermore, we give certain conditions such that the Green
functions satisfy the bi-remotely almost periodic property.

We use the standard notation throughout the paper. By
BUC(R: Cn), we denote the Banach space of bounded and
uniformly continuous functions f: R⟶ Cn, equipped
with the sup-norm ‖ · ‖∞; let ‖ · ‖ be a fixed norm in Cn. We
set Nn ≔ 1, . . . , n{ }.

To better understand the space of remotely almost pe-
riodic functions, denoted by RAP(R: Cn), we will recall the
notion of a slowly oscillating function (the corresponding
space is denoted by SO(R: Cn) henceforth). A function
f ∈ BUC(R: Cn) is called slowly oscillating if and only if, for
every a ∈ R, we have that

lim
|t|⟶+∞

‖f(t + a) − f(t)‖ � 0. (4)

Now, we recall the notion of a remotely almost periodic
function (see, e.g., [12]).

Definition 1. A function f ∈ BUC(R: Cn) is called remotely
almost periodic if and only if ε> 0 we have that the set

T(f, ε) ≔ τ ∈ R: lim sup
|t|⟶+∞

‖f(t + τ) − f(t)‖< ε􏼨 􏼩, (5)

which is relatively dense in R.
Any number τ ∈ T(f, ε) is called an ϵ-remote-transla-

tion vector of f(·). We know that RAP(R: Cn) is a closed
subspace of BUC(R: Cn) and, therefore, the Banach space
itself. If the functions F1(·), . . . , Fk(·) are remotely almost
periodic (k ∈ N), then, for each ε> 0, the set of their
common ϵ-remote-translation vectors s is relatively dense in
R; see, e.g., Proposition 2.3 in [16].

Furthermore, we know that any remotely almost peri-
odic function f: R⟶ R possesses the mean value

M(f) ≔ lim
t⟶+∞

1
t

􏽚
t

0
f(s)ds, (6)

see e.g., Proposition 2.4 in [39]. A similar statement holds for
vector-valued remotely almost periodic functions
F: Rn⟶ X, but we will not use this fact here.
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2. Preliminaries on Exponential Dichotomies

&e property of exponential dichotomy will be primordial in
this section, where we are going to give its definition by
considering equations (2) and (3). For the following defi-
nitions and for more details about the subject, we refer to the
research [40] by Coppel.

Definition 2. Let Φ(·) be a fundamental matrix of equation
(2). &en, we say that equation (2) has an (α, K, P)-expo-
nential dichotomy if and only if there exist positive constants
α, K> 0 and a projection P (P2 � P) such that

‖G(t, s)‖≤Ke
− α|t− s|

, t, s ∈ R, (7)

where the Green function G(t, s) of (2) is given by
G(t, s) ≔ Φ(t)PΦ− 1(s) for t≥ s and G(t, s) ≔ − Φ(t)[I −

P]Φ− 1(s) for t< s.
&e notion of bi-almost periodicity of the Green func-

tion, which has been omitted or less considered for a long
time, plays a crucial role in our study:

Definition 3. We say that the Green function G(t, s) of (2) is
exponentially by-almost periodic if and only if, for all ϵ> 0,
there exist positive real constants α′ > 0 and c> 0 and a
relatively dense set T(G, ε) in R such that, for every
τ ∈ T(G, ε), we have

‖G(t + τ, s + τ) − G(t, s)‖≤ εce
− α′|t− s|

, t, s ∈ R. (8)

Definition 4. We say that the Green function G(t, s) of (2) is
integro bi-almost periodic if and only if, for all ε> 0, there
exist a positive real constant c> 0 and a relatively dense set
T(G, ε) in R such that, for every τ ∈ T(G, ε), we have

􏽚
+∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds≤ εc, t ∈ R. (9)

It is worth noting that the Green function is not im-
mediately integro bi-almost periodic.

Example 1. &e next differential equation has an expo-
nential dichotomy:

x′ � − (1 + b(t))x + 1; b(t)> 0. (10)

However, the Green function associated to this system is
not bi-almost periodic. &e bounded solution, given by

x(t) � 􏽚
t

− ∞
e

− 􏽚
t

s
(1 + b(r))dr

ds,
(11)

is not almost periodic in general if b(·) is not almost periodic
(for example, this can occur if b(·) is almost automorphic but
not almost periodic; see [7], for the notion).

Now, we would like to introduce the following notion:

Definition 5. Let α> 0. &en, we say that the Green function
G(t, s) of (2) is α-exponentially bi-remotely almost periodic
if and only if, for every ε> 0, there exist a positive real
constant c> 0 and a relatively dense set T(G, ε) in R such
that, for every τ ∈ T(G, ε), we have

lim sup
|t|⟶∞

e
α(t− s)

[G(t + τ, s + τ) − G(t, s)]
�����

�����≤ εc, t, s ∈ R, t≥ s,

and, lim sup
|t|⟶∞

e
α(s− t)

[G(t + τ, s + τ) − G(t, s)]
�����

�����≤ εc, t, s ∈ R, t< s.
(12)

Definition 6. Let α> 0. &en, we say that the Green function
G(t, s) of (2) is integro bi-remotely almost periodic if and
only if, for every ε> 0, there exist a positive real constant
c> 0 and a relatively dense set T(G, ε) in R such that, for
every τ ∈ T(G, ε), we have

lim sup
|t|⟶∞

􏽚
+∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds≤ εc, t ∈ R. (13)

Let us consider now the scalar differential equation
x′(t) � a(t)x(t). We have the following.

Theorem 1. If a(·) is a remotely almost periodic function
with M(a)≠ 0, then, for every ε> 0, there exists δ > 0 such
that, for every τ ∈ T(a, δ), we have

Journal of Mathematics 3



lim sup|t|⟶∞ 􏽚
t

− ∞
e
􏽚

t+τ

s+τ
a(r)dr − 􏽚

t

s
a(r)dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

ds< ε, provided t< s andM(a)< 0,

lim sup|t|⟶∞ 􏽚
+∞

t
e
􏽚

t+τ

s+τ
a(r)dr − 􏽚

t

s
a(r)dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

ds< ε, provided t≥ s andM(a)> 0.

(14)

proof. Let M(a)< − c< 0. &en, it is not difficult to verify
that |exp(􏽒

t

s
a(r)dr)| ≤Ke− c(t− s) for t≥ s, as well as

e
􏽚

t+τ

s+τ
a(r)dr − 􏽚

t

s
a(r)dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤K
2
(t − s)e

− c(t− s)supu∈(s,t)|a(u + τ) − a(u)|. (15)

&erefore,

􏽚
t

− ∞
e
􏽚

t+τ

s+τ
a(r)dr − 􏽚

t

s
a(r)dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

ds≤K
2

􏽚
∞

0
xe

− cxsupu∈(t,∞)|a(u − x + τ) − a(u − x)|dx. (16)

For every ε> 0, we set δ ≔ K2c− 1ε. Let us consider first
case t⟶ +∞. Given any sequence (xn) tending to plus
infinity, we have

lim
t⟶+∞

sup
u∈(t,∞)

|a(u − x + τ) − a(u − x)| � lim
n⟶∞

sup
u∈ xn,∞( )

|a(u − x + τ) − a(u − x)|.
(17)

Using the reverse Fatou lemma and (17), we obtain that

lim sup
t⟶∞

􏽚
t

− ∞
e
􏽚

t+τ

s+τ
a(r)dr − 􏽚

t

s
a(r)dr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

ds≤K
2

􏽚
∞

0
xe

− cxlim supt⟶∞supu∈(t,∞)|a(u − x + τ) − a(u − x)|dx< ε. (18)

&e proof for case t⟶ − ∞ can be given analo-
gously. Case M(a)> 0 can be considered analogously as
well.

&is result can be extended to system (2), where the
matrix A(t) is diagonal A(t) � diag ai(t)􏼈 􏼉 and
R(M(ai))≠ 0, for all i ∈ Nn.

For the sequel, we need the following auxiliary lemma:
□

Lemma 1. Let A(t) be the complex-valued matrix of format
n × n for all t ∈ R, and let Φ(·) be the fundamental matrix of
(2). =e transition matrix Φ(t, s) ≡ Φ(t)Φ− 1(s) satisfies
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Φ(t + τ, s + τ) − Φ(t, s) � 􏽚
t

s
Φ(t, u)(A(u + τ) − A(u))Φ(u + τ, s + τ) du, provided t> s,

Φ(t + τ, s + τ) − Φ(t, s) � 􏽚
s

t
Φ(t, u)(A(u + τ) − A(u))Φ(u + τ, s + τ) du, provided t< s.

(19)

Proof. We will consider case t> s only. Set
V(t, s) ≔ Φ(t + τ, s + τ) − Φ(t, s). &en, we have

Vt � A(t + τ)Φ(t + τ, s + τ) − A(t)Φ(t, s),

Vs � A(t)V(t, s) +(A(t + τ) − A(t))Φ(t + τ, s + τ).

(20)

&is simply implies the required equality.
Suppose now that the matrix A(t) is diagonal by blocks

A+(t) and A− (t) so that system (2) can be written as the
system z′(t) � A+(t)z and y′(t) � A− (t)y. By Φ+(t, s) and
Φ− (t, s), we denote the fundamental matrices associated to

the equations for z and y, respectively; then, we have the
following estimates ‖Φ+(t − s)‖≤Ke− c(t− s) for t≥ s and
‖Φ− (t, s)‖≤Kec(t,s) for t≤ s, where c> 0. Define
G(t, s) ≔ diag(Φ+(t, s), 0) for t≥ s and G(t, s) ≔
diag(0,Φ− (t, s)) for t< s. Hence, ‖G(t, s)‖≤Ke− c|t− s| for all
t, s ∈ R.

As a straightforward consequence of the previous
lemma, the following holds for the above Green
function. □

Lemma 2. We have

‖G(t + τ, s + τ) − G(t, s)‖≤K
2
e

− c(t,s)
􏽚

t

s
A+(u + τ) − A+(u)

����
����du, t≥ s,

‖G(t + τ, s + τ) − G(t, s)‖≤K
2
e

− c(s− t)
􏽚

s

t
A− (u + τ) − A− (u)

����
����du, t≤ s.

(21)

Now, we are able to prove some important results of this
section. We start by stating the following theorem regarding
the diagonalization of A(t) into blocks A+(t) and A− (t),
where we assume that all the above estimates are satisfied.

Theorem 2. Let A+ and A− be remotely almost periodic
functions, and let the estimate ‖G(t, s)‖≤Ke− c|t− s|, t, s ∈ R,
hold for the associated Green function. =en, for every ε> 0,
there exists δ > 0 such that, for every τ ∈ T(A+, δ)∩T(A− , δ),
we have

lim sup
|t|⟶∞

􏽚
+∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds< ε, (22)

and in other words, G(·, ·) is integro bi-remotely almost
periodic.

Proof. Applying Lemma 2, we obtain

􏽚
+∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds

≤ 􏽚
t

− ∞
K

2
e

− c(t− s)
􏽚

t

s
A+(u + τ) − A+(u)

����
����duds

+ 􏽚
+∞

t
K

2
e

− c(s− t)
􏽚

s

t
A− (u + τ) − A− (u)

����
����duds

� 􏽚
∞

0
K

2
e

− cx
􏽚

t

t− x
A+(u + τ) − A+(u)

����
����duds

+ 􏽚
+∞

0
K

2
e

− cy
􏽚

t+y

t
A− (u + τ) − A− (u)

����
����duds

≔ K
2

I1 + I2􏼂 􏼃.

(23)

It is clear that

I1 ≤ 􏽚
∞

0
e

− cx
x sup

u∈(t− x,∞)

A+(u + τ) − A+(u)
����

����dx. (24)

Since A±(·) are globally bounded, we get the existence of
a finite real constant M1 > 0 such that I1 ≤M1. Set
δ ≔ (ε/(2K2M1)). Taking into account the reverse Fatou
lemma and the fact that, for every increasing sequence (sn)

tending to plus infinity, we have

lim
s⟶+∞

sup
u∈(s,∞)

A+(u + τ) − A+(u)
����

����

� lim
n⟶+∞

sup
u∈ sn,∞( )

A+(u + τ) − A+(u)
����

����,
(25)

and the above simply implies lim supt⟶+∞I1(t)≤ (ε/2). For
the asymptotic behaviour, when t⟶ − ∞, we can use the
estimate

I1(t)≤ 􏽚
∞

0
e

− cx
x sup

u∈(− ∞,t)

A+(u + τ) − A+(u)
����

����dx (26)

and a similar argumentation in order to show that
lim supt⟶− ∞I1(t)≤ (ε/2). &e calculations and argumen-
tation used for I1 are similar for I2, which completes the
proof of theorem. □

Remark 1. Suppose that system (2) has an (α, K, P)-expo-
nential dichotomy. If P commutes with the fundamental
matrix Φ(t) of this system, then it is possible to diagonalise
this system and conclude that the hypothesis of the above
theorem are satisfied; in other words, the associated Green
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function will be integro bi-remotely almost periodic. Also, if
system (2) is remotely almost periodic (it means that all
coefficients of (2) are remotely almost periodic) and expo-
nentially stable at infinity (or at minus infinity, respectively);
then, the associated Green function is integro bi-remotely
almost periodic. As easily proven, this also happens in the
case that there exists an invertible remotely almost periodic
transformation x � S(t)ω, ω � (z, y) under which the re-
motely almost periodic linear system (2) admits a diago-
nalization into blocks A+(t) and A− (t) such that the
associated Green function satisfies the already used condi-
tion of exponentially decaying.

3. The Existence and Uniqueness of Remotely
Almost Periodic Solutions to (2) and (3)

We start this section by stating the following result.

Theorem 3. Suppose that f ∈ RAP(R: Cn) and the ho-
mogeneous system (2) has an (α, K, P)-exponential dichot-
omy and the associated Green function is integro bi-remotely
almost periodic. =en, the unique bounded solution of (3) is
remotely almost periodic.

Proof. Without loss of generality, we may assume that f≠ 0.
By the variation of parameters formula, the unique bounded
solution of (3) is given by

x(t) � 􏽚
∞

− ∞
G(t, s)f(s)ds, t ∈ R. (27)

Let us show that x(·) is remotely almost periodic. Indeed,
we have

‖x(t + τ) − x(t)‖≤ 􏽚
∞

− ∞
[G(t + τ, s + τ) − G(t, s)]f(s + τ)ds

�������

�������

+ 􏽚
∞

− ∞
G(t, s)[f(s + τ) − f(s)]ds

�������

�������

≤ ‖f‖∞ · 􏽚
∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds

+ 􏽚
∞

− ∞
Ke

− α|t− s|
‖f(s

(28)

Let ε> 0 be given. Since the corresponding Green
function is integro bi-remotely almost periodic, we know

that there exists δ1 > 0 such that, for every τ ∈ T(G, δ1), we
have

lim sup
|t|⟶∞

􏽚
∞

− ∞
‖G(t + τ, s + τ) − G(t, s)‖ds<

ε
2
‖f‖∞. (29)

We also have the existence of a real number δ2 > 0 such
that, for every τ ∈ T(f, δ2), we have

lim sup
|t|⟶∞

􏽚
∞

− ∞
e

− α|t− s|
‖f(s + τ) − f(s)‖ds<

ε
2K

. (30)

Since the operation lim sup|t|⟶∞· is subadditive, this
simply completes the proof with δ � min(δ1, δ2).

We also have the following result, whose proof can be
omitted. □

Theorem 4. Suppose that f ∈ RAP(R: Cn) and A(t) is a
triangular matrix for all t ∈ R such thatR(M(aii))≠ 0 for all
i ∈ Nn. =en, system (3) has a unique bounded solution which
is remotely almost periodic.

Now, we consider system (3) in which the square matrix
A ≡ A(t) is independent of the time variable t:

x′(t) � Ax(t) + f(t), (31)

where and f ∈ RAP(R: C) for all i ∈ Nn.
We need the following lemma from [39].

Lemma 3. Given a square matrix A, there exists a regular
matrix α having the same order as A such that the matrix
B � α− 1Aα is triangular with the diagonal elements being the
eigenvalues of A.

Corollary 1. We have that every bounded solution of system
(31) is remotely almost periodic.

Proof. Keeping inmind Lemma 3, wemay assume thatA is a
triangular superior matrix. Applying &eorem 4, we get that
the associated solution is remotely almost periodic. For the
initial solution, we have x(t) � αy(t) ∈ RAP(R: Cn). &is
ends the proof. □

Example 2. Consider λ � iv ∈ i(R∖ 0{ }) and the linear
equation y′(t) � ivy(t) + g(t), where g(t) � eiv(t+t(1/3)) is a
remotely almost periodic function. &e solution is given by

y(t) � ce
itv

− 3iv
− 1

t
(2/3)

e
iv t+t(1/3)( ) + 6v

− 2
t
(1/3)

e
iv t+t(1/3)( ) + 6iv

− 3
e

iv t+t(1/3)( ). (32)

So, this equation does not have a bounded solution on
the real line.

Consider now the scalar linear differential equation:

x′(t) � a(t)x(t) + f(t). (33)

For the sequel, we need the following technical lemma
which follows from our foregoing arguments.
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Lemma 4. Let a(t) and f(t) be remotely almost periodic
functions such that R(M(a))≠ 0. =en, equation (33) has a
unique remotely almost periodic solution x(t) given by

x(t) � − 􏽚
∞

t
e

− 􏽚
t

s
a(r)dr

f(s)ds, providedR(M(a))> 0,

x(t) � 􏽚
t

− ∞
e

− 􏽚
s

t
a(r)dr

f(s)ds, providedR(M(a))< 0.

(34)

Now, let us consider the equation:

z′(t) � A(t)z(t) + f(t) + μg(t, z(t)). (35)

We have the following result.

Theorem 5. Let f ∈ RAP(R: Rn) and let g(·) be remotely
almost periodic in the first variable and locally Lipschitz in the
second variable. Suppose, further, that the homogeneous
system (2) has an (α, K, P)-exponential dichotomy and the
associated Green function is integro bi-remotely almost pe-
riodic. =en, there exists a positive constant μ0 such that the
assumption μ ∈ [0, μ0) implies that the differential equation
(35) has a unique bounded solution which is remotely almost
periodic.

Proof. Consider a unique remotely almost periodic solution
φ(t) of (3). Let r ∈ (0,∞) be such that ‖φ‖≤ r, and let L> 0
denote the corresponding Lipschitz constant. If z(t) solves
(35), then we set x(t) ≔ z(t) − φ(t), t ∈ R. It is clear that

x′(t) � A(t)x(t) + μg(t, x(t) + φ(t)), t ∈ R. (36)

Let the Green function of the homogeneous part satisfy
‖G(t, s)‖≤Ke− α|t− s|. By the variation of parameters’ for-
mula, we have

x(t) � 􏽚
∞

− ∞
G(t, s)μg(s, x(s) + φ(s))ds, t ∈ R. (37)

Define B(r, 0) to be the closed ball of diameter r and the
center 0 in the space of remotely almost periodic functions;
then, B(r, 0) is a complete metric space with the induced
metric. Define the mapping

Tψ(t) ≔ 􏽚
∞

− ∞
G(t, s)μg(s,ψ(s) + φ(s))ds, t ∈ R(ψ ∈ B(r, 0)).

(38)

We claim that the mapping T: B(r, 0)⟶ B(r, 0) is
well-defined and contracted. It is clear that the mapping Tψ
is remotely almost periodic for any ψ ∈ B(r, 0). Further-
more, we have

‖Tψ‖∞ ≤ 2Kμα− 1
‖g‖∞

≤ 2Kμα− 1
‖ψ + φ‖∞ + sup

s∈R
‖g(s, 0)‖􏼢 􏼣

≤ 2Krμα− 1 2r + sup
s∈R

‖g(s, 0)‖􏼠 􏼡< 1,

(39)

provided that μ ∈ [0, μ0) and 2Krμ0α− 1

(2r + sup
s∈R

‖g(s, 0)‖)< 1. For the contraction, we can use the

following calculation:

Tψ1 − Tψ2
����

����∞≤ μKL 􏽚
∞

− ∞
e

− α|t− s| ψ1(s) − ψ2(s)
����

����ds≤ μ2KLα− 1 ψ1 − ψ2
����

����∞. (40)

&erefore, the mapping T: B(r, 0 )⟶ B(r, 0) has a
unique fixed point, which simply finishes the proof. □

3.1.=e Existence andUniqueness of Positive Remotely Almost
Periodic Solutions. In this section, we analyze the Chapman-
Richards equation with an external perturbation f(·):

x′(t) � x(t) a(t) − b(t)x
θ
(t)􏽨 􏽩 + f(t), (41)

where θ≥ 0. Consider the following hypotheses:

(H1) a(t), b(t), and f(t) are remotely almost periodic
functions

(H2) 0< α≤ a(t)≤A, 0< β≤ b(t)≤B, 0<f(t)<F

(H3) With ω � A− 1[β − c((1+θ)/θ)F] and c � (B/α), we
have (1 + θ)Fc(1/θ)θ− 1α− 1 < 1 and
β(1 + θ)Bθ− 1 < 1

Remark 2. Suppose that f(t)≥ 0 for all t ∈ R. &en, we have

x′(t)≥ x(t) a(t) − b(t)x
θ
(t)􏽨 􏽩, t ∈ R. (42)

&is implies that, for each t0 ∈ R, we have

x(t)≥x t0( 􏼁e
􏽚

t

t0

a(s) − b(s)x
θ
(s)􏽨 􏽩ds

, t ∈ R.
(43)

Now, we will state the main result of this section.

Theorem 6. Suppose that hypotheses (H1)-(H3) hold. =en,
equation (41) has a unique remotely almost periodic solution
ϕ∗(t) satisfying c− (1/θ) ≤ ϕ∗ ≤ω− (1/θ) for all t ∈ R.

Proof. Let u(t) � x− θ(t). We only consider the positive
solutions of (41), by rewriting this system as follows:

u′(t) � − θa(t)u(t) + θb(t) − θu
((1+θ)/θ)

(t)f(t). (44)
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Let 􏽥B denote the complete metric space consisting of all
remotely almost periodic functions whose sup-norm belongs
to the interval [ω, c]. Given φ ∈ 􏽥B, we consider the following
equation:

u′(t) � − θa(t)u(t) + θb(t) − θφ((1+θ)/θ)
(t)f(t). (45)

By Lemma 4, this equation has a unique remotely almost
periodic solution μ(t), given by

u(t) ≔ Tφ(t) ≔ θ􏽚
t

− ∞
e

− θ 􏽚
t

s
a(r)dr

b(s) − φ((1+θ)/θ)
(s)f(s)􏽨 􏽩ds.

(46)

It can be simply shown that ‖Tφ‖∞ ≤ (B/α) � c. Fur-
thermore, we have

θ􏽚
t

− ∞
e

− θ 􏽚
t

s
a(u)du

b(s) − φ((1+θ)/θ)
(s)f(s)􏽨 􏽩ds≤ θ􏽚

t

− ∞
e

− θ 􏽚
t

s
a(u)du

β − φ((1+θ)/θ)
(s)f(s)􏽨 􏽩ds,

(47)

which is always strictly greater or equal than
A− 1(β − c((1+θ)/θ))F � ω. Hence, the mapping T: 􏽥B⟶ 􏽥B is
well-defined. To see that this mapping is a contraction, we
use the following consequence of the mean value theorem
applied to the function x((1+θ)/θ), and by the definition of 􏽥B,
one obtains

ψ((1+θ)/θ)
− φ((1+θ)/θ)

�����

�����∞
≤
1 + θ
θ

max c
(1/θ)

,ω(1/θ)
􏽮 􏽯‖ψ − φ‖∞,

(48)

and a simple computation yielding that

‖Tψ − Tφ‖∞ ≤
F(1 + θ)

αθ
c

(1/θ)
‖ψ − φ‖∞. (49)

&erefore, T is a contraction mapping 􏽥B in 􏽥B so that T

has a unique fixed point in 􏽥B, and this point is a unique
remotely almost periodic positive solution of (41). &is
simply completes the proof because the unique solution of
our problem is given by ϕ∗(t) � [ϕ(t)]− (1/θ). □

4. Conclusions

&is paper investigates the existence and uniqueness of
remotely almost periodic solutions for systems of ordinary
differential equations. Our main contributions are achieved
by using the results about the exponential dichotomy and the
bi-almost remotely almost periodicity of the homogeneous
part of the corresponding systems of ordinary differential
equations. We particularly analyze the Chapman-Richards
equation with external perturbations.
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3Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Santiago de Chile, Chile

Correspondence should be addressed to Marko Kostić; marco.s@verat.net
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+e main aim of this survey article is to present several known results about vector-valued almost periodic functions and their
applications. We separately consider almost periodic functions depending on one real variable and almost periodic functions
depending on two or more real variables. We address several open problems and possibilities for further investigations of almost
periodic functions, quoting more than two hundred references about the subject under our consideration.

1. Introduction

+e class of almost periodic functions was introduced by the
Danish mathematician H. Bohr [1] (1925), the younger brother
of the Nobel Prize-winning physicist N. Bohr, and later gen-
eralized by many others. Let I � R or I � [0,∞), let X be a
complex Banach space, and let f: I⟶ X be continuous.
Given ε> 0, we call τ > 0 an ε-period for f(·) if and only if

‖f(t + τ) − f(t)‖≤ ε, t ∈ I. (1)

By ϑ(f, ε), we denote the set of all ϵ-periods for f(·). We
say that f(·) is almost periodic if and only if for each ϵ> 0,
the set ϑ(f, ε) is relatively dense in [0,∞), which means that
there exists l> 0 such that any subinterval of [0,∞) of length
l meets ϑ(f, ε). +ere are many research monographs
concerning the theory of almost periodic functions and their
applications; at the very beginning, we would like to cite the
important research monograph [2] by Levitan, only.

+e class of almost automorphic functions was intro-
duced by the American mathematician Bochner [3]. A
continuous function f: R⟶ X is said to be almost
automorphic if and only if for every real sequence (bn), there
exist a subsequence (an) of (bn) and a map g: R⟶ X such
that

lim
n⟶∞

f t + an( 􏼁 � g(t),

lim
n⟶∞

g t − an( 􏼁 � f(t),
(2)

pointwise for t ∈ R. Any almost periodic function is almost
automorphic, but the converse statement is not true in general
(see the research monograph [4] by N’Guerekata for more
details). +e theories of almost periodic functions and almost
automorphic functions are still very active fields of investi-
gations of numerous authors, full of open problems, con-
jectures, hypotheses, and possibilities for further expansions.

As mentioned in the abstract, this survey article aims to
present several known results about vector-valued almost
periodic functions and their applications (there is no need to
say that it would be very difficult to summarize so many
important research results obtained in the theory of almost
periodic functions within only one research report, and be-
cause of that, we feel it is our duty to say that this survey article
does not intend to be exhaustively complete). We divide our
further exposition into two individual sections; in Section 1,
we analyze the almost periodic functions of one real variable
and their applications, while in Section 2, we analyze the
almost periodic functions of several real variables and their
applications. +e material is basically taken from the
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introductory part, notes, and appendices to the second and
the third sections of the forthcoming researchmonograph [5].

2. Almost Periodic Functions of One Real
Variable and Their Applications

From the application point of view, almost periodic
functions of one real variable are much important than the
almost periodic functions of two or more real variables.
+ere is enormous literature devoted to the study of al-
most periodicity in the time variable and the almost
automorphy in the time variable of solutions for various
kinds of the abstract differential equations of the first
order. +e notion of an almost periodic strongly con-
tinuous semigroup was introduced by Bart and Goldberg
in [6], but some particular results concerning the almost
periodicity of individual orbits of strongly continuous
semigroups were already given by Foias and Zaidman [7],
Zhikov [8, 9], and Perov and Hai [10]; also, see the survey
article [11] by Phóng as well as the reference list of [12]
and the articles [13, 14] obtained in a collaboration of
Phóng and Lyubich. +e notion of an asymptotically al-
most periodic strongly continuous semigroup was in-
troduced by Ruess and Summers [15] in 1986 (see also
[16–18]), while the notion of an (asymptotically) Stepanov
almost periodic strongly continuous semigroup was in-
troduced by Henrı́quez [19] in 1990. Concerning the study
of the existence and uniqueness of almost periodic so-
lutions of nondegenerate semilinear Cauchy problems, it
seems that the fractional powers of operators have been
employed for the first time by Bahaj and Sidki in [20]. For
the periodic solutions of abstract first-order differential
equations, we refer the reader to the research monographs
[21] by Burton, [22] by Liu, Guerekata, and Minh, and
[23] by Yoshizawa.

+e notion of almost periodic cosine operator functions
was introduced by Cioranescu [24] and after that received
considerable attention of many authors. +e existence and
uniqueness of almost periodic-type solutions of the (ab-
stract) second-order differential equations have been in-
vestigated in many research articles by now, using the theory
of cosine operator functions or other methods (see, e.g.,
[25–33]). For example, Diagana, Hassan, and Messaoudi
recently analyzed, in [34], the existence of asymptotically
almost periodic mild solutions of the abstract Volterra
integrodifferential equation

u″(t) + A
2
u(t) − 􏽚

t

− ∞
g(t − s)A

2
u(s)ds � f(t, u(t)), t≥ 0,

(3)

accompanied with the initial conditions u(− t) � u0(t) for
t≥ 0 and u′(0) � u1. +e main strategy used is a transfor-
mation of such a system into a first-order linear evolution
equation whose solutions are governed by exponentially
decaying strongly continuous semigroups; an interesting
application was made in the study of Kirchhoff plate
equation with infinite memory. Regarding the abstract
second-order differential equations in Hilbert spaces, it

should also be noted that the existence and uniqueness of
periodic solutions for the following equations,

utt +(A + cI)u(t) � F(t, u(t)), t≥ 0, (c ∈ R),

utt + A
2
u(t) � F t, u(t), u′(t)( 􏼁, t≥ 0,

utt(t) + 2αut(t) + Au(t) � g(t) + F(t, u(t))a, t≥ 0,

(4)

were analyzed by Strashkraby, Vejvoda (1973), Lovicar
(1977), and Masudy (1966), respectively (A is a positive self-
adjoint operator in a Hilbert space H). For more details
about the existence and uniqueness of almost periodic-type
solutions of the abstract first-order Cauchy problems and the
abstract second-order Cauchy problems, we refer the reader
to the reference lists in [5, 12]. We recall the following
problem proposed in [12].

Problem: let a closed multivalued linear operator A be
the integral generator of a bounded C-cosine function
(C(t))t≥0. Suppose that x ∈ X satisfies that the mapping
t⟼C(t)x, t≥ 0, is asymptotically Stepanov almost peri-
odic. Is it true that the mapping t⟼C(t)Cx, t≥ 0, is almost
periodic?

Chronologically, the study of almost periodic solutions
of the abstract Volterra integrodifferential equations was
initiated by Prüss in [35], Section 11.4, where the author
analyzed the almost periodic solutions, Stepanov almost
periodic solutions, and asymptotically almost periodic so-
lutions of the following abstract integrodifferential equation:

u′(t) � 􏽚
∞

0
A0(s)u′(t − s)ds + 􏽚

∞

0
dA1(s)u(t − s) + f(t),

t ∈ R.

(5)

Here, A0 ∈ L1([0,∞): L(Y, X)), t⟼A1(t) ∈ L(Y, X),
t≥ 0, is locally of bounded variation, andX andY are Banach
spaces such that Y is densely and continuously embedded
into X. Almost immediately after that, Vu [36] investigated
the almost periodicity of the abstract Cauchy problem

u′(t) � Au(t) + 􏽚
∞

0
dBu(τ)u(t − τ) + f(t), t ∈ R,

(6)

where A is a closed linear operator acting on a Banach space
X, (B(t))t≥0 is a family of closed linear operators on X, and
f: R⟶ X is continuous.

It is very difficult and unpleasant to say precisely who
was the first to study the almost periodic solutions of the
abstract fractional differential equations. Recently, Mu,
Zhoa, and Peng [37] investigated the periodic solutions and
S-asymptotically periodic solutions to fractional evolution
equation D

c
t,+u(t) � − Au(t) + g(t), t ∈ R, and its semi-

linear analogue D
c
t,+u(t) � − Au(t) + g(t, u(t)), t ∈ R,

where D
c
t,+ denotes the Weyl–Liouville fractional derivative

of order c ∈ (0, 1), A is the infinitesimal generator of an
exponentially decaying strongly continuous semigroup of
operators, and g: R × X⟶ X satisfies certain assumptions
(also, see the article [38] by Agarwal, Andrade, and Cuevas as
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well as the recent articles [39] by Bedi, Kumar, Abdeljawad,
and Khan and [40] by Brindle and Guérékata, where the
authors analyzed S-asymptotically ω-periodic mild solutions
for fractional differential equations with Hilfer derivatives
and Riemann–Liouville derivatives). Later, Kostić extended
the results of Mu, Zhoa, and Peng to the abstract fractional
differential inclusion D

c
t,+u(t) ∈ − Au(t) + g(t), t ∈ R, and

its semilinear analogue

D
c
t,+u(t) ∈ − Au(t) + g(t, u(t)), t ∈ R, (7)

where A is a closed multivalued linear operator satisfying
condition (P); here, we follow the terminology employed in
[41], where we have obeyed the multivalued approach to the
abstract degenerate Volterra integrodifferential equations.
(P) +ere exist finite constants c, M> 0 and β ∈ (0, 1] such
that Ψ ≔ Ψc ≔ λ ∈ C: Rλ≥ − c(|Iλ| + 1){ }⊆ ρ(A) and
‖R(λ: A)‖≤M(1 + |λ|)− β, λ ∈ Ψ. +e obtained results en-
able one to consider the almost periodic-type solutions of the
following fractional Poisson heat equations,

z

zt
[m(x)v(t, x)] � (Δ − b)v(t, x) + f(t, m(x)v(t, x)), t ∈ R, x ∈ Ω,

v(t, x) � 0, (t, x) ∈ [0,∞) × zΩ ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Dc
t [m(x)v(t, x)] � Δv(t, x) + bv(t, x), t≥ 0, x ∈ Ω,

v(t, x) � 0, (t, x) ∈ [0,∞) × zΩ ,

m(x)v(0, x) � u0(x), x ∈ Ω,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

and the following fractional semilinear equation with
higher-order differential operators in the Hölder space
X � Cα(Ω):

Dc
t u(t, x) � − 􏽘

|β|≤ 2m

aβ(t, x)D
β
u(t, x) − σu(t, x) + f(t, u(t, x)), t≥ 0, x ∈ Ω,

u(0, x) � u0(x), x ∈ Ω.

⎧⎪⎪⎨

⎪⎪⎩
(9)

See [12] for more details. Let us also recall that Ponce
[42] investigated the bounded mild solutions of the fol-
lowing nondegenerate fractional integrodifferential
equation:

D
c
t,+u(t) � Au(t) + 􏽚

t

− ∞
a(t − s)Au(s)ds + f(t, u(t)), t ∈ R,

(10)

where A is a closed linear operator, a ∈ L1([0,∞)) is a
scalar-valued kernel, and f(·, ·) satisfies some Lipschitz-type
conditions. In particular, almost periodic solutions of (10)
have been analyzed. Abbas, Kavitha, and Murugesu recently
analyzed Stepanov-like (weighted) pseudo-almost auto-
morphic solutions to the following fractional-order abstract
integrodifferential equation:

D
α
t u(t) � Au(t) + D

α− 1
t f(t, u(t), Ku(t)), t ∈ R, (11)

where

Ku(t) � 􏽚
t

− ∞
k(t − s)h(s, u(s))ds, t ∈ R, (12)

1< α< 2, A is a sectorial operator with the domain and range
in X, of negative sectorial type ω< 0, the function k(t) is
exponentially decaying, and the functions
f: R × X × X⟶ X and h: R × X⟶ X are Stepanov-like
weighted pseudo-almost automorphic in time for each fixed
element of X × X and X, respectively, satisfying some extra
conditions [43]. For more details about almost periodic-type
solutions of the abstract fractional differential equations, see
the reference list of [12] and the articles [44–48].

As mentioned from the above, many results concerning
the existence and uniqueness of almost periodic-type so-
lutions and almost automorphic-type solutions to the ab-
stract (semilinear) fractional nondegenerate differential
equations have been given recently by numerous authors. In
almost all these results (in the linear setting, the quite ex-
ceptional are some examples and results presented by
Zaidman ([49], Examples 4, 5, 7, and 8; pp. 32–34), which
have been employed by many authors so far, for various
purposes), the basic key is to investigate the invariance of
certain kinds of generalized almost periodicity and gener-
alized almost automorphicity under the actions of the
infinite convolution products
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t⟼ 􏽚
t

− ∞
R(t − s)f(s)ds, t ∈ R, (13)

and

t⟼ 􏽚
∞

0
R(t − s)f(s)ds, t≥ 0. (14)

Here, it is commonly assumed that (R(t))t≥0 ⊆ L(X, Y) is
a nondegenerate strongly continuous operator family be-
tween the Banach spaces X and Y which exponentially or, at
least, polynomially decays as t⟶ +∞. In [12], we have
investigated the case in which (R(t))t>0 ⊆L(X, Y) is a de-
generate strongly continuous operator family which decays
exponentially or polynomially as t⟶ +∞, but we have
allowed (R(t))t>0 to have a removable singularity at zero, by
that we basically mean that there exists a number ζ ∈ (0, 1)

such that the operator family (tζR(t))t≥ 0 is well defined and
strongly continuous at the point t � 0.+e integral generator
of (R(t))t≥0 is not single-valued any longer, and this is the
main reason why we have employed the multivalued linear
approach to the abstract degenerate integrodifferential
equations in [12]. +e well-posedness of the abstract de-
generate Cauchy problem,

Bu(t) � f(t) + 􏽚
t

0
a(t − s)Au(s)ds, t ∈ [0, τ), (15)

where 0< τ ≤∞, t⟼f(t), t ∈ [0, τ) is a continuous
mapping, a ∈ L1

loc([0, τ)), and A, B are closed linear oper-
ators, has been thoroughly analyzed in the monograph [41].

We will say just a few words about periodic solutions of
the abstract degenerate Volterra integrodifferential equa-
tions. In [50], Barbu and Favini analyzed the 1-periodic
solutions of the abstract degenerate differential equation
(d/dt)(Bu(t)) � Au(t), t≥ 0, accompanied with the initial
condition (Bu)(0) � (Bu)(1), by using Grisvard’s sum of
operators method and some results from the investigation of
Prüss [51] in the nondegenerate case. +e authors reduced
the above problem to v′(t) ∈ Av(t), t≥ 0, v(0) � v(1),
where the multivalued linear operator A is given by
A � AB− 1. +e main problem is whether the inclusion
1 ∈ ρ(A) holds or not; recall that Prüss [51] proved that
1 ∈ ρ(A) if and only if 2πiZ⊆ ρ(A) and
sup( ‖(2πin − A)− 1‖: n ∈ Z􏽮 􏽯)<∞, provided that A gen-
erates a nondegenerate strongly continuous semigroup.
Applications are given to the Poisson heat equation in
H− 1(Ω) and L2(Ω), as well as to some systems of ordinary
differential equations. On the contrary, Lizama and Ponce
[52] analyzed the existence of 2π-periodic solutions to the
following abstract inhomogeneous linear equation:

d
dt

(Bu(t)) � Au(t) + 􏽚
t

− ∞
a(t − s)Au(s)ds + f(t), t≥ 0,

(16)

subjected with the initial condition (Bu)(0) � (Bu)(2π).
+e authors also considered the maximal regularity of (16) in
periodic Besov, Triebel–Lizorkin, and Lebesgue vector-val-
ued function spaces.

Concerning the classical theory of partial differential
equations with integer-order derivatives, we would like to
recommend for the reader the references and works quoted
in the introductory part of the fourth section of the
monograph [53] by Ptashnic, where the following have been
especially emphasized:

(1) +e ω-periodic solutions in time for the linear wave
equation and the following weakly nonlinear wave
equation utt(t, x) − uxx(t, x) � εf(t, x, u, ut, ux,

ε), t≥ 0, 0≤x≤ π, accompanied with the bound-
ary conditions u(t, 0) � u(t, π) � 0, were analyzed
by Vejvoda [54] in 1964 (ε> 0 is a sufficiently small
real parameter). If ω ∈ 2πQ and ω> 0, then the
existence of ω-periodic solutions for both classes of
wave equations was proved; on the contrary, if
ω ∉ 2πQ and ω> 0, then the situation is much more
complicated, and the author proved the existence of
ω-periodic solutions for a corresponding linear wave
equation, only, provided that ω � 2πα and there exist
positive real numbers c> 0 and c> 0 such that
|α − (m/k)|> (c/kc).

Only one year later, in 1965, Gavlova investigated the
existence and uniqueness of periodic solutions for
the following weakly nonlinear telegraph equation:
utt − uxx + 2aut + 2bux + cu � h(t, x) + εf(t, u, ut,

ux, ε), accompanied with the boundary conditions
u(t, 0) � u(t, π) � 0, where a, b, c ∈ R are certain
constants and ε> 0 is a sufficiently small real
parameter.

(2) In 1972, Azis and Gorak investigated the existence
and uniqueness of periodic solutions in the time
variable and space variable for the following quasi-
linear hyperbolic second-order equation
uxy + a(x, y)ux + b(x, y)uy + c(x, y)u � f(x, y, u,

ux, uy); in 1971, Krylovoi and Vejvoda investigated
the existence and uniqueness of ω-periodic solutions
in the time variable for the following equation: utt +

uxxxx � g(t, x) + εf(t, x, u, ux, uxx, ut, ε), accompa-
nied with the boundary conditions
u(t, 0) � u(t, 2π) � uxx(t, 0) � uxx(t, π) � 0.

Six years later, in 1977, Kopachkovoi and Vejvoda an-
alyzed the existence and uniqueness of ω-periodic solutions
in the time variable for the following nonlinear equation:
utt + uxxxx − εuxx 􏽒

π
0 u2(x, ξ) dξ � g(t, x) + ε2F(u)(t, x),

which appears in the study of beam vibrations with the effect
of elongation. Also, see the important research monograph
[55] by Vejvoda (with Herrmann and Lovicar as
contributors).

Furthermore, the Bohr almost periodic solutions to
boundary value problems for systems of partial differential
equations that arise in solving certain problems for inho-
mogeneous media have been investigated in the research
articles [56] by Berselli and Bisconti, [57] by Berselli and
Romito, and [58] by Vetchanin and Mikishanina. Con-
cerning the existence and uniqueness of Bohr almost pe-
riodic solutions of the Navier–Stokes-type equations, the
reader may consult the reference list of [5].
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+e study of differential equations with discontinuous
arguments was initiated by Myshkis [59] in 1977. +e
analysis of asymptotically antiperiodic solutions for non-
linear differential first-order equations with piecewise
constant argument carried out by Dimbour and Valmorin
[60] has recently been reconsidered and extended for as-
ymptotically Bloch periodic solutions for nonlinear frac-
tional differential inclusions with a piecewise constant
argument by Kostić and Velinov in [61]. We have analyzed
the following fractional differential Cauchy inclusion with a
piecewise constant argument:

Dc
t u(t) ∈ Au(t) + A0u(⌊t⌋) + g(t, u(⌊t⌋)), t> 0; u(0) � u0,

(17)

where A is a multivalued linear operator satisfying certain
assumptions, A0 ∈ L(X), g: [0,∞) × X⟶ X is a given
function, and Dc

t u(t) denotes the Caputo fractional deriv-
ative of order c, taken in a weak sense. It is also worth noting
that Chávez, Castillo, and Pinto [62] analyzed the existence
of a unique almost automorphic solution for the following
differential equation with a piecewise constant argument:

y′(t) � A(t)y(t) + B(t)y(⌊t⌋) + f(t, y(t), y(⌊t⌋)), t ∈ R,

(18)

where A(t) and B(t) are almost automorphic p × p complex
matrices and f: R × Cp × Cp⟶ Cp is an almost auto-
morphic function satisfying a condition of Lipschitz type.
+e study carried out in [62] leans heavily on the use of
results on discontinuous almost automorphic functions,
exponential dichotomies, and the Banach fixed-point the-
orem. +e almost periodic solutions of (18) were considered
for the first time by Yuan and Hong in [63]; for more details
about differential equations with a piecewise constant ar-
gument (DEPCA), the reader may consult articles [64] by
Cooke and Wiener, [65] by Shah and Wiener, and [66] by
Wiener, as well as articles [67–73], the list of publication of
Pinto (https://www.zbmath.org/?q�ai(percent/sign)
3Apinto.manuel), and the list of references cited therein.

+ere is a vast amount of articles in the existing literature
which consider almost automorphic-type solutions for
various classes of integrodifferential equations. Let us only
mention our analysis (the joint work of the second-named
author with Prof. Guérékata [74]) of the following abstract
multiterm fractional differential inclusion:

Dαn

t u(t) + 􏽘
n− 1

i�1
AiD

αi

t u(t) ∈ ADα
t u(t) + f(t), t≥ 0,

u
(k)

(0) � uk, k � 0, . . . , ⌈αn⌉ − 1,

(19)

where n ∈ N\ 1{ }, A1, . . . , An− 1 are bounded linear operators
on a Banach space X, A is a closed multivalued linear
operator on X, 0≤ α1 < · · · < αn, 0≤ α< αn, f(·) is an
X-valued function, and Dα

t denotes the Caputo fractional
derivative of order α. Many excellent examples have been
presented in monograph [75] by Diagana; also, see the
following monographs:

(1) [76] by Amerio and Prouse for almost periodic
solutions of functional equations

(2) [77] by Argabright and de Lamadrid for almost
periodic measures

(3) [78, 79] by Baake and Grimm for applications of
almost periodic functions in crystallography

(4) [80] by Bezandry and Diagana for almost periodic
solutions of stochastic differential equations

(5) [81] by Böttcher, Karlovich, and Spitkovsky for
factorization of almost periodic matrix functions
(cf. also article [82] by Böttcher for the issues re-
garding the corona theorem for almost periodic
functions of several real variables and articles [83]
by Boggiatto, Ferández, and Galbis and [84] by Kim
for issues concerning Gabor systems and almost
periodic functions)

(6) [85] by Chang, Guerekata, and Ponce for Bloch
(p, k)-periodic functions, antiperiodic functions,
and their applications

(7) [86] by Cheban for asymptotically almost periodic
solutions of linear and nonlinear equations

(8) [87] by Emel’yanov for weakly almost periodic
C0-semigroups

(9) [88] by Hino, Naito, Minh, and Shin and [89] by
Guérékata for spectral analysis of almost periodic
functions and Massera-type theorems [90]

(10) [91] by Hsu for weakly almost periodic functions
(11) [92] by Stamov for almost periodic solutions of

impulsive differential equations (see also research
monographs [93] by Bainov and Simeonov, [94] by
Perestyuk, Plotnikov, Somoilenko, and Skripnik,
[95] by Stamova and Stamov, and [96] by Song,
Gno, and Shi for more details on the subject)

Concerning the existence and uniqueness of almost
periodic-type solutions of inhomogeneous evolution equa-
tions of first order, the notions of hyperbolic evolution
systems and Green’s functions are incredible important; for
more details on the subject, we refer the reader to
Acquistapace [97], Acquistapace and Terreni [98], Chang
and Chen [99], Diagana [75], Khalil [100], Schnaubelt [101],
Zhikov [102, 103], and the list of references in [12]. +e
almost periodic- and almost automorphic-type solutions of
the abstract Cauchy problems,

u′(t) � A(t)u(t) + f(t), t ∈ R,

u′(t) � A(t)u(t) + f(t), t> 0; u(0) � x,
(20)

and their semilinear analogues have been investigated in a
great number of research papers. Without going into full
details, we will only refer the readers to research mono-
graphs [75] by Diagana and [12] by Kostić, articles [104] by
Baroun, Maniar, and Schnaubelt and [105] by Baroun,
Ezzinbi, Khalil, and Maniar, and the list of references
therein. Concerning the applications of evolution systems in
the theory of the second-order nonautonomous differential
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equations, mention should be made of paper [106] by
Zakora.

+e almost periodic and almost automorphic functions
on time scales and their applications to the abstract Volterra
integrodifferential equations have recently been considered
by numerous mathematicians (for time-scale calculus, we
warmly recommend monograph [107] by Bochner and
Peterson). It would be really troublesome to quote here all
relevant references concerning the almost periodic traveling
wave solutions and the almost automorphic traveling wave
solutions for various classes of nonlinear partial differential
equations. For more details about the above problematic, we
refer the reader to the references cited in [5].

+e definitions and basic properties of (ω, c)-periodic
and (ω, c)-pseudo-periodic functions were introduced and
analyzed by Alvarez, Gómez, and Pinto in [108, 109], mo-
tivated by some known results regarding the qualitative
properties of the solution to Mathieu’s linear differential
equation y″(t) + [a − 2q cos 2 t]y(t) � 0, arising in mod-
eling of railroad rails and seasonally forced population
dynamics (ω> 0 and c ∈ C\ 0{ }). +e linear delayed equa-
tions can have (ω, c)-periodic solutions as well (see, e.g.,
[109], Example 2.5). +e notions of antiperiodicity and
Bloch periodicity are special cases of the notion of an
(ω, c)-periodicity, which has also been analyzed in [110].

+e authors of [109] analyzed the existence and
uniqueness of mild (ω, c)-periodic solutions to abstract
semilinear integrodifferential equation (10). Furthermore,
Alvarez, Castillo, and Pinto analyzed in [108] the existence
and uniqueness of mild (ω, c)-pseudo-periodic solutions to
the abstract semilinear differential equation of the first order:

u′(t) � Au(t) + f(t, u(t)), t ∈ R, (21)

where A generates a strongly continuous semigroup. +e
authors proved the existence of positive (ω, c)-pseudo-pe-
riodic solutions to the Lasota–Wazewska equation with
(ω, c)-pseudo-periodic coefficients:

y′(t) � − δy(t) + h(t)e
− a(t)y(t− τ)

, t≥ 0. (22)

+is equation describes the survival of red blood cells in
blood of an animal (see, e.g., Wazewska-Czyzewska and
Lasota [111]). Concerning the applications to time-varying
impulsive differential equations, mention should be made of
article [112] by Wang, Ren, and Zhou; also, cf. article [113]
by Mophou, Guérékata, and Milce and article [114] by Li,
Wang, and Fečkan. For further information about
(weighted) pseudo-almost periodic solutions and (weighted)
pseudo-almost automorphic solutions of various types of
abstract Volterra integrodifferential equations, we refer the
reader to [115–122] and [123–130].

Before we explain the main results and applications of
multidimensional-type functions, we will single out a few
important topics for our readers.

Almost periodic functions of complex variables: the
theory of almost periodic functions of one complex variable,
initiated already by Bohr in the third part of [1], is still very
popular and attracts the attention of many mathematicians
(see, e.g., [131–134]). Suppose that − ∞≤ α< β≤ +∞ and

the function f: Ω ≡ z ∈ C: α<Rz< β􏼈 􏼉⟶ X is analytic.
+en, we say that f(·) is almost periodic if and only if for any
ε> 0 and every reduced strip z ∈ C: α′ <Rz< β′􏼈 􏼉, where
α< α′ < β′ < β, there exists a number l> 0 such that each
subinterval of length l of R contains a number τ satisfying
the inequality

‖f(z + iτ) − f(z)‖≤ ε, for α′ <Rz< β′. (23)

In particular, this definition implies that, for any fixed
σ ∈ (α, β), the function fσ(t) ≔ f(σ + it), t ∈ R, is almost
periodic. Moreover, the definition implies that the almost
periodicity should be uniform on various straight lines, with
the meaning being clear. +e Fourier series of these func-
tions can be obtained from a certain exponential series with
complex coefficients; the associated series is called the
Dirichlet series of f(·). As for the functions of one real
variable, Bohr’s notion of almost periodicity of f(·) in a
vertical strip Ω is equivalent to the relative compactness of
the set of its vertical translates, f(· + ih): h ∈ R􏼈 􏼉, with the
topology of the uniform convergence on reduced strips.
Mean motions and zeros of generalized almost periodic
analytic functions have been analyzed by Borchsenius and
Jessen in [135], where the reader can find several important
applications to the Riemann zeta function (also, see [136]
and the references therein for further information about
applications of results from the theory of almost periodic
analytic functions to the Riemann zeta function). For more
details about subharmonic almost periodic functions and
holomorphic almost periodic functions, we refer the reader
to [131, 137–140] and references cited therein.

C(n)-almost periodic functions: the notion of C(n)-al-
most periodicity was introduced by Adamczak [141] in 1997
and later received great attention of many other authors. In
this article, we will only say a few words about generalized
C(n)-almost periodic functions and possibilities for further
expansions. Several different classes of Stepanov-like
C(n)-pseudo-almost automorphic functions have been an-
alyzed by Diagana, Nelson, and N’Guérékata in [142]. For
example, let 1≤p<∞, let n ∈ N, and let f ∈ L

p

loc(I: X).
+en, we say that (see [5] for the notion)

(i) the function f(·) is Stepanov-p-C(n)-almost peri-
odic, f ∈ C(n) − APSp(I: X) for short, if and only if
for each k � 0, 1, . . . , n, we have that
f(k) ∈ APSp(I: X).

(ii) the function f ∈ L
p

loc([0,∞): X) is asymptotically
Stepanov-p-C(n)-almost periodic,
f ∈ C(n) − AAPSp([0,∞): X) for short, if and only
if for each k � 0, 1, . . . , n, we have that
f(k) ∈ AAPSp([0,∞): X). +e following defini-
tions have been analyzed in [12].

(iii) the function f(·) is equi-Weyl-p-C(n)-almost pe-
riodic, f ∈ e − C(n) − W

p
ap(I: X) for short, if and

only if for each k � 0, 1, . . . , n, we have that
f(k) ∈ e − W

p
ap(I: X).

(iv) the function f(·) is Weyl-p-C(n)-almost periodic,
f ∈ C(n) − W

p
ap(I: X) for short, if and only if for

each k � 0, 1, . . . , n, we have that f(k) ∈W
p
ap(I: X).
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(v) the function f(·) is Besicovitch-Doss-p-C(n)-almost
periodic, f ∈ C(n) − Bp(I: X) for short, if and only
if for each k � 0, 1, . . . , n, we have that
f(k) ∈ Bp(I: X).

Using the same idea, we can introduce and analyze a
great number of C(n)-almost automorphic function spaces
[12]. For example, the function

f(t) � 􏽘
∞

n�1

sin nt

n
4 , t ∈ R, (24)

is C(2)-almost periodic but not C(3)-almost automorphic.
Furthermore, for any real-valued function
g ∈ C(3) − AA(R: C) satisfying inf

t∈R
g″′(t)> 0, we have that

the function

f(t) � 􏽘
∞

n�1

g(nt)

n
4 , t ∈ R, (25)

belongs to the space C(2)-AAS1(R: C)\C(3)-AAS1(R: C);
see, e.g., [142], Example 2.23. It is clear that we can slightly
generalize the notion of all the aforementioned function
spaces by using the definitions and results from the theory of
Lp(x)-spaces.

Before proceeding further, we also want to mention
research articles [2, 124, 143–147] by the second-named
author as well as to recall the following question proposed in
[12]: is it true that the classes of Besicovitch-p-almost pe-
riodic functions and Besicovitch-Doss-p-almost periodic
functions coincide in vector-valued case (1≤p<∞)?

Nemytskii operators between Stepanov almost periodic
function spaces: let p and q be two real numbers belonging to
the interval [1,∞), and let T> 0. It is said that f: (0, T) ×

X⟶ Y is a Carathéodory function if and only if the fol-
lowing holds:

(i) +e mapping t⟼f(t, x), t ∈ (0, T), is measurable
for any fixed element x ∈ X

(ii) For a.e. t ∈ (0, T), the function f(t, ·) is continuous
from X and Y

Now, consider the Nemytskii operator
Nf: Lp((0, T): X)⟶ Lq((0, T): Y) by

Nf(ω)􏽨 􏽩(t) ≔ f(t,ω(t)), t ∈ (0, T), ω ∈ L
p
((0, T): X).

(26)

+e well-known result of Lucchetti and Patrone ([148],
+eorem 3.1) states that the Nemytskii operator is well
defined between these spaces if and only if there exist a> 0
and b ∈ Lp((0, T)) such that, for all x ∈ X and a.e. t ∈ (0, T),
we have

‖f(t, x)‖≤ a‖x‖
(p/q)

+ b(t). (27)

In this case, the Nemytskii operator is continuous.
Concerning the Nemytskii operator between the spaces

of almost periodic functions AP(R: X) and AP(R: Y), it
should be noted that we have the equivalence of the fol-
lowing statements (see, e.g. Blot, Cieutat, Guérékata, and
Pennequin [149]):

(i) +e Nemytskii operator Nf: AP(R: X)⟶
AP(R: Y) is continuous.

(ii) For each compact set K⊆X and for each ε> 0, the
set

τ ∈ R: sup
t∈R

sup
x∈K

‖f(t + τ) − f(t, x)‖≤ ε􏼨 􏼩, (28)

is relatively dense in R.
(iii) For all x ∈ X, f(·, x) ∈ AP(R: Y), and for each

compact set K⊆X and for each ε> 0, there exists
δ > 0 such that, for each x1, x2 ∈ K and for each
t ∈ R, we have the implication: ‖x1 − x2‖≤
δ⟹ ‖f(t, x1) − f(t, x2)‖≤ ε.

A similar statement holds for the continuity of the
Nemytskii operator between the spaces of almost auto-
morphic functions AA(R: X) and AA(R: Y); see, e.g., the
recent paper ([150], +eorem 2.3) by Cieutat. Several nec-
essary and sufficient conditions clarifying the continuity of
Nemytskii operators between almost periodic and almost
automorphic spaces in the sense of Stepanov approach can
be found in [150], Section 4.

Geometric properties of generalized almost periodic
function spaces of Orlicz type: in his fundamental paper [151],
Hillmann investigated the Besicovitch–Orlicz spaces of almost
periodic functions. After that, numerous mathematicians
working in the field of almost periodic functions have inves-
tigated the geometric properties of generalized almost periodic
function spaces of Orlicz type. Here, we will describe the results
of Morsli and Smaali established in [152] and the results of
Bedouhene, Djabri, and Boulahia established in [153], only; for
more details on the subject, we refer the reader to the list of
references quoted in these papers and [5].

Assume that the function φ: R × [0,∞)⟶ [0,∞)

satisfies the following conditions:

(i) For every t ∈ R, we have φ(t, 0) � 0
(ii) For every t ∈ R, the mapping u⟼φ(t, u), u≥ 0, is

convex
(iii) φ(t + 1, u) � φ(t, u) for all t ∈ R and u≥ 0
(iv) For every u> 0, we have inf t∈Rφ(t, u) � ϕ(u)> 0

If f: R⟶ [0, +∞] is a measurable function, then it is
well known that the function

f⟼ ρφ(f) ≔ lim sup
t⟶+∞

1
2t

􏽚
t

− t
φ(t|f(t)|)dt, f ∈M(R),

(29)
is convex and pseudo-modular.

In [152], the authors defined the Besico-
vitch–Musielak–Orlicz space associated to φ(·, ·) by

B
φ
(R) ≔ f ∈M(R): lim

α⟶0+
ρφ(αf) � 0􏼚 􏼛. (30)

We have
B
φ
(R) � f ∈M(R): (∃α> 0), ρφ(αf)<∞􏽮 􏽯. (31)

+e space Bφ(R) is equipped with the pseudo-norm
‖f‖φ ≔ k> 0: ρφ(f/k)≤ 1􏽮 􏽯.
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+e authors introduced two different types of Besico-
vitch–Musielak–Orlicz spaces of almost periodic functions,
􏽥B
φ
a.p.(R) and B

φ
a.p.(R), as follows: A function f: R⟶ C is

said to belong to the space B
φ
a.p.(R), resp. 􏽥B

φ
a.p.(R), if and

only if there exists a sequence (fn) of trigonometric poly-
nomials such that, for every k> 0, resp. there exists k> 0 such
that limn⟶+∞ρφ(k(fn − f)) � 0. +en, we clearly have
B
φ
a.p.(R)⊆ 􏽥B

φ
a.p.(R)⊆Bφ(R).

If φ(t, |x|) � |x|, then by B1
a.p.(R), 􏽥B

1
a.p.(R), and B1(R),

we denote the respective spaces.
Let us recall that a function φ: R × [0,∞)⟶ [0,∞) is

strictly convex if and only if φ(t, λu + (1 − λ)v)< λφ(t, u) +

(1 − λ)φ(t, v) for a.e. t ∈ R and for all λ ∈ (0, 1),
0≤ u< v<∞. On the contrary, a normed linear space (E, ‖ ·

‖) is said to be strictly convex if and only if
x + y

2

������

������< 1, provided that ‖x‖ � ‖y‖ � 1 andx≠y.

(32)

It is said that the function φ(·, ·) satisfies the Δ2-con-
dition if and only if there exist a number k> 1 and a
measurable nonnegative function h(·) such that ρφ(h)<∞
and φ(t, 2u)≤ kφ(t, u) for almost all t ∈ R and all u≥ h(t).

Let f ∈ B
φ
a.p.(R). +en, due to [152], Proposition 1, we

have φ(·, |f(·)|) ∈ B1
a.p.(R) so that the limit

limT⟶+∞1/2T 􏽒
T

− T
φ(t, |f(t)|)dt always exists and is finite.

+e main result of paper is [152], +eorem 1, which states
that the space 􏽥B

φ
a.p.(R) is strictly convex if and only if φ(·, ·)

is strictly convex and satisfies the Δ2-condition.
Ergodicity in Stepanov–Orlicz spaces was investigated in

[153]. Let us recall that a convex function ϕ: R⟶ [0,∞) is
said to be an Orlicz function if and only if it is nonde-
creasing, even, and continuous on R and satisfies ϕ(0) � 0,
ϕ(u)> 0 for u> 0, and limu⟶+∞ϕ(u) � +∞. In the newly
arisen situation, we say that the function ϕ(·) satisfies the
Δ2-condition if and only if there exist real numbers k> 1 and
u0 > 0 such that ϕ(2u)≤ kφ(u) for |u|≥ u0. For any Orlicz
function ϕ: R⟶ [0,∞), it can be simply proved that
f ∈ PAP0(R: X) if and only if ϕ(‖f‖) ∈ PAP0(R: X). Here,
PAP0(R: X) stands for the space consisting of all pseudo-
ergodic components, i.e., the bounded continuous functions
Φ: R⟶ X, such that

lim
l⟶∞

1
2l

􏽚
l

− l
‖Φ(s)‖ds � 0. (33)

For any vector-valued measurable function f: R⟶ X,
we define the positive function

ρSϕ(f) ≔ sup
x∈R

􏽚
x+1

x
ϕ(‖f(s)‖)ds. (34)

+e Stepanov–Orlicz function space generated by ϕ is
defined by

BS
ϕ
(R, X) ≔ f ∈M(R: X); (∃α> 0)ρSϕ(αf)<∞􏼈 􏼉.

(35)

We know that the vector space BSϕ(R, X) equipped with
the Luxemburg norm

‖f‖Sϕ ≔ inf k> 0: sup
x∈R

􏽚
x+1

x
ϕ(‖f(s)‖/k)ds≤ 1􏼨 􏼩, (36)

is a Banach space. It is also worth noting that the Morse–
Transue space type

􏽦BS
ϕ
(R, X) ≔ f ∈M(R, X); (∃α> 0)ρSϕ(αf)<∞􏼈 􏼉,

(37)

equipped with the Luxemburg norm, is a closed subspace of
BSϕ(R, X), which is commonly called the Besico-
vitch–Orlicz class. We know that BSϕ(R, X) � 􏽦BS

ϕ
(R, X) if

and only if ϕ(·) satisfies the Δ2-condition.
Furthermore, for any p ∈ C+(R), we define the Musi-

elak–Orlicz modular-type space

BS
p(·)

(R, X) ≔ f ∈M(R: X); (∃α> 0) sup
x∈R

􏼨

· 􏽚
x+1

x
(‖f(s)‖/k)

p(s)ds≤ 1􏼩.

(38)

For any function f ∈ BSp(·)(R, X), the notion of
BSp(·)(R, X)-ergodicity in the norm sense and the notion of
BSp(·)(R, X)-ergodicity in the modular sense are introduced
in [153], Definition 3.1, and [153], Definition 3.2, respec-
tively. Due to [153], Proposition 3.4, these concepts are
equivalent.

Let ϕ: R⟶ [0,∞) be an Orlicz function. In [153],
Definition 3.6, the authors introduced the notions of norm
ergodicity in Stepanov–Orlicz sense, modular ergodicity in
Stepanov–Orlicz sense, and strongly modular ergodicity in
Stepanov–Orlicz sense for a given function f ∈ BSϕ(R, X).
After that, the authors further explored these notions in
[153], +eorems 3.8, 3.10, and 3.11, and provided several
illustrative examples in [153], Section 4.

Density theorems for almost periodic functions in
Hilbert spaces: in this section, we will inscribe a few relevant
results obtained by Haraux and Komornik in [154]; these
results have been obtained in their investigation of the
oscillatory properties of the wave equation. Denote XT the
vector space of all square-integrable functions with zero
mean by XT:

XT ≔ f ∈ L
2
loc(R: C); f(t + T) ≡ f(t), 􏽚

T

0
f(t)dt � 0􏼨 􏼩,

(39)

where T> 0. If the set A � T1, . . . , TN􏼈 􏼉 is a given set of
positive real numbers, we define X ≔ XT1

+ · · · + XTN
.

If V is a certain collection of complex-valued functions
and I is an interval in R, then we set VI ≔ fI: f ∈ V􏼈 􏼉. In
[154], +eorem 1, the authors proved that there exists a
positive real number T(A) such that, for any interval I⊆R,
we have

XI is dense inL
2
(I) if and only if |I|<T(A), (40)

where |I| denotes the length of interval I; furthermore, the
orthogonal complement of XI in L2(I) is finite-dimensional

8 Journal of Mathematics



if |I| � T(A) and infinite-dimensional if |I|>T(A). Suppose
that |I| � T(A) and the orthogonal complement of XI in
L2(I) is p-dimensional for some integer p ∈ N. If Pp− 1
denotes the vector space consisting of all complex poly-
nomials of degree ≤p − 1 (also including the zero polyno-
mial), then in [154],+eorem 3(a), it is stated thatYI is dense
in L2(I), where Y ≔ Pp− 1 + X; furthermore, YI � L2(I) if
and only if p � 1, which is equivalent to saying that
(Pi/Pj) ∈ Q for 1≤ i≤ j≤N. Due to [154], +eorem 3(b),
there exists a real-valued function h ∈ L2(I) such that the
functions h, h′, · · ·, hp− 1 span XI; furthermore, if we extend
the function h(·) by zero to the whole real line and denote
the obtained function by H(·), then we know that the
function H(·) is a nonzero finite linear combination of Dirac
measures.

Almost periodicity in chaos: in this section, we will only
draw the attention of the readers to the results presented in
the tenth section of the recent research monograph [155] by
Akhmet. In [155], Section 10, the author investigated the
dynamical properties of the following system:

y′ � Ay + G(t, y) + H(x(t)), t ∈ R, (41)

where G: R × Rn⟶ Rn is continuous in both variables
and almost periodic in variable t uniformly for y ∈ Rn, the
functionH: Rm⟶ Rn is continuous, and all eigenvalues of
the constant n × n real matrix A have negative real parts.
Roughly speaking, if the perturbation part H(x(t)) is
chaotic in a certain sense, then system (41) has the inter-
esting feature of chaos with infinitely many almost periodic
motions.+e obtained results are well illustrated with several
numerical tests involving the coupled Duffing oscillators, for
which it is well known that they play an important role in
modeling of the enhanced signal propagation. +e most
important notion used in [155], Section 10, is the notion of
the Li–Yorke chaotic set with infinitely many almost peri-
odic motions, which is introduced in [155], Definition 10.1,
for the equicontinuous families of uniformly bounded
functions x: R⟶Λ, where Λ is a nonempty compact
subset ofRm. We would like to note here that this notion can
be introduced in the infinite-dimensional setting, even for
other types of chaos such as distributional chaos or mean
Li–Yorke chaos [156].

Almost periodicity in mathematical biology: there exist
numerous research articles concerning almost periodic- and
almost automorphic-type solutions for various classes of
ordinary and partial differential equations appearing in
mathematical biology (see, e.g., the recent article [157] by
Abbas, Dama, Pinto, and Sepulveda, monograph [5], and the
references quoted therein). In this section, we will present
the main details of the investigation [158] carried out by
Ding, Liang, and Xiao and the investigation [159] carried out
by Zhang, Yang, and Wang. +e nonlinear functional dif-
ferential equation

x′(t) � − ax(t) +
p

1 + x
n
(t − τ)

, n> 0, (42)

was proposed by Mackey and Glass [160] for modeling of
hematopoiesis describing the process of production of all

types of blood cells generated by a remarkable self-regulated
system that is responsive to the demands put upon it. +e
authors of [158] studied the following modification of (42):

x′(t) � − a(t)x(t) +
p(t)x

l
(t − τ(t))

1 + x
l
(t − τ(t))

, n> 0, (43)

where a, p, τ: R⟶ (0,∞) are almost periodic functions,
0<m≤ 1, and l> 0. +e authors of [158] employed a fixed-
point theorem in cones to achieve their aims. +e authors of
[159] considered the existence and global exponential
convergence of positive almost periodic solutions for the
generalized model of hematopoiesis, described by the fol-
lowing nonlinear functional differential equation:

x′(t) � − a(t)x(t) + 􏽘
m

i�1

bi(t)

1 + x
n

t − τi(t)( 􏼁
, n> 0, (44)

where a, bi, τi: R⟶ (0,∞) are continuous functions for
i � 1, 2, . . . , m; clearly, this equation is a generalization of
(42). +is model has been proposed by Gyori and Ladas to
describe the dynamics of hematopoiesis, i.e., blood cell
production. In any reasonable biological interpretation of
model (44), only positive functions x(·) can be accepted as
solutions.+emain results of [159] are+eorems 3.1 and 3.2,
in which the authors assumed that a, bi, τi: R⟶ (0,∞)

are almost periodic functions for i � 1, 2, . . . , m. Set

a
−

� inf
t∈R

a(t), a
+

� sup
t∈R

a(t), b
−
i � inf

t∈R
bi(t)> 0, b

+
i

� sup
t∈R

bi(t),

r � max
1≤q≤n

sup
t∈R

τi(t)> 0, M1 ≔
􏽐

m
i�1b

+
i

a
− , M2

≔
􏽐

m
i�1b

−
i

a
+ 1 + M

n
1( 􏼁

,

(45)

and suppose that n 􏽐
m
i�1 b+

i < a− .

+en, there exists a unique positive almost periodic
solution of (44) in the closed set B∗ � f ∈􏼈

AP(R: R); M2 ≤ ‖f‖∞ ≤M1}. If we denotex∗(·) this solu-
tion by x∗(·), then any solution x(t; t0,φ) of equation (44)
equipped with the initial condition

xt0
� φ, φ ∈ C+, φ(0)> 0, (46)

converges exponentially to x∗(t) as t⟶ +∞; see [159] for
the notion and more details.

Interpolation by periodic and almost periodic functions:
the problems of interpolation by periodic and almost pe-
riodic functions were intensively studied by a group of
Polish mathematicians during the 1960s. Probably, the first
fundamental result in this direction was obtained in 1961 by
Mycielski [161], who proved that there exists a sequence (tn)

of positive real numbers such that, for every sequence (εn) in
0, 1{ }, there exists a continuous periodic function

f: R⟶ C such that f(tn) � εn for all n ∈ N, answering a
question proposed earlier by Marczewski and Ryll-
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Nardzewski. Two years later, this result was extended by
Lipiński in [162], who proved that there exists a sequence
(tn) of positive real numbers such that, for every bounded
real function g(·) defined on the set tn: n ∈ N􏼈 􏼉, there exists
a continuous periodic function f: R⟶ C such that
f(tn) � g(tn) for all n ∈ N. +e essential thing in the
aforementioned results is a rapid increase of the sequence
(tn) as n⟶ +∞: in [161], we concretely have that
tn � (3 + α)n, where α> 0. Let us note that Ryll-Nardzewski
showed that, for every sequence (εn) in 0, 1{ }, there exists a
continuous periodic function f: R⟶ C such that f(3n) �

εn for all n ∈ N as well as that there does not exist a sequence
(tn) of positive real numbers with tn � O(2n), n ∈ N, sat-
isfying the above property. Interpolation by almost periodic
functions was investigated for the first time by Hartman
[163] in 1961 and later reconsidered in a series of his joint
research papers with Ryll-Nardzewski [164–166] during the
period 1964–1967. In [164], the authors analyzed the fol-
lowing properties for the subset Λ of the real line R (and the
abelian topological groups):

I: Λ satisfies property I if and only if any bounded,
uniformly continuous function g: Λ⟶ C can be
extended to an almost periodic function f: R⟶ C

I0: Λ satisfies property I0 if and only if any bounded
function g: Λ⟶ C can be extended to an almost
periodic function f: R⟶ C

+e authors first proved that there are no sequence (εn)

in 0, 1{ } and an almost periodic function f: R⟶ C such
that f(nα) � εn for all n ∈ N, provided that α> 0 is not an
integer; this essentially follows from the equality

lim
N⟶∞

1
N

􏽘

N

n�1
f n

α
( 􏼁 � lim

T⟶∞

1
2T

􏽚
T

− T
f(t)dt, (47)

which is valid for these values of number α> 0. +e main
results concerning properties I and I0 and extensions to
uniformly continuous almost periodic functions were
proved in [164], +eorems 1 and 2, while the third main
result of this paper, [164], +eorem 3, analyzes a similar
problem for extensions to Stepanov almost periodic func-
tions. In [167], Strzelecki proved that any sequence (tn) of
positive real numbers such that (tn+1/tn)> 1 + δ, n ∈ N,
where δ > 0 is a fixed real number, has property I0; later, this
result was extended in [165], +eorem 5. Interpolation by
Levitan almost periodic functions was considered by
Hartman in [168].

In the list of [5], we have also quoted some references
concerning subjects such as the Bohr compactifications,
almost periodic functions on C∗-algebras, semiholomorphic
almost periodic functions, and certain interplays between
the almost periodicity and the representation theory.

3. Almost Periodic Functions of Several Real
Variables and Their Applications

+enotion of almost periodicity can be simply generalized to
the case in which I � Rn. Suppose that F: Rn⟶ X is a
continuous function. +en, we say that F(·) is almost

periodic if and only if for each ε> 0, there exists l> 0 such
that, for each t0 ∈ Rn, there exists τ ∈ B(t0, l) such that

‖F(t + τ) − F(t)‖≤ ε, t ∈ Rn
. (48)

+is is equivalent to saying that, for any sequence (bn) in
Rn, there exists a subsequence (an) of (bn) such that (F(· +

an)) converges in Cb(Rn: X). Any trigonometric polynomial
inRn is almost periodic, and it is also well known that F(·) is
almost periodic if and only if there exists a sequence of
trigonometric polynomials inRn which converges uniformly
to F(·); let us recall that a trigonometric polynomial in Rn is
any linear combination of functions such as t⟼ ei〈λ,t〉,
t ∈ Rn, where λ ∈ Rn and 〈·, ·〉 denotes the inner product in
Rn. Any almost periodic function F: Rn⟶ X is almost
periodic with respect to each of the variables, but the
converse statement is not true since the function
(t1, t2)⟼ cos(t1t2), t1, t2 ∈ R, is almost periodic with
respect to both variables t1 and t2 but not almost periodic
with respect to (t1, t2). Furthermore, for any almost periodic
function F(·), we have that, for each ε> 0, there exists l> 0
such that, for each t0 ∈ (t, t, . . . , t): t ∈ R{ }, there exists
τ ∈ B(t0, l)∩ (t, t, . . . , t): t ∈ R{ } such that (48) holds. Any
almost periodic function F(·) is bounded, the mean value

M(F) ≔ lim
T⟶+∞

1
(2T)

n 􏽚
s+KT

F(t)dt, (49)

exists, and it does not depend on s ∈ Rn; here,
KT ≔ t � (t1, t2, . . . , tn) ∈ Rn: |ti|≤T, for 1≤ i≤ n􏼈 􏼉. +e
Bohr–Fourier coefficient Fλ ∈ X is defined by

Fλ ≔M e
− i〈λ,·〉

F(·)􏼐 􏼑, λ ∈ Rn
, (50)

where 〈·, ·〉 denotes the usual inner product in Rn. +e Bohr
spectrum of F(·), defined by σ(F) ≔ λ ∈ Rn: Fλ ≠ 0􏼈 􏼉, is at
most a countable set.

+e almost periodic functions of two real variables are also
investigated by Besicovitch in the classic [169]. Here, we
would like to note that the results established in [169] can be
straightforwardly generalized to the almost periodic functions
of several real variables. For example, if ti is a fixed variable
from the set t1, . . . , tn􏼈 􏼉, then the function ti⟼
F(t1, . . . , ti, . . . , tn), ti ∈ R, is almost periodic for every fixed
real number t1, . . . , ti− 1, ti+1, . . . , tn so that the mean value

Mti
F t1, . . . , tn( 􏼁􏼈 􏼉 ≔ lim

Ti⟶ +∞

1
2Ti

· 􏽚
Ti

− Ti

F t1, . . . , ti, . . . , tn( 􏼁dti,

(51)

exists. Considering Mti
F(t1, . . . , tn)􏼈 􏼉 as a function of the

variables t1, . . . , ti− 1, ti+1, . . . , tn, it can be easily shown that it
is almost periodic in Rn− 1. +erefore, we can calculate the
repeated mean value

Mtj
∘Mti

􏼒 􏼓 F t1, . . . , tn( 􏼁􏼈 􏼉

≔ lim
Tj⟶+∞

1
2Tj

􏽚
Tj

− Tj

Mti
F t1, . . . , tn( 􏼁􏼈 􏼉dtj,

(52)
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for any fixed real numbers from the set t1, . . . , tn􏼈 􏼉\ ti, tj􏽮 􏽯. If
we fix these numbers in advance, we can apply ([169],
Corollary, p. 63) to the almost periodic function

Fij ti, tj􏼐 􏼑 ≔ F t1, . . . , ti, . . . , tj, . . . , tn􏼐 􏼑, ti, tj􏼐 􏼑 ∈ R2
,

(53)
in order to see that

Mtj
∘Mti

􏼒 􏼓 F t1, . . . , tn( 􏼁􏼈 􏼉 ≡ Mti
∘Mtj

􏼒 􏼓 F t1, . . . , tn( 􏼁􏼈 􏼉.

(54)

Inductively, we easily get that, for every finite tuple of
different variables (ti1

, . . . , til
), where 1≤ i1 < i2 < · · · < il ≤ n,

and for every permutation σ: i1, . . . , il􏼈 􏼉⟶ i1, . . . , il􏼈 􏼉, we
have

Mti1
∘ · · · ∘Mtil

􏼒 􏼓 F t1, . . . , tn( 􏼁􏼈 􏼉

� Mtσ i1( )
∘ · · · ∘Mtσ il( )

􏼒 􏼓 F t1, . . . , tn( 􏼁􏼈 􏼉.

(55)

By AP(Rn: X) and APΛ(R
n: X), we denote, respec-

tively, the Banach space consisting of all almost periodic
functions F: Rn⟶ X, equipped with the sup-norm, and its
subspace consisting of all almost periodic functions
F: Rn⟶ X such that σ(F)⊆Λ. As is well known, for every
almost periodic function F ∈ APΛ(R

n: X), we can always
find a sequence (Pk) of trigonometric polynomials in Rn

which uniformly converges to F(·) on Rn and satisfies that
σ(Pk)⊆Λ for all k ∈ N; see, e.g., [170], Chapter 1, Section
2.3. +eWiener algebra APW(Rn: X) is defined as the set of
all functions F: Rn⟶ X such that its Fourier series
converges absolutely;
APWΛ(Rn: X) ≡ APW(Rn: X)∩APΛ(R

n: X). It is well
known that the Wiener algebra is a Banach algebra with
respect to the Wiener norm ‖F‖ ≔ 􏽐λ∈Rn |Fλ|,
F ∈ APW(Rn: X), as well as that APW(Rn: X) is dense in
AP(Rn: X).

+e theory of almost periodic functions of several real
variables has not attracted so much attention compared with
the theory of almost periodic functions of one real variable
by now. In the following, we will remind the readers of
several important investigations of multidimensional almost
periodic functions carried out so far:

1. Problems of Nehari type and contractive extension
problems for matrix-valued (Wiener) almost peri-
odic functions of several real variables have been
considered by Rodman, Spitkovsky, and Woerde-
man in [171], where the authors proved a general-
ization of the famous Sarason’s theorem. In their
analysis, the notion of a half-space in Rn plays an
important role: a nonempty subset S⊆Rn is said to
be a half-space if and only if the following four
conditions hold:

(i) Rn � S∪ (− S)

(ii) 0{ } � S∩ (− S)

(iii) S + S⊆ S

(iv) α · S⊆ S for α≥ 0

For any half-space S, we can always find a linear
bijective mapping D: Rn⟶ Rn such that S � DEn,
where En is a very special half-space defined on [172],
p. 3190. In [172], +eorem 1.3, Rodman and Spit-
kovsky proved that if S is a half-space and Λ⊆ S,
0 ∈ Λ, and Λ + Λ⊆Λ, then APΛ(R

n: C) and
APWΛ(Rn: C) are Hermitian rings. See also [173].

(2) Let us recall that a subset Λ of Rn is called discrete if
and only if any point λ ∈ Λ is isolated in Λ. By VΛ,
we denote the vector space of all finite complex-
valued trigonometric polynomials 􏽐λ∈Λc(λ)e− πiλ·

whose frequencies λ belong to Λ. +e space of mean-
periodic functions with the spectrum Λ, denoted by
CΛ, is defined as the closure of the space VΛ in the
Fréchet space C(Rn). Clearly, APΛ(R

n: C) is con-
tained in CΛ, but the converse statement is not true,
in general.+e problem of describing the structure of
closed discrete sets Λ for which the equality
APΛ(R

n: C) � CΛ holds was proposed by Kahane in
1957. For more details about this interesting prob-
lem, we refer the reader to the survey article [174] by
Meyer; for more details about mean-periodic func-
tions, see also the lectures by Kahane [175].

(3) In 1971, Basit [176] observed that there exists a
complex-valued almost periodic function
f: R2⟶ C such that the function F: R2⟶ C,
defined by F(x, y) ≔ 􏽒

x

0 f(t, y)dt, (x, y) ∈ R2, is
bounded but not almost periodic. +is result was
recently reconsidered by Alsulami in [177], +eorem
2.2, who proved that, for a complex-valued almost
periodic function f: R2⟶ C, the boundedness of
the function F(·) in the whole plane implies its al-
most periodicity, provided that there exists a com-
plex-valued almost periodic function g: R2⟶ C

such that fx(x, y) � gy(x, y) is a continuous
function in the whole plane. +is result was proved
with the help of an old result of Loomis which states
that, for a bounded complex-valued function
f: Rn⟶ C, the almost periodicity of all its partial
derivatives of the first order implies the almost pe-
riodicity of f(·) itself. Let us observe that the
aforementioned result of Alsulami can be straight-
forwardly extended, with the same proof, to
the almost periodic functions f: Rn⟶ C; in actual
fact, if the function f: Rn⟶ C is almost
periodic, the function F(x1, x2, . . . , xn) ≔
􏽒

x1

0 f(t, x2, . . . , xn)dt, (x1, x2, . . . , xn) ∈ Rn is
bounded, and there exist almost periodic
functions Gi: R

n⟶ C such that
Fxi

(x1, x2, . . . , xn) � (Gi)x1
(x1, x2, . . . , xn) is a

continuous function on Rn, for 2≤ i≤ n, then the
function F: Rn⟶ C is almost periodic.

(4) In [178–183], Khasanov investigated the approxi-
mations of uniformly almost periodic functions of
two variables by partial sums of Fourier sums and
Marcinkiewicz sums in the uniformmetric, provided
certain conditions.
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(5) In [184, 185], Latif and Bhatti investigated several
important questions concerning almost periodic
functions defined onRn with values in locally convex
spaces and fuzzy-number-type spaces (almost peri-
odic functions defined on Rn with values in
p-Fréchet spaces, where 0<p< 1, were investigated
in [186] by N’Guérékata, Latif, and Bhatti).

Concerning applications made so far, we recall the
following:

(1 )+e problem of the existence of almost periodic
solutions for the system of linear partial differential
equations 􏽐

n
j�1 Lijuj � fi, 1≤ i≤ n, on Rm, where Lij

is an arbitrary linear partial differential operator on
Rm, was analyzed by Sell [187, 188]. He extended the
results obtained by Sibuya, where the author ana-
lyzed the almost periodic solutions of Poisson’s
equation.

(2) +e almost periodic solutions of the (semilinear)
systems of ordinary differential equations were an-
alyzed by Fink in [189], Chapter 8, with the help of
fixed-point theorems. Furthermore, Liu Bao-Ping
and Pao investigated the almost periodic plane wave
solutions of certain classes of coupled nonlinear
reaction-diffusion equations [190]; in their approach,
a solution u(t, x) of such a system, where t ∈ R and
x ∈ Rn, is almost periodic in Rn+1 and satisfies that
u(t, x) is almost periodic in the time variable t ∈ R
and periodic in each spatial variable (see [190],
+eorem 2).

(3) In his doctoral dissertation [191], Alsulami consid-
ered the question whether the boundedness of so-
lutions of the following system of partial first-order
differential equations

us(s, t) � Au(s, t) + f1(s, t),

ut(s, t) � Bu(s, t) + f2(s, t), (s, t) ∈ R2
,

(56)

implies the almost periodicity of solutions to (56). He
analyzed this question in the finite-dimensional
setting and the infinite-dimensional setting, using
two different techniques; in both cases, A and B are
bounded linear operators acting on the pivot space
X.

(4) In [192–194], Spradlin provided several interesting
results and applications regarding almost periodic
functions of several real variables. +e existence of
positive homoclinic-type solutions of the equation

− Δu + u � H(t)f(u), (57)

where H(·) is almost periodic and the first integral of
f(·) satisfies certain superquadraticity and critical
growth conditions, has been analyzed in [194],
+eorem 1.2. +e equations of type

− ε2Δu + H(t)u � f(u), (58)

arise in the study of the nonlinear Schrödinger
equations (ε> 0). A qualitative analysis of solutions
of (58) has been carried out in [193], provided the
almost periodicity of function H(·) and several other
nontrivial assumptions.

(5) +e existence and uniqueness of almost periodic
solutions for a class of boundary value problems for
hyperbolic equations were investigated by Ptashnic
and Shtabalyuk in [195] (also, cf. the sixth chapter in
monograph [53] by Ptashnic). In the region Dp �

(0, T) × Rp (T> 0, p ∈ N), they have analyzed the
well-posedness of the following initial value
problem:

Lu ≡ 􏽘
n

s�0
􏽘

|α|�2s

aα
z
2n

u(t, x)

zt
2n− 2s

zx
α1
1 . . . zx

αp

p

� 0, (59)

zj− 1u

ztj− 1 |t�0 � φj(x),

zj− 1u

ztj− 1 |t�T � φj+n(x), (1≤ j≤ n).

(60)

+e basic assumption employed in [195] is that
equation (59) is Petrovsky-hyperbolic, i.e., for each
μ � (μ1, μ2, . . . , μp) ∈ Rp, all λ-zeroes of the
equation

􏽘

n

s�0
􏽘

|α|�2s

aαλ
2n− 2sμα11 μ

α2
2 . . . μαp

p � 0, (61)

are real. +e basic function space used is the Banach
space C

q
B(Dp) consisting of all q-times continuously

differentiable functions u(t, x) in Dp that are Bohr
almost periodic in variables x1, x2, . . . , xp, uniformly
in t ∈ [0, T], equipped with the norm

‖u‖C
q

B
Dp( ) ≔ sup

0≤|s|≤q
sup

(t,x)∈Dp

z
|s|

u(t, x)

zt
s0zx

s1
1 . . . zx

sp

p

, (62)

and by C
q

B(Rp), the authors designated the subspace
of C

q
B(Dp) consisting of those functions which do

not depend on variable t. +e existence and
uniqueness of solutions of initial value problems (59)
and (60) have been investigated in the space
C2n

B (Dp), under the assumption that
φj(x) ∈ Cr

B(Rp) and r ∈ N is sufficiently large. If
Mp � μk: k ∈ Zp􏼈 􏼉 is the union of spectrum of all
functions φ1(x), . . . ,φ2n(x), the solutions u(t, x) of
problems (59) and (60) have been found in the form

u(t, x) � 􏽘
k∈Zp

uk(t)e
i〈μk,x〉

, μk ∈Mp, (63)

where the functions uk(t) satisfy certain conditions
and have the form given in equation ([195], (8), p.
670). +e uniqueness of solutions of problems (59)
and (60) has been considered in [195], +eorem 1,
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while the existence of solutions of problems (59) and
(60) has been considered in [195], +eorem 2.

(6) +e class of vector-valued remotely almost periodic
functions defined onRn was introduced by Yang and
Zhang in [196]. In the same paper, the authors
provided several applications in the study of the
existence and uniqueness of remotely almost peri-
odic solutions for parabolic boundary value prob-
lems. A function F: Rn⟶ X is said to be remotely
almost periodic if and only if for each ε> 0, the set of
all vectors τ ∈ Rn for which

lim sup
|t|⟶+∞

‖F(t + τ) − F(t)‖< ε, (64)

is relatively dense in Rn (the vector τ is called a remotely
ϵ-translation vector of F(·) ); furthermore, if ∅≠Ω⊆Rm,
then a continuous function F: Rn ×Ω⟶ X is said to be
remotely almost periodic in t ∈ Rn and uniform on compact
subsets ofΩ if and only if F(·, y) is remotely almost periodic
for each y ∈ Ω and is uniformly continuous on Rn × K for
any compact subset K⊆Ω. +e following statements hold in
the scalar-valued case (see, e.g., [196], Propositions 2.1–2.3):

(i) If F(·), resp. F(·; ·), is remotely almost periodic and
the function (zF/zti(·)), resp. (zF/zti(·; ·)), is
uniformly continuous on Rn, then the function
(zF/zti), resp. (zF/zti(·; ·)), is remotely almost
periodic, as well (1≤ i≤ n).

(ii) If the functions F1(·), . . . , Fk(·) are remotely almost
periodic (k ∈ N), then for each ε> 0, the set of their
common ϵ-translation vectors is relatively dense in
Rn.

(iii) If the functions H1(·), . . . , Hk(·) are remotely al-
most periodic (k ∈ N) and (H1(t), . . . , Hk(t)) ∈ Ω
for all t ∈ R, then for every remotely almost periodic
function F: R ×Ω⟶ C, we have that the function

t⟼F H1(t), . . . , Hk(t), t( 􏼁, t ∈ R, (65)

is remotely almost periodic.
In [196], Propositions 2.4–2.6, the authors examined the

existence and uniqueness of remotely almost periodic so-
lutions of multidimensional heat equations, while the main
results of the third section of this paper are concerned with
the existence and uniqueness of remotely almost periodic-
type solutions of certain types of parabolic boundary value
problems.

+e boundedness and almost periodicity in time for
certain classes of evolution variational inequalities, positive
boundary value problems for symmetric hyperbolic systems,
and nonlinear Schrödinger equations have been investigated
in the third and fourth section of the important research
monograph [170] by Pankov (for almost periodic properties
of Schrödinger equations and Schrödinger-type operators,
see the reference list of [5]). Spatially, Besicovitch almost
periodic solutions for certain classes of nonlinear second-
order elliptic equations, first-order hyperbolic systems,

single higher-order hyperbolic equations, and nonlinear
Schrödinger equations have been investigated in the fifth
section of this monograph. For more details about the ap-
plications of Stepanov multidimensional almost periodic
functions and Weyl multidimensional almost periodic
functions, as well as to some interplays between the mul-
tidimensional almost periodic functions, calculus of varia-
tions, and homogenization theory, we refer the reader to
notes and appendices to the third section of [5].

It is worth mentioning that Spradlin constructed, in
[192], an almost periodic infinitely differentiable function
G: Rn⟶ R with no local minimum (it can be simply
shown that this situation cannot occur in the one-dimen-
sional case because any almost periodic function
g: R⟶ R must have infinitely many local minima); this
important peculiarity of almost periodic functions of several
real variables was perceived twenty five years ago. +e
construction of an almost periodic function G: Rn⟶ R

with no local minimum, established in [192], is very com-
plicated, and the proof of the main result of this paper ([192],
+eorem 1.0) contains almost eight pages including some
preliminaries. It can be easily proved, by observing that the
function G(x, y) is strictly positive, that the function
(x, y)⟼H(x, y) ≡ 􏽒

x

0 G(t, y)dt is bounded and not al-
most periodic in the plane. As already mentioned, the ex-
istence of a complex-valued almost periodic function
H(x, y) with these properties was clarified by Basit (1971)
with very obscure evidence, not including the smoothness of
G(x, y) or its nonnegativity.

At the end of paper [192], Spradlin proposed the fol-
lowing questions:

(1) +e almost periodic function F: R2⟶ R con-
structed in the proof of [192], +eorem 1.0, has an
absolute maximum at the point (0, 0). Does there
exist an almost periodic function F: Rn⟶ R with
no local minimum or maximum?

(2) Does there exist a real analytic almost periodic
function F: Rn⟶ R with no local minimum or
maximum?

(3) Is it true that a continuously differentiable almost
periodic function F: Rn⟶ R has a critical point?

(4) Does there exist a quasi-periodic function
F: Rn⟶ R with no local minimum (local mini-
mum or maximum)?

To the best of authors’ knowledge, all these questions are
still open. Concerning open problems, we also want to re-
mind our readers of article [197] by Basit.

Now, we would like to say something more about the
following intriguing topics.

Multivariate trigonometric polynomials and approxi-
mations of periodic functions of several real variables:
without any doubt, trigonometric polynomials of several real
variables, sometimes also called multivariate trigonometric
polynomials, present the best-explored class of almost pe-
riodic functions of several real variables. Multivariate trig-
onometric polynomials have an invaluable importance in the
theory of approximations of periodic functions of several
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real variables, especially in the two-dimensional case. For the
basic source of information about this subject, the reader
may consult research monographs [198] by Dumitrescu,
[199] by Dung, Temlyakov, and Ullrich, and [200, 201] by
Temlyakov, research article [202] by Temlyakov, and the list
of references quoted in [5].

In this part, we will briefly explain the main results and
ideas of papers [203] by Babayev, [204] by Pfister and
Bresler, and [205] by Kämmerer, Potts, and Volkmer. If
f: R⟶ R belongs to the space C2π of all real continuous
functions of period 2π, then it is well known that the Vallee
Poussin singular integral Vk(·), defined by

Vk(x) ≔
1
2π

(2k)!!

(2k − 1)!!
􏽚
π

− π
f(t)cos2kt − x

2
dt,

x ∈ R (k ∈ N),

(66)

has the property that limk⟶+∞Vk(x) � f(x), uniformly for
x ∈ R. +is result of Vallee Poussin improves the classical
Weierstrass second theorem on the density of trigonometric
polynomials in the spaces of continuous functions. Two-
dimensional Vallee Poussin singular integral Vk,m(·), de-
fined for each x ∈ R by (k, m ∈ N),

Vk,m(x, y) ≔
1

(2π)
2

(2k)!!

(2k − 1)!!

(2m)!!

(2m − 1)!!

· 􏽚
π

− π
f(t, τ)cos2kt − x

2
cos2kτ − y

2
dτ,

(67)

has been introduced in [203], Definition 2. In the
same paper, the author showed that limk⟶+∞
limm⟶+∞Vk,m(x, y) � f(x, y), uniformly for (x, y) ∈ R2,
as well as that Vk,m(x, y) is a trigonometric polynomial in
variables x and y, for all k, m ∈ N (see [203], +eorem 2).
For proving the last fact, the author used a lemma clarifying
that the product of two trigonometric polynomials of two
variables is also the trigonometric polynomial of two vari-
ables whose order equals the sum of order of cofactors as
well as that any even trigonometric polynomial T(x, y), i.e.,
a trigonometric polynomial T(x, y) which satisfies that
T(− x, − y) � T(x, y), T(− x, y) � T(x, y), and T(x, − y) �

T(x; y) identically for (x, y) ∈ R2, may be represented in
the form

T(x, y) � A + 􏽘
m

k�1
􏽘

n

l�1
akl cos kx cos ly + bkl cos kx + ckl cos ly( 􏼁,

(x, y) ∈ R2
,

(68)

which does not contain the sines of multiple arcs (see [203],
Lemmas 3 and 4). We would like to note that the obtained
results continue to hold in the vector-valued case.

In [204], Pfister and Bresler investigated bounding
multivariate trigonometric polynomials and gave some
applications to the problems of filter bank design. Denote

;
T

n
l ≔ span e

i〈k,λ〉
: λ ∈ [0, 2π]

n
, k ∈ Zn

, ‖k‖ ≔ sup1≤i≤n ki

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ l􏽮 􏽯, (l ∈ N),

ΘN ≔
2πk

N
: k � 0, 1, . . . , N − 1􏼨 􏼩, (N ∈ N).

(69)

For any N ∈ N and for any real-valued trigonometric
polynomial

P(λ) ≔ 􏽘
l

k1�− l

􏽘

l

k2�− l

. . . 􏽘
l

kn�− l

ck1k2...kn
e

i〈k,λ〉 ∈ T
n
l , (70)

i.e., the multivariate trigonometric polynomial P(·) for
which ck1 ,k2 ,...,kn

� c∗− k1 ,− k2 ,...,− kn
(‖k‖≤ l;star denotes complex

conjugation), we define

‖P‖∞ ≔ maxλ∈[0,2π]n |P(λ)| and ‖P‖Nn,∞ ≔ maxλ∈Θn
N

|P(λ)|.

(71)

+en, two well-known results of the approximation
theory state that

‖P‖∞ ≤ ‖P‖(2l+1)n,∞ 1 + 4π− 1
+ 2π− 1ln(2l + 1)􏼐 􏼑

n
, (72)

and in the one-dimensional case,

‖P‖∞ ≤
‖P‖N,∞����������

1 − ((2l/N))
􏽰 . (73)

In [204], +eorem 1, the authors showed that the as-
sumptions N≥ 2l + 1 and α � (2l/N) yield the existence of a
positive real constant Cn

N,l ∈ [0, (1 − α)− (n/2)] such that

‖P‖∞ ≤C
n
N,l‖P‖Nn,∞, P ∈ T

n
l , (74)

and Cn
N,l‖P‖Nn,∞ − ‖P‖∞ � O(ln /N), P ∈ Tn

l . In order to
achieve their aims, the authors used the de la Vallee Poussin
kernels and the tensor products of one-dimensional
Dirichlet kernels.

In [205], the authors investigated certain algorithms for
the approximation of multivariate periodic functions by
trigonometric polynomials, which are based on the use of a
single one-dimensional fast Fourier transform and the so-
called method of sampling of multivariate functions on
rank-1 lattices. In their analysis, the authors used periodic
Sobolev spaces of generalized mixed smoothness and
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presented some advantages of their method compared to the
method based on the trigonometric interpolations on
generalized sparse grids. Some numerical results and tests
are presented up to dimension n � 10, as well.

Almost periodic pseudo-differential operators and
Gevrey classes: almost periodic pseudo-differential opera-
tors have been analyzed by numerous mathematicians in-
cluding Coburn, Moyer, and Singer [206], Dedik [207],
Iannacci, Bersani, Dell’Acqua, and Santucci [208], Pankov
[209], Shubin [210–213], and Wahlberg [214]. In this part,
we will present the main ideas and results of research study
[215] by Oliaro, Rodino, and Wahlberg, only. It is well
known that Shubin proved that almost periodic pseudo-
differential operators act continuously on the space of
smooth almost periodic functions as well as that the operator
norm on L2 equals that on the Hilbert space B2(Rn) of
Besicovitch almost periodic functions whose Fourier coef-
ficients are square summable. It is also well known that
Shubin introduced, for every exponent p ∈ [1,∞] and for
every real number t ∈ R, the space W

p
t (Rn) of almost pe-

riodic functions and proved the continuity of any almost
periodic pseudo-differential operator A: W2

t (Rn)⟶
W2

t− m(Rn), with arbitrary t ∈ R, provided that the symbol of
A belongs to the class Sm

ρ,δ (0≤ δ < ρ≤ 1). In the papers of
Shubin, some regularity results for formally hypoelliptic
almost periodic pseudo-differential operators have been
examined on the space W2

− ∞(Rn) ≔ ∪ t∈RW2
t (Rn).

In [215], the authors sought for ultradistributional an-
alogues of the aforementioned results, working with almost
periodic functions that are Gevrey regular of order s≥ 1 (the
difference between the real analytic case s � 1 and the pure
ultradistributional case s> 1 should be emphasized here). If
∅≠Ω⊆Rn, then the space of all Gevrey functions of order
s≥ 1, denoted by Gs(Ω), is defined as a collection of all
infinitely differentiable functions F: Rn⟶ C such that, for
each compact set K⊆Rn, there exists a finite real constant
CK > 0 such that |DαF(t)|≤C

1+|α|
K α!s for all t ∈ K and α ∈ Nn

0.
It is natural to ask whether an almost periodic function
F: Rn⟶ C which belongs to the space Gs(Ω) obeys the
property of the existence of a global real constant C> 0 such
that |DαF(t)|≤C1+|α|α!s for all t ∈ Rn and α ∈ Nn

0. An in-
structive counterexample in the one-dimensional setting,
with s> 1, is given in [215], Example 2.1, showing that this is
not true in general: set gs(x) ≔ exp(− x(1/(1− s))), x> 0,
gs(x) ≔ 0, x≤ 0, ψs(x) ≔ gs(x)gs(1 − x), x ∈ R,
ψs,n(x) ≔ ψs(nx), x ∈ R, and φs,n(x) ≔
􏽐k∈Zψs(x − 2n(2k + 1)), x ∈ R (n ∈ N). It has been shown
that the function

Fs(x) ≔ 􏽘
∞

n�1
n

− (1/4)φs,n(x), x ∈ R, (75)

is well defined, as well as that the above series is uniformly
convergent in the variable x ∈ R, so that the function Fs(·) is
actually semiperiodic since the function φs,n(·) is of period
2n+1 (n ∈ N). We also have that Fs ∈ Gs(R) as well as that
Fs ∉ Gs

ap(R); see the notion explained in the following.
Albeit not explicitly constructed in [215], it is our strong
belief that this example can be transferred to the

multidimensional setting without any serious difficulties, as
well (more to the point, the case s � 1 has not been con-
sidered in [215], Example 2.1, and deserves further analyses).

After providing this counterexample, the authors paid
special attention to the analysis of almost periodic functions
F: Rn⟶ C belonging to the space Gs(Rn) and obeying the
property that there exists a real constant C> 0 such that
|DαF(t)|≤C1+|α|α!s for all t ∈ Rn and α ∈ Nn

0. +e union of
these functions, denoted by Gs

ap(Rn), is equipped with the
usual inductive limit topology as a union of Banach spaces.
+en, the authors introduced the corresponding classes of
symbols and pseudo-differential operators and continued
their nontrivial analysis; see [215] for more details.

+e theory of almost periodic-type functions is far from
being completed, and finally, we would like to mention some
topics that are not very well explored in the existing liter-
ature by now:

(1) Almost anything has been said about the almost
periodic properties and the almost automorphic
properties of various types of fractional integrals and
fractional derivatives of vector-valued periodic
functions (see Area, Losada, and Nieto [216] and
Jonnalagadda [217]).

(2) +e notion of c-periodicity and the notion of c-al-
most periodicity require several further investiga-
tions within the theory of vector-valued generalized
functions [218].

(3) Applications of the multidimensional almost peri-
odic-type functions in the classical theory of partial
differential equations and applications of the mul-
tidimensional almost periodic-type functions to the
boundary value problems are still not examined to a
satisfactory extent.

(4) +e Stepanov, Weyl, and Besicovitch classes of
multidimensional almost automorphic functions
have not been analyzed before. See also the recent
research studies [219, 220, 221].

(5) +e results about the invariance of certain kinds of
generalized almost periodicity and generalized al-
most automorphicity under the actions of infinite
convolution products (11) and (12) can be simply
transferred to the multidimensional setting. It is not
clear how we can apply these results in mathematical
physics and applied science.

4. Conclusions

In this survey article, we have collected several known results
about vector-valued almost periodic functions, separately con-
sidering the almost periodic functions of one real variable and
the almost periodic functions of several real variables. We have
tried to present the most representative applications of almost
periodic functions to the abstract Volterra integrodifferential
equations in Banach spaces as well as to remind our readers of
some landmarks, pioneering investigations of almost periodic
functions. We have proposed some open problems and per-
spectives for further investigations of almost periodicity.
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[11] V. Q. Phóng, Almost Periodic and Stable Semigroups of
Operators, Banach Center Publications, Amsterdam, Neth-
erlands, 1997.
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[62] A. Chávez, S. Castillo, and M. Pinto, “Discontinuous almost
periodic type functions, almost automorphy of solutions of
differential equations with discontinuous delay and appli-
cations,” Electronic Journal of Qualitative Jeory of Differ-
ential Equations, vol. 75, no. 75, pp. 1–17, 2014.

[63] R. Yuan and J. Hong, “+e existence of almost periodic
solutions for a class of differential equations with piecewise
constant argument,” Nonlinear Anal, vol. 28, pp. 1439–1450,
1997.

[64] K. L. Cooke and J. Wiener, “Retarded differential equations
with piecewise constant delays,” Journal of Mathematical
Analysis and Applications, vol. 99, no. 1, pp. 265–297, 1984.

[65] S. M. Shah and J. Wiener, “Advanced differential equations
with piecewise constant argument deviations,” International
Journal of Mathematics and Mathematical Sciences, vol. 6,
no. 4, pp. 671–703, 1983.

[66] J. Wiener, Generalized Solutions of Functional Differential
Equations, World Scientific, Singapore, 1993.

[67] E. Ait Dads and L. Lhachimi, “Pseudo almost periodic so-
lutions for equation with piecewise constant argument,”
Journal of Mathematical Analysis and Applications, vol. 371,
no. 2, pp. 842–854, 2010.

[68] K.-S. Chiu and M. Pinto, “Periodic solutions of differential
equations with a general piecewise constant argument and
applications,” Electronic Journal of Qualitative Jeory of
Differential Equations, vol. 46, no. 46, pp. 1–19, 2010.

[69] K.-S. Chiu, M. Pinto, and J.-C. Jeng, “Existence and global
convergence of periodic solutions in recurrent neural net-
work models with a general piecewise alternately advanced
and retarded argument,” Acta Applicandae Mathematicae,
vol. 133, no. 1, pp. 133–152, 2014.

Journal of Mathematics 17



[70] M. I. Muminov, “On the method of finding periodic solu-
tions of second-order neutral differential equations with
piecewise constant arguments,” Advances in Difference
Equations, vol. 336, 2017.

[71] G. Papaschinopoulos, “Some results concerning a class of
differential equations with piecewise constant argument,”
Mathematische Nachrichten, vol. 166, no. 1, pp. 193–206,
1994.

[72] M. Pinto, “Cauchy and Green matrices type and stability in
alternately advanced and delayed differential systems,”
Journal of Difference Equations and Applications, vol. 17,
no. 2, pp. 235–254, 2011.

[73] R. Yuan, “+e existence of almost periodic solutions of
retarded differential equations with piecewise constant ar-
gument,” Nonlinear Analysis: Jeory, Methods & Applica-
tions, vol. 48, no. 7, pp. 1013–1032, 2002.
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automorphic mild solutions to some classes of nonauton-
omous higher-order differential equations,” Semigroup Fo-
rum, vol. 82, no. 3, pp. 455–477, 2011.
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M. T. Khalladi ,1 M. Kostić ,2 M. Pinto ,3 A. Rahmani,4 and D. Velinov 5

1Department of Mathematics and Computer Sciences, University of Adrar, Adrar, Algeria
2Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, Serbia
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,e main aim of this paper is to indicate that the notion of semi-c-periodicity is equivalent with the notion of c-periodicity,
provided that c is a nonzero complex number whose absolute value is not equal to 1.

1. Introduction

,e notion of periodicity plays a fundamental role in
mathematics. A continuous function f: I⟶ E, where E is
a topological space and I � R or I � [0,∞), is said to be
periodic if and only if there exists a real number ω> 0 such
that f(x + ω) � f(x) for all x ∈ I. ,e notion of periodicity
has recently been reconsidered by Alvarez et al. [1], who
proposed the following notion: a continuous function
f: I⟶ E, where E is a complex Banach space, is said to be
(ω, c)-periodic (ω> 0, c ∈ C∖ 0{ }) if and only if f(x + ω) �

cf(x) for all x ∈ I. Due to ([1], Proposition 2.2), we know
that a continuous function f: I⟶ E is (ω, c)-periodic if
and only if the function g(·) ≡ c(− ·/ω)f(·) is periodic and
g(x + ω) � g(x) for all x ∈ I; here, c(− ·/ω) denotes the
principal branch of the exponential function (see also the
research articles [2, 3] by Alvarez et al., the conference
paper [4] by Pinto, where the idea for introduction of
(ω, c)-periodic functions was presented for the first time,
and [5, 6] for some generalizations of the concept of
(ω, c)-periodicity).

In the sequel, by E we denote a complex Banach space
equipped with the norm ‖ · ‖; C(I: E) denotes the vector
space consisting of all continuous functions f: I⟶ E. A
function f ∈ C(I: E) is said to be c-periodic (c ∈ C∖ 0{ }) if

and only if there exists a real number ω> 0 such that the
function f(·) is (ω, c)-periodic. ,e class of c-periodic
functions extends two important classes of functions:

(1) ,e class of antiperiodic functions, i.e., the class of
(− 1)-periodic functions: in this case, any positive
real number ω> 0 satisfying f(x + ω) � − f(x),
x ∈ I, is said to be an antiperiod of f(·). Any
antiperiodic function is periodic, since we can apply
the above functional equality twice in order to see
that f(x + 2ω) � − f(x) for all x ∈ I.

(2) ,e class of Bloch (ω, k)-periodic functions (ω> 0,
k ∈ R), i.e., the class of continuous functions
f: I⟶ E satisfying f(x + ω) � eikωf(x) for all
x ∈ I. ,e number ω is usually called Bloch period
of f(·), the number k is usually called the Bloch
wave vector or Floquet exponent of f(·), and in the
case that kω � π, the class of Bloch (ω, k)-periodic
functions is equal to the class of antiperiodic
functions having the number ω as an antiperiod. If
the function f(·) is Bloch (ω, k)-periodic, then we
inductively obtain f(x + mω) � eimkωf(x) for all
x ∈ I and m ∈ N, so that the function f(·) must be
periodic provided that kω ∈ Q, but, if kω ∉ Q, then
the function f(·) need not be periodic as the
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following simple counterexample shows: the
function

f(x) ≔ e
ix

+ e
i(

�
2

√
− 1)x

, x ∈ R, (1)

is Bloch (ω, k)-periodic with ω � 2π +
�
2

√
π and k ��

2
√

− 1 but not periodic. In ([7], Remark 1), we have
recently observed that any Bloch (ω, k)-periodic
function must be almost periodic (see also the re-
search articles [8] by Hasler and [9] by Hasler and
Guérékata, where it has been noted that the Bloch
(ω, k)-periodic functions are unavoidable in con-
densed matter and solid state physics).

,e notion of almost periodicity was introduced by
Harald Bohr, a younger brother of Nobel Prize winner Niels
Bohr, around 1925 and later generalized by many other
mathematicians. In [10], we have analyzed the following
generalization of the notion of almost periodicity, called
c-almost periodicity (c ∈ C∖ 0{ }): let f: I⟶ E be a con-
tinuous function, and let a number ϵ> 0 be given. We call a
number τ > 0 an (ϵ, c)-period for f(·) if and only if ‖f(x +

τ) − cf(x)‖ ≤ ϵ for all x ∈ I; by ϑc(f, ϵ) we denote the set
consisting of all (ϵ, c)-periods for f(·). It is said that f(·) is
c-almost periodic if and only if for each ϵ> 0 the set ϑc(f, ϵ)
is relatively dense in [0,∞), which means that for each ϵ> 0
there exists a finite real number l> 0 such that any subin-
terval I′ of [0,∞) of length l meets ϑc(f, ϵ). Any c-periodic
function is c-almost periodic and any c-almost periodic
function is almost periodic ([10]); if c � 1, resp. c � − 1, then
we also say that the function f(·) is almost periodic, resp.
almost antiperiodic (for the primary source of information
about almost periodic functions and their applications, we
refer the reader to the research monographs by Besicovitch
[11], Diagana [12], Fink [13], Guérékata [14], Kostić [15],
and Zaidman [16]).

In [10], besides the class of c-almost periodic functions,
we have introduced and analyzed the classes of c-uniformly
recurrent functions, semi-c-periodic functions, and their
Stepanov generalizations, where c ∈ C and |c| � 1 (the
classes of semiperiodic functions and semi-antiperiodic
functions, i.e., the classes of semi-1-periodic functions and
semi-(− 1)-periodic functions, have been previously con-
sidered by Andres and Pennequin in [17], the research article
of invaluable importance for us, and Chaouchi et al. in [7];
the notion of semi-Bloch k-periodicity, where k ∈ R, has
been also analyzed in [7], but it differs from the notion of
semi-c-periodicity analyzed in [10] and this paper). If |c| � 1,
then we know that a function f ∈ C(I: E) is semi-c-periodic
if and only if there exists a sequence (fn) of c-periodic
functions in C(I: E) such that limn⟶∞fn(x) � f(x)

uniformly in I; in this case, a semi-c-periodic function need
not be c-periodic [10]. For example, we have the following
(see ([17], Example 1), ([7], Example 4 and Example 5), and
([10], Example 2.16)): let p and q be odd natural numbers
such that p − 1 ≡ 0(mod q), and let c � e(iπp/q). ,e function

f(x) ≔ 􏽘

∞

n�1

e
(ix/(2nq+1))

n
2 , x ∈ R, (2)

is semi-c-periodic because it is a uniform limit of
[π · (1 + 2q) . . . (1 + 2Nq)]-periodic functions

fN(x) ≔ 􏽘
N

n�1

e
(ix/(2nq+1))

n
2 , x ∈ R (N ∈ N). (3)

Our main result, ,eorem 1, states that the following
phenomenon occurs in case |c|≠ 1: if (fn) is a sequence of
c-periodic functions and limn⟶∞fn(x) � f(x) uniformly in
I, then f(·) is c-periodic. ,erefore, in this case, any concept
of semi-c-periodicity introduced below coincides with the
concept of c-periodicity (more precisely, in this paper, we
analyze the concepts of semi-c-periodicity of type i (i+), where
i � 1, 2 and c ∈ C∖ 0{ }; if |c| � 1, all these concepts are
equivalent and reduced to the concept of semi-c-periodicity,
while in case |c|≠ 1, all these concepts are equivalent and
reduced to the concept of c-periodicity).

For any function f ∈ C(I: E), we set ‖f‖∞ ≔ supx∈I‖

f(x)‖. ,e notion of c-uniform recurrence plays an im-
portant role in the proof of our main result [10].

Definition 1. A continuous function f: I⟶ E is said to be
c-uniformly recurrent (c ∈ C∖ 0{ }) if and only if there exists a
strictly increasing sequence (αn) of positive real numbers
such that limn⟶+∞αn � +∞ and

lim
n⟶+∞

f · + αn( 􏼁 − cf(·)
����

����∞ � 0. (4)

,e space consisting of all c-uniformly recurrent func-
tions from the interval I into E will be denoted by URc(I: E).
If c � 1, resp. c � − 1, then we also say that the function f(·)

is uniformly recurrent, resp. uniformly antirecurrent.

Although the notion of uniform recurrence was analyzed
already by Bohr in his landmark paper [18] (1924), the
precise definition of a uniformly recurrent function was
firstly given by Haraux and Souplet [19] in 2004, who proved
that the function f: R⟶ R, given by

f(x) ≔ 􏽘
∞

n�1

1
n
sin2

x

2n􏼒 􏼓, x ∈ R, (5)

is unbounded, Lipschitz continuous and uniformly recur-
rent; moreover, we have that f(·) is c-uniformly recurrent if
and only if c � 1 (see [10], Example 2.19(i)). ,e first ex-
ample of a uniformly antirecurrent function has recently
been constructed in ([10], Example 2.20), where we have
proved that the function g: R⟶ R, given by

g(x) ≔ (sinx) · 􏽘
∞

n�1

1
n
sin2

x

3n􏼒 􏼓, x ∈ R, (6)

is unbounded, Lipschitz continuous and uniformly anti-
recurrent. Any c-almost periodic function is c-uniformly
recurrent, while the converse statement does not hold in
general.

For completeness, we will include all details of the proof
of the following auxiliary lemma from [10].
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Lemma 1 (A). Suppose that f ∈ URc(I: E) and c ∈ C∖ 0{ }

satisfies |c|≠ 1. ;en, f ≡ 0.

Proof. Without loss of generality, we may assume that
I � [0,∞). Suppose to the contrary that there exists x0 ≥ 0
such that f(x0)≠ 0. Inductively, (4) implies

|c|
k
m −

|c|
k

− 1
n(|c| − 1)

≤ ‖f(x)‖ ≤ |c|
k
M −

|c|
k

− 1
n(|c| − 1)

, (7)

provided that k ∈ N and x ∈ [kαn, (k + 1)αn]. Consider now
case |c|< 1. Let 0< ϵ< c‖f(x0)‖. ,en, (7) yields that there
exist integers k0 ∈ N and n ∈ N such that for each k ∈ N with
k≥ k0, we have ‖f(x)‖≤ (ϵ/2), x ∈ [kαn, (k + 1)αn]. ,en,
the contradiction is obvious because for each m ∈ N with
m> n, there exists k ∈ N such that x0 + αm ∈ [kαn,

(k + 1)αn], and therefore ‖f(x0 + αm)‖≥ |c|‖f(x0)‖−

(1/m)⟶ |c|‖f(x0)‖> ϵ, m⟶ +∞. Consider now case
|c|> 1; let n ∈ N be such that ‖f(x0)‖> (1/(n(|c| − 1))) and
M ≔ maxx∈[0,2αn]‖f(x)‖ > 0. ,en, for each m ∈ N with
m> n, there exists k ∈ N such that αm ∈ [(k − 1)αn, kαn], and
therefore ‖f(x + αm)‖≤ 1 + |c|M, x ∈ [0, 2αn]. On the other
hand, we obtain inductively from (4) that

f x0 + kαn( 􏼁
����

����≥ |c|
k

f x0( 􏼁
����

���� −
1

n(|c| − 1)
􏼢 􏼣

+
1

n(|c| − 1)
⟶ +∞ as k ∈ N,

(8)

which immediately yields a contradiction. □

2. Semi-c-Periodic Functions

Set S ≔ N if I � [0,∞), and S ≔ Z if I � R. In this paper,
we introduce and analyze the following notion with
c ∈ C∖ 0{ }.

Definition 2. Let f ∈ C(I: E).

(i) It is said that f(·) is semi-c-periodic of type 1 if and
only if

∀ε> 0∃ω> 0∀m ∈ S∀x ∈ I f(x + mω) − c
m

f(x)
����

����≤ ε.

(9)

(ii) It is said that f(·) is semi-c-periodic of type 2 if and
only if

∀ε> 0∃ω> 0∀m ∈ S∀x ∈ I c
− m

f(x + mω) − f(x)
����

����≤ ε.

(10)

,e space of all semi-c-periodic functions of type i will be
denoted by SPc,i(I: E), i � 1, 2.

Definition 3. Let f ∈ C(I: E).

(i) It is said that f(·) is semi-c-periodic of type 1+ if and
only if

∀ε> 0∃ω> 0∀m ∈ N∀x ∈ I f(x + mω) − c
m

f(x)
����

����≤ ε.

(11)

(ii) It is said that f(·) is semi-c-periodic of type 2+ if and
only if

∀ε> 0∃ω> 0∀m ∈ N∀x ∈ I c
− m

f(x + mω) − f(x)
����

����≤ ε.

(12)

,e space of all semi-c-periodic functions of type i+ will
be denoted by SPc,i,+(I: E), i � 1, 2.

,e notion of semi-c-periodicity of type 1 has been
introduced in ([10], Definition 2.4), where it has been simply
called semi-c-periodicity. Due to ([10], Proposition 2.5), we
have that the notion of a semi-c-periodicity of type i (i+),
where i � 1, 2, is equivalent with the notion of semi-c-pe-
riodicity introduced there, provided that |c| � 1.

Now we will focus our attention to the general case
c ∈ C∖ 0{ }. We will first state the following.

Lemma 2 (B).

(i) If |c|≥ 1 and f: I⟶ E is semi-c-periodic of type 1+,
then f(·) is semi-c-periodic of type 2+.

(ii) If |c|≤ 1 and f: I⟶ E is semi-c-periodic of type 2+,
then f(·) is semi-c-periodic of type 1+.

Proof. If x ∈ I, ω> 0, m ∈ N and |c|≥ 1, then we have

f(x + mω) − c
m

f(x)
����

����≤ ε⇒ c
− m

f(x + mω) − f(x)
����

����≤ ε,
(13)

which implies (i); the proof of (ii) is similar. □

,e argumentation contained in the proofs of ([17],
Lemma 1 and,eorem 1) can be repeated verbatim in order
to see that the following important lemma holds true.

Lemma 3 (C). Suppose that |c|≤ 1, resp. |c|≥ 1, and
f: [0,∞)⟶ E is semi-c-periodic of type 1+, resp. 2+. ;en,
there exists a sequence (fn: [0,∞)⟶ E)n∈N of c-periodic
functions which converges uniformly to f(·).

Now we are able to state and prove our main result.

Theorem 1. Let |c|≠ 1, i ∈ 1, 2{ } and f: I⟶ E. ;en, f(·)

is c-periodic if and only if f(·) is semi-c-periodic of type i (i+).

Proof. Suppose that the functionf(·) is (ω, c)-periodic.,en,
we have f(x + mω) � cmf(x), x ∈ I, m ∈ S, so that f(·) is
automatically semi-c-periodic of type i (i+). To prove the
converse statement, let us observe that any semi-c-periodic of
type i is clearly semi-c-periodic of type i+. Suppose first that
|c|> 1. Due to Lemma 2 B(i), it suffices to show that if f(·) is
semi-c-periodic of type 2+, thenf(·) is c-periodic. Assume first
I � [0,∞). Using LemmaC, we get the existence of a sequence
(fn: (0,∞)⟶ E)n∈N of c-periodic functions which
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converges uniformly to f(·). Let fn(x + ωn) � cfn(x), x≥ 0
for some sequence (ωn) of positive real numbers. Consider first
case that (ωn) is bounded. ,en, there exists a strictly in-
creasing sequence (nk) of positive integers and a number ω≥ 0
such that limk⟶+∞ωnk

� ω. Let ϵ> 0 be given. ,en, there
exists an integer k0 ∈ N such that ‖f(x) − fnk

(x)‖≤ ϵ/(2 +

2|c|− 1) for all real numbers x≥ 0 and all integers k≥ k0.
Furthermore, we have

c
− 1

f x + ωnk
􏼐 􏼑 − f(x)

�����

�����≤ c
− 1

f x + ωnk
􏼐 􏼑 − c

− 1
fnk

x + ωnk
􏼐 􏼑

�����

�����

+ c
− 1

fnk
x + ωnk

􏼐 􏼑 − fnk
(x)

�����

�����

+ fnk
(x) − f(x)

�����

�����

� c
− 1

f x + ωnk
􏼐 􏼑 − c

− 1
fnk

x + ωnk
􏼐 􏼑

�����

�����

+ fnk
(x) − f(x)

�����

�����≤ 2 1 +|c|
− 1

􏼐 􏼑

·
ϵ

2 + 2|c|
− 1

􏼐 􏼑
� ϵ,

(14)

for all real numbers x≥ 0 and all integers k≥ k0. Letting
k⟶ +∞, we get f(x + ω) � cf(x) for all x≥ 0. If ω> 0,
the above yields that f(·) is (ω, c)-periodic while the as-
sumptionω � 0 yieldsf ≡ 0 or c � 1, i.e.,f(·) ≡ 0; in any case,
f(·) is (ω, c)-periodic. Suppose now that (ωn) is unbounded.
,en, with the same notation as above, we may assume that
limk⟶+∞ωnk

� +∞. Using the same computation, it follows
that limk⟶+∞‖c− 1f(· + ωnk

) − f(·)‖∞ � 0, so that
f ∈ URc([0,∞): E). Due to Lemma 1 A, we get f(·) ≡ 0.
Assume now I � R. By the foregoing arguments, we know that
there exists ω> 0 such that f(x + ω) � cf(x) for all x≥ 0. Let
x< 0 and ϵ> 0 be fixed. Since f(·) is semi-c-periodic, there
exists ωϵ > 0 such that ‖c− mf(x + ω + mωϵ) − f(x + ω)‖≤ ϵ
and ‖c1− mf(x + mωϵ)− cf(x)‖≤ ϵ for all m ∈ N. For all
sufficiently large integers m ∈ N, we have x + mωϵ > 0 so that
c− mf(x + ω + mωϵ) � c1− mf(x + mωϵ), and therefore
‖f(x + ω) − cf(x)‖≤ 2ϵ. Since ϵ> 0 was arbitrary, we get
f(x + ω) � cf(x), which completes the proof in case |c|> 1.
Suppose now that |c|< 1. Due to Lemma 2(ii), it suffices to show
that iff(·) is semi-c-periodic of type 1+, thenf(·) is c-periodic.
But, then we can apply Lemma 3 again and the similar argu-
ments as above to complete the whole proof. □

Corollary 1. Let c ∈ C∖ 0{ }, let i ∈ 1, 2{ }, and let f(·) be
semi-c-periodic of type i (i+). ;en, there exist two finite real
constantsM> 0 and ω> 0 such that ‖f(x)‖≤M|c|(x/ω), t ∈ I.

Using ([10], ,eorem 2.14) and the proof of ,eorem 1,
we may deduce the following corollaries.

Corollary 2. Let f ∈ C(I: E) and c ∈ C∖ 0{ }. ;en, f(·) is
semi-c-periodic if and only if there exists a sequence (fn) of
c-periodic functions in C(I: E) such that limn⟶∞fn(x) �

f(x) uniformly in I.

Corollary 3. Let f ∈ C(I: E) and |c|≠ 1. If (fn) is a se-
quence of c-periodic functions and limn⟶∞fn(x) � f(x)

uniformly in I, then f(·) is c-periodic.

3. Conclusions

In this paper, the authors have studied the class of semi-
c-periodic functions with values in Banach spaces. In the
case that c is a nonzero complex number whose absolute
value is not equal to 1, the authors have proved that the
notion of semi-c-periodicity is equivalent with the notion of
c-periodicity. For further information concerning Stepanov
semi-c-periodic functions, composition principles for
(Stepanov) semi-c-periodic functions, and related applica-
tions to the abstract semilinear Volterra integrodifferential
equations in Banach spaces, the reader may consult the
forthcoming research monograph [20].
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