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+e fault vibration signal of a bearing has nonstationary and nonlinear characteristics and can be regarded as the combination of
multiple amplitude- and frequency-modulation components. +e envelope of a single component contains the fault charac-
teristics of a bearing. Local characteristic-scale decomposition (LCD) can decompose the vibration signal into a series of multiple
intrinsic scale components. Some components can clearly reflect the running state of a bearing, and fault diagnosis is conducted
according to the envelope spectrum. However, the conventional LCD takes a single-channel signal as the research object, which
cannot fully reflect the characteristic information of the rotor, and the analysis results based on different channel signals of the
same section will be inconsistent. To solve this problem, based on full vector spectrum technology, the homologous dual-channel
information is fused. A vector LCDmethod based on cross-correlation coefficient component selection is given, and a simulation
analysis is completed. +e effectiveness of the proposed method is verified by simulated signals and experimental signals of a
bearing, which provides a method for bearing feature extraction and fault diagnosis.

1. Introduction

Rotating machinery is developing in the direction of high
speeds, heavy loads, and high reliability, which places higher
requirements on mechanical transmission equipment [1].
+e operational state of mechanical equipment is changing,
and its safe, stable, and reliable operation must be ensured.
Rolling bearings are widely used in mechanical equipment,
and their working condition greatly affects its operation [2].
Owing to complex operating conditions and changing ex-
ternal environment, rolling bearings are prone to failure [3].
It is of great significance to monitor their working status and
diagnose their fault degree [4, 5]. Some studies have focused
on the fault features of rotating machinery through modern
signal processing methods [6–8].

Fault vibration signals of bearings are usually weak
nonstationary signals with complex frequency components.
+e key to fault diagnosis of rolling bearings is to extract
effective feature information from vibration signals con-
taining complex frequencies [9]. Vibration analysis and fault
diagnosis have received considerable attention [10–14] and

have been adopted to process nonstationary and nonlinear
vibration signals. Among them, signal decomposition
methods contribute much. Tiwari [15] described a self-
adaptive signal decomposition technique, concealed com-
ponent decomposition (CCD), as the basis of a precise
bearing fault diagnosis model. Ying [16] introduced a novel
permutation entropy-based improved uniform phase em-
pirical mode decomposition (PEUPEMD) method and
obtained better analysis than comparative methods about
empirical mode decomposition (EMD) in decomposing
accuracy and mode mixing suppression. Patel [17] applied
variational mode decomposition (VMD) to filter out non-
stationarities due to variable speed conditions and provided
a complete diagnostic solution for the spur gear systems. Li
[18] presented a local mean decomposition (LMD) method
based on an improved compound interpolation envelope,
whose effect was comparable to or slightly better than that of
other methods. Zheng [19] proposed local characteristic-
scale decomposition (LCD), a nonstationary signal analysis
method that adaptively decomposes a signal to a series of
intrinsic scale components in different scales. With good
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compatibility, LCD methods have seen new applications,
such as the local characteristic-scale decomposition-Teager
energy operator (LCD-TEO) [20], improved local charac-
teristic-scale decomposition (ILCD) [21], and piecewise
cubic Hermite interpolating polynomial-local characteristic-
scale decomposition (PCHIP-LCD) [22].

However, the conventional LCDmethods focus on single-
channel signals, which probably cause incomplete fault fea-
ture extraction. In the fault diagnosis of rotating machinery,
the sensor information collected by a multi-sensor system is
related to the same or different sides of rotating machinery in
the same environment. +ere is an inevitable connection
between various types of information, which are different in
time, space, credibility, and expression, whose focuses and
uses are not exactly the same, and whose requirements for
information processing and management are different. If the
information collected by each source is considered in isola-
tion, then their internal connections and characteristics are
lost. Multi-source information fusion can solve this problem
[23]. Multi-sensor data fusion methodologies include the
holospectrum [24–27], full spectrum [28–31], and full vector
spectrum [32]. Proposed byHan [32], the full vector spectrum
has been widely studied and applied in engineering [33–35]
and has formed the basis of many compound methods. Chen
[36] applied full-vector signal acquisition and information
fusion to fault prediction. Gong [37] combined the full vector
spectrum with ensemble empirical decomposition and ap-
plied it to the diagnosis of gear faults. Yu [38] introduced the
empirical wavelet transform and variance contribution rate to
the full vector spectrum, which improved the adaptability and
accuracy of full vector information fusion.

Based on the above analysis, the main contributions of
this paper are as follows:

(1) A signal processing method, vector LCD, is pro-
posed, which fully considers homologous signals and
intrinsic scale components (ISCs)

(2) Vector LCD can simplify the analysis of ISCs by taking
the cross-correlation coefficient in screening components

(3) +e fusion of optimal components can obtain more
complete and accurate fault features

+e remainder of this article is arranged as follows.
Section 2 shows the calculation of LCD, presents the theory
of the cross-correlation coefficient, describes the principles
of the conventional full vector spectrum, and introduces a
method for bearing feature extraction and fault diagnosis
based on the correlation coefficient vector LCD. In Section 3,
the proposed methodology is verified through application to
the homologous simulation signals of a rolling bearing. In
Section 4, the rolling bearing experimental data from two
directions of sensors are used to validate vector LCD.
Conclusions are given in Section 5.

2. Theoretical Description of Vector LCD

+e proposed fault diagnosis method using vector local
characteristic-scale decomposition (Vector LCD) is
presented in Figure 1. Vibration signals were obtained

from a test stand by a signal acquisition module. +en, the
vector LCD method was used to compute and analyze the
data. Next, the fusion data were enveloped into the
spectrum. Lastly, the fault frequency features were
matched with the specific fault type and the failure reason
was located.

2.1. Local Characteristic-Scale Decomposition. According to
the extreme value of a signal, the LCD can adaptively de-
compose nonlinear and nonstationary signals to a series of
ISCs satisfying the following conditions:

(1) +e length between any two adjacent extreme points
of the data sample is monotonic

(2) If the extreme point in a data sample is Xk (k� 1, 2,
..., M) and τk is the corresponding time, then any two
maximum (or minimum) value points (τk, Xk),
(τk+2, Xk+2) can be connected to form a line segment.
τk+1 is the corresponding time of the maximum (or
minimum) value point (τk+1, Xk+1) in the middle of
the line segment. +e corresponding function value
at this moment is

Ak � Xk +
τk+1 − τk

τk+2 − τk

Xk+2 − Xk( 􏼁. (1)

+e ratio of the function value to the maximum (or
minimum)

a Xk +
τk+1 − τk

τk+2 − τk

Xk+2 − Xk( 􏼁􏼢 􏼣 +(1 − a)Xk+1 � 0, (2)

remains unchanged, where a ∈ (0, 1) is a constant, and
a � 1/2 for frequency modulated, amplitude modulated,
amplitude-frequency modulated, and sine-cosine signals.

On the basis of the ISC, LCD can decompose any signal
x(t) to a series of ISCs, as follows [39]:

(1) Find all extreme points of x(t) and their corre-
sponding moments τk (k� 1, 2, ..., M), set a � 1/2,
and make a linear transformation for x(t) between
any two extreme points,

P1 � Lk +
Lk+1 − Lk

Xk+1 − Xk

xt − Xk( 􏼁,

Lk+1 � a Xk +
τk+1 − τk

τk+2 − τk

Xk+2 − Xk( 􏼁􏼢 􏼣 +(1 − a)Xk+1,

(3)

where t ∈ (τk, τk+1).
(2) Subtract P1(t) from the original signal x(t) to get a

new signal,

I1(t) � x(t) − P1(t). (4)

(3) Ideally, I1(t) can be used as the first ISC. At this
moment Lk+1 is equal to zero; in practice, assuming a
variable △e, the iteration ends when |Lk+1|≤△e. If
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I1(t) does not meet the two conditions of ISC, the
above steps are repeated k times until Ik(t) satisfies
the conditions and denote Ik(t) as the first ISC c1(t)

of x(t).
(4) Subtract c1(t) from x(t) to get a new signal, r1. Take

r1 as the original data and repeat steps 1–3 to get the
second ISC component, c2(t), of x(t). Repeat n times
to get n ISCs of the signal x(t). +e function does not
terminate until rn is monotonic:

x(t) � 􏽘
n

p�1
cp(t) + rn(t). (5)

It can be seen from equation (5) that the signal x(t) can
be reconstructed by n ISCs and a monotonic signal.

2.2. Correlation Coefficient. Correlation is a kind of non-
deterministic relationship, and the correlation coefficient
measures the degree of linear correlation between variables.
+e correlation coefficient between sequences
x � (x1, x2, . . . , xn) and y � (y1, y2, . . . , yn) can be calcu-
lated as

r �
􏽐

n
i�1 xi − x( 􏼁 yi − y( 􏼁

������������

􏽐
n
i�1 xi − x( 􏼁

2
􏽱

􏽐
n
i�1 yi − y( 􏼁

2
, (6)

where x and y are the mean values of sequences x-and y,
respectively.

Suppose xnor and ynor are normal operating signals
perpendicular to each other, and xabn, yabn are the homol-
ogous signals when faults occur. After the decomposition of
LCD, we obtain four ISCs, ISCxnork, ISCynork, ISCyabnk, and
ISCxabnk, where k� 1, 2, . . ., N is the order of an ISC. +e
cross-correlation coefficient is calculated as follows:

(1) Calculate the correlation coefficients between
ISCxnork and xnor, ISCynork, and ynor, and find their
average, Uk;

(2) Calculate the correlation coefficients between
ISCxabnk and xabn, ISCyabnk, and ISCyabnk, and find
their average, Vk;

(3) Calculate the correlation coefficients between
ISCxnork and ISCynork, ISCxabnk, and ISCyabnk, and find
their average, Wk;

(4) Calculate the sensitivity factor,

Signal acquisition 
module

Fault frequency 
matching

Fault diagnosis

Vector LCD

Vibration signalsX signal Y signal

Envelop spectrum

A test stand

Figure 1: Block diagram of the proposed fault diagnosis method using vector LCD.
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Sk �
Uk + Vk

2
− Wk, (7)

where Uk and Vk indicate the degree of correlation between
the decomposed ISC and the initial signal. +e larger the
value, the more similar are ISC and the initial signal. +e Wk

indicates the correlation between ISCs of the same order.
+e smaller the value, the greater the change in the ISC.
Overall, the larger the Sk, the more sensitive the ISC of this
order, and the more it can reflect spectral changes.

2.3. Full Vector Spectrum. To overcome limitations due to
incomplete and inaccurate sensor information, two or-
thogonal sensors are usually fixed on the same section of the
rotor in the field test of large rotating machinery. +e full
vector spectrum technology meets the accuracy and reli-
ability requirements of condition monitoring and fault di-
agnosis. +e vortex phenomenon of the rotor is the
combined effect of each harmonic frequency, and the vortex
intensity at each harmonic frequency is the basis for fault
judgment and identification. +e space rotation trajectory of
each harmonic is an ellipse, and the maximum vibration
vector is in its long-axis direction [40].

Suppose the cross section channel signals ( xk􏼈 􏼉 and yk􏼈 􏼉)
are perpendicular to each other and form them into a
complex signal ( zk􏼈 􏼉 � xk􏼈 􏼉 + j yk􏼈 􏼉), only a single Fourier
transform (FT) of the complex signal is needed to obtain the
characteristic information required by the full vector
spectrum under each harmonic frequency. +e algorithm is
robust, it greatly reduces calculation, and it is compatible
with conventional analysis methods. When processing a
single-channel signal, the algorithm is still valid and can
meet real-time requirements. +e characteristic information
includes the main vibration vector RLk, assistant vibration
vector Rsk, angle∅αk between the main vibration vector and
the x-axis, and the elliptical trajectory’s initial phase angle αk,
which are described by

RLk �
1
2N

Zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ZN−k

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩,

Rsk �
1
2N

Zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ZN−k

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩,

tan 2∅αk �
ZIkZR(N−k) − ZRkZI(N−k)

ZIkZI(N−k) + ZRkZR(N−k)

,

tan αk �
ZIk + ZI(N−k)

ZRk + ZR(N−k)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where k� 1, 2, . . ., N/2–1. +e characteristic information of
each harmonic trace from equation (8) is the main char-
acteristic information under each harmonic trace of full
vector spectrum technology.

Figure 2 is a flowchart of the proposed method. At first,
the LCD is applied to the homology information acquired
from two orthogonal sensors. +e cross-correlation coeffi-
cient is selected to choose the ISCs of orthogonal signals, the

next optimal ISC of orthogonal signals can be obtained, the
vector ISCs are formed through the optimal ISC component
fusion, and the vector ISCs are enveloped and demodulated.
+e proposed method can identify the nonlinear charac-
teristics of fault signals for fault diagnosis.

3. Simulation Analysis

Analog signals were analyzed to validate the effectiveness of
vector local characteristic-scale decomposition in processing
homologous signals. For the rolling bearing signal, the vi-
bration signal at the time of failure presents a modulation
phenomenon. +e vibration signal of a rolling bearing with
an outer ring fixed structure is

x(t) � α sin 2πfb( 􏼁 1 + β sin 2πfrt( 􏼁( 􏼁, (9)

where fb is the passing frequency of the inner ring of the
rolling bearing and fr is the rotation frequency of the rotor.

Based on this, the following analog acceleration signal is
constructed:

xnor(t) � sin(40πt) + sin(600πt),

ynor(t) � cos(40πt) + cos(600πt),

xabn(t) � sin(40πt) + 0.8 sin(600πt) + 0.9(1 + sin(40πt))

sin(200πt),

yabn(t) � cos(40πt) + 1.2 cos(600πt) +(1 + sin(40πt))

cos(200πt),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where xnor(t) and ynor(t) are two initial vibration signals
that are perpendicular to each other under normal operating
conditions, xabn(t) and yabn(t) are two initial vibration
signals that are perpendicular to each other under abnormal
operating conditions, the sampling frequency fs � 1024Hz,
and there are N � 2048 sampling points.

+e LCD is applied to decompose the two-channel
signals corresponding to normal operating conditions. +e
time-domain waveforms and the ISCs are shown in Figure 3
for x-channel signals and Figure 4 for y-channel signals.

+e LCD is then applied to decompose the two-channel
signals corresponding to abnormal operating conditions, for
which the time-domain waveforms and the ISCs of x- and
y-channel signals are shown in Figures 5 and 6, respectively.

+e correlation coefficients between ISCs and initial
signals can be calculated, i.e., between ISCxnori and xnor,
ISCynori and ynor, ISCxabni and xabn, and ISCyabni and yabn, as
shown in Table 1.

Figures 5 and 6 show that the initial signals are
decomposed to six ISCs with different frequency bands.
+ere is a great difference in amplitude between the x- and
y-directions. If the signal is analyzed in a certain direction
alone, the analysis results will also be quite different.
+erefore, information fusion is necessary. +e full vector
fusion is introduced. Considering the value of the correla-
tion coefficient, the first-order ISCxnor and third-order
ISCynor are closer to the initial signals than the others. +e
second-order ISCxabn and second-order ISCyabn have more
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ISCxo

optimal component
ISCyo

LCDLCD

{yk}{xk}

x direction sensor y direction sensor
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screening
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full vector fusion
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fault diagnosis
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demodulation analysis

Figure 2: Flowchart of vector LCD.
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Figure 3: LCD decomposition results of x-channel under normal conditions.
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Figure 4: LCD decomposition results of y-channel under normal conditions.
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Figure 5: LCD decomposition results of x-channel under abnormal conditions.
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fault information than others. +us, we apply full vector
fusion to the first-order ISCxnor, third-order ISCynor, second-
order ISCxabn, and second-order ISCyabn. However, the fault
frequency information cannot be acquired just from time-
domain waveforms. Finally, envelope and demodulation are
applied to fusion signals, as shown in Figure 7. It is clear in
Figure 7(a) that the rotation frequencies (20Hz and 300Hz)
are consistent with the preset value under the normal op-
erating condition. In Figure 7(b), the amplitudes of the fault
frequency (100Hz) and sidebands (20Hz) show the exis-
tence of modulation under the abnormal operating
condition.

From the simulation analysis, the vector LCD has a good
analysis result when applied to fault signals with frequency
or amplitude modulation, which can enhance the accuracy
of fault diagnosis. +e adoption of the cross-correlation
coefficient avoids repeated analysis between multiple com-
ponents and simplifies the analysis, for a unique and ac-
curate conclusion.

4. Application

+e validity and advantage of vector LCD in fault diagnosis
of a rolling bearing were examined through experimental
data from the Case Western Reserve University bearing data
center. Figure 8 shows the layout of the test stand, which
consisted of a 2-hp motor, torque transducer/encoder, dy-
namometer, and control electronics. +e test bearings
supported the motor shaft, and they had single-point faults
from electro-discharge machining. Accelerometers collected
vibration data and were attached to the support of the drive
end bearing, fan end bearing, and motor supporting base.
+e technical parameters of fault diagnosis are listed in
Table 2.

Normal baseline data, outer race fault data, and inner
race fault data were adopted from the experimental signals.
+e ball fault data frequency is not matched with the usual
value for the slip adjusting to lock onto a dominant fre-
quency [41]. +erefore, ball fault data are not discussed here.
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Figure 6: LCD decomposition results of y-channel under abnormal conditions.

Table 1: Correlation coefficients of ISCs of each order between two channel signals under two conditions.

ISC order 1 2 3 4 5 6

Correlation coefficient

xnor 0.7035 0.1648 0.6998 0.0869 0.0032 0.0062
ynor 0.6983 0.1851 0.7045 −0.1065 0.11 −0.0203
xabn 0.5308 0.6293 0.4658 0.6119 0.0043 −0.0628
yabn 0.6385 0.6576 0.5345 0.0147 −0.0027 0.0125

+e bold value is the maximum value of all ISCs (between the order 1 to 6).
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4.1. Normal Baseline Data Analysis. Because the normal
baseline data only have one channel of drive end section,
processing the single-sensor data is just a special case of a full
vector spectrum. According to the flowchart of vector LCD,
we first applied LCD to the drive-end single-channel signal
to obtain 10 ISCs. Considering that the higher the order of
ISC, the smaller the amplitude, only the first six orders of
ISCs are displayed in Figure 9. We compare the values of ISC
cross-correlation coefficients in Table 3, where the first is the
optimal component. Finally, the envelope and demodulation
are applied to the first ISC. From Figure 10, the rotation
frequency fr (29.95Hz) and 2fr (59.9Hz) account for the
main components without other fault frequencies, which is a
normal operating condition.

4.2. Outer Race Fault Data Analysis. Outer race fault data
were obtained by three homologous sensors in the same
section, and channels of centered 6 : 00 clock and or-
thogonal 3 : 00 clocks were employed to vector LCD

analysis. Similar to normal baseline data processing, ISC
components were acquired after LCD. +e ISC components
of the x-and y-channels are shown in Figures 11 and 12,
respectively. As seen in Table 4, the first ISC components of
the x-and y-signals are optimal. From Figures 11 and 12, the
time-domain waves of the first ISC components of the x- and
y-signals have different amplitudes and frequencies. If only
one direction of the x- or y-signal is analyzed, then different
results will be obtained, which is contrary to fault diagnosis.
+erefore, we apply full vector fusion to the two optimal ISC
components to obtain a new combined signal. Finally, the
envelope and demodulation are applied to the combined
signal. +e outer race fault frequency fOR (107.3Hz) can be
easily distinguished from other spectra, and the amplitude of
fOR is the highest among all spectra (as seen in Figure 13).

4.3. InnerRaceFaultDataAnalysis. Inner race fault data were
recorded in a single channel for the drive end, and the inner
race fault signal was treated in the same way as normal
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Figure 7: Vector LCD spectra of simulation signals: (a) normal condition; (b) abnormal condition.

Figure 8: Case Western Reserve University bearing test stand.

Table 2: Technical parameters.

Fault location Fault diameter (inches) Fault depth (inches) Motor load (hp) Sampling frequency (Hz)
Normal 0 0 0 12000
Outer race 0.007 0.011 0 12000
Inner race 0.007 0.011 0 12000
Fault location Motor speed (rpm) Defect frequencies (Hz) Sample points Data file name
Normal 1797 — 8192 97.mat
Outer race 1797 107.3 8192 130.mat/144.mat
Inner race 1797 162.1 8192 105.mat
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baseline data. +e vector LCD spectra can be displayed after
the optimal ISC is screened out, with decomposition results as
shown in Figure 14. From Table 5, the optimal ISC (the first
ISC component) can be easily obtained. From the vector LCD
spectra in Figure 15, the inner race fault frequency fIR
(162.1Hz) and rotation frequency harmonics fr (29.95Hz), 2fr
(59.9Hz), and 4fr (119.8Hz) can be acquired from the spectra,
which agrees with the inner race fault features.

+is bearing experimental application shows that the
proposed method can be applied to rolling bearing fault
diagnosis. +e screening of the optimal ISC can simplify
fault diagnosis and clearly display the typical features. +e
full vector fusion between optimal ISCs of the x- and
y-signals gives an accurate and unique conclusion for fault
diagnosis. +e vector LCD provides an easy way to extract
fault features.
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Figure 9: LCD decomposition results of x-channel under normal conditions.

Table 3: Correlation coefficients of ISCs of each order under normal conditions.

ISC order 1 2 3 4 5
Correlation coefficient 0.7994 0.5678 0.3904 0.4009 0.3037
ISC order 6 7 8 9 10
Correlation coefficient 0.1167 0.0773 0.0052 0.0077 0.0042
+e bold value is the maximum value of all ISCs (between the order 1 to 10).
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Figure 10: Vector LCD spectra of x-channel under normal conditions.
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Figure 11: LCD decomposition results of x-channel under outer race fault condition.
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Figure 12: LCD decomposition results of y-channel under outer race fault condition.
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Table 4: Correlation coefficient of ISCs of each order under outer race fault condition.

ISC order Direction 1 2 3 4 5 6
Correlation
coefficient

x 0.8375 0.5643 0.2833 0.2490 0.1737 0.1280
y 0.7529 0.6911 0.3957 0.2071 0.1321 0.0858

ISC order Direction 7 8 9 10 11 12
Correlation
coefficient

x 0.0712 0.0243 0.0089 0.0001 0.002 —
y 0.0426 −0.001 0.0054 0.0017 0.0004 0.0008
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Figure 13: Vector LCD spectra of vector signal under outer race fault condition.
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Figure 14: LCD decomposition results of x-channel under inner race fault condition.

Table 5: Correlation coefficient of ISCs of each order under inner race fault condition.

ISC order 1 2 3 4 5 6
Correlation coefficient 0.7563 0.7399 0.4803 0.3197 0.1993 0.1183
ISC order 7 8 9 10 11 12
Correlation coefficient 0.0300 0.0230 0.0005 0.0005 0.0013 0.0005
+e bold value is the maximum value of all ISCs (between the order 1 to 12).
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5. Conclusion

A multiple signal processing method of rolling bearing fault
diagnosis was described in this paper. By combining the full
vector spectrum with local characteristic-scale decomposi-
tion, the vector LCD can fully consider homologous signals
and ISCs. +is method is used to synchronously handle
multiple signals. +e cross-correlation coefficient was in-
troduced to choose ISCs, which simplifies the analysis of
ISCs. +e vector ISC displays a more complete and precise
fault frequency than a single ISC. +e simulation analysis
and rolling bearing experimental fault diagnosis verified the
effectiveness of vector LCD. With the good compatibility of
vector LCD, various types of faults and machines could be
diagnosed in our future work. Moreover, the signals from
different types of sensors will be combined to improve the
accuracy of fault diagnosis.
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Addressing the problem that it is difficult to extract the features of vibration signal and diagnose the fault of rolling bearing, we
propose a novel diagnosis method combining multisynchrosqueezing S transform and faster dictionary learning (MSSST-FDL).
Firstly, MSSST is adopted to transform vibration signals into high-resolution time-frequency images. ,en, the local binary
pattern (LBP) operator is introduced to extract the low-dimensional texture features of time-frequency images, which improves
the speed of fault recognition. Finally, nonnegative matrix factorization (NMF) with only one hyperparameter and nonnegative
linear equation are used to solve the dictionary learning and feature coding, respectively. ,e feature coding is input into the
classifier for training and recognition. Experiments show that our method performs well on the rolling bearing dataset of Case
Western Reserve University (CWRU) and the Society for Machinery Failure Prevention Technology (MFPT). Further, the
proposed method is applied to the loudspeaker pure-tone detection dataset, and the loudspeaker anomaly diagnosis is achieved.
,e diagnosis results verify that our method can meet the needs of practical engineering.

1. Introduction

Rotating machinery plays an increasing role in electric
manufacturing, transportation, power, and other industries.
As the core component of rotating machinery, rolling
bearings directly affect the operation of the entire equip-
ment. However, the damage of rolling bearings is inevitable,
which may cause serious economic losses and even safety
accidents [1–3]. ,us, it is of great significance to detect
bearing faults in time and take appropriate maintenance
measures according to the diagnosis results [4, 5].

Vibration signal, which contains rich information and
can reflect the running state of rotating machinery well, has
become the most commonly used signal source in fault
diagnosis of rotating machinery. ,e vibration signals of
rolling bearings have obvious nonlinear and nonstationary
characteristics so that it is difficult to recognize their faults
directly. By using the appropriate time-frequency analysis

method to process the vibration signal, we can obtain the
variation law of its spectrum with time. ,e idea of time-
frequency analysis is originated from the Gabor transform
[6]. ,ereafter, short-time Fourier transform (STFT) [7],
continuous wavelet transform (CWT) [8], and S transform
(ST) [9] appear successively. Although these methods are
easy to implement, the limitations of Heisenberg’s uncer-
tainty principle [10, 11] prevent them from improving both
time and frequency resolutions. To obtain time-frequency
images with better energy concentration of vibration signals,
Daubechies et al. [12] proposed synchrosqueezed wavelet
transform (SSWT). In essence, it is a time-frequency analysis
method of energy rearrangement. Namely, based on CWT,
the spectrum energy is redistributed and concentrated on
the instantaneous frequency [13]. Based on this idea, Huang
et al. [14] proposed the synchrosqueezing S transform
(SSST) and Yu et al. [15] proposed the multi-
synchrosqueezing transform (MSST). SSST is an energy
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rearrangement algorithm based on ST, and ST has better
performance than STFT. MSST is a multiple energy rear-
rangement algorithm based on STFT. In other words,
multiple iterations of synchrosqueezing transform are per-
formed. ,e more iterations, the better the time-frequency
energy concentration. Combining the advantages of both
SSST and MSST, multisynchrosqueezing S transform
(MSSST) [16] is proposed as a new time-frequency analysis
method for rolling bearing vibration signals.

Although the time-frequency image of the vibration
signal of the rolling bearing is more intuitive than the raw
signal, the dimension of the time-frequency image is too
large to be directly inputted into the classifier for training
and recognition.,erefore, it is necessary to extract the low-
dimensional and valuable features of the time-frequency
image. Over recent years, many scholars have studied this
problem. In reference [17–19], a convolutional neural net-
work (CNN) was used to extract the features of CWT, STFT,
and HHT time-frequency images, respectively. Li et al. [20]
proposed a convolution sparse self-learning (CSSL) to ex-
tract the defective bearing morphological feature. Wang
et al. [21] designed a one-dimensional vision ConvNet
(VCN) to extract multiscale sensitive features of bearings in
complex operating environments. ,ese deep learning-
based methods are relatively new, but they have three major
problems as follows: (1) they require a large number of
training samples which are expensive and difficult to obtain;
(2) it is challenging and time-consuming to train an excellent
CNN from scratch with only a small number of samples; (3)
plenty of hyperparameters have to be predetermined for
CNN, such as activation functions, epoch number, learning
rate, momentum, kernel sizes, and numbers of layers.

,erefore, the traditional machine learning method based
on feature engineering is still worth further study. In reference
[22], two-dimensional nonnegative matrix factorization
(2DNMF) is developed to extract more informative features
from the ST time-frequency images for accurate fault recog-
nition. In reference [23], the features of ST time-frequency
images were first extracted by nonnegative matrix factoriza-
tion (NMF) [24, 25], and then nondominated sorting genetic
algorithms (NSGA-II) were proposed to make secondary the
selection of features. Yu et al. [26] proposed a rolling bearing
fault diagnosis method based on Hilbert–Huang transform
(HHT) and supervised sparse coding (SSC). ,is method
adopted SSC to obtain a sparse representation of the marginal
spectrum generated by HHT and used the support vector
machine (SVM) to achieve fault recognition. Although these
methods can obtain high recognition precision on their own
datasets, they may not be suitable for simultaneous diagnosis
of fault location and damage degree.

In this regard, Sun et al. [27] proposed a method
combining MSST and sparse feature coding based on dic-
tionary learning (SFC-DL). Li et al. [28] designed a sym-
plectic weighted sparse SMM (SWSSMM) model with the
sparsity constraint and low-rank constraint, and Li et al. [29]
developed the discriminative manifold random vector
functional link neural network (DMRVFLNN) model. ,e
above fault diagnosis methods cannot overcome the problem
of how to select the optimal parameters for their models.

More importantly, the method proposed by Sun et al. would
consume many computer resources and running time be-
cause all the elements of time-frequency images are taken for
nonnegative matrix factorization with sparseness constraints
(NMFSCs) [30] and sparse coding.

To overcome the abovementioned problems, we propose
to first extract the texture features of time-frequency images
by the local binary pattern (LBP) [31, 32] operator and then
use these texture features for dictionary learning. ,e LBP
algorithm with linear order time complexity and space
complexity is simple to calculate. Meanwhile, the texture
features of time-frequency images have rich information and
low dimension, which can greatly improve the performance
of dictionary learning and feature coding. In addition, we
use NMF instead of NMFSC for dictionary learning and
reduce the hyperparameter to only one, which makes the
optimal fault diagnosis model easier to be obtained. We
name these optimizations faster dictionary learning (FDL).

In summary, the main contributions of this article are as
follows:

(1) A new method for rolling bearing fault diagnosis is
proposed by combining MSSST and FDL, which is
named MSSST-FDL

(2) MSSST is adopted to obtain high-resolution time-
frequency images of vibration signals, which can
promote the accuracy of fault diagnosis

(3) To improve the speed of feature extraction from
time-frequency images, we design the FDL algorithm
by introducing LBP and NMF

(4) Experiment results on two rolling bearing datasets
and one loudspeaker dataset show that the proposed
method performs well and has the potential to be
applied to different types of equipment

,e remaining of this article is mainly described as
follows. Section 2 introduces the theory of MSSST and FDL.
Section 3 presents the experimental comparisons. An ex-
tended application of the proposed method is shown in
Section 4. Finally, the conclusions are presented in Section 5.

2. The Proposed Method

In this paper, a new method based on time-frequency
analysis and improved dictionary learning is proposed for
fault diagnosis of rolling bearing. ,e main procedures are
described as follows:

Step 1. Raw vibration signals of rolling bearing are
collected under different working conditions, and their
states are noted.
Step 2.,e raw signals are segmented and ensured that
each sample signal contains one complete period at
least.
Step 3. MSSST is performed for sample signals to obtain
the time-frequency images with high resolution.
Step 4. FDL is used to process the time-frequency
images, and we can get the effective feature coding of
each sample quickly.
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Step 5. ,e feature coding set is divided into the
training, validation, and testing sets. ,en, the diag-
nosis model is obtained by cross-validation on the
training set and the validation set.
Step 6. Testing set is input into the diagnosis model for
fault diagnosis.

Figure 1 shows the overall framework of the proposed
method, and the following subsections provide details of
MSSST and FDL.

2.1. Multisynchrosqueezing S Transform. In practice, raw
vibration signals are always nonlinear and nonstationary. It
is necessary to process these complex signals. Fortunately,
time-frequency analysis is an effective approach to reveal the
frequency components and time-variation features of vi-
bration signals. In various time-frequency analysis methods,
MSSST combines the advantages of SSST and MSST to
generate better energy concentration and suppress the cross-
terms over the time-frequency plane.

Let the vibration signal be s(t), then the expression of its
ST is as follows:

ST(t,ω) �
|ω|
���
2π

√ 􏽚
+∞

− ∞
s(u)e

− (u− t)2ω2/2
e

− i2πωudu, (1)

where ω is the frequency, t represents the time axis dis-
placement parameter, i is an imaginary unit, and e− (u− t)2ω2/2

is the window function.

It can be seen from equation (1) that the window
function of ST is flexible. Its window width can change
according to the change of the frequency ω. ,e window
width is wider in the low-frequency part and narrower in the
high-frequency part. ,is not only improves the short-
comings of STFT but also inherits the multiresolution
characteristics of CWT. ,erefore, combining the advan-
tages of ST and the idea of iterative compression of MSST,
the MSSST can be expressed as

MSSST[1]
(t,ω) � 􏽚

+∞

− ∞
ST(t, η)δ ω − 􏽢ωs(t, η)( 􏼁dη,

MSSST[2]
(t,ω) � 􏽚

+∞

− ∞
MSSST[1]

(t, η)δ ω − 􏽢ωs(t, η)( 􏼁dη,

⋮

MSSST[N]
(t,ω) � 􏽚

+∞

− ∞
MSSST[N− 1]

(t, η)δ ω − 􏽢ωs(t, η)( 􏼁dη,

(2)

where ST(t, η) is the STof signal s(t), MSSST[N](t,ω) is the
MSSST after N iterations, 􏽢ωS(t, η) is the instantaneous fre-
quency (IF) estimate based on ST, and its expression is
defined as follows [14]:

􏽢ωs(t,ω) � ω +[i2πST(t,ω)]
− 1zST(t,ω)

zt
. (3)

We substitute MSSST[1](t, η) into MSSST[2](t, η), and
then the MSSST[2](t, η) can be expressed as follows:

MSSST[2]
(t,ω) � 􏽚

+∞

− ∞
MSSST[1]

(t, η)δ ω − 􏽢ωs(t, η)( 􏼁dη

� 􏽚
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− ∞
􏽚
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− ∞
ST(t, ξ)δ ω − 􏽢ωs(t, ξ)( 􏼁dξ􏼢 􏼣δ ω − 􏽢ωs(t, η)( 􏼁dη
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δ ω − 􏽢ωs(t, ξ)( 􏼁δ ω − 􏽢ωs(t, η)( 􏼁dηdξ

� 􏽚
+∞

− ∞
ST(t, ξ)δ ω − 􏽢ωs t, 􏽢ωs(t, ξ)( 􏼁( 􏼁dξ

� 􏽚
+∞

− ∞
ST(t, η)δ ω − 􏽢ωs t, 􏽢ωs(t, η)( 􏼁( 􏼁dη.

(4)

,e rest can be done in the same manner, and then the
MSSST[N](t,ω) can be expressed as follows:

MSSST[N]
(t,ω) � 􏽚

+∞

− ∞
ST(t, η)δ ω − 􏽢ω[N]

s (t, η)􏼐 􏼑dη (5)

where 􏽢ω[N]
s (t,ω) � 􏽢ωs(t, 􏽢ω[N− 1]

s (t,ω)).
,e MSSST uses the S transform of the SSST to obtain

time-frequency coefficients with better energy concentra-
tion. At the same time, combined with the idea of multiple
iterations in the MSST, the time-frequency results can be
further sharpened. After one iteration, MSSSTwill construct
a new IF estimate to reassign the blurry STenergy.,erefore,
after several iterations, the IF estimation in the MSSST will
get closer and closer to the real IF of the vibration signal.

Namely, the energy of the time-frequency distribution can
be gradually concentrated.

2.2. Faster Dictionary Learning. ,e dimension of the time-
frequency image generated by MSSST is 1600× 800, which is
too high. If all the elements of the time-frequency image are
directly input into the classifier for training and recognition,
serious overfitting will occur.,erefore, we propose the FDL
algorithm to extract the effective features of time-frequency
images. ,e procedures of FDL are shown in Figure 2. First
of all, the texture feature vectors of MSSST time-frequency
images are extracted by the LBP operator, and each feature
vector is taken as one column of V. After that, one-tenth of
the samples are uniformly and randomly selected to
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compose matrix V′, which is decomposed by NMF to
generate the dictionary W. At last, in combination with W,
the feature coding set H′ of all samples can be solved by
NLE. More details are described in the following
subsections.

2.2.1. Local Binary Pattern Operator. As shown in Figure 3,
the original LBP operator is defined as a 3×3 square window,
and the center point of the window is taken as the threshold
value to compare it with 8 adjacent pixels. If the surrounding

pixel value is greater than the value of the center point, this
pixel is marked as 1; otherwise, it is 0. In the end, we can
obtain 256 types of binary patterns.

To further reduce the number of binary patterns and
improve the statistics, a uniform pattern [32] is designed,
which recorded the jump times of binary numbers 0 and 1 of
the LBP operator. If the number of jumps is less than or
equal to 2, it is called uniform pattern, and all except the
uniform pattern are classified into one class. As a result, the
number of patterns has been reduced from 256 to 59.
Namely, the dimension of the feature vector of the time-

MSSST

…

…

Segmentation

Random selection

Training set Validation set Testing set

SVM

Fault diagnosis

Diagnosis 
model

Feature coding

FDL

Raw signals

Cross-
validation

Sample signals

Figure 1: ,e overall framework of the presented method.

… …

…

MSSST time-frequency images
LBP

Select samples
randomly and evenly

NLE

NMF

Feature coding set

Dictionary

Feature coding for LBP

V
[v1, v2, …, vn] 

V′

[v′1, v′2, …, v′n/10] 

H′r×n
[h′1, h′2, …, h′n] 

W59×r

W59×r

Hr×(n/10)≈

≈

Figure 2: ,e procedures of FDL.
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frequency image is 59. ,e low-dimensional texture features
of time-frequency images extracted by LBP can speed up
dictionary learning and feature coding.

2.2.2. Feature Coding for LBP. By extracting the LBP fea-
tures of the time-frequency images, the feature size can be
reduced to 59. However, there are still some redundant
features that affect the recognition accuracy. ,e optimal
dimension can be further determined by feature coding so as
to achieve the best recognition.

Before feature coding for LBP, it is necessary to find its
basis dictionary. ,e method is NMF which is defined as
follows:

Vn×m ≈Wn×rHr×m, (6)

where Vn×m, Wn×r, and Hr×m are nonnegative matrices, V is
the small-batch set of the LBP features, W is the basis dic-
tionary, and H is the feature coding set. Each column of V is
the LBP feature of one time-frequency image, and each column
ofH is corresponding to the feature coding of each LBP feature.
,en, r can control the dimension of the feature coding.

NMF has only one hyperparameter, which can be used
for dictionary learning to obtain the optimal model more
efficiently. All the remaining samples can be represented by
different linear combinations of column vectors of the basis
dictionary. ,e linear combinations are called feature
coding. We can solve the feature coding by nonnegative
linear equation (NLE), which is expressed as follows:

min vi − Whi
′

����
����
2

s.t. hij
′ ≥ 0,

(7)

where vi represents the ith sample, hi
′ represents the cor-

responding feature coding of vi, and hij
′ represents the jth

element in the feature coding hi
′.

By equation (7), we can obtain the vector set
[h1′, h2′, . . . hn

′] in Figure 2.,e set [h1′, h2′, . . . hn
′] is the feature

coding set of all LBP features, which is denoted as H′ and
input into the classifier for training and fault recognition.

3. Experimental Study

To verify the performance of the proposed method, the Case
Western Reserve University (CWRU) [33] and the Ma-
chinery Failure Prevention Technology (MFPT) [34] rolling
bearing vibration signal datasets are selected for experi-
ments. All experiments are carried out with Windows 10
(64 bit), CPU Intel Xeon E5-2640@2.40GHz, memory
64GB, and MATLAB 2017b.

3.1. Description of Dataset. ,e CWRU test platform is
mainly composed of a motor, torque sensor, dynamometer,
and electronic control equipment. ,e designation of the
tested bearing is 6205-2RS JEM SKF, which is located at the
drive end.,e EDM technology is adopted to set the faults at
three different positions (inner race, outer race, and ball) of
the bearing. Each fault location has three different degrees of
damage (fault diameter of 0.007, 0.014, and 0.021 inches,
respectively). ,erefore, after adding the normal state, there
are 10 kinds of health conditions of rolling bearings. Vi-
bration signals under each health condition are collected at
four different motor loads (0, 1, 2, and 3 hp) and speeds
(1797, 1772, 1750, and 1730 r/min) with a sampling fre-
quency of 12 kHz. To retain data features as much as possible
and increase the number of samples, the 40 raw samples are
obtained under 10 health conditions and 4 working con-
ditions are further divided. As shown in Figure 4, each raw
sample is continuously divided into 150 samples, and each
sample has 800 sampling points. Finally, the total number of
samples is 6000, including 600 samples for each health
condition and 150 samples for each working condition,
which are divided into the training set, validation set, and
testing set according to the ratio of 6 : 2 : 2. To improve the
robustness of the diagnosis method and meet the needs of
practical engineering, the influence of working conditions
on fault recognition is not considered. At the same time, to
avoid contingency, 150 samples under each working con-
dition are randomly divided into the training set (90),
validation set (30), and testing set (30). ,e details of the
CWRU dataset are shown in Table 1.

MFPT dataset includes inner race, outer race, and
normal health conditions with a motor speed of 25Hz. ,e
sampling frequencies of the inner race and outer race data
are both 97656Hz. ,e inner race data are collected at 7
different motor loads (0, 50, 100, 150, 200, 250, and 300 lbs).
,e outer race data are collected at 7 different motor loads
(25, 50, 100, 150, 200, 250, and 300 lbs). ,e sampling
frequency of normal data is 97656Hz, and the motor load is
270 lbs. MFPT data are segmented in the same way as
CWRU. However, each segmented sample has 4000 sam-
pling points. To reduce the redundant information of each
sample and facilitate the subsequent operation, it is sampled
down every 5 points to get the final sample length of 800
sampling points. In the end, a total of 2,100 samples are
obtained, with 700 samples for each health condition. In the
case of inner and outer race faults, 100 samples are corre-
sponding to each motor load. ,e ratio of training set
validation set and testing set is 6 : 2 : 2. ,ey are selected at
random in the same way as the CWRU. ,e details of the
MFPT dataset are shown in Table 2.

�reshold = 83 Binary pattern:
01001011

94 93 57

69 83 92

86 32 16

1

1

1

1 0

0

0

0

Figure 3: ,e original LBP operator.
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3.2. Time-Frequency Analysis of Vibration Signals. To prove
the superiority of MSSST, it is compared with several
popular time-frequency analysis methods. Each type of
faults in two datasets provides one sample randomly for our
study. Table 3 shows the Rényi entropy (RE) [35, 36] of the
samples. ,e time-domain waveform of the vibration signal
of the CWRU inner race fault is shown in Figure 5(a).
Figures 5(b)–5(g), respectively, show the time-frequency
distribution of STFT, ST, Wigner–Ville transformation
(WVT) [37], SSST, MSST, and MSSST.

It can be seen from Figure 5 that the energy concen-
tration of time-frequency images by STFT and ST is poor,
and WVT has a serious cross-term. Further comparing
SSST, MSST, and MSSST, we find that MSST and MSSST
have better energy concentration, which verifies that iter-
ative compression can improve the time-frequency analysis
algorithm, and we also find that the time-frequency image of
MSSST has less redundant information than that of MSST.
Meanwhile, it can be seen from Table 3 that the RE of MSSST
is always the lowest, which further indicates that the energy
of the time-frequency distribution by MSSST is more
concentrated. ,erefore, in this paper, MSSST is adopted as

the time-frequency analysis method of the rolling bearing
vibration signal.

3.3. Ablation Study

3.3.1. Hyperparameter r. From Section 2.2.2, it can be seen
that the hyperparameter r directly determines the dimension
of feature coding of the sample. In order to obtain the al-
gorithm model, it is necessary to determine the value of the
hyperparameter r. We change the value of r and combine
different time-frequency analysis methods with FDL to carry
out the experiments. To avoid contingency and particularity,
each method is performed for ten repeated runs under
different r. We determine the value of r by the average
recognition accuracy of the validation set.

Detailed results are available in Figure 6. Table 4 records
the highest average recognition accuracy and its corre-
sponding standard deviation and r. According to Figure 6,
from the overall trend, the average accuracy of MSSST is
higher than that of other time-frequency analysis methods.
From Table 4, it can be observed that the standard deviations

…
800 sampling points

Figure 4: Segmentation of raw sample data of CWRU.

Table 1: Description of CWRU dataset.

Fault type Fault diameter (inches) Motor load (hp) Motor speed (r/min)
Dataset

Fault label
Training set Validation set Testing set

Normal — 0/1/2/3 1797/1772/1750/1730 360 120 120 1

Inner race
0.007 0/1/2/3 1797/1772/1750/1730 360 120 120 2
0.014 0/1/2/3 1797/1772/1750/1730 360 120 120 3
0.021 0/1/2/3 1797/1772/1750/1730 360 120 120 4

Ball
0.007 0/1/2/3 1797/1772/1750/1730 360 120 120 5
0.014 0/1/2/3 1797/1772/1750/1730 360 120 120 6
0.021 0/1/2/3 1797/1772/1750/1730 360 120 120 7

Outer race
0.007 0/1/2/3 1797/1772/1750/1730 360 120 120 8
0.014 0/1/2/3 1797/1772/1750/1730 360 120 120 9
0.021 0/1/2/3 1797/1772/1750/1730 360 120 120 10

Table 2: Description of MFPT dataset.

Fault type Motor load (hp) Motor speed (Hz)
Dataset

Fault label
Training set Validation set Testing set

Normal 270 25 420 140 140 1
Inner race 0/50/100/150/200/250/300 25 420 140 140 2
Outer race 25/50/100/150/200/250/300 25 420 140 140 3
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of diagnostic accuracy are relatively small, which indicates
that the obtained models are relatively stable.

3.3.2. Module Combination. We carry out a series of ex-
periments to study the effect of time-frequency analysis and
feature extraction methods. ,e hyperparameters r applied
to the testing set are set according to Table 4. ,e experi-
mental results are shown in Figure 7. We have the following
three findings. (1) Under the same conditions, the recog-
nition accuracy of MSSST is always higher than that of
MSST. Investigating its reason, MSST is based on STFT and
the width of its window function is fixed. However, it is
based on ST that MSSST has a variable window function,
which improves the self-adaptability of spectrum analysis
and can extract more detailed time-frequency characteristics
in vibration signals. (2) ,e features extracted using
NMF+NLE have higher recognition accuracy than those
extracted directly using the LBP operator. ,at is because
NMF+NLE gets the optimal feature dimension, while LBP
has a fixed value of 59. (3) When LBP is combined with
NMF+NLE, the recognition accuracy reaches the highest,
which indicates that when NMF+NLE is directly used to
extract the features of the time-frequency image, its di-
mension is too large. ,erefore, too much redundant in-
formation is also extracted, which affects the recognition
effect.

Taken together, these results suggest that whether in the
CWRU dataset or the MFPT dataset, MSSST + FDL is the
best combination.

3.3.3. Time for Feature Extraction. To verify the superiority
of the time efficiency of the feature extraction algorithm in
this paper, four different methods are designed to extract the
features of the MSSST time-frequency image, and the time
taken by them is recorded, respectively. We define Td as the
time spent in dictionary learning and Tf as the time spent in
feature extraction of one sample.

As shown in Table 5, in CWRU and MFPT datasets, the
dictionary learning time of texture feature vectors of time-
frequency images is 0.037 and 0.012 hours, respectively. And
yet, the time of dictionary learning on time-frequency im-
ages is 16.469 hours and 3.897 hours separately, which is
very time-consuming. More importantly, in the process of
fault recognition of the signal, although the time of only
using LBP is the shortest, it can be seen from Section 3.3.2
that the recognition accuracy of this method is low. In

addition, the feature coding of a time-frequency image takes
39,525 and 37,413.6 milliseconds, respectively.

By contrast, the proposed algorithm only consumes less
than 100 milliseconds, saving more than 300 times of time,
which can better meet the real-time requirements in prac-
tical engineering applications. At the same time, the feature
coding algorithm in reference [27] is also very time-con-
suming, which further indicates that the proposed algorithm
has high timeliness.

3.4. Comparisons with Other Methods. To prove the effec-
tiveness of the proposed method, Table 6 shows the rec-
ognition accuracy of different fault diagnosis methods for
bearing faults.

Reference [27] directly adopted NMFSC+NLE to obtain
the sparse coding of MSST time-frequency images and
trained SVM to diagnose bearing faults. ,e parameter
sparsity was set to 0.7; the parameter rank was set to 25 and
100 in datasets CWRU and MFPT, respectively. In reference
[38, 39], Hilbert–Huang transform and convolutional neural
network (HHT+CNN) were combined to recognize the
bearing state. ,e former input the CWRU time-frequency
images of 32× 32 pixels into CNN, while the latter input
MFPT time-frequency images of 32× 32 and 96× 96 pixels.
In reference [40], the wavelet packet energy features com-
bined with multifractal features (WPE-MFs), which are of
feature size 33, were used to train SVM.

It can be seen from the results that, compared with other
methods, our method has only one hyperparameter and can
achieve higher recognition accuracy with fewer features.

4. Extended Application

To demonstrate the practical engineering application value
of the proposed method, we try to apply the proposed
method to loudspeaker fault diagnosis.

4.1. Data Description and Analysis. ,e loudspeaker signal
acquisition system consists of a microphone, acquisition
card, sweep generator, and acquisition software. First, the
sweep generator touches the signal collection points of the
loudspeaker. ,en, the signal acquisition software syn-
chronously collects the data of the loudspeaker sound signal.
Finally, the label of the collected sound signal is marked.

,e sampling frequency of the loudspeaker sound signal
is 8 kHz. To increase the number of samples and ensure that

Table 3: Rényi entropy of different frequency analysis methods.

Dataset Fault type
Method

STFT ST WVT SSST MSST MSSST

CWRU

Normal 17.9889 16.9369 16.3525 12.6381 11.5885 10.6908
Inner race 17.7992 16.8018 16.9188 12.7815 12.7316 11.8420

Ball 17.1826 16.6566 16.4919 12.1864 11.2877 10.6046
Outer race 17.6826 17.1549 16.3112 12.8543 12.2866 11.4123

MFPT
Normal 19.5311 18.5683 17.8579 14.8126 14.5465 12.4836

Inner race 19.0094 18.3162 18.2588 14.6791 13.7552 11.1386
Outer race 19.9868 19.3678 19.0506 14.4431 13.6602 11.9499
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Figure 5: Time-frequency images of different frequency analysis methods: (a) raw signal; (b) STFT; (c) ST; (d) WVT; (e) SSST; (f ) MSST;
(g) MSSST.
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Figure 6: Average recognition accuracy of validation set under different r (a) in the CWRU dataset; (b) in the MFPT dataset.

Table 4: ,e highest average accuracy of validation set and its corresponding standard deviation and r.

Dataset Data name
Methods

MSSST MSST SSST WVT ST STFT

CWRU
Max average accuracy 99.08 98 97.16 96.66 96.41 93.83
Standard deviation 0.32 0.42 0.46 0.43 0.51 0.42

Optimal r 28 35 33 40 49 38

MFPT
Max average accuracy 97.61 94.04 92.61 91.66 90.24 88.33
Standard deviation 0.36 0.44 0.42 0.48 0.53 0.50

Optimal r 22 42 39 56 52 43

MSST
SSST
WVT
ST
STFT

MSSST 99 96.25 90
97.75 95.25 86.75

97 95 86.41
96.41 93.75 86
96.00 90.42 81.25
93.33 88.5 80.33
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Figure 7: ,e recognition accuracy of testing set under different methods (a) in the CWRU dataset; (b) in the MFPT dataset.
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Table 5: Time taken by different feature extraction methods.

Dataset Feature extraction method Feature size
Time

Td(h) Tf(ms)

CWRU

LBP 59 — 87.6
NMF+NLE 28 16.469 39525.0

LBP +NMF+NLE (FDL) 28 0.037 88.8
NMFSC+NLE [27] 25 8.089 19413.0

MFPT

LBP 59 — 93.6
NMF+NLE 22 3.897 37413.6

LBP +NMF+NLE (FDL) 22 0.012 95.4
NMFSC+NLE [27] 100 2.247 21573.6

Table 6: Comparison of the proposed method with other methods.

Dataset Method Sparsity Feature size Fault types Accuracy (%)

CWRU

,e proposed method — 28 10 99
SFC-DL+ SVM [27] 0.7 25 10 98.03
HHT+CNN [38] — 32× 32 10 95

WPE-MF+ SVM [40] — 33 10 88.9

MFPT

,e proposed method — 22 3 97.85
SFC-DL+ SVM [27] 0.7 100 3 95.83

HHT+CNN [39] — 96× 96 3 92.9
32× 32 3 75.9
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Figure 8: Time-domain waveform of loudspeaker signals: (a) normal; (b) abnormal.
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each sample contains one complete period at least, as shown
in Figure 8, the raw sound signal is randomly segmented to
obtain the segmented samples with 8000 sampling points.
,en, the down-sampling process is performed on the
segmented samples and each sample is of 1600 sampling
points. And it can be seen from Figure 8 that the down-
sampling sample not only reduces the computational
complexity but also retains the waveform of the segmented
sample. Finally, we can obtain a total of 2000 samples, which
are divided into the training set, validation set, and testing
set at a ratio of 6 : 2 : 2. More sample information is shown in
Table 7.

4.2. FaultDiagnosis. ,e time-frequency images obtained by
MSSST are shown in Figure 9. ,ey have concentrated
energy, but the dimension is 1600×3200, and there is a lot of
irrelevant background information. Using the whole image
as a raw sample for dictionary learning will consume a lot of
computing resources and time, and redundant information
will be added to the generated dictionary. ,erefore, we can
extract the optimal features of time-frequency images by
FDL.

Figure 10 shows the average recognition accuracy of the
validation set under different r values. It can be seen that the
optimal value of r is 46. At this time, the average recognition
accuracy of the validation set is 99%.,is model is applied to
the testing set. ,e experimental results show that 2 normal
samples are misdiagnosed as the abnormal state and 1 ab-
normal sample is misdiagnosed as the normal state. Namely,
the recognition accuracy is 98.5%.

In reference [41], the second-order time-reassigned
multisynchrosqueezing transform was used to obtain the
time-frequency images of the loudspeaker sound signals,
and CNN was adopted to implement the feature extraction
and fault recognition. ,e accuracy was 98.25%. By com-
parison, the proposed method is not inferior to the deep
learning method.

5. Conclusions

In this paper, a new fault diagnosis method for the rolling
bearing, which is called MSSST-FDL, is proposed to boost
the speed and accuracy of recognition. Experiments show
that the MSSST has better energy concentration than other
time-frequency analysis methods; time-frequency images

Table 7: Description of loudspeaker pure-tone detection dataset.

Fault type Training set Validation set Testing set Fault label
Normal 600 200 200 1
Abnormal 600 200 200 2
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Figure 9: Time-frequency images of loudspeaker signals: (a) normal; (b) abnormal.
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Figure 10: Average recognition accuracy of loudspeaker validation set under different r.

Shock and Vibration 11



with better energy concentration can improve the quality of
fault diagnosis; the dictionary learning and feature coding of
LBP feature vectors are faster than those of the whole time-
frequency images, which can not only quickly determine the
optimal hyperparameter but also meet the real-time re-
quirement of fault diagnosis. ,e effectiveness of the pro-
posed method is verified in CWRU and MFPTdatasets, and
the fault recognition accuracy is 99% and 97.85%, respec-
tively. Furthermore, we apply the proposed method to
loudspeaker anomaly diagnosis, and the recognition accu-
racy reaches 98.5%, which indicates that our method has the
potential to be applied to other equipment.
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Planetary gearbox is widely used in various low-speed machines due to its large transmission ratio. However, the gears in a
planetary gearbox are prone to the mechanical faults due to the complex dynamic heavy load. Vibration frequencies caused by an
early tooth root crack of sun gear are usually difficult to accurately extract, so its fault diagnosis is one of the main challenges of
planetary gearbox reliability. In this paper, a simplified tooth root crack model of sun gear is proposed, and then a rigid-flexible
coupled dynamics model of the whole planetary gear system is constructed. By the numerical simulation, the fault frequencies
caused by a tooth root crack of sun gear are obtained. A Variational Mode Decomposition (VMD) algorithm for the vibration
frequency extraction is proposed. *e measured vibration signals are decomposed into the sparse Intrinsic Mode Functions
(IMFs) by the VMD, and then the IMFs are further analyzed by the spectral method to accurately extract the crack-induced
frequency components. *e experimental results show that the proposed dynamics model and VMDmethod are feasible; an error
between the characteristic frequencies from the tested signal analysis and the theoretical calculation is less than 1%.

1. Introduction

Because of large transmission ratio and compact structure,
the planetary gearbox is widely used in various low-speed
heavy machines. However, in the actual operation process,
due to the complex dynamic load, the planetary gearbox is
prone to various kinds of mechanical failure [1]. When the
gearbox is subjected to a heavy or impact load, it is very easy
to cause the tooth root crack. Because the early crack has a
small size, the vibration energy caused by the crack is weak,
so the crack is difficult to identify in time, and further the
crack can develop into a serious fault, such as tooth breaking.
*erefore, it is significant to study the feature analysis
technology of gear crack in a planetary gearbox for the crack
diagnosis.

At present, there are two kinds of tooth root crack
modeling methods [2, 3], one is the parabolic crack model
and the other is the penetrating crack model with

simultaneous propagation along both tooth width and
thickness directions. Chaari et al. [4, 5] put forward a
penetrating tooth root crack model. Chen and Shao [6, 7]
proposed a parabolic crack model with simultaneous
propagation along both tooth width and thickness direc-
tions. Ma et al. [8] established a crack model with propa-
gation only along the thickness direction, in which the crack
depth is simulated by a parabola whose starting point is on
the tooth transition circle and symmetric about the center
line of tooth. Based on the tooth crack model, a whole
dynamics model of planetary gear system can be built. *ere
are three kinds of dynamics model of planetary gear system:
lumped parameter model [9, 10], finite element model [11],
and rigid-flexible coupled model [12,13]. *e lumped pa-
rameter model of a planetary gearbox was established, and
the influence of the installation error of planet carrier on the
vibration response was studied by Zhai et al. [14]. Jiang et al.
[15] built a lumped parameter model of planetary gear
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system to solve the excitation forces that generate vibrations.
Shen et al. [16] were devoted to analyzing fault mechanism
and dynamic characteristics of gear wear and proposed a
torsional dynamics model of planetary gear system with
tooth wear. Liu et al. [17] established a 3D finite element
model of planetary gearbox and found that the effect of crack
on the vibration response is mainly reflected in the fre-
quency domain. Liu et al. [18] proposed a dynamics finite
element model of planetary gear system, in which there is a
localized fault to be considered for the outer race of the
planet bearing, and Liu et al. [19] also presented a rigid-
flexible coupled dynamics model for planetary gear system,
both the flexible ring gear, flexible supports of the ring gear
and sun gear, and a rectangular local fault in the planet
bearing are formulated in the model. Duan et al. [20] carried
out a system transmission error investigation of gearbox by
proposing a rigid-flexible coupled dynamics model, and the
modal test was launched to verify its effectiveness. Fan et al.
[21] developed a rigid-flexible coupled dynamics model of
the planetary gearbox considering the flexibility of ring gear
and sun gear shaft based on the shell theory and Timoshenko
beam theory, respectively. *e lumped parameter model
cannot take into account the influence of gear tooth de-
formation on the system, and the whole finite element model
is inefficient. *erefore, the rigid-flexible coupled model is
adopted in this paper.

*ere are two kinds of common vibration signal analysis
methods, including frequency-domain and time-frequency
analysis. *e frequency-domain signal analysis based on the
Fourier transform is suitable for the periodic signals [22].
Time-frequency analysis is appropriate for the nonstationary
signals. Typical time-frequency analysis methods include the
short-time Fourier transform (STFT) [23], wavelet trans-
form (WT) [24, 25], and Hilbert–Huang transform (HHT)
[26, 27]. Huang et al. [28] proposed an Empirical Mode
Decomposition (EMD) method based on the whole de-
composition of signals, which avoid the selection of wavelet
functions. Wang et al. [29] studied a signal analysis method
based on EMD and extracted the effective signal components
from the background noise. Yan and Liu [30] constructed an
improved weak signal detection method to reduce the
boundary effect of EMD. Ensemble Empirical Mode De-
composition (EEMD) method is proposed by Wu and
Huang [31] to solve the mode confusion problem of EMD.
Ma et al. [32] proposed a weak signal detection method by
combining EMDwith singular spectrum analysis. Due to the
low computational efficiency of EEMD, Dragomiretskiy
et al. [33] proposed a new signal decomposition method in
2014, i.e., Variational Mode Decomposition (VMD); it can
avoid the mode confusion and has high efficiency, antinoise
ability, and high-frequency resolution. Li and Zhu [34]
applied the VMD for the mechanical fault diagnosis; the
results show that the VMD is better than EEMD in signal
decomposition effect. Wang et al. [35] used the VMD to
realize the feature extraction of gear tooth crack in a single-
stage gearbox, which verified the effectiveness of the VMD
method for gear fault feature extraction.

In order to reduce the modeling error and the machining
difficulty of the cracked sun gear, a simplified gear tooth

crack model is proposed in this paper. Combined with the
crack model, a rigid-flexible coupled model of planetary gear
system with tooth crack of sun gear is constructed, and the
dynamics simulation is designed to find the crack-induced
signal frequency characteristics. In order to identify the
crack from the tested vibration signals, a VMD-based signal
analysis method is proposed to extract the featured fre-
quency of tooth crack. *e structure of this paper is as
follows. Section 1 introduces the fault diagnosis principle
based on vibration analysis and the theoretical characteristic
frequency calculation. In Section 2, the crack modeling is
introduced and the dynamics simulation is completed.
Section 3 introduces the VMD-based fault feature extraction
method, and in Section 4, the proposed model and analysis
method are verified by experiments.

2. Frequency-Domain Diagnosis Basis for
Planetary Gear System

In this paper, the crack mechanism of a planetary gear
system is analyzed by dynamics simulation, and the crack
type and its degree are judged by the characteristic fre-
quencies [36].

2.1. Working Frequency of Planetary Gear System. A plane-
tary gearbox consists of the sun gear, planet gear, ring gear,
and planet carrier. If its basic components include two
central gears Z and a planet carrier X, the planetary gear
system type is 2Z-X, as shown in Figure 1.

*e dynamics response of a 2Z-X planetary gear system
is more complex than that of a fixed-axis gear system because
of the relative motion among all of the gears. *erefore, the
calculation of transmission ratio and characteristic fre-
quencies cannot directly refer to that of a fixed-axis gear
system.

*e transmission ratio of a planetary gear system is

i �
fs

fc

�
Zr

Zs

􏼠 􏼡 + 1, (1)

where fc is the rotational frequency of planet carrier, Zr is the
tooth number of ring gear, and Zs is the tooth number of sun
gear.

Since the rotational speed of sun gear is equal to the
input speed of transmission shaft, the rotational frequency of
sun gear is

fs �
n

60
, (2)

where fs is the rotational frequency of sun gear and n is the
input rotational speed of transmission shaft.

*e fundamental difference between the planetary and
fixed-axis gear systems is that the planetary gear system has a
planet carrier rotating around the main axis, and the planet
gear installed on the planet carrier has both rotation and
revolution. According to the relative motion principle, a
public frequency can be added to the whole planetary gear
system, which is equal to the rotational frequency of planet
carrier and has an opposite direction, while the relative
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motion among the components of planetary gear system
remains constant.

fs − fc

fr − fc

� −
Zr

Zs

, (3)

where fr is the rotational frequency of ring gear.
As can be seen from equation (3), the rotational fre-

quency of planet carrier is

fc �
Zs

ZS + Zr

· fs. (4)

Similarly, the rotational frequency of planet gear is

fp � fs − fc( 􏼁 ·
Zs

ZP

􏼠 􏼡 − fc, (5)

where fp is the rotational frequency of planet gear and Zp is
the tooth number of planet gear.

In the transmission process of a gear pair, the meshing
frequencies of two gears engaged with each other are equal.
*erefore, in a planetary gear system, the meshing frequency
of each gear pair is equal, i.e.,

fm � fc · Zr �
Zs · Zr

Zs + Zr

· fs, (6)

where fm is the meshing frequency of planetary gear system.

2.2. Fault Frequency of Planetary Gear System. If there is a
crack in one of the teeth of sun gear in a planetary gear
system, the cracked gear meshes with all the gears in a
rotational period relative to the planet carrier. *erefore, the
fault frequency of sun gear is

fsg �
fm

Zs

· n, (7)

where fsg is the fault frequency of sun gear.
Considering the modulation of fault frequency and

fundamental frequency, the vibration signal model of a
planetary gear system can be simply expressed as [37]

x(t) � h(t)c 1 + A cos 2πfgt + ϕ􏼐 􏼑􏽨 􏽩 · cos 2πfmt + B sin 2πfgt + φ􏼐 􏼑 + θ􏽨 􏽩, (8)

where A and B are the amplitude and frequency modulation
intensity caused by gear fault, A, B> 0; Φ, φ, and θ are the
initial phase; fm is the meshing frequency; fsg is the fault
frequency; c is a dimensionless constant, usually c� 1; and
h(t) describes an amplitude modulation of vibration transfer
path.

If the vibration sensor is installed at the top of ring gear,
the distance from the fault position to the sensor changes
with the rotation of sun gear when a local fault occurs.

h(t) � 1 − cos 2πfst( 􏼁􏼂 􏼃. (9)

*e amplitude modulation of vibration signal can be
written as [37]

h(t)a(t) � 1 − cos 2πfst( 􏼁􏼂 􏼃 · 1 + A cos 2πfsgt + ϕ􏼐 􏼑􏽨 􏽩 � 1 − cos 2πfst( 􏼁 + A cos 2πfsgt + ϕ􏼐 􏼑

−
1
2

A cos 2π fs + fsg􏼐 􏼑t + ϕ􏽨 􏽩 + cos 2π fs − fsg􏼐 􏼑t − ϕ􏽨 􏽩􏽮 􏽯.

(10)

*e Fourier transform is applied to equation (10):

H(f)∗A(f) � δ(f) − δ f − fs( 􏼁 + Aδ f − fs( 􏼁exp(jϕ) −
1
2

A δ f − fsg + fs􏼐 􏼑􏽨 􏽩exp(jϕ) + δ f − fs − fsg􏼐 􏼑􏽨 􏽩exp(−jϕ)􏽮 􏽯.

(11)

Input sha� Output sha�

Figure 1: Schematic diagram of 2Z-X planetary gear system.
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As can be seen from equation (11) [37], when a crack
occurs in the sun gear, the peak value in the amplitude
spectrum appears in the rotational frequency fs and its
multiple frequencies mfs, the fault frequency fsg and its
multiple frequencies nfsg, and the combined frequencies
fm± fs and nfsg±mfm. If mfs and nfsg are considered as the
modulation frequencies, the other peaks mainly appear at 1/
4fs and n/4fs, fm and mfm, and the combined frequencies n/
4fsg±mfm(m, n� 1, 2, ...).

3. Crack Modeling and Dynamics Analysis

3.1. Geometric Model of Planetary Gear System. *e 2Z-X
planetary gear system used is composed of a sun gear, a
planet carrier, a ring gear, and four planet gears. A 3Dmodel
of the planetary gear system is shown in Figure 2; the design
parameters are shown in Table 1. On the premise of not
affecting the analysis results, the auxiliary parts are sim-
plified; for example, both the bearings and bolts used to
connect the planet gears and the planet carrier are treated as
cylinders.

3.2. Rigid-Flexible Coupled Model with Crack. In the above
planetary gear system, the sun gear contacts with four planet
gears to transmit motion and torque. When the sun gear is
used as an input, it is simultaneously subjected to forces and
torques from four planet gears. *erefore, the sun gear is
prone to a mechanical fault. During gear transmission, the
bending stress is concentrated at the tooth root, and the
crack begins and extends from the tooth root [38], as shown
in Figure 3.

In Figure 3, φ is the included angle between the tooth
center line and the tangent line of root fillet curve, and the
area between φ� 30° and φ� 34° is the stress concentration
area [6].*e included angle between the crack extension line
and tooth center line is defined as the crack extension angle
α. In order to approach the crack growth law under the real
working condition, φ� 32° and α� 74° are taken in the
following dynamics simulation. *e chord of the approxi-
mate arc of the tooth root crack growth path is taken as the
crack width growth line, i.e., w, shown in Figure 3, and the
tooth width direction is called the crack length extension
line, i.e., l, shown in Figure 3.

In order to study the frequency characteristics of dif-
ferent-scale cracks, three kinds of crack were designed, as
shown in Table 2. It is known that the tooth width of sun gear
is l� 10mm, and the maximum crack width is w � 1mm.
*e crack width and length were expanded simultaneously
in a proportion of 20%, 40%, and 80% relative to the chord of
tooth root arc and tooth width, respectively.

In order to reduce the difficulty of making crack, the
crack width propagation path is treated approximately as an
arc chord, as shown in Figure 4.

In order to obtain the crack-induced vibration frequency
characteristics of sun gear, the finite element model is used
to treat the sun gear with flexibility. *e flexibilization steps
are shown in Figure 5.

As shown in Figure 5, for a finite element model, the
generation quality of mesh is closely related to the element
type and quantity. In this paper, ANSYS is used to make sun
gear flexible. Considering the crack shape, a tetrahedron
element is suitable for the gear with crack. For the tetra-
hedral element, the SOLID187 uses an optimized algorithm
compared to the SOLID92 to achieve a high-quality model.
When generating the mesh, the part without crack is firstly
divided, and then the crack area is refined separately. *e
meshed sun gear is shown in Figure 6. Figure 6(a) is the
entire mesh model; Figure 6(b) is the crack mesh model.

When a finite element model is introduced into a rigid-
body dynamics system and connected to other parts, there is
a region that does not deform, i.e., the rigid region. In this
paper, ADAMS is used for the dynamics simulation; the
rigid region is composed of the nodes of two interfaces and
the surrounding nodes. Select those nodes as the master
nodes and the nodes of end circles of sun gear as the slave
nodes; the rigid region is created, as shown in Figure 7(a);
the rigid-flexible coupled model of planetary gear system is
obtained by connecting the flexible sun gear with other rigid
bodies through rigid regions and interface nodes, as shown
in Figure 7(b).

3.3. Dynamics Analysis. In dynamics simulation, the input
shaft of torque and speed is the shaft where the sun gear is
located, and the output shaft is that connected by the planet
carrier. *e parameters are set as shown in Table 3.

*e input rotational frequency is 30Hz, the torque is
5N·m, and the direction of torque is opposite to the di-
rection of rotational frequency. In order to avoid the sudden
loading, the STEP function was adopted, which is expressed
as STEP (time,0,0,0.1,10800D), the initial speed is 0, the
speed is 10800°/s at 0.1 s, i.e., the frequency is 30Hz, and the
torque gradually increased to 5N·m in the form of STEP
(time,0,0,0.1,5000). In the model settings, the rigid-rigid
contact was used between four planet gears and the ring gear,
the rigid-flexible contact was used between four planet gears
and the sun gear, and the other parameters were considered
in terms of [39].

Planet carrier

Planet gear

Sun gear

Ring gear

Figure 2: 3D model of planetary gear system.
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In the simulation, the ring gear was fixed and the
contact force between the gears was added to simulate the
meshing. *e contact force between the gears changed
the angular acceleration with the meshing process.
*erefore, the characteristic frequencies of the tooth
crack were analyzed by the angular acceleration signal of
sun gear.

*e dynamics simulation was carried out and the results
of angular acceleration in the time and frequency domains
were obtained under different crack cases, as shown in
Figure 8. In Figures 8(a) and 8(b), four subfigures from top
to bottom are the angular acceleration results in the time and
frequency domains under no crack, 1# crack, 2# crack, and 3#
crack.

As can be seen from Figure 8(a), the amplitude of the
angular acceleration is obviously smaller when the sun gear
has no crack than a crack fault, and the amplitude increases
with the increase of the crack size. As can be seen from
Figure 8(b), the amplitude peaks in the frequency spectrum
mainly appear in the meshing frequency fm and its multiple
frequencies mfm, the fault frequencies fsg of sun gear and its
multiple frequencies nfsg, and the combined frequencies
mfm+ nfsg.

4. VMD Time-Frequency Analysis Method of
Vibration Signals

*e frequency resolution of the spectrum in Figure 8(b) is
low, so it is difficult to accurately find the fault frequency
values. *erefore, the VMD algorithm [40] is proposed for
the time-frequency analysis of complex vibration signals.

4.1. Principle ofVMDAlgorithm. VMD is the decomposition
of signal x(t) into a number of sparse IMFs mk(t), each of
which fluctuates around the central frequency ωk, i.e., the
bandwidth is limited around the central frequency. *e
bandwidth can be obtained by estimating the square norm of
the gradient of the frequency shift signals.

First, the HHT transforms the real mode mk into an
analytic signal m+

k with a unilateral spectrum with non-
negative frequencies:

m
+
k (t) � δ(t) +

j

πt
􏼒 􏼓∗mk(t). (12)

*en, by multiplying with an exponential harmonic
wave whose frequencies are adjusted to their respective
central frequencies, the spectrum is shifted to the base band:

m
B
k (t) � δ(t) +

j

πt
􏼒 􏼓∗mk(t)e

− jωkt
. (13)

Finally, the bandwidth is estimated by the square norm
of the gradient:

△ω � zt δ(t) +
j

πt
􏼒 􏼓∗mk(t)e

− jωkt
􏼔 􏼕

�������

�������

2

2
. (14)

*us, all the estimatedmode component bandwidths can
be expressed as a constrained variational model:

min
mk(t){ }, ωk{ }

� 􏽘
K

k�1
zt δ(t) +

j

πt
􏼒 􏼓∗mk(t)e

− jωkt
􏼔 􏼕

�������

�������

2

2
,

s.t. 􏽘
K

k�1
mk(t) � x(t),

(15)

where δ(·) is the Dirac Delta function, ∗ is the convolution
operation, and K is the number of the IMFs.

In order to transform the optimization problem
expressed by the above formula into an unconstrained form,
a penalty factor α and a Lagrange multiplier are added to
accelerate the convergence and strengthen the constraint.
*e objective function that needs to be minimized is
transformed into an augmented Lagrange function:

Table 1: Design parameters of planetary gear system.

Types of gears Ring gear Planet gear Sun gear
Number of teeth 100 36 28
Module (mm) 1 Pressure angle (°) 20
Tooth width (mm) 10 Material Steel
Young’s modulus (Pa×1011) 2.07 Siméon Denis Poisson 0.29
Input speed (rpm) 1800

O

A
l

Bα

w

Crack sta
rtin

g point

φ

Figure 3: Tooth root crack model of sun gear.

Table 2: Crack parameters of sun gear.

Crack case No crack 1# crack 2# crack 3# crack
Crack length, l (mm) 0 2 4 8
Crack width, w (mm) 0 0.2 0.4 0.8
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(a) (b) (c)

Figure 4: 3D crack model of sun gear. (a) 1# crack. (b) 2# crack. (c) 3# crack.

Considering fault location

Considering structural feature

Improving simulation result

3D model of planetary gear system

Flexibility of sun gear

Choosing tetrahedron element

Refining mesh for crack location

Figure 5: Flexibilization steps of sun gear.

(a) (b)

Figure 6: Mesh model of sun gear. (a) Entire mesh. (b) Crack mesh.
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L mk(t)􏼈 􏼉, ωk􏼈 􏼉, λ(t)􏼂 􏼃 � α 􏽘
K

k�1
zt δ(t) +

j

πt
􏼒 􏼓∗mk(t)e

− jωkt
􏼔 􏼕

�������

�������

2

2
+ x(t) − 􏽘

K

k�1
mk(t)

���������

���������

2

2

+〈λ(t), x(t) − 􏽘
K

k�1
mk(t)〉, (16)

where λ(t) is the Lagrange multiplier and <·,·> is the inner
product operation.

*e minimization problem represented by equation (15)
is solved by an Alternate Direction Multiplier (ADM)

method to find the saddle point of an augmented Lagrange
problem represented by equation (16). *e equivalent
minimization problem of equation (16) is solved, and each
IMF is updated by the optimal solution mk(t):

mk(t) � argmin
mk

L mk(t)􏼈 􏼉, ωk􏼈 􏼉, λ(t)􏼂 􏼃 � argmin
mk

α 􏽘
K

k�1
zt δ(t) +

j

πt
􏼔 􏼕∗mk(t)e

− jωkt
􏼚 􏼛

�������

�������

2

2
+ x(t) − 􏽘

K

k�1
mk(t) +

λ(t)

2

���������

���������

2

2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(17)

In the frequency domain, the solution of equation (17) is

􏽢mk(ω) � 􏽢x(ω) −

􏽐
i≠ k

􏽢mi(ω) + 1/2􏽢λ(ω)

1 + 2α ω − ωk( 􏼁
2 . (18)

*e IMF in the time domain can be obtained by Fourier
inverse transform of equation (18).

*e equivalent minimization problem of equation (16) is
solved, and the central frequency ωk of each IMF mk(t) is
updated with the optimal solution:

ωk � argmin
ωk

L mk(t)􏼈 􏼉, ωk􏼈 􏼉, λ(t)􏼂 􏼃 � argmin
ωk

􏽘

K

k�1
zt δ(t) +

j

πt
􏼔 􏼕∗mk(t)e

− jωkt
􏼚 􏼛

�������

�������

2

2
. (19)

*e central frequency ωk is the centroid of the IMF
power spectrum 􏽢mk(ω) , i.e.,

ωk �
􏽒
∞
0 ω 􏽢mk(ω)

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dω

􏽒
∞
0 􏽢mk(ω)

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dω

. (20)

(a)

Flexible sun gear

Input torque

Assembly
constraints

(b)

Figure 7: Dynamics model of planetary gear system. (a) Rigid region model. (b) Rigid-flexible coupled model.

Table 3: Parameter setup used for dynamics simulation.

Parameter Setup
Input frequency (Hz) 30
Input torque (N·m) 5
Function type STEP
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According to the solution process of the above con-
strained variational problem, the VMD can divide the fre-
quency band according to the frequency characteristic of the
signal and realize the adaptive decomposition of the signal
by updating each mode and its corresponding central
frequency.

*e flowchart of the VMD algorithm is shown in
Figure 9.

Step 1. Set 􏽢m0
k(t)􏼈 􏼉 􏽢ω0

k􏼈 􏼉 􏽢λ
0
(t)􏼚 􏼛, and n� 0; define the

convergence threshold and number K of IMFs to be
separated.
Step 2. k � 1, 2, ..., K and ω≥ 0; update each IMF mk(t)

and its central frequency ωk:

􏽢m
n+1
k (ω) � 􏽢x(ω) − 􏽐

i< k

􏽢m
n+1
i (ω) −

􏽐
i> k

􏽢m
n
i (ω) + 1/2􏽢λ

n
(ω)

1 + 2α ω − ωn
k( 􏼁

2 ,ωn+1
k �

􏽒
∞
0 ω 􏽢m

n+1
k (ω)

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dω

􏽒
∞
0 􏽢m

n+1
k (ω)

2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dω

. (21)

Step 3. ω≥ 0; update the Lagrange multiplier:

􏽢λ
n+1

(ω) � 􏽢λ
n
(ω) + τ 􏽢x(ω) − 􏽘

k

􏽢m
n+1
k (ω)⎡⎣ ⎤⎦, (22)

where τ is the updating parameter of Lagrange multiplier.
Check the convergence condition:

􏽘
k

􏽢m
n+1
k (t) − 􏽢m

n
k(t)

����
����
2
2

􏽢m
n
k(t)

����
����
2
2

< ε. (23)

If the formula is true, let mk(t) � 􏽢mn+1
k (t), ωk(t) � ωn+1

k ,
terminate the decomposition, and get K IMFs with the finite
bandwidth. Otherwise, let n � n + 1; return to Step 2.

4.2. Frequency-Domain Feature Extraction Using VMD.
In the VMD algorithm, the value of K determines the
number of IMFs in the decomposed signal. Taking 3# crack
as an example, when K takes different values, the signal is
decomposed by the VMD, and the frequency of each IMF is

shown in Table 4. From Table 4, the central frequency of
IMF6 is 4439Hz, which is close to the maximum value of
4499Hz in the case of K� 7, and the central frequency of
IMF4 is close to that of IMF5 in the case ofK� 7. In addition,
since the planetary gear system consists of six moving parts,
K� 6 is reasonable.

When K� 6, the angular acceleration signal for 3# crack
is decomposed by the VMD, as shown in Figure 10, the
VMD decomposition results for other crack cases are shown
in Figure 11.

Figure 10 shows that the IMF frequencies correspond
one to one with the central frequencies in Table 4 and are
all the characteristic frequencies for sun gear crack. *e
central frequencies and amplitudes of the IMFs in Fig-
ure 11 are listed in Table 5. According to Table 5, Fig-
ure 12 is obtained.

As can be seen from Figure 12 and Table 5 above, the
amplitude shown by the black line marked by rhombic dot is
lower than others. When the cracks appear in the sun gear,
the amplitudes corresponding to the central frequencies of
each IMF are higher than those with no crack, and the errors
of the central frequencies of each IMF are small.

5
Time-domain waveform
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Figure 8: Angular acceleration of sun gear for different crack cases. (a) Time-domain waveform. (b) Frequency-domain spectrum.

8 Shock and Vibration



In the case of 3# crack, the errors between the IMF central
frequencies and their theoretical values are shown in Table 6.

As shown in Figure 13 and Table 6, the frequencies of
each IMF correspond to the rotational frequency fs of sun
gear, the meshing frequency fm, the fault frequencies fsg and
n/4fsg of sun gear, and the combined results of the above
frequencies, respectively. *e errors between the charac-
teristic frequencies from dynamics simulation and theo-
retical calculation are less than 2%. It can be seen that the
central frequencies of IMF components obtained by VMD
can be used as the featured parameters identifying cracks in a
planetary gear system.

5. Experimental Study

5.1. Test Setup. *e test platform of a planetary gear system
was established, as shown in Figure 14.

*e test platform is composed of motor, frequency
converter, planetary gearbox (one-stage transmission, de-
celeration ratio is 4.57 :1), parallel-axle spur gearbox (two-
stage transmission, deceleration ratio is 8.63 :1), magnetic
powder brake, power supply (adjustable current source),
vibration sensor, signal collector, and upper computer.

For easy machining, three kinds of sun gear crack were
made by Electrical Discharge Machining (EDM), and the

n = n + 1, ω ≥ 0

k = 1

k = K?

Output mk (ω)

Output IMF

Fourier inverse transform

N

N

Y

Y

Initializing mk (t), ωk, 
0 0 0

 (t), n = 0ˆˆ ˆ

Updating mk (t), mk 
n+1(ω) = ˆ

ˆ n
 (ω)ˆ

i<k
mi

n+1 (ω) – ˆx(ω) – ∑
i>k

mi
n (ω) + 1/2ˆ∑

1 + 2α(ω – ωk
n)2

Convergence
condition k

∑  < ε
∥mk

n+1 (t) – 2ˆ mk
n (t)∥2ˆ
2∥mk

n (t)∥2ˆ

Updating ωk , ωk 
n+1 = 

∞∫0 ω|mk
n+1 (ω)2|dωˆ

∞∫0 |mk
n+1 (ω)2|dωˆ

Updating Lagrange multiplier,

n+1
 (ω) = ˆ  n (ω) + τ ˆ ˆ

k
mk

n+1 (ω) ˆx(ω) – ∑

Figure 9: Flowchart of VMD algorithm.

Table 4: Central frequency of each IMF for 3# crack.

K
Central frequency of each IMF (Hz)

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7
2 1182 2735 — — — — —
3 1182 1954 3457 — — — —
4 390.8 1122 2725 3767 — — —
5 390.8 1182 1954 2846 4439 — —
6 390.8 1182 1954 2735 3457 4439 —
7 390.8 1182 1954 2475 2846 3767 4499
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actual “rectangle” is used instead of the ideal “trilateral”
cracks shown in Figure 4 due to the limit of fabrication
process, which does not affect the characteristic frequency
extraction. Crack parameters are shown in Table 7.

Set the motor speed to 1800 rpm and the torque to 5N·m.
*e 608A11-type accelerometer with a sensitivity of 0.103V/g
was used to measure the vertical vibration. *e Spectral Quest
data acquisition instrument was used, its sampling frequency is
10.24 kHz, and the sampled signal length is 6 s to 7 s.

6. Results and Discussion

*e vibration signals of sun gear under three kinds of actual
crack were measured. *e time-domain waveform and
frequency-domain spectrum are shown in Figure 15.

*e results of no crack and 1# to 3# cracks are listed from
top to bottom. It can be seen that the amplitude of time-
domain waveform increases with the increase of crack size.
*e peak value appears in the meshing frequency fm and its
multiple frequenciesmfm, local fault frequency fsg of sun gear

and its multiple frequencies nfsg, 1/4fsg and its multiple
frequencies n/4fsg, and combined frequencies mfm+ nfsg and
mfm+ n/fsg.

*e VMD results of vibration signals under 1# to 3#

cracks at K� 6 are shown in Figure 16; the central fre-
quencies and amplitudes of each IMF are shown in Table 8.

From Figure 17, it can be seen that with the increase of
crack size, the total vibration energy increases, which proves
that this experimental design is correct. However, due to the
sun gear change and the complex gap distribution among the
gear elements in an actual planetary gear system, these
nonlinear factors inevitably affect the value of each IMF.*e
amplitudes corresponding to all the IMF central frequencies
except the IMF2 of 1# to 3# cracks and the IMF3 of 1# to 2#

cracks are larger than those with no crack.
In the case of 3# crack, the errors between the VMD and

the theoretical frequency values of each IMF are shown in
Table 9 and Figure 18. *e frequencies of each IMF cor-
respond to the rotational frequency fs of sun gear, the
meshing frequency fm, the fault frequency of sun gear fsg and
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Figure 10: Each IMF of angular acceleration signal for 3# crack. (a) Time-domain waveform. (b) Frequency-domain spectrum.
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Figure 11: Continued.
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Figure 11: Continued.
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Figure 11: Each IMF of angular acceleration signal for no crack and 1# to 3# crack. (a) No crack. (b) 1# crack. (c) 2# crack. (d) 3# crack.
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Table 5: Central frequency and amplitude of each IMF.

IMF
No crack 1# crack 2# crack 3# crack

f (Hz) A (105) f (Hz) A (105) f (Hz) A (105) f (Hz) A (105)
IMF1 360.7 1.866 511 7.536 400.8 7.502 390.8 9.014
IMF2 1182 2.424 1503 5.216 1192 6.678 1182 10.280
IMF3 1794 2.785 2014 6.298 1683 4.234 1954 7.243
IMF4 2555 3.731 2585 4.348 2465 5.817 2735 6.026
IMF5 3126 2.829 3677 3.447 3487 4.375 3457 6.187
IMF6 4168 3.529 4679 3.166 4529 4.184 4439 5.868
Total — 17.164 — 30.011 — 32.79 — 44.618
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Figure 12: Central frequency and amplitude of each IMF.

Table 6: Error between the simulated VMD IMF central frequency and theoretical value for 3# crack.

IMF VMD frequency (Hz) *eoretical frequency (Hz) Corresponding feature Error (%)
IMF1 390.8 398.2 fm−11/4fsg 1.86
IMF2 1182 1194.8 2fm−5fsg 1.07
IMF3 1954 1944.6 3fm−1/4fsg 0.48
IMF4 2735 2741.2 4fm + 5/4fsg 0.23
IMF5 3457 3467.8 4fm + 9fsg 0.31
IMF6 4439 4427.9 7fm−7/4fsg 0.25
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n/4fsg, and the combined results of the above frequencies,
respectively. It can be seen that the errors between the VMD
and the theoretical values are less than 1%.

7. Conclusions

*is paper proposes a tooth root crack identification method
of sun gear in a planetary gear system combining the fault
dynamics with VMD algorithm, which provides a positive
contribution to the fault diagnosis of a complex mechanical
transmission system.

(1) In order to overcome the shortcomings of the
existing tooth crack models, a gear crack model with
the simultaneous propagation in both length and
width directions is proposed. And a rigid-flexible
coupled model of planetary gear system is estab-
lished by treating the sun gear as a flexible body and

connecting it with other rigid components. *e
proposed model is appropriate for the fault fre-
quency determination considering the computa-
tional accuracy and efficiency.

(2) In order to overcome the shortcomings of the
existing EMD algorithms, the VMD method for the
nonstationary weak signal is used. *rough the
analysis of simulated and tested signals, the total
amplitude corresponding to each IMF central fre-
quency obtained by VMD can reflect the level change
of different crack scales, and the error between the
tested VMD frequency and the theoretical value is
less than 1%, which proves the proposed VMD al-
gorithm effective.

(3) *e test platform of a planetary gear system was
established, and the tooth root crack of sun gear was
made. *e tested results show that the meshing

Table 7: Actual crack parameters of tested gear.

Crack number 1# crack 2# crack 3# crack
Crack length (mm) 1.43 3.92 8.47
Crack width (mm) 0.54 0.69 1.34
Crack height (mm) 0.50
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Figure 15: Time-domain waveform and frequency-domain spectrum for no crack and three crack cases.
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Figure 16: VMD results for no crack and three crack cases. (a) No crack. (b) 1# crack. (c) 2# crack. (d) 3# crack.

Table 8: Central frequency and amplitude of each IMF for 3# crack.

No crack 1# crack 2# crack 3# crack
f (Hz) A (10−3) f (Hz) A (10−3) f (Hz) A (10−3) f (Hz) A (10−3)

IMF1 30.06 2.07 30.06 2.51 30.06 2.35 30.06 2.96
IMF2 651.3 2.91 641.3 2.32 661.3 1.70 651.3 2.54
IMF3 1964 1.02 1944 0.85 1974 0.97 1954 1.85
IMF4 2826 1.00 2585 1.47 2615 2.07 2615 2.22
IMF5 3286 1.08 3216 2.61 3236 5.17 3236 5.42
IMF6 4509 0.85 4369 1.10 4499 1.39 4559 2.06
Total — 8.93 — 10.86 — 13.65 — 17.05
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Table 9: Error between the tested IMF central frequency and theoretical value for 3# crack.

IMF *eoretical frequency (Hz) VMD frequency (Hz) Corresponding feature Error (%)
IMF1 30 30.06 fs 0.20
IMF2 656 651.3 fm 0.72
IMF3 1944.6 1954 3fm−1/4fsg 0.48
IMF4 2600.6 2615 4fm−1/4fsg 0.55
IMF5 3233.1 3236 5fm−2/4fsg 0.09
IMF6 4568.6 4559 7fm−1/4fsg 0.21
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frequency, fault frequency, and their combined
frequency are prominent in the amplitude spectrum
of vibration signal with crack, so the gear crack
model and rigid-flexible coupled system model
established in this paper are feasible and the VMD
method is also reliable, which provides an effective
approach for the crack diagnosis of sun gear in a
planetary gear system.
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Engine vibration signals are easy to be interfered by other noise, causing feature signals that represent its operating status get
submerged and further leading to difficulty in engine fault diagnosis. In addition, most of the signals utilized to verify the
extraction method are derived from numerical simulation, which are far away from the real engine signals. To address these
problems, this paper combines the priority of signal sparse decomposition and engine finite element model to research a novel
feature extraction method for engine misfire diagnosis. Firstly, in order to highlight resonance regions related with impact
features, the vibration signal is performed with a high-pass filter process. Secondly, the dictionary with clear physical meaning is
constructed by the unit impulse function, whose parameters are associated with engine system modal characteristics. Afterwards,
the signals that indicate the engine operating status are accurately reconstructed by segmental matching pursuit. Finally, a series of
precise simulation signals originated from the engine dynamic finite element model, and experimental signals on the automotive
engine are used to verify the proposed method’s effectiveness and antinoise performance. Additionally, comparisons with wavelet
decomposition further show the proposed method to be more reliable in engine misfire diagnosis.

1. Introduction

Because of its simple structure, output power stability, and
convenient installation, the engine is widely utilized as the
power output device in many mechanical systems, such as
automotive, steamship, and spacecraft [1]. However, after
the long-term harsh operation condition, the engine and
other transmission system are prone to fault which will cause
a sudden power interruption, thus affecting the reliability of
the whole transmission system [2–4]. Furthermore, the vi-
bration signals acquired from the sensor contain not only
engine operating information but also various other strong
noise signals, which causes useful feature signals to be
submerged and makes it hard to diagnose engine fault.
)erefore, it is of great significance to extract engine feature
signals that indicate its health state and further monitor their
operation status timely.

In terms of fault diagnosis in engine condition moni-
toring, many researchers have proposed various effective

methods ranging from traditional signal processing to ar-
tificial intelligent algorithm. On the aspect of traditional
signal processingmethods, Bi et al. [5] proposed a novel fault
diagnosis method of diesel engine valve clearance using the
improved variational mode decomposition (VMD) and
bispectrum algorithm. Vernekar et al. [6] applied empirical
mode decomposition (EMD) to decompose the original
vibration into a finite number of intrinsic mode functions
and then used the Näıve Bayes algorithm as the classifier to
detect the engine fault. Figlus et al. [7] applied a wavelet
decomposition, while filtering the internal combustion
engine’s acoustic signal in order to diagnose an excessive
valve clearance. On the aspect of diagnosis methods based on
the artificial intelligent algorithm, it has been greatly de-
veloped and attracted more and more scholar’s attention
[8–11]. Deng et al. [8] proposed an adaptive method for
choosing the parameters in the deep belief network (DBN)
based on the improved quantum-inspired differential evo-
lution algorithm, which could obtain higher classification
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accuracy on detecting rolling bearing fault. Du et al. [9]
directly used the vibration signal as the input of the prob-
abilistic neural network to simplify the diagnosis process and
combined the swarm intelligent algorithm to achieve effi-
cient parallel search for the best diagnosis effect. Jafarian
et al. [10] employed various intelligent diagnosis methods,
such as the Artificial Neural Networks (ANN) and Support
Vector Machines (SVM), to monitor the engine health state
and highlighted their superiorities. Tao et al. [11] proposed a
novel extreme gradient boosting-based misfire fault diag-
nosis approach utilizing the high-accuracy time frequency
information of vibration signals and achieved higher diag-
nosis accuracy. Although the above methods could achieve
certain effects, most methods are easily influenced by other
noises and cannot obtain good results under the low signal-
to-noise ratio (SNR).

Recently, due to its superiority of feature extraction
ability under low SNR, sparse decomposition is widely
applied in the field of image processing [12], compressed
sensing [13], and fault diagnosis [14, 15]. Engine vibration
signals have similar characteristics with these signals.
)erefore, the sparse decomposition method can be theo-
retically transferred to the engine signal analysis and
employed to extract its features for accurate diagnosis.

Additionally, like it is described in Reference [16], most
of the reference simply used numerical simulation, which
usually consists of sine and modulation components and
noise part from the environment, to simulate the engine
vibration signal and further to verify the proposed feature
extraction method. However, the numerical simulation
signal still has huge differences with the real-world complex
engine signal. )e algorithms validated by it may face
trouble in handling the real engine vibration signal. Hence,
to narrow the gap between the simulation signal and real
signal as much as possible, a more concise dynamic finite
element model should be constructed to generate the sim-
ulation signal rather than simply employ numerical
simulation.

To address these problems, the proposed method
combines the priority of signal sparse decomposition and
engine finite element model to research a novel feature
extraction method for engine misfire diagnosis in this paper.
)e organization of the rest paper is arranged as follows.
Section 2 introduces the fundamental principle of the
proposed method; Section 3 briefly illustrates the con-
struction steps of the engine model and verifies the proposed
feature extraction method; Section 4 is experimental veri-
fications and comparison with wavelet analysis; Section 5
comes to conclusions.

2. Feature Extraction of Engine Misfire Fault

In the actual operating condition, the vibration signal col-
lected from the hood is complex always contains unrelated
signals generated by other components, which easily makes
the feature signal represent the status of the engine sub-
merged in strong noise. Additionally, different from other
types of engine fault, misfire fault occurs with higher
probability and its signal feature is relatively weak [17]. In

order to detect engine misfire fault timely, it is necessary to
find a method that can effectively extract its fault features
under low SNR circumstances. Relying on its excellent
feature extraction capabilities, the signal sparse decompo-
sition method is therefore selected in this paper.

2.1. Basic Principle ofMP. Matching pursuit (MP) is a sparse
algorithm which utilizes linear combinations of atoms in the
redundant dictionary to approximately represent a signal
[14]. Due to its powerful signal sparse representation ability,
MP is now widely applied in feature signal reconstruction to
better detect imperceptible fault. )eoretically, the original
signal x can be decomposed into a linear superposition of
atoms d(‖d� 1‖) in the dictionaryD ∈ Rn×q, as shown in the
following equation:

x � 〈x, d0〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌d0 + R1x, (1)

where d0 denotes the best matching atom in this procedure
and R1x is the residual signal after first MP. Because of the
orthogonality between d0 and R1x, R1x can further de-
compose in the same way as x. After applying N times to the
residual signal, x can be represented as follows:

x � 􏽘
N−1

n�0
〈Rnx, dn〉

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dn + RNx, (2)

In order to avoid falling into the infinite loop, the it-
erative procedure stops until RNx is less than a preset
threshold δ, which is a small value. From the above intro-
duction, it can be known that the extraction accuracy of the
feature signal mainly depends on the atoms in the dictionary.
)e more similar atoms with the feature signal, the better
feature extraction result can be obtained.

2.2. Construction of the Dictionary with Physical Meaning.
As we know, the unit response function has an attenuated
oscillation waveform. )e feature signals of engine misfire
fault are continuous impact signals, which have a similar
waveform with the unit response function in the time do-
main. Moreover, according to the principle of mechanical
vibration, engine system’s modes that are determined by
modal parameters (fd, ξ) would be effectively excited by
series of impulse forces generated from the cylinder. Fur-
thermore, its parameters could influence structure physical
vibration characteristics. )e natural frequency fd and
damping ratio ξ determine the speed of vibration and at-
tenuation in the time domain, respectively. And, these pa-
rameters are also connected with the physical structure of
the engine system. )erefore, according to the similarity
principle between the original signal and atom, it is rea-
sonable to choose the unit response function as an atom in
the sparse dictionary [14]. Its specific expression is presented
as follows:

d(t) � exp
−2πξ
�����

1 − ξ2
􏽱 fdt⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠sin 2 πfdt, (3)
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where fd and ξ are the natural frequency and damping ratio,
respectively. Equation (3) indicates that the atom is asso-
ciated with the modal parameters of the engine again, which
not only has high similarity with the original signal but also
contains clear physical meaning.

2.3. Detailed Procedures of the ProposedMethod. Inspired by
MP and the engine vibration signal characteristics, the
proposed method can be illustrated as shown in Figure 1. It
mainly contains three parts: signal preprocessing, dictionary
construction, and feature extraction. Due to the low-fre-
quency noise caused by other machinery rotational com-
ponents in the engine transmission system, the first part is
utilized to improve the SNR of the obtained signal. )e
second is to construct a dictionary with clear physical
meaning. Finally, the third is to apply MP to extract the
engine feature signal for diagnosis. )e detail procedures of
the algorithm are implemented as follows:

(1) )e signal x(t) is obtained with a sampling fre-
quency fs from the vibration acceleration sensor
installed in the hood. Afterwards, a high-pass fil-
tering process is applied to the collected signal to
remove the low-frequency noise. )is procedure can
further improve the SNR of the signal and minimize
interferences from other irrelevant signals as much
as possible.

(2) According to the theory proposed in Reference [15],
the multiorder frequencies and damping ratios
(fdj, ξj)(j � 1, . . . , J) are obtained by edited ceps-
trum and rational fractional polynomial fitting
method. )erefore, the atoms in the dictionary are
constructed by equation (3). In order to expand the
atoms and achieve the redundancy property of the
dictionary, the time shift factor τ ∈ (0: Δt: Ts) is
introduced to find out impact time of the signal. At
last, the dictionary D consists of all the expanded
atoms, with the shape of p× q. p � J × round((Ts +

1)/Δt) and q � Tsfs, where J is the maximum order
of extracted modal parameters, ∆t represents the
time shift interval, and Ts is the ignition impact
interval, and the notion of round presents for
rounding off.

(3) To accelerate the calculation speed of MP, the signal
is performed in N segmental. Each segment of the
filtered signal xp(t) is divided by a duration of Ts,
which is corresponding to the ignition impact in-
terval, namely, the reciprocal of main exciting fre-
quency in the automotive engine.
Ts � (1/fmain) � ((60 × 2)/nA), where n is the ro-
tation speed of the engine and A is the amount of the
engine cylinder.

(4) Set the iteration value δ of the MP algorithm, and
apply it to solve sparse coefficients of the nth segment
signal. Hence, the feature signal of the nth segment
signal can be represented by xfn(t).

(5) Based on the dividing time sequential of the signal, the
reconstructed feature signal of the engine can be

expressed by equation (4). It should be mentioned that
it is a quick algorithm to reconstruct the engine feature
signal, and the times of inner product equals to
round(T/Ts)Np, whereN is themaximal times ofMP:

xf(t) � 􏽘

N

n�1
xfn(t). (4)

(6) Finally, the feature of engine operating status could
be represented by the reconstructed signal xf(t) and
the misfire fault diagnosis is carried out.

3. Simulation Analysis

To verify the effectiveness of the proposed method, a precise
engine finite element model is firstly applied to generate
more realistic engine simulation signals. )en, white noises
are added into the original signals to research its feature
extraction ability under the low SNR condition. Comparison
analysis illustrates the advantages of the proposed method in
terms of feature extraction ability.

3.1. Generation of the Engine Simulation Signals. Different
from other fault signals, such as the bearing fault signal or
broken gear signal, the engine signals are more complex
whether under the health state or misfire fault state.
)erefore, in order to generate more realistic engine signals
for analysis, a high-quality four-cylinder engine multibody
dynamic model is constructed by utilizing the AVL EXCITE
platform [18]. Its main procedures are as follows:

(1) Build the 3-dimensional model of the four-cylinder
engine power unit and crankshaft in CAD software,
and import it into MSC Patranto to perform finite
element mesh division, as shown in Figure 2. )is
step is to set the engine as a flexible body and make
each part of the vibration signal obtainable, espe-
cially the hood part.

(2) As we know, the dynamic system analysis with huge
degrees of freedom is time consuming. Hence, the
matrix reduction method is accomplished by MSC
Nastran to reduce the degrees of freedom of the
constructed model and then improve the calculation
efficiency.

(3) Import the reduced finite element model into the
EXCITE power unit, and each component can be
connected by springs, dampers, bearings, and other
nonlinear elements to form the final coupled engine
dynamic model.

(4) Set combustion pressure in the EXCITE PU module
as the external excitation to make the whole system
vibrate. Its variation law along with the crank angle
under the normal state is illustrated in Figure 3(a),
which is similar to actual engine working conditions.
Meanwhile, the engine misfire fault is simulated by
setting the combustion pressure of the corre-
sponding faulty cylinder into a low value, as shown
in Figure 3(b). It should be mentioned that the crank
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Figure 2: Finite element models. (a) Engine power unit. (b) Crankshaft.
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Figure 3: Combustion pressure variation along with crank angle. (a) Normal state. (b) First cylinder misfire fault in the four-cylinder engine
model.
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Figure 1: Flow chart of the engine signal feature extraction.
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angle represents the rotational angle of the
crankshaft.

3.2. Normal State. Based on the dynamic model constructed
in Section 3.1, the normal state signal is acquired on the hood
with a sample frequency fs of 18748Hz. From Figure 4(a), it
can be hardly seen of any features generated by engine
impact forces both in the time domain and frequency do-
main. Even in the noiseless simulation condition, the fea-
tures indicating the health state of the engine are still
obscured by other low-frequency components. According to
the signal analysis theory, impact forces will excite the
system to vibrate at the high-frequency region. In order to
eliminate the influence of low frequency as much as possible,
combined with the spectrum of the original signal, a high-
pass filter with the cutoff frequency fcut � 2000Hz is applied.
)e filtered signal xp(t) is displayed in Figure 4(b), where
the SNR of impact signals is improved significantly.

)en, multiorder model parameters that highly corre-
lated with the engine impact feature signal are identified to
construct the sparse dictionary, and MP is further utilized to
extract impact features from the filtered signal, and the it-
eration value δ is set as 0.001, which could make the residual
signal as small as enough and ensure the accuracy of the
reconstructed signal according to Reference [14]. Here, the
results are illustrated in Table 1 and Figure 5. Almost all
identified frequencies from Table 1 are located at corre-
sponding resonance regions in Figure 4(b), which demon-
strates the correctness of the identification results and
further provides high quality parameters for the dictionary
design. As can be seen in Figure 5, nearly all the amplitudes
and moments of the impact features in the extracted signal
match well with those of the filtered noiseless signal. )e
results strongly verify the effectiveness of the proposed
method in the feature extraction aspect. Moreover, each
impact feature that is generated by the healthy engine cyl-
inder is clearly exposed, which reveals the health state of the
engine.

To further research the antinoise performance of the
proposed method, a Gaussian white noise with SNR� 5 dB is
added into the simulation signal of Figure 4(a). )e filter
parameters are the same as the noiseless condition, and
corresponding results are shown in Figure 6. Compared with
Figure 4(b), the impact signals in Figure 6(b) are over-
whelmed by noise after removing low-frequency interfer-
ences, which increases the difficulty in extracting the engine
feature signal. Although, few extracted impact features exist
slightly different, the vast majority of extracted signals ob-
tained from the proposed method are still in accordance
with the filtered noiseless signal, as shown in Figure 7. In
sum, the proposed method can extract engine features well
under low SNR conditions.

In order to further illustrate the advantage of the pro-
posed method under low SNR, wavelet decomposition is
chosen to process the same simulation signals in terms of its
good feature extraction ability. In wavelet decomposition,
db10 is selected as the basic function of the wavelet, and the
decomposition layer is set as 4. FS represents the filtered

signal; d1, d2, d3, and d4 denote the decomposition results.
In the noiseless condition, it can be clearly seen that the
wavelet decomposition method is able to extract engine
impact features as effectively as the proposed method, as
shown in Figure 8, when compared with the results in
Figure 7 in the noise condition; though the wavelet de-
composition method could denoise the filtered signal to
some extent and make a few impact features clearer, the
majority of the impact features are still submerged in strong
noise, which reduces the diagnosis accuracy of engine
misfire fault. In summary, the proposed method cannot only
effectively extract and highlight engine features in the
noiseless condition but also in the low SNR condition.

3.3. Single-Cylinder Misfire Fault. Engine misfire fault is
mainly due to its cylinder failing to ignite properly, namely,
under the unfired state. When the engine has misfire fault in
the cylinder, corresponding impact signals will disappear
theoretically due to its unsuccessful ignition in the faulty
cylinder. Hence, the misfire fault feature can be described as
a series of impact feature signal in the time domain; among
the signals, some of the impact waves will miss due to the
faulty cylinder.

Like the normal state, the single-cylinder misfire fault
signal obtained from Section 3.1 also processed in the
noiseless condition and 5 dB noise condition. As shown in
Figure 9(a), it is still difficult to diagnose engine misfire fault
by simply observing the original signal even in the noiseless
condition. After removing interferences caused by low-
frequency components, the impact features have appeared
out much more clearly in Figure 9(b). Moreover, it can be
found that one impact feature is missing in the four con-
secutive impact intervals by comparing with the filtered
signal under the normal state. )is phenomenon just in-
tuitively reveals the features of engine misfire fault and
demonstrates the correctness of the simulation signal gen-
eration model in turn. )en, the feature signal extracted by
the proposed method is illustrated in Figure 10, which shows
a high similarity to the filtered signal, and its diagnosis
features are also clearly exposed.

Under 5 dB noise condition, signals are more complex to
analyse and basically hard to see any impact features both in
the original signal and filtered signal, as shown in Figure 11.
Hence, the proposed method is utilized to extract important
impact features indicating engine misfire fault. From Fig-
ure 12, all the engine ignition impact features with high
amplitude are well extracted, and some weak impact features
are also exposed slightly because of noise influence. In
general, although the unavoidable noise coming from the
environment may cause certain weak pseudoimpact fea-
tures, the proposed method still can effectively extract en-
gine misfire fault features with much higher amplitude to
make correct diagnosis under the noise condition.

Similar to the normal state, the misfire signals are also
performed by the wavelet decomposition method. As the
results shown in Figure 13, engine misfire fault features can
be well extracted under the noiseless condition. When it
comes to the low SNR situation, majority of the impact
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features are still covered by noise interferences, which
hinders the diagnosis of engine misfire fault and further
illustrates the superiority of the proposed method.

4. Experiment Verification

To further verify the effectiveness of the proposed method, a
four-stroke in-line four-cylinder multipoint injection gas-
oline engine with a displacement of 1.6 L was operated under
the normal state and single-cylinder misfire fault state, re-
spectively. As shown in Figure 14, the vibration signal was
obtained by the PCB vibration acceleration sensor mounted
on the hood. )e signal acquisition equipment contains the
MKII signal collector and PAK acquisition and computer
analysis system. )e sampling frequency was set as
10240Hz. Misfire fault of the engine was accomplished by
cutting off the corresponding cylinder fuel supply.

Additionally, the experiment was carried out under no load
because of the limited conditions. Comparison analysis with
the experimental signal illustrates the advantages of the
proposed method in terms of feature extraction ability.

4.1. Normal State. As can be seen in Figure 15(a), the ex-
perimental signal acquired on the hood also includes low-
frequency components’ interference, while the important
high-frequency regions containing impact features are
suppressed largely. )is also verifies the correctness of the
constructed dynamic model from another aspect by ob-
serving the similarity of simulation signals and experimental
signals. )erefore, a high-pass filter is applied to highlight
the impact features of the original signal as in simulation.
)e results are presented in Figure 15(b); compared with the
unfiltered signal, the SNR of the filtered signal is indeed
improved, and some weak impact features can be observed.
However, it is still difficult to diagnose the health state of the
engine by the current signal because of the complex noise
interferences.

)e multiorder model parameters affecting impact vi-
bration characteristics are identified and listed in Table 2. )e
filtered signal is then utilized to exhibit the feature extraction
superiority of the proposed method, as shown in Figure 16.
Most of the impact features have been effectively extracted as
well as the impact amplitudes. Compared with the filtered
signal, the extracted signal is clearer and can better represent
the engine operation condition. Furthermore, although there
are few weak impact features influenced by noise, the am-
plitudes of most of the reconstructed signals are the same as
those of the filtered signals and there is no periodic low-
amplitude impact, which are consistent with the normal
simulations. Hence, the engine health state can be concluded
to the normal state, and the results of the experiment further
verify the effectiveness of the proposed method.

4.2. Single-Cylinder Misfire Fault. )e misfire fault experi-
ment was also conducted on the same condition with the
normal state. As illustrated in Figure 17(a), the original
vibration signal obtained from the hood is disorderly and
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Figure 4: Vibration noiseless signal of the time domain and frequency domain under the normal state. (a) Original signal. (b) Filtered signal.

Table 1: )e simulation results of multiorder model parameters’
identification.

Parameter 1 2 3 4 5 6
Frequency fdj

(Hz) 2189 3996 5483 5969 7022 7901

Damping ratio
ξj

0.0737 0.0286 0.0475 0.0095 0.0992 0.0125
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Figure 5: Filtered noiseless signal and extracted feature signal
under the noiseless condition.
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cannot be observed as useful information. After filtering the
low-frequency noise, impact features located in the reso-
nance area are highlighted, but still with some noise dis-
turbances influencing engine health diagnosis.

)erefore, the impact features indicating the engine
health state are further extracted by the proposed

method. According to the misfire fault simulation results
under noiseless and noise conditions, it can be known
from that when single-cylinder misfire fault occurs, the
extracted signal will still show equally spaced impacts
rather than directly missing one impact. More impor-
tantly, the impact feature related with the faulty cylinder
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Figure 6: Vibration signal of the time domain and frequency domain under the normal state with 5 dB white noise. (a) Original signal.
(b) Filtered signal.
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Figure 8: )e results of the normal simulation signal processed by wavelet decomposition. (a) Noiseless. (b) Under 5 dB noise.
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0 0.04
t (s)

0.12 0.16

Filtered
Extracted

A 
(m

/s
2 )

10

5

–5

–10

0

Figure 10: Filtered noiseless signal and extracted feature signal under the noiseless condition with single-cylinder misfire fault.

A 
(m

/s
2 )

A 
(m

/s
2 )

20
10

–10
–20

0

4

2

0

0 0.05
t (s)

0.1 0.15

0 2000
f (Hz)

8000 10000

(a)

A 
(m

/s
2 )

A 
(m

/s
2 )

10

–10

0

0.1

0.05

0

0 0.05
t (s)

0.1 0.15

0 2000
f (Hz)

8000 10000

(b)

Figure 11: Vibration signal of the time domain and frequency domain under the misfire state with 5 dB white noise. (a) Original
signal. (b) Filtered signal.
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Figure 13: )e results of the engine single-cylinder misfire fault signal processed by wavelet decomposition. (a) Noiseless. (b) Under 5 dB
noise.
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Table 2: )e experimental results of multiorder model parameters’ identification.

Parameters 1 2 3 4
Frequency fdj (Hz) 3089 3453 4099 4891
Damping ratio ξj 0.0132 0.0416 0.1730 0.0150
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Figure 15: Experimental signal of the time domain and frequency domain under the normal state. (a) Original signal. (b) Filtered signal.
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has lower amplitude than others and shows quasi-peri-
odicity. As shown in Figure 18, the results from
the experimental signal are similar to the simulation
results and therefore the engine misfire fault is diag-
nosed, which further verifies the correctness of the
proposed method.

)e results processed by wavelet decomposition are il-
lustrated in Figure 19. It can be clearly seen that both
extracted signals under the normal state and misfire state are
submerged by strong noise, which hinders the engine misfire
fault diagnosis. )e comparison results further show the
feature extraction advantage of the proposed method.
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Figure 16: Experimental normal signal processed by the proposed method.
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Figure 17: Experimental signal of the time domain and frequency domain under misfire fault. (a) Original signal. (b) Filtered signal.

0.3

–0.3

0

0 0.2
t (s)

0.8 1

A 
(m

/s
2 )

Low amplitude Low amplitude Low amplitude

Filtered
Extracted

Figure 18: Experimental misfire fault signal processed by the proposed method.

10 Shock and Vibration



5. Conclusions

Based on signal sparse decomposition theory, a feature
extraction method is proposed to accurately extract impact
features indicating the engine health state. )e unit response
function that reflects the system modal characteristic is used
as the atom to construct the sparse dictionary with clear
physical meaning. Moreover, the segmental MP algorithm is
applied to reconstruct the impact features from the original
signal. Simulations and experimental tests both verify the
effectiveness of the proposed method. Some important
conclusions are as follows:

(1) A four-cylinder engine multibody dynamic model
constructed by the AVL EXCITE platform can
generate more realistic signals than oversimplified
numerical simulation. Furthermore, it cannot only
simulate the engine normal signal but also the engine
misfire fault signal by adjusting the combustion
pressure of the corresponding cylinder.

(2) Original simulation signals contain many noise
interferences, in which exists low-frequency com-
ponents generated by other rotational parts. In the
normal state, the proposed method can effectively
extract all impact features in the noiseless condi-
tion. Moreover, under the low SNR condition, it can
still make submerged impact features exposed
clearly.

(3) In the engine misfire fault state, the faulty cylinder
will not produce impact features in the corre-
sponding ignition moment theoretically. Hence,
impact features can be well extracted but with
missing one impact by the proposed method in the
noiseless condition. However, in the low SNR
condition, besides the normal state impact features
can be extracted, the pseudoimpacts with lower
amplitude also appeared out due to the noise
interferences.

(4) In real automotive engine tests, the proposedmethod
still makes full use of the fault information that is
buried in the original signal and highlights impact
features to accurately diagnosis the health state of the
engine, especially detect engine misfire fault.

(5) )ough the wavelet decomposition method could
obtain good extraction results under the noiseless
condition as the proposed method, when it comes to
the low SNR condition, only the proposed method
can effectively extract the feature signals that indicate
the engine health state.
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[7] T. Figlus, Š. Liščák, A. Wilk, and B. Łazarz, “Condition
monitoring of engine timing system by using wavelet packet
decomposition of a acoustic signal,” Journal of Mechanical
Science and Technology, vol. 28, no. 5, pp. 1663–1671, 2014.

[8] W. Deng, H. Liu, J. Xu, H. Zhao, and Y. Song, “An improved
quantum-inspired differential evolution algorithm for deep
belief network,” IEEE Transactions on Instrumentation and
Measurement, vol. 69, no. 10, p. 7319, 2020.

[9] C. Du, W. Li, F. Yu et al., “Misfire fault diagnosis of auto-
mobile engine based on time domain vibration signal and
probabilistic neural network,” International Journal of Per-
formability Engineering, vol. 16, no. 9, 2020.

[10] K. Jafarian, M. Mobin, R. Jafari-Marandi, and E. Rabiei,
“Misfire and valve clearance faults detection in the com-
bustion engines based on a multi-sensor vibration signal
monitoring,” Measurement, vol. 128, pp. 527–536, 2018.

[11] J. Tao, C. Qin, W. Li, and C. Liu, “Intelligent fault diagnosis of
diesel engines via extreme gradient boosting and high-ac-
curacy time-frequency information of vibration signals,”
Sensors, vol. 19, no. 15, p. 3280, 2019.

[12] Y. Liu, X. Chen, R. K. Ward, and Z. Jane Wang, “Image fusion
with convolutional sparse representation,” IEEE Signal Pro-
cessing Letters, vol. 23, no. 12, pp. 1882–1886, 2016.
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)e early weak fault characteristics of rolling bearings are extremely weak and are easily overwhelmed by other noises. In order to
effectively extract the characteristics of the early weak faults of the rolling bearings and draw on the multilayer wavelet de-
composition idea, a method for diagnosing the early weak faults of the rolling bearing based on the multilayer reconstruction filter
is proposed. As we all know, empirical wavelet transform (EWT) makes full use of wavelet filter bank, and variational mode
decomposition (VMD) uses Wiener filter bank. )is paper fully combines the advantages of the above two methods, adaptively
determines the number of modes through empirical wavelet decomposition and divides the original signal, extracts the frequency
band that contains the fault characteristic information, and effectively eliminates noise interference.)ese steps are repeated until
the optimal component of the condition is obtained. In the output layer, the weak fault impact components are further separated
by the strong filtering and signal decomposition capability of VMD. )e advantages of the proposed method are proved by the
experiment of weak fault of rolling bearing and the accelerated failure experiment of full life. )e proposed method has the
advantages of reducing noise influence and adaptive estimation of decomposed modes, which can be applied more efficiently
in practice.

1. Introduction

Timely and effective identification of early weak faults for
rolling bearings has an important significance to ensure
the safety of equipment operation [1]. )e small impact of
early weak faults leads to weak fault characteristics. At the
same time, the signal usually contains a large number of
noise interferences caused by the mutual impact of other
components, which brings about great challenges to
relevant studies [2, 3].

Data-driven fault diagnosis methods for rolling
bearings have been the most widely studied, most of
which are based on vibration signals and acoustic signals,
which are essentially the same, but each has its own
advantages and disadvantages [4]. )e advantages of

vibration signal used in fault diagnosis are as follows: the
cost of the sensor is relatively low, the vibration signal is
easy to be measured, and the measured vibration signal
can contain more fault information. Its disadvantages are
as follows: this is a kind of contact measurement, and the
sensor needs to be installed in the position close to the
workpiece. )e advantages of using acoustic signals for
fault diagnosis are as follows: the requirements for the
installation position are not very strict, they do not need
to be attached to the workpiece under test, and the
measurement cost is relatively low. )e disadvantage is
that the measured acoustic signal may contain sound
other than the target workpiece, so the SNR is relatively
small [5]. Adam Glowacz used acoustic signals for early
bearing and stator of the single-phase induction motor
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fault diagnosis [6]. Parey and Singh proposed a contin-
uous wavelet transform and adaptive neural fuzzy rea-
soning system to process the acoustic signal of gearbox
and complete fault diagnosis [7]. Adam Glowacz pro-
posed a fault diagnosis method of single-phase motor
based on acoustic signal [5]. Zhang and Stewart proposed
a deep graph convolutional network for roller bearings
based on acoustic signal [8]. Liu and Pei achieved fault
detection on belt conveyor idlers by processing acoustic
signals using machine learning method [9]. In the ap-
plication of vibration signals for fault diagnosis, Huang
et al. extracted frequency band entropy from vibration
signals for fault diagnosis [10]. Wang et al. used time-
frequency curves of vibration signals for fault detection
under variable speed [11].

In the past decades, researchers have proposed many
methods for the rolling bearing fault diagnosis, among which
the adaptive signal decompositionmethod is quite popular [12].
Common adaptive decomposition methods include empirical
mode decomposition (EMD), EWT, and VMD [13]. EMD has
beenwidely used in various fields [14, 15]. Due to its difficulty in
mathematical modeling, sensitivity to noise, and endpoint ef-
fect, scholars have developed a lot of improved EMD, but it still
cannot achieve ideal results [16]. In order to overcome the
limitations of EMD, Jerome Gilles and Konstantin Drag-
omiretskiy proposed EWT [17] and VMD [18], respectively.
)e EWT constructs an adaptive empirical wavelet filter bank
and the variational modal decomposition fully borrows the
Wiener filter. Both of themhave been fully studied in the field of
rolling bearing fault diagnosis.

Some researchers made a detailed comparative study
on EWT and EMD and concluded that EWT has better
performance than EEMD and EMD in model estimation
[19]. EWT has been widely used in the fields of medical
signal analysis, seismic signal analysis, meteorological
prediction, and fault diagnosis [20–23]. In the field of
fault diagnosis, some papers have improved EWT from
the aspects of spectrum segmentation, so that it can be
better applied to practical engineering problems [17, 24].
VMD obtains all modalities from the signal at the same
time through a joint optimization scheme, so it has higher
resolution [25]. Compared with EWT, this method has
been widely used. A large number of scholars have also
improved the VMD. Some scholars use the dimension-
ality-increasing feature of VMD to apply it to under-
determined blind source separation [26]. Jiang et al. [27]
proposed a VMD decomposition strategy from rough to
fine, which was well applied to the fault diagnosis of
rotating equipment. Many scholars have also studied the
parameter optimization of VMD to improve its adaptive
ability [28, 29]. Xu et al. [30] proposed a method based on
VMD which can reduce noise in the propagation path.
Although EWTand VMD have been widely studied in the

field of rolling bearing fault diagnosis, they still have
some room for improvement.

Due to extremely weak fault characteristics and large
amount of noise interference in vibration signal and
acoustic signal, it is a great challenge to extract fault
characteristic information effectively. Some scholars have
combined the mode decomposition method with other
methods. For example, Fan [2] combined with the ad-
vantages of EMD to improve VMD and achieved certain
results.

)is method utilizes EWT’s great capability of mode
number estimation [17] and its excellent filtering capability of
the empirical wavelet filter bank and combines the kurtosis
criterion to effectively extract the optimal mode from the
original signal. Multilayer reconstruction filter can remove
most of the noise components and highlight the fault impact
components. However, due to the weak fault features, it is
usually not possible to directly extract the fault characteristics
from the denoised signal. By virtue of the great band-pass
filtering capability and signal decomposition capability of
VMD, it is used as the output layer to reconstruct and filter the
signal after noise reduction. Because the multilayer recon-
struction filter reduces the interference of redundant infor-
mation to the VMD, the fault feature information can be
separated and extracted better, and the early weak fault di-
agnosis of rolling bearing can be realized.

)e structure of this paper is as follows: Section 2
introduces the theoretical basis of the method and in-
troduces the process of the proposed method; Section 3
verifies the proposed method by using the acoustic signal
of rolling bearing fault experiment and the vibration
signal of accelerated fatigue experiment, respectively. )e
results and discussion are given in Section 4.

2. Methodology

2.1. Empirical Wavelet Transform. )e EWT divides the
Fourier spectrum of a signal and constructs a wavelet filter
bank to extract the intrinsic modes and can be divided into
several main components.

Assuming that the Fourier support [0, π] is segmented
into contiguous N segments, a total number of N + 1
boundaries are needed. According to the local maximum
values, the Fourier spectrum of a signal is divided into N

segments. Denote ωn to be the limits between each segment
(where ω0 � 0 and ωn � π). Each segment is represented as
Λn � [ωn− 1,ωn]. A transition phase Tn of width 2τn is then
defined, as shown in Figure 1.

)e empirical wavelets are defined as band-pass filters on

each Λn. )e empirical scale function ϕ
∧
(ω) and empirical

wavelet function ψ
∧

(ω) can be calculated by the two following
equations, respectively:
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ϕ
∧
(ω) �

1, if |ω|≤ (1 − c)ωn,

cos
π
2

1
2cωn

|ω| − (1 − c)ωn( 􏼁􏼠 􏼡􏼢 􏼣, if (1 − c)ωn ≤ |ω|≤ (1 + c)ωn,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

ψ
∧

(ω) �

1, if (1 + c)ωn ≤ |ω|≤ (1 − c)ωn+1,

cos
π
2
β

1
2cωn+1

|ω| − (1 − c)ωn+1( 􏼁􏼠 􏼡􏼢 􏼣, if (1 − c)ωn+1 ≤ |ω|≤ (1 + c)ωn+1,

sin
π
2
β

1
2cωn+1

|ω| − (1 − c)ωn( 􏼁􏼠 􏼡􏼢 􏼣, if (1 − c)ωn+1 ≤ |ω|≤ (1 + c)ωn+1,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

)e ratio c in equations (1) and (2) is restricted to a small
value as 0≤ c≤minn[(ωn+1 − ωn)/(ωn+1 + ωn)] to ensure the
empirical scaling function and the empirical wavelets are a
tight frame ofωn: τn � cωn, 0< c< 1.)e function β(x) is an
arbitrary Ck([0, 1]) function, and β(x) is defined as follows:

β(x) � x
4 35 − 84x + 70x

2
+ 20x

3
􏼐 􏼑. (3)

)e approximation coefficients wε
f(0, t) and the detail

coefficients wε
f(n, t) can be calculated by the two following

equations, respectively:
w

ε
f(0, t) � f,

ϕ1 � 􏽚 f(τ)ϕ1(τ − t)dτ � f
∧

(ω)ϕ
∧
1(ω)􏼠 􏼡,

(4)

w
ε
f(n, t) � f,

ψn � 􏽚 f(τ)ψn(τ − t)dτ � f
∧

(ω)ψ
∧

n(ω)􏼠 􏼡

∨

,
(5)

where ϕ
∧
1(ω) and ψ

∧
n(ω) are defined by equations (1) and (2),

respectively.
)e inverse empirical wavelet transformation is carried

out by the following equation:

f(t) � w
ε
f(0, t)∗ϕ1(t) + 􏽘

N

n�1
w

ε
f(n, t)∗ψn(t),

� w
∧ ε

f(0,ω)∗ ϕ
∧
1(ω) + 􏽘

n�1

N
∧

w
∧ ε

f(n,ω)∗ψ
∧

n(ω)⎛⎜⎝ ⎞⎟⎠

∨

.

(6)

2.2. Variational Mode Decomposition. Variational modal
decomposition is an adaptive time-frequency analysis tool,
which decomposes the signal into multiple BLIMFs (band
limited intrinsic mode function) through iterative solution.

)e detailed steps are described below.
First, it is assumed that the signal x (t) can be decom-

posed into a finite number of inherent modes, each of which
has a different center frequency and ωk, a finite bandwidth.

)e specific formula of the unilateral spectrum obtained
by Fourier transform is as follows:

δ(t) +
j

πt
􏼒 􏼓∗ uk(t). (7)

In the above formula, δ(t) stands for Dirichlet function,
and ∗ stands for convolution.

)e spectrum of each component is obtained by the
following equation:

δ(t) +
j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

jωkt
. (8)

)e variational constraint mode function of VMD is as
follows:

min
uk{ }, wk{ }

􏽘

​

k
zt δ(t) +

j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

− jwkt

�������

�������

2

2
􏼨 􏼩,

s.t. 􏽘
k

uk � x.

(9)

In the above formula, uk􏼈 􏼉 � u1, . . . , uK􏼈 􏼉 represents
the K components obtained after decomposition;
ωk􏼈 􏼉 � ω1, . . . ,ωK􏼈 􏼉 represents the center frequency corre-
sponding to each component.

In order to obtain the optimal solution of the above
variational constraint model, the VMD algorithm introduces
the Lagrangian method, including the secondary punish-
ment factor α and the Lagrangian multiplier λ. )e formula
is as follows:
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L � α􏽘
k

zt δ(t) +
j

πt
􏼒 􏼓∗ uk(t)􏼔 􏼕e

− jwkt

�������

�������

2

2
+ x(t) − 􏽘

k

uk(t)

���������

���������

2

2

+ λ(t), x(t) − 􏽘
k

uk(t). (10)

Iteratively update uk􏼈 􏼉, wk􏼈 􏼉, and finally obtain the
saddle point of Lagrange equation, which is the optimal
solution.

)e specific steps of the VMD procedure are shown in
Figure 2.

2.3. Proposed Method: Multilayer Reconstruction Filter.
)eVMDmethod has a reliable theoretical basis, with band-
pass filtering capability similar to wavelet packet decom-
position and excellent signal decomposition capability.
However, weak fault pulses and strong background noise
can seriously affect the accuracy of diagnosis. )erefore,
drawing on the idea of multilayer wavelet decomposition,
this paper introduces a powerful signal processing tool,
EWT, as a preprocessing. EWT has an outstanding ability to
detect the number of modes. )is method divides the signal
in the Fourier domain by looking for the local maximum and
divides the signal into multiple frequency bands adaptively.
By constructing an empirical wavelet filter bank with ex-
cellent performance, each frequency band is reconstructed
and filtered to effectively eliminate the interference of
nonimpulsive noise. As a fourth-order high-order statistic
equation (11), kurtosis is very sensitive to early failures. )e
correlation coefficient can choose the most containing fault
information frequency band. )erefore, with the help of the
above two coefficients, a relatively optimal component can
be well selected. Using this component as the input signal of
the next layer, perform the above process again until the set
number of decomposition layers is reached to obtain the
optimal mode.

K �
1
N

􏽘

N

i�1

xi(t) − μ
σ

􏼢 􏼣

4

. (11)

In the above formula, N is the length of the signal, xi is
the i-th EWT component, and μ and σ are the mean value
and standard deviation of the signal, respectively.

Compared with the original signal, the selected optimal
component has very low noise interference and no excessive
redundant information. Taking this component as the input
of the output layer, it can better exert the powerful signal
filtering and decomposition ability of VMD, effectively
decompose the fault pulse information, and realize accurate
fault diagnosis. )e flow chart of the proposed method is
shown in Figure 3.

3. Experiment and Results

)e method proposed in this paper aims at the early weak
faults of rolling bearings with extremely weak fault char-
acteristics and extremely high background noise. )is
chapter uses two related experiments for analysis. In ex-
periment 1, weak faults were made in the inner and outer
rings of the bearing ring by using laser cutting technology,

and acoustic signals were collected by microphone sensor.
)e acoustic signals collected by this experiment met the
premise of weak fault characteristics and great background
noise. In experiment 2, the bearing accelerated degradation
experiment of NSF I/UCR Intelligent Maintenance Systems
was adopted.)e experiment collected data on the entire life
cycle of the bearing, which truly reflects the entire stage of
failure from early initiation and development to destruction
and shutdown, which is well in line with the needs of ex-
perimental research. Two experiments are presented below.

3.1. Simulation Experiment Analysis of Early Fault of Rolling
Bearing

3.1.1. Experiment Design. In this paper, a rolling bearing fault
test rig is designed, as shown in Figure 4. )e type of bearing is
NSKNU205EW, whose parameters are shown in Table 1. Laser
cutting method is adopted to cut through 0.1mm wide and
0.05mm deep grooves in the inner and outer rings of bearing.
Acquisition card was used to record the experimental data,
MPA416microphone was used to collect the acoustic signal, the
sensor was installed in front of the faulty bearing, the distance
was 30mm, and the photoelectric encoder was used to record
the speed. Experimental bench is with rated power of 1.5 kW,
rated voltage of 380V, rated frequency of 50Hz, rated current of
3.4 A, rated speed of 2840 r/min of three-phase asynchronous
motor drive, transverse load of 2 kN, sampling frequency of
20kHz, and speed of 1309.2 r/min (f� 21.82Hz).)e inner and
outer ring fault frequencies of the bearings are 169.1Hz and
114.6Hz, respectively. Equations (12)–(14), respectively, give the
calculation formula of fault characteristic frequency of bearing’s
inner ring, outer ring, and rolling element.where fI, fO, fB,
respectively, represent the characteristic frequency of inner ring
fault, the characteristic frequency of outer ring fault, and the
characteristic frequency of rolling element fault (unit: Hz); r is
the speed of rotation of the bearing (unit: (r/min)); n denotes
ball number;d denotes the diameter of the rolling element (unit:
mm); D denotes bearing pitch diameter (unit: mm); and α
denotes contact Angle (unit: ∘ ).

fI �
n

2
r

60
1 +

d

D
cos α􏼠 􏼡􏼠 􏼡, (12)

fO �
n

2
r

60
1 −

d

D
cos α􏼠 􏼡􏼠 􏼡, (13)

fB �
n

2
r

60
D

d
1 −

d

D
cos α􏼠 􏼡

2
⎛⎝ ⎞⎠, (14)

3.1.2. Experimental Results and Analysis. First, the time
domain waveform and Hilbert envelope spectrum of the
original signal were made, as shown in Figures 5 and 6,

4 Shock and Vibration



respectively. )e time domain diagram shows that the signal
amplitude is low and unobvious periodic impact is found.
Further observation of the signal’s Hilbert envelope spec-
trum revealed a large number of irrelevant frequencies,
especially in the low frequency region, indicating that the

original signal contained a large number of noise interfer-
ences. From the spectrogram, only the inner ring fault
characteristic frequency with less obvious amplitude can be
found, but the inner ring fault characteristic frequency
cannot be found, which is enough to prove the premise of

2τ1

1

2τ2 2τ3 2τn 2τn+1 2τN

ω1 ω2 ω3 ωn ωn+1 

Figure 1: Partitioning of the Fourier axis.

Signal x (t)

End

Initialize {uk
1}, {ωk

1}, {λ1}. For n = 0

n = n + 1

Update λ: λn+1 (ω) = λn(ω) + τ(x(ω) – ∑kuk
n+1 (ω))

For k = 1:K, update ωk

BLIMFs

Start

No
∑k||uk

n+1 – uk
n||22 / ||uk

n||22 < ε

Yes

For k = 1:K, update uk

x(ω) – ∑i<kui
n+1(ω) – ∑i>k u i

n(ω) – (λn(ω)/2))

1 + 2α (ω – ωk
n)2

ωk
n+1 = ∫∞

0 ω |uk
 (ω)|2 dω / ∫∞

0 |uk
 (ω)|2 dω

uk
n+1 (ω) =

Figure 2: Variational mode decomposition algorithm flow.
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Acoustic or vibration signals

Empirical wavelet transform
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Relative optimal component

Variational mode 
decomposition

Hilbert envelope analysis

Early weak fault diagnosis

Whether it reaches 
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Yes

No

Optimal mode 
selection

Output layer

Figure 3: )e flow chart of the proposed method.

Electric motor Healthy
bearing Tachometer Radial load Fault

bearing
Microphone

sensor

MPA416

Figure 4: Rolling bearing fault test rig.

Table 1: Basic parameters of NSK NU205EW bearing.

Bearing pitch diameter Roller diameter Ball number Contact angle
39 7.5 12 0°
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weak fault characteristics and large noise interference. )e
following describes the specific process of signal processing
using the method proposed in this paper.

)e first reconstruction filter is performed. EWT is used
to decompose the signal, and Figure 7 is the boundary
detection graph. From the figure, EWT can detect 4
boundaries in the Fourier spectrum and divide the signal
into 5 parts. By constructing an empirical wavelet filter bank,
band-pass filtering is carried out on these 5 parts, and 5
components are finally obtained. Figure 8 shows the en-
velope spectra corresponding to the 5 components from top
to bottom, and the corresponding correlation coefficients
and kurtosis are given in Table 2.

According to the correlation coefficient, we can get that
component 5 contains the richest information, which can
also be seen from its corresponding envelope spectrum. At
the same time, its envelope spectrum can clearly find the
inner ring fault characteristic frequency and its multiplier,
but it still cannot find the outer ring fault characteristic
frequency. It also proves that primary filtering is insufficient
for this early weak fault diagnosis. Meanwhile, the kurtosis of
component 5 also reflects that it contains some fault pulse
information.

Component 2 has the highest kurtosis, and the corre-
sponding envelope spectrum can also find the inner ring
fault characteristic frequency, rotation frequency, and its
doubling frequency more clearly, so it can be judged that
component 2 contains valid fault pulse information.

Based on the above two points, we choose the combi-
nation of components 2 and 5 as the optimal mode com-
ponent. )rough the above steps, part of the interference
noise in the original signal has been removed, and a part of
the fault features have been highlighted, laying a good
foundation for the next processing.

)en input the reconstructed signal to the output layer
after filtering, and set K� 5 and α� 2000 for VMD [31].

Figure 9 shows the envelope spectrum of the BLIMF
component obtained after the decomposition of VMD.

Careful analysis of the envelope spectra of the above 5
components shows that, in component 5, the fundamental
frequency and frequency multiplication of the rotation
frequency, the characteristic frequency of the inner ring
fault, the characteristic frequency of the outer ring fault, and
the theoretical calculation can be clearly found. )ere is
almost no difference from the theoretically calculated fre-
quency. Corresponding side bands are also found near the
inner ring fault frequency, and the entire frequency spec-
trum contains almost no other noise interferences. )e
experimental results fully reflect the accuracy of the pro-
posed method for early weak fault diagnosis.

3.2. Experimental Analysis of Full-Life Acceleration of Rolling
Bearings

3.2.1. Experiment Design. Experiment 2 adopts the NSF I/
UCR intelligent maintenance system center bearing life
accelerated damage experiment data, which is used by many
scholars for related research and is an internationally rec-
ognized data set.)is data covers the whole process from the
initiation of the fault to the failure, so it can reflect the
damage characteristics of the actual early failure of the
bearing and better reflect the effectiveness of the proposed
method.

)e motor transmits power to the shaft through a belt.
Four bearings are mounted on the shaft. At the same time, a
constant radial load of 6000 lbs is applied to the shaft. )e
speed is 2000 r/min, the bearing type is Rexnord ZA-2115
double row bearing, and the basic parameters are shown in
Table 3. During operation, the bearing will be worn under
heavy load and produce metal debris. A magnetic screw plug
is installed on the test bench to collect metal debris. When

Time (s)

A
 (V

)

0.1

0

–0.1
0 1 2 3 4 5

Figure 5: Time domain waveform of the original signal of experiment 1.
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Figure 6: )e original signal envelope of experiment 1.
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Figure 7: EWT boundary detection diagram of experiment 1.
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Figure 8: EWT component envelope spectra of experiment 1.
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the accumulation of metal debris exceeds a certain level, the
electrical switch is automatically controlled to stop.

)e experiment consists of three sets of data sets, and
each set of data sets contains the complete degradation
process data from the beginning of the bearing to the
damage. In this part, the second data set is adopted. )e
sampling frequency is set at 20 kHz and the sampling time is

1s. A total of 20480 acceleration data points are collected in
each sampling time, with a sampling interval of 10min.

3.2.2. Experimental Results and Analysis. )e rolling bear-
ing fault test rig is shown in Figure 10. )e change curve of
the root mean square value of each collection point of the

Table 2: Correlation coefficient and kurtosis of EWT component of experiment 1.

Correlation coefficient Kurtosis
Component 1 0.19 2.93
Component 2 0.36 4.54
Component 3 0.33 3.21
Component 4 0.41 3.51
Component 5 0.83 3.84
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Figure 9: VMD component envelope spectrum of experiment 1.
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whole life data is shown in Figure 11. Since the RMS of the
fault state and the normal state will be different under
normal circumstances, most scholars regard the mutation
points at T1 (about 5320min) and T2 (about 6460min) as
the fault occurrence point. However, through the research in
this article, it is found that the failure may have occurred
earlier.

First of all, it can be found in Figure 11 that the signal
RMS has not changed significantly around the 4520th
minute. Analyzing its time domain waveform and envelope
spectrum in Figures 12 and 13, no obvious periodic shock
nor obvious fault characteristic information appears, which
indicates that even if a fault occurs at this point, it is an
extremely weak early fault, or no fault has occurred.

)e experimental data were analyzed using the proposed
method. )e result of EWT boundary detection is shown in
Figure 14. First, the signal is decomposed into 5 components
in the first layer. Figure 15 shows the envelope spectrum of
each component. In the envelope spectrum of these 5
components, no relevant fault characteristic information can
be found, and a large number of interference frequencies are
included. In component 3, a frequency component similar to
the fault frequency of the outer ring was found, but it was not
accurate (the fault frequency of the outer ring was 230.7Hz,
while the frequency was 232.5Hz).)erefore, a layer of filter
analysis could not effectively identify whether the bearing
fault occurred and the type of fault. )is also indicates that
the actual fault at 4520 minutes in experiment 2 is weaker
and more difficult to identify than the simulated fault in
experiment 1.

)e correlation coefficients and kurtosis corresponding
to each component are given in Table 4. )rough the
comprehensive analysis of correlation coefficient, kurtosis,
and envelope spectrum, component 5 is selected as the

reconstructed signal after a layer filtering. Component 5 has
a very high correlation coefficient, and it can be seen from its
envelope spectrum that it contains sufficient frequency
components. Meanwhile, its kurtosis value also reflects that
the component may contain fault pulse information. Al-
though component 1 has the highest kurtosis value, its
correlation coefficient is too small, which may be the noise
interference component. By removing component 1, some
interference components are also removed correspondingly,
which is also the purpose of the first layer of filtering.

Since the first layer of reconstruction filter analysis did
not obtain very effective fault information, multilayer re-
construction filter analysis can be performed. After ana-
lyzing the one-to-three-layer filtering, it is found that the
multilayer filter in this experiment is a certain improvement,
but themost basic two-layer reconstruction filter can be used
for accurate fault diagnosis, which will be described in detail
below.

)e filter reconstruction signal is input to the output
layer. Figure 16 shows the envelope spectrum of the com-
ponents obtained, and the corresponding kurtosis of each
component is given in Table 5. In component 5, there is an
extremely prominent fault characteristic frequency com-
ponent; that is, the characteristic frequency of the outer ring
fault is 230.7Hz. At the same time, there is a relatively less
obvious component of double frequency. At the same time,
the kurtosis value of component 5 is 4.18, much larger than
3, which can also reflect that the bearing may have a fault
impact. Figure 17 shows the envelope spectrum diagram of
the 7050th minute T3 point in Figure 11. At this point, it can
be clearly seen that the bearing has an obvious outer ring
fault, and the fault characteristic frequency is 230.7Hz,
which is exactly the same as the fault characteristic frequency
obtained by the method proposed in this paper after data

Table 3: Basic parameters of Rexnord ZA-2115 double-row bearing.

Bearing pitch diameter (mm) Roller diameter (mm) Ball number Contact angle
71.5 8.4 16 15.17°

Bearing 1

Radial load

Electric motor

Bearing 2 Bearing 4Bearing 3

Acceleration sensor �ermocouple

Figure 10: Rolling bearing accelerated degradation rig.
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Table 4: Correlation coefficient and kurtosis of EWT component of experiment 2.

Correlation coefficient Kurtosis
Component 1 0.06 4.60
Component 2 0.20 2.92
Component 3 0.23 2.98
Component 4 0.45 2.22
Component 5 0.94 3.55
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Figure 16: VMD component envelope spectrum of experiment 2.
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processing of the 4520th minute. Based on the above in-
formation, it can be concluded that the bearing has had an
early weak failure of the outer ring.

At the same time, we also analyzed the data at other time
points. )e data after 4520 minutes can effectively identify
the fault features, so we will not make a detailed introduction
here.

4. Conclusions

Aiming at the problem that the early weak fault charac-
teristics of rolling bearing are weak, which is difficult to
diagnose in time, this paper proposes a method for early
weak fault diagnosis of rolling bearing based on multilayer
reconstruction filter, which can effectively extract the fault
characteristics from the acoustic and vibration signals, detect
the fault earlier, and avoid serious consequences.

)e early weak fault diagnosis method of rolling bearing
based on multilayer reconstruction filter is proposed, which
combines the characteristics of two advanced time-fre-
quency analysis methods EWT and VMD, to gradually
remove the interference information, highlight the fault
pulse information, extract the early weak fault features, and
accurately diagnose the fault. )e proposed multilayer re-
construction filter method can be used to decompose the
measured signal layer by layer to detect weaker fault
characteristics, which means that the rolling bearing fault
can be found earlier in the practical application, which is of
great significance to the safe operation of the equipment.

In this paper, the validity of the proposed method is
verified by the rolling bearing fault experiment and the full
life cycle acceleration experiment data. Experiment results
show that the proposedmethod can overcome the challenges
brought about by low SNR and weak fault features, extract
fault feature information earlier, and avoid the further
evolution of the fault, resulting in incalculable losses. At the
end of the paper, the future research work is prospected. In
the proposed method, the parameters of some steps should
be obtained by preprocessing the signal. )erefore, other

parameter optimization methods can be integrated into the
future work, so that the whole method can be adaptively
selected to complete the early fault diagnosis.

Data Availability

)e experimental data used in this study can be obtained
from the corresponding author upon request.
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)e bent-axis piston pump is the core component of electrohydrostatic actuators (EHA) in aerospace applications, and its wear of
key friction interfaces is greatly related to the healthy operation of pumps. )e leakage of the piston ring-cylinder bore interface
(PRCB), as the important part of the return oil flow of the pump house that commonly assesses the wear of key friction interfaces
in piston pumps, is changed with the rotation speed. )us, the wear of key friction interfaces is usually inaccurate by using the
leakage of PRCB. In order to obtain the relationship between the PRCB leakage and the rotation speed, an elastohydrodynamic
lubrication model is proposed. First, the proposed model includes a minimum film thickness model of PRCB to analyze the
dynamic change of oil film of PRCB when subject to the elastohydrodynamic lubrication. After that, a mathematical model of
PRCB is induced by combining the minimum film thickness model with the flow equation, which helps produce the effects of the
oil film on the leakage of PRCB.)e proposedmodel is verified by numerical simulation and experiment.)e results show that the
leakage of PRCB has a negative effect on the return oil flow of the pump case in the range of rotation speed of 700–1300 r/min and
discharge pressure of 10–20MPa. Furthermore, the leakage of PRCB is proportional to the rotation speed, but the return oil flow
of the pump case is decreased. )e effects of rotation speed are enhanced under the high discharge pressure conditions.

1. Introduction

Bent-axis piston pumps are widely used in electrohydrostatic
actuators (EHA) in aerospace applications due to the ad-
vantage of miniaturization and lightweight through high
speed and high pressure. )erefore, the bent-axis piston
pump greatly affects the healthy operation of EHA [1–3].

Performance degradation prediction and fault diagnosis
are of great significance to ensure the safe and stable op-
eration of mechanical equipment and reduce maintenance
cost [4, 5]. In hydraulic pumps, the wear of key friction pairs
is a major cause of the degradation of hydraulic pump
performance [6–9]. As the wear increases with pump
working time, the lubricating interface gap increases and the
lubricating interface leakage increases, which eventually

leads to the increase of the return oil flow rate of the pump
case [10, 11]. Hence, the return oil flow rate is often used to
evaluate the wear state of the key friction pairs in the piston
pump [12–14]. In engineering scenarios, however, the lu-
bricating interface leakage is inevitably changed with the
varying working conditions, such as the rotation speed,
which affects the accurate evaluation of wear states.

)e bent-axis piston pump is shown in Figure 1. )e
cylinder block moves synchronously with the drive shaft
through the bevel gears, and the piston reciprocates in the
cylinder bore. )e piston ring with the spherical cross-
section is usually installed on the end of the piston to reduce
the leakage between the piston and the cylinder bore. )ere
are two lubricating interfaces, that is, the valve plate-cylinder
block interface (VPCB) and the piston ring-cylinder bore
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interface (PRCB). As one of the two lubricating interface
leakages, PRCB leakage directly affects the return oil flow
rate in bent-axis piston pump.

)e lubrication interface gap, as the main parameter
affecting PRCB leakage, is influenced by multifactor inter-
actions. Pelosi et al. developed the fully coupled multibody
dynamics model to capture the complex fluid-structure
interaction phenomena affecting the nonisothermal fluid
film conditions and analyzed the influence of the squeeze
film effect and elastic deformation on the piston-cylinder
interface [15]. In order to improve energy efficiency of piston
pump, Song et al. presented a numerical method to analyze
influence of temperature on lubricant film characteristics of
the piston-cylinder interface [16]. Qian et al. presented a
nonisothermal fluid-structure mathematical model consid-
ering the piston eccentricity, elastic deformations, and the
fluid physical properties to analyze the piston-cylinder bore
interface leakage and the fluid pressure distribution [17].
Zhang et al. established the mathematical model of the oil
film thickness by using the cosine theorem in the cross
section of the piston and studied the piston-cylinder in-
terface leakage and pressure field under the condition of
ultrahigh pressure [18]. Nie et al. established a parameterized
elastohydrodynamic lubrication model and studied the in-
fluence of the elastohydrodynamic behavior, viscosity
temperature effect, and deep-sea environmental pressure on
piston-cylinder interface leakage in seawater hydraulic axial
piston pump [19]. Cho et al. analyzed the film thickness, the
pressure distribution, and the friction force of piston ring-
cylinder bore interface under elastic deformation of plunger
ring in bent-axis piston pump with the tapered piston [20].
Kumar established the theoretical model of the piston ring-
piston bore pair in the bent-axis piston pump with rect-
angular cross-section of piston ring and analyzed the leakage
flow characteristics between piston ring and cylinder bore
under different working conditions through numerical
simulation and test [21]. Manhartsgruber analyzed the dy-
namics of the leakage of the bent-axis piston pump with the
tapered piston and revealed the influence of the piston
rotation inside the cylinder bore on the pressure fluctuation
under low speed and low pressure condition by experiment
[22]. Zhang et al. analyzed the effect of centrifugal force and
reciprocation inertial force on the leakage between piston
and cylinder in the bent-axis piston pump under high speed
and show the leakage of piston-cylinder pair increases ob-
viously at high speed [23].

From the literature review, the previous studies men-
tioned mainly focused on the influence of the piston ec-
centricity, elastic deformation, and thermal effect on the
piston-cylinder bore interface leakage in the swash-plate
piston pump. Some researchers studied the effects of the
elastic deformation and micromotion of piston ring on the
oil film thickness, pressure field, and friction force of PRCB
in the bent-axis piston pump under certain rotation speed
conditions. However, the variable speed and wide speed are
the typical working conditions of bent-axis piston pump in
EHA, and the influence of rotation speed on PRCB leakage
considering elastohydrodynamic lubrication effect has not
been fully elucidated.

Rotation speed and its fluctuation are very meaningful
monitoring parameters, and the leakage analysis of the
friction pairs is also related to the rotation speed. Our
previous research has proved that the operating state in-
formation of the swash-plate piston machine can be
extracted from the speed fluctuation signal [24–27]. In this
study, an elastohydrodynamic lubricationmodel is proposed
to discuss the influence of rotation speed on the leakage of
PRCB. )e proposed model includes a minimum oil film
model of PRCB to analyze the dynamic change of minimum
oil film of PRCB under the elastohydrodynamic lubrication.
Combining the minimum oil film model with the flow
equation, a mathematical model of PRCB is induced to help
produce the effects of the oil film on the leakage of PRCB.
)e accuracy of the proposed model is verified by simulation
and experiment, which provides guidance on the piston
pump wear diagnosis based on the leakage.)e layout of this
paper is organized as follows. A theoretical model of PRBC is
established and explained in detail in Section 2. )e sim-
ulation results are discussed in Section 3. )e experimental
results are presented in Section 4, followed by the conclu-
sions in Section 5.

2. Elastic Deformation and Leakage
Mechanism of PRBC

2.1. Elastohydrodynamic Lubrication Equations. In order to
reduce the leakage of PRCB, a ring groove is usually opened
on the spherical surface of the large end of the piston, and a
piston ring is installed in the ring groove. )e boundary
conditions between the piston ring and the cylinder bore are
different because of the change of the angle position of the
piston in the suction and discharge region, as shown in
Figure 2.

Because of the elastic deformation of the contact surface
in the piston ring at relative motion, the gap of PRCB is
changed, which affects the leakage. )erefore, it is necessary
to access elastohydrodynamic lubrication (EHL) to analyze
the leakage between the piston ring and the cylinder bore.
)e analysis model between the piston ring and the cylinder
bore is shown in Figure 3.V represents the sliding velocity of
the piston and the piston ring relative to the cylinder bore, R
is the radius of the piston ring section,W is the unit load on
the piston ring. Figures 3(a) and 3(b) show the pressure
distribution of lubricating oil film between the piston ring
and the cylinder bore, and its typical characteristics are the
primary peak pressure and the secondary peak pressure. P1
represents the initial pressure of the oil film, and it equals the
pressure in the displacement chamber, and P2 represents the
pressure at the end of the film, and it equals the pressure in
the pump case.

)e assumptions for the EHL analysis between the piston
ring and the cylinder bore are listed as follows:

(1) )e lubricating pressure remains unchanged along
the direction of film thickness

(2) )e lubricating oil film remains unchanged along the
circumferential direction of piston bore

(3) )e fluid inertia force is ignored
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(4) )e compressibility and viscosity temperature
characteristics of the lubricating oil film are ignored

(5) )e only concern is the velocity gradient along the
piston ring direction of motion

)e Reynolds equation for one-dimensional isothermal
elastohydrodynamic lubrication is shown as follows [28]:

d

dx

ρh
3

η
dp

dx
􏼠 􏼡 � 12us

d(ρh)

dx
, (1)

where ρ is oil film density, h is the oil film thickness, p is the
pressure distribution of lubricating oil film, p� p1 at x� xa,
p� p2, zp/zx� 0 at x� xb, us is the average oil film velocity,
us � v/2, and η is the viscosity oil film.
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Figure 1: )e configuration of a bent-axis piston pump.
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Figure 2: )e behavior of PRCB. (a) )e discharge region; (b) the suction region.
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Figure 3: )e analysis model of PRCB. (a) )e configuration of PRCB; (b) the pressure distribution of PRCB.
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)e velocity of the piston relative to the cylinder bore can
be expressed as follows:

v � −R0ω sin c sinφ, (2)

where R0 is the nominal pitch circle radius of piston balls on
the driving flange, ω is the angular velocity of the driving
shaft, φ is the angular position of piston relative to the top
dead point, c is the angle between the axis of the cylinder and
axis of the driving shaft.

)e film thickness is expressed as follows [29]:

h(x) � h0 +
x
2

2R
−

2
πE′

􏽚
xe

x0

p(s)ln (s − x)
2
ds + C, (3)

where 1/E′ � 1/2(1 − μ21/E1 + 1 − μ22/E2), μ1, E’ is the
equivalent Young’s modulus, μ1 and μ2 are Poisson’s ratio of
the piston ring and the cylinder, E1 and E2 are Young’s
modulus of the piston ring and the cylinder, h0 is the film
thickness at x� 0, and C is the integral calculus constant.

)e viscosity coefficient and density coefficient of lu-
bricating oil are expressed as follows [30]:

η � η0 exp ln η0 + 9.67( 􏼁 −1 +
1 + p

p0
􏼠 􏼡

z

􏼢 􏼣􏼨 􏼩. (4)

)e density coefficient of lubricating oil is expressed as
follows [31]:

ρ � ρ0 1 +
0.6p

1 + 1.7p
􏼠 􏼡, (5)

where η0 is the viscosity of oil under atmospheric pressure,
p0 and z are the pressure-viscosity coefficients, and ρ0 is the
density of oil under atmospheric pressure.

)e unit load on piston ring is expressed as follows:

ω − 􏽚
xb

xa

p(x)dx � 0, (6)

where xa is the starting point of lubricating film in the
analysis and xb is the ending point.

2.2. PRCBLeakageModel. )e PRCB leakage is composed of
two parts. One is the Poiseuille flow by the pressure dif-
ference between the displacement chamber and the pump
case, and the other is the Couette flow by the piston ring
relative to the cylinder bore motion and the hydraulic oil
viscosity. As the most important parameter of PRCB, the
minimum oil film varies dynamically with the piston velocity
due to the elastohydrodynamic lubrication effect, which will
change the proportion of the Poiseuille flow and the Couette
flow in the gap and then affect the leakage flow of PRCB.)e
dynamic model of the leakage flow of PRCB is established by
combining the minimum oil film of PRCB with the flow
equation, which is the theoretical basis for the subsequent
study of the leakage flow of the plunger pair under the
variable speed condition.

)e instantaneous leakage flow rate between the piston
ring and the cylinder bore is expressed as follows [23]:

qlpi �
πdcδ

3
p 1 + 1.5ε2􏼐 􏼑

12μli
Δp −

πdcδp

2
v, (7)

where dc is the diameter of piston, δp is the gap between
piston ring and cylinder bore, Δp is the pressure difference
between displacement chamber and pump case, μ is the oil
viscosity, li is the width of piston ring, ε is the eccentricity of
the piston ring, and v is the velocity of motion of piston ring
in the cylinder bore.

)e average leakage flow rate of PRCB is expressed as

qlpi �
N

T0
􏽚

T0

0

πdcδ
3
p 1 + 1.5ε2􏼐 􏼑

12μli
Δpdt −

N

T0
􏽚

T0

0

πdcδpvpi

2
dt,

(8)

where N is number of the pistons and T0 is the time during
one rotating speed of the bent-axis piston pump.

3. Simulation Results

3.1. Simulation Parameter Setting. )e finite difference
method is used to solve the theoretical model. In order to
improve the calculation accuracy, the central difference
scheme is used to discretize the Reynolds equation. )e flow
chart of the numerical calculation program for the elasto-
hydrodynamic lubrication problem of PRCB is shown in
Figure 4.

According to the given working parameters and the
initial values of oil film thickness, distribution pressure,
viscosity, density and other parameters, the Reynolds
equation is calculated to obtain the new oil film distribution
pressure, and then the elastic deformation, viscosity, density,
and other parameters of the piston ring are calculated under
the obtained pressure.

)e Gauss–Seidel iterative method is used to solve the
algebraic equations of Reynolds equation discretization, and
the converging condition is expressed as follows:

p
k+1
i � (1 − α)p

k
i + αp

k
i , (9)

where α is the relaxation factor and α� 0.8 is chosen to
obtain a fast convergence, pk

i and pk+1
i are the pressure

values at steps k and k + 1, and pk
i is the temporary value at

step k+ 1.
)e whole process is repeated until the error tolerance of

the Reynolds equation at each node is less than the relative
precision requirement ε� 1× 10−5; the error tolerance of the
Reynolds equation ε is expressed as follows:

p
k+1
i − p

k
i

p
k+1
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε. (10)

MATLAB platform is used to calculate the leakage flow
rate between piston ring and cylinder bore. In order to
compare the characteristics of the leakage with different
operating conditions, the parameters of simulation calcu-
lation process are set in Table 1.
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3.2. Analysis of Simulation Results

3.2.1. Ge Pressure Distribution of PRCB. )e pressure
distribution of PRCB in the discharge region is shown in
Figure 5.

As shown in Figure 5, the pressure of oil film changes in
the lubrication zone at a certain angle position, and there is
the maximum pressure value (the local maximum pressure).
)e local maximum pressure varies with the angular posi-
tion of the discharge region, and there is also the maximum
pressure (the global maximum pressure). As a whole, the
local maximum pressure in the discharge region decreases
first and then increases with the increase of angle position,
and the global maximum pressure is 146MPa at angle
position φ� 4.7°, while the angle position is near the top dead
point 0° and the bottom dead point 180°; the local maximum
pressure changes dynamically again. )e reason is that the
piston velocity is small near the top and bottom dead points,
and the local maximum pressure is determined by the
primary peak pressure, as shown in Figure 3(b). However,
the local maximum pressure is determined by the secondary
peak pressure in other region, and the secondary peak
pressure decreases with the increase of the piston velocity.

)e local maximum pressure distribution of PRBC in the
discharge region at different speeds is shown in Figure 6.

As shown in Figure 6, when the speed increases from
700 r/min to 1300 r/min with a step of 200 r/min, the global
maximum pressure is basically not affected by the change of
speed, which is kept at 146MPa, but the angular position of
the global maximum pressure decreases from 4.7° to 2.5°.

)e local maximum pressure distribution of PRBC in the
discharge region at different discharge pressure is indicated
in Figure 7.

As indicated in Figure 7, when the discharge pressure
increases from 10MPa to 20MPa at n� 700 r/min, the local
maximum pressure becomes larger as a whole, the global
maximum pressure increases from 146MPa to 205MPa, and
the angular position of the global maximum pressure in-
creases from 4.7° to 15.3°.

)e rotation speed has a weak effect on the value of the
global maximum pressure, which has a significant effect on
its the angular position. )e discharge pressure has im-
portant influence on the value and the angle position of the
global maximum pressure. )e reason is that the global
maximum pressure of PRBC in the discharge area is de-
termined by the secondary peak pressure of the lubricating
oil film. )e secondary peak pressure is positively correlated
with the discharge pressure. )e angle position of the sec-
ondary peak pressure is affected by the rotation speed and
the discharge pressure. )e angular position of the sec-
ondary peak is positively correlated with the discharge
pressure, and it is negatively correlated with the rotation
speed.

3.2.2. Ge Minimum Gickness of PRCB. )e minimum
thickness of PRCB at different speed is displayed in Figure 8.

As displayed in Figure 8, the minimum film thickness
increases first and then decreases with the increase of angle
position in the discharge region and the suction region.
However, the minimum film thickness of PRCB in the
discharge region is obviously larger than that in the suction
region as a whole. When the speed increases from 700 r/min
to 1300 r/min with a step of 100 r/min, the minimum
thickness increases in the discharge region and the suction
region, and its increase in the discharge region is greater.
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Figure 4: Flow chart of the calculation process.

Table 1: Simulation parameters setting.

Description Numerical value Unit
Suction pressure 0.1 MPa
Discharge pressure 10, 15, 20 MPa
Rotation speed 700, 800, 900, 1000, 1100, 1200, 1300 r/min
Oil viscosity (at 40°C) 0.046 Pa.s
Diameter of distribution circle in piston head 68.1 mm
Diameter of cylinder bore 16 mm
Number of pistons 7
Swivel angle 40 deg
Width of piston ring 3.2 mm
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)e effect of discharge pressure on the minimum
thickness of PRCB is shown in Figure 9.

As shown in Figure 9, the minimum thickness of PRBC
in the discharge region and the suction region increases first
and then decreases with the increase of angular position, but
the former is larger than the latter as a whole. When the
discharge pressure increases gradually from 10MPa to
20MPa with a step of 5MPa, the minimum oil film increases
obviously in the oil drainage region, but only slightly in the
suction region.

)e reason is that the minimum thickness is determined
by the velocity and the load of the piston ring. When the
rotation speed and the discharge pressure are constant, the
velocity of piston ring increases first and then decreases from
the top dead point (TDC) to the bottom dead point (BDC) in
the drainage region and is the same change trend from BDC
to TDC in the suction region, so the change law of minimum
thickness is the same as the velocity of piston ring. )e
discharge pressure mainly affects the load of the piston ring
in the discharge region, and the discharge pressure increases,
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Figure 5: )e pressure distribution of PRCB at n� 700 r/min p� 10MPa. (a) 3D diagram of oil film pressure distribution. (b) Right view of
oil film pressure distribution.
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Figure 8: )e minimum thickness of PRCB at different speeds. (a) )e discharge region; (b) the suction region.
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and the load of the piston ring becomes larger, which leads to
the increase of the elastic deformation of the piston ring, so
the minimum thickness in the discharge region is greater
than that in the suction region.

)e mean value of minimum thickness of PRCB is
shown in Figure 10.

As shown in Figure 10, it is found that the mean value of
the minimum thickness in the discharge region and the
suction region increases with the increasing rotation speed.
When the discharge pressure is 20MPa, with the rotation
speed increasing from 700 r/min to 1300 r/min, the mean
value of the minimum thickness changes the most, and the
variation in the mean value in the discharge region is 2.87
um, while the variation in the mean value in the suction
region is 0.28 um.

)e speed has obvious influence on the mean value of
minimum thickness in the discharge region and the suction
region, and the mean increases with the increase of the
speed. )e discharge pressure has obvious influence on the
mean in the discharge area, and the mean value increases
with the increase of discharge pressure, but the discharge
pressure has a weak effect on the mean in the suction area.
)e mean of minimum thickness in the discharge area is
obviously higher than that in the suction area.

As the speed increases from 700 r/min, the variation of
the mean minimum thickness increases with the increase of
the variation of the speed in the discharge region and suction
region, especially high discharge pressure, as described in
Figure 11.

In this picture, the variation of mean minimum thick-
ness in the discharge region is greater. Moreover, the

variation in the discharge region is obviously higher than
that in the suction region. )e maximum of variation in the
discharge region is 2.87 um, and the maximum of variation
in the suction region is 0.28 um, and the former is 10 times
the latter at p� 20MPa.

3.2.3. Ge Leakage Flow Rate of PRCB per Piston. )e
leakage of PRCB is caused by the Poiseuille flow and the
Couette flow.)e leakage from the displacement chamber to
the pump case is positive, whereas the leakage is negative.
When the piston is in the suction region, the Poiseuille flow
is not considered because the pressure difference between
the displacement chamber and the pump case is very small.

)e effect of rotation speed on the instantaneous flow of
PRCB per piston is presented in Figure 12.

As presented in Figure 12, the Poiseuille flow first in-
creases and then decreases with the increase of angular
position in the discharge region, and the Poiseuille flow in
the discharge pressure increases with the increase of speed,
as shown in Figure 12(a). )e Couette flow is negative in the
discharge pressure region and is positive in the suction
region. )e value of the Couette flow first increases and then
decreases with the increase of angular position, but the value
of the Couette flow in the discharge region is significantly
larger. When the speed increases from 700 r/min to 1300 r/
min, the leakage flow in the discharge region and suction
region increases, but the variation of the former is larger, as
shown in Figure 12(b). )e total flow rate of PRCB is
negative in the discharge area and positive in the suction
area. )e value of the total leakage increases with the
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Figure 9: )e minimum thickness at different pressure. (a) )e discharge region; (b) the suction region.
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Figure 11: )e variation of mean minimum film thickness. (a) )e discharge region; (b) the suction region.
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increase of rotation speed, but the value in the discharge area
is obviously larger than that in the suction region as shown
in Figure 12(c).

)e effect of the discharge pressure on the instantaneous
flow rate of PRCB per piston is shown in Figure 13.

As shown in Figure 13, the Poiseuille flow first increases
and then decreases with the increase of angular position in
the discharge region and increases with the increase of speed
as a whole, as shown in Figure 13(a). )e Couette flow is
negative in the discharge pressure region and is positive in
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Figure 12: )e leakage of PRCB per piston at different rotational speeds. (a) )e Poiseuille flow; (b) the Couette flow; (c) the total flow rate.
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the suction region. )e value of the Couette flow first in-
creases and then decreases with the increase of angular
position, but the value of the Couette flow in the discharge
region is significantly larger. When the speed increases from
700 r/min to 1300 r/min, the leakage flow in the discharge
region and suction region increases, but the variation of the

former is larger, as shown in Figure 13(b). )e total flow rate
is negative in the discharge region and is positive in the
suction region.)e total flow rate increases with the increase
of the speed and the discharge pressure, but the value in the
discharge region is obviously larger than that in the suction
region, as shown in Figure 13(c).
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Figure 13: )e leakage flow of PRCB per piston at different discharge pressures. (a) )e Poiseuille flow; (b) the Couette flow; (c) the total
flow rate.
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)e reason is that the Poiseuille flow is determined by the
minimum thickness and the pressure difference between the
displacement chamber and the pump case. )e pressure
difference and the minimum thickness increase with the
increase of discharge pressure. Once the discharge pressure
is determined, the pressure difference will basically remain
unchanged. )erefore, the change trend of the Poiseuille
flow consistent with the change trend of the minimum
thickness in the discharge region under different the dis-
charge pressure. )e Couette flow is determined by the
velocity of the piston ring and the minimum thickness
between the piston ring and the cylinder, and the positive
and negative of the Couette flow are determined by the
direction of piston velocity.)e leakage flow is caused by the
Poiseuille flow and the Couette flow, and the two flows
oppose in the discharge pressure region and support each
other depending on in the suction region. According to
Figures 12 and 13, the Couette flow plays a leading role in
leakage flow of PRBC, especially the Couette flow in the
discharge region.

)e average leakage flow rate of PRCB per piston at
different speeds is shown in Figure 14.

As shown in Figure 14, it is found that the average
leakage flow is negative, which indicates the flow rate flows
from the pump case to the displacement chamber. When the
speed is constant, the average leakage flow rate increases
with the increase of the discharge pressure. When the dis-
charge pressure is constant, the average leakage flow rate
increases with the increase of the speed. If the discharge
pressure is 20MPa, the mean increased from 27.9ml/min to
75.6ml/min with the increase of the speed from 700 r/min to
1300 r/min, which increased by 171 percent.

4. Experimental Results

4.1. Test Rig Description. )e leakage flow rate of PRCB is
difficult to measure directly. According to the previous
works [21, 23], the leakage flow rate of PRCB is an important
part of the return oil flow rate. )erefore, the return oil flow
rate is measured to investigate the effects of rotation speed
on the leakage flow of PRCB. )e bent-axis piston pump
experiments are implemented on a test rig, as shown in
Figure 15.

As shown in Figure 15, the test rig consists of a bent-axis
piston pump, a motor, a speed sensor, a pressure senor, a
temperature senor, and a relief valve and so on. )e bent-
axis piston pump is continuously adjusted from 0 to 2000 r/
min by the motor.)e return oil flow rate is measured by the
flow sensor which is installed on the outlet of the pump case
in the bent-axis piston pump. )e discharge pressure is
controlled by adjusting the relief valve. )e signals obtained
from the main sensors are collected using NI acquisition
card and LabVIEW software.)e detailed descriptions of the
main parameters of the test rig are shown in Table 2.

4.2. Data Processing. )e data acquisition diagram of return
oil flow rate in the bent-axis piston pump is presented in
Figure 16. )e sampling frequency was 1Hz, and the time

interval was 35 s under different working conditions. )e
empirical mode decomposition (EMD) was used to deal with
the return oil flow rate under p� 20MPa n� 1300 r/min to
obtain its intrinsic mode functions (IMF), as shown in
Figure 16(a). According to the noise reduction and
smoothing of the collected the return oil flow rate data, the
return oil flow rate diagram under different working con-
ditions is shown in Figure 16(b). It can be seen from this
figure that the overall trend of the return oil flow rate de-
creases with the increase of rotation speed.

4.3. Results Analysis. )e simulated flow rate of PRCB and
the measured the return oil flow rate in the bent-axis piston
pump is shown in Figure 17.

In Figure 17, it is obvious that the simulated total flow
rate of PRCB is negative, and its value increases with the
increase of speed and discharge pressure, but the measured
the return oil flow rate decreases with the increase of speed
and increases with the increase of discharge pressure. )e
reason is that the measured the return oil flow rate is
composed of the leakage of VPCB and the leakage of PRCB.
)e leakage of VPCB is the main part of the measured the
return oil flow rate, and its values increases with the increase
of the discharge pressure and is less affected by rotation
speed. But the flow rate of PRCB is negative, which leads to
the decrease of the measured return oil flow rate.

)e variations of the simulated flow of PRCB and the
measured return flow rate relative to the flow rate under the
same discharge pressure and 700 r/min is shown in
Figure 18.

10MPa 15MPa 20MPa
�e discharge pressure

–80

–60

–40

–20

0

�
e a

ve
ra

ge
 fl

ow
/m

l/m
in

n = 700
n = 800
n = 900
n = 1000

n = 1100
n = 1200
n = 1300

Figure 14:)e average leakage flow of PRBC per piston at different
speeds.

12 Shock and Vibration



Speed sensor

Bent-piston pump

Flow sensor

Case drain port

Temperature
sensor

Pressure
sensor

Relief 
valve

Motor

Figure 15: Photograph of the test rig.

Table 2: )e main parameters of the test rig.

Devices Descriptions
)e bent-axis piston
pump

Displacement: 80.4ml/r; operating pressure: 0–42MPa; max self-priming speed: 2300 r/min flow sensor: 0.02–4 l/
min, ±0.3%; pressure sensor: 0–60MPa, ±0.05%

)e main sensors Speed sensor: 0–6000 r/min, ±1 rpm; temperature sensor: −25-100°C, ±0.8%
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Figure 16: )e data acquisition diagram of the return oil flow rate. (a) )e return oil flow rate data EMD results under p� 20MPa n� 1300
r/min; (b) the return oil flow rate under different working conditions.
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In this picture, it is obvious that the variations of the
simulated flow of PRCB increase with the increase of ro-
tation speed, indicating that the simulated flow of PRCB

increases with the increase of speed. )e variation of the
measured return flow rate is negative, and it decreases with
the increase of rotation speed, indicating that the measured
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Figure 17: Simulated results and measured results. (a) Simulating the total flow rate of PRCB; (b) measuring the return oil flow rate.
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return flow rate decreases with the increase of rotation
speed. Moreover, the trend of the two variations with ro-
tation speed is basically the same at the different discharge
pressure. However, there is a certain difference between the
two; its maximum is 44ml/min at n� 1300 r/min and
p� 20MPa.)emain reason is that the measured result is by
the leakage flow of PRCB but also by the leakage flow of
VPCB.

5. Conclusions

)e model is suitable for analyzing the dynamic change of
the minimum oil film of PRCB under the action of elas-
tohydrodynamic lubrication. Combining the minimum oil
film model with the flow equation, a mathematical model of
PRCB is introduced to help produce the effect of the oil film
on the leakage of PRCB. )e effect of rotation speed on the
leakage flow of PRCB is analyzed through simulation and
experiment, and the following conclusions are obtained.

(1) )e lubrication of PRCB in the discharge of oil
segment belongs to the elastohydrodynamic lubri-
cation, and the angle position of the maximum oil
film pressure is close to the top dead point 0° with the
increase of rotation speed, but its maximum pressure
value is basically not affected by the change of the
rotation speed.

(2) )e minimum thickness of PRCB increases with the
increase of rotation speed, and its value in the dis-
charge of oil segment is greater than that in the
suction of oil segment, and the former varies more
with the rotation speed.

(3) )e average flow rate of PRCB is from the pump case
to the displacement chamber, which reduces the
return oil flow rate in the pump case. )e return oil
flow rate decreases with the increase of rotation
speed, and the effect of rotation speed on the average
flow rate of PRCB and the return oil flow rate is also
remarkable under the high discharge pressure.

)e return oil flow rate in the bent-axis piston pump
should be the synthesis of the two friction pairs, which are
related to the rotation speed. In this paper, the relationship
between the elastohydrodynamic lubrication characteristics
of PRCB and the rotation speed is analyzed.)e relationship
between leakage of the valve plate-cylinder block interface
and rotation speed in the bent-axis piston pump will be the
focus of further work.
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Bearings are considered as important mechanical components in rotating machines. Bearing load is used as an indication of
monitoring rotor system health, but there are interval and probability uncertain parameters in the process of obtaining bearing
load from the rotor system. A bearing load strip enclosed by two bounding distributions is then formed, rather than a single
distribution that we usually obtain through the load identification method for a deterministic rotor system. In this paper, a
computational inverse approach that combines the interval and perturbation analysis method with regularization is presented to
stably identify bearing load strip. Using an interval analysis method, a calculated transient response of the rotor structure only
subjecting to the bearing load can be approximated as a linear function of the interval parameters in the rotor system. +e
perturbation analysis method based on Taylor expansion is used to transform the problem of the bearing load identification
involving in probability parameters into two kinds of certain inverse problem, namely, the bearing load identification combining
the mean value of uncertain parameters with calculated transient response function and the sensitivity identification of bearing
load to each probability parameter. Regularization is used to overcome ill-posedness of bearing load identification arising from the
noise-contaminated observed response. A rotor system with two bearings is investigated to demonstrate the effectiveness and
accuracy of the presented method.

1. Introduction

Safety and reliability of the high-speed rotating mechanical
equipment has attracted much attention with the increase in
rotational speed and power [1–3]. In order to reduce the loss
caused by mechanical equipment faults and achieve efficient
fault diagnosis, it is necessary to perceive and manage the
running status and health level of its key systems and
components in real time [4]. Bearing is the main basic
supporting structure of rotating machinery, and the running
state of the rotor system can be assessed by bearing load [5].
At present, the theoretical system mostly uses the sensor to
collect the fault characteristic signal of the bearing under
specific working conditions and uses it as the basic data of
the fault diagnosis model [6, 7]. Any deviations between the
referenced bearing load and the observed value can be
inferred as an indication of a change or damage in the rotor

system. +e approach for reliably monitoring the rotor
system health is to create a real bearing load from the rotor
system in its undamaged state [8]. However, in the actual
work site, the acquisition system to determine the real
bearing loadmay be affected by the noise in the environment
or the uncertain factors caused by the manufacturing and
service environment of the rotating machinery structure [9].
As a result, the bearing load identified by the collected
signals do not fully reflect the real operation of the rotor
system. Because of the existence of uncertain factors, the
bearing load distribution will form a strip enclosed by two
bounding distributions, rather than a single distribution that
we usually obtain through a deterministic rotor system. If
the observed bearing load is within the boundary of the
referenced bearing load, the rotor system runs without fault.

In general, the problem to determine the bearing load
strip from the collected output signals considering the
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uncertain factors is called an uncertain inverse problem.+is
type of inverse problem has recently attracted more and
more attention. As the most popular uncertainty modeling
strategy, probability [10, 11], interval [12, 13], and combined
method [14, 15] have been proposed to applied in engi-
neering for uncertain parameter identification and load
identifications. However, the probability method is a
quantitative description, which describes the uncertainty
parameters accurately but requires a lot of information
coming from many expensive experimental tests to con-
struct the probability density function; the interval method is
a qualitative description, which handles the uncertainty with
limited information, but it will lose the actual value of the
project due to the expansion of the interval estimation.+us,
while proposing a new uncertainty inverse analysis frame-
work for gaining the bearing load strip to evaluate uncertain
rotor system fault, a more efficient computing method needs
to be developed together.

In this paper, a hybrid method based on interval theory
[16], perturbation theory [17], and regularization method
[18] is proposed to construct the inverse analysis framework
to deal with the uncertainty with imprecise information;
utilizing Taylor expansion, the problem of bearing load
identification of the uncertain rotor system is transformed
into two kinds of deterministic bearing load identification
problems. One kind is the middle bearing load identification
taking the uncertain parameters as themean value, and other
is the reverse calculation of the sensitivity of the bearing load
with respect to the uncertain parameters; the regularization
method is used to treat the unstable solution coming from
the noise in the measurement response.

2. Bearing Load Identification Problem

+e transient response [19] coming from vibration analysis
of the bearing-rotor system is shown in the following:

MII O

O MBB

􏼢 􏼣 €qI €qB􏼈 􏼉 +
CII O

O CBB + CB

􏼢 􏼣
_qI

_qB

􏼨 􏼩 +
KII KIB

KIB KBB + KB

􏼢 􏼣
qI

qB

􏼨 􏼩 � ω2 FT
eI

FT
eB

⎧⎨

⎩

⎫⎬

⎭, (1)

where O is the zero matrix; M, K, and C, respectively,
represent the mass, stiffness, and damping matrices of the
separate rotor structure; the index B denotes the node of the
rotor with the bearing support and the index I denotes the
node of the rotor without the bearing support; KB and CB
represent the bearing stiffness and damping matrices, re-
spectively; the transient displacement q, velocity _q, and
acceleration €q represent the structural response of the

bearing-rotor system under unbalanced force Fe with the
rotational speed ω.

Denoting FT � CB _qB + KBqB and moving FT from the
left side of equation (1) to the right side, the equivalent
kinetic equation of the rotor structure subjecting to the
unbalanced force Fe and the bearing load FT is shown in the
following:
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O KB

􏼢 􏼣
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􏼨 􏼩 � ω2 FT
eI

FT
eB

⎧⎨

⎩

⎫⎬

⎭

O

FT
􏼨 􏼩,

(2)

or simplified to

[M] €q􏼈 􏼉 + C2􏼂 􏼃 _q􏼈 􏼉 + K2􏼂 􏼃 q􏼈 􏼉 � ω2 Fe􏼈 􏼉 − FT
􏽮 􏽯. (3)

+e measurable structural response q can be thought to
be the superposition of responses of the rotor separately
subjecting to Fe and −FT. +e damping matrix C2 and
stiffness matrix K2 of the separate rotor in equation (3) do
not combine the effects of the bearing.

As the rotor structure is linear time invariant, the fol-
lowing relationship is obtained according to the superpo-
sition principle

[M] €qT􏼈 􏼉 + C2􏼂 􏼃 _qT􏼈 􏼉 + K2􏼂 􏼃 qT􏼈 􏼉 � FT
􏽮 􏽯, (4)

where qT � qe − q, qT represent the transient response of the
rotor structure only subjecting to the bearing load FT. +e

unbalance response qe only subjecting to the unbalance load
Fe can be numerically and accurately calculated by com-
bining the information of the unbalance load Fe together
with the matricesM, C2, andK2 into the forward solver [20].
+e calculated unbalance response qe together with the
measurable structural response q is combined into Green’s
function method and regularization operation [21] to re-
construct the bearing load FT.

3. Bearing Load Identification Method for
Uncertain Rotor Systems

When the parameters in the rotor system, such as material
properties and geometric structure, cannot be determined
completely, the Green kernel function in the load identifi-
cation used to characterize the dynamic characteristics of the
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rotor system will be uncertain. When this convolution in-
tegral in the time domain is discretized, the whole concerned
time period is separated into equally spaced intervals, and
the response qTonly subjecting to the bearing load FT can be
expressed by a matrix form:

qT � H(λ, η) · FT
(λ, η), (5)

where G is the Green function matrix coming from the
bearing load FT to the response qT.

In general, the Green function matrix H of equation (5)
is ill-conditioned, and the response qT calculated by the
measurable structural response q according to qT � qe − q
inevitably carries noise. If the inverse of the matrix H exists,
the bearing load FT can be obtained by using the following
equation based on regularization:

FT
� Hα

· qTδ � VDiag f α, σi( 􏼁σ−1
i􏼐 􏼑UqTδ

� 􏽘
m

i�1
f α, σi( 􏼁σ−1

i UT
i qTδ􏼐 􏼑Vi,

(6)

where qTδ represents the response with noise, U� [u1, u2,
. . ., um] is the left singular vector ofH andV� [v1, v2, . . ., vm]
is the right singular vector of H, which are two normalized
orthogonal matrices, and f(α, σi) denotes a filter function to
attenuate the amplification effect of small singular value on
noise.

+e Green function matrix H(λ, η) is expressed as a set
of uncertain parameters containing interval and proba-
bility parameters, so the bearing load is no longer a so-
lution, but a solution set. In rotor system health
monitoring, the upper and lower boundaries of the so-
lution set are often concerned, and it is not necessary to
solve all the possible values. According to the interval
mathematics theory, when the uncertain parameter λ is in
the interval form, the corresponding response qT is also in
the interval form. In order to obtain the maximum and
minimum values of the bearing load, all the possible values
of the interval uncertain parameter λ should be selected in
turn, the bearing load should be identified based on the
response qT distribution strip, and the maximum and
minimum values of the bearing load should be searched in
the identification results. +e recognition process with a
traditional Monte Carlo simulation (MCS) [22] will in-
volve complex multilayer nesting solution, and the for-
ward problem calculation model needs to be called
repeatedly, which will inevitably lead to the inefficiency of
the solution. In this paper, the bearing load identification
problem involving interval and probability uncertain
parameters in equation (5) is transformed into a series of
deterministic problems utilizing the method of interval
analysis and matrix perturbation.

3.1. Boundary of Transient Response. According to the
monotonicity analysis theory [23], the maximum and
minimum values of bearing load must correspond to the
boundary of interval uncertain parameters. +e lower
boundary λL and upper boundary λR of n-dimensional

interval uncertain parameters can be described by the
midpoint λc and radius λw of the interval. When the un-
certainty level is small, the first-order Taylor expansion is
carried out at the midpoint λc of the interval. +e minimum
and maximum values of the response qT can be obtained
directly and explicitly.

qTmin(t) � min
λ∈Γ

qT(t, λ) � qT t, λc
( 􏼁 − 􏽘

n
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
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,
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, λR
􏽨 􏽩 � λc

− λw
, λc

+ λw
􏼂 􏼃,

λj ∈ λ
I
j � λL

j , λR
j􏽨 􏽩 � λc

j − λw
j , λc

j + λw
j􏽨 􏽩,

λ � λc
+ δλ, δλ ∈ [−1, 1]λw

,

λj ∈ [−1, 1]λw
j , j � 1, 2, . . . , n.

(7)

3.2. Boundary of Bearing Load. +e k-dimensional proba-
bilistic uncertainty parameter η can be expressed as the
mean value ηd and disturbance part Δηr. According to the
perturbation theory [24], the Green kernel function matrix
of the corresponding rotor system and the bearing load to be
identified contain disturbance parts.

η � ηd + Δηr,

ηi � ηdi + Δηri, i � 1, 2, . . . , q,

qT � Hd + ΔHr( 􏼁 · FT
d + ΔFT

r􏼐 􏼑,

(8)

where the subscript d and r represent the mean value and
disturbance part of the probabilistic uncertain parameters,
respectively.

qT � HdF
T
d ,

−ΔHrF
T
d � HdΔF

T
r .

(9)

+eGreen kernel function matrixHd in equation (8) can
be obtained when the probabilistic uncertain parameters are
taken as the mean value. Based on the response qT, the mean
value FT

d of the bearing load can be inversely calculated by
the deterministic bearing load identification method. +e
disturbance part ΔFr of the bearing load can be identified
through the reverse calculation of the sensitivity of the
bearing load with respect to the probabilistic uncertain
parameters. Among the solving the mean value FT

d and the
disturbance part ΔFr, the Green function matrix Hd in
equation (9) is the same, and only one matrix singular value
decomposition operation is needed in regularization.
+rough the above matrix perturbation analysis method, the
bearing load identification problem with k-dimensional
probabilistic uncertain parameters can be transformed into
the following k+ 1 deterministic problem. +e bearing load
with interval and probability uncertainty can be described
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using the Taylor expansion of first order regarding near their
means (λc, ηd).

FT
L � min

λ∈Γ,η∈Ω
F

T
d (t, λ, η)|qTm − 􏽘

n
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zFT
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n
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(10)

where the transient response qTm � qe − qm for identifying
the mean value FT

d is obtained from the measurable struc-
tural response qm to means (λc, ηd) together with the cal-
culated unbalance response qe, and he disturbance part ΔFr

centering on the qTmin and qTmax from equation (7) using the
deterministic bearing load identification method is com-
puted. +e first-order partial derivative (zFT(t, ηd)/zηi) to
the probabilistic parameters can be dealt by the difference
method [25], and the difference scheme is used to transform
the partial differential equation into an algebraic equation to
solve, for example, (zFT(t, ηd)/zηi) � (ΔFT(t, ηd)/Δηi), and
the increment ΔFT(t, ηd) of the bearing load is obtained by
small disturbance Δηri at the midpoint. With the mean value
FT

d and the disturbance part ΔFr, the minimum FT
L and

maximum FT
R of the bearing load can easily calculated based

on equation (10).

4. Bearing Load Identification Process of
Uncertain Rotor Systems

Based on the above discussion, the solution procedure to-
wards a bearing load identification of the rotor system in-
volving interval and probability uncertain parameters can be
described as follows (see Figure 1):

(1) Construct a forward solver to calculate the unbalance
response qe or structural response q utilizing the
mass, stiffness, and damping matrices and the cor-
responding load

(2) Construct an inverse problem solver for the deter-
ministic load identification algorithm, combining
the calculated or measured structural response qm

and the unbalance response qe with the known mass,
stiffness, and damping matrices into the inverse
problem solver to calculate the bearing load

(3) Assume the uncertain parameters (λ, η) from en-
gineering experience, combining the mean of un-
certain parameters (λc, ηd) together with the
measured structural response qm into the inverse
problem solver to calculate the mean value FT

d

(4) Calculate qTmin and qTmax from the forward solver
using the obtained FT

d and the known interval
parameters λ based on the interval analysis
method

(5) Combine the probabilistic parameters η together
with the obtained qTmin and qTmax into the inverse
problem solver to calculate the disturbance part ΔFr

based on the difference method
(6) Utilize themean value FT

d and the disturbance partΔFr

to calculate FT
L and FT

R, as shown in equation (10)

5. Examples

+e numerical model in reference [26, 27] is provided to
verify the feasibility of the proposed uncertain bearing load
identification algorithm. Figure 2 depicts a rotor system with
three discs supported by two fault predicted journal bear-
ings, the geometrical parameters of the rotor structure are
partly given in Figure 2(a), the transfer matrix model of the
rotor structure is established as shown in Figure 2(b), and
the rotor system is divided into 33 elements consisting of 34
nodes with three discs at element 9, 17, and 28. +e bearing
acts on the nodes 7 and 24. +e angular speed is 4000 rpm.
+e elastic modulus E of the rotor material is 210GPa, the
shear elastic modulusG is 80GPa, and the density is 7650 kg/
m3. +e disc weight is 14 kg, and the unbalance mass to
construct unbalanced force Fe of 14 kg at 0° is placed at 1mm
radii from the center of the middle disc. +e mass, stiffness,
and damping matrices of the rotor system are obtained by
the transfer matrix method.

5.1. Identification of Bearing Load under Determined
Structure. +e structural response q can be easily obtained
by using a forward solver (such as TMM) reported by Mao
et al. [27] with the information of the mass, stiffness,
damping matrices, and the corresponding unbalance load
and bearing load. For testing the inverse problem solver for
the deterministic load identification algorithm, the struc-
tural response at the nodes 3, 8, 20, and 25 used to identify
the bearing load is gained by noise-contaminated response
(a 3% Gaussian noise is directly added to the computer-
generated response coming from the assumed value of
bearing stiffness and damping coefficient in Table 1 into the
TMM forward solver), as shown in Figure 3.With the help of
regularization, the bearing loads are stably obtained and
shown in Figure 4. It is known that the load time histories of
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Figure 2: +e model of a rotor system: (a) a bearing-rotor system with three discs; (b) the TMM model.
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Figure 1: Solution procedure towards bearing load identification with uncertainty.
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the three cases are in good agreement, and in the acceptable
range, it shows that the accuracy of the deterministic bearing
load identification algorithm is feasible.

5.2. Bearing Load Identification under 3% Uncertainty.
For testing the proposed uncertain bearing load identifi-
cation algorithms, the unbalance parameters m, e,φ􏼈 􏼉 are
interval uncertain and the rotor material parameters E, G{ }

are probability uncertain. Assumed the probabilistic un-
certainty parameters are taken as the mean (that is,
E � 210GPa, G � 80GPa{ }), adjusting the interval uncer-
tainty parameters under 3% uncertainty (that is, 3% off from
the mean m � 14 kg, e � 1mm, ϕ � 0°􏼈 􏼉), and combining
them together with the obtainedmean bearing load as shown
in Figure 4 into the forward solver (TMM) to calculate the
response qT, the sensitivity curves of the response qT with
respect to the interval uncertainty parameters m, e, ϕ􏼈 􏼉 are
obtained, as shown in Figure 5(a). It can be seen from the
diagram that the response qT is more sensitive to the un-
balance parameters m, e, ϕ􏼈 􏼉 and the unbalance parameters
have great influence on the identification of bearing load.
Combining with the first-order derivatives to the unbalance
parameters together with the response qT(t, λ) coming from
the obtained mean bearing load FT

d into equation (7), the

bounds of the response, qTmin and qTmax, can be obtained,
shown in Figure 5(b).

Utilizing the obtained response, qTmin and qTmax, and the
probability uncertainty parameters under 3% uncertainty
into the inverse problem solver for the deterministic load
identification algorithm, the bearing load with respect to
each probability uncertain parameters is calculated and the
results are plotted in Figure 6(a). It shows that the sensitivity
curves vary greatly in the whole-time history, and the
probability parameters will have a relatively huge single
impact on the accuracy of the identified boundaries of the
bearing load. Combining with the disturbance part ΔFr

coming from the probabilistic parameters η together with
the obtained qTmin and qTmax together with the obtained
mean bearing load FT

d into equation (10), the bounds of
bearing load, FT

L and FT
R, can be obtained, shown in

Figure 6(b). +e identified bearing load boundary can ef-
fectively describe the time history of the bearing load change,
the upper and lower boundaries of the bearing load can
better contain the middle load, and the middle load is within
the upper and lower boundaries. In addition, at the peak of
the bearing load, the boundary of the identified bearing load
is wide, so the interval and probability uncertain parameters
have a great influence on the identification results of the
bearing load currently.

Table 1: Bearing dynamic parameters.

Bearing
Stiffness coefficients (MN·m−1) Damping coefficients (KN·s·m−1)

Kxx Kxy Kyx Kyy Cxx Cxy Cyx Cyy

Left 46.36 83.4 −64.33 41.27 70.28 71.63 71.63 88.57
Right 13.38 29.16 −21.78 8.36 69.67 19.98 19.98 79.93
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Figure 3: +e structural response at four observed point.
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Figure 5: Continued.
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Figure 5:+e rotor structure transient response: (a) the sensitivity curve of the transient response to the interval parameters; (b) the bounds
of the rotor structure transient response.
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6. Conclusions

Bearing load is the key factor that determines the lifetime
and reliability of the rotor system. Bearing load plays a
great role in health monitoring and fault diagnosis. Due to
the existence of uncertain parameters, bearing load is a
distribution strip. Based on the interval and perturbation
theory and the improved regularization method, this paper
proposes a new bearing load identification framework for
the bearing-rotor system with uncertainty and measure-
ment noise. +e problem of bearing load identification is
transformed into two kinds of certain inverse problems,
namely, the bearing load identification on the mean value
of uncertain parameters and the sensitivity identification of
bearing load with respect to each uncertain parameter. +e
improved regularization method can overcome the ill-
posedness of bearing load reconstruction for a determin-
istic rotor system. In the numerical example, the present
method can stably identify the bounds of the bearing load
only by knowing the bounds of the interval parameters and
the statistical characteristics of the probability parameters,
which has a certain practical value in engineering.
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Recently, variational mode decomposition (VMD) has attracted wide attention on mechanical vibration signal analysis. However,
there are still some dilemmas in the application of VMD, such as the determination of the number of mode decomposition K and
quadratic penalty term α. In order to acquire appropriate parameters of VMD, an improved parameter-adaptive VMD method
based on grey wolf optimizer (GWO) is developed by taking the minimum average mutual information into consideration
(GWOMI). Firstly, the parameters (K, α) are adaptively determined through GWOMI. +en, the vibration signal is decomposed
by the developed method and effective modes are extracted according to the maximum kurtosis. Finally, the extracted modes are
processed by Hilbert envelope analysis to acquire the incipient fault features. With the simulation and experimental analysis, it is
clearly found that the developed method is effective and performs better than some existing ones.

1. Introduction

Rotating machinery has been extensively employed in the
manufacturing, traffic and transportation, marine vessel, etc.
Rolling bearings are one of the most crucial parts of them
and their unexpected failures usually lead to great pro-
duction loss and high repair cost. +erefore, it is of great
significance for fault detection at their incipient faulty stage
to ensure the reliable and safely running of the machinery
[1–4]. If a local fault occurs in a rolling bearing, some
transient pulses will appear in the vibration signal. +ese
transient pulses analysis can provide a possible solution for
fault detection and diagnosis. However, these pulse signals
caused by the early fault are usually very difficult for de-
tection. Meanwhile, they are nonstationary, nonlinear, and
easily covered by strong background noise, which makes it
almost impossible to extract the incipient fault features from
the raw signals [5, 6].

To address these problems, many methods have been
developed based on signal processing. Time-frequency
analysis is one of the most widely used signal processing
methods to extract the fault feature. Wavelet transform is a
typical time-frequency analysis method, which can de-
compose vibration signal into some wavelets and provide
some significant local information. However, it is a non-
adaptive signal analysis method as wavelet basis functions
are determined in advance [7–11]. An empirical mode de-
composition (EMD) method was developed by Huang et al.
[12]. EMD could decompose a signal into some modes and a
residue. And EMD has strong adaptive decomposition
ability to time-varying signals [7]. Lu et al. [13, 14] inves-
tigated a kind of method based on an improved genetic
algorithm and EMD, which could extract the fault features.
However, there are some weaknesses of the methods based
on EMD, such as poor antinoise capability and mode ali-
asing [15]. To address these above problems, Zheng et al.

Hindawi
Shock and Vibration
Volume 2021, Article ID 6640387, 14 pages
https://doi.org/10.1155/2021/6640387

mailto:hujinfei@zjou.edu.cn
https://orcid.org/0000-0002-2839-8685
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6640387


proposed a modified EMD approach, which was employed
to process the nonstationary signal [16]. Ensemble empirical
mode decomposition (EEMD) method was developed by
Wu et al. [17]. In the work [18], this method was successfully
used for the fault diagnosis of bearing signals. However, it
would introduce new noises and reduce the computational
efficiency. Zheng et al. put forward a partly EEMD method
to overcome these problems [19].

VMD is a novel signal analysis method developed by
Dragomiretskiy [20]. +is method can decompose signals
into some intrinsic mode functions, which have limited
bandwidths and different center frequencies. It can over-
come the shortcoming of mode aliasing and has been widely
used in the fault diagnosis of rotating machinery. However,
the effect of VMD relies on the choice of its parameters (K,
α). In practical applications, it is difficult to determine these
parameters, and problems overdecomposition or under-
decomposition may happen when parameters are not se-
lected correctly [21, 22]. Shen et al. developed a modified
VMD based on initial center frequency, which was suc-
cessfully used in the fault diagnosis of rotating machinery
[23]. Zhang et al. utilized the grasshopper optimization
algorithm to improve the parameter adaptiveness of VMD
and this method was used to extract fault features suc-
cessfully [24]. Zhu et al. developed an adaptive VMD
method, which decomposed a complex signal into some
band-limited intrinsic mode functions [25]. Zhao et al.
utilized a single-objective salp swarm algorithm to optimize
VMD parameters, which could reduce mode aliasing and
kept the fidelity of complex vibration signals [26]. Gu et al.
reported an adaptive VMD based on GWO. In this method,
the minimum average envelope entropy was used as the
objective function [3]. However, signal decomposition,
whose parameters are obtained by the minimum average
envelope entropy, may result in the loss of some fault
features.

Inspired by the above research results, an improved
parametric-adaptive VMD based on grey wolf optimizer
with mutual information algorithm (GWOMI-VMD) is
developed in this work. +e GWO algorithm has a great
global searching ability with high convergence accuracy.
However, it is noted that the optimization objective function
has a great impact on the optimization results. And there are
still some overdecomposition or underdecomposition
problems in the VMD method when the most commonly

used objective functions are applied in GWO, such as
smoothness index, sparsity measurement, and correlation
coefficient [27]. Mutual information (MI) is a valuable in-
formation measure in information theory, which is used to
represent the mutual dependence between two variables. In
this paper, minimum average mutual information (MAMI)
is selected as the optimization objective function to reflect
the decomposition effect of VMD. +en, the parameters are
optimized by GWOMI and the signal is decomposed by our
proposed method. Finally, effective modes are extracted
according to the maximum kurtosis and envelope spectrum
analysis is applied to the effective modes to acquire fault
features.

+e remainder of this paper is organized as follows: the
main principles of VMD and GWO are briefly introduced in
Section 2. In Section 3, an improved parametric-adaptive
VMD method based on GWO with mutual information is
given in detail. In Section 4 and Section 5, both simulation
and experimental signals are utilized to demonstrate the
validity of the GWOMI-VMD, and some comparisons be-
tween the proposed method and traditional VMD, and
particle swarm optimization (PSO) optimized VMD and
EMD methods are provided. In Section 6, some conclusions
are drawn.

2. The Principle of VMD and GWO

2.1. Variational Mode Decomposition. VMD is a novel
method of signal processing, which adaptively decomposes
signals into K modes and these modes have different center
frequencies ωk. +e crucial issue of the VMD algorithm is
how to acquire the solution of the constrained variational
problem, which is formulated in equation (1) as follows:

min
uk{ }, ωk{ }

􏽘
k

zt δ(t) +
j

πt
􏼒 􏼓 · uk(t)􏼔 􏼕e

−jωkt

�������

�������

2

2

⎧⎨

⎩

⎫⎬

⎭,

subject to􏽘
k

uk � f,

(1)

where uk􏼈 􏼉 � u1, u2, . . . , uk􏼈 􏼉 and ωk􏼈 􏼉 represent each mode
component and center frequency, respectively. We intro-
duce Lagrange multiplier λ and balance parameter α to
transform equation (1) into an unconstrained one, which is
formulated in the following equation:

L uk􏼈 􏼉, ωk􏼈 􏼉, λ( 􏼁 � α􏽘
k

zt δ(t) +
j

πt
􏼒 􏼓 · uk(t)􏼔 􏼕e

− jωkt

�������

�������

2

2

+ f(t) − 􏽘
k

uk(t)

���������

���������

2

2

+〈λ(t), f(t) − 􏽘
k

uk(t)〉. (2)

+e alternating direction method of multipliers is
employed to acquire the saddle point of equation (2). As

shown in equations (3) and (4), 􏽢un+1
k and ωn+1

k are updated to
obtain the optimal values:
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􏽢u
n+1
k (ω)⟵

􏽢f(ω) − 􏽐i≠ kui(ω) +(􏽢λ(ω)/2)

1 + 2α ω − ωk( 􏼁
2 , (3)

ωn+1
k ⟵

􏽒
∞
0 ω 􏽢u

n+1
k (ω)

����
����
2
dω

􏽒
∞
0 􏽢u

n+1
k

����
����
2
dω

, (4)

where n is the number of iterations.
After each update, the modes and corresponding center

frequencies are obtained. After that, the Lagrange multiplier
is updated as shown in the following equation:

􏽢λ
n+1

(ω)⟵ 􏽢λ
n
(ω) + τ 􏽢f(ω) − 􏽘

k

􏽢u
n+1
k (ω)⎛⎝ ⎞⎠. (5)

When equation (6) is satisfied, the above iteration is
terminated:

􏽘
k

􏽢u
n+1
k − 􏽢u

n
k

����
����
2
2

􏽢u
n
k

����
����
2
2

< ε. (6)

We can see from equation (3) that the modes are rec-
ognized as some Wiener filters. In equation (4), ωk is the
gravity of the corresponding mode power spectrum. And, in
equation (2), the quadratic penalty term α can suppress
mode aliasing, which is one of the critical parameters in
VMD.

2.2. Grey Wolf Optimizer. Compared with other bionic in-
telligent algorithms, the grey wolf optimization algorithm
has faster convergence and better global search capability.
First, a group of grey wolves is randomly generated and they
are divided into four social hierarchies according to their
objective function values from best to worst, namely, α, β, δ,
and ω. Next, the hunting (optimization) is guided by α,
under the cooperation with β and δ by the way of circling the
prey. +en, ω and other wolves move towards the prey,
periodically updating their position, gradually reducing the
distance between them and the prey, and finally successfully
hunting [28]. +e main procedure of the algorithm is given
as follows.

+e distances between the wolves and their prey during
the hunting are formulated in equations (7) and (8),
respectively:

D
→

� h
→

· X
→

P(t) − X
→

t

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (7)

X
→

p(t + 1) � X
→

p(t) − A
→

· D
→

, (8)

where X
→

p(t), X
→

(t), and t stand for prey position, wolf
position, and iteration number, respectively. +e coefficients
A
→

and h
→

are calculated as follows:

A
→

� 2 a
→

· n
→

1 − a
→

,

h
→

� 2 · n
→

2,

(9)

where a
→ decreases gradually from 2 to 0 and n

→
1 and n

→
2 are

random vectors in [0, 1].
During the hunting, α, β, and δ are obtained for the first

three optimal solutions in the optimization space, and the
positions of β and δ are changed according to α. +e specific
process is shown as follows:

D
→

F � h
→

i · X
→

F(t) − X
→

(t)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌,

X
→

i � X
→

F − A
→

i · D
→

F,

X
→

P(t + 1) �
X
→

1 + X
→

2 + X
→

3

3
,

(10)

where F� α, β, δ and i� 1, 2, 3.

3. The Proposed Method

3.1. Minimum Average Mutual Information. Mutual infor-
mation (MI) is a nonparametric and nonlinear metric in
information theory and can be used to reflect the mutual
dependence between two variables. +e expression is as
follows:

MI(a, b) � 􏽘
a∈a

􏽘
b∈b

f(a, b)lg
f(a, b)

f(a)f(b)
, (11)

where f(a, b) represents the joint probability density
function of a and b and f(a) and f(b) are edge probability
density functions of a and b, respectively. If there is no
overlapping information between a and b, in other words, a
and b are independent variables, the MI value between them
is 0. On the contrary, if there is more overlapping infor-
mation between a and b, the MI value is closer to 1 [29].

In this paper, the minimum average mutual information
(MAMI) is selected as the optimization objective function
and its expression is given by

objectiveGWO � Minimum
􏽐

K
j�2 V

uk
MI(u(j−1),u(j))

K − 1
, (12)

where K is the number of mode decomposition and
􏽐

K
j�2 V

uk
MI(u(j−1),u(j)) represents the sum of MI between each

neighboring mode. +e smaller the MI is, the better the two
modes are decomposed. Similarly, the smaller the average
MI is, the better the overall effect of VMD will be.
When ((􏽐

K
j�2 V

uk
MI(u(j−1),u(j)))/(K − 1)) is minimized, the

signal can be properly decomposed into a series of modes by
VMD. At this moment, the corresponding parameters (K, α)
are optimal.

3.2. Mode Extraction Based onMaximumKurtosis. After the
signal is processed by the GWOMI-VMD method, the ef-
fective mode is extracted according to the maximum kur-
tosis. Kurtosis describes the peak value of waveform and can
reflect the numerical statistics of vibration signal distribu-
tion features [30]. +e expression is as follows:
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K �
􏽐

n
i�1 xi − μ( 􏼁

4

nσ4
, (13)

where μ is the mean of signal [x1, x2, . . . , xn] and σ and n
represent the standard deviation of the signal and the length
of the signal, respectively.

As we all know, the more the impact components in the
signal, the greater the corresponding kurtosis. +erefore, the
effective mode with the maximum kurtosis is selected for the
fault feature extraction.

3.3. GWOMI-VMD. In this paper, we develop an incipient
fault characteristics extraction method from the rolling
bearing vibration signal, named GWOMI-VMD. +e steps
of GWOMI-VMD are described briefly as follows:

(1) Input the vibration signal, set the parameter range of
VMD parameters K and α, and initialize the pa-
rameters of GWO.

(2) Decompose the signal by VMD and calculate the
average mutual information of the decomposed
modes.

(3) Update the objective function value and record the
position of the wolves.

(4) Judge whether the number of iterations exceeds the
maximum number of iterations. If so, the iteration
will be terminated. If not, go back to step 2 to
continue the iteration.

(5) Obtain the minimum value of the optimization
objective function and save the optimal position (K,
α).

(6) +e signal is decomposed by VMD with the opti-
mized (K, α), and the effective mode is extracted
based on the maximum kurtosis.

(7) +e envelope spectrum of the extracted mode is
calculated and the fault characteristics are corre-
spondingly obtained.

+e flowchart of the developed method is illustrated in
Figure 1.

4. Simulation Analysis

In order to demonstrate the performance of the developed
method, a simulation signal y is configured as shown in the
following equation:

y1(t) � cos 2∗pi∗f1 ∗ t( 􏼁,

y2(t) �
1
4

cos 2∗pi∗f2 ∗ t( 􏼁( 􏼁,

y3(t) �
1
16

cos 2∗pi∗f3 ∗ t( 􏼁( 􏼁,

y � y1 + y2 + y3 + noise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where f1 � 2Hz, f2 � 24Hz, and f3 � 288Hz, the noise
signal is random numbers distributed in [−2, 2], and the

sampling frequency is 1000Hz. Figure 2 shows the com-
posite signal y in the time domain and its frequency spec-
trum. Figure 3 shows each component of the composite
signal y. We can clearly see the frequency components f1
and f2 from the frequency spectrum, but the frequency
component f3 has been completely submerged by the
random noises in Figure 2.

+e proposed method is performed to search the optimal
parameters of VMD. In the optimization process, the op-
timization objective function adopts the minimum average
mutual information (MAMI). And the convergence diagram
of the optimization objective function is illustrated in Fig-
ure 4. As seen from Figure 4, the objective function value is
0.017 when the iteration time reaches 14, and, at this mo-
ment, the curve of the objective function converges. Besides,
the corresponding parameters of VMD are optimized when
the iteration time reaches 14. +en, the optimized param-
eters (9, 4721) are substituted into VMD to decompose the
composite signal y, and Figure 5 shows the resulting modes.

From Figure 5, we can see that three frequency com-
ponents f1, f2, and f3 are extracted, respectively, which are
consistent with the frequencies of the simulation signal y. It
is worth mentioning that there is no serious aliasing between
these modes.

In addition, the simulation signal is processed by the
traditional VMD with parameters (3, 2000) as shown in
Figure 6. We can clearly see that both frequency com-
ponents f1 and f2 are extracted in the first mode.
However, the frequency component f3 cannot be
extracted from these modes. Lastly, the particle swarm
optimization (PSO) is utilized to improve the traditional
VMD and optimal parameters (10, 4883) are obtained
correspondingly. +en, the composite signal y is
decomposed and the decomposition results are illustrated
in Figure 7. From Figure 7, we can see that frequency
components f1 and f2 are also extracted, but frequency
component f3 cannot be successfully extracted.

+rough the above comparison analysis, we can find that
the three frequency components f1, f2, and f3 can be
extracted accurately through the proposed method. How-
ever, the traditional VMD and PSO-VMD could not ac-
curately extract the frequency component f3. So, it is
obvious that our proposed method GWOMI-VMD has a
better performance than the traditional VMD and PSO-
VMD.

5. Experiment Analysis

+e validity and superiority of the GWOMI-VMD in weak
fault diagnosis of rolling bearing are demonstrated through
analyzing the experimental signal. +e experimental data
comes from the Case Western Reserve University Bearing
Data Center [31]. Figure 8 shows the basic layout of the
bearing test table.

As seen from Figure 8, the test table consists of the
following parts: a dynamometer, an electric motor, and a
torque transducer/encoder. +e tested bearing supports the
motor spindle shaft, and the tested bearing has single point
faults. +e vibration signal is collected through an
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accelerometer. +e specific technical parameters are listed in
Table 1 and 6000 data points are sampled for analysis.

5.1. Bearing Inner Race Fault Feature Extraction. Figure 9
shows the experimental signal and it is processed based on
the GWOMI-VMD method. Firstly, the optimal parameters
(K, α) are determined according to the GWOMI algorithm.
Figure 10 shows the GWOMI and PSO convergence curves
for VMD parameter optimization. When the number of
iterations is 13, PSO starts to converge at the objective
function value of 0.032896. When the number of GWOMI
iterations is 7, the objective function value is 0.032876, and
the corresponding parameters of VMD are optimal with a
value of (10, 5612). We can find that the convergence

accuracy and speed of GWOMI are obviously better than
those of PSO.

+en, the optimized parameters are substituted into
VMD, and the signal is decomposed. Figure 11 shows the
modes acquired by decomposition using GWOMI-VMD.
+emode, which contains the most useful fault information,
cannot be judged intuitively from these modes.+erefore, an
index needs to be determined to help extract the effective
mode.

As described above, the maximum kurtosis is used as an
indicator for mode extraction in this work. +e kurtosis
diagram of the ten modes is shown in Figure 12. We can see
that the kurtosis of the 10th mode is the highest out of them,
with a value of 3.113.+erefore, we choose the 10th mode for
the following analysis.
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Figure 2: Simulation signal (y): (a) time-domain waveform and (b) frequency spectrum.
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Figure 1: Procedure of the GWOMI-VMD.
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Envelope spectrum analysis is performed on the 10th

mode and Figure 13 shows the results of the analysis. From
Figure 13, the fault frequency f, rotation frequency fr, and its
second harmonic frequency 2fr have emerged obviously.
What is more, compared with the frequency spectrum in
Figure 9, we can find that the background noise is basically
eliminated in Figure 13.

Comparison analysis: a performance comparison be-
tween maximum kurtosis and maximum correlation coef-
ficient as the mode index is conducted. Figure 14 shows the

envelope spectrum of the effective mode, which was
extracted based on the maximum correlation coefficient. We
find that although fault frequency f is extracted, the rota-
tional speed frequency fr is not extracted as shown in
Figure 13. In addition, there is a newly generated interfer-
ence frequency, whose amplitude in the spectrum exceeds
the fault frequency f.

In addition, the GWOMI-VMD is further compared with
traditional VMD. In this paper, the parameters of traditional
VMD are set as (5, 2500) based on experience. +e
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Figure 3: Each part of the simulation signal: (a) harmonic signal y1, (b) harmonic signal y2, (c) harmonic signaly3, and (d) noise signal.
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decomposition results of traditional VMD are shown in Fig-
ure 15. +en, GWOMI-VMD method is compared with the
EMD method and Figure 16(a) shows the first five modes
obtained by using the GWOMI-VMD method. Figure 16(b)
shows the first five modes obtained by using the EMDmethod.
As seen from Figures 15 and 16(b), there is a certain degree of
aliasing between these modes in the case of traditional VMD
and EMD.

5.2. Bearing Outer Race Fault Feature Extraction. As dem-
onstrated in the inner race, the optimal parameter of
VMD is first obtained with the value of (9, 4340), and then
the effective mode is extracted according to the maximum
kurtosis. +e kurtosis of the 9th mode is the highest, with a
value of 6.1024. +erefore, the 9th mode is extracted out

and Figure 17(a) shows its envelope spectrum. +e fre-
quency components in Figure 17(a) are basically con-
sistent with the calculated fault frequencies listed in
Table 1.

A performance comparison between maximum kur-
tosis and maximum correlation coefficient both as the
mode index is conducted. Figure 17(b) gives the spectrum
of the effective mode extracted by the maximum corre-
lation coefficient. From Figure 17(b), we can find that the
second rotation harmonic frequency 2fr is extracted.
However, it is obvious that the fault frequency f is not
extracted successfully, compared with Figure 17(a).
+erefore, the effective mode extracted by the maximum
kurtosis utilized in this paper has certain advantages over
the correlation coefficient.
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Table 1: Technical parameters.

Test bearing (inner race) Test bearing (outer race)
Parameters Values Parameters Values
Fault size 0.007″ Fault size 0.007″
Sampling frequency fs 12000Hz Sampling frequency fs 12000Hz
Fault characteristic frequency f 162Hz Fault characteristic frequency f 107Hz
Rotational frequency fr 29.95Hz Rotational frequency fr 29.95Hz
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Figure 9: +e original signal (a) time domain and (b) frequency domain.
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Figure 16: Frequency spectrums of u1, u2, u3, u4, and u5 decomposed by (a) GWOMI-VMD and (b) EMD.
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6. Conclusions

A parameter-adaptive VMD method based on GWOMI for
fault diagnosis of rolling bearing is proposed in this work. It
greatly enhances the parameter-adaptive ability of VMD.
Firstly, the minimum mean mutual information is used as the
optimization objective function of the GWOMI-VMD. After
that, the maximum kurtosis is set as the effective mode index.
Finally, envelope spectrum analysis is implemented on the
effective mode to extract the fault feature. +rough simulation
and experimental analysis, the validity and feasibility of
GWOMI-VMD are demonstrated. In addition, comparison
results between GWOMI-VMD and the traditional VMD,
PSO-VMD, and EMDare provided, fromwhich the superiority
of the GWOMI-VMD is further verified. +erefore, this paper
has some certain values for incipient fault detection and di-
agnosis of rotating machinery.
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Electrohydrostatic actuator is a type of actuator that uses hydraulic energy as the energy transmission carrier, which has the
advantages of small size and high power. Since it is commonly used in harsh conditions such as strong vibration, high pressure,
and heavy loads, condition monitoring and fault diagnosis of its hydraulic system are particularly important. +is paper proposed
a novel fault feature extraction method and applied to fault diagnosis of electrohydrostatic actuator. Firstly, the pressure signal of
the hydraulic system is decomposed at multiple scales to obtain the center frequency of its maximum energy intrinsic mode
component, and the feature data set is constructed based on the statistical features of the time domain. +en, a fault identification
model of hydraulic system based on support vector machine is established. Finally, the fault classification and identification results
of the hydraulic system are outputted. After a variety of method comparisons, the method proposed in this paper has a fault time
ratio accuracy of 96.7%, which provides a basis and a new way for the fault diagnosis of the hydraulic system.

1. Introduction

+e hydraulic transmission has high power density, compact
structure, and good dynamic performance. It is widely used
in construction machinery, marine vessels, aerospace, and
robotics. Long pipeline, poor reliability, large volume, and
heavy weight limit the application of traditional centralized
electrohydraulic control systems. Distributed electro-
hydrostatic actuator is small in size, light in weight, and large
in output power, which is an important development di-
rection. However, the electrohydrostatic actuator is an
important subsystem related to the reliability of the aircraft.
How to increase the reliability and service capability of the
system while reducing power consumption is a huge chal-
lenge it faces.

+e hydraulic system is the core component of the
electrohydrostatic actuator. +e failure of the hydraulic
system seriously affects the reliability of the electro-
hydrostatic actuator and has a great impact on the output

power quality. +e hydraulic system has problems such as
fluid leakage, hydraulic valve failure, and insufficient cool-
ing, which are also important factors affecting system sta-
bility. Timely and accurate fault diagnosis and repair of the
hydraulic system is a prerequisite for the stable output power
of the electrohydrostatic actuator.

Many scholars have conducted a lot of research on the
diagnosis of hydraulic system faults. Linaric D et al. [1]
applied the neural network model based on the mathe-
matical model of the entire electrohydraulic servo system to
perform model-based fault detection and isolation, verified
the algorithm by simulation, and achieved significant results.
Liu and Jiang [2] improved the application research of fuzzy
neural network model in defect detection and classification.
Tang et al. [3] through information fusion extracted fault
features, through PSO-SVM performed fault classification,
and proposed a combined information fusion and PSO-
SVM multifault diagnosis method for piston pumps, which
can effectively identify multiple faults of piston pumps. Gao
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et al. [4] performs the adaptive matching of the noise
threshold through median absolute deviation, and a noise
suppression method based on Walsh transform is proposed.
+e method has been verified by numerical simulation and
experimental verification of normal pumps and faulty
pumps. +e method provides a new idea for pump fault
diagnosis. Deng et al. [5] in the process of motor bearing
fault diagnosis, based on empirical model decomposition
and fuzzy information entropy, improved particle swarm
optimization algorithm and least squares support vector
machine method; an early fault diagnosis method for ro-
tating machinery is proposed and verified by experiments.
+e multiscale analysis method is an effective signal pro-
cessing method. +e commonly used multiscale processing
methods include singular value decomposition (SVD),
empirical mode decomposition (EMD), and wavelet trans-
form (WT). In recent years, many scholars have done much
research on multiscale analysis method, and they have been
applied to the signal processing. Zhang et al. [6] proposed a
rotating machinery fault diagnosis method based on
Fourier-transform multifilter decomposition. +is method
uses Fourier-transform multifilter decomposition to de-
compose the original signal and obtain multiscale frequency
domain information. After the feature selection and feature
ranking of subsequent subsignals, furthermore, a fault di-
agnosis method for rotating machinery with higher accuracy
and fewer features is obtained. Liang et al. [7] improved the
local average decomposition (LMD) by bidirectional long
and short-term memory model (Bi-LSTM), which realizes
the adaptive expansion of the LMD endpoints, eliminates the
LMD endpoint effects, and applies it to the feature extraction
of rolling bearings under different loads. In 1998, Huang
et al. [8] proposed EMD. EMD is an adaptive decomposition
method, and it has been widely used in biomedicine [9–11],
speech recognition [12, 13], system modeling [14–16], and
process control [17–19]. EMD can decompose the original
signal into different frequency bands and enrich the feature
information of the original signal by extracting feature in-
formation in different frequency bands. EMD has been
widely used in production practice. Hu et al. [20] decom-
posed the children’s EEG into various brain wave compo-
nents by EMD, and 11 different physical quantities are
extracted as features in the intrinsic mode function (IMF).
Finally, the random forest is used for activity recognition.
+e experiment verifies the effect of this method on the
feasibility of activity identification. Vargas et al. [21] use
EMD to decompose the ECG signal into several IMFs and
process these IMFs based on the Viterbi algorithm and
discrete wavelet transform to realize the noise removal of the
ECG signal. Wavelet technology [22] is also an effective
multiscale signal processing technology. +erefore, scholars
have carried out a lot of research on wavelet technology.
Jimenez et al. [23] filter and reduce the noise of wind turbine
signals by wavelet transform and perform feature extraction
and fault classification. +rough the comparison of 6
schemes, the novelty of the method is verified. Based on the
wavelet packet transform, a concept of the main frequency
band of blasting is defined, which provides an important
basis for accurately describing the frequency characteristics

of the blasting process [24]. In 2014, Dragomiretskiy et al.
[25] proposed the variational mode decomposition method.
VMD can separate the components effectively, which is a
completely nonrecursive variational mode decomposition
model. It finds the center frequency of each IMF by itera-
tively searching for the optimal solution of the variational
model.

Kumar et al. [26] proposed a VMD based on genetic
algorithm (GA) and kernel-based mutual information
(KEMI) fitness function, which can effectively extract the
weak features of multiple defects in bearings.+e advantages
of VMD in local damage of beam structures are discussed by
Mousavi et al. [27], and the peak synchronization between
the instantaneous frequency and instantaneous amplitude of
the first IMF is considered, which verifies the superiority of
VMD in local damage detection.

Although a large number of scholars have conducted in-
depth research on the fault diagnosis of hydraulic systems,
with the continuous development of human society, hy-
draulic systems continue to be integrated into new use
environments, various faults occur frequently, and even
multiple faults appear at the same time. With the continuous
advancement of computer science and information science,
a data-driven hydraulic system fault diagnosis method using
hydraulic system monitoring data has emerged. Finding
fault characteristics from hydraulic system monitoring
signals and accurately identifying fault types is the key study
of this article.

+is paper proposed a feature extraction method based
on multiscale signal processing and applied it to the fault
diagnosis of the hydraulic system to improve the fault
identification accuracy and efficiency. Firstly, a new type of
variational modal decomposition method is given. Secondly,
we introduced the hydraulic system test platform on which
the data collection of this article is based, introduced the
composition and hydraulic principle of the hydraulic system
test platform, and conducted data acquisition of hydraulic
system pressure signal under four failure modes, and per-
formed multiscale decomposition of the original signal; the
maximum energy intrinsic mode component central fre-
quency of pressure signal is obtained, the feature data set is
constructed with the statistical features based on the time
domain, and the pattern recognition is performed. Finally,
the influence of multiple feature data set construction
methods on the fault recognition accuracy of hydraulic
system is discussed.

2. Establishment of Fault Diagnosis Model for
Hydraulic Power Generation System

2.1. VariationalModalDecomposition. VMD is a completely
nonrecursive variational modal decomposition model. In
the process of iteratively searching for the optimal solution
of the variational model, the center frequency and band-
width of each decomposition and separation are determined,
so each component of the signal can be effectively separated
and the adaptive frequency domain division of the signal can
be realized. Since the signal is decomposited into non-
recursive and variational modal components by VMD, it
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shows better noise and sampling rate robustness than the
recursive screening modal method of EMD.

VMD is based on the mixing-frequency variational
problem-solving process, Hilbert transform, and classical
Wiener filtering. In the process of iterative search for the
optimal solution of the variational model, the center fre-
quency and bandwidth of each decomposition and sepa-
ration can be determined, which can effectively separate the
components of the signal and realize the adaptive frequency
domain division of the signal, so the signal can be
decomposed into the sparsity component, which is a new
signal decomposition estimation method. +e variational
modal decomposition algorithm redefines an AM-FM as an
intrinsic modal function, and its expression is

uk(t) � Ak(t)cos ϕk(t)( 􏼁, (1)

where Ak(t) is amplitude of uk(t), Ak(t)≥ 0. ωk(t) � φk
′(t),

ωk(t) is the frequency of uk(t). +e phase φk(t) is a non-
decreasing function. In the interval [t − δ, t + δ], uk(t) is a
harmonic signal with amplitude Ak(t), where δ � 2π/ϕk

′(t).
VMD is different from the iterative screening process

used in the empirical mode decomposition method when
obtaining the IMF. It is a nonrecursive method based on the
principle of the variational model. +e signal is decomposed
into sparse components; at the same time, the center fre-
quency and bandwidth of each IMF are determined in the
process of iteratively solving the optimal solution of the
constrained variational model.

+e variational constraint model is shown as follows:

min
uk{ }, ωk{ }

􏽘
k

zt δ(t) +
j

πt
􏼒 􏼓 × uk(t)􏼔 􏼕e

− jωkt

�������

�������

2

2

⎧⎨

⎩

⎫⎬

⎭,

s.t. 􏽘
k

uk � f,

(2)

where uk􏼈 􏼉:� u1, u2, . . . , uK􏼈 􏼉 represents K IMF compo-
nents, ωk􏼈 􏼉:� ω1,ω2, . . . ,ωK􏼈 􏼉 represents the center fre-
quency of each IMF, and 􏽐k: � 􏽐

K
k�1 represents the sum of

all modes.
After the original signal is decomposed by VMD, the

center frequency of the maximum energy of the IMF can be
obtained according to the following formula:

CIMF � max
1≤i≤n−1

E IMFi, IMFi+1( 􏼁􏼂 􏼃, (3)

where CIMF is the maximum energy of the IMF, IMFi is the
ith IMF, and E (IMFi) is energy of the ith IMF.

+e maximum energy of the IMF is the component with
the largest energy in the process of multiscale analysis of the
original signal. It occupies a large proportion of the infor-
mation implicit in the original signal and is the main
component in the original signal. It can be seen in Figure 1
[28].

As shown in Figure 1, IMF8 is maximum energy of the
IMF.

2.2. Support Vector Machine. SVM is an effective tool for
solving classification and regression problems. +e linear

classifier with the largest interval defined in the feature
space is the basic model of SVM [29]. Nonlinear SVM is
an improvement and general case of linear separable
SVM. Linearly separable SVM is a linear classifier that
uses hard interval maximization to learn when the
training data are linearly separable. Linear SVM is a
linear classifier that uses soft interval to maximize
learning when the training data are approximately lin-
early separable. Nonlinear SVM is a nonlinear classifier
that uses nuclear techniques to learn when the training
data are linearly inseparable. +erefore, the SVM in-
troduced with the kernel technique has become a sub-
stantial nonlinear classifier.

Suppose the training set of a feature space is
D � (x1, y1), (x2, y2), . . . , (xm, ym)􏼈 􏼉; among them,
xi ∈ χ � Rn, yi ∈ y � +1, −1{ }, i � 1, 2, . . . , N, xi is a feature
vector and yi is a label of xi.

+e classification hyperplane is

h(x) � ω · x + b, (4)

where x is the input vector, ω is the normal vector, and b is
the intercept.

+e classification decision function is

Sign (h((x)),

h(x)> 0, yi � 1,

h(x)< 0, yi � −1.

⎧⎨

⎩

(5)

SVM is to find an optimal hyperplane in the feature
space so that the data set is divided into different classes, and
the interval between the closest points is maximized. +ere
are infinitely many solutions for its classification hyperplane.
Using interval maximization to solve the classification hy-
perplane, the solution at this time is unique.

A cost factor ξi is paid for each slack variable ξi, and then
formula 15 is transformed into

1
2
‖ω‖

2
+ C 􏽘

N

i�1
ξi, (6)

where C> 0 is the penalty parameter.
+e function of C is to reconcile the coefficients of

formula 6. When C increases, the penalty for misclassifi-
cation increases, and on the contrary, the penalty for mis-
classification decreases.

Formula 6 is to make (1/2)‖ω‖2 as small as possible, that
is, the interval is maximized while the points of misclassi-
fication are minimized.

Construct the Lagrangian function as follows:

L(ω, b, α) �
1
2
‖ω‖

2
− 􏽘

N

i�1
αi yi ω · xi + b( 􏼁 − 1 + ξi􏼂 􏼃 + C 􏽘

N

i�1
αi,

(7)

where αi ≥ 0 is Lagrange multiplier, i � 1, 2, . . . , N, N is the
total number of samples in the sample set.

According to the KarushKuhnTucker condition, the
partial differentiation of ω, b, and ξ is obtained and we set
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them equal to 0, and thus the following formula can be
obtained:

ω � 􏽘
N

i�1
yiαixi, (8)

− 􏽘

N

i�1
yiαi � 0, (9)

where αi(yi(ω · xi + b) − 1) � 0, i � 1, 2, . . . , N,
yi(ω · xi + b) − 1≥ 0, i � 1, 2, . . . , N, αi ≥ 0, i � 1, 2, . . . , N.

+us, the separating hyperplane can be written as

􏽘

N

i�1
αiyi x · xi( 􏼁 + b � 0. (10)

+e classification decision function can be written as

f(x) � sign 􏽘
N

i�1
αiyi x · xi( 􏼁 + b⎡⎣ ⎤⎦, (11)

where b � yj − 􏽐
N
i�1 αiyi(x · xi), yj is support vector.

For linear classification problems, linear support vector
machines are an effective method. However, in actual data,
most of the data are linear and inseparable. In order to
transform nonlinear problems into linear problems and
linear inseparable problems into linear separable problems,

linear support vector machines are suitable for the linear
inseparable data problems that are often encountered in
practical problems.

Let input space χ be a subset or discrete set of Euclidean
space Rn and feature space (Hilbert space) H, if there is a
mapping from χ to H:

φ(x): χ⟶H. (12)

Such that for all xi, xj∈χ, the function k (xi, xj) satisfies the
following condition:

K xi, xj􏼐 􏼑 � φ xi( 􏼁 · φ xj􏼐 􏼑. (13)

+en, k (xi, xj) is the kernel function.where φ (x) is the
mapping function and φ(xi) · φ(xj) is the inner product of φ
(xi) and φ (xj).

At this point, the objective function becomes

W(α) �
1
2

􏽘

N

i�1
􏽘

N

j�1
αiαjyiyjK xi, xj􏼐 􏼑 − 􏽘

N

i�1
αi, (14)

where αi > 0 is Lagrangian multiplier and N is total number
of samples in the sample set.

+e inner product in the classification decision function
can be replaced by the kernel function, and then the clas-
sification decision function becomes
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Figure 1: VMD decomposition example.
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f(x) � sign 􏽘
N

i�1
aiyiK xi, x( 􏼁 + b⎡⎣ ⎤⎦, (15)

K xi, x( 􏼁 � exp
− xi − x
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+e following formula is a Gaussian radial basis function
classifier, and its classification decision function is

f(x) � sign 􏽘
N

i�1
aiyi exp

− xi − x
����

����
2

2g
2

⎛⎝ ⎞⎠ + b⎡⎢⎢⎣ ⎤⎥⎥⎦, (17)

where g is the kernel function parameter.

2.3. Integrated Algorithm Flow and Steps. As is shown in
Figure 2, the pressure signal collected in the hydraulic
system is first used for signal noise reduction, and the noise-
reduced signal is extracted by two methods. One is the
feature extraction based on time series signal statistical
features, including peak-to-peak value, standard deviation,
variance, mean, peak value, skewness, and kurtosis; the
second is to perform VMD on the noise-reduced signal to
obtain the center frequency of maximum energy intrinsic
mode component. Taking the center frequency of the
maximum energy intrinsic mode component as the eigen-
value, combine the statistical features to combine the feature
data set.+en, the combined feature data set is divided into a
training set and a test set. +rough the training set, a fault
recognition model which is based on the support vector
machine-based hydraulic system is constructed, and the
model parameters are optimized.+e test set is used to verify
the accuracy and efficiency of the optimized fault recogni-
tion model. Finally, the classification and recognition results
are output.

3. Experimental Analysis

3.1. Hydraulic Test Rig. In order to verify the reliability and
robustness of the method described in this article, we de-
veloped a hydraulic test rig, as shown in Figure 3; it consists
of hydraulic pump station, filter temperature control system,
test console, hydraulic component test platform, test data
acquisition system, and electrical control system, etc. +e
test rig uses the pump as the drive and the motor as the load.
+e performance of the hydraulic components can be tested
by replacing different components on the hydraulic test rig.
+e performance parameters of the test rig are shown in
Table 1.

+e principle of the hydraulic test rig is shown in
Figure 4.

As shown in Figure 4, 1 is the hydraulic pump group, 2 is
the cooling system, 3 is the flow meter, 4 is the one-way
valve, 5 is the pressure sensor, 6 is the torque speed tester, 7 is
the loading pump, 8 is the motor, 9 is the temperature
sensor, 10 is the overflow valve, 11 is the reversing valve, and
12 is the accumulator. +e pump 1 is driven by an electric
motor, and the system pressure is adjusted through a one-

way valve group.+e state of different hydraulic components
can be monitored through the pressure and temperature
values of different positions.

3.2. Failure Category of Hydraulic Power Generation System.
In the hydraulic system, different hydraulic components will
have different types of failures under different working
conditions, even the same hydraulic components will have
different types of failures under different working condi-
tions, and the solutions are also different for different types
of failures.

+e fluid characteristics in the hydraulic system are
different from the mechanical vibration characteristics, so it
is impossible to perform fault diagnosis of the hydraulic
system by monitoring the vibration of the system
components.

+is paper simulates the fluid leakage, hydraulic valve
failure, accumulator failure, and other failure forms of the
hydraulic system in the unstable state and the stable state of
the system as shown in Table 2. Among them, 1 indicates the
best state and 0 indicates the failure state.

As shown in Figure 5, using a hydraulic test rig, the inlet
pressure of the check valve 3 was collected while simulating
these failures. +e sampling frequency was 100Hz and the
sampling time was 8 seconds. +e fault diagnosis model of
hydraulic system is verified through four fault types.

3.3. Fault IdentificationBasedon theMaximumEnergyCenter
Frequency. Firstly, the collected pressure signal noise re-
duction is made, and the maximum energy intrinsic mode
component of each signal is calculated.+e center frequency
of the maximum energy intrinsic mode component is se-
lected as the feature, and the statistical feature of the original
signal based on support vector machine is combined with for
classification calculation. Statistical features include peak-to-
peak value, standard deviation, variance, mean, peak value,
skewness, and kurtosis. 60% of the feature set is defined as
the training set, and 40% is defined as the test set. According
to the method of document 28, the original signal in this
paper is decomposed by VMD to obtain 9 IMFs. +e pa-
rameter C in SVM is 13.368 and g is 0.01. +e classification
result is shown in Figure 6.

It can be seen from Figure 6 that the prediction accuracy
of the hydraulic power generation system fault diagnosis
model based on the maximum energy center frequency can
reach 96.7%.

4. Discussion

In order to verify the feasibility and effectiveness of using the
multiscale features of variational modal decomposition to
construct the feature data set proposed in this paper, a variety of
methods are used for comparative analysis, including only using
statistical features for fault identification, only using the max-
imum energy intrinsic mode component center frequency for
fault identification and classificationmodel, and using Gaussian
kernel function and Sigmoid kernel function for fault recog-
nition. +e recognition results of multiple methods are
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compared so that the best model for fault diagnosis of hydraulic
power generation system is selected.

+e comparison result is shown in Table 3, as shown in
Figure 7.

It can be seen from Table 3 and Figure 7 that the accuracy
of fault identification only using the statistical feature of the
fault information feature data set is only 56.7%, and the
accuracy of only using the central frequency of the maxi-
mum energy intrinsic mode component for fault identifi-
cation reaches 93.3%. +e accuracy of fault identification by
integrating the feature data sets of the two feature combi-
nations has been greatly improved, reaching 96.7%.

Since the Gaussian kernel function maps the feature
data set to high dimensions, the indivisible data become

separable and the Sigmoid kernel function makes the
support vector machine model a multilayer perceptron
neural network. +erefore, the classification performance
of the Gaussian kernel function used in the classification
model is obviously worse than the performance of the
Sigmoid kernel function.

+e center frequency of the maximum energy intrinsic
mode component is a kind of multiscale spectral informa-
tion, which is essentially different from the statistical in-
formation extracted based on time-domain signals. Using
the center frequency of the maximum energy intrinsic mode
component as a feature to construct a feature data set has a
positive impact on the accuracy of electrohydrostatic ac-
tuator fault recognition.

Pressure signal of hydraulic transmission control power generation system

Signal noise reduction

Variational mode decomposition

IMF1 IMF2 ... IMFn ... IMFk

Center frequency of maximum
energy eigenmode component

Time series signal statistical characteristics

Peak–to–
peak value

Standard
deviation

Varia
nce

Aver
age Peak Skew

ness
Kurto

sis

Combined feature set
Train set Test set

Model parameter optimization Support vector machine model with optimal parameters

Output classification results

Figure 2: Integrated algorithm flow.

Hydraulic compoenet
test platform

Test data acquisition
system

Hydraulic pump station

Figure 3: Hydraulic test rig.

Table 1: +e performance parameters of the test rig.

Performance○ Operating temperature (°C)
Flow meter

Pressure sensor Torque meter (N∙m)
Measurement accuracy Linearity

Target 50 ±3%FS ±1.5%FS ±5%FS
≤2000Performance Operating pressure (bar) Rated flow (L/min) Total power (KW) Noise (dB)

Target 0–420 320 215 ≤85 dB
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Figure 4: +e principle of the hydraulic test rig.

Table 2: Simulated fault information.

Fault type Valve status Pump leak Accumulator failure System status
Valve status 0 1 1 1
Pump leak 1 0 1 1
Accumulator failure 1 1 0 1
System status 1 1 1 0

0 100 200 300 400 500 600 700 800
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Normal status
Hydraulic accumulator fault
Conditions were stable
Internal pump leakage
Valve fault

Figure 5: +e pressure signal curve under five different fault conditions collected by the hydraulic system.
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5. Conclusions

+is paper proposes a multi-scale feature extraction method
based on variational modal decomposition. +e central
frequency of the maximum energy intrinsic mode compo-
nent and the statistical features based on the time-domain
signal are combined to construct a feature data set and
establish the fault diagnosis model of the hydraulic system,
which greatly improves the accuracy of the model for fault
identification of the electro-hydrostatic actuator. It can be
seen that the feature data set constructed with the multiscale
features obtained by the variational modal decomposition
method described in this article can more clearly reflect the
characteristics of the fault information, which provides a
basis for the fault diagnosis of the hydraulic system and
provides a new way for electro-hydrostatic actuator fault
diagnosis.
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