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Drought is one of the most multifaceted hydrologic phenomena, afecting several factors such as soil moisture, surface
runof, and signifcant water shortages. Terefore, monitoring and assessing drought occurrences based on a single drought
index are inadequate. Te current study develops a multiscalar weighted amalgamated drought index (MWADI) to
amalgamate multiple drought indices. Te MWADI is mainly based on the normalized average dependence posterior
probabilities (ADPPs). Tese ADPPs are obtained from Bayesian networks (BNs)-based Markov Chain Monte Carlo
(MCMC) simulations. Results have shown that the MWADI correlates more with the standardized precipitation index (SPI)
and the standardized precipitation temperature index (SPTI). As proposed, the MWADI synthesizes drought characteristics
of diferent multiscalar drought indices to reduce the uncertainty of individual drought indices and provide a compre-
hensive drought assessment.

1. Introduction

Drought has complex nature and slow onset characteristics
that have severe impacts on several sectors worldwide [1].
Te vulnerabilities of drought difer from other natural
hazards in numerous ways [2]. Te abrupt and enigmatic
features of drought make it the costliest and least understood
hazard [3]. Te American Meteorological Association
classifed drought into four categories including meteoro-
logical, hydrological, agricultural, and socioeconomic [4, 5].
Each drought category has diferent causes and conse-
quences [6, 7]. For instance, meteorological drought occurs
due to a lack of precipitation. It signifcantly impacts various
sectors such as ecology, agricultural productions, and in-
dustrial productions [8]. It causes serious environmental and

socioeconomic issues at regional and global scales [9, 10].
Meteorological drought can trigger linked climatic hazards
such as pollution and heatwave [11]. Precise drought
monitoring of drought requires reliable information, as-
sessment, and evidence-based decisions [12]. Moreover,
drought indices play a vibrant role in risk assessment for
accurately identifying drought occurrence, severity, and
spatial extent [13].

Drought indices are essential for quantifying drought
duration, severity, and spatial extent [14, 15]. Various
drought indices based on single and multiple climatic pa-
rameters have been developed to monitor and assess the
drought characteristics [16]. Te widely used drought in-
dices are the Palmer drought severity index (PDSI) [17], the
surface water supply index (SWSI) [8, 18], the standardized
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precipitation index (SPI) [19], the efective drought index
(EDI) [20], the standardized precipitation and evapotrans-
piration index (SPEI) [21], and the standardized pre-
cipitation temperature index (SPTI) [22]. Moreover, the SPI
is the most well-known drought index proposed by the
World Meteorological Organization (WMO). However, the
selection and calculation of drought indices depend on the
availability of data-related input climatic indicators [23].
Furthermore, due to the complex nature of hydroclimatic
parameters, traditional meteorological drought indices
cannot obtain full information for accurate drought
characterization [24].

Individual drought indices have certain defciencies in
assessing drought severities [25]. Te substantial complexity
of the hydrological process depends upon multiple climatic
factors such as precipitation, temperature, and evapo-
transpiration [26]. Single drought indices are incapable of
considering certain drought-induced causes, leading to in-
accurate drought assessment [27]. However, a very few
composite and hybrid drought indices have been observed in
recent decades [28]. Te vegetation drought response index
(VegDRI) is one of the best examples of a comprehensive
drought index based on the SPI, the PDSI, and the NDVI
[29]. Numerous drought indices are constructed using linear
combinations, principal component analysis, and entropy
weight method by considering a linear relationship among
standardized drought indices [30]. However, regardless of
the type of drought, the interactions among the numerous
infuencing factors in the environment should be considered
for drought monitoring. Generally, drought conditions are
associated with multiple meteorological and climatic vari-
ables [31]. Terefore, a comprehensive drought index based
on a strong probabilistic structure can provide more ac-
curate information about drought monitoring and assessing
drought conditions.

Bayesian networks (BNs) are powerful probabilistic
graphical models that explicitly capture the known de-
pendence structure among stochastic variables such as
drought indices (DIs) with probabilities through directed
acyclic graphs (DAGs) [32]. Te BNs have wide applications
in various felds, viz., computer science [33], business an-
alytics [34], agriculture [35], genetics [36], and environ-
mental sciences [37, 38]. BNs are appropriate methods to
estimate climate change impact and drought risk assessment
[39]. Te researchers have used the BN algorithm to develop
new frameworks in diferent felds. For instance, it is used for
food prediction [40] and forecasting the dependence
structure among health outcomes and hazardous pollutants
[41]. Shin et al. (2020) used BNs to propagate the re-
lationships of hydrological drought in diferent time in-
tervals. Ávila and Ballari [42] used BNs to develop new
homogeneous climate zone indices. Appraisal of the latest
literature indicated that BNs are emerging in meteorological
and climatic studies. Te potential of probabilistic graphical
models based on BNs for drought assessment and de-
veloping new comprehensive drought indices could be
helpful. Since droughts are a slowly evolving phenomenon,
a robust spatial and temporal relationship exists among
drought indices [43]. Terefore, they can be amalgamated

using BNs to combine the strengths of several drought
indices.

Te current study aims to develop a comprehensive
drought index to improve the monitoring and assessment of
drought. For this purpose, the current research uses the BN
theory to synthesize drought monitoring characteristics of
three standardized drought indices, including the SPI, the
SPEI, and the SPTI. Te proposed framework based on the
Bayesian network theory also integrates the seasonal com-
ponent of several seasonally segregated drought indices. It
provides a scientifc basis for an efective drought mitigation
plan [44]. Moreover, the Gilgit-Baltistan province is selected
to validate the current research.

2. Materials and Methods

2.1. Data Description and Study Area. Te six synoptic
gauged meteorological stations have been selected, in-
cluding Astore, Bunji, Chilas, Gilgit, Gupis, and Skardu.
Te monthly time series data of precipitation and tem-
perature (maximum and minimum) have been used to
develop the MWADI. Te input data for 47 years ranging
from 1970 to 2016 have been acquired from the Karachi
Data Processing Center (KDPC) through the Pakistan
Meteorological Department (PMD). Te spatial distri-
bution map and location information of selected mete-
orological stations of Gilgit-Baltistan province is shown
in Figure 1. Te study area lies between
34.5125°N–37.0826°N latitude and 72.508°E–77.01°E
longitude. Te terrain feature of the study area is high-
elevation mountainous. Te GB province comprises the
upper catchment areas of the Indus River and its major
tributaries. Te source of precipitation in GB is the
typical continental monsoon in summer and the western
depression in winter. Te average annual rainfall in GB
province is 231.5 inches. However, the region’s temporal
and spatial distributions of precipitation are not ho-
mogenous. Te mean average annual precipitation at
these selected meteorological stations signifcantly var-
ies, as shown in Table 1. According to the above char-
acteristics of topography, hydrology, and
geomorphology, the region’s climate is classifed into
diferent categories. Te climate classifcation of selected
meteorological stations is given in the last column of
Table 1. Tese climate classifcations are known as
Kӧppen climate classifcations [45]. Köppen [46] clas-
sifed the climate of any region into fve categories, which
were further divided into subcategories. According to
Köppen classifcation, the climate of Astore is considered
humid-continental, and Gilgit and Bunji are considered
cold desert, while Chilas, Gupis, and Skardu are classifed
as cold semiarid. Te descriptive statistics of spatial
variables (longitude, latitude, and elevation) and mete-
orological variables (precipitation and minimum and
maximum temperature) are given in Table 1. It includes
the mean and standard deviation (SD) of the average
annual precipitation of selected meteorological stations.
It provides varying features of the minimum and max-
imum temperature.

2 Complexity



2.2. A Brief Description of Multiscalar Standardized Drought
Indices. Standardized drought indices (SDIs) play a vibrant
role in drought risk assessment and the sustainable devel-
opment of water resources [9]. Terefore, defning drought
features specifc to drought intensity, duration, and patterns
is very important [21].Tus, the multiscaler drought indices,
such as the SPI, the SPEI, and the SPTI, are selected as input
hydroclimatic variables to develop the MWADI. Te

standardized precipitation index (SPI) is the most widely
used drought index applied to regional and global studies.
TeWorldMeteorological Organization (WMO) ratifed the
SPI for meteorological drought [47]. It is a probabilistic and
spatially invariant indicator for a diferent type of drought
analysis [48]. Te SPI utilizes only precipitation and has the
inherited capability to be calculated at various time scales
[49]. Te standardized precipitation evapotranspiration
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Figure 1: Te map of the study region and distribution of meteorological stations.

Table 1: Descriptive statistics of average annual meteorological variables (precipitation and minimum and maximum temperature),
regional spatial characteristics, and climate (Kӧppen classifcation).

Station
Precipitation Temp. min Temp. max

Latitude Longitude Elevation (m) Climate
Mean SD Min Max Min Max

Astore 471.8 129.3 2.36 5.23 13.90 17.47 35.3570°E 74.8624°N 2546 Humid continental
Bunji 163.4 61.5 9.57 13.6 22.33 25.48 35.6431°E 74.6342°N 1453 Cold desert
Chilas 190.6 93.9 12.32 15.53 24.57 27.97 35.4222°E 74.0946°N 1265 Cold semiarid
Gilgit 140.7 49.4 6.15 9.26 22.45 25.92 35.8819°E 74.4643°N 1500 Cold desert
Gupis 190.4 145.2 4.19 8.33 16.99 20.54 36.2274°E 73.4421°N 3030 Cold semiarid
Skardu 231.9 95.5 3.31 6.17 16.29 20.81 35.3247°E 75.551°N 2228 Cold semiarid
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index (SPEI) is a climatic water balance variant of the SPI
based on precipitation and potential evapotranspiration. It
possesses the multiscalar capability of the SPI by considering
its simple mathematical procedure and utilizing temperature
variability. Te computation procedure of the SPEI is fol-
lowed by guidelines provided in [50]. Te standardized
precipitation temperature index (SPTI) is another multi-
scalar drought selected as the input climatic indicator of our
proposed framework. Te calculation procedure of the SPTI
is quite like the SPI and the SPEI.

Te above-stated drought indices are standardized, i.e.,
cumulative distribution function (CDF) values of a normal
probability distribution. For any time scale, the zero value of
SDIs (the SPI, the SPEI, and the SPTI) stated that there is no
deviation from the average precipitation. A positive value
indicates that the precipitation is higher than the average
precipitation. In contrast, a negative value of drought shows
that precipitation is smaller than the average precipitation.

2.3. Seasonality of Drought Indices. Drought predictions
using seasonally integrated drought indices are helpful in
freshwater resource management and ecological preserva-
tion [51]. Seasonal segregation of drought indices can
compute hybrid and comprehensive drought indices for
precise drought characterization [52, 53]. Te seasonal cli-
mate forecast usually ranges from a few weeks to a year but is
mainly selected at a monthly scale [54], as various hydro-
logical and climatological studies are based on monthly
defned seasonal indices [55, 56]. Similarly, current study
indorses monthly defned seasonal drought indices as input
variables.

2.4.BayesianNetworks (BNs). Bayesian networks (BNs) are
probabilistic graphical models that can describe concise
conditional dependence structures among a set of ran-
dom variates through directed acyclic graphs (DAG) [57].
A DAG consists of nodes representing random variables
and arcs or edges that quantify the conditional de-
pendence of random variates (nodes) [39, 58]. Te di-
rection of edges or arcs represents the causal relationship
among the random variables, and if nodes did not con-
nect through some arc, they are considered conditionally
independent. Te conditional independence of nodes
enables BNs to efciently represent complex probability
distributions [59]. Te causal relationship between ran-
dom variables (nodes) is defned as conditional proba-
bility based on prior information or statistically observed
correlations [60]. Each node possesses signifed states or
levels [61]. BNs are constructed for the identifcation of
the dependence structure among random variables. Te
learning of BNs from data for inference and decision-
making is based on Markov Chain Monte Carlo (MCMC)
algorithms [62, 63] using an improved Metropo-
lis–Hastings sampler [64, 65].

In the Bayesian network theory, to learn the Bayesian
networks from some observed dataset E, the posterior
probability of network G can be computed using the Bayes
rule.

P(G|E) �
P(E|G)P(G)

P(E)
, (1)

where P(E|G) is the marginal likelihood function of ob-
served data given the DAG′G′, P(G) is the prior density of
DAG, and P(E) is the normalizing factor. Ten, the pos-
terior probability of any hypothesis of interest can be
computed by averaging all networks. For a detailed de-
scription of Bayesian learning, the Bayesian model average
approach, and marginal posterior of features (edges),
see [66].

2.5. Proposed Framework for the Bayesian Network-Based
Generalized Weighting Scheme for Amalgamation of Multi-
ple Drought Indices. Te main objective of this study is to
introduce a Bayesian network-based new weighting scheme
for amalgamating multiple seasonal drought indices to
develop a new comprehensive drought index. Te central
part of the study is based on three standardized drought
indices (the SPI, the SPEI, and the SPTI) and the Bayesian
network procedure. Te details of these methodologies have
already been discussed in Sections 2.2 and 2.3. A schematic
diagram of the proposed framework is shown in Figure 2.
Further implication and execution of the framework com-
prise diferent phases, which are as follows.

Phase 1. Selection and calculation of SDIs (the SPI, the SPEI,
and the SPTI):Te selection of drought indices can infuence
the obtained information about drought monitoring, its
areal extent, and duration. Most of the SDIs are region-
specifc and have inherited complexities. Terefore, single
and multiple meteorological variables based on drought
indices (the SPI, the SPEI, and the SPTI) have been selected
for the current study, and their calculation procedure is
briefy described in Section 2.2.

Phase 2. Seasonal segregation of SDIs: In this phase, full-
length time series datasets of already calculated SDIs are
separated with respect to months by considering eachmonth
as a season for seasonal, temporal formation [56, 67]. Tese
seasonal drought indices are then considered as input
variables for structural BNs.

Phase 3. Te implication of BNs to obtain potion quantities
(weights): Te key objective of the current study is to es-
timate the probabilistic dependence structure of seasonal
standardized drought indices (the SPI, the SPEI, and the
SPTI) at each selected meteorological station. Te marginal
posterior probabilities of feature edges (nodes/variables) are
approximated through Markov Chain Monte Carlo
(MCMC) simulations. Tree independent MCMC simula-
tions have run on each time series dataset to obtain con-
vergence, and the marginal posterior probabilities are
averaged. Te marginal posterior probabilities describe the
dependence structure among input variables (seasonal
SDIs).

Let SDIj be the list of candidate standardized drought
indices and Yijt be the time series data of ith season (month)
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related to jth SDI at any individual meteorological station,
where t shows the time index and
(i � 1, 2, . . . , 12), (j � 1, 2, 3). Tis step aims to calculate
potion quantities being used as normalizing weights of the
proposed framework to calculate the new seasonally syn-
thesized amalgamated drought index. Te realization of
nodes (SDIj) and edges are defned as follows:

f yi1, yi2, yi3( 􏼁 � P Yi1 � yi1, Yi2 � yi2, Yi3 � yi3( 􏼁. (2)

Equation (2) describes the relative importance of each
seasonal SDI through marginal posterior probabilities,
which can also be defned as dependence probability. A
single run of MCMC simulation gives the following result:

SPI SPEI SPTI
SPI

SPEI

SPTI

π11 π12 π13

π21 π22 π23

π31 π32 π33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

Te average dependence probability (ADP) for a single
MCMC simulation of jth seasonal SDI is denoted by π.j

which is defned as follows:

π.j �
π1j + π2j + π3j

3
. (4)

Te grand average dependence probability (GADP) of
jth SDI is denoted by ωj, fnally obtained through averaging
for all three MCMC simulations, and is mathematically
defned as follows:

ωj �
π.j1

+ π.j2
+ π.j3

􏼐 􏼑

3
. (5)

Tese grand averaged dependence probabilities are the
actual probabilistic relative importance of SDIs at each
meteorological station. Furthermore, these are considered as
potion quantities to calculate normalizing weights ωj

′ de-
fned as follows:

SDI1, SDI2,..., SDIn

Start

Selection and calculation of different
drought Indices

i = 1, 2,..., 12
Seasonal segregation of SDIs

Implication of BNs to
obtain AMPPs

Implication of Proposed Framework MWADIi

MWADIDesegregation of seasonal time
series data sets to get MWADI

End

SDI2i SDIniSDI1i

Figure 2: Graphical representation of the proposed framework.
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ωj
′ �

ωj

􏽐
3
j�1ωj

, (6)

where ωj
′ are the estimated parameters of the proposed

model defned in equation (6). Tese parameters are esti-
mated through the probabilistic dependence structure of
BNs analytically evaluated through MCMC simulations.

Phase 4. Te execution of the proposed model to obtain the
seasonal MWADI:

In this phase, a probabilistic model is defned to syn-
thesize information from diferent SDIs. In numerous
studies, stochastic models such as copulas were employed to
combine drought characteristics of diferent drought indices
[68–70]. But BNs are structural probabilistic and powerful
graphical algorithms to produce dependence probabilities of
stochastic variates utilizing every bit of information
[40, 63, 71]. Terefore, this study proposes a probabilistic
model defned in equation (7), which synthesizes in-
formation obtained from seasonal multiscalar standardized
drought indices.

MWADIi � ω1′SPIi + ω2′SPEIi + ω3′SPTIi, (7)

where MWADIi is a linear combination of
SPIi, SPEIi, and SPTIi. Te linear combination is a mathe-
matical way to combine diferent drought indices to syn-
thesize the meteorological information related to drought
characterization. Te most innovative feature of MWADIi is
that the weights (parameters) are calculated through
a probabilistic structure of BNs using MCMC simulations.
Te weights calculated using BNs defne the role of diferent
drought indices.Te proposedmodel defned in equation (7)
results in seasonal MWADIi (Jan–Dec) at each station using
probabilistic weights or parameters associated with diferent
drought indices. After obtaining the seasonal MWADIi
(Jan–Dec), all 12-time series datasets will be combined to
obtain the fnal MWADI. Te outcome of the algorithm is
a comprehensive multiscalar weighted amalgamated
drought index (MWADI).

3. Results and Discussion

Te latest development of drought indices emphasized in-
corporating complete information readily available in
standardized drought indices. Terefore, three multiscalar
standardized drought indices (the SPI, the SPEI, and the
SPTI) have been used as input indicators to construct the
proposed MWADI. Te main steps involved in the con-
struction and development of the MWADI are explained
and executed in sequence.

3.1. Selection and Estimation of Input Variables (SDIs).
Te SPI, the SPEI, and the SPTI are estimated using their
input meteorological variables for full-length time series
data of precipitation and temperature (minimum and
maximum) at selected meteorological stations. Tese
drought indices are calculated using a parametric approach
by selecting appropriate probability distributions [50]. Te

Bayesian information criterion (BIC) has been used to de-
termine appropriate distribution using the propagate R
Package (Spies, 2014). Detailed calculation procedures of
these SDIs at these selected meteorological stations can be
seen in [66]. Afterward, the datasets of these SDIs are further
seasonally (monthly defned) segregated to integrate sea-
sonal components. In this study, six meteorological stations
have been selected, and 36 seasonal datasets have formed at
each station. Hence, 216 seasonal datasets have been used as
input variables to execute MCMC simulations.

3.2. Te Implication of BNs for the Estimation of Parameters
(Normalizing Weights). Te Bayesian network theory has
been applied tomonthly separated time series data of various
drought indices (the SPI, the SPEI, and the SPTI) for cal-
culating their relative importance through the dependence
probability structure. BN-based MCMC simulations were
performed using seasonal SDIs at each selected meteoro-
logical station. BNs sorted out causal relationships between
nodes (variable) through DAGs. In this study, seasonal SDIs
are considered as nodes, and the arc’s direction shows the
hydrologic causality (conditional dependence) between
nodes (SDIs). Tree independent MCMC simulation runs
are carried out on monthly separated time series datasets of
the SPI, the SPEI, and the SPTI with 200,000 iterations to
obtain experimental results. Te marginal posterior prob-
abilities or dependence probabilities for each simulation run
are obtained using equation (2) for all 12 seasons (Jan–Dec)
at each station. Te average dependence probabilities
(ADPs) are calculated using equation (4). Moreover, ADPs
obtained through these independent simulation runs have
not shownmuch variation, which shows the consistency and
convergence of MCMC simulation runs. For more precise
results, equation (5) calculates grand averaged dependence
probabilities (GADPs) by averaging ADPs for all three
simulation runs. Tables 2 and 3comprise average marginal
posterior probabilities already named ADPs of three sim-
ulation runs and GADPs for January and February seasons
at all meteorological stations. Tese GADPs show the rel-
ative importance of seasonal SDIs (the SPI, the SPEI, and the
SPTI) over each other. Te GADPs of the SPI, the SPEI, and
the SPTI for January are 0.9907, 0.6528, and 0.6620, re-
spectively, showing the SPI’s dominance at the Astore sta-
tion. While at Bunji station, these results are 0.7245, 0.6429,
and 0.9184, respectively. Here, the SPTI dominates other
indices, showing that the relative importance of SDIs sub-
stantially varies from station to station.

Furthermore, we have checked across seasonal proba-
bilistic relative importance of SDIs (the SPI, the SPEI, and
the SPTI). Te GADPs for the February season at Astore
station are 0.9814, 0.6643, and 0.6829, respectively. Te
comparison of GADPs across seasons shows that at Astore
station, the SPI’s dominance persisted. While at Bunji sta-
tion for the February season, these probabilities are 0.8510,
0.6119, and 0.7608, respectively, depicting that dominance
changed from the SPTI to the SPI. Te spatial and seasonal
variations of conditional relevance of diferent SDIs are
shown in Figure 3. It indicates that SDIs have signifcant
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seasonal and spatial relevance at some meteorological sta-
tions.TeGADPs (probabilistic relative importance) of SDIs
are further normalized according to equation (6) to obtain
the fnal potion quantities of the algorithm considered as
estimates of the parameters of the proposed model. Results
for all the 12 seasons (Jan–Dec) and all selected stations are
given in Table 4. For ease of understanding, the presentation
of experimental results is presented only for the specifc
season; however, the results for the other seasons can be
presented accordingly.

3.3. Execution of the Proposed Model. Te proposed model
defned in equation (7), theMWADI, is a linear combination
of three multiscalar standardized drought indices whose
weights (parameters) are calculated using probabilistic
structural BNs. Te results of these estimated parameters of
the proposed model for all the seasons (Jan–Dec) at selected
stations are presented in Table 4. Te outcome of the
proposed model is also the seasonal MWADI for a specifc
season at each meteorological station. After calculating
seasonal MWADIs (Jan–Dec), all 12-time series are then
desegregated to obtain an outcome named MWADI. Te
process is repeated at each meteorological station to obtain
the MWADI. Te outcome of the proposed algorithm is
a seasonally integrated multiscalar amalgamated drought
index (MWADI) for any individual meteorological station.
Te MWADI and input SDIs can be calculated at various
temporal scales to monitor drought conditions, but for
convenience, results are given for a one-month time scale.

A validation experiment was carried out to assess the
accuracy of the drought severity characterized by the
MWADI by comparing the count plots, scatter plots,
temporal plots, and correlation coefcients. Figures 4–6
show the scatter plots of seasonal MWADI with the SPI,
the SPEI, and the SPTI for all seasons Jan–Dec at the Astore
station. TeMWADI is highly correlated with these drought
indices, and the correlation test was applied, and it is ob-
served that the MWADI is signifcantly correlated with all
other SDI’s at p value <0.001. Figure 7 shows that the
MWADI is slightly less correlated with the SPEI while
strongly correlated with the SPI and the SPTI. Te overall
correlation coefcient values between the MWADI and
other SDIs (the SPI, the SPEI, and the SPTI) are 0.93, 0.84,
and 0.98, respectively. Results related to the correlation
coefcient between the MWADI and other SDIs for all
seasons at selected stations are presented in Table 5. Te
strong relationship between the MWADI and other mete-
orological SDIs refects that the MWADI can more precisely
monitor and characterize meteorological drought.

Te drought occurrence frequency is one of the im-
portant factors of drought characterization. Drought se-
verity is classifed into seven mutually exclusive categories.
Several studies already endorse these classifcations
[19, 21, 72, 73]. Te comparison of diferent drought cate-
gories characterized by the MWADI and other SDIs is
presented by count plots, as shown in Figure 8. Te fre-
quency of diferent drought categories signifcantly varied
from one SDI to another and seemed quite uncertain. Be-
cause diferent drought indices give contradictory outcomes

January

SPI

SPI

SPEI

SPEI

SPTI

SPTI

February

The GADPs of SDIs (SPI, SPEI and SPTI)
0.6263 0.6884 0.7505 0.8128 0.8747 0.9368 0.9989

Figure 3: Spatial and seasonal dominance of diferent SDIs (the SPI, the SPEI, and the SPTI).

Complexity 9



Ta
bl

e
4:

Es
tim

at
ed

pa
ra
m
et
er
s
(ω

j′ )
of

th
e
pr
op

os
ed

m
od

el
at

al
lm

et
eo
ro
lo
gi
ca
ls
ta
tio

ns
fo
r
al
ls
ea
so
ns

(J
an
–D

ec
).

Se
as
on

s
A
st
or
e

Bu
nj
i

C
hi
la
s

G
ilg
it

G
up

is
Sk
ar
du

SP
I

SP
EI

SP
TI

SP
I

SP
EI

SP
TI

SP
I

SP
EI

SP
TI

SP
I

SP
EI

SP
TI

SP
I

SP
EI

SP
TI

SP
I

SP
EI

SP
TI

Ja
n

0.
42
97

0.
28
31

0.
28
72

0.
31
70

0.
28
13

0.
40
18

0.
31
62

0.
27
84

0.
40
54

0.
32
79

0.
27
87

0.
39
34

0.
32
18

0.
27
80

0.
40
01

0.
41
38

0.
29
31

0.
29
31

Fe
b

0.
42
15

0.
28
53

0.
29
33

0.
38
27

0.
27
52

0.
34
21

0.
31
27

0.
27
95

0.
40
78

0.
33
33

0.
27
65

0.
39
03

0.
31
80

0.
28
83

0.
39
38

0.
28
68

0.
28
62

0.
42
70

M
ar

0.
35
92

0.
31
98

0.
32
10

0.
31
33

0.
28
03

0.
40
64

0.
33
22

0.
28
80

0.
37
98

0.
34
30

0.
27
69

0.
38
01

0.
32
79

0.
27
79

0.
39
42

0.
28
39

0.
28
34

0.
43
27

A
pr

0.
37
67

0.
30
10

0.
32
23

0.
31
58

0.
28
09

0.
40
33

0.
33
81

0.
27
97

0.
38
22

0.
34
30

0.
27
68

0.
38
01

0.
39
18

0.
27
63

0.
33
18

0.
28
92

0.
28
91

0.
42
17

M
ay

0.
30
72

0.
29
57

0.
39
71

0.
29
47

0.
28
67

0.
41
86

0.
29
76

0.
28
50

0.
41
74

0.
29
93

0.
28
62

0.
41
45

0.
29
79

0.
28
47

0.
41
73

0.
28
70

0.
28
70

0.
42
61

Ju
n

0.
28
99

0.
28
32

0.
42
68

0.
31
65

0.
28
71

0.
39
64

0.
31
41

0.
27
88

0.
40
72

0.
32
37

0.
28
45

0.
39
18

0.
31
39

0.
28
15

0.
40
46

0.
30
29

0.
28
38

0.
41
33

Ju
l

0.
28
53

0.
28
30

0.
43
16

0.
30
38

0.
29
12

0.
40
51

0.
31
17

0.
28
05

0.
40
79

0.
31
17

0.
28
81

0.
40
02

0.
31
44

0.
28
58

0.
39
97

0.
29
72

0.
28
49

0.
41
79

A
ug

0.
29
01

0.
28
56

0.
42
44

0.
29
52

0.
28
82

0.
41
66

0.
30
57

0.
28
10

0.
41
33

0.
29
98

0.
28
30

0.
41
72

0.
31
19

0.
28
04

0.
40
77

0.
28
64

0.
28
47

0.
42
89

Se
p

0.
37
17

0.
29
33

0.
33
50

0.
30
63

0.
28
02

0.
41
35

0.
32
94

0.
28
14

0.
38
91

0.
32
85

0.
27
74

0.
39
41

0.
33
29

0.
27
79

0.
38
92

0.
28
74

0.
28
72

0.
42
54

O
ct

0.
35
56

0.
28
17

0.
36
27

0.
37
11

0.
27
57

0.
35
32

0.
33
67

0.
27
84

0.
38
49

0.
38
45

0.
27
51

0.
34
03

0.
37
27

0.
27
53

0.
35
20

0.
28
40

0.
28
40

0.
43
19

N
ov

0.
34
94

0.
28
15

0.
36
91

0.
34
10

0.
27
44

0.
38
46

0.
31
74

0.
28
27

0.
39
99

0.
33
56

0.
27
59

0.
38
84

0.
34
14

0.
27
50

0.
38
36

0.
28
57

0.
28
40

0.
43
03

D
ec

0.
34
51

0.
28
35

0.
37
14

0.
34
80

0.
27
47

0.
37
73

0.
31
79

0.
28
32

0.
39
88

0.
34
23

0.
27
46

0.
38
32

0.
34
03

0.
27
49

0.
38
48

0.
30
99

0.
30
98

0.
38
03

10 Complexity



related to drought characterization. Furthermore, inaccurate
drought characterization may mislead to drought mitigation
policymakers. As the MWADI synthesized the climatic and
meteorological characteristics of diferent SDIs (the SPI, the
SPEI, and the SPTI), the drought characterization through
the MWADI is considered more reliable. It reduces the
uncertainty of drought characterization through diferent
drought indices. Te near normal (NN) drought class has
a signifcantly higher proportion than other extreme classes.
Extreme dry and extreme wet classes have comparatively
lower count proportions but still can be catastrophic for
linked ecosystems.

Te temporal behavior of the MWADI and other SDIs
(the SPI, the SPEI, and the SPTI) for the Astore station is
shown in Figure 9.Te SPI, the SPEI, and the SPTI were used
to characterize short and long-term drought conditions. Te
graphical representation shows the evolution and

termination of dry and wet conditions during 1970–2016.
Te red spikes and patches show the severity and duration of
drought similarly; some blue spikes represent a few high
precipitation events producing wet spells that cause fash
food events. Te MWADI, the SPI, and the SPTI showed
similar drought trends from 1970 to 2016, indicating the
high correlation among these indices. Tis graphical evi-
dence also clarifes the variation in defning drought clas-
sifcations by the MWADI and other SDIs. Te temporal
behavior of the MWADI for a one-month time scale at all
selected meteorological stations is presented in Figure 10.
Tese statistical and graphical results indicate that the main
advantage of the MWADI is its probabilistic graphical
feature for characterizing and analyzing drought conditions.
As the probabilistic structure of BNs is based on the cause-
and-efect relationship between climatic and meteorological
indicators therefore, a comprehensive drought index
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Figure 4: Te scatter diagram and correlation coefcient R values between the seasonal MWADI and the SPI, the SPEI, and the SPTI
(January–April) at Astore.
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calculated through probabilistic structural and graphical
algorithms reduces the uncertainties. Te newly developed
MWADI comprises various characteristics inherited by its
multiple input multiscalar meteorological indicators. Te
MWADI can be easily implemented to display drought
conditions across higher-order time scales. Te temporal
behavior of the MWADI at 6-month and 12-month time
scales is presented in Figures 11 and 12 simultaneously.
However, the proposed MWADI could be easily generalized
by using more hydroclimatic and agricultural indicators as
input variables for hydrological and agricultural drought

assessment. Drought is a recurring threat to linked eco-
systems, creating issues related to freshwater resources. Te
Bayesian network-basedMWADI seemsmore promising for
drought characterization to cope with such kinds of
challenges.

Te current study uses the SPI, the SPEI, and the SPTI as
input indicators. Tese meteorological indicators are based
on precipitation and mean monthly temperature, which
defnes the limits of the MWADI. Te scope of the proposed
index can be enhanced by using more input indicators based
on soil moisture and remote sensing data. Similarly, diferent
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Figure 5: Te scatter diagram and correlation coefcient R values between the seasonal MWADI and the SPI, the SPEI, and the SPTI
(May–August) at Astore.
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Figure 8: Count plots of MWADI-1, SPI-1, SPEI-1, and SPTI-1 at all stations.
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Figure 10: Temporal behavior of the MWADI at one-month time scale at all stations.

18 Complexity



M
W

A
D

I-
6

Astore

-2

-1

0

1

2

1980 1990 2000 20101970
Time (Years)

M
W

A
D

I-
6

Bunji

-2

-1

0

1

2

1980 1990 2000 20101970
Time (Years)

M
W

A
D

I-
6

Chilas

-2

0

2

1980 1990 2000 20101970
Time (Years)

M
W

A
D

I-
6

Gilgit

-1

0

1

2

1980 1990 2000 20101970
Time (Years)

M
W

A
D

I-
6

Skardu

-1

0

1

2

1980 1990 2000 20101970
Time (Years)

M
W

A
D

I-
6

Gupis

-1

0

1

2

3

1980 1990 2000 20101970
Time (Years)

Figure 11: Temporal behavior of the MWADI at 6-month time scale at all stations.
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Figure 12: Temporal behavior of the MWADI at 12-month time scale at all stations.

20 Complexity



drought indices could be combined using alternative sto-
chastic and multivariate algorithms such as copulas and
principal component analysis (PCA), which can be con-
sidered as future directions.

4. Conclusion

Te use of a single drought index provides insufcient in-
formation related to the drought assessment. Due to the
complex nature and widespread impacts of drought, ap-
plying a single index creates uncertainty for drought as-
sessment and monitoring. Terefore, a new comprehensive
procedure is required to minimize the uncertainty of
drought evaluation. In this regard, the current study pro-
poses a new framework, known as the multiscalar weighted
amalgamated drought index (MWADI), that synthesizes
information from multiple drought indices. Te MWADI is
mainly based on the ADPPs. Furthermore, these ADPPs are
based on Bayesian networks (BNs)-based Monte Carlo
Markov Chain (MCMC) simulations. Te MWADI recon-
ciles diferent drought indices and helps decision-makers to
understand drought-related uncertainties. Te drought se-
verity and episodes estimated by the MWADI are compared
and verifed by temporal plots, count plots, and correlation
charts. Moreover, the results of the MWADI are compared
with the SPI, the SPEI, and the SPTI to estimate the drought
events (impacts). Te associated outcomes of the MWADI
show a positive relationship with the SPI and the SPTI.
Terefore, the MWADI can capture small changes in
drought patterns and comprehensive drought risk assess-
ment at the selected climatic zone.
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[42] R. Ávila and D. Ballari, “A bayesian network approach to
identity climate teleconnections within homogeneous pre-
cipitation regions in Ecuador,” in Proceedings of the Con-
ference on Information Technologies and Communication of
Ecuador, pp. 21–35, Springer, Cham, Switzerland, November,
2019.

[43] S. C. Kao and R. S. Govindaraju, “A copula-based joint defcit
index for droughts,” Journal of Hydrology, vol. 380, no. 1-2,
pp. 121–134, 2010.

[44] S. Chen, W. Zhong, S. Pan, Q. Xie, and T. W. Kim, “Com-
prehensive drought assessment using a modifed composite
drought index: a case study in Hubei Province, China,”Water,
vol. 12, no. 2, p. 462, 2020.

[45] D. Cui, W. Yuan, C. Chen, and R. Han, “Identifcation of
colorectal cancer-associated macrophage biomarkers by in-
tegrated bioinformatic analysis,” International Journal of
Clinical and Experimental Pathology, vol. 14, pp. 1–8, 2021.
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Swarm intelligence algorithms are metaheuristics inspired by the collective behavior of species such as birds, fsh, bees, and ants.
Tey are used in many optimization problems due to their simplicity, fexibility, and scalability. Tese algorithms get the desired
convergence during the search by balancing the exploration and exploitation processes. Tese metaheuristics have applications in
various domains such as global optimization, bioinformatics, power engineering, networking, machine learning, image pro-
cessing, and environmental applications. Tis paper presents a systematic literature review (SLR) on applications of four swarm
intelligence algorithms i.e., grey wolf optimization (GWO), whale optimization algorithms (WOA), Harris hawks optimizer
(HHO), and moth-fame optimizer (MFO) in the feld of software engineering. It presents an in-depth study of these meta-
heuristics’ adoption in the feld of software engineering. Tis SLR is mainly comprised of three phases such as planning,
conducting, and reporting.Tis study covers all related studies published from 2014 up to 2022.Te study shows that applications
of the selected metaheuristics have been utilized in various felds of software engineering especially software testing, software
defect prediction, and software reliability. Te study also points out some of the areas where applications of these swarm in-
telligence algorithms can be utilized.Tis study may act as a guideline for researchers in improving the current state-of-the-art on
generally adopting these metaheuristics in software engineering.

1. Introduction

Te goal of optimization is to fnd a solution that either
minimizes or maximizes a criterion known as the objective
function, ftness function, or cost function. A solution
known as a feasible solution or admissible solution is re-
quired to solve the objective function under given con-
straints [1]. An optimization algorithm works iteratively
until a specifed number of iterations or when a specifc
amount of time is reached to enhance a given criterion [2].

Many real-life optimization problems in engineering,
science, and business are complicated and, thus, no exact
solutions can be provided in a fair amount of time. To tackle

such problems, approximate algorithms are used. Approx-
imate algorithms are further divided into specifc heuristics
and metaheuristics. Specifc heuristics being problem-de-
pendent solve specifc problems, whereas metaheuristics are
general-purpose strategies used to solve a huge number of
optimization problems [3].

Generally, metaheuristics solve instances of hard
problems through exploration of the search space where the
solution is supposed to be found. Tere are mainly three
objectives of metaheuristics: (1) providing a fast solution to a
given problem; (2) tackling large problems; and (3)
obtaining robust algorithms. Furthermore, metaheuristics
are fexible and simple to design as well as implement [3].
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In Search-Based Software Engineering (SBSE), meta-
heuristic search techniques are applied to optimization
problems in software engineering. Te main objective of
SBSE is to move problems related to software engineering to
machine-based search instead of human-based search. Tis
is accomplished by using various techniques of meta-
heuristics as well as operations research [4]. Near-optimal
solutions are acceptable in various engineering disciplines,
and software engineering is no exception. It is due to this fact
that metaheuristic techniques are applicable to solving
software engineering problems. Tus, difcult problems can
be solved using such search-based techniques with accept-
able solutions where perfect solutions are infeasible or
impossible [5].

Various swarm intelligence algorithms such as GWO,
WOA, HHO, and MFO algorithms have been applied in
numerous domains such as machine learning, networks,
engineering optimization, environmental modeling, image
processing, power dispatch problems, and medical and
bioinformatics [6–9]. Some of the recent nature-inspired
metaheuristic algorithms include monarch butterfy opti-
mization (MBO) proposed by Wang et al. [10], slime mould
algorithm (SMA) proposed by Li et al. [11], moth search
(MS) algorithm proposed by Wang [12], marine predators
algorithm (MPA) presented by Faramarzi et al. [13], hunger
games search (HGS) presented by Yang et al. [14], and
colony predation algorithm (CPA) developed by Tu et al.
[15].

Tis paper presents a systematic literature review on
applications of four swarm intelligence algorithms, namely,
GWO, WOA, HHO, and MFO, in the domain of software
engineering. Our motivation comes from the fact that, as per
our knowledge, there is no such systematic review available.
Also, a review study paper helps researchers with aggregated
knowledge on a given topic in one place. Table 1 shows
various felds in software engineering that utilize these
swarm intelligence algorithms. It also points out various
areas in software engineering where these algorithms could
be utilized.Temain contributions of this SLR are as follows:

(i) Te SLR presents applications of four swarm-based
metaheuristics i.e., GWO, WOA, HHO, and MFO
in the feld of software engineering.

(ii) Te SLR analyzes 46 relevant studies from 2014 to
2022 according to several research questions.

(iii) Tis study points out new areas in software engi-
neering where the selected metaheuristics could be
utilized thus it identifes further research oppor-
tunities in the feld.

Many swarm intelligence algorithms are available and
are gaining prominence as they ofer reasonable solutions to
complex problems. Tese algorithms are mainly inspired by
biological systems such as animal-based and insect-based.
We have chosen four swarm intelligence algorithms, one
from each group, i. e., GWO from animal-based, MFO from
insect-based, HHO from bird-based, and WOA from fsh-
based groups. Also, the selected algorithms are relatively
new, therefore, working on these will provide the current

state-of-the-art. Moreover, these algorithms are popular
among swarm intelligence algorithms, which is obvious
from the number of their applications in various felds,
including software engineering. Based on the above scenario,
we have chosen these four algorithms for our SLR.

Te Grey Wolf Optimizer is a metaheuristic algorithm
that is inspired by grey wolves. It works by mimicking grey
wolves in nature, such as their leadership hierarchy and
hunting mechanism. Similarly, WOA is a nature-inspired
metaheuristic optimization algorithm that mimics the social
behavior of humpback whales. Te bubble-net hunting
strategy is the main inspiration for WOA. Te third met-
aheuristic algorithm included in our study is HHO, which is
a nature-inspired and population-based swarm intelligence
algorithm. It is inspired by the chasing style and cooperative
behavior of Harris’ hawks in nature, known as surprise
pounce. Te fourth and last swarm intelligence algorithm
included in our study is also a nature-inspired optimization
algorithm called theMFO algorithm. Transverse orientation,
the navigation method of moths in nature, is the main
inspiration for this algorithm.

Recent applications of the GWO include Al-Momani
et al. [16] used GWO to optimize the fxed parameters of the
supercritical power plant (SCPP). Results were compared
with GA which confrmed the superiority of GWO over GA
for parameter identifcation of the SCPP model. Hao and
Sobhani [17] utilized chaotic GWO to identify important
functional parameters of solid oxide fuel cells. Te adaptive
GWO was applied to a 5 kW dynamic tubular stack. Te
result showed signifcant performance compared with
existing well-known methods for optimization. Bardhan
et al. [18] proposed a hybrid approach based on GWO and
an artifcial neural network (ANN) to fnd the load-carrying
capability of concrete-flled steel tube (CFST) columns. Te
author also employed an enhanced version of GWO
(EGWO) and created two hybrid models, ANN-AGWO and
ANN-EGWO, to estimate CFST columns’ load-carrying
capacity. According to the results, the ANN-AGWO out-
performed other methods. Dhar et al. [19] proposed a
modifed GWO for parameter tuning of the model of a direct
deposition process of austenitic steel that utilizes the tech-
nique of extreme gradient boost. Results showed GWO’s
performance in tuning the parameters of the eth model was
satisfactory. Yin and Sun [20] introduced distributed multi-
objective GWO (DMOGWO) to solve the large-scale multi-
area interconnected power systems (LMIPSs) problems.
Results confrmed the better performance of the proposed
method in solving LMIPS problems.

It is worth noting that these optimization methods do
not guarantee the best solution, and since these are mostly
used in NP-hard problems, they ofer near-optimal solu-
tions. Moreover, these metaheuristics come with their
shortcomings, such as trapping in local optima. To avoid
being trapped in local optima, various solutions have been
proposed by ofering variants of these metaheuristics, such
as Hu et al. [21] tried to overcome GWO’s shortcomings by
developing a variant of GWO. Te proposed GWOCMA-
LOL uses CMAES, levy fight, and orthogonal learning
strategies. According to the results, the proposed algorithm

2 Complexity



outperformed the original algorithm by resolving its
shortcomings.

Tis paper is organized as follows: An overview of GWO
is presented in the Overview section. Te adopted research
methodology is discussed in the Methodology section. Re-
sults obtained from the review study are presented in the
Results section. Section Discussion summarizes the SLR and
provides insights obtained from the study. SectionTreats to
Validity outlines the potential threats to validity. Finally, the
Conclusion section concludes the literature review work.

2. Overview

Tis section presents an overview of the swarm intelligence
algorithms included in our study. It explores sources of
inspiration as well as mathematical models of these
algorithms.

2.1. GreyWolf Optimizer (GWO). Te Grey Wolf Optimizer
is an instance of a swarm intelligence technique that is
inspired by the social hierarchy as well as the hunting be-
havior of the grey wolf (Canis lupus) of the Canidae family.
Tey stay at the top of the food chain, being apex predators.
Tey usually live in packs with an average size of 5 to 12
wolves. Te group dictates a strict social dominant hierarchy
[6, 22]. A multi-objective variant of the same algorithm, the
Muli-Objective Grey Wolf Optimizer (MOGWO), is

proposed by Mirjalili [23] for optimization of problems
having more than one objective.

At the top of the hierarchy is the alpha, which leads the
group. Beta, the subordinate wolves are next to alpha in the
social hierarchy. Tey help the alphas with making decisions
as well as other activities. In case the alpha becomes too old
or passes away, the beta becomes the alpha. At the bottom of
the hierarchy are the omega wolves, which are dominated by
other dominant wolves. Te fourth type in the hierarchy is
delta, which has dominance over the omega but submits to
alpha and beta. Delta wolves include caretakers, hunters,
sentinels, scouts, and elders [22].

Like their social hierarchy, grey wolves also exhibit in-
teresting social behavior during group hunting. Tey follow
a set of efcient steps during group hunting, such as chasing,
encircling, harassing, and attacking the prey. Tis behavior
enables them to control big prey [6, 22]. Figure 1 shows the
fowchart of GWO.

2.2. Mathematical Model of GWO. Tis section presents the
mathematical models of the social behavior of grey wolves
such as encircling and hunting the prey [22].

2.2.1. Encircling the Prey. Te encircling behavior of grey
wolves is depicted mathematically by the following
equations:

Table 1: Swarm intelligence algorithms’ areas of applications in software engineering.

Algorithms Fields covered by the algorithm Gaps to be covered by these algorithms

GWO

(i) Software testing (i) Software vulnerability prediction
(ii) Software bug/defect prediction (ii) Software organization
(iii) System reliability (iii) Software re-modularization
(iv) Software requirements analysis (iv) Maintenance/evolution system integration
(v) Agile software development (v) Software module clustering
(vi) Software efort estimation (vi) Finding good designs
(vii) Software project scheduling problem (vii) Reverse and re-engineering through transformation and re-factoring
(viii) Software usability (viii) User-based ftness evaluation for aesthetic aspects of software engineering
(ix) Next release problem (ix) Avionics software
(x) Project cost estimation (x) Automotive software
(xi) Software release planning (xi) Software confguration
(xii) Software risk management (xii) Software component allocation

(xiii) Structural testing
(xiv) Mutation testing
(xv) Worst-and-best case execution time testing
(xvi) Issue of boundary value analysis
(xvii) Partition testing

WOA

(i) Software testing
(ii) Software bug/defect prediction
(iii) System reliability
(iv) Software requirements analysis
(v) Software efort estimation
(vi) Software project scheduling problem
(vii) Next release problem

HHO (i) Software testing
(ii) Software bug/defect prediction

MFO
(i) Software testing
(ii) Software bug/defect prediction
(iii) Software usability
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equation 7
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C using equations 3 & 4
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of search agents
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best agent 

If new search 
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search agent

Update the alpha, beta, & delta

Figure 1: Flowchart of Grey Wolf Optimization (GWO) algorithm.
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D
→

� C
→

.Xp

��→
(t) − X

→
(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (1)

X
→

(t + 1) � Xp

��→
− A

→
.D
→

, (2)

where the current iteration is shown by t, grey wolf’s po-
sition vector is indicated by X

→
and position vector of prey is

indicated by Xp

��→
. A

→
and C

→
represent the coefcient vectors

calculated as follows:

A
→

� 2 a
→

.r1
→

− a
→

, (3)

C
→

� 2.r2
→

, (4)

where r1 and r2 are random vectors in the range [0, 1] while
components of a

→ are decreased from 2 to 0 linearly as it-
erations proceed.

2.2.2. Hunting. In a given abstract search space, the best
candidate solution is supposed to be alpha whereas beta, and
delta are supposed to know the prey’s potential location i. e.,
the best solution. Te top three solutions obtained are saved.
Other search agents such as omegas update their positions
according to the position of the best search agents. Tis
concept is depicted mathematically by the following
equations:

Dα
�→

� C1
�→

.Xα
�→

− X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, Dβ
�→

� C2
�→

.Xβ
�→

− X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, Dδ
�→

� C3
�→

.Xδ
�→

− X
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

X1
�→

� Xα
�→

− A1
�→

. Dα
�→

􏼒 􏼓, X2
�→

� Xβ
�→

− A2
�→

. Dβ
�→

􏼒 􏼓, X3
�→

� Xδ
�→

− A3
�→

. Dδ
�→

􏼒 􏼓,
(5)

where Dα
�→

, Dβ
�→

and Dδ
�→

are vectors showing distance between
prey’s location X

→
and alpha, beta, and delta, respectively.

Xα
�→

, Xβ
�→

and Xδ
�→

represent the position vectors of alpha,
beta and delta respectively. X1

�→
, X2
�→

and X3
�→

represent the next
location of alpha, beta, and delta, respectively. Whereas,
C1
�→

, C2
�→

, C3
�→

, A1
�→

, A2
�→

and A3
�→

are coefcient vectors defned by
equations (3) and (4)

X
→

(t + 1) �
X1
�→

+ X2
�→

+ X3
�→

3
, (6)

where X
→

(t + 1) represent the next location of the prey i.e.,
the average of the best three solutions so far to be obliged by
other search agents such as omega for updating their
position.

2.3. Whale Optimization Algorithm (WOA). WOA is a na-
ture-inspired metaheuristic optimization algorithm pro-
posed by Mirjalili and Lewis [24] in 2016 which mimics the
social behavior of humpback whales. Te bubble-net
hunting strategy is the main inspiration for WOA. Te
Whale optimization algorithm is a nature-inspired meta-
heuristic optimization algorithm proposed by Mirjalili and
Lewis [24] in 2016 which mimics the social behavior of
humpback whales. Whales feel emotions and are considered
intelligent animals. Humpback whales (Megaptera
novaeangliae) are among the biggest baleen whales. An adult
humpback whale almost grows to the size of a school bus.

Te humpback whales follow an interesting special
hunting method known as the bubble-net feeding method.
Small fsh and schools of krill are the preferred prey of
humpback whales. Tey forage by creating distinctive
bubbles along a “9”-shaped or circle. Teir two maneuvers
related to bubbles are named “upward-spirals” and “double-
loops”. In “upward-spirals” the humpback whales take dives
and create bubbles in a spiral shape around the prey, whereas

“double-loops” consists of three stages: coral loop, lobtail,
and capture loop [24].

2.4. Mathematical Model of WOA. Tis section presents the
mathematical model of the unique foraging behavior of
humpback whales such as searching for prey, encircling
prey, and spiral bubble-net feeding maneuver [24].

2.4.1. Encircling the Prey. Te following equations mathe-
matically depict the encircling behavior of humpback
whales:

D
→

� C
→

.X
∗��→
(t) − X

→
(t)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

X
→

(t + 1) � X
∗��→
(t) − A

→
.D
→

,

(7)

where the current iteration is shown by t, X
→

represents the
position vector, and X∗ represents the the position vector of
the optimal solution.

Te following equations calculate vectors A
→

and C
→

as

A
→

� 2 a
→

. r
→

− a
→

, (8)

C
→

� 2. r
→

, (9)

where r
→ is a random vectors in the range [0, 1] while a

→

decreases from 2 to 0 linearly as iterations proceed.

2.4.2. Bubble-Net Attacking Method. Te bubble-net be-
havior represents the exploitation phase. It is modeled
mathematically by using two approaches as follows:

(1) Shrinking Encircling Mechanism. To achieve this
behavior, the value of a

→ in equation (8) is decreased which
further decreases the fuctuation range of A

→
.

(2) Spiral Updating Position. In this approach, the distance
between the whale and prey is calculated frst. Positions of
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whale and prey are represented by (X, Y) and ,(X∗, Y∗),
respectively. Ten the helix-shaped movement of humpback
whales is mimicked using the spiral equation as follows:

X
→

(t + 1) � D′
�→

.e
bl

. cos(2πl) + X
∗��→
(t), (10)

where D′
�→

� |X
∗��→
(t) − X

→
(t)| shows the ith whale’s distance to

the prey i.e., the optimal solution so far, b defnes the
logarithmic spiral’s shape, l indicates a random number in
the range [−1, 1], whereas “.” indicates element-wise
multiplication.

Te following equation models the foraging behavior of
humpback whales by assuming a 50% probability each for
the shrinking encircling mechanism and the spiral model to
update the whales’ position during the optimization process:

X
→

(t + 1) �
X
∗��→
(t) − A

→
.D
→

, ifp< 0.5,

D′
�→

.e
bl

. cos(2πl) + X
∗��→
(t), ifp≥ 0.5,

⎧⎪⎨

⎪⎩
(11)

where p indicates a random number in the range [0, 1].

2.4.3. Search for Prey. Te humpback whales also search
randomly for prey. Tis random search represents the explo-
ration phase. Unlike the exploitation phase, the position of a
search agent in the exploration phase is updated randomly as
opposed to the optimal search agent found so far. Tis
mechanism as well as |A

→
|> 1 enables the WOA algorithm for a

global search.Te following equation presents the mathematical
model:

D
→

� C
→

.Xrand
�����→

−
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌X
→

,

X
→

(t + 1) � Xrand
�����→

− A
→

.D
→􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
(12)

where Xrand
�����→

represents a random position vector i.e., a
random whale out of the current population.

2.5. Harris Hawks Optimizer (HHO). Te next metaheuristic
algorithm included in our study is HHO, which is a nature-
inspired and population-based swarm intelligence algorithm
proposed by Heidari et al. [25] in 2019. It is inspired by the
chasing style and cooperative behavior of Harris’ hawks (Par-
abuteo unicinctus) in nature, known as surprise pounce. Te
Harris’ hawks are considered intelligent birds and are found in
the southern half of Arizona, USA.

To capture prey, Harris’ hawks use “surprise pounce” as
the main strategy. Tis tactic is also called the “seven kills”
strategy. Using this strategy, the detected rabbit is attacked
from diferent directions, and the hawks concurrently
converge on the escaping rabbit. Te “seven kills” approach
may take seconds or several minutes to capture prey
depending on its escaping capabilities. Harris’ hawks
demonstrate various chasing styles based on the escaping
patterns of prey as well as the circumstances [25].

2.6. Mathematical Model of HHO. Tis section mathemat-
ically models the exploratory as well as exploitative phases of
the HHO algorithm inspired by various hunting strategies of
Harris’ hawks [25].

2.6.1. Exploration Phase. Te following equation models the
exploration mechanism of HHO. Te perch behavior in
HHO is based on two strategies (1) perch based on the
positions of other members, which is modeled in equation
(13) [ref] for the condition of q< 0.5, or (2) random perch on
tall trees, which is modeled in Equation (13) for the con-
dition of q≥ 0.5.

X(t + 1) �
Xrand(t) − r1 Xrand(t) − 2r2X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, ifq≥ 0.5,

Xrabbit(t) − Xm(t)( 􏼁 − r3 LB + r4(UB − LB)( 􏼁, ifq< 0.5,

⎧⎨

⎩ (13)

whereX(t + 1) represents hawks’ position vector in the next
iteration t, Xrabbit(t) represents rabbit’s position, X(t)

represents hawks’ current position vector, r1, r2, r3, r4, and
q represent random numbers inside in the range (0,1), LB
and UB represent variables’ upper and lower bounds,
Xrand(t) shows a hawk randomly selected out of the current
population, and average position of hawks’ current pop-
ulation is represented by Xm which is defned by equation
14:

Xm(t) �
1
N

􏽘

N

i�1
Xi(t), (14)

where Xi(t) represents each hawks’ location in iteration t
and the total number of hawks is represented by N.

During the escape, the prey’s energy decreases consid-
erably which can be modeled mathematically as

E � 2E0 1 −
t

T
􏼒 􏼓, (15)

where E shows the prey’s escaping energy, T represents the
maximum number of allowed iterations, and E0 represents
the initial energy.

2.6.2. Exploitation Phase. Harris’ hawks attack by per-
forming a surprise pounce on the prey. However, prey often
succeeds in escaping, which gives rise to various chasing
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styles. Based on the chasing strategies as well as escaping
behaviors, HHO has four strategies to model the attacking
stage. Suppose r represents the prey’s escape chance,
(r< 0.5) means successful escape while (r≥ 0.5) shows
unsuccessful escape before surprise pounce. A hard or soft
besiege is performed by the hawks to catch the prey. Here,
the parameter E is utilized to decide between soft and hard
besiege processes. Te soft besiege is performed when
|E|≥ 0.5 and when |E|≤ 0.5, the hard besiege takes place.

(1) Soft Besiege. Te behavior is performed when r≥ 0.5
and |E|≥ 0.5 as modeled by the following rules:

X(t + 1) � ΔX(t) − E|JXrabbit(t) − X(t)|,

ΔX(t) � Xrabbit(t) − X(t),
(16)

where ΔX(t)represents the diference between the rabbit’s
position vector and the current location in iteration t, r5
represents a random number in the range (0,1), and J �

2(1 − r5) randomly presents the rabbit’s jumping strength
during the escaping procedure.

(2)Hard Besiege. When r≥ 0.5 and |E|< 0.5, the prey has
low escaping energy. In this scenario, the following equation
updates the current positions:

X(t + 1) � Xrabbit(t) − E|ΔX(t)|. (17)

(3) Soft Besiege with Progressive Rapid Dives. When
|E|≥ 0.5 and r< 0.5, the rabbit’s energy level is still high
enough for a successful escape. Tus, prior to surprise
pounce, a soft besiege is constructed.Te following equation
updates the hawks’ position in the soft besiege phase:

X(t + 1) �
Y, ifF(Y)<F(X(t)),

Z, ifF(Z)<F(X(t)),
􏼨 (18)

where Y and Z are obtained using equations (19) and (20)
respectively as follows:

Y � Xrabbit(t) − E JXrabbit(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (19)

Z � Y + S × LF(D), (20)

where D represents the dimension of the problem and S

represents a random vector by size 1 × D and LF represents
the levy fight function defned by equation (21).

LF(x) � 0.01 ×
u × σ
|v|

1/β , σ �
Γ(1 + β) × sin(πβ/2)

Γ(1 + β/2) × β × 2β−1/2􏼠 􏼡􏼡

1/β

,

(21)

where u, v represents random values in the range (0,1) and β
represents a default constant with the value 1.5.

(4) Hard Besiege with Progressive Rapid Dives. When
|E|< 0.5 and r< 0.5, a hard besiege is constructed before the
surprise pounce as the rabbit lacks the energy to escape. Te
following equation models the hard besiege condition:

X(t + 1) �
Y, ifF(Y)<F(X(t)),

Z, ifF(Z)<F(X(t)),
􏼨 (22)

where Y and Z are defned by equations (23) and (24),
respectively,

Y � Xrabbit(t) − E JXrabbit(t) − Xm(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (23)

Z � Y + S × LF(D), (24)

where Xm(t) is defned by equation (14).

2.7. Moth-Flame Optimizer (MFO). Another swarm intelli-
gence algorithm included in our study is also a nature-inspired
optimization proposed by Mirjalili [26] in 2015 called the MFO
algorithm. Transverse orientation, the navigation method of
moths in nature, is the main inspiration for this algorithm.
Moths are butterfy-like insects with over 160,000 diferent
species.

Moths have an interesting navigation method at night.Tey
utilize moonlight when fying at night using a mechanism
known as transverse orientation. Using this method, amoth fies
in a straight path bymaintaining a fxed angle with respect to the
moon. Tis is an efective method that guarantees fying in a
straight line [26].

However, moths are observed fying spirally around the
lights. Tis is because the transverse orientation only works
when the light is far away, like the moon. Using artifcial
lights, they want to keep a similar angle with the light to fy in
a straight line. However, this behavior only creates a useless
and deadly spiral fy path for moths. In the end, they
converge toward the light. Te Mothfame optimization
algorithm is inspired by this behavior [26].

2.8. Mathematical Model of MFO. MFO is consisted of
moths and fames. Moths as search agents are represented in
a matrix as follows:

M �

m1,1 m1,2 . . . . . . m1,d

m2,1 m2,2 . . . . . . m2,d

⋮ ⋮ ⋮ ⋮ ⋮

mn,1 mn,2 . . . . . . mn,d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

where n represents the number of moths and d represents
the dimension.

Also, an array is used to store the ftness of the corre-
sponding moth as follows:

OM �

OM1

OM2

⋮

OMn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where n represents the number of moths.
Furthermore, the best positions discovered by moths are

represented as fames which are stored matrix F and their
ftness value is stored in an array OF.

Te spiral moment of moths around fames is modeled as
follows:

S Mi, Fj􏼐 􏼑 � Di.e
bt

. cos(2πt) + Fj, (27)
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where Di shows the distance of the ith moth for the jth fame,
b is a constant which defne the logarithmic spiral’s shape,
and t indicates a random number in the range [−1, 1].

D is defned by the following equation:
Di � Fj − Mi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (28)

where Mi represents the ith moth and Fj represents the jth
fame.

For exploitation as well as convergence, the fames de-
crease in number as depicted in the following equation:

flameno � round N − l∗
N − 1

T
􏼒 􏼓, (29)

where the current number of iteration is represented by l,
maximum number of fames are shown by N, and the
maximum number of iterations is shown by T.

3. Research Methodology

Tis Systematic Literature Review (SLR) follows the pro-
posed methodology of Kitchenham and Charters [27].
Various discrete activities comprise our work. Tese ac-
tivities can be divided into three phases, such as planning,
conducting, and reporting the SLR. Te frst phase, namely,
planning of the study is comprised of the research questions
addressed by the SLR, identifying the data sources, forming
the search strategy, data extraction process, and synthesis.

3.1. Research Questions. Tis systematic literature review
explores the applications of GWO, WOA, HHO, and MFO
in software engineering. Specifcation of research questions
(RQs) is an essential part of any SLR. For the accom-
plishment of the SLR, the following RQs are included:

RQ1:What is the evaluation of studies published on the
GWO, WOA, HHO, and MFO algorithms in software
engineering?
RQ2: What are the applications of GWO, WOA, HHO,
and MFO in software engineering?
RQ3: Which individuals, organizations, and countries
are actively involved in searched-based software en-
gineering using GWO, WOA, HHO, and MFO?
RQ4: What are the potential applications of GWO,
WOA, HHO, and MFO in software engineering?

3.2. Data Sources and Search Strategy. Based on [28], our
search string incorporates two essential search terms,
namely, “Creature Name” and “Domain”. Te frst term
mentions algorithms such as GWO, WOA, HHO, and MFO
inspired by the social behavior of grey wolves, humpback
whales, Harris’ hawks, and moths, respectively. Te second
term describes the felds where the social behavior of grey
wolves has been mimicked, such as software engineering.
Tis term is accompanied by appropriate synonyms.

Te Boolean AND has been used to combine the major
search terms of our search string, whereas the Boolean OR
has been used to incorporate the synonyms as well as related
terms. Te following is the search string used in our SLR.

(“grey wolf optimizer,” OR, GWO, OR “whale optimization
algorithm,” OR, WOA, OR “Harris hawks optimization,” OR,
HHO, OR “moth-fame optimization” OR MFO) AND
(“software engineering” OR “software development” OR
“software testing” OR “requirements engineering” OR “usability
engineering” OR software OR testing).

For the accumulation of related publications, academic data
sources such as IEEExplore, ACMDigital Library, SpringerLink,
and ScienceDirect have been searched. Most of our publications
of interest came from using Google Scholar. Publications and
contributions came from journals, books, and conferences.

Tis SLR includes full-text studies citing GWO, WOA,
HHO, and MFO in software engineering and was published
from 2014 until 2022. Major search terms must be part of each
study. Furthermore, the written language of these publications
must be English. Te titles and abstracts of these papers are
investigated to ensure they ft the SLR. Personal blogs, web pages,
and studies that do not cite the mentioned swarm intelligence
algorithms are excluded from the SLR. Te exclusion and in-
clusion criteria for the selection of studies are summarized in
Figure 2.

3.3. Data Extraction and Synthesis. To address the research
questions, this section explores the strategy of extracting and
analyzing data from selected studies. A list comprised of various
data items is obtained from the selected studies. Table 2 presents
the recorded information which will be used for providing
answers to the research questions (RQs). Also, the individual
data items associated with the relevant research questions are
shown in Table 2.

We applied the search string to various digital libraries such
as IEEExplore, ACM Digital Library, SpringerLink, and Sci-
enceDirect and obtained 68, 24, 275, and 2270 studies, re-
spectively. We also used Google Scholar and using a search
string, 2446 studieswere obtained.Our search provided a total of
5083 studies, as shown in Table 3. Primary studies were obtained
from the search results by using the PRISMA fow diagram as
shown in Figure 3.

Te PRISMA fow diagram consists of various steps such as
identifcation, screening, eligibility, and inclusion, as depicted in
Figure 3. All studies are identifed through electronic databases
by using the search string in the frst step, i. e., identifcation. A
total of 5083 studies have been identifed. In the second step,
namely, screening, irrelevant and grey studies are removed and
outcomes in 103 studies are based on the inclusion and exclusion
criterion 1. Duplicate studies were removed based on exclusion
criterion 2, which resulted in 68 studies. More studies are ex-
cluded based on exclusion criteria 3 and 4 andwe are left with 54
studies. In the eligibility step, 48 studies are found to be eligible.
After reading these 48 studies, they are found to be relevant and
are considered primary studies for this SLR. However, Section
Quality assessment criteria further assesses the selected papers
based on quality assessment criteria.

3.4.QualityassessmentCriteria. After the implementation of
inclusion and exclusion criteria, a quality assessment for
each study is performed to determine its credibility as well as
relevance. Being a supplementary criterion, it helps in ex-
cluding studies having low quality based on some given
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weights and certain thresholds. Te following questions are
used to determine the quality assessment criteria:

Q1. Does the research state its aims clearly?

Q2. Does the research compare its proposed estimation
method with existing methods?
Q3. Does the study analyze its limitations explicitly?

Table 2: Data items from selected studies for recording information.

ID Data item Description Relevant RQ
D1 Year of publication What is publication year of the article? RQ1
D2 Name of author Who are the authors of the article? RQ1
D3 Title of paper What is the article’s title? RQ1
D4 Subject area Te published article explores which knowledge area? RQ1
D5 Document type Te article belongs to which document type? RQ1
D6 Source What is the article’s source such as journal, conference, or book? RQ1

D7 Swarm based
intelligence

What swarm-based intelligence algorithms are involved in search-based software
engineering? RQ2

D8 Case study Which case study is explored in the paper? RQ2
D9 Afliation Te study is published in which afliated institutes/organizations? RQ3
D10 Country Which country has the research institute that has published the study? RQ3

D11 Application What are the potential applications of GWO, WOA, HHO, and MFO in software
engineering? RQ4

Table 3: Databases with number of published studies.

ID Database Obtained studies Electronic database’s web link
DB1 IEEExplore 68 https://ieeexplore.ieee.org
DB2 ACM digital library 24 https://dl.acm.org
DB3 SpringerLink 275 https://link.springer.com
DB4 ScienceDirect 2270 https://www.sciencedirect.com
DB5 Google scholar 2446 https://scholar.google.com

Inclusion criteria

Research publications that satisfy the 
search string

Studies published in English

Selection criteria

Journal, conference, workshop papers,
and book chapters

Exclusion criteria 

Studies that mention the application of 
GWO, WOA, HHO, or MFO in Sofware 

engineering

Publication date: 2014 to 2022 

Irrelevant and grey studies

Duplicate studies

Personal blogs, webpages, and 
PowerPoint presentations

Papers that are not in full-text form

Studies with no contribution on GWO, 
WOA, HHO or MFO

Figure 2: Summary of selection criteria.
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Q4. Does the study have citations?

Each question is assigned a weight of 0.25. Since there are
a total of four questions, therefore, the combined weight is 1.
Tus the total score for a single study can be given as:

0.00 (No)
0.25 (Rarely)
0.50 (Partly)
0.75 (Mostly)
1.00 (Yes)

Based on the abovementioned criterion, a study is in-
cluded if it scores 0.5 or above, which means out of the four
given assessment criteria, it must fulfll at least two.

As a result of the application of this quality assessment, 02
more studies are discarded with a 0.25 (rarely) score each. In
other words, all the studies with an assigned score of “partly,
mostly, and yes” are included in the SLR. Finally, 46 studies
were selected for this SLR. Scores based on quality assessment
criteria for the selected studies are given in Table 4.Te authors
shared the same opinion throughout the selection process.

4. Results

Tis section provides answers to the RQs by analyzing the
selected studies. Detailed outcomes of the literature analysis
are presented in this section.

Frequency of published studies based on GWO, WOA,
HHO, and MFO in software engineering (RQ1).

Te identifed studies are analyzed to fnd out the fre-
quency as well as the advancement of publications based on
the selected metaheuristics in software engineering. Figure 4
shows year-wise publication of the selected studies with an
average of 05 studies per year. Te fgure also shows the
increased number of publications in recent years. Many
research studies indicate that variants of the selected met-
aheuristics have been used in software engineering, as
depicted in Table5. Figure 5 illustrates the type of selected
publications. According to the fgure, 76% are articles, 22%
are inproceeding, and 2% are incollection of the identifed
studies. Figure 6 illustrates various felds in software engi-
neering in the identifed publications. Table 6 shows various
journals and conferences associated with the identifed re-
search work. It is evident from Table 6 that 4 papers have

Studies identified through 
electronic database searching 
Databases 
(n = 5083) 

Studies after irrelevant papers were 
excluded due to inclusion and 
exclusion criteria 1 (n= 103) 

Studies after duplicate papers were 
removed as per exclusion criterion 2 
(n = 68) 

Papers excluded due to exclusion 
criteria 3 and 4 
(n = 54) 

Additional studies identified 
through other sources 
(n = 0)

Primary studies included in SLR 
(n = 48)

Identification of studies via databases Identification of studies via other methods 

Id
en

tif
ic

at
io

n
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ib
ili

ty Full-text studies assessed for 
eligibility after applying exclusion 
criterion 5 (n = 48) 

Figure 3: PRISMA fow diagram for selection of primary studies.
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been published in “IEEE Access”, 2 papers each have been
published in Springer and “International Journal of Intel-
ligent Engineering and Systems,” while one paper each has
been published in the rest of the journals and conferences.

4.1. Applications of GWO,WOA,HHO, andMFO in Software
Engineering (RQ2). Te identifed studies discuss various
applications of the selected metaheuristics, i.e., GWO,
WOA, HHO, and MFO, in software engineering. Figure 7
shows the selected algorithms used by our study. It is clear
from the fgure that GWO tops the list with 51%, WOA
comes second with 30%, while MFO and HHO are at third

and fourth positions with 13% and 6% respectively. Table 7
summarizes these applications. Te following paragraphs
discuss these applications in detail.

Altaie et al. [47] generated a test suite to increase the
coverage of paths based on GWO and PSO. According to the
results, the PSO algorithm performed better than the GWO
algorithm. Jyoti and Sharma [44] proposed an enhanced
version of WOA (Ambha_WOA) using 12 test case suites
obtained from SIR and GitHub repositories. Te new al-
gorithm was compared with WOA using various perfor-
mance metrics such as fault detection ratio metric, precision
and recall, and classifcation accuracy. NP-statistical tests
were conducted for result validation. Wang and Zhao [56]
used WOA with chaos initialization for the automatic test
case generation method. By using the improved WOA, the
method aimed at one path at a time for optimizing the
population as well as fnding the optimal value. Kaur [51]
utilized HHO for extracting the optimal test cases. Sharma
and Saha [39] combined MFO and the Firefy Algorithm
(FA) for test path generation. Te authors used fve object-
oriented benchmark applications for verifcation. Te full
coverage of the path was confrmed by the results. Agrawal
et al. [43] used a hybrid WOA for the regression test case
selection approach. Te proposed approach improved the
fault detection ability as per the obtained results. Hassan
et al. [55] utilized WOA for t-way test suite generation with
constraint support. Results confrmed competitive outcomes
for WOA as compared with existing metaheuristics. Har-
ikarthik et al. [54] used the regression test case prioritization
mechanism for generating test cases. Ten, they used the
kernel fuzzy c-means (KFCM) clustering technique for
clustering the test cases. Tey utilized WOA for the weight
optimization process. Rastogi [30] used the GWO and FA
(GWFF) methods to optimize the Test Case (TC) and
generate path coverage in less execution time. Te GWFF
showed better performance in terms of ftness values when
compared with Particle Swarm Optimization (PSO), Bee
Colony Algorithm (BCA), and Cuckoo Search (CS). Sunitha
[49] proposed a technique that makes use of optimal test
prioritization in the Cloud using KFCM to overcome the
shortcomings of various algorithms and to fnd an accurate
optimization of existing software applications. Te tech-
nique has two steps. Firstly, the KFCM technique was ap-
plied based on a similarity feature in organizing the test cases
in software applications. Secondly, GWO was applied to
achieve an optimal solution. Sharma and Saha [53] used
MFO for model-based software testing based on object
orientation. According to the results, for large software
applications, MFO outperformed other metaheuristics, i.e.,
FA and ACO in creating optimized test cases. Metwally [52]
used MFO to create a technique for automatic test data
generation which in a single run could generate the whole
test suite. According to the results, the new technique
outperformed the random generator. Badanahatti and
Murthy [48] used cloud-based regression testing. Te pro-
posed technique has three stages, namely, test case gener-
ation, clustering, and test case prioritization. As per the
results, the proposed method preceded the minimum
implementation time of the available technique. Gupta and

Table 4: Selected papers with quality assessment scores.

Study Score
S1 Mostly
S2 Mostly
S3 Partly
S4 Yes
S5 Partly
S6 Mostly
S7 Mostly
S8 Mostly
S9 Mostly
S10 Mostly
S11 Mostly
S12 Partly
S13 Mostly
S14 Mostly
S15 Yes
S16 Mostly
S17 Mostly
S18 Partly
S19 Mostly
S20 Partly
S21 Partly
S22 Mostly
S23 Partly
S24 Partly
S25 Mostly
S26 Partly
S27 Mostly
S28 Mostly
S29 Yes
S30 Mostly
S31 Mostly
S32 Mostly
S33 Yes
S34 Partly
S35 Mostly
S36 Mostly
S37 Mostly
S38 Mostly
S39 Mostly
S40 Mostly
S41 Mostly
S42 Mostly
S43 Mostly
S44 Mostly
S45 Mostly
S46 Mostly
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Table 5: Summary of the selected metaheuristics’ variants used in software engineering.

Variant Short name Efectiveness
compared with

Efciency/performance
evaluated/validated by Case study Publication

year Authors [ref.]

Chaotic grey wolf
optimization
algorithm

CGWO GWO, PSO, GA,
and WO

Pham-Zhang (PZ)
model and testing efort

functions (TEFs)

Parameter
optimization of

software reliability
growth model

2021
Dhavakumar
and gopalan

[29]

Grey Wolf-FireFly
method GWFF BCA, PSO, and

CS
Mean time between
failures (MTBF)

Software test case
mechanism 2019 Rastogi [30]

Agile risk
prioritization–grey
wolf optimization

ARP-GWO Existing agile

Usability goals
achievement metric

(UGAM) and index of
integration (IoI)

Risk prioritization
in agile software
development

2021
Prakash and
viswanathan

[31]

Modifed grey wolf
optimization MGWO

GWO, MBBAT,
MWOA, and

MMFO

Software development
life cycle (SDLC)

models
Software usability 2021 Jain [32]

Multi-objective grey
wolf optimizer MOGWO

NSGA2,
MOTLBO, and

SPEA2

8 quality indicators, i.e.,
fairness indicators,

uncertainty indicators,
and multi-objective

optimizations
indicators (MOO)

Multi objective
next realease
problem
(MONRP)

2021 Ghasemi [33]

Improved grey wolf
optimizer IGWO GWO

Real world failure
datasets, statistical
comparison metrics

Parameter
estimation of

software reliability
growth models

(SRGMs)

2021 Musa [34]

Hybrid grey wolf
optimizer HGWO

PSO, ABC,
DABC, CGA, and

MGA
Two groups of datasets

Parameter
estimation of

software reliability
growth models

(SRGMs)

2019 Alneamyand
dabdoob [35]

Whale and grey wolf
optimization
algorithm

WGW

Replacement
access, library and
ID card project
(RALIC) dataset

RALIC dataset
Prioritization of

software
requirements

2018 Masadeh et al.
[36]

Enhanced binary
harris hawk
optimization
algorithm

EBHHO

BGOA, ESBHHO,
BALO, BWOA,
BBA, BGSA, and

GA

Datasets in the feld of
software fault

prediction (SFP)

Software fault
prediction 2020 Taher and

arman [37]
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Gupta [50] utilized Biographical Based Optimization (BBO)
and GWO in test suite prioritization as well as minimization.
Te performance was then evaluated with other meta-
heuristic algorithms.

Rhmann [57] utilized GWO and random forest (RF) for
predicting software vulnerability. According to the results,
the proposed technique, i.e., GW-RF, outperformed ma-
chine learning techniques for software vulnerability pre-
diction. Mohammad et al. [59] proposed a multi-objective
HHO for binary classifcation problems using the Adaptive
Synthetic Sampling (ADASYN) Technique. Te authors
used a healthcare dataset. Results confrmed the signifcant
performance of the proposed model. Almayyan [58] eval-
uated diferent feature selection algorithms such as GWO,
CS, Bat, and PSO for the prediction of software defects. Te
NASA dataset benchmarks were analyzed using three
clustering algorithms such as X-Means, Farthest First, and
Self Organizing Map (SOM).Te proposed clustering model
was used to build an efcient predictive model with an
acceptable number of features as well as a good detection

Table 5: Continued.

Variant Short name Efectiveness
compared with

Efciency/performance
evaluated/validated by Case study Publication

year Authors [ref.]

Island binary moth
fame optimization IsBMFO BMFO 21 public software

datasets
Software defect

prediction 2021 Khurma et al.
[38]

Moth frefy algorithm MFA MFO and FA 5 object-oriented
benchmark applications Path testing 2020 Sharma and

saha [39]

Enhanced binary moth
fame optimization EBMFO

BGOA, BGSA,
WOA, BBA, and

BALO

15 diferent software
fault projects obtained
from PROMISE public
software engineering

repository

Software fault
prediction 2020 Tumar et al.

[40]

Modifed mothfame
optimization MMFO MFO, BBAT, and

MBBAT
Te dataset with 23

features
Usability feature

selection 2020 Gupta et al.
[41]

Modifed whale
optimization
algorithm

MWOA WOA, GWO,
PSO, and DABC 34 benchmark function

Parameter
estimation of

SRGMs
2021 Lu and ma [42]

Hybrid whale
optimization
algorithm

HWOA BAT and ACO

Subject programs
retrieved from the
software artifact
infrastructure
repository

Regression test
case selection 2020 Agrawal et al.

[43]

Ambha_Whale
optimization
algorithm

Ambha_WOA WOA
12 test case suites taken
from GitHub and SIR

repositories

Test case suite
selection 2022 Jyoti and

sharma [44]

Tournament selection
method with binary
WOA

TBWOA
BGWO, BGSA,
BPSO, BALO,
BBA, and BSSA

17 SFP datasets from
the PROMISE
repository

Software fault
prediction 2021 Hassouneh

et al. [45]

Multi-objective whale
optimization
algorithm

MOWOA
NSGA2,

MOTLBO, and
SPEA2

8 quality indicators i.e.,
fairness indicators,

uncertainty indicators,
and multi-objective

optimizations
indicators (MOO)

Multi objective
next release
problem
(MONRP)

2021 Ghasemi [33]

Modifed whale
optimization
algorithm

MWOA WOA 3 real measured test/
debug data sets

Parameter
estimation of

SRGMs
2018 Lu and ma [46]

Article
76%

InProceeding
22%

InCollection
2%

Article
InProceeding
InCollection

Figure 5: Document type of identifed studies.
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rate. Khurma et al. [38] proposed a binary variant of MFO
(BMFO) by using the island BMFO (IsBMFO) model for the
software defect prediction (SDP) problem. Results showed
that IsBMFO, followed by support vector machine (SVM)
classifcation, outperformed other models for the SDP
problem, with an average G-mean of 78%. Alsghaier and
Akour [60] developed an approach for software fault pre-
diction by combining the genetics algorithm (GA) with the
SVM classifer and WOA. It was then applied to 24 datasets,
and the results confrmed the improved performance of the
software fault prediction process. Hassouneh et al. [45]
utilized WOA to present an efcient wrapper Feature Se-
lection (FS) approach. Te WOA was enhanced with nature
selection operators to improve its efcacy in dealing with FS
tasks. Zhu et al. [61] developed an enhanced metaheuristic
search-based feature selection algorithm named EMWS by
utilizing WOA and simulated annealing (SA). Te results
confrmed the superiority of EMWS.Taher and Arman [37]
proposed an enhanced binary version of HHO (EBHHO) for
the FS problem. Te authors used the Adaptive Synthetic
(ADASYN) oversampling technique to reduce the dimen-
sionality of the dataset using the FS technique. Results
showed the superiority of EBHHO over the basic HHO.
Tumar et al. [40] proposed an enhanced binary MFO
(EBMFO) as a wrapper feature selection with ADASYN for
software fault prediction. According to the results, the
EBMFO improved the overall performance of classifers.

Dhavakumar and Gopalan [29] used the Chaotic GWO
algorithm (CGWO) in the Software Reliability Growth
Model (SRGM). SRGM utilizes optimization algorithms to
advance the parameters by dividing them into stages.
However, by using CGWO, the technique is upgraded by
using all the parameters simultaneously. Lu and Ma [42]
proposed a modifed WOA (MWOA) for predicting soft-
ware reliability. Using software fault historical data, MWOA
is used to predict the faults during software testing. Also, for
the accurate estimation of software faults, the authors de-
veloped a modifed sigmoid model (MSM). Musa [34]
adopted the Improved GWO (IGWO) to estimate the

optimum parameters for SRGMs. Te proposed method
utilizes seven real-world failure datasets. As per the results,
the proposed method of IGWO performs better than the
existing GWO. Gupta et al. [64] applied Random Walk
GWO (RW-GWO) to determine the optimal redundancies
to optimize the system reliability and the optimum cost of
two distinct complex systems with constraints imposed on
system reliability. Te comparison proved the efciency of
the RW-GWO. Alneamy and Dabdoob [63] proposed the
binding of the GA and the GWO algorithms for the esti-
mation of the parameters of SRGMs. According to the re-
sults, the proposed binding GWO-RGA performed better
than the previous binding HGWO in terms of accuracy of
parameter estimation as well as performance using the same
datasets. Lu and Ma [46] proposed a modifed WOA
(MWOA) and a three-stage SRGM.Te parameters of three-
stage SRGMs are estimated using MWOA. Results showed
that using MWOA with the three-stage model is more
helpful in estimating the software faults. Salahaldeen et al.
[35] estimated the parameters of SRGMs depending on
failure data. A hybrid GWO (HGWO) was used by com-
bining the GWO with the Real Coded Genetic Algorithm
(RGA). According to the results, all other algorithms, such as
PSO, ABC, Classic GA (CGA), the Dichotomous Artifcial
Bee Colony (DABC), and the Modifed GA (MGA), were
outperformed by the GWO. Sheta and Abdel-Raouf [62]
explored the GWO algorithm to estimate the SRGM’s pa-
rameters to minimize the diference between the actual and
estimated number of failures of the software. Tree diferent
SRGM models, namely, the Power Model (POWM), the
Exponential Model (EXPM), and the Delayed S-Shaped
Model (DSSM), were evaluated. Te study was conducted
using three diferent datasets.

Alzaqebah et al. [66] utilized the WOA to prioritize the
software requirements. Te proposed technique was com-
pared with the analytical hierarchy process (AHP).
According to the results, the proposed technique out-
performed the AHP technique with an approximate margin
of 40%. Masadeh et al. [36] proposed a hybrid approach
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using WOA and GWO algorithms (WGW) for the priori-
tization of software requirements. Te RALIC dataset was
used to evaluate the proposed method. Compared with the
RALIC dataset, the proposed method showed 91% accuracy
in requirements prioritization. In [65], Masadeh et al. ap-
plied GWO to prioritize the requirements of a software
project in an ordered list. Results were compared and
evaluated with the AHP technique based on average running
time and dataset size. According to the results, the RP-GWO
performed better than the AHP mechanism by approxi-
mately 30%.

Prakash and Viswanathan [31] proposed a technique
based on Agile Risk Prioritization and GWO (ARP–GWO)
for risk prioritization. By using the technique, risk factors
were prioritized during the development of agile software.

Te efectiveness of ARP-GWO was analyzed using per-
formance metrics such as Usability Goals Achievement
Metric and Index of Integration. Te results showed en-
hancements in comparison with the available agile process.
Also, the author [67] performed a comparative study of fve
efective metaheuristic algorithms, namely, Ant Colony
Optimization (ACO), PSO, GA, GWO, and AHP, to pri-
oritize the risks in agile environments. As per results, GWO
performed better in the prioritization of risks in an agile
environment based on accuracy, reliability, running time,
and error rate.

Khan et al. [68] presented a Deep Neural Network
(DNN) model based on GWO and StrawBerry Algorithm
(SBA) for software efort estimation. Nine benchmark
functions were applied to validate the performance of the

Table 6: Number of papers published in various journals or conferences.

Name of journal or conference No of published
studies

IEEE Access 4
International Journal of Intelligent Engineering & Systems 2
Springer 2
2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE) 1
2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science
(DCABES) 1

2018 9th International Conference on Information and Communication Systems (ICICS) 1
2020 10th International Conference on Cloud Computing, Data Science & Engineering 1
2020 11th International Conference on Information and Communication Systems (ICICS) 1
2020 6th International Engineering Conference “Sustainable Technology and Development”(IEC) 1
2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confuence) 1
2021 16th International Conference on Emerging Technologies (ICET) 1
2021 5th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence 1
Advances in Systems Science and Applications 1
Applied Intelligence 1
Cluster Computing 1
Computing 1
International Journal for Research in Applied Science and Engineering Technology 1
International Journal of Advanced Computer Science and Applications 1
International Journal of Applied Metaheuristic Computing (IJAMC) 1
International Journal of Artifcial Intelligence and Applications (IJAIA) 1
International Journal of Computer Applications 1
International Journal of Computer Applications in Technology 1
International Journal of Distributed Systems and Technologies (IJDST) 1
International Journal of Recent Research and Review 1
International Journal of Recent Technology and Engineering (IJRTE) 1
IOP Conference Series: Materials Science and Engineering 1
Journal of Algorithms & Computational Technology 1
Journal of Ambient Intelligence and Humanized Computing 1
Journal of Information and Optimization Sciences 1
Journal of Intelligent & Fuzzy Systems 1
Journal of Systems and Software 1
Mathematics 1
Modern Applied Science 1
Soft Computing 1
Soft computing for problem solving 1
Soft Computing Methods for System Dependability 1
Software: practice and experience 1
Specialusis Ugdymas 1
TELKOMNIKA (Telecommunication Computing Electronics and Control) 1
Webology 1
Wireless Communications and Mobile Computing 1
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two algorithms. Te proposed DNN model (GWDNNSB)
produced better results for learning rate selection and initial
weights as compared with the available work. Fadhil and
Alsarraj [69] applied the WOA with the Constructive Cost
Model II (COCOMO II) to solve the problem of ideal
transactions. Te NASA 93 dataset was used by the algo-
rithm. Te proposed approach based on the Mean Magni-
tude of Relative Error (MMRE) metric showed the best
results.

Alabajee et al. [70] explored GWO for solving the software
project scheduling problem (SPSP) by seeking an optimum
solution. Te authors compared results with the intelligent
water drop algorithm (IWD), max-min ant system hyper cube
framework (MMAS-HC), ACO, FA, intelligent water drop
autonomous search (IWDAS), and intelligent water drop
algorithm standard version (IWDSTD). According to the
results, GWO showed better optimizing performance than the
rest of the algorithms. Also, Alrefaee and Alabajee [71]

proposed WOA to resolve SPSP by utilizing three datasets.
Te algorithm gave good results.

Jain [32] proposed a modifed GWO (MGWO) algo-
rithm for the selection of crucial features in a hierarchical
software model. As per the results, MGWO outperformed
other relevant optimizers in terms of accuracy. Gupta et al.
[41] introduced a modifed MFO (MMFO) for usability
feature selection. Results confrmed the better performance
of the proposed algorithm.

Ghasemi [33] proposed a multi-objective version of
GWO and WOA by solving the bi-objective next release
problem (NRP). Te two algorithms with three other evo-
lutionary algorithms were used to solve instances of the NRP
problem from four diferent datasets. To satisfy the con-
straints of the NRP problem, a roulette wheel, and a cost-to-
score ratio were used. According to the results, MOWOA
outperformed others whereas, with reduced budget con-
straints, MOGWO performed better.

GWO
51%

WOA
30%

MFO
13%

HHO
6%

GWO
WOA
MFO
HHO

Figure 7: Swarm intelligence algorithm used by the identifed studies.

Table 7: Summary of selected metaheuristics’ applications.

Application area No. of publications [Ref.]
Software testing 14 [30, 39, 43, 44, 47–56]
Software bug/defect prediction 9 [37, 38, 40, 45, 57–61]
System reliability 8 [29, 34, 35, 42, 46, 62–64]
Software requirements analysis 3 [36, 65, 66]
Agile software development 2 [31, 67]
Software efort estimation 2 [68, 69]
Software project scheduling problem 2 [70, 71]
Software usability 2 [32, 41]
Next release problem 1 [33]
Software release planning 1 [72]
Project cost estimation 1 [73]
Software release planning 1 [72]
Software risk management 1 [74]
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Hassan and Khan [73] implemented GWO, the
Harmony Search Algorithm (HSA), and the SBA for
software cost estimation. Te NASA dataset was used,
and to fnd a better algorithm, MMRE was utilized. GWO
outperformed other algorithms regarding MMRE
reduction.

Verma et al. [72] presented GWO’s application in
software release planning, considering warranty based
on the proposed mathematical model used to measure
software systems’ reliability growth. Te software cost
model is based on fault reduction factor, fault removal
efciency, and error generation. Te fault dataset of ERP
systems was used to validate the model.

Prakash and Viswanathan [74] used the GWO al-
gorithm to prioritize the risks involved in software de-
velopment. Te proposed method of software risk
prioritization (SRP-GWO) was compared with other
techniques such as PSO, AHP, average ranking, cate-
gorizing scale, and Delphi. Five attributes, namely,
adaptability, simplicity, accuracy, consistency, and
running time, were used for evaluation. According to the
results, the proposed method outperformed other
techniques.

4.2. Countries, Organization and Active Individuals Involved
in Searched-Based Software Engineering Using GWO, WOA,
HHO, and MFO (RQ3). Tis study fnds active re-
searchers, afliated organizations and countries involved
in research regarding the selected metaheuristics in
software engineering. According to the top researchers’
ranking, Abdullah Alzaqebah, Amjad Hudaib, Prakash
Balasubramanian, Raja Masadeh, and Viswanathan
Vadivel are the topmost researchers with 3 publications
each.

Anju Saha, Ankur Choudhary, Arun Prakash
Agrawal, Deepak K Gupta, Jamal Salahaldeen Alneamy,
Kezhong Lu, Marrwa Abd-AlKareem Alabajee, Marwah
M. A. Dabdoob, Rashmi Sharma, Taghreed Riyadh
Alrefaee and Zongmin Ma have 2 publications each, as
shown in Figure 8. Top organizations afliated by authors
are also ranked which shows that.

“Vellore Institute of Technology, Chennai, India,” “Te
University of Jordan, Amman, Jordan” and “Te World
Islamic Sciences and Education University, Amman, Jor-
dan” are at the top with 3 publications each.

“University of Mosul, Iraq”, “Maharaja Agrasen Institute
of Technology, Delhi, India”, “Nanjing University of
Aeronautics and Astronautics, Jiangsu, China” and “Chiz-
hou University, Anhui, China” have 2 publications each as
illustrated in Figure 9.

Lastly, active countries having the highest number of
published articles on selected metaheuristics in software
engineering are ranked as per details given in Figure 10.
According to the ranking, India is the most active
country with 20 publications; Iraq is in the 2nd position
with 6 publications; Jordan has 5 publications; China and
Saudi Arabia have 4 publications each; Pakistan, Egypt,
and Palestine have 3 publications each; Iran, Malaysia,

and Vietnam have 2 papers each, whereas Brazil, Kuwait,
Libya, Nepal, Poland, Portugal, Russia, and the USA have
1 publication each.

4.3. Potential Applications ofGWO,WOA,HHO, andMFO in
Software Engineering (RQ4). Various metaheuristic algo-
rithms are used in diferent felds of software engineering.
Ranichandra [75] utilizes ACO for enhancing estimation
accuracy in analogy-based software cost estimation by
proposing the non-orthogonal space distance (NoSD)
technique. Prajapati and Kumar [76] address the issues
related to multiple objective optimization of software re-
modularization using a customized version of PSO known as
PSO-based multi-objective software remodularization
(PSO-MoSR). In [77], Al-Azzoni and Iqbal use GA and ACO
to demonstrate a software framework for solving instances
of software component allocation problems. In [78], Wang
propose a novel hybrid metaheuristic algorithm,
CVTMaker, which may help publishers identify ideal
crowdsourced virtual teams (CVTs). Sun et al. [79] utilize
PSO with a reverse edge known as REPSO for multi-ob-
jective software module clustering problem (MOSMCP),
which divides the complex software system into subsystems
to obtain a perfect structure. Prajapati and Chhabra [80] use
PSO-based module clustering (PSOMC) for Software
Module Clustering problem. Tang et al. [81] propose two
metaheuristic search algorithms, i. e., coordinate descent
and genetic algorithms, for exploring the confguration
space of Hadoop for high-performing confgurations which
perform signifcantly better than the default confguration
settings. In [82], Haraty et al. use simulated annealing (SA)
for state-based software testing, especially web applications.
Mann et al. in [83] propose a path-specifc approach for
automatic test case generation (ATCG) using GA, PSO, and
ABC. In the same paper, another approach, i. e., a test case
prioritization (TCP), is also proposed using PSO.

Likewise, the selected metaheuristics i. e., GWO,
WHOA, HHO, and MFO are used in most areas of software
engineering due to their usefulness in terms of simplicity,
fexibility, and scalability. Tey lead to the desired conver-
gence by keeping a good balance between exploration and
exploitation, which are the basic search behaviors of met-
aheuristic algorithms.

Applications of GWO, WOA, HHO, and MFO, in
software engineering discusses applications of these swarm
intelligence algorithms in various felds of software engi-
neering, such as software testing, software reliability, next
release problem, agile software development, and software
requirements analysis, as given in Table 7. Metaheuristics
algorithms are useful in optimization; therefore, problems
that come under the realm of optimization problems could
be solved using metaheuristics such as GWO. Te following
are some of the areas of software engineering where the
applications of the selected swarm intelligence algorithms
can potentially be used:

(i) Software vulnerability prediction
(ii) Software organization
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(iii) Software re-modularization
(iv) Maintenance/evolution system integration
(v) Software module clustering
(vi) Finding good designs
(vii) Reverse and re-engineering through transforma-

tion and re-factoring
(viii) User-based ftness evaluation for aesthetic aspects

of software engineering
(ix) Avionics software

(x) Automotive software
(xi) Software confguration
(xii) Software component allocation
(xiii) Software testing

(1) Structural testing
(2) Mutation testing
(3) Worst-and-best case execution time testing
(4) Issue of boundary value analysis
(5) Partition testing
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Figure 8: Te top researchers using GWO in software engineering.
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5. Discussion

In this paper, we selected four swarm intelligence algo-
rithms, i.e., GWO, WOA, HHO, and MFO, to study their
applications in the feld of software engineering. Our study
presented an in-depth analysis of the applications of these
metaheuristics in software engineering from 2014 up to
2022.

Our SLR is comprised of three phases, such as
planning, conducting, and reporting. In the planning
phase, we composed research questions that laid the
foundation of our SLR. Data sources were then identifed,
such as IEEEXplore, ACM Digital Library, Springer Link,
and ScienceDirect. We then formed a search strategy for
extracting relevant literature. Te PRISMA was utilized
to obtain the primary studies for the SLR. Te PRISMA
fow diagram consists of various steps such as identif-
cation, screening, eligibility, and inclusion, as shown in
Figure 3. Using PRISMA, 48 studies were found to be
eligible. Te identifed studies were further subjected to
quality assessment criteria and as a result, 2 more papers
were dropped. Tus, a total of 46 papers were fnally
selected for our SLR.

According to the identifed studies, GWO is the most
used metaheuristic algorithm with 51% usage, WOA has
30% usage, MFO has 13% usage, and HHO has 6% usage, as
shown in Figure 7. Also, our analysis showed that the se-
lected metaheuristics have mostly been used in software
testing, software defect prediction, and software reliability as
shown in 6. Our study also revealed an increase in recent
years in the usage of metaheuristic algorithms in software
engineering, as evident in Figure 4. Furthermore, the top
journals where the identifed studies have been published are
“IEEE Access,” “Springer,” and “International Journal of
Intelligent Engineering and Systems.”

As per the No Free Lunch theorem, no metaheuristic
could solve all problems but a specifc range of problems.
Moreover, metaheuristics are easy to use and implement but
they do not always guarantee the solution. To overcome
some of the drawbacks of metaheuristics such as being
trapped in local optima, researchers have developed variants

of the existing metaheuristics as shown in detail in Table 5.
Despite their shortcomings, metaheuristics are still popular
as they provide near-optimal solutions to some of the hard
problems such as NP-hard.

5.1. Treats to Validity. Various challenges can afect the
validity of literature mapping or review studies. Te fol-
lowing recommendations and guidelines can be used as
compensation for the threats of this study:

(i) Coverage of relevant literature: Tis study includes
publications that cite the selected metaheuristics, i.e.,
GWO, WOA, HHO, and MFO in software engi-
neering from the time of GWO’s invention to the
present time, as GWO is the oldest among the se-
lected swarm intelligence algorithms. New studies
using the selected metaheuristics in software engi-
neering published after our submission are beyond
the scope of this study.

(ii) Coverage of research questions: Te research
questions may not cover all the aspects of state-of-
the-art research on the selected metaheuristics in
software engineering. Brainstorming is used to ad-
dress this threat by optimally identifying the col-
lection of research questions to cover the current
research in this study.

6. Conclusion

Tis paper presented an in-depth literature study based on
various applications of the selected metaheuristics, i.e.,
GWO, WOA, HHO, and MFO in the feld of software
engineering. Te review study analyzed 46 papers published
from 2014 to 2022 mentioning applications of the selected
metaheuristics in the feld of software engineering. Variants
of the selected metaheuristics were also included in this
study. Tis paper analyzed the selected papers according to
the research questions of our SLR.Tis paper has mentioned
countries, organizations, and authors actively involved in
applying these metaheuristics in the feld of software
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engineering. Te paper has also presented a detailed dis-
cussion on various applications of the selected meta-
heuristics in software engineering which revealed that these
algorithms have mostly been used in software testing,
software defect prediction, and software reliability. Te
study also pointed out areas of software engineering where
these algorithms could be utilized. Hopefully, the current
study may be helpful for new researchers using these swarm
intelligence algorithms in software engineering for further
enhancements.

Data Availability

Tis is a review article and all the data are discussed in the
paper.
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engineering conference âĂIJSustainable Technology and
development(IEC), pp. 146–151, Victoria Seychelles, March,
2020.

[70] M. A. A. Alabajee, D. R. Ahmed, and T. R. Alrefaee, “Solving
software project scheduling problem using grey wolf opti-
mization,” TELKOMNIKA (Telecommunication Computing
Electronics and Control), vol. 19, pp. 1820–1829, 2021.

[71] T. R. Alrefaee and M. A. A. Alabajee, “Solving software
project scheduling problem using whale optimization algo-
rithm,” in IOP Conference Series: Materials Science and
Engineeringvol. 928, IOP Publishing, Article ID 032084, 2020.

[72] V. Verma, N. Neha, and A. G. Aggarwal, “Software release
planning using grey wolf optimizer,” in Soft Computing
Methods for System DependabilityIGI Global, Hershey,
Pennsylvania, 2020.

[73] C. A. Hassan and M. S. Khan, “An efective nature inspired
approach for the estimation of software development cost,” in
Proceedings of the 2021 16th International Conference on
Emerging Technologies (ICET), pp. 1–6, IEEE, Islamabad,
Pakistan, December, 2021.

[74] B. Prakash and V. Viswanathan, “Risk prioritization for
software development using grey wolf optimization,” Inter-
national Journal of Recent Technology and Engineering
(IJRTE), vol. 7, 2019.

[75] S. Ranichandra, “Optimizing non-orthogonal space distance
using ACO in software cost estimation,”Mukt Shabd J, vol. 9,
pp. 1592–1604, 2020.

[76] A. Prajapati and S. Kumar, “PSO-MoSR: a PSO-based multi-
objective software remodularisation,” International Journal of
Bio-Inspired Computation, vol. 15, pp. 254–263, 2020.

[77] I. Al-Azzoni and S. Iqbal, “Meta-heuristics for solving the
software component allocation problem,” IEEE Access, vol. 8,
Article ID 153067, 2020.

[78] H. Wang, “Solving team making problem for crowdsourcing
with hybrid metaheuristic algorithm,” in Proceedings of the
Genetic and Evolutionary Computation Conference Com-
panion, pp. 318-319, Boston, MA, USA, August, 2018.

[79] J. Sun, Y. Xu, and S. Wang, “PSO with reverse edge for multi-
objective software module clustering,” International Journal
of Performability Engineering, vol. 14, p. 2423, 2018.

[80] A. Prajapati and J. K. Chhabra, “A particle swarm optimi-
zation-based heuristic for software module clustering prob-
lem,” Arabian Journal for Science and Engineering, vol. 43,
pp. 7083–7094, 2018.

[81] C. Tang, K. Sullivan, and B. Ray, “Searching for high-per-
forming software confgurations with metaheuristic algo-
rithms,” in Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, pp. 354-355,
Gothenburg, Sweden, December, 2018.

[82] R. A. Haraty, N. Mansour, and H. Zeitunlian, “Metaheuristic
algorithm for state-based software testing,” Applied Artifcial
Intelligence, vol. 32, pp. 197–213, 2018.

[83] M. Mann, P. Tomar, and O. P. Sangwan, “Bio-inspired
metaheuristics: evolving and prioritizing software test data,”
Applied Intelligence, vol. 48, pp. 687–702, 2018.

22 Complexity



Research Article
Fluid Flow Behavior Prediction in Naturally Fractured Reservoirs
Using Machine Learning Models

Mustafa Mudhafar Shawkat ,1 Abdul Rahim Bin Risal ,1 Noor J. Mahdi ,2

Ziauddin Safari ,3 Maryam H. Naser ,4 and Ahmed W. Al Zand 5

1Department of Petroleum Engineering, School of Chemical and Energy Engineering, Faculty of Engineering,
Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
2Department of Civil Engineering, Al-Maarif University College, Ramadi, Iraq
3Department of Civil Engineering, Faculty of Engineering, Takhar University, Taleqan, Afghanistan
4Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, Hillah 51001, Iraq
5Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM),
Bangi 43600, Selangor, Malaysia

Correspondence should be addressed to Ziauddin Safari; zia.safari2011@gmail.com

Received 3 June 2022; Revised 15 October 2022; Accepted 29 November 2022; Published 20 February 2023

Academic Editor: Mostafa Al-Emran

Copyright © 2023 Mustafa Mudhafar Shawkat et al. Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Te naturally fractured reservoirs are one of the most challenging due to the tectonic movements that are caused to increase the
permeability and conductivity of the fractures. Te instability of the permeability and conductivity efects on the fuid fow path
causes problems during the transfer of the fuids from the matrix to the fractures and fuid losses during production. In addition,
these complications made it difcult for engineers to estimate fuid fow during production. Te fracture properties’ study is
important to model the fuid fow paths such as the fracture porosity, permeability, and the shape factor, which are considered
essential in the stability of fuid fow. To examine this, this research introduced new models including decision tree (DT), random
forest (RF), K-nearest regression (KNR), ridge regression (RR), and LASSO regression model,. Te research studied the fracture
properties in naturally fractured reservoirs like the fracture porosity (FP) and the shape factor (SF).Te datasets used in this study
were collected from previous studies “i.e., Texas oil and gas felds” to build an intelligence-based predictive model for fuid fow
characteristics. Te prediction process was conducted based on interporosity fow coefcient, storativity ratio, wellbore radius,
matrix permeability, and fracture permeability as input data. Tis study revealed a positive fnding for the adopted machine
learning (ML) models and was superior in using statistical accuracy metrics. Overall, the research emphasized the implementation
of computer-aided models for naturally fractured reservoir analysis, giving more details on the extensive execution techniques,
such as injection or the creation of artifcial cracks, to minimize hydrocarbon losses or leakage.

1. Introduction

1.1.Background. Naturally fractured reservoirs are the result
of natural processes that present the diastrophism and
volume shrinkage that lead to fractures that have dispersed
as a consistently linked network across the reservoir [1]. Te
tectonic processes have evolved in reservoirs, fractured
reservoirs are frequently found in weak reservoir rocks with
poor porosity [2]. Due to that, the fracture is extended and

large, where it is often referred to as the large fracture [3]. If
the granular porosity is high but the rocks are fragile, the
fracture is relatively small and limited in quantity, often
referred to as microfractures [1]. Te naturally fractured
reservoirs are diferent from the conventional reservoirs
[4, 5]. In addition, the tectonic movements afected by the
behavior of the fracture during transfer and production of
the fuids fow due to the high conductivity and permeability
of the natural fractures [6]. Te conductivity and
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permeability of the fractures factor minimize the fracture
porosity of the fuids that cause low storage capacity [6]. In
contrast, the conductivity of the matrix increases storage
capacity with low permeability, which causes an increase in
the matrix porosity [7]. According to previous studies,
matrix porosity is higher than fracture porosity in the
naturally fractured reservoirs, which the fuids store in the
matrix [8].

Multiphase fow modeling in naturally fractured reser-
voirs has been considered an issue for petroleum reservoir
engineers [9, 10]. Warren and Root have shown a dual-
porosity model which presents multiphase behavior in
fractured reservoirs [11]. In the dual-porosity model, there
are two characteristic regions: matrix and fracture [12]. Te
naturally fractured reservoirs present one of the most dif-
fcult reservoirs in the petroleum industry due to the fracture
properties like permeability and porosity, where the natural
fracture permeability is higher than the matrix permeability
in a dual-porosity system [12]. Te hydrocarbons fow from
the matrix to the fractures and from these to the wellbore
where the fractures cannot store these fuids, which cause
fuid fow losses. An obstacle of the fuid fow can be seen in
Figure 1 [13].

Te motivation is always focused on developing a reli-
able mathematical model for modeling naturally fractured
reservoir properties such as fracture porosity (FP) and the
shape factor (SF). In the literature, ML models are one of the
technologies that contribute to the systematization of fuid
fow by forming speculative models based on hypotheses and
equations modeling the properties of petroleum fuids [14].
Hence, the focus of the current investigation is to test dif-
ferent versions ofMLmodels for the prediction of FP and SF.
Te models are built based on the characteristics of oil and
gas, such as matrix porosity, permeability, pressure, and
temperature.

1.2. Literature Review. Modeling of the naturally fractured
reservoirs is one of the challenges due to the generation of
the complex fractures and the conductivity factor of frac-
tures that afect fuids paths [15]. Although fractures covered
20% of world reserves, naturally fractured reservoirs rep-
resented the risk reservoirs in drilling, production, and
modeling processes due to fracture pressure that sometimes-
caused loss in hydrocarbons production [16]. Two studies
were conducted to investigate the naturally fractured res-
ervoirs functionally [11, 17]. Both studies relied on the
modeling of the naturally fractured, double-connected
system, which was divided into two areas, the matrix and
the fracture. Te authors concluded that the fracture is
central to the permeability of hydrocarbons and that the
fuid fows from the matrix to the fracture depending on the
geometric parameters of the fracture such as permeability
and porosity [18]. Li et al. [19] extended the study of fuid
leakage in areas of tectonic stress. To examine this, the
tectonic movements afected the fracture behavior, which
causes losses in the fuids of low-permeability formations.
Tis examined some of the factors afecting the leakage of
fuids by making a model for analyzing the leakage of fuids

in naturally fractured gas felds. Turn to Warren and Root
[11], the authors have provided a suitable solution to this
problem and were able to arrive at these parameters, the
actual shape, dimensions, and fuid fow properties of the
reservoir, where the same scenario had been adopted later in
[20, 21].

Two quadruple porosity models (QPM) that include
a triple-fracture network with a single matrix system were
presented by Dreier et al. [22] for naturally fractured res-
ervoirs (NFR). Te pressure-transient features of QPM are
analysed and evaluated using these models: Warren and
Root theory with various forms of matrix-to-fracture fow
regimes, wellbore storage, and skin are commonly employed
in well-test analysis, and the parameters storativity ratio and
interporosity fow coefcient are signifcant in describing
such reservoirs. Perez Garcia [23] improved the earlier
simulation-based investigations, relying mainly on the
Warren and Root equations as well as the Gilman model.
Te author came to the conclusion that the well-test data was
reliable but more investigations and development assump-
tions were required for fracture reservoirs.

In order to boost the productivity of naturally fractured
reservoirs, acid fracturing procedures are used. Te efec-
tiveness of the therapy is infuenced by a number of factors,
including treatment circumstances and reservoir charac-
teristics. It is possible to measure the efectiveness of acid
fracturing stimulations using a variety of methods [24]. Only
a few models, however, took into account the natural
fractures (NFs) present in the hydrocarbon reservoirs [25],
using an ML model. Hence, the goal of this work is to
develop an efective model to calculate the efcacy of acid
fracturing therapy in naturally fractured reservoirs. Tis
study estimates the increase in hydrocarbon production
brought on by the use of acid fracturing treatments and takes
into account the interactions between naturally occurring
and artifcially generated cracks. Te reservoir features and
treatment parameters of more than 3000 scenarios were
utilized to create and validate the artifcial neural network
(ANN)model [26].Te created model takes into account the
formation permeability, injection rate, natural fracture
spacing, and treatment volume as reservoir and treatment
characteristics [27]. To evaluate the efectiveness of the
model’s prediction, the percentage error and correlation
coefcient were also calculated. Te performance of acid
fracturing treatments can be predicted quite accurately using
the proposed model. Te testing datasets yielded a correla-
tion coefcient of 0.94 and a percentage error of 6.3%.

A novel ML model based on an improved learning
process was established to ofer a precise and timely forecast
for increased productivity [28]. In order to assess the validity
of the new equation, validation data were employed. A 6.8%
average absolute error and a 0.93 correlation coefcient were
obtained, demonstrating the excellent dependability of the
suggested correlation. Te originality of this work is in
creating a solid and trustworthy model to forecast pro-
ductivity gains from acid fracturing in naturally fractured
reservoirs. By ofering quick and accurate calculations, the
novel correlation can be used to enhance the treatment
design for naturally fractured reservoirs [29]. In order to
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estimate fracture permeability under complex physics, an
integrated workfow based on the ML model was proposed
(e.g., inertial efect) [30]. Te methodology is being used for
the frst time to scale up rocks [31]. Te suggested
model provides a practical and accurate replacement for
conventional upscaling techniques that can be quickly in-
tegrated into workfows for reservoir characterization and
modeling.

Analysis of pressure-transient well tests is a crucial
technique for fguring out reservoir properties [32]. Due to
the analysts’ inexperience, the validity of the data from the
well-test analysis could be questioned [33]. A one-
dimensional convolutional neural network (1D CNN) was
tested to create an autonomous model for well-tested data
interpretation [34]. Both the associated parameters and the
type of curve can be automatically identifed by the model
[35]. Without adjusting the model architecture or using
hyperparameters, a combined automatic interpretation
model with four conventional well-test models were con-
ducted. According to the fndings, the 1D CNN model
outperformed the ANN model. Tree feld cases are used to
further validate the automatic interpretation model. Based
on the reported literature review, the current research was
inspired to develop a new methodology based on a soft
computing model that is associated with theoretical study in
the conditions of simulation data as well as being specialized
based on the assumptions [36]. Our paper focuses to solve
the fuids losses problem by modeling the fuids fow in the
fractured reservoirs through using machine learning tech-
nique. Tis paper depends on the two parameters which are
interporosity fow coefcient and storativity ratio to de-
termine the fuid fow behavior.

1.3. Te Objective of Tis Study. Te previous studies used
empirical methodologies and modern models such as ML
models for diverse oil and gas datasets. Tis leads to the
continuous issue in fuid fow paths due to the changes of the
fracture’s characteristic such as high conductivity and
permeability of fractures. In conjunction with modern
technology, the aim of this research is to make use of the
applicability of ML models for predicting the shape factor
and the fracture porosity. Te models evaluated the fuid
fow in the naturally fractured reservoirs. Predictive models
were established using fve diferent related input parame-
ters. Te assumption of the characteristics of the oil and gas
datasets allows theMLmodels to build more than one model
for the same datasets and compare them to get the best two
models. Te expected research outcome is to develop a re-
liable alternative technology for the petroleum industry
where it can participate in sustainability and management.

2. Data Descriptions

Tis study specializes in analyzing the fuid fow behavior in
naturally fractured reservoirs during production. Te actual
data consist of oil and gas data were obtained from Texas
feld.Te actual data take account of thematrix permeability,
fracture permeability, wellbore radius, interporosity fow
coefcient, and the storativity ratio as inputs while the
fracture porosity as outputs. To accomplish that, the study
changed the input and output of Texas feld data such that
storativity ratio, interporosity fow coefcient, matrix per-
meability, fracture permeability, and wellbore radius are
input data, while the shape factor and fracture porosity are
output data. Te conditions of input and output data were
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Figure 1: Fluid fow losses in the naturally fractured reservoirs.
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put as temperature 150 Fahrenheit, pressure 3,626 psi, and
matrix porosity 22% for oil and 15% for gas, radius 1,000 ft,
where these conditions are the same as Texas feld’s con-
ditions with some changes in the assumptions [23]. Tese
data are implemented on the basis that the fow is radial,
taking into account that there is no Darcy’s law and no skin
factor [37].

3. Machine Learning Methods

Tis section presented the utilized ML models adopted for
fuid fow data simulation. ML models are built to describe
the efect of the shape factor and the fracture on the
treatment of the hydrocarbon’s leakage. Five diferent types
of ML models were developed, including decision tree re-
gression, random forest regression, LASSO regression, K-N
neighbors’ regression, and ridge regression models. Figure 2
presented the fowchart of the conducted methodological
mechanism for this study.

3.1. Decision Trees Model. Decision tree regression (DT) was
developed by [38] as a powerful ML model for both classif-
cation and regression tasks [39, 40]. In the DT algorithm,
features (extracted from a specifc dataset) are arranged in
a symbolic tree-shaped manner, with terminal and internal
nodes representing leaves and splits, respectively [41]. A tree is
shaped by following a set of fundamental principles. Multiple
trees are combined to form a set of rules that can be used in the
prediction step. Te technique frst builds a tree from the
training dataset, after which it splits the original data into two
branches using a binary split procedure. Te new growth
branches are subjected to the separation process, and this is
continued when a new branch becomes inseparable, and the
accompanying node achieves the minimum size and evolves
into a terminal node [42]. DTR’s principles are easy to un-
derstand and follow a logical pattern that can be described as
a tree; this is a signifcant advantage of the DT over other
models. However, despite being quicker than other AI models,
DTR frequently is not the right choice for time-series problems
[43] because it frequently does not generate accurate results
when there are issues of nonlinearity or noisy datasets.

3.2. Random Forest Model. Random forest model was frst
developed by [44], and since its introduction, it has been used
widely in many felds of science and engineering for pre-
diction purposes [45–47]. Te RF model is strongly advised
for scenarios with numerous input variables. Regarding
a random vector, RF is an individual uniform distribution to
each tree in the forest. Although RF is preferred when the
trees, eta, and mtry are of an appropriate size, the maximal
depth can be adjusted according to the complexity of the data
[48]. Te RF model in this study was built using library
(random forest). Te signifcant hyperparameters, such as
ntree, eta, max depth, and mtry, were set to 140, 4, 6, and 2
accordingly in order to reduce overftting issues. When re-
gression trees are built using distinct bootstraps for each tree,
the potential features in those trees can bemodeled using such
algorithms [49]. For the purposes of predicting the targeted

parameters, every tree in the forest was treated equally. Te
frst set was utilized for the growth of the trees and then for
the assessment of each tree’s classifcation error [50]. Te RF
prediction’s output is represented thus,

y �
1

ntree
􏽘

ntree

i�1
yi(x), (1)

where y� the average prediction output from the overall
number of trees and yi (x)� the trees’ discrete prediction for
output vector x. Model overftting was avoided by using the
ten-fold cross-validation procedure thrice. Te tree was
initially built for each predictor and was then followed-up
with its growth to ensure optimal weight and minimal
computed error. Te signifcance of the predictors, as well as
the self-adjusted growth of the selected trees, must be ranked
using the RF approach. Te RF model performed well across
all the response predictors based on the employed perfor-
mance indicators.

3.3. K-Nearest Neighbor Regression Model. Te KNR clas-
sifcation was developed as a relatively new technique for the
parametric estimation of unknown probabilities [51]. Te
KNR was mainly built for classifcation patterns with an
understanding of the K-nearest neighbor rule [52].Te KNR
concept relies on the distance between the distributions to
categorize each piece of data that contains the majority of
nearest neighbors [53]. Te prediction process of KNR
depends on the use of classifers and regression, wherein the
regression aspect uses previously processed data to predict
future data. Statistical methods, such as linear regression, are
typically used to process the regression; however, the use of
the linear regression method is limited only to some data-
bases. Tis study implemented regression for the prediction
of the fracture porosity and the shape factor based on gas and
oil flled data observations. Te problem with regression is
predicting the result of a preprocessed parameter using
a certain collection of independent variables. Te result can
be expressed as G�Gn if the KNR is performed using n
nearest neighbors. Ten, the average of the results is used to
determine the outcome. Te solution will then be given as

G �
Gn

2
. (2)

At that point, KNR prediction initiates the outcome of
the neighbor, and prediction can be done by determining the
Euclidean distance (ED) between the case point and the
query based on the existing dataset.

D(z, q) �

�������

(z − q)
2

􏽱

, (3)

where z represents the query point and q represents the case
point from the existing dataset.

3.4. Ridge Regression Model. In conditions whilst linearly
impartial variables are closely correlated, RR model is a way
of calculating the coefcients of a couple of regression
fashions [54]. It has been applied in diferent engineering
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and science domains and approved for its capacity. Amongst
diferent areas and patterns of the RR model, equations are
presented as follows [55]:

􏽢B � (X
T
X􏼑

− 1
X

T
y, (4)

where XT is the transpose of X. By contrast, the ridge re-
gression estimator to evaluate (􏽢B) the fracture porosity.

Mridge � X
T 􏽢X + KIp􏼐 􏼑

− 1
X

T
y, (5)

where Ip is the p× p identity matrix, and K> 0 indicates a large
number. Te form along the diagonal of I is known as a ridge.

3.5. Lasso Model. Lasso is a commonly used sparse re-
gression technique that relies on the sparse assumption for
parameter regularization [56]. It is an innovative method for
variable selection during regression tasks that operates by
minimizing the residual sum of squares under the condition
that the sum of absolute values of the coefcients is less than
a constant [57]. It was frst discussed in relation to least
squares. Te following is a summary of the basic Lasso
framework. Assume a sample of N cases with p variables and
a single outcome for each of theN instances. Consider that yi
is the response variable while xi � (x1, x2, x3, . . ., xnp). T
represents the covariate vector for the ith case, β� (β1, β2, . . .,
βp)T. Hence, Lasso is aimed to solve the regression problem
using nonlinearity functional properties.

4. Results and Discussion

In this section, the results of the adopted ML models were
presented based on the radial fow in the fuid modeling of
fracture reservoirs. Radial fow was concerned with the
analysis of the fow of fuids along a radius. Te volume for

the wellbore radius is not large enough to cover themodeling
of an entire well by ML models. Te present results provide
a slight improvement over the previous results of the data
provided by Perez [23].

One of the most popular graphical presentation on the
predictability evaluation is the scatter plot between the actual
observations and the predictive models results, which was
adopted here for assessment. All models were developed
based on the predictability and interoperability of fuid fow
losses. Te modeling results for the DT model for the gas
fow were reported in Figure 3 (Figure 3(a): fracture po-
rosity, and Figure 3(b): shape factor). Te DTmodel attained
a determination coefcient (R2 ≈ 0.80) for fracture porosity
and R2 ≈ 0.94 for the shape factor. Tis was formed in
harmony with the established previous research of [23]. Te
modeling of Perez’s data is assumed to be actual if our results
build on the predicted data. On the other hand, the results
for the oil fow characteristic are given in (Figure 4(a):
fracture porosity (R2 ≈ 0.93) and Figure 4(b): shape factor
(R2 � 0.94)).

In the same manner, the scatter plots for the other ML
models are (i.e., RF “Figure 5: gas fow and Figure 6: oil
fow,” KNR “Figure 7: gas fow and Figure 8: oil fow,” RR
“Figure 9: gas fow and Figure 10: oil fow” and Lasso
“Figure 11: gas fow and Figure 12: oil fow”). Te superior
prediction accuracies were observed for the gas fow fracture
porosity using the Lasso model over the testing phase with
(R2 ≈ 0.97). However, gas fow shape factor prediction
achieved using KNR (R2 ≈ 0.96). It is true that all models
relative accomplished their results over (R2 � 0.85) as an
indicator for acceptable results. However, the motivation
here is to target the more accurate model which is relatively
near to the factual feld observations with R2 ≈ 1. For the oil
fow, the fracture porosity and shape factor were predicted
accurately using the Lasso model.
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Figure 3: Te decision tree model scatter plots for the testing phase of the gas fow: (a) fracture porosity and (b) shape factor.
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Figure 7:TeK-nearest regressionmodel scatter plots for the testing phase of the gas fow: (a) fracture porosity in oil system and (b) fracture
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Figure 10: Te Ridge regression model scatter plots for the testing phase of the oil fow: (a) fracture porosity and (b) shape factor.
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Figure 11: Te Lasso model scatter plots for the testing phase of the gas fow: (a) fracture porosity in oil system and (b) fracture porosity.
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Figure 12: Te Lasso model scatter plots for the testing phase of the oil fow: (a) fracture porosity and (b) shape factor.
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Figure 13: Taylor diagram presentation for the gas fow fracture porosity and shape factor prediction using diferent machine learning
models.
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Figure 14: Taylor diagram presentation for the oil fow fracture porosity and shape factor prediction using diferent machine learning
models.
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It is even better to explore more logical and scientifcally
acknowledged graphical presentation of the developed ML
models [58]. A graphical based on root mean square error
(RMSE), correlation, and standard deviation was generated
in Figures 13(a) and 13(b) “gas fow presented in the form of
fracture porosity and shape factor” and Figures 14(a) and
14(b) “oil fow presented in the form of fracture porosity and
shape factor.” Based on Figure 13(a), the KNR model pre-
sented the closest coordinate to the actual observation of gas
fow fracture porosity. However, the prediction of gas fow
shape factor was visualized using DT and KNR “relatively
close coordinates” (Figure 13(b)). In Figure 14(a), Lasso
models indicated nearer location for the fracture porosity;
on the other hand, both models Lasso and RF showed
relatively closer prediction performance for the shape factor
of the oil fow (Figure 14(b)).

Te modeling results further assessed using some sta-
tistical metrics based on the perfect ft of goodness (i.e.,
determination coefcient (R2) and Kling–Gupta efciency
(KGE)) and absolute error indicators (i.e., root mean square
error (RMSE) and mean absolute percentage error (MAPE))
[59]. Tables 1 and 2 reported the modeling results for the gas
fow fracture porosity and shape factor, respectively. By
examining all the performance metrics of the Table 1, it
clearly appears that performing more than two or more
statistical indicators can give more informative results of the
adopted ML models. Although the Lasso model revealed the
superior correlation value, the KNRmodel gave the minimal
value for the MAPE metric in which by validating with KGE
metric, it is clearly a valid model for prediction superiority
for the fracture porosity of gas fow. On the other hand,
Tables 3 and 4 presented the modeling results of the oil fow
fracture porosity and shape factor, respectively. Over the
testing phase, the KNR model reported the best modeling
results for the fracture porosity and shape factor prediction
based on the multiple metrics evaluation.

Based on the performance metrics in Tables 1–4, mod-
eling superiority for the attained prediction results distributed
between RF, KNR and Lasso models. Indeed, this is a factual
thing for the ML models behavior through the learning

process in which depending on the howmuch capacity can be
attained during the learning mechanisms of the models. Tis
can be elaborated also due to the distribution of the fracture
points in one line which prove that the fracture conductivity
factor has a big impact oil than gas [60]. Generally, the radial
fow is distributed as parabolic that points of fuids spread
systemically due to the shape factor in gas fow [61].

5. Conclusions

Reliably predicting distributed fuids fow in the naturally
fractured reservoirs is achievable using ML models applied
to a group of oil and gas datasets of Texas feld calibrated
with the fracture porosity and shape factor data.Te fracture
porosity and shape factor respond to the distinct charac-
teristics of fractures such as conductivity and permeability
factor in diferent ways. Te results of this study lead to the
following conclusions:

(i) When the fracture characteristics variables were
used collectively in the trained models, it was de-
fnitively determining the suitable type of fow for
oil and gas (pseudosteady state fow or radial fow).

(ii) Based on the fve available input variables, the
following two output variables are shown to be most
efective when used in combination to predict the
movement of the fuids in the naturally fractured
reservoirs. Tese input variables are matrix per-
meability, fracture permeability, wellbore radius,
interporosity fow coefcient, and storativity ratio,
while the output variables are the fracture porosity
and shape factor.

(iii) ML models confrmed their potential in predicting
the ail/gas fow fracture porosity and shape factor.

(iv) Some limitations were observed that sometimes ML
models cannot work well in the development of the
behavior of the naturally fractured reservoir char-
acteristics due to their instability in one pattern as
same as conventional reservoirs and this causes it
difcult to predict.

Table 1: Te calculated performance metrics for the gas fow
fracture porosity over the testing phase.

Model R2 KGE RMSE MAPE (%)
DT 0.811 0.826 0.001 10.1
RF 0.938 0.851 0.001 6.4
KNR 0.955 0.937 0.001 4.1
RR 0.898 0.803 0.001 8.9
Lasso 0.974 0.779 0.001 7.7

Table 2: Te calculated performance metrics for the gas shape
factor over the testing phase.

Model R2 KGE RMSE MAPE (%)
DT 0.949 0.972 0.003 4.7
RF 0.918 0.91 0.004 5.8
KNR 0.961 0.975 0.003 2.8
RR 0.919 0.774 0.004 6.7
Lasso 0.773 0.617 0.007 11.7

Table 3: Te calculated performance metrics for the oil fracture
porosity over the testing phase.

Model R2 KGE RMSE MAPE (%)
DT 0.934 0.948 0.003 3.7
RF 0.94 0.938 0.003 4.1
KNR 0.896 0.927 0.004 1.9
RR 0.95 0.666 0.005 5.8
Lasso 0.992 0.819 0.002 3

Table 4:Te calculated performancemetrics for the oil shape factor
over the testing phase.

Model R2 KGE RMSE MAPE (%)
DT 0.949 0.94 0.003 3.5
RF 0.971 0.977 0.002 2.3
KNR 0.896 0.928 0.004 1.9
RR 0.95 0.666 0.005 5.8
Lasso 0.992 0.819 0.002 3
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Construction cost estimation is one of the essential processes in construction management. Project cost is a complex engineering
problem due to various factors affecting the construction industry. Accurate cost estimation is important in construction
management and significantly impacts project performance. Artificial intelligence (AI) models have been effectively implemented
in construction management studies in recent years owing to their capability to deal with complex problems. In this research,
extreme gradient boosting is developed as an advanced input selector algorithm and coupled with three AI models, including
random forest (RF), artificial neural network (ANN), and support vector machine (SVM) for cost estimation. Datasets were
gathered based on a survey conducted on 90 building projects in Iraq. Statistical indicators and graphical methods were used to
evaluate the developed models. Several input predictors were used, and XGBoost highlighted inflation as the most crucial
parameter. +e results indicated that the best prediction was attained by XGBoost-RF using six input parameters, with r-squared
and the mean absolute percentage error equal to 0.87 and 0.25, respectively. +e comparison results revealed that all AI models
showed good prediction performance when applied to datasets affected by more than two parameters. +e outcomes of this
research revealed an optimistic strategy that can help decision makers select the influencing parameters in the early phases of
project management. Also, developing a prediction model with high precision results can assist the project’s estimators in
decreasing the errors in the cost estimation process.

1. Introduction

+e construction industry is complex and comprises parties
such as owners, contractors, and consultants [1, 2]. +e
construction sector affects the global economy of countries,
so many studies have explored methods to improve the
performance of construction projects [3–5]. Due to its global
impact, several scholars measure the project performance’s
success to understand it better. +e construction project’s
success can be measured by achieving the project within the
estimated cost, duration, and specifications [6, 7]. Imple-
menting a project with successful performance is chal-
lenging with growing awareness of the environment and

customer requirements changing [8]. +e construction in-
dustry is dynamic and complex since it needs the imple-
mentation of successful project management strategies
[9, 10]. Unsuccessful strategies cause cost and schedule
overruns, leading to undesirable results and reducing cus-
tomer satisfaction [11–13].

Consequently, there is a need to develop effective
strategies and methods to mitigate risks and uncertainties in
a construction project [14, 15]. +e construction project
management sector mainly includes the initial design phase,
detailed design phase, construction cost estimation, project
bidding phase, construction phase, and final delivery after
completion [16–18]. Cost is an essential criterion of project
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performance due to its impact on feasibility studies and
choosing design alternatives [19]. Cost studies describe and
evaluate the costs of buildings and other construction
projects [20]. +ese studies seek to maximize the project’s
revenue by using the available resources. Cost estimation is
essential in construction and significantly impacts project
management [21]. Accuracy of cost estimation is considered
a necessary factor of project success during various phases of
project construction [22, 23]. Accurate cost estimation af-
fects the project’s profitability, owner’s satisfaction, and fi-
nancial decision [24]. Inaccurate cost estimation leads to
problems like cost overruns and project parties’ disputes
[25, 26]. Several studies on cost management indicated that
accurate cost estimation affects the profitability of con-
struction projects at the tender phase and is a vital part of
project survival [27, 28]. +ey also showed that establishing
accurate cost estimation ensures the contract’s profit at the
tendering phase.

Cost estimation is performed by a coordination role of
tender managers and technical experts called estimators.+e
existing cost estimation methods require complete infor-
mation about construction projects and are costly and time
consuming [29, 30]. During the tendering phase, estimators
have little information; therefore, they depend on their
knowledge and expertise to attain the estimated cost [31].
+e level of knowledge is different among estimators, which
can affect the accuracy of the cost estimation process [13].
Many studies have used statistical and artificial intelligence
techniques to prevent these problems and accurately esti-
mate construction costs [13, 32, 33]. Several studies per-
formed the regression method as a traditional technique for
cost estimation [34–37]. +is method is easy and has
achieved simple results. However, this technique cannot
handle a complex system’s nonlinear relationship among
parameters. Recently, computer-aided algorithms have been
successfully conducted in construction management studies.
AI models can handle the complexity and nonlinearity of
construction projects and help the project’s parties under-
stand the uncertainties and incomplete information at the
early stage of the construction process [38–41].

+e capacity of artificial neural network (ANN) and
support vector machine (SVM) models in estimating the
cost and duration of road projects was analysed [42]. +e
comparison analysis showed that SVM has higher accuracy
and fewer errors than the ANN model. Two researchers
presented the ordinary least square regression (OLSR) for
construction cost forecasting of the Pune region in India
[43, 44]. +e model was applied over a 12-year prediction
period and attained 91%–97% accuracy. +e SVM model’s
capability in estimating the residential building’s conceptual
cost was studied by the authors in [45]. +e results showed
that the model achieved low mean absolute percentage er-
rors, with values ranging between 7% and 8.19%. Another
study used SVM to estimate the cost of bridge construction
[46]. +e study showed that the SVM model could estimate
the cost during the initial process of project construction.
+e model obtained the highest performance results with a
correlation coefficient equal to 0.974. An ANN model was
trained with a backpropagation algorithm for early

performance estimation of buildings in India [47].+e study
revealed the ability of the ANNmodel in cost prediction and
its importance to the financial investors in the construction
project. +e precision of construction cost prediction was
improved by integrating a genetic algorithm (GA) with the
ANN model [48]. +e study reported that the developed
model attained a high predictive performance equal to
0.9471 and assisted project managers at the beginning of the
project. Principal component analysis (PCA) and particle
swarm optimization (PSO) were combined with the SVM
model to predict cost of substation projects [49]. +e de-
veloped model was compared with PCA-SVM and PSO-
SVM, and the study demonstrated that the integration of
three algorithms achieved better prediction outputs than
other models, which can help decision makers in substation
projects. Twenty AI techniques for construction cost esti-
mation of field canal improvement projects were compared
by the author in [50].+e author concluded that the extreme
gradient boosting (XGBoost) algorithm gained the best
prediction results with r-squared equal to 0.929. +ree AI
methods, namely, multilayer perceptron (MLP), radial basis
function neural network (RBFNN), and general regression
neural network (GRNN), were developed for cost prediction
of road projects [51]. +e study showed that GRNN gained
better prediction results than other models, with R2 equal to
0.9595. +e study also indicated that ANN obtained fewer
prediction errors and could handle limited information
during the early phases of the construction process. +e
study by the authors in [52] used three machine learning
algorithms: MLP, GRNN, and RBFNN, with a process-based
method for cost prediction at the early stage of project
management. +e study confirmed that the GRNN algo-
rithm provided better outcomes than other models, which
can help project managers predict construction costs in the
contracting phase, where several input parameters are un-
known at this stage. +e labor cost of the BIM project was
explored by integrating a simple linear regression (SLR) with
the random forest (RF) model [53]. +e study demonstrated
the effectiveness of the hybrid model in the cost estimation
process. An optimization algorithm called PSO was inte-
grated with the ANN model to improve the performance of
the cost prediction of high-rise residential buildings [54].
+e study concluded that the PSO-ANN model has higher
prediction precision and generalization than the single ANN
algorithm.

+e ability of RF, SVM, and multilinear regression
(MLR) to predict the cost overrun of high-rise buildings’
engineering services was examined [55].+e authors showed
that the RF model achieved better prediction results than the
other two AI models. Based on the reported studies, AI
algorithms can be applied successfully for cost estimation.
+ese studies indicated that the performance of these al-
gorithms is affected by the algorithm’s structure and the
abstraction of input variables. +e correlation statistics,
factor analysis, and relative importance index are the
popular methods used by past studies [56–59].

In these studies, data were collected based on personal
opinions and expert surveys, leading to bias in the existing
approaches. Moreover, the current method explores the
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linear relationship between input and output predictors.
Based on that, exploring an advanced method that can
investigate the complex system of cost estimation parame-
ters is very important to achieve accurate results [38].
Furthermore, integrating a new feature selection method
with AI algorithms is significant for construction manage-
ment engineering to get accurate prediction performance
[60]. Recently, the XGBoost algorithm has been explored as
an advanced version of the feature selection approach in
engineering problems. XGBoost is a recent version of gra-
dient boosting and has been applied effectively as an input
selection method by civil engineering scholars [61, 62]. +e
research scope of applying AI algorithms in construction
management is still limited, so exploring a new cost esti-
mation method is the motivation of this research.

Developing effective predictive models that can achieve
accurate performance is a vital issue in the early phases of
engineering management. +e construction industry in Iraq
has a special issue due to the risky conditions and excep-
tional political circumstances that had happened in this
region [2]. +e instability of political and economic con-
ditions has a massive impact on the performance of con-
struction projects. Due to economic and political
circumstances, most constructed projects have failed to be
completed within the specified budget [63]. +us, devel-
oping an integrative model using AI algorithms in cost
management can improve cost performance by evaluating,
controlling, andmonitoring the project cost under uncertain
conditions.

+e current study is achieved by integrating the XGBoost
algorithm with three AI algorithms, namely, RF, SVM, and
ANN. XGBoost was used to select the influencing param-
eters of the prediction process, and then, the AI model used
these parameters. +e attained results are analysed and
discussed by using statistical and visualization methods. +e
output of this study can assist a project manager in selecting
the influencing parameters at the early stage of a con-
struction project. Also, introducing an integrated model
with high precision results helps project estimators reduce
errors in the cost estimation phase.

2. Construction Cost Data Explanation

+is study used public building projects in Iraq as a case
study for the modelling process and used their dataset.+ese
projects are managed by the Iraqi government, so devel-
oping an accurate precision model can help decision makers

by producing precious results. +e information in the
dataset was collected from the survey conducted on 90
construction projects between 2016 and 2021. +e infor-
mation was gathered from historical records of construction
projects, including project drawings, bills of quantities, and
project schedules. +e dataset includes information on
ground floor area (GFA), total floor area (TFA), floor
number (FN), elevator number (EN), footing type (FT),
inflation (F), duration (D), and construction cost (C). +e
inflation data were collected from the Iraqi central bank
(https://cbiraq.org/). Tables 1 and 2 show the descriptive
measures of the cost data for the training-testing phase. +e
statistical descriptions include minimum, maximum, mean,
median, standard deviation, skewness, and kurtosis. For the
training process, the mean value of construction cost is
1623076 $, while for the testing phase, the mean value is
2571431 $. +e maximum and minimum values of project
duration are 731 days and 122 days for the training phase,
while for the testing phase, they are 150 days and 787 days. It
can be seen that the datasets for the training and testing
phases are well distributed. It is near the normal distribution
because the mean and median values of the datasets are close
to each other.

3. Method Overview

3.1. Extreme Gradient Boosting (XGBoost). XGBoost is an
advanced version of tree-based boosting modelling intro-
duced by Chen and Guestrin [62], which is applied effec-
tively in input selection problems [64, 65]. +e boosting
algorithm’s concept uses an iteration process for learning the
functional relationship between the target and predictor
values [66]. +rough this iterative process, the individual
trees are trained sequentially on the residual output of the
previous trees to reduce the training errors [67]. +e al-
gorithm uses a cache-aware structure and a regularized
method for boosting learning. +e mathematical expression
of prediction can be shown as follows:

􏽢Y � ϕ(X) �
1
n

􏽘

n

k�1
fk(X), (1)

where 􏽢Y is the predicted value of the target, X represents the
input variable, K is the value ranging between 1 and n, fk is
the function between input and output variables, and n is the
number of trained functions by boosting trees. +e loss

Table 1: Descriptive measures of the cost data for the training phase.

Minimum Maximum Mean Median Std. deviation Skewness Kurtosis
Ground floor area (m2) 200 5320 1622 1370 1196.252 1.127 0.466
Total floor area (m2) 355 9088 3135 2525 2214.788 1.079 0.466
Floor number 1 6 2.762 2 1.711 0.651 −1.052
Elevator number 0 4 0.794 0 1.002 1.073 0.349
Footing type (raft� 1; separated� 2) — — — — — — —
Inflation (%) 0.1 7.5 2.484 1.8 2.161 0.775 −0.656
Duration (days) 122 731 357.6 348 137.171 0.715 0.652
Cost ($) 26756 6451519 1975260 1321630 1623076 0.903 −0.312
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function in XGBoost must be minimized to train several
functions fk, as shown in the following expression:

L(ϕ) � 􏽘
i

l 􏽢yi, yi( 􏼁 + 􏽘
k

Ω fk( 􏼁,

Ω fk( 􏼁 � cT +
1
2
λ‖w‖

2
,

(2)

whereL(ϕ) is the regularized function, i represents the loss
function measurement between 􏽢yi (prediction value) and yi

(actual value), Ω is a regularization term that prevents the
building of additional trees in the model from decreasing
overfitting and error. c is the leaf’s complexity, T is the
leaves’ number in the tree model, λ is the penalty parameter,
and w is the score vector on the leaves.

In the input selection process, the main aim of XGBoost
is to produce the feature importance of input variables [68].
According to Hastie et al. [69], the algorithm uses gain,
frequency, and cover to calculate feature importance. +e
gain method calculates the role of each feature in the model’s
development. Frequency is the weight representing the
occurrence number for each feature in the boosted trees.+e
cover method shows the number of samples related to each
feature. XGBoost uses the following expression to calculate
the importance of the feature:

Nv � 􏽘
L

L�1
􏽘

X�1

l�1
I V

l
L, v􏼐 􏼑,

V
l
L, v􏼐 􏼑 � f(x) �

1 if V
l
L � v,

0, otherwise,

⎧⎨

⎩

(3)

where L is the tree, number, N is the number of a node for
each leaf, (Vl

L) represents the feature of node l, and I is the
indicator function.

3.2. RandomForest (RF). Random forest (RF) is an ensemble
algorithm introduced by Breiman [70] and based on com-
bining multiple decision trees to produce a robust prediction
model. It has been used effectively for classification and re-
gression problems in several areas of construction manage-
ment [71–73]. +e RF model can deal with many input
variables and work efficiently with outliers and unbalanced
datasets. +e algorithm reduces overfitting results and per-
forms accurately with simple computation processes [74].+e
RF model uses bootstrap and random space techniques to
improve the predictive model’s performance [75, 76]. In the

RF model, the algorithm uses a bootstrap method to choose
new training sets from the original data randomly, and these
new data will be utilized to develop a regression tree (ntree).
+e number of splitmtry for each node in the regression tree is
computed using a stochastic random space technique.

+e modelling steps to develop the RF model are as
follows: First, we generate a new training dataset using a
bootstrap algorithm where two-thirds of the original data (in
bag data) are used to train the developed model. After that,
several regression trees were built based on bootstrap
samples, and these regression trees were used to develop the
RF model. +e RF model is created by training a sequence of
regression trees. +e variance between the trees can be
measured by randomly choosing the optimal number of
attributes based on maximum depth values. +ese com-
putations increase the ability of the RF model to reduce the
errors in prediction results.+e RFmodel is built by training
a sequence of regression trees. Finally, the algorithm collects
the output value for each tree and calculates the final pre-
diction using the average method [77]. +e mathematical
calculation of the RF technique is expressed as follows:

y′ �
1

ntree
􏽘

ntree

i�1
fi(x), (4)

where y′ represents the prediction value of the RF model,
ntree is the number of regression trees, and fi(x) is the
regression tree model based on input value (x). +e sche-
matic diagram of the RF algorithm is described in Figure 1.

3.3. Artificial Neural Network (ANN). Artificial algorithms
such as ANN and other machine learning algorithms have
been introduced recently. +ese models have been charac-
terized by their capabilities in handling complex datasets and
producing accurate results [78].+e artificial neural network
is a mathematical expression, building its components by
emulating the biological structure of the human brain [79].
+e main element of the ANN model is the series of con-
nected layers called neurons. Several types of ANN exist;
scholars commonly apply a feedforward ANN with a
backpropagation algorithm [80]. +e popularity of the
backpropagation algorithm in ANN applications is gained
by its capacity to learn ANN networks based on a supervised
learning algorithm [81]. In this method, the error in pre-
diction results is computed by comparing the predicted
values with actual variables. +e weights in the ANN model
are updated by backpropagation to reduce the expected error

Table 2: Descriptive measures of the cost data for the testing phase.

Minimum Maximum Mean Median Std. deviation Skewness Kurtosis
Ground floor area (m2) 239 3940 1490 1394 882.414 0.991 0.713
Total floor area (m2) 344 9800 4086 3840 2692.433 0.384 −1.068
Floor number 1 6 3.222 3 1.625 0.483 −1.089
Elevator number 0 4 1.37 1 1.182 0.501 −0.936
Footing type (raft� 1; separated� 2) — — — — — — —
Inflation (%) 0.1 7.5 3.319 2.1 2.674 0.297 −1.474
Duration (days) 150 787 404.7 364 177.036 0.468 −0.770
Cost ($) 160147 6104878 2571431 2215402 1940152 0.409 −1.345
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to the allowable value. Feedforward ANN consists of input,
hidden, and output layer components. In this type of ANN,
moving information is performed directly from the input to
the output neurons without returning in the reversed di-
rection. +e number of neurons in the input and output
layer is based on the number of input and output variables in
the ANN model. In the hidden layer, neurons nonlinearly
transform input variables into the output layer [82]. Hidden
layers in the ANN algorithm can be expressed mathemat-
ically as follows:

vi � 1 + exp −1 × 􏽘

1

i�1
xiwij

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

−1

, (5)

where vi represents the hidden layer, xi is the input pa-
rameters, and wij refers to the weight between input and
hidden layers.+e value of the output layer can be computed
as follows:

y � 1 + exp −1 × 􏽘
1

j�1
vjwij

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

−1

. (6)

+e design of an ANN network requires identifying the
number of neurons and hidden layers. According to pre-
vious studies, the best prediction results can be achieved
using one or two layers [83, 84]. +e optimum input var-
iables can attain the best performance during the training
process.+e relationship between input and output variables
is designed to improve prediction performance by training
ANN. For each repeated process, the biases and weights are
modified by the algorithm to reduce the error measures
between the original and predicted values. +e errors of the
expected value can be presented as follows:

Error � 0.5(d − y)
2
, (7)

where d represents the actual value and y is the predicted
value achieved by the ANN model. +e presentation of the
ANN model is shown in Figure 2.

3.4. SupportVectorMachine (SVM). Support vector machine
is a supervised machine learning algorithm developed as a
method that uses a hyperplane to divide the data and
measure the nearest position between the external point and
the hyperplane [85]. SVM is a popular algorithm commonly
used by scholars to improve the estimated process of en-
gineering problems [86, 87]. +e algorithm simulates the
errors between actual and predicted parameters by mea-
suring the distance from the SVM margin. +e SVM model
can be expressed mathematically as follows:

M � x1, y1􏼁􏼈 , x2, y2􏼁, . . . , xnyn􏼁. (8)

M represents the training dataset and x and y are the
input and output parameters. SVM uses the following
function to learn the dataset during the training phase:

f(x) � w · φ(x) + b, (9)

where w represents the weight indicator, φ(x) is the non-
linear function of input parameter x, and b is a scalable term.
+e standard error of the prediction process is minimized
using the following equation:

minφ(w, ξ) � 0.5w
2

+ C 􏽘
n

i�1
ξi

⎛⎝ ⎞⎠φ xi( 􏼁 + b,

subjected toMi w
M

xi + b􏼐 􏼑≥ ε + ξi, ξ ≥ 0,

(10)

where ξ refers to the slag variable, C is a penalty variable
controlling the error between regularization and empirical
prediction, and ε is the function corresponding to the ac-
curacy of the training process. +e SVM model can be
optimized by using Lagrange multipliers and optimum
generic functions as shown in the following expression:

f x, ai, a
∗
i( 􏼁 � 􏽘

n

i�1
ai − a

∗
i( 􏼁K x, xi( 􏼁 + b, (11)

Training data

Training data nTraining data 1 Training data 1n Boostrap
samples

n trees

Prediction 1 Prediction 2

Final Prediction

Prediction n

Figure 1: Schematic diagram of the RF algorithm.
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where K(x andxi) represents the kernel function. +e main
feature of the SVM algorithm in regression problems is that
it correlates input and output parameters using a nonlinear
relationship. +e SVM model’s kernel function helps the
algorithm generate nonlinear mappings in high-dimensional
space. +e SVM model has four kernel functions: linear,
sigmoid, polynomial, and radial basis function (RBF) [87].
+e RBF kernel function is simple, effective, and reliable and
has been used in several complex studies [88]. +e RBF
nonlinear equation was used in this study, and the kernel
function was defined depending on three parameters: C, ε,
and c where the optimal values of this equation can be
reached using the trial and error method. +e illustrative
diagram of the SVM algorithm is depicted in Figure 3.

4. Model Development and
Performance Assessment

In the present study, the construction cost estimation of the
building projects in Iraq was explored. First, input selection
was made to abstract the appropriate features for the pre-
diction process. Due to the complex nature of cost esti-
mation, the XGBoost algorithm was developed to choose the
most important parameters. XGBoost was integrated with
popular AI algorithms, namely, RF, ANN, and SVM. +e
hybrid model was developed using the R programming
language (version 4.1.1). +ree libraries called XGBoost,
Matrix, and ggplot2 were applied to construct the XGBoost
algorithm. +e best results of feature selection were attained
using the xgb importance function. For the SVM model,
library (dplyr), library (caret), library (ggplot2), and library
(kernlab) were used. Function train control was applied to
control the following parameters: method (cv), number (),

and set as 5-fold cross-validation. +e radial basis function
was applied in this study using the svmRadial function. +e
RF algorithm was designed using the library (ranger) and
ranger function. +e designed parameters are as follows:
num.trees set as 200, mtry equal to 3, and min.node size used
as 3. In the case of the ANN model, library neuralnet with
one hidden layer and resilient backpropagation were applied
to enhance model prediction. +e performance of the de-
veloped model was assessed by using several statistical
evaluators, including coefficient of determination (R2), error
measures (i.e., mean absolute error (MAE), root mean
square error (RMSE), and mean absolute percentage error
(MAPE)), Nash–Sutcliffe efficiency (Nash) and Willmott’s
index (WI) [89, 90]. +e process of the presented AI models
is shown in Figure 4.

5. Result and Discussion

5.1. Results Analysis. In this research, the ability of three AI
algorithms, namely, RF, ANN, and SVM, was examined to
estimate the cost of construction projects. +e authors in-
troduced the XGBoost model to determine the best com-
bination of input parameters. +e developed models were
built based on different combinations extracted from the
XGBoost model. Input combinations were constructed using
the important parameters selected by the XGBoost algo-
rithm, as shown in Figure 5. Figure 5 shows the relative
importance values of input features using the XGBoost al-
gorithm. +e XGBoost results show that the inflation pa-
rameter (F) is the most important cost estimation, followed
by the total and ground floor area. +e results also indicated
that the elevator number and the footing type gained the
least significant scores by XGBoost. To determine the impact
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Figure 2: Structure diagram of the ANN model.
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of input variables on the performance of predictive models,
several combinations were constructed and tested by each
model. Seven models were developed for each algorithm
(Model I, Model II, Model III, . . ., Model VII), including
variables from one to seven input parameters.

Tables 3 and 4 show the statistical measurements of the
presented computer-aided algorithms for the training and
testing phase. +e tabulated measurements revealed that both
the XGBoost-RF and XGBoost-ANN models have excellent
performance for the training phase when usingmore than two

input variables. +e XGBoost-SVM model achieved less
predictive performance than the other AI models for all input
combinations, and the best accuracy was attained by using
three input parameters. +e best results for the training phase
are demonstrated by XGBoost-ANN–Model V with
R2 � 0.97551, RMSE� 253464.6776, MAE� 151999.7328,
MAPE� 0.40876, Nash� 0.97522, and WI� 0.99376. For the
testing phase, the results revealed that increasing the number
of input variables leads to increased predictive accuracy for all
AI models. RF outperformed SVM and ANNmodels, and the

Construction cost dataset
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Tune the
hypermeters

Calculate the importance of
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Gain value set
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Figure 4: +e proposed AI model for construction cost estimation.
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Figure 3: Illustrative diagram of the SVM algorithm.
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best performance was achieved by XGBoost-RF-Model VI
with R2 � 0.87211, RMSE� 693311.4488, MAE� 424619.6505,
MAPE� 0.25539, Nash� 0.86739, and WI� 0.962557.

+e developed AI models are also evaluated by graphical
presentations like scatter plots, box plots, and Taylor dia-
grams. Figures 6–8 illustrate scatter plots for the testing
phase for the three hybrid models (XGBoost-RF, XGBoost-
ANN, and XGBoost-SVM).+e XGBoost-RF model exhibits
a good prediction with R2 greater than 0.81 for all combi-
nations except for Model I, where R2 decreases to 0.6215. In
the ANN algorithm, the developedmodel performs well with
R2 maxed out at 0.83 when increasing the number of input

combinations for models V, VI, and VII, as shown in
Figure 6. +e SVM model shows an enhancement in the
prediction accuracy when the number of combinations
increases, except for Models VI and VII, where R2 reduces to
0.7579.

Figure 9 shows a box plot presentation to illustrate the
residual error between the observed and estimated values of
cost estimation.+e results showed that XGBoost-RF-Model
III and XGBoost-RF-Model V gained the minimum residual
plot with an error value of less than 50%. For the ANN
model, the minimum positive error was attained by Models
V and VII, while Models V and VI gained the minimum

Table 3: Performance measures of AI models for training data.

R2 RMSE MAE MAPE Nash WI
XGBoost-RF model
Model I 0.76081 788890.3191 604981.6715 0.99102 0.75994 0.93074
Model II 0.70272 879643.0411 589663.4386 0.63845 0.70154 0.90834
Model III 0.91381 472714.8598 339706.5592 0.43244 0.91381 0.97704
Model IV 0.92352 446670.1333 328896.3663 0.44469 0.92304 0.97921
Model V 0.96647 323123.8558 208083.017 0.36537 0.95973 0.98879
Model VI 0.93993 394961.8018 274148.5711 0.41215 0.95603 0.98446
Model VII 0.90717 495125.5653 337773.447 0.43415 0.90544 0.97555
XGBoost-ANN model
Model I 0.69691 860530.7166 839959.9524 0.77566 0.61666 0.83414
Model II 0.88621 582676.712 290912.5011 0.26372 0.86904 0.96865
Model III 0.95504 341388.8802 224162.0108 0.37779 0.95505 0.98838
Model IV 0.95569 338911.6945 214402.0251 0.40876 0.95569 0.98856
Model V 0.97551 253464.6776 151999.7328 0.40876 0.97522 0.99376
Model VI 0.95603 337627.8199 226863.17 0.41546 0.71921 0.91102
Model VII 0.70773 1108463.447 872191.1237 0.95867 0.52607 0.75929
XGBoost-SVM model
Model I 0.71722 838810.8081 666081.6149 0.63946 0.71436 0.91413
Model II 0.89679 527105.4427 333897.5918 0.40414 0.89283 0.97276
Model III 0.80479 717164.8809 466107.817 0.64501 0.80161 0.93934
Model IV 0.80151 735499.0773 491505.0568 0.65881 0.79134 0.93388
Model V 0.8031 715627.4657 451267.6691 0.53051 0.80246 0.94242
Model VI 0.72157 853201.115 542534.255 0.60776 0.79545 0.93821
Model VII 0.80124 727702.5318 450836.0521 0.54879 0.79574 0.93678
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Figure 5: Feature selection of the XGBoost algorithm.
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negative error. In the XGBoost-SVM model, combinations
with 2 to 7 input parameters show a reduction in the error
value, and the minimum error was achieved by Models III,
IV, and V with a residual error of less than 50%. +e
maximum residual error was demonstrated by Model I for
all the developed models with a negative error value of less
than 85%.

Another graphical method (i.e., the Taylor diagram) was
constructed to evaluate the developed models based on
correlation and standard deviation [91]. Figure 10 illustrates
the Taylor diagram for the three AI algorithms with different
input combinations for tested data. Based on the constructed
Taylor diagram, the XGBoost-RF model attained the nearest
position to the actual cost using three and six input pa-
rameters (i.e., Model III and Model VI). +e rest of the
combinations of the RF model demonstrate good prediction
performance, except for Model I, which attained less cor-
relation value than the other combinations.

XGBoost-ANN and XGBoost-SVM models achieved the
best performance using five input variables (i.e., Model V).
XGBoost-ANN attained the nearest distance to the actual cost
using three models (i.e., Model V, Model VI, and Model VII),
whereas the remaining models achieved the farthest distance
with a correlation value of less than 0.9. For XGBoost-SVM,
only three models gained the best performance using three,
four, and five input parameters, whereas the poorest per-
formance was achieved using one input variable.

5.2. Validation against Previous Studies. To confirm the
ability of the introduced AI models in cost estimation, it is
necessary to validate these models against the developed AI
models in past studies. An ANN algorithm was developed

to estimate the construction cost of highway projects in
India [92]. +e study showed that the ANN model could
estimate construction cost with an R of 0.94. In another
study, the developed approach gained a correlation coef-
ficient of 0.97 for the cost prediction of bridge construction
by using an SVM model with 27 input variables [46]. +e
investigation of three AI algorithms called multivariate
adaptive regression spline (MARS), extreme learning
machine (ELM), and partial least square regression (PLS)
was performed to estimate the construction cost of field
canal projects [93]. According to the reported results, the
MARS model attained the best results with an R2 � 0.94 and
five input parameters. Previous studies also reported hybrid
models as effective models for cost estimation, such as
ANN-GA and RF-SLR [48, 53].+e previous studies gained
an acceptable performance in cost estimation. However,
they only focused on single models and gave little attention
to hybrid models. Also, they developed AI models based on
all input parameters. +is study combined the XGBoost
algorithm with AI models to enhance the cost estimation
accuracy. It can be noticed that XGBoost-RF achieved good
estimation performance with r-squared ranging from 0.87
to 0.91 for both testing and training phases using only three
input variables.

5.3. Discussion. Using an AI approach in complex con-
struction projects is highly recommended to get accurate
estimation process results and simulate the nonlinear re-
lationships between input and output parameters. Using
XGBoost as an advanced input selector revealed that in-
flation, total floor area, and ground floor area are the most
important variables in cost estimation. +e comparison

Table 4: Performance measures of AI models for testing data.

R2 RMSE MAE MAPE Nash WI
XGBoost-RF model
Model I 0.62154 1227246.543 874941.6745 0.55214 0.58448 0.88937
Model II 0.66971 831959.7023 619292.1689 0.35191 0.80904 0.94221
Model III 0.87382 804900.462 582701.9977 0.30825 0.82126 0.9404
Model IV 0.8553 859581.3363 591577.1935 0.2804 0.79615 0.92993
Model V 0.85961 823500.3632 554104.6337 0.25399 0.81291 0.93815
Model VI 0.87211 693311.4488 424619.6505 0.25539 0.86739 0.962557
Model VII 0.86511 706201.1783 461238.6876 0.26279 0.86241 0.961966
XGBoost-ANN model
Model I 0.59486 1297368.569 919557.1617 0.56905 0.53564 0.88069
Model II 0.75537 1150901.062 763471.3537 0.33141 0.63458 0.9049
Model III 0.73428 1004876.227 578230.6713 0.28253 0.72142 0.9241
Model IV 0.7481 979906.0497 523097.5798 0.28778 0.7351 0.92872
Model V 0.85042 750698.034 459356.0909 0.26579 0.84453 0.95641
Model VI 0.84828 864172.2326 570128.7514 0.23589 0.79398 0.93062
Model VII 0.83202 836314.9646 545942.9388 0.23004 0.80704 0.93977
XGBoost-SVM model
Model I 0.64182 1158278.86 803076.3523 0.80044 0.62987 0.89511
Model II 0.77873 946666.831 713338.1417 0.38731 0.75276 0.92379
Model III 0.81801 879551.0025 631843.2588 0.33659 0.78658 0.93023
Model IV 0.8256 856049.4301 586251.8811 0.26047 0.79783 0.93494
Model V 0.83321 826462.8309 542359.3988 0.23651 0.81156 0.94219
Model VI 0.78213 907434.4113 623458.3053 0.24091 0.77283 0.93306
Model VII 0.75791 958666.6949 633398.3941 0.24339 0.74646 0.92462
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results between AI models showed the ability of the de-
veloped algorithms to predict construction costs because all
models attained good predictive performance except for
models that used one input variable.+e XGBoost-RFmodel

showed a significant enhancement in the prediction process
using only three input parameters where R2 � 0.87 and
MAPE� 0.308 and minimum negative error, as shown in
Table 4 and Figure 9. Applying an RF model with six input
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Figure 6: Scatter plot presentation of the XGBoost-RF model for tested data.
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parameters (i.e., XGBoost-RF-Model VI) led to reducing
MAPE to 0.25 and producing a residual plot with no outlier
points.

+e poor performance was achieved by the RF algorithm
in Model I and Model II, where the gained R2 was less than
0.7 and the residual error was high, as illustrated in Figures 8
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Figure 7: Scatter plot presentation of the XGBoost-ANN model for tested data.
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and 9. For the ANN algorithm, the model increased its
prediction performance by increasing the number of input
parameters, and the best R2 was achieved by XGBoost-ANN-
Model V with RMSE equal to 750698.034, as reported in

Table 4. +e XGBoost-ANN-Model revealed the poorest
results of Model I with high residual errors and the farthest
distance to actual cost (see Figures 9 and 10). In the case of
the SVMmodel, three models (i.e., Model III, Model IV, and
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Figure 8: Scatter plot presentation of the XGBoost-SVM model for tested data.
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Model V) illustrated good performance with r-squared
maxed out at 0.8, as depicted in Figure 7. +e other com-
binations of the XGBoost-SVM model achieved good pre-
dictive accuracy with R2 greater than 0.7, except for Model I
that showed the lowest correlation coefficient and farthest
position to the observed value, as shown in Figures 8 and 10.
Based on the evaluation results, all AI models exhibited good
performance when the number of input variables was in-
creased in the estimation process. RF and SVM models
performed better than ANN when using a few input vari-
ables, especially when applied to one input parameter. +e
comparison results revealed that integrating XGBoost with
AI models enhanced the prediction accuracy by selecting the
appropriate parameters for the modelling process. +e in-
tegrated XGBoost algorithm with AI models revealed that
using three input parameters, i.e. inflation, the total floor

area, and the ground floor area, is necessary to get the ac-
curate performance of cost estimation. +e results revealed
that increasing input variables from three to six reduced the
error percentage and increased modelling efficiency. +e
results also showed that tree-based models outperformed
classical models in their ability to handle complex models
based on a few input variables.+e reported results indicated
that the RF model was able to understand the complex
nature of construction cost estimation. +e integrated
XGBoost algorithm with AI models revealed the robustness
of using predictive models when limited input variables are
known by the project’s stockholders. +ese results indicate
the ability of the developed model to be used under un-
certain circumstances. For future studies, other advanced
selection algorithms like GA can be tested to simulate the
complex behaviour among modelling parameters. Also,
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Figure 9: Box plot presentation of the developed AI models for the testing phase.
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recent algorithms such as deep neural networks can be
integrated with input selector algorithms to get low errors
and more accurate results [94, 95].

6. Conclusions

Developing a reliable predictive model is an essential issue in
construction cost estimation. In this research, the XGBoost
algorithm was used to select the correlated parameters of the
modelling process and hybridized with three AI models,
namely, RF, ANN, and SVM, to estimate the construction cost.
Datasets were collected based on the survey of 90 building
projects constructed between 2016 and 2021. +e results

showed that the most correlated variables selected by XGBoost
are inflation, the total floor area, and the ground floor area. For
prediction performance, all AI models showed good reliability
in the prediction process when applied to input variables of
more than 2. +e XGBoost-RF model revealed a high corre-
lation coefficient in all combinations except for Model I, where
R is below the acceptable performance level. +e graphical
evaluation showed that XGBoost-RF-Model VI gained the best
performance with an r-squared of more than 0.8 and low
residual error. +e results also indicated that tree models could
deal with complex systems and get accurate results based on the
limited number of input variables. More input parameters
should be investigated for future direction, and the GA
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Figure 10: Taylor diagram of the developed AI models for the testing phase.
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algorithm can be explored to generate significant feature se-
lection. Also, a new deep learning algorithm can be presented
to enhance the capability of predictive models.
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Drought is a complex and frequently occurring natural hazard in many parts of the world.+erefore, accurate drought forecasting
is essential to mitigate its adverse impacts. +is research has inferred the implication and the appropriateness of the extreme
learning machine (ELM) algorithm for drought forecasting. For numerical evaluation, time series data of the Standardized
Precipitating Temperature Index (SPTI) are used for nine meteorological stations located in various climatological zones of
Pakistan. To assess the performance of ELM, this research includes parallel inferences of multilayer perceptron (MLP) and
autoregressive integrated moving average (ARIMA) models. +e performance of each model is assessed using root mean square
error (RMSE), mean absolute error (MAE), mean absolute percent error (MAPE), Kling-Gupta efficiency (KGE), Willmott index
(WI), and Karl Pearson’s correlation coefficient. Generally, graphical results illustrated an excellent performance of the ELM
algorithm over MLP and ARIMA models. For training data of SPTI-1, ELM’s best performance has observed at Chitral station
(RMSE= 0.374, KGE= 0.838, WI = 0.960, MAE= 0.272, MAPE= 259.59, R= 0.93). For SPTI-1 at Astore station, the numerical
results are (RMSE= 0.688, KGE= 0.988, WI= 0.997, MAE= 0.798, MAPE= 247.35). +e overall results indicate that the ELM
outperformed by producing the smallest RMSE, MAE, and MAPE values and maximum values for KGE, WI, and correlation
coefficient values at almost all the selected meteorological stations for (1, 3, 6, 9, and 12) month time scales. In summary, this
research endorses the use of ELM for accurate drought forecasting.

1. Introduction

Drought is a recurrent natural climatic phenomenon that
occurs virtually in most parts of the world. A drought is a
recurrent event due to a lack of precipitation for an extended
period of time in a particular region [1, 2]. Like other natural
hazards, drought is steady and sometimes considered a
creeping phenomenon as it is a gradually evolving natural
hazard due to climatic fluctuations [3, 4]. Generally, the

impacts of drought have effect on agriculture, livestock,
ecological system, socio-economic, and energy sectors [5, 6].
Moreover, drought can be categorized as meteorological,
hydrological, agricultural, and socio-economic drought.
+erefore, it requires the investigator to consider individual
opinions to define a specific type of drought [1, 2, 7, 8].

Due to the complex nature of drought, it is difficult to
monitor and assess its impact [1, 2, 6]. An accurate pre-
diction of drought is considered difficult, especially its onset
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or end [9, 10]. Prolonged droughts adversely impact the
economic agriculture and social sectors. +ese massive
drought impacts are due to sudden and widespread climate
changes [11]. Drought can lead to devastating economic
effects, with worldwide losses of around $9 billion per
annum; the US livestock industry faced a $400 million loss
during a severe drought in 2002 [12]. A comprehensive early
warning system for drought is necessary to reduce its
devastating impact. However, a few studies are conducted to
mitigate this stochastic natural hazard [13–15]. Recently,
numerous drought indices have been developed to identify
and monitor droughts and introduce mitigation policies
[16–19]. Reference [20] proposed a new drought indicator,
i.e., Normalized Ecosystem Drought Index (NEDI), to ob-
serve dryness conditions in the pattern of a transitional
ecosystem. It is expected that dryness conditions can be
quantified better by using NEDI.

Numerically expressed drought indices are more un-
derstandable than natural rainfall data [1, 2, 21]. Drought
indices can be a valuable tool to detect the initiation and
termination of drought levels necessary for recovery plan-
ning, mitigation, and decision-making [22, 23]. Drought
indices aim to quantify how drought conditions evolve and
classify the severity of drought events. +ese indices made
easy droughts modeling using stochastic time series, neural
network algorithms, and water balance models. +e most
commonly used drought indices are Palmer Drought Se-
verity Index (PDSI) [24], Surface Water Supply Index
(SWSI) [25], Standardized Precipitation Index (SPI) [26],
Effective Drought Index (EDI), and Standardized Precipi-
tation and Evapotranspiration Index (SPEI) [27]. Ali et al.
[28] proposed a multiscalar drought index named as
Standardized Precipitation Temperature Index (SPTI).+ese
drought indices were calculated using different meteoro-
logical variables [29]. Different drought indices were used to
characterize, estimate, and forecast drought conditions.

+e current long-range drought forecasts have minimal
reliability [30]. Existing conventional stochastic models are
inadequate for accurate drought predictions [31]. +e re-
cently developed machine learning (ML) models have ex-
tensive application in climatology including Näıve Bayes
classifier, Bayesian networks [32], support vector machine
(SVM), wavelet gene expression programming [33], maxi-
mum entropy, and artificial neural networks (ANNs). Re-
sults of several studies affirmed that the ML models perform
comparatively better than conventional stochastic and dy-
namic models for drought estimation [34, 35]. ANN models
act like a human brain and can be classified according to
their neuron structure, number of hidden layers, and acti-
vation functions. Many researchers have successfully applied
MLP neural networks for drought estimation and fore-
casting [36, 37].+eMLP is capable of accurately forecasting
soil temperature in semi-humid and arid regions [38].
Aghelpour et al. [39] improved agriculture drought mod-
eling by coupling the dragonfly optimization algorithm with
SVM. Furthermore, [40] efficiently modeled RDI using
hybrid support vector regression (SVR) coupled with firefly
algorithm (FA), whale optimization algorithm (WOA), and
wavelet analysis (WA). +e results proved that hybrid and

coupled SVR techniques improved drought forecasting.
Although ML models have an outstanding reputation in
estimation, prediction, and forecasting, many have slow
computing times [41]. Among the class of ANN algorithms,
ELM is being widely used in various fields and has gained
fame in climatology and engineering [42–47]. Mouatadid
and Adamowski [48] efficiently forecasted urban water
demand for Montreal (Canada) using ELM.

+is research aims to infer the implication and the
appropriateness of the extreme learning machine (ELM)
algorithm for drought forecasting. In previous research,
ELM has been implemented in different disciplines, in-
cluding classification [49], regression [50, 51], clustering
[52, 53], feature selection [54], pattern recognition [55],
image processing [56] estimating sediment transport [57],
and drought forecasting [30, 58, 59].+e ELM has signifi-
cantly faster learning, improved generalization performance,
minimum human intervention, and accurate forecasting
performance [60].

2. Materials and Methods

2.1. Data and Study Area. +e application of this research is
based on nine meteorological stations scattered around
Pakistan. +e topographic map of the study region and
distribution of selected meteorological stations is shown in
Figure 1. +e study area is situated in the southeastern part
of Asia and lies between 23.8° to 37°N latitude and 60.9° to
75.37°E longitude. +e region is classified into clusters
comprising different meteorological stations with diverse
spatial characteristics [61]. Hence, selecting these meteo-
rological stations aims to cover the maximum climatic
variability. In addition, the study area encompasses five
major river basins, Ravi, Chenab, Sutlej, Jhelum, and the
Indus River. +ese rivers are the backbone of the country’s
agriculture industry and hydropower projects.

For this research, time series data of the monthly pre-
cipitation and minimum and maximum air temperatures
were collected from the Karachi Data Processing Center
(KDPC) through the Pakistan Meteorological Department
(PMD). +e length of the data ranges from January 1951 to
December 2016. +e full-length data were split into two
parts. January 1951 to December 2013 is considered the
training data set, and the remaining three years, January
2014 to December 2016, is considered the test data set. +e
climatological forecast needs more accuracy for future
hazard mitigation because long-range climatological fore-
casts compromise accuracy. Here, the errors and irregu-
larities were detected and removed by the KDPC itself.
Additionally, missing data were adjusted by generating
values using cumulative distributions over lead periods.

2.2. Standardized Precipitation Temperature Index (SPTI).
+e Standardized Drought Indices (SDIs) have extensive
applications for drought monitoring. SDIs are standardized
and spatially invariant tools for monitoring and assessing
drought characteristics. In the literature, various authors
have offered numerous methods for SDIs. Example includes
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the Standardized Precipitation Index (SPI) [26], Standard-
ized Precipitation Evapotranspiration Index (SPEI) [27], and
Standardized Precipitation Temperature Index (SPTI) [28].
Precipitation and temperature are two essential climatology
indicators, revealing the vital dynamics of climate and hy-
drology. ­erefore, a standardized drought index based on
these two meteorological variables is more bene�cial for
drought monitoring and forecasting.­erefore, the SPTI has
been chosen as SDI for monitoring and forecasting drought.
­e mathematical calculation of SPTI is quite similar to SPI;
more detailed discussion can be accessed in [41]. SPTI is a
multiscalar drought index and can be calculated for di�erent
time scales (1–48). Positive and negative values of the index
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Figure 1: Topographic map of the study area and geographical distribution of meteorological stations.

Table 1: Drought classi�cation of the SPTI index.

SPTI values Classes Cumulative
probabilities

≤−2 Extreme drought (ED) 0.000–0.023
−1.9 to −1.5 Severe drought (SD) 0.023–0.067
−1.49 to −1 Moderate drought (MD) 0.067–0.159
−0.99 to 0.99 Near normal (NN) 0.159–0.841
1 to 1.49 Moderate wet (MW) 0.841–0.933
1.5 to 1.9 Severe wet (SW) 0.933–0.977
≥2 Extreme wet (EW) 0.977–1
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indicate drought and wet conditions. +ese drought con-
ditions are classified in Table 1 [62, 63].

SPTI is a modified form of the De-Martonne Aridity
Index (DAI) (de Martonne, 1926). +e mathematical
properties of SPTI are utterly similar to SPI, an extensively
used index for drought prediction in many parts of the
world. For SPTI, we need to calculate DAI based on the
monthly total precipitation and average monthly tempera-
ture. +e next step is to fit an appropriate distribution to
calculate a cumulative probability for standardization.
However, many researchers used Gamma distribution for
standardization. +e index values are subjected to fitted
distribution, and none of the single distribution can be
appropriate for all the stations and for various time scales.
+erefore, the 32 candidate distributions have been fitted on
DAI at different lead time scales. +e Bayesian Information
Criterion (BIC) has been used as a threshold to assess the
appropriateness of a distribution.

2.3. Candidate Algorithms. An artificial neural network
(ANN) is a computational paradigm. It is a data-driven
technique in which information goes through a biological
structure of neurons with multiple layers introduced in the
1950s. It did not impose any constraints on input variables to
train the model like other stochastic models. +ese algo-
rithms are brilliant and learn from existing relationships
among the observations of input and auxiliary variables.
ANN can manage high-dimensional and high-frequency
complex datasets [58]. ANN algorithms have broad appli-
cations in mathematics, engineering, medicine, economics,
neurology, and hydrology [64–67]. Kuligowski and Barros
[68] claimed that weather prediction could be improved
using ANN algorithms. +is class of algorithms can be
helpful in the field of climatology to forecast natural hazards
like drought. Multilayer perceptron (MLP) is considered one
of the useful and fully connected feedforward artificial
neural networks. It usually consists of three layers of mul-
tiple nodes, including an input layer, multiple hidden layers
(usually two hidden layers with multiple hidden nodes) with
a nonlinear activation function, and an output layer. +e
neuron structure and estimation accuracy of MLP make it
prominent among the other ANN algorithms. Error back-
propagation is one of the supervised learning techniques
used to train MLP. Another stochastic algorithm used for
drought prediction is the ARIMA process [69].

2.3.1. Seasonal Autoregressive and Integrated Moving Aver-
age Model (SARIMA). Yule [70] pioneered to introduce
autoregressive (AR) models that the time series being an-
alyzed is a linear function of its previous lag values. Slutzky
[71] modeled time series as a function of past residual terms
named as moving average model (MA). Wold [72] merged
both AR and MA specifications and introduced a new
generalized form of ARMA specifications used to model all
stationary time series by choosing the appropriate order of
“AR” and “MA” terms into the model. Time series data
generally have trends (non-stationary). Non-stationary time
series can be modeled by appropriate differencing the series

into stationary. +e series that is transformed from non-
stationary to stationary by differencing is known as inte-
grated series. +e ARIMA has a systematic way of identi-
fication, estimation, and diagnostic checking approach to
reach an appropriate model. Many hydrologic and meteo-
rological time series data have inherited seasonal compo-
nents [73]. +ese kinds of data can be efficiently modeled
with the seasonal ARIMA model, which requires only a few
parameters to be estimated [74].+e seasonal ARIMAmodel
is described as ARIMA(p, d, q) (P, D, Q)s, where (p, d, q) is
the non-seasonal component of the ARIMA specifications,
while (P,D,Q)s is the seasonal component of the ARIMA
model. +e general seasonal ARIMA specifications are as
follows:

ϕp(B)ΦP B
s

( 􏼁∇d∇D′
s Dt � θq(B)ΘQ B

s
( 􏼁αt. (1)

Here, “p” is the order of non-seasonal autoregressive
terms, “q” is the no of non-seasonal MA terms to be included
in the model. Similarly, “P” is the seasonal autoregressive
terms, and “Q” is the number of seasonalMA terms,∇d is the
difference operator of non-seasonal series with “d” levels to
make the series stationary, ∇D′ is the difference operator of
seasonal series with D′ no of differencing to get integrated
stationary series, where “s” is the length of the season. +e
mathematical details of ARIMA specifications can be ob-
served in [75]. +e development of ARIMA specifications
included identification, estimation, and diagnostic checking.
By following these steps, a parsimonious ARIMA specifi-
cation can be selected for estimation and forecasting a time
series.

2.3.2. Extreme Learning Machine (ELM). +e extreme
learning machine (ELM) is a modern single hidden layer
feedforward neural network (SLFN) algorithm proposed by
[76].+e proposed novel machine learning algorithm (ELM)
operates identically to feedforward back-propagation ANN
(FFBP-ANN) and least-squares support vector regression
LSSVR models. It has shown its candidacy among the ANN
algorithms to solve complex linear and nonlinear regression
problems. It contains a single hidden layer of multiple
hidden nods. However, most of the ANN-based methods
have specific limitations such as slow computation, learning
epochs, larger biases, and tuning parameters (weights). To
overcome such weaknesses and the frailty of ANN methods,
a state-of-the-art algorithm known as extreme learning
machine (ELM) gained fame in the class of ANN algorithms
[77].

Studies have revealed that even with randomly generated
weights of hidden nodes, ELM can attain the universal
approximation feature of SLFNs [46, 47, 78]. In the proposed
method, the input weights are assigned randomly, and the
output weights can be solved uniquely by the least-squares
method of generalized inverse function [76]. If hidden node
input weights and biases are chosen randomly, SLNFs can be
considered a linear system. +e output weights are deter-
mined analytically through the generalized inverse operation
of the hidden layer output matrices because these weights
connect the hidden layer to the output layer of the linear
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system.­e ELM can solve regression problems with shorter
simulation times than FFBP-ANN and LSSVR algorithms
and makes ELM a thousand times faster [59, 79–81]. It
contains common properties of high generalization per-
formance. ­e topological structure of the ELM algorithm is
given in Figure 2, where three layers of neurons are used to
develop the architecture.

Input layer where the input variables are introduced, the
single hidden layer contain variable number of neurons
where data are processed and analyzed and the output layer
produce desired results through their activation function.
­e activation function used in the ELM algorithm is a
sigmoid function g(x) � 1/(1 + e−x), and while training
ELM, most of the time is utilized while calculating the
Moore-Penrose generalized inverse H† of the hidden layer.

Huang et al. [76] claimed that the maximal margin
property of SVM and the minimal norm of weight theory of
ELM is consistent. ELM and SVM perform equally well for
standard optimization. For M random distinct samples
(yi, ti), where yi � [yi1, yi2, . . . , yim]T ∈ Rm and
ti � [ti1, ti2, . . . til]T ∈ Rl, standard ELM with N hidden
nodes and with activation function g(y) are mathematically
modeled as

∑
Ν
�

i�1
cigi yj( ) �∑

Ν
�

i�1
cig ωi.yj + bi( ) � ojj � 1, 2, 3, . . . ,M,

(2)

where ωi � [ωi1,ωi2, . . . ,ωim]T is the weight vector con-
necting the ith hidden node and input nodes.
ci � [ci1, ci2, . . . , cil]

T is the weight vector connecting the ith
hidden node and output nodes, and bi is the threshold of ith
hidden node. ωi.yj denote the inner product of ωi and yj.

Hc � T, (3)

H ω1,ω2, . . .ωM� , b1, b2, . . . , bM� , y1, y2, . . . , yM( ) �
g ω1.y1 + b1( ) · · · g ω

M
� .y1 + bM�( )

⋮ · · · ⋮
g ω1.yM + b1( ) · · · g ω

M
� .yM + b

M
�( )
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. (5)

ELM attains optimal generalization performance as long
as the chosen number of hidden nodes is su¢ciently high. In
our simulation through ELM with sigmoid activation
function, the number of hidden nodes is selected auto-
matically to attain optimal prediction and forecast
performance.

2.4. Model Evaluation Metrics. A model performance as-
sessment needs calibration of an existed link between ob-
served and predicted hydrological patterns. ­e
fundamental performance assessment method is through a
visual inspection of empirical and predicted or forecasted

time series. For the quantitative evaluation of algorithms,
around 20 performance metrics select a hydrological model
[82]. It has been observed that the choice of an appropriate
model signi�cantly changed if precision-based metrics were
used instead of error-based metrics [83]. Numerous accu-
racy measurement criteria were developed, but each tool has
inherited pros and cons, and none of the metrics is uni-
versally accepted and can be used as a threshold [84]. In this
study, some error-based performance metrics have been
used for cross-validation, including root mean square error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE). ­e Kling-Gupta e¢ciency
(KGE) andWillmott Index of agreement (WI) are also better
ways to assess the performance of stochastic, machine

Input Layer Output LayerHidden Layer

Bias

SPTI

X1

X2

X3

Xk

Figure 2: ­e topological structure of the extreme learning ma-
chine network. ­e input layer is the lag values of SPTI, the hidden
layer contains randomly assigned hidden nodes, and the output
layer generates predicted values of SPTI.
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learning, and hydrologic models [85, 86]. Another way to
assess an algorithm’s prediction performance is to calculate
the simple correlation coefficient between observed and
predicted values of the input variable (SPTI) as a closeness
measure. Similar performance metrics are used to assess the
forecast ability of candidate algorithms.

+e RMSE is the deviation of estimated or predicted
values “ 􏽢D” from actual or observed values “D” of drought
indices, computed for “T” different predictions given in

RMSE �

������������������

1
h

􏽘

T+h

t�T

Dt+1 − 􏽢Dt+1|T􏼐 􏼑
2

􏽶
􏽴

. (6)

Since RMSE is positively affected by outliers, therefore
we need some robust measures toward extreme values. Mean
absolute error (MAE) is less influenced by extreme values
than RMSE [87]. Equation (7) describes the mathematical
structure of the MAE.

MAE �
1
h

􏽘

T+h

t�T

Dt+1 − 􏽢Dt+1|T

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑. (7)

Another accuracy measure is the mean absolute per-
centage error (MAPE), a unit-free tool to assess an algo-
rithm’s prediction and forecast ability. Unlike other
performance metrics, MAPE is a scaled independent metric.
+ese performance metrics or accuracy measures are ex-
tensively being used in the field of climatology. +e math-
ematical form of MAPE is given in

MAPE �
100
h

􏽘

T+h

t�T

Dt+1 − 􏽢Dt+1|T

Dt+1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡. (8)

Kling-Gupta efficiency index was developed to assess the
performance model by comparing estimated and observed
time series data [88].

KGE � 1 −

�����������������������

(r − 1)
2

+(α − 1)
2

+(β − 1)
2

􏽱

. (9)

Here, “r,” α, and β in the KGE index illustrate the
correlation coefficient, standard deviation ratio, and average
ratio of observed and predicted values of SPTI, respectively.

Willmott [89] proposes an index named Willmott Index
of agreement (WI) as a standardized measure of the degree
of model prediction error.

WI � 1 −
􏽐

T+h
t�T Dt+1 − 􏽢Dt+1|T􏼐 􏼑

2

􏽐
T+h
t�T Dt+1 − Dt+1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 􏽢Dt+1 − Dt+1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, 0≤WI≤ 1.

(10)

A model with minimum values of RMSE, MAE, MAPE,
the maximum value of KGE index, and the value of WI close
to “1” will be selected and proposed as an adequate algo-
rithm for the estimation of existing drought phenomena and
forecasting future drought episodes.

3. Results

+e descriptive statistics of meteorological and climatic
variables are briefly detailed by using five-number summary
statistics. +e numerical results related to Minimum (Min.),
first quartile (Q1), Median, Mean, and third quartile (Q3) are
expressed in Table 2. +ese results indicated that the annual
and seasonal meteorological characteristics of the selected
meteorological stations are quite diverse.

Muzaffarabad has the highest mean monthly precipi-
tation (125.65mm), and the lowest mean monthly precip-
itation recorded was (15.35mm) at Kalat. Sialkot has the
highest maximum rainfall in a month (917.6mm), and
Chhor has observed the lowest maximum rainfall in a month
(11.47mm), while minimum rainfall at all selected locations
was zero (0mm). +e precipitation source at these stations
varies, such as heavy rainfall occurring at some stations in
the monsoon season (June-Sep). However, precipitation
exponentially declined after September and lasted till De-
cember until the western depression started in winter. At the
same time, western depression causes rainfall in the winter
season (Dec-Mar). +e above statistics exhibit the dry and
wet season cycles at a few stations. Temperature is another
climatic variable used to calculate SPTI, so similar de-
scriptive statistics for minimum and maximum temperature
are expressed in Table 3. Results show that the total monthly
minimum and maximum temperatures are highly apparent
and distinguishable for all the stations.

3.1. Estimation of SPTI. At the very early stage of the
computational analysis, we first prepared time series data of
the SPTI index for all the stations by following the guidelines
[90]. As described in Section 2.2, CDFs of the appropriate
probability functions are standardized for all the stations and

Table 2: Summary statistics of rainfall (in mm) and spatial characteristics of selected stations.

Station Min Q1 Median Mean Q3 Max Latitude Longitude Time range
Astore 0 10.97 26.35 40.64 54.52 248.7 35.3570°E 74.8624°N 1954–2016
Chhor 0 0 0 18.89 11.47 381 25.5114°E 69.7823°N 1951–2016
Chitral 0 3.72 20.2 38.51 58.48 281.4 35.7699°E 71.7741°N 1965–2016
Kalat 0 0 1.35 15.35 16.23 546.0 29.0523°E 66.5879°N 1951–2016
Kohat 0 12.51 33 47.98 65.7 419.6 33.5889°E 71.4429°N 1954–2016
Mianwali 0 3.95 22.1 43.6 60.12 530 32.5839°E 71.5370°N 1960–2016
Multan 0 0.01 4.1 16.85 19.2 231.2 30.1575°E 71.5247°N 1951–2016
Muzaffarabad 0 46.33 97.85 125.65 178.07 721 34.3551°E 73.4769°N 1955–2016
Sialkot 0 8.28 33.05 80.692 96.3 917.6 32.4945°E 74.5229°N 1951–2016
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time scales. +e minimum BIC value criterion decides the
appropriateness of the probability function. Besides, we have
assessed the quantile plot of theoretical and empirical
densities. +irty-two highly parameterized and extreme
value distributions are included in our candidate list. +e
parameter estimation of these distributions and the com-
putation of BIC values are based on Propagate [91] package
of R language. Table 4 shows the BIC values calculated by
fitting all the candidate distributions on SPTI-1 at selected

meteorological stations, and with the lowest value of BIC, a
distribution is chosen as the appropriate fitted distribution.

Furthermore, in Sialkot, Muzaffarabad, and Kalat sta-
tions, the BIC values of the “four-parameter Beta” distri-
bution are the lowest among other distributions (Sialkot,
−722.18; Muzaffarabad, −584.52; Kalat, −664.62). Only in
Chhor station, “Johnson SU-distribution” has given better
fitness results (Chhor, −445.58). We have observed that the
“+ree Parameter Weibull” distribution with the lowest BIC

Table 3: Summary statistics of minimum and maximum temperatures (Celsius) at selected meteorological stations.

Station
Minimum temperature Maximum temperature

Elevation (m)
Min Q1 Median Mean Q3 Max Min Q1 Median Mean Q3 Max

Astore −12.1 −2.5 4.2 3.982 10.7 17.5 −0.5 7.285 16.65 15.63 23.9 29.9 2546
Chhor 1.9 10.38 19.7 18.01 25.32 28.4 23.4 31.5 35.6 34.88 38.2 44.2 4
Chitral −4.5 1.6 7.8 8.565 14.6 22 5.3 14.2 24.05 23.4 32.83 38.2 1493
Kalat −11.9 −1.1 6.2 5.808 12.425 23.2 5 15.18 22.35 22.17 29.8 37.1 2007
Kohat 2.7 10.28 17.9 17.07 24.73 29.3 14.3 22.3 30.9 29.54 36.3 43.9 489
Mianwali 0.7 8.6 17.2 16.89 25.73 30.7 14.5 24.48 33.65 31.59 38 44 210
Multan 1 9.6 19.25 18.23 27.02 30.8 17.2 26.5 34.75 32.55 38.5 45.2 122
Muzaffarabad 0.9 6.65 13.75 13.57 20.73 24.7 12.2 20.48 29.1 27.51 33.83 39.9 737
Sialkot 2.1 9.2 18 16.69 24.3 28.8 13.5 23.7 32 29.77 34.6 43.4 256

Table 4: +e candidacy of appropriate distributions according to their respective BIC values for SPTI-1.

Distribution Mianwali Sialkot Muzaffarabad Astore Chitral Multan Kalat Chhor Kohat
2P beta −260.71 −387.86 −278.31 −280.10 −216.46 −63.88 −418.16 −244.53 −228.65
3P Weibull −472.53 −718.58 −555.22 −480.83 −400.89 −317.25 −638.60 −444.44 −622.28
4P beta −463.53 −722.18 −584.52 −469.79 −393.88 −311.66 −664.62 −434.07 −616.67
Arcsine −211.50 −322.48 −364.18 −272.85 −194.87 −38.61 −353.11 −178.98 −216.75
Burr −49.90 −291.37 −351.96 −347.29 −87.23 259.98 −111.45 197.60 −315.30
Cauchy −218.97 −414.95 −460.90 −367.96 −227.51 −87.98 −498.98 −289.68 −322.84
Chi −292.62 −424.20 −186.90 −247.93 −245.62 113.16 −220.02 130.71 −315.76
Chi-square −321.57 −546.12 −456.49 −441.42 −271.12 125.40 −179.55 136.71 −588.65
Cosine −5.68 −181.37 −403.03 −192.31 −48.26 267.44 −64.93 206.84 −159.22
Curv. trapezoidal −163.25 −349.64 −555.47 −375.44 −169.25 −117.58 −60.78 −236.04 −415.05
Exponential −128.46 −375.68 −561.96 −401.81 −163.06 106.66 −407.55 −244.95 −496.17
F-dist −295.38 −613.36 −361.98 −457.56 −248.41 158.37 −180.79 152.12 −490.64
Gamma −316.77 −648.41 −557.36 −477.56 −268.29 −70.08 −441.22 −246.11 −584.11
Gen. ext. value −320.78 −565.13 −526.85 −456.48 −316.84 −242.60 −620.84 −441.41 −431.50
Gen. normal −366.43 −633.43 −533.60 −476.01 −358.69 −303.25 −627.76 −443.34 −466.85
Gumbel −179.72 −379.06 −527.12 −389.62 −195.10 −35.02 −431.30 −244.43 −376.46
Inv. chi-square −148.95 −274.23 −379.11 −273.05 −162.67 15.23 −356.13 −200.45 −239.52
Inv. Gamma −298.53 −536.09 −421.80 −396.36 −296.90 −174.70 −535.77 −276.36 −325.84
Inv. Gaussian −178.04 −440.80 −429.50 −356.23 −229.22 −55.60 −485.95 −253.33 −252.24
Johnson SB −364.48 −633.93 −547.57 −478.62 −357.49 −298.02 −623.36 −445.58 −463.74
Johnson SU −361.60 −628.62 −528.86 −471.37 −354.24 −298.52 −623.36 −445.58 −461.94
Laplace −184.73 −413.96 −480.10 −382.24 −201.82 −41.51 −439.14 −245.85 −339.58
Logistic −176.53 −360.75 −496.70 −365.07 −190.99 −30.47 −425.80 −243.25 −333.03
Log-normal −319.29 −610.18 −470.78 −478.07 −301.39 −139.80 −486.30 −259.66 −453.97
Normal −169.86 −345.46 −498.92 −357.27 −184.07 −21.42 −418.91 −240.70 −327.01
Rayleigh −171.77 −356.66 −524.70 −373.83 −186.34 −23.85 −420.65 −241.01 −358.02
Scaled t-dist −241.83 −423.80 −494.18 −369.08 −242.48 −122.45 −535.64 −356.41 −330.06
Skewed-normal −167.53 −360.64 −558.46 −384.42 −182.86 −19.95 −417.15 −236.57 −400.74
Trapezoidal −134.44 −326.85 −548.58 −361.71 −171.10 −8.78 −409.37 −231.50 −389.97
Triangular −91.67 −331.66 −553.32 −366.35 −175.48 24.70 −413.76 −236.04 −394.58
Uniform −94.00 −244.30 −269.41 −274.09 −124.13 170.57 −80.62 144.85 −261.94
von Mises −169.96 −348.32 −392.92 −364.93 −184.39 −21.44 −419.38 −240.71 −331.99
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values is the most dominant (see bold values in Table 4). For
the Astore station, the histogram of the appropriate prob-
ability function, the associated quantile plot, and the tem-
poral behavior of the standardized time series data of SPTI-1
are presented in Figure 3.

For ease of convenience, other station plots are skipped.
­e red spikes indicated the drought severity and condi-
tional dependence structure among drought episodes. ­e
selected probability distributions with respective BIC values
for all the time scales (1, 3, 6, 9, and 12) are presented in
Table 5. Finally, standardized time series data of SPTI for
selected time scales at all the selected meteorological stations
have been prepared using appropriate probability
distributions.

3.2. ELM and Its Comparative Assessment. In this research,
we have assessed the performance of ELM with MLP and
ARIMA in two phases. For all the individual stations selected
for the current study, full-length data were divided into two
independent parts, the training set and the validation set
(test data). For most stations, precipitation and temperature
records were available from 1951 to 2016. In the training
phase, 64 years of monthly precipitation and minimum and
maximum air temperature data from January 1951 to De-
cember 2013 are used to train candidate algorithms. In the
testing phase, the rest of the 36 months of data (2014–2016)
are considered test data to validate forecasting results.
Simulations for ELM and MLP are carried out using R
package nnfor [92], and forecast package for R language [93]
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Figure 3: Histogram, QQ-plot, and temporal plot of SPTI-1 at Astore station.

Table 5: Appropriate distributions with their respective BIC values for di�erent time scales at nine meteorological stations.

Stations
SPTI-1 SPTI-3 SPTI-6 SPTI-9 SPTI-12

Distribution BIC Distribution BIC Distribution BIC Distribution BIC Distribution BIC
Mianwali 3P Weibull −472.53 3P Weibull −455.20 Gamma −535.73 Laplace −351.26 Chi-square −326.56

Sialkot 4P beta −722.18 Generalized
normal −600.22 Gamma −581.78 Gumbel −636.77 Gumbel −548.40

Muza�arabad 4P beta −584.52 Rayleigh −670.62 Chi-square −739.36 Log-normal −964.72 Chi-square −866.88

Astore 3P Weibull −480.83 Gen. extreme
value −558.42 Skewed-

normal −745.38 Rayleigh −756.25 Triangular −717.03

Chitral 3P Weibull −400.89 Generalized
normal −565.65 Triangular −467.11 Normal −478.68 Laplace −430.01

Multan 3P Weibull −317.25 4P beta −390.52 Gumbel −417.03 Trapezoidal −496.07 Skewed-
normal −355.40

Kalat 4P beta −664.62 4P beta −798.51 4P beta −963.70 4P beta −475.47 Trapezoidal −500.91
Chhor Johnson SU −444.44 3P Weibull −353.93 4P beta −337.40 Exponential −282.64 Laplace −287.91

Kohat 3P Weibull −622.28 Gumbel −466.94 Inverse
Gaussian −590.98 Triangular −391.63 Trapezoidal −381.36
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was used to select the appropriate order of seasonal and non-
seasonal speci�cations of the ARIMA model.

Furthermore, all the ELM, MLP, and ARIMA simula-
tions are carried out in the R 3.5.3 environment running on
core i7 with a clock speed of 2.3GHz CPU. ­e optimum
order of ARIMA speci�cations with the estimated param-
eters is detailed in Table 6. ­ese optimum speci�cations
were attained by running all possible ARIMA models, in-
cluding all possible seasonal and non-seasonal lag values of
the input time series. ­e ELM algorithm was trained using

23 input layer nodes and a single hidden layer with 100
hidden nodes. ­e algorithm is repeated 20 times, and the
estimated outcomes are combined using the median oper-
ator. ELM assigns random weights to each hidden node.
Furthermore, it assigns start weights to input layer nodes
and generalized weights to hidden layer nodes. ­ese
weights are estimated using least absolute shrinkage and
selection operator (LASSO) to keep the model parsimoni-
ous. ­e parametric network structure still forms a large
dimension matrix, which is not feasible to illustrate
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Figure 4: Performance assessment of ELM, MLP, and ARIMA models through co-movement of observed and predicted values of SPTI at
Astore station for the training phase.
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numerically in a tabulated form. Furthermore, MLP is
trained using two hidden layers containing 10 and 5 hidden
nodes, respectively, to get optimum results.

­e MLP algorithm drastically increases as we increase
the number of hidden layers or by increasing the number of
nodes of hidden layers. Hence, the structure of MLP is �-
nalized with 23 nodes of the input layer, two hidden layers
with 10 and 5 nodes, respectively, and a single output layer.
­is parsimonious structure still forms a larger matrix of
user-de�ned parameters. Due to complexity and numeric
hazard, the estimated results for user-de�ned parameters are

skipped. ­e performance of ELM, MLP, and ARIMA al-
gorithms was assessed using performance assessment met-
rics, including RMSE, MAE, MAPE, KGE, and Willmott
index of agreement.

Table 7 provides numerical results of these performance
assessment metrics using training data sets for ELM, MLP,
and ARIMA models at selected meteorological stations with
(1, 3, 6, 9, and 12) month lead time scales. Results indicate
that ELM performs better than MLP and ARIMA models.
For the assessment of candidate models, the numerical re-
sults of all statistical metrics for SPTI-1 are illustrated with
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Figure 5: Co-movement of the observed and predicted values of SPTI using ELM at Astore, Chhor, and Chitral stations for the training
phase.
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details. ­e best performance of ELM has been observed at
Chitral, with a minimum value of RMSE (0.374). However,
MLP best performed at Chhor station with a minimum value
of RMSE as 0.598, and the ARIMA model overall best
performed at the Chhor station with RMSE (0.632). While
using MAE, the minimum values for ELM, MLP, and
ARIMA are 0.272, 0.449, and 0.5, respectively. As for MAPE,
these quantities are 259.59, 161.33, and 324.7, respectively.
­e values KGE for ELM, MLP, and ARIMA models at
Astore station are 0.712, 0.517, and 0.314, respectively.

Similarly, the numeric quantities of WI at the Astore
station are 0.999, 0.748, and 0.664, respectively. ­e KGE
index indorses ELM’s superior performance at all the sta-
tions by providing maximum values as compared to MLP
and ARIMA. Similarly, Willmott’s agreement “WI” index
consistently provides the highest values for the ELM algo-
rithm. KGE and WI are considered the most appropriate
metrics for the performance assessment of meteorological
and hydrological models. ­e KGE is calculated using the
correlation coe¢cient, the ratio of variations, and the ratio of
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Figure 6: Co-movement of the observed and predicted values of SPTI using ELM at Kalat, Kohat, and Mianwali stations for the training
phase.
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averages of predicted and observed series using equation (9).
­e values of “WI” for the ELM model for all the selected
stations are close to 1, which endorses the ELM as the best
performing model. ­e similar superior performance of
ELM continued for other time scales at selected stations.
Overall results for the training phase show that the ELM
model has shown good agreement at all selected stations.

As the time scale of the drought index increases, the
performance of the proposed algorithm improves. As a
result, the ELM algorithm showed superior performance to
its competitive algorithms (MLP and ARIMA). A com-
parison of all the performance assessment metrics concluded
that ELM algorithm is selected as the adequate model for the
estimation and forecasting of drought indices (see Table 7).

­e consistency and co-movement of the observed and
estimated values of SPTI are further assessed while
employing Karl Pearson’s product-moment correlation
coe¢cient. Table 8 shows the numerical results of the
correlation coe¢cient between the observed and predicted
values of SPTI using ELM, MLP, and ARIMA models for
training data. ­e quantitative results of the Astore station
for ELM, MLP, and ARIMA are 0.87, 0.59, and 0.56, re-
spectively, indicating a better agreement of ELM to predict
SPTI-1 contrary to other candidate algorithms. At Chitral
station, values of correlation are (0.93, 0.74, and 0.69). For
SPTI-3 at Astore station, these results are 0.96, 0.88, and
0.86, respectively, and at Chitral station, the correlation
values for ELM, MLP, and ARIMA are 0.97, 0.93, and 0.90.

-1

0

1

2

1958 1968 1978 1988 1998 2008

SP
TI

-1
Multan

-2
-1
0
1
2
3

1959 1969 1979 1989 1999 2009

SP
TI

-3

-2

-1

0

1

2

1959 1969 1979 1989 1999 2009

SP
TI

-6

-2

-1

0

1

2

1959 1969 1979 1989 1999 2009

SP
TI

-9

Observed

Predicted

-2
-1
0
1
2

1959 1969 1979 1989 1999 2009
Time (Years)

SP
TI

-1
2

-2

-1

0

1

2

1963 1973 1983 1993 2003 2013

SP
TI

-1

Muzaffarabad

-3
-2
-1
0
1
2

1963 1973 1983 1993 2003 2013
SP

TI
-3

-4

-2

0

2

1963 1973 1983 1993 2003 2013

SP
TI

-6

-3
-2
-1
0
1
2

1963 1973 1983 1993 2003 2013

SP
TI

-9

Observed

Predicted

-2
-1
0
1
2

1964 1974 1984 1994 2004 2014
Time (Years)

SP
TI

-1
2

-2
-1
0
1
2

1958 1968 1978 1988 1998 2008

SP
TI

-1

Sialkot

-2

-1

0

1

2

1959 1969 1979 1989 1999 2009

SP
TI

-3

-2
-1
0
1
2

1959 1969 1979 1989 1999 2009

SP
TI

-6
-3
-2
-1
0
1
2

1959 1969 1979 1989 1999 2009

SP
TI

-9

Observed

Predicted

-4

-2

0

2

1959 1969 1979 1989 1999 2009
Time (Years)

SP
TI

-1
2

Figure 7: Co-movement of the observed and predicted values of SPTI using ELM at Muza�arabad, Multan, and Sialkot stations for the
training phase.
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­ese numerical results clearly illustrated that the perfor-
mance of the ELM model signi�cantly improved as the time
scale increased. A similar pattern of the superior prediction
performance of ELM continued for other time scales at all
the selected stations. Although all the models have shown
reasonable prediction performance, quantitative results
evidently con�rmed that the estimated values of SPTI using
the ELM model strongly correlate with the observed values
of SPTI for any time scale.

Usually, climatic and meteorological studies comprise
high-frequency datasets that require fast algorithms. So,
speed is a notable characteristic for determining the reli-
ability of the algorithm. ­e algorithm selection for climatic
studies is subjective in terms of speed and relative e¢ciency.

ELM has the novelty of being the fastest algorithm among
the ANN class to solve complex datasets. ELM algorithm
training and testing time were almost 32 times faster than
ANN, indicating ELM’s supremacy over other ANN algo-
rithms [58].

­e functional relationship between the actual (ob-
served) and predicted values of SPTI using ELM and other
algorithms for the “Astore” station is shown in Figure 4
using a line graph, which depicts signi�cantly less variation
among the observed values of SPTI and the predicted values
using ELM.

MLP and ARIMA were unable to capture all the shocks
in historical values of SPTI, and departure from observed
values was signi�cant. Here, the ELM algorithm re®ects
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Figure 8: Scatter plots of the observed and predicted values of SPTI-6 using ELM, MLP, and ARIMA at Astore, Chhor, and Chitral stations
for the training phase.
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more precise and accurate predictions. Figures 5– detail the
ELM’s prediction performance for all the time scales at the
selected stations, which depicts the ELM algorithm’s better
prediction performance.

It was observed that as the time scale increases, the
prediction performance of algorithms substantially im-
proves. For SPTI-12, signi�cantly fewer deviations have been
observed among drought index’s paired (observed and
predicted) values. ­ese multi-line plots indicate that the
ELM model incurred smaller errors than the two counter-
parts. ­e predicted values using ELM model follow the
observed values of SPTI more precisely. ­ese graphical

presentations show that the ELM model has shown more
accuracy than MLP and ARIMAmodels for estimating SPTI
for various lead time scales at selected meteorological
stations.

Scatter plots of the observed and predicted time series
data sets are another way to assess the prediction perfor-
mance of probabilistic, machine learning, and ANN algo-
rithms. Figures 8–10 show the scatter plots of the historical
observed and predicted values of SPTI-6 using ELM, MLP,
and ARIMA models at all the selected meteorological sta-
tions. Predicted values through the ELM model have shown
a strong correlation with the observed values of SPTI
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Figure 9: Scatter plots of the observed and predicted values of SPTI using ELM, MLP, and ARIMA at Kalat, Kohat, and Mianwali stations
for the training phase.
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through scatter plots. Another graphical presentation en-
dorses the superior performance of ELM. We can observe
that the ELM algorithm showed more accuracy and can
potentially predict drought conditions in any climatic zone.

Figure 11 represents the Taylor diagrams for the Astore
station with (1, 3, 6, 9, and 12) month time scales for the
training phase. Taylor diagrams are the more comprehensive
and precise way to represent the estimation and forecast
ability of a model. ­e similarity between the predicted and
actual values of SPTI is evaluated in terms of correlation (as a
measure of closeness), and the variation is assessed by the
standard deviation (SD) and the RMSE. For SPTI-1, the
correlation of modeled data using the ELM algorithm with

actual observations was about 0.9, followed by MLP and
ARIMAwith 0.6 each. As time scale increases, the prediction
performance of algorithms signi�cantly improves. For SPTI-
3, the ELM algorithm is signi�cantly closer to the actual
values as its correlation is about (0.97) as compared to MLP
(0.9) and ARIMA (0.85). ­e Taylor diagram exhibits the
superior performance of ELM algorithm for estimating SPTI
with (1, 3, 6, 9, and 12) month lead time scales (see Fig-
ure 11). Figure 12 illustrates the violin plots related to the
training phase of ELM and other candidate models. ­e red
dot represents the mean value, a thick white bar represents
the interquartile, and a thin blue line represents the whole
data set distribution. ­ese are the components of the
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Figure 10: Scatter plots of the observed and predicted values of SPTI using ELM, MLP, and ARIMA at Muza�arabad, Multan, and Sialkot
stations for the training phase.
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boxplot, but the colored area on both sides of the blue line is
the estimated kernel density of the shape of the distribution
of data. Higher probabilities are associated with wider parts
of the diagram, and thinner sections show lower probabil-
ities. ­is is another systematic way to compare the

prediction performance of models. It is noticeable that the
mean of the predicted and observed values of SPTI-6 for the
ELM model was almost similar for all the stations, whereas
other models have slight variations. All the models have
shown reasonable agreement but Violin diagrams of ELM
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Figure 11: Taylor diagrams for the evaluation of the prediction performance of ELM, MLP, and ARIMA algorithms at Astore station with
di�erent time scales in the training phase.
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and observed data are nearly identical. ­ese graphical il-
lustrations a¢rmed that the proposed ELM model is better
in estimating the actual values of SPTI at all selected me-
teorological stations.

After calibrating and validating algorithms for training
datasets, the proposed algorithm’s generalization capability
has been assessed in the next step. Finally, out of the sample
forecast of SPTI for all the lead time scales, (1–12) is carried
out for 36 months from 2014 to 2016. ­ese forecasts are
considered su¢cient for drought preparedness and miti-
gation policies. Similar performance metrics have been used
to analyze the di�erence between the observed and fore-
casted values of SPTI for di�erent time scales at all selected
meteorological stations. Numerical results related to these
performance metrics are given in Table 9. If the comparison
of KGE was made at Astore station, the values of KGE for

ELM, MLP, and ARIMA models are 0.988, 0.771, and 0.671,
respectively. ­e KGE for the ELM model is signi�cantly
higher than its counterparts for all the time scales at all the
selected meteorological stations, which clearly endorses the
better forecast capability of the ELM model. Similarly, WI
and MAE quantitative results also rati�ed that the ELM
model outperformed the ANN and ARIMA models. RMSE
and MAPE endorsed ELM as a better forecasting model for
most stations.

­e functional relationship between the observed and
forecasted values of SPTI using ELM, MLP, and ARIMA
models for all the time scales at Astore stations is illustrated
in Figure 13 for the test phase starting from January 2014 to
December 2016 for 36months. A signi�cantly smaller degree
of deviation in SPTI for the ELMmodel and observed values
of SPTI were exhibited. Although MLP has shown a
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reasonably good forecast performance compared to the
stochastic seasonal ARIMAmodel, the ELMmodel evidently
shows superior forecast performance.

In order to check the appropriateness of the ELMmodel,
scatter plots were prepared using time series data of the
observed and forecasted SPTI at Astore station for all lead
time scales (Figure 14). ­ese scatter plots have shown a
signi�cant di�erence in the forecast performance of ELM
and other models. ­e scatter plots depict the correlation,
goodness-of-�t, and the extent of agreement between the
observed and forecasted SPTI. ­e ELM model also clearly
outperformed MLP and ARIMA models for the testing
phase for all the selected time scales.

3.3. Discussion. Drought is a multifaceted and commonly
occurring hazard in several parts of the world. Its impacts are
prevalent in the agriculture, socio-economic, and energy
sectors. However, precise drought monitoring and estima-
tion techniques can assist in decreasing the vulnerability of
society to drought. ­e primary objective of the current
study was to test the appropriateness and usefulness of the
ELM model relative to other ANN (MLP) models and
stochastic (ARIMA) models for drought forecasting. ­e

prediction and forecast performance of ELM is compared
with other ANN algorithms (MLP) and statistical stochastic
(ARIMA) models. ­e prediction and forecast performance
of models is assessed using numerous performance metrics,
including RMSE, MAE, MAPE, KGE, WI, and Karl Pear-
son’s correlation coe¢cient. ­e quantitative assessment
revealed that both the ANN models (ELM and MLP) per-
formed better than the stochastic model (ARIMA), and
among the ANN models, ELM has shown supremacy by
producing the smallest RMSE, MAE, and MAPE values and
the maximum values for KGE, WI, and correlation coe¢-
cient for almost all the meteorological stations.

Furthermore, ELM shows better agreement for both the
training and test phases to predict the SPTI at all climatic
stations than its counterparts. ­e e¢ciency of ELM, con-
trary to other models, is evident based on the performance
metrics. A similar forecast performance has continued for
higher-order time scales, consistent with earlier studies
[30, 58]. Computational time consumed by drought mod-
eling algorithms also needs to be optimized. Usually, large
datasets are used as input variables for real-time drought
modeling, which a�ects the computational performance of
di�erent models in terms of time. ­e ELM model is
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signi�cantly faster than its counterparts. By evaluating all the
numerical results of performance metrics and di�erent
graphical illustrations, it can be easily concluded that the
ELM model attains the most accurate drought forecasting
performance during training and test phases. ­e study

revealed that ELM is the most appropriate, reliable, and
e¢cient algorithm for drought prediction and forecasting.
­is study suggests that ELM can be used as an early warning
drought forecasting tool for developing drought mitigation
policies.
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Figure 14: Scatter plots of the observed and forecasted values of SPTI using ELM, MLP, and ARIMA models at Astore station with all lead
time scales for the test phase. ­e least-squares regression line is also included.
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4. Conclusions

+e reliable, efficient, and faster drought forecasting algo-
rithms are useful for freshwater resource managers and
drought mitigation policymakers. +e current study ex-
amines the forecast performance of new machine learning
(ELM) model using the Standardized Precipitating Tem-
perature Index (SPTI). For application, meteorological time
series datasets of monthly precipitation and minimum and
maximum temperatures were collected from nine meteo-
rological stations located in various climatological zones of
Pakistan. Further, the prediction and forecast performance
of the ELM model was compared with MLP and ARIMA
models using different statistical performance metrics and
graphical illustrations. +e primary objective of the study
was to investigate the appropriateness of the ELMmodel for
predicting the nonlinear and complex temporal behavior of
SPTI. +e ELM model outperformed MLP and ARIMA
models by producing the smallest root mean square error,
mean absolute error, mean absolute percent error values,
and maximum values for KGE, WI, and Karl Pearson’s
correlation coefficient for all the selected meteorological
stations for different selected time scales. KGE and WI
unanimously endorsed ELM as the best forecasting model at
all the stations. Moreover, by comparing forecasting results
for a one-month time scale, RMSE clearly affirmed ELM as
superior forecasting model for five stations including Astore
(RMSE� 0.688), Chitral (RMSE� 0.643), Kohat
(RMSE� 0.956), Mianwali (RMSE� 0.773), and Sialkot
(RMSE� 0.720). Furthermore, MLP better performed at
Multan (RMSE� 0.666) and ARIMA at three of the mete-
orological stations containing Chhor (RMSE� 0.559), Kalat
(RMSE� 0.727), and Muzaffarabad (RMSE� 0.724). While
using MAE as a performance measure, the ELM algorithm
performs better for six [94] stations (Astore 0.798, Chitral
0.495, Kalat 0.676, Kohat 0.791, Mianwali 0.652, and Sialkot
0.554), MLP for two [95] stations (Chhor 0.447 and Multan
0.577), and ARIMA for one of the stations (Astore 0.765).
MAPE recognizes [96] ELM as an appropriate algorithm
[97] for seven stations (Astore 247.3, Chitral 142.1, Kalat
500.3, Mianwali 309.1, Multan 545.5, Muzaffarabad 321.8,
and Sialkot 91.0) and MLP (Chhor 269.2) and ARIMA
(Kohat 268.2) for one station. Contrary [98] to MLP and
ARIMA models, the ELM model has [99] the super-fast
computation capability of [100] drought modeling. +ese
performance [101] comparisons clearly ratified the novelty
and [102] appropriateness of the proposed ELM algorithm.

In summary, this study suggests that ELM can be used as an
early warning drought forecasting tool for developing drought
mitigation policies using time series data of the Standardized
Precipitating Temperature Index. +e scope of the study can be
enhanced by usingwavelet datamining transformation to get the
optimized forecast performance of the ELM model. ML algo-
rithms have certain limitations, like requiring fast computing
hardware. ANNmodels (ELMandMLP) have complex network
structures among the machine learning algorithms. Another
limitation of ANN algorithms is that there is no specific rule to
determine the final network structure. Instead, the appropriate
network structure is finalized through trial-and-error-based.
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A system of system’s ability to function is derived from the integration of systems from different sources. An SOS’s systems serve
two purposes: first, to accomplish their own specific aims, and second, to provide resources to the SOS as a whole. In the last few
decades, machine learning and data analytics have been widely used in system design and acquisitions. Every organisation that
acquires a sophisticated system employs some type of data analytics to evaluate the system’s independent objectives, which is
universally accepted. Data analytics and decision-making regarding the independent system is rarely shared across SOS
stakeholders, even though the systems contribute to and benefit from the larger SOS.&e goal of this research is to determine how
the exchange of data sets and the corresponding analytics by SOS stakeholders can improve SOS capacity. Predicting SOS
capabilities by exchanging relevant data sets and prescribing information connections between systems, we propose to use
machine learning techniques. &is article serves as an intermediate analysis of the above research work and aims to estimate the
benefit of information sharing among the SOS stakeholders. In this research, we have applied different machine learningmodels to
the IBM HR analytics data set to determine the corresponding analytics by SOS stakeholders that can improve SOS capacity. We
propose using machine learning techniques to forecast SOS capabilities through the sharing of relevant data sets, and we prescribe
the information linkages across systems to make this possible. &is paper provides an update on the progress being made toward
the aforementioned research project, and its primary focus is on developing a method to put a dollar amount on the benefits of
information sharing among the many parties involved in the SOS.

1. Introduction

A system of systems (SOS) is a collection of many hetero-
geneous distributed systems that have been acquired inde-
pendently and continue to operate and be managed
independently [1]. &e system-of-systems capability relies
on the systems’ ability to work together effectively, not-
withstanding their independence [2]. For acquisition deci-
sions, it is crucial to take into account more than just one
system; rather, it is necessary to take into account all of the
systems within the SOS [3].

&rough the use of collected and previously used data,
predictive data analytics may foresee and forecast future
consequences [4]. In Babylonian times, data was stored on
tablets to anticipate harvest, but a dramatic leap in the ability
to reason over enormous volumes of data arose in the 1940s

with the advent of computer development [5, 6], storage, and
machine learning techniques [7]. In the 1940s and 1950s,
data analytics models were utilised to anticipate the con-
sequences of nuclear chain reactions in the Manhattan
Project and weather forecasts using the ENIAC computer
[8]. Data analytics that is used to produce or prescribe the
optimum courses of action in light of available information
is known as prescriptive data analytics [9].

1.1.ProblemStatement. In the decades followingWorldWar
II, the requirement to optimise the course of action en-
couraged the development of the operations research dis-
cipline, which eventually led to “Analytics 1.0” for the
introduction of data-based decision-making in corporations
[10]. Enormous companies such as Google and Amazon
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have adopted Analytics 2.0 as the new paradigm for pro-
cessing large amounts of structured and unstructured data
(also known as big data) [11–13]. “Analytics 3.0” is a term
used to describe the ability of organisations to incorporate
this “big data” into their decision-making process, which is
shaped by the volume, variety, velocity, and validity of data
[4]. To say that most successful firms use Analytics 3.0 for
business and product development is not a generalisation.

Analytics 3.0 deployment presents a unique challenge for
the acquisition and development of SOS capabilities, as each
of the contributing organisations employs a different set of
predictive and prescriptive analytics tools for their respective
systems (the Literature Review of Machine Learning
Techniques and Applications in the DOD provides details on
predictive machine learning techniques as applied primarily
in the DOD application space) [7]. All SOS stakeholders
rarely have access to these analyses and the underlying data
sets [14–16].

1.2. Motivation. SOS is a diverse enterprise, and in this
article, we pursue research toward an information-centric
framework that aids early-stage decisions at the corporate
level. Digital engineering (DE) and its related components in
other engineering tasks [17], such as model-based systems
engineering (MBSE) for the systems engineering domain,
provide an important backdrop for our work. Digital models
are employed by DE and MBSE throughout the acquisition
process. Many people are focused on how to implement DE/
MBSE and the desire to have models work together rather
than how well the extended enterprise (or “acquisition
ecosystem”) is aware of and trusts the various data sets that
underpin models and development processes that use them,
which is a more demanding issue. Data management and
analytic deployment techniques that establish synergies
between multiple enterprise entities and link stakeholders,
resources, policy, and economics between various systems
are among our objectives in this area. Data aspects such as
survey categories, types of variables, ownership/privacy of
data, and the interconnection of data sets are examined in
the framework. &ese data sets exist at the local system level
but may not be shared with SOS/enterprise or vice versa for
SOS acquisition. Predictive and prescriptive analytics can be
used because of data access, and this allows us to explain how
sharing and connecting data sets can lead to better results at
the SOS level. An example is used to demonstrate how
valuable techniques from the field of data science/machine
learning can be used. As this is a relatively new field of study,
we are focusing on determining which of the most persistent
research problems deserve further investigation.

1.3. Contributions. &e contributions of this study are as
follows:

(a) We have determined how the exchange of data sets
and the corresponding analytics by SOS stakeholders
can improve SOS capacity

(b) We have predicted SOS capabilities by exchanging
relevant data sets, and prescribing information

connections between systems, we propose to use
machine learning techniques

(c) &is article serves as an intermediate analysis of the
above research work and aims to estimate the benefit
of information sharing among the SOS stakeholders

(d) We have applied different machine learning models
to the IBM HR analytics data set to determine the
corresponding analytics by SOS stakeholders that
can improve SOS capacity

(e) We propose using machine learning techniques to
forecast SOS capabilities through the sharing of
relevant data sets, and we prescribe the information
linkages across systems to make this possible

(f ) &is paper provides an update on the progress being
made toward the aforementioned research project,
and its primary focus is on developing a method to
put a dollar amount on the benefits of information
sharing among the many parties involved in the SOS

2. Literature Review

SOS’s ability to function is derived from the integration of
systems from different sources. An SOS’s systems serve two
purposes: first, to accomplish their own specific aims, and
second, to provide resources to the SOS as a whole. In the last
few decades, machine learning and data analytics have been
widely used in system design and acquisitions. Every or-
ganisation that acquires a sophisticated system employs
some type of data analytics to evaluate the system’s inde-
pendent objectives, which is universally accepted. Data
analytics and decision-making regarding the independent
system are rarely shared across SOS stakeholders, even
though the systems contribute to and benefit from the larger
SOS. Certain areas of knowledge acquisition can be greatly
aided by the use of machine learning algorithms. We have
initiated a systematic examination into how to transfer the
functions of knowledge-based systems onto those machine
learning systems that supply the requisite information, given
the potential of machine learning for knowledge acquisition.

In Dahmann et al. [4] research, there are various parallels
and differences between NCE system and SOS, which
highlights the implications for system engineering and ac-
quisition. &e first half of this study provides an overview of
our current understanding of SOS and the implications of
this understanding for SE. It then studies the attributes of
NCE systems and compares them to those of SOS systems in
order to conclude. &e study concludes with an examination
of the implications of these findings for systems engineering
and procurement practices.

&ere are significant development hurdles in all three
dimensions of military capabilities, including technological,
operational, and programmatic aspects of the system of
systems development. A scarcity of tools exists for deter-
mining how to create and evolve SOS in a way that takes into
account both performance and risk considerations. In the
study by Colombi et al. [18], the application of methodol-
ogies from financial engineering and operations research is
beneficial in the optimisation of portfolios. &e authors
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make it easier for SOS architectures to evolve by offering a
framework that allows for architectural selection at a certain
evolutionary decision epoch. Generic nodes on a network
are used to model hierarchies of interconnected systems.
&ese generic nodes, subject to connectivity and compati-
bility constraints, collaborate to achieve broad capability
objectives. Portfolio algorithms are capable of dealing with a
wide range of problems, including uncertain data, poor
performance between nodes, and development risk. &is
naval warfare scenario demonstrates how to identify
“portfolios” of available systems from a list of candidate
systems by using a search algorithm. For example, by
allowing the optimisation problem to handle the more
mathematically intensive elements of the decision-making
process (e.g., the feasibility of solutions and optimality), the
number of connection rules, the feasibility of solutions, and
optimality are all decreased. As a result, while making final
decisions, human decision-makers can concentrate their
efforts on picking the appropriate risk aversion weights.

In the past, programme managers have utilised technical
performance measures (TPMs) to establish whether or not a
programme is on pace to reach its performance objectives. It
is possible to build a deterministic method of estimating the
operational performance of a project by utilising TPMs
throughout the project’s lifecycle. When it comes to a set of
systems that are universally accepted, TPMs, on the other
hand, can be difficult to compute (SOS). For a deterministic
state similar to TPM usage, an SOS performance measure
(SPM) has been developed and proven. It serves the same
function as TPMs and may be used in the same way. &e
reality reveals that several of the SOS components are subject
to significant uncertainty during the development process of
the system. As a result, in order tomore precisely account for
an SOS’s ability to achieve its desired performance, it is
necessary to take this unpredictability into account. In order
to account for this uncertainty, [18] develops an extension of
the SPM concept known as a stochastic SPM. To demon-
strate how this expansion of the SPM technique improves its
effectiveness, an antisubmarine warfare (ASW) operation is
used in this example.

How typical systems engineering activities have evolved
to enable SOS-level systems engineering is discussed in detail
in the Department of Defence’s Systems Engineering Guide
for Systems of Systems, which was just released this month.
According to the study conducted for this handbook,
modelling and simulation are helpful in the development of
SOS systems. While some modelling and simulation are
currently being used, more support would be advantageous
if models could be generated rapidly and used to assist in
decision-making when it is needed. In order to achieve these
objectives, the Systems Modelling Language (SysML) is
employed in [18] research.

System-of-systems procurements might include the
purchase of many systems, or they can be purchased as
stand-alone items. A considerably more common occur-
rence in the United States Department of Defence (DOD) is
the acquisition of one or more new systems that are intended
to interoperate with existing systems as part of a system of
systems (SOS) with additional capabilities. &e success of

any SOS acquisition is dependent on the effectiveness of the
contract structures and acquisition processes used. &e
difficulties associated with the acquisition of SOS are rec-
ognised in this work, and the findings are explored.
According to the findings, the SOS acquisition should be
accompanied by a significant systems engineering effort, as
well as modifications to the existing contractual processes,
frameworks, and organisational structures, before being
finalised. As a result of [18], modifications to current and
future Department of Defence SOS procurement are
recommended.

SOS (system-of-systems) management faces a major
issue in dealing with the possibility for member systems to
evolve in an uncontrolled manner. Organisations become
more inefficient, more expensive, and less able to respond
rapidly to changing circumstances when they lack control
over evolution. In order to achieve common aims, systems of
systems (SOS) connect together a variety of systems that
were designed independently and to various standards. &e
objectives and aims of the member systems are preserved, as
is a great deal of their autonomy. As a result, there is an
increased possibility that decisions on evolution will be
made unilaterally within member systems, which could have
negative consequences for the SOS’s stability, efficiency, and
trustworthiness. A modified version of HAZOPS (hazard
and operability study) is used in [18] to examine the hazards
associated with SOS evolution and presents a technique to
assist nonspecialist end users in identifying, organising, and
discussing this information.&e report uses a case study of a
recent RAF (royal aviation force) Nimrod air crash to ex-
amine the methodology, and the official inquiry revealed
serious flaws in the Nimrod SOS’s operation. Conclusions
and future prospects for research are discussed in the paper,
which concludes that the technique proposed would be a
valuable support for SOS evolution processes.

&e authors need to look more closely at how the BMDS
interacts with other systems, especially those built by other
agencies. Interstitials are used in the context of systems
interoperability, interoperability, and integration. &e au-
thors believe the SOS literature has not given enough at-
tention to this problem.&e BMDS is an excellent case study
for the SOS because many of its components are existing
programmes of record. &e pieces work as intended, but
their performance metrics may not match the SOS’s higher-
level requirements. Interoperability is a BMDS challenge to
achieving predictable national capacity. Some of the new
capabilities requested by national leaders may include
changes to kill chains, C2 structures, coordination, and
performance. To attain these new capabilities, record pro-
grammes must be changed and system components inte-
grated. SOS engineers must objectively evaluate competing
solutions and trade-offs. Reference [18] provides a variety of
technological methods for integrating a complex adaptive
SOS. New mathematical tools such as graph-theoretic
modelling and simulation techniques such as agent-based
modelling will be introduced. Finally, new design maturity
measures will be introduced. &is study will use the the-
atrical BMDS design and interstitials to depict the inte-
gration domain. &ey may assist the BMDS to reach its full
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potential by focusing on the interstitial area of the overall
BMDS SOS build and applying suitable technical rigour and
engineering due diligence.

Data management strategies for business analytic ca-
pability growth should be informed by continuing research
into developing an information-centric framework. Data
collecting aspects (e.g., survey categories, types of variables,
ownership/privacy of data, and connection of data sets) are
examined in the framework to determine the type and ef-
fectiveness of predictive and prescriptive analytics that can
be used. Using a system-of-systems engineering approach,
the authors of [19] take into account all key stakeholders’
interests, resources, and operations; policies and economics
of data gathering and curation; and the various predictive/
prescriptive analytic deployments that can be achieved. Data
architectures and analytic components across an organisa-
tion are envisioned to be orchestrated in an integrated
manner to maximise informational synergy and to extend
the analytic capabilities of prescriptive and predictive ele-
ments that are deployed in an organisation. When it comes
to predictive and prescriptive analytic applications, minor,
straightforward modifications in how data is acquired have a
significant impact. Using the concept problem, the frame-
work’s ideas are seen in action.

&e best practices of OSSD projects are merged with new
capabilities for virtual system acquisition in [20], which
analyses and develops concepts that will lead to that com-
bination of capabilities. With the use of virtual systems, it is
possible to drastically cut acquisition prices and cycle times
for software-intensive systems while simultaneously im-
proving them. Implementing electronic government appli-
cations makes use of modern information technology and
processes (IT). Using open-source software development in
the creation, deployment, and ongoing expansion of com-
plex software system applications is a relatively recent
strategy in the field of software system development. &e
development of large-scale, user-friendly, and highly reliable
software systems necessitates the development of new re-
sources, products, techniques, and production environ-
ments, all of which are being rethought as part of the open-
source movement. &e open acquisition is a brand-new
concept that brings together the best of open-source soft-
ware development with cutting-edge electronic government
processes to create a revolutionary new way of doing
business. &is study describes the development of an open
acquisition framework for virtual system acquisition, as well
as its demonstration. Furthermore, this study highlights the
next steps to be taken in order to deploy open acquisition
approaches inside this framework.

Instead of the traditional document-centric approach,
the model-centered approach (MBSE) is used instead. &e
development of SOSs lends itself well to a model-centric
approach, particularly when the model can describe the
independence of the systems that make up the SOSs in
question. Using an agent-based paradigm, the system of
systems (SOS) and each individual system can be regarded as
distinct entities, each with its own dynamics and interac-
tions. Each system must establish its own agenda and pri-
orities in order to contribute to the growth of the system of

systems (SOSs). System-to-system interactions may be re-
quired in order to achieve the overall aims and capabilities of
the SOS. &e research of [3] investigates an acknowledged
system of systems (SOSs) and the various systems that are
associated with it, which are represented in an agent-based
model (ABM). Individual system agents’ decisions are
recorded in the ABM’s decision models for system dy-
namics, system-to-system, and system-of-system discus-
sions. ABM, which integrates the key elements that drive
SOS dynamics, can be used to test and analyse the dynamics
of individual systems and the dynamics of the system as a
whole.

Teams of designers are necessary to possess a diverse
variety of design and decision-making abilities when
working on large-scale engineering systems. Using formal
and computational approaches that have been well-defined
for system integration and design optimisation, it is possible
to obtain optimal performance for complex systems. En-
gineers may be ill-suited to handle this type of project,
according to design best practices. During their graduate
studies, students from four distinct graduate programmes
collaborated to build a distributed, sophisticated system.&e
design histories of the teams reveal three ineffective ap-
proaches: global searches rather than local searches, opti-
mising each design parameter independently, and sequential
rather than concurrent optimisation processes, according to
the results of the analysis. Optimisation of systems was
overlooked in favour of optimising the performance of
individual subsystems, with no attention given to the impact
of changes in individual subsystems on the performance of
the system as a whole. Engineers should be taught how to
integrate systems as a whole, according to [21].

Cook [2] defines “systems of systems” (SOS) as a subset
of large monolithic systems that differ in terms of system
characteristics and acquisition methodologies. A dis-
tinguishing element of this research is that systems of sys-
tems (SOS) are formed from component systems that are
acquired through a variety of asynchronous activities.
Considering our position as a defence contractor, the au-
thors believe that the current acquisition paradigm does not
appropriately address the purchase of component parts for
military systems and systems components. &e study
identifies more particular challenges that must be addressed,
as well as alternative mitigating methods that can be
implemented. Capacity development and acquisition in
broad force areas should be prioritised over project-centric
capacity development and acquisition, and top-down, force-
structure planning should be given more prominence. &e
importance of system features such as adaptability, flexi-
bility, and open interfaces should also increase as a result of
these developments.

Reference [22] discusses a system engineering process
that can be used in the building of advanced military systems
and systems of systems. In order to accommodate this, the
process has been split down into its constituent elements,
with each stage being described in great depth. It is discussed
how to utilise legacy equipment while also ensuring that new
parts are seamlessly and synergistically integrated. As part of
the integration and testing of these systems of systems, it will
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be necessary to develop new dimensions and measurement
systems in order to assess performance. Whenever these
systems are used by the military, it becomes necessary to
examine whether or not a new doctrine, standards, and
procedures are required.

When it comes to “systems of systems,” the imple-
mentation and control of these systems vary significantly
from the implementation and control of individual systems.
Because of this, the systems engineering processes required
to ensure the proper implementation of systems of systems
differ dramatically from those commonly applied to indi-
vidual systems. Successful implementation of systems of
systems necessitates the use of a multi-tiered systems en-
gineering technique that goes beyond the conventional
single-system approach, according to the finding of [23].

Although information systems (IS) were supposed to
have a significant impact on socioeconomic and human
development in developing countries, the benefits have been
less than expected. Many elements influence an information
system’s long-term survival (IS). Africa’s technology transfer
efforts have relied too largely on foreign finance and tech-
nology. Informed by local needs and structures, relevant
information systems must be designed locally. Reference
[24] recommends that information systems be acquired,
developed, and implemented in Zambia (Africa) based on
local demands and structures. Five public interest user
companies in Zambia were researched in detail, as were
literature evaluations on IT acquisition, development, and
deployment in South Africa, Kenya, India, and the devel-
oping world. Obstacles to sector growth in Zambia include
people, technology, and poor execution. Before citizens
enjoy locally created and manufactured goods and services,
their mindsets must be altered. &e sector’s growth will be
accelerated if authors recognise the value of tiny steps and
developing talent while acquiring information systems. A
paradigm (the acquisition, development, and implementa-
tion framework; ADIF) has been designed to ensure that
information system investments are maximised.

Our understanding of the system of systems (SOSs) en-
gineering and management has expanded and evolved along
with it. SOS engineering (SoSE) is still looking for a way to
provide meaning to this kind of uncertainty, whereas systems
engineering has developed frameworks and architectures to
do so. SOS literature is reviewed to show that in a dynamic,
complex environment, an SoSE management framework is
required to meet the needs of constant technological im-
provement. According to the findings of [1], there are two
ways to describe SOS: (1) using distinguishing traits and (2)
viewing SOS as a network to which “best practices” for
network management can be applied to SoSE. In order to
construct an efficient SoSE management framework, the
authors rely on these two theories. Use the modified FCAPS
network principles for this purpose in order to achieve this
goal (SoSE management conceptual areas). &ere are various
SoSE management frameworks that employ these qualities as
a starting point. As the last example, the authors use a well-
documented and well-known SOS (i.e., integrated deepwater
system) to demonstrate how the SoSE domain can be better
understood, engineered, and managed.

Increasing evidence suggests that airborne particulate
matter is a factor in numerous diseases. &e authors of [25]
need to know how particulate matter impacts air filters if
they are going to design effective filtration devices. We are
building an air filter testing setup and automating the data
collection process. An air filter’s performance can be
monitored over time using a data-gathering system. Dete-
rioration can be seen, even if the quality of air filters does not
reach dangerous levels. In order to train and test a machine
learning model that can evaluate air filter quality, the ob-
tained data is used for this purpose with 99% accuracy; this
machine learning is a significant tool in the evaluation of air
filters. Finally, a data-gathering system and user interface
have been developed that greatly decreases the amount of
time needed to test filters. Data collection systems can also
alert operators when filters need to be changed or other
problems arise with the equipment. An effort to develop a
system for automatically determining when the test
equipment needs to be repaired and recalibrated failed.

E-procurement software refers to the use of data and
communication advancements via the Internet to complete
all phases of procurement. With this new arrangement of
electronic acquisition software, the majority of firms are
succeeding while some fall short. During this investigation,
steel companies in Pakistan were surveyed by [26] for their
use of electronic acquisition software. Achievement vari-
ables for electronic acquisition are influenced by the ex-
amination’s goal. For this inquiry, a semiorganised
discussion from the acquisition administrators of selected
associations was held to discuss the differentiating proof of
accomplishment components in their organisations. From
eight firms, a sample size of 150 respondents participated in
a study survey to get quantitative data on the influence of
electronic acquisition software’s success.&e data are broken
down using SPSS v22, and a variety of analyses are carried
out. Electronic acquisition software has been adopted by
every single company, but some practices such as e-sourcing
and e-proposal accommodation have not been implemented
because of a lack of education in the market, as well as a fear
of using new technology at the provider/merchant end,
according to the study.

&ere are a lot of ways to model the acquisition process
in [27]. Starting with Winston Royce’s waterfall model,
authors then go on to more complex and detailed waterfall
models, such as the “V” and spiral models. As a result, we
will also take a look at other acquisition methods. &ese
many models are all a part of the acquisition process’s
progression, according to our perspective. Simplification of
the procedure is getting more and more feasible and eco-
nomical as technology progresses. For example, authors
have seen an upsurge in concurrent engineering and con-
current design.We will look at models for this cycle and how
they connect to the acquisition, research, development, test,
and evaluation cycles in the planning and marketing life
cycle.

In [8], systems engineering (SE) considerations for in-
tegrating independently useful systems into a bigger system
that has unique capabilities (a system of systems (SOS))
inside the Department of Defence (DOD) are addressed.&e
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handbook is designed to be a resource for systems engineers
who assist SOS work, notably as part of a SE team for an SOS,
and it draws on the experiences of existing SOS SE prac-
titioners. SE for SOS may now be better understood and
guided because of this first draught of the guide. In some
circumstances, the book raises awareness of issues that may
need to be addressed by systems engineers undertaking SOS
work, but it does not provide practical recommendations. In
the future, the guide will develop in scope and content as
more people get familiar with SOS.

A number of sources have asserted that the technological
and management maturity of the acquirer is a significant
element in SISA’s success and that best practices should be
followed. Because of a lack of understanding of how and why
SISA techniques affect software-intensive system develop-
ment, the Department of Defence (DOD) has been cautious
to use SISA practices in its development processes. A hybrid
software process simulation modelling approach is
employed in [28] to investigate the implications of SISA
strategies on both the acquirer and the developer. It is
possible to represent the dynamic and discrete properties of
SISA programmes using our technique (e.g., the interactions
between acquisition and development organisations and the
effects of numerous SISA practices). &e outcomes of this
study will shed light on the various ways in which the ac-
tivities of the acquirer have an impact on the developer’s
development cycle.

To build on and extend guidance published by the
United States Department of Defence on systems engi-
neering (SE) of systems of systems (SOS), [7] develops and
presents an approach to SOS SE that transforms the core
elements of SOS SE, their interrelationships, and the arte-
facts and data used in SOS decision-making from a trapeze
model to a more familiar and intuitive time-sequenced wave
model representation. A more user-friendly version of the
information has been provided, and it is consistent with the
progressive development methodologies that are common in
the advancement of SOS capabilities. A wave model is de-
veloped; its important characteristics are discussed; and
examples of SOS efforts reflecting this perspective of SOS SE
are provided in the paper. Finally, the study explains how the
information necessary for a successful SOS SE is generated,
where it belongs in the wave model, how it changes over
time, and where it is generally stored.

Machine learning techniques have the potential to sig-
nificantly improve the efficiency of some knowledge ac-
quisition processes. As a result of the potential that machine
learning has for knowledge acquisition, we have begun a
systematic investigation into how to convert the function-
ality of knowledge-based systems to machine learning sys-
tems that can offer the necessary information. Reference [29]
attempts to give a comprehensive definition of machine
learning systems and their associated application domains,
which authors believe they will be able to do in the near
future.

Reference [30] introduces the concept of system-of-
systems difficulties, as well as the key qualities that distin-
guish them from other types of issues. Following that, the
significant ramifications for the aeronautical design

community are highlighted. Due to the fact that they
concentrate on a network of systems and dynamic behaviour
rather than a single system and static behaviour, there are
two important characteristics that stand out. &e com-
munity’s existing ability to handle the methodological cri-
teria for examining these characteristics is also restricted.
Future transportation concepts are conceptualised as a
system of systems in order to better grasp their repercus-
sions. &e “proto-method” for dealing with this class of
difficulties is introduced and investigated in the trans-
portation sector, as well as prospective approaches to
constructing successful models and simulations for trans-
portation. Because the vast bulk of the existing literature on
systems of systems is devoted to the study of defence sys-
tems, it is vital that civil transportation be included in this
research. Currently, civil transportation is not included in
this research.

A “system of systems” (SOS) is created by integrating
many independent but interdependent systems, each of
which can function independently, to produce a larger
system with greater capabilities. In the aerospace and de-
fence industries, clients increasingly want broad capabilities
and solutions rather than individual equipment. Choosing
the correct mix of present and future systems is critical to the
SOS design process. Including elements of a future system
complicates resource allocation by mandating a dynamic
resource. Reference [10] calculates the cost of flying on an
unbuilt new plane. Based on this statement, it is an NLP
difficulty. MINLP methodologies are employed to address
the problem, albeit at a high computational expense. Using a
response surface technology improves airline design while
reducing computer costs. In a similar way to multi-disci-
plinary optimisation, the problem can be decomposed into
allocation and aircraft design domains, yielding solutions at
a cheaper computing cost. &e MDO-motivated decom-
position strategy appears promising for several SOS design
difficulties.

A system of unmanned aerial vehicles (UAVs), including
vehicles, networks, and operating plans, must be created at
the same time as a part of an integrated system. &e chal-
lenge in designing areas of unified design space that are not
merely a collection of poorly optimised discrete entities is
that even at the conceptual level, the resulting complexity
can quickly become unmanageable. In order to abstract the
integrated system, an object-oriented modelling technique
must be employed for the modelling of the integrated
system. When [31] strategy is used, it increases the efficiency
with which the combined system-of-systems design space
may be searched more successfully. &e economic viability
of an imagined service provider in UAV-based package
delivery architecture is analysed in terms of trade-offs be-
tween vehicle performance and network topology. When
compared to previous approaches, the object-oriented so-
lution offers greater modelling flexibility than those
approaches.

An acquisition strategy’s identification and handling of
possible threats to the company’s long-term existence is one
of themost critical components of the process. It is necessary
to integrate a large number of systems in order to support
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business processes that span numerous firms or organisa-
tions. New risks, such as a large and diverse user base, as well
as increasing unpredictability, are incorporated into this
operational framework by [32], making the development
and implementation of an acquisition plan more difficult to
accomplish. &e incorporation of these concepts into an
acquisition plan can help alleviate some of the problems
mentioned above.

Reference [33] describes an IBM-compatible laptop-
based data collection and analysis system (PC). Conven-
tional bus slots connect the computer to a D/A converter.
&e programme supports eight analogue signals, four of
which can be plotted on the computer’s screen as data is
acquired. Data can be stored in ASCII or small binary files to
speed up input and output. After a data collection cycle, data
can be easily scaled and plotted for review. &e extra data
reduction features allow for smoothing data and cross plots
between any two variables. &is technology replaces tradi-
tional tape recorders and strip chart recorders by saving data
in a format that computers can access in the future. &e
device is portable and runs on a 12-volt automobile battery.
&is approach records and displays vehicle motion and
driver/rider response characteristics. In between runs, data
can be processed and examined fast to impact future test
conditions. &e strategy works with several typical laptop
computers that have easily accessible PC buses. Two current
systems that could be used are Datavue Snap 1 + 1 and GRID
Case Exp.

Many people use the term “systems of systems,” but
there is no agreement on what they are, how to differentiate
them from “conventional systems,” or how their devel-
opment differs from other systems. To aid in their creation,
[34] offers a definition, a limited taxonomy, and a foun-
dational set of architectural principles. Apparently, the
taxonomic term “system of systems” is a misnomer.
“Collaborative systems” is a better term for grouping.
Misclassification is also addressed in this work, and the
paper’s authors outline how to avoid it in system design. As
a result of the classification, the primary structuring
heuristics for systems of systems have been identified.
Another is the realisation that the architecture of a system
of systems is communications. Nonphysical architecture is
the set of standards that enable meaningful communication
among the components.

&e purpose of this literature study is twofold: first, to
catalogue the numerous ML approaches that can be used
to solve SOS acquisition challenges and to map their
input, output, and data needs, and second, to evaluate how
these approaches are used to solve a variety of Department
of Defence issues. A common theme that has emerged
from the assessment of relevant literature is that these
techniques are often applied in silos, with results and data
sets being kept secret from higher-level decision-makers
and the Society of Organizational Learning (SoL). Our
research is distinct because we want to examine how
various systems perform independent local predictive
analytics and how to optimally communicate diverse data
sets throughout the SOS hierarchy in order to prescribe
the SOS capabilities.

3. Materials and Methods

Due to a lack of communication or judgement in a multi-
objective SOS acquisition situation [35], it is usual to see
different interpretations of the aims from several officers,
developers, and managers. Disparities in requirements de-
fined by different contributors to the SOS have an impact on
the ultimate performance and cost, which is the subject of
this study. System capabilities and the indices by which they
contribute to SOS capability have been defined. &ey are all
desirable. When calculating each SOS capacity, a normalised
sum of the capabilities of the separate systems used is used in
the relevant area.

3.1. Problem Formulation. Consider, for example, the ca-
pabilities of a system of systems, as shown in Figure 1. &e
system of systems is defined in the definition phase,
whereas the abstraction phase defines the links between the
various components. According to this arrangement, sys-
tem β1 is made up of systems α1 and α2, whereas system β2
includes systems α3 and α4. Identifying the correct infor-
mation pathways and integrating data sets for predictive
and prescriptive analytics becomes important when sup-
pliers 1, supplier 2, and system 1 management are all in-
tegrated into the same system. Data sets may need to be
connected between systems 1 and 2 and between suppliers
1, 2, and 3 in order for the SOS level to function properly,
according to this rationale. However, achieving complete
connectivity between all SOS components and constituents
may not be a practical goal. &is raises the challenge of how
to determine which data sets should be linked by assessing
the influence of their connectedness on the SOS and the
figures of merit. Figure 1 shows the conceptual model of the
study.

An analytical solution is impossible due to the prob-
lem’s complexity and magnitude in real-world imple-
mentations. By first constructing an SOS capability
measure by collecting different systems from inside the
DOD application domain, we demonstrate how SOS ca-
pability evolves due to sharing preferences between sub-
hierarchical systems while keeping the autonomous system
goals. To that end, we will study the use of machine learning
techniques to forecast and prescribe the connection of data
sets across various hierarchical levels. SOS acquisition issue
formulation is the primary emphasis of this paper’s interim
update; however, a future update will explore methods for
selecting machine learning techniques.

3.2. Framework. A synthetic problem was created to run
simulations using Python and interface with other existing
system-of-systems (SOS) analytical tools. &e synthetic
problem is an IBM HR-based analytics for employee attri-
tion, which was chosen since it is a multi-domain problem
involving education, employee satisfaction, job satisfaction,
job performance, performance rating, relationship, and
work-life balance. &e systems in IBM interact to provide
logistical support and system-level capabilities to achieve
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certain SOS-level capabilities. Figure 2 shows the framework
of the current study:

System capabilities and the indices by which they con-
tribute to SOS capability have been specified. &ey are all
desired. Each SOS capacity is derived from the total of the
individual system capabilities in the relevant domain. Portfolios
including information about various architectures and their
associated SOS performance index and cost are generated for
each case. Some systems provide the required capabilities, while
others give the necessary support, making up a portfolio.

3.3. Data Set Description. Employee attrition is caused by a
variety of circumstances, such as a lack of job satisfaction, a
lack of work-life balance, or a lack of opportunities for
advancement (https://www.kaggle.com/datasets/
pavansubhasht/ibm-hr-analytics-attrition-dataset). To keep
things interesting, IBM data scientists generated this ficti-
tious data set. Table 1 shows the data set description and
features distribution.

Figure 3 shows the attrition level in data set and fre-
quency distribution of label 0 or 1.

Figure 4 shows the attrition distribution on the basis of
travel readiness.

Figure 5 shows the distribution of attrition on the basis
of the department of employees.

Figure 6 shows the attrition on the basis of education
level and the distribution of frequencies on the basis of
qualification level.

3.4. Data Preprocessing. Processing raw data into a com-
prehensible format is known as preprocessing. Because we
cannot do anything with raw data, it is a critical phase in the
data mining process. Before using machine learning or data
mining methods, make sure the data is of high quality. It is
just a set of procedures that convert or alter data. It is a
prealgorithm process of data transformation. In the context
of data processing, the term refers to the use of a computer to

extract, convert, or otherwise alter data. Before data can be
used, it must be preprocessed. Processing raw data into a
clean data set is known as preprocessing. Before running the
algorithm, the data set is preprocessed to look for anomalies
such as missing values, noisy data, and other irregularities.
Figure 7 shows feature correlation matrix.

3.5. Feature Engineering. In machine learning and statistical
modelling, feature engineering refers to the process of
selecting and transforming the most relevant variables from

β1 β2

α1 α2 α3 α4

SoS
ManagerSystem of System

System Level

Sub-System Level

Supplier 1 Supplier 2

Sys1
Manager

Sys2
Manager

Supplier 3 Supplier 4

Figure 1: Conceptual model.
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Figure 2: Framework.
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raw data in order to build a predictive model. Engineers use
domain expertise to extract features from raw data via
feature engineering or feature extraction. 	e goal is to
enhance the quality of machine learning outcomes by
providing these additional attributes in addition to the raw
data that would otherwise be provided. Figure 7 shows the

feature correlation matrix showing the correlation of most
related features.

3.6. Classi�cation Models. 	is study’s objective is to de-
termine how SOS stakeholders may improve SOS capacity

Table 1: Features’ description.

Feature Description Features labels and values Type of
variable

Education Education level of applicants and candidates

(1) “Below college”

Input
(2) “College”
(3) “Bachelor”
(4) “Master”
(5) “Doctor”

Employee satisfaction Level of satisfaction from an employee as described by the company

(1) “Low”

Input(2) “Medium”
(3) “High”
(4) “Very high”

Job satisfaction Job satisfaction level of an employee while searching and joining a job

(1) “Low”

Input(2) “Medium”
(3) “High”
(4) “Very high”

Job performance Performance of employee during job in a company

(1) “Low”

Input(2) “Medium”
(3) “High”
(4) “Very high”

Performance rating Performance rating shown by company as per the performance of
employee

(1) “Low”

Input(2) “Good”
(3) “Excellent”
(4) “Outstanding”

Relationship
satisfaction Behaviour and relationship of satisfaction level with other employees

(1) “Low”

Input(2) “Medium”
(3) “High”
(4) “Very high”

Work-life balance Balance between job and life

(1) “Bad”

Input(2) “Good”
(3) “Better”
(4) “Best”

Attrition Strength and acquisition 0 or 1 OutputNo or yes

0
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Figure 3: Attrition level.
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by exchanging statistics and the corresponding analytics. We
suggest using machine learning approaches to predict SOS
capabilities through the exchange of relevant data sets and
the prescription of information linkages between systems.
Using data from previous research, this article estimates the
value of exchanging information among SOS stakeholders.

Using a variety of machine learning algorithms, we were able
to identify the SOS stakeholders who are most likely to
bene�t from using the corresponding insights. For this
purpose, we are using the following models:

(a) Support vector machine
(b) Logistic regression
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(c) Decision trees

4. Results and Discussion

Predicting SOS capabilities through the interchange of
relevant data sets and the prescription of information
linkages between systems is something we propose doing
using machine learning methodologies. &e value of in-
formation exchange among SOS stakeholders is estimated in
this article based on past research. We were able to identify

the SOS stakeholders most in need of the corresponding
insights by utilising a range of machine learning algorithms.

4.1. Support VectorMachine. For the attrition of employees,
SVM has shown promising results. We have used different
kernels of SVM for the prediction of attrition in employees
through IBM data sets. &e confusion matrix in Figure 8
shows that SVM has shown good performance with 2,400
true positive and 12 true negative values.
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Figure 9 shows the performance of SVM models for the
prediction of attrition in employees for SOS acquisition.
SVM-RBF kernel has shown the highest accuracy of
86.77%.

4.2. Logistic Regression. For the attrition of employees, LR
has shown promising results. We have used LR for the
prediction of attrition in employees through IBM data sets.
&e confusion matrix in Figure 10 shows that LR has shown
good performance with 2,400 true positive and 9 true
negative values.

Figure 11 shows the performance of LR models for the
prediction of attrition in employees for SOS acquisition. LR
has shown the highest accuracy of 84.6%.

4.3. Decision Trees. For the attrition of employees, decision
trees has shown promising results. We have used decision
trees for the prediction of attrition in employees through
IBM data sets. &e confusion matrix in Figure 12 shows that
decision trees has shown good performance with 2,400 true
positive and 9 true negative values.

Figure 13 shows the performance of decision trees
models for the prediction of attrition in employees for SOS

acquisition. Decision trees have shown the highest accuracy
of 83.5%.

Further models have been compared with these three
models but do not perform well. We have compared SVM,
LR, and DT with näıve Bayes, KNN, and random forests.
Table 2 shows the comparative analysis of ML models.

Comparatively, ML models have shown good accuracy
for the classification of attrition in employees in IBM data
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sets. Table 3 shows the comparative analysis of the current
study with the previous state-of-the-art methods:

We recommend applying methodologies from machine
learning in order to create predictions about the capabilities
of SOS by exchanging critical data sets and prescribing
information linkages between various systems. &is can be
done by trading off-key data sets.&e purpose of this essay is
to act as a sort of intermediary analysis of the research
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Figure 12: Confusion matrix of decision trees response.
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Table 2: Comparative analysis of ML models.

Model Training testing ratio Accuracy (%)
SVM 70:30 86.5
LR 70:30 85
DT 70:30 83
RF 70:30 72
NB 70:30 71.5
KNN 70:30 60.7
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Figure 11: Performance of LR.
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endeavour that was discussed earlier. In addition to this, the
purpose of the paper is to conduct an analysis of the benefits
of information sharing among the stakeholders in SOS.
Within the scope of this investigation, we used a number of
distinct machine learning models in the IBM HR analytics
data set in order to determine which types of analytics, when
carried out by SOS stakeholders, had the potential to result
in an expansion of SOS capacity. With a rate of 86.77%, SVM
RBF has demonstrated the highest level of accuracy in the
classification of acquisition as attrition of personnel.

5. Conclusions

&e ability of a system to work is obtained from the in-
tegration of systems coming from a variety of diverse
sources. &e systems that make up an SOS have two main
functions: first, to achieve the goals that are unique to them,
and second, to supply the SOS as a whole with the resources
that it needs. In the most recent few decades, one of the
most common applications of machine learning and data
analytics has been in the process of designing systems and
acquiring new ones. It is a commonly understood practice
that each company that invests in a complex system will use
some form of data analytics in order to evaluate the sys-
tem’s individual goals. Even if the systems contribute to
and benefit from the wider SOS, data analytics and deci-
sion-making on the separate system are rarely shared
among SOS stakeholders. &e purpose of this study is to
investigate the ways in which the stakeholders in SOS can
increase their capacity by exchanging data sets and the
analytics that correlate to those data sets. We suggest using
machine learning approaches in order to make predictions
about the capabilities of SOS by trading off-key data sets
and prescribing information links between different sys-
tems. &is article is intended to serve as an intermediate
analysis of the study effort described above. Additionally,
the article’s goal is to evaluate the benefit of information
sharing across the SOS stakeholders. In this study, we
deployed several different machine learning models to the
IBM HR analytics data set in order to evaluate which
analytics, when performed by SOS stakeholders, can lead to
an increase in SOS capacity. SVM RBF has shown the best
accuracy in the classification of acquisition as attrition of
employees with 86.77%. Since a fully connected data en-
terprise is probably not feasible in practice, one of the main
challenges we hope to overcome as this project progresses is
determining which data sets need to be connected
throughout the SOS. Current efforts are directed toward
elucidating the role that machine learning can play in
predicting the SOS capability, giving access to system-level

decision-making loops, and prescribing the next steps for
establishing information flows between systems in the SOS.
A fully connected data enterprise is probably not realistic in
practice; hence, one of the primary issues in future we want
to overcome as this project continues is selecting which
data sets need to be connected throughout the SOS.
Current work focuses on clarifying the role machine
learning can play in predicting SOS capabilities given
system-level decision-making loops and prescribing future
actions for building information flows between SOS
systems.

Data Availability

&e data used to support the findings of this study are
available from the author upon request.

Ethical Approval

&e paper does not deal with any ethical problems.

Conflicts of Interest

&e author declares that there are no conflicts of interest in
this work.

Acknowledgments

&is study could not be started, nor achieved without Shaqra
University encouragement, and its continued support.

References

[1] A. Gorod, B. Sauser, and J. Boardman, “System-of-systems
engineering management: a review of modern history and a
path forward,” IEEE Systems Journal, vol. 2, no. 4,
pp. 484–499, 2008.

[2] S. C. Cook, “2.3.1 on the acquisition of systems of systems,”
INCOSE International Symposium, vol. 11, no. 1, pp. 383–390,
2001.

[3] P. Acheson, C. Dagli, and N. K. Ergin, “Model based systems
engineering for system of systems using agent-based mod-
eling,” Procedia Computer Science, vol. 16, pp. 11–19, 2013.

[4] J. Dahmann, K. J. Baldwin, and G. Rebovich, Systems of
Systems and Net-Centric Enterprise Systems, MITRE CORP
MCLEAN VADEPARTMENT OF DEFENSE WASH-
INGTON DCMITRE CORP BEDFORD MA, Washington, ,,
2009.

[5] J. M. Vicente-Samper, E. Avila-Navarro, and J. M. Sabater-
Navarro, “Data acquisition devices towards a system for
monitoring sensory processing disorders,” IEEE Access, vol. 8,
pp. 183596–183605, 2020.

Table 3: Comparative analysis.

Reference Techniques Data sets Outcome Accuracy (%)
Crossley et al. [10] Multi-disciplinary analysis Pertinent data sets SOS acquisition 78.00
Gorod et al. [1] NN Pertinent data sets SOS acquisition 75.55
Cook [2] SVM Pertinent data sets SOS acquisition 83.00
Dahmann et al. [4] NN Pertinent data sets SOS acquisition 80.00
Our proposed method SVM, LR, DT Pertinent data sets SOS acquisition 86.50, 85.00, 83.00

14 Complexity



[6] Q. A. Ng, X. Wang, C. P. Tan, M. B. M. Nor, N. S. Damanhuri,
and J. G. Chase, “Network data acquisition and monitoring/
system for intensive care mechanical ventilation treatment,”
IEEE Access, vol. 9, pp. 91859–91873, 2021.

[7] J. Dahmann, G. Rebovich, J. Lane, R. Lowry, and K. Baldwin,
“An implementers’ view of systems engineering for systems of
systems,” in es of the 2011 IEEE International Systems Con-
ference, pp. 212–217, Montreal, QC,, April 2011.

[8] A. Odusd and T. Sse, Systems engineering guide for systems of
systems, Vol. 36, Department of defence, , Washington, , USA,
2008.

[9] G. u Rehman, A. Ghani, M. Zubair, M. I Saeed, and D. Singh,
“SOS Socially Omitting Selfishness in IoT for Smart and
Connected Communities,” International Journal of Com-
munication Systems, pp. 1–25, 2020.

[10] W. A. Crossley, M. Mane, and A. Nusawardhana, “Variable
resource allocation using multidisciplinary optimization:
initial investigations for system of systems,” in Proceedings of
the 10th AIAA/ISSMO Multidisciplinary Analysis and Opti-
mization Conference, vol. 5, pp. 3372–3388, Albany, NY, USA,
September 2004.

[11] Q. Wenqi, Z. Qingxi, G. Chang, and L. Chade, “Fine Doppler
shift acquisition algorithm for BeiDou software receiver by a
look-up table,” Journal of Systems Engineering and Electronics,
vol. 31, no. 3, pp. 612–625, 2020.

[12] H. Attia, Gaya, A. Alamoudi et al., “Wireless geophone
sensing system for real-time seismic data acquisition,” IEEE
Access, vol. 8, pp. 81116–81128, 2020.

[13] L. Yang, H. Gao, D. Yu, S. Pan, Y. Zhou, and Y. Gai, “Design
of a novel fully automatic ocean spectra acquisition and
control system based on the real-time solar angle Analyzing
and tracking,” IEEE Access, vol. 9, pp. 4752–4768, 2021.

[14] Y. Zhao, P. Ye, J. Meng, K. Yang et al., Compensation module
design for overlapping band in band-interleaved data ac-
quisition systems based on hybrid particle swarm optimiza-
tion algorithm,” IEEE Access, vol. 8, pp. 178835–178848, 2020.

[15] A. A. Abud, G. L. Miotto, and R. Sipos, “Experience and
performance of persistent memory for the DUNE data ac-
quisition system,” IEEE Transactions on Nuclear Science,
vol. 68, no. 8, pp. 2159–2164, 2021.

[16] V. Frolov, S. Huber, I. Konorov et al., “Data acquisition
system for the COMPASS++/AMBER experiment,” IEEE
Transactions on Nuclear Science, vol. 68, no. 8, pp. 1891–1898,
2021.

[17] S. K. Weber, G. L. Miotto, J. Almeida, P. H Blanc, A. Dias, and
G. Malaguti, H. Manninen, J. Pfeifer, S. Ravat et al., Data
acquisition system of the CLOUD experiment at CERN,”
IEEE Transactions on Instrumentation and Measurement,
vol. 70, pp. 1–13, 2021.

[18] J. Colombi, M. John, M. E. Miller et al., “Model based systems
engineering with department of Defense architectural
framework,” Systems Engineering, vol. 14, no. 3, pp. 305–326,
2012.

[19] N. Davendralingam, A. Maheshwari, and A. Raz, “Predictive
and Prescriptive Analytics via System of Systems Engineering:
Informational Determinants for Enterprise-Level Effective-
ness,” in Proceedings of the Council of Engineering Systems
Universities Global Conference 2018, Tokyo, Japan, June 2018.

[20] W. Scacchi, “Open Acquisition: Combining Open Source
Software Development with System Acquisition,” pp. 1–26,
2002, https://www.ics.uci.edu/∼wscacchi/Papers/DAU/
OpenAcquisition.pdf.

[21] J. Austin-Breneman, T. Honda, and M. C. Yang, “A study of
student design team behaviors in complex system design,”
Journal of Mechanical Design, vol. 134, no. 12, 12 pages, 2012.

[22] C. L. Roe, “A systems engineering process for systems of
systems,” INCOSE International Symposium, vol. 9, no. 1,
pp. 1214–1220, 1999.

[23] P. G. Carlock, J. A. Scardina, S. C. Decker, R. E. Fenton, and
C. W. Pate, “1 agency-level systems engineering for “systems
of systems”,” INCOSE International Symposium, vol. 9, no. 1,
pp. 1–7, 1999.

[24] A. M Maka and J. Phiri, Information Systems Acquisition,
Development and Implementation Framework, &e University
of Zambia, Lusaka, Zambia, 2019.
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(e study aims to investigate wind effects on the equal area and the same height building model having the plan cross-sectional
shape in the form of regular and irregular shape bulidings. (e ratio of modification in the cross-sectional shape is kept same for
regular and irregular shaped models because limited studies are available for such type of comparison. (e responses of the
structure to resist the wind load is increased by applying these modifications in the corner configuration such as corner cut,
chamfer, and fillet in the plan shape of the structure. (e numerical study is performed using ANSYS CFX and wind incidence
angle varies in the range of 0° to 180° at the interval of 15°. (e results of velocity and pressure distribution are presented in the
form of pressure contours and wind force coefficients for all four-building models which are presented in the form of a graph.(e
comparison of numerical simulation results on two models are compared with the different international standards and with the
experimental results. (e regular shape with a corner cut and a “Y”-shaped structure with a fillet corner model performed the best
among all models for resisting overall wind force. (e results of pressure distribution of all four models are presented in the form
of pressure contours for 0° and 90° wind angles.

1. Introduction

(e tall structure is the most appropriate solution for the
current situation since land availability in the conventional
shape is approaching at saturation. (e population is also
booming and there is a scarcity of space available for in-
dividual residences consequently, accommodating such a
large population within the available land is feasible with tall
buildings. Various international standards [1–10] are al-
ready discussed different parameters to design tall buildings.
(ere is significant constraint on the design of tall buildings
as the majority of international standards are silent on the
modification of the shape of plan cross-sectional area
buildings. Tavakoli et al. [11] discussed the important aspects
of high rise buildings. Dadkhah et al. [12] investigated the
performance of the steel structure during an earthquake.
Kamgar and Rahgozar [13] analyzed different lateral
resisting systems to resist lateral loads which are produced

during an earthquake. Kamgar et al. [14] investigated the
soil-structure interaction for a different storey outrigger
braced building resting on two different types of soil.
Dadkhah et al. [15] performed nonliner seismic analyses
using incremental dynamic analysis, which is most accurate
and time-consuming, and also need a high computational
cost. Dadkhah et al. [16] presented the optimization of a
tuned mass damper to improve the seismic performance of a
six storey steel structure based on the ductility damage
index. Kamgar and Samani [17] conducted the numerical
study for evaluating the effect of length to the height ratio on
the behavior of a concrete frame retrofitted with steel infill
plates and observed that the value of absorbed energy by two
diagonal viscous dampers is higher than that of the chevron
viscous damper. Numerous studies have been conducted in
the subject of wind engineering, the majority of which focus
on modifying the shape or height of the structure but the
current study focuses on equal area structures of regular and
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irregular shapes. When the regular shape of the rectangular
building model is contrasted to the irregular shape of the
“Y”-shaped building model, the designer can choose the
shape of the building when constructing such shapes.

Investigation of wind effects is possible through two
techniques like wind tunnel and CFD, the various amount of
research is already conducted through the wind tunnel, such
as Kwok [18] studied the effect of wind on the shape of a
building by applying different measures to control the wind
effect and found that the building with the chamfer corner is
best among all to resist the along and across wind response.
Jozwiak et al. [19] presented the aerodynamic interference
effect on pressure distribution on the building model and
observed that there is a significant difference in pressure
distribution with and without modeling of the boundary
layer. Pal et al. [20] presented the experimental investigation
performed in an open circuit boundary layer wind tunnel on
the “fish plan shape” and observed that pressure on the
windward face in the case of a fish shape is less than the
square shape when the wind incidence angle is 0°. Nagar
et al. [21] performed an experiment in BLWT on the “H”
shaped model and found that pressure increases until the
wind incidence angle reach up to 60° wind, and it was found
that the interference factor for the square and the “H” shaped
building is less than one. Pal et al. [22] carried out a
comparative study of wind-induced mutual interference
effects on the twin square and the fish plan shaped model,
which is having equal volume, and the experiment is per-
formed in the boundary layer wind tunnel at the length scale
of 1 : 300. (is is observed from the experimental study that
the drag and lift force for the fish shaped model is lesser than
that of the square shaped model in the case of 0° and 180°
wind. Nagar et al. [23] investigated the wind-induced in-
terference effect between two plus shaped high rise buildings
on mean and RMS pressure coefficients and concluded that
these interference effects on local wind pressure are sig-
nificantly higher on the windward side face near the recessed
corner. Pal et al. [24] performed an experimental investi-
gation on a square and a remodeled triangle shaped building
at the length scale of 1 : 300. (is is found that the front-to-
front interference case of the remodeled triangle shaped
model performed best in resisting along and across the wind.
(e maximum suction of the testing model at the FBI
condition is decreased by nearly 40% to that of the isolated
case of the SPS model at the same condition. Amin and
Ahuja [25] presented a review on an aerodynamic modifi-
cation such as corner cut, chamfering, rounding, horizontal
slots, vertical slots, dropping of corners, and many more to
the shape of the tall building. (e major outcome from this
review is that the opening along the cross-wind direction at
the top significantly reduces the wind excitation of the
building, and the tapering of tall buildings has significant
effects on wind force in across wind direction than that of the
along wind response. Blackmore [26] estimated the wind
effects on and around the building model, wind forces are
dynamic and fluctuate continuously in both magnitude and
position. Most of the international standards considered
static loads and having limitations. Bhattacharyya and Dalui
[27] presented the study on the “E” plan shaped building,

which has symmetry about both the axis and wind response
is measured from 0° to 330° at the interval of 30°. (e result
obtained from the experimental study and numerical study
were compared. Various amounts of research work is per-
formed using the wind tunnel test, however, this study is
performed by using the k-ε turbulence model and most of
the studies in the present times are performed using the k-ε
turbulence model to obtained the solution using the nu-
merical simulation.

Numerical simulation is the better option for the esti-
mation of wind loads because the wind tunnel test is time
taking and costly, and it also needs heavy machinery and
resources to investigate the wind effects. Various studies are
also available and presented on the various aspect of CFD
simulation, such as Tominaga and Stathopoulos [28] inves-
tigated the turbulent scalar flux by assuming the gradient
diffusion hypothesis using Reynold averaged Navier stock
equation in CFD. Blocken [29] discussed the important aspect
of CFD for defining urban physics and gave ten important tips
and tricks towards the accurate and reliable simulations.
Behera et al. [30] performed an experiment in the boundary
layer wind tunnel to investigate the wind interference effect
on tall buildings with varying plan ratios, and observed that
the interference zone extends over a larger area as the building
plan ratio increases. Tamura et al. [31] performed a series of
wind tunnel tests to determine the aerodynamic performance
and pedestrian level wind characteristics of different super tall
buildings having square, rectangular, and elliptic plan with
corner cuts. Mittal et al. [32] performed the numerical
simulation on tall buildings and discussed the effect of the
shorter building placed in front of a taller building. Blocken
et al. [33] conducted the CFD simulation of the atmospheric
boundary layer and discussed the effect of using wall function.
(e accuracy of CFD simulation can be seriously compro-
mised when wall function roughness modification based on
the experimental data for sand grain roughened pipes and
channels are applied at the bottom of the computational
domain. Numerical studies are already conducted on the
different types of the plan shape structure, such as Tian et al.
[34] on a rectangular shape, Gaur and Raj [35] on corner
modification on a square and a plus shaped building, Raj et al.
[36], Keerthana and Harikrishna [37]on the “H” plan, Kumar
and Raj [38] on an octagonal plan shape, Raj et al. [39]
obtained response of a square and a plus shaped building by
varying wind loads, Gaur et al. [40] studied the interference
effect using CFD, Mukherjee et al. [41], Sanyal and Dalui
[42–45], Goyal et al. [46] on the “Y” shape, Meena et al. [47],
Kumar and Raj [48] on the “L” shape, Raj and Ahuja [49], on
the “+” shape, Sanyal and Dalui [50] on the rectangular shape
having some modification, Meena et al. [51] investigated the
wind effects on the regular shaped structure having a rect-
angular plan with various corner modifications, Mallick et al.
[52] on the “C” shape, Amin and Ahuja [53] on the side ratio
of a rectangular building, Amin and Ahuja [54] obtained
response of a tall building against the wind load. (e con-
siderable outcomes aftermodifying the shapes of the structure
are as the Strouhal number is not sensitive to the aspect ratio,
flow reattachment of the separated shear layer in the corner
cut model present suction into corners, which is further
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caused in the reduction of drag, interference position of the
building is highly effecting principal building pressure dis-
tribution, the length/width (side ratio)makes changes into the
upwash, downwash, and the stagnation zone on upstream of
flow, shielding effects were the main factors which is con-
trolling the spacing between the buildings, highest wind
velocity is obtained at the edges of the windward side and
minimum at the leeward side, maximum suction is observed
at the corner of the building, it is important to give due
consideration for suction on the corner region, by increasing
the L/W ratio horizontal force coefficient and overturning
moment coefficient increases by the significant amount, the
model with the rounded corner is best to reduce wind loads
and overturning moments, in comparison of the chamfer
corner, rounded corner are efficient in reducing the wind
load, deflection is observed due to the presence of vortices in
the wake region of buildings, the accuracy of the k-ε tur-
bulence model is more than the SST model.

(e current study will examine the wind pressure on tall
structures of both regular and irregular shapes. (e majority
of earlier research has concentrated on the wind effects of
either regular or irregular shaped buildings, however, the
current study examines the results of these two types of
buildings by altering the corners. (is study is particularly
noteworthy because the cross-sectional area and height of
the building model are kept constant to minimize wind
loads. Numerous corner modifications, such as chamfer,
fillet, and corner cut, are also employed and the ratio of cuts
is maintained, allowing the designer to select the most ef-
ficient structure for the situation. Additionally, two models
are validated and the numerical simulation results are
compared to experimental results and a number of relevant
standards. Furthermore, the result of velocity streamlines is
illustrated graphically in the form of contours, pressure
distribution, and wind force coefficient for wind incidence
angles ranging from 0° to 180° at 15°-degree intervals.

2. Methodology

(e present study concentrates on the investigation of wind
effects and compares the results of the regular and irregular
shaped models. (e numerical simulation results are vali-
dated before the starting of the work and the results of
numerical simulation are found identical with experimental
results.

2.1. Method of Study. (e present study is performed using
the numerical simulation tool ANSYS CFX and investigated
the wind effects on tall buildings having an equal plan area
and same height. Most of the available studies are either for
regular shape or for irregular shape, but these studies present
the comparison among such shapes having both regular and
irregular shape. (e geometry is selected and applied in the
CFX-Pre setup. After the geometry, the meshing is per-
formed and flow physics are defined in the solution and
simulation is performed and the results are presented in
different graphical forms.

2.2. Numerical Simulation. Numerical simulation is per-
formed using ANSYS CFX and boundary conditions used
into this simulation are kept as the boundary condition used
by Raj [55] in the experiment performed in the boundary
layer wind tunnel at IIT Roorkee, India. (e numerical
simulation performed into this study is performed using the
k-ε turbulence model [56].

(i) k-ε turbulence model
(is method is generally used to solve a complex
fluid problem and it is a two-equation model. (e
solution is generated after solving two different
equations during the entire numerical simulation.
(is model performs nearly equivalent to the ex-
perimental problem and the k-εmodel also uses the
scalable wall-function to increase the efficiency of
the solver and this model performs more robustness
in the case of the fine mesh.
It is very less expensive and mostly used to simulate
turbulent flow characteristics. (e solution is solved
by two transport equations, i.e., turbulent kinetic
energy (k) and the turbulent dissipation rate (ε). It
has the positive advantage of not including any
geometry-related parameters in the modeling.
Turbulent kinetic energy and the turbulence dissi-
pation rate are two variables introduced into the
system of equations for the model. (e values for
turbulence are calculated according to turbulence
eddy dissipation using

(ii) Basic equations
(e basic equation used to study fluid flow problems
using Navier-Stokes and continuity equation.

(iii) Navier stokes equation is written as
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(iv) Continuity equation is written as
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Momentum equation is written as
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2.2.1. Advantages

(1) It performs best for the boundary layer separation
fluid problem.

(2) It is the most use turbulence model for validation
purposes.

(3) Generally, it is used by the industrialist to solve the
complex fluid problem.

(4) It provided the solution based on boundary
conditions.

2.2.2. Disadvantage

(1) It does not perform well in the case where flow is
changing instantaneously.

(2) It is unable to generate the accurate solution for the
rotating fluid problem.

(3) It is notable to generate the accurate solution for a
low Reynold number.

2.3. Geometrical Configuration of Model. (e regular shape
of a rectangular building Figure 1 represents the building
having no corner modification, corner cut model and ir-
regular shaped model of Y-shape is represented in Figure 2
are considered in this study. (e plan cross-sectional area
and height are kept the same for the study so that the results
can be compared on an equal volume building model. Both
sorts of building models have the same modification ratio.

2.4.Meshing andDomain. Meshing contains important flow
features, which are dependent upon the flow parameters,
such as grid refinement inside the wall boundary layer. (e
meshing applied after the geometry and the name selection
for each part of geometry are required before meshing to
understand the CFX-Pre about the geometry. (e name
selection is required to define flow physics. It is better to
provide name selection before the meshing so that the
surface mesh exactly matches with nodes on the two sides of
the boundary, which allows a more accurate fluid solution

325

162

750

(a)

48

325

162

750

(b)

Figure 1: Regular shaped building model (a) rectangle and (b) rectangle with corner cuts.
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[57]. Name selection also helps the program to control the
inflation, i.e., automatically select for the wall and inflation
automatically provided during the auto mesh generation.
(emeshing is represented in Figure 3 for domain, building,
and inflation.

(emesh generation steps are automatically worked into
the program; however, this can be controlled by varying the
element size, type of mesh to generate, and where and how
the mesh should be refined. Tetra dominant meshing, which
is patch independent, is suitable for the CAD model having
many surface patches and if the geometry has small edges
then this is suitable [58]. Hexmeshing is used both in general
sweep and thin sweep; it is also recommended for the model
which has the clean cad geometry. Mapped and free meshing
is adopted where the fluid problem needs a different type of
meshing like structured (mapped) and unstructured (free);
however, this is suitable for the problem where the sweeping
method does not work without extensive geometry
decomposition.

Inflation is provided to capture the flow properly at the
interface and the same can be provided by various methods

available in the CFD model. Smooth transition is the default
option and it uses the local tetrahedron elements size to
compute each local height and total height so that the rate of
volume change is smooth. Each triangle that is being inflated
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Figure 2: Y-shape building model (a) Y-shape with chamfer and (b) Y-shape with fillet.

Building Meshing

Domain Meshing

Inflation

Figure 3: CFD model representing meshing.
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will have an initial height that is computed with respect to its
area averaged at the nodes. (is means that for the uniform
mesh, the initial height will be roughly same, while for a
varying mesh, the initial height will vary. An increment in
the value of the growth rate that controls the reduction in the
total height of inflation layers.

(e numerical simulation predicts the result based on
boundary conditions, as the finite element method work well
with boundary conditions. Inlet wind speed is provided as
the power law where the reference height in the simulation is
considered as 1m, while the reference velocity is defined as
10m/s. (e wall of the domain is considered as a free slip
wall, while the ground of the domain is a rough wall [43].

(e faces of the model are considered as no slip. Wall
function defines that if a coarse mesh near the wall than it
assumes that the logarithmic low applies as wall function. At
the same time, the fine mesh near the wall and various
turbulence models account for a low Reynold number. Wall
functions are useable to low Reynold number problems. In
general, if the fine mesh is defined near the wall then the
gradient changes are considered automatically by the solver.
(e domain is represented in Figure 4 in both the top and
isometric view. A domain feature is considered after the
various recondition provided by the past studied [59–62]
numerical model. No-slip walls is the wall where fluid
immediately next to the wall assumes the velocity of the wall
as zero; free slip wall is the wall where the shear stress at the
wall is zero and the velocity of the fluid near the wall is not
retarded by the wall friction effects.

2.5. Grid Sensitivity. In this study a grid sensitivity study is
performed on model-A and tabulated in Table 1, which is
having no corner modification into the rectangular shape
model. A grid sensitivity study is essential to CFD pro-
gramming as it helps to achieve the proper meshing size,
which predicts the most accurate result for the numerical
simulation. For the present study GS-3 is adopted for all the
wind incidence angle.

2.6. Mean Wind Speed and Turbulence Intensity Profile

2.6.1. Mean Wind Speed. Wind flow over the tall building
involves complex flow patterns, although wind flow is

generally separated from the surface, where the flow is
mostly recirculating. Flow patterns are unsteady around the
buildings model, therefore creating turbulence. (e devel-
opment of turbulences near the ground level is observed due
to the presence of other obstacles. Such effects are also
considered while calculating the turbulence intensity and
wind flow up to the gradient height and after that it becomes
constant.

Mean wind speed defined in the CFX-Pre is represented
in Figure 5, the variation in the form of a power law between
height and mean wind speed is as follows:

U(Z)

U Zref􏼐 􏼑
�

Z

Zref

􏼠 􏼡

n

, (5)

where U(Z) �mean velocity at height Z; U(Zref ) �mean
velocity at reference height Zref ; and n � power law expo-
nent, a measure of ground roughness, varies between 0.13
and 0.15 in open terrain.

(e variation in the mean wind speed with height is
generally expressed in an alternate form in a logarithmic
form.
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Also, a simplification of this logarithmic equation is as
follows:

U(Z)
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�
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ln Zref /Zo( 􏼁
, (7)

where U∗ � shear velocity; k �Von Karman constant, 0.4;
ln� natural log function; and Zo � effective roughness
length, another measure of ground roughness, varies from
0.01 to 0.05 meters in open terrain.

2.6.2. Turbulent Intensity. Turbulence intensity is a non-
dimensional quantity derived from the variance and for the
mean wind speed.

Iz �
σz

U(z)
, (8)

where Iz � turbulence intensity at height z; σz � standard
deviation of the wind speed at height z; and U(z) �mean
wind speed at a reference height.
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Figure 4: CFD domain.
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2.7. Validation. Validation is a prerequisite part of nu-
merical simulation and two different models are considered
in this study to validate with available international stan-
dards and an experimental study. Such buildings model are
selected and external Cp compared with the available ex-
perimental results. (is is also clearly depicted in Figure 6
that the result obtained in this numerical simulation show
nearly an identical result for the pressure coefficient.

(e results plotted for the normal and corner cut
rectangular building model are representing a very close
match with the experimental results. (erefore, the result
obtained in this study are very much accurate for designing
the model, which are considered in this entire study. (e
rectangular shape model is also simulated for the wind load
at 0° and 90° wind and a pressure coefficient is compared
with available international standards mentioned at Table 2.

(e external pressure coefficient “Cp” is calculated using (9).

Cp �
p − po

(1/2)ρU
2
H

, (9)

where p � pressure derived from the external lines plotted on
the model; po � static pressure at reference height; ρ� air
density (1.225 kg/m3); UH �mean wind velocity at the
building reference height.

3. Result and Discussion

CFD postprocessed results enables the visualization and
analysis of wind effects in variety of graphical representa-
tions.(e pressure distribution along the face is a function of
the shape and size and the same is illustrated using contours.
(e wind response is also represented graphically in the
form of the wind force coefficient.

3.1.VelocityContours. Velocity contours are represented for
model-A in Figures 7 and 8. (e main cause of the pressure
difference is the velocity field around and along with the
building model. (e velocity at downstream is mentioned at
Figure 7, and the size of the wake is increasing with respect to
the frontal exposed area, which changes according to wind
incidence angle.

Velocity along the height of model-A is depicted in
Figure 8 and the wind velocity distribution pattern is il-
lustrating the variation of the wind at the downstream. (e
suction observed in the case of 15° and 75° are of the same
type. (e suction on the roof of the building is also observed
and demonstrated in Figure 8.

3.2. Wind Forces. (e wind-generated effect in the form of
wind force is evaluated after the numerical simulation
performed on the building model. (e value of Fx and Fy are
obtained using CFD postprocessed result while the frontal
exposed area is calculated at each wind incidence angle. Drag
force is calculated as per equations (16) and (17). Along wind
force, i.e., the drag for model-A, is obtained a maximum of
−4.72 is between 60° and 120°, while the minimum 0.0 is
noted when the wind is striking to the model at 0° and 90°.
(e corner cut model of rectangular shape, i.e., model-B, has
the highest magnitude of drag is −4.39 in the case of 30° and
150° wind and the smallest drag is 0.04 in the case of 0° and
180° wind. (e maximum amount of drag is reduced for
model-B with respect to model-A.

Fx � 0.5ρU2
h
.Ap􏼒 􏼓Cfx

,

Fy � 0.5ρU2
h
.Ap􏼒 􏼓Cfy

.

(10)

An irregular “Y” shaped model having corner modifi-
cations such as model-C and D are having chamfer and fillet,
respectively, the drag is measured using numerical

Table 1: Mesh independent test result for model-A.

Name Type of meshing No of elements
Mean external pressure % error

Reynold NoFace
A B C D A (%) B (%) C (%) D (%)

GS-1 Coarse 957324 0.59 −0.49 −0.24 −0.49 36 32 26 32

3.56×106 to 3.90×106
GS-2 Medium-1 1284687 0.73 −0.56 −0.27 −0.56 10 16 12 16
GS-3 Medium-2 1439589 0.78 −0.64 −0.30 −0.64 3 2 0 2
GS-4 Medium-3 1561140 0.81 −0.69 −0.32 −0.69 1 5 6 5
GS-5 Fine 2497236 1.02 −0.98 −0.43 −0.98 33 33 30 33
Bold values are indicating that if the GS-3 case is adopted for the numerical simulation, then the percentage error will be less in comparison to other meshing
cases investigated in this study.
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Figure 5: Variation of mean wind speed and turbulent intensity
with height.
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simulation and graphically plotted in Figure 9. (e drag is
also measured for model-C (chamfer-Y shape) and the
maximum magnitude is −9.44 in the case of 150° wind.
Model-D (fillet–Y shape) is investigated for along wind
forces and the maximum drag of −7.92 is noticed in the case
of 150° wind, while the lowest drag is −0.04 in the case of 180°
wind is noticed for model-D.

(e across wind, i.e., lift force in the y-direction, is
calculated and graphically plotted in Figure 10 for model-A,
B, C, and D. (e regular shaped model of the rectangular
shape (model-A & B) is having some different type of corner

modification so that lift force can be reduced on the tall
building by making some modification in the corners. (e
maximum lift of −13.73 is noted in the case of 90° wind for
model-A, while the smallest of −5.23 is spotted in the case of
0° and 180° wind. Model-B (corner cut rectangle) is having
the highest lift of −11.28 in the case of 90° wind, while the
lowest lift of −4.73 is detected in the case of 15° and 165°
wind.

(e irregular “Y” shapedmodel-C andD are numerically
investigated for the across wind response and lift force for
model-D (fillet-Y) is having the maximum lift force of

Table 2: Comparison of average face pressure coefficient (Cp) on the rectangular shape tall building.

International code Wind angle (°) Windward side Side wall Leeward side

CFD results 0 0.78 −0.64 −0.30
90 0.70 −0.61 −0.45

IS 875 (part 3) 0 0.7 −0.7 −0.4
90 0.8 −0.5 −0.1

ASCE/SEI 7-16 0 0.8 −0.7 −0.5
90 0.8 −0.7 −0.5

AS/NZS 1170.2.2011 0 0.8 −0.65 −0.5
90 0.8 −0.65 −0.5
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−11.92 in 60° wind, while the minimum of −9.08 for 0° wind
135° wind. (e along wind, lift force is found greatest of
−10.42 in the case of model-D (fillet-Y) for 60° wind, while the
smallest of −7.6 is noticed in the case of 0° wind. Among the
Y-shapedmodel, the lowest lift force is observed for themodel
having a fillet corner into each limb of the “Y” shape [63].

3.3. Pressure Contours. Pressure distribution is represented
in the form of contours for each surface of the building
model. Pressure distribution for rectangular buildingmodel-
A is represented in Figure 11 for 0° wind, while for 90° wind,
the pressure distribution pattern along the height of the
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Figure 8: Velocity contours for model-A in elevation.
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model is represented in Figure 12. (e pressure on the wind
ward face in both the case is having nearly the same pressure
distribution pattern. (e maximum pressure is observed in

the case of 0° wind of 0.95 in the central part of face-A, while
face-B in 90° wind is having the maximum of around 1.05,
which is more than face-A for 0° wind because of the face
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Figure 12: Pressure contours at 90° wind for model-A.
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width is increased and that is why the pressure exposure area
is increased. For 0° wind, pressure along face-B starts to
increase from upstream to downstream of wind, this is
because of reattachment of flow. Face-B and face-D is having
almost the same pressure distribution pattern, this is because
of the symmetric faces of a buildingmodel. Leeward face, i.e.,
face-C, is having suction (negative pressure) and the max-
imum is on the bottom part of the building, while suction is
increased at face-C from base to top of the model.

Figure 12 represents the pressure distribution variation
of model-A. Pressure is presented in the form of contours,
which is varying as per the shape and size of the particular
face. In the case of 90° wind angle, face-A and face-C are
having almost the identical pressure distribution pattern.
(is is increased from the ground of the model to the top of
the building model. Also, pressure in the negative is in-
creased as the wind moves from upstream to downstream.
Pressure along face-D (Leeward) is having highest negative
pressure in the top one-third part of the building model.

Figure 13 is pictorially representing [63] the pressure
distribution in the form of contours for the “+” shaped

building model, while present studies numerically inves-
tigate the wind effects on model-B. Model-B (rectangular
model having corner cuts) pressure contours for 0° wind is
represented in Figure 14, while for 90° wind the pressure
contours for model-B are represented in Figure 15. (e
nature of pressure distribution on windward face-A is
identical and the maximum pressure of 1.04 is spotted on
face-A, while the face-A of the “+” shaped building is
having maximum of 1.06. (is is clearly depicted that each
face of model-B is having a pressure distribution pattern
and is the same as that with the experimental study per-
formed on the “+” shaped model [63]. (e pressure dis-
tribution variation is not much dependent on the size of the
face, while the height more or less controls the pressure
patterns.

Model-C (Y-Chamfer) is investigated numerically for
wind effects and the pressure distribution pattern for 0° wind
is in Figure 16, and for 90° wind, pressure contours are
represented in Figure 17. (e maximum positive pressure of
0.55 is on face-D, while the maximum negative of −1.3 is on
face-E. (e pressure variation along the shape and size is
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Figure 13: Pressure contours for 0° wind “+” shape [63].
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clearly demonstrating the magnitude of pressure as contours
are showing with the label, and such labels are showing the
increment or decrement in pressure. (e actual

phenomenon along model-C is valuable for the designer to
investigate the wind effects on such types of corner
configurations.
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Pressure distribution on model-D is represented
graphically in Figure 18 for 0° wind, while pressure contours
in Figure 19 is for 90° wind.(e positive pressure is observed

on face-A, B, C, D, M, and N, while the negative pressure is
noticed on face-E, F, G, H, I, J, K, L, and O in the case of 0°
wind.(e maximum positive pressure of 0.64 is observed on
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Figure 15: Pressure contour at 90° wind for model-B.
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Figure 16: Pressure contours at 0° wind for model-C.
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Figure 17: Pressure contours at 90° wind for model-C.
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Figure 18: Pressure contours at 0° wind for model-D.
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Figure 19: Pressure contours at 90° wind for model-D.
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face-D, while the maximum suction of −1.4 is spotted on
face-E in the case of 0° wind. Pressure contours for 90° wind
for model-D (Y-fillet) is represented graphically Figure 19.
(e positive pressure is spotted on face-C, D, and E only in
the case of 90° wind, while other faces are under the effect of
negative pressure. (e maximum positive pressure of 0.75 is
observed on face-C and D, while the negative pressure of
−1.4 is noticed on face-G for model-D (Y-fillet). (is is also
noticed from pressure contours that symmetrical faces are
having same pressure distribution patterns.

4. Conclusion

(e present numerical study is performed to investigate the
wind effects on the corner effects of the tall building having
various corners (corner cut, chamfer, and fillet) in the corner
of the cross-sectional plan area of the building. (e present
study is performed using ANSYS CFX by utilizing the k-ε
turbulence model. (e wind incidence angle varies in the
range of 0° to 180° at the interval of 15° each. All four building
models have the same corner modification ratio, as well as
the same area and height. Validation studies show the closer
agreement of the numerical simulation result with the ex-
perimental studies and different international standards.
Various results of the pressure distribution wind force co-
efficient are calculated and presented. (e notable outcomes
from the present are as follows:

(i) Validation investigations indicate a strong degree of
congruence between numerical results and experi-
mental results and a number of international
standards. Validation is carried out on two distinct
models of rectangles, one with a regular shape and
one with a corner cut.

(ii) (e shape of the building is having the significant
effect in determining the wind load on the tall
building, wind forces are varying with the wind
incidence angle. A regular plan shape model with no
corner modification and a model with corner
modification exhibit identical along the wind re-
sponse, but the overall lift is less for the model
having corner modification.

(iii) (emaximumwind forces at 30°, 90°, and 150° wind
angles were observed for an irregular “Y” shaped
building with modified corners. (ese types of
structures are well-suited to withstand such high-
intensity forces, if appropriate openings are pro-
vided in the cladding unit.

(iv) Among the regular shape models, a model with
corner cuts is optimal; however, an irregular “Y”
shaped model with fillet corners into each limb is
optimal for resisting overall wind force. To avoid
excessive wind loads, the base shear of all four
buildings is also investigated.

(v) (emajority of available international standards are
silent on providing data for irregular shape models;
however, this study investigates wind load infor-
mation for such buildings.

(vi) (e designer can choose the best model from one of
these four models, since this study compares the
wind effects on equal area building models with the
same ratio of modifications and the results are
presented in the form of pressure contours for the
regular and irregular models.

4.1. Future Scope. (e present study analyses and compares
the result of the simple type of corner and corner cut on a
regular shaped building model, while for irregular shaped
modifications of chamfer and fillet shape is provided. Dif-
ferent types of modification can be applied and checked for
stability against the wind load.

Nomenclature

ρ: Density of air
F: Body force per unit volume
ui: (e filtered scale velocity field
μ: Dynamic viscosity of air
t: Time step
μt: Eddy or turbulent viscosity
x, y, z: System of rectangular cartesian coordinates
∈: Dissipation rate of k
P: Pressure
k: von Karman’s constant
u, v, w: Fluctuating wind
τij: Turbulent stress tensor
zo: Reference height
z: Height above the ground
n: Power law index
vz: Mean wind speed at any height
vo: Mean wind speed at reference height
P: Pressure at the point
P0: Static pressure at reference height
UH: Mean wind speed at reference height
CF: Force coefficient
CM: Base moment coefficient
Ap: Area projected
H: Height of the building model
β, β∗, σ∗, σ: Closure coefficients
k: Turbulent kinetic energy
uiuj: Reynold stress
i: General values of u, v, w component at point
BLWT: Boundary Layer Wind Tunnel
TTU: Texas Tech University
SST: Sher Stress Transport
GC: Grid Convergence
ABL: Atmospheric boundary layer flow
CFD: Computational fluid dynamics
WT: Wind Tunnel
atm: Atmospheric.

Data Availability

All data, models, and code generated or used during the
study appear in the submitted article. Data are available from
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.e deep beam in load transfer is very important as well as difficult to design due to its shear stress problems. Accurate estimation
of shear stress would help engineers to get a safer design. One of the major obstacles in building an accurate prediction model is
optimising the input variables. .erefore, developing an efficient algorithm to select the optimal input parameters that have the
highest information content to represent the target and minimise redundant data is very important..e feature-section algorithm
based on the combination of genetic algorithm and information theory (GAITH) was used to select the most important input
combinations and introduce them into the prediction models. Four models were used in this study: locally weighted linear
regression (LWLR) based on the radial basis kernel function, multiple linear regression (MLR), extreme learning machine (ELM),
and random forest (RF). .e study found that all applied models were significantly improved by the presence of the GAITH
algorithm, except for theMLRmodel..e LWLR-GAITHmodel showed 29.15% to 47.88% higher performance accuracy in terms
of root mean square error (RMSE) than the other hybrid models during the test phase. Moreover, the results of the standard
models (without using the GAITH algorithm) proved the superiority of the LWLR model in reducing the RMSE by 34.51%,
55.17%, and 35.35% compared to RF, MLR, and ELM, respectively. .us, the inclusion of the LWLR model with GAITH has
demonstrated a reliable and applicable computer aid for modelling shear strength in deep beams.

1. Introduction

Since the 1950s, scientists have extensively studied the shear
behaviour of beams made of deep reinforced concrete (RC)
[1]. In general, it has long been known that deep beams can
withstand far greater shear loads than slender beams due to
their enormous ratio of shear span to depth ((a/d)≤ 2.5).
.erefore, deep beams are often used as transfer beams in
structures, in bridge arches as cap beams, in foundations as
pile caps, and in other highly loaded structural members.
.e main difference between slender and deep beams is that

shear deformation in slender beams is minimal and can be
neglected, while it must be taken into account in the design
and analysis of deep beams, as failure in the latter is mainly
due to shear stresses [2]. Moreover, from a modelling point
of view, deep beams contradict the concept of the standard
plane and require different models than slender beams [3].

In deep beams, the internal arch action generates the
shear strength by transferring the load directly to the column
through concrete struts. Several factors influence the
structural system of deep beams, such as the ratio of shear
span to depth, the compressive strength of the concrete, the
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yield strength of the horizontal and vertical reinforcement,
and the ratio of the main reinforcement [4]. .e RC be-
haviour of deep beams and specifically the shear strength has
been quantitatively studied over several decades using
various models and empirical approaches such as the strut
and sill model, which is considered the most commonly used
approach and has been adopted by various codes such as
ACI 318-14 [5], CSA A23.3-14 [6], and EC2 [7], or mech-
anism analysis based on the upper bound theory of plasticity
and the finite element approach. However, the design
methods of these approaches are linear and therefore unable
to capture the complex relationship between the vectors
affecting the shear strength and the shear strength itself, in
which, in turn, the obtained predicted value of the shear
strength differs significantly from the actual value [8].

Different researchers have proposed different design
methods to calculate the ultimate shear strength of RC deep
beams [9–11]. .ese design codes are able to capture the
nonlinear relationship between the numerous parameters
and the ultimate shear strength of deep beams. However,
when the results of these methods are compared with the
results of experimental tests, they are conservative at best
and poor at worst [12]. Furthermore, developing a model
that correctly approximates the mathematical shear strength
is a major challenge due to this relationship. Due to the
inherent limitations of classical models, the prediction of
shear strength remains limited to experimental tests [13].
.erefore, the ability of designers to predict shear strength is
limited because it is impossible to create an accurate model
that can correctly estimate the shear strength capacity using
a mathematical formula [14].

In the last two decades, data-driven models based on
artificial intelligence (AI) have become increasingly crucial for
structural analysis and designing in civil engineering [15, 16].
.emost critical applications of AI are the analysis of data sets
obtained from experimentally or numerically generated data
sets to produce closed-form formulae or numerical tools that
predict parameters related to structural response and me-
chanical behaviour. Due to the low information content of the
datasets and the high costs associated with their enrichment, it
is essential to comprehensively analyse the available data and
build the best possible prediction models, which can be done
using AI modelling [17]. Moreover, AI models can capture
relationships that are difficult to handle with conventional
methods [18].

Table 1 provides some examples of the application of
different AI and empirical models to predict shear strength.
According to the work reviewed, researchers have focused
too much on using various artificial and empirical models to
estimate shear strength capacity. Since several predictors can
affect the shear strength, the reviewed works used classical
assumptions to determine the input combination. .e most
commonly used methods can be presented as follows:

(i) Trial and error approach (trying different
combinations)

(ii) Linear correlation approach (selecting only the
predictors with higher correlation with the shear
strength capacity)

(iii) Using all available inputs

.e use of the abovemethods has several drawbacks: (1) the
applied model needs more time to complete the training and
calibration phase, (2) the selection of input combinations may
not represent all potential cases (primarily if the trial-and-error
procedure is used), (3) the complexity of the modelling leads to
difficulties in interpreting the model performance and the
obtained results, and (4) the model is trained with lack or
excessive and redundant information of the selected predictors,
which may significantly affect the model performance and
stability. Furthermore, the use of linear correlation may be
misleading in some cases due to the complexity of the rela-
tionship between the shear strength of reinforcement beams
and geometric, concrete, and steel parameters.

According to the previous papers published in the lit-
erature, many researchers used ANN models to estimate the
shear strength in the deep beam. .erefore, in this work,
ELMwas used as a comparable model. Notably, this model is
considered the new variant of ANN and has the advantage of
good performance, speed, and ability to generalize. How-
ever, while reviewing prior research, we discovered a group
of highly motivated scientists to adopt sophisticated models
based on regression tree-based models. .us, we select RF as
a robust assembling model. .e reason for selecting MLR is
to see the efficiency of the other models compared to simple
models and, in other words, to investigate if there is a
significant difference between the nonlinear-based models
and simple models like MLR.

Furthermore, the structures of the three models (RF,
MLR, and ELM) are somewhat lacking in flexibility. In other
words, these parametric approaches derive a general or
global model. .erefore, after finishing the training phase,
there will be one complex function to present the targeting
problem, and all the data samples are subjected to that
function. However, the LWLR is not necessary to specify a
function to fit a model to all data in a sample. .us, LWLR is
more flexible and canmodel complex processes for which no
theoretical model exists.

.e main objective of this study is to determine the
ability of the locally weighted linear regression (LWLR)
model based on the Gaussian kernel function to predict the
ultimate shear strength of reinforced concrete beams with
and without web reinforcement. Moreover, the LWLR
model proposed in this study is evaluated by comparing its
performance with comparable models such as extreme
learning machine (ELM), random forest (RF), and classical
multiple linear regression (MLR). Furthermore, the second
objective of this study is to use an efficient feature selection
tool to select the best input parameters. Selecting the inputs
with the highest information with the target and the most
diminutive relationship with each other is considered a vital
step to achieve the desired prediction accuracy. In this
context, information theory is combined with the genetic
algorithm as a feature selection tool to remove the variable
(s) that contain redundant information that negatively af-
fects the model’s prediction ability. It is also the first time
that the LWLR model has been used as a prediction tool in
the concrete and structural fields.
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2. Methodology

2.1. Shear Strength of RC Deep Beams and Data Collection.
Reinforced concrete (RC) deep beams are frequently used as
load-bearing elements in bridge and building construction,
so their mechanical behaviour should be carefully analysed
and investigated. Since the span-to-depth ratio of RC deep

beams is usually less than two, the load-bearing capacity of
these structures is strongly influenced by the shear behav-
iour. It is well known that it is difficult to accurately model
the shear behaviour of deep beams because the assumption
of a plane cross section no longer holds. To overcome this
difficulty, some researchers have applied well-known me-
chanics-driven models, including the soft truss model

Table 1: Examples of different SC models and empirical equations in modelling the shear strength.

Reference Used method Statistical
parameter Data division Findings

[19]

ANN with training
algorithms
ANN-LM
ANN-QN
ANN-GG
ANN-GD

R, RMSE,
MAE, MAPE

70% for training and 30% for
testing.
106 data.

ANN-GG has the best prediction accuracy.

[20] NN R
70% for training and 30% for

testing.
233 data.

.e results of the proposed model show great
similarity with the test results

[3] OSVM-AEW
LS-SVM with SOS

R, R2, MAE,
MAPE, RMSE

67% for training and 33% for
testing using a triple cross-

validation approach.
OSVM-AEW has the best prediction accuracy

[21]

SVR-GA
SVR
ANN
GBDTs

R2, RMSE,
MAE, NSE, WI

70% for training and 30% for
testing.

217 test records.

SVR-GA gives better predictions than the other
models.

[22] GEP
ANN R, RMSE, MAE

70% for training, 10% for
validation, and 20% for

testing.
214 test records.

GEP has better prediction accuracy than ACI and
CSA and shows very good agreement with the

ANN model.

[4] LS-SVR and SFA R, RMSE,
MAE, MAPE

70% for training and 30% for
testing.

214 data set

LS-SVR with SFA has better prediction accuracy
compared to the standard SVR.

[23] ANN Mean, STD,
COV — ANN performed better than the ACI code, EURO

code, zsutty method, and russo method.

[24] Strut-and-tie model AVG, COV 16 test specimens. .e results of the proposed model show great
similarity with the test results.

[25] CSTM Mean, COV 355 test specimens. .e performance of CSTM is better than other
STM models.

[26]
New analytical expression
using strut-and-tie model

(STM)
Mean, COV 111 test specimens. .e proposed model has better prediction

accuracy compared to ACI 318-14 code.

[27] GA AVG, STD
50% for training and 50% for

testing.
371 data records.

GA has better prediction accuracy compared to
ACI 318-14 code.

[28] Feedforward NN Mean, STD

50% for training, 25% for
validation, and 25% for

testing.
433 data records.

.e results of the proposed model are in
agreement with the experimental and analytical

data.

[29]

EMARS
BPNN
RBFNN
SVM

R2, RMSE,
MAPE

10-fold cross-validation.
106 data set

.e performance of EMARS is better than BPNN,
RBFNN, and SVM.

[15]

RF
AdaBoost
GBRT

XGBoost

R2, RMSE,
MAE, MAPE

10-fold cross-validation.
271 test records

.e performance of the proposed models is better
than the traditional machines single learning

methods (DT, SVM, ANN)

[30] SVR with RBF and
polynomial kernel R, RMSE 10-fold cross-validation

SVR with RBF and polynomial kernel gives better
prediction accuracy compared to

backpropagation neural network and empirical
relations.
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[31, 32], the modified compression field method [33, 34],
and the strut-and-tie model [25, 35]. Nevertheless, the as-
sociated shear strength mechanism is quite complex, as
shown in Figure 1. Shear strength involves many complex
behaviours, such as aggregate friction effect, flexure-shear
interaction, shear transfer effect of web reinforcement,
longitudinal reinforcement, dowel effect of longitudinal
reinforcement, bond-slip effect, and size effect. .ere is no
practical way to account for all these behaviours in a unified
model, which leads to significant differences in the per-
formance of existing models. .erefore, the main objective
of this study is to use a robust prediction model to solve a
classical problem in civil engineering.

A total of 271 test data on RC deep beams were collected
from the open-source literature to train the models used in
this work. .ese include 52 specimens from Lu [36], 37
specimens from Ludwig and Nunes [37], 25 specimens from
Hameed et al. [38], 53 specimens fromHameed et al. [39], 12
specimens from Naser and Alavi [40], 12 specimens from
Ludwig et al. [41], 6 specimens by Nguyen et al. [42], 12
specimens by Yaseen et al. [43], 19 specimens by Zhang et al.
[44], 39 specimens by Gong, and 4 specimens by Gandomi
et al. [45]. It is worth noting that the database contains a
wide range of RC deep beams to improve the generativity of
the model. Moreover, the dataset contains four types of RC
deep beams: beams with horizontal web reinforcement,
beams without web reinforcement, beams with horizontal
and vertical reinforcement, and beams with vertical web
reinforcement.

2.2. Multiple Linear Regression. Multiple linear regression
(MLR) specifies the independent variable (Y) according to a
linear equation in terms of more than two independent
variables (Xi). .e mathematical expression of MLR is as
follows [46]:

Y � βo + 􏽘

n

i�1
βi Xi + E. (1)

Here, the MLR parameters (i.e., βo and βi) are calculated
using the least-squares method (LS), and E is the unsys-
tematic error. .e fitness function should be defined to
calculate the best fit line for the measured data set (Y). .e
following fitness function should be minimised.

Fitness �
1
2N

􏽘

N

j�1
Yobsj − Ypredj􏼐 􏼑

2
, (2)

where N is the length of the data set used, and Yobsj −

Ypredj represent the actual or predicted values for the jth

sample. To simplify equation (2), a matrix can be derived
from this equation as (Xβ − Y)T(Xβ − Y).

.e derivative of the matrix with respect to β then gives
XT(Xβ − Y). By the LS method, the term XT(Xβ − Y)

should be zero and solved for β. Finally, the parameter β can
be given by the following equation:

β � X
T
X􏼐 􏼑

−1
X

T
Y, (3)

where X and Y are the training and target values.

2.3. LocallyWeightedLinearRegression. .e locally weighted
linear regression (LWLR) model is an improved version of
the MLR method. .is method was invented by Chen et al.
[47] to improve the efficiency of the classical MLR model. In
the proposed technique, a weighting function is used to
define the relationship between the input and output of the
data sets. Moreover, the fitness function of LWLR can be
defined as follows:

Fitness �
1
2N

􏽘

N

j�1
Wj Yobsj − Ypredj􏼐 􏼑

2
, (4)

where the W in the above equation is the weight. Similar to
MLR, the equation can be expressed as ((Xβ − Y)TW
(Xβ − Y). When the fitness function of the LWLR technique
is derived in terms of β, the matrix XTW(Xβ − Y) is ob-
tained. To calculate β, thematrix ofXTW(Xβ − Y) should be
zero. Consequently, β is expressed by

β � X
T
WX􏼐 􏼑

−1
X

T
WY. (5)

In the LWLR method, a kernel function is used as a
weighted matrix. In this study, the radial basis function
(RBF) is used to calculate the proposed matrix, which is
expressed as follows [48]:

Wik � exp −Υ Xi − Xj􏼐 􏼑
2

􏼒 􏼓, (6)

shear cracks

Aggregate friction

Dowel actionBond-slip effecta

h o h

Lo

ρv, fy,h

ρh, fy,h

ρL, fy

Figure 1: Failure types on reinforced deep beams.
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where (−Υ(Xi − Xj) is the difference between variables X
in samples i and j, while Y is a positive user-defined number.

2.4. Extreme Learning Machine. Extreme learning machine
(ELM) is a novel machine learning approach introduced by
Wakjira et al. [49] as a robust new learning algorithm for
single hidden layer feedforward networks (SLFNs). ELM is
thousands of times faster than conventional learning algo-
rithms for feedforward networks and achieves higher gen-
eralisation performance [50]. Since ELM is encoded as
SLFNs, many of the complications of gradient-based algo-
rithms, such as learning rate, learning epochs, and local
minima, are eliminated when using ELM. Moreover, even
with randomly generated hidden nodes, ELM retains its
ability to universally approximate SLFNs [51]. ELM net-
works consist of three layers: the input layer where the data
are presented to the ELM network, the hidden layer where
the basic computations are performed, and the output layer
where the information from the hidden layer is transmitted

to. In addition, the results of ELM are organised in the
output layer. ELM randomly selects the input weights and
biases for the hidden nodes and uses the least-squares so-
lution to calculate the output weights analytically.

.e ELM model can be mathematically expressed as

Vt � 􏽘

i

m�1
Bmgm αm · xm + βm( 􏼁, m � 1, 2, . . . , n, (7)

where Vt is the ELM target; i refers to the number of hidden
nodes; Bm is the weight value connecting the mth hidden
node with the output node; gm(αm · xm + βm) is the output
function associated with i hidden nodes; and (αm, βm) are
the hidden node parameters that are randomly initialised.

.e above equation can be written compactly as follows:

MR � T, (8)

whereM is known as the output matrix of the hidden layer of
the neural network.

M α1, . . . , αi, β1, . . . , βi, x1, . . . , xi( 􏼁 �

gm α1 · x1 + β1( 􏼁 . . . gi αi · x1 + βi( 􏼁

⋮ ⋮

gm αi · xi + β1( 􏼁 . . . gi αi · x1 + βi( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×i

, (9)

R �

R
T
1

⋮
R

T
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)

T �

t
T
1

⋮
t
T
i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)

where (·)T stands for the transposition operator and the
sigmoid transfer function used in this study. Figure 2 il-
lustrates the structure of ELM with a single hidden layer.

2.5. RandomForest (RF). RF is a machine learning approach
often used to solve problems related to classification and
regression. Basically, it is an extension of the method CART
(classification and regression trees). Decision tree models
generally have many advantages, such as simplicity, ease of
use, and interpretability, but also many disadvantages, such
as poor performance and unsatisfactory robustness.
.erefore, RF can overcome the shortcomings of conven-
tional decision trees by combining the performance of many
randomised decorrelated decision trees to perform predic-
tion or classification tasks efficiently. In addition, RF uses a
modified version of the bootstrap aggregation approach,
called bagging, in which a considerable collection of
decorrelated, noisy, approximately unbiased trees is con-
structed and averaged to minimise model variance and
instability problems [52]. .e RF strategy involves aggre-
gating multiple trees to improve overall prediction accuracy

while achieving low variance and bias. Figure 3 shows RF as a
forest of n trees.

RF is not only able to model high-dimensional, non-
linear relationships but is also resistant to overfitting, has
relative robustness, estimates variable importance, and has
few user-defined parameters [53]. .e hyperparameters of
the RF model strongly influence the performance of the
models, so their values need to be determined precisely. .e
most critical hyperparameters are the number of regression
trees, the proportion of the training dataset used to build the
model, and the leaf nodes.

2.6. Feature Selection. Feature selection (FS) is a dimen-
sionality technique used to eliminate the redundant and
irreversible variables from the data set. .is technique helps
to use the minimum number of features that correctly de-
scribe a given problem in a given domain, resulting in more
straightforward and accurate schemes. In machine learning,
the tool FS is a fundamental concept that significantly
impacts the performance of a prediction model. Machine
learning models are highly influenced by the data features on
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which they are trained. More specifically, the performance of
a model can be affected by features that are not relevant or
only partially relevant. .e other advantages of using FS
before training a prediction model can be summarised as
follows:

(i) Overfitting is reduced by removing redundant data.
When there is less redundant data, it is more
challenging to make decisions based on noise data

(ii) Improves model accuracy: less misleading data
means better modelling accuracy

(iii) Reduces training time: a smaller number of features
reduces the algorithm’s complexity and speeds up
training

2.6.1. Information :eory. Information theory was intro-
duced by Claude E. Shannon to study the quantitative as-
pects of information, including how coding affects
information transmission [54]. Information theory origi-
nated as a mathematical study of whether it is possible to
transmit information reliably and cheaply for a given source,
channel, and fidelity criteria. Shannon’s information theory
defines information as anything that reduces or eliminates
uncertainty. .e model can achieve higher accuracy in
classification tasks if it receives more information because
the predicted classes of new instances are likely to match
their actual classes [55]. Mutual information (MI) is defined
in algorithmic information theory and has an “algorithmic”
relationship. MI is a dimensionless quantity, usually

Bias
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X2
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Input layer Hidden layer Output layer
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Figure 2: .e basic ELM topology.
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Figure 3: .e basic structure of random forest (RF).
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expressed in bits, and can be viewed as a means of reducing
uncertainty about one random variable given knowledge of
another. .e MI between two random variables indicates
how much uncertainty has been reduced. .e lower the
mutual information, the greater the reduction, and zero
means that the variables are strictly independent [56].
Figure 4 shows the structure of information theory.

2.6.2. Genetic Algorithm. .e genetic algorithm (GA) is one
of the most widely used metaheuristic algorithms, a sto-
chastic optimisation technique inspired by natural evolution
[57]. Crossing and mutating chromosomes are an essential
part of the GA process. Each chromosome acts as an in-
dividual solution to the target problem, which is ultimately
expressed in a binary string. .e chromosome population is
essential in the GA process, and its initial values are ran-
domly selected. .en, a chromosome (the best one) that
solves the given problem very well is selected for repro-
duction [58]. .e optimisation process of GA consists of six
steps: initialisation, fitness calculation (objective function),
conditional termination, selection, crossover, and mutation.
.e detailed process of GA is shown in Figure 5. In addition,
only chromosomes that function perfectly are retained for
further reproduction during the fitness evaluation step. .e
process of selection and reproduction is repeated several
times to obtain better chromosomes. After selecting the best
chromosomes, these chromosomes can produce offspring
during the crossover process by exchanging string parts and
gene combinations, resulting in a new solution. A

chromosome is nominated to change a randomly selected bit
through a random exchange during the mutation process.
.e following step is to estimate the generated fitness and
compare it with the termination criteria. .e GA process is
terminated when the termination criteria are met.

2.6.3. Genetic Algorithm-Based Information :eory.
Information theory is generally used for input variable se-
lection. Variable selection attempts to maximise the mutual

Figure 4: .e information theory algorithm

Start Initializing population

Fitness Evaluation

Termination 
criterion?

Select population

Output (optimal 
results)

Crossover

Mutation

End

No
Yes

Figure 5: .e basic structure of GA.
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information of input and output data, either directly or
indirectly. However, this procedure is computationally in-
tensive, as the joint probability distributions must be esti-
mated in order to calculate the joint entropy. .ese
computational costs can be avoided by selecting variables
according to the minimum redundancy/maximum rele-
vance principle, which maximises the mutual information
indirectly and at a low cost. However, the problem of
combinatorial optimisation, where all combinations of
variables are examined, still requires a high computational
cost. Due to this computational cost, some previous works
have proposed a simple incremental algorithm to obtain a
near-optimal solution. Since existing methods are limited,
Clark [59] proposed a code that uses genetic algorithms for
combinatorial optimisation. .e arguments are the desired
number of features (feat_numb), the matrix X in which each
column is an example of a feature vector, and the target data
Y which is a row vector. .e output is a vector of feature

indices that make up the optimal feature, where there is no
relationship between the order and the importance of the
feature set..e full details of this algorithm are provided (see
Algorithm 1).

2.7.ModelDevelopment andPerformance Evaluation. In this
study, two scenarios are created to develop more reliable
models to predict the shear strength values of the deep
beams. Both scenarios are created using a dataset containing
geometric parameters, steel, and concrete properties. Table 2
shows the statistical description of each parameter. .e data
set is divided into two groups: the training phase comprises
two-thirds of the data, while the rest is used to test the
accuracy of the models. All the input and output variables
are normalised (between 0 and 1) to remove the influence of
dimensions and improve the capabilities of the predicting
models [61]. .is method prevents numerical difficulties

Input: I (Xhn
var; Xhm

var) and I (Xhn
var; ytarget)

n� (1, . . ., m): statistical data determined by the previous algorithm (Figure 4);
Nno: the desired number of predictors;
A: selection pressure;
Gmax: maximum number of generations;
NP: size of the population; and
Output: {j} set the indexes of the selected predictors.

(i) Generate a set of NP chromosome CR{ } for the initial population. Each chromosome is a vector CR� [j1, j2, . . . jNno
]

containing the indices of Nno neuron j generated randomly without repeating elements.
(ii) For generation� 1: Gmax, do
(iii) Evaluate the population.
(iv) For idx� 1: NP, do
(v) Calculate V andP for each CR using the following formula by the calculated values of mutual information for all elements of

chromosomes CRi dx.
V � (1/Nno) 􏽐

Nno
i�1 I(Xhi; y)

P � (1/Nno
2) 􏽐

Nno
i�1 􏽐

Nno
k�1 I(Xhi; yK)

(vi) ϕi dx←(V − P): storing the fitness of each idx;
(vii) end for (loop).
(viii) Rank the individuals according to their fitness ϕi dx.
(ix) Store the genes of the best individual into {j}.
(x) Perform the crossover
(xi) k←0.
(xii) For idx� 1: Nno, do
(xiii) k←k + 1.
(xiv) Choose the indices of the parents randomly using the asymmetric distribution [60].
(xv) ωj,i � (1, 2)← random number ∈∈[0, 1] with uniform distribution
(xvi) parentj, i � (1, 2)←round(NP(eaωj − 1)/(ea − 1)) [60];
(xvii) Storing the indices missing in both parents in jabse􏼈 􏼉.
(xviii) Assembling the chromosome CRson

k .
(xix) For n � 1: Nno, do
(xx) Randomly select a parent (i.e., between parent 1 and 2) to get the nth gene for the kth of the individual in the new generation.
(xxi) CRson

k,n←CR(parent 1 or 2,n)

(xxii) Considering the constraint [40],
(xxiii) If there is duplicity of indices in CRson

k , then
(xxiv) Pick up a new index for CRson

k,n from jabse􏼈 􏼉.
(xxv) end if
(xxvi) end for
(xxvii) end for
(xxviii) end for.

ALGORITHM 1: Selection of the best predictors by GA and mutual information.
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from forming numerical attributes with more extensive
ranges from dominating smaller ones. In this study, several
scenarios are developed to estimate the shear strength of deep
beams. .e first scenario is created using standard models
such as LWLR, MLR, RF, and ELM. However, the second
scenario of this study involves the use of feature selection to
choose the most optimal input combination by removing the
variables that contain redundant information. However, the
results of both scenarios are evaluated using various statistical
measures such as coefficient of determination (R2), Nash-
Sutcliffe (NSE), Willmott index (WI), mean absolute error
(MAE), uncertainty interval (U95), and root mean square
error (RMSE). In addition, various visualisations such as
Taylor diagrams, scatter plots, line plots, and bar charts are

produced to provide more information about the best pre-
diction model and to allow better comparison between the
models used. .e mathematical expressions of the statistical
matrices are explained as follows [62, 63]:

RMSE �

��������������������

1
N

􏽘

N

i�1
Yobsi − Ypredi( 􏼁

2

􏽶
􏽴

, (12)

MAE �
1
N

􏽘

N

i�1
Yobsi − Ypredi( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (13)

R
2

� 1 −
􏽐

N
i�1 Yobsi − Ypredi( 􏼁

2

􏽐
N
i�1 Ypredi − μ( 􏼁

, (14)

WI � 1 −
􏽐

n
i�1 Yobsi − Ypredi( 􏼁

2

􏽐
n
r�1 Ypredi − μ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + Yobsi − μ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

2, (15)

NSE � 1 −
1/n􏽐

n
i�1 Yobsi − Ypredi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐
n
i�1 Ypredi − μ( 􏼁

2 , (16)

U95 �
1.96

n

��������������������������������

􏽘

n

i�1
Yobsi − α( 􏼁

2
+ 􏽘

n

i�1
Yobsi − Ypredi( 􏼁

2

􏽶
􏽴

,

(17)

where Yobsi − Ypredi is the measured and predicted shear
strength value of the ith sample,M is the number of samples, and
μ, α is the mean predicted and observed shear strength values.

3. Result and Discussion

In this part of the study, the results of four predictionmodels
for predicting the ultimate shear strength of deep beams are
presented. In this work, two scenarios are created to achieve

Table 2: .e statistical description of the input parameters used in this study.

Category Variable Unit Max. Mean Min. STD IQR

Geometrical parameters

b mm 305.000 122.810 76.000 44.244 30.000
h mm 915.000 523.476 254.000 147.671 160.000
a mm 1290.000 467.734 125.000 238.306 356.000
ho mm 844.000 469.014 216.000 145.175 140.000
lo mm 4065.000 1484.450 500.000 642.367 1100.000

a/ho Non 2.700 1.063 0.220 0.518 0.960
lo/h Non 5.000 2.925 0.910 1.064 1.570

Vertical web reinforcement
Sv mm 457.500 154.679 0.000 122.820 165.100

fyv MPa 586.000 292.920 0.000 175.846 227.400
ρv % 2.450 0.351 0.000 0.407 0.360

Horizontal web reinforcement
Sh mm 801.000 67.816 0.000 96.034 101.250

fyh MPa 586.000 213.697 0.000 207.344 437.400
ρh % 2.450 0.299 0.000 0.419 0.450

Longitudinal reinforcement fyl MPa 504.800 361.755 210.000 86.698 131.000
ρl % 4.080 1.620 0.120 0.713 0.700

Concrete property fc
′ MPa 73.600 30.891 12.260 14.830 23.350

Shear strength capacity Vu kN 1357.000 287.197 67.620 180.332 182.590

Table 3:.e determination of the best input combination using the
ITH-GA tool.

Combinations Absent variable (s) Models

M1 fy

GAITH − ELMM1
GAITH − RFM1
GAITH − MLRM1
GAITH − LWLRM1

M2 ho, fy

GAITH − ELMM2
GAITH − RFM2
GAITH − MLRM2
GAITH − LWLRM2

M3 ho, fy,v, fy

GAITH − ELMM3
GAITH − RFM3
GAITH − MLRM3
GAITH − LWLRM3

M4 ho, lo/h, fy,v, fy

GAITH − ELMM4
GAITH − RFM4
GAITH − MLRM4
GAITH − LWLRM4

M5 b, ho, lo/h, fy,v, fy

GAITH − ELMM5
GAITH − RFM5
GAITH − MLRM5
GAITH − LWLRM5
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the objective of this work. In the first scenario, all the models
used are presented based on all the available input variables.
Furthermore, in this scenario, four standard prediction
models have been developed to predict the shear strength
capacity of reinforced concrete deep beams with and without
web reinforcement. .e models are extreme learning ma-
chine (ELM), random forest (RF), multiple linear regression
(MLR), and locally weighted linear regression (LWLR). .e
second scenario is created using assumed feature selection
(FS) to select the most impressive input variables. .en,
these variables are introduced into the prediction models to
estimate the ultimate shear capacity of the deep bars. In this
case, five input combinations are created based on the as-
sumed FS (see Table 3). .e main purpose of using GAITH
as a feature selection tool is to remove the repetitive in-
formation from the dataset and thus improve the prediction
accuracy. Finally, to evaluate the performance of the adopted
models, we used various statistical parameters, including
error measures and accuracy indices, as well as a graphical
representation. According to the error measures, the pro-
posed model (LWLR) of this study yielded lower prediction
errors than comparable models (MAE� 13.249,
RMSE� 22.563, NSE� 0.974, WI� 0.993). From this table, it
can be inferred that the LWLR model provided more ac-
curate estimates on all statistical measures, followed by the
RF, ELM, and MLR models.

3.1. First Scenario: Standard Models. .is part of the study
looks at the performance results obtained with the standard
models using all input parameters. .e performances of the
models used, such as extreme learning machine (ELM),
random forest (RF), multiple linear regression (MLR), and
locally weighted linear regression (LWLR) during the
training and testing phases, are presented in Table 4. In
general, all the models used performed well in the training
set, yielding high values for NSE and WI. In this phase, WI
ranged between 0.967 and 0.993, while NSE varied between
0.879 and 0.974. From these parameters, it can be seen that
the LWLR model performed better than the other models,
while the MLR model had lower prediction accuracy.

To select the best model, the higher performance of this
model in the training phase is not sufficient because, in this
step, the model receives input variables and their corre-
sponding target. However, the testing phase is crucial and
more reliable to assess the performance of a model.
According to the results shown in Table 4, the LWLR model
provided higher and desired accuracy in predicting the shear
strength capacity compared to other models. .is model
achieved a higher agreement with the actual values with WI
of 0.984, NSE of 0.941, and less prediction error
(MAE� 33.933, RMSE� 57.776). However, the MLR model
performed very poorly and therefore provided undesirable
estimation accuracy (MAE� 61.165, RMSE� 89.651,

Table 4: .e statistical description of the proposed models: first scenario.

Model
Training phase Testing phase

MAE (kN) RMSE (kN) NSE WI MAE RMSE (kN) NSE WI
LWLR 13.249 22.563 0.974 0.993 33.933 57.776 0.941 0.984
RF 18.138 28.613 0.958 0.988 49.068 77.712 0.892 0.964
MLR 36.924 48.692 0.879 0.967 61.165 89.651 0.857 0.953
ELM 23.194 31.045 0.951 0.987 51.999 78.200 0.891 0.968

Table 5: A comparison between the efficiency of the proposed models.

Model
Distribution of data in terms of relative error for each model

Training phase Testing phase
5% 10% 15% 20% 5% 10% 15% 20%

LWLR 62.78 87.78 95.56 98.89 31.96 60.04 75.00 85.87
RF 54.44 80.00 90.00 92.22 22.83 45.65 65.22 75.00
MLR 22.22 43.33 60.56 72.78 17.39 30.43 47.83 59.78
ELM 35.56 61.67 82.22 90.56 18.48 48.91 58.70 68.48

Table 6: A comparison of the performance outcomes for the uncertainty (U95) analysis.

Combination
Models

LWLR RF MLR ELM
M1 21.83 22.48 23.07 22.22
M2 19.73 22.33 23.04 22.27
M3 21.77 22.99 23.06 22.21
M4 20.62 20.79 21.89 20.69
M5 23.38 22.70 24.48 23.00
Without feature selection tool (all inputs) 21.87 22.23 22.76 22.27
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NSE� 0.857, WI� 0.953). .e other important observation
can be drawn from the same table (Table 4): RF and ELM
performed well compared to the MLR model and provided
lower prediction accuracy than the LWLR model. However,
the RF model provided a slightly better prediction than ELM
with an RMSE of 77.712, MAE of 49.068,WI of 0.964, and an
NSE of 0.892. Furthermore, ELM is considered the third best
model and provides much better estimates of shear strength
capacity than the MLR model (MAE� 51.999,

RMSE� 78.22, NSE� 0.891, WI� 0.968). After quantitative
evaluation, the superiority of the LWLRmodel is determined
by its ability to reduce the RMSE criteria during the test
phase. Specifically, the results showed a 34.51%, 55.17%, and
35.35% improvement in estimation by the LWLR model
compared to the RF, MLR, and ELM models, respectively.

Table 5 evaluates the performance of the adopted models
in terms of their efficiency in reducing the absolute relative
error. According to the reported results, the LWLR model
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Figure 6: A comparison between the objectives of the models: (A)–(D) represent the LWLR, RF, MLR, and ELM models, respectively.
Figures (a) and (b) show scatter plots and line plots for the training and test data, respectively, while figure (c) is a Taylor plot based on the
test data. (a) Training data. (b) Testing data. (c) Taylor diagram.
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performed excellently in the test series. 85.87% of the data
had an absolute relative error of less than 20%. .e per-
centage of data that had an absolute relative error of less than
20% was 75%, 59.78%, and 68.48% for RF, MLR, and ELM,
respectively.

A more comprehensive statistical analysis can be seen in
Table 6. .e primary purpose of uncertainty analysis is to
restrict the predicted range in which the actual value of an
experiment’s outcome lies. .e uncertainty interval

describes the estimated range as an interval in this context.
.e results provided in that table showed that the LWLR-M2
model had the lowest value for uncertainty with a 95%
confidence level (U95�19.73).

Visualisation assessment is critical to see how each
model handles a single sample. Scatter plots and line plots
provide essential information about the behaviour of a
model and show the deviation between the actual and
predicted values of shear strength (see Figures 6(a) and 6(b)).

Table 7: .e statistical description of the proposed models using GAITH.

Model
Training phase Testing phase

MAE (kN) RMSE (kN) NSE WI MAE (kN) RMSE (kN) NSE WI
GAITH − LWLRM1 7.934 17.599 0.984 0.996 37.052 58.095 0.940 0.985
GAITH − RFM1 16.656 30.707 0.952 0.987 48.841 90.397 0.854 0.949
GAITH − MLRM1 37.119 51.348 0.865 0.963 63.395 102.509 0.813 0.934
GAITH − ELMM1 25.233 33.696 0.942 0.985 48.096 73.227 0.904 0.972
GAITH − LWLRM2 7.277 17.217 0.985 0.996 33.617 49.519 0.956 0.988
GAITH − RFM2 16.683 28.597 0.958 0.988 47.823 83.513 0.876 0.957
GAITH − MLRM2 37.201 51.366 0.865 0.963 62.842 101.058 0.818 0.937
GAITH − ELMM2 20.898 28.153 0.959 0.990 54.135 80.528 0.884 0.966
GAITH − LWLRM3 8.985 18.180 0.983 0.996 34.583 52.704 0.951 0.986
GAITH − RFM3 17.898 35.099 0.937 0.981 55.390 111.414 0.779 0.914
GAITH − MLRM3 37.641 51.961 0.862 0.962 62.530 101.179 0.818 0.936
GAITH − ELMM3 22.415 30.417 0.953 0.988 50.890 75.503 0.898 0.969
GAITH − LWLRM4 11.650 20.318 0.979 0.995 35.284 59.671 0.937 0.981
GAITH − RFM4 17.444 27.220 0.962 0.990 43.132 69.895 0.913 0.972
GAITH − MLRM4 38.457 54.231 0.849 0.958 66.434 115.355 0.763 0.911
GAITH − ELMM4 15.754 23.483 0.972 0.993 47.852 70.912 0.910 0.975
GAITH − LWLRM5 37.165 49.937 0.872 0.963 62.673 117.293 0.755 0.907
GAITH − RFM5 20.321 35.994 0.934 0.981 59.634 97.587 0.830 0.938
GAITH − MLRM5 50.638 71.069 0.741 0.919 76.135 140.787 0.647 0.851
GAITH − ELMM5 22.061 30.406 0.953 0.988 59.217 114.584 0.766 0.923

Table 8: A comparison between the suggested models’ efficiency in the presence of GAITH.

Model
Distribution of data in terms of relative error for each model

Training phase Testing phase
5% 10% 15% 20% 5% 10% 15% 20%

GAITH − LWLRM1 81.67 95.00 96.67 99.44 32.61 57.61 72.83 83.70
GAITH − RFM1 63.33 77.78 89.44 93.89 31.52 46.74 63.04 71.74
GAITH − MLRM1 26.67 45.56 61.11 70.56 19.57 38.04 50.00 61.96
GAITH − ELMM1 33.89 60.56 77.22 86.67 20.65 44.57 60.87 70.65
GAITH − LWLRM2 82.22 95.56 97.22 99.44 33.70 62.78 77.91 86.78
GAITH − RFM2 60.56 82.78 91.67 93.89 27.17 53.26 65.22 75.00
GAITH − MLRM2 25.56 45.00 61.67 70.56 19.57 38.04 52.17 61.96
GAITH − ELMM2 37.22 65.00 82.22 92.22 21.74 43.48 60.87 71.74
GAITH − LWLRM3 80.56 93.89 97.78 99.44 30.43 60.87 77.17 85.87
GAITH − RFM3 61.11 83.89 90.00 92.22 28.26 50.00 61.96 73.91
GAITH − MLRM3 27.22 45.56 60.00 71.67 21.74 39.13 48.91 63.04
GAITH − ELMM3 35.56 65.56 84.44 91.67 21.74 36.96 57.61 71.74
GAITH − LWLRM4 66.67 91.11 97.22 98.89 33.70 60.87 78.26 85.87
GAITH − RFM4 55.56 78.89 89.44 92.78 29.35 51.09 67.39 75.00
GAITH − MLRM4 25.00 41.11 61.11 72.78 18.48 40.22 51.09 63.04
GAITH − ELMM4 51.67 81.67 92.78 97.22 22.83 48.91 66.30 72.83
GAITH − LWLRM5 23.33 42.22 61.67 75.00 16.30 39.13 52.17 68.48
GAITH − RFM5 57.22 74.44 85.00 90.56 18.48 35.87 54.35 64.13
GAITH − MLRM5 16.11 33.33 43.33 56.11 14.13 29.35 42.39 57.61
GAITH − ELMM5 36.67 65.56 83.33 92.22 22.83 42.39 59.78 71.74
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Figure 6 shows that the performance of all models generally
gives a satisfactory prediction. However, the testing phase
was crucial, and some models gave poor predictions. It is
important to note that the model proposed in this study
(LWLR) was superior to the others in estimating the shear
strength capacity with the highest accuracy (R2 � 0.945)..e

RF models showed good prediction accuracy with R2 �

0.943, followed by the ELM model with R2 � 0.895 and the
MLR model (R2 � 0.892). Another important observation is
that the LWLR model showed an excellent ability to predict
extreme values compared to the other models. Moreover, all
the proposed models except the LWLR model showed that

0 200 400 600 800 1000 1200
0

500

1000

Pr
ed

ic
te

d 
(k

N
)

(A)

y = 5.572 + 0.982x
R2 = 0.984

0 50 100 150 200
0

500

1000

sh
ea

r s
tr

en
gt

h 
(k

N
)

Actual
Predicted

Actual
Predicted

Actual
Predicted

Actual
Predicted

0 200 400 600 800 1000 1200
0

500

1000

Pr
ed

ic
te

d 
(k

N
)

(B)

y = 26.916 + 0.897x
R2 = 0.955

0 50 100 150 200
0

500

1000

sh
ea

r s
tr

en
gt

h 
(k

N
)

0 200 400 600 800 1000 1200
0

500

1000

Pr
ed

ic
te

d 
(k

N
)

(C)

y = 31.193 + 0.880x
R2 = 0.865

0 50 100 150 200
0

500

1000

sh
ea

r s
tr

en
gt

h 
(k

N
)

0 200 400 600 800 1000 1200
Tested (kN)

0

500

1000

Pr
ed

ic
te

d 
(k

N
)

(D)

y = 15.785 + 0.942x
R2 = 0.942

0 50 100 150 200
No.of Observations

0

500

1000

sh
ea

r s
tr

en
gt

h 
(k

N
)

(a)

Actual
Predicted

Actual
Predicted

Actual
Predicted

Actual
Predicted

0 500 1000 1500
0

500

1000

1500

Pr
ed

ic
te

d 
(k

N
)

(A)

y = -1.783 + 0.993x
R2 = 0.943

0 20 40 60 80 100
0

500

1000

1500

sh
ea

r s
tr

en
gt

h 
(k

N
)

0 500 1000 1500
0

500

1000

1500

Pr
ed

ic
te

d 
(k

N
)

(B)

y = 84.614 + 0.675x
R2 = 0.931

0 20 40 60 80 100
0

500

1000

1500

sh
ea

r s
tr

en
gt

h 
(k

N
)

0 500 1000 1500
0

500

1000

Pr
ed

ic
te

d 
(k

N
)

(C)

y = 95.777 + 0.664x
R2 = 0.860

0 20 40 60 80 100
0

500

1000

sh
ea

r s
tr

en
gt

h 
(k

N
)

0 500 1000 1500
Tested (kN)

0

500

1000

1500
Pr

ed
ic

te
d 

(k
N

)

(D)

y = 49.531 + 0.833x
R2 = 0.912

0 20 40 60 80 100
No.of Observations

0

500

1000

1500

sh
ea

r s
tr

en
gt

h 
(k

N
)

(b)

0 200
Standard Deviation

0

200

St
an

da
rd

 D
ev

ia
tio

n

0

42
84

126
168

210
252

294
336

1

0.99

0.95

0.9

0.8

0.7
0.6

0.5
0.4

0.30.20.10

GAITH-ELMM1

GAITH-LWLRM1

GAITH-MLRM1

GAITH-RFM1

Observed

RM
SD

Correlation Coefficient

(c)

Figure 7: A comparison between the objectives of the models: (A)–(D) represent the GAITH − LWLRM1, GAITH − RFM1, GAITH −

MLRM1, andGAITH − ELMM1 models, respectively. Figures (a) and (b) show scatter plots and line plots for the training and test data,
respectively, while figure (c) is a Taylor plot based on the test data. (a) Training data. (b) Testing data. (c) Taylor diagram.
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several predicted samples are far from the ideal line. .e
Tayler diagram is one of the most important figures for
visually assessing the performance of a particular prediction
model. .is figure summarises three important statistical

criteria: root mean square error (RMSE), standard deviation,
and correlation coefficient. Figure 6(c) shows that the LWLR
model is close to the actual data set compared to the other
models. It has the highest correlation coefficient, the lowest
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Figure 8: A comparison between the objectives of the models: (A)–(D) represent the GAITH − LWLRM2, GAITH − RFM2, GAITH −

MLRM2, andGAITH − ELMM2 models, respectively. Figures (a) and (b) show scatter plots and line plots for the training and test data,
respectively, while figure (c) is a Taylor plot based on the test data. (a) Training data. (b) Testing data. (c) Taylor diagram.
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RMSE, and a lower standard deviation than the observed
data set.

3.2. Second Scenario: Selection of Features Based on Prediction
Models. .is section focuses on using GAITH, a feature
selection tool based on a mixture of information theory and

genetic algorithms. .e main advantage of using GAITH is
to select the most efficient input variables that have the most
significant impact on shear strength capacity and to mini-
mise redundant information between variables. As men-
tioned earlier, five input combinations were selected using
the GAITH algorithm. Table 7 summarises the performance
of the models used based on GAITH. From Table 7, it can be
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Figure 9: A comparison between the objectives of the models: (A)–(D) represent the GAITH − LWLRM3, GAITH − RFM3, GAITH −

MLRM3, andGAITH − ELMM3 models, respectively. Figures (a) and (b) show scatter plots and line plots for the training and test data,
respectively, while figure (c) is a Taylor plot based on the test data. (a) Training data. (b) Testing data. (c) Taylor diagram.
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seen that the GAITH-based LWLR model
(GAITH − LWLRM2) showed excellent performance in
predicting shear strength capacity over comparable models
in the training and testing phases. For example, GAITH −

LWLRM2 gave the lowest measured error (RMSE� 49.519,
MAE� 33.617) and higher prediction accuracy (NSE� 0.954
and WI� 0.988). Based on the evaluations shown in this

table, the RF model with the m4 combination gave a good
estimate (RMSE� 69.895, MAE� 43.132, NSE� 0.913, and
WI� 0.972) but relatively lower than that of the LWLR
model. However, the MLR model is found to provide the
worst estimates as it could not account for the nonlinear
relationship between the shear strength capacity and the
geometric and concrete and steel properties. On the other
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Figure 10: A comparison between the objectives of the models: (A)–(D) represent the GLWLRM4, GAITH − RFM4,

GAITH − MLRM4, andGAITH − ELMM4 models, respectively. Figures (a) and (b) show scatter plots and line plots for the training and test
data, respectively, while figure (c) is a Taylor plot based on the test data. (a) Training data. (b) Testing data. (c) Taylor diagram.
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hand, ELM proved to be much better than MLR for the first
combination (m1) and provided good prediction accuracy
(RMSE� 58.095, MAE� 37.052, NSE� 0.940, WI� 0.98),
which was, however, slightly lower than that of the RF
model. For further evaluation, the cumulative percentage of
absolute relative error was calculated and summarised in
Table 8. .e main result is that the proposed model (LWLR)

produced a large percentage of data with less than the ab-
solute relative benchmark error in each input combination
(i.e., 5%, 10%, 15%, and 20%). For the M2 combination, the
proposed model (GAITH − LWLRM2) showed efficient
performance, and 86.78% of the data set had an absolute
relative error of less than 20%. Moreover, for the combi-
nation m4, the table shows that more than 78% of the shear
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Figure 11: A comparison between the objectives of the models: (A)–(D) represent the GLWLRM4, GAITH − RFM4,

GAITH − MLRM4, andGAITH − ELMM4 models, respectively. Figures (a) and (b) show scatter plots and line plots for the training and test
data, respectively, while figure (c) is a Taylor plot based on the test data. (a) Training data. (b) Testing data. (c) Taylor diagram.
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strength capacity estimated with the LWLR had an absolute
relative error of less than 15%, while the corresponding
values for the RF, MLR, and ELM models were 67.26%,
51.09%, and 66.30%, respectively. In this respect, MLR
showed undesirable accuracy in all cases compared to the
other prediction models.

Several graphs were generated during the training and
testing datasets to further evaluate the impact of the GAITH
approach on the predicted models (Figures 7–11). .ese
figures provide essential information about the performance
of each proposedmodel based on different input parameters.
In general, the LWLR, in combination with GAITH, pro-
vided much more accurate estimates than other comparable
models. It can also be visually seen that the M2 combination
performed best in terms of the highest prediction accuracy.
Among all the proposed models built with five input
combinations, the GAITH − LWLRM2 model stood out as
the best model. .e accuracy of this model was the highest
with R2 � 0.962 during the testing phase in terms of shear
strength prediction..e Taylor diagram in Figure 8(c) shows
a satisfactory agreement between the actual and estimated
data to illustrate the comparison between the adopted
models better. It also shows that the estimates for GAITH −

LWLRM2 are closest to the point corresponding to the actual
data. .us, these results prove that the GAITH − LWLRM2
model was the best in terms of generalisation abilities and
performed satisfactorily in both the training and testing
phases.

.e improvement of each model during the training
and testing phase through GAITH is summarised in

Figures 12–14. It is important to note that the MLR showed
very poor estimates and therefore should not be used as a
comparative model at this stage. In general, LWLR im-
proved more significantly than other models due to the
presence of the GAITH algorithm. More specifically, the
performance of the hybrid model (GAITH − LWLRM2)
outperformed the standard model (LWLR) during the
training phase in terms of reducing the predicted errors by
45.08% and 23.69% for MAE and RMSE, respectively.
Looking at the performance of the RF model before and
after using the feature selection tool, a slight improvement
is observed after using the GAITH algorithm, with the
reduction in RMSE and MAE being 4.87% and 3.83%,
respectively. However, the ELM model was not run effi-
ciently with fewer input parameters. .is model required
an extensive data set and complete input vectors to learn
well, while other models performed efficiently with fewer
input parameters. Nevertheless, all models used in the test
phase improved their capacity prediction with the presence
of the GAITH algorithm..e LWLR and GAITH algorithm
combination provided the most accurate predictions
compared to the other models. .e superiority of GAITH −

LWLRM2 was clearly shown in the reduction of RMS pa-
rameters by 29.15% and 47.88% compared to the GAITH −

RFM4 and GAITH − ELMM1 models, respectively. Finally,
Taylor plots (see Figures 15 and 16) are produced
throughout the training and testing phase, showing that
there is perfect agreement between the shear strength data
predicted by the GAITH − LWLRM2 model and the actual
values.
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Figure 12: Comparison between the proposed models before and after using feature selection algorithm: training phase.
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Figure 13: Comparison between the proposed models before and after using feature selection algorithm: testing phase.
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Figure 14: Improvement of the correlation of determination in the
proposed models using the feature selection algorithm.
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4. Conclusion

As the reinforced concrete deep beams are essential com-
ponents for load distribution, the design is still challenging
due to the problem of shear stress. Several nonlinear factors
influence the behaviour of the shear strength capacity, making
the accurate estimation of this parameter challenging. Ac-
curate estimation of shear stress for deep beams would help
designers to design a better and safer structure to prevent
structural failure, thus saving lives and property. One of the
most critical factors for an efficient and accurate prediction
model is the selection of input combinations. In this study,
GAITH is introduced based on the integration of genetic
algorithm and mutual information to determine the most
influential input parameters. .is method is developed to
overcome some of the shortcomings of classical data-driven
input selection. Instead of the trial-and-error technique or the
linear correlation, this study presented a robust method for
selecting input combinations for prediction models. .e
structure of the proposed models includes locally linear re-
gression (LWLR) based on the radial basis kernel function,
multiple linear regression (MLR), random forest (RF), and
extreme learning machine (ELM). .e integration between
the GAITH algorithm and the aforementioned data-driven
models yields promising results. Moreover, the performance
of the models (except MLR) is significantly improved by the
GAITH algorithm in terms of shear strength prediction.More
specifically, the LWLR-GAITH model achieved the highest

prediction accuracy in reducing root mean square error by
29.15% to 47.88% compared to the applied models
(MLR − GAITH, ELM − GAITH, and RF − GAITH). .e
main reason for the improvement in prediction is the
presence of the GAITH algorithm, which selects the most
influential input combination that contains a minimum of
redundant data and a maximum of useful information. Re-
dundant data complicate the model’s training process and
have a negative impact on the generalisation of the model.
Another important finding of this study is that the LWLR −

GAITH model needs only two input variables to achieve the
best prediction accuracy, while the other comparable models
need four predictors. It is essential to mention that among the
different parameters (i.e., geometry, concrete, and steel
properties), the effective height (ho) and fy are themost critical
parameters that greatly influence the shear strength capacity.
In conclusion, this study recommends the application of the
methodology used (LWLR − GAITH) to solve various
problems related to the structure.

Abbreviations

b: Beam width
h: Beam height
A: Shear span
ho: Effective height
lo: Beam span
a/ho: Shear span to-effective height ratio
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fyv: Vertical reinforcement strength
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Sh: Horizontal reinforcement spacing
fyh: Horizontal reinforcement strength
ρh: Horizontal reinforcement ratio
fyl: Longitudinal reinforcement strength
ρl: Longitudinal reinforcement ratio
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Vu: Beam shear strength
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ANN: Artificial neural network
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R: Coefficient of correlation
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GBDTs: Gradient boosted decision trees
NSE: Nash-efficiency coefficient
WI: Willmott-index
ACI: American concrete institute
CSA: Canadian standard association
SFA: Smart artificial firefly colony algorithm
LS: Least-squares
RBF: Radial basis function kernel
RF: Random forest
AdaBoost: Adoptive boosting
GBRT: Gradient boosting regression tree
DT: Decision tree
EMARS: Evolutionary multivariate adaptive regression

splines
BPNN: Back-propagation neural network
RBFNN: Radial basis function neural network
STD: Standard deviation
COV: Coefficient of variation
AVG: Average
CSTM: Cracking strut-and-tie model.
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Drought is a creeping phenomenon that slowly holds an area over time and can be continued for many years. )e impacts of drought
occurrences can affect communities and environments worldwide in several ways. )us, assessment and monitoring of drought
occurrences in a region are crucial for reducing its vulnerability to the negative impacts of drought. )erefore, comprehensive drought
assessment techniques and methods are required to develop adaptive strategies that a region can undertake to reduce its vulnerability to
drought substantially. For this purpose, this study proposes a new method known as a regional comprehensive assessment of me-
teorological drought (RCAMD). )e Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index
(SPEI), and Standardized Precipitation and Temperature Index (SPTI) are jointly used for the development of the RCAMD. Further, the
RCAMD employs Monte Carlo feature selection (MCFS) and steady-state probabilities (SSPs) to comprehensively collect information
from various stations and drought indices. Moreover, the RCAMD is validated on the six selected stations in the northern areas of
Pakistan. )e outcomes associated with the RCAMD provide a comprehensive regional assessment of meteorological drought and
become the initial source for bringing more considerations to drought monitoring and early warning systems.

1. Introduction

Drought is a multifaceted phenomenon triggered by a defi-
ciency of precipitation, and its related impacts have severe
effects on weather-related events, natural ecosystems, forestry,
economy, agriculture, and environment [1–5]. It progres-
sively holds an area over time, can be persisted for a long time,
and distressed agricultural [6–8], environmental [9–11], and
socioeconomic conditions [12–14]. Furthermore, it exhibits
substantial spatial and temporal variability in various climates
and regions. Several authors have proposed various proce-
dures and frameworks to address the spatial and temporal
variability of drought events [15–20]. However, it is

considered a highly variable complicated phenomenon, and it
is challenging to discover its onset and termination periods
[21–24]. )e complication in drought assessment and
monitoring underpins the need for new drought assessment
and monitoring methods and procedures [25–28].

Wilhite and Glantz [1] categorized the drought into
several categories, i.e., “meteorological, agricultural, hydro-
logical, and socioeconomic.” Yihdego et al. [29] have defined
meteorological drought as a prolonged precipitation deficit
over time. )e precipitation data have been used as a single
input variable to mark meteorological drought occurrences
and onsets [25, 26, 28, 30–33]. )e continuous shortfall in
precipitation interlinks the meteorological drought to the
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agricultural drought. )e agricultural drought manifests itself
as a deficiency in precipitation, a deficit in soil moisture
condition, crop failure, etc. [34, 35]. Further, the prolonged
period without rainfall becomes the root of the hydrological
drought [36, 37]. Hydrological drought manifests itself as
decreased streamflow eviction and falling water level in lakes,
groundwater, or reservoirs [38].)e hydrological drought can
be damaging and cause severe societal impacts if not alleviated
timely. )e drought of socioeconomic concerns the supply
and demands of the economic goods and is associated with
the other three types of drought [39]. An extended period
with a deficit in precipitation leads to crop failure issues, a
shortage of water supply, and industrial and economic pro-
ductivity [40]. Increasing demand for goods can lead to ex-
ploitation, resulting in vast socioeconomic influences and
conflicts. In the recent past, drought has become one of the
most dangerous natural hazards and disturbed economic and
environmental sectors worldwide [41–44].

Distinctively, drought has been assessed under meteo-
rological, agricultural, hydrological, and socioeconomic as-
pects by developing various indices that have been discussed
and employed in various publications [45–58].)e indices are
essential components for assessing and monitoring drought
since they simply quantify the complicated interrelationships
between varying climate and climate-related parameters
[59–63]. Wilhite et al. (2000) have defined that indices are
developed to communicate information related to climate
anomalies to diverse users and allow researchers to evaluate
climate anomalies quantitatively in terms of spatial extent.
Several drought indices are established and employed to
quantitatively assess the impacts of several kinds of droughts
to provide helpful information for planning, organizing, and
various management applications of water resources associ-
ated with several users and the environment [45–51, 64–67].

Along with the numerous indices proposed for assessing
the meteorological drought, some specific indices are ex-
tensively used. In particular, Palmer’s Drought Severity Index
(PDSI) was presented and used [68, 69]. )e index was
created to “ measure the cumulative departure of moisture
supply.” )e PDSI is commonly used by the United States
(USA). Further, instead of precipitation variability, the PSDI
expands its assurance of drought on water supply and de-
mand. )e PDSI comprises important determinants, in-
cluding data on soil temperature and precipitation. By
incorporating these determinants as inputs, the PDSI analyzes
four terms in the water balance equation (“evapotranspira-
tion, moisture, soil recharge, and runoff”). Another exten-
sively used index for the characterization of the
meteorological drought is the Standardized Precipitation
Index (SPI) [46, 70–73]. )e SPI comprises only a single
determinant, which is precipitation, and thus, SPI uses pre-
cipitation as an input to describe the water deficit. SPI is a
renowned index, extensively used to assess and monitor
meteorological drought. )e SPI is less complicated than the
PDSI. )erefore, it can be applied in any place by trans-
forming the precipitation data from a skewed distribution to a
normal distribution. Moreover, SPI with longer time scales
can indicate the agricultural and hydrological drought

[71, 74, 75]. For instance, the SPI for a nine-month time scale
with a value less than −1.5 is an alert for the agricultural
drought [59]. )e streamflow, reservoir level, etc., can be
reflected by positioning SPI at a twelve-month time scale.
)erefore, SPI is famous and operational in numerous papers
and publications [51, 76]. Further, the Standardized Precip-
itation Evapotranspiration Index (SPEI) is also a well-known
index proposed by [50] that triggers the effect of temperature
variability on drought estimation. Numerous analyses have
employed SPEI for the drought evaluation [77–83], and
Standardized Precipitation and Temperature Index (SPTI) by
[84] is also considered in multiple studies for the assessment
of meteorological drought [76, 84–86].

Considerable research has been done to quantify and
understand the complex and meteoric nature of the drought
[77, 78, 80, 81, 83, 87–90]. However, the manifestation of the
drought nature is very complex [91]. )e complexity of
determining its pattern reinforces the development of new
techniques and methods [92, 93]. )e appropriate methods
and procedures can help to minimize its meteoric influence
in various parts of the world [87] [94] [90, 95]. However, the
applications of the new methods may be better described by
investigating drought at the regional level. Recently, nu-
merous studies have been done to timely examine the
drought occurrences in various regions. )erefore, the study
of the particular region has significant importance; thus,
current research is applied to the specific region.)e selected
region has a homogeneous pattern of drought occurrences
concerning specific drought indices and a time scale (one-
month time scale) [76, 96–99]. Ali et al. [96] examined
meteorological drought based on three indices (SPI, SPEI,
and SPTI). )e study found that the three indices provide
similar information about the selected region for the par-
ticular time scale. Hence, investigating meteorological
drought from the selected homogeneous locations using
several meteorological indices (SPI, SPEI, and SPTI) be-
comes counterproductive. )is issue underpins the use of
some new drought assessment methods that provide com-
prehensive information based on these indices. )erefore,
this study proposes a new method, known as regional
comprehensive assessment for meteorological drought
(RCAMD). )e RCAMD comprehensively collects infor-
mation from several stations and drought indices using
Monte Carlo feature selection (MCFS) and steady-state
probabilities (SSPs). Further, the RCAMD mainly helps to
overcome two issues. For instance, the first phase of the
RCAMD chooses important stations more comprehensively
for three indices from six homogeneous stations. In the
presence of influential climatic factors in estimating the
drought indices, the second phase of RCAMD characterizes
several drought classes more comprehensively and accu-
rately among the three indices (SPI, SPEI, and SPTI).
Moreover, the six stations in the northern areas of Pakistan
are selected to validate RCAMD. )e findings associated
with the RCAMD propose a comprehensive regional as-
sessment of meteorological drought and create the initial
basis for taking more considerations for assessing and
monitoring drought at the regional level.
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2. Material and Methods

2.1. Description of the Study Area. )e substantial climate
changes have increasingly become a primary global task that
endangers ecological, human, and natural systems [100–102].
Pakistan is extremely in danger of the undesirable influences
of climate change, specifically extreme hydrometeorological
activities [103–108]. )e selected region is located in the
northeastern part of Pakistan, spread over 72,971 square km,
almost half of which covers peaks of mountains, glaciers,
highlands, and lakes. )e selected region has structural sig-
nificance for other parts of the country. It has a key role in the
agricultural sectors and the reservoir system of the country
[109, 110]. However, it is highly at risk of climate change due
to its geological composition, fragile mountain, topography,
ecosystem, geographic locations, socioeconomic conditions,
and scattered population [111]. )us, the selected region
requires more consideration for assessing the drought

manifestations by developing comprehensive and proficient
methods and procedures. Hence, the RCAMD method is
designed for the selected region, enhancing the ability to
assess drought events and facilitating droughtmonitoring and
water resource management in the selected area (Figure 1).

2.2. Data andMethods. )e data ranging from January 1971
to December 2017 are processed in the current analysis. )e
six stations in the northern areas are selected to calculate the
indices (SPI, SPEI, and SPTI). )ese indices use information
from the indicators (precipitation and temperature) to
classify drought classes in the selected stations. )e data of
these indicators have been used in several publications
[86, 97, 98, 112–114]. )e various drought classes of the
selected stations and indices are used to propose RCAMD.
)e new proposed RCAMD usesMCFS and SSP to assess the
information more intensively for the drought classes from
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Figure 1: Geographical locations of the six selected stations in northern areas of Pakistan. )e selected stations are important for the
reservoir systems of the country. Most of the agricultural lands of the country depend on the reservoir systems that are linked to the selected
stations. Several publications related to drought analysis [86, 97–99] have been based on these stations. Based on these publications and
importance of the stations for the reservoir systems, therefore, these stations are selected for the current analysis.
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the selected stations and indices. Moreover, the outcomes
associated with RCAMD comprehensively assess drought
classes for the homogeneous region.)e RCAMDdevelops a
new way of taking more consideration for evaluating and
monitoring drought at the regional level.

2.2.1. Monte Carlo Feature Selection (MCFS). Niaz et al. [85]
used MCFS for selecting informative stations for their analysis.
)ey applied MCFS in the Punjab region of Pakistan and
selected important stations based on SPTI. However, in this
study, MCFS uses three drought indices (SPI, SPEI, and SPTI)
to select important stations. )us, the MCFS selects an im-
portant meteorological station for each drought index. For
example, for SPI the MCFS selects Astore as an important
station; for SPEI, the MCFS selects Gilgit as an important
station. Further, for SPTI, the MCFS selects Astore as an
important station for the preliminary analysis.)eMCFS input
enables the RCAMD to collect information from various
stations comprehensively. )e suitable stations are chosen
based on relative importance (RI) values. )e mathematical
detail about the RI is given in [85]. For the current analysis, the
Astore Station with RI value of 0.1385 is higher than other
selected stations for SPI. For SPTI and SPEI, the Astore and
Gilgit are selected, respectively. In Astore, the RI value for SPTI
is 0.1920, while SPEI for Gilgit has RI value of 0.7617.

2.2.2. Steady-State Probabilities (SSPs). A Markov process
can be expressed as the probabilities come up to the SSP when
certain periods have been passed. )e comprehensive
mathematical details associated with the SSP of the Markov
chain were described in Stewart (2009).)e application of SSP
is provided in several publications [76, 97]. Niaz et al. [85]
used SSP as a weighting scheme from the long-run time-series
data for different drought classes in the northern region of
Pakistan. )e proposed weighting scheme was used to ac-
cumulate information from the selected homogeneous sta-
tions. Further, Niaz et al. [97] used SSP to substantiate the
prevalence of drought intensities in the northern region of
Pakistan.Moreover, Niaz et al. [98] proposed a new technique
based on SSP to accumulate information from various indices.
Recently, Niaz et al. [99] incorporated SSP in their study to
assess the probability of drought severity in the selected re-
gion. )e SSP is used broadly in several publications to de-
velop new methods and procedures [97–99, 113]. )erefore,
in RCAMD, SSP is used to propagate weights for various
drought categories over several stations and indices to achieve

a particular aspect. In the current analysis, SSPmainly helps to
characterize the new vector of drought classes. )e inclusion
of MCFS and SSP in RCAMD makes the study innovative.
)is innovation provides a comprehensive procedure to
collect information from several stations and indices.

2.2.3. Regional Comprehensive Assessment of Meteorological
Drought (RCAMD). )eRCAMDemploysMCFS and SSP to
mainly determine drought events that are likely to occur in
the region from numerous stations and drought indices. )e
MCFS technique is used to accumulate comprehensive in-
formation on several time-series data of meteorological sta-
tions. )e mathematical detail of MCFS is given in Niaz et al.
[85]. In the first phase of the RCAMD, the MCFS allows the
selection of more important stations based on several selected
indices. )ree drought indices (SPI, SPEI, and SPTI) are used
in RCAMD to determine important stations. Hence, the
MCFS selects an important meteorological station for each
drought index separately. )e criteria for selecting an im-
portant station are based on relative importance (RI). )e
higher values corresponding to any stations show that the
stations are important for the preliminary investigation. For
example, based on the higher value of RI using SPEI, the
MCFS chooses Gilgit as an important station, and for SPI, the
MCFS takes Astore as an important station. Moreover, for
SPTI the MCFS picks Astore as an important station for the
computation of RCAMD. In the second phase of the
RCAMD, the SSP is applied to characterize several drought
classes among the three indices (SPI, SPEI, and SPI). )e
completemathematical detail related to the SSP of theMarkov
chain is given in Stewart (2009). )e SSP is used in several
publications to develop new procedures and methodologies
[76, 97]. )e SSP characterizes various drought categories
among selected stations and indices in this study. )e SSP for
each drought category (k) ((“Extremely Dry (ED),” Extremely
Wet (EW),” “Severely Dry (SD),” “Severely Wet (SW),”
Median Dry (MD),” “Median Wet (MW),” and “Normal Dry
(ND)”) for each index (l) (SPI, SPEI, and SPTI) in the
particular station (m) can be expressed in a vector as (SSP)klm.
)e obtained SSP for the varying drought categories can be
described as the visit of the drought category in the long run.
)ese long-run SSP of several drought categories is counted as
weights. )ese weights are further utilized for the compu-
tation of RCAMD.)e calculation of RCAMD is based on the
vector of the stationary drought categories propagating on
different drought indices, which can be identified as follows:
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)e obtained limiting probabilities (􏽑i(SPI),
, 􏽑i(SPTI), 􏽑i(SPEI)) can be referred to as the proportion
or average of long-run probabilities of the drought states or
categories for the varying indices (SPI, SPTI, and SPEI) on
selected stations. )ese probabilities are used as weights for
the computation of the RCAMD, which assigns the com-
prehensive weights to the varying drought categories from

the selected stations. )e flowchart of the RCAMD is given
in Figure 2. Moreover, the drought states among selected
drought indices (SPI, SPTI, and SPEI) that take maximum
weights are chosen for the RCAMD. Hence, in the current
research, the RCAMD selects the appropriate vector of
drought classes from the time-series dataset for January 1971
to December 2017. )e RCAMD enables a clearer, though

Classification
of various
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classes using
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of various
drought

classes using
SPEI

Classification
of various
drought

classes using
SPTI

MCFS is used to select the important
meteorological stations for the

analysis

Re Data
mining by
RCAMDEnd

SPI calculated
from the

selected stations

SPEI calculated
from the 

selected stations
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from the

selected stations
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Among six stations
an MCFS based

selected station for
SPI for data mining

Among six stations
an MCFS based

selected station for
SPEI for data mining

Among six stations
an MCFS based

selected station for
SPTI for data mining

Steady-state probabilities are used
to assign weights for different

drought categories 

Figure 2: Flowchart of the RCAMD. In starting the RCAMD, three varying indices are calculated for the drought analysis. )ese calculated
indices are further used for the drought classification.)e drought classification criteria implemented in several publications [115] and Niaz
et al. [76, 96, 97, 99] are used in the current research. In the next step, the MCFS is applied using three drought indices (SPI, SPEI, and SPTI)
for selecting important stations. Consequently, the MCFS chooses an important meteorological station for each drought index. )e use of
MCFS input enables the RCAMD to accumulate information from various stations comprehensively. Moreover, in RCAMD, SSP is
employed to disseminate weights for numerous drought categories over various stations and indices. )e SSP mainly employs to
characterize the new vector of drought categories. Conclusively, the resultant data mining vector based on MCFS and SSP in RCAMD
provides a comprehensive information from several stations and indices.
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complicated, representation of how interconnected indices
are further associated and linkable to a distinctive set of
comprehensive outcomes. Further, RCAMD can be utilized
to locate the proper vector of drought classes for any long
time-series data in a homogeneous environment. )e out-
comes associated with the RCAMD provide a comprehen-
sive regional assessment of meteorological drought and
become the initial source for bringing more considerations
to drought monitoring and early warning systems.

3. Results

)e time-series data are collected for six meteorological
stations from the northern areas of Pakistan. )e varying
features, including mean, 1st quartile, median, 3rd quartile,
kurtosis, and standard deviation (St.Dev) of the precipita-
tion, are given in Table 1. Table 2 contains the varying
characteristics of the minimum temperature. )e various
features of the maximum temperature are given in Table 3.
Further, these climatological features are presented in

various figures. For example, the climatological features of
the monthly precipitation observed in varying stations are
presented on various maps in Figure 3. )e climatological
characteristics of the observed minimum temperature in
various stations are presented in Figure 4.)e climatological
features of the observed maximum temperature in various
stations are presented in Figure 5. Further, the drought
categories are classified according to Li et al. [115]. )e
varying behavior of the classes can be observed in the se-
lected time-series data. However, for simplicity, the results
for the specific year (2017) based on SPI, SPEI, and SPTI are
provided. In Table 4, the results for the year 2017 based on
SPI are given.)e varying drought classes can be observed in
varying months of the selected year. Further, the index
values corresponding to each drought category are provided.
Table 5 contains the classified values based on SPEI, and the
classified values observed in varying months and their
corresponding index values based on SPTI are given in
Table 6. )e temporal behavior in the selected period,
January 1971 to December 2017, in varying stations for the

Table 1: Climatological features of the monthly precipitation data observed in numerous locations (stations) in the northern areas. )e
mean (40.91) of precipitation in Astore is observed higher among other stations. )e standard deviation (St.Dev) of the Astore is also larger
than any other selected stations. Moreover, other characteristics of the Astore and other stations can be followed accordingly.

Variable Astore Bunji Gupis Chilas Gilgit Skardu

Precipitation

Mean 40.91 14.34 16.86 16.76 12.42 20.63
1st quartile 10.80 1.30 0.00 0.95 1.10 2.30
Median 25.70 7.10 5.70 7.00 6.05 9.10

3rd quartile 52.63 17.10 19.38 19.33 14.73 26.75
Kurtosis 3.01 7.67 14.05 9.02 10.08 5.70
St.Dev 41.93 18.90 30.21 23.53 16.57 25.90

Table 2: Climatological features of the monthly minimum temperature (MinT) data are given. )e minimum temperature was observed in
several stations.)emeanMinT in Chilas is 15.14, which is higher than other selected stations.)eminimummean of theMinT is observed
in Astore. )e mean value of MinT in Astore is 4.34. )e St.Dev in Chilas is 9.08, and in Astore, the St.Dev is 7.48. )e larger St.Dev is
observed in Chilas Station. Moreover, other climatological features of the selected stations can be observed accordingly.

Variable Astore Bunji Gupis Chilas Gilgit Skardu

Minimum temperature

Mean 4.34 11.86 6.74 15.14 8.07 5.06
1st quartile −2.43 3.78 −1.10 5.68 0.60 −2.73
Median 4.30 11.50 6.90 14.30 7.75 5.55

3rd quartile 10.70 17.70 13.33 23.20 13.53 11.80
Kurtosis −1.22 −1.24 −1.26 −1.41 −1.24 −1.17
St.Dev 7.48 7.80 8.06 9.08 7.30 8.36

Table 3: Climatological features of the monthly maximum temperature (MaxT) are given. )e MaxT was observed in varying stations for
the selected time period.)emean of MaxT in Gilgit is observed high.)emean value of theMaxT in Gilgit is 25.46. In Skardu, the mean of
the MaxT is 19.92. In Skardu, the St.Dev of the MaxT is 9.82. )e highest St.Dev is observed in Chilas Station, which is 9.66. )e smallest
St.Dev of the MaxT was observed in Bunji Station. Further, other features of the MaxT can be found accordingly.

Variable Astore Bunji Gupis Chilas Gilgit Skardu

Maximum temperature

Mean 16.66 25.19 19.95 27.92 25.46 19.92
1st quartile 7.38 15.78 10.33 17.68 15.60 9.95
Median 16.70 24.95 19.70 27.35 25.15 20.05

3rd quartile 23.86 32.02 27.40 35.63 32.80 27.90
Kurtosis −1.36 −1.32 −1.30 −1.38 −1.33 −1.24
St.Dev 8.65 8.98 9.46 9.66 9.21 9.82
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SPI at a one-month time scale (SPI-1) is presented in Fig-
ure 6. Figure 7 presents the temporal behavior of the SPEI on
a one-month time scale (SPEI-1) at selected stations. Fig-
ure 8 shows the temporal behavior of the SPTI at a one-
month time scale (SPTI-1) at various stations. Moreover, the
varying drought categories observed in various stations for
SPI at a one-month time scale are presented in Figure 9.
Figure 10 contains various maps for the varying drought

categories observed in various stations for SPEI at a one-
month time scale. )e drought categories classified based on
SPTI at a one-month time scale and observed in varying
stations are presented in Figure 11. )e northern zones of
Pakistan (i.e., Astore, Bunji, Chilas, Gupis, Skardu, and
Gilgit) have a homogeneous pattern of the drought classes
for the specific drought indices and time scale [76, 96, 97, 99]
and therefore selected for the current analysis. )ree indices,

Skardu

Gupis

Chilas

Gilgit

Astore

Bunji

Mean
12.42
14.34
16.76

16.85
20.63
40.91

Skardu

Gupis

Chilas

Gilgit

Astore

Bunji

1st_Quartile
0
0.95
1.1

1.3
2.3
10.8

Skardu

Gupis

Chilas

Gilgit

Astore

Bunji

Median
5.7
6.05
7

7.1
9.1
25.7

Skardu

Gupis

Chilas

Gilgit

Astore

Bunji

3rd_Quartile
14.73
17.1
19.33

19.38
26.75
52.63

Skardu

Gupis

Chilas

Gilgit

Astore

Bunji

Kurtosis
3.01
5.7
7.67

9.02
10.08
14.05

Skardu

Gupis

Chilas

Gilgit

Astore

Bunji

St_Dev
16.57
18.9
23.53

25.9
30.21
41.93

Figure 3: Climatological characteristics of the observed precipitation in various stations.
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Figure 4: Climatological characteristics of the observed minimum temperature in various stations.
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SPI, SPEI, and SPTI, have shown a significant correlation
and provided similar information in varying stations at a
one-month time scale [76, 96, 116]. However, this study
found a gap in the above research and proposed a new
method that provides more comprehensive results. )e
mentioned research considered all stations for their analysis.
)us, considering all stations for drought analysis in a region
with a similar pattern of drought occurrences seems
counterproductive. It underpins a new gap that should be
tackled by comprehensively accumulating information.
Based on this gap, this study proposed to provide a more
comprehensive drought assessment procedure for the

region. For this purpose, the current research comprehen-
sively offers an RCAMD method to accumulate information
from numerous stations and drought indices. )e RCAMD
is based on two phases. In the first phase of the RCAMD, the
MCFS technique is applied. )e MCFS was utilized by Niaz
et al. [85] for selecting more illustrative stations in the region
of Punjab in Pakistan. )e mathematical detail of the MCFS
is available in [85].

Further, the selected stations for the current analysis
have shown a similar pattern for all stations. )erefore, it
underpins a rationale to apply MCFS for selecting only
important stations for the analysis. )us, the MCFS is
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Figure 5: Climatological characteristics of the observed maximum temperature in various stations.

Table 4: Classified (Classif.) drought categories in varying stations based on SPI-1 for the year 2017 are given. )e various months of 2017
are categorized by numerical numbers. For example, January is denoted by 1, 2 for February, and 3 forMarch. April, May, June, July, August,
September, October, November, and December are presented by 4, 5, 6, 7, 8, 9, 10, 11, and 12, respectively. )e classification criterion used
by Li et al. (2015) is adopted for the current analysis. In January in Astore Station, the index value is -1.8044, and according to the
classification criteria, the SD category of the drought occurred. Similarly, based on the classification criteria the drought classes are classified
in varying months and stations for a specific year.

Month
Astore Bunji Gupis Chilas Gilgit Skardu

Index Classif. Index Classif. Index Classif. Index Classif. Index Classif. Index Classif.
1 −1.8044 SD −1.2152 MD −1.0805 MD −0.3254 ND −0.2296 ND −0.4827 ND
2 −1.8044 SD 0.2629 ND −1.0805 MD 0.8075 ND 0.2014 ND −1.2581 ND
3 −0.4745 ND −1.1059 MD −0.6655 ND −0.1535 ND −1.0523 MD −0.3096 ND
4 1.8879 SW 0.9377 ND 1.2811 MW 2.2094 EW 1.8283 SW 1.0615 EW
5 0.3314 ND 0.6975 ND 0.9813 ND 0.8297 ND 0.9724 ND 0.0796 ND
6 −0.3302 ND −0.6380 ND −0.2883 ND −0.0637 ND 0.9309 ND −0.8574 ND
7 −0.1857 ND 0.8192 ND 0.7872 ND 0.1366 ND 1.0574 MW −0.2401 ND
8 −0.1967 ND 0.7181 ND 1.1317 MW 0.2058 ND 0.3864 ND 0.0086 ND
9 −0.5938 ND 0.2824 ND 0.4029 ND 0.1937 ND 0.4759 ND 0.0739 ND
10 −1.7685 SD −1.1576 MD −0.2883 ND −1.0539 MD −0.9569 ND −1.2581 MD
11 −1.8044 SD −1.2806 MD −1.0805 MD −1.0995 MD −1.3227 MD −1.2581 MD
12 −1.2499 MD −1.2806 MD −0.0621 ND −1.0539 MD −1.2398 MD −1.2168 MD
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applied in the current analysis to select more important
stations among the selected stations for various drought in-
dices. )is selection of the important stations is based on the
relative importance (RI) values (Figure 12). )e corresponding
higher values of RIs in any station show that the station is to
consider for the drought assessment. For example, the Astore
Station with RI value of 0.1385 for SPI is higher than other
selected stations. For SPTI and SPEI, the Astore and Gilgit are
selected, respectively. In Astore, the RI value for SPTI is 0.1920,
while SPEI for Bunji has RI value of 0.7617 (Table 7).

Moreover, in the presence of influential climatic factors
in estimating the drought indices, the second phase of
RCAMD comprehensively characterizes numerous drought
categories among the selected indices (SPI, SPEI, and SPI)
(Figure 13). Niaz et al. [76] proposed a method based on a
steady-state weighting scheme. )ey selected the classes
from various stations based on the maximum weights;
hence, the classes that received maximum weights among
different stations were selected for the analysis. )e weights
from three indices (SPI, SPEI, and SPTI) for the varying

drought categories for a specific year, 2017, are provided in
Tables 8–10, respectively. Recently, Niaz et al. [97] proposed
a weighting scheme based on steady-state probabilities for
selecting classes among the three indices (SPI, SPEI, and
SPI). )ese indices are correlated for a one-month time scale
and present similar information for the six stations in the
northern areas [85, 96, 117]. )e mathematical detail of the
weighting scheme is available in [76].

Similarly, based on the mentioned studies, this study
uses the SSP as a weighting scheme in the second phase of
the RCAMD for selecting varying drought classes. Con-
clusively, to accomplish a specific task (i.e., characterize
drought classes more comprehensively), therefore, in
RCAMD, SSP is utilized to disseminate weights for several
drought categories over various stations and indices.)e use
of SSP mainly characterizes the new vector of drought
classes. )e RCAMD suggests a comprehensive regional
method for assessing meteorological drought and devel-
oping the base for taking more considerations for evaluating
and monitoring drought at the regional level.

Table 5: Classif. drought categories in varying stations based on SPEI-1 are provided for the year 2017. In January in Bunji Station, ND
occurred with a 0.9796 is the quantitative value of the index. )e index value of 1.0670 is computed in Gilgit, which is classified as MW.
Further, it can be observed that in most of the months of 2017 the ND appears based on SPEI. In Skardu, none of the other classified drought
categories appear except ND for a whole year. In Skardu, the ND is a prevalent drought category.

Month
Astore Bunji Gupis Chilas Gilgit Skardu

Index Classif. Index Classif. Index Classif. Index Classif. Index Classif. Index Classif.
1 0.2741 ND 0.9796 ND 0.7679 ND 0.9039 ND 1.0670 MW 0.8220 ND
2 0.0829 ND 0.8384 ND 0.4871 ND 0.9296 ND 0.7976 ND 0.4919 ND
3 −0.1682 ND 0.1045 ND 0.0219 ND 0.1193 ND 0.1447 ND 0.1232 ND
4 1.4903 MW 0.0887 ND 0.3163 ND 1.3240 MW 0.6436 ND 0.1957 ND
5 −0.8214 ND −1.0027 MD −0.7708 ND −0.8617 ND −0.7646 ND −0.9650 ND
6 −1.3547 MD −1.3982 MD −1.4032 MD −1.3619 MD −1.0659 MD −1.4873 MD
7 −1.2755 MD −1.0733 MD −1.2931 MD −1.3665 MD −1.0312 MD −1.3089 MD
8 −0.9560 ND −0.7027 ND −0.4335 ND −0.8499 ND −0.6704 ND −0.8895 ND
9 −0.7888 ND −0.4535 ND −0.5996 ND −0.4873 ND −0.3957 ND −0.4748 ND
10 −0.4409 ND 0.0387 ND −0.0183 ND 0.0061 ND 0.0157 ND −0.0880 ND
11 0.0596 ND 0.7154 ND 0.5016 ND 0.6265 ND 0.6878 ND 0.4532 ND
12 0.2411 ND 0.9475 ND 0.8261 ND 0.8367 ND 0.9538 ND 0.6461 ND

Table 6: Classif. drought categories in selected stations based on SPTI-1 are presented for the year 2017. )e index value of -1.5398 is given
in January, which indicates that the SD occurred in the Astore Station. Further, in January the MD occurred in Bunji and Gupis with index
values of -1.2001 and -1.1305, respectively. )e varying drought categories can be seen in various months accordingly.

Month
Astore Bunji Gupis Chilas Gilgit Skardu

Index Classif. Index Classif. Index Classif. Index Classif. Index Classif. Index Classif.
1 −1.5398 SD −1.2001 MD −1.1305 MD −0.0928 ND 0.1063 ND −0.0381 ND
2 −1.5398 SD 0.4943 ND −1.1305 MD 0.9832 ND 0.4553 ND −0.5366 ND
3 −0.3434 ND −1.1119 MD −0.6169 ND −0.0695 ND −1.0747 MD −0.2155 ND
4 1.4038 MW 0.9448 ND 1.2422 MW 2.0709 EW 1.8490 SW 0.7164 ND
5 0.0369 ND 0.5504 ND 0.7799 ND 0.6277 ND 0.8382 ND −0.1299 ND
6 −0.5360 ND −0.7646 ND −0.4345 ND −0.2150 ND 0.6983 ND −0.4870 ND
7 −0.4439 ND 0.5654 ND 0.5086 ND −0.0537 ND 0.7859 ND −0.3234 ND
8 −0.4273 ND 0.5021 ND 0.8873 ND 0.0310 ND 0.2006 ND −0.2084 ND
9 −0.6874 ND 0.1387 ND 0.2467 ND 0.0446 ND 0.3438 ND −0.1356 ND
10 −1.5153 SD −1.1878 MD −0.3152 ND −0.9993 ND −1.0048 MD −0.5366 ND
11 −1.5398 SD −1.3078 MD −1.1305 MD −1.0394 MD −1.4267 MD −0.5366 ND
12 −0.9624 ND −1.3078 MD 0.2099 ND −0.9757 ND −1.2671 MD −0.5264 ND
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4. Discussion

)e data with varying features (precipitation, maximum and
minimum temperature) are processed for the current
analysis.)e six stations in the northern areas are designated
for data processing. )e observed data are sufficient to

calculate the varying SDI (SPI, SPEI, and SPTI). )ese SDIs
are used to assess the drought severity in the selected region.
)e classification criteria are adopted from Li et al. [115] to
characterize drought severity for the selected stations. )e
characterization and monitoring of the drought occurrences
are vital components for the management and planning of
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water resources, mitigation strategies, and the creation of a
climate-resilient society [25–27, 118–120]. )erefore, this
study proposes an RCAMD to comprehensively and accu-
rately characterize drought occurrences. )e RCAMD em-
ploys MCFS and SSP to collect information from several
stations and drought indices. )e selected stations have a
homogeneous pattern of drought occurrences among each

other for specific indices. Ali et al. [96] cited these stations as
homogeneous regions in their study. )ey used three SDIs
(SPI, SPEI, and SPTI) and found that these stations are more
and less similar in a specific time scale for three indices.
Recently, Niaz et al. [76] considered these stations as ho-
mogeneous and developed a comprehensive index proce-
dure to assimilate information. Further, Niaz et al. [98]
considered these stations as homogeneous and proposed a
regional-level propagation framework that is used to collect
information from various indices. However, this study
found a gap in their research; the mentioned research had
considered all stations for the analysis, given that those
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Figure 12: RI values calculated for various stations using three indices (SPI, SPEI, and SPTI).

Table 7: Relative importance (RI) values computed for three se-
lected drought indices. )e varying RI values can be observed for
various indices. For example, for SPI, in the Astore Station, the RI
value is 0.1385, and in Bunji, the RI value is 0.1323.)e RI values of
0.1015, 0.1212, 0.1314, and 0.1295 are computed for Gupis, Chilas,
Gilgit, and Skardu, respectively. )e RI value in Astore is higher
than other stations for SPI. In SPEI, RI value is 0.2200 for Astore
Station. )e RI value of 0.5524 is calculated for Bunji Station. For
Gupis, Chilas, Gilgit, and Skardu, the RI values are 0.3547, 0.5525,
0.7617, and 0.5548, respectively. Based on SPEI, the Gilgit receives
higher weights. In SPTI, the Astore has a higher RI value of 0.1922.

Relative importance (RI)
SPI SPEI SPTI

Astore 0.1385 0.2200 0.1922
Bunji 0.1323 0.5524 0.1322
Gupis 0.1015 0.3547 0.0963
Chilas 0.1212 0.5525 0.1298
Gilgit 0.1314 0.7617 0.1306
Skardu 0.1295 0.5548 0.1547
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Figure 13: Temporal plots for selected stations based on SPTI at a
one-month time scale.
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Table 8: Classif. drought categories received weights (steady-state weights (SSWs)) in various months using SPI-1 for the year 2017 in
particular stations. For example, for the Astore Station in January the SD receives SSW with a value of 0.0695. In Astore, during March the
ND receives the SSWwith a value of 0.6765.)e NDweight is a higher weight among the selected drought categories.)is indicates that ND
is the prevalent drought category in the Astore Station. Moreover, the weights can be observed for selected drought classes in other stations.

Month
Astore Bunji Gupis Chilas Gilgit Skardu

Classif. Weights Classif. Weights Classif. Weights Classif. Weights Classif. Weights Classif. Weights
1 SD 0.0695 MD 0.2012 MD 0.2842 ND 0.6426 ND 0.6569 ND 0.6836
2 SD 0.0695 ND 0.6480 MD 0.2842 ND 0.6426 ND 0.6569 ND 0.6836
3 ND 0.6765 MD 0.2012 ND 0.5755 ND 0.6426 MD 0.2030 ND 0.6836
4 SW 0.0425 ND 0.6480 MW 0.0746 EW 0.0248 SW 0.0479 EW 0.0231
5 ND 0.6765 ND 0.6480 ND 0.5755 ND 0.6426 ND 0.6569 ND 0.6836
6 ND 0.6765 ND 0.6480 ND 0.5755 ND 0.6426 ND 0.6569 ND 0.6836
7 ND 0.6765 ND 0.6480 ND 0.5755 ND 0.6426 MW 0.0798 ND 0.6836
8 ND 0.6765 ND 0.6480 MW 0.0746 ND 0.6426 ND 0.6569 ND 0.6836
9 ND 0.6765 ND 0.6480 ND 0.5755 ND 0.6426 ND 0.6569 ND 0.6836
10 SD 0.0695 MD 0.2012 ND 0.5755 MD 0.1940 ND 0.6569 MD 0.1566
11 SD 0.0695 MD 0.2012 MD 0.2842 MD 0.1940 MD 0.2030 MD 0.1566
12 MD 0.0925 MD 0.2012 ND 0.5755 MD 0.1940 MD 0.2030 MD 0.1566

Table 9: Classif. drought categories received SSW in various months. )e SSW is computed based on the SPEI-1 for the year, 2017, in
chosen stations. For instance, in the Skardu Station ND receives SSW with a value of 0.6378. In June of Skardu, the MD receives SSW with a
value of 0.1887. It can be observed that ND category received greater weights than other selected drought categories. It can be observed in
most of the selected stations and drought indices that the ND is prevalent. Further, the weights of other drought categories in varying
stations can be noted accordingly.

Month
Astore Bunji Gupis Chilas Gilgit Skardu

Classif. Weights Classif. Weights Classif. Weights Classif. Weights Classif. Weights Classif. Weights
1 ND 0.6611 ND 0.5937 ND 0.6836 ND 0.6413 MW 0.1800 ND 0.6378
2 ND 0.6611 ND 0.5937 ND 0.6836 ND 0.6413 ND 0.5760 ND 0.6378
3 ND 0.6611 ND 0.5937 ND 0.6836 ND 0.6413 ND 0.5760 ND 0.6378
4 MW 0.0866 ND 0.5937 ND 0.6836 MW 0.1079 ND 0.5760 ND 0.6378
5 ND 0.6611 MD 0.1853 ND 0.6836 ND 0.6413 ND 0.5760 ND 0.6378
6 MD 0.1672 MD 0.1853 MD 0.1620 MD 0.1852 MD 0.1926 MD 0.1887
7 MD 0.1672 MD 0.1853 MD 0.1620 MD 0.1852 MD 0.1926 MD 0.1887
8 ND 0.6611 ND 0.5937 ND 0.6836 ND 0.6413 ND 0.5760 ND 0.6378
9 ND 0.6611 ND 0.5937 ND 0.6836 ND 0.6413 ND 0.5760 ND 0.6378
10 ND 0.6611 ND 0.5937 ND 0.6836 ND 0.6413 ND 0.5760 ND 0.6378
11 ND 0.6611 ND 0.5937 ND 0.6836 ND 0.6413 ND 0.5760 ND 0.6378
12 ND 0.6611 ND 0.5937 ND 0.6836 ND 0.6413 ND 0.5760 ND 0.6378

Table 10: Classif. drought categories received SSW in several months. )e SSW is calculated based on SPTI-1 for the year, 2017, in certain
stations. Using SPTI-1 in January of Gupis, MD occurred. )eMD received SSW by a value of 0.2842. Further, in December (Dec) of Gupis
ND received SSW by a value of 0.5577. In December of Skardu, ND received SSW by a value of 0.8401. )e varying behavior of SSW for
several stations and months can be examined accordingly.

Month
Astore Bunji Gupis Chilas Gilgit Skardu

Classif. Weights Classif. Weights Classif. Weights Classif. Weights Classif. Weights Classif. Weights
1 SD 0.0534 MD 0.2047 MD 0.2842 ND 0.6590 ND 0.6587 ND 0.8401
2 SD 0.0534 ND 0.6604 MD 0.2842 ND 0.6590 ND 0.6587 ND 0.8401
3 ND 0.6789 MD 0.2047 ND 0.5577 ND 0.6590 MD 0.1994 ND 0.8401
4 MW 0.1187 ND 0.6604 MW 0.0941 EW 0.0266 SW 0.0568 ND 0.8401
5 ND 0.6789 ND 0.6604 ND 0.5577 ND 0.6590 ND 0.6587 ND 0.8401
6 ND 0.6789 ND 0.6604 ND 0.5577 ND 0.6590 ND 0.6587 ND 0.8401
7 ND 0.6789 ND 0.6604 ND 0.5577 ND 0.6590 ND 0.6587 ND 0.8401
8 ND 0.6789 ND 0.6604 ND 0.5577 ND 0.6590 ND 0.6587 ND 0.8401
9 ND 0.6789 ND 0.6604 ND 0.5577 ND 0.6590 ND 0.6587 ND 0.8401
10 SD 0.0534 MD 0.2047 ND 0.5577 ND 0.6590 MD 0.1994 ND 0.8401
11 SD 0.0534 MD 0.2047 MD 0.2842 MD 0.1705 MD 0.1994 ND 0.8401
12 ND 0.6789 MD 0.2047 ND 0.5577 ND 0.6590 MD 0.1994 ND 0.8401
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stations were homogeneous. Hence, it was counterpro-
ductive to study all stations in a homogeneous environment.
It underpins a gap addressed in this current research by
accumulating more comprehensive information. )e pres-
ent research proposes a new method, RCAMD, which
provides more comprehensive results. In the first phase, the
RCAMD employed MCFS to separately provide important
stations for each index. For example, there are three indices
(SPI, SPEI, and SPTI) and six stations in the current analysis.
)e MCFS uses SPI for selecting important stations among
six selected stations. )en, MCFS uses SPEI to select the
important station from six selected stations, and similarly, it
employs SPTI for selecting an important station from the
selected stations. Hence, three vectors of the observations are
computed by MCFS for each index separately in the first
phase. In the second phase, using SSP the RCAMD provides
comprehensive information about various drought classes
among selected indices and stations. Hence, the results
related to the RCAMD provide a comprehensive assessment
of meteorological drought at the regional level and bring a
new method to consider more on drought assessment and
monitoring. )e RCAMD can efficiently work for early
warning and mitigation policies. It can be used to make
better management and planning to enhance the capabilities
of forecasting procedures to decrease the vulnerability of
society to drought and its forgoing impacts.

5. Conclusion

Drought is one of the multifaceted natural hazards that has
adverse impacts on the economy, water resources, and other
environmental structures worldwide. However, the assess-
ment and analysis of drought are crucial, specifically to
sound water resource planning and management at the
regional level. )erefore, the assessment and monitoring of
drought in a region are thus vital to decrease its vulnerability
to negative impacts. )erefore, this study proposes an
RCAMD. )e RCAMD employs MCFS and SSP to accu-
mulate information from several stations and drought in-
dices comprehensively. )e three commonly used SDIs are
jointly analyzed for the computation of RCAMD. )e
RCAMD is performed at the six designated stations in the
northern areas of Pakistan. )e results related to the
RCAMD provide a comprehensive assessment of meteo-
rological drought at the regional level and bring a new
method to take more consideration on drought assessment
and monitoring. Moreover, the RCAMD considers the
initial state, and the transition probabilities are constant by
assuming time homogeneous progression; however, it can be
considered temporal characteristics to improve drought
monitoring efficiency for the selected stations. Further, the
results of RCAMD would be entertained for the current
scenario and application site; however, it cannot be gen-
eralized for other climatic conditions. )e climatology
conditions of the selected stations will change the outcomes
and influence the extrapolations. Moreover, the categori-
zation of the given data from other indices in the selected
stations can implicitly be useful to increase the capabilities
for drought monitoring.
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)e application of recycled aggregate as a sustainable material in construction projects is considered a promising approach to
decrease the carbon footprint of concrete structures. Prediction of compressive strength (CS) of environmentally friendly (EF)
concrete containing recycled aggregate is important for understanding sustainable structures’ concrete behaviour. In this research,
the capability of the deep learning neural network (DLNN) approach is examined on the simulation of CS of EF concrete. )e
developed approach is compared to the well-known artificial intelligence (AI) approaches named multivariate adaptive regression
spline (MARS), extreme learning machines (ELMs), and random forests (RFs). )e dataset was divided into three scenarios 70%-
30%, 80%-20%, and 90%-10% for training/testing to explore the impact of data division percentage on the capacity of the developed
AI model. Extreme gradient boosting (XGBoost) was integrated with the developed AI models to select the influencing variables on
the CS prediction. Several statistical measures and graphical methods were generated to evaluate the efficiency of the presented
models. In this regard, the results confirmed that the DLNN model attained the highest value of prediction performance with
minimal root mean squared error (RMSE� 2.23). )e study revealed that the highest prediction performance could be attained by
increasing the number of variables in the prediction problem and using 90%-10% data division. )e results demonstrated the
robustness of the DLNNmodel over the other AI models in handling the complex behaviour of concrete. Due to the high accuracy of
the DLNN model, the developed method can be used as a practical approach for future use of CS prediction of EF concrete.

1. Introduction

Consideration of sustainable development is an important
requirement in the new era of the construction industry
[1, 2]. Sustainable development is applied by reducing

environmental impact and protecting natural resources.
Increasing population growth led to the high demand for
construction and, as a result, depletion of natural resources
needed in concrete construction [3, 4]. Recently, many
researchers have studied the production of environmental
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friendly (EF) concrete, which has less harmful effects on
nature [5–8]. One of the methods studied by the researchers
is using recycled aggregate [9]. Production of construction
debris and waste has been increasing using recycled mate-
rials in concrete production in the last years. )e use of
recycled aggregate in a construction project is considered a
promising method to decrease the carbon footprint of a
concrete project [10–13]. In recent years, EF concrete has
been studied experimentally and mathematically [14, 15].

Early investigation on the mechanical behaviour of EF
concrete was conducted using stone dust in concrete pro-
duction [16]. )e modelling results showed that the com-
pressive strength of EF concrete is higher. )e durability of
concrete was studied and confirmed to produce high per-
formance using recycled material [14]. Two researches have
adopted an investigation of experimental analysis for the
effect of using additive material such as fly ash and silica
fume beside recycled aggregate on the mechanical properties
of concrete [17, 18]. )e studies indicated that using additive
materials and recycled aggregate can enhance the strength
and durability of concrete. Recycled aggregate usage in
concrete enhances pore distribution and frost resistance
[19]. )e addition of agriculture waste to the concrete mix
was considered and was investigated to enhance the prop-
erties of concrete using silica fume [20]. Calcium carbide
residue was examined over the literature as industrial ma-
terial [21]. Compressive strength and failure modes of
concrete containing recycled nylon fiber fabric were studied
[22]. Other researchers confirmed the potential of the
produced EF concrete, and some researchers studied the
utilization of agriculture and local waste in Africa for
concrete production [23]. Others discussed the properties of
lightweight interlocking concrete by adding sawdust and
laterite in the concrete production [24]. All the reported
literature on the experimental developed EF concrete
elaborated the significance of producing such product
material that can help essentially on the construction field
and material sustainability. In addition, studies showed the
importance of using recycled waste as environmental ma-
terial in concrete production.

Owing to the complexity and nonlinearity of concrete
behaviour and various parameters that affect CS, the ne-
cessity of developing an effective technique that can examine
the properties of concrete can be noted. In recent years,
artificial intelligence (AI) models have been effectively ap-
plied in concrete structure research [25–29]. AI models have
the ability to solve nonlinear, stochastic problems and deal
with complex systems [30–32]. Literature studies on AI
models reported massively in this domain; artificial neural
network (ANN) model with response surface methodology
(RSM) was developed for predicting CS of recycled aggregate
concrete [33]. )e study concluded that the ANN-based
model exhibits better performance than the RSMmodel.)e
development of adaptive neuro-fuzzy inference system,
ANFIS, together with ANN model was adopted to estimate
self-compacting concrete’s CS [34]. )e results demon-
strated that the developed model accurately predicted
concrete compressive strength. In another study, adaptive
boosting (AdaBoost), ANN and support vector machine

(SVM) were developed for the prediction process of com-
pressive strength [35]. )e study demonstrated that Ada-
Boost model exhibited better prediction achievement than
other models. Examination of the feasibility of ANN model
in the prediction process of concrete CS involving furnace
slag of ground granulated blast was conducted by [36]. )e
study was integrated ANN with a multiobjective salp op-
timization algorithm and compared it with M5P model for
CS prediction. )e research was concluded that the pro-
posed AI models successfully predicted CS. )e incorpo-
ration of socio-political algorithm (ICA) with extreme
gradient boosting (XGBoost), ANN, SVM, and ANFIS was
tested for predicting of CS of recycled aggregate concrete,
and was reported by [26]. )e study revealed that the de-
veloped model (ICA-XGBoost) achieved better capacity
than the other proposed models in the prediction process.
)e ability of ANNmodel was evaluated in the prediction of
CS of Geopolymer Concrete (GPC) [37]. )e results indi-
cated that the proposed model attained high prediction
capability of compressive strength. Boosted decision tree
regression (BDTR) and SVM models were developed to
predict EF concrete’s compressive strength [38]. )e re-
searcher concluded that the BDTR model performed better
than the SVM model with good accuracy prediction. )e
modelling accuracy of ANN, RSM, and gene expression
programming (GEP) was tested for predicting the CS of
engineering Geopolymer composites concrete [39]. )e
study showed that ANN and RSM models performed better
than GEP model in the prediction process. Hybridization of
three optimization algorithms called genetic algorithm
(GA), salp swarm optimization (SSA), and grasshopper
optimization algorithm (GOA) with ANN model were
conducted for predicting CS of the concrete utilizing
recycled aggregate [40]. )e researchers indicated that
ANN-SSA achieved better prediction performance than
other models. Several other researches were adopted on
testing the feasibility of the AI models for modelling the CS
of concrete and confirmed the potential of those new
computer-aided models in solving such a kind of complex
material engineering problem [41–45].

Previous studies show that the use of recycled aggregate as
a sustainable material in concrete production is highly em-
phasized by several researchers [46, 47]. Most of these studies
examined the impact of recycled aggregate experimentally
and there is a limited number of researchers who have ex-
plored the properties of EF concrete by amathematical model.
Due to the rapid advancement of AI models and computer
vision, exploring a new approach that can handle the complex
relationship between different parameters and the com-
pressive strength of concrete is very important. Deep learning
neural network (DLNN) is a new version of AI models that
have achieved a reliable performance in solving complex and
nonlinear systems [48–50]. DLNN outperformed other tra-
ditional AI models in various applications owing to their
capacity on analyzing through the deep layers learning
process. DLNN has been successfully applied and performed
better prediction precision in several engineering problems
[51–54].)e other concern that highlymatters to themachine
learning modelling is the feature selection for the appropriate
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predictors. Hence, the current research focused on integrating
a new feature selection approach.

)is paper aims to provide an effective computer-aided
model for predicting CS of recycled aggregate concrete.
)is approach can help determine the performance of EF
concrete on the improvement of concrete strength and
identify the appropriate mix designs of concrete. To
achieve the research aim, the DLNN model is developed
and compared with extreme learning machine (ELM),
multivariate adaptive regression spline (MARS), and
random forest (RF). Due to the important role of input
parameters in CS prediction, XGBoost as an advanced
algorithm is used that abstracts the most correlated var-
iables in the modelling process. )e proposed approach is
helpful in many applications of a concrete structure and
can be applied to examine the compressive strength of EF
concrete.

2. Methodology Overview

2.1. Deep LearningNeural Network (DLNN). In recent years,
the concept of the deep learning method has been intro-
duced as an advanced algorithm of neural networks. Deep
neural network is a traditional neural network with extra
numbers of hidden layers that are added to the structure
[55]. )e deep learning algorithm was developed by Hinton
et al. as he introduced a layer-wise-greedy-learning method
[56]. According to this method, an unsupervised learning
method is used to pertain the neural network before the
training phase with layer by layer. Herein, deep learning is a
popular AI model for some reasons: its ability to deal with
big training data, avoid overfitting problems, and non-
random value can be assigned to the network before
learning process [55]. From these features, the algorithm
can make a good performance through the training process
among deep learning types. )e backpropagation neural
network is used in this study due to its popularity and
robustness in many applications [51]. )is type used
multiple hidden layers and backpropagation with gradient
descent algorithm. )e main concept of this algorithm is
yielding new variables based on the connection between
hidden layers and the input layers. )e new variables are
reached to the output layer, and then the target value is
predicted through the training process. )e nonlinear re-
lationship between multiple hidden layers gave the algo-
rithm the capability to handle nonlinear relationships in
different complex systems [57]. )e structure of a deep
neural network is shown in Figure 1 with the input layer,
hidden layers, and output layer. )e mathematical ex-
pression of the algorithm is discussed as follows:

M
I

� f w
IφI− 1

+ b
I

􏼐 􏼑, for 0< I< L, (1)

where f is the activation function, b is the bias, and w is the
weight matrix of the hidden neurons. Input layer is de-
scribed by 0 and L represents the output layer.)e activation
matrix used in this study is tanh function because of its
capability to get good prediction performance in the ex-
plored problem.

2.2. Multivariate Adaptive Regression Spline Model (MARS).
Multivariate adaptive regression spline model, a robustn
machine learning model, was developed by [58]. MARS is a
nonlinear flexible model recently used in many applications
in engineering subjects [59]. )e MARS model has three
principle components: the basic functions (BFs), spline
functions, and the knots [60]. )e relationship between
target value and predicted variables is addressed by BFs and
it is expressed by max (0, c − x) or max (0, x − c), where x
represents threshold value and c indicates the value of input
variable. In this context, the knots indicate the function for
the base as well as base endpoints. Spline functions contain
one or more BFs and its role is developing a regression
model for each node [61]. )e predicted value in MARS
model is based on linear combination of BFs components.
)e main processes of MARS model are as follows: As-
suming Y represents the target variable whereas X is the
matrix of input variable, then the mathematical expression
of MARS model is described as follows:

Y � f(X) � β0 + 􏽘
M

m�1
β0BFm(X), (2)

where β0 represents the initial value; and BFm is the basis
function that is used to fit MARS model; whereasM denotes
the whole number of BFs [62]. )ere are two main phases in
MARS model named forward phase and backward phase as
shown in Figure 2. In forward phase, the model selects the
optimum combination of input parameters. )e overfitting
problem can appear in the forward phase due to a series of
splits, and the model cannot achieve good performance
during the prediction process. )e model uses the backward
phase to remove undesirable parameters that have been
selected and then enhance the prediction accuracy of a
regression model. )e basis deletion criteria in the backward
phase are a generalized cross validation, which is indicated as
GCV and can be computed as follows:

GCV(M) �
(1/N) 􏽐

N
i�1 Oi − f xi( 􏼁( 􏼁

2

(1 − (C(M)/N))
2 ,

C(M) � (d + 1) × M,

(3)

where Oi denotes the observed value; N is the total number
of data; f(xi) is the predicted value of x, M represents the
whole number of BFs; and (C(M)) indicates the penalty
factor. d represents the optimization cost of BFs and its
range 2≤ d≤ 4. )e systematic structure of MARS model is
described in Figure 2.

2.3. Extreme Learning Machine (ELM). ELM is one of the
advanced models that have been used in recent years to
train the developed single layer feedforward neural
network [63]. Each layer in ELM model has a number of
neurons and the model contains input, hidden, and
output layer. )e sigmoid function is commonly utilized
as activation function for the hidden layer, while the
activation function in input and output layer is linear
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function [64]. To achieve the optimum linear system
solution, developing the ELM model required the de-
termination of random input weight and hidden biases,
then using the Moore Penrose generalized inverse
method [65, 66]. ELM model has been used in many

engineering tasks owing to fast learning, no parameter
tuning, and its strong ability to achieve generalized model
[67–69]. In ELM model, the first step is linear mapping
the input vectors into an L-dimensional feature map as
shown below:

Output summation of the BF

Over-fitted
input data

BFX3BFX2

X1 X2 X3 X4 Xn

BFX1

Backward
phase apply

GCV

Forward phase BF
identification

t (knot)

(x – t)+ (x – t)+ (x – t)+ (x – t)+ (x – t)+ (x – t)+

t (knot) t (knot)

Piece wise linear/piece wise cubic equation

max(0, x – c) = if c ≥ t
otherwise

x – c,
0,

Feature identification

Input parameters

Figure 2: MARS model architecture.

Input layer

Function

Tansig MF

W1j

W2j

Wnj

bias bias

Hidden layers Output layer

Figure 1: )e architecture of the constructed DLNN model.
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􏽥ti � 􏽘
L

i�1
βi.g wl.xi + bl( 􏼁, i � 1, 2, . . . , N, (4)

where N denotes the size of training data, 􏽥ti represents the
output vector, and xi the input vector. βi refers to the
weight vector which represents the connection between
hidden neuron and output layer; wl is the weight vector that
links the hidden neuron to the first layer; bl represents the
bias; while g symbolizes the activation function. In this
regard, the structure of ELM model is illustrated in
Figure 3.

According to the ELM model, a traditional single layer
ANN can handle all sample data zero variation as shown in
the below mathematical expression:

􏽘
N

i�1
ti − 􏽥ti � 􏽘

N

i�1
ti − 􏽘

L

l�1
βi.g wl.xi + bl( 􏼁 � 0, (5)

where ti represents the output vector. xi denotes the input
vector. Herein, the previous equation can be reconstructed
as shown below:

Hβ � T, (6)

where

H �

g w1 · x1 + b1( 􏼁 · · · g wL · x1 + bL( 􏼁

⋮ ⋱ ⋮

g w1 · xN + b1( 􏼁 · · · g wL · xN + bL( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×I

,

β �

β1,1 · · · β1,m

⋮ ⋱ ⋮

βL,1 · · · βL,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×m

,

T �

t1,1 · · · t1,m

⋮ ⋱ ⋮

tN,1 · · · tN,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×m

,

(7)

where β indicates the weight for the matrix which links
hidden and output layer; H is output matrix of hidden layer;
and T is the output matrix of target value based on N
training data.

By assuming that hidden biases along with input
weight are both constant; it suggests that the model can be
described as linear system where H and T indicate an
output matrix from hidden layer and output target. While
β is the weight of the matrix optimized during the training
phase. )e least-squares solution of the linear system can
be expressed as follows:

􏽥β � H
†
T, (8)

where H† represents Moore Penrose generalized inverse
matrix.

2.4. Random Forest (RF). Random forest (RF) is a robust AI
method based on classification and regression tree and

developed by [70]. RF model was applied in classification
and regression problems and gave an excellent performance
in many fields of engineering applications [71, 72]. )e work
of RF model is based on the abstraction of multiple samples
from the original sample by using the bootstrap resampling
method, and then a decision tree model is developed for each
bootstrap sample, and various outputs of decision tree
models are combined to get the final result of prediction.
Modifying the model parameters led to the use of many
types of decision trees and then developed different trees
models.

)e modelling process of RF algorithm includes the
following phases: using bootstrap resampling method to
extract N predictors training data from the original
problem data [73]. During training phase, the training
data of RF model should be equal to 2/3 of the original
data size. )e utilized data is called in-bag data and the
remaining 1/3 dataset is called out-of-bag data. )e re-
gression tree (RT) is developed for each training bootstrap
data and a random forest algorithm is built based on the
developing N predictors of RTmodels [74]. )e variation
of regression trees can be determined during the training
data process by randomly selecting the optimal attribute
from the maximum depth attributes; this process in-
creases the capability of the RF model. )e sequence of
regression model can be attained by training the algorithm
several times and this sequence is helpful for the devel-
oping of random forest system.)e prediction results of N
predictors are collected and final regression model for the
new sample is calculated by using the average method
[75]. )e mathematical equation of regressions model in
RF algorithm is as follows:

􏽢f
K

rf(x) �
1
K

􏽘

K

k�1
ti(x), (9)

where 􏽢f
K

rf(x) represents the regression model of random
forest, ti is the regression model of each regression tree, and
K represents the number of regression tree model. )e
structure of RF model is shown in Figure 4:

2.5. Extreme Gradient Boosting (XGBoost). XGBoost is an
advanced algorithm that was used recently in the feature
selection process. It was developed as an extension and
improvement of gradient boosting tree [76, 77]. )e main
structure of the algorithm depends on the efficient con-
struction of boosted trees [78]. In feature selection problem,
the main objective of XGBoost is to construct boosted trees
to achieve the feature importance of input variables that are
used for training process [79]. Boost trees are classified into
classification and regression trees. )e features’ importance
is extracted using three methods: gain, frequency, and cover
[80]. )e gain method calculates the importance of the
features, frequency computes the number of trees in the
boosted trees, and cover calculates the relative value for the
observation [79]. )e feature importance is calculated by
weight using XGBoost as follows [81]:
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Nv � 􏽘
L

L�1
􏽘

X�1

l�1
I V

l
L, v􏼐 􏼑,

V
l
L, v􏼐 􏼑 � f(x) �

1ifVl
L � v

0, otherwise

⎧⎨

⎩ ,

(10)

where L represents the number of trees, N indicates the
number of leaf nodes, (Vl

L) is the feature of node l, and I is
the indicator function.

3. Data Collection and Model Development

For the development of the proposed AI model, datasets were
taken from open-source datasets [82]. )e datasets contain
353 parameters of environmentally friendly concrete samples
and their compressive strength. )e datasets include water,
(C: cement), (FA: fine aggregate), (CA: coarse aggregate),
(RA: recycled aggregate), (AS: age strength), and (CS:

compressive strength). )e statistical characteristics of the
datasets are reported in Table 1. )ese statistical character-
istics include maximum value, minimum value, mean,
standard deviation, skewness, and kurtosis. Figure 5 dem-
onstrates the histogram for all input and output variables.)e
CS of the EF concrete ranges from 13 to 88.3, with mean value
equal to 42.11, indicating high variance and giving the no-
ticeable complexity of prediction problem. Table 1 and Fig-
ure 5 show that the data are well distributed and nearly to
normal distribution.

)e correlation matrix between input and output vari-
ables is depicted in Figure 6. Correlation statistics showed a
good correlation between cement quantity and compressive
strength. Increased cement quantity led to increasing the
compressive strength of concrete. Figure 6 also demonstrates
that there is a small correlation between value of coarse
aggregate and compressive strength. )ere is also a small
negative correlation between water, fine aggregate, recycled
aggregate, and compressive strength. Increases of water, fine

Training data

Sample 1 Sample 2 Sample n n Boostrap
samples

n trees

Averaging

Predict 1 Predict 2 Predict n

Figure 4: Random Forest model structure.

Input layer

Input vector{xi}, i =
1,2, … ., N

Hidden layers

Output
layer

ti = ∑L
i = 1 βi · g(Wl . xi + bl)

~

Figure 3: Paradigm of extreme learning machine model.

6 Complexity



aggregate, and recycled aggregate decreases the compressive
strength of concrete.

Four AI models were adopted for the modelling process,
i.e., DLNN, ELM, MARS, and RF. Dataset was split into three
scenarios including 70-30%, 80-20%, and 90-10% to examine
the best size of training and testing dataset suitable for mod-
elling problems. XGBoost was used as a robust model to ab-
stract the highly correlated variables of the best size of training
and testing dataset for CS prediction. )e input combinations
of CS prediction are reported as in Table 2. It can be noted that
the most relevant variable of CS prediction is the quantity of

cement. )e second input combinations of CS prediction are
quantity of cement and water. Input combinations of XGBoost
model showed that negatively correlated parameters and ce-
ment quantity are important variables in CS prediction. )e
procedure of the developed AI model is illustrated in Figure 7.

)e accuracy of modelling is evaluated by using different
statistical indicators including determination coefficient
(R2), mean absolute percentage error (MAPE), root mean
square error (RMSE), mean absolute error (MAE),
Nash–Sutcliffe efficiency (NSE), and Willmott’ index (WI)
[83, 84].

50
40
30
20
10

0
25 50 75

CS

200

150

100

50

0
0 50 100 150

AS

0
150 200 250

Water

25

50

75

100

500 700 900

FA

100

50

0

200 400 600

C

0

25

50

75

100

0 500 1000

RA

0

25

50

75

0 500 1000

CA

0

25

50

75

100

Figure 5: Histograms of the dataset used in the study.

Table 1: Statistical measures of the studied dataset.

Parameters Minimum Maximum Mean Std. deviation Skewness Kurtosis
Water (kg/m3) 120 244 184.1 27.136 0.285 0.3497
C (kg/m3) 220 750 394.9 83.942 1.101 2.889
FA (kg/m3) 365 1020 710.3 108.452 0.313 1.435
CA (kg/m3) 0 1366 564.8 438.708 -0.099 -1.458
RA (kg/m3) 0 1259 504.3 414.588 0.218 -1.418
AS (days) 7 180 45.25 43.956 1.768 2.174
CS (MPa) 13 88.3 42.11 13.126 0.639 0.728
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Table 2: )e abstracted input combination using XGBoost model.

Models Input combinations
Model I CS � C

Model II CS � C,Water
Model III CS � C,Water, FA

Model IV CS � C,Water, FA, CA

Model V CS � C,Water, FA, CA, AS

Model VI CS � C,Water, FA, CA, AS, RA

Water

Water

C

FA

CA

RA 

AS

CS 1

1

1

1

1

1

1 0.28 –0.26 –0.05 0.01 –0.09 –0.16
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–0.05 –0.13 0.26 –0.31

–0.96 –0.03 0.13

–0.01 –0.15

–0.04

–1

–0.75

–0.5

–0.25

0

0.25

0.5

0.75

1C FA CA RA AS CS

Figure 6: Correlation statistics between concrete parameters in the dataset.
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(11)

where yp and yo represent the predicted and observed value
of compressive strength; yo is the mean value of the observed
value of compressive strength; and N represents the number
of experiment samples.

4. Results and Discussion

In this research, four AI models were established to predict
the compressive strength of EF concrete containing recycled
aggregate. )e main idea from developing AI models is to
examine the ability of the developed model to predict the
compressive strength of EF concrete, and therefore three
data division scenarios were used to test the size of dataset
suitable for CS prediction.

Tables 2–4 describe the statistical indicators of the de-
veloped models (DLNN, MARS, ELM, and RF) over the
training phase for the three data division scenarios. In
general, the results indicated that all the developed models
performed good prediction performance.)is indicated that
the developed models are reliable and they are capable to
build a robust approach of CS prediction. However, the
reported results showed the superiority of DLNN model
over the other developed models through all data division
scenarios. )e prediction performance is gained by using
DLNN model for 80-20% data division scenario with
R2 � 0.99, MAPE� 0.02, RMSE� 1.29, MAE� 0.74,
NSE� 0.98, and WI� 0.99 (Tables 3 and 4).

)e results of test phase are shown in Tables 5–7 with
respect to the developed AI models in all scenarios. )e
results reported that the DLNN model performed the best
predictive accuracy over the three adopted scenarios. )e
results indicated that using different data division scenarios

DLNN MARS ELM

Test data

Evaluate AI models by using statistical indicators

Predict CS and analyzed

generate the output from each model

Splitting the data into training
and testing data set

The best feature as per the
algorithm

No
YesLow RMSE

Gain value set

Calculate the importance of
feature

Tuning the
hypermeters

Data Conversion

XGBoost

Environmental friendly dataset
CS = F (Water, C, FA, CA, RA, AS)

RF

Figure 7: )e developed AI models for CS prediction EF concrete.
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has an essential role in training the developed AI model.
Using 90% of dataset for the training process contributes to
improving the predictive performance of AI model. )e best
prediction accuracy is attained by DLNNmodel and 90-10%
scenario with R2 � 0.97, MAPE� 0.04, RMSE� 2.23,
MAE� 1.63, NSE� 0.93, and WI� 0.99 (Tables 6–8).

Scatter plots were created to examine the linear rela-
tionship among the actual and predicted values for EF
concrete compressive strength.)e scatter plots for the three
scenarios (70-30%, 80-20%, and 90-10%), and the developed
AI models (DLNN, MARS, ELM, and RF) are depicted in
Figures 8–10. )e 90-10% scenario achieved the best linear
relationship between actual and predicted compressive
strength values for the testing period using the DLNN
model. Figure 10 indicates that the best prediction im-
provement is attained by the DLNNmodel with a maximum
coefficient of determination R2 � 0.97.

A two-dimensional graphical presentation named Taylor
diagram is generated for investigating the performance for the
developed AI model [85]. Taylor diagram is developed based
on three statistical metrics correlation, RMSE, and standard
deviation of the developed AImodels as depicted in Figure 11.
According to the location of the developed AI models on
Taylor diagram, it can be noted that DLNN model achieved
the best prediction performance for compressive strength of
EF concrete by using a data division scenario of 90-10%.

Another graphical presentation is created to give a good
explanation for the performance of the developed AImodels.
)e developed AI models were investigated by using relative
error percentages for the three tested data division scenarios.
Figure 12 illustrates the relative error results of the

developed model for scenarios 1, 2, and 3. According to the
relative error results, the DLNN model attained the best
predictive performance with a small relative error for sce-
nario 3 with 90-10% data division.

Tables 9–12 present the statistical measurement for in-
tegrating XGBoost combinations with the developed AI
models over training and testing phase for scenario 3. )e
results indicated that DLNN and RF models performed
better prediction than ELM and MARS models. )e results
also reported that the best results were achieved by including
al input parameters in the modelling problem. )e best
prediction accuracy during training phase was attained by
DLNN model with R2 � 0.97724, MAPE� 0.03867,
RMSE� 2.0072, MAE� 1.37395, NSE� 0.97667, and
WI� 0.99398. )e testing phase results showed that DLNN
model achieved highest prediction performance with
R2 � 0.97106, MAPE� 0.04552, RMSE� 2.23648,
MAE� 1.63199, NSE� 0.96952, and WI� 0.99160. From the
reported results, it can be observed that compressive
strength of concrete is affected by all input variables in-
cluding cement, water, fine aggregate, recycled aggregate,
age strength, and coarse aggregate.

Figure 13 demonstrates the scatter plot diagram for all the
developed model combinations. )e DLNN model achieves
the best results with highest value of the coefficient of deter-
mination R2� 0.97.)e diagram shows that the best prediction
performance is achieved by using all influencing input vari-
ables. Applying all input variables increases prediction per-
formance for all developed models (DLNN, MARS, ELM, RF).

)e Taylor diagram demonstrates the relationship be-
tween correlation, RMSE, and standard deviation for all

Table 3: )e statistical measurements for the developed AI model
over the training phase for 70-30% data division scenario.

Models R2 MAPE RMSE MAE NSE WI
DLNN 0.98 0.03 1.74 1.07 0.98 1.00
MARS 0.88 0.09 4.60 3.57 0.88 0.97
ELM 0.93 0.07 3.62 2.61 0.93 0.98
RF 0.87 0.10 4.98 3.79 0.86 0.96

Table 4: )e statistical measurements for the developed model AI
model over the training phase for 80-20% data division scenario.

Models R2 MAPE RMSE MAE NSE WI
DLNN 0.99 0.02 1.30 0.74 0.99 1.00
MARS 0.86 0.10 4.85 3.81 0.86 0.96
ELM 0.91 0.07 3.98 2.87 0.91 0.98
RF 0.88 0.09 4.70 3.59 0.87 0.96

Table 5: Statistical measures for the developed AI model across the
training phase for 90-10% data division scenario.

Models R2 MAPE RMSE MAE NSE WI
DLNN 0.98 0.04 2.01 1.37 0.98 0.99
MARS 0.88 0.09 4.59 3.45 0.88 0.97
ELM 0.91 0.08 4.01 2.89 0.91 0.98
RF 0.89 0.09 4.54 3.41 0.88 0.96

Table 6: Statistical measurements for the developed AI model in
the test phase by using 70-30% data division scenario.

Models R2 MAPE RMSE MAE NSE WI
DLNN 0.90 0.08 4.00 2.99 0.90 0.97
MARS 0.80 0.13 6.04 4.75 0.76 0.94
ELM 0.65 0.16 8.21 5.63 0.56 0.89
RF 0.89 0.08 4.33 3.19 0.88 0.96

Table 7: Statistical measurements for the developed AI model in
the test phase by using 80-20% data division scenario.

Models R2 MAPE RMSE MAE NSE WI
DLNN 0.94 0.06 3.37 2.35 0.94 0.98
MARS 0.83 0.10 5.58 4.14 0.83 0.95
ELM 0.82 0.12 5.81 4.35 0.81 0.95
RF 0.89 0.08 4.67 3.32 0.88 0.96

Table 8: Statistical measurements for the developed AI model
across the testing phase for 90-10% data division scenario.

Models R2 MAPE RMSE MAE NSE WI
DLNN 0.97 0.05 2.24 1.63 0.97 0.99
MARS 0.84 0.09 5.20 3.90 0.84 0.96
ELM 0.82 0.12 5.78 4.37 0.80 0.95
RF 0.94 0.07 3.60 2.75 0.92 0.98

10 Complexity



y = 0.9386x + 3.2523
R2 = 0.901180

Pr
ed

ic
te

d 
co

m
pr

es
siv

e s
tre

ng
th

 (M
Pa

)
70

60

50

40

30

20

10
10 20 30 40 50

Actual compressive strength (MPa)
60 70 80 90

90

(a)

y = 0.9663x + 1.1846
R2 = 0.7981

10 20 30 40 50
Actual compressive strength (MPa)

60 70 80 90

80

Pr
ed

ic
te

d 
co

m
pr

es
siv

e s
tre

ng
th

 (M
Pa

)

70

60

50

40

30

20

10

90

(b)

y = 0.8882x + 5.0522
R2 = 0.6503

10 20 30 40 50
Actual compressive strength (MPa)

60 70 80 90

80

Pr
ed

ic
te

d 
co

m
pr

es
siv

e s
tre

ng
th

 (M
Pa

)

70

60

50

40

30

20

10

90

(c)

y = 0.7932x + 8.3402
R2 = 0.8886

10 20 30 40 50
Actual compressive strength (MPa)

60 70 80 90

80
Pr

ed
ic

te
d 

co
m

pr
es

siv
e s

tre
ng

th
 (M

Pa
)

70

60

50

40

30

20

10

90

(d)

Figure 8: Scatter plot presentation using the developed AI model and for (70%-30%) data division scenario. (a) DLNN model. (b) MARS
model. (c) ELM model. (d) RF model.
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Figure 9: Continued.
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Figure 9: Scatter plot presentation using the developed AI model and for (80%-20%) data division scenario. (a) DLNN model. (b) MARS
model. (c) ELM model. (d) RF model.
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Figure 10: Scatter plot presentation using the developed AI model and for (90%-10%) data division scenario. (a) DLNN model. (b) MARS
model. (c) ELM model. (d) RF model.
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input combinations, as shown in Figure 14. Taylor’s pre-
sentation revealed that the developed AI models achieved
good prediction using sixth combinations with all input

parameters. DLNN model attained the best prediction
performance using all input variables with the nearest po-
sition to the actual value.

Relative error presentation for the proposed AI models
with all abstracted combinations is illustrated in Figure 15.
Graphical presentation of relative error percentages showed
that modelling with six parameters attained low percentage
error compared with the other combinations for all AI
models. DLNN model with the sixth combination achieved
the lowest relative error among the other three AI models
(MARS, ELM, and RF).

In the current study, a robust AI model was suggested
for predicting the compressive strength for EF concrete.
An advanced XGBoost algorithm was integrated with the
developed AI model and the comparable once to inves-
tigate the best combinations of input parameters suitable
for predicting EF concrete compressive strength. )e re-
sults reported that the presented models realized an effi-
cient prediction model that has the capability to handle the
complex behaviour of concrete. )is approach can im-
prove concrete performance and the strength of EF con-
crete. Based on the reported results, it was observed that
the size of data used for training AI model remarkably
affects the accuracy of prediction performance. An ac-
curate selection of training data size helps the modeller
reduce an underfitting problem associated with the
modelling process. )e current study presented that 90%
of training data is suitable to provide an accurate pre-
diction of EF concrete compressive strength. )e inte-
gration of XGBoost algorithm with AI models showed that
an accurate prediction could be achieved by including all
input parameters in the prediction problems. All six
variables including cement, water, fine aggregate, recycled
aggregate, age strength, and coarse aggregate are necessary
to achieve good prediction accuracy of compressive
strength. )e results also reported that DLNN model
provided an excellent ability to understand the nonline-
arity between the contributed variables as well as the
compressive strength of concrete. )e statistical metrics
and the graphical presentations established the robustness

Table 9: Statistical measurements for DLNN model over training
and testing phase for all input combinations.

Models R2 MAPE RMSE MAE NSE WI
Training phase
DLNN-model I 0.67 0.14 7.52 5.59 0.67 0.89
DLNN-model II 0.82 0.11 5.64 4.29 0.82 0.95
DLNN-model III 0.82 0.11 5.57 4.19 0.82 0.95
DLNN-model IV 0.91 0.08 3.90 2.99 0.91 0.98
DLNN-model V 0.98 0.03 1.99 1.20 0.98 0.99
DLNN-model VI 0.98 0.04 2.01 1.37 0.98 0.99
Testing phase
DLNN-model I 0.68 0.14 7.33 5.45 0.67 0.87
DLNN-model II 0.88 0.09 4.43 3.52 0.88 0.97
DLNN-model III 0.90 0.08 4.07 3.16 0.90 0.97
DLNN-model IV 0.89 0.09 4.17 3.39 0.89 0.97
DLNN-model V 0.93 0.06 3.28 2.41 0.93 0.98
DLNN-model VI 0.97 0.05 2.24 1.63 0.97 0.99

Table 10: Statistical measurements for MARS model over training
and testing phase for all input combinations.

Models R2 MAPE RMSE MAE NSE WI
Training phase
MARS-model I 0.43 0.19 7.52 5.59 0.67 0.89
MARS-model II 0.72 0.14 6.99 5.44 0.72 0.91
MARS-model III 0.77 0.13 6.36 4.98 0.77 0.93
MARS-model IV 0.80 0.12 5.88 4.66 0.80 0.94
MARS-model V 0.86 0.10 4.91 3.79 0.86 0.96
MARS-model VI 0.88 0.09 4.59 3.45 0.88 0.97
Testing phase
MARS-model I 0.35 0.21 10.18 7.79 0.37 0.72
MARS-model II 0.75 0.12 6.33 4.91 0.76 0.92
MARS-model III 0.81 0.11 5.53 4.51 0.81 0.94
MARS-model IV 0.81 0.10 5.50 4.33 0.82 0.95
MARS-model V 0.84 0.10 5.23 4.20 0.83 0.96
MARS-model VI 0.84 0.09 5.20 3.90 0.84 0.96

Table 11: Statistical measurements for ELM model over training
and testing phase for all input combinations.

Models R2 MAPE RMSE MAE NSE WI
Training phase
ELM-model I 0.41 0.19 10.13 7.60 0.41 0.74
ELM-model II 0.69 0.14 7.28 5.61 0.69 0.90
ELM-model III 0.76 0.12 6.41 4.96 0.76 0.93
ELM-model IV 0.83 0.11 5.43 4.18 0.83 0.95
ELM-model V 0.91 0.08 4.01 2.98 0.91 0.98
ELM-model VI 0.91 0.08 4.01 2.89 0.91 0.98
Testing phase
ELM-model I 0.39 0.20 9.84 7.49 0.41 0.74
ELM-model II 0.70 0.13 6.94 5.52 0.71 0.91
ELM-model III 0.73 0.13 6.54 5.34 0.74 0.92
ELM-model IV 0.74 0.13 6.38 5.13 0.75 0.92
ELM-model V 0.78 0.12 6.13 4.68 0.77 0.94
ELM-model VI 0.82 0.12 5.78 4.37 0.80 0.95

Table 12: Statistical measurements for RF model over training and
testing phase for all input combinations.

Models R2 MAPE RMSE MAE NSE WI
Training phase
RF-model I 0.64 0.15 7.89 5.83 0.64 0.89
RF-model II 0.74 0.13 6.74 5.13 0.74 0.92
RF-model III 0.74 0.13 6.72 5.14 0.74 0.92
RF-model IV 0.79 0.13 36.78 4.86 0.79 0.94
RF-model V 0.89 0.08 4.48 3.28 0.88 0.97
RF-model VI 0.89 0.09 4.54 3.41 0.88 0.96
Testing phase
RF-model I 0.61 0.16 7.92 5.56 0.62 0.85
RF-model II 0.85 0.10 4.90 3.89 0.85 0.96
RF-model III 0.87 0.13 4.54 3.56 0.87 0.96
RF-model IV 0.87 0.10 4.64 3.89 0.87 0.96
RF-model V 0.90 0.07 4.04 2.91 0.90 0.97
RF-model VI 0.94 0.07 3.60 2.75 0.92 0.98
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Figure 11: Taylor diagram for the developed AI model over all data division scenarios. (a) Scenario I. (b) Scenario II. (c) Scenario III.
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Figure 12: Relative error percentages of the developed AI models for the three tested scenarios. (a) Scenario I. (b) Scenario II. (c) Scenario III.
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Figure 13: Scatter plot diagram for the developed AImodels using all input combinations. (a)Model I. (b)Model II. (c)Model III. (d)Model
IV. (e) Model V. (f ) Model VI.
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Figure 14: Taylor diagram for the developed AI models using all input combinations. (a) DLNNmodel. (b) MARS-model. (c) ELM-model.
(d) RF-model.
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Figure 15: Continued.
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of the developed DLNN model for predicting the com-
pressive strength of EF concrete. �e proposed model
indicated a robust machine learning model that can be
implemented in actual practice to calculate the com-
pressive strength of concrete as a prior stage for material
design.�is is giving credit to the application of computer-
aided models to take place of an essential alternative
technology. For future studies, the advanced models of AI
can be introduced to improve the predictability of
standalone AI models for compressive strength prediction
of EF concrete such as [86, 87]. �e application of un-
certainty analysis can be examined to investigate the ef-
�ciency of input variables and the sensitivity of the
developed model [88].

5. Conclusion

Accurate prediction of the compressive strength of EF
concrete is very important in the sustainable development
of concrete structures. Four AI approaches called DLNN,
MARS, ELM, and RF were developed using 353 experiment
samples collected from open-source literature. �ree data
division scenarios (70%-30%, 80%-20%, and 90%-10%)
were applied to investigate the e�ect of changing training
data size on the modelling process of compressive strength.
XGBoost algorithm abstracted the most correlated input
parameters needed to achieve the best prediction perfor-
mance. �e capacity of the developed model was examined
by using statistical metrics and graphical presentations.�e
results re�ected that the DLNN model attained the highest
accuracy of prediction performance and, therefore, is

suitable for the CS prediction of EF concrete. �e results
also demonstrated that using of 90%-10% data division
scenario revealed a better prediction ability. It is found that
the data size used for training the developed model has a
considerable impact on the predicted model accuracy. �e
application of XGBoost as a feature selection approach
plays an essential role in abstracting the most correlated
variables in CS prediction. �e study revealed that the
highest prediction performance could be attained by in-
corporating all input variables in the prediction problem.
�e results re�ected that the DLNN model attains the best
prediction accuracy with the sixth input combination. In
addition, the study demonstrated that the DLNN model
provided an outstanding ability to capture the nonlinear
relationship among the input variables as well as the
compressive strength of concrete.
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Figure 15: Relative error percentages of the developed AI models for the three tested scenarios. (a) DLNN model. (b) MARS-model. (c)
ELM-model. (d) RF-model.

18 Complexity



to thank Al-Mustaqbal University College for providing
technical support for this research.

References

[1] R. Mi, G. Pan, K. M. Liew, and T. Kuang, “Utilizing recycled
aggregate concrete in sustainable construction for a required
compressive strength ratio,” Journal of Cleaner Production,
vol. 276, Article ID 124249, 2020.

[2] M. A. B. Omer and T. Noguchi, “A conceptual framework for
understanding the contribution of building materials in the
achievement of Sustainable Development Goals (SDGs),”
Sustainable Cities and Society, vol. 52, Article ID 101869, 2020.

[3] D. Oh, T. Noguchi, R. Kitagaki, and H. Choi, “Proposal of
demolished concrete recycling system based on performance
evaluation of inorganic buildingmaterials manufactured from
waste concrete powder,” Renewable and Sustainable Energy
Reviews, vol. 135, Article ID 110147, 2021.

[4] M. S. Nasr, I. M. Ali, A. M. Hussein, A. A. Shubbar,
Q. T. Kareem, and A. T. AbdulAmeer, “Utilization of locally
produced waste in the production of sustainable mortar,”
Case Studies in Construction Materials, vol. 13, Article ID
e00464, 2020.

[5] M. Soltaninejad, M. Soltaninejad, F. S. K, M. K. Moshizi,
V. Sadeghi, and P. Jahanbakhsh, “Environmental-friendly
mortar produced with treated and untreated coal wastes as
cement replacement materials,” Clean Technologies and En-
vironmental Policy, vol. 23, no. 10, pp. 2843–2860, 2021.

[6] M. Sandanayake, C. Gunasekara, D. Law, G. Zhang,
S. Setunge, and D. Wanijuru, “Sustainable criterion selection
framework for green building materials - an optimisation
based study of fly-ash Geopolymer concrete,” Sustainable
Materials and Technologies, vol. 25, Article ID e00178, 2020.

[7] R. Yang, R. Yu, Z. Shui et al., “Environmental and economical
friendly ultra-high performance-concrete incorporating ap-
propriate quarry-stone powders,” Journal of Cleaner Pro-
duction, vol. 260, Article ID 121112, 2020.

[8] N. N. Hilal, A. S. Mohammed, and T. K. M. Ali, “Properties of
eco-friendly concrete contained limestone and ceramic tiles
waste exposed to high temperature,” Arabian Journal for
Science and Engineering, vol. 45, no. 5, pp. 4387–4404, 2020.

[9] B. Wang, L. Yan, Q. Fu, and B. Kasal, “A comprehensive
review on recycled aggregate and recycled aggregate con-
crete,” Resources, Conservation and Recycling, vol. 171, Article
ID 105565, 2021.

[10] H. Naderpour, A. H. Rafiean, and P. Fakharian, “Compressive
strength prediction of environmentally friendly concrete
using artificial neural networks,” Journal of Building Engi-
neering, vol. 16, pp. 213–219, 2018.

[11] H. Naderpour andM.Mirrashid, “Estimating the compressive
strength of eco-friendly concrete incorporating recycled
coarse aggregate using neuro-fuzzy approach,” Journal of
Cleaner Production, vol. 265, Article ID 121886, 2020.

[12] J. Xie, W. Chen, J. Wang, C. Fang, B. Zhang, and F. Liu,
“Coupling effects of recycled aggregate and GGBS/metakaolin
on physicochemical properties of geopolymer concrete,”
Construction and Building Materials, vol. 226, pp. 345–359,
2019.

[13] J. Xie, J. Zhao, J. Wang, C. Wang, P. Huang, and C. Fang,
“Sulfate resistance of recycled aggregate concrete with GGBS
and fly ash-based geopolymer,” Materials, vol. 12, no. 8,
p. 1247, 2019.

[14] T. R. Naik and G. Moriconi, “Environmental-friendly durable
concrete made with recycled materials for sustainable

concrete construction,” in Proceedings of the International
Symposium on Sustainable Development of Cement, Concrete
and Concrete Structures, pp. 5–7, Toronto, Ontario, October,
2005.

[15] R. Ahmmad, U. J. Alengaram, M. Z. Jumaat, N. H. R. Sulong,
M. O. Yusuf, and M. A. Rehman, “Feasibility study on the use
of high volume palm oil clinker waste in environmental
friendly lightweight concrete,” Construction and Building
Materials, vol. 135, 2017.

[16] T. Kibriya and S. Khan, “Performance of ecologically friendly
waste in high strength concrete,” in Proceedings of the IV
Regional Conference on Civil Engineering Technology, Joint
ASCE/ESIE Conference, pp. 7–9, Cairo, June, 2005.

[17] R. Corral Higuera, S. P. Arredondo Rea, J. M. V. Gómez
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