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Lignocellulosic biomass has been developed as a sustainable
and promising feedstock for production of various value-
added chemicals and biofuels [1-3]. Due to the oxygen-rich
features of biomass sources, the yielded products are typi-
cally functionalized with oxygen-containing species, re-
markably enriching the product variety [4-7]. Moreover,
functionalization of biomass derivatives with nitrogen,
sulphur, phosphorus, and silicon atoms can also be achieved
via specific reaction routes or catalytic pathways [8, 9]. Those
heteroatom-containing compounds are crucial core scaf-
folds or key intermediates in a wide range of bioactive
molecules and functional materials and can also be directly
used as solvents, surfactants, and so on [10-12].

This special issue intends to highlight current advances
in the development and optimization of catalytic systems
and processes for the selective transformation of lignocel-
lulosic biomass and derivatives to value-added products,
especially heteroatom-containing compounds. The papers
selected are on the development of green technologies to
upgrade biomass and waste resources, and those with topics
on the design of appropriate catalytic materials/molecules
with controllable functionalities or the establishment of
fitting catalytic processes to boost conversion processes are
also considered. Hereby, we are pleased to share six exciting
papers on biomass valorization with the readers.

In the paper entitled “Hydrothermal Catalytic Conver-
sion of Glucose to Lactic Acid with Acidic MIL-101(Fe),” X.
Liu et al. explore MIL-101(Fe) as a heterogeneous acid
catalyst for direct conversion of glucose to lactic acid, with a
moderate yield of 25.4% in water at a reaction temperature of

190°C after 2 h. The unique catalyst structure properties and
appropriate acid strength are demonstrated to be responsible
for the superior activity of MIL-101(Fe) in the synthesis of
lactic acid from glucose. After four consecutive recycles,
glucose conversion decreases from 70.8% to 54.9%, and LA
yield is dropped from an initial value of 25.4% to 18.5%,
possibly due to the partial deposition of oligomeric
byproducts in the catalyst pores that lead to the blocking of
the active sites and partial ingredient changes in the catalyst.

In the paper entitled “Highly Selective Reduction of Bio-
Based Furfural to Furfuryl Alcohol Catalyzed by Supported
KF with Polymethylhydrosiloxane (PMHS),” Z. Yu et al.
present an economical and benign catalytic system, con-
taining an easily prepared and reusable catalyst 5wt.% KEF/
ZrO, and a low-cost hydrogen source PMHS, which is ef-
ficient for hydrogenation of furfural (FUR) to high-value
turfuryl alcohol (FFA) under mild reaction conditions. A
high FFA yield (97%) and FUR conversion (99%) can be
obtained over KF/ZrO, at 25°C in just 0.5h, which is su-
perior to those attained with other tested catalysts. It is found
that the performance of KF/ZrO, is remarkably affected by
acid-base properties of the ZrO, support and KF loading
doge. In addition, the KF/ZrO, catalyst can be recycled at
least five times, with the FFA yield decreasing from 97% to
71%, which is attributed to the catalyst pores covered by the
PMHS-based resin.

In the paper entitled “Formaldehyde Use and Alternative
Biobased Binders for Particleboard Formulation: A Review,”
S. W. Kariuki et al. overview the application of starch as an
alternative binder to formaldehyde in formulation of
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particleboard. The use of the modified starch is illustrated to
show increased particleboard performance. The authors
point out that mechanical strength, such as modulus of
rupture, modulus of elasticity, and internal bonding in
particleboards, however, remains to be a challenge.

In the paper entitled “Solid-Phase Preparation of Al-
TiO, for Efficient Separation of Bioderived Product Dan-
shensu,” F. Chang et al. prepare four Al-TiO, solid samples
with different Ti/Al ratios of 1:0.1, 1:0.09, 1:0.07, and 1:
0.05 synthesized by a solid-phase synthesis method, which
are characterized by XRD, SEM, EDS, BET, and other
techniques. These Al-TiO, samples were tested to have good
adsorption and desorption ability, in which the solid Al-
TiO, with a Ti/Al ratio of 1:0.05 is more suitable for the
separation of Danshensu. A high adsorption of 77.70% is
attained after 2 h adsorption time with a pH value of 3, and a
high desorption rate of 70.29% was received at the sample
concentration of 3.0 mg/mL with 80% ethanol eluent.

In the paper entitled “Kinetic Study of Biodangerous
Methylmercury Degradation under Various Light Condi-
tions,” Y. Zhang et al. investigate the kinetics and mecha-
nism of methylmercury (MeHg) degradation under UVB,
UVA, natural light, and dark and disclose that light radiation
can enhance MeHg degradation but has no significant in-
fluence on the final balance between MeHg and inorganic
Mercury (Hg*") in pure water. This balance can be used as a
key fundamental to estimate MeHg cycling in other com-
plicated aquatic environments.

In the paper entitled “High CO, Adsorption Enthalpy
Enabled by Uncoordinated N-Heteroatom Sites of a 3D
Metal-Organic Framework,” Y. Zhao et al. examine the CO,
adsorption properties of a prepared 3D metal-organic
framework, Mn,L,(H,0),-(DMF), with uncoordinated
N-heteroatom sites. The uncoordinated nitrogen hetero-
atom sites are uncovered to markedly increase the reci-
procity between host frame and CO, at room temperature,
therefore showing high adsorption enthalpy of CO.,.
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Hydrogenation of bio-based furfural (FUR) to furfuryl alcohol (FFA) is tremendously expanding the application of biomass in
many industries such as resins, biofuels, and pharmaceuticals. However, mass manufacture of FFA from FUR is restrained by
strict requirements of reaction conditions and expensive catalysts. In this work, an economical and benign catalytic system,
containing an easily prepared and reusable catalyst 5wt.% KF/ZrO, and a low-cost hydrogen source polymethylhydrosiloxane
(PMHS), was developed to be efficient for the hydrogenation of FUR to high-value FFA under mild conditions. The catalyst
reactivity was found to be remarkably influenced by the support acid-base properties and KF loading doge. In the presence of
5wt.% KF/ZrO,, a high FFA yield of 97% and FUR conversion of 99% could be obtained at 25°C in just 0.5 h, which was superior to
those attained with other tested catalysts. The KF/ZrO, catalyst could be recycled at least five times, with the FFA yield slightly
decreasing from 97% to 71%. The spare decrease in FFA yield is possibly attributed to the catalyst pore blocking, as clarified by

SEM, BET, XPS, and ICP-MS measurements of the fresh and reused catalysts.

1. Introduction

Diversiform sustainable clean energies have been developed
to get rid of the dependence of nonrenewable fossil energy
and relieve environmental deterioration caused by com-
bustion of fossil fuel in past decades [1-3]. In particular,
biomass containing abundant carbon source is considered as
the best source to replace fossil fuels, for the production of
various biofuels such as biodiesel, ethanol, and 2,5-dime-
thylfuran [4-8]. In addition, through a series of chemical
reactions including hydrolysis, dehydration, oxidation, hy-
drogenation, and hydrogenolysis, lignocellulosic biomass
can be transformed into numerous value-added oxygen-
containing heterocyclic compounds [9-17].

Furfural (FUR) is an important biomass-derived com-
pound, which is mainly obtained from the xylose which is

one of the main hydrolyzates of hemicellulose [18, 19].
Through the partial reduction of FUR, furfuryl alcohol
(FFA) can be prepared. FFA is indispensable feedstock for
the synthesis of diverse downstream compounds including
ethyl furfuryl ether, tetrahydrofurfuryl alcohol, y-valer-
olactone, levulinic acid, and so on, all of which have wide
applications in fuels, pharmaceuticals, and food and
chemical industries (Figure 1) [20-29]. Up to now, artificial
synthesis of FUR and FFA is of high cost and needs a
complex conversion process, indicating that the hydroge-
nation of FUR not only enlarges the application of biomass
but also sharply decreases the synthesis cost of various
downstream compounds [30, 31].

The H-donor for the hydrogenation of FUR to FFA is
classified as gas- and liquid-phase reaction processes, all of
which have corresponding advantages and shortages.
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F1GURE 1: Biomass valorization by the hydrogenation of FUR to FFA. FUR: furfural; FFA: furfuryl alcohol; EFE: 2-(ethoxymethyl) furan;
THFA: tetrahydrofurfuryl alcohol; 2-Me THEF: 2-methyltetrahydrofuran; 2-MeFuran: 2-methylfuran.

Hydrogen gas as a gaseous H-donor has superiority in the
product separation and thus is broadly applied in the diverse
hydrogen reactions [32]. At room temperature, hydrogen
gas is hard to react with other compounds until the reaction
conditions change. High temperature and metal catalysts are
effective for the activation of hydrogen gas. Thus, in in-
dustrial manufacture, the production of FFA from FUR and
molecular hydrogen is completed at high temperatures
catalyzed by noble metals (e.g., Au, Ru, Pd, and Pt) [33-36],
nonnoble metals (e.g., Co, Cu, and Fe) [19, 37-40], and
metallic oxides (e.g., CrCuOs3) [41]. However, due to the high
activity of metal catalysts, aldehyde group and furan ring can
be both reduced in this reaction system, resulting in that
most catalysts used in the hydrogenation of FUR to FFA are
still applied in the laboratory scale. In addition, with the
reaction temperature exceeding the boiling point of FUR
(167°C), FFA can be efficiently prepared from gas state FUR
and hydrogen gas in atmospheric pressure, which indicates
that the hydrogenation of FUR can react in both vapor state
and liquid state. At the relatively low temperature, hydro-
silane, alcohol, acid, and similar liquid compounds with
free hydrogen atoms are good H-donor for hydrogenation
of FUR to FFA in the liquid phase. The Meer-
wein-Ponndorf-Verley (MPV) reduction which is used
alcohol as liquid H-donor has been largely applied in the
reduction of biomass platform molecules, which can si-
multaneously produce two useful compounds and thus at-
tracts the attention of numerous researchers focusing on
biomass valorization [42-44]. Generally, the catalysts per-
forming high catalytic activity for the MPV reduction of
FUR to FFA include acid-base bifunctional catalysts (e.g.,
Pd/HZSM-5 and MgO-AL,O;) [45, 46] and Lewis acid
catalysts (e.g., Al-, Zr-zeolites, and Zr-, Al-, Hf-based cat-
alysts) [47-49]. It is noteworthy that the drawbacks of the
MPV reaction system such as difficult separation of products

and relatively harsh conditions still trouble researchers in
this research field. Besides gas-phase H-donor hydrogen gas
and alcohol H-donor, increasing reports about the hydro-
genation of FUR to FFA by another liquid H-donor
hydrosilane have been presented in the past decade [50, 51].
In this reaction system, FFA is obtained from FUR in high
selectivity under mild conditions (atmospheric pressure,
<80°C), which makes up the imperfection of the reaction
system when hydrogen and alcohol are used as H-donor.

For hydrosilane, polymethylhydrosiloxane (PMHS) as
the cheapest hydrosilane agent and the by-product of the
silicon industry is an ideal H-donor for the hydrogenation of
FUR to FFA [8, 52, 53]. At the same time, PMHS is a green
agent as it is nontoxic and having great chemical stability for
water and atmosphere [54, 55].

Recently, a series of fluoride salts were reported for the
conversion of aldehyde to corresponding alcohol by PMHS
in highly selective and effective environment [56, 57].
However, the fluoride salts as homogeneous catalysts are not
suitable for economically manufacturing FFA from FUR, for
which a novel and recyclable catalyst KF/support is reported
in this article. The catalyst prepared by the impregnation
method provides a suitable carrier for KF to attach, which is
favorable for the contract of the substrate with KF and
preventing KF from the erosion of solvent and substrate
[32, 58]. Through the impregnation method, the obtained
solid catalyst that combines the high efficiency of KF and the
heterogeneous property of support was developed to cata-
lyze the hydrogenation of FUR to FFA at a lower cost.

2. Results and Discussions

2.1. Effect of Different Supports. For the impregnation
method, the loading amount of active sites on the solid
support is generally decided by the support porosity and
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chemical property [59]. Therefore, the influence of different
porous supports on the catalytic behavior of KF was initially
investigated (Figure 2). The loading rate of all support
catalysts is 3 wt.%.

The results listed in Figure 2 show that KF supported on
acidic montmorillonite K-10 (K-10) and alkaline hydroxy-
apatite microspheres (HAP) and nanomagnesium oxide
(MgO) performed poor reactivity in this reaction system,
which could be attributed to the ion exchange between the
support with KF [60] or the competing reaction of fluoride
ion and hydroxide released from the support [61], re-
markably weakening the nucleophilic attack ability of KF. In
connection with this, nanotitanium dioxide (TiO,) and
zirconium oxide nanopowder (ZrO,) with both moderate
acid and base sites supported KF showed relatively good
catalytic activity for the conversion of FUR to FFA. In
addition, due to the relatively high surface area of ZrO,, the
catalyst using ZrO, (75% FFA yield) as support had better
catalytic reactivity than TiO, (55% FFA yield). Therefore,
ZrO, which has both moderate acid and base sites and the
relatively high surface area is the optimum support for
catalyst KF/support.

2.2. Effect of the Loading Rate of KF. Apart from the support,
the loading rate of KF is another important factor for the
catalyst preparation via impregnation [62]. The KF/ZrO,
catalysts with different KF loading rates (1-15wt.%) were
prepared by the impregnation method for the test of catalytic
activity (Figure 3). It was shown that 5wt.% was the best
loading rate of KF/ZrO, catalyst and increasing the loading
rate of KF gave rise to the slight reduction of the catalyst
activity of KF/support catalyst. For the decrease of catalytic
activity of 15wt.% KF/ZrO,, this phenomenon could be
attributed to the reduction of pore diameter which is caused
by the excess of KF. To prove the inference, N, adsorption-
desorption isotherms of KF/support in different loading
rates are presented in Figure S3. The hysteresis loop
appearing in the N, adsorption-desorption isotherms of
5wt.% and 15 wt.% KF/ZrO, (Figure S3) is the phenomenon
of decrease in pore diameter of 5 wt.% and 15 wt.% KF/ZrO,
catalysts, proving the inference why the catalytic activity of
15wt.% KF/ZrO, catalyst is declined.

Through the optimization of the support type and the
loading content of KF, 5wt.% KF/ZrO, shows the best
catalytic activity for the hydrogenation of FUR to FFA. In
addition, comparison of the results obtained in this work
with those of previous studies for the conversion of FUR to
FFA is presented in Table 1, which shows that 5wt.% KF/
ZrO, is a more eflicient catalyst for the selective hydroge-
nation of FUR to FFA.

2.3. Catalyst Characterization. The successful preparation of
KF/ZrO, by the impregnation method commonly keeps the
original configuration of support and makes the active
substrate KF uniformly distributed in the internal surface of
ZrO,. According to the XRD patterns of KF/ZrO, catalysts
with different KF loading rates (1-15 wt.%) (Figure 4), it can
be seen that the crystal structure of ZrO, does not change

Conversion or yield (%)
IS o
S >
1 1
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(=]
1
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FiGure 2: Effect of different supports on the synthesis of FFA from
FUR. Reaction conditions: 0.5 mmol FUR, 25 mg catalyst, 2.5 equiv.
H™ of PMHS, 2 mL DME, 25°C, and 30 min. K-10: montmorillonite
K-10; HAP: hydroxyapatite microspheres; MgO: nanomagnesium
oxide; TiO,: nanotitanium dioxide; ZrO,: zirconium oxide

nanopowder.
15

FIGURE 3: Effect of KF loading rate of KF/ZrO, on the reduction of
FUR to FFA. Reaction conditions: 0.5 mmol FUR, 25 mg KF/ZrO,,
2.5 equiv. H™ of PMHS, 2mL DMF, 25°C, and 30 min.
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significantly. The crystal faces of ZrO, including (1, 1, 0), (-1,
1,1),(1,1,1), 71,0 2), (=22 1), (1, 3,0), and (1, 3, 1) are
attributed to the diffraction peaks at 24.1°, 27.9°, 31.4°, 34.1°,
40.8°,50.4°, 55.3°, and 59.6°, respectively. As can be seen from
the XPS spectra of 5wt.% KF/ZrO, (Figure 5), the peaks of
690eV and 290eV that, respectively, correspond to the
fluorine and potassium are detected, indicating that KF is
successfully distributed in the external surface of the sup-
port. In the XRD pattern of KF/ZrO,, the diffraction peak at
39.5° can be observed, manifesting the formation of the
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TaBLE 1: Catalytic results collected for the hydrogenation of FUR to FFA.
Catalyst Temperature ("C)  Time (h) H-donor Yield (%)  Selectivity (%)  Reuse times (yield) Ref.
Fe-L1/C-800 160 15 2-Butanol 75.87 82.9 5 (60.1%) [44]
y-Fe,O;@HAP 180 3 iso-Propanol 59.5 91.6 6 (57.2%) [63]
Co/SBA-15 150 1.5 2MPa H, 87.6 95.6 11 (50.5%) [64]
5wt.% Ni/CN 200 4 1 MPa H, 91.4 95.0 4 (91.4%) [65]
CuCo00.4/C-873 140 1 3MPa H, 28.5 93.4 4 (17.4%) [66]
5wt.% KF/ZrO, 25 0.5 PMHS 97.0 98.0 5 (71%) This work
(Table 2), a relatively high K content of KF/ZrO, detected by
ICP indicated that KF is successfully distributed in both the
external and internal surface of ZrO,. In addition, the
() thermostability of catalysts was detected by TG analysis, and
. the results show that the quality of KF/ZrO, is very stable, in
g . (b) which the catalyst weight is slightly decreased when the
= - calcination temperature increases from 25 to 600°C.
RS U WO TP
= o Meoshen I omAboron (D) 2.4. Effect of Different Solvents. Five kinds of solvents were
g () chosen for comparing the effect of different solvents on the
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alkaline active species (K;Zr,F;;) by the chemical combi-
nation of K* and oxygen species [67]. The results show that
KF is immobilized on ZrO, which is realized by both
physical adsorption and chemical interaction. It is known
that ZrO, as a porous material has a relatively large surface
area (ca. 80-110 m*/g), most of which is provided by the
internal surface [68, 69]. Through comparison of the de-
tection results obtained by XPS and ICP-MS analysis

11% or 44% FUR conversion, respectively). It was proposed
that alcohol could react with PMHS to produce hydrogen gas
[70], significantly decreasing the amount of PMHS for the
reduction of FUR, which thus afforded lower FFA yield and
FUR conversion. For the aprotic solvent, the order of re-
activity is correlated with the order of the solvent polarity:
N,N-dimethylformamide (DMF) > ethyl acetate (EA)>2-
methylfuran (2-MeTHF) (Figure 6). DMF as the relatively
high polarity solvent shows the best FFA yield (97%) and
FUR conversion (99%), for which DMF was considered as
the optimum solvent for this reaction system.

2.5. Effect of PMHS Dosage and Hydrosilane Type. Effect of
PMHS dosage was investigated from 0.5 to 4 equiv. at in-
tervals of 0.5 equiv. (Figure 7). It was obvious that the low
dosage of PMHS could not provide enough H-donor to
complete the reduction of FUR to FFA and the excess dosage
of PMHS against the dissociation between FFA and PMHS,
thus reducing the yield of FFA [71]. PMHS with 2.5 equiv.
H™ was found to be the optimum dosage of PMHS, which is
in favor of the FUR to FFA hydrogenation in an economical
and efficient way.

After confirming the optimum dosage of PMHS, there
are eight kinds of hydrosilanes that are used for the study of
hydrosilane type effect (Table 3). For the hydrosilanes
containing phenyl species, phenylsilane (PS) and diphe-
nylsilane (DPS) showed very good activity in the reduction
of FUR to FFA, giving FFA yield in >99% or 99.0%, re-
spectively. For the hydrosilanes not containing phenyl
species, 99% FFA vyield could be obtained using PMHS as
H-donor, which is the highest FFA yield (1-75%) among the
hydrosilanes not containing phenyl groups. From the point
of economy, although using hydrosilanes containing phenyl
groups as H-donor achieved high FFA yields, the price of PS
and DPS is 72 and 38 times higher than that of PMHS,
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TaBLE 2: Composition of the fresh and reused catalysts detected by XPS and ICP analysis.

Entry Detection method Sample K (mol%) F (mol%)

1 ICP 5wt.% KF/ZrO, 3.58 —

2 ICP Reused 5wt.% KF/ZrO, 3.02 —

3 XPS 5wt.% KF/ZrO, 2.99 3.79

4 XPS Reused 5wt.% KF/ZrO, 0.01 0.01
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F1GURrE 6: Influence of solvent type on the hydrogenation of FUR to FFA. Reaction conditions: 0.5 mmol FUR, 25 mg 5 wt.% KF/ZrO,, 2.5
equiv. H™ of PMHS, 2 mL solvent, 25°C, and 30 min. DMF: N,N-dimethylformamide; EA: ethyl acetate; 2-MeTHF: 2-methylfuran; MeOH:

methanol; n-BuOH: n-butanol.

100

80

60

40

Conversion or yield (%)

20

V22722772777

AT

R
0

7N
5 2.0 2.5 3.0 3.5
PMHS dosage (equiv. of H™ of PMHS)

Q77 FFA yield
B FUR conversion
FiGure 7: Effect of PMHS dosage on the reduction of FUR to FFA.

Reaction conditions: 0.5 mmol FUR, 25mg 5 wt.% KF/ZrO,, 2 mL
DME, 25°C, and 30 min.

/]

)
w
g
S
—

iy

)

respectively [50], which is too expensive to carry out for
practical application. As the cheapest hydrosilane, PMHS
performed relatively high FFA yield (99%) as well, for which
PMHS is considered as the optimum hydrosilane from the
examined hydrosilanes.

2.6. Catalyst Recycling Study. The reusability of 5wt.% KF/
ZrO, was also investigated, and the obtained results are
shown in Figure 8. After five consecutive runs, the FFA yield
marginally decreased from 97% to 71%.

From the XRD pattern of reused 5wt.% KF/ZrO, cat-
alyst, it was revealed that the crystallization of the catalyst
was decreased after recycles (Figure 4). Thus, the reason why
the catalyst activity is slightly decreased could be attributed
to the catalyst pore blocking by the PMHS-based resin,
which is a typical by-product of reaction system using PMHS
as H-donor [72]. To prove the reasonability of the inference,
the characterizations of reused 5wt.% KF/ZrO, by SEM,
BET, XPS, and ICP-MS are conducted. Firstly, from the SEM
image of the reused catalyst (Figure S1), it can be seen that
the surface of the catalyst is covered by an unknown sub-
strate. For the XPS spectra of reused 5wt.% KF/ZrO,
(Figure 5), the characteristic peak of silicon (102eV) was
detected, indicating that 5wt.% KF/ZrO, is covered by
PMHS-based resin. The BET isotherms and pore diameter
analysis suggest that the pore diameter is reduced after use
(Figures S2 and S3). Thus, the PMHS-based resin that is
wrapping the 5 wt.% KF/ZrO, restricts the substrate to enter
into the cavity of support, which decreases the contact of
active compounds to substrate and weakens the catalytic
activity of 5 wt.% KF/ZrO,. Meanwhile, the sharp decrease of
KF content is also attributed to the coverage of PMHS resin,
which can be illustrated by the significant peak of silicon in
the XPS spectrum (Figure 5). Except the effect of PMHS-
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TaBLE 3: Influence of hydrosilane type on the reduction of FUR to FFA.

Entry Hydrosilane structure Chemical name Yield (%) Conversion (%) Selectivity (%)
1 | | | 1,1,1,3,5,5,5-Heptamethyltrisiloxane 72 >99 72
_Si_ _SiH _Si—
AN G )
Triethoxysilane
2 0% R 75 >99 75
AR I Y
H
Triethylsilane
3 1 5 20
NG
H
o 1,1,3,3-Tetramethyldisiloxane
| J/ »1,9, Y
4 SifT \SiH >99 >99 100
[
H, Diphenylsilane
5 : Si : 99 >99 99
SiH Phenylsil
6 @/ s enylstane >99 >99 100
o~ Trimethoxysilane
7 0O 1.0 57 88 65
SUNGTTN
H
8 \S|1<O\S|i>o\5|i/ PMHS 97 99 98
HD AN

Reaction conditions: 0.5 mmol FUR, 25 mg 5wt.% KF/ZrO,, 2mL DMF, 2.5 equiv. H™ of hydrosilane, 25°C, and 30 min.
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Ficure 8: Catalyst recycling study of 5wt.% KF/ZrO, Reaction
conditions: 0.5 mmol FUR, 25 mg 5 wt.% KF/ZrO,, 2 mL DMF, 2.5
equiv. H™ of PMHS, 25°C, and 30 min.

based resin, the slight loss of KF is another factor for the
decrease in the catalytic activity of 5 wt.% KF/ZrO, after use.
The atomic analysis of fresh and reused 5wt.% KF/ZrO,
catalyst by ICP-MS (Table 2) indicates that KF was not
significantly leached (by ca, 0.56%). Meanwhile, the hot
filtration experiments (Figure 9) confirm the heterogeneous
catalytic behavior of the solid catalyst. Therefore, the main
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Yield of FFA
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Reaction time

—a— With catalyst
—e— Catalyst was separated after 5min

FIGURE 9: The FFA yield with or without the participation of 5 wt.%
KF/ZrO,, Reaction conditions: 0.5 mmol FUR, 25mg 5wt.% KF/
ZrO,, 2mL DMF, 2.5 equiv. H™ of PMHS, 25°C, and 30 min.

factor that decreases the catalytic activity is the PMHS resin
which covers the external surface of 5wt.% KF/ZrO,.

3. Conclusion

In summary, the KF/ZrO, catalyst was successfully prepared
by the impregnation method and had good reactivity for the



Journal of Chemistry

reduction of FUR to FFA using PMHS as H-donor. For the
support of the catalyst, ZrO, as a porosity material of
chemical inertness maintains the original configuration after
the process of impregnation. Meanwhile, 5 wt.% KF/ZrO, as
an appropriate loading rate of KF keeps the porosity of
support and high reactivity of KF. The benign reaction
system was optimized, and thus, 97% FFA yield and 99%
FUR conversion were achieved by this reaction system at
25°C after 0.5 h. Through the comparison of seven kinds of
commercial hydrosilanes and PMHS, PMHS is considered as
hydrosilane of the high price-performance ratio. The reus-
ability of 5 wt.% KF/ZrO, is good, which further reduced the
cost of the reaction system. After 5 times run, the FFA yield
was slightly decreased from 97% to 71%, due to the pore of
5wt.% KF/ZrO, covered by PMHS-based resin.

4. Materials and Experiments

4.1. Materials. Polymethylhydrosiloxane (>99.0%), potas-
sium fluoride (>99.9%), 2-methylfuran (>99.9%), 1,1,3,3-
tetramethyldisiloxane (>98.0%), nanotitanium dioxide
(>99.8%), hydroxyapatite microspheres, and naphthalene
(>99.0%) were purchased from Shanghai Aladdin Bio-Chem
Technology Co., Ltd. Triethoxysilane (>97.0%), 1,1,1,3,5,5,5-
heptamethyltrisiloxane (>98.0%), triethylsilane (>98.0%),
trimethoxysilane (>95.0%), and phenylsilane (>97.0%) were
bought from Tokyo Chemical Industry Co., Ltd. N,N-
Dimethylformamide (>99.5%), methanol (>99.5%), and
tetrahydrofuran (>99.5%) were purchased from Guangdong
Guanghua Sci-Tech Co., Ltd. n-Butanol (>99.5%) and ethyl
acetate (>99.5%) were obtained from Shanghai Shenbo
Chemical Co., Ltd. Diphenylsilane (>97.0%) and zirconium
dioxide nanopowder (>99.5%) were purchased from Alfa
Aesar Chemicals Co., Ltd. Nanomagnesium oxide (>99.0%),
montmorillonite K-10, and others were purchased from
Beijing Innochem Technology Co., Ltd.

4.2. Preparation of Catalyst. A series of KF/support catalysts
were prepared through an impregnation method. KF so-
lution was prepared at first, where a desired amount of KF
was dissolved into 2 mL pure water. Then, 1g support was
added into the solution. The mixture was heated at 60°C with
stirring for 6 h. Finally, the mixture was dried at 80°C for
12h, and the catalyst was ground for the test of catalytic
activity. Through the impregnation method, active com-
pound KF was distributed in the internal and external
surface of the support by two steps. First, the support is
completely immersed in the solution containing a moderate
amount of KF until the cavity of support is full of KF solution
by capillarity. Second, through a drying process, the solvent
in the KF solution is completely volatilized, making the
active compound KF be attached to the support surface.

4.3. Catalyst Characterization Techniques. BET (Bru-
nauer-Emmett-Teller) surface areas of the porous materials
were determined from nitrogen physisorption measure-
ments at liquid nitrogen temperature on a Micromeritics
ASAP 2460 instrument. Scanning electron microscopy

(SEM) images were obtained by using field-emission
scanning electron microscopy (FESEM; JEOL, EOL, JSM-
6700F, 5kV). Thermogravimetry (TG) analysis was deter-
mined by a NETZSCH STA 449 F3 Jupiter. XPS (X-ray
photoelectron spectroscopy) measurements were recorded
using a Physical Electronics Quantum 2000 Scanning ESCA
Microprobe (Physical Electronics Inc., PHI, MN) equipped
with a monochromatic Al Ka anode. The data of XRD (X-ray
diffraction) of the powder samples were obtained by using a
Rigaku International D/max-TTR III X-ray powder dif-
fractometer with Cu Ka radiation and 26 scanned from 5° to
80°. The quantitative elemental analysis of samples was
completed by coupled plasma mass spectrometry (ICP-MS,
Elan DRC II, PerkinElmer, Sciex).

4.4. Catalytic Transfer Hydrogenation. A plastic sealed tube
is a vessel where the FFA hydrogenation reaction was carried
out. In a general process, FUR (0.5 mmol, 0.048 g), KF/ZrO,
(25mg), DMF (2mL), and PMHS were added successively
into a 15mL plastic tube and then the lid was covered.
Afterward, the sealed tube filling with the reaction mixture
was put into the oil bath that was kept at 25°C. Upon
completion, methanol (2mL) was added to quench the
reaction, and the reaction mixture was filtered by a 0.2 ym
filter membrane for GC analysis.

4.5. Product Analysis. The quantitative analysis of the re-
action mixture was fulfilled by GC (Agilent 6890N)
equipped  with an  HP-5  capillary  column
(30m x0.320 mm x 0.25 ym) and flame ionization detector
(FID) detector. The programmed temperature for GC
analysis is set as follows: maintaining at 60°C for 1 min,
heating from 60 to 230°C in the rate of 10°C/min, and
holding for 4 min. Naphthalene was employed as an internal
standard for the quantitative analysis of the samples. The
standard curves of FUR and FFA were recorded with GC by
plotting different concentrations of FUR or FFA with spe-
cific concentrations of naphthalene, and the obtained curves
are shown in Figures S5 and S6. The substrate conversion
and product yield are calculated using the following equa-
tions, based on the standard curves made from commercial
samples:

. mole of residual substrate
conversion (%) ={ 1 - — X 100%,
mole of initial substrate
mole of product
ield (%) = 100%.
yield (%) mole of initial substrate X ’
(1)
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A 3D metal-organic framework (MOF), Mn,L,(H,0), - (DMF) {H,L=5- (Pyridin-2-yl)-3, 3'-bi (1H-1,2,4-triazole)} (1) with
uncoordinated N-heteroatom sites, has been obtained through hydrothermal method and structurally characterized by X-ray
structural analysis, powder X-ray diffraction (PXRD), and thermal analysis (TGA). The framework of compound 1 exhibits
fascinating adsorption properties and shows high adsorption enthalpy of CO,. The experimental results prove which unco-
ordinated nitrogen heteroatom sites can markedly increase the reciprocity between host frame and CO, at room temperature.

1. Introduction

Biomass is a sustainable material, which has been developed
as a promising feedstock for producing biofuels, and carbon
dioxide (CO,) from the burning of biofuels, as well as fossil
oil, is considered as the main component of all the gases that
cause the greenhouse effect resulting in various kinds of
environmental unsteadiness [1-4]. Captured CO, has in-
dustrial, economical, and social importance in decreasing
CO, emissions and in alleviating greenhouse effect. Due to
its high specific surface area and adjustable structures, MOFs
are certainly very promising as CO, adsorbents materials
have been investigated over the last couple of decades.
Numerous types of research on MOFs have illustrated the
great potential for storage and separation [5-12]. A recent
effort to improve the ability of MOFs to capture CO, is that
increase the number of uncoordinated nitrogen atoms in the
metal-organic frame [13-16], the enthalpy of CO, can be
augmented due to the uncoordinated N-heteroatom sites of
ligands [17, 18].

We noticed an interesting framework Mn,L,
(H,0), - (DMF) reported by Dong et al. [19], which is
constructed by Mn salt and H,L ligand. As shown in
Figure 1, the Mn center is octahedrally coordinated by

one O atom from the terminal coordinated water and five N
atoms from three different L ligands. Five of seven N atoms of
the L ligand coordinate to three Mn centers, among which N1,
N2, N4, and N6 atoms are in chelating mode, and N7 atom is in
monodentate mode. Compound 1 has a 3D open framework
including 1D channel and rich uncoordinated N-sites. Through
the calculation of the PLATON program [20], the free solvent-
accessible pore volume ratio in compound 1 is about 49.7%
without taking into account the guest molecules. However, the
microporosity of compound 1 has never been researched (the
pore size distribution of the compound 1 is shown in Table 3S).
Herein, we study the influence of uncoordinated N-heteroatom
sites of compound 1 on the uptake and adsorption enthalpy of
CO,. As expected, it has high amusing adsorption properties
and shows high adsorption enthalpy of CO, at ambient
temperatures. In the conditions we adopted, the N-heteroatom
which is uncoordinated can observably enhance the interaction
between host framework and CO,.

2. Experimental

2.1. Synthesis of Mn,L,(H,0),-(DMF). Compound 1 was
synthesized according to the reported method [19]. The
mixture of MnSO, - H,O (0.0160 g, 0.1 mmol), H,L (0.0213 g,
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FiGgure 1: (a) Coordination environment of Mn (II) in compound 1; (b) the 1D channel of compound 1 (the pink atoms stand for

uncoordinated N sites).

0.1 mmol), DMF (4.0 ml), and H,O (4.0 ml) in a 25 ml Parr
Teflon-lined stainless steel autoclave, heated at 160°C for 3
days, and then allowed to cool slowly to indoor temper-
ature. Colorless octahedron crystals were acquired, rinsed
with DMF, and dried at ambient temperatures. X-ray
molecular structure analysis indicates that compound 1 in
the orthorhombic 141, a space group, is identical to the
reported one (crystal data of compound 1 are shown in
Tables 1S and 2S). Elemental analysis (EA) for compound 1
C,1H, Mn,N;505 (641.41) were given as follows: calcu-
lated: C 39.33, H 3.30, and N 32.76; found: C 39.14, H 3.43,
and N 33.96; IR (KBr pellet, cm™") for compound 1:3370
(m), 1656 (w), 1610 (w), 1495 (w), 1419 (w), 1120 (s), 818
(m), 646 (m), and 507 (m).

2.2. Preparation of Activated Sample. Supercritical CO, ac-
tivation experiments were accomplished on Tousimis™
Samdri® PVT-30. Ahead of activation, samples were thor-
oughly washed with DMF. Sample 1 was wrapped with a toilet
paper and fixed by Flament, and then the sample was put in a
tube and placed into the chamber of the supercritical drier.
The chamber was charged by dry liquid CO, (99.8%), and the
sample tube was permitted to purge for 5min every 30 min.
During the process, the chamber temperature was kept at
~0-10°C. Four hours later, the temperature of the chamber
was raised to ~38°C, and the same chamber temperature was
kept for one hour followed by slow venting one night. As-
synthesized samples were soaked in liquid CO, at high
pressure over the course of hours and then under dynamic
vacuum conditions to form activated sample.

3. Results and Discussion

3.1. The Powdered X-Ray Diffraction and Thermogravimetric
Analysis. It can be known that the compound 1 is the pure
phase because the experimental PXRD patterns confirm well
with the graph simulated from the research results
(Figure 2(a)). Thermal analysis (TGA) in N, ambience with a

heating rate of 10°C/min was done on a polycrystalline
sample to study the thermostability of compound 1 from 25
to 800°C (Figure 3). The primary sample 1 indicated the first
weight decrease in 6% takes place in the range of 30-100°C,
corresponding to the release of surface solvent molecules
and water molecules in the channel. The second weight
decrease in 16% occurs at 100-200°C, which can owe to the
loss of DMF molecules. The third weight decrease in 7%
occurs at 200-450°C, which could be caused by the lost of
coordinated water molecules. After this temperature, the
framework starts to collapse.

3.2. The Study of Porosity. In order to evaluate the per-
manent porosity, N, adsorption and CO, adsorption
experiments were carried out. Prior at gas adsorption, the
sample was activated by supercritical CO, (SCD) methods.
N, adsorption experiment at 77 K exhibits type I sorption
isotherms, which is particular of porous materials. The
maximum N, is 116.45 cm®/g at 744.6 mmHg (Figure 4),
corresponding to Langmuir and BET surface areas which
were 326.25 and 232.48 m?/g, severally. However, obvious
hysteresis loop was observed. The possible reason is due to
the flexibility of skeleton based on weak coordination
bond because of Mnl connection through monodentate
coordination with N7, and the single bond between Mnl
with N7 can freely rotate. From the PXRD patterns be-
tween the as-synthesized and activated samples, we can see
that the main peaks of compound 1 shift to high angles
(Figure 2(b)), which reflected the flexibility of the
framework.

The presence of the permanent porosity and oofy un-
coordinated N-heteroatom sites indicates that compound 1
may have great potential for the CO, capture adhibition.
Single-component CO, sorption isotherms were measured
at 273 K and 298 K (Figure 5(a)). A hysteresis loop was also
observed. The CO, uptake values were 32.4 cm’/g at 273K,
and 20.85cm’/g at 298K, respectively. The value of the
uptake (32.4cm’/g) is higher compared with numerous
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famous porous materials without uncoordinated N-sites, for
instance ZIF-8, ZIF-68, ZIF-69, and ZIF-71 (21, 22].

In order to measure the powerful affinities to CO,, the
enthalpy of CO, adsorption for compound 1 was calculated
by using the virial equation from the adsorption isotherms
at two different temperatures (273 and 295K). At zero
loading, the enthalpy of CO, adsorption is 39.1 kJ/mol for
compound 1 (Figure 5(b)), which is also higher than most
of the famous MOFs, such as MOF-5, IR-MOEF-3, MOF-
253, and bio-MOF-1 [23-26]. These results suggest the
N-heteroatom which uncoordinated can markedly enhance
the binding strengths of CO, gas molecules with the
framework.

4. Conclusion

In summary, here, we reported the gas adsorption of a
microporous MOF containing N-heteroatom. In the con-
ditions we adopted that the N-heteroatom which is unco-
ordinated can markedly enhance the interaction between the
host framework and CO, under ambient conditions.
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Four kinds of Al-TiO, solid samples with different Ti/Al ratios of 1:0.1, 1:0.09, 1:0.07, and 1:0.05 were synthesized via a solid-
phase synthesis method and characterized by XRD, SEM, EDS, BET, and other techniques. The prepared solids were used for
separation of the bioderived product danshensu, the content of which was determined by UV spectrophotometry. Moreover, the
effects of extract concentration, PH value, adsorption time, and ethanol elution volume were investigated. The results showed that
these Al-TiO, samples had good adsorption and desorption ability. Especially, the solid Al-TiO, with a Ti/Al ratio of 1:0.05 is
more suitable for the separation of danshensu, exhibiting a higher adsorption (77.70%) under 2 h adsorption time and pH = 3;
meanwhile, the high desorption rate (70.29% ) was received under 80% ethanol and the sample concentration of 3.0 mg/mL.

1. Introduction

Danshensu significantly inhibits the growth of cancer cells
and makes the tk/GCV (herpes simplex virus thymidine
kinase/ganoside) system of cancer cells enhance the syn-
ergistic effect of killing and the effect of suicide gene by-
standers (BE) [1]. The previous study also found that
danshensu can significantly inhibit the rise of blood lipids in
rabbits with a high-fat diet and can also inhibit the synthesis
of endogenous cholesterol cells [2]. In the field of medicine,
danshensu has a more broad application prospect. There-
fore, the effective separation and purification of danshen
sodium SSH (Salvia scapiformis Hance) on the full devel-
opment and utilization of white tonic has great significance.

Salvia miltiorrhiza separation often uses the extraction or
alcohol precipitation method [3-6], but there are bottlenecks
such as separation difficulties and serious pollution problems
of science and technology. In recent years, with the in-depth
study of TiO, powder material, it was found that it not only
has the basic characteristics of common materials but also has
adjustable pore size, narrow pore size distribution, ordered
structure, and larger specific surface area with a certain choice
of adsorption properties and adsorption capacity [7] because

of which it is widely used in the adsorption and separation of
organic matter and metal ions [8]. Thus, the synthesis and
properties of powder materials research and development
have become the current focus of materials chemistry,
physics, and traditional Chinese medicine and other disci-
plines [9-12], so as to achieve the powder material and drug
substance molecules surface atoms or active sites selective
adsorption [13].

In this study, the Al-TiO, samples were prepared by the
solid-phase synthesis method for the first time. According to
the different doping amounts, different adsorbent materials
were obtained, and the influencing factors on the static
adsorption of danshensu in SSH were studied by the con-
centration of extract, pH value, adsorption time, and elution
volume fraction of ethanol. It provided a scientific theo-
retical basis for the effective development and utilization of
this plant.

2. Experiments

2.1. Materials. Danshensu (HPLC > 98%, Figure 1) standard
was purchased from Beijing Solarbio Technology Co., Ltd.;
tetrabutyl titanate (TBOT, 98%), hydrochloric acid (HCI),
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FiGure 1: Chemical structure of danshensu.

sodium hydroxide barium chloride (BaCl,), aluminum sulfate
octadecanoate (Al,(SO,4)5-18H,0), cetyltrimethylammonium
bromide (CTAB), anhydrous ethanol, and petroleum ether
are analytical grade and purchased from Shanghai Aladdin
Bio-Chem Technology Co., Ltd.

2.2. Preparation of Al-TiO,. Aly(SO,4);18H,0 with a Ti/Al
molar ratio of 1/0.1, 1/0.09, 1/0.07, and 1/0.05 was mixed
with an appropriate amount of CTAB (20 wt.% of the total
amount of Al,(SO,4);-18H,0 and TBOT) and ground for
25min in a mortar. Then, 3.403g TBOT was added to the
above mixture and was continuously ground for 20 min.
After static standing for 6 h at room temperature, the reactor
was transferred into 140°C muffle furnace for 2 h to obtain a
white solid, followed by grinding with mortar and washing
using a Brinell funnel with distilled water until no SO,*
(0.1 mol/L BaCl, solution test to determine). The resulting
sample was dried at 110°C for 2 h and then placed into the
muffle furnace at 1°C/min heating rate to 550°C for 6 h. The
obtained product was cooled down to the room temperature
to give Al-TiO,.

2.3. Characterization of Al-TiO,. XRD patterns were mea-
sured with the Bruker D8 advanced X-ray diffractometer
(XRD) with Cu Ka radiation (A=0.154nm) at 40kV and
30mA with a step size of 0.02. The SEM and EDS charac-
terizations of the catalysts were studied using the S-3400H
(Shimadzu) type scanning electron microscope (SEM). The
Brunauer-Emmett-Teller (BET) surface areas were measured
using the N, adsorption/desorption apparatus (Micromeritics
ASAP 2460), and the pore size and pore volume distributions
were calculated using the Barrett-Joyner-Halenda (BJH)
model. FT-IR spectra were obtained using the S-65 spec-
trophotometer (Shimadzu). The UV-Vis spectra were
recorded on the Shimadzu UV-2500 spectrophotometer.

2.4. Extraction of Danshensu. A certain amount of
SSH powder was placed in a Soxhlet extractor and added
petroleum ether reflow at 60°C for 12h (defatted and
bleached), petroleum ether removed by using a rotary
evaporator, and dried at room temperature to obtain the
solid powder. 15g of the above powder was weighed, 50%
ethanol was used as the extraction solvent (V/m=40:1), and
the solution was microwave extracted (power: 400 W,
temperature: 40°C, and time: 5 min), filtered, and concen-
trated, and finally, danshensu was obtained.

2.5. Danshensu Detection. At 282 nm maximum absorption
wavelength, with the concentration of danshensu as the
abscissa and the absorbance as the ordinate, the linear
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equation was Y =0.01382X—0.00443 with the correlation
coefficient r=10.99961, and the concentration of danshensu
in the range of 0.01-0.05 mg/mL has a good linearity by UV-
Visible spectrophotometry [14].

2.6. Danshensu Static Adsorption and Desorption
Experiments. A certain concentration of danshensu solution
was removed accurately into a 250 mL triangle bottle with
1.0 g Al-TiO,, and the appropriate time and the adsorption
rate are calculated according to formula (1). Next, Al-TiO,
was collected after adsorption, followed by putting into
another triangle bottle by filtration. Ethanol was added,
shaken at room temperature for 60 min, and left for 12 h. The
supernatant was collected by centrifugation, the absorbance
was measured by UV-Vis, and the desorption rate was
calculated on the basis of formula (2).
The formula of adsorption rate calculation:

(CoVo=CiVy)

P, =
CoVo

x 100%. (1)

The formula of desorption rate calculation:
GV

Py=—7"7"—F——
? (CpVo-C,V3)

x 100%, (2)

where P;: adsorption rate, P,: desorption rate, Cy: danshensu
solution mass concentration (mg/mL) before adsorption, Vi:
volume of danshensu solution before adsorption (mL), Cl:
danshensu mass concentration (mg/mL) after adsorption,
V: volume of danshensu solution after adsorption (mL), C,:
danshensu concentration (mg/mL) after desorption, and V,:
volume of danshensu solution (mL) after desorption.

3. Results and Discussion
3.1. Characterization of Al-TiO,

3.1.1. EDS Characterization. In order to confirm whether
the AI** is doped into TiO,, the four kinds of Al-TiO, were
analyzed by EDS characterization, and the results are shown
in Figure 1. As can be seen from Figure 2, all four samples are
A13+—doped TiO,. Among them, the contents of Al in
samples A and B are higher than C and D, while B has the
highest in the four samples, and C and D have the same
basicity. This result preliminarily showed that the adsorption
rates of danshensu by A and B are higher than those by C and
D because AI’" is a two-type metal, and danshensu is acidic,
and amount of AI’* directly affects the acidity and alkalinity
of Al-TiO,.

3.1.2. XRD. The Al-TiO, samples were characterized by
XRD to understand the adsorption properties, and the re-
sults are shown in Figure 3. From the results, we can see that
the Al-TiO, was prepared successfully, which is consistent
with the EDS analysis. Also, with the increase of Al content,
the XRD bands of Al-TiO, become sharper, indicating that
the crystallinity of Al-TiO, is also increasing, leading to the
permeability and compactness of Al-TiO, enhancement.
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FIGURE 2: EDS analysis of Al-TiO, samples. (a) Ti/Al=1:0.1; (b) Ti/Al=1:0.09; (c) Ti/Al=1:0.07; (d) Ti/Al=1:0.05.
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FIGURE 3: The XRD patterns of Al-TiO, samples.

FiGure 4: Continued.
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FIGURE 4: SEM images of Al-TiO, powders with different Ti/Al ratios. (a) Ti/Al = 1/0.1; (b) Ti/Al=1/0.09; (c) Ti/Al = 1/0.07; (d) Ti/Al=1/0.05.
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FIGURE 6: Results of adsorption and desorption condition optimization.
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FiGure 7: Results of adsorption and desorption of four Al-TiO,
samples.

3.1.3. SEM. Material properties are closely related to their
shape [15, 16], and the obtained SEM images of four dif-
ferent Al-TiO, samples are shown in Figure 4. As can be seen
from Figure 4, the four Al-TiO, solids have a clear pore
structure, but as the Al content decreases, the pore structure
gradually becomes even, and the grain size of the Al-TiO,
also decreases. In particular, Figure 4(d) is more obvious. It
is preliminary judged that the four Al-TiO, samples have a
good adsorption capacity.

3.1.4. BET. The N, adsorption-desorption isotherm of Al-
TiO, (Ti/Al=1/0.05) is shown in Figure 5. The Al-TiO,
exhibited type IV isotherms with type H3 hysteresis loops.
These observations indicated that the pores of Al-TiO,

belong to the sheet-like stacked pores [17]. These observa-
tions were consistent with results from SEM studies. In
addition, the specific surface area (SSA) of Al-TiO, is
50.1985m*/g, and the average pore size is 8.2495 nm.

3.2. Optimization of Static Adsorption and Desorption
Conditions. In order to obtain the best adsorption and
desorption conditions of the four Al-TiO, samples, the
adsorption time, the pH value of the danshensu solution,
and the eluent concentration were investigated, re-
spectively, and the results are shown in Figure 6. It can be
seen from the results of Figures 6(a) and 6(b) that all four
Al-TiO, materials have good adsorption capacity. Among
them, the adsorption capacity of Al-TiO, with Ti/Al=1/0.1
and Ti/Al=1/0.09 are stronger than that of Ti/Al=1/0.07
and Ti/Al=1/0.05, and the opposite results of the de-
sorption capacity are shown with ethanol eluent in
Figure 6(c). In addition, with the time extension, the ad-
sorption capacity also increases, but the maximum ad-
sorption rate was reached at 4h (Figure 6(a)), and the pH
value of the danshensu solution was inversely proportional
to Al-TiO, adsorption capacity (Figure 6(b)). In which the
adsorption rate is the highest when the the danshensu
solution is pH =3. At last, the result of the eluent con-
centration test showed that at 50-90% (v/v), the desorption
rate increased with 50-80% ethanol concentration, the
maximum desorption rate was received with 80% ethanol.
Continuing to increase the ethanol concentration (90%),
the desorption rate has a decreasing trend (Figure 6(c)),
and the reason can be that danshensu was damaged by high
concentrations of ethanol [18-20].

3.3. Test of Adsorption and Desorption. It can be seen from
the results in Figure 7 that all four Al-TiO, samples have a
good adsorption capacity. Among them, Al-TiO, with Ti/Al
ratios 1/0.1 and 1/0.09 has the highest adsorption rate, but



the desorption capacity is poor. As the effective separation
capability is used to measure the quality of material sepa-
ration (desorption rate/adsorption rate), it can be calculated
that the effective separation capability is 62.5%, 61.7%,
77.0%, and 90.3%, respectively. Thus, Al-TiO, with Ti/Al
ratio 1/0.05 is most suitable for the separation of danshensu.
The reason may be that it has a uniform pore structure
[15, 21].

4. Conclusions

In conclusion, several Al-TiO, samples were prepared by
solid-phase synthesis with TBOT and Al,(SO,);18H,0.
Then, the optimized Al-TiO, was used for separation of
danshensu. The experimental results showed the following:

(1) AI-TiO, with Ti/Al ratios 1/0.1 and 1/0.09 has a
higher adsorption rate, and the desorption rate is
worse than that with Ti/Al ratios 1/0.07 and 1/0.05

(2) The optimal conditions for isolating danshensu so-
lution are pH=3, 4h adsorption time, and 80%
ethanol eluent

(3) The Al-TiO, sample with Ti/Al ratio 1/0.05 is the best
material for separating danshensu under the best
conditions
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Formaldehyde-based resins are conventionally used as a binder in formulation of particleboard. Epidemiologic studies
have shown that formaldehyde is carcinogenic. Efforts to reduce the health hazard effects of the fomaldehyde-based resin in
the particleboard formulation have included use of scavengers for formaldehydes and use of an alternative binder. Use of
scavengers for the formaldehyde increases the cost and maintenance of particleboard formulation. There is no proof that
scavengers eliminate the emission of formaldehyde from particleboard. Use of biobased binders in particleboard for-
mulation provides an alternative for eliminating use of the formaldehyde-based resin. However, the alternative is hindered
by challenges, which include limitations of physical and mechanical properties. The challenge has continuously been acted
upon through research. The paper presents an overview of the use of starch as an alternative binder. Improvement over
time of the starch and limitations thereof requires to be addressed. Use of the modified starch has shown increased
particleboard performance. Mechanical strength, such as modulus of rupture, modulus of elasticity, and internal bonding
in particleboards, however, remains to be a challenge.

1. Introduction

1.1.  Formaldehyde-Based Resins and  Particleboard
Formulation. Formaldehyde is used in industries for the
synthesis of resins and adhesives used during formulation of
particleboard [1]. Phenol formaldehyde (PF) resins are used
as adhesive for fixing together panels of exterior-grade
plywood, the flakes of oriented strandboard panels, and
particleboard [2]. Phenol formaldehyde resins provide high
standards of physical and mechanical properties, which
involve high strength and resistant to moisture. This pre-
vents delamination and gives excellent temperature stability.
This is due to the more flexible nature of phenolic resins [3].
However, high cost of PF is due to fluctuations in cost of
phenols and undergoes hydrolysis to emit formaldehydes.
Investigation aimed at use of cheaper and formaldehyde-free
products as substitute of phenol-formaldehyde, based on not
only environmental but also economic grounds. Lignin has
comparatively low price and high phenolic moieties along

with environmental considerations render it as a suitable
substitute for phenols in the manufacture of PF [4, 5].
Urea formaldehyde (UF) resin is widely used as adhesives in
the particleboard industry. UF is cheaper compared to PF. There
are two major limitations of wood composite boards based on
UF binders: first, high emission of formaldehyde during both
production, and second, subsequent exploitaion of the boards
[6]. Particleboard formulated with urea formaldehyde shown
pronounced thickness swelling to water, and hence, they are
unsuitable for outdoor use [7]. Measures used to reduce
formaldehyde emissions involve decrease of the formaldehyde/
urea molar ratio [8]. Unfortunately, the decrease in formal-
dehyde/urea ratio has resulted in deterioration of physical and
mechanical properties of particleboard at the same time.

1.2. Formaldehyde Emission and Formaldehyde Scavangers.
The other method used to reduce formaldehyde emission is
by use of chemical additives called formaldehyde scavangers.
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The most commonly used scavangers are compounds
containing amine such as urea, ammonia, melamine, and
dicyandiamide [9]. Melamine reacts with formaldehyde to
form methylolamine as shown in equation (1) [10]:

C,HN, + CH,0 — C,H,N,O (1)

Dicyandiamide reacts with two moles of formaldehyde
as illustrated in equation (2) to form methyloldicyanamides
[11]:

C,H,N, + 2CH,0 —> C,H,N,0 (2)

Urea reacts with formaldehyde to form mono-
methylolurea as shown in equation (3) [12, 13]. Urea
formaldehyde resin is used in formulation of particleboard
as a binder, other than a scavanger.

CO(NH,), + CH,0 — C,H,N,0, (3)

Sodium metabisulphite (Na,S,05) is a scavenger used in
particleboards produced with urea formaldehyde and mel-
amine formaldehyde resins. Sodium metabisulphite reacts
with water to form sodium hydrogen sulfite, as shown in
equation (4).

Na,$,0; + H,0 — 2NaHSO, (4)

Sodium metabisulphite reacts with formaldehyde as a
scavenger to form a bisulfite adduct [14] as shown in
equation (5):

HCHO + NaHSO; — HOCH,SO;Na (5)

Sodium hydrogen sulfite also reacts with sodium hy-
droxide to form sodium sulfite, as shown in equation (6):

NaHSO, + NaOH —> H,0 + Na,S0, (6)

Sodium sulfite scavenger formaldehyde in the presence
of water to form bisulfite adduct, as in equation (7) [14].

HCHO + Na,SO, + H,0 — NaOH + NaSO,CH,OH
(7)

Ammonia is a good scavenger for the emitted formal-
dehyde [15]. Green tea catechin as a formaldehyde scavenger
reduced formaldehyde from plywood manufactured with
formaldehyde-based resin. Green tea extract reduced
formaldehyde emissions from plywood [16]. Proanthocya-
nidic was found to protect kidney tissue against formalde-
hyde [17]. Tannin was mixed with low molecular phenol-
formaldehyde resin in manufacture of plywood. It was used
to scavenge against emitted formaldehyde [18].

Prolonged human exposure of formaldehyde lead to
chronic toxicity and cancer [12, 19]. Formaldehyde can cause
nasopharyngeal cancer [20]. Lu et al. [21] reported on gen-
otoxic and cytotoxic modes of action for the carcinogenesis of
inhaled formaldehyde in respiratory nasal epithelium [21]. An
increased incidence of myeloid leukemia has been reported.

Increased exposure of formaldehyde to workers in a fu-
neral homes resulted in mortality from myeloid leukemia [22]
and lymphohematopoietic malignancies [23-25]. The most
consistent pattern was death as a result of myeloid leukemis
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[26]. A study of 11,039 textile workers produced a certain
relationship between the duration of formaldehyde exposure
and leukemia-related deaths [27]. The exposure assessment
based on 594 workers produced the mean exposure levels
between 0.09 and 0.20 ppm, and the levels were relatively
constant with no peaks or intermittent exposures. Leukemia
had the highest standardized mortality ratio (SMR) with
majority of occurrences from garment factory. The epide-
miological literature on formaldehyde and leukemia is ex-
tensive. Many studies have shown a correlation between
formaldehyde and cancer-related complications [26].

1.3. Use of Starch and Starch Derivatives as Substitutes for
Particleboard Formulation. Adhesive technology is moving
towards replacements of formaldehyde-based adhesives to
use of biobased resources [28-30]. Various types of starch
modification on its crystalline nature include chemical
treatments such as oxidation using hypochlorite [31] and air
[32], esterification [33], and cationization [34, 35]. Physical
modification of starch includes mechanical activation [36],
microwave [37, 38], ultrasonic degradation [39, 40], heat-
moisture treatment [41], and enzymatic treatment [42-44].
The modified starch has been utilized in particleboard
formulation [45-48].

Selamat et al. [46] compared physical and mechanical
properties of particleboard formulated from rubberwood
with urea formaldehydes and native starch, separately as
binders. The native starch was extracted from oil palm trunk.
Particleboard bonded with formaldehyde showed thickness
swelling of 11.17% and water absorption of 82.08%, when
compared to the native starch with thickness swelling of
82.08% and water absorption of 174.52% [46]. This shows
that formaldehyde-based resin is more than twice better than
the carboxymethyl starch, although the main drawback is
emission of formaldehyde. Formaldehyde has been found to
have carcinogenic properties [21, 49-51]. High water ab-
sorption of particleboard formulated with the carbox-
ymethyl starch may be attributed to the presence of hydroxyl
groups. Hydroxyl groups form hydrogen bonding with
water. This increases water absorption and thickness
swelling, thus affecting mechanical properties of the parti-
cleboards. Methylene diphenyl diisocyanate (MDI) were
small and had better mechanical and chemical bonding
ability [52]. Improvement in chemical bonding results in
improvement in mechanical properties of the particleboard
formulated.

Natural starch is in the disorganized metastable state and
as such is easily dispersed in warm water [53]. Carbox-
ymethylation therefore is a chemical modification method
that is vital and versatile for transforming starch. Trans-
formation of starch involves provision of water soluble
polymers and intermediate of valuable functional attributes
[54]. Carboxymethylation of starch (CMS) involves partial
substitution of hydroxyl group (-OH) with ether group (-O-
CH,COOH). Starch reacts with monochloroacetic acid to
produce carboxymethyl in the presence of sodium hydroxide
in three different steps. Step one involves reaction of starch
with starch, as shown in equation (8):
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ROH + NaOH — RONa + H,0 (8)

Step two involves the reaction between sodium salt
formed with monochloroacetic acid to form sodium mon-
ochloroacetate (SMCA) as shown in equation (9):

RONa + CICH,COONa — ROCH,COONa + NaCl
(9)

Alternatively, SMCA reacts with sodium hydroxide to
form sodium glycolate:

NaOH + CICH,COONa — HOCH,COONa + NaCl
(10)

Carboxylmethylation therefore improves the rheological
property of the native starch that improves particleboard
characteristics [54].

Starch in water undergoes limited reversible swelling, but the
integrity of the crystal structure is such that it does not dissolve
[55]. Starch gelatinization at low temperatures can be induced by
addition of aqueous alkali [56]. Sodium hydroxide reacts with
hydroxyl groups of starch thus improving the thickness swelling
and water absorption of the native starch by 8% and 22%,
respectively. This is attributed to reduction of hydroxyl groups
that were reacted with sodium hydroxide. Another reason could
be as a result of reaction between carboxylic group in mono-
chloroacetic acid and hydroxyl groups in starch through es-
terification  process.  Particleboard bound with urea
formaldehyde had the highest modulus of rupture (MOR) values
for medium density of 9.63 N/mm?, while those bound by the
native starch gave the lowest of 3.38 N/mm?®. Same trend was
found in modulus of elasticity and internal bonding with
3369.12 N/mm?®, 2068.95 N/mm” and 1.98 N/mm?, 0.96 N/mm”,
respectively [46]. Improved mechanical strength from the native
starch to carboxymethyl starch is attributed to the cross-linking
of the composite material with highly branched carboxymethyl,
leading to formation of stronger covalent bonds than hydrogen
bonding found in the native starch. Carboxymethyl starch
treatment improved the MOR, thus attaining the minimum
Japanese Industrial Standard [46]. MOR is still very low com-
pared to particleboard formulated from urea formaldehyde.
There is no interaction between the functional groups of the
lignocellulose material and the starch, which leaves a major
deficit in reinforcement of the bond between the components of
the particleboard. This presents a challenge that requires con-
sideration. Treatment with sodium hydroxide and temperature
reduces the sizes of starch making them disperse more within
the lignocellulose matrix.

Despite the growing interest in bioplastics, the use of
starch-based plastic is still limited due to its brittleness and
moisture sensitivity. Addition of polyvinyl alcohol (PVA)
reduces the brittleness of the bioplastic [57], and latex in-
creases water resistance [58]. Shi and Tang [47] used
polyvinyl alcohol solution with styrene-butadiene (SBR)
latex and polymeric methyl diphenyl diioscyanate to modify
corn starch. Particleboard formulated showed MOR range
from 13.26N/mm?® to 16.54N/mm?® MOE range from
1508 N/mm® to 1768 N/mm?, and IB range from 0.17 N/
mm? to 0.32 N/mm? [47]. Starch-based adhesives gave the

particleboard better prepressing property and sizing uni-
formity. Pan et al. [59] used polymeric methylene diphenyl
diisocyanate to modify rice bran for making an adhesive for
making particleboard. Average MOE for particleboard
formulated was 2545 N/mm? MOR, 21 N/mm? and IB of
0.35N/mm? [59]. The study showed that the rice bran ad-
hesive produced can be used to replace a portion of the
synthetic adhesive pMDI currently used for the fabrication
of rice straw particleboard. Addition of PVA, latex, and SBR
will improve moisture resistance, water absorption, and
thickness swelling which in turn reduces mechanical
properties.

Xu et al. [60] used butyl acrylate (BA) as a comonomer in
synthesizing the corn starch-based wood adhesive. The
bonding performance was close to that of commercial
polivinyl alcohol solution. This cassava-based wood adhesive
(SWA) improved in stability more than the corn starch-
based wood adhesive. Improved stability was attributed by
its low minimum film forming temperature (MFFT) and
glass transition temperature (T,) of the cassava starch [60].
Zhu and Zhuo [61] used butyl acryrate to modify the corn
starch used for encapsulating carborxylic-containing com-
pounds through graft copolymerization. The encapsulated
organic materials showed low swellability, large encapsu-
lating capacity, and low solubility in water [61]. Low
swellability property is crucial in formulation of particle-
boards. Liu and Su [62] used butyl acrylate to modify potato
starch through grafting via surface-initiated atom transfer
radical polymerization [62]. Graft modification provides a
significant route to alter physical and mechanical properties
of biobased adhesives [63].

Starch contains many hydroxyl groups, which make it
extremely polar leading to low interaction with nonpolar
materials [64]. Starch-based adhesives wet the polar surfaces
of cellulose, penetrate crevices and pores, and, thus, form
strong bonds. Imam et al. [65] cross-linked corn starch with
polyvinyl alcohol (PVOH) using hexamethoxy methyl-
melamine (HMMM) to bond lignocellulose materials to-
gether in an acidic medium. Under this condition, methoxy
groups from HMMM reacted with the hydroxyl group from
starch in the presence of PVOH to form ether bond [65], as
in Scheme 1.

Ether bonds are covalent bonds which are stronger than
hydrogen bonding in starch. The binder in formulated
particleboard remained intact showing superior bond
strength establishment. The boards fractured during me-
chanical testing. This is attributed to use of an acid media
during particleboard formulation. The use of an acid media
limits activation of functional groups in lignocellulose
materials. Particleboard made from rice straw and the
polyvinyl starch-based adhesive gave the following results:
MOR, IB, and TS of up to 31 N/mm?, 0.49 N/mm?, and 20%,
respectively [65]. Use of urea formaldehyde-based resin as a
binder gave MOE, IB, and TS of up to 22.19 N/mm?, 0.5 N/
mm?, and 75% [66]. Researchers worked with different
particle sizes and found that the starch-based adhesive gave
comparatively better physical and mechanical properties.
Properties of polyvinyl alcohol-based resin were greatly
influenced by the interaction between the adhesive and
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lignocellulose material. These properties are still below ex-
pectations and can be boosted by use of an alkali, which
activates functional groups in lignocellulose materials [67].

Akinyemi et al. [68] used glutaraldehyde to degrade the
cassava starch in the presence of acidic medium. Hydroxyl
groups in starch molecules were replaced by glutaraldehyde
as indicated in Scheme 2.

The modified starch was used to bind wood chips in
formulation of sawdust particleboard. Particleboard for-
mulated using this modified starch gave the following re-
sults: MOE and MOR of 3232N/mm? and 35.7 N/mm?,
respectively. Comparatively, melamine-formaldehyde (MF),
was also used by Cui et al. [69] to obtain MOE and MOR of
2701 N/mm? and 14.21 N/mm?, respectively [68]. MF un-
dergoes hydrolysis leading to produce formaldehyde. Starch
modified with glutaraldehyde gave better mechanical
strength than their formaldehyde counterpart. Glutaralde-
hyde is harmful, and this has necessitated the use of sodium
bisulfate as a scavenger to neutralize its effect [70]:

OH OH
2Na"HSO,” + OHC-(CH,);-CHO ———— 2Na* C——(CH,),-C
Non o
(11)

Starch reacts with polyurethane polymer via terminal
hydroxyl group in starch through grafting [71], as shown in
Scheme 3.

Polar hydroxyl groups are replaced with the hydro-
phobic aromatic urethane functional group [72]. Poly-
urethane has been used to modify castor oil starch used in
formulation of particleboard made from sugarcane bagasse.
The board had WA, TS, MOE, MOR, and IB of up to 20.1%,
20%, 22.6N/mm? 2850N/mm?® and 118N/mm’ re-
spectively [73]. Urea formaldehyde and melamine formal-
dehyde resin binders for sugarcane bagasse produced WA,
TS, MOR, MOE, and IB of 64.87% and 32.52%, 24.71% and
12.66%, 757.8 N/mm?” and 1053.28 N/mm?, 3.66 N/mm” and
5.53 N/mm?, and 0.2 N/mm? and 0.45 N/mm?, respectively
[74]. Formaldehyde-based resin produces formaldehyde
which is a carcinogen. Although modified starch resin
produced higher physical and mechanical properties com-
pared to its formaldehyde-based resin, its properties are still
very low. Mechanical properties of particleboard made using
starch-based adhesive modified polyurethane improved by
crosslinking with lignocellulose material.

Starches modified with octenyl succinic anhydride
(OSA) have been used in a range of industrial applications,
particularly as a food additive. OSA is hydrophobic and also
has steric effects. Starch reacts with OSA to form starch
octenyl succinate as shown in Scheme 4.
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Sweedman et al. [75] modified indica rice, maize, waxy
maize, and potato with octenyl succinic anhydride (OSA)
between the temperatures of 30 to 40°C. Due to hydrophobic
and steric contributions of OSA and highly branched
macromolecular starch structure, modified starch display
useful stabilizing, encapsulating, interfacial, thermal, nu-
tritional, and rheological properties [75]. Altuna et al. [76]
modified starch with octenyl succinic anhydride to yield a
hydrocolloid with amphiphilic properties, the octenyl suc-
cinylated starch. The octenyl succinylated starch finds wide
application in the food industry mainly as emulsifier, en-
capsulating agent, and fat replacer [76]. Research in-
vestigating the reaction between OSA and modified waxy
maize starch showed that OSA reacts with maltodextrine

better than the native starch. This indicates incorporation of
OSA into hydrated granules [77].

Succinic anhydride reacts with starch by refluxing with
pyridin or by gelatinization of starch in aqueous pyridine.
This is followed by a reaction with succinic anhydride in
pyridine. Pyridine has a dual function in the reaction, ac-
tivates starch, which makes it nucleophillic, and reacts with
succinic anhydride to form succinyl pyridinium in-
termediate. The intermediate reacts with starch generating
starch succinate and pyridine as shown in Scheme 5 [78].

Mehboob et al. [79] used succinic anhydride to modify
the native sorghum starch and acid-thinned starch. Succi-
nylation of starch introduces succinyl groups that have
hydrophilic character to starch [79]. This group weakens
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internal bonding in starch granules and leads to solubili-
zation of starch in cold water. Research has shown that
succinylation reduced retrogradation in starches while the
peak, cold paste and water-binding capacity, and set back
viscosities improved [77]. Olayinka et al. [80] demonstarted
that these parameters are increased by succinylation of red
sorghum starch and decreased by modification of a white
sorghum starch. The researcher stated that starch succinates
have advantages such as high viscocity, greater thickening
power and low gelatinization, and retrogradation [80].
Succinylated starches are used in preparation of nongelling
creams due to the increase in viscosity of starch. Its im-
proved hydrophilicity [79] makes them suitable for use as a
binder in particleboards.

Hydroxypropylation is a common etherification method
for starch through treatment with propylene oxide in an al-
kaline media [81]. Starch reacts with propylene oxide to form
the hydroxylpropyl starch as shown in Scheme 6.

Hydroxypropylation decreases the ability of starch to
recrystallize, which reduces the retrogradation property of
starch, yielding a derivative that is stable at high temperatures
[82]. Hydroxyl groups are substituted with hydroxylpropyl
groups making its physicochemical properties similar to
those of the carboxymethylation method. Hyroxypropyl
groups disrupt inter- and intramolecular forces in starch,
thus breaking hydrogen bond. This weakens the starch
granules leading to its flexibility of amorphous region. Water
uptake increases and thus an increase in the swellability [83].
Hydroxypropylation increases starch solubility in water and
has stabilized solubility [84]. Hydroxypropylation reduces
the number of hydroxyl groups in starch. This in turn reduces
the hydrophilic properties of particleboards formulated with
the hydropropylated starch. This will reduce water absorp-
tion and thickness selling of the particleboard.

Native starches are present in semicrystalline granular
forms with certain thermal properties and functionality that
have permitted its industrial use. Starch requires high heat to
undergo a transition process, during which the granules
break down into a mixture of polymers-in-solution, known
as gelatinization. Sodium hydroxide solution reduces the
temperature required by the starch to gelatinize [85].

Hydropropylation
Sto™ + H,C CHCH, Y — [I':H I;)lf : StOCH,CHCH,; + NaOH
OH

ScHEME 6: Hydroxylpropylation of starch with propylene oxide.

Sodium hydroxide is meant to stabilize the viscosity of starch
adhesives when they are subjected to high shearing action,
heat for prolonged periods, or freeze-thaw cycles [86]. Starch
reacts with sodium hydroxide to produce a cationated starch
as shown in Scheme 7.

Other plasticizers apart from water and aqueous alkaline,
include salt solution such as calcium chloride and potassium
iodide [87]. Starch, a polyol, reacts with borax to form a
borax-starch complex [88] as illustrated in Scheme 8.

Sodium hydroxide delignifies lignocellulose material by
cleavage of the 3-O-4 ether bond in which sodium cation and
hydroxide ion participate [89], as illustrated in Scheme 9.

Activated starch reacts with lignin in lignocellulose material
to form a plasticized starch blend [90] as shown in Figure 1.

Delignification takes place during cellulosic ethanol
production to form free cellulose, hemicellulose, and lignin
[91]. High concentration of sodium hydroxide converts
cellulose and hemicellulose into organic acids, furfural, and
hydroxymethyl furfural [92]. An organic acid such as lactic
acid has been used in crosslinking of starch and furfural.
Furfurals were used as a substitute of formaldehyde in
particleboard formulation, respectively. Lignin hydroxyl
groups are oxidized to carboxylic acid in the presence of
sodium hydroxide as a catalyst [93]. Carboxylic acid reacts
with starch hydroxyl groups to form an ester. Ester for-
mation is the main linkage point between the lignocellulose
materials and starch binders in the proposed composite
formulation for particleboard.

Citric acid and sucrose are natural adhesives [45]. Citric
acid is an organic polycarboxylic acid, which contains three
carboxyl groups used as cross-linking agent for wood,
through esterification [94], as shown in Figure 2.

Liao et al. [45] bonded sugarcane bagasse with com-
mercial sucrose-based adhesive modified with citric acid in
the production of particleboard. The board produced had a



Journal of Chemistry 7

CH,OH ] CH,0™Na* n
H o H H o H
VOH H +NaOH — = VOH H\l + H,0
: V ! :
L H  OH _In L H OH _n
ScHEME 7: Reaction between starch and sodium hydroxide.
. OH G9\\0 -
HO oH| Na O OH
s N/ N
B + B Na* + 2H,0
RN 0 / N\
HO OH 10 OH
OH
?
Starch - fvlw -
ScHEME 8: Starch molecules crosslinked with borax.
R
OCH,
Nat OH~ on O
/A) K-\‘\/H R
© O
H
OcH, -H,0 . —_—
MeO OMe
MeO OMe
MeO OMe MeO OMe OH
OH
OH ONa

ScHEME 9: Cleavage of the $-O-4 bond and formation of synringyl derivatives.

H,C
\O

)

C|H3 HO
o)
0
HO
OH \
HO CH,
HO
HO o

Figure 1: Ether bond formed between starch and lignocellulose material.

density of 0.45 g/cm”, a low density particleboard [45]. Board ~ requirement of Chinese national forestry industry standard.
density between 0.35 and 0.45 g/cm’ produced modulus of ~ Sugarcane bagasse is rich in sugar-containing compounds
rapture (MOR) of 62N/mm? [45]. The particleboard that make it suitable for particleboards manufacturing [45].
showed good thermal insulation properties when used as Starch hydrolyzed with and acid followed with oxidation
building material for thermal insulation applications. Par-  lead to the formation of aldehyde starch [95] as shown in
ticleboards produced had a density of 0.40 g/cm’ met the ~ Scheme 10.
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Starch dialdehyde reacts with lignocellulose material to
form acetal and hemiacetal bondage [96, 97] as proposed in
Figure 3.

2. Conclusion

Starch structural and functional diversity make it suitable for
different applications. Various modifications will change
and improve functional properties of starch and facilitate its
utilization for different purposes. Starch modified with other
chemicals is used as a substitute for formaldehyde-based
resin in particleboard formulations. Hydroxyl group mod-
ification in starch is achieved through the introduction of
alkyl groups or oxidation to carboxylic acid. This reduces the
hydroxyl functional groups that determine the water ab-
sorption and thickness swelling which in turn affect the
mechanical properties of particleboard. Functional groups in
lignocellulose materials determine the water and thickness
swelling. Interaction between modified starch-based resin
and lignocellulose materials improve properties of parti-
cleboard. Mechanical strength of particleboard made from
starch-based resin is due to reaction between starch and
lignocellulose materials. The hydroxyl group in starch and
carboxylic group in lignocellulose materials react through
condensation polymerization to form ester linkages. Es-
terification produces hydrophobic material that reduces
water absorption. Esterification also results in formation of
covalent bonding that increases the interaction between
components of particleboards. This in turn increases the
mechanical properties of the particleboard. Unmodified
hydroxyl groups in both starch and lignocellulose materials
undergo etherification forming a covalent bond through
ether bond. Ether and ester linkages are covalent bonds,
stronger than hydrogen bonding found between the un-
treated starch and lignocellulose materials. Physical and
mechanical properties of particleboards produced from
starch-based adhesives are improved by crosslinking of the
starch and lignocellulose material using borax.
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Methylmercury (MeHg) has remarkable toxicological effects on humans, plants, and other lives in the environment, which may
restrict the comprehensive utilization of biomass source in view of possibly forming biohazardous waste. In this study, a kinetic
study of MeHg degradation under UVB, UVA, natural light, and dark was carried out. The result showed that light radiation
enhanced MeHg degradation but had no significant influence on the final balance between MeHg and inorganic mercury (Hg>")
in pure water. The balance is of great importance and can be used as a key fundamental to estimate MeHg cycling in other
complicated aquatic environments. MeHg degradation was identified to be second-order reaction using the fitting optimization
level of the regression equation, and the second-order rate constants were 1.61, 0.82, and 0.91 L-ngfl-dfl, half-lives were calculated
to be 0.62, 1.3, and 1.08 d for UVB, UVA, and natural light, respectively. A possible MeHg degradation mechanism was proposed,

and it could perfectly explain the results obtained in this paper and some previous studies.

1. Introduction

In the past decades, the extensive industrial and agri-
cultural use of mercury and its compounds had resulted in
serious contamination to fresh water and sea water [1-3].
Mercury-contaminated water may pose a risk to aquatic
life [4] and subsequently to mankind through the food
chains [5]. In addition, the possible formation of bio-
hazardous waste from the toxin-rich biomass may restrict
the comprehensive utilization of those renewable
resources.

The ecological and toxicological effects of mercury are
positively dependent on chemical species [6, 7]. As a potent
neurotoxin to human and other lives in the environment,
MeHg is many times more toxic than the corresponding
inorganic metal ion [8], owing to its lipophilic and protein
binding properties [9, 10]. Fortunately, aquatic MeHg
content is kept at a low level because both of mercury

methylation and demethylation processes are going on in the
environment. Research showed that photoinduced degra-
dation of MeHg was thought to be an important process in
the biogeochemical cycling of mercury [11, 12]. Both ra-
diation intensity and light wavelength hold the capacity to
influencing MeHg degradation [13]. Some kinetic studies
were carried out to calculate the reaction rate of photoin-
duced MeHg degradation, but significant differences were
observed in the obtained results, varying over orders of
magnitude [11, 14-16]. These inconsistent results indicate
that the mechanism of MeHg degradation may be different
under various environmental conditions. Additionally,
dissolved organic matter [17, 18], some ions (e.g., Cl” and
NO;") [13, 19], and radicals (e.g., OH and 10,) [20] in water
also influence reaction rate significantly. However, no matter
how many influencing factors act on and which mechanism
undergoes in the process of MeHg degradation, the pure
chemical balance between MeHg and inorganic mercury ion
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(Hg") is always the key fundamental to estimate the MeHg
cycling in each aquatic ecosystem.

MeHg pool in an aquatic system was determined by
the net result of processes, e.g., input, export, internal
formation, and degradation of MeHg. Hence, experiments
under simple conditions which start with only MeHg
degradation and end with the chemical balance in an
isolated system (without MeHg input or export) under
constant temperature are most suitable to study the ki-
netic information of MeHg degradation. The kinetic data
of these experiments can be used as a fundamental to
establish the MeHg cycling model in a complicated
aquatic system when other environmental factors were
taken into account additionally. Therefore, this study was
carried out in pure water and the objectives were to (1)
establish chemical balances between MeHg and inorganic
mercury under various light conditions and (2) estimate
the kinetic data of MeHg degradation under UV irradi-
ation, natural light, and darkness.

2. Materials and Methods

2.1. Preparation of Stock Solution. Clean techniques were
used, and disposable gloves were worn throughout the ex-
periments to minimize any exotic contamination. All the
glassware was soaked in nitric acid for approximately 24 h
and sterilized subsequently, and reaction solutions were
prepared with ultrapure water (18.2MQ-cm™"). Stock so-
lution of 1ng-HgL™' CHsHgCl (GR, Seattle, WA, USA)
solutions was prepared, and its pH was adjusted to be 5.5
with nitric acid or sodium hydroxide. The stock solution was
stored in brown quartz bottles, which were wrapped in an
aluminum foil and kept in a refrigerator at 4°C.

2.2. Experimental Design. 100 mL of 1 ng-Hg-L™' CH;HgCl
solution was poured into bottles (borosilicate glass,
100 mL) and a very small space was left over the solution
to minimize mercury lost from the reaction system. Then,
the bottles were sealed with parafilm and incubated in a
dark box whose inside wall was covered with aluminum
foil to get ambient light. 8 UV bulbs (8 watt) were
equipped in the box. The experiment lasted for 3 weeks,
and 3 bottles were taken out each time at 1d, 2d, 4d, 6d,
9d, 12d, and 17d for determination of MeHg concen-
tration. Being the dominant component of UV in sunlight,
UVA (365nm) and UVB (310 nm) were employed to study
the photoinduced decomposition of methylmercury in
this study. The experiment was conducted under UVA,
UVB, natural light, and dark, respectively, at 25°C in an
air-conditioned room. Under natural light treatment, the
dark box was open and the reaction solution was de-
termined for MeHg concentration at midday to get similar
light intensity (about 80-90klx). Under dark treatment,
the box was closed and all the bottles were wrapped with
an aluminum foil. Under UV irradiation, 365 and 310 nm
bulbs were employed to represent UVA and UVB radi-
ations. A mini fan was equipped in a hole on the side wall
of the box to keep air circulating and get constant
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temperature when the UV bulbs were turned on. We
verified the accuracy and the precision of the data in
various aspects such as blank value assay, recovery rate
experiment, and parallel determination experiment.

2.3. Data Analysis. MeHg concentration was determined
using the method of 1630 [21], and all data were analyzed by
SPSS 10.0 and Origin 8.0 software for Windows. The re-
action kinetic order was determined using the fitting opti-
mization level of the regression equation.

3. Results and Discussion

3.1. MeHg Demethylation Trend under Various Light
Treatments. Many researchers have identified that solar UV
could decrease MeHg content in surface water using field
experiments [11, 16]. The photoinduced demethylation
process was influenced by environmental factors (e.g.,
DOM, salinity, nitrate, photoreactive trace metals, and
chloride) [13, 16, 20, 22]. The experiment in this study was
conducted in lab, and all of the influencing factors were well
controlled with light radiation as the only variable factor;
data obtained in this study were much more purposeful and
meaningful for further understanding of the photoinduced
MeHg degradation process. MeHg concentration decreased
at a faster rate in the first 6 days after the experiment started
and at a lower rate in the following 15 days in all the
treatments of dark, natural light, UVA, and UVB (Figure 1).

Although MeHg concentration decreased in all of the
treatments with different radiations, a significant difference
was observed in reaction rate between different light treat-
ments, in an order of UVB > natural light > UVA > dark. As
Figure 1 shows, 90% of MeHg degraded in the prior 6 days
under UVB radiation; UVA which was similar to natural light
resulted in about 80% of MeHg degradation. However, in the
same 6 days, only 65% of MeHg degraded in the samples
treated with dark. The result suggested that light wavelength
has a great influence on MeHg demethylation. According to
the previous reports, ‘'OH, produced in the Fenton reaction,
should account for the fastest MeHg degradation induced by
UVB treatment [20, 22]. Although UVB gave the fastest
degradation rate in this study, it is noted that UVA dominates
MeHg cycling in the aquatic environment [15], as it accounts
for 98% UV light. Although samples treated under dark gave
the slowest degradation rate, 90% MeHg degraded after 17 d
as well, suggesting that photoinduced demethylation was not
the only pathway accounting for the loss of MeHg which also
occurred without light radiation.

In conclusion, light radiation indeed enhanced MeHg
degradation rate, but it was not essential for MeHg deme-
thylation in the aquatic system. Most probably, MeHg
demethylation undergoes different mechanisms under
corresponding light treatments.

3.2. Chemical Balance of MeHg Demethylation Reaction.
It was unexpected to find such a similar final reaction state
treated with UVB, UVA, natural light, and dark after
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FIGURE 1: MeHg concentration variation with time. Initial MeHg concentration was 1ng-Hg-L™".

incubation of 17 days, as Figure 2 shows. The ratios of MeHg
to total mercury in the reaction solution were 10.51%,
11.45%, 11.60%, and 12.60% for UVB, UVA, natural light,
and dark, respectively, and the differences between these
ratios were rather less significant than imagined. This un-
expected result verified that light radiation has a great in-
fluence on the MeHg degradation rate and most probably
also to the reaction mechanism indeed, but it cannot sig-
nificantly affect the final reaction balance of MeHg degra-
dation in an isolated reaction system. However, in an open
aquatic system, environmental factors such as dissolved
organic matter, pH, sulfur, trace elements content, and so on
will shift the balance to MeHg or Hg>" side.

In this study, the experiments were conducted in a lab
with constant pH and temperature, and the result was
influenced entirely by light radiation. Hence, the similar
balance between MeHg and inorganic mercury under var-
ious light irradiations is of great implication for the re-
searchers to understand MeHg cycling (input, output, in situ
formation, and decomposition) further in an aquatic system.
For example, if the ratio of MeHg and total mercury was over
than 12% in lake water, most probably, some environmental
factors of this aquatic system were more suitable for MeHg
formation or more external MeHg was inputted to this lake.
These potential factors (in situ formation and external
source) should be the focus when MeHg cycling in this lake
was estimated.

3.3. Kinetic Study of MeHg Degradation under Various Light
Radiations. Plots of In[MeHg],/[MeHg], versus t and
1/[MeHg], versus t were used to validate whether MeHg
degradation follows first-order or second-order reactions,
respectively, where [MeHg], means MeHg content
(ng-HgL™") at time t and [MeHg], means initial MeHg
concentration, always 1 ng-Hg-L™" in this study. The fitting
coeflicients, reaction rate constants, and half-lives, which

sl 12.60

11.45 11.60
10.51

s

—_
(=}
T
H

Ratio of MeHg to total mercury in reaction
solution (%)

0 1 1 1 J
UvVB UVA Natrual light Dark

F1GURE 2: Ratio of MeHg to total mercury in reaction solution at
the end of the experiment.

were calculated following both first- and second-order ki-
netic equations, are presented in Table 1.

It is noted that the data obtained after equilibrium
conversion were not meaningful to calculate the rate
constant. Hence, data obtained in the prior 9 days were
used to study kinetic information for UVB, UVA, and
natural light treatments and 17 days for dark treatment,
respectively.

The results show that, under UVB, UVA, and natural
light, the second-order equation is much better than the
first-order equation to fit MeHg degradation. The fitting
coefficients of the second-order equation were 0.94, 0.85,
and 0.86, compared with that of first-order one 0.18, 0.38,
and 0.48 for UVB, UVA, and natural light, respectively
(Table 1). These data suggest that, under light radiation,
MeHg degradation is a second-order reaction rather than
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TaBLE 1: Kinetic information of MeHg degradation under different light conditions.

Rate constants

Treatments

Fitting coefficients

UVB UVA Natural light Dark UVB UVA Natural light Dark
First-order reaction (1d™") 0.35 0.19 0.21 0.13 0.18 0.38 0.45 0.83
Second-order reaction (L-ng_l-d_l) 1.61 0.82 0.91 0.43 0.94 0.85 0.86 0.90
Half-life (d) 0.62 1.30 1.08 - - — — -
ApH 0.2 0.1 0.1 -1.6 — — — —
“ApH means the pH changes of the solution before and after the incubation period.
the first-order reaction. Under dark treatment, fitting co- CH,HgCl + 'OH — CH, + HgOHCI
efficients of the first-order and second-order equations were ) )
very close, 0.83 and 0.89, and it is not enough to validate the CH;HgCl + 'OH — CH;OH + 'HgCl (3)

reaction order. A hypothesis was proposed that MeHg
degradation under light radiation follows an entirely dif-
ferent chemical mechanism from that under dark. Addi-
tionally, pH decreased by 1.6 (from 5.5 to 3.9) for solution
treated under dark, while no significant pH change was
observed in the solution treated under light radiation (Ta-
ble 1). The difference in pH change under light and dark
supports the hypothesis we proposed.

Under reaction conditions in this study, the second-
order rate constants of MeHg degradation were 1.61, 0.82,
and 0.91 L-ng™'-d™", and the half-lives were calculated to be
0.62, 1.3, and 1.08d for UVB, UVA, and natural light,
respectively. Kinetic data under dark treatment could not
be calculated, because the reaction order under dark could
not be decided based on the data obtained in this study
(Table 1).

3.4. Proposed Mechanisms of Photoinduced Methylmercury
Degradation. As shown in Figure 1 and kinetic data in
Table 1, light irradiation can accelerate methylmercury
degradation, as many previous studies have reported.
Since methylmercury can be degraded directly by UV
irradiation with wavelengths lower than 254nm [23],
direct degradation of methylmercury cannot occur with
the light source of 310 and 365 nm in this study. Hence,
we can conclude that indirect photolysis may be the
dominant pathway for methylmercury degradation in
this study. Previous studies have validated that hydroxyl
radicals (OH) play an important role in the indirect
photolysis process of methylmercury due to its powerful
and nonselective reactivity. For example, Zepp et al. [24]
and Chen et al. [20] determined the reaction kinetics of
methylmercury and 'OH using the steady-state kinetic
technique. In this study, ‘OH can be produced through
photolysis of nitrate ions which was introduced into the
reaction system with nitric acid when adjusting pH of the
solution.

This hypothesis could be demonstrated with the fol-
lowing equations:

NO; % NO, + O (1)
‘0" + H,0 — OH + OH" (2)

According to kinetic information obtained in this study,
a possible mechanism was proposed as follows:

'HgCl — Hg’ + Cl
"HgCl + HgCl — Hg’ + HgCl,
The possible side reactions are listed as follows:
'CH, + ‘CH, —> CH, —CH,
'CH, + 'OH — CH,O0H
'CH, + 'Cl —> CH,CI
CH,0H 2% CH,0

The proposed mechanism gives perfect explanation to
some previous studies. For example, Inoko and coworkers
studied the photochemical decomposition of MeHg using
mercury lamps and identified CH;Cl and CH;CH; as
products in solution [23]. In addition, Chen et al. found
CH,O in MeHg decomposition products [20].

4. Conclusions

The MeHg degradation rate increases with decreasing ra-
diation wavelength. Light radiation enhances the MeHg
degradation but does not influence the final chemical bal-
ance between MeHg and inorganic mercury in an isolated
aquatic reaction system. This ratio obtained in this study can
be used as an important fundamental to estimate MeHg
cycling in some complicated aquatic systems, where many
environmental influencing factors are involved. Kinetic
study shows that MeHg degradation is a second-order re-
action and the half-life is 1.08 d under natural light in pure
water.
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