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Stochastic optimal control and filtering theory have been at the forefront of modern control
theory and communication engineering. Filtering theory has played a significant role in space
explorations, navigation, aerospace, radar, satellite and meteorological applications.

In recent years, stochastic control theory has been playing an important role in
the study of biomathematics and mathematical finance, as well as adaptive and network
controlled systems, which is a vital research field in modern control theory. This is primarily
because of the fact that deterministic systems are to a large extent an abstraction, and all
practical systems do have a certain degree of random and uncertain behavior in the form
of noise, disturbance, and random failures. Moreover, due to this element of randomness,
stochastic systems are more complicated than deterministic systems.

Therefore, a satisfactory resolution of many new, challenging, and complicated
problems arising in the above areas, other engineering fields and scientific phenomenon,
and involving modeling, identification, estimation, analysis and synthesis, require more
advanced tools and rigorous investigations than hitherto available.

This special issue aims to introduce new developments in the theory of stochastic
control systems with applications to engineering fields such as communication, networked
control, system reliability, and mathematical finance. However, the main focus of the special
issue is on stochastic modeling, analysis, and control, with particular emphasis on stability
and stabilization, adaptive control, robust optimal control and filtering. Close to 50 papers
were received, but only 30 could be accepted after a rigorous peer review to guarantee
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the highest quality of the special issue. A quick summary of the final accepted papers and
therefore the contents of the special issue is as follows.

There are four papers concerning nonlinear stochastic adaptive control listed as
follows: “Nonsmooth adaptive control design for a large class of uncertain high-order stochastic non-
linear systems,” by J. Zhang and Y. Liu; “Adaptive state-feedback stabilization for high-order stochas-
tic nonlinear systems driven by noise of unknown covariance,” by C.-R. Zhao et al.; “Adaptive
output feedback control for a class of stochastic nonlinear systems with SiISS inverse dynamics,” by
N. Duan and H.-K. Liu; “High-order stochastic adaptive controller design with application to mech-
anical systems,” by J. Tian et al.

The second set of three papers deal with the application of stochastic control theory to
mathematical finance and are listed as follows: “Arbitrage-free conditions and hedging strategies
for markets with penalty costs on short positions,” by O. L. V. Costa and E. V. Queiroz Filho;
“Multi-period mean-variance portfolio selection with uncertain time horizon when returns are serially
correlated,” by L. Zhang and Z. Li; “A fast Fourier transform technique for pricing European options
with stochastic volatility and jump risk,” by S.-m. Zhang and L.-h. Wang.

The third set of papers are concerned with stochastic robust optimal control and
filtering, and there are five papers in this category listed as follows: “Robust H∞ filtering for
general nonlinear stochastic state-delayed systems,” by W. Zhang et al.; “Indefinite LQ control for
discrete-time stochastic systems via semidefinite programming,” by S. Zhou and W. Zhang; “Robust
reliable H∞ control for nonlinear stochastic Markovian jump systems,” by G. Chen and Y. Shen;
“Weighted measurement fusion white noise deconvolution filter with correlated noise for multisensor
stochastic systems,” by X. Wang et al.; “Least-mean-square receding horizon estimation,” by B.
Kwon and S. Han.

The fourth category of three papers are devoted to stochastic stability and stabilization
and are entitled “Robust stabilization for stochastic systems with time-delay and nonlinear uncer-
tainties,” by Z. Yan et al.; “New results on stability and stabilization of Markovian jump systems
with partly known transition probabilities,” by Y. Guo and F. Zhu; “Stochastic stability of damped
Mathieu oscillator parametrically excited by a Gaussian noise,” by C. Floris.

Then come the fifth set of four papers dealing entirely with networked control and
communication. These are listed as follows: “Stability and stabilization of networked control
systems with forward and backward random time delays,” by Y.-G. Sun and Q.-Z. Gao; “Iterative
learning control for remote control systems with communication delay and data dropout,” by C. Liu
et al; “Evaluation of network reliability for computer networks with multiple sources,” by Y.-K. Lin
and L. C.-L. Yeng; “Robust distributed Kalman filter for wireless sensor networks with uncertain
communication channels,” by Du. Y. Kim and M. Jeon.

In addition, there are two papers that are devoted to queuing systems and one paper
to systems reliability. The first one is entitled “A tandem BMAP/G/1 → •/M/N/0 queue
with group occupation of servers at the second station,” by C. Kim et al., while the second one
is entitled “Stochastic approximations and monotonicity of a single server feedback retrial queue,”
by M. Boualem et al. While the paper dealing with system reliability is entitled “Probabilistic
approach to system reliability of mechanism with correlated failure models,” by X. Huang and Y.
Zhang.

The remaining set of papers deal with diverse topics and subjects, ranging from
mobile robots to neural networks and from traffic control to navigation. We quickly recall
their various titles here. One paper is concerned with the stabilization of nonholonomic
mobile robot and is entitled “Stochastic stabilization of nonholonomic mobile robot with heading-
angle-dependent disturbance,” by Z. J. Wu and Y. H. Liu. The next paper deals with the
synchronization of stochastic neural networks and is entitled “Master-slave synchronization
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of stochastic neural networks with mixed time-varying delays,” by Y. Ge et al. There is also one
paper about BPP (Binomial-Poisson-Pascal) traffic entitled “Properties of recurrent equations for
the full-availability group with BPP traffic,” by M. Gła̧bowski et al.

In addition, one paper studies population dynamics and is entitled “Existence and
uniqueness for stochastic age-dependent population with fractional Brownian motion,” by Z. Qimin
and L. Xining. Then another paper analyzes the relationship between extreme climate indices
in China and is entitled “The use of geographically weighted regression for the relationship among
extreme climate indices in China,” by C. Wang et al. Further, there is one paper concerning
INS/WSN-integrated navigation entitled “INS/WSN-integrated navigation utilizing LS-SVM
and H∞ filtering,” by Y. Xu et al., and then a paper dealing with wind-induced vibration
control entitled “Wind-induced vibration control of Dalian International Trade Mansion by tuned
liquid dampers,” by H.-N. Li et al. The last paper discusses multiresolution analysis for random
parameter fields and is entitled “Multiresolution analysis for stochastic finite element problems
with wavelet-based Karhunen-Loève expansion,” by C. Proppe.
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Evaluating the reliability of a network with multiple sources to multiple sinks is a critical
issue from the perspective of quality management. Due to the unrealistic definition of paths
of network models in previous literature, existing models are not appropriate for real-world
computer networks such as the Taiwan Advanced Research and Education Network (TWAREN).
This paper proposes a modified stochastic-flow network model to evaluate the network reliability
of a practical computer network with multiple sources where data is transmitted through several
light paths (LPs). Network reliability is defined as being the probability of delivering a specified
amount of data from the sources to the sink. It is taken as a performance index to measure the
service level of TWAREN. This paper studies the network reliability of the international portion
of TWAREN from two sources (Taipei and Hsinchu) to one sink (New York) that goes through a
submarine and land surface cable between Taiwan and the United States.

1. Introduction

The issue of the QoS [1] of networks has been studied in the past decades. QoS is an important
element of understanding the efficiency of real-world computer networks. It refers to the
ability to provide a predictable, consistent data transfer service and the ability to satisfy
customers’ application needs while maximizing the use of network resources, especially a
network reliability analysis. One of the traditional issues in this area of network reliability
research is known as the source-sink (s-t) network reliability problem [2–16], which some
articles refer to as two-terminal network reliability (TTNR) [14, 15]. In TTNR analyses, it is
interesting to compute the network reliability in relation to the connecting paths between
two specific network nodes, usually the source-sink (s-t). Generally speaking, people are
interested in obtaining the probability that the source connects the sink. Some researchers
extend the study of TTNR to the k-terminal network reliability (KTNR) problem [17, 18],
which contains at least one path from the source node to other k nodes. Besides TTNR and
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KTNR, there is an all-terminal network reliability (ATNR) (also called overall or uniform
network reliability), which is calculated from the probability that each and every node in
the network is connected to each other [19, 20]. In a binary-state flow network, the capacity
of each arc has two levels 0 and a positive integer. System with various states is called a
stochastic model [21–23]. For a more realistic system, the arc should have several possible
states/capacities, and such a network is named a stochastic-flow network (or multistate
network). The previous problems, TTNR, KTNR, and ATNR, are discussed for binary-state
flow networks. However, this paper addresses the evaluation of the network reliability of a
stochastic-flow network with multiple sources.

The Taiwan Advanced Research and Education Network (TWAREN) [24] is Taiwan’s
academic research network that mainly provides network communication services for
Taiwan’s research and academic society. It also offers a tunnel between Taiwan and the
United States to connect the global research network through a land surface line and the Asia
Pacific region’s submarine cable. Since TWAREN’s resources (i.e., bandwidth) are limited,
it is a critical issue to find a technique to optimize its utility. Using efficient evaluation
tools to understand TWAREN’s performance to improve its infrastructure is one of the
major tasks of Taiwan’s National High Performance Computing Center (NCHC). To measure
TWAREN’s capability, network analysis is a useful tool. For a practical computer network,
the transmission media (physical lines such as fiber optics or coaxial cables) may be modeled
as arcs, while transmission facilities (switches or routers) may be modeled as nodes. In
particular, the capacity of each arc should be stochastic due to the possibility of failure,
partial failure, or maintenance. Thus, the computer network characterized by such arcs also
has stochastic capacities and it is a typical stochastic-flow network [2–13, 25, 26]. Network
reliability evaluation of a stochastic-flow network has been studied as a performance index
for decades [2–13, 25, 26]. Most of these studies examined the network reliability from source
node s to sink node t in terms of minimal paths (MPs), in which an MP is a path with proper
subsets which are no longer paths [2–4, 6–9]. This implies that an MP is a set that connects an
(s, t) pair, here not limited to one (s, t) pair, without any surplus arcs from the perspective of
the network topology.

Those previous studies assume that data can be sent through all possible MP from s
to t according to the network topology, where each MP is composed of some physical lines
(arcs). However, in a real computer system, data can only be sent through some unique light
paths (LPs) between specific node pairs, where an LP is a virtual tunnel between two end-
to-end nodes which combined by some segments (i.e., arcs or lines) and nodes; however,
an MP is a path that connects a specific source and a specific sink, while an LP can be a link
between any two nodes (not limited to source and sink pair). That is, data may be transmitted
from source node s to sink node t via more than one LP. In particular, any segments that LP
goes through cannot be divided during transmission. Therefore, the previous studies [2–4, 6–
9] based on MP to transmit data are not appropriate for TWAREN. In TWAREN, each LP
is composed of a set of light path segments (LPSs) linking two nodes. In particular, each
physical line can be divided into several LPS, and each LPS belongs to only one LP. Since
TWAREN involves the light path, which cannot be divided through any part of its nodes
or arcs during transmission, this kind of network model is different than the MP concept
described in [2–4, 6–9]. Therefore, we implement a minimal light path (MLP) concept to find
all LPs to evaluate TWAREN’s network reliability. In this paper, the MLP is defined as a series
of nodes and LPSs, from source node to sink node, which contains no cycle.

A revised stochastic-flow network with multiple sources is constructed to model the
TWAREN in terms of LP. The difference of single source and multiple sources is that previous
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one only dedicates on the network reliability between one source and one sink. But in real
world, system may transfer the real time data to the sink that exceed the total capacity of LPS
which are beside the single source node. That is, we need to transfer data from at least two
source nodes, where the data from different source might influence each other, the theory that
developed in traditional one source and one sink not applicable here. In generally, we have to
transfer the real-time data from multiple sources to one sink to handle the practical worlds’
data transmission. Therefore we consider multiple sources and implement the new technique
in this paper to realize the operation of real system instead of single source. Besides, we need
to deal with the assignment of multiple sources and the flow conflict on the intersectional
arcs. The two-source case is firstly addressed for convenience. A general case with multiple
sources can be extended by the proposed algorithm. Then we can evaluate the network
reliability for the international part of TWAREN whose tunnel mainly connects to the global
academic research network, especially the Internet2 Network [27]. Taiwan’s largest network
service provider (NSP), Chunghwa Telecom (CHT) [28], integrates those NSPs that the lines
pass through to organize the whole portion of TWAREN’s international infrastructure in two
areas: on the land surface of both Taiwan and the United States and in the under-sea areas of
the Asia Pacific, including the Japan-US submarine cable that disconnected when it was hit
by the earthquake and tsunami in Japan on March 11th 2011. Nakagawa [29] has mentioned
the influence of that earthquake regarding reliability, so we study this disaster’s effect as well.
In fact, when a line breaks, the NSP of these pass-through lines will offer serviceable lines as
backups; therefore they offer some degree of the network reliability. However, in this study,
we only concentrate on the portion that includes the regular lines to determine the factors
that affect TWAREN’s network reliability, as the NCHC’s prime task, aside from improving
TWAREN’s overall performance, is to anticipate major factors which could fail the regular
lines. The issue of the network reliability of the backup line [30–34] has not been considered
yet.

This paper mainly emphasizes the network reliability that the network can send
specified units of data from two source nodes (Taipei city and Hsinchu city) to a single sink
node (New York) through TWAREN’s light path. The remainder of this paper is organized
as follows. The TWAREN network is introduced in Section 2. The research scope, problem
formulation, the concept of the minimal light path and the evaluation technique, recursive
sum of disjoint of products, (RSDP [9]) are all described in Section 3. Network reliability of
TWAREN is evaluated in Section 4. A summary and conclusion are presented in Section 5.

2. TWAREN Network

2.1. Introduction to TWAREN

TWAREN has been funded by the National Science Council of Taiwan since 1998 and
was built by the NCHC. Construction was completed at the end of 2003, and service and
operation started in 2004. Today, more than 100 academic and research institutions connect
with TWAREN in Taiwan and this number is increasing continuously. As well, since 2005,
over 1,000 elementary schools and junior and senior high schools have been using TWAREN’s
internal backbone. TWAREN provides network infrastructure for general use but is also
an integrated platform for network research. For instance, TWAREN was instrumental in
developing applications and network technology such as IPv6, MPLS, VoIP, e-learning,
multicast, multimedia, and performance measurement and has supported GRID computing
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applications such as e-Learning Grid, Medical Grid, and EcoGrid. As promoting Taiwan as
an international R&D center is one of NCHC’s objectives, a stable and reliable TWAREN is
the foundation to achieve this goal.

Many countries fund national research and education network (NREN) infrastructure.
TWAREN, Taiwan’s NREN, connects to the international research community through
global advanced networks, specifically the Internet2 Network [27] of the United States, the
major NREN in the world. Therefore, network reliability analyses of TWAREN will help to
continuously improve its infrastructure so it can continue to cooperate and connect globally.

2.2. TWAREN’s Light Path

TWAREN is network that connects to the world-wide research network through light path
international tunnel. TWAREN’s physical topology is an optical infrastructure and its virtual
topology is constructed by connecting light paths and routers. A light path is a tunnel
between two sites connected by various cables and is an end-to-end, preallocated optical
network resource, according to users’ needs. It allows signals to be delivered sequentially
without jitters and congestion. Each light path is generally a 155 Mbps∼10 Gbps dedicated
channel that transports various applications.

Figure 1 is the light path international infrastructure that TWAREN leases from CHT,
including major sites located at Taipei and Hsinchu in Taiwan, and Los Angeles, Chicago, and
New York in the United States. This infrastructure contains the land surface and submarine
cable between these cities. Each light path is denoted by LPi where i is the light path number,
i = 1, 2, . . . , l with l being the number of light path.

Most of these city sites connect to each other with 2.5 Gbps physical line connections,
divided into four light path channels at 622 Mb bandwidths. The research scope of this paper
is to study the network reliability of the transmission from two sources (Taipei city and
Hsinchu city) to the sink node (New York) by means of the light path tunnel.

3. Problem Description and Model Formulation

3.1. Problem Description

This paper describes how the probability that a specified amount of data can be sent from
Taipei and Hsinchu to New York via TWAREN is measured. This is referred to as network
reliability. Also, Figure 1 is transformed into Figure 2 which is constructed by the light path
segments and nodes.

3.2. Some Definitions

As Figure 2 shows, those cities or site devices defined as nodes are denoted by nk, where
k = 1, 2, . . . , p with p being the number of nodes. For example, Taipei City is n1 and TP-1 is n2.
We denote each LPSs as li,j where li,j ∈ LPi means the jth segment in LPi (j = 1, 2, . . . , ri with
ri being the number of LPS in LPi). For example, in Figure 2, LP1 is a tunnel from Taipei (n1)
to Chicago (n8), which is combined with three LPS l1,1, l1,2, and l1,3, and goes through two
nodes n2 (TP-1) and n6 (San Francisco). Its connection sequence is n1 ↔ l1,1 ↔ n2 ↔ l1,2 ↔
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Figure 1: TWAREN light path between Taiwan and US.

n6 ↔ l1,3 ↔ n8. The capacity of each LP is 622 Mb, and each LP is combined by four 155 Mb
channels. As each channel is regarded as one unit, there are 4 units for each LPs.

The physical line (PL) is the actual optical cable where the LP is located and used for
data transmission. For example, LPS l1,3, l4,4, l11,1 is combined in one PL from San Francisco
to Chicago, as shown as PL P10 in Figure 3. The capacity of each PL is 2.5 G and is divided
into four 622 Mb LP.

The capacity state of an LPS is the same as a PL either when connected or disconnected.
Each LPS has two capacity states: 0 units (0 G) and 4 units (622 Mb with four 155 Mb LP),
respectively. That is, once the PL fails, all the LPSs that are located in this PL also fail. Those
LPSs located in the same PL have the same disconnection probability (or, conversely, the same
connection probability). For example, LPS l1,3, l4,4, l11,1 located in one PL P10 have the same
disconnection probability.

3.3. Model Formulation

The stochastic-flow network evaluation technology developed in [3] is a method that is not
suitable to be applied to TWAREN in Figure 2. There are some differences in this problem,
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LP10 : n8 ↔ n9 = n8 ↔ l10, 1↔ n9
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LP5 : n10 ↔ n8 = n10 ↔ l5,1 ↔ n3 ↔ l5,2 ↔ n2 ↔ l5,3 n6 ↔ l5,5↔ ↔ n8↔l5,4↔ n5

Light path
LPi

Light path connection by

LPSsl i,j and nodes nk

Figure 2: Revised network from Taipei and Hsinchu to New York using light path segments and nodes
connection.

since each LPi is combined with LPS li,j , which cannot be divided through any nodes. To
create an easier expression, we re-sort all LPSs as a1, a2, . . . , an, where n is the total number of
LPS, instead of li,j . Let G = (A,N,M) be a stochastic flow network where A = {ai | 1 ≤ i ≤ n}
is the set of LPS, N is the set of nodes, and M = (M1,M2, . . . ,Mn) with Mi (an integer) being
the maximum capacity of each LPS ai. Such a G is assumed to further satisfy the following
assumptions.

(1) Each node is perfectly reliable.

(2) The capacity of each LPS is stochastic with a given probability distribution
according to historical data.

(3) The capacities of different LPS are statistically independent.

Let Taipei be the first source node denoted by s1, and let Hsinchu be the second source
node denoted by s2. Then let S = {s1, s2}. A minimal light path (MLP) is a series of LPSs
from a source node to a sink node, which contains no cycle. In particular, any segment used
by LPi cannot be divided during transmission in LPi. That is, each LPS belongs to only one
LP. Suppose ml1, ml2, . . . , mlr are all MLPs from s1 to t and mlr+1, mlr+2, . . . , mlq are all MLPs



Mathematical Problems in Engineering 7

 

10G

9

12

 

Taipei
n1

TP-1
n2

TP-2
n3

TP-3
n4

Hsinchu
n10

San
Francisco

n6

Wada
Japan

n5

Chicago
n8

New York
n9

Los
Angeles

n7

F
i

nn

1

9

12go NNN12ago NNN

u

CC

P1

P4

P5 P6

P9

P2

P3

P13

P10 P12

P11

P8

P7 

Figure 3: Physical line connection.

from s2 to t. Then, the stochastic flow network can be described by the capacity vector X =
(x1, x2, . . . , xn) and the flow vector F = (f1, f2, . . . , fq) where xi denotes the current capacity
of ai, and fj denotes the current flow on mlj . The following constraint shows that the flow
through ai cannot exceed the maximum capacity of ai:

q∑

j=1

{
fj | ai ∈ mlj

} ≤Mi. (3.1)

Let the total demand to New York be p. Then demand set Dp = {(d1, d2) | (d1 + d2) = p}
where d1 and d2 are the demand from Taipei and Hsinchu to New York, respectively. To meet
the demand pair (d1, d2), the flow vector F = (f1, f2, . . . , fq) has to satisfy

r∑

j=1

fj = d1,

q∑

j=r+1

fj = d2.

(3.2)

For convenience, let F(d1,d2) = {F | F satisfy constraints (3.1) and (3.2)}. For each F ∈ F(d1,d2),
the corresponding capacity vector XF = (x1, x2, . . . , xn) is generated via

xi =
q∑

j=1

{
fj | ai ∈ mlj

}
, xi = 1, 2, . . . , n. (3.3)
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Let Ω(d1,d2) = {XF | F ∈ F(d1,d2)} be such capacity vectors, and let Ω(d1,d2),min = {X | X be ≤with
respect to in Ω(d1,d2)} (where Y ≤ X if and only if yi ≤ xi for each i = 1, 2, . . . , n and Y < X, if
and only if Y ≤ X and yi < xi for at least one i). For convenience, each X ∈ Ω(d1,d2),min is named
a (d1, d2)-MLP in this paper. Suppose all MLPs have been precomputed. All (d1, d2)-MLP can
be derived by the following steps.

Step 1. Do the following steps for each (d1, d2) ∈ Dp.

Step 2. Find all feasible solutions F = (f1, f2, . . . , fq) of the constraints (3.1) and (3.2).

Step 3. Transform each F into XF = (x1, x2, . . . , xn) via (3.3) to get Ω(d1,d2).

Step 4. Remove the nonminimal ones in Ω(d1,d2) to obtain Ω(d1,d2),min, that is, (d1, d2)-MLP.

Step 5. Next (d1, d2).

Step 6. End.

3.4. Network Reliability Evaluation

Network reliability RDp is the probability that the system can transmit p units of data to the
sink, that is, RDp =

∑
(d1,d2)∈Dp

Pr{Y ∈ Ω(d1,d2) | Y ≥ X for a (d1, d2)-MLP X}. If {X1, X2, . . . , Xh}
is the set of minimal capacity vectors capable of satisfying any (d1, d2) ∈ Dp, then network
reliability RDp is

RDp = Pr

{
h⋃

v=1

Qv

}
, (3.4)

where Qv = {X | X ≥ Xv}, v = 1, 2, . . . , h. Several methods such as the RSDP algorithm
(Algorithm 1) [9], the inclusion-exclusion method (IEM) [10, 25], the disjoint-event method
(DEM) [35], and state-space decomposition (SSD) [11, 12] may be applied to compute RDp .
The IEM [10, 25] principle is a simple way to calculate network reliability, which basically is
similar to the theorem in traditional probability theory that is recursively plus (inclusion) and
minus (exclusion) the intersection portion, but easily results in memory overload as there are
lots of input data. SSDs [12] are based upon the decomposition method, in which the state
space is decomposed into three sets of states: acceptable (A) sets, nonacceptable (N) sets,
and unspecified (U) sets, which recursively decompose the U sets into smaller A, N, and
U sets to get the whole system reliability in terms of the summation of the reliability of all
A sets. Aven [12] proved that somehow SSD has much better performance than IEM [10,
25]. Zuo et al. [9] implemented a new technique RSDP; it calculates one record’s reliability
first and then continuously and, respectively, handles another single record that is minus
the intersection portion with previous records that those reliability already been calculated,
which quite different than the IEM that recursively plus and minus the intersection portions
for all records. It has been proved by Zuo et al. [9] that RSDP has better efficiency than SSD
[12] and easier than IEM [10, 25]. Therefore, recently most network reliability evaluation
articles apply the RSDP to assess the related issue. It calculates the probability of a union
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//Calculate the network reliability RDp
for all Ω(d1 ,d2),min

function RDp
= RSDP(X1, X2, . . . , Xh)

//Input h vectors (X1, X2, . . . , Xh) and connection probability of each LPS
for i = 1 : h

if i == 1
RDp= Pr(X ≥ Xi);

else
Temp R 1 = Pr(X ≥ Xi);
If i == 2

Temp R 2 = Pr(X ≥max(X1, Xi)); //max(X1, Xi) = (X1 ⊕Xi)
else

for j = 1 : i–1
Xj = max(Xj,Xi); //max(Xj,Xi) = (Xj ⊕Xi)

end
Temp R 2 = RSDP(X1, X2, . . . , Xi−1);

end
end
RDp

= RDp
+ (Temp R 1) − (Temp R 2);

Algorithm 1: RSDP algorithm.

with r vectors in terms of the probabilities unions with (r − 1) vectors or less by using a
special maximum operator [9] “⊕”, which is defined as

X1,2 = X1 ⊕X2 ≡ (max(x1i, x2i)), for i = 1, 2, . . . , n. (3.5)

For example, if X1 = (2, 2, 1, 1, 0) and X2 = (3, 0, 1, 0, 1), X1,2 = X1 ⊕X2 = (max(2,3), max(2,0),
max(1,1), max(1,0), max(0,1)) = (3, 2, 1, 1, 1). The RSDP algorithm is presented as follows.

4. Case Study: TWAREN between Taiwan and the US through
the Light Path

4.1. Level of Demand and MLP from Taipei and Hsinchu to New York

To calculate TWAREN’s network reliability from Taipei and Hsinchu to New York, there must
be a reasonable demand level. For each arc’s capacity, each LP occupies a bandwidth 622 Mb,
and each 622 Mb bandwidth has four 155 Mb channels. We regard each 155 Mb as one unit.
Therefore, there are four units in each 622 Mb LP channel.

Let the total demand be p = 20 units, that is, 5 × 622 Mb = 3,110 Mb. For Ω(d1,d2),min

the demand set D20 = {(20, 0), (16, 4), (12, 8), (8, 12), (4, 16), (0, 20)}, we try to evaluate RD20 =∑
(d1,d2)∈D20

Pr{Y ∈ Ω(d1,d2) | Y ≥ X for a (d1, d2)-MLP X}. In these cases, there are 10 MLPs
from n1 (Taipei) to n9 (New York) as Table 1(a) and 10 MLPs from n13 (Hsinchu) to n9 (New
York) as shown in Table 1(b).
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Table 1: (a) All MLPs from Taipei (n1) to New York (n9). (b) All MLPs from Hsinchu (n13) to New York
(n9).

(a)

MLP
no. Light paths combination Nodes & LPS combination flow

ml1
Taipei→LP1 →Chicago→LP10 →New
York

n1 → l1,1 → n2 → l1,2 → n6 → l1,3 → n8 →
l10,1 → n9

ml2
Taipei→LP1 →Chicago→LP13 →New
York

n1 → l1,1 → n2 → l1,2 → n6 → l1,3 → n8 →
l13,1 → n9

ml3
Taipei→ LP4 →Chicago→LP10 →New
York

n1 → l4,1 → n2 → l4,2 → n5 → l4,3 → n6 →
l4,4 → n8 → l10,1 → n9

ml4
Taipei→LP4 →Chicago→LP13 →New
York

n1 → l4,1 → n2 → l4,2 → n5 → l4,3 → n6 →
l4,4 → n8 → l13,1 → n9

ml5 Taipei→LP3 →New York n1 → l3,1 → n2 → l3,2 → n3 → l3,3 → n7 →
l3,4 → n9

ml6
Taipei→LP2 →Los
Angeles→LP12 →New York

n1 → l2,1 → n2 → l2,2 → n3 → l2,3 → n4 →
l2,4 → n7 → l12,1 → n9

ml7
Taipei→LP2 →Los
Angeles→LP11 →Chicago→LP10 →New
York

n1 → l2,1 → n2 → l2,2 → n3 → l2,3 → n4 →
l2,4 → n7 → l11,2 → n6 → l11,1 → n8 →
l10,1 → n9

ml8
Taipei→LP2 →Los
Angeles→LP11 →Chicago→LP13 →New
York

n1 → l2,1 → n2 → l2,2 → n3 → l2,3 → n4 →
l2,4 → n7 → l11,2 → n6 → l11,1 → n8 →
l13,1 → n9

ml9
Taipei→LP1 →Chicago→LP11 →Los
Angeles→LP12 →New York

n1 → l1,1 → n2 → l1,2 → n6 → l1,3 → n8 →
l11,1 → n6 → l11,2 → n7 → l12,1 → n9

ml10
Taipei→LP4 →Chicago→LP11 →Los
Angeles→LP12 →New York

n1 → l4,1 → n2 → l4,2 → n5 → l4,3 → n6 →
l4,4 → n8 → l11,1 → n6 → l11,2 → n7 →
l12,1 → n9

(b)

MLP
no. Light paths combination Nodes & LPS combination flow

ml11
Hsinchu→LP5 →Chicago→LP10 →New
York

n10 → l5,1 → n3 → l5,2 → n2 → l5,3 → n5 →
l5,4 → n6 → l5,5 → n8 → l10,1 → n9

ml12
Hsinchu→LP5 →Chicago→LP13 →New
York

n10 → l5,1 → n3 → l5,2 → n2 → l5,3 → n5 →
l5,4 → n6 → l5,5 → n8 → l13,1 → n9

ml13 Hsinchu→LP7 →New York n10 → l7,1 → n3 → l7,2 → n4 → l7,3 → n7 →
l7,4 → n9

ml14
Hsinchu→LP6 →Los
Angeles→LP12 →New York n10 → l6,1 → n3 → l6,2 → n7 → l12,1 → n9

ml15

Hsinchu→LP6 →Los
Angeles→LP11 →Chicago→LP10 →New
York

n10 → l6,1 → n3 → l6,2 → n7 → l11,2 →
n6 → l11,1 → n8 → l10,1 → n9

ml16

Hsinchu→LP6 →Los
Angeles→LP11 →Chicago→LP13 →New
York

n10 → l6,1 → n3 → l6,2 → n7 → l11,2 →
n6 → l11,1 → n8 → l13,1 → n9

ml17
Hsinchu→LP8 →Los
Angeles→LP12 →New York n10 → l8,1 → n3 → l8,2 → n7 → l12,1 → n9

ml18

Hsinchu→LP8 →Los
Angeles→LP11 →Chicago→LP10 →New
York

n10 → l8,1 → n3 → l8,2 → n7 → l11,2 →
n6 → l11,1 → n8 → l10,1 → n9

ml19

Hsinchu→LP8 →Los
Angeles→LP11 →Chicago→LP13 →New
York

n10 → l8,1 → n3 → l8,2 → n7 → l11,2 →
n6 → l11,1 → n8 → l13,1 → n9
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(b) Continued.

MLP
no. Light paths combination Nodes & LPS combination flow

ml20
Hsinchu→LP5 →Chicago→LP11 →Los
Angeles→LP12 →New York

n10 → l5,1 → n3 → l5,2 → n2 → l5,3 → n5 →
l5,4 → n6 → l5,5 → n8 → l11,1 → n6 →
l11,2 → n7 → l12,1 → n9

Table 2: Connection probability of all physical lines and LPSs.

PL
no.

LPS in
this PL

Disconnection
starting time

Disconnection
ending time

Disconnection
duration

Connection probability
(t = a week = 4032 mins) Root caused

P1
l1,1; l2,1;
l3,1; l4,1

2011/4/21
10:17:00 AM

2011/4/21
11:56:00 AM 99 mins t − 99/t = 0.98 Circuit broken

P2
l2,2; l3,2;
l5,2

N/A N/A N/A 1 No

P3 l2,3; l7,2 N/A N/A N/A 1 No

P4 l1,2
2010/9/28

10:08:00 AM
2010/9/28

02:07:00 PM 239 mins t − 239/t = 0.94 Card broken

P5 l4,2; l5,3
2011/4/21
22:01 PM

2011/4/22
04:29:00 AM 388 mins t − 388/t = 0.90 Circuit broken

P6 l4,3; l5,4
2009/5/29
05:16 AM

2009/5/29
08:27:00 AM 191 mins t − 191/t = 0.95 Circuit broken

P7
l3,3; l6,2;
l8,2

2009/9/16
04:40:00 PM

2009/9/16
05:01:00 PM 211 mins t − 211/t = 0.99 Circuit broken

P8 l2,4; l7,3
2011/3/11

01:53:00 PM
2011/3/12

01:37:00 AM 704 mins t − 704/t = 0.83 Japans’
earthquake

P9 l11,2
2011/2/17

01:19:00 AM
2011/2/17

03:33:00 AM 134 mins t − 134/t = 0.97 Card disable

P10
l1,3; l4,4;
l11,1; l5,5

2010/5/25
04:28:00 AM

2010/5/25
11:11:00 AM 403 mins t − 403/t = 0.90 Circuit broken

P11
l3,4; l12,1;

l7,4

2009/3/21
08:58:00 PM

2009/3/22
03:23:00 AM 385 mins t − 385/t = 0.90 Card disable

P12 l10,1; l13,1
2011/2/8

01:17:00 AM
2011/2/8

11:07:00 AM 590 mins t − 590/t = 0.85 Card disable

P13
l5,1; l6,1;
l7,1; l8,1

N/A N/A N/A 1 No

4.2. Probability of All LPSs Breaking

To compute the connection probability of each PL, we use the disconnection data from 2008
through 2011. The longest duration of every break for each physical line during the 168 hours
of every week is used to determine the disconnection probability of each line. For example,
as the physical line P10 from San Francisco to Chicago broke for 403 minutes on 2010/5/25,
its connection probability is (168 × 60 − 403)/(168 × 60) = 0.90. Therefore, its disconnection
probability is (1 − 0.9) = 0.1. All the LPSs l1,3, l4,4 and l11,1 located in this physical line P10 have
the same disconnection probability of 0.1.

Table 2 shows all LPSs’ connection probability after screening all physical lines’
disconnection records and selecting the longest broken time for each. These breaks include
disabled card devices, circuit failures, and breaks from March 11, 2011 Japanese earthquake
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Table 3: LPS li,j redenoted by ai and its connection probability the same as the physical line Pi it locates.

Arc a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17

LPS l1,1 l1,2 l1,3 l2,1 l2,2 l2,3 l2,4 l3,1 l3,2 l3,3 l3,4 l4,1 l4,2 l4,3 l4,4 l10,1 l11,1

Prob 0.98 0.94 0.9 0.98 1 1 0.83 0.98 1 0.99 0.9 0.98 0.9 0.95 0.9 0.85 0.9

Arc a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33

LPS l11,2 l12,1 l13,1 l5,1 l5,2 l5,3 l5,4 l5,5 l6,1 l6,2 l7,1 l7,2 l7,3 l7,4 l8,1 l8,2

Prob 0.97 0.9 0.85 1 1 0.9 0.95 0.9 1 0.99 1 1 0.83 0.9 1 0.99

and tsunami that caused the physical submarine line P8 to break. This line uses a submarine
cable connection between TP-3 and Los Angeles. Artificial devices, short circuits, and natural
disasters simultaneously influence TWAREN’s network reliability from Taipei and Hsinchu
to New York. Since each failure of a node device has been included and recorded in the
physical line’s disconnection record, each node is supposed to be perfect with a reliability
of 1. For computational convenience, as described in Section 3.3, we converted LPS li,j by
using ai and the probability of ai, as Table 3 shows.

4.3. Network Reliability Computation

When line breaks occur, the suppliers of these pass-through physical lines provide all
serviceable lines as backup lines, therefore increasing the network reliability. In this study,
we do not discuss the backup lines and concentrate only on the regular lines to determine
those factors that affect their network reliability. Firstly, we focus on the demand set D20 =
{(20, 0), (16, 4), (12, 8), (8, 12), (4, 16), (0, 20)}, given all MLPs in Tables 1(a) and 1(b) and by
using the algorithm in Section 3.3 as follows to obtain Ω(d1,d2),min.

Step 1. Do the following steps for (4,16) ∈ D20 (since there is no solution for Ω(0,20),min in this
example, we only demonstrate Ω(4,16),min here).

Step 2. Find all feasible solutions F that satisfy constraints (4.1):

f1 + f2 + f9 ≤M1 = 4,

f1 + f2 + f9 ≤M2 = 4,
...

f17 + f18 + f19 ≤M32 = 4,

f17 + f18 + f19 ≤M33 = 4,

f1 + f2 + · · · + f10 = d1 = 4,

f11 + f12 + · · · + f20 = d2 = 16.

(4.1)

In this step, each fi has two values, say 0 and 4, standing for the two capacity states of
failure or success. From this, we obtain 4 flow vectors as shown in Table 4(a) (column 1).
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Figure 4: (Demand, network reliability) for demand set being D20, D16, D12, D8, D4.

Step 3. Transform each F into LPS X to get Ω4,16 by (4.2).
For F1 = (0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0, 4, 0, 0, 0), the capacity vector X1 is trans-

formed by

x1 = f1 + f2 + f9 = 0 + 0 + 0 = 0,

x2 = f1 + f2 + f9 = 0 + 0 + 0 = 0,
...

x32 = f17 + f18 + f19 = 4 + 0 + 0 = 4,

x33 = f17 + f18 + f19 = 4 + 0 + 0 = 4.

(4.2)

Thus, X1 = (0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4).
Similarly, we obtain 4 capacity vectors as shown in Table 4(a) (column 2).

Step 4. The non-minimal ones in Ω(4,16) are removed to obtain Ω(4,16),min, that is, (4,16)-MLP
as shown in Table 4(a) (column 3).

When repeating the previous steps, we can also obtain Ω(8,12),min (resp., Ω(12,8),min and
Ω(16,4),min) in Table 4(b) (resp. Tables 4(c) and 4(d)). In terms of RSDP [9], we calculate
the network reliability RD20=

∑
(d1,d2)∈D20

Pr{Y ∈ Ω(d1,d2) | Y ≥ X for a (d1, d2)-MLP X}
= 0.4140. Similarly, RD16 = 0.8195, RD12= 0.9707, RD8 = 0.9976, and RD4= 0.9999 can be
evaluated, respectively. The network reliability can be observed to decrease as the total
demand increases, as shown in Figure 4.

In regard to QoS, this is only a concern when there are insufficient networks
resources. When there are enough resources and demand is low, for instance, as above
with D4, there are still plenty of resources to handle other transmission requests, so the
network reliability is quite high. On the other hand, if demand is high, say above set
D20, the network reliability will be low, since there are not enough resources to handle
other data transmissions. To maintain the network reliability, it is important to avoid full
transmission loads or increase line capacity. Depending on the results of our analysis, we
may decide to allocate more economic resources to TWAREN to maximize future network
utilities.
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5. Summary and Conclusion

Instead of the classical TTNR, KTNR, and ATNR analysis of a binary-state flow network, this
paper evaluates the network reliability of a stochastic-flow network with multiple sources. It
also designs an MLP-based network reliability evaluation technique for the international LP
portion of TWAREN’s academic and research network. This portion contains the domestic
land surface line and the Asia Pacific submarine cables which connect to the global academic
research network, including the Internet2 Network [27]. Since the LP cannot be divided
through any of its nodes or LPSs during transmission, MLP is a new concept to evaluate
the network reliability in an LP environment. MLP is used to discuss the flow assignment
and to evaluate the network reliability. This research contributes by making real TWAREN
data available to be analyzed in a stochastic-flow network model. By using the MLP analysis
technique, we will know how to continuously adjust TWAREN’s infrastructure to achieve
higher network reliability. In this study, we concentrate on the portion of the network that
includes regular lines and does not include backup cables yet. This allows us to determine
those factors that influence the dedicated regular lines’ network reliability. We also consider
the effects of the earthquake that hit Japan on March 11, 2011. All factors are studied,
including artificial, machine, and cable failures and natural disasters that simultaneously
influence TWAREN’s network reliability from the two source nodes, Taipei and Hsinchu,
to the single sink node, New York. In addition, the MLP network reliability technique used
in the multiple sources case will enable us to increase the efficiency of TWAREN and help
us to learn how to improve its network infrastructure and performance in the near future.
Subsequently, further study may be undertaken on the network reliability of TWAREN’s
multisource to multisink (terminal) issue.
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For the multisensor linear discrete time-invariant stochastic control systems with different
measurement matrices and correlated noises, the centralized measurement fusion white noise
estimators are presented by the linear minimum variance criterion under the condition that
noise input matrix is full column rank. They have the expensive computing burden due to the
high-dimension extended measurement matrix. To reduce the computing burden, the weighted
measurement fusion white noise estimators are presented. It is proved that weighted measurement
fusion white noise estimators have the same accuracy as the centralized measurement fusion white
noise estimators, so it has global optimality. It can be applied to signal processing in oil seismic
exploration. A simulation example for Bernoulli-Gaussian white noise deconvolution filter verifies
the effectiveness.

1. Introduction

An important application background of white noise estimation is signal processing in oil
seismic exploration. After the explosives buried underneath earth surface are exploded,
analyzing the reflection coefficient formed by the reflections of every oil layer can be used
to determine whether there is oil underground and the geometry shape of the oil field. The
reflection coefficient can be described by Bernoulli-Gaussian white noise. So the white noise
estimation problem can be used in the oil seismic exploration. This problem has been deeply
researched by Mendel [1–3], but Mendel has not solved the system’s measurement white
noise estimation problem and also has not referred the problem of multisensor information
fusion white noise deconvolution estimation.

In order to improve the estimation accuracy of single sensor to the white noise, in [4, 5],
when input noise and measurement noise are not correlated, the multisensor information
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fusion white noise deconvolution filters are put forward, respectively, by Kalman filtering
method and modern time series analysis method. In [6–8], multisensor information fusion
white noise optimal filter is presented for the systems with correlated noise by Kalman
filtering method. In [9], modern time series analysis method and Gevers-Wouters algorithm
are used to present the information fusion white noise deconvolution filter for multisensor
systems with correlated noises. Thus, the solution of Riccati equation is avoided and the self-
tuning filter with unknown model parameters can be designed. The shortcomings of methods
presented in [3–9] are to require computing the high-dimension cross-covariance matrix and
the fusion accuracy is global suboptimal.

Recently, the weighted measurement fusion (WMF) method has gained great
attention. Its basic principle is to weigh local sensor measurements to obtain a low-
dimensional measurement equation according to some fusion criterion and then use a single
Kalman filter to obtain the final fused state estimation. It can, not only reduce the computing
burden greatly, but also give a global optimal estimation. This can be explained as the
accuracy of WMF and the centralized measurement fusion (CMF) filter [10] is the same.
Therefore, it is globally optimal. Gan and Chris [10] put forward the WMF algorithm with
the assumption that all the sensors have the same measurement matrix and the measurement
noises of each sensor are uncorrelated. Using the Lagrange multiplier method, the WMF
algorithm is presented when the measurement noises of each sensor are correlated [11]. Ran
et al. [12, 13] put forward the WMF algorithm when the extended measurement matrix of
all the sensors has full column rank or the measurement matrices of all the sensors have the
maximal right factor. Self-tuning WMF Kalman filtering algorithm is presented in the work of
Gao et al. [14] and Ran and Deng [15]. In [16, 17], full-rank decomposition and weighted least
square theory is used under correlated noises and different sensor measurement matrices; the
WMF algorithm is presented.

However, using WMF method to solve the white noise estimation value problem of
multisensor system with correlated noise and with different measurement matrices in each
sensor is always a difficult issue to be solved, since the present white noise estimation theory
is not suitable for WMF method. In this paper, we use the WMF algorithm to solve the white
noise fusion estimation problem of multisensor systems with correlated noises and different
measurement matrices. Firstly, under the assumption that the noise input matrix is of full
column-rank, we present the CMF white noise estimators by the extended measurements of
all sensors. They have a large computing burden due to the high-dimension measurement
matrix. Further, the WMF white noise deconvolution estimators are presented to reduce the
computing burden, which have the global optimality.

The paper is structured as follows. The CMF white noise deconvolution estimators
are presented in Section 2. The multisensor WMF white noise deconvolution estimators are
designed in Section 3. A simulation example follows in Section 4. Some conclusions are given
in the end.

2. Multisensor CMF White Noise Deconvolution Filter

Consider the discrete time-invariant linear stochastic control systems with L sensors

x(t + 1) = Φx(t) + Bu(t) + Γw(t), (2.1)

yi(t) = Hix(t) + vi(t), i = 1, . . . , L, (2.2)
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where x(t) ∈ Rn is the state, yi(t) ∈ Rmi , i = 1, . . . , L are the measurements, u(t) ∈ Rp is
the known control input, Φ, B, and Γ are constant matrices with compatible dimensions.
Hi ∈ Rmi×n is the measurement matrix of the sensor i. w(t) and vi(t) are correlated white
noises with zero means, and

E

{[
w(t)
vi(t)

][
wT(k) vT

j (k)
]}

=
[
Qw Sj

ST
i Rij

]
δtk, (2.3)

where the symbol E denotes the expectation, δtt = 1, δtk = 0 (t /= k), Rii = Ri, the superscript
T denotes the transpose. Combining L measurement equations of (2.2) yields the centralized
measurement equation:

y(I)(t) = H(I)(t)x(t) + v(I)(t), (2.4)

where

y(I)(t) =
[
yT

1 (t), . . . , y
T
L(t)
]T
, H(I) =

[
HT

1 , . . . ,H
T
L

]T
, v(I)(t) =

[
vT

1 (t), . . . , v
T
L(t)
]T
.

(2.5)

The fusion measurement white noise v(I)(t) has variance matrix R(I) = (Rij)LL. The correlated
function of w(t) and v(I)(t) is S = [S1, . . . , SL].

To convert the systems (2.1) and (2.4) into the uncorrelated system, (2.1) is equivalent
to

x(t + 1) = Φx(t) + Bu(t) + Γw(t) + J
[
y(I)(t) −H(I)x(t) − v(I)(t)

]
, (2.6)

where J is a pending matrix. (2.6) can be converted into

x(t + 1) = Φx(t) + u(t) +w(t), (2.7)

where Φ = Φ − JH(I), u(t) = Bu(t) + Jy(I)(t), w(t) = Γw(t) − Jv(I)(t). Jy(I)(t) as output
feedback becomes a part of the control item. Then primary system formulae (2.1) and (2.4)
are equivalent to the system formed by formulae (2.4) and (2.7). To make E[w(t)v(I)T(t)] = 0,
introduce J = ΓSR(I)−1 which ensures that w(t) and v(I)(t) are not correlated. Then variance
matrix of w(t) is yielded as Qw = Γ(Qw − SR(I)ST )ΓT .
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Lemma 2.1 (see [18, 19]). Multisensor systems (2.1) and (2.4) with correlated noise have CMF
global optimal input white noise deconvolution estimators ŵ(t | t+N) and the error variance matrices
Pw(t | t +N) as

ŵ(t | t +N) = 0, (N < 0)

ŵ(t | t) = S
[
H(I)P(t | t − 1)H(I)T + R(I)

]−1
ε(I)(t)

Pw(t | t +N) = Qw, (N < 0)

Pw(t | t) = Qw − S
[
H(I)P(t | t − 1)(I)T + R(I)

]−1
ST

ŵ(t | t +N) = ŵ(t | t) +
N∑

i=1

Mw(t | t + i)ε(I)(t + i), (N > 0)

Pw(t | t +N) = Qw −
N∑

j=1

M
(
t | t + j

)
Q

(I)
ε

(
t + j
)
MT(t | t + j

)
, (N > 0)

Mw(t | t + 1) = Dw(t, 1)H(I)T
[
H(I)P (I)(t + 1 | t)H(I)T + R(I)

]−1

Mw

(
t | t + j

)
= Dw(t, 1)

{
j−1∏

i=1

[
In −K(I)

f (t + i)H(I)
]T
Φ

T

}
H(I)T

×
[
H(I)P (I)(t + j | t + j − 1

)
H(I)T + R(I)

]−1

Dw(t, 1) = −SK(I)T
f (t)Φ

T
+QwΓT − SJT

Ψ(I)
p (t) = Φ −K(I)

p (t)H(I)

K
(I)
p (t) = ΦK

(I)
f (t), K(I)

p (t) = K
(I)
p (t) + J

K
(I)
f (t) = P (I)(t | t − 1)H(I)TQ

(I)−1
ε (t)

Q
(I)
ε (t) = H(I)P (I)(t | t − 1)H(I)T + R(I).

(2.8)

P (I)(t + 1 | t) satisfies Riccati equation:

P (I)(t + 1 | t) = Φ
[
P (I)(t | t − 1) − P (I)(t | t − 1)H(I)T

(
H(I)P (I)(t | t − 1)H(I)T + R(I)

)−1

×H(I)P (I)(t | t − 1)
]
Φ

T
+ Γ
[
Qw − SR(I)−1ST

]
ΓT ,

(2.9)

x̂(I)(t + 1 | t + 1) = x̂(I)(t + 1 | t) +K
(I)
f (t + 1)ε(I)(t + 1), (2.10)

x̂(I)(t + 1 | t) = Φx̂(I)(t | t) + Bu(t) + Jy(I)(t), (2.11)

ε(I)(t + 1) = y(I)(t + 1) −H(I)x̂(I)(t + 1 | t), (2.12)

K
(I)
f (t + 1) = P (I)(t + 1 | t)H(I)T

[
H(I)P (I)(t + 1 | t)H(I)T + R(I)

]−1
, (2.13)
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P (I)(t + 1 | t + 1) =
[
In −K(I)(t + 1)H(I)

]
P (I)(t + 1 | t), (2.14)

x̂(I)(t | t +N) = x̂(I)(t | t +N − 1) +K(I)(t | t +N)ε(I)(t +N), N > 0, (2.15)

P (I)(t | t +N) = P (I)(t | t) −
N∑

j=1

K(I)(t | t + j
)
Q

(I)
ε

(
t + j
)
K(I)T(t | t + j

)
. (2.16)

Smoothing gain has two computing methods:

K(I)(t | t +N) = P (I)(t | t − 1)

{
N−1∏
j=0

Ψ(I)T
p

(
t + j
)
}
H(I)TQ

(I)−1
ε (t +N),

K(I)(t | t +N) = P (I)(t | t)ΦT

{
N−1∏
j=1

Ψ(I)T
p

(
t + j
)
}
H(I)TQ

(I)−1
ε (t +N).

(2.17)

Theorem 2.2. Supposing Γ is full column-rank matrix, for systems (2.1) and (2.4), the optimal white
noise deconvolution estimator of CMF input white noisew(t) is given by

ŵ(I)(t | t +N) = 0, (N < 0), (2.18)

ŵ(I)(t | t) = −Ax̂(I)(t | t) + C(t). (2.19)

And the variance matrices of estimator errors w̃(I)(t | t +N) = w(t) − ŵ(I)(t | t +N) are given as

P
(I)
w (t | t +N) = Qw (N < 0), (2.20)

P
(I)
w (t | t) = AP (I)(t | t)AT +Q, (2.21)

Q = Qw − SR(I)−1ST (2.22)

defining

A = Γ+JH(I) = SR(I)−1H(I) ,

C(t) = Γ+
(
Jy(I)(t)

)
= SR(I)−1y(I)(t),

(2.23)

where Γ+ is the pseudo-inverse of Γ, that is,

Γ+ =
(
ΓTΓ
)−1

ΓT . (2.24)

Proof. Notice when N < 0, w(t) ⊥ L(y(I)(t+N), y(I)(t+N−1) · · · ), then (2.18) holds obviously.
For (2.1), according to the projection theory [19], we have

Γŵ(I)(t | t) = x̂(I)(t + 1 | t) −Φx̂(I)(t | t) − Bu(t). (2.25)
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From (2.11) and (2.24), we have

ŵ(I)(t | t) = Γ+
[
Φx̂(I)(t | t) + Bu(t) + Jy(I)(t) −Φx̂(I)(t | t) − Bu(t)

]
(2.26)

which can be simplified to

ŵ(I)(t | t) = Γ+
[
−JH(I)x̂(I)(t | t) + Jy(I)(t)

]
. (2.27)

Then, from the definition of (2.23), we easily obtain (2.19).
Subtracting (2.25) from (2.1) yields the error relation

Γw̃(I)(t | t) = x̃(I)(t + 1 | t) −Φx̃(I)(t | t). (2.28)

Notice x̃(I)(t +N | t) = x(t) − x̃(I)(t +N | t); there is a prediction error relation

x̃(I)(t + 1 | t) = Φx̃(I)(t | t) +w(t). (2.29)

Substituting (2.29) into (2.28) yields

Γw̃(I)(t | t) = −JH(I)x̃(I)(t | t) +w(t). (2.30)

And notice x̃(I)(t | t) ⊥ w(t), then we have

ΓP (I)
w (t | t)ΓT = JH(I)P (I)(t | t)H(I)TJT +Qw. (2.31)

So, (2.21) holds. From (2.18), we have (2.20). The proof is completed.

Theorem 2.3. For (2.1) and (2.4), when Γ is a full column-rank matrix, one has optimal white noise
deconvolution smoothers of CMF input white noise w(t) as

ŵ(I)(t | t +N)

= ŵ(I)(t | t +N − 1) + E(I)(t)Ψ(I)T (t +N, t + 1)H(I)TQ
(I)−1
ε (t +N)ε(I)(t +N), N > 0.

(2.32)

The error variance matrices are computed by

P
(I)
w (t | t +N) = P

(I)
w (t | t +N − 1)

− E(I)(t)Ψ(I)T (t +N, t + 1)H(I)TQ
(I)−1
ε (t +N)H(I)Ψ(I)(t +N, t + 1)E(I)T (t).

(2.33)
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Define

E(I)(t) = −AP (I)(t | t)ΦT
+QΓT , (2.34)

Ψ(I)(t +N, t +N) = In,

Ψ(I)(t +N, i) = Ψ(I)
p (t +N − 1) · · ·Ψ(I)

p (i).
(2.35)

Proof. For (2.1), the projection theory is used, and we have

Γŵ(I)(t | t +N) = x̂(I)(t + 1 | t +N) −Φx̂(I)(t | t +N) − Bu(t). (2.36)

From (2.15), we have

Γŵ(I)(t | t +N) = x̂(I)(t + 1 | t +N − 1) +K(I)(t + 1 | t +N)ε(I)(t +N)

−Φ
[
x̂(I)(t | t +N − 1) +K(I)(t | t +N)ε(I)(t +N)

]
− Bu(t).

(2.37)

From the recursive relation of (2.36), we have

ŵ(t | t +N) = ŵ(I)(t | t +N − 1) + Γ+
[
K(I)(t + 1 | t +N) −ΦK(I)(t | t +N)

]
ε(I)(t +N)

(2.38)

then we obtain (2.32). In fact, from (2.17), we have

Γ+
[
K(I)(t + 1 | t +N) −ΦK(I)(t | t +N)

]

= Γ+
⎡

⎣P (I)(t + 1 | t)
⎧
⎨

⎩

N−1∏

j=1

Ψ(I)T
p

(
t + j
)
⎫
⎬

⎭H(I)TQε
(I)−1

× (t +N) −ΦP (I)(t | t)ΦT ×
⎧
⎨

⎩

N−1∏

j=1

Ψ(I)T
p

(
t + j
)
⎫
⎬

⎭H(I)TQ
(I)−1
ε (t +N)

⎤

⎦,

(2.39)

which is simplified to

Γ+
[
K(I)(t + 1 | t +N) −ΦK(I)(t | t +N)

]

= Γ+
[
P (I)(t + 1 | t) −ΦP (I)(t | t)ΦT] ×

⎧
⎨

⎩

N−1∏

j=1

Ψ(I)T
p

(
t + j
)
⎫
⎬

⎭H(I)TQ
(I)−1
ε (t +N).

(2.40)

Define E(I)(t) as

E(I)(t) = Γ+
[
ΦP (I)(t | t)ΦT

+Qw −ΦP (I)(t | t)Φ
]

= −Γ+JH(I)P (I)(t | t)ΦT
+ Γ+Qw.

(2.41)
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Then we obtain (2.34). From the definition of (2.35), (2.32) is proved. Using w(t) minus both
sides of (2.32), and from w̃(I)(t | t + N) ⊥ ε(I)(t + N), (2.33) is proved. This completes the
proof.

Corollary 2.4. For multisensor systems with correlated noise (2.1) and (2.4), the nonrecursive white
noise smoothers are given by

cŵ(I)(t | t +N) = ŵ(I)(t | t) + E(I)(t)
N∑

j=1

Ψ(I)T(t + j, t + 1
)
H(I)TQ

(I)−1
ε

(
t + j
)
ε(I)
(
t + j
)
, N > 0.

(2.42)

The error variances satisfy

P
(I)
w (t | t +N)

= P
(I)
w (t | t) − E(I)(t)

⎧
⎨

⎩

N∑

j=1

Ψ(I)T(t + j, t + 1
)
H(I)TQ

(I)−1
ε

(
t + j
)
H(I)Ψ(I)(t + j, t + 1

)
⎫
⎬

⎭E(I)T (t).

(2.43)

Proof. (2.32) and (2.33) are iterated by N times; (2.42) and (2.43) are obtained. This completes
the proof.

3. Multisensor WMF White Noise Deconvolution Estimator

From [20], we know that any nonzero matrix H(I) has full-rank decomposition

H(I) = FH(II), (3.1)

where F is a full column-rank matrix with the rank r and H(II) is a full row-rank matrix with
the rank r, then measurement model (2.4) can be represented as

y(I)(t) = FH(II)x(t) + v(I)(t). (3.2)

Given that F is a full column-rank matrix, it follows that FTR(I)F is nonsingular. Then the
weighted least squares (WLS) [21, 22] method is used and the Gauss-Markov estimate of
H(II)x(t) is yielded as

y(II)(t) =
L∑

j=1

Ωiyi(t) =
(
FTR(I)−1F

)−1
FTR(I)−1y(I)(t), (3.3)

[Ω1,Ω2, . . . ,ΩL] =
(
FTR(I)−1F

)−1
FTR(I)−1 (3.4)
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then substituting (2.4) into (3.3) yields

y(II)(t) = H(II)x(t) + v(II)(t), (3.5)

v(II)(t) =
(
FTR(I)−1F

)−1
FTR(I)−1v(I)(t). (3.6)

The variance matrix R(II) = E[v(II)(t)v(II)T (t)] of v(II)(t) is given by R(II) = (FTR(I)−1F)−1.
For systems (2.7) and (3.5) using standard Kalman filtering algorithm [19], we can

obtain WMF Kalman estimators x̂(II)(t | t), and its variance matrices P(II)(t | t), innovation
ε(II)(t + j), j > 0. It is proved in [16] that the WMF Kalman filter x̂(II)(t | t) has the global
optimality; that is, it is numerically identical to the CMF Kalman filter x̂(I)(t | t) if they have
the same initial values.

The above WMF method can obviously reduce the computing burden since the
dimension of the measurement vector for the CMF is m× 1, m = m1 +m2 + · · ·+mL, while that
for the WMF is r × 1, and m is much larger than r generally.

Theorem 3.1. For (2.7) and (3.5), when Γ is a full column-rank matrix, one has WMF optimal
nonrecursive smoothers of input white noise w(t)

ŵ(II)(t | t +N)

= ŵ(II)(t | t) + E(II)(t)
N∑

j=1

Ψ(II)T(t + j, t + 1
)
H(II)TQ

(II)−1
ε

(
t + j
)
ε(II)
(
t + j
)
, N > 0.

(3.7)

The error variance matrices satisfy

P
(II)
w (t | t +N) = P

(II)
w (t | t) − E(II)(t)

×
⎧
⎨

⎩

N∑

j=1

Ψ(II)T(t + j, t + 1
)
H(II)TQ

(II)−1
ε

(
t + j
)
H(II)Ψ(II)(t + j, t + 1

)
⎫
⎬

⎭

× E(II)T (t),
(3.8)

where

E(II)(t) = −AP (II)(t | t)ΦT
+QΓT , (3.9)

Ψ(II)(t +N, t +N) = In,

Ψ(II)(t +N, i) = Ψ(II)
p (t +N − 1) · · ·Ψ(II)

p (i).
(3.10)

If x̂(I)(0 | 0) = x̂(II)(0 | 0) is satisfied, then WMF is numerically equivalent to CMF, that is,

ŵ(I)(t | t +N) = ŵ(II)(t | t +N) ∀N, ∀t,
P
(I)
w (t | t +N) = P

(II)
w (t | t +N) ∀N, ∀t,

(3.11)
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where white noise filter is

ŵ(II)(t | t) = −Ax̂(II)(t | t) + C(t). (3.12)

Proof. From [16], when x̂(I)(0 | 0) = x̂(II)(0 | 0), we have

H(I)TQ
(I)−1
ε (t)ε(I)(t) = H(II)TQ

(II)−1
ε (t)ε(II)(t),

Ψ(I)
p (t) = Ψ(II)

p (t),

P (I)(t | t) = P (II)(t | t),
x̂(I)(t | t) = x̂(II)(t | t).

(3.13)

So, we have E(I)(t) = E(II)(t). (2.19), (2.42), and (2.43) are compared with (3.7), (3.8), and
(3.12), then (3.11) are obtained.

Corollary 3.2. WMF input white noise recursive smoothers are

ŵ(II)(t | t +N) = ŵ(II)(t +N − 1) + E(II)(t)Ψ(II)T (t +N, t + 1)H(II)T

×Q(II)−1
ε (t +N)ε(II)(t +N), N > 0.

(3.14)

The error variance matrices satisfy

P
(II)
w (t | t +N) = P

(II)
w (t +N − 1) − E(II)(t)Ψ(II)T (t +N, t + 1)H(II)T

×Q(II)−1
ε (t +N)H(II)Ψ(II)(t +N, t + 1)E(II)T (t),

(3.15)

then, one has the following relation:

ŵ(I)(t | t +N) = ŵ(II)(t | t +N) ∀N, ∀t, (3.16)

P
(I)
w (t | t +N) = P

(II)
w (t | t +N) ∀N, ∀t. (3.17)

Proof. From Theorem 2.3 and (3.13), we have (3.14)–(3.17). This completes the proof.

4. Simulation Example

Consider the multisensor discrete linear stochastic ARMA signal system

A
(
q−1
)
s(t) = C

(
q−1
)
w(t),

yi(t) = H0is(t) + ξi(t), i = 1, 2, 3,

A
(
q−1
)
= a0 + a1q

−1 + a2q
−2,

C
(
q−1
)
= c0 + c1q

−1,

(4.1)
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Figure 1: w(t) and optimal fusion white noise filter ŵ(t | t), ŵ(i)(t | t), i = I, II.
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Figure 2: w(t) and optimal fusion white noise smoother ŵ(t | t + 1), ŵ(i)(t | t + 1), i = I, II.

where s(t) ∈ R is the signal, yi(t) ∈ R, i = 1, 2, 3 are the measurement signals. ξi(t) ∈ R,
i = 1, 2, 3 are Gaussian white noises with zero mean and variance matrix Qξi . And w(t) =
b(t)g(t), where b(t) is Bernoulli white noise satisfying b(t) = 1 if P(b(t) = 1) = λ, and b(t) = 0
if P(b(t) = 0) = 1 − λ, where P denotes probability. b(t) is independent of g(t), then the
variance matrix of w(t) is σ2

w = λσ2
g . q−1 is the back shift operator.

Our goal is to find the optimal white noise deconvolution estimators ŵ(t | t + N),
ŵ(I)(t | t + N), and ŵ(II)(t | t + N), N = 0, 1, 2, 3, and the corresponding error variance
matrices Pw(t | t +N), P (I)

w (t | t +N), and P
(II)
w (t | t +N), to test the estimation result values

of these three algorithms equal and to compare the computing burden.
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Figure 3: w(t) and optimal fusion white noise smoother ŵ(t | t + 2), ŵ(i)(t | t + 2), i = I, II.
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Figure 4: w(t) and optimal fusion white noise smoother ŵ(t | t + 1), ŵ(i)(t | t + 3), i = I, II.

The system (4.1) is converted to state space models

x(t + 1) = Φx(t) + Γw(t),

yi(t) = Hix(t) + vi(t), i = 1, 2, 3

s(t) = Hx(t) + c0w(t),

, (4.2)

where we define

cvi(t) = H0ic0w(t) + ξi(t),

Φ =
[−a1 1
−a2 0

]
, Γ =

[
c1 − a1c0

−a2c0

]
, H = [1, 0], Hi = H0iH.

(4.3)
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Table 2: Comparison of error variance for the local and fused estimators.

t = 50 P 1
w(t | t +N) P 2

w(t | t +N) P 3
w(t | t +N) Pw(t | t +N) P

(I)
w (t | t +N) P

(II)
w (t |
t +N)

N = 0 0.280 86 0.277 50 0.323 76 0.141 17 0.141 17 0.141 17
N = 1 0.245 02 0.242 37 0.240 57 0.130 67 0.130 67 0.130 67
N = 2 0.233 21 0.230 71 0.219 24 0.126 07 0.126 07 0.126 07
N = 3 0.232 14 0.229 63 0.219 13 0.125 09 0.125 09 0.125 09

In the simulation, we set

ca0 = 1, a1 = 0.2, a2 = 0.3, c0 = 1, c1 = −0.6, λ = 0.25, σ2
g =4,

cQξ1 = 0.1, Qξ2 = 0.2, Qξ2 = 0.4, H01 = 0.7, H02 = 1, H03 = 1.2.
(4.4)

So

H(I) =
[

0.7 1 1.2
0 0 0

]T
. (4.5)

It is not full column rank, so Hermite standard model [20] can be used to compute the
full-rank decomposition of H(I), H(I) = FH(II), where

F =
[
0.7 1 1.2

]T
, H(II) =

[
1 0
]
. (4.6)

The simulation results are presented by Figures 1, 2, 3 and 4, Tables 1 and 2. In Figures
1, 2, 3 and 4, the y-coordinates of endpoints on real lines represent real values w(t), y-
coordinates of solid round points’ centers represent ŵ(t | t + N), N = 0,1,2,3, y-coordinates
of hollow round points’ centers represent ŵ(I)(t | t +N), N = 0, 1, 2, 3. The y-coordinates of
hollow squares’ centers represent ŵ(II)(t | t +N), N = 0, 1, 2, 3. It can be seen that the results
are completely unanimous.

In Figure 1, it can be seen that at some specified time, the results of these three
algorithms are also completely the same. Figure 2 represents the sameness of estimation error
variances of the three fusion methods. The fusion accuracy is better than local estimation
accuracy of every single sensor.

These results all represent that WMF is completely equivalent to CMF, and the fusion
accuracy is higher than local estimation accuracy of each single sensor.

In the other aspect, it can be seen that when the filtering algorithm of CMF is used,
the dimension of y(I)(t) is 3 × 1, the Kalman filtering needs to compute the inverse matrix of
a 3 × 3 matrix at every time, while when the WMF Kalman filtering algorithm is used, the
dimension of fusion measurement y(II)(t) is 1 × 1, then the matrix inversion computation is
converted into scalar division, so the WMF method can obviously reduce the computational
burden.
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5. Conclusions

White noise deconvolution problems have great applications background in oil seismic
exploration. Under the condition that the white noise input matrix is full column-rank, the
centralized measurement fusion and weighted measurement fusion white noise estimators
are presented based on the projection theory, respectively. Their function equivalence
has been proved. Furthermore, the proposed weighted measurement fusion white noise
estimators can obviously reduce the computational burden.
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We address a state estimation problem over a large-scale sensor network with uncertain
communication channel. Consensus protocol is usually used to adapt a large-scale sensor
network. However, when certain parts of communication channels are broken down, the accuracy
performance is seriously degraded. Specifically, outliers in the channel or temporal disconnection
are avoided via proposed method for the practical implementation of the distributed estimation
over large-scale sensor networks. We handle this practical challenge by using adaptive channel
status estimator and robust L1-norm Kalman filter in design of the processor of the individual
sensor node. Then, they are incorporated into the consensus algorithm in order to achieve the
robust distributed state estimation. The robust property of the proposed algorithm enables the
sensor network to selectively weight sensors of normal conditions so that the filter can be
practically useful.

1. Introduction

The estimation problem for a multisensor environment has been investigated for two decades
[1–5]. Mainly two schemes are discussed to design the system: centralized fusion and
distributed fusion.

Centralized fusion is a fusion architecture composed of one fusion center linked
with multiple sensors. This architecture does not require a particular fusion rule; instead
observations from multiple sensors are stacked as one sensor measurement whose size is
very large. It is relatively easy to implement; however, communication bottle neck problems,
sensor scheduling, and lack of flexibility are known as disadvantages [1]. Furthermore, if
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some communication channels between the central processor and sensor node are uncertain,
it is difficult to manage in an adaptive manner.

On the other hand, decentralized fusion has been studied in the literature to tackle
disadvantages of the centralized fusion [1]. Initial study of decentralized fusion is known
as a decentralized Kalman filter in [2] which is mathematically equivalent to the centralized
one. However, its usage is restricted only when sensor nodes are fully connected each other
[2]. Namely, only one kind of network topology is allowed (e.g., all-to-all communication).

Based on this observation, the distributed fusion algorithm is suggested to consider
issues in the practical implementation of the networked system [6]. For instance, the
distributed fusion is required to resolve a network topology, measurement outliers, that is,
sensor failure and limited communication bandwidth.

The network topology in multiagent systems has been actively investigated in control
community and applied in the sensor network [3]. It was assumed that the network has fixed
topology when sensor nodes are geometrically distributed and all communication channels
operate in normal.

In parallel, regarding uncertain communication channel, single Kalman filter with
intermittent observation gets explosive attentions in the network control system applications
[4, 5]. The main direction of conducted research was the stability analysis of the system under
uncertain communication channels [4]. In this case, it is assumed that the communication
channel uses TCP-like protocol that means that a packet is dropped based on its acknowl-
edgement. Afterwards it has been extended for multisensor network systems [5]. The authors
proposed the estimation algorithm using a sequential Kalman filtering using a set of recent
observations collected from adjacent linked nodes. A tree topology is exploited for each node
to understand the network topology of limited sensing range.

In another type of applications, however, we may not know the acknowledgement
of the packet when the channel link between sensors is not reliable or changed due to the
evolution of the network topology. For instance, mobile robots may change their topology
based on the agents’ location or there exit temporal disconnections in channels. In such cases,
the packet arrival event should be estimated.

Previous research in data fusion and intermittent observation problem basically
assumes that the noise statistic is known a priori, for example, Gaussian or bounded [4, 5, 7].
However, this assumption is often violated when outlier measurement happens.

The outlier can be originated from several practical challenges such as sensor failures,
measurement outliers, or even intentional jamming. To solve this problem robust statistics has
been investigated, for example, M-estimator [8]. L1-norm optimization was also considered
as a solution because it is common that L1-norm optimization is robust against the outlier
noise compared to the L2-norm optimization (e.g., Kalman filter). However, the use of L1-
norm is overlooked due to the computational complexity. With the help of advances in real-
time convex optimization, L1-norm optimization is recently revisited and its application is
rigorously investigated [9].

In this paper, we consider the estimation problem under multisensor environment
with uncertain communication channels. Main tasks to solve this problem are (1)
estimation of the channel status, (2) robust estimation to avoid outliers and uncertainty
in communication channels, and (3) measurement fusion algorithm regarding to (1) and
(2). The proposed work has a two-stage framework, that is, channel status estimation and
L1-norm optimization-based outlier rejection. Note that to the author’s knowledge there is
no intensive research in the model-based state estimation problem (e.g., Kalman filtering)
considering communication channel uncertainty over a large-scale sensor network.
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The remainder of the paper is organized as follows. Section 2 describes the problem
formulation and the Kalman-consensus filter is introduced as a basic framework. Proposed
algorithm is subsequently explained in Section 3 including channel status estimation, sparse
optimization via L1-norm optimization, and the modified robust Kalman-consensus filter as
an overall algorithm. A test example is provided to demonstrate the efficacy of the proposed
algorithm in Section 4. Then, conclusion is made in Section 5.

2. Problem Statement and Kalman-Consensus Filter

2.1. Problem Statement

Consider a time-invariant linear system with Jump Markov measurement model as

xt+1 = Axt +wt,

yi
t = C

(
γit

)
xt + υi

t + zit, i = 1, . . . ,M,
(2.1)

where xt ∈ �n is the state (to be estimated) and yi
t ∈ �m is the ith measurement of a node in

the network at time t, respectively. A ∈ �n×n is the system matrix, and C(γit ) ∈ �m×n is the
ith measurement matrix of the node governed by a random latent variable γit which describes
the measurement mode γit = 1 for packet received; γit = 0, otherwise. wt ∈ �n, υi

t ∈ �m

and zit ∈ �m; are system noise, measurement noise, and sparse noise in the measurement,
respectively. The sparse noise term zit models the outlier measurements whose magnitude
is considerably large compared to the observation noise; thus it cannot be modeled as the
standard Gaussian distribution. The process noise wt is independent identically distributed
(i.i.d.) N(0, Q) and the measurement noise υi

t is i.i.d. N(0, Ri). Assume that the initial state
x0, the process noise, and the measurement noise are mutually uncorrelated each other.

Then, the main goal is to estimate the state x0 given measurements from M sensors up
to time t, that is, Yt = {y1

1:t, . . . , y
M
1:t}where yi

1:t = {yi
1, . . . , y

i
t}.

2.2. Kalman-Consensus Filter

In a large-scale sensor network, it is practically impossible that all the sensor nodes are
fully connected each other. Therefore, there should be data fusion algorithm to adaptively
aggregate sensor nodes into a globally reasonable estimate. In this study, we adopt a data
fusion algorithm using a consensus protocol combined with Kalman filters of each node,
called Kalman-consensus filter (KCF) [3]. Using a simple average consensus, individual
decentralized Kalman filter called micro-Kalman filter communicates information with its
neighbors and the state estimate. The flow of the information over the whole network is
possible due to the graph Laplacian of the network topology. As illustrated in [3], even
though the target state is partially observed with different groups of sensors and there is
no fusion center, individual nodes agree with the converged estimate of the state.

Compared to other data fusion algorithms, KCF has advantages when error-cross
covariance information is not available for pairs of sensor node. In addition, because the
sensor network topology is incorporated in the data fusion algorithm, local information is
propagated all over the network.
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In KCF framework, the communication topology between sensor nodes is represented
by the directed graph G = (V, E), where V = {1, 2, . . . ,M} denotes the sensor node set. The
edge set E ⊂ V × V describes the communication links between each pair of nodes. The
neighbor of sensor node i is defined as Li : Ji = Li ∪ {i}. KCF is implemented based on the
information from of Kalman filter for each node and the consensus protocol to approach the
global estimate as follows.

Assume that the latent variable γit is known. The estimation of the latent variable will
be given in following section. Then, contribution terms of the information Kalman filter are
calculated for each node as follows:

ui
t =
(
C
(
γit

))T(
Ri
)−1

yi
t,

Ui
t =
(
C
(
γit

))T(
Ri
)−1

C
(
γit

)
.

(2.2)

Based on the known communication topology G, each node broadcasts its message mi
t =

(ui
t,U

i
t, x

i
t), where xi

t is the priori state estimate of the sensor node i and collects message
mr

t = (ur
t ,U

r
t , x

r
t ) from its neighbors. Then, all the contribution terms are aggregated as gi

t =∑
r∈Ji u

r
t , S

i
t =
∑

r∈Ji U
r
t .

With the aggregated contribution terms, each node calculates Kalman-consensus
estimate using update step and prediction step as follows.

Update:

Mi
t =
((

Pi
t

)−1
+ Si

t

)−1

,

x̂i
t+1 = xi

t +Mi
t

(
gi
t − Si

tx
i
t

)
+ ε

Mi
t

1 +
∥∥Mi

t

∥∥
∑

r∈Ji

(
xr
t − xi

t

)
.

(2.3)

Prediction:

Pi
t+1 ←− AtM

i
tA

T
t +Q,

xi
t+1 ←− Atx̂

i
t+1,

(2.4)

where ε is the discretization step size and ‖ · ‖ denotes the matrix norm.
KCF is easy to implement compared to other data fusion algorithms and scalable for

large-scale networks [3]. However, it is assumed that the communication channel links are
operating in normal which is often not the case in practical situations. When the topology has
been changed, channel links are disconnected, or corrupted with outlier measurements, the
performance of the consensus algorithm is not reliable anymore.

In this technical note, we propose the robust multisensor consensus estimator to avoid
uncertainties in channel of the sensor network. We require three strategies to solve this
problem: (1) channel status estimation, that is, mode estimation, (2) outlier rejection, and (3)
data fusion. In the following section, we propose the robust Kalman-Consensus Filter based
on the channel mode estimation, sparse optimization using L1-norm.
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3. Main Results

3.1. Robust Kalman Filtering Using L1-Norm Optimization

Kalman filter is known as an optimal estimator in linear Gaussian system. However, when
the linear Gaussian assumption is violated in practice, additional modification is necessary.
Because the outlier measurement is not able to be modeled as Gaussian, we model the outlier
measurement as zit which is sparse. To alleviate the additional sparse noise, we adopt the
robust Kalman filtering via sparse optimization using L1-norm in [9].

The standard Kalman filtering without the sparse noise is given as follows.
Prediction:

x̂i
t|t−1 = Ax̂i

t−1|t−1. (3.1)

Update:

x̂i
t|t = x̂i

t|t−1 + Φi
t|t
(
Ci
)T(

CiΦi
t|t
(
Ci
)T

+ Ri

)−1(
yi
t − Cix̂i

t|t−1

)
, (3.2)

where Φi
t|t is the state error covariance. Here, we assume that the channel mode is completely

known, that is, C(γit ) � Ci
t. In the least square problem, Kalman filter is to minimize the cost

function defined as

(
υi
t

)T(
Ri
)−1

υi
t +
(
xt − x̂i

t|t−1

)T(
Φi

t|t
)−1(

xt − x̂i
t|t−1

)
(3.3)

subject to yi
t = Ci

txt + vi
t. The cost function of (3.1) is modified by adding regularization term

considering the sparse noise zit as

(
υi
t

)T(
Ri
)−1

υi
t +
(
xt − x̂i

t|t−1

)T(
Φi

t|t
)−1(

xt − x̂i
t|t−1

)
+ λ
∥∥∥zit
∥∥∥

1
(3.4)

subject to yi
t = Ci

txt + υi
t + zit. The minimization problem is solved using convex optimization.

λ is the regularization parameter.
The cost function of (3.4) is rewritten using residual eit = yi

t − Ci
tx̂

i
t|t−1 as

J =
(
eit − zit

)T
W
(
eit − zit

)
+ λ
∥∥∥zit
∥∥∥

1
(3.5)

where W = (I − CiKi
t)
T (Ri)−1(I − CiKi

t) + (Ki
t)
T (Φi

t|t)
−1
Ki

t, I is the identity matrix of

appropriate dimension, and Ki
t = Φi

t|t(C
i
t)
T (Ci

tΦ
i
t|t(C

i
t)
T + Ri)

−1
is the Kalman gain. We solve

the minimization of the cost function defined in (3.5) for the sparse noise as follows:

ẑit = arg min J.
zit

(3.6)
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Then the Kalman filter estimate is represented by

x̂i
t|t = x̂i

t|t−1 +Ki
t

(
eit − ẑit

)
. (3.7)

Unlike the implementation in [9], our goal is to estimate the sparse noises and reject them
from the measurements for the channel mode estimation in the next stage.

3.2. Channel Mode Estimation

Motivated by the work [10, 11], we try to estimate the channel mode γt using moving horizon
strategy. We denote the channel mode for the sensor node i as γit which is the discrete random
variable. Assume that the evolution of the channel mode has the first-order Markov chain,
its transition probability π1,1 is the probability that the packet will arrive between time steps,
and conversely π0,1 represents the probability that the channel is switched off between time
steps. Then, Bayesian update of the channel mode probability, that is, Pr(γis | yi

s−1) in the
moving horizon [t −Δ, t] is provided as follows.

For each measurement mode, l = 1 → γit = 1, and l = 0 → γit = 0.
Prediction:

Pr
(
γis | yi

s−1

)
= π1,1Pr

(
γis−1 | yi

s−1

)
+ π0,1

(
1 − Pr

(
γis−1 | yi

s−1

))
(3.8)

Update:

Pr
(
γis | yi

s

)
=

Λi
sPr
(
γis | yi

s−1

)

1 − (1 −Λi
s

)
Pr
(
γis | yi

s−1

) , s = t −Δ, . . . , t, (3.9)

where the measurement likelihood of sensor node i at time s is defined as Λi
s � yi

s−C(γis)x̂i
s|s−1

and x̂i
s|s−1 is the predicted state of local Kalman filter given in (3.1). Note that the recursion

given in (3.8)-(3.9) is iterated in moving horizon [t−Δ, t] to obtain the channel mode estimate
as γ̂ it = 1, if Pr(γit |yi

t) > Threshold1, or γ̂ it = 0, if Pr(γit |yi
t) < Threshold0. In the channel mode

probability calculation, we assume that the channel modes is not switched to other mode
again at least within α steps. It is similar to the mode observability assumption given in [10].
Compared to the given assumption in [10], our assumption is not strict because we are not
trying to distinguish the sequence of the mode in the horizon but to obtain the stable estimate
of the current mode.

3.3. Overall Algorithm

In previous subsections we have discussed about robust Kalman filtering via L1-norm
optimization and the channel mode estimation based on the channel mode probability. In this
subsection, we combine two methods and suggest a robust data fusion algorithm to construct
the overall implementation of our algorithm.

The overall flow of the proposed algorithm is displayed in Figure 1. The dynamic state
process is observed from multisensors. To efficiently reject the sparse measurement outliers,
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Figure 1: Overall flow of the proposed algorithm.

L1-norm optimization is subsequently utilized. After trimming multiple measurements by
rejection of outliers, we estimate the channel mode of each sensor node and finally fuse
the set of estimate and measurement based on the consensus protocol which is explained
in (2.2)–(2.4). According to the overall flow of the proposed algorithm described in Figure 1,
we summarize the robust distributed fusion consensus filter in Algorithm 1.

Remark 3.1. Consider that error convergence of the algorithm L1-norm optimization and
measurement mode estimation are main concerns. When we modified Kalman filtering
update step with L1-norm optimization then, it is not Gaussian estimate anymore. So, it is
not straightforward to readily analyze the error convergence in modified Kalman filtering.
Therefore, it is remained as a future work for ours.

Remark 3.2. Considering the measurement mode observability, we follow the idea similar to
[10] that there is a minimum dwell time of the measurement mode switching. Thus, we set
the horizon window size Δ as the minimum dwell time of the measurement mode switching.
In practice, this value is the design parameter for the network. However, the value of the
delta is not that sensitive to the minimum dwell time of the channel, that is, tuning of the
delta is not that sensitive. In addition, in cases where frequent switching happens, we regard
it as outlier measurement and it will be handled via robust Kalman filtering step in L1-norm
optimization.

Remark 3.3. In the experiment, we set the horizon size as 5 when the switching probability is
π1,0 = π0,1 = 0.05. In our experiment, if the mode is switched within τ step which is less than
the predefined horizon size Δ, then the performance of the channel mode estimator is not
reliable. Thus, as already explained in Remark 3.1, frequent switching would be considered
as permanent channel link break down. However, rather fast but not abnormally frequent
switching can be handled via switching Kalman filters (e.g. interacting multiple model filter
(IMM filter)).

4. Illustrative Example

In this section, we test the efficacy of the proposed algorithm with the state estimation
problem using a large-scale sensor network.

Given the target dynamics of a circular movement [3]

xt+1 = Axt + Bwt, (4.1)
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Given
∑i

t|t−1, error covariance, x̂i
t|t−1, previous estimate, consensus

update parameter ε, and the window size Δ.
1. Obtain measurement yi

t = C(γit )xt + υi
t + zit, i = 1, . . . ,N.

2. For each measurement solve L1-norm optimization problem,
reject outliers as given in (3.5) and then obtain the trimmed
measurements: ŷi

t = yi
t − ẑit.

3. Calculate the mode probability Pr(γit | ŷi
t−Δ : t).

Given Pr(γit−Δ | ŷi
t−Δ),

For s = t −Δ : t
Evaluate measurement likelihood for ŷi

s.
Evaluate the Bayesian recursion (3.8)-(3.9).

End
Decide the channel mode γ̂ it using threshold testing.

4. Compute contribution term of information state and matrix
such that

ui
t = (Ci

t(γ̂
i
t ))

T (Ri)−1
ŷi
t,

Ui
t = (Ci

t(γ̂
i
t ))

T (Ri)−1
Ci

t(γ̂
i
t ).

5. Broadcast message mi
t = (ui

t,U
i
t, x̂

i
t|t−1) to neighbors in Li.

6. Collect messages mr
t = (ur

t ,U
r
t , x̂

r
t|t−1) from neighbors.

7. Aggregate the information states and matrices of neighbors
including node i: Ji = Li ∪ {i}:

gi
t =
∑
r∈Ji

ur
t , Si

t =
∑
r∈Ji

Ur
t .

8. Compute the Kalman-Consensus estimate:

(Mi
t)
−1 = (Φi

t|t−1)
−1 + Si

t,

x̂i
t|t = x̂i

t|t−1 +Mi
t(g

i
t − Si

tx̂
i
t|t−1) + ε

Mi
t

1 + ‖Mi
t‖
∑
r∈Ji

(x̂r
t|t−1 − x̂i

t|t−1).

Prediction stage

Φi
t+1|t ←− AMi

tA
T +Q,

x̂i
t+1|t ←− Ax̂i

t|t.

Algorithm 1: Robust distributed fusion algorithm for node i.

where A0 = 2
[

0 −1
1 0

]
, B0 = 52I2, A = I2 + εA0 + (ε2/2)A2

0 + (ε2/6)A3
0, and B = εB0. In addition,

I2 is a 2 × 2 identity matrix which is a discretized model with a step size ε = 0.015, and the
initial position and uncertainty are x0 = (15,−10)T and P0 = 10I2, respectively. A moving
target having a circular motion can then be observed via the large-scale sensor network of
100 sensor nodes as displayed in Figure 2. Here, the sensor nodes measure the target position
with uncertain communication channel links between nodes as

yi
t = C

(
γit

)
xt + υi

t, t = 0, 1, . . . , i = 1, . . . , 100, (4.2)

where either

C
(
γit

)
=

⎧
⎪⎨

⎪⎩

[
1 0
]
, if γit = 1,

[
0 0
]
, if γit = 0,

or C
(
γit

)
=

⎧
⎪⎨

⎪⎩

[
0 1
]
, if γit = 1,

[
0 0
]
, if γit = 0.

(4.3)
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Figure 2: A large-scale sensor network with 100 nodes.

In the observation model, individual sensor measures either x-position or y-position. For
each sensor node we model the channel mode latent variable γit that describes the channel
condition. To simulate the true observation mode for each node, the mode switch in the
communication channel link is modeled as Pr(γit = 0) ≡ Pr(u(0, 1) < 0.01), where u(0, 1)
is a uniform random distribution. We also model the evolution of channel mode variable as
the first-order Markov chain. In this case, the transition probability between modes is given
a priori. The observation noise for each sensor is white Gaussian noise with υi

t ∼N(0, 302
√
i).

In addition, sparse noises are generated with the probability 0.05, whose magnitude is 10
times larger than that of the measurement noise.

4.1. Comparison with KCF

In the experiment we compare our proposed algorithm with standard KCF. Figure 3 simply
and clearly demonstrates that our algorithm is robust when there are practical challenges in
the network.

To show more clearly the robustness against the outliers, we select one sensor node
experiment. That is because in KCF framework, certain amount of uncertainty can be
aggregated via consensus update. The comparison of estimated trajectory with the ground
truth is given in Figure 4. Measurements are also displayed with outliers to show that the
proposed estimation in sensor node considerably improved mean square error (MSE) as
illustrated in Figure 5.

4.2. Comparison with Switching Kalman Filter

As mentioned in Remark 3.3, rather fast switching of the channel mode can be handled
more accurately via the IMM filter that is known as switching Kalman filter [12]. From our
experiments, the proposed method (i.e., observation mode estimation via moving horizon
strategy) is more accurate when the actual switching of the channel occurs in more than
Δ steps. It means that the moving horizon strategy guarantees us the stable estimate of
the observation mode when the minimum dwell time assumption is held as described in
Section 3.2. On the other hand, the IMM filter shows us slightly increased errors in this case
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Figure 3: Comparison of estimated trajectories ((a) ground truth with KCF, (b) truth with robust KCF).
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Figure 4: Comparison of estimated trajectories with measurements for single node (KF: micro KF; L1:
proposed, obs: measurements).

because the IMM does not determine the exact mode as 1 or 0. Instead, the mode probability
is calculated and utilized for weighted averaging. However, the IMM filter is more robust in
cases where mode switching frequently occurs. That is because there is no minimum dwell
time assumption in the IMM filter.

In terms of computational complexity, the IMM filter is implemented using two
parallel Kalman filters for each observation mode, that is, the complexity is approximately
O(2n2|E| + n2N), where n is the dimension of the state, N is the number of nodes, and |E| is
the number of edge (e.g., links) in the network, as already mentioned in Section 2. In contrast,



Mathematical Problems in Engineering 11

0 50 100 150
0

M
SE

KF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time t

L1

Figure 5: Comparison of MSE.

the proposed algorithm requires a recursion for mode estimation within a horizon window;
thus, the complexity is approximated as O(nΔ|E| + n2N). Therefore, the proposed algorithm
is less complex than the IMM algorithm. Note that the complexity of the Kalman filter is
O(n2).

5. Conclusion

In this paper we propose a novel distributed data fusion algorithm that is robust against
outlier measurements and channel uncertainty. Outliers are rejected from the L1-norm
optimization algorithm and the channel uncertainty is reduced using the measurement mode
estimation algorithm. For the implementation in a large-scale sensor network, we adopt the
KCF framework and test the framework with an object state estimation problem. Results
successfully demonstrate that the proposed framework is able to handle practical challenges.
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Multiresolution analysis for problems involving random parameter fields is considered. The
random field is discretized by a Karhunen-Loève expansion. The eigenfunctions involved in this
representation are computed by a wavelet expansion. The wavelet expansion allows to control
the spatial resolution of the problem. Fine and coarse scales are defined, and the fine scales are
taken into account by projection operators. The influence of the truncation level for the wavelet
expansion on the computed reliability is documented.

1. Introduction

Reliability analysis for problems involving random parameter fields is concerned with the
solution of stochastic elliptic boundary value problems. For the solution of stochastic bound-
ary value problems, the random parameter field has to be discretized. This can be accom-
plished either by a Karhunen-Loève expansion or a projection on a polynomial basis [1, 2]. As
a result of this discretization, the random parameter field can be approximated by an expres-
sion containing only a finite number of random variables. The reliability problem reduces
then to the computation of failure probabilities with respect to a finite number of random
variables.

After introduction of the discretization, the stochastic boundary value problem
becomes equivalent to a deterministic one, for which the approximation on the physical
domain, and on the stochastic domain can be treated differently. The deterministic boundary
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value problem can be solved by standard approximation methods. On the physical domain,
finite element (FE) approximations are prevalent. Galerkin projection methods or collocation
schemes on the stochastic domain give rise to stochastic Galerkin methods [1] and stochastic
collocation schemes [3–5]. Their theoretical foundation has been laid in [6–9], where
local and global polynomial chaos expansions were investigated and where a priori error
estimates have been proved for a fixed number of terms of the Karhunen-Loève expansion.
Approximate solutions of the stochastic boundary value problem can be viewed as local
stochastic response surfaces [10] that depend on three parameters: a discretization parameter
for the physical domain, a discretization parameter for the stochastic domain, and the
discretization level of the input random field.

Although the focus of many investigations concerning the approximate solution of
stochastic boundary value problems lies on the computation of the first- and second-order
moments of the solution, already, in [1], reliability computation techniques were described,
that are based on series representations of the response distribution, on the reliability index,
or on Monte Carlo simulation methods. In most of the papers that followed, for example,
[11, 12] and references therein, either the reliability index, or simulation methods has been
employed. Alternatively, once the random field is discretized, sampling-based response
surfaces [13, 14] can be applied as well. Except for the stochastic Galerkin method, all
methods provide nonintrusive algorithms, which allow combining the solution procedure
with repetitive runs of an FE solver for deterministic problems.

In this paper, the focus is on the discretization of the random field itself. The dis-
cretization of the random field may enforce a rather fine FE mesh and thus increase the com-
putational effort. The Karhunen-Loève expansion of the random field requires the solution of
an eigenvalue problem for the determination of the expansion functions. Recently, a wavelet
expansion of the eigenfunctions has been introduced [15]. The advantage of wavelet bases
resides in the fact that they are of localized compact support, which lead to sparse rep-
resentations of functions and integral operators. Moreover, the discrete wavelet transform
provides an efficient means to solve the integral equation related to the determination of
the eigenfunctions. Wavelet expansions have also been studied in the context of simulation
of random fields [16, 17] and for the solution of stochastic dynamic systems by polynomial
chaos expansion [18].

Here, the wavelet representation of the eigenfunctions is introduced into the stochastic
FE approximation procedure in order to control the spatial resolution of the eigenfunctions.
This leads to a multiresolution approximation scheme, where finer scales are taken into
account by projection operators. The truncation level of the wavelet expansion has been
identified as an additional parameter of the metamodel. As the multiresolution analysis
is based on the eigenfunctions involved in the Karhunen-Loève expansion of the random
field, it can be combined with stochastic Galerkin, stochastic collocation, or sampling-based
methods. In this paper, only the latter are considered in the examples.

The paper is organized as follows: the next section gives an introduction to multireso-
lution analysis. Section 3 discusses random field discretization by Karhunen-Loève expansion
with emphasis on wavelet approximations of the eigenfunctions. Section 4 provides basic
information on the approximate solution of the stochastic boundary value problem. Section 5
explains the proposed multiresolution approximation, and Section 6 gives some details on
reliability assessment. In Section 7, the proposed procedure is validated by examples and
relative errors for the failure probability are given. Finally, conclusions are drawn in Section
8.
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2. Multiresolution Analysis

A multiresolution analysis is a sequence of subspaces Vj ⊂ L2(R), {0} ⊂ · · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂
V−1 ⊂ V−2 ⊂ · · · ⊂ L2(R), with

⋃

j∈Z
Vj = L2(R),

⋂

j∈Z
Vj = {0}, f(·) ∈ Vj ⇐⇒ f

(
2j ·

)
∈ V0, (2.1)

generated by a scaling function ϕ ∈ L2(R) via ϕj,k(x) = 2−j/2ϕ(2−jx − k) and Vj =
span{ϕj,k | k ∈ Z}. Especially, from ϕ ∈ V0 ⊂ V−1, there is a sequence {hk}k∈Z of real numbers,
such that

ϕ(x) =
√

2
∑

k∈Z
hkϕ(2x − k). (2.2)

For every j ∈ Z, denote with Wj the orthogonal complement of Vj in Vj−1: Vj−1 = Vj ⊕Wj . It
follows that Vm = ⊕j≥m+1Wj , L2(R) = ⊕j∈ZWj and that f(·) ∈Wj ⇔ f(2j ·) ∈W0.

A wavelet is a function ψ ∈ L2(R) with

0 <

∫

R

∣∣ψ̂(ω)
∣∣2

|ω| dω <∞, (2.3)

where

ψ̂(ω) = lim
n→∞

(2π)−1/2
∫n

−n
ψ(x) exp(−ixω)dx. (2.4)

It can be shown [19] that there exists a wavelet ψ(x), such that ψj,k(x) = 2−j/2ψ(2−jx− k) is an
orthonormal basis for Wj . Thus, any function f ∈ L2(R) can be decomposed into

f = Pmf +
m∑

j=−∞

∑

k∈Z

〈
f, ψj,k

〉
ψj,k, (2.5)

where Pm is the projection operator on Vm. As we are interested in functions with compact
support, the second sum in (2.5) is finite. For m = 0, we have after truncation at level −ν

f(x) =
∑

k∈Z

〈
f, ϕ0,k

〉
ϕ0,k(x) +

0∑

j=−ν

∑

k∈Z

〈
f, ψj,k

〉
ψj,k + e(x), (2.6)

where the error e(x) is an element of W−(ν+1). Note that all sums are finite, if f(x) has compact
support.

The same representation can be obtained for functions L2(Rd) with d ∈ N. For example,
for d = 2, the functions

φj,k1,k2

(
x, y

)
= 2−jϕ

(
2−jx − k1

)
ϕ
(

2−jy − k2

)
, k1, k2 ∈ Z, (2.7)
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constitute an orthonormal basis of Vj and the functions

ψh
j,k1,k2

(
x, y

)
= 2−jψ

(
2−jx − k1

)
ϕ
(

2−jy − k2

)
, k1, k2 ∈ Z,

ψυ
j,k1,k2

(
x, y

)
= 2−jϕ

(
2−jx − k1

)
ψ
(

2−jy − k2

)
, k1, k2 ∈ Z,

ψd
j,k1,k2

(
x, y

)
= 2−jψ

(
2−jx − k1

)
ψ
(

2−jy − k2

)
, k1, k2 ∈ Z,

(2.8)

where superscript h stands for horizontal, υ for vertical, and d for diagonal translation of the
unidimensional wavelet ψ(x), constitute an orthonormal basis of Wj .

3. Karhunen-Loève Discretization of Random Fields

Let D be a convex bounded open set in R
n and (Ω,F, P) a complete probability space, where

Ω is the set of outcomes, F the σ-field of events, and P : F → [0 : 1] a probability measure.
We consider a random field α : D × Ω → R that has a continuous and square-

integrable covariance function

C
(
x, y

)
=
∫

Ω
(α(x,ω) − E[α](x))(α(y,ω) − E[α](y))dP(ω), (3.1)

where the expectation operator E[α](x) =
∫
Ω α(x,ω)dP(ω) denotes the mean value of the

random field. It is assumed that α(x,ω) is bounded and coercive, that is, there exist positive
constants amin, amax, such that

P(ω ∈ Ω : amin < α(x,ω) < amax ∀x ∈ D) = 1. (3.2)

Due to the properties of the covariance function, the operator T : L2(D) → L2(D),

Tw =
∫

D

C
(
x, y

)
w(x)dx, (3.3)

is compact and self-adjoint and thus admits a spectrum of decreasing nonnegative
eigenvalues {λi}∞i=1,

∫

D

C
(
x, y

)
wi(x)dx = λiwi

(
y
)
. (3.4)

The corresponding eigenfunctions {wi(x)}∞i=1 are orthonormal in L2(D). The random varia-
bles given by

ξi(ω) =
1

√
λi

∫

D

(α(x,ω) − E[α](x))wi(x)dx (3.5)
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are uncorrelated (but in general not independent), have zero mean and unit variance, and
allow to represent the random field by the Karhunen-Loève expansion

α(x,ω) = E[α](x) +
∞∑

i=1

√
λiξi(ω)wi(x), (3.6)

that converges in L2(D × Ω) [20]. Conditions for stronger convergence properties are given
in [8]. The Karhunen-Loève expansion is usually truncated by retaining only the first M
terms. In order to keep the computational effort small, a fast decay of the spectrum of (3.3)
is important. It is shown in [21] that fast eigenvalue decay corresponds to smoothness of the
covariance function.

The solution of the Fredholm integral equation (3.4) can be computed by means of
the wavelet basis introduced before (cf., e.g., [15]). For the kth eigenfunction wk(x), an
approximation with a finite number of basis functions Ψi(x), i = 1, 2, . . . , n, of V0 and Wj ,
0 ≤ j ≤ −ν, is given by

w̃k(x) =
n∑

i=1

d
(k)
i Ψi(x). (3.7)

A Galerkin technique can be applied in order to compute the eigenvalue λk and the
coefficients of the normalized (

∫
D w̃2

k(x)dx = 1) approximate eigenfunctions. To this end,
the representation (3.7) is inserted into the Fredholm integral equation (3.4) and the equation
is multiplied with a basis function Ψj(y). After integration over the domain D, one obtains
the algebraic eigenvalue problem

n∑

i=1

(∫∫

D

C
(
x, y

)
Ψi(x)Ψj

(
y
)
dxdyd(k)

i

)
= λkd

(k)
j , j = 1, 2, . . . n, (3.8)

where the coefficients on the left hand side can be obtained from discrete wavelet transforms
of the covariance function C(x, y).

More details and convergence studies for this approximation of the eigenfunctions
may be found in [15]. Here, the decomposition is introduced in order to obtain a coarse
approximation (by taking scales until a certain level −μ > −ν into account) and a fine
approximation (scales from −μ − 1 to −ν).

4. Stochastic Linear Elliptic Boundary Value Problems

Consider the following model problem with stochastic operator and deterministic input
function on D ×Ω: find u : D ×Ω → R, such that P almost surely:

−∇ · α(x,ω)∇u(x,ω) = g(x) on D, u(x,ω) = 0 on ∂D. (4.1)

It is assumed that the deterministic input function g(x) is square-integrable.



6 Mathematical Problems in Engineering

We are interested in the probability that a functional F(u) of the solution u(x,ω)
exceeds a threshold F0, that is, we want to evaluate the integral

PF =
∫

Ω
χ(F0,∞)(F(u(x,ω)))dP(ω), (4.2)

where χI(·), the indicator function, assumes the value 1 in the interval I and vanishes
elsewhere.

The variational formulation of the stochastic boundary value problem necessitates the
introduction of the Sobolev space H1

0(D) of functions having generalized derivatives in L2(D)

and vanishing on the boundary ∂D with norm ‖u‖H1
0 (D) = (

∫
D |∇u|2dx)

1/2
, the space L2

P (Ω) of
square integrable random variables and the tensor product space H1

0(D) ⊗ L2
P (Ω) of H1

0(D)-
valued random fields with finite second-order moments, equipped with the inner product

(u, υ)H1
0 (D)⊗L2(Ω) =

∫

Ω

∫

D

∇u(x,ω) · ∇v(x,ω)dxdP(ω). (4.3)

The variational formulation of the stochastic linear elliptic boundary value problem (4.1) then
reads find u ∈ H1

0(D) ⊗ L2
P (Ω), such that for all υ ∈ H1

0(D) ⊗ L2
P (Ω):

∫

Ω

∫

D

α(x,ω)∇u · ∇υdxdP(ω) =
∫

Ω

∫

D

g(x)υ(x,ω)dxdP(ω). (4.4)

The assumptions on the random field α(x,ω) guarantee the continuity and coercivity of the
bilinear form in (4.4). Existence and uniqueness of a solution to (4.4) follow from the Lax-
Milgram lemma.

For a prescribed, uniformly bounded random field α(x,ω), the random variables
ξi(ω) in (3.6) would be dependent non-Gaussian random variables whose joint distribution
function is very difficult to identify. If, on the other hand, independent but bounded
distributions are prescribed for ξi(ω), i = 1, 2, . . . ,M, the random field α(x,ω) is not
necessarily bounded for M → ∞. Thus, one is left with Gaussian distributions for ξi(ω)
and α(x,ω), with transformations of Gaussian random fields [22] or with some situations,
where nonnegative distributions for ξi(ω) lead to meaningful (e.g., Erlang-) distributions for
α(x,ω).

Some authors [11, 23] consider models that contain a finite number of random
variables as parameters of a boundary value problem. For this kind of problems, Babuška et
al. [8] investigate convergence properties of several approximation schemes. The examples
studied in this paper belong to this class of problems. It is henceforth assumed that the
random field α(x,ω) is given by a truncated sum

αM(x,ω) = E[α](x) +
M∑

i=1

√
λiξi(ω)wi(x), (4.5)

where ξi(ω) are continuous and independent random variables with zero mean and unit
variance, where Γi = ξi(Ω) are bounded intervals in R and the parameters λi and functions



Mathematical Problems in Engineering 7

wi(x) are the first M eigenvalues and corresponding eigenfunctions of the operator (3.3). In
the examples, ξi(ω) are Gaussian random variables truncated at ±3σ, σ = 1.

The representation of αM(x,ω) by a finite number of random variables allows to
consider a deterministic auxiliary problem:

−∇ ·
(
E[α](x) +

M∑

i=1

√
λiyiwi(x)

)
∇u(x, y) = g(x), for

(
x, y

) ∈ D × Γ, (4.6)

where Γ =
∏M

i=1 Γi ⊂ R
M. From the expression for u(x, y), one obtains u(x,ω) by replacing

the vector y with the vector of random variables ξi(ω), i = 1, 2, . . . ,M.
This equation is discretized on finite dimensional approximation spaces for the

physical domain. For H1
0(D), a family of standard FE approximation spaces Xh ⊂ H1

0(D) of
continuous piecewise linear functions in a regular triangulationTh of D with mesh parameter
h is considered.

Denote with Ni(x), i = 1, 2, . . . ,N, a basis of Xh ⊂ H1
0(D). The solution u(x, y) is

approximated by

u
(
x, y

)
=

N∑

i=1

ui

(
y
)
Ni(x). (4.7)

For a fixed value y, the unknown coefficients ui(y), i = 1, 2, . . . ,N, can be computed from the
solution of the FE problem

(
K(0) +

M∑

s=1

K(s)ys

)
u
(
y
)
= g, (4.8)

where the matrices K(0), K(s), s = 1, 2, . . . ,M and the vector g are given by

K
(0)
ij =

∫

D

E[α](x)∇Ni(x) · ∇Nj(x)dx, (4.9)

K
(s)
ij =

√
λs

∫

D

ws(x)∇Ni(x) · ∇Nj(x)dx, (4.10)

gi =
∫

D

g(x)Ni(x)dx, i, j = 1, 2, . . . ,N, (4.11)

and u(y) is the vector containing the nodal displacements ui(y), i = 1, 2, . . . ,N, for the fixed
value y. The matrices K(s), s = 1, 2, . . . ,M, can be interpreted, for example, as FE stiffness
matrices for a spatial variation of elastic properties.

5. Multiresolution Approximation

By means of multiresolution analysis, each of the matrices K(s) in (4.10) can be decomposed
as K(s) = K(s)

c + K(s)
f

, where K(s)
c contains the low-frequency content, expressed by the
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multiresolution scheme until the level −μ, while K(s)
f takes the high frequency content of the

levels −μ − 1 until −ν into account.
Given a fixed value for y, the decomposition of K(s) leads to a decomposition of the

global stiffness matrix:

(
Kc +Kf

)
u = g, (5.1)

where Kc = K0 +
∑M

s=1 K
(s)
c and Kf =

∑M
s=1 K

(s)
f . Also the solution u is decomposed into uc

and uf , where uc is represented on a coarse mesh and uf on a fine mesh. With the help
of an interpolation matrix P, the solution u is written as u = Puc + uf . Inserting these
decompositions into equation (5.1) leads to

KcPuc +Kcuf +KfPuc +Kfuf = g. (5.2)

This equation is split into

KcPuc = g, (5.3)

Kcuf +KfPuc +Kfuf = 0. (5.4)

Multiplication of the first equation with PT projects this equation onto the coarse mesh:

PTKcPuc = PTg. (5.5)

For uf , a coarse mesh approximation is computed in the following manner:

(i) the term Kfuf in (5.4) is neglected;

(ii) uf is represented on the coarse mesh by ũf , thus uf = Pũf .

After multiplication of (5.4) with PT , one then obtains

PTKcPũf = −PTKfPuc (5.6)

for the coarse mesh approximation ũf of uf . Thus, the linear system of equations in (5.5) and
(5.6) has to be resolved only on the reduced set of degrees of freedom given by the coarse
mesh, which saves a considerable amount of CPU time. The interpolation matrix P can be
generated from FE interpolation functions.
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6. Reliability Assessment

Once the algebraic problems are solved and the correction to the coarse scale solution is com-
puted, an approximation for u(x,ω) has been obtained. The approximation quality depends
on the following parameters:

(i) partition of the physical domain and the stochastic domain,

(ii) truncation of the Karhunen-Loève expansion (M),

(iii) wavelet scales (μ, ν).

The wavelet scales μ, ν appear as an additional parameter that influences the
approximation quality.

For solving reliability problems, (4.8) yields a functional relationship between the
input random variables and u(x, y). It is then possible to compute the most probable point of
failure (MPP), that is, the point ξ ∈ Γ with F(u(x, ξ)) = F0 with lowest Euclidean norm. The
norm of the MPP may serve as a control variable for the approximation quality and for the
adaptation of the parameters mentioned above.

The MPP may also be useful for the evaluation of the integral in (4.2) by means of
variance reduced Monte Carlo simulation (importance sampling). To this end, a sampling
density p̃(y) is introduced by shifting the original probability density function p(y) of
the random variables ξi(ω), i = 1, . . . ,M, to the previously obtained MPP, and (4.2) is
approximated by

PF ≈
Ns∑

j=1

χ(F0,∞)

(
F
(
u
(
x, yj

)))p
(
yj
)

p̃
(
yj
) p̃

(
yj
)
, (6.1)

where the sampling points yj , j = 1, 2, . . . ,Ns, are generated according to p̃(y).

7. Examples

7.1. Example 1: Clamped Square Plate

The first example deals with a standard problem for stochastic FE techniques, a clamped thin
square plate under uniform in-plane tension q (cf. [1]). The problem is depicted in Figure 1.
The plate has unit length l. The product of Young’s modulus and the thickness of the plate
are assumed to be an isotropic normal random field with covariance function

C
(
x1, y1;x2, y2

)
= σ2 exp

(
−|x1 − x2|

lx
−
∣∣y1 − y2

∣∣

ly

)
, (7.1)

with standard deviation σ = 0.2 and unit mean value. Poisson’s ratio is set to 0.3.
A first investigation is concerned with the efficiency of the multiresolution analysis.

To this end, relative errors for the maximum longitudinal displacement have been computed
by comparing the coarse mesh—coarse level (μ = −1) solution and the coarse solution
corrected by the fine level solution (ν = −4) to the fine mesh—fine level reference solution
(i.e., μ = 0, ν = −4). Dividing the relative error of the coarse scale solution by the relative
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q = 1l = 1

x

y

Figure 1: Thin square plate under uniform in-plane tension.
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Figure 2: Efficiency of the multiresolution scheme with respect to the number of Karhunen-Loève expan-
sion terms.

error of the corrected solution yields an improvement factor that indicates the efficiency of
the multiresolution correction. For a coarse mesh of 2 × 2 quadrilateral elements only and a
fine mesh of 4×4 quadrilateral elements, Figures 2 and 3 display the improvement factors for
a varying number of Karhunen-Loève expansion terms and for a variation of the correlation
length lc = lx = ly, respectively. Here and in the following, the fine mesh is generated from the
coarse mesh by halving the edge length of the elements. For Figure 2, the correlation length
was lc = 0.5, and, for Figure 3, 12 Karhunen-Loève expansion terms have been retained. The
figures reveal that the multiresolution scheme is more efficient if fluctuations become more
important, that is for a large number of Karhunen-Loève expansion terms and low correlation
lengths.

Next, the influence of the multiresolution correction on the prediction of failure
has been investigated. A threshold value of 1.5 is assumed for the maximum longitudinal
displacement, and failure occurs if the maximum longitudinal displacement exceeds this
threshold value.

The random field has been discretized by a Karhunen-Loève expansion with M = 4
terms for a correlation length lc = 1. The eigenfunctions were computed either on a coarse
(8 × 8 elements) or a fine (16 × 16 elements) mesh. A reference solution MPP has been
computed on the fine mesh including up to seven scales for the wavelet expansion of the
eigenfunctions, and a reference result for the failure probability has been obtained on the
fine mesh from importance sampling with 30000 samples. These results allow to evaluate the
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Figure 3: Efficiency of the multiresolution scheme with respect to the correlation length.
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Figure 4: Relative error of the norm for the MPP.

error due to the multiresolution scheme. To this end, relative errors for the Euclidean norm of
the MPP and the failure probability with respect to the reference results have been computed
from the multiresolution scheme with one coarse level (μ = −1) and up to seven fine levels.
Figure 4 presents the development of the relative errors for the norm of the design point.

Figure 5 displays the relative error of the failure probability. From the figure, an
exponential decrease of the error with respect to the number of fine scales involved can be
deduced. The coarse mesh solution needed less than half of the CPU time of the fine scale
solution.

7.2. Example 2: Soil-Structure Interaction

The second example, previously introduced in [24], considers a soil structure interaction
problem. In contrast to the first example, it deals with an anisotropic autocorrelation function
of the random field and an anisotropic FE mesh. The settlement of a foundation (width
2B = 10 m), represented by a uniform pressure of 0.2 MPa, on an elastic soil layer of thickness
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Figure 5: Relative error of the failure probability.
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Figure 6: Soil structure interaction problem.

t = 30 m lying on a rigid substratum, is investigated. A plane strain deformation of the
soil is assumed with linear elastic material properties (cf. Figure 6). The Young’s modulus
is assumed to be a random field with mean value 50 MPa, 20% coefficient of variation,
and an exponential correlation function as in (7.1) but with correlation length lx = 250 m,
ly = 100 m. Poisson’s ratio is set to 0.3. Six truncated Gaussian random variables (M = 6) for
the representation of the random field have been considered.

Starting from the center of the foundation, the right half of the soil layer is meshed
by quadrilateral finite elements until a length of L = 60 m, as indicated in Figure 6. The
coarse mesh consists of 24 elements, while the fine mesh is divided into 96 elements. The
reliability problem deals with the displacement of point A in Figure 6, situated at the
center of the foundation and on the surface of the soil, where the vertical displacements of
the corresponding deterministic problem (i.e., considering only the mean value of Young’s
modulus) attain their maximum. Failure is defined as exceedance of a limit value of 0.1 m for
the vertical displacement at point A. Figures 7 and 8 summarize the behavior of the relative
errors for the Euclidean norm of the MPP and for the failure probability, respectively. As
in the previous example, μ has been set to −1 and ν has been varied. It can be seen that,
while the error in the norm is relatively small, rather large errors for the probability of failure
may occur. As in the previous example, the relative error for the failure probability decreases
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Figure 7: Relative error of the norm for the MPP.

1 2 3 4 5 6
100

101

Wavelet level

R
el

at
iv

e 
er

ro
r
(%

)

Figure 8: Relative error of the failure probability.

exponentially with the wavelet level −ν; however, this decrease starts only after taking a
certain number of fine scales (4 and more) into account.

8. Conclusions

In this paper, wavelet-based Karhunen-Loève expansion has been extended to multiresolu-
tion analysis of stochastic FE problems. The proposed procedure allows to include fine scale
corrections of the FE solution by means of coarse mesh computations. Improvement due to
these corrections has been highlighted by examples, and it could be seen that the relative
error of the failure probability decreases exponentially with the wavelet level.

Although the procedure has been combined in this paper to importance sampling-
based computation of failure probabilities, it applies to stochastic Galerkin and stochastic
collocation methods as well, because it is solely based on the decomposition of the Karhunen-
Loève eigenfunctions. However, it relies on linear problems.

Typical applications for multiresolution analysis in the context of stochastic FE
methods arise in multiscale analysis of material properties, especially if there is scale coupling
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and length scales that correspond to the length scales of the representative volume element
have to be taken into account. For this kind of application, the limitation of wavelets to rather
simple geometries, as those in the examples, will not be a drawback, since simple geometries
are frequently used on the micro- and mesoscale and more complex geometries could be
embedded into simple ones for the solution of the Fredholm integral equation.
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ETH Zürich, Switzerland, 2006.



Mathematical Problems in Engineering 15

[22] C. Proppe, “A stochastic finite-element method for transformed normal random parameter fields,”
International Journal for Uncertainty Quantification, vol. 1, no. 3, pp. 189–201, 2011.
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The robust reliable H∞ control problem for a class of nonlinear stochastic Markovian jump
systems (NSMJSs) is investigated. The system under consideration includes Itô-type stochastic
disturbance, Markovian jumps, as well as sector-bounded nonlinearities and norm-bounded
stochastic nonlinearities. Our aim is to design a controller such that, for possible actuator
failures, the closed-loop stochastic Markovian jump system is exponential mean-square stable with
convergence rate α and disturbance attenuation γ . Based on the Lyapunov stability theory and Itô
differential rule, together with LMIs techniques, a sufficient condition for stochastic systems is first
established in Lemma 3. Then, using the lemma, the sufficient conditions of the solvability of the
robust reliable H∞ controller for linear SMJSs and NSMJSs are given. Finally, a numerical example
is exploited to show the usefulness of the derived results.

1. Introduction

In the past few decades, Markovian jump systems (MJSs) have been considerably studied
since this kind of hybrid systems consists of a number of subsystems and a switch signal,
which includes applications in safety-critical and high-integrity systems (e.g., aircraft,
chemical plants, nuclear power station, robotic manipulator systems, large-scale flexible
structures for space stations such as antenna, and solar arrays) typically systems, which may
experience abrupt changes in their structure, see, for example, [1] and the references therein.
And now, some results of stability and stabilization for Itô type stochastic Markovian jump
systems are also available in many papers, see, for example, [2–4] and the references therein.

The analysis and synthesis problems of Markovian jump systems (MJSs) or stochastic
Markovian jump systems (SMJSs) have attracted plenty of attention from many researchers.
Many important and remarkable achievements reasonable have obtained. If the control
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systems possess integrity against actuator and sensor failures, we called reliable control
systems or fault-tolerant control systems [5]. Recently, the robust reliable control and
filtering problems for time-delay systems or Markovian jump systems (MJSs) have attracted
considerable attention, and several approaches have been developed, see, for example, [6–
11] and the references therein. Via linear matrix inequalities (LMIs), the authors designed
the robust reliable H∞ controller for uncertain nonlinear systems [6]. In [7], for admissible
uncertainties as well as actuator failures occurring among a prespecified subset of actuators,
Zhang et al. studied the reliable dissipative control of Markovian jump impulsive systems.
The reliable H∞ control problem for discrete-time piecewise linear systems with infinite
distributed delays have been investigated in [8]. Recently, the study of stochastic H∞
filtering for the systems governed by stochastic Itô-type equations has attracted a great
deal of attention, and Zhang and Chen [9] firstly solved the nonlinear stochastic delay-
free H∞ filtering problem by means of a stochastic bounded real lemma derived in [10].
The reliable H∞ filtering problems for discrete time-delay systems with randomly occurred
nonlinearities [11] and discrete time-delay Markovian jump systems with partly unknown
transition probabilities [12] also has been studied, respectively. The reliable control problem
for a class of Markovian jump systems with interval time-varying delays and stochastic
failure is studied in [13]. In recent years, the research begins to focusing on robust reliable
control problems for stochastic systems or stochastic switched nonlinear systems, see, for
example, [14–16] and the references therein.

However, all the aforementioned results are mainly focusing on the reliable control
and filtering problems of discrete-time-delay systems and Markovian jump systems. Up
to now, to the best of the authors’ knowledge, the robust reliable H∞ control problem for
nonlinear stochastic Markovian jump systems (NSMJSs) has not been fully investigated,
which is an open problem and gives the motivation of our present investigation. In this paper,
our aim is to design a robust reliable H∞ controller for NSMJSs, such that the NSMJSs are
globally mean exponential stable with convergence rate α and disturbance attenuation γ .

1.1. Notations

Throughout this paper, for symmetric matrices X and Y , the notation X ≥ Y (resp., X > Y )
means that the Matrix X-Y is positive semidefinite (respectively, positive definite). I is an
identity matrix with appropriate dimensions; the subscript “T” represents the Transposition.
E(·) denotes the expectation operator with respect to some probability measure P . L2[0,∞)
is the space of square integrable vector functions over [0,∞); let (Ω,F, P) be a complete
probability space which is relative to an increasing family (Ft)t>0 of σ algebras (Ft)t>0 ⊂ F,
where Ω is the samples space, F is σ algebra of subsets of the sample space, and P is the
probability measure on F.‖ · ‖E2

= ‖E(·)‖2, while ‖ · ‖2 stands for the usual L2[0,∞) norm, Rn

and Rn×m denote the n dimensional Euclidean space and the set of all n × m real matrices,
respectively. In this paper, we provide all spaces K

k, k ≥ 1 with the usual inner product
〈·, ·〉 and its corresponding 2-norm‖ · ‖. Let L2(Ω,Kk) denote the space of square-integrable
K

k-valued functions on the probability space (Ω,F, P). For any 0 < T < ∞, we write
[0, T] for the closure of the open interval (0, T) in R and denote by Ln

2([0, T];L
2(Ω,Kk)) the

space of the nonanticipative stochastic processes y(·) = (y(·))t∈[0,T] with respect to (Ft)t∈[0,T]
satisfying ‖y(·)‖2

Ln
2
= E(
∫T

0 ‖y(t)‖2dt) =
∫T

0 E(‖y(t)‖2)dt < ∞. V (x(t), t, r(t) = i) = V (x(t), t, i),
A(r(t) = i) = Ai B(r(t) = i) = Bi, A0(r(t) = i) = A0i, B0(r(t) = i) = B0i, C(r(t) = i) =
Ci, D(r(t) = i) = Di.
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2. Problem Formulation and Failure Model

In this paper, we mainly consider the following nonlinear stochastic Markovian jump systems
(NSMJSs) with actuator failures:

dx(t) =
[
A(r(t))x(t) + B(r(t))uf(t, r(t)) + E(r(t))v(t) + f(r(t), x(t))

]
dt

+
[
C(r(t))x(t) +D(r(t))uf(t, r(t)) +H(r(t))v(t) + g(r(t), x(t))

]
dw(t),

z(t) = J(r(t))x(t),

x(t0) = x0,

(2.1)

where x(t) ∈ Rn is the system state, uf(t) ∈ Rl is the control input of actuator fault,
v(t) ∈ Rq is the exogenous disturbance input of the systems which belong to L2[0,∞),
z(t) ∈ Rr is the system control output, w(t) is a zero mean real scalar Weiner processes on
a probability space (Ω,F, P) relative to an increase family (Ft)t>0 of σ algebras (Ft)t>0 ⊂ F.
Ai, Bi, Ei, Ci,Di, Fi,Hi, Ji are the known real constant matrices with appropriate dimensions.
Morever, we assume that

E(dw(t)) = 0, E
(
(dw(t))2

)
= dt. (2.2)

Let r(t), t ≥ 0, be a right-continuous Markovian chain on the probability space taking
values in a finite state space S = 1, 2, . . . ,N with generator Γ = (λij)N×N given by

P
{
r(t + Δ) = j | r(t) = i

}
=

⎧
⎨

⎩
λijΔ + o(Δ) if i /= j,

1 + λiiΔ + o(Δ) if i = j,
(2.3)

where Δ > 0. Here λij ≥ 0 is the transition rate from manner i to manner j, if i /= j while
λii = −∑j /= i λij . We assume that the Markovian chain r(·) is independent of the Wienner
process w(·). It is well known that almost every sample path of r(t) is a right-continuous step
function with a finite number of simple jump in any finite subinterval of R+(:= [0,+∞)).

f(·, ·) : S × Rn → Rn is a unknown nonlinear function which describes the system
nonlinearity satisfying the following sector-bounded conditions:

(
fi(x(t)) − T1ix

)T(
fi(x(t)) − T2ix

) ≤ 0, i ∈ S, (2.4)

g(·, ·) : S × Rn → Rn also is a unknown nonlinear function which describes the stochastic
nonlinearity satisfying the following:

gT
i (x(t))gi(x(t)) ≤ xTGT

i Gix, i ∈ S, (2.5)

where T1i, T2i, Gi are known real constant matrices with approximate dimensions.
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Remark 2.1. The nonlinearities fi(x(t)) are bounded by sectors, which belong to [L1i, L2i],
and are very general that include the usual Lipschitz conditions as a special case which is
considerable investigated and includes several other classes well studied nonlinear systems
[17–19]. The nonlinearities gi(x(t)) satisfy the norm-bounded conditions.

When the actuator experiences failure, we use uf(t, r(t)) to describe the control signal
form actuators. Consider the following actuator failure model with failure parameter Fi:

u
f

i (t) = Fiui(t), (2.6)

where Fi is the actuator fault matrix with

Fi = diag
(
fi1, fi2, . . . , fim

)
, 0 ≤ f

ij
≤ fij ≤ fij , f ij ≥ 1, j = 1, 2, . . . , m. (2.7)

In which the variables fij quantify the failures of the actuators. fij = 0 means that jth
actuator completely fails, and fij = 1 means that the jth actuator is normal.

Define the following:

F0i = diag
(
f0i1, f0i2, . . . , f0im

)
=

Fi + Fi

2
, f0ij =

f
ij
+ fij

2
, (2.8)

F̃0i = diag
(
f̃0i1, f̃0i2, . . . , f̃0im

)
=

Fi − Fi

2
, f0ij =

fij − fij

2
, (2.9)

and hence, the matrix Fi can be rewritten as

Fi = F0i + Δi = F0i + diag
(
ϕi1, ϕi2, . . . , ϕim

)
,
∣∣ϕij

∣∣ ≤ f̃ij , j = 1, 2, . . . , m. (2.10)

In this paper, our aim is to design the controller ui(t) = Kix(t), i ∈ S, such that the
closed-loop systems satisfy the following conditions:

(i) without the exogenous disturbance input (i.e., v(t) = 0), the closed-loop control
systems (2.1) are globally exponentially stable with convergence rate α > 0;

(ii) with zero initial condition (i.e., x(t0) = 0) and nonzero exogenous disturbance input
(i.e., v(t)/= 0), the following inequality holds:

‖z‖E2
< γ‖v‖2

(
i.e.,
∫T

0
zT (t)z(t)dt ≤ γ2

∫T

0
vT (t)v(t)dt

)
. (2.11)

If the above two conditions hold, we also called the systems that are exponential mean-
square stable with convergence rate α and disturbance attenuation γ .
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3. Main Results

Lemma 3.1 (Schur complement lemma [20]). For a given matrix S =
(

S1 S3
∗ S2

)
with ST

1 =

S1, S
T
2 = S2, the following conditions are equivalent:

(1) S < 0,

(2) S2 < 0, S1 − S3S
−1
2 ST

3 < 0,

(3) S1 < 0, S2 − S3S
−1
1 ST

3 < 0.

Lemma 3.2 (see [21]). Let x ∈ R
n and y ∈ R

n. Then, for any positive scalar ε, we have

xTy + yTx ≤ εxTx + ε−1yTy. (3.1)

3.1. Robust Reliable H∞ for LSMJSs

To obtain our main results, we first consider the following linear stochastic Markovian jump
systems (LSMJSs) without control input:

dx(t) = [Aix(t) + Eiv(t)]dt + [Cix(t) +Hiv(t)]dw(t),

z(t) = Jix(t),

x(t0) = x0.

(3.2)

Lemma 3.3. Suppose that P(t, r(t)) > 0 is continuously differentiable, then the systems (3.2) are
exponential mean-square stable with convergence rate α and disturbance attenuation γ if and only if
the following matrix functional inequalities hold:

Ξi(t) =

⎛
⎜⎜⎝

Mi(t) + JTi Ji PiEi CT
i

∗ −γ2I HT
i

∗ ∗ −P−1
i (t)

⎞
⎟⎟⎠ < 0, i ∈ S, (3.3)

whereMi(t) = AT
i Pi(t) + Pi(t)Ai + Ṗ(t) +

∑
j∈S λijPj(t).

Proof. At first, let v(t) = 0, and defining the following Lyapunov function:

V (x(t), t, i) = V (x(t), t, r(t) = i) = xT (t)P(t, r(t) = i)x(t) = xT (t)Pi(t)x(t). (3.4)

By Itô formula, we get the following:

LV (x(t), t, i) = xT (t)
(
Mi(t) + CT

i Pi(t)Ci

)
x(t), (3.5)

the matrix function inequalities (3.3) imply that LV (x(t), t, i) < 0, and let ai = λmax(−Ξi(t)),
a = maxi∈S(ai), where λmax(·) means the maximum eigenvalue of matrix (·), and we have

LV (x(t), t, i) ≤ −axT (t)x(t). (3.6)
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Hence

d
[
eαtV (x(t), t, i)

]
= αeαtV (x(t), t, i) + eαtdV (x(t), t, i)

≤ (bα − a)eαt‖x(t)‖2 + eαt2xT (t)Pi(t)Cix(t)dw(t),
(3.7)

where bi = supt≥t0{λmax(Pi(t))}, and b = maxi∈S(bi). Integrating the both sides of above
inequality from t0 to Tand taking expectation, we obtain that

EeαT[V (x(T), T, i) − V (x0, t0, i)] ≤ (bα − a)E
∫T

t0

eαs‖x(s)‖2ds. (3.8)

Set α = a/b, and the following inequality is obtained:

eαTmin
i∈S

λmin(Pi(T))E‖x(T)‖2 ≤ E
[
eαTV (x(T), T, i)

]
≤ EV (x0, t0, i), (3.9)

which implies that

E‖x(T)‖2 ≤ EV (x0, t0, i)
1

mini∈Sλmin(Pi(T))
e−αT . (3.10)

That is to say that the stochastic systems are globally exponentially stable with
convergence rate α > 0.

Then, considering the stochastic H∞ performance level for the resulting systems (3.2)
with nonzero exogenous disturbance input (v(t)/= 0), for any t > 0, we define that

J(t) = E

{∫ t

0

[
zT (s)z(s) − γ2vT (s)v(s)

]
ds

}
. (3.11)

By general Itô formula, we get he following:

J(t) = E

{∫ t

t0

[
zT (s)z(s) − γ2vT (s)v(s) +LV (x(s), s, i)

]
ds

}
− E(V (x(t), t, i))

≤ E

{∫ t

0

[
zT (s)z(s) − γ2vT (s)v(s) +LV (x(s), s, i)

]
ds

}
≤ E

{∫ t

0
ηT (s)Ωi(s)η(s)ds

}
,

(3.12)

where ηT (t) = (xT (t)vT (t)), Ωi(t) =
(

Mi(t)+JTi Ji Pi(t)Ei

ET
i Pi(t) −γ2I

)
+
(

CT
i

HT
i

)
Pi(t)
(

CT
i

HT
i

)T
From (3.3) we know

that Ω(t) < 0, which implies that

J(t) < 0. (3.13)

Therefore, the inequality ‖z‖E2
< γ‖v‖2 holds. The proof is completed.
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In the following time, we consider the following linear stochastic Markovian jump
systems (LSMJSs) under the state feedback controller:

dx(t) = [(Ai + BiFiKi)x(t) + Eiv(t)]dt + [(Ci +DiFiKi)x(t) +Hiv(t)]dw(t),

z(t) = Jix(t),

x(t0) = x0.

(3.14)

Theorem 3.4. If there exist the positive matrices Xi > 0, and the constant matrices Yi with
approximate dimensions, such that the following LMIs hold

Θi =

⎛
⎜⎜⎜⎜⎜⎝

Θi1 Ei Θi2 Θi3

∗ −γ2I HT
i 0

∗ ∗ −Xi 0

∗ ∗ ∗ Θi4

⎞
⎟⎟⎟⎟⎟⎠

< 0, i ∈ S, (3.15)

where Θi1 = XiA
T
i +AiXi + BiFiYi + YT

i F
T
i B

T
i + λiiXi, Θi2 = XiC

T
i + YT

i F
T
i D

T
i ,

Θi3 =
(√

λi1Xi · · ·
√
λi,i−1Xi

√
λi,i+1Xi · · ·

√
λiNXi XiJ

T
i

)
,

Θi4 = diag(−X1, . . . ,−Xi−1,−Xi+1, . . . ,−XN,−I),
(3.16)

then the LSMJSs (3.14) are exponential mean-square stable with convergence rate α and disturbance
attenuation γ . In this case, the desired controllers are given as follows:

Ki = YiX
−1
i . (3.17)

Proof. Defining the following Lyapunov function:

V (x(t), t, i) = V (x(t), t, r(t) = i) = xT (t)Pix(t). (3.18)

By Lemma 3.3, and similar to the proof of Lemma 3.3, we can get the following:

LV (x(t), t, i) ≤ ηT (t)Ξiη(t), (3.19)

where Ξi =

(
Mi PiEi CT

i +K
T
i F

T
i D

T
i

∗ −γ2I HT
i

∗ ∗ −P−1
i

)
Mi = (Ai + BiFiKi)

TPi + Pi(Ai + BiFiKi) +
∑

j∈S λijPj .
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Using Schur complement lemma together with contragredient transformation, we
know that LMIs (3.15) imply that Ξi < 0. So we have

J(t) = E

{∫ t

0

[
zT (s)z(s) − γ2vT (s)v(s)

]
ds

}

= E

{∫ t

t0

[
zT (s)z(s) − γ2vT (s)v(s) +LV (x(s), s, i)

]
ds

}
− E(V (x(t), t, i))

≤ E

{∫ t

0

[
zT (s)z(s) − γ2vT (s)v(s) +LV (x(s), s, i)

]
ds

}
< 0.

. (3.20)

Therefore, the inequality ‖z‖E2
< γ‖v‖2 holds. The proof is completed.

Theorem 3.5. If there exist the positive matrices Xi > 0, the positive diagonal matrices Ri > 0, and
the constant matrices Yi with approximate dimensions, such that the following LMIs hold:

Θ̃i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ̃i1 Ei Θ̃i2 Θi3 BiRi YT
i

∗ −γ2I HT
i 0 0 0

∗ ∗ −Xi 0 DiRi 0

∗ ∗ ∗ Θi4 0 0

∗ ∗ ∗ ∗ −Ri 0

∗ ∗ ∗ ∗ ∗ −RiF̃
−2
i0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, i ∈ S, (3.21)

where Θ̃i1 = XiA
T
i +AiXi + BiFi0Yi + YT

i F
T
i0B

T
i + λiiXi, Θ̃i2 = XiC

T
i + YT

i F
T
i0D

T
i , Then the LSMJSs

(3.14) are exponential mean-square stable with convergence rate α and disturbance attenuation γ . In
this case, the desired controllers are given as follows:

Ki = YiX
−1
i . (3.22)

Proof. Noticing (2.10), we can see that Θi in (3.15) can be rewritten as

Θi = Θi0 +
[
BT
i 0 DT

i 0
]T
Δi

[
Yi 0 0 0

]
+
[
Yi 0 0 0

]T
Δi

[
BT
i 0 DT

i 0
]
, (3.23)

where Θi0 =

⎛

⎝
Θ̃i1 Ei Θ̃i2 Θi3

∗ −γ2I HT
i 0

∗ ∗ −Xi 0
∗ ∗ ∗ Θi4

⎞

⎠.

By Lemma 3.2, we have

Θi ≤ Θi0 +
[
BT
i 0 DT

i 0
]T
Ri

[
BT
i 0 DT

i 0
]
+
[
Yi 0 0 0

]T
R−1

i F2
0i

[
Yi 0 0 0

]
, (3.24)
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by Schur complement, we know that Θ̃i < 0 imply that Θi < 0. Therefore, we can know from
Theorem 3.4 that the LSMJSs (3.14) are stabilizable with convergence rate α and disturbance
attenuation γ . This completes the proof.

3.2. Robust Reliable H∞ for NSMJSs

In this section, we consider the following nonlinear stochastic Markovian jump systems
(NSMJSs) under the state feedback controller:

dx(t) =
[
(Ai + BiFiKi)x(t) + Eiv(t) + fi(x(t))

]
dt

+
[
(Ci +DiFiKi)x(t) +Hiv(t) + gi(x(t))

]
dw(t),

z(t) = Hix(t),

x(t0) = x0.

(3.25)

Theorem 3.6. If there exist the positive matrices Xi > 0, and the constant matrices Yi with
approximate dimensions, for the positive constant εi and the given scalar λi, such that the following
LMIs hold:

Θi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θi1 Ei I − λiXiT̂i2 ΘT
i2 ΘT

i2 Θi3

∗ −γ2I 0 HT
i HT

i 0

∗ ∗ −λiI 0 0 0

∗ ∗ ∗ −Xi 0 0

∗ ∗ ∗ ∗ −εiI 0

∗ ∗ ∗ ∗ ∗ Θi4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, i ∈ S, (3.26)

where Θi3 = (εiGi λiXiT̂i1 Θi3), Θi4 = diag(−εiI,−λiT̂i1,Θi4), T̂i1 = (TT
i1Ti2 + TT

i2Ti1)/2, T̂i2 =
−(TT

i1 + TT
i2)/2, then the NSMJSs (3.25) are exponential mean-square stable with convergence rate

α and disturbance attenuation γ . In this case, the desired controllers are given as follows:

Ki = YiX
−1
i . (3.27)

Proof. Defining the following Lyapunov function:

V (x(t), t, i) = V (x(t), t, r(t) = i) = xT (t)Pix(t), (3.28)
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by Itô formula, we get the following:

LV (x(t), t, i) = 2xT (t)Pi

[
(Ai + BiFiKi)x(t) + Eiv(t) + fi(x(t))

]
+
∑

j∈S
λijx

T (t)Pjx(t)

+
[
(Ci +DBiFiKi)x(t) +Hiv(t) + gi(x(t))

]T

× Pi

[
(Ci +DBiFiKi)x(t) +Hiv(t) + gi(x(t))

]

≤ σT (t)Σiσ(t) + xT (t)GT
i PiGix(t) + 2[(Ci +DBiFiKi)x(t) +Hiv(t)]TPigi(x(t)),

(3.29)

where σT (t) = [xT (t), vT (t), fT
i (x(t))], Σi =

(
Mi PiEi Pi

ET
i Pi 0 0
PT
i 0 0

)
+
[
CT

i +K
T
i F

T
i D

T
i

HT
i

0

]
Pi

[
CT

i +K
T
i F

T
i D

T
i

HT
i

0

]T
.

By Lemma 3.2, it follows that

2[(Ci +DBiFiKi)x(t) +Hiv(t)]TPigi(x(t))

≤ σT (t)

⎡
⎢⎢⎢⎣

CT
i +KT

i F
T
i D

T
i

HT
i

0

⎤
⎥⎥⎥⎦
ε−1
i I

⎡
⎢⎢⎢⎣

CT
i +KT

i F
T
i D

T
i

HT
i

0

⎤
⎥⎥⎥⎦

T

σ(t) + xT (t)(εiPiGi)Tε−1
i I(εiPiGi)x(t),

(3.30)

from (2.4) (fi(x(t)) − T1ix)
T (fi(x(t)) − T2ix) ≤ 0, i ∈ S which are equivalent to

⎡

⎣
x(t)

f(x(t))

⎤

⎦
T⎡

⎣
T̂i1 T̂i2

TT
i2 I

⎤

⎦

⎡

⎣
x(t)

f(x(t))

⎤

⎦ ≤ 0, i ∈ S. (3.31)

Considering the stochastic H∞ performance level for the resulting systems (3.25) with
nonzero exogenous disturbance input (v(t)/= 0), for any t > 0, we define that

J(t) = E

{∫ t

0

[
zT (s)z(s) − γ2vT (s)v(s)

]
ds

}
. (3.32)
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By general Itô formula, for a given positive scalar λ, we get the following:

J(t)

= E

{∫ t

t0

[
zT (s)z(s) − γ2vT (s)v(s) +LV (x(s), s, i)

]
ds

}
− E(V (x(t), t, i))

≤E
{∫ t

0

[
zT (s)z(s)−γ2vT (s)v(s)+LV (x(s), s, i)−λi

(
fi(x(t))−T1ix(t)

)T(
fi(x(t))−T2ix(t)

)]
ds

}

≤ E

{∫ t

0
σT (s)Ωiσ(s)ds

}
,

(3.33)

where

Ωi = Σi +

⎛
⎜⎜⎝

(εiPiGi)Tε−1
i I(εiPiGi) + JTi Ji 0 0

0 −γ2I 0

0 0 0

⎞
⎟⎟⎠

+

⎡
⎢⎢⎣

CT
i +KT

i F
T
i D

T
i

HT
i

0

⎤
⎥⎥⎦ε
−1
i I

⎡
⎢⎢⎣

CT
i +KT

i F
T
i D

T
i

HT
i

0

⎤
⎥⎥⎦

T

+

⎛
⎜⎜⎝

−λT̂i1 0 −λT̂i2
0 0 0

−λT̂T
i2 0 −λI

⎞
⎟⎟⎠.

(3.34)

By Schur complement lemma, we see that Ωi < 0 is equivalent to the following matrix
inequalities:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Mi − λiT̂i1 Ei Pi − λiT̂i2 X−1
i ΘT

i2 X−1
i ΘT

i2 εiPiGi JTi

∗ −γ2I 0 HT
i HT

i 0 0

∗ ∗ −λiI 0 0 0 0

∗ ∗ ∗ −P−1
i 0 0 0

∗ ∗ ∗ ∗ −εiI 0 0

∗ ∗ ∗ ∗ ∗ −εiI 0

∗ ∗ ∗ ∗ ∗ ∗ −I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, i ∈ S, (3.35)

which is implied in LIMs (3.26). Hence J(t) < 0.
Therefore, the inequality ‖z‖E2

< γ‖v‖2 holds. The proof is completed.

Similar to the proof of Theorem 3.5, we can get the following theorem without proof
immediately.
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Figure 1: The Markovian chain r(t).

Theorem 3.7. If there exist the positive matrices Xi > 0, and the constant matrices Yi with
approximate dimensions, for the positive constant εi and the given scalar λi, such that the following
LMIs hold

Θ̂i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ̃i1 Ei I − λiXiT̂i2 Θ̃T
i2 Θ̃T

i2 BiRi YT
i Θi3

∗ −γ2I 0 HT
i HT

i 0 0 0

∗ ∗ −λiI 0 0 0 0 0

∗ ∗ ∗ −Xi 0 DiRi 0 0

∗ ∗ ∗ ∗ −εiI 0 0 0

∗ ∗ ∗ ∗ ∗ −Ri 0 0

∗ ∗ ∗ ∗ ∗ ∗ −RiF̃
−2
i0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Θi4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0, i ∈ S. (3.36)

then the NSMJSs (3.27) are exponential mean-square stable with convergence rate α and disturbance
attenuation γ . In this case, the desired controllers are given as follows:

Ki = YiX
−1
i . (3.37)

4. Numerical Example with Simulation

In this section, we will give an example to show the usefulness of the derived results and the
effectiveness of the proposed methods (Figure 1).
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Figure 2: The state curve of uncontrolled LSMJSs (3.14).

Consider linear SMJSs (3.14) with S = {1, 2}, and the system parameters are given as
follows:

A1 =

⎛
⎜⎜⎝

0.3 0.3 0.5

−0.2 0 −0.3

0.1 0 0.3

⎞
⎟⎟⎠, A2 =

⎛
⎜⎜⎝

0.5 0.2 0.2

−0.2 0 −0.4

0.2 0 0.2

⎞
⎟⎟⎠,

C1 =

⎛
⎜⎜⎝

0.5 0.2 0.1

0 0.2 −0.1

0.3 −0.1 −0.3

⎞
⎟⎟⎠, C2 =

⎛
⎜⎜⎝

0.2 0.1 0.3

0.1 −0.3 0.5

0 0.1 −0.5

⎞
⎟⎟⎠,

B1 = diag(0.5, 0.4, 0.5), B2 = diag(0.5, 0.4, 0.5),

E1 = E2 = (0.3, 0.1, 0.5)T , H2 = H1 = (0.2, 0.1, 0.3)T ,

D2 = D1 = diag(0.2, 0.3, 0.4), J1 = (0.3, 0.2, 0.6),

J2 = (0.1,−0.1, 0.4), γ = 0.9.

(4.1)

The actuator failure parameters are as follows:

0.2 ≤ fi1 ≤ 0.4, 0.1 ≤ fi2 ≤ 0.7, 0.1 ≤ fi3 ≤ 0.9, i ∈ S = {1, 2}. (4.2)

From (2.8) and (2.9), we have

F10 = F20 = diag(0.3, 0.4, 0.5), F̃10 = F̃20 = diag(0.1, 0.3, 0.4). (4.3)
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Figure 3: The state curve of closed-loop LSMJSs (3.14).
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Figure 4: The curve of |z(t)|2 − γ2|v(t)| for controlled LSMJSs (3.14).

From Figure 2, we can see that the uncontrolled LSMJSs are not stable, according to
Theorem 3.5. By using the LMI toolbox, the controller parameters can be calculated as follows:

K1 =

⎛
⎜⎜⎝

−56.2264 −6.3843 −67.8069

−1.1129 −8.9588 −3.6802

−0.9754 0.1795 −3.2600

⎞
⎟⎟⎠, K2 =

⎛
⎜⎜⎝

−41.7846 6.0578 −200.8802

−1.1365 −7.5245 −11.0209

0.1171 −0.4055 −0.7561

⎞
⎟⎟⎠. (4.4)

Figures 3 and 4 give the simulation results of the response for the closed-loop
LSMJSs, which confirm that the closed-loop LSMJSs are exponential mean-square stable with
convergence rate α and disturbance attenuation γ .
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5. Conclusions

In this paper, we have studied the robust reliable H∞ control problems for a class of NSMJSs.
The system under study contains Itô-type stochastic disturbance, Markovian jumps, sector-
bounded nonlinearities, and norm-bounded stochastic nonlinearities. Based on the Lyapunov
stability theory and Itô differential rule, sufficient condition which ensures exponential mean-
square stable with convergence rate α and disturbance attenuation γ for SMJSs has been
established in Lemma 3.3. By the lemma, together with the LMIs techniques, the sufficient
conditions for the designation of the robust reliable H∞ controller of linear SMJSs and
NSMJSs have been obtained in terms of LMIs. Finally, a numerical example has been given to
show the usefulness of the derived results and the effectiveness of the proposed methods. It is
possible to extend our main results to the NSMJSs with time delay by using delay-dependent
techniques, which is one of the future research topics.
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In this paper, based on the kinematic accuracy theory and matrix-based system reliability analysis
method, a practical method for system reliability analysis of the kinematic performance of planar
linkages with correlated failure modes is proposed. The Taylor series expansion is utilized to derive
a general expression of the kinematic performance errors caused by random variables. A proper
limit state function (performance function) for reliability analysis of the kinematic performance of
planar linkages is established. Through the reliability theory and the linear programming method
the upper and lower bounds of the system reliability of planar linkages are provided. In the course
of system reliability analysis, the correlation of different failure modes is considered. Finally, the
practicality, efficiency, and accuracy of the proposed method are shown by a numerical example.

1. Introduction

Mechanisms are the skeletons of modern mechanical products and devices. The kinematic
accuracy of mechanisms greatly influences the performance and reliability of the mechanical
products and devices. Traditionally, in mechanism synthesis, a designer often tries to choose
proper mechanism configurations and component dimensions to make the designed mecha-
nism meet prespecified requirements. However, in the physical realization of any constituent
member, primary errors always occur due to technological features of production. Once a
theoretical solution is translated into physical reality, a theoretically feasible mechanism
might be unable to meet practical requirements because of the effects of uncertain factors (e.g.
manufacturing tolerances, elastic deformations and joint clearances). Since these uncertain
factors are inevitable, it is necessary to build a proper mode to quantify the effects of the
uncertain factors on the accuracy of mechanisms and optimally allocate the working ranges
of the mechanisms [1–3].

In recent years, with the continual increase of the demands of consumers on the kine-
matic and dynamic performance of mechanical products, the theory of mechanical reliability



2 Mathematical Problems in Engineering

is more and more widely applied in mechanism analysis and synthesis. Mechanism reliability
can simply be defined as the capability that a mechanism performs its prespecified movement
accurately, timely, and coordinately throughout its lifetime. Based on the analysis of the
sources of original errors, Sergeyev [4] clarified the main failure modes of mechanisms and
presented an analytical method for reliability analysis of mechanisms preliminarily. Sub-
sequently, there have been various attempts to derive the reliability of the kinematic and
dynamic accuracy of mechanisms, such as the linear regression method [5], the mean value
first-order second-moment method [6], the advanced first-order second-moment method [7],
the hybrid dimension reduction method [8], and the Monte-Carlo simulation method [9].

As shown in practical engineering, most performance deficiencies of mechanical pro-
ducts are found in the stage of systematic analysis, therefore it’s important to build a proper
system reliability analysis model to evaluate the performance quality of mechanical equip-
ments and products. Recently, Zhang et al. [9] studied the method for system reliability anal-
ysis of mechanisms without considering the interactions of failure modes. However, to the
best of the authors’ knowledge, system reliability analysis of mechanisms with correlated
failure modes has not been reported yet. Combining the mechanism theory and system reli-
ability analysis method, this paper proposes a general method for system reliability analysis
of planar mechanisms with correlated failure modes.

2. Reliability Analysis for Kinematic Performance of Planar Linkages

The kinematic performance function of planar linkages can be expressed as [10]

Q = Q(V,L,U), (2.1)

where Qs×1 is the performance parameter vector. For example, for a function generator, Qs×1

may be referred to the positions of the output link, and for a path generator, it may be the
coordinates of a point on the output link. Vm×1 is the input (independent) variable vector,
Lp×1 is the effective dimension variable vector, and Un×1 is the output (dependent) variable
vector which can be obtained by solving the loop closure equations of planar linkages

F(L,U,V) = 0. (2.2)

The performance errors of the mechanism under consideration can be obtained as

ΔQ =
∂Q
∂LT

ΔL +
∂Q
∂UT

ΔU +
∂Q
∂VT

ΔV, (2.3)

where ∂Q/∂LT , ∂Q/∂UT and ∂Q/∂VT are Jacobian matrices, whose values are got at the
mean values of the random variables. ΔLp×1, ΔUn×1, and ΔVm×1 are the tolerance vectors
of random design variables. ΔVm×1 and ΔLp×1 are determined by several objective factors
such as the machining accuracy, the assembly accuracy and the operation precision. From
(2.3), ΔUn×1 can be obtained:

ΔU = −
[
∂F
∂UT

]−1( ∂F
∂VT

ΔV +
∂F
∂LT

ΔL
)
. (2.4)
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A limit state is defined as a condition in which a mechanism becomes unsuitable for
its intended motion (i.e., a violation of the serviceability limit state). The corresponding limit
state functions (performance functions) when the mechanism meets the requirements of the
upper and lower limits are

gU(X) = ε −ΔQ = ε − JΔX,

gL(X) = ΔQ + ε = JΔX + ε,
(2.5)

where

J =

[
∂Q
∂VT

− ∂Q
∂UT

(
∂F
∂UT

)−1 ∂F
∂VT

,
∂Q
∂LT

− ∂Q
∂UT

(
∂F
∂UT

)−1 ∂F
∂LT

]
. (2.6)

gU and gL are called the upper and lower limit state functions, X = [V1, . . . , Vm, L1, . . . , Lp]
T

is the basic variables, ε is the allowable errors, and ΔX = [ΔV1, . . . ,ΔVm,ΔL1, . . . ,ΔLp]
T are

used to represent the random error vector of basic variables.
The kinematic reliability of a mechanism is the probability that the mechanism realizes

its required motion within a specified tolerance limit. The lower limit reliability of the kth
dependent variable, Qk, is defined as:

R
(k)
L =

∫

g
(k)
L (X)>0

f(X)dX, (2.7)

where f(X) is the joint probability density function of multidimensional basic random
variables, X and g

(k)
L (X) = ΔQk+εk = JkΔX+εk is the limit state function of the kth dependent

variable, Qk. Note that Jk is the kth row of matrix J.

The mean value, μ(k)
L , and variance, (σ(k)

L )
2
, of the limit state function, g(k)

L (X), can be
expressed as

μ
(k)
L = E

[
g
(k)
L (X)

]
= JkE(ΔX) + εk,

(
σ
(k)
L

)2
= Var

[
g
(k)
L (X)

]
= J[2]k cs(Cov(ΔX)),

(2.8)

where E(ΔX) and Cov(ΔX) are the mean value vector and covariance matrix of primary
errors, respectively, Jk is the kth row of matrix J, (·)[2] = (·)⊗(·) is the second-order Kronecker
power of (·), and ⊗ represents Kronecker product [11]

Ap×q ⊗ Bs×t =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11B a12B . . . a1qB

a21B a22B . . . a2qB

...
...

. . .
...

ap1B ap2B . . . apqB

⎤
⎥⎥⎥⎥⎥⎥⎦

ps×qt

, (2.9)
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cs(·) is the column string of (·), the column sequence

cs
(
Ap×q

)
=

q∑

j=1

(
ejq×1 ⊗ Ip×p

)
Ap×qe

j

q×1, (2.10)

where Ip×p is identity matrix with p × p dimensions, and ejq×1 is the jth elementary vector
with q × 1 dimensions, all zeros except 1 in the jth position.

In the mechanism literature, the distribution of the random variables is always
assumed independent normal [4–8]. The distance from the “minimum” tangent plane to the
failure surface may be used to approximate the actual failure surface, and the reliability index
of the ith output variable is defined as:

β
(k)
L =

μ
(k)
L

σ
(k)
L

, (2.11)

which can be used to reflect the position (the distance from the original point) and dispersion
degree of the safety margin. When the primary errors are normally and independently
distributed, the unary estimator of the kinematic performance reliability of planar linkages is
represented as follows:

R
(k)
L = Φ

(
β
(k)
L

)
, (2.12)

where Φ(·) is the standard normal distribution function.
The correlation coefficient between performance functions g(k)

L and g
(t)
L is

Cov
(
g
(k)
L , g

(t)
L

)
= E

[(
g
(k)
L − g(k)

L

)(
g
(t)
L − g

(t)
L

)]
=

m+l∑

i=1

m+l∑

j=1

∂g
(k)
L

∂Xi

∂g
(t)
L

∂Xj
Cov

(
Xi,Xj

)
. (2.13)

The correlation coefficient between performance functions g(k)
L and g

(t)
L is

ρ
(k,t)
L =

Cov
(
g
(k)
L , g

(t)
L

)

√
Var

(
g
(k)
L

)
Var

(
g
(t)
L

) . (2.14)

Then the joint reliability of g
(k)
L and g

(t)
L can be estimated by the joint normal distribution

function:

R
(k,t)
L = 1 −

∫∫0

−∞
fkt

(
g
(k)
L , g

(t)
L

)
dg

(k)
L dg

(t)
L = 1 −

∫−βtL

−∞

∫−βkL

−∞
φ
(k,t)
L (u, v)dudv

= 1 −
∫−βtL

−∞
Φ

⎡
⎢⎢⎣
−βkL − ρ

(k,t)
L v

√
1 −

(
ρ
(k,t)
L

)2

⎤
⎥⎥⎦φ(v)dv,

(2.15)
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where

fkt
(
g
(k)
L , g

(t)
L

)
=

1

2πσ(k)
L σ

(t)
L

√[
1 −

(
ρ
(k,t)
L

)2
]

× exp

⎧
⎪⎪⎨

⎪⎪⎩
− 1

2
[

1 −
(
ρ
(k,t)
L

)2
]

⎡
⎢⎣

(
g
(k)
L − μ(k)

L

)2

Var
(
g
(k)
L

) − 2ρ(k,t)L

(
g
(k)
L − μ(k)

L

)(
g
(t)
L − μ

(t)
L

)

σ
(k)
L σ

(t)
L

+

(
g
(t)
L − μ

(t)
L

)2

Var
(
g
(t)
L

)

⎤
⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭

(2.16)

is the joint PDF of g(k)
L and g

(t)
L .

In the same way, the reliability corresponding to each failure modes and the joint reli-
ability between each two failure modes while the mechanism satisfies the upper limits could
be obtained. Then the reliability corresponding to each failure model and the joint reliability
between two failure models while the mechanism meets the upper and lower limits can be
derived as

Rk = R
(k)
L + R

(k)
U − 1,

R(k,t) = R
(k,t)
L + R

(k,t)
U − 1.

(2.17)

3. System Reliability of Linkage Performance

For convenience system reliability analysis of structures with multi-failure modes is often
performed by consuming that the failure modes are independent between each other. In
most cases, however, the failure modes of a mechanism (e.g., the position and pose of
a rigid-body guidance mechanism) are correlated. Consequently, it is of great meaning
to propose an accurate and efficient system reliability analysis method to evaluate the
working state of the mechanism. Ditlevsen [12] presented the well-known “narrow bounds
theory” for computing system reliability. The correlation between each of the two failure
modes is considered in Ditlevsen’s method, making it more physically reasonable. And then
the bounds method in which the system reliability is estimated by computing the bound
values developed continuously and received wide acceptance [13–15]. In this section, a
practical method for system reliability analysis of mechanisms is proposed by using the linear
programming.

Linear programming solves the problem of minimizing or maximizing a linear func-
tion, whose variables are subject to linear equality and inequality constraints. And the linear
programming for solving the possible bounds on the system reliability of linkages can be pre-
sented as follows:
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min(max) cTp
s.t. a1p = b1

a2p ≥ b2,

(3.1)

where p is the design variable vector of the linear programming, c is a vector of coefficients,
cTp is the linear objective function, and a1, a2, b1, and b2 are the coefficient matrices and
vectors that represent the equality and inequality constraints, respectively.

In the proposed system reliability analysis method, the kinematic failure space of a
mechanism can be divided into 2n mutually exclusive and collectively exhaustive (MECE)
events according to the number of failure modes, n. Typically, for a system with three
failure modes, the performance sample space can be depicted as Figure 1 by defining
kinematic safety of the mechanism as event S and defining the performance Qi meets the
requirement of performance quality as event Ei. The space S is divided into 8 MECE events,
{e1 = E1E2E3, e2 = E1E2E3, e3 = E1E2E3, e4 = E1E2E3, e5 = E1E2E3, e6 = E1E2E3, e7 =
E1E2E3, and e8 = E1E2E3}. Let pi = P(ei), i = 1, 2, . . . , 8 denotes the probability of the ith basic
MECE event. These probabilities serve as the design variables in the linear programming
problem to be formulated. According to the basic definition of probability,

8∑

i=1

pi = 1, (3.2)

pi ≥ 0, i = (1, 2, . . . , 8). (3.3)

The constraint (3.2) is analogous to the equality constraints in linear programming (3.1) with
a1 being a row vector of 1′s and b1 = 1, whereas (3.3) is analogous to the inequality constraints
with a2 being an 8 × 8 identity matrix and b2 a 8 × 1 vector of 0′s.

As can be seen from Figure 1,

P(Ei) = Pi =
∑

r:er⊆Ei

pr , (3.4)

P
(
EiEj

)
= Pij =

∑

r:er⊆EiEj

pr , (3.5)

scilicet,

P(E1) = P1 = p1 + p3 + p4 + p7,

P(E2) = P2 = p1 + p2 + p4 + p6,

P(E3) = P3 = p1 + p2 + p3 + p5,

P(E1E2) = P12 = p1 + p4,

P(E1E3) = P13 = p1 + p3,

P(E2E3) = P23 = p1 + p2.

(3.6)
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Figure 1: Sample space for the linkage.

Equations (3.4) and (3.5) provide linear equality constraints on the design variable p with a1 a
matrix having elements of 0 or 1 and b1 a vector listing the known reliability. With the increase
of the known or computed reliability, such as the uni-, bi-, and sometimes trimode reliability,
the upper and lower bounds of the system reliability obtained by the linear programming
become increasingly accuracy. However, there is always a tradeoff between complexity and
accuracy, and with the increase of the constraints, the convergence of the linear programming
becomes more and more difficult.

By now, the coefficient matrices and vectors of the constraint functions of linear
programming (3.1) to obtain the upper and lower bounds of the system reliability of the
mechanism are completely established, which are

a1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

1 0 1 1 0 0 1 0

1 1 0 1 0 1 0 0

1 1 1 0 1 0 0 0

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b1 =
[
1 P1 P2 P3 P12 P13 P23

]T
,

a2 = I8 × 8,

b2 =
[
0 0 0 0 0 0 0 0

]T
,

(3.7)

where I8 × 8 is identity matrix with 8 × 8 dimensions.
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Table 1: Coefficients of the object functions cTp.

c1 c2 c3 c4 c5 c6 c7 c8

E1 ∪ E2 ∪ E3 1 1 1 1 1 1 1 0
E1 ∩ E2 ∩ E3 1 0 0 0 0 0 0 0
E1 ∩ E2 ∪ E3 1 1 1 1 1 0 0 0
(E1∪E2)∩(E2∪E3) 1 1 1 0 0 0 1 0

A

B

C

D
E

F

M
y

x

α2

α3

α4
α6

α7

r1

r2

r3

r4

r5

r6

r7

α9

r8

r9

G

Figure 2: Double-rocker four-bar linkage with driving crank.

According to the relationship between failure modes (series or parallel), there are
four different kinds of systems. As shown in Table 1, the coefficient ci (i = 1, 2, . . . , 8) of
the object functions of linear programming (3.1) for each kind of system can be determined,
respectively. So far, the linear programming to derive the lower and upper bounds of the
system reliability of a mechanism with random parameters is completely established.

4. Numerical Examples

Consider the vector loop as shown in Figure 2, the nominal geometry characteristics of the
double-rocker four-bar linkage with driving crank are shown as: r1 = 2.36 cm, r2 = 1.33 cm,
r3 = 5.08 cm, r4 = 3.94 cm, r5 = 1.00 cm, r6 = 0.45 cm, r7 = 1.50 cm, r8 = 1.00 cm, r9 = 6.00 cm,
and α9 = 30◦. Among them, r1, r2, r3, and r4 are random variables, which are normally and
independently distributed, and the variation coefficient of the random variables are supposed
to be c = 0.001. All other variables are deterministic parameters. According to the working
condition, the maximum allowable values of the kinematic performance errors vector are
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ε = [0.015 rad, 0.8 mm, 0.6 mm]T . The double-rocker four-bar linkage can work normally,
only if all the kinematic performance quality requirements are satisfied (i.e., the linkage
system is series). It is required to solve the system reliability of the double-rocker four-bar
linkage in its working range (α6 = 150◦ ∼270◦).

As shown in Figure 1, in the double-rocker four-bar linkage with driving crank,
the effective dimension variable vector is L = [r1, r2, r3, r4, r5, r6, r7, r8, r9, α9]

T , the
input (independent) and output (dependent) variable vectors are V = [α6] and U =
[α2, α3, α4, α7]

T , respectively, the performance parameter vector is Q = [α3, Mx, My]
T ,

then the closure equations of the planar linkage are

F =

⎡
⎢⎢⎢⎢⎢⎣

r6 cosα6 + r7 cosα7 − r8 cosα2 − r5

r6 sinα6 + r7 sinα7 − r8 sinα2

r2 cosα2 + r3 cosα3 − r4 cosα4 − r1

r2 sinα2 + r3 sinα3 − r4 sinα4

⎤
⎥⎥⎥⎥⎥⎦
. (4.1)

The kinematic performance functions of the linkage are

Q =

⎡
⎢⎢⎣

α3 + α9

r2 cosα2 + r9 cos(α3 + α9)

r2 sinα2 + r9 sin(α3 + α9)

⎤
⎥⎥⎦, (4.2)

Suppose that X = [r1, r2, r3, r4]
T is the random variable vector, then the Jacobian matrices are

derived as:

∂F

∂XT
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

−1 cosα2 cosα3 − cosα4

0 sinα2 sinα3 − sinα4

⎤
⎥⎥⎥⎥⎥⎦
,

∂F

∂UT
=

⎡
⎢⎢⎢⎢⎢⎣

r8 sinα2 0 0 −r7 sinα7

−r8 cosα2 0 0 r7 cosα7

−r2 sinα2 −r3 sinα3 r4 sinα4 0

r2 cosα2 r3 cosα3 −r4 cosα4 0

⎤
⎥⎥⎥⎥⎥⎦
,

∂Q

∂XT
=

⎡
⎢⎢⎣

0 0 0 0

0 cosα2 0 0

0 sinα2 0 0

⎤
⎥⎥⎦,

∂Q

∂UT
=

⎡
⎢⎢⎣

0 1 0 0

−r2 sinα2 −r9 sin(α3 + α9) 0 0

r2 cosα2 −r9 cos(α3 + α9) 0 0

⎤
⎥⎥⎦.

(4.3)
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Figure 3: System reliability of the double-rocker four-bar linkage with driving crank.

By substituting (4.3) into (2.3), the kinematic performance error vector, ΔQ, of the linkage
can be obtained. Then (2.12) can be used to obtain the reliability corresponding to each failure
mode. The covariance matrix of the limit sate functions of the planar linkage can be derived
from (3.5), and then the joint reliability between each two failure modes can also be derived
from (2.15).

The upper and lower bounds of the system reliability of the double-rocker four-bar
linkage can be obtained by solving the linear program (3.1), and the results are, respectively,
shown as the pan dash line and triangle dash dot line in Figure 3. Besides the system
reliability of the manipulator using Monte-Carlo simulation with 106 samples is shown as
the point solid line. What needs to be specially notified is that, in order to demonstrate the
proposed mechanism system reliability analysis method, the truncation errors caused by the
first-order Taylor expansion are omitted in the Monte-Carlo simulation. Comparing with the
results of numerical simulation, the kinematic performance system reliability of the double-
rocker four-bar linkage obtained by the proposed method is of high accuracy.

5. Conclusions

Using the mechanism accuracy theory and (system) reliability analysis method, this paper
proposes a general method for system reliability analysis of planar linkages with correlated
failure modes. The proposed method is applicable to any system defined as a logical
expression of kinematic failure modes of planar linkages. This includes series and parallel
systems, as well as general systems. Utilization of the first-order Taylor expansion technique
in error estimation of kinematic performance of mechanisms must result in a certain degree
of truncation errors. And these errors will increase with the increase of sensitivity of
performance functions to design parameters. The accuracy of system reliability analysis can
be improved by increasing of the order of Taylor expansion. However, in this process, the
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complexity of calculation will greatly increase. Further studies are needed to provide a more
precise and robust method for reliability analysis of kinematic accuracy of mechanisms.
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We study a multi-period mean-variance portfolio selection problem with an uncertain time horizon
and serial correlations. Firstly, we embed the nonseparable multi-period optimization problem into
a separable quadratic optimization problem with uncertain exit time by employing the embedding
technique of Li and Ng (2000). Then we convert the later into an optimization problem with
deterministic exit time. Finally, using the dynamic programming approach, we explicitly derive the
optimal strategy and the efficient frontier for the dynamic mean-variance optimization problem.
A numerical example with AR(1) return process is also presented, which shows that both the
uncertainty of exit time and the serial correlations of returns have significant impacts on the
optimal strategy and the efficient frontier.

1. Introduction

The portfolio selection problem, which is one of great importance from both theoretical and
practical perspectives, aims to find the best allocation of wealth among different assets in
financial market. The mean-variance analysis pioneered by Markowitz [1] is one of the most
widely used frameworks dealing with portfolio selection problems. In the past few decades,
the mean-variance model stimulates a great deal of extensions and applied researches under
single-period setting. Due to the nonseparability of multi-period mean-variance models, only
up to 2000, Li and Ng [2] develop the embedding technique and solve a multi-period mean-
variance portfolio selection problem analytically. In their work, the returns of risky assets are
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assumed to be independent and identically distributed, and this assumption is also adopted
by lots of the later literature, such as Guo and Hu [3].

A large number of empirical analyses of the assets price dynamics show that there
exist salient serial correlations in the returns of financial assets, and the correlation structure
is very complicated. The ARMA model is developed to study the feature of the financial
assets returning with serial correlations in the field of econometrics, and it is widely used in
the empirical research of financial market. Hakansson [4, 5] had already taken the impact
of serial correlations into account on his portfolio selection problems and had investigated
the myopic optimal portfolio strategies when there existed serial correlations of yields and
not. However, due to the complexity of multi-period portfolio selection problem with serial
correlations of returns, there are little relevant literature and results focused on the impact
of serial correlations on the optimal portfolio selection strategy. Balvers and Mitchell [6] first
derived an analytical solution for a dynamic portfolio selection problem with autocorrelation
assets returns, where the utility function was a negative exponential function, and the assets
returns were subject to the normal ARMA(1,1) process. Dokuchaev [7] analyzed a discrete-
time portfolio selection model with serial correlations and found the correlation structure
which ensured the optimal strategy being myopic for both the power and the log utility
functions. Çelikyurt and Özekici [8] studied such models with the assumption that the
market evolution followed a Markov chain and the states were observable, whose objective
functions depended on the mean and the variance of the terminal wealth. Çanakoğlu
and Özekici [9] considered the utility maximization problem with imperfect information
modulated by a hidden Markov chain, and obtained the explicit characterization of the
optimal strategy and the value function. Wei and Ye [10] extended the work of [8] to take
the risk control over bankruptcy into consideration. Xu and Li [11] investigated a multi-
period mean-variance portfolio selection problem with one risky asset whose returns were
serially correlated. By using the embedding technique of Li and Ng [2] and the dynamic
programming approach, they obtained the explicit optimal strategy and proposed a measure
of the risky asset value. To our knowledge, up to now, quite a few papers consider serial
correlations of returns under dynamic portfolio selection framework.

On the other hand, the literature mentioned above makes an important hypothesis,
implicitly or explicitly, that an investor knows her/his final exit time exactly at the moment
of entering the market and making investment decisions, that is, the investment horizon
is deterministic, either finite or infinite. In practice, however, the investor’s exit time may
be impacted by many exogenous and endogenous factors. An investor may exit from the
market when she/he faces an unexpected need of huge consumption, sudden death, job
loss, early retirement, investment target achieved, and so forth. Thus, it is more practical
to weaken the restrictive assumption that the investment horizon is deterministic. If the exit
time is uncertain, it is a random variable. As far as we know, study on the uncertain exit
time can be dated back to Yarri [12], who studied an optimal consumption problem with an
uncertain investment horizon. Hakansson [13] extended the work of [12] to a multi-period
setting with a risky asset and an uncertain time horizon. Merton [14] addressed a dynamic
optimal investment and consumption problem, and the uncertain retiring time was defined
as the first jump of an independent Poisson process. Karatzas and Wang [15] considered an
optimal investment problem in complete markets with the assumption that the exit time was
a stopping time of the asset price filtration. Martellini and Uros̆ević [16] extended the original
model of [1] to a static mean-variance model in which the exit time was dependent on asset
returns. Guo and Hu [3] analyzed a multi-period mean-variance investment problem with
uncertainty time of exiting. Huang et al. [17] dealt with the portfolio selection problem with
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uncertain time horizon by adopting the worst-case CVaR methodology. Blanchet-Scalliet et al.
[18] extended the optimal investment problem of [14] to allow the investor’s time horizon to
be stochastic and correlate to the returns of risky assets. Yi et al. [19] considered a multiperiod
asset-liability management problem with an uncertain investment horizon under the mean-
variance framework.

To the best of our knowledge, there is no work that considers the multiperiod mean-
variance portfolio selection with an uncertain investment horizon and serially correlate
returns at the same time. In the present paper, we try to tackle such problem. We assume
that the distribution of the exit time is known, and the serial correlations of risky asset
returns are settled the same as Hakansson [5] and Xu and Li [11]. We first embed our
nonseparable problem, in the sense of dynamic programming, into a separable one by
employing the embedding technique of Li and Ng [2]; then transform the separable problem
with uncertain exit time into one with deterministic time horizon; finally solve the problem
with deterministic time horizon by using the dynamic programming approach.

The rest of the paper is organized as follows. Section 2 formulates our problem and
embeds it into a separable auxiliary problem. In Section 3, we solve the tractable auxiliary
problem. In Section 4, we derive the optimal strategy and the efficient frontier of the original
problem. Section 5 extends the results to the case of multiple risky assets. Section 6 gives a
numerical simulation to show the impacts of exit time and serial correlations on the mean-
variance efficient frontier. Finally, we conclude the paper in Section 7.

2. Modeling

We consider a financial market consisting of a risky asset and a riskless asset. The return
rates of the riskless asset and risky asset at period t + 1 (the time interval from time t to time
t + 1) are denoted by r0

t and rt, respectively. It is assumed that r0
t is a constant and rt is a

(t+ 1)-measurable random variable. The risky asset will not degenerate into the riskless asset
at any period, and its return rates {rt, t = 0, 1, . . .} are correlated, that is, the value of rt is
dependent on the values of rs, s < t, which are the realized returns of risky asset at the past
periods. Thus, at time t, the expectation of a random variable, denoted by Et, is a conditional
expectation based on all of the history information up to time t.

We assume that an investor, who joins the market at time 0 with the initial wealth x0,
may invest her/his wealth among the risky asset and the riskless asset within a time horizon
of T periods. At the beginning of each period t (t = 1, . . . , T), the investor may adjust the
amount invested in the risky and riskless assets by transaction. However, she/he may be
forced to leave the financial market at time τ before T by some uncontrollable reasons. The
uncertain exit time τ is supposed to be an exogenously random variable with the discrete
probability distribution p̃t = Pr{τ = t}, t = 1, 2, . . .. Therefore, the actual exit time of the
investor is T ∧ τ := min{T, τ}, and its probability distribution is

pt := Pr{T ∧ τ = t} =

⎧
⎪⎪⎨

⎪⎪⎩

p̃t, t = 1, . . . , T − 1,

1 −
T−1∑

t=1

p̃t, t = T.
(2.1)

Let ut be the amount invested in the risky asset at the beginning of period t + 1. The
investment series over T periods, u := {u0, u1, . . . , uT−1}, is called an investment strategy.
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Define the excess return of risky asset at period t + 1 (t = 0, 1, . . . , T − 1) as Rt = rt − r0
t ,

which is assumed to be nondegenerated before time t + 1, that is, the risky asset will not
degenerate into the riskless asset at period t + 1. Let xt be the wealth of the investor at time
t (t = 0, 1, . . . , T). If the investment strategy u is used in a self-financing way, the wealth
dynamics can be described mathematically as

xt+1 = r0
t xt + Rtut, t = 0, 1, . . . , T − 1. (2.2)

The multi-period mean-variance portfolio selection problem with uncertain exit time
and serially correlate returns now can be formulated as

P(ω)

⎧
⎨

⎩
max

u
E0(xT∧τ) −ωVar0(xT∧τ)

s.t. xt+1 = r0
t xt + Rtut, t = 0, 1, . . . , T − 1,

(2.3)

where ω is a given positive constant, representing the degree of the investor’s risk aversion,
and Var0 is the variance conditional on the information available at time 0. There are some
other assumptions with respect to model P(ω), which are summarized as follows: (a) short
selling is permitted at any periods for the risky asset; (b) transaction costs and fees are
negligible; (c) the investor can borrow and lend the riskless asset at any periods without
limitation.

Recall that the mean-variance model P(ω) is difficult to solve due to its nonseparable
structure in the sense of dynamic programming, which is one of the most powerful and
universal methodologies for optimization problems with separable nature. Fortunately, Li
and Ng [2] propose an embedding technique, and this technique is also applicable to solve
the current problem with uncertain exit time and serially correlate returns. Instead of solving
problem P(ω) directly, we first consider the following auxiliary problem:

A(λ,ω)

⎧
⎨

⎩
max

u
E0

(
λxT∧τ −ωx2

T∧τ
)

s.t. xt+1 = r0
t xt + Rtut, t = 0, 1, . . . , T − 1,

(2.4)

for a given constant λ > 0.
Let ΨA(λ,ω) and ΨP (ω) be the optimal solution sets of problem A(λ,ω) and P(ω),

respectively, namely,

ΨA(λ,ω) =
{
u | u is an optimal solution of A(λ,ω)

}
,

ΨP (ω) =
{
u | u is an optimal solution of P(ω)

}
.

(2.5)

The following two theorems can be proven by a similar method to that described in Li
and Ng [2], and so their proofs are omitted.

Theorem 2.1. For any optimal solution u∗ of ΨP (ω), u∗ is the optimal solution of ΨA(λ∗, ω) with
λ∗ = 1 + 2ωE0(xT∧τ)|u∗ .

Theorem 2.2. If u∗ ∈ ΨA(λ∗, ω), a necessary condition for u∗ ∈ ΨP (ω) is λ∗ = 1 + 2ωE0(xT∧τ)|u∗ .
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3. Analytical Solution of Auxiliary Problem A(λ,ω)

In this section, we translate the auxiliary problem A(λ,ω) into a portfolio selection problem
with certain exit time and then solve it by using the dynamic programming approach.

Since

E0

[
λxT∧τ −ωx2

T∧τ
]
=

T∑

t=1

E0

[
λxT∧τ −ωx2

T∧τ | T ∧ τ = t
]
P(T ∧ τ = t)

= E0

[
T∑

t=1

(
λxt −ωx2

t

)
pt

]
,

(3.1)

problem A(λ,ω) can be written equivalently as

A(λ,ω)

⎧
⎪⎨

⎪⎩
max

u
E0

[
T∑

t=1

(
λxt −ωx2

t

)
pt

]

s.t. xt+1 = r0
t xt + Rtut, t = 0, 1, . . . , T − 1.

(3.2)

Define the value function

f∗t (xt) = max
ut

ft(xt)

= max
ut

Et

[
T∑

s=t

(
λxs −ωx2

s

)
ps

] (3.3)

as the optimal expected utility using the optimal strategy conditional on the information
available at time t (t = 0, 1, . . . , T − 1), and the boundary condition is

f∗T (xT ) =
(
λxT −ωx2

T

)
pT . (3.4)

According to the dynamic programming principle, we have the Bellman equation

f∗t (xt) = max
ut

f t(xt)

= max
ut

Et

[(
λxt −ωx2

t

)
pt + f∗t+1(xt+1)

]
,

(3.5)

for t = 0, 1, . . . , T − 1.
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First, we give the following notations:

θt =
E2
t (λt+1Rt)

Et

(
ωt+1R

2
t

) , t = 0, 1, . . . , T − 1, (3.6)

Ξt =Et

[
λ2

4ω

T−1∑

s=t
θs

]
, t = 0, 1, . . . , T − 1, (3.7)

ωt =pt +
(
r0
t

)2
[
Et(ωt+1) −

E2
t (ωt+1Rt)

Et

(
ωt+1R

2
t

)
]
, t = 0, 1, . . . , T − 1, ωT = pT , (3.8)

λt =pt + r0
t

[
Et(λt+1) − Et(ωt+1Rt)Et(λt+1Rt)

Et

(
ωt+1R

2
t

)
]
, t = 0, 1, . . . , T − 1, λT = pT . (3.9)

For notational simplicity, we define
∑t

j=s(·)j = 0 and
∏t

j=s(·)j = 1 if s > t.
Note that Rt and Rt+1 are not independent of each other for t = 0, 1, . . . , T − 1, so both

ωt+1 and λt+1 are dependent on the risky asset return at period t+1, Rt. Then, for t = 0, 1, . . . , T−
1,

Et(ωt+1Rt)/=Et(ωt+1)Et(Rt), Et(λt+1Rt)/=Et(λt+1)Et(Rt). (3.10)

The following lemma comes from Xu and Li [11]. For the completeness, we provide
its proof here.

Lemma 3.1. Let x be a nondegenerated random variable, and let ξ be a positive random variable under
the information at time t, then Et(x2ξ)Et(ξ) > (Et(xξ))

2.

Proof. Since ξ is a positive random variable, we can define a new probability measure Q as

dQ � ξ

Et(ξ)
dP, (3.11)

where P is the original measure. Since x is a nondegenerated random variable, we have,
under measure Q,

VarQt (x) = E
Q
t

(
x2

)
−
(
E
Q
t (x)

)2
> 0. (3.12)

Transforming the above inequality to under measure P , we obtain

Et

(
x2 ξ

Et(ξ)

)
−
(
Et

(
x

ξ

Et(ξ)

))2

> 0. (3.13)

Multiplying both sides by (Et(ξ))
2 in the above inequality produces

Et

(
x2ξ

)
Et(ξ) > (Et(xξ))

2. (3.14)

This completes the proof.
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Theorem 3.2. For t = 0, 1, . . . , T − 1, ωt > 0, θt ≥ 0, and Ξt ≥ 0.

Proof. We use induction. For t = T − 1, since the return of the risky asset at period T , RT−1, is
a nondegenerated random variable, then

VarT−1(RT−1) = ET−1

(
R2

T−1

)
− (ET−1(RT−1))2 > 0, (3.15)

ET−1(R2
T−1) > 0. So

0 ≤ θT−1 =
E2
T−1

(
pTRT−1

)

ET−1
(
pTR

2
T−1

) = pT
E2
T−1(RT−1)

ET−1
(
R2

T−1

) < pT ,

ΞT−1 = ET−1

(
λ2

4ω
θT−1

)
≥ 0.

(3.16)

Therefore,

ωT−1 = pT−1 +
(
r0
T−1

)2
(
pT −

E2
T−1

(
pTRT−1

)

ET−1
(
pTR

2
T−1

)
)

> 0. (3.17)

Suppose that ωs > 0, θs ≥ 0, and Ξs ≥ 0 hold true for s = t + 1, . . . , T − 2, T − 1, then for
period t,

θt =
E2
t (λt+1Rt)

Et

(
ωt+1R

2
t

) ≥ 0. (3.18)

By Lemma 3.1, we can easily see that

Et(ωt+1) >
E2
t (ωt+1Rt)

Et

(
ωt+1R

2
t

) . (3.19)

Hence, we obtain

Ξt = Et

(
T−1∑
s=t

λ2

4ω
θs

)
=

λ2

4ω
θt + Et(Ξt+1) ≥ 0,

ωt = pt +
(
r0
t

)2
[
Et(ωt+1) −

E2
t (ωt+1Rt)

Et

(
ωt+1R

2
t

)
]
> 0. (3.20)

By induction, it shows that for t = 0, 1, . . . , T − 1, ωt > 0, θt ≥ 0, and Ξt ≥ 0.

The analytical optimal strategy and the value function of problem A(λ,ω) can be
derived by using dynamic programming approach, which are summarized in the following
theorem.
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Theorem 3.3. The optimal strategy and the value functions of problem A(λ,ω) are, respectively,
given by

u∗t =
λ

2ω
Et(λt+1Rt)
Et

(
ωt+1R

2
t

) − Et(ωt+1Rt)
Et

(
ωt+1R

2
t

)r0
t xt, t = 0, 1, . . . , T − 1, (3.21)

f∗t (xt) = −ωωtx
2
t + λλtxt + Ξt, t = 0, 1, . . . , T − 1, (3.22)

where Ξt, ωt, and λt are given as defined in (3.7)–(3.9).

Proof. We will show that the above recursive formulas hold true by induction starting with
the boundary condition fT (xT ) = (λxT −ωx2

T )pT . Note that for t = T − 1,

f∗T−1(xT−1) = max
uT−1

fT−1(xT−1)

= max
uT−1

ET−1

[(
λxT−1 −ωx2

T−1

)
pT−1 + f∗T (xT )

]

= max
uT−1

ET−1

[(
λxT−1 −ωx2

T−1

)
pT−1 +

(
λxT −ωx2

T

)
pT

]

= max
uT−1

(
λxT−1 −ωx2

T−1

)
pT−1 + λ

[
r0
T−1pTxT−1 +ET−1

(
pTRT−1

)
uT−1

]

−ω
[(

r0
T−1

)2
pTx

2
T−1 + 2r0

T−1ET−1
(
pTRT−1

)
uT−1xT−1 + ET−1

(
pTR

2
T−1

)
u2
T−1

]
.

(3.23)

Since ET−1(R2
T−1) > 0 by assumption, the function fT−1(xT−1) is a concave function of uT−1. The

first-order condition gives

λET−1
(
pTRT−1

) − 2ω
[
r0
T−1ET−1

(
pTRT−1

)
xT−1 + ET−1

(
pTR

2
T−1

)
uT−1

]
= 0, (3.24)

which yields the optimal solution u∗T−1 as

u∗T−1 =
λ

2ω
ET−1

(
pTRT−1

)

ET−1
(
pTR

2
T−1

) − ET−1
(
pTRT−1

)

ET−1
(
pTR

2
T−1

)r0
T−1xT−1. (3.25)
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Substituting u∗T−1 back into fT−1(xT−1), it follows that

f∗T−1(xT−1) =
(
λxT−1 −ωx2

T−1

)
pT−1

+ λ

[
r0
T−1pTxT−1 + ET−1

(
pTRT−1

)
(

λ

2ω
ET−1

(
pTRT−1

)

ET−1
(
pTR

2
T−1

) − ET−1
(
pTRT−1

)

ET−1
(
pTR

2
T−1

)r0
T−1xT−1

)]

−ω
⎡

⎣
(
r0
T−1

)2
pTx

2
T−1 + 2r0

T−1ET−1
(
pTRT−1

)

×
(

λ

2ω
ET−1

(
pTRT−1

)

ET−1
(
pTR

2
T−1

) − ET−1
(
pTRT−1

)

ET−1
(
pTR

2
T−1

)r0
T−1xT−1

)
xT−1

+ET−1

(
pTR

2
T−1

)( λ

2ω
ET−1

(
pTRT−1

)

ET−1
(
pTR

2
T−1

) − ET−1
(
pTRT−1

)

ET−1
(
pTR

2
T−1

)r0
T−1xT−1

)2
⎤

⎦

= −ω
[
pT−1 +

(
r0
T−1

)2
(
pT −

E2
T−1

(
pTRT−1

)

ET−1
(
pTR

2
T−1

)
)]

x2
T−1

+ λ

[
pT−1 + r0

T−1

(
pT −

E2
T−1

(
pTRT−1

)

ET−1
(
pTR

2
T−1

)
)]

xT−1 +
λ2

4ω
E2
T−1

(
pTRT−1

)

ET−1
(
pTR

2
T−1

)

= −ωωT−1x
2
T−1 + λλT−1xT−1 +

λ2

4ω
θT−1

= −ωωT−1x
2
T−1 + λλT−1xT−1 + ΞT−1.

(3.26)

Hence, the conclusion holds true for t = T − 1.
Now we assume that the conclusion holds true for time t + 1, in other words,

f∗t+1(xt+1) = −ωωt+1x
2
t+1 + λλt+1xt+1 + Ξt+1,

u∗t+1 =
λ

2ω
Et+1(λt+2Rt+1)
Et+1

(
ωt+2R

2
t+1

) − Et+1(ωt+2Rt+1)
Et+1

(
ωt+2R

2
t+1

)r0
t+1xt+1,

(3.27)

then the optimization problem at time t for given state xt is

f∗t (xt) = max
ut

f t(xt)

= max
ut

Et

[(
λxt −ωx2

t

)
pt + f∗t+1(xt+1)

]

= max
ut

Et

[(
λxt −ωx2

t

)
pt −ωωt+1x

2
t+1 + λλt+1xt+1 + Ξt+1

]
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= max
ut

{(
λxt −ωx2

t

)
pt −ω

[(
r0
t

)2
x2
t Et(ωt+1) + 2r0

t Et(ωt+1Rt)utxt + Et

(
ωt+1R

2
t

)
u2
t

]

+λ
(
r0
t xtEt(λt+1) + Et(λt+1Rt)ut

)
+ Et(Ξt+1)

}

(3.28)

Noting that Et(ωt+1R
2
t ) > 0 by Theorem 3.2, the function ft(xt) is also a concave function of

ut. The first-order condition yields

u∗t =
λ

2ω
Et(λt+1Rt)
Et

(
ωt+1R

2
t

) − Et(ωt+1Rt)
Et

(
ωt+1R

2
t

)r0
t xt. (3.29)

Therefore, for the above given u∗t ,

f∗t (xt) =
(
λxt −ωx2

t

)
pt

+ λ

[
r0
t xtEt(λt+1) + Et(λt+1Rt)

(
λ

2ω
Et(λt+1Rt)
Et

(
ωt+1R

2
t

) − Et(ωt+1Rt)
Et

(
ωt+1R

2
t

)r0
t xt

)]

−ω
⎡

⎣
(
r0
t

)2
x2
t Et(ωt+1) + 2r0

t Et(ωt+1Rt)

(
λ

2ω
Et(λt+1Rt)
Et

(
ωt+1R

2
t

) − Et(ωt+1Rt)
Et

(
ωt+1R

2
t

)r0
t xt

)
xt

+Et

(
ωt+1R

2
t

)( λ

2ω
Et(λt+1Rt)
Et

(
ωt+1R

2
t

) − Et(ωt+1Rt)
Et

(
ωt+1R

2
t

)r0
t xt

)2
⎤

⎦ + Et(Ξt+1)

= −ω
[
pt +

(
r0
t

)2
(
Et(ωt+1) −

E2
t (ωt+1Rt)

Et

(
ωt+1R

2
t

)
)]

x2
t

+ λ

[
pt + r0

t

(
Et(λt+1) − Et(ωt+1Rt)Et(λt+1Rt)

Et

(
ωt+1R

2
t

)
)]

xt +
λ2

4ω
θt + Et(Ξt+1)

= −ωωtx
2
t + λλtxt + Ξt.

(3.30)

Hence, the conclusion is true for t. By induction, the theorem is true.

4. Optimal Strategy and the Efficient Frontier of
the Original Problem P(ω)

If we insert the optimal strategy given in Theorem 3.3 into the dynamic process of wealth, xT

and x2
T can be expressed as

xT = r0
T−1xT−1 + RT−1u

∗
T−1

=

[
1 − RT−1ET−1(ωTRT−1)

ET−1
(
ωTR

2
T−1

)
]
r0
T−1xT−1 +

λ

2ω
RT−1ET−1(λTRT−1)
ET−1

(
ωTR

2
T−1

) ,
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x2
T =

[
1 − 2RT−1ET−1(ωTRT−1)

ET−1
(
ωTR

2
T−1

) +
R2

T−1E
2
T−1(ωTRT−1)

E2
T−1

(
ωTR

2
T−1

)
](

r0
T−1

)2
x2
T−1

+
λ

ω

[
RT−1ET−1(λTRT−1)
ET−1

(
ωTR

2
T−1

) − R2
T−1ET−1(ωTRT−1)ET−1(λTRT−1)

E2
T−1

(
ωTR

2
T−1

)
]
r0
T−1xT−1

+
λ2

4ω2

R2
T−1E

2
T−1(λTRT−1)

E2
T−1

(
ωTR

2
T−1

) ,

(4.1)

λTxT =

[
λT − λTRT−1ET−1(ωTRT−1)

ET−1
(
ωTR

2
T−1

)
]
r0
T−1xT−1 +

λ

2ω
λTRT−1ET−1(λTRT−1)

ET−1
(
ωTR

2
T−1

) ,

ωTx
2
T =

[
ωT − 2ωTRT−1ET−1(ωTRT−1)

ET−1
(
ωTR

2
T−1

) +
ωTR

2
T−1E

2
T−1(ωTRT−1)

E2
T−1

(
ωTR

2
T−1

)
](

r0
T−1

)2
x2
T−1

+
λ

ω

[
ωTRT−1ET−1(λTRT−1)

ET−1
(
ωTR

2
T−1

) − ωTR
2
T−1ET−1(ωTRT−1)ET−1(λTRT−1)

E2
T−1

(
ωTR

2
T−1

)
]
r0
T−1xT−1

+
λ2

4ω2

ωTR
2
T−1E

2
T−1(λTRT−1)

E2
T−1

(
ωTR

2
T−1

) .

(4.2)

Taking expectations on both sides of (4.2) based on the information available at time T − 1,
we conclude that

ET−1(λTxT ) = λT−1xT−1 − pT−1xT−1 +
λ

2ω
θT−1, (4.3)

ET−1

(
ωTx

2
T

)
= ωT−1x

2
T−1 − pT−1x

2
T−1 +

λ2

4ω2
θT−1, (4.4)

where

θT−1 =
E2
T−1(λTRT−1)

ET−1
(
ωTR

2
T−1

) . (4.5)

The above equations are recursive equations, and by taking expectations on both sides
of (4.3) and (4.4) at time T − 2, . . . , 1, 0 repeatedly, we obtain

E0(xT∧τ) =
T∑

t=1

ptE0(xt) = λ0x0 +
λ

2ω

T∑

t=1

E0(θt−1) = λ0x0 +
λ

2ω
Θ, (4.6)

E0

(
x2
T∧τ

)
=

T∑

t=1

ptE0

(
x2
t

)
= ω0x

2
0 +

λ2

4ω2

T∑

t=1

E0(θt−1) = ω0x
2
0 +

λ2

4ω2
Θ, (4.7)
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where

θt =
E2
t (λt+1Rt)

Et

(
ωt+1R

2
t

) , Θ =
T∑

t=1

E0(θt−1). (4.8)

With the results (4.6) and (4.7), the variance of the terminal wealth xT∧τ under the
optimal strategy (3.21) can be written as

Var0(xT∧τ) = E0

(
x2
T∧τ

)
− [E0(xT∧τ)]2

= E0

(
T∑

t=1

ptx
2
t

)
−
[
E0

(
T∑

t=1

ptxt

)]2

= ω0x
2
0 +

λ2

4ω2
Θ −

[
λ0x0 +

λ

2ω
Θ
]2

=
λ2

4ω2

(
Θ −Θ2

)
− λ

ω
λ0Θx0 +

(
ω0 − λ2

0

)
x2

0.

(4.9)

Lemma 4.1. 0 < Θ < 1, ω0 − λ2
0/(1 −Θ) > 0.

Proof. First of all, we claim that Var0(xT∧τ) > 0, since it measures the risk of investor at the
time of exiting market, and the risky asset cannot degenerate into the riskless asset. Especially,
when x0 = 0, Var0(xT∧τ) can be reduced to

Var0(xT∧τ) =
λ2

4ω2

(
Θ −Θ2

)
> 0, (4.10)

and it is easy to show that 0 < Θ < 1.
The expression of Var0(xT∧τ) can be further converted into

Var0(xT∧τ) =
(
Θ −Θ2

)[ λ

2ω
− λ0

1 −Θx0

]2

+

(
ω0 −

λ2
0

1 −Θ

)
x2

0 > 0. (4.11)

Since we know that 0 < Θ < 1, the above inequality implies ω0 −λ2
0/(1−Θ) > 0, and we finish

the proof of Lemma 4.1.

According to Theorem 2.2, a necessary condition for the optimal solution of auxiliary
problem A(λ∗, ω) to attain the optimality of problem P(ω) at the same time is

λ∗ = 1 + 2ωE0(xT∧τ) |u∗ = 1 + 2ω
(
λ0x0 +

λ∗

2ω
Θ
)
. (4.12)

We can easily obtain

λ∗ =
1 + 2ωλ0x0

1 −Θ . (4.13)
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Finally, substituting (4.13) back into (3.21) yields the analytically optimal strategy of the
original problem P(ω), which is summarized in the following theorem.

Theorem 4.2. For the mean-variance problem P(ω), the optimal strategy is given by

u∗t =
1 + 2ωλ0x0

2ω(1 −Θ)
Et(λt+1Rt)
Et

(
ωt+1R

2
t

) − Et(ωt+1Rt)
Et

(
ωt+1R

2
t

)r0
t xt, t = 0, 1, . . . , T − 1, (4.14)

where Θ, λ0, ωt+1, and λt+1 are given as defined.

Referring to (4.6),

λ∗

2ω
=

E0(xT∧τ) − λ0x0

Θ
. (4.15)

Substituting (4.15) back into (4.11), the relationship between Var0(xT∧τ) and E0(xT∧τ) can be
shown as follows:

Var0(xT∧τ) =
(1 −Θ)

Θ

[
E0(xT∧τ) − λ0x0

1 −Θ
]2

+

(
ω0 −

λ2
0

1 −Θ

)
x2

0. (4.16)

Therefore, the efficient frontier of the original problem P(ω) is given by (4.16) for

E0(xT∧τ) ∈
[
λ0x0

1 −Θ ,+∞
)
. (4.17)

From the efficient frontier (4.16) of the optimal dynamic mean-variance portfolio
selection problem with an uncertain exit time, when returns are serially correlated, we can
obtain the trade-off between the return and the risk when investor exits from market. Since
all of the parameters Θ, λ0, and ω0 are functions of pt and Rt for t = 0, 1, . . . , T − 1, both
the exiting time and the correlations of the risky asset returns have impacts on the optimal
strategy and the efficient frontier, and this is quite different from the cases with deterministic
terminal time, and the risky asset returns at different periods are independent.

Remark 4.3. In Xu and Li [11], a multi-period portfolio selection problem with serial
correlation and a certain exit time is studied. If p1 = p2 = · · · = pT−1 = 0, pT = 1, and
r0
t = r, t = 0, 1, . . . , T − 1 in our model, our result is exactly the same as the one of Xu and Li
[11]. So we generalize the model and results of Xu and Li [11] to the case with an uncertain
investment horizon.

5. Extension to the Situation with Multiple Risky Assets

The results in the previous sections can be extended to the general situation with multiple
risky assets. Suppose that there are n risky assets and one riskless asset with period-t + 1
returns rit (i = 1, 2, . . . , n) and r0

t , respectively. Define eit = rit − r0
t , et = (e1

t , e
2
t , . . . , e

n
t )
′ and
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Ut = (u1
t , u

2
t , . . . , u

n
t )
′ for i = 1, 2, . . . , n and t = 0, 1, . . . , T − 1, where ui

t is the amount invested
in the ith risky asset at time t. In this case, the wealth dynamics is described by

xt+1 = r0
t xt + e′tUt, t = 0, 1, . . . , T − 1. (5.1)

Accordingly, the multi-period mean-variance portfolio selection problem with an
uncertain exit time and serial correlations can be formulated as

P̂(ω)

⎧
⎨

⎩
max
U

E0(xT∧τ) −ωVar0(xT∧τ)

s.t. xt+1 = r0
t xt + e′tUt, t = 0, 1, . . . , T − 1,

(5.2)

where ω ≥ 0 is a pregiven parameter, representing the degree of the investor’s risk aversion.
With the same method as in the previous section, we can show the following theorem.

Theorem 5.1. For problem P̂(ω), the optimal investment strategy is given by

U∗t =
1 + 2ωλ̃0x0

2ω
(

1 − Θ̃
)E−1

t

(
ω̃t+1ete

′
t

)
Et

(
λ̃t+1et

)
− E−1

t

(
ω̃t+1ete

′
t
)
Et(ω̃t+1et)r0

t xt, (5.3)

for t = 0, 1, . . . , T − 1, and the efficient frontier is given by

Var0(xT∧τ) =

(
1 − Θ̃

)

Θ̃

[
E0(xT∧τ) − λ̃0x0

1 − Θ̃

]2

+

(
ω̃0 −

λ̃2
0

1 − Θ̃

)
x2

0,
(5.4)

where

θ̃t = Et

(
λ̃t+1e

′
t

)
E−1
t

(
ω̃t+1ete

′
t

)
Et

(
λ̃t+1et

)
, Θ̃ =

T∑

t=1

E0

(
θ̃t−1

)
,

ω̃t = pt +
(
r0
t

)2[
Et(ω̃t+1) − Et

(
ω̃t+1e

′
t

)
E−1
t

(
ω̃t+1ete

′
t

)
Et(ω̃t+1et)

]
, ω̃T = pT ,

λ̃t = pt + r0
t

[
Et

(
λ̃t+1

)
− Et

(
λ̃t+1e

′
t

)
E−1
t

(
ω̃t+1ete

′
t

)
Et(ω̃t+1et)

]
, λ̃T = pT ,

(5.5)

for t = 0, 1, . . . , T − 1.

Remark 5.2. When the returns rates of the n risky assets are statistically independent, our
results reduce to the results of Guo and Hu [3]. That is, we extend the model and results of
Guo and Hu [3] to the case with serially correlate returns.

6. Numerical Example

In the previous sections, we derive the optimal strategies and the mean-variance efficient
frontiers of two optimal portfolio selection problems with serial correlations and uncertain
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Figure 1: Efficient frontiers with different probability distributions of exit time.

exit time. In this section, we provide a numerical example to demonstrate the impacts of the
uncertainty of exit time and the serial correlations of returns on the efficient frontier. In the
example, we only consider one risky asset for simplicity and assume that its return rate is
subject to AR(1) progress

rt = μ + ρ
(
rt−1 − μ

)
+
√

1 − ρ2σyt, (6.1)

where μ is the unconditional expectation of rt, ρ ∈ (−1, 1) is the first-order autocorrelation
coefficient, σ is the unconditional standard deviation of rt, yt is a random variable with
standard normal distribution, and yt is independent of ys (s < t).

To examine the impact of the uncertainty of exit time on the efficient frontier clearly,
we compare the efficient frontiers under three different probability distributions of uncertain
exit time t = T ∧ τ : P1 = (p0, p1, p2, p3) = (0, 0.09, 0.2, 0.71), P2 = (p0, p1, p2, p3) = (0, 0, 0.5, 0.5),
and P3 = (p0, p1, p2, p3) = (0, 0.2, 0.1, 0.7). The remaining parameters are set as μ = 0.03, b = 0.5,
σ = 0.02, x0 = 1, and T = 3. Figure 1 implies when the investor exits from market later, the
investor enjoys more expected wealth returns at the same level of risk than the one terminates
the investment earlier.

Furthermore, to test the impact of the correlation coefficient on the efficient frontier,
we compare the efficient frontiers under three different settings of correlation coefficient ρ:
ρ1 = 0.1, ρ2 = 0.4, and ρ3 = 0.7. The other parameters are given as μ = 0.02, σ = 0.02,
x0 = 1, and T = 3. It is obvious from Figure 2 that the investor who takes the risky asset with
larger correlation coefficient will suffer less risk than the one with less correlate risky asset to
achieve the same expected wealth return.
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Figure 2: Efficient frontiers with different values of correlation coefficient.

7. Conclusion

In this paper, we consider an optimal portfolio selection problem under multi-period setting
and mean-variance framework for an investor, who does not know with certainty when
she/he will exit the market in which the capital returns are serially correlated. The problem
is much more complicated than the case with deterministic exit time and/or with serially
noncorrelate assets returns. By applying the dynamic programming approach and the
embedding technique of Li and Ng [2], both the optimal strategy and the efficient frontier
of the problem are derived explicitly. Our results include, as special cases, the ones of Li and
Ng [2], Guo and Hu [3], and Xu and Li [11]. In addition, a numerical example with AR (1)
return process is presented. It shows that both the serial correlations of assets returns and
the uncertainty of exit time have significant impacts on the optimal strategy and the efficient
frontier.
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This paper investigates the problem of stability and stabilization of Markovian jump linear systems
with partial information on transition probability. A new stability criterion is obtained for these
systems. Comparing with the existing results, the advantage of this paper is that the proposed
criterion has fewer variables, however, does not increase any conservatism, which has been proved
theoretically. Furthermore, a sufficient condition for the state feedback controller design is derived
in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the
effectiveness of the proposed method.

1. Introduction

Over the past few decades, Markov jump systems (MJSs) have drawn much attention of
researchers throughout the world. This is due to their important roles in many practical sys-
tems. That is, MJSs are quite appropriate to model the plants whose structures are subject to
random abrupt changes, which may result from random component failures, abrupt environ-
ment changes, disturbance, changes in the interconnections of subsystems, and so forth [1].

Since the transition probabilities in the jumping process determine the behavior of
the MJSs, the main investigation on MJSs is to assume that the information on transition
probabilities is completely known (see, e.g., [2–5]). However, in most cases, the transition
probabilities of MJSs are not exactly known. Whether in theory or in practice, it is necessary
to further consider more general jump systems with partial information on transition
probabilities. Recently, [6–9] considered the general MJSs with partly unknown transition
probabilities. But in these papers, when the terms containing unknown transition probabil-
ities were separated from others, the fixed connection weighting matrices were introduced,
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which may lead to the conservatism. As noticed, it, currently [10], have achieved an excellent
work of reducing the conservatism. The basic idea is to introduce free-connection weighting
matrices to substitute the fixed connection weighting matrices. However, this means that the
method of [10] has to increase the number of decision variables. As shown in [11], more
decision variables imply the augmentation of the numerical burden. Therefore, developing
some new methods without introducing any additional variable meanwhile without
increasing conservatism will be a valuable work, which motivates the present study.

In this paper, we are concerned with the problem of the stability and stabilization of
MJSs with partly unknown transition probabilities. By fully unitizing the relationship among
the transition rates of various subsystems, we obtain a new stability criterion. The proposed
criterion avoids introducing any connection weighting matrix; however, do not increase
any conservatism comparing to that of [10], which has been proved theoretically. More
importantly, because the proposed stability criterion need not introduce any slack matrix, the
relationships among Lyapunov matrices are highlighted. Therefore, it helps us to understand
the effect of the unknown transition probabilities on the stability. Then, based on the proposed
stability criterion, the condition for the controller design is derived in terms of LMIs. Finally,
numerical examples are given to illustrate the effectiveness of the proposed method.

Notation

In this paper, R
n and R

n×m denote the n-dimensional Euclidean space and the set of all
n × m real matrices, respectively. Z

+ represents the set of positive integers. The notation
P > 0 (P ≥ 0) means that P is a real symmetric and positive definite (semipositive-
definite) matrix. For notation (Ω,F,P), Ω represents the sample space, F is the σ-algebra
of subsets of the sample space, and P is the probability measure on F. E{·} stands for the
mathematical expectation. Matrices, if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations.

2. Problem Formulation

Consider the following stochastic system with Markovian jump parameters:

ẋ(t) = A(rt)x(t) + B(rt)u(t), (2.1)

where x(t) ∈ R
n is the state vector, x0 denotes initial condition, and {rt}, t ≥ 0 is a right-

continuous Markov process on the probability space taking values in a finite state space S =
{1, 2, . . . ,N}with generator Λ = {πij}, i, j ∈ S, given by

Pr
{
rt+Δ = j | rt = i

}
=

⎧
⎨

⎩
πijΔ + o(Δ), i /= j,

1 + πijΔ + o(Δ), i = j,
(2.2)

where Δ > 0, limΔ→ 0 o(Δ)/Δ = 0, and πij ≥ 0, for i /= j, is the transition rate from mode i at
time t to mode j at time t+Δ, and πii = −

∑N
j=1,i /= j πij . A(rt) are known matrix functions of the

Markov process.
Since the transition probability depends on the transition rates for the continuous-time

MJSs, the transition rates of the jumping process are considered to be partly accessible in this
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paper. For instance, the transition rate matrix Λ for system (2.1) with N operation modes
may be expressed as

⎡
⎢⎢⎢⎢⎢⎢⎣

π11 ? π13 · · · ?

? ? ? · · · π2N

...
...

...
. . .

...

? πN2 πN3 · · · πNN

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.3)

where “?” represents the unknown transition rate.
For notational clarity, for all i ∈ S, we denote S = S

i
k
∪ S

i
uk

with S
i
k

� {j : πij is known
for j ∈ S} and S

i
uk

� {j : πij is unknown for j ∈ S}.
Moreover, if S

i
k /= ∅, it is further described as

S
i
k =

{
ki

1, k
i
2, . . . , k

i
m

}
, (2.4)

where m is a nonnegative integer with 1 ≤ m ≤ N and ki
j ∈ Z

+, 1 ≤ ki
j ≤ N, j = 1, 2, . . . , m

represent the jth known element of the set S
i
k

in the ith row of the transition rate matrix Λ.
For the underlying systems, the following definitions will be adopted in the rest of this

paper. More details refer to [2].

Definition 2.1. The system (2.1) with u(t) = 0 is said to be stochastically stable if the following
inequality holds

E

{∫∞

0
‖x(t)‖2dt | x0, r0

}
<∞, (2.5)

for every initial condition x0 ∈ R
n and r0 ∈ S.

To this end, we introduce the following result on the stability analysis of systems (2.1).

Lemma 2.2 (see [2]). The system (2.1)with u(t) = 0 is stochastically stable if and only if there exists
a set of symmetric and positive-definite matrices Pi, i ∈ S, satisfying

AT
i Pi + PiAi +

N∑

j=1

πijPj < 0. (2.6)

Remark 2.3. Since the unknown transition rates may have infinitely admissible values, it is
impossible to be directly used the inequalities of Lemma 2.2 to test the stability of the system.

3. Stochastic Stability Analysis

In this section, a stochastic stability criterion for MJSs is given without any additional weight-
ing matrix.
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Theorem 3.1. The system (2.1) with a partly unknown transition rate matrix (2.3) and u(t) = 0
is stochastically stable if there exist matrices Pi > 0, such that the following LMIs are feasible for
i = 1, 2, . . . ,N.

If i /∈ S
i
k,

PiAi +AT
i Pi + Pi

k − πi
kPi < 0, (3.1)

Pi − Pj ≥ 0, ∀j ∈ S
i
uk, j /= i. (3.2)

If i ∈ S
i
k
,

PiAi +AT
i Pi + Pi

k − πi
kPj < 0, ∀j ∈ S

i
uk, (3.3)

where Pi
k
=

∑
j∈Si

k
πijPj and πi

k
=

∑
j∈Si

k
πij .

Proof. Based on Lemma 2.2, we know that the system (2.1) with u(t) = 0 is stochastically
stable if (2.6) holds. Now we prove that (3.1)–(3.3) guarantee that (2.6) holds by the following
two cases.

Case I (i /∈ S
i
k
). In this case, (2.6) can be rewritten as

Φi � PiAi +AT
i Pi + Pi

k
+ πiiPi +

∑

j∈Si
uk
,j /= i

πijPj < 0. (3.4)

Note that in this case
∑

j∈Si
uk
,j /= i πij = −πii − πi

k and πij ≥ 0, j ∈ S
i
uk, j /= i; then from (3.2), we

have

Φi ≤ PiAi +AT
i Pi + Pi

k + πiiPi +
∑

j∈Si
uk
,j /= i

πijPi

= PiAi +AT
i Pi + Pi

k + πiiPi +
(
−πii − πi

k

)
Pi

= PiAi +AT
i Pi + Pi

k − πi
kPi.

(3.5)

Therefore, if i /∈ S
i
k
, inequalities (3.1) and (3.2) imply that (2.6) holds.

Case II (i ∈ S
i
k). Note that in this case −πi

k =
∑

j∈Si
uk
πij and πij ≥ 0, j ∈ S

i
uk. So, if −πi

k = 0, then
we must have S

i
uk

= ∅. Therefore, (2.6) becomes

PiAi +AT
i Pi + Pi

k < 0, (3.6)

which is equivalent to (3.3) noticing −πi
k
= 0.
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Else, if −πi
k /= 0, then we must have −πi

k > 0. Then, (2.6) can be rewritten as

∑

j∈Si
uk

πij

{(
PiAi +AT

i Pi + Pi
k

)

−πi
k

+ Pj

}
< 0. (3.7)

Obviously, (3.3) implies that (3.7) holds. Then, if i /∈ S
i
k
, (3.3) implies that (2.6) holds.

Therefore, if LMIs (3.1)–(3.3) hold, we conclude that system (2.1) is stochastically
stable according to Lemma 2.2. The proof is completed.

Theorem 3.1 proposed in this paper does not introduce any free variable. It involves
Nn(n + 1)/2 variables, while Theorem 3.3 in [10] involves Nn(n + 1) variables. Namely,
the number of variables in this paper is only half of [10]. Generally, reducing the number
of decision variables easily results in increasing conservatism of stability criteria. However,
Theorem 3.1 in this paper does not increase conservatism while with less variables. To show
this, we rewrite it as follows.

Theorem 3.2 (see [10]). The system (2.1) with partly unknown transition rate matrix (2.3) and
u(t) = 0 is stochastically stable if there exist matrices Pi > 0,Wi = WT

i , such that the following LMIs
are feasible for i = 1, 2, . . . ,N,

PiAi +AT
i Pi +

∑

j∈Si
k

πij

(
Pj −Wi

)
< 0, (3.8)

Pj −Wi ≤ 0, j ∈ S
i
uk, j /= i, (3.9)

Pj −Wi ≥ 0, j ∈ S
i
uk, j = i. (3.10)

Now we have the following conclusion.

Theorem 3.3. Suppose for system (2.1) with partly unknown transition rate matrix (2.3) there exist
Pi > 0 and Wi = WT

i , i = 1, 2, . . . ,N, such that (3.8)–(3.10) hold; then the matrices Pi > 0,
i = 1, 2, . . . ,N, satisfy (3.1)–(3.3).

Proof. If i /∈ S
i
k
, (3.9)–(3.10) imply that (3.2) and the following inequality hold:

Pi � Wi. (3.11)

From (3.11) and (3.8), we can obtain (3.1).
If i ∈ S

i
k, (3.9) and (3.10) guarantee that

Pj −Wi ≤ 0, j ∈ S
i
uk. (3.12)
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In addition, under this circumstance, we have

∑

j∈Si
k

πij ≤ 0. (3.13)

Then, From (3.12), (3.13), and (3.8), we obtain that (3.3) holds. The proof is completed.

Remark 3.4. The stability condition in [10] and that in Theorem 3.1 are derived via different
techniques. Now Theorem 3.3 proves that the former can be simplified to the latter without
increasing any conservatism. More importantly, because Theorem 3.1 of this paper does
not involve any slack matrix, the relationships among Lyapunov matrices are highlighted.
Therefore, it is clearer how the unknown transition probabilities affect on the stability.

4. State-Feedback Stabilization

In this section, the stabilization problem of system (2.1) with control input u(t) is considered.
The mode-dependent controller with the following form is designed:

u(t) = K(rt)x(t), (4.1)

where K(rt) for all rt ∈ S are the controller gains to be determined. In the following, for given
rt = i ∈ S, K(rt) = Ki.

Using (4.1), the system (2.1) is represented as

ẋ(t) = [A(rt) + B(rt)K(rt)]x(t). (4.2)

The following theorem is proposed to design the mode-dependent stabilizing controller with
the form (4.1) for system (2.1).

Theorem 4.1. The closed-loop system (4.2) with a partly unknown transition rate matrix (2.3) is
stochastically stable if, there exist matrices Qi > 0 and Yi, i = 1, 2, . . . ,N such that the following
LMIs are feasible for i = 1, 2, . . . ,N.

If i /∈ S
i
k
,

[
Ξi − πi

k
Qi Π1i

∗ −Ψ1i

]
< 0, (4.3)

[−Qi Qi

∗ −Qj

]
≤ 0, ∀j ∈ S

i
uk&j /= i. (4.4)
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If i ∈ S
i
k,

⎡
⎢⎢⎣

Ξi + πiiQi Π2i

√(−πi
k

)
Qi

∗ −Ψ2i 0

∗ ∗ −Qj

⎤
⎥⎥⎦ < 0, ∀j ∈ S

i
uk, (4.5)

where

Ξi = AiQi +QiA
T
i + BiYi + YT

i B
T
i ,

Π1i =
[√

πiki
1
Qi

√
πiki

2
Qi · · · √

πiki
m
Qi

]
,

Ψ1i = diag
{
Qki

1
, Qki

2
, . . . , Qki

m

}
,

Π2i =
[√

πiki
1
Qi · · · √

πiki
l−1
Qi

√
πiki

l+1
Qi · · · √

πiki
m
Qi

]
,

Ψ2i = diag
{
Qki

1
, . . . , Qki

l−1
, Qki

l+1
, . . . , Qki

m

}
,

(4.6)

with ki
1, k

i
2, . . . , k

i
m described in (2.4) and ki

l
= i.

Moreover, if (4.3)–(4.5) are true, the stabilization controller gains from (4.1) are given by

Ki = YiQ
−1
i . (4.7)

Proof. It is clear that the system (4.2) is stable if the following conditions are satisfied.
If i /∈ S

i
k,

Pi(Ai + BiKi) + (Ai + BiKi)TPi + Pi
k − πi

kPi < 0, (4.8)

Pj − Pi ≤ 0, ∀j ∈ S
i
uk, j /= i. (4.9)

If i ∈ S
i
k,

Pi(Ai + BiKi) + (Ai + BiKi)TPi + Pi
k
− πi

k
Pj < 0, ∀j ∈ S

i
uk
. (4.10)

Pre- and postmultiply the left sides of (4.8)–(4.10) by P−1
i , respectively, and introduce the

following new variables:

Qi = P−1
i , Yi = KiP

−1
i . (4.11)

Then, inequalities (4.8)–(4.10) are equivalent to the following matrix inequalities, respec-
tively.
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If i /∈ S
i
k,

Ξi − πi
kQi + Π1iΨ−1

1i Π
T
1i < 0, (4.12)

QiPjQi −Qi ≤ 0, ∀j ∈ S
i
uk, j /= i. (4.13)

If i ∈ S
i
k
,

Ξi + πiiQi + Πi2Ψ−1
2i Π

T
i2 +

(−πi
k

)
QiPjQi < 0, ∀j ∈ S

i
uk
. (4.14)

By applying Schur complement, inequalities (4.12)–(4.14) are equivalent to LMIs (4.3)–(4.5),
respectively.

Therefore, if LMIs (4.3)–(4.5) hold, the closed-loop system (4.2) is stochastically stable
according to Theorem 3.1. Then, system (2.1) can be stabilized with the state feedback con-
troller (4.1), and the desired controller gains are given by (4.7). The proof is completed.

Remark 4.2. The number of variables involved in Theorem 4.1 in this paper is also Nn(n+1)/2
less than that in the corresponding result of [10]. Furthermore, it can be seen that no
conservativeness is introduced when deriving Theorem 4.1 from Theorem 3.1. Therefore, the
stabilization method presented in Theorem 4.1 is not more conservative than that of [10], too.

5. Numerical Example

In this section, an example is provided to illustrate the effectiveness of our results.
Consider the following MJSs, which borrowed from [10] with small modifications,

A1 =

[
32 −7.30

1.48 0.81

]
, A2 =

[
0.89 −3.11

1.48 0.21

]
,

A3 =

[−0.11 −0.85

2.31 −0.10

]
, A4 =

[−0.17 −1.48

1.59 −0.27

]
,

B1 =

[
0.57

1.23

]
, B2 =

[
0.78

−0.49

]
,

B3 =

[
1.34

0.39

]
, B4 =

[−0.38

1.07

]
.

(5.1)

The partly transition rate matrix Λ is considered as

Λ =

⎡
⎢⎢⎢⎢⎢⎣

−1.3 − a 0.2 ? ?

? ? 0.3 0.3

0.6 ? −1.5 ?

0.4 ? ? ?

⎤
⎥⎥⎥⎥⎥⎦
, (5.2)
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Figure 1: State response of the open-loop system with 1000 random samplings.

where the parameter a in matrix Λ can take different values for extensive comparison pur-
pose.

We consider the stabilization of this system corresponding to different a by using
different approaches. Considering the precision of comparison, we let a increase starting
from 0 with a very small constant increment 0.01. Using the LMI toolbox in MATLAB, both
the LMIs in Theorem 5 of [10] and the ones in Theorem 4.1 of this paper are feasible for all
a = 0, 0.01, . . . , 1.64, and are infeasible when a increases to 1.65. It can be seen that for this
example the stabilization method in our paper is not conservative than that in [10].

Now by some simulation results, we further show the effectiveness of the stabilization
method of this paper. For example, when a = 1.64, in our method, the controller gains are
obtained as

K1 =
[−15143 5252

]
, K2 =

[−873700 392930
]
,

K3 =
[−1086.6 −290.8

]
, K4 =

[
440620 −300480

]
.

(5.3)

Figure 1 is the state response cures in 1000 random sampling with initial condition
x0 = [1 − 1]T when u(t) = 0. In each random sampling, the transition rate matrix is randomly
generated but satisfies the partly transition rate matrix Λ in (5.2). Figure 1 shows that the
open-loop system is unstable.

Applying the controllers in (5.3), the trajectory simulation of state response for the
closed-loop system with 1000 random sampling is shown in Figure 2 under the given initial
condition x0 = [1 − 1]T . In this case, the transition rate matrix is also randomly generated
but satisfies the partly transition rate matrix Λ in (5.2). Figure 2 shows that the stabilizing
controller effectively keeps the running reliability of the system.

6. Conclusions

This paper has considered the problem of stability and stabilization of a class continuous-time
MJSs with unknown transition rates. A new stability criterion has been proposed. The merit



10 Mathematical Problems in Engineering

0
1

2
3

4
5 1000

500

0

Random samplings

−25

−20

−15

−10

−5

0

5

Time (sec)

St
at

es

Figure 2: State response of the closed-loop system with 1000 random samplings.

of the proposed criterion is that it has less decision variables without increasing conservatism
comparing those in the literature to date. Then, the mode-dependent state feedback controller
designing method has been proposed, which possess the same merit as the stability criterion.
Numerical examples have been given to illustrate the effectiveness of the results in this paper.
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This paper analyzes the stochastic stability of a damped Mathieu oscillator subjected to a para-
metric excitation of the form of a stationary Gaussian process, which may be both white and
coloured. By applying deterministic and stochastic averaging, two Itô’s differential equations are
retrieved. Reference is made to stochastic stability in moments. The differential equations ruling
the response statistical moment evolution are written by means of Itô’s differential rule. A nec-
essary and sufficient condition of stability in the moments of order r is that the matrix Ar of the
coefficients of the ODE system ruling them has negative real eigenvalues and complex eigenvalues
with negative real parts. Because of the linearity of the system the stability of the first two moments
is the strongest condition of stability. In the case of the first moments (averages), critical values of
the parameters are expressed analytically, while for the second moments the search for the critical
values is made numerically. Some graphs are presented for representative cases.

1. Introduction

The so-called Mathieu equation has attracted the attention of the scholars in the past, and
many papers and books are available on this subject such as [1, 2]. The interest in this equa-
tion stems from two facts: first, its dynamics is very rich; second, it describes the vibrations
of important mechanical systems such as a prismatic bar stretched or compressed by a sinus-
oidal axial force, a pendulum whose support is subjected to a sinusoidal motion, and an el-
liptic membrane [3, 4]. In general, attention is focused on the stability of the motion.

When the excitation acting on the Mathieu oscillator is a stochastic process, its re-
sponse is a stochastic process too. Thus, the analyst is concerned with the problem of the
statistical characterization of the response, and in the case of a system prone to instability the
problem of the stochastic stability must be solved. Nevertheless, studies on the Mathieu
systems with stochastic excitation are not numerous. Probably, the first authors who
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addressed the problem were Stratonovich and Romanovski [5]. Analyses of the Mathieu-
type equations with external random excitation were presented by Dimentberg [6] and by
Cai and Lin [7].

A Mathieu system with random parametrical excitation was considered by Rong et al.
[8] and by Xie [9] (see the references cited herein too). The first authors use the method of
multiple scale to determine the equations of the amplitude and the phase of the response.
The check for almost-sure stability is made by computing the largest Lyapunov exponent. On
the contrary, in ([9, Chapter 7]) the method of stochastic averaging is used, and the stability
in moments is analyzed. It recalled that there are different definitions of stochastic stability,
for which the reader is referred to [10, 11]. According to the selected stability definition,
different stability bounds are found. Thus, it is not surprising that the results of [8, 9] are
different. However, the conclusions that are reached are opposite: in [8] it is claimed that the
stochastic parametric excitation is always detrimental with respect to the stability, while in
[9] it is affirmed that there are cases in which the stochastic excitation stabilizes the system.

In this paper, the Mathieu damped oscillator parametrically excited by a Gaussian
noise is considered again. A suitable coordinate transformation is made, and deterministic
and stochastic averaging are applied in such a way that the second-order motion equation
is replaced by two first-order equations, are interpreted in Itô’s sense. As the Fokker-Planck-
Kolmogorov equation for the response probability density function (PDF) is not analytically
solvable, the stochastic stability in moments is considered as in [9, 12]: the differential
equations governing the response moment evolution are written by means of the rules of Itô’s
stochastic differential calculus [13–16]. A necessary and sufficient condition of stability in the
moments of order r is that the matrix Ar of the coefficients of the ODE system governing them
has negative real eigenvalues and complex eigenvalues with negative real parts. Because of
the linearity of the system the stability of the first two moments is the strongest condition
of stability so that only the first two moments are considered ([11, Chapter 7]). Analytical
stability bounds are established for the first moments, while the stability of the second
moments is searched numerically.

2. Statement of the Problem

Consider the Mathieu-type stochastic differential equation

Ẍ(t) + 2εζ0ω0Ẋ(t) +ω2
0
[
1 + εβ sinΩt +

√
εF(t)

]
X(t) = 0, (2.1)

where ζ0 is the ratio of critical damping, ω0 is the undamped pulsation of the oscillator, ε
is a small parameter, β and Ω are the amplitude and the pulsation of the sinusoidal term,
respectively, and F(t) is a stochastic stationary Gaussian process with zero mean. Because of
the parametric excitation F(t) the response X(t) is a stochastic process too.

The pulsations Ω and ω0 can be linked by writing

ω2
0 =

Ω2

4
+ εδ, (2.2)
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where δ is a detuning parameter. By inserting (2.2) in (2.1), this becomes

Ẍ(t) +
Ω2

4
X(t) = −ε

[
2ζ0ω0Ẋ(t) +

(
δ +ω2

0β sinΩt
)
X(t)
]
− √εω2

0 X(t)F(t). (2.3)

The problem of the statistical characterization of (2.3) will be tackled by using the
stochastic averaging method [6, 11, 17–20]. However, in the case of a harmonic term like
that in (2.3), the classic coordinate transformation X(t) = A(t) cosφ(t), where A(t) and φ(t)
are stochastic processes, does not work well as the joint probability density function (PDF)
of the response is not separable ([11, chapter 7]). A suitable coordinate transformation was
proposed in [6, 17, 18], which reads as

X(t) = X1(t) cos
(
Ωt

2

)
+X2(t) sin

(
Ωt

2

)
. (2.4)

According to the principles of deterministic averaging for weakly nonlinear systems [21] it is
assumed that

Ẋ(t) = −1
2
ΩX1(t) sin

(
Ωt

2

)
+

1
2
ΩX2(t) cos

(
Ωt

2

)

Ẍ(t) = −1
2
ΩẊ1 sin

(
Ωt

2

)
− 1

4
Ω2X1 cos

(
Ωt

2

)
+

1
2
ΩẊ2 cos

(
Ωt

2

)
− 1

4
Ω2X2 sin

(
Ωt

2

)
.

(2.5)

The expressions in (2.5) are not exact but only approximate. The exact expression of the
first derivative is −(1/2)ΩX1 sin(Ωt/2) + Ẋ1 cos(Ωt/2) + (1/2)ΩX2 cos(Ωt/2) + Ẋ2 sin(Ωt/2).
According to the method of deterministic averaging [21] the second and fourth terms are
neglected so that the derivative retains the same form as it would have if X1 and X2 were
constant.

By inserting (2.4), (2.5) into (2.3), after some algebra we obtain a pair of first-order
stochastic differential equations:

Ẋ1(t) = −ε
{

2ζ0ω0

[
X1 sin2

(
Ωt

2

)
− 1

2
X2 sinΩt

]
− δ

Ω
X1 sinΩt − 2δ

Ω
X2 sin2

(
Ωt

2

)

−ω0β

2
X1 sin2Ωt −ω0βX2 sin2

(
Ωt

2

)
sinΩt

}

+
√
εω0

[
1
2
X1 sinΩt +X2 sin2

(
Ωt

2

)]
F(t),

(2.6)

Ẋ2(t) = ε

{
2ζ0ω0

[
1
2
X1 sinΩt −X2 cos2

(
Ωt

2

)]
− δ

Ω
X2 sinΩt − 2δ

Ω
X1 cos2

(
Ωt

2

)

−ω0β

2
X2 sin2Ωt −ω0βX1 cos2

(
Ωt

2

)
sinΩt

}

− √εω0

[
X1 cos2

(
Ωt

2

)
+
X2

2
sinΩt

]
F(t).

(2.7)
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The method of stochastic averaging is applied to (2.6), (2.7). In the field of stochastic
dynamics this method of analysis was proposed first by Stratonovich [17, 18] (see also
[11, 19, 20]) as an extension to stochastic systems of the deterministic method by Bogoliubov
and Mitropolsky [21] (see Mettler [22], too). Then, it was rigorously demonstrated by
Khasminskii [23]. It involves two phases that can be performed in either order: in the former,
the deterministic terms that do not contain the forcing functions are averaged. In the second
phase, the terms containing the forcing functions are reduced to Gaussian stationary white
noises.

The deterministic averaging of the terms in brace brackets in (2.6), (2.7) requires the
evaluation of integrals like Θ−1 · ∫Θ0 (•)dt [6, 17, 18], where Θ = 2π/Ω. It is obtained that

Ẋ1(t) = −ε
(
ζ0ω0X1 − δ

Ω
X2 −

ω0β

4
X1

)
+
√
ε ω0

[
1
2
X1 sinΩt +X2 sin2

(
Ωt

2

)]
F(t),

Ẋ2(t) = −ε
(
ζ0ω0X2 +

δ

Ω
X1 +

ω0β

4
X2

)
− √ε ω0

[
X1 cos2

(
Ωt

2

)
+

1
2
X2 sinΩt

]
F(t).

(2.8)

Now, the forcing terms must be worked out. In the classic stochastic averaging method
it is required that the process F(t) is broadbanded: in order to remove this restriction, a
different way will be followed. Stratonovich [17, Volume 1, Chapter 7] suggested that, given
a stochastic process F(t), which may be even narrowbanded, the product sinΩt F(t) is
replaceable by a stationary Gaussian white noise W1(t) having the autocorrelation function
K0δ(τ). The constant K0 is given by the following integral: K0 = 1/2

∫+∞
−∞ RFF(τ) cosΩτ dτ =

πSFF(Ω), where RFF(τ) and SFF(Ω) are the auto-correlation function and the power spectral
density (PSD) of F(t), respectively. However, the forcing terms in (2.8) contain the contri-
butions F(t)sin2(Ωt/2), F(t)cos2(Ωt/2) too. These contributions are replaced by a stationary
Gaussian white noise W2(t), whose intensity is computed by adapting to the present case the
derivation of Stratonovich [17, Volume 1, Section 7.2]. We have

E[W2(t)W2(t + τ)] = δ(τ)
∫+∞

−∞
RFF(τ)sin2

(
Ωt

2

)
sin2
[
Ω
2
(t + τ)

]
dτ. (2.9)

By expanding the product of the trigonometric functions in the integral (2.9), we obtain:
sin2(Ωt/2)sin2[Ω/2 (t+ τ)] = 1/4{1− cos[Ω(t+ τ)]− cosΩt+ 0.5 cosΩτ + 0.5 cos[Ω(2t+ τ)]}.
In the last expression, the second and the third addenda, when averaged, give rise to zero,
while the fifth term is a faster oscillatory one that according to Stratonovich can be neglected.
Thus, the integral (2.9) is equal to

∫+∞

−∞
RFF(τ)

(
1
4
+

1
8

cosΩτ

)
dτ =

π

2
SFF(0) +

π

4
SFF(Ω). (2.10)

The expansion of
∫+∞
−∞ RFF(τ)cos2(Ωt/2)cos2[Ω/2(t + τ)]dτ leads to the same result. In much

the same way, it results that E[W1(t)W2(t + τ)] = 0, that is, they are uncorrelated.
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Performing these operations, (2.8) simplify into

Ẋ1(t) = −εω0

(
ζ0 −

β

4

)
X1 +

εδ

Ω
X2 +X1ω0

√
ε
π

4
SFF(Ω)W1(t)

+X2ω0

√
ε
[π

2
SFF(0) +

π

4
SFF(Ω)

]
W2(t),

Ẋ2(t) = −εω0

(
ζ0 +

β

4

)
X2 − εδ

Ω
X1 +X2ω0

√
ε
π

4
SFF(Ω)W1(t)

+X1ω0

√
ε
[π

2
SFF(0) +

π

4
SFF(Ω)

]
W2(t).

(2.11)

For the sake of simplicity, the white noises in the previous equations have unit intensities.
More-over, the forcing terms in the second equation have the sign plus as the white noise
processes ±

√
KW(t) have the same probabilistic characteristics ([24, chapter 6, section 6.3.2]).

In order to transform (2.11) into two Itô-type stochastic differential equations, the so-
called Wong-Zakai-Stratonovich corrective terms must be added to the drift terms [25, 26].
They are computed according to the following formula:

mci =
1
2

n∑

1

k
m∑

1
jgkj

∂gij

∂zk
, (2.12)

where in the present case n = m = 2 and gkj , gij are elements of the diffusion matrix

G =

⎡
⎢⎢⎣
X1ω0

√
ε
π

4
SFF(Ω) X2ω0

√
ε
[π

2
SFF(0) +

π

4
SFF(Ω)

]

X2ω0

√
ε
π

4
SFF(Ω) X1ω0

√
ε
[π

2
SFF(0) +

π

4
SFF(Ω)

]

⎤
⎥⎥⎦. (2.13)

Hence, the two Itô stochastic differential equations that govern the problem are

dX1 =
[
−εω0

(
ζ0 −

β

4

)
+ ε

π

4
ω2

0 S

]
X1dt + ε

δ

Ω
X2dt +X1ω0

√
ε
π

4
SFF(Ω)dB1(t)

+X2ω0

√
ε
[π

2
SFF(0) +

π

4
SFF(Ω)

]
dB2(t),

dX2 =
[
−εω0

(
ζ0 +

β

4

)
+ ε

π

4
ω2

0 S

]
X2dt − ε δ

Ω
X1dt

+X2ω0

√
ε
π

4
SFF(Ω) dB1(t) + X1ω0

√
ε
[π

2
SFF(0) +

π

4
SFF(Ω)

]
dB2(t),

(2.14)

where S = SFF(0)+SFF(Ω) and B1(t) and B2(t) are two standard Wiener processes (Brownian
motion), for which the formal relationship dBi/dt = Wi(t) (i = 1, 2) holds.
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From a theoretical point of view the probabilistic characterization of the random vector
X = {X1, X2}t should be obtained by solving the so-called Fokker-Planck-Kolmogorov (FPK)
equation in the joint PDF pX of the state variables [11, 17, 18, 24]

∂pX
∂t

= − ∂

∂xi

(
mipX

)
+

1
2

∂2

∂xi∂xj

(
bijpX
)
, (2.15)

where the summation rule with respect to a repeated index has been adopted, and m1 =
[−εω0(ζ0 − β/4) + ε(π/4)ω2

0 S]X1 + (εδ/Ω)X2, m2 = [−εω0(ζ0 + β/4) + ε(π/4)ω2
0S]X2 −

(εδ/Ω)X1, bij = �GGt�ij , with the matrix G being defined in (2.13), while the apex “t” denotes
transpose. Unfortunately, as in many other cases the FPK equation (2.15) does not have an
analytical solution because the excitation is a parametric one. Thus, another method has to be
chosen in order to characterize the probabilistic characteristics of the response. The moment
equation approach is used herein.

3. Moment Equation Approach

In (2.14) the excitation is multiplicative only, and there is not an external excitation. Thus, zero
solution X1 = X2 = 0 for all t satisfies them, even if the multiplicative excitation is a stochastic
process. We are concerned with the stability of zero solution. There exist different definitions
of stochastic stability, for which the reader is referred to Chap. 6 of [11]. Here, the stability of
zero solution is analyzed in the moments. In fact, the stability of the first two moments is the
strongest for linear autonomous systems under multiplicative Gaussian excitation [11, 27].
Thus, the stability of the first two moments only will be considered here. As the response of
(2.14) is not Gaussian, in order to characterize it statistically, from a theoretical point of view
the knowledge of the infinite hierarchy of the moments would be necessary. Nevertheless, the
system of (2.14) is linearly parametric: it has been shown that the equations for the statistical
moments of such a type of systems are a close set [28], and they can be solved in succession.
Thus, the convergence of the moments of first and second order is a necessary condition for
being stable the moments of higher orders.

In the field of dynamic stability analyses, a system is stable when it comes back to the
initial configuration after being subjected to a small perturbation. Zero statistical moments
E�Xr1

1 Xr2
2 �(r1 + r2 = r) correspond to a zero solution. When the zero solution is perturbed, the

response moments are no longer zero: if the stochastic Mathieu oscillator is stable, once the
perturbation is removed, they decay to zero, otherwise they grow without limits. The first
step is to write the ordinary differential equations (ODEs) ruling the time evolution of the
response moments. Since (2.14) is an Itô system, use is made of Itô’s differential rule [13–15],
which reads as

dψ =
∂ψ

∂t
+

∂ψ

∂xi
dxi +

1
2

∂2ψ

∂xi∂xj
dxidxj . (3.1)

In (3.1) Ψ is a nonanticipating function of the state variables xi and the summation rule is
adopted. It is recalled that (3.1) retains the terms of order dt only, as dB is of order

√
dt. In

order to write the moment equations, the appropriate nonanticipating function to be chosen
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is ψ = Xi
1X

j

2, where i, j are positive integers or zero with the constraint i + j = r, with r being
the order of the moments to be computed.

By choosing ψ = Xi
1X

j

2 with i + j = 1, the ODEs for the first order moments are

Ė[X1] = −ε
[
ω0

(
ζ0 −

β

4

)
−ω2

0
π

4
S

]
E[X1] +

εδ

Ω
E[X2],

Ė[X2] = −ε
[
ω0

(
ζ0 +

β

4

)
−ω2

0
π

4
S

]
E[X2] − εδ

Ω
E[X1],

(3.2)

where the dots mean derivatives with respect to time and S = SFF(0) +SFF(Ω). Analogously,
the ODEs ruling the second moments are found to be

Ė
[
X2

1

]
=
[
−2εω0

(
ζ0 −

β

4

)
+ εω2

0
π

2
SFF(0) + εω2

0
3
2
πSFF(Ω)

]
E
[
X2

1

]

+ 2
εδ

Ω
E[X1X2] + εω2

0

[π
2
SFF(0) +

π

4
SFF(Ω)

]
E
[
X2

2

]

= a11E
[
X2

1

]
+ a12E[X1X2] + a22E

[
X2

2

]
,

Ė[X1X2] = −εδΩ E
[
X2

1

]
+
{
−2εω0ζ0 + εω2

0
π

2
[SFF(0) + SFF(Ω)]

}
E[X1X2] +

ε δ

Ω
E
[
X2

2

]

= a21E
[
X2

1

]
+ a22E[X1X2] + a23E

[
X2

2

]
,

Ė
[
X2

2

]
= εω2

0

[π
2
SFF(0) +

π

4
SFF(Ω)

]
E
[
X2

1

]
− 2

εδ

Ω
E[X1X2]

+
{
−2εω0

(
ζ0 +

β

4

)
+ εω2

0

[
π

2
SFF(0) +

3
4
πSFF(Ω)

]}
E
[
X2

2

]

= a11E
[
X2

1

]
+ a12E[X1X2] + a22E

[
X2

2

]
.

(3.3)

By inspecting (3.3), it is noted that the forcing terms are absent, which due to the fact
that in (2.14) the excitation is purely parametric. Thus, (3.3) can be written in compact matrix
form as

ṁr(t) = Armr , (3.4)

where mr(t) is a vector collecting all the moments of order r of the system states and Ar is a
matrix of the coefficients aij as shown in (3.3). The solution to (3.4) is

mr(t) = m0 exp(Art), (3.5)

where m0 is a vector whose entries are the initial conditions for the moments. These constitute
the perturbation to zero solution.

It is well known (e.g., see [4]) that, as t grows, the response moments decay to
zero whenever the matrix Ar has negative real eigenvalues and complex eigenvalues with
negative real parts. Otherwise, the moments increase without limits. Thus, the condition of
stability in moments is that the eigenvalues of the matrix Ar have negative real parts. In
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this way, the stochastic problem is led to the classic deterministic problem of studying the
eigenvalues of a matrix. Since the matrix Ar depends on the system parameters (2.1), there
exist critical values of these quantities for which the real part of almost an eigenvalue is zero.
Increasing them further, a real part becomes positive, and the moments grow to infinity.

In order to study the eigenvalues of Ar , its characteristic equation is formed:

det(λIr −Ar) = 0, (3.6)

where Ir is a unit matrix having the same order as Ar . Equation (3.6) must specialized for the
order r of the moments. As previously advanced, due to the linearity of the system and to the
Gaussianity of the input, the moment stability analysis is limited to the first two moments.

Coming back to the first-order moments, from (3.2) the characteristic equation looks
like

det

⎡
⎢⎢⎣

λ + ε

[
ω0

(
ζ0 −

β

4

)
−ω2

0
π

4
S

]
−εδ
Ω

εδ

Ω
λ + ε

[
ω0

(
ζ0 +

β

4

)
−ω2

0
π

4
S

]

⎤
⎥⎥⎦ = 0, (3.7)

where from (2.2) δ = ε−1(ω2
0 −Ω2/4). The roots of (3.7) are

λ1,2 = ε

⎛

⎝−ζ0ω0 +
1
4
πω2

0S ±
1
4

√

ω2
0β

2 − 16
δ2

Ω2

⎞

⎠. (3.8)

In examining the eigenvalues given by (3.8), it is necessary to distinguish between the case of
real eigenvalues and that of complex conjugate ones. The eigenvalues are real numbers when

β > 4
δ

ω0Ω
, (3.9)

where for the sake of simplicity β is assumed to be positive. Otherwise, they are complex
conjugate numbers. Clearly, in the latter case the stability condition for the first moments is

ζ0 >
π

4
ω0S. (3.10)

Equation (3.10) requires that the oscillator is damped and the amount of damping depends
on both the oscillator frequency and the intensity of the exciting noise. This requirement may
be rather restrictive when ω0 is not small.

Now, let us consider the case in which (3.9) is satisfied. From (3.8) it is seen that there is
passage to instability when the eigenvalue with the sign plus before the square root becomes
zero, that is,

−ζ0ω0 +
1
4
πω2

0S +
1
4
ω0

√

ω2
0β

2 − 16
δ2

Ω2
= 0. (3.11)
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Solving (3.11) with respect to S, we obtain the critical value of this quantity:

Scr =
4ζ0

πω0
− 1
πω0

√√√√β2 − 16
δ2

ω2
0Ω

2
, (3.12)

where β must be larger than the value in the right-hand side of (3.9). By comparing (3.12)
with (3.10) it is found that the critical value given by the former is always smaller than that
given by the latter. Keeping into account that S = SFF(0) +SFF(Ω), the critical intensity of the
excitation depends on the form of power spectral intensity of this: in Section 4 the cases of
white and coloured noises will be considered.

As regards the second moment stability, since the moment equations are three, (3.3),
the characteristic equation associated with the matrix A2 is of the third order. The roots of
such a type of equation have analytical expressions. However, they are rather cumbersome as
many parameters enter them. Thus, it has been preferred to proceed numerically. By using a
computer algebra software a parameter is varied till one out of the three eigenvalues becomes
zero: the corresponding value of the parameter is the critical one. Routh-Hurwitz criteria
[4, 29] are not used. This is why in another study devoted to the stability of elastic columns
with memory-dependent damping [12] it has been found that these criteria may overevaluate
the critical values by a 30%.

4. Stability Analyses

The present section is devoted to the applications of the theory previously explained. Three
cases are considered for the parametric excitation F(t): (1) stationary Gaussian white noise;
(2) coloured Gaussian process obtained by passing a stationary Gaussian white noise through
a first-order linear filter; (3) coloured Gaussian process obtained by passing a stationary
Gaussian white noise through a second-order linear filter. This choice makes the comparisons
easier as the three stochastic processes have a common parameter that is the intensity σ2 of
the white noise.

The power spectral density (PSD) of a stationary stochastic process X(t) is defined as

SXX =
1

2π

∫+∞

−∞
RXX(τ) · exp(−iwτ)dτ, (4.1)

where RXX(τ) is the autocorrelation function of the process and i =
√−1. Since the

autocorrelation function of a stationary Gaussian white noise W(t) can be expressed as
RWW(τ) = 2πσ2δ(τ) (δ(τ) is Dirac’s delta), its PSD is σ2, constant on the whole real axis.
Thus, for a white noise the first criterion of stability for the first-order moments (3.10) gives

σ2
cr =

2ζ0

πω0
. (4.2)

The critical value of σ2 increases linearly with the system ratio of critical damping ζ0 and is
inversely proportional to system pulsation ω0, but it does not depend on Ω.
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Figure 1: First moment stability: plot σ2
cr of as a function of Ω from (4.5), first-order filter, α = 10, ω0 = 2π ,

ζ0 = 0.05.

Now, the white noise is passed through a first-order linear filter (the Langevin
equation) to have the excitation F(t), that is,

Ḟ(t) + αF(t) =
√

2πσW(t), (4.3)

where W(t) has unit strength. The PSD of F(t) is

SFF(ω) =
2σ2α

α2 +ω2
. (4.4)

The critical value σ2
cr is found by solving (3.10) with respect to S and taking the expression of

this quantity into account, that is,

Scr =
2σ2

cr

α
+

2σ2
crα

α2 + Ω2
=

4ζ0

πω0
. (4.5)

The result of (4.5) is plotted in Figure 1 as a function of Ω for α = 10, ω0 = 2π , and ζ0 = 0.05.
It is found that σ2

cr is an increasing function of Ω.
The third type of excitation is obtained by passing the white noise through a second-

order linear filter, that is,

F̈(t) + 2ζfωf Ḟ(t) +ω2
fF(t) =

√
2πσW(t). (4.6)

In this case the PSD of F(t) is

SFF(ω) =
2σ2

(
ω2

f −ω2
)2

+ 4ζ2
fω

2
fω

2
. (4.7)
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Figure 2: First moment stability: plot of σ2
cr as a function of Ω from (4.8), second-order filter: ω0 = 2π ,

ζ0 = 0.05, and ζf = 0.10; top plot ωf = ω0, bottom plot ωf = 2ω0.
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Figure 3: First moment stability: plot of Scr as function of Ω according to (3.12) for ω0 = 2π , ζ0 = 0.05,
and β = κδ/(ω0Ω) with κ = 4.01 (red line), 4.10 (black), 4.5 (blue), and 5.0 (violet).

σ2
cr for the first condition of stability is computed from

Scr =
2σ2

cr

ω4
f

+
2σ2

cr
(
ω2

f
−Ω2
)2

+ 4ζ2
f
ω2

f
Ω2

=
4ζ0

πω0
. (4.8)

The results of (4.8) are plotted in Figure 2 for ω0 = 2π , ζ0 = 0.05, and ζf = 0.05; the top plot
refers to ωf = ω0 and the bottom plot to ωf = 2ω0. Both plots show resonance with a marked
minimum when Ω equates ωf .

As regards the second condition of stability, Scr from (3.12) is plotted in Figure 3 for
ω0 = 2π , ζ0 = 0.05. Since this condition is valid only when β is larger than the right-hand side
of (3.9), the plots are drawn for β = κδ/(ω0Ω) with κ = 4.01, 4.10, 4.5, and 5.0. Equation
(3.12) gives a result with physical meaning only when Scr is positive. From the plots—the
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Figure 4: (a) Comparison among the PSDs of the white noise (green line) and those given by (4.4) (black
line) and by (4.7) (red and blue lines) for σ2 = 0.01, α = 10, ζf = 0.10, and ωf = 2π or 4π. (b) Comparison
between the PSDs deriving from (4.4) and (4.7): from (4.4) red line, from (4.7) blue and green lines. (c)
Comparison between the PSDs deriving from (4.7): blue line ωf = 2π , black line ωf = 4π .

bottom is a detail—it is seen that the interval of validity is small, and it narrows as κ increases.
All the curves have a peak for Ω = 2ω0 = 4π .

Before presenting the results of the stability analyses for the second-order moments,
it is necessary to compare the three PSD functions used in the analyses: they are depicted in
Figure 4.The parameter σ2 is common to the three PDFs, and it constitutes the strength of the
white noise. The plots clearly show as the white noise is by far the most severe excitation that
may excite a dynamic system, if the colored excitations are obtained by passing it through a
linear filter. As a consequence of this only observation, it cannot produce stabilizing effects on
a dynamic system. The Wiener process yielded by the first-order filter of (4.3) (the Langevin
equation) is the second in order of severity. As regards the processes generated by the second-
order filter of (4.6), they have less strength as the abscissae of the peaks move farther from
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Figure 5: Second moment stability, white noise excitation: plot of σ2
cr as a function of Ω for ε = 1, ω0 = 2π ,

ζ0 = 0.05; β = 0.1 green line, and β = 0.15 black line.
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Figure 6: Second moment stability, white noise excitation: plot of βcr as a function of Ω for ε = 1, ω0 = 2π ,
ζ0 = 0.05; σ2 = 0.0005 green line, and σ2 = 0.001 black line.

the origin. These remarks allow to explain the results of the analyses keeping in mind that
the excitation affects the moments equations through SFF(0) and SFF(Ω). The following anal-
yses are of two types: (1) search of the critical value of σ2 keeping β, the amplitude of the
sinusoidal term in (2.1), constant; (2) search of the critical value of β keeping σ2 constant. For
the sake of simplicity in all analyses the parameter ε is worth one. It is recalled that there is
passage to instability when an eigenvalue becomes zero, which happens when σ2 equates σ2

cr
or β equates βcr.

For white noise excitation the plots of σ2
cr and βcr as a function of Ω are in Figures 5

and 6, respectively, where ω0 = 2π and ζ0 = 0.05. Both σ2
cr and βcr are constant with respect to

Ω, being the stable regions below the straight lines. This result is not surprising: in fact, the
excitation enters the moment equations through SFF(0) and SFF(Ω), which are equal and do



14 Mathematical Problems in Engineering

0 10 20 30 40 50 60

t

0.06

0.07

0.08

0.09

0.1

z
1

(a)

0 10 20 30 40 50 60

t

z
1

0.5

1

1.5

2

2.5

3

(b)

Figure 7: White noise excitation: E[X2
1] = z1 with respect to time, ω0 = 2π , ζ0 = 0.05, β = 0.1, ε = 1; (a)

σ2 = 0.00123 < σ2
cr; (b) σ

2 = 0.00130 > σ2
cr.
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Figure 8: Second moment stability, excitation given by the first-order filter (4.3): plot of σ2
cr as a function of

Ω for β = 0.1, α = 10, ε = 1, ω0 = 2π , ζ0 = 0.05.

not vary with Ω in the case of white noise, whose PSD is constant on the whole frequency
axis. σ2

cr increases as β decreases (Figure 5), and βcr has a similar trend (Figure 6).
Figure 7 shows E[X2

1] as a function of time for β = 0.1, σ2 = 0.0012 (top plot),
and σ2 = 0.00130 (bottom plot). The moment equations (3.3) are numerically integrated by
means of a fourth-order Runge-Kutta method. The initial perturbation is given by means of
the initial conditions E[X2

1(0)] = E[X2
2(0)] = 0.1. In the former case σ2 is lesser than σ2

cr, and
E�X2

1� starts from the prescribed value 0.1, then it decays to zero and does not show any
oscillation. In the latter case σ2 is larger than σ2

cr, and E�X2
1� grows without limit. The absence

of oscillations is due to the fact that in applying the stochastic averaging the oscillatory terms
are cancelled.

As regards the excitation given by the first-order filter of (4.3), the plots of σ2
cr and

βcr as a function of Ω are shown in Figures 8 and 9, respectively, where ω0 = 2π , ζ0 = 0.05,
and α = 10. Both quantities increase as Ω increases. In fact, the PSD (4.4) is a monotonically
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Figure 9: Second moment stability, excitation given by the first-order filter (4.3): plot of βcr as a function of
Ω for σ2 = 0.005, α = 10, ε = 1, ω0 = 2π , ζ0 = 0.05.
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Figure 10: Excitation from the second order filter (4.6): plots of σ2
cr as a function of Ω: ε = 1, ω0 = 2π ,

ζ0 = 0.05, β = 0.10, ζf = 0.10, black line ωf = 2π , blue line ωf = 4π .

decreasing func-tion of Ω, which causes the excitation to diminish with Ω. The curve in the
plot of Figure 8 is obtained by keeping β equal to 0.1. The increase of σ2

cr is marked and
reaches a 70% as Ω passes from 0.5π to 6.5π . The curve of βcr refers to σ2 = 0.0005: in the
same interval the increase is less marked and amounts to about 28%. The analyses are made
in a discrete series of values of Ω obtaining a set of points in the plane (σ2, Ω) or (β, Ω). Then,
the curves are traced by means of the routine Spline of MAPLE.

The plots for the excitation given by the second-order filter (4.6) are shown in Figures
10 and 11 and are obtained for this data set: ε = 1, ω0 = 2π , ζ0 = 0.05, β = 0.10 in Figure 10
for σ2

cr, σ
2 = 0.01 in Figure 11 for βcr, ζf = 0.10, black line ωf = 2π , blue line ωf = 4π . In both

plots the curve deriving from ωf = 4π is the higher since the excitation strength is smaller, as
already explained. In both plots there is a marked valley for Ω = ωf : since SFF(Ω) assumes
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Figure 11: Excitation from the second-order filter (4.6): plots of βcr as a function of Ω: ε = 1, ω0 = 2π ,
ζ0 = 0.05, σ2 = 0.01, ζf = 0.10, black line ωf = 2π , blue line ωf = 4π .

its largest value (see Figure 4), there is a kind of stochastic resonance [30], even if the system
remains stable.

5. Summary and Conclusions

In this paper the issue of stability of the stochastic Mathieu oscillator is addressed. In order to
solve the problem, a suitable coordinate transformation and stochastic averaging are applied
to the original dynamic system. In this way, two first-order stochastic differential equations
are obtained. Then, they are transformed into two Itô-type stochastic equations. For such a
type of stochastic differential equations Itô’s differential rule is applicable and allows one to
derive the ODEs ruling the time evolution of the response statistical moments.

In the dynamic system considered here the excitation is merely linearly parametric.
Hence, the moments ODEs are linear and homogeneous, and the ODEs for the moments of
order r are uncoupled from the ODEs for moments of different order. Because of this feature
the ODEs for the moments of order r admit zero solution, which means that the system is at
rest, and the parametric excitation does not disturb this state. The system is stable in moments
when these return to zero after the application of an external perturbation; otherwise, it is
unstable and the moments diverge. The necessary and sufficient condition for the stability
of the moments of order r is that all the eigenvalues of the matrix Ar of the coefficients of
the ODEs written for those moments have negative real part. The passage to the instability
requires that an eigenvalue becomes zero. In this way, the stochastic problem is reduced to
the deterministic problem of the study of the eigenvalues of a matrix.

The procedure developed in this paper is applied to three types of Gaussian stationary
stochastic excitations: (1) white noise; (2) white noise filtered through a first-order filter; (3)
white noise filtered through a second-order filter. In order to make it possible to compare the
results, in cases (2) and (3) the source white noise is the same as that of case (1), and it is by
far the more severe excitation (Figure 4).

As regards the stability of the first-order moments, it is substantially led by the system
damping. Several parameters affect the stability of the second-order moments: since the char-
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acteristic equation of the matrix A2 is of the third order, so that its roots have complicated
expressions, it has been chosen to proceed numerically. The analyses were aimed at finding
the critical values of the white noise strength σ2 and of the amplitude β of the sinusoidal
term in the motion equation (2.1). Differently from the deterministic Mathieu oscillator the
pulsation Ω of this term has little or no effects on the bounds of stability, which is due to the
presence of damping. Vice versa, in the case of excitation deriving from a second-order filter
there is a stochastic resonance when Ω equates the peak frequency ωf of the PSD of the
excitation. In any case, the critical values σ2

cr and βcr are by far smaller for the white noise
excitation since as observed it is the strongest excitation. Thus, the statement of [9, 31] that
a white noise excitation may cause a stabilizing effect is not found true. The results of these
papers agree with those of [8]: a direct comparison of the results is not possible as the system
studied in that reference is a little different and a quite different method of analysis is used
there.
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This paper deals with the problem of robust stabilization of stochastic systems with time-delay
and nonlinear uncertainties via memory state feedback. Based on Lyapunov krasoviskii functional,
some sufficient conditions on local (global) stabilization are given in terms of matrix inequalities.
In particular, these stabilizable conditions for a class of nonlinear stochastic time-delay systems are
derived in the form of linear matrix inequalities, which have the advantage of easy computation.
Moreover, the corresponding results are further extended to the stochastic multiple time-delays
systems. Finally, an example is presented to show the superiority of memory state feedback
controller to memoryless state feedback controller.

1. Introduction

Stochastic differential delay equations are one of the most useful stochastic models in
applications, for example, aircraft, chemical or process control system, and distributed
networks. It is known that time-delay is, in many cases, a source of poor system performance
or instability. Hence, the stability and stabilization of stochastic time delay systems have been
recently attracting the attention of a number of researchers, see [1–18] and the references
therein. In [2], the authors studied the stability of linear stochastic systems with uncertain
time delay by generalized Riccati equation approach, while [3] extended the results of [2]
to nonlinear case via linear matrix inequalities. Reference [4] investigated the problems of
stabilization for a class of linear stochastic systems with norm-bounded uncertainties and
state delay, and it developed two criteria for the stability analysis: delay-dependent and
delay-independent. The memoryless nonfragile state feedback control law for nonlinear
stochastic time-delay systems was designed in [5], in which new sufficient conditions for the
existence of such controllers were presented based on the linear matrix inequalities approach.



2 Mathematical Problems in Engineering

Reference [6] was concerned with the stability analysis and proposed improved delay-
dependent stability criteria for uncertain stochastic systems with interval time-varying delay.
The study of exponential stability of stochastic delay-differential equations was discussed
in [7–9]. The output feedback stabilization of stochastic nonlinear time-delay systems was
investigated in [10], and some stabilization criterions for nonlinear stochastic time-delay
systems with state and control-dependent noise were given in [11, 12] by means of matrix
inequalities.

We usually design memoryless state feedback controller for the stabilization of
systems because of its advantage of easy implementation. However, its performance, for
time-delay systems, cannot be better than a memory state feedback controller which utilizes
the available information of the size of delay. Reference [19] has given a general form of a
memory state feedback (delayed feedback) controller:

u(t) = Gx(t) +
∫ t

t−τ
G1(s)x(s)ds. (1.1)

But the task of storing all the previous states x(·) and computing the values of time-varying
gain matrices G1(·) makes the practical realization of infinite-dimensional controller (1.1)
very difficult. For these reasons, the controller

u(t) = Gx(t) +G2x(t − τ) (1.2)

could be considered as a compromise between the performance improvement and the
implementation simplicity. Reference [20] gave the sufficient conditions for the stabilization
of deterministic state-delayed systems. References [21] and [22] designed a memory state
feedback controller for neutral time-delay systems and singular timedelay systems, respec-
tively. Reference [23] studied the stabilization problem for a class of discrete-time Markovian
jump linear systems with time-delays both in the system state and in the mode signal via
time-delayed controller and obtained a sufficient condition. What [13] actually studied is
the stabilization problem of linear stochastic time-delay systems using generalized Riccati
equation method. Up to now, to the best of the authors’ knowledge, the issue on memory
state feedback stabilization of stochastic systems with time-delay and nonlinear uncertainties
has not been fully investigated in previous literatures.

In this paper, we consider the problem on robust stabilization for stochastic systems
with time-delay and nonlinear uncertainties via memory state feedback. This problem
contains three inevitable aspects of practical application: timedelay, nonlinear uncertainties
and more effective controller, which is more complex than the stabilization of pure stochastic
systems via memoryless control. These complexities result in some difficulties of memory
stabilizing controller design. By the Itô formula, mathematical expectation properties, and
matrix transformation, some sufficient conditions are obtained on locally and globally
asymptotic stabilization in probability by means of matrix inequalities. Especially for a
class of nonlinear stochastic time-delay systems, a sufficient condition for the existence of
memory state feedback stabilizing controller is obtained in terms of LMIs, which has the
advantage of easy computation. Meanwhile, a memoryless state feedback controller is also
given as a special case of memory state feedback controller. Moreover, the robust stabilization
problem for stochastic multiple time-delays systems is further studied and a general sufficient
condition is derived.
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The paper is organized as follows. Some preliminaries and problem formulations are
presented in Section 2. In Section 3, main results are given. Section 4 presents one example to
illustrate the effectiveness of our developed results. Section 5 concludes this paper.

Notation 1. A′: the transpose of matrix A; A ≥ 0(A > 0): A is positive semidefinite (positive
definite) symmetric matrix; I: identity matrix; ‖ · ‖: Euclidean norm; L2

F([0,∞), Rl): space of
nonanticipative stochastic process y(t) ∈ Rl with respect to an increasing σ-algebra Ft(t ≥ 0)
satisfying E

∫∞
0 ‖y(t)‖2dt <∞. In×n: n × n identity matrix.

2. Preliminaries and Problem Statement

Consider the following continuous nonlinear stochastic time-delay systems:

dx(t) = (Ax(t) + Bx(t − τ) + B1u(t) +H0(x(t), x(t − τ), u(t)))dt
+ (Cx(t) +Dx(t − τ) +D1u(t) +H1(x(t), x(t − τ), u(t)))dw(t),

x(t) = ø(t) ∈ L2(ω,F0, C([−τ, 0], Rn)), t ∈ [−τ, 0],

(2.1)

where x(t) ∈ Rn and u(t) ∈ Rm are system state and control input, respectively; w(t) is
1-dimensional standard Wiener process defined on the probability space (Ω, F, Ft, P) with
Ft = σ{w(s) : 0 ≤ s ≤ t}; Hi(0, ·, ·) = 0, i = 0, 1; A, B, B1, C, D, and D1 are constant matrices; τ >
0 is a certain timedelay. Under very mild conditions on Hi(0, ·, ·), i = 0, 1, (2.1) exists a unique
global solution [1]. It should be pointed out that any general nonlinear stochastic system
which is sufficiently differentiable can take the form of (2.1) via Taylor’s series expansion at
the origin.

Next, we give the following definitions essential for the paper.

Definition 2.1 (see [1]). System (2.1) with u(t) = 0 is said to be stable in probability, if for any
ε > 0,

lim
x→ 0

P

(
sup
t≥0
‖x(t)‖ > ε

)
= 0. (2.2)

Additionally, if we also have

lim
x0→ 0

P

(
lim
t→∞

x(t) = 0
)

= 1, (2.3)

then system (2.1) with u(t) = 0 is said to be locally asymptotically stable in probability.
If (2.2) holds and

P

(
lim
t→∞

x(t) = 0
)

= 1 (2.4)

for all x0 ∈ Rn, then system (2.1) with u(t) = 0 is said to be globally asymptotically stable in
probability.
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Definition 2.2. If there exists a constant memory state feedback control law

u(t) = K1x(t) +K2x(t − τ), (2.5)

such that the equilibrium point of the closed-loop system

dx(t) = ((A + B1K1)x(t) + (B + B1K2)x(t − τ) +H0(x(t), x(t − τ), K1x(t) +K2x(t − τ)))dt
+ ((C +D1K1) x(t) + (D +D1K2)x(t − τ)

+H1(x(t), x(t − τ), K1x(t) +K2x(t − τ)))dw(t),

x(t) = ø(t), [−τ, 0]
(2.6)

is asymptotically stable in probability [1] for all τ > 0, then stochastic time-delay differential
system (2.1) is called locally robustly stabilizable. If (2.6) is robustly stable [2], that is, the
equilibrium point of (2.6) is asymptotically stable in the large [1] for all τ > 0, (2.1) is globally
robustly stabilizable.

Remark 2.3. Definition 2.2 gives locally (globally) robustly stabilizable of stochastic time-
delay systems via memory state feedback control law u(t) = K1x(t) + K2x(t − τ), which
is more general than that via memoryless state feedback control law [12]. This is because
Definition 2.2 reduces to the corresponding definition under memoryless state feedback
control law when K2 = 0.

The aim of this paper is to find a constant memory state feedback control law (2.5),
such that the equilibrium point of (2.6) is asymptotically stable in probability for all τ > 0.

3. Main Results

In this section, we will give some sufficient conditions of the stabilization of system (2.1).
Without loss of generality, we can give the following assumption for nonlinear function Hi.

Assumption 3.1. There exists an ε > 0, such that

sup
∥∥Hi

(
x, y,K1x +K2y

)∥∥ ≤ ε
(‖x‖ + ∥∥y∥∥), i = 0, 1, (3.1)

holds for all x, y ∈ U (a neighborhood of the origin).

The following general theorem is presented, which yields several applicable corollar-
ies.

Theorem 3.2. If (3.1) holds and K1, K2 ∈ Rm×n, P > 0, Q > 0 are the solutions of the following
matrix inequality

Z + Z1 < 0, (3.2)
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then system (2.1) can be locally robustly stabilized by (2.5). If U is replaced by Rn, then system (2.1)
can be globally robustly stabilized by the same controller.

In (3.2), Z and Z1 are defined by

Z =

[
Σ1 Σ2

∗ (D +D1K2)′P(D +D1K2) −Q

]
,

Z1 =

[
Σ3 0

0 Σ4

]
,

(3.3)

where

Σ1 = P(A + B1K1) + (A + B1K1)′P +Q + (C +D1K1)′P(C +D1K1),

Σ2 = P(B + B1K2) + (C +D1K1)′P(D +D1K2),

Σ3 = ε(3 + 3‖C‖ + 3‖D1‖ · ‖K1‖ + 3ε + ‖D‖ + ε‖D1‖ · ‖K2‖)‖P‖I,

Σ4 = ε(3 + ‖D‖ + ‖D1‖ · ‖K2‖ + ‖C‖ + ‖D1‖ · ‖K1‖ + 2ε)‖P‖I.

(3.4)

Proof. Choose the following Lyapunov-Krasoviskii functional:

V (t, x) = x′(t)Px(t) +
∫ τ

0
x′(t − s)Qx(t − s)ds, (3.5)

where P > 0 and Q > 0 are the solutions of (3.2). Let L be the infinitesimal generator of the
closed-loop system (2.6), then, by the Itô’s formula, we have

LV (t, x(t)) = x′(t)
[
P(A + B1K1) + (A + B1K1)′P +Q + (C +D1K1)′P(C +D1K1)

]
x(t)

+ 2x′(t)
[
P(B + B1K2) + (C +D1K1)′ · P(D +D1K2)

]
x(t − τ) + x′(t − τ)

· [(D +D1K2)′P(D +D1K2) −Q
]
x(t − τ)

+ 2H ′
0Px(t) + 2H ′

1P(D +D1K2)x(t − τ)

+ 2H ′
1P(C +D1K1)x(t) +H ′

1PH1

=

[
x(t)

x(t − τ)

]′
Z

[
x(t)

x(t − τ)

]
+ 2H ′

0Px(t) +H ′
1PH1

+ 2H ′
1P(D +D1K2)x(t − τ) + 2H ′

1P(C +D1K1)x(t).

(3.6)
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In addition, by (3.1), we obtain

2H ′
0Px(t) + 2H ′

1P(D +D1K2)x(t − τ) + 2H ′
1P(C +D1K1)x(t) +H ′

1PH1

≤ 2ε‖P‖(1 + ‖C‖ + ‖D1‖ · ‖K1‖ + ε)‖x(t)‖2

+ 2ε‖P‖(1 + ‖C‖ + ‖D1‖ · ‖K1‖ + ‖D‖ + ‖D1‖ · ‖K2‖ + ε)‖x(t)‖ · ‖x(t − τ)‖

+
(

2ε + ε2
)
‖P‖ · ‖x(t − τ)‖2.

(3.7)

By inequality |ab| ≤ (1/2)(a2 + b2), then (3.7) becomes

2H ′
0Px(t) + 2H ′

1P(D +D1K2)x(t − τ) + 2H ′
1P(C +D1K1)x(t) +H ′

1PH1

≤ ε(3 + 3‖C‖ + 3‖D1‖ · ‖K1‖ + 3ε + ‖D‖ + ‖D1‖ · ‖K2‖)‖P‖I‖x(t)‖2

+ ε(3 + ‖D‖ + ‖D1‖ · ‖K2‖ + ‖K2‖‖C‖ + ‖D1‖ · ‖K1‖ + 2ε)‖P‖I‖x(t − τ)‖2

=

[
x(t)

x(t − τ)

]′
Z1

[
x(t)

x(t − τ)

]
.

(3.8)

Substituting (3.8) into (3.6), it follows

LV (t, x(t)) ≤
[

x(t)

x(t − τ)

]′
(Z + Z1)

[
x(t)

x(t − τ)

]
. (3.9)

According to (3.2), that is LV (t, x(t)) < 0 in the domain {t > 0} × U for x /= 0, so the local
stabilization of Theorem 3.2 is obtained by Corollary of [1]. By the same discussion, the global
stabilization conditions can be also obtained by Theorem 4.4 of [1].

From Theorem 3.2, we can derive some useful results, which can be expressed in terms
of LMIs.

Corollary 3.3. If Hi ≡ 0, i = 0, 1, and the matrix inequality Z < 0 has solutions P > 0, Q > 0 and
K1, K2 ∈ Rm×n, then the linear stochastic time-delay system

dx(t) = (Ax(t) + Bx(t − τ) + B1u(t))dt + (Cx(t) +Dx(t − τ) +D1u(t))dw(t) (3.10)

is globally robustly stabilizable. If D = 0, D1 = 0, and the following LMI:

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ5 P̂ P̂C′ B1X

P̂ −Q̂ 0 0

CP̂ 0 −P̂ 0

XB′1 0 0 −Q̂

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (3.11)
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has solutions P̂ > 0, Y ∈ Rm×n, X ∈ Rn×m, and Q̂ > 0, then

dx(t) = (Ax(t) + Bx(t − τ) + B1u(t))dt + Cx(t)dw(t) (3.12)

is globally robustly stabilizable, where Σ5 = AP̂ + P̂A′ + B1Y + Y ′B′1 + BQ̂B′ + BXB′1 + B1XB′, and
a stabilizing feedback control law u(t) = K1x(t) +K2x(t − τ) = YP̂−1x(t) +XQ̂−1x(t − τ).

Proof. If Hi(·, ·, ·) = 0, i = 0, 1, we can take ε = 0 in (3.1), then LV (t, x(t)) < 0 for (t, x) ∈ t >
0 × Rn, except possibly at x = 0.

Thus, the first part of Corollary 3.3 is proved.
Furthermore, if D = 0, D1 = 0, (3.2) degenerates into

Z =

[
Σ6 P(B + B1K2)

(B + B1K2)′P −Q

]
< 0, (3.13)

where Σ6 = P(A + B1K1) + (A + B1K1)′P +Q + C′PC.
According to Schur’s complement, (3.13) is equivalent to

Σ6 + P(B + B1K2)Q−1(B + B1K2)′P < 0. (3.14)

Then, pre- and post-(3.14) by P−1, we have

P−1Σ6P
−1 + (B + B1K2)Q−1(B + B1K2)′ < 0. (3.15)

Setting P̂ = P−1, Y = K1P
−1, Q̂ = Q−1, and X = K2Q

−1. Again, by Schur’s complement, (3.15)
is equivalent to (3.11). Thus, the second part of Corollary 3.3 is also proved.

Remark 3.4. Reference [13] considered the analogous problem to Corollary 3.3 by delay
feedback, where the main result is expressed by means of generalized algebraic Riccati
equations (GAREs) GAREs. However, Corollary 3.3 gives a sufficient condition in terms of
LMIs which are easy to be solved.

Corollary 3.5. If the following LMI:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ∗1
√

2P̂C′ P̂ B′ 0 0
√

2CP̂ −P̂ 0 0 0 0

P̂ 0 −I 0 0 0

B 0 0 −I √
2D′ K′2B

′
1

0 0 0
√

2D −P̂ 0

0 0 0 B1K2 0 −P̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.16)



8 Mathematical Problems in Engineering

has solution P̂ > 0, Y , and K2, then the stochastic linear time-delay controlled system

dx(t) = (Ax(t) + Bx(t − τ) + B1u(t))dt + (Cx(t) +Dx(t − τ) +D1u(t))dw(t) (3.17)

is globally robustly stabilizable, where Γ∗1 = A′P̂ + P̂A + B1Y + Y ′B′1 + P̂ . Moreover, the stabilizing
feedback control law

u(t) = YP̂−1x(t) +K2x(t − τ). (3.18)

Proof. Applying the well-known inequality

X′Y + Y ′X ≤ γX′X + γ−1Y ′Y, ∀γ > 0, (3.19)

and supposing γ = 1 for simplicity, we have

2x′(t)PB1K2x(t − τ) + 2x′(t)(C +D1K1)′P · (D +D1K2)x(t − τ)
≤ x′(t)

[
P + (C +D1K1)′P(C +D1K1)

]
x(t)

+ x′(t − τ)[K′2B′1PB1K2 + (D +D1K2)′P · (D +D1K2)
]
x(t − τ).

(3.20)

Let Γ1 = Σ1 + P + (C +D1K1)′P(C +D1K1), Γ2 = 2(D +D1K2)′P(D +D1K2) +K′2B
′
1PB1K2 −Q.

Then,

Z ≤
[
Γ1 PB

∗ Γ2

]
= Γ. (3.21)

Obviously, if Γ < 0, then Z < 0. Applying the Theorem 3.2, the closed-loop system of (3.17) is
robustly stable [2].

Then, pre- and post-multiplying Γ < 0 by diag{P−1, I}, and by Schur’s complement,
we have Γ < 0 is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ∗1
√

2P−1C′ P−1 B′ 0 0
√

2CP−1 −P−1 0 0 0 0

P−1 0 −Q−1 0 0 0

B 0 0 −Q √
2D′ K′2B

′
1

0 0 0
√

2D −P−1 0

0 0 0 B1K2 0 −P−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.22)

where Γ∗1 = AP−1 + P−1A + B1K1P
−1 + P−1K′1B

′
1 + P−1. Set P̂ = P−1, Y = K1P

−1 = K1P̂ , Q = I,
(3.22) is equivalent to (3.16). This ends the proof of Corollary 3.5.

Below, for D = 0, D1 = 0, we give another sufficient condition for the local (global)
stabilization of system (2.1) in the terms of LMIs.
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Theorem 3.6. For D = 0, D1 = 0 in (2.1), suppose (3.1) holds for all x, y ∈ U(x, y ∈ Rn). If the
LMIs:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π1 P̂ P̂
√

2P̂C′ B + B1K2

P̂ −Q̂ 0 0 0

P̂ 0 − α

6ε2
I 0 0

√
2CP̂ 0 0 −P̂ 0

B′ +K′2B
′
1 0 0 0 −ε2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.23)

P̂ ≤ αI, (3.24)

Q̂ ≤ αI

7ε2
, (3.25)

0 < α ≤ 1, (3.26)

have solutions P̂ > 0, α, Q̂ > 0,K2, and Y ∈ Rm×n, then system (2.1) can be locally (globally) robustly
stabilized by

u(t) = YP̂−1x(t) +K2x(t − τ), (3.27)

whereΠ1 = AP̂ + P̂A′ + B1Y + Y ′B′1 + P̂ .

Proof. Applying the well-known inequality (3.19) again and supposing γ = 1 for simplicity,
we have (if 0 < P ≤ I/α for some α > 0)

2H ′
0Px(t) + 2H ′

1PCx(t) +H ′
1PH1

≤ 6ε2

α

(
‖x(t)‖2 + ‖x(t − τ)‖2

)
+ x′(t)

(
P + C′PC

)
x(t)

(3.28)

which holds because

2H ′
0Px = H ′

0P
1/2 · P 1/2x + x′P 1/2 · P 1/2H ′

0

≤ H ′
0PH0 + x′Px

≤ 2ε2

α

(
‖x(t)‖2 + ‖x(t − τ)‖2

)
+ x′Px,

H ′
1PH1 ≤ 2ε2

α

(
‖x(t)‖2 + ‖x(t − τ)‖2

)
,

2H ′
1PCx = H ′

1P
1/2 · P 1/2Cx + x′C′P 1/2 · P 1/2H ′

1

≤ 2ε2

α

(
‖x(t)‖2 + ‖x(t − τ)‖2

)

+ x′(t)C′PCx(t).

(3.29)
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Substituting (3.28) into (3.6), it follows that

LV (t, x(t)) ≤
[

x(t)

x(t − τ)

]′
Ẑ

[
x(t)

x(t − τ)

]
, (3.30)

where

Ẑ =

⎡
⎢⎣
Π∗1 +

6
α
ε2I P(B + B1K2)

∗ 6
α
ε2I −Q

⎤
⎥⎦. (3.31)

Considering (3.24), (3.25), and (3.26), it follows that

Ẑ ≤
⎡

⎣Π
∗
1 +

6
α
ε2I P(B + B1K2)

∗ −ε2I

⎤

⎦. (3.32)

Let

Z1 =

⎡

⎣Π
∗
1 +

6
α
ε2I P(B + B1K2)

∗ −ε2I

⎤

⎦, (3.33)

where Π∗1 = P(A + B1K1) + (A + B1K1)′P +Q + P + 2C′PC.
Obviously, if Z1 < 0, then Ẑ < 0. So if (3.1) holds for all x ∈ U (x ∈ Rn), and Ẑ < 0,

then system (2.1) can be locally (globally) robustly stabilized by u(t) = K1x(t) +K2x(t − τ).
Note that Z1 < 0 is equivalent to that

P(A + B1K1) + (A + B1K1)′P +Q + P + 2C′PC +
6
α
ε2I + P(B + B1K2)ε−2I

(
K′2B

′
1 + B′

)
P < 0.

(3.34)

Then pre- and postmultiply (3.34) by P−1, we have

(A + B1K1)P−1 + P−1(A + B1K1)′ + P−1QP−1

+ P−1 + 2P−1C′PCP−1 + P−1 6
α
ε2IP−1

+ (B + B1K2)ε−2I
(
K′2B

′
1 + B′

)
< 0.

(3.35)

Setting P̂ = P−1, Y = K1P
−1 = K1P̂ , and Q̂ = Q−1 by the Schur’s complement, (3.35) is

equivalent to (3.23). Thus, the theorem is proved.

In the special case when K2 = 0, our results reduce the corresponding results in
memoryless state feedback case. The following theorem gives a sufficient condition for the
existence of memoryless state feedback controller of system (2.1) with D = 0, D1 = 0.
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Theorem 3.7. For D = 0, D1 = 0 in (2.1), suppose there exists an ε > 0,

sup ‖Hi

(
x, y,K1x

)‖ ≤ ε
(‖x‖ + ‖y‖), i = 0, 1, (3.36)

holds for all x, y ∈ U (x, y ∈ Rn), if the LMIs

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π1 P̂ P̂
√

2P̂C′ B

P̂ −Q̂ 0 0 0

P̂ 0 − α

6ε2
I 0 0

√
2CP̂ 0 0 −P̂ 0

B′ 0 0 0 −ε2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (3.37)

and (3.24), (3.25), and (3.26) have solutions P̂ > 0, Q̂ > 0, α, and Y ∈ Rm×n, then system (2.1) can
be locally(globally) robustly stabilized by

u(t) = YP̂−1x(t). (3.38)

Proof. It is derived by the same procedure as the proof of Theorem 3.6.

By the above discussion about stochastic systems with single delay (2.1), we further
study robust stabilization for the following stochastic systems with multiple delays

dx(t) =

⎡

⎣Ax(t) +
q∑

j=1

Bjx
(
t − τj

)
+

q∑

j=1

B1juj(t) +H0
(
x(t), x

(
t − τj

)
, uj(t)

)
⎤

⎦dt

+

⎡

⎣Cx(t) +
q∑

j=1

Djx
(
t − τj

)
+

q∑

j=1

D1juj(t) +H1
(
x(t), x

(
t − τj

)
, uj(t)

)
⎤

⎦dw(t),

x(t) = ø(t) ∈ L2(ω,F0, C([−h, 0], Rn)), t ∈ [−h, 0],

(3.39)

where τj > 0, j = 1, . . . , q, denote the state delay; h = max{τj , j ∈ [1, q]}.
For system (3.39), the following memory state feedback control law is adopted:

uj(t) = Kj1x(t) +Kj2x
(
t − τj

)
, j = 1, . . . , q. (3.40)
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Applying control law (3.40) to system (3.39), the resulting closed-loop system is given by

dx(t) =

⎡

⎣Ax(t) +
q∑

j=1

Bx
(
t − τj

)
+H0

(
x(t), x

(
t − τj

)
, Kj1x(t) +Kj2x

(
t − τj

))
⎤

⎦dt

+

⎡

⎣Cx(t) +
q∑

j=1

Dx
(
t − τj

)
+H1

(
x(t), x

(
t − τj

)
, Kj1x(t) +Kj2x

(
t − τj

))
⎤

⎦dw(t),

x(t) = ø(t) ∈ L2(ω,F0, C([−h, 0], Rn)), t ∈ [−h, 0],
(3.41)

where A = A +
∑q

j=1 B1jKj1, B = Bj + B1jKj2, C = C +
∑q

j=1 D1jKj1, D = Dj +D1jKj2.
By the same analysis as Theorem 3.2, we obtain the following theorem which gives

a general sufficient condition for the robust stabilization of stochastic multiple time-delays
system (3.39).

Theorem 3.8. If (3.1) holds, andKj1,Kj2, P > 0, andQ > 0 are the solutions of the following matrix
inequality

Z0 + Z1 < 0, (3.42)

then system (3.39) can be locally robustly stabilized by uj(t) = Kj1x(t) +Kj2x(t − τj). Especially if
U is replaced by Rn, then system (3.39) can be globally robustly stabilized by the same controller.

In (3.42), Z0 and Z1 are defined by

Z0 =

[
Z0

11 Z0
12

∗ Z0
22

]
,

Z1 =

[
Z1

11 0

0 Z1
22

]
,

(3.43)

where

Z0
11 = P

⎛

⎝A +
q∑

j=1

B1jKj1

⎞

⎠ +

⎛

⎝A +
q∑

j=1

B1jKj1

⎞

⎠
′

P +Q

+

⎛

⎝C +
q∑

j=1

D1jKj1

⎞

⎠
′

P

⎛

⎝C +
q∑

j=1

D1jKj1

⎞

⎠,

Z0
12 = P

q∑

j=1

(
Bj + B1jKj2

)
+

⎛

⎝C +
q∑

j=1

D1jKj1

⎞

⎠
′

P
q∑

j=1

(
Dj +D1jKj2

)
,
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Z0
22 =

⎡

⎣
q∑

j=1

(
Dj +D1jKj2

)
⎤

⎦
′⎡

⎣
q∑

j=1

(
Dj +D1jKj2

)
⎤

⎦ −Q,

Z1
11 = ε

⎛

⎝3 + 3‖C‖ + 3

∥∥∥∥∥∥

q∑

j=1

D1j

∥∥∥∥∥∥
·
∥∥∥∥∥∥

q∑

j=1

Kj1

∥∥∥∥∥∥
+ 3ε

+‖D‖ + ε

∥∥∥∥∥∥

q∑

j=1

D1j

∥∥∥∥∥∥
·
∥∥∥∥∥∥

q∑

j=1

Kj2

∥∥∥∥∥∥

⎞

⎠‖P‖I,

Z1
22 = ε

⎛

⎝3 + ‖D‖ +
∥∥∥∥∥∥

q∑

j=1

D1j

∥∥∥∥∥∥
·
∥∥∥∥∥∥

q∑

j=1

Kj2

∥∥∥∥∥∥
+ ‖C‖

+

∥∥∥∥∥∥

q∑

j=1

D1j

∥∥∥∥∥∥
·
∥∥∥∥∥∥

q∑

j=1

Kj1

∥∥∥∥∥∥
+ 2ε

⎞

⎠‖P‖I.

(3.44)

Remark 3.9. From Theorem 3.7, some useful results can be easily derived for stochastic multiple time-
delays systems (3.39), which are similar to the results obtained for stochastic single time-delay systems
(2.1).

4. Numerical Example

Now, we present one example to illustrate the effectiveness of our developed result
(Theorem 3.6) in testing the stabilization of nonlinear stochastic time-delay system (2.1).

In (2.1), take D = 0, D1 = 0, and

A =

[−5.00 2.23

−1.56 2.15

]
, B =

[−0.24 0.89

1.22 −0.76

]
,

B1 =

[−2.25

4.48

]
, C =

[−0.05 −0.15

0.15 −0.10

]
,

H0 =

[
sin(u(t)x2(t − τ))x1(t)

cos(u(t)x1(t − τ))x2(t)

]
,

H1 =

⎡

⎣exp
(
−(u(t) + x1(t − τ) + x2(t − τ))2

)
x2(t)

exp
(−(u2(t)x2

1(t − τ)
))
x1(t)

⎤

⎦,

φ(0) =
[
10 8

]′
, τ = 0.5.

(4.1)

Obviously, (2.1) holds for all x ∈ Rn with ε = 1.
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Case 1 (Memory State Feedback Stabilization). Substituting all the above data into (3.23)
and then solving the LMIs (3.23), (3.24), (3.25), and (3.26) by LMIs Toolbox, we can obtain
solutions

P̂ =

[
0.4625 −0.0626

−0.0626 0.3383

]
> 0,

α = 0.9015,

Y =
[−0.1377 −0.6674

]
,

K2 =
[−0.2391 0.2149

]
,

Q̂ =

[
0.1141 0.0052

0.0052 0.0974

]
> 0.

(4.2)

So by Theorem 3.6, system (2.1) can be globally robustly stabilized by

u(t) = YP̂−1x(t) +K2x(t − τ)

= −0.5790x1(t) − 2.0795x2(t)

− 0.2391x1(t − τ) + 0.2149x2(t − τ).

(4.3)

The state trajectories of close-loop system (2.6) and control curve in memory state feedback
case are illustrated as Figure 1, from which, we see that the closed-loop system (2.6) takes
only one second to have been stable.

Case 2 (Memory-Less State Feedback Stabilization). Solving LMIs (3.37), (3.24), (3.25), and
(3.26), we obtain

P̂ =

[
0.5609 −0.1964

−0.1964 0.4117

]
> 0,

Y =
[
0.0602 −0.5168

]
,

Q̂ =

[
0.0923 0.0017

0.0017 0.0790

]
> 0,

α = 0.9243.

(4.4)

So by Theorem 3.7, system (2.1) can be globally robustly stabilized by

u(t) = YP̂−1x(t) = −0.4449x1(t) − 1.5770x2(t). (4.5)
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Figure 1: State trajectories and control input in memory state feedback case.

The state trajectories of close-loop system (2.6) and control curve in memoryless state
feedback case are illustrated as Figure 2, from which, it can be seen that the closed-loop
system (2.6) takes 1.5 seconds to have been stable.

From the two simulation results, the time needed to stabilize system using memory
state feedback controller is less than that using memory-less state feedback controller, which
shows the advantage of memory state feedback control.

5. Conclusions

This paper has discussed memory state feedback stabilization of stochastic systems with
time-delay and nonlinear uncertainties. Some sufficient conditions have been given for
the existence of a memory state feedback stabilizing control law in terms of linear matrix
inequalities, which have the advantage of easy computation. The corresponding results to
stochastic single time-delay systems have been further extended to the stochastic multiple
time-delays systems. The results obtained in this paper can be reduced to the corresponding
results in memoryless state feedback case and may also be extended to other stochastic system
model.
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Figure 2: State trajectories and control input in memoryless state feedback case.
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This paper focuses on stochastic comparison of the Markov chains to derive some qualitative
approximations for an M/G/1 retrial queue with a Bernoulli feedback. The main objective is to
use stochastic ordering techniques to establish various monotonicity results with respect to arrival
rates, service time distributions, and retrial parameters.

1. Introduction

Retrial queueing systems are described by the feature that the arriving customers (or calls)
who find the server busy join the orbit to try again for their requests in a random order and
at random time intervals. Retrial queues are widely and successfully used as mathematical
models of several computer systems and telecommunication networks. For excellent and
recent bibliographies on retrial queues, the reader is referred to [1–3].

Most of the queueing systems with repeated attempts assume that each customer in
the retrial group seeks service independently of each other after a random time exponentially
distributed with rate θ so that the probability of repeated attempt during the interval (t, t+Δt)
given that there were n customers in orbit at time t is nθΔt + ◦(Δt). This discipline for access
to the server from the retrial group is called classical retrial policy [4, 5].

Several papers on retrial queues have analyzed the systems without customer
feedback. A more practical retrial queue with the Bernoulli feedback of the customers
occurs in many real world situations: for instance, in communication networks where data
transmissions need to be guaranteed to be error free within some specified probability,
feedback schemes are used to request retransmission of packets that are lost or received in
a corrupted form.
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Because of complexity of retrial queueing models, analytic results are generally
difficult to obtain. In contrast, there are a great number of numerical and approximation
methods which are of practical importance. One important approach is monotonicity which
allow to establish some stochastic bounds helpful in understanding complicated models by
more simpler models for which an evaluation can be made using the stochastic comparison
method based on the general theory of stochastic orderings [6].

Stochastic orders represent an important tool for many problems in probability and
statistics. They lead to powerful approximation methods and bounds in situations where
realistic stochastic models are too complex for rigorous treatment. They are also helpful in
situations where fundamental model distributions are only known partially. Further details
and applications about these stochastic orders may be found in [6–8].

There exists a flourishing literature on stochastic comparison methods and monotonic-
ity of queues. Oukid and Aissani [9] obtain lower bound and new upper bound for the mean
busy period of GI/GI/1 queue with breakdowns and FIFO discipline. Boualem et al. [10]
investigate some monotonicity properties of an M/G/1 queue with constant retrial policy in
which the server operates under a general exhaustive service and multiple vacation policy
relative to strong stochastic ordering and convex ordering. These results imply in particular
simple insensitive bounds for the stationary queue length distribution. More recently, Taleb
and Aissani [11] investigate some monotonicity properties of an unreliable M/G /1 retrial
queue relative to strong stochastic ordering and increasing convex ordering.

In this work, we use the tools of the qualitative analysis to investigate various
monotonicity properties for an M/G/1 retrial queue with classical retrial policy and
Bernoulli feedback relative to strong stochastic ordering, increasing convex ordering and
the Laplace ordering. Instead of studying a performance measure in a quantitative fashion,
this approach attempts to reveal the relationship between the performance measures and the
parameters of the system.

The rest of the paper is organized as follows. In Section 2, we describe the mathe-
matical model in detail and derive the generating function of the stationary distribution.
In Section 3, we present some useful lemmas that will be used in what follows. Section 4
focusses on stochastic monotonicity of the transition operator of the embedded Markov chain
and gives comparability conditions of two transition operators. Stochastic bounds for the
stationary number of customers in the system are discussed in Section 5. In Section 6, we
obtain approximations for the conditional distribution of the stationary queue given that the
server is idle.

2. Description and Analysis of the Queueing System

We consider a single server retrial queue with the Bernoulli feedback at which customers
arrive from outside the system according to a Poisson process with rate λ. An arriving
customer receives immediate service if the server is idle, otherwise he leaves the service area
temporarily to join the retrial group. Any orbiting customer produces a Poisson stream of
repeated calls with intensity θ until the time at which he finds the server idle and starts his
service. The service times follow a general probability law with distribution function B(x)
having finite mean β1 and Laplace-Stieltjes transform β̃(s). After the customer is completely
served, he will decide either to join the retrial group again for another service with probability
p (0 < p < 1) or to leave the system forever with probability p(= 1 − p).

We finally assume that the input flow of primary arrivals, intervals between repeated
attempts and service times, are mutually independent.
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The state of the system at time t can be described by the Markov process R(t) =
{C(t),N(t), ζ(t)}(t≥0), where C(t) is the indicator function of the server state: C(t) is equal
to 0 or 1 depending on whether the server is free or busy at time t and N(t) is the number of
customers occupying the orbit. If C(t) = 1, then ζ(t) corresponds to the elapsed time of the
customer being served at time t.

Note that the stationary distribution of the system state (the stationary joint
distribution of the server state and the number of customers in the orbit) was found in [12],
using the supplementary variables method. In this section, we are interested in the embedded
Markov chain. To this end, we describe the structure of the latter, determine its ergodicity
condition, and obtain its stationary distribution.

2.1. Embedded Markov Chain

Let τn be the time of the nth departure and Dn the number of customers in the orbit just after
the time τn, then C(τ+n ) = 0 and N(τ+n ) = Dn, ∀n ≥ 1. We have the following fundamental
recursive equation:

Dn+1 = Dn + vn+1 − δDn+1 + η, (2.1)

where (i) vn+1 is the number of primary customers arriving at the system during the service
time which ends at τn+1. It does not depend on events which have occurred before the
beginning of the (n + 1)st service. Its distribution is given by:

kj = P
(
vn+1 = j

)
=
∫∞

0

(λx)j

j!
e−λxdB(x), j ≥ 0, (2.2)

with generating function K(z) =
∑

j≥0 kjz
j = β̃(λ(1 − z)),

(ii) the Bernoulli random variable δDn+1 is equal to 1 or 0 depending on whether the
customer who leaves the service area at time τn+1 proceeds from the orbit or otherwise. Its
conditional distribution is given by

P(δDn+1 = 1/Dn = l) =
lθ

λ + lθ
, P(δDn+1 = 0/Dn = l) =

λ

λ + lθ
, (2.3)

(iii) the random variable η is 0 or 1 depending on whether the served customer leaves
the system or goes to orbit. We have also that P[η = 1] = p and P[η = 0] = p(= 1 − p).

The sequence {Dn, n ≥ 1} forms an embedded Markov chain with transition
probability matrix P = (pij)i,j≥0, where pij = P(Dn+1 = j/Dn = i), defined by

pij =
λp

λ + iθ
kj−i +

iθp

λ + iθ
kj−i+1 +

λp

λ + iθ
kj−i−1 +

iθp

λ + iθ
kj−i. (2.4)

Note that pij /= 0 only for i = 0, 1, . . . , j + 1.

Theorem 2.1. The embedded Markov chain {Dn, n ≥ 1} is ergodic if and only if ρ = λβ1 + p < 1.



4 Mathematical Problems in Engineering

Proof. It is not difficult to see that {Dn, n ≥ 1} is irreducible and aperiodic. To find a sufficient
condition, we use Foster’s criterion which consists to show the existence of a nonnegative
function f(s), s ∈ S, and ε > 0 such that the mean drift xs = E[f(Dn+1) − f(Dn)/Dn = s] is
finite for all s ∈ S and xs ≤ −ε for all s ∈ S except perhaps a finite number. In our case, we
consider the function f(s) = s for all s ∈ S. Then, the mean drift is given by

xs = E
[
f(Dn+1) − f(Dn)/Dn = s

]
= E
[
vn+1 − δDn+1 + η/Dn = s

]
= λβ1 − sθ

λ + sθ
+ p. (2.5)

Let x = lims→∞xs. Then x = λβ1 − 1 + p < 0. Therefore, the sufficient condition is λβ1 + P < 1.
To prove that the previous condition is also a necessary condition for ergodicity of our

embedded Markov chain, we apply Kaplan’s condition: xi < ∞, for all i ≥ 0, and there is an
i0 such that xi ≥ 0, for i ≥ i0. In our case, this condition is verified because pij = 0 for j < i − 1
and i > 0 (see (2.4)).

2.2. Generating Function of the Stationary Distribution

Now, under the condition ρ < 1, we find the stationary distribution πm = limn→∞P(Dn = m).
Using (2.4), one can obtain Kolmogorov equations for the distribution πm

πm =
m∑

n=0

λp

λ + nθ
πnkm−n +

m+1∑

n=1

nθp

λ + nθ
πnkm−n+1 +

m−1∑

n=0

λp

λ + nθ
πnkm−n−1 +

m∑

n=0

nθp

λ + nθ
πnkm−n. (2.6)

Because of presence of convolutions, these equations can be transformed with the help of the
generating functions π(z) =

∑
m≥0 πmz

m and L(z) =
∑

m≥0(πm/λ +mθ)zm to

π(z) = β̃(λ − λz)[λpL(z) + θzpL′(z) + θpL′(z) + λpzL(z)
]

= β̃(λ − λz)(p + pz
)[
λL(z) + θL′(z)

]
.

(2.7)

Since

π(z) =
λπm

λ +mθ
zm +

mθπm

λ +mθ
zm = λL(z) + θzL′(z), (2.8)

from (2.7) and (2.8), we have

θL′(z)
[(
p + pz

)
β̃(λ − λz) − z

]
= λL(z)

[
1 − (p + pz

)
β̃(λ − λz)

]
. (2.9)

We consider now the function f(z) = (p + pz)β̃(λ − λz) − z.
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It is easy to show that

f(1) = β̃(0) − 1 = 1 − 1 = 0,

f ′(z) = −λ(p + pz
)
β̃′(λ − λz) + pβ̃(λ − λz) − 1,

f ′(1) = −λβ̃′(0) + pβ̃(0) − 1 = ρ − 1 < 0,

f ′′(z) = λ2(p + pz
)
β̃′′(λ − λz) ≥ 0.

(2.10)

Therefore the function f(z) is decreasing on the interval [0, 1], z = 1 is the only zero there
and for z ∈ [0, 1) the function is positive, that is, (as ρ < 1) for z ∈ [0, 1) we have: z <

(p + pz)β̃(λ − λz) ≤ 1.
Besides,

1 − (p + pz
)
β̃(λ − λz)

(
p + pz

)
β̃(λ − λz) − z

=
ρ

1 − ρ <∞, (2.11)

that is, the function 1− (p+pz)β̃(λ−λz)/(p+pz)β̃(λ−λz)−z can be defined at the point z = 1
as ρ/1 − ρ.

This means that for z ∈ [0, 1] we can rewrite (2.9) as follows:

L′(z) =
λ

θ

1 − (p + pz
)
β̃(λ − λz)

(
p + pz

)
β̃(λ − λz) − z

L(z). (2.12)

The solution of the differential equation (2.12) is given by

L(z) = L(1) exp

(
−λ
θ

∫1

z

1 − (p + pu
)
β̃(λ − λu)

(
p + pu

)
β̃(λ − λu) − u

du

)
. (2.13)

From (2.8), we have

π(z) =
λ
(
p + pz

)
β̃(λ − λz)(1 − z)

(
p + pz

)
β̃(λ − λz) − z

L(1) exp

(
−λ
θ

∫1

z

1 − (p + pu
)
β̃(λ − λu)

(
p + pu

)
β̃(λ − λu) − u

du

)
. (2.14)

We obtain from the normalization condition π(1) = 1 that L(1) = (1 − ρ)/λ.
Finally we get the following formula for the generating function of the steady state

queue size distribution at departure epochs (which is known in the literature as the stochastic
decomposition property):

π(z) =

[(
1 − ρ)β̃(λ − λz)(1 − z)
(
p + pz

)
β̃(λ − λz) − z

][
(
p + pz

)
exp

(
−λ
θ

∫1

z

1 − (p + pu
)
β̃(λ − λu)

(
p + pu

)
β̃(λ − λu) − u

du

)]
. (2.15)

It is easy to see that the right hand part of expression (2.15) can be decomposed into two
factors. The first factor is the generating function for the number of customers in M/G/1



6 Mathematical Problems in Engineering

queueing system with Bernoulli feedback (see [13]); the remaining one is the generating
function for the number of customers in the retrial queue with feedback given that the server
is idle [12]. One can see that formula (2.15) is cumbersome (it includes integrals of Laplace
transform, solutions of functional equations). It is why we use, in the rest of the paper, the
general theory of stochastic orderings to investigate the monotonicity properties of the system
relative to the strong stochastic ordering, convex ordering, and Laplace ordering.

3. Preliminaries

3.1. Stochastic Orders and Ageing Notions

First, let us recall some stochastic orders and ageing notions which are most pertinent to the
main results to be developed in the subsequent section.

Definition 3.1. For two random variables X and Y with densities f and g and cumulative
distribution functions F and G, respectively, let F = 1 − F and G = 1 − G be the survival
functions. As the ratios in the statements below are well defined, X is said to be smaller than
Y in:

(a) stochastic ordering (denoted by X≤stY ) if and only if F(x) ≤ G(x), ∀x ≥ 0,

(b) increasing convex ordering (denoted by X≤icxY ) if and only if
∫+∞
x F(u)d(u) ≤∫+∞

x G(u)d(u), ∀x ≥ 0,

(c) Laplace ordering (denoted by X≤LY ) if and only if
∫+∞

0 exp(−sx)dF(x) ≥∫+∞
0 exp(−sx)dG(x), ∀s ≥ 0.

If the random variables of interest are of discrete type and ω = (ωn)n≥0, β = (βn)n≥0 are the
corresponding distributions, then the definitions above can be given in the following forms:

(a) ω≤stβ if and only if ωm =
∑

n≥m ωn ≤ βm =
∑

n≥m βn, for all m,

(b) ω≤icxβ if and only if ωm =
∑

n≥m
∑

k≥n ωk ≤ βm =
∑

n≥m
∑

k≥n βk, for all m,

(c) ω≤Lβ if and only if
∑

n≥0 ωnz
n ≥∑n≥0 βnz

n, for all z ∈ [0, 1].

For a comprehensive discussion on these stochastic orders see [6–8].

Definition 3.2. Let X be a positive random variable with distribution function F:

(a) F is HNBUE (harmonically new better than used in expectation) if and only if
F≤icxF

∗,

(b) F is HNWUE (harmonically new worse than used in expectation) if and only if
F≥icxF

∗,

(c) F is of class L if and only if F≥sF∗,

where F∗ is the exponential distribution function with the same mean as F.
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3.2. Some Useful Lemmas

Consider two M/G/1 retrial queues with classical retrial policy and Bernoulli feedback with
parameters λ(i) and B(i), i = 1, 2. Let k(i)

j =
∫+∞

0 ((λ(i)x)j/j!)e−λ
(i)xdB(i)(x) be the distribution of

the number of primary calls which arrive during the service time of a call in the ith system.
The following lemma turns out to be a useful tool for showing the monotonicity

properties of the embedded Markov chain.

Lemma 3.3. If λ(1) ≤ λ(2) and B(1)≤sB(2), then {k(1)
n }≤s{k(2)

n }, where ≤s is either ≤st or ≤icx.

Proof. To prove that {k(1)
n }≤s{k(2)

n }, we have to establish the usual numerical inequalities:

k
(1)
n = k

(1)
m ≤ k

(2)
n ,
(
for≤s = ≤st − ordering

)
,

k
(1)

n = k
(1)
m ≤ k

(2)

n ,
(
for≤s = ≤icx − ordering

)
.

(3.1)

The rest of the proof is known in the more general setting of a random summation.

The next lemma is key to proving the main result in Section 6.

Lemma 3.4. If λ(1) ≤ λ(2) and B(1)≤LB(2), then {k(1)
n }≤L{k(2)

n }.

Proof. We have, K(i)(z) =
∑

n≥0 k
(i)
n zn = β̃(i)(λ(i)(1 − z)), i = 1, 2, where K(1)(z), K(2)(z) are the

corresponding distributions of the number of new arrivals during a service time.
Let λ(1) ≤ λ(2), B(1)≤LB(2). To prove that {k(1)

n }≤L{k(2)
n }, we have to establish that

β̃(1)
(
λ(1)(1 − z)

)
≥ β̃(2)

(
λ(2)(1 − z)

)
. (3.2)

The inequality B(1)≤LB(2) means that β̃(1)(s) ≥ β̃(2)(s) for all s ≥ 0.
In particular, for s = λ(1)(1 − z) we have

β̃(1)
(
λ(1)(1 − z)

)
≥ β̃(2)

(
λ(1)(1 − z)

)
. (3.3)

Since any Laplace transform is a decreasing function, λ(1) ≤ λ(2) implies that

β̃(2)
(
λ(1)(1 − z)

)
≥ β̃(2)

(
λ(2)(1 − z)

)
. (3.4)

By transitivity, (3.3) and (3.4) give (3.2).

4. Stochastic Monotonicity of Transition Operator

Let Q be the transition operator of an embedded Markov chain, which associates to every
distribution ω = {pi}i≥0, a distribution Qω = {qj}j≥0 such that qj =

∑
i pipij .
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Corollary 4.1 (see [6]). The operatorQ is monotone with respect to ≤st if and only if pnm−pn−1m ≥ 0,
and is monotone with respect to ≤icx if and only if pn−1m + pn+1m − 2pnm ≥ 0, ∀n,m. Here, pnm =
∑∞

l=m pnl and pnm =
∑∞

l=m pnl.

Theorem 4.2. The transition operatorQ of the embedded chain {Dn, n ≥ 1} is monotone with respect
to the orders ≤st and ≤icx.

Proof. We have

pnm = pnk = km−n +
λp

λ + nθ
km−n−1 −

nθp

λ + nθ
km−n,

pnm = rnk = km−n +
λp

λ + nθ
km−n−1 −

nθp

λ + nθ
km−n.

(4.1)

Thus

pnm − pn−1m =
λ2p + (n − 1)λθ + n(n − 1)θ2p

(λ + nθ)(λ + (n − 1)θ)
km−n

+
(n − 1)θp

λ + (n − 1)θ
km−n+1 +

λp

λ + nθ
km−n−1 ≥ 0,

pn−1m + pn+1m − 2pnm =
λp

λ + (n + 1)θ
km−n−2 +

(n − 1)θp
λ + (n − 1)θ

km−n

+
λ2p +

(
n − p)λθ + n(n + 1)θ2p

(λ + nθ)(λ + (n + 1)θ)
km−n−1

+
2θ2

(λ + nθ)(λ + (n − 1)θ)(λ + (n + 1)θ)
km−n ≥ 0.

(4.2)

Based on Corollary 4.1 we obtain the stated result.

In Theorem 4.3, we give comparability conditions of two transition operators.
Consider two M/G/1 retrial queues with classical retrial policy and feedback with
parameters λ(1), θ(1), p(1), B(1), and λ(2), θ(2), p(2), B(2), respectively. Let Q1, Q2 be the
transition operators of the corresponding embedded Markov chains.

Theorem 4.3. If λ(1) ≤ λ(2), θ(1) ≥ θ(2), p(1) ≤ p(2), B(1)≤sB(2), where ≤s is either ≤st or ≤icx, then
Q1≤sQ2, that is, for any distribution ω, one has Q1ω≤sQ2ω.

Proof. From Stoyan [6], we wish to establish that

p(1)nm ≤ p(2)nm, ∀n,m,
(
for ≤s = ≤st − ordering

)
, (4.3)

p
(1)

nm ≤ p
(2)

nm, ∀n,m,
(
for ≤s = ≤icx − ordering

)
. (4.4)

To prove inequality (4.3), we have (for i = 1, 2)

p(i)nm = k
(i)
m−n +

λ(i)p(i)

λ(i) + nθ(i)
k
(i)
m−n−1 −

nθ(i)p(i)

λ(i) + nθ(i)
k
(i)
m−n. (4.5)
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By hypothesis, we have that

λ(1) ≤ λ(2), θ(1) ≥ θ(2) =⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ(1)

θ(1)
≤ λ(2)

θ(2)
, or

θ(1)

λ(1)
≥ θ(2)

λ(2)
.

(4.6)

Since the function G(x) = x/(x + n) is increasing, we have

G

(
λ(1)

θ(1)

)
=

λ(1)

λ(1) + nθ(1)
≤ G

(
λ(2)

θ(2)

)
=

λ(2)

λ(2) + nθ(2)
. (4.7)

Moreover, p(1) ≤ p(2). Then

λ(1)

λ(1) + nθ(1)
p(1) ≤ λ(2)

λ(2) + nθ(2)
p(2). (4.8)

Similarly, the function H(x) = x/(1 + x) is increasing, we have

H

(
nθ(1)

λ(1)

)
=

nθ(1)

λ(1) + nθ(1)
≥ H

(
nθ(2)

λ(2)

)
=

nθ(2)

λ(2) + nθ(2)
. (4.9)

Besides, p(1) ≤ p(2) implies that p(1) ≥ p(2). Hence

− nθ(1)

λ(1) + nθ(1)
p(1) ≤ − nθ(2)

λ(2) + nθ(2)
p(2). (4.10)

Using inequalities (4.8)–(4.10) and Lemma 3.3 (for ≤s = ≤st-ordering) we get

p(1)nm = k
(1)
m−n +

λ(1)p(1)

λ(1) + nθ(1)
k
(1)
m−n−1 −

nθ(1)p(1)

λ(1) + nθ(1)
k
(1)
m−n

≤ k
(1)
m−n +

λ(2)p(2)

λ(2) + nθ(2)
k
(1)
m−n−1 −

nθ(2)p(2)

λ(2) + nθ(2)
k
(1)
m−n

=
λ(2)p(2)

λ(2) + nθ(2)
k
(1)
m−n +

nθ(2)p(2)

λ(2) + nθ(2)
k
(1)
m−n+1

+
λ(2)p(2)

λ(2) + nθ(2)
k
(1)
m−n−1 +

nθ(2)p(2)

λ(2) + nθ(2)
k
(1)
m−n ≤ p(2)nm.

(4.11)

Following the technique above and using Lemma 3.3 (for ≤s = ≤icx-ordering), we establish
inequality (4.4).



10 Mathematical Problems in Engineering

5. Stochastic Bounds for the Stationary Distribution

Consider two M/G/1 retrial queues with classical retrial policy and feedback with
parameters λ(1), θ(1), p(1), B(1) and λ(2), θ(2), p(2), B(2), respectively, and let π(1)

n , π(2)
n be the

corresponding stationary distributions of the number of customers in the system.

Theorem 5.1. If λ(1) ≤ λ(2), θ(1) ≥ θ(2), p(1) ≤ p(2), B(1)≤sB(2), then {π(1)
n }≤s{π(2)

n }, where ≤s is
one of the symbols ≤st or ≤icx.

Proof. Using Theorems 4.2 and 4.3 which state, respectively, that Qi are monotone with
respect to the order ≤s and Q1≤sQ2, we have by induction Q1,nω≤sQ2,nω for any distribution
ω, where Qi,n = Qi(Qi,n−1ω). Taking the limit, we obtain the stated result.

Based on Theorem 5.1 we can establish insensitive stochastic bounds for the generating
function of the stationary distribution of the embedded Markov chain defined in (2.15).

Theorem 5.2. For any M/G/1 retrial queue with classical retrial policy and Bernoulli feedback the
distribution πn is greater relative to the increasing convex ordering than the distribution with the
generating function

π∗(z) =

[(
1 − ρ)eλβ1(z−1)(1 − z)
(
p + pz

)
eλβ1(z−1) − z

][
(
p + pz

)
exp

(
λ

θ

∫z

1

1 − (p + pu
)
eλβ1(u−1)

(
p + pu

)
eλβ1(u−1) − udu

)]
. (5.1)

Proof. Consider an auxiliary M/D/1 retrial queue with classical retrial policy and feedback
having the same arrival rate λ, retrial rate θ, mean service time β1, and probability p, as those
of the M/G/1 retrial queue with classical retrial policy and Bernoulli feedback. The service
times follow a deterministic low with distribution function:

B(x) =

{
0, if x ≤ β1,

1, if x > β1.
(5.2)

From Stoyan [6], it is known that B(x)≤icxB(x). Therefore, the required result follows from
Theorem 5.1.

Theorem 5.3. If in the M/G/1 retrial queue with classical retrial policy and feedback the service
time distribution B(x) is HNBUE (or HNWUE), then {πn}≤icx{π∗n} (or {π∗n}≤icx{πn}), where {π∗n}
is the stationary distribution of the number of customers in the M/M/1 retrial queue with classical
retrial policy and Bernoulli feedback with the same parameters as those of the M/G/1 retrial queue
with classical retrial policy and Bernoulli feedback.

Proof. Consider an auxiliary M/M/1 retrial queue with classical retrial policy and Bernoulli
feedback with the same arrival rate λ, probability p, retrial rate θ, and mean service time β1

as in the M/G/1 retrial queue with classical retrial policy and Bernoulli feedback, but with
exponentially distributed service time B∗(x) = 1 − exp(−(x/β1)). If B(x) is HNBUE, then
B(x)≤icxB

∗(x) (if B(x) is HNWUE, then B∗(x)≤icxB(x)). Therefore, by using Theorem 5.1,
we deduce the statement of this theorem.
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6. Stochastic Approximations for the Conditional Distribution

We consider the conditional distribution ϕn of the stationary queue given that the server
is idle. This distribution has also appeared in the stochastic decomposition law for the
stationary queue length, see equation (2.15). As we saw its generating function φ(z) =∑

n≥0 ϕnz
n was given by

φ(z) =
(
p + pz

)
exp

(
−λ
θ

∫1

z

1 − (p + pu
)
β̃(λ − λu)

(
p + pu

)
β̃(λ − λu) − u

du

)
. (6.1)

Theorem 6.1. Suppose we have twoM/G/1 retrial queues with classical retrial policy and Bernoulli
feedback with parameters λ(1), θ(1), p(1), B(1) and λ(2), θ(2), p(2), B(2), respectively. If λ(1) ≤
λ(2), θ(1) ≥ θ(2), p(1) ≤ p(2), B(1)(x)≤LB(2)(x), then ϕ

(1)
n ≤Lϕ(2)

n .

Proof. By Lemma 3.4, we have β̃(1)(λ(1)(1 − z)) ≥ β̃(2)(λ(2)(1 − z)).
Moreover, one has p(1) ≤ p(2) ⇒ p(1) + p(1)z ≥ p(2) + p(2)z, for all z ∈ [0, 1].
This implies that

1 −
(
p(1) + p(1)u

)
β̃(1)
(
λ(1) − λ(1)u)

(
p(1) + p(1)u

)
β̃(1)
(
λ(1) − λ(1)u) − u

≤
1 −
(
p(2) + p(2)u

)
β̃(2)
(
λ(2) − λ(2)u)

(
p(2) + p(2)u

)
β̃(2)
(
λ(2) − λ(2)u) − u

. (6.2)

Besides, λ(1) ≤ λ(2) and θ(1) ≥ θ(2) ⇒ (λ(1)/θ(1)) ≤ (λ(2)/θ(2)) and thus

λ(1)

θ(1)

∫1

z

1 −
(
p(1) + p(1)u

)
β̃(1)
(
λ(1) − λ(1)u)

(
p(1) + p(1)u

)
β̃(1)
(
λ(1) − λ(1)u) − u

du ≤ λ(2)

θ(2)

∫1

z

1 −
(
p(2) + p(2)u

)
β̃(2)
(
λ(2) − λ(2)u)

(
p(2) + p(2)u

)
β̃(2)
(
λ(2) − λ(2)u) − u

du.

(6.3)

Therefore

exp

⎛
⎜⎝−λ

(1)

θ(1)

∫1

z

1 −
(
p(1) + p(1)u

)
β̃(1)
(
λ(1) − λ(1)u)

(
p(1) + p(1)u

)
β̃(1)
(
λ(1) − λ(1)u) − u

du

⎞
⎟⎠

≥ exp

⎛
⎜⎝−λ

(2)

θ(2)

∫1

z

1 −
(
p(2) + p(2)u

)
β̃(2)
(
λ(2) − λ(2)u)

(
p(2) + p(2)u

)
β̃(2)
(
λ(2) − λ(2)u) − u

du

⎞
⎟⎠.

(6.4)

By combining this latter inequality with the inequality: p(1) + p(1)z ≥ p(2) + p(2)z, we get
φ(1)(z) ≥ φ(2)(z) for all z ∈ [0, 1], which means the stochastic inequality {ϕ(1)

n }≤L{ϕ(2)
n }.
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Theorem 6.2. For any M/G/1 retrial queue with classical retrial policy and Bernoulli feedback
the distribution ϕn is less relative to the Laplace ordering than the distribution with the generating
function

(
p + pz

)
exp

(
−λ
θ

∫1

z

1 − (p + pu
)
eλβ1(u−1)

(
p + pu

)
eλβ1(u−1) − udu

)
, (6.5)

and if B(x) is of class L then the distribution ϕn is greater relative to the ordering ≤L than the
corresponding distribution in the M/M/1 queue with classical retrial policy and Bernoulli feedback.

Proof. Consider an auxiliary M/D/1 and M/M/1 retrial queues with classical retrial policy
and Bernoulli feedback with the same arrival rates λ, probability p, retrial rates θ, and mean
service times β1.

Since B(x) is always less, relative to the ordering ≤L, than a deterministic distribution
with the same mean value, based on Theorem 6.1 we obtain the stated result.

If B(x) is of classL then B(x) is greater relative to the ordering ≤L than the exponential
distribution with the same mean, based on Theorem 6.1 we can guarantee the second
inequality.

7. Conclusion and Further Research

In this paper, we prove the monotonicity of the transition operator of the embedded Markov
chain relative to strong stochastic ordering and increasing convex ordering. We obtain
comparability conditions for the distribution of the number of customers in the system.
Inequalities are derived for conditional distribution of the stationary queue given that the
server is idle. The obtained results allow us to place in a prominent position the insensitive
bounds for both the stationary distribution and the conditional distribution of the stationary
queue of the considered model.

Monotonicity results are of importance in robustness analysis: if there is insecurity on
the input of the model, then our order results provide information on what kind of deviation
from the nominal model to expect. Moreover, in gradient estimation one has to control the
growth of the cycle length as function of a change of the model. More precisely, the results
established in this paper allow to bound the measure-valued derivative of the stationary
distribution where the derivative can be translated into unbiased (higher order) derivative
estimators with respect to some parameter (e.g., arrival rate (λ) or retrial rate (θ) parameter).
Such bounds can be used to derive information on the speed of convergence of the gradient
estimator. Finally, under some conditions (order holds in the strong sense), those results
imply a fast convergence of the gradient estimator of the stationary distribution [14–16].
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A model for a class of age-dependent population dynamic system of fractional version with
Hurst parameter h ∈ (1/2, 1] is established. We prove the existence and uniqueness of a mild
solution under some regularity and boundedness conditions on the coefficients. The proofs of our
results combine techniques of fractional Brownian motion calculus. Ideas of the finite-dimensional
approximation by the Galerkin method are used.

1. Introduction

Stochastic differential equations have been found in many applications in areas such as
economics, biology, finance, ecology, and other sciences [1–3]. In recent years, existence,
uniqueness, stability, invariant measures, and other quantitative and qualitative properties
of solutions to stochastic partial differential equations have been extensively investigated
by many authors. For example, it is well known that these topics have been developed
mainly by using two different methods, that is, the semigroup approach [4, 5] (e.g., Taniguchi
et al. [4] using semigroup methods discussed existence, uniqueness, pth moment, and
almost sure Lyapunov exponents of mild solutions to a class of stochastic partial functional
differential equations with finite delays) and the variational one (e.g., Krylov and Rozovskii
[6] and Pardoux [7]). On the other hand, although stochastic partial functional differential
equations also seem very important as stochastic models of biological, chemical, physical,
and economical systems, the corresponding properties of these systems have not been
studied in great detail (cf. [8, 9]). As a matter of fact, there exists extensive literature on the
related topics for deterministic age-dependent population dynamic system. There has been
much recent interest in application of deterministic age-structures mathematical models with
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diffusion. For example, Cushing [10] investigated hierarchical age-dependent populations
with intraspecific competition or predation.

There has been much recent interest in application of stochastic population dynamics.
For example, Qimin and Chongzhao gave a numerical scheme and showed the convergence
of the numerical approximation solution to the true solution to stochastic age-structured
population system with diffusion [11]. In papers [12, 13], Qi-Min et al. discussed the
existence and uniqueness for stochastic age-dependent population equation, when diffusion
coefficient k = 0 and k /= 0, respectively. Numerical analysis for stochastic age-dependent
population equation has been studied by Zhang and Han [14]. In papers [11–14], the random
disturbances are described by stochastic integrals with respect to Wiener processes.

However, the Wiener process is not suitable to replace a noise process if long-rang
dependence is modeled. It is then desirable to replace the Wiener process by fractional
Brownian motion. But this process is not a semimartingale, so that it is not possible to apply
the Itô calculus. A stochastic analysis with respect to fractional Brownian motion is faced with
difficulties.

Next, the stochastic continuous time age-dependent model is derived. In [12], the
nonlinear age-dependent population dynamic with diffusion can be written in the following
form:

∂P(r, t, x)
∂t

+
∂P(r, t, x)

∂r
− k1(r, t)ΔP(r, t, x)

= −μ1(r, t, x)P(r, t, x) + f1(r, t, x) + g1(r, t, x)
dw(t)
dt

, in QA = (0, A) ×Q,

P(0, t, x) =
∫A

0
β1(r, t, x)P(r, t, x)dr, in (0, T) × Γ,

P(r, 0, x) = P0(r, x), in (0, A) × Γ,
P(r, t, x) = 0, on ΣA = (0, A) × (0, T) × ∂Γ,

y(t, x) =
∫A

0
P(r, t, x)dr, in Q,

(1.1)

where t ∈ (0, T), r ∈ (0, A), x ∈ Γ ⊂ RN (1 ≤ N ≤ 3), Q = (0, T) × Γ, P(r, t, x) denotes the
population density of age r at time t in spatial position, x, β1(r, t, x) denotes the fertility rate
of females of age r at time t, in spatial position x, μ1(r, t, x) denotes the mortality rate of age
r at time t, in spatial position x, Δ denotes the Laplace operator with respect to the space
variable, and k1(r, t) > 0 is the diffusion coefficient. f1(r, t, x) + g1(r, t, x)(dw(t)/dt) denotes
effects of external environment for population system, such as emigration and earthquake
have. The effects of external environment the deterministic and random parts which depend
on r, t, and x. w(t) is a standard Wiener process.

In this paper, suppose that f1(r, t, x) is stochastically perturbed, with

f1(r, t, x) −→ f1(r, t, x) + g1(r, t, x)dBh(t), (1.2)
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where Bh(t) is fractional Brownian motions with the Hurst constant h. Then this
environmentally perturbed system may be described by the Itô equation

∂P(r, t, x)
∂t

+
∂P(r, t, x)

∂r
− k1(r, t)ΔP(r, t, x)

= −μ1(r, t, x)P(r, t, x) + f1(r, t, x) + g1(r, t, x)dBh(t), in QA = (0, A) ×Q,
(1.3)

P(0, t, x) =
∫A

0
β1(r, t, x)P(r, t, x)dr, in (0, T) × Γ, (1.4)

P(r, 0, x) = P0(r, x), in (0, A) × Γ, (1.5)

P(r, t, x) = 0, on ΣA = (0, A) × (0, T) × ∂Γ, (1.6)

y(t, x) =
∫A

0
P(r, t, x)dr, in Q, (1.7)

new stochastic differential equations (1.3)-(1.7) for an age-dependent population are derived.
It is an extension of (1.1).

Our work differs from these references [11–14]. In papers [11–14], the random
disturbances are described by stochastic integrals with respect to Wiener processes. In this
paper, we study a stochastic age-dependent population dynamic system with an additive
noise in the form of a stochastic integral with respect to a Hilbert space-valued fractional
Borwnian motion. It is well known that a fractional Brownian motion Bh is a semimartingale if
and only if h = 1/2, that is, in the case of a classical Brownian motion. For h = 1/2, Qimin and
Chongzhao discussed the existence and uniqueness for stochastic age-dependent population
equation [12]. In this paper, we shall discuss the existence and uniqueness for a stochastic
age-dependent population equation with fractional Brownian motions with h ∈ [1/2, 1]. The
discussion uses ideas of the finite-dimensional approximation by the Galerkin method.

In Section 2, we begin with some preliminary results which are essential for our
analysis and introduce the definition of a solution with respect to stochastic age-dependent
populations. In Section 3, we shall prove existence and uniqueness of solution for stochastic
age-dependent population equation (1.3).

2. Preliminaries

Consider stochastic age-structured population system with diffusion (1.3). A is the maximal
age of the population species, so

P(r, t, x) = 0, ∀r ≥ A. (2.1)
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By (1.7), integrating on [0, A] to (1.3) and (1.5) with respect to r, we obtain the following
system

∂y

∂t
− k(t)Δy + μ(t, x)y − β(t, x)y

= f(t, x) + g(t, x)
dBh(t)
dt

, in Q = (0, T) × Γ,
y(0, x) = y0(x), in Γ,

y(t, x) = 0, on Σ = (0, T) × ∂Γ,

(2.2)

where

β(t, x) ≡
(∫A

0
β1(r, t, x)P(r, t, x)dr

)(∫A

0
P(r, t, x)dr

)−1

, (2.3)

where
∫A

0 P(r, t, x)dr = y(t, x) is the total population, and the birth process is described by the
nonlocal boundary conditions

∫A
0 β1(r, t, x)P(r, t, x)dr clearly, β(t, x) denotes the fertility rate

of total population at time t and in spatial position x.

μ(t, x) ≡
(∫A

0
μ1(r, t, x)P(r, t, x)dr

)(∫A

0
P(r, t, x)dr

)−1

, (2.4)

where μ(t, x) denotes the mortality rate at time t and in spatial position x

f(t, x) ≡
∫A

0
f1(r, t, x)dr,

g(t, x) ≡
∫A

0
g1(r, t, x)dr.

(2.5)

Let

V = H1(Γ)≡
{
ϕ | ϕ ∈ L2(Γ),

∂ϕ

∂xi
∈ L2(Γ), where

∂ϕ

∂xi
are generalized partial derivatives

}
.

(2.6)

Then V ′ = H−1(Γ) the dual space of V . We denote by | · | and ‖ · ‖ the norms in V and V ′

respectively, by 〈·, ·〉 the duality product between V , V ′, and by (·, ·) the scalar product in H.
We consider stochastic age-structured population system with diffusion of the form

dty(t) − kΔy(t)dt + μ(t, x)y(t)dt − β(t, x)y(t)dt
= f(t, x)dt + g(t, x)dBh(t), in Q = (0, T) × Γ,

y(0, x) = y0(x), in Γ,

y(t, x) = 0, on Σ = (0, T) × ∂Γ,

(2.7)
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where dty(t) is the differential of y(t, x) relative to t, that is, (dty(t) = ∂y(t)/∂t)dt, y(t) :=
y(t, x). T > 0, A > 0.

The integral version of (2.7) is given by the equation

y(t) − y(0) −
∫ t

0
kΔy(s)ds −

∫ t

0

(
β(s, x) − μ(s, x))y(s)ds =

∫ t

0
f(s, x)ds +

∫ t

0
g(s, x)dBh(s),

(2.8)

here y(t, x) = 0, on Σ = (0, T) × ∂Γ.
Let Bh

j (t)t≥0 (j = 1, 2, . . .) be independent centered Gaussian processes with Bh
j (0) = 0

on a given probability space (Ω,F, P), where we assume that

E
(
Bh
j (t) − Bh

j (s)
)2

= |t − s|2hμj

(
j = 1, 2, . . .

)
,

μj > 0,
∞∑

j=1

μj <∞,
(2.9)

and h ∈ [1/2, 1].
The processes Bh

j (t)t≥0 are independent fractional Brownian motions with the Hurst

constant h and E(Bh
j (1))

2
= μj (j = 1, 2, . . .).

It follows from Kleptsyna et al. (cf. [15]) that

Bh
j (t) =

(∫0

−∞

(
|t − r|h−1/2 − |r|h−1/2

)
dWj(r) +

∫ t

0
|t − r|h−1/2dWj(r)

)
, (2.10)

where (Wj(t))t≥0 (j = 1, 2, . . .) are real independent Wiener processes with EW2
j (t) = μjt.

Let K be a separable Hilbert space with the scalar product (·, ·)K, and (ej)j=1,2,... denotes
a complete orthogonal system in K, Then

∞∑

j=1

E‖Bh
j (t)ej‖

2

K
= t2h

∞∑

j=1

μj <∞, (2.11)

and Bh(t) =
∑∞

j=1 B
h
j (t)ej is called a K-valued fractional Brownian motion where the sum is

defined mean square.

Definition 2.1. A H-valued continuous stochastic process (y(t))t∈[0,T] with y(t) ∈ V (P -a.s) is
a solution of (2.7) if it holds for v ∈ V and all t ∈ [0, T] that

(
y(t), v

)
H =

(
y(0), v

)
H +

∫ t

0

〈
kΔy(s), v

〉
ds +

∫ t

0

(
β(s, x)y(s) − μ(s, x)y(s), v)Hds

+
∫ t

0

(
f(s, x), v

)
Hds +

∫ t

0

(
g(s, x)dBh(s), v

)

H

, P -a.s.
(2.12)
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The objective in this paper is that we hopefully find a unique process y(t) such that
(2.7) holds For this objective, we assume that the following conditions are satisfied:

(1) μ(t, x), β(t, x) and k(r, t) are nonnegative measurable, and

0 ≤ k0 ≤ k(t) <∞ in (0, A) × (0, T),
0 ≤ μ0 ≤ μ(t, x) <∞ in (0, A) × Γ,
0 ≤ β(t, x) ≤ β0 <∞ in (0, A) × Γ.

(2.13)

(2) Let f(t, x) and g(t, x) be measurable functions which are defined on Q with

∣∣f(t, x)
∣∣∨∣∣g(t, x)

∣∣ ≤ K, (2.14)

where K is a positive constant.

3. Existence and Uniqueness of Solutions

Consider also the K-valued fractional Brownian motion Bh,n(t) =
∑n

i=1 B
h
i (t)ei. Obviously, the

following lemma holds.
If the process (y(t))t∈[0,T] is a solution of (2.7), then the process Z(t) = y(t) −

∫ t
0 g(s)dB

h(s) solves

dtZ(t) − kΔZ(t)dt + μ(t, x)

(
Z(t) +

∫ t

0
g(s)Bh(s)

)
ds − β(t, x)

(
Z(t) +

∫ t

0
g(s)dBh(s)

)
dt

= f(t, x)dt + kΔ
∫ t

0
g(s)dBh(s)dt, in Q = (0, T) × Γ,

Z(0, x) = Z0(x), in Γ,

Z(t, x) = 0, on Σ = (0, T) × ∂Γ,
(3.1)

where Z(t) := Z(t, x). If Z(t) is a solution of (3.1), then exists a process y(t)t∈[0,T] so that Z(t)
can be written as Z(t) = y(t) − ∫ t0 g(s, x)dBh(s), and consequently y(t) solves (2.7).

As a result, we shall consider (3.1) instead of (2.7). It is noted that, for fixed ω ∈ Ω,
(3.1) is a deterministic problem.

Lemma 3.1. Problem (3.1) has, for fixed ω ∈ Ω, a unique solution Z(t), and there exists a
nonnegative random variable η with finite expectation such that

sup
0≤s≤T

|Z(s)|2 + k0

∫T

0
‖Z(s)‖2ds ≤ η, (3.2)

where for fixed ω ∈ Ω, Z(t) is continuous with respect to t inH.
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Proof. The Galerkin approximations are defined by Zn(t) =
∑n

i=1 Zn,i(t)vi, where Zn,i(t) solves
the stochastic equations

Zn,i(t) =
(
y(0), vi

)
H +

∫ t

0

〈
kΔ

(
n∑

k=1

Zn,k(s)vk

)
, vi

〉
ds

+
∫ t

0

〈
(
β(s, x) − μ(s, x))

n∑

k=1

Zn,k(s)vk, vi

〉
ds

+
∫ t

0

(
f(s, x), vi

)
Hds +

∫ t

0

〈(
β(s, x) − μ(s, x))

∫s

0
g(u, x)dBh,n(u), vi

〉
ds

+
∫ t

0

〈
kΔ

(∫s

0
g(u, x)dBh,n(u)

)
, vi

〉
ds. (i = 1, 2, . . . , n).

(3.3)

It follows from the assumption (2) that (3.3) can be solved for every ω by the method of
successive approximation, and the iterates are measurable with respect to ω. Consequently,
(Zn,i(t))t∈[0,T] (i = 1, 2, . . . , n) are stochastic processes since y0 is a random H-valued variable
and (Bh,n(t))t∈[0,T] is a stochastic process. It follows from (3.3) that

Zn(t) =
n∑

i=1

(
y(0), vi

)
Hvi +

∫ t

0

n∑

i=1

〈kΔZn(s), vi〉vids

+
∫ t

0

n∑

i=1

(
(
β(s, x) − μ(s, x))

n∑

i=1

Zn(s), vi

)
vids

+
∫ t

0

(
f(s, x), vi

)
Hvids +

∫ t

0

〈(
β(s, x) − μ(s, x))

∫s

0
g(u, x)dBh,n(u), vi

〉
vids

+
∫ t

0

〈
kΔ

(∫s

0
g(u, x)dBh,n(u)

)
, vi

〉
vids.

(3.4)

Using the chain rule, we get the following

|Zn(t)|2 =
n∑

j=1

(
y(0), vj

)2
H
+ 2

∫ t

0
k〈ΔZn(s), Zn(s)〉ds

+ 2
∫ t

0

〈(
β(s, x) − μ(s, x))Zn(s), Zn(s)

〉
ds + 2

∫ t

0

(
f(s, x), Zn(s)

)
ds

+ 2
∫ t

0

((
β(s, x) − μ(s, x))

∫s

0
g(u, x)dBh,n(u)ds,Zn(s)

)
ds

+ 2
∫ t

0
k

〈
Δ
(∫s

0
g(u, x)dBh,n(u)

)
, Zn(s)

〉
ds.

(3.5)

If we set B(t) ≡ 0 in of Qimin and Chongzhao [11], under assumptions (1)-(2), then this result
implies that

sup
0≤s≤T

|Zn(s)|2 + k0

∫ t

0
‖Zn(s)‖2ds ≤ η. (3.6)
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The following result is an analogous to that of Theorem 4 in [1]. In the Galerkin
approximation, we have

E|Zn(t) − Z(t)|2 + E

∫ t

0
‖Zn(s) − Z(s)‖2ds −→ 0 (3.7)

for all t ∈ [0, T] and for n → ∞. Z(t) is a H-valued continuous process with Z(t) ∈ V for all
t ∈ [0, T]P -a.s., and Z(t) is a P -a.s. unique solution.

Now let (Bh(t))t∈[0,T] be a H-valued fractional Brownian motion with
∑∞

j=1 λjμj < ∞
and

∑∞
j=1 λjμ

1/2
j <∞. We consider the finite-dimensional approximation

n∑

j=1

∫ t

0
g(s, x)dBh

j (s)vjds (3.8)

in mean square of the stochastic integral
∫ t

0 g(u, x)dB
h(u). Obviously this is a stochastic

integral with respect to the V -valued Brownain motion Bh,n(u) =
n∑
j=1

Bh
j (u)vj . Consequently,

the corresponding Galerkin equations for (2.7) are given by

dty
m(t) − kΔym(t)dt + μ(t, x)ym(t)dt − β(t, x)ym(t)dt

= f(t, x)dt + g(t, x)dBh,m(t), in (0, T) × Γ,

ym(0) =
m∑

j=1

(
y0, vj

)
vj , in Γ,

ym(t, x) = 0, on Σ = (0, T) × ∂Γ,

(3.9)

dty
n(t) − kΔyndt + μ(t, x)yn(t)dt − β(t, x)yn(t)dt

= f(t, x)dt + g(t, x)dBh,n(t), in (0, T) × Γ,

yn(0) =
n∑

j=1

(
y0, vj

)
vj , in Γ,

yn(t, x) = 0, on Σ = (0, T) × ∂Γ.

(3.10)

Lemma 3.1 shows that these problems have solutions.

Theorem 3.2. If
∑∞

j=1 λjμj < ∞ and
∑∞

j=1 λjμ
1/2
j < ∞, then there exists a P -a.s unique solution

(y(t))t∈[0,T] of (2.7) with

E
∣∣y(t)

∣∣2 + k0E

∫ t

0
‖Z(s)‖2ds ≤Mt,h, ∀t ∈ [0, T], (3.11)

whereMt,h is a positive constant.
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Proof. We choose n > m with n = m + p and define

Zm,p(t) = ym+p(t) − ym(t) −
∫ t

0
g(u, x)dBh,m(u) +

∫ t

0
g(u, x)dBh,m+p(u). (3.12)

Then

|Zm,p(t)|2 ≤ ∣∣ym+p(0) − ym(0)
∣∣2 + 2

∫ t

0
k〈ΔZm,p(s), Zm,p(s)〉ds

+ 2
∫ t

0

∣∣((β(s, x) − μ(s, x))(ym+p(s) − ym(s)
)
, Zm,p(s)

)∣∣ds

+ 2
∫ t

0

∣∣(f(s, x), Zm,p)(s)
∣∣ds

+ 2
∫ t

0

∣∣∣∣
(
kΔ

∫ s

0
g(u, x)d

(
Bh,m+p(u) − Bh,m(u)

)
, Zm,p(s)

)∣∣∣∣ds.

(3.13)

However, by Lemma 2.2 [14] and assumptions (1)-(2), we have

∫ t

0

∣∣∣∣
(
kΔ

∫ s

0
g(u, x)d

(
Bh,m+p(u) − Bh,n(u)

)
, Zm,p

)∣∣∣∣ds

≤ k0

n∑

j=m+1

λjE

∫ t

0

∣∣∣∣

∫ s

0
g(u, x)dBh

j (u)
(
vj , Z

m,p(s)
)∣∣∣∣ds

≤ 1
2
k0

n∑

j=m+1

λj

∫ t

0
E

∥∥∥∥

∫ s

0
g(u, x)vjdB

h
j (u)

∥∥∥∥
2

ds +
1
2

∫ t

0
E|Zm,p(s)|2ds

≤ 1
2
k0T

2hK2T
n∑

j=m+1

λjμj +
1
2

∫ t

0
E|Zm,p(s)|2ds.

(3.14)

Further,

E
((
β(s, x) − μ(s, x))(ym+p(s) − ym(s)

)
, Zm,p(s)

)
ds

≤ E

(∣∣β0 − μ0
∣∣|Zm,p(s)|2 + ∣∣β0 − μ0

∣∣
∣∣∣∣

∫ s

0
g(u, x)d

(
Bh,m+p(u) − Bh,n(u)

)∣∣∣∣|Zm,p(s)|
)

≤ 2
∣∣β0 − μ0

∣∣E|Zm,p(s)|2 + ∣∣β0 − μ0
∣∣K2T

m+p∑

j=m+1

μj.

(3.15)

Consequently, in view of (3.13),

E|Zn(s)|2 + 2k0E

∫ t

0
‖Zn(s)‖2ds ≤

(
2
∣∣β0 − μ0

∣∣ +K2 + 1
)∫ t

0
E|Zn(s)|2ds

+ k0ChK
2T

m+p∑

j=m+1

λjμj + 2
∣∣β0 − μ0

∣∣TK2
m+p∑

j=m+1

μj.

(3.16)
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Then, the Gronwall’s lemma implies that

E|Zm,p(s)|2 −→ 0, E

∫ t

0
‖Zm,p(s)‖2 −→ 0 (3.17)

for m, p → ∞ for all t ∈ [0, T]. In particular, there exists a process (Z(t))t∈[0,T] with E|Zm(t) −
Z(t)|2 → 0 for m → ∞, and consequently, there exists a process y(t) with E|ym(t)−y(t)|2 → 0
for m → ∞. We must now show that (y(t))t∈[0,T] is solution of (2.7). We have

E

∣∣∣∣y
n(t) − ym(t) +

∫s

0
g(u, a)d

(
B
h,m+p

(u) − Bh,n
(u)

)∣∣∣∣
2

+ 2k0E

∫ t

0

∥∥yn(s) − ym(s)
∥∥2
ds

≤ 2E
∫ t

0
k

〈
Δ
(
yn(s) − ym(s)

)
,

∫s

0
g(u, x)d

(
Bh,n(u) − Bh,m(u)

)〉
ds

+ 2E
∫ t

0

((
β(s, x) − μ(s, x))yn − ym(s), yn(s) − ym(s) +

∫s

0
g(u, x)d

(
Bh,n(u) − Bh,m(u)

)
ds

+ 2E
∫ t

0

(
f(s, x), yn(s) − ym(s) +

∫s

0
g(u, x)d

(
Bh,m+p(u) − Bh,n(u)

))
ds.

(3.18)

Let ε > 0 be chosen arbitrary. Then there exists p0 > 0 so that
∑m+p

j=p+1 λjμ
1/2
j < ε for all p > p0.

Let yn,r(t) =
∑r

j=1 y
n,r
j (t)vj and ym,r(t) =

∑r
j=1 y

m,r
j (t)vj be the rth Galerkin approximation of

yn(t) and ym(t), respectively. For r = m + p, we have

∣∣∣∣∣E
∫ t

0
k

〈
Δ
(
yn,r(s) − ym,r(s)

)
,

∫ s

0
g(u, x)d

(
Bh,n(u) − Bh,m(u)

)〉
ds

∣∣∣∣∣

≤ k0

∣∣∣∣∣∣
E

m+p∑

i=p+1

∫ t

0
λi
(
yn,r
i (s) − ym,r

i (s)
) ∫s

0
g(u, x)dBh

i (u)ds

∣∣∣∣∣∣

≤ k0E
m+p∑

i=p+1

(∫ t

0

∣∣yn,r
i (s) − ym,r

i (s)
∣∣2
ds

)1/2

λi

(
E

∫ t

0

∣∣∣∣

∫ s

0
g(u, x)dBh

i (u)
∣∣∣∣

2

ds

)1/2

≤ const. k0E
m+p∑

i=p+1

λiμ
1/2
i

< const. × ε.

(3.19)

Consequently, the first term on the right-hand side of (3.10) is also less than const. × ε. It is
clear that the second term and third term on the right-hang side of (3.18) tends to zero. Then
(3.18) gives

E

∫ t

0
‖ym+p(s) − yp(s)‖2 −→ 0 (3.20)
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for m, p → ∞, there is (ym(t)) is also a Cauchy sequence in L2
V (Ω × [0, T]) for all t ∈ [0, T].

Let y be the limit a of this sequence. Then it follows from the properties of a Gelfand triple
that

E

∫ t

0

∣∣yn(s) − y(s)
∣∣2 ≤ME

∫ t

0

∥∥yn(s) − y(s)
∥∥2 −→ 0 (3.21)

for n → ∞, where M is a positive constant. Consequently, y(s) = y(s)(a.s) and it follows
from (3.9) that

dty(t) − kΔy(t)ds − (β(s, x) − μ(s, x))y(t)ds = f(s, x)ds + g(s, x)dBh(t), (3.22)

hence, we have proved Theorem 3.2.
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Iterative learning control (ILC) is applied to remote control systems in which communication
channels from the plant to the controller are subject to random data dropout and communication
delay. Through analysis, it is shown that ILC can achieve asymptotical convergence along the
iteration axis, as far as the probabilities of the data dropout and communication delay are known
a priori. Owing to the essence of feedforward-based control ILC can perform trajectory-tracking
tasks while both the data-dropout and the one-step delay phenomena are taken into consideration.
Theoretical analysis and simulations validate the effectiveness of the ILC algorithm for network-
based control tasks.

1. Introduction

Iterative leaning control (ILC) is a control method that achieves perfect trajectory tracking
when the system operates repeatedly. ILC has made significant progresses over the past
two decades [1–3] and covered a wide scope of research issues such as continuous-time
nonlinear system control [4], discrete-time nonlinear system [5], the initial reset problem
[6, 7], stochastic process control [8], state delays [9], and data dropout [10].

On the other hand, the research on networked control systems has attracted much
attention [11, 12] over the past few years. In network control, two frequently encountered
issues are data dropout and communication delays, which are causes of poor performance
of remote control systems. A central research area in remote control systems is to evaluate
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and compensate data dropout and time-delay factors [13–16]. Since data dropout and delay
are random and time varying by nature, the existing control methods for deterministic data
dropout and communication delays cannot be directly applied. Significant research efforts
have been made on the control problems for networked systems with random data dropout
and communication delays that are modeled in various ways in terms of the probability and
characteristics of sources and destinations, for instance [10, 17].

It is in general still an open research area in ILC when remote control systems problems
are concerned, except for certain pioneer works that address linear systems associated
with either random data dropout [10, 18] or random communication delays [17, 19–21].
This paper investigates the implementation of ILC in a remote control systems setting,
specifically focusing on compensation when both random data dropout and delays occur
at the communication channels between the plant output and the controller.

Since ILC is in principle a feedforward technique, it is possible to send the controller
signal before the task is executed. This would not be possible for feedback-based control
systems. Hence, the data dropout can be circumvented to certain extent by using network
protocols that assure the delivery of data packets. Likewise, the large delay due to large data
package can also be avoided when the package is used for repeated task executions, namely,
in future executions. ILC task is carried out in a finite-time interval, hence the time-domain
stability is not a concern. Thus, unlike most network control works that focus on the stability
issue, ILC can be applied to address trajectory-tracking tasks and the learning convergence is
achieved in the iteration domain.

On the other hand, the use of data in the feedforward fashion would require the
temporal analysis and management of data packages as well as resending the missing data
package, which may not be available in certain remote control systems tasks. In this work,
we adopt an ILC scheme that uses pastcontrol signals, as well as the error signals that are
perturbed by the data dropout and communication delay. The ILC law adopts classical D-
type algorithm and a revised learning gain that takes into consideration the probabilities of
both data-dropout and communication-delay factors. As a result, the output tracking errors
can be made to converge along the iteration axis. The ILC scheme can be applied to linear
discrete-time plants with trajectory-tracking tasks.

The paper is organized as below. Section 2 formulates the remote control systems prob-
lem. Sections 3 and 4 prove the convergence property of ILC for linear discrete-time plants.
Section 5 presents a numerical examples.

Throughout the paper, the following notations are used. Let E[·] be the expected value
of a random variable, P[·] the probability of an event, ‖ · ‖2 the Euclidean norm of a vector,
and ‖ · ‖ the maximal singular value of a matrix. Let z(t) is a discrete time signal with t ∈
{0, 1, . . . , T}. For any a > 1 and any λ > 1, define

‖z‖(λ,a) � sup
t∈[0,T]

a−λt‖z(t)‖2, (1.1)

where [0, T] = {0, 1, . . . , T}.

2. Problem Formulation

Consider a deterministic discrete-time linear time-invariant dynamics system:

xi(t + 1) = Axi(t) + Bui(t),

yi(t) = Cxi(t),
(2.1)
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ỹi

ui(t)

yi(t)

yd(t)

(t)

Figure 1: The schematic diagram of the remote control system.

where “i” and “t” denote the iteration index and discrete time, respectively. xi(t) ∈ R
n, ui(t) ∈

R
p, and yi(t) ∈ R

r for all t ∈ [0, T] are system states, inputs, and outputs, respectively, at the
ith iteration. A, B, and C are constant matrices with appropriate dimensions.

The schematic diagram of the remote control systems under consideration is shown in
Figure 1.

It should be noted that the open-loop system from the ILC input to the plant output
is deterministic. The randomness occurs during the data transmission from the plant output
to the ILC input. There are two approaches in analyzing the closed-loop system. The first
approach is to treat the entire closed-loop system as a random or stochastic process. In such
circumstances, the topology of the overall system keeps changing and the control process
is either a Markovian jump process or a switching process. Another approach, which is
adopted in this work, is to retain the essentially deterministic structure of the original open-
loop system, meanwhile model the random data dropout and communication delay into two
random factors with known probability distributions. As a consequence, the signals used in
ILC, ỹi(t) are the modulated plant output with the two random factors.

When the control process is deterministic, an effective ILC law for the linear system
(2.1) is

ui+1(t) = ui(t) + Lei(t + 1),
(2.2)

where ui+1(t) and ui(t) are control inputs at the (i+1)th and ith iterations, namely, the present
trial and the previous trial, respectively. ei(t + 1) = yd(t + 1) − yi(t + 1) is the output tracking
error at the time (t + 1)th time instance of the ith iteration. L is a learning gain matrix.

Remark 2.1. Note that in the ILC law (2.2), the control signal of the present iteration, ui+1(t),
consists of both the pastcontrol input, ui(t) and the past error with one-step temporal
advance, ei(t + 1). The current-cycle feedback errors, such as ei+1(t), are not used. Since ILC
does not require the current-cycle feedback nor the temporal stability, it is an effective control
method for remote control systems problems with random data dropout and communication
delay.

To facilitate the ILC design and convergence analysis, data dropout and one-step
communication delay are formulated. First formulate the data-dropout problem. Denote γ(t)
a stochastic variable with Bernoulli distribution taking binary values 0 and 1, where γ(t) = 0
denotes an occurrence of data dropout and γ(t) = 1 denotes a normal data communication.
The probabilities of γ(t) are

P[γ(t) = 1
]
= E[γ(t)] = γ,

P[γ(t) = 0
]
= 1 − E[γ(t)] = 1 − γ, (2.3)
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where γ > 0 is a known constant. Here, we assume that γ(t) is a stationery stochastic process,
thus the data dropout rate is independent of the time t. In subsequent derivations, we treat γ
as time invariant.

When the data dropout occurs in multiple communication channels, we can similarly
define E[γj] = γj > 0 for the jth communication channel. Thus, denote

Γ = diag
(
γj
)
=

⎡
⎢⎢⎢⎢⎢⎢⎣

γ1 0 · · · 0

0 γ2 · · · 0

...
...

. . .
...

0 0 · · · γr

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.4)

the corresponding mathematical expectation is

E[Γ] = Γ, (2.5)

where Γ > 0 is known a priori.
Due to the data dropout, the plant output received by the controller at the (i + 1)th

iteration is

Γi+1yi+1(t). (2.6)

Generally speaking, the occurrences of data dropouts at two iterations are uncorrelated, thus
independent. On the other hand, ILC law at the current iteration, the (i + 1)th iteration, uses
only signals of the previous iteration, namely, ith iteration, as shown in (2.2). Thus yi+1(t)
with the control input ui+1(t) contains data dropouts upto the ith iteration. Therefore, Γi+1

and yi+1(t) are independent, that is,

E[Γi+1yi+1(t)] = E[Γi+1]E[yi+1(t)]

= Γi+1E[yi+1(t)].
(2.7)

Without the loss of generality, we assume E[Γi] = Γ, namely, the data dropout rate is invariant
at different iterations.

Next formulate the one-step communication delay problem. Denote w(t) is a random
delay factor with Bernoulli distribution, which takes binary values 0 and 1 that indicate,
respectively, the presence and absence of an one-step communication delay. Here we assume
that w(t) is a stationery stochastic process, thus the occurrence of the communication delay
is independent of the time t. In subsequent derivations we treat w as time invariant. With
multiple communication channels, we define matrix W = diag(wj), where wj denotes the
occurrence of communication delay at the jth communication channel. Denote E[w] = w

and E[W] = W . The plant output received by ILC with possible communication delay is
formulated by

yoi (t) = Wiyi(t) + [1 −Wi]yi(t − 1), (2.8)
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where Wi is the communication delay at the ith iteration. Without the loss of generality,
we assume E[Wi] = W , namely, the probability of the communication delay is invariant at
different iterations. Analogous to data dropout, assume that communication delay at any two
iterations are independent, then Wi+1 and Wi are independent, so are Wi+1 and yi+1(t) because
yi+1(t) contains communication delays upto the ith iteration through the ILC law (2.2).

It is worthwhile noting that stochastic variables γ and w are not completely indepen-
dent. A delayed or nondelayed communication occurs only when γ = 1, that is, no data
dropout. Hence, we should have the condition probability for data transmission without
delay

Prob
[
γ = 1, w = 1

]
= P[γ = 1

]P[w = 1 | γ = 1
]
= γw, (2.9)

and the condition probability for data transmission with one-step delay

P[γ = 1, w = 0
]
= P[γ = 1

]P[w = 0 | γ = 1
]

= P[γ = 1
](

1 − P[w = 1 | γ = 1
])

= γ(1 −w).
(2.10)

As a consequence, we have

E[γw] = γw. (2.11)

The relationship between data drop out and communication delay, (2.11), can be extended to
multiple channels at the ith iteration

E[ΓiWi] = ΓW. (2.12)

At the ith iteration, the output signals perturbed by data dropout and one-step com-
munication delay can be expressed as

ỹi(t) = Γiyoi (t) = Γi[Wiyi(t) + (I −Wi)yi(t − 1)], (2.13)

where I is a unity matrix of appropriate dimensions. The mathematical expectation of ỹi(t)
can be derived using the independence property between Γi, Wi, and yi, as well as the rela-
tionship (2.12)

E[ỹi(t)] = E{Γi[Wyi(t) + (I −W)yi(t − 1)]}

= Γ
{
WE[yi(t)] +

(
I −W

)
E[yi(t − 1)]

}
.

(2.14)

The objective of control design is to seek an appropriate ILC law that can take into
consideration data dropout and communication delay concurrently. The following ILC law is
adopted

ui+1(t) = ui(t) + Lẽi(t + 1), (2.15)
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where

ẽi(t + 1) = Γi[yd(t + 1) − ỹi(t + 1)]

= Γi[yd(t + 1) −Wiyi(t + 1) − (I −Wi)yi(t)]

= Γi[Wiei(t + 1) + (I −Wi)ei(t) + (I −Wi)δ(t)],

(2.16)

where δ(t) � yd(t + 1) − yd(t).

3. Convergence Analysis for Left-Invertible Systems r ≥ p

In this section, we derive the convergence property of the ILC (2.15) in the presence of data
dropout and communication delays.

In ILC, the learning convergence can be derived in terms of either the output tracking
error, ei(t), or the input tracking error, Δui(t). In this section, we prove the learning con-
vergence property of Δui(t).

Assumption 3.1. For a given output reference trajectory yd(t), which is realizable, there exists a unique
desired control input ud(t) ∈ R

p such that

xd(t + 1) = Axd(t) + Bud(t),

yd(t) = Cxd(t),
(3.1)

where ud(t) is uniformly bounded for all t ∈ [0, T]. It is assumed that for all i ∈ Z+, xi(0) is a
random variable with E[xi(0)] = x0 = xd(0).

Define the input and state errors

Δui+1 � ud(t) − ui+1(t),

Δxi+1 � xd(t) − xi+1(t),
(3.2)

then from (2.1) and (3.1), we have

Δxi(t + 1) = AΔxi(t) + BΔui(t),

ei(t) = CΔxi(t).
(3.3)

From (2.15), using the relationship (2.12), we have

E[ẽi+1(t + 1)] = E[Γi[yd(t + 1) −Wiyi(t + 1) − (I −Wi)yi(t)]]

= E[Γi[Wiei(t + 1) + (I −Wi)ei(t) + (I −Wi)(yd(t + 1) − yd(t))]]

= Γ
{
WE[ei(t + 1)] +

(
I −W

)
E[ei(t)] +

(
I −W

)
E[δ(t)]

}
.

(3.4)
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Theorem 3.2. Suppose that the update law (2.15) is applied to the networked control system and
satisfied the Assumption 3.1. If there exist ρ satisfying

∥∥∥Ip − LΓWCB
∥∥∥ ≤ ρ < 1, (3.5)

then the input error along the iteration axis, E[Δui(t)], converges to a bound that is proportional to
the factor δ(t).

Proof. First, subtracting ud(t) from both sides of the ILC law (2.15) yields

Δui+1(t) = Δui(t) − Lẽi(t + 1). (3.6)

Applying the ensemble operator E[·] to both sides of (3.6) and substituting the relationship
(3.4) with ei(t) = CΔxi(t), we obtain

E[Δui+1(t)] = E[Δui(t)] − LΓWCE[Δxi(t + 1)]

− LΓ
(
I −W

)
CE[Δxi(t)] − LΓ

(
I −W

)
δ(t).

(3.7)

Substituting the state error dynamics (3.3) into (3.7) leads to the following relationship:

E[Δui+1(t)] =
(
Ip − LΓWCB

)
E[Δui(t)]

− L
[
ΓWCA + Γ

(
I −W

)
C
]
E[Δxi(t)] − LΓ

(
I −W

)
δ(t).

(3.8)

Define ρ � ‖Ip − LΓWCB‖.
Now let us handle the second term on the right hand side of (3.8), which is related to

Δxi(t). Applying the ensemble operation to the following relationship:

Δxi(t) = At[xd(0) − xi(0)] +
t−1∑

k=0

At−1−kBΔui(k), (3.9)

Substituting the relation (3.9) into (3.8), taking the norm ‖ · ‖2 on both sides, the fol-
lowing relationship is derived:

‖E[Δui+1(t)]‖2 ≤ ρ‖E[Δui(t)]‖2 +
∥∥∥LΓWCA + LΓ

(
I −W

)
C
∥∥∥at‖xd(0) − E[xi(0)]‖2

+
∥∥∥LΓWCA + LΓ

(
I −W

)
C
∥∥∥‖B‖

t−1∑

k=0

at−1−k‖E[Δui(k)]‖2

+
∥∥∥LΓ
(
I −W

)∥∥∥‖δ(t)‖2,

(3.10)

where a ≥ ‖A‖ and in this work we choose a > 1 if ‖A‖ ≤ 1.
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In order to handle the exponential term with at in (3.11), we introduce the λ norm.
From Assumption 3.1, multiplying both sides of (3.10) by a−λt and taking the supermum
over [0, T] yield

sup
t∈[0,T]

a−λt‖E[Δui+1(t)]‖2 ≤ ρ sup
t∈[0,T]

a−λt‖E[Δui(t)]‖2

+ β1 sup
t∈[0,T]

a−λt
t−1∑

k=0

at−1−k‖E[Δui(k)]‖2

+ β2 sup
t∈[0,T]

a−λt‖δ(t)‖2,

(3.11)

where β1 = ‖LΓWCA +LΓ(I −W)C‖‖B‖, β2 = ‖LΓ(I −W)‖, and ηi = ‖xd(0) − E[xi(0)]‖ that is
independent of t. Since ‖δ(t)‖ is bounded, so is

μ = sup
t∈[0,T]

a−λt‖δ(t)‖2. (3.12)

Substituting the properties of Lemma A.1 into (3.11) yields

‖E[Δui+1]‖(λ,a) ≤
(
ρ + β1

1 − a−(λ−1)T

aλ − a

)
‖E[Δui]‖(λ,a) + β2μ. (3.13)

Since 0 ≤ ρ < 1, it is possible to choose λ sufficiently large such that

ρ1 = ρ + β1
1 − a−(λ−1)T

aλ − a < 1. (3.14)

Therefore we can rewrite (3.13) as

‖E[Δui+1]‖(λ,a) ≤ ρ1‖E[Δui]‖(λ,a) + β2μ, (3.15)

which implies

lim
i→∞
‖E[Δui]‖(λ,a) ≤

β2μ

1 − ρ1
. (3.16)

Note that μ is proportional to δ(t), namely, the maximum difference between yd(t +
1) − yd(t) in t ∈ [0, T], which is bounded and small when the reference trajectory is smooth
or the sampling interval is sufficiently small. When the probability associated with the data
communication delay, W , is known a priori, we can further revise the reference trajectory to
an augmented one, such that the resulting δ(t) = 0.

Corollary 3.3. Revising the original reference yd(t) into an augmented one yad(t) = Wyd(t) + (I −
W)yd(t − 1), then δ(t) = 0 and the ILC (2.15) ensures a zero-tracking error.
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Proof. Note that E[yoi (t)] = WE[yi(t)] + (I −W)E[yi(t − 1)]. Suppose that yi(t) = yd(t), then
the delay-perturbed output should be WE[yd(t)] + (I −W)E[yd(t − 1)]. In other words, the
augmented reference trajectory for yoi (t+ 1) should be ya

d
(t) = Wyd(t) + (I −W)yd(t− 1). As a

result, yoi (t) = ya
d
(t) implies yi(t) = yd(t). Now replacing yd(t + 1) in (2.16) with ya

d
(t + 1), we

can derive

ẽj(t + 1) = Γj
[
yad(t + 1) − yoj (t + 1)

]

= Γj
[
Wjyd(t + 1) −Wjyj(t + 1) +

(
I −Wj

)
yd(t − 1) − (I −Wj

)
yj(t)

]

= ΓjWjej(t + 1) + Γj
(
I −Wj

)
ej(t).

(3.17)

Comparing the above expression with (2.16), we conclude that δ(t) = 0, subsequently μ = 0,
which implies a zero-tracking error according to (3.16).

4. Convergence Analysis for Right-Invertible Systems r ≤ p

In this section, we prove the learning convergence property of ei(t).

Assumption 4.1. (Ir − CBLΓW)−1 always exists.

Theorem 4.2. Suppose that the update law (2.15) is applied to the networked control system and
satisfied the Assumption 4.1. If

ρ′ �
∥∥∥Ir − CBLΓW

∥∥∥ < 1, (4.1)

then the tracking error along the iteration axis, E[ei(t)], converges to a bound that is proportional to
the factor δ(t).

Proof. First note the relationship:

ei+1(t + 1) = yd(t + 1) − yi+1(t + 1)

= ei(t + 1) + yi(t + 1) − yi+1(t + 1)

= ei(t + 1) + CA[xi(t) − xi+1(t)] + CB[ui(t) − ui+1(t)],

(4.2)

xi(t) = Atxi(0) +
t−1∑

k=0

At−1−kBui(k). (4.3)

Substituting ILC law (2.15), (2.16), and (4.3) into (4.2) yields

ei+1(t + 1) = ei(t + 1) + CAt+1[xi(0) − xi+1(0)]

− C
t−1∑

k=0

At−kBLẽi(k + 1) − CBLẽi(t + 1)
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= ei(t + 1) + CAt+1[xi(0) − xi+1(0)]

− C
t−1∑

k=0

At−kBLΓi[Wiei(k + 1) + (I −Wi)ei(k) + (I −Wi)δ(k)]

− CBLΓi[Wiei(t + 1) + (I −Wi)ei(t) + (I −Wi)δ(t)]

= (Ir − CBLΓiWi)ei(t + 1) + CAt+1[xi(0) − xi+1(0)]

− C
t∑

k=0

At−kBLΓiWiei(k + 1) − C
t−1∑

k=0

At−k−1BLΓi(I −Wi)ei(k)

− C
t∑

k=0

At−kBLΓi(I −Wi)δ(k).

(4.4)

Assumption 4.3. Assume E[xi+1(0)] − E[xi(0)] = 0.

Applying the ensemble operator E[·] to both sides of (4.4) and substituting the rela-
tionship (4.2), we obtain

E[ei+1(t + 1)] =
(
Ir − CBLΓW

)
E[ei(t + 1)] − C

t−1∑

k=0

At−k−1BLΓWE[ei(k + 1)]

− C
t∑

k=0

At−kBLΓ
(
I −W

)
E[ei(k)] − C

t∑

k=0

At−kBLΓ
(
I −W

)
E[δ(t)].

(4.5)

Taking the norm ‖ · ‖2 on both sides of (4.5), the following relationship is derived

‖E[ei+1(t + 1)]‖2 ≤
∥∥∥Ir − CBLΓW

∥∥∥‖E[ei(t + 1)]‖2 + ‖C‖
t−1∑

k=0

at−k−1‖BL‖ΓW‖E[ei(k + 1)]‖2

+ ‖C‖
t∑

k=0

at−k‖BL‖Γ
(
I −W

)
‖E[ei(k)]‖2

+ ‖C‖
t∑

k=0

at−k‖BL‖Γ
(
I −W

)
‖E[δ(t)]‖2,

(4.6)

where a ≥ ‖A‖ and in this work we choose a > 1 if ‖A‖ ≤ 1.
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In order to handle the exponential term with at in (4.5), we introduce the λ norm.
Multiplying both sides of (4.5) by a−λt and taking the supermum over [0, T] yield

sup
t∈[0,T]

a−λt‖E[ei+1(t)]‖2 ≤ sup
t1∈[0,T]

∥∥∥I − CBLΓW
∥∥∥ sup
t∈[0,T]

a−λt‖E[ei(t)]‖2

+ ‖C‖ sup
t∈[0,T]

a−λt
t∑

k=1

at−k‖BL‖ΓW‖E[ei(k)]‖2

+ ‖C‖ sup
t∈[0,T]

a−λt
t−1∑

k=0

at−k−1‖BL‖Γ
(
I −W

)
‖E[ei(k)]‖2

+ ‖C‖ sup
t∈[0,T]

a−λt
t∑

k=0

at−k‖BL‖Γ
(
I −W

)
‖E[δ(t)]‖2.

(4.7)

Substituting the properties of Lemma A.2 into (4.7) yields

‖E[ei+1]‖(λ,a) ≤
(
ρ′ + β4

1 − a−(λ−1)T

a(λ−1) − 1

)
‖E[ei]‖(λ,a) + β5μ, (4.8)

where β3 � ‖C‖‖BL‖Γ and β4 � ‖C‖‖BL‖Γ(I −W)((1 − a−(λ−1)T )/(a(λ−1) − 1)).
Since 0 ≤ ρ′ < 1, it is possible to choose λ sufficiently large such that

ρ2 = ρ′ + β3
1 − a−(λ−1)T

a(λ−1) − 1
< 1. (4.9)

Therefore, we can rewrite (4.8) as

‖E[ei+1]‖(λ,a) ≤ ρ2‖E[ei]‖(λ,a) + β4μ, (4.10)

which implies

lim
i→∞
‖E[ei]‖(λ,a) ≤

β4μ

1 − ρ2
. (4.11)

5. Numerical Examples

Consider the following linear discrete-time system:

xi(t + 1) =

⎡
⎢⎢⎣

0.50 −0.25 1.00

0.15 0.30 −0.50

−0.75 0.25 −0.25

⎤
⎥⎥⎦xi(t) +

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦ui(t),

yi(t) =
[
0 0 1.0

]
xi(t),

(5.1)



12 Mathematical Problems in Engineering

with the initial condition xi(0) = 0. The desired trajectory is yd(t) = sin(2πt/50). The tracking
period is {0, 1, . . . , 49}. The control profile of the first iteration is u0(t) = 0 for t = 0, 1, . . . , 49.
Two sets of probabilities for the data dropout rate and communication delay are considered,
which are γ = 0.9, w = 0.9, γ = 0.6, and w = 0.6, respectively. The learning gain is L = 0.5,
which yields ‖I − LγwCB‖ = 0.595 < 1, and ‖I − LγwCB‖ = 0.82 < 1 with respect to the two
sets of probabilities. The tracking performance of two ILC algorithms is given in Figure 2,
where Max Error denotes the maximum absolute error of each iteration.

6. Conclusion

In this work, we address a class of networked control system problems with random data
dropout and communication delay. D-type ILC is applied to handle this remote control
systems problem with repeated tracking tasks. Through analysis, we illustrate the desired
convergence property of the ILC. Although we focus on one-step communication delay in this
work, the results could be extended to multiple delays, which is one of our ongoing research
topics. In our future work, we will also explore the extension to more generic nonlinear
dynamic processes.

Appendix

Lemma A.1. For all a > 1, for all λ > 1, for all i ∈ Z+, the inequality:

sup
t∈[0,T]

a−λt
t−1∑

τ=0

at−1−τ‖E[Δui(τ)]‖2 ≤
1 − a−(λ−1)T

aλ − a ‖E[Δui]‖(λ,a) (A.1)

holds.

Proof. Consequently

sup
t∈[0,T]

a−λt
t−1∑

τ=0

at−1−τ‖E[Δui(τ)]‖2 = a−1 sup
t∈[0,T]

a−t(λ−1)
t−1∑

τ=0

a−λτ‖E[Δui(τ)]‖a(λ−1)τ

≤ a−1‖E[Δui]‖(λ,a) sup
t∈[0,T]

a−t(λ−1)a
(λ−1)t − 1
aλ−1 − 1

≤
(

1 − a−(λ−1)T

aλ − a

)
‖E[Δui]‖(λ,a).

(A.2)

Lemma A.2. For all a > 1, for all λ > 1, for all i ∈ Z+, the inequalities

sup
t∈[0,T]

a−λt
t−1∑

k=0

at−1−k‖E[ei(k)]‖2 ≤
1 − a−(λ−1)T

a(λ−1) − 1
‖E[ei]‖(λ,a),

sup
t∈[0,T]

a−λt
t∑

k=1

at−1−k‖E[ei(k)]‖2 ≤
1 − a−(λ−1)T

a(λ−1) − 1
‖E[ei]‖(λ,a)

(A.3)

hold.
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Figure 2: The tracking error profiles for the discrete-time linear system with data dropout and one-step
communication delay. (a) is learning results with the data dropout rate γ = 0.9 and communication delay
rate w = 0.9. (b) is learning results with the data dropout rate γ = 0.6 and communication delay rate
w = 0.6.

Proof. Consequently

sup
t∈[0,T]

a−λt
t−1∑

k=0

at−1−k‖E[ei(k)]‖2 ≤ sup
t∈[0,T]

a−λt
t∑

k=0

at−k‖E[ei(k)]‖2

= sup
t∈[0,T]

a−t(λ−1)
t∑

k=0

a−λk‖E[ei(k)]‖a(λ−1)k

≤ ‖E[ei]‖(λ,a) sup
t∈[0,T]

a−t(λ−1)a
(λ−1)t − 1
aλ−1 − 1

≤
(

1 − a−(λ−1)T

aλ−1 − 1

)
‖E[ei]‖(λ,a),

sup
t∈[0,T]

a−λt
t∑

k=1

at−1−k‖E[ei(k)]‖2 ≤ sup
t∈[0,T]

a−λt
t∑

k=0

at−k‖E[ei(k)]‖2

= sup
t∈[0,T]

a−t(λ−1)
t∑

k=0

a−λk‖E[ei(k)]‖a(λ−1)k

≤ ‖E[ei]‖(λ,a) sup
t∈[0,T]

a−t(λ−1)a
(λ−1)t − 1
aλ−1 − 1

≤
(

1 − a−(λ−1)T

aλ−1 − 1

)
‖E[ei]‖(λ,a).

(A.4)
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In order to achieve continuous navigation capability in areas such as tunnels, urban canyons,
and indoors a new approach using least squares support vector machine (LS-SVM) and H∞ filter
(HF) for integration of INS/WSN is proposed. In the integrated system, HF estimates the errors
of position and velocity while the signals in WSNs are available. Meanwhile, the compensation
model is trained by LS-SVM with corresponding HF states. Once outages of the signals in WSNs,
the model is used to correct INS solution as HF does. Moreover, due to device reasons, there
are slight fluctuations in sampling period in practice. For overcoming this problem of integrated
navigation, the theoretical analysis and implementation of HF for an integrated navigation system
with stochastic uncertainty are also given. Simulation shows the performance of HF is more robust
compared with INS-only solution and Kalman filter (KF) solution, and the prediction of LS-SVM
has the smallest error compared with INS-only and back propagation (BP), the improvement is
particularly obvious.

1. Introduction

The demand for location-based services (LBSs) has been driving the need for the accurate
positioning techniques in the past and is expected to remain the same in the future [1, 2].
Wireless sensor network (WSN) has boomed in the last decades, it shows great potential to
develop positioning system in the environments such as tunnels, urban canyons, and indoors,
where the Global Positioning Systems (GPS) cannot provide a solution with consistent and
long-term stable accuracy due to satellite signal blockage [3–7]. So, the physical location
becomes one of key applications in WSNs recently. Most of the current wireless localization
in WSN employs the measurement of one or several physical parameters of the radio signal



2 Mathematical Problems in Engineering

transmitted between the reference nodes (RNs) and blind nodes (BNs) [8]. For example,
Patwari et al. employed the measurements of time of arrival (TOA) and received signal
strength (RSS) to estimate relative location in WSNs in 2003 [9]. In 2002, Al-Jazzar and
Caffery Jr. estimated node location for nonline of sight (NLOS) environments by TOA
[10], then Al-Jazzar et al. used a joint TOA/AOA (so-called angle of arrival) constrained
minimization method for locating wireless devices in nonline-of-sight environment in 2009
[11]. Alsindi et al. employed TOA for ranging in indoor multipath environments in 2009
[12]. The mainstream method is to use electromagnetic waves for indoor localization, but
due to the high propagation speed, the accuracy is of the order of several meters. On
the other hand, some researchers employ ultrasonic waves to achieve high accuracy with
narrow bandwidth and narrow directional characteristics, for example, a fully distributed
localization system based on ultrasound is proposed by Minami et al., and the accuracy of
localization is about 20 cm with 24 devices [13]. Although WSN is capable of indoor wireless
localization with the characteristics of low power, low cost, and low complexity, it requires
high density of RNs for high accuracy due to its short-distance communication. Therefore,
it has to employ a large number of RNs to keep localization accuracy if localization area is
large.

Differing from WSN-based wireless localization requiring RNs, INS is a self-contained
system incorporating three orthogonal accelerometers and two orthogonal gyroscopes [1].
It is capable of providing positioning information independently. However, for the INS
accuracy deteriorates with time due to possible inherent sensor errors (white noise, correlated
random noise, bias instability, and angle random walk) that exhibit considerable long-term
growth [14–17], it is just a short-term compensation to GPS outages, and the INS cannot
maintain long-term high accuracy when GPS signals are unavailable. Thus, INS is poor in
long-term self-contained navigation.

Aiming at continuous navigation capability, many intelligent integration navigation
approaches have been employed. For instance, Kim et al. presented an integrated
GPS/INS/Vision system for helicopter navigation [18], Berefelt et al. used GPS/INS
navigation in urban environment [19]. In this mode, training the compensation model
by Artificial Intelligence (AI) techniques is widely used to improve the performance of
integrated navigation, especially the neural network (NN), as in, for example, the use of
the NN for denoising inertial outputs based on microelectromechanical system (MEMS)
in [20], and the NN for the compensation model in [21]. However, to achieve good
performance it has to select sufficient data samples of good quality for the NN [22], and
it is poor in high dimension input spaces. Current algorithms for good quality samples of
the compensation model are mainly based on integration filter, as the core of an integrated
system, the integration filter should be carefully designed. The KF is one of the most
common examples for filtering. With the stochastic state space model of the system and
measurement outputs, it is able to achieve the optimal estimation of states in multi-input,
multioutput (MIMO) systems [23]. However, due to the noises of system and measurement
should be corrupted by white noise and the state estimation is approached with the
minimization of the covariance of the estimation error, the KF is not suitable for nonlinear
systems. Through the first-order linearization of the nonlinear system, extended KF (EKF)
is able to achieve nonlinear estimation. However, for the state distribution is assumed as a
Gaussian random variable (GRV), it may generate large errors in the true posterior mean
and covariance of the transformed GRV, which can lead to suboptimal performance and
sometimes divergence of the filter [24]. Moreover, the system with GRV is often unavailable
in practice.
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In this paper, we present INS/WSN integration using LS-SVM and HF for long-
distance continuous navigation in areas such as tunnels, urban canyons, and indoors. Aiming
at the robust performance of filtering, the HF is employed to estimate errors of position and
velocity while signals in WSNs are available. Meanwhile, compensation model is trained by
LS-SVM, which is used to correct the INS errors during signals in WSN outages. Simulation
is employed to evaluate the performance of the proposed method. The results of filtering are
compared with the INS-only solution and KF solution, moreover, the results of prediction
are compared with the INS-only method and BP method. The remainder of the paper is
organized as follows: HF for integration and LS-SVM model are described in Section 2
and Section 3, respectively. Section 4 gives the hybrid method for INS/WSN integration.
Simulations and the analyses of experiment results based on semiphysical can be obtained
in detail in Section 5. Finally, the conclusions are given.

For convenience, this paper adopts the following notations.
A′: transpose of a matrix or vector A.
A > 0 (A ≥ 0): A is positive definite (positive semidefinite) symmetric matrix.
Sn: the set of all real symmetric matrices.
Rn: n-dimensional Euclidean space.
In×n: n × n identity matrix.

2. H∞ Fusion Filter for Integration

2.1. Stochastic Uncertain System

In order to achieve robust performance, HF is widely analyzed and used in the nonlinear
systems [25–27]. The HF is to design an estimator to estimate the unknown state combination
with measurement output [28]. In contrast with the KF and EKF, one of the main advantages
of HF is that it is not necessary to know exactly the statistical properties of the noise but
only on the assumption of the noise with bounded energy [29], which makes this technique
useful in certain practical applications. For the above-mentioned reasons, HF technique has
been extensively developed in the last decade, and many HF-based methods have been
proposed, especially in the field of stochastic systems. For instance, Xu and Chen proposed
an H∞ filtering for uncertain impulsive stochastic systems under sampled measurements
in [30]. Zhang and Chen studied the exact observability of stochastic systems in [29],
and, then, they solved the problem of filtering for nonlinear stochastic uncertain system
[28].

As WSN-based wireless localization is a relative localization, HF uses relative errors
of position and velocity of BN as the state vector. Ideally, the relative position errors of BN
measured by INS at k state are able to be illustrated in (2.1):

ex,k+1 = ex,k + T · evx,k +ωx,k,

ey,k+1 = ey,k + T · evy,k +ωy,k,
(2.1)

where (ex, ey) is the relative position error of BN at k moment, (evx, evy) is the velocity error
of BN at k moment, and T is ideal sample time. Due to the limitation of timing device, there
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will be a stochastic error for ideal sample time in practice. It leads the system in (2.1) to be a
stochastic uncertain system, which is expressed as follow:

ex,k+1 = ex,k +
(
(T + δt) · βk

) · evx,k +ωx,k,

ey,k+1 = ey,k +
(
(T + δt) · βk

) · evy,k +ωy,k.
(2.2)

Here δt is the stochastic uncertainty of system and βk is a standard random scalar
sequences with zero mean. Thus, the model of the system in (2.2) can be written in matrix
form:

⎡
⎢⎢⎢⎢⎢⎣

ex,k+1

ey,k+1

evx,k+1

evy,k+1

⎤
⎥⎥⎥⎥⎥⎦

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

0 0 δt 0

0 0 0 δt

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
βk

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⎡
⎢⎢⎢⎢⎢⎣

ex,k

ey,k

evx,k

evy,k

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

ωx,k

ωy,k

ωvx,k

ωvy,k

⎤
⎥⎥⎥⎥⎥⎦
. (2.3)

Here, we denote (2.3) as (2.4).

Xk+1 =
(
A + E · βk

)
Xk + Bωk, (2.4)

where ωk ∈ Rm is stochastic process noise which belongs to l2[0,∞).
The observation vectors of the HF are formed by differencing the INS and WSN

positions (rWSN, rINS) and the velocities (vWSN, vINS). Thus, the observation equation is
illustrated as (2.5):

⎡
⎢⎢⎢⎢⎢⎣

Δrx,k

Δry,k

Δvx,k

Δvy,k

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ex,k

ey,k

evx,k

evy,k

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

υx,k

υy,k

υvx,k

υvy,k

⎤
⎥⎥⎥⎥⎥⎦
, (2.5)

where Δrx,k = rx,k(INS) − rx,k(WSN), Δry,k = ry,k(INS) − ry,k(WSN), Δvx,k = vx,k(INS) − vx,k(WSN), and
Δvy,k = vy,k(INS) − vy,k(WSN).

Here, we denote (2.5) as (2.6).

Yk = CXk +Dυk, (2.6)

where υk ∈ Rm is measurement noise which belongs to l2[0,∞). For the convenience, we
assume that

E
∞∑

k=0

ω′kωk <∞, E
∞∑

k=0

υ′kυk <∞. (2.7)
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So, the stochastic uncertain system can be simply expressed as:

Xk+1 =
(
A + E · βk

)
Xk + B1ςk,

Yk = CXk +D1ςk,

Zk = LXk.

(2.8)

Here, Zk is the state combination to be estimated, B1 = [B 0], D1 = [0 D], and ςk =
[ω′k υ′k]

′.

2.2. H∞ Filter Formulation

In this section, we investigate the design of a linear estimator for Zk of the following form:

X̂k+1 = AfX̂k + BfYk,

Ẑk = LX̂k, k = 0, 1, 2, . . . ,
(2.9)

where X̂k and Ẑk are the estimates of Xk and Zk, respectively, and {Af, Bf , L} are the constant
matrices. Here, we define state error vector and measurement error vector, respectively, as
follows:

ek = Xk − X̂k, Z̃k = Zk − Ẑk. (2.10)

Let Ξ = Eβk and Af = A − BfC + Ξ, then we can obtain the following equation with
(2.8), (2.9), and (2.10):

ek+1 =
(
Ã + Eβk

)
ek + B̃ςk,

Z̃k = Lek,

(2.11)

where Ã = A − BfC and B̃ = B1 − BfD1.
For a given scalar γ > 0, the performance index is illustrated as (2.12):

J = E
∞∑

k=0

(
Z̃′kZ̃k − γ2ς′kςk

)
. (2.12)

In this paper, we look for an H∞ filter satisfies that for all nonzero ωk and υk with the
initial state Xk = 0, J < 0, and the system (2.11) is asymptotically stable.

2.3. Asymptotic Stability

For future convenience, we give the following lemmas which are very useful for the proof of
our main theorem.
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Lemma 2.1 (see [31]).

Xk+1 =
(
A + Eβk

)
Xk + Bςk,

Zk = LXk,
(2.13)

for any γ > 0, the system (2.13) is asymptotically stable and J in (2.12) is negative for all nonzero
ςk ∈ l2[0,∞) if there exists P = P ′ > 0 that satisfies the inequality

−P +A′PA +A′PBΘ−1B′PA + L′L + E′PE < 0, (2.14)

and also satisfies Θ > 0, where Θ = γ2I − B′PB.

Lemma 2.2 (Schur’s complement). For real matrices N, M = M′, R = R′ < 0, the following two
conditions are equivalent:

(1) M −NR−1N ′ < 0,

(2)
[
M N
N ′ R

]
< 0.

Consider the system of (2.11). We arrive at the following result.

Theorem 2.3. The condition for system of (2.11) to be asymptotically stable and γ of (2.12) to be
existed is that there exists P = P ′ > 0 and Q satisfies the inequality (2.15):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P 0 A′P − C′Q′ A′P − C′Q′ L′ E′P

0 −γ2I B′1P −D′1Q′ 0 0 0

PA −QC PB1 −QD1 −P 0 0 0

PA −QC 0 0 −P 0 0

L 0 0 0 −I 0

PE 0 0 0 0 −P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (2.15)

Proof. Consider the system of (2.11) and apply Lemma 2.1, given γ > 0, a necessary and
sufficient condition for J in (2.12) to be negative for all nonzero ςk ∈ l2[0,∞) which is that
there exists P = P ′ > 0 to

−P + Ã′PÃ + Ã′PB̃Θ̃−1B̃′PÃ + L′L + E′PE < 0, (2.16)

where Θ̃ = γ2I − B̃′PB̃, P > 0, and Θ̃ > 0.

Defining Δ = −P + Ã′PÃ + L′L + E′PE, so

Δ + Ã′PB̃Θ̃−1B̃′PÃ < 0. (2.17)
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Applying Schur’s complement, inequality (2.17) and the following inequality are equivalent:

⎡

⎣
Δ Ã′PB̃

B̃′PÃ −
(
γ2I − B̃′PB̃

)

⎤

⎦ < 0. (2.18)

And inequality (2.18) can be rewritten as inequality (2.19):

[
Δ 0

0 −γ2I

]
−
⎡

⎣
Ã′

B̃′

⎤

⎦P(−P)−1P
[
Ã B̃

]
< 0. (2.19)

Using Schur’s complement again, inequality (2.19) is able to be written as (2.20):

⎡
⎢⎢⎣

Δ 0 Ã′P

0 −γ2I B̃′P

PÃ PB̃ −P

⎤
⎥⎥⎦ < 0. (2.20)

Then, by Lemma 2.1 and Δ = −P + Ã′PÃ+L′L+E′PE, we can obtain inequality (2.21) readily:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P 0 Ã′P Ã′P L′ E′P

0 −γ2I B̃′P 0 0 0

PÃ PB̃ −P 0 0 0

PÃ 0 0 −P 0 0

L 0 0 0 −I 0

PE 0 0 0 0 −P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (2.21)

Now, we substitute (2.11) into inequality (2.21) and define that Q = PBf , then we can
obtain inequality (2.15) readily.

Moreover, the matrix inequality is able to be written as following if we set γ2 = γ :

ψ
(
P,Q, γ

)
< 0. (2.22)

Thus, the solving of the filter is transformed to the following optimisation problem:

min
p1>0,Q

γ,

subject to LMIs(2.22) .
(2.23)
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So, the filter is asymptotically stable and there exists the minimum performance index√
γ , the parameters of the HF can obtain by (2.23):

Bf = P−1Q, Af = A − P−1QC + Ξ. (2.24)

For the mean value of Ξ is zero, the Af is also able to denote as follows:

Af = A − P−1QC. (2.25)

3. LS-SVM Model and Training Algorithm

LS-SVM is powerful to estimate for nonlinear. It is also able to extract the optimal solution
with small training data. The LS-SVM algorithm is employed here to improve the accuracy
of the INS-only solution during WSN outages.

3.1. LS-SVM Regression Algorithm

Equation (3.1) shows the optimal linear regression function which is built in feature space.
Where b is the bias term and ω is weight vector. Given a training set {xk, yk}nk=1, the LS-SVM
algorithm maps a higher dimensional feature space ψ(x) = {φ(x1), φ(x2), . . . , φ(xn)} with
nonlinear function ϕ(x):

f(x) =
{
ω,φ(x)

}
+ b =

N∑

i=1

ωiϕi(x) + b. (3.1)

The optimisation problem is

min
ω,b,e

J(ω, e) =
1
2
ωTω + η

1
2

N∑

k=1

e2
k, (3.2)

due to the equality constraints

yk = ωTϕ(xk) + b + ek, k = 1, . . . ,N. (3.3)

To solve the optimisation problem abovementioned, the Lagrangian function is
introduced:

L(ω, b, e, αi) = J(ω, e) −
N∑

i=1

αiω
Tφ(xi) + b + ei − yi, (3.4)
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where αi are the Lagrange multipliers, according to Karush Kuhn Tucker (KKT) optimization
conditions which are illustrated in (3.5):

∂L

∂ω
= 0,

∂L

∂b
= 0,

∂L

∂ei
= 0,

∂L

∂αi
= 0. (3.5)

So,

ω =
N∑

i=1

αiφ(xi),
N∑

i=1

αi = 0, αi = ηei, ω
Tφ(xi) + b + ei − yi = 0, i = 1, 2, . . . ,N. (3.6)

The solution of (3.6), αi and b, can be computed from the input of the sample sets when
the LS-SVM is trained. Applying the Mercer condition one obtains [22]:

K(xk, xl) = ϕ(xk)Tϕ(xl), k, l = 1, 2, . . . ,N. (3.7)

Thus, the LS-SVM model for nonlinear estimation is illustrated as (3.8).

y(x) =
N∑

i=1

αiK(x, xi) + b. (3.8)

The RBF kernel is used as the kernel function of the LS-SVM in this paper:

K(x, xi) = exp

(
−‖x − xi‖2

2σ2

)
. (3.9)

As mentioned above, regularisation parameter (η) and kernel width (σ) need to be
selected. In order for an optimal combination determined before the LS-SVM is trained, we
use a simplified cross-validation method developed by Xu et al. [22], which defines a training
set, consisting of the validation subsets and the verification subsets. Validation subset is
used to train LS-SVM with some empirical combinations of tuning parameters. The primary
parameters are those combinations which make the output of the LS-SVM approach the given
accuracy. On the other hand, verification set is used to further train LS-SVM. As a result, the
final selection of tuning parameters is made, and the system model is also obtained.

3.2. The Input/Output Design of LS-SVM

Due to the position and velocity changes with time, there is an HF states variation. It has been
found that there is a correlation between states measured by INS and the HF states. Although
modeling this correlation is difficult, it is able to build correlation with designed LS-SVM
after adequate training. When the signals in WSNs are unavailable, with the input of INS’s
own estimation error of position and velocity, the LS-SVM is able to output the correction
value for position and velocity, respectively, which is used to compensate the INS solution
(as the integration HF does when the signals in WSN are available). As mentioned above, the
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Figure 1: Configuration of the LS-SVM/HF hybrid system.

estimation errors of position and velocity measured by INS are selected as the input of the
LS-SVM, which is illustrated as (3.10):

LS-SVMin =
{
δrx, δry, δvx, δvy

}
. (3.10)

And the output of the LS-SVM can be simplified as:

LS-SVMout =
{
Δrx,Δry,Δvx,Δvy

}
. (3.11)

The structure of LS-SVM is consistently implemented for the training and prediction
stages.

4. LS-SVM and HF Hybrid Method for Integration System

In this section, the LS-SVM/HF architecture is designed. The integration navigation consists
of two stages. One is the LS-SVM/HF hybrid system. The other is the LS-SVM-based
prediction during WSN outages.

4.1. The LS-SVM/HF Hybrid System for INS/WSN

The LS-SVM is in the training mode when the signals in WSNs are available. Figure 1 displays
the configuration of the integration system for training of LS-SVM. INS estimates the errors
of position and velocity in two directions which are continuously input to the LS-SVM for
training. Meanwhile, the output of HF is employed for the target vectors of the training. The
differences of position (rWSN, rINS) and velocity (vWSN, vINS) between INS and WSN are used
for the observation vectors of the HF.

4.2. The Configuration of the LS-SVM-Based Prediction during
WSN Outages.

The integrated system becomes a stand-alone INS without WSN signal. The LS-SVM is in
the prediction mode now, and the output of the LS-SVM is used for error compensation.
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Figure 3: Definition of simulation scenarios.

The errors of position and velocity estimated by INS are continuously input to the LS-SVM
as it was done during the training stage. The configuration of the LS-SVM-based prediction
during WSN outage is illustrated in Figure 2.

5. Simulation and Performance

5.1. Assumptions

In order to assess the performance of the proposed method, the simulation is implemented.
A 700 m × 450 m area is defined as simulation scenario. In simulation, we assume that a BN
moves from start point (650, 0) to end point (130, 400) along the red-dotted line in Figure 3.
Based on the real-time data measured by INS, two areas (denote as green) is set as training
area, where the signals in WSN are available. The scale of one training area is about 150 m ×
150 m (denote as no.1 training area), and the other one is about 100 m × 100 m (denote as
no.2 training area). The range between RNs is 5 m, and the communication range is 11 m. The
sampling period (T) in (2.3) is set to 1s. Here, we assume that the WSNs employ ultrasonic
waves for localization, which is similar to [13], and the accuracy of localization is about 20 cm.
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Table 1: LS-SVM training results with the validation set.

No.
Errors with validation set

σ η

δ(δrx) (m) δ(δry) (m) Mean error
(m) δ(δvx) (m/s) δ(δvy) (m/s) Mean error

(m/s)

1 1 1 0.5991 0.2046 0.3558 0.1338 0.0864 0.1101

2 1 100 0.2354 0.1126 0.1711 0.0913 0.0968 0.0941

3 1 1000 0.2331 0.1067 0.1699 0.0932 0.0959 0.0946

4 30 100 0.2862 0.1067 0.1967 0.0924 0.0914 0.0919

5 30 1000 0.2542 0.1071 0.1807 0.0921 0.0926 0.0924

6 50 100 0.2871 0.1071 0.1972 0.0922 0.0912 0.0917

7 50 1000 0.2610 0.1073 0.1839 0.0918 0.0924 0.0921

8 100 100 0.2933 0.1068 0.2009 0.0923 0.0903 0.0913

9 100 1000 0.2641 0.1085 0.1852 0.0915 0.0923 0.0919

10 1000 1000 0.2903 0.1063 0.1452 0.0922 0.0900 0.0911

5.2. LS-SVM Training

In this paper, we define an independent training set with 100 points, the first 50 points are the
validation subset, and other points are the verification subset. LS-SVM training results with
the validation set are listed in Table 1. From Table 1, the final selection of tuning parameters
is σ = 1000 and η = 1000. Finally, using both the validation and verification sets as well as
the selected tuning parameters, the LS-SVM was trained again to obtain the compensation
model.

5.3. Performance Analysis

According to Theorem 2.3, we readily obtain the following parameters for HF which is used
in training area.

To the HF used in the first training area,

E =

⎡
⎢⎢⎢⎢⎢⎣

0 0 −0.0012 0

0 0 0 −0.0012

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
, γ = 4.0055,

Af = e−11

⎡
⎢⎢⎢⎢⎢⎣

−0.0044 −0.0694 0.0658 0.0082

0.0066 −0.0146 −0.0296 0.0379

−0.0588 0.1083 −0.0353 −0.0142

0.0553 −0.0232 −0.0009 −0.0316

⎤
⎥⎥⎥⎥⎥⎦
, Bf =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0.2 0

0 1 0 0.2

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
.

(5.1)
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Table 2: The mean errors of position and velocity for the INS-only, KF, and HF methods in the training
area.

Mode
δ(δrx) (m) δ(δry) (m) δ(δvx) (m/s) δ(δvy) (m/s)

No. 1 area No. 2 area No. 1 area No. 2 area No. 1 area No. 2 area No. 1 area No. 2 area

INS-only 7.8315 40.6179 4.7923 36.0891 0.6584 2.0649 1.5777 2.0649
KF 2.9170 14.9663 1.7916 13.2591 0.2715 0.3155 0.5984 0.8856
HF 0.3881 0.4958 0.5338 0.8464 0.1064 0.1041 0.1008 0.0932

To the HF used in the second training area,

E = e−3

⎡
⎢⎢⎢⎢⎢⎣

0 0 0.8409 0

0 0 0 0.8409

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
, γ = 4.0055,

Af = e−11

⎡
⎢⎢⎢⎢⎢⎣

0.0857 −0.0230 −0.0524 −0.0106

−0.0087 −0.0476 0.0416 0.0153

−0.0626 0.1602 −0.0407 −0.0571

−0.0153 −0.0912 0.0568 0.0495

⎤
⎥⎥⎥⎥⎥⎦
, Bf =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0.21 0

0 1 0 0.21

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
.

(5.2)

Figures 4 and 5 display the position errors in x-direction and y-direction in the first
training area. The HF result is compared with the INS-only solution and the KF solution. In
those figures one can see that both the KF and HF can reduce the position errors in x direction
and y direction, respectively, and that the HF solution has the smallest error. Simulation
result shows that the proposed HF method is very effective as it decreases the mean errors of
position by about 85% in x direction and by about 80% in y direction compared with KF.

To further clearly demonstrate how the proposed HF improves the accuracy of the
solution, the velocity errors in x-direction and y-direction for the INS-only, KF, and HF
methods are shown in Figures 6 and 7. Note that the errors for the HF are smaller than
the ones for the KF and INS-only methods both in x direction and y direction, confirming
that the proposed algorithm can improve system performance. Simulation result shows that
the proposed HF method decreases the velocity errors by about 70% in x direction and in y
direction errors by about 75% compared with KF.

The mean errors of position and velocity in x direction and y direction in the second
training area are illustrated in Table 2. We can see that the improvement is also particularly
obvious.

In order to assess the performance of the hybrid method, two WSN outages are
simulated. The LS-SVM result is compared with the INS-only solution and the BP solution
during these outages. The position errors in x direction and y direction after the first training
area derived from the INS-only (in green), BP (in blue), and the LS-SVM (in red) methods
are shown in Figures 8 and 9, respectively. The BP method has the same input/output as the
LS-SVM. In Figures 8 and 9, one can see that both the BP and LS-SVM are able to reduce the
position errors, and that the HF solution has the smallest error, confirming that the proposed
algorithm can improve system performance. From these outage results it can be seen that
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Figure 4: The position errors in x direction for the INS-only, KF, and HF methods in the first training area.
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Figure 5: The position errors in y direction for the INS-only, KF, and HF methods in the first training area.

the proposed method decreases by about 80% position errors in x direction and 70% position
errors in y direction compared with BP.

Figures 10 and 11 display the velocity errors in x-direction and y-direction in the first
50-second WSN outages area. The LS-SVM results are compared with the INS-only solution
and the BP solution. In those figures one can see that both the LS-SVM and BP can reduce
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Figure 6: The velocity errors in x direction for the INS-only, KF, and HF methods in the first training area.
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Figure 7: The velocity errors in y direction for the INS-only, KF, and HF methods in the first training area.

the position errors, and that the LS-SVM solution has the smallest error. However, there are
some fluctuations in BP’s error. The mean errors of position and velocity in x direction and y
direction in the second WSN outages area are illustrated in Table 3. Simulation result shows
that the proposed LS-SVM method is very effective as it decreases the mean errors of velocity
by about 40% in x direction and by about 70% in y direction compared with BP.



16 Mathematical Problems in Engineering

Time (s)

E
rr

or
 (m

)

INS-only

40 45 50 55 60 65 70 75 80 85

0

1

2

3

4

5

6

7

−3

−2

−1

HF + BP
HF + LS-SVM

Figure 8: The position errors in x direction for the INS-only, HF + BP, and HF + LS-SVM methods in the
first WSN outages.
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Figure 9: The position errors in y direction for the INS-only, HF + BP, and HF + LS-SVM methods in the
first WSN outages.

As mentioned above, the improvement is particularly obvious in the prediction period.
The prediction of the LS-SVM is able to maintain a higher accuracy and reduce the influence
of accuracy deterioration caused by the INS.
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Figure 10: The velocity errors in x direction for the INS-only, HF + BP, and HF + LS-SVM methods in the
first WSN outages.
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Figure 11: The velocity errors in y direction for the INS-only, HF + BP, and HF + LS-SVM methods in the
first WSN outages.

6. Conclusions

This work proposes an integrated INS/WSN system using LS-SVM and HF. The input
and output of an LS-SVM are selected on the basis of correlations between the estimation
errors measured by INS and the HF states. When the signals in WSN are available, the HF
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Table 3: The mean errors of position and velocity for the INS-only, KF, and HF methods in the prediction
area.

Mode
δ(δrx) (m) δ(δry) (m) δ(δvx) (m/s) δ(δvy) (m/s)

No. 1 area No. 2 area No. 1 area No. 2 area No. 1 area No. 2 area No. 1 area No. 2 area

INS-only 12.1524 72.4795 8.7879 70.0089 0.8897 3.0793 2.0265 6.0012
BP 5.2628 36.4784 4.9441 36.5174 0.6502 1.1008 0.8096 1.6045
LS-SVM 0.5916 5.2938 0.4676 4.6548 0.0786 0.0092 0.0754 0.0567

is employed to provide optimal estimation of position and velocity errors, which is used
to update the INS solution. Meanwhile, mapping model between the estimation errors of
INS and the HF states is trained by the LS-SVM. Based on the real-time data measured
by INS, WSNs enabled and outages areas are simulated. The results show an improved
overall performance in comparison with the results of the INS-only and KF solutions, and
the prediction of the LS-SVM has a higher accuracy than the prediction of the BP.
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We consider a discrete-time financial model in a general sample space with penalty costs on short
positions. We consider a friction market closely related to the standard one except that withdrawals
from the portfolio value proportional to short positions are made. We provide necessary and
sufficient conditions for the nonexistence of arbitrages in this situation and for a self-financing
strategy to replicate a contingent claim. For the finite-sample space case, this result leads to an
explicit and constructive procedure for obtaining perfect hedging strategies.

1. Introduction

In recent years, applications of stochastic analysis and control have entered in the field of
financial engineering in an effective and rapid way, due mainly to the powerful tools that
can be brought from these disciplines into almost all aspects of fields like, for instance, in the
study of arbitrage, hedging, pricing, and portfolio optimization. One of the classical prob-
lems in portfolio optimization is the mean-variance portfolio selection problem, which was
transformed with the seminal work of Markowitz in [1] (see also [2]). Since then, the amount
of research on this subject has increased in order to provide the development of sophisti-
cated analytical and numerical methods for financial engineering models with more real-
istic assumptions see, for instance, [3–8], among others. More recently, the multiperiod mean-
variance problem was tackled by [9] and later extended in several directions see, for instance,
[10–25]. The pioneering work of Black and Scholes [26] and Merton [27] provided a major
change in the area of pricing of derivative securities, showing that the analysis should be
based on nonarbitrage considerations rather than on preference-related concepts such as
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expected values. From the works of Harrison and Kreps [28] and Harrison and Pliska [29], it
became apparent that semimartingale theory provided a natural framework for the analysis
of financial markets and pricing.

Another fundamental result on the study of arbitrage, hedging, and pricing of financial
markets is the Dalang-Morton-Willinger theorem, also known as the fundamental theorem of
asset pricing. It states that in a frictionless security market, the existence of an equivalent
martingale measure for the discounted price process is equivalent to the absence of arbitrage
(see, e.g., [30]). Recently, there has been a number of papers dealing with contingent claim
valuation and extending versions of the aforementioned theorem in several directions (see,
e.g., [31–38]). The subject of pricing derivatives with transaction costs and portfolio selection
with transaction costs is of practical importance and has been in evidence over the last years.
Two types of transaction costs are considered; fixed costs, which are paid whenever there
is a change of position, and proportional costs, which are charged according to the volume
traded. Different approaches to the problem of pricing derivatives with transaction costs and
the portfolio choice problem under transaction costs can be found in the literature see, for
instance, [32, 37, 39–44]. The results in [45] provided a version of the fundamental theorem
of asset pricing within a short sales constraints framework and possible infinite number of
transactions within a finite period of time, using the free-lunch notion, a stronger notion of
the no arbitrage condition. The case of closed cone constraints on the amount invested in the
risky assets, which includes restrictions on short sales, has been studied in [46] for the case
in which the price process is positive and under a nondegeneracy hypothesis on the price
process. In [47], these results were generalized, and the fundamental theorem of asset pricing
was stated under polyhedral convex cone constraints and using the classical notion of no
arbitrage instead of free lunch. The general short sales constraints in [45, 47] were considered
by separating the price process into two sort of securities; those which cannot be held in
negative amounts and those that can only be held in negative amounts. The no arbitrage
condition in this case is shown in [47] to be equivalent to the existence of a positive interest
rate process and an equivalent probability measure Q under which the discounted price
processes of securities that cannot be sold short are supermartingales, and the discounted
price processes of securities that can only be sold short are submartingales.

In this paper, we consider a model closely related to the standard one (see [30, 48, 49]),
except that a withdrawal directly proportional to the amount on short positions is made from
the portfolio. As far as the authors are aware of, this model has not been studied before (see
also Remark 3.3). Theorem 3.1 provides necessary and sufficient conditions for the nonexis-
tence of arbitrages directly in terms of the price process and penalty costs at time t and can
be seen as a natural extension of the standard fundamental theorem of asset pricing (see, e.g.,
[30, 48, 49]). When the penalty costs go to zero, our result reduces to that presented in [30].
From this result we derive a sufficient condition for nonarbitrage and for a self-financing
strategy to consistently replicate a contingent claim (e.g., any other superreplicating self-
financing strategy will have an initial value greater than that of the replicanting strategy).
For the finite sample space case, this result yields an explicit and constructive procedure for
obtaining perfect hedging strategies.

This paper is organized in the following way. Section 2 presents some notation, de-
finitions, and the financial model. Section 3 contains the main results of the paper. In
Section 4, we present an explicit and constructive procedure for obtaining perfect hedging
strategies for the case in which the sample space is finite, as well as some numerical examples.
Section 5 concludes the paper. The proof of some auxiliary results and the main results are
presented in the appendix.
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2. Notation, Definitions and Problem Formulation

Let the real d -dimensional vector space be denoted by R
d and for x ∈ R

d we will write xi for
the ith component of the vector. The superscript will be omitted for the case d = 1. For x, y
in R

d, we set

x · y =
d∑

i=1

xiyi. (2.1)

We write x ≥ 0 to denote that all components of x are positive, that is, xi ≥ 0 for i = 1, . . . , d.
For x ∈ R

d, we set the following vectors in R
d: x+ ≥ 0 such that its ith component x+

i is equal
to xi if xi ≥ 0, zero otherwise, x− = (−x)+ ≥ 0 (therefore, x = x+ − x− and x+

i x
−
i = 0 for

each i = 1, . . . , d). The vector formed by 1 in all components will be represented by e, and
the vector with 1 at the ith component and 0 elsewhere by bi. For a real number a, we define
a⊕ = 1/a if a/= 0, zero otherwise.

Let (Ω,F,P) be a complete probability space equipped with a filtration {Ft }, t =
0, 1, . . . , T . For G a sub-σ -algebra of F, we denote by Ld

0 (Ω,G,P) (or simply Ld
0 (G) ) the

space of G -measurable random variables with values in R
d, which is a complete topological

vector space if equipped with the topology of convergence measure. As any sequence
converging in probability contains a subsequence converging almost surely (a.s.), we can
assume without loss of generality that any convergent sequence in Ld

0 (G) will converge a.s.
For any probability measure Q, EQ(·) denotes the expectation with respect to Q, and we write
Q ∼ P (Q << P) whenever the probability measure Q is equivalent to (absolutely continuous
with respect to) P. For any A ∈ F, 1A denotes the indicator function of the set A. Let Ld+

0 (G)
be the set of random vectors X ∈ Ld

0 (G) such that P(X ≥ 0) = 1. The space of integrable
random vectors in Ld

0 (G) will be denoted by Ld
1 (G) and the space of essentially bounded

random vectors in Ld
0 (G) by Ld

∞(G).
Consider given stochastic processes S = {S(t); t = 0, . . . , T} and D = {D(t); t =

1, . . . , T} taking values in R
d with S(t) ∈ Ld

0 (Ft) and S1(t) = 1 for each t = 0, . . . , T , and
D(t) ∈ Ld+

0 (Ft) for each t = 1, . . . , T . We define for t = 1, . . . , T , ΔS(t) := S(t) − S(t − 1). A
trading strategy H = (H(1), . . . ,H(T)) is defined such that each H(t) is a d × 2 -dimensional
random matrix with columns H+(t) ∈ Ld+

0 (Ft−1) and H−(t) ∈ Ld+
0 (Ft−1). It describes an

investor’s portfolio as carried forward from time t = 0 to time t = T . In the model of a security
market, S describes the evolution of the prices of d securities, H+(t) represents the number
of units of each security hold in a long position from time t − 1 to time t, H−(t) represents
the number of units of each security hold in a short selling position from time t − 1 to time t,
and D the evolution of the penalty costs and possible spread costs between borrowing and
lending rates due to short selling positions on each security i.

Associated to a trading strategy H, we have the value process VH := (VH(0), . . . ,
VH(T)) describing the total value of the portfolio at each time t. For notational simplicity, we
will omit the superscript H whenever no confusion arises. The portfolio value can be written,
at time t = 0, as

V (0) =
(
H+(1) −H−(1)

) · S(0), (2.2)

and at times t = 1, . . . , T , as

V (t) =
(
H+(t) −H−(t)

) · S(t) −H−(t) ·D(t). (2.3)
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The quantity V (t) represents the value of the portfolio at time t just before any change of
ownership positions take place at that time. The penalty costs due to short selling positions
are represented by the costs:

H−(t) ·D(t). (2.4)

The value of the portfolio at time t + 1 just after the change of ownership positions is (H+(t +
1) − H−(t + 1)) · S(t). We consider in this paper self-financing trading strategies, so that no
money is added or withdrawn from the portfolio between times t = 0 to time t = T . Any
change in the portfolio’s value is due to a gain or loss in the investments, and penalty costs
due to the short selling positions. Thus, we must have

V (t) =
(
H+(t + 1) −H−(t + 1)

) · S(t). (2.5)

From (2.2)–(2.5), we have for t = 1, . . . , T that

V (t) = V (t − 1) +
(
H+(t) −H−(t)

) ·ΔS(t) −H−(t) ·D(t). (2.6)

We notice that the penalties can be seen as withdrawals from the portfolio value proportional
to the short selling positions.

We conclude this section with the definition of an arbitrage opportunity. We say that
there is an arbitrage opportunity if for some self-financing trading strategy H, we have a.s.
that

(i) V (0) ≤ 0,

(ii) V (T) ≥ 0, and

(iii) E(V (T)) > 0.

3. Main Results

In this section, we present the main results of the paper. We start with Theorem 3.1, which
provides necessary and sufficient conditions for the nonexistence of arbitrages and can be
seen as a natural extension of the standard fundamental theorem of asset pricing (see, e.g.,
[30, 48, 49]). As pointed out in Remark 3.2, when the penalty costs go to zero, our result
reduces to that presented in [30]. In Remark 3.3, we point out the differences between our
result and previous results presented in the literature. As usual in this kind of problems, the
hardest part of the proof is to show that a certain set is closed (see Proposition A.1 in the
appendix). In the sequence, we derive a sufficient condition for nonarbitrage and for a self-
financing strategy to consistently replicate a contingent claim. In Section 4, we consider the
finite sample space case so that the results in this section yield an explicit and constructive
procedure for obtaining perfect hedging strategies.

The following theorem provides necessary and sufficient conditions for the nonexis-
tence of arbitrages. The proof can be found in the appendix. In what follows, we recall that
L+
∞(Ft) represents the space of essentially bounded Ft -measurable random variables Z such

that P(Z ≥ 0) = 1.
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Theorem 3.1. The following statements are equivalent:

(i) there are no arbitrage opportunities,

(ii) for any self-financing strategyH, one has a.s. that

(H+(t) −H−(t)) · S(t − 1) ≤ 0,

(H+(t) −H−(t)) ·ΔS(t) −H−(t) ·D(t) ≥ 0

}
=⇒ (H+(t) −H−(t)

) ·ΔS(t) −H−(t) ·D(t) = 0,

(3.1)

(iii) there exists a stochastic process {r(t)} with r(t) ∈ L+
∞(Ft) for each t = 0, 1, . . . , T − 1 and

a probability measure Q ∼ P such that 0 < dQ/dP ∈ L+
∞(F), S(t), D(t) are integrable

with respect toQ and for each t = 0, . . . , T − 1,

EQ(ΔS(t + 1) | Ft) ≤ r(t)S(t) ≤ EQ(ΔS(t + 1) +D(t + 1) | Ft) a.s. (3.2)

Remark 3.2. For the case in which D(t) = 0, our results reduce to the well-known fundamental
theorem of asset pricing with finite-discrete time and infinite state space, see [30] (recall that
S1(t) = 1, ΔS1(t) = 0, and if D1(t) = 0, then (3.2) implies that r(t) = 0).

Remark 3.3. In [45, 47], the authors consider a financial market with two sort of securities,
those that cannot be held in negative amounts and represented by S(t), and those that can
only be held in negative amounts and represented by S̃(t). To write our problem in the above
set-up, we would need to define the fictitious price processes S(t), S̃(t) as: S(0) = S̃(0) = S(0)
and for t = 1, . . . , T , S(t) = S(t), S̃(t) = S(t) + D(1) + · · · + D(t). Notice that there is no dis-
counting to be applied since we are considering that S1(t) = 1. By doing this, we would
have that for t = 1, . . . , T , ΔS(t) = ΔS(t), ΔS̃(t) = ΔS(t) + D(t) and this would yield that
V (t) = V (t−1)+(H+(t)−H−(t)) ·ΔS(t)−H−(t) ·D(t), which is similar to (2.6). Note, however,
that the models are different since we cannot guarantee that a self-financing strategy H for the
above model will be self-financing for our model, and vice versa. Indeed, for the above model,
the self-financing condition would read as (H+(t+1)−H−(t+1)) ·S(t)−H−(t+1) ·∑t

k=1 D(k) =
(H+(t)−H−(t))·S(t)−H−(t)·∑t

k=1 D(k), while for our model it would be (H+(t+1)−H−(t+1))·
S(t) = (H+(t)−H−(t)) ·S(t)−H−(t) ·D(t). This also occurs with the nonarbitrage conditions of
the two models. Indeed, the nonarbitrage condition presented in [45, 47] states that S(t) is a
supermartingale and S̃(t) is a submartingale, which would involve the sum of the terms (k).
On the other hand, for our model, the nonarbitrage condition (3.2) involves only the state
price S(t), S(t + 1) and penalty costs D(t + 1) emphasizing the difference between the two
models.

In what follows, we define

K =
{
({r(t)},Q); r(t) and Q satisfying condition (iii) of Theorem 3.1

}
. (3.3)

We recall next that a contingent claim (random variable) X ∈ L0(FT ) is marketable if for
some self-financing strategy H we have that a.s. X = VH(T) and, in this case, H is said to
replicate X. We say that H superreplicates X if a.s. we have that VH(T) ≥ X. We have the
following corollary (see the proof in the appendix).
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Corollary 3.4. Suppose that H superreplicates X and there is no arbitrage. Then, for any ({r(t)},
Q) ∈ K one has a.s. that

EQ

(
X

(1 + r(T)) · · · (1 + r(t))
| Ft

)
≤ V (t). (3.4)

Writing Γ(t) = {ω;V (t)(ω)−EQ(X/(1+r(T)) · · · (1+r(t)) | Ft)(ω) > 0} one has that if P(Γ(T)) >
0 then P(Γ(t)) > 0 for every t = T − 1, . . . , 0.

We will be interested now in deriving a condition such that the pricing of a marketable
contigent claim X ∈ L0(FT ) is obtained from a self-financing strategy H that replicates X
with H+(t) ·H−(t) = 0 for t = 1, . . . , T , so that logical pricing can be obtained in this way. Let
us define J := {a = {a(t)}T−1

t=0 ; for t = 0, . . . , T − 1, a(t) ∈ Ld+
0 (Ft), ai(t) = 0 or 1}. For a self-fi-

nancing strategy H satisfying H+(t) · H−(t) = 0, we set aH = {aH(t)} ∈ J as aH
i (t) =

1{H−
i (t+1)>0}.

Definition 3.5. For a = {a(t)} ∈ J, set

Θa =
{
Q ∼ P,

dQ
dP
∈ L+

∞(F);S(t), D(t) are integrable with respectto Q,

for t = 0, . . . , T, EQ(ΔSi(t + 1) | Ft) = 0 a.s. on {ai(t) = 0}, and

EQ(ΔSi(t + 1) +Di(t + 1) | Ft) = 0 a.s. on {ai(t) = 1}
}
.

(3.5)

We have the following proposition showing that any a = {a(t)} ∈ J will lead to an element in
K (see the proof in the appendix).

Proposition 3.6. If for some a = {a(t)} ∈ J one has Θa /= ∅, then there are no arbitrages.

Finally, we have the following result, presenting a sufficient condition for a self-f-
inancing strategy to consistently replicate a contingent claim (i.e., any other superreplicating
self-financing strategy will have an initial value greater than that of the replicating strategy).
The proof can be found in the appendix.

Proposition 3.7. IfH is a self-financing strategy that replicates X withH+(t) ·H−(t) = 0 for t = 1,
. . . , T and ΘaH /= ∅, then for any superreplicating strategy Ĥ for X one has a.s. for t = 0, 1, . . . , T that
V Ĥ(t) ≥ VH(t) and if P(V Ĥ(T) > X) > 0, then (VĤ(t) > VH(t)) > 0.

4. A Numerical Procedure

In this section, we consider the finite-state space case and present an algorithm for obtaining
the hedging strategy for a marketable claim X satisfying the conditions of Proposition 3.7. We
assume here that Ω = {ω1, . . . , ωκ} and that D(t) is Ft−1 -measurable. We consider the single
period case only, and suppress the time dependence whenever it is possible. The multiperiod
case follows in a similar way, by using the information structure described in [50] or [51], and
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by applying backwards in time, the procedure described here for the single period case and
each node of the information structure. Define the following matrix A: A = (A1A2), where

A1 =

⎛
⎜⎜⎜⎝

1 S2(1)(ω1) . . . Sd(1)(ω1)

...
...

. . .
...

1 S2(1)(ωκ) . . . Sd(1)(ωκ)

⎞
⎟⎟⎟⎠, A2 = −(A1 +D), (4.1)

with D = ed (recall that e is the vector formed by 1 in all components), d = (g1 . . . gd). Let the
vector x ∈ R

κ be such that xj = X(ωj), j = 1, . . . , κ. We have that X is marketable if and only
if there exists H+,H− that satisfy the system:

A

(
H+

H−

)
= A1

(
H+ −H−) −DH− = x, (4.2)

H+ ≥ 0, H− ≥ 0. (4.3)

For the case in which κ = d and A1 has an inverse, we have the following explicit and con-
structive procedure for obtaining a trading strategy H that replicates X with H+ · H− = 0.
Since D = ed and A−1

1 e = b1 (recall that b1 is the vector formed by 1 at the 1st component,
and 0 elsewhere), we have premultiplying (4.2) by A−1

1 that H+, H− satisfy (4.2) if and only
if satisfy

(
H+ −H−) −A−1

1 edH− =
(
H+ −H−) − b1dH− = A−1

1 x. (4.4)

Set y = A−1
1 x. Let us obtain H that satisfies (4.2), (4.3) with H+ ·H− = 0. Define for i = 2,

. . . , d: H+
i = yi, H−

i = 0 if yi ≥ 0, otherwise, H−
i = −yi, H+

i = 0. For i = 1, calculate

z = y1 +
d∑

i=2

giH
−
i . (4.5)

In order to have (4.4) satisfied, we must have (H+
1 −H−

1 )−g1H
−
1 = z. If z ≥ 0, then set H+

1 = z,
H−

1 = 0, otherwise, set H+
1 = 0 and H−

1 = −z/(1 + g1). Thus, we have obtained in this way a
trading strategy H that replicates X with H+ ·H− = 0.

Finally, notice that for the discrete sample space, the set J is finite, and thus if we
assume that for every a ∈ J, Θa /= ∅, then the conditions of Proposition 3.7 will be satisfied.
With the above procedure, we have a seller price and a buyer price for each contingent claim.
The seller price, denoted by Vs(0), is obtained by applying to X backwards in time the algo-
rithm presented above. The buyer price, denoted by Vb(0), is obtained by applying the back-
ward algorithm to −X, and taking Vb(0) = −V (0). We illustrate this procedure next for the
binomial case.

Example 4.1. Let us consider the binomial model, which consists of a single risky security sat-
isfying

S2(t) =
1

B(t)
uN(t)dt−N(t)S2(0), (4.6)
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t = 1, . . . , T , where 0 < d < 1 < u and N = {N(t); t = 1, . . . , T} is a binomial process with
parameter p, 0 < p < 1, and the bank account is given by B(t) = (1 + rf)

t, t = 0, 1, . . . , T . The
penalty costs are assumed to be of the form:

D1(t) = α1
1

1 + rf
, D2(t) = α2

S2(t − 1)
1 + rf

. (4.7)

It is easy to see that in this case J = {(0, 0), (0, 1), (1, 0), (1, 1)}, and we have the following
possibilities for Θa = {π1, π2}, where π1 is associated to the probability measure Q when the
stocks goes up, π2 when the stocks goes down:

(i) a = (0, 0); in this case,

π1 =
1 + rf − d
u − d , π2 =

u − (1 + rf
)

u − d ; (4.8)

(ii) a = (1, 0); in this case,

π1 =
1 + rf − α1 − d

u − d , π2 =
u − (1 + rf − α1

)

u − d ; (4.9)

(iii) a = (0, 1); in this case,

π1 =
1 + rf + α0 − d

u − d , π2 =
u − (1 + rf + α0

)

u − d ; (4.10)

(iv) a = (1, 1); in this case,

π1 =
1 + rf + α0 − α1 − d

u − d , π2 =
u − (1 + rf + α0 − α1

)

u − d . (4.11)

From above, it is clear that the condition which guarantees that Θa /= ∅, and thus that
the conditions of Proposition 3.7, will be satisfied, is given by u > 1+rf +α1 and d < 1+rf −α2.

Let us consider the following numerical example. Suppose that S2(0) = 5, u = 4/3,
d = 8/9, α1 = α2 = 1/30, rf = 1/9. For this case, we have 1 + rf + α1 = 103/90 < u = 4/3, and
1 + rf − α2 = 97/90 > d = 8/9, and the conditions of Proposition 3.7 will be verified. Let us
consider the following option: X = max{S(2) − 5, 0}. By applying the backward procedure
described above, we obtain that the seller price for X is Vs(0) = 1.3272, with the following
hedging strategy: H+

1 (0) = 0, H−
1 (0) = 2.796, H+

2 (0) = 0.8246, H−
2 (0) = 0, and for the case in

which the risky security goes up, H+
1 (1) = 0, H−

2 (1) = 3.932, H+
2 (1) = 1.0, H−

2 (1) = 0, V (1) =
2.2977, while for the case in which it goes down, H+

1 (0) = 0, H−
1 (0) = 1.4563, H+

2 (0) = 0.4687,
H−

2 (0) = 0, and V (1) = 0.4652.
By repeating the procedure now for −X, we obtain that the buyer price for X is Vb(0) =

0.9355, with the following hedging strategy: H+
1 (0) = 2.6926, H−

1 (0) = 0, H+
2 (0) = 0, H−

2 (0) =
0.7256, and for the case in which the risky security goes up, H+

1 (1) = 4.23, H−
1 (1) = 0, H+

2 (1) =
0, H−

2 (1) = 1.0, V (1) = 1.9667, while for the case in which it goes down, H+
1 (0) = 1.5562,
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H−
1 (0) = 0, H+

2 (0) = 0, H−
2 (0) = 0.4688, and V (1) = 0.3542. As expected, Vb(0) = 0.9355 <

Vs(0) = 1.3272.

5. Conclusions

In this paper, we study a discrete time with infinite sample space financial model with penalty
costs on short selling positions. Unlike previous works, we consider only one price structure
for both short and long positions, with the penalties being withdrawals from the portfolio
proportional to the short selling position. Our main result, Theorem 3.1, provides necessary
and sufficient conditions for the nonexistence of arbitrages and can be seen as an extension
of the standard fundamental theorem of asset pricing. When the penalty costs go to zero
our result reduces to that presented in [30]. We also present a sufficient condition for a self-
financing strategy to consistently replicate a contingent claim. For the finite-sample space
case, this result leads to an explicit and constructive procedure for obtaining perfect hedging
strategies. Some examples are presented to illustrate the possible applications of the model.

Appendices

We present in this appendix the proof of the main results in Section 3. First, we need some
auxiliary results, presented next. In what follows, we recall thatLd

0 (G) represents the space of
G -measurable random vectors with values in R

d,Ld+
0 (G) ⊂ L+

0 (G), the space ofG -measurable
random vectors Z such that P(Z ≥ 0) and, for simplicity, L0(G) = L1

0(G), L+
0 (G) = L1+

0 (G).
The definition for Ld

0 (F), Ld+
0 (F) and L0(F), L+

0 (F) is similar.

A. Some Auxiliary Results

Let Y ∈ Ld
0 (G), ∈ Ld

0 (F), and D ∈ Ld+
0 (F). We set

KY,X =
{
(α · Y, α ·X);α ∈ Ld+

0 (G)
}
, (A.1)

NY,X,D =
{(

β · Y, β · (X +D)
)
; β ∈ Ld+

0 (G)
}
, (A.2)

JY,X,D = KY,X −NY,X,D, (A.3)

AY,X,D = JY,X,D −
{{0} × L+

0 (F)
}
. (A.4)

The following propositions will be crucial for the developing of our results and are
based on the arguments presented in [47, 48, 52].

Proposition A.1. The following statements are equivalent:

(i) AY,X,D ∩ {{0} × L+
0 (F)} = (0, 0),

(ii) AY,X,D ∩ {{0} × L+
0 (F)} = (0, 0) and AY,X,D is closed.
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Proof. We have to show that (i) implies that AY,X,D is closed. For this, we consider sequences
{αn}, {βn} in Ld+

0 (G), {ρn} in L+
0 (F), and χ ∈ L0(G), ψ ∈ L0(F) such that a.s.,

lim
n→∞
(
αn − βn) · Y = χ,

lim
n→∞
{(

αn − βn) ·X − βn ·D − ρn} = ψ.
(A.5)

If we can find α̃ and β̃ in Ld+
0 (G) such that P-a.s.

(
α̃ − β̃

)
· Y = χ, (A.6)

(
α̃ − β̃

)
·X − β̃ ·D ≥ ψ, (A.7)

then the result is proved since in this case, setting ρ = (α̃ − β̃) · X − β̃ · D − ψ, we have from
(A.7) that ρ ∈ L+

0 (F) and ψ = (α̃ − β̃) · X − β̃ ·D − ρ, thus (χ, ψ) ∈ AY,X,D. We set Ω0 ∈ F such
that the limits (A.5) hold and {αn}, {βn}, {ρn}, D are always nonnegative. It is easy to see that
(Ω0) = 1.

We define next αn = (αn − βn)+ and β
n
= (αn − βn)− so that αn − βn = αn − βn, αn

i β
n

i = 0,
i = 1, . . . , d, ‖αn − βn‖2 = ‖αn‖2 + ‖βn‖2, and on Ω0 that

0 ≤ αn ≤ αn, 0 ≤ β
n ≤ βn,

(
αn − βn

)
·X − βn ·D ≥ (αn − βn) ·X − βn ·D.

(A.8)

Set ς = lim infn→∞‖αn − βn‖ = lim infn→∞(‖αn‖2 + ‖βn‖2)1/2 and Ω1 = {ω ∈ Ω0; ς(ω) <

∞}. From Lemma 2 of [52], we can find subsequences {α̃k}, {β̃k} of, respectively, {αn}, {βn}
such that on Ω1, limk→∞α̃k = α̃ and limk→∞β̃k = β̃ for some α̃, β̃ in Ld+

0 (G). Set {ρ̃k} the
corresponding subsequence of {ρn}. It follows that on Ω1, limk→∞(α̃k − β̃k) ·Y = (α̃− β̃) ·Y = χ
from (A.5), and (20),

(
α̃ − β̃

)
·X − β̃ ·D = lim

k→∞

{(
α̃k − β̃k

)
·X − β̃k ·D

}

≥ lim inf
k→∞

{(
α̃k − β̃k

)
·X − β̃k ·D − ρ̃k

}
≥ ψ.

(A.9)

If P(Ω1) = 1, then from (A.6) and (A.7) the result is proved. Otherwise, we define Ω2 = {ω ∈
Ω0; ς(ω) = ∞}. As in [47, 48], we form partitions of Ω, and argue on each separate partition
as an autonomous space, considering the appropriate restrictions of the random vectors and
traces of the σ -algebras.
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On Ω2, we define gn = ‖αn − βn‖⊕αn, fn = ‖αn − βn‖⊕βn, and νn = ‖αn − βn‖⊕ρn. From
(A.5), (A.8), it follows that on Ω2,

lim
n→∞

(
gn − fn

) · Y = 0,

lim inf
n→∞

{(
gn − fn) ·X − fn ·D − νn} ≥ lim

n→∞
∥∥αn − βn∥∥⊕{(αn − βn) ·X − βn ·D − ρn} = 0.

(A.10)

Since on Ω2, ‖gn‖ ≤ 1 and ‖fn‖ ≤ 1, we have again from Lemma 2 of [52] that we can
find convergent subsequences {g̃k}, {f̃ k} of, respectively, {gn}, {fn}, with limits, respectively,
g̃ ≥ 0 and f̃ ≥ 0. We denote by {α̃k}, {β̃k}, {ρ̃k} the corresponding subsequences of {αn}, {βn},
{ρn}, obtained from the association with {gn} and {fn}. Since for each i = 1, . . . , d, gn

i f
n
i = 0,

it follows that for each i = 1, . . . , d,

g̃if̃i = 0. (A.11)

From (A.10) we have, that on Ω2,

(
g̃ − f̃

)
· Y = lim

k→∞

(
g̃k − f̃ k

)
· Y = 0, (A.12)

(
g̃ − f̃

)
·X − f̃ ·D = lim

k→∞

{(
g̃k − f̃ k

)
·X − f̃ k ·D

}
≥ 0, (A.13)

and from (i), it follows that (A.12) and (A.13) imply that

(
g̃ − f̃

)
·X − f̃ ·D = 0. (A.14)

We also have on Ω2 that

1 =
∥∥∥g̃ − f̃

∥∥∥
2
=
∥∥g̃
∥∥2 +

∥∥∥f̃
∥∥∥

2
. (A.15)

We proceed now by applying induction on d. Suppose first that d = 1. We can find a partition

of Ω2 into 2 disjoint sets, defined by Ωg̃

2 = {ω ∈ Ω2; g̃(ω) > 0}, and Ωf̃

2 = {ω ∈ Ω2; f̃(ω) > 0}.
From (A.11) and (A.15) we have that indeed Ωg̃

2 and Ωf̃

2 form a disjoint partition of Ω2. From

(A.12) and (A.14) we have that on Ωg̃

2 (recalling that in this case f̃ = 0), Y = 0 and X = 0, and

that limk→∞β̃k = 0 (since α̃kβ̃k = 0 and g̃ > 0). This implies that on Ωg̃

2 , limk→∞(α̃k − β̃k)Y = 0
and as in (A.9), 0 = limk→∞((α̃k − β̃k)X − β̃kD) ≥ lim infk→∞((α̃k − β̃k)X − β̃kD − ρ̃k) ≥ ψ, and

(A.6), (A.7) hold with α̃ = 0, β̃ = 0. Similarly, on Ωf̃

2 , Y = 0, X +D = 0, and limk→∞α̃k = 0, so
that again (A.6), (A.7) hold with α̃ = 0, β̃ = 0. This completes the proof for d = 1.
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Suppose now that the equivalence between (i) and (ii) holds for d − 1, and that (i)
holds for. Define the 2d disjoint sets

Ωg̃

2i =
{
ω ∈ Ω2; g̃j(ω) = 0, f̃j(ω) = 0, j ≤ i − 1, g̃i(ω) > 0

}
,

Ωf̃

2i =
{
ω ∈ Ω2; g̃j(ω) = 0, f̃j(ω) = 0, j ≤ i − 1, g̃i(ω) = 0, f̃i(ω) > 0

}
.

(A.16)

From (A.11) and (A.15), we have that indeed Ωg̃

2i and Ωf̃

2i, i = 1, . . . , d, form a disjoint partition

of Ω2. For i fixed, we will consider first a disjoint partition of Ωg̃

2i. Consider all subsets, indexed
by s, formed as vi

s ⊆ {i+1, . . . , d}, ui
s ⊆ {i+1, . . . , d}, with vi

s∩ui
s = ∅. Write wi

s = {i+1, . . . , d}−
(vi

s ∪ ui
s), and consider a disjoint partition of Ωg̃

2i formed by the sets:

Ωg̃

2ivi
su

i
s
=
{
ω ∈ Ωg̃

2i; g̃j(ω) > 0, j ∈ vi
s, f̃r(ω) > 0, r ∈ ui

s, g̃m(ω) = 0, f̃m(ω) = 0, m ∈ wi
s

}
.

(A.17)

We fix now vi
s, u

i
s and for notational simplicity, we write v = vi

s, u = ui
s, w = wi

s, Ω
′ = Ωg̃

2ivi
su

i
s
,

and F′, G′, respectively, the corresponding trace of the σ -algebras F, G on Ω′. Let us consider
that P(Ω′) > 0 (otherwise, it could be discarded) and write P′(·) = P(·)/P(Ω′). On the set Ω′,
we have from (A.12) and (A.14) that

Yi = − 1
g̃i

⎧
⎨

⎩
∑

j∈v
g̃jYj −

∑

j∈u
f̃jYj

⎫
⎬

⎭, (A.18)

Xi = − 1
g̃i

⎧
⎨

⎩
∑

j∈v
g̃jXj −

∑

j∈u
f̃j
(
Xj +Dj

)
⎫
⎬

⎭. (A.19)

Set the d − 1-dimensional random vectors Y ′, X′, D′ as follows: for j = 1, . . . , i − 1, Y ′j = Yj ,
X′j = Xj and D′j = Dj , for j = i + 1, . . . , d, Y ′j−1 = Yj , and

X′j−1 =

⎧
⎨

⎩
Xj +Dj, j ∈ u,

Xj, j /∈ u, j ≥ i + 1,

D′j−1 =

⎧
⎨

⎩
0, j ∈ u ∪ v,
Dj, j /∈ u ∪ v, j ≥ i + 1.

(A.20)

For  = 1, 2, . . ., define

τ = inf
{
k; g̃k

j > g̃j

(
1 − 1



)
, ∀j ∈ v ∪ {i}, f̃ k

r > g̃r

(
1 − 1



)
, ∀r ∈ u

}
. (A.21)
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On Ω′, we have that τ < ∞, f̃ τ

j = 0 for all j ∈ v ∪ {i} and g̃τ
r = 0 for all r ∈ u, and

consequently β̃τ


j = 0 for all j ∈ v ∪ {i} and α̃τ
r = 0 for all r ∈ u. Define α̂ = α̃τ , β̂ = β̃τ


, and

ρ̂ = ρ̃τ

. From (A.19), we obtain that

(
α̂ − β̂

)
·X − β̂ ·D =

(
δ − ε

)
·X′ − ε ·D′, (A.22)

where for j = 1, . . . , i − 1, δ
j = α̂

j , εj = β̂j , for j ∈ w, δ
j−1 = α̂

j , εj−1 = β̂j , for j ∈ v,

δ
j−1 = (α̂

j − (g̃j/g̃i)α̂
i )

+
, εj−1 = (α̂

j − (g̃j/g̃i)α̂
i )
−
, and for j ∈ u, δ

j−1 = (−β̂j + (f̃j/g̃i)α̂
i )

+
,

εj−1 = (−β̂j + (f̃j/g̃i)α̂
i )
−
. We notice that δ and ε belong to Ld−1+

0 (Ω′,G′,P′). Similarly, from
(A.18), we have that

(
α̂ − β̂

)
· Y =

(
δ − ε

)
· Y ′. (A.23)

Next, we show that JY ′, X′, D′ ⊂ JY,X,D. For this, we establish a mapping (α, β) = F(δ, ε) such
that α and β belong to Ld+

0 (Ω′,G′,P′) whenever δ and ε belong to Ld−1+
0 (Ω′,G′,P′), and that

(δ − ε) · Y ′ = (α − β) · Y, (A.24)

(δ − ε) ·X′ − ε ·D′ = (α − β) ·X − β ·D. (A.25)

Indeed, setting βi = 0

αi = max

{
0,

{
(
εj−1 − δj−1

) g̃i
g̃j

for j ∈ v

}
,

{
(δr−1 − εr−1)

g̃i

f̃r
for r ∈ u

}}
, (A.26)

and for j = 1, . . . , i − 1, αj = δj , βj = εj , for j ∈ w, αj = δj−1, βj = εj−1, for j ∈ v, αj =
(δj−1 − εj−1) + (g̃j/g̃i)αi, βj = 0, and for j ∈ u, αj = 0, βj = −(δj−1 − εj−1) + (f̃j/g̃i)αi, we get
from (A.26) that α, β belong to Ld+

0 (Ω′,G′,P′) whenever δ and ε belong to Ld−1+
0 (Ω′,G′,P′),

and from (A.18) and (A.19), we get that (A.24) and (A.25) are satisfied, yielding the desired
inclusion. From this and (i), we can conclude that AY ′,X′,D′ ∩ {{0} × L+

0 (Ω
′,F′,P′)} = (0, 0)

and by the induction hypothesis, we get that AY ′,X′,D′ is closed. Therefore, for some δ̃ and ε̃
belonging to Ld−1+

0 (Ω′,G′,P′), and some p̃ ∈ L+
0 (Ω

′,F′,P′), we have from (A.22) and (A.23),
and taking (α̃, β̃) = F(δ̃, ε̃), that

χ = lim
→∞

(
α̂ − β̂

)
· Y = lim

→∞

(
δ − ε

)
· Y ′ = (δ − ε) · Y ′

=
(
δ̃ − ε̃

)
· Y ′ =

(
α̃ − β̃

)
· Y,

ψ = lim
→∞

((
α̂ − β̂

)
·X − β̂ ·D − ρ̂

)

= lim
→∞

((
δ − ε

)
·X′ − ε ·D′ − ρ̂

)

=
(
δ̃ − ε̃

)
·X′ − ε̃ ·D′ − p̃ =

(
α̃ − β̃

)
·X − β̃ ·D′ − p̃, (A.27)

showing that (A.6) and (A.7) are satisfied on Ω′.
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The proof for the sets Ωf̃

2ivi
su

i
s

goes along the same lines, bearing in mind that (A.18)

and (A.19) are replaced, respectively, by Yi = 1/f̃i{
∑

j∈v g̃jYj −
∑

j∈u f̃jYj} and Xi + Di =

(1/f̃i){
∑

j∈v g̃jXj−
∑

j∈u f̃j(Xj+Dj)}, and that the mapping F(δ, ε) is defined such that instead

of (A.26), we take αi = 0 and βi = max{0, {(εj−1 − δj−1)(f̃i/g̃j) for j ∈ v},{(δr−1 − εr−1)(f̃i/f̃r)
for r ∈ u}}. This completes the proof of the proposition.

In the next proposition let us consider that Y ∈ Ld
0 (G) is such that Y1 = 1 and X ∈

Ld
0 (F) is such that X1 = 0. Again we suppose that ∈ Ld+

0 (F).

Proposition A.2. The following statements are equivalent:

(i) for any α, β in Ld+
0 (G), one has a.s. that

(
α − β) · Y ≤ 0

(
α − β) ·X − β ·D ≥ 0

}
=⇒ (α − β) ·X − β ·D = 0. (A.28)

(ii) there exists r ∈ L+
∞(G) and a probability measure Q ∼ P such that 0 < R = dQ/dP ∈

L+
∞(F), Y,X,D are integrable with respect to Q, and

EQ(X | G) ≤ rY ≤ EQ(X +D | G) a.s. (A.29)

Proof. First, we note that (i) is equivalent to AY,X,D∩{{0}×L+
0 (F)} = (0, 0). Indeed, if (i) holds,

then clearly AY,X,D ∩{{0}×L+
0 (F)} = (0, 0). Conversely, suppose that for some α, β in Ld+

0 (G),
(α−β) ·Y ≤ 0 and (α−β) ·X−β ·D ≥ 0 a.s. Then, by taking α̃1 = α1 − (α−β) ·Y ≥ 0, α̃i = αi, and
recalling that Y1 = 1 and X1 = 0 we get that (α̃−β)·Y = 0 and (α̃−β)·X−β·D = (α−β)·X−β·D ≥ 0
a.s., which implies that (α − β) ·X − β ·D = 0 a.s.

Let us show first that (ii) implies (i). Consider α, β in Ld+
0 (G) such that (α − β) · Y = 0

and (α − β) ·X − βD ≥ 0 a.s. From (A.29), we get that a.s.,

0 ≤ EQ
((
α − β) ·X − β ·D | G) = α · EQ(X | G) − β · EQ((X +D) | G)

≤ r
(
α − β) · Y = 0,

(A.30)

and thus EQ((α− β) ·X − β ·D) = 0. From the fact that Q ∼ P, we get that (α− β) ·X − β ·D ≥ 0
a.s., which implies that (α−β) ·X−β ·D = 0 a.s. and again, from Q ∼ P, that (α−β) ·X−β ·D = 0
a.s., showing that (ii) implies (i).

Next, we show that (i) implies (ii). In what follows, we recall that for a complete prob-
ability space (Ω,G,P′), we denote by Ld

1 (Ω,G,P′) the space of integrable G -measurable ran-
dom variables with values in R

d, and Z ∈ Ld+
1 (Ω,G,P′) if Z ∈ Ld

1 (Ω,G,P′) and P′(Z ≥ 0) = 1.
We remind that if P̃ << P then P̃ ∼ P if and only if dP̃/dP > 0 a.s., and that for any random
variable η there exists an equivalent probability measure P̃ with bounded density such that
η is integrable under P̃ (see [52]). Consider a change of probability measure dP′ = pdP with
0 < p ∈ L∞(F) such that Y ∈ Ld

1 (Ω,G,P′), X ∈ Ld
1 (Ω,F,P′), and D ∈ Ld+

1 (Ω,F,P′). From (i)
(which is invariant under equivalent change of probability) and Proposition A.1, we get that
V := AY,X,D ∩ (L1(Ω,G,P′) × L1(Ω,F,P′)) is a closed convex set of L1(Ω,G,P′) × L1(Ω,F,P′),
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and that V ∩ {0} × L+
1 (Ω,F,P′) = (0, 0). Therefore, for any A ∈ F, with (A) > 0, (0, 1A) ∈

{0} × L+
1 (Ω,F,P′), and thus does not belong to the set V . By the Hahn-Banach Theorem,

(0, 1A) can be strongly separated from V by a nonzero linear continuous functional, so that
there exists rA ∈ L∞(G), ZA ∈ L∞(F), (rA, ZA)/= (0, 0), such that

sup
(ϕ,θ)∈V

E′
(
rAϕ + ZAθ

)
< E′(ZA1A), (A.31)

where E′ denotes the expectation with respect to P′. We note that ϕ ∈ L1(Ω,G,P′) and θ ∈
L1(Ω,F,P′) are such that ϕ = (α − β) · Yand θ = (α − β) · X − β · D − ρ, with, β ∈ Ld+

0 (G)
and ρ ∈ L+

0 (G). By taking ϕ = 0 and θ = −n1B for any B ∈ F and positive integer n (just
take α = β = 0 and ρ = n1B), we have from (A.31) that −nE′(ZA1B) < E′(ZA1A) which
implies that ZA ≥ 0 a.s. Normalizing, we assume that ZA ≤ 1. Similarly by taking ϕ = n1B
for any B ∈ G and θ = 0 (this is possible since Y1 = 1 and X1 = 0, just take α1 = n1B, αi = 0
for i = 2, . . . , d, and β = 0 , ρ = 0), we get from the same reasons as before that −rA ≥ 0.
Considering now ϕ = α · Y and θ = α · X we have from (A.31) and the same arguments as
before that for every α ∈ Ld+

∞ (G), E′(α · (rAY + ZAX)) ≤ 0, which implies that a.s.,

E′(ZAX | G) ≤ −rAY. (A.32)

Similarly, considering now ϕ = −β ·Y and θ = −β · (X +D), we have from (A.31) and the same
arguments as before that for every β ∈ Ld+

∞ (G), E′(β · (rAY + ZA(X +D))) ≥ 0, which implies
that a.s.

E′(ZA(X +D) | G) ≥ −rAY. (A.33)

Consider the family of measures:

Q =
{
QA;dQA = ZAdP′, ∀A ∈ F such that P′(A) > 0

}
. (A.34)

Clearly, Q is dominated by P′ (i.e., QA << P′ for every A ∈ F such that P′(A) > 0). From
the Halmos-Savage Theorem, Q contains a countable equivalent family Q̃ = {QAk ; k ∈ I},
where I is a countable set. Define Γ = {ω;ZAk(ω) = 0 for every k ∈ I}. Since Q and Q̃ are
equivalent and QAk(Γ) = 0 for every k ∈ I, it follows that QA(Γ) = 0 for every A ∈ F such
that P′(A) > 0. We show next that P′(Γ) = 0. Suppose by contradiction that P′(Γ) > 0, so that
QΓ(Γ) = E′(ZΓ1Γ) = 0. From (A.31), sup(ϕ,θ)∈VE

′(rΓϕ + ZΓθ) < 0 which is clearly an absurd
(just take = 0, θ = 0). This shows that P′(Γ) = 0. Define

Z = C
∑
k∈I

ZAk

2k
∈ L+

∞(Ω,F,P′),

r = C
∑
k∈I

(−rAk)
2k

∈ L+
∞(Ω,G,P′),

(A.35)

where C = (
∑

k∈I E
′(ZAk)/2k)−1

> 0. Note that P′(Z > 0) = 1 since P′(Γ) = 0, and thus C
is well defined. Define the probability measure Q as = ZdP′. It is easy to see that Q ∼ P′
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(since P′(Z > 0) = 1). Finally, from (A.32), (A.33), (A.35), and the bounded convergence
theorem, we obtain (A.29) with R = pZ, completing the proof of the proposition.

B. Proof of the Main Results

We present next the proof of Theorem 3.1.

Proof. Let us show that (i) implies (ii). The proof of this fact follows from the contrapositive.
Suppose we can find Ĥ = (Ĥ+Ĥ−) with Ĥ+, Ĥ− ∈ Ld+

0 (Ft) such that a.s., (Ĥ+ −Ĥ−) ·S(t) = 0,
R = (Ĥ+ − Ĥ−) ·ΔS(t+ 1)− Ĥ− ·D(t+ 1) ≥ 0 and P(Γ) > 0, where Γ = {ω;R(ω) > 0}. Then, we
can define an arbitrage opportunity H for the multiperiod market as follows: H(s) = 0 for
s ≤ t, H(t + 1)(ω) = Ĥ for ω ∈ Γ, H(t + 1)(ω) = 0 for ω /∈ Γ, H+

1 (s)(ω) = R(ω) for ω ∈ Γ and
s ≥ t + 2, and H+

i (s)(ω) = 0, H−
i (s)(ω) = 0 in all the other situations. Then, clearly V (s) = 0

for s = 0, . . . , t− 1, (t) = 0, and from (2.5), (2.6), V (s)(ω) = R(ω) for s = t+ 1, . . . , T , ω ∈ Γ, and
equal to zero for ω /∈ Γ, showing the result.

Let us show now that (ii) implies (iii). We will show by backward induction on time
t = T, . . . , 1 that we can find random variables 0 < R̃(t) ∈ L+

∞(Ft), 0 ≤ r̃(t − 1) ∈ L+
∞(Ft−1),

and random vectors X̃(t) ∈ Ld
0 (Ft), D̃(t) ∈ Ld+

0 (Ft) that satisfy E(‖X̃(t)‖R̃(t)) < ∞,
E(‖D̃(t)‖R̃(t)) <∞, E(‖S(t − 1)‖R̃(t)) <∞, and a.s., E(R̃(t) | Ft−1) = 1,

E
(
X̃(t)R̃(t) | Ft−1

)
≤ r̃(t − 1)S(t − 1) ≤ E

(
R̃(t)
(
X̃(t) + D̃(t)

)
| Ft−1

)
. (B.1)

For t = T , the result follows from Proposition A.2 with F = FT , G = FT−1, Y = S(T − 1),
X = X̃(T) = ΔS(T), D = D̃(T) = D(T), and R̃(T) = R, r̃(T) = r. Suppose the result holds for
t + 1. Define X̃(t) = ΔS(t)E(R̃(T) · · · R̃(t + 1) | Ft) and D̃(t) = D(t)E(R̃(T) · · · R̃(t + 1) | Ft).
Again, the result follows from Proposition A.2 with F = Ft, G = Ft−1, Y = S(t − 1), X = X̃(t),
D = D̃(t), and R̃(t) = R, r̃(t − 1) = r, completing the induction argument. Set R̃(0) = 1, and
define for t = 1, . . . , T , (t − 1) = R̃(0) · · · R̃(t − 1)r̃(t − 1), dQ = R̃(0) · · · R̃(T)dP. It follows that
a.s.,

EQ(ΔS(t) | Ft−1) = R̃(0) · · · R̃(t − 1)E
(
ΔS(t)R̃(t) · · · R̃(T) | Ft−1

)

= R̃(0) · · · R̃(t − 1)E
(
ΔS(t)R̃(t)E

(
R̃(t + 1) · · · R̃(T) | Ft

)
| Ft−1

)

= R̃(0) · · · R̃(t − 1)E
(
R̃(t)X̃(t) | Ft−1

)

≤ R̃(0) · · · R̃(t − 1)r̃(t − 1)S(t − 1) = r(t − 1)S(t − 1), (B.2)

and similarly, EQ((ΔS(t) +D(t)) | Ft−1) ≥ r(t − 1)S(t − 1), showing (iii).
Finally, let us show that (iii) implies (i). Indeed, from (2.5), (2.6), and (3.2), we have

a.s. that

EQ[V (t + 1) | Ft] = V (t) +H+(t + 1) · EQ[ΔS(t + 1) | Ft]

−H−(t + 1) · EQ[ΔS(t + 1) +D(t + 1) | Ft]
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≤ (1 + r(t))
(
H+(t + 1) −H−(t + 1)

) · S(t)
= (1 + r(t))V (t).

(B.3)

Suppose by contradiction that an arbitrage opportunity H exists and (iii) holds. Let us denote
by V = (V (0), . . . , V (T)) the value process associated to the trading strategy H. Then, V (0) =
0 , V (T) ≥ 0, and (V (T)) > 0. We have now by backward induction in time that V (t) ≥ 0
a.s. for all t = T, . . . , 0. Indeed, from the definition of an arbitrage, the result is clearly true
for t = T . Suppose V (t) ≥ 0. From (B.3), it follows that V (t) ≥ 0(since r(t) ≥ 0), showing
the desired result. We show now by forward induction in time that, in fact, V (t) = 0 a.s.
for all t = 0, . . . , T . Indeed, for t = 0, the result follows from the definition of an arbitrage.
Suppose V (t) = 0. From (B.3) and recalling that V (t+ 1) ≥ 0 we get that EQ[V (t+ 1) | Ft] = 0.
Taking the expected value, we obtain that EQ[V (t+1)] = 0, which shows that V (t+1) = 0 a.s.,
completing the induction argument. In particular, we have that V (T) = 0, in contradiction
with the fact that E(V (T)) > 0, showing the desired result.

Next, we present the proof of Corollary 3.4.

Proof. By backward induction on t, the result is true for t = T by assumption. Suppose it holds
for t + 1, that is, a.s.

EQ

(
X

(1 + r(T)) · · · (1 + r(t + 1))
| Ft+1

)
≤ V (t + 1). (B.4)

Then, from (B.3) and (B.4), we have a.s. that

EQ

(
X

(1 + r(T)) · · · (1 + r(t + 1))
| Ft

)
1

1 + r(t)

= EQ

(
EQ

(
X

(1 + r(T)) · · · (1 + r(t + 1))
| Ft+1

)
| Ft

)
1

1 + r(t)

≤ EQ(V (t + 1) | Ft)
1

1 + r(t)
≤ V (t) (B.5)

showing (3.4). We apply backward induction on t to show that P(Γ(t)) > 0. For t = T , the
result is true by assumption. Suppose it holds for t + 1. Thus we get that Q(Γ(t + 1) | Ft) > 0
a.s. Therefore, we have from (B.3) that a.s.,

EQ

(
(1 + r(t))V (t) − X

(1 + r(T)) · · · (1 + r(t + 1))
| Ft

)

≥ EQ

({
V (t + 1) − EQ

(
X

(1 + r(T)) · · · (1 + r(t + 1))
| Ft+1

)}
1Γ(t+1) | Ft

)
> 0, (B.6)

which implies, after dividing by (1 + r(t) that EQ(V (t) − X/(1 + r(T)) · · · (1 + r(t)) | Ft) > 0
a.s., yielding the desired result.

In what follows, we present the proof of Propositions 3.6 and 3.7.



18 Mathematical Problems in Engineering

Proof. We take r(t) = 0 and Q ∈ Θa and show that ({r(t)},Q) ∈ K. Indeed, recalling that
D(t + 1) ≥ 0 we have a.s. that on {ai(t) = 0} :

EQ(ΔSi(t + 1) | Ft) = 0 ≤ EQ(Di(t + 1) | Ft) = EQ(ΔSi(t + 1) +Di(t + 1) | Ft) (B.7)

and similarly on {ai(t) = 1},

EQ(ΔSi(t + 1) +Di(t + 1) | Ft) = 0 ≥ EQ(ΔSi(t + 1) | Ft). (B.8)

Proof. Consider r(t) = 0 and Q ∈ ΘaH . As shown in Proposition 3.6, ({r(t)},Q) ∈ K. From
the hypothesis that H+

i (t)H
−
i (t) = 0 and (2.6), we have a.s. that

EQ

(
VH(t) | Ft−1

)
= VH(t − 1) +

∑

{i∈{aH (t−1)=0}}
H+

i (t)EQ(ΔSi(t) | Ft−1)

−
∑

{i∈{aH (t−1)=1}}
H−

i (t)EQ(ΔSi(t) +Di(t) | Ft−1)

= VH(t − 1), (B.9)

and thus a.s., VH(t) = EQ(X | Ft) for all t = 0, . . . , T − 1. From Corollary 3.4, we have the
result.
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We propose a least-mean-square (LMS) receding horizon (RH) estimator for state estimation. The
proposed LMS RH estimator is obtained from the conditional expectation of the estimated state
given a finite number of inputs and outputs over the recent finite horizon. Any a priori state
information is not required, and existing artificial constraints for easy derivation are not imposed.
For a general stochastic discrete-time state space model with both system and measurement
noise, the LMS RH estimator is explicitly represented in a closed form. For numerical reliability,
the iterative form is presented with forward and backward computations. It is shown through
a numerical example that the proposed LMS RH estimator has better robust performance than
conventional Kalman estimators when uncertainties exist.

1. Introduction

Several criteria have been often employed for the design of optimal estimators. In particular,
the mean-square-error criterion is the most popular and has many applications since it offers
a simple closed-form solution as well as important geometric and physical interpretations.
It is well known that the optimal estimators based on the mean-square-error criterion
is obtained from the conditional expectation of the estimated variable given the known
measurements.

For state estimation, many trials have been conducted to obtain a receding horizon
(RH) estimator based on the mean-square-error criterion. At the current time k, the least-
mean-square (LMS) RH estimator is to estimate the state xk−h at the time k−h from the inputs
uk−· and the outputs yk−· over the recent finite horizon [k −N,k − 1], which can be written as

x̂k−h|k = E
[
xk−h | uk−N · · ·uk−1, yk−N · · ·yk−1

]
, (1.1)
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Figure 1: The structure of the receding horizon estimator (D is a unit delay component).

where h and N, that is, the lag size and the memory size are design parameters to be
determined, respectively. Available inputs and outputs are regarded as given conditions
and the corresponding conditional expectation of the state at time k − h is obtained as
its optimal estimate. Practically, inputs and outputs are known variables and hence can
be considered as conditions. The structure of the LMS RH estimator (1.1) is depicted in
Figure 1. As mentioned before, the LMS RH estimator (1.1) minimizes the mean-square-error
criterion, E[(x̂k−h|k − xk−h)

T (x̂k−h|k − xk−h) | uk−N · · ·uk−1, yk−N · · ·yk−1]. For h ≥ 2, h = 1, and
h ≤ 0, the estimators (1.1) are often called the smoothers, the filters, and the predictors,
respectively. “Receding horizon” is traced from the fact that the finite-time horizon, where
inputs and outputs necessary for estimating unknown states are available, recedes with time.
In designing the controls, receding horizon schemes have already been popular [1, 2]. If N
approaches ∞, the estimator (1.1) reduces to the well-known stationary Kalman estimator
with infinite-memory. So, the LMS RH estimator (1.1) can be also called a finite memory
estimator for the finite and fixed memory size N. It has been illustrated through numerical
simulation and analysis that the LMS RH estimators with finite memory have better robust
performance than conventional Kalman estimators with infinite memory [3, 4]. Also in
input/output models arising in signal processing area, it is acknowledged that the finite-
memory or finite-impulse-response (FIR) filters have been preferable for practical reasons [5].

In spite of the good performance and the usefulness of the LMS RH estimators, no one
has proposed a general result on the conditional expectation (1.1). Since it was difficult to
obtain the conditional expectation (1.1) for a general state space model, some assumptions
have been made to simplify the problem and then obtain a solution easily. At first, system
or measurement noise were set to zero, which offers a closed-form solution easily [6–10]. In
[11, 12], a priori information on the initial state on the horizon was assumed to be known for
obtaining a solution easily. Instead of directly obtaining a closed-form solution, the duality
of a control and the complicated scattering theory from a physical phenomenon were used
to show the feasibility of implementation for a general state space model [13, 14]. For easy
derivation, the Kalman filter was also employed with infinite covariance [4]. However, this
approach is so heuristic that the optimality is not guaranteed in the sense of the mean-
square-error criterion. Besides, the system matrix is required to be nonsingular. As in other
conventional estimators, there were also some trials that unbiased and linear constraints are
imposed to obtain the optimal estimator [3, 15–17]. However, external control inputs are not
considered [3] and the system matrix is required to be nonsingular [15]. Furthermore, it is not



Mathematical Problems in Engineering 3

guaranteed that even though such constraints are removed, the optimality is still preserved.
Though computing the conditional expectation (1.1) looks like a very simple problem, there
is no result on a closed-form solution corresponding to (1.1) for a general state space model
without any artificial assumptions and requirements.

In this paper, existing artificial assumptions for obtaining a solution easily are not
made and any conditions are not required. Unlike the existing results, the system matrix is
not required to be nonsingular. Both system and measurement noise are considered together
with external control inputs. The LMS RH estimator will be directly obtained from the
conditional expectation (1.1), which automatically guarantees its optimality. It turns out that
the proposed LMS RH estimator has the deadbeat property and the linear structure with
inputs and outputs over the recent finite horizon.

The rest of this paper is organized as follows. In Section 2, the LMS RH estimator
is obtained from the conditional expectation and its iterative computation is introduced in
Section 3. A numerical simulation is carried out in Section 4 to illustrate the performance of
the proposed LMS RH estimator. Finally, conclusions are presented in Section 5.

2. LMS RH Estimator

Consider a linear discrete-time state space model with an external control input:

xi+1 = Axi + Bui + Gwi,

yi = Cxi + vi,
(2.1)

where xi ∈ �n, ui ∈ �l, and yi ∈ �q are the state, the input, and the output, respectively, and
the system noise wi ∈ �p and the measurement noise vi ∈ �q are assumed to be zero-mean
white Gaussian with

E
[[

wi

vi

][
wT

i vT
i

]]
=
[
Q S
ST R

]
, Q ≥ 0, R > 0, (2.2)

where nonzero S often happens when I/O models are converted to state space models. It is
also assumed that (A,C) of the system is observable. Through this paper, the current time
is denoted by k. For mathematical tractability, the state space model (2.1) is equivalently
changed to

xi+1 = Asxi + Bui +Gws,i +GSR−1yi,

yi = Cxi + vi,
(2.3)

where As � A − GSR−1C and ws,i � wi − SR−1vi. It can be easily shown that ws,i and vi in
(2.3) are not correlated. In other words, we have

E
[[

ws,i

vi

][
wT

s,i vT
i

]]
=
[
Q − SR−1ST O

O R

]
, (2.4)

where Q − SR−1ST ≥ 0. It is noted that off-diagonal blocks are filled with zeros.
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For simple representations, several variables are defined as

C̃N �

⎡
⎢⎢⎢⎢⎢⎢⎣

C
CAs

CA2
s

...
CAN−1

s

⎤
⎥⎥⎥⎥⎥⎥⎦
, Yk−1 �

⎡
⎢⎢⎢⎢⎢⎢⎣

yk−N
yk−N+1

yk−N+2
...

yk−1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.5)

B̃N �

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
CB 0 · · · 0 0

CAsB CB · · · 0 0
...

...
...

...
...

CAN−2
s B CAN−3

s B · · · CB 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.6)

QN �

N︷ ︸︸ ︷
Q − SR−1ST ⊕ · · · ⊕Q − SR−1ST , (2.7)

RN �
N︷ ︸︸ ︷

R ⊕ R ⊕ · · · ⊕ R, (2.8)

where ⊕ denotes the direct sum of the matrices. Additionally, Wk−1, Vk−1, and Uk−1 are
defined by replacing y in (2.5) with ws, v, and u, respectively. G̃N and S̃N are also defined
by replacing B in B̃N with G and GSR−1, respectively.

First, we consider the case of 0 ≤ h ≤ N − 1 in (1.1). A prediction problem for h ≤ −1
will be discussed later on.

By using the defined variables, the state xk−h to be estimated is represented in terms
of the initial state xk−N on the horizon, inputs, and system noise on the recent finite horizon
[k −N, k − 1] as

xk−h = AN−h
s xk−N + Lg,NWk−1 + Lb,NUk−1 + Ls,NYk−1, (2.9)

where Lg,N is given by

Lg,N �
[

AN−h−1
s G AN−h−2

s G · · · G
h︷ ︸︸ ︷

O · · ·O

]
, (2.10)

and Lb,N and Ls,N are obtained by replacing G in Lg,N with B and GSR−1, respectively. From
(2.9), the conditional expectation E[xk−h|Uk−1, Yk−1] in (1.1) can be represented as

E[xk−h | Uk−1, Yk−1] = AN−h
s E[xk−N | Uk−1, Yk−1]

+ Lg,NE[Wk−1 | Uk−1, Yk−1] + Lb,NUk−1 + Ls,NYk−1.
(2.11)

Note that if E[xk−N | Uk−1, Yk−1] and E[Wk−1 | Uk−1, Yk−1] are known, E[xk−h | Uk−1, Yk−1] can
be obtained. In order to compute E[xk−N | Uk−1, Yk−1] and E[Wk−1 | Uk−1, Yk−1], we first try
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to find the relation among xk−N , Wk−1, Uk−1, and Yk−1. For this purpose, the system (2.3) is
represented in a batch form on the recent finite horizon [k −N,k − 1] as follows:

Yk−1 = C̃Nxk−N + B̃NUk−1 + G̃NWk−1 + S̃NYk−1 + Vk−1, (2.12)

from which we obtain

[
Wk−1

Vk−1

]
=

[
I 0
−G̃N −C̃N

][
Wk−1

xk−N

]
+

[
0

Yk−1 − S̃NYk−1 − B̃NUk−1

]
. (2.13)

We can see from (2.13) that Wk−1 and Vk−1 are linearly, more correctly affinely, dependent
on Wk−1 and xk−N . The joint probability density function of Wk−1 and xk−N , that is,
fwx(Wk−1, xk−N), can be expressed as kfwv(Wk−1, Vk−1 | Uk−1, Yk−1) = kfwv(Wk−1, Yk−1 −
C̃Nxk−N − B̃NUk−1 − G̃NWk−1 − S̃NYk−1) for an appropriate scaling factor k. How to choose k
will be discussed later on. By using the probability density function of Wk−1 and Vk−1 given
as

fwv(Wk−1, Vk−1) =
1

√
(2π)(p+q)N det(QN)det(RN)

× exp

(
−1

2

[
Wk−1

Vk−1

]T[
QN 0

0 RN

]−1[
Wk−1

Vk−1

])
,

(2.14)

E[xk−N | Uk−1, Yk−1] can be computed from

E[xk−N | Uk−1, Yk−1]

=
∫
xk−Nfwx(Wk−1, xk−N | Uk−1, Yk−1)dWk−1dxk−N

=
∫
xk−Nkfwv

(
Wk−1, Yk−1 − C̃Nxk−N − B̃NUk−1 − G̃NWk−1 − S̃NYk−1

)
dWk−1dxk−N,

(2.15)

where a constant k is chosen to satisfy the following normalization condition:

∫
fwx(Wk−1, xk−N | Uk−1, Yk−1)dWk−1dxk−N

= k

∫
fwv

(
Wk−1, Yk−1 − C̃Nxk−N − B̃NUk−1−G̃NWk−1 − S̃NYk−1

)
dWk−1dxk−N = 1.

(2.16)
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In the same way, E[Wk−1 | Uk−1, Yk−1] can be obtained. It is noted that fwv(Wk−1, Yk−1 −
C̃Nxk−N−B̃NUk−1−G̃NWk−1−S̃NYk−1) is an exponential function with the following exponent:

⎡
⎢⎢⎢⎢⎣

YT
k−1

(
I − S̃N

)T

UT
k−1

xT
k−N

WT
k−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

R−1
N −R−1

N B̃N −R−1
N G̃N −R−1

N C̃N

∗ B̃T
NR−1

N B̃N B̃T
NR−1

N G̃N B̃T
NR−1

N C̃N

∗ ∗ W1,1 W1,2

∗ ∗ ∗ W2,2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

YT
k−1

(
I − S̃N

)T

UT
k−1

xT
k−N

WT
k−1

⎤
⎥⎥⎥⎥⎦

T

, (2.17)

where ∗ denotes symmetric parts and W1,1, W1,2, and W2,2 are given by

W1,1 = C̃T
NR−1

N C̃N,

W1,2 = C̃T
NR−1

N G̃N,

W2,2 = G̃T
NR−1

N +Q−1
N .

(2.18)

By completing the square of the terms of the exponent and recalling the integration of
Gaussian functions from −∞ to ∞, we can compute E[xk−N | Uk−1, Yk−1] and E[Wk−1 |
Uk−1, Yk−1]. To begin with, we introduce the following completion of squares:

[
a
b

]T[
α β
βT γ

][
a
b

]
=
(
b + γ−1βTa

)T
γ
(
b + γ−1βTa

)
+ aT
(
α − βγ−1βT

)
a (2.19)

to obtain

∫
b exp

(
[ a
b ]

T
[

α β

βT γ

]
[ a
b ]
)
db

∫
exp
(
[ a
b ]

T
[

α β

βT γ

]
[ a
b ]
)
db

= −γ−1βTa, (2.20)

for some vectors a and b, and some matrices α, β, and γ of appropriate dimensions. The
relation (2.20) can be easily obtained in a similar way to the mean of normal distribution.
From the following correspondences:

a←−
⎡

⎣Y
T
k−1

(
I − S̃N

)T

UT
k−1

⎤

⎦, b ←−
[
xT
k−N

WT
k−1

]
, α←−

[
R−1

N −R−1
N B̃N

∗ B̃T
NR−1

N B̃N

]
,

β ←−
[
−R−1

N G̃N −R−1
N C̃N

B̃T
NR−1

N G̃N B̃T
NR−1

N C̃N

]
, γ ←−

[
W1,1 W1,2

∗ W2,2

]
,

(2.21)

we have

[
E[xk−N | Uk−1, Yk−1]
E[Wk−1 | Uk−1, Yk−1]

]
=

[
W1,1 W1,2

WT
1,2 W2,2

]−1[
C̃N

G̃N

]
× R−1

N

((
I − S̃N

)
Yk−1 − B̃NUk−1

)
, (2.22)



Mathematical Problems in Engineering 7

where W1,1, W1,2, and W2,2 are given by (2.18). It is noted that if (A,C) of the system (2.1)
is observable, W1,1 is positive definite and W2,2 − WT

1,2W
−1
1,1W1,2 is also positive definite,

which implies that the block matrix including W1,1, W1,2, and W2,2 is guaranteed to be
positive definite and hence nonsingular. Substituting (2.22) into (2.11), we can obtain E[xk−h |
Uk−1, Yk−1]. Through a long and tedious algebraic calculation, we have the covariance matrix
of the mean-square-error E[(x̂k−h|k − xk−h)(x̂k−h|k − xk−h)

T] as follows:

P = ΞN

[
W1,1 W1,2

WT
1,2 W2,2

]−1

ΞT
N, (2.23)

where ΞN is defined by

Ξj �
[

AN−h
s AN−h−1

s G AN−h−2
s G · · · G

j−N+h
︷ ︸︸ ︷
OO · · ·O

]
, (2.24)

for N − h ≤ j ≤N.
What we have done until now can be summarized in the following theorem.

Theorem 2.1. Suppose that (A,C) of the system (2.1) is observable. Then, the LMS RH estimator
(1.1) is given by

x̂k−h|k = ΞN

[
W1,1 W1,2

WT
1,2 W2,2

]−1[
C̃N

G̃N

]
R−1

N

((
I − S̃N

)
Yk−1 − B̃NUk−1

)

+ Lb,NUk−1 + Ls,NYk−1,

(2.25)

where x̂k−h|k denotes E[xk−h | Uk−1, Yk−1] and W1,1, W1,2, and W2,2 are defined in (2.18).
The corresponding covariance matrix is given as (2.23).

It is noted that the proposed LMS RH estimator (2.25) is designed without requirements of
the removal of some noise and the nonsingular system matrix A. In previous work, those
requirements are adopted to solve the problems more easily. If constraints or assumptions
of existing results are applied to the proposed result, the latter reduces to the former. For
example, Q and B̃N can be set to zero for comparison with the results on systems without
system noise and inputs, respectively.

As seen in (2.25), the LMS RH estimator is linear with respect to inputs and outputs
on the recent finite horizon [k −N,k − 1]. So, “finite memory” may be called “finite impulse
response” that is often used in linear signal processing systems. In addition, the deadbeat
property is guaranteed in the following theorem.

Theorem 2.2. If no noise is applied, the LMS RH estimator (2.25) is a deadbeat estimator, that is,
xk−h|k = xk−h at the fixed-lag (h ≥ 1) or the current (h = 0) time.
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Proof. The LMS RH estimator (2.25) can be rearranged in terms of Yk−1 and Uk−1, that is,
HYk−1+LUk−1 for some gain matrices H and L. Substituting Yk−1 in (2.12) into HYk−1+LUk−1,
using (2.9), and removing all noise, we have

HYk−1 + LUk−1 =
(
HC̃N −AN−h

s

)
xk−N + xk−h +

(
HB̃N − Lb,N + L

)
Uk−1

+
(
HS̃N − Ls,N

)
Yk−1.

(2.26)

It can be easily seen that HC̃N = AN−h
s and terms associated with inputs Uk−1 and outputs

Yk−1 become zero. It follows then that we have HYk−1 + LUk−1 = xk−h. This completes the
proof.

According to the deadbeat property, the LMS RH estimator tracks down the real state exactly
if no noise is applied.

The prediction problem for h ≤ −1 can be easily solved from the previous results for
h = 0. Since xk−h is represented as

xk−h = A−hxk +
−h−1∑

i=0

AiBuk+i +
−h−1∑

i=0

AiGwk+i, (2.27)

we have

E[xk−h | Uk−1, Yk−1] = A−hE[xk | Uk−1, Yk−1] +
−h−1∑

i=0

AiBuk+i, (2.28)

which means that E[xk−h | Uk−1, Yk−1] can be obtained from E[xk | Uk−1, Yk−1]. Setting h in
(2.25) to zero, we can compute E[xk | Uk−1, Yk−1] easily.

3. Iterative Computation

The LMS FM estimator (2.25) is of the compact and simple form. However, this form requires
the inverse of big matrices, which may lead to long computation time and large numerical
errors. To overcome these weak points, in this section, we provide an effective iterative form
of (2.25).

First, we represent (2.25) in another form for getting recursive equations. Recalling the
following fact:

(
C̃T

NΠ−1
N C̃N

)−1
=
(
W1,1 −W1,2W

−1
2,2W

T
1,2

)−1
,

C̃T
NΠ−1

N = C̃T
NR−1

N −W1,2W
−1
2,2G̃

T
NR−1

N ,
(3.1)
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we obtain

[
C̃T

NΠ−1
N

0

]
+

[
C̃T

N

G̃T
N

]
R−1

N

=

[
2C̃T

NR−1
N −W1,2W

−1
2,2G̃

T
NR−1

N

G̃T
NR−1

N

]
=

[
2I −W1,2W

−1
2,2

0 I

][
C̃T

N

G̃T
N

]
R−1

N ,

[
W1,1 + C̃T

NΠ−1
N C̃N W2,2

WT
1,2 W2,2

]−1[
2I −W1,2W

−1
2,2

0 I

]

=

⎧
⎨

⎩

⎡

⎣
1
2
I

1
2
W1,2W

−1
2,2

0 I

⎤

⎦
[
W1,1 + C̃T

NΠ−1
N C̃N W1,2

WT
1,2 W2,2

]⎫⎬

⎭

−1

=

[
W1,1 W1,2

WT
1,2 W2,2

]−1

.

(3.2)

Note that nonsingularity of C̃T
NΠ−1

N C̃N is guaranteed for the observability of (A,C). From
(3.2), it can be easily seen that the LMS RH (2.25) can be represented as

x̂k−h|k = ΞN

[
W1,1 + C̃T

NΠ−1
N C̃N W1,2

WT
1,2 W2,2

]−1

×
([

C̃T
NΠ−1

N

((
I − S̃N

)
Yk−1 − B̃NUk−1

)

0

]
+

[
C̃T

N

G̃T
N

]
R−1

N

((
I − S̃N

)
Yk−1 − B̃NUk−1

))

+ Ls,NYk−1 + Lb,NUk−1.

(3.3)

Now, we consider two recursive equations for the batch form (3.3). One is for obtaining
C̃T

NΠ−1
N C̃N and C̃T

NΠ−1
N ((I − S̃N)Yk−1 − B̃NUk−1). The other is for (3.3) given C̃T

NΠ−1
N C̃N and

C̃T
NΠ−1

N ((I − S̃N)Yk−1 − B̃NUk−1). The first one is computed in a backward time and the second
one in a forward time. Next subsections deal with each recursive equation.

3.1. Recursive Equation for Backward Computation

Here, how to obtain C̃T
NΠ−1

N C̃N and C̃T
NΠ−1

N ((I − S̃N)Yk−1 − B̃NUk−1) in (3.3) will be discussed.
These values will be computed in a backward time. (C̃T

NΠ−1
N C̃N)−1C̃T

NΠ−1
N ((I − S̃N)Yk−1 −

B̃NUk−1) and (C̃T
NΠ−1

N C̃N)−1 will be denoted by β0|k and P0, respectively, for consistency with
the next section. The following theorem provides the main result.

Theorem 3.1. P0 = (C̃T
NΠ−1

N C̃N)−1 and β0|k = P0C̃
T
NΠ−1

N ((I − S̃N)Yk−1 − B̃NUk−1) can be computed
recursively as follows:

P0 =
(
CTR−1C + P̂N

)−1
, (3.4)

β0|k = P0

(
CTR−1yk−N + αN|k

)
, (3.5)
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where P̂N and αN|k are obtained from

P̂j+1 = AT
sC

TR−1CAs +AT
s P̂jAs −AT

s

(
CTR−1C + P̂j

)
G

×
{
Q−1

s +GT
(
CTR−1C + P̂j

)
G
}−1

GT
(
CTR−1C + P̂j

)
As,

(3.6)

αj+1|k =
{
AT

s −AT
s

(
CTR−1C + P̂j

)
G
{
Q−1

s +GT
(
CTR−1C + P̂j

)
G
}−1

GT

}

×
{
αj|k + CTR−1yk−j −

(
P̂j + CTR−1C

)(
Buk−j−1 +GSR−1yk−j−1

)}
,

(3.7)

for 1 ≤ j ≤N − 1,Qs = Q − SR−1ST , and P̂1 and α1|k are zero matrices with appropriate dimensions.

Proof. Before going into a main proof, we introduce some variables Ĉj , N̂j , Π̂j , and P̂j as

Ĉj �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

CAs

...
CA

j−3
s

CA
j−2
s

CA
j−1
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

[
C

Ĉj−1

]
A, (3.8)

N̂j �

⎡
⎢⎢⎢⎢⎣

CG 0 · · · 0
CAsG CG · · · 0

...
...

...
...

CA
j−2
s G CA

j−3
s G · · · CG

⎤
⎥⎥⎥⎥⎦

=

[
CG 0

Ĉj−1G N̂j−1

]
, (3.9)

Π̂j � N̂jQj−1N̂
T
j + Rj−1 ∈ �q(j−1)×q(j−1), (3.10)

P̂j � ĈT
j Π̂

−1
j Ĉj , (3.11)

for 2 ≤ j ≤N. In terms of Π̂j in (3.10) and P̂j in (3.11), β0|k and P0 can be represented as

β0|k = P0

(
CTR−1yk−N + ĈT

NΠ̂−1
N

((
Io − S̃o

N

)
ŶN − B̃o

NÛN

))
= P0

(
CTR−1yk−N + αN|k

)
,

P0 =
(
CTR−1C + P̂N

)−1
,

(3.12)

where Io, S̃o
j , and B̃o

j are obtained by removing the first row blocks of I, S̃j , and B̃j ,

respectively, and Ŷj , Ûj , and αj|k are given by

Ŷj �
[
yT
k−j · · · yT

k−1

]T
, Ûj �

[
uT
k−j · · · uT

k−1

]T
, (3.13)

αj|k � ĈT
j Π̂

−1
j

((
Io − S̃o

j

)
Ŷj − B̃o

j Ûj

)
, (3.14)
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for 2 ≤ j ≤ N. In order to obtain P0 and β0|k, we have only to know P̂N and αN|k. Now, in
order to get P̂N and αN|k, we try to find recursive equations for P̂j and αj|k on 1 ≤ j ≤ N. By
using recursions in (3.8) and (3.9), we have the following equality:

Π̂−1
j+1 = Δ̂−1

j − Δ̂−1
j

[
C

Ĉj

]
G

⎧
⎨

⎩Q−1
s +GT

[
C

Ĉj

]T
Δ̂−1

j

[
C

Ĉj

]
G

⎫
⎬

⎭

−1

×GT

[
C

Ĉj

]T
Δ̂−1

j , (3.15)

where Δ̂j is given by

Δ̂j �
[
R 0
0 Π̂j

]
. (3.16)

Pre- and postmultiplying (3.15) by

ĈT
j+1 = AT

s

[
C

Ĉj

]T
, Ĉj+1 =

[
C

Ĉj

]
As, (3.17)

respectively, we have (3.6). Pre- and postmultiplying (3.15) by

ĈT
j+1 = AT

s

[
C

Ĉj

]T
, (3.18)

(
Io − S̃o

j+1

)
Ŷj+1 − B̃o

j+1Ûj+1 =

[
yk−j(

Io − S̃o
j

)
Ŷj − B̃o

j Ûj

]
−
[
C

Ĉj

](
Buk−j−1 +GSR−1yk−j−1

)
, (3.19)

respectively, we have (3.7). Note that (3.6) and (3.7) hold for i ≥ 2. From (3.11) and (3.14), P̂2

and α2|k can be written as

P̂2 = ĈT
2 Π̂

−1
2 Ĉ2 = AT

sC
T
(
CGQsG

TCT + R
)−1

CAT
s , (3.20)

α2|k = ĈT
2 Π̂

−1
2

((
Io − S̃o

2

)
Ŷ2 − B̃o

2Û2

)

= AT
sC

T
(
CGQsG

TCT + R
)−1(

yk−1 − CGSR−1yk−2 − CBuk−2

)
.

(3.21)

If P̂1 and α1|k are set to zero matrices with appropriate dimensions, P̂2 in (3.20) and α2|k in
(3.21) can be calculated from (3.6) and (3.7). Thus, we can say that (3.6) and (3.7) hold for
i ≥ 1 and are initiated with P̂1 = 0 and α1|k = 0. After obtaining P̂N from (3.6), we can calculate
P0 from (3.4). β0|k in (3.5) can be obtained from αN|k that comes from (3.7).

This completes the proof.



12 Mathematical Problems in Engineering

3.2. Recursive Equation for Forward Computation

Here, the recursive equation for (3.3) on the horizon is derived under the assumption that
P0 = (C̃T

NΠ−1
N C̃N)−1 and β0|k = P0C̃

T
NΠ−1

N ((I − S̃N)Yk−1 − B̃NUk−1) are given. P0 and β0|k in
Section 3.1 are computed in a backward time while variables introduced in this section are
computed in a forward time. Before proceeding to a main result, we introduce some variables
and the necessary lemma.

LG,i, Mi, and Ni are defined as

LG,i �
[
Ai

s Ai−1
s G Ai−2

s G · · · AsG G
]
, (3.22)

Mi �
[
C̃T

i R
−1
i C̃i + P−1

0 C̃T
i R
−1
i G̃o

i

G̃oT
i R−1

i C̃i G̃oT
i R−1

i G̃o
i +Q−1

i−1

]
, (3.23)

Ni �
[
Mi 0
0 Q−1

s

]
=

[
C̃T

i R
−1
i C̃i + P−1

0 C̃T
i R
−1
i G̃i

G̃T
i R
−1
i C̃i G̃T

i R
−1
i G̃i +Q−1

i

]
, (3.24)

where 2 ≤ i ≤ N and G̃o
i is the matrix obtained by removing the last zero column block from

G̃i, that is, G̃i =
[
G̃o

i 0
]
. In particular, LG,1, M1, and N1 are defined as

[
As G

]
, CTR−1C+P−1

0

and M1 ⊕Q−1
s . The following lemma shows how variables LG,i, Ni, and Mi are related to one

another.

Lemma 3.2. The following relation is satisfied:

Ni + LT
G,iC

TR−1CLG,i = Mi+1, (3.25)

where LG,i, Ni, and Mi are defined in (3.22)–(3.24), respectively.

Proof. If Γi is defined as

Γi �
[
Ai−1

s G Ai−2
s G · · · AsG G

]
, (3.26)

LG,i can be represented as

LG,i =
[
Ai

s Γi
]
, (3.27)

from which we have

LT
G,iC

TR−1CLG,i =
[
ATi

s CTR−1CAi
s ATi

s CTR−1CΓi
ΓTi C

TR−1CAi
s ΓTi C

TR−1CΓi

]
. (3.28)
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The four block elements in Mi+1 can be expressed recursively as

C̃T
i+1R

−1
i+1C̃i+1 = C̃T

i R
−1
i C̃i +ATi

s CTR−1CAi
s,

C̃T
i+1R

−1
i+1G̃

o
i+1 =

[
C̃T

i R
−1
i G̃o

i 0
]
+ATi

s CTR−1CΓi,

G̃oT
i+1R

−1
i+1G̃

o
i+1 =

[
G̃oT

i R−1
i G̃o

i 0

0 0

]
+ ΓTi C

TR−1CΓi.

(3.29)

Using (3.28) and (3.29), we have Ni + LT
G,iC

TR−1CLG,i = Mi+1. This completes the proof.

Lemma 3.2 is useful for breaking up big matrices of (3.3) into small matrices. We now
exploit the recursive equations for two following quantities:

βj|k = LG,jN
−1
j

([
C̃T

NΠ−1
N Ỹm,N−1

0

]
+

[
C̃T

j

G̃T
j

]
R−1

j Ỹm,j−1

)
+ LB,jŨj−1 + LS,j Ỹj−1, (3.30)

for 1 ≤ j ≤N

γj|k = ΞjN
−1
j

([
C̃T

NΠ−1
N Ỹm,N−1

0

]
+

[
C̃T

j

G̃T
j

]
R−1

j Ỹm,j−1

)
+ Lb,jŨj−1 + Ls,j Ỹj−1, (3.31)

for N − h ≤ j ≤ N, where Lb,j and Ls,j are defined in a form (2.24), and Ỹj−1, Ũj−1, LB,j , LS,j ,
and Ỹm,j−1 are given by

Ỹj−1 �
[
yT
k−N · · ·yT

k−N+j−1

]T
, Ũj−1 �

[
uT
k−N · · ·uT

k−N+j−1

]T
,

LB,j �
[
A

j−1
s B A

j−2
s B · · · B

]
,

LS,j �
[
A

j−1
s GSR−1 A

j−2
s GSR−1 · · · GSR−1

]
,

Ỹm,j−1 �
(
I − S̃j

)
Ỹj−1 − B̃jŨj−1.

(3.32)

Note that β0|k = C̃T
NΠ−1

N ((I − S̃N)Yk−1 − B̃NUk−1), γN−h|k = βN−h|k, and x̂k−h|k = γN|k. However,
βj|k is recursively computed from j = 0 to j = N and γj|k from j = N − h to j = N with the
initial value γN−h|k = βN−h|k. Even though βj|k does not look useful on [k − h, k], it is still used
to compute γj|k on that horizon. Now, we try to find out recursive equations for βj|k and γj|k
in what follows.

3.2.1. Recursive Equation for βj|k on 0 ≤ j ≤N

Using Lemma 3.2, we will obtain a recursive equation for βj|k, which is introduced in the
following theorem.
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Theorem 3.3. On 0 ≤ j ≤N, βj|k in (3.30) can be computed as follows:

βj+1|k = Asβj|k + Buk−N+j +GSR−1yk−N+j +AsPjC
T
(
R + CPjC

T
)−1(

yk−N+j − Cβj|k
)
,

(3.33)

where Pj is given by

Pj+1 = AsPjA
T
s +GQsG

T −AsPjC
T
(
R + CPjC

T
)−1

CPjA
T
s , (3.34)

and initial conditions are set to P0 = (C̃T
NΠ−1

N C̃N)
−1

and β0|k = P0C̃
T
NΠ−1

N Ỹm,N−1 computed in
Section 3.1.

Proof. First, we will obtain a closed-form of Pj in (3.34) and then, using the closed-form of Pj ,
we show that βj|k in (3.30) can be computed recursively from (3.33).

Using the defined variables (3.22) and (3.24), we assume that Pj in (3.34) is of the form:

Pj = LG,jN
−1
j LT

G,j . (3.35)

By an induction method, we will prove (3.35). For the first step, we check (3.35) for j = 1.
Given the initial value P0, we transform P1 to the form (3.35) by (3.34) as follows:

P1 =
[
As G

][P−1
0 + CTR−1C 0

0 Q−1
s

]−1[
As G

]T
. (3.36)

Equation (3.38) can be written in terms of LG,i and Ni as P1 = LG,1N
−1
1 LT

G,1. Now, we check
Pj+1 under the assumption that Pj = LG,jN

−1
j LT

G,j . From (3.34), we have

Pj+1 = AsLG,jM
−1
j+1L

T
G,jA

T
s +GQsG

T = LG,j+1N
−1
j+1L

T
G,j+1. (3.37)

Thus, we can see that Pj in (3.34) can be represented as the form (3.35) in terms of LG,j and Nj .
Using this result, we are in a position to show that βj|k in (3.30) can be computed recursively
from (3.33). We can rewrite βj|k in (3.30) as

βj|k = LG,jN
−1
j Tj + LB,jŨj−1 + LS,j Ỹj−1, (3.38)

where Tj is given by

Tj �
[
P−1

0
0

]
β0|k +

[
C̃T

j

G̃T
j

]
R−1

j Ỹm,j−1. (3.39)



Mathematical Problems in Engineering 15

As in a derivation of Pj in a batch form, we show by an induction method that βj|k in
(3.38) is equivalent to the one in (3.33). First, we show that β1|k can be obtained from
P0 = (C̃T

NΠ−1
N C̃N)−1 and β0|k = P0C̃

T
NΠ−1

N Ỹm,N−1:

β1|k = As

(
P−1

0 + CTR−1C
)−1(

P−1
0 β0|k + CTR−1yk−N

)
+ Buk−N +GSR−1yk−N, (3.40)

where, in terms of LG,i, Ni, and Ti, β1|k can be written as β1|k = LG,1N
−1
1 T1 + LB,1Ũ0 + LS,1Ỹ0.

Next, we show that βj+1|k in the form (3.38) can be obtained from βj|k of the batch form, that
is, βj|k = LG,jN

−1
j Tj + LB,jŨj−1 + LS,j Ỹj−1. First, note that we have the following relations:

{
As −AsPjC

T
(
R + CPjC

T
)−1

C

}
LG,jN

−1
j Tj = AsLG,jM

−1
j+1Tj ,

AsPjC
T
(
R + CPjC

T
)−1

yk−N+j = AsLG,jM
−1
j+1L

T
G,jC

TR−1yk−N+j .

(3.41)

Substituting (3.41) into (3.33) yields

βj+1|k = AsLG,jM
−1
j+1Tj +AsLG,jM

−1
j+1L

T
G,jC

TR−1yk−N+j

−AsLG,jM
−1
j+1L

T
G,jC

TR−1C
(
LB,jŨj−1 + LS,j Ỹj−1

)
+ LB,j+1Ũj + LS,j+1Ỹj ,

=
[
AsLG,j G

]
[
M−1

j+1 0
0 Qs

]⎧⎨

⎩

[
P−1

0
0

]
β0|k +

⎡

⎣
C̃T

j+1[
G̃o

j+1 0
]T

⎤

⎦R−1
j+1Ỹm,j

⎫
⎬

⎭

+ LB,j+1Ũj + LS,j+1Ỹj = LG,j+1N
−1
j+1Tj+1 + LB,j+1Ũj + LS,j+1Ỹj ,

(3.42)

where G and Qs in the first and second matrix blocks on the right-hand side of the first
equality have no effect on the equation. This completes the proof.

It is observed that the recursive equations with (3.33) and (3.34) are the same as the
Kalman filter with initial conditions P0 = (C̃T

NΠ−1
N C̃N)−1 and β0|k = P0C̃

T
NΠ−1

N Ỹm,N−1. βj|k on
1 ≤ j ≤ N provides initial values and inputs for a recursive equation of γj|k (3.31), which will
be investigated in what follows.

3.2.2. Recursive Equation for γj|k on N − h ≤ j ≤N

Here, we discuss the recursive equation for γj|k on N − h ≤ j ≤ N. As mentioned before, the
recursive equation for γj|k starts from j = N − h with the initial value γN−h|k = βN−h|k. On
N − h ≤ j ≤ N, γj|k can be recursively computed with the help of βj|k. However, γN|k = x̂k−h|k
is what we want to find out finally. The recursive equation for γj|k is given in the following
theorem.

Theorem 3.4. OnN − h ≤ j ≤N − 1, γj|k in (3.31) can be computed as follows:

γj+1|k = γj|k +KjC
T
(
CPjC

T + R
)−1(

yk−N+j − Cβj|k
)
, (3.43)
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Figure 2: An iterative form of the LMS RH estimator.

where γN−h|k = βN−h|k, βj|k and Pj are obtained from (3.33) and (3.34), respectively, andKj is given
by

Kj =Kj−1

(
I − CT

(
CPj−1C

T + R
)−1

CPj−1

)
AT, (3.44)

with the initial conditionKN−h = PN−h.

Proof. Using Lemma 3.2, γj+1|k in (3.31) for j ≥N − h can be represented as

γj+1|k = γj|k + ΞjN
−1
j LT

G,jC
T
(
CPjC

T + R
)−1(

yk−N+j − Cβj|k
)
. (3.45)

If we denote ΞjN
−1
j LT

G,j by Kj , we have only to prove (3.44). Since ΞN−h = LG,N−h, KN−h is
equal to PN−h. Using Lemma 3.2, we can representKj in a recursive form as follows:

Kj =Kj−1

(
I − CT

(
CPjC

T + R
)−1

CPj−1

)
AT. (3.46)

This completes the proof.

It is noted that the recursive equation (3.43) in Theorem 3.4 is a fixed-point smoother
of the state xk−h, which runs with a recursive equation (3.33) in Theorem 3.3. Variables for
recursive equations in Sections 3.1 and 3.2 are visualized in Figure 2. Starting from P̂1 = 0
and α1|k = 0, we compute P̂N and αN|k recursively in a backward time. From P̂N and αN|k,
we compute P0 and β0|k, from which we drive the forward recursive equation for βj|k to get
γN|k = x̂k−h|k.
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Figure 3: Estimation errors of LMS RH and Kalman estimators when temporary uncertainties exist.

4. Simulation

In this section, a numerical example is given to demonstrate the performance of the proposed
LMS RH estimator. Suppose that we have a state space model represented as

xi+1 =
[

1.5400 + 2δi −0.7379
0.7379 δi

]
xi +
[

0.4921
0.7594

]
ui +
[

1
1

]
wi,

yi =
[
1 + δi 1 + δi

]
xi + vi,

(4.1)

where δi is an uncertain model parameter given as

δi =

{
0.1, 200 ≤ i ≤ 220,
0, otherwise.

(4.2)

The system noise covariance Q and the measurement noise covariance R are set to 0.012 and
0.0272, respectively. The memory size and the fixed-lag size are taken as N = 10 and h = 3,
respectively. A sinusoidal input is applied as an input.

We carry out a simulation for the system (4.1) with temporary modeling uncertainties
(4.2). In Figure 3, we compare the estimation errors of the LMS RH estimator with the fixed-
lag Kalman estimator [18]. When uncertainties do not exist, the fixed-lag Kalman estimator
has the smaller estimation error than the proposed LMS RH estimator. It can, however, be
seen that the estimation error of the LMS RH estimator is considerably smaller than that
of the fixed-lag Kalman estimator when modeling uncertainties exist. Actually, one of poles
of the fixed-lag Kalman estimator is so close to a unit that even small uncertainties have a
good chance of divergence. Additionally, we can see that the estimation error of the LMS
RH estimator converges much more rapidly than that of the fixed-lag Kalman estimator after
temporary modeling uncertainty disappears. The slow response is also related to the pole
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near a unit. To be summarized, we can say that the proposed LMS RH estimator is more
robust than other estimators with infinite memory when applied to systems with modeling
uncertainties.

5. Conclusions

In this paper, we proposed a receding horizon (RH) estimator based on the mean-square-
error criterion for a discrete-time state space model, called a least-mean-square (LMS) RH
estimator. An unknown state was estimated by making use of the finite number of inputs
and outputs over the recent finite horizon without any arbitrary assumptions and any a
priori state information. The proposed LMS RH estimator was obtained from the conditional
expectations of the initial state and the system noise on the corresponding horizon. It was
shown that the LMS RH estimator has a deadbeat property and has good robust performance
through a numerical example.

To the best of authors’ knowledge, the proposed LMS RH estimator would be the most
general version among existing RH or finite-memory estimators in the mean-square-error
sense. Furthermore, the LMS RH estimator could be extended to other stochastic systems
with imperfect communications, uncertainties, and so on [19, 20].
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The main purpose of this paper is to apply stochastic adaptive controller design to mechanical
system. Firstly, by a series of coordinate transformations, the mechanical system can be
transformed to a class of special high-order stochastic nonlinear system, based on which, a more
general mathematical model is considered, and the smooth state-feedback controller is designed.
At last, the simulation for the mechanical system is given to show the effectiveness of the design
scheme.

1. Introduction

In recent years, the study for deterministic high-order nonlinear systems has achieved
remarkable development, see, for example, [1–3] and references herein. Inspired by these
interesting and important results, it is natural to generalize their results to the following
stochastic high-order nonlinear systems which are neither necessarily feedback linearizable
nor affine in the control input:

dz = f0(z, x1)dt + gT
0 (z, x1)dω,

dxi =
(
di(xi, t)x

pi
i+1 + fi(z, xi)

)
dt + gT

i (z, xi)dω, i = 1, . . . , n − 1,

dxn =
(
dn(xn, t)upn + fn(z, xn)

)
dt + gT

n (z, xn)dω,

(1.1)

where (zT , x1, . . . , xn)
T ∈ R

m+n, and u ∈ R are the measurable state and the input of system,
respectively, xi = (x1, . . . , xi)

T , i = 1, . . . , n, z = (z1, . . . , zm)
T ∈ R

m is referred to as the state of
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F = −kx F = −k1y
3
1 y

x

m1 m2

u

Figure 1: A mechanical system.

the stochastic inverse dynamics, ω is an r-dimensional standard Wiener process defined on
a probability space (Ω,F, P) with Ω being a sample space, F being a σ-algebra, and P being
a probability measure, pi ≥ 1, i = 1, . . . , n are odd integers, and the functions fi(·) and gi(·),
i = 0, 1, . . . , n are assumed to be smooth, vanishing at the origin (zT , xT

n) = (01×m, 01×n).
For (1.1) with di(·) = 1, Xie and Tian in [4] considered the state-feedback stabilization

problem for the first time. After considering the stabilization of high-order stochastic
nonlinear systems, [5] further addressed the problem of state-feedback inverse optimal
stabilization in probability, that is, the designed stabilizing backstepping controller is also
optimal with respect to meaningful cost functionals. When di(·)/= 1, [6] designed an adaptive
state-feedback controller for a class of stochastic nonlinear uncertain systems with 0 < λi ≤
di(·) ≤ μi ≤ μ, and [7] designed a smooth adaptive state-feedback controller for high-order
stochastic systems with λi(xi) ≤ di(·) ≤ μi(xi, θ) by using the parameter separation lemma
and some flexible algebraic techniques. Recently, more excellent results [8–28] were achieved
by Xie and his group.

However, all these theoretical results mentioned above are demonstrated only by
some numerical simulation examples. Since many practical application systems in aerospace
industry, industrial process control, and so forth, can be described by (or transformed to)
stochastic high-order nonlinear systems, so it is very necessary to apply the control schemes
to these systems. Based on this reason, we consider a practical example of mechanical
movement in this paper. By a series of coordinate transformations, the mechanical system
can be transformed to a high-order stochastic nonlinear system, based on which, we consider
a more general mathematical model and design a smooth state-feedback control law. At last,
the simulation for the mechanical system is given to show the effectiveness of the design
scheme.

This paper is organized as follows. Section 2 gives a practical example. Section 3
provides preliminary knowledge and presents problem statement. Controller design and
stability analysis are given in Section 4. The simulation for the practical example is provided
to demonstrate the control scheme in Section 5. Section 6 gives some concluding remarks.

2. A Practical Example

Let us consider the following mechanical system which consists of two masses m1 and m2 on a
horizontal smooth surface as shown in Figure 1. The mass m1 is interconnected to the wall by
a linear spring and to the mass m2 by a nonlinear spring which has cubic force-deformation
relation. Let x be the displacement of mass m1 and y the displacement of mass m2 such that
at x = 0 and y = 0, that is, the springs are unstretched. A control force u acts on m1.
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Where the units of m1, x, and u are “kg”, “m”, and “N”, respectively, and y1 = x − y.
The equations of motion for the system are described by

ÿ =
k1

m2

(
x − y)3

,

ẍ = − k

m1
x − k1

m1

(
x − y)3 +

u

m1
,

(2.1)

where k and k1 are the spring coefficients, and their units are “N/m” and “N/m3”,
respectively.

Introducing the smooth change of coordinates

x1 = y, x2 = ẋ1 = ẏ,

x3 =
(
x − y) 3

√
k1

m1
, x4 = ẋ3,

(2.2)

one gets

y = x1, ẏ = x2,

x =
x3

3
√
k1/m1

+ y, x4 =
x4

3
√
k1/m1

+ x2.
(2.3)

The linear spring constant k has a specific nominal value k0 = 1.5 which is considered
uncertain, and k ∈ [0.75, 2.25]. Let Δ(t) = k(t) − k0. For all t ≥ 0, Δ(t) is the Gaussian white
noise process with EΔ(t) = 0 and EΔ2(t) = σ2. We can choose the value of parameter σ such
that k(t) obeys the bound 0.75 ≤ k ≤ 2.25 with a sufficiently high probability. This model
of spring rate variations leads to an uncertain stochastic system. By (2.2), one chooses the
smooth state-feedback control

u = m1
v

3
√
k1/m1

+
m1 +m2

m2
m1x

3
3, (2.4)

which together with the property of Δ(t) leads to

dx1 = x2dt,

dx2 =
m1

m2
x3

3dt,

dx3 = x4dt,

dx4 = v dt + k0f(x)dt + σf(x)dω,

y = x1,

(2.5)

where f(x) = −x3/m1 − 3
√
(k1/m1)(x1/m1), and ω is standard Wiener process.
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This stochastic high-order nonlinear systems can be generalized to a more general
system which will be given in the following section.

3. Preliminary Knowledge and Problem Statement

3.1. Preliminary Knowledge

In this section, we will introduce the concept of input-to-state practical stability (ISpS) in
probability.

Consider the following stochastic nonlinear system

dx = f(x, u)dt + gT (x, u)dω, x(0) = x0 ∈ R
n, (3.1)

where x ∈ R
n, u ∈ R

m are the state and the input of system, respectively. The Borel measurable
functions f : R

n+m → R
n and g : R

n+m → R
n×r are locally Lipschitz in x, and ω ∈ R

r is an r-
dimensional independent standard Wiener process defined on the complete probability space
(Ω,F, P).

The following definitions and lemmas will be used throughout the paper.

Definition 3.1 (see [29]). For any given V (x) ∈ C2, associated with stochastic system (3.1), the
differential operator L is defined as follows:

LV (x) =
∂V (x)
∂x

f(x, u) +
1
2

Tr

{
g(x, u)

∂2V (x)
∂x2

gT (x, u)

}
. (3.2)

Definition 3.2 (see [30]). The stochastic system (3.1) is input-to-state practically stable (ISpS)
in probability if for any ε > 0, there exist a class KL-function β(·), a class K∞-function γ(·),
and a constant d0 such that

P
{|x(t)| < β(|x0|, t) + γ(|ut|) + d0

} ≥ 1 − ε, x0 ∈ R
n \ {0}. (3.3)

Lemma 3.3 (see [30]). For system (3.1), if there exist a C2 function V (x), classK∞ functions α1,
α2, χ, a classK function α, and a constant d such that

α1(|x|) ≤ V (x) ≤ α2(|x|), (3.4)

LV (x) ≤ −α(|x|) + χ(|u|) + d, (3.5)

then

(1) There exists an almost surely unique solution on [0,∞);

(2) The system (3.1) is ISpS in probability.
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Lemma 3.4 (see [6]). Let x and y be real variables. Then, for any positive integers m, n and any
nonnegative smooth function b(·), the following inequality holds:

∣∣xmyn
∣∣ ≤ m

m + n
b(·)|x|m+n +

n

m + n
b(·)−m/n

∣∣y
∣∣m+n

. (3.6)

Lemma 3.5 (see [2]). For real variables x ≥ 0, y > 0, and real number m ≥ 1, the following
inequality holds:

x ≤ y +
(

x

m

)m(m − 1
y

)m−1

. (3.7)

3.2. Problem Statement

From (2.5), we introduce a more general class of stochastic nonlinear systems as follows:

dxi = di(x)x
pi
i+1dt + fi(xi+1)dt + gi(xi)

Tdω, i = 1, . . . , n − 1,

dxn = dn(x)upndt + fn(xn)dt + gn(xn)
Tdω,

y = x1,

(3.8)

where x = (x1, . . . , xn)
T ∈ R

n, u, y ∈ R are the state, the input, and the measurable output
of system, respectively, xi = (x1, . . . , xi)

T , pi, i = 1, . . . , n, are positive odd integers, fi(·) :
R

i+1 → R and gi(·) : R
i → R × R

r are smooth functions with fi(0) = 0 and gi(0) = 0, di(x)
is unknown control coefficient with known sign, and ω is an r-dimensional standard Wiener
process defined on the complete probability space (Ω,F, P).

The following assumptions are made on system (3.8).
A1: for each di(x), there exist unknown constant θ′ > 0 and known nonnegative

smooth functions bi(xi) and bi(xi+1) such that

0 ≤ bi(xi) ≤ di(x) ≤ θ′bi(xi+1). (3.9)

A2: for functions fi(·), gi(·), i = 1, 2, . . . , n, there exist known nonnegative smooth
functions ϕij(xi) and ψi(xi) such that

∣∣fi(xi+1)
∣∣ ≤

pi−1∑

j=0
|xi+1|jϕij(xi),

∣∣gi(xi)
∣∣ ≤
(
|x1|(pi+1)/2 + · · · + |xi|(pi+1)/2

)
ψi(xi).

(3.10)

A3: the reference signal yr and its derivative ẏr are bounded.
The objective of this paper is to design an adaptive controller such that the closed-

loop system is ISpS in probability and the tracking error ξ1 = y − yr can be regulated to a
neighborhood of the origin with radius as small as possible.
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4. Controller Design and Stability Analysis

With the aid of Lemmas 3.3–3.5, we are ready to present the main results of this paper. In
this section, we show that under A1–A3, it is possible to construct a globally stabilizing,
state-feedback smooth controller for system (3.8). Introduce the odd positive integer p =
maxi=1,...,n{pi}, and the following coordinate change

ξ1 = x1 − yr,

ξi = xi − x∗i
(
xi−1, yr , θ̂

)
, i = 2, . . . , n,

(4.1)

where x∗i (xi−1, yr , θ̂), i = 2, . . . , n, are virtual smooth controllers to be designed later, θ :=
max{θ′, θ′(p+3)/(p−pi+3)}, and θ̂ denotes the estimate of θ. Then, according to Itô differentiation
rule, one has

dξ1 = d1x
p1

2 dt + f1dt + gT
1 dω − ẏrdt,

dξi = dix
pi
i+1dt + fidt −

i−1∑

k=1

∂x∗i
∂xk

(
x
pk
k+1 + fk

)
dt − 1

2

i−1∑

j,k=1

∂2x∗i
∂xj∂xk

gT
j gkdt

− ∂x∗i
∂θ̂

˙̂θ dt − ∂x∗i
∂yr

ẏrdt +

(
gT
i −

i−1∑

k=1

∂x∗i
∂xk

gT
k

)
dω, i = 2, . . . , n − 1,

dξn = dnu
pndt + fndt −

n−1∑

k=1

∂x∗n
∂xk

(
x
pk
k+1 + fk

)
dt − 1

2

n−1∑

j,k=1

∂2x∗n
∂xj∂xk

gT
j gkdt

− ∂x∗n
∂θ̂

˙̂θ dt − ∂x∗n
∂yr

ẏrdt +

(
gT
n −

n−1∑

k=1

∂x∗n
∂xk

gT
k

)
dω.

(4.2)

Let GT
i = gT

i −
∑i−1

k=1(∂x
∗
i /∂xk)gT

k
, i = 2, . . . , n. Next, we design the controller step by step by

backstepping.

Step 1. Consider the 1st Lyapunov candidate function

V1

(
ξ1, θ̃
)
=

1
p − p1 + 4

ξ
p−p1+4
1 +

1
2
θ̃2, (4.3)

where θ̃ = θ − θ̂ is the parameter estimation error. In view of (3.2), (4.1), and (4.2), one has

LV1

(
ξ1, θ̃
)
= ξ

p−p1+3
1

(
d1(x)x

p1

2 + f1(x2) − ẏr

)
+

1
2

Tr
{
g1(x1)

(
p − p1 + 3

)
ξ
p−p1+2
1 gT

1 (x1)
}
− θ̃ ˙̂θ

≤ d1(x)ξ
p−p1+3
1 x

p1

2 + |ξ1|p−p1+3∣∣f1(x2) − ẏr

∣∣ +
1
2
(
p − p1 + 3

)
ξ
p−p1+2
1

∣∣g1(x1)
∣∣2 − θ̃ ˙̂θ.

(4.4)
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By Lemma 3.4 and A2, there exist nonnegative smooth functions ϕ1(x1) and ψ1(x1) such that

∣∣f1(x2)
∣∣ ≤

p1−1∑

j=0
|x2|jϕ1j(x1) =

p1−1∑

j=0
|x2|j

(
ϕ

1/(p1−j)
1j (x1)

)p1−j

≤
p1−1∑

j=0

(
j

p1

(
1
2j

b1(x1)
)
|x2|p1 +

p1 − j
p1

(
2j

b1(x1)

)j/(p1−j)
ϕ
p1/(p1−j)
1j (x1)

)

≤ b1(x1)
2
|x2|p1 + ϕ1(x1),

∣∣g1(x1)
∣∣ ≤ |ξ1|(p1+1)/2ψ1(x1),

(4.5)

which together with the boundedness of ẏr imply that

∣∣f1 − ẏr

∣∣ ≤ b1(x1)
2
|x2|p1 + ϕ′1

(
x1, yr

)
, (4.6)

where ϕ′1(x1, yr) is a nonnegative smooth function, ψ1(x1) = ψ1(x1). Then, for any real
number δ1 > 0, choosing a = |ξp−p1+3

1 |ϕ′1(x1, yr), b = δ1, m = (p+ 3)/(p−p1 + 3), by Lemma 3.5,
there is a smooth function φ11(x1, yr) such that

|ξ1|p−p1+3∣∣f1 − ẏr

∣∣

≤ |ξ1|p−p1+3
(
b1(x1)

2
|x2|p1 + ϕ′1

(
x1, yr

)) ≤ |ξ1|p−p1+3 b1(x1)
2
|x2|p1

+ δ1 +

((
p − p1 + 3

)|ξ1|p−p1+3ϕ′1
(
x1, yr

)

p + 3

)(p+3)/(p−p1+3)

×
(

p1

δ1
(
p − p1 + 3

)
)p1/(p−p1+3)

= |ξ1|p−p1+3 b1(x1)
2
|x2|p1 + ξ

p+3
1 φ11

(
x1, yr

)
+ δ1, (4.7)

where φ11(x1, yr) = ((p − p1 + 3)ϕ′1(x1, yr)/(p + 3))(p+3)/(p−p1+3)(p1/δ1(p − p1 + 3))p1/(p−p1+3).
Substituting (4.5) and (4.7) into (4.4), and adding and subtracting (b1(x1)/2)ξp−p1+3

1 x
∗p1

2 on
the right-hand side of (4.4), we have

LV1 ≤ d1(x)ξ
p−p1+3
1 x

p1

2 +
b1(x1)

2

∣∣∣ξp−p1+3
1 x

p1

2

∣∣∣ + ξ
p+3
1 φ11

(
x1, yr

)
+ δ1

+
p − p1 + 3

2
ξ
p−p1+2
1 ξ

p1+1
1 ψ2

1(x1) − θ̃ ˙̂θ

= d1(x)ξ
p−p1+3
1 x

p1

2 +
b1(x1)

2
|ξ1|p−p1+3|x2|p1 +

b1(x1)
2

ξ
p−p1+3
1 x

∗p1

2

− b1(x1)
2

ξ
p−p1+3
1 x

∗p1

2 + ξ
p+3
1 φ11

(
x1, yr

)
+ ξ

p+3
1 φ12(x1) + δ1 − θ̃ ˙̂θ,

(4.8)
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where φ12(x1) = ((p − p1 + 3)/2)ξp−p1

1 ψ2
1(x1). Suppose the virtual smooth controller x∗2 =

−ξ1β1(x1, yr , θ̂) with β1(x1, yr , θ̂) > 0, which together with A1 lead to

0 ≤ −b1(x1)ξ
p−p1+3
1 x

∗p1

2 ≤ −d1(x)ξ
p−p1+3
1 x

∗p1

2 ,

−b1(x1)
2

ξ
p−p1+3
1 x

∗p1

2 +
b1(x1)

2

∣∣∣ξp−p1+3
1 x

∗p1

2

∣∣∣ ≤ −d1(x)ξ
p−p1+3
1 x

∗p1

2 ,

−b1(x1)
2

ξ
p−p1+3
1 x

∗p1

2 ≤ −d1(x)ξ
p−p1+3
1 x

∗p1

2 − b1(x1)
2

∣∣∣ξp−p1+3
1 x

∗p1

2

∣∣∣.

(4.9)

Substituting (4.9) into (4.8), one can obtain

LV1 ≤ d1(x)ξ
p−p1+3
1 x

p1

2 +
b1(x1)

2

∣∣∣ξp−p1+3
1 x

p1

2

∣∣∣ +
b1(x1)

2
ξ
p−p1+3
1 x

∗p1

2

− d1(x)ξ
p−p1+3
1 x

∗p1

2 − b1(x1)
2

∣∣∣ξp−p1+3
1 x

∗p1

2

∣∣∣ + δ1 − θ̃ ˙̂θ

− c1θξ
p+3
1 + c1θξ

p+3
1 + ξ

p+3
1 φ11

(
x1, yr

)
+ ξ

p+3
1 φ12(x1)

≤ −c1θξ
p+3
1 +

(
θb1(x2) +

b1(x1)
2

)
|ξ1|p−p1+3

∣∣∣xp1

2 − x
∗p1

2

∣∣∣ +
b1(x1)

2
ξ
p−p1+3
1 x

∗p1

2

+ c1θ̂ξ
p+3
1 + ξ

p+3
1 φ11

(
x1, yr

)
+ ξ

p+3
1 φ12(x1) + δ1 + θ̃

(
τ1 − ˙̂θ

)
,

(4.10)

where τ1 = c1ξ
p+3
1 is a nonnegative smooth function. Choose x∗2 as follows:

x∗2
(
x1, yr , θ̂

)
= −ξ1β1

(
x1, yr , θ̂

)
,

β1

(
x1, yr , θ̂

)
=
(

2
b1(x1)

(
c1 + φ11

(
x1, yr

)
+ φ12(x1) + c1

√
1 + θ̂2

))1/p1

,

(4.11)

where β1(x1, yr , θ̂) ≥ 0 is a smooth function. Then,

LV1 ≤ −c1ξ
p+3
1 − c1θξ

p+3
1 +

(
θb1(x2) +

b1(x1)
2

)
|ξ1|p−p1+3

∣∣∣xp1

2 − x
∗p1

2

∣∣∣ + δ1 + θ̃
(
τ1 − ˙̂θ

)
. (4.12)

Step i. 2 ≤ i ≤ n: Assume that at Step i− 1, there exists a smooth state-feedback virtual control

x∗i
(
xi−1, yr , θ̂

)
= −βi−1

(
xi−1, yr , θ̂

)
ξi−1, (4.13)
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such that

LVi−1 ≤ −
i−1∑

j=1

⎛

⎝cj −
i−1∑

k=j+1

ckj

⎞

⎠ξ
p+3
j −

i−1∑

j=1

⎛

⎝cj −
i−1∑

k=j+1

ckj

⎞

⎠θξ
p+3
j

+
(
θbi−1 +

bi−1

2

)
|ξi−1|p−pi−1+3

∣∣∣xpi−1

i − x∗pi−1

i

∣∣∣ +
i−1∑

j=1

δj +

(
θ̃ +

i−1∑

k=2

ξ
p−pk+3
k

∂x∗k
∂θ̂

)(
τi−1 − ˙̂θ

)
,

(4.14)

where βi−1 > 0 is a smooth function, and Vi−1 = (1/4)
∑i−1

k=1 ξ
p−pk+4
k + (1/2)θ̃2. We will prove

that (4.14) still holds for Step i.
Define the ith Lyapunov candidate function

Vi = Vi−1 +
1
4
ξ
p−pi+4
i . (4.15)

From (4.2) and (4.14), it follows that

LVi ≤ −
i−1∑

j=1

⎛

⎝cj −
i−1∑

k=j+1

ckj

⎞

⎠ξ
p+3
j −

i−1∑

j=1

⎛

⎝cj −
i−1∑

k=j+1

ckj

⎞

⎠θξ
p+3
j

+
(
θbi−1 +

bi−1

2

)
|ξi−1|p−pi−1+3

∣∣∣xpi−1

i − x∗pi−1

i

∣∣∣ +
i−1∑

j=1

δj

+

(
θ̃ +

i−1∑

k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂

)(
τi−1 − ˙̂θ

)
+ ξ

p−pi+3
i di(x)x

pi
i+1 + ξ

p−pi+3
i

×
⎛

⎝fi −
i−1∑

k=1

∂x∗i
∂xk

(
dk(x)x

pk
k

+ fk
)
− 1

2

i−1∑

j,k=1

∂2x∗i
∂xj∂xk

gT
j gk −

∂x∗i
∂yr

ẏr −
∂x∗i
∂θ̂

˙̂θ

⎞

⎠

+
1
2

Tr
{
Gi

(
p − pi + 3

)
ξ
p−pi+2
i GT

i

}
.

(4.16)

By A2 and Lemma 3.4, there is a smooth nonnegative function ϕi(xi) such that

∣∣fi(xi+1)
∣∣ ≤

pi−1∑

j=0
|xi+1|jϕij(xi) ≤

bi(xi)|xpi
i+1

2
+ ϕi(xi), (4.17)

then,

∣∣∣∣∣∣
fi −

i−1∑

k=1

∂x∗i
∂xk

fk − 1
2

i−1∑

j, k=1

∂2x∗i
∂xj∂xk

gT
j gk −

∂x∗i
∂yr

ẏr

∣∣∣∣∣∣
≤ bi(xi)|xpi

i+1

2
+ ϕi

(
xi, yr , θ̂

)
, (4.18)
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where ϕi(xi, yr , θ̂) is a smooth function. By A2, (4.1) and (4.13), there exists a nonnegative
smooth function ψ ′i(xi, yr , θ̂) such that

|Gi(xi)| ≤
(
|ξ1|(pi+1)/2 + · · · + |ξi|(pi+1)/2

)
ψ ′i
(
xi, yr , θ̂

)
. (4.19)

By (4.13), we have

(
θbi−1(xi) +

bi−1(xi−1)
2

)
|ξi−1|p−pi−1+3

∣∣∣xpi−1

i − x∗pi−1

i

∣∣∣

=
(
θbi−1(xi) +

bi−1(xi−1)
2

)pi−1∑

k=1

Ck
pi−1
|ξi|k|ξ1|p−k+3β

pi−1−k
1

≤
i−1∑

k=1

cik1ξ
p+3
k +

i−1∑

k=1

cikθξ
p+3
k + ϕi1

(
xi, yr , θ̂

)
ξ
p+3
i + θϕi2ξ

p+3
i , (4.20)

where ϕi1(xi, yr , θ̂) and ϕi2(xi, yr , θ̂) are two smooth functions. From A1, (4.1), and (4.13), it
follows that

∣∣∣∣∣−ξ
p−pi+3
i

i−1∑

k=1

∂x∗i
∂xk

dk(x)x
pk
k

∣∣∣∣∣

≤ θ′|ξi|p−pi+3
i−1∑

k=1

bk−1(xk)
∣∣∣∣
∂x∗i
∂xk

∣∣∣∣
∣∣ξk + x∗k

∣∣pk

≤ θ
′(p+3)/(p−pi+3)ξ

p+3
i ϕi3

(
xi, yr , θ̂

)
+ δi1

≤ θξ
p+3
i ϕi3

(
xi, yr , θ̂

)
+ δi1,

(4.21)

|ξi|p−pi+3

∣∣∣∣∣∣
fi −

i−1∑

k=1

∂x∗i
∂xk

fk − 1
2

i−1∑

j,k=1

∂2x∗i
∂xj∂xk

gT
j gk −

∂x∗i
∂yr

ẏr

∣∣∣∣∣∣

≤ |ξi|p−pi+3
(
bi(xi)|xi+1|pi

2
+ ϕ′i
(
xi, yr , θ̂

))

≤ bi(xi)
2
|ξi|p−pi+3|xi+1|pi + ϕi4

(
xi, yr , θ̂

)
ξ
p+3
i + δi2,

(4.22)

where ϕi3(xi, yr , θ̂) and ϕi4(xi, yr , θ̂) are two smooth functions. From (4.19), one can obtain

1
2

Tr
{
Gi

(
p − pi + 3

)
ξ
p−pi+2
i GT

i

}
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≤ p − pi + 3
2

ξ
p−pi+2
2

(
|ξ1|(pi+1)/2 + · · · + |ξi|(pi+1)/2

)2
ψ
′2
i

(
xi, yr , θ̂

)

≤
i−1∑

k=1

cik2ξ
p+3
k + ϕi5

(
xi, yr , θ̂

)
ξ
p+3
i ,

(4.23)

where ϕi5(xi, yr , θ̂) is a smooth nonnegative function. Substituting (4.20)–(4.23) into (4.16),
one gets

LVi ≤ −
i−1∑

j=1

⎛

⎝cj −
i−1∑

k=j+1

ckj

⎞

⎠ξ
p+3
j −

i∑

j=1

⎛

⎝cj −
i−1∑

k=j+1

ckj

⎞

⎠θξ
p+3
j +

i−1∑

j=1

c′ij ξ
p+3
j

+
i−1∑

j=1

δj + θ
i−1∑

j=1

cijξ
p+3
j + h′i1ξ

p+3
i + θhi2ξ

p+3
i − ciθξp+3

i + ciθξ
p+3
i

+ ξ
p−pi+3
i di(x)x

pi
i+1 +

bi(xi)
2
|ξi|p−pi+3|xi+1|pi + bi(xi)

2
ξ
p−pi+3
i x

∗pi
3

− bi(xi)
2

ξ
p−pi+3
i x

∗pi
3 +

(
θ̃ +

i−1∑

k=2

ξ
p−pk+3
k

∂x∗k
∂θ̂

)(
τi−1 − ˙̂θ

)
− ξp−pi+3

i

∂x∗i
∂θ̂

˙̂θ, (4.24)

where

c′ij = cij1 + cij2, j = 1, . . . , i − 1,

h′i1 = ϕi1 + ϕi4 + ϕi5, hi2 = ϕi2 + ϕi3.
(4.25)

Suppose the virtual smooth controller x∗i+1 = −ξiβi(xi, yr , θ̂) with βi(xi, yr , θ̂) > 0, which
together with A2 render

−bi(xi)
2

ξ
p−pi+3
i x

∗pi
i+1 ≤ −di(x)ξ

p−pi+3
i x

∗pi
i+1 −

bi(xi)
2

∣∣∣ξp−pi+3
i x

∗pi
i+1

∣∣∣. (4.26)

Substituting (4.26) into (4.24) leads to

LVi ≤ −
i−1∑

j=1

⎛

⎝cj −
i−1∑

k=j+1

ckj

⎞

⎠ξ
p+3
j −

i∑

j=1

⎛

⎝cj −
i∑

k=j+1

ckj

⎞

⎠θξ
p+3
j +

i−1∑

j=1

c′ij ξ
p+3
j

+ h′i1ξ
p+3
i +

(
θ̂ + θ̃

)
hi2ξ

p+3
i + ci

(
θ̂ + θ̃

)
ξ
p+3
i + ξ

p−pi+3
i di(x)x

pi
i+1

+
bi(xi)

2
|ξi|p−pi+3|xi+1|pi + bi(xi)

2
ξ
p−pi+3
i x

∗pi
3 − di(x)ξ

p−pi+3
i x

∗p2

i+1
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− bi(xi)
2

∣∣∣ξp−pi+3
i x

∗pi
i+1

∣∣∣ +
(
θ̃ +

i−1∑

k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂

)(
τi−1 − ˙̂θ

)
− ξp−pi+3

i

∂x∗i
∂θ̂

˙̂θ

+
i−1∑

k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂
(hi2 + ci)ξ

p+3
i −

i−1∑

k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂
(hi2 + ci)ξ

p+3
i

+ ξ
p−pi+3
i

∂x∗i
∂θ̂

τi − ξp−pi+3
i

∂x∗i
∂θ̂

τi,

(4.27)

where τi = τi−1 + (hi2 + ci)ξ
p+3
i . For (4.27), we have

∣∣∣∣∣−
i−1∑

k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂
(hi2 + ci)ξ

p+3
i

∣∣∣∣∣ ≤ ϕi6

(
xi, yr , θ̂

)
ξ
p+3
i ,

∣∣∣∣−ξ
p−pi+3
i

∂x∗i
∂θ̂

τi

∣∣∣∣ ≤
i−1∑
k=1

cik3ξ
p+3
k

+ ϕi7

(
xi, yr , θ̂

)
ξ
p+3
i ,

(4.28)

where cik3 is a design parameter, ϕi6(xi, yr , θ̂) and ϕi7(xi, yr , θ̂) are the smooth functions. Let
cij = c′ij + cij3, hi1 = h′i1 + ϕi6 + ϕi7. (4.27) becomes

LVi ≤ −
i−1∑

j=1

⎛

⎝cj −
i−1∑

k=j+1

ckj

⎞

⎠ξ
p+3
j −

i∑

j=1

⎛

⎝cj −
i∑

k=j+1

ckj

⎞

⎠θξ
p+3
j +

i−1∑

j=1

cijξ
p+3
j

+ h′i1ξ
p+3
i + θ̂hi2ξ

p+3
i +

(
θbi(xi+1) +

bi(xi)
2

)
|ξi|p−pi+3

∣∣∣xpi
i+1 − x

∗pi
i+1

∣∣∣

+
bi(xi)

2
ξ
p−pi+3
i x

∗pi
i+1 +

(
θ̃ +

i∑

k=2

ξ
p−pk+3
k

∂x∗
k

∂θ̂

)(
τi − ˙̂θ

)
+

i∑

j=1

δj

≤ −
i∑

j=1

⎛

⎝cj −
i∑

k=j+1

ckj

⎞

⎠ξ
p+3
j −

i∑

j=1

⎛

⎝cj −
i∑

k=j+1

ckj

⎞

⎠θξ
p+3
j

+
(
θbi(xi+1) +

bi(xi)
2

)
|ξi|p−pi+3

∣∣∣xpi
i+1 − x

∗pi
i+1

∣∣∣ +
i∑

j=1

δj +

(
θ̃ +

i∑

k=2

ξ
p−pk+3
k

∂x∗k
∂θ̂

)(
τi − ˙̂θ

)
,

(4.29)

by choosing
x∗i+1

(
xi, yr , θ̂

)
= −ξiβi

(
xi, yr , θ̂

)
,

βi
(
xi, yr , θ̂

)
=
(

2
bi(xi)

(
ci + hi1 + (hi2 + ci)

√
1 + θ̂2

))1/pi

, (4.30)

where βi(xi, yr , θ̂) ≥ 0 is a smooth function.
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Figure 2: Gives the response of the closed-loop system, from which, the effectiveness of the controller is
demonstrated.

Finally, when i = n, xn+1 = x∗n+1 = u is the actual control. By choosing the actual control
law and the adaptive law:

u
(
xn, yr, θ̂

)
= −βn

(
xn, yr, θ̂

)
ξn,

˙̂θ = τn =
n∑

k=1

Hk2ξ
p+3
k

, (4.31)

where βn ≥ 0 and H12, . . . ,Hn2 are smooth functions, one gets

LVn ≤ −
n∑

j=1

⎛

⎝cj −
n∑

k=j+1

ckj

⎞

⎠ξ
p+3
j −

n∑

j=1

⎛

⎝cj −
n∑

k=j+1

ckj

⎞

⎠θξ
p+3
j +

n∑

j=1

δj . (4.32)

Theorem 4.1. If A1–A3 hold for the high-order stochastic nonlinear system (3.8), under the smooth
adaptive state-feedback controller (4.32), the closed-loop system is ISpS in probability, and the tracking
error ξ1 = y − yr can be regulated to a neighborhood of the origin in probability with radius as small
as possible (Figure 2).

Proof. For Vn =
∑n

i=1(1/4)ξp−pi+4
i +(1/2)θ̃2, it is obvious that Vn satisfies (3.4). Choosing all the

design parameters cj and cj to satisfy

cj >
n∑

k=j+1

ckj , cj >
n∑

k=j+1

ckj , j = 1, . . . , n, (4.33)

such that (3.5) holds, and then using Lemma 3.3, one can prove Theorem 4.1.
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5. Simulation

Now, we apply the control scheme to the mechanical system (2.5). Let ξ1 = x1 − yr be the
tracking error, where yr = sin t is a bounded smooth reference signal. For (2.5), di(·) = 1, and
p = max{1, 3} = 3.

Choose V1(ξ1) = (1/(p − p1 + 4))ξp−p1+4
1 = ξ6

1/6. Then,

LV1(ξ1) = ξ5
1

(
x2 − ẏr

)
. (5.1)

The smooth virtual controller can be chosen as x∗2(x1, yr) = −c1ξ1 + ẏr , which renders

LV1(ξ1) = −c1ξ
6
1 + ξ5

1

(
x2 − x∗2

)
. (5.2)

Next, defining V2(ξ1, ξ2) = V1 + (1/(p − p2 + 4))ξp−p2+4
2 = ξ6

1/6+ ξ4
2/4, a direct calculation

gives

LV2 = −c1ξ
6
1 + ξ5

1ξ2 + ξ3
2

(
x3

3 −
∂x∗2
∂x1

x2 −
∂x∗2
∂yr

ẏr

)
= −c1ξ

6
1 + ξ5

1ξ2 + ξ3
2

(
x3

3 − h2

)
, (5.3)

where ξ2 = x2 − x∗2. By Lemma 3.5, choosing m = 3/2, one can obtain that for any constant
δ2 > 0,

∣∣∣ξ4
2h2

∣∣∣ ≤ δ2 +

(
2ξ4

2h2

3

)3/2(
1

2δ2

)1/2

≤ δ2 + ξ6
2ϕ2(x2). (5.4)

Then, by (5.4) and (5.5), it is easy to see that

LV (ξ1, ξ2) = −(c1 − c21)ξ6
1 − c2ξ

6
2 + ξ3

2

(
x3

3 − x∗33

)
+ δ2, (5.5)

by choosing x∗3(x1, x2, yr) = −ξ2(c2 + d2 + ϕ2)
1/3.

Defining ξ3 = x3 −x∗3 and the Lyapunov function V3(ξ1, ξ2, ξ3) = V2(ξ1, ξ2) + (1/6)ξ6
3, one

gets

LV3 ≤ −(c1 − c21)ξ6
1 − c2ξ

6
2 + ξ3

2

(
x3

3 − x∗33

)
+ δ2 + ξ5

3

(
x4 −

∂x∗3
∂x1

x2 −
∂x∗3
∂x2

x3
3 −

∂x∗3
∂yr

ẏr

)

≤ −(c1 − c21)ξ6
1 − c2ξ

6
2 + δ31 + ξ6

3ϕ31 + δ32 + ξ6
3ϕ32 + ξ5

3

(
x4 − x∗4

)
+ ξ5

3x
∗
4

= −(c1 − c21)ξ6
1 − c2ξ

6
2 − c3ξ

6
3 + ξ5

3

(
x4 − x∗4

)
+ δ2 + δ3,

(5.6)
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by choosing x∗4(x1, x2, x3, yr) = −ξ3(c3 + ϕ31 + ϕ32). At last, choosing ξ4 = x4 − x∗4,
V4(ξ1, ξ2, ξ3, ξ4) = V3(ξ1, ξ2, ξ3) + (1/6)ξ6

4, a direct calculation gives

V4 ≤ −(c1 − c21)ξ6
1 − c2ξ

6
2 − c3ξ

6
3 + ξ5

3

(
x4 − x∗4

)
+ δ2 + δ3

+ ξ5
4

(
v + k0f −

∂x∗4
∂x1

x2 −
∂x∗4
∂x2

x3
3 −

∂x∗4
∂x3

x4 −
∂x∗4
∂yr

ẏr

)
+ 5ξ4

4σ
2f2

≤ −(c1 − c21)ξ6
1 − c2ξ

6
2 − c3ξ

6
3 − c4ξ

6
4 + δ2 + δ3 + δ41 + ξ6ϕ41 + δ42 + ξ6ϕ42 + ξ5

4v

= −(c1 − c21)ξ6
1 − c2ξ

6
2 − c3ξ

6
3 − c4ξ

6
4 + δ2 + δ3 + δ4,

(5.7)

by choosing

v = −ξ4
(
c4 + ϕ41 + ϕ42

)
. (5.8)

Choose the design parameters σ = 0.125, δ2 = 0.01, δ3 = 0.01, and δ4 = 0.01. Moreover,
to satisfy (5.3), we choose c1 = 1 > c21 = 5/6, c2 = 1.5, c3 = 0.5 and c4 = 0.5. Choose the initial
values x1(0) = 0.45, x2(0) = 0.5, x3(0) = 0.5, and x4(0) = 0.5.

6. Concluding Remarks

In this paper, a mechanical system is firstly introduced. Then, by a series of coordinate tran-
sformations, the mechanical system can be transformed to a class of high-order stochastic
nonlinear system, based on which, a more general mathematical model is considered and
the smooth state-feedback controller is designed which guarantees that the tracking error
ξ1 = y−yr can be regulated to a neighborhood of the origin in probability with radius as small
as possible. At last, the simulation is given to show the effectiveness of the design scheme.
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The adaptive stabilization scheme based on tuning function for stochastic nonlinear systems with
stochastic integral input-to-state stability (SiISS) inverse dynamics is investigated. By combining
the stochastic LaSalle theorem and small-gain type conditions on SiISS, an adaptive output feed-
back controller is constructively designed. It is shown that all the closed-loop signals are bounded
almost surely and the stochastic closed-loop system is globally stable in probability.

1. Introduction

Global stabilization control design of stochastic nonlinear systems is one of the most impor-
tant topics in nonlinear control theory, which has received and is increasingly receiving a
great deal of attention; see, for example, [1–37] and the references therein. For a class of
stochastic nonlinear systems with stochastic inverse dynamics, much progress has been made
in the design of the global stabilization controller [12, 13, 15, 16, 24, 25, 31]. However, all
these controllers are only robust against stochastic inverse dynamics with stringent stability
margin. To weaken the stringent condition on stochastic inverse dynamics, a natural idea is
to benefit from input-to-state stability (ISS) in [38] and integral input-to-state stability (iISS)
in [39] which are now recognized as the central unifying concepts in feedback design and
stability analysis of deterministic nonlinear systems. Tsinias in [21], Tang and Basar in [19]
first proposed the concept of stochastic input-to-state stability (SISS) independently. Further
in-depth study on SISS and its applications are presented in [9–11, 18, 22]. Motivated by
these aforementioned important results, [34] showed that SISS condition can be weakened to
stochastic integral input-to-state stability (SiISS) and developed a unifying output feedback
framework for global regulation.
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Nonlinear small-gain theorem plays an important role in the controller design and
stability analysis of deterministic nonlinear systems in [40, 41]. While for stochastic non-
linear systems, there are fewer results on the small-gain theorem. [25] firstly established a
gain-function-based stochastic nonlinear small-gain theorem for ISpS in probability. In some
succeeding research work, [9, 11, 35] presented some Lyapunov-based small-gain type
conditions on SISS and SiISS, respectively. [4] further discusses the relationship of small-
gain type conditions on SiISS and studies the problem of GAS in probability via output feed-
back.

In this paper, inspired by [4], a more general class of stochastic nonlinear systems with
uncertain parameters and stochastic integral input-to-state stability (SiISS) inverse dynamics
is investigated. By combining the stochastic LaSalle theorem and small-gain type conditions
on SiISS, an adaptive output feedback controller is proposed to guarantee that all the closed-
loop signals are bounded almost surely and the stochastic closed-loop system is globally
stable in probability.

The paper is organized as follows. Section 2 begins with the mathematical prelimi-
naries. Section 3 presents statement of the problem. The design of adaptive output feedback
controller is given in Section 4. The corresponding analysis is given in Section 5. Section 6
concludes the paper.

2. Mathematical Preliminaries

The following notations are used throughout the paper. �+ stands for the set of all nonneg-
ative real numbers, �n is the n-dimensional Euclidean space, and �

n×m is the space of real
n × m-matrices. For x = (x1, . . . , xn), one defines xi = (x1, . . . , xi), i = 1, . . . , n − 1. Ci denotes
the family of all the functions with continuous ith partial derivatives. L1(�+ ;�+) is the family
of all functions l : �+ → �+ such that

∫∞
0 l(t)dt < ∞. For a given vector or matrix X, XT

denotes its transpose, Tr{X} denotes its trace when X is square. |X| denotes the Euclidean
norm of a vector X, and ‖X‖ = (Tr{XXT})1/2 for a matrix X.K denotes the set of all functions:
�+ → �+ , which are continuous, strictly increasing, and vanishing at zero;K∞ is the set of
all functions which are of classK and unbounded;KL denotes the set of all functions β(s, t):
�+ × �+ → �+ , which are ofK for each fixed t and decrease to zero as t → ∞ for each fixed
s.

Consider the stochastic nonlinear delay-free system

dx = f(x, t)dt + g(x, t)dw, ∀x(0) = x0 ∈ �n , (2.1)

where x ∈ �
n , w is an m-dimensional standard Wiener process defined in a complete

probability space {Ω,F, {Ft}t≥0, P} with Ω being a sample space, F being a σ-field, {Ft}t≥0
being a filtration, and P being the probability measure. Borel measurable functions f : �n ×
�+ → �

n and g: �n × �+ → �
n×m are piecewise continuous in t and locally bounded

and locally Lipschitz continuous in x uniformly in t ∈ �+ . Let LV (x) denote infinitesimal
generator of function V ∈ C2 along stochastic system (2.1) with the definition of

LV (x) =
∂V (x)
∂x

f(x, t) +
1
2

Tr

{
gT (x, t)

∂2V (x)
∂x2 g(x, t)

}
. (2.2)
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Definition 2.1 (see [34]). Stochastic process {ξ(t)}t≥t0 is said to be bounded almost surely if
supt≥t0 |ξ(t)| <∞ a.s.

Lemma 2.2 (Stochastic LaSalle Theorem [14]). For system (2.1), if there exist functions V ∈ C2,
α1, α2 ∈ K∞, l ∈ L1(�+ ;�+), and a continuous nonnegative function W : �n → � such that for all
x ∈ �n , t ≥ 0,

α1(|x|) ≤ V (x) ≤ α2(|x|), LV (x) ≤ −W(x) + l(t), (2.3)

then for each x0 ∈ �n ,

(i) system (2.1) has a unique strong solution on [0,∞), and solution x(t) is bounded almost
surely;

(ii) when f(0, t) ≡ 0, g(0, t) ≡ 0, l(t) ≡ 0, the equilibrium x = 0 is globally stable in probability.

In the following, we cite two small-gain type conditions on SiISS in [35].
Consider the following stochastic nonlinear system

dx = f(x, v, t)dt + g(x, v, t)dw, ∀x(0) = x0 ∈ �n , (2.4)

where x ∈ �n is the state, v ∈ �m is the input, and w is an r-dimensional standard Wiener
process defined as in (2.1). Borel measurable functions f : �n × �m × �+ → �

n and g: �n ×
�
m × �+ → �

n×r are locally bounded and locally Lipschitz continuous with respect to (x, v)
uniformly in t ∈ �+ .

Definition 2.3 (see [34]). System (2.4) is said to be stochastic integral input-to-state stable
(SiISS) using Lyapunov function if there exist functions V ∈ C2(�n ;�), α1, α2, γ ∈ K∞, and a
merely positive definite continuous function α such that

α1(|x|) ≤ V (x) ≤ α2(|x|), LV (x) ≤ −α(|x|) + γ(|v|). (2.5)

The function V satisfying (2.5) is said to be a SiISS-Lyapunov function, and (α, γ) in (2.5) is
called the SiISS supply rate of system (2.4).

Lemma 2.4 (see [35]). For system (2.4) satisfying (2.5), if there exists a positive definite continuous
function α̃ such that lim sups→ 0+ α̃(s)/α(s) < ∞, lim sups→∞ α̃(s)/α(s) < ∞, then there exists
a function γ̃ ∈ K∞ such that (α̃, γ̃) is a new SiISS supply rate of system (2.4). Moreover, if
lim sups→ 0+γ(s)/s

m <∞, then lim sups→ 0+γ̃(s)/s
m <∞, wherem is any positive integer.

The following lemma shows that the condition at infinity can be removed if more prior
information on stochastic system is known.

Assumption H. For functions g, V , α given in (2.4), (2.5) with lim infs→∞α(s) =∞, there exist
known smooth positive definite functions φ1, φ2 such that ‖g(x, v, t)‖ ≤ φ1(|x|), |∂V (x)/∂x| ≤
φ2(|x|) and lim sups→ 0+φ

2
1(s)φ

2
2(s)/α(s) <∞.
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Lemma 2.5 (see [35]). For system (2.4) satisfying (2.5) and Assumption H, if there exists a positive
definite function α̃ such that

lim sup
s→ 0+

α̃(s)
α(s)

<∞,

∫∞

0
e−
∫s

0 (1/ζ(α
−1
1 (τ)))dτ

[
ξ
(
α−1

1 (s)
)]′

ds < ∞, (2.6)

where ξ(·) ≥ 0, ζ(·) > 0 are smooth increasing functions with ξ(s)α(s) ≥ 2α̃(s), ζ(s)α(s) ≥
φ2

1(s)φ
2
2(s) for any s ≥ 0, then there exists a function γ̃ ∈ K∞ such that (α̃, γ̃) is a new SiISS supply

rate of system (2.4). Moreover, if lim sups→ 0+γ(s)/s
m < ∞, then lim sups→ 0+γ̃(s)/s

m <∞, where
m is any positive integer.

Lemma 2.6. Let x, y be real variables, then for any positive integers m, n and continuous function
a(·) ≥ 0, a(·)xmyn ≤ b|x|m+n + (n/(m + n))((m + n)/m)−m/na(m+n)/n(·)bm/n|y|m+n, where b > 0
is any real number.

3. Problem Statement

In this paper, we consider a class of stochastic nonlinear systems described by

dη = ϕ0
(
η, x1

)
dt + ψ0

(
η, x1

)
dw,

dx1 = x2dt + ϕ1
(
η, x
)
dt + ψ1

(
η, x
)
dw,

...

dxn−1 = xndt + ϕn−1
(
η, x
)
dt + ψn−1

(
η, x
)
dw,

dxn = udt + ϕn

(
η, x
)
dt + ψn

(
η, x
)
dw,

y = x1,

(3.1)

where (x2, . . . , xn) ∈ �n−1 , u, y ∈ � represent the unmeasurable state, the control input, and
the measurable output, respectively. η ∈ �n0 is referred to as the stochastic inverse dynamics.
The initial value (ηT (0), x1(0), . . . , xn(0)) can be chosen arbitrarily. w is an m-dimensional
standard Wiener process defined as in (2.1). Uncertain functions ϕi : �n0 × �n → �, ψi :
�
n0 × �n → �

m , 1 ≤ i ≤ n, are smooth functions. It is assumed that ϕ0 and ψ0 are locally
Lipschitz continuous functions.

The research purpose of this paper is to design an adaptive output feedback controller
for system (3.1) by using stochastic LaSalle theorem and small-gain type conditions on SiISS,
in such a way that, for all initial conditions, the solutions of the closed-loop system are
bounded almost surely and the closed-loop systems are globally stable in probability. To
achieve the control purpose, we need the following assumptions.

Assumption 3.1. For each 1 ≤ i ≤ n, there exist the unknown constant θi > 0, the known
nonnegative smooth functions ϕi0, ϕi1, ψi0 and ψi1 with ϕij(0) = 0, ψij(0) = 0, j = 0, 1, such that
|ϕi(η, x)| ≤ θi(ϕi0(|η|) + ϕi1(x1)), |ψi(η, x)| ≤ θi(ψi0(|η|) + ψi1(x1)).
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For Assumption 3.1, there exist smooth functions ϕi1 and ψi1 satisfying

ϕi1(x1) = x1ϕi1(x1), ψi1(x1) = x1ψi1(x1), (3.2)

which will be frequently used in the subsequent sections.

Assumption 3.2. For the η-subsystem, there exists an SiISS-Lyapunov function V0(η). Namely,
V0 satisfies α(|η|) ≤ V0(η) ≤ α(|η|), LV0(η) ≤ −α(|η|) + γ(|x1|), where α, α, γ are class K∞
functions, and α is merely a continuous positive definite function.

4. Design of an Adaptive Output Feedback Controller

4.1. Reduced-Order Observer Design

Introduce the following reduced-order observer:

˙̂xi = x̂i+1 + ki+1y − ki
(
x̂1 + k1y

)
, 1 ≤ i ≤ n − 2,

˙̂xn−1 = u − kn−1
(
x̂1 + k1y

)
,

(4.1)

where k = (k1, . . . , kn−1)T is chosen such that A0 =
[
−k In−2

0...0

]
is asymptotically stable. Define

the error variable

ei =
1
θ∗

(xi+1 − x̂i − kix1), 1 ≤ i ≤ n − 1, θ∗ = max{1, θ1, . . . , θn}. (4.2)

By (3.1), (4.1), and (4.2), one gets

dei = (ei+1 − kie1)dt +
1
θ∗
(
ϕi+1
(
η, x
) − kiϕ1

(
η, x
))
dt +

1
θ∗
(
ψi+1
(
η, x
) − kiψ1

(
η, x
))
dw,

(4.3)

whose compact form is

de =
(
A0e + Φ

(
η, x
))
dt + Ψ

(
η, x
)
dw, (4.4)

where

e = (e1, . . . , en−1)T ,

Φ
(
η, x
)
=

1
θ∗
(
ϕ2
(
η, x
) − k1ϕ1

(
η, x
)
, ϕ3
(
η, x
) − k2ϕ1

(
η, x
)
, . . . , ϕn

(
η, x
) − kn−1ϕ1

(
η, x
))T

,

Ψ
(
η, x
)
=

1
θ∗
(
ψ2
(
η, x
) − k1ψ1

(
η, x
)
, ψ3
(
η, x
) − k2ψ1

(
η, x
)
, . . . , ψn

(
η, x
) − kn−1ψ1

(
η, x
))T

.

(4.5)
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4.2. The Design of Adaptive Backstepping Controller

From (3.1), (4.1), (4.2), and (4.4), the interconnected system is represented as

dη = ϕ0
(
η, y
)
dt + ψ0

(
η, y
)
dw,

de =
(
A0e + Φ

(
η, x
))
dt + Ψ

(
η, x
)
dw,

dy =
(
x̂1 + k1y + θ∗e1 + ϕ1

(
η, x
))
dt + ψ1

(
η, x
)
dw,

dx̂1 =
(
x̂2 + k2y − k1

(
x̂1 + k1y

))
dt,

dx̂2 =
(
x̂3 + k3y − k2

(
x̂1 + k1y

))
dt,

...

dx̂n−1 =
(
u − kn−1

(
x̂1 + k1y

))
dt.

(4.6)

Next, we will develop an adaptive backstepping controller by using the backstepping meth-
od. Firstly, a coordinate transformation is introduced

z1 = y, zi+1 = x̂i − αi

(
y, x̂1, . . . , x̂i−1, θ̂

)
, i = 1, . . . , n − 1. (4.7)

Step 1. By (4.6) and (4.7), one has

dz1 =
(
α1 + z2 + k1y + θ∗e1 + ϕ1

(
η, x
))
dt + ψ1

(
η, x
)
dw. (4.8)

Since A0 is asymptotically stable, there exists a positive definite matrix P such that PA0 +
AT

0P = −In−1. Choose

V1

(
e, z1, θ̂

)
=

δ

2

(
eTPe

)2
+

1
2Γ

θ̃2 +
1
4
z4

1, δ > 0, Γ > 0, (4.9)

where θ̃ = θ̂ − θ, θ̂ is the estimate of θ = max{θ∗, θ∗(4/3), θ∗4}. In view of (2.2), (4.4), (4.8), and
(4.9), then

LV1 = 2δeTPeeTP
(
A0e + Φ

(
η, x
))

+
1
2

Tr
{
ΨT(η, x

)(
4δ
(
eTP
)T

eTP + 2δeTPeP
)
Ψ
(
η, x
)}

+
1
Γ
θ̃ ˙̂θ + z3

1

(
α1 + z2 + k1y + θ∗e1 + ϕ1

(
η, x
))

+
3
2
z2

1 Tr
{
ψT

1

(
η, x
)
ψ1
(
η, x
)}
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= δeTPeeT
(
PA0 +AT

0P
)
e + 2δeTPeeTPΦ

(
η, x
)

+ Tr
{
ΨT(η, x

)(
2δ
(
eTP
)T

eTP + δeTPeP

)
Ψ
(
η, x
)}

+
1
Γ
θ̃ ˙̂θ + z3

1

(
α1 + z2 + k1y + θ∗e1 + ϕ1

(
η, x
))

+
3
2
z2

1 Tr
{
ψT

1

(
η, x
)
ψ1
(
η, x
)}

≤ −δλmin(P)|e|4 + 2δ‖P‖2|e|3∣∣Φ(η, x)∣∣ + 3δ‖P‖2|e|2∥∥Ψ(η, x)∥∥2 +
1
Γ
θ̃ ˙̂θ

+ z3
1

(
α1 + z2 + k1y + θ∗e1 + ϕ1

(
η, x
))

+
3
2
z2

1 Tr
{
ψT

1

(
η, x
)
ψ1
(
η, x
)}

.

(4.10)

Applying Assumption 3.1, (3.2), (4.3), (4.7), and Lemma 2.6, it follows that

2δ‖P‖2|e|3Φ∣∣(η, x)∣∣ ≤ a01|e|4 + a01
∣∣Φ
(
η, x
)∣∣4,

3δ‖P‖2|e|2∥∥Ψ(η, x)∥∥2 ≤ a02|e|4 + a02
∥∥Ψ(η, x)

∥∥4
,

z3
1z2 ≤ a10z

4
1 + a10z

4
2, θ∗z3

1e1 ≤ a11e
4
1 + θ∗(4/3)γ11(z1)z4

1 ≤ a11e
4
1 + θγ11(z1)z4

1,

z3
1ϕ1
(
η, x
) ≤ |z1|3θ∗

(
ϕ10
(∣∣η
∣∣) + ϕ11(z1)

) ≤ a12ϕ
4
10

(∣∣η
∣∣) + θγ12(z1)z4

1,

3
2
z2

1 Tr
{
ψT

1

(
η, x
)
ψ1
(
η, x
)} ≤ 3z2

1θ
∗2
(
ψ2

10

(∣∣η
∣∣) + ψ2

11(z1)
)
≤ a13ψ

4
10

(∣∣η
∣∣) + θγ13(z1)z4

1,

(4.11)

where a01, a02, γ11, γ12, and γ13 are smooth functions, a01, a02, a10, a10, a11, a12, a13 > 0 are
constants.

Using (a1 + · · · + an)2 ≤ (x + a)n = n
n∑
i=1
a2
i , (a + b)4 ≤ 8a4 + 8b4, y = x1, Assumption 3.1,

(3.2), and (4.5), one gets

∣∣Φ
(
η, x
)∣∣4 ≤ 64(n − 1)

((
k4

1 +· · ·+ k4
n−1

)(
ϕ4

10 + y4ϕ4
11

)
+ ϕ4

20 +· · ·+ ϕ4
n0 + y4

(
ϕ4

21 +· · ·+ ϕ4
n1

))
,

∥∥Ψ
(
η, x
)∥∥4 ≤ 64(n − 1)

((
k4

1 +· · ·+ k4
n−1

)(
ψ4

10 + y4ψ4
11

)
+ ψ4

20 +· · ·+ ψ4
n0 + y4

(
ψ4

21 +· · ·+ ψ4
n1

))
.

(4.12)

Substituting (4.11)-(4.12) into (4.10) and using z1 = y lead to

LV1 ≤ −a00|e|4 + a11e
4
1 + Δ1

(∣∣η
∣∣) + a10z

4
2 + z3

1(α1 + k1z1 + Δ00(z1)z1 + a10z1)

+ θ
(
γ11(z1) + γ12(z1) + γ13(z1)

)
z4

1 +
1
Γ
θ̃ ˙̂θ,

(4.13)
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where

a00 = δλmin(P) − a01 − a02,

Δ1
(∣∣η
∣∣) = 64(n − 1)a01

((
k4

1 + · · · + k4
n−1

)
ϕ4

10

(∣∣η
∣∣) + ϕ4

20

(∣∣η
∣∣) + · · · + ϕ4

n0

(∣∣η
∣∣)
)

+ 64(n − 1)a02

((
k4

1 + · · · + k4
n−1

)
ψ4

10

(∣∣η
∣∣) + ψ4

20

(∣∣η
∣∣) + · · · + ψ4

n0

(∣∣η
∣∣)
)

+ a12ϕ
4
10

(∣∣η
∣∣) + a13ψ

4
10

(∣∣η
∣∣),

Δ00(z1) = 64(n − 1)a01

((
k4

1 + · · · + k4
n−1

)
ϕ4

11(z1) + ϕ4
21(z1) + · · · + ϕ4

n1(z1)
)

+ 64(n − 1)a02

((
k4

1 + · · · + k4
n−1

)
ψ4

11(z1) + ψ4
21(z1) + · · · + ψ4

n1(z1)
)
.

(4.14)

Choosing the virtual control α1(·) and the tuning function τ1(·)

α1

(
y, θ̂
)
= −z1

(
c1 + ν1(z1) + k1 + Δ00(z1) + a10 + θ̂

(
γ11(z1) + γ12(z1) + γ13(z1)

))
,

τ1
(
y
)
= Γ
(
γ11(z1) + γ12(z1) + γ13(z1)

)
z4

1,

(4.15)

one gets

LV1 ≤ −c1z
4
1 − ν1(z1)z4

1 − a00|e|4 + a11e
4
1 + Δ1

(∣∣η
∣∣) + a10z

4
2 +

1
Γ
θ̃
( ˙̂θ − τ1

)
, (4.16)

where c1 > 0 is design parameter and ν1(z1) > 0 is a smooth function to be chosen later.

Step i (i = 2, . . . , n). For notation coherence, denote u = αn, zn+1 = 0. At this step, we can
obtain a property similar to (4.16), which is presented by the following lemma.

Lemma 4.1. For the ith Lyapunov function Vi(e, zi, θ̂) = (δ/2)(eTPe)2 + (1/2Γ)θ̃2 +
∑i

j=1(z
4
j /4),

there are the virtual control law αi(y, x̂1, . . . , x̂i−1, θ̂) and the tuning function τi with the form

αi

(
y, x̂1, . . . , x̂i−1, θ̂

)
= −Ωi − zi

⎛

⎝ci + ai−1,0 + ai0 + θ̂
(
γi1 + γi2 + γi3 + γi4

)

+Γ
(
γi1 + γi2 + γi3 + γi4

) i−1∑

j=1

∂αj

∂θ̂
z3
j+1

⎞

⎠ +
∂αi−1

∂θ̂
τi,

τi
(
y, x̂1, . . . , x̂i−1, θ̂

)
= τi−1 + Γ

(
γi1 + γi2 + γi3 + γi4

)
z4
i ,

(4.17)
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such that

LVi ≤ −
i∑

j=1

cjz
4
j +

i∑

j=2

bjz
4
1 − ν1(z1)z4

1 − a00|e|4 +
i∑

j=1

aj1e
4
1 + Δi

(∣∣η
∣∣) + ai0z

4
i+1

+

⎛
⎝ 1

Γ
θ̃ −

i−1∑

j=1

∂αj

∂θ̂
z3
j+1

⎞
⎠
( ˙̂θ − τi

)
,

(4.18)

where ci > 0 is the designed parameters, ai0, ai−1,0, ai1, bi are some positive constants, γi1, γi2, γi3, γi4
are smooth nonnegative functions, whose choices are given in the proof.

Proof. See the appendix.

Therefore, at the end of the recursive procedure, the controller can be constructed as

u = αn

(
y, x̂1, . . . , x̂n−1, θ̂

)
, ˙̂θ = τn

(
y, x̂1, . . . , x̂n−1, θ̂

)
. (4.19)

Choosing parameters δ, a01, a02, a11, . . ., an1, c2, . . . , cn to satisfy

a0 = δλmin(P) − a01 − a02 −
n∑

i=1

ai1 > 0, c2, . . . , cn > 0, (4.20)

by (4.16) and (4.18), one has

LVn ≤ −
n∑

i=1

ciz
4
i +

n∑

j=2

bjz
4
1 − ν1(z1)z4

1 − a0|e|4 + Δn

(∣∣η
∣∣), (4.21)

where

V n

(
e, z, θ̂

)
=

δ

2

(
eTPe

)2
+

1
2Γ

θ̃2 +
1
4

n∑

i=1

z4
i ,

Δn

(∣∣η
∣∣) = 64(n − 1)a01

((
k4

1 + . . . + k4
n−1

)
ϕ4

10

(∣∣η
∣∣) + ϕ4

20

(∣∣η
∣∣) + . . . + ϕ4

n0

(∣∣η
∣∣)
)

+ 64(n − 1)a02

((
k4

1 + . . . + k4
n−1

)
ψ4

10

(∣∣η
∣∣) + ψ4

20

(∣∣η
∣∣) + . . . + ψ4

n0

(∣∣η
∣∣)
)

+
n∑

i=1

(
ai2ϕ

4
10

(∣∣η
∣∣) + ai3ψ

4
10

(∣∣η
∣∣)
)
+

n∑

j=2

aj4ψ
4
10

(∣∣η
∣∣).

(4.22)

5. Stability Analysis

We state the main theorems in this paper. This section is divided into two parts.
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5.1. Case I

Theorem 5.1. Assume that Assumptions 3.1 and 3.2 hold with the following properties:

lim sup
s→ 0+

Δn

(∣∣η
∣∣)

α(s)
< ∞, lim sup

s→∞

Δn

(∣∣η
∣∣)

α(s)
<∞. (5.1)

If lim sups→ 0+γ(s)/s
4 < ∞ in Assumption 3.2, by appropriately choosing the positive smooth func-

tion ν1(·) in (4.15) and the parameters δ, a01, a02, a11, . . ., an1, c2, . . ., cn to satisfy (4.20), then

(i) the closed-loop system consisting of (3.1), (4.1), (4.2), (4.7), (4.15), (4.17), and (4.19) has
a unique and almost surely bounded strong solution on [0,∞);

(ii) for each initial value (η(0), x(0), x̂(0), θ̂(0)), the equilibrium (η, x) = (0, 0) is globally
stable in probability, where x̂ = (x̂1, . . . , x̂n−1).

Proof. For any constant ε > 0, by (5.1), one has

lim sup
s→ 0+

(1 + ε)Δn

(∣∣η
∣∣)

α(s)
< ∞, lim sup

s→∞

(1 + ε)Δn

(∣∣η
∣∣)

α(s)
<∞. (5.2)

For the η-subsystem, by Lemma 2.4, there exists a positive and radially unbounded Lyapunov
function Ṽ0(η) ∈ C2 and γ̃ = ργ such that

LṼ0
(
η
) ≤ −(1 + ε)Δn

(∣∣η
∣∣) + γ̃(|z1|), (5.3)

lim sup
s→ 0+

γ̃(s)
s4

<∞, (5.4)

where ρ is a positive constant satisfying (1 + ε)Δn(|η|) ≤ ρα(s) for all s ≥ 0. Choosing the
following Lyapunov function for the entire closed-loop system

V
(
η, e, z, θ̂

)
= Ṽ0

(
η
)
+ Vn

(
e, z, θ̂

)
(5.5)

and combining (4.21) and (5.3), one obtains

LV
(
η, e, z, θ̂

)
≤ −

n∑

i=1

ciz
4
i −
⎛

⎝ν1(z1) −
n∑

j=2

bj

⎞

⎠z4
1 − a0|e|4 − εΔn

(∣∣η
∣∣) + γ̃(|z1|). (5.6)

By (5.4), there always exists a smooth function ν1(·) to satisfy the following two inequalities:

z4
1

⎛
⎝ν1(z1) −

n∑

j=2

bj

⎞
⎠ ≥ γ̃(|z1|), ν1(z1) ≥

n∑

j=2

bj . (5.7)
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Substituting (5.7) into (5.6) leads to

LV
(
η, e, z, θ̂

)
≤ −

n∑

i=1

ciz
4
i − a0|e|4 − εΔn

(∣∣η
∣∣)

� −W(η, e, z).
(5.8)

Noting that ϕi0(·) and ψi0(·) are nonnegative smooth functions and using (4.22), it follows
that Δn(·) and W(·) are continuous nonnegative functions. By (5.5), (5.8), and Lemma 2.2,
one concludes that all the solutions of the closed-loop system are bounded almost surely,
the equilibrium (η, e, z) = (0, 0, 0) is globally stable in probability. By (3.1), (4.1), (4.2), (4.7),
(4.15), (4.17), (4.19), and the almost sure boundedness of all the signals, it is not difficult to
recursively prove that the equilibrium (η, x) = (0, 0) is globally stable in probability.

5.2. Case II

If more information about α in Assumption 3.2 is known, that is, lim infs→∞α(s) =∞, further
results under the weaker conditions is given as follows.

Assumption 5.2. For functions ψ0 and V0 given by (4.22) and Assumption 3.2, there exist
known smooth nonnegative functions ψ̃1 and ψ̃2 with ψ̃1(0) = ψ̃2(0) = 0, such that
‖ψ0(η, x1)‖ ≤ ψ̃1(|η|) and |∂V0(η)/∂η| ≤ ψ̃2(|η|).

Lemma 5.3. For Δn, α, α, ψ̃1 and ψ̃2 given by (4.22), Assumptions 3.2 and 5.2, if

lim sup
s→ 0+

Δn(s) + ψ̃2
1(s)ψ̃

2
2(s)

α(s)
<∞,

∫∞

0
e−
∫s

0(1/ζ1(α−1(τ)))dτ
[
ξ1

(
α−1(s)

)]′
ds <∞, (5.9)

where ξ1(·) ≥ 0 and ζ1(·) > 0 are smooth increasing functions satisfying

ξ1(s)α(s) ≥ 2(1 + ε)Δn(s), ζ1(s)α(s) ≥ ψ̃2
1(s)ψ̃

2
2(s), ∀s ≥ 0, (5.10)

ε is any positive constant. Then there exists a function γ̃ ∈ K∞ such that ((1 + ε)Δn, γ̃) is a
new SiISS supply rate of the η-subsystem in (3.1). Moreover, if γ in Assumptions 3.2 satisfies
lim sups→ 0+γ(s)/s

4 <∞, then lim sups→ 0+γ̃(s)/s
4 <∞.

Since the condition (5.9) is weaker than (5.1), by using Lemma 5.3, we give further
results under the weaker condition (5.9).

Theorem 5.4. Suppose that Assumptions 3.1–5.2 and the conditions of Lemma 5.3 hold. If
lim sups→ 0+γ(s)/s

4 <∞ in Assumption 3.2, by appropriately choosing the positive smooth function
ν1(·) in (4.15) and the parameters δ, a01, a02, a11, . . ., an1, c2, . . ., cn to satisfy (4.20), then

(1) the closed-loop system consisting of (3.1), (4.1), (4.2), (4.7), (4.15), (4.17), and (4.19) has
a unique and almost surely bounded strong solution on [0,∞);

(2) for each initial value (η(0), x(0), x̂(0), θ̂(0)), the equilibrium (η, x) = (0, 0) is globally
stable in probability.
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6. Conclusions

This paper further considers a more general class of stochastic nonlinear systems with uncer-
tain parameters and SiISS inverse dynamics. By combining the stochastic LaSalle theorem
and small-gain type conditions on SiISS, an adaptive output feedback controller is designed
to guarantee that all the closed-loop signals are bounded almost surely and the stochastic
closed-loop system is globally stable in probability.

There are two remaining problems to be investigated: (1) an essential problem is
to find a practical example with explicit physical meaning for system (3.1). A preliminary
attempt on high-order stochastic nonlinear system can be found in [28]. (2) How to design
an output feedback controller by using this method in this paper for system (3.1) in which the
drift and diffusion vector fields depend on the unmeasurable states besides the measurable
output?

Appendix

Proof of Lemma 4.1. We prove Lemma 4.1 by induction. Assume that at Step i − 1, there are
virtual control laws

αi−1

(
y, x̂1, . . . , x̂i−2, θ̂

)
= −Ωi−1 − zi−1

×
⎛

⎝ci−1 + ai−2,0 + ai−1,0 + ai−1,1 + θ̂
(
γi−1,1 + γi−1,2 + γi−1,3 + γi−1,4

)

+Γ
(
γi−1,1 + γi−1,2 + γi−1,3 + γi−1,4

)
+

i−2∑

j=1

∂αj

∂θ̂
z3
j+1

⎞
⎠ +

∂αi−2

∂θ̂
τi−1,

τi−1

(
y, x̂1, . . . , x̂i−2, θ̂

)
= τi−2 + Γ

(
γi−1,1 + γi−1,2 + γi−1,3 + γi−1,4

)
z4
i−1,

(A.1)

such that Vi−1(e, zi−1, θ̂) = (δ/2)(eTPe)2 + (1/2Γ)θ̃2 +
∑i−1

j=1(z
4
j /4) satisfies

LVi−1 ≤ −
i−1∑

j=1

cjz
4
j +

i−1∑

j=2

bjz
4
1 − ν1(z1)z4

1 − a00|e|4 +
i−1∑

j=1

aj1e
4
1 + Δi−1

(∣∣η
∣∣)

+ai−1,0z
4
i +

⎛

⎝ 1
Γ
θ̃ −

i−2∑

j=1

∂αj

∂θ̂
z3
j+1

⎞

⎠
( ˙̂θ − τi−1

)
,

(A.2)

where ci−1 > 0 are the designed parameters, ai−1,0, ai−1,0, ai−1,1, bi−1 are some positive constants,
and γi−1,1, γi−1,2, γi−1,3, γi−1,4 are smooth nonnegative functions.In the sequel, we will prove that
Lemma 4.1 still holds for Step i. Choosing

Vi

(
e, zi, θ̂

)
= Vi−1

(
e, zi−1, θ̂

)
+

1
4
z4
i , (A.3)
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with the use of (4.6), (4.7), (4.15), and (A.1), the ItÔ differential of zi is given as follows:

dzi =
(
αi + zi+1 + Ωi − ∂αi−1

∂y
θ∗e1 − ∂αi−1

∂y
ϕ1
(
η, x
) − ∂αi−1

∂θ̂

˙̂θ
)
dt

− 1
2
∂2αi−1

∂y2 ψ1
(
η, x
)
ψT

1

(
η, x
)
dt − ∂αi−1

∂y
ψ1
(
η, x
)
dw,

(A.4)

where Ωi = kiy−ki−1(x̂1+k1y) −
∑i−2

j=1(∂αi−1/∂x̂j)(x̂j+1+kj+1y−kj(x̂1+k1y))− (∂αi−1/∂y)(x̂1+
k1y). Using (2.2) and (A.2)–(A.4), we arrive at

LVi ≤ −
i−1∑

j=1

cjz
4
j +

i−1∑

j=2

bjz
4
1 − ν1(z1)z4

1 − a00|e|4 +
i−1∑

j=1

aj1e
4
1 + Δi−1

(∣∣η
∣∣) + ai−1,0z

4
i

+

⎛

⎝1
Γ
θ̃ −

i−2∑

j=1

∂αj

∂θ̂
z3
j+1

⎞

⎠
( ˙̂θ − τi−1

)

+ z3
i

(
αi + Ωi − ∂αi−1

∂θ̂

˙̂θ + zi+1 − ∂αi−1

∂y
θ∗e1 − ∂αi−1

∂y
ϕ1
(
η, x
) − 1

2
∂2αi−1

∂y2 ψ1
(
η, x
)
ψT

1

(
η, x
)
)

+
3
2
z2
i Tr

{(
∂αi−1

∂y

)2

ψT
1

(
η, x
)
ψ1
(
η, x
)
}
.

(A.5)

Now, we estimate the last five terms, respectively, in the right-hand side of (A.5). According
to Assumption 3.1, (3.2), (4.7), and Lemma 2.6, there exist positive real numbers ai0, ai0, ai1,
ai2, ai3, ai4, bi2, bi3, bi4, smooth nonnegative functions γi1, γi2, γi3, γi4 such that

z3
i zi+1 ≤ ai0z

4
i + ai0z

4
i+1, −z3

i

∂αi−1

∂y
θ∗e1 ≤ ai1e

4
1 + θγi1(zi)z4

i ,

−z3
i

∂αi−1

∂y
ϕ1
(
η, x
) ≤ |zi|3

(
1 +
(
∂αi−1

∂y

)2
)1/2(

ϕ10
(∣∣η
∣∣) + ϕ11(z1)

)

≤ ai2ϕ
4
10

(∣∣η
∣∣) + bi2z

4
1 + θγi2(zi)z4

i ,

−1
2
∂2αi−1

∂y2 z3
i ψ1
(
η, x
)
ψT

1

(
η, x
) ≤ |zi|3

∣∣∣∣∣
∂2αi−1

∂y2

∣∣∣∣∣
(
ψ2

10

(∣∣η
∣∣) + ψ2

11(z1)
)

≤ ai3ψ
4
10

(∣∣η
∣∣) + bi3z

4
1 + θγi3(zi)z4

i ,

3
2
z2
i Tr

{(
∂αi−1

∂y

)2

ψT
1

(
η, x
)
ψ1
(
η, x
)
}
≤ 3z2

i

(
∂αi−1

∂y

)2(
ψ2

10

(∣∣η
∣∣) + ψ2

11(z1)
)

≤ ai4ψ
4
10

(∣∣η
∣∣) + bi4z

4
1 + θγi4(zi)z4

i .

(A.6)
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Choosing αi and τi as (4.17) and substituting (A.6) into (A.5), (4.18) holds, where ci > 0 is a
design parameter,

Δi

(∣∣η
∣∣) = Δi−1

(∣∣η
∣∣) + ai2ϕ

4
10

(∣∣η
∣∣ ) + ai3ψ

4
10

(∣∣η
∣∣) + ai4ψ

4
10

(∣∣η
∣∣), bi = bi2 + bi3 + bi4.

(A.7)
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We consider European options pricing with double jumps and stochastic volatility. We derived
closed-form solutions for European call options in a double exponential jump-diffusion model
with stochastic volatility(SVDEJD). We developed fast and accurate numerical solutions by using
fast Fourier transform (FFT) technique. We compared the density of our model with those of other
models, including the Black-Scholes model and the double exponential jump-diffusion model. At
last, we analyzed several effects on option prices under the proposed model. Simulations show that
the SVDEJD model is suitable for modelling the long-time real-market changes and stock returns
are negatively correlated with volatility. The model and the proposed option pricing method are
useful for empirical analysis of asset returns and managing the corporate credit risks.

1. Introduction

The classical Black-Scholes (BS) model [1] has long been known to result in systematically
biased option valuation. By adding jumps to the archetypal price process with Gaussian
innovations Merton [2] is able to partly explain the observed deviations from the benchmark
model which are characterized by fat tail and excess kurtosis in the returns distribution.
For an overview of “stylized facts” on asset returns see Cont [3]. Statistical properties of
implied volatilities are summarized in Cont et al. [4]. In the sequel also other authors develop
more realistic models, for example, the pure jump models of Eberlein and Keller [5], Madan
et al. [6], and Duffie et al. [7], stochastic volatility models of Steven [8], and stochastic
volatility model with normal jumps of Bates [9] and Keppo et al. [10]. The double exponential
jump-diffusion (DEJD) model, recently proposed by Kou [11], generates a highly skewed
and leptokurtic distribution and is capable of matching key features of stock and index
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returns. Moreover, the DEJD model leads to tractable pricing formulas for exotic and path
dependent options [12]. Accordingly, the DEJD model has gained wide acceptance. However,
the DEJD model cannot capture the volatility clustering effects, which can be captured by
stochastic volatility models [13]. Jump-diffusion models and the stochastic volatility model
complement each other: the stochastic volatility model can incorporate dependent structures
better, while the DEJD model has better analytical tractability, especially for path-dependent
options. Since allowing interest rates to be stochastic does not improve pricing performance
any further [14], the model that combines stochastic volatility and double exponential jump-
diffusion (SVDEJD) may be more reasonable.

In the BS setting, the probability measure has a well-known analytic form [15], but,
under stochastic volatility, it can only be obtained numerically. Monte Carlo simulation and
the finite difference method are usually used to value the options. But, the two techniques
require substantially more computing time and thus are difficult to be applied in real option
pricing. Recently, being fast, accurate, and easy to implement, Fourier transforms have been
widely used in valuing financial derivatives, for example, Carr and Madan [16] propose
Fourier transforms with respect to log-strike price; Duffie et al. [7] offer a comprehensive
survey that the Fourier methods are applicable to a wide range of stochastic processes;
Carr and Wu [17] apply the transforms to time-changed Lévy processes and the class of
generalized affine models. Hurd and Zhou [18] express the spread option payoff in terms
of the gamma function and FFT technique. For an overview of option pricing using Fourier
transforms, see Schmelzle [19].

The current paper extends the study of option pricing under the DEJD model in
three ways. First, we propose a model which combines the double jumps and stochastic
volatility. Second, using the martingale method, Fourier transform formula, and Feynman-
Kac theorem, we obtain a closed-form solution for European call options pricing under the
proposed model. Third, we obtain fast and accurate numerical solutions for European call
options pricing by FFT technique.

The rest of the paper is organized as follows. Section 2 develops the underlying pricing
model. Section 3 derives a closed-form solution for European call options pricing under
the proposed model. Section 4 provides approximation solutions for European call options
pricing by FFT technique. Section 5 numerically compares the density of the solutions to the
alternative models and analyzes several effects on potion prices. Section 6 concludes. Applied
program codes in Matlab package are presented in the appendix.

2. The Model

We consider an arbitrage-free, frictionless financial market where only riskless asset B and
risky asset S are traded continuously up to a fixed horizon date T . Let {Ω,F, {Ft}0≤t≤T , P}
be a complete probability space with a filtration satisfying the usual conditions, that is, the
filtration is continuous on the right and F0 contains all P -null sets. Suppose W(t), Wv(t) are
both standard Brownian motion, which is Ft adapted, and W(t) has correlation ρ with Wv(t).

Let S(t) represent the price for a stock or a stock portfolio. Generally, instantaneous
variance of asset returns in financial markets shows randomness; thus, the continuous part
of the price process, defined as Sc(t), is

dSc(t) = rSc(t)dt + σ
√
V (t)Sc(t)dW(t), (2.1)
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where r is risk-free rate and σ is nonnegative constant, and suppose Sc(0) = s, which can
be set equal to 1 without any loss of generality. The size of the diffusion component is
determined by V (t), which represents, absent of any jump occurring, the level of (stochastic)
return variance attributable to diffusion variations. For tractability, let V (t) follow a square-
root process:

dV (t) = (θv − αvV (t))dt + σv

√
V (t)dWv(t), (2.2)

where nonnegative constants θv, θv/αv, and σv, respectively, reflect the speed of adjustment,
the long-run mean, and the variation coefficient of V (t), and suppose V (0) = V0.

It has been suggested from extensive empirical studies that markets tend to have
both overreaction and underreaction to various good or bad news. One may interpret the
jump part of the model as the market response to outside news. Good or bad news arrives
according to a Poisson process, and the asset price changes in response according to the jump
size distribution. According to Kou [11], the jumps in the log-price are modeled as a sequence
of i.i.d. nonnegative random variables that occur at times determined by an independent
Poisson process N(t) with constant intensity λ > 0 such that Y = lnU has an asymmetric
double exponential distribution with the density

fY
(
y
)
= pη1e

−η1y1y≥0 + qη2e
η2y1y<0, η1 > 1, η2 > 0, (2.3)

where 1 denotes the indicator function, so 1y ≥ 0 equals 1 if y ≥ 0, but 0 otherwise. p, q ≥
0, p + q = 1 are up-move jump and down-move jump, respectively. Except for W(t) which
has correlation with Wv(t), all sources of randomness, W(t),Wv(t),N(t), Yj , and N(t), are
assumed to be independent.

Because of jumps and stochastic volatility, the risk-neutral probability measure is
not unique. Following Naik and Lee [20] and Kou [11], by using the rational expectations
argument with a HARA-type utility function for the representative agent, one can choose
a particular risk-neutral measure P ∗ so that the equilibrium price of an option is given by
the expectation under this risk-neutral measure of the discounted option payoff. Throughout
this paper, we assume that there exists a martingale probability measure P ∗ being equivalent
to P . Let X(t) be the sum of all the jumps which occur up to and including time t, J(t) =
exp[X(t)] − E[exp(X(t))], we have

J(t) = exp
[
X(t) − λt

(
pη1

η1 − 1
+

qη2

η2 + 1
− 1

)]
. (2.4)

Obviously, J(t) is a P -martingale. Finally, the price process S(t) is defined as

S(t) = Sc(t)J(t). (2.5)

Remark 2.1. The model contains most existing models as special cases. For example, we obtain
(1) the BS model by setting λ = 0 and θv = αv = σv = 0; (2) the SV model by setting λ = 0;
(3) the DEJD model by setting θv = αv = σv = 0.
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Let dW(t) = ρdWv(t) +
√

1 − ρ2dZ(t), where Z(t) is standard Brownian motion that is
Ft adapted, and independent of Wv(t), N(t), and random variables Uj . From Itŏ’s formula,
we have

lnS(t) = ln J(t) + lnSc(t)

= X(t) − λt
(

pη1

η1 − 1
+

qη2

η2 + 1
− 1

)
+ rt

+

[
ρσ

∫ t

0

√
V (t)dWv(t) − 1

2
σ2ρ2

∫ t

0
V (t)dt

]

+

[√
1 − ρ2σ

∫ t

0

√
V (t)dZ(t) − 1

2
σ2

(
1 − ρ2

)∫ t

0
V (t)dt

]

= X(t) − λt
(

pη1

η1 − 1
+

qη2

η2 + 1
− 1

)
+ rt + ξt + ςt.

(2.6)

3. A Closed-Form Solution of European Option Pricing

In this section, we derive closed-form solution of a European call option pricing under the
SVDEJD model. For a European put option, we can obtain easily corresponding result by the
put-call parity [1]. For this purpose, we need the following results.

Lemma 3.1. Supposing the variance process V (t) follows (2.2) and s1, s2 are any complex, one has

E

{
exp

[
−s1

∫T

0
V (t)dt − s2V (t)

]}
= exp[A(T) − B(T)V0], (3.1)

where

A(T) =
2θv
σ2
v

ln

[
2γe(1/2)(αv−γ)T

2γe−γT +
(
αv + γ + σ2

vs2
)(

1 − e−γT)
]
,

B(T) =

(
1 − e−γT)(2s1 − αvs2) + γs2

(
1 + e−γT

)

2γe−γT +
(
αv + γ + σ2

vs2
)(

1 − e−γT) ,

γ =
√
α2
v + 2σ2

vs1.

(3.2)

Proof. Let F(V, 0, T) = E{exp[−s1
∫T

0 V (t)dt − s2V (t)]}. Because of the affine structure of the
variance process (2.2), we obtain that F(V, 0, T) has a solution of the following form:

F(V, 0, T) = exp[A(T) − B(T)V0]. (3.3)
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From the Feynman-Kac formula, F(V, 0, T) is the solution of the following backward
Parabolic partial differential equation with the Cauchy problem:

∂F

∂t
+ (θv − αvV )

∂F

∂V
+

1
2
σ2
vV

∂2F

∂V 2
− s1VF = 0,

F(V, 0, 0) = exp(−s2V0).

(3.4)

Putting (3.3) in (3.4), we have

At(T) − θvB(T) = 0, A(0) = 0,

−Bt(T) +
1
2
σ2
vB

2(T) + αvB(T) − s1 = 0, B(0) = s2.
(3.5)

Solving (3.5), we can obtain the result of Lemma 3.1.

Lemma 3.2. Supposing the asset price S(T) follows (2.6) and z is any complex, one has

E
{

exp[−rT + z lnS(T)]
}
= exp

{
(z − 1)rT + λT

(
pη1

η1 − z +
qη2

η2 + z
− 1

)

− zλT
(

pη1

η1 − 1
+

qη2

η2 + 1
− 1

)
− zρσ

σv
(V (T) + θvT)

+
2θv
σ2
v

ln

[
2γe(1/2)(αv−γ)T

2γe−γT +
(
αv + γ + σ2

vs2
)(

1 − e−γT)
]

−
(
1 − e−γT)(2s1 − αvs2) + γs2

(
1 + e−γT

)

2γe−γT +
(
αv + γ + σ2

vs2
)(

1 − e−γT) V0

}
,

(3.6)

where

s1 = −(z − 1)z
1
2
σ2

(
1 − ρ2

)
− z

(
ρσ

σv
αv − 1

2
σ2ρ2

)
, s2 = −zρσ

σv
. (3.7)

Proof. Let φ(z) = E{exp [−rT + z lnS(T)]}. Because N(t) is independent of W(t),Wv(t),
and Z(t), we have

φ(T) = e(z−1)rTE
[
ez ln J(T)

]
E
[
ez(ξT+ςT )

]
= e(z−1)rTC(T)D(T). (3.8)

From (2.2) and (2.3), we have

C(T) = exp
[
λT

(
pη1

η1 − z +
qη2

η2 + z
− 1

)
− zλT

(
pη1

η1 − 1
+

qη2

η2 + 1
− 1

)]
. (3.9)
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Because Wv(t) is a standard Brownian motion, we have

E(ςT ) = −1
2
σ2

(
1 − ρ2

)∫T

0
V (T)dt, Var(ςT ) = σ2

(
1 − ρ2

)∫T

0
V (T)dt. (3.10)

Then,

D(T) = E

{
exp

[
(z − 1)z

1
2
σ2

(
1 − ρ2

)∫T

0
V (t)dt + zξT

]}

= exp
{
−zρσ

σv
[V (T) + θvT]

}

× E
{

exp
[
(z − 1)z

1
2
σ2

(
1 − ρ2

)
+ z

(
ρσ

σv
αv − 1

2
σ2ρ2

)]∫T

0
V (t)dt − zρσ

σv
V0

}
.

(3.11)

Let s1 = −(z − 1)z(1/2)σ2(1 − ρ2) − z((ρσ/σv)αv − (1/2)σ2ρ2), and s2 = −z(ρσ/σv). From
Lemma 3.1, we have

D(T) = exp

{
−zρσ

σv
(V(T) + θvT) +

2θv
σ2
v

ln

[
2γe(1/2)(αv−γ)T

2γe−γT +
(
αv + γ + σ2

vs2
)(

1 − e−γT)
]

−
(
1 − e−γT)(2s1 − αvs2) + γs2

(
1 + e−γT

)

2γe−γT +
(
αv + γ + σ2

vs2
)(

1 − e−γT) V0

}
.

(3.12)

From (3.8), (3.9), (3.10) and (3.12), we can obtain the required Lemma 3.2.

Lemma 3.3. Suppose ϕ(u) = E[exp(iu lnS(T)] is the characteristic function of lnS(T); then

ϕ(u) =

[
2δ

2δ + (αv − δ − iuρσσv)(1 − e−δT )

]2θv/σ2
v

× exp
{
iu lnS(t) +

θv(αv − δ)T
σ2
v

− iuθvσρT

σv

+ λT

[
pη1

η1 − iu +
qη2

η2 + iu
− 1 − iu

(
pη1

η1 − 1
+

qη2

η2 + 1
− 1

)]

+iurT + εV0

}
,

(3.13)

where

δ =
√(

αv − iuρσσv

)2 + iu(1 − iu)σ2σ2
v,

ε =
iu(iu − 1)σ2(1 − e−δT)

2δ +
(
αv − δ − iuρσσv

)(
1 − e−δT) .

(3.14)
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Proof. Let φ(z) = E{exp [−rT + z lnS(T)]}. Because

ϕ(u) = E
[
exp(iu lnS(T))

]
=

E
{

exp[−rT + iu lnS(T)]
}

E
[
exp(−rT)] =

φ(iu)
φ(0)

, (3.15)

from Lemma 3.2, we can obtain the required Lemma 3.3.

Theorem 3.4. Let k denote the log of the strike price K, xT = ln(S(T)), and CT (k) the desired value
of a T -maturity call option with strike exp(k). Assume that, under P ∗, the underlying nondividend-
paying stock price S(t) and its components are given by (2.1)–(2.5), ϕ(u) is the characteristic function
of xT , q(x) is the density of xT ; then the initial call value CT (k) is written as

CT (k) =
1
2

(
S(t) − e−rTK

)

+
1
π

∫∞

0
S(t)�

[
eiukϕT (u − i)

iu

]
− e−rTK�

[
eiukϕT (u)

iu

]
du,

(3.16)

where �[·] represents real part.

Proof. From the risk-neutral theory, we have

CT (k) = E
[
e−rT(S(T) −K)+

]

= e−rT
∫+∞

0
(S(T) −K)+q(S(T))dS(T)

= e−rT
∫+∞

k

exT q(x)dx − e−rTK
∫+∞

k

q(x)dx

= SΠ1 − e−rTΠ2.

(3.17)

Introducing a change of measure from P ∗ to Q∗ by a Radon-Nikodym derivative, we get

dQ∗

dP ∗
=

exT

E[exT ]
. (3.18)

With this new measure Q∗, the Fourier transform of Π1 is defined as

EQ∗
[
eiuxT

]
=

ϕ(u − i)
ϕ(−i) . (3.19)

Because of the no-arbitrage condition, we can obtain

Π1 =
1
2
+

1
π

∫∞

0
�
[
e−iukϕT (u − i)

iuϕT (−i)

]
du. (3.20)
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From the Fourier transform formula, the probability density for our model is given by

q(x) =
1
π

∫+∞

0
e−iukϕ(u)du. (3.21)

Hence,

Π2 =
∫+∞

k

(
1
π

∫+∞

0
e−iukϕ(u)du

)
dx. (3.22)

Changing the order of integration, we have

Π2 =
1
2
+

1
π

∫∞

0
�
[
e−iukϕT(u)

iu

]
du. (3.23)

From (3.17), (3.20), and (3.23), we can obtain the required Theorem 3.4.

Remark 3.5. In (3.16), CT (k) tends to S0 not zero as k goes to −∞. Hence, CT (k) is not L1

(absolutely integrable) and a Fourier transform does not exist.

4. Fast Fourier Transform for European Option Pricing

Since the integrand in (3.16) is singular at the required evaluation point u = 0, the FFT
cannot be applied directly to evaluate the integrals we mentioned above. Therefore, instead of
solving for the risk-neutral exercise probabilities of finishing in-the-Money (ITM), Carr and
Madan [16] introduce a new technique with the key idea to calculate the Fourier transform of
a modified call option price with respect to the logarithmic strike price. With this specification
and a FFT routine, a whole range of option prices can be obtained within a single Fourier
inversion. In this section, we develop the numerical solutions of the prices by using the idea
of Carr and Madan [16].

4.1. Fourier Transform of ITM and at-the-Money (ATM) Option Prices

By introducing an exponential damping factor eαk with α > 0, it is possible to make the
integrand in (3.16) be square integrable. We modified the pricing function (3.16) by

CT (k) =
exp(−αk)

π

∫∞

0
e−ivkψT (v)dv, (4.1)

where ψT (v) = e−rTϕT (v − (α + 1)i)/(α2 + α − v2 + i(2α + 1)v).
This method is viable when α is chosen in a way that the damped option price is

well behaved. Damping the option price with eαk makes it integrable for the negative axis
k < 0. On the other hand, for k > 0 the option prices increase by the exponential eαk, which
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influences the integrability for the positive axis. A sufficient condition of cT (k) to be integrable
for both sides (square integrability) is given by ψ(0) being finite, that is,

ψ(0) =
e−rTϕT (−(α + 1)i)

α2 + α
<∞. (4.2)

Thus we need ϕT (−(α + 1)i) <∞, which is equivalent to

EQ
[
S(T)1+α <∞

]
. (4.3)

Therefore, cT (k) is well behaved when the moments of order 1 + α of the underlying asset
exist and are finite. If not all moments of S(T) exist, this will impose an upper bound on α.
We find that one quarter of this upper bound serves as a good choice for α.

Using the trapezoid rule for the integral on the right-hand side of (4.1) and setting
vj = η(j − 1), an approximation for CT (k) is

CT (k) ≈
exp(−αk)

π

N∑

j=1

e−ivjkψT

(
vj

)
η. (4.4)

The FFT returns N values of k, and we employ a regular spacing of size h so that our values
for k are

ku = −b + h(u − 1) for u = 1, . . . ,N. (4.5)

This gives us log-strike levels ranging from −b to b, where

b =
1
2
Nh. (4.6)

In order to apply FFT we define

ηh =
2π
N

. (4.7)

To obtain an accurate integration with larger values of η, we incorporate Simpson’s
rule weightings into our summation. From (4.1)–(4.7)and Simpson’s rule weightings, we
obtain ATM and ITM call value as

C(ku) =
exp(−αku)

π

N∑

j=1

e−i(2π/N)(j−1)(i−1)eibvj ψ
(
vj

)η
3

[
3 + (−1)j −ωj−1

]
, (4.8)

where ωn is the Kronecker delta function that is unity for n = 0 and zero otherwise. The
summation in (4.8) is an exact application of the FFT.
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4.2. Fourier Transform of out-of-the-Money (OTM) Option Prices

In the previous section call values are calculated by an exponential function to obtain square
integrable function whose Fourier transform is an analytic function of the characteristic
function of the log-price. But, for very short maturities, the call value approaches its non
analytic intrinsic value causing the integrand in the Fourier inversion to be high oscillate,
and therefore difficult to integrate numerically. We introduce an alternative approach that
works with time values only, which is quite similar to the previous approach. But in this
case the call price is obtained via the Fourier transform of a modified time value, where the
modification involves a hyperbolic sine function instead of an exponential function.

Let zT (k) denote the time value of an OTM option, that is, for k < xT we have the put
price for zT (k) and for k < xT we have the call price. Scaling S0 = 1 for simplicity, zT (k) is
defined by

zT (k) = e−rT
∫∞

−∞

[(
ek − exT

)
1xT<k,k<0 +

(
exT − ek

)
1xT>k,k>0

]
q(x)dx, (4.9)

where q(x) is the risk-neutral density of the log-price xT . Let ζT (u) be the Fourier transform
of zT (k):

ζT (u) =
∫∞

−∞
eiukzT (k)dk. (4.10)

By considering a damping function sinh(αk), the time value of an option follows a Fourier
inversion:

zT (k) =
1

sinh(αk)
1
π

∫∞

0
e−iukΥT (u)du, (4.11)

where ΥT (u) = (ζT (u − iα) − ζT (u + iα))/2.
The use of the FFT for calculating OTM option prices is similar to (4.8). The only

differences are that they replace the multiplication by exp(−αku) with a division by sinh(αk)
and the function call to ψ(v) is replaced by a function call to ΥT (u).

5. Simulation Studies

In this section, to compare across the BS, DEJD, and SVDEJD models, we analyze the
probability densities of these models. Then, we analyze mainly the impact of ρ and volatility
of volatility σv on option pricing under the SVDEJD model. For our FFT methods, we used
N = 4096 points in our quadrature, implying a log-strike spacing of h = π/300 = 0.01047,
which is adequate for practice. For the choice of the dampening coefficient in the transform
of the modified call price, we used a value of α = 2.55. For the modified time value, we
used α = 1.55. Other parameter values used in the computation are listed in Table 1. (We
have used analytic moments to set plausible parameter values for the model. For a formal
econometric estimator, one could use these moments to develop a generalized method of
moments estimator within the framework of Hall and Inoue [21].)
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Table 1: Default parameters for simulation of option prices.

Parameter Value

Probability of upward p = 0.6
Volatility of asset price σ = 0.16
Mean of the exponential distribution of upward η1 = 40
Mean of the exponential distribution of downward η2 = 40
Intensity of the Poisson process λ = 10
Interest rate r = 0.05
Initial asset price S0 = 100
Initial variance V0 = 1
Rate of reversion av = 0.3
Long-run variance θv = 0.6
Volatility of volatility σv = 0.25
Correlation between returns and volatility ρ = −0.8

5.1. Probability Densities under Alternative Models

We compare the probability densities of the SVDEJD model, the BS model, and the DEJD
model to verify the rationality of our model. Suppose ϕ(u) is the characteristic function of xT

and q(x) the probability density of our model. From FFT algorithm, q(x) can be approximated
by

q(x) ≈ 1
π

N∑

j=1

e−i(2π/N)(j−1)(k−1)ϕ(u) k = 1, . . . ,N. (5.1)

The density q has the mean and variance given by

Eq(Q) =
ϕ′(0)
i

,

Varq(Q) = −ϕ′′(0) + (
ϕ′(0)

)2
.

(5.2)

Figure 1 shows the figures of the probability density q(x), compared with the normal
density with the same mean and variance given by (5.2). The first figure compares the overall
shapes of the densities of the SVDEJD model and the BS model, the second one details the
shapes around the peak areas, and the last one shows the right tail. From Figure 1, we can
see that the leptokurtic and skewness feature of the density of our model is quite evident.
Moreover, additional numerical plots suggest that the feature of skewness becomes more
significant if |ρ| increases, which is impossible for the DEJD model.

We also compare the short-term and long-term densities of the SVDEJD model, the BS
model, and the DEJD one. Figure 2 shows their densities under T = 3 months and T = 2
years. From Figure 2, we can see that the SVDEJD model and the DEJD model generate
virtually identical densities for short-term options, with a slight departure occurring between
the two densities in the upper tail. This means that differential pricing performance between
the SVDEJD model and the DEJD model is unlikely to occur when they are applied to price
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Figure 1: Comparison of the probability densities of the SVDEJD model and the BS model. Except for the
maturity time T = 2 years, the parameters used here are shown in Table 1.

short-term OTM puts and that only when they are applied to deep ITM puts (and deep OTM
calls) can differences be observed between these models. Yet, compared to the BS model
density, the densities of the two models are distinctly different: they all have leptokurtic and
skewness feature. Therefore, the two models can potentially correct the BS model’s tendency
to underprice deep OTM puts and overprice deep OTM calls. The long-term density curves
in Figure 2 still show significantly different pricing structures between the BS and its two
alternatives. But, more importantly, the densities of the SVDEJD model and the DEJD model
also exhibit different shapes now. The SVDEJD density has higher peak and assigns more
weight to both the entire lower tail and the far upper tail, but less weight to those payoffs
than the DEJD.

Our simulation studies have demonstrated that the SVDEJD model has better
performance than the DEJD one on pricing long-term options, while both the DEJD model
and the SVDEJD model have better performance than the BS model.
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Figure 2: Comparison of the short-term and long-term probability densities of the SVDEJD model, the BS
model, and the DEJD model. Except for the maturity time T = 3 months and T = 2 years, the parameters
used here are shown in Table 1.

Table 2: The effects of volatility of volatility, exercise price K, maturity time T , and correlation ρ on option
values.

Strike price
ρ = −0.8 ρ = 0 ρ = 0.8

σv = 0.15 σv = 0.25 σv = 0.15 σv = 0.25 σv = 0.15 σv = 0.25

T = 3 months
90 11.5004 11.5122 11.4827 11.4829 11.4647 11.4527
95 7.5901 7.6000 7.5745 7.5741 7.5585 7.5472
100 4.4325 4.4323 4.4315 4.4307 4.4303 4.4287
105 2.5442 2.5347 2.5573 2.5567 2.5567 2.5780
110 1.1258 1.1109 1.1476 1.1476 1.1690 1.1830
115 0.5169 0.5043 0.5361 0.5364 0.5532 0.5681
T = 2 years
90 22.5229 22.5682 22.4438 22.4398 22.3592 22.2959
95 19.4525 19.4825 19.3935 19.3872 19.3293 19.2776
100 16.6650 16.6750 16.6337 16.6255 16.5979 16.5633
105 14.3313 14.3225 14.3271 14.3179 14.3189 14.3018
110 11.9850 11.9507 12.0183 12.0083 12.0476 12.0549
115 10.1354 10.0809 10.1994 10.1896 10.2594 10.2871

5.2. Effects of the Main Parameter on Option Values

In Table 2, we use the SVDEJD model to examine the effects of volatility of volatility σv, the
correlation coefficient ρ, exercise price K, and maturity time T on option values. We analyze
the prices of three-month call options and two-year call options. To examine the effect of
the negative correlation coefficient, we have calculated the model with ρ = −0.8, ρ = 0, and
ρ = 0.8. The prices for three-month call options associated with volatility of volatility σv = 0.15
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and σv = 0.25 are relatively close. With ρ = −0.8, the largest price difference is 0.0149; with
ρ = 0, the largest price difference is only 0.0008; with ρ = 0.8, the largest price difference
is 0.0213. However, the difference is significantly larger when longer-time horizons such as
two-year call options are valued. With ρ = −0.8, the largest price difference is an increase
on 0.0149 to 0.0545 and the effect of volatility of volatility is an increase for ITM calls and a
decrease for OTM calls. With ρ = 0, the largest price difference is increase of 0.0008 to 0.01
and the effect of volatility of volatility is a small decreas that is negligible for option values.
With ρ = 0.8, the largest price difference is an increase of 0.0213 to 0.0633 and the effect of
volatility of volatility is a decrease for ITM and ATM calls and an increase for OTM calls. The
correlation parameter ρ has several effects depending on the relation between the strike price
and the current stock price. A negative ρ tends to produce higher values for ITM calls and
lower values for OTM money calls.

We have also compared the model with the BS model, which can be interpreted as
a first-order approximation with no jumps, and ρ = 0. A common practice is to set the
implied volatility in the BS model so that the model matches the price for the option with
a strike price closest to the current stock price. For some comparisons not reported here, we
have set the implied volatility in the BS model so that it matches the price generated by the
stochastic volatility model for an ATM option. The BS implied volatility is very close to the
expected volatility under the risk-neutral distribution when short-term options are valued.
When longer-term options are used, there is a significant difference between the BS implied
volatility and the expected volatility. As an approximation, the BS model tends to undervalue
ITM calls and overvalue OTM calls.

6. Conclusion

The SVDEJD model incorporates several important features of stock returns. We derive a
closed-form solution for European call options in the model by using the martingale method,
Fourier inversion transform formula, and Feynman-Kac theorem. Using FFT, we obtain fast
and accurate numerical solution to European option under the model. The comparison
of densities of the alternative models shows that the SVDEJD model has better pricing
performance on long-time options. An analysis of the model reveals that volatility of volatility
σv and the correlation coefficient ρ have significant impact on option values, especially
long-time option, stock returns are negatively correlated with volatility, and these negative
correlations are important for option valuation.

Appendix

A.1. Matlab Codes for ITM and ATM Options Pricing by FFT

function CV =inSVDexpJ(ata1, ata2, lamta, sigma, thetav, alphav,

rho, sigmav, r, p, s0, v0, strike, T)

x0 = log(s0)

alpha = 2.55

N = 4096

c = 600
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eta = c/N

b =pi/eta

u = [0:N-1]∗eta

lamda = 2∗b/N

position = (log(strike) + b)/lamda + 1

v = u - (alpha+1)∗i

k=p∗ata1/(ata1-1)+(1-p)∗ata2/(ata2+1)-1

l=p∗ata1./(ata1-i∗v)+(1-p)∗ata2./(ata2+i∗v)

m=sqrt((alphav-i∗v∗rho∗sigma∗sigmav).∧2+i∗v.∗(1-i∗v)∗(sigma ∗ sigmav)∧2)

n=2∗m+(alphav-m-i∗v∗rho∗sigma∗sigmav).∗(1-exp(-m∗T))

A=(2∗m./n).∧(2∗thetav/sigmav∧2)

B=i∗v∗x0+(thetav∗(alphav-m)∗T)/sigmav∧2-(i∗v∗rho∗sigma∗thetav∗T)/sigmav. . .

+lamta∗T∗(l-i∗v∗k-1)+i∗v∗r∗T

C=(i∗v.∗(i∗v-1)∗sigma∧2.∗(1-exp(-m∗T)))./n

charFunc=A.∗exp(C∗v0+B)

ModifiedCharFunc = charFunc∗exp(-r∗T)./(alpha∧2+alpha - u.∧2 + i∗(2∗alpha
+1)∗u)

SimpsonW = 1/3∗(3 + (−1).∧[1:N] - [1, zeros(1,N-1)])

FftFunc = exp(i∗b∗u).∗ModifiedCharFunc∗eta.∗SimpsonW

payoff = real(fft(FftFunc))

CallValueM = (exp(-log(strike)∗alpha))’∗payoff/pi

format short

CV= CallValueM(round(position)).

A.2. Matlab Codes for OTM Options Pricing by FFT

function CV=outSVDexpJ(ata1,ata2,lamta,sigma,thetav,alphav,

rho,sigmav,r,p,s0,v0,strike,T)

x0 = log(s0)

alpha = 1.55

N=4096

c = 600

eta = c/N

b =pi/eta

u = [0:N-1]∗eta

lamda = 2∗b/N

position = (log(strike) + b)/lamda + 1

w1 = u-i∗alpha
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w2 = u+i∗alpha

v1 = u-i∗alpha -i

v2 = u+i∗alpha -i

k=p∗ata1/(ata1-1)+(1-p)∗ata2/(ata2+1)-1

l1=p∗ata1./(ata1-i∗v1)+(1-p)∗ata2./(ata2+i∗v1)

m1=sqrt((alphav-i∗v1∗rho∗sigma∗sigmav).∧2+i∗v1.∗(1-i∗v1)∗(sigma∗sigmav)∧2)

n1=2∗m1+(alphav-m1-i∗v1∗rho∗sigma∗sigmav).∗(1-exp(-m1∗T))

A1=(2∗m1./n1).∧(2∗thetav/sigmav∧2)

B1=i∗v1∗x0+(thetav∗(alphav-m1)∗T)/sigmav∧2-(i∗v1∗rho∗sigma∗thetav∗T)/sigmav. . .

+lamta∗T∗(l1-i∗v1∗k-1)+i∗v1∗r∗T

C1=(i∗v1.∗(i∗v1-1)∗sigma∧2.∗(1-exp(-m1∗T)))./n1

charFunc1=A1.∗exp(C1∗v0+B1)

ModifiedCharFunc1 = exp(-r∗T)∗(1./(1+i∗w1). . .

-exp(r∗T)./(i∗w1) - charFunc1./(w1.∧2 - i∗w1))

l2=p∗ata1./(ata1-i∗v2)+(1-p)∗ata2./(ata2+i∗v2)

m2=sqrt((alphav-i∗v2∗rho∗sigma∗sigmav).∧2+i∗v2.∗(1-i∗v2)∗(sigma∗sigmav)∧2)

n2=2∗m2+(alphav-m2-i∗v2∗rho∗sigma∗sigmav).∗(1-exp(-m2∗T))

A2=(2∗m2./n2).∧(2∗thetav/sigmav∧2)

B2=i∗v2∗x0+(thetav∗(alphav-m2)∗T)/sigmav∧2-(i∗v2∗rho∗sigma∗thetav∗T)/sigmav. . .

+lamta∗T∗(l2-i∗v2∗k-1)+i∗v2∗r∗T

C2=(i∗v2.∗(i∗v2-1)∗sigma∧2.∗(1-exp(-m2∗T)))./n2

charFunc2=A2.∗exp(C2∗v0+B2)

ModifiedCharFunc2 = exp(-r∗T)∗(1./(1+i∗w2)- exp(r∗T)./(i∗w2). . .

- charFunc2./(w2.∧2 - i∗w2))

ModifiedCharFuncCombo = (ModifiedCharFunc1 - ModifiedCharFunc2)/2

SimpsonW = 1/3∗(3 + (−1).∧[1:N] - [1, zeros(1,N-1)])

FftFunc = exp(i∗b∗u).∗ModifiedCharFuncCombo∗eta.∗SimpsonW

payoff = real(fft(FftFunc))

CallValueM = payoff/pi/sinh(alpha∗log(strike))

format short

CV= CallValueM(round(position)).
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This paper investigates the problem of the global stabilization via partial-state feedback and adap-
tive technique for a class of high-order stochastic nonlinear systems with more uncertainties/un-
knowns and stochastic zero dynamics. First of all, two stochastic stability concepts are slightly
extended to allow the systems with more than one solution. To solve the problem, a lot of substan-
tial technical difficulties should be overcome since the presence of severe uncertainties/unknowns,
unmeasurable zero dynamics, and stochastic noise. By introducing the suitable adaptive updated
law for an unknown design parameter and appropriate control Lyapunov function, and by using
the method of adding a power integrator, an adaptive continuous (nonsmooth) partial-state
feedback controller without overparameterization is successfully designed, which guarantees that
the closed-loop states are bounded and the original system states eventually converge to zero,
both with probability one. A simulation example is provided to illustrate the effectiveness of the
proposed approach.

1. Introduction

In the past decades, stability and stabilization for stochastic nonlinear systems have been
vigorously developed [1–13]. As the early investigation in the area, in [1–3], some quite fun-
damental notations have been proposed to characterize different types of stochastic stability
and, meanwhile for which, sufficient conditions have been separately provided. As the recent
investigation, works [4] and [3, 5] considered stabilization problems by using Sontag’s
formula and backstepping method, respectively, and stimulated a series of subsequent works
[6–13].

The control designs for classes of high-order nonlinear systems have received intense
investigation recently and developed the so-called method of adding a power integrator which
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is based on the idea of the stable domain [14] and can be viewed as the latest achievement of
the traditional backstepping method [15]. By applying such skillful method, smooth state-
feedback control design can be achieved when some severe conditions are imposed on
systems (see, e.g., [16, 17]), while, without those conditions, only nonsmooth state-feedback
control can be possibly designed (see, e.g., [18–23]). As a natural extension, the output-
feedback case was considered in [24], for less available information, which is a more inter-
esting and difficult subject of intensive study. Another extension is the control design for
high-order stochastic nonlinear systems, which attract plenty of attention because of the
presence of stochastic disturbance and cannot be solved by simply extending the methods
for deterministic systems (see, e.g., [25–31]). To the authors’ knowledge, this issue has not
been richly investigated and on which many significant problems remain unsolved.

This paper considers the global stabilization for the high-order stochastic nonlinear
systems described by (3.1) below, relaxes the assumptions imposed on the systems in [25–
28], and obtains much more general results than the previous ones. Since the presence of
system uncertainties, some nontrivial obstacles will be encountered during control design,
which force many skillful adaptive techniques to be employed in this paper. Furthermore,
for the stabilization problem, finding a suitable and available control Lyapunov function is
necessary and important. In this paper, a novel control Lyapunov function is first successfully
constructed, which is available for the stabilization of system (3.1) and different from those
introduced in [25–28] which are unusable here. Then, by using the method of adding a power
integrator, an adaptive continuous partial-state feedback controller is successfully achieved
to guarantee that for any initial condition the original system states are bounded and can be
regulated to the origin almost surely.

The contributions of the paper are highlighted as follows.

(i) The systems under investigation are more general than those studied in closely related works
[25–28]. Different from [26], the zero dynamics of the systems are unmeasurable
and disturbed by stochastic noise. Moreover, the restrictions on the system nonlin-
ear terms are weaker than those in [25–28], and in particular, the assumption in [27]
that the low bounds of unknown control coefficients are known has been removed.

(ii) The paper considerably generalizes the results in [17, 22], and more importantly, no over-
parameterization problem is present in the adaptive control scheme. In fact, the paper
presents the stochastic counterpart of the result in [22] under quite weak assump-
tions. Particularly, the paper develops the adaptive control scheme without over-
parameterization (one parameter estimate is enough). Furthermore, it is easy to
see that the scheme developed can be used to eliminate the overparameterization
problem in [17, 21, 22] (reduce the number of parameter estimates from n + 1 to 1).

(iii) The formulation of zero dynamics is typical and suggestive. In fact, to make the formu-
lation of zero dynamics more representational, we adopt partial assumptions on
zero dynamics in [8, 9]. It is worth pointing out that the formulation of the gain
functions of stochastic disturbance is somewhat general than those in [8, 9].

The remainder of this paper is organized as follows. Section 2 presents some necessary
notations, definition and preliminary results. Section 3 describes the systems to be studied,
formulates the control problem, and presents some useful propositions. Section 4 gives the
main contributions of this paper and presents the design scheme to the controller. Section 5
gives a simulation example to demonstrate the effectiveness of the theoretical results. The
paper ends with an Appendices A and B.
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2. Notations and Preliminary Results

Throughout the paper, the following notations are adopted. Rn denotes the real n-dimension-
al space. R≥1

odd denotes the set {q1/q2 | q1 and q2 are odd positive integers, and q1 ≥ q2}. R+

denotes the set of all positive real numbers. For a given vector or matrix X, XT denotes its
transpose, Tr{X} denotes its trace when X is square, and ‖X‖ denotes the Euclidean norm
when X is a vector. Ck denotes the set of all functions with continuous partial derivatives
up to the kth order.K denotes the set of all functions from R+ to R+, which are continuous,
strictly increasing, and vanishing at zero, andK∞ denotes the set of all functions which are
of classK and unbounded.

Consider the general stochastic nonlinear system

dx(t) = f(t, x)dt + g(t, x)dw, (2.1)

where x ∈ Rn is the system state vector with the initial condition x(0) = x0; drift term
f : R+ × Rn → Rn and diffusion term g : R+ × Rn → Rn × Rm are piecewise continuous and
continuous with respect to the first and second arguments, respectively, and satisfy f(t, 0) ≡ 0
and g(t, 0) ≡ 0; w(t) ∈ Rm is an independent standard Wiener process defined on a complete
probability space (Ω,F, P) with Ω being a sample space, F a σ-algebra on Ω, and P a
probability measure.

Since both f(·) and g(·) are only continuous, not locally Lipschitz, system (2.1) may
not have the solution in the classical sense as in [7, 9]. However, the system always has
weak solutions which are essentially different from the classical (or strong) solution since the
former may not be unique and may be defined on a different probability space (Ω′,F′, P ′).
The following definition gives the rigorous characterization of the weak solution of system
(2.1), and for more details of weak solution, we refer the reader to [32, 33].

Definition 2.1. For system (2.1), if a continuous stochastic process x(t) defined on a probability
space (Ωx,Fx, Px) with a filtration {Fx,t}t≥0 and an m-dimensional Brownian motion w(t)
adapted to {Fx,t}t≥0, such that for all t ∈ [0, τx,+∞), the integrals below are well-defined and
x(t) satisfies

x(t) = x0 +
∫ t

0
f(s, x(s))ds +

∫ t

0
g(s, x(s))dw(s), (2.2)

then x(t) is called a weak solution of system (2.1), where τx,+∞ denotes either +∞ or the finite
explosion time of solution x(t) (i.e., τx,+∞ = limr→+∞ inf{s ≥ 0 : ‖x(s)‖ ≥ r}).

To characterize the stability of the origin solution of system (2.1), as well as the com-
mon statistic property of all possible weak solutions of the system, we slightly extend the
classical stochastic stability concepts of �������� �����	 
� �����
�
�� ��� ��������

��������
����� �����	 
� �����
�
�� given in [7]. This extension is inspired by the
deterministic analog in [34] and allows the above two stability concepts applicable to the
systems with more than one weak solution.
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Definition 2.2. The origin solution of system (2.1) is �������� �����	 
� �����
�
�� if, for
all ε > 0, for any weak solution x(t) which is defined on its corresponding probability space
(Ωx,Fx, Px), there exists a classK function γx(·) such that

Px

{‖x(t)‖ ≤ γx(‖x0‖)
} ≥ 1 − ε, ∀t ≥ 0, ∀x0 ∈ Rn \ {0}, (2.3)

and �������� ��������
����� �����	 
� �����
�
�� if it is globally stable in probabil-
ity and for any weak solution x(t),

Px

{
lim

t→+∞
‖x(t)‖ = 0

}
= 1, ∀x0 ∈ Rn. (2.4)

More importantly, we have the following theorem, which can be regarded as the ver-
sion of Theorem 2.1 of [7] in the setting of more than one weak solution, provides the suf-
ficient conditions for the above two extended stability concepts, and consequently will play
a key role in the later development. By comparison, one can see that Theorem 2.3 preserves
the main conclusion of Theorem 2.1 of [7] except for the uniqueness of strong solution. By
some minor/trivial modifications to the proofs of Theorem 3.19 in [35] (or that of Lemma 2
in [36]) and Theorem 2.4 in [37], it is not difficult to prove Theorem 2.3.

Theorem 2.3. For system (2.1), suppose that there exists a C2 function V (·)which is positive definite
and radially unbounded, such that

LV (x) :=
∂V

∂x
f(s, x) +

1
2

Tr

{
gT (s, x)

∂2V

∂x2 g(s, x)

}
≤ −W(x), ∀s ≥ 0, ∀x ∈ Rn, (2.5)

whereW(·) is continuous and nonnegative. Then the origin solution of (2.1) is globally stable in prob-
ability. Furthermore, ifW(·) is positive definite, then for any weak solution x(t) defined on probability
space (Ωx,Fx, Px), there holds Px{limt→+∞‖x(t)‖ = 0} = 1.

Proof. From Theorem 2.3 in [33, page 159], it follows that system (2.1) has at least one weak
solution. We use x(t) to denote anyone of the weak solutions, which is defined on its cor-
responding probability space (Ωx,Fx, Px) and on [0, τx,+∞) where τx,+∞ denotes either +∞ or
the finite explosion time of the weak solution x(t).

First, quite similar to the proof of Theorem 3.19 in [35, page 95-96] or that of Lemma 2
in [36], we can prove that Px{τx,+∞ = +∞} = 1 (namely, all weak solutions of system (2.1)
are defined on [0,+∞)) and that the origin solution of system (2.1) is globally stable in
probability.

Second, very similar to the proof of Theorem 2.4 in [37, page 114-115], we can show
that if W(·) is positive definite, then for any weak solution x(t), it holds Px{limt→+∞‖x(t)‖ =
0} = 1.

We next provide three lemmas which will play an important role in the later devel-
opment. In fact, Lemma 2.4 can be directly deduced from the well-known Young’s Inequality,
and the proofs of Lemmas 2.5 and 2.6 can be found in [19, 20].
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Lemma 2.4. For any c > 0, d > 0, ε > 0, there holds

|x|c∣∣y∣∣d ≤ c

c + d
ε|x|c+d + d

c + d
ε−c/d

∣∣y
∣∣c+d, ∀x ∈ R, ∀y ∈ R. (2.6)

Lemma 2.5. For any continuous function g : Rm × Rn → R, there are smooth functions a : Rm →
R+, b : Rn → R+, c : Rm → [1,+∞), and d : Rn → [1,+∞) such that

∣∣g
(
x, y
)∣∣ ≤ a(x) + b

(
y
)
,

∣∣g
(
x, y
)∣∣ ≤ c(x)d

(
y
)
, ∀x ∈ Rm, ∀y ∈ Rn. (2.7)

Lemma 2.6. For any p ≥ 1, and any x ∈ R, y ∈ R, there hold
∣∣x + y

∣∣p ≤ 2p−1∣∣xp + yp
∣∣,

(|x| + ∣∣y∣∣)1/p ≤ |x|1/p + ∣∣y∣∣1/p ≤ 2(p−1)/p(|x| + ∣∣y∣∣)1/p
,

(2.8)

and, in particular, if p ∈ R≥1
odd , |x − y|p ≤ 2p−1|xp − yp|.

3. System Model and Control Objective

In this paper, we consider the global adaptive stabilization for a class of uncertain high-order
stochastic nonlinear systems in the following form:

dη = f0
(
x, η
)
dt + g0

(
x, η
)
dw,

dx1 = d1
(
x, η
)
x
p1

2 dt + f1
(
x, η
)
dt + gT

1

(
x, η
)
dw,

...

dxn−1 = dn−1
(
x, η
)
x
pn−1
n dt + fn−1

(
x, η
)
dt + gT

n−1

(
x, η
)
dw,

dxn = dn

(
x, η
)
upndt + fn

(
x, η
)
dt + gT

n

(
x, η
)
dw,

(3.1)

where η ∈ Rm1 is the unmeasurable system state vector, called zero dynamics; x =
[x1, . . . , xn]T ∈ Rn and u ∈ R are the measurable system state vector and the control input,
respectively; the system initial condition is η(0) = η0, x(0) = x0; pi ∈ R≥1

odd , i = 1, . . . , n are
said the system high orders; f0 : Rn × Rm1 → Rm1 , fi : Rn × Rm1 → R, i = 1, . . . , n and
g0 : Rn × Rm1 → Rm1×m, gi : Rn × Rm1 → Rm, i = 1, . . . , n are unknown continuous functions,
called the system drift and diffusion terms, respectively; di : Rn × Rm1 → R, i = 1, . . . , n are
uncertain and continuous, called the control coefficients; w ∈ Rm is an independent standard
Wiener process defined on a complete probability space (Ω,F, P) with Ω being a sample
space, F a σ-algebra on Ω, and P a probability measure. Besides, for the simplicity of
expression in later use, let xn+1 = u and x[k] = [x1, . . . , xk]

T .
Differential equations (3.1) describe a large class of uncertain high-order stochastic

nonlinear systems, for which some tedious technical difficulties will be encountered in control
design mainly due to the presence of the stochastic zero dynamics and the uncertainties/
unknowns in the control coefficients, the system drift, and diffusion terms. In the recent
works [25–28], with measurable inverse dynamics or deterministic zero dynamics and by
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imposing somewhat severe restrictions on pi’s, di’s, fi’s, and gi’s in system (3.1), smooth
stabilizing controllers have been designed. The purpose of this paper is to relax these
restrictions and solve the stabilization problem of the more general system (3.1) under the
following three assumptions.

Assumption 3.1. There exists a C2 function Ṽ0 : Rm1 → R+ such that

κ1
(∥∥η
∥∥) ≤ Ṽ0

(
η
) ≤ κ2

(∥∥η
∥∥),

LṼ0
(
η
)
=
∂Ṽ0

∂η
f0 +

1
2

Tr

{
gT

0
∂2Ṽ0

∂η2 g0

}
≤ −ν1

(
η
)∥∥η
∥∥4 + bα(x1)x4

1,

∥∥∥∥∥g
T
0
∂Ṽ0

∂ηT

∥∥∥∥∥

2

≤ ν2
(
η
)∥∥η
∥∥4 + bα(x1)x4

1,

(3.2)

where κi, i = 1, 2 areK∞ functions; ν1 : Rm1 → R+ \ {0}, ν2 : Rm1 → R+, and α : R → R+ are
continuous functions; and b > 0 is an unknown constant.

Assumption 3.2. For each i = 1, . . . , n, fi and gi satisfy

∣∣fi
(
x, η
)∣∣ ≤ bfi

li∑

j=1

|xi+1|qij f ij

(
x[i], η

)
,

∥∥gi
(
x, η
)∥∥ ≤ bgigi

(
x[i], η

)
, (3.3)

where fij : Ri × Rm1 → R+ and gi : Ri × Rm1 → R+ are known C1 functions with fij(0, 0) = 0
and gi(0, 0) = 0; bfi > 0 and bgi > 0 are unknown constants; li is some positive integer; qij ’s
satisfy 0 ≤ qi1 < · · · < qili < pi.

Assumption 3.3. For each di, i = 1, . . . , n, its sign is known, and there are unknown constants
a > 0 and a > 0, known smooth functions λi : Ri → R+ \ {0}, and μi : Ri+1 → R+ such that

0 < aλi

(
x[i]
) ≤ ∣∣di

(
x, η
)∣∣ ≤ aμi

(
x[i+1]

)
, (3.4)

where x[n+1] = x when i = n.

Above three assumptions are common and similar to the ones usually imposed on the
high-order nonlinear systems (see, e.g., [17, 20]). Based on Assumption 3.2 and Lemma 2.5,
we obtain the following proposition which dominates the growth properties of fi’s and
gi’s and will play a key role in overcoming the obstacle caused by system uncertain-
ties/unknowns. The proof is omitted here since it is quite similar to that of Proposition 2
in [22].
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Proposition 3.4. For each i = 1, . . . , n, there exist smooth functions δ : Rm1 → [1,+∞), ϕi : Ri →
R+, and φi : Ri → R+, such that

∣∣fi
(
x, η
)∣∣ ≤

∣∣di

(
x, η
)∣∣

2
|xi+1|pi + Θ

(
δ
(
η
)∥∥η
∥∥ + ϕi

(
x[i]
) i∑

k=1

|xk |
)
,

∥∥gi
(
x, η
)∥∥ ≤ Θ

(
δ
(
η
)∥∥η
∥∥ + φi

(
x[i]
) i∑

k=1

|xk |
)
,

(3.5)

where Θ ≥ max{1, a} is obviously an unknown constant.

Remark 3.5. It is worth pointing out that in the recent related work [30], to ensure continu-
ously differential output feedback control design, somewhat stronger assumptions have been
imposed on the system drift and diffusion terms. For example, different from Proposition 1,
Assumption 1 in [30] requires that the powers of |xk|, k = 1, . . . , i are larger than one in the
upper bound estimations of fi(·) and gi(·) (the case of fn(·) and gn(·) is more evident).

Furthermore, as done in [8, 9], to ensure the stabilizability of system (3.1), it is nec-
essary to make the following restriction on κ1, ν1, and ν2 in Assumption 3.1, and δ in
Proposition 3.4.

Assumption 3.6. For some l ∈ (0, 1), there exist ζ(·) and ξ(·) which are continuous, positive,
and monotone increasing functions satisfying ζ(‖η‖) ≥ (lν1(η) + ν2(η))/2(1 − l)ν1(η) and
ξ(‖η‖) ≥ δ4(η)/ν1(η), such that

∫+∞

0
e−
∫ r

0 (1/ζ(κ−1
1 (s)))dsdξ

(
κ−1

1 (r)
)
< +∞, (3.6)

where κ−1
1 (·) denotes the inverse function of κ1(·).

To understand well the academic meaning of the control problem to be studied, and
in particular the generality and different nature of system (3.1) compared with the exiting
works, we make the following four remarks corresponding to above four assumptions, re-
spectively.

Remark 3.7. Assumption 3.1 indicates that the unmeasurable zero dynamics possesses the
Stochastic ISS (Input-State Stability) type property, like in [8, 9], and the restriction on g0 is
somewhat weaker than that in [8, 9] since the additional term b2α2(x1)x4

1 in the estimation of
‖gT

0 (∂Ṽ0/∂η
T )‖2.

Remark 3.8. Assumption 3.2 demonstrates that the power of xi+1 in fi(x, η) must be strictly
less than the corresponding system high order. This is necessary to realize the stabilization
of the system by using the domination approach of [18]. Moreover, thanks to no further re-
strictions on fij ’s or gi’s, Assumption 3.2 is more possibly met than those in [25–28].

Remark 3.9. Assumption 3.3 shows that the control coefficients di’s never vanish and other-
wise system (3.1) would be uncontrollable somewhere. Besides, from this assumption, one
can easily see that the signs of di’s remain unchanged. Furthermore, the unknown constant
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“a” makes system (3.1) more general than those studied in [25–28] where the lower bounds
of uncertain control coefficients di’s are required to be precisely known.

Remark 3.10. In fact, Assumption 3.6 is similar to the corresponding one in [8, 9]. From above
formulation of the system, it can be seen that the unwanted effects of η, that is, “ν2(η)‖η‖4”
in Assumption 3.1 and “Θδ(η)‖η‖” in Proposition 3.4, can only be dominated by the term
“−ν1(η)‖η‖4” in Assumption 3.1, and therefore some requirements should be imposed on
these three terms. For the sake of stabilization, we make Assumption 3.6, which clearly in-
cludes a special case where ν1 = ν2 = δ4 since at this moment ζ and ξ can be constants and
(3.6) obviously holds.

As the recent development on high-order control systems, works [17, 21, 22] proposed
a novel adaptive control technique, which is powerful to successfully overcome the technical
difficulties in stabilizing system (3.1) caused by the weaker conditions on unknown control
coefficients. Inspired by these works, the paper extends the stabilization results in [17, 22]
from deterministic systems to stochastic ones, under quite weaker assumptions than those in
[25–28]. More importantly, instead of simple generalization, motivated by the novel adaptive
technique for deterministic nonlinear systems [23], we develop the adaptive control scheme
without overparameterization that occurred in [17, 21, 22]. (In fact, the number of parameter
estimates is reduced from n + 1 to 1.)

For details, in this paper, the main objective is to design a controller in the following
form:

˙̂δ = ψ
(
x, δ̂
)
, u = ϕ

(
x, δ̂
)
, (3.7)

where δ̂(t) ∈ R, and ψ is a smooth function, while ϕ is a continuous function, such that all
closed-loop states are bounded almost surely, and furthermore, the original system is globally
asymptotically stable in probability.

Finally, for the sake of the later control design, we obtain the following proposition by
the technique of changing supply functions [20, 38]. The proof of Proposition 3.11 is mainly
inspired by [9, 38] and placed in Appendix A.

Proposition 3.11. Define V0(η) =
∫ Ṽ0(η)

0 q(s)ds, and q : R+ → R+. Then, under Assumptions 3.1
and 3.6, one can construct a suitable q(s) which is C1, monotone increasing, such that

(i) V0(η) is C2, positive definite, and radially unbounded;

(ii) there exist a smooth function α0 : R → [1,+∞) and an unknown constant b > 0 such that

LV0 =
∂V0
(
η
)

∂η
f0 +

1
2

Tr

{
gT

0
∂2V0

∂η2 g0

}
≤ −(n + 1)δ4(η

)∥∥η
∥∥4 + bα0(x1)x4

1. (3.8)

4. Partial-State Feedback Adaptive Stabilizing Control

Since the signs of di’s are known and remain unchanged, without loss of generality, suppose
di > 0, i = 1, . . . , n. The following theorem summarizes the main result of this paper.
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Theorem 4.1. Consider system (3.1) and suppose Assumptions 3.1–3.3 and 3.6 hold. Then there
exists an adaptive continuous partial-state feedback controller in the form (3.7), such that

(i) the origin solution of the closed-loop system is globally stable in probability;

(ii) the states of the original system converge to the origin, and the other states of the closed-loop
system converge to some finite value, both with probability one.

About the main theorem, we have the following remark.

Remark 4.2. From Claim (i) and the former part of Claim (ii), we easily know that the original
system is globally asymptotically stable in probability.

Proof. To complete the proof, we will first construct an adaptive continuous controller in the
form (3.7) for system (3.1). Then by applying Theorem 2.3, it will be shown that the theorem
holds for the closed-loop system.

First, let us define Θ = Θ
4

max{b/a, 1/a4, a2}, where a and b are the same as in
Assumption 3.3 and Proposition 3.11, respectively. The estimate of Θ is denoted by Θ̂(t),
for which the following updating law will be designed:

˙̂Θ = τ
(
x, Θ̂
)
, Θ̂(0) = 1, (4.1)

where τ(x, Θ̂) is a to-be-determined nonnegative smooth function which ensures that Θ̂(t) ≥
1, for all t ≥ 0.

We would like to give some inequalities on above defined Θ for the sake of use in
the later control design. Noting Θ ≥ 1 (see Proposition 3.4) and max{1/a4, a2} ≥ 1, for
all a > 0, it is clear that Θ ≥ 1. Moreover, since pi ≥ 1, i = 1, . . . , n − 1, there hold
−1 < (4 − 4p1 · · ·pi)/(4p1 · · ·pi − 1) ≤ 0 < 4/(3p1 · · ·pi − 1) ≤ 2, i = 1, . . . , n − 1, and hence

Θ ≥ Θ
4
a(4−4p1 ···pi)/(4p1 ···pi−1) and Θ ≥ Θ

4
a4/(3p1 ···pi−1).

Remark 4.3. As will be seen, mainly because that the definition of new unknown parameter
Θ is essentially different form that in [17, 21, 22], the overparameterization problem that
occurred in the works is successfully overcome.

Next, we introduce the following new variables:

z1 = x1, zi = x
p1 ···pi−1

i − αp1···pi−1

i−1

(
x[i−1], Θ̂

)
, i = 2, . . . , n, (4.2)

and the actual control law u = αn(x, Θ̂), where αi : Ri × R → R, i = 1, . . . , n are continuous
functions satisfying αi(0, Θ̂) = 0, for all Θ̂ ∈ R. In the following, a recursive design procedure
is provided to construct the virtual and actual controllers αi’s. For completing the control
design, we also introduce a sequence of functions {Wi, i = 1, . . . , n} as follows:

W1 =
1
4
z4

1, Wi =
∫xi

αi−1

(
sp1···pi−1 − αp1 ···pi−1

i−1

)4−1/(p1 ···pi−1)
ds, i = 2, 3, . . . , n. (4.3)
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Similar to the corresponding proof in [18], it is easy to verify that, for each i = 1, . . . , n, Wi is
C2 in all its arguments, Wi = 0 when zi = 0, Wi > 0 when zi /= 0, and Wi → +∞ as |zi| → +∞.

Step 1. Choose V1 = V0 +W1 + (a/2)Θ̃2 to be the candidate Lyapunov function for this step,
where Θ̃ = Θ − Θ̂ denotes the parameter estimation error. Then, along the trajectories of
system (3.1), we have

LV1 = LV0 + z3
1

(
d1α

p1

1 + d1z2 + f1

)
+

3
2
z2

1g
T
1 g1 − aΘ̃ ˙̂Θ. (4.4)

By Proposition 3.4 and Lemma 2.4, we have following estimations:

z3
1f1 ≤ d1

2
|z1|3|x2|p1 + z3

1Θ
(
δ
(
η
)∥∥η
∥∥ + |x1|ϕ1(x1)

)

≤ d1

2
|z1|3|x2|p1 +

1
4
δ4(η

)∥∥η
∥∥4 +

3
4
Θ

4/3
z4

1 + Θϕ1(x1)z4
1,

3
2
z2

1g
T
1 g1 ≤ 3

2
z2

1Θ
2(
δ
(
η
)∥∥η
∥∥ + |x1|φ1(x1)

)2

≤ 1
2
δ4(η

)∥∥η
∥∥4 +

9
2
Θ

4
z4

1 + 3Θ
2
φ2

1(x1)z4
1,

(4.5)

from which, (4.4), Proposition 3.11, and the facts Θ ≥ 1, aΘ ≥ max{b,Θ4
, 1/a3} ≥ 1, it follows

that

LV1 ≤ −nδ4(η
)∥∥η
∥∥4 + d1z

3
1z2 +

d1

2
|z1|3|x2|p1 + d1z

3
1α

p1

1 + aΘρ1(x1)z4
1 − aΘ̃ ˙̂Θ

≤ −nδ4(η
)∥∥η
∥∥4 − n

a3 z
4
1 + d1z

3
1z2 +

d1

2
|z1|3|x2|p1 + d1z

3
1α

p1

1

+ aΘ
(
n − 1 +

5
4
+ ρ1(x1)

)
z4

1 − aΘ̃ ˙̂Θ

≤ −nδ4(η
)∥∥η
∥∥4 − n

a3 z
4
1 + d1z

3
1z2 +

d1

2
|z1|3

(
|x2|p1 + sign(z1)α

p1

1

)

+ az3
1

(
d1

2a
α
p1

1 + Θ̂
(
n − 1 +

5
4
+ ρ1(x1)

)
z1

)
+ aΘ̃

(
τ1

(
x1, Θ̂

)
− ˙̂Θ
)
,

(4.6)

where ρ1(x1) = 6 + ϕ1(x1) + α0(x1) + 3φ2
1(x1) and τ1 = (n − 1 + (5/4) + ρ1(x1))z4

1. It will be
seen from the later design steps that a series of nonnegative smooth functions τk(x[k], Θ̂),

k = 2, . . . , n, are introduced so as to finally obtain the updating law of Θ̂, that is, ˙̂Θ = τ = τn.
Mainly based on (4.6), the virtual continuous controller α1 is chosen such that

α
p1

1 = −2Θ̂λ1(x1)−1
(
n − 1 +

5
4
+ ρ1(x1)

)
z1 =: −h1

(
x1, Θ̂

)
z1, (4.7)

and such choice makes (4.6) become

LV1 ≤ −nδ4(η
)∥∥η
∥∥4 − n

a3
z4

1 + aΘ̃
(
τ1 − ˙̂Θ

)
+

3
2
Θμ1
(
x[2]
)∣∣∣z3

1z2

∣∣∣. (4.8)
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Remark 4.4. It is necessary to mention that in the first design step, functions ρ1 and h1 have
been provided with explicit expressions in order to deduce the completely explicit virtual
controller α1. However, in the later design steps, sometimes for the sake of briefness, we will
not explicitly write out the functions which are easily defined.

Inductive Steps. Suppose that the first k−1 (k = 2, . . . , n) design steps have been completed. In
other words, we have found appropriate functions αi, τi, i = 1, . . . , k − 1 satisfying α

p1 ···pi
i =

−hi(x[i], Θ̂)zi and τi =
∑i

j=1(n − j + (5/4) + ρj(x[j], Θ̂))z4
j for known nonnegative smooth

functions hi, ρj , j = 1, . . . , i, such that

LVk−1 ≤ −(n − k + 2)δ4(η
)∥∥η
∥∥4 − n − k + 2

a3

k−1∑

i=1

z4
i +

(
aΘ̃ −

k−1∑

i=1

∂Wi

∂Θ̂

)(
τk−1 − ˙̂Θ

)

+
3
2
Θμk−1

(
x[k]
)|zk−1|(4p1 ···pk−2−1)/p1 ···pk−2

∣∣∣xpk−1

k
− αpk−1

k−1

∣∣∣,

(4.9)

for the candidate Lyapunov function Vk−1(x[k−1], Θ̂).
Let Vk = Vk−1 + Wk be the candidate Lyapunov function for step k. Then, along the

trajectories of system (3.1), we have

LWk =
∂Wk

∂Θ̂
˙̂Θ + dkz

(4p1 ···pk−1−1)/p1 ···pk−1

k

(
x
pk
k+1 − α

pk
k

)
+ dkz

(4p1 ···pk−1−1)/p1 ···pk−1

k α
pk
k

+ z
(4p1 ···pk−1−1)/p1 ···pk−1

k
fk +

k−1∑

i=1

∂Wk

∂xi

(
dix

pi
i+1 + fi

)
+

1
2

k∑

i=1

k∑

j=1

gT
i

∂2Wk

∂xi∂xj
gj .

(4.10)

Just as in the first step, in order to design αk, one should appropriately estimate the last
four terms on the right-hand side of above equality and the last term on the right-hand side
of (4.9), as formulated in the following proposition whose proof is placed in Appendix B.

Proposition 4.5. There exists nonnegative smooth function ρk : Rk ×R → R+, such that

z
(4p1 ···pk−1−1)/p1 ···pk−1

k
fk +

k−1∑

i=1

∂Wk

∂xi

(
dix

pi
i+1 + fi

)
+

1
2

k∑

i=1

k∑

j=1

gT
i

∂2Wk

∂xi∂xj
gj

+
3
2
Θμk−1

(
x[k]
)|zk−1|(4p1 ···pk−2−1)/p1 ···pk−2

∣∣∣xpk−1

k − αpk−1

k−1

∣∣∣

≤ dk

2
|zk|(4p1···pk−1−1)/p1 ···pk−1 |xk+1|pk + δ4(η

)∥∥η
∥∥4 +

3
4a3

k−1∑

i=1

z4
i + aΘz4

kρk
(
x[k], Θ̂

)
.

(4.11)
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Then, by (4.9), (4.10), and Proposition 4.5, we have

LVk ≤ −(n − k + 1)δ4(η
)∥∥η
∥∥4 − n − k + 5/4

a3

k−1∑

i=1

z4
i +

(
aΘ̃ −

k−1∑

i=1

∂Wi

∂Θ̂

)(
τk−1 − ˙̂Θ

)

+
∂Wk

∂Θ̂
˙̂Θ + dkz

(4p1 ···pk−1−1)/p1 ···pk−1

k

(
x
pk
k+1 − α

pk
k

)
+
dk

2
z
(4p1 ···pk−1−1)/p1 ···pk−1

k |xk+1|pk

+ dkz
(4p1 ···pk−1−1)/p1 ···pk−1

k
α
pk
k
+ aΘz4

kρk
(
x[k], Θ̂

)

≤ −(n − k + 1)δ4(η
)∥∥η
∥∥4 − n − k + 5/4

a3

k∑

i=1

z4
i +

(
aΘ̃ −

k∑

i=1

∂Wi

∂Θ̂

)(
τk − ˙̂Θ

)

+ az
(4p1 ···pk−1−1)/p1 ···pk−1

k

(
dk

2a
α
pk
k
+ Θ̂z

1/p1 ···pk−1

k

(
n − k +

5
4
+ ρk

(
x[k], Θ̂

)))

+ dkz
(4p1 ···pk−1−1)/p1 ···pk−1

k

(
x
pk
k+1 − α

pk
k

)
+
dk

2
|zk|(4p1 ···pk−1−1)/p1 ···pk−1

(
|xk+1|pk + sign(zk)α

pk
k

)

+
∂Wk

∂Θ̂
τk +

k−1∑

i=1

∂Wi

∂Θ̂
(τk − τk−1),

(4.12)

where τk = τk−1 + (n − k + (5/4) + ρk)z4
k
.

Observing that a nonnegative smooth function γk : Rk × R → R can be easily
constructed such that

∂Wk

∂Θ̂
τk +

k−1∑

i=1

∂Wi

∂Θ̂
(τk − τk−1) ≤ 1

4a3

k∑

i=1

z4
i + az4

kγk
(
x[k], Θ̂

)
, (4.13)

if we design the continuous virtual controller αk such that

α
p1 ···pk
k

= −λ−p1···pk−1

k

(
2Θ̂
(
n − k +

5
4
+ ρk

(
x[k], Θ̂

))
+ γk
(
x[k], Θ̂

))p1 ···pk−1

zk

=: −hk

(
x[k], Θ̂

)
zk,

(4.14)

(obviously, hk is a strictly positive smooth function), then (4.12) becomes

LVk ≤ −(n − k + 1)δ4(η
)∥∥η
∥∥4 − n − k + 1

a3

k∑

i=1

z4
i +

(
aΘ̃ −

k∑

i=1

∂Wi

∂Θ̂

)(
τk − ˙̂Θ

)

+
3
2
Θμk

(
x[k+1]

)|zk|(4p1 ···pk−1−1)/p1 ···pk−1

∣∣∣xpk
k+1 − α

pk
k

∣∣∣.

(4.15)
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Noting the arguments in the last design step, we choose the adaptive actual continuous
controller u : Rn × R → R as follows:

u = αn

(
x, Θ̂
)
,

˙̂Θ = τ
(
x, Θ̂
)
= τn

(
x, Θ̂
)
,

(4.16)

from which, (4.15) with k = n and the aforementioned xn+1 = u, x[n+1] = x, it follows that

LVn ≤ −δ4(η
)∥∥η
∥∥4 − 1

a3

n∑

i=1

z4
i

= −δ4(η
)∥∥η
∥∥4 − 1

a3x
4
1 −

1
a3

n∑

i=2

(
x
p1 ···pi−1

i − αp1 ···pi−1

i−1

)4

=: −W(η, x),

(4.17)

where W(η, x) is a smooth function.
With the adaptive controller (4.16) in loop, we know that [0, . . . , 0, Θ]T ∈ Rn+m1+1 is

the origin solution of the closed-loop system. Thus, from Theorem 2.3 and (4.17), it follows
that the origin solution is globally stable in probability; furthermore, since W(η, x) is positive
definite which can be deduced from the expressions of W(η, x) and α

p1 ···pi
i (i = 1, . . . , n − 1),

it follows that P{limt→+∞(‖η(t)‖ + ‖x(t)‖) = 0} = 1, and in terms of the similar proof of
Theorem 3.1 in [6], one can see that the state Θ̂ converges to some finite value with probability
one.

We would like to point out that the adaptive control scheme given above can be used
to remove the overparameterization in the recent works [17, 21, 22], where the number of
parameter estimates is not less than n + 1. For this aim, it suffices to introduce another new
unknown parameter like Θ defined before, and the design steps are quite similar to those
developed earlier and do not need further discussion.

5. A Simulation Example

Consider the following three-dimensional uncertain high-order stochastic nonlinear system:

dη = −
(

1 + η4
)
ηdt + θx1 sinx2dt + x1dw,

dx1 = θ(2 − 0.2 sinx2)x3
2dt + θx1 cos

(
3η
)
dt + 2ηx1dw,

dx2 = 2θudt + 2θηx1dt + θη2dw,

(5.1)

where θ > 0 is an unknown constant.
It is easy to verify that system (5.1) satisfies Assumptions 3.1 and 3.6 with Ṽ0(η) =

κ1(η) = κ2(η) = η4, ν1(η) = ν2(η) = 1 + η4, and δ4(η) = (1 + η2)2. Assumption 3.2 holds

with |θx1 cos(3η)| ≤ θ|x1|, |2ηx1| ≤ δ(η)|η| + |x1|
√

1 + x2
1, |2θηx1| ≤ θ(δ(η)|η| + |x1|

√
1 + x2

1),
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Figure 1: The trajectories of η, x1, x2.
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Figure 2: The trajectory of Θ̂.

and |θη2| ≤ θδ(η)|η|. Assumption 3.3 holds with aλ1(x1) = aλ2(x[2]) = θ, and aμ1(x1) =
aμ2(x[2]) = 2.2θ. Therefore, in terms of the design steps developed in Section 4, an adaptive
partial-state feedback stabilizing controller can be explicitly given.

Let θ = 1.2 and the initial states be η(0) = 2, x1(0) = 1, and x2(0) = −2.5. Using
MATLAB, Figures 1 and 2 are obtained to exhibit the trajectories of the closed-loop system
states. (To show the transient behavior more clearly, logarithmic X-coordinates have been
adopted.) From these figures, one can see that η, x1, and x2 are regulated to zero while Θ̂
converges to a finite value, all with probability one.

6. Concluding Remarks

In this paper, the partial-state feedback stabilization problem has been investigated for a
class of high-order stochastic nonlinear systems under weaker assumptions than the existing
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works. By introducing the novel adaptive updated law and appropriate control Lyapunov
function, and using the method of adding a power integrator, we have designed an adaptive
continuous partial-state feedback controller without overparameterization and given a simu-
lation example to illustrate the effectiveness of the control design method. It has been shown
that, with the designed controller in loop, all the original system states are regulated to zero
and the other closed-loop states are bounded almost surely for any initial condition. Along
this direction, there are a lot of other interesting research problems, such as output-feedback
control for the systems studied in the paper, which are now under our further investigation.

Appendices

A. The Proof of Proposition 3.11

It is easy to verify that the first assertion of Proposition 3.11 holds when q(s) is chosen to be
positive, C1, and monotone increasing. Thus, in the rest of the proof, we will find such q(s) to
guarantee the correctness of the second assertion.

First, as defined in Proposition 3.11, V0(η) =
∫ Ṽ0(η)

0 q(s)ds, where q(s) is C1 and, for
simplicity, q̇(s) := dq(s)/ds. Thus by Assumption 3.1, we have

LV0
(
η
)
=
∂V0
(
η
)

∂η
f0 +

1
2

Tr

{
gT

0

∂2V0
(
η
)

∂η2 g0

}

= q
(
Ṽ0
(
η
))∂Ṽ

∂η
f0 +

1
2

Tr

{
gT

0

(
q̇
(
Ṽ0
(
η
))∂Ṽ0

∂ηT

∂Ṽ0

∂η
+ q
(
Ṽ0
(
η
))∂2Ṽ0

∂η2

)
g0

}

= q
(
Ṽ0
(
η
))
(

∂Ṽ0

∂η
f0 +

1
2

Tr

{
gT

0
∂Ṽ0

∂η2 g0

})
+

1
2
q̇
(
Ṽ0
(
η
))
∥∥∥∥∥g

T
0
∂Ṽ0

∂ηT

∥∥∥∥∥

2

≤ q
(
Ṽ0
(
η
))(−ν1

(
η
)∥∥η
∥∥4 + bα(x1)x4

1

)
+

1
2
q̇
(
Ṽ0
(
η
))(

ν2
(
η
)∥∥η
∥∥4 + bα(x1)x4

1

)
.

(A.1)

The following proceeds in two different cases in which l is the same as in Assumption 3.6.

(i) Case of lν1(η)‖η‖4 ≥ bα(x1)x4
1

For this case, from (A.1), we have

LV0
(
η
) ≤ −(1 − l)q

(
Ṽ0
(
η
))

ν1
(
η
)∥∥η
∥∥4 +

l

2
q̇
(
Ṽ0
(
η
))

ν1
(
η
)∥∥η
∥∥4 +

1
2
q̇
(
Ṽ0
(
η
))

ν2
(
η
)∥∥η
∥∥4
.

(A.2)

Let l1(s) = 1/ζ(κ−1
1 (s)), l2(s) = ξ(κ−1

1 (s))/ζ(κ−1
1 (s)) for the same ξ and ζ as in

Assumption 3.6, and as done in [9], denote

q(s) =
n + 1
1 − l e

∫s
0 l1(τ)dτ

(
1 − l
n + 1

q(0) −
∫ s

0
l2(r)e−

∫r
0 l1(τ)dτdr

)
(A.3)
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by q(0) = ((n+ 1)/(1− l))(ξ(0) + ∫+∞0 e−
∫ r

0 (1/ζ(κ
−1
1 (r)))dτdξ(κ−1

1 (r))) ≥ 0. Then, it is easy to see that

q̇(s) = l1(s)q(s) − n + 1
1 − l l2(s)

=
n + 1
1 − l l1(s)e

∫s
0 l1(τ)dτ

(
1 − l
n + 1

q(0) −
∫ s

0
l2(r)e−

∫ r
0 l1(τ)dτdr − l2(s)

l1(s)
e−
∫s

0 l1(τ)dτ
)
.

(A.4)

Moreover, noting the above definitions of l1, l2 and using integration by parts, we have
for all s ≥ 0

∫ s

0
l2(r)e−

∫ r
0 l1(τ)dτdr +

l2(s)
l1(s)

e−
∫s

0 l1(τ)dτ

= −ξ
(
k−1

1 (r)
)
e−
∫r

0 l1(τ)dτ
∣∣∣

s

0
+
∫ s

0
e−
∫r

0 l1(τ)dτdξ
(
κ−1

1 (r)
)
+ ξ
(
k−1

1 (s)
)
e−
∫s

0 l1(τ)dτ

= ξ(0) +
∫ s

0
e−
∫r

0 (1/ζ(κ
−1
1 (r)))dτdξ

(
κ−1

1 (r)
)
≤ 1 − l

n + 1
q(0),

(A.5)

which together with (A.4) concludes that q̇(s) ≥ 0, for all s ∈ R+, and therefore, q(s) is
positive, C1, and monotone increasing on R+.

Furthermore, from (A.4) and the definitions of l1, l2, ξ, and ζ we yield

(1 − l)q
(
Ṽ0
(
η
))

ν1
(
η
) − l

2
q̇
(
Ṽ0
(
η
))

ν1
(
η
) − 1

2
q̇
(
Ṽ0
(
η
))

ν2
(
η
) ≥ (n + 1)δ4(η

)
, (A.6)

which together with (A.2) results in

LV0
(
η
) ≤ −(n + 1)δ4(η

)∥∥η
∥∥4
. (A.7)

This shows that the second assertion of Proposition 3.11 holds for this case.

(ii) Case of lν1(η)‖η‖4 < bα(x1)x4
1

In this case, it is not hard to find a K∞ function κη(·) and an unknown constant b1 > 0
satisfying ‖η‖ ≤ b1κη(|x1|). Then from (A.1), we get

LV0
(
η
) ≤ −(1 − l)q

(
Ṽ0
(
η
))

ν1
(
η
)∥∥η
∥∥4 +

1
2
q̇
(
Ṽ0
(
η
))

ν2
(
η
)∥∥η
∥∥4 + bq

(
Ṽ0
(
η
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α(x1)x4
1

+
1
2
bq̇
(
Ṽ0
(
η
))

α(x1)x4
1.

(A.8)

Choosing the same q(s) as in the first case and in view of (A.6), we have

(1 − l)q
(
Ṽ0
(
η
))

ν1
(
η
) − 1

2
q̇
(
Ṽ0
(
η
))

ν2
(
η
) ≥ (n + 1)δ4(η

)
. (A.9)
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From this, (A.4) and (A.8), it follows that

LV0
(
η
) ≤ −(n + 1)δ4(η

)∥∥η
∥∥4 + bq

(
Ṽ0
(
η
))

α(x1)x4
1 +

1
2
bq̇
(
Ṽ0
(
η
))

α(x2)x4
1

≤ −(n + 1)δ4(η
)∥∥η
∥∥4 + b

(
1 +

1
2
l1(0)

)
q
(
κ2

(
b1κη(|x1|)

))
α(x1)x4

1

(A.10)

which shows that second assertion of Proposition 3.11 holds for this case by letting b = b(1 +

q(κ2(b
2
1)))(1 + (1/2)l1(0)) and α0(x1) = α(x1)(1 + q(κ2(κ2

η(|x1|)))). (Since 0 ≤ b1κη(|x1|) ≤
(1/2)(b

2
1 + κ2

η(|x1|)) ≤ b
2
1 when b1 ≥ κ2

η(|x1|), and otherwise 0 ≤ b1κη(|x1|) ≤ κ2
η(|x1|), from the

fact that q(·) and κ2(·) are positive and monotone increasing functions on R+, it follows that

q(κ2(b1κη(|x1|))) ≤ q(κ2(b
2
1)) + q(κ2(κ2

η(|x1|))) ≤ (1 + q(κ2(b
2
1)))(1 + q(κ2(κ2

η(|x1|)))).)

B. The Proof of Proposition 4.5

We first prove the following proposition.

Proposition B.1. For k = 2, . . . , n, there exist smooth nonnegative functions σk(x[k], Θ̂),
Ck(x[k], Θ̂), and Dk(x[k+1], Θ̂), such that

k∑
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|xr | ≤ σk

(
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) k∑
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∥∥∥∥∥
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∂xi

(
dix

pi
i+1 + fi
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(
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)(
δ
(
η
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i+1∑

r=1

|zr |
)
,

(B.1)

where i = 1, . . . , k, j = 1, . . . , k, and Θ is the same as in Proposition 3.4.

Proof. The first claim obviously holds when k = 2, because of the following inequality:

|x1| + |x2| ≤ |z1| +
∣∣∣z2 + z1h1

(
x1, Θ̂1

)∣∣∣
1/p1 ≤ σ2

(
x[2], Θ̂1

)(
|z1|1/p1 + |z2|1/p1

)
(B.2)

and can be easily proven in the same way of Lemma 3.4 in [19].
Based on Lemma 2.4 and Proposition 3.4, the proof for the last three claims is

straightforward (though somewhat tedious) and quite similar to the proof of Lemma 3.5 in
[19] and is omitted here.

Next, in view of Proposition B.1, we complete the Proof of Proposition 4.5 by estimating
each term of the left-hand side of (4.11).
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From Propositions 3.4 and B.1, we have

z
(4p1 ···pk−1−1)/p1 ···pk−1

k fk ≤ dk
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,

(B.3)

where and whereafter ρk,i(x[k], Θ̂), i = 1, . . . , 4 are nonnegative smooth functions and can be
easily obtained by Lemma 2.4, and for the notional convenience, their explicit expressions are
omitted.

From Lemma 2.6, Propositions 3.4 and B.1, and the expression of Wk given by (4.3),
we have
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k−1

∂xi
gi

∥∥∥∥∥ ·
∥∥gk
∥∥

+ 2p1 · · ·pk−1|zk|(3p1···pk−1−1)/p1 ···pk−1 |xk|p1···pk−1−1∥∥gk
∥∥2
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≤ 4(k − 1)2|zk|3Θ
2
Ck−1

(
x[k−1], Θ̂

)(
δ2(η

)∥∥η
∥∥2 +

k−1∑

r=1

|zr |
)

+ 12(k − 1)2z2
kΘ

2
C2

k−1

(
x[k−1], Θ̂

)(
δ(η)

∥∥η
∥∥ +

k−1∑

r=1

|zr |
)2

+ 4(k − 1)Θ|zk|(3p1···pk−1−1)/p1 ···pk−1Ck−1

(
x[k−1], Θ̂

)(
δ
(
η
)∥∥η
∥∥ +

k−1∑

r=1

|zr |
)
∥∥gk
∥∥

+ 2p1 · · ·pk−1|zk|(3p1···pk−1−1)/p1 ···pk−1 |xk|p1···pk−1−1∥∥gk
∥∥2

≤ 1
3
δ4(η

)∥∥η
∥∥4 +

1
6a3

k−1∑

i=1

z4
i + aΘz4

kρk,3
(
x[k], Θ̂

)
.

(B.4)

For the last term, by Lemma 2.6, we get

3
2
Θμk−1

(
x[k]
)|zk−1|(4p1 ···pk−2−1)/p1 ···pk−2 ·

∣∣∣xpk−1

k
− αpk−1

k−1

∣∣∣

≤ 3Θμk−1
(
x[k]
)|zk−1|(4p1 ···pk−2−1)/(p1 ···pk−2) · |zk|1/(p1 ···pk−2)

≤ 1
4a3 z

4
k−1 + aΘz4

kρk,4
(
x[k], Θ̂

)
.

(B.5)

So far, by choosing ρk =
∑4

i=1 ρk,i, the proof of Proposition 4.5 is finished.
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This paper deals with the problem of stabilization for a class of networked control systems (NCSs)
with random time delay via the state feedback control. Both sensor-to-controller and controller-to-
actuator delays are modeled as Markov processes, and the resulting closed-loop system is modeled
as a Markovian jump linear system (MJLS). Based on Lyapunov stability theorem combined with
Razumikhin-based technique, a new delay-dependent stochastic stability criterion in terms of
bilinear matrix inequalities (BMIs) for the system is derived. A state feedback controller that makes
the closed-loop system stochastically stable is designed, which can be solved by the proposed
algorithm. Simulations are included to demonstrate the theoretical result.

1. Introduction

Feedback control systems in which the control loops are closed through a real-time network
are called networked control systems (NCSs) [1]. Recently, much attention has been paid
to the study of stability analysis and controller design of NCSs [2, 3] due to their low
cost, reduced weight and power requirements, simple installation and maintenance, and
high reliability. Consequently, NCSs have been applied to various areas such as mobile
sensor networks [4], remote surgery [5], haptics collaboration over the Internet [6–8], and
automated highway systems and unmanned aerial vehicles [9, 10]. However, the sampling
data and controller signals are transmitted through a network, so network-induced delays in
NCSs are always inevitable [11, 12].

One of the main issues in NCSs is network-induced delays, which are usually the
major causes for the deterioration of system performance and potential system instability
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[13]. For different scheduling protocols, the network-induced delay may be constant, or
time-varying, but in most cases, it is random [14]. Hence, systems with random time delay
attract considerable attention [15–18]. Based on stochastic control theory and a separation
property, the effect of random delay is treated as an LQG problem in [15]. However, the
network-induced random delay has to be less than one sampling interval. The results in
[15] have recently been extended to the case with longer delays in [16]. It is noted that
the given controller depends only on sensor-to-controller delay. In [17], a control problem
for Bernoulli binary random delay is considered, and a linear matrix inequalities (LMIs)
problem for the analysis of stochastic exponential mean square stability is established. The
model-based NCSs with random transmission delay is studied in [18]. Sufficient conditions
for almost sure stability and stochastic exponential mean square stability are presented.

On the other hand, the study of stochastic systems has attracted a great deal of
attention [19–38]. Some of these results are applied to networked control systems with
random time delays [39–43]. In [39, 40], the network-induced random delays are modeled
as Markov chains such that the closed-loop systems are jump linear systems with one mode.
It is noticed that in [39], the state feedback gain is mode independent, and in [40], the state
feedback gain only depends on the delay from sensor to controller. Recently, stabilization of
networked control systems with the sensor-to-controller and controller-to-actuator delays are
considered in [41]. In [42, 43], a class of Markovian jump linear systems with time delays both
in the system state and in the mode signal is considered. Based on Lyapunov method, a time-
delayed, mode-dependent, and state feedback controller such that the closed-loop system is
stochastically stable is designed. It is noticed that the time delay in the mode signal is constant
in [42, 43], and the time delay in the mode signal is random. It is worth pointing out that in
all of the aforementioned papers, the plant is in the discrete-time domain. To the best of the
authors’ knowledge, the stability and stabilization problems for NCSs with the plant being
in the continuous-time domain have not been fully investigated to date. Especially for the
case where both sensor-to-controller and controller-to-actuator network-induced delays are
random and longer than one sampling interval, very few results related to NCSs have been
available in the literature so far, which motivates the present study.

The aim of this paper is to consider a class of networked control systems with
sensors and actuators connected to a controller via two communication networks in the
continuous-time domain. Two Markov processes are introduced to describe sensor-to-
controller transmission delay and the controller-to-actuator transmission delay. Based on
Lyapunov stability theorem, a method for designing a mode-dependent state feedback
controller that stabilizes this class of networked control systems is proposed. The existence of
such a controller is given in terms of BMIs, which can be solved by the proposed algorithm.

This paper is organized as follows. In Section 2, the problem is stated and some useful
definitions and lemmas are given, and then the main results of this paper are given in
Section 3. Simulation results are presented in Section 4. Finally, the conclusions are provided
in Section 5.

Notation. R
n denotes the n-dimensional Euclidean space, and I is identity matrix. AT stands

for the transpose of the corresponding matrix A. The notation A ≥ 0 (A > 0) means that
the matrix A is a positive semidefinite (positive definite) matrix. For an arbitrary matrix Y
and two symmetric matrices X and Z,

[
X Y
∗ Z

]
denotes a symmetric matrix, where ∗ denotes

a block matrix entry implied by symmetry, and ‖ · ‖ refers to the Euclidean norm for vectors
and induced 2-norm for matrices. E(·) stands for the mathematical expectation operator, and
P(·) for probability operator.
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Actuator SensorPlant

Controller

Networkτca(ηt) τsc(rt)

Figure 1: Illustration of NCSs over communication network.

2. Problem Formulation

Consider linear systems described by the differential equation

ẋ = Ax(t) + Bu(t), (2.1)

where x(t) ∈ R
n is the state vector, and u(t) ∈ R

m is the control input. Matrices A and B are
known matrices of appropriate dimensions.

The plant is interconnected by a controller over a communication network, see
Figure 1. The sensor and controller are periodically sampled with the sampling interval T . We
describe the sensor-to-controller transmission delay as τsc(rt) and the controller-to-actuator
transmission delay as τca(ηt). The mode switching of τsc(rt) is governed by the continuous-
time discrete-state Markov process rt taking the values in the finite set ςr := {1, . . . ,Nr} with
generator Λ = (λij), i, j ∈ ςr given by

P
[
rt+h = j | rt = i

]
=

⎧
⎪⎨

⎪⎩

λijh + o(h), i /= j,

1 + λiih + o(h), i = j,

(2.2)

where λij is the transition rate from mode i to j with λij ≥ 0 when i /= j and λii = −
∑Nr

j=1,j /= i λij ,
and o(h) is such that limh→ 0o(h)/h = 0. The mode switching of τca(ηt) is governed by
the continuous-time discrete-state Markov process ηt taking the values in the finite set
ςη := {1, . . . ,Nη}with generator Π = (πkl), k, l ∈ ςη given by

P
[
ηt+h = l | ηt = k

]
=

⎧
⎪⎨

⎪⎩

πklh + o(h), k /= l,

1 + πkkh + o(h), k = l,

(2.3)

with πkl ≥ 0 and πkk = −∑Nη

l=1,l /= k πkl.
Throughout the paper, the following assumption is needed for the considered

networked control systems.
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t
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τ̇(rt, ηt) = 1

Figure 2: Illustration of the time delay.

Assumption 2.1. The switching difference of consecutive delays is less than one sampling
interval, that is,

P(|τsc(rtk+1) − τsc(rtk)| ≥ T) = 0,

P
(∣∣τca

(
ηtk+1

) − τca
(
ηtk

)∣∣ ≥ T
)
= 0,

(2.4)

where tk = kT is the kth sampling instant.

Remark 2.2. Although Assumption 2.1 restricts that the switching difference of consecutive
delays is less than one sampling interval T , this does not imply that the network delay τsc(rtk)
and τca(ηtk) are less than T .

According to Figure 1, for tk ≤ t < tk+1, the control law has the form:

u(t) = K
(
rt, ηt

)
x
(
tk − τsc(rt) − τca

(
ηt
))
. (2.5)

Define the time delay τ(rt, ηt) as follows:

τ
(
rt, ηt

)
= t − tk + τsc(rt) + τca

(
ηt
)
, (2.6)

which can be illustrated by Figure 2.
Then, we have

u(t) = K
(
rt, ηt

)
x
(
t − τ(rt, ηt

))
. (2.7)

The associated upper bounds of τ(rt, ηt) are defined as

τ = T + max
i∈ςr

τsc(i) + max
k∈ςη

τca(k). (2.8)
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Applying controller (2.7) to the open-loop system (2.1) results in the closed-loop
networked control system

ẋ(t) = Ax(t) + BK
(
rt, ηt

)
x
(
t − τ(rt, ηt

))
,

x(θ) = φ(θ), θ ∈ [−τ, 0],
(2.9)

where φ(θ), θ ∈ [−τ, 0] is the initial function.
We have the following stochastic stability concept for system (2.9).

Definition 2.3. The system (2.9) is said to be stochastically stable if there exists a constant
T(r0, η0, φ(·)) such that

E

[∫∞

0
‖x(s)‖2ds | (r0, η0, φ(·)

)] ≤ T
(
r0, η0, φ(·)

)
, (2.10)

for any initial condition x(r0, η0, φ(·)).

The following lemmas will be essential for the proofs in Section 3.

Lemma 2.4 (see [44]). Given any real matrices Σ1,Σ2,Σ3 of appropriate dimensions and a scalar
ε > 0 such that Σ3 = ΣT

3 > 0, Then the following inequality holds:

T∑

1

∑

2

+
T∑

2

∑

1

≤ ε
T∑

1

∑

3

∑

1

+ ε−1
T∑

2

−1∑

3

∑

2

. (2.11)

For the delay functional differential equation,

ẋ(t) = f(t, xt), (2.12)

where

f : [0,+∞) × C([−τ, 0],Rn) −→ R
n, (2.13)

is completely continuous, f(t, 0) = 0, and xt(θ) is defined as

xt(θ) = x(t + θ), θ ∈ [−τ, 0]. (2.14)

Then we have the following Razumikhin lemma.

Lemma 2.5 (see [45]). Suppose that u, v,w : R
+ → R

+ are continuous, strictly monotonous
increasing functions, then u(s), v(s), and w(s) are positive for s > 0, and u(0) = v(0) = 0. If
there is a continuous function V : [−τ,+∞) × R

n → R
+ such that

u(‖x‖) ≤ V (t, x) ≤ v(‖x‖), t ∈ [−τ,+∞), x ∈ R, (2.15)
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and there is a continuous nondecreasing function p(s) > s for s > 0, and for any t0 ∈ R
+,

V̇ (t, x) ≤ −w(‖x‖) (2.16)

if

V (x(t + θ, t + θ)) < p(V (t, x)), θ ∈ [−τ, 0], t ≥ t0, (2.17)

then the zero solution of (2.12) is uniformly asymptotically stable.

3. Main Results

The following theorem provides sufficient conditions for existence of a mode-dependent state
feedback controller for the system (2.9).

Theorem 3.1. Consider the closed-loop system (2.9) satisfying Assumption 2.1. If there exist
symmetric matrixQ(i, k) > 0, matrix Y (i, k), and positive scalar ε1, ε2 such that the following matrix
inequalities hold for all i ∈ ςr and k ∈ ςη,

⎡

⎣
J(i, k) ϕ1(i, k) ϕ2(i, k)
∗ −ψ1 0
∗ ∗ −ψ2

⎤

⎦ < 0, (3.1)

[−ε1Q(i, k) AQ(i, k)
∗ −Q(i, k)

]
< 0, (3.2)

[−ε2Q(i, k) BY (i, k)
∗ −Q(i, k)

]
< 0, (3.3)

where

J(i, k) = Q(i, k)AT+AQ(i, k)+YT (i, k)BT+BY (i, k)+τ(ε1+3ε2)Q(i, k)+λiiQ(i, k)+πkkQ(i, k),

ϕ1(i, k) =
[√

λi,1Q(i, k), . . . ,
√
λi,i−1Q(i, k),

√
λi,i+1Q(i, k), . . . ,

√
λi,NrQ(i, k)

]
,

ϕ2(i, k) =
[√

πk,1Q(i, k), . . . ,
√
πk,k−1Q(i, k),

√
πk,k+1Q(i, k), . . . ,

√
πk,NηQ(i, k)

]
,

ψ1 = diag[Q(1, k), . . . , Q(i − 1, k), Q(i + 1, k), . . . , Q(Nr, k)],

ψ2 = diag
[
Q(i, 1), . . . , Q(i, k − 1), Q(i, k + 1), . . . , Q

(
i,Nη

)]
,

(3.4)

with P(i, k) = Q−1(i, k), then the system is stochastically stable with the state feedback gain:

K(i, k) = Y (i, k)Q−1(i, k). (3.5)



Mathematical Problems in Engineering 7

Proof. Consider the following Lyapunov candidate:

V
(
x(t), rt, ηt

)
= xT (t)P

(
rt, ηt

)
x(t), (3.6)

where P(rt, ηt) is the positive symmetric matrix. From (3.6), it follows that

β1‖x(t)‖2 ≤ V
(
x(t), rt, ηt

) ≤ β2‖x(t)‖2, (3.7)

where

β1 = min
rt∈ςr ,ηt∈ςη

λmin
(
P
(
rt, ηt

))
,

β2 = max
rt∈ςr ,ηt∈ςη

λmax
(
P
(
rt, ηt

))
.

(3.8)

Note that

x
(
t − τ(rr , ηt

))
= x(t) −

∫0

−τ(rr ,ηt)
ẋ(t + θ)dθ

= x(t) −
∫0

−τ(rr ,ηt)

[
Ax(t + θ),+BK

(
rt, ηt

)
x
(
t − τ(rr , ηt

)
+ θ

)]
dθ.

(3.9)

Thus, the closed-loop system (2.9) can be rewritten as

ẋ(t)=
[
A+BK

(
rt, ηt

)]
x(t)−BK(

rt, ηt
) ∫0

−τ(rr ,ηt)

[
Ax(t + θ) + BK

(
rt, ηt

)
x
(
t − τ(rr , ηt

)
+ θ

)]
dθ.

(3.10)

Let L(·) be the weak infinitesimal generator of {x(t), rt, ηt, t ≥ 0}, then for rt = i ∈ ςr, ηt = k ∈
ςη, we have

LV (x(t), i, k)

= ẋT (t)P(i, k)x(t) + xT (t)P(i, k)ẋ(t) +
Nr∑

j=1

λijx
T (t)P

(
j, k

)
x(t) +

Nη∑

l=1

πklx
T (t)P(i, l)x(t)

+ xT (t)

⎡

⎣ATP(i, k)+ P(i, k)A +KT (i, k)BTP(i, k)+ P(i, k)BK(i, k)+
Nr∑

j=1

λijP
(
j, k

)
+

Nη∑

l=1

πklP(i, l)

⎤

⎦x(t)

− 2
∫0

−τ(i,k)

{
xT (t)P(i, k)BK(i, k) × [Ax(t + θ) + BK(i, k)x(t − τ(i, k) + θ)]

}
dθ.

(3.11)
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According to Lemma 2.4, we have

− 2
∫0

−τ(i,k)

{
xT (t)P(i, k)BK(i, k) × [Ax(t + θ) + BK(i, k)x(t − τ(i, k) + θ)]

}
dθ

≤ τ(i, k)[ε−1
1 xT (t)P(i, k)BK(i, k)AP−1(i, k) ×ATKT (i, k)BTP(i, k)x(t) + ε−1

2 xT (t)

× P(i, k)BK(i, k)BK(i, k)P−1(i, k)KT (i, k) × BTKT (i, k)BTP(i, k)x(t)]

+ ε1

∫0

−τ(i,k)
xT (t + θ)P(i, k)x(t+θ)dθ+ε2

∫0

−τ(i,k)
xT (t− τ(i, k)+θ)P(i, k)x(t−τ(i, k)+θ)dθ.

(3.12)

From (3.2), (3.3), and Lemma 2.5, we can obtain

AP−1(i, k)AT < ε1P
−1(i, k),

BK(i, k)P−1(i, k)KT (i, k)BT < ε2P
−1(i, k),

(3.13)

which yields

− 2
∫0

−τ(i,k)

{
xT (t)P(i, k)BK(i, k) × [Ax(t + θ) + BK(i, k)x(t − τ(i, k) + θ)]

}
dθ

≤ 2τ(i, k)ε2x
T (t)P(i, k)x(t) + ε1

∫0

−τ(i,k)
xT (t + θ)P(i, k)x(t + θ)dθ

+ ε2

∫0

−τ(i,k)
xT (t − τ(i, k) + θ)P(i, k) × x(t − τ(i, k) + θ)dθ.

(3.14)

Following Lemma 2.5, for −2τ ≤ θ ≤ 0, we assume that for any δ > 1, the following inequality
holds:

V
(
x(t + θ), rt+θ, ηt+θ

)
< δV

(
x(t), rt, ηt

)
, (3.15)

then we have

LV (x(t), i, k) ≤ xT (t)H(τ(i, k), δ)x(t), (3.16)

whereH(τ(i, k), δ) is given by

H(τ(i, k), δ)

= ATP(i, k) + P(i, k)A +KT (i, k)BTP(i, k) + P(i, k)BK(i, k) +
Nr∑

j=1

λijP
(
j, k

)

+
Nη∑

l=1

πklP(i, l) + 2τ(i, k)ε2P(i, k) + τ(i, k)ε1δP(i, k) + τ(i, k)ε2δP(i, k),

(3.17)
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for some positive scalars ε1 and ε2. before and after multiplying H(τ(i, k), δ) by Q(i, k) =
P−1(i, k) and its transpose, it gives

H̃(τ(i, k), δ)

= Q(i, k)AT +AQ(i, k) +Q(i, k)KT (i, k)BT + BK(i, k)Q(i, k) +Q(i, k)
Nr∑

j=1

λijP
(
j, k

)
Q(i, k)

+Q(i, k)
Nη∑

l=1

πklP(i, l)Q(i, k) + 2τ(i, k)ε2Q(i, k) + τ(i, k)ε1δQ(i, k) + τ(i, k)ε2δQ(i, k).

(3.18)

Since

0 ≤ τ(i, k) ≤ τ, (3.19)

we have from (3.16) that

LV (x(t), i, k) ≤ xT (t)H(τ, δ)x(t). (3.20)

From (3.1) and Lemma 2.5, it follows that

H̃(τ, δ = 1) < 0, (3.21)

which is equivalent to

H(τ, δ = 1) < 0. (3.22)

Using the continuity properties of the eigenvalues ofH with respect to δ, then there exists a
δ > 1 sufficiently small such that (3.21) still holds. Thus, for such a δ, we have

H(τ, δ) < 0, (3.23)

which yields

LV (
x(t), rt, ηt

) ≤ −β‖x(t)‖2, (3.24)

where

β = min
i∈ςr , k∈ςη

[λmin(−H(τ, δ))] > 0. (3.25)
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Applying Dynkin’s formula, we have

E[V (x(t), i, k)] − E
[
V
(
x0, r0, η0

)]
= E

{∫ t

0

[LV (
x(s), rs, ηs

)
ds | x0, r0, η0

]
}

≤ −βE

{∫ t

0

[
‖x(s)‖2ds | x0, r0, η0

]}
.

(3.26)

Note that

E[V (x(t), i, k)] ≥ 0, (3.27)

Then we can obtain

βE

{∫ t

0

[
‖x(s)‖2ds | x0, r0, η0

]}
≤ E[V (x(t), i, k)] + βE

{∫ t

0

[
‖x(s)‖2ds | x0, r0, η0

]}

≤ E
[
V
(
x0, r0, η0

)]
.

(3.28)

This completes the proof.

Remark 3.2. In case of constant transmission delay, that is, τsc(rt) = τsc, τca(ηt) = τca, λij = 0,
and πkl = 0, Theorem 3.1 can be directly applied to systems with constant delay.

It should be noted that the terms ε1Q(i, k) and ε2Q(i, k) in (3.1)–(3.3) are bilinear.
Therefore, we propose the following algorithm to solve these bilinear matrix inequality
problems.

Step 1. Set Q0(i, k) > 0, and Y0(i, k) such that the following LMI holds:

⎡
⎢⎢⎢⎣

J̃(i, k) ϕ1(i, k) ϕ2(i, k)

∗ −ψ1 0

∗ ∗ −ψ2

⎤
⎥⎥⎥⎦

< 0, (3.29)

where

J̃(i, k) = Q(i, k)AT +AQ(i, k) + YT (i, k)BT + BY (i, k) + λiiQ(i, k) + πkkQ(i, k). (3.30)

Step 2. For Q(i, k) > 0 given in the previous step, find ε1s, ε2s, and Ys(i, k) by solving the
following convex optimization problem:

max
Y (i,k),ε1,ε2

τ(Y (i, k), ε1, ε2),

s.t. (3.1)–(3.3) hold for Q(i, k) > 0 fixed.

(3.31)
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Step 3. For Y (i, k), ε2, and ε1 given in the previous step, find Qs(i, k) > 0 by solving the
following quasiconvex optimization problem

max
Q(i,k)>0

τ(Q(i, k)),

s.t. (3.1)–(3.3) hold for Y (i, k), ε2, and ε1 fixed.
(3.32)

Step 4. Return to step 2 until the convergence of τ is attained with a desired precision.

Remark 3.3. For a given Q(i, k), the considered optimization problem consists of minimizing
an eigenvalue problem which is a convex one. On the other hand, for given Y (i, k), ε1 and
ε2, the considered optimization problem consists of minimizing a generalized eigenvalue
problem which is a quasiconvex optimization problem. Therefore, the proposed algorithm
gives a suboptimal solution.

4. Simulations

In this section, simulations of the position control for robotic manipulator ViSHaRD3 [46]
are included to illustrate the effectiveness of the proposed method. Combining computed
torque feedback approach [47] with friction compensation, the system is decoupled into three
systems. The first and second joints of the ViSHaRD3 are

d

dt

[
q
q̇

]
=
[

0 1
1 −50

][
q
q̇

]
+
[

0
1

]
u(t), (4.1)

and the third is

d

dt

[
q
q̇

]
=
[

0 1
1 −40

][
q
q̇

]
+
[

0
1

]
u(t). (4.2)

For simplicity, we only discuss the third joint of ViSHaRD3. Suppose that the sampling
interval is T = 0.01 s, and the Markov process rt that governs the mode switching of the SC
delay takes values in ςr = {1, 2} and has the generator

Λ =
[−3 3

2 −2

]
, (4.3)

and the Markov process ηt that governs the mode switching of the CA delay takes values in
ηr = {1, 2} and has the generator

Π =
[−1 1

2 −2

]
. (4.4)

Associated with modes 1 and 2, let the system have time delay τsc(1) = 0.03 s,
τca(1) = 0.02 s and τsc(2) = 0.025 s, τca(2) = 0.015 s, respectively. From (2.8), we have τ = 0.06 s,
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Figure 3: State response of closed-loop system.

and the initial condition is φ(θ) = [−1, 0]T , θ ∈ [−0.06, 0]. By the proposed algorithm and
Theorem 3.1, we can obtain the controllers as follows:

K(1, 1) =
[−645.0596 −15.9109

]
,

K(1, 2) =
[−623.3689 −15.4999

]
,

K(2, 1) =
[−575.1361 −14.2296

]
,

K(2, 2) =
[−616.8428 −15.3049

]
.

(4.5)

The simulations of the state response and the control input for the closed-loop system
are depicted in Figures 3 and 4, respectively, which shows that the system is stochastically
stable.

5. Conclusions

In this paper, a technique of designing a mode-dependent state feedback controller for
networked control systems with random time delays has been proposed. The main
contribution of this paper is that both the sensor-to-controller and controller-to-actuator
delays have been taken into account. Two Markov processes have been used to model these
two time delays. Based on Lyapunov stability theorem combined with Razumikhin-based
technique, some new delay-dependent stability criteria in terms of BMIs for the system are
derived. A state feedback controller that makes the closed-loop system stochastically stable is
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designed, which can be solved by the proposed algorithm. Simulations results are presented
to illustrate the validity of the design methodology.
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This paper is concerned with a discrete-time indefinite stochastic LQ problem in an infinite-time
horizon. A generalized stochastic algebraic Riccati equation (GSARE) that involves the Moore-
Penrose inverse of a matrix and a positive semidefinite constraint is introduced. We mainly use
a semidefinite-programming- (SDP-) based approach to study corresponding problems. Several
relations among SDP complementary duality, the GSARE, and the optimality of LQ problem are
established.

1. Introduction

Stochastic linear quadratic (LQ) control problem was pioneered by Wonham [1] and has
become one of the most popular research field of modern control theory; see, for example,
[2–12] and the references therein. In the most early literature about stochastic LQ issue,
it is always assumed that the control weighting matrix R is positive definite and the state
weighting matrix Q is positive semidefinite as the deterministic LQ problem does. However,
a surprising fact was found that, different from deterministic LQ problem, for a stochastic
LQ modeled by a stochastic Itô-type differential system, the original LQ optimization may
still be well posed even if the cost weighting matrices Q and R are indefinite [5]. Follow-up
research was carried out, and a lot of important results were obtained. In [6–9], continuous-
time indefinite stochastic LQ control problem was studied. For the discrete-time case, there
have been some works. For example, the system with only control-dependent noises was
studied in [10]. The finite time and infinite horizon indefinite stochastic LQ control problem
with state- and control-dependent noises were, respectively, studied in [11, 12].

In this paper, we study discrete-time indefinite stochastic LQ control problem over
an infinite time horizon. The system involves multiplicative noises in both the state and the
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control. We mainly use the SDP approach introduced in [9, 13] to discuss the corresponding
problem. We first introduce a generalized stochastic algebraic Riccati equation (GSARE)
that involves the Moore-Penrose inverse of a matrix. The potential relations among LQ
problem, SDP, and GSARE are studied. What we have obtained extends the results of [9]
from continuous-time case to discrete-time case.

The remainder of this paper is organized as follows. In Section 2, we formulate the
discrete-time indefinite stochastic LQ problem and present some preliminaries including
generalized stochastic algebraic Riccati equation, SDP, and some lemmas. Section 3 contains
the main results. Some relations among the optimality of the LQ problem, the complementary
optimal solutions of the SDP and its dual problem, and the solvability of the GSARE are
established. Some comments are given in Section 4.

Notations. Rn: n-dimensional Euclidean space. Rn×m: the set of all n ×m matrices. Sn: the set
of all n × n symmetric matrices. A′: the transpose of matrix A. A ≥ 0 (A > 0): A is positive
semidefinite (positive definite). I: the identity matrix. R: the set of all real numbers. N :=
{0, 1, 2, . . .} and Nt := {0, 1, 2, . . . , t}. Tr(M): the trace of a square matrix M. Aadj: the adjoint
mapping of a mappingA.

2. Preliminaries

2.1. Problem Statement

Consider the following discrete-time stochastic system:

x(t + 1) = Ax(t) + Bu(t) + [Cx(t) +Du(t)]w(t),
x(0) = x0, t = 0, 1, 2, . . . ,

(2.1)

where x(t) ∈ Rn, u(t) ∈ Rm are, respectively, the system state and control input. x0 ∈ Rn is
the initial state and w(t) ∈ R is the noise. A,C ∈ Rn×n and B,D ∈ Rn×m are constant matrices.
{w(t), t ∈N} is a sequence of real random variables defined on a complete probability space
(Ω,F,Ft, P) with Ft = σ{w(s) : s ∈ Nt}, which is a wide sense stationary, second-order
process with E[w(t)] = 0 and E[w(s)w(t)] = δst, where δst is the Kronecker function. u(t)
belongs to L2

F(Rm), the space of all Rm-valued, Ft-adapted measurable processes satisfying
E(
∑∞

t=0‖u(t)‖2) < ∞. We assume that the initial state x0 is independent of the noise w(t), t ∈
N.

We first give the following definitions.

Definition 2.1. System (2.1) is called mean square stabilizable if there exists a feedback control
u(t) = Kx(t) such that for any initial state x0, the closed-loop system

x(t + 1) = (A + BK)x(t) + (C +DK)x(t)w(t),
x(0) = x0, t = 0, 1, 2, . . . ,

(2.2)

is asymptotically mean square stable, that is, the corresponding state of (2.2) satisfies
limt→∞E‖x(t)‖2 = 0, where K ∈ Rm×n is a constant matrix.
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For system (2.1), we define the admissible control set

Uad =

⎧
⎨

⎩
u(t) ∈ L2

F(Rm),

u(t) is mean square stabilizing control.
(2.3)

The cost functional associated with system (2.1) is

J(x0, u) =
∞∑

t=0

E
[
x′(t)Qx(t) + u′(t)Ru(t)

]
, (2.4)

where Q and R are symmetric matrices with appropriate dimensions and may be indefinite.
The LQ optimal control problem is to minimize the cost functional J(x0, u) over u ∈ Uad. We
define the optimal value function as

V (x0) = inf
u∈Uad

J(x0, u). (2.5)

Since the weighting matrices Q and R may be indefinite, the LQ problem is called an
indefinite stochastic LQ control problem.

Definition 2.2. The LQ problem is called well posed if

−∞ < V (x0) <∞, ∀x0 ∈ Rn. (2.6)

If there exists an admissible control u∗ such that V (x0) = J(x0, u
∗), the LQ problem is called

attainable and V (x0) is the optimal cost value. u∗(t), t ∈ N, is called an optimal control, and
x∗(t), t ∈N, corresponding to u∗(t) is called the optimal trajectory.

Stochastic algebraic Riccati equation (SARE) is a primary tool in solving stochastic LQ
control problems. In [12], the following discrete SARE:

−P +A′PA + C′PC +Q − (A′PB + C′PD)(R + B′PB +D′PD)−1(B′PA +D′PC) = 0,
R + B′PB +D′PD > 0,

(2.7)

was studied. The constraint that R + B′PB + D′PD > 0 is demanded in (2.7). In fact, the
corresponding LQ problem may have optimal control even if the condition is not satisfied.
In this paper, we introduce the following generalized stochastic algebraic Riccati equation
(GSARE),

R(P) ≡ −P +A′PA + C′PC +Q − (A′PB + C′PD)(R + B′PB +D′PD)+(B′PA +D′PC) = 0,
R + B′PB +D′PD ≥ 0,

(2.8)

which weakens the positive definiteness constraint of R + B′PB + D′PD to positive
semidefiniteness constraint and replaces the inverse by Moore-Penrose inverse. Hence, (2.8)
is an extension of (2.7).
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2.2. Semidefinite Programming

In this subsection, we will introduce SDP and its dual. SDP is a special conic optimization
problem and is defined as follows.

Definition 2.3 (see [14]). Suppose that V is a finite-dimensional vector space with an inner
product 〈·, ·〉V and S is a space of block diagonal symmetric matrices with an inner product
〈·, ·〉S.A : V → S is a linear mapping, and A0 ∈ S. The following optimization problem:

min 〈c, x〉V,
s.t. A(x) = A(x) +A0 ≥ 0,

(2.9)

is called a semidefinite programming (SDP). From convex duality, the dual problem
associated with the SDP is defined as

max − 〈A0, Z〉S,

s.t. Aadj = c, Z ≥ 0.
(2.10)

In the context of duality, we refer to the SDP (2.9) as the primal problem associated with
(2.10).

Consider the following SDP problem:

(P) max Tr(P),

s.t. A(P) =

[−P +A′PA + C′PC +Q A′PB + C′PD

B′PA +D′PC R + B′PB +D′PD

]
≥ 0.

(2.11)

By the definition of SDP, we can get the dual problem of (2.11).

Proposition 2.4. The dual problem of (2.11) can be formulated as

(D) min Tr(QS + RT),

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−S +ASA′ + CSC′ + BUA′ +DUC′

+AU′B′ + CU′D′ + BTB′ +DTD′ + I = 0,

Z =

⎡

⎣
S U′

U T

⎤

⎦ ≥ 0.

(2.12)

Proof. The objective of the primal problem can be rewritten as maximizing 〈I, P〉Sn . The dual
variable Z =

[
S U′
U T

] ≥ 0, where (S, T,U) ∈ Sn × Sm × Rm×n. The LMI constraint in the primal
problem can be represented as

A(P) = A(P) +A0 =

[−P +A′PA + C′PC A′PB + C′PD

B′PA +D′PC B′PB +D′PD

]
+

[
Q 0

0 R

]
. (2.13)
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According to the definition of adjoint mapping, we have 〈A(P), Z〉Sn+m = 〈P,Aadj(Z)〉Sn , that
is, Tr[A(P)Z] = Tr[PAadj(Z)]. It follows Aadj(Z) = −S + ASA′ + CSC′ + BUA′ + DUC′ +
AU′B′ + CU′D′ + BTB′ + DTD′. By Definition 2.3, the objective of the dual problem is to
minimize 〈A0, Z〉Sn+m = Tr(A0Z) = Tr(QS + RT). On the other hand, we will state that the
constraints of the dual problem (2.10) are equivalent to the constraints of (2.12). Obviously,
Aadj(Z) = −I is equivalent to the equality constraint of (2.12). This ends the proof.

The primal problem (2.9) is said to satisfy the Slater condition if there exists a primal
feasible solution x0 such that A(x0) > 0, that is, the primal problem (2.9) is strictly feasible.
The dual problem (2.10) is said to satisfy the Slater condition if there is a dual feasible solution
Z0 satisfying Z0 > 0, that is, the dual problem (2.10) is strictly feasible.

Let p∗ and d∗ denote the optimal values of SDP (2.9) and the dual SDP (2.10),
respectively. Let Xopt and Zopt denote the primal and dual optimal sets. Then, we have the
following proposition (see [13, Theorem 3.1]).

Proposition 2.5. p∗ = d∗ if either of the following conditions holds.

(1) The primal problem (2.9) satisfies Slater condition.

(2) The dual problem (2.10) satisfies Slater condition.

If both conditions hold, the optimal sets Xopt and Zopt are nonempty. In this case,
a feasible point x is optimal if and only if there is a feasible point Z satisfying the
complementary slackness condition:

A(x)Z = 0. (2.14)

2.3. Some Definitions and Lemmas

The following definitions and lemmas will be used frequently in this paper.

Definition 2.6. For any matrix M, there exists a unique matrix M+, called the Moore-Penrose
inverse of M, satisfying

MM+M = M, M+MM+ = M+, (MM+)′ = MM+, (M+M)′ = M+M. (2.15)

Lemma 2.7 (extended Schur’s lemma). Let matrices M = M′, N, and R = R′ be given with
appropriate dimensions. Then, the following conditions are equivalent:

(1) M −NR+N ′ ≥ 0, R ≥ 0, and N(I − RR+) = 0,

(2)
[
M N
N ′ R

] ≥ 0,

(3)
[
R N ′
N M

] ≥ 0.

Lemma 2.8 (see [7]). For a symmetric matrix S, we have

(1) S+ = (S+)′,

(2) S ≥ 0 if and only if S+ ≥ 0,

(3) SS+ = S+S.
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Lemma 2.9 (see [12]). In system (2.1), suppose T ∈N is given, and P(t) ∈ Sn, t = 0, 1, . . . , T + 1,
is an arbitrary family of matrices, then, for any x(0) ∈ Rn, we have

T∑

t=0

E

[
x(t)

u(t)

]′
Q[P(t)]

[
x(t)

u(t)

]
= E
[
x′(T + 1)P(T + 1)x(T + 1) − x′(0)P(0)x(0)], (2.16)

where

Q[P(t)] =

[−P(t) +A′P(t + 1)A + C′P(t + 1)C A′P(t + 1)B + C′P(t + 1)D

B′P(t + 1)A +D′P(t + 1)C B′P(t + 1)B +D′P(t + 1)D

]
. (2.17)

Lemma 2.10. System (2.1) is mean square stabilizable if and only if one of the following conditions
holds.

(1) There are a matrix K and a symmetric matrix P > 0 such that

−P + (A + BK)P(A + BK)′ + (C +DK)P(C +DK)′ < 0. (2.18)

Moreover, the stabilizing feedback control is given by u(t) = Kx(t).

(2) For any matrix Y > 0, there is a matrix K such that the following matrix equation:

−P + (A + BK)P(A + BK)′ + (C +DK)P(C +DK)′ + Y = 0 (2.19)

has a unique positive definite solution P > 0. Moreover, the stabilizing feedback control is
given by u(t) = Kx(t).

(3) The dual problem (D) satisfies the Slater condition.

Proof. (1) and (2) can be derived from Proposition 2.2 in [15]. (3) is a discrete edition of
Theorem 6 in [7]. The proof is similar to Theorem 6 in [7] and is omitted.

To this end, we need the following assumptions throughout the paper.

Assumption 2.11. System (2.1) is mean square stabilizable.

Assumption 2.12. The feasible set of (P) is nonempty.

3. Main Results

In this section, we will establish the relationship among the optimality of the LQ problem,
the SDP, and the GSARE.

The following theorem reveals the relation between the SDP complementary optimal
solutions and the GSARE.

Theorem 3.1. If a feasible solution of (P), P ∗, satisfies R(P ∗) = 0, and the feedback control

u(t) = K∗x(t) = −(R + B′P ∗B +D′P ∗D
)+(

B′P ∗A +D′P ∗C
)
x(t), t ∈N, (3.1)
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is stabilizing, then there exist complementary optimal solutions of (P) and (D). In particular, P ∗ is
optimal to (P), and there is a complementary dual optimal solution Z∗ of (D), such that S∗ > 0.

Proof. By the stability assumption of the control u(t) = K∗x(t) and Lemma 2.10, the equation

−Y + (A + BK∗)Y (A + BK∗)′ + (C +DK∗)Y (C +DK∗)′ + I = 0 (3.2)

has a positive solution Y ∗ > 0. Let

S∗ = Y ∗, U∗ = K∗S∗ = K∗Y ∗, T ∗ = K∗U∗′ = K∗Y ∗K∗′, (3.3)

that is,

Z∗ =

[
S∗ U∗′

U∗ T ∗

]
=

[
Y ∗ Y ∗K∗′

K∗Y ∗ K∗Y ∗K∗′

]
=

[
I 0

K∗ I

][
Y ∗ 0

0 0

][
I K∗′

0 I

]
≥ 0. (3.4)

By (3.2) and (3.3), we have

−S∗ +AS∗A′ + CS∗C′ + BU∗A′ +DU∗C′ +AU∗′B′ + CU∗′D′ + BT ∗B′ +DT ∗D′ + I = 0,
(3.5)

which shows Z∗ is a feasible solution of (D). A(P ∗) ≥ 0 because P ∗ is a feasible solution of
(P). By Lemmas 2.7 and 2.8,

A′P ∗B + C′P ∗D =
(
A′P ∗B + C′P ∗D

)(
R + B′P ∗B +D′P ∗D

)(
R + B′P ∗B +D′P ∗D

)+

=
(
A′P ∗B + C′P ∗D

)(
R + B′P ∗B +D′P ∗D

)+(
R + B′P ∗B +D′P ∗D

)
.

(3.6)

In addition, we have

−P ∗ +A′P ∗A + C′P ∗C +Q = K∗′
(
R + B′P ∗B +D′P ∗D

)
K∗ (3.7)

by R(P ∗) = 0 and K∗ = −(R + B′P ∗B +D′P ∗D)+(B′P ∗A +D′P ∗C). Therefore, we have

A(P ∗)Z∗ =

[−P ∗ +A′P ∗A + C′P ∗C +Q A′P ∗B + C′P ∗D

B′P ∗A +D′P ∗C R + B′P ∗B +D′P ∗D

][
S∗ U∗′

U∗ T ∗

]

=

[
I −K∗′

0 I

][R(P ∗) 0

0 R + B′P ∗B +D′P ∗D

][
I 0

−K∗ I

][
S∗ U∗′

U∗ T ∗

]

=

[
I −K∗′

0 I

][
0 0

0 0

]
=

[
0 0

0 0

]
.

(3.8)

Obviously, P ∗ and Z∗ are complementary optimal solutions to (P) and (D). P ∗ is optimal to
(P), and Z∗ is optimal to (D). S∗ > 0 is trivial because S∗ = Y ∗ > 0.
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In above, the assumption that the control in (3.1) is stabilizing is not automatically
satisfied. The following theorem reveals that we can obtain a stabilizing feedback control by
the dual SDP.

Theorem 3.2. Suppose that Z =
[
S U′
U T

]
is a feasible solution of (D) with S > 0, then the feedback

control u(t) = US−1x(t) is stabilizing.

Proof. First, we have Z ≥ 0 because Z is feasible to (D). By Lemma 2.7, the inequality T −
US−1U′ ≥ 0 holds. By simple calculations, we have

ASA′ + BUA′ +AU′B′ + BUS−1U′B′ =
(
A + BUS−1

)
S
(
A + BUS−1

)′
,

CSC′ +DUC′ + CU′D′ +DUS−1U′D′ =
(
C +DUS−1

)
S
(
C +DUS−1

)′
.

(3.9)

Hence,

0 = −S +ASA′ + CSC′ + BUA′ +DUC′ +AU′B′ + CU′D′ + BTB′ +DTD′ + I

≥ −S +ASA′ + CSC′ + BUA′ +DUC′ +AU′B′ + CU′D′

+ BUS−1U′B′ +DUS−1U′D′ + I

> −S +
(
A + BUS−1

)
S
(
A + BUS−1

)′
+
(
C +DUS−1

)
S
(
C +DUS−1

)′
.

(3.10)

Above inequality shows (2.18) has a positive definite solution S > 0 with K = US−1.
According to Lemma 2.10, u(t) = Kx(t) = US−1x(t) is stabilizing.

The following theorem shows the relationship between the optimality of the LQ
problem and the solution of GSARE.

Theorem 3.3. If LQ problem (2.1)–(2.5) is attainable with respect to any x0 ∈ Rn, then (P) must
have an optimal solution P ∗ such that R(P ∗) = 0.

Proof. Since the LQ problem is attainable, then the optimal value must be of the quadratic
form [16]:

inf
u∈Uad

J(x0, u) = x′0Mx0, ∀x0 ∈ Rn. (3.11)

Let (x∗(·), u∗(·)) be an optimal pair for the initial state x0. Let T → ∞ and P(t) = P in (2.16),
where P is an any feasible solution of (P), then we have

x′0Px0 +
∞∑

t=0

E

[
x(t)

u(t)

]′
Q(P)

[
x(t)

u(t)

]
= 0. (3.12)
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Then, a completion square means

J(x0, u
∗) =

∞∑

t=0

E
[
x∗′(t)Qx∗(t) + u∗′(t)Ru∗(t)

]

= x′0Px0 +
∞∑

t=0

E
{
[u∗(t) −Kx∗(t)]′

(
R + B′PB +D′PD

)
[u∗(t) −Kx∗(t)]

+x∗′(t)R(P)x∗(t)},

(3.13)

where K = −(R+B′PB+D′PD)+(B′PA+D′PC). Since P is feasible to (P), we have R+B′PB+
D′PD ≥ 0 and R(P) ≥ 0 by Lemma 2.7. Then, the inequality

x′0Mx0 ≡ J(x0, u
∗) ≥ x′0Px0 (3.14)

holds for any feasible solution P to (P). This shows that M must be optimal to (P). Moreover,
taking P = M in (3.13) and considering J(x0, u

∗) = x′0Mx0, we know that Ex∗′(t)R(M)x∗(t) =
0 for t ∈N. Setting t = 0 and noticing that x0 is arbitrary, it follows that R(M) = 0.

Below, we will show M is a feasible solution of (P). We consider the following SDP
and its dual under a perturbation ε > 0:

(Pε) max Tr(P),

s.t.

[−P +A′PA + C′PC +Q + εI A′PB + C′PD

B′PA +D′PC R + εI + B′PB +D′PD

]
≥ 0,

(3.15)

(Dε) min Tr[(Q + εI)S + (R + εI)T],

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−S +ASA′ + CSC′ + BUA′ +DUC′

+AU′B′ + CU′D′ + BTB′ +DTD′ + I = 0,

Z =

⎡

⎣
S U′

U T

⎤

⎦ ≥ 0.

(3.16)

Obviously, (Pε) satisfies the Slater condition because we assume that the feasible set
of (P) is nonempty and (Dε) also satisfies the Slater condition by the mean square
stabilizability assumption and Lemma 2.10. Hence, the complementary optimal solutions
exist by Proposition 2.5. Take any dual feasible solution Z0 =

[
S0 U0 ′

U0 T0

]
. By the weak duality in

conic optimization problems, we have

Tr(P) ≤ Tr
[
(Q + εI)S0 + (R + εI)T0

]
. (3.17)

Let P 0 be a feasible solution of (P), then P 0 is feasible to (Pε) for all ε ≥ 0. Similar to
Theorem 10 in [7], we conclude that, for any ε > 0, there exists the unique optimal solution
of (Pε), denoted by P ∗ε , and P ∗ε ≥ P 0.
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Together with (3.17), we know that P ∗ε are contained in a compact set with 0 ≤ ε ≤
ε0 (ε0 > 0 is a constant). Then, take a convergent subsequence satisfying limi→∞P ∗εi = P ∗0
with εi → 0 as i → ∞. Obviously, P ∗0 is feasible to (P) because the feasible region of (Pε)
monotonically shrinks as ε ↓ 0. Define the perturbed cost functional

Jε(x0, u) =
∞∑

t=0

E
[
x′(t)Qεx(t) + u′(t)Rεu(t)

]
, (3.18)

where Rε = R + εI, Qε = Q + εI. By (3.13), we have

Jε(x0, u) = x′0P
∗
ε x0 +

∞∑

t=0

E
{
[u(t) −Kεx(t)]

′(Rε +D′P ∗ε D + B′P ∗ε B
)
[u(t) −Kεx(t)]

+x′(t)Rε(P ∗ε )x(t)
}
,

(3.19)

for any u ∈ Uad, where Kε = −(Rε +B′P ∗ε B +D′P ∗ε D)+(B′P ∗ε A+D′P ∗ε C) and Rε(P ∗ε ) is the form
of R(P ∗ε ) with Q and R replaced by Qε and Rε. Then, by Theorems 10 and 12 in [7],

inf
u∈Uad

Jε(x0, u) = x′0P
∗
ε x0. (3.20)

Furthermore,

x′0P
∗
εix0 = inf

u∈Uad

Jεi(x0, u) ≥ inf
u∈Uad

J(x0, u) = x′0Mx0. (3.21)

Taking limit, we have x′0P
∗
0x0 ≥ x′0Mx0. On the other hand, x′0Mx0 ≥ x′0P

∗
0x0 because P ∗0 is

feasible to (P) and (3.14). So M = P ∗0 . The feasibility of M is proved. The proof is completed.

The following theorem studies the converse of Theorem 3.3.

Theorem 3.4. If a feasible solution of (P), P ∗, satisfies R(P ∗) = 0 and the feedback control u∗(t) =
−(R+B′P ∗B +D′P ∗D)+(B′P ∗A+D′P ∗C)x(t) is stabilizing, then it must be optimal for LQ problem
(2.1)–(2.5).

Proof. For any u ∈ Uad, we have

J(x0, u) = x′0P
∗x0 +

∞∑

t=0

E[u(t) −K∗x(t)]′(R + B′P ∗B +D′P ∗D
)
[u(t) −K∗x(t)] (3.22)

by (3.13) and R(P ∗) = 0, where K∗ = −(R + B′P ∗B + D′P ∗D)+(B′P ∗A + D′P ∗C). Because
u∗(t) = K∗x(t) is stabilizing, u∗(t) must be optimal.

The following theorem shows we can get the optimal feedback control by SDP dual
optimal solution.
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Theorem 3.5. Assume that (P) and (D) have complementary optimal solutions P ∗ and Z∗ with S∗ >
0. Then, R(P ∗) = 0 and LQ problem (2.1)–(2.5) has an attainable optimal feedback control given by
u∗(t) = U∗(S∗)−1x∗(t).

Proof. From the proof of Theorem 3.1, we have

A(P ∗) =

[
I −K∗′

0 I

][R(P ∗) 0

0 R + B′P ∗B +D′P ∗D

][
I 0

−K∗ I

]
, (3.23)

where K∗ = −(R + B′P ∗B +D′P ∗D)+(B′P ∗A +D′P ∗C). By complementary slackness condition
A(P ∗)Z∗ = 0 and the invertibility of

[
I −K∗′
0 I

]
, we have

[R(P ∗) 0

0 R + B′P ∗B +D′P ∗D

][
I 0

−K∗ I

][
S∗ U∗′

U∗ T ∗

]

=

[ R(P ∗)S∗ R(P ∗)U∗′

−(R + B′P ∗B +D′P ∗D)(K∗S∗ −U∗) −(R + B′P ∗B +D′P ∗D)
(
K∗U∗′ − T ∗)

]

=

[
0 0

0 0

]
.

(3.24)

So R(P ∗)S∗ = 0, R(P ∗)U∗′ = 0. On the other hand, T ∗ − U∗(S∗)+U∗′ ≥ 0, S∗ ≥ 0 and U∗ =
U∗S∗(S∗)+ from Z∗ ≥ 0 and Lemma 2.7. From the equality constraint in (2.12) and the above
results, we have

0 = R(P ∗)[−S∗ +AS∗A′ + CS∗C′ + BU∗A′ +DU∗C′ +AU∗′B′ + CU∗′D′

+BT ∗B′ +DT ∗D′ + I
]R(P ∗)

≥ R(P ∗)[AS∗A′ + CS∗C′ + BU∗A′ +DU∗C′ +AU∗′B′ + CU∗′D′

+BU∗(S∗)+U∗′B′ +DU∗(S∗)+U∗′D′ + I
]R(P ∗)

= [R(P ∗)]2 + R(P ∗)[(CS∗ +DU∗)(S∗)+(CS∗ +DU∗)′

+(AS∗ + BU∗)(S∗)+(AS∗ + BU∗)′
]R(P ∗)

≥ [R(P ∗)]2.

(3.25)

The last inequality holds because (S∗)+ ≥ 0 from Lemma 2.8. It follows that R(P ∗) = 0.
For any u ∈ Uad, by (3.13), we get

J(x0, u) = x′0Px0 +
∞∑

t=0

E
{
[u(t) −Kx(t)]′

(
R + B′PB +D′PD

)
[u(t) −Kx(t)]

+x′(t)R(P)x(t)},
(3.26)
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where P is any feasible solution of (P) and K = −(R+B′PB+D′PD)+(B′PA+D′PC). R(P) ≥ 0
because of the feasibility of P . Then,

J(x0, u) ≥ x′0Px0. (3.27)

On the other hand, u∗(t) = U∗(S∗)−1x∗(t) is stabilizing by Theorem 3.2. Let u(t) = u∗(t) and
P = P ∗ in (3.26), then it follows that

J(x0, u
∗) = x′0P

∗x0 +
∞∑

t=0

E[u∗(t) −K∗x∗(t)]′(R + B′P ∗B +D′P ∗D
)
[u∗(t) −K∗x∗(t)], (3.28)

where K∗ = −(R + B′P ∗B + D′P ∗D)+(B′P ∗A + D′P ∗C). Below we prove J(x0, u
∗) = x′0P

∗x0.
Applying complementary slackness condition A(P ∗)Z∗ = 0 and above proof, we have

[R(P ∗) 0

0 R + B′P ∗B +D′P ∗D

][
I 0

−K∗ I

][
S∗ U∗′

U∗ T ∗

]

=
[ R(P ∗)S∗
(R + B′P ∗B +D′P ∗D)U∗ + (B′P ∗A +D′P ∗C)S∗

R(P ∗)U∗′
(R + B′P ∗B +D′P ∗D)T + (B′P ∗A +D′P ∗C)U∗′

]

=

[
0 0

0 0

]
.

(3.29)

Hence, (R + B′P ∗B +D′P ∗D)U∗ = −(B′P ∗A +D′P ∗C)S∗. Then,

[u∗(t) −K∗x∗(t)]′(R + B′P ∗B +D′P ∗D
)
[u∗(t) −K∗x∗(t)]

= u∗′(t)
(
R + B′P ∗B +D′P ∗D

)
u∗(t) + 2u∗′(t)

(
B′P ∗A +D′P ∗C

)
x∗(t)

+ x∗′(t)
(
A′P ∗B + C′P ∗D

)(
R + B′P ∗B +D′P ∗D

)+(
B′P ∗A +D′P ∗C

)
x∗(t)

= u∗′(t)
(
R + B′P ∗B +D′P ∗D

)
u∗(t) − 2u∗′(t)

(
R + B′P ∗B +D′P ∗D

)
U∗(S∗)−1x∗(t)

+ x∗′(t)(S∗)−1U∗′
(
R + B′P ∗B +D′P ∗D

)
U∗(S∗)−1x∗(t)

=
[
u∗(t) −U∗(S∗)−1x∗(t)

]′(
R + B′P ∗B +D′P ∗D

)[
u∗(t) −U∗(S∗)−1x∗(t)

]

= 0.
(3.30)

It follows from (3.27) and (3.28) that

J(x0, u
∗) = x′0P

∗x0 ≤ J(x0, u), ∀u ∈ Uad. (3.31)

The optimality of u∗(t) is proved.
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4. Conclusion

In this paper, we use the SDP approach to study discrete-time indefinite stochastic LQ
control problem. Some relations are given and are summarized as follows. The condition
that LQ problem is attainable can induce that (P) has an optimal solution P ∗ satisfying
GSARE (Theorem 3.3). Theorems 3.4 and 3.5 give two suffcient conditions for LQ problem
attainability by GSARE and complementary optimal solutions of (P) and (D). Moreover, by
dual SDP, we can get stabilized feedback control (Theorem 3.2). What we have obtained can
be viewed as a discrete-time version of [9]. Of course, there are many open problems to be
solved. For instance, the indefinite LQ problems for Markovian jumps or time-variant system
merit further study.
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We consider a two-stage tandem queue with single-server first station and multiserver second sta-
tion. Customers arrive to Station 1 according to a batch Markovian arrival process (BMAP). A
batch may consist of heterogeneous customers. The type of a customer is determined upon com-
pletion of a service at Station 1. The customer’s type is classified based on the number of servers
required to process the request of the customer at Station 2. If the required number of servers is not
available, the customer may leave the system forever or block Station 1 by waiting for the required
number of servers. We determine the stationary distribution of the system states at embedded
epochs and derive the Laplace-Stieltjes transform of the sojourn time distribution. Some key perfor-
mance measures are calculated, and illustrative numerical results are presented.

1. Introduction

Queueing networks are widely used in capacity planning and performance evaluation of
computer and communication systems, service centers, and manufacturing systems among
several others. Some examples of their application to real systems can be found in [1]. Tandem
queues can be used for modeling real-life two-node networks as well as for the validation
of general decomposition algorithms in networks (see, e.g., [2, 3]). Thus, tandem queueing
systems have found much interest in the literature. An extensive survey of early papers on
tandem queues can be seen in [4]. Most of these papers are devoted to exponential queueing
models. Over the last two decades or so, the efforts of many investigators in tandem queues
were in weakening the distribution assumptions on the service times as well as on the arri-
vals. In particular, the arrival process should be able to capture any correlation and burstiness
that are commonly seen in the traffic of modern communication networks [3]. Such an arrival
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process was introduced in [5] and ever since this process is referred to as a batch Markovian
arrival process (BMAP). In this paper, we deal with a tandem queue under the assumption
that the customers arrive according to a BMAP.

Tandem queues with the BMAP input were considered in [6–10]. The papers [6, 7, 10]
are devoted to the MAP/PH/1 → •/G/1 system with blocking. In [8], the tandem queues
BMAP/G/1/N → •/PH/1/M − 1 with losses are studied. The tandem-queue of the
BMAP/G/1 → •/PH/1/M − 1 type with losses and feedback has been studied in [9].

In the present paper, we consider a BMAP/G/1 → •/M/N/0 tandem queueing
system where the (possibly heterogeneous) customers arrive in batches of random sizes to
Station 1. Here the customers receive service individually, and upon completion of a service
the customer’s type is determined. This type identification is necessary to determine the
nature of service, if any, offered at Station 2. The customer’s type is classified based on the
number of servers (resources) required to process the request of the customer. The simul-
taneous initiation or occupation of several servers to a customer’s request is typical for the
so-called nonelastic traffic in communication networks. If the required number of servers is
not available at that instant of the request, the customer either leaves the system forever, or
awaits until the requirement is met through the release of the sufficient number of servers. In
the latter case, Station 1 will be blocked.

Possible applications of the tandem queue under study lie in the modeling of the dis-
tributed server application or web server application, see, for example, [11]. Station 1 is
interpreted as an authentication or an access step while Station 2 represents the computing
step or data base server if the processing of a job is produced by several parallel threads.
This tandem queue can model also multiaddress transmission of information. Station 1 is
interpreted as a transmission channel while Station 2 regulates the transmission rate by
providing necessary transmission windows (timers that are switched on at the moment of
a message transmission and switched off when the receipt of this message is acknowledged
or time-out expires). The performance evaluation of wireless IP networks providing hete-
rogeneous multimedia services with different QoS demands, (see [12, Chapter 8]), is the other
possible application of the model under study.

In this paper, we derive the stability condition of the model under study, and briefly
touch calculation of the stationary distribution of the system states at the service completion
epochs at Station 1 and calculation of the system performance measures. Furthermore, we
derive the Laplace-Stieltjes transform of the virtual and the actual sojourn time distributions
at both stations and in the whole system. The procedures for calculation of the moments of
the virtual sojourn time distribution and the mean actual sojourn time are discussed. Some
numerical results illustrating the behavior of the system characteristics are presented. The
problem of optimal design is numerically investigated.

To the best of our knowledge, the results of our paper are novel even for the case of
homogeneous customers. The most important and valuable, from the mathematical point of
view, result concerns the sojourn time distribution. Previously, the sojourn time distribution
in tandem queues with MAP input was considered only in [13, 14]. There, the service time
distribution at both the single-server stations is of phase type which allows the authors to
model the sojourn time as the time until absorption in suitably defined quasi-birth-and-death
processes and continuous-time Markov chains. Because we assume general service time
distribution at Station 1, we need to analyze a more complicated stochastic process.

The rest of the paper is organized as follows. In Section 2, the mathematical model is
described. In Section 3, the results concerning the stationary distribution of the embedded
Markov chain in Station 1 service completion epochs are presented. In Section 4, we focus
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on the analysis of the virtual and actual sojourn time distributions and their moments.
In Section 5, the numerical results are presented. The paper is concluded with Section 6.
Appendices contain auxiliary results, proofs, and formulas useful for computations.

2. The Mathematical Model

We consider a tandem queue consisting of two stations, say, Station 1 and Station 2. We
assume that there is no buffer between the two stations. Station 1 is represented by the
BMAP/G/1 queue. That is, the arrivals to Station 1 are described by a BMAP. The BMAP
is defined by the underlying process νt, t ≥ 0, which is an irreducible continuous time
Markov chain with state space {0, . . . ,W}, and with the matrix generating function D(z) =∑∞

k=0Dkz
k, |z| ≤ 1. Arrivals occur only at epochs of the jumps in the underlying process

νt, t ≥ 0. The intensities of the transitions of the process νt accompanied by a batch of size
k are defined by the matrices Dk, k ≥ 0. The matrix D(1) is the infinitesimal generator of
the process νt. The stationary distribution vector θ of this process satisfies the equations
θD(1) = 0,θe = 1, where e is a column vector consisting of 1′s, and 0 is a row vector of 0

′
s.

The average intensity λ (fundamental rate) of the BMAP is given by λ = θD′(z)|z=1e.
We assume that λ <∞. The average intensity λb of group arrivals is defined by λb = θ(−D0)e.
The coefficient of variation, cvar, of intervals between successive group arrivals is defined by
c2

var = 2λbθ(−D0)
−1e − 1. The coefficient of correlation ccor of the successive intervals between

group arrivals is given by ccor = (λbθ(−D0)
−1(D(1) − D0)(−D0)

−1e − 1)/c2
var. For more

information about the BMAP and related research see, for example, [5, 15].
All arriving customers enter into Station 1. The successive service times of customers at

Station 1 are independent random variables with general distribution B(t), Laplace-Stieltjes
transform β(s) =

∫∞
0 e−stdB(t), and finite first moment b1 =

∫∞
0 t dB(t).

After receiving a service at Station 1, the customer proceeds to Station 2. At this station,
there are N identical servers. Each of these servers offers services that are exponentially
distributed with parameter μ. Customers are heterogeneous with respect to the number of
servers that are required to process a customer at Station 2. With probability qm, qm ≥ 0, m =
0,N,

∑N
m=0qm = 1, the customer will require exactly m servers to provide a service at Station 2

and will be called type m customer. Here and in the sequel, notation such as m = 0,N, means
that m assumes values from the set {0, 1, . . . ,N}. Note that customers who are all in the same
batch (at the time of arriving) may belong to different types after receiving service at Station
1. Type 0 customer leaves the system for good after the service at Station 1. We assume that
q0 /= 1. Otherwise, the queue under consideration will be reduced to the BMAP/G/1 queue
which has been studied extensively.

If the customer is of type m, m = 1,N, and the required number of servers is available,
the customer’s service will begin immediately. Each of these m servers processes the cus-
tomer’s request independently of the others, and furthermore any server who becomes free
after completing his/her share of the processing will be available to process waiting or future
customers’ requests.

If the required number of servers is not available, with probability γ, 0 ≤ γ ≤ 1, the
customer will choose to leave the system for good and with probability 1 − γ will decide to
wait until the required number of servers is available. In the latter case, the customer will
block Station 1 since we assume that there is no buffer between the two stations. Such an
assumption of blocking and loss will allow us to unify these two classes of models which are
studied separately in the literature.



4 Mathematical Problems in Engineering

In the following, we are interested in the steady state analysis of the model under
study. For further use in the sequel, we introduce the following notation:

(i) I is an identity matrix of appropriate dimension;

(ii) ⊗ and ⊕ are symbols of the Kronecker product and sum of matrices;

(iii) D̃k = IN+1 ⊗Dk, k ≥ 0, D̃(z) =
∑∞

k=0D̃kz
k, |z| ≤ 1;

(iv) P(j, t), j ≥ 0, is a matrix function defined by the expansion
∑∞

j=0P(j, t)z
j = eD(z)t;

(v) F(t) = (Fr,r ′(t))r,r ′=0,N , where Fr,r ′(t) = 0 for r ≤ r ′ and for r > r ′, Fr,r ′(t) is
the generalized Erlang distribution function with the Laplace-Stieltjes transform
fr,r ′(s) =

∏r
l=r ′+1lμ(lμ + s)−1;

(vi) Qm, m = 1, 4, are square matrices: Q2 = diag{∑N
m=N−r+1qm, r = 0,N},

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

q0 q1 . . . qN

0 q0 . . . qN−1

...
...

. . .
...

0 0 . . . q0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Q3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 qN

0 . . . 0 qN−1

...
. . .

...
...

0 . . . 0 q0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Q4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

q0 q1 . . . qN−1 qN

q0 q1 . . . qN−1 0

...
...

. . .
...

...

q0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

;

(2.1)

(vii) Q̃m = Qm ⊗ IW, m = 1, 3, W = W + 1;

(viii) Q̂ = Q̃1 + γQ̃2 + (1 − γ) ∫∞0 (dF(t) ⊗ eD0t)Q̃3, Q = Q1 + γQ2 + (1 − γ)EQ3;

(ix)

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0

1 0 . . . 0 0

...
...

. . .
...

...

1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Î =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Ĩ = I − Î, ê = (1, 0, . . . , 0). (2.2)

3. The Stationary Distribution of the Embedded Markov Chain

Let tn denote the time of the nth service completion at Station 1. Consider the process ξn =
{in, rn, νn}, n ≥ 1, where in, in ≥ 0, is the number of customers at Station 1 (not counting
the blocked customer, if any) at epoch tn + 0; rn, rn = 0,N, is the number of busy servers at
Station 2 at epoch tn − 0; νn, νn = 0,W , is the state of the BMAP at epoch tn.

It is easy to verify that the process ξn = {in, rn, νn}, n ≥ 1, is a Markov chain. Enu-
merating the states of this Markov chain in lexicographic order, and denoting by Pl,k, l, k ≥ 0,
the square matrix of order (W + 1)(N + 1) governing the transition probabilities of the chain
from the set of states {l, ·, ·} to the set {k, ·, ·}, the following lemma gives the entries of the
transition probability matrix of the Markov chain ξn.
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Lemma 3.1. The transition probability matrix of the chain ξn, n ≥ 1, has the following block struc-
ture:

P = (Pl,k)l,k≥0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C0 C1 C2 C3 · · ·
Y0 Y1 Y2 Y3 · · ·
0 Y0 Y1 Y2 · · ·
0 0 Y0 Y1 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.1)

where

Ci =
i+1∑

k=1

[
−Q̂(Δ ⊕D0)−1D̃k +

(
1 − γ)FkQ̃3

]
Ωi−k+1,

Yi =
(
Q̃1 + γQ̃2

)
Ωi +

(
1 − γ)

i∑

k=0

FkQ̃3Ωi−k,

Ωj =
∫∞

0
eΔt ⊗ P(j, t)dB(t), Fj =

∫∞

0
dF(t) ⊗ P(j, t), j ≥ 0,

Δ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0

μ −μ 0 · · · 0 0

0 2μ −2μ · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · Nμ −Nμ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.2)

Proof. First, we write the transition probability matrices Ci, Yi in block forms as Ci =
(C(r,r ′)

i )r,r ′=0,N, Yi = (Y (r,r ′)
i )r,r ′=0,N , where the blocks C

(r,r ′)
i , Y (r,r ′)

i correspond to the transitions
of the number of busy servers from r to r ′ at Station 2.

Denote by δr,r ′(t) the probability that during the time interval of the length t the num-
ber of busy servers at Station 2 decreases from r to r ′ conditioned on the fact that none arrive
from Station 1.

For use in the sequel, we register the following probabilistic interpretations of the mat-
rices.

The (ν, ν′)th entry of the matrix P(j, t) gives the probability that j customers arrive in
the BMAP during the interval (0, t] and the state of the BMAP at epoch t is ν′ given ν0 = ν.

The (ν, ν′)th entry of the matrix
∫∞

0 δr,r ′(t)P(j, t)dB(t) gives the probability that during
the service time of a customer at Station 1, exactly j customers arrive, the number of busy
servers at Station 2 decreases from r to r ′ and the BMAP has changed from ν to ν′.

The (ν, ν′)th entry of the matrix
∫∞

0 δr,r ′(t)eD0tDkdt gives the probability that at an arbi-
trary time instant with the number of busy servers at Station 2 equal to r, and the BMAP in
state ν, the first batch to arrive is of size k; soon after that instant, the number of busy servers
at Station 2 equals r ′ and the BMAP is in state ν′.
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Fr,r ′(t) is the distribution function of the time interval during which the number of
busy servers at Station 2 decreases from r to r ′ conditioned on the fact that none arrive to this
station. Then the (ν, ν′)th entry of the matrix

∫∞
0 P(j, t)dFr,r ′(t) defines the probability that

exactly j customers arrive with the BMAP moving from ν to ν′ and that the number of busy
servers at Station 2 decreases from r to r ′ during that time interval.

From the above probabilistic interpretations, analyzing the one-step transitions of the
chain ξn with a careful analysis of the service completion epochs, in which the customers may
get lost due to lack of servers or wait (and thus block Station 1) until enough servers are avai-
lable, we obtain the following expressions for the matrices C(r,r ′)

i , Y
(r,r ′)
i , i ≥ 0:

C
(r,r ′)
i =

N−r∑

m=0

qm
r+m∑

l=r ′

∫∞

0
δr+m,l(t)eD0tdt

i+1∑

k=1

Dk

∫∞

0
δl,r ′(t)P(i − k + 1, t)dB(t)

+ γ
N∑

m=N−r+1

qm
r∑

l=r ′

∫∞

0
δr,l(t)eD0tdt

i+1∑

k=1

Dk

∫∞

0
δl,r ′(t)P(i − k + 1, t)dB(t)

+
(
1 − γ)

N∑

m=N−r+1

qm

[∫∞

0
eD0tdFr,N−m(t)

N∑

l=r ′

∫∞

0
δN,l(t)eD0tdt

×
i+1∑

k=1

Dk

∫∞

0
δl,r ′(t)P(i − k + 1, t)dB(t)+

i+1∑

k=1

∫∞

0
P(k, t)dFr,N−m(t)

×
∫∞

0
δN,r ′(t)P(i − k + 1, t)dB(t)

]
,

Y
(r,r ′)
i =

N−r∑

m=0

qm

∫∞

0
P(i, t)δr+m,r ′(t)dB(t)

+
N∑

m=N−r+1

qm

[
γ

∫∞

0
δr,r ′(t)P(i, t)dB(t)

+
(
1 − γ)

i∑

k=0

∫∞

0
P(k, t)dFr,N−m(t)

∫∞

0
δN,r ′(t)P(i − k, t)dB(t)

]
.

(3.3)

In order to arrive at equations (3.2) from (3.3), we use the matrix notations introduced above
and the relation: (δr,r ′(t))r,r ′=0,N = eΔt, which follows from the fact that under the case when
none arrive to Station 2, the process rt governing the number of busy servers at this station is
Markovian with generator Δ.

It is easy to see that the Markov chain ξn belongs to the class of M/G/1 type Markov
chains, see [16]. We can use this fact to derive the ergodicity condition and calculate the sta-
tionary distribution of the chain.

Let C(z) =
∑∞

i=0Ciz
i, Y (z) =

∑∞
i=0Yiz

i, |z| ≤ 1, be the generating functions of the transi-
tion probability matrices Ci and Yi, i ≥ 0.
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Corollary 3.2. The matrix generating functions C(z),Y (z) can be written as

C(z) =
1
z

[
−Q̂(Δ ⊕D0)−1

(
D̃(z) − D̃0

)
+
(
1 − γ)(F(z) − F0)Q̃3

]
Ω(z), (3.4)

Y (z) =
[
Q̃1 + γQ̃2 +

(
1 − γ)F(z)Q̃3

]
Ω(z), (3.5)

where

Ω(z) =
∞∑

n=0

Ωnz
n =

∫∞

0
eΔt ⊗ eD(z)tdB(t), F(z) =

∞∑

n=0

Fnz
n =

∫∞

0
dF(t) ⊗ eD(z)t. (3.6)

Theorem 3.3. The necessary and sufficient condition for ergodicity of the Markov chain ξn, n ≥ 1, is
the fulfillment of the inequality

ρ = λ

[
b1 +

(
1 − γ)

N∑

r=1

ϑr

N∑

m=N−r+1

qm
r∑

l=N−m+1

(
lμ
)−1

]
< 1. (3.7)

Here (ϑ1, . . . , ϑN) is a part of the vector ϑ = (ϑ0, . . . , ϑN), which is the unique solution to the system

ϑQB∗(0) = ϑ, ϑe = 1, (3.8)

where B∗(s) =
∫∞

0 e−steΔtdB(t).

Proof. It can be verified that the matrix Y (1) is irreducible. Hence, from [16], the necessary and
sufficient condition for ergodicity of the chain ξn is the fulfillment of the inequality

xY ′(1)e < 1, (3.9)

where the vector x is the unique solution of the system

xY (1) = x, xe = 1. (3.10)

The theorem will be proven if we show that inequality (3.9) is equivalent to inequality
(3.7).

Let the vector x be of the form

x = ϑ ⊗ θ. (3.11)

By the direct substitution into the system (3.10), where Y (1) is calculated using (3.5), we
verify that such a vector provides the unique solution of this system. Differentiating (3.5) at
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Table 1: The value of the system load ρ for different value of the mean service time and service time varia-
tion.

cvar = 0 cvar = 1 cvar = 5 cvar = 9.95
b1 = 0.1 0.42754 0.43016 0.45557 0.47940
b1 = 0.2 0.47460 0.48228 0.53677 0.57784
b1 = 0.3 0.53173 0.54515 0.62243 0.67725
b1 = 0.4 0.59698 0.61590 0.71010 0.77695
b1 = 0.5 0.66879 0.69247 0.79902 0.87678
b1 = 0.6 0.74579 0.77339 0.88883 0.97667
b1 = 0.7 0.82687 0.85763 0.97937 1.07663
b1 = 0.8 0.91116 0.94440 1.07051 1.17655

the point z = 1 and substituting the resulting expression for Y ′(1) and the vector x of form
(3.11) into the inequality (3.9), we get

ρ = λ

[
b1 +

(
1 − γ)ϑ

∫∞

0
tdF(t)Q3e

]
< 1. (3.12)

The stated expression in (3.7) follows from (3.12) and the expression for
∫∞

0 tdF(t) given in
(C.3)-(C.4) (see Appendix C).

Remark 3.4. The inequality (3.7) is intuitively clear on noting that the vector ϑ gives the
stationary distribution of the number of busy servers at Station 2 at the service comple-
tion epochs at Station 1 given the latter station works non-stop. Then (1 − γ)

∑N
r=1ϑr∑N

m=N−r+1qm
∑r

l=N−m+1(lμ)
−1 defines the average blocking time of Station 1 under overload

condition and ρ is the system load.

Remark 3.5. In a majority of queueing systems, the system load depends only on the first
moment of the service time distribution. In the model under study, the value of ρ depends
not only on the first moment b1 of the service time distribution at Station 1, but also on the
shape of this distribution. In particular, ρ depends on variance of the service time. This fact is
illustrated in Table 1 in Section 5.

In what follows, we assume that the inequality (3.7) holds true.
Denote the stationary state probabilities of the Markov chain ξn = {in, rn, νn} by

π(i, r, ν), i ≥ 0, r = 0,N, ν = 0,W . Introduce the notation for the row vectors of these proba-
bilities

π(i, r) = (π(i, r, 0), π(i, r, 1), . . . , π(i, r,W)), π i = (π(i, 0),π(i, 1), . . . ,π(i,N)), i ≥ 0.
(3.13)

Let also Π(z) =
∑∞

i=0π iz
i, |z| ≤ 1, be the vector generating function of vectors π i, i ≥ 0. To

compute these vectors as well as the vectors Π(1) and Π′(1), known algorithms, see, for exam-
ple, [16], can be applied.
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Once the stationary distribution has been computed, we can calculate some key perfor-
mance measures of the system as follows.

(i) The mean number of customers at Station 1 at the service completion epochs L =
Π′(1)e.

(ii) The vector of the stationary distribution of the number of busy servers at Station 2
at the service completion epoch at Station 1: r = Π(1)(IN+1 ⊗ eW).

(iii) The mean number of busy servers at Station 2 at the service completion epoch at
Station 1

Nbusy = r diag
{
r, r = 0,N

}
e. (3.14)

(iv) The probability that an arbitrary customer leaves the system or causes the blocking
of the server at Station 1

Ploss = γΠ(1)Q̃2e, Pblock =
(
1 − γ)Π(1)Q̃2e. (3.15)

(v) The probability that the server of Station 1 is idle at an arbitrary time pidle =
τ−1π0Q̂(−D̃0)

−1e, where τ is the mean interdeparture time at Station 1,

τ = b1 +π0Q̂
(
−D̃0

)−1
e − (1 − γ)Π(1)(IN+1 ⊗ e)F(1)Q3e, (3.16)

the matrix F(1) is defined by formula (C.3) below.

(vi) The probability that the server of Station 1 processes a customer at an arbitrary time
pserve = τ−1b1.

(vii) The probability that the server of Station 1 is blocked at an arbitrary time pblock =
1 − pidle − pserve.

4. Stationary Distribution of the Sojourn Time

4.1. The Virtual Sojourn Time

The virtual sojourn time in the system consists of the virtual sojourn time at Station 1 and the
sojourn time at Station 2. We assume that customers are served according to FIFO (first-in-
first-out) discipline.

For use in the sequel, we define the generalized service time of an arbitrary customer as
the service time of this customer by the first server and the possible blocking time of the ser-
ver by the previous customer.

4.1.1. The Virtual Sojourn Time at Station 1

The virtual sojourn time at Station 1 consists of (i) the residual time from an arbitrary time
instant (associated with virtual customer arrival) to the next service completion epoch at
Station 1 (ii) the generalized service times of customers staying in the queue at an arbitrary time,
and (iii) the generalized service time of the virtual customer.
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First, we study the residual time. To this end, we consider the process χt = {it, mt, rt,
νt, ṽt}, t ≥ 0, whose components are defined as follows: it is the number of customers in
Station 1 (including the blocked customer, if any), mt takes values 0, 1, 2, respectively, based
on the server at Station 1 is idle, busy, or blocked at time t, νt is the state of the BMAP, rt is
the number of busy servers at Station 2 just before the service completion epoch following
the time t, ṽt is the residual time from t to that service completion epoch.

Using the definition of semiregenerative processes given in [17], it can be verified that
the process χt is a semi-regenerative one with the embedded Markov renewal process {ξn, tn},
n ≥ 1. Let

Ṽ (i,m, r, ν, x)

= lim
t→∞

P{it = i,mt = m, rt = r, νt = ν, ṽt < x}, i ≥ 0, m = 0, 2, r = 0,N, ν = 0,W, x ≥ 0,

(4.1)

be the stationary distribution of the process χt, t ≥ 0.
From [17], the limits in (4.1) exist if the process {ξn, tn}, n ≥ 1, is irreducible aperiodic

recurrent and the value τ of the mean inter-departure time at Station 1 (given by (3.16)) is
finite. All these conditions hold if inequality (3.7) is satisfied.

Let Ṽ(i,m, x) be the row vector of the steady state probabilities Ṽ (i,m, r, ν, x) arranged
according to the lexicographic order of the components (r, ν), and let ṽ(i,m, s) be the
corresponding vector of the Laplace-Stieltjes transforms, that is, let ṽ(i,m, s) =

∫∞
0 e−sxdṼ(i,

m, x), i ≥ 0, m = 0, 2.

Lemma 4.1. The vector Laplace-Stieltjes transforms ṽ(i,m, s) are calculated by

ṽ(0, 1, s) = 0, ṽ(i, 0, s) = 0, i > 0, ṽ(0, 2, s) = 0, (4.2)

ṽ(0, 0, s) = −τ−1π0Q̂(Δ ⊕D0)−1[B∗(s) ⊗ IW
]
, (4.3)

ṽ(i, 1, s) = τ−1

{
π0

i∑

k=1

[
−Q̂(Δ ⊕D0)−1D̃k +

(
1 − γ)FkQ̃3

]

×
∫∞

0

(
eΔu ⊗ IW

)∫u

0
IN+1 ⊗ P

(
i − k, y)e−s(u−y)dy dB(u)

+
i∑

j=1

π j

[(
Q̃1 + γQ̃2

)∫∞

0

(
eΔu ⊗ IW

)∫u

0
IN+1 ⊗ P

(
i − j, y)e−s(u−y)dy dB(u)

+
(
1 − γ)

i−j∑

k=0

FkQ̃3

∫∞

0
eΔu ⊗ P(i − k − j, y)e−s(u−y)dy dB(u)

]}
,

(4.4)
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ṽ(i, 2, s) = τ−1(1 − γ)
i−1∑

j=0

π j

(∫∞

0
dF(u) ⊗ IW

)
Q̃3

×
∫u

0
e−s(u−y)

[
IN+1 ⊗ P

(
i − j − 1, y

)]
dy
[
B∗(s) ⊗ IW

]
, i > 0.

(4.5)

Proof. Let κ(i,m,x,t)
j (r, ν; r ′, ν′) denote the conditional probability that, given time 0 is an instant

of the service completion at Station 1 and the embedded Markov chain ξn is in the state (j, r, ν)
at that time, the next service completion epoch at Station 1 occurs later than t, the discrete
components of the process χt take values (i,m, r ′, ν′) at time t and the continuous-time com-
ponent ṽt < x.

Let us arrange the probabilities κ(i,m,x,t)
j (r, ν; r ′, ν′), for fixed values i, j, m, according to

the lexicographic order of the states (r, ν; r ′, ν′) and form the square matrices

K̃j(i,m, x, t) =
(
κ
(i,m,x,t)
j

(
r, ν; r ′, ν′

))

ν,ν′=0,W ;r,r ′=0,N
. (4.6)

Then, using the ergodic theorem for semi-regenerative processes, (see [17, Theo-
rem 6.12]), the probability vectors Ṽ(i,m, x) can be related to the stationary distribution π j ,
j ≥ 0, of the embedded Markov chain ξn, n ≥ 1, by

Ṽ(i,m, x) = τ−1
∞∑

j=0

π j

∫∞

0
K̃j(i,m, x, t)dt, i ≥ 0, m = 0, 2. (4.7)

The corresponding vector Laplace-Stieltjes transforms ṽ(i,m, s) are defined by

ṽ(i,m, s) = τ−1
∞∑

j=0

π j

∫∞

0
K̃∗j (i,m, s, t)dt, i ≥ 0, m = 0, 2, (4.8)

where K̃∗j (i,m, s, t) =
∫∞

0 e−sxdK̃j(i,m, x, t).

From (4.8), formulas (4.2) follow immediately when we note that K̃∗j (i,m, s, t) = 0 for
the range of arguments {j ≥ 0, i = 0, m = 1, 2} and {j ≥ 0, i > 0, m = 0}.

Let m = 1. The lengthy but straightforward expressions for the matrices K̃∗j (i, 1, s, t),
i > 0, are presented in Appendix A. Substituting these expressions into (4.8) and after routine
algebraic manipulations including rearranging the order of integration, we get formula (4.4)
for the vectors ṽ(i, 1, s), i > 0. Similar calculations yield (4.3) and (4.5).
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Further, we study the generalized service time distribution at Station 1.

Let B̂(x) be the matrix distribution function of generalized service time. More specifically,
let B̂(x) = (B̂(x)r,r ′)r,r ′=0,N , where B̂(x)r,r ′ = P{tn+1 − tn < x, rn+1 = r ′ | rn = r, in /= 0}. Denote
B(s) = ∫∞0 e−stdB̂(t).

Lemma 4.2. The matrix Laplace-Stieltjes transform of the generalized service time distribution at
Station 1 is calculated as

B(s) = [Q1 + γQ2 +
(
1 − γ)F∗(s)Q3

]
B∗(s), (4.9)

where F∗(s) =
∫∞

0 e−stdF(t).

Proof. To prove, we need to analyze the structure of the generalized service time. The gene-
ralized service time of a tagged customer is just the service time of the customer at Station 1 if
the previous customer did not block the server of this station. In this case, the matrix Lap-
lace-Stieltjes transform of the generalized service time distribution is calculated by (Q1 +
γQ2)B∗(s). However, when blocking occurs, the generalized service time consists of the time
during which the server is blocked by the previous customer and the service time of the
tagged customer. The corresponding Laplace-Stieltjes transform is defined by (1 − γ)∫∞

0 e−stdF(t)Q3B
∗(s). The stated result (4.9) follows immediately.

Now we are ready to derive the equation for the vector Laplace-Stieltjes transform
v1(s) of the distribution of the virtual sojourn time at Station 1. Let v1(r, ν, x) be the proba-
bility that, at an arbitrary epoch, the BMAP is in state ν, the virtual sojourn time at Station 1
is less than x, and the number of busy servers at Station 2 just before the end of the virtual
sojourn time is r. Then v1(s) is defined as a vector of Laplace-Stieltjes transforms v1(r, ν, s) =∫∞

0 e−sxdv1(r, ν, x) written in lexicographic order.

Theorem 4.3. The vector Laplace-Stieltjes transform v1(s) satisfies the equation

v1(s)A(s) = π0Φ(s), (4.10)

where

A(s) = sI +
∞∑

r=0

Br(s) ⊗Dr, Φ(s) = τ−1Q̂(Δ ⊕D0)−1(Δ ⊗ IW − sI
)[
B∗(s) ⊗ IW

]
. (4.11)

Proof. As mentioned above, the virtual sojourn time at Station 1 consists of the residual time
from an arbitrary time t to the next service completion epoch, the generalized service times of
customers that await for a service at time t, and the generalized service time of the virtual cus-
tomer.

Taking into account the structure of the virtual sojourn time and using the law of total
probability, we express the vector Laplace-Stieltjes transform v1(s) as follows:

v1(s) = ṽ(0, 0, s) +
∞∑

i=1

ṽ(i, 1, s)
[
Bi(s) ⊗ IW

]
+
∞∑

i=1

ṽ(i, 2, s)
[
Bi−1(s) ⊗ IW

]
. (4.12)
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Further, we multiply (4.12) by the matrix sI+
∑∞

r=0Br(s)⊗Dr , and, after some laborious
calculations, get

v1(s)

(
sI +

∞∑

r=0

Br(s) ⊗Dr

)

= τ−1

⎧
⎨

⎩π0

∞∑

i=0

⎡

⎣Ci +
i+1∑

j=1

π jYi−j+1

⎤

⎦
[
Bi+1(s) ⊗ IW

]

+π0Q̂
[
−(Δ ⊕D0)−1

(
sI + D̃0

)
+ I
][
B∗(s) ⊗ IW

] −
∞∑

j=0

π j

[
Bj+1(s) ⊗ IW

]
⎫
⎬

⎭.

(4.13)

Multiplying the balance equations for stationary probability vectors π i of the form

π i = π0Ci +
i+1∑

l=1

π lYi−l+1, i ≥ 0, (4.14)

by Bi+1(s) ⊗ IW and summing over i we obtain

∞∑

i=0

π i

[
Bi+1(s) ⊗ IW

]
= π0

∞∑

i=0

Ci

[
Bi+1(s) ⊗ IW

]
+
∞∑

i=0

i+1∑

j=1

π jYi−j+1

[
Bi+1(s) ⊗ IW

]
. (4.15)

Using (4.15) to simplify equation (4.13), we obtain (4.10).

4.1.2. The Sojourn Time at Station 2

Let v2(s) be the column vector of the Laplace-Stieltjes transforms of the conditional sojourn
time distributions at Station 2. The rth entry of this vector is the Laplace-Stieltjes transform of
the sojourn time distribution of a customer at Station 2 given that the number of busy servers
is equal to r just before the end of the sojourn time of this customer at Station 1.

Lemma 4.4. The vector Laplace-Stieltjes transform of the sojourn time distribution at Station 2 is
given by

v2(s) =
[
Q4(F∗(s) + I)Î + γQ2 +

(
1 − γ)F∗(s)diag

{
fr,0(s), r = N,N − 1, . . . , 0

}
Q3

]
e. (4.16)

Proof. The sojourn time of a customer who requires m servers at Station 2 consists of:

(i) the service time of the customer when at least m servers are available at the time of
the request;

(ii) zero time, if the required number of servers is not available and the customer leaves
the system;
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(iii) the blocking time and the service time of a customer when the required number of
servers is not available and the customer awaits the release of sufficiently many ser-
vers.

Note that we assume that the service of type m is performed by m servers indepen-
dently of each other and finishes when all m servers complete the service. The distribution of
this service time is defined by the Laplace-Stieltjes transform fm,0(s), m = 1,N.

Taking into account this fact together with (i)–(iii) and using the matrix notation, we
obtain expression (4.16) for the vector v2(s). In the expression, the first summand corresponds
to the case (i), the second and the third summands give the Laplace-Stieltjes transform under
study in the cases (ii) and (iii), respectively.

4.1.3. The Virtual Sojourn Time in the System

Theorem 4.5. The Laplace-Stieltjes transform of the virtual sojourn time distribution in the system is
given by

v(s) = v1(s)
(
IN+1 ⊗ eW

)
v2(s), (4.17)

where the vectors v1(s) and v2(s), respectively, are as given in (4.10) and (4.16).

Proof. Formula (4.17) readily follows from the structure of the virtual sojourn time in the
system which consists of the virtual sojourn time at Station 1 and the sojourn time at
Station 2.

4.2. The Actual Sojourn Time

Let v(a)
1 (s) and v(a)(s) be the Laplace-Stieltjes transforms of the distribution of the actual soj-

ourn time at Station 1 and in the whole system.

Theorem 4.6. The Laplace-Stieltjes transform of the actual sojourn time distribution at Station 1 is
calculated as follows:

v
(a)
1 (s) = λ−1v1(s)

∞∑

k=0

[
Bk(s)(B(s) − I)−1 ⊗Dk

]
e. (4.18)

Proof. The actual sojourn time at Station 1 of an arbitrary-tagged customer, who arrived in
a group of size k and placed at the jth position within the group, consists of (a) the actual
sojourn time at Station 1 of the first customer in the group, which coincides with the virtual
sojourn time at Station 1; (b) the generalized service times at Station 1 of the j−2 customers of
the group who arrived with the tagged customer; (c) the generalized service time of the tag-
ged customer at Station 1.

The vector Laplace-Stieltjes transform of the sojourn time distribution at Station 1 of
the first customer of the k-size group that contains the tagged customer is evidently given by
the vector v1(s)(IN+1 ⊗ kDke/λ).

Assuming that an arbitrary customer arriving in a group of size k is placed on the jth
position with probability 1/k and using the law of total probability, we immediately obtain
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the following expression:

v
(a)
1 (s) =

∞∑

k=1

v1(s)
(
IN+1 ⊗ kDke

λ

) k∑

j=1

1
k
Bj−1(s)e. (4.19)

After some algebraic manipulations (4.19) is reduced to (4.18).

Corollary 4.7. The Laplace-Stieltjes transform of the actual sojourn time distribution in the whole
system is calculated as follows:

v(a)(s) = λ−1v1(s)
∞∑

k=0

[
Bk(s)(B(s) − I)−1 ⊗Dk

](
IN+1 ⊗ eW

)
v2(s). (4.20)

4.3. Moments of the Sojourn Time Distribution

The formulas for the moments of the virtual sojourn time distribution can be obtained by
differentiating the expression in (4.10) at the point s = 0. This requires the calculation of the
derivatives of v1(s) at the point s = 0. However, the matrix A(s) in (4.10) is singular at the
point s = 0 and calculation of the derivatives at this point is the nontrivial task. The results
given below allow one to develop a procedure for calculating the required derivatives.

We will use notation v(m)
1 (s) for the mth derivative of the vector v1(s), m ≥ 1, and set

v(0)1 (s) = v1(s). Similar notations will be used for other functions of s.

Theorem 4.8. Let
∫∞

0 tmdB(t) < ∞, m = 1,M + 1, where M is an arbitrary positive integer. Then

the vectors v(m)
1 (0), m = 1,M, are computed recursively by

v(m)
1 (0) =

[(
π0Φ(m)(0) −

m−1∑

l=0

(
m

l

)
v(l)1 (0)A(m−l)(0)

)
Ĩ

+
1

m + 1

(
π0Φ(m+1)(0) −

m−1∑

l=0

(
m + 1

l

)
v(l)1 (0)A(m+1−l)(0)

)
eê

]
Ã−1,

(4.21)

with the initial condition

v(0)1 (0) = v1(0) =
[
τ−1π0Q̂(Δ ⊕D0)−1(ΔB∗(0) ⊗ IW

)
Ĩ + pidle ê

]
Ã−1, (4.22)

where Ã = A(0)Ĩ +A′(0)eê.

Proof of the theorem is presented in Appendix B. In what follows we assume that∫∞
0 tkdB(t) <∞, k = 1, 2.
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Corollary 4.9. The mean virtual sojourn time at Station 1 is given by

v1 =
{[

τ−1π0Q̂(Δ ⊕D0)−1
((

B∗(0) −ΔB∗
′
(0)
)
⊗ IW

)
+ v1(0)A′(0)

]
Ĩ

+
[
pidleb1 +

1
2
v1(0)A′′(0)e

]
ê
}
Ã−1e,

(4.23)

where the vector v1(0) is defined by formula (4.22).

Proof follows from the relation v1 = −v′1(0)e and formula (4.21).

Theorem 4.10. The mean virtual sojourn time in the system is given by

v = v1 + v1(0)
(
IN+1 ⊗ eW

)
v2, (4.24)

where v1(0) and v1 are given in (4.22) and (4.23), respectively, and v2 is a vector of conditional means
of the sojourn time at Station 2,

v2 = −
{
Q4F

(1)êT +
(
1 − γ)

[
F(1) − Ediag

{
r∑

l=1

(
lμ
)−1

, r = N,N − 1, . . . , 0

}]
Q3e

}
, (4.25)

where F(1) is given by formula (C.3) below.

Proof. To calculate the value v we differentiate the expression in (4.17). Setting s = 0 and rep-
lacing the sign, we have that

v = −v′1(0)
(
IN+1 ⊗ eW

)
v2(0) − v1(0)

(
IN+1 ⊗ eW

)
v′2(0). (4.26)

Putting s = 0 in (4.16) we get v2(0) = [Q4(E + I)Î + γQ2 + (1 − γ)EQ3]e = e. This implies
that the first term in the right-hand side of (4.26) is equal to −v′1(0)e = v1. Using the relation
v2 = −v′2(0) and differentiating (4.16) at the point s = 0, we readily verify that v2 has form
(4.25). This completes the proof.

Theorem 4.11. The mean actual sojourn time at Station 1 is given by

v
(a)
1 = −λ−1

{
v′1(0)

(
e ⊗

∞∑

k=1

kDke

)
+ v1(0)

∞∑

k=1

(IN+1 ⊗Dke)

[
k−1∑

n=1

n−1∑

l=0

Bl(0)B′(0)e
]}

. (4.27)

Proof of the theorem follows from the relation v
(a)
1 = −dv(a)

1 (s)/ds|s=0 and formula
(4.19).

Corollary 4.12. The mean actual sojourn time in the system is given by

va = v
(a)
1 + λ−1v1(0)

∞∑

k=1

(IN+1 ⊗Dke)
k−1∑

n=0

Bn(0)v2. (4.28)
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5. Numerical Examples

In this section, we demonstrate feasibility of the algorithms developed here and show numer-
ically some interesting features of the system under consideration.

Experiment 1. In this experiment, we investigate the impact of coefficient of variation in the
service process at Station 1 on the main performance measures of the system.

To this end, we consider four service processes with the same mean service time b1 =
0.1, but different values for the coefficient of variation, cvar. The first process is coded as D and
corresponds to the deterministic service time distribution. The second process is coded as M
and corresponds to the exponential service time. The third and the fourth service processes
are coded as HM

(1)
2 , HM

(2)
2 and correspond to hyperexponential service time distributions

of order 2. These distributions are defined by the mixing probabilities (0.05, 0.95) and the
intensities 0.62025, 48.9998 in the case of HM

(1)
2 and (0.98, 0.02) and the intensities 10000,

0.2 in the case of HM
(2)
2 . The coefficients of variation of processes D, M, HM

(1)
2 , and HM

(2)
2

are, respectively, equal to 0, 1, 5, 9.95.
The input process is defined by the matrices

D0 =

⎛
⎜⎜⎝

−15.7327 0.6062 0.5924

0.5178 −2.2897 0.4679

0.5971 0.5653 −1.9597

⎞
⎟⎟⎠, D =

⎛
⎜⎜⎝

14.1502 0.3021 0.0818

0.1071 1.032 0.1646

0.0858 0.1979 0.5136

⎞
⎟⎟⎠. (5.1)

The matrices Dk, k = 1, 5, are calculated as follows: Dk = Dhk−1(1−h)/(1−h5), where h = 0.8.
Then we normalize the matrices Dk, k = 0, 5, so as to get the arrival rate λ = 1. This BMAP
has coefficient of correlation ccor = 0.2. The other parameters of the system are as follows:
N = 5, μ = 0.8, γ = 0.5, q0 = 0.1, q1 = q2 = 0.3, q3 = q4 = q5 = 0.1.

We vary the mean service time b1 for all considered service processes in the interval
[0.1, 0.95] by scaling appropriately. The coefficients of variation do not change under such
scaling. Note that, as it was mentioned in Remark 3.5 above, the system load ρ depends not
only on the mean service time, but also on the variance of the service time. In Table 1, the
value of ρ is given as function of b1 and cvar. The values of ρ that exceed 1 are printed in bold
face. The tandem queueing system is not stable for these values.

Figures 1 and 2 show the dependence of the main performance measures of the system
on the value of the mean service time b1 for service processes with different service time dis-
tribution. From these figures, it is very clear that the key performance measures of the system
are very sensitive with respect to the service time variance. We also ran other examples,
besides the one presented here, involving Erlangian and uniform distributions for the service
time distribution. Since all these distributions have coefficient of variation in the range (0, 1),
the corresponding curves, as expected, were located between the two lower curves in Figures
1 and 2.

Experiment 2. Here we solve numerically the following optimization problem. Find an
optimal choice for the number N of servers at Station 2 that will minimize the expected total
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Figure 1: The mean virtual and actual sojourn time as functions of the mean service time for different ser-
vice time distributions.
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Figure 2: The loss probability and the mean number of busy servers at Station 2 as functions of the mean
service time for different service time distributions.

cost per unit of time:

J = J(N) = aN + c1λPloss + c2v
(a), (5.2)

where a is the cost of utilization per unit time of a server at Station 2 (maintenance cost), c1

is the cost of a customer leaving the system after a service at Station 1 due to lack of required
servers, and c2 is the cost per unit of time of holding (the sojourn time) an arbitrary customer
in the system (holding cost).

Using the MAP characterized by the matrices

D0 =

( −6.74538 5.45412 × 10−6

5.45412 × 10−6 −0.219455

)
, D =

(
6.700685 0.044695

0.122427 0.097023

)
, (5.3)

we construct the BMAP with the matrices Dk, k = 0, 5, similar to Experiment 1 and normalize
so as to have λ = 3. The BMAP has the coefficient of correlation ccor = 0.2 and the coefficient
of variation cvar = 3.5.
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Table 2: The value of the objective function for different number of servers and different service rate at
Station 2.

μ = 1 μ = 2 μ = 3 μ = 4 μ = 5
N = 1 ∞ 457.0346 74.9351 51.0311 42.5146
N = 2 353.7378 48.6349 34.1130 27.0826 22.9120
N = 3 71.0480 34.6565 25.8441 22.2656 20.6657
N = 4 51.7822 30.4068 25.8202 24.6008 24.2393
N = 5 45.2556 31.2080 29.3925 29.1141 29.0630
N = 6 43.0750 34.6437 34.0980 34.0535 34.0486
N = 7 43.6867 39.0715 39.0533 39.0504 39.0476
N = 8 47.2564 44.0527 44.0514 44.0495 44.0474
N = 9 51.9854 49.0521 49.0511 49.0491 49.0473
N = 10 57.0056 55.0458 54.6001 54.0489 54.0472

J

100

60

20

2 4 6 8 10

N

μ = 2

μ = 3

μ = 1

μ = 4
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Figure 3: The objective function as a function of the number of servers in Station 2 for different service
rates.

The service time distribution at Station 1 is assumed to be Erlang of order 3 with para-
meter 20. The probability γ is taken to be 0.5. The components of the vector q are: q0 =
0.1, q1 = 0.9, qm = 0, m = 2,N. The various costs are taken as follows: a = 5, c1 = 50, c2 = 3.

The objective function, J , as a function of the number N of servers under different ser-
vice rates μ is plotted in Figure 3. Table 2 contains the values of the objective function.

The optimal values J∗ of the objective function for each of the five service rates are dis-
played in bold face. It is seen from Figure 3 and Table 2 that as the service rate decreases from
5 to 1, the optimal number of servers N∗ increases from 3 to 6. The relative gain of the optimal
configuration in comparison to a system with an arbitrary number N of the servers at Station
2 is defined as Rrel(N) = ((J(N) − J∗)/J∗)100%.

We now focus on the result of optimal value in the case μ = 5. It is seen from Figure 3
and Table 2 that the optimal value of the objective function J∗ is 20.6657 and the optimal num-
ber of servers N∗ = 3. It should be also noted that for the case under consideration the mini-
mal relative gain is more than 10% if we install the optimal number of servers N∗ = 3 instead
of 2 servers and maximal relative gain is more than 161% if we use N∗ = 3 servers instead of
10 servers.

Experiment 3. In this experiment, we show that the correlation in the input flow has a great
impact on the performance measures of the system. In addition to the BMAP defined in the
first experiment and having the coefficient of correlation ccor = 0.2, let us consider two ano-
ther BMAPs, having the same mean arrival rate, but different coefficients of correlation. These
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Figure 4: The mean virtual and actual sojourn time as functions of the system load for the BMAPs with dif-
ferent correlation.

BMAPs are defined by the matrices D0 and D1 = D, from which the matrices Dk, k = 0, 5, are
defined in the same way as in Experiment 1.

The BMAP having the coefficient of correlation ccor = 0.1 is characterized by the mat-
rices

D0 =

⎛
⎜⎜⎝

−13.3346 0.5886 0.6173

0.6927 −2.4466 0.4229

0.6823 0.4144 −1.6354

⎞
⎟⎟⎠, D =

⎛
⎜⎜⎝

11.5469 0.3631 0.2187

0.3842 0.8659 0.0809

0.2852 0.0425 0.2111

⎞
⎟⎟⎠. (5.4)

The BMAP having the coefficient of correlation ccor = 0.3 is defined by the matrices

D0 =

⎛
⎜⎜⎝

−25.5398 0.3933 0.3612

0.1452 −2.2322 0.2000

0.2960 0.3874 −1.7526

⎞
⎟⎟⎠, D =

⎛
⎜⎜⎝

24.2421 0.4669 0.0763

0.0341 1.6668 0.1861

0.0090 0.2555 0.8047

⎞
⎟⎟⎠. (5.5)

All the three defined BMAPs have the coefficient of variation cvar = 2.
In addition, we consider the BMAP which is a group Poisson process. It has the same

mean arrival rate as three other BMAPs, coefficient of correlation ccor = 0 and the coefficient
of variation cvar = 1.

The service time at Station 1 has the Erlangian distribution of order 3 with parameter
20. The mean service time b1 = 3/20 and the squared coefficient of variation c2

var = 1/3.
The number of servers at Station 2 N = 5. Service rate μ is equal to 5. Probability γ that

a customer will await the release of servers is equal to 0.5. The components of the vector q,
which defines the type of the customer, are q0 = 0.1, q1 = q2 = 0.3, and q3 = q4 = q5 = 0.1.

Figures 4 and 5 illustrate the dependence of the mean virtual sojourn time v, the mean
actual sojourn time va, the loss probability Ploss, and the mean number Nbusy of busy servers
at Station 2 on the system load ρ. The load ρ varies by means of scaling the fundamental rate
λ. Note that the coefficients of correlation and variation of the BMAP do not change under
such scaling.

Figures 4 and 5 confirm the fact that values of v, va, Ploss, and Nbusy increase when the
system load, ρ, increases. We also note that, under the same scenario for the system load



Mathematical Problems in Engineering 21

P
lo

ss

0.1

0.08

0.06

0.04

0.02

0.2 0.4 0.6 0.8 1
ρ

ccor = 0.3

ccor = 0.2
ccor = 0.1

ccor = 0

(a)

N
bu

sy

1.5

1

0.5

0.2 0.4 0.6 0.8 1
ρ

ccor = 0.3

ccor = 0.2
ccor = 0.1

ccor = 0

(b)

Figure 5: The loss probability and the mean number of busy servers at Station 2 as functions of the system
load for the BMAPs with different correlation.

the correlation of the interarrival times shows a strong (negative) impact on the system per-
formance characteristics.

6. Conclusion

In this paper, the BMAP/G/1 → •/M/N/0 tandem queue with heterogeneous customers is
studied. The system is studied by looking at selected embedded epochs. The condition for the
existence of the stationary distribution is derived. Expressions for the loss probability, block-
ing probability, and some other performance characteristics of the system are obtained. The
Laplace-Stieltjes transforms of the distribution of the virtual and the actual sojourn time at
both stations as well as at the whole system are derived. Although the required analytical
derivations are very complicated and cumbersome, the resulting formulas have very simple
forms. The procedure for calculating the moments of the virtual and the actual sojourn time
distribution is elaborated. Illustrative numerical results highlight the important role played
by the variance of the service time. An optimization problem to illustrate the usefulness of
such problems in practice involving tandem queues is discussed. The results of this paper can
be applied to areas such as capacity planning, performance evaluation, and optimization of
real-world tandem queues and two-node networks.

Appendices

A. Expressions for the Matrices K̃∗j (i, 1, s, t), j > 0, i > 0

K̃∗0(i, 1, s, t) =
(
Q̃1 + γQ̃2

)∫ t

0

[
IN+1 ⊗ eD0x

i∑

k=1

DkdxP(i − k, t − x)
]

×
∫∞

0
e−sueΔ(t+u) ⊗ IWdB(t − x + u) +

(
1 − γ)
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×
{∫ t

0

[
dF(x) ⊗

i∑

k=1

P(k, x)P(i − k, t − x)
]
Q̃3

×
∫∞

0
e−sueΔ(t−x+u) ⊗ IWdB(t − x + u)

+
∫ t

0

∫y

0

[
dF(x) ⊗

(
eD0y

i∑

k=1

DkdyP
(
i − k, t − y)

)]
Q̃3

×
∫∞

0
e−sueΔ(t−x+u) ⊗ IWdB

(
t − y + u

)}
, i > 0,

K̃∗j (i, 1, s, t) =
(
Q̃1 + γQ̃2

)[
IN+1 ⊗ P

(
i − j, t)]

∫∞

0
e−sueΔ(t+u) ⊗ IWdB(t + u)

+
(
1 − γ)

∫ t

0

[
dF(x) ⊗

i−j∑

k=0

P(k, x)P
(
i − k − j, t − x)

]
Q̃3

×
∫∞

0
e−sueΔ(t−x+u) ⊗ IWdB(t − x + u).

(A.1)

B. Proof of Theorem 4.8.

Proof. Successively differentiating the expression in (4.10), we get

v(m)
1 (0)A(0) = π0Φ(m)(0) −

m−1∑

l=0

(
m

l

)
v(l)1 (0)A(m−l)(0), m ≥ 0. (B.1)

It follows from (4.11) that A(0) =
∑∞

r=0Br(0)⊗Dr , where B(0) is an irreducible stochastic mat-
rix. This implies that A(0) is an irreducible infinitesimal generator, and hence A(0) is a sin-
gular matrix. Thus, it is not possible to develop a recursive scheme for computing the vectors
v(m)

1 (0), m ≥ 0, directly from (B.1). We will now modify the system (B.1) to get the system
with a nonsingular matrix. To this end, we postmultiply the expression for m + 1 in (B.1) on
both sides with e. Taking into account that A(0)e = 0T , we get

v(m)
1 A′(0)e =

1
m + 1

[
π0Φ(m+1)(0) −

m−1∑

l=0

(
m + 1

l

)
v(l)1 (0)A(m+1−l)(0)

]
e. (B.2)

It can be shown that the right-hand side of (B.2) is not equal to zero. It is positive if m = 2k
and it is negative if m = 2k+1, k ≥ 0. Thus, replacing one of the equations in the system (B.1)
(without loss of generality, we replace the first equation) with equation (B.2), we get the
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following (inhomogeneous) system of linear algebraic equations for the entries of the vector
v(m)

1 (0) :

v(m)
1 (0)Ã =

[
π0Φ(m)(0) −

m−1∑

l=0

(
m

l

)
v(l)1 (0)A(m−l)(0)

]
Ĩ

+
1

m + 1

[
π0Φ(m+1)(0) −

m−1∑

l=0

(
m + 1

l

)
v(l)1 (0)A(m+1−l)(0)

]
eê, m ≥ 0.

(B.3)

The above system has the unique solution if Ã is non-singular. We prove this by showing that
det Ã /= 0.

Let us calculate det Ã as

det Ã = ∇A′(0)e, (B.4)

where ∇ is a vector of algebraic cofactors of the first column of the matrix A(0). Since A(0) is
irreducible, the vector ∇ is proportional to any solution of the system

xA(0) = 0, (B.5)

that is,

∇ = cx, (B.6)

where the scalar c /= 0.
Let the vector ϑ be the unique solution to the system

ϑB(0) = ϑ, ϑe = 1. (B.7)

Then, by the direct substitution it can be verified that the vector x = ϑ ⊗ θ is a solution to the
system (B.5).

From (B.6), ∇ = c(ϑ ⊗ θ). Substituting the vector ∇ into (B.4), we obtain

det Ã = c(ϑ ⊗ θ)A′(0)e = c(ϑ ⊗ θ)
(
sI +

∞∑

r=0

Br(s) ⊗Dr

)′∣∣∣∣∣
s=0

e

= c + c
∞∑

r=1

rϑB′(0)e ⊗ θDre = c
(
1 + λϑB′(0)e).

(B.8)

In further evaluation of det Ã, we use the ergodicity condition given in Theorem 3.3.
Setting s = 0 in (4.9) and noting that Q1 + γQ2 + (1 − γ)F∗(0)Q3 = Q, we see that

B(0) = QB∗(0) and that the vector ϑ defined by (B.7) is the unique solution of system (3.8). It
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can be easily verified that

ϑB′(0)e = −
[
b1 +

(
1 − γ)ϑ

∫∞

0
tdF(t)Q3e

]
. (B.9)

Multiplying (B.9) by λ and comparing the obtained equation with the equality in (3.12) we
see that

λϑB′(0)e = −ρ. (B.10)

It follows from (B.8) and (B.10) that det Ã = c(1−ρ). Since the stability condition implies that
ρ < 1 and since c /= 0, we have det Ã /= 0. This competes the proof of the theorem.

C. Formulas for Calculation of the Mean Virtual Sojourn Time

The expressions (4.21)-(4.22) for the mean virtual sojourn time involve the matrices Ã, A′(0)
and the vector A′′(0)e for which we derive explicit expressions below.

Ã =

[ ∞∑

r=0

Br(0) ⊗Dr

]
Ĩ +

[
I +

∞∑

r=1

r−1∑

n=0

Bn(0)B′(0) ⊗Dr

]
eê,

A′(0) = I +
∞∑

r=1

r−1∑

n=0

(
Bn(0)B′(0)Br−n−1(0) ⊗Dr

)
,

A′′(0)e =

{ ∞∑

r=1

r−1∑

n=1

[
2
n−1∑

l=0

Bl(0)B′(0)Bn−l−1(0)B′(0) + Bn(0)B′′(0)
]
⊗Dr

}
e,

(C.1)

where

B(0) = QB∗(0), B′(0) = QB∗(1) +
(
1 − γ)F(1)Q3B

∗(0),

B′′(0) = QB∗(2) − 2
(
1 − γ)F(1)Q3B

∗(1) +
(
1 − γ)F(2)Q3B

∗(0),
(C.2)

F(m) = (−1)m
∫∞

0
tmdF(t) =

(
f
(m)
r,r ′

)

r,r ′=0,N
, m = 1, 2, (C.3)

f
(1)
r,r ′ =

⎧
⎪⎪⎨

⎪⎪⎩

0, r ≤ r ′,

−
r∑

l=r ′+1

(
lμ
)−1

, r > r ′,
(C.4)
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f
(2)
r,r ′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, r ≤ r ′,

2
r∑

l=r ′+1

(−1)l−r
′+1

⎛

⎝
r − r ′

l − r ′

⎞

⎠(lμ
)−2

, r > r ′,

B∗(m) = (−1)m
∫∞

0
tmeΔtdB(t) =

(
β
∗(m)
r,r ′

)

r,r ′=0,N
, m = 0, 2,

β
∗(m)
r,r ′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, r < r ′,
⎛

⎝
r

r ′

⎞

⎠

⎧
⎨

⎩

r−r ′∑

i=0
(−1)i

⎛

⎝
r − r ′

i

⎞

⎠β(m)(μ(r ′ + i)
)
⎫
⎬

⎭, r ≥ r ′.

(C.5)

Remark C.1. Formulas for Ã,A′(0), A′′(0) contain infinite sums. However, the calculations of
these should not create any difficulty as for overwhelming majority of interesting and useful
queueing models; the parameter matrices, Dk, of the BMAP process are equal to zero for k
greater than some threshold, say, K. Thus, all sums become finite. In alternative case, some
analytical formula for computing the infinite sequence of matrices Dk, k ≥ 1, should be given.
If this sequence is generated such as Dk = D(1 − σ)σk−1, k ≥ 1, where D and 0 < σ < 1 are
given parameters, the infinite sums can be computed explicitly.
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[1] S. Balsamo, V. De Nitto Personè, and P. Inverardi, “A review on queueing network models with finite
capacity queues for software architectures performance prediction,” Evaluation, vol. 51, no. 2–4, pp.
269–288, 2003.

[2] H. W. Ferng and J. F. Chang, “Connection-wise end-to-end performance analysis of queueing net-
works with MMPP inputs,” Performance Evaluation, vol. 43, no. 1, pp. 39–62, 2001.

[3] A. Heindl, “Decomposition of general tandem queueing networks with MMPP input,” Performance
Evaluation, vol. 44, no. 1–4, pp. 5–23, 2001.

[4] B. W. Gnedenko and D. König, Handbuch der Bedienungstheorie, vol. 56, Akademie-Verlag, Berlin, Ger-
many, 1983.

[5] D. M. Lucantoni, “New results on the single server queue with a batch Markovian arrival process,”
Communications in Statistics. Stochastic Models, vol. 7, no. 1, pp. 1–46, 1991.
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This paper further considers more general high-order stochastic nonlinear system driven by noise
of unknown covariance and its adaptive state-feedback stabilization problem. A smooth state-
feedback controller is designed to guarantee that the origin of the closed-loop system is globally
stable in probability.

1. Introduction

In this paper, we consider the following high-order stochastic nonlinear system:

dx1 = x
p

2dt + f1(x1)dt + g1(x1)Σdω,

dx2 = x
p

3dt + f2(x2)dt + g2(x2)Σdω,

...

dxn = updt + fn(xn)dt + gn(xn)Σdω,

(1.1)

where x = (x1, . . . , xn) ∈ Rn, u ∈ R, are the state and control input, respectively. xi = (x1, . . . ,
xi), i = 1, . . . , n. p ≥ 1 is odd integer. w is an r-dimensional standard Wiener process defined
in a complete probability space (Ω,F, {Ft}t≥0, P) with Ω being a sample space, F being a σ-
field, {Ft}t≥0 being a filtration, and P being the probability measure. Σ : R+ → Rr×r is an
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unknown bounded nonnegative definite Borel measurable matrix function and ΣΣT denotes
the infinitesimal covariance function of the driving noise Σdω. fi : Ri → R and gi : Ri → Rr ,
i = 1, . . . , n, are assumed to be smooth with fi(0) = 0 and gi(0) = 0.

When p = 1, system (1.1) reduced to the well-known normal form whose study on
feedback control problem has achieved great development in recent years. According to the
difference of selected Lyapunov functions, the existing literature on controller design can be
mainly divided into two types. One type is based on quadratic Lyapunov functions which
are multiplied by different weighting functions, see, for example, [1–5] and the references
therein. Another essential improvement belongs to Krstić and Deng. By introducing the
quartic Lyapunov function, [6, 7] presented asymptotical stabilization control in the large
under the assumption that the nonlinearities equal to zero at the equilibrium point of the
open-loop system. Subsequently, for several classes of stochastic nonlinear systems with
unmodeled dynamics and uncertain nonlinear functions, by combining Krstić and Deng’s
method with stochastic small-gain theorem [8], and with dynamic signal and changing
supply function [9, 10], different adaptive output-feedback control schemes are studied.

When p > 1, some intrinsic features of (1.1), such as that its Jacobian linearization is
neither controllable nor feedback linearizable, lead to the existing design tools hardly appli-
cable to this kind of systems. Motivated by the fruitful deterministic results in [11, 12]
and the related papers and based on stochastic stability theory in [13–15], and so forth,
[16] firstly considered, this class of systems with stochastic inverse dynamics. Subsequently,
[17–21] considered respectively, the state-feedback stabilization problem for more general
systems with different structures. [22, 23] solved the output-feedback stabilization, and [24]
addressed the inverse optimal stabilization.

All the papers mentioned above, however, only consider the case of ΣΣT = I. In this
paper, we will further consider more general high-order stochastic nonlinear system driven
by noise of unknown covariance and its adaptive state-feedback stabilization problem. A
smooth state-feedback controller is designed to guarantee that the origin of the closed-loop
system is globally stable in probability. A simulation example verifies the effectiveness of the
control scheme.

The paper is organized as follows. Section 2 provides some preliminary results.
Section 3 gives the state-feedback controller design and stability analysis, following a simula-
tion example in Section 4. In Section 5, we conclude the paper.

2. Preliminary Results

The following notations definitions and lemmas are to be used throughout the paper.
R+ stands for the set of all nonnegative real numbers, Rn is the n-dimensional

Euclidean space, Rn×m is the space of real n × m-matrixes. C2 denotes the family of all the
functions with continuous second partial derivatives. |x| is the usual Euclidean norm of a
vector x. ‖X‖ = (Tr{XXT})1/2, where Tr{X} is its trace when X is a square matrix and
XT denotes the transpose of X. K denotes the set of all functions: R+ → R+, which are
continuous, strictly increasing and vanishing at zero;K∞ is the set of all functions which are
of classK and unbounded;KL denotes the set of all functions β(s, t): R+ × R+ → R+, which
are of classK for each fixed t and decrease to zero as t → ∞ for each fixed s. To simplify the
procedure, we sometimes denote χ(t) by χ for any variable χ(t).

Consider the nonlinear stochastic system

dx = f(x)dt + g(x)dω, (2.1)



Mathematical Problems in Engineering 3

where x ∈ Rn is the state, w is an r-dimensional independent Wiener process with incre-
mental covariance ΣΣTdt, that is, E{dωdωT} = ΣΣTdt, where Σ is a bounded function taking
values in the set of nonnegative definite matrices, f : Rn → Rn and g : Rn → Rn×r are locally
Lipschitz functions.

Definition 2.1 (see [13]). For any given V (x) ∈ C2 associated with stochastic system (2.1), the
differential operator L is defined as

LV (x) � ∂V (x)
∂x

f(x) +
1
2

Tr

{
gT (x)

∂2V (x)
∂x2

g(x)

}
. (2.2)

Definition 2.2 (see [25]). For the stochastic system (2.1) with f(0) = 0, g(0) = 0, the equilibri-
um x(t) = 0 is globally asymptotically stable (GAS) in probability if for any ξ > 0, there exists
a classKL function β(·, ·) such that

P
{|x(t)| < β(|x0|, t)

} ≥ 1 − ξ, t ≥ 0, ∀x0 ∈ Rn \ {0}. (2.3)

Lemma 2.3 (see [14]). Consider the stochastic system (2.1). If there exist a C2 function V (x), class
K∞ function α1 and α2, constants c1 > 0 and c2 ≥ 0, and a nonnegative function W(x) such that for
all x ∈ Rn, t ≥ 0

α1(|x|) ≤ V (x) ≤ α2(|x|), LV ≤ −c1W(x) + c2, (2.4)

then,

(a) there exists an almost surely unique solution on [0,∞) for each x0 ∈ Rn,

(b) when c2 = 0, f(0) = 0, g(0) = 0, and W(x) is continuous, then the equilibrium x = 0 is
globally stable in probability and the solution x(t) satisfies P{limt→∞W(x(t)) = 0} = 1.

Lemma 2.4 (see [12]). Let x, y be real variables, for any positive integersm,n, positive real number
b and nonnegative continuous function a(·), then

a(·)xmyn ≤ b|x|m+n +
n

m + n

(
m + n

m

)−m/n

(a(·))(m+n)/nb−m/n
∣∣y
∣∣m+n

, (2.5)

when a(·) = 1, b = (m/(m + n))d, d is a positive constant, then the above inequality is

xmyn ≤ m

m + n
d|x|m+n +

n

m + n
d−m/n

∣∣y
∣∣m+n

. (2.6)

Lemma 2.5 (see [12]). Let x, y and zi, i = 1, . . . , p, be real variables and let l1(·) and l2(·) be smooth
mappings. Then for any positive integers m, n and real number N > 0, there exist two nonnegative
smooth functions h1(·) and h2(·) such that the following inequalities hold:

(i) |xm[(y + xl1(x))
n − (xl1(x))n]| ≤ |x|m+n/N + |y|m+nh1(x, y),

(ii) |ym(zn1 + · · · + znp + yn)l2(z1, . . . , zp, y)| ≤ (1/N)
∑p

k=1|zk|m+n + |y|m+nh2(z1, . . . , zp, y).
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Lemma 2.6 (see [12]). Let x1, . . . , xn, p, be positive real variables, then

(x1 + · · · + xn)p ≤ max
{
np−1, 1

}(
x
p

1 + · · · + x
p
n

)
. (2.7)

3. Controller Design and Stability Analysis

The objective of this paper is to design a smooth state-feedback controller for system (1.1),
such that the solution of the closed-loop system is GAS in probability. To achieve the control
objective, we need the following assumption.

Assumption 3.1. There are nonnegative smooth functions fi1, gi1, i = 1, . . . , n, such that

∣∣fi(xi)
∣∣ ≤
⎛

⎝
i∑

j=1

∣∣xj

∣∣p
⎞

⎠fi1(xi),
∣∣gi(xi)

∣∣ ≤
⎛

⎝
i∑

j=1

∣∣xj

∣∣p
⎞

⎠gi1(xi). (3.1)

3.1. Controller Design

Now, we give the controller design procedure by using the backstepping method.
First, we introduce the following coordinate change:

z1 = x1, zi = xi − αi−1

(
xi−1, θ̂

)
, i = 2, . . . , n, (3.2)

where αi−1(xi−1, θ̂), i = 2, . . . , n, are smooth virtual controllers which will be designed later, θ̂
is the estimation of θ, and

θ � max
t≥0

{∥∥∥ΣΣT
∥∥∥
(p+3)/2

,
∥∥∥ΣΣT

∥∥∥
(p+3)/3

,
∥∥∥ΣΣT

∥∥∥
}
. (3.3)

Then, by Itô’s differentiation rule, one has

dzi = d
(
xi − αi−1

(
xi−1, θ̂

))

=

(
x
p

i+1 + Fi(xi) −
i−1∑

l=1

∂αi−1

∂xl
x
p

l+1 −
1
2

i−1∑

k,m=1

∂2αi−1

∂xk∂xm
gk(xk)ΣΣTgT

m(xm) − ∂αi−1

∂θ̂

˙̂θ

)
dt

+Gi(xi)Σdω,

(3.4)

where

Fi(xi) = fi(xi) −
i−1∑

l=1

∂αi−1

∂xl
fl(xl), Gi(xi) = gi(xi) −

i−1∑

l=1

∂αi−1

∂xl
gl(xl). (3.5)
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Step 1. Define the first Lyapunov function

V1

(
z1, θ̂

)
=

1
4
z4

1 +
1

2Γ
θ̃2, (3.6)

where Γ is a positive constant, θ̃ = θ − θ̂ is the parameter estimation error. By (3.2)–(3.4) and
Assumption 3.1, there exist nonnegative smooth functions μ11 and μ15 such that

LV1 = z3
1x

p

2 + z3
1f1(x1) +

3
2
z2

1g1(x1)ΣΣTgT
1 (x1) − θ̃

Γ
˙̂θ

≤ z3
1

(
x
p

2 − α
p

1

)
+ z3

1α
p

1 + z
p+3
1 μ11(z1) + z

p+3
1 μ15(z1)θ − θ̃

Γ
˙̂θ

≤ z3
1

(
x
p

2 − α
p

1

)
+ z3

1α
p

1 + z
p+3
1 μ11(z1) + z

p+3
1 μ15(z1)

√
1 + θ̂2 − θ̃

Γ

( ˙̂θ − Γzp+3
1 μ15(z1)

)
.

(3.7)

Choosing the first smooth virtual controller

α1

(
x1, θ̂

)
= −z1β1

(
z1, θ̂

)
, β1

(
z1, θ̂

)
=
(
c11 + μ11(z1) + μ15(z1)

√
1 + θ̂2

)1/p

, (3.8)

and the tuning function

τ1(z1) = Γzp+3
1 μ15(z1), (3.9)

one has

LV1 ≤ −c11z
p+3
1 + z3

1

(
x
p

2 − α
p

1

)
− θ̃

Γ

( ˙̂θ − τ1

)
, (3.10)

where c11 > 0 is a design parameter.

Step i (2 ≤ i ≤ n). For notational coherence, denote u = xn+1. Assuming that at step i − 1, one
has

LVi−1 ≤ −
i−1∑

j=1

cj,i−1z
p+3
j −

⎛

⎝ θ̃

Γ
+

i−1∑

j=2

z3
j

∂αj−1

∂θ̂

⎞

⎠
( ˙̂θ − τi−1

)
+ z3

i−1

(
x
p

i − α
p

i−1

)
, (3.11)
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where τi−1 = τi−2 + Γzp+3
i−1 (μi−1,4 + μi−1,5). In the sequel, we will prove that (3.11) still holds for

the ith Lyapunov function Vi(zi, θ̂) = Vi−1(zi−1, θ̂) + (1/4)z4
i . By (3.4) and (3.11), one has

LVi ≤ LVi−1 + z3
i

(
x
p

i+1 + Fi(xi) −
i−1∑

l=1

∂αi−1

∂xl
x
p

l+1 −
1
2

i−1∑

k,m=1

∂2αi−1

∂xk∂xm
gk(xk)ΣΣTgT

m(xm)

)

− z3
i

∂αi−1

∂θ̂

˙̂θ +
3
2
z2
i Tr
{
ΣTGT

i (xi)Gi(xi)Σ
}

≤ −
i−1∑

j=1

cj,i−1z
p+3
j −

⎛

⎝ θ̃

Γ
+

i−1∑

j=2

z3
j

∂αj−1

∂θ̂

⎞

⎠
( ˙̂θ − τi−1

)
+ z3

i−1

(
x
p

i − α
p

i−1

)

+ z3
i

(
x
p

i+1 + Fi(xi) −
i−1∑

l=1

∂αi−1

∂xl
x
p

l+1 −
1
2

i−1∑

k,m=1

∂2αi−1

∂xk∂xm
gk(xk)ΣΣTgT

m(xm)

)

− z3
i

∂αi−1

∂θ̂

˙̂θ +
3
2
z2
i Tr
{
ΣTGT

i (xi)Gi(xi)Σ
}
+ z3

i

∂αi−1

∂θ̂
τi−1 − z3

i

∂αi−1

∂θ̂
τi−1.

(3.12)

To proceed further, an estimate for each term in the right-hand side of (3.12) is needed. Using
Itô’s differentiation rule, Lemmas 2.4–2.6, (3.2), and (3.3), it follows that

z3
i−1

(
x
p

i − α
p

i−1

)
= z3

i−1

(
(zi + αi−1)p − αp

i−1

)

≤ ξi1z
p+3
i−1 + μi1

(
zi, θ̂
)
z
p+3
i ,

z3
i Fi(xi) ≤ |zi|3

i∑

j=1

∣∣zj
∣∣pρi2j

(
zi, θ̂
)

≤
i−1∑

j=1

ξi2jz
p+3
j + μi2

(
zi, θ̂
)
z
p+3
i ,

−z3
i

i−1∑

l=1

∂αi−1

∂xl
x
p

l+1 ≤ |zi|3
i−1∑

j=1

∣∣zj
∣∣pρi3j

(
zi, θ̂
)

≤
i−1∑

j=1

ξi3jz
p+3
j + μi3

(
zi, θ̂
)
z
p+3
i ,

−1
2
z3
i

i−1∑

k,m=1

∂2αi−1

∂xk∂xm
gk(xk)ΣΣTgT

m(xm) ≤ |zi|3
i−1∑

j=1

∣∣zj
∣∣2pρi4j

(
zi, θ̂
)∥∥∥ΣΣT

∥∥∥

≤
i−1∑

j=1

ξi4jz
p+3
j + μi4

(
zi, θ̂
)
z
p+3
i θ,

3
2
z2
i Tr
{
ΣTGT

i (xi)Gi(xi)Σ
}
≤ z2

i

i∑

j=1

z
p+1
j ρi5j

(
zi, θ̂
)∥∥∥ΣΣT

∥∥∥
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≤
i−1∑

j=1

ξi5jz
p+3
j + μi5

(
zi, θ̂
)
z
p+3
i θ,

−z3
i

∂αi−1

∂θ̂
τi−1 ≤ |zi|3

i−1∑

j=1

∣∣zj
∣∣pρi6j

(
zi, θ̂
)

≤
i−1∑

j=1

ξi6jz
p+3
j + μi6

(
zi, θ̂
)
z
p+3
i ,

(3.13)

where ξi1, ξi2j , ξi3j , ξi4j , ξi5j , ξi6j , j = 1, . . . , i − 1, are positive constants and μi1, μi2, μi3, μi4, μi5,
μi6, ρi2j , ρi3j , ρi4j , ρi5j , ρi6j , j = 1, . . . , i, are nonnegative smooth functions. Substituting (3.13)
into (3.12), one has

LVi ≤ −
i−1∑

j=1

cj,i−1z
p+3
j + ξi1z

p+3
i−1 −

⎛

⎝ θ̃

Γ
+

i−1∑

j=2

z3
j

∂αj−1

∂θ̂

⎞

⎠
( ˙̂θ − τi−1

)
+ z3

i α
p

i

+ z
p+3
i

(
μi1 + μi2 + μi3 + μi6 +

(
μi4 + μi5

)√
1 + θ̂2

)
+
θ̃

Γ
(
μi4 + μi5

)
Γzp+3

i

+
i−1∑

j=1

(
ξi2j + ξi3j + ξi4j + ξi5j + ξi6j

)
z
p+3
j + z3

i

(
x
p

i+1 − α
p

i

)
.

(3.14)

Choosing the ith smooth virtual controller αi

αi

(
xi, θ̂

)
= −ziβi

(
zi, θ̂
)
,

βi
(
zi, θ̂
)
=

⎛

⎝cii + μi1 + μi2 + μi3 + μi6 +
(
μi4 + μi5

)
⎛

⎝
√

1 + θ̂2 +
i∑

j=2

z3
j

∂αj−1

∂θ̂
Γ

⎞

⎠

⎞

⎠
1/p

,

(3.15)

and tuning function τi

τi(zi) = τi−1(zi−1) + Γzp+3
i

(
μi4 + μi5

)
, (3.16)

and substituting (3.15) and (3.16) into (3.14), it follows that

LVi

(
zi, θ̂
)
≤ −

i∑

j=1

cjiz
p+3
j −

⎛

⎝ θ̃

Γ
+

i∑

j=2

z3
j

∂αj−1

∂θ̂

⎞

⎠
( ˙̂θ − τi

)
+ z3

i

(
x
p

i+1 − α
p

i

)
, (3.17)

where cji = cjj − ξj+1,1 −
∑6

k=2ξikj , j = 1, . . . , i − 1.
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Hence at step n, the smooth adaptive state-feedback controller

u = αn

(
xn, θ̂

)
= −znβn

(
zn, θ̂

)
, ˙̂θ = τn(zn),

βn
(
zn, θ̂

)
=

⎛

⎝cnn + μn1 + μn2 + μn3 + μn6 +
(
μn4 + μn5

)
⎛

⎝
√

1 + θ̂2 +
n∑

j=2

z3
j

∂αj−1

∂θ̂
Γ

⎞

⎠

⎞

⎠
1/p

,

τn(zn) = Γzp+3
1 μ15(z1) +

n∑

j=2

Γzp+3
j

(
μj4 + μj5

)
,

(3.18)

such that the nth Lyapunov function

Vn

(
zn, θ̂

)
=

1
4

n∑

j=1

z4
j +

1
2Γ

θ̃2 (3.19)

satisfies

LVn ≤ −
n∑

j=1

cjnz
p+3
j , (3.20)

where μnl, l = 1, . . . , 6, are nonnegative smooth functions, cjn, j = 1, . . . , n, are constants, and

cjn = cjj − ξj+1,1 −
6∑

k=2

ξnkj , j = 1, . . . , n − 1. (3.21)

3.2. Stability Analysis

Theorem 3.2. If Assumption 3.1 holds for the high-order stochastic nonlinear system (1.1), under
the state-feedback controller (3.18), then

(i) the closed-loop system consisting of (1.1), (3.2), (3.8), (3.9), (3.15), (3.16), and (3.18) has
an almost surely unique solution on [0,∞) for each (x0, θ̃(0)) ∈ Rn+1,

(ii) the origin of the closed-loop system is globally stable in probability,

(iii) P{limt→∞|x(t)| = 0} = 1 and P{limt→∞θ̂(t) exists and is finite} = 1.

Proof. It is easy to verify that Vn(zn, θ̂) is C2 on zn and θ̂. For j = 1, . . . , n−1, choose the design
parameter cjj > ξj+1,1 +

∑6
k=2ξnkj , cnn > 0, then by (3.21), cjn > 0, j = 1, . . . , n− 1. Since Vn(zn, θ̂)

is continuous, positive, and radially bounded, by (3.20), (3.21), and Lemma 4.3 in [25], there
exist two class K∞ functions α1 and α2 such that α1(|x|, |θ̃|) ≤ Vn(zn, θ̂) ≤ α2(|x|, |θ̃|). Hence,
the condition of Lemma 2.3 holds.

By Lemma 2.3, it follows that conclusion (i), (ii) hold, and P{limt→∞|z(t)| = 0} = 1.
In view of αi(0, θ̂) = 0 and xi = zi + αi−1(xi−1, θ̂), one has P{limt→∞|x(t)| = 0} = 1. By (3.20)
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and the definition of Vn(zn, θ̂) in (3.19), it holds that θ̃(t) converges a.s. to a finite limit θ̃∞ as
t → ∞, therefore θ̂(t) converges a.s. to a finite limit as t → ∞.

4. A Simulation Example

Consider a two-order nonlinear stochastic system

dx1 = x3
2dt + f1(x1)dt + x3

1Σdω,

dx2 = u3dt + f2(x2)dt + x3
2Σdω,

(4.1)

where f1(x1) = x3
1, f2(x2) = x1x

2
2. By Lemma 2.4, one gets |f1(x1)| ≤ |x1|3, |g1(x1)| ≤ |x1|3,

|f2(x2)| ≤ (1/3)|x1|3 + (2/3)|x2|3, g2(x2) ≤ |x2|3. We choose f11(x1) = 1, g11(x1) = 1, f21(x2) =
2/3, g21(x2) = 1, Assumption 3.1 is satisfied.

We now give the design of state-feedback controller for system (4.1).

Step 1. Define z1 = x1, V1(z1, θ̂) = (1/4)z4
1 + (1/2Γ)θ̃2. A smooth virtual controller

α1

(
x1, θ̂

)
= −z1β1

(
z1, θ̂

)
,

β1

(
z1, θ̂

)
=
(
c11 + 1 + μ15(z1)

√
1 + θ̂2

)1/3

,

(4.2)

and the tuning function

τ1(z1) = Γz6
1μ15(z1) (4.3)

yield LV1(z1, θ̂) ≤ −c11z
6
1 + z3

1(x
3
2 − α3

1) + (θ̃/Γ)( ˙̂θ − τ1), where

μ15(z1) =
3
2
z2

1, θ(t) = max
t≥0

{∥∥∥Σ(t)Σ(t)T
∥∥∥

3
,
∥∥∥Σ(t)Σ(t)T

∥∥∥
2
,
∥∥∥Σ(t)Σ(t)T

∥∥∥
}
. (4.4)

Step 2. Defining z2 = x2 − α1(x1, θ̂), V2(z2, θ̂) = V1(z1, θ̂) + (1/4)z4
2, by (3.12), one has

LV2

(
z1, θ̂

)
≤ −c11z

6
1 + z3

1

(
x3

2 − α3
1

)
+
θ̃

Γ

( ˙̂θ − τ1

)

+ z3
2

(
u3 + F2(x2) − ∂α1

∂x1
x3

2 −
1
2
∂2α1

∂x2
1

g1(x1)ΣΣTgT
1 (x1)

)

− z3
2
∂α1

∂θ̂

˙̂θ +
3
2
z2

2 Tr
{
ΣTGT

2 (x2)G2(x2)Σ
}
,

(4.5)
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where F2(x2) = f2(x2) − (∂α1/∂x1)f1(x1), G2(x2) = g2(x2) − (∂α1/∂x1)g1(x1). By Lemma 2.4,
the definition of z2, and (4.2), one can obtain

z3
1

(
x3

2 − α3
1

)
≤ 1

2
d11z

6
1 +

1
2
d−1

11z
6
2 + 3

(
2
3
d12z

6
1 +

1
3
d−1

12β
3
1z

6
2 +

5
6
d13z

6
1 +

1
6
d−1

13β
12
1 z6

2

)

= ξ21z
6
1 + μ21

(
z1, θ̂

)
z6

2,

z3
2F2(x2) ≤ 2|z2|3

(
1
3
|z1|3 + 2

3
|z2|3 + |z1|3β2

1 −
∂α1

∂x1
z3

1

)

= ξ221z
6
1 + μ22

(
z2, θ̂

)
,

−z3
2
∂α1

∂x1
x3

2 ≤ |z2|3
∣∣∣∣
∂α1

∂x1

∣∣∣∣
(
z3

2 − 3z2
2z1β1 + 3z2z1β1 − z3

1β
3
1

)

≤ ξ231z
6
1 + μ23

(
z2, θ̂

)
z6

2,

−1
2
z3

2
∂2α1

∂x2
1

g3
1ΣΣ

Tg3
1 ≤ |z2|3 ∂

2α1

∂x2
1

z6
1

∥∥∥ΣΣT
∥∥∥

≤ ξ241z
6
1 + μ24

(
z2, θ̂

)
z6

2θ;

(4.6)

by (4.3), Lemmas 2.4, 2.6, and the definitions of z2 and G2(x2), one has

−z3
2
∂α1

∂θ̂
τ1 ≤ |z2|3|z1|3

(
3
2
∂α1

∂θ̂
Γ|z1|5

)

≤ ξ261z
6
1 + μ26

(
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)
z6

2,

3
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z2
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{
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((
3 · 25β6
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(
z2, θ̂

)
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2θ,

(4.7)

where ξ21 = (1/2)d11 + 2d12 + (5/2)d13, ξ221 = (1/3)d21 + d22 + d23, ξ231 = (1/2)d31 + (1/2)d32,
ξ241 = (1/2)d41, ξ251 = (2/3)d51, ξ261 = (1/2)d61, μ21(z1, θ̂) = (1/2)d−1

11 + d−1
12β

3
1(z1, θ̂) +
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13β
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22β
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1 , d11, d12,
d13, d21, d22, d23, d31, d32, d41, d51, d61 are positive constants.
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Figure 1: The responses of closed-loop system (4.1)–(4.3), (4.8).

Choosing the smooth adaptive controller

u = −z2β2

(
z2, θ̂

)
, ˙̂θ = τ2(z2),

τ2(z2) = Γz6
1μ15(z1) + Γz6

2

(
μ24

(
z2, θ̂

)
+ μ25

(
z2, θ̂

))
,

β2

(
z2, θ̂

)
=
(
c22 + μ21 + μ22 + μ23 + μ26 + (μ24 + μ25)

(√
1 + θ̂2 + Γz3

2
∂α1

∂θ̂

))1/3

,

(4.8)

and substituting (4.6)–(4.8) into (4.5), one has

LV2 ≤ −c12z
6
1 − c22z

6
2, (4.9)

where c12 = c11 − ξ21 − ξ221 − ξ231 − ξ241 − ξ251 − ξ261 > 0.
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In simulation, we choose Σ(t) ≡ 1, the parameters Γ = 1, c11 = 11, c22 = 1, d11 = 1,
d12 = 1, d13 = 1, d21 = 1, d22 = 1, d23 = 1, d31 = 0.01, d32 = 1, d41 = 1, d51 = 1, d61 = 1, the
initial values θ(0) = 0, x1(0) = 0, x2(0) = −0.5, the sampling period = 0.01. Figure 1 verifies
the effectiveness of the control scheme.

5. Conclusion

In this paper, we further consider more general high-order stochastic nonlinear system driven
by noise of unknown covariance and its adaptive state-feedback stabilization problem.

There is a still remaining problem to be investigated: under current investigation, how
to design an output feedback controller for system (1.1) with Assumption 3.1?
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The changing frequency of extreme climate events generally has profound impacts on our
living environment and decision-makers. Based on the daily temperature and precipitation data
collected from 753 stations in China during 1961–2005, the geographically weighted regression
(GWR) model is used to investigate the relationship between the index of frequency of extreme
precipitation (FEP) and other climate extreme indices including frequency of warm days (FWD),
frequency of warm nights (FWN), frequency of cold days (FCD), and frequency of cold nights
(FCN). Assisted by some statistical tests, it is found that the regression relationship has significant
spatial nonstationarity and the influence of each explanatory variable (namely, FWD, FWN, FCD,
and FCN) on FEP also exhibits significant spatial inconsistency. Furthermore, some meaningful
regional characteristics for the relationship between the studied extreme climate indices are
obtained.

1. Introduction

There is a general agreement that changes in the frequency or intensity of extreme climate
events are likely to exert a much greater impact on nature and humanity than shifts in the
mean value [1]. Starting from IPCC (1996) [2], many scientists have stressed the importance
to study extreme climate events [3–5]. In the research field of extreme temperature and
precipitation events, indices that are based on either fixed thresholds [6] or relative thresholds
[7] are commonly used. To the best of our knowledge, most of the previous studies of climate

mailto:zqlwch@gmail.com
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extremes mainly focus on some individual extreme climate index; however, the investigation
of the relationship between them is relatively rare.

As for the relationship between some extreme climate indices, researchers generally
assume that it is stationary over space and use an ordinary linear regression (OLR) model to
analyze it. Nevertheless, it is known that an OLR model can only represent global relationship
and it hardly takes into consideration the variations in relationships over space, in other
words, the explicit incorporation of space or location has not been that commonly considered.
In this context, there has been recently a surge focusing on the inclusion of spatial effects
in climate models. A geographically weighted regression (GWR) model, which extends the
traditional regression framework by allowing regression coefficients to vary with individual
locations (spatial nonstationarity), is an effective method of utilizing spatial information to
improve this issue [8–13]. Hence, GWR produces locally linear regression estimates for every
point in space. For this purpose, weighted least squares methodology is used, with weights
based on the distance between observations i and all the others in the sample. GWR allows
the exploration of variation of the parameters as well as the testing of the significance of
this variation. It is of great appeal to apply GWR technique to analyze spatial data in a
number of areas such as geography econometrics, epidemiology, and environmental science
[14–16].

China is strongly influenced by the East Asian monsoon [17]. During the winter half
year, the climate is mostly cold and dry. Cold days and strong winds accompanied by dust
storms are the major climate features particularly observed in northern China [18]. During
the summer period, the rain belt moves gradually from south to north with the hot and humid
climate in eastern China [19]. The regional characteristics of extreme climate are particularly
prominent in China. The purpose of this paper is to analyze the spatially varying impacts
of some temperature extreme indices on one precipitation extreme index in China. In this
paper, relative thresholds based on the 1961–1990 base period were firstly used to build some
extreme indices, namely, FEP (frequency of extreme precipitation), FWD (frequency of warm
days), FWN (frequency of warm nights), FCD (frequency of cold days), and FCN (frequency
of cold nights). The spatial distributions of these indices were then analyzed. In order to
investigate the relationship among these indices, a GWR model was utilized to study how
FEP was affected by the other indices. Moreover, two statistical tests were carried out to
confirm some of our guesswork and some promising results were obtained.

The rest of the paper is organized as follows. Section 2 presents the data source,
gives the definitions of extreme climate indices used in this paper, and briefly outlines the
method of GWR. Results for annual mean extreme climate indices over China are displayed
in Section 3. Section 4 provides a conclusion.

2. Data and Method

2.1. Experimental Data

The experimental data sets used in this paper consist of daily maximum and minimum
temperatures and daily precipitation observed at 753 meteorological stations in China from
January 1, 1961 to December 31, 2005, which were offered by National Meteorological
Information Center in China Meteorological Administration. Because the study must rely on
reliable data, the missing data in each month should be no more than three days. Therefore,
the data collected from the 504 stations (Figure 1) which comply with this requirement
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Figure 1: Stations for which data were available in China. (•) Stations used in this paper; (+) stations
omitted due to excessive missing data.

were utilized in this work. With respect to the missing values in these 504 stations, a linear
interpolation method was adopted to impute them.

2.2. Extreme Climate Indices

Numerous temperature indices have been used in previous studies of climate events. Some
indices involved arbitrary thresholds, such as the number of hot days exceeding 35◦C and
summer days exceeding 25◦C. As indicated by Manton et al. [5], these are suitable for regions
with little spatial variability in climate, but arbitrary thresholds are inappropriate for regions
spanning a broad range of climates. In China, climates vary widely from monsoon region in
the eastern part to the westerly region in the northwestern part of the country, so there is no
single temperature threshold that would be considered an event in all regions. For this reason,
some studies have used weather and climate indices based on statistical quantities such as
the 10th (5th) or 90th (95th) percentile [20, 21]; detailed information can be found from the
European Climate Assessment & Dataset (ECA&D) Indices List (http://www.knmi.nl/).
Upper and lower percentiles of temperature indices are used in all regions, but vary in
absolute magnitude from site to site. A regional climate study in the Caribbean region using
the same indices can also be found in [21].

As this study covers a broad region in China, climate indices chosen are based on
the 10th and 90th percentiles. The extreme climate indices studied in this paper include
FEP, FWD, FWN, FCD, and FCN whose definitions are described in detail in Table 1. As
for the experimental data of these extreme indices based on the 1961–1990 base period,
the relative values of them were calculated. For each station, the values for FEP, FWD,
FWN, FCD, and FCN are their respective values averaged over the period 1961–2005, which
are still denoted as FEP, FWD, FWN, FCD, and FCN in order to facilitate the following
discussions.

http://www.knmi.nl/
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Table 1: Five extreme climate indices calculated based on daily temperature and precipitation data.

Indicator
name Indicator definition (unit: days)

FEP
Let Tpij be the daily precipitation on day i of year j, and let Tpin90 be the calendar day
90th percentile centered on a 5-day window for the base period 1961–1990. Frequency of
extreme precipitation (FEP) in year j is the annual count of days when Tpij > Tpin90.

FWD
Let Txij be the daily maximum temperature on day i of year j, and let Txin90 be the
calendar day 90th percentile centered on a 5-day window for the base period 1961–1990.
Frequency of warm days (FWD) in year j is the annual count of days when Txij > Txin90.

FWN
Let Tnij be the daily minimum temperature on day i of year j, and let Tnin90 be the
calendar day 90th percentile centered on a 5-day window for the base period 1961–1990.
Frequency of warm nights (FWN) in year j is the annual count of days when Tnij > Tnin90.

FCD
Let Txij be the daily maximum temperature on day i of year j, and let Txin10 be the
calendar day 10th percentile centered on a 5-day window for the base period 1961–1990.
Frequency of cold days (FCD) in year j is the annual count of days when Txij < Txin10.

FCN
Let Tnij be the daily minimum temperature on day i of year j, and let Tnin10 be the
calendar day 10th percentile centered on a 5-day window for the base period 1961–1990.
Frequency of cold nights (FCN) in year j is the annual count of days when Tnij < Tnin10.

2.3. Geographically Weighted Regression (GWR)

The technique of linear regression estimates a parameter β that links the explanatory variables
to the response variable. However, when this technique is applied to spatial data, some
issues concerning the stationarity of these parameters over the space come out. In “normal”
regression, it is generally assumed that the modeling relationship holds everywhere in the
study area—that is, the regression parameters are “whole-map” statistics. In many situations
this is not the case, however, as mapping the residuals (the difference between the observed
and predicted data) may reveal. The realization in the statistical and geographical sciences
that a relationship between an explanatory variable and a response variable in a linear
regression model is not always constant across a study area has led to the development
of regression models allowing for spatially varying coefficients. Many different solutions
have been proposed for dealing with spatial variation in the relationship. One of them,
developed by Brunsdon et al. [8], has been labelled geographically weighted regression
(GWR), which provides an elegant and easily grasped means of modeling such relationships
by subtly incorporating the spatial characteristics of data via allowing regression coefficients
to depend on some covariates such as longitude and latitude of the meteorological stations.
Specifically, it is a nonparametric model of spatial drift that relies on a sequence of locally
linear regressions to produce estimates for every point in space by using a subsample of data
information from nearby observations. That is to say, this technique allows the modeling
of relationships that vary over space by introducing distance-based weights to provide
estimates βki for each variable k and each geographical location i. Thus the spatial variation
of regression relationship can be effectively analyzed and the inherent disciplines of spatial
data by the estimated coefficients over different locations can be better understood.

An ordinary linear regression (OLR) model can be expressed by

yi = β0 +
p∑

j=1

βjxij + εi, i = 1, 2, . . . , n, (2.1)



Mathematical Problems in Engineering 5

where yi, i = 1, 2, . . . , n, are the observation of the response variable y, βj(j = 1, 2, . . . , p)
represents the regression coefficients, xij is the ith value of the explanatory variable xj , and εi
are normally distributed error terms with zero mean and constant variance.

In GWR model, the global regression coefficients are replaced by local parameters

yi = β0(ui, vi) +
p∑

j=1

βj(ui, vi)xij + εi, i = 1, 2, . . . , n, (2.2)

where (ui, vi) denotes the longitude and latitude coordinates of the ith meteorological station,
(yi;xi1, xi2, . . . , xip) represent the observed value of the response Y and explanatory variables
X1, X2, . . . , Xp at (ui, vi), β0(ui, vi) is the intercept, and βj(ui, vi)(j = 1, 2, . . . , p) are p unknown
coefficient functions of spatial locations, which represent the strength and type of relationship
that the jth explanatory variable Xj has to the response variable Y . Additionally, ε1, ε2, . . . , εn
are error terms which are generally assumed to be independent and identically distributed
variables with mean 0 and common variance σ2. It is worth noticing that the OLR model is
actually a special case of the GWR model where βj(ui, vi) are constant for all i = 1, 2, . . . , n.

The coefficient function vector β̂(ui, vi) for the ith observation in GWR can be
estimated via the locally weighted least square procedure [22] as

β̂(ui, vi) =
(
β̂0(ui, vi), β̂1(ui, vi), . . . , β̂p(ui, vi)

)T

=
(
XTW(i)X

)−1
XTW(i)Y, i = 1, 2, . . . , n,

β̂j(u, v) =
(
β̂j(u1, v1), β̂j(u2, v2), . . . , β̂j(un, vn)

)T
, j = 0, 1, 2, . . . , p,

(2.3)

where

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

xT
1

xT
2

...

xT
n

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 x11 · · · x1p

1 x21 · · · x2p

...
...

...

1 xn1 · · · xnp

⎞
⎟⎟⎟⎟⎟⎟⎠

, Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

y1

y2

...

yn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.4)

W(i) = diag[Kh(di1), Kh(di2), . . . , Kh(din)] (2.5)

is a diagonal weight matrix, ensuring that observations near to the location have greater
influence than those far away. Here, dij denotes the distance between two observed locations
(ui, vi) and (uj, vj), which can be calculated as

dij = R arccos
(
sin vi sin vj + cos vi cos vj cos

(
ui − uj

))
, (2.6)
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where R is the earth radius, namely, 6371 kilometers. In (2.5), Kh(·) = 1/hK(·/h) with K(·)
being Gaussian kernel function

K(t) =
1√
2π

exp
(
−1

2
t2
)

(2.7)

and h being the bandwidth which can be estimated by some data-driven procedures
such as the cross-validation (CV) method [23], the generalized cross-validation (GCV)
procedure [13], or the corrected Akaike information criterion (AICc) [24]. In this paper, the
CV method utilized by [23] was employed to select the optimal h which was chosen to
minimize

CV(h) =
n∑

i=1

(
yi − ŷ(i)(h)

)2
, (2.8)

where ŷ(i)(h) is the fitted value of yi under bandwidth h with the observation at location
(ui, vi) omitted from the fitting process.

Although GWR is very appealing in analyzing spatial nonstationarity, from the
statistical viewpoint, two critical questions still remain. One is the goodness-of-fit test, that
is, a OLR model is compared to a GWR model to see which one provides the best fit. Usually,
a GWR model can fit a given data set better than an OLR model. However, the simpler a
model, the easier it can be applied and interpreted in practice. If a GWR model does not
perform significantly better than an OLR model, it means that there is no significant drift
in any of the model parameters. Thus, we will prefer an OLR model in practice. On the
other hand, if a GWR model significantly outperforms an OLR model, we will be concerned
with the second question, that is, whether each coefficient function estimate β̂j(u, v) (j =
1, 2, . . . , p) exhibits significant spatial variation over the studied area [11, 25]. If the answer
to this question is positive, the characteristics of the data will be investigated in more
details.

To compare the goodness-of-fit of a GWR model and an OLR model, a simplified
procedure is summarized as follows.

(1) Formulate the hypothesis

⎛

⎝
H0 : Y = β0 + β1X1 + · · · + βpXp + ε,

H1 : Y = β0(u, v) + β1(u, v)X1 + · · · + βp(u, v)Xp + ε

⎞

⎠. (2.9)

(2) Construct the test statistic

F =
YT (I −H)Y − YT (I − L)T (I − L)Y

YT (I − L)T (I − L)Y
. (2.10)
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Here, H = X(XTX)−1XT , I is an identity matrix of order n, and

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

xT
1

(
XTW(1)X

)−1
XTW(1)

xT
2

(
XTW(2)X

)−1
XTW(2)

...

xT
n

(
XTW(n)X

)−1
XTW(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.11)

is an n × n matrix. If H0 is true, the test statistic F is to be

F =
εT
(
(I −H) − (I − L)T (I − L)

)
ε

εT (I − L)T (I − L)ε
. (2.12)

(3) Test the hypothesis. The p value should be calculated as

p0 = PH0(F > F0) = PH0

(
εT
(
(I −H) − (1 + F0)(I − L)T (I − L)

)
ε > 0

)
, (2.13)

where F0 is the observed value of F in (2.12). Since it is difficult to derive the
null distribution of F theoretically, the three-moment χ2 approximation procedure
[26, 27] devoted to approximate the distribution of normal variable quadratic form
such as εT ((I − H) − (1 + F0)(I − L)T (I − L))ε was used to compute the p value
defined in (2.13). Given a significance level α, if p0 < α, the null hypothesis should
be rejected. Otherwise, we may conclude that the GWR model cannot improve the
fitness significantly in comparison with the OLR model.

In order to test whether each coefficient function estimate β̂j(u, v) (j = 1, 2, . . . , p)
exhibits significant variation over the studied area, we employed the method developed by
[12] to achieve the goal. The main steps of it are summarized as follows.

(a) For a given k(k = 0, 1, 2, . . . , p), formulate the hypothesis

⎛

⎝
H0k : βk(u1, v1) = βk(u2, v2) = · · · = βk(un, vn) = βk

H1k : not all βk(ui, vi) (i = 1, 2, . . . , n) are equal

⎞

⎠. (2.14)

(b) Construct the test statistic

Tk =
YTBT

(
I − (1/n)11T

)
BY

YT (I − L)T (I − L)Y
. (2.15)
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Here, 1 is an n × 1 column vector with unity for each element, and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

eTk+1

(
XTW(1)X

)−1
XTW(1)

eTk+1

(
XTW(2)X

)−1
XTW(2)

...

eT
k+1

(
XTW(n)X

)−1
XTW(n)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.16)

ek+1 is an n × 1 column vector which takes value 1 for the (k + 1)th element and
zero for the other elements. Under the null hypothesis H0k, the test statistic Tk is
simplified as

Tk =
εTBT

(
I − (1/n)11T

)
Bε

εT (I − L)T (I − L)ε
. (2.17)

(c) Test the hypothesis. The p value is

pk = PH0k(Tk > T0k) = PH0k

(
εT
(
BT

(
I − 1

n
11T
)
B − T0k(I − L)T (I − L)

)
ε > 0

)
, (2.18)

where T0k is the observed value of Tk in (2.17). Similar to the goodness-of-fit test,
the three-moment χ2 approximation procedure was used to derive the p value
defined in (2.18). Given a significance level α, if pk < α, reject H0k; accept H0k

otherwise.

3. Analysis of Results

In this part, we will carry out numerical experiments for the OLR model and GWR model.
All programs are written in Matlab.

3.1. Spatial Distributions of Extreme Climate Indices

Based on the values of FWD, FWN, FCD, FCN, and FEP, Figure 2 presents the spatial
distributions for each of them over the 504 stations in China.

As shown in Figure 2, FWD, FWN, FCD, FCN, and FEP exhibit some regional features.
Generally, there are 16 to 29 times per year for FWD and the larger values for FWD are mainly
located in the north as well as the east of China. There are 18–35 times per year for FWN. If
using the Yangtze River as the boundary, FWN values in the north are generally larger than
those in the south. As for FCD, there are 14 to 26 times per year. Specially, FCD has small
values about 14–18 times per year in most parts of northwest China. With regard to FCN, it
is about 13–28 times per year and it has small values in southern China. Furthermore, FEP
values are between 9 and 33 times per year. In most of the country, its value varies from 25
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Figure 2: Spatial distributions of the considered extreme climate indices ((a) FWD, (b) FWN, (c) FCD, (d)
FCN, and (e) FEP) over the 504 stations in China.
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Table 2: Correlation coefficients of the independent variables, that is, FWD, FWN, FCD, and FCN.

FWD FWN FCD FCN
FWD 1.0000 0.3862 0.3453 0.1836
FWN 1.0000 0.1318 0.1329
FCD 1.0000 0.4174
FCN 1.0000

Table 3: Correlation coefficients of the GWR coefficient estimates, that is, β̂0(u, v), β̂1(u, v), β̂2(u, v), β̂3(u, v),
and β̂4(u, v).

β̂0(u, v) β̂1(u, v) β̂2(u, v) β̂3(u, v) β̂4(u, v)
β̂0(u, v) 1.0000 −0.4068 −0.1734 −0.5044 0.0828
β̂1(u, v) 1.0000 0.0491 −0.3281 −0.0366
β̂2(u, v) 1.0000 −0.4295 0.6309
β̂3(u, v) 1.0000 −0.6375
β̂4(u, v) 1.0000

to 33 times per year, and only in some stations in southern Xinjiang and Tibet, its values lie
between 9 and 17 times per year.

3.2. The Fitted Geographically Weighted Regression Model

In order to make clear the relationship among these extreme climate indices in 504 stations in
China so that some useful information can be provided to decision-makers to help them to
deduce the disaster caused by extreme weather, a GWR model was fitted by considering
FEP as the response variable Y and FWD, FWN, FCD, and FCN as the explanatory
variables (X1, X2, X3, X4), respectively. Letting n be equal to 504 and p equal to 4 and letting
(yi, xi1, xi2, xi3, xi4) be the observations of the variables (Y,X1, X2, X3, X4) at the location
(ui, vi), the model (2.2) can be expressed as

yi = β0(ui, vi) +
4∑

j=1

βj(ui, vi)xij + εi, i = 1, 2, . . . , 504, (3.1)

based on the data collected from the 504 stations.
When we apply a fixed Gaussian function, the minimum score of (2.8) is obtained

when the bandwidth h equals approximately 240 km. Thus, the weighting matrix W(i) is
estimated, where wij = (1/(240 ∗ √2π)) exp(−d2

ij/(2 ∗ 2402)). Based on (2.3), β̂j(u, v)(j =
0, 1, 2, 3, 4) are calculated by the locally weighted least square approach. Hence, the strength
and type of relationship that FWD (FWN, FCD, FCN) has with FEP over 504 stations in China
can be studied.

Because Wheeler [28–30] raised the multicollinearity issues, correlation coefficients of
the independent variables as well as that of the GWR coefficient estimates were presented in
Tables 2 and 3, respectively.
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Figure 3: Prediction error (PE) of the responsible variable, FEP, for ordinary linear regression (OLR) and
geographically weighted regression (GWR) over the 504 stations in China.

As shown in Tables 2 and 3, correlation coefficients of the independent variables
as well as that of the GWR coefficient estimates are all not large, except for that between
β̂2(u, v) and β̂4(u, v), as well as β̂3(u, v) and β̂4(u, v), whose absolute values are more than
0.5. It indicates that β̂4(u, v) has a positive correlation with β̂2(u, v), while it has a negative
correlation with β̂3(u, v). We ignore the correlation between the independent variables in this
paper.

After conducting the goodness-of-fit test, the computed p value is smaller than
the significance level 0.05. Thus, the GWR model can describe the regression relationship
significantly better than the OLR model and it indicates that the relationship between FEP
and FWD, FWN, FCD, and FCN has spatial nonstationarity. Define

R2 =
∑504

i=1
(
ŷi − y

)2

∑504
i=1
(
yi − y

)2
(3.2)

to measure the goodness of fit of the regression relationship on the given data set. The R2

values for the OLR and GWR model are 0.3953 and 0.7750, respectively, which indicates
that the GWR model can capture a larger amount (77.50%) of variance of FEP based on the
climate indices FWD, FWN, FCD, and FCN, than the OLR model. The prediction errors (i.e.,
residual errors) for the OLR and GWR model are presented in Figure 3, which shows the
prediction error of the GWR model and its standard error are both lower than that of the OLR
model.

Furthermore, the statistical significance tests for the variations of the coefficient func-
tions are carried out. The obtained results show that all the regression coefficient estimates
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Table 4: p value of relevant tests for the GWR model (3.1).

Global
stationarity for
regression
relationship

Significance for
β̂0(u, v)

Significance for
β̂1(u, v)

Significance for
β̂2(u, v)

Significance for
β̂3(u, v)

Significance for
β̂4(u, v)

0 1.4816 ∗ 10−6 0 0.0018 0 1.5184 ∗ 10−6

β̂j(u, v) (j = 0, 1, 2, 3, 4) vary significantly with the locations, that is, the influence of each
explanatory variable (viz., FWD, FWN, FCD, and FCN) on the response variable FEP has
spatial inconsistency. All p values of relevant tests for the GWR model (3.1) are presented in
Table 4.

In order to visualize these spatial inconsistencies, Figure 4 shows geographic
distributions of the estimated GWR coefficient functions in China. As there is not much
meaning of β̂0(ui, vi), the plot of it is omitted here.

Figure 4(a) shows that the values of β̂1(u, v) are between −3.5 and 2.6. Negative values
of β̂1(u, v) can be observed in most of mainland China, and the most largest absolute values
are located in the northern and western parts of the Xinjiang region. Few stations with
positive values of β̂1(u, v) are concentrated in the southern part of Tibet, Gansu, Chongqing,
and the eastern part of north China and east China.

As Figure 4(b) manifests, the values of β̂2(u, v) are between −1.3 and 0.28, and some
stations with positive values of β̂2(u, v) are concentrated in Jilin, northern inner Mongolia,
eastern coast and Hainan. However, for China as a whole, it is obvious that many areas show
negative values, especially in the Xinjiang, Tibet region as well as the middle Yellow River
valley and the southern part of Northeast China.

From Figure 4(c), it can be seen that the values of β̂3(u, v) are between −1.3 and 4.6. Its
value is positive in most parts of the country, and it is larger in western China than in eastern
China. Scattered stations with negative values can be found in the northern part of inner
Mongolia and south China, especially concentrated in Yunnan and Guangdong Province.

As for β̂4(ui, vi), it can be found in Figure 4(d) that its values are between −2.3 and
0.57. Negative values occur in the western China and center China, while in the north of the
northeast China, north of north China and south China, positive values can be found.

On the basis of the above analysis, some regional characteristics for the relationship
between the studied extreme climate indices can be observed. In western China, FEP increases
with the increase of FCD, while it decreases with the increase of FWD, FWN, and FCN. In
southern China, FEP increases with the increase of FCN, while it decreases with the increase
of FWD, FWN, and FCD. In the northern part of northeast China, FEP increases with the
increase of FCD and FCN, while it decreases with the increase of FWD and FWN. The impacts
of FCN and FCD on the FEP are roughly the opposite over almost all China.

4. Conclusions

Based on the Chinese daily temperature and precipitation data collected at 753 meteorological
stations from 1961 to 2005, the relationship among the numbers of days that experience
extreme temperature or precipitation events (i.e., FEP, FWD, FWN, FCD, and FCN) is
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Figure 4: Geographic distributions of the estimated GWR coefficient functions ((a) β̂1(u, v), (b) β̂2(u, v),
(c) β̂3(u, v), and (d) β̂4(u, v)) over the 504 stations in China.

investigated by a GWR model and their spatial distributions in China. The main conclusions
can be summarized as follows.

(1) FWD, FWN, FCD, FCN and FEP exhibit different spatial variations. There are larger
values about 24–29 times per year for FWD mainly in northeast China. In the north
of the Yangtze River, FWN has larger values of 24–35 times per year. FCD has larger
values about 18–26 times per year in most part of China but northwest China. As
for FCN, most of China has larger values about 18–28 times except for the south.
Except in some stations in southern Xinjiang and Tibet, FEP has larger values of
17–33 times per year.

(2) With respect to how FWD, FWN, FCD, and FCN affect FEP, the GWR model is
significantly superior to the OLR model at the significance level 0.05. Furthermore,
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the statistical tests indicate that the influence of each explanatory variable (viz.,
FWD, FWN, FCD, and FCN) on FEP has spatial inconsistency.

(3) Some regional features are detected for the relationship between the studied ex-
treme climate indices. In western China, FCD has a positive effect on FEP, which is
contrary to that of FWD, FWN, and FCN. However, it is just the opposite in south-
ern China. The effects of FCD as well as FCN on FEP are positive in the northern
part of Northeast China, while those of FWD and FWN are negative. Meanwhile,
FCN and FCD have the opposite influence on FEP over most of China.
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This paper studies the robust H∞ filtering problem of nonlinear stochastic systems with time delay
appearing in state equation, measurement, and controlled output, where the state is governed
by a stochastic Itô-type equation. Based on a nonlinear stochastic bounded real lemma and an
exponential estimate formula, an exponential (asymptotic) mean square H∞ filtering design of
nonlinear stochastic time-delay systems is presented via solving a Hamilton-Jacobi inequality.
As one corollary, for linear stochastic time-delay systems, a Luenberger-type filter is obtained by
solving a linear matrix inequality. Two simulation examples are finally given to show the effective-
ness of our results.

1. Introduction

Robust H∞ filtering has been studied extensively for more than two decades, which is
very useful in signal processing and engineering applications; see [1–7] and the references
therein. Compared with classical Kalman filter, one does not need to know the exact statistic
information about the external disturbance in the H∞ filtering design. H∞ filtering requires
one to design a filter such that the L2-gain from the external disturbance to the estimation
error is below a prescribed level γ > 0. Stochastic Itô modelling has become more and more
important in both theory and practical applications such as in mathematical finance and
population models [8]. In recent years, the study of stochastic H∞ filtering for the systems
governed by stochastic Itô-type equations has attracted a great deal of attention, for example,
[2, 5, 9]. References [2, 5] presented approaches to linear stochastic delay-free and time
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delayed H∞ filtering design via linear matrix inequalities (LMIs), respectively. Reference [9]
first solved the nonlinear stochastic delay-free H∞ filtering problem by means of a stochastic
bounded real lemma derived in [10]. References [11, 12], respectively, solve the H∞ filtering
and control of nonlinear stochastic time delayed systems, where time delay only happens in
the state equation.

It is well known that time delay phenomena are often encountered in many
engineering applications such as network control and communication, and a study of time
delay systems has been a popular research topic for a long time [13]. Stochastic time
delay systems are ideal models in mathematical finance and population growth theory [8].
Recently, [14, 15] investigated the Kalman filter problem of linear stochastic time delay
systems. Reference [5] presented an approach to stochastic H∞ filtering design for linear
uncertain time delay systems via LMIs. Reference [11] first studied the H∞ design issue for a
class of nonlinear stochastic time delayed systems under a stronger assumption (assumption
2.1 of [11]), for which only the state equation contains a time delay. Because, in practice,
time delay often exists not only in a state equation but also in a measurement equation and a
controlled output, it is necessary to study such a nonlinear stochastic H∞ filtering design.

To our best knowledge, few works on H∞ filtering have been reported for general
nonlinear stochastic time delay systems. The aim of this paper is to study the robust H∞
filtering design for nonlinear stochastic state-delayed systems, where the time delay appears
in the state equation, measurement equation, and controlled output. Similar to Proposition 1
of [9], a nonlinear stochastic bounded real lemma for time delay systems is obtained, and then
an exponential estimate formula is also presented. Finally, based on our developed nonlinear
stochastic bounded real lemma and exponential estimate formula, we present a sufficient
condition for exponential and asymptotic mean square H∞ filtering synthesis of nonlinear
stochastic time delay systems via solving a constrained Hamilton-Jacobi inequality (HJI),
respectively. Compared with the delay-free H∞ filtering [9], the current HJI depends on more
variables due to the appearance of time delays. A key procedure to derive an exponential
mean square H∞ filtering is to develop an exponential estimate formula (Lemma 2.3), which
is very useful in its own right. In particular, in the case of linear time-invariant-delayed
systems, if a quadratic Lyapunov function is chosen, then the HJI reduces to an LMI, which
may be easily solved by the existing Matlab control toolbox [16].

For convenience, we adopt the following traditional notations: A′: transpose of the
matrix A; A ≥ 0 (A > 0): A is a positive semidefinite (positive definite) matrix; I: identity
matrix. ‖x‖: Euclidean 2-norm of n-dimensional real vector x; L2

F(R+,Rl): the space of
nonanticipative stochastic processes y(t) with respect to filtration Ft satisfying ‖y(t)‖2

L2
:=

E
∫∞

0 ‖y(t)‖2dt < ∞; C2,1(U, T): class of functions V (x, t) twice continuously differentiable
with respect to x ∈ U and once continuously differentiable with respect to t ∈ T except
possibly at x = 0; Vt(x, t) := (∂V (x, t))/∂t; Vx(x, t) := (∂V (x, t)/∂xi)n×1; Vxx(x, t) :=
(∂2V (x, t)/∂xi∂xj)n×n; C([−τ, 0],Rn): a vector space of all continuous Rn-valued functions
defined on [−τ, 0].

2. Preliminaries

Consider the following nonlinear stochastic time delay system:

dx(t) =
(
f(x(t), x(t − τ), t) + g(x(t), x(t − τ), t)v(t))dt
+ (h(x(t), x(t − τ), t) + s(x(t), x(t − τ), t)v(t))dW(t),
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y(t) = l(x(t), x(t − τ), t) + k(x(t), x(t − τ), t)v(t),

z(t) = m(x(t), x(t − τ), t),

x(t) = φ(t) ∈ Cb
F0
([−τ, 0];Rn),

(2.1)

where x(t) ∈ Rn is called the system state, y(t) ∈ Rr is the measurement, W(·) is a standard
one-dimensional Wiener process defined on a complete filtered space (Ω,F, {Ft}t∈R+

,P) with
a filtration {Ft}t∈R+

satisfying usual conditions, z(t) ∈ Rm is the state combination to be
estimated, v ∈ L2

F(R+,Rnv) stands for the exogenous disturbance signal, which is a square
integrable, Ft-adapted stochastic process, and Cb

F0
([−τ, 0];Rn) denotes all F0-measurable

bounded C([−τ, 0], Rn)-valued random variable ξ(s) with s ∈ [−τ, 0]. We assume that f, h :
Rn×Rn×R+ �→ Rn, g, s : Rn×Rn×R+ �→ Rn×nv , l : Rn×Rn×R+ �→ Rr , k : Rn×Rn×R+ �→ Rr×nv ,
and m : Rn × Rn × R+ �→ Rnz satisfy the local Lipschitz condition and the linear growth
condition, which guarantee that the system (2.1) admits a unique strong solution; see [8]. In
addition, suppose that f(0, 0, t) = h(0, 0, t) = l(0, 0, t) ≡ 0, so x ≡ 0 is an equilibrium point of
(2.1).

Since this paper deals with the infinite horizon stochastic H∞ filtering problem, it is
inevitably related to stochastic stability. Hence, we first present the following definition.

Definition 2.1. The nonlinear stochastic time delayed system

dx(t) = f(x(t), x(t − τ), t)dt + h(x(t), x(t − τ), t)dW(t),

x(t) = φ(t) ∈ Cb
F0
([−τ, 0];Rn),

(2.2)

is called exponentially mean square stable if there are positive constants A and α such that

E‖x(t)‖2 ≤ A
∥∥φ
∥∥2

e−αt, (2.3)

where ‖φ‖2 = Emax−τ≤t≤0‖φ(t)‖2.
Associated with (2.1) and V : Rn × R+ �→ R+, we define an operator L1V : Rn × Rn ×

R+ �→ R as follows:

L1V
(
x, y, t

)
= Vt(x, t) + V ′x(x, t)

[
f
(
x, y, t

)
+ g
(
x, y, t

)
v(t)
]

+
1
2
[
h
(
x, y, t

)
+ s
(
x, y, t

)
v(t)
]′Vxx(x, t)

[
h
(
x, y, t

)
+ s
(
x, y, t

)
v(t)
]
.

(2.4)

The following lemma is a generalized version of Proposition 1 in [9], which may be
viewed as a nonlinear stochastic bounded real lemma for time delayed systems.
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Lemma 2.2. Consider the following input-output system:

dx(t) =
(
f(x(t), x(t − τ), t) + g(x(t), x(t − τ), t)v(t))dt
+ (h(x(t), x(t − τ), t) + s(x(t), x(t − τ), t)v(t))dW(t)

z(t) = m(x(t), x(t − τ), t), x(t) = φ(t) ∈ Cb
F0
([−τ, 0];Rn).

, (2.5)

If there exists a positive definite Lyapunov function V (x, t) ∈ C2,1(Rn,R+) solving the following HJI:

Γ
(
x, y, t

)
:= Vt(x, t) + V ′x(x, t)f

(
x, y, t

)

+
1
2
(
V ′x(x, t)g

(
x, y, t

)
+ h′
(
x, y, t

)
Vxx(x, t)s

(
x, y, t

))

×(γ2I − s′(x, y, t)Vxx(x, t)s
(
x, y, t

))−1

×(g ′(x, y, t)Vx(x, t) + s′
(
x, y, t

)
Vxx(x, t)h

(
x, y, t

))

+
1
2
‖z(t)‖2 +

1
2
h′
(
x, y, t

)
Vxx(x, t)h

(
x, y, t

)
< 0

γ2I − s′(x, y, t)Vxx(x, t)s
(
x, y, t

)
> 0, ∀(x, y, t) ∈ Rn × Rn × R+,

V (0, 0) = 0

(2.6)

for some γ > 0, then the following inequality:

‖z(t)‖2
L2
≤ γ2‖v(t)‖2

L2
, ∀v ∈ L2

F(R+,Rnv), v /= 0, (2.7)

holds with initial state x(s) = 0, a.s., for all, s ∈ [−τ, 0].

Proof. See Appendix A.

Lemma 2.3. Consider the unforced system

dx(t) = f(x(t), x(t − τ), t)dt + h(x(t), x(t − τ), t)dW(t),

x(t) = φ(t) ∈ Cb
F0
([−τ, 0];Rn).

(2.8)

If there exists a positive definite Lyapunov function V (x, t) ∈ C2,1(Rn, [−τ,∞)), c1, c2, c3, c4 > 0 with
c1c3 > c2c4 satisfying the following conditions:

(i) c1‖x‖2 ≤ V (x, t) ≤ c2‖x‖2, for all (x, t) ∈ Rn × [−τ,∞),

(ii) L1V (x, y, t)|v=0 ≤ −c3‖x‖2 + c4‖y‖2, for all t > 0,

then

E‖x(t)‖2 ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(c4c2/c1)τ + c2

c1

∥∥φ
∥∥2

e−(c3/c2)t, 0 ≤ t ≤ τ,

(c4c2/c1)τ + c2

c1
‖φ‖2e−((c3/c2)−(c4/c1))t, t > τ,

(2.9)

that is, (2.8) is exponentially mean square stable.

Proof. See Appendix B.
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In what follows, we construct the following filtering equation for the estimation of
z(t):

dx̂(t) = f̂(x̂(t), x̂(t − τ), t)dt + Ĝ(x̂(t), x̂(t − τ), t)y(t)dt
ẑ(t) = m̂(x̂(t), x̂(t − τ), t), x̂(0) = 0,

(2.10)

where f̂ , Ĝ, and m̂ that are to be determined are matrices of appropriate dimensions. One
may find that (2.10) is more general, which includes the following Luenberger-type filtering
as a special form:

dx̂(t) = f(x̂(t), x̂(t − τ), t)dt +G(x̂(t), x̂(t − τ), t)(y(t) − l(x̂(t), x̂(t − τ), t))dt,
ẑ(t) = m(x̂(t), x̂(t − τ), t), x̂(0) = 0.

(2.11)

Set η(t) = [x′(t)x̂′(t)]′, and let

z̃(t) = z(t) − ẑ(t) = m(x(t), x(t − τ), t) − m̂(x̂(t), x̂(t − τ), t) (2.12)

denote the estimation error; then we get the following augmented system:

dη(t) =
(
fe
(
η(t)
)
+ ge
(
η(t)
)
v(t)
)
dt +

(
he

(
η(t)
)
+ se
(
η(t)
)
v(t)
)
dW(t),

z̃(t) = z(t) − ẑ(t) = m(x(t), x(t − τ), t) − m̂(x̂(t), x̂(t − τ), t),

η(t) =

[
φ(t)

0

]
, φ(t) ∈ Cb

F0
([−τ, 0];Rn), ∀t ∈ [−τ, 0],

(2.13)

where

fe
(
η(t)
)
=

[
f(x(t), x(t − τ), t)

f̂(x̂(t), x̂(t − τ), t) + Ĝ(x̂(t), x̂(t − τ), t)l(x(t), x(t − τ), t)

]
,

ge
(
η(t)
)
=

[
g(x(t), x(t − τ), t)

Ĝ(x̂(t), x̂(t − τ), t)k(x(t), x(t − τ), t)

]
,

he

(
η(t)
)
=

[
h(x(t), x(t − τ), t)

0

]
, se

(
η(t)
)
=

[
s(x(t), x(t − τ), t)

0

]
.

(2.14)

In Section 3, we let Lη denote the infinitesimal operator of system (2.13). According to
different requirements for internal stability, we are in a position to define various of H∞ filters
as follows.

Definition 2.4 (exponential mean square H∞ filtering). Find the matrices f̂ , Ĝ, and m̂ in (2.10),
such that



6 Mathematical Problems in Engineering

(i) the equilibrium point η ≡ 0 of the augmented system (2.13) is exponentially mean
square stable in the case v = 0,

(ii) for a given disturbance attenuation level γ > 0, the following H∞ performance
holds for x(t) ≡ 0 on t ∈ [−τ, 0]:

‖z̃‖2
L2
≤ γ2‖v‖2

L2
, ∀v ∈ L2

F(R+,Rnv), v /= 0. (2.15)

Definition 2.5 (asymptotic mean square H∞ filtering). If in (i) of Definition 2.4 the equilibrium
point η ≡ 0 of the augmented system (2.13) is asymptotically mean square stable, that is,

lim
t→∞

E
∥∥η(t)

∥∥2 = 0 (2.16)

and (2.15) holds, then (2.10) is called an asymptotic mean square H∞ filter.

3. Main Results

Our first main result is about exponential mean square H∞ filter.

Theorem 3.1. Suppose that there exists a positive Lyapunov function V (η, t) = V (x, x̂, t) ∈
C2,1(R2n × [−τ,∞)), c1, c2, c3, c4 > 0 with c1c3 > c2c4, such that

c1

(
‖x‖2 + ‖x̂‖2

)
≤ V (x, x̂, t) ≤ c2

(
‖x‖2 + ‖x̂‖2

)
, ∀(x, x̂, t) ∈ R2n × [−τ,∞),

−1
2
∥∥m(x, y, t) − m̂(x̂, ŷ, t)

∥∥2 ≤ −c3

(
‖x‖2 + ‖x̂‖2

)
+ c4

(∥∥y
∥∥2 +

∥∥ŷ
∥∥2
)
, ∀t > 0.

(3.1)

For given disturbance attenuation level γ > 0, if V (η, t) solves the following HJI:

Γ
(
x, y, x̂, ŷ

)
:= Vt + V ′xf

(
x, y, t

)
+ V ′

x̂

(
f̂
(
x̂, ŷ, t

)
+ Ĝ
(
x̂, ŷ, t

)
l
(
x, y, t

))

+
1
2
Θ′
(
x, x̂, y, ŷ, t

)(
γ2I − s′(x, y, t)Vxxs

(
x, y, t

))−1Θ
(
x, x̂, y, ŷ, t

)

+
1
2
∥∥m
(
x, y, t

) − m̂(x̂, ŷ, t)∥∥2 +
1
2
h′
(
x, y, t

)
Vxxh

(
x, y, t

)
< 0,

γ2I − s′(x, y, t)Vxxs
(
x, y, t

)
> 0, ∀(x, y, x̂, ŷ, t) ∈ Rn × Rn × Rn × Rn × R+,

V (0, 0) = 0

(3.2)

for some matrices f̂ , Ĝ, and m̂ of suitable dimensions, then the exponential mean square H∞ filtering
is obtained by (2.10), where

Θ′
(
x, x̂, y, ŷ, t

)
= V ′xg

(
x, y, t

)
+ V ′x̂Ĝ

(
x̂, ŷ, t

)
k
(
x, y, t

)
+ h′
(
x, y, t

)
Vxxs

(
x, y, t

)
. (3.3)
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Proof of Theorem 3.1. In Lemma 2.2, we substitute V (x, x̂, t), z̃ = m(x, y, t) − m̂(x̂, ŷ, t),

fe =

[
f
(
x, y, t

)

f̂
(
x̂, ŷ, t

)
+ Ĝ
(
x̂, ŷ, t

)
l
(
x, y, t

)

]
, ge =

[
g
(
x, y, t

)

Ĝ
(
x̂, ŷ, t

)
k
(
x, y, t

)

]
,

he =

[
h
(
x, y, t

)

0

]
, se =

[
s
(
x, y, t

)

0

]
,

(3.4)

for V (x, t), z, f, g, h, and s, respectively; then, by a series of simple computations, (2.15) is
obtained.

Next, we show the augmented system (2.13) to be exponential mean square stable for
v ≡ 0. Set

Lv=0
η V (x, x̂, t) := Vt + V ′ηfe +

1
2
h′eVηηhe. (3.5)

By (3.2),

Lv=0
η V (x, x̂, t) < − 1

2
∥∥m(x, y, t) − m̂(x̂, ŷ, t)

∥∥2

− 1
2
Θ′
(
x, x̂, y, ŷ, t

)(
γ2I − s′(x, y, t)Vxxs

(
x, y, t

))−1
Θ
(
x, x̂, y, ŷ, t

)

≤ −1
2
∥∥m(x, y, t) − m̂(x̂, ŷ, t)

∥∥2

≤ − c3

(
‖x‖2 + ‖x̂‖2

)
+ c4

(∥∥y
∥∥2 +

∥∥ŷ
∥∥2
)
.

(3.6)

Applying Lemma 2.3, we know that (2.13) is internally stable in exponential mean square
sense. The proof of Theorem 3.1 is ended.

Inequality (3.2) is a constrained HJI, which is not easily tested in practice. However,
if in (2.1), s ≡ 0, that is, only the state depends on noise, then the constraint condition γ2I −
s′(x, y, t)Vxxs(x, y, t) > 0 holds automatically, and HJI (3.2) becomes an unconstrained one.

The following theorem is about asymptotic mean square H∞ filter, which is weaker
than the exponential mean square H∞ filter.

Theorem 3.2. Assume that V (η, t) ∈ C2,1(R2n,R+) has an infinitesimal upper limit, that is,

lim
‖η‖→∞

inf
t>0

V
(
η, t
)
=∞. (3.7)

Additionally, one assume that V (η, t) > c‖η‖2 for some c > 0. If V (η, t) solves HJI (3.2), then (2.10)
is an asymptotic mean square H∞ filter.

Proof. Obviously, it only needs to show that (2.13) is asymptotically mean square stable while
v = 0. From (3.6), Lv=0

η V (x, x̂, t) < 0, so (2.13) is globally asymptotically stable in probability
1 according to the result of [17].



8 Mathematical Problems in Engineering

By Itô’s formula and the property of stochastic integration, we have

EV
(
η(t), t

)
= EV

(
η(0), 0

)
+ E

∫ t

0
LηV

(
η(s), s

)|v=0ds + E

∫ t

0
h′e
(
η(s), s

)
Vη

(
η(s), s

)
dW(s)

= EV
(
η(0), 0

)
+ E

∫ t

0
LηV

(
η(s), s

)|v=0 ds

≤ EV
(
η(0), 0

) − 1
2
E

∫ t

0
‖m(x(s), x(s − τ), s) − m̂(x̂(s), x̂(s − τ), s)‖2ds

≤ EV
(
η(0), 0

)
<∞.

(3.8)

Set F̃t = Ft ∪ σ(y(s), 0 ≤ s ≤ t); then (3.8) yields

E
[
V
(
η(t), t

) | F̃s

]
≤ V
(
η(s), s

)
a.s., (3.9)

which says that {V (η(t), t), F̃t, 0 ≤ s ≤ t} is a nonnegative supermartingale with respect
to {F̃t}t≥0. By Doob’s convergence theorem [18] and the fact that limt→∞η(t) = 0 a.s., it
immediately yields V (η(∞),∞) = limt→∞V (η(t), t) = 0 a.s. Moreover, limt→∞EV (η(t), t) =
EV (η(∞),∞) = EV (0,∞) = 0. Because V (η, t) ≥ c‖η‖2 for some c > 0, it follows that
limt→∞E‖η(t)‖2 = 0. This theorem is proved.

As one application of Theorem 3.2, we concentrate our attention on linear stochastic
time delay H∞ filtering design. Consider the following linear time-invariant stochastic time
delay system:

dx(t) = (A0x(t) +A1x(t − τ) + Bv(t))dt + (C0x(t) + C1x(t − τ) +Dv(t))dW(t),

y(t) = l0x(t) + l1x(t − τ) +Kv(t),

z(t) = m0x(t) +m1x(t − τ),

x(t) = φ(t) ∈ Cb
F0
([−τ, 0];Rn),

(3.10)

where, in (3.10), all coefficient matrices are assumed to be constant. Consider the following
Luenberger-type filtering equation:

dx̂(t) = A0x̂(t) +A1x̂(t − τ)dt +G
(
y(t) − l0x̂(t) − l1x̂(t − τ)

)
dt,

ẑ(t) = m0x̂(t) +m1x̂(t − τ), x̂(0) = 0,
(3.11)

with G a constant matrix to be determined later. In this case,

f̂(x̂(t), x̂(t − τ), t) = A0x̂(t) +A1x̂(t − τ) −G(l0x̂(t) + l1x̂(t − τ)), Ĝ = G. (3.12)
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Set

V (x, x̂, t) = x′(t)Px(t) +
∫ t

t−τ
x′(θ)P1x(θ)dθ + x̂′(t)Qx̂(t) +

∫ t

t−τ
x̂′(θ)Q1x̂(θ)dθ, (3.13)

where P > 0, P1 > 0, Q > 0, and Q1 > 0 are to be determined. Then by a series of computations,
we have from HJI (3.2) that

Vt = x′(t)P1x(t) − x′(t − τ)P1x(t − τ) + x̂′(t)Q1x̂(t) − x̂′(t − τ)Q1x̂(t − τ),

V ′xf
(
x, y, t

)
=
[
x′ y′ x̂′ ŷ′

]

⎡
⎢⎢⎢⎢⎢⎣

PA0 +A′0P � 0 0

A′1P 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x

y

x̂

ŷ

⎤
⎥⎥⎥⎥⎥⎦
,

V ′x̂Gl
(
x, y, t

)
=
[
x′ y′ x̂′ ŷ′

]

⎡
⎢⎢⎢⎢⎢⎣

0 0 � 0

0 0 � 0

QGl0 QGl1 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x

y

x̂

ŷ

⎤
⎥⎥⎥⎥⎥⎦
,

V ′
x̂
f̂
(
x̂, ŷ, t

)
=
[
x′ y′ x̂′ ŷ′

]

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 Q(A0 −Gl0) +
(
A0 − l′0G′

)
Q �

0 0 (A1 −Gl1)′Q 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x

y

x̂

ŷ

⎤
⎥⎥⎥⎥⎥⎦
,

1
2
h′
(
x, y, t

)
V ′xxh

(
x, y, t

)
=
[
x′ y′ x̂′ ŷ′

]

⎡
⎢⎢⎢⎢⎢⎣

C′0PC0 � 0 0

C′1PC0 C′1PC1 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x

y

x̂

ŷ

⎤
⎥⎥⎥⎥⎥⎦
,

1
2
∥∥m(x, y, t) −m(x̂, ŷ, t)

∥∥2 =
[
x′ y′ x̂′ ŷ′

]1
2

⎡
⎢⎢⎢⎢⎢⎣

m′0m0 � � �

m′1m0 m′1m1 � �

−m′0m0 −m′0m1 m′0m0 �

−m′1m0 −m′1m1 m′1m0 m′1m1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x

y

x̂

ŷ

⎤
⎥⎥⎥⎥⎥⎦
,

1
2
Θ′
(
x, x̂, y, ŷ, t

)(
γ2I − s′(x, y, t)Vxxs

(
x, y, t

))−1Θ
(
x, x̂, y, ŷ, t

)

=
[
x′ y′ x̂′ ŷ′

]

⎡
⎢⎢⎢⎢⎢⎣

C′0PD + 2PB

C′1PD

2QGK

0

⎤
⎥⎥⎥⎥⎥⎦

1
2
[
γ2I − 2D′PD

]−1

⎡
⎢⎢⎢⎢⎢⎣

C′0PD + 2PB

C′1PD

2QGK

0

⎤
⎥⎥⎥⎥⎥⎦

′⎡
⎢⎢⎢⎢⎢⎣

x

y

x̂

ŷ

⎤
⎥⎥⎥⎥⎥⎦
,

(3.14)
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where � is derived by symmetry. Hence, HJI (3.2) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 � � �

A21 A22 � �

QGl0 − 1
2
m′0m0 QGl1 − 1

2
m′0m1 A33 �

−1
2
m′1m0 −1

2
m′1m1 (A1 −Gl1)

′Q +
1
2
m′1m0

1
2
m′1m1 −Q1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

C′0PD + 2PB

C′1PD

2QGK

0

⎤
⎥⎥⎥⎥⎥⎦

1
2
[
γ2I − 2D′PD

]−1

⎡
⎢⎢⎢⎢⎢⎣

C′0PD + 2PB

C′1PD

2QGK

0

⎤
⎥⎥⎥⎥⎥⎦

′

< 0,

γ2I − 2D′PD > 0

(3.15)

with

A11 = PA0 +A′0P + C′0PC0 + P1 +
1
2
m′0m0,

A21 = A′1P + C′1PC0 +
1
2
m′1m0, A22 = −P1 + C′1PC1 +

1
2
m′1m1,

A33 = Q(A0 −Gl0) + (A0 −Gl0)′Q +Q1 +
1
2
m′0m0.

(3.16)

By Schur’s complement, (3.15) are equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 � � � �

A21 A22 � � �

G1l0 − 1
2
m′0m0 G1l1 − 1

2
m′0m1 A33 � �

−1
2
m′1m0 −1

2
m′1m1 A1Q − l′1G′1 +

1
2
m′1m0

1
2
m′1m1 −Q1 0

2B′P +D′PC0 D′PC1 2K′G′1 0 −2γ2I + 4D′PD

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(3.17)

with QG = G1. Obviously, (3.17) is an LMI on P, P1, Q,Q1, G1. By Theorem 3.2, we immedi-
ately obtain the following corollary.

Corollary 3.3. If (3.17) is feasible with solutions P > 0, P1 > 0, Q > 0, Q1 > 0, and G1, then (3.11)
is an asymptotic mean square H∞ filter with the filtering gain G = Q−1G1.
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Figure 1: Simulation results for Example 4.1.

4. Illustrative Examples

Below, we give two examples to illustrate the validity of our developed theory in the above
section.

Example 4.1 (one-dimensional exponential mean square H∞ filtering). Suppose that a
stochastic signal z is generated by the following nonlinear stochastic system driven by a
standard Wiener process and corrupted by a stochastic external disturbance v, where the
power of v is 0.05. We construct an H∞ filter to estimate z from the measurement signal y:

dx(t) =
[(
−10x(t) − x(t)x2(t − τ)

)
+ x(t − τ)v(t)

]
dt + x(t)dW(t)

x(t) = φ(t) ∈ Cb
F0
([−τ, 0];R),

y(t) = −25
2
x(t) − 2x(t)x(t − τ) + v(t),

z(t) = 5x(t).

(4.1)

For given disturbance attenuation level γ = 1, according to Theorem 3.1, in order to determine
the filtering parameters f̂ , Ĝ, and m̂, we must solve HJI (3.2). Set V (x, x̂) = x2 + x̂2, m̂ = −5x̂;
then (3.1) hold obviously. In addition, we can easily test that Γ(x, y, x̂, ŷ) = −6.5x2−13.5x̂2 < 0
when we take f̂ = −14x̂, Ĝ = 1, m̂ = 5x̂. So the exponential mean square H∞ filter is given as

dx̂(t) = −14x̂(t)dt + y(t)dt, ẑ(t) = −5x̂(t). (4.2)

Because there may be more than one triple (f̂ , Ĝ, m̂) solving HJI (3.2), H∞ filtering is in
general not unique. The simulation result can be seen in Figures 1(a) and 1(b).
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Figure 2: Simulation results for Example 4.2.

Example 4.2 (linear mean square H∞ filtering). In (3.10), we take the power of v to be 0.01,
and

A0 =

[−2.6 −0.2

0.4 −1.8

]
, A1 =

[−1.8 0.2

−0.7 −0.9

]
, B =

[
0.7

0.94

]
,

C0 =

[−0.8 0

0 −0.9

]
, C1 =

[−0.3 0.4

0.21 −1.05

]
, D =

[
0.2

0.3

]
,

l0 =
[
1.3 0.8

]
, l1 =

[
1.2 3

]
, K = 0.5,

m0 =
[−0.11 0.3

]
, m1 =

[
0.28 0.63

]
.

(4.3)

Obviously, substituting the above data into (3.17) with γ = 2 and solving LMI (3.17), we have

P =

[
1.6095 −0.0293

−0.0293 0.7909

]
> 0, P1 =

[
3.8622 −0.5054

−0.5054 1.6277

]
> 0,

Q =

[
1.0009 0.0275

0.0275 1.3260

]
> 0, Q1 =

[
3.6487 0.1333

0.1333 3.6199

]
> 0,

G1 =

[−0.0772

0.0235

]
, G = Q−1G1 =

[−0.0777

0.0194

]
.

(4.4)

The simulation result can be found in Figures 2(a) and 2(b).
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5. Conclusions

This paper presents an approach to the design of H∞ filtering for general nonlinear stochastic
time delay systems via solving HJI (3.2). Although it is difficult to solve the general HJI (3.2),
under some special cases such as linear time delay systems, HJI (3.2) reduces to LMIs, which
can be easily solved. How to solve HJI (3.2) is a very valuable research topic, which deserves
further study. In addition, in order to avoid solving HJI (3.2), a possible scheme is to adopt a
fuzzy linearized method for the original system (2.1) as done in [19].

Appendices

A. Proof of Lemma 2.2

As done in [9], applying the completing squares technique and considering (2.6), it is easy to
obtain

L1V
(
x, y, t

) ≤ 1
2
γ2v′(t)v(t) − 1

2
z′(t)z(t). (A.1)

In addition, by Itô’s formula, for any T > 0, we have

EV (x(T), T) = EV (x(0), 0) + E

∫T

0
dV (x(s), s)

= EV (x(0), 0) + E

∫T

0
LV (x(t), t)dt

= EV (x(0), 0) + E

∫T

0
L1V (x(t), x(t − τ, t))dt

≤ EV (x(0), 0) +
1
2
E

∫T

0

(
γ2‖v(t)‖2 − ‖z(t)‖2

)
dt,

(A.2)

where, in (A.2), L is the so-called infinitesimal operator of (2.5), which is defined by

LV (x(t), t) = Vt(x(t), t) + V ′x(x(t), t)
[
f(x(t), x(t − τ), t) + g(x(t), x(t − τ), t)v(t)]

+
1
2
[h(x(t), x(t − τ), t) + s(x(t), x(t − τ), t)v(t)]′Vxx(x(t), t)

· [h(x(t), x(t − τ), t) + s(x(t), x(t − τ), t)v(t)].

(A.3)

In view of V being positive and V (0, 0) = 0, it follows that for the zero initial condition
x(s) ≡ 0, for all s ∈ [−τ, 0],

E

∫T

0
‖z(t)‖2dt ≤ E

∫T

0
‖v(t)‖2dt, (A.4)

which proves Lemma 2.2.
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B. Proof of Lemma 2.3

By (A.2), we know that, for any t > 0,

EV (x(t), t) − EV (x(0), 0) =
∫ t

0
EL1V (x(s), x(s − τ), s)|v=0ds. (B.1)

By given conditions (i) and (ii), (B.1) yields

EV (x(t), t) − EV (x(0), 0) ≤ −c3

∫ t

0
E‖x(s)‖2ds + c4

∫ t

0
E‖x(s − τ)‖2ds

≤ −c3

c2

∫ t

0
EV (x(s), s)ds +

c4

c1

∫ t

0
EV (x(s − τ), s − τ)ds.

(B.2)

When 0 ≤ t ≤ τ , we have

EV (x(t), t) ≤
(
c4c2

c1
τ + c2

)
‖φ‖2 − c3

c2

∫ t

0
EV (x(s), s)ds. (B.3)

Applying Gronwall’s inequality, it follows that EV (x(t), t) ≤ ((c4c2/c1)τ + c2)‖φ‖2e−(c3/c2)t.
Again, using condition (i),

E‖x(t)‖2 ≤ ((c4c2/c1)τ + c2)
c1

∥∥φ
∥∥2

e−(c3/c2)t. (B.4)

When t > τ > 0, letting μ = s − τ , (B.2) yields

EV (x(t), t) ≤ c2
∥∥φ
∥∥2 − c3

c2

∫ t

0
EV (x(s), s)ds +

c4

c1

∫ t−τ

−τ
EV
(
x
(
μ
)
, μ
)
dtμ

≤ c2
∥∥φ
∥∥2 − c3

c2

∫ t

0
EV (x(s), s)ds

+
c4

c1

∫0

−τ
EV
(
x
(
μ
)
, μ
)
dμ +

c4

c1

∫ t

0
EV
(
x
(
μ
)
, μ
)
dμ

=
(
c4c2

c1
τ + c2

)∥∥φ
∥∥2 −

(
c3

c2
− c4

c1

)∫ t

0
EV (x(s), s)ds.

(B.5)

Repeating the same procedure as above, we have

E‖x(t)‖2 ≤ (c4c2/c1)τ + c2

c1

∥∥φ
∥∥2

e−((c3/c2)−(c4/c1))t. (B.6)

Lemma 2.3 is hence proved.
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This paper investigates the problem on master-salve synchronization for stochastic neural
networks with both time-varying and distributed time-varying delays. Together with the drive-
response concept, LMI approach, and generalized convex combination, one novel synchronization
criterion is obtained in terms of LMIs and the condition heavily depends on the upper and lower
bounds of state delay and distributed one. Moreover, the addressed systems can include some
famous network models as its special cases, which means that our methods extend those present
ones. Finally, two numerical examples are given to demonstrate the effectiveness of the presented
scheme.

1. Introduction

In the past decade, synchronization of chaotic systems has attracted considerable attention
since the pioneering works of Pecora and Carroll [1], in which it shows when some conditions
are satisfied, a chaotic system (the slave/response system) may become synchronized to
another identical chaotic system (the master/drive system) if the master system sends some
driving signals to the slave one. Now, it is widely known that there exist many benefits of
having synchronization or chaos synchronization in various engineering fields, such as secure
communication [2], image processing [3], and harmonic oscillation generation. Meanwhile,
there exists synchronization in language development, which comes up with a common
vocabulary, while agents’ synchronization in organization management will improve their
work efficiency. Recently, chaos synchronization has been widely investigated due to its
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great potential applications. Especially, since artificial neural network model can exhibit the
chaotic behaviors [4, 5], the synchronization has become an important area of study, see [6–
23] and references therein. As special complex networks, delayed neural networks have been
also found to exhibit some complex and unpredictable behaviors including stable equilibria,
periodic oscillations, bifurcation, and chaotic attractors [24–27]. Presently, many literatures
dealing with chaos synchronization phenomena in delayed neural networks have appeared.
Together with various techniques such as LMI tool, M-matrix, and Jensen’s inequalities,
some elegant results have been derived for global synchronization of various delayed neural
networks including discrete-time ones in [6–14]. Moreover, some authors have considered
the problems on adaptive synchronization and H∞ synchronization in [15, 16].

Meanwhile, it is worth noting that, like time-delay and parameter uncertainties, noises
are ubiquitous in both nature and man-made systems and the stochastic effects on neural
networks have drawn much particular attention. Thus a large number of elegant results
concerning dynamics of stochastic neural networks have already been presented in [17–23,
28, 29]. Since noise can induce stability and instability oscillations to the system, by virtue of
the stability theory for stochastic differential equations, there has been an increasing interest
in the study of synchronization for delayed neural networks with stochastic perturbations
[17–23]. Based on LMI technique, in [17–19], some novel results have been derived on the
global synchronization as the addressed networks were involved in distributed delay or
neutral type. Also the works [20–23] have considered the adaptive synchronization and lag
synchronization for stochastic delayed neural networks. However, the control schemes in
[17–19] cannot tackle the cases as the upper bound of delay’s derivative is not less than
1, and the presented results in [20–23] are not formulated in terms of LMIs, which makes
them checked inconveniently by most recently developed algorithms. Meanwhile, in order
to implement the practical point of view better, distributed delay should be taken into
consideration and thus, some researchers have began to give some preliminary discussions
in [9–11, 19]. It is worth pointing out that the range of time delays considered in [17–
23] is from 0 to an upper bound. In practice, the range of delay may vary in a range for
which the lower bound is not restricted to be 0. Thus the criteria in the above literature
can be more conservative because they have not considered the information on the lower
bound of delay. Meanwhile, it has been verified that the convex combination idea was more
efficient than some previous techniques when tackling time-varying delay, and furthermore,
the novel idea needs some improvements since it has not taken distributed delay into
consideration altogether [30]. Yet, few authors have employed improved convex combination
to consider the stochastic neural networks with both variable and distributed variable delays
and proposed some less conservative and easy-to-test control scheme for the exponential
synchronization, which constitutes the main focus of the presented work.

Motivated by the above-mentioned discussion, this paper focuses on the exponential
synchronization for a broad class of stochastic neural networks with mixed time-varying
delays, in which two involved delays belong to the intervals. The form of addressed networks
can include several well-known neural network models as the special cases. Together with the
drive-response concept and Lyapunov stability theorem, a memory control law is proposed
which guarantees the exponential synchronization of the drive system and response one.
Finally, two illustrative examples are given to illustrate that the obtained results can improve
some earlier reported works.

Notation 1. For symmetric matrix X,X > 0 (resp., X ≥ 0) means that X > 0 (X ≥ 0) is
a positive-definite (resp., positive-semidefinite) matrix; AT,A−T represent the transposes of
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matrices A and A−1, respectively. For τ > 0, C([−τ, 0];Rn) denotes the family of continuous
functions ϕ from [−τ, 0] to Rn with the norm ‖ϕ‖ = sup−τ≤θ≤0|ϕ|. Let (Ω,F, {Ft}t≥0, P)
be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions;
L
p

F0
([−τ, 0];Rn) is the family of all F0-measurable C([−τ, 0];Rn)-valued random variables

ξ = {ξ(θ) : −τ ≤ θ ≤ 0} such that sup−τ≤θ≤0E|ξ(θ)|p < ∞, where E{·} stands for the
mathematical expectation operator with respect to the given probability measure P ; I denotes
the identity matrix with an appropriate dimension and

[
X Y
YT Z

]
=
[
X Y
∗ Z

]
with ∗ denoting the

symmetric term in a symmetric matrix.

2. Problem Formulations

Consider the following stochastic neural networks with time-varying delays described by

dz(t) =

[
−b(z(t)) +Ag(z(t)) + Bg(z(t − τ(t))) +D

∫ t

t−�(t)
g(z(s))ds + I

]
dt, (2.1)

where z(t) = [z1(t), . . . , zn(t)]
T ∈ Rn is the neuron state vector, g(z(·)) =

[g1(z1(·)), . . . , gn(zn(·))]T ∈ R represents the neuron activation function, I ∈ Rn is a constant
external input vector, and A, B, D are the connection weight matrix, the delayed weight
matrix, and the distributively delayed connection weight one, respectively.

In the paper, we consider the system (2.1) as the master system and the slave system
as follows:

dy(t) =

[
−b(y(t)) +Ag

(
y(t)
)
+ Bg

(
y(t − τ(t))) +D

∫ t

t−�(t)
g
(
y(s)

)
ds + I + u(t)

]
dt

+ σ(t, ε(t), ε(t − τ(t)))dw(t)

(2.2)

with ε(t) = [ε1(t), . . . , εn(t)]
T = y(t) − z(t), where A, B, D are constant matrices similar to

the relevant ones (2.1) and u(t) is the appropriate control input that will be designed in order
to obtain a certain control objective. In practical situations, the output signals of the drive
system (2.1) can be received by the response one (2.2).

The following assumptions are imposed on systems (2.1) and (2.2) throughout the
paper.

(A1) Here τ(t) and �(t) denote the time-varying delay and the distributed one satisfying

0 ≤ τ0 ≤ τ(t) ≤ τm, τ̇(t) ≤ μ, 0 ≤ �0 ≤ �(t) ≤ �m, (2.3)

and we introduce τm = τm − τ0, �m = �m − �0, and τmax = max{τm, �m}.
(A2) Each function bi(·) : R → R is locally Lipschitz, and there exist positive scalars πi

and γi (i = 1, 2, . . . , n) such that πi ≥ ḃi(z) ≥ γi > 0 for all z ∈ R. Here, we denote
Π = diag{π1, . . . , πn} and Γ = diag{γ1, . . . , γn}.
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(A3) For the constants σ+
i , σ

−
i , the neuron activation functions in (2.1) are bounded and

satisfy

σ−i ≤
gi(x) − gi

(
y
)

x − y ≤ σ+
i , ∀x, y ∈ R, x /=y, i = 1, 2, . . . , n. (2.4)

(A4) In system (2.2), the function σ(t, ·, ·) : R+ ×Rn ×Rn → Rn×m (σ(t, 0, 0) = 0) is locally
Lipschitz continuous and satisfies the linear growth condition as well. Moreover,
σ(t, ·, ·) satisfies the following condition:

trace
[
σT(t, x, y

)
σ
(
t, x, y

)] ≤ xTΠT
1Π1x + yTΠT

2Π2y, ∀x, y ∈ Rn, (2.5)

where Πi (i = 1, 2) are the known constant matrices of appropriate dimensions.

Let ε(t) be the error state and subtract (2.1) from (2.2); it yields the synchronization
error dynamical systems as follows:

dε(t) =

[
−β(ε(t)) +Af(ε(t)) + Bf(ε(t − τ(t))) +D

∫ t

t−�(t)
f(ε(s))ds + u(t)

]
dt

+ σ(t, ε(t), ε(t − τ(t)))dw(t),

(2.6)

where f(ε(·)) = g(y(·)) − g(z(·)). One can check that the function fi(·) satisfies fi(0) = 0, and

σ−i ≤
fi(x) − fi

(
y
)

x − y ≤ σ+
i , ∀x, y ∈ R, x /=y, i = 1, 2, . . . , n. (2.7)

Moreover, we denote Σ = diag{σ+
1 , . . . , σ

+
n}, Σ = diag{σ−1 , . . . , σ−n}, and

Σ1 = diag
{
σ+

1 σ
−
1 , . . . , σ

+
nσ
−
n

}
, Σ2 = diag

{
σ+

1 + σ−1
2

, . . . ,
σ+
n + σ−n

2

}
. (2.8)

In the paper, we adopt the following definition.

Definition 2.1 (see [18]). For the system (2.6) and every initial condition ϕ = φ − ψ ∈
L2
F([−2τmax, 0];Rn), the trivial solution is globally exponentially stable in the mean square,

if there exist two positive scalars μ, k such that

E
∥∥ε
(
t;ϕ
)∥∥2 ≤ μ sup

−τmax≤s≤0
E
∥∥φ(s) − ψ(s)∥∥2

e−kt, ∀t ≥ 0, (2.9)

where E stands for the mathematical expectation and φ, ψ are the initial conditions of systems
(2.1) and (2.2), respectively.
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In many real applications, we are interested in designing a memoryless state-feedback
controller u(t) = Kε(t), where K ∈ Rn×n is a constant gain matrix. In the paper, for a special
case that the information on the size of τ(t) is available, we consider the delayed feedback
controller of the following form:

u(t) = Kε(t) +K1ε(t − τ(t)), (2.10)

then replacing u(t) into system (2.6) yields

dε(t) =

[
−β(ε(t)) +Kε(t) +K1ε(t − τ(t)) +Af(ε(t)) + Bf(ε(t − τ(t))) +D

∫ t

t−�(t)
f(ε(s))ds

]
dt

+ σ(t, ε(t), ε(t − τ(t)))dw(t).
(2.11)

Then the purpose of the paper is to design a controller u(t) in (2.10) to let the slave system
(2.2) synchronize with the master one (2.1).

3. Main Results

In this section, some lemmas are introduced firstly.

Lemma 3.1 (see [18]). For any symmetric matrix W ∈ Rn×n, W = WT ≥ 0, scalar h > 0,
vector function ω : [0, h] → Rn such that the integrations concerned are well defined, then
(
∫h

0 ω(s)ds)TW(
∫h

0 ω(s)ds) ≤ h
∫h

0 ωT (s)Wω(s)ds.

Lemma 3.2 (see [19]). Given constant matrices P, Q, R, where PT = P, QT = Q, then the linear
matrix inequality (LMI)

[
P R
RT −Q

]
< 0 is equivalent to the condition: Q > 0, P + RQ−1RT < 0.

Lemma 3.3 (see [31]). Suppose that Ω, Ξ1i, Ξ2i, i = 1, 2 are the constant matrices of the
appropriate dimensions, α ∈ [0, 1], and β ∈ [0, 1], then the inequalityΩ+[αΞ11+(1−α)Ξ12]+[βΞ21+
(1 − β)Ξ22] < 0 holds, if the four inequalities Ω+Ξ11 + Ξ21 < 0, Ω+Ξ11 + Ξ22 < 0, Ω+Ξ12 + Ξ21 <
0,Ω + Ξ12 + Ξ22 < 0 hold simultaneously.

Then, a novel criterion is presented for the exponential stability for system (2.11)
which can guarantee the master system (2.1) to synchronize the slave one (2.2).

Theorem 3.4. Supposing that assumptions (A1)–(A4) hold, then system (2.11) has one equilibrium
point and is globally exponentially stable in the mean square, if there exist n×nmatrices P > 0, Qj >
0, Rj > 0 (j = 1, 2, 3), Zi > 0, Si > 0, Ti > 0, Pi (i = 1, 2), n × n diagonal matrices L > 0, Q >
0, H > 0, U > 0, V > 0, W > 0, R > 0, E > 0, 13n × n matricesM, N, G, and one scalar λ ≥ 0
such that the matrix inequalities (3.1)-(3.2) hold:

−λI + P + (L +H)
(
Σ − Σ

)
+Q(Π − Γ) + τmZ2 + τ0S2 ≤ 0, (3.1)

[
Ω + $ + $T − IiT2ITi Ξ1

∗ Φ

]
< 0,

[
Ω + $ + $T − IiT2ITi Ξ2

∗ Φ

]
< 0, i = 1, 2, (3.2)
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where I1 = [0n·10n In 0n·2n], I2 = [0n·11n In 0n·n] and

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11 0 0 PT
1 A +UΣ2 0 0 Ω17 PT

1 K1 PT
1 B PT

1 D PT
1 D 0 Ω1,13

∗ Ω22 0 0 WΣ2 0 0 0 0 0 0 0 0

∗ ∗ Ω33 0 0 RΣ2 0 0 0 0 0 0 0

∗ ∗ ∗ Ω44 0 0 Ω47 0 0 0 0 0 ATQ

∗ ∗ ∗ ∗ Ω55 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ω66 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ω77 PT
2 K1 PT

2 B PT
2 D PT

2 D 0 −PT
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88 VΣ2 0 0 0 KT
1 Q

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99 0 0 0 BTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T1 0 0 DTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T2 0 DTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q −QT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

$ =
[
M −M +N −G 013n·4n −N +G 013n·5n

]
, Ξ1 =

[√
τ0M

√
τmN M N G

]
,

Ξ2 =
[√

τ0M
√
τmG M N G

]
, Φ = −diag{S1, Z1, S2, Z2, Z2},

(3.3)

With

Ω11 = PT
1 K +KTP1 +Q2 −UΣ1 − 2ΓE + λΠT

1Π1,

Ω17 = KTP2 + P − PT
1 + ΣH − ΣL − ΓQ,

Ω1,13 = −PT
1 +KTQ + E, Ω22 = −WΣ1 +Q1 +Q3 −Q2,

Ω33 = −Q3 − RΣ1, Ω44 = −U + R2 + �2
0T1 + �2

mT2,

Ω47 = L −H +ATP2, Ω55 = −W + R1 + R3 − R2, Ω66 = −R − R3,

Ω77 = −PT
2 − P2 + τmZ1 + τ0S1, Ω88 = −(1 − μ)Q1 − VΣ1 + λΠT

2Π2,

Ω99 = −(1 − μ)R1 − V.

(3.4)

Proof. Denoting σ(t) = σ(t, ε(t), ε(t − τ(t))), we represent system (2.11) as the following
equivalent form:

dε(t) = ν(t)dt + σ(t)dw(t),

ν(t) = −β(ε(t)) +Kε(t) +K1ε(t − τ(t)) +Af(ε(t)) + Bf(ε(t − τ(t)))

+D

∫ t

t−�(t)
f(ε(s))ds.

(3.5)
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Now, together with assumptions (A1) and (A2), we construct the following Lyapunov-
Krasovskii functional:

V (εt) = V1(εt) + V2(εt) + V3(εt) + V4(εt), (3.6)

where

V1(εt) = εT (t)Pε(t) + 2
n∑

j=1

lj

∫ εj

0

[
fj(s) − σ−j s

]
ds + 2

n∑

j=1

hj

∫ εj

0

[
σ+
j s − fj(s)

]
ds

+ 2
n∑

j=1

qj

∫ εj

0

[
βj(s) − γjs

]
ds,

V2(εt) =
∫ t−τ0

t−τ(t)

[
εT (s)Q1ε(s) + fT (ε(s))R1f(ε(s))

]
ds

+
∫ t

t−τ0

[
εT (s)Q2ε(s) + fT (ε(s))R2f(ε(s))

]
ds

+
∫ t−τ0

t−τm

[
εT (s)Q3ε(s) + fT (ε(s))R3f(ε(s))

]
ds,

V3(εt) =
∫−τ0

−τm

∫ t

t+θ
νT (s)Z1ν(s)dsdθ +

∫−τ0

−τm

∫ t

t+θ
trace

(
σT (s)Z2σ(s)

)
dsdθ

+
∫0

−τ0

∫ t

t+θ
νT (s)S1ν(s)dsdθ +

∫0

−τ0

∫ t

t+θ
trace

(
σT (s)S2σ(s)

)
dsdθ,

V4(εt) = �0

∫0

−�0

∫ t

t+θ
fT (ε(s))T1f(ε(s))dsdθ + �m

∫−�0

−�m

∫ t

t+θ
fT (ε(s))T2f(ε(s))dsdθ

(3.7)

with setting L = diag{l1, . . . , ln} > 0, H = diag{h1, . . . , hn} > 0, and Q = diag{q1, . . . , qn} > 0.
In the following, the weak infinitesimal operatorL of the stochastic process {εt, t ≥ 0} is given
in [32].

By employing (A1) and (A2) and directly computing LVi(εt) (i = 1, 2, 3, 4), it follows
from any n × n matrices P1, P2 that

LV1(εt)

≤ 2εT (t)Pν(t) + 2
[
fT (ε(t)) − εT (t)Σ

]
Lν(t) + 2

[
εT (t)Σ − fT (ε(t))

]
Hν(t) + 2βT (ε(t))Q

×
[
−β(ε(t)) +Kε(t) +K1ε(t − τ(t)) +Af(ε(t)) + Bf(ε(t − τ(t))) +D

∫ t

t−�(t)
f(ε(s))ds

]

− 2εT (t)ΓTQν(t) + trace
[
σT (t)

[
P + (L +H)

(
Σ − Σ

)
+Q(Π − Γ)

]
σ(t)
]
+ 2
[
εT (t)PT

1 + ν(t)PT
2

]
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×
[
− ν(t) − β(ε(t)) +Kε(t) +K1ε(t − τ(t)) +Af(ε(t)) + Bf(ε(t − τ(t)))

+D
∫ t

t−�(t)
f(ε(s))ds

]
,

(3.8)

LV2(εt)

≤
[
εT (t − τ0)Q1ε(t − τ0) + fT (ε(t − τ0))R1f(ε(t − τ0))

]

− (1 − μ)
[
εT (t − τ(t))Q1ε(t − τ(t)) + fT (ε(t − τ(t)))R1f(ε(t − τ(t)))

]

+
[
εT (t)Q2ε(t) + fT (ε(t))R2f(ε(t))

]

+
[
εT (t − τ0) × (Q3 −Q2)ε(t − τ0) + fT (ε(t − τ0))(R3 − R2)f(ε(t − τ0))

]

−
[
εT (t − τm)Q3ε(t − τm) + fT (ε(t − τm))R3f(ε(t − τm))

]
,

(3.9)

LV3(εt)

= τmν
T (t)Z1ν(t) −

∫ t−τ0

t−τm
νT (s)Z1ν(s)ds + τmtrace

[
σT (t)Z2σ(t)

]
−
∫ t−τ0

t−τm
trace

[
σT (s)Z2σ(s)

]
ds

+ τ0ν
T (t)S1ν(t) −

∫ t

t−τ0

νT (s)S1ν(s)ds + τ0trace
[
σT (t)S2σ(t)

]
−
∫ t

t−τ0

trace
[
σT (s)S2σ(s)

]
ds,

(3.10)

LV4(εt)

= fT (ε(t))
(
�2

0T1 + �2
mT2

)
f(ε(t)) −

∫ t

t−�0

�0f
T (ε(s))T1f(ε(s))ds −

∫ t−�0

t−�m
�mf

T (ε(s))T2f(ε(s))ds

≤ fT (ε(t))
(
�2

0T1 + �2
mT2

)
f(ε(t)) −

[∫ t

t−�0

f(ε(s))ds

]T
T1

[∫ t

t−�0

f(ε(s))ds

]
− (1 + μ1

)

×
[∫ t−�0

t−�(t)
f(ε(s))ds

]T
T2

[∫ t−�0

t−�(t)
f(ε(s))ds

]

− (1 + μ2
)
[∫ t−�(t)

t−�m
fT (ε(s))ds

]
T2

[∫ t−�(t)

t−�m
f(ε(s))ds

]
,

(3.11)

where μ1 = (�m − �(t))/�m and μ2 = (�(t) − �0)/�m.
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Now adding the terms on the right side of (3.8)–(3.11) to LV (εt) and employing (2.5),
(3.1), it is easy to obtain

LV (εt) ≤ 2εT (t)Pν(t) + 2
[
fT (ε(t)) − εT (t)Σ

]
Lν(t) + 2

[
εT (t)Σ − fT (ε(t))

]
Hν(t)

+ 2
[
εT (t)PT

1 + ν(t)PT
2 + βT (ε(t))Q

]

×
[
− β(ε(t)) +Kε(t) +K1ε(t − τ(t)) +Af(ε(t)) + Bf(ε(t − τ(t)))

+D

[∫ t

t−�0

f(ε(s))ds +
∫ t−�0

t−�(t)
f(ε(s))ds

]]

− 2
[
εT (t)PT

1 + ν(t)PT
2

]
ν(t) − 2εT (t)ΓTQν(t)

+
[
εT (t − τ0)Q1ε(t − τ0) + fT (ε(t − τ0))R1f(ε(t − τ0))

]

− (1 − μ)
[
εT (t − τ(t))Q1ε(t − τ(t)) + fT (ε(t − τ(t)))R1f(ε(t − τ(t)))

]

+
[
εT (t)Q2ε(t) + fT (ε(t))R2f(ε(t))

]

+
[
εT (t − τ0)(Q3 −Q2)ε(t − τ0) + fT (ε(t − τ0))(R3 − R2)f(ε(t − τ0))

]

−
[
εT (t − τm)Q3ε(t − τm) + fT (ε(t − τm))R3f(ε(t − τm))

]
+ νT (t)(τmZ1 + τ0S1)ν(t)

−
∫ t−τ0

t−τm
νT (s)Z1ν(s)ds −

∫ t

t−τ0

νT (s)S1ν(s)ds −
∫ t−τ0

t−τm
trace

[
σT (s)Z2σ(s)

]
ds

−
∫ t

t−τ0

trace
[
σT (s)S2σ(s)

]
ds + λ

[
εT (t)ΠT

1Π1ε(t) + εT (t − τ(t))ΠT
2Π2ε(t − τ(t))

]

+ fT (ε(t))
(
�2

0T1 + �2
mT2

)
f(ε(t)) −

[∫ t

t−�0

f(ε(s))ds

]T
T1

[∫ t

t−�0

f(ε(s))ds

]
− (1 + μ1

)

×
[∫ t−�0

t−�(t)
f(ε(s))ds

]T
T2

[∫ t−�0

t−�(t)
f(ε(s))ds

]

− (1 + μ2
)
[∫ t−�(t)

t−�m
fT (ε(s))ds

]
T2

[∫ t−�(t)

t−�m
f(ε(s))ds

]
.

(3.12)
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Based on methods in [33] and (2.7), for any n × n diagonal matrices U > 0, V > 0, W >
0, R > 0, the following inequality can be achieved:

0 ≤ −
[
xT (t)UΣ1x(t) − 2xT (t)UΣ2f(x(t)) + fT (x(t))Uf(x(t))

]

−
[
xT (t − τ(t))VΣ1x(t − τ(t)) − 2xT (t − τ(t))VΣ2f(x(t − τ(t)))

+fT (x(t − τ(t)))Vf(x(t − τ(t)))
]

−
[
xT (t − τ0)WΣ1x(t − τ0) − 2xT (t − τ0)WΣ2f(x(t − τ0)) + fT (x(t − τ0))Wf(x(t − τ0))

]

−
[
xT (t − τm)RΣ1x(t − τm) − 2xT (t − τm)RΣ2f(x(t − τm)) + fT (x(t − τm))Rf(x(t − τm))

]
.

(3.13)

From (A1), for any n × n diagonal matrix E, one can yield

0 ≤ 2
[
β(ε(t)) − Γε(t)]TEε(t). (3.14)

Furthermore, for any 13n × n constant matrices M, N, G, we can obtain

0 = 2ζT (t)M

[
ε(t) − ε(t − τ0) −

∫ t

t−τ0

ν(s)ds −
∫ t

t−τ0

σ(s)dω(s)

]

+ 2ζT (t)N

[
ε(t − τ0) − ε(t − τ(t)) −

∫ t−τ0

t−τ(t)
ν(s)ds −

∫ t−τ0

t−τ(t)
σ(s)dω(s)

]

+ 2ζT (t)G

[
ε(t − τ(t)) − ε(t − τm) −

∫ t−τ(t)

t−τm
ν(s)ds −

∫ t−τ(t)

t−τm
σ(s)dω(s)

]
,

(3.15)

where

ζT (t) =

⎡

⎣εT (t)εT (t − τ0)εT (t − τm)fT (ε(t))fT (ε(t − τ0))fT (ε(t − τm))

νT (t)εT (t − τ(t))fT (ε(t − τ(t)))
[∫ t

t−�0

f(ε(s)ds)

]T

[∫ t−�0

t−�(t)
f(ε(s)ds)

]T[∫ t−�(t)

t−�m
f(ε(s)ds)

]T
βT (ε(t))

⎤

⎦.

(3.16)
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Then together with the methods in [28, 29], combining (3.12)–(3.15) yields

LV (εt) ≤ ζT (t)
[
Ω + $ + $T + τ0MS−1

1 MT + [τ(t) − τ0]NZ−1
1 NT + [τm − τ(t)]GZ−1

1 GT

−μ1I1T2IT1 − μ2I2T2IT2 +MS−1
2 MT +NZ−1

2 NT +GZ−1
2 GT

]

× ζ(t) + h(t) := ζT (t)Δ(t)ζ(t) + h(t),

(3.17)

where Ω, $ are presented in (3.2) and

h(t) =

[∫ t

t−τ0

σ(s)dω(s)

]T
S2

[∫ t

t−τ0

σ(s)dω(s)

]
+

[∫ t−τ0

t−τ(t)
σ(s)dω(s)

]T
Z2

[∫ t−τ0

t−τ(t)
σ(s)dω(s)

]

+

[∫ t−τ(t)

t−τm
σ(s)dω(s)

]T
Z2

[∫ t−τ(t)

t−τm
σ(s)dω(s)

]
−
∫ t

t−τ0

trace
[
σT (s)S2σ(s)

]
ds

−
∫ t−τ0

t−τ(t)
trace

[
σT (s)Z2σ(s)

]
ds −

∫ t−τ(t)

t−τm
trace

[
σT (s)Z2σ(s)

]
ds.

(3.18)

Together with Lemmas 3.2 and 3.3, the nonlinear matrix inequalities in (3.2) can guarantee
Δ(t) < 0 to be true. Therefore, there must exist a negative scalar χ < 0 such that

LV (εt) ≤ ζT (t)Δ(t)ζ(t) + h(t) ≤ χ
[
‖ε(t)‖2 + ‖ε(t − τ(t))‖2

]
+ h(t). (3.19)

Taking the mathematic expectation of (3.19), we can deduce Eh(t) = 0,ELV (εt) ≤
χE[‖ε(t)‖2 + ‖ε(t − τ(t))‖2], which indicates that the dynamics of the system (2.11) is globally
asymptotically stable in the mean square. Based on V (εt) in (3.6) and directly computing,
there must exist three positive scalars Θi > 0, i = 1, 2, 3 such that

V (εt) ≤ Θ1‖ε(t)‖2 + Θ2

∫ t

t−τmax

‖ε(v)‖2dv + Θ3

∫ t

t−τm
‖ε(v − τ(v))‖2dv. (3.20)

Letting V (εt) = ektV (εt), we can deduce

EV (εt) − EV (ε0) = E
∫ t

0
L
(
eksV (εs)

)
ds

≤ E
∫ t

0
eks
{
k

[
Θ1‖ε(s)‖2 + Θ2

∫s

s−τmax

‖ε(v)‖2dv + Θ3

∫ s

s−τm
‖ε(v − τ(v))‖2dv

]

+χ
[
‖ε(s)‖2 + ‖ε(s − τ(s))‖2

]}
ds.

(3.21)
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By changing the integration sequence, it can be deduced that
∫ t

0
eks
∫s

s−τmax

‖ε(v)‖2dv ds

≤
∫ t

−τmax

∫v+τmax

v

eks‖ε(v)‖2dsdv

≤ τmaxe
kτmax

∫ t

−τmax

‖ε(v)‖2ekvdv,

∫ t

0
eks
∫s

s−τm
‖ε(v − τ(v))‖2dv ds ≤ τme

kτm

∫ t

−τm
‖ε(v − τ(v))‖2ekvdv.

(3.22)

Substituting the terms (3.22) into the relevant ones in (3.21), it is easy to have

EV (εt) ≤ EV (ε0) + E

{[
kΘ1 + kΘ2τmaxe

kτmax + χ
] ∫ t

0
‖ε(v)‖2ekvdv

+
[
kΘ3τme

kτm + χ
] ∫ t

0
‖ε(v − τ(v))‖2ekvdv + h0(k)

}
,

(3.23)

where h0(k) = kΘ2τmaxe
kτmax

∫0
−τmax

‖ε(v)‖2ekvdv+kΘ3τme
kτm
∫0
−τm ‖ε(v − τ(v))‖

2ekvdv. Choose
one sufficiently small scalar k0 > 0 such that k0Θ1 + k0Θ2τmaxe

k0τmax+ χ ≤ 0, k0Θ3τme
k0τm+χ ≤

0. Then, EV (εt) ≤ Eh0(k0) + EV (ε0). Through directly computing, there must exist a positive
scalar Υ > 0 such that

EV (ε0) + Eh0(k0) ≤ Υ sup
−2τmax≤s≤0

E
∥∥ϕ(s)

∥∥2
. (3.24)

Meanwhile, EV (εt) ≥ λmin(P)ek0tE‖ε(t)‖2. Thus with (3.24), one can obtain

E‖ε(t)‖2 ≤ λ−1
min(P)Υ sup

−2τmax≤s≤0
E
∥∥ϕ(s)

∥∥2
e−k0t, ∀t ≥ 0, (3.25)

which indicates that system (2.11) is globally exponentially stable in the mean square, and
the proof is completed.

Remark 3.5. As for systems (2.1) and (2.2), many present literatures have much attention to
β(z(t)) = Cz(t) with C positive-definite diagonal matrix, which can be checked as one special
case of assumption (A3). Also in Theorem 3.4, it can be checked that Δ(t) < 0 in (3.17) was
not simply enlarged by Ω + $ + $T + τ0MS−1

1 MT + τmNZ−1
1 NT + τmGZ−1

1 GT + MS−1
2 MT +

NZ−1
2 NT+GZ−1

2 GT < 0, but equivalently guaranteed by utilizing two matrix inequalities (3.2)
and Lemma 3.3, which can be more effective than these techniques employed in [18, 28, 29].
Moreover, we compute and estimateLV5(εt) in (3.11) more efficiently than those present ones
owing to that some previously ignored terms have been taken into consideration.

In order to show the design of the estimate gain matrices K and K1, a simple
transformation is made to obtain the following theorem.
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Theorem 3.6. Supposing that assumptions (A1)–(A4) hold and setting ε1, ε2 > 0, then the system
(2.1) and system (2.2) can exponentially achieve the master-slave synchronization in the mean square,
if there exist n × n matrices P > 0, Qj > 0, Rj > 0 (j = 1, 2, 3), Zi > 0, Si > 0, Ti > 0 (i =
1, 2), F, F1n × n diagonal matrices L > 0, Q > 0, H > 0, U > 0, V > 0, W > 0, R > 0, E >
0, 13n × n matricesM,N,G, and one scalar λ ≥ 0 such that the LMIs in (3.26)-(3.27) hold

−λI + P + (L +H)
(
Σ − Σ

)
+Q(Π − Γ) + τmZ2 + τ0S2 ≤ 0, (3.26)

[
Ξ + $ + $T − IiT2ITi Ξ1

∗ Φ

]
< 0,

[
Ξ + $ + $T − IiT2ITi Ξ2

∗ Φ

]
< 0, i = 1, 2, (3.27)

where Ii, Ξi (i = 1, 2), $,Φ are similar to the relevant ones in (3.2), and

Ξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ11 0 0 Ξ14 0 0 Ξ17 ε1F1 ε1QB ε1QD ε1QD 0 Ξ1,13

∗ Ξ22 0 0 WΣ2 0 0 0 0 0 0 0 0

∗ ∗ Ξ33 0 0 RΣ2 0 0 0 0 0 0 0

∗ ∗ ∗ Ξ44 0 0 Ξ47 0 0 0 0 0 ATQ

∗ ∗ ∗ ∗ Ξ55 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −R − R3 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 ε2F1 ε2QB ε2QD ε2QD 0 −ε2Q

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 VΣ2 0 0 0 FT
1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0 0 0 BTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T1 0 0 DTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T2 0 DTQ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q −QT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.28)

with

Ξ11 = ε1F + ε1F
T +Q2 −UΣ1 − 2ΓE + λΠT

1Π1, Ξ14 = ε1QA +UΣ2,

Ξ17 = ε2F
T + P − ε1Q + ΣH − ΣL − ΓQ, Ξ1,13 = −ε1Q + FT + E,

Ξ22 = −WΣ1 +Q1 +Q3 −Q2,

Ξ33 = −Q3 − RΣ1, Ξ44 = −U + R2 + �2
0T1 + �2

mT2,

Ξ47 = L −H + ε2A
TQ, Ξ55 = −W + R1 + R3 − R2,

Ξ77 = −ε2Q − ε2Q + τmZ1 + τ0S1, Ξ88 = −(1 − μ)Q1 − VΣ1 + λΠT
2Π2,

Ξ99 = −(1 − μ)R1 − V.

(3.29)

Moreover, the estimation gains K = Q−TF and K1 = Q−TF1.
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Proof. Letting P1 = ε1Q, P2 = ε2Q and setting F = QTK, F1 = QTK1 in (3.2) of Theorem 3.4, it
is easy to derive the result and the detailed proof is omitted here.

Remark 3.7. Theorem 3.6 presents one novel delay-dependent criterion guaranteeing the
systems (2.1) and (2.2) to achieve the master-slave synchronization in an exponential way.
The method is presented in terms of LMIs, therefore, by using LMI in MATLAB Toolbox, it is
straightforward and convenient to check the feasibility of the proposed results without tuning
any parameters. Moreover, the systems addressed in this paper can include some famous
networks in [17, 19–21, 23] as its special cases or τ(t) is not differentiable.

Remark 3.8. Through setting Q1 = R1 = 0 in (3.6) and employing similar methods, Theorems
3.4 and 3.6 can be applicable without taking the upper bound on derivative of τ(t) into
consideration, which means that Theorems 3.4 and 3.6 can be true even as μ is unknown.

Remark 3.9. As we all know, most of n × n free-weighting matrices of M, N, G in Theorems
3.4 and 3.6 cannot help reduce the conservatism but only result in computational complexity.
Thus we can choose the simplified slack matrices M, N, G as follows:

M =
[
M1 M2 0n·11n

]T
, N =

[
0n·n N1 0n·5n N2 0n·5n

]T
,

G =
[
0n·2n G1 0n·4n G2 0n·5n

]T
,

(3.30)

with n × n matrices Mi, Ni, Gi (i = 1, 2). Though the number of n × n matrix variables in
(3.30) is much smaller than the one in (3.2) and (3.27), the numerical examples given in the
paper still demonstrate that the simplified criteria can reduce the conservatism as effectively
as Theorems 3.4 and 3.6 do.

4. Numerical Examples

In this section, two numerical examples will be given to illustrate the effectiveness of the
proposed results.

Example 4.1. Consider the drive system (2.1) and response one (2.2) of delayed neural
networks as follows:

b(z) =

[
0.7z1 + 0.5 tanh(z1)

0.7z2 + 0.5 tanh(z2)

]
, A =

[
0.2 −0.4

−0.4 0.2

]
, B =

[
0.2 0.2

0.2 0.2

]
, D =

[
0.2 0.3

0.1 0.21

]
,

g(z) =

[
0.25(|z1 + 1| − |z1 − 1|)
0.25(|z2 + 1| − |z2 − 1|)

]
, σ(t, ε(t), ε(t − τ(t))) = 0.1 ×

[‖ε(t)‖ 0

0 ‖ε(t − τ(t))‖

]
,

τ(t) = 1.0sin2(10t) + 0.5, �(t) = 2cos2t + 0.5.
(4.1)
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Then it is easy to check that τ0 = 0.5, τm = 1.5, �0 = 0.5, �m = 2.5, μ = 10, and

Γ =

[
0.7 0

0 0.7

]
, Π =

[
1.2 0

0 1.2

]
, Σ =

[−0.5 0

0 −0.5

]
, Σ =

[
0.5 0

0 0.5

]
,

Π1 = Π2 =

[
0.1 0

0 0.1

]
.

(4.2)

By setting ε1 = 0.05, ε2 = 0.01 and utilizing Theorem 3.6, then the estimator gain matrices K
and K1 in (2.10) can be worked out

K = Q−TF =

[−2.3981 −0.0575

−0.0575 −2.3994

]
, K1 = Q−TF1 =

[−0.2175 0.3347

0.3347 −0.2175

]
. (4.3)

Furthermore, as for τ(t) = | sin(20t)| + 0.5, �(t) = 2| cos(6t)| + 0.5, and setting ε1 =
0.05, ε2 = 0.01, we can obtain the following estimator gain matrices by using Theorem 3.6
and Remark 3.8:

K = Q−TF =

[−2.5374 −0.0528

−0.0528 −2.5385

]
, K1 = Q−TF1 =

[−0.3021 0.3812

0.3812 −0.3021

]
, (4.4)

which means that the obtained results still hold as the time delay is not differentiable.
However, the methods proposed in [17–19] fail to solve the synchronization problem even
without the distributed delay.

Example 4.2. As a special case, we consider the master system (2.1) of delayed stochastic
neural networks as follows:

dz(t) =

[
−Cz(t) +Ag(z(t)) + Bg(z(t − τ(t))) +D

∫ t

t−�(t)
g(z(s))ds + I

]
dt, (4.5)

where C =
[

1 0
0 1

]
, A =

[
1.8 −0.3
−5.1 2.6

]
, B =

[ −1.6 −0.1
−0.3 −2.5

]
, D =

[
2 1
1 2

]
, I =

[
0
0

]
, and τ(t) = 0.95 +

0.05sin2(40t), �(t) = 0.1. It can be verified that τ0 = 0.95, τm = 1.0, μ = 2, and �0 = �m = 0.1. The
activation functions can be taken as gi(s) = tanh(s), s ∈ R (i = 1, 2). The corresponding slave
system can be

dy(t) =

[
−Cy(t) +Ag

(
y(t)
)
+ Bg

(
y(t − τ(t))) +D

∫ t

t−�(t)
g
(
y(s)

)
ds + I + u(t)

]
dt

+ σ(t, ε(t), ε(t − τ(t)))dω(t),

(4.6)
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Figure 1: Phase trajectories and state trajectories of drive system, response system and error system.

where σ(t, ε(t), ε(t − τ(t))) =
[ ‖ε(t)‖ 0

0 ‖ε(t−τ(t))‖
]
. Then together with Theorem 3.6, ε1 = 0.05, and

ε2 = 0.1, we can obtain part feasible solution to the LMIs in (3.26) and (3.27) by resorting to
the Matlab LMI Toolbox:

Q =

[
0.2526 0

0 0.2526

]
, F =

[−4.0139 −0.0421

0.0486 −4.0182

]
, F1 =

[
0.1133 0.0043

0.0168 0.1707

]
. (4.7)

Then the estimator gain matrices K,K1 can be deduced as follows:

K = Q−TF =

[−15.8892 −0.1667

0.1923 −15.9062

]
, K1 = Q−TF1 =

[
0.4486 0.0170

0.0666 0.6758

]
. (4.8)

It follows from Theorem 3.6 that the drive system with the initial condition [0.5, 0.4]T for
−1 ≤ t ≤ 0 synchronizes with the response system when the initial condition is [0.7, 0.6]T for
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−1 ≤ t ≤ 0. The phase trajectories and state ones of drive system and response one and state
trajectories of error system are shown in Figure 1. Therefore, from Figure 1, we can see that
the master system synchronizes with the slave system.

5. Conclusions

In this paper, we consider the synchronization control of stochastic neural networks with both
time-varying and distributed time-varying delays. By using the Lyapunov functional and
LMI technique, one sufficient condition has been derived to ensure the global exponential
stability for the error system, and thus, the slave system can synchronize the master one.
Then, the estimation gains can be obtained. The obtained results are novel since the addressed
networks are of more general forms and some good mathematical techniques are employed.
Finally, we give two numerical examples to verify the theoretical results.
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The paper proposes a formal derivation of recurrent equations describing the occupancy
distribution in the full-availability group with multirate Binomial-Poisson-Pascal (BPP) traffic. The
paper presents an effective algorithm for determining the occupancy distribution on the basis of
derived recurrent equations and for the determination of the blocking probability as well as the loss
probability of calls of particular classes of traffic offered to the system. A proof of the convergence
of the iterative process of estimating the average number of busy traffic sources of particular classes
is also given in the paper.

1. Introduction

Dimensioning and optimization of integrated networks, that is, Integrated Services Digital
Networks (ISDN) and Broadband ISDN (B-ISDN) as well as wireless multiservice networks
(e.g., UMTS), have recently developed an interest in multirate models [1–5]. These models
are discrete models in which it is assumed that the resources required by calls of particular
traffic classes are expressed as the multiple of the so-called Basic Bandwidth Units (BBUs).
The BBU is defined as the greatest common divisor of the resources demanded by all call
streams offered to the system [6, 7].

Multirate systems can be analysed on the basis of statistical equilibrium equations
resulting from the multidimensional Markov process that describe the service process in the
considered systems [8–13]. Such an approach, however, is not effective because of the quickly
increasing—along with the system’s capacity—number of states in which a multidimensional
Markov process occurring within the system can take place [14]. Consequently, for an
analysis of multirate systems, there are used methods based on the convolution algorithm
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[11, 15] and the recurrent methods in which the multidimensional service process—occurring
in the considered systems—is approximated by one-dimensional Markov chain [16–21].
The convolution methods allow us to determine exactly the occupancy distribution in the
so-called full-availability systems servicing traffic streams with arbitrary distributions (i.e.,
systems with state-independent admission process and with both state-independent and
state-dependent arrival processes). In the case of the systems with state-dependent admission
process (i.e., the system in which the admission of a new call is conditioned not only by the
sufficient number of free BBUs but also by the structure of the system and the introduced
admission policy) the convolution methods lead to elaboration of approximate methods with
quite high computational complexity [22, 23].

Nowadays, in the analysis and optimization of multirate systems, the recurrent
algorithms are usually used. This group of algorithms is based on the approximation of the
multidimensional service process in the considered system by the one-dimensional Markov
chain. Such approach leads to a determination of the occupancy distribution in systems with
state-independent admission process and state-independent arrival process (in teletraffic
engineering such system is called the full-availability group with Erlang traffic streams) on
the basis of simple Kaufman-Roberts recurrence [24, 25] and its modifications [16–19, 26, 27].
One of them, the so-called Delbrouck recurrence [18], allows us to determine the occupancy
distribution in the system with state-independent admission process (the full-availability
group) and BPP traffic streams. The research on the full-availability group model, started
by Delbrouck, was subsequently continued, for example, in [12, 28–30].

Because of the simplicity of the Kaufman-Roberts equation, in many works the
attempts of its modification in order to analyse the systems with BPP traffic were undertaken.
In [13] the modified form of the Kaufman-Roberts equation that makes the value of offered
traffic dependent on the number of active sources was presented. In [31] the approximation
of the number of active sources with their mean values in relation to the total value of
occupied resources in particular states of the system was proposed. In [32], on the basis of
the method proposed in [31], the Kaufman-Roberts equation was generalized for systems
with BPP traffic and state-dependent call admission process. The accuracy of the method
for modelling systems with multirate BPP traffic—further on called the Multiple Iteration
Method-BPP (MIM-BPP)—proposed in [32] was verified in simulations for systems with
both state-independent and state-dependent call admission process. In publications issued
so far, no attempt to formally prove the correctness of the MIM-BPP assumptions was taken
up.

The aim of this paper is to formally prove that the MIM-BPP algorithm [32],
considered earlier as an approximate algorithm, is exact. To this purpose we derive recurrent
equations describing the occupancy distribution in the full-availability group with multirate
BPP traffic. We are going to demonstrate at the same time that the number of calls of
particular Engset and Pascal classes appearing in equations that determine the occupancy
distribution is exactly determined with their average values. Additionally, we intend to prove
the convergence of the iterative process of estimating the average number of busy traffic
sources of particular classes.

The paper is organized as follows. Section 2 presents an analysis of the call admission
and the call arrival process in the full-availability group with BPP traffic at the micro- and
macrostate level. In Section 3 an iterative method for estimating the average number of busy
traffic sources of particular classes is presented, and its convergence is proved. The paper
ends with a summary contained in Section 4.
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· · ·
V

· · ·
i: λi, μi, ti

· · ·

· · ·
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· · ·
Class

Class

j: Λj ,Nj , μj , tj

· · ·
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of Pascal classes

Engset

Figure 1: Full-availability group with the Erlang, Engset, and Pascal traffic stream.

2. Full-Availability Group with BPP Traffic

2.1. Basic Assumptions

Let us consider a model of the full-availability group with the capacity of V BBUs (Figure 1).
The group is offered traffic streams of three types: mI Erlang streams (Poisson distribution of
call streams) from the set I = {1, . . . , i, . . . , mI}, mJ Engset streams (binomial distribution of
call streams) from the set J = {1, . . . , j, . . . , mJ}, and mK Pascal streams (negative binomial
distribution of call stream) from the set K = {1, . . . , k, . . . , mK}. In the paper it has been
adopted that the letter “i” denotes any class of Erlang traffic, letter “j” any class of Engset
traffic, and letter “k” any class of Pascal traffic, whereas the letter “c” any traffic class.
(In relation to the ITU-T recommendations [11], all types of discussed traffic are defined
collectively by the term BPP traffic. Thus, we use the term BPP when we talk about all traffic
types cumulatively, whereas when we consider single traffic streams, then, because our study
is focused on systems with limited capacity only, we use the terms Erlang, Engset, and Pascal
streams.) The number of BBUs demanded by calls of class c is denoted by tc.

The call arrival rate for Erlang traffic of class i is equal to λi. The parameter λj(yj)
determines the call intensity for the Engset traffic stream of class j, whereas the parameter
λk(zk) determines the call intensity for Pascal traffic stream of class k. The arrival rates λj(yj)
and λk(zk) depend on the number of yj and zk of currently serviced calls of class j and k.
In the case for Engset stream, the arrival rate of class j stream decreases with the number of
serviced traffic sources:

λj
(
yj

)
=
(
Nj − yj

)
Λj , (2.1)

where Nj is the number of Engset traffic sources of class j, while Λj is the arrival rate of calls
generated by a single free source of class j. In the case of Pascal stream of class k, the arrival
rate increases with the number of serviced sources:

λk(zk) = (Sk + zk)γk, (2.2)

where Sk is the number of Pascal traffic sources of classes k, while γk is the arrival rate of calls
generated by a single free source of class k.
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{xi,yj , zk + 1} λi

λi

λi

{xi + 1,yj , zk + 1}

(xi + 1)μi

(Sk + zk)γkzk + 1μk

{xi,yj , zk}
{xi + 1,yj , zk}

(zk + 1)μk

(zk + 1)μk

(Nj − yj)Λj

(Nj − yj)Λj

(yj + 1)μj

(yj + 1)μj

(yj + 1)μj

(Nj − yj)Λj

{xi,yj + 1, zk + 1}
(Sk + zk)γk

(Sk + zk)γk

{xi + 1,yj + 1, zk + 1}

{xi + 1,yj + 1, zk}{xi,yj + 1, zk} (xi + 1)μi

(xi + 1)μi

Figure 2: Fragment of a diagram of Markov process in the full-availability group with BPP traffic.

The total intensity of Erlang traffic of class i offered to the group amounts to

Ai =
λi
μi
, (2.3)

whereas the intensity of Engset traffic αj and Pascal traffic βk of class j and k, respectively,
offered by one free source, is equal to

αj =
Λj

μj
, βk =

γk
μk

. (2.4)

In (2.3) and (2.4) the parameter μ is the average service intensity with the exponential
distribution.

2.2. The Multidimensional Erlang-Engset-Pascal Model at
the Microstate Level

Let us consider now a fragment of the multidimensional Markov process in the full-
availability group with the capacity of V BBUs presented in Figure 2. The group is offered
traffic streams of three types: Erlang, Engset, and Pascal. Each microstate of the process
{x1, . . . , xi, . . . , xmI ,y1, . . . ,yj , . . . ,ymJ , z1, . . . , zk, . . . , zmK} is defined by the number of serviced
calls of each of the classes of offered traffic, where xi denotes the number of serviced calls of
the Poisson stream of class i (Erlang traffic), yj denotes the number of serviced calls of the
binomial stream of class j (Engset traffic), whereas zk determines the number of serviced
calls of the negative binomial stream of class k (Pascal traffic). To simplify the description,
the microstate probability will be denoted by the symbol p(xi,yj , zk).

The multidimensional service process in the Erlang-Engset-Pascal model is a reversible
process. In concordance with Kolmogorov reversibility test considering any cycle for the
microstates shown in Figure 2, we always obtain equality in the intensity of transitions
(streams) in both directions. The property of reversibility implies the local equilibrium
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equations between any of the two neighbouring states of the process. Such equations for
the Erlang stream of class i, the Engset stream of class j, and Pascal stream of class k can be
written in the following way (Figure 2):

xiμip
(
xi,yj , zk

)
= λip

(
xi − 1,yj , zk

)
, (2.5)

yjμjp
(
xi,yj , zk

)
=
[
Nj −

(
yj − 1

)]
Λjp
(
xi,yj − 1, zk

)
, (2.6)

zkμkp
(
xi,yj , zk

)
= [Sk + (zk − 1)]γkp

(
xi,yj , zk − 1

)
. (2.7)

Since the call streams offered to the group are independent, we can add up, for the microstate
{xi,yj , zk}, all mI equations of type (2.5) for the Erlang streams, mJ equations of type (2.6)
for the Engset streams, and mK equations of type (2.7) for the Pascal streams. Additionally,
taking into consideration traffic intensity (see (2.3) and (2.4)), we get

p
(
xi,yj , zk

)
⎡

⎣
mI∑

i=1

xiti +
mJ∑

j=1

yjtj +
mK∑

k=1

zktk

⎤

⎦

=
mI∑

i=1

Aitip
(
xi − 1,yj , zk

)
+

mJ∑

j=1

[
Nj −

(
yj − 1

)]
αjtjp

(
xi,yj − 1, zk

)

+
mK∑

k=1

[Sk + (zk − 1)]βktkp
(
xi,yj , zk − 1

)
.

(2.8)

2.3. The Full-Availability Group with BPP Traffic at the Macrostate Level

It is convenient to consider the multidimensional process occurring in the considered system
at the level of the so-called macrostates. Each macrostate n determines the number of n busy
BBUs in the considered group, regardless of the number of serviced calls of particular classes.
Therefore, each of the microstates {xi − 1,yj , zk · · · } is associated with such a macrostate in
which the number of busy BBUs is decreased by ti BBUs, necessary to set up a connection of
class i, that is, with such a macrostate in which the number of busy BBUs equals n − ti. The
following equation is then fulfilled:

m∑

c=1
c /= i

xctc + (xi − 1)ti =
m∑

c=1

xctc − ti = (n − ti), (2.9)

where m determines the number of all traffic classes offered to the system, that is, m = mI +
mJ +mK.

The macrostate probability P(n) defines then the occupancy probability of n BBUs
of the group and can be expressed as the aggregation of the probabilities of appropriate
microstates:

P(n) =
∑

Ω(n)

p
(
xi,yj , zk

)
, (2.10)
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where Ω(n) is a set of all such subsets {xi,yj , zk} that fulfil the following equation:

n =
mI∑

i=1

xiti +
mJ∑

j=1

yjtj +
mK∑

k=1

zktk. (2.11)

The definition of the macrostate (2.11) makes it possible to convert (2.8) into the following
form:

np
(
xi,yj , zk

)
=

mI∑

i=1

Aitip
(
xi − 1,yj , zk

)

+
mJ∑

j=1

[
Nj −

(
yj − 1

)]
αjtjp

(
xi,yj − 1, zk

)

+
mK∑

k=1

[Sk + (zk − 1)]βktkp
(
xi,yj , zk − 1

)
.

(2.12)

Adding on both sides all microstates that belong to the set Ω(n), we get

n
∑

Ω(n)

p
(
xi,yj , zk

)
=

mI∑

i=1

Aiti
∑

Ω(n)

p
(
xi − 1,yj , zk

)

+
mJ∑

j=1

[
Nj −

(
yj − 1

)]
αjtj
∑

Ω(n)

p
(
xi,yj − 1, zk

)

+
mK∑

k=1

[Sk + (zk − 1)]βktk
∑

Ω(n)

p
(
xi,yj , zk − 1

)
.

(2.13)

Following the application of the definition of macrostate probability, expressed by (2.10), we
are in a position to convert (2.13) as follows:

nP(n) =
mI∑

i=1

AitiP(n − ti) +
mJ∑

j=1

[
Nj −

(
yj − 1

)]
αjtj

×
∑

Ω(n)

p
(
xi,yj − 1, zk

)
+

mK∑

k=1

[Sk + (zk − 1)]βktk

×
∑

Ω(n)

p
(
xi,yj , zk − 1

)



Mathematical Problems in Engineering 7

=
mI∑

i=1

AitiP(n − ti) +
mJ∑

j=1

αjtj
∑

Ω(n)

[
Nj −

(
yj − 1

)] p
(
xi,yj − 1, zk

)
∑

Ω(n) p
(
xi,yj − 1, zk

)

×
∑

Ω(n)

p
(
xi,yj − 1, zk

)
+

mK∑

k=1

βktk
∑

Ω(n)

[Sk + (zk − 1)]

× p
(
xi,yj , zk − 1

)
∑

Ω(n) p
(
xi,yj , zk − 1

)
∑

Ω(n)

p
(
xi,yj , zk − 1

)
,

(2.14)

where P(n − tc) = 0, if n < tc, and the value P(0) ensues from the normative condition∑V
n=0 P(n) = 1.

In (2.14) the sums

∑

Ω(n)

[
yj − 1

] p
(
xi,yj − 1, zk

)
∑

Ω(n) p
(
xi,yj − 1, zk

) = yj − 1, (2.15)

∑

Ω(n)

[zk − 1]
p
(
xi,yj , zk − 1

)
∑

Ω(n) p
(
xi,yj , zk − 1

) = zk − 1 (2.16)

determine the value of the average number yj − 1, zk − 1 of calls of class j and k in occupancy
states (macrostates) n − tj and n − tk, respectively. In order to determine the relationship
between the number of serviced calls of particular traffic classes and the macrostate (for
which the average values yj − 1 and zk − 1 are determined), in the subsequent part of the
paper we have adopted the following notations:

yj − 1 = rj
(
n − tj

)
,

zk − 1 = rk(n − tk).
(2.17)

Taking into consideration (2.15) and (2.16), we can rewrite (2.14) in the following way:

nP(n) =
mI∑

i=1

AitiP(n − ti) +
mJ∑

j=1

αjtj
[
Nj −

(
yj − 1

)]
P
(
n − tj

)

+
mK∑

k=1

βktk
[
Sk +

(
zk − 1

)]
P(n − tk)

=
mI∑

i=1

AitiP(n − ti) +
mJ∑

j=1

αjtj
[
Nj − rj

(
n − tj

)]
P
(
n − tj

)

+
mK∑

k=1

βktk[Sk + rk(n − tk)]P(n − tk).

(2.18)
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n − 2

A1(n − 1)t1

A2(n − 1)t2A2(n − 2)t2

A1(n − 2)t1 A1(n)t1 A1(n + 1

n + 2

)t1

r1(n − 1
n n− 1

)t1 r 1(n)t1 r1(n + 2)t1r1(n + 1
n + 1

)t1

r 2(n + 1)t2 r 2(n + 2)t2

Figure 3: A fragment of the one-dimensional Markov process in the full-availability group with multirate
traffic, servicing two call streams (m = 1, t1 = 1 BBU, t2 = 3 BBUs).

In (2.18) the value of Engset traffic of class j and Pascal traffic of class k depends on the
occupancy state of the system. Let us introduce the following notation for the offered traffic
intensity in appropriate occupancy states of the group:

Ai(n) = Ai, (2.19)

Aj(n) = αj

[
Nj −

(
rj(n)

)]
, (2.20)

Ak(n) = βk[Sk + (rk(n))]. (2.21)

Formula (2.18) can be now finally rewritten to the following form:

nP(n) =
mI∑

i=1

Ai(n − ti)tiP(n − ti) +
mJ∑

j=1

Aj

(
n − tj

)
tjP
(
n − tj

)

+
mK∑

k=1

Ak(n − tk)tkP(n − tk)

=
m∑

c=1

Ac(n − tc)tcP(n − tc).

(2.22)

3. Modelling the Full-Availability Group

3.1. Average Number of Serviced Calls of Class c in State n

In order to determine the average number of calls serviced in particular states of the system,
let us consider a fragment of the one-dimensional Markov chain presented in Figure 3
and corresponding to the recurrent determination of the occupancy distribution in the full-
availability group on the basis of (2.22). The diagram presented in Figure 3 shows the service
process in the group with two call streams (m = 2, t1 = 1 BBU, t2 = 3 BBUs).

Let us notice that each state of the Markov process in the full-availability group
(Figure 3) fulfils the following equilibrium equation:

P(n)

[
m∑

c=1

Ac(n)tc +
m∑

c=1

tcrc(n)

]
=

m∑

c=1

Ac(n − tc)tcP(n − tc) +
m∑

c=1

tcrc(n + tc)P(n + tc), (3.1)
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where rc(n) is the average number of calls of a given class being serviced in state n. From
(3.1) it results that the sum of all service streams outgoing from state n towards lower states
is equal to n:

n =
m∑

c=1

tcrc(n). (3.2)

On the basis of (2.22) and (3.2), Formula (3.1) can be rewritten in the following form:

m∑

c=1

Ac(n)tcP(n) =
m∑

c=1

tcrc(n + tc)P(n + tc). (3.3)

Equation (3.3) is a balance equation between the total stream of calls outgoing from state n
and the total service stream coming in to state n. This equation is fulfilled only when the local
equilibrium equations for streams of particular traffic classes are fulfilled:

Ac(n)tcP(n) = tcrc(n + tc)P(n + tc). (3.4)

On the basis of (3.4), the average number of calls of class c in state n + tc of the group may be
finally expressed in the following way:

rc(n + tc) =

⎧
⎪⎨

⎪⎩

Ac(n)
P(n)

P(n + tc)
, for n + tc ≤ V,

0, for n + tc > V.

(3.5)

3.2. MIM-BPP Method

Let us notice that, in order to determine the parameter rc(n), it is necessary to determine
first the occupancy distribution P(n). Simultaneously, in order to determine the occupancy
distribution P(n), it is also necessary to determine the value rc(n). This means that (2.22)
and (3.5) form a set of confounding equations that can be solved with the help of iterative
methods [32]. Let P (l)(n) denote the occupancy distribution determined in step l, and let
r
(l)
c (n) denote the average number of serviced calls of class c, determined in step l. In order

to determine the initial value of the parameter r
(0)
c (n), it is assumed, according to [32], that

the traffic intensities of Engset and Pascal classes do not depend on the state of the system
and are equal to the traffic intensity offered by all free Engset sources of class j and Pascal
sources of class k, respectively: A(0)

j (n) = Aj = Njαj , A
(0)
k
(n) = Ak = Skβk. When we have

the initial values of offered traffic, in the subsequent steps, we are in a position to determine
the occupancy distribution, taking into account the dependence of the arrival process on the
state of the system. The iteration process finishes when the assumed accuracy is obtained.

On the basis of the reasoning presented above, in [32] the MIM-BPP method for a
determination of the occupancy distribution, blocking probability, and the loss probability
in the full-availability group with BPP traffic is proposed. The MIM-BPP method can be
presented in the form of the following algorithm.
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Algorithm 3.1 (MIM-BPP method). Consider the following steps.

(1) Determination of the value of Erlang traffic Ai of class i on the basis of (2.3).

(2) Setting the iteration step: l = 0.

(3) Determination of initial values of the number r(l)j (n) of Engset serviced calls of class

j and the number r(l)
k
(n) of Pascal serviced calls of class k:

∀0≤n≤V
(
∀1≤j≤mJ r

(l)
j (n) = 0, ∀1≤k≤mKr

(l)
k (n) = 0

)
. (3.6)

(4) Increase in each iteration step: l = l + 1.

(5) Determination of the value of Engset traffic A
(l)
j (n) of class j and Pascal traffic

A
(l)
k
(n) of class k on the basis of (2.20) and (2.21):

A
(l)
j (n) = αj

[
Nj −

(
r
(l−1)
j (n)

)]
,

A
(l)
k (n) = βk

[
Sk +

(
r
(l−1)
k (n)

)]
.

(3.7)

(6) Determination of the state probabilities P (l)(n) on the basis of (2.22):

nP (l)(n) =
mI∑

i=1

AitiP
(l)(n − ti) +

mJ∑

j=1

A
(l)
j

(
n − tj

)
tjP

(l)(n − tj
)

+
mK∑

k=1

A
(l)
k (n − tk)tkP (l)(n − tk).

(3.8)

(7) Determination of the average number of serviced calls r(l)j (n) and r
(l)
k (n) on the basis

of (3.5):

r
(l)
c (n) =

⎧
⎪⎨

⎪⎩

A
(l)
c (n − tc)

P (l)(n − tc)
P (l)(n)

for 0 ≤ n ≤ V,

0 otherwise.
(3.9)

(8) Repetition of steps (3)–(6) until predefined accuracy ε of the iterative process is
achieved:

∀0≤n≤V

⎛

⎝

∣∣∣∣∣∣

r
(l−1)
j (n) − r

(l)
j (n)

r
(l)
j (n)

∣∣∣∣∣∣
≤ ε,

∣∣∣∣∣∣

r
(l−1)
k (n) − r

(l)
k (n)

r
(l)
k (n)

∣∣∣∣∣∣
≤ ε

⎞

⎠. (3.10)
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(9) Determination of the blocking probability Ec for calls of class c and the loss
probability Bi for Erlang calls of class i, Bj for Engset calls of class j, and Bk for
Pascal calls of class k,

Ec =
V∑

n=V−tc+1

P (l)(n),

Bi = Ei,

Bj =

∑V
n=V−tj+1 P

(l)(n)
[
Nj − r

(l)
j (n)

]
Λj

∑V
n=0 P

(l)(n)
[
Nj − r

(l)
j (n)

]
Λj

,

Bk =

∑V
n=V−tk+1 P

(l)(n)
[
Sk + r

(l)
k (n)

]
γk

∑V
n=0 P(n)

[
Sk + r

(l)
k (n)

]
γk

.

(3.11)

3.3. Convergence of the Iterative Process of Estimation of
the Average Number of Serviced Engset Calls

In this section we prove that the process for a determination of the average number of
serviced traffic sources proposed in the MIM-BPP method is, in the case of multiservice
Engset sources, a convergent process. Thus, the following theorem needs to be proved.

Theorem 3.2. The sequence (r(l)j (n))∞l=0 of the average number of serviced class j Engset calls in the
system with BPP traffic, where

r
(l)
j (n) =

[
Nj − r

(l−1)
j

(
n − tj

)]
αjP

(l−1)(n − tj
)

P (l−1)(n)
, (3.12)

r
(0)
j (n) = 0 for ∀1≤j≤mJ , ∀0≤n≤V , (3.13)

is convergent.

Proof. In order to prove Theorem 3.2, we are going to show first that each succeeding element
of sequence (3.12), starting from the first one, could be represented by finite series:

r
(l)
j (n) =

l∑

s=1

(−1)s+1Njα
s
j

s∏

i=1

P (l−i)(n − itj
)

P (l−i)(n − (i − 1)tj
) . (3.14)

Since r
(0)
j (n − tj) = 0, then on the basis of (3.12) for l = 1

r
(1)
j (n) = Njαj

P (0)(n − tj
)

P (0)(n)
. (3.15)
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Now, using (3.15), we can determine the value r
(2)
j (n) for l = 2 on the basis of (3.12):

r
(2)
j (n) =

[
Nj −NjαjP

(0)(n − 2tj
)
/P (0)(n − tj

)]
αjP

(1)(n − tj
)

P (1)(n)
. (3.16)

Rearranging (3.16), we can present it in the following way:

r
(2)
j (n) = Njαj

P (1)(n − tj
)

P (1)(n)
−Njα

2
j

P (0)(n − 2tj
)
P (1)(n − tj

)

P (0)
(
n − tj

)
P (1)(n)

. (3.17)

Proceeding in an analogical way for l = 3, we obtain

r
(3)
j (n) = Njαj

P (2)(n − tj
)

P (2)(n)

−Njα
2
j

P (1)(n − 2tj
)
P (2)(n − tj

)

P (1)
(
n − tj

)
P (2)(n)

+Njα
3
j

P (0)(n − 3tj
)
P (1)(n − 2tj

)
P (2)(n − tj

)

P (0)
(
n − 2tj

)
P (1)
(
n − tj

)
P (2)(n)

.

(3.18)

Generalizing, the value of succeeding element of sequence (r(l)j (n)) in step l can be expressed
by (3.14). Now, setting the limit to infinity (l → ∞), we have

lim
l→∞

r
(l)
j (n) =

∞∑

s=1

(−1)s+1Njα
s
j

s∏

i=1

P (l−i)(n − itj
)

P (l−i)(n − (i − 1)tj
) . (3.19)

Regardless of the iteration step, for every n < 0, the probability that system is in a state
n is equal to 0 (i.e., P (l)(n) = 0). Thus, we can rewrite (3.19) in the following way:

lim
l→∞

r
(l)
j (n) =

�n/tj�∑

s=1

(−1)s+1Njα
s
j

s∏

i=1

P (l−i)(n − itj
)

P (l−i)(n − (i − 1)tj
) . (3.20)

A series appearing on the right side of (3.20) is finite; therefore, there exists a finite limit of
sequence (r(l)j (n))∞l=0, which was to be proved.

3.4. Convergence of the Iterative Process of Estimation of
the Average Number of Serviced Pascal Calls

Let us demonstrate now that the process of a determination of the average number of serviced
traffic sources proposed in the MIM-BPP method is a convergent process also in the case of
multiservice Pascal sources. The following theorem will be then proved.
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Theorem 3.3. The sequence (r(l)k (n))∞l=0 of the average number of serviced class k Pascal sources in
the system with BPP traffic, where

r
(l)
k (n) =

[
Sk + r

(l−1)
k (n − tk)

]
βkP

(l−1)(n − tk)

P (l−1)(n)
, (3.21)

r
(0)
k (n) = 0 for ∀1≤k≤mJ , ∀0≤n≤V , (3.22)

is convergent.

Proof. Proceeding in the analogical way as we did in the case of sequence (3.12), we can prove
that the elements of sequence (r(l)

k
(n))∞l=0 can be expressed by the following expression:

r
(l)
k (n) =

l∑

j=1

Skβ
j

k

j∏

i=1

P (l−i)(n − itk)
P (l−i)(n − (i − 1)tk)

. (3.23)

Therefore, in order to show that sequence (r(l)k (n))∞l=0 is convergent, we only need to
prove that for l → ∞ the series

l∑

j=1

Skβ
j

k

j∏

i=1

P (l−i)(n − itk)
P (l−i)(n − (i − 1)tk)

(3.24)

is convergent.
Consider the elements of series (3.24):

bj = Skβ
j

k

j∏

i=1

P (l−i)(n − itk)
P (l−i)(n − (i − 1)tk)

. (3.25)

The elements of series (bj)
∞
j=1 are positive, which means that we can use the ratio test

(d’Alembert criterium) for convergence to prove that series is convergent (if in series
∑∞

n=1 un

with positive terms beginning from certain place N (this means for all n ≥ N), then the ratio
of arbitrary term un+1 to previous term un is permanently less than number p less than 1; i.e,
if un+1/un ≤ p < 1 for all n ≥ N, then series

∑∞
n=1 un is convergent [33]). The ratio of two

consecutive elements of sequence (bj)
∞
j=1 is equal to

bj+1

bj
= βk

P (l−(j+1))(n − (j + 1
)
tk
)

P (l−(j+1))
(
n − jtk

) . (3.26)

For j → ∞ numerator and denominator of (3.26) converge to 0. Note also that the numerator
converges to 0 faster than the denominator. Hence, limj→∞(bj+1/bj) is equal to 0, that is,
is permanently less than 1. Therefore, by virtue of the ratio test (d’Alembert criterium) for
convergence series (3.24) is convergent. Thus, sequence (3.21) is convergent as well.
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3.5. Advantages and Possible Applications of MIM-BPP Method

The presented iterative algorithm for systems with state-independent admission process (i.e.,
the full-availability group) makes it possible to determine exactly the occupancy distribution
and the blocking and loss probabilities in systems that service Erlang (Poisson distribution
of call streams), Engset (binomial distribution of call streams), and Pascal traffic streams
(negative binomial distribution of call stream). The call stream of the types investigated in
the paper are typical streams to be considered in traffic theory. They are used for modelling
at the call level, where any occupancy of resources of the system, for example, effected by a
telephone conversation or by a packet stream with characteristics defined at the packet level,
can be treated as a call [11]. In the case of the Integrated Services Digital Networks, resource
occupancies were in the main related to voice transmission, whereas nowadays a call is
understood to be a packet stream to which appropriate equivalent bandwidth is assigned [34–
36], and then the demanded resources, as well as the capacity of the system, are discretized
[7]. In the case of wired systems, the most important is the Poisson stream and the consequent
Erlang traffic stream. This stream assumes stable intensity of generating calls, independent
of the number of calls that are already being serviced. In the case of wireless systems, it
was soon noticed that, because of the limited number of subscribers serviced within a given
area, the application of the Erlang model for certain traffic classes could lead to erroneous
estimation of the occupancy distribution. Hence, for certain traffic classes, the application of
the Engset model was proposed, initially for single-service (single-rate) systems and then for
multiservice (multirate) systems [3, 4]. In general, the Engset distribution is used to model
systems with noticeable limitation of the number of users. Currently, the main practical scope
for the usage of the Pascal distribution is a simplified modelling of systems with overflow
traffic [11]. The presented algorithm makes it then possible to determine traffic characteristics
for all three call (traffic) streams considered in traffic theory.

The application of the notion of the basic bandwidth unit (BBU) used in the notation
of the presented method makes it possible to obtain high universality for the method. BBU
is determined as the highest common divisor of all demands that are offered to the system.
Depending on a system under consideration, the basic bandwidth unit can be expressed in
bits per second or as the percentage of the occupancy of the radio interface (the so-called
interference load) [4, 37]. In the presented method for modelling multirate systems with
BPP traffic streams, both required resources and the capacity of the system are expressed as
the multiplicity of BBU. The method can be thus applied to model both wired broadband
integrated services networks as well as wireless networks (UMTS/WCDMA networks in
particular).

The algorithm worked out for modelling systems with BPP traffic can be treated as
an extension to the Kaufman-Roberts model [24, 25] that has been worked out for systems
with Poisson traffic streams only. Both the algorithm proposed by Kaufman-Roberts and the
algorithm presented in the paper are exact algorithms. Having an exact formula as a base,
the algorithm can be extended—analogously as in the case of the Kaufman-Roberts formula
for systems with Erlang traffic—into systems with state-dependent call admission process
and BPP traffic. In the case of communication system, state dependence in the call admission
process results mainly from the introduction of the control policy in allocating resources for
calls of individual traffic classes (reservation mechanism [32], threshold mechanism [38]) or
a particular structure of the system (e.g., a limited-availability group [5]). An extension of
the scope in which the presented algorithm can be applied, including systems with state-
dependent call admission process, entails only the introduction of the additional transition
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Table 1: Relative errors of the number of busy class 3 sources in relation to the number of iterations.

a
The step of iteration

2 3 5 7

0.3 3.17E − 02 7.17E − 04 2.97E − 07 1.11E − 10
0.4 2.89E − 02 3.51E − 04 1.65E − 07 7.68E − 11
0.5 3.43E − 02 4.86E − 04 1.18E − 07 8.06E − 11
0.6 3.97E − 02 6.36E − 04 1.93E − 07 1.09E − 10
0.7 4.52E − 02 8.02E − 04 2.95E − 07 1.42E − 10
0.8 5.06E − 02 9.87E − 04 4.29E − 07 2.37E − 10
0.9 5.59E − 02 1.19E − 03 5.98E − 07 3.75E − 10
1.0 6.11E − 02 1.41E − 03 8.14E − 07 5.68E − 10
1.1 6.62E − 02 1.64E − 03 1.08E − 06 8.33E − 10
1.2 7.12E − 02 1.89E − 03 1.40E − 06 1.20E − 09

coefficient [32], without further changes, depending on the considered system. It should
be stressed that such a universality cannot be achieved by the convolution algorithm also
worked out for systems with state-independent call admission process only.

3.6. Numerical Examples

The paper introduces a formula that makes it possible to determine exactly the occupancy dis-
tribution in systems with state-independent call admission process. It is then demonstrated
that the algorithm for a determination of the average number of serviced traffic sources of
particular classes used in the MIM-BPP method is convergent.

In order to present the convergence of the MIM-BPP method (the number of required
iterations), in Table 1 the results of relative errors of the number of busy class 3 sources in the
full-availability group with the capacity equal to 80 BBUs are contained (with the instance
of calls of class 1 and 2, the number of required iterations is lower than in the case of the
presented results for class 3). The results are presented depending on the average value
of traffic offered to a single bandwidth unit of the group: a = (

∑mI

i=1 Aiti +
∑mJ

j=1 Njαjtj +∑mK

k=1 Skβktk)/V . The group was offered three traffic classes, that is, Erlang traffic class: t1 =
1 BBU, Engset traffic class: t2 = 4 BBUs, N2 = 60, and Pascal traffic class: t3 = 10 BBUs, S3 = 80.
The results presented in Table 1 indicate that the proposed iterative method converges very
quickly.

In this section we limit ourselves to just presenting the results of the convergence of
the presented algorithm for one selected system. A comparison of the analytical results for
the blocking/loss probability with the results of the simulation is presented in earlier works,
for example, [4, 32], in which it was still assumed that the presented analytical method was
an approximate method.

4. Conclusion

In the paper recurrent equations describing—at the macrostate level—the service process in
the full-availability group with multirate BPP traffic were derived. The derived equations
made it possible to formulate an exact iterative algorithm for determining the occupancy
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distribution, blocking probability, and loss probability of calls of particular classes offered to
the system. The convergence of the proposed process of estimating the average number of
busy sources of Engset and Pascal traffic was proved.
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The problem of exponential stabilization for nonholonomic mobile robot with dependent
stochastic disturbance of heading angle is considered in this paper. An integrator backstepping
controller based on state-scaling method is designed such that the state of the closed-loop system,
starting from a nonzero initial heading angle, is regulated to the origin with exponential rate in
almost surely sense. For zero initial heading angle, a controller is designed such that the heading
angle is driven away from zero while the position variables are bounded in a neighborhood of
the origin. Combing the above two cases results in a switching controller such that for any initial
condition the configuration of the robot can be regulated to the origin with exponential rate. The
efficiency of the proposed method is demonstrated by a detailed simulation.

1. Introduction

In the past decades, there has been increasing attention devoted to the control of
nonholonomic systems such as knife edge, rolling disk, tricycle-type robot, and car-like robot
with trailers (see, [1, 2] and the references therein). From Brockett’s necessary condition [3],
it is well known that the nonholonomic systems cannot be stabilized to the origin by any
static continuous state feedback, so the classical smooth control theory cannot be applied
directly. This motivates researchers to seek for novel approaches such as discontinuous
feedback and time-varying feedback. The discontinuous feedback uses the state-scaling
technique and switching control strategy [4, 5], which usually results in an exponential
convergence. The time-varying feedback provides smooth controllers, but its convergence
rate usually is slow [6, 7]. All the above references considered the nonholonomic systems
in the deterministic case, while the nonholonomic systems with stochastic disturbance have
rarely been researched up to now.
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The purpose of this paper is to consider the posture (including position and direction)
adjustment of nonholonomic mobile robot with stochastic disturbance dependent of heading
angle. By a state transformation, the mentioned control model can be rewritten as

dx1 = vdt + ϕ1dW1,

dx2 = x3vdt + x3ϕ1dW1,

dx3 = (u − x2v)dt + ϕ2dW2 − x2ϕ1dW1,

(1.1)

where u is the forward velocity, v is the steering velocity, ϕ1 and ϕ2 are two smooth
functions, and W1 and W2 are two independent standard Wiener processes. It seems that the
stabilization can be achieved by extending the backstepping procedure based on state-scaling
technique [5] to the stochastic case.

Our main contribution consists of the following aspects. (i) For nonzero initial value
of x1, by imposing a reasonable assumption on function ϕ1, the state x1 can be easily
exponentially regulated to zero via control v. However, in doing so, v will converge to zero
as t goes to infinity. This phenomenon causes serious trouble in controlling x2-subsystem via
the virtual control x3 because, in the limit (limt→∞v = 0, a.s.), x2-subsystem is uncontrollable.
The variable x3 appears in the drift term x3v and the diffusion term x3ϕ1 of x2-subsystem
simultaneously. This leads to a new problem that the desirable control α and its square term
α2 appear in the same procedure of backstepping control (see, (4.11)), which is distinct from
the traditional stochastic backstepping method as used in [8]. (ii) For a nonzero x1(t0), the
transformation z1 = x2/x1 is used in controller design, therefore, it cannot work for systems
with initial state whose x1(t0) = 0, which motivates us to drive x1 away from zero in a
small distance during a shorter time interval by designing v. (iii) For any initial condition,
a switching control is given by combining the above two cases. Different from the usual
switching schemes depending only on state, our switching controller depends on a stopping
time as well as state. Therefore, the measurement of the stopping time is expected. It is
proved that all signals in the closed-loop system converge to zeros with exponential rate.
The discontinuous switching function is replaced with a continuous one to eliminate the
trembling phenomenon in simulation.

This paper is organized as follows. Section 2 begins with some mathematical
preliminaries. The model of a wheeled mobile robot with stochastic disturbance is presented
in Section 3. Backstepping stabilizer based on state-scaling technique is investigated for the
case of x1(t0)/= 0 in Section 4. In Section 5, for the case of x1(t0) = 0, a controller is designed
such that there exists a time interval in which x1 is driven away from zero and the other
signals are bounded in probability. Section 6 formulates the main stabilization results for any
initial condition. A simulation is given in Section 7. Finally, Section 8 draws the conclusion.

The following notations are used throughout the paper: Ci denotes the set of all
functions with continuous ith partial derivative; for any vector x in R

n, |x| means its
Euclidean norm and xT is its transpose; for any Matrix X in Rm×n, |X| denotes the Frobenius
norm defined by |X| = (Tr{XXT})1/2, where Tr(·) denotes the matrix trace;K denotes the set
of all functions: R+ → R+, which are continuous, strictly increasing and vanish at zero;K∞
denotes the set of all functions which are of classK and unbounded.
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2. Mathematical Preliminaries

Consider the nonlinear stochastic system

dx = f(x, t)dt + g(x, t)dW, x(t0) = x0 ∈ R
n, (2.1)

where x ∈ R
n is the state, f(0, t) = 0, g(0, t) = 0, and W is an r-dimensional independent

standard Wiener process.
The following notion of boundedness on an interval in probability can be seen as a

slight extension from that used in [9].

Definition 2.1. A stochastic process x(t) is said to be bounded on t ∈ [t0, T], where T ≤ ∞, in
probability if the random variable |x(t)| satisfies

lim
R→∞

sup
t∈[t0,T]

P{|x(t)| > R} = 0. (2.2)

For this notion, a corresponding criterion can be easily obtained following the line of
[10].

Lemma 2.2. Consider system (2.1) defined in [t0, T], where T ≤ ∞. Assume that there exist a
function V ∈ C2, class K∞ functions α(|x|) and α(|x|), a positive constant c, and a nonnegative
constant d such that for all x0 ∈ R

n, (i) α(|x|) ≤ V (x) ≤ α(|x|), and (ii) LV (x) = Vx(x)f(x, t) +
(1/2)Tr[gT (x, t)Vxxg(x, t)] ≤ −cV (x) + d, for all t ∈ [t0, T], then system (2.1) has a unique
solution on [t0, T], which is bounded on t ∈ [t0, T] in probability.

To find condition to let state scaling make sense, the following lemma proved by Mao
in [11, pages 51, 120] is recited as follows.

Lemma 2.3. For system (2.1) defined on t ∈ [t0, T], where T ≤ ∞, assume that there exist two
constants K1 and K2 such that

(i) (lipschitz condition) for all x, y ∈ R
n and t ∈ [t0, T]

∣∣f(x, t) − f(y, t)∣∣2 ∨ ∣∣g(x, t) − g(y, t)∣∣2 ≤ K1
∣∣x − y∣∣2; (2.3)

(ii) (Linear growth condition) for all (x, t) ∈ R
n × [t0, T]

∣∣f(x, t)
∣∣2 ∨ ∣∣g(x, t)∣∣2 ≤ K2

(
1 + |x|2

)
, (2.4)

then there exists a unique solution x(t) := x(t0, x0, t) to system (2.1) and for all x0 /= 0 in
R

n,

P(x(t, t0, x0)/= 0) = 1, ∀T ≥ t ≥ t0 (2.5)

(i.e., almost all the sample path of any solution starting from a nonzero state will never
reach the origin).
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The concepts of moment exponential stability and almost surely exponential stability
together with their criteria can be found in [12, page 166], which are presented here for self-
sufficiency.

Definition 2.4. For p > 0, system (2.1) is said to be pth moment exponential stable if

lim sup
t→∞

1
t

logE|x(t, t0, x0)|p < 0 (2.6)

for each x0 ∈ R
n. Moreover, system (2.1) is said to be almost surely exponential stable if

lim sup
t→∞

1
t

log|x(t, t0, x0)| < 0, a.s., ∀x0 ∈ R
n. (2.7)

Lemma 2.5. Assume that there exist a function V ∈ C2 and positive constants c1, c2, c and p such
that (i) c1|x|p ≤ V(x) ≤ c2|x|p, and (ii) LV (x) ≤ −cV (x), for all x0 ∈ R

n and t ≥ t0, then system
(2.1) has a unique solution on [t0,∞), which is pth moment exponential stable. Moreover, if further
assume that (iii) there exists a positive constant K such that

∣∣f(x, t)
∣∣ ∨ ∣∣g(x, t)∣∣ ≤ K|x| (2.8)

for all (x, t) ∈ R
n × [t0,∞), then system (2.1) is almost surely exponential stable.

3. Problem Formulation

A nonholonomic mobile robot of tricycle type in the presence of stochastic disturbance can
be described by

dθ = vdt + ϕ1(θ)dW1,

dxc =
(
udt + ϕ2(θ)dW2

)
cos θ,

dyc =
(
udt + ϕ2(θ)dW2

)
sin θ,

(3.1)

where u is the forward velocity, v is the steering velocity, (xc, yc) is the position of the mass
center of the robot moving in the plane, θ is the heading angle from the horizontal axis, W1

and W2 are two independent standard Wiener processes, and ϕ1 and ϕ2 are two unknown
scaler-valued smooth functions. A tricycle-type robot is described by Figure 1.

Performing the change of coordinate

x1 = θ, x2 = xc sin θ − yc cos θ, x3 = xc cos θ + yc sin θ, (3.2)

system (3.1) can be transformed into system (1.1). The control objective is to design a
state-feedback controller such that all the signals in the closed-loop system are globally
exponentially regulated to the origin in probability. For this end, the following assumptions
are imposed throughout this paper.
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Figure 1: A nonholonomic mobile robot.

(A1) There exists a positive constant k such that

∣∣ϕ1(x1) − ϕ1(x2)
∣∣ ≤ k|x1 − x2|, ϕ1(0) = 0. (3.3)

(A2) There exist a positive constant l and a smooth nonnegative function φ such that

ϕ2
2(x1) ≤ lx2

1φ(x1). (3.4)

Remark 3.1. System (1.1) is similar to the class of systems in strict-feedback form driven by
Wiener processes, which motivates us to investigate the backstepping controller design that
had been extensively researched by [8, 13]. Assumptions (A1) and (A2) are given to diffusion
terms as same as those imposed to drift terms in [5] in the deterministic case. For nonzero
initial value of x1, by imposing (A1) on function ϕ1, the state x1 can be regulated to zero with
exponential rate but never reach zero (see the subsequent subsection), which is the key to
introduce a state-scaling transformation to deal with other troubles (see Section 1).

4. Controller Design for the Case of x1(t0)/= 0

4.1. Design of Controller v

It can be seen that the state x1 of system (1.1) can be globally exponentially regulated to zero
via a static feedback control law. In fact, we can introduce a Lyapunov function

V0 =
1
4
x4

1 (4.1)
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whose infinite generator along the first equation of (1.1) satisfies

LV0 ≤ x3
1v +

3
2
x4

1k
2. (4.2)

By choosing the control law v as

v = −λx1, (4.3)

where λ ≥ 2k2 is a positive parameter (further requirements for λ will be given later), (4.2)
becomes

LV0 ≤ −λV0. (4.4)

By substituting (4.3) into the first equation of (1.1), one has

dx1 = −λx1dt + ϕ1dW1, (4.5)

which, together with assumption (A1) and Lemma 2.3, means that there exists a unique
solution to (4.5) and that any solution starting from a nonzero state will never reach the origin
in almost surely sense. From assumption (A1), (4.1) and (4.4), according to Lemma 2.3, the
solution exponentially converges to zero, that is, lim supt→∞(1/t) log |x1(t)| < −λ, a.s., which
means that

|x1(t)| < |x1(t0)|e−λ(t−t0), a.s. (4.6)

4.2. State-Scaling Transformation

We have designed controller v such that state x1(t) can be globally exponentially regulated to
zero. Consequently, v will converge to zero as t goes to∞. This causes trouble in the control
of x2-subsystem and x3-subsystem. To overcome this difficulty, we introduce a state-scaling
transformation defined by

z1 =
x2

x1
. (4.7)

According to the comment in the end of Section 1, the transformation (4.7) makes sense in
almost surely sense, for the initial value x1(t0)/= 0. From (1.1), (4.3), and (4.7), we have

dz1 =

[
λz1 − λx3 −

(
ϕ1

x1

)2

x3 +
(
ϕ1

x1

)2

z1

]
dt +

[(
ϕ1

x1

)
x3 −

(
ϕ1

x1

)
z1

]
dW1. (4.8)

4.3. Backstepping Controller Design of u

In this part, controller u will be constructed, based on backstepping techniques, under the
assumption x1(t0)/= 0.
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Step 1. Begin with z1-subsystem of (4.8), where x3 is regarded as a virtual control. Introducing
the transformation

z2 = x3 − α (4.9)

and choosing Lyapunov function

V1 = V0 +
1
4
z4

1, (4.10)

it comes from (4.8)–(4.10) that

LV1 = z3
1

[
λz1 − λ(z2 + α) −

(
ϕ1

x1

)2

(z2 + α) +
(
ϕ1

x1

)2

z1

]

+ 3z2
1

(
ϕ1

x1

)2

(z2 + α)2 + 3z4
1

(
ϕ1

x1

)2

+LV0.
(4.11)

Here, the terms α and α2 appear in the same time, which is different from the traditional
backstepping procedure. Considering assumption (A1) and the characters of terms of (4.11),
the virtual control is chosen as

α = c1z1, (4.12)

where c1 > 0 is a design parameter. By the aid of (4.4), (4.12), and (ϕ1/x1)
2 ≤ k2 (that comes

from assumption (A1)), (4.11) can be rewritten as

LV1 ≤ λz4
1 − λz3

1z2 − c1λz
4
1 + k2

∣∣∣z3
1

∣∣∣|z2|c1k
2z4

1

+ k2z4
1 + 6k2z2

1z
2
2 + 6c2

1k
2z4

1 + 3k2z4
1 − λ

x4
1

4
.

(4.13)

Submitting the inequalities

−λz3
1z2 ≤ 3d

4
λz4

1 +
1

4d3
λz4

2, k2z3
1|z2| ≤ 3

4
k2z4

1 +
1
4
k2z4

2,

6k2z2
1z

2
2 ≤ 3k2z4

1 + 3k2z4
2,

(4.14)

where d > 0 is a design parameter, into (4.13) gives

LV1 ≤
((

1 +
3d
4

)
λ − c1λ +

(
31
4

+ c1 + 6c2
1

)
k2
)
z4

1 +

(
λ

4d3
+
k2

4
+ 3k2

)
z2

4 − λ

4
x4

1.

(4.15)
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By selecting parameters λ and c1 such that c1 ≥ (4+ 3d)/4e, λ ≥ (31+ 4c1 + 24c2
1)k

2/2c1(1− e),
where e is a design parameter satisfying 0 < e < 1, it comes from (4.15) that

LV1 ≤ −c1λ(1 − e)
2

z4
1 +

(
λ

4d3
+

13k2

4

)
z2

4 − λ

4
x4

1. (4.16)

Step 2. In view of (1.1) and (4.9), we have

dz2 =

[
u − x2v − c1λz1 + c1λx3 + c1

(
ϕ1

x1

)2

x3 − c1

(
ϕ1

x1

)2

z1

]
dt

+ ϕ2dW2 +
[
−x2ϕ1 − c1

(
ϕ1

x1

)
x3 + c1

(
ϕ1

x1

)
z1

]
dW1.

(4.17)

Consider the candidate Lyapunov function

V2 = V1 +
1
4
z4

2 (4.18)

whose infinite generator along (4.17) satisfies

LV2≤ z3
2

[
u − x2v − c1λz1 + c1λx3 + c1

(
ϕ1

x1

)2

x3 − c1

(
ϕ1

x1

)2

z1

]
+

3
2
z2

2ϕ2
2

+
9
2
z2

2
(
x2ϕ1

)2 +
9
2
z2

2(c1)2
(
ϕ1

x1

)2

x2
3 +

9
2
z2

2(c1)2
(
ϕ1

x1

)2

z2
1 +LV1.

(4.19)

By using Young’s equality and (A1), (A2), (4.7), and (4.9), it is easy to obtain that

3
2
z2

2ϕ
2
2 ≤

3
4
l2z4

2φ
2(x1) +

3
4
l2x4

1,

9
2
z2

2
(
x2ϕ1

)2 ≤ 9
4
k2z4

2x
8
1 +

9
4
k2z4

1,

9
2
z2

2(c1)2
(
ϕ1

x1

)2

x2
3 ≤ 9c2

1k
2z4

2 +
9
2
c4

1k
2z4

2 +
9
2
c4

1k
2z4

1,

9
2
z2

2(c1)2
(
ϕ1

x1

)2

z2
1 ≤

9
4
c2

1k
2z4

2 +
9
4
c2

1k
2z4

1,

(4.20)
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which are submitted into (4.19) to give

LV2 ≤ z3
2

[
u − x2v − c1λz1 + c1λx3 + c1

(
ϕ1

x1

)2

x3 − c1

(
ϕ1

x1

)2

z1 +
3
4
l2φ2(x1)z2

+
9
4
k2x8

1z2 + 9c2
1k

2z2 +
9
2
c4

1k
2z2 +

9
4
c2

1k
2z2 +

1
4d3

λz2 +
1
4
k2z2 + 3k2z2

]

+
3
4
l2x4

1 +
(

9
4
k2 +

9
2
c4

1k
2 +

9
4
c2

1k
2 − 1

2
c1λ(1 − e)

)
z4

1 −
λ

4
x4

1.

(4.21)

By giving a further requirement to the parameter λ ≥ max{(9k2+18c4
1k

2+9c2
1k

2)/c1(1−e), 6l2}
and choosing the control

u = u1 + u2, (4.22)

we have

LV2 ≤ −λ8x
4
1 −

1
4
c1λ(1 − e)z4

1 − c2z
4
2 ≤ −cV2, (4.23)

where c = min{λ/2, c1λ(1 − e), 4c2} and

u1 = −c2z2 + x2v − c1λx3 − 3
4
l2φ2(x1)z2

− 9
4
k2x8

1z2 − 9c2
1k

2z2 − 9
4
c4

1k
2z2 − 1

d3
4λz2 − 3k2z2,

u2 = c1λz1 − c1

(
ϕ1

x1

)2

x3 + c1

(
ϕ1

x1

)2

z1 − 9
4
c2

1k
2z2 − 1

4
k2z2.

(4.24)

Summing up all the requirements to λ leads to

λ ≥ max

{
2k2,

31k2 + 4c1k
2 + 24c2

1k
2

2c1(1 − e) ,
9k2 + 18c4

1k
2 + 9c2

1k
2

c1(1 − e) , 6l2
}
. (4.25)

Remark 4.1. It is noteworthy that the terms in control u is separated into two groups. The
terms caused by the state scaling are put in u2, in other words, if the transformation z1 =
x2/x1 is replaced with nonscaling one z1 = x2, the terms in u1 will still remain in u. This will
be used in the subsequent section.

4.4. Stability Analysis

It is position to give stability conclusion for the case of x1(t0)/= 0.
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Theorem 4.2. Under assumptions (A1) and (A2), for every x1(t0)/= 0 and any x2(t0), x3(t0), with
an appropriate choice of the design parameters λ and c1, the closed-loop system consists of (3.1), (3.2),
(4.3), and (4.22) has a unique solution which is 4th moment exponential stable.

Proof. The existence and uniqueness of solution comes from (4.18) and (4.23), according to
Lemma 2.5. It can also be further concluded that

lim sup
t→∞

1
t

logE|zi|4 < 0 (i = 1, 2) (4.26)

for each x0 ∈ R
n. From (4.6), (4.7), and (4.26), we have

lim sup
t→∞

1
t

logE|x2|4 ≤ lim sup
t→∞

1
t

(
log|x1(t)| − 4λ(t − t0)

)
+ lim sup

t→∞

1
t

logE|z1|4 < 0. (4.27)

From (4.6), (4.9), (4.12), and (4.26), we have

lim sup
t→∞

1
t

logE|x3|4 = lim sup
t→∞

1
t

logE|z2 + c1z1|4 < 0. (4.28)

Combining (4.6), (4.27), and (4.28) gives

lim sup
t→∞

1
t

logE|(x1, x2, x3)|4 < 0, (4.29)

which completes the proof.

5. Controller Design to Drive x1 Away from Zero

Considering the transformation z1 = x2/x1, the control u given by (4.22) will escape to infinite
for an initial state with element x1(t0) = 0. The first thing before the controller (4.22) does
work is to drive the state x1(t) away from zero in a small distance denoted by r. For a given
r > 0, define a stopping time τr = inf{t : t ≥ t0, |x1(t)| ≥ r}. To let the state x1 leave zero, the
control v can be chosen as

v = −λ (5.1)

during [t0, τr], where λ is the same design parameter used in (4.25) (some explanation will
be given latter). In this case, the x1-subsystem becomes

dx1(t) = −λdt + ϕ1dW1. (5.2)

By defining τr = inf{t : t ≥ t0, x1(t) ≤ −r}, the expectation of τr satisfies E(τr−t0) ≤ E(τr−t0) =
r/λ, therefore, P(τr − t0 ≥ T) ≤ r/λT , which implies that

P(τr =∞) = 0, ∀r > 0. (5.3)
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The existence and uniqueness of solution of x1-subsystem in [t0, τr] comes from assumption
(A1) and Lemma 2.3. Since during the interval [t0, τr], the controller (4.22) cannot be used. A
new scheme for u is expected to bound the states x2 and x3 in a neighborhood of the origin in
this interval when x1 is being driven away from the origin. Substituting v = −λ into the last
two equations of (1.1) gives

dx2 = −λx3dt + x3ϕ1dW1,

dx3 = (u + λx2)dt + ϕ2dW2 − x2ϕ1dW1.
(5.4)

Since (5.4) is a standard strict-feedback form, viewing x1 as an external bounded input,
backstepping controller can be designed to make the states x2 and x3 to be bounded in
probability in [t0, τr].

Introduce the transformation

z1 = x2, z2 = x3 − α, (5.5)

which implies that

dz1 = −λx3dt + ϕ1x3dW1,

dz2 = (u − x2v + c1λx3)dt + ϕ2dW2 +
(−x2ϕ1 − c1ϕ1x3

)
dW1,

(5.6)

where α = c1z1 is used as in (4.12) with a design parameter c1 > 0. A careful observation
indicates that all the terms in (5.6) have the corresponding terms in (4.8) and (4.17), that is, if
ϕ1/x1 in the latter is replaced with ϕ1, then we can obtain the terms in the former.

In [t0, τr], we have |x1| ≤ r. To design controller u to guarantee the boundedness of x2

and x3, a candidate Lyapunov function is given as follows:

V =
1
4
z4

1 +
1
4
z4

2. (5.7)

Just for simplicity, we will design the controller as consistent as possible with state-
scaling case in the proceeding section. By selecting r ≤ 1, according to assumption (A1),
we can see that in the nonscaling case, we have ϕ2

1 ≤ k2r2 ≤ k2, which is corresponding to
(ϕ1/x1)

2 ≤ k2 used in state-scaling case (4.13). Comparing (5.5)–(5.7) with the corresponding
equalities in the proceeding section, it can be found that, in the nonscaling case, some terms
used in (4.22) (that are included in u2) disappear and the others (that are contained in u1)
have the same forms with the same or milder requirements to the parameters c1 and λ.
Therefore, by choosing

u = u1, (5.8)

we have
LV ≤ 3

4
l2x4

1 −
1
4
c1λ(1 − e)z4

1 − c2z2
4 ≤ −cV + dc, (5.9)

where dc = (3/4)l2r4 and c = min{c1λ(1 − e), 4c2}, which implies that

EV (z(t)) ≤ e−c(t−t0)EV (z(t0)) − dc

c
e−c(t−t0) +

dc

c
, t ∈ [t0, τr]. (5.10)

The stability analysis before τr can be included in the following result.
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Theorem 5.1. Under assumptions (A1) and (A2), for every x1(t0) = 0 and any x2(t0), x3(t0), for any
0 < r ≤ 1, with an appropriate choice of the design parameters λ and c1, the closed-loop system consists
of (3.1), (3.2), (5.1), and (5.8) has a unique solution, and all the signals are bounded in probability in
the interval [t0, τr].

Proof. According to Lemma 2.2, the existence and uniqueness of z1 and z2 in [t0, τr] come
from (5.7) and (5.9). Noting the existence and uniqueness of x1, (4.7), (4.9), and (4.12), the
existence and uniqueness of x2 and x3 can be concluded on [t0, τr]. Following the same line,
the boundedness of xi (i = 1, 2, 3) on t ∈ [t0, τr] can be obtained, which complete the proof.

6. Design of Switching Controller

Since |x1(τr)| = r > 0, at the stochastic moment t = τr , we switch the control laws v and u from
(5.1) and (5.8) to (4.3) and (4.22), respectively. According to Theorem 4.2, the solution of the
closed-loop system converges to the origin with exponential rate on [τr ,∞) for any r > 0. A
switching control scheme on [t0,∞) can be given as

v = −λ(1 + (x1 − 1)s), u = u1 + u2s,

z1 =
x2

1 + (x1 − 1)s
, z2 = x3 − α, α = c1z1,

(6.1)

where the switching signal is defined by

s(t) =

⎧
⎨

⎩
0, t ∈ [0, τr),

1, t ∈ [τr ,∞).
(6.2)

By summing up the above arguments, the main result in this paper can be presented
now.

Theorem 6.1. Under assumptions (A1) and (A2), for x1(t0) = 0 and any x2(t0), x3(t0), with an
appropriate choice of the design parameters λ, c1 and r, the closed-loop system consists of (3.1), (3.2),
and (6.1) has a unique solution on [t0,∞), which is 4th moment exponential stable.

Proof. For any 0 < r ≤ 1, the existence of a.s. finite stopping time τr can be concluded from
(5.3). The existence and uniqueness of solution of the closed-loop system can be proved by
Theorem 5.1 on [t0, τr] and by Theorem 4.2 on [τr ,∞), respectively. In the interval [t0, τr],
there holds |x1| ≤ r, and from (5.10), we have EV (z4

1(t) + z4
2(t)) ≤ d, for all t ∈ [t0, τr], where

d = E((1/4)(z4
1(t0) + z4

2(t0)) + (dc/c), which implies that there exists a constant d such that

EV
(
x4

1(t) + x4
2(t) + x4

3(t)
)
≤ d, ∀t ∈ [t0, τr]. (6.3)

In the interval [τr ,∞), similar to (4.29), we have

lim sup
t→∞

1
t

logE|(x1, x2, x3)|4 < 0. (6.4)

Combining (6.3) and (6.4) completes the proof.
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Figure 2: The Logic operation of switching.

A new question about the performing of switching signal comes forth. One scheme is
presented as follows in a discrete-time form. Suppose that the running time interval is [0, T]
and every step equals to Δ 	 T . Initial step: begin with t = 0, τ1 = T , and τ2 = 0. Recursive
steps: perform the following procedures in turn unless otherwise stated. (a) Write down the
value of x = x(t) and let t = t + Δ. (b) If t > T , then turn to (g), otherwise, perform the
following calculation. (c) If t ≤ τ1, then we have tm = t, otherwise, we have tm = τ1; we have
s = 0, τ1 = τ1 and restore τ2 = t, otherwise, we have s = 1, τ2 = τ2 and τ1 = tm. (e) Submitting
s into control (6.1) and resolve the response x(t) of closed-loop system. (f) Turn to (a). (g)
Output the observed value τr = τ2. (h) End the procedure. The procedure is described in
Figure 2.

It should be pointed out that the switching strategy will lead to trembling
phenomenon. In practice, to eliminate the trembling, the switching signal given by (6.2) can
be replaced by a continuous one which depends on the measurement of τr . The above logic
method will be used in the forthcoming simulation.
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Figure 3: The responses of closed-loop system with nonzero initial heading angle.

7. Simulation

Consider system (3.1) with ϕ1 = kθ and ϕ2 = lθ2. By letting φ(θ) = θ, the assumptions (A1)
and (A2) can be easily verified. As pointed out by [14, page 63], system (3.1) is an idealization
of the following system:

θ̇ = v + ϕ1(θ)N1,

ẋc =
(
u + ϕ2(θ)N2

)
cos θ,

ẏc =
(
u + ϕ2(θ)N2

)
sin θ

(7.1)

with white noises N1 and N2, which is formally obtained by replacing “dWi(t)/dt” by Ni(t).
To give approximate simulation using ordinary differential equation algorithm, system (3.1)
is replaced by (7.1), where the power of each Ni equals to 1.

The following two cases are to be analyzed: (1) θ(0) = −1.5, xc(0) = 0.8, yc(0) = −1, k =
0.1 and l = 1; (2) θ(0) = 0, xc(0) = 0.8, yc(0) = −1, k = 0.1 and l = 1. For the first case, the
state-feedback control law is given by (6.1) (not (4.3) and (4.22)) with the design parameters
d = 0.8, e = 0.7, c1 = (1/e)(1 + (3/4)d), c2 = 3, r = 1, and λ satisfying the equality of (4.25).
Figure 3 demonstrates that the state of the closed-loop system can be regulated to the origin
with exponential rate (in almost surely sense) without switching. For the second case, the
same control (6.1) with the same design parameters as in the first case is given. From Figure 4,
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Figure 4: Responses of closed-loop system with zero initial heading angle by using switching (6.2).

we can see that switching happens at the moment τr ≈ 0.1258. The state of the closed-loop
system can be driven to the origin with exponential rate after moment τr (in almost surely
sense). To eliminate the trembling phenomenon, the switching signal s given by (6.2) can be
replaced by a continuous one. Figure 5 describes the responses of the closed-loop system of
Case 2 with the following s(t):

s(t) =

⎧
⎪⎨

⎪⎩

0, t ∈ [0, τr),

2
π

arctan(600(t − τr)), t ∈ [τr ,∞).
(7.2)

Comparison of Figure 4 with Figure 5 indicates that control magnitude in the latter is milder
than that in the former.

8. Conclusions

A global exponential stabilization controller has been designed for nonholonomic mobile
robot with stochastic disturbance by using the integrator backstepping procedure based on
the state-scaling technique. There are several interesting problems of the controller design
for the same stochastic nonholonomic mobile robot, for example, the tracking control and
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Figure 5: Responses of closed-loop system with zero initial heading angle by using switching (7.2).

the adaptive control, and the further extensions to more general chained-form nonholonomic
systems with stochastic disturbance. These directions are all under the current research.
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This paper focuses on the wind-induced vibration control of the Dalian international trade man-
sion (DITM) by using the tuned liquid dampers (TLDs). To avoid the intensive computationally
demanding problem caused by tens of thousand of degrees of freedom (DOF) of the structure in
the numerical analysis, the three-dimension finite element model of the DITM is first simplified
to the equivalent series multi-DOF system. The wind loading is subsequently simulated by the
Davenport model according to the structural environmental condition where the actual samples of
wind speed are measured. Following that, the shallow- and deep-water wave theories are applied
to model the liquid sloshing inside TLDs, the tank sizing, and required water depth, and numbers
of TLDs are given according to the numerical results of different cases. Comparisons between
uncontrolled and controlled displacement and acceleration responses of the DITM under wind
forces show that the designed shallow tank has higher efficiency than the deep one, which can
effectively reduce the structural response amplitudes and enhance the comfortableness of the
mansion. The preliminary TLD design procedure presented in this paper could be applied as a
reference to the analysis and design of the wind-induced vibration for high-rise buildings using
the TLD.

1. Introduction

In recent years, the newly developed construction technologies toward lighter and stronger
materials have facilitated the realization of more and more high-rise buildings in urban
areas where space usage is demanding [1]. This kind of structures have, in general, low
frequencies and damping ratios associated with their fundamental oscillation modes, and
when subjected to dynamic loadings, they may experience large amplitudes of bending and
torsional oscillation. Especially, if a high-rise building was built in a wind prone area, the
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building would experience large deflection due to mean wind and considerable vibration due
to aerodynamic effects. Serious vibrations may cause fatigue damage in structural members,
and thereby increasing the maintenance cost of the building. In addition, the excessive
acceleration magnification will also frequently cause occupants’ discomfort [2, 3].

The suppression of these oscillations has become one of the major concerns to civil
engineers. A number of methods exist for improving the performance of existing structures
to meet the requirements. Strengthening of the buildings or the installation of a base isolation
system is complicated, difficult, and expensive. Therefore, incorporating control devices such
as the active and passive tuned mass dampers (AMD and TMD) [4, 5], tuned liquid dampers
(TLD) [6, 7], and tuned liquid column dampers (TLCD) [8, 9] have been proposed to mitigate
excessive oscillations. Among many varieties of control devices, the TLD is a good candidate.
A TLD consists of one or multiple rigid tanks, partially filled with a liquid (usually water),
which is typically located near the top of a building. As the building moves in the severe wind
or earthquake attack, the fluid contained within the tank begins to slosh. The fluid thereby
absorbs vibrational energy from the structure and transforms it into kinetic and potential
energy of the sloshing fluid. The sloshing energy is subsequently dissipated through the
fluid’s viscosity, or drag produced by flow dampening devices such as baffles, poles, nets
or screens [10]. This kind of device is particularly well suited for tall buildings, since they
usually contain water storage for potable or emergency use. With the already available water
utilized and proper modifications to the existing storage tanks, a TLD can be formed without
introducing an unnecessarily large additional mass and only require very low maintenance
and operating cost. Furthermore, its natural frequency and damping characteristics can be
modified easily by changing the geometry of the tank, the depth of the liquid layer, and the
properties of the contained liquid [11].

Since TLD was first proposed by Bauer [12] for suppressing horizontal vibration
of building structures, many experimental and numerical research studies were done over
the past few years to illustrate the effectiveness of a TLD as a vibration-control device
for structures subjected to both harmonic and broad-band excitations. Soong and Dargush
proposed the use of a single TLD with a rectangular plan in control of vibration modes
along orthogonal two directions [13]. Zhang et al. proposed a liquid damper that can
reduce bidirectional response using crossed tube-like liquid container [14]. Tamura et al.
reported vibration control effect of cylindrical TSDs obtained for both orthogonal axes of
the building plan based on measurement of acceleration response [15]. Research [16] has
been done to study the application of rectangular liquid dampers to reduce the vibration
of multidegree of freedom structures. Multiple tuned liquid dampers, which consist of a
number of tuned liquid dampers whose natural frequencies are distributed over a certain
range around the fundamental natural frequency of the structure, were suggested Fujino et
al. [17] who referred to the idea of multiple tuned mass dampers [18] for more effectively
suppressing dynamic responses, because the modal frequency of structure is not uncertain in
practice. Very recently, Samanta and Banerji [19] investigated a modified TLD configuration
to improve the effectiveness of TLDs.

This paper presents a practical example for the effectiveness and feasibility of using
TLDs on the Dalian international trade mansion (DITM), a super high-rise RC structure,
to control wind-induced vibration. The preliminary design procedure for initial TLD sizing
design for a high-rise building is summarized and outlined, which could be applied as a
reference to the analysis and design of the wind-induced vibration for high-rise buildings
using the TLDs.



Mathematical Problems in Engineering 3

Figure 1: Dalian international trade mansion.

2. Analytical Model

2.1. Mansion Outline

The DITM is being built in the center of Dalian city of China, which is of 81 stories (including
one-story basement) with the size of 339 m high and 77.7 m long in the east-west direction
and 44 m wide in south-north direction. The total building area is 290,000.00 m2. The DITM
is the highest building in the northeast of China (shown in Figure 1) [20]. Since the basic
wind pressure in the Dalian region is 0.75 KN/m2 and the mansion is slender, that is, the
ratio of height over width is 6.7, it is relatively more flexible to large wind-vibration action
in the horizontal direction. Consequently, the water tanks in the building will be designed as
the turned liquid dampers to reduce its horizontal displacement and acceleration. Figure 2
shows the 3D finite element (FE) analytical model and the ichnography of the top story. The
overall model has 34,308 node elements, 34,791 frame elements, and 29,071 shell elements,
considering 36 section types and 11 materials’ properties.

2.2. Simplified Model

As known, due to inherent nonlinear liquid damping, iteration is generally required in order
to obtain the dynamic response of TLD-structure systems. It is no doubt that a solution
scheme resorting to iteration requires a great deal of computational effort in searching for
optimal parameters of dampers numerically. It would be quite a time-consuming task to
carry out a detailed design of the damper. On the other hand, for a large-scale complicated
structure like the DITM, whose three-dimension finite element (FE) model may have tens
of thousand of DOFs, to facilitate design of the TLDs, a systematic and efficient approach is
needed to solve such a computationally demanding problem. Considering that the structural
stiffness of the structure in two horizontal directions is obviously different, it could mainly
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Figure 2: 3D finite element analytical model.

take into account the structural vibration reduction in the direction of weaker stiffness. Thus,
the FE model of the DITM could be simplified as the bending-shear model with 81 degrees of
freedom by the use of the approach called as the equivalent rigidity parameter identification
method which given by Sun et al. [21].

The damping matrix of structure is expressed as the Rayleigh orthogonal damping
formulation, and the damping ratio of the first two modes is chosen as 4%. Here, the diagonal
elements of mass, stiffness, and damping matrices are illustrated in Figure 3. The natural
frequencies of the first two modes are obtained by the FE model of the original structure
and simplified model, and their relative errors to compare the accuracy of two models are
calculated by

∣∣Tf − Ts
∣∣

Tf
× 100%, (2.1)

where Tf and Ts is the periods of finite element model and simplified model, respectively.

The results are listed in Table 1. And the comparisons of first two modes of two
models are shown in Figure 4. As known, a TLD generally need to be designed to operate
at or near the resonant frequency of the structure in order to maximize the absorbed and
dissipated energy, and thus maximize the benefit of the TLD. It can be seen from Table 1 and
Figure 4 that the errors of computational results of the two models are quite small so that the
simplified model can be applied to calculate the vibration responses of original structure to
environmental loadings.
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Figure 3: Diagonal elements in mass, stiffness, and damping matrixes of structural model.

Table 1: Comparison of relative errors of periods of two models.

Mode Finite element model Simplified model Relative error
1st period/s 6.636 6.768 1.99%
2nd period/s 1.526 1.522 0.27%

3. Wind Load

3.1. Pulse Wind Load Simulation

In wind engineering, the unitary wind pressure spectrum, suggested by Zhang [22], is the
most popularly used one that has the same spectrum value in height

Sf

(
f
)
=

2x2

3f(1 + x2)4/3
, x = 1200

f

V 10

, (3.1)

where V 10 represents the mean wind velocity on the height of 10 meters (m/s), f is the pulse
frequency (Hz).
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Figure 4: Diagrams of the 1st and 2nd mode comparison of two models.

Considering one-dimensional random process {f(t)} with n variables and zero-mean
value, that is, f1(t), f2(t), f3(t), . . . , fn(t), their power spectrum density function could be
expressed as [23]:

SF∗ij (w) =
[
Sp

]
Sf(w), i, j = 1, 2, 3, . . . , n, (3.2)

in which

(
Sp

)
kh

= pkhPkPh, (3.3)

where Pk = μf(Zk)μD(Zk)μZ(Zk)μrw0ΔAk/μ, in which μf , μD, and μZ means the pulse
coefficient at the kth story, shape coefficient, and varying coefficient of wind pressure along
height, μr and μ are the reoccurrence period coefficient and wind factor, w0 and ΔAk

represent the basic wind pressure and area of suffering wind at the kth story, and pkh =
exp(−|Zk − Zh|/60) implies the vertical coherence factor of pulse wind.

Based on the Shinozuka theory [24], the random process {f(t)} may be simulated by
the following equation:

fj(t) =
√

2Δω
j∑

m=1

n∑

l=1

∣∣Hjm(ωml)
∣∣ cos

(
ωmlt − θjm(ωml) + φml

)
, j = 0, 1, 2, 3, . . . , n, (3.4)
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where j is the maximum positive integer, Δω means the frequency increment calculated by
Δω = (ωb−ωa)/N in which ωa and ωb are the starting and ending frequency, φml denotes the
random phase distributed in the range of (0, 2π), Hjm(ωml) implies the element in the matrix,
H(ω) and H(ω) is the Cholesky decomposition of matrix S(ω); that is,

S(ω) = H(ω)H∗(ω)T , (3.5)

in which, ωml = (l − 1)Δω +
(
m

n

)
Δω, θjm(ωl) is given by

θjm(ωl) = tan−1

(
Im
⌊
Hjm(ωl)

⌋

Re
[
Hjm(ωl)

]
)
. (3.6)

Based on the central limitation theorem, the random process {fj(t)} will gradually
tend to be the Gauss process as N → ∞. And the time interval Δt should meet the
requirement of Δt ≤ 2π/2ωb in order to avoid the sample superposition according to the
sampling theory.

As mentioned above, the good samples can be acquired from (3.4) only if S(ω) is
known, and N, ωb and Δt are properly selected. However, since this method would consume
more time and energy while calculating, the Fast Fourier Transform algorithm (FFT) is
introduced in (3.4) to obtain higher efficiency:

fj
(
pΔt
)
= Re

{
j∑

m=1

hjm

(
qΔt
)

exp
[
i

(
mΔω

n

)(
pΔt
)]
}
,

p = 0, 1, 2, 3, 4, . . . , 2N × n − 1; j = 0, 1, 2, 3, 4, . . . , n,

(3.7)

where

hjm

(
qΔt
)
=

2N−1∑

l=0

gjm(lΔω) exp
[
i
πdq

N

]
, q = 0, 1, 2, 3, 4, . . . , n − 1, (3.8)

in which

gjm(lΔω) =

⎧
⎪⎨

⎪⎩

√
2ΔωHjm

(
lΔω +

mΔω

n

)
exp
(
iφml

)
, 0 ≤ l < N,

0, N ≤ l < 2N.
(3.9)

It can be known from (3.8) and (3.9) that hjm(qΔt) is the inverse Fourier transform
of gjm(lΔω), which is calculated by FFT. Thus, 81 samples of wind load are calculated by
selecting N = 8192,Δt = 0.05, ωa = 0, and ωb = 60. The wind pressure time history of
these samples acting on the top of structure is illustrated in Figure 5 and its theoretical and
simulated spectra are shown in Figure 6. It can be seen from these figures that the simulated
results are perfect.
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Figure 6: Power spectral comparison between simulated and theoretical wind samples.

To verify if the simulated wind load may represent the actual wind action, the wind
velocity time histories on the top of the nearby high-rise building (200 m in height) were
measured by the smart ZDR-1F mode wind velocity instrument (Figure 7), the accuracy of
which is as high as ±(0.5 + 0.05 ∗ wind velocity) m/s, the measuring range 1.5∼40 m/s,
recognizing capability rate 0.1 mm, recording interval range from 2 second to 24 hours (2 s
adopted in the measurement) [25]. The working diagram is illustrated in Figure 8. The
measured results give the idea that the average velocity of these strong and stable samples is
about 15.36 m/s, and Figure 9 is the wind velocity time history.
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Figure 7: ZDR-1F-type wind velocity instrument.
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3.2. Comparisons between Simulated and Actual Measured Wind Loads

The spectral comparison between simulated and recorded wind loads is depicted in
Figure 10. It is known from Figure 10 that they agree well each other, which indicates the
fact that the simulated wind load is enough to represent the actual state and can be applied
in the structural design and analysis.

4. TLD Principle and Design

4.1. TLD Working Principle

The TLD system may be a rectangle or circle tank fixed on the top of the building and may
be one large tank or composed of some small tanks, in which the liquid in the tank may
be deep or shallow. The TLDs will shake together with the building when suffering from
wind load. The dynamic liquid pressure of generating surface wave acting on tank walls will
reduce structural vibration. Usually, the TLDs are divided into two categories based on the
ratio of liquid depth to the size in shaking direction inside the tank: the TLD of deep liquid
if the ratio is larger than 1/8, otherwise, the TLD of shallow liquid. The damping is due
to energy dissipation through the internal fluid viscous forces and wave breaking (shallow-
liquid dampers). In the case of deep-liquid dampers, damping depends on the amplitude of
liquid motion and on viscous forces.
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4.2. Shallow Liquid Theory

The following basic assumptions in deriving the equations of motion are adopted:

(1) the liquid in the TLDs vibrates in two dimensions,

(2) the liquid in the TLDs is incompressible and gyrating-free current,

(3) the pressure on liquid free surface is invariable,

(4) the friction may be produced only near boundary layers and on solid surface.

The liquid in TLDs may be divided into two parts according to the shallow wave
theory, boundary layer and outside boundary layer, as shown in Figure 11. The dynamic
viscous damping is generated mainly by liquid inner friction in the boundary layer due to
small liquid damping in outside of boundary layer, so the basic equation of motion of liquid
in two-dimensional TLDs may be described by continuous equations and Navier-Stokes
equation inside and outside boundary layer [26]

∂u

∂x
+
∂u

∂z
= 0,

∂u

∂t
+ u

∂u

∂x
+w

∂u

∂z
= −1

ρ

∂p

∂x
− ẍg

(−(h − hb) ≤ z ≤ η
)
,

∂w

∂t
+ u

∂w

∂x
+w

∂w

∂z
= −1

ρ

∂p

∂z
− g (−(h − hb) ≤ z ≤ η

)
.

(4.1)

The equation of motion inside boundary layer is

∂u

∂t
+ u

∂u

∂x
+w

∂u

∂z
= −1

ρ

∂p

∂x
+ v

(
∂2u

∂x2
+
∂2u

∂z2

)
− ẍg (−h ≤ z ≤ (h − hb)),

1
ρ

∂p

∂z
= −g (−h ≤ z ≤ (h − hb)),

(4.2)
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where u and w are the velocities of liquid mass in x and z directions, p means the liquid
inner pressure, hb denotes the thickness of boundary layer, ρ implies the liquid density, v
liquid dynamic viscosity factor, ẍg represents the acceleration of tank movement, and g is the
gravity acceleration.

The boundary conditions are

u = 0, (x = ±a),
w = 0, (z = −h),

w =
∂η

∂t
+ u

∂η

∂x
,

(
z = η

)
,

p = p0 = const,
(
z = η

)
.

(4.3)

The liquid movement outside the boundary layer is treated as potential flow, velocity
potential function, Φ, of which could be supposed as follows:

Φ(x, z, t) = F(x, t) cosh[k(h + z)]. (4.4)

It is derived from potential function that

u =
∂Φ
∂x

=
∂F

∂x
cosh(k(h + z)),

w =
∂Φ
∂z

= kF sinh(k(h + z)).

(4.5)

Substituting (4.5) into (4.1) and (4.2), the basic equations are obtained after conversing
by combing boundary condition(4.3)

∂η

∂t
+ hσ

∂
(
φu
(
η
))

∂x
= 0,

∂

∂t
u
(
η
)
+
(

1 − T2
H

)
u
(
η
) ∂

∂x
u
(
η
)
+ g

∂η

∂x
+ ghσφ

∂2η

∂x2

∂η

∂x
= −λu(η) − ẍS,

(4.6)

where

σ =
tanh(kh)

kh
,

φ =
tanh

(
k
(
h + η

))

tanh(kh)
,

TH = tanh
[
k
(
h + η

)]
,

λ =
(

1
n + h

)
8

3π
√
ωv

(
1 +
(

2h
b

)
+ S

)
,

(4.7)



Mathematical Problems in Engineering 13

which could be called as viscous coefficient. in which k is the wave number taken as π/2,
b means the tank width and S implies the viscous influencing factor on the liquid surface
usually taken as 0∼2.

To make each parameter dimensionless, it is expressed as

x′ =
x

a
, z′ =

z

h
, η′ =

η

h
, ε =

h

a
, u′ =

u

C0
, t′ =

t

t0
, k′ = ka, ẍ′S =

t20
a
ẍS, (4.8)

in which, C0 =
√
gh, t0 = a/C0.

Equations (4.6) are discredited along the vibration direction of tank as follows:

dη′i
dt′

=
σ

Δx′
(
φiu

′
i − φi+1u

′
i+1

)
(i = 1 ∼ n − 1),

dη′0
dt′

= − 2σ
Δx′

φ1u
′
1,

dη′n
dt′

=
2σ
Δx′

φnu
′
n,

du′

dt′
=

1
Δx′
(
η′i−1 − η′i +Hi(Ki−1 −Ki) + Ci(Ii−1 − Ii)

) − λ′iu′i − ẍ′S (i = 1 ∼ n),

(4.9)

where

Δx′ =
2
n
,

φi =
tanh

(
k′ε
(
1 +
(
η′i−1 + η′i

)
/2
))

tanh(k′ε)
(i = 1 ∼ n),

Hi =

(
1 − (φi tanh(k′ε)

)2
)

2
(i = 1 ∼ n),

Ki =

((
u′i + u′i+1

)

2

)2

(i = 1 ∼ n − 1),

Ii =

(((
η′i+1 − η′i−1

)
/(2Δx′)

)2
)

2
(i = 1 ∼ n − 1),

λ′ =
1

1 +
(
η′i−1 + η′i

)
/2

8
3πεC0

√
ωv

(
1 +
(

2h
b

)
+ S

)
.

(4.10)
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It is suggested here that the n value may be taken as

n =
π

(
2 arccos

(√
(tanh(πε))/(2 tanh(πε/2))

)) , (4.11)

and then dynamic liquid pressure can be expressed as follows:

FTLD =
1
4
MW

gh

a

((
η′n + 1

)2 − (η′0 + 1
)2
)
, (4.12)

where MW = 2pabh represents liquid weight in the TLD.

4.3. TLD Design

It is known that the average participating factor of the 1st mode in structural displacement
response is about 92.07% and the 2nd mode is 6.67% by calculations. The two modal
participating coefficients in the structural response are illustrated in Figure 12.

As mentioned above, the only first mode response is controlled by the TLDs in design,
since it dominates the total structural response in the tall building. Then, the 1st oscillation
frequency of liquid in TLDs is tuned to the first modal frequency of structure according to the
TLD tuning condition; that is,

ω1 =

√
πg

2a
tanh

(
πh

2a

)
= 0.92836. (4.13)

Thus, the sizes of the TLDs, including the length (R) and depth (H), are designed as
listed in Table 2.

5. Calculation of Wind-Induced Structural Vibration Reduction

5.1. Equation of DITM for Structure-TLDs System

The equation of motion for the structure-TLDs system is

[M]{ẍ} + [C]{ẋ} + [K]{x} = {f(t)} − [H]{FTLD}, (5.1)

where {x}, {ẋ}, and {ẍ} represent the structural displacement, velocity, and acceleration
vectors, [M], [C], and [K] imply the structural mass, damping, and rigid matrices, {f(t)}
denotes the pulse wind load vector acting on structure, {FTLD} means the control force
vector of TLDs, and [H] is the position matrix of TLDs in which its ith column vector
{H}i = [0 · · · 0 1 0 · · · 0]T1×n (1 is in jth column) is that the ith group TLDs are installed on
the jth story.
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Figure 12: Participating factors of first two modes participant.

Table 2: Design sizes of TLDs.

Length/2a Width/B Liquid
depth/H Height Total

weight Number/n Liquid
depth ratio Note

8.7605 m 7.47 m 0.7 m 1.4 m 3666 t 80 0.08
Overlapping

with
4 layer

5.2. Effectiveness of Vibration Reduction

In design, the TLDs are placed on the top story of building. Combining (5.1) with (4.9) and
(4.12), the structural dynamic response is calculated by the subprogram, ode23 in MATLAB
package, to obtain the vibration-reducing rates, Re, as

Re =
r1 − r2

r1
× 100%, (5.2)

where r1 and r2 are the displacements (or peak accelerations) on the top story without and
with TLD control, respectively.

The reduced displacement and acceleration amplitudes by installing the shallow
liquid TLD are shown in Table 3.

Figure 13 shows the wave amplitude and time history of liquid oscillation force in the
right side of liquid tank. Figures 14 and 15 typically depict the time histories of displacement
and acceleration on the top story of structure. It is clear to know from Table 3 and Figures
13∼15 that the structural responses can be reduced to different grades by TLDs, and wave
amplitude curves indicate that the liquid oscillation is obviously nonlinear, which causes
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Table 3: Vibration-reducing rates of displacement and peak acceleration.

Case Displacement (cm) Acceleration (cm·s−2) Vibration reducing rate (%)
Displacement Acceleration

Without control 16.00 24.09
With control 13.27 18.33 17.06 23.856
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Figure 13: Wave amplitude and water oscillation force in right side of TLD.

partial amplifications in time histories of displacement and acceleration, and the liquid
oscillation frequencies corresponding to these amplifications quickly vary. In general, the
vibration-reducing effectiveness is very well and ideal and may meet the requirement for
the design of wind-induced vibration of DITM.

5.3. Comparison with TLD Design of Deep Liquid Theory

The basic assumption of the deep liquid theory is that the liquid wave in TLDs is low and
slow and its velocity potential function Φ = Φ(x, y, z, t) can be deducted by solving basic
equations with boundary conditions. According to the linear Bernoulli equation, the dynamic
liquid pressure at any position in a rectangular TLD can be achieved. Thus, the force acting
on structure will be the resultant force of dynamic liquid pressure on both left and right sides
of rectangular TLDs, that is, [26]

FTLD = −
∫0

−H
Bpj(0, z, t)dz +

∫0

−H
Bpj(R, z, t)dz

= −ρRBH
[
ẍT (t) +

∞∑

n=1,3,...

ω̈n(t)
2bn
nπH

tanh
nπH

R

]
,

(5.3)

where H, B, and R are the liquid depth, width, and length of fluid tank, pj(0, z, t) and
pj(R, z, t) represent the dynamic liquid pressure acting on both left and right sides, ρ is the
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Figure 15: Acceleration time history with and without TLD control on top story of structure.

liquid density, ẍT (t) denotes the story acceleration where TLD is located, and bn = 4R/n2π2

and ω̈n(t) means the acceleration of liquid motion in TLDs.
It is known from the previous section that the first modal response is dominant in

the wind-induced vibration of high-rise structures. Therefore, controlling the first modal
response is normally enough by TLDs. Thus, the equation of liquid motion in TLD is
expressed as follows:

ω̈1(t) + 2ζ̃1ω̃1ω̇1(t) + ω̃2
1ω1(t) = −ẍT (t), (5.4)

and by taking ζ̃1 = 0.08 and adjusting ω̃1 to first mode frequency of structure, (5.3) is rewritten
as

FTLD = −MT

[
ẍT (t) + a1f1ω̈1(t)

]
, (5.5)

where MT = ρRBH, f1 = (R/πH) tanh(π(H/R)), and a1 = 8/π2.
According to the tuning relation between frequencies of the TLD and structure, the

design sizes of deep liquid TLDs are listed in Table 4, in which the liquid mass is the same as
shallow liquid.

The reduced displacement and acceleration amplitude on the top of structure by
installing deep liquid TLD are shown in Table 5.

Comparisons of vibration-reducing rates with two kinds of design plans of both deep
and shallow liquid theories are summarized in Table 6.
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Table 4: Design sizes of deep liquid TLDs.

Length/R Width/B Liquid depth/H Net weight of liquid/MT Mass ratio/μ Number of TLDs/n
9.95 m 6.61 m 3.98 m 3666 t 1.0% 14

Table 5: Vibration-reducing rates of displacement and peak acceleration.

Case Displacement/cm Acceleration/cm·s−2 Vibration reducing rate (%)
Displacement Acceleration

Without control 16.00 24.09
With control 15.11 19.51 5.5 19.01

Table 6: Comparisons of vibration-reducing rates of two design plans.

Plan Reducing rate of peak displacement (%) Reducing rate of peak acceleration (%)
Deep liquid 5.5 19.01
Shallow liquid 17.06 23.85

It is clearly seen from Table 6 that the designed shallow tank has higher efficiency
than deep one for both displacement and acceleration. Especially, it makes the vibration-
reducing rates of displacement increase nearly 12% and 5% for acceleration. Thereby, it is
recommended to utilize the shallow liquid theory to design the TLD in practical projects
because of its higher efficiency.

6. Preliminary Design Procedure in Wind-Induced Vibration
Control by TLDs

A preliminary design procedure was summarized and outlined for specified target structural
response amplitude corresponding to wind-induced serviceability level accelerations. The
simple design procedure allows a designer to apply well-known TLD design theory to a TLD
equipped with damping screens.

Step 1. After calculating the basic frequency of high-rise structure, the TLD frequency is
adjusted to the structural frequency.

Step 2. Combining with the practical situation of engineering projects, the liquid tank sizes
for TLDs are designed by the shallow liquid theory.

Step 3. The number of tanks is decided after determining liquid tank mass. Usually, the tank
mass is taken as about 1%–5% of the total structural mass.

Step 4. The proper positions are selected to install liquid tanks (usually on equipment floors).

Step 5. The system of structure-tank interactions is calculated to obtain the structural
responses by the shallow liquid theory.

Step 6. The design should be going on by returning to Step 3 and adjusting the number of
tanks until the required results are achieved if the control effectiveness is not as good as
expected, otherwise the design work ends.
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7. Conclusions

The suppression of the significant oscillations of the high-rise buildings has become an
important design consideration in recent years. It is, thus, necessary to find a cost-effective
solution for suppressing the vibration. This paper gives a practical application for the
effectiveness and feasibility of using the TLDs to the DITM, a super high-rise RC structure,
to control wind-induced vibration. From both analytical and numerical inspections, some
conclusions with practical significance can be drawn as the following.

(1) It is normally difficult to use the software of current structural analysis to do the
3D dynamic analysis because of more time consuming and more hard disk space
needed. Thus, the FE model of original spatial structure should be simplified. On
the other hand, the calculation model of the super high-rise building is generally a
bending-shear one; that is, its rigidity matrix is full rank. The triple diagonal matrix
simplified by traditional methods is not reasonable, while the identification method
of equivalent rigidity coefficients is the better one. To facilitate design of the TLDs,
the equivalent stiffness approach is adopted here to simplify the model. It has been
known by numerical comparisons that two models were in good agreement with
each other. Therefore, the simplified model can substitute the spatial FE model in
structural dynamic analysis, which could save much more computing time.

(2) The harmonic synthetically method based on the trigonometric series superposition
is used to simulate the pulse wind load for the DITM, and the FFT technique is
adopted to make the calculation velocity faster. It has been proven by comparing
the simulated wind velocity spectra with the on-site measured spectra that the
approach adopted here is reliable and reasonable in the structural analysis.

(3) Comparisons between uncontrolled and controlled displacement and acceleration
responses of the DITM under wind forces show that the designed shallow tank
has higher efficiency than the deep one, which can effectively reduce the structural
response amplitudes and enhance the comfortableness of the mansion. According
to numerical results, the final designed TLDs on the top of structure suffered pulse
wind load could efficiently make the reduction rates be as high as 17% for structural
peak displacement and 23.8% for peak acceleration.

(4) The preliminary TLD design procedure summarized in this paper could be applied
as a reference to the analysis and design of the wind-induced vibration for high-rise
buildings using the TLD.
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