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Background. Approximately 10% of cancer patients worldwide have colorectal cancer (CRC), a prevalent gastrointestinal ma-
lignancy with substantial mortality and morbidity. Te purpose of this work was to investigate the APOC1 gene’s expression
patterns in the CRC tumor microenvironment and, using the fndings from bioinformatics, to assess the biological function of
APOC1 in the development of CRC.Methods. Te TCGA portal was employed in this investigation to fnd APOC1 expression in
CRC. Its correlation with other genes and clinicopathological data was examined using the UALCAN database. To validate
APOC1’s cellular location, the Human Protein was employed. In order to forecast the relationship between APOC1 expression
and prognosis in CRC patients, the Kaplan–Meier plotter database was used. TISIDB was also employed to evaluate the
connection between immune responses and APOC1 expression in CRC. Te interactions of APOC1 with other proteins were
predicted using STRING. In order to understand the factors that contribute to liver metastasis from CRC, single-cell RNA
sequencing (scRNA-seq) was done on one patient who had the disease. Tis procedure included sampling preoperative blood and
the main colorectal cancer tissues, surrounding colorectal cancer normal tissues, liver metastatic cancer tissues, and normal liver
tissues. Finally, an in vitro knockdown method was used to assess how APOC1 expression in tumor-associated macrophages
(TAMs) afected CRC cancer cell growth and migration. Results. When compared to paracancerous tissues, APOC1 expression
was considerably higher in CRC tissues.Te clinicopathological stage and the prognosis of CRC patients had a positive correlation
with APOC1 upregulation and a negative correlation, respectively. APOC1 proteins are mostly found in cell cytosols where they
may interact with APOE, RAB42, and TREM2. APOC1 was also discovered to have a substantial relationship with immu-
noinhibitors (CD274, IDO1, and IL10) and immunostimulators (PVR, CD86, and ICOS). According to the results of scRNA-seq,
we found that TAMs of CRC tissues had considerably more APOC1 than other cell groups. Te proliferation and migration of
CRC cells were impeded in vitro by APOC1 knockdown in TAMs. Conclusion. Based on scRNA-seq research, the current study
shows that APOC1 was overexpressed in TAMs from CRC tissues. By inhibiting APOC1 in TAMs, CRC progression was reduced
in vitro, ofering a new tactic and giving CRC patients fresh hope.
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1. Introduction

Having a high rate of morbidity and death, colorectal cancer
(CRC) is a malignant tumor of the digestive system [1].
Around 10% of all cancer patients globally have CRC, af-
fecting 1.36 million persons [2]. Te liver is the most
common site of hepatic metastasis in CRC because of its
close anatomical proximity. At the time of initial diagnosis,
20–25% of patients had CRC liver metastases at some point,
later on, 50–60% will [3]. Currently, hepatectomy, which has
a 60% 5-year survival rate, is the best course of treatment for
CRC patients with liver metastases. Unfortunately, ap-
proximately 20–25% of patients with CRC liver metastases
are eligible for resection at the time of diagnosis, leading to
the majority of patients eventually passing away from ad-
vanced metastases [4].

Te infuence of immunology on the development,
prognosis, and therapeutic response of CRC has been shown
in recent investigations. A better prognosis, for instance, is
linked to T and NK cell enrichment in original CRC or
metastases [5, 6]. Programmed cell death 1 (PD1), T cell
control of CD28 superfamily members, and PD ligand 1
(PD-L1) are examples of immune checkpoint molecules that
have recently been identifed as potential targets for CRC
immunotherapy [7]. Pembrolizumab (Keytruda®) was the
frst PD1 inhibitor authorized by the FDA for the treatment
of metastatic malignant melanoma [8]. Te historic clinical
trial of pembrolizumab for CRC, NCT01876511, is note-
worthy. Te clinical trial included 11 patients with defcient
mismatch repair gene expression (dMMR) colorectal cancer,
21 patients with profcient mismatch repair gene expression
(pMMR) colorectal cancer, and 9 patients with dMMR other
malignancies. In dMMR CRC patients and pMMR CRC
patients, respectively, the immune-related objective re-
sponse rate and the immune-relatedprogression-free sur-
vival (PFS) rate were 40% and 78% and 0% and 11%. While
the pMMR CRC group’s median PFS and overall survival
(OS) were 2.2 months and 5.0 months, respectively, the
dMMR group did not accomplish these milestones [9].
Patients with CRC now have a lot of optimism because of
PD1 monoclonal antibody therapy, but medication re-
sistance is still a concern that needs to be fxed. Te study of
the molecular mechanisms underlying the CRC tumor
microenvironment is so crucial.

In the current work, we employed bioinformatics
technology to evaluate the TCGA database and discovered
that apolipoprotein C1 (APOC1) expression was consid-
erably higher expressed in CRC tissues than in nearby tissues
and that it was associated with clinical stage and a bad
prognosis. Te selection of APOC1 to study its role in the
CRC tumor microenvironment was inspired by our research
group [10]. Although APOC1 has been observed to be
crucial for the growth and metastasis of a number of ma-
lignancies [11], the underlying mechanisms have not been
fully understood, particularly with regard to its function and
part in tumor immunity [12]. Liwen Ren et al. established
that APOC1 is an immunological biomarker that controls
macrophage polarization and encourages tumor dissemi-
nation through extensive pan-cancer studies, which revealed

that APOC1 is intimately connected to the infltration of
diferent immune cells in a range of malignancies [13]. We
conducted single-cell RNA sequencing (scRNA-seq) in one
patient with CRC liver metastasis to further examine why
APOC1 is highly expressed in CRC tissues. We covered
primary colorectal cancer tissues (CT), neighboring co-
lorectal cancer tissues (CP), liver metastatic cancer tissues
(LT), normal liver tissues (LP), and preoperative blood (PB)
in order to determine which type of cell population APOC1
is signifcantly enriched for and address causes of liver
metastasis from CRC. Furthermore, we conducted a pre-
liminary evaluation of APOC1’s role in encouraging CRC
migration and proliferation in culture.

2. Materials and Methods

2.1. APOC1Expression Level Analysis andClinicopathological
Analysis inCRC. Te expression of APOC1 was examined in
24 diferent tumor tissue types, including CRC and related
para-carcinoma tissues, using the TCGA portal. Here,
UALCAN was utilized to compare the expression of APOC1
in CRC patients with various stages and lymph node me-
tastases [14, 15].

2.2. Tools for APOC1 Location in Cells. A large number of
tissue, cellular, and pathological results as well as gene data
in cells and tissues are compiled in the Human Protein Atlas,
through which we obtained the location of APOC1 in cells.
Te subcellular portion of the Human Protein provides
high-resolution insight into the expression and spatial and
temporal distribution of proteins encoded by 13,041 genes,
representing 65% of human protein-coding genes. For each
gene, the subcellular distribution of proteins was studied by
immunofuorescence (ICC-IF) and confocal microscopy in
up to three diferent cell lines selected from the 36 cell lines
found in cell line sections. We showed the colocalization of
APOC1 in three cell lines including A-431, U-2 OS, and
U-251 MG cell lines.

2.3. Interaction Analysis of APOC1. STRING is a public
database for searching for interactions and connections
between proteins, both direct and indirect [16]. We perform
a thorough analysis and forecast of the outcomes, as well as
a summary of information exchange and contact with other
(primary) databases. STRINGwas used to build a network of
connections between APOC1, APOE, RAB42, and TREM2
among other signifcant proteins. Te relationship between
APOC1 and other genes in CRC was examined using the
TCGA portal.

2.4. scRNA-Seq Analysis. In accordance with the principles
outlined in the Declaration of Helsinki, all participants were
given information about the study, and patients signed
informed consent was obtained before it could begin. After
surgical resection at the First Afliated Hospital of Nanjing
Medical University, primary colorectal cancer tissues and
corresponding intestine tissues, liver metastatic cancer

2 Journal of Oncology



tissues, and corresponding liver tissues were collected.
Additionally, preoperative blood was taken. An Illumina
Hiseq4000 sequencer evaluated the samples (Singleron
Biotechnologies, China). Using the 10X Genomics Cell-
Ranger workfow, the raw counts were compared to the
human reference provided by 10X Genomics (GRCh38
version) (version 2.1.0). Te flter expression matrix Cell-
Ranger generates for each sample are read and processed
using the R program Seurat. Additionally, Seurat was used to
checking the quality of single-cell expression matrices
(version 3.2.0). First, cells that met the following standards
for quality were eliminated: mitochondrial transcripts with
less than 15% uniqueness, less than 100 unique genes
mapped, and more than 500 unique molecular identifcation
counts (UMI). Using the default settings of the R program
DoubletFinder, double peaks in cells were found. Te left-
over cells in all samples were kept and subsequently merged
with Seurat for additional analysis, assuming that the duplex
was eliminated.

2.5. Cell Cluster Analysis and Cell Type Identifcation.
Using FindVariable features from Seurat, 2000 highly var-
iable genes (HVG) were generated, and these genes were
employed in principal component analysis (PCA) with
parameter NPCS� 30. Te Harmony program (version
0.1.0) was used to eliminate probable batches from samples
with the parameter NPCA� 12 based on the PCA results.
FindClusters from Seurat are then used to identify cell
clusters using a shared nearest-neighbor graph. Seurat’s
RunTSNE and RunUMAP are used to reduce the harmony
dimension of visualization by T-distributed random
neighborhood embedding (tSNE) and unifed manifold
approximation and projection (UMAP).

2.6. Tool for Immune-Related Analysis of APOC1. Te
spearman correlations between APOC1 and immune-
modulator expression were investigated using TISIDB,
a digital portal for tumor and immune system interactions
that integrates a variety of heterogeneous data [16].

2.7. Primary Culture of THP-1 and Cell Transfection. 10%
fetal bovine serum (FBS) was added to RPMI 1640 medium
(BI, USA) when cultivating THP-1 cells (Gibco, USA),
following the transfection of THP-1 cells with lentiviral
vectors, including sh-NC and sh-APOC1 (GeneChem,
China). sh-NC:5′-TTCTCCGAACGTGTCACGT-3′; sh-
APOC1:5′-GCATCAAACAGAGTGAACTTT-3′. After two
days of PMA-mediated macrophage diferentiation, THP-1
cells were collected. THP-1 cells were exposed to HCT116/
LOVO culture supernatant in RPMI 1640 media for 2 days
in tumor-associated macrophages (TAMs) stimulation tests,
which resulted in the production of TAMs.

2.8. Cell Proliferation Experiments. For CCK8 experiments,
CRC cells were cocultured with TAMs supernatant con-
taining sh-NC or sh-APOC1. Ten microliters of CCK8 so-
lution (RiboBio, China) were applied at 0 hours, 24 hours,

48 hours, and 72 hours after the cocultured tumor cells were
implanted in 96 wells. 4 hours after adding the CCK8 so-
lution, analyses were carried out using a microplate reading
element at 450 nm in accordance with the manufacturer’s
instructions (Synergy4, USA).

2.9. Scratch Wound Experiment. At 48 h after transfection,
after cells were adherent into monolayer cells, the scratched
cells were evenly crossed with a sterile gun tip, gently washed
with PBS, and then replaced with 1% FBS medium and
cultured in a 37°C and 5% CO2 incubator. At 0 h and 48 h, 5
felds were randomly selected under an inverted microscope
to observe the wound healing and take photos. Cell mi-
gration distance was measured and calculated.

2.10. Statistics-Related Analyzing Process. Continuous in-
formation was compared between the two groups by one
individual t-test procedure. GraphPad Prism 8.0 was used to
carry out the statistically signifcant analytical method and
present the results graphically. It was deemed statistically
signifcant with a P value of 0.05.

3. Results

3.1. Expression and of Clinical Role ofAPOC1 inCRCBased on
TCGAData. Te TCGA portal revealed that the expression
of APOC1 was higher in tumor tissues, including CRC, than
in normal tissues (Figure 1(a)). Based on subgroup analysis
of CRC individual cancer stages and lymph node metastasis,
it was discovered that APOC1 expression increased with
increasing cancer stage and lymph node metastasis
(Figures 1(b) and 1(c)). Using the Kaplan–Meier plotter, the
prognostic value of APOC1 in CRC was further investigated.
Te fndings revealed that, albeit not statistically signifcant
(p> 0.05), CRC patients with high APOC1 expression had
considerably worse prognoses than those with low expres-
sion (Figure 1(d)). Data from the Human Protein Atlas
analysis showed that CRC patients, including those with
rectum and colon cancer, had high or low expression of the
APOC1 protein (Figure 1(e)).

3.2. Genes and Proteins Cointeracted with APOC1 in CRC.
Te human protein Atlas database revealed that APOC1 was
found in the cytoplasm of A-431, U-2 OS, and U-251MG
cells (Figure 2(a)). It was possible to fnd proteins that in-
teract with APOC1 using a STRING interactive network
(Figure 2(b)). Further investigation revealed a high corre-
lation between the expression of APOC1 and proteins that
may interact with it, including APOE, RAB42, and TREM2
(Figure 2(c)).

3.3. Acquisition of scRNA-Seq Profles of Samples and Data
Generation inCRCLiverMetastasis. In this study, we carried
out scRNA-seq [17] in one CRC liver metastasis patient
covering primary colorectal cancer tissues (CT), adjacent
tissues of colorectal cancer (CP), liver metastatic cancer
tissues (LT), normal liver tissues (LP), and preoperative

Journal of Oncology 3



blood (PB) and aimed to address the causes of liver me-
tastasis from CRC. Trough the defnition of classifcation,
we fnally identifed 16 cell clusters in immune cells using
a UMAP plot (Figure 3(a)). Each cell type has unique maker
genes (Figure 3(b)). For example, the B cell cluster specif-
ically expresses MS4A1, CD79A, and CD79B. CD4-IL7R
expresses IL7R, IL32, and MALAT1; while CD8-GZMB
expresses CD8A, CD8B, and KLRD1. TAM-APOC1 ex-
presses CD14, C1QC, APOC1, and SPP1. In addition, we
used the violin chart to show the expression of some marker
genes (CD79A, FCN1, and APOC1) in various cell pop-
ulations (Figure 3(c)). A cluster map and histogram were
applied to show the expression of these cell clusters in
diferent tissues and results revealed that there was less TAM
but more B and plasma cell clusters in CP compared with
CT. CT showed more TAM and fewer CD8 T cells. More-
over, there were more CD8 Tcells and NK enrichment in LP
compared with LT (Figures 4(a) and 4(b)). Tese results
demonstrate that TAMs might play an important role in
both the metastasis of primary tissues and the colonization
of metastatic foci and that the lethality of NK cells in cancer

tissues is insufcient in the colonization process after me-
tastasis of CRC.

3.4. APOC1 Was Highly Expressed in TAMs of CRC Tissues.
We discovered that APOC1 may be crucial to the TAMs of
CRC based on the results of the scRNA-seq analysis. As
a result, we carefully examined the expression of APOC1 in
each sample and each cluster of cells. Te exact distribution
of various subgroups in various samples is also displayed in
the UMAP graphic (Figure 5(a)). Te enrichment of APOC1
in various cell clusters in various samples was more clearly
displayed by the UMAPmap (Figure 5(b)). TAMs had much
higher levels of APOC1 than other cell clusters such as CD8
T, CD4 T, and NK cells, which were both less expressed
(Figure 5(b)). Furthermore, we looked at the data from Hae-
Ock Lee et al. [18] and discovered that APOC1 was primarily
expressed in myeloid CRC tissues (Figures 6(a) and 6(b)),
which is similar to our fndings. Our intense curiosity about
the function of APOC1 in TAMs from CRC was piqued by
all of these analyses.
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Figure 1: Expression of APOC1 in CRC tissues. (a) Te expression level of APOC1 mRNA in diferent types of cancer tissues compared to
normal tissue. (b) Te correlation between APOC1 mRNA expression and tumor stage. (c) Te correlation between APOC1 mRNA
expression and lymph node metastatic status. (d) Te relationship between APOC1 expression and CRC patient’s prognosis. (e) Im-
munohistochemical of APOC1 expression in CRC tissues from diferent patients. ∗P< 0.05.
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3.5. APOC1 ExpressionWas Correlated with Immune Factors.
We investigated the connection between the expression of
APOC1 and immunological components in CRC because the
aforementioned fndings showed that APOC1 is linked to
immunity, particularly TAMs, in CRC. As shown in Figures 7
and 8, there was a signifcant link between the expression of
immunostimulators (PVR, CD86, and ICOS) and immu-
noinhibitors (CD274, IDO1, and IL10) and APOC1 itself.

3.6. Inhibition of APOC1 of TAMReducedCRCProgression In
Vitro. We stimulated CRC cells with TAM supernatant in
order to further confrm the function of APOC1 in TAMs
fromCRC in vitro. By using the CCK8 and scratch assays, we
discovered that TAMs in the sh-APOC1 group signifcantly
decreased the proliferation and migration of CRC cells in
comparison to the control group (Figures 9(a) and 9(b)).

4. Discussion

An earlier study found that the mitogenic impact of high-
density lipoprotein cholesterol (HDL) on bovine vascular
endothelial cells in vitro was caused by APOC1 purifed from
HDL [19], and APOC1 has recently been identifed as
a molecule involved in the advancement of cancer.
According to research, APOC1 functions as an oncogene in
cervical cancer, and its knockdown both in vitro and in vivo

reduces the proliferation of cervical cancer cells. Te clinical
outcome of cervical cancer patients is highly correlated with
the relative expression of APOC1 [20]. Li Yangling et al.
discovered that APOC1 activated STAT3 to increase renal
clear cell carcinoma metastasis [11]. According to Huaying
Xiao et al., clear cell renal cell carcinoma (ccRCC) tissues had
a greater expression level of APOC1 than the normal group
did. Poor prognosis was linked to high APOC1 expression in
female patients but not in male patients. In ccRCC patients
older than 60 years, high APOC1 expression also decreased
survival [21]. Trough the MAPK signaling pathway,
APOC1 increases the growth of CRC tumors, according to
research by Ren Hui et al. [12]. Based on the TCGA portal,
we discovered in the current study that the expression of
APOC1 in tumor tissues, including CRC, was obviously
higher than that in normal tissues. Subgroup analysis also
revealed that the higher the cancer stage and lymph node
metastasis, the higher the expression of APOC1. Results
from the Kaplan–Meier plotter demonstrated that, despite
being not statistically signifcant, the prognosis of CRC
patients with high APOC1 expression was signifcantly
worse than that of those with low expression. Our con-
clusion is generally in line with the previous conclusion.

A STRING interactive network revealed a favorable
correlation between the expression of APOC1 and proteins
like APOE, RAB42, and TREM2 that may interact with
APOC1. Both APOC1 and APOE are apolipoproteins, which
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Figure 3: Diverse cell types in CRC delineated by single-cell transcriptomic analysis. (a) UMAP plot showing 16 clusters of immune cells.
(b) Dot plot showing the clustering of immune cell types in each sample. (c)Te violin diagram showing expression levels of specifcmarkers
in each cell type.

6 Journal of Oncology



function as physiological carriers of hydrophobic lipids in
aqueous fuids throughout the body [22]. Apolipoproteins
and diferent malignancies may be related, according to

some research studies. In lung cancer cells and B16F10 cells,
APOE expression was knocked down, which reduced
tumor development and metastasis [23]. To describe
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Figure 4: Expression of individual cell populations in individual samples. (a)Te distribution number of each immune cell subgroup in each
sample. (b) Te histogram showing the distribution number of each immune cell subgroup in each sample. CT, primary colorectal cancer
tissues; CP, adjacent tissues of colorectal cancer; LT, liver metastatic cancer tissues; LP, normal liver tissues; PB, preoperative blood.
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APOE-TREM2 interactions, molecular docking and mo-
lecular dynamics (MD) investigations were carried out.
Additionally, it was examined how a signifcant TREM2-
disease-relatedmutation (R47H) afected TREM2 afnity for
APOE. Te outcomes demonstrated that the binding energy
occurred between APOE and TREM2 in an isomer-
dependent manner, with the potency order being
APOE4>APOE3>APOE2. Furthermore, the R47H muta-
tion decreased the connection between the APOE and

TREM2 proteins, which may be a result of hydrogen bond
interactions, hydrophobic interactions, or a weaker elec-
trostatic interaction between APOE and TREM2 [24].
RAB42 is linked to cancer prognosis and progression,
according to earlier studies. RAB42 expression levels in
hepatocellular carcinoma (HCC) tissues were higher than in
normal tissues, according to a prior investigation. Signifcant
correlations were found between highly expressed RAB42
and a number of clinical indicators in HCC patients.
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Figure 5: APOC1 expression in individual cell populations and individual samples. (a) UMAP plot showing the distribution of each cell
subgroup in each sample. (b) Te expression of APC1 in immune cells in each sample. CT, primary colorectal cancer tissues; CP, adjacent
tissues of colorectal cancer; LT, liver metastatic cancer tissues; LP, normal liver tissues; PB, preoperative blood (PB).
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Additionally, elevated RAB42 expression unmistakably in-
dicated a bad prognosis for HCC [25]. In comparison to
normal samples, glioblastoma (GBM) samples showed
higher expression of RAB42. Patients with high RAB42
expression have a worse prognosis than those with low
RAB42 expression in GBM. A total of 35 pathways, in-
cluding the P53 pathway, were signifcantly activated in
GBM samples with elevated RAB42 expression [26]. A
greater understanding of the direct interactions between
APOC1, APOE, RAB42, and TREM2 in cancer is, however,
required due to the paucity of studies in this area.

Te role and mechanism of APOC1 in the tumor mi-
croenvironment have only been partially studied. With the
quick advancement of scRNA-seq technology, diverse cell
populations can be characterized and identifed, and new cell
markers and regulatory pathways can be found. It is in-
teresting to note that APOC1 has been linked to a number of

immune cell infltrations in diferent malignancies. scRNA-
seq research revealed that TAMs expressed the bulk of
APOC1 in expression. TAMs with the M2 phenotype are
produced when renal cell cancer cells are cocultured; this is
prevented by silencing APOC1. By interacting with CD163
and CD206, APOC1 boosted macrophage polarization to-
ward M2 by increasing its expression in M2 or TAM.
Additionally, through secreting CCL5, macrophages over-
expressing APOC1 aided in the spread of renal cell cancer
cells [13]. According to Chan et al.’s research, TAMs have
high levels of APOE, APOC1, and SPP1 expression, which
results in an anti-infammatory macrophage phenotype [27].
Based on the fndings of this study’s scRNA-seq, we show
that basic CRC and liver metastatic tissues exhibit APOC1
overexpression in TAMs. We also looked at the relationship
between the expression of APOC1 and immune factors in
CRC and discovered that there was a signifcant positive
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Figure 6: Research results of APOC1 at single-cell level from Hae-Ock Lee’s study. (a) Te violin diagram displaying the distribution of
APOC1 expression in diferent cells from CRC tissues in total analysis. (b) Te violin diagram displaying the distribution of APOC1
expression in diferent cells from CRC tissues in subanalysis.
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correlation between the expression of immunoinhibitors
(CD274, IDO1, and IL10) and the expression of APOC1.
Tis result suggested that APOC1 is important in the de-
velopment of the immunosuppressive tumor microenvi-
ronment. We stimulated CRC cancer cells with TAM
supernatant in order to further confrm the function of
APOC1 in CRC TAMs in vitro. TAMs in the sh-APOC1
group drastically decreased CRC cell proliferation and

migration by CCK8 and scratch assays. Te signifcance of
APOC1 in the tumor immune microenvironment is sub-
stantially expanded by our fndings. Massimo Pancione et al.
proposed that many diferent functions of TAMs during
tumor progression may depend on their intrinsic adaptation
to positional schemes that are acquired through factors that
control the balance between a tumor suppressor and tumor-
promoting activities. In the primary tumor, oncogenic
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alterations or changes in the tumor microenvironment es-
tablish a new equilibrium that can be further modifed
during metastasis. Tere are at least two mechanisms
supporting the prometastatic function of TAMs:

(1) M2-macrophages can form a dense barrier around in-
vasive cancer cells, leading to heterotypic interactions be-
tween tumor cells and the surrounding matrix, disrupting
host tissue integrity; (2) Invasive cancer cells can acquire
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immunophenotypic features, such as macrophage fusion
with cancer cells, which promotes homotypic interactions
between host matrix and TAMs [28–30]. Terefore, TAMs
play an indispensable role in the progression of liver me-
tastasis of CRC.

Te association between APOC1 and CRC was exten-
sively investigated in this research using bioinformatics
analysis and a few trials, although there are still numerous
gaps in our understanding. First of, no mechanistic in-
vestigation was done; only APOC1’s expression and function
in TAMs were confrmed. Second, there are not many re-
search studies on in vivo efcacy in animals. Tird, the
impact of APOC1 knockdown on other cells was not in-
vestigated in TAMs. We anticipate publishing more in-
formation about the connection between APOC1 function
and cancer in many cell types.

 . Conclusion

In conclusion, the current study shows that APOC1 was
highly expressed in TAMs of CRC tissues based on
scRNA-seq and bioinformatics analysis and that inhib-
iting APOC1 of TAMs slowed CRC progression in vitro,
ofering a novel approach and giving CRC patients
fresh hope.
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Te tumor microenvironment (TME) acts as a crucial role in the occurrence and development of osteosarcoma (OS). Despite this,
the mechanism controlling the components of immunity and stroma in the tumor microenvironment remains a mystery. To
conduct this study, we download and collate transcriptome data from the TARGETdatabase, whose full name is Terapeutically
Applicable Research to Generate Efective Treatments, as well as available clinical information of OS. Te CIBERSORT and
ESTIMATE methodology are used to acquire the proportions of components of immunity and stroma and tumor-infltrating
immune cells (TICs). Protein-protein interaction (PPI) networks and Cox regression analysis are used to select diferentially
expressed genes (DEGs). A prognostic biomarker is determined by intersecting univariate COX and PPI results, which lead to the
fnding of Triggering receptor expressed on myeloid cells-2 (TREM2). Based on the next analysis, TREM2 expression is positively
correlated with OS survival time. Immune function-related genes have enrichment in the group with high expression of TREM2,
according to gene set enrichment analysis (GSEA). Te percentage of TICs by CIBERSORT methodology revealed that the
expression of TREM2 is positively associated with follicular helper T cells, CD8-positive T cells, and M2 macrophages and
negatively correlated with plasma cells, M0macrophages, and naive CD4-positive Tcells. All results suggest a possible integral role
of TREM2 in the immune-related events of TME. Terefore, TREM2 may be a potential indicator of remodeling of TME in
osteosarcoma, which is useful and helpful in predicting the clinical prognostic outcome of OS patients and provide a unique
perspective for immunotherapy for OS.

1. Introduction

Chiefy afecting children and young adults and occupying
about nine percent of cancer-related deaths in youngsters
whose age range is between 10 and 24 years old [1, 2], the
exact cause of osteosarcoma is still unclear as a primary
malignant bone tumor. In addition, the local invasiveness
and metastasis of osteosarcoma remain an enormous
challenge of therapy and poor prognosis [3].With the advent
of adjuvant and neoadjuvant chemotherapy, the fve-year
survival rate of OS had a substantial increase which is
upto about 70% since the 1970s, but after lungmetastasis, the

fve-year survival rate still maintains as low as 20–30% [4]. In
addition to this, osteosarcoma is highly heterogeneous
which makes the prediction of treatment outcomes com-
plicated [5]. Te OS includes distinct histological subtypes:
osteoblastic, chondroblastic, fbroblastic, giant-cell rich,
epithelioid, small-cell, and telangiectatic types [4]. Tere-
fore, exploring new diagnostic and predictive biomarkers
and validating more therapeutic targets are continuously
essential and critical.

Acting decisive roles in tumor occurrence, progression,
metastasis, and sensitivity to therapy, TME has aroused
tremendous interest in basic and clinical research as
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a therapeutic target in cancer [6]. Resident stromal cells and
recruited immune cells are the primary component of TME
in OS.Tere is convincing evidence to prove that the stromal
cell acts a prominent role in angiogenesis and the remod-
eling of extracellular matrix in tumors [7]. Te occurrence,
growth, and progression of tumors are critically afected by
the mutual efects between host tumor cells and stromal
cells. However, the stromal components of diferent tumors
vary widely. Te understanding of the mechanism of
crosstalk among tumors is still at a low level [7]. In the
meantime, several studies keep close tabs on how immune-
related cells impact tumor occurrence, growth, and pro-
gression. An increasing number of research studies reveal
that TICs acted as an up-and-coming indicator for the
understanding and therapeutic efects of TME [8]. Studies
have shown that osteosarcoma’s immune environment is
primarily composed of T-lymphocytes and macrophages.
Osteosarcoma cells can control the recruitment, diferen-
tiation, and development of immune-infltrating cells, which
results in a local environment of immune tolerance. Tis
kind of environment is favorable to the development of
tumors, the resistance of drugs, and even metastases [9, 10].
Terefore, to properly demonstrate the mechanism of TME
immune and stromal components regulation, precise genetic
analysis is a research hotspot as well as a challenge.

In our study, CIBERSORTand ESTIMATEmethodology
is used to count on the proportions and composition of the
components of immunity and stroma of OS patients from
the TARGET database and selected interesting biomarker
TREM2. Several researchers identifed the TREM2 receptor
as a dominating signaling hub of pathology-induced im-
munity, which can sense tissue damage and activate robust
remodeling immunity as responding to it [11]. By playing
a part in tumor-associated macrophages (TAMs) and
myeloid-derived suppressor cells (MDSCs), TREM2 par-
ticipated in facilitating an immune-suppressive TME in
numerous cancers, including lung cancer, gastric cancer,
and glioma [11–13]. In our study, embarking on a com-
parison between components of immunity and stroma in
TME, diferentially expressed genes (DEGs) are generated,
which revealed that TREM2may be a potential biomarker of
TME remodeling in osteosarcoma.

2. Data Collection and Processing

2.1. Data Source. All data of transcriptome RNA-seq of 101
OS samples and clinical data (including age and sex) of 253
clinical cases are downloaded and collated from the TAR-
GET database (https://ocg.cancer.gov/programs/target) on
May 24, 2022. In the genetic screening phase, we used all
transcriptomic data, but in the prognostic analysis, we used
only those data that had both transcriptomic data and
survival status (survival status and survival time). After
integration, a total of 95 samples had both transcriptome and
survival data. Tere were 55 men and 40 women. Eleven
patients were younger than 10 years, 62 were between 10 and
18 years, and 22 were older than 18 years.

2.2. Calculation of Tree Kinds of Score. To estimate the
components of immunity and stroma in TME for every
sample, the ESTIMATE algorithm is loaded with estimate
package [14] in R software (version 4.2.0). Te three kinds of
scores (ImmuneScore, StromalScore, and ESTIMATEScore)
increase with the increase of each of the three levels (im-
munity-related, stroma-related, and the summation of
both), respectively. Te larger the scores are, the higher the
respective composition of the corresponding TME
components is.

2.3. Survival Analysis. We combined the three kinds of
scores in TME with survival information of OS patients,
using the Limma package in R. On account of the median
value immune score and stromal score, ninety-fve OS pa-
tients are split into two diferent groups, low- and high-score
groups, respectively. Using the survival and survminer
packages in R software, survival and survminer analyses are
calculated. Survival curves are plotted using the
Kaplan–Meier methodology, and statistical signifcance is
ascertained by log-rank test; P< 0.05 is accepted as signif-
icant statistically.

2.4. Identifcation of Diferently Expression Genes between the
Low and High Groups. Te median value allows the sample
to be divided into two equal parts, so we use it as the split
line. One hundred and one patients are distinguished as low
or high scores, respectively, in comparison with the median
ImmuneScore and StromalScore values. Diferences between
high- and low-scoring samples are achieved by using the R
and limma package, also low and high subgroups are
compared to obtain the corresponding diferentially
expressed genes. Genes with FDR <0.05 and log2-trans-
formed fold change >1 (high subgroup/low subgroup) are
regarded as signifcantly diferentially expressed genes.

2.5. Enrichment Analyses of GO and KEGG. Te enrichplot,
clusterProfler, and ggplot2 packages of R software are used
to classify 118 DEGs according to genomic annotation in-
formation, i.e., gene ontology (GO) and Kyoto encyclopedia
of genes and genomes (KEGG). Genomic annotation in-
formation with both p and q values< 0.05 are regarded as an
important and statistically signifcant role in the develop-
ment and progression of osteosarcoma.

2.6. Heatmaps. R with the heatmap package is applied to
establish the heatmap of DEGs.

2.7. Te Diference Analysis of Scores with Clinical
Characteristics. Data on clinical information of OS patients
are also of interest. R software is used to perform statistical
analysis, andWilcoxon or Kruskal–Wallis rank sum tests are
used to determine whether there are statistical diferences
between clinical indicators between two groups.
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2.8. Establishment of a PPINetwork. PPI networks reveal the
interactions between proteins, and we chose to use the
STRING database to construct the corresponding network
graphs. What is worth mentioning is that the nodes used to
set up the network contain only those nodes whose conf-
dence level of interaction is greater than 0.9.

2.9. Analysis of COX Regression. Univariate Cox regression
analysis allows initial screening out of potentially non-
signifcant variables, which is achieved through R software
and survival package. As shown, those ascertained and
signifcant genes met p < 0.05 in both analyses of univariate
Cox and Kaplan–Meier tests.

2.10. Gene Set Enrichment Analysis. Briefy, GSEA can de-
termine the contribution of a predefned gene set to the
phenotype, our gene set is all transcriptomic data as de-
scribed previously, and the analysis is based on the C7 and
HALLMARK target sets (v6.2). Just gene sets with corrected
p < 0.05 and FDR q< 0.05 are regarded as signifcant sets.
All GSEA analyses are performed on GSEA-4.2.3 software.

2.11. TIC Profle. Te TIC abundance profles of tumor
samples can refect the immune cell composition in oste-
osarcoma to some extent and can be calculated by
CIBERSORT. Te calculated results are screened, and only
samples of p< 0.05 are retained for subsequent analysis.

2.12. Statistical Analysis. All statistical analyses were con-
ducted by R software (version 4.1.3). Te Wilcoxon test was
used to compare the diferences between the two groups. p

value <0.05 was considered statistically signifcant.

3. Result

3.1. Analysis Process ofTis Study. Tis study can be divided
into two major steps: the discovery of TREM2 and the
follow-up study of TREM2 (Figure 1). First, osteosarcoma
tissue consists of tumor cells and stromal cells, which
correspond to ImmuneScore and StromalScore. Each score
is used to divide samples into two groups, respectively, using
the median value as the cut-of value, and the intersection of
DEGs between the high and low groups of each score is used
for subsequent PPI and regression analysis, while the in-
tersection of PPI and regression analysis results in turn, eight
key genes (ITGAM, HLA-DMA, LY96, C1QA, C1QB,
C1QC, TREM2, and C3AR1) are identifed. TREM2 is used
as our gene of interest for subsequent studies including
survival analysis, GSEA, and analysis of immune-related
functions.

3.2. Scores Are Associated with OS Patient Survival and
ClinicalCharacteristics. An important indication of whether
the immune and stromal ratios are signifcant in patients
with osteosarcoma is the relationship with survival, so we
performed a Kaplan–Meier analysis of three kinds of scores,
and not surprisingly, the scores correlated positively with

survival (Figures 2(a) and 2(b)). To assess the combined
composition of two components in TME, we add Immu-
neScore and StromalScore to get ESTIMATEScore (Sup-
plement Table 1). Despite the result showing there is no
signifcant correlation between ESTIMATEScore and the
overall survival rate (Figure 2(c)), its p value is still less than
0.1. Tese entire results implied that the composition of
TME is clinically important and the compositional aspects of
TME can forecast patients’ prognosis of OS, especially
immune and stromal components.

In addition to the survival rate, it is worth discussing
whether these three kinds of scores are correlated with other
clinical indicators such as age and gender. Te results in-
dicated that gender is signifcantly correlated with Immu-
neScore and ESTIMATEScore in patients (P< 0.05, Figures
2(d) and 2(f )), except StromalScore (p � 0.1, Figures 2(e)),
while age is not signifcantly correlated with any score
(p > 0.05, Figures 2(g)–2(i)). We found that scores in female
patients are higher than in male patients.

3.3. Immune-RelatedGenes AreMainly SharedDEGs between
the ImmuneScore and StromalScore. Analysis of comparing
patients between low and high scores is executed to ascertain
if there are defnitive genetic profle alterations of compo-
nents of immunity and stroma in TME. Eight hundred and
ninety DEGs (Five hundred and twenty-nine downregulated
and three hundred and sixty-one upregulated genes) are
received by comparing two groups (low- and high-
ImmuneScore patients), with the median value as the cut-
of (Figures 3(a), 3(c), 3(d), Supplement Table 2). Corre-
spondingly, fve hundred and thirty-one DEGs (Two hun-
dred and twenty-four downregulated and three hundred and
seven upregulated) are received from the StromalScore
(Figures 3(b)–3(d), Supplement Table 3). Furthermore,
twenty-nine low-score downregulated genes and eighty-nine
high-score upregulated genes are cross-linked between the
ImmuneScore and StromalScore by an analysis of Venn
diagrams (Figures 3(c) and 3(d), Supplement Table 4). Te
entire DEGs (118 genes in all) are deemed as determinants of
status in TME. GO enrichment analysis results give evidence
that the DEGs ordinarily have a corresponding in terms
linked to immunity, including innate and acquired immu-
nity (Figure 3(e), Supplement Figure 1A and 1B).Te KEGG
enrichment analysis similarly gives evidence of that DEG
enrichment in the disease spectrum is related to the immune
system, including infection and autoimmune disease
(Figure 3(f), Supplement Figure 1C and 1D). Hence, the
overall function of diferentially expressed genes appears to
have a corresponding immune-related event, hinting the
participation of immunity-related elements is a principal
signature in the TME of OS.

3.4. Cross-Tabulation Analysis between Univariate Cox Re-
gression and PPI Network. To move forward a single step in
exploring the latent mechanism, we worked with Cytoscape
software to set up the PPI network in the STRING database.
Figure 4(a) show the mutual interplay among the 118 genes,
and ranked in the top thirty genes are listed in the picture as
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Figure 2: Correlation of scores with the survival and clinical characteristics of patients with osteosarcoma (OS). (a–c) Kaplan–Meier
survival analysis for OS patients grouped into high or low score in ImmuneScore, StromalScore, and ESTIMATEScore determined by the
comparison with the median, respectively. p � 0.008, 0.027, 0.069 by log-rank test, respectively. (d–f) Distribution of ImmuneScore,
StromalScore, and ESTIMATEScore in gender. Te p � 0.03, 0.1, and 0.021, respectively, by Kruskal–Wallis rank sum test. (g–i) Dis-
tribution of ImmuneScore, StromalScore, and ESTIMATEScore in age. Te p value was calculated by Kruskal–Wallis rank sum test as
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Figure 3: Heatmaps, Venn plots, and enrichment analysis of GO and KEGG for DEGs. (a, b) Heatmap for DEGs generated by comparison
of the high-score group vs. the low-score group in ImmuneScore and StromalScore, respectively. Row name of heatmap is the gene name,
and column name is the ID of samples which not shown in plot. Diferentially expressed genes were determined by Wilcoxon rank sum test
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Figure 5: Continued.
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rank order (Figure 4(b)). Te vital factors impacting the
survival of OS patients among 118 DEGs are selected by
applying univariate COX regression analysis (Figure 4(c)).
Ten, these intersecting sets between the core nodes of PPI
and the top nineteen Cox regressors is carried out, and eight
superimposed factors are in place, which are identifed
(ITGAM, HLA-DMA, LY96, C1QA, C1QB, C1QC, TREM2,
and C3AR1, Figure 4(d)).

3.5. Relationships between TREM2 and Survival Time and
Clinical Characteristics in OS Patients. Based on previous
report, we chose TREM2 for further study [15]. According to
the median expression of TREM2 gene, we separated the OS
patients into two groups, low- and high-expression TREM2
expression groups. Tere is a signifcant diference of survival
rate statistically between two groups by the high TREM2 ex-
pression group has a higher survival rate than patients with
corresponding low expression (Figure 4(e)). What’s more,
there is no statistical diference between TREM2 expression
and clinical characteristics (Supplement Figure 2).

3.6. TREM2 as a Potential Indicator of TME Remodeling.
Taking the fact that the levels of TREM2 expression have
positive correlation with OS patient survival into consid-
eration, these two groups are in comparison in GSEA.

Hallmark and C7 sets of both demonstrated that the groups
with high expression of TREM2 have observably more
enrichment in immunity-related gene sets, suggesting
immunity-related functions, such as the complement re-
sponse, allograft rejection, IL6/JAK/STAT3 signaling, and
acquired immunity are substantially more vibrant (Figures
5(a) and 5(b)). Terefore, it is implicit that the status of the
TME can be mirrored by the TREM2 expression.

3.7. Correlation Analysis of the Levels of TREM2 Expression
and TICs. To move forward a single step in confrming the
relevance between TME and expression levels of TREM2.
CIBERSORTmethodology is utilized to acquire the immune
subpopulation composition of tumor-infltrating. Te es-
tablishment of twenty-two kinds of immunity-related cell
profles is executed as follows (Figure 5(c)), and the rele-
vance among TICs is fgured up (Figure 5(d)). Te dis-
crepancy and connection between the expression of TREM2
expression and the proportions of TICs are analyzed. Six
kinds of TREM2-related TICs are obtained (Figures 6(a)–
6(h)). Of these, three types of TICs are associated positively
with the expression of TREM2, including CD8-positive
T cells, follicular helper T cells, and M2 macrophages.
Tree types of TICs, including plasma cells, naive CD4-
positive T cells, and M0 macrophages, are associated

0.05

-0.14

0.00

-0.05

-0.07

-0.05

0.28

-0.09

-0.23

0.07

-0.01

0.36

0.00

-0.10

-0.12

0.08

-0.03

-0.10

-0.10

0.00

0.16

-0.05

0.07

-0.12

-0.17

-0.02

-0.07

-0.07

-0.04

0.08

-0.11

-0.12

-0.11

-0.04

-0.02

-0.13

-0.07

-0.02

-0.03

0.05

0.16

0.05

0.23

-0.03

0.00

0.05

-0.04

-0.23

-0.02

-0.20

-0.33

-0.25

-0.13

-0.23

-0.04

-0.10

0.06

-0.02

-0.06

0.15

0.15

0.03

-0.14

-0.14

-0.03

0.11

-0.05

-0.35

-0.20

0.14

-0.09

-0.02

-0.28

-0.19

0.16

0.10

0.01

0.22

-0.06

-0.11

-0.35

-0.06

-0.13

-0.16

-0.39

-0.28

-0.25

-0.14

-0.61

0.01

0.09

0.01

-0.13

0.00

-0.03

-0.01

0.11

0.05

-0.08

-0.11

-0.15

-0.14

-0.06

-0.20

0.05

0.19

-0.03

0.13

0.10

0.12

-0.06

0.16

-0.01

-0.18

-0.49

-0.30

0.16

-0.20

-0.18

0.46

-0.06

-0.02

0.05

0.33

0.14

0.13

-0.08

0.05

-0.09

-0.06

-0.23

-0.08

0.15

0.16

0.05

-0.08

0.10

-0.01

0.12

0.05

0.00

-0.03

-0.30

-0.07

0.65

0.56

-0.02

0.04

0.10

-0.02

0.03

-0.06

-0.01

-0.18

-0.06

0.55

-0.06

0.17

0.08

0.02

-0.03

-0.08

-0.07

-0.15

-0.06

0.01

0.04

0.13

0.05

0.05

-0.09

0.11

0.00

-0.11

0.12

-0.06

0.05

0.20

0.01

-0.02

-0.27

-0.08

0.15

0.37

0.03

0.26

0.00

-0.22

-0.02

0.49

0.15

0.28

0.00

-0.08

0.07

0.34

0.47

-0.07

-0.10

-0.08

0.43

0.09

-0.15

0.12

0.08

-0.06

0.06

0.12

0.04 0.06

Mast cells resting

T cells CD4 memory activated

T cells CD4 naive

T cells CD4 memory resting

Macrophages M0

B cells naive

NK cells resting

Dendritic cells activated

B cells memory

Mast cells activated

Neutrophils

Monocytes

Plasma cells

T cells regulatory (Tregs)

T cells follicular helper

T cells CD8

NK cells activated

Macrophages M1

Dendritic cells resting

Macrophages M2

T cells gamma delta

M
as

t c
el

ls 
re

sti
ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 C

D
4 

na
iv

e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

M
ac

ro
ph

ag
es

 M
0

B 
ce

lls
 n

ai
ve

N
K 

ce
lls

 re
sti

ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

B 
ce

lls
 m

em
or

y

M
as

t c
el

ls 
ac

tiv
at

ed

N
eu

tr
op

hi
ls

M
on

oc
yt

es

Pl
as

m
a c

el
ls

T 
ce

lls
 re

gu
la

to
ry

 (T
re

gs
)

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r

T 
ce

lls
 C

D
8

N
K 

ce
lls

 ac
tiv

at
ed

M
ac

ro
ph

ag
es

 M
1

D
en

dr
iti

c c
el

ls 
re

sti
ng

M
ac

ro
ph

ag
es

 M
2

T 
ce

lls
 g

am
m

a d
el

ta

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

(d)

Figure 5: GSEA for samples with high TREM2 expression and low expression and TIC profle and correlation analysis in tumor samples.
(a, b)Te enriched gene sets in Hallmark and C7 sets by the high TREM2 expression sample. (c) Bar plot showing the proportion of 21 kinds
of TICs in OS tumor samples. (d) Heatmap showing the correlation between 21 kinds of TICs and numeric in each tiny box indicating the p

value of correlation between two kinds of cells. Te shade of each tiny color box represented corresponding correlation value between two
cells, and Pearson coefcient was used for signifcance test.
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Figure 6: Continued.
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negatively with the expression of TREM2. What’s more,
there are 6 kinds of TICs of TREM2 expression (Figure 6(i)).
Tese fndings are a further indication of the efect of
TREM2 expression levels on TME immunoactivities.

4. Discussion

In the current study, genes of the tumor microenvironment
that related to the survival of OS patients from the TARGET
database are what we attempted to appraise. TREM2 is
appraised to be engaged in immunity-related activities.
More signifcantly, a battery of research on bioinformatics
revealed that TREM2 is a prognostic biomarker for osteo-
sarcoma microenvironment remodeling.

Te tumor microenvironment played a pivotal part in
tumorigenesis and its progression. It is of strategic meaning
to detect the underlying therapeutic targets which can
contribute to the remodeling and facilitating the transition
of the tumor microenvironment from a developmental state
to an inhibitory state.

Numerous research studies had elucidated the signif-
cance of tumor microenvironment in tumorigenesis [16]. In
osteosarcoma tumor microenvironment-related literature,

we take notice that the connection between the score of
immunity and survival state has been investigated, and
C3AR1, PPARG, PDK1, IGHG3, and C1Q are recognized as
prognostic biomarkers [17–19]. Te immune components in
TME sever the purpose of the prognosis of patients by
analyzing the OS data in the TARGET database. In par-
ticular, the composition of immunity and stroma in TME
has a strong correlation with the overall survival in OS
patients. Tese results demonstrated and emphasized the
importance of pursuing the connection between stromal
cells and tumor cells, which will give a novel perception for
discovering and developing more efcient therapy. What’s
more, this paper also substantiated that TICs have relevance
with the clinical prognostic outcome of OS [20]. Te rele-
vance ofers a brand new theoretical footstone for the
evolution of more efcient immunotherapeutic methods.

For the last few years, tremendous progress was acquired
in immunotherapy, and the inhibition of immune check-
point inhibitors (ICIs) in OS made signifcant progress
[21, 22]. However, the inhibition of immune checkpoint
inhibitor (ICI) immunotherapy for osteosarcoma (OS) is se-
verely restricted by the lacking of immunogenicity and poor
Tcell infltration [23, 24].Terefore, the immunotherapy of OS
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Figure 6: Correlation of TICs proportion with TREM2 expression. (a) Violin plot showed the ratio diferentiation of 21 kinds of immune
cells between OS tumor samples with low or high TREM2 expression relative to the median of TREM2 expression level, andWilcoxon rank
sum was used for the signifcance test. (b–h) Scatter plot showed the correlation of 7 kinds of TICs proportion with the TREM2 expression
(p < 0.05). Te red line in each plot was ftted linear model indicating the proportion tropism of the immune cell along with TREM2
expression, and Pearson coefcient was used for the correlation test. (i) Venn plot displayed eight kinds of TICs correlated with TREM2
expression codetermined by diference and correlation tests displayed in violin and scatter plots, respectively.
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is in urgent need of some novel candidate exploitation. Here,
the decreased expression of TREM2 has a signifcant associ-
ation with poor prognosis by analyzing the transcriptomic of
OS in the TARGETdatabase. Consequently, we will center on
the relevance between the expression of TREM2 and TME to
supply a novel treatment idea for OS immunotherapeutic
methods.

As a dominating signaling hub of pathology-induced
immunity, TREM2 catch the attention of the leading role of
myeloid cells in various pathological processes which can
mediate immunosuppression [25]. Many markers of tissue
injury are ligands for the TREM2 receptor, and binding of
the TREM2 receptor and ligand contributes to cell survival
and resistance to infammation, afecting cell phenotype by
regulating phagocytosis and metabolism [15]. In cancer
research, TREM2 is observed in macrophages beyond 200
cancer cases of humans in fostering an immune-suppressive
TME [15]. Tere, TREM2 is perhaps a biomarker to alter
tumor bone marrow infltration and reinforce immuno-
therapy of ICIs [25].

CIBERSORT methodology is applied to accomplish the
analysis of the proportion of TICs and completed the
composition of twenty-two profles of immune cells. Te
results exhibited that macrophages accounted for the highest
proportion in the TME of OS, especially M2 macrophages.
Te fraction of M2 macrophages in high expression groups
of TREM2 is higher, which may have a relation to the
immune-suppressive TME. In addition, CD8-positive Tcells
and follicular helper T cells have a positive correlation with
the diferential expression of TREM2. Plasma cells, naive
CD4-positive T cells, and M0 macrophages have a negative
correlation with the expression of TREM2. All results
suggest that the diferential expression of TREM2 is linked to
the levels of immune cell infltration and is a critical target
for ameliorating the prognosis of OS. As an attractive
biomarker for modulation of individual immunotherapy
who are intractable to therapy of ICIs and have a TME rich
in TAM, TREM2 is tightly associated with TAMs [26].

Applying the ESTIMATE algorithm, functional en-
richment analysis is applied to acquire the gene of the tumor
microenvironment of OS in the TARGETdatabase. TREM2
catches our eye as a potential prognostic biomarker for OS
patients. What is of interest is that, although TREM2 may
mediate the immunosuppressive tumor microenvironment
through macrophage M2 polarization, its expression level
has positive relevance with the overall survival time of os-
teosarcoma patients. Further research is indispensable to
disclose the mechanism of regulating and exploit novel
immunotherapeutic strategies.
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Introduction. LAMA1, also known as laminin subunit α1, is a member of the laminin family, which is widely reported to be a key
basement membrane molecule that afects various biological activities and is associated with many kinds of diseases. We aimed to
investigate the association between LAMA1single-nucleotide polymorphisms and the occurrence and progression of esophageal
squamous cell carcinoma in the Chinese population.Method. 2,186 participants were collected retrospectively between October 2008
and January 2017, including 1,043 ESCC patients and 1,143 noncancer patients. A 2mL blood sample was obtained intravenously for
the LDR for SNP analysis. Te 6 SNP loci of LAMA1 were selected and examined. We analyzed the association of several genetic
models of 6 LAMA1 SNP loci, sex, age, smoking and drinking status, and the occurrence of esophageal squamous cell carcinoma.
Results. In the rs62081531 G>A locus, genotype GA was a protective factor for ESCC compared with GG (OR: 0.830, P � 0.046),
especially among the younger and nondrinkers. At rs607230 T>C, genotype TCwas linked with a lower risk of ESCC compared with
TT. (OR: 0.613, P � 0.034). Haplotype Frequencies revealed that Ars62081531Grs621993Ars539713Trs566655Ars73938538Crs607230 (OR: 0.803,
P � 0.028) and Grs62081531Grs621993Ars539713Trs566655Crs73938538Crs607230 (OR: 0.679, P � 0.010) were strongly associated with lower
susceptibility of ESCC.Conclusion.Te LAMA1 rs62081531, rs539713, rs566655, and rs607230 polymorphisms were demonstrated to
be related to susceptibility to ESCC in the Chinese population. LAMA1 SNPs may have a signifcant impact on the occurrence of
esophageal cancer and may serve as potential diagnostic biomarkers.

1. Introduction

Esophageal cancer is a prevalent malignant tumor that has
a high rate of morbidity andmortality worldwide. According
to the Global Cancer Statistics 2020, esophageal cancer is
more prevalent in East Asia, particularly in China, as well as
West Asia and Africa [1]. Tere was a clear correlation

between the pathological type of esophageal cancer and its
geographic distribution. Squamous cell carcinoma is the
most common type of esophageal cancer in developing
countries. China has a high prevalence of esophageal
squamous cell carcinoma (ESCC) of up to 90%. A variety of
pathogenic factors may lead to esophageal squamous cell
carcinoma, including smoking, drinking, eating habits, and
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viral infections [2, 3]. However, not everyone exposed to
these risk factors develops esophageal cancer, suggesting that
genetic susceptibility, particularly single nucleotide poly-
morphisms (SNPs), plays a signifcant role in the develop-
ment of esophageal squamous cell carcinoma.

LAMA1 is also known as laminin subunit α1. Laminins
are a family of glycoproteins found in the extracellular
matrix that comprises the basement membrane [4, 5].
Laminins have a heterotrimeric structure composed of an α,
β, and c chain [6]. Numerous biological processes are known
to be directed by them, including cell adhesion, mitogenesis,
diferentiation, and metastasis, all of which contribute to
carcinogenesis [7–9]. Tissue distribution of LAMA1 oc-
curred mainly in early epithelial development and some
adult epithelia. Recent reports have shown that laminin-1
acts as an efcient attachment protein for a large variety of
cultured cell types in vitro [10]. Mutations in the LAMA1
gene result in a defciency of the laminin α1 chain, which
may lead to tumorigenesis and progression [11]. Recent
research indicates that LAMA1mutations or overexpression
are linked with the occurrence and development of various
malignant tumors, including colon cancer, pancreatic can-
cer, and ovarian cancer [12–15].

However, the relationship between the LAMA1single-
nucleotide polymorphism and ESCC remains unclear.
Trough multicenter large-sample case-control research, we
aim to thoroughly investigate the association between
LAMA1 single-nucleotide polymorphisms and the incidence
and progression of esophageal cancer.

2. Method

2.1. Patients and Study Design. Between October 2008 and
January 2017, 2,186 participants were collected from the
Afliated People’s Hospital and the Afliated Hospital of
Jiangsu University (Zhenjiang, China). Totally, 1,043 cases of
esophageal cancer were diagnosed and histologically con-
frmed as squamous cell carcinoma by two pathologists
independently. Patients with a history of any other types of
cancer or with metastasis or those who had received neo-
adjuvant therapy were excluded. Around the same time,
1,143 noncancer patients from both hospitals were enrolled,
with a frequency matching by age (±5 years) and gender, and
the majority of them were admitted for trauma.

For 1,043 patients and 1,143 negative controls, baseline
information such as age, gender, and other ESCC-related
risk factors, such as smoking and drinking, were gathered
through a questionnaire. A total of 1,143 control individuals
and all case subjects provided feedback. Each participant had
a 2mL blood sample obtained intravenously for analysis.

Te protocol adhered to the Declaration of Helsinki on
the ethical conduct of research involving human/animal
subjects and was approved by the Ethics Committee of
Jiangsu University (Zhenjiang, China). All participants
signed an informed consent form before recruitment.

2.2. Genomic DNA Extraction and Single-Nucleotide Poly-
morphism Analysis. Te QIAamp DNA Blood Mini Kit was

applied to amplify genomic DNA isolated from peripheral
blood using PCR (Qiagen, Berlin, Germany). Samples were
genotyped further using the ligation detection reaction
(LDR) approach (supported by Genesky Biotechnology Inc.,
Shanghai, China). Six LAMA1 SNP loci (rs62081531,
rs621993, rs539713, rs566655, rs73938538, and rs607230)
were selected and analyzed. As a methodology of quality
control, the analysis is repeated on 10% of randomly selected
samples. In a preliminary study, we performed a linkage
disequilibrium analysis on the 1000Genomes database,
identifed SNP loci with correlations, and further explored
tag SNPs.

2.3. Surgical and Histological Evaluation. All patients un-
derwent esophagectomy by qualifed surgeons. Following
the procedure, surgical specimens will be fxed to a cork and
immersed in 10% formalin. All these patients’ specimens
were systematically reevaluated by experienced pathologists
specialized in thoracic oncology and restaged under the 8th
edition AJCC/UICC staging of cancers of the esophagus and
esophagogastric junction. Te histopathological examina-
tion includes tumor size, grade of diferentiation, the margin
of resection, and lymph node status.

2.4. Statistical Analysis. Statistical analyses were performed
using SPSS version 26 (IBM, Chicago, IL) and R software
(Version 4.0.3, R Foundation for Statistical Computing,
Vienna, Austria). Te baseline characteristics were sum-
marized using the R software package “tableone”. Clinical
characteristics were compared using Fisher’s exact test or the
χ2 test for categorical variables and the Student’s t-test for
comparing continuous variables. For the genetic model (A as
a major allele and B as a minor allele), (a) dominant model:
allele B increases risk; (b) Recessive model: two copies of
minor allele B are required for increased risk; (c) additive
model: r-fold increased risk for AB and 2r increased risk for
BB; (d)multiplicative model: r-fold increased risk for AB and
r2 increased risk for BB [16]. Two-tailed p value< 0.05 is
considered as statistical signifcance, whereas p values be-
tween 0.05 and 0.10 are considered borderline statistically
signifcant. Te crude odd ratio (OR) and its corresponding
95% confdence interval (CI) are calculated according to
genotypes between the two groups. In most cases, the risk is
compared using the parametric test. When the sample size
in the group is small, we use the nonparametric test. For
stratifed analyses, we included age, gender, smoking and
drinking status, and the SNP model in the analysis,
resulting in an adjusted OR for the SNP model. Te ad-
justed OR and its corresponding CI are calculated by lo-
gistic regression analysis, and the hierarchical analysis is
carried out. Demographic data, including age, sex, alcohol,
and smoking, were covariates. Te genotype was a dummy
variable, and the group was a dependent variable. Te
SHEsis online platform [17] was utilized to conduct linkage
disequilibrium studies and visualize the results by using R
4.0.3 and the R software packages “LDheatmap” and “ge-
netics,” and SHEsis was also used to conduct haplotype
frequency analyses [18].
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3. Results

Between October 2008 and January 2017, we included 1,043
patients and 1,143 negative controls. Tere was no statis-
tically signifcant diference in median age between the case
and control groups [63.00 (59.00, 68.00) versus 63.00 (54.00,
70.00), p � 0.257]. Women accounted for 27.3% of the case
group and 27.6% of the control group (P � 0.941). Te
proportion of smoking and drinking in ESCC patients was
higher than that in the control group (43.5% vs. 29.7%,
P< 0.001, 31.5% vs. 16.3%, P< 0.001). Detailed clinico-
pathological information was described in Table 1.

Te brief information on the six genotyped SNPs of
LAMA1 is shown in Table 2. All SNP genotyping experi-
ments were successful at a rate greater than 95%.Te control
group’s minor allele frequencies (MAF) were similar to those
found in East Asian groups in the 1000 Genomes and
gnomAD-Genomes databases. Te Hardy–Weinberg equi-
librium (HWE) test revealed that all six SNPs in the control
group had p values greater than 0.05, indicating that the
control group was genetically equilibrium. Linkage dis-
equilibrium of 6 SNP loci of LAMA1 is shown in Figure 1

and the coefcient of linkage disequilibrium and correlation
coefcient test are described in Tables S7a and S7b.

Te association of 6 SNPs in LAMA1 with esophageal
squamous cell carcinoma is shown in Table 3. In the
rs62081531 locus, G/A was a protective factor for ESCC
compared with G/G (OR: 0.820, 95% CI: 0.677–0.993, P �

0.042). We can also fnd in the dominant model that the
minor allele A is a protective factor for ESCC (OR: 0.830,
95% CI: 0.691–0.997, P � 0.046). At rs607230, T/C was
a protective factor for ESCC compared with T/T (OR: 0.613,
95% CI: 0.389–0.965, P � 0.034).

Simultaneously, we performed stratifed analyses on 6
loci of LAMA1, and detailed information is present in
Tables S1–S6. In rs62081531 G>A, in the younger pop-
ulation, the dominant model (OR: 0.680, 95% CI:
0.527–0.877, P � 0.003), the recessive model (OR: 0.741,
95% CI: 0.594–0.923, P � 0.008), or the multiplicative model
(OR: 0.754, P � 0.010) all imply a negative link with ESCC
incidence. In those without alcohol consumption, we found
that either the dominant model (OR: 0.777, 95% CI:
0.627–0.963, P � 0.022), the recessive model (OR: 0.796,
95% CI: 0.660–0.961, P � 0.018), or the multiplicative model

Table 1: Distribution of clinicopathological characteristics in the ESCC case and control groups.

Case Control p value(n� 1043) (n� 1143)
Age (median (IQR)) 63.00 (59.00, 68.00) 63.00 (54.00, 70.00) 0.257
Gender (%)
Female 285 (27.3) 315 (27.6) 0.941
Male 758 (72.7) 828 (72.4)

Smoke status (%)
No 589 (56.5) 803 (70.3) <0.001
Former/current 454 (43.5) 340 (29.7)

Alcohol consumption (%)
No 714 (68.5) 957 (83.7) <0.001
Former/current 329 (31.5) 186 (16.3)

BMI (median (IQR)) 22.27 (20.20, 24.35) 23.88 (21.89, 25.88) <0.001
Chronic disease (%)
No 797 (76.4) 604 (52.8) <0.001
Yes 246 (23.6) 539 (47.2)
Hypertension (%) 234 (22.4) 416 (36.4)
Diabetes (%) 31 (3.0) 216 (18.9)
Cardiovascular disease (%) 0 (0.0) 59 (5.2)

pT stage (%)
Tis 1 (0.1)
T1a 33 (3.2)
T1b 112 (10.7)
T2 382 (36.6)
T3 513 (49.2)
T4 2 (0.2)

pN stage (%)
N0 775 (74.3)
N1 201 (19.3)
N2 45 (4.3)
N3 22 (2.1)

Diferentiation (%)
High 368 (35.3)
Moderate 537 (51.5)
Low 138 (13.2)

Data are no. (%) or mean (SD) or median (IQR); BMI: body mass index; pT stage: pathological T stage; pN stage: pathological N stage.
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(OR: 0.800, 95% CI: 0.664–0.964, P � 0.019) reveals that it is
a protective factor for esophageal cancer (Table S1). At the
rs539713 A>G locus, in the former or current drinking
population, we found that in the recessive or multiplicative
model, it was associated with a reduced risk of ESCC (OR:
0.443, 95% CI: 0.224–0.876, P � 0.019 and OR: 0.744, 95%
CI: 0.556–0.996, P � 0.047) (Table S3). At the rs566655
T>G locus, we discovered that both the additive model (OR:
1.270, 95% CI: 1.006–1.603, P � 0.044) and the multiplica-
tive model (OR: 1.274, 95% CI: 1.007–1.611, P � 0.044) were
linked with an elevated risk of ESCC in individuals younger
than 65 years old (Table S4). It was found that the rs607230
T>C variant was associated with a decreased risk of
esophageal cancer in adults aged 65 years (OR: 0.427, 95%
CI: 0.196–0.930, P � 0.032) (Table S6). After stratifed
analysis, rs621993 G>A and rs73938538 A>C did not seem
to be linked with esophageal cancer susceptibility (Table S2
and S5). We also analyzed the association of LAMA1 6 SNPs
with tumor diferentiation and lymph node metastasis, and
the detailed information is shown in Table S8.We found that
neither the lymph node positivity rate nor the degree of
diferentiation was signifcantly associated with themutation
status of the 6 loci. Haplotype frequencies analysis revealed
that Ars62081531Grs621993Ars539713Trs566655Ars73938538Crs607230
(OR: 0.803, 95% CI: 0.660∼0.977, P � 0.028) and
Grs62081531Grs621993Ars539713Trs566655Crs73938538Crs607230 (OR:
0.679, 95% CI: 0.504∼0.913, P � 0.010) were associated with
less susceptibility of ESCC (Table 4).

4. Discussion

Trough ourmulticenter large-samplecase-control study, we
found that rs62081531 locus G>A and rs607230 locus T>C
of LAMA1 were independent protective factors for esoph-
ageal squamous cell carcinoma, especially in those younger
than 65 and nondrinkers.

Haplotype frequency analysis revealed that
Ars62081531Grs621993Ars539713Trs566655Ars73938538Crs607230 and

Grs62081531Grs621993Ars539713Trs566655Crs73938538Crs607230 were
associated with less susceptibility to ESCC among the
Chinese population. To our knowledge, this is the frst report
on LAMA1 single-nucleotide polymorphisms and suscep-
tibility to esophageal squamous cell carcinoma based on
large-scale multicenter clinical research.

LAMA1 (laminin subunit α1) is a part of laminin,
a glycoprotein found in the extracellular matrix that con-
stitutes the basement membrane, and has been shown to be
involved in the occurrence and development of various
diseases [11]. Tissue distribution of laminin subunit α1 is
mainly in early epithelial development and some adult
epithelia [8]. In terms of carcinogenesis, laminin plays an
essential role in cell adhesion, mitosis, diferentiation, and
even metastasis [19]. Laminin is a fundamental functional
component of the basement membrane of several tissues,
including the endothelium of the vessel wall, and diferent
isoforms may contribute to vascular homeostasis [20]. Te
α1 subunit of laminin is typically confned to capillary walls
and is expressed in the basal layer of capillaries in the central
nervous system [21]. A recent study demonstrates that
laminin-1 functions as a chemoattractant for both stromal
and vascular cells, as well as in epithelial/stromal cell in-
teractions for the structure of the basement membrane and
segregation of integrins, hence signaling the proliferation of
epithelial cells [13]. Similarly, in colorectal cancer, Wu et al.
reported novel driver mutations occurring during adenoma
and cancer evolution by single-cellwhole-exome sequencing
(scWES), with LAMA1 (PI3K-Akt signaling pathway) being
one of the most critical pathways for CRC evolution [22].
Likewise, Gudjonsson and coworkers revealed that laminin-
1 plays a vital role in the replacement of myoepithelial cells
in polarity reversal in breast cancer [23]. LAMA1 (laminin
α1) mutations are highly related to retinal avascularity and
neovascularization in nontumor felds, such as the Por-
etti–Boltshauser syndrome [24]. Regardless of tumor or
other nontumor diseases, LAMA1 is essential for vascular
homeostasis and the basal layer of blood vessels.
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Interestingly, Velling et al. found that none of the colon
cancer cell lines synthesized the laminin α1 protein, and they
suggested that mutations in the LAMA1 gene may underlie
the lack of laminin α1 chains observed in some colon cancers
[25]. In our study, LAMA1 mutation showed protective
factors in both rs62081531 G>A and rs607230 T>C, and
basic research also found that LAMA1 defciency could
inhibit the proliferation and invasion of esophageal cancer
[26, 27]. Clearly, not all LAMA1 SNPS are protective factors.
People younger than 65 years of age indicate that the mu-
tation at rs566655 T>G increases the risk of esophageal
cancer, which may be correlated to the function of
a certain SNP.

However, there are few reports on LAMA1 and
esophageal cancer. Most of the research is limited to the
genetic function of LAMA1. Meng and colleagues found that
laminin α1 (LAMA1) is highly expressed in ESCC tissue and
mediates the FAK-PI3K-Akt signaling pathway [27]. Zhou
et al. revealed that LAMA1 was signifcantly upregulated in
ESCC tissues and positively correlated with an aggressive
oncogenic phenotype [26]. Nevertheless, the relationship
between LAMA1 SNP and disease in malignancies has not
been demonstrated. Previous research has focused chiefy on
nontumor studies such as chronic disease or degenerative
disease. Zhao et al. showed that rs2089760 T>G, which is
located in the LAMA1 promoter region, may be associated
with myopia in Chinese populations [28]. Similarly, the
LAMA1 rs2089760 G>A mutation was reported to reduce
transcription factor binding ability and transcription initi-
ation activity and negatively control the gene transcription
of LAMA1, playing a crucial role in pathological myopia
[29]. In a study on degenerative diseases, D’Aoust and

colleagues were the frst to discover that LAMA1 rs73938538
A>C was positively related to Alzheimer’s disease in the
Amish community [30]. Due to the single-nucleotide
polymorphism of LAMA1, the mutated site seems unable
to efectively translate LAMA1 into laminin subunit α1 so as
to exert its specifc biological function, hence preventing
esophageal cancer susceptibility. We observed that the
consequences of two SNP loci that were related to esoph-
ageal susceptibility were stop-gain mutations, while the rest
were synonymous and missense variants. Tis is largely in
accordance with our expectations, especially when terminal
gain mutations and missense variants can dramatically alter
protein function, even with single nucleotide changes.
However, we also reveal that in the ESCC population,
LAMA1 polymorphisms did not show a statistically sig-
nifcant association with the degree of diferentiation, lymph
node positivity, or T stage.

Temain limitation of our study is that we only included
populations from a specifc region in eastern China, which
may result in a certain geographical specifcity and may not
be generalized to the entire ESCC population. In addition,
our study lacks replication in independent cohorts. Fur-
thermore, we only discovered SNP sites in peripheral blood
in our investigation. How these SNPs of LAMA1 translate
into biological function in the evolution of esophageal
carcinoma is defnitely a primary subject of our future in-
vestigation, which is currently technically difcult due to the
lack of biological tools in our lab.

In conclusion, we found a strong association of LAMA1
rs62081531, rs539713, rs566655, and rs607230 poly-
morphisms with esophageal cancer susceptibility in the
Chinese population. LAMA1 SNPs may signifcantly impact

Table 4: Haplotype frequencies in the case and control groups and risk of ESCC.

Haplotype (LAMA1) Case (freq) Control (freq) Chi2 Or [95%
CI] p value

Ars62081531Ars621993Grs539713Grs566655Ars73938538Crs607230 38.73 (1.9%) 63.18 (2.8%) — —
Ars62081531Ars621993Grs539713Grs566655Crs73938538Crs607230 4.99 (0.2%) 2.60 (0.1%) — —
Ars62081531Ars621993Grs539713Trs566655Ars73938538Crs607230 2.33 (0.1%) 4.12 (0.2%) — —
Ars62081531Grs621993Ars539713Trs566655Ars73938538Crs607230 200.31 (10.0%) 269.91 (11.9%) 4.823 0.803 [0.660∼0.977] 0.028
Ars62081531Grs621993Ars539713Trs566655Crs73938538Crs607230 13.40 (0.7%) 15.93 (0.7%) — —
Ars62081531Grs621993Grs539713Trs566655Ars73938538Crs607230 38.33 (1.9%) 56.03 (2.5%) — —
Grs62081531Ars621993Ars539713Grs566655Ars73938538Crs607230 7.10 (0.4%) 4.11 (0.2%) — —
Grs62081531Ars621993Ars539713Trs566655Ars73938538Crs607230 1.29 (0.1%) 3.52 (0.2%) — —
Grs62081531Ars621993Grs539713Grs566655Ars73938538Crs607230 168.31 (8.4%) 171.67 (7.6%) 0.731 1.102 [0.881∼1.379] 0.393
Grs62081531Ars621993Grs539713Grs566655Ars73938538Trs607230 18.19 (0.9%) 30.69 (1.4%) — —
Grs62081531Ars621993Grs539713Grs566655Crs73938538Crs607230 29.83 (1.5%) 39.59 (1.7%) — —
Grs62081531Ars621993Grs539713Grs566655Crs73938538Trs607230 3.90 (0.2%) 7.69 (0.3%) — —
Grs62081531Ars621993Grs539713Trs566655Ars73938538Crs607230 29.88 (1.5%) 35.63 (1.6%) — —
Grs62081531Ars621993Grs539713Trs566655Ars73938538Trs607230 12.55 (0.6%) 18.16 (0.8%) — —
Grs62081531Ars621993Grs539713Trs566655Crs73938538Crs607230 6.78 (0.3%) 3.95 (0.2%) — —
Grs62081531Grs621993Ars539713Trs566655Ars73938538Crs607230 845.42 (42.2%) 909.38 (40.1%) 1.066 1.072 [0.939∼1.224] 0.302
Grs62081531Grs621993Ars539713Trs566655Ars73938538Trs607230 259.49 (12.9%) 275 (11.9%) 0.720 1.083 [0.900∼1.303] 0.396
Grs62081531Grs621993Ars539713Trs566655Crs73938538Crs607230 74.63 (3.7%) 119.97 (5.3%) 6.626 0.679 [0.504∼0.913] 0.010
Grs62081531Grs621993Ars539713Trs566655Crs73938538Trs607230 40.47 (2.0%) 43.28 (1.9%) — —
Grs62081531Grs621993Grs539713Trs566655Ars73938538Crs607230 117.31 (5.9%) 114.20 (5.0%) 1.127 1.155 [0.885∼1.508] 0.288
Grs62081531Grs621993Grs539713Trs566655Ars73938538Trs607230 34.02 (1.7%) 59.00 (2.6%) — —
Grs62081531Grs621993Grs539713Trs566655Crs73938538Crs607230 8.56 (0.4%) 15.83 (0.7%) — —
Freq: frequency; OR: odds ratio; CI: confdence interval; p< 0.05 is regarded as statistically signifcant value.
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the occurrence of esophageal cancer and may serve as ef-
fective diagnostic biomarkers.
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N6-methyladenosine (m6A) modifcation is a common epigenetic modifcation. It is reported that lncRNA can be regulated by
m6A modifcation. Previous studies have shown that lncRNAs associated with m6A regulation (m6A-lncRNAs) serve as ideal
prognostic biomarkers. However, whether lncRNAs are involved in m6A modifcation in colon adenocarcinoma (COAD) needs
further exploration. Te objective of this study was to construct an m6A-lncRNAs-based signature for patients with COAD. We
obtained the RNA sequencing data and clinical information fromTeCancer Genome Atlas (TCGA). Pearson correlation analysis
was employed to recognize lncRNAs associated with m6A regulation (m6A-lncRNAs). 24 prognostic m6A-lncRNAs was
identifed by univariate Cox regression analysis. Gene set enrichment analysis (GSAE) was used to investigate the potential cellular
pathways and biological processes. We have also explored the relationship between immune infltrate levels and m6A-lncRNAs.
Ten, a predictive signature based on the expression of 13 m6A-lncRNAs was constructed by the Lasso regression algorithm,
including UBA6-AS1, AC139149.1, U91328.1, AC138207.5, AC025171.4, AC008760.1, ITGB1-DT, AP001619.1, AL391422.4,
AC104532.2, ZEB1-AS1, AC156455.1, and AC104819.3. ROC curves and K M survival curves have shown that the risk score has
a well-predictive ability. We also set up a quantitative nomogram on the basis of risk score and prognosis-related clinical
characteristics. In summary, we have identifed some m6A-lncRNAs that correlated with prognosis and tumor immune mi-
croenvironment in COAD. In addition, a potential alternative signature based on the expression of m6A-lncRNAs was provided
for the management of COAD patients.

1. Introduction

Colon adenocarcinoma is a common pathological type of
colon cancer, and its prognosis is poor [1, 2]. Terapies for
colon adenocarcinoma (COAD) include surgery, chemo-
therapy, and radiation therapy [3]. Surgery can cure about
half of the COAD patients, but the recurrence rate stays
high after surgery. Chemotherapy and radiation are not

efective due to their side efects and drug resistance. Be-
sides, the signifcant heterogeneity of COAD limits the
utilization of traditional methods [4]. With the approach of
the era of personalized therapy managements, traditional
diagnosing failed to satisfy advanced diagnoses and ther-
apies. It is expected to build more useful prognostic sig-
natures to help improve personalized treatment
management.
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N6-methyladenosine (m6A) modifcation is one of the
principal internal modifcations of RNA and participates in
many biological processes [5, 6]. m6Amodifcation has been
proven to be a reversible process, which is regulated by
methyltransferase (writer), demethylase (eraser), and signal
sensor (reader) [7]. Studies have reported that m6A mod-
ifcation plays critical roles in the progression of diferent
malignant tumors, including COAD [8–14]. For instance,
METTL3 has been identifed to promote COAD occurrence
and progression by relying on IGF2BP1/IGF2BP2 [15, 16]. It
has been found that METTL14 suppresses COAD occur-
rence and progression by relying on YTHDF2 [17, 18].

lncRNA is a kind of RNA molecule that does not encode
a protein, with a length of more than 200 bp, and plays
important roles in the carcinogenesis and progression of
cancers, including COAD [19, 20]. It has been proven that
m6A modifcation can regulate the physiological functions
of lncRNAs [21, 22]. For example, the structure of lncRNA
can be regulated by binding to m6A readers, allowing m6A
residues to be accessed by specifc RNA-binding proteins
[23, 24]. m6A modifcation modulates the structure of
lncRNA MALAT1 to play the function of the structural
switch, which is related with cancer malignancies [25].
METTL16 (writer) was identifed as an RNA-binding pro-
tein of lncRNA MALAT1 [26]. m6A modifcation can sta-
bilize lncRNA FAM225A that served as a sponge for miR-
1275 and miR-590-3p in nasopharyngeal carcinoma [27].
METTL3 (writer) can stabilize and upregulate LINC00958,
which is involved with the malignancy of liver cancer
progression by sponging miR-3619-5p [28]. Previous studies
have shown that m6A-lncRNAs serve as ideal prognostic
biomarkers. Nevertheless, whether lncRNAs are involved in
the regulation of m6Amodifcation in COAD still need to be
elucidated. Te objective was to identify prognostic m6A-
lncRNAs and construct an m6A-lncRNAs-based prognostic
signature for patients with COAD.

In this study, we obtained the RNA sequencing data in
TCGA and identifed 24 prognostic m6A-lncRNAs and
13 m6A-lncRNAs were selected by the Lasso regression
algorithm to construct prognostic signature. We have also
verifed the reliability of the prognostic signature. In addi-
tion, a quantitative prognostic nomogram was constructed
based on signature and clinical features.

2. Methods

2.1. Data Source and Preparation. RNA sequencing data of
398 COAD patients with clinical information were obtained
from TCGA. 19 COAD patients were excluded due to a lack
of necessary clinical information. Subsequently, RNA se-
quencing data were divided into mRNAs and lncRNAs using
the Ensembl Genome Browser [29]. Te corresponding
clinical data included age, gender, tumor-node-metastasis
(TNM) stage, pathological stage, and survival time. We
randomly divided COAD patients at a ratio of 7 : 3 into the
training cohort (267 patients) and validation cohort (112
patients).

2.2. Identifying Prognosis-Related m6A-lncRNAs. 23 m6A
regulators, based on published articles, including 8 writers,
13 readers, and 2 erasers, were collected in this study (Ta-
ble 1) [30, 31]. Pearson correlation analysis was applied to
the expression of lncRNAs and the 23 m6A regulators to
recognize m6A-associated lncRNAs. Univariate Cox re-
gression analysis was applied to recognize prognostic m6A-
lncRNAs. We used the “limma” R software package to
analyse the diferential expression of prognosis-related m6A
lncRNA.

2.3. Consensus Clustering Analysis. For a better un-
derstanding of the role of m6A-lncRNAs, consensus clus-
tering was performed by the “ConsensusClusterPlus” R
package to divide all samples into diferent clusters based on
the expression of prognosis-relatedm6A-lncRNAs [32].
Subsequently, Kaplan Meier analysis was performed in
diferent clusters. We also applied the CIBERSORT algo-
rithm and theWilcoxon test to analyse diferent immune cell
infltration between clusters. Besides, immune, stromal, and
ESTIMATE scores were calculated by the “ESTIMATE” R
package. GSEA software was applied to investigate the
potential cellular pathways and biological processes in dif-
ferent clusters.

2.4. Development and Evaluation of Prognostic Signature.
After prognosis-related m6A-lncRNAs were identifed,
LASSO regression analysis was applied to setup a risk model
by “glmnet” R package, which could avoid overftting by
disposing of highly correlated lncRNAs [33, 34]. Te sig-
nature was calculated in the following format:

risk score � 􏽘
n

i�1
coef(i) ∗ lncRNA(i) expression. (1)

Ten, COAD patients were classifed into high- and low-
risk subgroups. K M survival analysis was employed to
compare whether there were diferences in survival between
the two subgroups using “survival” R packages. To testify the
prediction efcacy of the risk model, we employed ROC
curves and measured the AUC values by R package
“timeROC” [35].

2.5. Establishment of Prognostic Nomogram. To further
evaluate the reliability of the signature, a comprehensive
analysis of risk score and clinical features was performed.
Subsequently, a quantitative nomogram was developed on
the basis of risk score and clinical features using the “rms” R
package [36]. We applied the calibration curves to outline
the accuracy of the nomogram.

2.6. Statistical Analysis. All statistical analysis in this study
was performed using R software (V 4.0.4). Te Wilcoxon’s
test was employed to compare the diference. Kaplan Meier
(K M) survival analysis was performed by using the log-rank
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test. Unless otherwise stated, P< 0.05 was considered
a statistically signifcant diference.

3. Results

3.1. Identifcation of Prognosis-Related m6A-lncRNAs. By
Pearson correlation analysis, a total of 1505 lncRNAs were
identifed as m6A lncRNA, with an absolute correlation
coefcient >0.4 (P< 0.001). Ten, 24 prognostic m6A-
lncRNAs were identifed by univariate Cox regression
analysis. Among them, UBA6-AS1, AC139149.1, NIFK-AS1,
AC245041.1, U91328.1, SFTA1P, AC138207.5, SNHG26,
AC025171.4, AC008760.1, AC026367.1, ITGB1-DT, AP0
01619.1, LINC01138, LINC01545, AL391422.4, AC104532.2,
AC005229.4, ZKSCAN2-DT, ZEB1-AS1, AC107308.1,
AC156455.1, and ATP2B1-AS1 were recognized as risky
lncRNAs for HR> 1 (P < 0.05) and AC104819.3 was rec-
ognized as protective lncRNA with HR< 1 (P< 0.05)

(Figure 1(a)). Te correlation between lncRNAs and m6A
regulators is shown in Figure 1(b). Te expression of 24
prognostic m6A-lncRNAs in normal tissues and tumor
tissues was displayed by the box plot and heatmap.
(Figures 1(c) and 1(d)).

3.2. Consensus Clustering Analysis. For further un-
derstanding the roles of prognostic m6A-lncRNAs, patients
were clustered according to the expression of m6A-lncRNAs
by consensus clustering analysis. As displayed in the con-
sensus matrix map and cumulative distribution function
(CDF) plot for k� 2, the interference was the smallest
(Figures 2(a) and 2(b)). Te overall survival results of pa-
tients in cluster 1 are better than those in cluster 2
(Figure 2(c)). Figure 2(d) displays the correlation between
clinicopathological features and clusters.

3.3. Gene Set Enrichment Analysis (GSAE). To explore the
potential cellular pathways and biological processes of
prognostic m6A-lncRNAs, the GSEAwas employed between
two clusters. As displayed in Figure 3, genes in cluster 2 were
enriched in the p53-signaling-pathway, proteasome, cell
cycle, and peroxisome. Besides, genes in cluster 1 were
enriched in TGF-betasignaling-pathway, ERBB-signaling-
pathway, ECM-receptor interaction, MAPK-signaling-
pathway, and JAK-STAT-signaling-pathway.

3.4. Immune Cell Infltration and Distribution of Immunity.
To explore the roles of m6A-lncRNAs in the tumor immune
microenvironment (TIME), we compared the scores of 22
diferent immune cell types in two clusters. As shown in
Figure 4(a), activated memory CD4 Tcells are rich in cluster
2 (P< 0.05). Figure 4(b) shows the positive correlation

between the m6A-lncRNAs and PD-L1. Furthermore, we
analysed the distribution of immunity in two clusters.
Cluster 1 have a higher stromal score, immune score, and
ESTIMATE score (P< 0.05, Figures 4(c)–4(e)).

3.5. Construction and Validation of m6A-lncRNAs Signature.
Te LASSO regression algorithm was used to avoid over-
ftting and for constructing risk scores. As displayed in
Figures 5(a) and 5(b), at penalty factor (λ) 13, the coefcients
of some variables are near to 0 [37]. Ultimately, 13 m6A-
lncRNAs were identifed as independent prognostic factors.
Te m6A-lncRNAs risk model for predicting prognosis in
COAD was established on the basis of coefcients of
13 m6A-lncRNAs in the following format: risk
score =UBA6-AS1∗∗ 0.7684476 +AC139149.1∗ 0.7685387
+AC104819.3∗ (−1.96469) +U91328.1∗ 0.3846686 +AC13
8207.5∗ 0.1605522 +AC025171.4∗ 0.1220795 +AC008760.1
∗ 0.1164466 + ITGB1-DT∗ 0.5387446 +AP001619.1∗ 0.099
2952 +AL391422.4∗ 0.4690258 +AC104532.2∗ 0.1403134 +
ZEB1-AS1∗ 0.3567363 +AC156455.1∗ 0.1279327 (Figure
5(c)).

Te K M curves showed that the survival outcome of the
low-risk subgroup was better (P< 0.05) (Figures 5(d) and
5(g)). Te time-dependent ROC curves indicated that, in the
training cohort, the AUC value at 1 year was 0.845, 0.797 at
3 years, and 0.813 at 5 years (Figure 5(e)). In the validation
cohort, the AUC value at 1 year was 0.750, 0.821 at 3 years,
and 0.935 at 5 years (Figure 5(h)). Furthermore, the risk
score distribution plot and scatter plot also showed that the
survival outcome of the high-risk subgroup was worse. Te
heatmap illustrated that the expressions of risky lncRNAs
were upregulated in the high-risk group, while protective
lncRNA was downregulated (Figures 5(f ) and 5(i)).

To further validate the risk model, the correlation be-
tween risk score and clinical characteristics was analysed. As
shown in Figure 6(a), the risk score was signifcantly cor-
related with pathological stage and immune score (P< 0.05).
Besides, the scatter plot showed that the risk score was also
signifcantly correlated with PD-L1 expression and immune
score (Figures 6(b) and 6(d)).

3.6. Development of Survival Prognostic Nomogram. We
comprehensively analysed the risk score and clinical char-
acteristics. Risk scores, age, and pathological stage were
identifed as signifcant independent prognostic variables
(P< 0.05, Figures 7(a) and 7(b)), which revealed that the risk
model served as a reliable tool for COAD patients. Sub-
sequently, we constructed a quantitative nomogram on the
basis of risk score and clinical characteristics (Figure 7(c)).
Te calibration curves displayed the concordance between
observed and predicted overall survival (Figures 7(d)–7(f )).

Table 1: N6-methyladenosine (m6A) modifcation regulators.

Eraser FTO; ALKBH5
Writer ZC3H13; METTL16; METTL14; METTL3; VIRMA; RBM15B; RBM15; WTAP

Reader FMR1; YTHDF3; YTHDF2; YTHDF1; YTHDC2; YTHDC1; RBMX; HNRNPC;
HNRNPA2B1; LRPPRC; IGFBP3; IGFBP2; IGFBP1
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4. Discussions

N6-methyladenosine (m6A) modifcation is a common
epigenetic modifcation in eukaryotes, involving many bi-
ological processes, such as RNA splicing, translation, and
expression. M6A modifcation and lncRNAs play critical
roles in the biological processes of COAD. For example,
m6A regulators, such asMETTL3,METTL14, and YTHDF2,
have been proven to be involved in regulating the patho-
logical process of COAD [16, 17]. It is reported that lncRNA
can be regulated by m6A modifcation. However, whether
lncRNAs are involved in the regulation of m6Amodifcation
in the progression of COAD needs further exploration.

With the approach of the era of personalized therapy
managements, traditional diagnosing failed to satisfy ad-
vanced diagnoses and therapies. It is expected to build more
useful prognostic signatures to help improve personalized
treatment management. In this study, we focused on
identifying prognosis-related lncRNAs associated with m6A

modifcation (m6A-lncRNAs) and used bioinformatics
methods to establish a reliable risk model for patients
with COAD.

We downloaded RNA sequencing data in TCGA. M6A-
lncRNAs were recognized by Pearson correlation analysis
according to the expression of lncRNAs and m6A regu-
lators. Tere are 24 prognostic m6A-lncRNAs identifed by
univariate Cox regression analysis. For exploring the bi-
ological features of these 24 prognostic m6A-lncRNAs, we
divided the COAD patients into two clusters. GSAE has
been applied to investigate the potential cellular pathways
and biological processes. Accumulated studies have illus-
trated that tumor immune microenvironment (TIME) is
correlated with tumorigenesis and the development of
COAD [38–41]. In this study, we have explored the re-
lationship between immune infltrate levels and m6A-
lncRNAs. Tere are also signifcant diferences between
the two clusters in ESTIMATE score, stromal score, and
immune Score.

lncRNAs
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Figure 1: Identifcation of prognostic m6A-lncRNAs. (a) Forest plots of 24 prognosis-relatedm6A-lncRNAs. (b) Te correlation between
lncRNAs and m6A regulators. (c) Boxplots of 24 prognosis-related m6A-lncRNAs. (d) Heatmap of 24 prognosis-related m6A-lncRNAs.
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Te Lasso regression algorithm is widely used to con-
struct risk models. Te most important diference between
lasso regression analysis and traditional stepwise Cox re-
gression analysis is that it can process all variables simul-
taneously, instead of step by step [34], which greatly
improves the stability of the model. In this study, LASSO
regression analysis was conducted to avoid overftting and to
construct risk scores. Ultimately, 13 m6A-lncRNAs, in-
cluding UBA6-AS1, AC139149.1, U91328.1, AC138207.5,
AC025171.4, AC008760.1, ITGB1-DT, AP001619.1,

AL391422.4, AC104532.2, ZEB1-AS1, AC156455.1, and
AC104819.3 were selected to construct the signature. To
testify the reliability of the signature, COAD patients were
divided, at a ratio of 7 : 3, into a training set and validation
set. K M survival analysis and the ROC curves showed well
discrimination of the signatures. In addition, risk score and
clinicopathological characteristics were integrated into the
analysis. Age, risk score, and pathological stage were rec-
ognized as independent prognostic factors, which also
demonstrated the reliability of the risk model. Ten,
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Figure 2: Consensus cluster classifcation. (a) Consensus clustering matrix when k� 2. (b) Te cumulative distribution functions (CDFs)
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a quantitative prognostic nomogram was constructed. Te
calibration curves demonstrated the accuracy of the
nomogram.

Tere were also limitations in our study. First, the m6A-
lncRNAs risk model was constructed and validated based on
the TCGA database. We did not verify the prognostic sig-
natures in external independent cohorts. Second, the in-
teraction between prognosis-related m6A-lncRNA and m6A
regulator lacks experimental confrmation.

5. Conclusions

To sum up, we have identifed some m6A-related lncRNAs
which were correlated with prognosis and tumor immune
microenvironment. A reliable alternative prognostic sig-
nature was provided for the management of COAD patients.
We also combined risk scores with clinical characteristics to
establish a quantitative prognostic nomogram.
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Background. Many studies have found that chromatin regulators (CRs) are correlated with tumorigenesis and disease prognosis.
Here, we attempted to build a new CR-related gene model to predict breast cancer (BC) survival status. Methods. First, the CR-
related diferentially expressed genes (DEGs) were screened in normal and tumor breast tissues, and the potential mechanism of
CR-related DEGs was determined by function analysis. Based on the prognostic DEGs, the Cox regression model was applied to
build a signature for BC. Ten, survival and receiver operating characteristic (ROC) curves were performed to validate the
signature’s efcacy and identify its independent prognostic value.Te CIBERSORTand tumor immune dysfunction and exclusion
(TIDE) algorithms were used to assess the immune cells infltration and immunotherapy efcacy for this signature, respectively.
Additionally, a novel nomogram was also built for clinical decisions. Results. We identifed 98 CR-related DEGs in breast tissues
and constructed a novel 6 CR-related gene signature (ARID5A, ASCL1, IKZF3, KDM4B, PRDM11, and TFF1) to predict the
outcome of BC patients. Te prognostic value of this CR-related gene signature was validated with outstanding predictive
performance. Te TIDE analysis revealed that the high-risk group patients had a better response to immune checkpoint blockade
(ICB) therapy. Conclusion. A new CR-related gene signature was built, and this signature could provide the independent
predictive capability of prognosis and immunotherapy efcacy for BC patients.

1. Introduction

Breast cancer (BC) is a common cancer in the world [1].
Although the widespread use of adjuvant chemotherapy and
hormonal drugs has reduced mortality in BC patients, there
are still individual diferences in treatment outcomes and
diferent clinical benefts for BC patients [2]. Fortunately, with
the continuous updating of new therapies, the use of cancer
biomarkers has become an aid in BC diagnosis, prognosis,
treatment response prediction, and disease monitoring dur-
ing and after treatment [3]. Nowadays, many researchers have
tried to use various bioinformatics techniques to identify the

biomarkers or build the risk model in BC and achieved good
research results, such as the machine learning model in
predicting the immune subtype [4] and the eight-lncRNA
prognostic model [5]. Terefore, in order to provide a more
efective prediction of survival in tumor patients, continuous
eforts are needed to identify new prognostic key molecules
and explore their prognostic values.

Chromatin regulators (CRs) are essential upstream reg-
ulatory factors in epigenetics that can cooperate to connect
the organizational scales of chromatin from nucleosome
assembly to the establishment of functional chromatin do-
mains [6]. CRs can highly regulate chromatin structure by
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four broad classes of nuclear factors, including histone var-
iants, histone chaperones, chromatin remodelers, and histone
modifers [7]. In human cancer pathogenesis, it has been
found that the function of CRs is frequently disrupted by
genetic mutations and epigenetic alterations, resulting in
perturbed gene expression profles. Te role of CRs in cancer
is complex and highly specifc [8]. To begin with, the car-
cinogenic efects of chromatin regulators are well established.
Meanwhile, recent new studies have demonstrated their tu-
mor suppressive properties in the regulation of multiple
cellular processes [9]. For example, MLL3/4, one of the
chromatin regulators, may exert broad tumor suppressor
efects in various cancers [10]. In addition, growing evidence
has shown that CRs and tumor prognosis are closely related.
In cervical cancer, 57 overexpressed chromatin regulators
were identifed to have prognostic signifcance [11]. Similarly,
CR-related genes were found to be signifcantly associated
with postoperative outcomes in astrocytomas [12]. However,
CRs afecting prognosis of breast cancer is still lacking more
understanding and research.

Te tumor microenvironment (TME), consisting of
extracellular matrix, stromal cells, and immune cells [13], is
important in cancer initiation, progression, and therapy
[14]. With the emergence of new technologies, immuno-
therapy has become a widely concerned research direction
for cancer treatment, which aims to use the immune system
as a tool for treating oncological diseases [15]. Te efect of
immunotherapy is associated with the TME, especially the
tumor-infltrating immune cells (TICs) [16]. Currently,
there are 3 types of immunotherapies that target tumor-
specifc T cells, including immune checkpoint blockade
(ICB), adoptive cellular therapies, and cancer vaccines [17].
In immune checkpoint blockade therapy, multiple cancers
have been treated with two diferent antiprogrammed cell
death protein 1 (PD1) drugs (nivolumab and pem-
brolizumab) [18] and anticytotoxic T lymphocyte-associated
antigen 4 (CTLA4) (ipilimumab) [19].Te use of therapeutic
antibodies does provide clinical beneft to a small patient
population, but adverse efects associated with immune
checkpoint blockade complicate immunotherapy and limits
its use in cancer patients [20].Terefore, in order to promote
the efcacy of ICB therapy, it is necessary to identify and
explore the predictive biomarkers for immune checkpoint-
blocking therapies [21, 22].

In this work, we investigated the potentiality of CR-
related DEGs as prognostic markers in BC through several
bioinformatic analyses. Furthermore, CR-related DEGs were
successfully employed to construct a six-gene prognostic
model and a new CR-related gene signature for predicting
patients’ outcome and immunotherapy efcacy.

2. Materials and Methods

2.1. Data Collection. Te training set was downloaded from
the Te Cancer Genome Atlas (TCGA) database (n� 1167;
113 normal samples vs. 1054 tumor samples). Te validate
set was obtained fromGSE20685 (n� 327) [23]. Considering
that a patient’s follow-up for less than 30 days is too short to
evaluate the prognosis, we excluded those patients for

a more accurate evaluation. Te complete clinical in-
formation of patients is shown in Supplementary Table 1.
Lastly, there were 870 chromatin regulator (CR)-related
genes obtained from previous research [6].

2.2. Identifcation of CR-Related DEGs. First, the data of the
training set were normalized with the log2 transformation.
Next, the expression profles of 853 CRs were extracted from
the normalized TCGA-BRCA matrix based on the obtained
CR names. In the training set, DEGs related to CRs were
performed by the “limma” package. Diferential expression
was set as the adjusted p value less than 0.05, and the ab-
solute value of log2FC (fold change) was greater than 1. Te
result of the analysis was visualized in a volcano map uti-
lizing the “ggplot2” R package.

2.3. Biology Function Enrichment. ClusterProfler was con-
ducted to analyze gene oncology and the KEGG pathway,
and this procedure aims at discovering the potential
mechanism of the CR-related DEGs. In addition, the en-
richment analysis results were visualized via circos diagrams.

2.4. Signature Model Construction and Validation. Batch
Cox regression was applied to screen the prognosis-related
DEGs of CRs in the training set. And the important can-
didate genes were analyzed by the multivariate Cox analysis
for identifying independent prognosis risk factors. Based on
the multivariate regression results, we then developed an
optimal signature to predict prognosis based on the co-
efcients (Coef). Te model was constructed as the risk
formula: risk score�A gene×Coef + B gene×Coef + . . .+X
gene×Coef.Te forest map was plotted by the “forestplot” R
package. Te area under curve of ROC will be used to
evaluate the model in the training and validation set,
respectively.

2.5. Signature Prognostic Value Evaluation. Other clinical
variables also afect patient clinical prognosis, and when
compared with risk score, if risk score is also associated with
patients outcomes, here, we use Cox regression model to
demonstrate it, and we also conduct subgroup analyses of
risk score and survival status.

2.6. Immune Cell Infltration and Immunotherapy Efcacy
Estimation. To evaluate the association between this sig-
nature and tumor-infltrating immune cells, CIBERSORT
was used to analyze the proportion of various TICs between
high-score and low-score patients in the TCGA training
set. We also use the tumor immune dysfunction and ex-
clusion (TIDE) indicator to estimate ICB therapy response
in BC patients. Among them, lower TIDE scores mean that
tumor cells have less chance with immune escape, in-
dicating a higher response rate to ICBs therapy. Finally, we
assessed the correlation between this signature and im-
munotherapeutic markers and ICB-related genes via
Wilcoxon test.
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2.7. Predictive Nomogram Establishment and Evaluation.
A nomogram, a visual scoring system, was established in the
training set by integrating the risk score of CR-related gene
signature and clinicopathological variables to be used to
evaluate the OS of the BC patients. At the same time, the
bootstrap method was used to calculate the concordance
index (C-index), ROC, and calibration curves. Besides, we
further utilized the Kaplan–Meier analysis for OS, DSS, and
PFS to prove the clinical prognostic value of the nomogram.
All the analyses and plots were done by the R software and
suitable R packages.

3. Results

3.1. CR-Related DEGs and Function Enrichment. In the
training dataset, a total of 98 CR-related DEGs (Figure 1(a))
(Supplementary Table 2) were screened from 1154 BC tissue
samples and 113 normal tissue samples. We predicted the
biological mechanisms of 98 CR-related DEGs. GO en-
richment analysis showed that the most highly enriched
molecular functions (MF) of these DEGs were histone
binding, transcription corepressor activity, and histone ki-
nase activity. Cellular components (CC) of these DEGs were
covalent chromatin modifcation, histone modifcation, and
DNA replication. Te biological process (BP) of these DEGs
was remarkably involved in covalent chromatin modifca-
tion, histone modifcation, and DNA replication. Moreover,
they are also enriched in the cell cycle, homologous re-
combination, and lysine degradation by KEGG enrichment
analysis (Figure 1(b)).

3.2. Prognostic Signature Construction Based on the CR-
Related Gene. We used 98 CR-related DEGs to build the
prognostic signature in the TCGA training set. First, ten
important CR-related genes associated with OS in BC pa-
tients were selected (Figure 1(c)). Ten, six hub CR-related
genes (ARID5A, ASCL1, IKZF3, KDM4B, PRDM11, and
TFF1) were identifed as associated with the OS and con-
tributed to the risk signature (Figure 1(d)) (Table 1).
Te risk score� (−0.201073277) ∗ ARID5A+ 0.1231206 ∗
ASCL1+ (−0.268713644) ∗ IKZF3 + (−0.197882736) ∗ KDM
4B+(−0.538035757) ∗ PRDM11+(−0.050431061) ∗ TFF1.

3.3. Evaluation and Validation of Signature Efcacy. Te
high-risk group was defned as risk score more than the
median value, others were defned as low-risk groups, re-
spectively, in the training dataset. Ten, the risk score
distribution between the two groups was compared
(Figure 2(a)). Patients with high risk have a poor outcome
while the low-risk patients always suggest a better prognosis
(p � 1.179e − 04) (Figure 2(b)). Moreover, the area under
the ROC curve (AUC) was 0.713, which proved the pre-
dictive efcacy of our signature for predicting the OS in the
training set (Figure 2(c)), which was also validated in the
GEO. Te risk score distribution in the two groups is shown
in Figure 2(d). In addition, patients with low risk also have
a better prognosis (p � 7.955e − 04) (Figure 2(e)), and the

results further supported the above conclusion: AUC is
equal to 0.821 (Figure 2(f)).

3.4. Applicability of the CR-Related Gene Signature. We in-
tegrated the signature with other clinical risk factors in the
total data set to further assess the independent prognostic
value of the risk model for BC. As shown in the TCGA
training dataset, age, TNM stage, ER status, and risk score
were associated with the OS (p< 0.05), and risk score was an
independent prognostic factor (p< 0.05) (Figures 3(a) and
3(b)). Additionally, in the GEO validation dataset, analysis
results also support the abovementioned conclusions
(Figures 3(c) and 3(d)).

3.5. Subgroup Analysis to Evaluate Gene Signature. We
performed survival subgroup analysis in the TCGA training
set to demonstrate that the signature is associated with
clinical features. First of all, the clinical patients were
classifed into two groups, such as age ≤60 vs. >60 groups,
the T1/2 stage vs. T3/4 stage, the N (−) stage vs. N (+) stage
(N0 and N1–N3, respectively), and the M0 stage vs. M1
stage. Subgroup analysis suggests that subgroup patients also
have survival rate diferences in age, T stage, N1–N3 stage,
and M0 stage between high- and low-risk groups. However,
patients with the N0 or M1 stage has no signifcance
(p � 0.080 and p � 0.486, respectively) (Figures 4(a)–4(h)).

3.6. Immune Cell Infltration and Immunotherapy Efcacy
Estimation for the Signature. As for the relationship between
the signature and TME, 19 of the 22 TICs were signifcantly
related to the risk score (Figure 5(a)). Here, the CD8+ Tcells,
resting memory CD4+ T cells, regulatory T cells (Tregs),
gamma delta T cells, follicular helper T cells, M1 macro-
phages, memory B cells, naive B cells, activated NK cells,
monocytes, restingmyeloid dendritic cells, and activatedmast
cells were negatively correlated with the risk score, while the
M0 macrophages, M2 macrophages, resting NK cells, acti-
vated myeloid dendritic cells, resting mast cells, eosinophils,
and neutrophils were positively correlated with the risk score.
Meanwhile, the proportion of 12 TICs did difer signifcantly
between the two groups (p< 0.05, Figure 5(b)). Te pro-
portion of M0 and M2 macrophages was signifcantly higher
in the high-risk group, while the proportion of plasma cells,
naive B cells, CD8+ T cells, gamma delta T cells, resting
memory CD4+ Tcells, resting NK cells, and resting mast cells
was signifcantly higher in the low-risk group.

Regarding the CR-related signature’s potential for pre-
dicting response to immunotherapy in BC patients, the
result showed that the low-risk group had a higher TIDE
score (p< 0.001, Figure 5(c)), meaning a poor response to
immunotherapy. Likewise, 13 immune checkpoint mole-
cules (CTLA4, PDL1, PD1, PDL2, LAG3, TIM3, CD86,
BTLA, ICOS, CD96, CD160, TIGIT, and IDO1) are also
positive with low-risk group gene expression (p< 0.05,
Figure 5(d)). Taken together, these results illustrated the
importance of the risk score in breast cancer immuno-
therapy prediction.
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3.7. Nomogram for Clinical Decision. A visualized nomo-
gram was built and was used to predict OS probability at
three periods (1, 3, and 5 years) (Figure 6(a)). Te

concordance C-index was 0.734, which illustrated a good
ability in predicting OS for BC patients. Furthermore, we
found that the calibration curves indicated that the predicted

Table 1: Six CR-related prognostic genes signifcantly associated with OS in breast cancer patients.

Gene
Multivariate cox regression analysis

Coef HR HR 0.95L HR 0.95 H p value
ARID5A −0.201073277 0.8178525 0.668022015 1.001288425 0.051475659
ASCL1 0.1231206 1.131020814 1.016273871 1.258723773 0.02408809
IKZF3 −0.268713644 0.764362104 0.642458524 0.909396333 0.002434433
KDM4B −0.197882736 0.820466059 0.655829072 1.026432927 0.083334851
PRDM11 −0.538035757 0.583894036 0.344413023 0.989893597 0.045751465
TFF1 −0.050431061 0.950819475 0.900181977 1.004305459 0.070902358
CRs, chromatin regulators; OS, overall survival; Coef, β coefcient; HR, hazard ratio.
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Figure 1: Diferential expression analysis and the construction of CR-related prognosis signature in the TCGA training set. Volcano map of
the CR-related DEGs. Red represents the up-regulated genes; blue represents the down-regulated genes (|logFC|> 1, FDR q value <0.05)
(a). GO enrichment analysis (consisting of BP, CC and MF) and KEGG pathway enrichment analysis for the CR-related DEGs (p< 0.05,
FDR q value <0.05) (b). Univariate Cox regression analysis selected 10 CR-related genes correlated with OS (c). Multivariate Cox regression
analysis identifed a 6-gene (ARID5A, ASCL1, IKZF3, KDM4B, PRDM11, and TFF1) prognostic signature (d). ∗p< 0.05 and ∗∗p< 0.01.
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Figure 2: Validation of the CR-related prognostic signature in BC patients. Risk score distribution for patients in low- and high-risk groups
from the TCGA training set (a). Kaplan–Meier survival analysis of OS between the low-and high-risk groups from the TCGA training set
(b). AUC in ROC analysis for risk scores predicting the OS from the TCGA training set (c). Risk score distribution for BC patients in low-
and high-risk groups from the GEO validation set (d). Kaplan–Meier survival analysis of OS between the low- and high-risk groups from the
GEO validation set (e). AUC in ROC analysis for risk scores predicting the OS from the GEO validation set (f ).
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curve is close to the ideal curve (Figure 6(b)). At the same time,
the ROC curves of this nomogram also showed a good accuracy
to individually predict OS for BC patients (AUC� 0.788, 0.731,
and 0.713, respectively) (Figures 6(c)–6(e)). Lastly, we also
assessed the prognostic value of the nomogram, fnding that it
was remarkably associated with OS, DSS, and PFS (p< 0.05)
(Figure 6(f)).

4. Discussion

A signifcantly poor prognosis for the stage IV female BC
patients who were diagnosed between 2007 and 2013 can be
observed [24]. To improve the survival rate of BC patients,
an increasing number of genetic signatures have been
established. For example, Shi et al. [25] developed a fve-
mRNA signature model based on the ceRNA network for
predicting the survival of BC. However, few studies have
focused on prognostic signatures based on key genes in CRs
that have been shown to have potential as prognostic
markers. What’s more, studies have shown that epigenetic
factors and mechanisms can be involved in regulating the
TME and the ICBs response. In lung adenocarcinomas,

ASF1A defciency could sensitize lung adenocarcinomas to
anti-PD-1 therapy by inducing immunogenic M1-like
macrophage diferentiation and enhancing T cell activa-
tion of the TME [26]. Ten, in checkpoint-blocked re-
fractory mouse melanoma, histone demethylase LSD1
depletion enhanced tumor immunogenicity and T-cell in-
fltration in poorly immunogenic tumors and elicited
a signifcant response to anti-PD-1 treatment [27]. Tus,
exploring and evaluating the CR-related gene expression in
BC patients is important. In our study, we constructed a CR-
related gene signature, a useful tool to predict patients’
outcomes and immunotherapy sensitivity.

Te CR-related gene signature has 6 hub genes; ASCL1,
as one of the 6 genes, was positively associated with outcome,
while the levels of ARID5A, IKZF3, KDM4B, PRDM11, and
TFF1 were negatively associated with survival. As the results
demonstrated, the model could predict the patient’s
outcome.

Te ROC curves also confrmed the favorable predictive
performance of this signature. Besides, the independent
prognostic analysis determined that this signature, age, and
TNM stage were independent predictors for BC prognosis.
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Figure 3: Independent prognostic analysis of the clinical traits and risk score in BC patients. Univariate and multivariate Cox regression
analyses of the OS in the TCGA training set (a) and (b). Univariate and multivariate cox regression analyses of the OS in the GEO validation
set (c) and (d).
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As expected, survival subgroup analysis also suggests the
efective prediction ability of the signature in subgroups.
Next, we found that patients with high-risk conditions will
obtain a better response to immunotherapy and were more
suitable for ICB therapy. Moreover, a nomogram model
consisting of clinical factors and signature was established,
which showed good power and accuracy with a high AUC
value and C-index in BC patients. Terefore, the CR-related
gene signature was a reliable model to predict prognosis and
immunotherapy efcacy, which might have potential im-
plications in clinical practice for BC.

All six genes involved in the signature model are as-
sociated with chromatin regulation or tumorigenesis.

Achaete-scute complex homolog 1 (ASCL1) is a key regu-
lator of neuroendocrine diferentiation [28]. ASCL1 was
highly expressed in classic small cell lung cancer (SCLC);
additionally, it was a key driver of tumorigenesis in classic
SCLC and correlated with the survival and development of
lung cancers with neuroendocrine (NE) features [29]. Jiang
et al. [30] confrmed that when ASCL1 was successfully
overexpressed with SV40 large T-antigen, it could syner-
gistically inhibit retinoblastoma protein and p53 to promote
the development of aggressive adenocarcinoma with NE
characteristics; however, in the developing mouse lung,
knockout of ASCL1 resulted in specifc ablation of lung NE
cells. Moreover, in recent studies, ASCL1 demonstrated that
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Figure 4: Kaplan–Meier survival subgroup analysis in BC patients from the TCGA training set based on the 6-gene signature stratifed by
clinical characteristics. Te OS diferences between low- and high-risk group stratifed by age (≤60 years and >60 years, respectively) (a) and
(b). Te OS diferences between low-and high-risk group stratifed by T stage (T1-2 and T3-4, respectively) (c) and (d). Te OS diferences
between low- and high-risk group stratifed by N (−) and N (+) stage. (N0 and N1–3, respectively) (e) and (f). Te OS diferences between
low- and high-risk group stratifed by M stage (M0 and M1, respectively) (g) and (h).
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it is involved in the diferentiation, cell proliferation, and E-
cadherin expression of NE cells in SCLC cell lines by reg-
ulating theWnt signaling pathway [31]. Our work also found
that ASCL1 was a risk factor for BC prognosis patients,
implying that it might promote breast cancer tumorigenesis.
ARID5A (AT-rich interactive domain-containing protein
5a) is one of the Arid family of proteins and possesses the
ability to bind nucleic acids, which exist in the nucleus under
normal conditions [32]. Meanwhile, ARID5A has been
shown to mainly regulate infammatory and autoimmune
disease development by regulating the expression of
Interleukin-6 (IL-6) mRNA [33]. Subsequent research
revealed that ARID5A could regulate IL-6 mRNA stability
through NF-κB and MAPK signaling pathways [34]. As for

IKZF3 (Aiolos), it belongs to the family of Cys2-His2 zinc
fnger proteins, which is a lymphocyte lineage transcription
factor necessary for the survival of the malignant [35]. For
multiple myeloma, immunomodulatory drugs, such as
thalidomide could activate E3-ubiquitin ligases and induce
degradation of key transcription factors to exert direct
antimyeloma efects and promote the survival of myeloma
[36]. Ten, IKZF3 was a frequently mutated tumor sup-
pressor gene in acute lymphoblastic leukemia (ALL), and its
deletion could block lymphocytic lineage diferentiation and
increase the susceptibility to developing ALL [37]. Consis-
tently, we also found that IKZF3 was a protective factor for
BC and facilitated the prognosis of BC patients. Lysine-
specifc histone demethylase 4B (KDM4B) is a histone
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Figure 5:Te estimation of immune cells infltration and immunotherapy prediction for the prognostic model in the TCGA training set. Ns,
not signifcant; ∗p< 0.05; ∗∗p< 0.01; ∗∗∗p< 0.001. Te correlation analysis between the risk score and 19 tumor-infltrating immune cells
evaluated by CIBERSORTalgorithm (p< 0.05) (a).Te diferences of 22 tumor-infltrating immune cells between low- and high-risk groups
evaluated by CIBERSORTalgorithm (b). Violin plot showing the diferential TIDE scores between the high-risk and low-risk groups (c). Box
plot showing the expression of immune checkpoint-related markers in low-and high-risk groups (d).
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demethylase for H3K9me3 [38]. According to the genome-
wide analysis, KDM4B might be a cancer-specifc regulator
of alternative splicing by regulating additional alternative
splicing-related genes involved in tumorigenesis [39]. In
breast cancer, studies have revealed that KDM4B not only
antagonizes H3K9 tri-methylation in peripheral hetero-
chromatin and afects H3K4/H3K9 methylation but also
plays a role in estrogen receptor α-regulated breast cancer
development and mammary epithelial cells proliferation
[40, 41]. At the same time, KDM4B was the frst identifed
androgen receptor AR)-regulated demethylase with efects
on AR signaling and turnover and might be a therapeutic

target for prostate cancer [42]. Te PR-domain (PRDM)
family of genes and the putative transcriptional regu-
latorsbelong to the SET domain family of histone methyl-
transferases, which can directly catalyze histone lysine
methylation or work by recruiting transcriptional cofactors
[43]. Some of the PRDMs are deregulated in cancer and act
as tumor suppressors or oncogenes, especially in hemato-
logic malignancies and solid cancers [44]. In difuse large B-
cell lymphomas (DLBCLs), the study showed that the
overexpression of PRDM11 (PR-domain family member
Prdm11) could induce apoptosis in the Eμ-Myc mouse
model, then, the DLBCLs patients with low levels of
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Figure 6: Construction and evaluation of a nomogram in the TCGA training set. Te nomogram consists of age, T stage, N stage, M stage
and risk score to predict the probability of 1-, 3-, and 5-year OS in BC patients (a). Calibration curves of 1-, 3- and 5- year OS in BC patients
predicted by the Nomogram (b). ROC curves of 1-, 3-, and 5-year OS predicted by the nomogram (c)–(e). Kaplan–Meier survival curves for
OS, DSS and PFS in BC patients based on the nomogram (f).
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PRDM11 correlate with shorter overall survival [45]. Ad-
ditionally, PRDM11 was also identifed as a novel locus
associated with forced vital capacity, which could be a new
target for lung diseases in a genome-wide association
analysis [46]. TFF1 (trefoil factor 1), one of the trefoil factor
family (TFF), is a small molecule peptide and prevalent in
the mucosal environment [47]. In human gastric cancer, it is
widely accepted that TFF1 is markedly low-expressed and
functions as a gastric tumor suppressor [48]. In BC, although
the serum and tissue levels of TFF1 are typically overex-
pressed [49], many clinical studies have also reported that
TFF1 defciency increases tumorigenicity of human breast
cancer cells, and TFF1 expression in BC has an efect on
good clinical outcomes for patients [50, 51]. Taken together,
all 6 CR-related genes have been reported as taking part in
the development of tumors, playing a role in cancer sup-
pression or carcinogenesis. However, the prognostic role in
tumors is still less elucidated, and more studies and in-
vestigations are needed to understand their prognostic value
and mechanisms.

To our knowledge, this is the frst time to establish and
validate the chromatin regulator-related gene prognostic
signature using a large sample size and a high AUC value for
breast cancer. Regardless, several limitations can be further
improved in the study. In the frst place, although our results
showed the predictive potentiality and clinical value of our
signature, the potential mechanisms of these 6 CR-related
genes in BC still require more in-depth experimental in-
vestigation. Secondly, the data and information from a total
of 1,362 BC patients in the public database used to build the
prognostic signature and validate the predictive efciency of
this model are inadequate; therefore, prospective clinical
studies are supposed to further confrm our fndings.

In conclusion, we identifed CR-related DEGs and their
predictive ability of prognosis in breast cancer. After that,
a novel 6-gene signature model using CR-related DEGs was
developed and validated to predict the OS and immuno-
therapeutic sensitivity for BC patients. Furthermore, a no-
mogram integrating this novel gene signature and clinical
factors was constructed to accurately predict the prognosis
for breast cancer, which might provide individualized
treatment and aid clinical decision-making for BC patients
through prospective validation experiments in the future.
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Background. Cancer-associated fbroblasts (CAFs) have reported widely involved in cancer progression. However, its underlying
mechanism in gastric cancer is still not clarifed. Methods. Te data used in this study were all downloaded from the Cancer
Genome Atlas database. R software and the R packages were used for all the analyses. Results. In our study, we frst quantifed the
CAFs infltration using the ssGSEA algorithm. Te clinical correlation result showed that CAFs were associated with a worse
prognosis and clinical features. Pathway enrichment also indicated several oncogenic pathways in GC patients with high CAFs
infltration, including epithelial-mesenchymal transition (EMT), myogenesis, allograft rejection, the infammatory response, and
IL2/STAT5 signaling. Furthermore, FNDC1 and RSPO3 were identifed as the characteristic genes of CAFs through two machine
learning algorithms, LASSO logistic regression and SVM-RFE. Te following analysis showed that FNDC1 and RSPO3 were
associated with more progressive clinical features and had a good prediction efciency of the CAFs infltration status in GC
patients. Pathway enrichment and genomic instability were performed to explore the underlying mechanisms of FNDC1 and
RSPO3. Immune infltration analysis showed that CAFs were positively correlated with M2 macrophages. Moreover, we found
that the GC patients with low CAFs infltration were more sensitive to immunotherapy. Also, the CAFs, FNDC1, and RSPO3
could generate a certain efect on the sensitivity of doxorubicin, mitomycin, and paclitaxel. Conclusions. In summary, our study
comprehensively investigated the role of CAFs in GC, which might be associated with immunotherapy sensitivity. Meanwhile,
FNDC1 and RSPO3 were identifed as the underlying targets of GC.

1. Introduction

Gastric cancer (GC) is the ffth most common cancer around
the world, with over one million new cases diagnosed an-
nually [1]. Tere has been a noticeable increase in the in-
cidence of GC worldwide, along with its high mortality and
metastasis rate [1]. At present, surgery is still the frst-line
therapy option for early-staged GC and can lead to persistent
prognosis benefts [2]. Meanwhile, combined therapies,
including chemotherapy and targeted therapy, have also
prolonged the overall survival (OS) of advanced GC patients
[3]. Despite this, however, the fve years survival rate of
advanced GC patients is still less than 20% [3]. Terefore,

early diagnosis and precise therapy of GC patients remain
the focus of research.

Tumor cells are continuously afected by the tumor
microenvironment (TME) they exist in, the components of
which mainly consist of immune and stromal cells [4].
Cancer-associated fbroblasts (CAFs) are one of the most
prominent cell types in TME that can infuence tumor
progression in multiple manners [5]. CAFs can secrete
specifc biological factors such as EGF, TGF-β, and IL6 to
facilitate tumor malignant phenotype, including tumor
neovascularization and immune escape, leading to tumor
deterioration [6]. Meanwhile, CAFs can regulate tumor
metabolism. CAFs can enhance glycolysis and excrete plenty
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of lactic acid and hydrogen ions, forming an acidic mi-
croenvironment to inhibit the activity of immune cells. Also,
the metabolites of lactic acid and pyruvate produced by
CAFs can be used as nutrients for tumor cells to stimulate
their growth [7]. Recently, increasing attention has been
paid to the role of CAFs in cancers for its diverse biological
functions. For instance, Liubomirski et al. found that in
breast cancer, the interactions between cancer cells and
CAFs can signifcantly enhance the prometastatic pheno-
types of the TME, further resulting in the higher angio-
genesis, migratory, and invasive potential of cancer cells [8].
In esophageal squamous cell carcinoma, Jolly et al. revealed
that CAFs can secrete IL-6 and exosomal miR-21 to induce
the generation of monocytic myeloid-derived suppressor
cells, which not only suppressed immune function but also
enhanced drug resistance [9]. However, few studies have
focused on the role of CAFs in GC, and therefore, it is
meaningful to explore the underlying efect of CAFs to guide
the treatment of GC.

Advancements in bioinformatic analysis provide a great
convenience for researchers in investigating the underlying
biological mechanisms of diseases [10]. In our study, we
quantifed the CAFs infltration using the ssGSEA algorithm
and comprehensively explored its role in GC. CFNDC1 and
RSPO3 were identifed as the characteristic genes of CAFs
through two machine learning algorithms, LASSO logistic
regression and SVM-RFE. Further following analysis
showed that FNDC1 and RSPO3 were associated with more
progressive clinical features and had a good prediction ef-
fciency of the CAFs infltration status in GC patients.
Pathway enrichment and genomic instability were per-
formed to explore the underlying mechanisms of FNDC1
and RSPO3. Immune infltration analysis showed that CAFs
were positively correlated with M2 macrophages. Moreover,
we found that the GC patients with low CAFs infltration
were more sensitive to immunotherapy. Also, the CAFs,
FNDC1, and RSPO3 could generate a certain efect on the
sensitivity of doxorubicin, mitomycin, and paclitaxel.

2. Methods

2.1. Available Data Acquisition. Te public transcription
profles and clinical information of GC patients were
downloaded from Te Cancer Genome Atlas database-
TCGA-STAD project. Te expression profle was in TPM
form and was annotated based on the Homo sapi-
ens.GRCh38.107.gtf fle. Clinical information was in a “bcr-
xml” fle and extracted using the Perl code. Diferentially
expressed genes (DEGs) analysis was performed using the
limma package with the threshold of |logFC|> 1 and
adj.P< 0.05. Te basic information of enrolled patients is
shown in Table 1.

2.2. Single Sample Gene Set Enrichment Analysis. Single
sample gene set enrichment analysis (ssGSEA) was used to
quantify the relative enrichment score of CAFs [11]. Te
genes used for quantifcation were ACTA2, FAP, PDGFRB,
CAV1, PDPN, PDGFRA, ZEB1, FOXF1, SPARC, MMP2,

and FN1 from the CellMarker website (https://bio-bigdata.
hrbmu.edu.cn/CellMarker/). Te metabolism and immune-
related pathways were also quantifed using ssGSEA analysis.

2.3. Pathway Enrichment Analysis. Pathway enrichment
analysis was performed using the gene set enrichment
analysis (GSEA) algorithm, and the analyzed gene set was
the Hallmark signature. Te terms with |normalized en-
richment score (NES)|> 1 and adj.P< 0.05 were considered
statistically signifcant.

2.4. Characteristic Gene Identifcation. Two machine
learning algorithms, LASSO logistic regression and support
vector machine recursive feature elimination (SVM-RFE),
were utilized to identify the characteristic genes of specifc
features [12]. Receiver operating characteristic (ROC) curves
were used to evaluate the prediction efciency of charac-
teristic genes. Principal component analysis (PCA) was
performed using the ade4 package in R environments.

2.5. Immune Infltration and Genomic Analyses. Te quan-
tifcation of the immune microenvironment of GC was
conducted using the CIBERSORTalgorithm, and 22 types of
infltrating immune cells were extracted [13]. Te scores of
TMB and MSI were downloaded from the TCGA database.
Te tumor stemness index mRNAsi and EREG-mRNAsi
were calculated according to the one-class logistic regression

Table 1: Basic information of enrolled patients.

Features Numbers (n) Percentage (%)

Age
≤65 197 44.5
>65 241 54.4

Unknown 5 1.1

Gender Female 158 35.7
Male 285 64.3

Grade

G1 12 2.7
G2 159 35.9
G3 263 59.4

Unknown 9 2.0

Stage

Stage I 59 13.3
Stage II 130 29.3
Stage III 183 41.3
Stage IV 44 9.9
Unknown 27 6.1

T stage

T1 23 5.2
T2 93 20.9
T3 198 44.7
T4 119 26.9

Unknown 10 2.3

M stage
M0 391 88.3
M1 30 6.8

Unknown 22 4.9

N stage

N0 132 29.8
N1 119 26.9
N2 85 19.2
N3 88 19.9

Unknown 19 4.3
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(OCLR) machine learning algorithm of the previous
study [14].

2.6. Immunotherapy and Drug Sensitivity Analyses.
Tumor Immune Dysfunction and Exclusion (TIDE) analysis
(https://tide.dfci.harvard.edu/) and submap algorithm were
utilized to evaluate the immunotherapy response rate of GC
patients. Drug sensitivity analysis was conducted based on
the data from the Genomics of Drug Sensitivity in Cancer
(GDSC) database (https://www.cancerrxgene.org).

2.7. Statistical Analysis. R software was responsible for all
the analysis. Here, the comparison with P value less than
0.05 was considered statistically signifcant. Te ggplot2
package was utilized for most plots [15]. Te correlation of
continuous variables was compared using the Spearman
method. Te comparison of variables with a normal dis-
tribution was performed using the Student’s T-test.
Kaplan–Meier (KM) survival curves were used to evaluate
the prognosis efect of specifc index.

3. Results

3.1. Quantifcation of CAFs in TCGA Data. Te fowchart of
whole study is shown in Figure S1. First, based on themarker
genes mentioned above, the relative infltration of CAFs in
GC tissue was quantifed using the ssGSEA algorithm
(Figure 1(a)). KM survival curve showed that the patients
with higher CAFs infltration might have a worse overall
survival (OS) (Figure 1(b), HR� 1.41, P � 0.041). Further-
more, we explored the CAFs diferences in patients with
diferent clinical features. Te result showed that CAFs
might be associated with a more progressive grade and T
stage (Figures 1(c) and 1(d)). However, no signifcant dif-
ference was observed in M and N stages (Figures 1(e) and
1(f)). Pathway enrichment analysis showed that in the pa-
tients with higher CAFs infltration, the pathway of
epithelial-mesenchymal transition (EMT), myogenesis, al-
lograft rejection, infammatory response, and IL2/STAT5
signaling were remarkably enriched in (Figure 1(g)).

3.2. Identifcation of the Characteristic Genes of CAFs.
Ten, we performed the DEGs analysis with the threshold of
|logFC|> 1 and adj.P< 0.05. A total of 268 downregulated
and 1697 upregulated DEGs were identifed (Figure 1(h)).
LASSO logistic regression and the SVM-RFE algorithm were
used to identify the characteristic genes of CAFs
(Figures 2(a)–2(c)). LASSO logistic regression identifed
four genes, including FNDC1, SGCD, FGF7, and RSPO3.
Further, among these four genes, the SVM-RFE algorithm
screened two genes FNDC1 and RSPOS, as the characteristic
genes of CAFs (Figure 2(d)). ROC curves showed that
FNDC1 and RSPO3 had great prediction in the CAFs in-
fltration status of GC patients (Figures 2(e) and 2(f),
FNDC1, AUC� 0.890; RSPO3, AUC� 0.885). Ten, logistic
regression was performed based on the FNDC1 and RSPO3.
Te formula was “score� −6.691 + 0.9797 ∗

FNDC1+ 1.2415 ∗ RSPO3.” Te ROC curve showed that
the logistic score had an excellent prediction ability of the
CAFs infltration of GC patients (Figure 2(g)). PCA analysis
indicated that the genes FNDC1 and RSPO3 could efectively
distinguish the GC patients with high and low CAFs in-
fltration (Figure 2(h)).

3.3. Prognosis Efect and Clinical Correlation of FNDC1 and
RSPO3. KM survival curves showed that the patients with
high FNDC1 and RSPO3 expression might have a worse OS,
DSS and PFI (Figures 3(a)–3(f)). Also, we found that the
patients with higher CAFs infltration might have a higher
FNDC1 and RSPO3 expression (Figure 3(g)). Meanwhile,
the young patients (≤65 years old) tend to have a higher
RSPO3 expression (Figure 3(h)); the G3 GC patients might
have a higher FNDC1 and RSPO3 expression than G1-2
patients (Figure 3(i)); the stage III-IV patients might have an
higher RSPO3 expression (Figure 3(j)); the T3-4 GC patients
might have a higher FNDC1 and RSPO3 expression than T1-
2 patients (Figure 3(k)); the N1-3 GC patients might have
a higher RSPO3 expression than N0 patients (Figure 3(l)).

3.4. Biological Explorations of FNDC1 and RSPO3. CAFs
have been reported to afect tumor metabolism. Pathway
correlation analysis indicated that CAFs was negatively
correlated with TRN-α metabolism, KREBS cycle meta-
bolism, amino acid metabolism, vitamin metabolism, ab-
normal metabolism, and vitamin metabolism, yet positively
correlated with folate metabolism (Figure 4(a)). We next
explored the underlying pathways of FNDC1 and RSPO3.
Pathway enrichment analysis of RSPO3 showed that the
pathway of the apical junction, infammatory response,
KRAS signaling, and EMTwere signifcantly enriched in the
patients with high RSPO3 expression (Figure 4(b)). For
FNDC1, the pathway of NOTCH signaling, angiogenesis,
hedgehog signaling, TGF-β signaling, and IL6/JAK/STAT3
signaling were signifcantly enriched in (Figure 4(c)). Pan-
cancer analysis revealed the expression patterns of FNDC1
and RSPO3 in solid cancers. Te result showed that FNDC1
was upregulated, while RSPO3 was downregulated in GC
tissue (Figures 5(a) and 5(b)). Genomic instability analysis
showed that FNDC1 had no signifcant efect on TMB, MSI,
and tumor stemness index (Figures 5(c)–5(e)). However,
RSPO3 might be associated with a lower TMB, MSI and
stemness index (Figures 5(f)–5(h)). Immune analysis
showed that FNDC1 was positively correlated with NK cells,
macrophages, and iDC, while negatively correlated with
T17 cells (Figure S2A); RSPO3 was positively correlated
with NK cells, mast cells, and pDC yet negatively correlated
with T17 cells and T2 cells (Figure S2B).

3.5. CAFs Is Positively Correlated with M2 Macrophages.
Te crosstalk between diferent cells can signifcantly afect
the TME of GC. Te CIBERSORT algorithm was used for
immune cell infltration. Te correlation of CAFs and the
quantifed immune cells are shown in Figure 6(a). Te result
showed that CAFs was positively correlated with naı̈ve
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Figure 1: Exploration of CAFs in GC. (a) ssGSEA was performed to quantify the relative content of CAFs in TCGA database. (b) KM
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Journal of Oncology 7



ACC BLCA BRCA CESC CHOL COAD DLBC ESCA GBM HNSC KICH KIRC KIRP LAML LGG LIHC LUAD

Tissues

LUSC MESO OV PAAD PCPG PRAD READ SARC SKCM STAD TGCT THCA THYM UCEC UCS UVM

ns ns* **** *** **** **** **** **** **** **** **** **** ** **** **** **** **** **** **** **** **** **** ****ns ns ns ns*** ns15

10

5

0

-5

-10

FN
D

C1
 ex

pr
es

sio
n

Groups

normal

tumor

(a)

ACC BLCA BRCA CESC CHOL COAD DLBC ESCA GBM HNSC KICH KIRC KIRP LAML LGG LIHC LUAD

Tissues

LUSC MESO OV PAAD PCPG PRAD READ SARC SKCM STAD TGCT THCA THYM UCEC UCS UVM

**** ******** **** **** *** **** **** **** **** **** ns ** **** **** **** **** **** **** * **** **** **** ******** **** ns ******ns ****15

10

5

0

-5

-10

RS
PO

3e
xp

re
ss

io
n

Groups

normal

tumor

(b)
FNDC1

8

6

4

2

TM
B

0

Low High

ns

(c)

FNDC1

Low High

ns
1.4

1.2

1.0

0.8

M
SI

0.6

0.4

0.2

(d)

FNDC1

1.0

0.8

0.6

Tu
m

or
 st

em
ne

ss

0.4

0.2

ns

ns

mRNAsi

Low

High

EREG-mRNAsi

(e)
Figure 5: Continued.

8 Journal of Oncology



RSPO3

Low High

***
1.4

1.2

1.0

0.8

TM
B

0.6

0.4

0.2

(f )

RSPO3

Low High

***

M
SI

1.4

1.2

1.0

0.8

0.6

0.4

0.2

(g)

Low

High

RSPO3

1.0

0.8

0.6

Tu
m

or
 st

em
ne

ss

0.4

0.2

***

***

mRNAsi EREG-mRNAsi

(h)

Figure 5: Further exploration of FNDC1 and RSPOS. (a, b) Pan-cancer analysis illustrates the expression pattern of FNDC1 and RSPOS.
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B cells, resting CD4+ memory T cells, monocytes, M2
macrophages, resting dendritic cells, resting mast cells, and
eosinophils, yet negatively correlated with follicular helper
T cells, M0 macrophages, and activated mast cells
(Figures 6(b) and 6(c)). Moreover, we found that FDNC1
was negatively, while RSPO3 was positively correlated with
M2 macrophages (Figures 6(d) and 6(e)). Also, the KM
survival curve showed that M2 macrophages might be as-
sociated with a poor prognosis (Figure 6(f )). Meanwhile, the
characteristic makers and factors were all highly expressed in
the samples with high CAFs infltration (Figure 6(g)).

3.6. CAFs and Its Characteristic Genes Were Associated with
the Sensitivity of Immunotherapy and Chemotherapy.
Immunotherapy is a novel therapeutic option for advanced
GC. Tus, we explored the underlying diference in im-
munotherapy sensibility between high and low CAFs in-
fltration patients. Immune checkpoint correlation analysis

showed that CTLA4, HAVCR2, PDCD1LG2, PDCD1, and
TIGIT were diferentially expressed in high and low CAFs
infltration patients (Figure 7(a)). Te TIDE analysis was
then performed, in which the patients with TIDE a score >0
were defned as nonresponders and <0 were defned as
responders. Te result showed in low CAFs infltration
patients, the proportion of immunotherapy responders was
53.2%. However, in high CAFs infltration patients, the
proportion of immunotherapy responders was only 20.9%,
indicating that low CAFs infltration GC patients might be
more sensitive to immunotherapy (Figure 7(b)). Submap
analysis indicated that the patiens with low CAFs infltration
might be more sensitive to both PD-1 and CTLA4 therapies
(Figure S3). Considering the signifcant correlation between
CAFs andM2macrophages, we further explored the efect of
M2 macrophages on immunotherapy. Results showed
a positive correlation between the TIDE score and M2
macrophages (Figure S4A). Moreover, we found that the
patients with high M2 macrophages infltration tend to have
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Figure 6: Immune infltration analysis. (a) Te correlation of CAFs and the quantifed immune cells. (b) CAFs were positively correlated
with M2 macrophages. (c) Te correlation between M2 macrophages and CAFs, FNDC1, and RSPO3. (d) KM survival curves of the M2
macrophages. (e) Te characteristic makers and factors were all highly expressed in the samples with high CAFs infltration. (f ) Te KM
survival curve showed that M2 macrophages might be associated with a poor prognosis. (g) Te characteristic makers and factors were all
highly expressed in the samples with high CAFs infltration.
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a higher TIDE score, as well as a lower percentage of im-
munotherapy responders (Figures S4B and S4C). Moreover,
the immunotherapy responder had a low CAFs level (Fig-
ure 7(c)), as well as a lower FNDC1 and RSPO3 expression
(Figures 7(d) and 7(e)). Drug sensitivity analysis showed that
CAFs were negatively correlated with the IC50 of doxoru-
bicin, while positively correlated with the IC50 of mitomycin
and paclitaxel (Figures 8(a)–8(c)); FNDC1 was negatively
correlated with the IC50 of doxorubicin, while positively
correlated with the IC50 of paclitaxel (Figures 8(d)–8(f));
RSPO3 was negatively correlated with the IC50 of doxoru-
bicin, while positively correlated with the IC50 of mitomycin
and paclitaxel (Figures 8(g)–8(i)).

4. Discussion

A common cancer, GC poses one of the most serious public
health problems [1]. CAFs are an important part of the TME
in GC that can signifcantly afect cancer progression.
Terefore, a deep investigation of CAFs and their related
molecule targets would contribute to understanding the
intrinsic biological mechanism of GC. In medical research,
the investigation and analysis of the classifcation or pre-
diction of response variables in biomedical research are
often challenging due to the data sparsity generated by
limited sample sizes and a moderate or very large number of
predictors. Bioinformatic analysis can efectively solve this
contradiction and is a powerful tool for screening clinical
predictors [16].

In our study, we frst quantifed the CAFs infltration
using the ssGSEA algorithm. Te clinical correlation result
showed that CAFs were associated with a worse prognosis
and clinical features. Pathway enrichment also indicated
several oncogenic pathways in GC patients with high CAFs
infltration. Further, FNDC1 and RSPO3 were identifed as
the characteristic genes of CAFs through two machine
learning algorithms, LASSO logistic regression and SVM-
RFE.Te following analysis showed that FNDC1 and RSPO3
were associated with more progressive clinical features and
had a good prediction efciency of the CAFs infltration
status in GC patients. Pathway enrichment and genomic
instability were performed to explore the underlying
mechanisms of FNDC1 and RSPO3. Immune infltration
analysis showed that CAFs were positively correlated with
M2 macrophages. Moreover, we found that the GC patients
with low CAFs infltration were more sensitive to immu-
notherapy. Also, the CAFs, FNDC1, and RSPO3 could
generate a certain efect on the sensitivity of doxorubicin,
mitomycin, and paclitaxel.

Generally, in TME, the content of CAF is the most
abundant, and it can afect the occurrence and development
of cancer through intercellular contact, the release of various
regulatory factors, and the remodeling of the extracellular
matrix [17]. In colon cancer, Hu et al. indicated that CAFs
could secret the exosome miR-92a-3p that was engulfed by
colon cancer cells, further activatingWnt/β-catenin pathway
and inhibiting mitochondrial apoptosis, leading to

metastasis and chemotherapy resistance [18]. Su et al.
revealed that CD10+ GPR77+ CAFs could induce cancer
formation and chemoresistance through sustaining tumor
stemness [19]. Wen et al. indicated that CAFs-derived IL32
could promote breast cancer cell invasion and metastasis
through integrin β3-p38 MAPK signaling [20]. Pathway
enrichment analysis showed that CAFs could activate the
EMT, KRAS, and IL2/STAT5 signaling. In GC, Li et al.
found that cancer-associated neutrophils could induce EMT
through IL-17a to facilitate the invasion and migration of
cancer cells [21]. Also, Wang et al. indicated that the
downregulation of miRNA-214 in CAFs could enhance the
migration and invasion of GC cells by targeting FGF9 and
inducing EMT [22]. Our results were consistent with pre-
vious studies, which refect the validity of the analysis.

Trough machine learning algorithms, FNDC1 and
RSPO3 were identifed as the characteristic genes of CAFs.
FNDC1, whose full name is “fbronectin type III domain
containing 1”, has been reported to promote GC devel-
opment. Jiang et al. demonstrated that FNDC1 could fa-
cilitate the invasion of GC by regulating the Wnt/β-catenin
signaling and is correlated with peritoneal metastasis [23].
RSPO3 has been reported as being widely involved in
cancer progression. For example, Chen et al. revealed that
RSPO3 could enhance the aggressiveness of bladder cancer
through Wnt/β-catenin and Hedgehog signaling pathways
[24]. Fischer et al. found that in colon cancer with Wnt
mutations, RSPO3 antagonism could hamper the malig-
nant biological behavior of cancer cells [25]. However,
virtually no study explored the RSPO3 in GC. Our study
comprehensively investigated the underlying role of RSPO3
in GC, which can provide direction for future studies. In
clinical practice, detecting the relative expression levels of
FNDC1 and RSPO3 could indicate the CAFs infltration
level of patients, as well as their response on GC
immunotherapy.

Interestingly, immune infltration analysis showed that
CAFs were associated with M2 macrophages. Te in-
teraction between diferent cells can signifcantly afect the
remodeling efects of TME [26]. Previous studies have
shown the underlying crosstalk between CAFs and M2
macrophages. Based on a coculture system, Cho et al. found
that cancer-stimulated CAFs could promote M2 macro-
phage activation through secreting IL6 and GM-CSF [27].
Meanwhile, from a review summarized by Gunaydin, the
interaction between CAFs and tumor-associated macro-
phages in TME can enhance tumorigenesis and immune
escape [28]. Notably, our results also showed that in patients
with low CAFs infltration, the response rate to immuno-
therapy is higher (53.2% vs. 23.9%). Immunotherapy has
shown a promising efect for specifc advanced GC patients.

Although our research is based on high-quality bio-
informatics analysis, some limitations should be noticed.
First, the potential race bias is hard to ignore. Most patients
enrolled in our study were fromWestern populations, which
might decrease the credibility of our conclusions. Second,
detailed laboratory examinations are hard to obtain. If all the
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data from all examinations can be obtained, our conclusion
will be more abundant.

Data Availability

Te raw data mentioned in this study can be downloaded
from online databases. Te data used to support the fndings
of this study are available from the corresponding author
upon request.

Conflicts of Interest

All the authors declare that there are no conficts of interest.

Authors’ Contributions

G-CC analyzed the data and wrote the manuscript. L-F helped
data discussion. Y-QJ provided specialized expertise and col-
laboration in data analysis. G-AP conceived and designed the
whole project and drafted the manuscript. All authors have
read and approved the fnal version of the manuscript.

Acknowledgments

Te authors greatly appreciate the analytical data provided
by the TCGA and GEO databases. Tis work was supported

–1.2

–1.4

–1.6

–1.8

–2.0

–2.2

–2.4

–2.6

D
ox

or
ub

ic
in

_I
C5

0

0.6 0.7 0.8 0.9 1.0
CAFs

(a)

0.5

0.0

–1.0

–1.5

–2.0

M
ito

m
yc

in
_I

C5
0

–0.5

0.6 0.7 0.8 0.9 1.0
CAFs

(b)

–1

–2

–3

–4

–5

Pa
cl

ita
xe

l_
IC

50

0.6 0.7 0.8 0.9 1.0
CAFs

(c)

–1.2

–1.4

–1.6

–1.8

–2.0

–2.2

–2.4

–2.6

D
ox

or
ub

ic
in

_I
C5

0

0.0 2.5 5.0 7.5
FNDC1

(d)

0.5

0.0

–1.0

–1.5

–2.0

M
ito

m
yc

in
_I

C5
0

–0.5

0.0 2.5 5.0 7.5
FNDC1

(e)

–1

–2

–3

–4

–5

Pa
cl

ita
xe

l_
IC

50

0.0 2.5 5.0 7.5
FNDC1

(f )

-1.2

-1.4

-1.6

-1.8

-2.0

-2.2

-2.4

-2.6

D
ox

or
ub

ic
in

_I
C5

0

0 2 4
RSPO3

(g)

0.5

0.0

-1.0

-1.5

-2.0

M
ito

m
yc

in
_I

C5
0

-0.5

0 2 4
RSPO3

(h)

-1

-2

-3

-4

-5

Pa
cl

ita
xe

l_
IC

50

0 2 4
RSPO3

(i)
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Supplementary Materials

Figure S1: the fowchart of whole study. Figure S2: immune
correlation analysis of FNDC1 and RSPO3. Notes: A: im-
mune correlation analysis of FNDC1; B: immune correlation
analysis of RSPO3. Figure S3: submap analysis was used to
indicate patients’ sensitivity to PD-1 and CTLA4 therapy.
Figure S4: efect ofM2macrophages on GC immunotherapy.
Notes: A: correlation of M2macrophages and TIDE score; B:
TIDE score in patients with high and low M2 macrophages
infltration; C: the percentage of immunotherapy responders
and nonresponders in patients with high and low M2
macrophages infltration. (Supplementary Materials)

References

[1] E. C. Smyth, M. Nilsson, H. I. Grabsch, N. C. Van Grieken,
and F. Lordick, “Gastric cancer,” Te Lancet, vol. 396,
no. 10251, pp. 635–648, 2020.

[2] F. Liu, C. Huang, Z. Xu et al., “Morbidity and mortality of
laparoscopic vs. open total gastrectomy for clinical stage I
gastric cancer: the Class02 multicenter randomized clinical
trial,” JAMA Oncology, vol. 6, no. 10, pp. 1590–1597, 2020.

[3] Z. Song, Y. Wu, J. Yang, D. Yang, and X. Fang, “Progress in
the treatment of advanced gastric cancer,” Tumor Biology,
vol. 39, no. 7, Article ID 101042831771462, 2017.

[4] T. Wu and Y. Dai, “Tumor microenvironment and thera-
peutic response,” Cancer Letters, vol. 387, pp. 61–68, 2017.

[5] G. Bif and D. A. Tuveson, “Diversity and biology of cancer-
associated fbroblasts,” Physiological Reviews, vol. 101, no. 1,
pp. 147–176, 2021.

[6] X. Mao, J. Xu, W. Wang et al., “Crosstalk between cancer-
associated fbroblasts and immune cells in the tumor mi-
croenvironment: new fndings and future perspectives,”
Molecular Cancer, vol. 20, no. 1, 131 pages, 2021.

[7] G. Kharaishvili, D. Simkova, K. Bouchalova, M. Gachechiladze,
N. Narsia, and J. Bouchal, “Te role of cancer-associated f-
broblasts, solid stress and other microenvironmental factors in
tumor progression and therapy resistance,” Cancer Cell In-
ternational, vol. 14, no. 1, 41 pages, 2014.

[8] Y. Liubomirski, S. Lerrer, T. Meshel et al., “Tumor-stroma-
infammation networks promote pro-metastatic chemokines
and aggressiveness characteristics in triple-negative breast
cancer,” Frontiers in Immunology, vol. 10757 pages, 2019.

[9] L. A. Jolly, S. Novitskiy, P. Owens et al., “Fibroblast-Mediated
Collagen Remodeling within the Tumor Microenvironment
Facilitates Progression of Tyroid Cancers Driven by
Brafv600e and Pten Loss,” Cancer Research, vol. 76, no. 7,
pp. 1804–1813, 2016.

[10] Z. Dai, X. Y. Gu, S. Y. Xiang, D. D. Gong, C. F. Man, and
Y. Fan, “Research and application of single-cell sequencing in
tumor heterogeneity and drug resistance of circulating tumor
cells,” Biomarker research, vol. 8, no. 1, 60 pages, 2020.

[11] S. Hänzelmann, R. Castelo, and J. Guinney, “Gsva: gene set
variation analysis for microarray and rna-seq data,” BMC
Bioinformatics, vol. 14, no. 1, 7 pages, 2013.

[12] R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang,
and J. P. Campbell, “Introduction to machine learning, neural
networks, and deep learning,” Translational vision science &
technology, vol. 9, no. 2, 14 pages, 2020.

[13] B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, and
A. A. Alizadeh, “Profling tumor infltrating immune cells
with cibersort,” Methods in Molecular Biology, vol. 1711,
pp. 243–259, 2018.

[14] T. M.Malta, A. Sokolov, A. J. Gentles et al., “Machine learning
identifes stemness features associated with oncogenic de-
diferentiation,” Cell, vol. 173, no. 2, pp. 338–354, 2018.

[15] K. Ito and D. Murphy, “Application of Ggplot2 to pharma-
cometric graphics,” CPT: Pharmacometrics & Systems Phar-
macology, vol. 2, no. 10, e79 pages, 2013.

[16] Z. Yin, D. Wu, J. Shi et al., “Identifcation of Aldh3a2 as
a novel prognostic biomarker in gastric adenocarcinoma
using integrated bioinformatics analysis,” BMC Cancer,
vol. 20, no. 1, 1062 pages, 2020.

[17] Y. Chen, K. M. McAndrews, and R. Kalluri, “Clinical and
therapeutic relevance of cancer-associated fbroblasts,” Na-
ture Reviews Clinical Oncology, vol. 18, no. 12, pp. 792–804,
2021.

[18] J. L. Hu, W. Wang, X. L. Lan et al., “Cafs secreted exosomes
promote metastasis and chemotherapy resistance by en-
hancing cell stemness and epithelial-mesenchymal transition
in colorectal cancer,” Molecular Cancer, vol. 18, no. 1,
91 pages, 2019.

[19] S. Su, J. Chen, H. Yao et al., “Cd10(+)Gpr77(+) cancer-
associated fbroblasts promote cancer formation and che-
moresistance by sustaining cancer stemness,” Cell, vol. 172,
no. 4, pp. 841–856, 2018.

[20] S. Wen, Y. Hou, L. Fu et al., “Cancer-associated fbroblast
(Caf)-Derived Il32 promotes breast cancer cell invasion and
metastasis via integrin Β3-P38 mapk signalling,” Cancer
Letters, vol. 442, pp. 320–332, 2019.

[21] S. Li, X. Cong, H. Gao et al., “Tumor-associated neutrophils
induce emt by il-17a to promote migration and invasion in
gastric cancer cells,” Journal of Experimental & Clinical
Cancer Research, vol. 38, no. 1, 6 pages, 2019.

[22] R. Wang, Y. Sun, W. Yu et al., “Downregulation of mirna-214
in cancer-associated fbroblasts contributes to migration and
invasion of gastric cancer cells through targeting Fgf9 and
inducing emt,” Journal of Experimental & Clinical Cancer
Research, vol. 38, no. 1, 20 pages, 2019.

[23] T. Jiang, W. Gao, S. Lin et al., “Fndc1 promotes the in-
vasiveness of gastric cancer via wnt/Β-catenin signaling
pathway and correlates with peritoneal metastasis and
prognosis,” Frontiers in Oncology, vol. 10, Article ID 590492,
2020.

[24] Z. Chen, L. Zhou, L. Chen et al., “Rspo3 promotes the ag-
gressiveness of bladder cancer via wnt/Β-catenin and
hedgehog signaling pathways,” Carcinogenesis, vol. 40, no. 2,
pp. 360–369, 2019.

[25] M. M. Fischer, V. P. Yeung, F. Cattaruzza et al., “Rspo3
antagonism inhibits growth and tumorigenicity in colorectal
tumors harboring common Wnt pathway mutations,” Sci-
entifc Reports, vol. 7, no. 1, Article ID 15270, 2017.

[26] J. Chen, S. Chen, X. Dai et al., “Exploration of the underlying
biological diferences and targets in ovarian cancer patients
with diverse immunotherapy response,” Frontiers in Immu-
nology, vol. 13, Article ID 1007326, 2022.

[27] H. Cho, Y. Seo, K. M. Loke et al., “Cancer-stimulated cafs
enhance monocyte diferentiation and protumoral tam acti-
vation via Il6 and gm-csf secretion,” Clinical Cancer Research,
vol. 24, no. 21, pp. 5407–5421, 2018.

[28] G. Gunaydin, “Cafs interacting with tams in tumor micro-
environment to enhance tumorigenesis and immune eva-
sion,” Frontiers in Oncology, vol. 11, Article ID 668349, 2021.

14 Journal of Oncology

https://downloads.hindawi.com/journals/jo/2023/1424589.f1.zip


Research Article
HPV-Related Prognostic Signature Predicts Survival in Head and
Neck Squamous Cell Carcinoma

Hongyu Zhao ,1 Fengxu Wang,2,3 Xuehai Wang,3 Xinyuan Zhao ,3 and Jinfeng Ji 2

1Department of Radiotherapy Oncology, Afliated Hospital of Nantong University, Nantong 226000, China
2Department of Integrated Traditional Chinese andWestern Internal Medicine, Afliated Tumor Hospital of Nantong University,
Nantong Tumor Hospital, Nantong 226631, China
3Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology,
School of Public Health, Nantong University, Nantong 226019, China

Correspondence should be addressed to Xinyuan Zhao; zhaoxinyuan@ntu.edu.cn and Jinfeng Ji; jijfeng@163.com

Received 16 September 2022; Revised 3 October 2022; Accepted 6 October 2022; Published 15 November 2022

Academic Editor: Feng Jiang

Copyright © 2022 Hongyu Zhao et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers, worldwide. Considering the
role of human papilloma virus (HPV) in tumor development and sensitivity to treatment of HNSCC, we aimed to explore the
prognostic classifcation ability of HPV-related signatures in head and neck cancer. Methods. HPV-related signatures were
screened out based on Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases. HPV-related
signatures with prognostic value were identifed through univariate Cox regression analysis and a risk signature was established by
least absolute shrinkage and selection operator (LASSO). Further, we developed a nomogram by integrating independent
prognostic factors. Results. A total of 55 HPV-associated signatures were diferentially expressed and ten of them were associated
with prognosis of HNSCC patients. Te prognostic signature based on CDKN2A, CELSR3, DMRTA2, SERPINE1, TJP3, FADD,
and IGF2BP2 expression was constructed. Univariate andmultivariate regression analyses demonstrated that the novel prognostic
signature was an independent prognostic factor of HNSCC. Te nomogram integrating the prognostic signature and other
independent prognostic factors was developed. Conclusion. In summary, the prognostic signature of the HPV-related signatures
might serve as an important prognostic biomarker for patients with HNSCC.

1. Introduction

Nearly 95% of head and neck cancer cases are caused by head
and neck squamous cell carcinoma (HNSCC), considered
the sixth most common form of cancer globally [1]. It has
been reported that, despite advances in treatmentmodalities,
outcomes of HNSCC patients have not been improved
signifcantly [2]. Local invasion and distant metastasis at frst
diagnosis are the main reasons for their worse prognosis [1].
Terefore, it is urgent to construct new prognostic models to
aid early clinical diagnosis.

As far as etiology is concerned, HNSCC is primarily
caused by tobacco and alcohol use [3]. Troughout the
world, research studies on HPV have proliferated in recent
years [4]. Globally, approximately 25% of the number of

head and neck cancer cases are caused by HPV infection [4].
Also, HPV causes almost all cases of cervical cancer and
a subset of other anogenital cancers [5].

In this study, we tried to identify HPV-related signatures
and construct a novel prognostic model and nomogram by
using sequencing data and clinically relevant information of
patients with HNSCC. We expect to improve the diagnosis
and prognosis of patients with head and neck cancer from
the perspective of HPV.

2. Materials and Methods

2.1. Data Collection. To identify HPV-related signatures, we
selected and downloaded GSE65858 cohort from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/

Hindawi
Journal of Oncology
Volume 2022, Article ID 7357566, 10 pages
https://doi.org/10.1155/2022/7357566

https://orcid.org/0000-0003-3213-9923
https://orcid.org/0000-0002-7317-8016
https://orcid.org/0000-0002-7918-4484
mailto:zhaoxinyuan@ntu.edu.cn
mailto:jijfeng@163.com
https://www.ncbi.nlm.nih.gov/geo/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7357566


geo/) [6], which included 73 HPV-positive and 196 HPV-
negative patients with HNSCC, and clinical information is
shown in Supplementary Table 2. Te package “limma” [7]
was used for diferential expression analysis with the
screening criteria (adj.p< 0.05). Transcript expression
profling of 501 HNSCC tumor samples and 44 adjacent
normal tissues was obtained from TCGA [8], and clinical
information is shown in Supplementary Table 3.

2.2. Identifcation of Diferentially Expressed HPV-Related
Signatures. HPV-related signature expression in HNSCC
patients was analyzed by using the “limma” package [7], with
selection standard of |log (FC)|≥ 2 and adj.p< 0.01.

2.3. EnrichmentAnalysis. To reveal the biological features of
hub HPV-related signatures, Gene Ontology (GO) [9] and
Kyoto Encyclopedia of Genes and Genomes (KEGG) [10]
pathway analyses were conducted in this part. Tightly linked
interaction network may facilitate the exploration of specifc
mechanisms in HNSCC, and closely linked genes may lead
to an accurate prognostic model. In parallel, we constructed
a protein interaction network by using the STRING database
(https://string-db.org/) [11] in order to visualize the hub
signatures.

2.4. Construction andVerifcation of the Prognostic Signature.
Prognosis-associated signatures were picked out through the
univariate Cox regression analysis with p< 0.01 in TCGA
cohort. To avoid overftting, least absolute shrinkage and
selection operator (LASSO) analysis was applied to further
screen HPV-related signatures. We calculated the risk score
for each HNSCC patient by using the following formula:
Risk score� gene (A) expression× coef (A) + gene (B)
expression× coef (B) + gene (i) expression× coef (i) [12].
Patients with HNSCC were divided into the high- and low-
risk groups according to the median risk score.
Kaplan–Meier survival analysis was used to compare the
overall survival rate between the high- and low-risk groups.
Principal component analysis (PCA) was used to evaluate
the clustering ability of the prognostic signature.

2.5. Immune Infltration Analysis. In this study, we
attempted to perform immune infltration analysis by using
the CIBERSORT [13] and single-sample Gene Set Enrich-
ment Analysis (ssGSEA) algorithm [14]. Moreover, we
attempted to mine drugs targeting the high-risk group with
poor prognosis by using the Genomics of Drug Sensitivity in
Cancer (GDSC) database [15].

2.6. Cox Regression Analyses and Construction of
a Nomogram. Univariate and multivariate Cox regression
analyses were used to evaluate independent prognostic
factors in HNSCC. A nomogram integrating the in-
dependent prognostic factors was established by “rms”

package [16]. Calibration curves and area under the curve
(AUC) were used to verify the validity of the nomogram
[17, 18] we constructed.

3. Results

3.1. Expression and Pathway Enrichment of HPV-Related
Signatures in HNSCC Patients. We derived 1136 HPV-
associated signatures with signifcant diferences from the
GSE65858 cohort (Figure 1(a), Supplemental Table 1). A
total of 55 HPV-associated signatures were diferentially
expressed in TCGA cohort according to screening criteria
(Figures 1(b)-1(c)). In the light of GO and KEGG pathway
analyses, HPV-associated signatures were signifcantly ac-
cumulated in focal adhesion, ECM-receptor interaction,
AGE-RAGE signaling pathway in diabetic complications,
protein digestion and absorption, and relaxin signaling
pathway (Figures 1(d)–1(e)). Also, a protein interaction
network was constructed with tightly linked HPV-associated
signatures (Figure 1(f )).

3.2. Construction and Validation of a Prognostic Model Based
on HPV-Related Signatures in HNSCC Patients. Ten
prognosis-related signatures were identifed by univariate
Cox regression analysis (Figure 2(a)). To avoid overftting,
LASSO regression was performed and selected seven HPV-
related signatures for constructing the prognostic signature
(Figures 2(b)-2(c)). Risk score� (−0.0413836017
920187×Exp CDKN2A) + (−0.365345241419471×Exp
CELSR3) + (−0.0633132503419892×Exp DMRTA2) +
(0.0162329920245241×Exp SERPINE1) + (−0.04689421
53601447×Exp TJP3) + (0.12874495442016×Exp FADD) +
(0.139702586686539×Exp IGF2BP2).

Kaplan–Meier survival curves showed a worse overall
survival and progression-free survival in the high-risk group
when compared with the low-risk group (Figures 3(a)-3(b)).
Meanwhile, the prognostic signature showed a great clus-
tering ability compared with the cohort without genotyping
(Figures 3(c)-3(d)). As shown in Figure 3(e), seven HPV-
related signatures are ranked in diferent groups. Te dis-
tribution of the risk scores and survival time are shown in
Figures 3(f )-3(g). Meanwhile, the time-dependent ROC
curves of the prognostic signature were performed and
shown in Supplemental Figure 1A.Te relationship between
prognostic signature and clinicopathological factors is
shown in Figures 4(a)-4(f ). Interestingly, we found that the
risk score was highly expressed in smokers compared to
nonsmokers (p � 0.00046, Figure 4(e)). In addition, HPV-
negative patients had a signifcantly higher risk value than
HPV-positive patients with HNSCC (Supplemental
Figure 1B).

3.3. Immune Infltration Analysis. Trough CIBERSORT
algorithm, we found that naive B cells, plasma cells, CD8
T cells, activated memory CD4 T cells, follicular helper
T cells, regulatory T cells (Tregs), gamma delta T cells, and
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resting mast cells were highly enriched in the low-risk group
(Figure 5(a)) while resting memory CD4 T cells, M0 mac-
rophages, activated dendritic cells, and eosinophils were

highly enriched in the high-risk group (Figure 5(a)). Based
on the ssGSEA algorithm, moreover, check-point, cytolytic-
activity, HLA, infammation-promoting, T cell co-
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Figure 1: Expression and pathway enrichment of HPV-related signatures in HNSCC patients. (a) Volcano plot of HPV-associated
signatures, red dots represent upregulated and blue dots represent downregulated genes; (b) volcano plot of TCGA cohort, red dots
represent upregulated and blue dots represent downregulated genes; (c) heat map of TCGA cohort, the horizontal axis represents HNSCC
samples and the vertical axis represents hub genes; (d) GO terms of HPV-associated signatures; (e) KEGG pathways of HPV-associated
signatures; and (f) PPI network of HPV-associated signatures, the thicker the lines, the tighter the relationships.
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inhibition, T cell co-stimulation, and type II IFN response
were highly enriched in the low-risk group (Figure 5(b)).
Moreover, WH-4-023, an inhibitor of LCK/SRC, was found
to be useful in the high-risk group through pRRophetic
algorithm (Figures 5(c)-5(d)).

3.4. Te Prognostic Signature Was an Independent Prognostic
Factor for HNSCC Patients. Using both univariate and
multivariate Cox regression analyses, age, stage, and the

prognostic signature were found to be reliable independent
predictors of HNSCC (Figures 6(a)-6(b)). Subsequently,
a nomogram integrating independent prognostic factors
with signifcant diferences was developed to predict the one-
, three-, and fve- year OS of HNSCC patients (Figure 6(c)).
In calibration curves, the predictive curves originated from
the nomogram showed a high agreement with the ideal curve
(Figure 6(d)). AUC values of the nomogram were 0.665,
0.679, and 0.645 for one-, three-, and fve-year OS,
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Figure 3: Validation of the prognostic signature. (a) Kaplan–Meier curve for overall survival, the blue curve represents the low-risk group
and red curve represents the high-risk group; (b) Kaplan–Meier curve for progression-free survival, the blue curve represents the low-risk
group and red curve represents the high-risk group; (c) principal component analysis without prognostic signature, the blue dots represent
patients in the low-risk group and red dots present patients in the high-risk group; (d) principal component analysis with prognostic
signature, the blue dots represent patients in the low-risk group and red dots present patients in the high-risk group; (e) heat map of HPV-
related signatures expression; (f ) survival status plot based on prognostic signature; and (g) risk score plot classifed by prognostic signature.
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respectively, demonstrating a better predictive accuracy of
the nomogram compared with that of a single clinical factor
(Figures 6(e)–6(g)).

4. Discussion

Head and neck squamous cell carcinoma is a collection of
epithelial tumors originating mainly from the mucosa of the
oral cavity, oropharynx, larynx, or hypopharynx [19]. De-
spite continuous advances in treatment modalities, the
prognosis of patients with head and neck cancer has not
improved signifcantly over the past decades [20]. Te high
recurrence rate of patients and the low response to in-
tervention treatments such as chemoradiotherapy are the
main reasons for the poor prognosis of patients [21, 22].

In recent years, the popularization and rapid develop-
ment of next-generation sequencing (NGS) technology have
enabled us to have a new understanding and insight into the
molecular landscape of diferent tumors [23]. For head and
neck cancer, these advances provided new insights into the
diferent molecular mechanisms of HNSCC, the tumor
microenvironment (TME) and heterogeneity of HNSCC,

and the diversity of clinical responses among HNSCC
subtypes [23–25].

In this study, we attempted to construct a new prog-
nostic model from the perspective of HPV by microarray
and high-throughput sequencing data. Te fowchart of this
study is shown in Figure 7. On the basis of the important
impact of HPV on HNSCC, we identifed HPV-associated
signatures by comparing the transcriptome data of HPV-
positive and HPV-negative HNSCC patients from the GEO
dataset. To achieve a larger sample size to justify the scientifc
quality of this research, TCGA database was used for sub-
sequent analyses. Ultimately, 55 HPV-associated signatures
were diferentially expressed and were signifcantly accu-
mulated in focal adhesion, ECM-receptor interaction,
AGE-RAGE signaling pathway in diabetic complications,
protein digestion and absorption, and relaxin signaling
pathway. Subsequently, seven HPV-related signatures
(CDKN2A, CELSR3, DMRTA2, SERPINE1, TJP3, FADD,
and IGF2BP2) that enabled the classifcation of high- and
low-risk HNSCC patients were screened out.

Among these prognostic HPV-associated signatures, we
noted one of the interesting. Cyclin-dependent kinase
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Figure 4: Relationship between prognostic signature expression and age (a), gender (b), grade (c), stage (d), smoking status (e), and
drinking (f).

Journal of Oncology 5



inhibitor 2A, also known as p16, plays a critical role in cell-
cycle regulation [26]. In addition, infection with HPV leads
to overexpression of p16, and thus p16 is often used as
a common marker of HPV positivity [26, 27]. Recently,
multiple studies have surfaced that p16 expression in head
and neck cancers was independent of HPV infection and
should not serve as a reliable marker for HPV infection
[28, 29]. Consistent with previous studies, p16 functioned as
a tumor suppressor in HNSCC patients of this study and as
a risk score reducer in the prognostic model with a negative
coef value.

Interestingly, in the present study, we found that
smoking HNSCC patients had a higher risk value. Tese
results indicated that smoking would afect HPV status as
well as the expression of HPV-related signatures and may
give clues to the mechanism of head and neck cancers.
Trough prognostic analysis, we validated the prognostic
model’s validity and accuracy. In addition, immune in-
fltration analysis showed a higher level of immune cell
infltration in the low-risk group than that of the high-risk
group, which may explain the worse prognosis in the high-
risk group. To our knowledge, this study is the frst attempt
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Figure 6: Continued.
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to construct a prognostic signature for head and neck cancer
based on HPV-related genes. For the convenience of clinical
application, a novel nomogram based on independent
prognostic factors of head and neck cancer was constructed.

Meanwhile, in our study, we encountered a few limi-
tations. Te sample size and cohort size need to be expanded
to guarantee their accuracy for this study. More patients with
HNSCC and more prospective clinical trials need to be
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Figure 7: Flowchart of this study.
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Figure 6: Independent prognostic analysis and construction of a novel nomogram. (a) Univariate Cox regression analysis for the overall
survival of HNSCC patients; (b) multivariate Cox regression analysis for the overall survival of HNSCC patients; (c) the nomogram on the
basis of independent prognostic factors; (d) time-dependent calibration curves of the nomogram; (e) ROC curves for one-year OS; (f ) ROC
curves for three-year OS; and (g) ROC curves for fve-year OS.
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included in the calculation of the prognostic model for
reducing statistical bias. Moreover, further biochemical
experiments in vivo and in vitro on the seven HPV-related
signatures should be conducted further.

5. Conclusion

We screened out diferentially expressed signatures between
HPV+ and HPV− HNSCC patients and developed a novel
prognostic signature based on large sample datasets.
Meanwhile, a novel nomogram was constructed by in-
tegrating independent prognostic factors.
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Purpose. Cervical cancer (CC) is one of the most common gynecologic neoplasms. Hypoxia is an essential trigger for activating
immunosuppressive activity and initiating malignant tumors. However, the determination of the role of immunity and hypoxia
on the clinical outcome of CC patients remains unclear. Methods. The CC independent cohort were collected from TCGA
database. Consensus cluster analysis was employed to determine a molecular subtype based on immune and hypoxia gene sets.
Cox relevant analyses were utilized to set up a risk classifier for prognosis assessment. The underlying pathways of classifier
genes were detected by GSEA. Moreover, we conducted CIBERSORT algorithm to mirror the immune status of CC samples.
Results. We observed two cluster related to immune and hypoxia status and found the significant difference in outcome of
patients between the two clusters. A total of 251 candidate genes were extracted from the two clusters and enrolled into Cox
relevant analyses. Then, seven hub genes (CCL20, CXCL2, ITGA5, PLOD2, PTGS2, TGFBI, and VEGFA) were selected to
create an immune and hypoxia-based risk classifier (IHBRC). The IHBRC can precisely distinguish patient risk and estimate
clinical outcomes. In addition, IHBRC was closely bound up with tumor associated pathways such as hypoxia, P53 signaling
and TGF β signaling. IHBRC was also tightly associated with numerous types of immunocytes. Conclusion. This academic
research revealed that IHBRC can be served as predictor for prognosis assessment and cancer treatment estimation in CC.

1. Introduction

Cervical cancer (CC) is the fourth most frequently diagnosed
cancer and the second mortal cancer in female population,
which poses a serious health threat to women globally [1].
According to the GLOBOCAN 2020 database, there were
604127 new cases and 341831 new deaths from CC, and the
death rate is 12.4 versus 5.2 per 100,000 people in transitioning
and in transited countries, respectively [2]. Etiologically, accu-
mulating evidence has implied that infection with high-risk
human papillomavirus (HPV) is the primary factor for CC
[3]. Up to 90% of cases are driven by high-risk HPV strains
including 16, 18, 31, 33, and 35, with other low-risk HPV types
generally produce benign cervical lesions [4, 5]. Despite the

promotion of HPV vaccine immunoprevention, many
patients are diagnosed with advanced stage at their first diag-
nosis, making the exploration of early diagnosis biomarkers
and effective prognostic model urgently needed [6, 7].

Recently, tumor microenvironment (TME) is causing gen-
eral interest in various cancer settings. TME is composed of
multiple cells residing in cancers, including immune cells,
fibroblasts, endothelial cells, and mesenchymal cells [8]. These
cells closely interact with each other and organize into distinct
cellular communities [9]. Distinct immune cell response cate-
gories tumors into 3 types named “hot”, “altered”, and “cold”
tumors [10]. Accumulating evidence has identified the immu-
notherapy as a promising intervention for cancer patients
[11]. By reprograming the immunosuppressive state in the
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“cold tumor” into an activated one, the usage of immune
checkpoint inhibitors as well as some cell-specific compounds
has achieved exciting clinic outcome in multiple cancers [12,
13]. However, immunotherapy in CC remains largely
unexplored.

Hypoxia is one of common characteristics of tumors and
is closely related to tumor progression and poor prognosis
[14, 15]. Cells respond to hypoxia environment by regulating
various metabolism pathways, which subsequently causes
deficient hypervascularization, enhanced tumor cell prolifer-
ation, and distant metastasis tendency [16–18]. Emerging
evidence has validated the crosstalk between hypoxia and
immunophenotype in tumors. For instance, HIF2α has been
reported to exert its protective role in pancreatic ductal ade-
nocarcinoma by improving immune responses [19]. More-
over, Zhang et al. once reported that hypoxia condition

elevated the tumor cell resistance to cytotoxic T lymphocytes
mediated lysis, which is dependent on the upregulation of
HIF1α and PD-1 expression [20]. Taken together, it is rea-
sonable to speculate that novel approaches targeting alleviat-
ing hypoxia condition could augment the current outcome
for CC patients.

Most of the indicators proposed in previous studies to
predict clinical outcomes of CC patients are limited to single
genes, such as HPV, PTEN, and FHIT [21]. However, using
only a single biomarker to assess prognosis is greatly partial,
as the mechanisms affecting the development of CC are
extremely complex. Currently, prognostic signature consist-
ing of multiple genes has been proven to present indepen-
dent prognostic ability by several reports, which has also
attracted the attention of scholars in the field of oncology
[22, 23]. Compared to the traditional TNM system, the
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Figure 1: Characterization of immune and hypoxia genes. (a) The Venn plot of overlapped genes; (b) GO function enrichment analysis; (c)
the PPI network of the overlapped genes.
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prognostic model is capable of accurately predicting not only
clinical outcomes but also the patient’s immune status and
treatment benefits.

The alteration of metabolic state and immunophenotype
in tumors largely restrain the therapy response for CC
patients, while the relevant study is still in very early stages.
In our current research, we combined the immune-related
genes (IRGs) and hypoxia-related genes (HRGs) to establish
a prognostic signature with high accuracy for CC. In addi-
tion, immune cell infiltration analysis was performed in
two risk groups of CC samples. Altogether, our exploration
will help clarify the specific immune environment in differ-
ent populations and provide new ideas and insights for the
prevention and treatment of CC.

2. Methods

2.1. Data Acquisition. The TCGA-CSCC dataset containing
gene expression and simple nucleotide variation was col-
lected from TCGA website (https://cancergenome.nih.gov/
). And the clinical data of TCGA-CSCC dataset was obtained
from cBioPortal website (http://www.cbioportal.org/). Next,
we combined the clinical traits of the two databases by
patient ID. The exclusion criteria were set as follows: (1) his-
tologic diagnosis is not CC; (2) samples without completed
data for analysis; and (3) survival time of less than 30 days.
Moreover, we extracted IRGs from ImmPort database
(https://www.immport.org/shared/genelists/) and collected
HRGs from MSigDB website (https://www.gsea-msigdb
.org/gsea/msigdb/, Supplementary Table 1).

2.2. Gene Cluster Analysis. The consensus cluster algorithm
was performed using the “ConsensusClusterPlus” package
[24]. To determine the optimal cluster score, we assessed the

Delta area and cumulative distribution function (CDF). Next,
we compared clinical outcome discrepancies between different
subtypes by survival analysis. We also utilized differential
analysis to screen differentially expressed genes (DEGs)
between different subtypes for subsequent analysis [25].

2.3. Development of a Risk Classifier. All CC samples were
randomly divided into training set and validation set. The
DEGs from cluster analysis were first subject to univariate
analysis. Then, we enrolled the potential genes with prog-
nostic value in multivariate analysis. Finally, we created
immune- and hypoxia-based risk classifier (IHBRC) accord-
ing to regression coefficients of each model factors. The risk
equation is as follows: risk factor =∑n

i=1ðCoef i × ExpiÞ; Coefi
is the coefficient of the classifier generated by Cox analyses,
and Expi is the expression level of each model genes. The
patients were divided into high- and low-risk groups accord-
ing to the median risk score.

2.4. Survival Analysis. The differences in clinical outcome
were detected between two risk groups by Kaplan-Meier
analysis. ROC curves were plotted to test the reliability of
IRBRC in assessing patients’ outcomes. Univariate and mul-
tivariate analyses were applied to confirm the independent
value of IHBRC in CC.

2.5. Gene Set Enrichment Analysis (GSEA). The tran-
scriptome data and risk groups information were enrolled
into GSEA [26]. Next, we selected the hallmark, all v7. 5.
symbols. Gmt in the MSigDB database as the reference gene
set. The default weighted enrichment method was applied
for 1000 enrichment analysis. The gene sets with p < 0:05
and FDR < 0:25 were considered as significantly enriched
gene sets.
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Figure 2: Consensus clustering determined a molecular subtype related to immune and hypoxia. (a) The CDF score of consensus index; (b)
relative change of CDF curve; (c) consensus matrix for k = 2; (d) the Kaplan–Meier survival analysis; (e) principal component analysis of the
two clusters.
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2.6. Immune Infiltration Analysis. CIBERSORT is a powerful
algorithm proposed by Newman et al. to mirror the infiltra-
tion status of immunocytes [27]. Performing an immuno-
cytes gene set including 547 genes, CIBERSORT was
applied to determine 22 immunocyte types containing B
cells (naive B cells and memory B cells), T cells (CD8 T cells,
naïve CD4 T cells, resting memory CD4 T cells, activated
memory CD4 T cells, follicular helper T cells), immunosup-
pressive cells (T cells regulatory (Tregs), M2 macrophages
and eosinophils) as well as other cells (resting NK cells, acti-
vated NK cells, monocytes, macrophages, dendritic cells,
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Figure 3: Construction of a risk classifier. (a) Univariate Cox regression analysis; (b–c) LASSO coefficients for risk classifier; (d) the survival
analysis of classifier genes.

Table 1: Multivariate analysis of the seven model genes in CC.

Gene Coefficient P value

CCL20 0.0131 0.007

CXCL2 0.0638 0.001

ITGA5 0.2812 0.001

PLOD2 0.0340 0.001

PTGS2 0.0697 0.008

TGFBI 0.0374 0.001

VEGFA 0.1113 0.001
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mast cells, eosinophils, and plasma cells). To detect the TME
of CC cases, we conducted correlation analysis to analyze the
relationship between risk score and 22 immunocytes types.

2.7. Tumor Mutation Burden Analysis. We employed the
mutation data of CC cases to compare the tumor mutation

burden (TMB) in two subgroups. The TMB value was gener-
ated using following equation: TMB = ðtotalmutation/total
coverbasedÞ × 106.

2.8. Chemotherapy Drug Sensitivity Analysis. To estimate the
predictive power of the IHBRC for chemotherapeutic drug

(a) (d) (g)

(b) (e) (h)

(f) (i)(c)

Figure 4: Predictive value of the classifier. (a) Survival curves of prognostic difference between two risk groups in the training set; (b) ROC
curve of the assessment reliability of the classifier in the training set; (c) the distribution of risk score and survival status in the training set.
(d–f) and (g–i) the testing set and the entire set were used to confirm the predictive value of the classifier.
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efficacy, the half-maximal inhibitory concentration (IC50)
was taken as an index to measure the drug sensitivity. The
difference in the IC50 between two risk groups was com-
pared by pRRophetic of R.

2.9. Identification of the Target miRNAs. To explore the tar-
get miRNAs of model genes, a prediction approach with
starBase (http://starbase.sysu.edu.cn/) was conducted. The
criteria for determination was set by five prediction
programs.

3. Results

3.1. Characterization of Immune and Hypoxia Genes. To dis-
cover the hub genes which could regulate both immunity
and hypoxia process, we screened 31 overlapped genes by
intersection of IRGs and HRGs lists (Figure 1(a)). Then,
we performed function analysis on these 31 genes and found
that they were enriched in response to hypoxia, leukocyte
migration, and regulation of angiogenesis (Figure 1(b)).
Meanwhile, we created a PPI network to better clarify the
interaction of 31 genes at protein level (Figure 1(c)).

3.2. Consensus Cluster Analysis. A total of 31 hub genes were
incorporated into cluster analysis. The results indicated that
CDF value growth was flat when k = 2 and Delta area
increased insignificantly at k > 3 (Figures 2(a) and 2(b)).
The fractal matrix showed the favorable intergroup differ-
ence and intragroup association, suggesting these pivot
genes could categorize all CC samples into two subtypes
(Cluster 1 (n = 130) and Cluster 2 (n = 174)). Therefore,
the clustering stability was best for k = 2 (Figure 2(c)). Sur-

vival analysis illustrated the significant difference in patient
outcome between two clusters (Figure 2(d)). PCA analysis
uncovered the favorable distinction between the two clusters
(Figure 2(e)). Furthermore, 251 DEGs were collected from
differential analysis between two clusters.

3.3. Development of a Risk Classifier. In the training set, we
first determined 24 survival-associated indicators based on
above 251 DEGs via univariate analysis (Figure 3(a)). Then,
the candidate genes were enrolled into LASSO regression to
remove the over fitting genes (Figures 3(b) and 3(c)). Finally,
multivariate analysis was employed, and seven hub genes
were selected to develop an IHBRC (Table 1): risk score = ð
0:0131 × CCL20Þ + ð0:0638 × CXCL2Þ + ð0:2812 × ITGA5Þ
+ ð0:0340 × PLOD2Þ + ð0:0697 × PTGS2Þ + ð0:0374 ×
TGFBIÞ + ð0:1113 × VEGFAÞ. In addition, Figure 3(d) dem-
onstrated the prognostic power of seven hub predictors.

As suggested by Figure 4(a), high-risk group presented a
dismal prognosis benefit in the training set. The AUC values
of 1-, 3-, and 5-year survival were 0.845, 0.699, and 0.654,
respectively (Figure 4(b)). We measured the survival out-
come of patients in both groups and found that patients’
outcomes were dismal as the risk score elevated
(Figure 4(c)). Meanwhile, we confirmed the performance
of IHBRC in the validation and the entire cohorts using
the same analysis described above and obtained the same
results for the trend (Figures 4(d)–4(i)).

3.4. Independent Prognostic Analysis. To examine the inde-
pendent value of IHBRC in terms of survival of CC cases,
univariate and multivariate analyses were employed. In the
training set, univariate analysis demonstrated that low risk

Training set Validation set Entire set

(a) (c) (e)

(b) (d) (f)

Figure 5: Independent prognosis analysis of the classifier. (a–c) Univariate Cox regression analysis; (d–f) multivariate Cox regression
analysis.
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score was remarkably correlated with favorable prognosis
(Figure 5(a)). Furthermore, multivariate analysis still
revealed that low risk score was independently associated
with favorable outcome of CC patients (Figure 5(b)), which
could serve as an independent prognostic factor for glioma.
These were confirmed by the test and the entire sets
(Figures 5(c)–5(f)).

3.5. GSEA Enrichment Analysis. To explore the distinction in
molecular pathways between the two groups, we applied
GSEA based on hallmarks gene sets. The results disclosed
that hallmarks including angiogenesis, hypoxia, IL6/JAK/
STAT3 signaling, MTORC1 signaling, P53 signaling, and
TGF β signaling were markedly enriched in high-risk group
(Figure 6).

3.6. Immune Infiltration Analysis. In order to mirror the
immune status of two groups, we estimated enrichment
value of different immunocytes. Figure 7(a) illustrated the
relationship between seven model biomarkers and immuno-
cytes. As shown in Figure 7(b), risk score was negatively cor-
related with the infiltration level of memory B cells, naïve B
cells, resting dendritic cells, and macrophages M1 and CD8
T cells, while neutrophils were activated in IHBRC-high
cohort.

3.7. Immune Checkpoints Analysis for Risk Classifier. Subse-
quently, we detected the relationship between signature and
the expression of immune checkpoints. Figure 8(a) revealed
six immune checkpoints that were greatly differentially
expressed in the two risk groups. As suggested by

Figure 8(b), BTLA was significantly downregulated in the
high-risk group, while PDL2, ICAM1, CCL2, IL10, and
TGFB1 were markedly enriched in the high-risk group, indi-
cating that patients with high risk are likely to be immuno-
suppressive status.

3.8. Analysis of Immunotherapy and Chemotherapy
Response. Waterfall diagrams indicated the mutational dif-
ferences in the 20 genes between the two groups. We
observed that the IHBRC-high cohort had a higher PIK3CA
mutation rate than the IHBRC-low group (31 vs. 20%),
(Figures 9(a) and 9(b)). Given the importance of TMB in
evaluating immunotherapy response for patients with CC,
we observed IHBRC-high group had lower TMB value
(Figure 9(c)). In addition, high risk score was correlated with
a lower IC50 of docetaxel, doxorubicin, and gemcitabine
(p < 0:05), suggesting that the IHBRC served as a favorable
indicator for chemosensitivity (Figures 9(d)–9(f)).

3.9. Construction of IHBRC-Related Regulatory Network. The
reciprocal regulation of mRNA and miRNA is closely bound
up with tumor development. Based on the starbase online
tool, we identified the target miRNAs of seven model genes
with high relevance scores (Figure 10). Moreover, miRNA
set enrichment analysis was performed to explore the func-
tion of the target miRNAs by TAM 2.0 tool. The results
showed these miRNAs were mainly involved in cell aging,
apoptosis, immune response, inflammation, and regulation
of Stem Cell (Supplementary Table 2).
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4. Discussion

Antitumor effects of immune cells could be largely influ-
enced by TME, including intercellular crosstalk between dif-
ferent cell types, chemokines concentrations, and
metabolism environment, thus it is crucial to establish a
comprehensive understanding on the genetic and popula-
tion characteristics of TME. In our study, we categorize CC
patients into two distinct clusters, in which they have totally
differed prognosis, based on the expression level of immune-
and hypoxia-related genes. Our proposed classifier is a
favorable biomarker to assess the prognosis of CC cases.

Meanwhile, the classifier can serve as an indicator for pre-
dicting immune infiltration levels, TMB value and chemo-
therapy response, providing a novel insight for future
research and clinical practice.

A total of hub seven genes (CCL20, CXCL2, ITGA5,
PLOD2, PTGS2, TGFBI, and VEGFA) were identified as
risky indicators in our prognostic model, and the involve-
ment of some genes in CC has been reported before. PTGS2,
also named COX-2, is a crucial target to prevent progression
in various cancer types [28–30]. Early in 2004, Kulkarni et al.
reported that the COX-2 expression was elevated in CC
samples compared to normal cervical tissue. A number of
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Figure 9: Analysis of immunotherapy and chemotherapy response. (a–b) The top 20 mutated genes in the two groups; (c) the TMB in the
two groups; (d–f) chemotherapeutic response in the two groups.
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signaling including EGF and nuclear factor κB (NF-κB)
pathway has been validated to mediate COX-2 expression
in CC [31, 32]. Moreover, the usage of COX-2 selective
inhibitors selectively enhances radio responsiveness in CC
cell line under both normoxic and hypoxic conditions [33].
VEGFA is considered to play a crucial role in physiological
and pathological angiogenesis [34]. In stimulation of
VEGFA, endothelial cells proliferate and migrate to form
new vessels [35]. The cross talk between VEGF signaling
and immune response has been recently demonstrated.
Briefly, VEGFA contributes to the polarization of macro-
phages into an M2 immunosuppressive phenotype [36–38].
In turn, these immunosuppressive cells can further produce
proangiogenic factors including VEGFA and MMP9 [39].
The role of CXCL2 in CC has been intensively reported
before. Zhang et al. once revealed that CXCL2 may promote
tumor proliferation and metastasis induced by the overex-
pression of A-kinase-interacting protein 1 (AKIP1) in CC
[40]. In agreement with our result, Yang et al. recently indi-

cated that the expression level CXCL2 is strongly associated
with lymph node metastasis and prognosis in CC patients
[41]. Four other genes including ITGA5, CCL20, TGFBI,
and PLOD2 were previously studied in various malignan-
cies, while their involvement in CC remains largely unex-
plored, and more basic researches are needed to reveal
their biological function in CC [42–44].

As an endogenous noncoding RNA, miRNA could regu-
late 30% of protein-coding genes in human cells. Numerous
studies have reported that miRNA is an upstream regulator
of tumor-associated genes and engages in regulating biolog-
ical processes such as proliferation and migration of cancer
cells [45]. Our results revealed that hsa-miR-26a-5p, has-
miR-26b-5p, hsa-miR-1297, hsa-miR-590-5p, and hsa-
miR-21-5p were shared modulators of model genes. In cervi-
cal cancer, miR-590-5p was proven to facilitate tumor viabil-
ity by inhibiting CHL1 [46]. Also, miR-590-5p could boost
the malignant behaviors of liver cancer by interacting with
FOXO1 [47]. Gu et al. disclosed that DUXAP8 could boost
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cells growth and angiogenesis by targeting miR-1297 in CC
[48]. Moreover, miR-21-5p also serves as an important fac-
tor regulating the effect of HAND2-AS1 on CC [49].

Molecular signaling was further analyzed in our research
to unveil the mechanism underlying CC progression. In gen-
eral, defective vasculatures and overweighing demands of
oxygen contribute to the hypoxia environment in solid
tumors [50]. HIFs induced by the hypoxic microenviron-
ment play a central part in several aspects of tumor forma-
tion, especially in the regulation of tumor angiogenesis.
HIF has a bidirectional regulatory effect on tumor angiogen-
esis. In vitro studies revealed that when HIF-1α activity was
inhibited, it had different effects on the expression of proan-
giogenic factors. VEGF, angiogenin, and TGFβ-1 expres-
sions were diminished, while IL-6 and MCP-1 were
significantly increased. In vivo tests showed that RNA inhi-
bition of HIF-1α also showed a decrease in VEGF expression
and an increase in IL-8 expression. Consequently, when
HIF-α is inhibited, one proangiogenic factor may be
increased when another proangiogenic factor is inhibited,
and as a result, there may still be an actual increase in tumor
vascularization [51, 52].

As a result, ATP production shifts from oxidative phos-
phorylation to glycolysis, and the acidic microenvironments
subsequently confer the alterations of gene expression and
activation of multiple molecular pathways, accelerating the
cancer progression [53, 54]. The genetic alternations of mTOR
protein have a significant role in tumorigenesis [55, 56]. A
number ofmolecules are involved in themodulation ofmTOR
signaling, and specific inhibitors show a good performance in
prevention and treatment of various tumors including oral
cancer, ovarian cancer, and lung carcinoma [57–59]. TP53,
which encodes a sequence-specific DNA-binding transcrip-
tion factor, is one of the most frequently mutated genes in can-
cers [60]. Studies show that depletion of TP53 can remarkably
increase the incidence of carcinogen-induced carcinogenesis
and accelerate the tumor growth and invasiveness [61]. TGFB
is a critical regulator of numerous biological processes in both
normal and cancer cells [62]. Timmins and Ringshausen
recently reviewed that in B-cell malignancies, targeting the
TGFB axis, should be considered a promising approach in
the context of immunotherapy [63]. The IL-6/STAT3 pathway
is a classic signaling that can induce enhanced EMT process in
cancers [64]. You et al. revealed the function role of IL-6/
STAT3 pathway in promoting the malignant progression in
oral squamous cell carcinoma patients, and further research
is urgently needed to establish a more applicable therapeutic
strategy targeting STAT3 pathway [65].

Of note, the immune landscape results validated that the
infiltration level of M1-like macrophage and antitumor CD8+
T cells is significantly low in high-risk group, which is associated
with poor clinical outcome. It has been indicated that M1-like
macrophage serve as a protective factor in tumormicroenviron-
ment by promoting antitumor response [66, 67]. For instance, a
recent study pointed out that irradiation in CC can bring a sub-
type shift from M2-like to the M1-like phenotype and eventu-
ally lead to an enhanced antitumor immune status [68]. It is
well established that CD8+ T cells play key roles in the elimina-
tion of HPV in CC [69]. Previous studies have uncovered the

higher ratios of CD8+ to CD4+ T cells being closely related to
improved survival [70]. On the contrary, the infiltration of neu-
trophils is proven to be positively correlated with survival of CC
patients in our model, which is consistent with the common
view that neutrophils are regarded as themost important leuko-
cytes involving in first line defense to tissue damage [71–73].
Compared to the classic discipline to divide tumor immuno-
phenotype into three subtypes (hot, altered, and cold), our find-
ing compared the immune cell infiltration in high- and low-risk
populations, may provide a more accurate model to guide the
cellular based immunotherapy in CC.

Considerable research has suggested that docetaxel,
doxorubicin, and gemcitabine can be the major chemother-
apy drugs to control CC [74–76]. Exploring the relationship
between risk and chemotherapy sensitivity by our model, we
observed that high-risk patients had a higher sensitivity to
the above drugs, which provides a favorable reference for
the chemotherapy strategy of cases with CC.

Although our model was confirmed to possess promising
potential for clinical application in CC, our project has some
shortcomings. The clinical cohort in our study was drawn
from the TCGA database of samples. We still need external
datasets to validate our model. In addition, our research was
mainly based on bioinformatics analyses, the expression pat-
tern and underlying mechanisms of the model be detected
with in vivo and in vitro experiments.

In summary, we developed a favorable risk classifier
according to immune and hypoxia molecular subtypes.
Our proposed risk classifier can be served as predictor for
prognosis assessment and cancer treatment estimation in
CC.
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Purpose. Gap junction protein (Connexin) family is the basic unit of cellular connection, whose multiple members were recently
demonstrated to be associated with tumor progression. However, the expression pattern and prognostic value of connexin in lung
adenocarcinoma (LUAD) have not yet been elucidated. Methods. Consensus cluster algorithm was first applied to determine a
novel molecular subtype in LUAD based on connexin genes. The differentially expressed genes (DEGs) between two clusters
were obtained to include in Cox regression analyses for the model construction. To examine the predictive capacity of the
signature, survival curves and ROC plots were conducted. We implemented GSEA method to uncover the function effects
enriched in the risk model. Moreover, the tumor immune microenvironment in LUAD was depicted by CIBERSORT and
ssGSEA methods. Results. The integrated LUAD cohort (TCGA-LUAD and GSE68465) were clustered into two subtypes
(C1 = 217 and C2 = 296) based on 21 connexins and the clinical outcomes of LUAD cases in the two clusters showed
remarkable discrepancy. Next, we collected 222 DEGs among two subclusters to build a prognostic model using stepwise Cox
analyses. Our proposed model consisted of six genes that accurately forecast patient outcomes and differentiate patient risk.
GSEA indicated that high-risk group was involved in tumor relevant pathways were activated in high-risk group, such as
PI3K/AKT signaling, TGF-β pathway, and p53 pathway. Furthermore, LUAD cases with high-risk presented higher infiltration
level of M2 macrophage and neutrophil, suggesting high-risk group were more likely to generate an immunosuppressive status.
Conclusion. Our data identified a novel connexin-based subcluster in LUAD and further created a risk signature which plays a
central part in prognosis assessment and clinical potency.

1. Introduction

Lung cancer is one of the most common malignancies
worldwide, and the prevention of lung cancer is a worldwide
public health issue. According to the latest statistics pub-
lished by the International Agency for Research on Cancer
(IARC), the global incidence and mortality rates of lung can-
cer in 2020 are among the highest in the world [1]. The risk
of lung cancer will continue to intensify and become prom-
inent within the future given the huge population base,
aging, and high levels of tobacco consumption [2]. The inci-
dence of lung adenocarcinoma (LUAD) is increasing every
year and accounts for more than half of nonsmall cell lung
cancer [3]. Front-line clinicians have been pushing for the

promotion of new technologies for comprehensive treat-
ment (such as radiotherapy, immunotherapy, and targeted
therapy), which have greatly reduced intraoperative injuries
and postoperative complications for LUAD patients, but the
diagnosis and treatment of LUAD is still encountering criti-
cal challenges [4]. For example, most patients have obvious
symptoms at the time of consultation. In addition, the high
incidence of resistance to radiotherapy and immunotherapy
has contributed to unfavorable clinical outcomes for
patients. Lung cancer is a highly heterogeneous tumor, and
its occurrence is the result of coregulation of multiple genes
[5]. In-depth investigation of the molecular mechanism of
LUAD will provide valuable guidance for early diagnosis
and individualized treatment of LUAD.
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Tumor-infiltrating immune cells (TIICs) are an integral
part of the tumor microenvironment (TME), including
tumor-associated macrophages (TAMs), lymphocytes, and
natural killer (NK) cells [6]. These immunocytes play a cen-
tral part in killing management of tumors (e.g. CD8+ T cells
and NK cells) on the one hand and in fostering tumor devel-
opment on the other. In view of its vital role in tumor pro-
gression, the TME has emerged as an essential therapeutic
target [7]. Immunosuppression of CD8+ T cells within the
TME can be relieved by the use of PD1 inhibitors. It has
achieved remarkable effect on the treatment of melanoma,
lymphoma, and other tumors, suggesting that immunother-
apy holds favorable prospects [8]. However, most patients
are still experiencing poor outcomes after immunotherapy.
Therefore, the immune landscape of TME in LUAD needs
to be further elucidated.

The gap junction (GJ) is a special membrane structure
consisting of an arrangement of connecting channels
between two adjacent cells. Gap junction proteins (Con-
nexins) are the basic units of GJ formed mainly in the cell
membrane and cytoplasm [9]. Connexin participates in
the exchange of messages and substances between cells
and serves as an important regulator of physiological pro-
cesses such as cell metabolism, internal environment sta-
bility, proliferation, and differentiation. Posttranslational
modifications of connexin are often precisely regulated
by cellular signaling networks [10]. Studies have demon-
strated that connexin is closely bound up with a variety
of classical cellular signaling pathways including MAPK,
TGF-β, and Wnt pathways [11, 12]. Previous findings
indicated that tumor cells present defective gap junction
communication and abnormal expression of gap junction
protein (connexin, Cx) [13]. As the most widely expressed
gene in the Cx family, Cx43 shows the closest relationship
with tumors. Poyet et al. revealed that downregulation of
Cx43 expression correlates with gastric cancer tissue type,
tumor differentiation degree, and clinical stage [14]. In
bladder cancer, overexpression of Cx43 boosts tumor cell
survival and progression by reinforcing the activity of
intercellular gap junctions [15]. Moreover, GJA1 was
proved to be a target gene of miR-30b-5p which could
contribute to pancreatic cancer angiogenesis [16]. Never-
theless, up to now, it remains very little research on the
role of connexins in LUAD.

With the advent of histological technologies and big data
analysis, researchers can obtain more detailed information
from tumor cells and effectively identify complex molecular
features of tumors from massive amounts of data, enabling a
deeper understanding of tumor biological features and clin-
ical phenotypes [17]. Advances in bioinformatic analysis
technologies have permitted researchers to observe a pano-
ramic view of the biological process of tumor progression
directly through clinical samples, which has furthered our
insights into the identification of novel multiple
biomarker-based signatures for clinical prediction [18, 19].
Consequently, exploring important clinically relevant vari-
ables and validating their reliable correlation with patient
prognosis is a pivotal factor in facilitating the evolution of
precision tumor therapy.

In this academic research, the genetic characteristics of
connexins in LUAD were detected according to the data
from public databases. Furthermore, we determine a novel
molecular subtype based on connexins and uncover the clin-
ical potency of the connexin-related model in LUAD cases.

2. Methods

2.1. Data Collection. The gene expression profile and the
corresponding clinical information were obtained from the
GEO (https://www.ncbi.nlm.nih.gov/geo/) and TCGA
(https://portal.gdc.cancer.gov/) databases, respectively. The
LUAD cohort from the TCGA database containing the gene
expression and the clinical information of 535 LUAD
patients was utilized as the training set to establish the prog-
nostic model, and the GSE68465 dataset containing RNA
sequencing of 442 LUAD samples was selected as the valida-
tion set. The exclusion benchmarks were set as follows: (1)
histologic diagnosis is not LUAD, (2) cases without com-
pleted data, and (3) overall survival time of less than 30 days.
A total of 21 connexins were retrieved from previous
research [20]. The gene information of all connexins is sum-
marized in Supplementary Table 1.

2.2. Connexins Gene Cluster Analysis. A total of 21 connex-
ins were subjected to determine the connexin-based molecu-
lar subtype using the R package “ConsensusClusterPlus”
[21]. The difference between different subclusters was evalu-
ated using the Kaplan–Meier survival analysis. The differen-
tially expressed genes (DEGs) were screened by the “limma”
package [22], before being processed for subsequent
analysis.

2.3. Construction of Connexin-Related Signature. All the
samples in training cohort were randomly divided into
training and internal validation cohorts at a 1 : 1 ratio. Uni-
variate Cox analysis was employed to discover prognostic
genes in the training cohort. Next, the corresponding coeffi-
cients of these model genes were calculated to establish a
prognostic model by multivariate analysis. The formula
was established as follows: the risk score =∑n

i=1ðcoef × Expi
Þ. The Expi

̲
was the expression level of each gene and the

coef was the risk coefficient of each gene. All the patients
were divided into high- and low-risk group base on median
risk value. To verify the predictive performance of the
connexin-related gene signature, an external dataset,
GSE68465, was enrolled into subsequent validation.

2.4. Immune Activity Analysis. The CIBERSORT algorithm
(https://cibersort.stanford.edu/) was used to quantify the rel-
ative infiltration levels of 21 types of immune cells, as
described before. The immune activity between the two risk
subgroups, as demonstrated by normalized enrichment
score (NES), were compared by the single sample gene set
enrichment analysis (ssGSEA) [23].

2.5. Functional Enrichment Analysis. GSEA analysis was per-
formed to reveal the potential molecular mechanisms of
prognosis related genes and adjusted p < 0:05was set as the
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cutoff value [24]. To obtain the signaling pathways for
LUAD patients, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) was performed and visualized by the
use of “clusterProfiler” and “ggplot2” R package,
respectively.

2.6. Statistical Analysis. All statistical data in this research
was analyzed by R version 4.0.5. In order to further assess
the predictive capacity of the established signature, the
Kaplan–Meier survival analysis was performed using the
“survival” R package, and the time-dependent receiver oper-
ational feature curves (ROC) were drawn based on the “sur-
vival ROC” R packages. The area under the ROC (AUC)
values for 1-, 3-, and 5-year survival rate were calculated.
Univariate and multivariate Cox analyses were implemented
to confirm the independence of the model.

3. Results

3.1. The Genetic Characteristics of Connexins. First, we
detected the correlation between 21 connexins in TCGA-
LUAD dataset. The results suggested that there was a signif-
icant coexpression relationship between GJA4 and GJA5,
GJA9 and GJE1, and GJB2 and GJB6 (Figure 1(a)). To
explore the interaction relationship of 21 connexins at pro-
tein level, a PPI network was set up by STRING tool
(Figure 1(b)). As suggested by Figure 1(c), the GJA3,
GJA10, GJB2, GJB3, GJB4, GJB5, and GJB6 were remarkably

enriched in LUAD tissues, while GJA1, GJA4, GJA5, GJB7,
GJC1, GJC2, GJC3, and GJD2 were greatly downregulated.

3.2. Determination of a Connexin-Based Molecular Subtype.
With the 21 connexins included in consensus cluster analy-
sis, we found that all LUAD cases were clustered into two
subgroups (Figure 2(a)). The intergroup relationship
between two subtypes was lowest when k = 2 (Figures 2(b)
and 2(c). Survival curves illustrated that there were notable
discrepancies in patient outcomes between two subgroups
(Figure 2(d)). PCA analysis revealed two groups of signifi-
cant cluster characteristics (Figure 2(e)). In Figure 2(f), there
was a tight correlation between cluster and different clinical
traits. Then, a total 222 DEGs were obtained between two
clusters for next Cox analysis.

3.3. Construct of a Prognostic Signature. In the training set,
we first employed univariate Cox regression to discover 20
genes with prognostic values in LUAD (Figure 3(a)). Next,
these 20 genes were enrolled into multivariate Cox regres-
sion and six model genes (LOXL2, PTPRH, DKK1, PKP2,
NKX2-1, and KRT6A) were determined to create a prognos-
tic model (Figure 3(b)). The risk score = ð−0:2665 × LOXL2
Þ + ð0:1905 × PTPRHÞ + ð0:1281 × DKK1Þ + ð0:5798 × PKP
2Þ + ð0:4434 × NKX2 − 1Þ + ð0:0103 × KRT6AÞ. Then, we
performed GEPIA database to explore the expression pat-
terns of six model genes. As shown in Figure 3(c), LOXL2,
PTPRH, PKP2, and KRT6A were greatly upregulated in
LUAD tissues.
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Figure 1: The genetic characteristics of Connexins in LUAD. (a) Correlation between expression levels of 21 connexins. (b) PPI network of
21 connexins. (c) Expression patterns of 21 connexins.
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Survival analysis indicated that patients with high-risk
displayed a dismal clinical outcome (Figure 4(a)). The
AUC (area under the curve) values of 1-, 3-, and 5-year sur-
vival rate generated by the model were 0.717, 0.702, and
0.627, respectively (Figure 4(b)). The risk plot of six genes
signature is shown in Figure 4(c). Moreover, the same
methods were conducted in GSE68465 cohort to confirm

the performance of the model, and the similar results were
observed (Figures 4(d)–4(f)).

3.4. Independent Prognostic Analysis and Subgroup Analysis.
To examine the independence of the risk model, univariate
and multivariate methods were applied. In the TCGA
cohort, univariate analysis showed that stage and the risk
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Figure 2: Connexin-based consensus clustering analysis. (a) Consensus cluster analysis. (b)-(c) Relative change of CDF curve. (d) The
Kaplan–Meier survival analysis. (e) Principal component analysis of the two clusters. (f) Heatmap of connexin-related cluster.
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score were hazard factors for evaluating patient outcome
(Figure 5(a)). Multivariate Cox analysis showed that risk
score (p < 0:001) was independent factor for assessing prog-
nosis of LUAD (Figure 5(b)). Meanwhile, the independence
of our established signature was validated in the GSE68465
cohort (Figure 5(c) and 5(d)). Next, we further detected
whether the risk model is a prognostic factor for the survival
assessment in different subgroups with various clinical traits.
In Figure 5(e), the survival rates of the high-risk patients
based on age, gender, stage, T stage, and N stage were lower
than those of the low-risk patients.

3.5. GSEA of the Risk Model. GSEA showed that top five
Hallmarks were greatly enriched in high-risk group, includ-
ing epithelial-mesenchymal transition, glycolysis, hypoxia,
PI3K/AKT/MTOR signaling, and TGF-β signaling
(Figures 6(a) and 6(b)). KEGG analysis revealed that high-
risk group was positively correlated with pathway in cancer,
cell cycle, and p53 pathway (Figures 6(c) and 6(d)).

3.6. The Immune Landscape of LUAD. In order to character-
ize the immune microenvironment of LUAD cases, we first
calculate the proportion of 21 different immunocytes by
CIBERSORT algorithms. The results revealed that macro-
phages M0, macrophages M2, activated CD4 memory T
cells, and neutrophils were enriched in high-risk cohort,
whereas memory B cells and resting CD4 memory T cells
were upregulated in low-risk cohort (Figure 7). Further-

more, we compared the difference in immune activity
between the two groups by ssGSEA. As revealed by
Figure 8, APC-related function, immune checkpoints,
inflammation−promoting, and IFN type II were activated
greatly in high-risk groups.

4. Discussion

LUAD is one of the most frequently diagnosed malignancies
globally and is currently the leading cause of cancer death
[25, 26]. Jemal et al. once reported that nearly 70% of LUAD
patients were discovered at terminal stages at the first time of
diagnosis, with 60% of them already developed distant
metastasis by then [27]. Although great efforts have been
made in the exploration of gene mutation targeted therapy,
the five-year survival rate of LUAD patients remain dismal,
which is mainly due to the lack of specific and reliable bio-
markers [28]. Taken together，it is urgently needed to
explore effective and less invasive surrogate molecular bio-
markers that can help determine the clinical outcome of
LUAD patients and further develop more promising thera-
peutic targets for cancer treatment.

Connexin hemichannels have long been recognized as
structural precursors to form gap junctions [29]. Thus, con-
nexins play important role in the maintaining tissue homeo-
stasis, and their mutation is implied to induce the onset of
multiple disorders. Following that, accumulating evidence
has unveiled the involvement of connexins in
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Figure 3: Development of a prognostic model. (a) Univariate Cox regression analysis. (b) Multivariate regression analysis for model
construction. (c) Expression level of six model genes (LOXL2, PTPRH, DKK1, PKP2, NKX2-1, and KRT6A) from the GEPIA database.
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carcinogenesis, including prostate cancer, renal cancer, and
glioma cancer [30–33]. Intriguingly, connexins are reported
to have distinct expression patterns at different stages of
tumor progression. More specifically, connexins showed
declined expression in the primary stage, while can be an
overexpression when tumor cells developed a more invasive
phenotype [34]. Until now, the understanding of connexin
channels in LUAD is rather restrained [35, 36]. In the cur-
rent study, we divided LUAD into two distinct subtypes
based on expression profiles of 21 types of connexins. In

principle, LUAD patients in cluster 1 showed much poorer
outcome compared to their counterparts in cluster 2. Subse-
quently, we identified 222 DEGs between the two popula-
tions for the establishment of prognostic model.

Advances in “Next-generation” sequencing technology
have laid the foundation for the development of gene signa-
tures in which clinical outcome of patients can be assessed
on the basis of their transcriptomic data as well as the path-
ological grading. A total of six-gene based were verified to
play a critical role in predicting clinical outcome patients
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Figure 4: Predictive performance of the signature. (a) and (d) Survival analysis in the TCGA and the GEO datasets. (b) and (e) ROC curves
of the signature. (c) and (f) The risk distribution plots in two independent cohorts.
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with LUAD. LOXL2, which is strongly induced by hypoxia
condition, has been identified to exert its protumor effects
by promoting tumor progression in various cancers, includ-
ing breast cancer, colorectal cancer, cervical cancer, and
LUAD [37, 38]. In LUAD, LOXL2 was demonstrated to con-
tribute to cell surface matrix remodeling and subsequently
bring dissemination of tumor cell aggregates [39]. Protein
tyrosine phosphatases (PTP) family is well known for its role
in regulating tumor cell proliferation, migration, and inva-
sion in pathology of cancers. Chen et al. once validated the
prognostic value of PTPRH in LUAD tissues. The transcrip-
tion as well as the protein level of PTPRH was found to be

noticeably upregulated in LUAD tissues, as demonstrated
by qRT-PCR and immunohistochemistry, respectively [40].
The role of DKK1 in cancer development remains uneluci-
dated. Although DKK1 has been reported to act as a tumor
suppressor in various malignant tumors, opposing results
regarding DKK1 expression and its role in cancer have been
achieved recently [41, 42]. For instance, Zeybek et al.
reported that the expression levels of the DKK1 in early-
stage LUAD tissue were significantly downregulated com-
pared to their counterparts in normal tissues and were
closely related to the tumor progression [43]. Aberrantly
expressed PKP2 has been found in a number of tumors,
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Figure 5: Independent prognosis analysis. (a) and (c) Univariate regression analysis the TCGA and the GEO datasets. (b) and (d)
Multivariate regression analysis in two cohorts. (e) Subgroup analysis of the risk model based on age, gender, stage, T stage, and N stage.
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including bladder, osteosarcoma, and ovarian cancers [44,
45]. GSEA analysis revealed that PKP2 expression is posi-
tively associated with EGFR signaling in LUAD. It is worth
noting that studies regarding the precise functions of these
genes in regulating the development of LUAD remain rare
until now, further research should focus on elucidating their
biological functions on the basis of our work.

Molecular mechanisms participating in the regulation of
LUAD were validated using the GSEA analysis. Top five
Hallmarks including “EMT”, “hypoxia”, “glycolysis” “PI3K/
AKT”, and “TGF-β” were observed to be associated with
the prognosis of LUAD patients in our gene signature. Acti-

vation of EMT, characterized by the loss of cell polarity and
the breakdown of basement membrane, can bring mesen-
chymal characteristics to epithelial cells and finally promote
tumor metastasis [46, 47]. EMT can also interact with “hyp-
oxia” and “glycolysis” signaling to induce metabolic repro-
gramming in cancer cells [48]. The tumor progression
renders the nutrients limited supply. As a result, tumors
attempt to adapt to the hypoxia TME by switching to glycol-
ysis from mitochondrial oxidative phosphorylation for their
energy production, which is now known as the Warburg
effect [49]. The involvement of genetic alterations of PI3K/
AKT signaling in promoting the onset and development of
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Figure 6: Gene set enrichment analysis. (a) and (b) Hallmark analysis of the two risk groups. (c) and (d) KEGG analysis of the two risk
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LUAD has been largely reported [50]. In line with previous
studies, the PI3K/AKT pathway was found to be aberrantly
activated in high-risk LUAD patients. Altogether, these hall-
marks represent attractive therapeutic targets for the detec-
tion of novel anticancer therapies.

Additionally, we determined the distinct immunocyte
infiltration status in high- and low- risk LUAD patients.
M0 macrophages, M2 macrophages, activated CD4 memory
T cells, and neutrophils were enriched in high-risk patients,
whereas memory B cells and resting CD4 memory T cells
were relatively abundant in low-risk patients. Our results
revealed that there may be some existing interactions
between the expression pattern of connexins and infiltration

situation in LUAD patients, which sheds lights on the detec-
tion of novel tumor immunotherapy.

Numerous reports have demonstrated a tight relation-
ship between inflammation and cancer. The inflammatory
component of tumor development involves a various popu-
lation of leukocytes. These immune cells could be served as a
crucial inflammatory contributor to cancer progression by
releasing cytokines, chemokines, and cytotoxic mediators.
Cancer-associated inflammation has impact on malignancies
in many ways, including cell growth, cancer metastasis, and
therapeutic resistance [51]. Although short-term IFN-γ
stimulation can enhance the expression of MHC class I
and antigen presentation in tumor cells, prolonged IFN-γ
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Figure 7: Immune infiltration analysis. (a) Macrophages M0. (b) Macrophages M2. (c) Activated CD4 memory T cells. (d) Neutrophils. (e)
Memory B cells. (f) Resting CD4 memory T cells.

9Journal of Oncology



exposure may lead to immune escape. On the one hand,
tumor cells can reduce the IFN-γ-dependent immunosur-
veillance by affecting the expression and activity of IFN-γ,
leading to the occurrence of immune escape. Also, IFN-γ
can activate crucial immune escape genes such as PD-L1
and CTLA-4 [52]. In our data, we found that promoting
inflammation and IFN response were activated in high-risk
group, suggesting patients are prone to be immunosuppres-
sive status. In addition, LUAD cases with high-risk may
benefit from Immuno-Checkpoint Inhibitor (ICI) since
these patients presented higher expression of immune
checkpoints.

However, there are some limitations in our analysis.
The data for building the model were mainly from public
databases. Although the model has been confirmed in two
independent datasets, its reliability still needs further vali-
dation in more real-world cohorts. The expression pat-
terns of six model genes should be detected based on
clinical LUAD specimens. Moreover, various experiments
need to be conducted to explore the underlying molecular
functions and mechanisms of connexin-related biomark-
ers. In the present study, we observed that the risk model
displayed robust predictive power for assessing patient
outcomes and could be stably applied to patients with
LUAD. Furthermore, our constructed model could be
served as a predictor for mirroring immune status of
LUAD cases and provide valuable reference for therapeu-
tic strategies.

In conclusion, we established an effective prognostic
model consist of six genes on the basis of connexins molec-
ular subtypes. Molecular signaling, immune phenotypes, and
immune activities in two risk cohorts were further assessed.
Taken together, our gene signature can help provide poten-
tial therapeutic targets for the different subclusters of LUAD
patients and may aid in helping them choose personalized
immunotherapy.
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Stomach adenocarcinoma (STAD) is one of the most common malignant digestive tumors. Metabolic reprogramming is an
essential feature of tumorigenesis.�e roles of metabolic reprogramming in STAD patients were investigated to explore the tumor
immune microenvironment (TME) and potential therapeutic strategies. STAD samples’ transcriptomic and clinical data were
collected from�e CancerGenome Atlas (TCGA) set and the GSE84437 set.�e signature based on the metabolism-related genes
(MRGs) was built using the Cox regression model to predict prognosis in STAD. Notably, this MRG-based signature (MRGS)
accurately predicted STAD patients’ clinical survival in multiple datasets and could serve as an indicator independently. STAD
patients with high scores on the MRGS were eligible for generating a type I/II interferon (IFN) response, according to a complete
examination of the link between the MRGS and TME. Tumor Immune Dysfunction and Exclusion (TIDE) and immuno-
phenoscore (IPS) analyses revealed that STAD patients with di�erent MRGS scores had di�erent reactions to immunotherapy.
Consequently, assessing the pattern of these MRGs increases the understanding of TME features in STAD, hence directing the
development of successful immunotherapy regimens.

1. Introduction

Stomach adenocarcinoma (STAD) is among the most
common digestive malignant tumors. In 2018, approxi-
mately one million new cases were reported worldwide, the
bulk of which was identi�ed at an advanced stage locally
[1, 2].�e prevalence and development of STAD continue to
be poorly understood. Existing treatments for STAD mainly
include surgery and chemotherapy. After surgery, the rate of
local recurrence or distant metastasis varies from 40 to 70
percent, and the adverse e�ects of radiation and chemo-
therapy are quickly visible [3]. Consequently, the prevention
of STAD has become a pressing public health concern. It is
vital to explore the underlying mechanism of STAD to
discover novel therapeutic and diagnostic targets that might
help to raise the patient survival rate.

Cancers are characterized by metabolic reprogram-
ming, which may contribute to carcinogenesis [4–6]. A
large number of studies have pointed out that metabolic
phenotypes can be used to image tumors and o�er prog-
nostic information, as well as treat malignancies [7].
Targeting certain metabolic pathways as a therapy tech-
nique may be bene�cial in cancers. For instance, 5-£uo-
rouracil (5-FU) possesses anticancer properties [8].
Previous studies have revealed that the progression of
STAD is strongly associated with many di�erent metabolic
pathways [9, 10]. In addition, energy metabolism could be a
therapeutic focus for STAD patients in the clinic. None-
theless, the expression patterns of metabolism-related
genes (MRGs) involved in metabolic reprogramming re-
main unclear, as well as their clinical values in STAD.
Consequently, systematically evaluating the expression
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features and clinical importance of those MRGs may be
essential for the treatment of patients with STAD.

In this investigation, an MRG-based signature (MRGS)
was generated and adequately confirmed by evaluating the
transcriptome and clinical data of STAD samples in depth.
%is research next investigated the connection between the
MRGS and other clinicopathologic variables and developed
a predictive nomogram. Intriguingly, subsequent investi-
gation revealed that MRGS was strongly linked to immune-
related pathways. Consequently, we investigated the asso-
ciations between the MRGS and tumor immune microen-
vironment (TME), checkpoint genes, as well as response to
immunotherapy and sensitivity to chemotherapeutic
treatment.

2. Methods

2.1. Data Collection. %e STAD cohort from %e Cancer
Genome Atlas (TCGA) data portal containing 350 samples
and the GSE84437 cohort containing 433 samples were se-
lected for collecting information on STAD samples. %ere-
after, the whole TCGA-STAD set was subdivided into a
training set and an internal testing set in random order.
Besides, we used the whole TCGA-STAD set as another
internal validation set, and the GSE84437 set as an external
validation set. A total of 1916 specific MRGs that are involved
in all the metabolism-associated pathways were downloaded
from the c2.cp.kegg.v7.2.symbols.gmt at the GSEA website
[11], as shown in Table S1. Besides, data from immuno-
therapeutic cohorts were obtained from the IMvigor210
(http://research-pub.Gene.com/IMvigor210CoreBiologies)
[12].

2.2. Identification of CandidateMRGs andConstruction of the
MRGS. Differentially expressed MRGs were identified
between STAD and noncarcinoma samples from the
entire TCGA set by using the “limma” package [13]. %en,
the candidate MRGs were subsequently extracted from all
the differentially expressed ones. %e associations of
candidate MRGs with the overall survival (OS) of STAD
patients from the training set were analyzed using uni-
variate Cox regression. %e most optimal genes were
selected via using the LASSO regression through a package
named “glmnet” [14]. %ereafter, the multivariate Cox
regression based on the optimal genes was used for
confirming hub genes to construct the MRGS. Based on
the median one of all MRGS scores in the training set,
STAD patients in all sets were separately subdivided into
the low- or high-risk group.

2.3. Evaluation of the Constructed Model’s and Nomogram’s
Prognostic Value. %e “survival” R package plotted the
Kaplan–Meier analysis of all STAD groups [15]. In addi-
tion, the plotted ROC curves were to determine the sig-
nature’s specificity, as well as its sensitivity [16]. %e entire
TCGA cohort was utilized for analyzing the independence
of the MRGS along with several common clinical variables.
Combining these clinical variables with the constructed

MRGS, we built a prognostic nomogram to help to assess
the survival probability of STAD patients quantitatively
[17].

2.4. Analysis of Immune Cell Infiltration Level and Enriched
Pathways. To analyze the correlation between the built
MRGS and immune cell infiltration, we estimated the 22
immune cell subtype infiltration levels by CIBERSORT [18].
GSVA analysis was carried out on the gene expression
through the package named “GSVA” to explore the bio-
logical process distinction.

2.5. Immunotherapy Efficacy Based on theMRGS. %e tumor
mutation burden (TMB) was calculated for each sample
from the entire TCGA set. %e checkpoint gene level was
analyzed for confirming their relationship with the clinical
OS of patients with STAD. Tumor Immune Dysfunction and
Exclusion (TIDE, http://tide.dfci.harvard.edu/) [19] is
designed to examine immune evasion mechanisms. It serves
as an additional reliable biomarker that is usually used to
predict immunotherapy efficacy. Greater TIDE scores sug-
gest that tumor cells are more likely to elude immuno-
surveillance, hence implying a lower rate of immunotherapy
response. %e immunophenogram (IPS) of %e Cancer
Immunome Atlas (TCIA, https://home.at/) database was
also used to assess the response of STAD patients to immune
checkpoint inhibitors (ICIs) [20]. A higher IPS score fre-
quently implies a more favorable immunotherapy response.

2.6. Chemotherapy Sensitivity Analysis. CellMiner [21]
(https://discover.nci.nih.gov/cellminer) was used to access
the NCI-60 database, which comprises a total of 60 cancer
cell lines derived from various kinds of malignancies. We
carried out Pearson correlation analyses to determine the
relationship between the MRGS values and sensitivity to
chemotherapeutic drugs.

2.7. Statistical Analysis. In this study, statistical analysis was
carried out using the SPSS and R software (version 3.5.1).
%e “survival” package was used for the Kaplan–Meier
analyses, as well as the univariate and multivariate Cox
regression analyses. And, the risk ratios and accompanying
confidence intervals of 95 percent were gathered. For the in
vitro experiments, independent sample t-tests were per-
formed for the comparisons between groups. P values less
than 0.05 were considered statistically significant.

3. Results

3.1. Identification of Hub MRGs and Construction of the
MRGS. By comparing the genes’ expression levels in the
STAD and normal samples, we obtained 676 differentially
expressed MRGs (Figure 1(a)). Meanwhile, we acquired 140
MRGs associated with the OS of STAD samples via the uni-
variate analysis. %en, a total of 47 MRGs were extracted
(Figure 1(b)). To explore the MRGs that were closely related to
the STAD prognosis in the clinic, we carried out a univariate
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analysis based on the 47 chosen genes and found 18 related
genes. %e most appropriate tuning parameter from the
LASSO Cox analysis was chosen later for preventing the
overfitting based on the 18 ones (Figures 2(c) and 2(d)). Finally,
a total of 9MRGs were selected as hub ones, including ABCA1,
CD36, FAAH, NR1D1, KYNU, CACNB3, AKAP5, UCK2, and
UPP1. Afterward, the MRGS was established according to the
expression of these 9 hub MRGs along with their multivariate
Cox regression coefficients. %e formula is as followed:
score� (0.2684×ABCA1 level) + (0.2350×CD36 level) +
(−0.3043× FAAH level) + (0.3981×NR1D1 level)
+ (0.1651×KYNU level) + (0.2927×CACNB3 level)
+ (−1.2282×AKAP5 level) + (-0.5845×UCK2 level) + (0.2684
×UPP1 level). Moreover, the 9 prognostic MRGs were cor-
related with each other (Figure 1(e)).

3.2. Valuation of the Predicting Ability of MRGS. Based on
the MRGS, we calculated each STAD sample’s score and
divided all STAD samples into the low-risk group or the high-
risk group (Figure 2). Figures 2(a)–2(d) show that STAD
samples in the low-risk group owned favorable survival when
they were compared with those in the high-risk group in
multiple sets. %e risk scores and survival status of STAD
samples from the multiple sets are shown in Figures 2(e)–
2(h). %e expression of hub MRGs in the proposed signature
was similar in multiple sets (Figures 2(i)–2(l)). Furthermore,
ROC analyses were carried out to evaluate the risk model’s
prediction (Figures 2(m)–2(p)). %e values of the area under
the ROC curves performed in the TCGA training set were

0.659, 0.758, and 0.783, separately for 1-, 3-, and 5- year
survival, suggesting that MRGS had a good performance in
monitoring survival. Meanwhile, MRGS had highly accurate
predictions for the survival of STAD samples in the TCGA
testing set, the whole TCGA set, and the GSE84437 set.

3.3. Association of theMRGS and Clinical Variables in STAD.
We carried out the univariate and multivariate Cox re-
gression analyses on the MRGS and common clinical fea-
tures in the entire TCGA-STAD cohort. Figures 3(a) and
3(b) demonstrate that the MRGS was significantly associated
with the OS of STAD patients, suggesting that the generated
MRGS may serve as a factor independently predicting the
clinical prognosis. Noteworthily, age and tumor stage were
also significantly correlated with the OS (Figures 3(a) and
3(b)). In addition, we developed a clinical nomogram based
on the MRGS and multiple chosen clinical factors to ob-
jectively estimate the survival likelihood of individuals
(Figure 3(c)). In general, the calibration curves of our
generated prognostic nomogram were very congruent with
the anticipated and observed survival rate in the whole
TCGA cohort (Figure 3(d)). In addition, the AUC of the
nomogramwas greater than that of other clinical variables in
the ROC curve (Figure 3(e)), demonstrating the nomo-
gram’s superior performance.

Subgroup analysis was carried out to see whether the built
signature still had independent predictive value for the most
important clinical characteristics. Figure 4 demonstrate that
the MRGS retained its predictive power in subgroups defined
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Figure 1: Establishment of MRGS. (a) Volcano plot regarding MRGS that differentially expressed between STAD samples and normal
samples. (b) %e intersections of the differentially expressed MRGS and the MRGS with prognostic value for STAD. (c) LASSO Cox
regression analysis for STAD samples based on the MRGS in the intersections. (d) Coefficient profiles from the LASSO Cox analysis.
(e) Correlation network of the nine candidates MRGS.
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by age (age > 65 or ≤ 65, Figures 4(a) and 4(b)), gender
(female or male, Figures 4(c) and 4(d)), tumor grade (G1-
2 +G3, Figures 4(e) and 4(f)), tumor stage (SI-II + SIII-IV,
Figures 4(g) and 4(h)), T stage (T1-2 +T3-4, Figures 4(i) and
4(j)), M stage (M0+M1, Figures 4(k) and 4(l)), and N stage
(N0-1+N2-3, Figures 4(m) and 4(n)). In subgroups with
distinct clinical features, the OS duration of low-risk samples
was manifestly longer than that of high-risk samples.

3.4. Interrelation of the MRGS, Immune Cell Infiltration,
TME, and TMB. To completely characterize the immuno-
logical aspects of STAD, CIBERSORT was carried out to
examine the infiltration of immune cell subtypes in the
whole TCGA-STAD set. %e relative abundance of activated

memory CD4 T cells was significantly negatively related to
the score, and so did that of the follicular helper T cells
(Figure 5(a)), whereas the relative abundance of M2 mac-
rophages and resting mast cells were significantly positively
correlated with the score (Figure 5(a)). In addition, type I
and type II interferon (IFN) responses were both activated in
the group with high risks, suggesting that immunosup-
pressed STAD patients might react to immunotherapy
(Figure 5(b)). To further investigate the biological behaviors,
a GSVA enrichment analysis was undertaken. Interestingly,
many metabolism pathways, including selenoamino acid
metabolism, glyoxylate and dicarboxylate metabolism, and
cysteine and methionine metabolism, were significantly
enriched in the low score group (Figure S1).
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Figure 2: Evaluation of MRGS in predicting the survival of STAD samples from different cohorts. Distribution of KM survival (a-d), risk
scores and survival status (e-h), hubMRGs’ expression levels in different STAD groups (i-l), and time-dependent ROC analyses (m-p) on the
TCGA training set (a, e, I, and m), TCGA testing set (b, f, j, and n), entire TCGA cohort (c, g, k, and o), and GSE84437 cohort (d, h, l, and p).
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On the basis of MRGS scores and the hierarchical
clustering algorithm, all STAD samples from the entire
TCGA set were neatly divided into two groups (Figure 5(c)).
%e features of the TME between the two STAD groups were
discovered based on the findings of ESTIMATE. We dis-
covered that the groups with the higher MRGS scores had
higher estimate score and stromal score levels than the other
group, which had lower values (Figure 5(d)). %e mutation
data were examined using the maftool package, and the
mutations were stratified according to the variant effect
predictor. Figures 6(a) and 6(b) depict the top 20 driver
genes with the greatest frequency of modification between
the high- and low-risk STAD groups. %e difference in TMB
between groups was also shown to be statistically significant
(Figure 6(c)). Clearly, a high TMB was connected with a
healthy clinical OS (Figure 6(d)). We investigated if the
combination of theMRGS and TMBmay be a more accurate
prognostic biomarker. %erefore, we used MRGS and TMB
to stratify all STAD samples from the entire TCGA set into
four distinct groups. As seen in Figure 6(e), there were

substantial disparities between all four groups. Moreover,
the individuals with the highest TMB and lowest MRGS
scores had the greatest OS. %ese findings indicated con-
clusively that MRGS was positively associated with tumor
malignancy.

3.5. Correlation of Checkpoint Genes and theMRGS and9eir
Impact on Clinical Outcome in the Entire TCGA-STAD
Cohort. Previous research has shown the significance of
immune checkpoint genes in regulating immune infil-
tration [22–24]. To further study the complicated interplay
between immune checkpoints and the established MRGS,
we evaluated their expression patterns across MRGS-based
groups. As shown in Figures 7(a)–7(c), STAD patients with
higher MRGS scores expressed lower levels of three chosen
immune checkpoint genes (PD-1, CTLA4, and LAG3) in
the entire TCGA set. Meanwhile, the expression levels of
three chosen checkpoint genes all showed negative cor-
relations to the MRGS scores (Figures 7(d)–7(f )). %en, we
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Figure 3: %e dependence of the MRGS for prognostic prediction in STAD. (a) Results of the univariate Cox analyses of the MRGS and
multiple clinical features in patients from the entire TCGA-STAD set. (b) Results of the further multivariate Cox analyses. (c) Nomogram
predicting the OS in the entire TCGA cohort. (d) Calibration curves of nomogram on the consistency. (e) ROC analysis of the constructed
clinical nomogram by comparing it with other chosen clinical variables.
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Figure 4: Stratified analysis based on the built model and clinical stratifications. (a-m) Longer survival time was obviously observed in
STAD patients with low scores inmost clinical stratifications, including patients’ age (a and b), patients’ gender (c and d), tumor grade (e and
f), tumor stage (g and h), tumor T stage (I and j), tumor M stage (k and l) and tumor N stage (m and n).
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analyzed MRGS in conjunction with immune checkpoint
expression to determine if MRGS affects the OS of STAD
patients with comparable checkpoint genes’ expression.
Survival analysis was carried out on four groups that were
stratified by MRGS and immune checkpoint gene ex-
pression. Figure 7(g) illustrate that those individuals with
higher PD-1 expression levels and lower MRGS scores had
a longer OS than those with higher PD-1 expression levels
and higher MRGS scores. In individuals with low PD-1
expression levels, a lower risk score indicated a survival
rate that was significantly improved. In the entire TCGA-
STAD cohort, similar survival trends were identified
across the four STAD patient groups stratified by the
MRGS scores and CTLA4 (Figure 7(h)) or LAG3
(Figure 7(i)) expression.

3.6. Predictive Potential of the MRGS in Immunotherapy
Response and Drug Sensitivity. %ere is mounting evidence
that ICIs increase STAD survival, although responses vary.

%erefore, precise prognostic biomarkers are urgently re-
quired. In light of the link between the MRGS and immune
infiltration, as well as the checkpoint gene levels, we in-
vestigated the predictive ability of MRGS by analyzing its
correlation with known immunotherapy predictors, such
as TIDE [25, 26] and IPS [27]. High-risk STAD patients
tended to attain greater TIDE scores in the TCGA cohort,
suggesting that those in the group with low scores may
benefit from ICIs in the clinic (Figure 8(a)). IPS serves as a
superior predictor for the response to anti-CTLA-4 anti-
bodies and anti-PD-1 antibodies. Although our results
showed that there was no difference in IPS between the two
groups shown in Figures 8(b) and 8(d), the IPS scores in the
low-risk STAD group in Figures 8(c) and 8(e) were sig-
nificantly elevated, suggesting that these patients may have
better responses to ICIs. In addition, given the immuno-
therapy response prediction capacity of the MRGS, we ran
Kaplan–Meier analyses on the immunotherapy cohort
(IMvigor210) to evaluate the predictive significance of the
immunotherapeutic OS. %e anti-PD-L1 clinical response

Mast_cells
Type_II_IFN_Reponse
Th2_cells
CD8+_T_cells
Cytolytic_activity
APC_co_inhibition
Inflammation−promoting
Th1_cells
HLA
T_cell_co−inhibition
TIL
Check−point
T_cell_co−stimulation
pDCs
T_helper_cells
APC_co_stimulation
CCR
Treg
iDCs
NK_cells
B_cells
Tfh
MHC_class_I
Parainflammation
Type_I_IFN_Reponse
DCs
Neutrophils
aDCs
Macrophages

Subtype
StromalScore
ImmuneScore
ESTIMATEScore
TumorPurity

Subtype
Immunity_L
Immunity_H

TumorPurity
0.9

0.3

ESTIMATEScore
4000

−2000

ImmuneScore
3000

0

StromalScore
2000

−1500−6

−4

−2

0

2

4

6

(a)

*** **

−2500

0

2500

5000

TM
E 

sc
or

e

StromalScore ImmuneScore ESTIMATEScore

Low risk
High risk

Subtype

(b)

* *** *** *** *

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
na

iv
e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
st

in
g

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

elp
er

T 
ce

lls
 re

gu
lat

or
y 

(T
re

gs
)

T 
ce

lls
 g

am
m

a d
elt

a
N

K 
ce

lls
 re

sti
ng

N
K 

ce
lls

 ac
tiv

at
ed

M
on

oc
yt

es
M

ac
ro

ph
ag

es
 M

0
M

ac
ro

ph
ag

es
 M

1
M

ac
ro

ph
ag

es
 M

2
D

en
dr

iti
c c

el
ls 

re
sti

ng
D

en
dr

iti
c c

el
ls 

ac
tiv

at
ed

M
as

t c
el

ls 
re

sti
ng

M
as

t c
el

ls 
ac

tiv
at

ed
Eo

sin
op

hi
ls

N
eu

tro
ph

ils

Risk
low
high

(c)

A
PC

_c
o_

in
hi
bi
tio

n

A
PC

_c
o_

sti
m
ul
at
io
n

CC
R

Ch
ec
k−

po
in
t

Cy
to
ly
tic

_a
ct
iv
ity

H
LA

In
fla
m
m
at
io
n−

pr
om

ot
in
g

M
H
C_

cla
ss
_I

Pa
ra
in
fla
m
m
at
io
n

T_
ce
ll_

co
−i
nh

ib
iti
on

T_
ce
ll_

co
−s
tim

ul
at
io
n

Ty
pe
_I
_I
FN

_R
ep
on

se

Ty
pe
_I
I_
IF
N
_R

ep
on

se

Risk
low
high

** ** *** * ***

0.00

0.25

0.50

0.75

1.00

Sc
or
e

(d)
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in the IMvigor210 cohort was classified as partial response
(PR), complete response (CR), progressing disease (PD),
and stable disease (SD). As anticipated, low scores were
found to have a favorable trend in the immunotherapeutic
OS (Figure 8(f )). %e MRGS also had meaningful differ-
ences between the CR/PR and SD/PD groups from the
IMvigor210 cohort (Figure 8(g)). All the results above
showed that the constructed MRGS performs well in
predicting the response to immunotherapy for STAD
patients.

Moreover, we investigated the expression of prognostic
MRGs in the proposed signature in cancer cells from the
NCI-60 database. %e results in Figure 9 showed that the
majority of these prognostic MRGs were closely associated
with sensitivity to some chemotherapy drugs. For example,
increased expression of AKAP5, ABCA1, UCK2, and
CACNB3 was obviously related to the increased drug re-
sistance to lapatinib, afatinib, osimertinib, dacomitinib,
neratinib, ibrutinib, etc. On the contrary, elevated ex-
pression levels of UPP1, CACNB3, and AKAP5 were
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significantly related to the increased drug sensitivity to
fulvestrant, dexrazoxane, actinomycin D, selumetinib,
pipamperone, etc.

4. Discussion

Extensive research shows that cells in cancers usually exhibit
abnormal metabolic characteristics [28]. Metabolic
reprogramming is a crucial characteristic of cancer genesis.
Changes in cellular metabolic activity are a characteristic of
cancer [29]. One of the physiological hallmarks of a human
malignant tumor is an elevated glycolytic metabolism, for

instance [30]. Several studies have shown that metabolic
markers like cysteine metabolism, nucleotide metabolism,
and 2-hydroxyglutarate may be used to categorize and treat
gliomas [31, 32]. Given the above, metabolic therapy is a
viable therapeutic option for STAD.

Here, we analyzed the MRGs’ levels, together with their
prognostic value based on the transcriptomic data of patients
with STAD. As a result, 9 identified MRGs were adopted for
building the MRGS. %e mRNA level of NR1D1 was upre-
gulated in STAD tissues when compared with normal tissues
[33]. %e prognosis of STAD patients likely benefited from
lower expression levels of KYNU [34]. Low expression of
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AKAP5 may be a potential molecular marker for predicting
poor prognosis of non-mucin-producing stomach adeno-
carcinoma (NMSA) via regulating cholesterol homeostasis,
estrogen response, glycolysis, notch signaling, and adipo-
genesis pathways [35]. %e malignant cell marker, UPP1, was
selected to generate a signature for STAD patients [36]. Al-
though other MRGs in the proposed signature have not been

investigated in STAD previously, they have been confirmed to
influence the progression of cancers [37–41]. According to the
median MRGS value of all scores, we grouped the STAD
samples from different sets into low-risk or high-risk groups.
%e findings demonstrated that STAD patients with lower
model scores had superior survival to those with higher
MRGS scores. %e ROC curve analysis confirmed that the
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0.00045

−6

−4

−2

0

2

CR/PR SD/PD

Ri
sk

 sc
or

e
binaryResponse

CR/PR
SD/PD

(g)

Figure 8: Predictive potential of the MRGS in immunotherapeutic benefits. (a) %e TIDE scores between STAD patients with different
MRGS scores. (b-e) %e association between the MRGS score and IPS. (f ) Kaplan–Meier analysis based on the IMvigor210 cohort. (g) %e
distribution of MRGS in the binary response.

12 Journal of Oncology



MRGS had a high potential for predicting survival. Moreover,
the univariate or multivariate analysis based on MRGS and
other clinical variables confirmed the independence of the
MRGS’s prognostic value, while the OS time of STAD samples
varied significantly in different clinical feature subgroups.%e
nomogramwe built based on theMRGS and common clinical
variables could better predict the survival of STAD patients
since its AUC value was a little higher.

Numerous landmark studies have pointed out that
metabolic changes exert vital roles in immune regulation
[42, 43]. %e aberrant metabolism in cancers may have a
substantial effect on TME, which is often acidic, hypoxic,
and lacks nutrients necessary by immunological cells [44]. In
addition, aerobic glycolysis inside cancer cells shapes the
immune system by upregulating cytokine production and
inhibiting the development of monocytes into dendritic cells
[45]. Meanwhile, immune cells’ metabolism is a significant
factor in determining their survivability and roles [46].
Consequently, metabolism is strongly tied to immunity. %e
creation of a prognostic signature related to metabolismmay
aid a lot in forecasting the status of immune responses. To
better understand the relationship between the built MRGS
and immunity, we compared TME between groups and
found several immune cell infiltration levels were obviously
elevated in the STAD group with low risk. %ese findings
indicate that metabolically active tumor cells in STAD
formed a microenvironment that was harmful to immune
cells, consistent with previous reports [47]. %e immune
response against cancer is an important component of the
complicated tumor immunophenotype that underlies the
TME [48]. By modifying the immune cell state inside TME,
the aberrant metabolism may contribute to a different
outcome. %is is consistent with the finding that tailored
metabolism may facilitate the regulation of antitumor im-
mune response.

Interestingly, our data showed that the main indicators
of exhausted T cells were abnormally elevated in STAD
samples with higher MRGS scores, suggesting T cells may
have become more hypofunctional and hyporesponsive as
metabolism activates in cancer cells. %is result may explain
why elderly persons have a lower immunotherapy response
rate. In order to confirm our findings, we also collected
immunotherapy data from TICA. STAD patients with lower
MRGS scores may have a stronger immunotherapy re-
sponse, as evidenced by the findings. Moreover, we collected
immunotherapy information from the IMvigor210 set and
further confirmed the ability of the MRGS in predicting the
STAD patients’ immunotherapy responses.

%e current work has a number of strengths. %is is the
first signature that is created on the basis of metabolic
reprogramming that may represent the prognosis and TME,
immunotherapy of STAD patients. Second, different data
sets were used in order to validate and assess the predictive
efficacy of our created signature. %irdly, we determined the
possible molecule that matched our signature. However,
more prospective cohort studies are required to evaluate the
therapeutic utility of this predictive signature. In the
meanwhile, the possible chemical requires additional
investigation.

5. Conclusion

In conclusion, we performed a complete examination of the
expression of MRGs in STAD patients and then developed
an MRGS with the ability to predict clinical outcomes and
immunological microenvironment. As a useful tool, this
built signature may aid in searching for possible combi-
nation immunotherapy drugs and offer a therapeutic ap-
proach for the treatment of STAD patients.
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