
Advances in Polymer Technology

Machine Learning for Advanced
Polymer Manufacturing,
Processing, and Testing

Lead Guest Editor: Yi Liu
Guest Editors: Yuan Yao and Tao Chen

 



Machine Learning for Advanced Polymer
Manufacturing, Processing, and Testing



Advances in Polymer Technology

Machine Learning for Advanced
Polymer Manufacturing, Processing,
and Testing

Lead Guest Editor: Yi Liu
Guest Editors: Yuan Yao and Tao Chen



Copyright © 2020 Hindawi Limited. All rights reserved.

is is a special issue published in “Advances in Polymer Technology.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.



Chief Editor
Ning Zhu  , China

Associate Editors
Maria L. Focarete  , Italy
Leandro Gurgel  , Brazil
Lu Shao  , China

Academic Editors
Nasir M. Ahmad  , Pakistan
Sheraz Ahmad  , Pakistan
B Sridhar Babu, India
Xianglan Bai, USA
Lucia Baldino  , Italy
Matthias Bartneck  , Germany
Anil K. Bhowmick, India
Marcelo Calderón  , Spain
Teresa Casimiro  , Portugal
Sébastien Déon  , France
Alain Durand, France
María Fernández-Ronco, Switzerland
Wenxin Fu  , USA
Behnam Ghalei  , Japan
Kheng Lim Goh  , Singapore
Chiara Gualandi  , Italy
Kai Guo  , China
Minna Hakkarainen  , Sweden
Christian Hopmann, Germany
Xin Hu  , China
Puyou Jia  , China
Prabakaran K  , India
Adam Kiersnowski, Poland
Ick Soo Kim  , Japan
Siu N. Leung, Canada
Chenggao Li  , China
Wen Li  , China
Haiqing Lin, USA
Jun Ling, China
Wei Lu  , China
Milan Marić  , Canada
Dhanesh G. Mohan  , United Kingdom
Rafael Muñoz-Espí  , Spain
Kenichi Nagase, Japan
Mohamad A. Nahil  , United Kingdom
Ngoc A. Nguyen  , USA
Daewon Park, USA
Kinga Pielichowska  , Poland

Nabilah Afiqah Mohd Radzuan  , Malaysia
Sikander Rafiq  , Pakistan
Vijay Raghunathan  , ailand
Filippo Rossi  , Italy
Sagar Roy  , USA
Júlio Santos, Brazil
Mona Semsarilar, France
Hussein Sharaf, Iraq
Melissa F. Siqueira  , Brazil
Tarek Soliman, Egypt
Mark A. Spalding, USA
Gyorgy Szekely  , Saudi Arabia
Song Wei Tan, China
Faisal Amri Tanjung  , Indonesia
Vijay K. akur  , USA
Leonard D. Tijing  , Australia
Lih-sheng Turng  , USA
Kavimani V  , India
Micaela Vannini  , Italy
Surendar R. Venna  , USA
Pierre Verge  , Luxembourg
Ren Wei  , Germany
Chunfei Wu  , United Kingdom
Jindan Wu  , China
Zhenhao Xi, China
Bingang Xu  , Hong Kong
Yun Yu  , Australia
Liqun Zhang  , China
Xinyu Zhang  , USA

https://orcid.org/0000-0001-7877-8179
https://orcid.org/0000-0002-0458-7836
https://orcid.org/0000-0001-5249-8670
https://orcid.org/0000-0002-4161-3861
https://orcid.org/0000-0002-3614-0078
https://orcid.org/0000-0001-6231-6578
https://orcid.org/0000-0001-7015-0803
https://orcid.org/0000-0003-1516-9610
https://orcid.org/0000-0002-2734-9742
https://orcid.org/0000-0001-9405-6221
https://orcid.org/0000-0003-4775-5964
https://orcid.org/0000-0002-8986-8310
https://orcid.org/0000-0003-2848-9138
https://orcid.org/0000-0002-1813-7641
https://orcid.org/0000-0002-2020-1892
https://orcid.org/0000-0002-0013-3263
https://orcid.org/0000-0002-7790-8987
https://orcid.org/0000-0001-5113-1869
https://orcid.org/0000-0002-3372-9135
https://orcid.org/0000-0001-5748-0365
https://orcid.org/0000-0003-2244-4369
https://orcid.org/0000-0002-4338-8944
https://orcid.org/0000-0002-3851-7406
https://orcid.org/0000-0002-2803-9519
https://orcid.org/0000-0002-4984-8761
https://orcid.org/0000-0002-4652-4198
https://orcid.org/0000-0002-8146-2332
https://orcid.org/0000-0002-9000-8545
https://orcid.org/0000-0002-0278-406X
https://orcid.org/0000-0002-5049-8869
https://orcid.org/0000-0003-0859-6112
https://orcid.org/0000-0002-0177-5153
https://orcid.org/0000-0001-5238-2520
https://orcid.org/0000-0003-2665-120X
https://orcid.org/0000-0001-5141-9758
https://orcid.org/0000-0002-0277-0418
https://orcid.org/0000-0001-9658-2452
https://orcid.org/0000-0002-7279-671X
https://orcid.org/0000-0002-0790-2264
https://orcid.org/0000-0001-9398-6355
https://orcid.org/0000-0001-8022-9224
https://orcid.org/0000-0001-8385-0884
https://orcid.org/0000-0001-7599-3797
https://orcid.org/0000-0003-1094-4534
https://orcid.org/0000-0001-9844-0394
https://orcid.org/0000-0003-3876-1350
https://orcid.org/0000-0001-7961-1186
https://orcid.org/0000-0001-5255-4679
https://orcid.org/0000-0002-1277-8747
https://orcid.org/0000-0002-8785-5073
https://orcid.org/0000-0002-2103-6294
https://orcid.org/0000-0003-3830-4096


Contents

Ensemble Just-In-Time Learning-Based So� Sensor for Mooney Viscosity Prediction in an Industrial
Rubber Mixing Process
Huaiping Jin  , Jiangang Li, Meng Wang, Bin Qian  , Biao Yang, Zheng Li, and Lixian Shi
Research Article (14 pages), Article ID 6575326, Volume 2020 (2020)

Defect Detection in Composite Products Based on Sparse Moving Window Principal Component
'ermography
Jing Jie  , Shiqing Dai  , Beiping Hou  , Miao Zhang  , and Le Zhou 

Research Article (12 pages), Article ID 4682689, Volume 2020 (2020)

Semi-Supervised Hybrid Local Kernel Regression for So� Sensor Modelling of Rubber-Mixing Process
Haiqing Yu, Jun Ji  , Ping Li, Fengjing Shao  , Shunyao Wu, Yi Sui, Shujing Li, Fengjiao He, and Jinming
Liu
Research Article (8 pages), Article ID 6981302, Volume 2020 (2020)

https://orcid.org/0000-0003-2627-431X
https://orcid.org/0000-0002-0048-1487
https://orcid.org/0000-0001-8875-295X
https://orcid.org/0000-0003-3303-8825
https://orcid.org/0000-0001-9825-3732
https://orcid.org/0000-0002-7907-2255
https://orcid.org/0000-0002-7852-1370
https://orcid.org/0000-0003-3194-2183
https://orcid.org/0000-0001-8548-0565


Research Article
Ensemble Just-In-Time Learning-Based Soft Sensor for Mooney
Viscosity Prediction in an Industrial Rubber Mixing Process

Huaiping Jin , Jiangang Li,MengWang, BinQian , Biao Yang, Zheng Li, and Lixian Shi

Department of Automation, Faculty of Information Engineering and Automation,
Kunming University of Science and Technology, Kunming 650500, China

Correspondence should be addressed to Huaiping Jin; jinhuaiping@gmail.com

Received 30 May 2019; Accepted 3 March 2020; Published 27 March 2020

Guest Editor: Yi Liu

Copyright © 2020 Huaiping Jin et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

)e lack of online sensors for Mooney viscosity measurement has posed significant challenges for enabling efficient monitoring,
control, and optimization of industrial rubber mixing process. To obtain real-time and accurate estimations ofMooney viscosity, a
novel soft sensor method, referred to as multimodal perturbation- (MP-) based ensemble just-in-time learning Gaussian process
regression (MP-EJITGPR), is proposed by exploiting ensemble JIT learning. )is method employs perturbations on similarity
measure and input variables for generating the diversity of JIT learners. Furthermore, a set of accurate and diverse JIT learners are
built through an evolutionary multiobjective optimization by balancing the accuracy and diversity objectives explicitly. Moreover,
all base JIT learners are combined adaptively using a finite mixture mechanism. )e proposed method is applied to an industrial
rubber mixing process for Mooney viscosity prediction, and the experimental results demonstrate its effectiveness and superiority
over traditional soft sensor methods.

1. Introduction

Rubber mixing is a crucial step in rubber and tire industry.
)e quality of rubber products highly depends on the exact
mixing of raw materials and additives. )e Mooney vis-
cosity, indicating the molecular weight and viscoelastic
behavior of an elastomer, has been recognized as an im-
portant quality index for producing nonvulcanized rubbery
materials [1, 2]. In most rubber and tire factories, however,
the Mooney viscosity can only be determined through
manual analysis, which often takes 4∼6 h after a batch has
been discharged, while the duration of a batch run of mixing
process is only about 2∼5min. )erefore, in recent years,
soft sensor methods have been widely applied to provide
real-time estimations of the Mooney viscosity to obtain the
optimal and uniform rubber product quality [3–12].

In general, it is time-consuming and even impossible to
build accurate first-principles soft sensors for Mooney vis-
cosity due to the lack of in-depth chemical and physical
knowledge of rubber mixing process. Alternatively, data-
driven soft sensors have attracted much attention because of

the availability of large amounts of data and advanced data
mining and analytics tools [13–18]. )e early attempts to
data-driven soft sensors for quality estimation mainly focus
on global modeling techniques, such as multivariate sta-
tistical techniques [19, 20], artificial neural networks [3, 21],
support vector regression [22], and Gaussian process re-
gression [4, 5]. Recently, deep learning methods have also
been introduced to soft sensor applications [23].

However, global soft sensor methods cannot always
function well because they may fail to handle local process
characteristics effectively and perform model adaptation
efficiently. )us, in practical applications, local learning-
based soft sensor methods are more appealing for providing
accurate predictions. Compared to global modeling, local
learning exhibits two outstanding advantages. First, global
soft sensors are usually based on the underlying assumption
of a constant operating phase and conditions throughout the
entire duration of a production process, whereas industrial
processes are often characterized by strong nonlinearity, and
multiple operation phases or modes. )us, from the process
industry viewpoint, local learning is more suitable for
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handling complex process characteristics. Second, since local
learning is completely localized, the local models can be built
and updated independently of each other, which greatly
simplifies the incremental adaptation, inclusion, or removal
of local models and receptive fields.

Generally, there are two categories of local learning
methods: ensemble methods [24–27] and just-in-time
learning (JIT) methods [6, 7, 9, 12]. )ese methods employ
the divide-and-conquer philosophy to model the relation-
ships between the inputs and output by building a set of
locally valid models. In particular, JIT learning, known as a
representative local learning paradigm, has gained growing
attention in soft sensor applications for Mooney viscosity
estimation due to its strong capability of handling nonlin-
earity, time-varying behavior, multiphase and multimode
process characteristics, etc. [9, 11, 12]. However, traditional
JIT soft sensors attempt to build a globally optimal encap-
sulation of local modeling techniques, similarity measures,
input variables, model hyper-parameters, etc., while the
diversity of JIT learning is ignored. To tackle this problem,
various ensemble JIT learning (EJIT) soft sensors have been
developed [6, 8, 25, 28–31].

)e basic idea of EJIT modeling is to build multiple
component JIT learners and then combine their predictions.
For instance, Liu et al. (2012) [28] employed heterogeneous
predictive models to build base JIT models and then com-
bined them through a simple averaging rule. Liu and Gao
(2015) [6] developed an EJIT soft sensor by using diverse
similar data sets, which are obtained by assigning diverse
hyperparameters to the support vector clustering for outlier
detection. Kaneko and Funatsu (2016) [25] developed an
ensemble locally weighted partial least squares (LWPLS) soft
sensor, where diverse subsets are first built using moving
windowmethod and then multiple of the most relevant ones
to the query state are selected to build diverse LWPLS
models, which are finally integrated via Bayes’ theorem. Liu
et al. (2015) [29] built an EJIT kernel learning framework
through perturbing the hyperparameters of local learning
methods. Yuan et al. (2018) [30] developed an EJIT soft
sensor by using different similarity measures. Besides, we
proposed an EJIT soft sensor by perturbing the input fea-
tures for building diverse input subspaces [8]. Recently, we
developed an EJIT soft sensor by employing multiple
weighted Euclidean distance- (WED-) based similarity
measures, which are optimized through an EMO approach
[31]. )ese studies show that it is feasible and effective to
enhance the prediction accuracy of JIT soft sensors by in-
troducing ensemble learning.

However, it remains challenging to build high-
performance EJIT soft sensors due to the following issues.
First, many current EJIT soft sensor methods only consider
single perturbation, such as perturbing training data [25],
similarity measure [30, 31], perturbing input variables [8],
perturbing local modeling technique [28], or perturbing
model parameters [29]. In practice, the diversity of JIT
learning is often originated from multiple factors. Second,
most of the current EJITmethods construct base JIT learners
in a heuristic way. In such situations, the accuracy and
diversity objectives of JIT learners are difficult to achieve a

good tradeoff. Finally, most methods employ nonadaptive
weightings for the combination of base JIT learners, which
will limit the prediction performance of EJIT soft sensors.

To address the aforementioned issues, a novel EJIT soft
sensor method, referred to as multimodal perturbation-
based EJITGPR (MP-EJITGPR), is proposed for enabling
accurate predictions of Mooney viscosity. )is method
works through integrating perturbation on similarity
measures and perturbation on input variables together.
With the multimodal perturbation mechanism, a set of
accurate and diverse JIT learners are built by balancing the
accuracy and diversity objectives explicitly through an
evolutionary multiobjective optimization (EMO) ap-
proach. )en, a finite mixture mechanism- (FMM-) based
weighting stagey is used to achieve an adaptive combi-
nation of base learners. In summary, the main contribu-
tions of this study are as follows:

(1) A multimodal perturbation mechanism is proposed
by utilizing heterogeneous similarity measures and
building diverse input subspaces, which allows en-
hancing the diversity of base JIT learners efficiently

(2) )e generation of accurate and diverse JIT learners is
formulated as a multiobjective optimization problem
and then solved by an EMO approach

(3) )e combination of base JIT learners is achieved
through the finite mixture mechanism, which en-
ables adaptive assignments of weights

(4) A novel EJITsoft sensor modeling framework is built
by integrating the multimodal perturbation mech-
anism-based diversity creation, the EMO-based
generation of base JIT learners, and the FMM-based
adaptive combination of base JIT learners

)e rest of the paper proceeds as follows. Section 2
briefly introduces JIT learning and Gaussian process re-
gression. Section 3 details the proposed MP-EJITGPR soft
sensor method and its implementation procedure. )e
application ofMP-EJITGPR forMooney viscosity prediction
in an industrial rubber mixing process is reported in Section
4. Finally, conclusions are drawn in Section 5.

2. Preliminaries

2.1. Just-In-Time Learning. JIT learning [32], also known as
lazy learning [33] and locally weighted learning [34], refers
to a family of algorithms in which all historical data are
stored in a database and local models are built dynamically
by retrieving the most similar data to the query state.
Compared to conventional global modeling methods, JIT
learning has the following features:

(1) All available modeling data are stored at a database.
And only those samples most similar to the query
point are used for modeling for each run of
prediction.

(2) Only when an estimation is required, a local model is
built dynamically based on samples with high sim-
ilarities to the query point.
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(3) )e constructed local model is discarded after the
estimation is given.

2.2. Gaussian Process Regression. A Gaussian process is a
collection of random variables, any finite number of which
follows joint Gaussian distributions [35]. Considering a data
set D � X, y􏼈 􏼉 � xi, yi􏼈 􏼉

n
i�1, the regression model can be

formulated as

y � f(x) + ε, (1)

where f(·) represents an unknown regression function and ε
denotes the Gaussian noise with zero mean and variance σ2n.

A Gaussian process is completely specified by its mean
function m(x) and covariance function C(x, x′):

f(x) ∼ GP m(x), C x, x′( 􏼁( 􏼁. (2)

Since the modeling data is usually normalized to be zero
mean, the output observations follow a Gaussian distribu-
tion as

y ∼ GP(0,C), (3)

where C is an n × n covariance matrix with Cij � C(xi, xj)

representing the ijth element. In this study, a Matérn co-
variance function with noise term is adopted:

C xi, xj􏼐 􏼑 � σ2f 1 +

�
3

√
xi − xj

�����

�����

l
⎛⎝ ⎞⎠exp −

�
3

√
xi − xj

�����

�����

l
⎛⎝ ⎞⎠ + σ2nδij,

(4)

where Θ � σ2f, l, σ2n􏽮 􏽯 are the hyperparameters, l is the input
scale, σ2n is the noise variance, σ2f is the output scale, and

δij �
1; i � j

0; i≠ j
􏼨 . )e hyperparameters Θ are determined by

Bayesian inference.
Given a query data xnew, the training outputs y and the

test output ynew follow a joint Gaussian distribution as
follows:

y

ynew
􏼢 􏼣 ∼ N 0,

C knew
kTnew C xnew, xnew( 􏼁

􏼢 􏼣􏼠 􏼡, (5)

where knew � [C(xnew, x1), . . . , C(xnew, xn)]T. )en, the
prediction output 􏽢ynew and variance σ2new can be calculated as

􏽢ynew � kTnewC
− 1y,

σ2new � C xnew, xnew( 􏼁 − kTnewC
− 1knew,

⎧⎨

⎩ (6)

3. Proposed MP-EJITGPR Soft Sensor

In this section, a multimodal perturbation-based ensemble
just-in-time learning Gaussian process regression (MP-
EJITGPR) is presented. First, data preprocessing is con-
ducted on the three-way data matrices of industrial rubber
mixing process.)en, heterogeneous similarity measures are
defined. Furthermore, by introducing the multimodal per-
turbation mechanism, a set of accurate and diverse JIT
learners, which are equipped with heterogeneous similarity
measures and diverse subspaces, are generated through an

EMO approach. Next, a finite mixture mechanism is
employed to achieve an adaptive combination of base JIT
learners. Finally, the implementation procedure of MP-
EJITGPR is provided.

3.1. Data Preprocessing. Typically, the online data of those
easy-to-measure variables in industrial rubber mixing
process can be arranged in a three-way matrix X(I × J × K)

consisting of J process variables measured at K points for I

batches. Meanwhile, the quality variable (i.e., Mooney vis-
cosity), which is only available at the end of the batch, i.e.,
time point K, can be expressed as yK(I × 1). Before soft
sensor modeling, it is desirable to perform essential pro-
cessing. First, the process data is first preprocessed using a
simple 3σ rule for outlier detection.)en, the three-way data
matrix X(I × J × K) is unfolded into a two-way matrix,
which allows utilizing the standard regression techniques for
building the predictive model between online measured
variables and the end-use quality variable. Generally, X can
be unfolded in six different ways [36], among which
batchwise unfolding is employed in this study, as illustrated
in Figure 1. In practice, this way of unfolding has been
actually recognized to be the most meaningful one for
analysis and monitoring of batch processes. With this way of
unfolding, all potential input variables at different time
instants can be obtained for predicting the final quality
variable. Moreover, since the dimensions and magnitudes of
various process variables are significantly different from
each other, another crucial step to guarantee the reliability
and accuracy of soft sensors is data normalization, which is
achieved by scaling the unfolded data matrices to zero mean
and unit variance in this study.

3.2. Definition of Heterogeneous Similarity Measures.
Similarity measure plays a central role in JIT modeling. In
contrast to traditional modeling methods utilizing all
available data, the JIT method is to construct a local model
based on a small data set with high similarities to the query
data. )us, the key to building highly accurate JIT soft
sensors is to define appropriate similarity metrics. Despite
the availability of various similarity measures, it is hopeless
to pursue a similarity evaluation criterion, which is con-
sistently better than other metrics across different applica-
tion scenarios. Consequently, it is a common practice to
select one of the best similarity measures for a given task,
which is usually time-consuming and even impossible. In
practice, different similarity measures can provide different
insights into similarity evaluation between data points.)us,
in this work, heterogeneous similarity measures will be
combined for JIT learning, including Euclidean distance-
(ED-) based similarity, cosine similarity (cosine), covariance
weighted distance- (CWD-) based similarity, and correlation
coefficient- (CC-) based similarity.

)e ED similarity measure is the most commonly used
metric for JIT learning due to its simplicity and efficiency. It
is defined based on the Euclidean distance between points in
space; that is,

Advances in Polymer Technology 3



ωi � exp −
di

σdφ
􏼠 􏼡,

di � xi − xnew
����

����,

(7)

where σd is the standard deviation of di (i � 1, 2, . . . , n) and
φ is a localization parameter.

One disadvantage of ED similarity is that the differences
among input variables are ignored. To address this issue,
various weighted distance-based similarity measures have
been proposed, among which the CWD similarity measure is
defined by considering the relationships among input var-
iables and among input and output variables. [37] )at is,
CWD similarity is defined by using the weighted distance
metric:

di �

��������������������

xi − xnew( 􏼁
TΗ xi − xnew( 􏼁

􏽱

,

Η �
XTy( 􏼁

T XTy( 􏼁

XTy2
����

����
,

(8)

where Η denotes a weighting matrix, and X and y are the
input and output matrices, respectively.

Alternatively, by exploiting the angle between two
vectors in space, the cosine similarity measure can be defined
as

ωi � exp
cosi

σcosφ
􏼠 􏼡,

cosi �
xT

i xnew
xi

����
���� xnew
����

����
,

(9)

where cosi denotes the cosine value of the angle between two
vectors.

In addition to the distance and angle criteria, the rele-
vance between two vectors can also be used to evaluate the
similarity between samples. For the sake of simplicity, and
without loss of generality, the frequently used correlation
coefficient (CC) criterion is used to define similarity measure
as follows:

ωi � exp
ri

σrφ
􏼠 􏼡 ,

ri �
Cov xi, xnew( 􏼁

���������������
Var xi( 􏼁Var xnew( 􏼁

􏽱 ,

(10)

where Cov(·, ·) and Var(·) are used to compute the co-
variance and variance, respectively.

It is noteworthy that the above similarity measures are
defined from different points of view, thus behaving dif-
ferently in different applications. So, one promising solution
towards further improving the prediction performance of
JIT learning soft sensors is to use heterogeneous similarity
measures together, which has not been well investigated and
will be discussed in the following section.

3.3. Generation of Base JIT Learners through Evolutionary
Multiobjective Optimization. When considering JIT
learning as a base learner for ensemble learning, EJIT
modeling is essentially one ensemble method. It has been
proven both theoretically and empirically that both ac-
curacy and diversity of base learners are crucial to guar-
antee high ensemble performance [38]. According to the
famous bias-variance decomposition [39] and error-am-
biguity decomposition [40] theories, the more accurate and
the more diverse base learners are, the better the ensemble
is. Hence, the success of developing high-performance EJIT
soft sensors lies in generating accurate and diverse base JIT
learners.

Among various ensemble learning soft sensors, per-
turbing training data remains dominant for creating di-
versity, such as clustering [41], moving window [24, 27],
bootstrapping sampling [42, 43], and sequential sampling
[44]. However, such data manipulation strategies do not
always function well for EJITmodeling because JIT learning
only relies on a small subset of relevant samples for each run
of prediction and is less sensitive to the randomness injected
to the database. Moreover, the perturbation on input var-
iables is often ignored in developing ensemble soft sensors.
In addition, many of the current methods for base learner
generation are based on heuristic mechanisms without
measuring or ensuring diversity among base learners
explicitly.

)us, in this study, the diversity generation is achieved
through the multimodal perturbation mechanism, i.e.,
perturbing similarity measure and input variables together.
)en, the generation of accurate and diverse base JIT
learners is formulated as a multiobjective optimization
problem (MOP). Finally, the MOP problem is solved by
using an EMO approach, which leads to a tradeoff between
accuracy and diversity objectives. In the following, the

…

1 2

K

I

1

1 Variables

Sampling instants

Ba
tc

he
s

Batchwise
unfolding

I

1 J 2J KJ

(I × 1)

Mean-centering and scaling

…

J

X (I × J × K)

X1 (I × J) X2 (I × J) XK (I × J) yK

y = yK (I × 1)X = [X1 (I × J), X1 (I × J), …, XK (I × J)]

Figure 1: Batchwise unfolding of three-way data matrices.
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decision variables, optimization objectives, and the adopted
EMO approach are detailed.

Suppose M JIT learners, each of which is characterized
by one similarity measure and one input subspace, are re-
quired for constructing an EJIT model. Since M

heterogeneous similarity measures have been defined in
advance, the decision variables z only include the selection
variables, which indicate whether an input variable is se-
lected or not in order to form a subspace. )at is, the de-
cision vector z can be expressed as follows:

z � θ11 , θ12, · · · , θ1D,
􏽺√√√√√􏽽􏽼√√√√√􏽻Simi 1, JIT learner 1

. . . , θm
1 , θm

2 , · · · , θm
D

􏽺√√√√√√􏽽􏽼√√√√√√􏽻Simim, JIT learnerm

, . . . , θM
1 , θM

2 , · · · , θM
D

􏽺√√√√√√􏽽􏽼√√√√√√􏽻SimiM, JIT learnerM

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (11)

where M and D denote the number of base JIT learners and
that of potential input variables for building subspaces,
respectively. θ is a binary variable, which indicates inclusion
and exclusion of an input variable by using “1” and “0”,
respectively.

Furthermore, the accuracy and diversity objectives are
defined. In this study, the ensemble accuracy is given as the
average of individual accuracies. Given the training data set
Dtrn � Xtrn, ytrn􏼈 􏼉 and an independent validation set
Dval � Xval, yval􏼈 􏼉, the accuracy objective is estimated as

RMSEavg,val �
􏽐

M
m�1 RMSEm

val
M

, (12)

where RMSEm
val denotes the root-mean-squared error

(RMSE) on the validation set for the m th JIT learner.
In comparison with the accuracy objective, measuring

ensemble diversity is not straightforward. Up to now, there is
no generally accepted formal formulation and measures for
ensemble diversity. )us, in this study, the standard devi-
ation of individual prediction outputs is used to evaluate the
ensemble diversity. By applying the base JIT learners,
fm
JIT􏽮 􏽯

M

m�1, the prediction outputs of individual JIT learners
can be given as

􏽢Yval � 􏽢y1val, · · · , 􏽢ym
val, · · · , 􏽢yM

val􏽨 􏽩, (13)

where 􏽢ym
val is a column vector denoting the prediction output

vector on the validation data using the mth JIT learner.
Let italic R be a row vector denoting the prediction

outputs from various base JIT learners for the i th query data
in validation set. )en, the ensemble diversity can be defined
as follows:

σavg,val �
􏽐

Nval
i�1 σval,i
Nval

, (14)

where Nval is the number of validation samples, and σval,i is
the standard deviation of 􏽢yval,i.

To build accurate and diverse base JIT learners, small
RMSEavg,val and large σavg,val are desirable. )us, generating
accurate and diverse JIT learners can be formulated as a
biobjective optimization problem:

min RMSEavg,val, 1/σavg,val􏽮 􏽯 . (15)

To solve the MOP problem in equation (15), one of the
most famous EMO algorithms, i.e., NSGA-II (non-
dominated sorting genetic algorithm II), is employed.

Details about the NSGA-II algorithm can be found in [45].
First, the decision vector z is coded as a binary string and an
initial population is created. )en, the Pareto-optimal so-
lutions can be obtained by performing the following
procedure:

(i) Step 1: generate an initial population with Npop
individuals.

(ii) Step 2: evaluate each individual in the population by
calculating the accuracy and diversity objectives, i.e.,
RMSEavg,val and 1/σavg,val.

(iii) Step 3: repeat the following steps until the stopping
condition is reached.

(a) Assign a front number to all solutions by using
nondominated sorting and calculated the
crowding distance.

(b) Generate an offspring population by using the
binary tournament selection, recombination,
and mutation operations.

(c) Evaluate each solution as that in Step (2).
(d) Merge the current and offspring populations

such that elitism is ensured.
(e) Sort the solutions from the merged population

according to the nondominated sorting method.
(f ) Choose the first Npop solutions from the merged

population and increase the generation counter.

(iv) Step 4: find the Pareto-optimal solutions from the
combined population in the last generation by
applying the nondominated sorting method.

)e outcome of this step is a set of Pareto-optimal so-
lutions, one of which is selected for the ensemble con-
struction of MP-EJITGPR modeling.

3.4. Adaptive Combination of Base JIT Learners by Finite
Mixture Mechanism. With the utilization of multimodal
perturbation and EMO optimization, a group of accurate
and diverse JIT learners fm

JIT􏽮 􏽯
M

m�1 can be obtained, where
fJIT is built by the GPRmethod in this paper. When a query
data is requested to be predicted, each base JIT learner
makes a prediction for the output variable. To get the final
predictions, these individual predictions have to be
combined.

Generally, there are two classes of combinationmethods:
nonadaptive and adaptive weightings. In the former, weights
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assigned to base learners remain unchanged once deployed
into the real-life operation, whereas in the latter weights are
assigned adaptively to accommodate the query process state.
)e simplest nonadaptive weighting method is the simple
averaging rule, which provides the average of individual
predictions as the final prediction. Another popular non-
adaptive weighting is to determine weights according to
their prediction capability on training set or validation set.
For instance, weights can be determined by using linear
regression methods, such as PCR and PLS. Besides, the
combination of base learners can be achieved by learning,
i.e., stacking, which usually leads to a nonadaptive combi-
nation model. However, a deficiency of nonadaptive com-
bination methods is that they tend to assign larger weights to
the models that exhibit excellent prediction on the training
set or validation set, which may lead to overestimation or
underestimation of weights and thus deteriorate the gen-
eralization capability of ensemble models. )erefore,
adaptive combination strategies are highly appealing.

In this study, a finite mixture mechanism-based adaptive
weighting method is proposed to achieve the combination of
base learners. For a new query data xnew, the predictive
distribution of themth output ym,new of the target variable is
estimated from the mth JITGPR model and ym,new follows a
Gaussian distribution as follows:

ym,new ∼ N E ym,new􏼐 􏼑,Var ym,new􏼐 􏼑􏼐 􏼑, m � 1, 2, · · · , M, (16)

where E(ym,new) andVar(ym,new) are the prediction mean
and variance, respectively.

Assume the local predictions y1,new, . . . , ym,new, . . . ,

yM,new are independent realizations of the overall output
variable ynew. )at is to say, ynew arises from a finite mixture
distribution of y1,new, . . . , ym,new, . . . , yM,new. )us, by ap-
plying the finite mixture mechanism [26, 46], the mean and
variance of the predictive distribution of the target variable
can be estimated by combining all local predictions:

􏽢ynew � 􏽘

M

m�1
ωm,new 􏽢ym,new,

σ2new � 􏽘
M

m�1
ωm,new σ2m,new + 􏽢ym,new − 􏽢ynew􏼐 􏼑

2
􏼚 􏼛,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where 􏽢ym,new and σ2m,new represent the prediction output and
variance using the m th JITGPR model, respectively; and ωm

denotes themixture weights satisfying the following constraints:

0≤ωm,new ≤ 1, 􏽘
M

m�1
ωm,new � 1. (18)

Since the prediction uncertainty can effectively indicate
the confidence level of the output predictions, we assume the
mixture weights are inversely proportional to the prediction
variances from individual JITGPR models. )us, ωm,new can
be estimated as follows:

ωm,new �
􏽢ym,new/σm,new􏼐 􏼑

p

􏽐
M
m�1 􏽢ym,new/σm,new􏼐 􏼑

p, (19)

where p is an adjustable parameter.

)e proposed FMM-based combination strategy allows
predictions from individual JITGPR models to be combined
adaptively at each run of prediction.

3.5. Implementation Procedure. )e step-by-step procedure
of the proposed MP-EJITGPR soft sensor method for
Mooney viscosity prediction is summarized below and the
schematic diagram of this approach is illustrated in
Figure 2.

3.5.1. Offline Optimization Phase

(a) Collect the process data of the batch process for
model training and validation

(b) Data processing is performed, including outlier
detection, data unfolding, mean-centering, and
scaling

(c) Formulate the generation of accurate and diverse
JITGPR models as a multiobjective optimization
problem (MOP)

(d) Solve the MOP problem using the EMO approach,
i.e., NSGA-II

(e) By using one of the best-performing Pareto-optimal
solutions, a set of JITGPR models characterized by
heterogeneous similarity measures and diverse input
subspaces are constructed

3.5.2. Online Prediction Phase

(a) For any query data, M relevant subsets are obtained
by using the heterogeneous similarity measures and
diverse input subspaces.

(b) M JITGPR models are constructed and further
provide the prediction outputs and variances of the
target variable.

(c) )e final prediction output and variance are pro-
duced using the proposed FMM-based combination
method and then those built JITGPR models are
discarded. When new query data comes, go to Step
(a).

It is worth noting that the computational load of the
proposed MP-EJITGPR method is mainly focused on the
offline optimization phase, especially the NSGA-II-based
EMO optimization. However, once the learning configu-
rations for generating diverse JIT models have been ob-
tained, the online prediction for new test samples can be
conducted fast. )is is because, on one hand, if the similarity
measures are defined appropriately, only a small number of
samples are selected for online local modeling, which en-
ables fast training of diverse JITmodels for each query data.
On the other hand, the finite mixture mechanism-based
adaptive combination is very efficient because only simple
calculations are involved. )erefore, the proposed approach
can be applied for providing real-time estimations of
Mooney viscosity in an industrial rubber mixing process.
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4. Application to an Industrial Rubber
Mixing Process

)e effectiveness and superiority of the proposed MP-
EJITGPR soft sensor for Mooney viscosity prediction are
demonstrated through an industrial rubber mixing process
in China. )e methods for comparison are as follows:

(1) PLS (partial least squares regression): global PLS
model

(2) GPR (Gaussian process regression): global GPR
model

(3) GMMGPR :Gaussian mixture model- (GMM-)
based ensemble GPR models

(4) JITGPR (ED similarity): JIT learning GPR using ED
similarity measure

(5) JITGPR (cosine similarity): JIT learning GPR using
cosine similarity measure

(6) JITGPR (CWD similarity): JIT learning GPR using
CWD similarity measure

(7) JITGPR (CC similarity): JIT learning GPR using CC
similarity measure

(8) SP-EJITGPR (SAR): similarity perturbation-based
EJITGPR with simple averaging rule (SAR) for
combination

(9) SP-EJITGPR (PLS stacking): similarity perturba-
tion-based EJITGPR with PLS stacking for
combination

(10) SP-EJITGPR (GPR stacking): similarity perturba-
tion-based EJITGPR with GPR stacking for
combination

(11) SP-EJITGPR (FMM): similarity perturbation-based
EJITGPR with the finite mixture mechanism for
combination

(12) MP-EJITGPR (SAR): multimodal perturbation-
based EJITGPR with a simple averaging rule for
combination

(13) MP-EJITGPR (PLS stacking): multimodal pertur-
bation-based EJITGPR with PLS stacking for
combination

(14) MP-EJITGPR (GPR stacking): multimodal pertur-
bation-based EJITGPR with GPR stacking for
combination

Accuracy
objective

Diversity
objective

EMO
(e.g.,

NSGA-II)

Query data

Similarity
measure 1

Similarity
measure M

Subspace 1 Subspace M

JITGPR 1 JITGPR M

Finite mixture 
mechanism

Ensemble prediction output 
and variance 

Diverse JITGPR 
models

Diverse
subspaces

Heterogeneous
similarity
measures

JITGPR
modeling

Database GPR

JIT learning

Multimodal
perturbation

mechanism for 
generating diversity

EMO for 
balancing
accuracy

and
diversity

Adaptive
combination of 
diverse JITGPR 

models

…

…

…

Stage 2: online prediction

Stage 1: offline optimization

Figure 2: Schematic diagram of the proposed MP-EJITGPR soft sensing approach.
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(15) MP-EJITGPR (FMM) (the proposed method):
multimodal perturbation-based EJITGPR with the
finite mixture mechanism for combination

A total of 15 soft sensor methods are involved, and their
characteristics are compared in Table 1. )ese methods can
be roughly categorized into five classes: (1) global methods,
i.e., PLS and GPR; (2) ensemble methods through training
data perturbation, i.e., GMMGPR; (3) JITGPR methods
using single similarity measure; (4) EJITGPR methods using
similarity perturbation and ensemble learning, i.e., SP-
EJITGPR; (5) EJITGPR methods using multimodal per-
turbation and ensemble learning, i.e., MP-EJITGPR. For
those EJITmethods, four types of combination methods are
investigated, i.e., simple averaging rule (SAR), PLS stacking,
GPR stacking, and finite mixture mechanism (FMM).

)e modeling data are split into three parts: training set
for modeling learning, validation set for parameter tuning
and EMO optimization, and testing set for model evaluation.
Moreover, some critical parameters should be pre-
determined. In detail, the number of principal components
for PLS is selected based on the prediction accuracy on the
validation set. )e local modeling size l and the adjustable
parameter p in equation (19) are determined by trial and
error. In addition, the optimization settings for NSGA-II are
given as follows: population size Npop � 100, and maximum
generation size Nmax

gen � 100.
To assess the prediction performance of soft sensors,

three indices, namely, root-mean-square error (RMSE),
relative RMSE (RRMSE), and coefficient of determination
(R2), are used:

RMSE �

���������������

1
ntest

􏽘

ntest

i�1
􏽢yi − yi( 􏼁

2
,

􏽶
􏽴

RRMSE �

����������������

1
ntest

􏽘

ntest

i�1

􏽢yi − yi

yi

􏼠 􏼡

2
􏽶
􏽴

× 100%,

R
2

� 1 −
􏽐

ntest
i�1 􏽢yi − yi( 􏼁

2

􏽐
ntest
i�1 yi − y( 􏼁

2 ,

(20)

where yi and 􏽢yi denote the actual and predicted outputs,
respectively; y represents the mean value; and ntest is the
number of testing samples.

)e computer configurations for experiments are as
follows. OS :Windows 10 (64 bit); CPU : Intel (R) Core(TM)
i7-6700 (3.4GHz× 2); RAM : 8G byte; and the simulation
software is MATLAB R2016a. )e MATLAB codes for
running GPR regression can be downloaded from the
website: http://www.gaussianprocess.org/gpml/code/
matlab/doc/.

4.1. Process Description. Rubber mixing is a crucial step in
the rubber and tire industry. [7, 8] )e industrial rubber
mixing process in this study is practiced in a Chinese tire
company. )e industrial production site is illustrated in

Figure 3. )e rubber mixing process lasts for 2min, during
which various raw materials are fed into the raw rubber to
produce synthetic rubber according to the technical formula
and then various complex chemical reactions take place in
an internal mixer. Generally, Mooney viscosity is a crucial
index for monitoring the product quality of the rubber
mixing process. However, in a practical production process,
Mooney viscosity is only measured through a viscometer
with a large delay of 4∼6 h after one batch has discharged.
Consequently, it becomes challenging to assure the optimal
and uniform quality of mixed rubber. Fortunately, soft
sensor technology provides the possibility of estimating
Mooney viscosity in real-time. )us, we attempt to build a
high-performing soft sensor for Mooney viscosity prediction
in this study. )e process variables used for soft sensor
modeling include temperature in the mixer chamber, motor
power, ram pressure, motor speed, and energy.

4.2. Prediction Results of Mooney Viscosity. )e modeling
data have been collected from DCS system and laboratory
analysis and are then preprocessed by using a simple 3σ rule
for outlier detection, batchwise unfolding, zero mean cen-
tering, and one variance scaling. With a sampling interval of
2 s, a total of 1172 batches are selected from three internal
mixers and are further divided into three sets: 822 batches as
the training set, 175 batches as the validation set, and 175
batches as the testing set. By considering the time instants
0 s, 14 s, 18 s, 22 s, . . ., 118 s, a total of 140 delayed and
nondelayed variables are obtained as potential input vari-
ables and the Mooney viscosity is chosen as the output
variable.

)e prediction results of Mooney viscosity from different
soft sensor methods are presented in Table 2. It is readily
observed that PLS leads to the poorest prediction perfor-
mance among those methods in terms of RMSE, RRMSE,
and R2. )is is mainly because PLS cannot effectively handle
the nonlinearity of rubber mixing process. In comparison,
other nonlinear soft sensor methods achieve much better
prediction accuracy than PLS. )ough GPR obtains sig-
nificant accuracy improvement, it still produces high pre-
diction errors due to its failure in dealing with local process
characteristics. Instead of relying on a global model,
GMMGPR and various JITGPR methods employ local
learning philosophy, thus obtaining much better perfor-
mance than global GPR. Although GMMGPR performs well
in this case study, JITGPR methods are more appealing to
provide better prediction performance.

However, the prediction accuracy of JITGPR methods is
highly related to the similarity measure definition. As can be
seen in Table 2, different prediction performance is obtained
by using different similarity measures. In real applications, it
is difficult to determine which similarity measure performs
best in advance. )us, a promising idea is to fully exploit the
advantages of multiple similarity measures for JIT learning
by using ensemble methods. As expected, by introducing
ensemble learning, SP-EJITGPR can deliver better predic-
tion results than single similarity measure-based JITGPR
methods. It is noteworthy that, however, inappropriate
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combination methods can lead to performance degradation
instead of improvements. Among the compared combina-
tion methods, the proposed FMM-based combination

successfully obtains significant performance enhancement,
while simple averaging rule, PLS stacking, and GPR stacking
lead to performance degradation. )ese results reveal that
the integration of heterogeneous similarity measures and the
FMM-based adaptive combination method significantly
allows improving the prediction accuracy of JIT learning soft
sensors.

Apart from the similarity measure, input variable se-
lection is also critical to guarantee the performance of JIT
learning. )us, it is interesting to explore whether EJITGPR
model using only similarity perturbation can be further
improved or not by performing perturbations on similarity
measure and input variables simultaneously. As we have
expected, when the FMM-based adaptive combination is
employed, EJITGPR model using multimodal perturbation,
i.e., MP-EJITGPR (FMM), performs better than SP-
EJITGPR methods. Once again, the simple averaging rule,
PLS stacking, and GPR stacking does not function well in
this study because they are nonadaptive. )e above obser-
vations show that the proposed MP-EJITGPR (FMM) soft
sensor method is the best among the compared methods. In
addition, as illustrated in Figure 4, the superior prediction
performance of MP-EJITGPR (FMM) is further verified by a
good agreement between the predicted and actual trend
plots of Mooney viscosity.

To further investigate the estimation performance of
MP-EJITGPR (FMM) soft sensor, the prediction RMSE
values of JITGPR, SP-EJITGPR, and MP-EJITGPR under
different local modeling sizes are compared in Figure 5. It
can be found that the increase of local modeling samples can
lead to prediction accuracy reduction in most cases for all
compared methods. In particular, for this case study, the
prediction accuracy of JITGPR methods and SP-EJITGPR
using small local modeling sizes is significantly better than
that using large local modeling sizes. In comparison, the
proposed MP-EJITGPR (FMM) is much less sensitive to
local modeling size than other methods. )erefore, the
proposed approach is more desirable than other traditional
JIT methods in providing accurate and reliable predictions.

Compared to the traditional JIT learning soft sensors, the
outstanding prediction performance of MP-EJITGPR

Table 1: Characteristics of soft sensor methods for comparison.

No. Method Model structure Learning type Diversity generation mechanism
1 PLS Single Global —
2 GPR Single Global —
3 GMMGPR Ensemble Local Training data perturbation
4 JITGPR (ED similarity) Single Local —
5 JITGPR (cosine similarity) Single Local —
6 JITGPR (CWD similarity) Single Local —
7 JITGPR (CC similarity) Single Local —
8 SP-EJITGPR (SAR) Ensemble Local Similarity perturbation
9 SP-EJITGPR (PLS stacking) Ensemble Local Similarity perturbation
10 SP-EJITGPR (GPR stacking) Ensemble Local Similarity perturbation
11 SP-EJITGPR (FMM) Ensemble Local Similarity perturbation
12 MP-EJITGPR (SAR) Ensemble Local Multimodal perturbation
13 MP-EJITGPR (PLS stacking) Ensemble Local Multimodal perturbation
14 MP-EJITGPR (GPR stacking) Ensemble Local Multimodal perturbation
15 MP-EJITGPR (FMM) Ensemble Local Multimodal perturbation

Figure 3: Industrial rubber mixing process.

Table 2: Comparison of Mooney viscosity prediction results using
different soft sensors (l �10 for JIT learning).

No. Method RMSE RRMSE (%) R2

1 PLS 7.3298 11.7026 0.8002
2 GPR 4.2628 5.9354 0.9324
3 GMMGPR 3.4606 4.8077 0.9555
4 JITGPR (ED similarity) 3.1561 4.2700 0.9630
5 JITGPR (cosine similarity) 3.2053 4.3494 0.9618
6 JITGPR (CWD similarity) 3.6552 5.2370 0.9503
7 JITGPR (CC similarity) 3.2029 4.3313 0.9618
8 SP-EJITGPR (SAR) 3.2127 4.4105 0.9616
9 SP-EJITGPR (PLS stacking) 3.9916 5.4067 0.9407
10 SP-EJITGPR (GPR stacking) 3.7792 5.0508 0.9469
11 SP-EJITGPR (FMM) 3.0670 4.2073 0.9650
12 MP-EJITGPR (SAR) 4.3769 6.0332 0.9288
13 MP-EJITGPR (PLS stacking) 4.1966 5.3943 0.9345

14 MP-EJITGPR (GPR
stacking) 3.7819 4.9735 0.9468

15 MP-EJITGPR (FMM) 2.9202 3.9085 0.9683
ED : Euclidean distance; CWD: covariance weighted distance; CC: corre-
lation coefficient; SAR: simple averaging rule; FMM: finite mixture
mechanism; SP: similarity perturbation; and MP: multimodal perturbation.
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(FMM) is mainly due to the effective cooperation of mul-
timodal perturbation, EMO optimization, and adaptive
combination for ensemble construction. On the one hand,
the utilization of heterogeneous similarity measures, i.e., ED,
cosine, CWD, and CC similarity metrics, and input variable
selection for constructing subspaces shown in Figure 6, can
be helpful to generate accurate and diverse base JITGPR
models. On the other hand, the accuracy and diversity
objectives of base JITGPR models can be well balanced by
using an EMO approach. Additionally, the FMM-based

adaptive combination scheme allows the proposed MP-
EJITGPR method to accommodate the query process state
by dynamically assigned weights to base JITGPR models, as
illustrated in Figure 7.

Moreover, the real-time performance of MP-EJITGPR
(FMM) for online prediction is analyzed. )e average CPU
time for each run of prediction under different local
modeling sizes is shown in Figure 8. Clearly, the online
computational load becomes large with the increase of local
modeling samples. However, only a small relevant subset is

RMSE = 2.9202 , R2 = 0.9683
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Figure 4: Trend plots of Mooney viscosity predictions using the proposed MP-EJITGPR (FMM) approach (l�10).
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Figure 6: Input variable selection results for various similarity measures using EMO optimization. (a) JITGPR (ED similarity). (b) JITGPR
(cosine similarity). (c) JITGPR (CWD similarity). (d) JITGPR (CC similarity).
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Figure 7: Combination weights assigned to different JITGPR models in MP-EJITGPR (FMM) method. (a) JITGPR (ED similarity). (b)
JITGPR (cosine similarity). (c) JITGPR (CWD similarity). (d) JITGPR (CC similarity).
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Figure 8: Average CPU time for online prediction using the proposed MP-EJITGPR (FMM) method.

Advances in Polymer Technology 11



required for local modeling, and the prediction taking less
than 1 s is completely acceptable in practical application.

)e obtained application results confirm that the pro-
posed MP-EJITGPR (FMM) soft sensor method outper-
forms the other traditional JITsoft sensors, implying that it is
more suitable for providing accurate predictions of Mooney
viscosity in an industrial rubber mixing process.

5. Conclusions

In this paper, a new soft sensor method MP-EJITGPR is
proposed for facilitating accurate estimations of Mooney
viscosity in an industrial rubber mixing process. )is
method enables to enhance the diversity of base JIT learners
through the multimodal perturbation mechanism, i.e.,
perturbing similarity measure and input variables. More-
over, a group of accurate and diverse base JIT learners is
generated by employing an EMO approach to achieve a
tradeoff between the accuracy and diversity objectives ex-
plicitly. In addition, a finite mixture mechanism is exploited
to achieve an adaptive combination of base JIT learners. By
integrating the multimodal perturbation-based diversity
generation, the EMO optimization-based generation of base
JIT learners, and the FMM-based adaptive combination of
base learners for EJITmodeling, the proposed MP-EJITGPR
method allows providing marked improvement of predic-
tion performance over its conventional counterparts in
nonlinear process modeling. )e superiority and effective-
ness of the proposed approach are demonstrated through the
Mooney viscosity prediction of an industrial rubber mixing
process.

Besides the presented case study, the proposed method
has the potential of addressing other nonlinear modeling
issues in process industry. In future research, more efforts
are encouraged to extend the library of heterogeneous
similarity measures and improve the diversity generation
mechanism for building high-performance JIT soft sensors.
Moreover, although this paper mainly focuses on manip-
ulating input variables for building diverse input spaces
based on evolutional multiobjective optimization approach,
exploiting feature extraction by deep learning and making
use of unlabeled data by semisupervised learning for im-
proving the prediction performance of soft sensors are also
interesting [47]. )ese will be investigated in the future.

Nomenclature

CC: Correlation coefficient
CWD: Covariance weighted distance
ED: Euclidean distance
EJIT: Ensemble just-in-time learning
EJITGPR: Ensemble just-in-time learning Gaussian

process regression
EMO: Evolutionary multiobjective optimization
FMM: Finite mixture mechanism
GPR: Gaussian process regression
JIT: Just-in-time learning
JITGPR: Just-in-time learning Gaussian process

regression

MOP: Multiobjective optimization problem
MP-
EJITGPR:

Multimodal perturbation-based ensemble just-
in-time learning Gaussian process regression

NSGA-II: Nondominated sorting genetic algorithm II
SAR: Simple averaging rule
SP-
EJITGPR:

Similarity perturbation-based ensemble just-
in-time learning Gaussian process regression.
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As a nondestructive testing (NDT) technology, pulsed thermography (PT) has been widely used in the defect detection of the
composite products due to its efficiency and large detection range. To enhance the distinction between defective and defect-free
region and eliminate the influence of the measurement noise and nonuniform background of the thermal image generated by PT,
a number of thermographic data analysis approaches have been proposed. However, these traditional methods only consider the
correlations among the pixel while leave the time series correlations unmodeled. In this paper, a sparse moving window principal
component thermography (SMWPCT) method is proposed to incorporate several thermal images using the moving window
strategy. Also, the sparse trick is used to provide clearer and more interpretable results because of the structure sparsity. *e
effectiveness of the method is verified by the defect detection experiment of carbon fiber-reinforced plastic specimens.

1. Introduction

*enondestructive testing (NDT) [1, 2] is a method to detect
the presence of defects or unevenness in the tested objects by
utilizing the characteristics of light, heat, magnetism, or
electricity, which do not affect the performance of the testing
objects. *e nondestructive nature of the inspection makes
NDT more and more popular, such as the detection of
defects on the surface and subsurface of composite materials.
Among different types of NDT methods, pulsed thermog-
raphy has been widely used and studied owing to its fast
detection speed, noncontact, and nonpollution [3]. *rough
scanning, recording, or observing the change of the surface
temperature field, which is caused by the difference of heat
transfer to the deep layer, the NDTwill realize the detection
of the surface and internal workpiece defects or analyze the
internal structure [4–6].

For enhancing the detection efficiency and visibility,
several signal processing and data analysis methods have
been proposed. Among them, the most straightforward
approach is to reduce the measurement noises and eliminate
the nonuniform background. *ermographic signal

reconstruction (TSR) method [7] converts time domain
signals into frequency domain signals, which separated the
nonuniform noise and significantly reduce noise interfer-
ence by removing noise part in the data reconstruction.
Besides, the differential absolute contrast (DAC) [8] and
mathematical morphology (MM) [9] are also proposed for
the same purpose, which are both based on the recon-
struction of defect-free images so that the nonuniform
background has been eliminated by extracting the features of
the original thermal images. However, both TSR and DAC
have processed the time domain data while they ignored the
spatial information. Hence, penalized least square (PELS)
[10] has been developed to utilize the time series thermal
images and their spatial information simultaneously. Fur-
thermore, Chang et al. have decomposed the thermal images
into high-frequency noises, low-frequency background, and
signal information using the signal decomposition, which is
called the multimaintenance ensemble empirical mode de-
composition (MEEMD) method [11]. Even though PELS
and MEEMD have been proven the effective signal pro-
cessing methods for NDT, they are still quite time-con-
suming, and the model selection is hard to achieve due to a
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large number of model parameters. In addition, the noise
reduction and background removal methods are only
suitable for defect detection of single temperature attenu-
ation curve or single thermal images.

Another kind of approach is the thermographic data
analysis method, which extracts the principal features from
multiple thermal images and automatically recognize the
defects using these features or loading matrixes. Recently,
the data analysis and feature extraction technologies have
been widely used in process modeling, monitoring, and
optimization areas [12–17]. Utilizing their advantages, the
main information can be maintained with few features and
the minimum reconstruction errors [18–20]. *e higher-
order statistics (HOS) [21] extracts the features of red-hot
image sequences and compresses the feature information
into a unique image for defect detection. *e pulsed phase
thermography (PPT) method separates one-dimensional
Fourier for each pixel of the thermal imaging sequence and
judge defects according to amplitude and phase [22]. Be-
sides, principal component thermography (PCT) [23] ap-
plied principal component analysis (PCA) [24] to the
thermal image data processing, which has the advantages of
feature extraction, data compression, and noise reduction.
Compared with the original data, the obtained PCT feature
map has a significant improvement in defect significance.
Similar to PCT, several extension works have been made for
improvement of the defect detection performance, such as
stable principal component pursuit (SPCP) [25], sparse
principal component thermography (SPCT) [26, 27], and
independent component thermography (ICT) [28].

Among them, SPCT is an improved algorithm for PCT,
which can obtain the sparse principal components by ap-
plying L1 constraint [29]. Indeed, the components con-
taining few features will enhance the interpretability and
visibility of the detection results. Moreover, an improved
method called CCIPCT is proposed to use a shorter com-
putational cost to estimate the covariance matrix and sin-
gular value decomposition (SVD) when calculating the
principal component. *e main advantage of CCIPCT is its
faster performance in higher sequential acquisition [30].
However, PCT, SPCT, and CCIPCT only considered the
correlations within the signal image and ignored the dy-
namics of heat transfer. *e pulse thermal imaging defect
detection method mainly determines the defect location
based on the inconsistent heat transfer rates of different
areas inside the object. Hence, there are strong cross-cor-
relations among the adjacent temporal thermal images. In
this paper, sparse moving window principal component
thermal imaging (SMWPCT) is proposed to extract both
cross-correlations from the temporal and spatial scales. For
this purpose, the moving window strategy is utilized to cover
several adjacent temporal thermal images within a period of
time. *e principal features of these moving windows are
further extracted by sparse PCT, which will provide clearer
and more interpretable detection results.

*e rest of this paper is structured as follows. In the
second section, the structure of the data collected from the
pulse thermal imaging is briefly introduced. *en, the
moving window strategy-based SPCT is proposed with the

detailed algorithm in the third section. Next, the feasibility
and effectiveness of the proposed method are demonstrated
by the carbon fiber-reinforced plastic (CFRP) specimen.
Finally, some conclusions are made.

2. Thermographic Data Preprocessing

*e pulse thermal imaging data are collected as follows.
Firstly, the tested object is firstly heated by the flash lamps
using the pulse signals. After that, it is cooled naturally.
During the whole heating and cooling period, the thermal
images are acquired by the infrared camera, which is shown in
Figure 1. *e collected thermal data are the grayscale image
and the pixel value of the image which represents the heating
degree of the corresponding position. If there is a defect area
within the object and the material is nonuniform, it will result
in the discontinuity of heat conduction inside the object.
Hence, the temperature of the defect area will be abnormally
higher or lower than that of the surrounding area, which
results that the pixel value of the defect area is different from
that of the surrounding area on the thermal image.

For some obvious defects inside the testing object, it is
also apparent to find out the defect areas directly from the
original thermal images. However, it is born to be an un-
attractive work to check every image on visual observations.
Also, some tiny defects are more difficult to distinguish by
sight. On the contrary, the uneven heating will lead to
uneven background, and the presence of measurement noise
is inevitable, which further increases the detection difficulty.
Finally, suppose there are n frames of thermal images have
been collected, in which each image consists of h × w pixels.
For most data analysis models, the three-dimensional data
cannot be directly applied.*erefore, the thermal image data
processing methods are needed to reduce the number of
thermal images detected by vision and improve the signif-
icance of defects.

For the three-dimensional matrix h × w × n, the com-
mon data processing method is to expand the original data
to a two-dimensional matrix. According to the chronological
order, each thermal image can be converted to a row vector
of length h × w, which is shown in Figure 2. *en, a two-
dimensional matrix with n × hw size can be obtained, in
which each row represents the original thermal image data,
and each element represents an image pixel value. Finally,
the normalization of the processing data is made, which
firstly subtracts the average value of each row and then
divides it by the standard deviation.

3. Sparse Moving Window Principal
Component Thermography

In this section, the traditional PCTmethod is firstly extended
using the moving window strategy. After that, the sparse
moving window principal component thermography
(SMWPCT) method is proposed, which follows the detailed
model parameter derivation. In PCT, the original thermal
image data are projected along the maximum orthogonal
direction, in which the principal components are extracted.
Since PCT is built based on the preprocessing data two-
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dimensional matrix, it indicates that the thermal image at a
sampling interval is independent with its historical thermal
values.When the sampling interval is large, such assumption
is valid. However, the pulse thermography sampling interval
is extremely short. Hence, it becomes necessary to consider
both cross-correlations between the pixels in different re-
gions of the single thermal image and the autocorrelations of
pixels in the same region at different sampling intervals.

For this purpose, the moving window strategy is intro-
duced before PCT is used, which is named as moving window
PCT (MWPCT). In MWPCT, the augmented matrix con-
taining several past values is constructed. Using the moving
window, the time series correlations among the thermal
images can be effectively extracted, and it is helpful to dis-
tinguish the defect region and the normal region. Assume that
the preprocessed thermal image data matrix X contains n

thermal images, and each image is composed of m � h × w

pixel values. Hence, X ∈ Rn×m can be expressed as follows:

X �

x11 x12 · · · x1m

x21 x22 · · · x2m

⋮ ⋮ ⋱ ⋮

xn1 xn2 · · · xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

x1
x2
⋮

xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where xi ∈ Rm(i � 1, 2, . . . , n) is the m-dimensional row
vector, and it indicates that a single thermal image with m

pixel values.
Using themoving window strategy, the augmentedmatrix

of the original observation X is constructed as follows:

X �

xl xl− 1 · · · x1
xl+s xl+s− 1 · · · xs+1

⋮ ⋮ ⋱ ⋮

xn xn− 1 · · · xn− l+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

in which l is the moving window length and s is the moving
window step. Usually, these two parameters make a trade-off
between the model accuracy and calculation complexity.
When the window size l is large and moving step s is small,
the model accuracy will improve while the calculation
complexity increases and vice versa. Based on the augmented
matrix X, the first principal component (PC) is obtained by

max ‖Xp‖2

Subject to ‖p‖2 ≤ 1,
(3)

in which p is the principal eigenvector using the singular value
decomposition, and it is also called the loading vector. ‖·‖2
denotes the L2 norm. *e first PC can be calculated using
t � Xp, which can be treated as the linear combination ofX. By
calculating the first PC, the maximal correlated feature is ob-
tained. Next, replacing X using the model reconstruction error
can obtain PCs orthogonal to each other in a similar manner
[31]. Usually, the primary information of X is mainly con-
centrated on several components. *erefore, few PCs will
represent the original thermal images, and the defects can be
visualized using these PCs. Assuming that the number of se-
lected PCs is k, the size of the extracted featurematrix is hwl × k.
To visualize the final results, each PC can be reshaped into a two-
dimensional matrix of h × w. Hence, a total of l × k loading
images can be generated, in order to achieve data compression
and reduce the number of images to be observed. Due to the
difference of features between defects and background, they are
separated into different PCs and appear in different loading
images. In addition, the measurement noise is retained in the
residual subspace to achieve the purpose of noise suppression.

Even though MWPCT is able to extract both autocor-
relations and cross-correlations in the 2-D expanded matrix,
it still inherits some disadvantages of PCT. At first, each PC
is linearly weighted by the original data, whichmeans that all
the elements in the loading vectors are usually nonzero,
which brings out the difficulty and disturbance in final
detection. To highlight the visual results and reduce the
detection noise, a sparsity penalty can be added on the
loadings to use few features and enhance the interpretability
of the final results. Hence, the sparse moving window
principal component thermography (SMWPCT) method is
further developed next.*e optimization problem of the first
PC extracted by SMWPCT is usually expressed as follows:

max
􏽥p

‖X􏽥p‖
2
2 − c‖􏽥p‖0

Subject to ‖􏽥p‖2 ≤ 1,

or max
􏽥p

‖X􏽥p‖2 − c‖X􏽥p‖1

Subject to ‖􏽥p‖2 ≤ 1,

(4)

Thermal image

Thermal image

w

hn
n

hw

Figure 2: *ree-dimensional expansion.

IR camera
Flash lamps

Specimen
(composite
material)

Figure 1: *ermal imaging data acquisition.
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where c is the tuning parameter that controls the sparsity of
􏽥p, ‖·‖0 denotes the L0 norm, which is calculated as the total
number of nonzero elements in the vector and it represents
the vector sparsity, and ‖·‖1 denotes the L1 norm, which
represents the sum of the absolute values of the elements in
the vector, and it is usually used to obtain the sparse result.
Similar to MWPCT, the other PCs that are orthogonal to
each other can be obtained repeatedly by performing the
definition step and replacing X with the current errors.

*e sparse approach is able to select the most related PCs
and restrict the feature variables that are not closely related
to zero. In such manner, noise is further eliminated, and the
dimension reduction becomes more condensed and easier to
be interpreted. To make the model parameter estimation
procedure more effective, the optimization problem can be
transformed to be a Lasso regression problem; Zou et al.
have introduced an L2 norm regularization term in the
objective function of the optimization function [32], which
is given as

min
P,Ω

X − XPΨT
����

����
2

+ c1 􏽘

I

i�1
ψi

����
����
2
2 + c2 􏽘

I

i�1
ψi

����
����1

Subject to PTP � Ι,
(5)

where P is the loading matrix andΨ � ψ1 ψ2 . . . ψI􏼂 􏼃 is a
sparse approximation of P with I PCs. c1 and c2 are model
tuning parameters.*e combination of L1 and L2 constitutes
an elastic net penalty and encouraging grouping which
indicates that the variables of strong correlations will appear
or disappear together [27].

Finally, the entire algorithms for the SMWPCT-based
thermographic data analysis method are summarized as
follows:

(1) Collect the thermal image data based on the pulsed
thermography technology

(2) Rearrange the three-dimensional matrix to a two-
dimensional form and normalize the measurement

(3) Select the appropriate moving window size and step
size, and perform a moving window on the aug-
mented matrix X

(4) Estimate the model parameter P and the sparse
matrix Q by solving the optimization problem of
equation (5)

(5) Reconstruct the thermal images based on Q
(6) Observe the reconstructed thermal image to obtain

the defect detection result

4. Case Study

In this section, a tested carbon fiber-reinforced polymer
(CFRP) with subsurface defects is demonstrated to validate
the feasibility of the proposed method. CFRP is obtained by
pressing and drawing a plurality of continuous fibers and
resin. It has been widely used in military, aerospace, racing,
and other fields [9].

In this case, several Teflon strips were inserted into the
fiberboard before the resin transfer molding to mimic the
defective areas. In the tested CFRP board, there are totally
ten defect areas, where the left bottom rectangle is a surface
defect and the other nine rectangles are subsurface defects.
*e depth of these subsurface ones is different. *ree defects
on the left side were covered by one layer of fiber sheet while
the middle column was beneath two layers and three on the
right were covered by three layers.*e thickness of each fiber
sheet is about 0.26 cm. Besides, three kinds of defects are
designed, where their sizes are 1.6 cm× 1.6 cm,
0.8 cm× 0.8 cm, and 0.4 cm× 0.4 cm, respectively (Figure 3).

To obtain the pulsed thermal imaging data, two 3000W
flashes are used to heat the acquisition in the form of thermal
pulse, and the heating time is about 3ms. An infrared
camera (TGS-G100EXD, NEC) is installed to collect thermal
images in the reflection mode. *e resolution of this camera
is 320× 240 pixels, and the sampling rate is 30 frames per
second. A computer is connected to the camera for thermal
imaging data processing. *e process is cut to get the
thermal images of the region of interest (ROI). Finally, there
are 54 thermal images with 105×120 pixels which are
collected. In Figure 4, the 1st, 10th, 20th, 30th, 40th, and 50th
thermal images of the thermal images are illustrated. *e
color bars indicate the pixel values. From the original
thermal images, it can be seen that it is difficult to infer the
defect locations owing to the nonuniform background and
noises.

In order to evaluate the performance of the proposed
SMWPCTmethod, several alternative methods PCT, SPCT,
and MWPCTare also tested using the same thermal images.
*e experimental hardware platform is Window10, Intel i5-
7500 CPU@3.40GHz and 16GBRAM. Also, the visibility of
the defect area is measured by the signal-to-noise ratio
(SNR) indicator, which refers to the ratio of signal to noise in
an electronic device or system [33, 34]. In this paper, three
kinds of SNR considered in [33, 34] are tested, which can be
expressed as

SNR1 �
Μdef − Μn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

σn
,

SNR2 � 10 log10
Μdef − Μn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

σ2n
,

SNR3 �
Μdef − Μn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�����������
σ2def + σ2n􏼐 􏼑/2

􏽱 ,

(6)

where Μdef is the average pixel value of the defect area and
Μn is the average pixel value of the nondefect area. σdef is the
standard deviation of the pixel in the defect area and σn is the
standard deviation of the pixel in the nondefect area. SNR is
dimensionless, which reflects the contrast relationship be-
tween the defective area and the nondefective area. *e
larger the value of SNR, the more significant the defect.

*e traditional PCT method is built based on all 54
thermal image samples. *e detection results using the first
six loading images of PCT are given in Figure 5(a). *e
loading values are represented by the red and blue color bars,
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in which the redder one indicates the larger value while the
bluer one represents the lower value. From the final results, it
can be seen that the PCT loading of the first several PCs can
better reveal the position of the defect areas compared to the
original thermal image. Since the heat transfer efficiency of
the defect area is lower than that of the normal one, the
loading value is smaller. And most of the defect information
exists in the first loading image. However, PCT still has
certain limitations. On the one hand, there are still more
background or noise information in the first loading image,
which cause some disturbances in defect detection and
recognition. On the other hand, the defect information can
still be observed more or less in the remaining loading

images, which brings out difficulty on the selection of
number of PCs.

By applying sparsity penalties to the loadings, SPCT is
able to reduce the background and noise interference of the
result, which makes it more compact and interpretable.

In SPCT, the sparsity parameter is designed to penalize
the loadings of different principal components, and it
corresponds to an upper bound on the L1-norm of the BETA
coefficients. Due to the nature of the L1 penalty, some
coefficients will be shrunk to zero if the sparsity parameter is
large enough. By contrast, SPCA results in a regular PCA
when it equals to 0. Zou et al. [32] have specified the choice
of penalty parameter, and it is set to 500 in this article. *e

Figure 3: Illustration of defective regions.
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Figure 4: Illustration of defective regions. (a) Img-1. (b) Img-10. (c) Img-20. (d) Img-30. (e) Img-40. (f ) Img-50.
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Figure 5: Continued.
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Figure 5: Continued.
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results are shown in Figure 5(b). Compared with PCT, the
loading image of SPCT is much sparse, in which the shal-
lower defects are highlighted in the first loading image. It can
be also seen that the deepest defect is better displayed in the
second loading image. In the third and subsequent loading
images, the loading image becomes very sparse due to much
useful information retained. *erefore, the defect detection
process for the thermal image can ignore these loading

images, which also reduces the number of images that needs
to be observed.

Next, MWPCT is compared with the moving window
strategy. For the moving window technology, the window
size and the step size are two model parameters to make a
trade-off between the accuracy and computational load [35].
To select the proper values for these model parameters,
several simulations have been made. Finally, the moving
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Figure 5: Results: (a) PCT, (b) SPCT, (c) MWPCT, and (d) SMWPCT.
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window size is set to 7, and the step size is 5 in MWPCT in
this case. *e experiment result is shown in Figure 5(c).
Compared to PCT, the defect areas in the first loading image
of MWPCT are more prominent and are greatly reduced in
the second loading image. It indicates that more accurate
features have been captured using MWPCT. Besides,
MWPCT concentrates the defect information in the first
loading image so that we can only pay attention to the first
loading image to identify the defect. Due to the inclusion of
more defect information, the defect area is significantly
improved, and the image appears that the defect area is
darker in color.

Finally, the proposed SMWPCT method is tested,
which combines the advantages of SPCT and MWPCT. It
extracts the defect features based on the moving window
strategy with sparsely loading images. *e detection re-
sults are shown in Figure 5(d). It can be seen that both the
concentration of defect features and the sparseness of
irrelevant information are reflected in SMWPCT, and the
saliency of defect areas has also been improved. *e result
is also quite reasonable since the proposed SMWPCT
method extracts both cross-correlations from the tem-
poral and spatial scales, and more accurate and compact
features are obtained. Based on that, the defect detection
procedure becomes straightforward and easy to be
operated.

Moreover, the defect visibility is quantified by the signal-
to-noise ratio indicator. Since the three defects in the last
column are covered by three layers of fiberboard, when the
heat conduction reaches the thickness of three-layer fiber-
board, the loss of energy leads to poor visibility of the
thermal image. *erefore, the calculation of the SNR index
does not include the three deepest defects. *ree kinds of
different SNR values based on PCT, SPCT, MWPCT, and

SMWPCT are listed in Tables 1–3. It can be seen that the
performance of the proposed SMWPCT is superior to
several alternatives in most cases even based on different
SNR indicators. Also, the results have verified the effec-
tiveness and reliability of SMWPCT.

5. Conclusion

Due to the existence of noises and nonuniform background,
the artificial detection of the defects inside the composite
products is difficult to achieve. Hence, it is necessary to apply
the data analysis approaches based on the thermal imaging
data. In this paper, a SMWPCTmethod is proposed, which
combines SPCT with the moving window strategy. In
SMWPCT, both dynamic and static information of the
thermal imaging data can be captured under the sparse
structure. *e experimental results have illustrated the ef-
fectiveness of the proposed method. It reveals that not only
the correlations between the pixels in different regions of the
single thermal image but also the correlations of pixels in the
same region at different sampling intervals are extracted in
SMWPCT. Hence, the performance of the proposed method
is superior to several alternatives.
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Table 1: SNR1 of different methods.

Methods/SNR1/defect Def_1 Def_2 Def_3 Def_4 Def_5 Def_6 Def_7 Sum
PCT 3.35 2.48 2.76 2.66 1.10 0.79 0.90 14.04
SPCT 3.67 2.70 3.01 2.89 1.21 0.88 0.98 15.32
MWPCT 4.32 2.94 3.19 3.11 1.14 0.77 0.94 16.42
SMWPCT 4.45 3.21 3.62 3.37 1.39 0.99 1.11 18.15

Table 2: SNR2 of different methods.

Methods/SNR2/defect Def_1 Def_2 Def_3 Def_4 Def_5 Def_6 Def_7 Sum
PCT 10.50 7.88 8.81 8.48 0.85 − 2.00 − 0.87 39.39
SPCT 11.28 8.62 9.56 9.23 1.64 − 1.15 − 0.20 41.68
MWPCT 12.71 9.38 10.08 9.85 1.17 − 2.27 − 0.53 46.00
SMWPCT 12.97 10.13 11.18 10.55 2.86 −0.05 0.90 48.65

Table 3: SNR3 of different methods.

Methods/SNR3/defect Def_1 Def_2 Def_3 Def_4 Def_5 Def_6 Def_7 Sum
PCT 1.84 1.36 1.52 1.46 0.61 0.44 0.50 7.73
SPCT 1.87 1.38 1.54 1.48 0.62 0.45 0.50 7.83
MWPCT 2.08 1.42 1.54 1.50 0.55 0.37 0.45 7.90
SMWPCT 2.00 1.45 1.63 1.52 0.63 0.45 0.50 8.17
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So� sensor techniques have been widely adopted in chemical industry to estimate important indices that cannot be online measured 
by hardware sensors. Unfortunately, due to the instinct time-variation, the small-sample condition and the uncertainty caused by the 
dri�ing of raw materials, it is exceedingly difficult to model the fed-batch processes, for instance, rubber internal mixing processing. 
Meanwhile, traditional global learning algorithms suffer from the outdated samples while online learning algorithms lack practicality 
since too many labelled samples of current batch are required to build the so� sensor. In this paper, semi-supervised hybrid local 
kernel regression (SHLKR) is presented to leverage both historical and online samples to semi-supervised model the so� sensor using 
proposed time-windows series. Moreover, the recursive formulas are deduced to improve its adaptability and feasibility. Additionally, 
the rubber Mooney so� sensor of internal mixing processing is implemented using real onsite data to validate proposed method. 
Compared with classical algorithms, the performance of SHLKR is evaluated and the contribution of unlabelled samples is discussed.

1. Introduction

Fed-batch processes play an important role in chemical and 
biochemical industry. �ey are widely adopted in the produc-
tion of a vast range of fermentation-derived products such as 
fine-chemical industry, pharmaceuticals and food products. 
Rubber internal mixing [1] is a classical fed-batch process 
performed in an internal mixer to achieve an optimal Mooney 
viscosity for further processing. Since Mooney viscosity 
cannot be online measured while its laboratory assay is labour-
intensive and time-consuming, so�-sensing approaches are 
investigated to establish a real-time evaluation of it. 
Furthermore, data-driven but not mechanism-modelling 
methods are commonly used for its so� sensor modelling 
because it is a complex nonlinear process without well-devel-
oped mechanism. Additionally, its instinctive time-variation, 
varying properties of natural rubber and additives accompa-
nied with process dri�ing caused by field conditions. e.g., 

equipment aging, introduce a great amount of complexity to 
the process. Moreover, in order to avoid affecting the regular 
productions, small sample condition always occurred, which 
further reinforces the difficulty of rubber internal mixing 
modelling.

In the past decades, many data-driven techniques have 
been proposed. Extensive reviews can be found in work of 
Kadlec [2]. Among these methods, multivariate static tech-
niques [3–6] have been widely used. However, these algo-
rithms are relatively sensitive to measurement noise and 
commonly require a large number of samples to build the 
promising so� sensor as well. Meanwhile, various artificial 
neural network (ANN) algorithms [7] have been proposed 
and successfully applied to polymerization processes, but how 
to effectively construct the network topology is still an open 
question. To overcome these shortcomings, kernel-based 
methods, such as support vector regression [8], least squares 
support vector regression [9] are presented. �ese kernel 
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techniques can attain a better performance under small-sam-
ple condition owing to the structural risk minimization 
criterion.

Note that all the aforementioned algorithms are offline 
approaches, which can achieve a universal generalization per-
formance but lack the mechanisms to leverage the time-vari-
ation characteristics such as dri�ing of the processes. So, 
kernel based online modelling algorithms [10–13] were pre-
sented. However, too many labelled samples of current batch 
are required to online build the model, while in most cases in 
industry field, those samples also have to be predicted instead 
of lab assay.

�erefore, both online and offline algorithms cannot effec-
tively achieve the promising model [14–17]. On the other 
hand, taking advantage of the development of both informa-
tion technology and industrial automation, there are lots of 
historical productive process data saved in the database of 
manufacturing execution system [18]. To leverage those data, 
local learning modelling algorithms [19, 20] were proposed. 
Nevertheless, those models are not stable owing to the out-
dated data, which would be used for training. Meanwhile, the 
unlabelled data are abundant, which contain the production 
data without indices to be predicted. According to the semi-su-
pervised learning theory, those unlabelled data can be poten-
tially used to improve the predictive model. �erefore, how to 
effectively leverage both existing historical and online produc-
tive process data to create the robust so� sensing model still 
need to be solved.

In our work, we explore the potential of the hybrid local 
semi-supervised mechanism to leverage both unlabelled and 
labelled data via the proposed time window mixed with both 
historical and online samples. To enhance its feasibility, cor-
responding recursive calculation formulas are deducted. 
Furthermore, the so� sensors using proposed and comparative 
algorithm are implemented to evaluate its performance. To 
the best of our knowledge, there is no such hybrid local 
semi-supervised algorithm presented in any article so far.

�e remainder of this paper is organized as follows. In 
Section 2, the detail of proposed SHLKR method, including 
its recursive calculation derivation is presented. In Section 
3, so� sensor modelling experiments of rubber internal mix-
ing process using SHLKR method and comparative algo-
rithms with real industrial field data are presented. Finally, 
in Section 4, the main contribution of this paper is 
summarized.

2. Materials and Methods

�e thinking of local learning is to create the predictive model 
dedicated to the prediction of targeted unlabelled sample 
instead of building the global model using all samples. Since 
the model will only be created when the prediction is needed, 
it is also called “Just-in-time learning” or lazy learning [21]. 
�eoretically it can get more precise model under the condi-
tion that similar inputs lead to similar outputs.

Basically, there are three steps of the local learning 
modelling:

(1) � Similar sample set selection: select similar samples 
from historical data based on one or some similarity 
calculation algorithms according to the features of the 
samples to be predicted.

(2) � Local modelling: build the local learning model using 
selected samples with corresponding algorithm.

(3) � Prediction: make the prediction and desert the pre-
dictive model.

Obviously, the key points of local learning are the algo-
rithms to evaluate the similarity of samples and build the local 
model. Currently there are two categories that correlation 
based [19] and distance/angle based [10] similarity calculation 
algorithms. In this work, distance-based kernel is used because 
simply algorithm prone to be adopted under industrial appli-
cation circumstances.

�ere are two major disadvantages of aforementioned 
local learning algorithm:

(1) � In many cases the online time variation and dri�ing 
characteristics cannot be tracked since only similar 
historical data will be used for the modelling.

(2) � Many unlabelled historical and online samples are 
orderly existed between labelled samples. �ose 
time-series sequence data theoretically can be used to 
improve the model based on the manifold hypothesis 
[22] but currently leave unused.

In order to leverage those unused widely existed unla-
belled data, we proposed recursive weighted kernel regression 
(RWKR) [23] before, which has already been validated in 
penicillin production process so� sensor modelling. But it 
behaves not promising for some other fed-batch processes, 
such as rubber internal mixing, since it behaves much more 
dri�ing and the time-based weighting mechanism does not 
work since the Mooney viscosity of rubber is not monotonic 
increased as the penicillin concentration in penicillin fermen-
tation process. �erefore, in this paper, semi-supervised 
hybrid local kernel regression (SHLKR) is proposed to fully 
leverage both labelled and unlabelled data selected from his-
torical and online data.

Different from traditional local kernel learning 
algorithms:

(1) � Besides of labelled samples, combined with labelled 
samples, unlabelled samples are also used as time win-
dow during the training of SHLKR.

(2) � Both historical data and online manufactural data are 
used during training. According to the current run’s index 
of batch, hybrid training data set is formed by selecting 
corresponding historical samples joined with online 
manufactural samples, which can potentially improve 
the practicability and precision of the so� sensor.

2.1. SHLKR Flow.  As is shown in Figure 1, the time window is 
defined as run’s labelled sample (�푥�� , �푦��) with ���푡

= (�푥��푡−1 , �푦��푡−�푢�푡−1) which is the �� unlabeled sequence samples between � and �푡 − 1 
of current batch. In this way, each labeled sample associated 
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with its �� unlabeled samples is formed as an ordered sequence, 
which will be entirely used to semi-supervised model the 
so� sensor. According to the manifold hypothesis of semi-
supervised learning theory [24–27], samples are trend to be 
similar within a small local space, unlabelled samples make the 
data space denser to more precisely describe the characteristic 
of data samples. So theoretically proposed semi-supervised 
data combination mechanism can more effectively model the 
so� sensor than only using labelled samples.

From the first run of first batch, the number of current 
labelled sample ��� is 0. If productive process data of current 
run �� will only be collected for modelling in future, it will be 
added into the unlabelled sample set ���

 of current batch, oth-
erwise, since at this time only historical data can be used for 
modeling, evaluated by the similarity with ��, � most similar 
historical labelled samples (�푥�

�� , �푦�
��) associated with the unla-

beled samples ����
 within corresponding time windows are 

selected to semi-supervised train the model. On the other 
hand, if there are labelled samples (��� , �푦��) existing, they and 
associated unlabeled samples ���

 will be both leveraged for 
training, in this case, if �푁�� ≥ �푘, only online productive process 
data will be used, otherwise, �푘 − �푁�� most similar historical 
labeled samples and corresponding unlabeled samples will also 
be used to train the model.

2.2. SHLKR Recursive Calculation Derivation.  Harmonic 
function is adapted to semi-supervised train the model. 

Its effectiveness and recursion have been validated before 
[23]. Although the historical data of training set cannot be 
recursively adopted since they depend on the �� remaining 
online productive process data can be recursively added 
because all of them will be used for training. �e larger � becomes, the more reduction it will have from following 
recursive calculation derivation.

Here we referred to the approach presented by Zhu et al. 
[28], in which the regularization framework is defined as 
follows:

where �� is the real label of sample i, and ωij can be treated as 
the similarity between sample i and j, since Gaussian kernel 
is usually used to calculate the similarity, ωij is typically defined 
as

Gram matrix � can be partitioned into 4 blocks for labelled 
samples L and unlabelled samples U:

(1)�∗ = arg min�푌 { �푛∑
�푖,�푗=1

�푤�푖�푗
�儩�儩�儩�儩�儩�푌�푖 − �푌�푗

�儩�儩�儩�儩�儩2 +∞ �푙∑
�푖=1

�儩�儩�儩�儩�푌�푖 − �푦�푖
�儩�儩�儩�儩2},

(2)�푤�푖�푗 = �퐾(�푥�푖, �푥�푗) = exp(−
������푥�푖 − �푥�푗

�����22�휎2 ).

(3)� = [��� ���
��� ���

].

Incoming online productive
process data data xt

To be predicted

Combined with unlabeled samples
of current batch Xut

No

All labeled samples of
current batch

(Xlt, Ylt) with corresponding
time window’s unlabeled

samples Xut

Parameter k

Nlt ≥ k

Only use (Xlt, Ylt) and Xut
to semi-supervised model the process

according to ∆t–1–1

(Formula (4)–(11))

Prediction

Last run of 
current batch

Save current ∆t–1as ∆t–1–1 to help
model the process during next

modeling

End

Use (Xlt, Ylt), XUt
, (Xlt, Ylt) and

Xut
 to recursively semi-supervised
model the process according

to ∆t–1–1 
(Formula (4)–(11))

According to xt, select k–Nlt most
similar labeled samples (Xlt, Ylt)

from historical data with
corresponding time window’s

unlabeled samples Xut
 

(Formula (2))

Historical data

Yes

Yes

No

Yes

No

Figure 1: SHLKR flow chart.
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2.4. Experimental Data.  Authorized by one rubber 
manufactory, 222 batches containing 19,148 runs historical 
samples were retrieved from the system. 2,140 of them were 
labelled and 17,008 runs are unlabelled which only contain 
manufactural information without Mooney viscosity value. All 
samples are from one rubber internal mixing formula to get rid 
of the formula variation impact. In the industrial application 
environment, to get the better performance, it also works 
to model the so� sensor respectively according to different 
rubber internal mixing formulas. Each sample includes:

(1) � Index of current run.
(2) � Density.
(3) � Hardness.
(4) � Minimum torque.
(5) � Maximum torque.
(6) �  Elapsed time to reach 30% maximum torque.
(7) � Elapsed time to reach 60% maximum torque.
(8) � Elapsed time to increase 2 units a�er reaching min-

imum torque.

For labelled samples, all Mooney viscosity values were 
manually lab assayed. �e Mooney viscosity values of first 10 
batches are shown in Figure 3, the Mooney viscosity value of 
unlabelled samples are 0, the dash lines are used to separate 
different batches. Obviously, the run number of each batch 
changes a lot owing to its industrial manufactural requirement 
and the lab assay is performed generally every 8 runs. Besides 
of that, although the Mooney viscosity is required to be con-
sisted, but the truth is it varies a lot within and between dif-
ferent batches under no obvious rules. It verified our 
hypothesis that data driven algorithms work in this situation 
to train the so� sensor.

3. Result and Discussion

To validate the performance of SHLKR, support vector 
machine (SVM) and Harmonic Functions based so� sensors 
are also implemented respectively to make the comparison, in 
which only labelled samples are used. To be faired, all these 
three algorithms are using the same labelled samples and only 
the unlabelled samples respective to those labelled samples 
are additionally used in SHLKR.

As is shown in Figure 4, the predictive results of all three 
different algorithms are plotted. �e result is for last 27 of 222 
batches as well as 1,777 of 19,148 runs including 1,577 unla-
belled runs and 200 runs to be predicted. In order to predict 
those 200 samples, both 1,940 labelled and 15,431 unlabelled 
samples are used to train the so� sensor.

At the first step of training is to choose the parameter �. 
A�er the kernel width 1.1 is determined by leave-one-out cross 
validation [29], from 2 to 20, the results of using different � 
are shown in Figures 5(a)–5(c).

Because SVM cannot be resolved when �푘 < 8, only SHLKR 
and Harmonic Functions have results shown in those figures. 
Obviously when �푘 = 5, both of them have the best perfor-
mance, when �푘 < 5 they both behave unstably and when �푘 > 5 
they all trend to worse but stably. It means that: since � 

�en the solution of Equation (1) is formulated as:

here Δ−1
�푡  can also be divided into four parts:

where Δ�� �
 is the kernel matrix between onlinemanufactural 

data and historical data of time �. Δ�� �
 is its transpose. Δ�� �

 
and Δ�� �

 are the kernel matrixes of online manufactural data 
and historical data respectively. First the Δ�� �

 is considered as 
follows:

Here � = [−�퐾(�푥�1
, �푥� �푡

), . . . , −�퐾(�푥� �푡−1
, �푥� �푡

)], �푏 = �퐾(�푥�1
, �푥�1

)+⋅ ⋅ ⋅ + �퐾(�푥�1
, �푥� �푡−1

) and:

Apply Sherman–Morrison–Woodbury to formula, then we 
get:

�en the Δ�푂�푂�

−1 can be recursively calculated by Δ�푂�푂�푡−1

�耠−1.

2.3. Application System.  Smart Internal Mixing system is a 
product of MESNAC Co., Ltd., which is widely used in many 
rubber factories in China. It is mainly formed by four parts: 
internal mixing modelling, Mooney viscosity prediction, 
internal mixing process optimization and internal mixing 
expert system. As is shown in following Figure 2, Smart 
Internal Mixing system is embedded in the manufacturing 
execution system, which can monitor the online manufactural 
data and retrieve the historical manufactural data.

(4)��푈 = (��푈�푈 −��푈�푈)−1��푈�퐿��퐿,
(5)Δ �푡

−1 = (��푈�푈 �
−��푈�푈 �

)−1,

(6)��푈�푈 �
= [[[[
[

∑
�푗
�푤(�푙�+1)�푗

. . . ∑
�푗
�푤(�푙�+�푛�)(�푙�+�푛�)

]]]]
]
,

(7)��푈�푈 �
= [[
[

�푤(�푙�+1)1 ⋅ ⋅ ⋅ �푤(�푙�+1)(�푙�+�푛�)
.
.
.

. . .
.
.
.�푤(�푙�+1)(�푙�+�푛�) ⋅ ⋅ ⋅ �푤(�푙�+�푛�)(�푙�+�푛�)

]]
]
,

(8)Δ �푡
−1 = [ Δ�푂�푂 �

Δ�푂�퐻 �Δ�퐻�푂 �
Δ�퐻�퐻 �

]−1,

(9)Δ�� �푡
= [Δ���푡−1

� �T

� �푏 ].

(10)

Δ���푡−1

� = Δ�� �푡−1
+ [[
[
�퐾(�푥�1

, �푥� �푡−1
)

. . . �퐾(�푥� �푡−1
, �푥� �푡−1

)
]]
]
.

(11)

Δ�푂�푂�푡

−1 =
[[[[[
[

Δ�푂�푂�푡−1

�耠−1 + Δ�푂�푂�푡−1

�耠−1��푇�Δ�푂�푂�푡−1

�耠−1

�푏 − �Δ�푂�푂�푡−1

�耠−1��푇
−Δ�푂�푂�푡−1

�耠−1��푇

�푏 − �Δ�푂�푂�푡−1

�耠−1��푇

−
�Δ�푂�푂�푡−1

�耠−1

�푏 − �Δ�푂�푂�푡−1

�耠−1��푇
1

�푏 − �Δ�푂�푂�푡−1

�耠−1��푇

]]]]]
]
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theoretically � can be automatically selected by traversing from 
smaller � to larger ones. Besides of algorithms, also depends 
on the scale of the historical data and the varieties of noise and 

onlycontrols the number of historical samples but not the 
online sample number, besides of too small sample size con-
dition, the model suffers from too many historical samples, as 
well as that there will be an optimized � existing to trade-off 
between underfitting and overfitting. Because of that, 

Figure 2: Smart internal mixing system.
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Figure 3: Mooney viscosity values of first 10 batches.
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corresponding batch. Among all algorithms, SVM behaves the 
worst since both Harmonic Functions and SHLKR algorithms 

formula. Here the optimized values are �푘 = 5 for SHLKR, �푘 = 6 
for Harmonic Functions and �푘 = 11 for SVM, which are also 
determined by leave-one-out cross validation.

Some researches indicate that many indices have their own 
virtues to validate the so�-sensor model. In order to fully 
investigate the model performance, 3 commonly used criteri-
ons: Root-Mean-Square Error (RMSE), Relative root-mean-
square Error (RE) and Mean Absolute Error (MAE) [30] are 
adopted. As is shown in Figures 5(a)–5(c) and Tables 1–4, Nh 
denotes batch number and Np represents the run amount of 
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Figure 5: Error varying with �.

Table 1: Performance comparison between different algorithms.

RMSE RE MAE
SVM 1.772 0.0479 1.363
HF 1.751 0.0473 1.344
SHLKR 1.718 0.0466 1.321
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and so cannot be made freely available. Requests for access to 
these data should be made to Haiqing Yu, 10130207@qq.com.
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