
Wireless Communications and Mobile Computing

Secure Computational Solutions
for Sparse Data Challenges in the
Internet of Things 2022

Lead Guest Editor: Yan Huang
Guest Editors: Donghyun Kim, Fei Hao, Yan Huo, and Madhuri Siddula

 



Secure Computational Solutions for Sparse
Data Challenges in the Internet of Things 2022



Wireless Communications and Mobile Computing

Secure Computational Solutions for
Sparse Data Challenges in the Internet
of Things 2022

Lead Guest Editor: Yan Huang
Guest Editors: Donghyun Kim, Fei Hao, Yan Huo,
and Madhuri Siddula



Copyright © 2023 Hindawi Limited. All rights reserved.

is is a special issue published in “Wireless Communications and Mobile Computing.” All articles are open access articles distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.



Chief Editor
Zhipeng Cai  , USA

Associate Editors
Ke Guan  , China
Jaime Lloret  , Spain
Maode Ma  , Singapore

Academic Editors
Muhammad Inam Abbasi, Malaysia
Ghufran Ahmed  , Pakistan
Hamza Mohammed Ridha Al-Khafaji  ,
Iraq
Abdullah Alamoodi  , Malaysia
Marica Amadeo, Italy
Sandhya Aneja, USA
Mohd Dilshad Ansari, India
Eva Antonino-Daviu  , Spain
Mehmet Emin Aydin, United Kingdom
Parameshachari B. D.  , India
Kalapraveen Bagadi  , India
Ashish Bagwari  , India
Dr. Abdul Basit  , Pakistan
Alessandro Bazzi  , Italy
Zdenek Becvar  , Czech Republic
Nabil Benamar  , Morocco
Olivier Berder, France
Petros S. Bithas, Greece
Dario Bruneo  , Italy
Jun Cai, Canada
Xuesong Cai, Denmark
Gerardo Canfora  , Italy
Rolando Carrasco, United Kingdom
Vicente Casares-Giner  , Spain
Brijesh Chaurasia, India
Lin Chen  , France
Xianfu Chen  , Finland
Hui Cheng  , United Kingdom
Hsin-Hung Cho, Taiwan
Ernestina Cianca  , Italy
Marta Cimitile  , Italy
Riccardo Colella  , Italy
Mario Collotta  , Italy
Massimo Condoluci  , Sweden
Antonino Crivello  , Italy
Antonio De Domenico  , France
Floriano De Rango  , Italy

Antonio De la Oliva  , Spain
Margot Deruyck, Belgium
Liang Dong  , USA
Praveen Kumar Donta, Austria
Zhuojun Duan, USA
Mohammed El-Hajjar  , United Kingdom
Oscar Esparza  , Spain
Maria Fazio  , Italy
Mauro Femminella  , Italy
Manuel Fernandez-Veiga  , Spain
Gianluigi Ferrari  , Italy
Luca Foschini  , Italy
Alexandros G. Fragkiadakis  , Greece
Ivan Ganchev  , Bulgaria
Óscar García, Spain
Manuel García Sánchez  , Spain
L. J. García Villalba  , Spain
Miguel Garcia-Pineda  , Spain
Piedad Garrido  , Spain
Michele Girolami, Italy
Mariusz Glabowski  , Poland
Carles Gomez  , Spain
Antonio Guerrieri  , Italy
Barbara Guidi  , Italy
Rami Hamdi, Qatar
Tao Han, USA
Sherief Hashima  , Egypt
Mahmoud Hassaballah  , Egypt
Yejun He  , China
Yixin He, China
Andrej Hrovat  , Slovenia
Chunqiang Hu  , China
Xuexian Hu  , China
Zhenghua Huang  , China
Xiaohong Jiang  , Japan
Vicente Julian  , Spain
Rajesh Kaluri  , India
Dimitrios Katsaros, Greece
Muhammad Asghar Khan, Pakistan
Rahim Khan  , Pakistan
Ahmed Khattab, Egypt
Hasan Ali Khattak, Pakistan
Mario Kolberg  , United Kingdom
Meet Kumari, India
Wen-Cheng Lai  , Taiwan

https://orcid.org/0000-0001-6017-975X
https://orcid.org/0000-0001-7229-7446
https://orcid.org/0000-0002-0862-0533
https://orcid.org/0000-0003-1438-7018
https://orcid.org/0000-0002-0077-9638
https://orcid.org/0000-0003-3620-581X
https://orcid.org/0000-0003-4393-5570
https://orcid.org/0000-0002-0163-4561
https://orcid.org/0000-0002-3997-5070
https://orcid.org/0000-0003-1082-1972
https://orcid.org/0000-0002-6232-2772
https://orcid.org/0000-0001-7361-8985
https://orcid.org/0000-0003-3500-1997
https://orcid.org/0000-0001-5155-8192
https://orcid.org/0000-0002-1804-6977
https://orcid.org/0000-0002-6080-9077
https://orcid.org/0000-0003-0049-1279
https://orcid.org/0000-0002-6947-8470
https://orcid.org/0000-0001-7943-3172
https://orcid.org/0000-0002-9453-4200
https://orcid.org/0000-0001-9315-9878
https://orcid.org/0000-0002-0337-8354
https://orcid.org/0000-0003-2403-8313
https://orcid.org/0000-0001-9764-5179
https://orcid.org/0000-0003-0207-9966
https://orcid.org/0000-0003-4996-6263
https://orcid.org/0000-0001-7238-2181
https://orcid.org/0000-0003-1229-4045
https://orcid.org/0000-0003-4901-6233
https://orcid.org/0000-0002-2510-6632
https://orcid.org/0000-0002-8585-1087
https://orcid.org/0000-0002-7987-1401
https://orcid.org/0000-0002-2593-0162
https://orcid.org/0000-0003-3574-1848
https://orcid.org/0000-0002-6695-5956
https://orcid.org/0000-0002-5088-0881
https://orcid.org/0000-0001-6688-0934
https://orcid.org/0000-0001-9062-3647
https://orcid.org/0000-0003-2657-9164
https://orcid.org/0000-0003-0535-7087
https://orcid.org/0000-0003-1881-681X
https://orcid.org/0000-0001-7573-6272
https://orcid.org/0000-0003-2590-6370
https://orcid.org/0000-0002-1750-7225
https://orcid.org/0000-0003-2451-2708
https://orcid.org/0000-0002-4186-8418
https://orcid.org/0000-0003-1469-9484
https://orcid.org/0000-0002-0151-6469
https://orcid.org/0000-0002-4443-7066
https://orcid.org/0000-0001-5655-8511
https://orcid.org/0000-0002-8564-5355
https://orcid.org/0000-0001-5220-875X
https://orcid.org/0000-0001-5825-2241
https://orcid.org/0000-0001-9778-9463
https://orcid.org/0000-0002-3128-2405
https://orcid.org/0000-0001-9739-1930
https://orcid.org/0000-0002-2743-6037
https://orcid.org/0000-0003-2073-9833
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0002-0930-2385
https://orcid.org/0000-0002-8778-9336


Jose M. Lanza-Gutierrez, Spain
Pavlos I. Lazaridis  , United Kingdom
Kim-Hung Le  , Vietnam
Tuan Anh Le  , United Kingdom
Xianfu Lei, China
Jianfeng Li  , China
Xiangxue Li  , China
Yaguang Lin  , China
Zhi Lin  , China
Liu Liu  , China
Mingqian Liu  , China
Zhi Liu, Japan
Miguel López-Benítez  , United Kingdom
Chuanwen Luo  , China
Lu Lv, China
Basem M. ElHalawany  , Egypt
Imadeldin Mahgoub  , USA
Rajesh Manoharan  , India
Davide Mattera  , Italy
Michael McGuire  , Canada
Weizhi Meng  , Denmark
Klaus Moessner  , United Kingdom
Simone Morosi  , Italy
Amrit Mukherjee, Czech Republic
Shahid Mumtaz  , Portugal
Giovanni Nardini  , Italy
Tuan M. Nguyen  , Vietnam
Petros Nicopolitidis  , Greece
Rajendran Parthiban  , Malaysia
Giovanni Pau  , Italy
Matteo Petracca  , Italy
Marco Picone  , Italy
Daniele Pinchera  , Italy
Giuseppe Piro  , Italy
Javier Prieto  , Spain
Umair Rafique, Finland
Maheswar Rajagopal  , India
Sujan Rajbhandari  , United Kingdom
Rajib Rana, Australia
Luca Reggiani  , Italy
Daniel G. Reina  , Spain
Bo Rong  , Canada
Mangal Sain  , Republic of Korea
Praneet Saurabh  , India

Hans Schotten, Germany
Patrick Seeling  , USA
Muhammad Shafiq  , China
Zaffar Ahmed Shaikh  , Pakistan
Vishal Sharma  , United Kingdom
Kaize Shi  , Australia
Chakchai So-In, ailand
Enrique Stevens-Navarro  , Mexico
Sangeetha Subbaraj  , India
Tien-Wen Sung, Taiwan
Suhua Tang  , Japan
Pan Tang   , China
Pierre-Martin Tardif  , Canada
Sreenath Reddy ummaluru, India
Tran Trung Duy  , Vietnam
Fan-Hsun Tseng, Taiwan
S Velliangiri  , India
Quoc-Tuan Vien  , United Kingdom
Enrico M. Vitucci  , Italy
Shaohua Wan  , China
Dawei Wang, China
Huaqun Wang  , China
Pengfei Wang  , China
Dapeng Wu  , China
Huaming Wu  , China
Ding Xu  , China
YAN YAO  , China
Jie Yang, USA
Long Yang  , China
Qiang Ye  , Canada
Changyan Yi  , China
Ya-Ju Yu  , Taiwan
Marat V. Yuldashev  , Finland
Sherali Zeadally, USA
Hong-Hai Zhang, USA
Jiliang Zhang, China
Lei Zhang, Spain
Wence Zhang  , China
Yushu Zhang, China
Kechen Zheng, China
Fuhui Zhou  , USA
Meiling Zhu, United Kingdom
Zhengyu Zhu  , China

https://orcid.org/0000-0001-5091-2567
https://orcid.org/0000-0002-2781-8043
https://orcid.org/0000-0003-0612-3717
https://orcid.org/0000-0003-4055-7017
https://orcid.org/0000-0002-1779-6178
https://orcid.org/0000-0002-6469-4609
https://orcid.org/0000-0003-0011-7383
https://orcid.org/0000-0002-2044-3795
https://orcid.org/0000-0001-9872-9710
https://orcid.org/0000-0003-0526-6687
https://orcid.org/0000-0003-1363-0581
https://orcid.org/0000-0002-5900-6541
https://orcid.org/0000-0002-4461-7307
https://orcid.org/0000-0003-0003-473X
https://orcid.org/0000-0001-6179-0155
https://orcid.org/0000-0002-0751-515X
https://orcid.org/0000-0003-4384-5786
https://orcid.org/0000-0002-0629-7998
https://orcid.org/0000-0002-0145-8406
https://orcid.org/0000-0001-6364-6149
https://orcid.org/0000-0001-9796-6378
https://orcid.org/0000-0002-7034-5544
https://orcid.org/0000-0002-5059-3145
https://orcid.org/0000-0003-0983-9796
https://orcid.org/0000-0002-5798-398X
https://orcid.org/0000-0002-0893-7493
https://orcid.org/0000-0001-8902-6909
https://orcid.org/0000-0002-6615-6425
https://orcid.org/0000-0003-3783-5565
https://orcid.org/0000-0001-8175-2201
https://orcid.org/0000-0001-7977-4751
https://orcid.org/0000-0001-8742-118X
https://orcid.org/0000-0003-0417-9266
https://orcid.org/0000-0002-2481-5058
https://orcid.org/0000-0003-3529-6510
https://orcid.org/0000-0001-7298-7930
https://orcid.org/0000-0002-3782-4279
https://orcid.org/0000-0003-2770-0675
https://orcid.org/0000-0001-9929-3744
https://orcid.org/0000-0003-0323-2061
https://orcid.org/0000-0001-7470-6506
https://orcid.org/0000-0003-3561-3627
https://orcid.org/0000-0001-7274-2677
https://orcid.org/0000-0001-8335-9761
https://orcid.org/0000-0002-5784-8411
https://orcid.org/0000-0003-0432-7361
https://orcid.org/0000-0002-7413-6897
https://orcid.org/0000-0002-3947-2174
https://orcid.org/0000-0001-9273-8181
https://orcid.org/0000-0001-5490-904X
https://orcid.org/0000-0003-4582-0953
https://orcid.org/0000-0001-7013-9081
https://orcid.org/0000-0001-7254-6465
https://orcid.org/0000-0002-0906-4217
https://orcid.org/0000-0003-2105-9418
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-3759-4805
https://orcid.org/0000-0002-0115-7996
https://orcid.org/0000-0002-9363-2044
https://orcid.org/0000-0001-6711-7818
https://orcid.org/0000-0002-3467-0710
https://orcid.org/0000-0003-1639-3403
https://orcid.org/0000-0002-4922-4043
https://orcid.org/0000-0002-0160-7803
https://orcid.org/0000-0001-6880-6244
https://orcid.org/0000-0001-6562-8243


Contents

Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data
Kainan Zhang  , Zhipeng Cai  , and Daehee Seo 

Research Article (13 pages), Article ID 8545101, Volume 2023 (2023)

Lifetime-Maximized Strong Barrier Coverage of 3D Camera Sensor Networks
Yi Hong  , Chuanwen Luo  , Deying Li  , Zhibo Chen  , and Xiyun Wang
Research Article (12 pages), Article ID 2659901, Volume 2022 (2022)

An SKP-ABE Scheme for Secure and Efficient Data Sharing in Cloud Environments
Yong-Woon Hwang  , Su-Hyun Kim  , Daehee Seo  , and Im-Yeong Lee 

Research Article (17 pages), Article ID 1384405, Volume 2022 (2022)

HomeGuardian: Detecting Anomaly Events in Smart Home Systems
Xuan Dai  , Jian Mao  , Jiawei Li  , Qixiao Lin  , and Jianwei Liu 

Research Article (11 pages), Article ID 8022033, Volume 2022 (2022)

https://orcid.org/0000-0003-4267-7143
https://orcid.org/0000-0001-6017-975X
https://orcid.org/0000-0002-5069-398X
https://orcid.org/0000-0001-7862-3388
https://orcid.org/0000-0003-1363-0581
https://orcid.org/0000-0002-7748-5427
https://orcid.org/0000-0002-2346-7530
https://orcid.org/0000-0002-9157-1620
https://orcid.org/0000-0002-6224-3273
https://orcid.org/0000-0002-5069-398X
https://orcid.org/0000-0002-8856-0103
https://orcid.org/0000-0003-3016-6522
https://orcid.org/0000-0002-0404-6466
https://orcid.org/0000-0002-2388-5222
https://orcid.org/0000-0002-1359-9636
https://orcid.org/0000-0003-2965-3518


Research Article
Privacy-Preserving Federated Graph Neural Network Learning on
Non-IID Graph Data

Kainan Zhang ,1 Zhipeng Cai ,1 and Daehee Seo 2

1Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA
2Department of Computer Science, Sangmyung University, Seoul, Republic of Korea

Correspondence should be addressed to Zhipeng Cai; zcai@gsu.edu

Received 3 August 2022; Revised 26 September 2022; Accepted 30 September 2022; Published 3 February 2023

Academic Editor: Yan Huo

Copyright © 2023 Kainan Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Since the concept of federated learning (FL) was proposed by Google in 2017, many applications have been combined with FL
technology due to its outstanding performance in data integration, computing performance, privacy protection, etc. However,
most traditional federated learning-based applications focus on image processing and natural language processing with few
achievements in graph neural networks due to the graph’s nonindependent identically distributed (IID) nature. Representation
learning on graph-structured data generates graph embedding, which helps machines understand graphs effectively.
Meanwhile, privacy protection plays a more meaningful role in analyzing graph-structured data such as social networks.
Hence, this paper proposes PPFL-GNN, a novel privacy-preserving federated graph neural network framework for node
representation learning, which is a pioneer work for graph neural network-based federated learning. In PPFL-GNN, clients
utilize a local graph dataset to generate graph embeddings and integrate information from other collaborative clients to utilize
federated learning to produce more accurate representation results. More importantly, by integrating embedding alignment
techniques in PPFL-GNN, we overcome the obstacles of federated learning on non-IID graph data and can further reduce
privacy exposure by sharing preferred information.

1. Introduction

Data providers sometimes share their data to improve the
analytical performance of all participants. However, the col-
laboration among data providers risks privacy leakage of
data owners. Insecure data sharing coupled with poor dea-
nonymization is the same as giving away the owner’s infor-
mation for free. Federated learning (FL) is a comparatively
different learning strategy that eludes data collection in a
centralized location [1], where a typical server model may
reveal a user’s sensitive data that he/she is not willing to
share. Under this concern, FL is aimed at training deep neu-
ral networks on multiple local datasets present on local cli-
ents without explicitly exposing the data samples to either
the central server or cooperating clients.

Graph data is helpful for processing tasks involving com-
plex relationships and dynamic schemata, such as supply
chain management and recommendation systems. Although
graph neural network stands out by utilizing representation

learning to accomplish graph analysis tasks such as node
classification and link prediction in the current big data era
[2], there are several reasons preventing FL from being
widely applied in the domain of graph neural networks.
Unlike most earlier federated learning researches with IID
computer vision or language data underlying, the non-IID
nature of graphs [3] may cause FL resulting in a worse accu-
racy than the centralized approach when the training dataset
becomes large and noisy as real-world graphs and GNNs
tend to overfit the training set if it is not properly regularized
[4]. Worse, the aggregation mechanism of FL may fail on
sparse graphs, where nodes within local neighborhoods pro-
vide more noise than useful information for feature aggrega-
tion [5]. More broadly, the diversity of the GNNs model
makes the current definition of federated GNNs not uniform
and unclear [6]. In addition, most of the existing FL algo-
rithms, such as the naive FedAvg algorithm, are designed for
the IID dataset, so it is difficult to effectively integrate the
information between various clients in common federated
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GNN setting [7]. Especially when clients have different sample
nodes and cannot share the complete topology information
for privacy concerns, applying the leading traditional averag-
ing strategy to the federated process is not suitable because
the input nodes of the graph neural networks are different.

Hence, to solve the aforementioned challenges, we pro-
pose a novel federated learning framework for graph neural
networks with the embedding alignment technique. Because
the framework only needs to integrate client-preferred pub-
lic information, it can significantly reduce the risk of privacy
disclosure during the learning process. The embedding
alignment technique ensures that the clients holding non-
IID data can change information. Furthermore, we find that
injecting aligned information into the local model has regu-
larization effects empirically and thus reduces the risk of
overfitting. The main contributions of our work are summa-
rized as follows:

(i) We investigate a general training scenario of the
federated GNN setting in which multiple clients
hold non-IID graph datasets sharing partial struc-
tural equivalence

(ii) We propose a novel framework to integrate feder-
ated learning and embedding alignment techniques
into an end-to-end process flow to obtain accurate
embedding results for individual clients

(iii) We conduct extensive experiments on ground
truth datasets to prove the effectiveness of the pro-
posed method with the embedding alignment
technique and demonstrate the competitive perfor-
mance of PPFL-GNN framework with respect to
noise resistance

2. Related Works

2.1. Federated Learning with Non-IID Dataset. The non-IID
local data usually brings statistical challenges for federated
learning, which hurts training convergence and significantly
reduces accuracy. To conquer the problem, Zhao et al. pro-
pose a strategy to improve the training of non-IID data by
creating a small portion of data globally shared among all
edge devices [8]. To offset the bias introduced by non-IID
data and accelerate convergence, Wang et al. propose Favor
[9], an experience-driven control framework, which can
intelligently select client devices to participate in each round
of federated learning. As another research direction, many
FL algorithms are proposed to address the problem of learn-
ing efficiency under non-IID data settings. FedProx [10] is a
generalization and reparametrization of FedAvg, which pio-
neers in tackling federated network heterogeneity. In FedPD
[11], the authors also explore the nonconvex behavior of the
FedAvg algorithm and propose a federated learning frame-
work with optimal rates and adaptivity to non-IID data.
Similarly, Li et al. propose FedBN [12], which uses local
batch normalization to alleviate the feature shift before aver-
aging models with the convergence rate speed-up. However,
after conducting extensive experiments, Li et al. [13] find
that the current state-of-the-art FL algorithm cannot outper-

form other algorithms in all cases with comprehensive data
partitioning strategies that cover the typical non-IID data
cases. Moreover, to achieve differential privacy in federated
learning under a non-IID scenario, Xiong et al. design the
2DP-FL algorithm [14] that adds flexible noise to meet var-
ious privacy standards. Although these prior methods have
been making progress in different fields, none of them con-
sider using the graph with nature non-IID regarding charac-
teristics as the experiment dataset.

2.2. Federated Learning on Graph Neural Networks. Com-
pared with the voluminous progress made in the vision
and language domains, researches about federated learning
on graphs are still relatively lacking. For example, SGNN
[15] uses a similarity-based graph neural network to capture
the structural information of nodes, but it only borrows the
thought of federated learning to hide the original informa-
tion from different data sources. More like a variant of fed-
erated learning, Lalitha et al. propose a distributed learning
algorithm in which nodes update their beliefs by aggregating
information from neighbors and learn the most suitable
model of the entire network [16]. Recently, the appearance
of FedGraphNN [17] promotes federated learning research
based on GNN as an open research federated learning sys-
tem and benchmark. However, their experimental results
pose significant challenges in federated GNN training. For
example, federated GNNs perform worse in most datasets
with a non-IID split than centralized GNNs, indicating that
more research is necessary for this field.

Moreover, federated GNN inherits the core problems
from traditional federated settings including expensive com-
munication, systems heterogeneity, statistical heterogeneity
[18], and privacy concerns [10]. For instance, to handle the
statistical heterogeneity of the data, He et al. propose
SpreadGNN [19], a novel multitask federated training
framework, which can run in the presence of partial labels
and no central server by utilizing decentralized periodic
averaging SGD to solve decentralized multitask learning
problems. Aiming to moderate the privacy concerns, Sajad-
manesh and Gatica-Perez develop a privacy-preserving,
architecture-agnostic GNN learning algorithm with formal
privacy guarantees based on local differential privacy [20],
which also aggregates multihop nodes’ features to denoise
the noisy labels. In addition to general models and theoreti-
cal research, the application of federated GNN to practical
problems is also worth studying. For example, FedGNN pro-
poses a federated framework for the GNN-based recommen-
dation system [21], which can collectively train GNNmodels
from decentralized user data while using high-level user-
item interaction information to preserve privacy. In the
remainder of this article, we also address these four chal-
lenges in our work and discuss the framework’s applicability.

2.3. Embedding Space Alignment. The embedding approach
has become a primary topic in machine learning and graph-
ical analysis [22, 23]. Naturally, the alignment of different
embedding spaces plays an important role similar to the
translation in the communication of different languages.
As the pioneer of alignment technique, cross-lingual word
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embedding alignments have rapidly grown in the past few
years [24]. Both MUSE [25] and VecMap [26] provide mod-
ern and oft-cited toolkits for bilingual lexical induction (BLI)
datasets. With the development of knowledge-driven appli-
cations such as question answering and knowledge graph
completion, substantial researches on knowledge graph
embedding alignments have emerged recently [27, 28].
These thorough studies enlighten us to apply the existing
alignment technique, instead of the training target, but as a
tool of information extraction and data integration during
the training process.

3. Proposed Work

In this section, we first introduce the problem formulation of
our work and then explain the details of our approach to
learning graph representation in a privacy-preserving way
based on two state-of-the-art models.

3.1. Problem Formulation. Denote C = fc1, c2,⋯cng as the
sets of clients participating in federated learning, and client
ci holds a local undirected graph G = ðU, E, FÞ including
node set U, edge set E, and node-feature set F. We assume
that all the local graphs share a certain amount of nodes
defined as public node set Uk =U1 ∩U2 ∩⋯∩Un. To pro-
tect privacy, each client saves the original data locally,
including the edge and attribute information of nonpublic

nodes. Only the processed public node information, which
is generated as public node embedding by the client’s local
model, will be uploaded to the server. Our goal is to generate
accurate node representation for each client by utilizing fed-
erated learning without building and storing the entire graph
on the server or client.

3.2. Federated DeepWalk. DeepWalk extends the idea of lan-
guage modeling to network topology [29], which forms the
embryo of graph embedding. Given a random walk sequence
composed of network nodes,

Vn
1 = v0, v1,⋯, vnð Þ, ð1Þ

where vi ∈U. The goal so far is to retrieve the likelihood of
observing vi given the previous i − 1 nodes in the random
walk:

Pr vi v1, v2,⋯, vi−1ð Þjð Þ: ð2Þ

To learn the latent representation, instead of only a
probability distribution of node cooccurrence, DeepWalk
introduces a mapping function Φ : v ∈ V ⟶ RjVj×d , which
actually is a jV j × d matrix of free weights serving as the
low-dimensional representations of all network nodes in
the graph.
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Figure 1: Overview of the federated DeepWalk framework. The red nodes are private, and the blue nodes are public. Local training is
highlighted in grey, and server aggregation is highlighted in yellow.
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However, the computation is not efficient depending on
the length of the random walks. Thus, the SkipGram method
in Word2vec [30] is applied to solve the computational
problem. Rather than predicting the occurrence of a missing
node in the walk, we compute the likelihood of a node
appearing as a neighbor in a given window, and the new
optimization goal is summarized as follows:

min
ϕ

− log Pr vi−w,⋯, vi−1, vi+1,⋯, vi+wð Þf g Φ við Þjð Þ, ð3Þ

where w is the window size for iterating the possible colloca-
tion of the given node vi. Suppose we deploy DeepWalk as
the neural network model in the federated learning setting,
then the local client ci can train a low-dimensional latent
representation RjV j×d of his local graph Gi. After all clients
have generated their local graph embeddings, the challenge
of a federated learning setting is how all clients collaborate

to improve the training results with less disclosure of sensi-
tive information.

In traditional federated learning, each client uploads all
weights of the local model to a central server. The central
server aggregates these weights to update the global model
and then distributes the global model back to the clients.
However, in our problem definition, we cannot aggregate
all weights directly because each client holds a different sub-
graph of the global network, which means that the trained
latent representations only share commonality on the public
nodes partially. Because the potential relationship between
public and private nodes is stored in the public nodes’ latent
representations, as shown in Figure 1, instead of uploading
all weights (i.e., the latent representations of all the nodes
in the local graph), a client can only upload the weights
related to the public nodes (i.e., the latent representations
of public nodes), which also carry some sensitive informa-
tion of the private nodes.

Input: C = fc1, c2,⋯cng: the set of clients
Gi: the local subgraph hold by ci
Uk: the public nodes shared among C

Output: the matrix of node representation Φi ∈ RjVj×d

of Gi
1: LOCAL CLIENTS:
2: for each client ci ∈ C do
3: Compute the DeepWalk model weights Φi
4: Generate the public nodes’ embeddings Xi of Uk

from Φi:
5: Xi = fΦiðu1Þ,⋯,ΦiðukÞg
6: Upload Xi to the server
7: end for
8:
9: while not converge do
10: SERVER:
11: for each i ∈ k do
12: for each j ∈ kði ≠ jÞ do
13: Align Xj into ci’s space: Xji =WjiXj

14: end for
15: Aggregate all the aligned embeddings with Xi

16: Xi′= 1/kð∑k
j X ji + XiÞ

17: distribute Xi′ to client ci for local update
18: end for
19:
20: LOCAL CLIENTS:
21: for each client c ∈ C do
22: Substitute the public nodes’ embeddings in Φi

by Xi′
23: Φi′⟵ ðΦi, Xi′Þ
24: Initial the DeepWalk model with Φi′
25: Compute the model weights Φi
26: end for
27: end while
28: return the matrix of node representation Φi ∈ RjVj×d

of Gi

Algorithm 1:The federated DeepWalk framework.
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Since the latent representations of public nodes are gen-
erated from different training graphs, simple aggregation
and distribution will break their connections with the
unprocessed latent representations of private nodes on the
local client. Thus, we apply an embedding alignment tech-
nique in the weight aggregation on the central server to con-
vert the latent representations from other clients into a form
that the local client understands. For example, there are two
local clients cx and cy sharing k nodes in the graph. Let
X = fΦxðu1Þ,⋯,ΦxðukÞg and Y = fΦyðu1Þ,⋯,ΦyðukÞg, uk
∈Uk be two sets of k public node embeddings coming
from cx and cy, respectively. For cy to understand the
information of X, we need to align/translate X into the
space of cy, which technically is using a linear mapping
matrix W that maps X from the source space cx to the tar-
get space cy. Furthermore, we can encapsulate the problem
to the Procrustes problem [31] and solve it via the singular
value decomposition (SVD) of Y XT :

W∗ = argminW∈Md ℝð Þ WX − Yk kF =UVT ,

withU〠VT = SVD YXTÀ Á ð4Þ

where MdðRÞ is the d × d matrix space of real numbers.
We denote Xy =WX as the aligned embeddings from
source space cx to target space cy , and Yx in the opposite
way. The server aggregates Xy and Y to obtain a merged

weight Y ′ and returns Y ′ to cy for substituting the current

public node embedding vector ΦðykÞ. For multiple clients
C = fc1, c2,⋯cng, the server aligns the embed dings from
any pair of clients ∀ci, cj ∈ C and applies the average aggre-
gation on all the aligned embeddings in the same client’s
space to get the returning updates for each client. The local
clients use the updates as the initial weights to train in a
new round. Algorithm 1 summarizes the complete training
procedure.

3.3. Federated GAT Framework. GAT [32] introduces an
attention mechanism to replace the statically normalized
convolution operation in GCN [33]. The input to a single

attentional layer is a set of node features, h = fh1
!, h2

!,⋯,
hn
!g, hi

!
∈ F, where n is the number of nodes and F is

the node feature set. A linear transformation is firstly
applied to every node feature for higher-level expression:

z lð Þ
i =W lð Þh lð Þ

i , ð5Þ

where WðlÞ is a learn-able weight matrix.
Different from the dot product attention mechanism in

GCN, GAT applies the additive attention mechanism,
which concatenates the z embeddings of two neighbors i
and j to compute a pairwise unnormalized attention score
eðlÞ between them. The additive attention mechanism takes
the dot product of the concatenation and a weight vector a!

and then applies a LeakyReLU activation function. In order
to compare the attention scores with different nodes, a
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Figure 2: Overview of the federated GAT framework. The red nodes are private, and the blue nodes are public. Local training is highlighted
in grey, and server aggregation is highlighted in yellow.
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normalized coefficient αðlÞ is computed by the softmax func-
tion in the end:

α
lð Þ
ij = sof tmaxj e lð Þ

ij

� �

=
exp LeakyReLU a!

T
z lð Þ
i

��� z lð Þ
j

���h i� �� �
∑k∈N i

exp LeakyReLU a!
T
z lð Þ
i

��� z lð Þ
k

���h i� �� � ð6Þ

where Ni is some neighbor of node i in the graph, ‖ denotes
the concatenation operation, and T represents transposition.

Having the normalized attention coefficients calculated,
GAT generates the next-level embed-scaled by the attention
coefficients.

h l+1ð Þ
i = σ 〠

j∈N i

α
lð Þ
ij z

lð Þ
j

 !
ð7Þ

Once we obtain the local embeddings, we have to face
the similar challenge of collaborating with different clients
in federated learning as the federated DeepWalk frame-
work. Although in DeepWalk model we can extract the

Input: C = fc1, c2,⋯cng: the set of clients
Gi: the local subgraph hold by ci
Uk: the public nodes shared among C

Output: the node embeddings Hi′ of Gi

1: LOCAL CLIENTS:
2: for each client ci ∈ C do
3: Compute the GAT model embedding Hi′
4: Generate the public nodes’ embeddings Xi of Uk

from the intermediate Hi:
5: Xi = fHiðu1Þ,⋯,HiðukÞg
6: Upload Xi to the server
7: end for
8:
9: while not converge do
10: SERVER:
11: for each i ∈ k do
12: for each j ∈ kði ≠ jÞ do
13: Align Xj into ci’s space: Xji = WjiXj
14: end for
15: Aggregate all the aligned embeddings with Xi

16: Xi′= 1/kð∑k
j X ji + XiÞ

17: distribute Xi′ to client ci for local update
18: end for
19:
20: LOCAL CLIENTS:
21: for each client ci ∈ C do
22: Take Xi′ as new input weights
23: Compute the GAT-model embedding Hi′ with loss Lnew
24: end for
25: end while
26: return the node embeddings Hi′ of Gi

Algorithm 2: The federated GAT framework.

Table 1: The results of the federated DeepWalk framework. LOC indicates the result of local training, FED indicates the result of federated
learning, and GLOBAL indicates the cumulative improvement of all clients.

Dataset (classifier)
Client 1 Client 2 Client 3 Client 4

GLOBAL
LOC FED LOC FED LOC FED LOC FED

Cora (MLP) 79.1 80.1 76.0 76.0 74.3 76.1 75.0 76.6 +4.41

Cora (SVC) 79.3 81.4 77.5 78.7 75.5 77.9 75.0 78.0 +8.72

CiteSeer (MLP) 48.1 51.4 46.4 50.4 48.9 51.6 49.2 51.7 +12.5

CiteSeer (SVC) 56.3 60.6 53.5 58.6 57.3 61.6 55.3 60.4 +18.8

Cora (full) MLP 79.9 SVC 82.0

CiteSeer (full) MLP 58.6 SVC 65.4
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public nodes’ embeddings from the model weights directly,
the weights of GAT integrate both public and private infor-
mation and cannot be split directly by node’s category. There-
fore, as shown in Figure 2, we upload the public nodes’

embeddings X coming from the model’s intermediate layer

(i.e., hðlÞi , i ∈Uk) to the server without exposing the model
weights. Then, the server executes the same processes in the
federated DeepWalk framework to align, aggregate, and

Table 2: The results of the federated GAT framework. Cora_noise is the Cora dataset with noisy labels.

Dataset (classifier)
Client 1 Client 2 Client 3 Client 4

GLOBAL
LOC FED LOC FED LOC FED LOC FED

Cora (MLP) 84.4 86.3 85.7 85.8 83.1 83.8 85.7 86.0 +3.01

Cora (SVC) 86.1 86.7 86.5 86.0 85.6 85.0 85.4 86.0 +0.1

Cora_noise (MLP) 81.4 81.0 79.0 79.5 72.2 75.9 70.6 77.3 +10.4

Cora_noise (SVC) 82.0 82.4 80.0 80.8 74.5 77.4 72.3 78.3 +10.1

CiteSeer (MLP) 72.3 74.7 72.8 74.1 72.8 74.3 72.7 75.0 +7.51

CiteSeer (SVC) 72.8 74.5 72.3 74.3 72.1 74.3 72.1 74.1 +7.82

Cora (full) MLP 86.2 SVC 86.1

CiteSeer (full) MLP 74.7 SVC 74.8
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Figure 3: The KNN alignment precision and SVC classification accuracy corresponding to each iteration of the federated DeepWalk
framework on the Cora dataset.
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distribute the updates X ′ to clients. As we cannot use the
aligned embedding to manipulate GAT’s model weights
directly, another cosine-embedding loss Lemb is added beside
the original cross-entropy loss Llabel to integrate the informa-
tion of X ′ back into the model.

Lemb = 1 − cos X, X ′
� �

Llabel = −
1
N
〠
n

i=1
yi log ŷið Þ

ð8Þ

where yi is the one-hot label of each node and ŷi = soft max
ðhðl+1Þi Þ. Thus, the new loss of local training is the combination
of the cosine-embedding loss and the cross-entropy loss:

Lnew = Llabel + βLemb, ð9Þ

where β is a model hyperparameter to balance the local infor-
mation preservation and the external information integration.
During the experiment, we observe that the last attention layer
is so powerful that it overwhelms the cosine-embedding loss of
the final output hðl+1Þ. Hence, based on two-stage CNN train-
ing [34] and federated split learning [35], we inject the external
information via the intermediate layer hðlÞ at an earlier stage.
Algorithm 2 summarizes the complete procedure of the feder-
ated GAT framework.

4. Experiments

In this section, we present the experiments developed by
PyTorch and conducted on a workstation with an Intel Core
i7 2.80GHz CPU and a NVIDIA GeForce GTX 1070 GPU.

4.1. Datasets. In our experiments, we employ two datasets,
Cora [36] and CiteSeer [37], which are commonly used
in the GNN research. The Cora dataset includes 2,708
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publications as nodes classified into seven classes, and its
citation network consists of 5,429 links. The CiteSeer data-
set includes 3,327 nodes classified into six classes, and its
citation network consists of 4,732 links. Both datasets use
unique words in each document as the node features. We
set up four clients participating in the federated learning,
so each dataset is split into four subgraphs with an equal
number of nodes and assigned to each client. By default,
each Cora subgraph has 1,489 (55%) nodes in total with
1,083 (40%) public nodes and 406 (15%) private nodes,
while each CiteSeer subgraph has 1,829 (55%) nodes in
total with 1,330 (40%) public nodes and 499 (15%) private
nodes. (%) shows the percentage of the nodes in the origi-
nal graph.

4.2. Baselines and Metrics. We use the client’s local training
as the baseline to verify whether our framework can improve
each client’s graph embedding result through collaborative
training. In the DeepWalk-based training, all clients use
the same model architecture with randomly initialized

weights for local training or federated training, while in the
GAT-based training, clients use the original GAT model
for the local training and the modified GAT model with
embedding loss for the federated training. Other architecture
and parameters are fixed in a controlled experiment.

For all the implementations, we embed each graph into a
16-dimensional space and run the experiments on the classi-
fication tasks to evaluate the quality of the embedding by
applying one multilayer perceptron (MLP) classifier and
another support vector classifier (SVC) implemented in the
Python module scikit-learn to predict the label of a node.
For all the experiments, we use 5-fold cross-validation to
ensure models’ reliability and effectiveness, and the classifi-
cation results of the two frameworks are given as micro
F1-scores.

4.3. Performance Evaluation. The federated DeepWalk
framework results are presented in Table 1. We can observe
that in contrast to the embeddings generated by limited local
information, both classifiers can achieve higher classification
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accuracy on the embeddings trained by full use of the graph
data. Under this precondition, the proposed FL methodol-
ogy can improve the global results by 4.41% (MLP) and
8.72% (SVC) on the Cora dataset, while 12.5% (MLP) and
18.8% (SVC) on the CiteSeer dataset, respectively. Specifi-
cally, every client in the CiteSeer experiment receives steady
improvement compared with the local baseline.

For the federated GAT framework, we set the hyperpara-
meter β = 1 for the Cora dataset and β = 0:75 for the Cite-
Seer dataset. As shown in Table 2, we obtain similar results
on the CiteSeer dataset with 7.51% (MLP) and 7.82%
(SVC) accuracy improvements. Because GAT uses weighting
neighbor features with feature-dependent and structure-free
normalization, which does not rely on knowing the entire
graph structure in advance, the local client can generate
favorable embedding by partial information of a denser Cora
dataset. Thus, our method is subject to further refining the
embedding in this case. In addition to cleaning the Cora
dataset, we randomly modify 15% labels as noisy (incorrect)

labels during the training, leading to a considerable perfor-
mance loss for clients such as client 3 and client 4. However,
our proposed method can effectively mitigate the influence of
noisy labels by integrating information from other clients.
Consequently, the poor performance of client 3 or client 4
receives a significant improvement.

4.4. Impact of Alignment on Performance. To demonstrate
the effectiveness of applying alignment during the FL aggre-
gation, we plot the alignment precision of the public latent
representations and the SVC classification accuracy of the
graph embeddings corresponding to each training iteration
of both frameworks in Figures 3–6. We use k-nearest neigh-
bors with k = 1, 5, and 10 to measure the alignment precision
between any pair of the public latent representations.
Because we need to align each local representation to the
dimension of the other clients, there are 12 pairs in the four
clients’ settings, and we only show the average value of 12
alignments in the figures as the variance is slight.
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For the federated DeepWalk framework in Figures 3 and
4, although the classification accuracy of locally trained
graph embedding is acceptable in the initial iteration, their
alignment results are inferior because of the random initial-
ization. Consequently, we cannot integrate the information
of different clients effectively, which leads to the perfor-
mance diving in the second iteration. However, the rough
integration in the first two iterations helps in the united ini-
tialization by setting the tone for the subsequent training.
Thus, we observe that the quality of graph embedding
improves with the promotion of the alignment effect, which
can achieve above 90% precision of k = 1 at the convergence
stage. For the federated GAT framework in Figures 5 and 6,
the initial representation alignment results are satisfactory
with a fair classification accuracy of graph embedding.
Moreover, we observe both alignment precision and classi-
fication accuracy surge in the second iteration after the
federated learning process. Nevertheless, as we only use
cosine-embedding loss at the intermediate layer, partial
integrated information is squeezed out when the federated
procedure converges within ten iterations. In general, there
is a positive correlation between the alignment precision
and classification accuracy, which confirms the effective-
ness of our method.

5. Discussion

Through previous experiments, we find that our method
performs better when applied to the CiteSeer dataset, which
is more sparse than the Cora dataset relatively. Denser sub-
graphs mean the local clients have more information, limit-
ing the improvement effect of federated learning. However,
if the degrees of the shared nodes are low, they cannot com-
prehensively transmit the local information during the inte-
gration. Therefore, we design the supplemental experiments
to further study the suitable application scenarios. Instead of
randomly generating the subgraphs and selecting 40% public
nodes to share, we compose the subgraphs with different
percentages of top high-degree nodes from the original
graph as the public nodes. We conduct the same embedding
classification experiment and render the average accuracy of
four clients in Table 3.

Under the DeepWalk framework, the classification accu-
racy of locally generated graph embeddings increases as the
degree of nodes in the subgraph increases. Although feder-
ated learning can still improve the overall classification
effect, the magnitude of improvement diminishes. With a
simpler model DeepWalk, the local clients are more likely

to get an underfit model with inferior prediction accuracy
below 70%. Federated learning tackles the underfitting issue
more by sharing public information between clients and
indirectly increasing the local training dataset’s size. In the
experimental group of GAT, we notice that the higher sub-
graph density reduces the accuracy of local graph embed-
ding. One reason is that the subgraphs generated by our
method are disassortative, and the local aggregation mecha-
nism of GAT may fail on disassortative graphs, where nodes
within local neighborhoods provide more noise than helpful
feature information. Another reason is that the local model
is overfitting the denser training subgraph. However, the
federated learning setting prevents the local model from
focusing on the training data, and the embedding alignment
technique has regularization effects empirically to avoid
overfitting. Overall, our approach is suitable for general
application scenarios, and the improvement effect is more
prominent when the local embedding effect is unsatisfied.

6. Conclusions

This paper investigates a practical problem of federated
graph neural networks with non-IID datasets and proposes
a novel federated learning framework. Through embedding
alignment, we can normalize the common latent representa-
tion of each client as uniformly as possible and enable infor-
mation integration in a federated setting. The experimental
results demonstrate that our framework can achieve higher
data usability than local training with privacy preservation.
Other advanced embedding alignment technologies can be
explored in future work for more accurate information inte-
gration. Investigation of the shared public nodes is still
worthwhile. For future expansion, discovering an optional
composition of public nodes to reduce the number of shares
can better balance privacy protection and data availability.

Data Availability

The Cora dataset consists of 2,708 scientific publications
classified into one of seven classes. The citation network
consists of 5,429 links. Each publication in the dataset is
described by a 0/1-valued word vector indicating the
absence/presence of the corresponding word from the dic-
tionary. The dictionary consists of 1,433 unique words.
(original source: http://web.archive.org). The CiteSeer data-
set consists of 3,312 scientific publications classified into
one of six classes. The citation network consists of 4,732
links. Each publication in the dataset is described by a 0/1-
valued word vector indicating the absence/presence of the
corresponding word from the dictionary. The dictionary
consists of 3,703 unique words (introduced by C. Lee Giles
et al. in CiteSeer: An Automatic Citation Indexing System).
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Table 3: Results of the different shared public nodes.

Percent
DeepWalk GAT

LOC FED Diff LOC FED Diff

5% 57.1 61.8 +4.7 74.4 75.1 +0.7

10% 57.3 62.3 +5.0 73.9 75.1 +1.2

20% 61.8 65.0 +3.2 71.8 73.5 +1.9

30% 63.4 65.8 +2.4 70.5 72.6 +2.1

40% 67.8 69.2 +1.4 70.5 73.0 +2.5
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Camera sensor networks (CSNs) have advantages on providing the precise and multimedia information for plenty of applications.
The high coverage quality of CSNs especially satisfies the monitoring requirements of barrier coverage. In three-dimensional (3D)
application scenarios, the tracking of the potential intruder in the monitored irregular spaces brings more difficulties and
challenges on strong barrier coverage for CSNs. In this paper, we consider the strong barrier coverage problem in 3D CSNs
and focus on the objective of monitoring the intruder with high resolution and maximizing the network lifetime. We firstly
introduce the definition and hardness proof for the problem based on the irregular space model and the network model, which
adopts the Region of Interest (ROI) sensing model with high effective resolution. Secondly, we design two sleep-and-awake
scheduling algorithms for the problem in homogeneous and heterogeneous networks, respectively, which are based on the
auxiliary graph transformation and the disjoint flows construction. To evaluate these algorithms’ performance on the lifetime
maximization, we conduct extensive simulation experiments and analyze their results on their advantages and applicable
scenarios.

1. Introduction

Wireless sensor networks (WSNs) are being studied for a
long time, which can be classified into sensor-based studies
and data-based works. The most data-based works focused
on the extracting kernel dataset and data query processing
[1, 2]. The most sensor-based studies concentrated on the
coverage and data transmission issues. With the high accu-
racy of monitoring information on coverage issue, camera
sensor networks (CSNs) have been utilized for a wide range
of applications which can be classified into indoor monitor-
ing [3] and outdoor surveillance, e.g. military inspection and
wild animal protection. For the military applications, CSNs
can provide intrusion warning and action trend prediction
for constructing the military boundaries to guarantee the
quality of coverage service. For the wild animal protection,
CSNs do not only prevent illegal personnel from entering
the protection regions for illegal poaching but also avoid

the protected animals from escaping from the regions. Thus
barrier coverage has got a lot of attentions for research. To
satisfy the coverage requirement of the practical applica-
tions, barrier coverage has the highest requirement on the
sensed information in these coverage optimization
problems.

Among the related theoretical research of barrier cov-
erage scheduling in CSNs, the most concerned issues are
the particularity of the monitored space and the accuracy
of the sensing model. For the particularity of the moni-
tored space, the space may have an irregular terrain
structure in the applications like mountainous regions as
shown in the orange boundary in Figure 1. The complex
structure brings the difficulties and challenges for the sen-
sor deployment and the sensing model construction,
which should be considered in the sensor scheduling.
For the accuracy of the sensing model, the most existing
works adopted the full-view sensing model proposed in
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[4], which can guarantee the coverage for the target’s all
facing directions. Besides the sensing omnidirectivity, high
image resolution is also considered in the sensing model
in [5].

In this paper, we study on the barrier coverage prob-
lem in 3D CSNs for the application with irregular geo-
metrical characteristics and strong coverage requirements.
The goal of the problem is maximizing the network life-
time under the premise in strong barrier coverage, called
the Lifetime-Maximized Strong Barrier Coverage problem
for 3D CSNs (LifMax-BC Problem). To solve the prob-
lem, the modelling of the irregular space is our first con-
sideration. And we secondly consider the sensing model
of the camera sensors in [5] which is being modeled
based on the combination of the sensing region and the
image resolution. Thirdly, we focus on the problem in dif-
ferent network conditions, homogeneous networks and
heterogeneous networks. The list of our contributions is
as follows.

(i) We introduce LifMax-BC Problem for strong bar-
rier coverage in 3D CSNs based on modelling the
monitored space and the sensing region and give
its hardness proof;

(ii) We propose two scheduling algorithms with the
sleep-and-awake mode to solve the problem in the
homogeneous networks and the heterogeneous net-
works, which are based on the auxiliary transforma-
tion and the disjoint maximum flow construction;

(iii) We conduct a large number of experiments and
evaluate the performance of the proposed algo-
rithms in terms of the constructed barrier number.
Based on the simulation results, we analyze each
scheduling algorithm’s applicable scenarios.

The rest of the paper is organized as follows: Section 2
presents the related works. Section 3 introduces the prelim-
inaries, the definition of our problem and the NP-hardness
proof. The two scheduling algorithms are, respectively, pro-
posed in Section 4 and Section 5. Performance evaluations
are given in Section 6. concludes this paper and discusses
the future work.

2. Related Works

The existing sensor-based research on wireless sensor net-
works (WSNs) can be classified into coverage problems
and data transmission problems [6, 7], in which coverage
includes target coverage, area coverage, and barrier coverage.
Many mature sensing models of camera sensors have been
formed from the contribution of the works on target and
area coverage in WSNs.

Based on the sensing model of different kinds of camera
sensors, there are more studies on barrier coverage with dif-
ferent optimization goals. Based on the sensing model of
directional sensors, Wang and Cao [8] studied the construc-
tion problem for strong barrier coverage and presented
redundancy reduction techniques. The authors proposed
the algorithms to solve the barrier coverage problems with
the minimum coverage cost based on modeling the full-
view-covered regions in [9]. And Mohammad et al. [10] pro-
posed a centralized barrier constructing algorithms based on
distributed learning automata for adjustable-orientation
directional sensor networks.

Among the optimization goals of barrier coverage, life-
time maximization and robustness guarantee have got atten-
tions beside the coverage cost minimization. For lifetime
maximization, Zhang et al. [11] designed a scheduling algo-
rithm for maximizing the full-view coverage duration to
solve the fairness-oriented coverage maximization problem,
which is based on the full-view sensing model. For robust-
ness guarantee, there exists lots of works to build k-barrier
coverage. The k-barrier coverage algorithm for one-
dimensional scenarios was proposed in [12], and the k-bar-
rier coverage algorithm for one-dimensional scenarios was
designed in [13]. For the sensors with the movement con-
straints, the strategy was presented for the maximum k
-barrier coverage problem in [14]. There are some solutions
for barrier coverage problem based on the classical theories:
based on the divide and conquer theory, Wen et al. [15] pro-
posed an efficient algorithm to construct k-barrier; based on
the Dijkstra algorithm, Liu et al. [16] realized the minimum
full-view coverage for mobile CSNs. And there are some
algorithms for meeting special requirements in barrier cov-
erage problem: the sensor interference issue was solved in
the algorithm for k-barrier coverage in [17]; the one-way k
-barrier algorithm was proposed in [18] to avoid one-way

Figure 1: An instance of barrier coverage in forest region scenarios.

2 Wireless Communications and Mobile Computing



invasion; the strategy for filling barrier coverage holes was
designed to realize the goal of minimizing the energy con-
sumption [19].

Considering the robustness guarantee, we focus on the
strong barrier coverage problem with the goal of lifetime
maximization and we will design two heuristics for CSNs
with homogeneous networks and heterogeneous ones.

3. Preliminaries and Problem Formulations

3.1. Space Model. For the applications of CSNs in 3D scenar-
ios, the monitored space can be modeled as a regular cube or
cuboid in the most recent related works. The regular model
of the space is beneficial to the deployment of the camera
sensors and the construction of the sensing model of sen-
sors. However, for the most applications with the rugged ter-
rain or the mountain topography, the spaces are much
different from those with the flat topography. The regular
model of the space cannot provide precise position for the
deployment of the sensors, which will affect the evaluation
of the coverage quality.

With the consideration of the topographic complexity of
the monitored space in real scenarios, we model the moni-
tored space into an irregular 3D curve strip ST instead of
a regular cube or cuboid. The 3D curve strip space ST has
two terminal sections S , D and the ceiling and the ground
planes T , B, which can be indicated as a quadruple ST

= ðS ,D,T ,BÞ as shown in Figure 2. Note that if the irreg-
ular 3D strip is a cyclic annular or a zigzag band, it can be
decomposed into multiple curve strips which are similarly
modeled in the paper.

3.2. Sensing Model Based ROI and Network Model. For the
sensing model of camera sensors, the full-view coverage
model has been widely applied for the most two-
dimensional scenarios, which was introduced in [4]. The
full-view coverage model can provide the omnidirectional
coverage based on the facing directions of the targets, which
can guarantee high coverage accuracy.

In this paper, considering the accuracy of the capturing
information and 3D application scenarios, we adopt the
Region of Interest (ROI) sensing model with high effective
resolution, which was proposed in the research [5] as the
3D sensing model of camera sensors. The ROI sensing
model of camera sensors dose not only consider the moni-
tored target’s facing direction and position height but also
construction the relationship between the 3D coverage space
and the 2D projection area for the camera sensor. The model
can satisfy the coverage requirement of application and the
strategy design of sensor scheduling.

The ROI sensing model is applied in a 3D curve strip
space ST in our paper. Considering a pair of a camera sen-
sor v and a target t in ST , we focus on three groups of
parameters: (1) the heights of v and t, denoted as H and h,
respectively; (2) the length of target t, denoted as L, which
is decide by the target itself; and (3)the angle between the t
’s facing direction and the v’s viewing direction in the verti-
cal plane (Effective vertical angle), denoted by β. To guaran-
tee the effective coverage, the parameter has a range with the

minimum effective vertical angle βmin and the maximum
effective vertical angle βmax, which is determined by the
required resolution and can be predefined. Based on the
conclusion in [5], the angle between the target’s facing direc-
tion and the sensor’s viewing direction in the horizontal
plane is out of the consideration because of the instability
of its value. The definition of ROI model for the camera sen-
sor is given as follows:

Definition 1 (The ROI Sensing Model of Camera Sensors).
Consider a 3D curve strip space ST = ðS ,D,T ,BÞ, a cam-
era sensor v located at ðX, Y, HÞ and a target t located at ðx
, y, hÞ in ST , the effective projection sensing area of v for t
is a sector-shaped ring or an annular-sector domain
SecRing = ðX, Y, r, RÞ on B with the inside radius r =H − h
+ ðL/2Þ/tan βmax and the external radius R =H − h + ðL/2Þ/
tan βmin as shown in Figure 3.

Based on the ROI sensing model of the camera sensor,
we consider the target or intruder in the barrier coverage
with the known height and length, i.e., h and L. For example,
if the monitored intruder is a person, the person’s height and
face length can be set as 1:7 meters and 0:5 meters,
respectively.

The camera sensor network considered in our paper is
composed of N randomly-deployed nodes, which are candi-
date for barrier coverage scheduling for a 3D curve strip
space ST = ðS ,D,T ,BÞ. These N nodes are collected in
the set V . For each node vi in V , it has its own position ð
Xi, Yi,HiÞ and the maximum working duration li. With
the consideration of the complexity and irregularity of the
monitored space, the heights of the sensors are different.
And we will discuss the cases with the same working dura-
tion and the different working durations later.

For the network, the camera sensors can be modeled as a
node set V = fv1, v2,⋯, vNg. And we consider the connec-
tivity between each pair of nodes based on their sensing
ranges. Based on the ROI sensing model of nodes, there is
an edge eij = ðvi, vjÞ between vi and vj if their sector-
shaped rings intersect, i.e., SecRingi ∩ SecRing j ≠∅. All the
connected edges are collected into the edge set E. Then the
original network is modeled as G = ðV , EÞ as shown in
Figure 4. And it is assumed that the transmission radius is
at least twice of the sensing radius for each camera sensor,
then the network G = ðV , EÞ is a connected graph.

3.3. Problem Definitions and Hardness. We focus on the
strong barrier coverage in 3D CSNs, which can guarantee
to detect intruders without any constraint on crossing paths
in the boundary space. Based on the preliminaries, we pro-
pose the Lifetime-Maximized Strong Barrier Coverage prob-
lem for 3D CSNs (LifMax-BC Problem), whose formal
definition is as follows.

Definition 2 (LifMax-BC Problem) Given.

(i) A 3D continuous curve strip space ST = ðS ,D,T
,BÞ where S , and D are ST ’s two terminal
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sections and T and B are the ceiling and the
ground planes of ST

(ii) The camera sensor set V deployed in the space ST ,
fv1, v2,⋯,vNg, in which each node vi has its posi-
tion ðXi, Yi,HiÞ and maximum working duration
li

(iii) A potential target or intruder crossing the space S

T with the predefined height h and face length L

(iv) LifMax-BC Problem is to find a collection of subsets
of VB = fbarrier1, barrier2, barrier3,⋯g in which
each barrier guarantees the strong barrier coverage
of the potential target, and schedule these barriers
in sleep-and-awake mode with the barrier lifetimes
flifetime1, lifetime2, lifetime3,⋯g

(v) The constraint is that each camera sensor cannot be
scheduled to exceed its maximum working duration

li, i.e., ∑barrierk∈Blifetimek · xki ≤ lið1 ≤ i ≤NÞ, where

xki is a binary variable to denote whether vi is sched-
uled in barrierk (if vi ∈ barrierk, xki = 1; otherwise
xki = 0)

(vi) The goal is maximizing the network lifetime
∑barrierk∈Blifetimek

To analyze the hardness of our problem, we review a
classical NP-hard problem in graph theory, Minimum
Weighted Set Cover (MWSC) Problem, which mathematical
formulation is as follows:

Given a set A composed of n elements, a collection C of
m subsets of AðC = fA1, A2,⋯, AmgÞ where each Aj ∈ C
ð1 ≤ j ≤mÞ with a weight wðAjÞ, the problem is to find the
minimum weighted subcollection C0 ⊆ C such that

S
Aj∈C0

Aj = A and ∑Aj∈C0
wðAjÞ is minimized.

Based on the definition of MWSC Problem, the hardness
proof of our problem is given as follows.

Theorem 3. The LifMax-BC Problem is NP-hard.

Proof 1. In order to prove the hardness of LifMax-BC Prob-
lem, we consider the special case of the problem: each node
only contributes to only one barrier, i.e., its working

S
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B

Figure 2: The 3D irregular space model for barrier coverage.
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Figure 3: The illustration of camera sensing model.
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Figure 4: The illustration of network modeling.
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duration overall contributes to the barrier it belongs to and
∑kx

k
i = 1. Based on the ROI sensing model, we can construct

candidate node-disjoint barriers fbarrier1, barrier2,⋯,
barrierk′g on the structural parameters of the space ST

and the known height and face length of the potential target.
With the predefined maximum working duration li of each
sensor, we can calculate the lifetime of each barrier, i.e.,
lifetimek = minvi∈barrierk li. If we assign the inverse of the life-
time as a weight to each barrier, i.e., weightðbarrierkÞ = 1/
lifetimek, we can rewrite the problem in the case with differ-
ent lis as follows:

Given a sensor set V = fv1, v2,⋯,vNg and a barrier set
C = fbarrier1, barrier2,⋯, barrierK ′g in which each barrier
is a subset of V and can guarantee the barrier coverage for
the space ST , the problem is to find a subset of C, e.g. C0
= fbarrier1, barrier2,⋯, barrierkg, such that ∑K

k=1weightð
barrierkÞ is minimized and ∪barrierk∈C0

barrierk = V .
Since the special version of LifMax-BC Problem is equiv-

alent to MWSC Problem which is proven to be NP-hard
[20]. Therefore, LifMax-BC Problem is NP-hard in general.

To solve LifMax-BC Problem, we firstly consider the
problem in homogeneous networks (denoted as Homo-
LifMax-BC Problem), i.e., the camera sensors have the uni-
form working duration l0. We design a barrier coverage
scheduling algorithm with disjoint barriers, Robust Barrier
Coverage Algorithm. Secondly, we propose the scheduling
algorithm with intersecting barriers for the problem in het-
erogeneous networks (denoted as Hetero-LifMax-BC Prob-
lem), i.e., the camera sensors have different maximum
working duration lis, which is called as Enhancing Barrier
Coverage Algorithm. The descriptions and analysis of these
two algorithms are presented in the next two sections.

4. Robust Barrier Coverage Algorithm for
Homo-LifMax-BC Problem

Consider the case of homogeneous camera sensors with the
same maximum working duration l0, the robustness of the
network is important. And the pivotal key is avoiding the
exhausted situation of some sensor, which will lead to the
failure of the barriers that the sensor works for. Thus the
scheduling should balance each sensor’s function in the cov-
erage barriers. With the goal of maximizing the network life-
time, we adopt the sleep-and-awake mode for scheduling,
i.e., there is one barrier working and the other barriers are
in sleep mode for each round. The sleep-and-awake mode
can transform the original goal into maximizing the number
of batches of the constructed coverage barriers. For Homo-
LifMax-BC Problem, we design Robust Barrier Coverage
Algorithm which is composed of two phases, Auxiliary
Graph Transformation and Barrier Coverage Scheduling.

4.1. Auxiliary Graph Transformation in Robust Barrier
Coverage. To design a sleep-and-awake scheduling for bar-
rier coverage, the first phase is to give an equivalent transfor-
mation for the network model G = ðV , EÞ illustrated in

subsection 3.2. The 3D graph has the node set of camera
sensors V = fv1, v2,⋯, vNg and is connected by the intersec-
tion of the sensing ranges among the sensors, i.e., SecRingi
∩ SecRing j ≠∅ð1 ≤ i, j ≤NÞ. For each node in V , we define
its neighbor set and degree as NeighbðviÞ = fvjjvj ∈ V∧ðvi,
vjÞ ∈ Eg and deg ðviÞ = jNeighbðviÞj, respectively. Then, we
transform the undirected and unweighted graph G into a
directed and edge-weighted graph G∗ according to the fol-
lowing steps:

Step 1. Virtual source and destination introducing. To
guarantee the strong barrier coverage of any potential target
in the space ST = ðS ,D,T ,BÞ, it is important to construct
a consecutive barrier without interval. To the end, we intro-
duce two virtual nodes on the terminal sections S and D,
respectively, i.e., V ⟵V ∪ fs, tg, as shown in Figure 5.
For the additional source s on S , we add new edges to con-
nect s and the nodes with the sensing range intersecting with
the terminal section S , i.e., E⟵ E ∪ fðs, viÞjvi ∈ V∧SecRin
gi ∩ S ≠∅g. For example, v1’s sensing range intersects with
S in G, and then the edge ðs, v1Þ can be added into E, as
shown in Figure 5. In a similar way, for the additional desti-
nation d onD, the new edges are added to connect d and the
nodes with the sensing range intersecting with the terminal
section D, i.e., E⟵ E ∪ fðvj, dÞjvj ∈ V∧SecRingj ∩D ≠∅g
. Then, we update the network graph as G = ðV , EÞ by intro-
ducing s and t and we construct the auxiliary graph G∗ in the
next steps.

Step 2. Node-to-directed-edge converting. Based on the
updated graph G = ðV , EÞ, we give an equivalent transforma-
tion for each node vi in V (with the exception of s and d): vi
is converted into a directed edge hvi, v′ii with the weight
weightðhvi, v′iiÞ = deg ðviÞ. For example, v1 with the degree
3 in the original G corresponds to the directed edge <v1, v
′1 > with weightðhv1, v′1iÞ = 3 in G∗ as shown in Figure 5.

Note that there is a clear division of each pair vi and v′i
on the function of connecting directed edges in Step 3. vi will
be the destination of all the ingoing edges to vi and v′i will be
the source of all the outgoing edges from vi in the original G
which will give the detailed examples in Step 3. Then for the
auxiliary graph G∗, the node set V∗ =V ∪ fvi′jvi ∈ Vg, the
edge set E∗ = f<vi, vi′> jvi ∈ Vg, and the edge-weight set
W∗ = fweightðhvi, vi′iÞj < vi, vi′>∈E∗g.

Step 3: Undirected-edge-to-directed-edge duplexing. For
the auxiliary graph G∗, we will transform the edges in the
original G and assign the weights for them, which are con-
sidered into the following three cases:

(i) The outgoing edges from s: For each edge ðs, viÞ in E
, it is converted into a directed edge hs, vii with the
weight weightðhs, viiÞ = 1. Then E∗ = E∗ ∪ fhs, viijð
s, viÞ ∈ Eg and W∗ =W∗ ∪ fweightðhs, viiÞjðs, viÞ ∈
Eg. For example, the edge ðs, v1Þ in G has a corre-
sponding edge hs, vii with weightðhs, viiÞ = 1 in G∗

as shown in Figure 5.

(ii) The bidirectional edges between ðvi, vjÞs: For each
edge ðvi, vjÞ in E, it is transformed into two directed
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edges hv′i, vji and hv′j, vii which both have the

weight 1. Then E∗ = E∗ ∪ fhvi′, vji, hvj′, viijðvi, vjÞ ∈
Eg and W∗ =W∗ ∪ fweightðhvi′, vjiÞ,weightðhvj′, vi
iÞjðvi, vjÞ ∈ Eg. For example, if there is an edge ðv5
, v7Þ in G, the directed edges hv′5, v7i and hv′7, v5i
are connected in G∗ as shown in Figure 5.

(iii) The ingoing edges to d: For each edge ðvj, dÞ in E, it

is converted into a directed edge <v′j, d > with the

weight weightðhvj′, diÞ = 1. Then E∗ = E∗ ∪ fhvj′, dij
ðvj, dÞ ∈ Eg and W∗ =W∗ ∪ fweightðhvj′, diÞjðvj, d
Þ ∈ Eg. For example, the edge ðv6, tÞ in G has a cor-
responding edge hv6′ , ti with weightðhv6′ , tiÞ = 1 in
G∗ as shown in Figure 5.

After the above three steps, we construct an equivalent
auxiliary graph G∗ = ðV∗, E∗,W∗Þ for the next barrier con-
structing in subsection 4.2.

4.2. Barrier Coverage Scheduling in Robust Barrier Coverage.
Based on G∗ = ðV∗, E∗,W∗Þ, we construct the feasible bar-
riers with the maximum number based on the maximum
flow algorithm as follows.

Firstly, by taking G∗, s and t as the source and destina-
tion as the input of the Stint Algorithm in [21], K node-
disjoint flows can be obtained which can be restored into a
path set P = fpath1, path2,⋯, pathKg. The paths in P are
node-disjoint which can satisfy the requirement of LifMax-
BC Problem in homogeneous network, i.e., it can avoid the
situation that some sensor’s expiration causes the failure of
the barriers which this sensor works for.

Secondly, since the path set is constructed in the auxil-
iary graph G∗, we need to reduce these paths in G∗ back into
the barriers in G. Here we take one path as an example to
explain the reduction process and the reduction of other
paths are in the same way. For each pathk = fs, v1, v1′ , v2, v2
′ ,⋯, vp, vp′ , dg in P ð1 ≤ k ≤ KÞ, it can be reduced back to a
coverage barrier barrierk according to the following process:
for the edge hs, vii, it is restored into the source vi of barrierk
in G; for the edge hv′i, vji, it is reduced into the undirected

edge ðvi, vjÞ of barrierk in G; for the edge hv′j, di, it is
restored into the destination vj of barrierk in G. As shown
in Figure 6, two node-disjoint paths in the auxiliary graph
are reduced into two barriers fv1, v3, v6g and fv2, v5, v7g.
And the lifetime of each barrier is l0 in the homogeneous
network, thus the network lifetime is K · l0.

The detailed description of Robust Barrier Coverage
Algorithm for Homo-LifMax-BC Problem is given in
Algorithm 1.

To analyze the time complexity of Algorithm 1, we
review the two phases of the algorithm: for auxiliary graph
transformation, the virtual nodes introducing, node convert-
ing, and edge duplexing take the time of Oð1Þ, OðjV jÞ and
OðjEjÞ, respectively. Thus the time complexity of Phase 1 is
OðjV jÞ under the assumption that jV j > jEj in barrier cov-
erge; for barrier coverage scheduling, it adopts the Stint
Algorithm for constructing the node-disjoint flows with
the maximum number, which has the time complexity of
OðjV j · jEj2Þ. And the reduction process takes the time of
OðjV j · jEjÞ. To sum up, the time complexity of Algorithm
1 is OðjV j · jEj2Þ.

5. Enhancing Barrier Coverage Algorithm for
Hetero-LifMax-BC Problem

Consider the heterogeneous camera sensors with the differ-
ent maximum working duration lis, increasing the coverage
efficiency of the sensors with high lis is beneficial to maxi-
mize the network lifetime. If applying Algorithm 1 to solve
Hetero-LifMax-BC Problem, disjoint barriers will lead to
the situation that there is plenty of extended sleep time for
the sensors with high lis, which goes against the problem
goal of maximizing network lifetime. Thus it is necessary
to design another algorithm to efficiently schedule the sen-
sors with high durations from the perspective of making
contribution to as many barriers as possible. Then, we
design Enhancing Barrier Coverage Algorithm for Hetero-
LifMax-BC Problem, whose main idea is to schedule the sen-
sors with longer working durations and higher degrees in
more barriers to maximize the network lifetime. There are
also two phases in this algorithm, Auxiliary Graph Transfor-
mation and Barrier Coverage Scheduling.
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Figure 5: An instance of auxiliary graph transformation.
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5.1. Auxiliary Graph Transformation in Enhancing Barrier
Coverage. This phase is composed of three steps, and we
adopt the same Step 1. Virtual source and destination intro-
ducing as that in Section 4 and obtain the updated graph
G = ðV , EÞ.

To construct an auxiliary graph for barrier scheduling
in the heterogeneous network, it is necessary to balance
two important parameters for each node: the maximum
working duration li and the neighborhood scale deg ðviÞ.
To this end, we introduce a new measure for each node
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Figure 6: An instance of barrier reduction.

1: Set V∗, E∗,W∗ ⟵∅, Lif etime = 0
2: for each sensor vi in Vdo
3: NeighbðviÞ = fvjjvj ∈ V∧ðvi, vjÞ ∈ Eg, deg ðviÞ = jNeighbðviÞj
4: //Phase 1: Auxiliary Graph Transformation
5: //Step 1: Virtual source and destination introducing
6: V ⟵ V ∪ fs, tg
7: E⟵ E ∪ fðs, viÞ, ðvj, dÞjvi, vj ∈ V∧SecRingi ∩ S ≠∅∧SecRingj ∩D ≠∅g
8: //Step 2: Node-to-directed-edge converting
9: V∗ =V ∪ fvi′jvi ∈Vg
10: E∗ = fhvi, vi′ijvi ∈Vg
11: W∗ = fweightðhvi, vi′iÞ = deg ðviÞjhvi, vi′i ∈ E∗g
12: //Step 3: Undirected-edge-to-directed-edge duplexing
13: for each edge ðs, viÞ in E do
14: E∗ = E∗ ∪ fhs, viig, W∗ =W∗ ∪ fweightðhs, viiÞ = 1g
15: for each edge ðvi, vjÞ in E do

16: E∗ = E∗ ∪ fhvi′, vji, hvj′, viig, W∗ =W∗ ∪ fweightðhvi′, vjiÞ = 1,weightðhvj′, viiÞ = 1g
17: for each edge ðvj, dÞ in E do

18: E∗ = E∗ ∪ fhvj′, dig, W∗ =W∗ ∪ fweightðhvj′, diÞ = 1g
19: G∗ = ðV∗, E∗,W∗Þ
20: //Phase 2: Barrier Coverage Scheduling
21: Apply Stint Algorithm in [21] to (G∗, s, t) and obtain K node-disjoint

paths collected in P = fpath1, path2,⋯, pathKg
21: for each path pathk in P do
23: for each directed edge on pathk do
24: Case 1: for hs, vii, it is restored into the source vi of barrierk.
25: Case 2: for each hvi′, vji, it is reduced into the undirected edge

ðvi, vjÞ of barrierk.
26: Case 3: for hvi′, di, it is restored into the destination vj of

barrierk.
27: Lif etime = K · l0
28: fbarrier1, barrier2,⋯, barrierKg, Lif etime.

Algorithm 1: Robust Barrier Coverage Algorithm for Homo-LifMax-BC Problem ðST = ðS,D,T,BÞ,G = ðV , EÞÞ
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as lifdegðviÞ = li/deg ðviÞ, which represents the node’s pos-
sible average working duration for each neighbor. Further-
more, to analyze each node’s contribution for barrier
coverage, we need to give the criterion for parameters li
and deg ðviÞ. (1) For the node degree, vi’s degree is iden-
tified as high-degree if deg ðviÞ > 1; otherwise, it is
regarded as low-degree. (2) For the maximum working
duration, li is identified as high-lifetime if li ≥ AvgL, where
AvgL =∑1≤i≤Nli/N ; otherwise, it is regarded as low-
lifetime. Based on the above preliminaries, we explain
the process for Step 2 as follows.

Step 2. Node-to-directed-edge converting. Based on the
graph G = ðV , EÞ added with s and t, the transformation
for the nodes in V (with the exception of s and d) is divided
into the following three cases:

(i) V1 = fvijvi is low − degreeg. Since deg ðviÞ = 1 which
stands for that vi has only one neighbor, vi will con-
tribute on only one barrier if vi is scheduled in Phase
2, which is regardless of whether vi is high-lifetime or
low-lifetime. In this case, vi is converted into 1
directed edge <vi, v′i > with the weight weightð<vi,
v′i > Þ = li

(ii) V2 = fvijvi is high − degree and low − lifetimeg. In
this case, vi will give high contribution for several
barriers and we divide its working duration equally
to each connectivity relationship. In details, vi is

converted into deg ðviÞ directed edges hvdi , v′
d
i is ð1

≤ d ≤ deg ðviÞÞ with the uniform weight weightðh
vdi , v′

d
i iÞ = lifdegðviÞ

(iii) V3 = fvijvi is high − degree and low − lifetimeg. This
case is the most complicated because of its possible
unbalanced contributions to several barriers in
scheduling. To avoid the unbalance, we propose a
trade-off approach to guarantee the reasonably effi-
cient scheduling for such nodes.

Firstly, we sort vi’s neighbors in nonincreasing order on
the values of lifdegðvjÞ, where vj ∈NeighbðviÞ. Secondly, we
calculate the maximum value of the sum of the first sumðviÞ
neighbors’ lifdegðvjÞs, which is no more than li. In other
words, we maximize the contribution of vi on a part of
neighbors (the first sumðviÞ neighbors) rather than all the

neighbors ðNeighbðviÞÞ. Then we update NeighbðviÞ as f
neighb1i , neighb2i ,⋯, neighbsumðviÞ

i g by only retaining the
first sumðviÞ neighbors and eliminating other neighbors.
Then, deg ðviÞ = sumðviÞ. Thirdly, we perform the transfor-
mation of vi: vi is converted into sumðviÞ directed edges h
vui , v′

u
i i with the different weights weightðhvui , v′

u
i iÞ = lifdeg

ðneighbui Þð1 ≤ u ≤ sumðviÞÞ.
To conclude the above three cases, there is also a clear

division of each pair vi and v′i on the function of connecting
directed edges in Step 3. vi is in charge of all the ingoing
edges to vi and v′i is responsible for all the outgoing edges

from vi in the original G. And the construction of the auxil-
iary graph G∗ in Step 2 is as follows:

(a) The node set V∗ =S
vi∈V1

fvi, vi′g ∪
S

vi∈V2
fvdi , v′

d
i j1

≤ d ≤ deg ðviÞg ∪
S

vi∈V3
fvui , v′

u
i j1 ≤ u ≤ sumðviÞg

(b) The edge set E∗ =S
vi∈V1

f<vi, vi′> g ∪S
vi∈V2

f<vdi ,
v′di > j1 ≤ d ≤ deg ðviÞg ∪

S
vi∈V3

f<vui , v′
u
i > j1 ≤ u ≤

sumðviÞg
(c) The edge-weight set W∗ = fweightðhvi, vi′iÞj < vi, vi′>

∈E∗g
Step 3. Undirected-edge-to-directed-edge duplexing.

Based on the partial of G∗ constructed in Step 2, we will
add new directed edges by transforming the undirected
edges in the original G as follows:

(i) The outgoing edges from s are as follows: for each
edge ðs, viÞ in E, it is converted into a directed edge
hs, vii with weightðhs, viiÞ = 0, if vi ∈ V1; it is con-
verted into deg ðviÞ directed edges hs, vdi i with
weightðhs, vdi iÞ = 0, if vi ∈ V2; it is converted into
sumðviÞ directed edges hs, vui i with weightðhs, vui iÞ
= 0, if vi ∈ V3. Then E∗ = E∗ ∪

S
vi∈V1∧ðs,viÞ∈Ef<s, vi

> g ∪S
vi∈V2∧ðs,viÞ∈Ef<s, v

d
i > j1 ≤ d ≤ deg ðviÞg ∪S

vi∈V3∧ðs,viÞ∈Ef<s, v
u
i > j1 ≤ u ≤ sumðviÞg and W∗ =

W∗ ∪ fweightðhs, viiÞj < s, vi>∈E∗g
(ii) The bidirectional edges between ðvi, vjÞs: For each

edge ðvi, vjÞ in E, it is transformed into deg ðviÞ ·
deg ðvjÞ pairs of directed edges hv′dii , v

dj

j i and hv′d j

j

, vdii ið1 ≤ di ≤ deg ðviÞ and 1 ≤ dj ≤ deg ðvjÞÞ which

all have the weight 0. Then E∗ = E∗ ∪
S

ðvi ,v jÞ∈Efh
v′dii , v

dj

j i, hv′
dj

j , v
di
i ij1 ≤ di ≤ deg ðviÞ and 1 ≤ dj ≤ deg

ðvjÞg and W∗ =W∗ ∪ fweightðhvi′, vjiÞ, weightðhvj′,
viiÞjhvi′, vji, hvj′, vii ∈ E∗g.

(iii) The ingoing edges to d are as follows: For each edge
ðvj, dÞ in E, the transformation is similar with that

of (i), i.e., E∗ = E∗ ∪
S

vj∈V1∧ðvj ,dÞ∈Efhvj′, dig ∪
S

vj∈V2∧ðvj ,dÞ∈Efhv′
d
j , dij1 ≤ d ≤ deg ðvjÞg ∪

S
vj∈V3∧ðvj ,dÞ∈Efhv′

u
j , dij1 ≤ u ≤ sumðvjÞg and W∗ =

W∗ ∪ fweightðhvj′, diÞ = 0j < vj′, d>∈E∗g

5.2. Barrier Coverage Scheduling in Enhancing Barrier
Coverage. For this phase, we input the constructed auxiliary
graph ðG∗, s, tÞ to Stint Algorithm [21] and generate K
node-disjoint flows which are collected in P = fpath1, pat
h2,⋯, pathKg. Note that since we divide the nodes with high
possible contributions into several independent directed
edges in Step 2 of Phase 2, we can also apply the node-
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disjoint flows algorithm, which can realize the scheduling of
such nodes in different barriers.

These node-disjoint paths inP are constructed in the aux-
iliary graph G∗ which are needed to be reduced back into the
barriers inG. Since the nodes inV2 orV3 may be scheduled in
multiply flows in P , the reduction process is different from
that of Algorithm 1. For each path pathk in P ð1 ≤ k ≤ KÞ, it
can be reduced back to a coverage barrier barrierk based on

three kinds of edges: for the edge hs, vii or hs, vdi i, it is restored
into the source vi of barrierk in G; for the edge hv′i, vji or hv
′dii , v

dj

j i, it is reduced into the undirected edge ðvi, vjÞ of barr
ierk inG; and for the edge hv′j, di or hv′

d
j , di, it is restored into

the destination vj of barrierk in G. Finally, the minimum non-
zero weight on the corresponding path is the lifetime of each

1: Set V∗, E∗,W∗ ⟵∅, Lif etime = 0, AvgL =∑1≤i≤Nli/N
2: for each sensor vi in V do
3: NeighbðviÞ = fvjjvj ∈V∧ðvi, vjÞ ∈ Eg, deg ðviÞ = jNeighbðviÞj
4: lif degðviÞ = li/deg ðviÞ
5: //Phase 1: Auxiliary Graph Transformation
6: Set V1,V2,V3 ⟵∅
7: for each sensor vi in V do
8: Case 1: if deg ðviÞ = 1, V1 ⟵V1 ∪ fvig
9: Case 2: if deg ðviÞ > 1 and li ≥ AvgL, V2 ⟵ V2 ∪ fvig
10: Case 3: if deg ðviÞ > 1 and li < AvgL, V3 ⟵ V3 ∪ fvig
11: //Step 1: Virtual source and destination introducing
12: V ⟵ V ∪ fs, tg
13: E⟵ E ∪ fðs, viÞ, ðvj, dÞjvi, vj ∈ V∧SecRingi ∩ S ≠∅∧SecRingj ∩D ≠∅g
14: //Step 2: Node-to-directed-edge converting
15: for each sensor vi in V1 do
16: V∗ =V∗ ∪ fvi, vi′g, E∗ = E∗ ∪ fhvi, vi′ig, W∗ =W∗ ∪ fweightðhvi, vi′iÞ = lig
17: for each sensor vi in V2 do

18: V∗ = V∗ ∪ fvdi , v′
d
i j1 ≤ d ≤ deg ðviÞg, E∗ = E∗ ∪ f<vdi , v′

d
i > j1 ≤ d ≤ deg ðviÞg, W∗ =W∗ ∪ fweightð<vdi , v′

d
i > Þ = lif degðviÞj

1 ≤ d ≤ deg ðviÞg
19: for each sensor vi in V3 do
20: Calculate the maximum value of the sum of the first sumðviÞ neigh-bors’ lif degðvjÞs, which is no more than li.

21: NeighbðviÞ = fneighb1i , neighb2i ,⋯, neighbsumðviÞ
i g, deg ðviÞ = jNeighbðviÞj

22: V∗ =V∗ ∪ fvui , v′
u
i j1 ≤ u ≤ sumðviÞg, E∗ = E∗ ∪ f<vui , v′

u
i > j1 ≤ u ≤ sumðviÞg, W∗ =W∗ ∪ fweightð<vui , v′

u
i > Þ = lif degðn

eighbui Þj1 ≤ u ≤ sumðviÞg
23: //Step 3: Undirected-edge-to-directed-edge duplexing
24: for each edge ðs, viÞ in E do
25: E∗ = E∗ ∪

S
vi∈V1∧ðs,viÞ∈Ef<s, vi > g ∪S

vi∈V2∪V3∧ðs,viÞ∈Efhs, v
d
i ij1 ≤ d ≤ deg ðviÞg, W∗ =W∗ ∪ fweightðhs, viiÞ = 0j < s, vi>∈E∗g

26: for each edge ðvi, vjÞ in E do

27: E∗ = E∗ ∪
S

ðvi ,vjÞ∈Efhv′
di
i , v

dj

j i, hv′
d j

j , v
di
i ij1 ≤ di ≤ deg ðviÞ and 1 ≤ dj ≤ deg ðvjÞg, W∗ =W∗ ∪ fweightðhvi′, vjiÞ = 0,weightðh

vj′, viiÞ = 0j < vi′, vj>,<vj′, vi>∈E∗g
28: for each edge ðvj, dÞ in E do

29: E∗ = E∗ ∪
S

vj∈V1∧ðv j ,dÞ∈Efhvj′, dig ∪
S

v j∈V2∪V3∧ðv j ,dÞ∈Efv′
d
j , dj1 ≤ d ≤ deg ðvjÞg, W∗ =W∗ ∪ fweightðhvj′, diÞ = 0j < vj′, d>∈E∗g

30: G∗ = ðV∗, E∗,W∗Þ
31: //Phase 2: Barrier Coverage Scheduling
32: Apply the maximum flow algorithm in [21] to (G∗, s, t) and obtain K node-disjoint paths collected in P = fpath1, path2,⋯,
pathKg
33: for each path pathk in P do
34: for each directed edge on pathk do
35: Case 1: for hs, vii or hs, vdi i, it is restored into the source vi of barrierk.

36: Case 2: For each hv′i, vji or hv′
di
i , v

dj

j i, It Is reduced into the undirected edge ðvi, vjÞ of barrierk.
37: Case 3: For hv′j, di or hv′

d
j , di, It Is Restored into the Destination vj of barrierk.

38: lif etimek =min<vi ,vi′>∈pathkweightðhvi, vi′iÞ
39: Lif etime =∑1≤k≤Klif etimek
40: Return fbarrier1, barrier2,⋯, barrierKg, Lif etime.

Algorithm 2: Enhancing Barrier Coverage Algorithm for Hetero-LifMax-BC Problem ðST = ðS,D,T,BÞ,G = ðV , EÞÞ
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barrier in the heterogeneous network, i.e., lifetimek =
min<vi ,vi′>∈pathkweightðhvi, vi′iÞ.

The whole description of Enhancing Barrier Coverage
Algorithm for LifMax-BC Problem is given in Algorithm 2.

Similarly with the analysis of Algorithm 1, Algorithm 2
also has the time complexity of OðjV j · jEj2Þ. Thus the run-
ning times of our strategies are both polynomial. They are
the feasible solutions of LifMax-BC Problem for homoge-
neous networks and heterogeneous networks.

6. Performance Evaluation

6.1. Experiment Plan. To evaluate the performance of the
proposed algorithms for LifMax-BC Problem, we perform
a series of experiments to compare their performance by
JAVA. The optimization goal of LifMax-BC Problem is max-
imizing the network lifetime and we solve it for two cases
(the same working duration and the different ones). Instead
of the network lifetime, we choose the number of barriers K
as the evaluation criterion. It is because that the number of
constructed barriers stands for the number of scheduling
rounds, which is more objective and fairer than the length
of network lifetime, especially in the case that there is a big
difference in the sensors’ working duration. Here, we denote

the two algorithms as Robust Algorithm and Enhancing
Algorithm for short.

The experiments are performed in an irregular 3D space
which is a 3D curve strip space with the length of 500 units,
the width of 300 units, and the height in the range of ½50, 80�
units, i.e., the ceiling plane of the space is an irregular curved
surface. And the boundary located in the space has the length
of L. For the camera sensor network, n camera sensors are ran-
domly deployed on the ceiling plane of the space, i.e., their
positions ðXi, Yi,HiÞ are randomly valued in the scope of
the space. And the process of deployment is successfully fin-
ished when the network graph is connected. For each camera
sensor, it has the sensing radius of 100 units, the Field-of-
Vision 60∘ and the effective vertical angle β. And the maxi-
mum working duration li of each sensor is uniformed as 10
for Robust Algorithm and valued in the range of ½5, 30� for
Enhancing Algorithm. Based on the ROI sensing model, each
sensor has the minimum effective vertical angle βmin = 0∘ and
the maximum effective vertical angle βmax = β; for the poten-
tial target/intruder, we set the height as 17 units and the face
length as 2 units for general situations.

In the experiments, we will investigate the performance
of the scheduling algorithms from two important parame-
ters: the number of camera sensors n and the effective verti-
cal angle β, which are corresponding to two groups of
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Figure 7: The number of Barriers K vs. number of nodes n:
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settings: Group 1—n varies from 100 to 450 by the step of 50
(a) L = 500, β = 40∘; (b) L = 500, β = 60∘; and (c) L = 500, θ
= 80∘. Group 2—β varies from 20∘ to 90∘ by the step of 1
0∘ (a) L = 500, n = 200; (b) L = 500, n = 300; and (c) L = 500
n = 400. For each parameter setting, we run 100 instances
and compute their average for evaluation.

6.2. Experiment Result Analysis. As the results in Figure 7
shown, it can be observed that the number of constructed
barriers from the proposed algorithms present rising trend
with the enlargement of the networks n. Between the two
algorithms, Enhancing Algorithm is more influenced by n,
i.e., K obtained by the algorithm grows faster with the
increasing of n; Robust Algorithm is less effected by n, and
the gap between the results from the two algorithms
becomes larger with the growth of n. The increasing of the
network scale can satisfy more requirements of strong bar-
rier coverage and Enhancing Algorithm utilizes some sensor
for multiple barriers, which increases the number of barriers.
Furthermore, from Figures 7(a) and 7(c), the better perfor-
mance of Enhancing Algorithm becomes more significant
when the effective vertical angle β = 80∘. It can be explained
that the enlargement of the effective vertical angle improves
sensors’ coverage range which increases the probability of
barrier coverage.

Investigating the effect of the effective vertical angles on
scheduling algorithms in Figure 8, we can find that β’s
change has less significant influence when network scale is
relatively small and the number of barriers increases slowly
in Figures 8(a) and 8(b), while β has more influence on the
algorithms’ performance from Figure 8(c). Furthermore,
the gap between the results from the two algorithms presents
smaller than that obtained by varying the number of sensors.
Seen from these three subfigures, Robust Algorithm’s results
presents the rising trend with the increasing of β, which is
less than that presented by Enhancing Algorithm. It can be
concluded that the sensing conditions have less influence
on the coverage quality when the network is homogeneous,
and the difference on the coverage range is more beneficial
for enhancing the coverage efficiency in the heterogeneous
network.

From the above two groups of experiment results, we can
conclude that the proposed algorithms are both efficient on
maximizing the network lifetime and can be utilized into
the solution for LifMax-BC Problem in the homogeneous
and heterogeneous networks.

7. Conclusions

In this paper, we investigated the camera sensor scheduling
problem for strong barrier coverage in 3D CSNs with the

20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

Th
e n

um
be

r o
f b

ar
rie

rs
: K

L = 500 , n = 200

Enhancing algorithm
Robust algorithm

The effective vertical angle : 𝛽

(a) L = 500, n = 200

20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

Th
e n

um
be

r o
f b

ar
rie

rs
: K

L = 500 , n = 300

Enhancing algorithm
Robust algorithm

The effective vertical angle : 𝛽

(b) L = 500, n = 300

20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

Th
e n

um
be

r o
f b

ar
rie

rs
: K

L = 500 , n = 400

Enhancing algorithm
Robust algorithm

The effective vertical angle : 𝛽

(c) L = 500, n = 400

Figure 8: The number of barriers K vs. effective vertical angle β.
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goal of maximizing the network lifetime, LifMax-BC Prob-
lem. The problem has been considered and analyzed for
homogeneous networks (all the sensors have the uniform
working duration) and heterogeneous networks (the sensors
have different working durations). Based on the ROI sensing
model, we, respectively, proposed two heuristic algorithms
via the auxiliary graph construction and the maximum flow
algorithm. The algorithm for homogeneous networks aims
to increase the network robustness by constructing the dis-
joint barriers; and the algorithm for heterogeneous networks
realizes the lifetime maximization via enhancing the utiliza-
tion of the sensors with high working duration. By evaluat-
ing the performance of the proposed algorithms, the
simulation results were analyzed in terms of the number of
the scheduled barriers, which show that the algorithms have
high efficiency on maximizing the network lifetime and can
adapt to different network types. We will design the distrib-
uted strategies for the related optimization problems in the
future.
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Security threats such as data forgery and leakage may occur when sharing data in cloud environments. Therefore, it is important
to encrypt your data and securely access it when sharing it with other users via a cloud server. Of the various security technologies,
research on secure data sharing commonly employs Key Policy Attribute-Based Encryption (KP-ABE). However, existing
KP-ABE schemes generally lack ciphertext search features. Furthermore, even if a KP-ABE scheme incorporates it, the number of
searches required increases markedly by the number of attributes used in the search. It in turn proportionally increases the
ciphertext size. In addition, the attribute authority (AA) could be attacked, which can result in the leakage of users’ decryption
keys. AA is a server that manages user attributes and decryption keys when using attribute-based encryption in a cloud
environment. If the AA is curious, it can cause problems with the key escrow with the attributes and decryption (secret) key
information of the users it knows. In this paper, to solve all these problems, we present a new scheme called Searchable
Key-Policy Attribute-Based Encryption (SKP-ABE) for secure and efficient data sharing in the cloud. This proposed SKP-ABE
scheme allows fast ciphertext search and keeps the ciphertext of constant size. The key escrow problem is solved via user key
generation.

1. Introduction

Developments in cloud computing technology have made
it possible to collect, manage, and share big data from
the Internet of Things (IoT)-Cloud environments such as
Unmanned Traffic Management (UTM), companies, and
the Internet of Medical Things (IoMT). However, as shown
in Figure 1, several security threats exist in the cloud [1, 2].
First, cloud service providers cannot be completely trusted.
Users think that their data is securely protected if an external
cloud is used. However, the service provider may know the
data contents stored and utilized on their server. An attacker
(a malicious user) can compromise shared data for another
security threat. An attacker may access the server, tamper
with the stored data, and leak the data. If the data stored on

the cloud server is sensitive information, this will pose a sig-
nificant security threat [3, 4]. Therefore, a security technique
that encrypts data stored and transferred in the cloud is
required, as is access control for this encrypted data. Of the
various security technologies, attribute-based encryption
(ABE) ensures secure data encryption/decryption and access
control. ABE performs encryption/decryption employing
multiple user attributes. It is widely used for secure data shar-
ing in the cloud. ABE schemes include key-policy attribute-
based encryption (KP-ABE) and ciphertext-policy attribute-
based encryption (CP-ABE). The two ABE schemes depend
on the data Access Structure (AS) contained in the ciphertext
and the data user secret key. If the AS is included in the
ciphertext, the CP-ABE scheme is used, and if the AS is
included in the data user secret key, the KP-ABE scheme is
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used. The differences between the two types of ABE schemes
are explained in Section 2 [5, 6].

In this paper, we intend to research data sharing in an
N:1 cloud environment where data users can decrypt cipher-
texts with the attributes of the AS included in the secret key.
Here, “N” means multiple users. Since the KP-ABE scheme
is suitable in an N:1 cloud environment, research on KP-
ABE was conducted. To date, various KP-ABE schemes have
been analyzed for secure data storage and sharing technol-
ogy. However, there are security threats and inefficient
schemes among the existing KP-ABE schemes.

First, the traditional KP-ABE schemes encrypt and store
data in the cloud that cannot be searched. Therefore, all
stored ciphertexts must be decrypted when seeking a desired
ciphertext among numerous ciphertexts. This makes the
process inefficient. To solve this problem, efforts have been
made to introduce searchable encryption [7–10]. However,
the number of searches required and the ciphertext size
increase proportionally to the number of attributes [11,
12]. This wastes storage space on the server. In addition,
when using attribute-based encryption, a server known as
the attribute authority (AA) manages user attributes. The
AA plays a role in creating secret keys (ciphertext decryption
keys) that include public parameters and user attributes.
Data owners and users apply the keys to encrypt/decrypt
data. If an AA is attacked, users’ secret keys may be leaked.
Furthermore, most KP-ABE schemes trust their AAs. But
still curious AAs can access and decrypt the ciphertexts
stored in the cloud with the stored user’s attribute informa-
tion and secret key information. In other words, a key
escrow problem may occur by AA [13–15].

In this paper, we propose secure and efficient data stor-
age and sharing system after researching and analyzing
ABE to solve the security threats in cloud environments.
Our system allows fast ciphertext search, and the ciphertext
size is kept constant. The key escrow problem is solved via
user key generation. In summary, we establish secure and
efficient data storage and sharing system by proposing a
searchable key-policy attribute-based encryption (SKP-
ABE) system to which various requirements are applied.
The contributions of this paper are as follows:

(i) Efficiency of ciphertext search: The cloud server uses
searchable encryption technology to quickly search
for the ciphertext requested by the user [16, 17].
Compared with existing KP-ABE schemes, this pro-
posed SKP-ABE scheme aggregates the attribute
values included in the ciphertext index. In this case,
when searching for a ciphertext, it is possible to find
the ciphertext in one search regardless of the num-
ber of attributes

(ii) Output of ciphertext of constant size: A ciphertext
of a constant size is output by aggregating the values
of the attributes included in the ciphertext and
expressing them as a single value. The size of the
ciphertext does not increase according to the num-
ber of attributes included in the ciphertext

(iii) Solution of key escrow problem: In existing KP-
ABE schemes, the AA generates a key correspond-
ing to the user’s AS and transmits it to the user.
That is, the AA knows information about the users’
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User 2
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Data upload
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. . . .
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Figure 1: Security threats in the cloud environment.
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secret keys and attributes. It can sufficiently cause a
key escrow problem. In this proposed scheme, the
AA creates a partial secret key and sends it to the
user. The user creates a final secret key with the
received partial secret key that can decrypt the
ciphertext. Therefore, the AA does not know the
users’ secret key information, and the key escrow
problem that occurs in an AA is solved

The remainder of this paper is organized as follows:
Section 2 describes the research background; ABE is
explained. It also describes existing KP-ABE schemes and
the KP-ABE security model. Section 3 describes the security
requirements to be provided. Section 4 describes the proposed
SKP-ABE scheme. Section 5 analyzes the security and effi-
ciency of the scheme, and Section 6 concludes the paper.

2. Background

This section describes ABE and the preliminaries and for-
mulas for understanding it. Then, the KP-ABE system and
KP-ABE security model are explained.

2.1. Preliminaries

2.1.1. Bilinear Map. Bilinear mapping has been proposed as
a tool to attack elliptic curve cryptosystems in the past. How-
ever, recently, it has been used as a cryptography tool for
information protection, and the algorithms elliptic curve
cryptography (ECC), which are based on bilinear mapping,
are widely used in IoT environments. A bilinear pairing
function is called a bilinear mapping, and the notation is
expressed as follows: Suppose we have multiplicative groups
G1and G2 with the same order p. Assume that it is difficult to
solve the discrete logarithm problem within a group. Let g be
a generator group of G1, and let e : G1 XG1 ⟶G2 be a
bilinear mapping that satisfies the following properties:

(1) Bilinearity: For all P, Q ∈G1 and all , b ∈ Zp,
eðPa, QbÞ = eðP, QÞab

(2) Nondegeneracy: For all Q ∈G1, if eðP, QÞ = 1, then
P = 0

(3) Computability: For all P, Q ∈G1, there is an efficient
algorithm to compute eðP, QÞ ∈G2

2.1.2. Bilinear Diffie Hellman (BDH) Assumption. The deter-
ministic BDH assumption means that, given two pairs ðga,
gb, gc, W = eðg, gÞzÞ and ðga, gb, gc, T = eðg, gÞabcÞ, there is
no algorithm A that can distinguish between the two pairs
with meaningful probability. Here, a, b, c, z ∈ Zp: If algo-
rithm A is able to solve the deterministic BDH assumption,
that is jPr½Aðga, gb, gc, TÞ = 1� − Pr½Aðga, gb, gc, WÞ = 1�j ≥ ϵ
if satisfied, then algorithm A has an advantage of ϵ [18].

2.1.3. Bilinear Diffie Hellman Exponent (BDHE) Assumption.
The deterministic BDHE assumption means that, given ðh,
g, gα ⋯ :,gαβ, gαβ+2,⋯gα2β Þ, there is no algorithm A that

can compute T = eðh, gÞαβ+1 with a meaningful probability.

Here, h, g ∈G1, gi = gαiði = 1,⋯, 2βÞ and gα,β = ðg1,⋯, gB,
gB+2,⋯, g2BÞ; when the next two pairs are

(h, g, gα,β, W = eðh, gÞz ), (h, g, gα,β, T = eðh, gÞαβ+1 ). If algo-
rithm A is able to solve the deterministic BDHE assumption,
that is jPr½Aðh, g, gα,β, TÞ = 1� − Pr½Aðh, g, gα,β, WÞ = 1�j ≥ ϵ

if satisfied, then algorithm A has an advantage of ϵ [18].

2.1.4. Decisional Bilinear Diffie-Hellman (DBDH)
Assumption. Given gl, gm, gn, where l, m, n ∈ Zq, the DBDH
problem is to distinguish glmn from gz, where z ∈ Zq. Given B
is an algorithm, and its advantage in solving the problem is
AdvB

DBDHjPr½Aðgl, gm, gn, glmnÞ = 1� − Pr½Aðgl, gm, gn, gzÞ = 1�j.
The DBDH assumption states that the advantage of an algo-
rithm B in solving DBDH problem is negligible.

2.1.5. Elliptic Curve Discrete Logarithm Problem (ECDLP)
Assumption. Elliptic curve cryptography can achieve the
same security as previous public key encryption methods
with fewer bits; it is widely used in IoT and other lightweight
environments. Compared to the previous public key encryp-
tion methods, it uses short keys, so it is easier to manage the
keys, and the encryption is processed at high speed. To use
ECC, an elliptic curve is a set of solutions ðX, YÞ of the equa-
tion y2 = x3 + ax + b ðmod pÞ defined for arbitrary integers a
and b. The fact that the point P = ðX, YÞ is on the elliptic
curve means that the previous equation is satisfied. Q = x · P
can be defined for any integer x for two points P and Q.
Finding the solution x is the discrete logarithm for elliptic
curves. That is, it is easy to find Q by using x · P in Q. How-
ever, it is very difficult to infer the value of x even if you
know Q and P [19].

2.2. Attribute-Based Encryption

2.2.1. Access Structure. ABE is a scheme of performing
encryption/decryption based on an AS created using a set
of attributes (e.g., affiliation and occupation) for each entity.
Here, the AS is shown in Figure 2. In the access tree, denoted
by T, each non-leaf node can represent a threshold gate: an
OR gate or an AND gate, depending on the threshold. In
general, for all nodes x ∈ T , we use the notations kx and
numx to represent the threshold of x and the number of chil-
dren, respectively. For a non-leaf node x, if kx =1, then x rep-
resents an OR gate. If kx = numx, it represents an AND gate.
If 1 < kx <numx, then x is a threshold gate. We define kx =1
and numx =0 for leaf node x [5, 6, 20, 21].

2.2.2. Types of ABE. ABE includes CP-ABE or KP-ABE
depending on the AS created by the user. In Figure 3(a),
the data owner includes the AS when generating the cipher-
text and stores it on the cloud server and multiple users can
access it. At this time, only if a user’s attributes match the
attributes of the AS included with the ciphertext can they
be decrypted. For example, if the AS is created with {{Direc-
tor AND Manager} OR Company A}, only users with the
Director and Manager attributes among users with the com-
pany A attribute can decrypt the ciphertext [5]. The CP-ABE
scheme has the advantage of being accessible to any users
with the attribute of the AS included in the ciphertext.
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Therefore, it is widely used in cloud 1:N (N is the number of
users) environment. Figure 3(b) shows the KP-ABE scheme.
Data users create an AS using their attributes in a KP-ABE
scheme and create a corresponding secret, ciphertext
decryption key. When data owners generate ciphertexts,
they encode the attributes of the users with whom the data
will be shared. The ciphertext is stored on the cloud server.
Data users can access the cloud server at any later time using
a secret key that includes the AS and decrypts the ciphertext
with the correct attribute values. For example, if a data
owner creates a ciphertext with the attributes {{Director},
{Company A}} and uploads it, only users with the attributes
{{Director}, {Company A}} in their AS can decrypt it. In the
KP-ABE scheme, when multiple users encrypt data with the
attributes of the users who want to share data and upload it
to the cloud server, only users with the AS of the attributes
designated by the data owner can decrypt the ciphertexts.
Therefore, it is widely used in cloud N:1 environment.
Figure 3 shows how ABE can be applied to an N: N cloud
environment. This paper intends to research a data sharing
system in an N:1 cloud environment that allows an authen-

ticated user to decrypt a number of ciphertexts stored with
their private key when a large number of data is encrypted
and collected and stored. Therefore, research on KP-ABE
is suitable.

2.2.3. KP-ABE Model. Figure 4 shows an application of a KP-
ABE scheme to cloud environments. There are four entities:
an AA, a data owner (users who uploads ciphertext to the
cloud), a data user (users who attempts to decrypt ciphertext
stored on the cloud), and a cloud storage server. First, a mas-
ter key and public parameters are generated during the setup
phase of the AA. Next, the users create an AS using their
attributes, send them to the AA, and request a secret cipher-
text decryption key. In a KP-ABE scheme, AS can be created
by the user, and an AA can be required to create the AS for
the user. In the latter case, the AA generates a secret key cor-
responding to the user’s AS and sends it to the user with the
public parameters. When a data owner generates a cipher-
text, encryption is performed based on attributes of users
that should be allowed access to them. Next, the ciphertext
is uploaded and stored on a cloud server. Users registered

OR

AND

Director Manager

Company A

Root R, (1 ≤ kr ≤ numr) 

(1 ≤ kx ≤ numx) 

leaf node y, att (y)

An example access structure

node x… . .
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Figure 2: Description of access structure.
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in AA generate tokens and send them to the cloud server.
The cloud server transmits the ciphertext requested by the
users. Finally, the users obtain the data by decrypting the
ciphertext using the AS with that attribute and the received
secret key [6, 22].

2.3. Challenges to Build KP-ABE Scheme. Various require-
ments must be provided to build a secure and efficient data
sharing system by applying KP-ABE. The requirements are
keyword search, constant-size ciphertext output, key escrow
problem solving, verifiable outsourcing, attribute with-
drawal, AS anonymization, etc. In order to build a secure
KP-ABE scheme, research is needed to provide the above-
mentioned requirements. However, the KP-ABE scheme is
inefficient because the scheme (model) becomes heavy when
all requirements are applied. Therefore, there is a need for
research to apply the requirements according to the
environment.

The SKP-ABE scheme proposed in this paper is also that
provides an existing ciphertext search. The difference from
the existing KP-ABE scheme, which provides ciphertext
search, is to provide a fast ciphertext search by aggregating
the attributes included in the token. In addition, it solved
the key escrow problem that occurs in AA and provided a
ciphertext of a constant size. Therefore, it provides better
requirements than the KP-ABE scheme, which provides only
the existing keyword search.

2.3.1. Searchable Encryption. As cloud computing develops,
users store and manage large amounts of data using storage
space provided by an external service provider such as Goo-
gle cloud. However, when sensitive personal information is
stored externally, security issues arise. Therefore, it is impor-
tant to encrypt all data. However, then the cloud server must
decrypt all stored ciphertexts to find data requested by a
user. This is very computationally inefficient [7–10]. One of
the security technologies to solve this is searchable encryp-
tion. Data can be found without decrypting the ciphertext
requested by the user. Therefore, when multiple owners
encrypt and store data on the cloud, users can efficiently
locate the desired ciphertext.

An early version of searchable encryption, proposed by
Song, Wagner, and Perrig in 2000, is a hidden search designed
to be searchable without leaking plaintext information [23].
However, the initial version lacked a clear definition of secu-
rity. Since then, searchable encryption systems that use sym-
metric or asymmetric keys have attracted much attention.
Currently, searchable encryption technology is used with
ABE to improve ciphertext search efficiency [7–10].

Figure 5 shows a KP-ABE scheme with searchable
encryption applied. The existing KP-ABE scheme assumes
that when a user requests a ciphertext from the cloud server,
the cloud server transmits the ciphertext to the user. How-
ever, KP-ABE schemes with searchable encryption add the
phase of searching for a ciphertext on the cloud server.
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In detail, the ciphertext is retrieved from the cloud server
based on keywords and attribute values. The data owner
selects keywords and attribute values, creates an index, and
uploads it to the cloud along with the ciphertext. Next, the
user creates a search token using keywords and attribute
values to find the ciphertext. Then, it is sent to the cloud
server to request the ciphertext. The cloud server searches
for the ciphertext by comparing the stored ciphertext index
value (including keyword values and attributes) with the
search token values (including keyword values and attri-
butes). If matching ciphertexts are found, they are sent to
the user. The cloud server finds the requested ciphertext
but does not decrypt it [24].

2.3.2. Key Escrow Problem. Key escrow is a system that
entrusts encryption (secret) keys to a third party (server)
and stores them. If the user key is damaged or lost, the pre-
viously entrusted secret key can be issued through the server.
However, a server that knows the information about the key
may cause a key escrow problem that may attempt to access
and decrypt the ciphertext. As a result, user data may be
leaked, and various security threats such as abuse of access
rights may occur. From the past to the present, in various
cryptographic research fields such as key recovery, signature,
and ABE, it often occurs in servers (key generation center
(KGC) and AA, etc.) that generate and manage keys
[25–28]. In an environment where a key escrow problem
occurs, it is assumed that users do not completely trust the
server managing the key. Therefore, entrusting all key infor-
mation to the server is a risk factor [29].

The AA is a trusted server that manages properties and
generates keys in a data sharing environment using KP-
ABE. However, in some KP-ABE schemes, AA is recognized
as a semi-trusted server that manages user attributes, so it is
mentioned that key escrow problems can occur sufficiently
in AA. The term semi-trusted means that the AA is not fully
trusted because it has information about the users’ secret
keys that could cause a key escrow problem. The AAs are
honest but curious and have the right to view user informa-
tion at any time. In the KP-ABE scheme, AA generates a
ciphertext decryption key corresponding to the user’s attri-
butes and transmits it to the user. Since the AA knows your

secret key, it can use it to access the cloud and crack your
ciphertext. Therefore, research is being conducted from the
existing KP-ABE scheme with single AA to the KP-ABE
scheme with multi-AA scheme. This research aims to pre-
vent a key escrow problem in advance with the users’ key
and attribute information that the AA alone knows [13, 28].

In the multi-AA scheme, when a user requests a secret
key by global identity (GID), values corresponding to user
attributes are calculated in each AA to create a secret key
and send it to the user. Although there is a scheme in which
the user generates a secret key with the attribute value
received from the AA, usually, multi-AAs generate a secret
user key and send it to the user. Above all, since multi-
AAs share information about the users’ secret key, the AA
cannot independently cause a key escrow problem. How-
ever, the multi-AA scheme has a disadvantage. The amount
of computation required to generate a user secret key
increases according to the number of AAs, and a collusion
attack between AAs must also be considered. Furthermore,
in some KP-ABE schemes, the multi-AA scheme is also
viewed as a concept managed by a Central Authority.

2.4. Related Work. In 2006, an initial version of the KP-ABE
system was proposed, and based on this, research was con-
ducted to satisfy various requirements. This SKP-ABE
scheme provides ciphertext search, constant-size ciphertext,
and key escrow problem solving. Table 1 lists an analysis
of existing KP-ABE schemes. The description of the KP-
ABE scheme that provides the ciphertext search is as follows.

Yin et al. [7] developed a model that adds searchable
encryption to the KP-ABE scheme. It is useful when search-
ing for ciphertext in a cloud that manages big data, but the
ciphertext size increases with the number of attributes. In
addition, as the data owner creates a secret key and transmits
it to the user via a secure channel, the data owner knows its
secure key. Thus, a key escrow problem may occur.

Ameri et al. [8] considered an environment where the
cloud provider was not completely trusted. Their scheme
allows the creation of a search token at any time. This token
matches all ciphertexts containing the keyword. However, as
information leakage is possible, Ameri et al. proposed KP-
ABE schemes, in which the search token matches only

Data owner Data user

Ciphertext
(with index) Cloud server 

Results
(ciphertext transmission) 

Search token
(ciphertext request)

Attribute set:
{Company A, Director} 

Index
(generated based 

on keywords)

Message 
encryption

2. Generate search token 

4. Data decryption

1. Data encryption

Index keyword value of ciphertext 

3. Search

=
Keyword value of token

Figure 5: KP-ABE-based data sharing model applying searchable encryption in cloud environment.
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ciphertext generated within a specified time interval [8].
That is, it is a scheme that can share ciphertexts within a
specified time frame using temporary keywords. Nonethe-
less, they did not consider the key escrow problem. They
assumed that the AA was fully trusted. However, since the
AA knows the users’ key information, this can cause a key
escrow problem. Also, ciphertext size increases by the num-
ber of attributes included in the ciphertext.

Li et al. [9] proposed a secured ABE scheme with a
searchable encryption function to protect the security and
privacy of sensitive data. To counter keyword-guessing
attacks, all keywords were signed using secret keys of the
data owners when generating ciphertexts. However, depend-
ing on the number of attributes, it can increase the size of the
ciphertext, and it has the key escrow problem.

Meng et al. proposed a scheme that improved computa-
tion efficiency by using a constant-size output ciphertext and
a constant pairing operation in a KP-ABE scheme that pro-
vides searchable encryption [10]. However, the key escrow
problem remained possible.

Figure 6 shows how ciphertext is searched on the cloud
server. It assumes that three ciphertexts are stored on the
cloud server, each with two attributes. When the server
searches for a ciphertext, the first search compares the first
attribute of the token with the first attribute of the cipher-
text. The second search compares the second attribute of
the token with the second attribute of the ciphertext and
finds a matching ciphertext. In Figure 6(a), the number of
ciphertext searches increases proportionally to the number
of attributes contained in the token and ciphertexts. For
example, the searchable KP-ABE scheme was mentioned
above (Yin et al., Ameri et al., Li et al., and Meng et al.).
To solve this problem, an aggregate operation is performed
on the attribute value included in the ciphertext and the
attribute value of the token generated by the user. Then,
the aggregated attribute values of the token and the ciphertext
are compared to find a matching ciphertext [16, 17, 32].
Figure 6(b) shows the aggregate attributes of tokens and
ciphertexts when searching for a ciphertext. As a result, the
number of ciphertext searches is not affected by the number
of attributes contained in the tokens and ciphertexts. The dis-
advantage is that tokens can be generated in multiple ways

depending on the aggregate attributes of the ciphertext that
the user wants to find. However, if an aggregation operation
is used, searching for a ciphertext requested by the user on the
server will be more efficient than the scheme in Figure 6(a). In
terms of decryption, since the goal is to find the ciphertext in
most KP-ABE schemes that provide searchable encryption,
the decryption process of the ciphertext is omitted. Therefore,
partial decryption is not provided.

The KP-ABE scheme that solves the key escrow problem
and constant size is as follows. The KP-ABE schemes of
Longo et al. [13] and Leyou Zhang et al. [14] solved the key
escrow problem using a multi-AA or decentralized AA. By
dividing the key generation authority of a single AA among
multiple AAs, no individual AA knows all of the information
about a users’ secret key. However, the ciphertext search
function is not provided, and constant-size ciphertext and
partial decryption are provided depending on the scheme.
The schemes of both Kai Zhang et al. [30] and Belguith
et al. [31] output constant-size ciphertext [26, 27].

2.5. KP-ABE Security Model Definition. The security goal of
searchable ABE is to prevent an attacker from obtaining
information about a keyword from the search token and
index keywords in the ciphertext. In other words, if a search
token is not found, it should not disclose information about
the index keyword w. KP-ABE schemes must provide security
against attackers who can obtain search tokens for arbitrary
keywords w of their choosing. Even in these attacks, the
attacker should not be able to distinguish the encryption of
the keyword w1 and the encryption of the keyword w0, which
does not include obtaining the trapdoor [7, 16]. We use an
adaptive chosen keyword attack game and an adaptive chosen
plaintext attack game to define the security model of search
tokens and index keywords. We provide a formal definition
of security through the following games between a probabilis-
tic polynomial-time attacker A and challenger C.

2.5.1. Adaptive Chosen Keyword Attack Game

(1) Challenger C executes Setupð1λÞ to generate master
key MK and public parameter PP. Then, it sends
the PP to attacker A

Table 1: Comparison of KP-ABE schemes.

KP-ABE scheme Ciphertext search Key escrow problem Ciphertext size

Yin et al. scheme [7]

Provided

Possible to occur
Proportional to the number of

attributes
Ameri et al. scheme [8]

Not considered (possible to occur)Li et al. scheme [9]

Meng et al. scheme [10]
Constant-size ciphertext

Longo et al. scheme [13]

Not provided

Key escrow problem solved (multi
authority)

Leyou Zhang et al. scheme [14]
Key escrow problem solved (decentralized

authority)
Proportional to the number of

attributes

Kai Zhang et al. scheme [30]
Not considered (possible to occur) Constant-size ciphertext

Belguith et al. scheme [31]

Goal of the proposal scheme
Provided (fast ciphertext

search)
Key escrow problem solved (single

authority)
Constant-size ciphertext
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(2) Attacker A can adaptively query the ciphertext for all
search keywords. Accordingly, when A requests the
ciphertext for the search keyword wb, C generates
the ciphertext as IndexðwbÞ and sends it to the
attacker A

(3) Attacker A selects two keywords w0 and w1 and
sends them to challenger C. C fairly selects a random
bit value as b ∈ f0, 1g, has the attribute set {s1 …sn}
received from the attacker, and encrypts it with wb
to generate IndexðwbÞ. And it sends the ciphertext
index to the attacker

(4) Attacker A continuously requests a private key query
from challenger C and generates a legitimate search
token by encrypting the query keyword w (w is
expressed as w0 or w1)

(5) Attacker A guesses that b is b′. We define the advan-
tage that attacker A wins in the above game within
stochastic polynomial time as jPr½b = b′� − 1/2j.

Definition 1. Searchable ABE is semantically secure against
adaptive chosen keyword attacks in the above security game
when the attacker has at most a negligible advantage in proba-
bilistic polynomial time (PPT). That is, in the chosen keyword
attack model, the search token and index keyword should not
expose the plaintext information of the query keyword.

2.5.2. Adaptive Chosen Plaintext Attack Game

(1) Challenger C executes Setupð1λÞ to generate master
key MK and public parameter PP and sends PP to
attacker A. A sends a set of attributes {s1 ,…, sn} that
it wants to test to C

(2) Attacker A requests a secret key query correspond-
ing to the access structure {AS1 ,…, ASn}from C. At
this time, the limitation is that the set of attributes
{s1 ,…, sn} must not satisfy the access structure
{AS1 ,…, ASn}. Attacker A receives the secret key
from C, encrypts the keyword to be queried, and
generates a search token

(3) Attacker A selects two messages M0 and M1 and
sends them to challenger C. C fairly selects a random
bit value as b ∈ f0, 1g, and encrypts it as CTðMbÞ
with the attribute set {s1 ,…, sn} received from the
attacker. And it sends the ciphertext CTðMbÞ to the
attacker

(4) Attacker A continuously requests the secret key
query corresponding to the access structure {AS1 ,
…, ASn} from challenger C as in (2). Restrictions
here are the same as in (2).

(5) Attacker A guesses that b is b′. We define the advan-
tage that attacker A wins in the above game within
stochastic polynomial-time as jPr½b = b′� − 1/2j.
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Definition 2. Searchable ABE is semantically secure against
adaptive chosen plaintext attacks in the security game above
if the attacker has at most a negligible advantage in PPT.

3. Security Requirements

This section describes the requirements in terms of security
and efficiency, such as data encryption/decryption and data
access for secure and efficient data storage and sharing in
the cloud.

(i) Shared data confidentiality and integrity: If data
stored and shared in the cloud is in plain text, the
data is exposed to various security threats. There-
fore, security for the shared data is required, and
the confidentiality and integrity of shared data must
be ensured. The ciphertext should be decryptable
only by legitimate users

(ii) No access for unauthorized users: If anyone can
access cloud data, various security threats arise.
Thus, access control is required. ABE is a security
and access control technology. Only an authenti-
cated user can decrypt accessed data by comparing
an attribute value specified by the data owner with
the AS attribute value of the user’s secure key. Thus,
users without the correct attributes cannot decrypt
the data even if they access it

(iii) Ciphertext search efficiency: It is difficult for a user
to search for the desired data among the numerous
ciphertexts stored in the cloud. To search for a
ciphertext requested by a user, all stored ciphertexts
must be decrypted to check the contents of their
data. This is inefficient. Therefore, searchable
encryption technology which enables users to
search for the requested data without decryption is
essential [7–10]. However, in some of the existing
schemes, the number of searches increases propor-
tionally to the number of attributes when searching
for a ciphertext. Therefore, in the KP-ABE scheme,
it is necessary to aggregate the values of the attri-
butes corresponding to the ciphertext keywords.
As a result, the user should quickly search for the
desired ciphertext

(iv) Constant-size ciphertext: In existing KP-ABE
schemes, the size of the generated ciphertext is pro-
portional to the number of included attributes.
Cloud storage space is used inefficiently due to the
increased ciphertext size [11, 12]. Therefore, it is
needed to research in which the size of the cipher-
text can be constant output regardless of the num-
ber of attributes

(v) The key escrow problem: Since the AA knows infor-
mation about the users’ secret keys, it is cannot be
fully trusted because that can cause a key escrow
problem. Therefore, it is necessary to reduce AAs
secret key generation authority. Specifically, the
key escrow problem can be solved by generating a

secret key using multiple AAs. For example, a user
receives a partial secret key from the AA and gener-
ates the final secret key [33, 34].

4. The Proposed SKP-ABE Scheme

In this section, our proposed SKP-ABE scheme is described
(see Figure 7). When searching for a ciphertext, the attribute
values of the token and ciphertext are aggregated and
compared.

Therefore, it is possible to find the requested ciphertext
quickly. Furthermore, the key escrow problem on an AA is
solved by generating a final ciphertext decryption key using
a partial secret key received from the AA. In addition, by
using a constant-size ciphertext, the effects of attribute num-
ber on ciphertext size are minimized. Finally, the cloud
server finds the ciphertext and sends it to the user, and the
user decrypts it to obtain data.

4.1. System Model

4.1.1. System Entities

(i) Data Owner: The data owner encrypts data and
uploads it to the cloud. The owner generates a
ciphertext with the attributes of the users who can
access the data. Then, an index is created by select-
ing keywords that can represent the ciphertext (CT).
Finally, the CT and index are uploaded together to
the cloud server

(ii) Cloud Server: In general, a cloud server includes a
storage server in which data is stored and a server
that performs operations. For example, the cloud
server stores and manages data. When a user
requests ciphertext, the server performs a cipher-
texts search using the ciphertext index and token
value received from the user. After that, the
retrieved ciphertexts are sent to the user

(iii) Attribute Authority: The AAs are honest but curi-
ous and have the right to view user information at
any time. In this proposed SKP-ABE scheme, the
secret key generation phase of the AA is modified
to the partial secret key generation phase. In addi-
tion, when registering a user, a certificate that can
be authenticated is generated and then sent to the
user. The certificate is used to verify that the user
is registered when the user later accesses the cloud
server

(iv) Data User: A data user is an entity that downloads
and decrypts ciphertext uploaded to the cloud. The
user generates a final secret key (FSK) to decrypt
the ciphertext using the PSK received from the
AA. In addition, by selecting the keywords of the
ciphertext to be found, a token is generated. A user
can request ciphertexts from the cloud server with a
token. When the user receives the ciphertext from
the cloud server, it uses FSK to perform decryption
to obtain the ciphertext to obtain the data
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4.1.2. System Parameters. The system parameters used in the
proposed SKP-ABE scheme is shown in Table 2.

4.1.3. Procedure. This proposed SKP-ABE scheme provides
secure and efficient data storage and sharing in cloud envi-
ronments. Compared to existing KP-ABE schemes shown
in Table 1, the proposed SKP-ABE scheme meets more
requirements. This SKP-ABE scheme consists of 7 phases.
The phase are as follows.

(i) SetupðkÞ: The AA generates master key (MK) and
public parameters (PP) with security parameter k
as input. The data user generates a private/public
key pair

(ii) PSK andCertGenðMK, A, PP, IDui , PKuiÞ⟶AACertui ,
PSK, AS: When a user requests registration and a
partial secret key from the AA, the AA creates AS
based on the user’s attributes. Next, it generates a
partial secret key (PSK) also based on the user’s
attributes, creates a certificate (AACertui) based on
the user’s IDui and public key, and sends them all
to the user

(iii) FSKGenðPSK, ASÞ⟶ FSK: The user receives PSK
and AS from the AA and generates the final secret
key (FSK) corresponding to the AS

(iv) EncryptðPP, M, S, wÞ⟶ CT, Iw: The data owner
selects the message (M) and encrypts with the attri-
bute sets (A) and PP of the users who can access
their data. In addition, index value (Iw) is created
by selecting keywords that represent the CT and
transmitted to the cloud server along with the CT.
A keyword is a word that can represent a CT and
is known only to the data owner and user

(v) TokGenðFSK, w′Þ⟶ TK: The user generates a
token Tw′ to find the CT in the cloud. At this time,
a token is generated with the keywords w′ of the
CTs to be found and the FSK received from the
AA. It then signs the token with the certificate
and sends the TK to the cloud to request the CT

(vi) SearchðIw, Tw′Þ⟶ f0, 1g: The cloud server verifies
that the CT of the registered user is requested
throughAACertusi . Then, the CT requested by the
user is found using the received Tw′ and the CT
index (Iw). The searched CT is expressed as {0, 1},

CT, Iw
CT

AA
(Attribute authority)

PP

6. Search
7. Data decryption

5. Token generation

4. Data encryption 

Data owner 1

Data user
Cloud server

3. FSK generation

1. Setup 2. PSK and certificate generation

A, PKui
, IDui

TK

PP, AACertui, PSK, AS

Data owner N

Figure 7: This proposed SKP-ABE scheme scenario

Table 2: Notations.

Symbol Definition

p, q Prime order

PP, MK, PKAA Public parameters, master key, AA’s public key

PKui , SKui Data user public/private key pair

PSK
Data user partial secret key
(partial decryption key)

FSK
Data user final secret key
(ciphertext decryption key)

IDui User identifier

AACertui Data user certificate

AU, A User attribute data, A set of attribute data

AS Access policy or access structure

Tw ′ Token with keyword w′ (ciphertext search token)

w, w′ Keywords for data owners, keywords for data
users

Iw
The ciphertext index value generated based on the

keywords

CT Ciphertext

H1 ∙ð Þ Cryptographic hash function 0, 1f g∗ ⟶ Z∗
p

� �

H2 ∙ð Þ
Cryptographic hash

function 0, 1f g∗ × 0, 1f g∗ × 0, 1f g∗ ⟶ Z∗
p

� �
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and as a result, 0 means not found, and 1 means
found. The retrieved ciphertexts are sent to the user

(vii) DecryptðCT, AS, l, FSK, PPÞ⟶M: When the user
receives the CTs from the cloud server, it decrypts
by comparing the attribute value in the AS with
the attribute value in the CT. If the decryption is
successful, the user can obtain a message M

4.2. Description of the Proposed SKP-ABE Scheme. The AA
generates two cycle multiplication groups G and GT of prime
order p and generates a bilinear map e : G × G⟶GT
(e : G × G⟶GT, ∀i, j ∈G, eði, jÞ = v, v ∈GT). Let g denote
a generator of G. The AA generates a subgroup G2 of elliptic
curve points of prime order q and chooses a generator P of
G2. Elliptic curve point-based crypto-operations are used
to generate user keys, and key security assumes the intractabil-
ity of ECDLP. Here, the user key means the initially generated
key pair (PKui , SKui) for users to register with AA. Assume
that there are n attributes in the universe where the universal
set is A = fAtt1, Att2, Att3,⋯, Attng. W= fW1,W2, W3,⋯,
Wng is an AS and includes attributes, such as Atti ⊂Wi.

4.2.1. Setup Phase. Initially, the AA creates PP, MK, and
PKAA in the setup phase. The AA generates random values
α, k ∈ Z∗

p , ti ∈Gand computes f = gk, EP = eðg, gÞα:
The public parameters, master key, and public key are

generated as follows:

PP = <G, GT, G2 e, g, Ti = gti
� �

i∈ 1,n½ �, f

= gk, EP = e g, gð Þα, H1, H2 > ,
ð1Þ

MK = <α, tif gi∈ 1,n½ � > ,PKAA = <α∙P > : ð2Þ
The data user selects a random value for xui ∈ Z

∗
p and

generates a private key/public key pair as follows:

PKui , SKui = <xui∙P, xui > : ð3Þ

The user requests registration and a partial secret key by
transmitting their attribute set A = fAtt1, Att2, Att3,⋯, Attn
g, public key ðPKuiÞ, and identifier ðIDuiÞ to the AA.

4.2.2. PSK and Certificate Generation Phase. The AA creates
an access tree AS with a leaf node l value set based on user
attributes. And PSK is created with the attribute value corre-
sponding to AS. In addition, the user’s public key and ID are
used to generate a certificate. The AA sends the PP to the
data owner and PP, AACertui , PSK, andAS to the user:

Di,j = gtnAor gtn+1A, HAtti = H1 Attið Þki∈ 1,n½ �, ð4Þ

PSK = <gα, Di,1
� �

i∈ 1,n½ �, HAtti > : ð5Þ

When creating a certificate, select oui ∈ Z
∗
p , Oui = oui∙P.

dui = oui + αH2 IDui , PKui

� �
, AACertui = Oui , dui

� �
: ð6Þ

4.2.3. FSK Generation Phase. Then, the user selects a random
value and generates an FSK with the PSK and AS received
from AA:

Random number ri ∈ Z∗
p , r =∑n

i=1ri.

Di = gα+r, Di′= gri , ð7Þ

FSK = <AS, Di, Di′, Di,1
� �

i∈ 1,n½ �, HAtti > ð8Þ

4.2.4. Data Encryption Phase. The data owner creates a
ciphertext with the PP and the attribute of the user that
can access the data. Then, keywords representing the
ciphertext are selected, and an index value Iw is generated
for the keyword and transmitted together with the CT (see
Equations (9)-(12)).

Select messageM and add random numbers si, s′ ∈ Z∗
p ,

such that s =∑n
i=1si.

Select attribute set A= fAtt1, Att2, Att3,⋯, Attng and
keyword w (the keyword is a value that indicates the cipher-
text created by the data owner and requested by the user. A
ciphertext index can use a single keyword, and multiple key-
words are more secure).

C0 =M∙EPs, C1 = hs, ð9Þ

C2 = gs∙
Y
i∈n

gtiAtti , C3 =
Yn
i=1

H1 Attið Þs, ð10Þ

~C1 = e f , gws′
� �

, ~C2 = gss′ , ð11Þ

CT = <A, C0, C1, C2, C3 > ,Iw = <~C1, ~C2, C3 > : ð12Þ
An index value of Iw is set for each CT. The data owner

sends CT and Iw to the cloud server. The cloud server
securely stores the CT and Iw received from the data owner.

4.2.5. Token Generation Phase. The user selects a keyword
w′ in the ciphertext to found. Then, the user generates a
token Tw ′ using FSK that can be used to find a ciphertext.
After token generation, the token is signed with the certifi-
cate received from AA (see Equations (13) and (14)).

Select a keyword to search for and generate a token.

Tw ′ = e
Yn
i=1

HAtti , g
w ′

 !
: ð13Þ

Sign using a certificate:

AACertusi = dui + xuiH2 IDui , PKui , Tw ′
� �

: ð14Þ

The user requests a ciphertext by sending TK = ðTw ′ ,
AACertusiÞ to the cloud server.

4.2.6. Search Phase. The cloud server verifies the registered
user i and token throughAACertusi . After verification, the
Tw ′ received from the user is compared to the Iw of the
CTs stored on the server, and matching ciphertexts are
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found. This will only happen when the keyword w′ selected
by the user and the keyword w selected by the data owner
are the same. The search result is displayed as f0, 1g. The
retrieved ciphertexts are sent to the user:

AACertusi∙P = oui∙P + α∙P ∗H2 IDui , PKui

� �
+ xui∙P ∗H2 IDui , PKui , Tw ′

� �
= Oui + PKAA ∗H2 IDui , PKui

� �
+ PKui ∗H2 IDui , PKui , Tw ′

� �
,

ð15Þ

Ciphertext search: eð~C2, Tw ′Þ = eð~C1, C3Þ

e ~C2, Tw ′
� �

= e gss′ , e
Yn
i=1

HAtti , g
w′

 ! !

= e e gs′w, gk
� �

,
Yn
i=1

H1 Attið Þs
 !

= e ~C1, C3

� �
:

ð16Þ

4.2.7. Data Decryption Phase. The user performs decryption
by comparing the attribute value specified in the user AS
with the attribute values included in the ciphertext. Parame-
ter l refers to the attribute value (leaf-node) of the user AS. If
the decryption is successful, the users obtain M (see
Equations (17) and (18)).

Access structure W= fW1,W2, W3,⋯, Wng:
If Atti ∈Wi, compute Di,j = ðgtnÞln :
If Atti ∉Wi, compute Di,j = ðgtn+1Þln :

C =
e C1,

Q
j∈ADi,j

� �
e C2, f∙

Q
j∈ADi

’
� � =

e C1,
Q

j∈A gtnð Þln
� �

e C2, gk∙
Q

j∈Agri
� �� �

=
e gks,

Q
j∈A gtnð Þln

� �
e gs∙

Q
j∈A gtnð Þln

� �
, gk∙

Q
j∈Agri

� �� � ,
e gks, g∑n

i=1tnln
� �

e gs, g∑n
i=1tnln

� �
, gk, gr
� �� � = e g, gð Þks

e g, gð Þks+sr
= e g, gð Þ−sr,

ð17Þ

M=
C0

e C1, Dið Þ∙C =
M∙EPs

e gs, gα+rð Þ∙e g, gð Þ−sr

=
M∙e g, gð Þαs
e g, gð Þαs+rs−rs:

ð18Þ

5. Analysis of Proposed SKP-ABE Scheme

This proposed SKP-ABE scheme was analyzed for security
and efficiency to satisfy the security requirements detailed
in Section 3. Table 3 is an analysis table comparing the exist-
ing scheme and the proposed SKP-ABE scheme in terms of
security and efficiency.

5.1. Security Analysis

(i) Shared data confidentiality and integrity: Data confi-
dentiality and integrity are protected because data
are encrypted, stored, and shared using a KP-ABE
scheme. Data is encrypted using attributes A = fAtt1
, Att2, Att3,⋯,Attng: Therefore, only a user with an
AS matches the attributes for the ciphertext and has
the corresponding FSK can decrypt and obtain the
data. An attacker who steals data cannot decrypt it

(ii) Access control: In the existing KP-ABE scheme, if
the user had the secret key received from AA, the
user could create a token and request a ciphertext
by accessing the cloud. It is possible to access the
cloud and request a ciphertext without further
authentication. Ciphertext is decrypted using the
user attributes. However, if anyone can access the
cloud server, it is difficult to restrict the users. If
anyone can access the cloud server, it is difficult to
restrict the users. Furthermore, data theft or forgery
may occur if a user is malicious. Therefore, an
access control function that ensures that only regis-
tered users can access the cloud server is required.
In the proposed SKP-ABE scheme, only users regis-
tered by the AA can access the cloud and request a
ciphertext. Each registered user receives anAACertui
from the AA. The cloud server verifies the validity
of AACertusi∙P =Oui

+ PKAA ∗H2ðIDui
, PKui

, Tw′Þ
using the user’s public key PKui

and IDui
, Tw′ and

Oui
; the ciphertext search is performed. Then, the

found ciphertext is sent to the user. Therefore, unau-
thorized users or third parties cannot access the cloud
server other than registered users

(iii) Key escrow problem: To solve the key escrow prob-
lem, the AA does not know the users’ secret key
information completely. In our proposed SKP-
ABE system, the user receives a partial secret key
from AA and generates a final secret key. The value
(Di = gα+r ,Di ′ = gri ) included in the final secret key
is a value required for the users to decrypt data, and
only the user who generated the final secret key
knows. In the SKP-ABE system, when requesting a
ciphertext, an access token signed with a certificate
is required, so AA cannot generate it and therefore
cannot request a ciphertext. If it is assumed that
the AA acquires the user’s partial secret key and
search token and accesses the cloud, it can search
for and attempt to decrypt the ciphertext but cannot
finally decrypt the ciphertext. This scheme is similar
to solving the key escrow problem from KGC in the
certificate-based signature. It was applied to our
proposed scheme. In the phase where AA issues A
ACertui , PSK , AS to the user, even if the attacker
obtains AACertui , PSK , AS, the attacker cannot
access the cloud with the obtained certificate
because he does not know the users’ private key.
In general, an ABE scheme assumes that the
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communication channel between the AA and the
data owner and between the AA and the data user is
a secure

(iv) Protection against chosen keyword attacks using a
secure game model: The proposed SKP-ABE scheme
counters a selectively chosen keyword attack game per-
formed by an attacker if the DBDH assumption is
valid. In the secure game model, attacker A can adap-
tively query the ciphertext for all search keywords. In
that case, the plaintext of an index keyword is not
exposed. In the security gamemodel, it is assumed that
probabilistic polynomial time attacker A and simulator
B communicate with each other. Simulator B executes
Setupð1λÞ generates master key ðMK = <α, ftigi∈½1,n�
> Þ, and public parameter ðPP = <G,GT ,G2 e, g,
fTi = gtigi∈½1,n�, f = gk, EP = eðg, gÞα,H1,H2 > Þ,
and sends PP to attacker A. A sends the attributes
set A = fAtt1, Att2, Att3,⋯, Attng; it wants to chal-
lenge to B. Attacker A requests the ciphertext index
for the search keyword w’ from B, and B outputs
the ciphertext index (Index(w′)). Then, it sends the
output value to A. Attacker A selects two keywords
w0 and w1 and sends them to B. B fairly selects a
random bit of b ∈ {0,1}, has the attribute set A = f
Att1, Att2, Att3,⋯, Attng and w from the attacker,

and outputs the corresponding value IðwbÞ = <~C1,
~C2, C3 >⟵ð~C1 = eð f , gwbs′Þ, ~C2 = gss′ , C3 =

Qn
i=1

H1ðAttiÞsÞ. Attacker A continuously requests a par-
tial secret key query from B as in 2) and generates

a final secret key. ðPSK = <gα, fDi,1gi∈½1,n�,HAtti
>

⟶FSK = <AS,Di,Di′, fDi,1gi∈½1,n�,HAtti
> Þ. Then,

by selecting the query keywords wb′ , a valid search
token Twb ′

= eðQn
i=1HAtti

, gwb ′ Þ is continuously gen-
erated. Attacker A extracts b from IðwbÞ with Twb ′

.

However, it is difficult for an attacker to guess b =
b′ . Thus, the system is secure against selective cho-
sen keyword attacks because the attacker finds it
very difficult to win the game within probabilistic
polynomial time. That is, it is difficult to guess the
keyword plaintext information with the ciphertext
index value created by Simulator B

(v) Protection against adaptively chosen plaintext
attacks using a secure game model: The proposed
SKP-ABE scheme counters an adaptively chosen
plaintext attack game performed by an attacker if
the DBDH assumption is valid. In the secure game
model, attacker A can adaptively query the cipher-
text for the selected plaintext and communicate
with simulator B with each other. Simulator B exe-
cutes Setupð1λÞ generates MK and PP, the same as
the chosen keyword attacks security game model.
Attacker A requests a partial secret key query corre-
sponding to the access structure {AS1 ,…, ASn} from
B. At this time, the limitation is that the attribute set
A = fAtt1,Att2, Att3,⋯, Attng must not satisfy the
access structure {AS1,⋯,ASn}. Attacker A receives
the partial secret key ðPSK = <gα, fDi,1gi∈½1,n�,HAtti

Table 3: Comparison between the Proposed SKP-ABE scheme and the existing KP-ABE scheme.

Yin et al.
scheme
[7]

Ameri et al.
scheme [8]

Li et al. scheme [9]
Longo et al. scheme

[13]
Zhang et al. scheme [14] Proposed scheme

Ciphertext
search

Provided

Not provided

Provided

Number of
searches

Number of searches increases by the number of
attributes

Only one search is required
because of attribute aggregation

(fast search)

Key escrow
problem

Key escrow issues not considered (key escrow problems
may occur enough)

Key escrow problem solved (multiauthority)
Key escrow problem solved (user

generates decryption key)

Ciphertext
size

Proportional to the number of attributes
Constant-size
ciphertext

Proportional to the
number of attributes

Constant-size ciphertext

Secret key
(ciphertext
decryption)

3nTE 3nTE + nH 4n + 1ð ÞTE + 2nTM K n + 1ð ÞTE + 3nTMð Þ 2n + 2K + 5ð ÞTE + 2TM 2n + 2ð ÞTE + nH + n − 1ð ÞTM + E

Encryption
(ciphertext)

—
nK + 1ð ÞTM +

n + 1ð ÞTE

2K + n + 2ð ÞTE + 2
K − 1ð ÞTM + kP +M

n + 3ð ÞTE + nTM +M

Encryption
(ciphertext
index)

n + 1ð ÞTE

+ E + nH
n + 4ð ÞTE +
n + 2ð ÞH + 5M n + 6ð ÞTE + TM + 2H

Not provided(this is index encryption search)
P + n + 4ð ÞTE + n − 1ð ÞTM + nH

Search (test) 2nP + nE 2n + 1ð ÞP + lE 2n + 1ð ÞP + nTE + nTM 3P + n − 1ð ÞTM + nTE

Decryption
(user)

— nP + nTE+(n-1) TM K + 1 + nð ÞP + nE 3P + 2n + 1ð ÞTM + nTE

P: pairing operation; M: multiplication operation; E: exponentiation operation;n: number of attributes; H: hash function; TE : Exponentiation inG; TM
: Multiplication inG; K : Number of Attribute Authority.
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> Þ from B and generates a final secret key ðFSK
= <AS,Di,Di′, fDi,1gi∈½1,n�,HAtti

> Þ. Attacker A

selects two messages M0 and M1 and sends them
to B. B fairly selects a random bit of b ∈ f0, 1g and
outputs the corresponding ciphertext CTðMbÞ with
the attribute set A = fAtt1, Att2, Att3,⋯,Attng and
w. And it sends the ciphertext CTðMbÞ to the
attacker. Attacker A continuously requests the par-
tial secret key query corresponding to the access
structure {AS1,⋯,ASn} from B. Attacker A extracts
b′ from CTðMbÞ. However, it is difficult for an
attacker to guess b =b′ . In other words, the system
is selectively secure against adaptively chosen plain-
text attacks, because the attacker finds it very diffi-
cult to win the game within the probabilistic
polynomial time. It is difficult to guess the plaintext
information through the ciphertext created by Sim-
ulator B

5.2. Efficiency. The computational amount measurements
shown in Figure 8 were performed using a Windows system

equipped with a 3.50GHz Intel Core i5-4690 processor and
8GB of RAM. Pairing calculations used the pairing-based
cryptographic library available at [35]. ECC implementation
used the Koblitz elliptic curve y2 = x3 + ax + bðmod pÞ with
a = 1 and b = 1 and the 163 − bit random prime defined as
F2163 . The proposed scheme includes a process of aggregating
attributes in the encryption phase. Therefore, it can be seen
from Figure 8 that the amount of computation required for
keyword index encryption (a) and data encryption (b) is
larger than that of the existing KP-ABE scheme. However,
ciphertext search performance (c) and ciphertext decryption
performance (d) are more efficient than the existing KP-ABE
scheme. Therefore, the proposed SKP-ABE scheme effi-
ciently provides ciphertext search and the user's ciphertext
decryption performance. In order to compare the amount
of computations in the same environment, one AA was
assumed for the scheme of Longo et al. [13], and the scheme
of Zhang et al. [14], when the calculation were performed.

(i) Efficient ciphertext search: When a user requests a
ciphertext stored on the cloud server using key-
words, search is generally inefficient because the
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Figure 8: Comparison of the calculation amount of the existing KP-ABE scheme and this proposed scheme.
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server decrypts all ciphertexts to find required data.
Accordingly, we implement searchable encryption,
which allows users to search for a requested cipher-
text without having to decrypt the ciphertext. How-
ever, such schemes still suffer from several problems,
as discussed above. Therefore, in our proposed SKP-
ABE scheme, to address inefficient searching, the
parameters of index Iw, that is, the attribute values
corresponding to keywords in C3 =

Qn
i=1H1ðAttiÞk,

are aggregated and expressed a single value. The

attribute values included in the token Tw′ = eðQn
i=1

H1ðAttiÞk, gw′Þ are also aggregated and expressed
as one value. Thus, if the attributes are {{Director},
{Company A}}, this can be expressed as {{Director},

{Company A}} = C3 =
Qn

i=1H1ðAttiÞk. The cipher-
text search seeks matches to C3 regardless of the
number of attributes. This is faster than the existing
analyzed KP-ABE schemes because the number of
searches is reduced as the number of attributes is irrel-
evant. Because the values of attributes are pre-aggre-
gated, the user rapidly finds the required ciphertext

(ii) Constant-size ciphertext: In existing KP-ABE
schemes, the size of the ciphertext increases in
proportion to the number of attributes specified
when generating a ciphertext. For example, in
Yin et al.’s scheme, it can be seen through I(w)

= ðA, I ′ = eðg1, giÞsHðwÞ, I′′ = gs,∀α ∈A : Ia = TðaÞs Þ
that the size of the ciphertext increases according
to the number of attributes in ∀α ∈A : Ia = TðaÞs.
The size of the ciphertext varies depending on
the attribute value Ia of 1 or a. In this proposed
scheme, to provide a ciphertext of a constant size,
the attribute values Atti included in the ciphertext

are aggregated and expressed as one value of C3

=
Qn

i=1H1ðAttiÞk . Regardless of whether the num-
ber of attributes Atti is 1 or i, all are all expressed
as C3. Therefore, it is possible to solve the prob-
lem that the number of existing attributes affects
the size of the ciphertext. This only affects the
ciphertext size, and since the attribute-based
aggregation operation is performed in the data
encryption phase, the disadvantage is that the
amount of data encryption is large compared to
the existing KP-ABE scheme

(iii) Efficiency of ciphertext decryption computations: In
Table 3, several of the existing schemes (Yin et al.,
Ameri et al., and Li et al.) do not perform a decryption
operation. Therefore, our proposed SKP-ABE scheme
is compared with the scheme of Longo et al. and the
scheme of Zhang et al., for decryption performance.
As shown in Figure 8(d), the cost of decryption by
the users is decreased compared to existing schemes
(Longo et al., and Zhang et al.). Also, since the two
schemes have the disadvantage that the decryption
performance increases according to the number of

AA, the efficiency of the proposed SKP-ABE scheme
is better in terms of the user’s decryption cost.

6. Conclusions

In this paper, we proposed an SKP-ABE system for secure
and efficient data sharing in cloud environments. The pro-
posed SKP-ABE scheme guarantees data confidentiality and
integrity. Those who lack access rights are blocked. Specifically,
the attribute value included in the token and the attribute value
of the ciphertext are aggregated, and the ciphertext is searched
using the aggregated value. As a result, since the number of
ciphertext searches is not affected by the number of attributes,
ciphertext searches can be performed quickly. Compared with
the existing searchable KP-ABE schemes (Yin et al., Ameri
et al., and Li et al.), the computation is efficient in terms of
the number of ciphertext searches. In addition, when the data
owner generates the ciphertext, the size of the ciphertext can be
constant output without being proportional to the number of
attributes by aggregating the values of the attributes included
in the ciphertext. Finally, to solve the key escrow problem in
AA, the user receives the PSK from the AA and generates the
FSK in this proposed scheme. As a result, since the AA does
not know information about the users’ FSK, a key escrow prob-
lem cannot occur. Therefore, even if you try to decrypt the
ciphertext stored in the cloud with only the users’ PSK, data
cannot be obtained. Compared to the existing KP-ABE scheme
(Longo et al. and Zhang et al.) usingmultiple AA, the proposed
scheme has better decryption performance efficiency.

The proposed SKP-ABE scheme is applied to N:1 cloud
environment where a large number of data owners and a
small number of data users share data. The scheme can be
applied in various IoT-cloud environments, such as data
sharing between nurses, doctors, and patients in a medical
environment data sharing collected by drones in a UTM
environment [36–38]. The shared data is secured because
only authenticated users have access.

In the future, for the expansion of the proposed SKP-
ABE scheme, additional research that can provide the
requirements (security and efficiency) considered by KP-
ABE is needed. Additionally, a signature and verification
phase is required to decrypt the data user and verify that
the owner uploads the data obtained.
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As a typical application of Internet of Things (IoT), home automation systems, namely, smart homes, provide a more convenient
and intelligent life experience through event recognition, automation control, and remote device access. However, smart home
systems have also given rise to new complications for security issues. As an event-driven IoT system, smart home
environments are vulnerable to security attacks, and vulnerable devices are far-spread due to the quick development cycles.
Attack vectors to smart homes inevitably manifest in abnormal event contexts. In this paper, we propose HomeGuardian, a
context-based approach to identify abnormal events in smart homes. In our approach, we extract temporal context and
environmental context from system logs, aggregate (embed) these hybrid contexts, and construct a learning-based classifier to
identify the abnormal events. We develop a testbed to implement and evaluate our approach.

1. Introduction

Smart home, as a ubiquitous computing IoT application in a
home environment [1–3], provides remote control and auto-
mation services for home users. Quick development cycles of
smart devices lead to an increasing expansion of the smart
home market scale [4–6].

However, smart home industry develops rapidly without
neither a unified security standard nor a unified supervision
mechanism, and the inconsistency leads to many security
problems. Once the devices are accessed illegally by
attackers, users’ privacy suffers severe leakage [7, 8]. More-
over, if the smart home hub is accessed by attackers, he/
she may obtain control privileges (e.g., door locks) and
implement data interception or workflow interference.
SmartThings exposes over 20 vulnerabilities in its hub [9].
In addition to hardware vulnerabilities, malicious software
in smart homes also results in security and privacy issues.
Malicious smart home applications can steal private infor-
mation by obtaining nonnecessary permissions [10]. In
addition to controlling devices directly, physical interactions
and automation rules also introduce security risks in smart

homes [11, 12]. These security issues will inevitably lead,
directly or indirectly, to abnormal device state changes (i.e.,
events).

Since abnormal events are the most intuitive manifesta-
tion of abnormalities in the visible aspect, researchers focus
on analyzing event sequences (i.e., device state changes) in
the smart home. Hidden Markov Model (HMM) is widely
used to analyze sequences for abnormal event detection in
smart homes [13]. Event correlation analysis is also applied
in smart home scenarios [14, 15]. However, these methods
only take into account sequence order without considering
specific timing information of smart home events. Besides,
in IoT systems, smart devices interact with each other
through automation rules and physical effects. Therefore,
the states of surrounding devices also should be considered
to validate the device behaviors.

To solve the above problems, we propose an anomaly
detection system based on event context. In our approach,
we take two types of context into account, temporal context
and environmental context.

The temporal context of a candidate event is based on
the event’s time intervals and the history device states. We
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further predict the successive events as the temporal context
to feed HomeGuardian. The environmental context for an
event is the states of the devices related to the event, which
indicates the physical context of the candidate event. Specif-
ically, HomeGuardian analyzes correlations among devices
and selects the states of devices that are highly correlated
to the candidate event as its environmental context features.
Given the two contexts, HomeGuardian then implements a
difference-based anomaly detection, by inspecting whether
the input event is expected, considering the two contexts.

To sum up, we make the following contributions:

(i) We propose HomeGuardian, a context-based
approach to identify abnormal events in a smart
home system. In our approach, we extract temporal
context and environmental context from system log,
aggregate (embed) these hybrid contexts, and con-
struct a learning-based classifier to identify the
abnormal events

(ii) We develop a self-configured testbed based on the
Home Assistant platform to implement and evaluate
our approach. According to real-world smart home
scenarios, we connect virtual devices with the real
hardware environment and configure automation
rules to simulate/generate smart home event data

(iii) We evaluate the effectiveness of HomeGuardian
using the system log captured from our self-
developed testbed. The experiment results illustrate
that the F1-scores of HomeGuardian to detect
abnormal events are above 0.90 for all device types

2. Background and Problem Statement

2.1. Security Problems of Smart Home. Smart device state
changes triggered by automation rules or remote control
often cause security risks. For instance, user-setup rules
can be triggered accidentally. Figure 1 illustrates how an
attacker opens a window and breaks in when nobody is
home via triggering rule IF Temperature > 25 THEN open
thewindow. Moreover, a smart home may catch fire if heat-
ing devices (e.g., ovens and electric heaters) are turned on by
abnormally triggered automation rules.

Vulnerable smart devices may be controlled by an
attacker remotely to launch abnormal events or distort
device states [9]. The related attacks include network pene-
tration, firmware backdoor exploitation [16], replay attacks
[17, 18], and man-in-the-middle attacks [19, 20]:

(1) http.//[Router_IP]/…&SystemCmd= [Malicious_
Code]&…

(2) Heater. off ⟶ on

(3) Temperature sensor. 23⟶ 27

(4) If (temperature > 25) then window. of f ⟶ on

In addition to devices, smart applications (apps for
short) also contribute to system vulnerabilities. Without

the knowledge of users’ environment settings and behavioral
patterns [21], it is challenging for smart apps to precisely
define a condition, such as “at home,” because the hard-
ware/software settings and user behavioral patterns (e.g.,
wake-up time, bedtime, and time to take a shower) vary in
homes.

2.2. Problem Analysis. To detect anomalies in smart home
systems, most existing approaches focus on program analy-
sis for platforms and apps while overlooking device interac-
tions, which are leveraged in real-world attacks like the
scenario in Figure 1. Hence, additional contexts such as
device states are required for robust and noninvasive anom-
aly detection.

As shown in Table 1, the correlations of state changes
(i.e., events) include objective environmental changes, user
behavior patterns, influence between devices, and automa-
tion rules for system configuration in a smart home system.
Automation rules and smart apps manipulate devices to
meet user demands. Besides, a device can be affected by a
physical channel between another device. For example, an
air conditioner has an impact on an adjacent thermometer.
User behavior and environmental changes (e.g., day-night
cycle or season alternation) can also cause periodic changes
in states of thermometers, hygrometers, and other devices.

However, it is challenging to extract environmental cor-
relation in a smart home system. Static-analysis-based
methods cannot capture physical environmental interactions
among devices. IoTMon [11] analyzes the description of IoT
apps to recognize common physical channels between IoT
devices and discover potential correlations between devices
and the environment. Nevertheless, it is not effective to
detect real-world runtime physical environmental interac-
tion influences.

Hence, robust anomaly detection should consider the
time at which devices interact through physical channels.
Moreover, some interactions between devices and the phys-
ical environment may occur either immediately (e.g., turn
on a light) or slowly and continuously (e.g., boil water via
a heater), temporal context of the smart home matters when
detecting anomalies. To sum up, we should implement a sys-
tematical analysis when detecting smart home anomalies,
taking both environmental context and temporal context
into consideration.

3. System Design

3.1. Overview. When analyzing the correlation of smart
home devices, we consider the influence between automa-
tion rules and devices. We first extract the correlated device
states as environmental context. We pinpoint the environ-
mental states when target events are triggered and then build
feature vectors. For device behavior regularity caused by user
behavior and environmental changes, we extract the state
changes of target devices from the logs, model the behavior,
and refine the temporal context to forecast the next event.
Finally, we construct a classifier and implement the abnor-
mal detection systems in smart homes.
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The framework of the anomaly detection system Home-
Guardian is shown in Figure 2. The purpose of HomeGuar-
dian is to screen out abnormal events from smart home
platform logs. It is composed of three modules, namely,
testbed platform, context extraction, and anomaly detection.
Specifically, the testbed platform is a smart home experi-
mental platform with multiple functions, such as device con-
trol and behavior simulation. The context extraction module
extracts the environmental context among smart devices by
analyzing the device configurations and rule configurations
of the smart home platform. Besides, it also uses machine
learning algorithms for behavior modeling to predict the fol-
lowing state of the target device. Environmental context and
temporal context are the input of the anomaly detection
module. The anomaly detection module is composed of a
neural network, which filters out abnormal events.

3.2. Temporal Context. The smart home events recorded in
platform logs can be represented as ðtimestamp, device,
stateÞ, namely, the date and time when the device state
changes occur, the device name, and its state value after

the event occurs, respectively. Note that apart from succes-
sive values (e.g., temperature and humidity), states can also
be presented in binary values (e.g., ON/OFF for a switch
and OPEN/CLOSE for a door). A log sample reads as ð
2021 − 05 − 1108 : 58 : 31, light:L001, onÞ

To obtain the temporal contextual feature of the smart
home events, the log entries corresponding to the target
device, i.e., the state changes of the target device, are first fil-
tered out from the log. The time interval of event occurrence
is calculated based on the event timestamps. The change of
the time interval length reflects the frequency of the target
device events with the event change pattern. We determine
the analysis method by collecting data from the smart home
testbed platform. To keep the consistency of time incre-
ments, we denote the first presence of a certain event with
the timestamp timestamp0 as an initial event e0 and then cal-
culate the time interval between e0 and the subsequent
events eiji=1,2,⋯ as ti = timestampi − timestamp0, where
timestampi is the timestamp for event ei. In this way, the
temporal context features are monotonically increasing in
chronological order.
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Figure 1: An example scenario where an attacker breaks into smart home to open the window.

Table 1: IoT device influences.

Influence L Source Processing by

Automation rules A Automation rules and apps
System analysis

Influences among devices P Physical influences

User behavior

A User commands

Behavior modeling
N Network traffic

P User activities

Environmental changes P Periodic changes

Note: L: layer; A: app layer; N : network layer; P: physical layer.
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After that, a learning model is constructed based on the
features extracted from the log. It predicts the moment and
state value of the next state change of the target device.
The inputs of the model include the prior N states of the tar-
get device s = ðs1 ; s2 ;⋯ ; sNÞ, and the prior N occurrence
times of the target device t = ðt1 ; t2 ;⋯ ; tNÞ. Among them,
the parameter t is the record starting point at the specified
time, which can be updated in a period to prevent the data
from being too large. The output of the model is denoted
as ðtP, sPÞ. tP is the time interval of the next event, and sP

is the state of the next event. We apply a regression algo-
rithm to extract the relationships among input variables.
The outputs are presented as tP = αT1 t + δ1 + ε1 and sP = αT2 s
+ δ2 + ε2, where α1 and α2 are the weight coefficient vectors
of each feature vector, i.e., how closely each data quantity is
associated with the device state value. δ1 and δ2are constant
terms of intercepts. ε1 and ε2 are errors obeying a normal
distribution with a mean of 0. tP and sP are predictions of
the time of the next event and the state of the device for
the same device. The temporal context ft includes the time
prediction tP and state prediction sP for subsequent events
and the actual time tR and actual state tR of the event occur-
rence. It can be presented as ft = ðtP ; sP ; tR ; sRÞ.

3.3. Environmental Context. The environmental context of
system events refers to the device states correlated to the tar-
get device. The correlations come from user-defined auto-
mation rules, physical channels, and spatial relationships
between devices. An important characteristic of smart
homes is that smart devices may cause impacts on the phys-
ical environment. Such physical influence brings the correla-
tion of state changes between devices [11]. Further, there are
interactions between user-defined automation rules and IoT
applications. Physical channels, such as temperature,
humidity, and brightness, enable devices with certain attri-
butes to interact with each other. For example, there is an

automation rule that controls a radiator to turn on or off
according to room temperature. In this case, the temperature
channel connects the heater and temperature sensor with
correlation.

Based on the aforementioned analysis, relevant device
selection is determined according to automation rules. The
spatial distribution of the devices and the physical channels
shared among the devices impacts their correlation as well.
The correlation degree RD,C between a device D and a phys-
ical channel C is obtained by Natural Language Processing
(NLP), which refers to device correlations. Then, we obtain
the semantic similarities RD,C of each device name words
and physical channels in smart homes. We use a threshold
ΘR and consider the devices whose RD,C >ΘR as containing
the physical property C.

The devices with the same physical channel and
spatially-near locations are considered correlated. Mean-
while, the devices affected by the automation rule are also
considered correlated. Then, we get the correlation matrix
G.

During the training phase of our model, since the data
collected from smart home logs only includes the state
change of devices, it is necessary to maintain a cache matrix
variableML×N to record the current state of all devices in the
environment. Each row of the matrix represents the previous
N state values of the target device, and each column repre-
sents the state of all L devices in the current time sD = ðsD1
; sD2 ;⋯ ; sDLÞ, i.e., the environment state. In this step, we
select k other devices with the highest correlation of target
devices for the following calculation. First, we obtain the
data related to the target event for anomaly detection,
including states of all L devices in the environment, and
the corresponding correlation vector which is denoted as g
=G∗,j. g is the correlation vector between the target device
and other devices, and the values of each item are 0 or 1.
(i.e., a column in correlation matrix G). The devices with
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Figure 2: Framework of HomeGuardian.
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correlation are marked as 1, and others are marked as 0. The
Hadamard product of g and sD is the device state value vec-
tor correlated with the target equipment. Furthermore, we
remove the zero values and reduce the dimension of the state
value vector. After the above steps, we obtain the current
state changes correlated to the target devices, i.e., the envi-
ronmental context features, which are denoted as fe = ðsD1 ;
sD2 ; sD3 ;⋯ ; sDkÞ.

Algorithm 1 summarizes the above environmental con-
text feature extraction process.

3.4. Event Classifier. Given ft and fe, we utilize Neural Net-
works (NN) to classify normal events and abnormal events.
According to the characteristics and experience of the target
problem, if the NN has two hidden layers and an appropri-
ate activation function, it can fit any decision boundary or
smooth mapping with any accuracy [22]. Since the context
feature may differ for different types of candidate events,
for example, some events may pay more attention to the his-
torical trend, some pay more attention to the surrounding
environment, and some need to be comprehensively con-
sider these two factors. In order to consider the impact of
time and environmental context for event classification at
the same time, we concatenate the two feature vectors as
NN input, and we learn the weight relationship of each fea-
ture to the judgment result by training our NN.

The input of our NN is vector x ∈ Rk+4 concatenated
from temporal context ft ∈ R4 and environmental context
fe ∈ Rk, i.e., x = fft , feg. The output is the judgment result ŷ.
We use ReLU on the hidden layers and Sigmoid on the out-
put layer to map the result to ½0, 1�. When training, the nor-
mal events are marked as 0, abnormal events are marked as 1
, and we set a threshold on the result to give judgment. The
input layer has n nodes, there are n/2 nodes in the first hid-
den layer, and 3 nodes in the second hidden layer. Temporal
context ft includes predicted time tPi , predicted value sPi , real
time tRi , and real value sRi , which describes deviations
between predicted and true values. The environmental con-
text fe includes the states of the selected k devices, which
consist of related device states sD1i , sD2i ⋯ sDki . The forward
propagation process of our NN is described as h1 = ReLUð
W1x + b1Þ, h2 = ReLUðW2h1 + b2Þ, and ŷ = SigmoidðW3h2
+ b3Þ, where W1,W2,W3 refer to the weight matrices for
each layer, and b1, b2, b3 refer to the layer bias vectors. We
use binary crossentropy (BCE) [23] as our loss function,
which is denoted as Lðy, ŷÞ = −y · log ŷ + ð1 − yÞ · log ð1 − ŷÞ
, where ŷ refers to the probability to predict samples as pos-
itive of our model, i.e., the probability of an event to be pre-
dicted as abnormal. y refers to the sample label, which is 1
when the sample is positive and 0 when negative. We adopt
a binary classification method to determine whether there
are abnormal events in the smart home system. Regular
device state changes in a smart home are generally normal
events. The training process requires not only the event log
under a normal environment but also abnormal events. To
achieve this, we obtain the abnormal data from our self-
designed testbed by simulation. The features of normal and
abnormal events are extracted based on the log generated
by the smart home platform.

4. Implementation

4.1. Simulation-Based Data Collection. Our anomaly detec-
tion system is deployed on a heterogeneous system with dif-
ferent brands of devices connected to Home Assistant.
Normal behavior is obtained directly from the system logs.
To simulate abnormal behavior, we reproduce an injection
attack for forgery sensor event. In particular, we intercept
the token through a man-in-the-middle attack via a ZigBee
gateway and forge POST requests from sensors to the Home
Assistant server to overwrite the states of real devices. After
injecting the forgery event, normal and abnormal events are
indistinguishable in platform system logs. Thus, we capture
the records of events replied by the Home Assistant to mark
the events injected by our attack.

After processing the data collected from the virtual and
real smart home platforms, we observe that the time interval
between two events varies randomly. Thus, this feature is
inappropriate as a criterion for effective detection. At the
same time, if there are unexpected situations such as net-
work disconnection and system downtime in the smart
home system, the time interval of events will increase and
drop sharply, which might seriously affect the accuracy of
our behavior model. Therefore, in this work, the event time
information is uniformly converted to Unix timestamp [24].
Through actual testing, we found that the frequency of event
occurrence is different for different devices. Therefore, an
appropriate start time could be selected according to the
device types. Take motion sensors for instance, if the event
frequency is high, the first state change moment of each
week could be selected as the starting time point. Differently,
temperature sensors have low-frequency events, and the first
state change every three months could be selected as the
starting point as seasonal effects need to be considered.

4.2. Environment Association Extraction. In this step, we use
word2vec [25] to convert the extracted keywords into two
vectors, namely, VD (device name word vector) and VC
(physical channel semantics vector) and then calculate their
cosine similarity, which is given by RD,C = vD · vC/kvDk · k
vCk =∑n

i=1vDi × vCi/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1v

2
Di

p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1v

2
Ci

p

. We use the word
vector model from Google News [26] as a pre-trained cor-
pus. We extract keywords of device entities in Home Assis-
tant (e.g., “light,” “sensor,” and “door”) and use word2vec
to embed them. The correlation between devices and physi-
cal channels is represented by the cosine similarity between
device keywords and physical channel keywords (e.g.,
“motion,” “illuminance,” and “sound”).

Based on the established rule set and semantic associa-
tion information, we obtain the association table of IoT
devices. As shown in Table 2, the relevance includes deter-
ministic association rules in which the trigger condition
involves the correlation between the monitoring device and
the target device to carry out the instruction. These associa-
tions are determinate because as long as the trigger condi-
tion is met, the smart home system will instruct target
devices to perform corresponding operations. It is important
to note that associations through physical channels need to
combine with the spatial location of devices.
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During data processing, we record the latest N states of
each device in smart homes (according to device type, N is
selected from 2, 10 in our implementation). For each state,
we also require the current states of other devices (i.e., the
environment state). In the detection phase, HomeGuardian
then implements real-time anomaly detection by capturing
device states in the current environment from the Home
Assistant platform through GET requests.

5. Evaluation

5.1. Experiment Setup. To collect testing event data, we
develop a self-configured testbed based on the Home Assis-
tant platform. Our testbed supports virtual device simula-
tion, which is based on HH114 dataset from CASAS [27].
The testbed consists of real smart devices and simulated vir-
tual devices. Event data related to experiments are logged
and can be extracted on-demand.

We mainly focus on four types of devices below: motion
sensors, temperature sensors, lights, and illumination sen-

sors. The virtual devices can also be bound to devices in
the laboratory, which can reflect the physical interactions
(e.g., interactions between a virtual light L001 and a real illu-
mination sensor LS001.) Figure 3 shows the layout of virtual
devices in a room map in our experiments. Environmental
factors influence devices located in the same color area.
The devices marked with an asterisk are real devices, and
devices with two asterisks are simulated virtual devices.

By sending events to the testbed platform iteratively, we
simulate logs containing interactions produced by preset cus-
tom automation rules. Since events in the CASAS dataset are
captured under a real scenario that can reflect user behaviors,
simulated logs are largely consistent with the real logs. The
logs can be directly obtained from the Home Assistant plat-
form if connected devices exist. The virtual devices are used
as supplementary. Users manually manipulate or use external
scripts to control the real devices and record real events.

5.2. Effectiveness on Event Prediction. In this subsection, we
first determine the count of historical events N selected

Input:nD, nC , ΘR, sD
Output:fe
/* compute similarity of word vector, build correlation matrix G */
fori = 0⟶ lenðnCÞÞdo

forj = 0⟶ lenðnDÞÞdo
RD,C = similarityðnC , nDÞ
ifRD,C >ΘRthen

Gi,j ⟵ 1
else

Gi,j ⟵ 0
/* build feature vector */
fD ⟵G∗,jesD
/* remove 0 values*/
foriteminfDdo

ifitem ≠ 0then
fe:appendðitemÞ

returnfe

Algorithm 1: Environmental Context Feature Extraction.

Table 2: Correlation between smart home devices.

Causality Code a b c d e f g h i

Temperature sensor a — — √ √ — — — — —

Humidity sensor b — — √ — √ — — — —

Air conditioner c ◯ ◯ — √ √ — — — —

Smart socket d — — √ — — — — — —

Heater e ◯ ◯ √ — — — — — —

Humidifier f ◯ ◯ √ — — — — — —

Wireless switch g — — — — — √ — — —

Bedside lamp h — — — — — — — ◯ —

Night light i — — — — — — — ◯ —

Motion sensor j — — — — — — √ — —

Door and window sensor k — — — — — — — — √

√: association rules triggered; ◯: environment triggered.
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when predicting the target one and evaluate the effectiveness
of the event prediction mechanism. We select four types of
typical devices for the following test.

5.2.1. Parameter Selection. We use dynamic time warping
(DTW for short) as an algorithm measuring the distance
between a couple of time series and calculate similarity dis-
tances LDTW between a predicted sequence A′ and a real
sequence A. Thus, the similarity of these sequences is calcu-
lated as SDTW = 1 − 2LDTW/μA + μA′. Where μ represents the
mean state value of each sequence. The similarity is then
used as an evaluation benchmark for prediction effective-
ness. As shown in Figure 4, we can observe the impact of
N selection on event prediction results by calculating SDTW
of event predictions for four different devices with incre-
mental N values selected.

For motion sensors, the prediction effectiveness
decreases as the history length N increases as shown by the

blue discount, which means these device states are not
strongly correlated with historical data. Therefore, we pay
more attention to the environmental context when anomaly
detection, such as changes under correlation between each
motion sensor and its surrounding motion sensors in real
scenarios. Consequently, we take N = 2 for devices of this
kind. For temperature sensors, illumination sensors, and
lights, the prediction effect will not achieve the best goal
until N is about 9 to 10, and it only fluctuates slightly with
N larger than 10. Accordingly, we take N = 10 for data
processing.

5.2.2. Results. We divide the first 80% of the dataset in the
specified time interval as the training set and the rest of
the dataset as the testing set. Rest experiments mentioned
in this paper all take the same method. Taking the tempera-
ture sensor T102 as an example, the prediction results of its
state changes are shown in Figures 5(a) and 5(b). The cyan
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data represents the true value, the red data represents the
predicted value, and the fitting effect is as expected.

Exceptionally, the output values of the model need to be
adjusted to the specifics of different IoT devices. Since the
accuracy of the device T102 thermometer is 1 degree Celsius
in the current dataset, the output of the model can be
rounded. Binary value devices, such as human motion sen-
sors and light switches, output in the form of ON/OFF.

The subsequent output value must be the inverse of the cur-
rent state. Thus, the binary value device only needs to pre-
dict the moment of the next occurrence, without
considering device states.

While using event timestamps as the x-coordinate and
the state value of the device as the y-coordinate, the pre-
dicted events and the real events are put together for com-
parison. The moment offset and state offset of the
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Figure 5: Prediction results of temperature sensor T102.

Table 3: Event prediction NRMSE.

Device M001 M002 T102 T103 L001 L002 LS001 LS002

NRMSEt 0.011 0.014 0.023 0.025 0.028 0.021 0.021 0.023

NRMSEs 0 0 0.1394 0.1648 0 0 0.051 0.060

Note: NRMSEt : NRMSE of timestamps; NRMSEs: states prediction.
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prediction results can be obtained intuitively, as shown in
Figure 5(c). Then, real values and predicted values of time
and state will be passed into the classifier of the anomaly
detection, respectively. For quantitative evaluation of fore-
cast results, we use the normalized root mean square error
(NRMSE) [28] as an indicator. For a given sequence Y and

its estimate Ŷ, there are MSE = 1/n∑n
i=1ðYi − Ŷ iÞ2, and

NRMSE = RMSE/Ymax − Ymin =
ffiffiffiffiffiffiffiffiffiffi

MSE
p

/Ymax − Ymin.
NRMSE relates the root mean square error (RMSE) to the
observed variable range. Thus, it can be interpreted as a frac-
tion of the overall range that is typically resolved by the
model. The NRMSE of prediction results is shown in
Table 3. The NRMSE for binary states prediction and time-
stamps prediction is 0 and 0.02, respectively. The effective-
ness of the prediction achieves as expected.

5.3. Effectiveness on Anomaly Detection. First, we take an
experiment on the motion sensor M001. We extract a total
of 24,765 log entries generated by M001 within a week. Fur-
ther, we simulate 2,500 injection attacks conducted on our
testbed platform. After that, temporal context features and
environmental context features at the corresponding
moment are extracted for anomaly detection. We select the
first 80% of the data as the training set and the last 20% as
the test set. We use Youden J statistic [29] to obtain the opti-
mal receiver operating characteristic (ROC) threshold Θ =
argmaxðTPR − FPRÞ = argmaxððTP/TP + FNÞ + ðTN/TN +
FPÞ − 1Þ. The F1-score of abnormal events generated by the
classifier is calculated as 0.90636, with an accuracy of 0.96.

To achieve better classification while avoiding overcom-
plicated schemes, we fine-tune the NN structure. Specifi-
cally, there are two nodes in the output layer. One acts as
the normal label ŷ1, the other acts as the abnormal label ŷ2,
and both fall in the range 0 to 1 through the softmax func-
tion and add up to 1, i.e., ŷ = ðŷ1 ; ŷ2Þ = SigmoidðW3h2 + b3
Þ. During training, normal events are labeled as (1,0), and
abnormal events are labeled as (0,1). During classification,
once the output shows ŷ1 > ŷ2, the input event is classified
as normal, and ŷ1 < ŷ2 is the criteria to determine abnormal
events. We feed the dataset into a new dual-output classifica-
tion network, and its results compared to the original one
are shown in Table 4. F1-score is selected as the effectiveness
evaluation criterion. The same methods are applied to
motion sensor M002, temperature sensors T102/T103, smart
lights L001/L002, and light sensors LS001/LS002. Anomaly
detection of different devices has different dependencies on

temporal or environmental contexts. Combining the two
features can adapt to different types of devices without obvi-
ous F1-score degradation. Besides, the classifier achieves a
better classification of smart devices of different value types.
Since a dual-output neural network structure avoids thresh-
old selection, it has better classification ability than a single-
output neural network classifier.

6. Related Work

6.1. Event Sequence-Based Detection. Current studies mainly
use network traffic and environmental sensor states at the
time of the event as features. Considering network traffic fea-
tures, Saxena et al. [30] propose a method to detect the iden-
tity and behavior of home devices using encrypted network
traffic, choosing statistical features of ZigBee network traffic
packets as a basis for classification. Zhang et al. [12] present
an approach based on physical event fingerprints. They con-
struct automata for IoT application behavior and extract
event features from the wireless communication environ-
ment as fingerprints.

Since smart home sensors may change correlatively
when they are affected by the same physical event, Laput
et al. [31] propose a method to obtain event fingerprints
based on heterogeneous sensor data. They collect data from
all sensors except cameras, manually label event data, and
use an SVM model to classify abnormal events. Birnbach
et al. [32] also use heterogeneous sensor data to build finger-
prints for events and detect spoofed events. They extract the
relative mutual information of each sensor and event as fin-
gerprints and select data for SVM classification.

6.2. Application Analysis-based Detection. In addition to
extracting the characteristics of events, the correlations of
IoT applications are also considered in anomaly detection.

To find risky physical channel associations, Ding et al.
[11] provide IoTMon, a solution for identifying and analyz-
ing hidden interaction chains between IoT applications. It
analyzes SmartApp interaction using static analysis and
SmartApp descriptions via NLP to identify smart home
environments. Soteria [33] models IoT applications based
on intermediate representation (IR). The state model is
automatically extracted from the SmartThings IoT applica-
tions to detect whether the program has rule conflicts.

However, approaches based on static analysis cannot
solve the runtime policy violation problem in realistic smart
home systems. IoTGuard [34] is a dynamic policy

Table 4: Abnormality classifier effectiveness for each device.

Device
Temporal context only Environmental context only Single-output NN Dual-output NN

Precision Recall F1-score Precision Precision Recall F1-score Precision Precision Recall F1-score Precision

M001 0.84 0.92 0.88 0.69 0.84 0.92 0.88 0.69 0.84 0.92 0.88 0.69

M002 0.85 0.88 0.86 0.48 0.85 0.88 0.86 0.48 0.85 0.88 0.86 0.48

T102 0.93 0.89 0.91 0.41 0.93 0.89 0.91 0.41 0.93 0.89 0.91 0.41

L002 0.52 0.63 0.57 0.99 0.52 0.63 0.57 0.99 0.52 0.63 0.57 0.99

LS001 0.57 0.39 0.46 0.97 0.57 0.39 0.46 0.97 0.57 0.39 0.46 0.97

LS002 0.41 0.28 0.33 0.98 0.41 0.28 0.33 0.98 0.41 0.28 0.33 0.98
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enforcement system that blocks insecure states by monitor-
ing the runtime behavior of IoT applications. HAWatcher
[14] is based on semantic analysis of event logs and
physical-channel-related descriptions. It generates associa-
tions and uses event logs for verification. Based on the anal-
ysis of the impact of physical channels between devices,
Ozmen et al. [35] use formulas of physical laws for the first
time to quantify the specific results of interactions between
devices, improving the accuracy of the analysis results.

7. Conclusion

In this paper, we propose HomeGuardian, a context-based
approach to detect abnormal events in smart home systems.
In our approach, we predict the temporal context and infer
environmental context based on system log, device, and rule
configurations. By converging these hybrid event contexts,
we construct a learning-based classifier to detect abnormal
events. We evaluate HomeGuardian based on the event data
collected from our self-configured testbed. The experiment
results show that the F1-scores are beyond 0.90 for all device
types.
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