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Recent advances in multispectral and hyperspectral sensing
technologies coupled with rapid growth in computing power
have led to new opportunities in remote sensing—higher
spatial and/or spectral resolution over larger areas leads
to more detailed and comprehensive land cover mapping
and more sensitive target detection. However, these mas-
sive hyperspectral datasets provide new challenges as well.
Accurate and timely processing of hyperspectral data in large
volumes must be treated in a nonconventional way in order
to drastically enhance data modeling and representation,
learning and inference, physics-based analysis, computa-
tional complexity, and so forth. Current practical issues
in processing multispectral and hyperspectral data include
robust characterization of target and background signatures
and scene characterization [1-3], joint exploitation of spatial
and spectral features [4], background modeling for anomaly
detection [5, 6], robust target detection techniques [7], low-
dimensional representation, fusion of learning algorithms,
the balance of statistical and physical modeling, and real-time
computation [8, 9].

The aim of this special issue is to advance the capa-
bilities of algorithms and analysis technologies for mul-
tispectral and hyperspectral imagery by addressing some
of the above-mentioned critical issues. We have received
many submissions and selected six papers after careful
and rigorous peer review. The accepted papers cover a
wide range of topics, such as anomaly detection, target
detection and classification, dimensionality reduction and
reconstruction, fusion of hyperspectral detection algorithms,

and non-Gaussian mixture modeling for hyperspectral
imagery. The brief summaries of the accepted papers are as
follows.

The paper “Hyperspectral anomaly detection: comparative
evaluation in scenes with diverse complexity,” by D. Borghys
etal., provides a comprehensive review of popular hyperspec-
tral anomaly detection methods, an important problem in
hyperspectral signal processing, including the global Reed-
Xiaoli (RX) method, subspace methods, local methods, and
segmentation based methods. The extensive performance
analysis of these methods is presented in scenes with various
backgrounds and different representative targets. The com-
parative results reveal the superiority of some detectors in
certain scenes over other detectors.

The paper “Non-Gaussian linear mixing models for
hyperspectral images, by P. Bajorski, addresses the problem
of modeling hyperspectral data using non-Gaussian
distribution. It is done by assuming a linear mixing model
consisting of nonrandom-structured background and
random noise terms. The nonvariable part of a hyperspectral
image (structured background) can be assumed to be
deterministic because of the strong presence of certain known
materials. The variable noise term is modeled as two different
multivariate distributions in the paper. The model is tested on
two sets of hyperspectral data, one AVIRIS and one HyMap
image, to determine which model best fits the data. Compre-
hensive results are provided along with a complete analysis of
how researchers can verify how well a particular model fits a
particular dataset. The significance of this paper lies in the fact



that, often, in applications such as detection, classification,
and synthetic data generation, a Gaussian distribution
cannot be used to model hyperspectral data distributions,
and other multivariate distributions are required instead.

The paper “Randomized SVD methods in hyperspectral
imaging, by J. Zhang et al., addresses the problem of
dimensionality reduction, compression, classification, and
reconstruction of massive hyperspectral datasets by using
a recently developed novel probabilistic approach called a
randomized singular value decomposition (rSVD) technique.
In rSVD, a large data matrix is iteratively approximated
by random projection and factorized into low-dimensional
matrices. In this paper, it was also demonstrated that fast
computation in compression and reconstruction of large
HSI datasets can be effectively achieved using the rSVDs
approach.

The paper “Evaluating subpixel target detection algorithms
in hyperspectral imagery, by Y. Cohen et al, considers
algorithms for subpixel target detection and emphasizes the
importance of good evaluation protocols for assessing those
algorithms. The choice of algorithms (and, just as impor-
tantly, of parameters within a given algorithm) depends on
image statistics, the target’s spectral signature, and spatial
size. By artificially emplacing simulated targets in a scene
of interest, they are able to evaluate the effectiveness of
different algorithms at detecting those targets and do so
in a way that avoids the anecdotal statistics and inherent
uncertainties that arise with real targets and real (which is
to say, imperfect) ground truth. This work, in particular,
extends the authors’ previous work in the field by making
the emplacement more realistic by incorporating “pixel
phasing” effects (which occur when the target straddles two
or more pixels) and image blurring. The authors use this
approach to identify good detection algorithms for subpixel
targets in the RIT Blind Test dataset [10] and demonstrate
their efficacy by obtaining excellent scores on the blind
test challenge. Although they do not claim to have found
a universally optimal detector, their experiments consis-
tently preferred a local ACE detector with a 3 x 3 moving
window.

The paper “Target detection using nonsingular approxi-
mations for a singular covariance matrix, by N. Gorelik et
al,, introduces nonsingular matrix approximation techniques
to improve the performance of the Reed-Xiaoli (RX) hyper-
spectral anomaly target detection approach, which normally
involves singular covariance matrices. In this paper, the
performance evaluation of the RX techniques based on these
two nonsingular matrix approximations instead of a singular
covariance matrix is presented. The experimental results
characterize the pros and cons of the two methods in different
scenes.

The last paper “A semiparametric model for hyperspectral
anomaly detection,” by D. Rosario, addresses the problem
of anomaly detection in hyperspectral imagery. Because
anomalies are by definition undefined, this is a problem that
is fraught with pitfalls. Nonetheless, a scheme is developed
that incorporates both physical intuition and mathematical
sophistication and is applied to both the ubiquitous Forest
Radiance dataset and some forward-looking imagery in the
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visible and near infrared. One of the innovations in the algo-
rithm is a conversion of high-dimensional pixel descriptors
to scalar values, based on angular distances to an appropriate
centroid.

This special issue provides the reader with an overview
of many (though certainly not all) of the current critical
issues in multispectral and hyperspectral image analysis.
We thank all the authors who responded to the call for
papers, and we are especially grateful to the anonymous
reviewers for their considerable time and tremendous effort
in evaluating the manuscripts and providing invaluable
comments to improve the quality of the papers in this special
issue.

Heesung Kwon
Xiaofei Hu
James Theiler
Alina Zare
Prudhvi Gurram
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Using hyperspectral (HS) technology, this paper introduces an autonomous scene anomaly detection approach based on the
asymptotic behavior of a semiparametric model under a multisample testing and minimum-order statistic scheme. Scene anomaly
detection has a wide range of use in remote sensing applications, requiring no specific material signatures. Uniqueness of the
approach includes the following: (i) only a small fraction of the HS cube is required to characterize the unknown clutter
background, while existing global anomaly detectors require the entire cube; (ii) the utility of a semiparematric model, where
underlying distributions of spectra are not assumed to be known but related through an exponential function; (iii) derivation of
the asymptotic cumulative probability of the approach making mistakes, allowing the user some control of probabilistic errors.
Results using real HS data are promising for autonomous manmade object detection in difficult natural clutter backgrounds from

two viewing perspectives: nadir and forward looking.

1. Introduction

Hyperspectral (HS) sensors collect the radiation over a
wide range of contiguous spectral bands, with each band
corresponding to a unique spectral value. The field of view
of the sensor is broken into hundreds of thousands of
pixels, with each pixel representing from less than one to
many squared meters of the region of interest depending on
the spatial resolution of the sensor and the height of the
sensor during the data collection. A collection of spatial-
spectral images is put together resulting in an HS data cube,
where the length and width represent the spatial dimension,
and the depth represents the spectral dimension [1]. The
resulting HS data cube consists of hundreds of thousands
of pixels. Each pixel has tens or hundreds of data points,
each point corresponding to a unique spectral value. In
theory, the spectral signature of each pixel should uniquely
characterize the physical material in that spatial land area.
In practice, the recorded spectral signatures will never be
identical for samples of the same material. Owing to the
different illumination conditions, atmospheric effects, sensor
noise, and so forth, the resulting spectral signatures for
HS imagery pixels containing similar materials will exhibit
spectral variability.

The discriminant capability, however, of spectral signa-
tures has led to two major applications: object classification
and target detection. The former aims to assign all pixels of
the image to thematic classes, the latter searches the image for
the presence of specific material (the target). As highlighted
in [2], from a theoretical point of view, target detection can
be considered as a binary classification problem, aiming at
classifying the image into the target class and the background
class. But, since targets are usually sparsely populated in the
scene, while the background is abundant and heterogeneous,
a major distinction between the approaches designed for
target detection and classification is that target detectors
cannot use criteria based on the minimization of classifica-
tion error since that would lead to labeling every pixel as
background. So, a typical solution proposed in the literature
for target detection is to use the Neyman-Pearson approach,
as discussed by Manolakis in [3], where maximizing the
detection probability for a fixed false-alarm rate is the
adopted criterion for the algorithm design.

Due to the availability of spectral signature libraries for
a wide range of materials, spectral signature-based target
detectors have been widely examined [3, 4]. These methods
assume the target spectral signature is both reliable and
known a priori and aim at finding highly correlated spectra



in the scene corresponding to the reference target spectra;
these methods are also known as target matching.

Target matching approaches are complicated by the large
number of possible objects of interest and uncertainty as
to the reflectance/emission spectra of these objects. For
example, the surface of an object of interest may consist
of several materials, and the spectra may be affected by
weathering or other unknown factors. One may be interested
in a large number of possible objects each with several
signatures. Thus, the multiplicity of possible spectra asso-
ciated with the objects of interest and the complications
of atmospheric compensation, as well spectral calibration,
acquisition geometry, and contamination from adjacent
objects (see, for instance, the discussion in [5, 6]), have led to
the development and application of anomaly detectors that
seek to distinguish observations of unusual materials from
typical background materials without reference to target
signatures.

Anomalies are defined with reference to a model of
the background. Typically, background models are devel-
oped adaptively using reference data from either a local
neighborhood of the test pixel or a large section of the
image. Local and global spectral anomalies are defined as
observations that deviate in some way from the neighboring
clutter background or the image-wide clutter background,
respectively. Both approaches have their merits.

Local anomaly detectors are typically designed under
the assumption that an anomalous material (the target) is
spectrally distinct from local neighborhood spectra, which
are assumed to be controlled by a known multivariate
distribution (Gaussian); also, it is assumed that the scales
of targets are known a priori, or the viewing perspective
is assumed to be nadir and the altitude of the flying
platform carrying the sensor is available for target scale
estimation. This kind of detectors is susceptible to unknown
spectral mixtures that are often obtained by sampling
spectra through a moving window in the imagery, as the
window is placed at a transition of distinct regions, forcing
the neighboring spectral mixture to be compared against
spectra of one of the regions in that transition; this may
significantly increase the false alarm rate. The local anomaly
detector is also susceptible to false alarms that are isolated
spectral anomalies. For example, consider a scene containing
isolated trees on a grass plain. Each separate tree may
be detected as a local spectral anomaly even if the image
contains a separate region with many pixels of trees. The
most popular local anomaly detector in the HS research
community is based on maximum likelihood estimation
under the multivariate normal distribution; this detector is
commonly known as the Reed-Xi (RX) algorithm [7] and has
become a benchmark for comparison. Kwon and Nasrabadi
proposed a kernelized version of RX in [8], and Matteoli
et al. proposed a segmented version of RX in [9], for the
estimation of the local background covariance matrix from
global background statistics to cope with the small sample
size problem in estimating covariance from local patches in
the image; a small sample size problem occurs when the
number of spectral observations is lesser than the number
of spectral bands (see examination of this problem in [2]).
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Banerjee et al. in [10] leveraged the employment of kernel
methods and the method known as support vector data
description (SVDD) to propose the kernel SVDD. But, it
is widely known that the performance of kernel methods
crucially depends on the kernel function and its parameter(s)
[11]. More recently, Gurram and Kwon in [12] and Khazai
et al. in [13] have also addressed the parameter sensitivity
of kernel-SVDD based detectors, which is still an open area
of research. In the statistical based arena, Stein et al. in [14]
presented an overview of the statistical anomaly detectors
derived from three background models: local Gaussian
model, Gaussian mixture model (GMM), and linear-mixing
model. More recently, these models were compared against
others approaches using the same dataset [15, 16]. In [15],
the algorithms RX, GMM, and a cluster-based one were
examined. Matteoli et al. in [16] extended the comparison to
include the orthogonal subspace projection (OSP) detector
and a deterministic signal subspace processing detector.
Other classic approaches have also been adapted to the
local anomaly detection problem, for example, Fisher’s linear
discriminant (see an implementation in [17]).

Global anomaly detectors are based on a simple universal
distribution, which is designed to represent the background
process in the whole image, thus, the name global. Example
of these detectors is the GMM [14] or a different version of
the RX algorithm, which estimates its required parameters
(mean and covariance) not locally, but using spectra from the
entire HS data cube; this version is informally known as the
Global RX. By design, these methods are more resistant to the
small sample size problem mentioned earlier, but they have
limited ability to adapt to all nuances of the background class
(sometimes referred to as an underfitting problem), which
may result in both high false alarm and low anomaly detec-
tion rates. Other earlier versions of global detectors require
that an HS data cube is first segmented into its constituent
material classes, so detection is achieved by applying a cutoff
threshold and automatically locating pixel clusters with pixel
values above the threshold, representing the outliers of these
classes. These hybrid algorithms vary in the method of
segmentation, but also tend to use maximum likelihood
detection under the multivariate normal distribution. The
stochastic expectation maximization clustering algorithm
by Stocker in [18] is a related example; see also Masson
and Pieczynski in [19]. But, since segmentation results are
known to be also sensitive to algorithms’ parameters (see,
for instance, [1]), utility of segmentation algorithms in the
context of anomaly detection has not met expectations for
varying real world scenarios.

Independently of the kind of anomaly detector in use,
the following is a key consideration that should not be
ignored: susceptibility to unknown spectral mixtures of
unknown distributions often observed by sampling spectra
through a moving window in the imagery, where the spectra
in test belong to one of the components in that mixture
(for instance, a local patch of canopy being compared
against neighboring spectral mixture of the same canopy
type and a patch of soil). Rosario in [20] examined this
particular problem using near infrared HS imagery, where he
showed that even on simple real case scenarios (e.g., motor
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vehicles parked at an open grassy field having also trees
in the background on a sunny day) transitions of distinct
regions may contribute to 18% of all of the locally observed
spectra in the imagery, using a small moving window (10
by 10 pixels). Of course, with increased scene complexity
(increased heterogeneity), this percentage reaches higher
levels.

This paper presents a quasiglobal, semiparametric
anomaly detection (QG-SemiP) approach that is less suscep-
tible to problems and issues mentioned above for existing
local or global anomaly detectors. In particular, the approach
requires only a small fraction of the HS cube to characterize
the unknown clutter background (hence, the term quasi-
global), in contrast to existing global anomaly detectors,
which require the entire cube. It does not use segmentation
and it is less susceptible to spectral mixtures in local
neighborhoods of the imagery.

The approach consists of three major parts: (i) a data
dimension reduction method, which plays an important
role on the overall approach, since it maps the data from
their native multivariate space to a univariate domain in
order to avoid the small sample size problem mentioned
earlier, gaining in the process insensitiveness to illumination
on objects, reducing the dominance of the blackbody
response produced by Earth (if the longwave infrared region
applies), among other benefits to be discussed later; (ii)
a univariate semiparametric model [21], which is chosen
because of its robustness to samples representing a mix-
ture of material types; (iii) a parallel random sampling
scheme that characterizes the unknown background clutter,
using a binomial probability density function to model the
likelihood of sampling targets by chance and erroneously
labeling them as clutter, justifying multiple sampling trials
in parallel in order to significantly decrease the labeling error
probability.

The semiparametric model is neither parametric, since
the specific distribution controlling the data is not assumed
to be known, nor nonparametric, since other parameters
must still be estimated relating two unknown distributions.
The semiparametric model, however, assumes that the
distributions of the samples to be tested are related to each
other through an exponential function (a distortion), having
two unknown parameters. As it will be shown later in
detail, the model is appealing for many reasons, including
the following: if two spectral samples under test belong to
the same material type (i.e., they are not anomalous to
each other), then the assumed exponential function relating
both distributions is reduced to unity. If the two samples
under test belong to different material types (i.e., they are
anomalous to each other), then the exponential function
will impose a significant weight relating both distributions,
indicating that the samples are anomalous to each other;
a key point here is that such an outcome is invariant to
whether the assumption of exponential relationship between
the distributions is satisfied or not—this will be discussed
in more detail later. Finally, another benefit, although not
recognized earlier by users of semiparametric models in
other areas of study, is the model’s natural ability to
handle samples representing a mixture of different material

types, which also will be shown later. As a note, samples
representing a mixture of material types are known to
significantly increase the false alarm rate in operational
scenarios, requiring autonomous anomaly detection; they
can produce dominant edges between spatial regions of
different material classes, later to be detected as meaningless
(false) anomalies [2].

The strength of the semiparametric model handling the
mixture problem is attributed to the fact that a sample
under test is expected to contribute to the estimation of
the distribution function controlling the sample labeled
as reference, where both samples are expected to equally
contribute to the estimation (when both are in fact under
the same distribution), only the reference sample will be
able to contribute (when both samples are from different
distributions), or both the reference sample and a portion
of the test sample will contribute (when the reference is
a mixture and the test sample represents a component in
that mixture, or vice versa). These outcomes are produced
naturally by the model because of the imposed exponential
relationship between the two distributions, as shown later
using simulated univariate data to make the point. Another
appeal for using an exponential distortion assumption is that
many of the known distribution functions can be expressed
in terms of an exponential distortion of another distribution,
including all of the exponential family of distributions
[22].

Rosario in [23] published a much earlier and limited
conference paper version of this work, where a two-step
semiparametric detector (data transformation and semi-
parametric test statistic) was introduced to the limited
task of local anomaly detection (where prior knowledge
of targets’ scales was required, imposing the limitation)
and its performance was compared only against the RX
algorithm. Relative to the previous work in [23], this paper
significantly extends both the overarching methodology and
presents additional results using the extended approach to
test significantly more challenging scenarios from the ground
to ground viewing perspective, where targets’ scales are
unknown a priori. In other words, this work enables capabil-
ity rather than just offers an incremental improvement. The
specific contributions in this paper (method extension and
additional results) are as follows.

(i) The two-step anomaly detector (data transformation
and semiparametric test statistic) is employed for
the first time in a quasi-global framework (which is
also proposed herein), where only a fraction of the
entire data cube being represented by blocks of data
are randomly selected from the imagery and used as
reference sets of spectra to test the entire imagery.
The results are later fused using order statistics, as
the sampling scheme is modeled by the Binomial
distribution.

(ii) An analytical cutoff threshold is derived from the
approach’s asymptotic cumulative probability of
rejecting a null hypothesis, when either the null or
the alternative hypothesis is true (given that the null



hypothesis is based on a multisample testing and
order statistic scheme).

(iii) The extended approach is applied to additional real
HS imagery to automatically find manmade objects
in the scene, producing excellent results in difficult
natural clutter scenarios viewed from both nadir and
forward looking viewing perspectives.

(iv) Performance of the extended approach is compared
via ROC curves against multiple methods found in
the literature, for example, global methods (k-means,
Gaussian mixture model, global RX), local methods
(kernel RX, standard RX, Fisher’s linear discriminant,
and the local semiparametric detector discussed in
[23]).

(v) An analytical study of the two-sample test frame-
work, using the local semiparameter detector in [23]
as the base detector.

(vi) An analytical study of the multi-sample fusion
test framework, using the semiparametric model
embedded in the quasi-global framework, which
relaxes the prior knowledge requirement of target
scales, hence, enabling scene anomaly detection tasks
independently of the viewing perspective (nadir or
forward looking).

(vii) A study of the semiparametric model’s behavior in
the presence of samples representing a mixture of
two different material classes, which is the most
common mixture case scenario given the sliding
window sizes typically used in anomaly detection
operational scenarios.

(viii) A subsection specially devoted to discuss the moti-
vation and give a qualitative assessment of the data
transformation used in the two-step semiparametric
anomaly detection of [23].

For convenience, a list of notations is available after the
appendix.

This paper is organized as follows: Section 2 describes
spatial data window models for HS sensing, a semipara-
metric model, and a hypothesis test; Section 3 discusses the
sampling method, its probabilistic model, and introduces
QG-SemiP; Section 4 discusses performance of QG-SemiP
testing nadir and forward looking HS imagery, consisting of
manmade objects in difficult natural background scenarios;
Section 5 concludes the paper.

2. Problem Formulation, Data Transformation,
and Semiparametric Model Description

The main goal of anomaly detection algorithms testing
incoming imagery is to detect objects that are spectrally
anomalous to its surroundings, yielding in the process a tol-
erable number of nuisance detections. In many surveillance
and reconnaissance applications, it is desired that manmade
objects are detected as being anomalous to the surrounding
natural clutter. Both format and model of the data play
a significant role in attempting to achieve the intended
goal.
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2.1. Remote Sensing Data and Data Format. Experiment
was carried out on data sets from two distinct sensors and
viewing perspectives: (i) the hyperspectral digital imagery
collection experiment (HYDICE) sensor, from a nadir
looking perspective; (ii) the SOC-700 hyperspectral sensor,
from a forward looking perspective. Data from these sensors
will be referred to in this paper as nadir looking imagery and
forward looking imagery, respectively.

The HYDICE sensor records 210 spectral bands in the
visible to near infrared (VNIR: bands between 0.38 and
0.97 ym) and short-wave infrared (SWIR: bands between
1.0 and 2.50 ym). An extended description of this dataset
can be found, for example, in Schweizer and Moura (2000).
The results shown in this section for one data subcube are
representative for other sub-cubes in the HYDICE (forest
radiance) dataset. An illustrative subcube (shown as an
average of 150 bands; 640 x 100 pixels) is depicted in Figure 1
(Cube 1, top). We discarded water absorption and low signal
to noise ratio bands; the bands used are the 23rd-101st,
109th—136th, and 152nd-194th. The scene consists of 14
stationary motor vehicles (targets near a treeline) in the
presence of natural background clutter (e.g., trees, dirt roads,
grasses). Each target consists of about 7 x 4 pixels, and each
pixel corresponds to an area of about 1.3 X 1.3 square meters
at the given altitude.

The forward looking imagery used for this work was
recorded using the SOC-700 VNIR HS spectral imager,
which is commercially available off the shelf. The system
produces HS data cubes of fixed dimensions R = 640 by
C = 640 pixels by K = 120 spectral bands between 0.38
and 0.97 ym. Figure 1 (Cube 2 through 4, bottom) depicts
examples of the forward looking imagery, where each pixel
in any of the three cube examples corresponds to the average
of 120 band values. Data cubes Cube 2 and Cube 3 were
collected during the summer of 2004 in California, USA;
Cube 4 was collected during the spring of 2008 in New Jersey,
USA. From actual ground truth, it is known that the scene
in Cube 2 (see Figure 1) contains three motor vehicles and a
standing person in the center of the scene (i.e., two pick-up
trucks to the left in proximity to each other, a man slightly
forward from the vehicles in the center, and a sport utility to
the right). Although the natural clutter in Cube 2 and Cube 3
is dominated by Californian valley-type trees and/or terrain
at the same general geolocation, the data in Cube 3 depict
a significantly more complex scenario. From actual ground
truth, it is known that in Cube 3 a sport utility vehicle is
inconspicuously deployed in the shades of a large cluster of
trees. Portions of the shadowed vehicle can be observed near
the center in Cube 3. Cube 4 was recorded in a wooded region
at Picatinny, where (according to the available ground truth)
a sport car is located behind multiple tree trunks, partially
obscuring the vehicle; see Figure 1 (Cube 4).

The four data cubes in Figure 1 are independently dis-
played as intensity images after linear mapping the gray scale
of each to the range 0-255. Pixel intensities shown in each
individual surface is only relative to corresponding values in
that surface; in other words, pixel values representing the
same material (e.g., general terrain) may be displayed with
different intensities in another surface. This fact explains,
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s
VNIR cube 3

VNIR cube 2

VNIR-SWIR cube 1

VNIR cube 4

FiGgure 1: Examples of nadir looking imagery (Cube 1) and forward looking imagery (Cubes 2 through 4). An effective anomaly detection
algorithm suite would allow a machine to automatically detect the presence of manmade objects (targets), while suppressing the cluttered
environment, using no prior information about what constitutes clutter background or target in the imagery.

for instance, the difference in brightness between the same
terrain under similar atmospheric conditions shown in Cube
2 and Cube 3. (The strong reflections from certain parts of
the vehicles captured by the sensor in Cube 2 are not as
dominant in Cube 3 because the vehicle in Cube 3 is in tree
shades; the open field in Cube 3 is then the strongest reflector
in the scene).

Next, we present a model of observed data using a sliding
n X n window in X (a data cube). The data format of X is

shown in (1), where r (r = 1,...,R) and ¢ (¢ = 1,...,C)
index pixels x,. in the R X C spatial area X, where n < R
and n < C. Pixels within a fixed n X n block of data in X
are indexed from the upper left corner of this block using ij
relative to rows and columns in X, wherei = 1,...,(R—n—1)
and j = 1,...,(C—n—1). Arepresentation of an nxn window
at pixel location (7, j) = (2,2) in X is as follows:

X711, X125 - X10
nxn window, where in this case i=j=2
X21> Xij> Xi(j+1)s« « > Xi(j+n—1) s X2C
X(2+1)1> X(i+1) j> X(i+1)(j+1)> « + + > X(i+1)(j+n—1) sy X(241)C
X = . (1)
X(2+n-1)1> X(i+n—1)j> X(i+n—1)(j+1)> - - « > X(i+n—1)(j+n—1) >e o> X(24n-1)C
L XR1> XR2> ..»XRC _

Before pixels within a block of data can be used by
a detector, they need to be rearranged to a sequence
of multivariate variables. The rearrangement is made by
concatenating individual rows in the n X n window in (1)
as follows:

W, = lxija---,Xi(j+n—1),x(i+1)j)---ax(i+1)(j+n—1)a---)
X(itn-1)js- - »X(ien-1)(jen-1) | ()

= [y117-~~)yln1])

where Wy € R 5y = n? and yy, € RE (h = 1,...,m),
such that y;1 = X, y12 = Xi(j+1), and so forth until finally

Yin = X(i+n-1)(j+n-1)- Since a window can be anywhere in X
and X represents any HS data cube, {y1h}Z‘:1 are considered
random vectors and the entire set of spectra that constitutes
X will be observed through the n x n window.

Using the assumption that the random vectors in W,
are independent and identically distributed (i.i.d.), the
distribution of data within the window, using (2), can be
simplified to the following:

Y11>--- )Ylnl ~ lld gl (y | 0), (3)

where g1(y | 0) is a conditional multivariate probability
density function (PDF) and 0 is its parameter set; both
&1(y | ) and 0 are typically unknown for real applications.



Normally, an anomaly detector requires two input sets of
spectra (W; € RK*™) and (W, € RK*™) to perform its task
on X. The test sample (W;) is obtained at a fixed location
ij in X, as shown in (1) and (2); but, the source to obtain
a reference sample (W) will depend on the application, or
viewing perspective.

For the nadir looking imagery, the most popular sam-
pling method is to use pixel vectors surrounding a nx n block
of data to construct Wy, where W is constructed using the
block of data to be tested. Notice that this sampling method is
not suitable for the forward looking imagery because a priori
knowledge of target scales in the imagery are required to set
the size of a separation (guard) region between the block of
data to be tested and locally surrounding samples.

For the forward looking imagery, the reference input set
W could be made available from a spectral library, or be
randomly selected from the testing data cube. In either case,
W, would be a rearranged version of a n X n block of data.
The latter is addressed in Section 3, where (in order to make
such a test useful for real applications) W is independently

compared to multiple spectral sets W(()f ) e RKxm (f =
1,...,N); fusing thereafter these comparison results in order
to yield a decision (output) surface, as described in Section 3.

Both input sets W, and W feed the anomaly detector.

As mentioned earlier, whether the viewing perspective
is nadir or forward looking, mixtures of different materials
in W; and/or in W, can significantly degrade anomaly
detectors’ performances, as examined by Manolakis and
Shaw in [2]. It is customary to assume normality in (3),
or mixture of Gaussian distributions, but experience has
shown (see [1]) that relaxation of these assumptions is
needed.

We discuss next a two-step approach for anomaly
detection, as introduced in [23], comprising of spectral
transformation followed by the application of a univariate
semiparametric model.

2.2. Data Transformation. This subsection discusses the
employed method to transform spectra from their native
multivariate space to a univariate domain, satisfying the
univariate data requirement of the semiparametric model.
We also provide justification for choosing the employed
transformation and give some example cases to reinforce its
use.

We consider a data transformation approach in two parts:
(i) spectral differencing and (ii) angle mapping.

The rationale for (i) is twofold: (a) since HS samples
are contiguous in the spectral domain (i.e., typical spectral
resolution is of the order of 10 nanometers), more discrimi-
nant and independent information pertaining to a particular
material type may be found between adjacent bands, which
could augment the statistical power of detectors (this is
specially the case in IWIR (longwave infrared) HS imagery
where the radiance values observed in calibrated data
(collected outdoor) are overwhelmingly influenced by the
Planck’s blackbody equation [1]), as the Earth’s landscape
(primarily, canopy and soil) behaves as a blackbody in the
LWIR region of the electromagnetic spectrum (note: there
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is a whole topic of study in mathematical statistics on
feature exploitation by zero crossing, which uses the output
of random variable differencing as used herein for spectra,
see [24]); (b) spectral differencing also puts significantly
less weight in the importance of spectral magnitude (or
bias) in anomaly detection applications, putting focus on the
importance of spectral shape, instead. Spectral magnitude
relates to the mean average of all measured radiance within
a spectral sample, and spectral shape relates to the plotted
curve of measured radiance as a function of wavelength.
Existing classification and detection algorithms directly or
indirectly exploit magnitude and/or shape of spectra in order
to perform their tasks.

The benefit of (ii) is that it reduces the detection problem
from a multivariate dimensional space to a univariate
domain, avoiding the undesired problem of singularity
issues during inverse estimations of covariance matrices.
Singularity is known to occur when the sample size of a
spectral sample is less than its number of spectral bands.
Although there are approaches proposed in the literature to
overcome this issue, the output of these approaches is not
always desirable (see, for instance, [3]), since a typical HS
sensor usually delivers between 120 and 1,000 bands, but
targets may vary in number of pixels from as large as in the
thousands to as small as 1 to 4 pixels, depending on the actual
physical sizes of these targets and/or distance between the
sensor and targets.

This paper is concerned about ensuring that the data
transformation method can in fact reduce algorithm sen-
sitivity to spectral magnitude (which can be achieved via
(1)), so that a manmade object, for instance, deployed in
tree shades can be considered as much as an anomaly
relative to a dominant natural clutter background in the same
way that the manmade object would have been if it were
deployed, instead, out in the open field. All of this, while
simultaneously preserving both a high sensitivity to spectral
shape and the discriminant characteristics among spectra of
distinct material types (which can be achieved via (ii)). If
these requirements are matched, then the data transforma-
tion approach has achieved the overall desired goal—some
example results are shown later in this subsection to reinforce
those points.

Before those examples are presented, however, consider
the following: let two spectra—having K spectral bands—
be available for comparison, yo = [Loi,...,Lox] and
Y1 = [L]],...,L]K], where Lij (l 0,1; ] = 1,...,K)
are nonnegative radiance values. Further assume that y,
is twenty percent stronger in magnitude than y,. One
way to formalize the disparity in magnitude is to let
{Loj =pu+ (Soj}j.{:l, {Lij=12u+ 81]-};(:1, and y > 0. Two key
points are worth noticing: (a) the difference Lo(j+1) — Loj =
(4 + Go(j+1)) — (4 + 8oj) = So(j+1) — 6o; would provide more
discriminant and independent information (8o(j+1) — &o;)
than jointly using the highly correlated Lo(j+1) and Lo;, ditto
for Ll(j+]) —Llj; (b) the difference L](j+1) —Llj = 61(]‘“) — (91]'
would remove from consideration the 20 percent stronger
average magnitude of Ly; over Lo, if the {Loj+1) — Lo j}f:’ll

. . . K-1
were used instead for comparison against {Ly(j+1) — Llj-}j:1 .
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In essence, (a) replaces the need for using—for instance—
PCA (principal component analysis) to uncorrelate the data,
as it is commonly employed in the HS community [2]);
from (b), if y; and y, are observations of the same material
under different illumination conditions (e.g., spectrum yp
representing a shaded object and spectrum y; representing
the same object but not shaded), then the average magnitude
difference between the two spectra would not play a role
in the comparison test, which is desired. For those readers
who may have some concerns about what may be lost in
the process of transforming the data from multivariate to
univariate in the context of anomaly detection, as it will
be shown shortly, the loss—although difficult to quantify—
is not relevant to the anomaly detection problem, since an
effective anomaly detector is not expected to distinguish a
material type that is spectrally similar to another material
type. If the detector is designed to be that sensitive, it would
likely also produce an unacceptably high false alarm rate due
to expected within class variability of the same material types
dominating the scene (for instance, the expected within class
variability of tree clusters across the scene).

The two-part transformation approach is described next.

Borrowing from the discussion in Section 2.1, the trans-
formation approach requires two sets of spectra, a reference
set (W),

Wo = [Yo1,-->Yon, |
LOH,..'.,LOMO (4)
Lok, - > Lok ,
whereyo; = [Lotis.. ., Loki]" is calibrated spectra from a pixel-

size location at the scene observed by the K-band sensor,
during a particular set of atmospheric and illumination
conditions; ()" is the vector transposed operator; Lok (k =
1,...,K) are radiance values, such that, adjacent radiance
values are usually highly correlated; i = 1,...,n and no is
the sample size of Wy; and an independent test set (W) that
most likely has the same atmospheric condition captured
in (4), but not necessarily the same illumination condition
captured in (4),

W, = [Y11,---,Y1n1]

Liits...s Liip, (5)

L1K1)~ . )Lle

where all of the qualifying comments made for (4) also apply
oy = [L11is ... ,LlKi]t withi=1,...,n.

Letting u denote the index that distinguish both sets
W, (u = 0,1), the magnitude of L, in (4) and (5) depends
on the amount of illumination (e.g., shaded or nonshaded
objects) and the illumination environment, this dependence
can be significantly reduced by applying the first order

differentiation—an approximation of the first derivative—to
the columns of W, or

(Loa1 = Lon1)s---» (Loan, — Lowny) ]
T = : ,
| (Lox1 — Lok-1)1)>- - - > (Lokn, — Lok -1)my)
(Lizt = Lin1)s- .5 (Lizny = Litny) 1
Vi=
| (Lik1 — Lik=1)1)>---» (L1kny, — Lik=1ym,) |

Notice in (6) that Vo € RK-Dxm apnd v, € RE-1xm
and the sample means of V and V, are, respectively,

— 1
Vo= —Volyxi,

no

) (7)
Vi=—Vilx,

ni

where 1 is a column vector of dimension d filled with real
values of 1s.

Denoting the columns of V, (which corresponds to the
reference set) as {Vo; € RK-D1 | then the multivariate
reference and test samples can be transformed to univariate
reference and test samples through the following angle-

mapping formulas:

1 ViV,
X0i = 8Oaurccos(mo), (8)
n 1901l |Ro||
-
Xy = @arccos Lvi ) 9)
L 19011 |
where 0° < x¢; < 90°,0° < x3; < 90°, the operator || - || using

a column vector x is the square root of x'x (note: although
we prefer to use a metric that yields a number having a
geometric interpretation, the reader who is concerned about
algorithm speed may replace the angle mapper metric with
any other comparable metric of choice, for instance, the
correlation metric [2] or the normalized dot product showed
inside the arccos operator in (8) and (9). The most important
aspect about the employed metric is that it must be able to
preserve the discriminant characteristics among spectra of
different material types, as it will be shown shortly).

From (8) and (9), the following two univariate sequences
are constructed:

X0 = (x01>x02)--->-x0nn))
(10)
X1 = (xllnyZ)-n)xan))

where x, (reference) and x; (test) are the input sequences to
be used by the univariate based anomaly detection technique
discussed in Section 2.3. Note that both samples end up
having the same sample size, 1.

As mentioned earlier, the employed data transformation
was specifically chosen to offer a number of desired prop-
erties, including reduced sensitivity to spectral magnitude
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FIGURE 2: Most common window-based testing scenarios in anomaly detection problems, assuming for simplification that the scene
background consists of two distinct material types (Class A and Class B) and a third material (Class C) also distinct from Class A and

Class B depicts a anomalous material relative to the background.

and preservation of discriminant features among spectra
of distinct material types. Regarding the latter, notice in
(10) that, for the proposed transformation to work as
advertised, when both multivariate samples W, and W,
happen to be observations of the same material type,
the component values in x; and x; are expected to be
comparable and closer to 0° in the scale between 0° and
90°; however, when W, and W, are observations of distinct
material types, the component values in xy and x; should
be proportionally apart, where values in x, are expected
to be closer to 0° while values in x; are closer to 90°.
In addition, when the observation represents a mixture of
two different material types, the proposed transformation
should yield a univariate sample that is representative of the
mixture.

Now, we will take a closer look at these expectations,
using (8) and (9) to transform two sets of real HS spectra for
a qualitative assessment, addressing first the most common
sliding window-based testing scenarios naturally occurring
in anomaly detection problems: local testing, which requires
a priori knowledge of object scales (range dependent), and
global testing, which does not require a priori knowledge
of object scales (range invariant). Figure2 depicts these
scenarios (in this context, local testing means comparing
clustered spectra against neighboring spectra, while global
testing means comparing clustered spectra against spectra
located elsewhere across the same imagery).

Figure 2 illustrates the same data-cube spatial repre-
sentation under the two-test case scenarios, where for
simplification the scene background is spatially dominated
by only two distinct material types (Class A and Class B)
and a third material (Class C—also distinct from Class
A and Class B) illustrates the presence of an anomalous
material relative to the background. Notice also that the

two objects of Class C in the scene have significant size and
shape differences, so that, the advantage of approaching the
anomaly detection problem from a global rather than a local
perspective can be pointed out.

The left hand side image in Figure 2 shows the overlaid
sliding window locations of the standard approach to local
anomaly detection in the HS research community (see [3]),
where a sliding window consisting of an interior square
(inner window) is concentrically located along with a larger
square so that spectra observed through the inner window
can be compared against spectra observed through the outer
portion (outer window) of the larger square (i.e., the area of
the larger square minus the inner window). Furthermore, the
spectral set observed through the outer window is labeled as
the reference sample, while the spectral set observed through
the inner window is labeled as the test sample.

As the test window slides across the image one pixel
location per algorithmic test, the labels P1 through P7
(left hand side image in Figure2) highlight seven key
test locations in the image. Table 1 summarizes a list of
plausible anomaly declarations by an anomaly detector versus
the desired declarations, using the known ground truth
information about the scene.

The last column of Table1 (desired anomaly) shows
that out of the seven most distinct window locations for
local testing, only two (P6 and P7) are desired, which may
contradict declarations made by anomaly detection models
currently found in the literature. In fairness, these detectors
would be performing the job they are employed to do, as
the plausible anomaly declarations shown in Table 1 are
indeed correct in the strict sense. For instance, P2 shows a
test between observations from Class A (test sample) and
observations from a mixture (reference sample: Class A and
Class B), while P6 shows a test between observations from
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TaBLE 1: Plausible versus desired declarations of local anomalies.

Window location Plausible anomaly Desired anomaly

TaBLE 2: Plausible versus desired declarations of global anomalies
(Using R1, R2, and R3 as reference samples, see Figure 2).

P1 No No
P2 Yes No
P3 No No
P4 Yes No
P5 No No
P6 No Yes
pP7 Yes Yes

Window location Plausible anomaly Desired anomaly

the same material type (the intended anomaly: Class C).
The reason, however, these declarations are not desired is
that locations similar to P2 will likely accentuate edges as
anomalies across the image, increasing the probability of false
alarms, and locations similar to P6 will suppress the intended
anomaly, decreasing the probability of correct detections.
Location P6 also emphasizes the lack of robustness using
the local testing approach to find anomalies in the scene,
as a priori knowledge of object scales (consisting of the
anomalous material) are not always available.

Regarding global testing shown in Figure 2 (the illustra-
tion at the right hand side), the window locations denoted
as P1 through P5 depict distinct testing locations (observed
test samples), while locations denoted as R1 through R3
depict distinct observations (fixed reference samples) that
may have been randomly sampled from the image (prior to
testing) and used to test every possible window-sized regions
across the image, including P1 through P5. Table 2 shows
the plausible declarations of anomalies versus the desired
declarations, using the same ground truth information about
the scene.

The last column of Table 2 (desired anomaly) in essence
shows that any test that involves a mixture of classes and
a component of that mixture should not be declared as
an anomaly so that only truly anomalous material types
(in this case Class C) relative to the background will be
accentuated. An implementation scheme for the global
testing approach, which requires fusion of declarations, will
be discussed later. For now consider the following: the
final declaration for any given window location is to retain
the declaration NO, if it is there, out of all of the results
produced by the particular testing location. Using this rule,
locations P1, P2, and P3 would produce a final declaration
of NO, and P4 and P5 would produce a final declaration
of YES, as it would be desired by a global detection
scheme. Notice also that P4 ensures that the circular object
(Class C) would be accentuated as an anomaly, using the
same test window size that would have detected the other
anomaly of different scale shown in location P5; this is also
desired.

Using real spectral samples, we will now qualitatively
demonstrate the behavior of transformation output equa-
tions (10), when exposed to the key window positions shown
in Figure 2. In anticipation, we would like to see that the data
transformation will preserve distinction between samples
of two different classes and produce results corresponding

No (R1) No (R1)
P1 Yes (R2) No (R2)
Yes (R3) Yes (R3)
Yes (R1) No (R1)
P2 No (R2) No (R2)
Yes (R3) No (R3)
Yes (R1) Yes (R1)
P3 Yes (R2) No (R2)
No (R3) No (R3)
Yes (R1) Yes (R1)
P4 Yes (R2) Yes (R2)
Yes (R3) Yes (R3)
Yes (R1) Yes (R1)
P5 Yes (R2) Yes (R2)
Yes (R3) Yes (R3)

to a mixture of classes, when such a mixture is being
observed. If successful, those results would give us some
level of confidence that not much is being lost in terms of
class distinction and that examples of mixtures would be
shown as mixtures by the data transformation (demonstra-
tion of the desired anomaly detection declarations will be
shown later, when the semiparametric model is discussed
in Section 2.3. We also defer answering questions about
what would happen when other possible window location
cases appear, besides the ones shown in Figure 2, until
discussion of results from testing real HS imagery in
Section 4).

Figure 3 shows spectral transformation results using two
sets of real spectra (Class A and Class B), where in this
case spectral band differencing was not used as input for
angle estimation among spectra and spectral means (see (6)),
the actual individual radiance values (L’s) were used instead
of the difference between adjacent radiance values (L’s).
Figure 4 shows results using the same two sets of spectra but
this time around using band differencing, following exactly
the path from (6) to (10).

Class A in Figure 3 consists of 200 real spectra repre-
senting a grassy area in an open field; Class B consists of
200 real spectra representing a cluster of tree leaves in the
same geographic location of Class A. The employed HS
sensor operates in the VNIR (visible to near infrared) region,
producing 120 spectral bands per spectrum. To observe the
behavior of the proposed data transformation as it processes
spectra equivalent to the window location examples shown
in Figure 2, Class A is denoted as the reference sample and
processed with an independent test set representing Class
A (200 spectra), it was also processed with a second test
set representing Class B (200 spectra). The spectral sample
means of both spectral sets are also shown in Figure 3.

Using both the reference and test samples from the same
class (Class A) exemplifies window locations P1, P3, P5,
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FIGURE 3: Spectral transformation from multivariate to univariate sample using the actual spectral values instead of spectral differencing.

and P6 in the local testing image in Figure 2; for the global
testing illustration in Figure 2, it also represents the cases
when spectra from R1 are processed with spectra from P1
and when spectra from R3 are processed with spectra from
P3. Using spectra Class A as the reference and spectra from
Class B as the test exemplifies the local testing locations
P7 (ie., the presence of an anomaly) and global testing
location duals (R1, P4), (R1, P5), (R3, P4), and (R3, P5).
The key point to notice in Figure 3 is the angle mapped plots
shown in the bottom portion of the figure, where the plot
at the left hand side shows that both the univariate reference
sample (blue bubbles) and the univariate test sample (green
bubbles) are comparable, preserving the fact that both
samples belong to the same class. On the other hand, the
angle mapped plot shown on the right hand side shows that
the spectral transformation preserves the distinction between
the samples from Class A and Class B. Both results are desired
and would be passed as input to the employed detector for a
decision.

The same experiment was held, but instead differentiat-
ing data in the spectral direction in order to check whether
such a step would change the desired outcome from the

spectral transformation shown in Figure 3. Figures 4(a) and
4(b) shows the band differencing means using (7) choosing
samples from Class A to be both the reference and test
sets (Figure 4(a)), and choosing a sample from Class A as
reference and a sample of Class B as the test (Figure 4(b)).
The angle plots shown in Figures 4 (c) and 4(d) affirm
that the differentiation step shown in (6) and (7), followed by
output transformation from multivariate to univariate data,
do preserve the lack of distinction between samples from
the same class (Figure 4(c)) and a strong distinction between
samples from Class A (reference) and samples from Class B
(test), see plots in (Figure 4(d)) . This example provides a
direct assertion that what is lost due to the transformation is
not relevant to the anomaly detection problem, since the goal
of an anomaly detector is to find those material types that are
truly distinct from the material types spatially dominating
the background scene, as other factors will conspire against
the detector’s effectiveness (e.g., mixture of distinct material
classes, within material class variability). In other words, if
a specific material type (target) is desired by the user to be
considered as an anomaly relative to a natural environment
but the target is not sufficiently distinct spectrally from
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FIGURE 4: Spectral transformation from a multivariate to univariate sample using spectral differencing.

the background, then an effective anomaly detector would
most likely not declare the target as an anomaly. Ironically, as
mentioned earlier, this is a virtue because a detector that is
too sensitive in distinguishing two spectrally similar material
types is also likely to produce an unacceptably high number
of false alarms due to expected within class variability of
dominant background material types in the scene.

Next, we would like to check how a spectral set,
representing a mixture, is altered by the data transformation.
For this demonstration, we constructed a reference sample by
combining 100 spectra of Class A with 100 spectra of Class
B, so that, the reference sample represented a mixture of two
classes, and arbitrarily chose the test set to be represented by
200 spectra of Class B (the latter were independent from the
ones used to construct the reference mixture). Figures 5(a)
and 5(b) show both the mixture (reference construct) and
the component of that mixture (Class B: test sample), and
the resulting angle mapped plots using spectra without band
differencing (Figure 5(c)) and spectra after band differencing
(Figure 5(d)).

The key message from Figures 5(c) and 5(d) is that the
data transformation with or without the band differencing

step does preserve in the univariate domain the fact that the
material class of the multivariate test spectra is a component
of the mixture of classes represented by the multivariate
reference set of spectra. In this particular case, the univariate
reference sample (blue bubbles) clearly shows the presence of
two classes (i.e., half of the observations has lower angle val-
ues and the other half has higher angle values), while the test
univariate sample (green bubbles) shows observation values
commensurate to the one of the mixture class component
(lower angle values). Although this fact is not necessarily
desired for anomaly detection (see, for instance, P2 and P4
in Figure 2 (local testing, left image), the data transformation
at least does not seem to alter such a scenario involving
a mixture, which is fine as long as the employed anomaly
detector is designed to handle similar challenging cases.

In summary, the proposed data transformation does pre-
serve distinctions or similarities that exist between spectral
sets and also offers additional benefits, as highlighted earlier
in this subsection. What is needed now is a model that
is more effective finding anomalies, while simultaneously
managing the expected negative-impact nuisances naturally
occurring in real operational scenarios (e.g., the presence
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of mixtures). A semiparametric model is described next for
that purpose.

2.3. Univariate Semiparametric Model. Let two multivari-
ate samples W; and W, be transformed to xy =
(X01,X02,---3X0n0) ~ fo(x) and x; (thxlz,m,xlnl) ~
fi(x), respectively (using, for instance, (4) through (9)),
where fy(x) and fi(x) are unknown joint PDFs.

To simplify the anomaly detection problem using the
transformed data, suppose the two random samples (real
valued, not vector valued) xo (reference) and x; (test) are
independent, consisting of i.i.d. (see mathematical notation
list after the appendix) random variables controlled by
unknown marginal PDFs g, and g;, respectively. Moreover,
let g and g; be related through the following model:

x1 = (x11,...,x1p,) Lid ~ g1 (x)
(11)

X0 = (Xo],... ,Xono) iid ~ go(x),
g(l)g; = exp(a+ fx). (12)

The model in (11)-(12) is appealing for many reasons,
consider the following examples.

If xo and x; are samples of the same distribution, then the
assumed exponential relationship is reduced to unity so that
g1 = o (whether g; or g is known or not), indicating that x
is not anomalous to x;. If xo and x; are samples of different
distributions, then the exponential function will impose a
significant weight relating both distributions, indicating that
x; and x, are anomalous to each other. The key point here
is that the latter outcome is invariant to and independent of
whether the assumption of exponential relationship between
the distributions is satisfied or not; that is, if the exponential
relationship assumption is satisfied, then x; is anomalous to
Xo, but if this assumption is not satisfied, x; is still anomalous
to xo. Since the application of interest only requires a
determination of whether x; is anomalous to xy, satisfying
the imposed assumption of (12) is inconsequential. So, a
hypothesis test could just be designed to check whether
exp(a + Bx) 1 in order to determine the presence of
anomalies.

However, the relationship assumption in (12) plays a
major role in the mathematical development of the statistical



Journal of Electrical and Computer Engineering

test and, more importantly for the application in context,
it also plays an important role in determining whether a
portion or the entire test sample (x;) can contribute to the
estimation of the reference distribution (gy). The latter is a
subtle feature never before recognized in other areas of study,
for example, pharmaceutical [22], where semiparametric
models are more commonly employed for their utility. The
implication of this subtlety is that when one of the samples
represents a mixture of different material types and the
other represents a component of that mixture, the model
in (11)-(12) allows both samples, through the assumed
relationship, to contribute to the distribution estimation
of the chosen reference sample; in essence stating that the
assumption may also be partially satisfied as long as a portion
of the test sample belongs to the reference distribution.
This is manifested when the test produces an estimation of
exp(a + Bx) that is significantly closer to unity than it would
produce when the test sample has absolutely no relationship
with the reference sample. In the practical scenario this is
the difference between having a detector capable or not of
naturally handling samples representing a mixture, as it will
be shown later in this subsection. As mentioned earlier,
samples representing a mixture of material types are known
to significantly increase the false alarm rate in operational
scenarios for autonomous anomaly detection—they can pro-
duce dominant edges between regions of different material
classes, later to be detected as false alarms [2].

Notice in (12) that, since g; is a density, 8 = 0 must imply
that & = 0, as & merely functions as a normalizing parameter,
following from the requirement that a PDF (in this case g;)
must integrate to unity, see PDF properties in [25]. Notice
also that if § = 0 then xy and x; must belong to the same
population (i.e., g1 = g). Using this fact, a test statistic can
be designed to test the following hypotheses:

Ho:B=0 (&1 =g)
Hi:f#0 (g1 #%)

In order to estimate f3, denote the union of xy and x;
(combined data) by t,

anomaly absent,
(13)
anomaly present.

axOno) = (tlyu-)tn)) (14)

and following the construction by Qin and Zhang in [21]
and Fokianos et al. in [22], a maximum likelihood estimator
of Go(x)—the continuous cumulative distribution function
(CDF) corresponding to the reference gy(x), can be obtained
by maximizing the likelihood over the class of step CDF’s
with jumps at the observed values ti,...,t,. Accordingly,
if go(t;) = dG(t;), where d(-) denotes the differentiation
operator, i = 1,...,n, the likelihood becomes,

t= (.x11,~~~)x1m)x01)~~'

C(aoBogo) = [ 18 (o[ T exp(a+ i )go (1))
i=1 j=1
(15)

1_[ So(t) H eXP(“ + ﬁxlf)

i=1 j=1

One can now express each go(¢;) in terms of a and f3
and then substitute the terms go(#;) back into the likelihood

13

to produce a function of « and 8 only. When « and f are
fixed, (15) is maximized by maximizing only the product
term [];_,80(%), subject to the constraints

St =1, D gt)[expa+pt) —1] =0. (16)

i=1 i=1
Denoting p = n;/ny, Qin and Zhang in [21] showed that

1

1o 1+pexp(0c+[3t,) (17)

go( i) =
and that the value of the profile log-likelihood log[{(a, 8,8, ]
up to a constant can be expressed as a function of a and f3
only, or

=

1

(a+ Bxii) — > log[1+pexp(a+pt)]. (18)

1 i=1

I, p) =

J

A system of score equations that maximizes (18) over
(a0, B) is shown below [21],

ol(e, B) _ _i pexpla+ pti]

I’l1=0,

oa = 1+pexpla+ Bti]
( (19)
ol(wp) < tipexp(a+pti)
B Zl+pexp(oc+ﬂt, le]_o

The solution of the score equations yields the maximum

likelihood estimators (&, [;’ ) and consequently by substitution
also yields an estimator of gy(#;), or [21]

1
no 1 +pexp(oc+ﬁt,)

gt = (20)

So, in summary, by using profiling, an estimator (20) for
£o(t;) is attained in addition to score equations (19), where
both the reference and test samples as shown in (14) are
used to estimate gy (the reference PDF). This is only possible
because the model in (12) implies that g; can be expressed
in terms of g. This feature allows this model to be robust
when either gy or g; is bimodal or multimodal (representing
a sample mixture) while the other represents a component
of the same mixture—a key factor for handling transitions
of distinct regions in the anomaly detection application, as it
will be shown later. .

Using results from Fokianos et al. in [22], the estimator f3
has the normal asymptotic behavior, as the sample size tends
to infinity (n — o), or

— 2
N<0,P l(i;p) ) (1)

where By denotes the true parameter, v? is the variance (a
scalor) using components from the combined sequence t,
p = m/ng, n = ny + ny, and — means converges to—in this
case to a normal distribution having 0 mean and variance
equals to p~' (1 + p)*/v2.

Va(B=po) -
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Both estimators & and [;’ are required to estimate v? in
(21) via g,(t;). Denoting ¥* the estimator of v* and using
results from [22],

2
7= AR n) - (ZtiEO(ti)) , (22)

where go(t,-) is shown in (20).

Normalizing the left side of (21) with p~!(1+ p)*/92,
setting 3, = 0 and squaring the final result, and using known
properties of the family of Chi square distributions [25], one
can test Hy in (13) with the following expression:

Zsemip = np(1+p) B*0° — X (23)

which has the Chi square distribution asymptotic behav-
ior with 1 degree of freedom, y7. Under the idealized
assumptions of model (11) and (12), a decision can be
based on the value of Zgemip in (23), that is, high values
of Zgsemip reject hypothesis H,, declaring the presence of
local anomalies (note: Regarding (23), as typical from any
asymptotic expression, the larger the value of n is the more
accurate and precise the approximation of the expression will
be. Since n in this context coincides with twice the sample
size of the reference sample, sample sizes typically used
in anomaly detection applications will suffice (greater than
100, yielding n greater than 200). Practitioners in statistics
usually recommend that for univariate variables, asymptotic
expressions should use at least thirty two observations,
indicating that # in this case should be at least 32 or greater).

The test statistic in (23) will be referred to from here
forward as the SemiP test statistic or SemiP anomaly detector,
which has two steps: data transformation and test statistic
estimation.

2.4. Implementation Notes for the Standing Alone
SemiP Detector

2.4.1. Function Maximization. In order to implement (23),
we perform an unconstrained maximization of the log
maximum likelihood function in (18), or alternatively one
could minimize the negative version of (18), to obtain the

extremum estimators & and /§ We used one of the conven-
tional unconstrained nonlinear optimization algorithms—
the simplex method [26], which is available in Matlab
software (Release 13) under the function name fminsearch.
The simplex method is a direct search method that does
not use numerical or analytic gradients. If n is the length
of x, a simplex in n-dimensional space is characterized by
the n + 1 distinct vectors that are its vertices. For instance,
in two-space, a simplex is a triangle; in three-space, it is a
pyramid. At each step of the search, a new point in or near the
current simplex is generated. The function value at the new
point is compared with the function’s values at the vertices
of the simplex and, usually, one of the vertices is replaced by
the new point, giving a new simplex. This step is repeated
until the diameter of the simplex is less than the specified
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tolerance. A limitation using such a method is that it may
find a local extremum, so the choices of initial parameters
may prove to be critical in some cases; however, we found in
practice that by setting the initial values to (« = 0, § = 0),
the method converges reasonably fast and works very well
for all of the cases that we have observed, independently of
whether anomalies were present or not in the tests.

The term 97 in (23) is computed using 9* = E(£2) — E2(¢),
where E(t5) = > tkg(t) and g, (t;) is shown in (20).

2.4.3. Decision Threshold. As mentioned earlier, using (23),
high values of Zgemip reject hypothesis H, in (13), declaring
that x; is an anomaly relative to x. Using this detector as
a standing alone unit, one could set a decision threshold
based on the type I error, that is, based on the probability
of rejecting H, given that H, is true. Using a standard
integral table for the Chi square distribution, with 1 degree
of freedom, find a threshold that yields an acceptable
probability of error (e.g., 0.001).

2.5. Model Behavior in the Presence of Sample Mixtures. We
show in this subsection the robustness of the semiparametric
model toward an asymmetric test, that is, when a sample of
a mixture is compared against a component of that mixture,
which is found locally across the image in the form of spatial

transitions. More specifically, we would like to show that ﬁ
(estimator for 8 in (13)) is significantly closer to ZERO when,
for two PDFs ga(y) # gg(y), y1 ~ gs(y) and yo ~ gg(y) or
vo ~ (ga(y) U gg(y)) (representing the union U or a mixture
of two PDFs) than when y; ~ gg(y) and yo ~ ga(y). We
illustrate this fact using simulated data and focusing on three
specific case studies.

Case 1. yo ~ ga(y) versus y1 ~ gp(y).
Case 2. yo ~ (ga(y) U gg(y)) versus y1 ~ gg(y).
Case 3. yo ~ gg(y) versus y1 ~ gg(y).

According to [20], Case 2, which represents a transition
of distinct regions in the image, appears some 20% of the
entire image, or higher, as local patches are observed through
a small moving window across typical images. Therefore,
Case 2 is a major source of false alarms that could be
avoided using a more robust model of the background
than the typical models used in the target community.
In anomaly detection applications, it is desired that the
employed detector declares the presence of an anomaly for
Case 1 but no anomalies for Cases 2 and 3; a declaration of
no anomalies present is also desired, if Case 2 were reversed,
thatis, yo ~ gg(y) versus y1 ~ (ga(y) U gs(y)), although this
case is not shown here, its results are consistent with Table 3.

The results shown in Table3 were computed using
100 simulated random samples from an ii.d. Gaussian
distribution to represent the reference sequence y, and
another 100 samples to represent the test sequence yj.
A sequence representing a mixture of two classes consists of
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TasLE 3: Behavior of § on different case studies.

Simulated samples

Mean estimates Variance estimates

. Parameters A A=X1 ) 6go(t) P=SI ) 2 () -
Case studies #£4=2000; 05 =200 B (@) aa=(U/ng) ST, yoi D2=(1/n0) 10, (yoi—fi2)?
45=1000; 03 =100 f3=(/n) SE 4 B=(/n) S8 (ti-p3)*
. 1.9967¢ + 003 151.9466
~1iid N(uy,o?
Case 1 Yo~ 1l . N("A *2‘) ~0.7500 (848.75) 1.9967¢ + 003 153.4815
y1 ~ iid N(up, 03) 1.4983¢ + 003 2.4982¢ + 005
iid N(ua,0%) 1.4990¢ + 003 2.4997¢ + 005
Case 2 ii.d N (s, 02) —0.0073 (8.0110) 1.4990e + 003 2.5316¢ + 005
- ) 1.2494¢ + 003 1.8859¢ + 005
¥y ~ Lid N(ug,03)
Jo ~ iid N (5, 02) 999.8392 89.2284
Case 3 o »o —0.0046 (4.5900) 999.8392 89.2574
y1 ~ iid N(up, 03) 999.6346 89.5693

50 samples for each class resulting in a total of 100 samples.
The formulation and parameters used to generate these
sequences are shown in Table 3 for different case studies,
where the samples in row 2 (starting from the left upper
corner in Table 3) simulates a local test between a genuine
isolated object (y;) and its homogeneous surrounding
background (yo)—Case I, the samples in row 3 simulates
a local test at a transition between two classes, where the
test sample belongs to one of these classes—Case 2; the
samples in row 4 simulates a local test within a homo-
geneous region—Case 3. Practical implementation details
of the SemiP detector, which includes the estimation of
(a, 3), are shown in Section 2.3. The parameters («, 3) were
estimated by maximizing the log likelihood function, using
an optimization subroutine initialized to (0,0), (0,0), and
(0,0) for Cases 1, 2, and 3, respectively, so that convergence to
a solution down to a tolerable error could be achieved using
the subroutine.

Since the solution of the semiparametric model uses the

union of samples t and estimators & and E to estimate g
(which itselfis an estimator of gy ), we also included in Table 3
the mean estimates i, {i, and s and the variance estimates
92, 93, ¥%; where »* estimates variance from the solution of
the semiparametric model using the union of samples ¢t =

(¥0, y1) and §0; 73 estimates variance using only the reference
sample yo; and 73 is the sample variance using t. The mean
estimates were computed accordingly, see Table 3.

In reference to results shown in Table 3, recall that thg
null hypothesis is = 0, and notice that the value of f3
in Table 3 are significantly closer to zero for Case 3 (homo-
geneous region) and Case 2 (a transition of two different
region) than for Case 1 (genuine local anomaly), where in
Case 1 yo and y; do belong to different classes. Notice also
that the disparity between the values of ¥3 and ¥ for each

case study also reflects how close ﬁ is to zero. For instance,
the disparity between 3, and 3 for Case I is quite large
compared to corresponding disparities for Cases 2 and 3.
The semiparametric model handles mixture by showing
sensitivity on the estimation of 8 and «, such that when the
test sample has strong statistical information about one of
the subclasses in the reference sample, the semiparametric

method responds by keeping both ﬁA and a relatively close
to zero in order to maximize the log likelihood function in

~

(18). The estimates @, f3 affect directly the computation of
£,»> which in turn is used to compute 2.

To shed some light on the effect of 3 and a on (@0, we
present some results in Figure 2. The plots shown in Figure 2
(row 1) corresponds to Case 1; where, the plots on the left
depict the values of t; as a function of index i, for convenience
we have marked where the sequences y, and y; are relative to

each other within f; and the plots on the right depict g, (#;)
versus i. Likewise for Case 2 (row 2) and Case 3 (row 3).

Let us consider first Cases 3 and 1. As mentioned
earlier, because of the semiparametric model in (11) and
(12), the union of samples t = (yo, y1), where y is the
reference sequence, is used to estimate the reference PDF
estimator gy. Circumstances when both samples belong to
the same population (Case 3), the estimated cumulative
weight for the test sample y;, that is, w; = Z?:‘lgo(yu),
is expected to be approximately equal to the estimated
cumulative weight for the reference sample yj, that is, wy =
S §0(y0<,-_m)); because the constraint > 7" & (t;) =
1 was used in the profiling method to attain go(#;) in terms
of a, 5, we would expect both w; and wy to be near 0.500.
Using simulated samples for the normal distributions and
parameters shown in Table 3 for Case 3, we obtained w; =
0.4998 and wy = 0.5002, which are very close to our
expectations, see Figure 6. We interpret the actual values of
go(t;) shown for Case 3 in Figure 6(f) to be an indication
that the semiparametric method regards the test sample y,
to be as important in the estimation of g, as the reference
sample yo is in that estimation, for the right justification,
as both y, and y; happens to be governed by the same
distribution.

In contrast, when both y, and y; belong to clearly
different classes (see Case 1 in Table 3), the semiparametric
method recognizes this difference and virtually shuts down
the contribution of y; in the estimation of g. The way it
shuts down the contribution of y; is by maximizing the

log likelihood function with values of /§ and @ that allow
the estimates of atomic exponential distortions exp (& + f3t;)
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to be relatively high when t; corresponds to components of
Y1 R
And since exp(a+ ﬁAt,-) are inversely proportional to g, (;),
see (20), the contributions of corresponding components
of y; in t; estimating g are shut down as an indication of
nonimportance to this estimation. The implication of this

shut down is that the value of [§ is relatively away from
zero (relative to Case 3, for instance), which rejects the
null hypothesis as desired. Figures 6(a) and 6(b) show the
combined samples for Case 1 and the resulting cumulative
= Zf’llfo(yl,) = 0.0 and for

the reference sample wy = > lnlnfllgo(yo (i-n)) = 1.0, where

= denotes approximately equal to. The shutdown is reflected
in the results for w;.

weights for the test sample w;

In reference to Case 2, where the information carried in
¥ is also contained in yy, as half of the random components
in yp are governed by the same distribution of the random
components in y;—see Table 3 and Figures 6(c) and 6(d),
the semiparametric method recognizes this fact by holding

the value of [? at near zero, and interestingly by allowing the
contributions of y; estimating g, to be comparable to those
contributions of the portion of y, that are similar to y;. In
other words, since both y; and y, are used to estimate gy
and half of the random components in y, are governed by
the same distribution of all of the random components in y,
and the other half are governed by a different distribution,
the semiparametric method will not discriminate between y,
and the portion of y, that is similar to y,. The outcome of
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this behavior is that, in order to maximize the log likelihood
function, the values of § and a are kept statistically close to

zero (in this case [;’ = —0.0073) to reflect that the information
in y, is important in the estimation of gy. The way this
method explicitly shows this nondiscrimination is by yield-
ing the cumulative weight using y; and the portion of y, that
is similar to y; to hold half of the power, while the other half
of the power is allocated to the portion of y, that is dissimilar
to y1. In other words, using results from Figure 6(d) and this
claim, we would expect value of 0.5 (half power) for the
cumulative weight using y; and the portion of Yo that is sim-

ilar to y;; we obtained >} 1go(yl,) +>0 ,,]+51g0(yo (i—ny)) =
0.5007. And we would expect the other half of the power to
be in the cumulative weight using the portion of yo that is

dissimilar to y;; we obtained z?‘zrﬂrso go(Yoi-ny)) = 0.4993.

Notice that adding 0.5007 and 0.4993 ylelds exactly 1.0 as
expected because the constraint 377" g(¢;) = 1 was used
in the profiling method in order to attam a representation of
£o in terms of free parameters f3 and a.

A conclusion that we can draw from this discussion
is that the semiparametric method will indirectly compare
two samples y (reference) and y; (test) by assuming that
the distribution of y,(g) and the distribution of y,(gy) are
related (exponentially) to each other and that, therefore, the
information content in both samples can be used to estimate
one of these distributions, in particular, gp.

We found this indirect comparison method to be highly
sensitive to the cumulative contribution of y; estimating
go. This sensitivity has an important practical value in the
anomaly detection application for three reasons.

First, if g1 = go, both samples y and y; are expected
to equally contribute to the estimation of g, which in fact
would improve that estimation due to the increase of sample
size. Result: y; would be labeled as not being anomalous to
¥ in this application.

Second, if g1 # go, sample y; is not expected to be allowed
to contribute to the estimation of g, thus, this estimation
would solely rely on the cumulative contribution of yy.
Result: y; would be labeled as being anomalous to y, in this
application.

And third, if g is a mixture of densities, such that, g is a
component in that mixture, we found that the contribution
of y; would not be suppressed, but proportional to the
weight of g; in that mixture (see Figure 6). Result: y; would
be labeled as not being anomalous to yj in this application.

This behavior of the semiparametric test statistic is highly
desired in the target community because it conforms with be
behavior of a human analyst performing the same task in the
target application, and it separates this method from existing
ones performing the same task.

3. Quasiglobal Semiparametric Approach

The semiparametric test statistic is used as the primary
scoring method for the quasi-global anomaly detection
approach. As mentioned in Section 1, the quasi-global
anomaly detection approach was designed to tackle the
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forward looking anomaly detection problem, although the
application of the quasi-global algorithm using nadir looking
imagery are also considered in Section 4.

We start by describing the background sampling method
and its probabilistic model, followed by description of the
quasi-global algorithm framework using the semiparametric
test statistic.

3.1. Sampling Method and Its Probabilistic Model. Assume
that target pixels are present in the R X C spatial area of a
R X C x K HS data cube X, denote a the total number of
target pixels in X, g the probability of a pixel in X belonging
to the target, and the relationship g = a/A, where A = RC
(or all pixels in X) (in most applications g is unknown, and if
multiple targets are present in the imagery, a will be the total
number of all pixels belonging to all targets present in the
imagery; also, these targets may or may not have the same
material type). In order to represent the unknown clutter
background in the imagery, let N blocks of data—all having
a fixed small area (n X n) < (R x C)—be randomly selected
from the R x C area, see one of the data cubes in Figure 1. In
theory, for (n X n) = (1 X 1) and using the assumption that
target pixels in X are disjoint and randomly located across the
R x Cimagery area (note that in practice, this assumption is
not satisfied when targets are present in the scene, but we will
use this assumption to establish a guideline), the probability
P that at least one block of data has a target pixel is

Pm=1)=1-p(m=0), (24)

where p is the binomial density function [27], given
parameters ¢ and N, and m € {0,1,...,N} is the number
of blocks of data containing a target pixel, or

)N—m

p(m|q,N) = > (25

N! m
miN 4 4
(symbols | and ! denote given parameters and the factorial
operator, resp.).

For convenience, we will refer to P(m > 1) as the prob-
ability of contamination and m the number of contaminated
blocks of data.

The implementation of this contamination model to the
autonomous background sampling problem requires that
each one of the N(n X n) blocks of data be regarded as
.,N) rep-
resenting clutter spectra, where Wof ) e RK*m jsa rearranged
sequence version of the fth block of data having ny = n?
spectra. By necessity, np must be significantly greater than
one—for statistical purposes—but yet significantly smaller
than A = RC (e.g., no/A = 20%/640> = 0.000977) in
order to reasonably satisfy the assumption that a n X n
block of data has an unit area at the R X C imagery
area. A contaminated block of data, then, will be treated
qualitatively as a block having target pixels covering a large
portion of the block’s area (e.g., greater than 0.70). In
addition—when targets are present, since pixels representing
a single target are expected to be clustered in the imagery,
the assumption that each target pixel is randomly located

an independent reference set W " f =
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FIGURE 7: The relationship between N (the number of randomly selected blocks of data, shown as yellow squares on the imagery) and the
contamination probability Py(m > 1) = P(m = 1) is shown in (b) for a given g (e.g., ¢ = 0.10), which is an upper bound guess representing
the maximum ratio between target pixels over the R x C area. To better characterize the unknown clutter background, a high Nis most
desired, but at a high cost, that is, an undesirably high P,(m > 1). The overall contamination probability, however, can significantly decrease
by independently repeating the random sampling process Mnumber of times, as shown (c) of figure, and then fusing results using a suitable

method.

across the imagery area will be ignored. Using (24), while
ignoring the nonclustered target pixel assumption, implies
that the probability of contamination will be overestimated,
as blocks of data are less likely to be randomly selected
from the same cluster of target pixels (for the autonomous
background sampling problem, it is more conservative
to overestimate the probability of contamination than to
underestimate).

Figure 7(b) shows a plot of the probability of contamina-
tion P(m = 1) versus N, for two values of g (0.1 and 0.2).
It is highlighted in the plot in reference that, for instance, if
parameters are set to (g, N) = (0.10,22) then P(m = 1) =

0.90. Notice that for N = 22, if target pixels are present
but cover less than g = 0.10 of the imagery area, P(m =
1) = 0.90 is overestimated by two fronts: (i) pixels from a
single target are not randomly spread across the imagery
area, but clustered, and (ii) the cumulative number of target
pixels covers less than 0.10 of the imagery area. So, (24)
provides an upper bound (conservative) approximation of
the probability of contamination, given parameters g and N.

Figure 7(b) also shows the tradeoff between having a
larger number of spectral sets (increasing N) in order to ade-
quately represent the clutter background, which is desired,
and the cost of increasing probability of contamination,



Journal of Electrical and Computer Engineering

which is not desired (in particular, contamination implies
that once target pixels are randomly selected by chance from
the imagery area, they will be used by a detector as reference
set to test the entire imagery, in which case targets would be
suppressed).

Since the presence of target pixels in the imagery is
unknown a priori, finding a way to decrease the probability
of contamination becomes a necessity. In order to decrease
this probability, using an adequately large N and a sensible
value for g, we propose to independently repeat the random
sampling process described in this subsection M number of
times. Figure 7(c) illustrates the outcome of M repetitions.
If we denote the probability of contamination of the gth
random sampling process (or repetition) as P,(m = 1),
1 < g < M, for a fixed q and N, note that each P,(m >
1) = P(m = 1) and, since 0.0 < P(m = 1) < 1.0 and
these processes will be repeated independently from each
other, the overall probability D that all of the processes will
be contaminated with at least a contaminated block of data
will decrease as a function of increasing M, or

[P(m = 1"
(26)

P=P(m=>1)P,(m=>1)-+-Py(m=>1) =

Figure 7(c) plots P as a function of increasing M, for
Pm = 1) = 090 and P(m = 1) = 0.65. Taking,
as an example, the P curve in Figure 7 corresponding to
using P(m = 1) = 0.90 in (24), notice that for M >
40, [P(m = 1)]™ decreases to virtually zero. This outcome
implies that at least one out of the M > 40 processes has an
extremely high probability of not being contaminated, given
that N = 22 and target pixels do not cover significantly more
than 10% of the imagery area (q = 0.10).

3.2. Algorithmic Fusion. A framework for the quasi-global
semiparametric anomaly detection algorithm can now
be developed using (i) the repeated random sampling
model discussed in Section 3.1 (needed to characterize
the unknown clutter background in the imagery), (ii) the
semiparametric anomaly detector discussed in Section 2.3
(needed to test reference data against the entire imagery),
(iii) a way to fuse the results from testing N randomly chosen
blocks of data against the entire imagery using small windows
(this will produce a 2-dim output surface per repetition), and
(iv) a way to fuse M independently produced 2-dim output
surfaces into a single 2-dim decision surface.

Start by letting a HS data (R X C x K) cube X be available
for autonomous testing. Let also N blocks (n X n) of data be
randomly selected from the X s R x C spatial area and used

' f= 1 2 N ) representing

clutter background spectra, where W ( 01 e Yom,) isa
rearranged sequence version of the fth block of data having

as a reference library set W

ny = n? spectra, where{yé{,)}zozl € RX are K-dim column
vectors. Let Wy = (y11,...,Y1n,) be the rearranged version
of a (n X n) window of test data at location ij in X—see
(1) for column vectors {yis},., € RE; first, we would like

N
to automatically test W against all {W(()f ) } F-1> and produce
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a single output (scalar) value féle&ip > 0.0 from these N test
results.

For better clarity in this subsection, we repeat the
data transformation steps discussed in Section 2.2, but with
the inclusion of index f = .»N and letting y;; =
Litj,...,Likj, where Ly; is the kth radiance value in y;j, k =

., K, and
(f) (f) )
Wof = [Yo{ a--~aY0£0]
) (f)
LO{I’ cees LO{no (27)
O
LOJ;G’ . Loj;no
(f) () (f) (f)
(L& = L61) - s (L, — L)
vy - ; ,
(f) (f) (f) (f)
(LOKI - LO(K—l)l)""’ (LOKno - LO(K—l)ng)
(28)
v(()f) v(f n0><1 (29)
. (f) (f)
and, denoting the columns of Vj " as {Vg, },_1>
Oy 1™
180 Vs Vv,
x(<)£ _ 180 ——arccos ( ) ’ (30)

75

And equivalently for W, = (yi1,...,¥1s, )—the rearranged
version of a (n X n) window of test data at location ij in X

5"

u=1

and the columns of V(Of) in (28)—{V f)i }u 1> one has
v "
) _ Vi) v

1
Xy = —_arccos (31)

AR

u=1

From (30) and (31), the following two univariate sequences
will be used as inputs to the SemiP detector:

(f) (f) _(f) (f)

xof = (xo{ ,xOJ; ,...,xoﬁo), (32)
(f) ) _(f) (f)

xlf = (xl{ ,xé )~~~)x1£0), (33)

wherel < f < N.

Following the discussion that led to (33), results from
the semiparametric test statistic can be used (or fused) as
following:

(if)
ZSemlP = 1= fln ZSe]mlfP > (34)
where
(ij)(f) “2(50\ 2~
Zeh) = np(1+p) (ﬁ(f)) P2, (35)
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.. N
{Zélejrzl%)}f:l >0.0,n =ng=n%p=mn/n,(i=1,..,R-
n—1)and (j = 1,...,C — n — 1) index the left-upper corner

pixel of an n X n window in X; using (32) and (33),

t(f) = (x((){)’---’xojr:()’xl{)’ ) %()))
(36)
= (i),
nyi+n, ny+ng 2
U t5<f)§0<tu<f>) _ ( S tu(f)@g@(f))) ,
u=1 u=1
(37)
S 1 1
ot N) = —
g0<t“ ) 1o 1 +pexp<&<f) +3<f)tu<f>)’ (38)

and estimates a'f) and ﬁ(f ) can be obtained by replacing

(o, B) with (a, ﬁ) in (18) and then performing an uncon-
strained maximization of I(a, 8); for this paper, a standard
unconstrained minimization routines available in Matlab
software (i.e., fminsearch) was used, setting initial values to

(a,B) = (0,0).
. . j)(1) )(2) (if)( :
Notice that if Zsle];mP»Zsle]mlP» Zslejmlp are placed in
ascending order and denoted by ZSEmIP (1) Zélejr;ip(z),...,
(if) (if) (if)
ZSemlP(N)’ such that ZSemlP(l) ZSemlP(Z) =... = ZSemiP(N)’

then Zsemlp Zsemlp(l) according to (34)—the lowest order
statistics (see, for instance, [28]). This fact will be used
in estimating the asymptotic behavior of the overall quasi-
global semiparametric algorithm, shown in the Appendix.
Notice also that if W, is significantly different from all

N
{W } [0 then all of the corresponding results {ZSe]rzl(i{,) } fo1

in (35) would yield high values; this outcome would

(11)( )(M)
<ZSem1P ®---8 ZSeml )’ .
ZSemiP =
Z(R-n—1)1](1) (R 1)1](M)
ZSemllzl ®---0 ZSemll;l

Figure 8 illustrates i(siinip (39) and Zsemip (40) through a
repeated random sampling and result fusion diagram. The
diagram shows M independent paths, where, in each path,
independent blocks of data are randomly selected from the
input HS data cube so that the entire data cube can be
tested against these blocks of data, using a testing window
of the same block size. Each path, which is indexed by

g(1 < g < M), produces a 2-dim output surface (2§2nip),

~ M
where, at the backend of the diagram, all {Z(s‘izmp} -1 Passes
through a logical OR operator on a pixelwise fashion (i.e.,
only the pixel values at the same pixel location are logically

OR’ed), producing a final 2-dim surface Zgemip, as shown in
(40).
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guarantee the lowest order statistics Zgi{;ip in (34) to hold
a high value. Otherwise, if W, is signiﬁcantly similar to at

least one of the samples in {W2 } [ then at least one of

the corresponding results in {Zsle]m,{))} -1 would yield a low

value; this low value would be assigned to Zéle];lip, according
to (34).
Since it is unknown a priori whether target spectra are

present in X, the entire X needs to be tested. In order
R-n-1,C-n-1

to achieve it, all {ZSemlP i—1,j-1 must be computed

according to (34), producing a 2-dim output surface ié‘gnip.
The index g(1 < g < M) has been introduced to results
produced by (34) in order to denote the repetition number
discussed in Section 3.1, yielding

S5(11)(g [1(C-n-1)](g)
ZSemlP >0 ZSemlP
ZSemlP (39)
Sl(R-n—-1)1](g N[R n—1)(C-n-1)](g)
ZSemlP ZSemlP

The computation leading to (39) will be independently
repeated M number of times in order to significantly reduce
the probability of contamination (i.e., samples of targets
labeled as clutter background) Applying a cutoff threshold

to all pixel values Zsle];l%) Zsﬂmp, such that, pixel values

that are above or equal to the threshold become 1 and values
below become 0, yielding a binary surface (a probabilistic
cutoff threshold for this algorithm is presented in Section
4.3). The M binary surfaces are fused using the logic OR
operator @, leading to the algorithm’s final output surface
Zgemip, OF

(Z[IC n=1)](1)

L(C—n-1)](M)
SemiP ® - " )

- @ ZSeml

(40)

[(R=n—1)(C—n-1)](M)

Z[R n—1)(C-n-1)](1) @ZSemP

SemiP ® -

The motivation and functionality shown in Figure 8 are
summarized as follows: for a given repetition g (1 < g < M),
assume that the realization of W; from a window location
ij in X is a spectral sample of a target, and the realizations

of {W(()f )}1}]:1 are samples of various materials composing
the clutter background in X, that is, the randomly selected
blocks of data are not contaminated with target spectra.
The semiparametric order statistics in (34) is expected to
yield a high value at that ij location. Moreover, if the target
scale in X is larger than n X n, then the target will be

represented by multiple pixels in ZSemlp (39), having high
values. These pixels are expected to be clustered, hence,

accentuating the target spatial location in 2&211,»1). However,
as discussed in Section 3.1, the contamination probability
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FIGURE 8: Quasiglobal, semiparametric anomaly detection algorithm.
P(m = 1), for a given g, increases as a function of  where a = g !(1 — ¢) is the 1 — ¢ quantile of g(z) =
increasing N, see Figure 7. Figure 7 shows further that for  [g(z)[1 - G(z)]*" (see Appendix),
a fixed q, N and an adequately large M, if (for instance)
1) 5(22)(2) 5(22) (M) fi
results ZSemlP s ZSemip >+ -+ Zsemip . correspond to the same o Z 2.8(2)
portion of the target at a testing window location (i = £ uglZu)>
2, j = 2), then (40) give us the confidence that at least (42)
one term in Z(ifm;),Zéifmp ye Zéifmp will have a high A

value with high probability [1.0 — P = M)]; after
application of a cutoff threshold to results in (39), the high

value(s) in reference would be captured by the logic OR
~(22)(1) ~(22)(M
operator, for example, (Zsemlp @ ® Zgemip ) as shown

in (40) for all ij locations. Notice that a target may also be
represented by multiple (clustered) pixel locations in Zgemip
(40).

3.3. Setting the Cutoff Threshold and Other Parameters. For
autonomous remote sensing applications, properly setting
the algorithm’s parameters is a critical step. This subsection
presents a guideline to address this step. For the quasi-
global, semiparametric anomaly detection algorithm, the
parameters of main concern are T; (the probabilistic cutoff
threshold), N (the number of randomly selected blocks of
data), M (the number of testing repetitions), and g (the
upper bound ratio of target pixels in the data cube over the
spatial area of this cube).

Using the asymptotic behavior shown in (A.11) in the
Appendix, a cutoff threshold is attained as follow:

= T(a) = jig + ady, (41)

Z z28(zu) — ﬁé

u=1

oy =

are estimates of the mean and standard deviation, respec-
tively, of the known distribution g(z)—these estimates can
be attained a priori through a simulation experiment using 7i
samples of g(z), and 0 < ¢ < 1.

For setting parameters N and M, as discussed in
Section 3.1, the quasi-global semiparametric algorithm—
ideally—requires an adequately large, which undesirably
increases the contamination probability P(m = 1) per
repetition, and an adequately large M, which desirably
decreases the overall cumulative contamination probability
13(r71 = M). From (24), (25), and (26) and using the log of
base 10, a direct transformation leads to

log[1 — P(m = 1)]

N =
log(1 - q)

, (43)

zl%ﬁ%:Mﬂ
log[l - (1- q)N].

For a given ¢q, we can fix the values of P(m = 1),
P(f = M) and obtainand M directly using (43) and (44),
respectively. As a guideline, P(m > 1) should be set high,
but less than 1.0, so that N can also be relatively high and
P(f = M) < 1.0; P(m = M) should be set very low, near
zero. As long as the guideline is followed, interestingly, the
actual values of P(m > 1) and 13(771 = M) are unimportant.

(44)
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(a)

(c)

FIGURE 9: QG-SemiP results testing Cube 2 (a) for scene anomalies; output surface (b) was produced using (q¢ = 0.10; T, = T(20); N =
3; M = 3); output surface (c) was produced using (¢ = 0.10; T, = T(20); N = 22; M = 40). Bright pixel values (white) in the output
surfaces correspond to values above the probabilistic cutoff threshold T,—depicting the highest confidence level of anomaly presence in the
imagery, relative to N randomly selected blocks of data. Testing procedure was independently repeated M times, as highlighted in Figure 8.
Using the available ground truth information of the scene, the white clusters in the far right figure cover about 90% of the motor vehicles

(the targets) and no false alarms.

For example, we could fix P(m > 1) = 0.90 and
13(771 = M) = 0.01, and for q = 0.10, we obtain directly from
(43) and (44) parameter values N = 45 and M ~ 44 (Since
N and M are defined as integers, these numbers are rounded
off =). For the results shown in Section 4, we fixed at once
q =0.10, P(m = 1) = 0.90, and Pr(mgr = M) = 0.015, which
by using (43) and (44) yield N ~ 22 and M = 40.

4. Results

The QG-SemiP algorithm was applied to the HS imagery
shown in Figure 1, that is, Cube 1 (nadir looking imagery)
and Cube 2 through Cube 4 (forward looking imagery), to
test for scene (spectral) anomalies. This subsection presents
performance summary using results and guideline discussed
in Section 3.3 to set algorithm parameters (g, T1,N,M).
Results using forward looking imagery will be discussed first.

4.1. Forward Looking Imagery. Results testing Cube 2
are shown in Figure 9. For display purposes, the output
surface Zgsemip (Figure 9, center and right hand side
surfaces) is not shown as a binary surface; instead, each
2(Silmp (g = L1,...,M) output surface is mapped using a
pseudocolor map, such that, the brightest pixel values in
those surfaces (white colored pixels, representing strongest
evidence of anomalies) show the locations of results above or
equal to the cutoff threshold T'; while other colors (yellow,
red, brown, and black) show lesser evidence of anomalies
at the corresponding pixel locations, relative to randomly
selected blocks of data. (The color black represents no

evidence of anomalies.) All of the M surfaces ig‘iiﬂip, using
the threshold based colormap in reference, are then summed
to yield the output surface shown in Figure9 through
Figure 11. Additional details follow.

Figures 9(b) and 9(c) show two different outcomes of the
quasi-global, semiparametric anomaly detection algorithm,
where n X n was fixed at once to 20 x 20 (for all data blocks

and testing window sizes) and algorithm’s parameters were
set to (g = 0.10; T, = T(20); N = 3; M = 3)—center
display—and (g = 0.10; T, = T(20); N = 22; M = 40)—
right hand side display. The center output surface depicts an
example when N is not set sufficiently high, hence, obtaining
an inadequate representation of the clutter background. In
this case, three blocks of data were randomly selected from
the scene (most likely from the open field area, since it is the
largest area in the scene), and used by the QG-SemiP detector
to suppress (according to ié‘iinip (g = 1,...,M) in (39)) the
open field in Cube 2, not only once, but most likely M = 3
times. As a result, the three motor vehicles and the canopy
area on the upper portion of that scene were accentuated
relative to the open field. For this initial experiment, we
ignored the binomial distribution model and set parameters
N and M intentionally low and tested Cube 2 to show the
undesired result in Figure 9(b).

For parameters accordingly set to (¢ = 0.10; T} =
T(20); N = 22; M = 40) yielded a significantly better
result by detecting only the three motor vehicles in the
scene, while suppressing the unknown clutter background,
see Figure 9(c). Using the available ground truth information
of the scene, the white clusters cover about 90 percent of the
motor vehicles’ spatial area (the targets) and no false alarms.
As discussed earlier, for many remote sensing applications,
targets (if present in the scene) will not cover more than 10
percent of the imagery spatial area. For instance, the motor
vehicle shown at broadside in Cube 2 has 25,000 pixels,
covering 6.1% of the imagery area (25000/409600). Note that
q = 0.1 is robust, because it is independent of targets’ aspect
or depression angles, relative to the sensor; independent of
the number of targets in the scene; and independent of
targets’ scales, relative to other objects in the scene.

The output surface shown in Figure 9(c) shows three
manmade objects (motor vehicles) clearly accentuated (pixel
values above T1) relative to the unknown cluttered environ-
ment. It is an achievement, given that no prior information is
used about the materials composing the clutter background,
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FIGURE 10: Results testing Cube 3 (a) and corresponding output surface (b). Parameters were set to (¢ = 0.10; Ty = T(20); N = 22; M =
40). A motor vehicle is parked in tree shades—around center of the scene. Using the available ground truth information of the scene, the
white clusters cover about 73% of the motor vehicle’s spatial area and no false alarms.

or about whether targets are present in the scene, or about
targets’ scales relative to other objects in the imagery. But
notice in Figure 9 that the standing person in the scene center
is not detected, possibly because the window size might be
too large and/or there must have some materials in that
background (randomly selected) spectrally similar to the
materials representing that person (e.g., pants, shirt, skin).
Figures 10 and 11 show additional results.

Figures 10 and 11 show results for Cube 3 and Cube
4, respective; both HS cubes particularly represent difficult
cases of clutter suppression. Parameters were also set to (q =
0.10; Ty = T(20); N = 22; M = 40) for both HS cubes.

The guideline described in Section 3.3 for setting
parameters also worked very well for both complex scenes
depicted in Figures 10 and 11. Both output surfaces clearly
accentuates the presence of a motor vehicle—one in tree
shades (center in Cube 3) and another motor vehicle parked
behind a heavily cluttered environment (center left hand
side in Cube 4); see white pixels, or pixel values greater
than or equal to T, in both output surfaces in Figures 10
and 11. Setting T) = T(20), in essence, means setting the
cutoff threshold at 20 standard deviations above the mean of
distribution ¢(z) in (A.10).

Using the available ground truth information of the
scenes in Figure 9 through Figure 11, quantitative compar-
ative performances were obtained via receiver’s operating
characteristic (ROC) curves (vertical axis show Pd for
probability of detection, and horizontal axis shows Pfa for
probability of false alarms) for some of the anomaly detectors
mentioned in Section 1. The data cubes were processed using
the global RX, k means, GMM, and QG-SemiP. In essence
we used the k mean and GMM in place of SemiP in the
context of the parallel random sample, but had to take
into consideration some of the inherent constraints of these
methods. For instance, for k means and GMM, we recorded
ROC curves for parameter N set to N = 3,5,10,20,and 50
and repetition parameter M = 50, while for QG-SemiP N
was set to 20, 50, 75, and 100 with M = 50. Global RX

estimates the mean and covariance from the entire data cube,
as discussed in Section 1. Figure 12 shows performance of
these detectors using ABC to label QG-SemiP, global to label
global RX, KM to label k means, and GMM.

Although the parameter values for k means and GMM
start at a lower value than QG-SemiP, Figure 12 shows that at
lower N the detectors k means and GMM actually perform
much better than for N set at higher values, as Nmay be
interpreted by these algorithms as the number of distinct
classes in the scene. Such performance degradation occurs
with large N because the spatial area that corresponds to each
individual N block of data is now smaller and samples of
the targets, required by the algorithm, need to be included
into one of the classes. This outcome contaminated the
distribution of the background clutter forcing it to be closer
to the distribution of the targets, resulting in performance
degradation. The global RX performed reasonably well, as
expected since the scene in Figure 9 is relatively less complex.
The QG-SemiP detector, also as expected, improved perfor-
mance as N increased.

Performance of these algorithms on the scenes in Figures
10 and 11 are shown in Figures 13 and 14, respectively.
Performance degradation of k means, GMM, and global RX
are evident from Figure 13, since the target is on tree shades.
QG-SemiP performs well for N > 20. In Figure 14, the
performance of the k means performed poorly at N = 20,
since the target is partially blocked by tree trunks, while
GMM performed poorlyat N = 3 and N = 5 and was unable
to converge at higher N values. The global RX surprisingly
worked reasonably well, but completely underperforming
the QG-SemiP detector.

4.2. Nadir Looking Imagery. For the nadir looking imagery,
Cube 1 in Figurel (top), ROC curves are also used as
a means to quantitatively compare five anomaly detection
approaches: local RX, local KRX, local FLD, local SemiP, and
QG-SemiP; see Section 1.
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FIGURE 11: Results testing Cube 4 (a) and corresponding output surface (b). Parameters were set to (¢ = 0.10; Ty = T(20); N = 22; M = 40).
A motor vehicle is shown on the left hand side, between top and bottom, behind tree trunks—a sport car. Cube 4 exemplifies a hard case of
autonomous clutter suppression. Using the available ground truth information of the scene, the white clusters cover about 44% of the motor

vehicle’s spatial area and less than 2% of false alarms.
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FIGUre 12: ROC curve performance testing QG-SemiP (ABC), global RX (Global), k means (KM), and GMM detectors on scene shown in

Figure 9.

Local anomaly detectors process small (n X 1) windows
of the HS data cube X, where all the x,. (r = 1,...,R; ¢ =
I,...,C) in X are used; modeling is only done at the level
of the n x n windows, where n < R and n < C («
denoting many orders of magnitude smaller than); at the level
of the pixel area surrounding these windows. Blocks of data
(n X n windows) that are spectrally different from pixels
surrounding them score high using an effective detector in
contrast to blocks of data that are not spectrally different
from their surrounding pixels. After the detector scores the
entire X, it yields a 2-dim surface Z [a(R—n—1)x(C—n—1)
array of scalars], where a cutoff threshold is then compared
to the pixel values in Z. Pixels having values greater than the

threshold are labeled local anomalies (notice that the SemiP
detector will be used in both local and quasi-global versions).
As described in Section 2.1, the set of 14 ground vehicles
near the treeline in Cube 1 (Figure 1) constitutes the target
set, but, since anomaly detectors are not designed to detect
a particular target set, the meaning of false alarms is not
absolutely clear in this context. For instance, a genuine local
anomaly not belonging to the target set would be incorrectly
labeled as a false alarm. Nevertheless, it does add some
value to our analysis to compare detections of targets versus
nontargets among the different algorithmic ap-proaches.
Figure 15 shows the ROC curves produced by the output
of the five algorithms testing Cube 1 for local or scene
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FIGURE 13: ROC curve performance testing QG-SemiP (ABC), global RX (global), k means (KM), and GMM detectors on scene shown in

Figure 10.

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1
Pfa

FiGgurg 14: ROC curve performance testing QG-SemiP (ABC), global RX (global), k means (KM), and GMM detectors on scene shown in

Figure 11.

anomalies. Detection performance was measured using the
ground truth information for the HYDICE imagery. We
used the coordinates of all the rectangular target regions
and their shadows to represent the ground truth target
set. As it can be readily assessed from Figure 15, the
local SemiP and QG-SemiP anomaly detection approaches
outperform the other three techniques on the tested scene,
followed by KRX’s performance. The significant display
of performance shown in Figure 15 by the semiparamtric
algorithms can be further appreciated by taking a closer
look at the output surfaces produced by all five detec-
tors, as they show evidences of candidate local and scene
anomalies. The intensity of local peaks shown in Figure 16
reflects the strength of the detectors’ evidences. Figure 16
shows that the surfaces produced by FLD, RX, and KRX
detectors are expected to be significantly more sensitive
(producing false alarms) to changing cutoff thresholds then
the ones produced by the local SemiP and QG-SemiP
approaches.

Spatial areas shown in Cube 1 containing the presence
of clutter mixtures (e.g., edge of terrain, edge of tree

clusters), where FLD, RX, and KRX yield a high number of
potential false alarms (false anomalies), are suppressed by
the SemiP approach, local, and quasi-global. The reason for
this suppression is that, as part of the overall comparison
strategy, the semiparametric model combines both the test
and reference samples in order to estimate the underlying
PDFE of the reference sample, as shown by simulation
earlier. As such, the semiparametric test statistic ensures
that a component of a mixture (e.g., shadow) will not be
detected as a local anomaly when it is tested against the
mixture itself (e.g., trees and shadows). Performances of
such cases are represented in Figure 16 in the form of softer
anomalies (significantly less-dominant peaks) in the local
SemiP’s and QG-SemiP’s output surfaces. It is evident from
Figure 16 that both versions of the SemiP detectors perform
remarkably well accentuating the presence of dominant local
or scene anomalies (e.g., targets) from softer anomalies (e.g.,
transitions of distinct regions). The natural ability of the
semiparametric model to manage spectral mixture can best
explain the local SemiP and QG-SemiP superior ROC-curve
performances shown in Figure 15.
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F1Gure 15: ROC curves for the nadir looking imagery (Cube 1) data scene shown in Figure 1. The semiparametric method, being used in
both local and quasiglobal versions, are noticeably less sensitive to different cutoff thresholds; their performances almost achieve an ideal
ROC curve for that scene, that is, a step function starting at point (PFA = 0,PD = 1).

5. Conclusion

This paper introduced an adaptive quasi-global, semipara-
metric anomaly detection algorithm and evaluated the
approach using real HS imagery, where targets (manmade
objects) are found in difficult natural clutter backgrounds
viewed from two different perspectives—nadir and for-
ward looking. The algorithm features a semiparametric
test statistic, which has been recently found to be robust
against spectral mixture, and applies random sampling of the
imagery to test for anomalies. Random sampling and testing
are repeated a number of times in order to mitigate the
probability of contamination (spectral samples of candidate
targets being sampled and used as clutter reference samples).
As such, the algorithm requires no prior information (e.g.,
a spectral library of the clutter background and/or target,
target size, or shape). The algorithm is free from training
requirements. We found that the semiparametric model has
a natural ability to handle mixtures, although an exhaustive
survey of the literature reveals that this fact has never been
noticed before by practitioners of the model in other fields of
study (e.g., biotechnology).

The repeated sampling and testing procedure was mod-
eled by the binomial family of distributions, where the only
target related parameter g (the upper bound proportion
of target pixels potentially covering the spatial area of the
imagery) is robust—thus invariant—to different sizes and
shapes of targets, number of targets present in the scene,
target aspect angle, partially obscured targets, or sensor
viewing perspective. The paper also discussed how other
parameters (N, the total number of sampled data blocks to
take from the HS imagery, and M, the number of process
repetitions) can be automatically set using a simple guideline.

The algorithm fuses intermediate results through the
application of minimum order statistics and logic OR

operation. The paper presented the algorithm’s asymptotic
behavior under the null hypothesis, when either the null or
the alternative hypothesis is true, for the two-sample test
case and the multi-sample test case, where the cumulative
probability of the algorithm making mistakes was derived.
Using the cumulative probability, a cutoff threshold can be
determined from a user specified probability of error. This
is a desired feature giving the user some control of predicted
errors.

The inherent challenges in adequately modeling spectral
variability of targets, while managing spectral variability
between targets, have prompted the introduction of a more
robust family of algorithms that attempts to detect targets as
being anomalous to an unknown natural clutter background.
This paper presented an approach that inherently addresses
many of the problems and issues pertaining to anomaly
detection applications. The advantages of using anomaly
detection algorithms have been discussed in this paper;
however, it should be emphasized that targets would not be
detected as specific manmade objects; they would be detected
as anomalies. This is a limitation.

Appendix

Asymptotic Behavior of the Quasiglobal
Semiparametric Algorithm

This section shows an analytical asymptotic analysis of the
quasi-global semiparametric anomaly detection algorithm.
In particular, we would like to investigate the algorithm’s
cumulative probability of rejecting the null hypothesis, when
either the null or the alternative hypothesis is true; that is, the
algorithm’s probability of making mistakes. We will look first
at the asymptotic behavior of the two sample test case, where



Journal of Electrical and Computer Engineering

Scene ~ FLD

o

27

KRX SemiP  QG-SemiP

FIGURE 16: Detection algorithms’ output surfaces for Cube 1 (far left). The intensity of local peaks reflects the strength of evidences as seen by
different anomaly detection approaches. Boundary issues were ignored in this test; surfaces were magnified to about the size of the original
image only for the purpose of visual comparison. FLD, RX, KRX, and SemiP performed local anomaly detection by testing spectra within a
testing window (red square shown in the scene display—far left, top) to spectra surrounding the testing window (outer window bounded by
yellow lines). QG-SemiP performed global anomaly detection, as presented in this paper.

the detector tests a reference sample against a test sample;
then we will look at the multisample test case, which uses
order statistic to reduce N results to a single result.

Twwo-Sample Test (2ST). In order to declare an anomaly, a
decision threshold T must be chosen; hopefully, separating
without errors the null and the alternative hypotheses in
some decision space. In the paper’s context, values of Zsemip
in (23) greater than T are automatically labeled as anomalies.
And since, in real world applications, decision errors are
unavoidable, we would like to know whether the asymptotic
behaviors of these errors can be determined, and whether
they are favorable. The power function can provide those
answers for the two-sample test (2ST) case. Using (13), the
power function of the semiparmetric test statistic for the two-
sample test (2ST) case is as follows:

I//(ﬁ) _ P/S—O(ZSemlP >T) (A1)
Pﬁ#O(ZSemiP > T)

In essence, the power function ¥ yields the cumulative
probability P of rejecting the null hypothesis Hy in (13) when
either Hy (8 = 0) or the alternative H; (8 # 0) is true. This
rejection region is Zsemip > T, where Zsemip is defined in
(23) and T is the decision threshold. Notice in (A.1) that
under Hy corresponds to the well known type I error, or the
probability of missing (i.e., the probability of rejecting Hy,
given that Hy is true) and that y under H; corresponds to the
complement of the type Il error, or probability of false alarms
(i.e., one minus the probability of rejecting H,, given that
H; is true). The type I and type II errors constitute the only
error types encountered in the context of our discussion. In
the ideal case, ¥ yields 0.0 when Hj is true and 1.0 when H; is
true. Except in trivial situations, this ideal cannot be attained.

So, one of our goals is to show that y tends in probability to
¢ (a scalar controlled by the user), when Hj is true, and that
y tends in probability to 1.0, when the alternative hypothesis
Hj is true.

If Hp in (13) is true, the semiparametric detector has the
asymptotic behavior shown in (23), and the type-I error is
readily obtained by the following:

Pﬁ:()(ZSemiP > T) P(f > T) =6 (AZ)

n— o

where & is a Chi square distributed random variable with
1 degree of freedom, Zsemip as defined in (23), € and T are
nonnegative real values.

Setting ¥(B) = Pg-o(Zsemp > T), v is indeed an
asymptotic size ¢ test, which is controlled by the user.

Now consider an alternative parameter value, such that
B #0, and let {? be the true variance in (21) and 32 be a
estimator of (2, or

(2 _ P71(1 +P)2

2
, (A.3)
& - p'(1+p)
V2 ’
where p = n1/ny and 2 is defined in (22).
From (23), we can now write
2
R_ 2
ZSemiP = (ﬁ ﬁ) + ( ﬁ ) (i) (A4)
V(2 /n \(¥/n

[« J [« o

2
——

~ ~ c
A B

Notice in (A.4) that, as n; and ng go to +o, p = n1/ng
tends to 1 and (? tends to {? for v* > 0. According to (21),
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the term A in (A.4) converges in distribution to the standard
Normal, N(0, 1), as n; and ny (hence, 1) go to +00, no matter
what the values of 8 or {? are. Note also that the term B con-
verges to 400 or — oo in probability, as n goes to +co, depend-
ing on whether f3 is positive or negative. Since the estimator

‘@0 in (38) has been shown [21] to be biased, as n; and ng go
to +oo, (? tends to a constant, see definition of ¥* in (22);
leading the term C also to a constant, no matter what values
of {2 is. Thus, Zsemip converges to +oo in probability and
Pgyo(reject Ho) = Ppypo(Zsemp > T) —— 1. (A5)
In this way, the semiparametric test statistic shown in (23)

also has the properties of asymptotic size € and asymptotic
power 1, which is highly desired.

Multisample Test (mST). The discussions in Sections 2.3 and
4.1 ensure that the output of the semiparametric 2ST has two
asymptotic outcomes: Zgemip —— x% in distribution, if Hy
n— oo
in (13) is true, or Zsemip —— +0co in probability, if H; is
n— oo
true.

Using results leading to (13) and the order statistics
fég;ﬂp = min; < fsNZé;]rL(uf)) in (34), for the multi-sample test
(mST) case, we propose the following null H, and alternative
Hj hypotheses

N
H, : at least one {ﬁ(f)}le =0,
(A.6)

Hyall (B0} 2o,

where ) is the true logistic function parameter—see
(12)—corresponding to the fth randomly selected block of
data from a HS data cube X.

Now, consider the following: for a given spatial location

in X, let Zé{,l“-p be the semiparametric detector’s output for
the fth block of data, and assume, without loss of generality,
that each one of the first L outputs in the independent
sequence of results (1 < L < N, where N is the total number
of randomly selected blocks of data in X) has the asymptotic
chi-square behavior shown in (23), and that each one of the
remainder results has the asymptotic behavior tending to
+00, or
Zélr)niP — i

(2) n—o 9
ZSemiP 1

@ n-s 5|

Zsemip H, = miny ZSemiP —Xi (A7)

(L+1) n—oo
ZSerniP +oo

Z(N) n— oo +OO‘

L ~SemiP

Under the null hypothesis H, in (A.6), Zsemip in (A.7)
is bounded because, as n — 00, Zgemip Will converge in
law to the distribution of the lowest order statistics. (The
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order statistics of a random sample Z,,...,Zy are the
sample values placed in ascending order. They are often
denoted by Z,...,Zn), where Z) = miny<r<nXy and
Z(Ny = maxs<s<NXy.) To attain an approximation of the
type L error using (A.7), we first ignore all the components in
(A.7) that converge in probability to +oo, then we consider
only the components that converge in distribution, that is,

(Zégnip, Zéifmp, ces Zéér)nip). The distribution of

()
Zsemip(1) = min Zg, .
P(1) FR40, Fsemip (A.8)
from the culled sequence can be attained with the application
of Theorem 1.

Theorem 1. Let X(y),...,X(n) denote the order statistics of a
random sample from a continuous population with cumulative
distribution function (cdf) F(x) and pdf f(x). Then the pdf of
X is

Flx) = T PV - Fl,

(A9)

where (+)! denotes the factorial operator.

The proof of Theorem 1 can be found in [28].
Using Theorem 1 with j = 1 and n = L, the pdf of

ZNsemip = ZSemiP(l) under Hz in (A.6) is

§(2) = Lg(z)[1 - G(z)]",

where g(z) is the Chi square pdf with 1 degree of freedom
and G(z) is the corresponding cdf.

Denote the kth logistic function parameter f¥) in (A.6)
to correspond to the one of the minimum order statistics
Zsemip(1)- As the sample size increases in Zsemip(1), that is, n =
n'®) — oo, the probability of rejecting the null hypothesis H,
in (A.6), when ﬁ“‘) = 0, converges to

{V\[ﬁ(k)] = Pgiw—o (ZSemiP > Tl) — PE>T)) =¢,
(A.11)

(A.10)

where & is a random variable distributed by g(z), as defined
in (A.10); T1 a nonnegative real value; ¢ is a positive real
value, controlled by the user.
The variable ¥ in (A.11) is the type I error under H, for
the mST case, and it is indeed an asymptotically size ¢; test.
Now consider the alternative hypothesis Hs in (A.6),

where all {[S(f)}l}rz1 #0. From (A.7) one can write

(1) n— oo
Zsemip — 00
ZSemiP)Hg = min : (A.12)
’ (N) n— oo

ZSemiP +oo

From (A.12), ZNsemip will converge in probability to +oo,
hence, the probability P of rejecting the null hypothesis H,
given that Hj is true, tends to 1.0, or

— 00

(A.13)

Pﬂ(k)¢0(rejecting H,) = Pﬁ(k)7&0(ZSemiP(1) > T) — 1.
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In this way, the quasi-global semiparametric anomaly
detection algorithm has the desired properties of asymptotic
size &1, which is controlled by the user, and asymptotic power
1.0.

Notations

Bold upper case letters may denote a data cube (3
dimensions) or a matrix (e.g., X, Wj), where the
specific case in use is defined in the text.

Lower cases letters denote vectors (bold) or sequences
(not bold) (e.g., x, x1 = (X11,...>X1n,))-

PDF or pdf: Probability density function.

IID or iid: Independent and identically distributed.
R%xd:_g, by d, dimensional set of real numbers.

€ denotes set belonging

HS: Hyperspectral

X: Observed hyperspectral data cube with dimen-
sions of R rows, C columns, and K bands.

X,c: Observed spectrum contained in X with spatial
indexes (r = 1,...,R)and (c = 1,...,C).

A slideing n x n window is a 3-dim subset of X,
containing n - n spectra.

W, € RF>™: A matrix representing a hyperspectral
sample being observed from a sliding n X n window
in X (also referred to herein as a test sample); this is
a rearranged version of a 3-dim subdata cube, where
vertical direction is the dimension K of bands and the
horizontal direction is the dimension of countable
samples with sample size n; = n?.

yin € RK (h=1,...,n;): An observed spectrum of K
bands contained in W;.

g1(y|0): Multivariate joint PDF of yi1,..., Y1,

W, € REXm: A matrix representing a hyperspectral
sample labled as a reference sample of sample size ny,
having the same specifications of W except perhaps
the sample size (19 may be different from n,).

yon € RK(h = 1,...,n0): An observed spectrum of K
bands contained in W.

2o(y10): Multivariate joint PDF of yo1,. .., Yon,-
Vo € RE=Dxm: Qutput from differentiating W.
V1 € RE=Dxm: Output from differentiating W.

X0 = (Xo1,X02,--.>Xon,): Univariate sequence used as
the reference sample.

x1 = (x11,%12,. .., X1, ): Univariate sequence used as
the test sample.

go(x): Univariate PDF labeled as reference.
£1(x): Univariate PDF labeled as test

t = (X115 X1ny> X015+ - - Xony) = (1., 24): Sample
concatenation, combining samples.
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£o(t): estimator of go(x).
g%(t): estimator of gy (1).
H;: Statistical hypothesis i.

Zsemip: Univariate output of the semiparametric
detector.

P: Cumulative probability function, using the bino-
mial family of PDFs as base PDE.

N: The number of randomly selected blocks of data
used to represent background objects.

Trial (or process): Take N random blocks of data
from the data cube under test, label them as reference
background objects, and—using the semiparametric
detector and a sliding window across the data cube—
test the entire data cube against the same set of N
reference blocks of data.

M: The number of trials (repetitions or parallel
processes).

Pe(m = 1): Cumulative probability of contami-
nation, that is, probability of labeling a randomly
selected target sample as a background sample at the
gth trial or process.

P: Overall cumulative probability that all of the
trials (or processes) are contaminated with at least a
contaminated sample from the randomly selected set

(N
of reference samples {Wy' "} fo1-

ZNéle]IZﬁP: Retains the lowest order statistics from a set of

N semiparametric detector’s results.

ié‘iinigz The 2-dimensional output surface, consisting

of ZNéZn)ﬁP values, from the gth trial.

Ti: Adaptive cutoff threshold for Z(Sg;mp.

Zsemip: A final binary 2-dimensional output surface
of the quasi-global semiparametric detector.
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Anomaly detection (AD) in hyperspectral data has received a lot of attention for various applications. The aim of anomaly detection
is to detect pixels in the hyperspectral data cube whose spectra differ significantly from the background spectra. Many anomaly
detectors have been proposed in the literature. They differ in the way the background is characterized and in the method used
for determining the difference between the current pixel and the background. The most well-known anomaly detector is the RX
detector that calculates the Mahalanobis distance between the pixel under test (PUT) and the background. Global RX characterizes
the background of the complete scene by a single multivariate normal probability density function. In many cases, this model is not
appropriate for describing the background. For that reason a variety of other anomaly detection methods have been developed.
This paper examines three classes of anomaly detectors: subspace methods, local methods, and segmentation-based methods.
Representative examples of each class are chosen and applied on a set of hyperspectral data with diverse complexity. The results

are evaluated and compared.

1. Introduction

Many types of anomaly detectors have been proposed in
literature [1, 2]. The most frequently used anomaly detector
is the (spectral only version of the) Reed-Xiaoli (RX) detector
[3] that is often used as a benchmark to which other methods
are compared. The RX detector characterizes the background
by its spectral mean vector yp and covariance matrix Xz. The
actual detector calculates the Mahalanobis distance between
the pixel under test r and the background as follows:

Drx = (r — ) " 25" (r — up). (1)

The global RX detector characterizes the background
of the complete scene by a single multivariate normal
probability density function (pdf). In many scenes, this
model is not adequate. For that reason, several variations of
the global RX detector have been proposed in literature [1, 2,
4-12]. They can be sub-divided into three classes: subspace
methods, local methods, and segmentation-based methods.

In complex scenes the latter category was shown to be very
effective and several segmentation-based anomaly detectors
(SBAD), not necessarily based on RX, have recently been pro-
posed [13-20]. The aim of the current paper is to compare
the results obtained by different types of anomaly detectors
in scenes characterized by different types of background. In
particular, two rural scenes with subpixel anomalies, a rural
scene with some of the targets in shadow, and an urban
scene were considered. Representative examples of each of
the three previously mentioned classes of anomaly detectors
were included in the comparison. In previous work [21], we
noted the importance of data reduction and preprocessing on
anomaly detection results. The current paper therefore also
presents a comparison of results obtained by the different
detectors after applying different preprocessing methods.
The evaluation of the detection results is mainly based on
receiver-operating characteristic (ROC) curves. For spatially
fully resolved targets, the false alarm rate at first detection was
also considered. For the two scenes with extended targets,



besides an objective evaluation, a more subjective evaluation
is also presented. The rest of the paper is organized as
follows. Section 2 presents the used datasets; in Section 3 the
examined anomaly detection methods are briefly presented;
Section 4 presents the different preprocessing methods that
have been applied to the data. The last two sections of the
paper present the results and the conclusions. The appendix
presents a brief exploratory data analysis that mainly aims at
verifying to what extent the different used datacubes comply
with the assumption of global or local unimodal multivariate
normality.

2. Overview of the Dataset

The analysis was performed on a set of hypercubes of
scenes with various backgrounds and representative of three
scenarios as follows:

(1) a rural environment with subpixel targets (CAM and
OSLO1),

(ii) a rural environment with some of the targets in
shadow (BJO),

(iii) an urban environment (OSLO2).

Table 1 presents an overview of the used dataset. The
first two datacubes are real hyperspectral images in which a
matrix of anomalies was inserted artificially. Figure 1 shows
RGB composites of these images on which the targets have
been superimposed.

The results shown in this paper were obtained with 10%
mixing ratio subpixel anomalies for the CAM scene. For
OSLOI, the mixing ratio was varied from 100% to 10%. The
inserted anomalies are spectra of a green paint (CAM) and a
green fabric (OSLO1).

The BJO image (Figure 2(a)) was acquired over a natural
scene with an agricultural region and a small forest near
the village of Bjoerkelangen in Norway. The figure shows
the target locations with light blue colored rectangles repre-
senting the target sizes superimposed on the RGB composite
of the scene. Fourteen targets composed of different types
of material and with different colors were laid in the scene
during the image acquisition. Targets T3—T7 were in shadow.
T3 was in deep shadow between the trees, and the four others
were in the shadow at the edge of the forest. Table 2 presents
the dimensions and material types of the different targets.

The OSLO2 scene (Figure 2(b)) is part of the center of
Oslo. In this scene, four targets (T1-T4) were laid out. Their
respective dimensions in the image are T1: 5 x 10, T2: 5 X 9,
T3:2x6,and T4: 6 X 7 pixels. Targets T2 and T3 are pieces of
green fabric and the other two of a blue plastic. T1-T3 were
laid out on the grass in a park, and T4 was put on an asphalt
background in the shadow from a building.

The CAM image was rectified and atmospherically
corrected. The images BJO, OSLO1, and OSLO2 were not
rectified before processing and all processing on these scenes
was applied to radiance data, that is, without applying any
atmospheric correction.
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3. Anomaly Detection Methods

Besides global RX, representative examples of three cat-
egories of anomaly detectors are examined in the paper.
Figure 3 presents an overview of the selected detectors in
the three classes. As can be seen from the figure, many of
the investigated methods are RX-based, but for the subspace
detection methods and in particular for the SBAD methods,
some anomaly detectors that are not related to RX have also
been included. The different detectors are briefly described
below.

3.1. Subspace Methods. The subspace methods are global
and have in common that they apply principal component
analysis (PCA) or singular value decomposition (SVD) to
the datacube. The first PCA/SVD bands are supposed to
represent the background and they are eliminated in different
ways by the various subspace methods. Subspace anomaly
detectors are thus global anomaly detectors applied on a
spectral subset (subspace). For all of the subspace methods,
the only parameter is the number of PCA or SVD bands
(np) that is considered to represent the background. If
this number is set too high, targets will disappear in the
background, if it is too low, too many false alarms will
remain. Automatically determining an optimal value for the
dimension of the background subspace remains a current
research topic.

3.1.1. Subspace RX (SSRX). In SSRX, the global RX is applied
on a limited number of PCA bands. The first PCs are
discarded in SSRX.

3.1.2. RX after Orthogonal Subspace Projection (OSPRX).
In OSPRX, the first PCA/SVD components define the
background subspace and the data are projected onto the
orthogonal subspace before applying the RX detector [2, 22].

In the current paper, the SVD of the global spectral
covariance matrix X is used. Because X is positive definite,
the SVD is equivalent to the following eigenvector/eigenvalue
decomposition:

> = UAUT, (2)

where U is the matrix of eigenvectors of the decomposition
and A the diagonal matrix with decreasing eigenvalues. The
projection operator Psyp is defined as a function of the first
np eigenvectors (columns of U), corresponding to the highest
eigenvalues, W = U(1...n,1...n;) as follows:

Dosprx(r) = r7(I = Psyp)r = rT (1= WWT)r,  (3)

with I the n X n identity matrix. » is the number of channels
in the datacube, and n;, the number of channels used to
model the background subspace (1 < 1 < n).

3.1.3. RX after “Partialling Out” the Clutter Subspace (PORX).
In this method, the effect of the clutter in a pixel is removed
(partialled out) component-wise by predicting each of its
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TaBLE 1: Overview of the used dataset.

Sensor ~ Number of Spectral range Spatial resolution ~ Image size ~ Number of  Total target size

Name Site name bands n (in pm) (in m) (in pixels) targets (in pixels)
CAM  Camargue (Fr)  Hymap 126 0.44-2.45 4 150 x 100 45 45
OSLO1 Oslo (No) HySpex 80 0.410-0.984 0.25 286 x 287 81 81
BJO Bloer(lggngen HySpex 80 0.410-0.984 0.25 700 x 1600 14 574
OSLO2 Oslo (No) HySpex 80 0.410-0.984 0.25 700 x 1600 4 45

TABLE 2: Material types and sizes (in pixels) of the different targets in the BJO image.
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

Painted boards Painted boards

Green car Redcar Cloths Cloths Paint1 Paint2 Paint3 Cloths  Cloths Paint1 Paint2 Paint3 Paint4 People

8 x 22 5x11 4x3 2X3 5x7 4x4 3x3 2X7 3x4 8 x 10 5x7 4x7 5% 8 7 X 16

F1GUure 2: RGB composite of the BJO (a) and OSLO2 (b) datacubes with target locations indicated.
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FIGURE 3: Schematic overview of the examined anomaly detection
methods.

spectral components as a linear combination of its high-
variance principal components. The detector applies the RX
detector on the residual. Details of the method can be found
in [10].

3.1.4. Complimentary Subspace Detector (CSD). The CSD
is not an RX-based method. In the CSD, the highest
variance principal components are again used to define the
background subspace and the other PCs, to define the target
subspace (the complimentary subspace) [7]. The PUT is then
projected on the two subspaces and the anomaly detector is
the difference of the projection onto the target subspace and
the background subspace as follows:

Dcsp(r) = rTPir — rTPyr, (4)
where

Po=U(l...n,1...0)UT(1...0,1...1p),

(5)
P=U...0,(mp+1)...0)0UT(1...n,(np + 1)...n).

3.2. Local Methods. In the local anomaly detection methods,
the statistics of the background are estimated locally in a
window around the PUT. A double sliding window is used:
a guard window and an outer window are defined, and
the background statistics are determined using the pixels
between the two (see Figure 4). Sometimes a triple window
is used where the covariance matrix of the background
is estimated in a larger window than the average local
background spectrum.

3.2.1. Local RX (LRX). In LRX, the covariance matrix Xp
and mean spectrum pp of the background are estimated
locally in a triple window around the PUT. In the used
implementation, the size of the guard window is a parameter
from which the size of the two other windows is determined
as a function of the number of bands in the image as follow:

W, = min(k* = W2 > V10n),
w = min(k? = W& = vion) o

Wy = min(k* — W& = 10n).
kodd

3.2.2. Quasi-local RX (QLRX). Quasi-local RX (QLRX) [9]
offers a compromise between the global and local RX
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F1GURE 4: Sliding triple window used in the local AD methods.

approach. In QLRX, the global covariance matrix X is
decomposed using eigenvector/eigenvalue decomposition
(2). The eigenvectors are kept in the RX, but the eigenvalues
are replaced by the maximum of the local variance and the
global eigenvalue as

6L = [maX(A{OC’Aélob)]’ (7)

where i is an index denoting the pixel in the image. This
means that the score of the detector will be lower at locations
of the image with high variance (e.g., edges) than in more
homogeneous areas. Spectral statistical standardization (see
Section 4.4) is applied as a preprocessing step. The local
variance is determined in a double sliding window.

3.3. Segmentation-Based Methods. In complex scenes, the
hypothesis of a single multivariate normal distribution
of background spectra is usually not verified, not even
locally. For that reason several segmentation-based anomaly
detectors have been proposed in literature. In this paper, four
of these methods have been included in the analysis.

3.3.1. Class-Conditional RX (CRX). In CRX, the image is first
segmented, the covariance matrix and mean within each class
i (i.e., Z; and y;) are determined. The Mahalanobis distance
between the PUT and each of the classes is calculated. The
final result is the minimum of these distances:

Dcrx = miin[(r — ) E N (r - )|, (8)

In the current paper, K-means clustering is used and the
parameters of the method are the minimum number of pixels
allowed in each class and the maximum number of classes
used in the clustering. The number of classes follows from
these parameters.

3.3.2. Method Based on Multivariate Normal Mixture Mod-
els (MMM) [13]. A Stochastic Expectation Maximization
(SEM) algorithm [23] is used for fitting a multivariate
normal mixture model to the image for describing the
background. The anomaly detector detects pixels that have
a low probability according to the fitted model.

The parameters of the method are the maximum number
of mixture components and the termination threshold for
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the iterative parameters estimation method. The idea behind
the mixture model is to use the mixture components (the
multivariate normal pdfs) as base pdfs in a row expansion
of the true pdf, which can then, in principle, have any shape.

3.3.3. Two-Level Endmember Selection Method (TLES). The
principle of the TLES method [19] is as follows: a small
scanning window (50 X 50 pixels) runs over the image and
at each position of the window the principal background
spectra are determined using a segmentation method based
on endmember selection. Endmembers that correspond to
at least a given percentage (MP) of the image tile are stored.
At the end of the process, an endmember selection is again
applied on the stored endmembers and linear unmixing
is applied on the image. Anomalies correspond to pixels
with a large residue after unmixing. In [19], N-FINDR was
used as the endmember selection method. In the current
paper, the minimum volume simplex analysis algorithm
(MVSA) [24] was used because it was found to give better
results. Parameters of the method are the threshold MP and
the number of endmembers kept in the two stages of the
algorithm.

3.3.4. Method Based on Self-Organizing Maps (SOM). A
trained SOM 1is considered as a representation of the
background classes in the scene. Anomalies are determined
by computing the spectral distances of the pixels from the
SOM units [16, 17]. The SOM was applied on the first PCA
components and run using a square map consisting of NsxNs
hexagonal cells. The SOM was optimized sequentially. The
parameters of the method are Ns and the number of PCA
bands used.

4. Preprocessing Methods

Before applying the actual anomaly detectors, some prepro-
cessing methods were applied to the data. Three different
types of preprocessing were applied.

The first type is data dimension reduction, which has two
objectives. The first objective is to describe the background
better and to obtain more reliable statistical estimation,
especially when applying local methods where the number
of samples to compute statistics from is low. Moreover,
reducing data dimension allows to reduce the size of the
windows for the local methods. This reinforces the local
aspect of the method and reduces the risk that nearby targets
overlap with the window used to compute background
statistics. The second objective is to project the data on
axes where the anomalies are enhanced, that is, the most
separated from the background pixels. In this paper, we focus
on two different methods, spectral binning which fulfills the
first objective, and kurtosis-based dimension reduction, that
attempts to fulfill both.

The second type of preprocessing aims to account for
the effects of shadow. In this paper, a simplified approach
consisting in square root transforming the data is used
(Section 4.5).

Finally, some AD methods need some specific prepro-
cessing that is described in Sections 4.3 and 4.4.

4.1. Dimension Reduction by Spectral Binning (SB). As noted
in [25, 26], dimension reduction can improve hyperspec-
tral anomaly detection performance substantially. We have
applied a dimension reduction method based on spectral
binning, similar to the method applied in [26]. The binning
consists in averaging over groups of neighboring bands,
down to a spectral resolution of about 30 nm. The binning
tends to improve the signal-to-noise ratio by reducing the
relative contribution of photon noise. When this can be done
while preserving the relevant spectral features, the result is
improved detection performance.

4.2. Kurtosis-Based Dimension Reduction (KDR). Asanomaly
detection aims to search for outliers, a projection that
enhances outliers applied as a preprocessing can improve
detection performance. It has been shown that kurtosis is
very sensitive to outliers. In [27] data are projected on the
(first) eigenvectors of the kurtosis matrix K:

N
K= (- 'S (06 - 1) (6 - ) (6 - ), 9
i=1
where X; is the ith element of X, the matrix of observations
(the spectrum of the ith pixel), and y and X are the spectral
mean and covariance matrix of the datacube. N is the total
number of pixels in the image. This method is mainly useful
if the data are unimodally distributed, that is, in scenes
characterized by a relatively homogeneous background (in
this work, the CAM and OSLOI1 images). Usually, only
the first 3 to 5 kurtosis components are kept for further
processing. This is the case for GRX, LRX and QLRX, MMM,
and SOM. For the subspace methods and TLES, all kurtosis
components were used.

4.3. Spectral Whitening. If the eigenvalues and eigenvectors
of the covariance matrix of the complete image are, respec-
tively, A and U, and y is the average spectral vector of the
image, then the spectral whitening of the pixel  is given by
[6,7]

rw = UNTUT (r — p). (10)

After spectral whitening, a Gaussian distributed variable
becomes spherically symmetric and this is sometimes ben-
eficial for detection [6]. Whether whitening is beneficial for
the anomaly detector depends on the AD method and the
datacube. For CSD, spectral whitening is always applied.
The other subspace methods were applied with and without
whitening and the best result obtained is reported in this

paper.

4.4. Spectral Statistical Standardization. The spectral statisti-
cal standardization converts each spectral band to have a zero
mean and a standard deviation of one. This is necessary for
the QLRX in order to make sure that the global eigenvalues
and the local variances can be interchanged in the algorithm.



4.5. Square Root Transform. Detection performance is gen-
erally degraded in shadow, due, among other things, to
low signal-to-noise ratio and distortions of the spectral
signatures caused by secondary illumination, the adjacency
effect, and path-scattered skylight. In addition, the large
dynamic range of the data from scenes containing both
sunlit and shadowed areas makes the data modeling task
more difficult. In order to improve detection performance
in shadow, different strategies can be applied: de-shadowing
and illumination suppression for estimation of sunlit-like
radiance in shadowed areas [28-31], sun/shadow segmenta-
tion and application of adapted modeling in the respective
areas [32], or transformation of the data to account for the
effects of shadow. We have square root transformed the data
fsqt = ~/r. This reduces the dynamic range of the data,
and, perhaps more importantly, makes the noise signal level
independent [33], with benefits for data modeling through a
suppression of the influence of noisy low-level signals. At low
signal levels for homogeneous backgrounds, the dominating
source of variation in the signal is Poisson distributed
counting (photon) noise, and square root transforming
the data yields approximate normality [34]. Square root
transforming the data of course also affects the distribution
in the, vast majority of, cases where scene clutter is the main
source of signal variation, but in unpredictable ways for
complex backgrounds.

5. Evaluation Method

Experimental ROC (receiver operating characteristic) curves,
showing the detection rate (DR) versus the false alarm rate
(FAR), are used to evaluate the results obtained with the
various detectors. For the images with resolved targets, a
pixel-based ROC curve is calculated for each target, whereas
for the images with subpixel targets, an ROC curve is
calculated based on all the targets in the image. DR is plotted
versus the logarithm of the FAR (the resulting curve is
referred to as a logROC), and the area under the logROC
curve (the logAUC) is calculated and used as the measure of
performance. The reason for using a logarithmic FAR scale is
that it ensures equal weight across the range of FAR values.

For extended targets (in BJO and OSLO2), ROC curves
give the detection performance for each pixel of the target
with respect to the false alarm rate. For defense and security
applications, it is also of interest to assess the performance
at the first detection of a target. In this paper, for extended
targets, we therefore also determined the false alarm rate at
the first detection for each of the targets.

Besides these objective evaluation metrics, it is also
interesting to look at the type of false alarms that the various
detectors produce in the different scenes. Therefore for the
“best” detectors, a detection image is shown corresponding
to the threshold for which at least one pixel of the most
difficult target is detected. This subjective result is shown for
scenes with extended targets (BJO and OSLO2).

6. Results and Discussion

6.1. Implementation Issue: Parameter Selection. The different
examined AD methods depend on different parameters.
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For some of the applied methods, the parameters were set
according to experience, whereas for others, where we lack
this experience and where no consensus exists in literature
for setting the parameters, we chose the optimal parameter
setting through an optimization process in order to make the
comparison between the detectors fair.

For the local methods, the parameters are the dimensions
of the guard window and the outer window(s). The guard
window should be set to be larger than the largest target
of interest expected to be present in the scene, and size
of the outer window(s) is derived from it as explained in
Section 3.2.1. For the two datasets with subpixel anomalies,
the guard window was set to 1, and for the two other datasets,
it was set to 15.

GRX has no parameters.

For subspace methods, the only parameter is the dimen-
sionality attributed to the background subspace. Several
methods have been proposed for estimating this “signal
subspace,” mainly for unmixing purposes [35-39]. The two
latter focus on finding the signal subspace dimension in
the presence of “rare signals.” They are thus likely to add
the signal components containing the target to the signal
subspace and are therefore less relevant to the choice of
the signal subspace in subspace anomaly detection. The
remaining methods [35-37] give different results and none of
the signal subspace dimensions estimated by these methods
correlate in a consistent way with the optimal number of
bands in the subspace detectors for the different scenes.
A consistent way for identifying the proper dimensionality
to use in modeling the background clutter for subspace
anomaly detection has yet to be found, as mentioned in
the conclusion of [10]. Because the aim of the paper
is to compare the different algorithms in the different
scenes, the dimensionality parameter is optimized for each
detector/scene combination. The complete range of possible
background dimensionality (1 to n— 1) was explored and the
results shown are the best results obtained by that algorithm.

Each of the SBAD methods has its own set of parameters.
For CRX, two parameters are set: a maximum number of
classes and a minimum number of pixels per class. This last
parameter can be used to reduce the risk that anomalies form
their own classes. Then the maximum number of classes
can be set higher than the actual number of background
classes. The minimum number of pixels in each of the classes
is set to a low percentage (for instance 0.5%) of the total
number of pixels. For MMM, the parameters are similar to
those of CRX. For SOM and TLES, the parameters, described
in Section 3.3, were varied in a reasonable range and the
results shown are the best obtained for the examined range
of parameters.

6.2. Results for Subpixel Detection in a Rural Environment

6.2.1. Results for CAM. Table 3 shows the logAUC results for
the different detectors obtained in the CAM dataset with
a 10% mixing ratio. Results are shown without prior data
reduction and with two types of data reduction: spectral
binning and kurtosis-based data reduction. We see from the
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TaBLE 3: LogAUC results for CAM scene with a mixing ratio of 10%
for different types of data reduction.

Data reduction method

AD method No data Spectral Kurtosis data
reduction binning reduction
GRX 0.595 0.637 0.732
SSRX 0.742 0.778 1.000
OSPRX 0.931 0.754 0.893
PORX 0.568 0.205 0.957
CSD 0.868 0.826 0.763
LRX 0.616 0.950 1.000
QLRX 0.720 0.828 1.000
CRX 0.683 0.830 1.000
TLES 0.128 0.268 0.698
SOM 0.116 0.529 0.120
MMM 1.000 1.000

TABLE 4: LogAUC results for OSLO1 scene with a mixing ratio of
33% for different types of data reduction.

AD No data reduction SP ecFral Kurtosis‘ data
binning reduction
GRX 0.163 0.357 0.390
SSRX 0.292 0.486 0.394
OSPRX 0.383 0.486 0.391
PORX 0.322 0.493 0.391
CSD 0.246 0.391 0.396
LRX 0.821 0.983 0.995
QLRX 0.294 0.395 0.473
CRX 0.163 0.357 0.449
TLES 0.108 0.466 0.356
SOM 0.232 0.385 0.463
MMM 0.128 0.544 0.597

table that all SBAD methods, local methods, and GRX benefit
from dimension reduction, more from kurtosis dimension
reduction (KDR) than from spectral binning (SB) (with
exception for SOM, which performs much better after SB
than after KDR). For the subspace methods, the results are
more diverse: OSPRX and CSD perform best on data with
no dimension reduction, whereas for SSRX and PORX a large
improvement in performance is observed after KDR.

Figure 5 shows a scatter plot of the CAM data with 10%
mixing ratio subpixel targets in the 2D space defined by the
first two kurtosis components. The figure shows that the
targets are very well separated from the background after
KDR transform in this scene. This clear separation is not
observed on any of the PCA components or on spectral
bands before or after spectral binning.

The best results for this scene are indeed obtained with
SSRX, LRX, QLRX, CRX, and MMM after KDR. These
detectors all achieve a logAUC of 1.0, which means that all
targets have been detected with a false alarm rate that is
smaller than 1/image size, that is, FAR < 6.6 % 107°. Since the
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FIGURE 5: Projection of background (green) and target (red) pixels
on the first two kurtosis component axes for CAM10.

results are saturated, we cannot properly distinguish between
the methods.

6.2.2. Results for OSLOI. Table 4 shows the logAUC results
for the different detectors obtained in the OSLO1 dataset
with a 33% mixing ratio. Results are shown without prior
data reduction and with spectral binning and kurtosis-based
data reduction.

LRX clearly outperforms all other detectors. The assump-
tion of local normality is very well met in this image (cf.
Table 6 in the Appendix). LRX is also, in contrast to all other
methods, able to model the background without influence
of targets. For subpixel targets this is particularly true, since
the guard window will always contain the whole target.
As regards data reduction, for SBAD and local methods
and GRX, the results are the same here as for CAMI10:
the methods all benefit from dimension reduction, and
more from KDR than from SB (with exception for TLES
which benefits more from SB than from KDR). In this
dataset, we also observe an improvement in performance
with dimension reduction for the subspace methods, but for
these methods SB is generally more beneficial than KDR.

For OSLO1, the behavior of each detector as a function
of the mixing ratio was also investigated. Figure 6 shows the
logAUC results of the different detectors versus the mixing
ratio for the OSLO1 datacube. In the experiment, the mixing
ratio was varied from 100% (full pixel anomaly) to 10%. For
creating the figure, the data reduction method that gives the
best results was selected for each of the detectors. Results
of global RX-based methods and CSD are shown as solid
lines, LRX and QLRX results as dashed lines, and results
of segmentation-based methods as dot-dashed lines. LRX
clearly gives the overall best results, followed by SSRX for
larger target portions and MMM for smaller. The result of
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FIGURE 6: LogAUC versus mixing ratio for the different detectors in
OSLO1.

SSRX for the 50% mixing ratio is very deviant, suggesting
perhaps that subspace fit is somewhat random.

Contrary to the CAM scene, in OSLO1 the performance
of the detectors at 10% mixing ratio is very low. The
targets are more difficult to detect in the OSLO1 scene
than in the CAM scene although the OSLO1 scene has a
more homogeneous background and conforms well to the
multivariate Gaussian assumption (see discussion of Table 5
in the Appendix). The OSLO1 scene is more difficult than the
CAM scene because both the spectral angle and the Euclidean
distance between the targets and the different background
spectra are much smaller in the former. Figure 7 illustrates
this point by means of the normalized histogram of the
spectral angle of all background pixels with respect to the
average target spectrum for both scenes at a mixing ratio
of 10%. The figure shows that the spectral angle is indeed
larger in the CAM scene than in the OSLO1 scene. The spread
of the spectral angle in the CAM scene also illustrates the
heterogeneity of the background.

6.3. Results for a Rural Environment with Some of the
Targets in Shadow (BJO). Figures 8 to 10 show a graphical
representation of the logAUC (a) and the logarithm of the
false alarm rate at first detection (logFARAt1stDet) (b) for
each of the detectors and for each target for the BJO scene.
The colors represent the value of the respective performance
metric. The color map is such that red corresponds to
the best performance. The three different figures represent
results after different types of preprocessing: Figure 8 shows
results obtained without any preprocessing, Figure 9 results
after spectral binning, and Figure 10 results after spectral
binning and square root transform.

From the figures it is immediately clear that the targets in
shadow (T3-T7) are more difficult to detect than the others.
T3, hidden in the forest is the most difficult to detect. T2 (a
red car) is the most easily detectable target.
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FiGUre 7: Normalized histograms of the spectral angle of the
background pixels with respect to the average target spectrum in
the CAM and OSLO1 scenes, at 10% mixing ratio.

We observe a slight improvement of performance from
spectral binning for all detectors except TLES and SOM,
which have their detection performance for targets in the sun
substantially degraded by spectral binning. The reason why
we—as opposed to what we saw in the previous datasets—
only observe a slight improvement in performance from
spectral binning, could be that the targets in sun are so easy
to detect that we detect them anyhow, whereas the targets
in shadow need some form of compensation for shadow
in order to be detectable. The levels of the performance
values indicate that this could be the case. For LRX, the size
of the windows used to calculate the background statistics
depends on the number of bands, and the results hence are
not comparable across different numbers of bands.

Square root transforming the data generally improves the
detection performance for targets in shadow substantially. It
also improves the performance for targets in the sun for some
detectors, but for others, mainly the subspace detectors and
GRX, it reduces the performance for some sunlit targets—
notably targets that are intensity anomalies (T8, T10, and
T11), and that hence have their degree of anomality reduced
when the data are square root transformed. The best results
on this dataset are obtained with MMM, LRX, and CRX.
MMM gives the overall best results, whereas LRX gives the
best results for the targets in shadow: for targets T5 and T6,
LRX gives significantly better results than MMM. LRX gives
also slightly better results than MMM for T10 and T11, which
are painted with the same paints as, respectively, T5 and T6.
The logAUC and logFARAtIstDet results are globally inter-
consistent, but they do show supplementary information.
The results are consistent with the complexity of the scene
and with the compliance with the multinormal distribution
assumption locally shown in Table 6 of the Appendix.

In order to give an idea of the type of false alarms
produced by the three best detectors, in Figure 11 the results
of the three best detectors (MMM, LRX, and CRX after
spectral binning and sqrt transform) are superimposed on
a grayscale image of the BJO scene. The shown results are
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F1GURE 8: logAUC and logFARAtIstDet results per target without any data reduction for BJO.

GRX
SSRX 0.9
PORX 0.8
OSPRX 0.7
= CSD 0.6
E LRX 0.5
= QIRX 0.4
CRX
TLES 03
MMM 0.1
T1 T2 T3 T4 T5 Te6 T7 T8 T9 T10 T11 TI2 TI3 Tl4
(a)
GRX !
SSRX 0.9
PORX 0.8
OSPRX 0.7
. CSD 0.6
2 Qig 0.5
CRX 0.4
TLES 0.3
SOM 0.2
MMM 0.1

T1 T2 T3 T4 T5 Té6 T7 T8 T9 TI10 TI1 T12 T13 T14

(a)

GRX
SSRX
PORX
OSPRX
CSD
LRX
QLRX
CRX
TLES
SOM
MMM

(SB)

-1
-2
-3
-4
-5
-6

T1 T2 T3 T4 T5 Te T7 T8 T9 TI0 T11 T12 T13 T14

(b)

FIGURE 9: logAUC and logFARAt1stDet results per target after spectral binning for BJO.

thresholded detection results with the threshold set to the
lowest first detection level for the true targets (i.e., the
threshold for which at least one pixel of the most difficult
target is detected). The figure shows that the false alarms
produced by MMM mainly consist of isolated pixels in the
forest and also some more extended false alarms at the
top right of the image. LRX produces some small false
alarms in the forest while CRX detects part of the stream
as well as some detections in the forest. Most of the false
alarms are detected by only one detector. On the other
hand, for each target, except T7, an overlap in the detected
zone for the three detectors is seen. The detectors are thus
complimentary and fusing their results may be of interest.
Likely causes of the complementarity of the results are that
LRX are able to account more correctly for local illumination,
whereas MMM/CRX are able to model locally heterogeneous
background (forest) more precisely. The results for CRX
indicate that too few classes are used: a large background
structure like the stream is poorly modelled.

6.4. Results for the Urban Scene (OSLO2). Figure 12(a) shows
the logAUC results for the OSLO2 scene. Figure 12(b) shows
the logFARAt1stDet results. For creating the figure, the data
reduction method that gives the best results was selected
for each of the detectors. The best data reduction method
was spectral binning for most detectors, but for OSPRX and

QLRX the best results were obtained without data reduction,
and for LRX, KDR gave the best results. The superiority
of spectral binning over KDR for most detectors is to be
expected because of the complexity of the scene (cf. Table 5 in
the Appendix), and similarly the good performance of KDR
for LRX—it can be attributed to local normality, see Table 6
in the Appendix. The mixed results for subspace detectors are
consistent with the results for CAM and OSLO1. The result
for QLRX, on the other hand, is not, but we should probably
not read too much into this, since the detector more or less
fails to detect the targets.

It can be seen that the values of logAUC are much
lower than for the other datacubes. The maximum value
obtained here is around 0.5. This is due to the complexity
of the scene: the targets inserted into the scene are not the
only anomalies. In an urban environment many objects can
present an anomalous spectrum, for example, cars, special
roof materials, and so forth. The comparison therefore only
shows how well the different anomaly detection methods
cope with urban “clutter.”

From the two figures it can be seen that MMM gives the
overall best results, followed by TLES and CRX. Of the two
latter CRX gives the best results according to the logAUC
metric and TLES according to the logFARAtlstDet metric.
As could be expected the SBAD methods thus obtain the best
results in the urban scene.



10

GRX
SSRX 0.9
PORX 0.8
OSPRX 0.7

z CSD 0.6
|

£ LRX 0.5

& QLRX

2 CRX 0.4
TLES 0.3
SOM 0.2
MMM

T1 T2 T3 T4 T5 Te T7 T8 T9 T10 TI11 T12 T13 T14

(a)

Journal of Electrical and Computer Engineering

(SQRT_SB)

T1 T2 T3 T4 T5 Te T7 T8 T9 T10 T11 T12 T13 T14

(®)

FIGURE 10: logAUC and logFARAt1stDet results per target after SQRT transform and spectral binning for BJO.

CRX LRX

Figure 11: Color composite of the detection results for MMM,
LRX, and CRX at lowest 1st detection threshold, superimposed
on B/W image of BJO (R: MMM results, G: LRX results, B: CRX
results).

GRX and all subspace methods perform quite bad,
except for OSPRX that gives quite good results for targets
T1, T2, and T4. Contrary to what we have seen in the
other datasets, LRX does not perform particularly well in
this dataset—despite good compliance with the multivariate
normal distribution assumption locally near the targets, cf.
Table 6 in the Appendix. The reason for this is probably that
the remaining (non-target) parts of the scene are not well
described by a local multivariate normal distribution, and
hence we get lots of false alarms. This assumption is partly
verified by comparing with the results of OSLO1. The target
material of targets T2 and T3 in OSLO?2 is the same as the
material of the OSLO1 targets, and the local background
is very similar (grass at two different places in Oslo), so a
difference in performance between the images ought to be
due to a difference in the number of false alarms.

As mentioned above, an urban scene presents many
objects that may have an anomalous spectrum and that thus
will be considered a false alarm in the above evaluation. It
is therefore of interest to give an idea of these false alarms
for each of the detectors. Figure 13 presents the results of the
three best detectors (MMM, CRX, and TLES), superimposed
on a grayscale image of the OSLO2 scene. The results shown

are thresholded detection results with the threshold set to the
lowest first detection level for the true targets.

The figure shows that target 1 is the most easy, and that
it was detected completely by the three detectors. T2 and T3
have been completely detected by MMM, while the two other
detectors (at the selected thresholds) detect only a part of the
interior. On the contrary, T4 has been completely detected
by TLES and CRX, while MMM only detects a part of its
interior. The figure also shows that many of the “false alarms”
are quite different for the three detectors. TLES detects
parts of the vegetation. CRX detects a set of small objects
next to the building on the lower left in the image. Some
cars and small structures on roofs have been detected by a
combination of detectors. This subjective evaluation shows
that the three detectors that perform best according to the
“objective” evaluation are quite complimentary. Examining
further the properties of their results may lead to interesting
ideas on fusion of anomaly detectors.

7. Conclusions

This paper evaluates the performance of anomaly detection
methods in scenes with different backgrounds and types
of targets: agricultural scenes with subpixel targets, an
agricultural scene with some of the targets in shadow,
and an urban scene. Three classes of anomaly detectors
were considered besides the global RX: subspace methods,
local methods, and segmentation-based anomaly detection
(SBAD) methods.

For subpixel anomaly detection in scenes of low com-
plexity (rural and non shadow), LRX gives the best results,
followed by MMM. From the investigated global RX-based
methods SSRX and OSPRX give the best results. For the
SBAD and local methods and GRX, detection results are
improved by data reduction, and (with minor exceptions)
more by kurtosis dimension reduction than by spectral
binning. The improvement of results after kurtosis-based
data reduction for most of the detectors illustrates the
potential of customizing the data reduction method.

For the rural scene with some of the targets in shadow
the results show that it is important to account for the effects
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F1GURE 12: logAUC and logFARAtIstDet results per target for OSLO2 using the best data reduction method for each detector.
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FIGURE 13: Left: color composite of the detection results for MMM, CRX, and TLES at lowest 1st detection threshold, superimposed on B/W

image of OSLO2 (R: MMM results, G: CRX results, B: TLES results).

of shadow. In this paper this was done using a simplified
approach consisting in square root transforming the data.
After this transform MMM gives the best overall results,
followed by LRX and CRX. For some targets LRX gives
significantly better results than MMM. These three best
detectors produce different false alarms while producing a
common detection for all but one of the targets. They are
thus complementary to each other and fusion of their results
should be beneficial.

In the urban environment the SBAD methods perform
best. The overall best result for the urban scene is obtained
by MMM, TLES, and CRX. Of the globl RX-based methods
OSPRX gives the best results in this dataset. Subjective
evaluation of the detection results shows that the best
performing detectors give complimentary results, and that
“false alarms” are mainly due to objects with anomalous
spectra in the scene such as cars and parts of buildings.

Further investigation of this complementarity may lead to
efficient detector fusion.

Appendix
Exploratory Data Analysis

The main aim of the exploratory data analysis is to investigate
how well the different datacubes comply with the assumption
of unimodal multivariate normality. If a distribution is
multivariate normal, the square of the Mahalanobis distances
of its samples follows a x? distribution with degrees of
freedom equal to the dimension of the multivariate variable
[40]. The compliance can then be investigated visually using
a Q-Q plot of the empirical cumulative distribution function
(CDF) of the Mahalanobis distance and the CDF of the
theoretical y* distribution. Figure 14 shows the Q-Q plots
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FiGure 14: Q-Q plots for the different data cubes used in this paper.

for the four scenes and the different used preprocessing
methods. Table 5 shows the correlation coefficient between
the empirical and theoretical CDF of the Mahalanobis
distance as well as the maximal deviation between the two
(the Kolmogorov-Smirnov test statistic).

As can be expected the OSLOL1 scene, consisting of a very
homogeneous background, conforms best to the assumption
of global multivariate normality. Both the original data

and the data after kurtosis data reduction have a high
correlation coefficient between the two CDFs and a low
value for the KS-statistic. None of the other datasets comply
with the global normality assumption. For the CAM scene
the multivariate normality improves by preprocessing and
the best normality is achieved after kurtosis data reduction
when all kurtosis components are considered. When only the
first five components are considered, the global normality



Journal of Electrical and Computer Engineering

13

FIGURE 15: Guard window (red) and outer window used for calculating local = centered at each target location for BJO (a) and OSLO2 (b).

TaBLE 5: Correlation coefficient and Kolmogorov-Smirnov test
statistic between empirical and theoretical CDF of the Mahalanobis
distance and the condition number of global X.

Name Preprocessing Correlation KS statistic n(lig?bdelrn(?fnz
None 0.937 0.579 1.11e + 10
CAM SB 0.984 0.295 7.23e +08
KDR 0.993 0.178 2.91e+ 08
KDR (5kep) 0.892 0.540 2.95¢ + 00
None 0.999 0.049 9.11e + 03
0SLO1 SB 0.997 0.093 8.32¢ + 03
KDR 0.999 0.049 6.73e + 00
KDR (5 kep) 0.973 0.251 4.91e+ 00
None 0.986 0.278 1.63e + 05
BJO SB 0.973 0.343 1.03e + 05
SQRT + SB 0.992 0.188 1.06e + 05
0SLO2 None 0.979 0.336 3.38¢ + 04
SB 0.961 0.409 2.27e+ 04

assumption is not met. For BJO the combination of the
square root transform and spectral binning improves the
normality of the data.

Several of the investigated anomaly detection methods
(the global RX-based methods and LRX) rely on the
estimation and inversion of the spectral covariance matrix X.
It is known that the sample covariance matrix in many cases
needs to be regularized before inversion [41, 42]. The reg-
ularization makes the problem of finding the inverse mathe-
matically stable, but if the initial matrix does not have a stable
inverse, that is, is well-conditioned, the obtained inverse
might not lead to a good detection result for the detector. In
Table 5 the condition numbers of the covariance matrices of
the complete images are also given. The condition number
is the ratio between the highest and lowest singular value
and it provides an indication of the accuracy of the results
of matrix inversion. In CAM and OSLO1 the various prepro-
cessing methods appear to decrease the condition number.
This decrease is particularly significant for KDR in the

OSLOL1 scene. For KDR, contrary to the normality assump-
tion, considering only the first five components reduces
the condition number substantially.

The local anomaly detection methods estimate the
characteristics of the background in a local window around
the current pixel. For LRX the data in that local window are
supposed to follow a multivariate normal distribution. In
order to assess the validity of this assumption, the normality
was checked in the neighborhood of each target in the
different scenes. The neighborhood is defined in the same
way as for the actual LRX detector. Table 6 shows the same
estimators of normality as well as the condition number as
in Table 5 but based on a local background estimation. As
there are different targets in each of the scenes, the average
and standard deviation over all targets is given. One can
notice that for the BJO and OSLO2 scene the local normality
assumption is much better met than the global one. For
OSLO1 and BJO the condition number of local X is also
better than that of the global X. The large standard deviation
of the condition numbers are due to some targets for which
local covariance matrix has a very high condition number.
For CAM, this is the case for three targets and the median
of the local condition number in that scene is 5.3 X 10°
(no preprocessing). For the scenes with a limited number
of targets this is explored in more detail in Table 7. The
table shows the values obtained for the three estimators
in the local window around each of the targets. Figure 15
shows the guard window (red) and the outer window (green)
used for estimating local X superimposed on a grayscale
representation of the two scenes. The green window is the
outer window used when no data reduction is applied. For
BJO and OSLO2, where the guard window is 15 X 15 and the
number of bands n = 80, this means that the outer window
has a size of 33 x 33. In OSLO2, LRX is applied after KDR
and only 5 kurtosis components are kept. This results in an
outer window of 17 X 17 represented by the white squares in
Figure 15(b).

From Table 7 it appears that the normality assumption in
the BJO scene is best obeyed for the local neighborhood of
targets T8—T13. T3 has the most heterogeneous background,
as can be also be seen in Figure 15(a). T1 and T2 deviate from
the normality assumption because of target contamination:
the outer windows overlap part of the adjacent target. It is
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TaBLE 6: Correlation coefficient and Kolmogorov-Smirnov test statistic between empirical and theoretical CDF of the Mahalanobis distance

around each of the targets and the condition number of local X.

Name Preprocessing Correlation mean + std KS statistic mean =+ std Condition number of local £ mean =+ std
None 0.95 +0.03 0.48 = 0.17 1.15e+ 10 = 2.3e + 10
CAM SB 0.98 = 0.01 0.28 £0.11 3.97e+09 = 8.4e + 09
KDR 0.992 = 0.004 0.15x0.04 8.25¢ + 08 + 2.6e + 08
KDR (5 kep) 0.991 = 0.011 0.128 = 0.07 6.08e + 01 + 1.04e + 02
None 0.999 = 0.0003 0.04 + 0.009 6.33e + 03 £ 5.6e + 03
0SLO1 SB 0.998 = 0.0008 0.068 + 0.01 3.02e + 03 + 2.5e+ 03
KDR 0.9995 + 0.0003 0.04 = 0.009 3.90e+ 01 = 3.3e + 01
KDR (5 kep) 0.993 = 0.003 0.11 = 0.03 1.20e + 01 = 2.0e + 01
None 0.994 = 0.02 0.076 = 0.10 7.34e + 04 + 1.4e + 05
BJO SB 0.996 = 0.006 0.089 + 0.06 5.38¢ + 04 + 8.6¢ + 04
SQRT + SB 0.996 = 0.006 0.089 + 0.06 5.38¢ + 04 + 8.6¢ + 04
0SLO2 None 0.996 = 0.006 0.097 = 0.06 3.27e+ 04 = 1.0e + 04
SB 0.996 = 0.005 0.102 = 0.05 2.08¢ +04 = 1.8e + 04

TasLe 7: Correlation coefficient and Kolmogorov-Smirnov test
statistic between empirical and theoretical CDF of the Mahalanobis
distance calculated in a local window around each target and the
condition number of local X for BJO and OSLO2, both without pre-
processing.

Condition number

TGT Correlation KS statistic

of local
BJO
T1 0.9976 0.121 1.746e + 05
T2 0.9968 0.104 1.884e + 05
T3 0.9329 0.420 5.405e + 05
T4 0.9991 0.055 6.775e + 03
T5 0.9995 0.043 6.864¢ + 03
T6 0.9994 0.052 8.845¢ + 03
T7 0.9992 0.057 6.654e + 03
T8 0.9999 0.027 1.345¢ + 04
T9 0.9999 0.022 1.264e + 04
T10 0.9998 0.033 1.144e + 04
T11 0.9997 0.031 1.134e + 04
T12 0.9997 0.032 1.426e + 04
T13 0.9999 0.021 1.123e + 04
OSLO2
T1 0.9995 0.052 3.780e + 04
T2 0.9986 0.096 4.352¢ + 04
T3 0.9991 0.052 3.021e + 04
T4 0.9874 0.190 1.935e + 04

well known that target contamination degrades the results of
detectors [42, 43]. For the targets in the shadow at the edge
of the forest (T4-T7) the normality assumption is reasonably
well met and the condition number of the local covariance
matrix is lower than for the other targets. The outer windows
for these targets fall entirely in the shadow zone.

Table 7 shows that in OSLO2 the assumption of local
normality is best met for targets T1 and T3 while for T4
the assumption is less valid. The corresponding figure shows

that T4 has indeed the most heterogeneous local background.
There is some target contamination between T2 and T3 when
no data reduction is applied, while this is not the case when
KDR is applied and only five kurtosis components are used.
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Modeling of hyperspectral data with non-Gaussian distributions is gaining popularity in recent years. Such modeling mostly
concentrates on attempts to describe a distribution, or its tails, of all image spectra. In this paper, we recognize that the presence
of major materials in the image scene is likely to exhibit nonrandomness and only the remaining variability due to noise, or other
factors, would exhibit random behavior. Hence, we assume a linear mixing model with a structured background, and we investigate
various distributional models for the error term in that model. We propose one model based on the multivariate ¢-distribution
and another one based on independent components following an exponential power distribution. The former model does not
perform well in the context of the two images investigated in this paper, one AVIRIS and one HyMap image. On the other hand,
the latter model works reasonably well with the AVIRIS image and very well with the HyMap image. This paper provides the tools

that researchers can use for verifying a given model to be used with a given image.

1. Introduction

The following linear mixing model (with a structured
background) is often used in hyperspectral imaging literature
[1-4]:

r=B-a+eg (1)

where r is a p-dimensional vector (e.g., of reflectance or
radiance,) of a pixel spectrum, B is a fixed matrix of
spectra of m materials present in the image (as columns
b;, j = 1,...,m), and « is an unknown vector of material
abundances. The error term & is often assumed to follow
the multivariate normal (Gaussian) distribution N (0, ¢21) or
some other distributional assumptions can be made here.

In this paper, we want to address the question whether
model (1) is realistic for hyperspectral images and what type
of a distribution should be used for the error term e. In
previous research [5], we provided a preliminary investiga-
tion of the marginal distributions of & to be modeled by the
exponential power distribution. We expand this research here
to model the multivariate structure of € and to propose some
other models such as the multivariate ¢-distribution.

The multivariate ¢-distribution is a popular distribution
for modeling hyperspectral data (see [6-8]). In the current
literature, this distribution is mostly used for modeling the

variability of background materials in a purely stochastic
model without a deterministic part such as the one defined in
model (1). Here we try to use that distribution for modeling
the error term &, while the major part of the image variability
is explained by the deterministic part B - « of the model.

In Section 2, we introduce our notation and show how
the deterministic and the stochastic parts of the model
are constructed based on the singular value decomposition
(SVD). We also provide details on an AVIRIS hyperspectral
image used for the numerical results performed in this paper.
In Section 3, we explore potential models for the marginal
distributions of the error term. In Section 4, we explore
potential models for the joint multivariate distributions of
the error term. The AVIRIS image is used for numerical
examples in Sections 3 and 4. In Section 5, we provide an
additional example using a subset of the HyMap Cooke City
image. Conclusions are formulated in Section 6.

2. Preliminary Considerations

In this paper, we are going to assume that the abundances of
all materials sum up to 1, that is,

D=1, 2)
j=1



where «; are coordinates of the vector a. In practice, this
assumption may not necessarily be strictly fulfilled due to
imperfections in estimation of background signatures and
in the linearity of the spectral mixing process. However, it
is reasonable to assume that (2) is fulfilled at least approx-
imately. We do not specifically address another reasonable
assumptions that 0 < «; < 1, but an appropriate choice
of the spectral signatures in B should result in positive (or
almost positive) «;.

We also assume that no a priori information is available
about the spectral signatures in B, that is, we are trying to
“guess” all terms on the right-hand side of (1). Let us now
assume that we have a hyperspectral image with » pixels, and
the model (1) takes the form

ri=B-aiteg, (3)

fori=1,...,n. Denote the average of all pixel spectraby ¥ =
>, 1. Let B* be a matrix of vectors (bj—1),j=1,...,m
as columns. Because of the property (2), the model (3) is

equivalent to the following model centered at F:
r,—r=B*-a;+e¢. (4)

Let us denote by X an n by p matrix of vectors (r;—¥), i =
1,...,n and write its SVD as

X = UDVT, (5)

where U is an n by p matrix (with columns u;, j = 1,..., p),
D is a diagonal p by p matrix of singular values dj, j =
1,..., p,and Vis an orthogonal p by p matrix (with columns

Vi, j = 1,...,p). We assume thatd; > d, = - -+ = d, = 0.
The SVD in (5) can also be written as
p
X = Zdjll]V]T (6)

1

J

In order to build a model of the form (4), we now want
to identify m out of the total of p basis vectors v; such
that Z;-":l djujva represents the deterministic part B* - a;
of the model (4). This deterministic part will be selected
based on the idea that the major materials present in the
image exhibit nonrandom behavior, while the remaining
variability due to noise, or due to some undetected small
amounts of materials, or due to other imperfections in the
model, should exhibit more random behavior. We want the
remaining sum Zf:mﬂ djujva to represent realizations of
the error term &. We will investigate that sum in the basis
system defined by the vectors v;, that is, realizations of a
random vector that we denote by Yps1 = (Yists..., Yp).
Note that each n dimensional vector dju;, j = (m+1),...,p
represents a sample from the distribution of Y;. We want
to study those samples so that an appropriate distributional
assumption about the error terms can be made. We can
define the standardized form Z; = Y;/St.Dev.(Y;) with the
sample of realizations given by /n — 1 u;. The vector Z,,4, =
(Zm+1s...,Z,) represents the error term & in the sphered, or
whitened, coordinates. The marginal (uncorrelated) distri-
butions of Z,,;; will be studied in the next section followed
by modeling the joint distribution in Section 4.
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FiGUre 1: Color rendering of the cluttered AVIRIS urban scene in
Rochester, NY, USA, used in this paper.

Numerical results in Sections 3 and 4 use a 100 by 100
pixel (so n = 10,000) AVIRIS urban image in Rochester,
NY, USA, near the Lake Ontario shoreline (see Figure 1).
The scene has a wide range of natural and man-made
clutter including a mixture of commercial/warehouse and
residential neighborhoods to add a wide range of spectral
diversity. Prior to processing, invalid bands, due to atmo-
spheric water absorption, were removed reducing the overall
dimensionality to p = 152 spectral bands. This image was
used earlier in [9, 10].

3. Modeling Marginal Distributions

Here we investigate two families of distributions as models
for the distributions of Z;’s. The first one is the exponential
power distribution (also called general error or general
Gaussian distribution) with the location parameter y, the
scale parameter § > 0, and the shape parameter A > 0. Its
density is defined by

__ A lx—pl\'
f(x)—zﬁr(wexp[—< 3 )] forxeR, (7)

where T'(s) = [ t*"le~!dt for s > 0 is the gamma function.
This is a flexible family of distributions. Its special cases
are the Gaussian distribution (A = 2) and the Laplace
distribution (A = 1). We assume that gy = 0 since the
distribution of Z; is already centered. For each Z;, j =
1,..., p, the remaining parameters, A and f3, were estimated
using the maximum likelihood principle. The fit of data
to the resulting exponential power distribution was then
checked with the chi-square test based on the statistic

k —
-y onpl x ®)
i=1 !

where N; is the count of observations in the ith interval (i =
1,...,k = 25), and p; is the interval probability based on the
testing distribution. The intervals were chosen so that p; =
1/k, i = 1,...,k. The tested distribution should be rejected
when x? > xi_,_,.(a/p), where xi_,_,, (a) is the upper 100 -
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FIGURE 2: Base 10 log values of the chi-square statistic (for testing
the fit to the exponential power distribution) plotted versus the
dimension number j (for the AVIRIS image).

ath percentile from the chi-squared distribution with (k —
1 — m) degrees of freedom, and m is the number of estimated
parameters. The value o/ p is chosen based on the Bonferroni
principle since p inferences are performed here. Figure 2
shows the base 10 log values of the chi-square statistic plotted
versus the dimension number j. The horizontal line is at
the threshold level of x3s_,_,(0.01/152) = 56.79 (1.75 on
the log scale). The points above the threshold represent the
first 19 dimensions and then 22, 23, 25, 28, and 67. Since not
all dimension numbers are consecutive, we are faced with a
difficulty of choosing a suitable value for m. We propose two
potential strategies.

(1) Select as m the largest dimension number (here
28) that is not an “outlier” (such as dimension
67 here). With this approach, we would accept the
imperfect modeling along the 67th dimension, and
some of the dimensions (20, 21, 24, 26, and 27)
would be represented in the deterministic part of
the model, even though they could be modeled
stochastically by the exponential power distribution.
This approach is consistent with the principle of
keeping the dimensions with the highest explained
variability.

(2) Select all dimensions above the threshold for the
deterministic part of the model (possibly including
dimension 67) and use the remaining dimensions for
the error term. From the point of view of notation in
Section 2, we would reorder the dimensions, so that
the “non-random” dimensions 22, 23, 25, 28, and 67
would be numbered from 20 to 24, and m would be
chosen as 24.

Figure 3 shows the base 10 log values of the chi-square
statistic plotted versus A. For the values below the threshold,
where the exponential power distribution model would be
used, the A values range from 1.37 to 1.91. Hence, the distri-
butions have tails heavier than the Gaussian distribution, but
not as heavy as those of the Laplace distribution.
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FIGURE 3: Base 10 log values of the chi-square statistic (for testing
the fit to the exponential power distribution) plotted versus the
shape parameter A (for the AVIRIS image).

The second potential family of distributions for modeling
the distributions of Z;’s is the ¢-distribution with » degrees of
freedom given by the density

_T((»+1)/2) 2\ "2
f(x)_\/m(l'i'v) for x € R. 9)

Since Z; is scaled to have variance 1, we also need to
scale the t-distribution. Hence, we fit a distribution with
the density g(z) = yf(yz), where f is defined in (9) and
y = v/(v — 2). We assume that v is larger than 2 but is not
necessarily an integer. The scaling depends on the unknown
parameter v, so it needs to be taken into account in the
maximum likelihood estimation of v. The fit of data to the
scaled t-distribution was again checked with the chi-square
test. Figure 4 is analogous to Figure 2, but here the chi-square
statistic measures the fit to the scaled ¢-distribution. The
horizontal line is at the threshold level of y35_;_(0.01/152) =
58.36 (1.77 on the log scale). The points above the threshold
represent the first 10 dimensions and then 12, 14, 17, 19, and
23. Here again, we can use one of the proposed two strategies
for identifying the dimensionality m of the deterministic
part of the model. We can see that the scaled ¢-distribution
gives a significantly better fit than the exponential power
distribution.

Figure 5 shows the base 10 log values of the chi-square
statistic plotted versus the number of degrees of freedom
v. (The parameter v had a very large value for the first
dimension (Z; with the highest chi-squared value), and it is
not shown in the graph for clarity of presentation.) For the
values below the threshold, where the scaled t-distribution
model would be used, the » values range from 4.3 to 43.3.
Hence again, the distributions have tails heavier than the
Gaussian distribution, but not heavier than those of the
scaled t-distribution with 4 degrees of freedom.

4. Modeling Joint Multivariate Distributions

The model fitting discussed in the previous section
accounted only for the marginal distributions of Z;’s. A more
challenging task is to ensure a fit of the joint multivariate
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FIGURE 5: Base 10 log values of the chi-square statistic (for testing
the fit to the scaled #-distribution) plotted versus the number of
degrees of freedom v (for the AVIRIS image).

distribution of data to a suitable model. In the whitened
version, the components of Z, = (Z,,...,Z,) are uncorre-
lated, but they might be either stochastically independent
or dependent, which depends on a specific assumed model.
Again, we will use two competing models. The first one is
based on the assumption of independent Z; components
following an exponential power distribution. In order to
verify this model, we investigate the joint distribution of
Z, = (Z...,Zy) for r = 1,...,p. More specifically, we
investigate the fit of the theoretical cumulative distribution
function (CDF) G/(x) = P{Z, < x,Z;11 < X,...,Zp <
x} to its empirical equivalent. Note that G,(x) can be
regarded as a univariate simplification of the multivariate
CDF of Z, with all coordinates being equal. Based on the
assumption of independence, G,(x) = F(x)? ~1 where F(x)
is the CDF of the exponential power distribution defined
in (7). The empirical equivalent of G,(x) is the fraction of
observations (realizations) such that Z; < x, j = r,...,p,
or equivalently max,<j<, Z; < x. The CDF G,(x) depends
on the parameters § > 0 and A > 0 that were estimated
using the maximum likelihood principle. The chi-square test
based on the statistic (8) was then used to assess the fit
of the observations of max,<j<, Z; to G,(x). The resulting
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FIGURE 6: Base 10 log values of the chi-square statistic (for testing
the multivariate fit to G,(x)) plotted versus r (for the AVIRIS
image).
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FIGURE 7: Base 10 log values of the chi-square statistic (for testing
the multivariate fit to G,(x)) plotted versus the shape parameter A
(for the AVIRIS image).

base 10 log values of the chi-squared statistic are shown in
Figure 6. As before, the horizontal line is at the threshold
level of y35_,_,(0.01/152) = 56.79 (1.75 on the log scale). The
points below the threshold represent the dimensions 135 and
136, and then 138 through 152 (= p). The value for Gi37(x) is
only slightly above the threshold. We can say that the model
of independent components with an exponential power
distribution is quite successful in modeling the multivariate
distribution of the “last” 18 dimensions from 135 until the
last one (152). However, the model is not very successful in
modeling further dimensions, where we apparently observe
significant dependencies among Z;’s. This is consistent with
low-dimensional components of Z, being independent or
having very weak dependence structure that does not show
up as significant. That dependence structure gets stronger
with higher dimensions.

Figure 7 shows the base 10 log values of the chi-square
statistic plotted versus A. For the values below the thresh-
old, where a model with independent exponential power
distributions would be used, the A values range from 1.48 to
1.77. Hence again, the distributions have tails heavier than
the Gaussian distribution, but not as heavy as those of the
Laplace distribution.
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The second multivariate model that we want to discuss
is based on the standard d-dimensional multivariate ¢-
distribution with the density function

T+ d)/2) xTx) "2 .
fx) = 7(711})‘1/21‘(7//2) (1 T ) for x € R“.
(10)

The variance-covariance matrix of this distribution is
equal to y? - 1, where I is a d-dimensional identity matrix
and y = +/v/(v —2). Since we deal here with sphered data
modeled by Z, = (Z,,...,Z,) (with Var (Z,) = 1; and
d = p—r+1), we want yZ, to follow the standard multivariate
t-distribution. Hence, an appropriate candidate distribution
for Z, is a scaled multivariate t-distribution with the density
function given by g(z) = y¢ f(yz), where f is defined in (10).
We can write

_ T(v+d)2) LTp \ 02 d
8= [7(v = 2)]Y*T(v/2) <1+ y— 2) for z € R%,

(11)

This distribution is spherically contoured in the sphered
coordinates and elliptically contoured in the original coordi-
nates. All marginal distributions of the scaled multivariate
t-distribution are the scaled t-distributions discussed in
Section 3 that were already confirmed as reasonable models
for the AVIRIS data. Here, we want to verify if the mul-
tivariate ¢-distribution provides an adequate multivariate
structure for those data.

If yZ, follows the standard multivariate ¢-distribution,
then IIyZ,IIZ/d follows the F-distribution with d and »
degrees of freedom (see [11]). Hence, in order to check the
assumption of the multivariate t-distribution, we verify if
1Z, 1>/d follows the F-distribution scaled by 1/y?. As before,
the degrees of freedom parameter v is estimated based on
the maximum likelihood principle, and the fit is assessed
based on the chi-square statistic. Figure 8 shows the base
10 log values of the chi-square statistic plotted versus r. The
horizontal line is at the threshold level of y35_; _;(0.01/152) =
58.36 (1.77 on the log scale). We can see only one value below
the threshold, su§gesting the scaled F-distribution is suitable
only for ||Z;5,1/°, which is consistent with the marginal
scaled t-distribution for Zis, (discussed in Section 3) since
the vector Z;s, is one-dimensional. All remaining Z,, r <
p = 152, are apparently not modeled well by the scaled
multivariate t-distribution. We note that the components
of the multivariate ¢-distribution are not independent, and
the dependency structure proposed by this distribution is
apparently not consistent with the AVIRIS hyperspectral data
investigated here.

5. Cooke City Image

In the two previous sections, we used an AVIRIS image
as an example to demonstrate how to fit a linear mixing
model with the & term being potentially non-Gaussian.
Specific numerical results might be different, of course,
for other images. Hence, it is interesting to perform the
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FIGURE 8: Base 10 log values of the chi-square statistic (for testing
the multivariate ¢-distribution) plotted versus r (for the AVIRIS
image).

same calculations on another image. The AVIRIS image has
a wide range of spectral diversity due to the presence of
various natural and man-made materials. Hence, it would
be interesting to try a more homogenous dataset with less
variety. One way to do this could be to classify an image
into various types of cover material, and then use spectra
from one class as our dataset. A disadvantage of such an
approach is the possibility of removing tails of distributions,
which might have a tendency of being assigned to a different
class. Hence, we chose a relatively uniform subimage of forest
in the HyMap Cooke City (see [12]) image as marked by a
red rectangle shown in Figure 9. Four spectral bands were
also removed due to some suspicious values. The spectral
dimensionality of the dataset used is then p = 122, and the
spatial dimensionality is 50 by 300 pixels for a total of n =
15,000 pixels.

In order to investigate the marginal distributions, we now
follow the ideas and notation of Section 3. The fit with the
exponential power distribution is verified with Figure 10,
which is analogous to Figure 2. Using Strategy 1 explained
in Section 3, we would identify 26 as the dimensionality of
the deterministic part of the model.

Figure 11 (analogous to Figure 3) shows the base 10 log
values of the chi-square statistic plotted versus A. The highest
value of A is almost perfectly equal to 2, suggesting the
Gaussian distribution. Most of the A values are around 1.8
and higher, suggesting slightly lighter tails than those for the
AVIRIS image (compare with Figure 3).

Figure 12 (analogous to Figure 4), shows a slightly better
fit of the scaled ¢-distribution than that of the exponential
power distribution. However, the resulting dimensionality
would be identified as the same as before (26).

Figure 13 (analogous to Figure 5) shows the base 10 log
values of the chi-square statistic plotted versus the number
of degrees of freedom v. The high values of v again point to
more Gaussian-like marginal distributions than those of the
AVIRIS image.

So far, we discussed only the marginal distributions of
Z;’s as a precursor to checking the model fit. We now want
to consider a more challenging task to ensure a fit of the
joint multivariate distribution of data to a suitable model
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FiGure 9: Color rendering of the 280 by 800 pixel HyMap Cooke City image (see [12] for details about the image).
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as discussed in Section 4. Figure 14 (analogous to Figure 6)
shows the base 10 log values of the chi-square statistic (for
testing the multivariate fit to G, (x) representing independent
exponential power distributions) plotted versus r. This figure
is so strikingly different from the analogous Figure 6, that
the author double checked the code (in fact the same code
was used in both cases). Note that even for r as small as 1
(which represents all dimensions from 1 until p = 122), we
obtain an acceptable fit with independent exponential power
distributions. The only unacceptable fit is for k = 78, which
points to some minor issues with the model.

25
QL [e]
k= o
«©
g
IS} 2_
E o0o [¢]
& '6';9'%6 ________________________________
So ? ° 000 o® ° oo >
° 15 ° ©0 00 33‘9% OOQQ’&%O o ooo
o 0%00 9% 0 &° & 0% 0%
- Q,o ) @5 5 WD O o o
Y o © ° o
< 1_
=
o
T T T T T T T
0 20 40 60 80 100 120

Dimension

FIGURE 12: Base 10 log values of the chi-square statistic (for testing
the fit to the scaled t-distribution) plotted versus the dimension
number j (for the Cooke City image).

25 13
E °,
<
g
B2
L
= ___O_f__q _______________________________
G foo)
© 00 00
& 151 %08230 oogg@ ° o o
= ° °
— @%bo ® op ° o
3 éﬂtﬁ@o ° o
< o
8 14
o
T T T T T T
10 20 30 40 50 60

Degrees of freedom
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the fit to the scaled t-distribution) plotted versus the number of
degrees of freedom v (for the Cooke City image).

Regarding the final conclusion about the model fit,
we need to keep in mind that this is just one test of
multivariate fit, and it needs to be considered together
with the results shown in Figure 12 telling us that some
of the marginal distributions do not have the satisfactory
fit. Hence, we can accept the previous conclusion of the
dimensionality of the deterministic part of the model as
26, and the remaining dimensions are remarkably well
modeled by independent exponential power distributions.
This successful modeling might be largely due to this dataset
being a fairly homogenous set of spectra (forest area in the
Cooke City image).
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Figure 15: The shape parameter A (from the multivariate fit to
G, (x)) plotted versus r (for the Cooke City image).

Since almost all chi-square values in Figure 14 are not
significant, it would not be interesting to show an analog of
Figure 7. Hence, in Figure 15, we created a plot of the shape
parameter A values (from the multivariate fit to G, (x)) versus
r. We can see that for large r, the fit is fairly close to the
Gaussian distribution (A close to 2). Then for smaller r, A’s
are getting smaller, which represents much heavier tails of the
distribution, almost up to the Laplace distribution (A close to
1).

We have also checked the fit to the multivariate t-
distribution as shown in Figure 16, which is an analog of
Figure 8. We can observe the only good fitatr = p = 122
(which is really a univariate fit of the last dimension), which
means that none of the multivariate ¢-distributions fits well
to the data.

6. Conclusions

In this paper, we investigated various distributional models
for the error term in the linear mixing model with a
structured background. The models were tested on two
datasets. One was an AVIRIS image and the other one was a
subimage of a forest area in a HyMap Cooke City image. The
first proposed model was based on independent components
following an exponential power distribution. The model
fitted reasonably well to both datasets in terms of modeling

7
E4.5— ‘.%%
S _
o~ o
;53.5— °
b -
o
[=1s}
225
=
- _
2 |
A 1.5 °

Index r

FIGURE 16: Base 10 log values of the chi-square statistic (for testing
the multivariate ¢-distribution) plotted versus r (for the Cooke City
image).

marginal distributions. For the AVIRIS image, the fit of the
joint distribution worked quite well for a small number of
components, but not for a larger number. For the forest area
in the Cooke City image, the fit with the joint distribution
of independent exponential power distributions worked very
well. This successful modeling might be largely due to this
dataset being a fairly homogenous set of spectra.

The second model was based on the multivariate t-
distribution. It performed well in terms of the resulting
marginal distributions in both datasets, but the depen-
dency structure imposed by this distribution was entirely
inconsistent with both datasets. More research is needed to
investigate the two models on other hyperspectral images.
However, the multivariate ¢-distribution model does not
look promising at this point, while the exponential power
distribution model seems to have more potential.
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We present a randomized singular value decomposition (rSVD) method for the purposes of lossless compression, reconstruction,
classification, and target detection with hyperspectral (HSI) data. Recent work in low-rank matrix approximations obtained from
random projections suggests that these approximations are well suited for randomized dimensionality reduction. Approximation
errors for the rSVD are evaluated on HSI, and comparisons are made to deterministic techniques and as well as to other randomized
low-rank matrix approximation methods involving compressive principal component analysis. Numerical tests on real HSI data
suggest that the method is promising and is particularly effective for HSI data interrogation.

1. Introduction

Hyperspectral imagery (HSI) data are measurements of the
electromagnetic radiation reflected from an object or scene
(i.e., materials in the image) at many narrow wavelength
bands. Often, this is represented visually as a cube, where
each slice of the cube represents the image at a different
wavelength. Spectral information is important in many
fields such as environmental remote sensing, monitoring
chemical/oil spills, and military target discrimination. For
comprehensive discussions, please see, for example, [1-3].
Hyperspectral image data is often represented as a matrix
A € R™", where each entry A;; is the reflection of ith pixel
at the jth wavelength. Thus, a column of A contains the entire
image at a given wavelength; each row contains the reflection
of one pixel at all given wavelengths—often referred to as the
spectral signature of a pixel.

HSI data can be collected over hundreds of wavelengths
—creating truly massive data sets. The transmission, stor-
ing, and processing of these large data sets often present
significant difficulties in practical situations [1]. Dimen-
sionality reduction methods provide means to deal with
the computational difficulties of the hyperspectral data.
These methods often use projections to compress a high-
dimensional data space represented by a matrix A into a
lower-dimensional space represented by a matrix B, which

is then factorized. Such factorizations are referred to as low-
rank matrix factorizations, resulting in a low-rank matrix
approximation to the original HSI data matrix A. See, for
example, [2, 4-6].

Dimensionality reduction techniques are generally
regarded as lossy compression; that is, the original data
is not exactly represented or reconstructed by the lower-
dimensional space. For lossless compression of HSI data,
there have been efforts to exploit the correlation structure
within HSI data plus coding the residuals after stripping
off the correlated parts; see, for example, [7, 8]. However,
given the large number of pixels, these correlations are
often restricted to the spatially or spectrally local areas,
while the dimension reduction techniques essentially
explore the global correlation structure. By coding the
residuals after subtracting the original matrix by its low-
dimensional representation, one can compress the original
data in a lossless manner, as in [8]. The success of lossless
compression requires low entropy of the data distribution,
and, as we shall see in the experiments section, generally the
entropy of residuals for our method will be much lower than
the entropy of the original data.

Low-rank matrix factorizations can be computed using
two general types of algorithms: deterministic and proba-
bilistic. The most popular methods for deterministic low-
rank factorizations include the singular value decomposition



(SVD) [9] and principal component analysis (PCA) [10].
Advantages of these methods include the following: first,
often a small number of singular vectors (or principal
components) sufficiently capture the action of a matrix;
second, the singular vectors are orthonormal; third, the
truncated SVD (TSVD) is the optimal low-rank represen-
tation of the original matrix in terms of Frobenius norm
by the Eckart-Young theorem [9]. This last advantage is
especially suited for compression with the TSVD method,
since the Frobenius norm of the residual matrix is the
smallest among all rank-k representations of the original
matrix, and hence we should expect a much lower entropy in
its distributions—making it suitable for compressive coding
schemes. Both decompositions offer truncated versions so
that these decompositions can be used to represent an -
band hyperspectral image with the data-size-equivalent of
only k images, where k < n. For applications of the SVD
and PCA in hyperspectral imaging see, for example, [11, 12].

The traditional deterministic way of computing the SVD
ofamatrix A € R™*" is typically a two-step procedure. In the
first step, the matrix is reduced to a bidiagonal matrix using
householder reflections or sometimes combined with a QR
decomposition if m > n. This takes O(mn?) floating-point
operations (flops), assuming that m > n. The second step is
to compute the SVD of the bidiagonal matrix by an iterative
method in O(n) iterations, each costing O(n) flops. Thus,
the overall cost is still O(mn?) flops [13, Lecture 31]. In HSI
applications, the datasets can easily break into the million-
pixel or even giga-pixel level, which renders this operation
impossible on typical desktop computers.

One solution is to apply probabilistic methods which
give closely approximated singular vectors and singular
values, while the complexity is at a much lower level. These
methods begin by randomly projecting the original matrix
to obtain a lower-dimensional matrix, while the range of
the original matrix is asymptotically kept intact. The much-
smaller projected matrix is then factorized using a full-
matrix decomposition such as SVD or PCA, after which the
resulting singular vectors are backprojected to the original
space. Compared to deterministic methods, probabilistic
methods often offer the lower cost and more robustness in
computation, while achieving high-accuracy results. See the
seminal paper [14], and the references therein.

Knowing the redundancy of HSI data, especially in the
spectral dimension, recently we have observed studies on
the compressive HSI sensing, either algorithmic [11, 15] or
experimental [6, 16, 17], and all of them involve a random
projection of the data onto a lower-dimensional space.
For example, in [11] Fowler proposed an approach that
exploits the use of compressive projections in sensors that
integrate dimensionality reduction and signal acquisition to
effectively shift the computational burden of PCA from the
encoder platform to the decoder site. This technique, termed
compressive-projection PCA (CPPCA), couples random
projections at the encoder with a Rayleigh-Ritz process for
approximating eigenvectors at the decoder. In its use of ran-
dom projections, this technique can be considered to possess
a certain duality with our approach to randomized SVD
methods in HSI. However, CPPCA recovers coefficients of
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a known sparsity pattern in an unknown basis. Accordingly,
CPPCA requires the additional step of eigenvector recovery.

In this paper, we present a randomized singular value
decomposition (rSVD) method for the purposes of loss-
less compression, reconstruction, classification, and target
detection. On a large HSI dataset we apply the rSVD
method to demonstrate its efficiency and effectiveness of the
proposed method. On another HSI dataset, we will show the
effectiveness of the proposed algorithm in detecting targets,
especially small targets, through singular vectors. In terms of
reconstruction quality, we will compare our algorithm with
CPPCA [11] by using the signal-to-noise ratio (SNR).

We note that Chen et al. [18] have recently provided
an extensive study on the effects of linear projections on
the performance of target detection and classification of
hyperspectral imagery. In their tests they found that the
dimensionality of hyperspectral data can typically be reduced
to 1/5 ~ 1/3 that of the original data without severely
affecting performance of commonly used target detection
and classification algorithms.

The structure of the remainder of the paper is as
follows. In Section 2, we give a detailed overview of rSVD in
Section 2.1, the connections between this work and CPPCA
in Section 2.2, and the compression and reconstruction of
HSI data in Section 2.3. In Section 3, we present numerical
results of the rSVD method on two publicly available real
data sets. Finally, we draw some conclusions and identify
some topics for future work in Section 4.

2. Review of Randomized Singular
Value Decomposition

We start by defining terms and notations. The singular value
decomposition (SVD) of a matrix A € R™*" is defined as

A=UzVT, (1)

where U and V are orthonormal, and ¥ is a rectangular
diagonal matrix whose entries on the diagonal are the
singular values denoted as ¢;. The column vectors of U and
V are left and right singular vectors, respectively, denoted as
u; and v;. Define the truncated SVD (TSVD) approximation
of A as a matrix Ay such that

k
Ay = zdiuiViT. (2)

i=1

We define the randomized SVD (rSVD) of A as follows:

AN A

A =USVT, (3)

where U and V are both orthonormal, and 2 is diagonal with
diagonal entries denoted as 0;. Denote the column vectors of
Uand V as 1; and v;, respectively, and call them randomized
singular vectors. Here, u;, v;, and o; are related to u;, V;,
and 0;, respectively. Define the residual matrix of a TSVD
approximation as follows:

Rk = A - Ak) (4)
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while e > € do
1) k=k+1.

(3) g = (I-QQ"y.
(4) qi = Qi/HQz'”.
(5) Q- [Qaqil.
6) Q — [Qu].

end

Input: An m X n matrix A and a precision measure €.
Output: An m X k matrix Q and rank k.
Initialize Q as an empty matrix, e = 1 and k = 0.

(2) yi = Aw;, where w; is a Gaussian random vector.

(7) Compute error e = |[A — QQ A/l Allg.

ArcoriTHM I: Construct an orthonormal matrix Q that approximates the range of matrix AQ.

and the residual matrix of a rSVD approximation as follows:
ﬁk =A- A\k. (5)
Define the random projection of a matrix as follows:

Y =QTA, or Y =AQ, (6)
where Q) is a random matrix with independent and identi-
cally distributed (i.i.d.) entries.

2.1. Randomized SVD Algorithm. The rSVD algorithm as
considered by [14] explores approximate matrix factoriza-
tions using random projections, separating the process into
two stages. In the first stage, random sampling is used to
obtain a reduced matrix whose range approximates the range
of A; in the second stage, the reduced matrix is factorized. In
this paper, we use this framework for computing the rSVD of
a matrix A.

The first stage of the method is common to many
approximate matrix factorization methods. For a given € > 0,
we wish to find a matrix Q with orthonormal columns such
that

A - QQTAl; <e. (7)

Algorithm 1 [14] can be used to compute Q.

Because in practice we may not know the target rank k
of A, Algorithm 1 allows us to look for an appropriate target
rank based upon given € such that (7) holds. However if the
target rank is known, one can avoid computing the error
term e at each iteration by replacing the While loop with a
For loop. In practice, the number of columns of Q is usually
chosen to be slightly larger than the numerical rank of A [14].
Without loss of generality, we assume that Q € R™*! where
I < n. The columns of Q form an orthogonal basis for the
range of AQ), where Q) is a matrix composed of the random
vectors {w;}, typically with a standard normal distribution
[14]. The range of the product AQ is an approximation to
the range of A.

The second stage of the rfSVD method is to compute the
SVD of the reduced matrix QTA € R™™. Since | < n, it
is generally computationally feasible to compute the SVD of

the reduced matrix. Letting USVT denote the SVD of QTA,
we obtain that

AN

A~ (QU)SVT = 02V, (8)

where U = QU and V are orthogonal matrices, and thus by
(8), USVT isan approximate SVD of A, and the range of Uis
an approximation to range of A. Algorithm 2 summarizes the
discussion above. See [14] for details on the choice of /, along
with extensive numerical experiments using randomized
SVD methods and a detailed error analysis of the two-stage
method described above.

Next we discuss several variations of Algorithm 2
depending on the properties of A. We will test all cases in
the numerical results section.

Case 1. If knowing the target rank k, and if the singular
values of A decay rapidly, we can skip Algorithm 1 by simply
using the rank revealing QR factorization, Y = QR, where
Q is an orthogonal basis of the range of Y. Figure 1 from
[19] compares the approximation error e and the theoretical
error ox+1 of a matrix A, and clearly when the singular values
of A decay rapidly, ey is close to the theoretical error ox4; with
high probability.

Case 2. If the singular values of A decay gradually, or ox/0;
is not small, we may lose the accuracy of estimates. Consider
introducing a power q and forming Y as Y = (AAT)7AR.
Since (AAT)1Q) has the same singular vectors as A, while
. . 2q-1 . .

its singular values, {o;© ,i = 1,...,n}, decay more rapidly.
Hence the error will be smaller by Theorems 2.3 and 2.5 in
[14]. From Figure 2, we see that the ey is not always close to
Ok+1, especially when g = 0, but, by increasing the power ¢,
we observe the reduction of errors.

Case 3. Algorithm 2 requires us to revisit the input matrix,
while this may be not feasible for large matrices. For example,
in ultraspectral imaging [20], one could have thousands of
spectral bands, and PCA on such datasets would require
computing the eigenvectors and eigenvalues of a covariance
matrix with a huge dimension. Another example is in the
atmospheric correction model called MODTRANS5 [21], that
utilizes large lookup tables (LUTs), and the compression
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6) U = QU.

Input: An m X n matrix A and rank k with k < n < m.
Output: The rSVD of A: 0', i, V.

(1) Generate a Gaussian random matrix Q € R"*k,
(2) Form the projection of A: Y = AQ.

(3) Construct Q € R™* by Algorithm 1.

(4) Set B = QTA € Rk,

(5) Compute the SVD of B, B = UsSvr.

ArcoritHM 2: The basic rSVD algorithm.

j=1
while flight continues do

(6) j=j+1.
end

Input: An m X n matrix A and an integer J.
Output: {B;,Q;,7;,j = 1,...,J}.

(1) Acquire the HSI data, A;, scanned in the last few seconds.
(2) Apply Algorithm 1 for Q; and B;.

(3) Compute the residual, r; = A; — Q;B;.

(4) Code r; as 7; with a parallel floating point coding algorithm.
(5) Store Qj, Bj and compressed r;.

AvrLcoriTHM 3: rSVD encoder.

of LUTs by the PCA technique would again require the
eigen decomposition of large covariance matrices. Here we
introduce a variation of Algorithm 2 that only requires one
pass over a large symmetric matrix. Now we define matrix B
as follows:

B=Q"AQ )
and we multiply by QT Q, that is,
BQTQ = QTAQQTq. (10)
Since A ~ AQQT, we have the following approximation:
BQ'Q ~ QTAQ = Q'Y, (11)

and hence by a least-square solution we have
T
B~QTY(Q')’, (12)

where the superscript  represents the pseudoinverse. Notice
the absence of A in the approximate formula of B. Thus, for
a large symmetric A, we will use (12) rather than QTA to
compute B, while the rest of Algorithm 2 would remain the
same.

2.2. Connections to CPPCA. A significant difference between
the compressive-projection PCA (CPPCA) approach and our
work is that CPPCA uses a random orthonormal matrix
P to compress the data matrix A. In comparison, though
we also use random projections, the orthonormal matrix
Q is constructed from, and directly related to, the data

matrix A. In particular, we compute an orthogonal Q such
that [|[A — QQTAllz < €. Also, because the projection onto
convex sets (POCSs) algorithm is used for reconstruction,
the projection matrix P of CPPCA has to be different for
different blocks of the scene, which have to be independently
drawn and orthogonalized; meanwhile, one random projec-
tion matrix Q in rSVD is sufficient and can be applied to
the whole dataset. Another restriction of CPPCA lies in the
fact that the Rayleigh-Ritz method requires well-separated
eigenvalues [22], which might be true for the first few largest
eigenvalues, but usually not true for the smaller eigenvalues.
In a later section we present our approach for matrices with
slowly decaying singular values in Case 2.

2.3. Compression and Reconstruction of HSI Data by rSVD.
The flight times of airplanes carrying hyperspectral scanning
imagers are usually limited by the data capacity, since
within 5 to 10 seconds hundreds of thousands of pixels
of hyperspectral data are collected [1]. Hence for real-
time onboard processing, it would be desirable to design
algorithms capable for processing this amount of data within
5 to 10 seconds before the next section of the scene is
scanned. Here we use the proposed rSVD algorithm to
losslessly compress blocks of HSI data, each within a frame
of 10 second flight time, which is equivalent to dividing the
HSI data cube along the flight direction, either the x or y
direction, with the number of rows (y direction) or columns
(x direction) determined by the ground sample distance
(GSD) and the flight speed. Algorithm 3 describes the rSVD
encoder, which outputs {Bj, Q;, ?j,j =1,...,J} to be stored
onboard, where B; and Q; are the outputs of Algorithm 2 for
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Input: {B;,Q;,7j,j = 1,...,J}.
Output: Reconstructed matrix A.
For j=1:] do

(2) Aj = Qij +7'j.
3)j=j+1L

end

Groupall {Aj,j=1,...

(1) Decode r; from 7; with a parallel floating point decoding algorithm.

,J} together in A.

ALGorrTHM 4: rSVD decoder.

the jth block of data, while ?] is the coded residual. These
are then used by Algorithm 4 to reconstruct the original data
losslessly, and we can see it only involves a one-pass matrix-
matrix multiplication and is without iterative algorithms.
Compared to CPPCA, the number of bytes used for storing
the Bs and Qs is smaller, and the reconstruction only involves
matrix-matrix multiplication. The only possible bottleneck
might be the residual coding, but the recent development
in floating point coding has seen throughputs reaching as
much as 75 Gb/s [23] on a graphic processing unit (GPU),
while even on an eight-Xeon-core computer we have seen
throughput at 20 Gb/s, and both would be sufficiently fast to
code the required amount of HSI data within 10 seconds.

3. Numerical Experiments

3.1. Accuracy of the rSVD Estimates. In this section, we will
first compare the results from rSVD and from the exact
TSVD by the MATLAB function, “svds,” which computes the
largest k singular values and the associated singular vectors
of a large matrix. It is considered to be an efficient and
accurate method to obtain the TSVD. To simulate large HSI
datasets, we generate random test matrices A € R™*", with n
fixed at 100 representing 100 spectral channels, while m =
100, 000; 200, 0005...,2,000,000, representing the number
of pixels. The singular values of A are simulated as following
a power decay with the power set as —1, that is, ox/0) =
1/k. We will use Algorithm 2 to compute the rSVD. The
comparison of computation time is shown in Figure 3(a),
from which we find that “svds” is almost as effective as rSVD
when # is relatively small. However, when m increases, the
computation times of “svds” increase at a much faster pace
than that of rSVD, and note that when m = 300,000, the
processing time of rSVD is well within 10 seconds, meeting
the onboard processing time limit. To judge the accuracy of
estimated singular vectors, we compute the correlation or the
inner product of singular vectors in U by “svds” and U by
rSVD as shown in Figure 3(b), where we clearly see that both
sets are almost identical up to the fifteenth singular vector. To
judge the accuracy of estimated singular values, we compute
the relative absolute errors, |0x — ok|/|ok|, and plot them in
Figure 3(c). Again we observe the high accuracy of the esti-
mates up to the first 15 singular values. In most HSI datasets,
the singular values decay rate is generally faster than 1/k,
and hence we should expect even higher accuracy of the esti-
mates. Also, it is sufficient to estimate the first 15 or even 10

singular vectors and singular values, which would often cover
more than 90% of the original variance of the HSI data [1].

Then we numerically test the three special cases discussed
in Section 2.1.

Case 1. We have considered square Toeplitz matrices with
increasingly large sizes, n = 15,30, ..., 1500. Figure 4 shows
the rapid decay of a 1,000 X 1,000 matrix, and hence they
are suitable for testing the algorithm. Figure 5(a) shows that
the relative Frobenius norm errors rise and fall in the order
of 107!2 and remain in the same order even when the size
of a matrix increases. Figure 5(b) demonstrates that the
computational time of rSVD is very short for the Toeplitz
matrices whose singular values decay rapidly.

Case 2. Here we simulate 10,000 X 100 matrices with slowly
decaying singular values, that is, oi/0; = i™5, with s =
0.2,0.4,...,1.0. For each matrix, we run the rSVD algorithm
100 times for each power g in the set, {g = 1,2,...,20}. The
norm errors of reconstructed matrices are averaged across
100 runs and normalized by the norm error when g = 1, that
is, e4/e1. Figure 6 shows that increasing the power g improves
the reconstruction quality or decreases the norm error, and
greater effects are observed for larger s because the singular

2 2.
values of (AAT) are 071 = o7 %i2%.

Case 3. To simulate covariance matrices, we generate a
sequence of positive definite symmetric matrices with
increasing size as n = 100,110,...,2,000. The eigen-
spectrum follows a power decay with the power set as —1.
We apply the modified B as in Case 3 to compute its SVD,
rather than using QTA. We set k = 25. Figure 7(a) shows
the computation time compared with using regular SVD
in MATLAB, while Figure 7(b) shows the relative Frobenius
norm errors between the original matrix and its low-rank
approximation. Apparently the computation time used by
rSVD is far less than the regular SVD, while the accuracies
are quite high.

3.2. rSVD on a Large HSI Dataset and a Lossless Compression.
The rSVD algorithm was also applied to a relatively large HSI
dataset consisting of a 920 x 4,933 x 58 image cube collected
over Gulfport MS by a commercial hyperspectral sensor
having a spectral range of 0.45 to 0.72 microns. This cube
was then unfolded into a large matrix of size 4, 538, 360 x 58.
Running an exact SVD algorithm is almost impossible on a
regular desktop computer with limited memory and speed,
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FIGURE 2: Comparison of the error e and the theoretical error k.. The red curve shows that the error ey is greater than the theoretical error

0k+1. Note that the singular values decay more rapidly as g increases.

while the rSVD algorithm gives us singular values and vectors
very close to the true ones, with a significantly reduced
amount of flops and memory required. For the first 25
singular vectors and singular values, it only takes 68 seconds
on a desktop computer with Xeon 3.2 GHz Quadcores and
12 GB memory. From the computed singular values and
vectors, we observed that the singular vectors after the ninth
singular vector all appear to be noise, indicating that the data
matrix does have a low-rank representation.

Figure 8 shows the results for a small scene from the large
dataset described above, consisting of part of the University
of Southern Mississippi Campus, extracted from the large
Gulfport MS dataset. Notice the targets placed in the scene,
for detection and identification tests. The first eight singular
vectors, #;, are folded back from the transformed data. The
first singular vector shown in Figure 8 is the mean image
across 58 spectral bands, while the second singular vector
shows high intensity at the grass and foliage pixels, the third
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FIGURE 3: (a) Computation time of “svds” and rSVD. (b) Correlations between the singular vectors in U by “svds” and rSVD. (c) Relative
absolute differences between the singular values estimated by “svds” and rSVD.
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shows the targets quite clearly, as well as high-reflectance
sandy areas or rooftops, the fifth shows the low-reflectance
pavement or roof tops, and shadows, and the seventh shows
vehicles at various places marked by the circles. Starting
from the eighth, the rest of the singular vectors appear to be
mostly noise.

In Figure 9(b), the histogram of entries in Ry shows that
residuals are roughly distributed as a Laplacian distribution,
and all residuals are within the range of [—.1,.1], which
is significantly smaller than the original range of A in
Figure 9(a). Moreover, most of the residuals (93%) are within
the range [—-.01,.01] (notice the log scale on the y axis),
which means that the entropy of residuals is significantly
smaller than the entropy of the original. This justifies a
further coding step on the residuals so as to complete a
lossless compression scheme. Here we apply the Hoffman

coding due to its fast computation and show the compression
ratios at various error rates, corresponding to the numbers
of bits required to code the residuals. For example, a 16-
bit coding would result in an error in the range of 107°.
Figure 10 provides us options on balancing compression
with accuracy. For practical purposes, an error rate in the
order of 0.001 might be sufficient, and this would result in
a compression ratio of 2.5 to 4. For comparison purpose,
the 3D-SPECK [7] on a small dataset of size 320 X 360 X 58
results in a compression ratio of 1.12 at the 16-bit coding. If
more sophisticated coding algorithms than Hoffman coding
are applied here, we could see more improvements on
the compression ratios. For computing the compression
ratios, we have assumed 16-bit coding (2-byte) for all the
matrices, including Bj, Qj, the residual matrix and the coded
(compressed) residual matrix.



Journal of Electrical and Computer Engineering

10°

1071 E

1072 L

Seconds

10—3 L

1074

0 500 2000

— rSVD
— SVD

(a)

FIGURE 7: (a) Computation time of rSVD in blue and SVD in green. (b) Relative norm errors by rSVD and SVD.

To test the suitability of the onboard real-time processing
by Algorithm 3, we apply the rSVD on a 300, 000 100 matrix
and see it is finished in 7 seconds on a low-end dual-core
laptop computer, and if, with a parallel coding algorithm
for the residuals, we should finish Algorithm 3 within the
required 10-seconds time frame.

3.3. Small Target Detection Using rSVD. For a small target
detection experiment using rSVD, we choose a version of
the Forest Radiance HSI dataset, which has been analyzed by
using numerous target detection methods, see, for example,
[18, 24-26] Our rationale behind using an SVD algorithm
in target detection lies in the fact that even though targets
might be of small size, if all the spectrally similar targets have
sufficient presence, some singular vectors of the HSI data
matrix will reflect these features, and hence the presence of
targets can be simply shown by these singular vectors. After
removing the water-absorption and other noisy bands, we
unfold the 200 x 150 x 169 data cube into a 30,000 x 169
matrix and apply Algorithm 2 for the singular vectors ;.
Figure 11 shows the sum of first twelve #; folded back into
a 200 x 150 matrix, and we can clearly detect 25 of the 27
targets, while the other two are slightly visible.

3.4. Comparison between rSVD and CPPCA. In this section,
we will compare rSVD with CPPCA from the aspects of
accuracy and computation time, first on simulated data
and then on a real HSI dataset. We first simulate a set of
matrices with increasing number of rows (pixels), m =
10, 000, 20, 000, ..., 100,000, while fixing n = 100 as 100
spectral bands. The singular value spectrum is simulated
as following a power decay rate with the power set as
—1. Both CPPCA and rSVD algorithms are applied to
each simulated matrix, and results are compared in terms
of their reconstruction quality and the computation time.
Figure 12(a) shows that the running time of rSVD increases
linearly with m, while that of CPPCA remains constant,
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TasLE 1: Computation times (seconds) of rSVD and CPPCA.
k/n 0.1 0.15 0.2 0.3 0.4 0.5
rSVD 0.212 0.292 0.390 0.707 0.897 1.264
CPPCA  0.247 0.305 0.331 0.368 0.399 0.509

which is not surprising since CPPCA mainly works on
eigenvectors of fixed dimension n. However in terms of
reconstruction quality, Figure 12(b) shows the advantage of
rSVD. Here we set the number of reconstructed eigenvectors
by CPPCA to 3 since it provides the best norm errors, while
for rSVD we set it to 25.

For the real dataset, we use a small section of the Gulfport
dataset and fold it into a matrix A with size 115200 X 58.
From the reconstructed matrices A by both methods, with
varying rank k we compare their reconstruction qualities in
terms of signal-to-noise ratio (SNR) in Figure 13, and the
computation time in Table 1. Again we observe the better
reconstruction quality though slightly slower computation of
rSVD when compared to CPPCA.

Next, we compare the accuracy of the reconstruction
of the eigenvectors, v;, of the covariance matrix of A by
these two methods. Given that PCA is an extremely useful
tool in HSI data analysis, for example, for classification
and target detection, it is essential to obtain a quality
reconstruction of the eigenvectors ¥; by rSVD in terms of
accuracy and efficiency. Here we simulate a 10,000 X 100
matrix A with orthogonalized random matrices, U, and
V,, and a power-decay singular value spectrum in Z,, with
the power set as —1. Then we run both algorithms for
1,000 times, and, within each time, we compute the angles
between eigenvectors by CPPCA and the true ones, and
between eigenvectors by rSVD and the true ones. The first
row of Figure 14 shows the histograms of angles between
the first eight reconstructed eigenvectors by CPPCA and
the true ones, while the second row shows the histograms
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identified vehicles.
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F1GURrk 9: (a) The distribution of intensities of the original Gulfport HSI cube. (b) The distributions of residuals after subtracting the TSVD

from the original.
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of the angles between the first eight eigenvectors by rSVD
and the true ones. We can see that the first three or four
eigenvectors by CPPCA appear to be close to the true ones,
while the rest are not. Hence if using more than four
eigenvectors reconstructed by CPPCA, we observe a decrease
in reconstruction quality or an increase in the norm error.
However in the second row, we see good accuracy of the
eigenvectors computed by rSVD.

3.5. Classification of HSI Data by rSVD. Since the projection
of a HSI data matrix by its truncated singular matrix, that is,

Ap = AV, (13)
contains most of the information in the original matrix A,

we can use any classification algorithm, such as the popular
k means, to classify HSI data, but also use its representation
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in a lower-dimensional space. Consider a small section of the
Gulfport dataset. Figure 15 shows the first 8 columns of Ap.
From the first subfigure, we see that most information of the
hyperspectral image is contained in the first column, while
the second column almost contains the rest of the informa-
tion which the first column does not contain. The rest of the
columns contain information at more detailed and spatially
clustered levels. Figure 16 shows the result of classification
by k-means, where we can see the low-reflectance water and
shadows in yellow, the foliage in red, the grass in dark red,
the pavement in green, high-reflectance beach sand in dark
blue, and dirt/sandy grass in blue and light blue.

A comparison with results from running k-means
on the full dataset shows that only 13 pixels of all the
320 X 360 = 115,200 pixels are classified differently between
the full dataset and its low-dimensional representation.
Hence it is highly suitable to use this low-dimensional
representation for classification.

4. Conclusions

As HSI data sets are growing increasingly massive, compres-
sion and dimensionality reduction for analytical purposes
has become more and more critical. The randomized SVD
algorithms proposed in this paper enable us to compress,
reconstruct, and classify massive HSI datasets in an efficient
way while maintaining high accuracy in comparison to
exact SVD methods. The rSVD algorithm is also found
to be effective in detecting small targets down to single
pixels. We have also demonstrated the fast computation in
compression and reconstruction of the proposed algorithms
on a large HSI dataset in an urban setting. Overall, the rfSVD
provides a lower approximation error than some other recent
methods and is particularly well suited for compression,
reconstruction, classification, and target detection.
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Our goal in this work is to demonstrate that detectors behave differently for different images and targets and to propose a novel
approach to proper detector selection. To choose the algorithm, we analyze image statistics, the target signature, and the target’s
physical size, but we do not need any type of ground truth. We demonstrate our ability to evaluate detectors and find the best
settings for their free parameters by comparing our results using the following stochastic algorithms for target detection: the
constrained energy minimization (CEM), generalized likelihood ratio test (GLRT), and adaptive coherence estimator (ACE)
algorithms. We test our concepts by using the dataset and scoring methodology of the Rochester Institute of Technology (RIT)
Target Detection Blind Test project. The results show that our concept correctly ranks algorithms for the particular images and

targets including in the RIT dataset.

1. Introduction

Ideally, one would like to choose a hyperspectral detection
algorithm for use in a particular scenario with the assurance
that it would be “optimal,” that is, that the type of algorithm
to be used and its free parameters would be optimized for the
particular task for which it is being considered. Of course, in
such cases, the complexity of real-world scenarios and the
difficulties of predicting the exact target signature in situ,
make it hard to believe that we can predict the optimal target
detection algorithm ahead of time. Because the responses of
these algorithms can vary depending on target placement,
we adapted the Rotman-Bar Tal Algorithm (RBTA) [1]
for comparing point target detection algorithms, used for
infrared broadband images, to the analysis of hyperspectral
imagery [2-4]. The RBTA implants targets and evaluates
the response of the detecting algorithm to their presence in
every pixel in the dataset. Indeed, our development of new

algorithms based on this tool has been validated by results
obtained by other researchers in actual field tests [5, 6].

An inherent weakness of the RBTA method is its assump-
tion that subpixel targets will each be contained within a
single pixel. In light of our recent work [7], which showed
that even very small targets can affect several pixels, here we
fine-tuned the RBTA method to account for this possibility.

Sections 2—6 describes the RBTA in detail. We show how
the simulation of target detection performance is dependent
on the spatial correlation of the pixels present in the target.

Sections 7—12 analytically considers the expected perfor-
mances of several detection algorithms under conditions of
“pixel phasing,” that is, a small target located simultaneously
in several adjacent pixels. Our improved RBTA (IRBTA) takes
into account target blurring and pixel phasing. The results
presented in Sections 13—16 show that the superiority of the
ACE algorithm and the importance of accounting for target
blurring are validated in a real data analysis based on the



RIT target detection blind test experiment. Conclusions are
presented in Section 17.

2. Determining the “Best Algorithm” for
Target Detection

Manolakis et al. [8] claimed that to identify the best
algorithm for target detection, we need datasets with reliable
ground truth spanning a diverse range of targets and
backgrounds under various scenarios, target fill factors, and
atmospheric conditions. Statistically significant numbers of
target and background pixels are necessary to construct
reliable ROC curves. Because in many cases this degree of
data confirmation is unavailable, we suggest an alternative
approach for estimating the best algorithm from among
several detectors for specific backgrounds and targets. We
start by presenting the RBTA [1]. The algorithm was
originally developed for broadband infrared images with
subpixel targets, but we altered it to account for pixel blur
(atmospheric and system effects which would cause the
emitted power of the target to be spread over several pixels)
and multipixel targets in hyperspectral imagery.

To estimate detector performance, Rotman and Bar-Tal
proposed a multistep process that begins with an analysis
of the unmodified reflectance image that is available in the
website without any embedded targets. (We assume that
ideally no targets are present in the datacube being analyzed;
if one were present, it would slightly distort the histogram of
the image. We trust that such a distortion will not disturb
the overall analysis of the image statistics). The algorithm
being tested is evaluated for each pixel, and the results are
summarized in what we call a false-alarm histogram. Next
we embed targets into every pixel and evaluate each of
the algorithms. This is done independently for each pixel
(rather than simultaneously) so that surrounding pixels are
not changed prior to algorithm evaluation. The results are
arranged in a target detection histogram. Each histogram
(false-alarm and target detection) is then normalized; a
variable threshold is set and the area of the false-alarm
and target histograms to the right of the threshold are
measured. For any particular threshold, a pair of P and
Pp (probability of false alarm and probability of detection)
values are generated. The threshold is swept through all
possible detector outputs, generating a set of these pairs.
When graphed, these points produce the ROC (receiver
operating characteristic) curves.

We note that the target implantation mechanism as
given here has ignored several possibly significant effects
which would affect the values found of PD. In particular,
the target spectrum is a nearly noiseless lab spectrum that
does not have the same artifacts, noise, and degradation
as the real imagery. Additionally, this approach assumes
the data has been perfectly atmospherically compensated
by RIT’s algorithm, which is not necessarily true. In our
opinion, this seems to limit the use of our method rather
than to invalidate it. Since the atmospheric conditions at
the time of the measurement were not known, we cannot
implant atmospherically corrected signatures or validate
the reflectance dataset that is available in RIT website.
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Instead, we are testing the response of the algorithms to
an implanted nonatmospherically corrected target which
has been substituted in the reflectance dataset as described
above; in each examined pixel, the fraction of the laboratory
signature replaced the fraction of the background signal.
While inaccurate atmospheric correction may result in an
unknown decrease in the target detection, we note that the
final comparisons are for variations in algorithm selection
for a given target signature. The method should not be used
to calculate absolute values for the probability of detection
of a particular target which indeed has been altered by
atmospheric and other effects. Rather, we are attempting to
determine which algorithms will have a superior probability
of detecting a target of this type in the scenario. Future
work should include a quantitative determination to what
degree atmospheric effects change the ranking of different
algorithms.

This methodology can be used for the following reasons:
as a rule, the ROC curve, which are generated tend to have
probabilities of detection which range from 0 to 1; the
value of probabilities of false alarm, on the other hand, vary
from 0 to some chosen threshold Ppa.max. This threshold
is normally set quote low; a standard value would be
0.01. This is appropriate since the acceptable use of most
detection algorithms could only be in the range where a small
percentage of the pixels in the image would be false alarms.

Now, the exact distribution of the background pixels is
crucial for the analysis of our detection algorithms; it will
indeed be the exceptional pixels in the tail of the distribution
which will determine the ROC curve. However, since the
probability of detection is being determined by the entire P,
scale from 0 to 1, all pixels contribute. In other words, the
target detection scheme in this paper is extremely sensitive to
a few false alarms; it is much less sensitive to a few pixels with
missed “synthetic” target signatures. As such, subtle effects
affecting the exact form of the target signature in situ are not
being measured; rather the average response of the algorithm
to the target signatures placement in all the pixels is the key
factor. For our above goal, that is, the comparison of different
target algorithms, we believe our method to be reliable.

To summarize, ROC curve evaluation entails the follow-
ing steps as demonstrated in Figure 1.

3. Subpixel Target Detection: Global Methods

3.1. CEM. In many cases, it is convenient to scale the
matched filter such that it has a value of 1 when the target
signature fills the pixel being examined. This scaling can be
achieved by normalizing the matched filter to its value when
operating on the designated target spectrum:
,T:’I,
CEM®x) = * 2 %,
'R s
where s is the reference signature of the target, R is the
background correlation matrix, that is, an [L X L] matrix,
L is the number of bands, and x is the observed pixel.
Geometrically speaking, the CEM algorithm measures the
projection of x onto s normalized by the length of s in the

(1)
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FiGure 1: RBTA flow chart.

whitened space and thus leads to planar decision surfaces
in that space. An important characteristic of the CEM
algorithm is that its output is correlated to the target’s
fractional abundance in signature x, assuming the target
signature is well isolated from the other endmembers, mixing
is linear, and the relative abundances of the endmembers
follow a Dirichlet distribution [9].

3.2. GLRT and ACE. Manolakis and his group [10-14] have
described a number of stochastic target detection algorithms,
including that attributed to Kelly [15] for solving to the
Neyman-Pearson decision/detection theory for maximizing
the probability of detection of a target with a fixed probability
of false alarms. The solution uses a GLRT expressed as

aurrte~{[(r-) 5 )]
([6-m)' ()] @

-[1+(1/M) - (x-7mp) Téfl(x—mfg)]),

where s and x are the same as for (1), m, is the global mean,
G is the background covariance matrix, and M is the total
number of samples.

The ACE algorithm, a variation of the GLRT algorithm,
is expressed as

-
/([<§_’”78)T?1(5—m7g)] 3)
'[(E—@)Té_l(f—@)])’

with a maximum value of 1 for the case of x = s and a
minimum value of 0 when x = m,.

In the context of target detection, the sign of (s —
mg)TG’1 (x — my) is important, as only positive abundances
are of interest. (In contrast, this would not be the case for
thermal gas detection, for example, where the target could be
either absorptive or emissive in nature). Thus, in practice, a
signed version of the GLRT algorithm is used as follows:

T—-1

GLRTign (%) = sign[(§ ~7g) G (%- Wg)] - GLRT(%).

(4)

The corresponding ACE algorithm for target detection,
also a variation of the GLRT algorithm, is expressed as

T—-1

ACEig (%) = Sign[(§ —7g) G (%- @)] - ACE(%).

(5)

Because real data does not necessarily match the assumptions
from which the above algorithms are derived, that is, a
background probability distribution function assumed to be
multivariate Gaussian with zero mean bias and an additive
target model, we generally cannot expect that any of the
algorithms will be optimal or even that one will consistently
outperform another [8]. Nevertheless, it was shown by
Manolakis [13] that for a limited dataset, although each of
the algorithms exhibited some degree of success in target
detection, the ACE algorithm performed best on the limited
dataset tested.

In Figure 1, step 1, note that the target is not in all
the positions simultaneously; rather, the result is obtained
sequentially. Steps 4 and 8 are generated by one minus the
cumulative histogram using the results from step 3 and 7,
respectively, (these are the probability of detection-PD). In
Step 9, we plot PD values (step 4) versus the PFA (step 8).



4. Subpixel Target Detection Using Local
Spatial Information

Improving target detection involved replacing the global
mean with the local mean. Using the local mean is definitely
double edged: on one hand, we would expect that the
closer the points used to evaluate the background are to the
suspected target, the more likely it is that the estimate will
be accurate. On the other hand, the noise in the estimate
will decrease given more points entering into the estimation,
assuming that the background is stationary and the noise is
linearly added to the background and independent thereof.
Our empirical experience confirmed by several studies (4)
and (5) is that the closer we choose the pixels the better, with
the condition that we do not have target contamination of
the background pixels. It is this proviso that we wish to test
here.

We note that we are not dealing here with a “local”
covariance matrix which would change when evaluating each
pixel in the image. Rather, we use the same covariance
matrix throughout the image; it will simply be based on the
difference of the sample pixels and their “local” background.

Since we are dealing with a subpixel target, which in the
physical domain can affect only pixels in a limited spatial
area surrounding the center of the target, we used the eight
nearest neighbors approach to estimate the value of the test
pixels. The CEM algorithm does not use the mean and will
therefore be unaffected by the above changes. The GLRT can
be improved as follows:

GLRTjoel (%) = ([(s B WTg) TE—I % WTB)] 2)
/([(3 — )G G- m—s)]

-[1 +(UM) - G -75)"C (X — Ws)])
(6)

and for target detection

——1
GLRTsign-local (%) = sign |:(§ - WB)TG (x - WS)] o
7
) GLRTlocal(y))

with mg, the mean of the eight nearest neighbors, replacing
the global mean m,. For the ACE detector, the same
procedure (replacing m, by mg) may be followed.
Segmentation [16—18] or even more local covariance
matrices [2, 4, 6, 19] can be used to improve the covariance
matrix. Common to all these methods is an increased
need for high performance computational resources, while
the corresponding influence each method has on detection
ability is uncertain and highly dependent on the pictures
being analyzed. Used in parallel, the algorithms create new
difficulties through the combination of results from different
segments. We used a global covariance matrix, but adapted
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it to local variations by using the local rather than the global
mean, that is,

. [XMg];[XMgL

Gglobal =
e (8)
[X - Mg] [X - Mg]

M b

Glocal =

where X is a two-dimensional matrix (M X L), in which M
is the number of pixels and L is the number of bands, m,
[1 x L] is the mean vector of X, and M, is m, replicate M
times. When we use Mg for the covariance matrix, we do not
need to replicate the mean, because Mg is also of size [M X L],
and this is the appropriate covariance matrix for whitening
X — Msg.

5. Data

We tested our algorithms on the online reflectance data
sets and the hyperspectral data collected over Cooke City.
The Cooke City imagery was acquired on 4 July 2006 using
the HyMap VNIR/SWIR sensor with 126 spectral bands.
Two hyperspectral scenes are provided with the dataset, one
intended to be used for development and testing (the “Self
Test” scene, where the positions of some targets are known)
and the other intended to be used for detection performance
evaluation (the “Blind Test” scene, where the position of
targets is unknown). The data was corrected for atmospheric
effects and available in the website but the exact atmospheric
condition and the atmospheric correction algorithm are not
available in the website and we assume that the reflectance
dataset is good but not perfect. In Figure 2, we present the
image in false color.

The target signatures, used both in the algorithm for
detection and in the implantation of the synthetic targets
in the RBTA method were laboratory measured and in
reflectance units. The GSD is approximately 3 m. In Figure 3,
we present the spectral signature of the targets in the blind
test image.

The list of all targets is presented in Table 1 below.

6. Spatial Effect

6.1. Analytical and Simulated Performances of GLRT and ACE

6.1.1. Simple Case. The general form for local target detec-
tion as described in Section 3 is

Diocal (%) = <[(s— m—g)réfl(y_ mg)]z)
/([(E—%)Tﬁ—l@—mg)] (9)

'[\I’l P, (G-7)'G (% WS)D’
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TasLE 1: Targets description.

Target ID Target description size (m?) No. 1 size (m?) No.2 Self test ground truth  Blind test ground truth
F1 Red cotton fabric panel 3x3 N/A Yes No

F2 Yellow nylon fabric panel 3x3 N/A Yes No

F3 Blue cotton fabric panel 2x2 1x1 Yes No

F4 Red nylon fabric panel 2X2 1x1 Yes No

F5 Maroon nylon fabric panel 2X2 1x1 No Web score
F6 Gray nylon fabric panel 2x2 1x1 No Web score
F7 Green cotton fabric panel 22 1x1 No Web score
V1 Chevy Blazer, green 4x2 N/A Yes Web score
V2 Toyota T100, white with black plastic liner 3x 1.7 N/A Yes Web score
V3 Subaru GL Wagon, Red 45% 1.6 N/A Yes Web score

False-color RGB image

50
100
150
200
250

100 200 300 400 500 600 700 800

FIGURE 2: False-color RGB of the Cooke City imagery.

with mg as the mean of eight neighbors. G, the global-local
covariance matrix, is computed as

(XMS)TL. (X-)

(10)

GglobalJocal =

where we can get GLRT and ACE as functions of ¥; + W5:

GLRT: \Pl = M, \Pz = 1,

(11)

ACE:‘I’1:O, “Pz:l.

For the case in which the PUT (pixel under testing) x is
exactly s, we obtain the following results:

Diocal (%) = ([(s— m—g)réﬂ(g _H’lg)]z)
/<[(§ )G (5- mg)]

. [(‘Pl +V¥,) - (s— mS)TEA(E - WS)D'
(12)

Let us define the scalar C as—

C=G-m)'G (- ) (13)

. Targets signature in blind test image

0 L L L L L L L L L
450 600 800 1000 1200 1400 1600 1800 2000 2250 2500
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— F7 V3

FIGURE 3: Spectral signatures of the targets that are present in the
Blind test image x-axis is the wavelength [nm] and y-axis is the
reflectance unit less.

Therefore, when X is exactly 5, GLRT and ACE can be
written as

GLRTG) = 3 c] = mice 1 (14)
ACE(s) = 1.

Assuming that the data is normally distributed, C is chi-
square distributed with E(C) = L, where L is the number of
bands. For the case in which M > E(C) = L, we can assume
that

C

GLRT(s) = —.

M (15)

7. Pixel Phasing Case

When imaging, the target can often fall across several pixels
even if its total size is only a single pixel; we will call this
effect pixel phasing even though it is a natural consequence
of imaging system quantization. The pixel phasing effect can
be demonstrated by a target one pixel in size, the imaging
of which leads to pixel phasing registration defined by p,
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(b) Pixel phasing case

FIGURE 4: Pixel phasing schema.

such that 0 < p < 1 (0 corresponds to perfect sampling, with
the target completely replacing the background) (Figure 4).
From the point of view of the central pixel, it is not important
the spatial location of the fraction within the pixel nor the
location of the remainder of the target signature. Assuming
uniform backgrounds of mgq s for both center pixels, they
can now be given as in Figure 4.
We obtain the following:

XNew = P -s+ (1 - P) * Mold_8» (16)
where Xpey is the new PUT for the pixel phasing case and

7+ 1-
P Mold 8 + TPy 5, (17)

Mpew 8 = T 3

where ey s is the new mean for the background.

We now evaluate the terms (5 — #ewg) and (X — #inews)
as follows:

o T7+p _ 1- ~
(s—mNew8)=s—[Tp-mold,erTp*s
o (18)
+

- (5 — Molas);
(p-5+(1-p) - Molds)

7+p 1-p
- (78 T Mold 8 + 3 * 5) (19)

9-p—-1

(XNew — MNews)

- (5 — Molds)-
The GLRT result now becomes

Droca(®) = ([((9- p=1)/8) - (((7+p)/8) - C)])

/([((9-p=1)/8) - ((9-p—1)/8) - C]

¥+ Y2 ((7 + p)/8) - ((7+ p)/8) - Cl),
(20)

where Diocl(X) is the general local detector for the pixel
phasing case.
For the case in which N > C, we calculate that

= 24 14p+49) C
GLRTmiss,sampling(x) = M L

64 M
(p? + 14p + 49) =
+ +
= P 6f ) GLRTlocal)

where GLRT igs_sampling (%) is the expected GLRT value for the
pixel phasing case and M > L. The GLRT expected value
degrades as a function of p. But for ACE (¥, =0, ¥, = 1)
we still get expected values of 1:

ACEmiss,sampling(x) =1 = ACEjgca (x). (22)

In this model, the complete lack of ACE degradation as
a function of pixel phasing may explain why ACE is a more
robust detector than GLRT in many test cases, as noted in the
literature [8, 20].

8. Ranking the Algorithms by RBTA

The difficult task of synthesizing a synthetic image to
help predict which algorithm to select is simplified and
detector selection is facilitated if we synthesize only the target
signature of our real image. Suppose we want to determine
the proper detector for a specific target. We have already
selected our method (e.g., CEM, GLRT, or ACE), and now we
want to select the size of the local window. One approach is
to assume that the best size for the local window is that under
which the PUT value can be predicted with minimum error
vis-a-vis the real PUT (in which we normalize each band by
the mean values of the pixels in that band).

The approach outlined above depends only on the
background image, not on the target signature, and it
entails two assumptions: first, estimating signature values
will improve our detector results independent of the different
target signatures and second, the target has no effect on
its neighbors. Address these assumptions in the following
sections.
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F1GURE 5: RBTA results for different size of local windows.
9. How to Use RBTA For the values found experimentally for p, the target

The implementation of RBTA, which depends on our ability
to implant realistic signals into backgrounds and measure
detector response, should be done carefully. We cannot
expect the real signature to be identical to a library signature,
but we can hope for a high level of similarity. The low
percentage of the target signature that actually enters any
particular pixel is demonstrated in Figure 6; the response
of the CEM filter, which responds proportionally to the
percentage of the target fill in the tested filter, was maximum
at 0.06.

As a rule, to test and challenge our algorithms by exam-
ining the area under the ROC curve, we need to test targets
which neither “saturate” the ROC curve (with a probability
of detection close to one with no false alarms detected) nor
result in a “diagonal” ROC curve (in which the probability
of detection equals the probability of false alarms. As the
allowable false alarm rate decreases, the strength of our
synthetic implanted target would need to increase; if we
know what the acceptable false alarm rate is, we can select
the target percent that will demonstrate the dynamic range
around this rate and get results for our detectors (Figure 5).

was easily detectable and saturated our ROC curve. Thus,
we only embedded 0.0075 of the target signature in the
background pixels to generate the target detection histogram.
In our results, we found that for GLRT and ACE, the best
local window size is 3 X 3 pixels (CEM has no local form).
We also see that using bigger windows to estimate the pixel
signature value gets us closer to the performance of global
detectors that use a global mean. In this case, it is clea that
local detectors are superior to global detectors.

In terms of real data, we must expect each target to affect
more than one pixel even if its total physical size is at the sub-
pixel level. A discussion of this point follows below and leads
to improvement of the RBT algorithm.

10. Improvements to RBTA

10.1. Target Size. As will be discussed in Sections 11-12 the
apparent target size in the final digital image is related both
to its physical size and to various atmospheric and sensor
effects, for example, its point spread function (PSF), Gibbs
effect, crosstalk between pixels, spatial sampling, band-to-
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F1GURE 6: CEM results (2D and 3D) for target with pixel size.

band misregistration [5], and motion compensation. Thus,
a target of a single pixel could actually occupy several pixels.
In the RIT blind test, there are two 3x3-m targets, that is,
exactly the size of the ground sample resolution (GSD) for
the self and blind test images. Figure 6 shows a sample target
of this size.

11. Spatial Sampling Effect

If we take into account only the spatial sampling effect, we
can estimate the percent of pixel area partially occupied by
the target. Notice that even targets of subpixel size often
spread over neighboring pixels (Figure 7).

Put formally, the percent of pixel area covered as a
function of target size, target location, and target orientation
is

0.5
Stargetin,pixel = J] é ) (0‘ ) ,8) - UnitBOX[%, ?] - dx dy,

—0.57T
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X=la-[(x—Ax)-cos(0) — (y — Ay) - sin(6)]],

y=1[B-[(x—Ax)-sin(0) + (y — Ay) - cos(0)]],
(23)

where 0 represents the clockwise rotation of the target
relative to the pixel grid, and «, 8 represent the proportions of
target length and width, respectively, relative to pixel physical
dimension, Ax, Ay are the transition of the target origin
relative to the pixel origin, as demonstrated in Figure 8

1—l< <l d—l< <l
UnitBox[x,y]={ ST Ty sy

0 else.

(24)
The expected value E[Sqa, 5] is
E[Sus] = H Sturgetinpixel dAx - dAy - d6),
[ a,ﬂ] b target_in_pixel #AX y

0<Ax <05 (25)

D=40<Ay=<05.

0<fO=<nm

If we set 6 to a constant value of zero and the target length
and width are half the size of a pixel, we can simulate all the
locations of the target where it’s covering the same percent of
pixel area (Figure 9).

Calculating (25) for a different size target using a
numerical example produced the results shown in Figure 10.

In the graphs depicting pixel coverage as a function of
physical target size, the x-axis is the ratio either between the
target area and the pixel area (Figure 10(a)) or between the
target length and the pixel length (Figure 10(b)). The blue
line in both figures represents the percent of target within the
pixel, while the green line is the percent of the pixel expected
to be covered. It is intuitive that a very small target will be
located in only one pixel, covering a small percent of that
pixel. It is less intuitive, however, that the expected pixel to
be covered will be entirely covered only by a target with an
area four times that of the pixel.

12. Point Spread Function Effect

The PSF effect, present in any optical system, is not always
known. Let us assume that the PSF is a typical, rotationally
symmetric Gaussian filter of size 3 x 3 with standard
deviation sigma 1/2.

Figure 11 demonstrates the synthetic spread effect that
emerges from the convolution of the optical PSF (Fig-
ure 11(a)), and the physical pixels phasing due to target size
(Figure 11(b)). For the spatial sampling we took the mean
case representing the average pixel phasing that we could
expect. Figure 11(c) represents the total effect, for example,
convolution between (a) and (b). We devised an improved
RBTA (IRBTA) and embedded the pixel signature and its
neighbors with ratios as shown in Figure 11(c).

A comparison of Figures 5 and 12 shows that global
detector and local detectors that both use only 7 x 7 frames
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FIGURE 9: Pixel covered as function of target size for 6 = 0, a = 2,
and § = 2.

have exactly the same performance. Evidently, the target
spread effect is only localized in a 5x5 window. Furthermore,
the most significant effect is for a local 3 x 3 window. Indeed,
the local 3 X 3 seems robust, and it outperformed all other
detectors. We expected these detectors to be the best for this
target in this image.

For our next stage of proof of concept, we need to
compare real detection performances to these simulated
results. We obtain this by using the self-test dataset and by
submitting our algorithms to the RIT target detection blind
test and comparing the ranking of our algorithms for each of
the target signatures available in the set; we can then see if the
IRBTA predictions of the preferred algorithms are true.

Journal of Electrical and Computer Engineering

13. Detection Performance:
Experimental Results

13.1. Scoring Methodology and Result Presentation. Detection
algorithm performances are given according to the RIT
target detection methodology applied to the aforementioned
Cooke City hyperspectral dataset. The score is based on a
comparison of the values given to the background pixels in
the image to the value given to the target. The target value is
defined as the maximum value given the pixels in the target
area; the metric then counts how many pixels there are in the
overall image greater than or equal to the target value. Since
the threshold needed to detect the target would have to be less
than or equal to the target value, all points above this value
are false alarms. The score given for any algorithm/target
combination would thus be the number of pixels above the
target value. Perfect detection would equal the value 1, since
the only pixel equal or above the target value would be the
target itself; no false alarms are present.

In Tables 2, 3, and 4 the scores for the self-test targets
were calculated, and those for the blind test were obtained by
uploading our results to the RIT website. We have colored
coded the results for the ease of the reader. A value of 1
(italic background) indicates perfect performance (no false
positives). We marked all scores greater than 448 (e.g., PFA =
2 % 107*) with bold italic backgrounds. We will associate
a false alarm score greater than this as a fundamentally
undetected target; ranking above these values is irrelevant
All results (i.e., scores) were divided among the three tables:
Table 2 presents the global method (CEM, GLRT and ACE)
while Tables 3 and 4 contain the results for the local GLRT
and ACE, respectively, with different sized windows. The
best score for each group is marked with a bold. Ignoring
(as stated above) the PFA values > 2 % 10 — 3 (bold italic
background), then the global ACE is clearly the best method
from among the global methods. The local GLRT and ACE
with the 3 X 3 windows are the best of the local GLRT and
ACE methods, respectively. Indeed, the overall performance
of the local ACE algorithm with 3 x 3 windows was superior
to all other algorithms. All these results were obtained using
the IRBTA without any need of ground truth. Some targets,
for example, V3 in the blind test and V2 and V3 in the
self test, degraded with the 3 x 3 window of the local ACE
algorithm, but those targets were effectively undetectable
with all three algorithms.

14. Global Methods: Results

Within the results for the global methods (Table 2), we
marked detector scores indicating a significant advantage
relative to other detectors in bold. Our results clearly
show that the ACE detectors outperformed the other global
detectors.

15. Local GLRT and Local ACE: Results

Similar to the global methods analysis, here (Tables 3 and
4) we also applied yellow highlights to cells with exceptional
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FIGURE 12: IRBTA results for different type of detectors.

detector scores that signified a significant advantage relative
to other detectors. From our analysis, it is clear that for both
the GLRT (Table 3) and ACE (Table 4) detectors, the optimal
size of the local window for this size target is 3 X 3, a result
that is in accordance with our estimation by IRBTA.

16. Benchmark Results

The RIT website provides a comparison between the results
of different algorithms which have been submitted through-
out the world. Table 5, which presents the web rank for the
blind test, clearly shows that the performance of the local
ACE 3 x 3 algorithm was superior relative to dozens of results
that have been uploaded to the site. We achieved perfect
detection for V1 (the nearest score was 15 for algorithms that
work well only for V1) and reasonable detection for V2 (the
nearest score was 196). There was no algorithm that achieved
detection for V3 (the best score was 112). (The above
conclusions are correct if we do not take into account one
algorithm that was submitted to the RIT site, labeled “WTA”,
ie., “Winner Take All” This algorithm exhibited perfect
detection for all targets, including the vehicles, However,
since the WTA algorithm has not been published, we cannot
test it. In addition, there are objective reasons to believe

that the algorithm does not actually exist; perfect detection
of all targets with no false alarms ever would be an almost
impossible result). While we included WTA in our scoring in
Table 5, our comments following the Table do not consider
this algorithm).

It is possible to compare the actual results obtained by
the target detection algorithms on the RIT system to those
obtained from the IRBTA simulation. In Tables 6 and 7,
we show the results of several different algorithms when
detecting the target V1; when we examine the results from
the RIT test, we see that the ACE algorithm outperformed the
GLRT algorithm, and that there was a definite preference for
the 3% 3 frame compared to the other frames (Table 6). These
results are mirrored in our IRBTA results (Table 7). This (and
results on the other targets) confirms our hypothesis that the
RBTA can be used to simulate and predict target detection
probabilities a priori in scenarios where actual targets are not
yet present.

17. Conclusion

In this paper, we showed that there is no “best hyperspectral
detection algorithm” for all images and targets. We noted
the significant effect spatial distribution has on detector
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TABLE 2: Results of global methods.

Global
Target ID CEM GLRT ACE
F1 15 13 1
F2 1 1 1
Self-test 3 1 m? 1350 1366 1157
2m? 30 28 1
- 1 m? 208 207 118
2m? 23 24 1
Es 1 m? 163 156 18
2m? 19 19 1
Blind test F6 Lm? & 76 7
2m? 13 13 1
7 1 m? 1204 1290 1792
2m? 315 318 2
V1 324 321 34
Self-test V2 2028 1852 1027
V3 853 775 367
Vi 422 428 179
Blind test V2 931 921 1365
V3 3230 3154 2999

TaBLE 3: Results of local GLRT for different-sized windows.

GLRT local
TargetID 3x3 5x5 F5x5 7x7 F7x7
F1 4 5 6 6 8
F2 1 1 1 1 1
Selftest F3 1M 188 208 230 293 426
2m? 9 13 13 18 22
gy 1 65 101 121 120 152
2m? 4 8 10 12 18
ps  1m2 15 48 66 78 125
2m? 1 1 1 1 3
Blind test F6 1™ 14 24 34 33 54
2m? 3 5 5 5 6
gy 1’ 92 152 202 244 388
2 m?2 81 120 152 160 230
A 101 74 87 77 107
Self-test V2 6734 3456 3286 2812 2891
V3 2506 875 741 706 712
V1 37 46 58 77 156
Blind test V2 283 392 435 518 694
V3 11274 6455 5623 8259 10060

performances, and we showed that the RBTA can be used to
select the proper detectors from among several detectors but
without any need for ground truth. However, point targets
can influence their neighboring pixels, due either to the PSF
or to the target spreading across more than one pixel. To

13
TaBLE 4: Results of local ACE for different-sized windows.
ACE local
TargetID 3x3 5x5 F5x5 7x7 F7x7
F1 1 1 1 1 1
F2 1 1 1 1 1
2
Self-test  F3 1m 16 17 19 33 62
2m? 1 I 1 1 1
2
F4 1m 50 68 75 72 75
2m? 1 I 1 1 1
2
Fs5 1m 11 11 12 13 13
2m? ] I 1 1 I
2
Blind test F6 ' ™ 6 > > > >
2 m? 1 1 1 1 1
2
F7 1m 5 5 5 5 9
2 m? 2 2 2 2 1
V1 3 3 3 3 7
Self-test V2 3148 1524 1457 1171 1416
V3 2387 1143 961 812 792
V1 1 5 8 15 21
Blind test V2 79 106 119 198 359
V3 12513 6859 6327 10543 16328
TaBLE 5: Benchmark results.
Target ID Local ACE Web rank
3X3
2
Fs5 1m 11 12/148
2 m? 1 1/148
2
Blind test F6 Lm 6 11/90
2 m? 1 1/90
2
7 1m 5 3/82
2 m? 2 5/82
V1 1 1/50
Blind test V2 79 3/82
V3 12513 52/86

account for this potential source of inaccuracy, therefore,
we introduced the improved RBTA (IRBTA), whose exact
method of use depended on the target size. In addition,
we showed that when detectors calculated the mean for
estimating the pixel signature value, we did not need ground
truth to find the best estimate. We tested our concept
through the selection of the best detectors from among
stochastic algorithms for target detection, that is, the con-
strained energy minimization (CEM), generalized likelihood
ratio test (GLRT), and adaptive coherence estimator (ACE)
algorithms, using the dataset and scoring methodology of
the Rochester Institute of Technology (RIT) Target Detection
Blind Test project. The results showed that our concepts
predicted the best algorithms for the particular images and
targets provided by the website.
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TaBLE 6: RIT results for the actual detection of V1 in RIT test
image are shown in the first two lines. The percentage of implanted
target was 0.75%. The GLRT and ACE algorithms were calculated as
presented in the text. The size of the background was calculated for
3 x3,5x 5and 7 x 7 frames, excluding the center pixel. The “Only”
7 x 7 and 5 x 5 algorithms only used the outer ring of the window.
The third and fourth lines represent the same results normalized by
dividing by the values obtained by the 3 x 3 filter.

Website results
Window Only 7x7 Only 55 3x3 Global
7 X7 5%x5
V1_GLRT 156 77 58 46 37 428
V1_ACE 21 15 8 5 1 179
Normalize relative to 3 X 3
VI_GLRT 4.22 2.08 1.57 1.24 1 11.57
V1_ACE 21 15 8 5 1 179

TaBLE 7: The Ay, ((A —th?)/(th—th?)) where A is the area under the
Pd-log (Pg,) curve and th is the threshold (i.e., the maximum false
alarm rate) results of the IRBTA algorithm for V1 in the RIT test
image are shown in the first two lines. The maximum false alarm
rate is 1073; other parameters are as given in Table 6. The third and
fourth lines represent the same results normalized by dividing the
value of the 3 X 3 filter by the values of the other filters.

Ath by IRBTA-Threshold = 1073

Window O™ 77 O 55 503 Global
7% 7 5%5
VI_GLRT 0.0007 0.0011 0.0010 0.0014 0.0032 0.0003
VI_ACE  0.0436 0.0908 0.0946 0.1657 0.4981 0.0420
Normalize relative to 3 x 3

VI_.GLRT 4.81 297 335 236 1 11.83
VI.ACE 1144 549 526  3.01 1 11.86
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Accurate covariance matrix estimation for high-dimensional data can be a difficult problem. A good approximation of the covari-
ance matrix needs in most cases a prohibitively large number of pixels, that is, pixels from a stationary section of the image whose
number is greater than several times the number of bands. Estimating the covariance matrix with a number of pixels that is on the
order of the number of bands or less will cause not only a bad estimation of the covariance matrix but also a singular covariance
matrix which cannot be inverted. In this paper we will investigate two methods to give a sufficient approximation for the covariance
matrix while only using a small number of neighboring pixels. The first is the quasilocal covariance matrix (QLRX) that uses the
variance of the global covariance instead of the variances that are too small and cause a singular covariance. The second method
is sparse matrix transform (SMT) that performs a set of K-givens rotations to estimate the covariance matrix. We will compare
results from target acquisition that are based on both of these methods. An improvement for the SMT algorithm is suggested.

1. Introduction Dy is traditionally calculated as follows:

The most widely used algorithms for target detection are
traditionally based on the covariance matrix [1]. This matrix
estimates the direction and magnitude of the noise in an
image. In the equation for a matched filter presented in [1]
we have

N
g = - 05— m) (= m)". ()
i=1

Although the equation is theoretically justified if the back-
ground is stationary, it is often used in cases where this is not
true.

In target detection, the image is not normally statistically
stationary; it will however have quasistationary “patches”
which connect to each other at the edges. When one estimates
the mean and covariance matrix of the background of

R =t"05! (x — m), (1)

x is the examined pixel, m is the estimate of that pixel based
on the surroundings, ®@¢ is the global covariance matrix,

and ¢ is the target signature. In words, we can say that our
matched filter for target detection will detect the target in
a particular pixel x if x is different than its surroundings
(x — m), unlike the noise (controlled by ®;') and in the
direction of the target. If the target signature is unknown,
then the RX algorithm uses the target residual (x — m) as its
own match, that is,

R=(x—m) 05! (x — m), (2)

a particular pixel, the local neighboring pixels will have
provided a better estimate than the pixels of the entire image.
In [2], we show that much better results can be obtained if
one uses a “quasilocal covariance matrix” (QLRX). In general
terms, it uses the eigenvectors of the overall global matrix,
but the eigenvalues are taken locally. This tends to lower the
matched filter scores at edges in the data (when the image
is going from one stationary distribution to another), but
allows for accurate detection in less noisy areas.



The overall question of using a covariance matrix from
local areas in which not enough data is sparse is actually
a well-studied issue in the literature. In particular, in [3],
Theiler et al. consider the sparse matrix rotation method for
determining a covariance matrix based on limited data. In
this paper, it is our intention to compare the two methods
both in terms of their detection ability and their overall
efficiency.

2. Local Covariance Matrix

Assume we are given a dataset X which is composed of n
pixels with p dimensions. ®¢ is the covariance matrix of
this dataset. An SVD (singular value decomposition) can be
used to decompose the global covariance matrix [2] into
eigenvectors and eigenvalues; we will refer to this as PCA
(principal component analysis) space.

To compare the covariance matrix based on the local area
surrounding a pixel and a matrix based on all the available
data (referred to as global), consider the statistics of the
dataset X = ElXG. Here Eg is the rotating matrix based on
the global eigenvectors [2], and X is the dataset after rotation
into the PCA subspace.

If X is based on all the pixels in the image, then the
covariance matrix of X consists of a diagonal matrix with the
global eigenvalues on the diagonal. However, if X only con-
tains the local surroundings, then the values on the diagonal
of the covariance matrix of X will represent the variances of
the local data in the direction of the global eigenvectors.

Mathematically, using the dataset X, for every pixel we
calculate the local covariance @ 1, from the nearest neighbors.
The diagonal D;, of the local covariance matrix is the variance
of the neighbors in PCA subspace as follows:

ﬁL . dlag(E(T;CDLEG) . d1ag(CT)L> (4)

Since the local covariance is composed from a small number
of samples, some of the variances may be inappropriately
small or even cause a singular covariance. To avoid singular-
ity, the variance matrix Aqp will be the maximum between
the variances of the global (Ag) covariance and the variances

of local covariance in the PCA subspace (5L) as follows:

AQL = maX(Ag,ﬁL). (5)
In this way, if the local area of the pixel has a large variance in
some bands, it will be whitened by the local variance; for the
bands that have too small local variances that can even cause
a singular covariance matrix, it will use the global variance.
The quasilocal covariance will be

®q1 = EgAqLEL. (6)

In the PCA subspace it will simply be:

dar = Aqr. (7)

Journal of Electrical and Computer Engineering

If we will calculate the RX in the PCA subspace, we will need

fewer rotations, we will rotate only once all the data to the
PCA subspace, and then we will get:

~ ~ T 1/~ ~ ! (%1 B ﬁ/lLi)z

QLRX = (X — mL) AQL(x — mL) = 2/17

i=1 i

(8)

mp—the mean of the selected surrounding pixels in PCA
subspace.

For subpixel targets, previous work [1] shows that it will
be better to use the mean of 8 neighbors #71,. This can be done
assuming that the target does not affect the surroundings;
if we fear that the target has entered the surrounding areas,
then we will ignore those pixels and only use external pixels
to them for our estimate.

In this method, we use sparse matrix rotations to find
the nearest covariance matrix to the original one which is
still nonsingular. We can use SVD to decompose the local
covariance as follows:

®p = EfALE], @€ RP*P. (9)
Based on the fact that every eigenvectors matrix E (or any
unitary matrix) can be extracted from a product of K spare
orthonormal rotation matrix [3] we can write

0

Ep = [] Ex =Ex1Ex- - Eo. (10)
k=K-1

Every rotation matrix Ej is a Givens rotation operating on
coordinates indices (i, jk); the rotation will be on the surface
that contains the vectors i, ji as follows:

ik Jk
1
E = cosf@k) sin(:9k) (11)
—sin(6) cos(6k)

1

With K = (%) rotation we can get from the identity matrix
to any rotation matrix.

The concept of SMT is to start from the identity matrix,
rotate every time two axes in the direction of the axis of
the eigenvectors of the local covariance matrix, and to stop
the rotations when it gives the best fit without becoming
singular.

In other words, from a first set of data we can determine
the correlations between the variables. If we did all the
possible rotations, we would have diagonalized the matrix,
but we cannot do this since we do not have enough data to
simultaneously find all the local eigenvectors. Instead, we do
these rotations on the most correlated ones, testing our new
matrix by the degree that it provides good results on a second
dataset. When our correction to the second dataset fails, we
stop the diagonalizing procedure.
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TasLE 1: Datasets information—OBP1 and OBP2 are parts of OBP.

Name Site Sensor name  No.bands Waveband (um)  Spat. Res. (m) Scene description
OBP  Oberpfaffenhofen (Ge) Hymap 126 0.44-2.45 4 Airfield with agricultural area around
OBP1 Oberpfaffenhofen (Ge) Hymap 126 0.44-2.45 4 Agricultural area
OBP2 Oberpfaffenhofen (Ge) Hymap 126 0.44-2.45 4 Agricultural area

Mathematically, the rotation matrix T will be all the
selected rotations combined:

0
T= |] Ex=Ex1E2---Ep, whenK< (g)
k=K-1
(12)

The variances will be the variances of the local covariance
matrix in the direction of the rotation matrix T, Asyr =
diag(T"®.T) and the inversed covariance matrix will be
Oglyr = TAgyr = T'. to decide what rotation matrix is
best we use the maximum likelihood covariance estimation
and “leave-third-out” cross-validation. (Note that the use of
leave-one-out cross-validation will give better results but will
cost much more in computational efforts).

We divide the group of pixels into three groups. We take
one third to be the tested pixels Y € RM/3)%p and we use the
other two thirds to make the approximation of the covariance
Dgymt. After every rotation we calculate the likelihood of
covariance gyt to describe correctly the group Y. We have
processed to data to make sure that Y is zero mean as follows:

1 -
73 exp{fi tr{YTd)s&TY}}.

1
Pogy () = ————
o (271)"”? | Dsur |
(13)

We do this three times, each time another third is being taken
out as the test data Y; after combining the results of the
three tests, we find the number of rotations that gives the
best result (based on the highest value of P(Y)); we then
use the full set and this number of rotations to get the final
approximation of the covariance matrix (see Figure 1).

To select every time the rotations that will make the
biggest improvement, we perform greedy minimization, that
is, always choosing the next rotation that will contribute
most to reduce the correlation between data along the axis
of the matrix as follows:

(14)

S2.
.. ij
(i, jk) ~— argmax ,
S is the current covariance matrix, (i, j) are indices of two
rows in the matrix, and S;j, S, Sj; are the members in the
matrix with those indices.
After we calculate the covariance matrix for SM'T, we can
use it for anomaly detection:

RXsmr = (x — mp) Oyl (x — my), (15)

x—the tested pixel.

mp—the mean of the selected shrouding pixels in PCA
subspace.

For subpixel targets as we stated previously, it will be
better to use the mean of 8 neighbors ms.

Paogyr (Y)

* ()

k = arg max (Pogy,; (Y))

FiGURE 1: The probability that ®gyr describes Y correctly after k
rotations; the k that will be chosen is the one that gives the maxi-
mum probability.

3. Dataset

Two datasets were used (Figure 2); a description of their
origin can be found in Table 1 and in greater detail in [4].

The two data cubes (OBP1 and OBP2) are real data
from the Hymap sensor in which anomalies were inserted
artificially by linearly mixing the spectra of a green paint pixel
with the original background pixel. For display purposes, in
Figure 2, images with full-pixel paint spectra are shown. For
the evaluation of anomaly detection results, images with a
mixing ratio of 0.33 (P = 33%) were used.

4. Results

We now wish to compare the SMT and QLRX algorithms. We
will perform RX anomaly detection (2) using the covariance
matrices given by each of the algorithms.

Since the dataset being used contains implanted subpixel
targets without any danger of overlap into neighboring
pixels, the mean in the calculation of (2) was always the
mean of the eight nearest neighbors. However, we must
consider the correct neighborhood for the calculation of the
covariance matrix for SMT that provides the best results.

The first test was done using only the nearest 8 neighbors
for the approximation of the covariance; in this test, it is very
easy to see that QLRX results are superior to the SMT results.
The ROC curves are given in Figure 3. We assume that the
area of the target (and of any examined pixel) consists of the
square region of dimension OWS by OWS (outer window).
The target area itself has area GWS by GWS (guard window);
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FIGURE 2: RGB composite of the original data cubes. From left to right: OBP1, OBP2.

Name is OBP1, P = 33%, with GWS =1

a

o o o
~ =)} o
T T

L L L

Probability of detection

e
o
!

Probability of false alarm

— QLRX
--- SMT

FIGURE 3: Results of RX algorithm using QLRX and SMT on dataset
OBP1 with the stated OWS = 3 and GWS = 1.

for subpixel targets GWS will equal 1. Thus the neighboring
pixels are those pixels which are located in the square set of
pixels in the area OWS by OWS not contained in the inner
GWS by GWS matrix.

In this picture is the result for P = 33%, but the tests for
10, 25, 50, and 100 percents gave similar results.

Results from the OBP2 dataset were comparable.

When the OWS is larger, the results of the SMT improve
dramatically.

For the dataset OBP1 we can see a large improvement as
OWS increases. For this dataset QLRX gives better results,
especially in the low CFAR (constant false alarm rate).

For the dataset OBP2, the differences between QLRX and
SMT are reduced but still QLRX performs better in the low
CFAR regime (see Figure 5).

Similar results were received for the cases in which 10, 25,
50, or 100 percent of the target is in the pixel.

The SMT has two main difficulties: first, the algorithm
calculates a new covariance matrix at every point. This
calculation needs a sequential set of rotations based on the

) Name is OBP1, P = 33%, with GWS =1

Probability of detection

0.1F

1074 1073 102 107! 100

Probability of false alarm

-~~~ QLRX 3 — QLRX7
-- SMT3 —— SMT7
--- QLRX5 e QLRX 9
-~ SMT5 SMT 9

FIGURE 4: OBP1 results with OWS given by the number in the
legend.

training set followed by evaluations of the test set. Both
sets are taken from the pixel surrounding only, so none of
the information outside the selected group is used in the
calculation. In QLRX, the eigenvectors are the same for all
points (the eigenvectors of the global covariance). All that we
need to do is measure the variance in the local area in the
spectral direction of the eigenvalues and calculate the new
covariance matrix. Second, the calculation of the SMT itself
is highly dependent on the size of the “local” area. While a
larger area improves the results, it also increases the time for
calculation (see Table 2).

5. Improvements for SMT

A small change in the published method for doing SMT
could lead to a large improvement.
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TasBLE 2: This table shows the time it took to complete the calculation of a dataset.

“Name” “OWS” “GWS” “QLRX” time in seconds “SMT” time in seconds Time ratio
“OP1.T1.S10” 9 1 26 3845 148
“OP1.T1.S33” 9 1 26 3794 146
“OP1_T1.S100” 9 1 25 3820 153
“OP1.T1.S10” 7 1 25 2781 111
“OP1.T1.S33” 7 1 24 2769 115
“OP1.T1.S100” 7 1 24 2770 115
“OP1.T1.S10” 5 1 23 1965 85
“OP1.T1.S33” 5 1 23 1969 86
“OP1.T1-S100” 5 1 23 1965 85
“OP1.T1.S10” 3 1 23 1195 52
“OP1.T1.S33” 3 1 22 1187 54
“OP1.T1.S100” 3 1 23 1201 52
“OP2.T1.S10” 9 1 14 2135 153
“OP2.T1.S33” 9 1 14 2105 150
“OP2_T1.S100” 9 1 14 2095 150
“OP2_T1.S810” 7 1 14 1480 106
“OP2.T1.S33” 7 1 14 1481 106
“OP2.T1-S100” 7 1 14 1464 105
“OP2.T1.S10” 5 1 13 961 74
“OP2_T1.S33” 5 1 14 962 69
“OP2.T1.S100” 5 1 13 960 74
“OP2.T1.S10” 3 1 12 556 46
“OP2.T1.S33” 3 1 13 555 43
“OP2_T1.S100” 3 1 14 552 39

. Name is OBP2, P = 33%, with GWS = 1 Then the axes are rotated in pairs into the directions of the

“local eigenvectors” to create new covariance matrices.
0.9y When we stop, some of the axes will be almost the same
0.8 direction as the local covariance eigenvectors and some will
5 o7l be closer to the direction of the original axes.

g .l Now since the original directions were random, that is,

S not related to the correlations between the axes, it is easy to

S 05¢ see that there is no reason that this should be optimum. In

::% 041 particular, would it not make more sense to start from the

S 03l global eigenvectors and rotate into the local ones? Another

= benefit we will get from this approach is that we will start the

021 rotation from a condition that most probably will be closer

0.1f to the optimum point (see Figure 6); within fewer rotations,

0 . we will get to the maximum likelihood. We will call this new

10 1073 1072 107! 100 algorithm SMT PCA.

Probability of false alarm

- QLRX 3 — QLRX7
-~ SMT3 — SMT7
--- QLRX5 - QLRX 9
--- SMT5 SMT 9

F1GURE 5: Similar to Figure 4 for the OBP2 dataset.

In the original algorithm, the initial assumed axes of the
covariance matrix are in the direction of the original dataset.

For the OBP1 dataset (Figure 7), the result after starting
with the subspace based on the global eigenvectors are better
than QLRX when OWS is big (7,9). SMT-PCA gives better
results than SMT for any OWS.

For the OBP2 dataset (Figure 8), the result after starting
with the subspace based on the global eigenvectors are better
than QLRX when OWS is big (7,9). SMT-PCA gives better
results from SMT for any OWS (for OWS = 3 SMT and SMT-
PCA almost the same).

Examining the number of rotations needed in the SMT
and in the SMT-PCA (see Table 3).
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TasBLE 3: This table shows the time it took to complete the calculation of a dataset.

“Name” “OWS”  “GWS”  Original SMT number of rotations SMT after PCA number of rotations ~Rotations number ratio
“OP1.T1.S10” 9 1 3845 1851 2.1
“OP1.T1.S33” 9 1 3794 1831 2.1
“OP1_T1.S100” 9 1 3820 1806 2.1
“OP1.T1.S10” 7 1 2781 1508 1.8
“OP1.T1.S33” 7 1 2769 1498 1.8
“OP1.T1-S100” 7 1 2770 1457 1.9
“OP1._T1.S10” 5 1 1965 1177 1.7
“OP1.T1.S33” 5 1 1969 1203 1.6
“OP1.T1.S100” 5 1 1965 1122 1.8
“OP1.T1.S10” 3 1 1195 442 2.7
“OP1.T1.S33” 3 1 1187 407 2.9
“OP1_T1.S100” 3 1 1201 421 2.9
“OP2_T1.S10” 9 1 2135 839 2.5
“OP2_T1.S33” 9 1 2105 840 2.5
“OP2.T1.S100” 9 1 2095 827 2.5
“OP2_T1.S10” 7 1 1480 647 2.3
“OP2_T1.S33” 7 1 1481 641 2.3
“OP2_T1.S100” 7 1 1464 635 2.3
“OP2.T1.S10” 5 1 961 440 2.2
“OP2.T1.833” 5 1 962 435 2.2
“OP2_T1.S100” 5 1 960 431 2.2
“OP2_T1.S10” 3 1 556 203 2.7
“OP2_T1.S33” 3 1 555 205 2.7
“OP2.T1-S100” 3 1 552 206 2.7

The smaller the number of rotations, the less time needed for the calculation.

Name is OBP1, P = 33%, with GWS =1
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FIGURE 6: When starting from PCA subspace, we will start from a

closer point to the maximum so we need fewer rotations; the delta == QLRX3 — QLRX7

in k between the original location to the current one is the rotations -= SMT3 — SMT7

done by transforming to the PCA subspace. -- SMTPCA3 —— SMTPCA7
--- QLRX5 - QLRX 9
--- SMT5 SMT 9
--- SMTPCAS5 SMT PCA 9

6. Conclusions

As a preliminary to our conclusions, please note that when  Figure 7: OBPI results with OWS given by the number and the
we discuss using a small or large number of pixels, thatinall ~ legend.
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Name is OBP2, P = 33%, with GWS =1

Probability of detection

Probability of false alarm

—-- QLRX3 — QLRX7
-~ SMT3 — SMT7
-.— SMTPCA3 —— SMTPCA7
--- QLRX5 QLRX 9
-—- SMT5 SMT 9
~—- SMTPCA5 SMT PCA 9

F1GURE 8: Similar to Figure 7 for the HAR dataset.

cases the number of pixels used is less than the number of
spectral bands.

Two methods in this paper have been considered for deal-
ing with possibly singular covariance matrices. In the first
(QLRX), we use global eigenvectors and local eigenvalues as
an approximation of the inverse covariance matrix. In the
second (SMT), we use an iterative process to slowly “twist”
our axes to come closer to those determined by the data.

In our two datasets, we found that if a small area was
used for estimating the background, the QLRX algorithm
was superior. For large areas of background, QLRX remains
superior, although SMT greatly improves as follows:

Number of pixels  p
I 1
Number of bands 7 (0, 1), (16)

(i) the calculation time of QLRX is much smaller (two
orders of magnitude) than both SMT and SMT-PCA,

(ii) the calculation time of SMT PCA is less than the
calculation time of the original SMT by about a factor
of two,

(iii) SMT-PCA and QLRX performance are better than
those of SMT for any number of pixels,

(iv) for a small number of pixels (p/n < 0.1), the QLRX
performance is better than that of SMT-PCA,

(v) for a large number of pixels (0.2 < p/n < 0.1), the
performance of SMT-PCA is better than that of
QLRX.
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