Journal of Function Spaces

Unique and Non-Unique Fixed
Points and their Applications 2022

Lead Guest Editor: Anita Tomar
Guest Editors: Santosh Kumar and Cristian Chifu




Unique and Non-Unique Fixed Points and their
Applications 2022



Journal of Function Spaces

Unique and Non-Unique Fixed Points
and their Applications 2022

Lead Guest Editor: Anita Tomar
Guest Editors: Santosh Kumar and Cristian Chifu



Copyright © 2023 Hindawi Limited. All rights reserved.

This is a special issue published in “Journal of Function Spaces” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.



Chief Editor

Maria Alessandra Ragusa, Italy

Associate Editors

Ismat Beg(2), Pakistan
Alberto Fiorenza (), Italy
Adrian Petrusel (©), Romania

Academic Editors

Mohammed S. Abdo (%), Yemen
John R. Akeroyd (), USA

Shrideh Al-Omari(, Jordan
Richard I. Avery (), USA

Bilal Bilalov, Azerbaijan

Salah Boulaaras, Saudi Arabia
Raul E. Curto (), USA

Giovanni Di Fratta , Austria
Konstantin M. Dyakonov (), Spain
Hans G. Feichtinger (i), Austria
Baowei Feng (), China

Aurelian Gheondea (), Turkey
Xian-Ming Gu, China

Emanuel Guariglia, Italy

Yusuf Gurefe, Turkey

Yongsheng S. Han, USA

Seppo Hassi, Finland

Kwok-Pun Ho (%), Hong Kong
Gennaro Infante (), Italy

Abdul Rauf Khan (%), Pakistan
Nikhil Khanna (%), Oman
Sebastian Krol, Poland

Yuri Latushkin (), USA

Young Joo Lee (), Republic of Korea
Guozhen Lu (), USA

Giuseppe Marino (19, Italy

Mark A. McKibben (), USA
Alexander Meskhi (), Georgia
Feliz Minhos (%), Portugal

Alfonso Montes-Rodriguez (2, Spain
Gisele Mophou (2, France
Dumitru Motreanu(2), France
Sivaram K. Narayan, USA

Samuel Nicolay (%), Belgium

Kasso Okoudjou (), USA

Gestur Olafsson (), USA

Gelu Popescu, USA

Humberto Rafeiro, United Arab Emirates

Paola Rubbioni (), Italy
Natasha Samko (1), Portugal
Yoshihiro Sawano (), Japan
Simone Secchi ("), Italy
Mitsuru Sugimoto (i), Japan
Wenchang Sun, China
Tomonari Suzuki (), Japan
Wilfredo Urbina (), USA
Calogero Vetro (), Italy
Pasquale Vetro (), Italy
Shanhe Wu (), China

Kehe Zhu (), USA



https://orcid.org/0000-0002-4191-1498
https://orcid.org/0000-0003-2240-5423
https://orcid.org/0000-0002-5629-5667
https://orcid.org/0000-0001-9085-324X
https://orcid.org/0000-0003-1472-0757
https://orcid.org/0000-0001-8955-5552
https://orcid.org/0000-0002-2270-2527
https://orcid.org/0000-0002-1776-5080
https://orcid.org/0000-0002-9232-6264
https://orcid.org/0000-0002-9927-0742
https://orcid.org/0000-0003-4507-8170
https://orcid.org/0000-0002-9096-5927
https://orcid.org/0000-0003-0966-5984
https://orcid.org/0000-0003-1270-6177
https://orcid.org/0000-0002-4709-3860
https://orcid.org/0000-0001-8973-469X
https://orcid.org/0000-0002-8259-5655
https://orcid.org/0000-0002-3511-5241
https://orcid.org/0000-0003-0935-5003
https://orcid.org/0000-0001-9381-9338
https://orcid.org/0000-0001-8175-7408
https://orcid.org/0000-0001-7984-4019
https://orcid.org/0000-0002-7485-2500
https://orcid.org/0000-0002-7328-4812
https://orcid.org/0000-0001-7949-8152
https://orcid.org/0000-0001-7391-9534
https://orcid.org/0000-0003-0549-0566
https://orcid.org/0000-0003-4679-5534
https://orcid.org/0000-0001-8287-6943
https://orcid.org/0000-0002-9433-345X
https://orcid.org/0000-0002-8595-4326
https://orcid.org/0000-0003-2844-8053
https://orcid.org/0000-0002-9307-1347
https://orcid.org/0000-0001-6626-9289
https://orcid.org/0000-0002-2524-6045
https://orcid.org/0000-0002-4829-0444
https://orcid.org/0000-0001-5836-6847
https://orcid.org/0000-0003-1777-3731
https://orcid.org/0000-0002-8772-8170
https://orcid.org/0000-0002-7498-7077

Contents

Sehgal-Guseman-Type Fixed Point Theorems in Rectangular p-Metric Spaces and Solvability of
Nonlinear Integral Equation

Hongyan Guan (), Chen Lang (), and Yan Hao

Research Article (12 pages), Article ID 2877019, Volume 2023 (2023)

A Special Mutation Operator in the Genetic Algorithm for Fixed Point Problems
Mohammad Jalali Varnamkhasti(*) and Masoumeh Vali
Research Article (7 pages), Article ID 7714095, Volume 2023 (2023)

Characterization and Stability of Multi-Euler-Lagrange Quadratic Functional Equations
Abasalt Bodaghi (), Hossein Moshtagh, and Amir Mousivand
Research Article (9 pages), Article ID 3021457, Volume 2022 (2022)

Generic Stability of the Weakly Pareto-Nash Equilibrium with Strategy Transformational Barriers
Luping Liu (%), Wensheng Jia(), and Li Zhou
Research Article (11 pages), Article ID 1689732, Volume 2022 (2022)

An Existence Study on the Fractional Coupled Nonlinear g-Difference Systems via Quantum
Operators along with Ulam-Hyers and Ulam-Hyers-Rassias Stability

Shahram Rezapour (15, Chatthai Thaiprayoon (), Sina Etemad (), Weerawat Sudsutad (©), Chernet Tuge
Deressa (), and Akbar Zada

Research Article (17 pages), Article ID 4483348, Volume 2022 (2022)

Unique Fixed Point Results and Its Applications in Complex-Valued Fuzzy p-Metric Spaces
Humaira, Muhammad Sarwar (), and Nabil Mlaiki
Research Article (9 pages), Article ID 2132957, Volume 2022 (2022)

Existence Results of Fuzzy Delay Impulsive Fractional Differential Equation by Fixed Point Theory
Approach

Aziz Khan (), Ramsha Shafqat (), and Azmat Ullah Khan Niazi

Research Article (13 pages), Article ID 4123949, Volume 2022 (2022)

Decision-Making on the Solution of a Stochastic Nonlinear Dynamical System of Kannan-Type in

New Sequence Space of Soft Functions
Meshayil M. Alsolmi(®) and Awad A. Bakery
Research Article (24 pages), Article ID 9011506, Volume 2022 (2022)

Kannan Nonexpansive Operators on Variable Exponent Cesaro Sequence Space of Fuzzy Functions
Awad A. Bakery () and Mustafa M. Mohammed
Research Article (18 pages), Article ID 1992684, Volume 2022 (2022)

Analysis of Fractional Differential Inclusion Models for COVID-19 via Fixed Point Results in Metric
Space

Monairah Alansari and Mohammed Shehu Shagari

Research Article (14 pages), Article ID 8311587, Volume 2022 (2022)



https://orcid.org/0000-0001-8364-0748
https://orcid.org/0000-0002-1545-1010
https://orcid.org/0000-0001-6461-8772
https://orcid.org/0000-0003-2939-4253
https://orcid.org/0000-0003-0358-4518
https://orcid.org/0000-0003-0656-781X
https://orcid.org/0000-0002-5596-5091
https://orcid.org/0000-0003-3463-2607
https://orcid.org/0000-0001-5142-0396
https://orcid.org/0000-0002-1574-1800
https://orcid.org/0000-0002-6762-813X
https://orcid.org/0000-0002-7990-9430
https://orcid.org/0000-0002-2556-2806
https://orcid.org/0000-0003-3904-8442
https://orcid.org/0000-0003-1112-831X
https://orcid.org/0000-0002-3610-339X
https://orcid.org/0000-0002-7677-7719
https://orcid.org/0000-0001-5972-8088
https://orcid.org/0000-0001-6709-8012
https://orcid.org/0000-0001-6709-8012
https://orcid.org/0000-0002-4085-2182
https://orcid.org/0000-0001-6632-8365

Relational Meir-Keeler Contractions and Common Fixed Point Theorems
Faizan Ahmad Khan (), Faruk Sk, Maryam Gharamah Alshehri, Qamrul Haq Khan ("), and Aftab Alam
Research Article (9 pages), Article ID 3550923, Volume 2022 (2022)

Fixed Point Results of Jaggi-Type Hybrid Contraction in Generalized Metric Space

Jamilu Abubakar Jiddah (©), Monairah Alansari, OM Kalthum S. K. Mohamed (©), Mohammed Shehu
Shagari(), and Awad A. Bakery

Research Article (9 pages), Article ID 2205423, Volume 2022 (2022)

Convergence Analysis of New Construction Explicit Methods for Solving Equilibrium Programming and
Fixed Point Problems

Chainarong Khunpanuk (%), Nuttapol Pakkaranang ("), and Bancha Panyanak

Research Article (23 pages), Article ID 1934975, Volume 2022 (2022)

Some Fixed-Circle Results with Different Auxiliary Functions
Elif Kaplan (%), Nabil Mlaiki (), Nihal Tas (), Salma Haque (©), and Asma Karoui Souayah
Research Article (7 pages), Article ID 2775733, Volume 2022 (2022)

Fixed Points of Proinov Type Multivalued Mappings on Quasimetric Spaces
Erdal Karapinar (), Andreea Fulga (), and Seher Sultan Yesilkaya
Research Article (9 pages), Article ID 7197541, Volume 2022 (2022)

Ulam-Hyers Stability Results of )-Quadratic Functional Equation with Three Variables in Non-
Archimedean Banach Space and Non-Archimedean Random Normed Space

Ly Van An, Kandhasamy Tamilvanan (), R. Udhayakumar (i), Masho Jima Kabeto (), and Ly Van Ngoc
Research Article (10 pages), Article ID 6795978, Volume 2022 (2022)

Fixed Point Theorems of Superlinear Operators with Applications
Shaoyuan Xu( and Yan Han
Research Article (8 pages), Article ID 2965300, Volume 2022 (2022)


https://orcid.org/0000-0002-8734-5516
https://orcid.org/0000-0003-0533-9284
https://orcid.org/0000-0001-6523-5853
https://orcid.org/0000-0002-0479-9118
https://orcid.org/0000-0002-0700-0340
https://orcid.org/0000-0002-6777-3943
https://orcid.org/0000-0001-6632-8365
https://orcid.org/0000-0001-6709-8012
https://orcid.org/0000-0003-3556-2591
https://orcid.org/0000-0002-0224-4661
https://orcid.org/0000-0002-0531-8523
https://orcid.org/0000-0002-7620-3387
https://orcid.org/0000-0002-7986-886X
https://orcid.org/0000-0002-4535-4019
https://orcid.org/0000-0002-4514-0061
https://orcid.org/0000-0002-6798-3254
https://orcid.org/0000-0002-6689-0355
https://orcid.org/0000-0002-1748-2398
https://orcid.org/0000-0002-4900-7604
https://orcid.org/0000-0002-7020-3466
https://orcid.org/0000-0001-8632-496X
https://orcid.org/0000-0003-3740-2276
https://orcid.org/0000-0003-4562-8443

Hindawi

Journal of Function Spaces

Volume 2023, Article ID 2877019, 12 pages
https://doi.org/10.1155/2023/2877019

Research Article

Q@) Hindawi

Sehgal-Guseman-Type Fixed Point Theorems in Rectangular
b-Metric Spaces and Solvability of Nonlinear Integral Equation

Hongyan Guan ("), Chen Lang

, and Yan Hao

School of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China

Correspondence should be addressed to Yan Hao; haoyan8012@163.com

Received 1 July 2022; Revised 27 October 2022; Accepted 12 May 2023; Published 26 May 2023

Academic Editor: Cristian Chifu

Copyright © 2023 Hongyan Guan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Firstly, the concept of a new triangular a-orbital admissible condition is introduced, and two fixed point theorems for Sehgal-
Guseman-type mappings are investigated in the framework of rectangular b-metric spaces. Secondly, some examples are
presented to illustrate the availability of our results. At the same time, we furnished the existence and uniqueness of solution of

an integral equation.

1. Introduction

In nonlinear analysis, the most famous result is the Banach
contraction principle, which is established by Banach [1] in
1922. After that, there are a large number of excellent results
for fixed point in metric spaces. On recent development on
fixed point theory in metric spaces, one can consult [2] the
related references involved. Branciari [3] introduced a new
concept, that is, the definition of rectangular metric spaces,
and established an analogue of the Banach fixed point theo-
rem in such a space. Then, a lot of fixed point theorems for a
wide range of contractions on rectangular metric spaces had
emerged in a blowout manner. In such type space, Lakzian
and Samet [4] gave some results involving (v, ¢) weakly
contraction. Furthermore, several common fixed point
results about (v, ¢)-weakly contractions were obtained by
Bari and Vetro [5]. In [6], George and Rajagopalan consid-
ered common fixed points of a new class of (v, ¢) contrac-
tions. By use of C-functions, Budhia et al. furnished several
fixed point results in [7].

In [8], Czerwik put forward firstly the definition of b
-metric space, an extension of a metric space. Since then, this
result has been extended in different angles. In a b-metric
space, in [9], Mitrovic provided a new method to prove
Czerwik’s fixed point theorem. By using of increased range

of the Lipschitzian constants, Hussain et al. [10] provided
a proof of the Fisher contraction theorem. Mustafa et al.
[11] gave several fixed point theorems for some new classes
of T-Chatterjea-contraction and T-Kannan-contraction.
Recently, also in this type spaces, Mitrovic et al. [12] pre-
sented some new versions of existing theorems. Savanovi¢
et al. [13] constructed some new results for multivalued qua-
sicontraction. Furthermore, in [14], Aydi et al. obtained the
existence of fixed point for a-B;-Geraghty contractions. In
[15], several fixed point theorems of set valued interpolative
Hardy-Rogers type contractions were studied. In [16],
George et al. put forward the concept of rectangular b-met-
ric mapping. Meanwhile, they gave some fixed point theo-
rems. Lately, Gulyaz-Ozyurt [17], Zheng et al. [18], and
Guan et al. [19] also studied fixed point theory in such
spaces and obtained some excellent results. In 2021, Hussain
[20] presented some fractional symmetric a-#-contractions
and built up some new fixed point theorems for these types
of contractions in F-metric spaces. Recently, Arif et al. [21]
introduced an ordered implicit relation and investigated
the existence of the fixed points of contractive mapping deal-
ing with implicit relation in a cone b-metric space. Lately, in
[22], some fixed point theorems of two new classes of multi-
valued almost contractions in a partial b-metric spaces were
established by Anwar et al.
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On the other hand, in 1969, Sehgal [23] formulated an
inequality that can be considered an extension of the
renowned Banach fixed point theorem in a metric space.
Matkowski [24] generalized some previous results of
Khazanchi [25] and Iseki [26]. In 2012, the definition of «
-admissible mappings was given by Samet et al. [27]. Later,
the notion of triangular a-admissible mappings was intro-
duced by Popescu [28]. Recently, Lang and Guan [29] studied
the common fixed point theory of a; -¢ _-Geraghty contrac-

tion and «; -, -Geraghty contractions in a b-metric space.

In this paper, inspired by [30], we established two fixed
point theorems for Sehgal-Guseman-type mappings in a
rectangular b-metric space. Also, we present two examples
to illustrate the usability of established results.

2. Preliminaries

Definition 1 (see [8]). Suppose G is a nonempty set and
¢:GxG—[0,+00). We call ¢ a b -metric if

() ¢le,@)=0€=0,Ve,0€G
(i) ¢(e, @) =¢(@,
) <

sls(e;y) +6(y, @), Ve, @,y € G

€),Ve,eG
(iii) ¢(e,

where s> 1 is constant.

It is usual that (G,q) is called a b-metric space with
parameter s> 1.

Definition 2 (see [3]). Suppose G is a nonempty set and
7:G x G —> [0,4+00). We call 7 a triangular metric if

(i) T(€, D)=02€e=0,Ve,0€G
17(6,@) =1(®, €), Ve, € G
(iii) T(e, ?)<1(e,y)+1(p. €) +7(€, @), Ve, @€ G, p, €
€G-{e 0}

Usually, (G, 7) is called a rectangular metric space.

Definition 3 (see [16]). Suppose G is a nonempty set and
v:GxG—>[0,+00). We call v a rectangular b -metric if

() vie,@)=0€e=0,Ye,0€G
(il) v(e, @) =v(®, €), Ve, 0 € G
(ili) v(e, @) <sfv(e, p) +v(y, €) +v(e, @)], Ve, @ € G, p, €
€G- {e a0}

where s > 1 is constant.

In general, (G, v) is called a rectangular b-metric space
with parameter s> 1.

Remark 4. A rectangular metric space is a rectangular b-metric
space, so is a b -metric space. Moreover, the converse is
not true.

Journal of Function Spaces

Example 1. Suppose G=AUB, where A=1{0,2/41,3/61,
4/81} and B={1/2,1/3,---,1/i,»--}. For €, @€ G, define
v:GxG— [0,+00) with v(e, @) =v(®, €) and

2 3 3 4
=v|—, —=|=v|(—, =] =0.05,
41 61 61 81

v(e,

Thus, (G,v) is a rectangular b-metric space with
s=2. Furthermore, one can obtain the following:

=max {€, @}, otherwise.

(1) v is not a b-metric with s =2, since

4
v(o,—):0.3>0.26:2x0.13
81
2 2 4
=2x(v|0, —|+v|[—, =] ).
(e(057) (i ar)

(2) v is not a rectangular metric, since

4 2
v(0,—])=03>0.15=v(0, —
81 41 3)
2 3 3 4
+U(—,—= ) +tU|—> — ).
41 61 61 81

(3) v is not a metric, since
4 2 2 4

v( 0, =0.3>0.13=0( 0, — —]. (4
81 41 41 81

Definition 5 (see [16]). Suppose (G,v) is a rectangular b
-metric space with s>1. Assume that {®,} in G is a
sequence and ® € G

(2)

(i) {®@,} is convergent to @ iff lim v(@,,@)=0

(ii) {®@,} is Cauchy iff v(a@;,

(ili) (G,v) is complete iff each Cauchy sequence is
convergent

n—+00

@;) — 0 as i, j— +00

Remark 6. In a rectangular b-metric space, a convergent
sequence does not possess unique limit and a convergent
sequence is not necessarily a Cauchy sequence. However,
one can find that the limit of a Cauchy sequence is unique.
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In fact, suppose the sequence {®, } is Cauchy and converges
to @* and @** with @* # @**. It follows that
V(@",@") <s[V(@%, @,) + V(@,, @) + V(@@ )], (5)

for all p > 0. Let n — oc0; we get that v(@*,@**) = 0. Hence,
®* =@**, a contradiction.

Example 2 (see [16]). Let G=AUB, where A={1/n:ne€
N} and B=N. Define v: G x G — [0,+00) with v(e, @)
=v(®, €) and

0, ife=a,
20, ife, €A,

v(6,@)=¢ ¢« (6)

—, ifecAand®€{2,3},
2n

a, otherwise.

Here, a is a positive number. Thus, v is a rectangular
b-metric with s=2. However, we have that {1/n} is con-
vergent to 2 and 3. Moreover, lim,  v(1/n,1/(n+p))
=2a # 0; therefore, {1/n} is not a Cauchy sequence.

Definition 7 (see [28]). Suppose G is a nonempty set and
T:G— Gand a: GxG — R are two mappings. We call
Ta-orbital admissible mapping if

Vo €G, a(@,Td) 21 = a(To, T?0) > 1. (7)

Definition 8 (see [28]). Assume that T: G— G and a: G
x G — R. We call T a triangular a-orbital admissible map-
ping if
(i) a(e,@)>1 and a(®, T@®)>1 imply a(e, T®)>1,
Ve, 0 eG

(ii) T is a-orbital admissible

Lemma 9 (see [24]). Assume O : [0,400) — [0,+00) is an
increasing mapping. Then, Vt>0,lim, , 0O"(t)=0=06
(t) <t

3. Main Results

In this part, two fixed point results of injective mappings will
be presented on rectangular b-metric spaces.

Definition 10. Suppose G is a nonempty set, s>1 and p>0
are two constants, and a : GxG — [0,400), T: G — G.
We call Tar, orbital admissible mapping if

Vo €GB, a(@, To) > s = oc(TcD, TZ(D) >4 (8)

Definition 11. Suppose G is a nonempty set, s>1 and p>0
are two constants, and « : Gx G — [0,400), T : G — G.
We call T triangular «, orbital admissible mapping if

(i) a(e, @) > and a(®@, T®) > s imply a(e, Td) > &,
Ve, €G

(ii) T is a, orbital admissible

Lemma 12. Suppose G is a nonempty set and T : G — G,
a: GxG— [0,+00) are mappings satisfying T which is
triangular ay, orbital admissible, s> 1,p > 0. Suppose there
has a ®,€G with a(®), T®,)>s". Define {®,} in G by
@, =T"@, -, =T"a, .. Then, YmeNuU{0},

a(@,, T*@,) = ", k=0,1,2, .

Proof. Since a(@,, T@,) =" and T is triangular «, orbital
admissible, we have

(@9, T@,) = s implies ar( T@y, T*@,)

©)

>s" and a(@,, T?@y) = 5"
Similarly, since a(T@,, T>@,) > s, we get

a(T* @y, T>@y) = &, (10)

a(@y, T’ @) = 5. (11)

Applying the above argument repeatedly, one can
deduce that a(@,, T*@,) >s" for all ke NU{0}. Since
a(@y, T@,) =" implies a(T@,, T*@,) =" and «(Ta@,, T*
@,) =" implies a(T?*@,, T°®,) =s",--, we can obtain
a(T"@) @y, T"®) o) = a(@,, Td,) =s”. Based on this
conclusion, we deduce that a(@,, T"®@,) =", k=0,1,2,--.
Repeatedly using the above discussion, we have a(®,,, T
®,) =, k=0,1,2,-- for all me NU{0}. O

Define ©® = {® : R*> — R* is increasing and continuous

in each coordinate variable}. That is, if K(ll), Kgl), K<12), ng),

22 <R with K <40, 2 < 2, ) £ e have

o (k! kw7 ) <@ (), w7, 407),
o e e) so(n "), (12)

O (k77 ) 20 (k7).

Furthermore, we set O(e, €, €) = ¢(€) for € € R*.

Theorem 13. Suppose (G,v) is a complete rectangular b
-metric space with s > 1. Suppose T : G — G is a continuous
injectivity, a : G x G — [0, +00) and p > 0. Assume that for
any € € G, there is a positive number n(e) satisfying



Vo €G, a(e, @) > = ae, @)v (T”(e) €, T”(e)(D>
< (D(U(e, @), v(e, ") e) ) (e, T”<€>a>)) ,

where © € © and

(1) lim, (e sp(€)) = 00

(2) Ve>0,lim,,_, . ¢"(e)=0

Suppose that

(i) there has a €, in G such that a(e,, Te,y) > s
(ii) T is triangular oy orbital admissible

(iii) if {@,} in G satisfies a(®,,®,,;) >s"(VneN) and
®, — @ € G(n —> ©0), then one can choose a sub-
sequence {®, } of {®,} with a(@, ,®@) >, Vk e N

(iv) Ye € G with T"® e = €, we have a(e, @) > s for any
weG

Then, T possesses a unique fixed point €* € G. Further,
for each € € G, the iteration {T"e} converges to €*

Proof. By condition (i), one can choose an €, € G such that
a(ey, Tey) = . If €, is a fixed point of T and @, is the other

one, then e, =Te,=---=T"%ey=--- and @, =T@, = -
= T"%)@, = ---. From condition (iv), we have a(€y, @,) >
sP. It follows from (13) that

v(€g> Dy) < (€, wo)v(m%)eo, Tn<e0>@0)

< (D(v(eo, @), v (60, T”(EO)eO) , v(eo, T"(€°>(DO))

< p(v(€y @p))-
(14)

From Lemma 9, we have ¢(v(¢€,, @y)) < v(€y, @,). Thus,
v(€g> @) < P(v(€p> D)) < V(&> @p)s (15)

which is contradiction. From this, we get that €, is the
unique fixed point. After that, in the subsequent discussion,
we assume that Te, # €,. Now we define {¢,} in G by
€ = T”<€°)eo, € = T”<€")en

First, we shall show that the orbit {T"¢,};, is bounded.
For this purpose, we fix an integer £,0 <€ < n(e,). Let

”j:U(eo’ Tjn(eo)+€€0),]-:0’1’2’...’ (16)

h = max {uo, v(eO, T”<€°)€0> , v(eo, Tz”(€°)eo),

(17)
v (T”(eu)eo, Tzn(eo)eo) }
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Since lim,___ (e —sp(€)) = 0o, there has ¢ > h such that
€—sp(€)>2sh,e>c. It is obvious that u,<h<c. Assume
that there has a positive number j, with u; > c. Evidently,

one may suppose that u; <¢, Vi< j,. Let €, 7€) g, T?(€)

€, Th"€@)*te, be different from each other. Otherwise, we
consider six cases.

Case 1. €, = T"(%)¢,. One can get that
€ = T"(eo)eo = T2”<€°)eo = T3”(€u)€0 — (18)

It follows that u;=uv(ey, T'e,) is a constant which

implies that {T"e, };-, is bounded.
Case 2. €, = T*"(@)¢,. We deduce that

€ = T2n<€°)€0 = T4V‘(€0)€0 = T6”(€0)€0 =, (19)

T"(eo)eo = T3”(€o)€0 = Tsn(eo)eo = ..., (20)

Hence,

v(eo, T”(EOHGO), jisodd,
uj= . (21)
v(ep T'), jiseven.

It follows that {T"¢,} ", is bounded.
Case 3. T"(%) ¢, = T?"(%) ¢;. Obviously,

T"(Eo)eo = Tzﬂ(fo)eo = T3”(€0)60 = T4"(€o)€0 = (22)

As the argument of Case 1, we get that {T'¢)}., is
bounded.

Case 4. €)= Th"«)*e  In this case, we obtain that
u; =0, a contradiction.

Case 5. T"(€) ¢, = Th"(€)*te Tt follows that
w = v(eo, Tj‘)"(%)*eeo) = v(eo, T”(eﬂ)eo) <h<ce  (23)

It is a contradiction.
Case 6. T>"() ¢, = Th"(€)*te Tt is obvious that

uj, = v(eo, TjO”(e")JreeO) = v(eO, Tz”(eﬂ)eo) <h<c, (24)

a contradiction.
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It is easy to get a(ey, T¥ey) = s, Vk € N from Lemma 12.
By using triangle inequality and (16), we have

v(eo, Tjon(eo)ﬂieo)
<s {v (eo, T2”<€0)eo> + U<T2n<€0)60’ Tﬂ(€o>€0)
+ v<T”( Ve, Th(€0)*t 0}
<2sh+ soc(eo, TUU‘l)”(eo)“’eeo) v(T”<€°)eO, Tjoﬂ(€o)+ﬂeo>
SZsh+s(D( (e 701 50)

v(eo, Tn(eo>€0) % (60, Tion (en>+z€0))

<25h+s(D(u u],u> 25h+s<p( )

(25)

,) <2sh, which is impossible. There-
- Tt follows that {T'e,}r, is

That is, u; —sg(u;

fore, u;<c for j=0, 1,2, -
bounded.
If there exists some ny €N satisfying €, =€

T"(e"o)enn, then €, is a fixed point of T"(én). Assume there
is @€G such that @=T")@ and @+ €,>

ny+l =

by condition

(iv), we have a(e, , @) > s” and

v(e,, @) <afe, ,(D)U(T"(e"0>e”0, T”(%)(D)
<0(v{en @060 Te, o Ta) )
< p(o(e,0)) <0(e, @),

(26)

which is contradiction. From this, T"(n) possesses the
- TT"(€”0> = T"€) T
because of the unlqueness of

unique fixed point €, . Since Te,
0
€,, we have Te, =¢,

T"éw). Subsequently, we assume that €, #¢,,,, Vn € N.
Next, we show that {e,} is Cauchy. Suppose n and i

are two positive numbers. It is obvious that a(e, |, T*
€,1) =", Vk € N. Then,

) < a(en—l’ T”(enﬂ'fl>+”(€n+z—2)+"‘+”(en)€n71>
-V (T”(En—l ) en—l s T”(enﬂ—l )+"'+n(€n—1> en_l)
< @(U (en_p T(Ensi1 )+ 2) +--4n(e,) en_1>,
(e, ., Tn<en4>€n_l), v(en_p Tn(en+,vfl>+---+n<en4>en_l))

<o(sup {v(e,19)1g € {T" €, }sg })-
(27)

For each g€ {T™e,_,}' . we have

v(€,1,q) =v(€, 1 T"E, )
<a(€e,_p T" en_z)v(T”(E"-Z)en_z, T’”*”(E"-Z)en_g

< (D(v(en—Z’ Tmen—Z)’ U(en—z) Tn(en?Z)en—Z) > (28)

v (en—Z’ Tn(en?2)+m €n—2> )

<o(sup {v(e, DIg € {T" €, )0 }-

According to (27) and (28), we deduce

U(en’ en+i) < q)(sup {U(en—l’ q)‘q € {Tmen—l}fzo)
<< (sup {u(e q)|g € (T} }) — 0 (n—> o).
(29)

That is, {€,} is Cauchy. In light of the completeness of
(G,v), one can find an €* € G with lim €, =€". We

n—o00n
might as well let €, # €* and €, # T"(¢)e,. Otherwise, we
have €* = T"¢)e* according to the continuity of T. In
view of triangle inequality, one deduce

U(e*, Tn(e*)e*)
< s[v(e*, €,) + v(en, T"(e*)en) + v(T”(e*)en, T"(e*)e*)} .

(30)

On the other hand,

U(en_l, T”(“)*ﬂ(e,ﬂ)en_l))
< (P(Sup {U(en—l’ q)|q € {Tmen—l};f:o})
< <" (sup {v(ep q)lg € {T"ep}py}) — 0 (n— o).

(31)

From the continuity of T, limn_mv(T”(e*)en, ) e
) =0. Thereupon, by the use of (30) and (31), one can
obtain v(e*, T"¢)e*) = 0 as n —> co. Assume there exists
@* # € satisfying @* = T"¢)@* and we have a(e*, @*) >
s? according to the condition (iv). Then,

1)(6*,@*) < oc(e*,(D*)U(T"(e*)e*, Tn(e*)@*)

S@(v(e",@"),v(e*, T”(e*>e*),v(e*, T”(e*)(b*))
<o(v(e", @")) <v(e", @),
(32)



impossible. After that, T"(¢") has the unique fixed
point €*. Since Te* = TT"¢)e* = T"¢)Te*, we deduce T
e* =¢*. That is, T has a fixed point.

Now we show that if condition (iv) is met. So T possesses
a unique fixed point. Assume @* is another one; from condi-
tion (iv), one can obtain a(e*, @*) > s*. In view of (13), we
have

U(é‘*,@*) S(X(€*,(D*)U<Tn(e*)€*, Tn(e*)w*)

SCD(v(e*,(D*),v(e*, T”(€*>e*),v<e*, T”“*)a)*))

<o(v(e", @")).
(33)

Lemma 9 ensures that ¢(v(e*, ®*)) < v(e*, ®*). Thus,

v(e®, ") <p(v(e, ")) <v(e*, "), (34)
which is impossible. It follows that €* is the unique fixed
point of T.

Finally, we prove the last part. To show this statement,
we fix an integer £, 0 < ¢ < n(e*), and let vy = v(e*, TF )+
€),k=0,1,2,--- for e€G. If there exists k€ N satisfying
v, =0, we have

Ve = v(e*, T(k+1)n(e*)+(’,e)

U( € Tn €* Tkn(e )+e )
(6‘ , Tkn €* ) (Tn(e*)e*’ Tn(e*)Tkn(e*)He)

<OV, 0, vgy)-

IN
R

(35)

If vy, >0, one can obtain that vy, ; < O(Vi 1> Vi1s Vs)
= @(Vy,1) < Uy, which is a contradiction. Hence, v, = 0.
It follows that v;,, =v,;="---=0.

Now we suppose that v, #0, Vn € IN. Therefore, we
obtain

v(e*, Tkn(e*)+e€) < oc(e*, T(k—l)n(e*)ﬂ’,e)U<Tn(e*)€*) Tkn(e*)+e€)

< @(U(e’*, T(k—l)n(5*>+le), v(e*, Tn(e*>e*)) U(e*, Tkn(€'>+ee)>

= D(vy_1, 0, vy).
(36)

If for some k€N, v, >v;_;, we deduce v, < D(vy, v,
v;) =¢(v;) < vy, which is a contradiction. Hence, we get
v <@(v ;) < <¢F(v)) — 0 (k—> 00). That is, for
¢, the sequence {T*(¢)*te} converges to €* for any e ¢
G. Consequently, one can obtain that the sequences
{Tkn e* €} {Tkn €e* +1€}, {Tkn(e*)+2€} . {Tkn e*)+n( 6}
are convergent to the point e*. It follows that we get
{T"e} converges to the point €* for € €G. O
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Example 3. Let (G,v) be the same as it is in Example 1.
Define T: G— G as

0, e=0,
2 1
P 6:7)
41 2
3 1
—_, €:—,
61 3
4 1
—, 6:_’
81 4
Te= 1 2 (37)

—_, 6:7)
22.2 41
1 3
b} 627)
22.3 61
1 4
~ €=_:
22.4 81

1 1 S5

ZZ.X’ _X’X_ ’

Define mapping a : G X G — [0,+00) by
1
s, e,a)E{O}U{—,X25},
a(e, @) = X (38)

0, otherwise.

Define @(k;, &y, k5) = (1/12) (%, + K, + x5) for all «; € [0,
+00)(i=1,2,3), and it follows that ¢(t) = (1/4)t. Let n(e)
=3 for all e € G. For €, ® € G such that a(e, @) > s, we get
that €, @€ {0} U{1/x, x>5}. It follows that we consider
the following two cases:

(i) e=0and @€ {1/y, x> 5}

ale, w)v(T”<€> e T“<€>a>)
(e () e

@(v(e, @), v(e, () e), v(e, T”<€>w))

( ) oo (o))

64)() 12X
(39)

That is, a(e, @)v(T"9¢, T"90) < D(v(e, @), v(e,
T"9¢), v(e, T @)).
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(i) e, @€ {1/x,r>5}. Let e=1/y and @ = 1/l with [ > y.
One can obtain that

a(e, (D)v(T ©e, T

“o(P() 1 G)
cD(v(e, , (e,T” )v( , T 0 )) (40)
oG )G R)
o(3m()] =5

The above inequalities imply that

ale, (D)U(T”(e) €, T”(e)@)

S@(v(e, @), (e,T”(E)) (e,T<€)w)).

Thus, all conditions of Theorem 13 are fulfilled with p
=s=2. As a result, T possesses a unique fixed point 0.
Meanwhile, for each € € G, {T" €} converges to the point 0.

(41)

Remark 14.

(1) Since rectangular metric spaces can be seen as rectangu-
lar b -metric spaces with parameter s = 1, one can get
the corresponding conclusions of Sehgal-Guseman-
type mappings in rectangular metric spaces

(2) Since b-metric spaces with parameter s can be seen
as rectangular b-metric spaces with parameter s,
one can obtain the corresponding conclusions of
Sehgal-Guseman-type mappings in b-metric spaces

(3) If a(x, y) = s, one can get the generalized @-Sehgal-
Guseman-type contractive mappings in rectangular
b-metric spaces

Theorem 15. Suppose (G,v) is a complete rectangular b
-metric space with s > 1. Suppose T : G — G is a continuous
injectivity and y : [0, +00) — [0, 1/2s) satisfying that for
any € € G; there is a positive number n(e) satisfying

u(T"< Je, T"©) ) y(M(e,@))M(e, D) VO G, (42)
where
M(e, ®) = max {v(e, @), v(e, ") e), v(e, T”(€>(D) }
(43)

Then, T possesses a unique fixed point €. Furthermore,
for each € € G, the iteration {T"€} is convergent to €*.

Proof. Let €, € G. Consider a sequence {¢,} in G by €, =
T”(eo)eo) € = T”(e
ny € N, then €, becomes to a fixed point of T"(én). Assume
there exists @ € G with @ = T"n)@ and @ # €,,; then,

) = = en)
il Ve, If e, =€, ., =T"'e, foran

v(eno, a)) = v(T"(e"O)eno, T”(eno)&)) < y/(M(eno, (D))M(eno, ),
(44)
where
M(e, ,®) = w> @), n)Tn(eno)n )
(e , ) = max {v(e \ ) v(e \ € 0) )

v(eno, T"(e”ﬂ)w) } =v(e,,®@) > 0.

(1/2s)v(e, , @) which is
is the unique fixed point of

From this, we get v(e, , @) <
impossible. Therefore, €,
T"én), Since Te, = T"(€"0>Ten0,
of the uniqueness of T"»). Subsequently, we assume that
€,+€,.1, VnelN.

For e€G, set z(e) = max {v(e, Tre), k=1,2,--,n(e), n
(e) +1,---,2n(€e)}. We first prove that r(e€) =sup v(e, T"€)
< oo for all neN. Assume n>n(e) is a positive number
satisfying n=rn(e)+8r>1,0<€<n(e) and J,(e) =v(e,
™)+ e), r=0,1,2,---. We suppose that e, T"¢)¢, T2"(€)
e, TU"Une are four distinct elements. Otherwise, the
conclusion is true. Thus,

we have Te, =€, because
0 0

v(e, T"e) = v(e, T’"(€)+€€)
<s [v <e, T2(€) e) +0 <T2”(€) e, T"(© e)

+ U<Tn(e) €, Trn(e)+€€):|

<s [z(e) + w(M(e, ") e))M(e, 7€) e)
n W(M (e’ T(r—1)n(e)+e€) )M(e, T(r—l)n(e)+€€)} X

(46)
where
M(e, 7€) e)
= max {v(e, 7€) e), v(e, T"(E)e) ) v(e, 7€) e) } =z(e),
(47)

M(e, T(r—l)n(e)+€€)

=max {v(e, T(H)”(e)*ee) , v(e, T"(€) e), v (e, T’”(E)“"e) }
<max {0,_(€), z(€),5,(€) }.
(48)



By (46), (47), and (48), we deduce

0,(€e)<s|z(e) + Zisz(e) + Zis max {5,_,(€),z(€),8,.(e)}|.

(49)

Hence, one can conclude that (1/(1 +2s))d,(e) <z(e)
by induction. Indeed, when r=1, we have §,(¢) < ((1+2
$)/2)z(e) + (1/2) max {z(¢€), 8, (e)}. If §,(€) = z(€), we get
8;(e) < (1+2s)z(e). If §,(€) <z(€), we get 8;(e) < (1+5)
z(€) < (1+2s)z(e). We assume J,(€) < (1 +2s)z(e); then,
8,1(€) < ((1+25)/2)z(€) + (1/2) max {(1 + 2s)z(€), z(€),
8,,1(€)} < (1+2s)z(e). Hence, r(e) =sup d(T"e, €) < co.

Next, we prove that lim, _v(e,,€,,;) =0. By con-
tractive condition (42), we have

U(en, €n+1) =0 (T”(en—l)enil, T”‘(%)"’“(en—l)enil)

= 1//(‘]VI<€"—1’ Tﬂ(é:,,) en—l) )M(en—l’ Tn(en)Gn—l) >
(50)

where

M(en—P Tn(en)en—l)
= max {v(en_l, T”<€")en_1), v(en_l, T”(E"*I)en_l),
v(en_p Tn(en>+n<en4>en_l) }

< sup {U(en—l’ q)|q € {Tmen—l}zzozl }
It is obvious that M(e, ,, T"*)e, ) >0, so

l (o]
e i) < o sup {oley € (T7e, )50} (52)
For each g€ {T™e,_}, |, we have
U(en—l’ q) = U(en—l’ Tmen—l)

= U(T”(e"*)en,z, me(enfz)eniz) (53)
< W(M(en—Z’ Tmen—Z))M(en—Z’ Tm€n—2)’

where

M(en—z’ Tm en—Z)
— max {v(eH, T"e, ,),v (eH, T”<€n—z>en,2),

v(en—l’ Tm+n(€n_2)€n—2) }

< sup {U(en—Z’ q)|q € {Tmen—z}ﬁzl} >0.
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It means v(e,_;,q) < (1/2s) sup {v(e,» q)|q € {T" €, 2}y }-
So we deduce

1 m (]
e € < 32 s0p {0061 )0 {176, 1} )
1 m [ee]
<< (5l sup {v(ep, q)lg € {T" €}, } — 0 (n—>00).
(55)

That is, lim,_,v(e,, €,,;)=0.
For the sequence {e,}, we consider v(e,, €,,,) by the
following cases. For the sake of convenience, set r, = sup

{v(e, q)lg € {T e} }-
If p is odd, assume p=2m + 1,

U(en’ €n+2m+l)
< S[U(en’ en+1) + v(€n+1’ €n+2) + U(en+2’ €n+2m+l)]
1

1 2
<s W’b‘" Wro +57[V(€p125 €443)

+ v(€n+3’ €n+4> + U(€n+4’ €n+2m+1)}

If p is even, assume p = 2m,

U(en’ 6‘n+2m) < S[U(en’ 6‘rH-l) + U(€n+1’ €n+2) + U(6n+2’ 6n+2m)]
S IS Lol ! L]
S|—=7 —T N 4 4
(25)” 0 (25)n+1 0 (25)n+2 0 (25)n+3 0

A ! + !
(25) n+2m—4 To <25)n+2m—3 To

+ 5" 0(€s2m-2> €nram)
<s ! [+s +--~1r +s l+s ! + ]r
@ e eyt ey "
+s" (25)n1+2m—2 0
1 1 1
<s ry—0 (n—00).

(57)

In view of (56) and (57), one can get that {¢, } is Cauchy.
By the completeness of (G, v), one can choose a point €* € G
with lim €, =€". We might as well let €, # €" and ¢,

n—~oo T n
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+ T"")¢,. Otherwise, we have €* = T"(¢)e* according to
the continuity of T. And from that, one can deduce

v(en, T”<€*>en) - U(Tenfl €1 Tn<e*>+n<en,1>€n71)

. . (58)
< W(M(en—l’ Tn(e )en—l))M(en—l’ Tn(e )en—l)’
where
M(en,l, T”(e*)en,l) = max {v(en,l, T”<€*)en,1),
(59)

v(en,l, T”(E"*I)en,l), v(en,l, T”(€*>en) } > 0.

It follows that

n(e* 1 m o)
v(en’ T ( )€n> < Z Sup {U(en—l’q)|q € {T en—l}mzl}
1 m . oo
<< W sup {U(em q)lge{T eO}m:1} —0 (n—>00).
(60)

Since T is a continuous mapping, lim, _ d(T"¢")e*,
T™")¢,) = 0. Therefore,

v(e*, T”<€*)e*> <s {v(e*, €,) + v(en, T”<€*)en)

+ v(T”“*)e*, T”<€*)en>} —0(n— 00).
This means that €* = T"¢)¢" Now,

v(e", Te") = u(T”<€*>e*, TT"<€*>e*)
<y(M(e", Te"))M(e*, Te"),

where

M(€", Te") = max {v(e*, Te"), v(e*, T”(e*)e*),
(63)
v(e*, T"<€”>Te*) } =v(e*, Te").

Hence, we get v(e*, Te*) < (1/2s)v(e*, Te*), e, € =T
€*. Assume there has a @* satistying ®* = T®* and €* # @*
; then, @* = T@* = --- = T"¢)@* and

U(S*, (D*) — U(Tn(e*)e*’ Tn(e*)@*)
(64)

Sy(M(e*,@"))M(e*,@") < zisd(e*,a)*),

which is impossible. So T possesses the unique fixed
point £*.

At the end, we prove the last part. To do this, we fix an
integer €, 0<¢<n(e*), and Vn>n(e*); we put n=in(e*)
+¢,i>1. Then, Ve € G; we have

v(e*, T"e) = U(Tn(e*)e*’ Tin(e*)+€€)
< w(M(e*, T(i—l)n(e*)JrBe))M(e*’ T(i—l)n(e*)ﬂ’,e)’
(65)
where
M(e*, T(i—l)n(e*)+€e>
= max {v(e*, T(i’1>”(e*>+ee>, v(e*, T”(e*>e*) ,u(e", T”e)}.
(66)

If  v(er, T"e) >v(e*, TV ) then  M(e",
70 e) = y(e*, T"€). According to (65), we have

1
v(e*, T"e) < 2—U(€*, T"¢),i.e.e” =T"e. (67)

S

It follows that T"e — €* as n — co. If v(e*, T"€) < v
(e*, TUDn€)+te) "one can get that

1 ; .
v(e®, T"e) < —vf e*, T e), (68)
2s

Similarly,

v(e*, T(i—l)n(e*)Jree) -0 (Tn(e*)e*, T(ifl)n(e*)”e)

(69)
<y (M (e*, T(i—2)n(€*)+€€))M (e*’ T(i—Z)n(e*)-H’.e) i

where

M<€*, T(i—2)n(e*)+€€)

- max {v (e*, T(i—z)n(e*)ﬂie) v (e*, Tn(E*)€*>, (70)
v(e*, T(i—l)n(e*)+€€) }
If v(e*, TV e) > y(e*, TP e), then
M(e*, T(i—2)n(e*)+€€> _ v(e*, T(i—l)n(E*)%e)’ (71)
that is,

U(e*’ T(i—l)n(e*)+’8€) < ziv(e*, T(i-l)ﬂ(€*>+“e),i.e.,e* (72)
s
— T(i—l)n(e*)ﬂe'

Since €* is a fixed point of T, one get €* = T"(¢)¢* =
7)€+ e Consequently, T"e — €* as n — 0.
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If v(e*, TV e) < y(e*, T2 e)  then
v<€*’ T(i—l)n(e*)+86> < iv<€*) T(i—2)n(e*)+€€) ) (73)
2s

We continue to calculate according to this method; if
there exists i, <i satisfying e* = TU0)"(€)*e then T"e
— €* as n — 00. Otherwise, one can conclude that

v(e", T"e) <+ < (ZLS)I.U(G*, T'€) — 0(i—> 00). (74)

Therefore, for each € € G, the iteration {T"€} is conver-
gent to €. O

Example 4. Let G=[0,+00) and v(e, @) = (¢ — @)*. Obvi-
ously, (G,v) is a complete rectangular b -metric space with
s=3.Define T : G — G with

€

Te= 3 €« [0,400). (75)

Define mappings y(€) = 1/3s and n(e) = 3, Ve € [0,+00).
One has

n(e n(e 1
U(T ©¢, T )(D) =v(T’, T3(D) = a(e— @), (76)
¥(M(e.@))M(e: 0)
1
= 5 max {v(e, @),v(e, T€),v(e, T’ @) } (77)
1
>
9
That is, v(T" ¢, T"€)@) < y/(M(e, @))M(e, @).

We®=é@—@f

Thus, all hypotheses of Theorem 15 are fulfilled. So T
possesses the unique common fixed point 0. Furthermore,
for each € € G, the iteration {T"¢} is convergent to 0.

4. Application

In this part, we will prove the solvability of this initial value
problem:

md2€ +
a2 " de
e(O):O,

€' (0)=0,

- mF(e, €(e)) =0,
(78)

where m and ¢>0 are constants and F: [0, H] x R*
— R is a continuous mapping.

Obviously, problem (78) is related to the integral equa-
tion:

€e) = L Y(e,v)F(v, e(v))dv,e € [0, H|, (79)
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where Y(e, r) is defined as

_ pw(e=v)
Lo g<o<e<H,
Yep)-{ (50)

0, 0<e<Q<H,

where w = ¢/m is a constant.
Next, by using Theorem 13 and Theorem 15, we shall
present the solvability of the integral equation:

H

e(e) = j I'(e0 ¢(e))de. (81)

0
Let G=C([0, H]). For p>2,¢, @ € G, define

v(e, @) = sup |e(e) —@(e)[F. (82)
e€[0,H]

Hence, (G, v) is a complete rectangular b-metric space
with s =371,
In the following, define T : G — G by

Te(e) = jjme, 0. €(@))de. (83)

Suppose Z: RxR — R is a given function that sat-
isfies the following condition:

n

(e(g), ®(e)) 2 0and Z(@(e), Td(e))
> 0implies Z(e(e), Ta(¢)) (84)
>0Ve, 0 € G.

Theorem 16. Assume that

(i) I : [0,H] x [0, H| X R — R* is continuous

(ii) there has an €,€G satisfying Z(e,(¢), Tey(e)) =0
for all € € [0, H|

(iii) Ve € [0, H] and €,y € G, E(e(e), @(e)) >0 imply E
(Te(e), Tad(e)) =0

(iv) if {€,} CG satisfies E(e,(¢), €,,,(€)) =0, ¥VneN,

and lim, e, =e¢, then we can choose a subse-
quence {€, } of {€,} such that Z(e, (), €(¢)) 20,
VkeN

(v) for each e€G with T"®e=¢€, we have Z(e(e),
@(e)) >0 for any @ € G

(vi) there is a continuous mapping Y : [0, H] x [0, H]
—> R* satisfying

H
1
su Y(e,0)do < {/——> 85
s | Veades (/2 (55)
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(e 0 (@) ~ I'(e: p, (@) < Y(& ) e(Q) -

Then, (81) possesses a unique solution € € G.

Proof. Set a : G x G —> [0,+00) by

a(e, @) = { £, if E(e(e), @(¢)) = 0, (87)

0, otherwise.

One can check that T is triangular «, orbital admissible.
In view of (i)-(vi), for €, ® € G, we obtain

sfv(Te(e), To(e))

=5 sup |Te(e) - Ta(e)”
£€[0,H|
H H r
=& sup J (e 0 e(Q))dQ—J I'(e, 0 @())de
£€[0,H| 0
i p
< sup ( IT(e, 0, €(Q)) — I'(e; 0 w(@))IdQ>
e€[0,H| 0
H p
< sup < Y(e, 0)|€(Q) - ‘D(Q)|d9>
£€[0,H| 0
H P
<sP sup < Y(e, Q)dQ) sup |e(t) - @(e) [’
seOH] 0 e€[0,H]
<s. sup |e(e) — @(e) [P
3P+ se[O,II-)I]| ( ) ( )‘
= 3p+1 ’

(88)

which implies that

a(e(e), (D(S))U(T”<E) €(e), T”(€>w(s)>

< @(v(e(s), a(e)), u<e(s), T"(S)e(s)>, v(e(s), T”<€)w(s))),
(89)

where (e, €,, €)= (€, + €, +¢€)/3, =31 and
n(e) = 1. After that, all hypotheses of Theorem 13 are ful-
filled. Hence, T has a unique fixed point € € G. That is, € is
the unique solution of integral equation (81). O

Remark 17. If I'(e, 0, €(e)) = Y(&, @) F(0 €(@)), |F(e €(0))
- F(, @(0))| < |e(@) — @(Q)}; then, (78) has a unique solu-
tion by Theorem 16.

Theorem 18. Suppose that

(i) I':[0,H] %

(ii) there is a continuous mapping Y : [0, H] X
— R* satisfying

[0, H x R — R* is continuous

[0, H]

11
(&0 e(Q)) ~ I'(s: 0 @)
H H
<Y(e Q)|e(e) +@(e) - <J0 I'(e, 0, €(Q))da + JO I'(e 0 (D(Q))dQ) ,
(90)
H
sup J Y(e,Q)do < 7 (91)
e€[0,H]J 0

Then, (81) possesses a unique solution € € G.

Proof. For €, ® € G, according to the conditions (i)-(ii), one
can get

v(Te(e), To(e))
= sup [Te(e) = Ta(o)

H P

= sup JHF(e, 0, €(0))do - JO

e€[0,H||Jo

< sup] (J:Y(s, Q)|e(e) + @(e)

€€[0,H]

I'(e, 0 @(0))de

(JHF<s o c(e >>de+J e a()de) ’dQ)P

4
Ye Ta(e)| + [a(e) - <e>|>de)

< sup
e€[0,H]

Jo

r
JY To(e) + afe) ~(e) + e(e)~ Te(o) e

0

ool

Te(e)])

< sup
€€[0,H]

()] +|@(e) -

e(e)| +le(e) -

0
< sup(
€€[0,H

-H
J Ysed9> - sup (Je(e) ~ T@
eeUH]

sup |e(e) = Ta(e)|’ + sup |@(e) — e(e)|” + sup |e(e) = Te(e)|”
1 £€[0,H] ec[0,H] £€[0,H]
< .3P.
32p 3
1
< M(e, {D),

3s

(92)

where M(e, @) is the same as in Theorem 15. Thus, all
the hypotheses of Theorem 15 are fulfilled with y(e) =1/3s
and n(e) = 1. It follows that T possesses a unique fixed point
€ € G, and so is a solution of (81). O

5. Conclusions

In rectangular b-metric spaces, we introduced a new triangu-
lar a-orbital admissible condition and established two fixed
point results for mappings with a contractive iterate at a
point. Further, we provided two examples that elaborated
the usability of presented results. At the same time, we
proved the existence and uniqueness of solution of an inte-
gral equation.
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Over the past century, the fixed point theory has emerged as a very useful and efficient tool in the study of nonlinear problems.
This study introduced a progressed genetic algorithm (GA) based on a particular mutation operator applying on a subdivided
search space where integer label and relative coordinates are used. This algorithm eventually categorizes each fixed point as its
solution in appropriate set. Extensive computational experiments are conducted to assess the performance of the proposed
technique with a standard GA for solving some nonlinear numerical functions from the literature.

1. Introduction

The fixed point theory was introduced scientifically in the
20th century. The basis of this theory is the principle of
the Picard-Banach-Caccioppoli, which led to important lines
of research and applications of this theory [1]. Fixed point
theory is used and is important in various theoretical and
practical fields. Theoretical fields such as variable and linear
inequalities, theory of approximation, nonlinear analysis,
equations, integrals, and differential components, theory of
dynamic systems, fractals theory, financial mathematic, and
game theory and applied fields such as biology, chemistry,
management and economics, engineering in various disci-
plines, computer science, physics, geometry, astronomy,
fluid mechanics, and image processing.

Riehl et al. [2] considered fixed points of discrete systems
in large networks and optimized them. In this study, the
equilibrium fixed points of discrete systems in distributed
networks were considered; and by using appropriate parti-
tions, they recursively decompose the main problem into a
set of smaller and simpler problems and combine their solu-
tions to gain a set of fixed points. The results showed the
proposed algorithm with examples in two areas of calculat-
ing the number of fixed points in brain networks and finding

the minimum energy combinations of network-based pro-
tein folding models.

Lael et al. [3] introduced a method for the Caristi-Kirk
fixed point result for single mappings in conical metric
spaces with a simple yet complete argument. The results of
this research showed that the Caristi-Kirk fixed point in con-
ical metric spaces turns into a result similar to traditional
methods in reduced metric spaces. Bakery and Mohamed
[4] proposed a new definition of the variable exponent of
the Cesaro complex function space using the official power
series. In this space, by utilizing s-numbers produced
prequasi-ideal and then presented the topological and geo-
metric structures of this class of ideal.

Metric space developed with the introduction of the
Banach contraction principle and found more applications.
One of the concepts presented in this space was the concept
of F-metric [5]. Asif et al. [6] considered f-metric and create
common fixed point results of Reich-type contraction. The
results of this definition and its development showed that a
unique common fixed point can be obtained if the contrac-
tion conditions are limited to only one closed ball subset of
the total F-metric space. In addition, some significant impli-
cations are exploited from the significant results that charac-
terize the fixed point outcomes for a single mapping. Among
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This improved
algorithm makes
grid in given
scope and
encodes each
intersection by
integer while it
starts from the
lowest point of
the domain.
After calculating
fitness of each
point, it
generates the
best offspring
and computes
integer label of
the last
population for
every square.
When it found
the square
labeled
completely,
subdivides them
in order to seek
the solution
closely. As
following, we
demonstrate the
performance of
the improved
algorithm by
different
examples and
show how it can
categorize fixed
points.

t=0;i=1,2..5h =1
a<x;<bc<x,<d
n k,m nonnegative integer

|

Subdivide search space

Journal of Function Spaces

x, = mhy, x, = mh;

v

A

Coding and initialization; save P (t)
, Xy =c+khx,=a+nh;

Evaluate f (x + x,)

h

i

hi = B

Mutation
(x; + &, x5 + fB)
@, ﬁ <€ {0) ihi+l}

Evaluate fitness of new population

Save best individual as P (t+1)

Calculate [ (x)

v

Ifa=5=0
or

Is there the square with

entire integer label?

Whether
meets
the
precision

—

Print fixed points in
appropriate
category

FIGURE 1: Improvement genetic algorithm flow chart.

nonlinear maps, nonexpansion maps are of particular
importance. Expansion maps are maps that have a Lipschitz
constant equal to one. Shukla and Panickar [7] assumed a
nonexpansion map and they gained a number of fixed point
theorems for these maps in geodetic spaces.

When we consider different optimization methods and
compare them with the genetic algorithm, we find that the
genetic algorithm (GA) by simulating the evolutionary process
in organisms can provide an effective solution to find the opti-
mal point in most cases [8, 9]. Mutation is used for avoiding of
premature convergence and consequently escaping from local

optimal. The GAs have been very successful in handling com-
binatorial optimization problems which are difficult [10].
Tang et al. [11], in order to prevent premature conver-
gence in the GA, utilized the idea of flight behavior in the
bird swarm algorithm to maintain population diversity and
reduce the probability of falling to the local optimal. Muta-
tion and the mutation probability (p,) are important
parameters in GAs. The mutation operator generates a new
string by altering one or more bits of a string. By applying
the mutation operator to a string, muting each bit of the
string independently from the other bits is considered. So,
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FIGURE 4: Second generation of f.

the mutation operator is more likely to significantly disrupt
the allocation of trials to high order schemata than to low
order ones. The efficiency of the mutation operator as a
means of exploring the search space is questionable. A GA
using mutation as the only genetic operator would be a ran-
dom search that is biased toward sampling good hyper
planes rather than poor ones [12].

The relationship between the genetic algorithm and the
fixed points is a two-way relationship. In this sense, in some

3
X2
0.5
1 0 1
TR
! 0.4 1
I I
0 : 0 i >,
-0.5 | Y05
I I
I I
I I
0 0 1
-0.5

F1GURE 5: Third generation of f,.

studies, fixed point properties have been used to improve the
performance of genetic algorithms [13-18], and in some
studies, updated models of genetic algorithms have been
used to solve fixed point problems [19-22].

The concepts of fixed point and subdivision theory are
used in some researches for improving GA. Gao et al. [13]
introduced a GA based on fixed point algorithm and subdi-
vision theory of continuous self-mapping in Euclidean
space. They used subdivision of searching space and gener-
ate the integer labels and then these labels utilized for oper-
ators in GA. Pop [14] introduced a new developed GA based
on the fixed point theorem and triangulation technique.
Researcher utilized the crossover and mutation and
increased the dimension genetic operators to avoid of pre-
mature convergence. Also, they utilized a custom increase
dimension operator that expressively increases the total
fitness.

Wolfram [23] used GA for controlling fixed point opti-
mization. The researcher considers the floating point and
fixed point display error in the optimization. Since both
methods allow weighing between the theoretical and actual
simulation, error occurred. Due to the script features of the
simulation system, this can be easily automated. Zhang
et al. [15] introduced triangulation theory into GA by the
virtue of the concept of relative coordinate genetic coding
and designed corresponding crossover and mutation opera-
tor. Hayes and Gedeon [17] considered the infinite popula-
tion model for GA where the generation of the algorithm
corresponds to a generation of a map. They showed that
for a typical mixing operator, all the fixed points are
hyperbolic.

Ren et al. [24] introduced the fixed point theory in PSO
optimization and proposed an improved FP-PSO (fixed
point PSO) algorithm. In the FP-PSO algorithm, the objec-
tive function is converted to a set of fixed point equations
and the set of solutions obtained by the simple algorithm
(SA) is used as the initial population of the PSO algorithm.
Therefore, the remaining parameters can be obtained based
on this choice of the classical PSO algorithm. Zhang et al.
[16] introduced a GA that the population of individual is
regarded as the triangulation of the point. They used the ver-
tex label information of the individual simplex of individual
to design selection operator, crossover, and mutation
operators.

Zhang and Shang [25] proposed an improved multiob-
jective genetic algorithm based on Pareto front and fixed



FIGURE 8: Second generation of f,.

point theory. In this algorithm, the fixed point theory is
introduced to a multiobjective optimization questions, and
K1 triangulation is carried on to solutions for the weighting
function constructed by all subfunctions, so the optimal
problems are transferred to fixed point problems. Yang
et al. [11] introduced the van der Laan-Talman algorithm
to the GA to design convergence criteria objectively and to
solve the convergence problem in the later period. The par-
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allel GA of multibody model vehicle suspension optimiza-
tion implemented through establishing the interface
between ADAMS software and the GA. Wright et al. [26]
developed a dynamical system model of a GA that uses gene
pool crossover, proportional selection, and mutation. They
introduced the concept of bistability for GA and they
showed that it is possible for a GA to have two stable fixed
points on a single-peak fitness landscape. These can corre-
spond to a metastable finite populations.

Gedeon et al. [27] showed that for an arbitrary selection
mechanism and a typical mixing operator, their composition
has finitely many fixed points. Qian et al. [28] proposed a
GA to treat with such constrained integer programming
problem for the sake of efficiency. Then the fixed point
evolved (E)-UTRA PRACH detector presented, which fur-
ther underlines the feasibility and convenience of applying
this methodology to practice. Wright et al. [29] considered
the dynamic system model of Wright and Vose [18] and
showed that with the increase of mutation percentage, the
hyperbolic asymptotic fixed points are directed towards the
simplex, and the hyperbolic unstable asymptotic fixed points
are directed out of the simplex.

Thianwan [30] introduced a new iteration scheme of
mixed type for two asymptotically nonexpansive self-
mappings and two asymptotically nonexpansive non-self-
mappings. After introducing this method, some convergence
theorems based on the proposed iterative scheme in uni-
formly convex Banach spaces have been presented, proved,
and compared with previous results on some problems. A
new mixed type iteration process for approximating a com-
mon fixed point from two asymptotic self-expansion map-
pings and two nonasymptotic self-expansion mappings was
introduced by Thianwan [31]. In the continuation of this
research, a convergence theorem was proposed in a uniform
convex hyperbolic space and using the introduced method,
the presented results showed that the presented model has
better results than the previous models.

This paper investigates the concepts of fixed point and
square labels with a special mutation operator for improving
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performance of the GA. The performance of proposed algo-
rithm on some nonlinear numerical optimization problems
shows this algorithm converge to a reasonable results in a
few numbers of generations.

2. Construing of Optimal Problems as Fixed
Point Problem

In genetic algorithm like other evolutionary algorithm, its
optimal solutions are points that the algorithm improves,
keeps, or returns to them after a certain number of iterations
because these points meet the required criteria of the algo-
rithm. When infinite population is used in GA, the algo-
rithm must converge, and the average population fitness
increase from one generation to the next. The consequence
for a finite population simple genetic algorithm (SGA) is
that the expected population fitness increases from one gen-
eration to the next. Moreover, the only stable fixed point of
the expected next population operator corresponds to the

population consisting entirely of the optimal string. This
result is then extended by way of a perturbation argument
to allow nonzero mutation. Supposing that algorithm is
searching a point x, which can make continuous function
of f to achieve its minimum. The necessary and sufficient
condition of extreme point is that this point gradient is 0,
that is, Vf(x) =0.

For self-mapping g: R" — R", we say, x € R" is a
fixed point of g if g(x) = x, then we can convert the solution
of zero point problems to fixed point ones of function g(x)

=x+V f(x).
3. Subdivision and Relative Coordinates

Supposing that definition domain of f(x;,x,) is that a <x,
<b,c<x, <d and dividing the domain into many squares
with two groups of straight lines of {x, = mh;}, {x, = mh;}
in which m is a not negative integer and h; is a positive
quantity relating to precision of the problem; as a result,
we can code each point of intersection as x; = a + nh;, x, =
¢+ kh; where n, k are not negative integers, so (n, k) is called
the relative coordinates of points. Consequently, by chang-
ing n, k relative coordinates of each point in search space is
determined.

Supposing that x is a vertex of a square that will be
labeled as the following [23]:

0, g(x))—x, 20,9(x,) —x, 20,
g(x1) —x; <0, g(x,) —x, 20, (1)
2, g(%x;) =%, <0.

The square with all different kinds of integer label is
called a completely labeled unite, when h; — 0 within iter-
ation stages, vertices of that square approximately converge
to one point which is a fixed point.

4. Mutation Operator

For each point coded (n, k), the GA is trying to improve it to
reach optimal solution by mutation operator searching all
points surrounding it in certain step determined by h,,;.
Thus, mutation probability p,, = 1.

For instance, (n,k) in P(0), initial population, address-
ing (x, + nh;,x, + kh;) will be changed as (x; + a, x, + f3)
& B €{0,+h;,,}. Subsequently, the algorithm saves the
best-mutated individual among all possible offspring. There-
fore, this operator produces new population located on
intersection of the next grid. Because of this, coming squares
are specified to evaluate and label. Furthermore, the next
generation is producing from the previous one. For instance,
in example 1, we show that the operator mutates (-2, 2) to
(-2, 0), (2, 0), and (0, 0) in the given scope, then (0, 0) is
selected as the best offspring.

5. The Improved Genetic Algorithm

This improved algorithm makes grid in given scope and
encodes each intersection by integer while it starts from



the lowest point of the domain. After calculating fitness of
each point, it generates the best offspring and computes inte-
ger label of the last population for every square. When it
found the square labeled completely, it subdivides them in
order to seek the solution closely (the process of this method
is shown in Figure 1). As following, we demonstrate the per-
formance of the improved algorithm by different examples
and show how it can categorize fixed points.

6. Computational Experiments

In this section, we present the computational results of the
proposed algorithm for solving some nonlinear numerical
functions.

6.1. Test Problem 1. This function is a continuous and unim-
odal function taken from [32]. The optimization problem is

min f(x;,%,) =x,% + (%, - 0.4)* =2 <x;<2,i=1,2. (2)

The function achieves the minimum when x; =0 and
x, =0.4. In this example, h; € {4,2,1,0.5,0.25}, mutation
probability p, =1. The completely label square obtains
through the iteration, the search scope for both x, and x,
are (-2, 2), (0, 2), (0, 1), and finally (0, 0.5), respectively (as
show from Figures 2-5). During iterations, squares are con-
tracting to (0, 0.5) gradually, if we started from h, = 1, we got
closer answer, i.e., (0, 0.4).

6.2. Test Problem 2. The optimization problem considered
here is also a nonlinear function problem taken from [32].
The problem is

min f(x;,x,)=x"+x"-1<x<1,i=1,2. (3)

The best obtained solution is x, = -1 and x, = -1 with
f(x,x,) ==2. In this example, h; € {2,1,0.5} mutation
probability p, =1. The completely label square obtains
through the iteration, the search scope for both x; and x,
are (-1, 1), (-1, 0), and (-1, -0.5).

During iterations, squares are contracting to (-1, -1)
gradually, which is a boundary point for this increasing
function (as show from Figures 6-8).

6.3. Test Problem 3. In this problem, we choose a nonlinear
optimization problem with two continuous variables. It
was also taken from [32].

, 4 T .
min f(x,, x,) = cos %1~ sin Ex2—7<xi<7,z= 1,2. (4)

This multimodal function has many local optimal in its
domain. The GA keeps each local and global optimal one
found in squares labeled completely. In this example, for h;
€{6,3,1.5,0.75} while mutation probability p, =1, as
shown in figure 7, these points can be gotten. Three follow-
ing generation have been shown in the first quarter of the
coordinates system (see Figures 9-11).
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7. Conclusion

In this paper, we show that labeling technique and the muta-
tion operator producing later generation on the next gridd-
ing points have some advantages. First of all, making
network on search space provides integer-coding system that
simplifies locating of all individuals in the future and present
generation, so we can easily label each vertex of square and
investigate the possibility of finding every optimal solution.
Moreover, the algorithm is capable of starting from a fixed
point located in domain boundary; hence, it overcomes
weakness of man-made initial point. Second, finding square
completely labeled avoids missing local answers because the
algorithm focuses on such squares when it is trying to seek
global minimum inside of not entirely labeled squares or in
other completely ones. Third, this mutation operator works
systematically in order to estimate better solution. In other
words, it does not work so randomly that loses possible fixed
points in an area as it is clear in Figure 3. In addition, the
algorithm moves toward obtaining the best solution among
likely offspring. Consequently, it performs more quickly
and effectively because it eliminates unneeded iterations
and calculations. Finally, it categorizes different fixed points
at the end of its run.
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The aim of the current article is to characterize and to prove the stability of multi-Euler-Lagrange quadratic mappings. In other
words, it reduces a system of equations defining the multi-Euler-Lagrange quadratic mappings to an equation, say, the
multi-Euler-Lagrange quadratic functional equation. Moreover, some results corresponding to known stability (Hyers,
Rassias, and Gavruta) outcomes regarding the multi-Euler-Lagrange quadratic functional equation are presented in quasi-
B-normed and Banach spaces by using the fixed point methods. Lastly, an example for the nonstable multi-Euler-

Lagrange quadratic functional equation is indicated.

1. Introduction

The celebrated Ulam challenge [1] arises from this question
that how we can find an exact solution near to an approxi-
mate solution of an equation. This phenomenon of mathe-
matics is called the stability of functional equations which
has many applications in nonlinear analysis. The mentioned
question has been partially solved by Hyers [2], Aoki [3], and
Rassias [4] for the linear, additive, and linear (unbounded
Cauchy difference) mappings, respectively. Next, many
Hyers-Ulam stability problems for miscellaneous functional
equations were studied by authors in the spirit of Rassias
approach (see for instance [5-14] and other resources).

During the last two decades, stability problems for
multivariable mappings were studied and extended by a
number of authors. One of the mappings is the multiquadra-
tic mapping, studied, for example, in [15-17]. Recall that a
multivariable mapping f : V" — W is said to be multiqua-
dratic [11] if it fulfills the famous quadratic equation

Q(u+v)+Q(u—-v)=2Q(u) +2Q(v), (1)

in each component. Note that equation (1) is a suitable tool
for obtaining some characterizations in the setting of inner
product spaces and in fact plays a prominent role. In other
words, any square norm on an inner product space fulfills

2 2 2 2
([t + V|7 + [l = v = 2f [+ []v]I % (2)

which is called the parallelogram equality. However, some
functional equations have been applied to characterize inner
product spaces and are available in [18, 19] and references
therein. In addition, the quadratic functional equation was
used to characterize inner product spaces in [20, 21].

A lot of information about equation (1) and some equa-
tions which are equivalent to it (in particular, about their
solutions and stability) and more applications can be found
for instance in [22-24]. Park was the first author who stud-
ied the stability of multiquadratic in the setting of Banach
algebras [16]. After that, some authors introduced various
versions of multiquadratic mappings and investigated the
Hyers-Ulam stability of such mappings in Banach spaces
and non-Archimedean spaces; these results are available
for instance in [15, 25-29]. As for an unification of the
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multiquadratic mappings, Zhao et al. [17] were the first
authors who described the structure of multiquadratic map-
pings, and in fact, they showed that f : V" — W is a multi-
quadratic mapping if and only if the equation

Z f(Vul’ '“’Vnin) 3)

iy €412}

Z f(v, +tvy)=2"

te{-1,1}"

holds, where v; = (xy;, ---, v,;) € V" and i € {1, 2}.

Rassias [30] introduced the following notion of a gener-
alized Euler-Lagrange-type quadratic mapping and investi-
gated its generalized stability.

Definition 1. Suppose that V and W are linear spaces. A
nonlinear mapping Q : V — W satisfying the functional
equation

Q(au+bv) + Qbu—av) = (a* +0°) [Qu) + [V)]  (4)

is called 2-dimensional quadratic, where u, v € V and a, b are
the fixed reals with a? + b* > 1.

It is easily seen that the Euler-Lagrange equality
(au+bv)* + (bu - av)’ = (a + b7) (u* +1?) (5)

is valid for Q, defined in Definition 1 with any fixed reals
a, b, and hence, (4) is also called Euler-Lagrange quadratic
functional equation; we refer to [31] for Euler-Lagrange type
cubic functional equation and its stability. Note that equa-
tion (4) is a general form of (1) in the case that a=b=1,
and so the function Q(v)=1? satisfies (4). Next, Xu [32]
extended the definition above to several variable mappings
and presented the next definition.

Definition 2. Let V and W be vector spaces. A mapping
f: V" — W is said to be the n -Euler-Lagrange quadratic
or multi-Euler-Lagrange quadratic if the mapping

Vo f(Ve s Vi Vs Vigs o V) (6)
satisfies (4), for all i€ {1,---,n} and all v;€ V.

In this article, we include a characterization of multi-
Euler-Lagrange quadratic mappings and show that every
multi-Euler-Lagrange quadratic mapping can be described
as an equation (namely, the multi-Euler-Lagrange quadratic
equation). Under the quadratic condition (2-power condi-
tion) in each variable, every multivariable mappings satisfy-
ing the mentioned earlier equation is multi-Euler-Lagrange
quadratic (Theorem 5). Furthermore, we bring two Hyers-
Ulam stability results for multi-Euler-Lagrange quadratic
functional equations in quasi-f-normed and Banach spaces
which their proof is based according to some known fixed
point methods; see [33, 34] for more stability results in
quasi- 3-Banach spaces setting. Finally, we indicate an exam-
ple to show that the multi-Euler-Lagrange quadratic func-
tional equation is nonstable in the case of singularity.
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2. Characterization of Multi-Euler-Lagrange
Quadratic Mappings

Throughout, we consider the following known notations:

(i) IN=the set of all natural numbers
(ii) Z= the set of all integer numbers
(iii) Q= the set of all rational numbers
(iv) N, =Nu {0}

(v) R, :=[0,00)

Let V be a linear space over Q. Given n €N, p e N,
s=(s;,s,)€Q" and v= (v}, -, v,) € V". We write sv:=
(syvy, -+ s,v,) and pv:= (pv,, ---, pv,) which belong to V".
Here and subsequently, V is linear space over Q and v} =
(Vi1» V> -+ vy ) € VP, in which i€ {1,2}. Furthermore, for
given the fixed elements a! = (a;;, a;5, -+, a;,) € Z" such that
a;j #0,+1, where i=1,2 and j=1,---,n (here and the rest
of the paper). We will write a} and v simply a; and v;,
respectively, when no confusion can arise.

For v;,v, € V" and a,, a, € Z", set

2
+1 _
A=) ayvy;

i=1

2

Afl = Z (_1)H1a3—i,jvij’ (je{l, - n}).
i=1
In continuation, we show that the equation

f(Ail’ ...’A;n>

t, ot €{=1,+1}

n
_ 2 2
= H(“U + a2j> D
j=1

Ly l,€{1,2}

(8)
f(vlll’ vl,,n)

is a general form of (4) for the multivariable case. In other
words, we prove that every multi-Euler-Lagrange quadratic
mapping fulfills (1) and vice versa. For doing this, we need
some definitions and the upcoming lemma.

Definition 3. Let V and W be vector spaces over Q and
f: V" — W be a multivariable mapping.

(i) We say f satisfies (has) the 2-power (quadratic) con-
dition in the jth component if

F (X0 %0 @7 %) Xy 05 X,

= (a*)2f(x1) ey j—l’xj’ xj+1’ .-.’xn),

()

for all x;, -+, x, € V, where a” € {a;, a,;} for all j€
{1, e n}

(i) If f(xy, -+ x,) =0 when the fixed x; is zero, then
we say that f has zero functional equation in the
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jth variable. Moreover, if f(x;,-:+, x,) =
(%), -+, x,) € V" with at least one x;

j
say f has zero functional equation

0 for any
is zero, we

We consider two hypotheses as follows:
(H1) f has the quadratic condition in all variables.
(H2) f has zero functional equation.

Remark 4. It is clear that if a mapping f : V" — W satisfies
the quadratic condition in the jth variable, then it has zero
functional equation in the same variable. Therefore, if f
fulfills (H1), then it satisfies (H2).

Theorem 5. For a mapping f : V' — W, the following
assertions are equivalent:

(i) f is multi-Euler-Lagrange quadratic
(ii) f fulfills (8) and H1

Proof. (i) = (ii) In view of [30], one can show that f satisfies
H1. By induction on n, we now proceed the rest of this
implication so that f satisfies equation (8). Obviously, f sat-
isfies equation (4) for n = 1. The induction hypothesis is

Z f(Ail)...’A;n)

ot €{~1,+1}

n
- H(“@*“Z’) 2 S
j=1 ,

L,l,e{1,2}

(10)

Then

()

te sty €11}

= z f(Ail»' AZL)

teent, €{-11}

+ z f( n+1>

thent,€{-1,1}

_ 2 2 t t,
= (“1,n+1 + a2,n+1) z f(Al s A Vl,n+1)
teenst, €{=1L1}

* Z f( n’v2n+l)> (11)

tpeot, €{=11}
_ (2 2 2, 2
= (1 + @5 011) (“1;‘ + “2]')
=1

( z f<V111>""Vlnn>V1,n+1)

I d,€{1,2}

)

Iyl €{1,2}

f(Vllp SV Vz,n+1))

n+1

_ 2 2
=11 (“lj + “2})

=1 AR

Z f(vlll).”’vln+l>n+l)'

hoe{12}

(i) = (i) Let j € {1,---,n} be arbitrary and fixed. Taking
vy =0forall ke {1, -, n}\ {j} in (8) and applying Remark
4, the left side will be as follows:

+1
f(au"lp T al,j—lvl,j—l’Aj > A1 i1V 5 alnvln>

+1
(“21"11) by Vi AT Gy Vs T “2n"1n>
Ay Vi, o 0V Al a, v sy, V
1 75 A V- A 5 A Ve s Vi
Ay Vigs s Gy i1V At a, v s,V
2011 7 g1 VLjm1 A 5 A Ve T G2p Vi

2 2 2 2 2 2 2 2
= auanauazz 141,192,197, j+1%,501 T A1nan

+1
’ [f("n’ T VLj—l’Aj > Vi 5 V1n>
-1
+f(vll’ VL AT Vs V1n)] .
(12)

Once again, the same replacements convert the right side
of (8) to

=
—

(afk + agk) (a%j + a%j) Lf (Vi Vijon Vip Vi =+ Vin)

T

»
&

+f (s V1) ]

> V1j—1 V2jp Vijrs

(13)

It follows from (12) and (13) that f is Euler-Lagrange
(a1> a,j)-quadratic in the jth component, and this com-
pletes the proof. O

We should note that Theorem 5 necessitates that
the mapping f : R" — R defined through f(x, -, x,) =
CH;’:liZ» fulfills equation (8). Hence, this equation can

be called the multi-Euler-Lagrange quadratic functional
equation.

3. Stability and Nonstability Results

The goals of this section are to prove miscellaneous result
stability of multi-Euler-Lagrange quadratic equation (14)
such as Hyers and Gavruta stability. Here, we mention a

special case of equation (8) in which a; =(a,---,a) and
a,=(b,--+,b), and so (8) converts to
S ()
ty-t,€{(ab),(ba)} (14)
2 2\
=(a"+P) Fu Vi)
Lyeol,€{1,2}
in which
a,b ba
A; ) = avy; + by, andA; ) = bvy; —avy;, (15)



and m=a®+b* (used here and from now on) for all je
{1’ ceey n}'

For a set E, a function d : E x E — [0,00] is said to be a
generalized metric on E provided that d fulfills the state-
ments below, for all u, v, w € E.

(i) d(u,v)=0ifand only if u=v
(i) d(u,v)=d(v,u)
(ili) d(u, w) <d(u,v) +d(v,w)

The next theorem from [35] is one of fundamental
results in fixed point theory and useful to achieve our first
purpose in this section.

Theorem 6. Suppose that (,d) is a complete generalized
metric space and J : Q— Q is a mapping such that its
Lipschitz constant is L < 1. Then, for each element x € (),
one of following cases can be happen:

(i) d(F"x, F"'x) = coforalln>0or

(ii) There is an n, €N such that d(#"x, F""'x) < oo
for all n>n,, and the sequence { F"x} is conver-
gent to a fixed point x* of F which belongs to the
set A={xeQ:d(F"x,x)<c0}. Moreover, d(x,x*)
<(1/(1-L))d(x, fx) forallx € A

In the sequel, for any mapping f : V' — W, we define
the operator Df : V" x V" — W via

Df (v, v,) = f(A% Ai’)
te-t,€{(ab),(ba)} (16)
_mn Z f(VlII;'“’ vlnﬂ)’
I, l,€{1,2}

for the fixed nonzero integers a, b where A](-“’b) and A;bﬂ) are
defined in (15) forall j=1,---, n.

In the incoming stability result for equation (14), |Df (v,
v,)|| is controlled by a small positive number . We recall that

fori=1,2, we consider v;= (v;, -, v;,) € V".

Theorem 7. Given € > 0. Let V and W be a linear space and a
complete normed space, respectively. Suppose that a mapping
f V" — W fulfilling H2 and

IDf (v vs)l <& (17)

for all v,,v,eV". Then, there exists a unique solution
Q:V"— W of (14) such that

Ifv) - el < —Z—e (18)
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for all veV". In addition,

6(v) = lim <mi2) lf(mlv>, (19)

I—00

for all veV"

Proof. Putting v, =0 in (17) and using the assumption H2,
we have

<g (20)

[F) = mfin)

for all v, € V", where

fv)= f(alll"u» T alnnvln)' (21)

ay 15y, €{ab}
Set v, = v for simply and for the rest of the proof, all the
equations and inequalities are valid for all ve V". Once

more, by replacing (v,,v,) instead of (av,,bv,) = (av, bv)
in (17), we get

Hf(mv) - m"f(v) H <e. (22)

Multiplying both sides of (20) by m" and plugging to
(22), we obtain

1 (mv) = )| < || (mv) = mF )|

+ m”f(v) - mz”f(v) H (23)
< (m"+1)g,
and thus
||f(mv) - mZ"f(v)H <(m"+1)e. (24)

Let Q:={f: V" — W|f satisfies (H2)}. For each f,
g €Q, we define the function d on Q as follows:

d(g, h) =inf {C € [0,00]: |g(v) ~h(v)]

(25)
<Cype forallve V']

Similar to the proof of ([36], Theorem 2.2), it is
seen that (Q,d) is a complete generalized metric space.
Define 7 : O — Q through

1

mZn

FFW)= —f(mv), (26)

for all ve V". Take g,h€Q and C,, € [0,00] with d(g,
h) <C,j. Then, ||g(v) —h(v)|| < C,ue, and hence

1

m2n

[79(v) = Fh(v)|| < —5 [|g(mv) = h(mv)| < miz Cone:

(27)
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Therefore, d(7g, jh)s(l/mz”)cg’h. This shows that
d(F7g, Fh) < (1/m*")d(g,h) and in fact # is a strictly
contractive operator such that its Lipschitz is 1/m". It
concludes from (24) that

1750) =1 | ) )| s e (o
Hence,
a7f.f)< " <oo (29)

An application of Theorem 6 for the space (,d), the
operator 7, n,=0, and x=f, shows that the sequence
(J'f) e is convergent in (Q,d) and its limit; @ is a fixed
point of Z. Indeed, @(v) =lim,__, 7'f(v), and

1

Qv)= por Q(mv), (ve V"). (30)

In other words, by induction on /, it is easily verified that
for each v € V", we have

7507 (1) £ (), 31

and (19) follows. Note that clearly f € A, and hence, part (iii)
of Theorem 6 and (29) necessitate that

a7 L (3

m2n —1

A O = 15y

which proves (18). In addition,

1021 i, (1) [or ()|

1\!
< lim< 2)820,
I—s00 \ Mm"

for all v;, v, € V". The last relation shows that DQ(v,, v,) =0
for all v;, v, € V" and means that @ fulfills (14). Let us finally
suppose that Q : V" — W is another solution of equation
(14) satisfies H2 such that inequality (18) holds. Then, Q
satisfies (30), and so it is a fixed point of #. Furthermore,
by (18), we get

m"+1
d(f’D)smT

[ <0 (34)

and consequently, 2 € A. It now follows from part (ii) of
Theorem 6 that Q = @. This finishes the proof. O

Remark 8. In the proof of Theorem 7, if we put v; =0, we
can not reach to (20) unless it is assumed that f is even in

each component. Recall from [33] that f : V" — W is even
in the kth component if

5 X) =S (X1 00 Xpops X Xpey15 7705 %) -

(35)

F (X050 X=X Xy

In other words, this condition is redundant, and we do
not need it.

Hereafter, we concentrate our mind on the quasi-[p’—
normed spaces.

Definition 9. Let 3 be a fix real number with 0 < <1 and
K denote either R or C. Suppose that E is a vector space
over [K. A quasi-S-norm is a real-valued function on E ful-
filling the next conditions for all x,y € E and t € K.

(i) ||x|| = 0 and moreover ||x||=0< x=0
Gii) el = 1))

(ili) There exists a real number M > 1 such that ||x + y||
< M([[x[| + [Iy1)

When f3 =1, the norm above is a quasinorm. Recall that
M is the modulus of concavity of the norm ||-||. Moreover, if
Il is a quasi-B-norm on E, the pair (E, ||-||) is said to be a
quasi- 3 -normed space. Similar to normed spaces, a com-
plete quasi-B-normed space is called a quasi-f-Banach
space. For 0<p <1, if ||x+ y||P < [|x]|f + ||ly||?, for all x,y €
E, then the quasi-f-norm ||-|| is called a (3, p)-norm. In this
case, every quasi-f3-Banach space is said to be a (f5,p)-
Banach space. A result of the Aoki-Rolewicz theorem [37]
shows that every quasinorm can be equivalent to a p-norm,
for some p.

A main tool of this section is the upcoming fixed point
lemma which has been proved in ([38], Lemma 3.1).

Lemma 10. Given the fixed je {-1,1} and a,t € N with a
> 2. Suppose that V is a linear space and W is a (f3,p)-
Banach space with (B, p)-norm ||-||. If ¢ : V— [0,00) is
a function such that there exists an L <1 with ¢(a/v) <L
a'Pp(v) forallve Vand g : V — W is a mapping satisfying

|g(av) - a'g(W)[],, < (), (36)

for all v € V, then there exists a uniquely determined mapping
G : V— W such that G(av) = a'G(v) and

1

m(ﬁ(v), (veV). (37)

19(v) = Gl <
Furthermore, for each v eV, we have G(v)=Ilim,__,
(g(a'v)ia™).

In the next theorem, we prove the Gévruta stability of
(14) in quasi-B-normed spaces.



Theorem 11. Given j€ {-1, 1}. Let V be a vector space over
Q and W be a (8, p) -Banach space. Assume that ¢ : V" x
V" — R, is a function such that ¢(miv,, miv,) <m?FLep
(v, v,) for all v;,v,€ V", where 0<L<1. If a mapping
f: V" — W satisfying H2 and

IDf(vis va)llw S @(visv2)s (vipv2 € V), (38)

then there is a unique solution @ : V" — W of (14) so that

) = @0l S [ g1 (€ V) (39
where
P(v)=M [m"ﬁq)(v, 0) + g(av, bv) |, (40)

whereas M is the modulus of concavity of the norm ||-|| .

Proof. Setting v, =0 in (38) and applying H2, we have
[F@)=m')| <o(0), (41)

for all v, :=ve V", where f(v)=f(v,) is defined in (21).
Interchanging (v,,v,) into (av, bv,) = (av, bv) in (38), we
obtain

H f(mv) = m"f(v) H < g(av, bv), (42)

w

for all v € V". Multiplying both sides of (41) by m"f, we get
|mFw) - mfw)| <m0y (43)

for all ve V". It follows from (42), (43), and part (iii) of
Definition 9 that

|f (mv) =m*f ()], <G(v), (44)

for all v € V", where ¢(v) is defined in (40). By Lemma 10,
there exists a mapping @ : V" — W which is unique such
that @(mv) = m*"@(v) and

)= @0l < PO €V (45)

Lastly, we show that @ fulfilling (14). Note that Lemma
10 implies that for each ve V", @(v)=lim, _ (f(m'v)/
m*""). For each v,, v, € V" and I € N, by (38), we find

Df (mi'v,, ml'v,)

~2njIp jl jl
<
o <m go(m v, My,

w

, N
< m 2P (mz"JﬁL> @(v1,v5)

(46)

= LI‘P(Vp V).
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Taking I— oo in the last relation, we observe
that D@(v,,v,)=0 for all v;,v, € V", and therefore, @
fulfills (14). O

The following corollary is a consequence of Theorem 11
when the norm of [|Df(v,,v,)|| is controlled by sum of
variable norms of v; and v, with positive powers.

Corollary 12. Let V be a quasi-a-normed space with quasi-a-
norm ||-||,, and W be a (f,p)-Banach space with (j3,p)-
norm ||-||y,. Let @ and A be positive numbers with A # 2n

(Bla). If a mapping f : V" — W satisfying

2 n

IDf (1> vy <6 D" D ully (47)

k=11=1

for all v;,v, € V", then there exists a unique solution @ :
V" — W of (14) such that

1) - @)y
oA n N B
W; HVIZHV’ Ae (0,2;1&),
<
txAAe n . ﬁ
m2nB leA mZnﬁ Z||Vll||v> € 2715,00 )

for all v=v, € V", where A=M[m" +|a|" +|b|*"].

Proof. Taking ¢(vy,v,) :GZi:IZ;’:IHVle"\,, the result con-
cludes from Theorem 11. O

We bring an elementary lemma without proof as follows.

Lemma 13. If a function g: R — R is a continuous and
satisfies (1), then it has the form g(x)=cx?, for all x € R,
where ¢ = g(1).

It is easily seen that when a=b=1 in (14), then this
equation and (3) are the same. In the upcoming result, we
extend Lemma 13 for multivariable functions. In fact, we

use it to make a counterexample.

Proposition 14. Suppose that f : R" — R is a continuous
which satisfies (3). Then, f has the form

flrp -

where c is a constant in R.

ST =t (rp e, €R), o (49)

Proof. We first recall from Theorem 2 in [17] that f is a n-
quadratic mapping. By induction on n, we proceed the
proof. For n=1, (49) holds by Lemma 13. Assume that
(49) is valid for a n € N, and f : R"! — R is a continuous
(n + 1)-quadratic function. Fix the variables r,, ---, 7, in R.
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Then, the function r— f(ry, -+, r,, ) is quadratic and con-
tinuous, and hence, by Lemma 13, f has the form
flry, -t r)=cr’, (reR), (50)

where ¢ is a constant in R. One should note that ¢ depends
onry, -, r,, and hence

c=c(ry, 5 1,). (51)
Letting » =1 in (50) and applying (51), we have

c=c(rynry) = f(ry ey 1) (52)
It is known that f is (n+1)-quadratic and ¢ is an

n-quadratic function. Therefore, by the induction assump-

tion, there exists a real number ¢, so that

ST =Gl e T (53)

c=c(ry, "

It now follows from (50) and (53) that (49) holds for n + 1.
Here, we present a nonstable example for the multi-
quadratic mappings on R" (see [8]). Indeed, for the case
a=fB=a=b=1, we show that the assumption A #2n can
not be eliminated in Corollary 12. O

Example 1. Given n€ N and &> 0. Set u:=((2%" —1)/2*
(2" +4"))8. The function ¥ : R" — R is defined via

n ) '
yHrj,forall r;with |rj’ <1,
y(rponr,) =9 (54)

, otherwise.

Consider f : R" — R as a function defined by
=) 2y
v/ r s .-.,
fryer) =Y 122nl ") , (rjeR). (55)

Obviously, f is a nonnegative function and moreover
is an even function in all components. Additionally, v is
bounded by p and continuous. Since f is a uniformly con-
vergent series of continuous functions, it is continuous
and bounded. In other words, we get f(ry, -, r,) < (2*"/
(22" —1))u for all (ry,---,r,) € R". For i€ {1,2}, take x; =
(%1, *++» X, ). We shall prove that

IDf (x1, %) <8 )

for all x;,x, € R". Clearly, (56) holds for x;
X1, %, € R" with

=x,=0. Let

2 n 1
sz?j"<27- (57)

=1 j=1

-

Inequality (57) necessitates that there is N € N such that

2 n

1 .1
22n(N+1) < Z leln < 22nN ’ (58)
=1 j=1

and so x' < Y2, Y k2 < 1/22"™ . Tt follows the last relation
that 2N|x |<1 for all i=1,2 and j=1,---,n. Hence, 2N"!
x| <1. Let y,y,€{x;li=1,2,j=1,---,n}. Then 2!
ly; £ ¥,| < 1. It is known that y is multiquadratic function

n (-1,1)", and hence, Dy(2'x,,2'x,) =0 for all I € {0, 1,
2,---, N —1}. Now, the last equality and relation (58) imply
that

’Df 2 x,, 2! x2

Dl// 2x,2x
YiX; 1x Z| 1 2)’
i=1 L=

22”121 12] 1% l]
Z u(2" +4”)
- 22n I+N > IZ] lx

g S L (59)
<p(2 +4);W

2n

22 1
=u(2" +4") " =4,
2% -1

<u(2" +4m)2%"

for all x;,x, € R". Hence, (56) is valid for case (57). If
Zlez] x5 21/2%", then
Df (2'x,, 2'x 228
| fz( = 22)‘ <2 u(2" + 4" =94. (60)
DIEPNEE 7

22—

Therefore, f satisfies in (56) for all x;,x, € R". Assume
that there exists a number b € [0,00) and a multiquadratic
function @ : R" — R for which the inequality |f(r,---,

rp) = @y, r,)| <PITL,r is valid for all (ry,--r,) €
R". An application of Proposition 14 shows that there is a

constant ¢ € R such that @(r,, -+, r,,) = c[[,r?, and hence

j=1"j°
f(ryr,) < (|| +b) Hr (ry,--1,) €R"). (61)

Furthermore, choose N €N such that Nu>|c|+b.
Take r = (ry, -+, 7,) € R" in which r; € (0, 1/2V7") for all j €
{1,---,n}, then 21rj €(0,1) for all I=0,1,---, N — 1. There-
fore

_ iw(zlrl,...,zlrz) N Nzlyzml‘[] "

22nl

flronr,)

(62)

which is a contradiction with (61).



We close the paper by an alternative stability result for
equation (14) as follows.

Corollary 15. Let V be a quasi-a-normed space with quasi-a-
norm ||||, and W be a (3, p)-Banach space with (3, p)-norm
Il Suppose A;>0 for ie{1,2} and 1€ {l,---,n} with
A=A"+ A"+ 2n(Pla), where A" =YL Ay and A* =YL Ay
If a mapping f : V" — W fulfilling the inequality

2 n

A
IDf (V1> v2)|lw <0 H vallv's (63)

i=1 |=1

for all v,,v, € V", then there exists a unique solution @ :
V" — W of (14) so that

1F(v) - @(vmw
21 B
mZnﬁ mzxAH vullv"s Ae <0,2na),
<
aAQe 2 ﬁ
mZnﬁ mor — mZnﬁ H ” IZH , e (Zna,oo>,

(64)
for all v=v, € V", where Q= M]|a|** |b|**

Proof. Setting ¢(v,,v,) = QHfZIHLHviﬂK\,” in Theorem 11,
one can obtain the desired results. O

4. Conclusion

In this paper, by using Euler-Lagrange type quadratic func-
tional equations, we have defined the multi-Euler-Lagrange
quadratic mappings and have studied the structure of such
mappings. Indeed, we have described the multi-Euler-
Lagrange quadratic mapping as an equation. In continua-
tion, we have shown that some fixed point theorems can
be applied to prove the Hyers-Ulam stability version of
multi-Euler-Lagrange quadratic functional equations in the
setting of quasi-B-normed and Banach spaces. In the last
part, we have brought an example which shows that such
functional equations can be nonstable in the some cases.

The current work provides guidelines for further
research and proposals for new directions and open prob-
lems with relevant discussions. Here, we give some questions
and information on the connections between the fixed point
theory and the Hyers-Ulam stability.

(1) Which equation can describe the multi-Euler-
Lagrange cubic mappings defined in [31]? Are these
mappings stable on various Banach spaces? Can the
known fixed point methods be useful to prove their
Hyers-Ulam stability?

(2) Definition of the multiadditive-quartic mappings by
using [14] as a system of n functional equations.
The characterization of such mappings and discus-
sion about their stability via a fixed point approach

Journal of Function Spaces

(3) Applying the functional equations indicated in
[5, 12, 13, 34], we can generalize such mappings
and equations to multiple variables
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The object of this paper is to establish a new model with strategy transformational barriers for a class of generalized multileader
multifollower multiple objective games (GMLMFMOG) and further deduce some new results of the weakly Pareto-Nash
equilibrium (WPNE) with strategy transformational barriers for the GMLMFMOG. First, we investigate the existence of the
WPNE with strategy transformational barriers for the GMLMFMOG by using the Kakutani-Fan-Glicksberg fixed point theory.
Next, we study the generic stability of the GMLMFMOG with strategy transformational barriers in Hausdorff space. Finally, we
obtain that the majority of the WPNE with strategy transformational barriers for the GMLMFMOG are essential on the
meaning of Baire’s category. In addition, we demonstrate that there is at least an essential component for the GMLMFMOG

with strategy transformational barriers.

1. Introduction

Barriers, such as market competition [1], the Lévy risk pro-
cess [2, 3], the optimal dividend problem [4], and the mar-
keting ethics of medical schemes [5], are common in the
field of economics. Transformational barriers, an important
aspect of barriers, represent many factors that make the
behaviour of shift strategy more difficult or costly for con-
sumers. Furthermore, the payoff function with the strategy
transformational barriers may be an abstract partial order
rather than a numerical order. Game theory is an important
tool for studying the interactions among the decision-
making behaviours of players in many fields, such as eco-
nomics, political science, psychology, and biology. Glicks-
berg [6] and Mas-Colell [7] provided a maximum element
method to analyze the decision-making behaviours of
players with the strategy transformational barriers. There-
fore, the payoft function with strategy transformational bar-
riers was introduced into game model to further study the
decision-making behaviour of players based on the fact that
there is a cost for players to change their strategies in practi-
cal life.

Fort [8] first presented the essential fixed point in 1950.
Wu and Jiang [9] first provided the concept of essential equi-
librium for a finite game through using fixed point theory
for continuous mapping. Afterwards, Yu and Luo and Yu
[10, 11] extended previous work to the general n-person
noncooperative game, generalized game, or other games by
using entirely different approaches. Recently, Scalzo [12,
13] and Carbonell-Nicolau and Carbonell-Nicolau and
Wohl [14, 15] provided some extensions about discontinu-
ous payoffs and further studied the essential stability of dis-
continuous games. Yang and Zhang [16] proved some
existence and essential stability results of cooperative equi-
librium for population games. We can also refer to [17-20]
for more details on the essential stability. Hence, the essen-
tial stability has become one of the important topics in non-
linear analysis and game theory.

The weakly Pareto-Nash equilibrium (WPNE) of the
multiple objective game was proposed by Shapley and Rigby
[21]. Pang and Fukushima [22] studied the existence of a
type of multileader multifollower multiobjective game by
using quasivariational inequalities. Sherali [23] obtained
the existence and uniqueness results of a WPNE regarding
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the multileader multifollower game. Kulkarni and Shanbhag
[24] considered multileader multifollower game with
shared-constraint approach to obtain local Nash equilibrium
(NE), Nash B-stationary point, and Nash strong-stationary
point. Yu and Wang [25] verified some existence theorems
for 2-leader multifollower game in locally convex topological
space. Yang and Ju [26] obtained some consequences on
existence and stability of solution for multileader multifol-
lower game. Jia et al. [27] provided the existence and stabil-
ity of a WPNE for the generalized multileader multifollower
multiple objective game (GMLMFMOG). Inspired by the
above research work, this paper establishes a new general-
ized multiobjective multileader multifollower model with
strategy transformational barriers by considering the influ-
ence of strategy transformational barriers and analyzes the
strategy selection of the players. The leaders consider multi-
ple objectives when selecting their strategies. The followers
also consider multiple objectives when selecting their strate-
gies with complete knowledge and make optimal responses
to the leaders’ strategies. The goals of all players are to max-
imize their own incomes. Furthermore, the existence of the
WPNE with strategy transformational barriers of a
GMLMFMOG is proved, and the generic stability of the
GMLMFMOG with strategy transformational barriers is
obtained. We prove that the solution set of the
GMLMFMOG with the strategy transformational barriers
is essential and that there is at least one essential component
of the WPNE with the strategy transformational barriers
under the meaning of the Baire’s category.

This paper is outlined as follows. We present necessary
preliminaries and the GMLMFMOG model with strategy
transformational barriers in Section 2. In Section 3, we provide
the existence of the WPNE with the strategy transformational
barriers of the GMLMFMOG. In Section 4, we investigate
some generic stability results of the GMLMFMOG with strat-
egy transformational barriers. In Section 5, we show that the
majority of WPNE with strategy transformational barriers of
the GMLMFMOG are essential, and then there is at least an
essential component. Finally, some brief and concise conclu-
sions are given.

2. Preliminaries and Model

2.1. Preliminaries. In this paragraph, we introduce some sub-
stantial definitions, lemmas, and game models.

Definition 1 (see [28]). Suppose that o/ is not empty subset
of Hausdorft topological vector space (HTVS) F, LCF is
not empty convex cone, and a vector-valued correspondence
is denoted by & : o/ — F. We define & is L -usc (resp. L
-Isc) at a, € o if, for each open neighbourhood V' of the 0
element in F, there exists an open neighbourhood 6(a,) of
a, such that 8(a) € S(ay) + V —L (resp. S(a) € S(a,)+V
+L), Va € O(a,). Furthermore, we say & is L -usc (resp. L
-Isc) on ¢, if 8 is L -usc (resp. L -Isc) for all a € of. We call
& is L -continuous on &, if & is L -usc and L -Isc on &. &
is closed if Graph(8)={(a,f) e & x F|f € S(a)} is closed
on & x F.
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Definition 2 (see [29]). Let &/ and 9B be two HTVSs, L ¢ %
be a closed convex pointed cone, int L # &, D C o/ be not
empty convex subset, and & : D — 9 be a vector-valued
correspondence. If, Va,,a, € D and 6 € (0,1), §(0a; + (1 -
0)a,) — [08(a;) + (1 - 0)S(a,)] ¢ —int L holds, then & is L-
concave, and —& is L- convex. If, Va,,a, € D, be %, and 0
€(0,1), S(a;)¢b-int L, S(a,) ¢b—int L such that (6
a,+(1-0)a,) ¢b—intL, then & is L- quasiconcave-like,
and —-& is L- quasiconvex-like.

Remark 3. For % = (—00, + 00), L = [0,400), if & is L- qua-
siconcave-like, then & is obviously quasiconcave. However,
D=[0,1], & =(-00, +00) X (-00, +00), L=][0,+00) x [0,
+00), and = (fi.f,) = (aa). 9= (g,.g,) = (% a). We

know that f is L- concave but not L- quasiconcave-like, and
g is L- quasiconcave-like but not L- concave. Thus, L- quasi-
concave-like and L- concave do not include each other.

Definition 4 (maximal element theorem, see [30]). Let & be
not empty compact convex subset (NECCS) of HTVS F and
S : o — 29 with the following conditions, where 2¢
denotes all nonempty subsets of </:

(1) Yae g, a¢ convs(a), where convS(a) denotes the
convex hull of §(a)

(2) Vbed, S (b)={aecd|be S(a)} is open in o

Then, there is a* = (a},a;,--,a;) € &/ such that §(a*)
=d.
2.2. Model. A model of the GMLMFMOG with strategy

transformational barrier is denoted by a tuple {IN, M, &/, B
, 7, P}, where

(i) N={1,---,n} and M ={1,---,m} indicate the index
set of leaders and followers, respectively

(ii) Vi€ N, VjeM, o, and %, denote the strategy set of
the ith leader and the jth follower, separately. The
leaders’ strategy represents a = (a;,a_;) € o, where
A =]lienp 9=y Meanwhile, the
strategy of the followers denotes b= (b;,b_;) € %,
where % = [Lew®Bj B =1 Txepunjy B

(iii) Vie N, %; = Qj‘, U = [Liew%s»and % _; = [ Tieqmviy %
CLet Yi={x\xib A x A xU — R, be the
payoff function of the ith leader. Let ‘Pj = {1;/’1,-”,
%} A X By x RB_j — Rk, Vj € M be a payoft func-
tion of the jth followerand G; : &/ x #_; —> 2% be
a constraint correspondence of the jth follower

(iv) Let 7, : of; x of; — R be the strategy transforma-
tional barrier function of the leader i. Vi € IN, there
exists a; € &f; such that

7 (ai, a:) > O,‘v’a; ed, (1)
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where 7/;(a;, a';) denotes the strategy transformational bar-
riers of the leader i changing from strategy a; to strategy a’,.

In particular, 7;(a;, a’;) = 0 denotes that the ith leader has
no transformational strategy

(v) The followers are a generalized constraint multiob-
jective with the strategy parametric game
(PGCMOG) after fixing the strategy a € & of the
leaders. Let P: o/, xd_;,— 2% be the solution
mapping of the WPNE with strategy transforma-
tional barriers for the PGCMOG. Particularly, Vb*
€ P(a;, a_;) such that there is b € G;(a, bZ)),Vj € M,
and we have ¥(a,b),bZ;) —¥;(a, b}, b)) ¢ int Rk,
‘v’bj € G]-(a, bfj). Furthermore, if there is u} € %; such
that u € P(a}, a*;),Vi € N, satisfying

Y; (“Ip a, ”i) =Yi(a,a’,u)
-7, (a:-, a’i) ¢ int Ri,V (a'i, ui> ed;x P(a’,», a:) >
(2)

then a* =(a*,a*;) el is called a WPNE with strategy
transformational barriers of the GMLMFEMOG, where int
R ={(a},a5~a) €R 1a;>0,i=1,--]}, 7 (a*,, a')
denotes the leader i’s cost changing from strategy a*; to
strategy a';

Let i, a_;, and u_; be elements in IN, &/_;, and %_;, respec-
tively. By Definition 4, then we have the best response of the
ith leader with strategy transformation barriers to the other
players, i.e.,

!
Bi(a_,u_;)= {“i ed;,u; €P(a,a;)|Y; (“i» a_p Vi) - Yi(apa_;u;)
-7 (a,-, ai'> ¢ int Rﬂr },V (a/,-, vi> ed; x P(a’i, aﬂ-> )

(3)

where B, is independent of u_; € %,.
Fixing a_; € &/_;, we know that the player’s set-valued

mapping B; provides the order relation “>” as follows:

a;

(Wi ;) 2 (a, 1;) & (Wi, ;) € By(a_p, 1) (4)

In general, the order relation is not transitive, and we
give a sufficient condition for the transitivity of the order

relation “>” with the following propositions.
a

—i

Proposition 5. Let {IN, M, o, B, 7", P} be a GMLMFMOG
with strategy transformational barriers, if, for any w;, a;, z;
ed;, and

Vi(ziw;) + V' j(w;, a;) < Vi(2;, a;) (i.e..7; has negative subadditivity).

(5)

Then, the order relation “>” has transitivity.
a

Proof. Setting wj, a;, z; which are three elements in /; and
u_,v; €%_; such that (z;,u;)>(w;, u;)>(a; u;) holds, we

a; a;

obtain

o pl
Yi(wpa,vi) = Yi(zpa 1) = 7z w;) ¢ int R,

-
Yi(apa_pv;) = Yi(wpa,u;) = 73(w;, a;) ¢ int R,

by (z»u;) € Bi(au ), (w;u;)€Bi(au;), and the
definition of best response mapping B;(a_;, u_;). Then, we
attain

Yi(apa_,vi) = Yi(zp ap ) = 732 wy) = 7'3(wy, ;)
= Yi(wpap ) + Yi(wpa_,v;) ¢int R, = Y(a, a, v;)
= Yi(zpapuy) = (7 (2 wy) + 7' (w;, a;))
— (Yi(wpa_pu;) = Yi(wya_,v) ¢ int R, = Yi(a;a_, v,)
~Yi(zpa_pu;) -7 (2 a) ¢ int R,.

(7)

Since B; is not dependent on u_; € %;, we can see that
Y;(w; a_;, u;) - Y;(w;, a_;, v,) is equal to zero element of R,
. Therefore, (z;,u;) €B;(a_;,u_;) & (z;,u;) = (a; u;); then,
the order relation “>” has transitivity. i .

a

Example 1. Considering the Hotelling model [31], the influ-
ence of the strategy transformational barrier function can be
added. Assume that consumers are evenly distributed on a
street and that businessmen (IN=1,2) choose their shop
location on the street. Suppose that the street can be
abstracted to a line segment with a length of 1, namely, [0,
1]. Meanwhile, c € [0, 1] and d € [0, 1] represent the positions
of the two businessmen. The strategy set of the businessmen
is [0,1], and the payoff functions f,f, : [0,1] — R are
expressed as

c+d
—,c<d,
2

f1= 1—C+—d,C>d’

1, = c+d
L=




It is a well-known fact that (c, d) = (1/2, 1/2) is the unique
NE point of the Hotelling game [31], which can better explain
the phenomenon of shop centralization. However, it is worth
noting that shops may not be concentrated in the centre
because of the influence of relocation costs and other factors.
In reality, the distribution of shop locations corresponds to a
WPNE with strategy transformational barriers, which means
a state of equilibrium under weaker conditions.

Suppose that the strategy transformational barrier func-
tions are 7'(¢;,¢,) and 7'(d,, d,), respectively. If 7(c,, c,)
and 7°(d,, d,) are

V (¢, ¢;) = ay|c; — 6] + B.Vey, ¢, €0, 1, o)
7(dy, dy) = &y |dy — dy| + B,,Vd,, d, € [0, 1].

Setting businessmen 1 taking d =1/2, ¢, =1/4, ¢, =3/4,
and ¢; = 3/8, we have

A =h(33) =

file, d) =, G %) = % (10)

31 7
,d) = — =) =—.
A =h(33)= 1
If ¢, =1/3, B, =0, then
3 3 1 5 .
filed) = 3 2 fi(cpd) =7 (cr6) = 3 5‘51 —6|= ﬂ,l.e.,q%%
3 7 1 5 .
fi(ed) = 3 2fi(c3d) =7 (e 63) = 16 §|Cz —Gl= 16 €27 %
(11)
but
3 1 19
fl(fl’d):ggfl(cs»d)*(y(cl)fa)zr §|Cl Cs\—16 218
(12)
Furthermore,
1 1 1 3 1
% N = — — ==X |- = ===,
(c1r6) 3|Cl G| 3273 6
1 1 |3 3] 1
TV (c)yc3)==|c, — 3l = = X |- — =| = =, 13
(a)=sla-al=sx- =g (1)

1 1 1
% > == - ==X - — .
(crr63) 3 le3 = 3708 4" 2
Since 7'(c;,¢,) + 7 (¢ 63) £ ¥ (15 65)s “51563” has no
negative subadditivity. Then, “61%(:3” does not hold; thus,

]

the order relation “>” is not satisfied to transitive.
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Remark 6. When the strategy transformational barrier func-
tion does not have negative subadditivity, the order relation-

ship “>” does not have transitivity. Furthermore, the game
a

with a strategy transformational barrier function may not
have a numerical payoff function since the strategy transfor-
mational barrier function often possesses subadditivity

rather than negative subadditivity.

3. Existence

In this paragraph, the existence of the WPNE with the strat-
egy transformational barriers of the GMLMFMOG is
demonstrated.

Lemma 7 (Kakutani-Fan-Glicksberg, see [6]). Assume that
g is a NECCS of locally convex Hausdorff space F, & : o
— 29 is a set-valued mapping, VYac o, S(a) is a non-
empty, convex, compact set, and S(a) is usc on . Then,
there exists a* € of such that a* € §(a*).

Lemma 8 (see [17]). Assume that & is a nonempty subset of
Hausdorff space F and Y : of — R is a vector value corre-
spondence, where Y = {x,,--+.x,}. In that case, Y is R.-con-
tinuous if x,(Vi= 1,---,1) is continuous.

Lemma 9 (see [28]). Suppose that o/ and B are two Haus-
dorff spaces and B is compact. If a set-valued correspondence
S+ o —> 2% is closed, then § is usc.

Lemma 10 (see [29]). Assume that o and 9B are two
NECCSs of locally convex Hausdor(f space F and H, respec-
tively. Y : of x B — R, is continuous correspondence; W
: B — 29 is a continuous set-valued correspondence on B
, Vb e B, W (b) is not empty and compact subset of o, as well
as W (b)={aeW(b): Y(a',b)-Y(a,b) ¢int R, Va e W (
b)}. Then, we obtain that W (b) is a compact, nonempty set
as well as W : B — 27 is usc on B.

Theorem 11 (Fort theorem, see [8]). Suppose that of and B
are Hausdorff and metric spaces, respectively. Given a set-
valued mapping & : o — 2% is usc on o with nonempty
compact value (briefly, usco), then there is a residual subset
Q in of such that & is Isc on Q.

Remark 12 (see [29]). If of is Baire space, then the residual
set in &/ is dense.

Theorem 13. Suppose that (i € N) and B,(j € M) are two
NECCSs of locally convex Hausdorff space F; and H, respec-
tively. If {N,M,o, B, 7,P} satisfies the following
conditions.

(DVieN, Y;={y\, xi}: d;xd_;xU — R, is R,
-continuous

() VieN, ¥, : o;xd;,— R. is R.-continuous, Va',
ed,;, a;—> ¥ (a; a)) is convex
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(3) VieN, Ya_ed_, (a,u;)— Y(a,a_,u;) is R.-
quasiconcave-like

(4) VieN, P: o, xd_;,— 2% is continuous, and Ya
=(a;a_;) € d, P(a;,a_;) is a nonempty and compact
subset of B

(5) Ya_; e o _,, the set-valued correspondence a,— P(
a;a_;) is convex (i.e, Y0 € (0,1), al,a? € o, P(Oa!
+(1-0)a?,a_;) cOP(al,a_;)+ (1-0)P(a?,a_;))

Then, the GMLMFMOG with strategy transformational
barriers contains at least a point (a*,a’,u) € o; x o _; x
%; such that u} € P(a*,, a*,),Vie N, satisfying

Yi(a,al,u) =Y (a,a’, ul) =7 (a’;, a;) ¢ int Ri,V(ui, u;) € d; x P(a;, a’;).

(14)

Proof. Vie N, the set-valued correspondence J;: o/_; x
U_; — 29> is defined, Ya_; € o _,, u_; € U_,, we have

Ti(a_puy)= {ai €dpu; € P(aya)|Y; (ai,’ -p Vi)
~Yi(apa_,u) -7, <a,., a{) ¢ int Ri},v <af, v,~> cd,

xP(al{, a_i>,

(15)

where 7 is independent of u; € %_,.

By Lemma 7, we only need to prove that the set-valued
mapping 7 ; is usc mapping with nonempty convex compact
value.

(1) T(a_; u_;) # D. Because &, is compact and P is a
continuous correspondence with compact value, {P
(w;,a_,): w; € ,Vie N} is compact. Y is R.-con-
tinuous from Lemma 8; then, Vi=1,---,1, Y; is Rfr
-continuous and 7; is also R.-continuous. Thus,
T (a_,u_;)# D from Lemma 7

(2) T (a_ju_;) is convex. Y(al,u}) e T ;(a_;u_;), (a2,
u?)e I (a_puy), e, al ed,, ul €P(al,a_;), at €

o, u? € P(a?,a_;), and Vi € N, we obtain

' 1 1 U1 g pl
Y; (ai,a,i,vi) ~Yi(aj,a_,u) -7, (ai,ai) ¢ int R,
Y !
i\3d-p Vi)~ i
v

(a{, vi) e x P(al{, a,i),

Y
Y(aj,a 1) -7, (af, a;) ¢int R,
1

(16)

i.e., we have
1 1 ! 1 ! . 1
Yi(aj,a_,u) ¢Y; (ai, a, vi> -7, (ai , ai> —intR,,
2 2 ! 2 ! . 1
Yi(af,a_,ui) ¢Y, (ai, a; vi) -, (ai , ai) —intR,,

V(a:, V,—) €d; xP(a{, a—i)
(17)

Since & is convex, Oa; + (1 —60)a? € o/, ¥0 € (0,1), and
Va_; € d_; by Theorem 13 (5), we have 6a} + (1 —0)a? € P(
Oa} + (1-0)a?,a_;) cOP(al,a_;) + (1-0)P(a?,a_,).

Since Va_; € &_,, (a;u;) — Y;(a,a_,u;) is R.- quasi-
concave-like, and Va', € o/,a;,— ¥ (a;,a’;) is convex, we
obtain

Y,(6a} + (1-6)ai,a_,0u + (1-0)ul) ¢ Y, (alf, a v,-)
-7, (Ga} +(1-6)a;, a{) —int R,
(18)

ie.,

1

Y, (a:, a_, vi) - Y;(6a} + (1-0)a;i,a_, 0u; + (1-0)u;)
- W(Qa} +(1 —9)(1?,(1[) ¢int R..
(19)

Thus, (0a} + (1-0)a?,a_,0u! + (1-0)u?) € T ;(a_, u_;

), T (a_,u_;) is convex.

(3) T ,(a_;u_;) is a usc mapping. According to Lemma
9, we just need to verify that Graph(7;) is closed.
Thus, we next demonstrate that the set-valued corre-
spondence C(a_;) = {(a;,v,) €A, x U, : a,€ A, v; €
P(a;,v;)} is continuous

Suppose that {a% : a € '} is any net on &, and a?
—a_, ¥(a'],v8) € Cla%,), (a'7,v8) — (a),v;) € o, X U,
Because P is a usc mapping with compact value and a/?
—a', vveP(a'® a_), v¢ — v, from Theorem 16.17 in
[32], we attain v, € P(a], a_;). Therefore, (a,v;) € C(a_;), C
is closed. Since &/; x %; is compact from Lemma 9, C is usc
on & _;.

Meanwhile, assume that {a%, : « € Z'} is any net on o/,
a%, —a_, V(a;,v;) €Cla_;), then a';e o, v,eP(a',v,).
For any a € %, we set a'? =a',, since P is continuous, from
Theorem 16.19 in [32] if there is some v¥ € P(a'}, %) = P(
aj,a%), vi — v, (a,vf) € C(aZ,), and (aj,vf) — (a,v)
hold. Thus, C is Isc on &/ _;.

Hence, we have proved that C is continuous with com-
pact values. 7 ,(a_;, u_;) is compact and 7 is a usc mapping
from Lemma 10. On the basis of the above proof, we know
that 7, is a usco correspondence.



A set-valued correspondence & : o x U — 277 s
defined, and V(a,u) € (o, %) contains §(a,u)=T(a_j,
u_)x--xT (a_,u_,) CH XU

Because & x % is a NECCS of locally convex Hausdorff
space, § is a usco mapping and Lemma 7, if there is (a*,
u*)e (o, %), then (a*,u*) € S(a*,u*) holds. We obtain (
a*,a*,u’) e T, (a*,u*;),Vie N. Consequently, there is (
a*,a*,ul)ed;xo_; x U such that Vie N, u} € P(a*;, a*,
), Yi(al,a%u) =Y’y a%, uf) = 7 (a7, a)) ¢ int R, V(aj,
u;) € of; x P(a;, a*;). This concludes the proof. O

Remark 14. In this paper, the WPNE with strategy transfor-
mational barriers are more broadly concepts than the
WPNE in literature [27] in practical life, which means that
the player needs to consider the impact of other some fac-
tors, such as the cost of changing strategies. In particular,
if the leaders have no transformational strategy barriers,
then the WPNE can be considered as the WPNE with strat-
egy transformational barriers.

4. Generic Stability

In this paragraph, we prove the generic stability of the
WPNE with the strategy transformational barriers of the
GMLMFMOG.

Let o/;(i € N) and 9B,(j € M) be two NECCSs of Banach
space F and H, respectively, and Q={¢=Y,,--,Y,, 7,
7 ,,P|foranyie N, Y,, 7, and P satisfy all conditions pro-
vided in Theorem 13.

For ¢' = (Y1, . YL, 71,7}, P') and ¢* = (Y2, Y2,
7?,-'-,72, P2) € (2, the distance on Q is defined as follows:

‘D(‘/’l) ¢2> = sup ZH Y% (apa_pu;) = Yiz(ai’ a_ u;) H

(apu;) €l X U; =1
n
1 ’ 2 i
+ sup ZHWi (ai, ai) -7 (ai, ai) ‘
(apa] )edixd; i=1

(P (apa ), Plap ),

+ sup
(apa_;)edxd_;

(20)

where % (P'(a;,a_;), P*(a;,a_;)) is the Hausdorff distance
between P'(a;, a_;) and P*(a;,a_;) on o.

Theorem 15. (Q, @) is a complete metric space.

Proof. It is easy to see that (Q, @) serves as a metric space.
Then, we just need to check that (2, @) is complete.

Setting ¢ = (Y%, Y%, 7% 7, P?) € Q, (Y%, Y,
Ve V8P — (Y, Y, Y7, P), we need to
prove ¢ = (Y ,---.Y,, 7,7, P) € Q.

(1) Let ¢*= (Y, Y5, 7,---,7%, P*) be any Cauchy
sequence in Q. Ve > 0, there is a positive whole num-
ber N(e) such that @(¢% ¢*) <&, Va, &> N(e). On
the one hand, Vi€ N, £>0 and >0, when a>a,

sup  ||Y¥(a;a_,u;) — Yi(a,a_, u;)|| < €/3, thus
(apu;) €t xU;
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sup  [|Y¥(aa_u) — Yiala_, u;)|| <el3. We
(a'pu;) el XU,
know that Y% is R.-continuous by means of Theo-
rem 13 (1); then, there is 8 >0, Va,, a’; € of; when ||
a;—a'}|| <8, we obtain ||Y%(a;a_,u;) - Y¥(a), a_
u;)|| < €/3. Similarly,

i

H Yi(apa_pu;) - Y, (“i” ap “1) H

=||Yi(apau;) - Yi(ap a_pw;) + Yi(ap ap )

af ! af 1 !
-Y; (a,-, a_;, u,-) +Y; (ai, a_;, ui) -Y; (a,.,a,i, u,-) H

< ||Yi(ai’ a,u)—Yi(aya, ”i)“ + Hy?(“i’“w u;)

& ! & ! i
-Y? (a,-, a;, u,-) H + ‘ Y (a,-, a; ui) -Y; <ai,a,,-, u,)‘

(21)

e ¢
<—+-+-=¢
3 3 3

Thus, Y, is R -continuous on </, ¥(a;,a’;) € o, x o/, and
7, is also R. -continuous by proving the same method on /.
Meanwhile, Vi € N and € > 0, there is a positive integer N(¢)
and Va, & > N(¢), we obtain

sup %’(P"‘(ai, a_;), P*(a;, a_i)) <e.  (22)
(apa_;)edlixdl;

Then, VieN, there is P: &, x o_;,— 2% such that
lim P*(a;, a_;) =P(a;, a_;), and Va > N(g), we have
a—>00

sup  H(P"(a,a_;),P(a,a_))<e. (23)
(aa_;)ed xd _;

Since the set-valued correspondence P* is continuous on
4, it is easy to know that P is continuous on &.

(2) Since (a;, u;) — Y%(a;,a_;, u;) is R - quasiconcave-
like, a;,— 7"*(a;, a’;) is convex, fixing a!,a? € &,
and u},u?, v, € %_;, if YO € (0,1), Ou} + (1-0)u? €
%; holds, then Vie N, Ou! + (1-6)u? € P(6a} + (1
—0)a?,a_;), we have

Y{(6a} + (1-0)a},a_,0u} +(1-0)ul) ¢ Y7 (ai', a;, v,-)
-77 (Ha} +(1- G)af, aﬁ) —int Ri
(24)
Since  Y%(a,u) — Y,(a,u), 7%(a,a’) — ¥ (a,a’)(«

—00), Yae g, Yuec? and the strategy space is closed,
we conclude that
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Y,(6a} + (1-0)ai,a_,0u + (1-0)ul) ¢ Y, (al.', a_;, vi)
-7 (Ga} +(1-6)a;, a£> —int R..
(25)

This indicates that Va_, e of_,, (a;, u;) — Y,(a,a_;, u;)
. . . ! .
is R. - quasiconcave-likeand a, — 7 (a;, a’;) is convex

(3) Since Ya_; € o/ _;,a;,— P*(a;, a_;) is convex, Ya!, a?
€d;,,0€(0,1), and € > 0, we have

P*(0a} + (1-0)a},a_;) +&COP*(aj,a_,)

+(1-6)p* (af, a. (26)

) +e

i

When « is sufficiently large number, we have

P(6a; + (1-6)a;,a ;) CP*(0a; + (1-0)aj,a ;) +e,
6P*(al,a_;) + (1-0)P*(aj,a_;) +&COP(a;,a_,)
+(1-0)P(a’

—i>

a_;) +2e.
(27)

Thus,

P(6aj + (1-0)a;,a_;) COP(aj,a )+ (1-0)P(aj,a_;) + 2.
(28)

We take ¢ — 0 because ¢ is arbitrary, and we can obtain
P(Ba! + (1-06)a?,a_;) cOP(al,a_;) + (1 —6)P(al,a_,).
Hence, Va_; € o/ _;,a,—> P(a;, a_;) is convex on &. In con-
clusion, ¢ =(Y,---,Y,, 7,7, P) €Q, and (2,0) is a
complete metric space. O

V¢ € Q, we define I' : Q —— 2 XU xd U where T(
¢)={(a*p,a*,ul)ed; xd_;xU :Vie N,u e P(a*,a’,),
Yi(a'atyu) = Y(a%, % uf) - 7 (a%; ) ¢ int R V(')
u;) € d;xP(a',a*,)}. By Theorem 13, there is (a*;, a*;, u})
ed;xd_;xU; such that I'(¢p) # &. Then, I' is also called
an equilibrium mapping.

Next, we denote to verify the generic stability result of

the WPNE with the strategy transformational barriers of
the GMLMFMOG.

Lemma 16. An
2 XU X xdl XU,

equilibrium  mapping I :Q—
" is a usco correspondence.

Proof. By means of the compactness of ¢/ and Lemma 9, we
need to demonstrate that the I is closed. In other words, if

VP = (Y, Yo 7P 7B PP e, ¢F — ¢=(Y,,--Y,
> %1)'”)%;1) P)) v(allg) u?:"')afa uﬁ) € F((pﬁ)’ (a{j) uf)"')ag)

u‘f) — (a}, u},--a;, u)), then we only need to prove

(a}, i}, up) € I(4). (29)

(1) Since ¢/, is compact, we assume that af-s —a’ed,
P is continuous, P(af-;, al_gi) — P(a*;, a*)), uf; e PB(
af; a .). Let d be the distance on %;; since ¢* — ¢,
PP — P, and ufg — u}, we have d(u},P(a*;,a*;))
< d(uf, uf) + d(ul, PP(af, o)) + 7 (PP (af, o), P(
af;,a/_si)) + %(P(afg, al_gi),P(af,-, a*;)) — 0. Thus, u;
€P(a*,a*,),VieN

(2) We verify that Vi e N, u} € P(a*;,a*,), and we have

! * * * *
Y; (ap a_jp ”i) - Yi(al;,al,u)
(30)
-7, (afi, aﬁ) ¢ int RV (a:, ui> ed;x P(a{, af,-)

By contradiction, suppose that formula (30) is not true,
then there is some i € N such that (a;, u,) € o/, x P(a;, a*,),
Yi(a,a*,u) - Y,(a*,a*,ut) — 7 (a*,a) €int R.. There-

fore, there exists some open neighbourhood V of the 0 ele-
ment of R satisfying

Y; (a:, a’, ui> -Y(a’,al,ul)-7; (afi, a;) + V Cint Ri.
(31)

Because Yf; — Y, there is a positive integer f3; such
that VB> g,

1 o) - () 7% ()]

- {Yi(ai, a/fi,vi) - Yi(afs,al_gi, u?) —7;{3(61;{3,611-)} € %V.

(32)

Furthermore, since (a,, u;) € /; x P(a, a*)), Y,(a,a*,
w) - Y(a*,a*,ul) -V (a*, a)) is Isc at (a;, a_;,u;) with (

af; ,a ;) — (af,a*;), there is a positive integer f, and f3,

> f3, such that VB> j3,,
Y; (“i’ aljp ”i) - Y (“f‘;’ o, ”fg) -7 (“f> ai) € Yi(a,a, )
* * * * 1
—Yi(aj,alu) =7 (a;, a;) + 5 V+R,.

(33)



Then, V> f3,, and we can obtain that

Yf(ai,alji,ui) Yﬁ(ﬁ i, i)—Wﬁ(aﬁ,al)

:[Yf(ai,aﬂ,uo—Y;B(alﬁ,aﬂ, -)— (a,a, }
[ o) 5 (ol - 0]
+ [Yi(a,», aﬂ, ul-) Y; (a a_l,u ) (a ,al)}
1
+Y(a,a,u) = Y(a],a’,ul ) -7 (al, a;) + EV+R’+
=Yi(ap alyw;) = Yi(ajs alpu) = 7(a;

I I, pl I
+R, Cint R, + R, CintR.

a)+V

(34)

It is a contradiction with (af,uf,---,af, uf) eI(¢P).
Thus, we can obtain (aj, uj,--,a,,u;) €I'(¢); ie, I' is a
closed correspondence and I" is a usco correspondence on
Q by means of Lemma 9.

Next, we define a set-valued map 7 : | X U, x ---x
XU, —> o x--xgf,, wherein T (a,,u;,a, u,)=/(a,,

a,) € xxd,, ¥(ap,u, a,u,) €A XU X %
o, xU,. It is obvious that I is continuous on & X %, x -+
xd, xU,.

Finally, we define a set-valued mapping =9 (I'): Q
— 29 vexdy - where V€ Q, F(¢) =T (I')(¢) represents
the set of WPNE with strategy transformational barriers
for the GMLMFMOG. According to Theorem 13, I'(§) #
@, then F(¢) =T (I'(¢)) + 2. O

Lemma 17. A set-valued mapping F =
29 p<xdy s g ysco correspondence.

TJI): 00—

Proof. According to Lemma 16, I : Q — 25 0% s, g

usc on O, and I'(¢) is compact V¢ € Q. Since I is continuous
on g, XU, x---xo,xU, it is obvious to check that F

T(I): Q— 29> is also a usco correspondence on Q.
O

Definition 18.

(1) An equilibrium point a € & of the game ¢ € Q is
referred to essential if for every O(a) of a, there is
one O(¢) of ¢ such that V¢' € O(¢), and there exists
at least an equilibrium point a’ of ¢’ with a’ € O(a).
If all equilibria points of the game ¢ € O are essen-
tial, then the game ¢ is an essential game

(2) A set m(¢) of the game ¢ € O is referred to essential
set if for each open set O of &/ is associated with m
(¢) c O, and there is an & > 0 satisfying V¢' € Q, @(
¢,¢') <& and F(¢')NO=. Given that in(¢) is
one minimal element in total essential sets of F(¢)
which are ordered by inclusion relations, then m(¢)
is a minimal essential set
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(3) V¢ € Q, F(¢) is composed of the union of the pair-
ing of disjoint connected subsets [33], i.e.,

F(9)=J (¢, (35)

KeX

wherein % signifies one index set. Given a component C*(
¢) of F(¢) is essential, then C*(¢) is one essential set

Theorem 19. V¢ € O, there is a dense Q in Q such that Q is
essential.

Proof. (Q, ®) is complete by using Theorem 15, and F

— 20, ig 3 ysco correspondence by means of Lemma
17. By Theorem 11 and Remark 12, & serves as Isc on one
dense Q of Q such that Q is essential. O

Remark 20. By Theorem 19, we proved that most of ¢ € Q
have a stable solution set in the dense Q of 2 on the meaning
of Baire’s category.

5. Essential Component

In this paragraph, we derive the essential component results
of the WPNE with the strategy transformation barrier solu-
tion sets of the GMLMFMOG.

Theorem 21. F(¢) encompasses at least one minimal essen-
tial set V¢ € Q, where F : Q — 290y,

Proof. For ¢ € Q, F : Q — 29> *%u is ysco mapping by
Lemma 17, and then, F(¢) is one essential set of itself. Sup-
pose that E is the collections of all essential sets of F(¢),
which is defined by the set inclusion order relation, we
obtain E # &. Assume that any total order subset be {e,(¢)
:ye X} on o, where F denote the index set. Let e(¢) =

ﬂyeyey((/)), then e(¢) serves as compact. If e(¢) = &, then
F(¢) = F(9) \ e($) = Uyer [F($) \ ¢, (¢)]. Note that F(¢)

\e,(¢) is one open set as well as F(¢) is compact, then

there are e, (¢), e,(¢), -+ ¢,(¢) such that F(¢) = JL, [F(¢

)\ ¢;(¢)] by using the open covering theorem. It is obvious

that (Y.,¢(¢) =2 from #(9) = UL, [F(9) \e,(9)] = F(9)
\ N~ e;(¢). It means that (), e;(¢) = F is in contradiction
with (1, e;(¢) # &. Thus, e(¢) # . Given any open set O
with e(¢) € O, if Vy € F, there exists a, € e,(¢) ¢ F(¢) with
a, ¢ O; then, we can assume that a, — a € F(¢). Because
Vy e, e,(¢) is compact and {ey(</>)}yE
set, then a, €e (¢) when y, >y and ace,(¢),VyeZ.
Hence, a€() .4 e,(¢) =e(¢) c O, which contradicts with
a,—a and a, ¢ O,Vy € #. Therefore, there exists a, €
F such that eyo(gb) 0. Since e, (¢) is an essential set of

F(¢), Ve >0, there is § > 0 such that ¢! € Q with @(¢, ¢')
<8, F(a') N0+ D with |a—a'||<e Va' € F(¢'). Thus,
e(¢) is essential, and there must be a lower bound of {e, (¢

o 1s totally order



Journal of Function Spaces

):pe X} in E. According to Zorn’s lemma, there is one
minimal element m(¢) in E such that #(¢) includes at least
one minimal essential set 71(¢).

Theorem 22. V¢ € Q, each minimal essential set of F(¢) is
connected.

Proof. Let m(¢) be a minimum essential set of F(¢). By con-
tradiction, we assume that #(¢) is disconnected. There are
two not empty closed sets ¢;(¢) and ¢,(¢) with m(¢) =¢,(
$) N¢,(¢), as well as two disjoint open sets O; and O, with
0, N O, =D such that ¢,(¢) c O; and ¢,(¢) C O,.

Since m(¢) is the minimum essential set, ¢, (¢) and ¢, (¢)
are not essential set for F(¢). Therefore, there exist two
open sets, namely, D, and D,, with ¢,(¢) ¢ D, and ¢,(¢) C
D, such that V& > 0, ¢', ¢* € O; we obtain @(¢, ¢') <& and
(¢, ¢*) <8, but F(¢) N D, =S, F(¢) (D, =2. Suppose
that U, =0, N D, and U, = O, N D, are open sets and that
¢,(¢) c U, and ¢,(¢) c U,. Beacuse ¢, (¢) and ¢,(¢) are com-
pact, there are two open sets, namely, Z, and Z,, such that
¢(¢)cZ, cZ, cU, and &(¢) < Z, cZ, c U,. Since m(¢)
is one essential set of F(¢) and 7 (¢) C Z, U Z,, there is &'

> 0 such that V¢ € Q with @(¢, §) <8’, and

F()n(Z,0Z,)+ 2. (36)

Since Z, € O, and Z, € O,, there exist y' € Qand y? € Q
such that @(¢, w') <8'/2 and @(¢, y?) <8'/2 with F(y*)
NZ =@ and F(y*)NZ,=2.

We define a GMLMFMOG with strategy transforma-
tional barrier v = (&/3,Y3, 77, P*), by a linear combina-

ieN
tion function between y'=(&},Y},7},P'), and
vl = (A7, Y5 V7, P, as follows:
Y} (a,u)=v(a)Y}(a,u) +u(a)Y;(a, u),
3 ") = "(a,al 2(a.al
77 (an0)) =v(@)7} (a,a) + u(@)77? (an3)), )
P(apa_) = (@) (P (ana_,), P(apay))
+u(a) (P*(aya_;), P*(aya_y)),
where
h(a,Z
v(a) = = (a.2,) =
h(a,Z,) +h(a, Z,) (38)
38
h(a,Z,)

and £ represents the distance function on <. Note that v(a)
and u(a) are continuous and nonnegative; furthermore, v(
a)+u(a)=1,Yaed.

We can check that y = (o3, Y3, 773, P?)
that

e € £2. Noting

(¢ y)= sup ZHYi(“’”i)_Y?(a’”i)H

(au;) e XU i=1
n
/ 3 )
+ sup Z Vilapa;) - 77 a;a
(ui,a:)EMixdi i=1

%(P(ai, a_i);P3(aiaa—i))7

|

+ sup
(ai'rafz)e‘dzx'dfi

n

= su v(a)Y;(a,u;
<a,uimggx%_;ll (@)Yi(au;)
+u(@)Yi(au) —v(a)Y;(au)=ul@)Y;(au)

n

+  sup Z v(a)7; (aiva;) +u(a)7; (ai’ a;)

(ap.a; )estxs; i=1

-v(a)?7} (ai, a;) —u(a)?? (ai, al{> H
(v(a) (P(a;a;),P'(a;a.;))

+  sup
(apa_;)estixal _;

(39)

we obtain F(y)N (Z,UZ,)+ D since @($,y)<d'. Next,
we assume that F(y) N Z, # @; then there exists a’ € F(y)
NZ,. By a' €Z,, we attain w(a') =1, u(a’)=0, Y3(a, u;)
=Yi(a,u;), 77 (a,a’) =7 (a;d";), and P(a,a_;) = P'(q;
,a_;). Then, we obtain a' € % (), which implies

Y? (a;, a’, ui> —Y(a,at,ul) -7 (afi, a;) ¢ int R,V (a;, ui) ed,; x P(a;, ai,) .
(40)

Thus, a’ € F(y'). This contradicts the fact that F(y*)
NZ, =@. Then, m(¢) is connected. O

Theorem 23. V¢ € O, if there exists F(§) = {a} (single point
set), then ¢ is essential.

Theorem 24. V¢ € Q, there is at least an essential connected
component of F(¢).

Proof. According to Theorems 21 and 22, F(¢) encompasses
at least a minimum essential set m(¢) and m(¢) is con-
nected. Aiming at a component C*(¢) of F(¢) as well as
m(¢p) c C*(¢), we obtain that C*(¢) is one essential con-
nected component of F(¢) by Definition 18 (3). O

6. Summaries

In this paper, we have investigated a new generalized multilea-
der multifollower multiple objective game (GMLMFMOG)
model with strategy transformational barriers and obtained
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some new stability results of the WPNE with the strategy
transformational barriers for the GMLMFMOG. Further-
more, we have proved the existence of the WPNE with the
strategy transformational barriers of the GMLMFMOG and
studied its generic stability. In fact, we have obtained that most
of the WPNE with the strategy transformational barriers of the
GMLMEMOG serve as essential on the meaning of Baire’s cat-
egory. In addition, we have demonstrated that there is at least
an essential connected component of the GMLMFMOG with
the strategy transformational barriers. These results extend the
corresponding results obtained in reference [27] by introduc-
ing strategy transformational barrier function into the
decision-making behaviour of players.
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In this paper, we study the existence of solutions and their uniqueness and different kinds of Ulam-Hyers stability for a new class
of nonlinear Caputo quantum boundary value problems. Also, we investigate such properties for the relevant generalized coupled
g-system involving fractional quantum operators. By using the Banach contraction principle and Leray-Schauder’s fixed-point
theorem, we prove the existence and uniqueness of solutions for the suggested fractional quantum problems. The Ulam-Hyers
stability of solutions in different forms are studied. Finally, some examples are provided for both g-problem and coupled ¢

-system to show the validity of the main results.

1. Introduction

Fractional calculus is one of the most important fields in
applied mathematics. In recent years, many researchers
have studied different branches of this theory and con-
ducted numerous analyses analytically and numerically.
Particularly, in recent decades, we can see some papers
on the applications of fixed-point theorems to prove the
existence of solutions of fractional boundary value prob-
lems [1-4]. Because of the quick developments in frac-
tional calculus, many mathematicians discussed on the
theory of g-calculus that is an equivalent of traditional cal-

culus without defining the concept of limit, and also the
parameter g refers to quantum. This theory was originally
developed by Jackson [5, 6], and it includes many practical
aspects in the fields of hypergeometric series, theory of rel-
ativity, particle physics, discrete mathematics, quantum
mechanics, combinatorics, and complex analysis. For a
fundamental introduction of the basic notions of g-calcu-
lus, one can refer to [7-9]. In the early years, for finding
positive solutions of given g-difference equations in the
nonlinear settings, we lead you to study a work published
by both El-Shahed and Al-Askar [10] and also a manu-
script by Graef and Kong [11].
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So later, various mathematical g-difference fractional
models of IVPs and BVPs have been presented in which difter-
ent methods like the lower-upper solutions technique, fixed-
point results, and iterative methods have been implemented.
For instance, we see g-intego-equation on time scales in [12],
g-delay equations in [13], g-integro-equations under the g
-integral conditions in [14], singular g-equations in [15], ¢
-sequential symmetric BVPs in [16], g-difference equations
having p-Laplacian in [17], four-point g-BVP with different
orders in [18], oscillation on g-difference inclusions in [19], etc.

Here, we apply similar techniques to discuss the exis-
tence property of solutions for given g-integro-sum-differ-
ence FBVPs depending on the quantum operators. This
shows an application of fixed-point theory in relation to g
-difference theory. This specifies the main contribution of
the present reseach.

In 2014, Ahmad et al. [20] studied a g-sequential equa-
tion in the nonlinear case via four-point g-integral condi-
tions given by

(relo,1],9€(0,1)),

u(l) :ezqﬂgjlu(bz),

(1)

ph (qCIDSi + a) u(r) = G(r, u(r)),

u(0) = elq[lf;lu(bl),

so that k;,k, € (0,1), b;,b,€(0,1), s>2, and 0,¢e;,¢, €R.
Aswell as, G : [0, 1] x R — R is continuous, and ql]éjl indi-
cates the g-RL-integral. These mathematicians extracted dif-
ferent qualitative aspects of solutions for the above g-FBVP
by means of the classical methods which are available in
fixed-point theory.

In 2015, Etemad et al. [21] focused on the new four-
point three-term g-difference FBVP

<qCIDg+u> (r)= G(r, u(r), qCD(lyu(r)), 0<g<1,

k
Ccm! _ o _ ! ( 1
cu(0) +dy D u(0) = by 17 u(k,) = leo Wu(z)dqz,
k _ (a=1)
Cm! _ o _ 2 (kz qZ)
u(1) +dy D u(1) = b, 0 u(ky) = szo Wu(z)dqz,

where 0<r<1, 1<p<2, a€(0,2], ¢;,¢,,dy,dy, by, b, €R,
and k,, k, € (0, 1) with k, < k,.

In 2019, two mathematicians named Ntouyas and Samei
[22] devoted their attention to investigate the existence
property about the multiterm g-integro-difference FBVP

§Df.u(r) = G u(r), (1), (o) (1), SO u(r), L u(r), -+ SO u(r)),
w(0) +byu(1)=0,u’ (0)+bu'(1)=0

(3)

where r€[0,1], g€ (0,1), pe(1,2), p;€(0,1) with i=1,2,

1 €
++,m, by, by # -1, h; are formulated as
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T

(hu)(r) = J vi(r, z)u(z) dz, (4)

0

for j=1,2 and G:[0,1] x R™* — R is continuous with
respect to all variables [22].

In 2020, Phuong et al. [23] formulated a novel extended
configuration of the Caputo g-multi-integro-difference
equation with two nonlinearity under g-multi-order-inte-
grals conditions

CmyP k k
(mq D — (m+ 1)1 — (m+ Z)quog)u(r)

= by J0 G (r, u(r)) + by 15 G, (1, u(r)),

1q 29 o+

u(0) =0, n P u(1) + (n+ 1), 02u(1) + (n+2),u(1) =0,
(5)

where r €0, 1], p € (1,2), ky, ky, ks, ky € (0,1), py, pys P> m,
n>0,and b, b, € R*.

In this paper, inspired by above g-problems, we analyze
a structure of the nonlinear Caputo quantum difference frac-
tional boundary problem (or g-CFBVP) in the form

D5 u(r) = G(r k(). S u(n) =Gy, (re0=[0.1,q€(0,1)),

(6)

wherec€(2,3),0€(1,2),{€(0,1),a;, B, y; € R, w,0,> 0
for j=1,2,--,k, and G: O x R? — R are continuous. As

the same way, the operators qci)(();) and qS(();) denote the
q-Caputo derivative and the g-RL integral, respectively.
In the direction of the above problem, we consider a coupled
system of nonlinear g-CFBVPs with the same g-boundary
conditions. In other words, the mentioned fractional g-sys-

tem is organized as

§D5u(r) =G (19, §359() ): (), (re0.q€(0,1),

qci‘);if)(r) =G, (r, u(r)s ssg)fy(r)) =7 ,(r),
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C P C P R(" J
(D!, 9(0) + CD" 9 Zgo] 1901

Can? Can?
q®0+//l(0)+q®0+tu

ZV,R"” [f,.u(1).

C®2.9(0) + {2 9(0) Zq]RM[% 90 )} (7)

where 61,6, €(2,3), @ p€(1,2), (€(0,1), a;, By, 6> 9)s
1, € R0, Wy, @y, 0,,8;>0for j=1,2,---,k and G, G, : O x
R* — R are continuous.

In other words, we extend our qg-CFBVP to a coupled
g-difference system and derive the existence and stability
results on such a generalized coupled g-CFBVP system.
In fact, a large number of researchers have devoted their
concentration to the discussion on various categories of
Ulam-Hyers stabilities for standard systems of FDEs (or
refer to [24, 25]), while a few articles can be found in
the literature in which the researchers developed the rele-
vant existence and stability theory in relation to nonlinear
fractional g-difference systems.

The present work is assembled as follows: In Section 2,
we state some basic materials required to prove our theoret-
ical results. In both Section 3 and Section 4, several criteria
and conditions are presented for the desired uniqueness-
existence results, along with different classes of stabilities in
relation to the proposed q-CFBVPs (6) and (7), respectively,
with the help of some known fixed—point theorems. A sim-
ulative example, to represent the consistency of our results,
is given with each suggested q-CFBVP in the relevant sec-
tion. We give Section 6 to the presentation of the conclusion
of this research work.

2. Preliminaries

The basic notions of g-calculus are collected in this section
by assuming g€ (0,1). The g-analogue of (a, —a,)" is
given by

k-1

(a1 =) =1, (a, = ay)® H (a1 - @ @), (a0, € R k€ Ny = {0,1,2,-})
Jj=0

(8)

Rajkovic et al. [26]. Now, if k=¢ € R, then

1 - (ay/a,)q*
— a6 =48 2771
(ay—ay)" =aj HW) (a,#0).  (9)

On the other side, by taking a, =0, we have a(f) =a§

(26]. A g-number [a,], for a; € R is defined by

1 _qal a,-1

g =g" 4 Hg+ 1. (10)

[al]q =

Accordingly, the Gamma function in the quantum set-
tings is defined by

(1-g)""

g (reR\(z"u{0})),  (11)

Ly(r) =

and I'y(r+1) =[r],I',(r) [5, 26].

Definition 1 (see [27]). The g-difference-derivative of the
given function y is defined by

(@)= (5) wr= BT
q

where () (0) =lim, (D, #)(r).

Clearly, we have (q®§+y)(r) =
ke N and (qi)gﬂu)(r) =u(r) [27].

0D, (qQI(;:ly) (r) for all

Definition 2 (see [27]). The g-integral of the supposed func-
tion u € C([0, m,], R) is defined as

r

(‘ISOHM) (r)= J u(v)dyy=r(1- q)

0

18

u(rg) g, (13)

~.
Il

if the series is absolutely convergent.
Similarly, (,S OJJ)( 1) =g, (qﬁgjl‘u)(r) forall k>1 and
(;0.4)(r) = u(r) [27].

Definition 3 (see [27]). By letting a, €
-integral of the given function y € C([0, a,],

[0, a,], the definite g
R) is defined by

j U(v)d,y =3, (@) - S, uar)

a,

= JQZM(V)dqv - rl#(V)dqv (14)

0 0

=(1-q)

~z

[az.“ (aij) - al.“(“lqj)] qj)

T
S

if the series exists.

By considering y as a continuous function at r =0, then
(65,4, )(r) =u(r) — u(0) [27]. Furthermore, (,D , I,
y(r) for all r.

p)(r) =



Definition 4 (see [11, 28]). The ¢"*-RL-g-integral of y € Gy
([0,400)) is defined by

1 Jr -
— | =) D) dv, ¢>0,
Fq((;) 0 1

u(r),

RS —
q"souu(r) -

¢=0,
(15)

if integral exists.

One can simply see that the g-semi-group property sat-

: +
isfies as 55;1 (?S;ﬁy)(r) =§S;‘+ “u(r) for ¢,6,>0 [28].
Also, for { > -1, we have
RS 0 _ LC+1) o
170" Iy(C+c+1)
(16)
1
RS _ S
S 1(r)= ——1r°, (r>0).
S 10)= gy >0

Definition 5 (see [11, 28]). Let £-1<¢<¢, i.e, £=[¢] + 1.

The ¢""-Caputo g-derivative of y € %g)([OﬁOO)) is defined
as

1 r .
SO = g | - Db (1)

if the integral exists.
Note that for { > -1, we have

Fq(l+l) .

Fq(l—c+1) (18)
Ca\S _

4D, 1(r)=0,(r>0).

CanNS 1 _
qi;)o*r_

Lemma 6 (see [10]). Let £ — 1 < ¢ < L. Then,

e ;

¢ ec vl :

(qCquCme) (r)y=u(r) - ZT G+ (qﬁ)]my) (0). (19)

j=0"4

By Lemma 6, the general series solution of g-difference

FDE gﬁ);y(r) =0 is given as u(r)=cy+¢r+cr’ + - +

Coy 71 with ¢, +++, G, € R and € =[] + 1 [10]. In this case,
we get

¢ Cand S - -
(gﬁmgi)oﬂu) (r) = p(r) + Sy + &7 + ErP 4G 1t
(20)

3. Analysis of the Cap-g-Difference FBVP (6)

Let A =ER(O) be the space of all real-valued continuous
functions on 0 = [0, 1]. Clearly, 2 is a Banach space under
the norm ||u||g = Sup, p|p(r)| for all members peA. In
the first step, we provide the following fundamental lemma
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which presents a characterization of the structure of solu-
tions for the proposed Cap-g-difference FBVP (6)

Remark 7. For convenience, we consider the following non-
zero constants:

Fi
WS:_qu(a +2)’ (22)

23
We=W,W, - W,W,, (23)

Wo=W,W, - W, W,,

Wip=Wg—-W, W, (24)
Wi =W;We - W, W,.

Lemma 8. Let ¢, €, c€(2,3), pe(1,2), (€(0,1), a;s B,
y; € R, and ;> 0 for j=1,2, -+, k. The solution of the lin-
ear Cap-q-difference FBVP

SO u(r)=¢.(r), (re0,q€(0,1)),
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is given by
)= [ 80 0ty o) [
+®v2v(:) L (9 qtg:) ‘Pp)l 6.0 d, _V\’I@‘i’—@%
- i] “Ff(g)i(a))w) iy~ 20
éﬁj %w) s
S L e

(.
I
—

(26)
where
O, =rW,W,+ W,
O,(r)=rW,;-w,, (27)

Os(r) =W, Wy —rW,W,- W,

and W, are defined in (24).

Proof. Let u satisfies the linear Cap-g-difference FBVP (25).
CenS _ . .
Then ;D u(r) =¢,(r). By virtue of ¢€(2,3) and taking
th_RL-g-integral, we have
1 v

u(r) = mjo(r - qv)(<_1>¢*(v) dv+¢+er+ o, (28)

where ¢, ¢;, ¢, € R are unknown coefficients that we have to
explore them. It is immediately computed that

2 1 r _ -
qC‘é)Om(r) = mjo(r ), (v) dv+6,(1+9),

(29)
€D p(r) = 1 Jr(f—qv)<c Vg, (v) v+, e,
1o I'y(6-0)Jo r,3-o
(30)
RO _ 1 ' _ o (s+oi-1)
S = gy ) e
oj 1 a)+1
Lo 9T+ GV
~ 1+q a}-+2
ZFq(aj+3) ’

ARG : 2) Jr(’ - )y, (v) dv

Ly(s+0;-2) Jo
- 1+¢

+CZF o.+1
q\"j

7.

(32)

By considering the constants W, ---, W, given by (24)
and by virtue the given boundary conditions implemented
on (29)-(32) and by some straightforward computations,
we obtain the following coefficients

c+oj—1)

G- Z J qV)(

8] 1 C+0)
W e a
WSJO Ly(s—p) #(7) 4y
Wio . oc-Jl (1 _qv)(ﬁarl)
WiWs 5o To(c+oy)
W, ¢ (¢- qv)(c—l)
B W1V§)’sjo I'y(s) #.() 7y
Wi ¢ (¢- CIV)(C_3>
W1W7W8J0 Iy(s-2) #.() gy

Wy, : .JI (1- qv)(cwj%)
W W W5V Ty(c+0;-2)

¢.(v)dgv

“+

(/)* (V) qu

(33)

¢* (V) qu,

+(V) dgv

oc]Jl (1-qv)(o)

Jo ry(s+0)

g
oog‘»g
M-

=

+
=|=

=
hb
}1
=
—
N
>

(34)
(V) dqv

==

o]
.
Il
—_

( )(<+a 1)
J ey

2B
qu)
o

¢.(v)dgv

Jl=
5

Wy (1- qv) (c+0,-3)
— j=1 AJ.qu(g+—aj—2)¢*(V) dqv,

~ 1 k 1 1=av (c+aj—3)
&= ZVJJ L%

I' (¢c+o0;,—-2
0 4( ( 3)J ) (35)
{ (¢ - -
_ _J (cqiw(p*(v) d,v.
Wyl I q(c_2>
By inserting (33), (34), and (35) into (28), we derive
equation (26) which is the same desired g-integral solution
of the linear Cap-g-difference FBVP (25). The proof is
completed. O



Now, consider the following estimates:

Sup,¢|O; ()] < Sup,([rW Wy + | Wyl)
SIWi W[+ [Wyo| =01 >0,
Sup, 5|0, ()| < Sup,o(|rWy| +[W),])
<|Wi| +|W,|=0; >0,
Sup,¢4|®s(r)| < Supre@(|r W, W8| +|rW,Wo| + |W11|)
< |W Wl + W W[ + |[W| =65 >0.
(36)

In this paper, for convenience in computation, we set

7

195 9u(v)(1) = %J (r=av) V%, (v) dv.

q(q) 0 (37)

According to Lemma 8, we define the operator & : A
—> A as

O,(r)
_R&S 1
(FH)() =55, 5,000 + 35 ",
' { gﬁfr W(V)(0) + Z%?’Z?J? )(1)]
4 22\ @2(7’) RorC Qg i Rc'“”Jg
Ws | Sor B Big Sy ' Fuv)(1)
05(r) RS2 ReS*0;~
W, W, W, [_‘1 oo* Zyjq Cto* QIO

(38)

Notice that the Cap-g-difference FBVP (6) has solutions if
and only if # has fixed points.

To simplify the computations, we set the following nota-
tion and the constants

1 e; ¢ d
A= + ¢ + Z
Ly(c+1)  [W We[\Ty(c+1) ST, (s+0;+1)

@; CC—Q k
+
(We| \T,(s—p+1) Zl“q(c+(r+1)

@* CC—Z
WL W, Wy

3.1. Uniqueness Result. The uniqueness result for the Cap-g
-difference FBVP (6) is proved by using the Banach’s fixed-
point theorem.

Theorem 9. Assume that G € €(0 x R?,
lowing assumptions.

R) satisfies the fol-
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(% ;) There are L,, L, > 0 such that

|G(r,up vy) = G(rs 1, V)| S Ly |y = up| + Lolv, = v,|, (40)
for every u, v;eR, i=1,2, and r € O.
I
L
L+—2— A<, (41)
I(w+1)

where A is given in (39), and then the Cap-q-difference FBVP
(6) has a unique solution y in A.

Proof. We convert the Cap-g-difference FBVP (6) into =
Fu, where F is defined by (38). By the Banach’s contraction
principle, we shall guarantee that # has exactly one fixed
point.

At first, we define a bounded, closed convex subset [HSY1
={ue ¥ lully <Y,} # S with

AG
1- (L) + (Ly/Ty(w+1))) A

Y, > > (42)

where A is defined by (39).
Let sup,.,|€(r,0,0)| =
pleted in two steps:
Step 1. #By C By,
Let y € By and r € O. Estimate

G < 0o0. The proof will be com-

©4(r)
[ RS 1
ummmome‘Ww
k
|1 LI ©) + TlelgSi” ] (1)
j=1
O,(r)

[Ws|

Rﬁc Q|? (v )| O+ z‘ﬁ ‘Rf-cm ‘? W) ‘ }

. {5"2 “J5,0I0) + Z\w\“"“’ Zlfﬂ<v>|<1>]

[W, W, Wy
(43)
By using the property of integral (16), we get
S0 = s [ =)@ iy s 1
1o r,(w) ), T T(w+1)
(44)

From the assumptions (%) and (44), we can estimate

1€.1)] = |g (7 1), £.1()) = 9(r,0,0)| + |9(r,0,0,0)|

i ed l
qdfy!ﬁ(’)‘ +G< ( 1 F(“”l)) [[4llg + G
(45)

<Lylu(n)]+1L,
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From (45) and by the property of integral (16), we obtain

|]_ S
S, ()] < K[L1 + rq(w—2+1)> (|4l +@1 ﬁ
(46)
|]_ S
'S 19.0)|() < KL1+ m) [etllog + ]%
(47)
'S0, ()] < Kﬂ_l + Tq([:HJ 64l o + ﬁ’
(48)
RegS—2 IL (c_z
'S, < [(Ll m)”#m ]m
(49)
RS9 L L. G !
'SCOg,m|() < [ L+ F@r) lleellgg + ,(cto,+1)

(50)

Gto;=2 L, :
e |%<v>|<1)SKfL1 m)”"”u }Fq(w—a]—l)

(51)
Substituting (46)-(51) into (43), we obtain
()] < K[L ‘ %) el +G}
e o [ ¢ eyl
' I:Fq(c+l) AA (rq(cn) * j:zqu(u;jﬂ)
o, [ ¢ S
A (Tq(c—g+l) +;Fq(q+aj+l)
04(r) S
+ W, W, W] (Fq(q 1) j;zlfq(C"'Uj— 1)
(52)
Then
_ L,
[(Fu)(r)| < K[Ll + W) ey + G| A (53)

which implies that || F [y < Y;. Thus, FBy By .
Step 2. F : A — A is a contraction.

Let p, 9 € A. For each r € O, we have

1S5190() - GoWIQ) + Y |BAS07 |9, - Go(v)| ()

k
* TWW, W [553:2‘?““)‘?9”)'“) * 2 |nfisy Zl%<v>—3’s<v>\<1>}
(54)
By (#,), it follows that

|9,(0) = Go(v)] < | (7 (1), 555 01)) = 9900, 55,901 )|

L,
< (”—1 + W) llet = Olgr-

Hence, by inserting (55) into (54) and using the property
of integral (16), we get

(55)

[(Fu)(r) = (F9)(r)| < [(L : %) - 9”‘*"]

_ rs . O,(r) g . . |ats|
Ty(c+1)  [WyWg|\Iy(c+1)  &ST,(c+o;+1)

o.n (& f]
! | Wy (Fq(C—Q+1) +;Fq(c+aj+1)

Oy(r) c” .y
’ |W1W7Ws‘ ( 21: C+(f —1) ’

(56)

which implies that ||Fu— F9|y <
14— 9y

In view of (41), (L, + (L,/T'j(w +1)))A < 1, and we con-
clude that & is a contraction. Hence, in accordance with the
Banach’s contraction principle, the Cap-g-difference FBVP
(6) has a unique solution y € 2. O

(L, + (Ly/T, (w0 + 1)) A

3.2. Existence Result. The second result is based on the
Leray-Schauder’s nonlinear alternative theorem.

Lemma 10 (Leray-Schauder’s nonlinear alternative theorem
[29]). Let M be a Banach space, C be its closed convex subset,
and X be an open set in C such that 0 € X. Let G : X —> C be
a continuous and compact function. Then either (i) there is y € X
such that u= G(u) or (ii) there are yu € 0X and @ € (0, 1) such

that u=0G(u).



Theorem 11. Let Ge€ €(0Ox R34 R
assumptions:

() There is continuous nondecreasing functions Y:
R*— R", p,, p, € €(F, R") such that

) satisfies the following

|G(r, )| < py (1)Y([u]) + Py () [V Y (o, v) € OX R,

(57)
where p; =sup,. {p,(r)}, i=1,2
(7 5) There is M* > 0 such that
1-(Ap,/I’ 1)) )M*
(1= (4po/Ty(w+ 1)) > 1. (58)

Ap,Y(MT)

Then the Cap-g-difference FBVP (6) has at least one
solution ¢ in 2.

Proof. Consider F as (38). In the first step, we will prove that
F corresponds bounded sets (balls) to bounded ones in 2.
For each positive real constant Y,, By :={p e : |ul| <Y,}

is a bounded set (ball) in 2. Let ¢ € By . We have

|(F1) ()] < 33 [ € () + \v(?/l(wr)s\
k
S ENO Zela 0N
O, () |Res—e S g
m}gf i |?M(v){((:)+j:l‘ﬁ EEAOIT >}
@3 ¢ 2 k e,<+z7 2
i 155 B0+ B o]

(59)

From (#,) and (44) in Theorem 9, we obtain

G (), 535 7)) | < 2 (Y () + () |55 ()|

<hY(Ya)+ ¢ I()czu+ D
(60)
By the same process in Theorem 9, we can estimate
[(Fw)(1)lly < Ag- (61)
Further, it will be investigated that # corresponds bounded

sets to equicontinuous sets of 2.
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Let ry, r, € 0 with r; <r, and p € By , where By is a
bounded set in 2. Also, we obtain

h)~ " RS d ReS+0;
|®1(\§x)/ 1/\(;)1‘( ) AONEAOIORIR LT A |?M(v)|(l)}
1"Vg a
")~ S x RaSHo
|@z( zﬁw?z(fl)‘ ?50 Q‘?M(VH(O + Z‘ﬁ]‘qsw ’{?M(V)|(1):|
8 =
")~ " 62 £ G+o;-2
IQTE/VZ)W(?;(‘ ) 5% ?M(V”(() Z‘Y}‘sew |3M(v)|(1):|
17 We a

" Fql(c) |/ [ =0 = (1= ] 6,00

e 1535,0)(0+ Jﬁl 19 |<1>}
o.c)-0ir) _5,39 0+ S, M

Ol a0+ S ol

< ch) |:J:(r2—qv)(c_l)dqv " L (2= an) - (r —qv)“—ﬂdqv}

DA :ESE,*I%(v)(o 3 SSST‘”lm)m)}

10e) -0t oy, i+ Sl V)(l)]

+W :gs;ﬂy,,(m(c) g(y}\;"fj” 213M(v)|(1)}

(62)

Obviously, the above inequality goes to zero as r, —r,
— 0, independent of y€By . Hence, by helping the
Arzela-Ascoli F:A—A is completely
continuous.

Now, we prove that there is an open set & ¢ 2 such that
yu# xF(u) for x € (0,1) and xp € 0D.

Let pe A satisfies p=xFu for each k€ (0,1). So, for
re O, by following the calculations applied in proving
the boundedness of &, we have

theorem,

4(7)| = () ()] < A By () + "’Z(ﬂf‘ﬂﬁ)] (63)
It yields that
I <2 (el + P (o
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Consequently, we obtain

[Fg(@+1) = poA] [l

AT @+ DY (July) (63)

From (%;), there is M* >0 such that ||u||g # M*. Let

D= (e : [ju] <M +1},

(66)
U=DUBy,.

Notice that F:% — A is completely continuous.
For the sake of the choice of &, Ax € 09 such that p=
kFu for some « € (0,1). Therefore, by Lemma 10, we
find out that F has the fixed point y € % which implies

that the Cap-g-difference FBVP (6) has at least one solu-
tion on O. |

3.3. On the Stability Property for (6). Stability analysis is one
of the most important parts of each research in the field of
existence of solution of fractional boundary value problems.
For instances, we can mention to such a stability analysis in
some newly published works including [24, 25, 30-32]. In
this subsection, we introduce some concepts of stabilities
for the Cap-g-difference FBVP (6). These definitions were
extracted from [33].

Let €>0, G: OxR* — R be continuous and 6 : 0
— R* be a nondecreasing mapping. Assume that

S5 () - G(rur). 5o um) [ <6 (7)

S5 () - G(ro (), ) )| <), (68)

S5 u(r) - G(ru(r). 5 ()| <e0(). (69)
Definition 12. The Cap-g-difference FBVP (6) is called
Ulam-Hyers stable if 3C; € R* s.t. Ve > 0 and every solution
u e U of (67), a solution x € U of (6) exists s.t.

|(r) —xk(r)| < Cge, r e O. (70)
Definition 13. The Cap-q-difference FBVP (6) is called gen-
eralized Ulam-Hyers stable if 3P € €(R*, R*), P(0) =0 s.t.
Vu € U fulfilling (67), a solution « € 2l of (6) exists s.t.
|u(r) —x(r)| < P(g), r € O. (71)
Definition 14. The Cap-g-difference FBVP (6) is Ulam-
Hyers-Rassias stable w.r.t. 0 if 3Cy € R* s.t. Ve > 0 and every
solution p € U of (69), 3 a solution k € U of (6) s.t.
|p(r) = x(r)]| < CgO(r)e, 7 € O. (72)

Definition 15. The Cap-q-difference FBVP (6) is termed gen-
eralized Ulam-Hyers-Rassias stable w.r.t. 0 if 3Cy € R" s.t.

for every solution y € U of (68), 3 a solution « € U of (6) s.t.
|u(r) = x(r)] < CB(r), r € O. (73)

Remark 16. p € U is a solution of (67) if 3w, € U (dependent
on p) s.t.

(b1)§ D, (1) = G (r), {5 1(r) ) + (1), r € O,

(b2)|wc(r)| <e.
(74)

Lemma 17. If u € U satisfies (67), then
lu(r) = Ar)| < Ae, (75)

where A is given as in (39) and A(r) is introduced in the
proof.

Proof. Let u satisfie (67). By (b;) of Remark 16, there is w,
€ U (dependent on p) such that
+w.(r),

$.u(r) = G (. (r), £ m(r) (re0,q€(0,1)),

N—

(76)

u(r) =4S, G, (v)(r) +

& G+0
' {‘55}%@)(5) ) S %(v)@)}

k
- S |87 2,000) - Y AT,
j=1
e - . G+oi—
S {—ﬁooff,xv)(o T Z%(Vm)}

q ot S WIWS 5
C) (T‘) s—Q k G+o
"y (15l - R RS
j=
®3(7’) R d ReaS+0;-2
" W, W, W, el wc({)+jzzl i S <(1)
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For convenience, consider A(r) for the terms that are
independent of w_(r). That is,

s e, (r) k cio,
(1) =58, () “W - +Zl%if~‘?o L)
=
O,(r) (& e : R&SHO
" Wy 400 Z;ﬁﬂiho ]? 1
e

r -2 k RaSHo;—
%0 {qs 2,00+ Yy gm0 >]
j=1

(78)

Therefore, (77) can be rewritten and by using (b,) of
Remark 16, we have

O,(r)
W, Ws\

{° |we(0)] + Z}a 130 | <<1>|}

lu(r) = A(r)| < 5S¢ |wg(r)] +

@2(7‘) Refﬁg
o ool » Yl ey }
65(7) o g
W, W, {5“ a0+ 3o vl <4
(79)
This inequality completes the proof. |
Theorem 18. Let (%#;) and
L
L+ —=———]A<1, (80)
Iy(w+1)

to be held. Then, the Cap-q-difference FBVP (6) is both Ulam-
Hyers and generalized Ulam-Hyers stable.

Proof. Let u e U satisfies (67) and « fulfills the Cap-g-dif-
ference FBVP (6) given as

CDF k(r) = G(r, K(r),’;sgix(r)), (re6,q€(0,1)),

By the previous lemma, let

p(r) = ()] < |u(r) = An)[ +[A(r) = x(r)|. (82)

Journal of Function Spaces

By using Lemma 17 in (82), we have

[4(r) = k()] < Ae+ (ml . %) Alu(r) = (1))

For r € O, we have

L,
[l¢4 = Klly < Ae+ <[L +W>A||#—K||u~ (84)

After simplification, we get

b= Kl < - e (83)
Y- (L + (LT (w+1)))A

Thus
|u(r) —x(r)] < Cge, (86)
where

Cg= A . (87)
1- (L + (Ly/Ty(w+1)))A

Thus, the Cap-g-difference FBVP (6) is Ulam-Hyers
stable.

In the sequel, the function P(€) = C;e implies that the
Cap-g-difference FBVP (6) is generalized Ulam-Hyers stable
and P(0) =

Now, we add another condition.

(o,) Consider an increasing map 7, € (0, R*). Then,
there is §; >0 such that

S
500*- C( )

5 7T (1)- (88)

O

Remark 19. Under the hypotheses (#,) and (/) and (80),
the Cap-g-difference FBVP (6) is the Ulam-Hyers-Rassias
and generalized Ulam-Hyers-Rassias stable.

4. Analysis of the Cap-g-Difference System (7)

Here, we continue to discuss the existence and uniqueness
results for the proposed system (7). In view of the assump-
tions of Section 3 for the Banach space 2, the norm consid-
ered on the product space A x A is
149 e = 1l + 19l which implies that (221,
[| (¢4, 9) |lgqeqr) is @ Banach space.



Journal of Function Spaces

Remark 20. For convenience, and based on the given param-
eters in (7), we have nonzero constants:

_ £,

W, o=2- )
1 J;Fq(ajJrl)

W,=( - ,
’ S0 +2)

Keeping in mind Lemma 8, consider the operator &
tUAXA— Ax A as

S y)(r) = (1 9)(r), 21 9)(7))» (90)

where

11

(I S —"

- 0 e Z%R‘”C”&W v )}
8
é3(7) R Cz’z R C2+5 2
W, W, W, S 7 Z’]J 3 7))

(1)
Before proceeding, consider the following estimates
Sup,eo|®, (r)] =6,

Sup,6|®,(r)| = 0, (92)
Sup,¢|O3(r)| = O

To simplify, we also set the following notation and the
constants

R e; S N : o]
1 Fq(<1+1) [Wi Wl Fq(c1+1) Flrﬁi(c1+01'+1)

o 6 —Q k ‘[3‘
+ 2 ¢ + Z :
[We \ T,(c; —e+1) jzqu(<1+aj+1)

©; ¢ i v
+ >
|W Wy W \Ty(—1) ST, (c +0;-1)

U o, S : W
Tt [WW T +1) - ST, (0 +8+1)

4.1. Uniqueness Result. In this step, we shall establish the
existence of a unique solution to the coupled system of non-
linear g-CFBVPs (7), by the Banach’s contraction principle.

Theorem 21. Let G, G,: OxR?— R be continuous.

Assume that
(% ,) There exist positive constants &£, K ,,i=1,2 such
that for each r € [0, 1| and u;, v;, U, v; € R, and fori=1,2

G uy vy)| S L huy — uy| + Z5|vy = vy

Gy (1, 1y, v,)| < |1

|Gy(rupvy) =
|G2(r’ﬁ1’1_/1)_ _a2|+z%2|1_/1—1_/2|,

(94)
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Then the coupled system of nonlinear q-CFBVPs (7) has a
solution on O provided that

Qm{(gf))A @(%))A} (95)

Proof. We transform the coupled system of nonlinear g-
CFBVPs (7) into a fixed-point problem (g, 9)(r) =Sy, 9)
(r), where & is an operator as (90).

Let sup,.,|G,(,0,0)| =My, < co and sup,.,|G,(r,0,0)]
=My <0o. Next, we set By ={(9)eAxA
{16t Ollggar < Y3} with

Mg, A} + Mg, A,

Y, >
3 1-0

(96)

Note that By is a bounded convex closed set in 2.

Step 1. SBy C By..

For each (¢, 9) € By, and r € 0, and by using the condi-
tion (9% ,) and (44), we have

|%y(r)| <

Gy (7 9(r)-£3429(1) ) = G, (r,0,0)| +1Gy (. 0,0)|

<L) + L 9,190)|

+ My, < <£Zl + (g 1)) (19119 + My,
| r)| ‘Gz(r u(r), Ro‘wj‘u( )) = Gy (r, 0,0)’ +]G,(1,0,0)|
F,
= (‘%1 * Fq(wﬂ)) [[#lgg + M-
(97)
Then, we get

L o)

[Wi W]

R
k
. [58;”‘219(1/)\(() + Zl|aj‘§sf)‘++m|%‘9(v)l(l):|

)
&
4
§

T M»

\ﬁ 85 ()1 )}

+ BV ‘®3< | R("cl |°Zl ()
‘W1W7W8‘

k
< +
[T (6 +1) |WW8< (¢ +1) Z1" q1+a+1)>

j=1 ‘1

SR S } o

+
(s —e+1) };Fq c1+aj+l) W, W, W|

S S
(F (6, -1) +J:erq (6 +0;-1)

X Kz] + FATZHJ 1919 +M%]

\w)“““ﬁ” ()1 >],

+ ©;
[Ws|

B

(98)

Journal of Function Spaces

Hence

<
108 9) [l < (31 + m) Ap[|9g + Mg Ay (99)

Similarly, we find that

163060 9l < (% '

K
(wzz+1)> Ao |pllg + My Ay
q

(100)

Consequently, we have
S(w9 (o + 22 A9l + Mg A
([ (t4s 9) [l grer < 1 m 1199 M

F,
+ <%1 + (+1)>A (|4l g + Mg Ay

<QY; +MyA + My, A, <Y,
(101)

which implies that SBy < By .

Step 2. We show that &:UAXxA—AxA is a
contraction.

Using condition (%), for any (y4,,9,), (¢, 9,) e Ax A
and for each r € O, we have

|1 (#12 91)(1) = S (12, 95) (7)]

r . +0;
< \‘v%l(wﬂ\ [’W‘\w ()= s, ()| Q) + Y| |50 | %y, (v) %32(1/)|(1)}
8 =i
r 3 S ReS1%0;
\%}(\\{w. %, (v) = %, ()| (0) Z) ‘e }‘“2{3‘(v)—°2l92(v)‘(1):|

‘M\IQ‘Z](:;\/&‘ {se;rz{%‘)l = U, (v |(( Z‘y1|R<~n+u -2‘%9‘ (v) _%92(V>|(1):|

RGCI }?Zs ~ Uy, v)‘ )

M»

|
= F c1+a +1)

e | L g
+ 2 +

[We| [F (6i-e+1) Z]R,(Cl'*“"*'l)
P e +i ‘Vj‘

[W W, W \ Ty(, - 1) j=1rq(cl+‘7j_1)

Z,
X (31 m) (19 = 959>

and therefore

<
{ (6 +1) \WW8 F(§1+1

(102)

<,
(1S (1> 91) = St (#0 9) [lgg < (3)1 + W)A (191 = 9 lgg-

(103)
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Similarly, we get

F
52 (615 91) = 2 (> o) [log < <*%1 + I“q(a)22+1)> A |ley = s |l

(104)

From (103) and (104), it yields

| (g5 91) = Sy O Q(||‘91_‘92H91+||P‘1_”2||2[)'

(105)

2)||%[><%[ s

As Q <1, by (95), the operator & is a contraction. The
Banach’s contraction principle implies the existence of
unique solution for the coupled system of nonlinear g-
CFBVPs (7) on [0.1]. O

4.2. Existence Result. We get help from Lemma 10 to com-
plete the main result of this subsection.

Theorem 22. Let G, G,: OxR?— R be continuous.
Assume that

(% ,) There exist nonnegative continuous maps x;(r), y;
(r) e C(O6,R*U{0}), for i=1,2,3 such that

|G (1, u, v)| < x,(r) + x,5(r) [u] + x5(r) v, (1, u, v) € (@, ]RZ),
v) € (O, R%),
(106)

|Go(r i V)| <y, (r) +y,(r)[a] + y5(r) 7, (> 2,

with x; = sup {x,()} and y; =sup {y,()}.
reO® reO®

Then the coupled system of nonlinear g-CFBVPs (7) has
at least one solution on O.

Proof. Here, the process of the proof will be continued dur-
ing four steps as follows.

Step 1. & is continuous.

Let p,, and 9, be two sequences such that y, — y and
9, — 9 in A . Then for each r € O, we get

81w 9 ()< l“;lw‘l

IS (o 9) () =
. {Reﬂ |?l8

+'(?5V(">' [’;’2 Yy, (v) - Us(v \<c>+z1ﬁ\ “"\%”(v)_%(m(l)}

W@+ Z}% NSy (v %(v)\(l)]

+|W‘®5v7%{;‘";‘ 24,1~ sl \<<>+Z1y\“"‘“‘ 2|%,,<v)—%<v>|<1>},
it o
(6 +1) ‘W1W8| Iy(si+1)

G0 k “8‘
+Z !
Ty(¢—Q+1) r,( cl+aj+1)

[\/]»

S
+5 80‘* |%3n <v)

o
=t (c]+o +1)

=174q

. -2 k .
n CH S + Z ‘}’]‘
[WiW;We| \ Ty(s1-1) .:ll"q(clﬂfj—

I

1)) 1%, = %sllye
(107)

13
and therefore
19,0 ) = 5109 o < A2, - %ol (108)
Similarly, we get

|82 (#> 9) = S (4 9) [l < A, (109)

From (108) and (109), it yields

18 (0 92) = St Dl < | %s, = Ul + 1| 7, =7 -

(110)

Since the continuity of G, and G, imply that of %y, 7/,
so we have ||[%y —Uy|l, — 0 and |7, _%I‘Hm —0 as
n— o00; and & is continuous.

Step 2. & is uniformly bounded.

We prove that for Y, >0, there exists /"¢ > 0 such that
for every (4, 9) € By , where

By, = {(169) €AXA: (1)) o < Va}»  (111)

we get [|S(¢ 9) |y < s
Using the condition (95) and (16), we have

123(r)| =[Gy (7 ()35 9(r) ) | < :1(6) + x,(1)19(0)]

Wy * * x5
+x3(t)‘§50+9(r)‘ <xt+ (xz + m) [19]]gp>
q 1

17,01 =[Gy (r () 5SS () ) | <1 + (y%ﬁ)%

(112)
Then, we get
(2 (1 9)(r)| < B[ y(v) (1) + vaji(wr)s“
. [RH“ |%s(v)|() + g\ajﬁ«‘?;w’\%(v)\(l)]
. I(?‘jv(;)\ RS2y (v)](€) + i\@(ﬁﬁf”ﬂ%(v)l(l)}
i o Sy e

U
k
< . Z }“J‘
I <1+1 \W W8 C1+1 ST,(6+0;+1)
5 Sh] k ‘ﬂ‘
+ ®; ¢ + Z !
[Wg| |Tq(si—e+1) ‘qu(cl+o-j+1)
[ON G2 k ‘y’
+ 3 ¢ + Z d
(WW, W \Ty(a-1)  F q(ﬁ*aj*l)

r

. . x5
X |x7+ | x5+ Olgy | -
{1 ( FMHJH nm}

(113)
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Hence

1S3 (t Ol <

* * ‘x;
NEES <x2 + m) ||9||2[] (114)

Similarly, we find that

K
|51 lg < (‘%1 + Iﬂq(TilJ Ay plg + My Ay
(115)

Consequently, we have

(S (6> 9) [l ey < As

X3
w1+1)> |9||21]

* *
x1+ x2+r(
q

. . V3
A [ A E— = .
2t (yz + Fq(w2+ 1)> |‘”|2(] N

(116)

Then, & is uniformly bounded.
Step 3. & maps bounded sets into equi-continuous sets of
2. Let r;, 7, € O such that r; <r, and (u, 9) € By, where By

is defined as in Step 2. Then we have

81 (1 9)(r2) = 1 (1 9) (1)

< ’RSCA Ug(v)(ry) - Rsm %s(")(’1)| . [©4(ry) = ©1(ry)]

(Wi Wyl

: [ ) + ZI% 8y 1%s( )\(1)}

+ % {w g€ + Z\ﬁ 155 <v>|<1>}

Os(ry) - O5(ry g9 -2 L (..c+a 2
+%{q o (%I + Z\ [isy <v>\<1)}

1 X3
< |xt+ |+ —21|9
T,(e) { 1 ( 2T (¢ 1)> [ ”iz(}

[

+%{"‘|@w\<c Z\a 1S %) >]
N W {gsgi’%%wm + Zlﬂ 1512 14
Ot oy Sl ]

[$2(p 9)(r2) = (g 9)(r1)]

SR ¥ ) 7 S . S [

T,(c) T,(w, + 1)
: { j (-0 dyy j [(r2=an)& = (r, - qvﬂ‘f”]dqv}
|®

-0 1(ry) } R Rz~<z+§
7‘;” [ 7)) + Z“f’ ‘ N7, }

[e)

Wl

+

w
+ | 5(r ‘) 5(11) } |:Ro~< _P‘W ‘ V)(( Z) ‘Rﬁkz*‘a )\(1)}

% [5‘"3 27,0 + ZMMM Zm(v)\a)],

(117)
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which implies that

S 9)(rz) = S ) (1) < T, (e

oo [ o X
. + + 9l
X <x2 Fq(w1+1)> |2I:|

J (= qv) S Vdpy] + j (2= a0 = (1= qn) ey
r 0

1 ¥;
+1—~q(c2)|:y1 <)’z W)MW}

j (- qv) &y + | (2= a0 = (= qn) @]y
JO

"

|
|

(V)(l)]

_ i k
8 =0 frge ) @0+ Doy o )]
=1

‘1‘\50’r

= A T k
. ‘@1(727) ?1(71)| |:Re-Cz 7}4( )+ Z’(l’ ‘f;,;ﬂs

\@ml)V;jz(n)\ };53 )0+ Z\ it V)(l)}

N w {gsgﬂ’m((v)(o + ]i o iS5 %(V)}(l)}
% [gs;;z%<v><c> + g]yjjsf‘”"f "[2y(v)](1 )}
% {f;s;i_ﬂ%“(vﬂ(() ¥ g(ﬂj)§5§i+6’_217/y(V)(l)] :

(118)

The right-hand side tends to 0 as r, — r;, which is
independent of (y,9) € By . By helping the Arzeld-Ascoli
theorem, S : 2 — 2 is completely continuous.

Step 4. The set B={(,9) e Ax A : (4, 9) = xS(, 9),

€(0,1]} is bounded.

Let (4, 9) € B. Then (u, 9) = xS(p, 9) for some « € (0, 1].
Thus, for any r € O, by using the computations of Step 2, we
have

18(tt: O) (1)l gper < s (119)

This means that B is bounded. Consequently, by Lemma
10, § has a fixed point and so a solution to the coupled sys-
tem of nonlinear g-CFBVPs (7). U

5. Numerical Examples

In this section, we provide some illustrative examples of the
exactness and applicability of our main results.

Example 1. (i) Consider the Cap-g-difference FBVP of the
form

2.5 3.8
£aD0 u(r) = G(r u(r), 5530 u(r)),  (reO.g€(0.1)),

2 /12 - 4j 3j/10
u(0) + p(0.4) = Z( >R Soru(l),

J=1
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0.25

0.2 4

0.15 4

0.1 4

0.05

12
g.sgo* #(0) + gsgw

2
(0.4) = Z<2]+3)R 031/10”(1)’

=1

15
0 Ojl 012 013 0f5 0t6 0j7 018 019 1
r
— ¢=290,9=0.80 — =282,9=064
— ¢=2.88,9=0.76 ¢=2.80,9=0.60
— ¢=2.86,9=0.72 — ¢=2.78,49=0.56
¢=2.84,9=068
Ficure 1: The exact solution p(r) of (120) for r € [0, 1].
A
Cg= ~11.85782552 > 0.
1- (L) + (Ly/Ty(w+1))) A
(124)

2
) 12-5 &34/10
g,sgo*!‘( )"’08@0*.“ (0.4)= Z( ])oslfo]* [ Q)oﬂ"‘( )]

=1

(120)

Here ¢=2.5, q=0.8, w=3.8, {=0.4, 9q=1.2, ocj:(Zj
+3)/10, B,=(12-5/)/10, y;=(12-4j)/10, 0;=3j/10,
and j=1,2. From the given data, we obtain W, =

0.676686276 + 0, W, =1.814092676 #0, and W=
1.431872331 +0. We consider the functions
R 38 _ 4r—1  9cos(n/3)  |u(r)|
G(r, #(r)s 0850 y(r)) T reX +4 2e" +6 |u(r)| +3
3.8
W0sin (r/6) |80 H(r)|

(21’+3)2+263r . ‘R s; [4(1’)’-}-2

(121)
For u;, v; € R, and r € O, we can find that
3
|G(r uy, 1) = G g, v5) | < g\ 1=t + 11| 1= Vo
(122)

The assumption (%', ) is satisfied under the values L, = 3/8
and L, =5/11. Thus,

L
L, +——2— | A=0.8324696807 < 1. (123)
Fq(a)+ 1)

All assumptions of Theorem 9 are valid. Then the Cap-g
-difference FBVP (120) has a unique solution on [0, 1]. More-
over,

By the conclusions of Theorem 18, the Cap-g-difference
FBVP (120) is both Ulam-Hyers and also generalized Ulam-
Hyers stable on [0, 1]. (i) Set G(r, p(r ),ﬁsﬁgf‘u( )) =1t

By using the property of integral (16) and setting A = 2.8,
the implicit solution of the Cap-g-difference FBVP (120) is
given by

_ LA+ G 64(n)
"(’)’rq(‘;wrcqul)rA ETATA
LA+1) . k r,(A+1)
'[_Fq(ri\+c+1)c +}le q()t+<+a +1)}

O,(r) T,(A+1) (“” i Bl (A+1)

Wy |T,(A+c-p+1) ]:ll“q)t+c;+a+1)
O4(r) r(A+1)

W, W, Wy | (A+<—1

SI,( A+c+a -1)|

(125)

Figure 1 displays the solution of the Cap-g-difference

FBVP (120) involving various values of ¢=2.78,2.80, ---,
2.90 and g =0.56,0.60, ---, 0.80.

Example 2. Consider the coupled system of nonlinear Cap-q
-difference FBVP under the conditions

£ u(r) =Gy (19, §,8,79(r) ), (re o),

£/ 9(r) = G,
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k
12-5
9(0) + 9(0.3) = Z( J)g;;f; 9(1),

2
1.8 18
3790+ 1(0) + (?.790+ 1(0.3) = Z 10 0730 p(1),

T
N

7= 2j> R «5i-3/10

1.4 C -l

C ol ‘ 2, (10 -4\ g ~3j-1/10
07D+ 9(0) + 57D 9(0.3) = Z 10 /O e 9(1)s

2 .
2 2 10 -3j 5j-3/10
52 0) + £ 2u09) = X () 5,9 2],

. D.9(0) + &, D.9(0.3) =

2, (8-3j 3j-1/10
Y (SD)esr o)
(126)

Here¢, =2.8,6,=2.9,9q=07, w, =17, w,=2.3,({=0.3
L p=18, p=14, a,=4j/10, B;=(7-2)/10, y; = (10-3j)/
10, ¢; = (12-5))/10, ¢, = (10-4j)/10, 1, = (8-3/)/10, 0
=(5j-3)/10, §;=(3j—1)/10, and j=1,2. From all the
given data, we obtain W, =0.705064917#0, W, =
1.385967560 # 0, W4 =~ 1.029770834 + 0, Wl =~ 1.026846802
#0, W,=~2.110974612#0, and W, =~1.174518052#0.
We consider the functions

Gl(r,9( ),073 9( )) =372 —2r+1+ sin§(+r)1+6
9] 2cos (r)
9()[+3 " (3r+4)

1.7
87857 9(r)
' R 17 ’
‘07\50+ S(r)’ +1

G (1 (), 2 (r)) = re =3+ (2 +sin (r))

3e"+4
G
lu(r)|+1 In(2r+1)+3
23
R750+ w(r )‘
P
880 )| +2
(127)
For u;, v;, u;, v; € R, and r € O, we can find that
1 1
|Gy (1 1y, vy) = G(1s Uy, ¥,)| < §|”1 — |+ §|V1 Vs
_ _ 3 1
|G, (1> 14y, V) = G(1, 1y, )| < 7|”1 — |+ [V =7,
(128)

The assumption (%) is satisfied with &, =1/9, &,
=1/9, #,=3/7, and F,=1/3. Hence, (& + (ZL,/I ;(w;
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+1)))A, =0.6937912556 <1 and (H, + (H, /T, (w, +1)))

A, =0.8947974715 < 1. All assumptions of Theorem 21
are satisfied. Then the coupled system of nonlinear Cap-
g-difference FBVPs (126) has a unique solution on [0, 1].

6. Conclusion

In this paper, a new category of nonlinear Caputo quan-
tum boundary problems and its relevant generalized
coupled g-system involving fractional quantum operators
was discussed. We presented new g-difference equations
and system in which we dealt with g-integro-sum-differ-
ence bundary conditions. Some qualitative aspects of solu-
tions such as the existence, uniqueness, and different
classes of stabilities of Ulam-Hyers type were investigated
for both given g-Cap-difference problems. The results were
examined with some examples. As a new idea in the next
papers, we aim to extend our method for similar general-
ized coupled systems under the newly introduced general-
ized (p, q)-operators (postquantum operators).
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The goal of this paper is to extend the concept of complex-valued fuzzy metric space to complex-valued fuzzy b-metric spaces and
to discuss various existence results for fixed points to ensure their existence and uniqueness. To demonstrate the viability of the
proposed strategies, a nontrivial example is used. Finally, applications to integral equations and initial value problems in
mechanical engineering are discussed to demonstrate the superiority of the obtained results.

1. Introduction and Preliminaries

Fixed point theory combines topology, geometry, and analy-
sis in an amazing way. Fixed point theory has emerged as a
powerful tool in the study of nonlinear analysis in recent
years. In fixed point theory and many other mathematical
subjects, multiple separate objects are considered. As a
result, mathematics is not only about numbers and shapes
but also about prepositions, fluid flows, vector connections,
and chemical interactions, among other things. Many
researchers investigated the significance of various features
of symmetry and demonstrated how they might be applied
to many types of mathematical problems [1, 2]. There are
several generalizations of the concept of metric spaces in
the literature. Azam et al. developed the idea of complex-
valued metric space and discovered that the Banach contrac-
tion principle may be applied to complex-valued metric
spaces [3]. They studied its applications to complex integral
equations. After that, fixed point theorems have been stud-
ied by many authors in complex-valued metric spaces [4-8].

The concept of b-metric spaces has been introduced by
Bakhtin and Czerwik [9, 10]. Later on, many authors studied
fixed point theorems for single and multivalued mappings in
b-metric spaces for instance [11, 12]. In [13], the author gen-
eralized the concept of b-metric spaces by introducing the
setting of complex-valued b-metric spaces. Many other

researchers worked on complex-valued b-metric, and they
extended generalized fixed point theorems in the sense of
complex-valued b-metric spaces (see [14, 15] and the refer-
ences therein).

The concept of fuzzy sets was given by Zadeh [2] and
opened the door of new direction in mathematical research.
Pao-Ming and Ying-Ming established the notion of fuzzy
metric spaces [16]. Afterwards, George and Veeramani
improved the settings of fuzzy metric spaces [17]. Heilpern
introduced the concept of fuzzy mapping and obtained fixed
point results for fuzzy mappings [18]. Heilpern’s work was
further extended by many authors, for instance, see
[19-21]. Shukla et al. worked on the neighborhood structure
of fuzzy fixed point [22]. Several other researchers worked
on fuzzy metric spaces and obtained the generalizations of
related results [23, 24].

George and Veeramani generalized the concept of fuzzy
metric to the context of complex-valued fuzzy metric and
obtained the complex-valued fuzzy version of Banach con-
traction mapping result in different forms [17]. Also, they
obtain some related fixed point results with valid examples.

In this paper, we introduce the setting of complex-valued
fuzzy b-metric spaces to generalize the setting of complex-
valued b-metric space and establish the complex-valued
tuzzy version of the Banach contraction principle. We also
provide examples to back up our findings. The paper
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concludes with an application to integral and differential
equation.

All over the manuscript we have symbolized the set of
complex numbers by C. We mark some shortcut representa-
tion used in this manuscript, as t.-norm for a complex-
valued continuous triangular norm, CF b-metric for
complex-valued fuzzy b-metric, and s.t. for such that.

Let 2={(& p): 0<&<00,0 < p<oo} c C. The elements
(0,0),(1,1) € & are denoted by 9 and ¢, respectively. The
set Pg={(&, p): 0 <£<00,0 < p<co}. Clearly for ¢, e C,¢
<@ iff £ —p € Py. Let the unit closed complex interval be
symbolized by F={(§p):0<&<1,0<p<1} and the
open unit complex interval by %, ={(§,p): 0<&<1,0<p
<1}

Definition 1 (see [17]). Define an ordered relation < on C by
616, if and only if ¢, — ¢; € S. The relations ¢;<¢, and ¢,
< ¢, indicate that Re (¢;) <Re (¢,),Im (¢;) <Im (,) and
Re (¢;) <Re (g,),Im (¢;) <Im (g,), respectively.

Let B C C. If there exists inf B such that it i the lower
bound of B, that is, inf B<aVa € B and v<inf B for every

lower bound v of B, then inf B is called the greatest lower
bound of B.

Definition 2 (see [25]). Let X be a nonempty set. A complex
fuzzy set M is characterized by a mapping such that domain
is X and the range in the closed unit complex interval .7.

Definition 3 (see [17]). A binary equation x : ¥ x . — .F
is said to be complex-valued ¢-norm if the following condi-
tions hold:

(1) & x8, =§,%&;

(2) & x&,=xE,+E, whenever & <&,,&,<E,
(3) &1%(8,%&5) = (§,%8,)x&5

(4) Ex9= 0, Exl=¢

forall £,¢,,&,,85,8, € 7.

Some fundamental examples of a f.-norm are as follows:

(1) &x,8,=1{ejer, e3¢}, for all & =(e),e5),8, = ey,
e,) €5

(2) & %3&, ={min {e,, e,}, min {e;,¢,}}, for all & =
(e1,e3),8,=(er,04) €F

(3) &,*.&, = {max {e; + ¢, — 1,0}, max {e; +e,—1,0}},
forall & = (e}, e5),&, = (ey,€4) €F

Definition 4 (see [17]). Let (2, M,x) be a complex-valued
fuzzy metric space. A sequence {goq} in X is known as a

Cauchy sequence if

lim infM((pq,god,t) = eVt € Py. (1)

q—00 d>q
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The complex-valued fuzzy metric space (2, M,x) is
complete if every Cauchy sequence is convergent in 2.

Definition 5 (see [17]). A sequence is monotonic with respect
to < if either ¢,<g;,, or ¢,,;%¢,Vb € N.

Lemma 6 (see [17]). Let (X, M,*) be a complex-valued fuzzy
metric space. If t,t' € P9 and t<t', then M(@, u, t)<M(¢, u
gt Wo,ued.

Lemma 7 (see [17]). Let (X, M,x) be complex-valued fuzzy
metric space. A sequence {q)q} in X converges to ve I iff

lim M(goq, v, t) = ¢ holds V't € Py.

q—00
Remark 8 (see [17]). Let @, € PYn € N then:

(a) If the sequence {¢ q} is monotonic with respect to <
and there exist y,7 €% with y°¢,<n,Vq €N, then
there exists ¢ € & such that lim;__ ¢, =¢

(b) Although the partial ordering < is not a linear order
on C, the pair (C, <) is a lattice

(¢) If & c C and there exists y, 17 € C with y<sxnqVs € X,
then inf 2 and sup & both exist

Remark 9 (see [17]). Let ¢, @', & € P,¥q € N, then

(a) If (pqﬁ(p'q5€Vq€N and lim then

hmb%oo(plq =t

q—>ooq)q = E’

(b) If ¢, <€Vq € N and lim,__ ¢, = ¢, then ¢=§

(c) If E<¢,¥q € N and lim,__,,¢, = ¢, then §<¢

Definition 10 (see [15]). Let X be a nonempty set and let b
>1 be a given real number. A function @ : X' x X — C
is called a complex-valued b-metric on X if, for all &, ¢,v
€ C, the following conditions are satisfied:

(i) D(§ ¢) =0
(ii) D(& ¢) =
(iii) D&, ¢) =D(9, &)

(iv) b[D(&,v) + D(v 9)] = D(&, )

The pair (Z,D) is called a complex-valued b-metric
space.

0ifand only if E=¢

Example 1 (see [15]). Let 2 = C. Define the mapping D : C
x C— C by D(&,¢) = |& - |* +i|E - ¢|* for all &, ¢, v e C.
Then, (C, ) is complex-valued b-metric space with b= 2.

Definition 11 (see [17]). Let 2 be a nonempty set, * a con-
tinuous complex-valued ¢.-norm, and M a complex fuzzy
set on X x X' x Py — F satisfying conditions:
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(1) 0=M(§, 9, 1)

(2) M(&, @, t) =2 for every t € Py if and only if £ = ¢
(3) M(&, ¢, 1) = M(9, &, 1)

(4) M(E . t)xM(p, p,t')M(E prt +1')

(5) M(&, @, *): 9{9 —> .7 is continuous for all &, ¢, p€

X and t,t' € P,

Then, the triplet (2, M,*) is said to be a complex-valued
fuzzy metric space, and M is called a complex-valued fuzzy
metric on 2. The functions M (&, ¢, t) denote the degree of
nearness and the degree of nonnearness between & and ¢
with respect to the complex parameter ¢, respectively.

Example 2 (see [17]). Let & = N. Define * by ¢'*¢'" = (s's’
Lu'u'') forallg' = (s",u'),¢" = (s"",u'") € 7. Define com-
plex fuzzy set M as

éeifE <o,
MEgn={ * (2)

Q.
“Rif <&,
3 ¢

for each &, ¢ € ', ¢ € Py. Then, (X, M,*) is complex-valued
fuzzy metric spaces.

2. Fixed Point Results in Complex-Valued
Fuzzy b-Metric Spaces

We start this section with the following definition.

Definition 12. (2, M,*,b) is said a complex-valued fuzzy b
-metric space if 2 is an arbitrary set, x is a t,-norm, and
M is a fuzzy set on &' x & — P meeting the points below
for all £, ¢ € 2, t,5> 9 and provided a number b + I:

(1) 0=M(&, ¢, 1)

(2) M(&, @, t) =2 for every t € Py if and only if E=¢

(3) M(&, 9. 1) = M(9.8,1)

(4) M(E, ¢, t/b)xM(g, p,t' Ib)<M(E, p, (t+1"))

(5) M(&, @,*): Py— F is continuous for all &, ¢, pe
Z and t,t' € Py

Then, the triplet (X, M,*) is said to be a complex-valued
fuzzy metric space, and M is called a complex-valued fuzzy
metric on &

Example 3. Let M(&, ¢, t) be a complex-valued fuzzy metric
defined by e(—|p — &|'/£)€ such that ¢ > 1 be a real number.
Then, M is CF b-matric space with b=2""1.

Proof. (1), (2), (3), and (5) are obvious. Here, we prove (4).
For an arbitrary integer b, we have

b(t+t’) b(t+t’) €
- P
- ﬁ - + -
E-plr— Kool =l —pl )
b b E—9l  lop—pl
5;|5 §0|+?|§0 Jls b T

Since ¢® is an increasing function for &, one can write

e\E—p\/t+t’5e|E—(p|/t/b 4 elo-plit'tb. (4)
Thus, we have

—[E—pl/t+t’ —|E~|/tIb | ~|p—plit'Ib
e Eplltet o o polE-glitlb 4 p~lo=plit /by

M(ﬁ, P> (t+ t/)) 2M<E, o, é) *M ((p, P %) ©)
O

Remark 13. CF b -metric is the generalization of complex-
valued fuzzy metric space. It is obvious from example that
is every CF b -metric is complex-valued fuzzy metric for b
=1. Similarly, some important results like Lemmas 6 and
7 and definitions of convergence and Cauchy presented in
Section 1 can also be defined in the same manner in CF b
-metric space as mentioned in complex-valued fuzzy metric
space.

Theorem 14. Let (X, M,*,b) be a complete CF b -metric

space and let ¢ : &' — X be mapping enjoying the following
condition:

I} 4
e ey Y ©

forall&, pe X and q€|0,1). Then, ¢ has a unique fixed point
T, for all T € Py

Proof. Let ¢, € X Define a sequence {¢,} in X by
¢, =¢p,  forallre N. (7)

If ¢, =¢,_, for some r € N. Then clearly, ¢ has a fixed
point. Suppose ¢,=¢, ; for all r € N. To show that {¢@,} is
a Cauchy sequence, let define

Br:{M(goi,(pj, t):j>i}cf. (8)

Since 9<M(¢;, ¢;»t), by Remark 8, the inf B, =p,
exists. For j,7 €N, using (6), we get



4
v,
M(S"m’ Pir1> t)
= ¢ —-€=q ¢ -¢ (9)
M (csop 5P t) M (% ?p t)
L
ﬁM(?’v P t) o
which implies
¢ £

M(‘Pm’ Pir1> t) ) M((Pi’ P t) . 1o

Therefore, by definition, we get
€<f,2B,,,=29, forallr e N. (11)

Thus, {¢,} is monotonic in . Using Remark 8 and
from (11), there exists £* € 9, with

limB, = ¢*. (12)
roo
From inequality (9), we have

¢ <1 La-qe (13)

M(§0i+1’ P> t) M((Pi’ r t>

for all i,j and so €/f,,,%q€/B;+ (1—-g)¢ for every i€N,
which yields from (12)

(1- )e=(1 - q)ext’. (14)

Since q€[0,1) and applying Remark 9, we must
obtained € =¢*. Thus,

lim ﬁr =¢. (15)
r—00
Hence,

lim inf M(goi, ? t) = ¢, forallt € 2. (16)

r—00 j>i

Therefore, from (16), we have that {¢,} is a Cauchy
sequence. From the completeness of 2" and Lemma 7, we
get that there exists 7 € 2 such that

lim M(¢,,7,t) =2, forallt € . (17)

Now for t € Py and r € R, it yields from (6) that

4

Micppert) 0 {M (po7t) e] W
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that is

M(co,,cT, 1) = ! (19)

C r)c > -~ N

(@/M(@,> 7> 1)) + (1 - q)
Now, for any t € Py,

t t

M(t,¢t, ) = M| 7,0, = | *M| @,.1, 6P, —

™ 2b r T 2b
(20)

t t
=M <T’ Pri1> 2b> *M (qq)r’ P> 217) .

Taking r — co and using (17), (19), and Remark 9, we
get that M(z, g7, t) = € for all ¢ € Py; that is, ¢t =.

Now, we have to show the uniqueness of fixed point 7 of
6. On contrary, suppose v be another fixed point of ¢. Then,
there exists t € Py such that M(z, v, t) < £, than from (6) we
have

¢ ¢
= =g |———— 0], (2]
M(1,v,t) M(¢T,6v,t) q|:M(T, v, t) } (21)

which is a contradiction. Therefore, we must obtain M(z, v
,t) =2 for all t € Py. Hence, T =v. O

Corollary 15. Let (2, M,x,b) be a complete CF b -metric
space and let ¢ : &' — I be mapping enjoying the following
condition:

¢
— g -t 22
MEcpt) [M(E, p:1) ] -
forall&, pe XL and q €0, 1). Then, ¢ has a unique fixed point
T, for all t € Py.

Proof. By the use of Theorem 14, ¢" has a fixed point 7 as ¢"
observes all conditions. But ¢"¢7 = ¢¢"7¢7, implies that ¢t is
another fixed point of ¢". By uniqueness of fixed point, we
have ¢t = 7.As fixed point of ¢ is also a fixed point of¢. Thus,
¢ has a unique fixed point. O

Corollary 16. Let (X, M,x,b) be a complete CF b-metric
space and let ¢ : &' — I be mapping enjoying the following
condition:

¢

L
MEEp ) - £xq(t) [7 - l’,] , (23)

M(& p, t)

forall&,pe X and q: Py —> [0, 1). Then, ¢ has a unique
fixed point T, for all t € Py.

Example 4. Let 2 =[0,00) and ¢-norm be defined by ¢, *c,
=¢q, forall ¢, = (a;,a,),¢, = (a;,a,) € 7. Define M as

2 -1
M@, p,t)= {exp“’f’) /t} Cforallé, pe X, te Py. (24)
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Then, (2, M,*) is a CF b-metric space. Define ¢: 2
— X as

0,if E =m,

§ .
C(E) — Z, lff € (0, m), (25)

g,iff € (m,00).

Then, we have the following cases.
Case 1. If &, p=m, then ¢&,¢p=0.
Case 2. If £ =m and p € (0, m), then ¢§ =0 and ¢p = p/4.
Case 3. If £ =m and p € (m,00), then ¢ =0 and ¢p = p/8.

Case 4. If £ €[0,m) and p € (m,00), then ¢€ =&/4 and ¢p =
p/8.

Case 5. If £ € [0,m) and p € [0,m), then ¢€ =&/4 and ¢p=p
/4.

Case 6. If £ € [0,m) and p=m, then ¢§ =&/4 and ¢p=0.
Case 7. If £ € (m,00) and p = m, then ¢ =&/8 and ¢p =0.

Case 8. If & € (m,00) and p € (m,00), then ¢ =&/8 and ¢p
=pl8.

The above-mentioned cases observe all conditions of
Theorem 14 with g€ [1/2,1). Thus, the fuzzy contractive
mapping ¢ has a unique fixed point, which is (0, 0).

Theorem 17. Let (2, M,x,b) be a complete CF b -metric
space with t<txt for te Fy. Let ¢: X' — X be mapping
enjoying the following conditions:

(i) There exists ¢, € X and €€ Fg such that £ —-e<M
(9y 6Py t) for all te Py

(ii) There exists q € [0, 1) such that for all &, p € B¢,
&,

L 4
wEen Sless Y

Then, ¢ has a unique fixed point in B[, €, t].

Proof. It is enough to proof that B[g,, ¢, t] is complete and
cp € Bl & t] for all g € Blg,, ¢, t]. Let {¢,} be a Cauchy
sequence in R, &, t]. Since X is complete thus by the
use of Lemma 7, there exists u € 2 such that

lim M(¢,, u,t) =4, (27)

r—00

for all t € Py. Now for all i,r € N,

t t t
M<<p0, ut+ ;) z M(cpo, (o3 E) *M ((po, LO38 E) . (28)

Since ¢, € By, & t] for every reN, also lim,
M(¢p,,u,t)=¢. By using the properties of t-norm and
Remark 9, we obtain

t
M((po, u,t+ —,) > (8—r)xt=2€—r,foreverieN.  (29)
i

Taking lim;__,, and using Remark 9, we get M(¢p,
,u,t) £ £ —r. Therefore, ue By, ¢, 1.

For every ¢ € B[g,, &, t], it yields from (26)

£
S S— | —— ) (30)
M9y, 55 £) q{M(%,fp,t) }
that is
M(opp 9. 1) = : (31)
P00 @M (g )+ (1-q)°
Thus, for all i € N, we get
t t
M <p0>C§0,l‘+; £ M| @ps 6P ib
S R —
Sy )= (a/M(9y, 9, 16)) + (1 - q)
1
>(L—¢e)x >(L—-e)x(L—¢).
-0 [Gemayrimg) = €9
(32)
Taking lim,;__,, and using Remark 9, we have
M(@y, 69, ) = (£~ ¢). (33)
Therefore, ¢p € B[@,, &, t]. O

Theorem 18. Let (X, M,x,b) be a complete CF b -metric
space such that for any sequence {t,} € Py with lim,____{t,
} =00, we get lim,_, inf o M( p,{t,})=2 for all §€
. Let ¢ : X — X be a mapping observing that

M(c8, cp, 6t) = M(S, p, 1), (34)

for all t € Py, where 0< 8 < 1. Then, ¢ has a unique fixed
point in .

Proof. Let ¢, € X Define a sequence {¢,} in & by
¢, =¢p,  forallr e N. (35)

If 9, =¢, ,& for some r € N. Then clearly, ¢ has a fixed
point. Suppose ¢, # for all € N. To show that {¢,} is a



Cauchy sequence, let define
B, ={M(¢,, ¢,t): s>r} C.I. (36)

Since 9<M(¢,,¢,t), by Remark 8, the inf B, =p,
exists. For s,7 € N, by the use of (??) and Lemma 6, we get

M(@,,15 P> 1) = M(@,,1> 9,15 61) = M(5,, 6o, 61)

(37)
= M(c9,, 6P, 1),
which yields
M(6@, 6P 1)ZM (1> Py 1) fOr s > 7. (38)
Therefore, by definition, we obtain
9<B,=B,,,=¢ forallr e N. (39)

Hence, {f,} is monotonic in &, and by the use of
Remark 8 and (39), there exists €* such that

lim B, =¢*. (40)

r—00

For t € 2y, once again from (34), we have
. . t
ﬁHl :H;fr M((Pr+1’(PS+1’ t) lel;lfM P Py S

=inf M ! >inf M !
- 15r>1r RN 5 = 11;1>r Pr1>Sr-1> ?

. t . t
=inf M (C(Pr—Z’ CPs_2> ?) >inf M (c(Pr—Z’ SPr2> _3)

s>r s>r )

) t
> ZISI;IfM<(PO’(Ps—r’ W)

(41)

for all r € N and t € 2y, we have

$>r >r

IBH—I =inf M((PHI’ Psi1> t) zinf M <(P0’ Ps—r> F)
¢ (42)
> ISI>1f M ((po, ps F) .

As lim,__ _t/8"™" = 0o, using (40) and assumption, we
get
¢+ lim inf M(g,,¢,t)> =¢. (43)
r—00 pel’

From (40) and (43)

lim B, =¢. (44)

r—00
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Thus, {¢,} is a Cauchy sequence in 2. Since 2 is com-
plete, by Lemma 7, there exists u € & such that

lim M(g,,u,t)=2¢. (45)

r—00

For t € 9P, (34) yields that

t t
M(u,qu, t) = M(u, ®ri1s %) *M ((pm, G, 2_b>

t t
=M <u Prev> @) *M («PH G, 2—b> (46)

t t
M<u’ Prin> Z_b) *M (‘Pw U, %)

Taking lim,__,, and by (45) and Remark 9, we have M
(u, gu, t) = & that is, qu = u.

Now to investigate the uniqueness of fixed point, let on
contrary that v € 2 be any other fixed point of ¢. So there
exist t € Py with M(u, v, t)=¢; then, (34) yields

Y

t
M(u, v, t) = M(Gu,Gv, t) = M<u, v, S) : (47)
Continuing this way, we obtain
M H=M AR f M ! (48)
(u, v, t) = WY, < _}1)20r WY, <)

Using lim,_, #/0" = oo, it follows that M(u,v,t) = ¢,
which is contradiction. Thus, M(u, v,t) =2; that is, u=v.
O
Example 5. Let 2 =10,1] and t-norm be defined by ¢, *c,
=¢, forall ¢, = (a;,a,), ¢, =(a,,a,) € 7. Define M as

M@, p,t) = exp"s_"‘”?, forallé, pe X, t € 2. (49)

Then, (2, M,x) is a CF b-metric space. Define ¢: &
— X as

. Y
s(§) = e [O’ 2> (50)

%,if&e (;1}

For lim,  M(& p,t)=lim,  exp *Ple=¢, we
obtain that for all values of 2" we have M(cE, ¢p, 8t) + M(g
&,6p,t), and for only 0, we have lim,_,, inf,.oM(E, p, )
= exp’€ = £. Thus, all conditions of Theorem 18 are satisfied
s0, (0,0) is a unique fixed point of ¢.

Example 6. Let ' =€([1,3],R), A> 0 and for every &, pe I
let

M(E, p, t) = exp SPIltg. (51)
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Let define ¢ : & — 2 by

T

s(&(1)) =4+J &(v) +p(v))ev’1dv,t€ [1,3]. (52)

1

For every &, pe X

- [ max|e(r)-cp(r) |1t
M(c€, ¢p,t) = exp [SE=PONtp = exp T TE(L3]

- [ max|ct(v)-cp(v)let

zexp = I e>2°M(E, p,t).
(53)
Similarly
27
M(SE¢pot) = — e M(E, p 1). (54)
Note that
537.9ifr=3,
2r 5,873.7if r=5,
le _' — (55)
r 1.31if r=37,
0.202if r = 39.

Thus, all conditions of Corollary 15 are satisfied for g
=0.202 and r = 39, so ¢ has a fixed point which is a solution
of the integral equation

T

E(r)=4+ J (E(v) + p(v))ev_ldv, te[l,3], (56)

1

or the differential equation
g(r)=(E+7")e T e(1,3],E(1) = 4. (57)

3. Application

Integral equations have plenty applications in many scien-
tific fields. It is a ripely rising field in abstract theory. One
of its significant approach in the study of integral equations
is to apply fixed point results to the function defined by the
right-hand side of the equation or to develop homotopy
methods, which are highly considered in fixed point theory
to find the approximate solution. In this section, firstly, we
study application of our main Theorem 14 the existence of
unique solution to Fredholm integral equation.

Theorem 19. Let £ = ([0, m], R) be the spaces of continuous
real valued functions defined on interval [0, m|, where m > 0.
The Fredholm integral equation is

2(t) = Jm%(t, 8, 2(8))dd. (58)

0

Let E=€[0,m,R] and M : ExEx S —> F bea CF b
-metric defined as follows:

M(y,z,c)= ————¢0,y,z€2,c>0. (59)
ctly-z|
If there exists q € (0, 1) with
1
O 2)(1) = EA(’V’ 2)(t), (60)
where
c
O 2)(t) = —— . "
c+ | [ H (L6, y(8))dd - [ FH(t, 8, 2(5))dd|
c
PN [() Ep———
c+y(t) - 2(t))’
(61)
holds. Then, (58) has a unique solution in X
Proof. Let I' : 5 — E define as
Ia(t) = J T (1,8, 2(8))dd. (62)
0
Then
m m 2
|y —Iz|* = J K (t,0,y(8))dd - J K (t,0,2(8))dd| .
0 0
(63)
For all y,z € X, we have
14 qt
< , (64)
O 2)(t) ~ Al 2)(t)

SO,

R A
60 0 A eﬁq(/u,z)(t) ﬁ)’ (63)

which implies that

¢
cle+ | [T (t,8,y(8))8 - [ (1,8, 2(8))dd|* -t

¢
O S —
q<c/c+y(t)—z(t)|2 )

Therefore,

(66)

4
W -2zq (W - f) . (67)



Since all conditions of Theorem 14 are satisfied, thus
(58) has a unique solution in X O

Next, we study the application of Theorem 18, in
mechanical engineering, since the system of auto mobile sus-
pension is an achievable application for the system of spring
mass in the field of engineering. We are going to study the
motion of an auto mobile spring when its motion is upon
a craggy and cleft road, where the forcing term is the craggy
road and bumps noticed provide the absorbing. Tension,
gravity, and earth quick are the possible external forces act-
ing on the system. We express spring mass by x and the
external force acting on it by ®. Then the following initial
value problem represents the damped motion of the spring
mass system under the action of external force ®.

(68)

where 7 >0 express the damping constant and © : [0, ¢] x

R"— R is a continuous mapping. Clearly, the problem
(68) is equivalent to the following integral equation

y(t) = FA(t, 0)0(6,y(8))ds, with t, 5 € [0, ¢], (69)

0

where A(t,8) represents the corresponding Green’s
function and defined as

1 — eP(t=9)
 for0<d<t<¢,

A(t,6) = (70)

0for0<t<§,
where p=r/x is a constant ratio. Consider the set of real

valued functions Y =%([0,¢],R). For b>1, consider CF
b-mertic space defined by

- sup [j()-z(0)re
M(y,z,c)=e ne01] , (71)

for all y,z€ Y. WE have to show that problem (68) has a
solution iff there exists y* in Y, a solution of the integral
equation (69).

Theorem 20. Consider problem (68), suppose the following
conditions are satisfied:

(i) 16(8,7(9)) - ©(8,2(8))[" < [7(6), 2(8)
(ii) [CA(1,0) <1

Then, the integral equation (69) has a unique solution
inY.
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Proof. Let define an operator ' : Y — Y

I'y(t) = J¢A(t, 0)O(d, y(8))ds, with t, § € [0, ¢]. (72)
Now,

- sup [Iy(H)-rz(nP/Ac - sup | :A(t,a)\@(8,}7(8)—@(8,}/(6))\zdé)//\c

e nef0,1] >e nel0,1]
- SUp [©(8,7(8)-6(8,(0))[*dd)/Ac
>e nel0,1]
- Sup 5(8)2(8)[*/Ac
>e nel0,1]
(73)
this yields that
- Sup |Iy(t)-Iz(t)*/Ac - Sup [y(8).2(8)[*/Ac
e "<l01] 2> e "0l L. (74)
Consequently, we get
M(T'y, I'z, Ac) = M(3, 2, ¢). (75)

Thus, by Theorem 18, we obtained the existence of
unique solution to integral equation (69). O

4. Conclusion

In this article, we presented the generalization of CF b
-metric space and successfully obtained the generalization
of Banach contraction principle to the new established set-
ting herein. In support of our obtained results, we have con-
structed some examples, and with the help of derived result,
we guaranteed the existence of unique solution to integral
equation, which makes it possible for more integral equa-
tions to be verified in such conditions.
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The main aim of this article is to study controllability and existence of solution of fuzzy delay impulsive fractional nonlocal
integro-differential equation in the sense of Caputo operator. The existence and uniqueness of the solution have been carried
out with the help of the Banach fixed point theorem. Moreover, for fuzzy fractional differential equations (FFDEs) driven by
the Liu process, this present work introduced a concept of stability in credibility space. Finally, efficient examples are presented

to demonstrate the main theoretical findings.

1. Introduction

Fractional-order dynamical equations can be used to model a
huge spectrum of physical processes in modern-world obser-
vations [1]. Due to its wide range application in various areas
of sciences such as physics, chemistry, biology, electronics,
thermal systems, electrical engineering, mechanics, signal pro-
cessing, weapon systems, electrohydraulics, population model-
ing, robotics, and control, the concept of fuzzy sets continues
to catch the attention of researchers [2]. As a result, in recent
years, scholars have been increasingly interested in it. As a con-
cept of describing a set with uncertain boundary, the fuzzy set
was developed by Zadeh et al. [3]. The concept of possibility
measure was studied by Zadeh [4] in 1978. Fuzzy set theory
is a very useful technique for simulating uncertain problems.
In fuzzy calculus, therefore, the concept of the fractional deriv-
ative is essential. Although the possibility measure provides the
theoretical basis for the measurement of fuzzy events, it does
not satisfy self-duality. Liu B. and Liu Y. [5] studied the con-
cept of credibility measure in 2002, and a sufficient and neces-
sary condition for credibility measure was derived by Li and
Liu [6] in 2006. Fractional differential equations (FDEs) are
differential equations with fractional derivatives. It is known
from the research on fractional derivatives that they originate
uniformly from major mathematical reasons. Different types

of derivatives exist, such as Caputo and RL [7]. In 1965, Zadeh
used the membership function to propose the concept of fuzzy
sets for the first time. The FFDE is the most fascinating field.
They are useful for understanding phenomena that have an
underlying effect. Kwun et al. [8] and Lee et al. [9] investigated
the solution of uniqueness-existence for FDEs. Controlled pro-
cesses have been explored by several researchers. In the case of
the fuzzy system, Kwun et al. [10] for the impulsive semilinear
FDEs, controllability in #-dimension fuzzy vector space was
demonstrated. Park et al. [11] controllability of semilinear
fuzzy integro-differential equations with nonlocal conditions
was investigated. Park et al. [12] established controllability of
impulsive semilinear fuzzy integro-differential equations. Phu
and Dung [13] studied stability analysis and controllability of
fuzzy control set differential equations. According to Lee
et al. [14], in the n-dimensional fuzzy space Ey" of a nonlinear
fuzzy control system, controllability with nonlocal initial con-
ditions was examined.

Balasubramaniam and Dauer [15] examined the control-
lability of stochastic systems in Hilbert space of quasilinear
stochastic evolution equations, while Feng [16] explored
the controllability of stochastic with control systems associ-
ated with time-variant coefficients. Arapostathis et al. [17]
analyzed the controllability of stochastic differential systems
of equations with linear-controlled diffusion affected by
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Lipschitz nonlinearity that is limited, smooth, and uniform.
Stochastic differential equations given by Brownian motion
are a well-known and well-studied area of modern mathe-
matics. A new type of FDE was created using the Liu tech-
nique [18], which was described as follows:
4X., = (X, v)dv + g(X,, v)dC,, (1)
where C, denotes Liu operation and f and g are functions
that have been assigned to it. This class of equations is solved
using a fuzzy technique. For homogeneous FDEs, Chen and
Qin [19] studied solutions of existence-uniqueness of few spe-
cial FDEs. Liu [20] investigated an approximate method for
solving unknown differential equations. Abbas et al. [21, 22]
worked on a partial differential equation. Niazi et al. [23, 24],
Igbal et al. [25], Shafqat et al. [26], Abuasbeh et al. [27], and
Alnahdi [28] existence-uniqueness of the FFEE were investi-
gated. Arjunan et al. [29-32] worked on the fractional differ-
ential inclusions.

Using conclusions of Liu [20], Jeong et al. [33] focused
on exact controllability in credibility space for FDEs.
Abstract FDEs’ complete controllability in credibility space
is as follows:

dx(v, @) = Ax(v, @)dv + f (v, x(v, @))dE,, + Bu(v), v €

x(0) = x,.

[0, 5],

(2)

We used the Caputo derivative to prove controllability
for the fuzzy delay impulsive fractional integro-evolution
equation in credibility space with nonlocal condition; as a
result of the above research,

SDPu(v,) = g,(v, u(v)) +Au0}0

[ 7 (2, [ s a0 )

+Bx (v)&x( )dv,ve(O v],i=1,2,---,N,
Vi () 3)

where U(CEy) and V(cEy) are two bounded spaces. Ey
is denoted for the set of numbers; all upper semicontinu-
ously convex fuzzy on R™, and (®,,P™, %,), is the credibil-
ity space.

The fuzzy coefficient is defined by the state function u
1[0, 3] x (©,P™,6,) — U. f:[0,F] x U—> U is a fuzzy
process. x:[0,3]x (©,P™,F,)— V is regular fuzzy
function, x : [0, J] x (®,, P™,¥,) — V is control function,
and A is linear bounded operator on V to U. The initial
value is u, € Ey, and &, denotes the Liu process.

The goal of this work is to investigate the existence and
stability of results to FDEs and the exact controllability
driven by the Liu process, in order to deal with a fuzzy pro-
cess. Some scholars discovered FDE results in the literature,
although the vast majority of them were differential equa-
tions of the first order. We discovered the results for Caputo
derivatives of order (0, 1) in our research. Stability, as a part

u(0) =uy+h(vy, vy o,
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of differential equation theory, is vital in both theory and
application. As a result, stability is a key subject of study
for researchers, and research papers on stability for FDE
have been published in the last two decades, for example,
essential conditions for solution stability and asymptotic sta-
bility of FDEs. We use fuzzy delay impulsive fractional
integro-evolution equations with the nonlocal condition.
The theory of fuzzy sets continues to gain scholars’ attention
because of its huge range of applications in different fields of
sciences such as engineering, robotics, mechanics, control,
thermal systems, electrical, and signal processing.

In Section 2, we go over some basic notions relating to
Liu’s processes and fuzzy sets. Section 3 demonstrates the exis-
tence of solutions of FDE and shows that FDE is precisely con-
trollable. The concept of credibility stability for FDEs driven
by the Liu process was developed in Section 4. Finally, in Sec-
tion 5, several theorems for FDEs driven by the Liu process
that is stable in credibility space were demonstrated.

2. Preliminary

If M;(R™) be the family of all nonempty compact convex
subsets of R™, then addition and scalar multiplication are
commonly defined as M, (R™). Consider two nonempty
bounded subsets of R™, A, and B,. The distance between
A, and B, is measured using the Hausdorft metric as

a;eA;bi€B

d(A;, B;) = max {supb1nf|a bi||,:uguig{||ai - bi||}, (4)
i €B; i

where ||-|| indicates the usual Euclidean norm in R™. It
follows that (M, (R™), d) is a separable and complete metric
space [20]. Satisfy the below condition:

E™ = {j: R™ — [0, 1]|jsatisfies(a) — (b)below},  (5)

where

(a) jis normal; there exists an j, € R™ such that j(j,) = 1.

(b) j is fuzzy convex, such that is j(Av + (1 —A)s) > 1.

(c) j is upper semicontinuous function on R™, that is, j
(vg) 2 kli_r)nooj(\_zk) for any v, e R™(k=0,1,2,-), v,

— .
(d) []]0 =cl{u e R™|j(v) >0} is compact.

In R™ [34], for 0 < B < 1, denote [j] = {v e R™|u(v) > 8}
and [u]” are nonempty compact convex sets. Then from (a) to

(b), it concludes that B-level set [j]*v € M, (R™) for all 0 <
< 1. Using Zadeh’s extension principle, we can have scalar mul-
tiplication and addition in fuzzy number space E™ as follows:

li®e)f =[] ® [0, (ki) = k], (6)

where j, o € E™, k e R™ and 0 < 3 < 1. Assume Ey denotes a set
of all numbers upper semicontinuously convex fuzzy on R™.
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Definition 1 (see [35]). Given a complete metric D; by

D,(j.y) = sup di{ i/, o)}

0<pB<1

3

for any u, v € Ey, which satisfies D, (j + z,p+z) = D, (jg) for

each z€ Ey and [j]“ = [jﬁ, uf], for each € (jp) where Xf’

uf € R™ with ]'lg < uf.

i -

- sup max ([ ot
0<p<1

>

Definition 2 (see [36]). The fractional derivative of RL is
stated as

DM (v)= (;i) ij(v —7)" A f(r)dr, where (n< A< n+1).

a

(3)

Definition 3 (see [37]). The fractional derivatives in the sense
of Caputo ¢D]f(v) of order a € R™" are described by

n-1 ¢(k) a
DY) =0, <f(V)— Z’%w—a)k), ©)

where n=[o]+1 for 0 ¢ Ny;n=0 for 0 € N,,.

Definition 4 (see [37]). The Wright function v is defined by

0O (_w)n

v, (@) = Zom (10)
- %n_l (EZD i)! ['(no) sin (nmo),

where @ € C with 0 <o < 1.

Definition 5 (see [38]). For any j, g € €([0, T], Ey), metric
H,(x, ) on €([0, T], Ey) is defined by

H,(jp) = sup Dy (j(v)p(v))- (11)

0<v<T

Consider that ®; is a nonempty set and P™ denotes
power set on ©,. A case is a label given to each element of
P™. To present an axiomatic credibility, an idea based on
the consideration of A; will occur. To validate that the num-
ber ©,{A;} is applied to each A; event, representing the
probability of A; happens. We accept the four main axioms
to ensure that the number %,{A;} has certain mathematical
features that we predict:

(a) Normality property €,{0,} =1,

(b) Monotonicity property &,{A;} <%,{B;}, whenever
A; CB,,

(c) Self-duality property €,{A;} +€,{A} =1 for any
event A;,

(d) Maximality property €,{U;A;} = sup,;€,{A;} for any
events {A;} with sup,&,{A;} <0.5.

Definition 6 (see [39]). Take ® be the nonempty set, P" be the
power set of ®,, and €, be the credibility measure. After that,
the triplet (®,, P", G, ) is assigned to the set of real numbers.

Definition 7 (see [39]). A fuzzy variable is a function that is
generated from a set of real numbers (®,, P", %,) to credi-
bility space (®,, P",E,).

Definition 8 (see [39]). If (®,,P",8,) be credibility space
and (©,, P",%,) be an index set, a fuzzy process is a func-
tion that takes a set of real numbers and multiplies them
by T'x (©,,P",%,).

It is a fuzzy method. u(v, {) is a two-variable function in
which u(v, ") represents a fuzzy variable for each v*. For
each fixed (¥, the function u(v,{) is termed a sample path
of fuzzy process. The fuzzy process u(v, {) is said to be sam-
ple continuous if sample ping is continuous for almost all ¢.
Alternately of u(v, (), we frequently use the notation u,,.

Definition 9 (see [39]). (®,, P, €,) is the symbol of a cred-

ibility space. The S-level set is applied for the fuzzy random
variable u, in credibility space for each € (0, 1).

(12)

(13)

where (uv)f, (uv)f € R™ with (uv)f < (uv)f; when € (0,1).

Definition 10 (see [5]). Suppose that @ is a fuzzy variable and
that r is a real number. Then, @’s expected value is defined:

0
G, {@<r}dr,

—00

Ed= J(:OOCr{(D > r}dr—J (14)

if at least one of the integrals is finite.

Lemma 11 (see [5]). If @ is a fuzzy vector, then the following
are properties of expected value operator E:

(@) If f < g E[f(@)] <E[g(a)]
(b) E[-f(@)] = -E[f(@)]

(c) If f and g are comonotonic, we have for any nonneg-
ative real numbers a; and b,,



(a)

E[a,f (@) + big(@)] = a,E[f(@)] + b,E[g(@)],
(15)

where f(®@) and g(®@) are fuzzy variables, respectively.

Definition 12 (see [5]). A fuzzy process €, is Liu process, if

(a) (g() = 0)
(b) the ¥, has independent and stationary increments,

(c) any increment €, — €, is normally distributed
fuzzy variable with expected value ev and variance

¢*Vv?, with membership function.

E(u) =2<1 +exp ("'\”}T_(P‘;”'))l LER™  (16)

The parameters ¢ and e represent the diffusion and drift
coeflicients, respectively. If e = 0 and ¢ = 1, the Liu process is
standard.

Definition 13 (see [40]). Suppose that €, is a standard Liu
process and u,, is a fuzzy process. The mesh is fixed as ¢ =
vy < -+ <v, =d for any partition of the closed interval [c, d
| with c=vy< - <v, =d,

A=max(v;—v_;). (17)

1<i<n

After that, the fuzzy integral of u, with regard to &, is
calculated:

d n
JC uvd%v = Alglo ; M(vi—l) (%vi - %vt_l )’ (18)

determined by the limit exists almost positively and is a
fuzzy variable.

Lemma 14 (see [40]). Consider that €, represent the stan-
dard Liu process with €,{(} >0, and the direction €, is
Lipschitz continuous, employing the below inequality:

|6, = B.,| < H()|vi =), (19)

where F({) is Lipschitz, which is a fuzzy variable
described by

sup @ -5, (>,
%(C) = 0<s<v v (20)
00, otherwise,

and E[#?] < oo for all p> 1.
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Lemma 15 (see [40]). Assume that h(v;c) is a continuously
differentiable function and that €., is a standard Liu process.
The function is defined as u,, =h(v;%,). Then, there is the
chain rule, which is as follows:

_0h(v;9€,) oh(v;%,)
du, = 3 dv+ 57 de,. (21)

Lemma 16 (see [40]). The fuzzy integral inequality exists if
f(nu) is a continuous fuzzy process:

d d
| s, | <[ rwiav (22)

c

In Lemma 14, the term K = K ({) is defined.

3. Existence of Solutions

This part applies the symbol u,, instead of the lengthy notation
u(v, (), as defined by Definition 8. The existence-uniqueness
of solutions to FDE 1 (x = 0) has been investigated.

Jo Jo

{ ot =g+ au+ [ 1) [ How) s, pe)

u(0) =uy +h(v), vy, v u(.)),  €Ey,

(23)

where u,, is state that includes values from the U(CEy) set
of values. The set of all upper semicontinuously convex fuzzy
numbers on R™ is called Ey, credibility space is (©,, P™, %, ),
fuzzy coeflicient is A, and state function u : [0, §] % (©,, P™
,€,) — U is fuzzy process, f : [0, J] x U — U is regular
fuzzy function, €, is standard Liu process, and 1, € Ey is ini-
tial value.

Lemma 17. If u(v) is the solution of equation (3) for u(0)
=g+ Q(V Vo o5V, (), then u(v) is given by

u(v) =vF1(y Vi,V oV, Ul i ‘Vv—sﬁ_l.s,xs s
(V) =V (g + 4(v1r V2 vy <)>+ﬁUO< P15, x(5))d

v

[ faus 0+ [ 1
(s 050 | s uts )8, ) + 50 | ] ds,

0

(24)
holds, and then,

u(v) = vﬁ’lPﬁ(v)(uo +g(Vp vy o Vps u())
+ O(V - s)ﬁ’lP,g(v —5)g;(s, x(s))ds

4

+ O(V =) Pg(v—s)[Au(s, Q)

[ (s, u(s,0), r%(s, u(s, C))d%s> +B(s)‘(§(s)] ds,

0 0

(25)
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where

P=| quMq@)Q(vqodc. (26)

Suppose that the statements below are correct:
(J,) For u,,v,eB([0,F]x(©,P™%,),U),vel0,S]
There exist positive number m that is

dy (1)), (£ w))F) < md (10,6, )

f(o, X{O}(0)> =0. )

(J,) 2emH 3 < 1. Because of Lemma 17, (23) has the solu-
tion u,,. As a result, we establish in Theorem 18 that the solu-
tion to (23) is unique.

Theorem 18. For (u, + g(v;,v,, 5V u(.)) €Ey, if (J,) and
(],) are hold, (23) has an unique solution u, € €([0, J]) x (
6, P",%,),U).

Proof. For all @,€%([0,S]x(©,,P™,€,),U),vel0,T],
define

@, = vﬁ_lPﬁ(v) (g + h(vis vy, vy (L)

+ J:(v =) Py(v = 5)gi(s, (DS)>ds

+ J:(v - s)/HPﬁ(v )

: [Aws + J f (s, a, JSK(S, @S)ds‘gs> + B(s)‘g(s)] ds.

(28)
O

As a result, the ¢@ : [0, ] x (@, P™, €,) — ([0, TF] x

(©,,P™,%,), U) can be established as
¢ 6([0, 5] x (0, P, ,), U) — ([0, 5] x (0, P, 6,), U).
(29)

For equation (23), ¢ is a fixed point which is likewise an
obvious  solution. @, u, € €([0, ] x (©,,P™,%,), V),
according to hypothesis (J,) and Lemma 16.

v

0

{ @, = vﬁ'lPﬁ(v)(uO + h(vl, Vot Vs u()) + J

u(0) =uy +h(v, vy, - vy u(L)),

(v- s)’HPﬁ(v —5)g;(s, u))ds + J

d, (19, [gm,)")
~a([[[ -9 v 0) + [ v-9 B9

0
S

. :A(S, a,) +f((5, ‘Ds)’J H (s, @S)ds‘gS)Hﬁ,

0

: J( — PPy (v - S)ai(s ) + J( — 9Py v—s)

: :AMS +f ((s) te)s JO% (s #s)dCsﬂ ﬁ)

< cm%J a, (105, 1)) ds.

v
0

(30)

Therefore, we obtain

Dy(ga, du,) = sup di([90,)% 00)

Be(0,1
sup d (@, [} )ds  (31)
0pe(0.1)

= cm%J Dy (@, p,)ds.
0

Scm,%J

As a result, according to Lemma 11, for a.s. ® € ©,,

E(H, (¢, pu)) =E< ZEJPT ]DL(¢‘DV> ¢m)>

<E (cm.%f sup JVDL(LDV, ‘uv)> (32

ve(0,3]J0

<cmHIIE(H, (@, u)).

A contraction mapping is ¢ according to hypothesis (J,).
The Banach fixed point theorem equation (23) has unique
fixed point x,, € €([0, J] x (©,, P™, F,), U).

3.1. Exact Controllability. In this section, we will study exact
controllability for differential equation in the context of
Caputo operator (3). We investigate a solution for equation

(3) x in V(CEy).

v

(v=5)F"Pg(v—s) {Aus + J f (s, u, I H (s, us)d%s> + BuS%us} ds,

0

(33)
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where S(v) continuous, such that $(0) =1=8'(0) and | [u,]f = [Vﬁ‘lpﬁ(v) (g +h(vis vy - vy u(.))
S(v)|<¢c¢>0,ve[0,T]. The term of controllability is y
defined for Caputo fuzzy differential equations. + J (v- s)‘HPﬁ(v - 5)g;(s, us)) ds
0
Definition 19. Equation (3) is called a controllable on [0, ], + JV(V — ) Py(v—s) [Aus +f(5) 5 JS%(S» us)d%&s)
if there is control u, € V for every u, € Ey where the solution 0 0
u of (3) satisfies the condition u, = u ' eU, as. , that is, + Bus%us]ds}ﬁ
B, 11P
[,)7 = [u']". = [vﬁ‘lPﬁ(V) (uo +h(v, vy, v ,u())fn
Given fuzzy G : P(R™) — U mapping such that + JV( =) Py(v- s)ah (s u )) ds
0
T v -1
p-1 = +J (v=s)""Pg(v-s)
- v—s)" Pp(v—s)BvGvds, ¢cl,,
Gﬁ(V) _ JO ( ) ﬁ( ) s@Vs © j 0 .
. B B
0, otherwise, {AuS +fh (s, u,, L%m(s, us)d%s)}
(34) + (v- s)ﬁ"lPﬁ(v - s)B(Gﬁl) B
0
where I, is closure of support x and a nonempty fuzzy sub- . {(ul)i =V IPg(v) (uo +Q(Vis Vo o vy (- ))’g
set P(R™) of R™, v s
-~ —1
After that, there is a Glﬁ(i =m,n), - O(V =5 PR(v = ) (5 )) ds

"V

- T | (v- s)F'p (v=s) [Aus - (s, U, S%En(s, us)d‘[ﬁs)
Ghlio,) = j (v =) Pl (v = 9)B(), 60, (90),, € [ (05 (0)' ] 0 ’ J 0

s T —Bus‘gus] }ds, vﬁ'lPﬁ(V) (uo + h(vl,vz, IR} ,u())f
G = -8) T P (v —5)B(p,), B(g,), ds. Lp)E|. v
)= | =9 B 980, 6 0,45 (0), € (00" (0] B ST D

(35) . Q(V_s)ﬁ,lpﬁ(v_s) {Aus+f€(5’ ", Js

+ V(v - s)lHPﬁ(v - 5)B(Gf> -

HE (s, us)d%s)}

We assume that Gﬁ, Gf are bijective functions. A 3-level

set of x, can be presented as below: 0
{(ul)f =V IPg(v) (uo + (Vi vy, o vy (- ))f
=[xt f] -9 -9 n)as
0
= |: —VI3 lpﬁ(v) (uo + h(V1 Vo, )V;v ”( )),ﬁn _ Jv(v —s)ﬁ_lPﬁ(v—s)
0
- Jo(v 5)’5 P;s(v—S)gfm(s, us))ds -[Aus —fF (s, uS,J HE(s, us)d%s) —Bus‘gus} }ds]
"V v S 0
’ Jo(v_s)ﬁilpﬁ(V =) {Aus ' Lff,, (S) o Jo%ﬁ(s’ uS)d%S) = [Vﬁ_lpﬁ(") (”o +h(vy vy, - Voo (- ))f«
~B -1 v
+ Bfn(us)%fi(us)ds] ds}, (G) o [ 9P Py — a5 ) ds
. {—(ul)f —v‘HPﬂ(V) (uo + h(vl,vz, Vs ”())f 3 .
v + (v- s)ﬁ’lpﬁ(v -s) [Aus +fP (s, U, J HE (s, us)d%sﬂ
[ ) s 0 0
0 APV S _acP(eP\
+[ (v—s)ﬁ‘lPﬁ(v—s) i O(V 9 IPB(V $)C <G”)
o0 N . {(ul)fn —vﬁ’lPﬁ(v) <u0 +h(vi, vy, e vy (- ))fn
- |Au B S, U, Bs, u B (u)EP (u.)ds . v
{A S+Jofn( ’ JO%"( S)d%as) + Bl Ba ) } }] - (v—s)ﬁ’lPﬁ(v—s)gfm(s, uy))ds
(36) 3

[[= ) [ = £ (s, |

0

- BuGuy)}ds, V‘B'lpﬁ(v) (”o + h(vl, Vo to Vi U(. ))f

HE (s, us)d%”s)
This expression is substituted into (33) to get the S-level

of x,.



Journal of Function Spaces

[ v 9Py = )b (s w))ds

0

vV

+| (v=s)F T Py(v—s) {Aus +fP (s, u, J}%f(s, us)d‘&)}

0

v ~ ~ -1
+| (v=9"By(v-9)G, ()
0

{ (ul)f - vﬁ’lPﬁ(v) (uo + h(vl, Vartt Vs u())’;3

- va =P Py = 5)af (s u))ds

- [ =99
. {Aus gt <s, ", Ly/ﬁ (s us)d‘gs) Bux‘[gux} Vds|

= [, ()] = )" (37)

Hence, this control x,, satisfies u, =u', a.s. {.
We now set

yu, = vﬁ’lPﬁ(v) (uo + (v, vy, e vy u(L)

+J"(v—s)ﬂ*1Pﬁ(v—s)gi(s, ”s))ds+J (v— )t

0

Pyv—s) {Aus + f(s, . JS.%(S, us)da)}

0

+ Jv(v — ) Py(v - s)B(G) h { (u') = vFPy(v)  (38)

. (uo+h(v1 vy, - )—Jv(v—s)ﬁ_lPﬁ(v—s)

0

)ds )P Py(v—s) [Au -f

( SL (su)d%) Bu‘[gu}}d

Fuzzy mappings G~ holds the above equation.

dy ([ )f, o))
-d, ( {vﬁflpﬁ(v) (uo RV va s vy u(.))
o[ -9 B -9 us)> ds
K [Aus +f (s, HES us)d‘{gS)]
[y -5)3(6)"{(u1) RIS
(
J

Jo

v(v =) Py(v-s) [Aus -f (s, u, Jsz(s, us)d‘gs> - Bu;‘gus} }ds] ﬁ,

0

g+ B(vi vy v u(l)) - [V(v—s)ﬂ’IPﬁ(v—s)gi(s, us)>ds

7
vp’lPﬁ(v) <v0 +h(vi vy v () + J:(v - s)ﬁ_lPlg(v - 5)gi(s vs)>ds
J (v—-s)F ]Pﬁ(v s) {Av +f<s Ve L (s vs)d%s>]
+ j:( =) Py(v-5)BG {(v ) =V Pg(v)
: (VO +h(vis vy v () = jiv(v =) P (v - 5)ai(s, vs)> ds
—J:(v )P lPﬁ v=s) {Av ( J K (s, vy) dC) - By %v} }ds)
de<U:(v s)ﬁ Pp(v=s)g;(s; us)ds+J0 P/;(v s)
. [Aus +f(s, U, J;%(s, qu‘@)H s UO (v- s)/HPﬁ(v —5)g;(s, v)ds
+ J:(v - s)ﬁ*IPﬁ(v -53) [Avs +f (s, Ve J‘;‘%(s, vs)d%r(s)> ] ] ﬁ)
+d; ( U:(v - s)lHPﬁ(v - s)BCf1 X j:(v - s)‘HPﬁ(V -5)gi(s, us))ds
[ - (s, [ 76 a9
- JAV(V - s)‘HPﬁ(v =5)8;(s, v)ds + J:(V - s)‘B’IPﬁ(v -5s)
- Avs s %(s v,)dE,
< L v=s) 5 lPﬁ (v=$)BG x ?v(v—s)ﬁlPﬁ(v—s)g,-(s, us)>ds
_ L(V — )P Py(v=s)f <s, uy j:)%(s, us)d%r(s)ds)} ﬁ)
< cm%.[:dL ([us]ﬁ, [vs]ﬁ) ds
+d, ( {GG" U:(v = 5P Py(v — )5, u,)ds
oo o
“Pg(v—s)g;(s,v,)ds + J:f (s, Ve J}%(s, vs)dgsﬂ ] ﬁ)
<ot | d (), 0 ) s+ emt [ (15 w0 [FCs v s
< ZCm%J:dL([us]ﬁ, [vs]ﬁ)ds. (39)

Theorem 20. If Lemma 16 and hypotheses (],) and (],) are
hold, then equation (3) is controllable on [0, ).

Proof. From %([0, ] x (©,,P™, U) to ¥([0,S], we can
clearly see that y is continuous. We have Lemma 16 and
hypotheses (J;) and (J,) for any given { with €,{(} >0, x,,
©, €6([0,I] x (©,P™,6,),U). O

Hence, by Lemma 11,

E(H, (yu,yv)) :E< sup Dy (yuy, vm)) :E< sup sup D |y, f, |wmﬁ)d5)

ve[0,3] ve[0,3]0<p<1

< ( sup sup 2cm%J DL([M] [ s]ﬁ)d5>
ve[0,3]0<p<1

E( sup 2cm%[ D, (u,, vS)ds> <2emHKIF(H,(u,v)).

ve[0,3]

(40)



As a consequence, (2cm#'J) < 1 is a A, sufficient . As

a result, ¥ stands for contraction. The Banach fixed point
theorem is now being applied to show that (33) has a single

fixed point. [0, F] can be used to control (3).

EDBu(v,0) = g,(v, u(v)) + Au(w,§) + ff((v, w0+ |

0

u(0) =uy+h(v, vy v u(.), €Ey,

where states consider values from U(CEy) and space V
(CEy) two bounded spaces. The set of all, upper semicon-
tinuously convex, fuzzy numbers on R™ is Ey and (®,, P™
,€,) denotes credibility space.

The state function u: [0, 3] % (®,P™,€,) — U is
fuzzy coeflicient. Fuzzy process f : [0, S| x U — U. x : [0,

v

{ u, = vﬁ’lPl;(v)(uo Fh(vi vy v u(.) +J

Therefore, Lemma 17 is satisfied.

2]° = [B+1,3 - f] is the p-level, set of fuzzy, number 2,
for all S€(0,1). B-level set of f(v,u,) is

) =v|(B+ 1w G-Bw)h]- (43)
Further, we have

dy (1)) [F ()
=d, (v[(B+ 1)(w)f, 3= B, v
[B+0-pmE])
—vmax { (B+ 1)), - ()}
3= ) - 8]}

<33 max ’(uv)ﬁ — (n,)P

> (44)

m m

| =

j

= md ([u,)f, (v},

Journal of Function Spaces

Example 1. We investigate FFDE in credibility space:

Sk(s, u(v, C))) d€, + Bx(v)Ex(v)dv,

0

3] x (0, P™,€,) — V is a regular fuzzy function, x : [0,
S| x (©,,P™,€,) — V is a control function, and Bisa V
to U linear bounded operator. u, € Ey is an initial value,
and @, is standard Liu process.

Assume f(v,u,)=2vu,, S (v)=e?, defining w, =
S™'(v)u,. Then, the equations of balance become

2v

v

(3= Byt =0 x(3)ds+ | (v=9f Byl [auts )+ [ £(s.60), [ (s uts ), ) 500 | s

0

(42)

where m = 3 satisfies an inequality in the (J1) and (J,)
hypotheses. All conditions given in Theorem 18 are fulfilled.
Assume that 1 is the initial value for u,. The plan set u' =2.
Lis[1]=[B-1,1- ], f€(0,1) is B-level set of fuzzy num-
bers 1. The x, of (41)’s B-level set is presented.

(x)f ()]

This expression is then substituted into (42) to get the 3
-level of u,:
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= [sm)(ﬂ 1)+ | S 95+ 1),

+[ s -9m(eh) {B+1-sh®)-1)
[sts s+ 1), s ()1 -
+ 555(5—5)5(1—13)(%)561‘55

o[ sts-98(E) {G-p-s@a-p

3

- [ shs - 9s- prfae, o
= [(B+1).3-p) = [2)".

(46)

Following that, conditions in Theorem 20 have been ful-
filled. As a result, (41) on [0, T] can be controlled.

4. Definition of Stability in Credibility

We shall provide a concept of credibility stability for FFDEs
driven by the Liu process in this part.

Definition 21. The FDE 1 is said to be stability in credibility if
for, any two, solutions u,, and v, corresponding to different
initial values uy + h(vy,v,, -+, v,, u(.) and vy + h(vy, vy, -,
v, v(.), we have

lim %, {|u, -

|ug—vo|—0

vl <e}=1Lforallv=0,  (47)

where ¢ is any given number and € > 0.

lim @, {|u, -
| (uo+h (vl,vz;n,vp u(4))—(v0+h (vl,vz,---,vp v()) |*>
= lim
| <u0+h(vl,v2,--»,vp,u(.))—(v0+h(v1,v2,~-~,vp,v(.)) ‘

vl<e)

As a result, the credibility of FFDE is stable.

Definition 22. The n-dimensional FDE 1 is called stable in
credibility, if for any two solutions u, and v, corresponding
to different initial values uy + h(v,v,, ---,v,, u(.) and v, +

P
h(vl’VZ’ T P’ V(~)) we haVe

G, {|lu, —v,|<e} =1LV¥v=0.

(51)

im
|| (un+h(vl,v2,-»»,vp,u(A))f(v0+h(vl,vz,m,vp,v(.)) ”—»O

% Al (o +R(vis vy -

Example 2. Take the FFDE to better understand the concept
of credibility stability.

u,= v'g_IPﬁ(V)(uO +h(vi, vy vy, u(.)

o[ @ By a s e
. v(v ~ S)/mpﬁ(\, - $5)[Au(s, {)

v

+ f(s, u(s, ¢), JS%(S, u(s, ())d‘gs) + B(s)%(.s)} ds,

0 0

v, = vﬁ’lPﬁ(v)(vo +h(vi,va vy ()

+ J O(V =) Py (v = 5)ay(s, x(s))ds

+ ) (v— s)ﬁ_lPlB(v - 5)[Av(s, ()

[ (s,v(s, C),Js%(s, v(s, ())d%s) . B(s)fg(s)} ds,

0 0
(48)
respectively. Then, we have
u, = v, | = (g +h(vy, vy oo v,, ul.
=l = ot h e vput)

= (vo+h(vy vy o

Voo v())|

Deduce to, for any given & > 0, we always have

(vo+h(vi, vy, v

» V()] <e}=1L¥v=0.

Vp> ())'

(50)

Example 3. Take an m-dimensional FFDE:

gDﬁu(v, {) =g;(v, u(v)) + Au(v, C)

[ (0w, [ ks un) ),
+ Bx(v)€x(v)

(52)

The two solutions corresponding to different initial
values are
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u,= v'g_lPﬁ(V)(uo +8(viyva vy (L)
+ ( v = )PPy (v = 5)g,(s, x(s))ds

+ ( v=s)Pg(v - 5)[Aus {)

+ ( (50), 0% u(s,{)) d%) ()%(s)]ds

v, :‘Vﬁ_lpﬁ(\/)(vo + h(Vl, Vo5t

Vps v())
+ J (v=5)F " Pg(v = 5)gi(s, x(s))ds

0

lim G, {|u, -
(u0+h(vl,v2,---,vp,u(4))—(v0+h(v1,vz,---,vwv(,))‘—»0
= lim
‘(u0+h(vl,v2,»-»,vp u(,))—(v0+h(v1,vz,-<-,vp v())|—>0

vl<e)

Thus, m-dimensional FFDE is stability in credibility.

Note that some fuzzy differential equations driven by the
Liu process are not stable in credibility. It will be demon-
strated in the following example.

5. Theorems of Stability in Credibility

In this part, we will discuss the necessary criteria for a FFDE
driven by the Liu process to achieve credibility stability.

Theorem 23. Assume the FFDE 1 for each initial value has a
unique solution. Then, it is stable in credibility space, if coef-
ficients f (v, u) and g(v, u) satisfy strongly Lipschitz condition

DU () = fw)) + () +9(m)) o
<L(v)D(u—v)Yu,veR™,v>0,

for some integrable function L(v) on [0, +00).

Proof. Let u, and v,, be two solutions corresponding to dif-
ferential initial values (1 +h(vy, vy, =+, v, u(.)) and (vy +
h(vy, vy, -+, v,, v(.)), respectively. Then, for each 9 € ®,,

>
D(u, = vy)
=D(f(v,u,)dv —f(v,v,)dv +D(g(v, u,)dE, - g(v,v,)dE,)
=D((f(vsuy) = f(vsw))dv +D((g(v> u,) = 4(v v,))d )
<D((f(vsuy) = f(vsvy))dv) + D((g(v, ) = g(v» ,))dE,)
<L(v)D(u, - v,)dv + DL(t)(u, - v,)d€
<L(v)D(u, - v,)dv + DL(V)\&?',’(\‘))\(L{v -v,)dv
=L(6)(1+ [KO)[)D(u(v) = v(v)),
(57)

G, {|(u + (v, vy, -

Journal of Function Spaces

+ Jv(v - s)ﬁ’lPﬁ(v —5)[Av(5,0)

; jf (s v | #(s 215,005 )
+ B(s)€/(s)]ds, (53)

respectively. Then, we have

[y = vl = [ (g + B (Vs Vs oo vy () = (Vo + B (Vs Vs -+ v V(1) ) -
(54)

As a result, we always have
(55)

(vo + h(vl, vy, -

,vp,u())— 5V V() )’<£}—1VV>0

where F (9) is the Lipschitz constant of the Liu process.
When we take integral on both sides of equation (57),

D(u, = v,) < D((uy vp u())
(V (Vp Vo5t Vp’ V( ))) €xp (58)

: (1 + |%(S)|J:L(s)ds) :

For any given & > 0, we always have

+h(v1,v2, ey
+h

O

G, {|u, —v,| <&}
> {|(ug + h(vi, vy - vy u())
= (o +h(vis vy, v v(.)) | exp (1 + \%(9)\JVL(s)ds> <e}.
0
(59)
Since
G {|(ug +h(vi, vy e vy u())
= (gt h(vis vy vy v() | exp (60)
~(1 + |%(9)|J L(s)ds) <£} — 1,
0
as |uy — vo| — 0, we obtain
lim G {|lu,-v,|<e}=1

‘ (u0+h(v1,vz,---,vp,u(A))—(v0+h(vl,v2,---,vp v()) ‘—>0
(61)

Hence, the FFDE is stability in credibility. If it is not easy
to determine whether or not f(v, u) and g(v, u) satisfy strong
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Lipschitz condition, the following corollary can be used to
determine whether the FFDE is stable in credibility space.

Corollary 24. Assume f(v,u) and g(v,u) be bounded real
value functions on [0, +00). If f (v, u) and g(v, u) have deriv-
atives with respect to u and satisfy

|fu(vs )| + | @ (v> )| <L(v).V 2 0, (62)

for some integrable function L(v) on [0, +00), then FFDE
1 is stability in credibility.

Proof. For the bounded real valued functions f(v,u) and g
(v, u),

fvu)l +la(v, u)| < H(1+[u)), (63)

where # is constant which satisfy |f (v, u)| + |g(v, u)]
< FH. We can derive from the mean value theorem that

o) ) ) o)
=fu O’ = u""| + gy (v |u’ — "]
SL(V)|u' - u/'| +L(v)|u/ —u"‘ :2L(v)‘u' —u!

>

(64)

where &€ (u' —u) existence-uniqueness theorem
demonstrates that FFDE has a unique solution. We can
deduce from Theorem 23 that FFDE is stable in credibility.
Different from Theorem 23 and Corollary 24, we have below
corollary when FFDE is general linear FFDE driven by the
Liu process. O

Corollary 25. Suppose that u,,, u,,, v,,, and v,,, are bounded
functions, with respect to v on [0,+00). If u,, and v,, are
integrable, on [0, +00), then linear FDE driven by Liu process

duv = (ulvuv + sz)d\) + (Vlvuv + VZV)d(gv’ (65)
is stability in credibility.

Proof. For the linear FFDE 7, we have f(v,x) =u;,x + uy,
and g(v, x) = v, x + v,,, since

‘ulvuv + u2v| + |v1vvv + VZV‘
< |u1v||uv| + |u2v| + |V1v|‘uv‘ + |V2v|
< Huy| + FH + H|uy| + F =2 (|uy| + 1),

|(ulvuv + uZV) - (ulvvv + uZV)‘ + |(V1vuv + V2v) - (Vlvvv + V2v)|
= |u1v(uv - Vv)‘ + |v1v(uv + 1/v)|
< |u1v‘|uv - Vv| + |v1v|‘uv + VV|

= (|u1v| + |V1v|)|(uv _Vv)| < 2‘%(uv - VV)’
(66)

where J is a constant which make u,, < %, u,, < %,
vy, <K, v,, <K hold. The existence-uniqueness theorem

11

shows that FDE 7 has a unique solution. Since L(v) = |u,, |
+|v;,| is integrable function on [0,+00), from Theorem
23, the credibility of FFDE can be determined. O

According to Definition 22, Theorem 23 can be used to n
-dimensional FFDEs driven by the Liu process.

Theorem 26. Assume that each initial value of the n
-dimensional FFDE 1 has a unique solution. If coefficients f
(v, u) and g(v, u) satisfy Lipschitz’s strong condition,then it
is stable in credibility space:

[f (v ) = f ()| + [[8(v: ) = g (v, V)

(67)
<L(v)||u—v|,forVu,ve R™,v>0,

for some integrable function L(v) on [0, +00).

6. Conclusion

Accurate controllability for FFDEs can be used as a standard
when analyzing controllability for semilinear integro-
differential equations in the credibility space and fuzzy delay
integro-differential equations. Therefore, the research’s the-
oretical conclusions can be applied to construct stochastic
extensions on credibility space. The FFDEs driven by the
Liu process have an important role in both theory and prac-
tice as a technique for dealing with dynamic systems in a
tuzzy environment. There have been some proposed stability
approaches for FFDEs driven by the Liu process up until
now. This is a rewarding field with numerous research pro-
jects that can lead to a variety of applications and theories.
We hope to learn more about fuzzy fractional evolution
problems in future projects. We can discover uniqueness
and existence with uncertainty using the Caputo derivative.
Future work could include expanding on the mission con-
cept, including observability, and generalizing other activi-
ties. This is an interesting area with a lot of study going on
that could lead to a lot of different applications and theories.
This is a path in which we intend to invest significant
resources.
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In this paper, we construct and investigate the space of weighted Gamma matrix of order r in Nakano sequence space of soft
functions. The idealization of the mappings has been achieved through the use of extended s-soft functions and this sequence
space of soft functions. This new space’s topological and geometric properties, the multiplication mappings that stand in on it,
and the mappings’ ideal that correspond to them are discussed. We construct the existence of a fixed point of Kannan
contraction mapping acting on this space and its associated prequasi ideal. Interestingly, several numerical experiments are
presented to illustrate our results. Additionally, some successful applications to the existence of solutions of nonlinear

difference equations of soft functions are introduced.

1. Introduction

Probability theory, fuzzy set theory, soft sets, and rough sets
have all contributed substantially to the study of uncertainty.
But there are drawbacks to these theories that must be
considered. For more information and real-world examples,
please refer to [1-10]. Numerous mathematicians have
investigated potential expansions to the theorem and its
applications in various contexts since the publication of the
book [11] on the Banach fixed point theorem. The Banach
contraction principle is an important part of nonlinear anal-
ysis, which uses it as a powerful tool [12-15]. Kannan [16]
presented a collection of mappings with the same actions
at fixed places as contractions. However, this collection is
discontinuous. In Reference [17], an explanation of Kannan
operators in modular vector spaces was once tried. Only this
one try was ever made as [18-23] show that much attention
has been paid to the s-number mapping ideal and the multi-
plication operator hypothesis in functional analysis. Bakery
and Mohamed [24] offered the idea of a prequasi norm on

the Nakano sequence space with a variable exponent that fell
somewhere in the range (0, 1]. They talked about the condi-
tions that must be met to generate prequasi Banach and closed
space when it is endowed with a specified prequasi norm and
the Fatou property of various prequasi norms on it. They also
determined a fixed point for Kannan prequasi norm contrac-
tion mappings on it, in addition to the ideal of prequasi
Banach mappings derived from s-numbers in this sequence
space. Both of these ideals were established. In addition, sev-
eral fixed point findings of Kannan nonexpansive mappings
on generalized Cesaro backward difference sequence space of
a nonabsolute type were discovered in [25]. Assume that R
is the set of real numbers and ./ is the set of nonnegative inte-
gers. We denote the collection of all nonempty bounded sub-
sets of # by B(X), and E is the set of parameters. By Z(A)"
and % (A), we indicate the set of nonnegative and all soft real
numbers (corresponding to A), where A C E. The additive
identity and multiplicative identity in %(A) are denoted by
0 and 1, respectively. For more details on the arithmetic oper-
ations on R (A), see [26]. Let p : B(A) x R(A) — R(A)",
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where u(f,g)=|f - gl, for all f,ge %(A). Assume p : R
(A) X R(A) — R" is defined by

p(f.9) =maxu(f.) (). (1)

Given that the proof of many fixed point theorems in a
given space requires either growing the space itself or expand-
ing the self-mapping that acts on it, both of these options are
viable; we have constructed the space, (I'®(g, v)),, which is
the domain of weighted Gamma matrix of order r in Nakano
soft sequence space since it is constructed by the domain of
weighted Gamma matrix of order r defined in ﬂ(c"(svl)), where
the weighted Gamma matrix of order r, WI', = (A,,(q)), is
defined as

M:(9) = [Hl] o (2)

where r is a positive integer, g, € (0,00), for all z € 4" and

lr+2—1]=(r+z—l)!. o)

z zl(r—1)!

In [27], Roopaei and Basar studied the Gamma spaces,
including the spaces of absolutely p-summable, null, conver-
gent, and bounded sequences.

In this article, we have introduced a new general space
called (I'®(g,v)), and the mappings’ ideal space of solutions
for many stochastic nonlinear and matrix systems of Kannan
contraction type. We have offered some geometric and topo-
logical structures of the soft function space, (I'®(g, v)),, mul-
tiplication operator acting on it, and its operators’ ideal. A
fixed point of the Kannan contraction operator exists in this
space, and its prequasi operator ideal is confirmed. Finally,
we discuss many applications of solutions to nonlinear sto-
chastic dynamical systems and illustrative examples of our
findings.

2. Properties of (I'®(q, v)). and Its Operators’
Ideal

Some geometric and topological structures of the soft func-
tion space, (I'®(q,v)),, and its operators’ ideals are pre-
sented in this section.

By ¢;, £.,> and €,, we denote the space of null, bounded,
and r-absolutely summable sequences of reals. We indicate
the space of all bounded, finite rank linear mappings from
an infinite-dimensional Banach space & into an infinite-
dimensional Banach space 7" by D(¥,7") and F(¥,7),
and if €=7, we write D(¥) and F(¥). The space of
approximable and compact bounded linear operators from
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€ into 7" will be marked by (%, 7)) and # (¥, 7'), respec-
tively. The ideal of bounded, approximable, and compact
mappings between every two infinite-dimensional Banach
spaces will be denoted by D, &, and %, respectively. Sup-
pose w® is the class of all sequence spaces of soft reals.

Definition 1. 1f (v;) € R*", R*" is the space of all sequences
of positive reals. The sequence space (I'®(g,v)), with the
function 7 is defined by

(Fr@(q, v))T = {;l = (]:l;) cw®: T((S]:l) <0o,for some € > O},

. z+r—1 o Vin
Pl 2%, q,h.,0
z

(4)

M3

where T (fl) =

3
Il
(=
| —
~
3 +
3
| S

Lemma 2 (see [28]). If v, >0 and x;,z, € R, for all be N,
and h=max {1, supbvb} then

I, + 2] < 27 (o " + [24]™). (5)

Theorem 3. Suppose (v)) € &, N R*", then

(15009), ~{i= () o

T((Sfl) <oo,for all § > 0}.
(6)

Proof. Obviously, (v;) is a bounded sequence. d

Theorem 4. The space (I'S(q,v)), is a nonabsolute type,

whenever (v;) € [1,00)”" nt,.

Proof. Clearly, since

(I -1,0,0,0, - ) (qo)v0+<|%1;r:h|) + |CIOT;"2611‘
2
Y q+rq vy q0+79q
et ()" 01+r1 0r+21
o= (1,1,0,0,0,
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Definition 5. Assume (v;,) € R*" and vy=1,forall be:

(

re

(9, v)) = {fz = (h:,) cw®: ¢(8f)<oo, for some § > 0},

(8)
o p(le]_orJrr_l]qZh ’6> b
sv(h)=b; le] (9
b

Theorem 6. Suppose (v;) € (1,00)”" N e, with

¢

where

z

~—

I+1
r+l
I

hence (IT'7|(q,v)), € (I'F ().

¢ e(":) > (10)

Proof. Assume f € (|/I'®|(q, v))q), as

e z+r—1 ~ A\ "
0 P ZZ:() quz’o
Z z

o lr+b]
b

11
(o, [7rr-1 A" (an
0 P ZZ:O quz ’0
z
£b=0 [r+h] < 00.
b
Then f € (I'®(q, v)),. If we choose
| )
9= z+r-1 ' (12)
4.
z zeN

one gets g € (I%(q, ), and 3 ¢ (IT%|(q. ).
Suppose &% is a linear space of sequences of soft

functions, and [p] describes an integral part of the real
number p. O

Definition 7. The space &° is said to be a private sequence
space of soft functions (p3888f) if it satisfies the next setups:

(al) For all b € ¥, then ¢, € &%, where ¢, = (0,0, ---, 1,
0,0,---), while 1 displays at the b™ place

@2) If f=(f,) €w®, [g|=(|g,)) € &% and |f;] < |3y,
with b € ./, then |f| € &©

(@3) (|hyp)), , € &%, whenever (|hy]), € &°

Definition 8 (see [29]). An s-number is a function s : D(¥,
7) — R*" that gives all V € D(€,7) a (s;(V))2, holds
the following conditions:

(1) [V]I=s(V)=s5(V)25,(V) = 20, forall V e D(
G.7)

(2) s;,(VYW) <||V]Is4(Y) || W], for every W € D(&,, &),
YeD(¥, %) and VeD(7,7,), where &, and 7,
are arbitrary Banach spaces

(3) s (Vi +V,) <s5;(Vy) +54(V,), for every V,,V,
eD(C,7)and,de N

(4) Assume VeD(Z,7") and y € R, then s;(yV) =|y|
sa(V)
(5) If rank (V) <d, then s4(V) =0, for all Ve D(%,7")

(6) si,(I,) =0o0rs;,(I,) =1, where I, indicates the unit
mapping on the a-dimensional Hilbert space €5

Some examples of s-numbers:

(a) The bth approximation number is defined as «;(X)
=inf {||X-Y|: Y e D(¥, 7)) and rank (Y) < b}

(b) The bth Kolmogorov number is defined as d,(X) =
infy, e SUP| g infye; (1 XS -4l

Notation 9 (see [30]).

Dige = {155%@(?, "7)}, wherelssg@(ﬁf, 7)

- {V eD(%,7): ((Sﬁ))jo ) g@},

D¥ e = {1’37*%@(?, %)},whereb?g@(?, 7

= {VeD(?, 7): <(“jh(‘7)>jfo ) %@}’

Do = (D1 (9.7) }, where Diye (S, 7)

= {VGD(?, 7): ((df(\?)):: ¢ %@},



VS
op
S
@
N———
2
1

{(O) ®7)
{VeD (%, 7): ((

HV p(yb , )IH OforalleJV}

}, where (Dsg@) (6, 7)

)Oz € &®and

(13)

Theorem 10. Assume the linear sequence space E° is a ps
88f, then D°ye is an operator ideal.

Proof.

(i) Assume V € F(¥,7") and rank (V) =n with ne .,
as ¢, € €° for all ie.# and &° is a linear space,

one has (s ,’(V))?OO (50’(\17) SR\\;),n S 1(V),0,0,
0,)=Yrys ( V)e; € &, for that V € D°4= (%, 7)
then F(&,7") ¢ Dsge(?, 7)

(ii) Suppose V,,V, € ﬁg@(g, 7') and B, 3, € R then
by Deﬁn1t10n 7 condition (iii), one has

(s [1/2]( )) € &% and (s [i12] (V Do € &%, a5 iz2

i/2], by the deﬁmtlon of $-numbers and slh(l/)) is a
decreasing sequence, we have

Si (ﬁ1VTIﬁ2V2) <8 (ﬁﬁl\/‘F B,V>)
<8 (B Vi) + 82 (B, V2) = |/31|51/2( )+ \/32|51/2(V2)

(14)

for each i € /. In view of Definition 7 condition (ii) and &©
is a linear space, one obtains (s; (3, V, +f, Vz))?:() € &°,
then B,V +B,V, e D’e (%, 7))

(ili) If PeD(%,, ?) Te D (%, 7), and ReD(7,
70) one has (s i(T)) € &® and as s, (RTP) <|IR
IIs; ( )Pl by Deﬁn1t10n 7 conditions (1) and (ii),
one gets (s; (RTP)) _o € &%, hence RTP ¢ D* <= (%,

7,)
Assume 0= (0,0,0,--) and F is the space of finite
sequences of soft numbers. O

Definition 11. A subspace of the p33sfis called a premodular
pa3af, if there is a function 7 : &% — [0,00) satisfies the
next setups:

(i) fhe &%, h=0 7(|h|) =0, and 7(h) >0

(i) Assume he &% and € € R, one has E,>1 so that

(eh) < |e|E,7(h)
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(iii) There are G, > 1 so that 7(f + §) < Gy(z(f) + (7)),
forall f, g e &©

(iv) Assume |f~b| <|g,|, for all be W, then T(|f~b|) <T
(19,1)

(v) One gets D, > 1 such that 7(|f]) < T(|}E|) <Dyr(|f])
(vi) The closure of & = %@

(vii) There are & >0 with 7(9,0,0,0, ---) > ¢[v|z(1, 0,0,

(),...)

Definition 12. The pé%f‘g? is said to be a prequasi normed
p333f, if T confirms the setups (i)-(iii) of Definition 11. The
space &2 is called a prequasi Banach p&38af, whenever &° is
complete under .

Theorem 13. The space &% is a prequasi normed p333f,
whenever it is premodular p333f. By T and |, we denote the
space of all monotonic increasing and decreasing sequences
of positive reals, respectively.

Theorem 14. (I'®(q,v)), is a prequasi Banach p38sj, if the
next setups are confirmed:

(1) (v)) e TN 8, with vy > 1/r

b+r-1 b+r-1 0
(fZ)([ ]%) €l 0”([ ]%) eTn
b b=0 b b=0

€., and there exists C > 1 such that

2b+r b+r-1
Qops1 <C qp (15)
2b+ 1 b

(o)

Proof. First, we have to show that (I'
lar p3s3.

©(g,v)), is a premodu-

(i) Obviously, 7(|h|) =0 & h =6 and 7(h) =0

(al) and (iii) If f, g € (I (g, v)), then

T(M)i{ﬁ,(xo[“:rljqu(bi))O) |
AN
!
A EEE S A AN
+§ W ]2“1(1(})”@)@0,

!
hence f + ge(I'g(gv)),
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(ii) Next, suppose A € R, f € (I'€(q, v)), and as (v)) €T
ne.,, we get

z+r-1 ~ A\\™
o p(Z?_o[ ‘|qu][2’0>
T<Aj>= ”ZO [rim]
z+r=17 _ \\"™
0 p (Z’zﬂo l ]qu’ 0)
w |

<E)Ar(f) <co,

(17)

where E, = max {1, sup;|A|"""} > 1. So, Af € (I'®(q, V),
As (v;) e Tn¢, and v, > 1/r, one obtains

z+r—1 A\ ™ b+r—1 Vin
) (T
5 : sl &

= r+m o’ r+m
m m

Vm

(18)
Therefore, ¢, € (I'®(q, v)),, for every be .

(a2) and (iv) If |ﬁ;|§ |g,,|, for all me /" and |g| €
(I%(g.7)), then
- ,6)

q.|f.

(-5 [ HHJ
="

r+
m

IN

3
I
(=]

‘|ngz|’(~)> : (19)

=1(|g]) <00,

hence |f] € (I'®(g, V),

5
(a3) and (v) Assume (|f~z|) €(I'®(qv)),, with (v) €1
N¢, and
z+r-1 «
(W o
z z=0
we get

e [7FT 1
Pl 2= ‘f[/z])
r+2l
7
e o)
Pl 2= . qz‘fz/l]|’0
r+l
)

5 <Z’ [z +r-1 :| ‘f | )
© 2=0 z2) |
“(fienl) = 2 =
7]
= e | Z +r-l  |a -
© P<z;:o . q: |f[z/2]|’0>
* ZU [qu 1] =

20+1

(ot [FFTT ~1\"
P2 ‘Zz|f[zrz]|v0
z
Pt {rﬂ
1
20+r-1 2z+r-1 2z+r A"
N 0]+ T Gact Goewt || F2]- 0
< Z 21 z 2z+1
= r+l
1
e 2z+4r-1 2z+r "
o | P Y0 Gz Q2241 ‘f‘
Z z 2z+1

~ [ st zer=17 6 " 55 (5t z+r—1 15 i
o § Pl Yo . 7qz‘fz‘, i Al Eh . qz‘fz|,

= r+l = r+l
] ]
7o

Mz

&

M2

(21)

where Dy > (221 +2%142")>1.  Hence, (|]€;]|) €
(e (@v),
(vi) It is clear that the closure of # =TI"®(q,v)

(vii)There are 0 < & <sup;|A|"™" so that 7(1,0,0,0, )
>8|A|7(1,0,0,0,---), forall A\# 0 and § >0, if A=0

By Theorem 13, the space (I'®(q,v)). is a prequasi
normed p3883f. Second, to prove that (I'(g,v)), is a Banach

[e¢]
space, suppose b= (h o is a Cauchy sequence in
(I'®(q,v)), hence for every y € (0, 1), one has i, € # with

i, j > iy, we have
z+r—1 ~ o~ . Y
p@;{ }%@—Qﬁ>
Z h

r+l <V
I

(22)

T(E" 1) =

Mg

N
o



That implies

! r— TN~
ﬁ(z;[uz I]qz(hi—h’z),o)w- (23)

As (R(A), p) is a complete metric space. Therefore, (h{c)
is a Cauchy sequence in #(A), for constant k € /. So, it is

convergent to hj € #(A). This implies 'r(l:’ K ) <", for

every i2i,.

(I'e(a,v)),.
In view of Theorems 10 and 14, we have the next theo-
rem. |

Clearly, from condition (iii) that h e

Theorem 15. The space D F@(q y) is an operator ideal, if the
conditions of Theorem 14 are verified.

Theorem 16. If s-type €€ = {h= (s; ( ) eR”Y :HeD(,

7Y and t(h)<co}. Assume D
has the next setups:

« 1s an operator ideal, one
T

(a) s-type E° > F

(b) Suppose (sj(A/ ))OO € s-type &° and (sj(AI-fz

)€

-type &2, then (s; (H +H ))Oj € s-type &
(c)If e€R and (s ( ))'=o €s-type &2, one has |e|
(sj (H))],Zo € s-type %T@

(d) Suppose (s /(E));j es-type &% and ST) SSj/(E),
for all jewN and T,UeD(%,7),
(5D,

one gets

€ s-type &2, i.e., &2 is a solid space

Proof. If ﬁ;g‘r is a mappings’ ideal.

(a)We have F(€,7") c ﬁ?gg(?, 7). Hence, for all X €
F(¥,7'), we have (S:(SE)):O € . This gives (s:(\j(/))io €s-
type €. Hence, F C s-type &2

(b) and (c)The space Dsg@(? 7') is linear over R.
Hence, for each A €R and X, X, € D g@(f‘ﬁ 7), we have

X, +X, eD* z=(9,7) and AX, E[Dsg@(? 7). That
implies

(S'(NX;))io € s-type Ef? and (s,f)v(z)):) € s-type %’? = (s, (XT—;XZ)):) € s-type %’?,

AeR and (3{(?,))0; € s-type €% = [A| (s,(?(l))o; € s-type &2 (24)

(A)If A eD(%y, %), Be D'y (%, 7), and D € D(7, 7,),
then DBA € ﬁ;g@ (%4, 7). Therefore, since (s:(\lg))rozo €s-

type &2, then (s, (BﬁA)):O € s-type &2. Since s, (BgA) <
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D|s, (B)||A]. By using condition (c), if (|D][1Alls, (B)), €

&%, we have (s (DBA))r _, € 5-type 2. This means s-type
&% is solid

Some properties of s-type (I'®(q, v)), are presented in
the next theorem according to Theorems 16 and 15. O

Theorem 17.

(a) s-type (F@( V), D F

(®) If (s, (X, >>noestype (I(q.v)), and (s,(X))ry €
stype (IS(g, 7)), then (5,(X,+X,)), € s-type
(I®(q.v)),

(c) Assume A eR and (snf(}))zo € s-type (
hence [M|(s,(X),y € s-type (¥ (q,),
(d) s-type (T2(q,v)), is a solid space

I'E(gv)),

Definition 18 (see [31]). A subclass % of D is said to be a
mappings’ ideal, if every (%, 7 )=U%ND(E,7) satisfies
the following setups:

(i) I € %, where I' indicates Banach space of one
dimension

(i) The space %(€,7") is linear over R

(iii) If W e D(%,, ©), X € %(%, %), and Y € D(V, /),
then YXW € %(%,7)

Definition 19 (see [32]). A function H € [0,00)% is said to be
a prequasi norm on the ideal % if the following conditions
hold:

(1) Assume Ve%(%,7),
and only if, V=0

(2) One has Q> 1 with H(aV) < D|a|H(V), for all V €
U, 7)and aeR

(3) There are P>1 such that H(V, + V,)
H(V,)), forall V|, V, e %(%,7)

(4) There are 0 >1 so that if VeD(%,, %), X e %(%,
7), and Y € (7, 7,), then H(YXV) <a||Y||H(X
VIl

H(V)>=0 and H(V) =0, if

<P[H(V,)+

Theorem 20 (see [32]). Every quasi norm on the ideal % is a
prequasi norm.

We have discussed some properties of the ideal con-
structed by our soft space and extended s-numbers, supposing
that the conditions of Theorem 14 are verified.

Theorem 21. The conditions of Theorem 14 are sufficient

only for D® (r%(q)), (&> V') =the closure of ¥, 7).
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Proof. Clearly, theclosureof F(€,7") € W(r?(q,v))r(g’ 7)
from the linearity of the space (I'®(q,v)), and ¢, €
(I'®(q,v)),, for all me #. Next, to show that [[ADT"(FY@(W))r
(€, 7)) ctheclosureof (&, 7"). If He ﬁam@(w))r(?, 7,
one has ((x/(TJ)):j:O €(I'®(q,v)),. As T(oc;(TJ))(:::O < 00,
assume pe€(0,1), we have [je A/ —-{0} so that 7(

—~
(€, (H)) ey, ) < y/27*38j, for some j> 1 and

Vi

s 1

0= 1, _—
l
Since 0(7(7-1) € 3Z, we get
(o, [zrr-1 —\\"
21, P Zz:O qz‘xZZO(H)’O
z z
l

(o, [zrr-1 A\ \"
21, P Zz:O q.%; (H)’ 0
Z z

IN

IN

We get U € I, (¢, 7") with rank (U) < 2I, and

- z+r—-1 L K
3l, P ZZ:O qz”H_ U”’O
Z z

1=2l,+1 [r”]
)
(o, [zrr-1 A\ \"
21, P zz:O qz”H_U”’O
z
<
l:%—l [r+l]
)
Y
< 5=
2h+36j

since (v;) € TN ¢, we have
blz+r-1 _
© - y
sup P'(Zl ]‘LHH_ULO) < Jhirg (28)
=1, z=0 z

Therefore, one has

(o [z+r-1 — \\"
I P zz:O qz”H - U”’ 0
z
> <

pn r+l
l

Because of inequalities (5), (26), (27), (28), and (29), one
gets

A 1 . - i
(o] e
d(H,U) = T(oc, (H- U))“’ -y z

r+l
/]
z+r—1 A\
]‘ZZHH*UHvO)
{r+l:|
1
(r [7HT1 L\ e (o [zl —A\"
(s g (H=-U),0 (2 ¢ IH-U],0
; {Hz}
1
[ r, z+r-1 ,\, A\ AN EA S —— A\\"
Pl X0 .0, (H-U),0 A2 4.|[H - UJ|,0
SSZ r+l
7]

2h+3é‘j '

(29)

.
1=0

+
Ipe

-
- o+
[E——

(w [err-1 —A\\" (e[l — A\\"
el ) (e[ e
z -1 z
<3y [H l} + 20 IZZI»

1

o, |21 m, A\ , [zrr-t —A\\"
. fJ(zz;z;;[ ]m(H—UM)) p(Z{ }q,\\H*U\\,‘J)
h-1 z z
2 ,Z, |:r+l} 33; |:r+l}
1 1

z+r—1

© ﬁ(zf’iﬁ{ }w? - U>,6>
w2y z[y+1]

1

o [Fr2e+r-1 ,\, A\
P . 121, %z121,(H = U), 0
-1 z+2h
*2 /; r+l

1

+r—1} — A\\"
= 4[|H - U]}, 0 . _
: e (37 v
['*’} o \S| 2 :
I
v i A\

(30)

On the other hand, one has a negative example as I, €

ﬁ(r?(q,v)) (8,7), where z+r—1zq,=1, for all ze /" and



v=(0,-1,2,2,2),but (v;) ¢ T. This gives a negative answer to
the Rhoades [33] open problem about the linearity of s-type

(I'®(q,v)), spaces. O

Theorem 22. The class (ID (r*’( W), , &) is a prequasi Banach
ideal, where Z(H) = ((sb(H))b o)

Proof. Evidently, £ is a prequasi norm on IDS(F ( since T

av)),
Assume (H,,),., is a

) (8,7). Since D(%,7) 2

is a prequasi norm on (I'?(g,v)),.
Cauchy sequence in ﬁ(r@
) (8, 7), we have

. z+r—1 __ ~ v
o asti )
z

= r+l
]
(31)

then (H,,),,. , is a Cauchy sequence in D(¥,7"). As D(%,

7') is a Banach space, one has HeD(%,7) so that
- [e¢]

lim,, o|[H,, = H|[=0. As (s,(H,,)) € (IF(g,)),, for

all m e /. By Definition 11 conditions (ii), (iii), and (v),

we have

e (@),
D* (r (qu)

(o, [zrr-1 S N
© P Zz:O quH_HmH’O
SZFH 4
;} [r+l:|
l
+2"'D, Y < 00.

= [r+l}
[
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Hence, (Sb(H))Zo €(I7(gv)), so He ﬁg(l“?(q,v)) (¢,
7). O

Theorem 23. If 1 < v,(f) < vgf), and 0< qéz) < qg), for every b
e N, then

Dl (@), ST () (), B TV EPE T
(33)

Proof. Let HeD* (8,7), then (s,(H))e

(re((gy" ")),
(r%((g,"), (v{"))).. One obtains

2)

) z+r-1 ) TH. G %
o f’(Zz—ol ]qz s, (H )0>
bzz(:) r+b
]

< 00,

(34)

then H € D* (€,7). Take (S;II-/I))ZZO with

T

blz+r-1 __
P, Ms (H),0 | = ,
P(ZO[ . ]qz (H) ) T

we have H € D(€, 7") with

p(zzo{“:”}qsuﬁn,a) L
-3

r+b b+l
b

s [2Tr17 AR K
N p(zz-o { }qz (), 0)
Z z

pard [r+b:|
b

M8

T
o
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Hence, H¢D (Fﬁg((q;(,l))»(w(,”))),(g’ 7) and He

=@, &7

Clearly, D*

D
(FY@((qzz))’(véz))))T (?, %) C D(f, 7) Take

(55 (H)) o with

[r+b]
f)(Zb: lz+r— 1] gz)szf(lv{),(i) L0 (37)

z=0 z V\bz/ b+1 '

Then H ¢ D(?, 7) and H ¢D (F?((q;z)),(Vf))))r(g’ 7)

Recall that if & and 7 are infinite-dimensional, by
Dvoretzky’s theorem [34], there are ?/Yj and MJEW

operated onto Bg through isomorphisms V; and X; such that
||V]||HV]‘1H <2and HX]HHXJ_lH <2, forall je #. Assume T
is the quotient ‘mapping from ¥ onto &/Y, I; is the identity
operator on ¢ and ] ; is the natural embedding operator
from M j into 7. Assume m; is the Bernstein numbers [18].

O

Theorem 24. The class ﬁ&(rg( is minimum, whenever

9v)),

, [z+r-1 «©
22:0 qz
z ¢E

=0

()" (38)

Proof. Assume [[’j&r?(q’v)(g, 7)=D(¥%,7), one has y >0 so
that Z(H) <y||H||, for all H e D(¥, 7") and

(e [7tT-1 _ i
- p(Zz-o [ . ]qz%(H)) 0)
E(H)= ) )

P r+b
b

We have

(39)

L=m,(I))=m, (ij;IIjVjV;I)

<[[Xj|m. (Xflljvj) val

= |1 |m. (127 1,v;) | v

= 1%, (1% 1,v,7;)

<|lxlle. (7% ,v;) | vy VT,

-1
I

=sie 1) 7

(40)

Take 0 < m < j, one has

S o (B

z+r-1 Y
Z;n()|: :|qz
—tar | = Ul]v]

r+m )"m
-
(o ety

N

Therefore, for some A > 1, we obtain

i

z+r-1 — 5
qzaZ<IjX}II,-V,-T,-)HleH,O =
z

(41)

o [r+m}
m

o, [Frr—1 — A\

Pl 2% 9:%: <]ijllejTj>’0 i
z - Z

r+m =0
m

z+r—1 Vin
Zfo[ }qz
| == )
y
< |3 [l v < 4
(42)

When j — 00, one has a contradiction. So, & and 7
both cannot be infinite-dimensional when D¢, (%, 7’)
=D(%, 7). O

Theorem 25. The class IDdF@< ) is minimum, whenever

v

, [z+r-1 o0
Zz:() 2 qz
8- (43)

[r+l]
! 1=0

Lemma 26 (see [19]). Suppose W eD(€,7") and W ¢ o
(8,7), one has PeD(Z) and A€ D(7") with AWPe; =e,,

for every je N.
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Theorem 27 (see [19]). If & is an infinite-dimensional
Banach space, then

F(%@) < w(%@) < zf(%@) < ID(%@). (44)

Theorem 28. If 1 <, 0 < vl ) and 0< q @ <qZ , for every |
e N, then

(45)

Proof. Let X e'D([D’s< 2 (.02, (571D e () ()
=

£.7) and X ¢ (D 1 o o) (57 D% e, (0
s . In view of Lemma 26, there are Y€
©, £ h D
—~ -
D o (g oy, (5 7)) and ZEB(D o0, 0 (9,7)

) with ZX Y1, = I,,. Therefore, for every b € /¥, one has

116l

7 () (),

(46)
Slzxviimly
(2 ((7)-())),
1 W
Z+71—
~ 1 2) 7\ X
00 P<zz—0[ ‘|q§ >Sz(Ib)’0>
z
< .
- ; [r+l}
I
This  contradicts Theorem 23; hence, X e d(
ms ms
D* e (g, 02, (2 7 D gt oy, (5 7))- O

Corollary 29. Suppose 1< vl(l) < v§2>, and 0< ql(z) < q?”, for

every l e N, then

Proof. Evidently, as of ¢ #. O
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Definition 30 (see [19]). A Banach space & is said to be sim-

ple when D(&®) has a unique nontrivial closed ideal.

Theorem 31. The class ﬁ(re(w)) is simple.

Proof. Let the closed ideal # ( (r%(qw)), (9> 7)) contain a
) (7). By Lemma 26, there
(? ‘7)) so that AHPI;=1I;. There-

mapping H ¢ Qi(IDS (g
are P, A ¢ ID([D (re(

av)),
fore, IH}_(F o ) e % (D (r%(q)), (9> 7). Hence, D(
PV(F@ (g (9> "7)) H (D' (12(g) (9, 7). Therefore,
D (r2(q.)), is a simple Banach space. 0

Theorem 32. Assume

, [z+r-1 K
22:0 qz
‘ >0, (48)
r+l

then ([DS(Fg(q,V)) ) (? %)

F@(qv (g %)

Proof. Let He (ﬁg(l";é(q,v)) )y(?, 7'), then (y;ZIJ-I)):j:O €
(Ir'®(q,v)), and |H - /B(y;@), 0)I|| =0, for every me .t
One has H = p(y,,(H),0)I, for all m € #, then

p(s0l10).0) = (52 (1 (E0)1).8) = 1, (71, 0).

for all me./. Hence (sm(H))(:nO:0 e(r
[D (F@ qv) (? %)

2(q.v),, s0 He

), (€, 7). Hence, (sr:(\IJJ))OO

Next, assume H € D° (% (g m=0

€ (I'®(q,v)),. Therefore, one has

z+r=17 _—_ \\"”
(a7 o)
z
[r+m]

18

3
I
(=]

(50)

Hence, lim S f(\IfI) =0.

m—00Tm

I |H - pls,, (H), 0)1]



Journal of Function Spaces

— 1
exists, for all m € 4. Then ||H - p(s,,(H),0)I|| exists and

— -l
bounded, for all m € /. So, lim,,_,||H - p(s,,(H), 0)I]|
= ||H|™" exists and bounded. Since (D% (re(
quasi ideal, one obtains

qw)),»£) 1s a pre-

I=HH" €D’ (12, (%, 7)= (Sm(l))m=0 €I7(q.v)

T

= mh;nmsm(l) =0.

(51)

One has a contradiction, as limmﬁoosmﬁ(?) =1. Then,
|H - p(s,,(H),0)I|| =0, for all me #. So, |H - p(y,,(H),
0)I|| =0, for all m € . Therefore, H € (I],jg(l"?(q,v)) )Y(?, 7).

O

3. Multiplication Mappings on (I'S(q,v)).

Under the conditions of Theorem 14, we have presented in
this section some properties of the multiplication mapping
acting on (I'8(q,v)),.

Let (Range(V))‘ indicate the complement of Range(V).
Let S be the space of all sets with a finite number of ele-
ments. Assume ¢Z, is the space of bounded sequences of soft
functions.

Definition 33. Suppose &2 is a prequasi normed p383f and
A=(A) e R” . The mapping H, : €% — & is said to be
a multiplication mapping on &=, if Hyf = (Abfb) € &%, for
all f € €. The multiplication mapping is called constructed
by A, if Hy e D(&%).

Definition 34 (see [35]). A mapping V € D(&) is said to be
Fredholm if dim (Range(V))“ < 0o, Range(V) is closed and
dim (ker(V)) < co.

Theorem 35.

(1) Aet, ©H, eD((I'S(q,v)),)

(2) |A,| =1, for every ae W, if and only if, H) is an
isometry

(3) Hye d((I'¥(g:v)),) & (L)€

@) Hye Z((IF(q.v),) & M)y €

(5) H((IF(gv)),) €D((IF (g v)),)

(6) 0<a<|A,| <n, for every ac (ker(L))", if and only if,
Range(H,) is closed

(7) 0<a<|A,|<n, for all ae W, if and only if, H) €
D((I'(g,v)),) is invertible

(8) H, is Fredholm operator, if and only if (g1) ker(A)
SN NS and (g2) |A,| = p, for all a € (ker()))*

11

Proof.

(1) Suppose A €€, one has v>0 with |A,|<v, for all
aeN.If fe(I'®(qv)),, we have

. f)<z’z_oazr”_1]qzﬁ,6> v’
f(1f)=e(4f) = > =~
L
e o))
v v
]

(52)
Therefore, H, € D((I'8(g,v)),).

Next, if Hy € D((I'®(g,v)),) and A ¢ £,. One has x, € /¥,
for every b € 4 with A, > b. Then,

e z+r-1 — A\\"
. P(Zz:okz[ . }%(%),0)
HED)

s |:1’+1:|
1

Hence, H) ¢ D((I'®(q,v)),). So, A € L.

(2) Let f € (I'®(q, v)), and |A,| = 1, for every b € .#/. One
obtains

then H, is an isometry.
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Next, if for some b = b, that |A,| <1, one has

(o [err-1 — A\
. P Zz:() qz/\z (ebo)z’ 0
— . z
T(Hyey,) = 7(Aey ) = 1;’ {r+l:|
1
by+r-1 i by+r-1 i
Y (e

b, < L b 1
& [H—l}
I

g [r+l}
1

When |4, | > 1, so 7(Hye, ) > 7(e,, ). Hence, [A,| = 1, for
every a € .

=1(&).

(55)

(3) Assume  H, € 4((I'®(q,v)),), so H,eX(
(I'®(q,v)),). If lim,__, A, #0. One has p >0 with
Ky={ae N :[A,|2p} &S Let {a,},c, €K, We
have {e, :a, €K }€ ¢% be an infinite set in
(I'®(q,v)),. For all a,, o, € K,, one gets

7(Haty, ~Hagy,) = 7(Aey, ~ Aey,)

(ot o @) )|
"
ﬁ(Z’z—o[“r—l]qu((efajz—(e%)z),()) )

N

i
18

]
=]

%
18

]
(=}

Zirllfp"lr(E;: —eg,)-
(56)

Hence, {¢, :a, €K,} € €% has not a convergent subse-
quence under H,. So, H, ¢ #((I'®(q,v)),). Therefore, H,
¢ o((I'®(q,v)),); this is a contradiction. So, lim, A, =
0. Next, let lim,_, A, =0. Hence, for every p >0, we have
K,={beV :|}|2p}CS. Therefore, for all p>0, one

gets dim (((I'?(g,v)),) ) =dim (RX) <co. So, H, eF(
P
(TE(g:v),)g )- I A, € R, for all a €.V, where

Ap bEK 0

(A2), =< 0, otherwise. (57)

Obviously, H, € F((r®(q v))T)KU 1), since dim (
(r®(q, v))T)Kl )< oo, for all ae /. According to (v))

la+1
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e Tne,, with v, > 1/r, we have

T((HA - HAu)f> = T(((/\b - (/\a)b)fz;):zo>

; z+r—1 .
(e[ o
) ; r+1

'

~ | z+r—1 B o

- Pl 20 2. (L~ (A,),)f -0
lzo,zg;'l,a+1 r+l
)

; z+r—1 . i
e o

l:o’lgzKl/aﬂ [ Tt r|
[
IZO’ZQZKIMH [ T+ l‘|
)

(a+1)"

Vi

Ui

IN

(58)

Therefore, ||[H, — H, || <1/(a+1)". This implies H, is
a limit of finite rank mappings.

(@) As H(1%(q.)),)$ H((IB(q,)),), the proof
follows

(5) Since I=1I,, where A=(1,1,), one has I¢ F(
(I'¥(gv)),) and I € D((I'¥(q,v)),)

(6) Let the sufficient setups be verified. One has p>0

with [A,| > p, for every a € (ker(1))". We have to
show that Range(H,) is closed; let g be a limit point

of Range(H,). One has H,f, € (I'S(q,v)),, for all b
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€ N with lim, | H )fb = g. Clearly, H ,Lf~b is a Cau-
chy sequence. Since (v;) € Tn €., we have

+r—1 ,\, B
ﬁ(Zi:o[Z }qz(um,—kz( b»),O)
z
r+l
{ ! }

. z+r—1 _ .
. p(Z{ ]qz(ufnz—Az(fb)z),O)

z

1=0,1e(ker(A)¢ { r+ l}
1

. ﬁ(Zi:o[W*l]qz(h@z—u'};),ﬁ)

v

M8

r(H,f: —HU‘;) =

I
)

v

v,
(Q

z

1=0,1¢ (ker(1))* [ r+ l]
1

. ﬁ( ’Hr”_1}%(@(52—&(7);),6)
Z z

>
1=0J€ (Ker(1))° [r + l}
1
- ) z+r-1 _ _ .
P (z [ } 0. (M (). - uub)z),O)
r+l
"

ﬁ<p2;0 [ l]qz(@z - @z),ﬁ)

z

]

v

Y

It
Mg

i
S

v

v
Mg

T
S

zinfp" (i, ~ ),

(59)

where

(60)

Therefore, {u,} is a Cauchy sequence in (I'®(g,v))..
Since (I'®(g,v)), is complete. One has fe(r®(q, v)), with
lim, i, =f. As Hy € D((I'®(g,v)),), we have lim,
Hyiy, = H,f. As lim,  H,i,=lim, _H,f,=g. So, H,
f=3g. Then, g € Range(H,), i.e., Range(H,) is closed. Next,
suppose the necessary condition is satisfied. One has p >0

with 7(H,f) = pr(f) and f € (I'®(q, V))T)(ker(/\))" Let K=
{be (ker(A))" : |A,] < p} + D, then for g, € K, we have

7(Hye,) :T(()‘b(g‘;)b»:zo)

(o [Frr-1 AN
P (Zzo |: :l qz"z (ea(,)z’ 0>
z

[
Mg

T
o
—
~
— +
—
[

D18
-
VS
o
™M
NS
il
(=]
L —
N
+
N =~
|
—_
| S—
=
)
—
S.N )
N
)
1
~_
=

T
=]
[ ———
~
—~ +
—_

<supp”z(e, ),
!
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which introduces a contradiction. So K = ¢, we have |1
> p, for all a € (ker(A))".

(7) First, assume « € R so that x, = 1/1,. By Theorem
35 part (1), we have H,,H, € D((I'®(g,v)),). One
has H,-H,=H,-H, =1 So, H,=H;'. Second, if
H, is invertible. Then Range(H,) = ((I'®(q, V))e) 4
Therefore, Range(H, ) is closed. From Theorem 35 part
(5), one has a >0 with |A,| > a, for all a € (ker(1))".
Then, ker(1) = &, when )Lao =0, where a, € //; this
implies e, €ker(H,), which is a contradiction, since
ker(H,) is trivial. Then, |A,| >, for all a € /. As H)
€ £.,. From Theorem 35 part (1), one has # > 0 with
[A<n forallae V. Soa<|A,|<#, forallae s

(8) First, if ker(1) ¢ ./ and ker(1) ¢ S, one has e, € ker
(H,), for all a€ker(1). As e,’s are linearly indepen-
dent, we have dim (ker(H,)) = oo this is a contradic-
tion. Therefore, ker(1) ¢ ./ € . The condition (g2)
comes from Theorem 35 part (6). Next, assume the
setups (gl) and (g2) are satisfied. According to Theo-
rem 35 part (6), the setup (g2) gives that Range(H,)
is closed. The condition (gl) implies that dim (
(Range(H,))) < co and dim (ker(H,)) < co. There-
fore, H, is Fredholm

O

4. Fixed Points of Kannan Contraction Type

In this section, we offer the existence of a fixed point of Kan-
nan contraction mapping acting on this new space under the
conditions of Theorem 14 and its associated prequasi ideal.
Interestingly, several numerical experiments are presented
to illustrate our results.

Definition 36. A prequasi normed p88sfr on & confirms
the Fatou property, if for every sequence {}?’ } € & so that
limb_mr(iﬁ’ ~h)=0 and every e &%, one has 7(g—h)
<sup, inf,,,7(g - P?’)

Throughout the next part of this article, we will use the
two functions 7, and 7, as

~ . z+r—1 -
) P zz:O quz>0
; r+l
]
(e ErT-1L o K
P(Za—O[ ‘|quz’0>
: (62)

for all f € (g, v).

v Uh
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Theorem 37. The function T, satisfies the Fatou property.

Proof. Assume {gwb} c(I(q, v)),, so that limb_,oorl(g?’ -

g) =0. Clearly, g e (I'®(q, v)),,- For every fe(r®(g V))e,s

one has
(o) ama)0)

)
(oo - ))
L

z+r-1 - R
p(aa " al-a)9)

z

= [r+l}
!

<sup infr, (f - 9717)
j b>j

v 1A

iy
~1
|
«r
~——
Il
D8

Il
o

vq Uk

In
M8

Il
o

+
Mg

(63)
O

Theorem 38. Suppose v,> 1, then T, does not verify the
Fatou property.

Proof. If {g~b} c(ré(q, v)),, so that limb_)oorz(g" -g)=0.
Clearly, g € (I'®(q, v)),,- For every f € (I'®(g, v)),,» one has

gL k)
RO

(a7 e lat)o)
= [rqltl}

ﬁ(zlzzo[z+r—l]qz<g~£_§z)’6) v

Y

<2"" sup infr, (f - g*).
<2 sup infr, (f g)
(64)

O
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Hence, 7, does not satisfy the Fatou property.

Definition 39 (see [30]). A mapping G : %f’ — %T@ is called
a Kannan 7-contraction, if one has { € [0, 1/2), with 7(Gg
— Gh) <{(7(Gg - g) + T(Gh - h)), for all g,h e &%. When
G(g) = g, then g e &% is called a fixed point of G.

Theorem 40. Suppose G : (I'®(q, V), — (Ir(q, V), is

Kannan t,-contraction operator, then G has a unique fixed
point.

Proof. If he I®(q,v), one has G"heI'®(q,v). As G is a
Kannan 7,-contraction, one has

7 (Gm“ﬁ - G"‘fz) < ((rl (Gm“il - G”%) +1, (G"’E - G"HIQ))
¢

1-

EN (o
< (Tc) 7 (G"Hh - G"™ 2
<< (&)mrl (Gﬁ - f:).

>1, (G’”“f; - G’”fa) < o1 (G’”ﬁ - G'"*lﬁ)

~— I~

(65)
We get for all m,n €./ so that n>m that
7, (G’"ﬁ - G"iz) < {(rl (G’”fz - G’"-lﬁ) +1, (G"iz - G"-lil))
:((1%) " (%) ) (i)
(66)
m

Therefore, {G™h} is a Cauchy sequence in (I'®(g, v))
As (I'®(q, v)),, is prequasi Banach space. One has Je
(r®(q, v)),, with lim G"™h=]. To show that G(J) =J.
Since 7, satisfies the Fatou property, one can see

3

m—>00

7, (G]-]) < sup rinrgrl (G’””fl _ G’”fz)

< stl;p rlyng <li—() m'rl (G;z - fz) =0,

then G(J) = J. Therefore, J is a fixed point of G. To indicate
the uniqueness of the fixed point. Let us have two different

fixed points f, ] € (I'®(g, v)) _ of G. We have

(67)

T

0.

0 (7-7) <n(6f - 67) <¢(n (6 -F) +a(GT- 1))
(68)

Therefore, f =7J.
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Corollary 41. If G : (I'®(q, )) — (I'®(q,v ))ﬁ is Kannan

T,-contraction, then G has a umque fixed point ] so that T,

(G"h=T])<{(¢/1-8)" " 7,(Gh - h).

Proof. By Theorem 40, one has a unique fixed point J of G.
Hence,

T, (Gm;l —7> =T, (Gm;’ - Gj)
co(en(c- ) s n(GT) (e

z(l_fc> " (Gh-).

O

Definition 42. If &% is a prequasi normed p3ssf, G : &
— &% and je %@ The mapping G is called 7-sequen-
tially continuous at j, if and only if, when lim, _,7(g; - j)
=0, then lim;__ 7(Gg, - Gj) =

Theorem 43. If v, > I, and G : (I'%(q,v)), . — (I'%(g,v)), .

. The element h € (I'®(g, v)), is the unique fixed point of G,
when the following conditions are confirmed:

(i) G is Kannan t,-contraction
(ii) G is T,-sequentially continuous at h € (

(. v),,
(iii) One has j € (I'®(q, v))TZ with {G"j} has {G™j} con-

verges to h

Proof. Assume h is not a fixed point of G, one has Gh # h.
According to conditions (ii) and (iii), we have

lim 7, (G’”f] - iz) =0,

m;—00

lim 7, (Gm’”] - Gfl) =0

m;——00
As G is Kannan 7,-contraction, one has
0<1, (Giz - iz) -1, ((Gﬁ - G’”f“}) + (G’”*‘j - 12)
+ (Gm"ﬂj _ Gm’j)) < 22h—2T2
: (Gmf“j - Giz) + 222 (Gmfj - 12)

20(( ) (e
(71)

Take m; — 00, one obtains a contradiction. Therefore,
h is a fixed point of G. To explain the uniqueness of h.
Suppose we have two different fixed points h, g€

15
(I'?(g-v)),. of G. Then
Tz(fz g) <72<Gh Gg) SC(T (Gfl h) +7,(Gg - g)) =
(72)
So h=g. O
Example 44. If T (FE((U/(1+5)+r-10)5,

(21 +3/1+42)1%)),, — (T2 +5)1+7 = 1);5, (21 +3/1

+2)%)),, and
r(f)= (73)

Forall f, g € (TS ((1/(1+5)1+r =117, (21 +3/1 + 2)5%,)
), 11y (f),7,(g) € [0, 1),wehave

n(Tf-T5) =7, (f Z) < \/%—7 (rl (%) ‘1, (?))

(74)

Ny

Forevery, (f), 7,(g) € [1,00), wehave

[0,1)andT,(g) € [1,00),0nehas

3f 1
(2

(0)(2)

(76)

Foreveryt, (f) €

el Y
€

—

Hence, T is Kannan 7, -contraction, as 7, satisfies the Fatou
property. By Theorem 40, T hasaunique fixed point. Assume
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[ee]
{h”@}g e 1 ’<2l+3>°°
r l+ r—1 l +2 1=0
(I+5)
! 1=0 T
(77)
sothatlim, . 7,(h® — h®) = 0,where
[ee]
W0 | e 1 ) 214+ 3\® ’
r I+r-1 I+2 1=0
(I+5)
! 1=0 T
(78)

suchthatr, (")) = 1. As, is continuous, one has
— ACE0)
lim 1, (Th(k) - Th(0)> = lim 1, (— - —
k—00 k—00 4 5
(79)

o
:Tl E >0.

SoTisnott,-sequentially continuousat h®) Thisimplies T

isnotcontinuousath®.
For every f, g e (TS ((1/(1+5)1+r—11);5, (21 +3/1+2

)?:00))72~ If 7,(f), 72(g) €[0, 1), one has

Let 7,(f), 7,(g) € [1,00), one has

o (1f - T3) =Tz<jg~r - %) =+ (TZ @) ”2(?))

(217 -7) +ra(Ta- ).

-
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For every 7,(f) € [0, 1) and 7,(§) € [1,00), one has

o)l (D) o8

NN
[ TECY

S()0)
- (n(17 1) + (T~ 3)
(82)
Hence, T is Kannan 7,-contraction and
T’”() ) 4im, 7 (];) €[o,1), -
. (F) €l10)
5m 2 0

Evidently, T is 7,-sequentially continuous at 6 and {
T"f} has a subsequence {T"if} converges to 6. According
to Theorem 43, the element 0 is the only fixed point of T.

Example 45. Let T : (T8 ((1/(1+5)+r—11)7%, (21+ 3/1+2
)io))r, — (L (UA+5)1+r =105, (21+3/1+2)%)),,
and

H
N
1
N———

I

W= W] — s

R
™
—~
=
I

As f,(£), Go(£) €10, 1/3), we get

TZ(T}—Tg) =T2(

|

(ﬁ—ﬁo,ﬁ—ﬁl,ﬁ—@,--.))

< \/i2_7 <T2 (%) +1, (?)) (85)
< (n(17 1) +=(15-3))

For allﬁ)(t), g, (1) € (1/3,1], hence for all € > 0, we have

TZ<T}— Tg) =038(12(Tf—f) +12(Tg—g)). (86)
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For allﬁ)(t) €[0,1/3) and g,(t) € (1/3, 1], one has

(87)

Hence, T is Kannan 7,-contraction. Obviously, T is T,
-sequentially continuous at 1/3e;, and there is f¢

(TE((1/(1+5)+7r =115, (21+ 3/ + 2)1%)),, with fy(t) € [
0,1/3) such that the sequence of iterates {T"f} = {Z
4% + 1/4mf} includes a subsequence {T"f}={Y ", 1/4“

e + 1/4"’Jf} converges to 1/3e;. In view of Theorem 43,
the operator T has one fixed point 1/3e;. Note that T is
not continuous at 1/3e;.

For all f, ge (FE((1/(1+5)+7r 102, (21+3/1+2)%,
)z, If fo(1), Go(t) € [0,1/3), we have

o (17-19) == (5 (f-Gofi- G fo =)

SEE)e®) @

L (e(17-F) +0a(15-9)).
- (71 (77 -7) )

W

IN

N
AN}

<

AN

For allf;(t), 9o (1) € (1/3,1], hence for all & > 0, one has
7 (ij - Tg) =0< s(‘rl (T} —]f) +7,(TG - g)). (89)
For allfo(t) €
VAR I EATS _
=7 (Z) S {72_7T1 <Z> = ﬁﬁ(Tf—f)
1

(v (17 -7) + (13- 9))-

[0,1/3) and g,(t) € (1/3, 1], we have

7, (T]f— Tg)

(90)

Therefore, the operator T is Kannan t,-contraction.
Since 7, confirms the Fatou property. By Theorem 40, the
operator T has a unique fixed point 1/3e;.

In this part, we will use

for every V € D (r%(q) (& 7).

17

Definition 46. A function = on ﬁ;g@ satisfies the Fatou prop-
erty if for all {Vb}he/,/ cDf «<(Z, M) so that lim, ,E(V,

-V)=0andall Te [Dsg@(Z M), one has E(T - V) < sup,
inf,,5(T - V).

Theorem 47. The function =
property.

does not verify the Fatou

Proof. Assume {W,} _, C [ (r®(qw) (£ 7)) so that
lim,_  E(W, —W)=0. Clearly, W eD* re(qw), (& 7).
) (&, 7), we have

- fz+7r—1T - A\
P Zz:o quZ(V - W)’ 0
L z J
{r+l}
l
s [z+7r—1T . -
P ZZ:O qzs[z/Z](V -W; )’ 0

T

vq 1k
~1 z+r-1 . B
o | P Yo 4.Sizp (W = W), 0
+) z

= [r+l}
I

/h
< (22’“ oMy 2h)

Hence, for every V € [DS(

1/h

T
<)

v Uh

IA
M8

T
=)

sup inf
m i=m

z4+r—1 - } v Uh
Z)(Zi-o[ :|qzsz(V_ Wi)’())
z
|:r+l:| '
1

Mg

T
o

(92)
O

Therefore, Z does not satisfy the Fatou property.

Definition 48 (see [30]). A mapping W : ﬁ?g@ (Z,M) —
ﬁg@ (Z, M) is said to be a Kannan =-contraction, assume
there is { € [0, 1/2) with £ (WV WT)<{(E(WV-V)+E&
(WT'-T)),forall V,T € Dsg@(Z, M).

Definition 49. Assume G : ﬁg@ (Z,M) — ﬁ;g@ (Z,M) and
BeD’ye(Z,M). The mapping G is called =-sequentially

continuous at B, if and only if, when lim,, , =(W,, — B)
=0, one has lim,,_, Z(GW,, — GB) =
Theorem 50. If G : ﬁ(rg (g (& V) — D (r%(q) (& 7).

The operator A € ﬁ(F?(q,V)) (,7) is the only ﬁxed point of
G, when the following conditions are confirmed:
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(i) G is Kannan E-contraction

(ii) G )is E-sequentially continuous at A € ﬁ(n@(%mr(?,
v

(iii) One has B €D e, (,7) with {G"B} has {
G™ B} converges to A

Proof. Suppose A is not a fixed point of G, then GA # A. By
conditions (ii) and (iii), one has

lim Z(G™B-A)=0,
m;—00

lim E(G"™*'B-GA)=0.

m;—00

(93)

As G is Kannan =-contraction operator, we get
0<E(GA-A)=E((GA-G""'B) +(G"B-A) + (G""'B-G"B))
1/h
< (221 42 4 2h> £(G™"'B-GA)

2/h

(224 2") (B - A)
2h mi=1

+ (222t c(_( ) E(GB-B).

1-¢
(94)

By m; — co, we have a contradiction. Then, A is a fixed
point of G. To show the uniqueness of the fixed point A. If

one has two different fixed points A,D € ﬁ(r?(q,v))r(?’ 7)
of G. So

E(A-D) < E(GA - GD) <{(5(GA - A) + £(GD - D)) = 0.
(95)

Therefore, A=D. O

Example 51. Assume

M:S$ H+r-17\°
re 1/(1+4) L(21+3/142) %)
l 1=0 T
(%, 7)—S$ 11\ (%.7),
(r,@ ( (1/(l+4) [ } ) ,(21+3/l+2)f°0> >
l =0 T

S(H) €[0,1),

(97)

n

(H) €[1,00).

=

=

I
N T ol T
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For all

H,,H,€S =11\ .
(r? ( <ll(l+4) [ | ] ) ,(2l+3/l+2);>“0>>
=0 T

(98)

If 5(H,), Z(H,) € [0, 1), we have

o, -t -2( - ) < 5 (=(5) =)
- 465 (E(MH, - H,) + E(MH, - H,)).

(99)

—

Suppose E(H,), Z(H,) € [1,00), one has

(5-4)5 e lo(%) %)
2

V21

E(MH, - MH,) =

3]

(E(MH, - H,)+EZ(MH, - H,)).

=)}

(100)

Assume E(H,) €[0,1) and E(H,) € [1,00), one gets

H, H 2 _(5H
E(MH, - MH,) :E(—l - —2> < V2 E<_1>

6 7 /125 6
va 5(%) < V2
V216 7 ) 125
(E(MH, - H,) + E(MH, - H,)).
(101)
Hence, M is Kannan =-contraction and
H
o E(H)€l0,1),
M"(H)=q " (102)
o Z(H) € [1,00).

Evidently, M is EZ-sequentially continuous at the zero
operator ® and {M™H} has a subsequence {M™ H} con-
verges to ®. According to Theorem 50, the zero operator is
the only fixed point of M.

If

(@) o
{H } €S I+r-1 ’
re 1/(1+4) L(213/142)5,
[
=0 T

(103)
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with lim 2(H@ - H©) =0, where

=
a—00—

H%es +r—17\" >
(r? ( <ll(l+4) [ l ] ) ,(2l+3/l+2);’j’0>>
1=0 T

(104)

so that Z(H(®)) = 1. As Z is continuous, one has

© 0
lim 5(MH<“> —MH<°>) _ jim z(HY _HY
a—00 6 7
o (105)
:E( D) ) > 0.

Therefore, M is not 5-sequentially continuous at H.
This implies M is not continuous at H®),

5. Applications on Stochastic Nonlinear
Dynamical System
We investigate in this section a solution in (I'®(g,v)) . to
stochastic nonlinear dynamical system (106) under the con-
ditions of Theorem 14. For every f € I®(g, v).
Consider the stochastic nonlinear dynamical system
[36]:

fo=yo+ Y 1 m)g(m,};), (106)
and assume W : (I'®(q, V), — (ré(q, v)),, is con-
structed by
W(f:)zeﬂz <J7Z+ Z H(z,m)g(m,ﬂ)) (107)
m=0 zeN

Theorem 52. The stochastic nonlinear dynamical system
(106) has one and only one solution in (I'®(q, v))TI, if I
NP RGN XRA)— R(A)f : NV — R(A),
VN — RA)G: N — R(A), one has A € R with sup,
IA|""™ € [0, 1/2) and for every L € WV, one obtains

! — . z+71-1
> (m;VH(Z’ m)|g(m f,) - g(m.1,)] ) [ ] q.

z
! . © _ z+r—1
SNl/\' Z(JZ _fz+ ZH(Z’m)g(m’fm)>|: :|qz
z=0 m=0 z
! o © . z+r—1
+ Ml Z(yz_r]z-'— z H(Z, m)g(m”lm)> |: :|qz :
z=0 m=0 z

(108)

Proof. Let the conditions be established. Assume the map-
ping W : (I'®(q, v))T1 — (I'%(q, v)),, is defined by equa-

19

tion (11). Hence,

o (wf-wi) = f

_ v Uh
i)(ZL:u (Snertem[g(mF,) - gom 7)) [” ' l]qz,(B)

®
= Z z
& r+l
]
_ N z+r—1 h
. p<z’ (7. fo+ Zan(e m)g(m,fm))[ ]q o)
< sup|A["" = z
ip| [ ; P}
1
z+r—1 AN
. b(Ziﬂ,(y;frmzn:,n(z, m)g(m, m[ ]m)
+sup\/\\v’m Z z
1

& r+l
)
. Sl’lleV’/h (‘r, (Wf*f) +1 (Wi — ﬁ))
(109)

O

From Theorem 40, one has one and only one solution of
(106) in (I'®(q, v))Tl.

Example 53. Consider
e 1 2143\
r I+r-1 ’ I+2 =0
(I+1)
! 1=0

Ty

(110)

Suppose the stochastic nonlinear dynamical system:

_ =) fb
fz _ e_<3z+6> + z (_1)z+m _ -2 ,
m=0

ff_l tmrl

(111)

with b, d,f_vz(t),f:(t) >0, for all t € A and suppose

wlre 1 20+3\®
N I+r-1 "\I1+2 ),
(I+1)
! =0 T
e 1 2043\ ®
— _ _—
r I+r-1 \I1+2 ),
(I+1)
! =0

T

(112)
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is defined by
I~ b «
( 3z+6+z z+m fea ) )
0 d P
m foatm+1/)
(113)

Evidently, one has A€ R with sup,|A|****** €[0,1/2)
and for every [ € /#/, we have

! ©o }7 z+r-1
Z Z (‘l)zdm%((—l)m‘(‘l)m) { :|qz
2=0 \ m=0 fo +mi+l z

e © . fh\; z+r-1
A 2+ —1)7m Lz
<l \g —fet D (DT = a2
z=0 m=0 fog+mr+1 z
! 0 T z+r-1
+7 z —(3z+6) Z z+m42 4.
2=0 m=0 1721+m2+1 z

(114)

From Theorem 52, system (111) has one and only one
solution in

1 214+ 3\*®
re ,
| = B C MY | IO
(I+1)
! 1=0 T,
Example 54. Suppose the sequence space
(69}
(116)

)

s 1 2043\ ®

, aur””} R
+

1=0 T

Assume the stochastic nonlinear dynamical system:

b
;o N Z+m fz—2

fZ:yZ+Ze T 7 ~’
m=0 fz—l +fz—1 +2

(117)

with b, d,]?_vz(t),fA/_l(t) >0, for all t € A and suppose

o

s 1 2A+3\®
W:|T >
r l+r—1} I+2 )
1=0

(z+1)[
: K (118)

o

1 21+ 3\
l+r—1] \1+2 ),
1=0

_’Fr@

(l+1)[
)

T
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is defined by

~ 0 b «
W(fz)oo = ()72+ y e“’”NfZ4‘2) . (119)
=0 d b 5
: m=0 fZ*l +fz—1 +2 z=0
Evidently, there is A € R such that sup,|A|****""* ¢ o,

1/2) and for every l € ./, we have

i i i ;5_/2 I z+r-1
z=0 \ m=0 ffg\jl+flz771+i( ) |: < :|qz

! [os) ]:bv z+r—1
GRS

m=0 fj—l +le771 +2 z

L nb 5 z+r-1
Z Y.~ N, t ZeZ“V‘# q.|-
z=0 m=0 Moy +1z1 +2 z

(120)

<A

+[A

According to Theorem 52, the stochastic nonlinear
dynamical system (14) contains a unique solution in

el o3y
! I+r-1 \I+2 ),
(I+1) [ ]
! =0 7,
(121)
Theorem 55. If W:(I'P(qv)), — ([F(qv)), is

defined by (11) and v,>1. The stochastic nonlinear
dynamical system (106) has a unique solution Z €

(r®(q, v))TZ, when the following conditions are satisfied:

(1) If II: 4 —Rg: NxRA) — R(A),
Fil— R(A) G N — R(A)G N — R(A),
assume there is A € R so that 2" sup,|A|" € [0, 1/2)
and for every I € WV, one has

1 __ . z+r-1
3(zmemfs(mi)-omm]) o

z
L/ . _ z+r—1
fM;QfL+;H@m4mm»[ }%
! & ~ z+r-1
HMZG&%+ZH@MMMM0[ }%
z=0 m=0 z

(122)

(2) W is 7,-sequentially continuous at Z € (I'®(q, v))TZ
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(3) There is Y € (I'®(g,v))

converging to Z

., With {W™Y} has {W™Y}

Proof. One has

(o [rrz-1 7 )
p(ZFo[ . ]qz(Wf:-an),())
r+l
"
[p(steemeamemfo(n ) -aomi]) [ Ja0) |
& r+l :
7

. ﬁ<z;u (72~ Fo+ Zomt @ mg(mF,) ) [” " } qz,é)
<2t s|l.lp\/\|"’ Z z

% [H-l}
1

Lo _ [ztr-1 A\
p (Z,:o(yz =1+ Xl (2, m)g(m,1,,)) { } @ 0)

S

12<W] - wa) =

M2

&

2! sup|A[" i
! I=0
=2 supl* (v (W =) + o (Wi =)
(123)
O

By Theorem 43, one gets a unique solution Ze
(Ir®(q, 1/))T2 of equation (106).

Example 56. Suppose the sequence space

e 1 2043\
’ l+r-1 NI+2 ),
(I+1)
! =0 T,
(124)
Consider the summable equation (111):
Let
welre 1 21+ 3\
' ’ I+r-1 N 1+2 o
(I+1)
! 1=0 T,
N 1 NEEE:
’ I+r-1 I+2 ).,
(I+1)
! =0 T,
(125)

defined by (13). Assume W is 7,-sequentially continuous at

21
el re 1 2043\
’ I+r-1 NI+2 )| |
(I+1)
! 1=0 T,
(126)
and there is
velre 1 21+3\ %
r I+r-1 ’ I+2 =0
(I+1)
! =0 T,
(127)

with {W"Y} has { W™ Y} converging to Z. Evidently, there
is L€ R such that 2"~! sup,[A[***"** €[0,1/2) and for all I

€ J/, one has
z+r-1
n"-(=1") { }qz
z

! o) fh\J
2 (Z “”}77‘2 (-

+m?+1

z-1

! N 0 . fbvz z+r—1
SPX| e Lo Y ()T = 4.
z=0 m=0 ff_l +m?+1 z
1/ oo ;?;v z+r-1
+ W Z o (32+6) _}1~Z + z (_1)z+m 272,\/ .-
0 m=0 nd +m2+1 z

(128)

By Theorem 57, the stochastic nonlinear dynamical
system (111) has one and only one solution

o0

Ze|r®

I

1 (21+3>°°
l+r-1 \1+2 ),
(l+l)[ ] =0
1=0 T,

(129)

In this part, we search for a solution to nonlinear matrix

equation (131) at DEUSE(F@(%V)) (¢,7), the conditions of
Theorem 14 are satisfied, and

(o |rtz-1 A\ i
0 P (Zz—o [ 2 ] quZ(G)’ 0)
E(G)=|) ,

s r+1
I

for every GEE};(F?(W)) (¢,7). Consider the stochastic
nonlinear dynamical system:

(130)
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and suppose W : D* (r%(q
defined by

) (? %) —>DS(F@( )) (?, %) is

I(z, m)f(m,sm(G)>>I. (132)

M8

W(G) = (Qﬁ) +

0

3
I

Theorem 57. The stochastic nonlinear dynamical system

(131) has one and only one solution D € IDS(F@ ), (6. 7),

if the following conditions are satisfied:

() I : N —Rf: N xRA) — R(A), PeD(%,
7),T € D(Z,7), and for every z € N, there is a pos-
itive real number x so that sup, k' € [0, 0.5), with

> M(zm) ( (m:5,(G)) —f(m,smwr»‘

meN
sﬁ) —SZ(E) + Z A(a,m

<k l
meN
m)f (m5,(T)) H

>f(m,sﬂé>)‘ (133)

+ s;(\lg)—sﬁ)+ Z I1(z,

meN

(2) W is E-sequentially continuous at a point D€
D (re(g)). (2, 7)

(3) There is B € D* (r®%(q)) (9> V') so that the sequence of

iterates {W*B} has a subsequence {W*%B} converg-
ing to D

Proof. Suppose the settings are verified. Consider the map-
plng W [DS(F,@ (q)v)>1 (?, %) — Ds(r:‘? (q)v>)7 (?, %) defined
by (132). We have

2["’(20[“; IHHE} ©-5). ())JV} ”

is(z;o [” . 1} 4:ZnerAlam) (1 (m,5,(G)) =f (m, smTTd)),ﬁ) ’
: r+l
"
;><zi:0 [” - l]qz (<08) = 56) + Tz (m. smﬁi))),ﬁ) ’
- r+l
7]
v Uk
, (21:0 r " 1} 0.(5:01) = 500) + T () (m»sm'E'T)))ﬁ)
T
1

E(WG-WT) =

Ih

©
< supk” Z
Z 1=0

+ supx’/"
z

ILMsg

I

:supx‘”( (WG-G)+E(WT-T)).

(134)
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In view of Theorem 50, one obtains a unique solution of

equation (131) at D€ ID5<F@ ), (&, 7). 0O
Example 58. Assume the class D (e (5 V),
where
l z+r—1 o 21+3/1+2
w P <Zz-o [ ]qzsz(G% 0>
- z
E(G)= ; A 1 ’
Z!ZZ:O q.
z
forallG € D* (re(my,a3me2) ). (©.7).
(135)

Consider the stochastic nonlinear dynamical system:

o __ oo tan (2m+ 1) cosh (3m - z) cos?
5,(G) = (#3) ¢ Z
m=0

.2(0)|

5,1(G) ’ +sin mz + 1

>

(136)

where z>2 and b,d>0 and let W: ﬁ(r?((1/1!),(zl+3/l+2)))r

(€. 7)) — D’ 12 (am),as31142))), (%> 7) be defined as

_ o tan (2m + 1) cosh (3m - z) cos® sijG)
W(G) = | e (2243) 4 z _ - _ 2 ) 1.
d sz_l(G)‘ +sin mz + 1

m=0 sinh'
(137)

Suppose W is E-sequentially continuous at a point
De [D (I@((I/l') (21+3/l+2) (? %) and there is Be
D re (i), (9> 77) so that the sequence of iter-

ates {W°B} has a subsequence {W%B} converging to
D. It is easy to see that

cosh (3m - z) cos?

>

m=

(tan (2m + 1) — tan (2m+1))

52(0)]
1

(G)’ +sin mz +

o tan (2m+1) cosh (3m - z) cos’
-5,(G)+ Z —
m=0 sinh'

O

m=0

1
<
25

52(0)|

e (2243)
sz,l(G)‘ +sin mz + 1

tan (2m + 1) cosh (3m — z) cos

so(1)|

e Zz+3)
sz,l(T)‘ +sin mz + 1

1
+ —
25

(138)

By Theorem 57, the stochastic nonlinear dynamical
system (18) has one solution D.
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6. Conclusion

In this article, we introduced a new general space called
(I'®(q,v)), and the mappings’ ideal space of solutions for
many stochastic nonlinear and matrix systems of Kannan
contraction type. We have presented some topological and
geometric properties of it, of the multiplication operators
acting on it, of the mappings’ ideal, and of the spectrum of
its mappings’ ideal. The existence of a fixed point in the
Kannan contraction mapping on these spaces is explored.
To put our findings to the test, we introduced several
numerical experiments. In addition, various effective imple-
mentations of the stochastic nonlinear dynamical and
matrix system are discussed. The ideal spectrum of map-
pings, multiplication operators, and the fixed points of any
contraction mappings in this new soft functions space are
investigated.
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In general, we have constructed the operator ideal generated by extended s-fuzzy numbers and a certain space of sequences of
fuzzy numbers. An investigation into the conditions sufficient for variable exponent Cesaro sequence space of fuzzy functions
furnished with the definite function to create pre-quasi-Banach and closed is carried out. The (R) and the normal structural
properties of this space are shown. Fixed points for Kannan contraction and nonexpansive mapping have been introduced.
Lastly, we explore whether the Kannan contraction mapping has a fixed point in its associated pre-quasioperator ideal. The
existence of solutions to nonlinear difference equations is illustrated with a few real-world examples and applications.

1. Introduction

Probability theory, fuzzy set theory, soft sets, and rough sets
have contributed substantially to the study of uncertainty.
But there are drawbacks to these theories that must be con-
sidered. After Zadeh [1] established the concept of fuzzy sets
and fuzzy set operations, many researchers adopted the con-
cept of fuzziness in cybernetics and artificial intelligence as
well as in expert systems and fuzzy control. For more infor-
mation and real-world examples, some comparable fixed
point results were discussed by Javed et al. [2] to ensure that
a fixed point exists and is unique in R-fuzzy b-metric spaces.
The viability of the proposed methodologies was demon-
strated through a challenging case study. There was no
doubt about the superiority of the findings delivered. For
the first type of Fredholm-type integral equation, an applica-
tion was described. In [3], Al-Masarwah and Ahmad defined
and investigated the m-Polar (a, 8)-Fuzzy Ideals in BCK/
BCI-Algebras and explored some pertinent properties. There
are many other orthogonal fuzzy metric spaces; however,
Javed et al. [4] expanded the orthogonal image fuzzy metric
space concept. In the context of the newly specified struc-

ture, they displayed some fixed point outcomes. Fuzzy
sequence spaces were introduced, and their various features
were studied by many workers on sequence spaces and sum-
mability theory. Nuray and Savas [5] defined and studied the
Nakano sequences of fuzzy numbers, ¢5(7) equipped with
the function h. The operator ideal is very important in fixed
point theory, Banach space geometry, normal series theory,
approximation theory, and ideal transformations. See [6-8]
for further proof. Pre-quasioperator ideals are more exten-
sive than quasioperator ideals, according to Faried and Bak-
ery [9]. The learning about the variable exponent Lebesgue
spaces obtained impetus from the mathematical description
of the hydrodynamics of non-Newtonian fluids (see [10,
11]). There are numerous uses for electrorheological fluids,
which include military science, civil engineering, and ortho-
pedic. There have been many developments in mathematics
since the Banach fixed point theorem [12] was first pub-
lished. While contractions have fixed point actions, Kannan
[13] cited an example of a type of mapping that is not con-
tinuous. In Reference [14], the only attempt was made to
explain Kannan operators in modular vector spaces. For
more details on Kannan’s fixed point theorems, see
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[15-20]. Given that the proof of many fixed point theorems
in a given space requires either growing the space itself or
expanding the self-mapping that acts on it, both options
are viable. Hence, we have constructed the Cesaro sequence
spaces of fuzzy functions and have presented the solutions of
a fuzzy nonlinear dynamical system in this newly created
space. This work is aimed at introducing the certain space
of sequences of fuzzy numbers, in short (cssf), under a cer-
tain function to be pre-quasi (cssf). This space and s-num-
bers have been used to describe the structure of the ideal
operators. We explain the sufficient conditions of variable
exponent Cesaro sequence space of fuzzy functions, which
is denoted by Cf ), equipped with the definite function h

to be pre-quasi-Banach and closed (cssf). The (R) and the
normal structure property of this space are shown. Fixed
points for Kannan contraction and nonexpansive mapping
have been introduced. Lastly, we explore whether the Kan-
nan contraction mapping has a fixed point in its associated
pre-quasioperator ideal. The existence of solutions to non-
linear difference equations is illustrated with a few real-
world examples and applications.

2. Definitions and Preliminaries

As a reminder, Matloka [21] presented the notion of ordinary
convergence of sequences of fuzzy numbers, where he intro-
duced bounded and convergent fuzzy numbers, explored
some of their features, and proved that any convergent fuzzy
number sequence is bounded. Nanda [22] studied the
sequences of fuzzy numbers and showed the set of all conver-
gent sequences of fuzzy numbers from a complete metric
space. Kumar et al. [23] investigated the notion of limit points
and cluster points of sequences of fuzzy numbers. Assume 2 is
the set of all closed and bounded intervals on the real line R.

For f =[f, f,] and g = [g,, g,] in ©, suppose
f<g,ifandonlyif f; <g,andf, <g,. (1)

Define a metric p on Q by

p(f>g9)=max {|f, - g,|:|f - g,|}- (2)

Matloka [21] showed that p is a metric on Q and (€, p) is
a complete metric space. Also, the relation < is a partial order
on Q.

Definition 1. A fuzzy number g is a fuzzy subset of R, i.e, a
mapping g : R — [0, 1] which verifies the following four
settings:

(a) g is fuzzy convex, ie., for x,y € R and a€|0,1],
glax+ (1 -a)y) = min {g(x), g(y)}
(b) g is normal, i, there is y, € R such that g(y,) =1

(c) g is an upper semicontinuous, i.e., for all a >0, g™
([0, x+a)) for all x € [0, 1] is open in the usual topol-
ogy of R

(d) the closure of g° == {y € R : g(y) >0} is compact
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The f3-level set of a fuzzy real number g,0 < 8 < 1, indi-
cated by gP is defined as

g ={yeR:g(y) =B} (3)

The set of every upper semicontinuous, normal, convex

fuzzy number, and g is compact is denoted by R([0, 1]).
The set R can be embedded in R([0, 1]), if we define r € R

([0, 1]) by
1, t=r,
r(t) = { (4)

0, t+#r.

The additive identity and multiplicative identity in
R[0,1] are denoted by 0 and 1, respectively.
The arithmetic operations on R [0, 1] are defined as follows:

(f ®9)() = sup min {f(x), 7~}

y

(f'9)(y) = sup min {f(x), g(x—y)},
yeR

(f9)0) =sup min {1(x).9(3) }

¥ X

@ () = sup min {f(x), 9(x)},

yeR

f(xly), x#0,

xf(y) = {
0, x=0.
The absolute value |f]| of f € R0, 1] is defined by

) = { max {f(y), f(-»)}> !
0, ify<0.

ify>0,
(6)

Suppose f, g € R[0, 1] and the f-level sets are [f]F = [fﬁ,
ff}, [g9)f = [gf,gé;], and €0,1]. A partial ordering for any
f,g€R[0,1] as follows: f°g, if and only if f* < g, for all
B €0, 1]. Then, the above operations can be defined in terms
of [B-level sets as follows:

fogf= | +al.rt+dl],
gl = [f1 - 8b. 15 - gt

B = | min ffgf bgb
[fegd] Lg{ﬁ;};}f, 9;> maxf g,}

[f—l}ﬁ _ [(ff)l, (flf)l} ’ff > 0, for every 8 € (0, 1],
fhxf]. x=o0,

xf]F =
) {xff,xfﬂ, x<0.
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Assume p : R[0, 1] x R[0, 1] — R U {0} is defined by
p(f>9) = SupOSﬁslp(fﬁ’ gﬁ)'

Recall that

(1) (R][0,1], p) is a complete metric space

(2) p(f +k g+k)=p(f, g)forallf, g, k € R[0, 1]

(3) p(f +k g+ D) <p(f g) + p(k ).

(4) p(&f.89) = Elp(f, g), forall§ € R.

Definition 2. A sequence f = (f ;) of fuzzy numbers is said to be

(a) bounded if the set {f; :j€ #'} of fuzzy numbers is
bounded, ie., if a sequence (f;) is bounded, then
there are two fuzzy numbers g, I such that g<f, <1

(b) convergent to a fuzzy real number f, if for every & > 0,
there exists 1, € /# such that p(f , f,) <&, for all j > j,

Lemma 3 (see [24]). Suppose T,>1 and v,, t, € R, for every
aeN, then |v, +t,|" <2571 (|v,|™ @), where K = max
{1’ supaTu}'

3. Main Results

3.1. Some Properties of CF In this section, we have intro-
duced the certain space ot) sequences of fuzzy numbers or
in short (cssf), under the definite function to form pre-
quasi (cssf). We explain the sufficient setting of Cf(')
equipped with the definite function h to construct pre-
quasi-Banach and closed (cssf). The Fatou property of vari-
ous pre-quasinorms /i on Cf(A) has been investigated. We
have presented this space’s k-nearly uniformly convex, the
property (R), and the h-normal structure-property, which
are connected with the fixed point theorem.

By ¢, and £,, we denote the spaces of bounded and r
-absolutely summable sequences of real numbers, respec-
tively. Let w(F) denote the classes of all sequence spaces of
fuzzy real numbers. Suppose 7= (7,) € R*", where R
is the space of positive real sequences. The variable exponent
Cesaro sequence space of fuzzy functions is denoted by the
following: CF () =1{v=(v,) € (F): h(uv)<oo,for some > 0},

when h(v) = Y02 (X i oP(Vio 0)/a+ 1) If (7,,) € £, then

Cf(-) ={v=(v,) € w(F): h(uv)<co,for some y > 0}

:, i <ZZ_<;P+(V1k> 0)) "

a=0

<y (M) "<oosfor some y > 0} (8)

a+1
) o)

h(uv)<oo,forany u > 0}.

= (v,) € w(F): ir

a+1

) € w(F): Z <Zk 0PV, 0

Definition 4 (see [25]). The linear space U is said to be a certain
space of sequences of fuzzy numbers (cssf), if

ORU
1 displays at the g™ place

(2) suppose Y =(Y,) €w(F), Z=
Zq|, forallge #, then Y €U

(3) (Y[q/Z)
q/2, 1f(

€U, where b, ={0,0,---,1,0,0, -}, while

(Z,) €U and |Y, | <]|

€ U, where [q/2] marks the integral part of
(6]
q)q:o eU

Definition 5 (see [25]). A subclass U, of U is called a pre-

modular (cssf), if there is he [O,OO)U
settings:

satisfies the next

Q) IfYeU Y=9eh(Y)=
=(0,0,0,)

(ii) There is Q>1, and the inequality h(aY) < Q|alh
(Y) holds, for every Y e U and a e R

0 with h(Y) >0, where 9

(iii) There is P>1, and the inequality h(Y + Z) <P(h
(Y) +h(Z)) holds, for every Y,ZeU

(iv) If [Y,| <|Z,]|, for every g € 4, one has h((Y,)) <h
((Z,))

(v) The inequality h((Y,)) <h((Yyy)) < Poh((Y,))
holds, for some P, >1

(vi) Let E be the space of finite sequences of fuzzy num-
bers; then, the closure of E=1U,

(vii) There is o >0 with h(=,0,0,0, ) > o|a|h(1,0,0,
0, --+), where
B 1, y=q
a(y) = { (9)
0, y#a.

Definition 6 (see [25]). Suppose U is a (csst). The function
he[0,00)Y is called a pre-quasinorm on U, if it satisfies
the following conditions:

() IfYeU Y=9&h(Y)=
= ((_)) (_)7 (_)))

(ii) Thereis Q > 1, and the inequality h(aY) < Q|a|h(Y)
satisfies, for every Y e Uand a € R

0 with h(Y) >0, where 9

(iii) There is P>1, and the inequality h(Y + Z) <P(h
(Y)+h(Z2)) holds, for each Y,ZeU

Clearly, from the last two definitions, we conclude the

following two theorems:

Theorem 7 (see [25])
pre-quasinormed (cssf).

). If U is a premodular (cssf), then it is



Theorem 8 (see [25]). U is a pre-quasinormed (cssf) if it is
quasinormed (cssf).

Definition 9.
(a) The function h on Cf(‘) is named h-convex, if
h(aY +(1-

®)Z) <ah(Y)+ (1-a)h(Z), (10)

for every a€[0,1] and Y, Z € Cy .

(b) {Y,} gen S (CF(>) is h-convergent to Y € (Cf('))h, if
g—ool(Y, = Y) =0. When the h-limit
exists, then it is unique

and only if lim

c) {Y, }qe/V (CF ) is h-Cauchy, if lim
Y,)=0

r

n(Y, -

qr—00
(d Ir'c (Cf()) is h-closed, when for all h-converges
{Y} cl'toY,thenYerl

(e) FC(CF( ), is h-bounded, if 8,() =sup {h(Y -2)
.Y, ZeF}<oo

(f) The h-ball of radius € > 0 and center Y, for every Y
€ (Cf(‘)) ,» is described as follows:

B,(Y,¢) = {z e (cf(,))h L h(Y - Z) 38}. (11)

(g) A pre-quasinorm h on Cf() satisfies the Fatou prop-
erty, if for every sequence {Z9} < (C
lim, , h(Z7-Z)=0 and all Y€ (Cf(-))h’ one has

h(Y - Z) <sup, inf _ h(Y - Z9)

qzr

f(A))h under

Note that the Fatou property implies the h-closed of the
h-balls. We will denote the space of all increasing sequences
of real numbers by L.

Theorem 10. (Cf(')) , where h(Y)=[Y22,(X5-0p(Y  0)/q
+1)"% for all ’YECT“, is a premodular (cssf), when
(Tq)qE/V et NI withty>1.

Proof. (i) Evidently, h(Y)>0and h(Y)=0& Y =9

(1-0) Let Y, Z € Cf(). One has

o ) B

q=0

7,7 VK
(ZP P (Zyy °)> } = h(Y) + h(Z) < 0o

q+1
(12)

and then, Y+ Z ¢ Cf()‘
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(iii) One gets P> 1 with h(Y + Z) <P(h(Y) + h(Z)), for
allY,Ze Cf(»)
(1-ii) Assume a € R and Y € Cf ), and we obtain

0 q_O_ oY ,7 7, 1/K .
hay) = [Z (W) ] < sup|a[

q=0 q

0 _ - 7, 1/K
. lz <ZZ—O;£};p’0)> 1 < Qlalh(Y) < 00
q=0
(13)

As aY € Cf(.). Hence, from conditions (1-i) and (1-ii),

one has Cf(_) is linear. Also, Br € Cf(_), for all r € &, since h

(6,) = [£520(S5-0p (B, 00/ + 1)) < [£52(1/g + 1)) ™
< 00.

(i) There is Q=max {1,sup, la| """} > 1 with h(aY)
<Qlalh(Y), forall Y € CF and e R

(2) Assume |Y,|< |Zq| for allge # and Z e CE . One

find "
Z p ) 4 1/K
=[5 (55) |

< [i (%@) q] =h(Z) < 0o,

q=0

(14)

and then, Y € Cf(»)'
(iv) Obviously, from (2)
(3) Let (Y,) € Cf(_), and we get

7,4 UK

h((Y[qll]»: LZO (ZP‘”:(?‘I“])) } _ [g (W) .

1/K

X Z;zvglf’(Y[p/z],()) ot 5 P(Y 0) 7,7 UK
2 <2q+2 =2 LZ (%) }
i Y 0 +2ZP oP( ) ’a+ © ZZ;LOZ)(YP,()) T, VK
wle s ¥,,0 UK o 350 5(Y.,0)\

(e 5
- T, UK o /ed — | UK
. Z ZZp ;Fi—(f 0)> } _ (3K+2K)1/K {Z (Z;:(]qf:(.lip, 0)) }

=0 q=0

™M

= (3425 R((v,)),

(15)

and then, (Y, ) € Cf(y

(v) From (4), we obtain P, = (3K + 2K)
(vi) Evidently the closure of E = CTF(')

1/K
s

(vii) There is 0 < o < sup_|a|™* ™, for a #0 or o >0, for
Py

a =0 with h(a,0,0,0, - )>0|(x|h(i 0,0,0,-) O
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Theorem 11. If (z, ) € 8, N1 with 7,> 1, then (C], ), i

a pre- quasz -Banach (cssf) where h(Y) = [¥2 O(Zp oP(Y, )
g+ 1)), for every Y € CT<‘).

Proof. In view of Theorem 10 and Theorem 7, the space
(Cf(_))h is a pre-quasinormed (cssf). Assume Y’ = (Yé):zo is
a Cauchy sequence in (Cf(~))h' Hence, for every e €(0,1),
one has /; € /#/ such that for all [, m > [, one gets

- S\ T VK
v 5 ()
(16)

That implies p(Y} - Y77, 0) <e. As (R[0, 1], p) is a com-
plete metric space. Then, (Y}') is a Cauchy sequence in R|
0,1, for fixed g € /4, which implies lim,, Y7 = Yg, for
constant q € 4. Hence, h(Y' - Y°) <&, for every [ >, since
W(Y?) =h(YO =Y+ Y) <h(Y' - YO) + h(Y') < 0. So Y'e

Cf(.)- |

Theorem 12. Suppose (Tq)qe./lf €l NI with 7,>1, then

(Cf(‘))h is a pre-quasiclosed (cssf), where h(Y)=[Y2,
(Xp=0P(Y , 0)/q + 1)) for every Y € CTF(').

Proof. In view of Theorem 10 and Theorem 7, the space
(Cf(~>)h is a pre-quasinormed (cssf). Assume Y’ = (Y;);ZO €
(Cf(<>)h and lim, _h(Y' - Y%) =0; then, for all e€(0,1),
there is [, € / such that for all [ > [, we obtain

7,4 UK
w [T p(Y’ ~v%,0)\ °
s>h<Y’—Y°)= Yo ) , (17)
=0 q+1
which implies ,Z)(Yg - Yg, 0) <e. As (R[0,1], p) is a com-

plete metric space, therefore, (Y;) is a convergent sequence in
R0, 1], for fixed g € A So, lim;__, Y} = Y?, for fixed g € 4.

Since h(Y®) =h(Y° - Y' + Y!) <h(Y' - Y°) + h(Y") < 00, one
has Y% € Cf() 0
Theorem 13. The function h(Y)=[Y2)(35-0p(Y, 0)/q +
1)%)"% verifies the Fatou property, when (t q)qeﬂe{%ooﬂl
with 7, > 1, for all Y € Cf, .

Proof. Let {Z"} < (Cy;,), such that lim,_h(Z"~Z)=0.

Since (Cf('))h is a pre-quasiclosed space, one has Ze€
(Cf(<))h' Forall Y e (Cf('>)h, one gets

5
oo /d (Y, 2,0 UK
wy-z)= |3 (2 0P )
=) q+1
_ 7 - 1/K
i ZZ OP Y ‘Z;’O) '
<
| 4=0 q+1 (18)
- N\ Ty UK
> Si-op(2 - 2,0)
=0 q+1
< stlnp rlgnfh(Y -Z".
O
Theorem 14. The function h(Y) = Y2 o(XpeoP (Y, 0)1q + no
does not satisfy the Fatou property, for all Y € C ) when (7,)
boandt,> 1, forallge V.
Proof. Let {Z'} ¢ (Cf(.))h so that lim,  h(Z'-Z)=0

Since (Cf('))h is a pre-quasiclosed space, one gets Z €

(Cf('))h. For every Z € (CTF(J) we obtain

h’

Wy-z)=y (ZZ—OP<YP ~Zp 5)) -

=0 q+1

o zg:(,p(yp -7, 6) '

< 2K—1 z

q+1

-0 (19)
5 (Eola a0y
pari q+1
<2 srlnlpr1>nr£h(Y zN.
O
Example 1. For (7 ) € [1,00)”, the function h(Y) = inf {a

/a,0)/q+1)" <1} is a norm on Cf(A).

>0 Fgen(Xp-oP(Y,

Example 2. The function h(Y \/qu (Xiop(Y,,0)/q+ 1)’

is a pre-quasinorm (not a norm) on Cf((3g+2/q+ l)q: ).

Example 3. The function h(Y)= qum(ZZ:OI_)(Yy 0)/q+

1’4" s a  pre-quasinorm (not a quasinorm)
on Cf((3q+2/9+1)).

a
Example 4. The function h(Y \/qu, Zp oP(Y,0)/g +1)

is a pre-quasinorm, quasinorm, and not a norm on Cg , for
0<d<l1.



In the next part of this section, we will use the func-

tion h as h(Y) = [L%(2h0P(¥, 00/ + 1)),

F
YeCy).

for every

Definition 15 [26]. The function h is said to be strictly
convex, (SC), if for all Y, Z € U}, such that h(Y) =h(Z) and
h(Y+Z12)=h(Y)+h(Z)/2, we get Y = Z.

Definition 16 [27]. A sequence {Y,} CU is said to be &
-separated sequence for some € > 0, if

sep(Y,) =inf {h(Y,-Y,):p#q} >e (20)

Definition 17 (see [27]). Let k > 2 be an integer, and a Banach
space U is called k-nearly uniformly convex (k-NUC), if for
any &> 0, there exists d € (0, 1) such that for any sequence
{Y,} €B,(0,1), with sep(Y,) > ¢, there are p;, p,, ps, =+ Py
€ /N, such that

Y +Y, +Y, +--+Y
l’l( )4 J2 kP3 Pk) <1-6. (21)

Definition 18 (see [28]). A function h is said to satisfy the &,
-condition (h € §,), if for any € > 0, there exists a constant
k>2 and a> 0 such that h(2u) < kh(u) + ¢, for each u € X,
with h(u) <a

If h satisfies the §,-condition for any a >0 with k>2
depending on a, we say that h satisfies the strong §,-condi-
tion (p € 83).

The following known results are very important for our
consideration.

Theorem 19 (see [28], Lemma 2.1). If h € 85, then for any
L >0 and ¢ > 0, there exists § > 0 such that |h(x +y) — h(x)]
<& where x,y € X, with h(x) <L and h(y) <4.

Theorem 20. Pick an (Tq)qm/ €., NI with T,> I; then, for

any L>0 and €> 0, there exists 6 > 0 such that |h(x+y) -
h(x)|<¢ forallx,y€ (CF< ) with h(x) < L and h(y) <4.

Proof. Since (7,) is bounded, it is easy to see that h € &5.

Hence, the proposition is obtained directly from Theorem
19. O

Theorem 21. Suppose (‘rq)qe/’/ €l NI with t,>1; then,
(Cf(‘))h is k-NUC, for any integer k > 2.

Proof. Let e € (0,1) and {x,} €B,(0, 1) with sep(x,) > ¢, for
each me , and let x =(0,0,0, -, x,(m), x,(m+ 1), ---).
Since for each i€/, (x,(i));2, is bounded, and by using
the diagonal method, we can find a subsequence (xnj) of
(x,) such that (x,

Therefore, there exists an increasing sequence of positive
integers (t,,) such that sep((x”) )>e. Hence, there is a
J7j>t,

j(i)) converges for each ie #, 0<i<m.
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sequence of positive integers (r,, )
such that

o With rg<r <r, <.,

, (22)

for each m € . For fixed integer k> 2, let &, = (K" —
1/(k — 1)kf°)(e/4); then, by Theorem 20, there exists & >0
such that

|hK(x +y) - h* x)‘ <g, (23)

whenever h*(x) <1 and h*(y) < 6. Since h*(x,) <1, for
any n € J//, then there exist positive integers m;(i=0, 1,2,
- k—2) with my<m, <m, <---<my_, such that h*(x")
<4. Define my_, = my_, + 1. By inequality (1), we have h(
xffnkk) >¢/2. Let s;=ifor 0<i<k-2and s, =r, . Then,
in virtue of inequality (1), inequality (2), and convexity of
the function f, (1) = |u|™ for any n € /#/, we have

1K (xSO T X
k

_ i (zy_op(x +x, (i) ++x, (i)/k, 6))’"

n+1
- lOp )
n=0

<,op (i) + 1<i>++xs“<i>/k,0>>’”

+1

x, (i)++x, (i)in+1, 0)> o

n+1

n=m,

G (Zop (s (1) + 2, ()44, (/K 0)\
N = n+1
& (Yiop(x, (i) + x, () ++x,_ (i)/k,0)\ "
i el n+1
m-lykl (300D (xsj(z), 0)
tas Z % n+1

(Z:’Op(xsl (i) + x, (i) ++x,,_ (I)/k, 6)) o
1 n+1

Yo (xg (1) + xg (i) ++x,_ (i)/k, ())) o

n+1

1+ I
< _
TS = k}.zz0 n+1
mzz-l Yo (x, (1) + x, (i)++x,_ (i)/k,0)\ "
" e, n+1
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+x,, (i) ++x,_ (i)/k, 6)) " e
1

n+1

A\

3
i

|

bl

MI
VRS
[\g
g:

I

T = =)
| + h}g
’—\?\

(e
~
~

IN

lOp )’ )
n+1
Zi:OP(xsk(i)’(_)) " 1 g
SE) 4
.<Z’°P( ) )> +(k=1)e, =1+ (k- 1),
(kPo ) < roP(x ()))T"
KPo n+1
ko € ol —1\ e
v () (),

+1 1-
k

Therefore, (CF, 0 ) is k-NUC. O

Recall that k-NUC implies reflexivity.

Definition 22. The space U, satisfies the property (R), if and
only if, for all decreasing sequence {I' j}jE - of h-closed

and h-convex nonempty subsets of U, with sup; ,&,(Y,
I';) < 0o, for some Y € Uy, one has NjesTj# D

By fixing I" a nonempty h-closed and h-convex subset of
(),

Theorem 23. If (‘rq)qem
following:

€, NI with 7,> 1, one has the

(i) Suppose Y € (Cf)), with K,(Y,I') =inf {h(Y -Z)
:Zel} <oo0. There is a unique A € I so that &,(Y
,F)zh(Y—A)

(i) (Cf(_>)h verifies the property (R).
Proof. To prove (i), assume Y ¢ I' as I is h-closed. One has
C:=8,(Y,I')>0. Hence, for all r € ./, one has Z, € I with
h(Y-Z,)<C(1+1/r). If {Z,/2} is not h-Cauchy, one gets

a subsequence {Z,,)/2} and I, > 0 with h(Z,) - Z,;/2) >
l,, for every r > j >0, since

max ((Y - Z, ), h(¥ - 2,)) < c<1 + ﬁ)

h(Zg(r) _Zg(j)) > > C<1 + L) l_o)
2 g(j)) 2€

€, NI with 7,>1,

(25)

for every r>j>0. Since (Tq)qem

then the function f,(u) = |u|™ is strictly convex, for any n
€ . Therefore, the space (Cf(»)>h is strictly convex; hence,

h(Y—M><C(1+ﬁ). (26)

Then,

C=Rh(Y,F)<C<1+g(1j)), (27)

for all je /. By putting j — 00, one has a contradic-
tion. So {Z,/2} is h-Cauchy. As (Cf(‘))h is h-complete, then
{Z,12}h-converges to some Z. For all j€ ./, one gets {Z,
+Z;/2}h-converges to Z +Z;/2. Since I' is h-closed and h
-convex, then Z+Z /2 €I'. Since Z + Z;/2h-converges to 2
Z, then 2Z e I'. Let A =2z, and from Theorem 13, since h
satisfies the Fatou property, one has

7
h(Y — ) <sup 1nfh( (Z+ %))
ioJ=

Z,+Z;
<sup1nfsup1nfh(Y— 5 1)

K,(Y,T) <

] 1

—

< = sup inf sup inf [A(Y

i r>i i r>i

~Z)+h(Y-2)]

[\

- ,(Y,T).
(28)



Then h(Y —A) = &,(Y, I'). Since h is (SC), this implies
the uniqueness of A. To prove (ii), assume Y ¢ I', , for some
roeN. Since (K,(Y,T,)),., €€y Iis increasing, put
lim,_,  &,(Y,I,)=C, when C>0. Otherwise, Y € I',, for

all r e #. According to (i), there is one point Z, € I', with
K,(Y,I,)=h(Y - Z,), for every r € /. A similar proof will
prove that {Z,/2}h-converges to some Z € (Cf(A))h. As{I,}
is h-convex, decreasing, and h-closed, one has 2Ze N,
T,. O

r

Definition 24. The space U, verifies the h-normal structure-
property, if and only if, for all nonempty h-bounded, h
-convex and h-closed subset I' of U, not decreased to one
point, and one has Y e I' with

suph(Y - Z) <8, (I') =sup {h(Y -Z): Y,Z eI} < co.
zZer

(29)

Definition 25 (see [29]). U}, is a real Banach space, and S(U,)
is the unit sphere of U,. The weakly convergent sequence
coefficient of U, denoted by WCS(U,,), is defined as fol-
lows:

WCS(U,) =inf {A({x,}): {x,};2; < S(Up), A({x,})
= Al ({xn})’ xnw - 0}’
(30)

where

A({x,}) = limsup { ||x; = x;||: i, jzni#j},
A ({x,}) :lirgrgof{uxi —xj||: b jzni#j}.

Theorem 26 (see [30]). A reflexive Banach space U, with
WCS(U,) > 1 has normal structure-property.

Theorem 27. If (Tq)qe./V €l NI with 7,> 1, then (CT(-))h

holds the h-normal structure-property.

Proof. Take any e€>0 and an asymptotic equidistant
sequence {x,} ¢ S((CJ)),) with x,” — 0 and put v =x;.
There exists i, € /4 such that h(}'

i=i;+1

v (i)b,) < e. Since x,,
— 0 coordinate-wise, there exists n, € 4 such that h(
Y x,(i)b;) < & whenever n > n,. Take v, = x,; then, there
is i, >i, such that h(}:

i=iy+1

v,(i)b;) <e. Since x,(i)— 0

coordinate-wise, there exists #n; € /4 such that h( ﬁilxn(i)

b;) < &, whenever n > n;. Continuing this process in such a
way by induction, we get a subsequence {v,} of {x,} such

that
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(32)

h (Zl v (i)f),-) <e.

Put z, = Zi:iin_lﬂvn(i)f)i, forn=2,3,--

(33)
Moreover, for any n, m € /4 with n # m, we have
h(Vn - Vm) =h (Z Vn(i)Bi - Z Vm(l)br>
i=1 i=1
>h Vn(l)Bz - Z Vm(l)Bz
i=i, +1 i=i,_;+1
= _ ® _ (34
- h( vn(z)b,> ~h{ Y vn(z)bl> )
i=1 i=i, +1

This means that A({x,}) =A({v,}) > A({z,}) — 4¢. Put
u, =z,/||z,|, for n=2,3,--- Then,

u, € s((cﬂ‘))h), (35)

A{x,})=21-eA({u,}) —4e. (36)

On the other hand,
h(v,—v,,) <h(z,-z,) +4e <h(u, —u,,) + 4, (37)
for any n, m € A with n # m. Therefore,

A({un}) 2 A({x,}) — 4e. (38)

By the arbitrariness of € > 0, we have from the relations
(35), (36), and (38) that

wes((c)) ) =inf {A({u,})}, (39)
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such that
_ & N F . .
u,= iz%}ﬂ u,(i)b; € S((CT('>)h) ,0=1, <1 (40)

<-o,u,” — 0and {u, } is asymptotic equidistant.

Take m € ./ large enough such that 332, (b/k)™ <e,
where b= Z:lin,lﬂ |u,,(i)|. We have for n < m that

\Y4
K
i
N
1=
™M~
I
—~
=
by
—
=
=]
S—
~
=
=

k=i, ;+1 i=1
[es) 1 k B Tk
- (E ;pwm@,o))
0 1 k - o Tk 0 b\ T
) <%Zp<un<t>,o>> -2 (5)
k=i, +1 i=1 k=i, ,+1
&) 1 k B T
» 5 (i)
>l—-e+1=2-¢,
(41)
that is, A, ({u,}) = (2 —€)""*. Note that
&) 1 k B 7 VK [e) b\ LK
—|b p(u,, (i), < -
2 (o)) | <[ £, 6]
IS 1 k B 7,7 VK
+[ D (EZp(um(i),O)) ] <1
k=i, ,+1 i=1
(42)
Therefore,
< iy lk ~ Tk
h (“n_um)z . <%Zp(um(l),0)>
nfloo 1 . ) .
) <% <b+ Zmum(z),m))
k=i, _+1 i=1
(43)

for any n,me ./ with n+m. Therefore, A,({u,}) <

UK
(1+(1+e"8) )" and by the arbitrariness of &> 0, we

obtain WCS((CfQ))h) =2YK From Theorem 21 and Theo-
rem 26, the sequence space (Cf('))h has the h-normal struc-

ture-property. O
4. Kannan Contraction Mapping on CT(')

In this section, we look at how to configure (Cf(')) , with dif-

ferent h so that there is only one fixed point of Kannan con-
traction mapping.

Definition 28. An operator V : U, — U, is said to be a
Kannan h-contraction, if one gets a € [0, 1/2) with h(VY —
VZ)<a(h(VY -Y)+h(VZ-2Z)), for all Y,ZeU,. The
operator V is called Kannan h-nonexpansive, when o = 1/2.

An element Y € Uy, is called a fixed point of V when V
(Y)=Y.

Theorem 29. If (7,) €8,NI with 7,>1, and V
qenN
:(Cf('>)h—>(Cf(‘))h is Kannan h-contraction mapping,

where h(Y)=[Y02,(Xg-0p(Y,, 0)/q + I)T‘I]”K, for all Ye
CTF(A), then V has a unique fixed point.

Proof. If Y € Cf(y one has VPY € Cf(»)' As V is a Kannan h
-contraction mapping, one gets

h(Vl“Y— VZY) < oc(h(Vl“Y— VZY) +h(le— VHY))

( “ )zh(VHY—VHY)

1-«

:>h<V’“Y— VZY) < lih(V’Y— V"‘Y)

IN

IN

<( ‘ )lh(VY— Y).

B (44)

So for all [, m € & with m > [, one gets
(VY= vy ) <a(h(ViY = VY ) £ h(vY - V) )

Sa((l “) (I%)Mjh(w_ Y).

(45)

Then, {V'Y} is a Cauchy sequence in (Cf(A)) - As the
space (Cf(.))h is pre-quasi-Banach space, one has Ze€
(Cf(»))h with lim;, . V'Y = Z. To prove that VZ = Z, since
h has the Fatou property, one obtains

W(VZ-Z) < sup ilnfh(vl+1 Y- V’Y)

< sup inf (L)lh(VY -Y)=0,

i I>i

(46)
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and then, VZ =Z. So Z is a fixed point of V. To show the
uniqueness. Let Y, Z € (Cf(')) , be two not equal fixed points

of V. One has

WY =2Z) <h(VY = VZ) <a(h(VY = Y) + h(VZ - Z)) = 0.
(47)

So, Y="Z. |

Corollary 30. If (Tq)qe/V €t NI with 1,>1, and V
1 (Cqy), — (Cf), is Kannan h-contraction mapping,
where h(Y) = [¥02,(X0_0p(Y ,, 0)/q + I)T‘f]NK, for all Ye
Cf(‘), one has V has unique fixed point Z so that h(V'Y - Z)
<a(all-a)TH(VY - Y).

Proof. In view of Theorem 29, one has a unique fixed point Z
of V. So

h(le—z) = h(V’Y— VZ)

<a(h(V'Y=V7Y) +h(VZ-2))  (a8)

a( = )Hh(VY— Y).

O

Example 5. Assume V:(CF((2q+3/q+ 2)2)), —
(CH((29+3/g+2)%)),» h(g) =

VIR (Shoplg, 0)ig+ 1707, for every geCr(
(29 +3/q+2),) and

where

(49)

As for each g, g, € (C*((2q +3/q + 2);20))11 with h(g,),
h(g,) € [0, 1), one has

h(Vg, - Va,)=h(2 - %) < \/12_7 (h(%) +h<%>>

o= (h(V9, = 90) + h(Va, - 9,)).

N

(50)

For all g,,9g, € (C"((2q+3/q+2);)), with h(g,),h
(g,) €[1,00), one has
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v (% - ) < L (h(19) (e
h(Vg, ng)‘h(s S)S 464(h<5)+h<5

v%_z; (h(Vg,—91)+h(Vg,—9,))-

(51)
For all g,,g,€(C"((29+3/9+2)%,)), with h(g,)e
[0,1) and h(g,) € [1,00), we get
_ _n(9 % L3 L (%%
h(Vg, ng)_h(4 S)Sﬁh<4>+ (s
7 (1(5) (%))
V&) 4 5

= ((V,~g)) +h(V, - g2).

IN
~

ﬂ

(52)

Hence, V is Kannan h-contraction. As h satisfies the Fatou
property, from Theorem 29, one has V holds one fixed point
9e(CT((2q+3/9+2)2))), -

Definition 31. Pick up U, be a pre-quasinormed (cssf), V'
:U,— U, and ZeU,. The operator V is called h
-sequentially continuous at Z, if and only if when lim
h(Y,-Z) =0, then lim h(VY,-VZ)=0.

q—)OO
q—00
Example 6. Suppose V:(CF((q+1/2q+ 4)220))h —

(CF((g+ 129+ 4)2,),, where (Z) = [ (S2-op(Z, O)
g+ )T for every Z € CF((q+1/2q + 4),2) and

5 (B +2), Zy(y)e [0, 17),
V(Z)= L5 Zo(y) = ~ (53)
1770 o) = 17’
1 1
500 Zy(y) € (1—7,1}.

V' is clearly both h-sequentially continuous and discon-
tinuous at 1/17by € (C*((q + /2 +4)%)),-

Example 7. Assume V is defined as in Example 5. Suppose
{2} < (CF((2q + 319 + 2)220))}, such that lim, _h(Z™
- 7Y =0, where Z® ¢ (CF((2q+3/q+ 2);’20))}, with h(

ADESE
As the pre-quasinorm h is continuous, we have

) 50) (0)
lim h(vz<"> - Vz<°>) = lim h< S A e )
n—00 n—>00 4 5 20

(54)

Therefore, V is not h-sequentially continuous at Z®),
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. . (~F
Theorem 32. If (Tq)qeﬂ/ et NI with 1,>1, V: (CT(-))h

—(CF),, where h(Y) = Y2(S2 (Y, 0)/g-+ 1)", for
all Y e Cf()' Suppose

(1) V is Kannan h-contraction mapping

(2) V is h-sequentially continuous at Z € (Cy, ),

(3) thereis Y € (Cf('))h with {V'Y} has {V'iY} converg-
ing to Z

Then, Z € (Cf(_))h is the only fixed point of V.

Proof. Assume Z is not a fixed point of V, and one has VZ
# Z. From parts (2) and (4), we get

lim h(VlfY—Z) -0,
T

lim h(v’f“Y - VZ) - 0.

l,»—>oo
As V is Kannan h-contraction, one obtains

o<hvz=2)=h{(v2- Vi) (VY-2)
+ (szﬂY v Y)) . 22 supr,-2
(

2 supr;-2

h V’f”Y—VZ)+2 i h(V’fY—Z)

: a(l%“a)l’lh(VY— Y).
(56)

As [; — 00, one has a contradiction. Then, Z is a fixed
point of V. To show the uniqueness, let Z,Y € (Cf(_>) , be
two not equal fixed points of V. One obtains

WZ-Y)<h(VZ-VY)<a(h(VZ-Z)+h(VY -Y))=0.
(57)

Hence, Z=Y. O

Example 8. Assume V is defined as in Example 5. Let h(Y)
=Y e (TLop(Y,,0)/g + 1)1 for all ve CF((2q+3/
q+2)y2). Since for all Y,,Y,€ (C*((2q+3/q+ 2);20))h
with h(Y,), h(Y,) €0, 1), one gets h(VY, - VY,)=h(Y,/4
~Y,/4) <2/v/27(h(3Y,/4) + h(3Y,/4)) = 2//27(W(VY, -
Y,) +h(VY,~Y,)). Forall Y,, Y, € (C"((2q+3/q +2)2%,
), with h(Y ), h(Y,) € [1,00), one gets

i(1(5)(5)

(58)

=
<
=
[
<
o<
[
=
/|\
[
|
~—
In

For all Yy, Y, € (CH((2q +3/g+2))), with h(Y,) €|
0,1) and h(Y,) € [1,00), one gets

Lo (Y. Y\ 2 3V 1 (4Y,
h(VY, VYz)—h< S)S\/ﬁh<4)+4h<5

IS

2 3Y 4Y
<—(h[=L)+h 2))
(3 (5
2
=— VY, -Y)+h(VY,-Y,)).
(VY= Y) BV, = Y)
(59)
So V is Kannan h-contraction and VP(Y)=

Y/4, h(Y)el0,1),
Y/5°, h(Y) €[1,00).

Obviously, V is h-sequentially continuous at 9e
(Clj((Zq +3/q+2).%)),, and {}/P Y} holds { V' Y} converges
to 9. By Theorem 32, the point 9 € (C*((2q + 3/q + 2);20))h is
the only fixed point of V.

5. Kannan Nonexpansive Mapping on (CT(.)) X

We introduce the sufficient conditions of (Cf(‘)) ,» Where
0o — A\ T 1 1K

h(g) = [LomoP(g, 0)™]"", for every geCl ), such that

the Kannan nonexpansive mapping on it has a fixed point,

by fixing I' a nonempty h-bounded, h-convex, and h
-closed subset of (CTF(J)h'

Lemma 33. If (Cf('))h verifies the (R) property and the h

-quasinormal property. Assume V :I' — I' is a Kannan
h-nonexpansive mapping. For t>0, let G,={Y eI : h(Y
-V(Y))<t}+ Q. Put

I =(\{Bu(rj): V(G) CBy(r)}nl.  (60)

Then, I',+ O, h-convex, h-closed subset of I', and V
(I'y)cI',cG,and§,(I,) <t.

Proof. Since V(G,) cI',, then I', # @. As the h-balls are h
-convex and h-closed, then I', is a h-closed and h-convex
subset of I'. To show that I', ¢ G,, assume Y € I',. When
h(Y-V(Y))=0, one has Y € G,. Else, assume h(Y - V(Y))
>0. Put

r=sup {h(V(Z) - V(Y)): Z€G,}. (61)

From the definition of r, one gets V(G,) cB,(V(Y), ).
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Therefore, I', ¢ B, (V(Y), r), then h(Y — V(Y)) <r. Let I > 0.
One has Z € G, with r = I<h(V(Z) - V(Y)). So

WY = V(Y)) = 1<r-1<h(V(Z) - V(Y))
< S - V() +hZ-V(Z)  (62)
< %(h(Y— V(Y))+1).

As lis an arbitrary positive, one obtains h(Y - V(Y)) <t
then, Y € G,. Since V(G,) c I';, one gets V(I',) C V(G,) C F
so I', is V-invariant, to show that 8, (I',) < ¢, since

h(V(Y) =V(Z)) < 5 (h(Y = V(Y))) + h(Z = V(2))), (63)

N\P—‘

for all Y,Z € G,. Let Y € G,. Then, V(G,) c B,(V(Y),t).
The definition of I, gives I', ¢ B, (V(Y), t). Therefore, V(Y)
€ er,Bu(2Z, t). One has h(Z-Y)<t, for all Z,Y €T,, so
8, (I,) <t O

Theorem 34. If (Cf(~))h satisfies the h-quasinormal property

and the (R) property, let V: I — I be a Kannan h-non-
expansive mapping. Then, V has a fixed point.

Proof. Let ty=inf {h(Y-V(Y)): YeI'} and t,=t,+1/r,
for every r > 1. By the definition of t,, one gets G, ={Y ¢
I':h(Y-V(Y))<t,}+3, for every r>1. Assume I, is
defined as in Lemma 33. Clearly, {I', } is a decreasing

sequence of nonempty h-bounded, h-closed, and h-convex
subsets of I'. The property (R) investigates that I'y, =, .,
I', #&. Let Y €T, and one has h(Y - V(Y)) <t,, for all
r>1. Suppose r — 00; then, h(Y - V(Y)) <t,, so h(Y -
V(Y)) =t,. Therefore, G, #&. Then, t,=0. Else, t,> 0;
then, V fails to have a fixed point. Let I', be defined in
Lemma 33. As V fails to have a fixed point and I', is V

-invariant, then I', has more than one point, so §,(I, ) >
0. By the h-quasinormal property, one has Y € I', with

WY -2)<8,(I,) <t (64)

forall ZeI, . From Lemma 33, we get I', C G, . From
definition of I', , V(Y) € G, I, . Then,

h(Y = V(Y))<8,(L,) <t (65)

which contradicts the definition of #,. Then, ¢, = 0 which
gives that any point in G, is a fixed point of V. O

According to Theorems 23, 27, and 34, we conclude the
following:

Corollary 35. Assume (Tq)qem el NI withty>1, and V

:I'—> T is a Kannan h-nonexpansive mapping. Then, V
has a fixed point.
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Example 9. Assume V:I'—TI with V(Y)=
Y/4, h(Y)el0,1),
where I'={Y € (CF((2q+3/q +2
Y5, h(Y) e [Loo),
);20)) Y()—Y —0} and h \/qu/lfp Y 0 2q+3/q+2

for every Y € (CF((2q +3/q + Z)q: ),
V is Kannan h-contraction. So it is Kannan h-nonexpan-
sive. By Corollary 35, V has a fixed point 9in I

By using Example 8,

6. Kannan Contraction and Structure of
Operator Ideal

The structure of the operator ideal by (CTF(') )h equipped with
the definite function h, where h(g) = [ gzo(zgzop(gp, 0)/q+
1)K, for every ge Cf<_), and s-numbers has been

explained. Finally, we examine the idea of Kannan contrac-
tion mapping in its associated pre-quasioperator ideal. As
well, the existence of a fixed point of Kannan contraction
mapping has been introduced. We indicate the space of all
bounded, finite rank linear operators from a Banach space
A into a Banach space A by Z(A, A), and (A, A), and if
A=A, we inscribe Z(A) and (A).

Definition 36 (see [31]). An s-number function is s : Z(A,
A) — R*" which sorts every Ve Z(A,A) a (s4(V))%,
verifies the following settings:

@) [[V]I=5(V)25(V)25(V) 2
,A)

(B) Spa1 (Vy+ V) <5(V)) +54(V
(A, A)and L, de sV

(©) s;(VYW) <||[V]sy(Y)||W]|, for all WeZ(AyA),
YeZ(A A), and Ve ZL(A, A,), where Ay and A,
are arbitrary Banach spaces

(d) fVeF(A A) and y € R, then s,;(pV) =

20, forall Ve Z(A

,),forall V|, V,eZ

[Ylsa(V)
(e) Suppose rank (V) <d, and then, s;(V) =0, for each

VeZ(AA)

() sp0(I,) =0 or s,.,(I,) =1, where I, denotes the unit
map on the a-dimensional Hilbert space €5

Definition 37 (see [8]).

(i) & is the class of all bounded linear operators within
any two arbitrary Banach spaces. A subclass % of &
is said to be an operator ideal, if all Z(A, A) =%
NZ(A, A) verifies the following conditions: I €
U, where I" denotes Banach space of one dimension

(i) The space %(A, A) is linear over R

(iii) Assume W e Z(A),A), Xe€U(A A), and YeZ
(A, Ay), then YXW € %(4y, A,)
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Notation 38.

Fu = {Fy(4 A)} (66)

,where

Fy(A A) = {V € Z(A, A): <(sd(V) ) € U}, (67)

where
_ 1, =
sa(V)(x) = { (68)

Theorem 39. Suppose U is a (cssf); then, &y is an operator
ideal.

Proof.

(i) Assume V € §(A, A) and rank (V) =n for all n € A/;
as b, e Uforall i € # and U is a linear space, one has

(5:(V) )% = (s0(V)ss1(V), 5,1 (V), 0,0,0, ) =20 o
5,(V)b, € U; for that V € &y(A, A) then B(A, A) SER(A, A).

(ii) Suppose V,, V, € 2y(4, A) and f,, B, € R, then by

Definition 4 condition (33), one has (s[i,Z]ZVl))Z)O
€U and (s (V1)) €U, as i > 2[i/2]; by the defi-
nition of s-numbers and s;(P) is a decreasing
sequence, one gets s; (ﬁlV +B,V2) Sy (ﬁl
+B,V3) < Sjin2) (B V1) + 512 (B2 V) = [Bylsin v,
+ B, s}z (V5), for each i € 4. In view of Deﬁnition
4 conditiPn (23) and U is a linear space, one obtains
(5i(BiV1+B,V3))ig € Us hence, BV, +B,V, € %y
(4, 7).

(iii) Suppose Pe Z(Ay 4A), TeFy(A A), and Re &
(A, Ay), one has (s;(T))iy € U, and as s,(RTP) <
|R||s;(T)||P||, by Definition 4 conditions (22) and
(23), one gets

(s;(RTP))o € U, and then, RTP € (A, Ay). O

According to Theorems 10 and 39, one concludes the
following theorem.

Theorem 40. Let (Tq)q€ P

'i‘(cl:O) is an operator ideal.
Lo

€, NI with T,> 1, and one has

Definition 41 (see [9]). A function H € [0,00)% is called a
pre-quasinorm on the ideal % if the next conditions hold:

(1) Let V e%(A, A),
onlyif V=0

H(V)=0, and H(V)=0, if and
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(2) We have Q=1 so as to H(aV)<D|a|H(V), for
every Ve %(A, A) and a € R

(3) We have P>1 so that H(V, + V,) <P[H(V,) + H(
V,)], for each V|, V, € %(A, A)

(4) We have 6 >1 for Ve Z(A),A), X €% (A, A), and
Y e Z(A, Ay); then, H(YXV) <o Y||H(X)| V]

Theorem 42 (see [9]). H is a pre-quasinorm on the ideal % if
H is a quasinorm on the ideal %.

Theorem 43. If (Tq)qe/V €., NI with t,> 1, then the func-
tion H is a pre-quasinorm on ri«(cp()) , with H(Z)=h
0

(s,(2) );’jo, forall Zekcr ) (&A).

Proof.

(1) When X ek ) (4,4), H(X) =h(sq(x)):‘:’020
and H(X) = h(sq(X))q=0 =0, if and only if 5, (X) =0,
forall ge #, if and only if X =0

(2) There is Q=1 with H(aX) = h(sq(EcX)):ZO
X), forall X € é(cp()) (A, A) and we R

()

< QlalH(

(3) One has PP;>1 so that for X;,X, € %<Cf(.>>h (4, A7),

one can see

H(X, +X,) =h(s,(X, + Xz));jo

<P (h (S[q/zf(x 1 )) :o +h <S[q/2]zX2)) :ZO>

< PPy (h(s,(X)) 7, + h(s,(%,)) 2, )

(69)

(4) Wehavep>1,ifX € £(Ay, A), Y € ’i‘(cF()) (4, A),and
U
ZeZ (A, Ay), and then, H(ZYX) = h(sq(ZYX))q=0

< h([IX[[[1Z]ls,(Y)), _y < PIX[H(Y)[IZ]].

O

In the next theorems, we will use the notation (%(

H), where H(V) = h((sq(_V)):zO

),
S
), forall Ve %(Cf()>h.

Theorem 44. Suppose (Tq)qe/v €., NI with 7,> 1, and one

has (’i‘(cF()) ,H) is a pre-quasi-Banach operator ideal.
=
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Proof. Suppose (V). is a Cauchy sequence in ’i*(cF())
(A, A). As ZL(AA) QS(CF()) (A, A), one has
()}

h

H(V,-V,)= h((sq(V_,Va));ZO) > h(sy(V, V), 0,0,0,---)

(o) 1 Tq
>1nf V.-V, | /K (—)
IV, =V [Z —

Hence, (V,),., is a Cauchy sequence in Z(A4,A).
Z(A, A) is a Banach space, so there exists V € (A, A) so

that lim, ||V, - V|| =0 and since (Sq(Va))q:o € (Cf('))h,
for all a € #/, and (CTFU)h is a premodular (cssf). Hence, one

H(V):h(( h( a2 (VV) 0)

”(( V7)) H(V. VD) )

+ (3K+2K)1/Kh(( s,(V, )) i ) <e.

(70)

We obtain (sq(_V))OZO € (Cf(.))h, and hence, V € Ecr),

(4, A). O

>

Theorem 45. If(Tq)qe/V

H) is a pre-quasiclosed operator ideal.

€., NI witht,> 1, one has (@(CFU)
() /p

Proof. Suppose V, € ri(CF()) (A, A), for all aeV and
() /p
lim, , H(V,-V)=0. As Z(A,A)2 S(Cp()> (A, A), one
O
has

H(V,-V) =h(( (V, V) 0) > h(s0(V,V),0,0,0, )
. 1 7, 1/K
6]

So (V) ey is convergent in Z(A, A). ie, lim,__ ||V,
— V|| =0, and since (Sq(Va))ZZo € (CTFO)h, for all g € # and

(Cf(_))h is a premodular (cssf). Hence, one can see

>inf||V, - V%X
q

(72)

H(V)= h((sq(V)):ZO) < h((s[q/Z] (Vvu))oo )

q=0
+h( (s (Va)) ) <k (V= VIDiS,) (72)
+ (3K+2K)1/Kh((sq(v )) ) <e.

(o)

We obtain (Sq(_v))q:o € (Cf(_))h, and hence, V € %(Cﬂ,))h (4,
A). O
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Definition 46. A pre-quasinorm H on the ideal %, verifies
the Fatou property if for every {Tq}qe Sy, (4, A) so that
lim, H(T,-T)=0and M € % (A, A), one gets

h

q—00

H(M ~T)<sup infH(M - T}). (74)
q 24

Theorem 47. Suppose (Tq)qe./lf €, NI with t,>1, then

(@(CF()) ,H) does not satisfy the Fatou property.
0

q—

Proof. Assume {Tq}qe/y c »i«(cf(v))h(A, A) with lim, H(T,

—T)=0. Since ’i‘(cF( ) is a pre-quasiclosed ideal, then T ¢
() p

%(C§_>)h(A’ A). So for every M € 'i(cf(,)),, (4, A), one has

s[5 (W)TK
o[g ()]

o

1/K

oo (Y3 0P (5 (T;T),0 K
[ (EY)]
§(3K+2K)1/Ksup inf Li; (WW) :|

=
o

1/K

ro 2T

Definition 48. An operator V' : %y (4, A) — ¥y, (4, A) is
said to be a Kannan H-contraction, if one has « € [0,1/2)
with H(VT - VM) <a(H(VT-T)+H(VM - M)), for all
T,M € &y, (4, A).

Definition 49. An operator V' : %y (4, A) — &y, (4, A) is
said to be H-sequentially continuous at M, where M €
Fy, (4, A), if and only if lim H(T,-M)=0=
lim,_ H(VT, - VM)=0.

r—00

r—>00

{?xample 10. Vv %(CF((2q+3lq+2);ﬁzo))h (A, A) —
F(CF (2q+31q+2)5%)), (4,4),
where H(T) = /322 (S2_op(s,(T), 0)/g + 1), for
every T € i«(cp((zqﬁ,qﬂ)gzo))h (A, A) and
5 H(T)e€|0,1),
UCORE (76)
= H(T) € [1,00).
Evidently, V is H-sequentially continuous at the zero
Operator (OXE:T CF((2q+3/q+2>00 )) . Let {T('I)} C
(P (2q+30q+2))), be such that llm]HOOH(T(J) -T) =0,
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where T ¢ F(C (29+30g+2)%,)) with H(T®)=1. Since the
=0/,

pre-quasinorm H is continuous, one gets

j—00 j—00 6 7
T()
=H|—| >0.
42

Therefore, V is not H-sequentially continuous at T®).

T©)  T(0)
lim H(VT<J> VT ) = lim H< -
(77)

Theorem 50. Pick up (Tq)qem €t NI with 7,>1 and V

%(C,()) (A, A) — q*(cf(.))h (A, A) Assume

(i) V is Kannan H-contraction mapping
(ii) V is H-sequentially continuous at an element A €

Fier ), (44

(iii) there are G € *(CF( ), (A, A) such that the sequence of
iterates { V' G} has a {V'™"G} converging to M

Then, M € @Cf(.))h (4, A) is the unique fixed point of V.

Proof. Let M be not a fixed point of V; hence, VM # M. By
using parts (ii) and (iii), we get

lim H(V'"G-M)=0,

lim H(V’m“G - VM) =0.

7, ——00
Since V is Kannan H-contraction, one obtains
0<H(VM-M)=H((VM-V'»*'G) + (V" Gminus;M)
+ (VG- VG))
< 3%+ 25" H (VG- VM)
+ 3%+ 25" H(V™G - M)
-1
+ (3% + ZK)Z/K(x<L)r H(VG-G).
l1-«
(79)

As r,, — o0, there is a contradiction. Hence, M is a
fixed point of V. To prove the uniqueness of the fixed point
M, suppose one has two not equal fixed points M, ] €

F(cr i (A, A) of V. So, one gets HM -J)<H(VM-V])
<a(H(VM - M)+ H(V] - J)) = 0. Then, M = J. O
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Example 11. Given Example 10, since for all T,,T, ¢
%(CF((ZQ*'?’/Q‘FZ):;O))}! Wlth H(Tl), H(Tz) € [0, 1), we haVe

H(VT, - VT,) :H(% B %)
S CCORICS)
= {l/%(H(VTI ~T))+H(VT, - T,)).

(80)

For all Tl’ Tze’i‘(cl-'(<2q+3/q+2)2:0))h with H(Tl)’H(TZ)
€ [1,00), we have
T2
7

H(VT, - VT,) =

\1|_‘ﬂ

T
R

s (1(7) (7))
= 4\§6 (H(VT, - T))+H(VT,-T,)).

(81)

For all Tl’ TZ € %<CF((2‘1+3/‘1+2)(;0));, Wlth H(Tl) € [0, 1)

and H(T,) € [1,00), we have

H(VT,-T,)).

(82)

Hence, V is Kannan H-contraction and V'(T)=
H(T)e][o0,1),

T/6,
T/7", H(T) € [1,00).

Obviously, V is H-sequentially continuous at @ ¢
F(CF (24+30g+2)2,), and {V'T} has a subsequence {V'»T}
converges to ®. By Theorem 50, ® is the only fixed point
of G.

7. Applications

Theorem 51. Consider the summable equation

Y,=R,+ OZO:D(p, rm(r, Y,), (83)

which presented by many authors [32, 33, 34], and
assume V : (Cf(_>)h — (Cf())h, where (Tq)qe./l/ €., NI with
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7o> 1 and h(Y) = [E20(hop(Y,, 0)/g + 1)), for all Y
€ CT(.), is defined by
V(Y,),0h = (R - ZD(p )) . (84)
pesN

The summable equation (83) has a unique solution in
(Cf(<))h’ if D: N — R, m: N xR[0,1]— R[0,1], R
N —R[0,1], and Z : N —> R0, 1]; assume there is § €
R such that supq|6|T K €0,0.5), and for all g€ N, let

q 00
> | YD) (m(r,Y,) = m(r,Z,)
p=0[r=
q 00
<|9| Z(R -Y,+ ZD(p, rym(r, m) (85)
+i R Z + ( ,r)m(r,Z,))
p=0

Proof. One has

o] z‘i= 5(VY, —VZ.,0 7,7 VK
W(VY - VZ)= ;(%) }
=0 q+1
7, S (Xhop(R, =Y, + X2D(p, r)m(r, Y,),0) 7,7 UK
Sslffp|5| mL;( p=0P\"p ~ Tp q+01 ) }
7, > P(R - Z,+ Y 2D(p, r)m(T,Z,),()) 7,7 UK
+5uP|5| - qzo< p=0P\"p " % q+01 ) }

=sup|8["K(h(VY - Y) + h(VZ - Z)).
1
(86)
By Theorem 29, one gets a unique solution of equation

(83) in (Cfo)h. 0

Example 12. Suppose (CF((2q+3/q+ 2)220))h, where h(Y)

- \/Z;’ZO(Zgzoi)(Yp’ 0)/q+ 1)2q+3/q+2, for all YeCFH(
(2q +3/q +2),). Consider the summable equation
00 ’ Yp t
_ +r
Y,=R,+ 20 (-1) ([)72 e 1) , (87)
with  p>2 and ¢>0. Suppose TI'={Ye
(C*((2q+3/q+ 2)‘;0))}1 : Y, =Y, =0}. Indeed, I is a non-
empty, h-convex, h-closed, and h-bounded subset of
(CH((2q+3/q+2)3%)), Let V: I — T be defined by
00 Yp t
_1\ptr
V(Y,),.,= <R + VZO( 1) (P—2 e 1) ) . (88)
= P22
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Obviously,
q oo
>3 0 () (0 - ()

p=07=0
3 e S )
+i R,-Z +Z( 1P+’(p%>t>].

p=0
(89)

(=1

By Corollary 35 and Theorem 51, the summable equa-
tion (87) has a solution in I'.

Example 13. Suppose (CF((2q+3/q+ 2);20));,, where h(Y)
= /2 (Zhop (Y, 0)lg + 1

(2q+3/q+ 2)(;20). Consider the following nonlinear differ-

ence equation:

YRR for every Y e CF(

r
(o) Ypfz

1
Y,=R,+ ) (1)

—t 90
= Yo +P+1 (50)

with r,p>0, Y_,(x),Y_(x)>0, for all xeR, and
assume V : CF((2q+3/q+ 2)22) — Cl((2q+3/g+ 2)%)
is defined by

o) " Bl
V(Y)° =R + ¥ (-1 ———22 | | 91
(V)% ( 2 ) o

Evidently,
q o yr
38 g e -
N N Yo
: 7 L;(RP_YP+ ;( vy’ Yp1+12+1>
+ i(R ~Z,+ Z P” Zp )]
1+lz+1
(92)

By Theorem 51, the nonlinear difference equation (90)
has a unique solution in CF((2q +3/q + 2);’20).

8. Conclusion

Rather than simply referring to a “quasi-normed” place, we
used the term “prequasi-normed.” It is the concept of a fixed
point of the Kannan pre-quasinorm contraction mapping in
the pre-quasi-Banach variable exponent Cesaro sequence
spaces of fuzzy functions (cssf). Pre-quasinormal structure
and (R) are supported. The Kannan nonexpansive map-
ping’s presence of a fixed point was investigated. The
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presence of a fixed point of Kannan contraction mapping in
the pre-quasi-Banach operator ideal produced by variable
exponent Cesaro sequence spaces of fuzzy functions (cssf)
and s-fuzzy numbers has also been examined. To put our
findings to the test, we introduce several numerical experi-
ments. In addition, various effective implementations of
the stochastic nonlinear dynamical system are discussed.
The fixed points of any Kannan contraction and nonexpansive
mappings on this new fuzzy functions space, its associated
pre-quasi-ideal, and a new general space of solutions for many
stochastic nonlinear dynamical systems are investigated.
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We examine in this paper some new problems on coincidence point and fixed point theorems for multivalued mappings in metric
space. By applying the characterizations of a modified .#J -function, under the name Z-function, a few novel fixed point results
different from the existing fixed point theorems are launched. It is well-known that differential equation of either integer or
fractional order is not sufficient to capture ambiguity, since the derivative of a solution to any differential equation inherits all
the regularity properties of the mapping involved and of the solution itself. This does not hold in the case of differential
inclusions. In particular, fractional-order differential inclusion models are more suitable for describing epidemics. Thus, as a
generalization of a newly launched existence result for fractional-order model for COVID-19, using Banach and Shauder fixed
point theorems, we investigate solvability criteria of a novel Caputo-type fractional-order differential inclusion model for
COVID-19 by applying a standard fixed point theorem of multivalued contraction. Stability analysis of the proposed model in
the framework of Ulam-Hyers is also discussed. Nontrivial comparative illustrations are constructed to show that our ideas

herein complement, unify and, extend a significant number of existing results in the corresponding literature.

1. Introduction and Preliminaries

Numerous challenges in practical world defined by non-
linear functional equations can be simplified by reconfi-
guring them to their equivalent fixed point problems.
Fixed point theory yields relevant tools for solving prob-
lems emanating in various arms of sciences. The fixed
point theorem, commonly named as the Banach fixed
point theorem (see [1]), came up in clear form in
Banach thesis in 1922, where it was availed to study
the existence of a solution to an integral equation. Since
then, because of its importance, it has gained a number
of refinements by many authors. In some modifications
of the principle, the inequality is weakened, see, for
example [2, 3], and in others, the topology of the ambi-
ent space is relaxed, see [4-7] and the references
therein. Along the lane, three prominent improvements
of the Banach fixed point theorem was presented by
Ciric [2], Reich [8], and Rus [9].

Nadler [10] launched a multivalued improvement of the
Banach contraction mapping principle. Nadler’s contraction
mapping principle opened up the concept of metric fixed
point theory of multivalued contraction in nonlinear analy-
sis. In line with [10], a number of refinements of fixed point
theorems of multivalued contractions have been presented,
tamously, by Berinde-Berinde [11], Du [12, 13], Mizoguchi
and Takahashi [14], Pathak [15], and Reich [16, 17], to cite
a few. Fixed point theorems for multivalued mappings are
highly advantageous in optimal control theory and have
been commonly used to solve several problems in eco-
nomics, game theory, biomathematics, qualitative physics,
viability theory, and many more.

Differential inclusions are found to be of great usefulness
in studying dynamical systems and stochastic processes. A
few examples include sweeping process, granular systems,
nonlinear dynamics of wheeled vehicles, and control prob-
lems. In particular, fractional differential inclusions arise in
several problems in mathematical physics, biomathematics,
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control theory, critical point theory for non-smooth energy
functionals, differential variational inequalities, fuzzy set
arithmetic, traffic theory, etc. Usually, the first most con-
cerned problem in the study of differential inclusion is the
conditions for existence of its solutions. In this direction,
several authors have applied different fixed point approaches
and topological methods to obtain existence results of differ-
ential inclusions in abstract spaces. In the current literature,
we can find many works on fractional-order models propos-
ing different measures for curbing the novel corona virus
(COVID-19) (see, for example, Ali et al. [18], Yu et al.
[19], Xu et al. [20], Shaikh et al. [21], and the references
therein). Recently, Ahmed et al. [22] constructed a Caputo-
type fractional-order model and studied the significance
and effect of the lockdown in curbing COVID-19. They
([22]) investigated the existence and uniqueness of solutions
of the fractional-order corona virus model by applying the
Banach and Schauder fixed point theorems. One of the
pioneer results of fixed point theory using fractional-
order model was presented by Boccaletti et al. [23]. For
some recent results and applications of fraction calculus,
we refer [24-26].

Following the above developments, we consider in this
paper some problems on coincidence point and fixed point
theorems for multivalued mappings. By applying the charac-
terizations of -function, a few new fixed point results
different from the fixed point theorems due to Berinde-
Berinde [11], Du [13], Mizoguchi-Takahashi [14], Nadler
[10], Reich [17], and Rus [27] are launched. It is a common
knowledge that differential equation of either integer or
fractional order is not sufficient to capture ambiguity, since
the derivative j'(.) of a solution j(.) to the differential equa-
tion j'(t) = g(t, j(t)) inherits the regularity properties of the
mapping g and of the function j(.). This is no longer the
case with differential inclusions. In particular, fractional-
order differential inclusions models are more suitable for
describing epidemics (see, e.g., [28]). Differential inclusions
are not only models for handling dynamic processes but also
provide powerful analytic tools to prove existence theorems
such as in control theory, to derive sufficient conditions of
optimality, play a significant role in the theory of control
conditions under uncertainty. Thus, as a generalization of
the existence theorem presented by Ahmed et al. [22], in
the sequel, we investigate solvability conditions of a new
Caputo-type fractional differential inclusions model for
COVID-19 by applying a fixed point theorem of multivalued
contraction. Stability analysis of the proposed model in the
context of Ulam-Hyers is also obtained. Our results herein
complement, unify, and extend the above-mentioned articles
and a few others in the comparable literature. A few nontriv-
ial comparative illustrations are constructed to indicate that
our obtained ideas properly advanced corresponding results
in the literature.

In what follows, we recall some preliminary concepts
that are useful to our main results. Throughout this paper,
the set R, R, and IN represent the set of real numbers, non-
negative real numbers, and the set of natural numbers,
respectively. Let (U, u) be a metric space. Denote by 4/ (0),

Journal of Function Spaces

CB(U), and #(0), the family of nonempty subsets of U,
the collection of all nonempty closed and bounded subsets
of U, and the class of all nonempty compact subsets of U,
respectively. For A, B € CB(U), the mapping H : CB(U) x
CB(U) — R is given by

H(A, B) = max {sup#O,A), supyu(L, B) } (1)
j€B LeA

where u(j,A) =inf,,p(j,€) is named the Hausdorff-
Pompeiu metric induced by the metric y. For example, if
we consider the set of real numbers endowed with the
standard metric, then for any two closed intervals [a, b]
and [, d], we have H([a, b, [c, d]) = max {|a—c|, |b—d|}.

Let A,®,A: U — U be point-valued mappings and
Y : U — #(0O) be a multivalued mapping. A point u in
U is a coincidence point of A,®, A and Y if Au=0Ou=
AueYu. If A=@=A=1I; is the identity mapping on U,
then u=Au=0Ou=AucYu is named a fixed point of Y.
We denote the set of fixed points of Y and the set of coin-
cidence point of A,®, A and Y by F,(Y) and €OP(A,
®, A,Y), respectively.

Let g be a real-valued function. For t € R, we recall that

lim supg(r) =inf sup g(r)andlim sup g(r) =inf sup g(r).

r—t e>0 0<|r—t|<e €20 0cr—t<e
(2)

Definition 1. (see [12]). Vo (0,00) — [0, 1) is named an

r—t*

M T -function if it obeys the Mizoguchi-Takahashi’s condi-
tion, that is, lim suert+1///'%jj(r) <1, for each teR, =

[0,00).
Remark 2. (see [12]).

(i) If v iRo— [0,1) is given as y//f%vg(t) =ac|0,

1), then ¥ isan MT -function
T

(i) If the function Voo iRy — [0, 1) is either increas-

ing or decreasing, then v is an M T -function
T

Definition 3. v : R, — [0, (1/k)) is named a P-function if
it obeys the condition: For each teR,, we can find ke
(1,00) such that lim sup, . y(r) < 1/k.

Definition 4. (see [12]). A function y: R, —[0,1) is
named a function of contractive factor, if for any strictly
decreasing sequence {j,} ., in R,, we have 0<sup,

¥(j,) <1.

n>1

Definition 5. A function v : R, — [0, (1/k)) is named a
function of 1/k-contractive factor, if for any sequence
{jntns; in R, from and after some fixed terms, it is
strictly nonincreasing and 0 <sup, \y(j,) < 1/k, for some
k € (1,00).
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The following example recognizes the existence of
D-function and function of 1/k-contractive factor.

Example 6.
Let {j,},.; be a sequence in R, given by

3271, ifn<7
Jn= 1 (3)
! 3+ —, ifn>7.
2n

Define v : R, — [0, (1/k)) by

—, if0<i<2
17 +t
=<1 7 _ 4
1/’() - - —, if2<t<50 )
3 3
0 otherwise.
Then, it is clear that y is a D-function, {j,},., is a

strictly decreasing sequence from and after the eight term
and 0 <sup, \v(j,) =727/2187 < 1/k for some k € (1,00).
Whence, y is also a function of 1/k-contractive factor. An
example which is not a 9-function is provided hereunder.

Example 7.
Let v : R, — [0, (1/k)) be given by
w ko]
y(t) = | (5)
—3 elsewhere.
t+k

Since lim sup, ;. y(r) =1, then v is not a P-function.
Remark 8.

(i) Note that if Vo= ky (%) for all 7 € R, and for some
ke (1,00), then Vo becomes an ./J -function,
provided vy is a 9-function

(ii) If we define y : R, — [0, (1/k)) as w(f) = 1/k" for
all n>2 and k € (1,00), then y is a D-function

The following Lemma is in consistent with [16,
Lemma 18].

Lemma 9.
Let w:R, —[0,(1/k)) be a D-function. Then p :

T

R, — [0, (1/k)) given by p(t)=(y(T)+ (1/k))/2 is also
a D-function for each t € R, and some k€ (1,00).
Proof. Obviously, w(?) < p(f) and 0 < p(f) < (1/k). Let T € R,

be fixed. Since v : R, — [0, (1/k)) is a D-function, we can
find o5 € [0, (1/k)) and &; > 0 such that y(s) <o; for all se

[f,T+0;). Assume that #; := (05 + (1/k))/2 € [0, (1/k)). Then,
p(s) <n; for all se [£,7+6;). Thus, p is a D-function. [

The following result due to Nadler [26] is the first metric
fixed point theorem for multivalued contractions.

Theorem 10. (see [10]). Let (U, u) be a complete metric space
and Y : U — CB(O) be a multivalued A-contraction, that
is, we can find A € (0, 1) such that

H(Yj, Y) < Ap(ji 2), (6)
forall j,8 € 0. Then, F,.(Y) + 3.

In 2007, Berinde-Berinde [11] presented the following
notable fixed point Theorem.

Theorem 11. (see [11]). Let (U, u) be a complete metric
space, Y : O — CB(O) be a multivalued mapping, and

Yo R, —[0,1) be an /r%\?/”-function. Assume that we
can find L > 0 such that

H(Y), Y) Sy (u(j, ©))u(js ) + Lu(e Yf),  (7)

for all j,€ € O with j+¢€. Then, F,.(Y) + .

Observe that if we take L =0 in Theorem 11, we realize
the Mizoguchi-Takahashi fixed point theorem [14] which
partially answered the problem posed in Reich [8].

Theorem 12. (see [8]). Let (U, ) be a complete metric
space, Y : O — FH(O) be a multivalued mapping, and

Voo R— [0,1) be an MT -function. Suppose that

H(Y), YO) <y (u(j> ©))u(j> ©), (8)
for all j,8 €U with j+¢. Then, F, . (Y)+ Q.

In [8], Reich raised the question whether Theorem 12 is
also valid when F#(O) is replaced with CB(U). In 1989,
Mizoguch-Takahashi [14] responded to this puzzle in affir-
mative via the following result.

Theorem 13. (see [14]). Let (O, ) be a complete metric
space, Y : O — CB(O) be a multivalued mapping, and

Voo R— [0, 1) be an MT -function. Suppose that

H(Y), YO) <y (u(j> ©))u(j> ©), )
forall j,€€O. Then, F,.(Y) + 3.

Let A be a nonempty subset of U and Y : U — U be a
mapping. We recall that the set A is Y-invariant if Y(A) c
A. Not long ago, Du [13] obtained the following important
fixed point and coincidence point result.



Theorem 14. (see [13]). Let (O, ) be a complete metric
space, Y : U — CB(U) be a multivalued mapping, g :
U—0 be a continuous point-valued mapping, and
v iR, — [0,1) be an MT -function. Assume that the
following conditions hold:

(Du,) Yj is g-invariant for each j € U;

(Du,) we can find a function h : O — R, such that

H(Y), Y) <y — (u(j, ©))u(j> £) + h(g0)u(gt Yj),  (10)

for all j,€ € O. Then, 0P (g, Y)NF,(Y) + .

Notice that Mizoguchi-Takahashi fixed point theorem
(13) is an extension of Nadler’s fixed point theorem (10),
but its original proof is not friendly. Alternative proof
presented in [29] is also difficult.

Definition 15. (see [9]). Let (U, u) be a metric space. A
single-valued mapping Y : U — U is named:

Rus contraction if we can find a,be R, with a+b< 1
such that for all ,£ €T,

u(Yj, YR) <au(j,€) + bu(L, Ye). (11)

Ciric-Reich-Rus contraction if we can find a,b,ce R,
with a + b+ ¢ <1 such that for all j,£€ 0,

u(Y), Y8) < au(j €) +bu(j Yj) +eu(t, YE). (12)

In [9], it was proved that every Rus and Ciric-Reich-Rus
contraction has a unique fixed point. These results have been
extended to multivalued mappings in the following manner.

Theorem 16. (see [27]). Let (U, u) be a complete metric space
and Y : U — CB(O) be a multivalued mapping. Assume
that we can find a,b e R, with a+ b <1 such that for all j,
e U:

H(Yj, Ye) <au(j, €) + bu(e, Y). (13)

Then, F,.(Y) + @.

Theorem 17. (see [17]). Let (U, u) be a complete metric space
and Y : U — CB(O) be a multivalued mapping. Assume
that we can find a,b € R, with a+ b+ c < 1 such that for all
i eeU:

H(Yj, Y) < au(j, €) + bu(j, Yj) + cu(e, Y). (14)

Then, F,.(Y) + .

For more variants of fixed point results of multivalued
contractions, the interested reader may consult [30-33]
and the references therein.

Journal of Function Spaces

2. Main Results

In line with the characterizations of .#J -function, we
begin this section by launching a few characterizations of
D-function in Lemma 18. Its proof is a slight adaption
of [17, Theorem 2.1].

Lemma 18.
Let v : R, — [0, (1/k)), k € (1,00). Then, the following
statements are equivalent:

(i) v is a D-function

(i) For each Te€R,, we can find 0%1) €lo,(1/k)) and
6;1) > 0 such that y(s) < a;l) forallse (t,T+ 8;1))

(iii) For each T€R,, we can find 0%2) €0, (1/k)) and
69 > 0 such that y(s) < 0;2) forall se[t, T+ 6%2)]

(iv) For each t€R,, we can find 0;3) €0, (1/k)) and
8 > 0 such that y(s) <o\ for all s e (1,7 +06"]

(v) For each t€R,, we can find 054) €lo, (1/k)) and
6§4> > 0 such that y(s) < 0§4) forall se [, T+ 6@]

(vi) For any sequence {j,},., in R, from and after
some fixed term, it is nonincreasing and 0 < sup,

¥(jn) < (1/k)

(vii) v is a function of 1/k-contractive factor, that is, for
any sequence {j,},., in R, from and after some
fixed term, it is strictly decreasing and 0 < sup, ¥

(jn) < (17K)

The following existence theorem for coincidence point
and fixed point is one of the main results of this paper.

Theorem 19.

Let (O, u) be a complete metric space, Y : O — CB(O)
be a multivalued mapping, A,®, A : O — U be continuous
point-valued mappings, and y : R, — [0, (1/k)) be a D-
function. Suppose that the following conditions are obeyed:

(ax,) for each je U, {AL=OL=AL:LeYj} CYj;

(ax,) we can find three mappings f, g, h : U — R, such
that

H(Y), Y2) < y(u(j ) [ap(s €) + bu(jp Yj) + cu(8, Y)]
+f(A)u(AL, Yj) + g(O)u(OL, Yj)
+ h(AQu(AL, Yj),

(15)

for all j,8 €U, where a,b,ce R, witha+b+c< 1.

Then, ¥BOP(A,0, A, Y)NF(Y) + D.
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Proof. By (ax;), we note that for each je U, u(Ag, Yj)=
U(®L, Yj) =u(AL, Yj)=0 for all €€ Yj. So for each je U,
it follows from (ax,) that for all €€ Yj,

H(Yj, Y0) < y(u(js 0)[ap(js €) + bu(j, Y)) +cu(e, Y)].

(16)
O

Further, for each €€ Yj, (¢, Y) < H(Yj, Y2). Whence,
for each j € U, (16) gives

u(8 YE) <y (u(j, €))[ap(i €) + bu(j, Yj) + cu(L, YE)]

¢)
y(u(j€))[au(), £) + bu(j, Yj)]
Ty (u.0) 7)
£))[au(j» €) + bu(j, Yj)].

IN

<y (0

Let j, € U and choose j, € Yjj. If u(jy, j;) =0, then j, =
j1 € Yjj, that is, j, € F,.(Y), and the proof is finished. Other-
wise, if p(jy,j;) >0, then consider a function p: R, —
[0, (1/k)) given by p(t)=((1/k) +y(t))/2. By Lemma 9,
p is a D-function and 0 < y(t) < p(t) < (1/k) for all t e R,.
From (2.2), it follows that

1G> Yiy) < w(plios 1)) [au(io 1) + btt(io» Yio)]
< p(pljos j1))ap(ios jr) + bl ji1 )] (18)
= p(uljo» jr1)) (@ + b)u(jo» j1)]-

Since a+ b+ c< 1, then we can find # € (0, 1) such that
a+b<n=1-c<1. Thus, (18) can be written as

w(jys Yiy) <mp(uio» 1)) e(o» 1) < p(#(io» j1)) (o> J1)-
(19)

From (19), we claim that we can find j, € Yj, such that

1> o) < p(#o» J1))#(o» Jr)- (20)

Assume that this claim is not true, that is, u(j,,j,) >
P(ulio j1))u(jo» jr)- Then, we get

UG o) 2 inf w(iv) 2 p(lo j))Uoo dr)s - (21)

that is, u(j;» Yj,) = p(u(jo» j1))t(jg» j;)> contradicting (19).
Now, if u(j;,j,) =0, then j, =j, € Yj, and so j, € #,(Y).
Otherwise, we can find j, € Yj, such that

1(jps J3) < p((iys ) )i Jiz)- (22)

Let 7, =u(j, ;»j,) for each n e N. Proceeding on sim-
ilar steps as above, we can construct a sequence {j,}, in
O with j, €Yj, , for each ne N and

Tht1 < p(Tn)Tn' (23)

Given that v is a @-function, then by Lemma 18:

0 <supy(r,) <supp(t,) < % (24)

nelN nelN

Whence,

0 <supp(t,)

nelN

{M
2

:nelN,ke(l,oo)}< % <1.
(25)

Take & = sup, np(7,), then 0 <& < 1. Since p(t) < (1/k)
<1 forall t € R,, then by (23), {1, }, is a strictly decreas-
ing sequence of positive real numbers. Therefore, for each
n €N, we have

Tnt1 < p(Tn) < ETn' (26)
Whence, it follows from (26) that
Ui Jusr) = Turr &7, < <81 =8d(jig, ) (27)

For any m, n,n, € N with m >n > ny, by (27), we get
1

m— m—1 ) 0o
Wi Jin) < Z M(J, J,H) < Z &l jr) < ZEJM(J'O,J‘I)
j=n j=n

§

S - t(jo» j) — O(asn—00).

i

.
=

=

(28)

Thus, limsup, . {u(j,»j,): m>n}=0. This proves
that {j,}, . is a Cauchy sequence in U. The completeness
of U implies that we can find u € U such that j, — u as
n — co. Since j, € Yj, , for each n€ N, it follows from
condition (ax,) that for each n €N,

Aj,=0j,=Aj, €Yj,_,. (29)
Using the continuity of the functions A,® and A, we
have

u= lim Aj, = 11m @J

n—~oo

hm A] = lim Au

= lim Gu= 11m Au.
n—oo n—oo

We claim that u € Yu. Assume contrary so that yu(u,
Yu)>0. Since the function j— u(j, Yu) is continuous,
then from condition (ax,), we realize

w(w, Yu)= lim p(j,, Yu)< lim H(Yj, > Yu)

< n@w{W(#(jn—l’ u))[a[’l(jn—l’ M) + b”(jn—l’ an—l)
+ cp(u, Yu)| + f(Au)p(Au, Yj, )
+9(Ou)u(Ou, Yj, ) + h(Au)u(Au, Yj, 1)}

< nli_r{loo{p(y(jn—l’ u))[aﬂ(jn—l’ u) + btu(jn—l’jn)
+ (s, Yu)| + f(Au)u(Au, j,)
+ g(®u)ﬂ(®u’Jn) + h(Au)y(Au, ]n)}

< 2 (e Yu)) < u(w, Y,



a contradiction. Whence, p(u, Yu) =0. Since Yu is closed,
we have u € Yu. By condition (ax,), Au=0®u=Auce Yu.
Consequently, u € €GOP(A, 0, A, Y)NF, (Y).

The following example shows the generality of our
Theorem 19 over Theorems 10, 11, 17, and 16 due to Nadler,
Berinde-Berinde, Reich, and Rus, respectively.

Example 20.

Let U={0,(1/5),2} and u(j,€)=1j—¢| for all j,€€O.
Let Y : U — CB(OU) be a multivalued mapping and A, ®,
A : U — U be mappings given by

(0},  ifj=0
1 1
Yj= ,—p, ifj=—= 32
=3 {o.g} =g 32)
(0,2}, ifj=2,

and A =0 = A =[5, the identity mapping on O. Define the
function v : R, — [0, (1/k)) by w(t) = 1/k* for all te R,
and some k€ (1,00). Also, define the mappings f, g, h:
U—R, by f(j)=g(j) =h(j) =1/3 for all j€U. Then, we
realize the following:

(i) for each j€ U, {AL=OL=AL: LeYj} CYj;
(i) BOP(A,0, A, Y) N F,(Y)={0, (1/5),2};

(iii) A, ® and A are continuous

Clearly, lim sup, . y(s) = (1/k*) < (1/k) for all teR,
and some k € (1,00). Whence, v is a D-function. Further-
more, it is a routine to verify that condition (ax,) holds for
all j,€eO.

Now, notice that the mapping Y does not obey the
hypotheses of Theorem 10 due to Nadler. To see this, let
j=0 and €=2, then

H(Y0,Y2)=H({0},{0,2})=2>Au(0,2),  (33)

for all A €(0,1). Moreover, to see that Theorem 11 due
to Berinde-Berinde fails in this instance, let L=1/9 and
ll/%(t)=k1//(t) for all teR,,ke(1,00). Then, for all
Ae(0,1),

H(Y0,Y2)=2>Au(0,2) + éy(z, Y0). (34)

Moreover, to see that Theorems 17 and 16 of Reich and
Rus are also not applicable to this example, again take j=0
and € =2. Then, by setting b=c=0 and a =0 in Theorems
1.17 and 1.16, respectively, we have

H(Y0,Y2)=2>au(0,2)foralla € (0, 1),
) (35)

H(Y0,Y2)=2>bu(2,Y2)forallbe (0,1).
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A slight modification of Example A of Du [13] provided
below shows the generality of our Theorem 19 over
Mizoguch-Takahash’s [14] and Du’s [13] fixed point
theorems.

Example 21.

Let 1*° be the Banach space of all bounded real sequences
endowed with the uniform norm ||.||,, and let {e } be the
canonical basis of 1°. Let {7}, be a sequence of positive
real numbers obeying 7, =7, and 7,,_; <, for all n > 2 (for
example, take 7, =1/9 and 7, =1/3",n>2). It follows that
{7, }hen 18 convergent. Set v, =7.e for all ne N, and let
U ={v,},cn be a bounded and complete subset of 1°°. Then,
(0, ].]lo) is @ complete metric space and ||v, — =7, if
m>n.

Vinlloo

Let Y : U — CB(O) be a multivalued mapping and A,
®, A : U —> U be three mappings, respectively, given by

{vi,vy vy}, ifne{l1,2,3}
Yv,=
{Vur1 b> if n>3,
(36)
v, ifne{1,2,3}
Ay, =0Ov, =Av, =
Ve ifn>3.
Then, we notice that the following results hold:
(ax,)foreachje U, {AL=08=ALeYj} C Y], (37)

(ax)BOP(A, O, A, Y)NF, (Y) = {v, vy, V3}.

To show that A, ® and A are continuous, it is suffices to
prove that A, ® and A are nonexpansive. So we consider the
following six possibilities:

(@) [|Av) = Avy[| (g =0 <7y = [lv) =7, I

(ii) |Av; = Avs|[o, =0 <7y = |lv) =3l
(iii) [[Av, = Av, || =T2 =T = ||v, = V,ull, for any m >3
(IV) ||AV2 - Avm”oo
V) [|Av; = Av, |

(Vl) HAvn _Avm”oo STy <Tp= ||vn _Vm”oo
m>3 and m>n

=71,=|v, = v, for any m>3

for any m >3

0=t = ||V3 _VmHoo

for any
Consequently, A is nonexpansive, and, since A =0 = A,

then A, ® and A are continuous.
Next, define the function v : R, — [0, (1/k)) by

Tnez if t =7, forsomen € N
(=4 (38)
0, elsewhere.
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Also, define the mappings f,g,h : U— U by

0, ifne{1,2,3}
fa)=g(vy) =h(v,) = , (39)
Tn, ifn>3.
Then, we observe that lim sup, ,.y(s)=0< (1/k) for

all teR, and some k€ (1,00). It follows that v is a D-
function. Moreover, we claim that

Heo (Y] YO) < y([|7 = llco) [@li = Elloo + blli = Yill oo
+cf|e = Ye| ] +f(A0)[|Ae = Vil
+9(0Y)[|0¢ - Yj||, + h(AY[ AL = Y]l
(40)

for all j,€ €U and a,b,c € R, with a+b+c< 1, where H_,
is the Hausdorff metric induced by the norm |||,
To see (40), we consider the following cases:

Case 1. Forn=1,m=2 and a=1/2,b=c=0, we have

l/’(”"1 - V2||oo) (“”"1 “Valleo T OlIVi = YV

+cl|vy = Y0,y || ) + F(AVy)[|[Avy = Y|
+9(Ov,)[|Ovy = Yvy || + h(Av,)[|Avy = Yy ||
5 -
=5 >0=H(Yv,,Yv,).
(41)

Case 2. Forn=1,m=3 and a=1/4,b=c=0, we have

Y (IIvi = vslloo) (allvs = Vsl + Bllve = Y [l +€l[vs = Yv3| )
+f(Avs)||Avs = Yv ||, + 9(Ovs)||Ovs = Y|
+h(Avs)||[Avs = Yv|

- % >0=H,,(Yv,, Yvy).

(42)
Case 3. Forn=1,m>3 and a=1/2,b=c=0, we have

ll/(”Vl - Vm”oo) (aHvl - Vm”oo
+f(Avm)||AVm - YVlHoo
+h(Avm)||Avm - YVIHOO

+b[vy = YV o + e[V = YVl )
+ g(@Vm)H@Vm - le Hoo

= %(1 +61,(m+1))> 1, = Hy(Yv,, Y,,).

Case 4. For n=2,m >3 and a=1/4,b=c=0, we have

W(H"z Vinlloo) (@ll2 = Vil
+f(Avy,)[| AV, szll
+h(Av,)[|[Av, = Yv, ||

T 12
4 <1 + — Tl
T4

oo HBlIV2 = Y0al oy €[V = YVl )
+ g(®vm)||®vm - YVZHoo

)13) > 1, =He (Yv,, Yv,).

(44)
Case 5. Forn=3,m>3 and a=1/3=b, c=0, we have

<|V3 Vil )( V3 = Vinll o
+f(Av,)[|Av,, = Y3l
+ h(AVm)HAVm - YV3H00

+ b||v3 - YV3||oo + C”Vm - va“oo)
+g(@vm)||®vm - YV3H00

T -
= ?5(1 +91,(m+ 1)13) > 7, = Ho o (Yvs, Yv,,).

(45)
Case 6. Forn>3,m>nand a=1/2,b=c=0, we have

Y(I1Va = Vinlleo) @1V = Vinll oo + Bl17.
+f(Avm)HAvm - Yvn”oo
+h(Av,)||Av,, = Yv

_ Tn+2

- Yvn”oo + CHVm - va”oo)
+ g(®vm)||®vm - Yvn”oo

nlloo

=H_(Yv,, Yv,).

+ 3(m + 1)Tn+1 > Tyl

(46)

Therefore, from Cases (1)-(6), we have shown that
Condition (40) is obeyed. Consequently, all the assertions
of Theorem 19 are obeyed. It follows that €OP(A, O, A, Y)
NF.(Y)+a.

Now, observe that if we take the sequence {7,},.\ as
earlier given, that is, 7, = 1,, 7,,_; <T,, where 7, =1/3" for
all n>2 and let 1//~():21//()(iek:2€( 00)) for all
teR,, then Vo is an T -function, provided v is a

D-function. Thus,
(a) for n=1 and any m > 3, we have
I:Ioo(le’ YVm) =

=y~ (I = Vloo) %1 = Vil
(47)

T > 2T,

Whence, Mizoguch-Takahashi’s Theorem 13 does not
hold in this case.

(b) Let the function f : U — U be given by

0, ifne{1,2,3}
fv)=¢ . . (48)

, ifn>3,ke(1,00),
T

n



and g and h be as given in the above Example. Then,
for n=1 and m >3 with a=1/2,b=c=0, the above
Case 3 becomes

Case 3':

Y= (V1= Vnlloo) (@11 = Villoo) + S (A, 14V, = Y0
+9(0V)[|OVy = Y1 oo + H(AV,) | AV, = Y1 o

T N
L +2r(m+ D1y >1,=H(Yv,, Yv,,),

=T, +
3
km+1

(49)

that is, Case 3 also hold. On the other hand, notice that

Hy(Yv,Yv,)=1,>75+

7y
kTmH
=¥ — (1% = Vmlloo) "1 = ll o

+f(AVm) ||V1 - Vm”oo’

(50)

that is, the main result of Du [17, Theorem 19] is not
applicable here.

3. Consequences

In this section, we deduce some significant consequences of
Theorem 19.

Corollary 2.

Let (U, u) be a complete metric space, Y : U — CB(U)
be a multivalued mapping, A: U — U be a continuous
point-valued mapping, and v : R, — [0, (1/k)) be a D-
function. Suppose that

(i) Yj is A-invariant (i.e. A(Yj) € Yj) for each j € O

(ii) we can find a mapping f : O — R, such that

H(Y), YO) <y (u(j, ) [ap( ©) + bu(j, Yj) + qu(t, YO)
+f(A)u(AL, Yj),
(51)

forall €U and a,b,ce R, witha+b+c< 1.

Then, €OP(A, Y)NF(Y) + D.

Proof. Take g,h : U—> R, as g(j) =h(j)=0forall je U in
Theorem 19. O

The following result is a direct consequence of
Corollary 2.
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Corollary 23.

Let (O, u) be a complete metric space, Y : U — CB(O)
be a multivalued mapping, A: U — U be a continuous
point-valued mapping, and v : R, — [0, (1/k)) be a D-
function. Suppose that

(i) Yj is A-invariant (i.e., A(Yj) € Yj) for each je O

(ii) we can find & > 0 and a mapping f : O — [0, &] such
that

A (Y}, Y) <y(u(j, ©)[a(j, ) + bu(j, Yj) + cu(®, YO)
+F(ADu(AL Yj),
(52)

forall €U and a,b,ce R, witha+b+c< 1.

Then, BOP(A,Y)NF(Y)+ .

Corollary 24.

Let (O, u) be a complete metric space, Y : U — CB(O)
be a multivalued mapping, A: O — U be a continuous
point-valued mapping, and v : R, — [0, (1/k)) be a D-
function. Suppose that

(i) Yj is A-invariant (i.e. A(Yj) € Yj) for each j € O
(ii) we can find & > 0 such that

H(Y), Yy) <y(u(, 0)[au(, ) + bu(j, Yj) + cu(®, YO)]
+Eu(AL X)),
(53)

forall €U and a,b,ce R, witha+b+c< 1.
Then, BOP(A,Y)NF(Y)+ .

Proof. Define f: 0 —[0,&] as f(j)=& for all jeU in
Corollary 23. O

By applying Corollary 2, we deduce a generalized version
of the primitive Ciric-Reich-Rus fixed point theorem for
multivalued mapping as follows.

Corollary 25.

Let (O, u) be a complete metric space, Y : U — CB(O)
be a multivalued mapping, and v : R, — [0, (1/k)) be a
D-function. Suppose that we can find a mapping f : O —>
R, such that

H(Y), Y©) < y(u(j,€))ap(j, &) + bya(j, V) + (8, YO)]
+f(Du( Y)),
(54)

forall €U and a,b,ce R, witha+b+c< 1.
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Then, F,.(Y) + @.

Proof. Take A:=1I;, the identity mapping on U in Cor-
ollary 2. O

Remark 26.

(i) If we take l///%/vg‘(t) = aky(t), where a € (0,1), ke (1,

00), ¥ is a D-function, and set b = ¢ = 0, then Corol-
lary 25 reduces to Theorem 13 due to Mizoguchi-
Takahashi [14].

(ii) If v is a monotonic increasing function such that
0 <y(t) < (1/k) for each t € R, and k € (1,00), then
by setting w/f%vg(t) =aky(t), where a€(0,1),ke
(1,00) and b=c=0, Corollary 24 generalizes [14,
Corollary 2.2]. Also, Corollary 24 includes Theorem
1.2in [29] as a special case, by extending the range of
Y from the family of bounded proximal subsets of O
to CB(U).

(iii) If we take f(j) =0 and y(t) = au(j, €)/K*[au(j, €) +
bu(j, Yj) + cu(e, YR)] for all j,£ €U and k € (1,00),
where not all of g, b and ¢ are identically zeros, then
Corollary 25 reduces to Theorem 1.10

(iv) If we put w%(t) =aky(t), where a€(0,1), ke

(1,00), ¥ is a D-function, take A:= I, the identity
mapping on U, and set b=c=0, then Corollary
24 reduces to Theorem 11 due to Berinde-
Berinde [11].

(v) If we define the multivalued mapping Y : U —
CB(U) as Yj={¢j} for all jeU, where ¢ is a
single-valued mapping on U, then all the results
presented herein can be reduced to their single-
valued counterparts

(vi) Itis clear that more consequences of our main result
can be deduced, but we skip them due to the length
of the paper

4. Applications to Caputo-Type Fractional
Differential Inclusions Model for COVID-19

Very recently, Ahmed et al. [22] investigated the significance
of lockdown in curbing the spread of COVID-19 via the
following fractional-order epidemic model:

“Dy.G(f) = A" - B'GI - \,GL - @' G+ y{T+y5I, + 601G,
D}y, G, (f) =A{GL-i'G, - 6,G,,

CDSJ(?) =B'GI-y! -«
‘DI (1) = MIL - "1, - 65 -y — o],

- @I+ MIL+65I,

Dy L(T) =u'T-¢'L,

(55)

where the total population under study, N(7) is divided into
four components, namely susceptible population that are
not under lockdown G(), susceptible population that are
under lock-down G, (f), infective population that are not
under lockdown I(%), infective population that are under
lock-down I, (), and cumulative density of the lockdown
program L(7). For the meaning of the rest parameters and
numerical simulations of (55), we refer the reader to [22].
The above model (55) is simplified as follows:

Dy G(7) =0, (7.6, 6. LI, L),
DG, (1) =0, (.G, G L1 L),
°Dy1(7) =6, (?, GG, LI, L), (56)

°Dy1,(7) = O, (t GG, 1, IL,L)

“DyL(F) =5 (2.6. G L1 L)),

where

@1(?,G,G,GL,II L) —B'GI-NGL-@'G+yI+yi0, +0.G,,

0, (?,G G, L1, ) GL- "G, - 6.G,,

o, (?,G G, 1 ) =BGI—y! — o — @I+ XIL + 61, (57)
@4(?,(; G, 1 L) = NIL- @'l - 6% -y} — o1,

o, (?,G G, L1, ) W'1-¢'L.
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Consequently, the model (55) takes the form:

{ °Dyj(t) = (1. j(f)). TeQ=[0.b,0<v<1
Jj(0)=j, 20,

with the condition:

tr

0= (@6.11.1)"
~ ~ tr
j(0)= (Go: G, IO’ILO’LO) >

9(.j(?) = (@i (z GG, L1, L))f’,i: 1.5,
(59)

where (.)"" denotes the transpose operation.
In this section, we extend problem (55) to its multiva-
lued analogue given by

{Cng(?) eM(1j(D), 7€ Q=(0,9) )

j(O) =Jo =20,

where M : O x R — P(R) is a multivalued mapping (P(R)
is the power set of R). We launch existence criteria for solu-
tions of the inclusion problem (60) for which the right hand
side is nonconvex with the aid of standard fixed point theo-
rem for multivalued contraction mapping. First, we outline
some preliminary concepts of fractional calculus and multi-
valued analysis as follows.

Definition 27. (see [34]). Let v >0 and f € L' ([0, 8], R). Then,
the Riemann-Liouville fractional integral order v for a func-
tion f is given as

1f(7) = %JL -1 uni>0, (o)

where I'(.) is the gamma function given by I'(v) = [°7""!
e ut.

Definition 28. (see [34]). Let n—1<v<n,neN, and fe
C*(0, ). Then, the Caputo fractional derivative of order v
for a function f is given as

1 T
I'(n-v) JO

Lemma 29. (see [34]). Let R(v)>0,n=[R(v)]+ 1, and f
€ AC"(0,9). Then,

“Dy.f(T) = (t-1) MO, T> 0. (62)

m k +
(5 05) () =) - 2P0 gy

In particular, if 0 < v < I, then (I4.“DY. f) () = f () - £(0).
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In view of Lemma 29, the integral reformulation of prob-
lem 16 which is equivalent to the model 13 is given by

e . v o~ . 1 g -~ v— .

J(€) =jo+I5g(tj()) =jo + F—J (t-1) 'g(t, j(7))ur.
() Jo
(64)
Let U =C(Q,R) denotes the Banach space of all con-
tinuous functions j from Q to R equipped with the norm
given by

il = sup {|j(7)|: Te 2=10,8]}, (65)

where
@] =G@]+ |G @)+ 1@+ |1 @)+ L)

and G,G;,I,I,,L€0.

., (66)

Definition 30.

Let U be a nonempty set. A single-valued mapping
f:U0— 0 is named a selection of a multivalued map-
ping M : U — P(0), if f(j) e M(j) for each jeU.

For each je U, we define the set of all selections of a
multi-valued mapping M by

Guy={f €L'(QR): f(7) e M(j(7)) fora.el e 0},
(67)

Definition 31. A function jeC'(Q,R) is a solution of
problem (60) if there is a function ¢ €L'(Q,R) with
¢(t) e M(t,j(t))a.e. on Q such that

1O =i s [ E= e (o)

and j(0)=j,>0.

Definition 32. A multivalued mapping M : Q — P(R) with
nonempty compact convex values is said to be measurable, if
for every @ € R, the function T+ u(®, M(t)) = inf {|@ - {|:
{ € M(t)} is measurable.

The following is the main result of this section.

Theorem 33. Assume that the following conditions are
obeyed:

(N) M: QxR — F(R) is such that M(.,j): Q —
F (R) is measurable for each je R

(N,) We can find a continuous function h: Q — R,
such that for all j, € € R,

H(M(E j), M(3,©)) < h(F)]j- € (69)

for almost all T€ Q and u(0, M(t,0)) <h(t) for almost all
feQ.
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Then, the differential inclusion problem (60) has at least
one solution on O, provided that @||h|| <1, where ®=1b"/
(F(v+1)).

Proof. First, we convert the differential inclusions (60) into a
fixed point problem. For this, let U= C(Q, R) and consider
the multivalued mapping Y : U — P(O) given by

VeO :

V(t)=jo+ ﬁ Jo (t-1) Vﬁl(p(r)yr, pe GM)J-
(70)
O

Clearly, the fixed points of Y are solutions of problem
(60). Now, we prove that Y obeys all the conditions of
Theorem 10 under the following cases.

Case 1. Y(j) is nonempty and closed for every ¢ € GM,]-. Since
the multi-valued mapping M(.,j(.)) is measurable, by the
measurable selection theorem (see, e.g. [35], Theorem III.
6), it admits a measurable selection ¢ : Q — R. Further-
more, by condition (N,), we get |p(f)| <h(?) + h(?)|j(?)|,
that is, ¢ € L' (Q, R), and hence M is integrably bounded.
Thus, GM)]- is nonempty. Now, we show that Y(j) is closed
for each jeU. Let {c,},, € Y(j) be such that ¢, —u
(n—00) in U. Then, u€U, and we can find ¢, ¢

GM’]- such that for each TeQ,

0@ =i+ 1 [ E= o) o 1)

Since M has compact values, we pass onto a subse-
quence to obtain that ¢ converges to uelL'(QR).
Therefore, u € Gy, ; and for each 7€, we have

(1) — u(@) =jo + ﬁﬁ) -1 our.  (72)

Thus, u € Y(j).

Case 2. Next, we prove that we can find a € (0, 1)(a = ®@||h]|)
such that H(Y(j), Y(¢)) <alj - €| for each j,€€U. Let j,
€U and V, € Y(j). Then, we can find ¢,(f) € M(%, j(7))
such that for each € O,

V\(0) =y + %V) N J; (-1 o (ur.  (73)

By (N,), HM(, j), M(%,€)) < h(7)]j - £]|. Whence, we

can find p € M(%,€(f)) such that

[V1(5) = p(O) <h(D)]i(1) - £(?)

,teQ. (74)

11
Define £ : O — P(R) by
50 = (<R 9,0~ @) <BOIO -} 05

Since the multivalued mapping Z(f) N M(%,€(%)) is
measurable (see ([35], Proposition II1.4)), we can find a
function ¢, which is a measurable selection of =. Thus,
¢,(f) e M(,€(f)), and for each 7€, we have |p,(f)-
@, (1) < h(?)|j(f) — €(F)|- For each 7€, take

t

V, (1) =jo+ ﬁj (- ‘r)vflcpz(‘r)y‘r. (76)

0

Then, from (73) and (76), we realize

9.0 =520 = 55|, =0 les (0= (o)
< oo [ E= BOLID - 0o

0
v

b ) .
“To+1) [1A][117 = €l = @] [lj - €]l-

(77)

Therefore, ||V, — V,|| <®@||A|||lj - ¢||. On similar steps,
interchanging the roles of j and €, we have

H(Y(j), Y(0) < @|h||j- ¢ =alji-€|-  (78)

Note that if we take f(j) =0 and () = (D||h||||j - €||)/
(R (@[]} - e + bl[j— Vjll + clle- YE[]) for all j,eet
and k € (1,00), then (54) coincides with (78). Whence, Corol-
lary 25 can be applied to conclude that the mapping Y has at
least one fixed point in U which corresponds to the solutions
of Problem 4.6.

Example 34. Consider the Caputo-type fractional differential
inclusion problem given by

{CDS’SJ(?) eM(.j(7)) te2=[0,1], (79)

j(0)=0,

where the multivalued mapping M : [0,1] x R — P(R) is
given as

M(1j(7)) = [510 i (2 _Si]\(]??) \) ' 3101 (80)

Obviously, the mapping j+ [1/50, (1/9 + 10¢)(sin?j(%)/
2 —sin [j(f)|) + 1/30] is measurable for each j€ R. In this
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case, we can take () = 1/(9 + 10%) for all 7 € [0, 1], and thus,
p(0, M(%,0)) =1/30 < h(f) for almost all 7 € [0, 1]. Note that
for each j, £ € R, we have

H(M (t] )M ?,{’,(?

3 sm] N 1
50 9+ 10¢ 2—sm|] )] 300

sin®€(7)

50 9+ 10t

2 —sin ’E

h(D]i7) - L@)]-

< 5yl 40

Moreover, ||h]|=1/9. Whence, | k| ~0.124355< 1.
Consequently, by Theorem 38, Problem (68) has at least
one solution on [0, 1].

5. Stability Results

Investigated as a type of data dependence, the concept of
Ulam stability was initiated by Ulam [36] and developed
by Hyers [37], Rassias [38], and later on by many authors.
In this section, we study an Ulam-Hyers type stability of
the proposed fractional-order model 4.6. In [22], the stability
result of the model 4.4 has been obtained in the framework
of single-valued mappings. But, it is a known fact that multi-
valued mappings often have more fixed points than their
corresponding single-valued mappings. Whence, the set of
fixed points of set-valued mappings becomes more interest-
ing for the study of stability. First, we give some needed
definitions as follows.
Let € > 0 and consider the following inequality:

€Dy j* (7) - j° (7)| <& T e Qae. (82)

Definition 35. The proposed problem (60) is Ulam-Hyers
stable if we can find a real number ¢* > 0 such that for every
€>0 and for each solution j* € C(€2,R) of the inequality
(82), we can find a solution j€ C(Q,R) of problem (60)
and two functions ¢*, ¢ € L' (Q, R) with ¢*(t) e M(%,j* (1))
and ¢(t) € M(t,j(t)) a.e. on Q such that

i (1) -i(7)

| <¢"e (83)

for almost all 7 € Q, where ||j|| = sup {|j(?)|: T € Qa.e.}.

Remark 36. A function j* € C(€2,R) is a solution of the
inequality (82) if and only if we can find a continuous func-
tionm : Q — R and ¢* € L' (Q, R) with ¢*(t) e M(%,j*(T))
a.e. on Q such that the following properties hold:

i) |m(f)| <& m=max (

(i) “Dy.j*(2)

tr =+
mj) ,te€Qa.e.

=j*(t) +m(t),teQae.

Journal of Function Spaces

Lemma 37. Suppose that j* € C(Q,R) obeys the inequality
(82), then we can find a function ¢* € L' (Q, R) with ¢*(f)
€ M(t,j*(t))a.e. on Q such that

J () =jo - ﬁj; (- T)Vfl(p* (T)pt| < De. (84)

Proof. From (ii) of Remark 36, we have D}, j* (%)
m(%), and by Lemma 29, we get

=i ®+

@) =i+ g | 7)o e

1

+ WJ (t-1)""'m()ur.

0

Therefore, from (i) of Remark 36, we realize

Now, we present the main result of this section as
follows.

Theorem 38. Assume that the following conditions are
obeyed:

(i) the multivalued mapping M(.,j): Q — F(0) is
measurable for each j € R

(ii) for all j,L € R, we can find ¢(t) € M(%, j(t)), ¢*(f)
€ M(t,2(f)) a.e. on Q and a continuous function
h:Q— R, such that for almost all t € Q,

lo(F) —¢" ()| <h(D)]i(H) ~e@)]- (#7)

(iii) ||h|| < 1/®, where ©=b"/(I'(v+ 1)).

Then the fractional-order inclusion model (60) is Ulam-
Hyers stable.

Proof.

Let j, j* € C(€2, R), where j obeys (82) and j is a solution
of problem (60). Then, we can find two functions ¢*, ¢ €
L'(Q,R) with ¢*(f) € M(%, j* (7)) and ¢(f) € M(%, j(f))a.e.
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on O such that for every € >0, Lemma 37 can be applied
to have

0
< e+ b R[5 - i
s m” 17" = jll
=@e+ DA |[|j* - jl,

(88)

that is, ||j* —j|l <¢*e, where ¢*=®/(1—-®|h||). Conse-
quently, the proposed problem (60) is Ulam-Hyers stable.
O

6. Conclusions

A new coincidence and fixed point theorem of multivalued
mapping defined on a complete metric space has been pre-
sented in this work by using the characterizations of a mod-

ified AT -function, named Z-function. It has been noted
herein that our result is a generalization of the fixed point
theorems due Berinde-Berinde [11], Du [13], Mizoguchi-
Takahashi [14], Nadler [10], Reich [17], Rus [27], and a
few others in the corresponding literature. Though the con-
jecture raised by Reich [17] has now been proven valid in an
almost complete form in [11, 13, 14], however, our main
result (Theorem 19) provided a more general affirmative
response to this problem. Moreover, from application per-
spective, we launched an existence theorem for nonlinear
fractional-order differential inclusions model for COVID-
19 via a standard fixed point theorem of multivalued map-
ping. Ulam-Hyers stability analysis of the considered model
was also discussed. It is interesting to note that more useful
analysis and results may be obtained if the metric on the
ground set in this context is either quasi or pseudo metric.
For better management of uncertainty, and since every fixed
point theorem of contractive multivalued mapping has its
fuzzy set-valued analogue, the result of this paper can as well
be discussed in the framework of fuzzy fixed point theory
and related hybrid models of fuzzy mathematics. Further-
more, in order to obtain effective measures for curbing
Covid-19, other than observing the significance of lockdown,
numerical simulations and better analytic tools of the
proposed fractional-order differential inclusions model are
another future directions.
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In this article, we prove some coincidence and common fixed point theorems under the relation-theoretic Meir-Keeler
contractions in a metric space endowed with a locally finitely T-transitive binary relation. Our newly proved results generalize,
extend, and sharpen some existing coincidence point as well as fixed point theorems existing in the literature. Moreover, we

give some examples to affirm the efficacy of our results.

1. Introduction

Banach [1], a Polish mathematician, established the most
successful result in fixed point theory, the Banach contrac-
tion principle (in short, BCP), in 1922, which says that a
contraction mapping on a complete metric space has a
unique fixed point. One of the noted generalizations of
BCP comprising the concept of coincidence point (in short,
CP) and common fixed point (in short, CFP) theorems was
established by Jungck [2] in 1976. In succeeding years, many
researchers introduced relatively weaker version of commut-
ing mappings and developed exciting CFP results, see [3, 4].

On the other hand, generalizations of the underlying
space have been trending since some decades. One of such
important generalizations was initiated by Turinici [5, 6] in
1986, where he proved fixed point results in a partial ordered
set. In this continuation, Alam and Imdad [7] generalized
the BCP using a binary relation. Since then, many relation-
theoretic fixed point theorems are being studied regularly,
see [8, 9] and references therein.

Several researchers reported numerous fixed point
results employing relatively more generalized contractions.

One of such vital contractions was due to Meir and Keeler
[10] in 1969, which was further extended by Rao and Rao
[11]. In 2013, Patel et al. [12] established some CFP theo-
rems for three and four self-mappings satisfying generalized
Meir-Keeler a-contraction in metric spaces. Some general-
izations of Meir-Keeler contraction in the framework of
different types of spaces have also been reported, see
[13-16]. Recently, Sk et al. [17] introduced the Meir-Keeler
contraction in relation-theoretic sense and extended
relation-theoretic contraction principle to relation-theoretic
Meir-Keeler contraction principle.

In this paper, we prove some coincidence and common
fixed point theorems using the relation-theoretic Meir-
Keeler contraction in a metric space endowed with a locally
finitely T-transitive binary relation. We also equip several
examples to exhibit the significance of these new findings.

2. Preliminaries

We will go over some basic definitions in this section that
will help us to prove our primary results. Throughout the
paper, we pertain to N U {0} as %, and empty set as &.
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Definition 1 (see [18]). Let & + & be a set. A “binary rela-
tion” is a subset R of 2. The subsets 2% and & of 2>
are called the “universal relation” and “empty relation,”
respectively.

Definition 2 (see [7]). Let X + & be a set with a binary rela-
tion R. If either (g, 0) € R or (0, Q) € R for g, 0 € I, then @
and o are called as “R-comparative.” g, o] € R is the notion
for it.

Definition 3 (see [18-23]). Let & # & be a set with a binary
relation R. Then, the relation N is called

(a) “amorphous” if R has no precise attribute

(b) “reflexive” if (0,0) e RV e X

(c) “symmetric” if (g,0) € R(0,0) € R

(d) “anti-symmetric” if (g, 0) € R and (0,Q) e Ro=0
(e) “transitive” if (0, 0) € R and (0, w) e R(o, w) € R

(f) “complete”, “connected” or “dichotomous” if [g, o]€
RVQ, 0

(g) “partial order” if R is “reflexive”, “anti-symmetric”
and “transitive”

Definition 4 (see [18]). Let R be a binary relation on a set
X + . Then,

R = {(Q,a) c 7. (0,0) em} andR°=RUR', (1)

are called inverse relation and symmetric closure of R,
respectively.

Proposition 5 (see [7]). Let X + O be a set with a binary
relation R. Then, for g,0 € X,

(0,0)eR = [0, 0] € R. (2)

Definition 6 (see [24]). Let £ # & be a set with a binary rela-
tion R and & € 2. Then, the set R|; =R N S is defined as
the restriction of R to §.

Definition 7 (see [7]). Let 2 + & be a set with a binary rela-
tion R. A sequence {g,} € Z is called R-preserving if

(Q Qis1) €R - Ve Z,. (3)

Definition 8 (see [7, 25]). Let T and H be two self-mappings
on a set '+ and R a binary relation on 2. Then,

(a) R is said to be T-closed if
Vo, 0€Z,(p,0) e R=(T(Q), T(0)) e R

(b) R is said to be (T, H)-closed if

Journal of Function Spaces
Vo0 € 7, (H(), H(0)) € R = (T(e), T(0)) € R (4)

Remark 9. Under H =1, the identity mapping on X, the
notion of (T, H)-closedness coincides with the notion of T
-closedness of R.

Definition 10 (see [25]). Let &'+ & be a set with a metric
d together with a binary relation R. If every R-preserv-
ing Cauchy sequence in & converges, we say (Z,d) is
R-complete.

Definition 11 (see [25]). Let & + & be a set with a metric d
together with a binary relation R and T a self-mapping on
Z. If for any R-preserving sequence {g, } C 2 converging

to an element Q€ .2, we have T(g,) i>T(Q), then the
mapping T is said to be R-continuous.

Definition 12 (see [2]). Let & + & be a set with a metric d
together with a binary relation R and T,H two self-
mappings on 2. Let {g,} C.Z be a sequence satisfying
klim H(gy) =Iklim T(gy). Then, the mappings T and H

are compatible if D(lim d(HT(gy), TH(g)) =0.

Definition 13 (see [25]). Let X # & be a set with a metric d
together with a binary relation R and T,H two self-
mappings on . Let {g,} ¢ be a sequence such that
{T(gy)} and {H(gy)} are R-preserving sequence satisfy-
ing u(h—>mooH (Qy) =k£an(Qk). Then, the mappings T and

H are “R-compatible” if klim d(HT(gy), TH(gy)) =0.

Remark 14 (see [25]). Let X + & be a set with a metric d
together with a binary relation R. Then, the following
relation holds:

‘commutativity = compatibility = R — compatibility
— weak compatibility .

(5)

Definition 15 (see [7, 25]). Let &'+ be a set with a
metric d together with a binary relation R and T, H two
self-mappings on . Consider the R-preserving sequence

{0k} € X such that g -, Q. Then,

(a) R is called “d-self-closed” if there exists a subse-
quence {gy } of {e.} with [gy , ] € RVp € F,

(b) R is called “(H —d)-self-closed” if there exists a
subsequence {Qkp} of {q,} with [H(Qkp), H(Q)]eR

VpeX,

Definition 16 (see [26-29]). Let X + & be set with a binary
relation R and T a self-mapping on &
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(a) If for any Q,0,¢€ 2, (T(0), T(0)) e Rand (T(o), T
(6)eR=(T(0), T(c)) €N, then R is called
“T-transitive”

(b) If for any @y, Q;, ", Q% € & where % is a natural
number >2, we have

(Qp-1>Q¢) € Rforeach (1 <L <H) = (Qp Q%) €R, (6)

then R is called F -transitive

(c) If for each denumerable subset & of 2, there exists
K =K (S) =2, such that R| is H -transitive, then
R is called “locally finitely transitive”

(d) If for each denumerable subset & of T(Z), there
exists # =K (S) =2, such that R|; is F-transi-
tive, then R is called “locally finitely T-transitive”

Proposition 17 (see [29]). Let X be a nonempty set, R a
binary relation on & and T a self-mapping on L. Then,

(a) R is “T-transitive” =R | q is “transitive”

(b) R is “locally finitely T-transitive” &R | o is “locally
finitely transitive”

(c) R is “transitive” =R is “finitely transitive” =R is
“locally finitely transitive” =R is “locally finitely
T-transitive”

(d) R is “transitive” =R is “T-transitive” —R is
“locally finitely T-transitive”

Definition 18 (see [23]). Let & be a nonempty set and R a
binary relation on &. A subset § of 2 is called R-directed
if for each @, 0 € &, there exists ¢ € 2 such that (g,¢) € R
and (0,¢) € R.

Definition 19 (see [24]). Let R be a binary relation defined
on a nonempty set & Then, for @, 0 € &, a finite sequence
{@p> Q1>+, @, } € satistying the following conditions:

(g Qes1) € Rforeach€(0<t<p-1), 7
7
Q =Qandg, =0,

is said to be a path of length p in R from @ to o.

Definition 20 (see [7]). Let R be a binary relation on a non-
empty set 2, and Y a subset of . If there exists a path in R
from p to o for each g, 0 €Y, then Y is called R-connected.

Lemma 21 (see [28]). Let R be a binary relation on a non-
empty set X, and {Q} C X a sequence satisfying (Qy, Qus1)
€ R. Now, if for some natural number F >2, R is K
-transitive on the set L={qy : k € #,}, then

(Qk,Qk+1+,(%_1>) eRforallk,re Z,. (8)

3. Main Results

The first result in this section is on the existence of CP for
two mapping T and H. For a nonempty set 2" and two
self-mappings T and H on &, the notations we use herein
are as follows:

O(T.H)={peZ : T(e)=H(Q)}

9
O(T,H)={geX :a=T(Q)=H(Q) € X} ®)

Theorem 22. Let X be a nonempty set together with a metric
d, R a binary relation on X and T, H two self-mappings on
. Suppose the following conditions hold:

(a) T(X)cH(X)

(b) (X, 4d) is R-complete

(c) there exists ) € X such that (H(Q,), T(gy)) € R
(d) R is (T, H)-closed and locally finitely T-transitive
(e) T and H are R-compatible

(f) H is R-continuous

(¢) T is R-continuous or R is (H — d)-self-closed

(h) for every €>0 and Q,0 € X, there exists 6 >0 such
that

(H(p),H(0)) € Rande<d(H(Q),H(0)) <e+8=d(T(), T(0)) <&
(10)
Then, T and H have a CP.

Proof. Assumption (c) confirms the existence of @, € 2 such
that (H(Q,), T(Qy)) € R. Now, if H(g,) = T(g,) then noth-
ing is left to be proved. Otherwise, by assumption (a), we
can pick @, € 2 such that T(g,) = H(Q,). Again, there will
be @, € X such that H(Q,) = T(Q, ). In this way, we construct
a sequence {Q, } ¢ 2 such that

H(Qu) =T() VkeZ,. (11)
Now, we assert that {H(g,)} is R-preserving, i.e.,
(H(ew) H(Qi1)) € R Vk e F. (12)

We will adopt the induction method to prove this fact. In
view of assumption (c), equation (12) holds for k=0, i.e.,

(H(Qo)- H(e1)) € R. (13)

Now, suppose that equation (12) holds for k =p >0, i.e.,

(H(gp)> H(gps1)) € R- (14)
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Then, we have to show that
(H(pr1), H(Qpe2)) € R- (15)
In view of the fact that R is (T, H)-closed, it is clear that
(H(gp) H(p1)) € R(T(g) T(Qp1)) € R, (16)
implying thereby

(H(Qp1) H(Qpia)) €R, (17)

which guarantees the fact that equation (2) holds for k=p
+ 1. Therefore, {H(q,)} is R-preserving sequence. Notice
that {T(qy)} is also a R-preserving sequence due to equa-
tion (1), i.e.,

(T(ex)> H(Qui1)) € R (18)

Now, if there exists n, € % such that H(g, ) = H(Q, .1)>
then, in view of equation (1), @, turns out to be a CP of T
and H. As an alternative, consider that H(gy) # H(Qu,;)
for all k € %, i.e., d(H(gy), H(Qy,;)) #0.

Denote fh, = d(H(Q, ) H(o)): Now,
assumption (h), we get

in view of

P = A(H(Qus1)> Howrz) = d(T () T(Qusr)) < d(H (k) H(Qus1)) = My,
(19)

which gives
Prer1 < P (20)
Therefore, the sequence {, } is decreasing. As {4 } is
also bounded below by 0 (as a lower bound), we can find r

> 0 satistying

klinooﬁlk =r= klggoﬁk- (21)

Now, let us assume that 7 > 0. So, there will always be a
d(r) > 0 such that

(H(e),H(0)) € R,
r<d(H(Q),H(0))<r+68(r)=d(T(a), T(0)) <.
(22)

Since {4, } is decreasing sequence converging to r, there
exists p € # such that

r<d(H(Q,), H(Qp)) <r+8(r). (23)

Thus, in view of assumption (h), we have

bp1 = A(H (Qpi1), HOpi2) <15 (24)
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which contradicts the fact that r:kinfy/ . Hence, we
— L0

conclude that
Jim d(H(Q,), H(Qyur)) =0. (25)

Now, we establish that the sequence {H (g )} is Cauchy.
Utilizing equation (1), since {H(gy)} ¢ T(Z), we get that
the range & = {H(gy): k€ #,} is a denumerable subset of
T(Z). Hence, in view of assumption (d), there exist F# =
H(S) =2, such that R|, is H-transitive. Let € >0 be an
arbitrary and fixed real number and let § >0 corresponds
to ¢ verifying the assumption (k). WLOG, we may consider
that § < e. In view of (2), there exists 1, (5) € N satisfying

d(H(Q)> H(Qu1)) < % Vk > 1y(8). (26)

For all k > 1,(8) and for all p(1 < p <. %), using triangu-
lar inequality, we get

d(H () H(Quro)) < d(H () H(Qus1))

+ d(H(QIkH)’HQIkJrZ) +d(HQ|k+p—1’HQlk+p)
< + i+...+i = ﬁ
T AKX A AKX  AH
(27)

Now, we claim that
1)
d(H(Qy), Hoy,p) <€+ 5 Vk=ny(8)andvpe 7. (28)

This is demonstrated herein using the mathematical
induction method. From (27), it is clear that (28) holds for
all pe{1,2,3,---, %}. Suppose that the conclusion holds
for all pe {1,2,3,---,m}, where m>%. We have to show
that (28) holds for k=m+ 1 also. As m>F,som—-1>F
—1> 0. By division algorithm, there exists unique integers
pand (0 <y < H —1) such that

m—1=(F-1u+n (29)
m=1+(F-1)u+n.

Denoting g =: 1 + (F# — 1)y, the above equation reduces to
m=q+, (30)
so that
2<H <g<m=q+m. (31)
Now, using (27), we get
"

d(H (Qk+q+l)’ H(Qk+m+l)) = d(H(Qk+q+1>’ H(Qk+q+;1+l)) < AH .
(32)
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Now, using Lemma 21, we get
(H (@) H(@ry)) € R (33)

As qe{H, K +1,.---,m}, using inductive hypothesis,
we get

0<d(H(Qk),H(Qk+q))<£+§<£+5. (34)

Using (33) and (34) and applying contractive condition
(h), we get

d(H(QkH)’ H(Q[k+q+1)) = d(T(Q[k)’ T(Qlk+q)) <E&. (35)

Now, using triangular inequality, (25), (32), and (35),
we get

AH(P ) HPrar) <A@ H(@r) + d(H @) H(@uogor))
+ d(H(Qk+q+1)’ H(Qk+m+l))

0 ns 6 0
<@+8+E<E+E+E(%—l)a3%

22and;7<3’{—1:s+§<e+7.
4 2
(36)

Thus, by induction, (28) is verified. From (28), it
embraces that the sequence {H(gy)} is Cauchy. Now, the
R-completeness property of & and R-preserving property
of {H(qy)} confirm the availability of an element ¢€ 2
such that

Jim H(g)=c (37)
Also, from (11),
Jim T(o,)=c (38)

Now, by dint of the R-continuity of H, we acquire
Jlim H(H(,)=H( lim H())=H(). (39
Utilizing (38) and R-continuity of H,
Jim H(T(e)=H( lim T(e,))=H().  (40)
Since {T(gy)} and {H(g,)} are R-preserving and
Jm T(e) = lim H(qw) =g, (41)

by assumption (e),

[khl{lood(HT(Qk)’ TH(gy)) =0. (42)

The next step is to establish that ¢ € ®(T, H). From
assumption (g), we first consider that T is “R-continu-
ous.” Using (12), (37), and R-continuity of T,

Jim T(H(e)=T( Jim H(e.))=T()  (43)
Applying (40) and (42), we get

d(H(), T()) =d( lim HT(eu), lim TH(ay)) )
= lim d(HT(@,), TH(2,)) =0,

yielding thereby H(c) = T(c), which establishes our claim.
Instead of R-continuity of T, we now suppose that R is
(H, d)-self-closed, based on assumption (g). Then, {H(gy)}
being R-preserving sequence guarantees the existence of a
subsequence {HQ'kp} such that [HQkp,q] eR.If Hey, =¢

for some k, € %, then using (11) and by the R-preserving
property of {H(gy)}, we get H(Qkko) € O(T, H). Otherwise,

suppose Hg, #¢ ie., d(Han,c) #0 for all pe #. In this
case, in view of assumption (h), assuming 8=d(HQkP,C)

and using assumption (h), we get
d(T(HQnP>, T(q)) <e. (45)
Using triangle inequality, we get

d(H(c), T()) < d(H(¢), HTa, )
+d (HTQ[KP, THQ[KP> (46)
+ d(THQ[kp, T(c)) .

Now, using (40), (42), and (45) in the previous equation,
we obtain

d(H(6), T()) =0, (47)

which establishes that T(g) = H(g). O

It is clear that Theorem 22 solely considers the existence
of a CP of T and H. As a result, we must add extra condi-
tions to the hypothesis of Theorem 22 to obtain the unique-
ness of point of coincidence, CP and CFPs. This is the
purpose of our next theorems.

Theorem 23. Assume that all of the criteria of Theorem 22
are met. Let the following condition holds additionally:

(i) T(X) is Ryy(o)-connected

then T and H have a unique point of coincidence.



Proof. From Theorem 22, we get that ©(T, H) # &. Consider
that @, 0 € O(T, H). Then, there exist 7,0 € 2 such that

T(e)=H(e)=0and T(¢0)=H(o) =0. (48)

It is now our goal to prove that ¢ =&. Since T(@), T(0)

e T(X) < H(X), by assumption (i), there exists a path {H
(60)» H(gy), H(gy)s +++» H(cp)} of some finite length p in

Rii(g) from T(p) to T(o). Now, in view of (48), WLOG
we can choose ¢, =@ and Gp=0. Thus, we have

[H(6), H(Gey1)] € Ryyq) foreach 8(0<t<p-1).  (49)

Define the constant sequences ) = p and ¢/, then in view
of equation (48), we have H(c),,) = T(¢)) =@a and H(c},,)
=T(¢}) =0 for all ke K, Put ¢,=6,,62=6,6 =63
&= Gp1- Now, since T(Z)cCH(Z), we can define

sequences {c.}, {2}, ... {¢’"'} such that H(c.,,) = T(cl),
H(GE,,) = T(c2), .o H(¢ ) = T(¢I™") for all k € #,,. Hence,
we have

H(cﬂiﬂ) = T(cﬂi)Vk € #,andforeach€(0<€<p). (50)
Now, we claim that

[H(),H(c;™")] € RVk € #,and foreach (0 <€<p—1).

(51)

This is demonstrated herein using the mathematical

induction method. equation (51) holds for k=0 as a result
of (49). Assume that equation (51) is true for k =7, i.e.,

[H(c}), H(s/™")] € R. (52)

As R is (T, H)-closed, we obtain

[T(6). T(sE)) € (53

which on using (51) gives us that

[H(cfﬂ),H(cfg)] eRkeHjandforeach€(0<<p-1).
(54)

Therefore, equation (51) holds. Now, for each ke %
and for each (0<€<p-1), define

te=d(H(s), H(s))- (55)

We show that

k@mtﬁ =0. (56)
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Now, we look at two scenarios in which ¢ is fixed. Firstly,
suppose that

ty, = d<H(cf’,0),H(cf;1>> =0forsomeny € K,  (57)

which gives rise to H (cﬁn) =H (q‘;:)’l) Now applying (11),

¢
we have £,

= 0. Continuing this process, we get
Gt = OVk > n, (58)

which establishes that Iklim ¢t =0.
—00

Alternatively, assume that ¢f > 0Vk € %,. For any &> 0,
assume tf =d(H(c), H(¢t™)) = €. Then,

o= d(H (L) (L)) = d(T(), () <o,
(59)
which gives
tlliﬁ-l < t[li' (60)
As a result, the sequence {t!} is decreasing. As {t!} is

also bounded below by 0 (as a lower bound), there exists r
>0 such that

lim tf =r= inf . 61
koo K ke, © (61)

Now, we prove that r=0. Assume, on the other hand
that r > 0. So, there will always be a §(r) > 0 such that

(H(Q),H(0)) e Randr <d(H(Q),H(0)) <r+8(r)d(T(), T(0)) <.
(62)

Since {t} is decreasing sequence converging to r, there
exists p € Z such that

rSd(H(qﬁ),H(cﬁ“)) <r+68(r). (63)

Thus, in view of assumption (h), we have

fama(n(d)m(6) < o
which contradicts the fact that r:kinf tf. Hence, we
—00
conclude that
lim £ =0. (65)

k—00

Thus, equation (56) holds Ve(0<¢<p-1). Now, in
light of equation (56) and triangle inequality, we get

d@0)<t) +ti++tl — 0ask — oo. (66)

Therefore, ¢ = o, which ends the proof. O
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Theorem 24. Assume that all of the criteria of Theorem 22
are met. Let the following condition holds additionally:

(i) T and H are “weakly compatible”

then T and H have a unique CFP.

Proof. Assume p € & such that @ € ©(T, H). Therefore, there
exists p € 2 such that

H(@)=T(e) =0 (67)

In light of the Remark 14, the concept R-compatibility
coincides with the weak compatibility. Hence, ¢ € O(T, H).
Utilizing ¢=Q in Theorem 23, we obtain H(Q)=H(Q)
yielding thereby

e=H(Q)=T(0) (68)

Hence, @ is a CFP of T and H.
Now, we assume that @' is another CFP of T and H in
order to assert the uniqueness. Applying Theorem 23, we get

Q'=H(Q') =H(@Q)=0, (69)
which finishes the proof. O

Theorem 25. Assume that all of the criteria of Theorem 22
are met. Suppose either of the mappings T and H is one-to-
one. Then, T and H have a unique CP.

Proof. From Theorem 22, it is evident that ©(T, H) # &. Let,
0,0 € O(T, H). Then, Theorem 23 permits us to write

T(0)=H(e)=T(o)=H(o). (70)

Now, since T or H is one-to-one, we have, Q = ¢ which
finishes the proof. |

Theorem 22 has the following implication when we
apply Proposition 17.

Corollary 26. If either of the below conditions:

(a) R is “transitive”

(b) R is “T-transitive”

(c) R is “finitely transitive”

(d) R is “locally finitely transitive”

is utilized in Theorem 22 instead of the locally finitely T
-transitivity condition; then, the validity of Theorem 22
remains the same.

Corollary 27. If either of the below conditions:
(i'). T(X) is Re-directed
i) R|7 (o) is complete

holds in place of condition (i) of Theorem 23, then the
validity of Theorem 23 remains the same.

Proof. If condition (i') is satisfied, then, for each g,0€ T
(Z), we get ¢eX satisfying [p,g]€R and [o,¢]€R.
Notice that the sequence {@,¢,0} works as a path of
length 2 in R° from p to o, which establishes the fact that
T(X) is R'-connected. Now, applying Theorem 23, we
obtain the uniqueness of point of coincidence.

Alternately, from assumption (i'"), we get [0, o] € RVo,
0 € T(Z), which assents that {p,o} constitutes a path of
length 1 in R°. As a result, T(Z) is R*-connected, which
wrap up the proof when Theorem 23 is applied. O

Under H =1, the identity map, we obtain the following
result which is proved by Sk et al. [17].

Corollary 28 (see [17]). Let (2, d) be a R-complete metric
space endowed with a binary relation R on & and T a self-
mapping on . Suppose that the following conditions hold:

(a) there exists Q) € X such that (Qy TQ,) € R,
(b) R is T-closed and locally finitely T-transitive
(c) either T is R-continuous or R is d-self-closed

(d) for every &> 0 there exists 8 > 0 such that

(0)eRande<d(g,0)<e+8=d(T(0),T(0))<e¢
(71)

Then, T has a fixed point. Further, if we impose an addi-
tional hypothesis:

(e) T(X) is R*-connected
then T has a unique fixed point.

Remark 29. Under the universal relation R and H =1, the
identity map, Theorem 22, and Theorem 23 reduce to the
classical fixed point theorem of Meir and Keeler [10].

Remark 30. Under partial order the relation R =", and H =1,
the identity map, Theorem 22, and Theorem 23 reduces to
fixed point theorem of Harjani et al. [30].

4. Examples

Now, we equip two examples to show how important our
results are in comparison to other results in the literature.

Example 1. Let XL = {(0, 1), (1,0), (1, 1), (0,0)} ¢ R? together

with the usual Euclidean metric d. Consider the following
relation endowed with X

R={((1,1),(0,0))}. (72)



Then, (Z,d) is a R-complete metric space. Now con-
sider that T, H : & — X are two mappings defined by

=
A
=
(=]
e
1]
—~
=3
—
=
=
A
=3
—
=
1]
—
=
(=]
)
=
A
=
—
=
Il

(1,1)5 T(0,0) = (0, 0),

H(0,1) = (1,0); H(0,0) = (0,1); H(1,1) = (1,1); H(1,0) = (0, 0).

(73)
Notice that for e =d((0,1),(1,0)) = v/2, we have
d(T(0,1), T(1,0)) =d((1,0), (0, 1)) =V2<e,  (74)

which is absurd. Further, ((1,1),(0,0)) € R and d((1,1),
(0,0)) =+/2 but the inequality

d(T(1,1), T(0,0))=d((1,1,),(0,0)) =v2<e,  (75)
does not hold. Hence, the existing theorems cannot be applied

for this example. Now, assume that ¢ =d(H(1,1), H(1,0))
=d((1,1), (0,0)) = /2. Then, the inequality

d(T(1,1), T(1,0)) =d((1,1), (0,1)) =1<¢,  (76)

holds. As a result, assumption (h) of Theorem 22 holds. It can
also be seen that all of the conditions of Theorem 22 are met
using regular calculation. Therefore, T and H have a CP,
namely, (1, 1).

Although it does not satisfy Theorem 23, the CP of T
and H in Example 1 is unique, proving that condition (i)
of Theorem 23 is not a necessary condition for the unique-
ness of CPs.

Example 2. Let 2Z={(0,1),(1,0),(1,1),(0,0)} c R?
together with the usual Euclidean metric d. Consider the
following relation endowed with 2,

R={(@0)eoe {01 (L1}}.  (77)

Then, (X, d) is a R-complete metric space. Now con-
sider that T, H : & — X are two mappings defined by

T(1,0) = (1,0); T(0,1) = (0, 1); T(1, 1) = (1,0) ; T(0,0) = (0, 1),
(0,1); H(1,1) = (0,1), H(0,0) = (1, 1).
(78)

T
—~
=
(=)
—
Il
—
‘.
(=}
Nt
T
—~
L
—
N
]

Now, for e =d(H(0, 1), H(0,0)) = 1, we have
d(T(0,1),T(0,0))=d((0,1),(0,1))=0<g, (79)

holds. As a result, assumption (h) of Theorem 22 holds. It
can also be seen that all of the conditions of Theorem 22
are met using regular calculation. Therefore, T and H have
CPs, namely, (0,1),(1,0). The availability of more than
one fixed point certifies the eminence of Theorem 23.
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Notice that for e =d((0, 1), (1,0)) = v/2, we have
d(T(0,1), T(1,0)) =d((1,0), (0,1)) =v2<e,  (80)

which is absurd. Further, ((0,1), (1
(1,1)) =1 but the inequality

1)) €R and d((0,1),

d(T(0,1), T(1,1)) =d((0,1,), (1,0)) = V2 <&, (81)

does not hold. Hence, the existing theorems cannot be
applied for this example.

5. Conclusion

In this paper, we have established some coincidence point
theorems for two mappings employing the relation-theoretic
Meir-Keeler contractions in a metric space endowed with a
class of transitive binary relation. Our findings have also led
to the deduction of certain related fixed point results. Further-
more, some examples are given to demonstrate the significant
progress made in this area.
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In this manuscript, a new family of contractions called Jaggi-type hybrid (G — ¢)-contraction is introduced and some fixed point
results in generalized metric space that are not deducible from their akin in metric space are obtained. The preeminence of this
class of contractions is that its contractive inequality can be extended in a variety of manners, depending on the given
parameters. Consequently, several corollaries that reduce our result to other well-known results in the literature are highlighted
and analyzed. Substantial examples are constructed to validate the assumptions of our obtained theorems and to show their
distinction from corresponding results. Additionally, one of our obtained corollaries is applied to set up unprecedented
existence conditions for the solution of a family of integral equations.

1. Introduction

The prominent Banach contraction in metric space has laid
a solid foundation for fixed point theory in metric space. The
applications of fixed point range across inequalities, approx-
imation theory, optimization, and so on. Researchers in this
area have introduced several new concepts in metric space
and obtained a great deal of fixed point results for linear
and nonlinear contractions. Recently, Karapinar and Fulga
[1] introduced a new notion of hybrid contraction which is
a unification of some existing linear and nonlinear contrac-
tions in metric space.

On the other hand, Mustafa [2] pioneered an extension
of a metric space by the name, generalized metric space (or
more precisely, G-metric space), and proved some fixed
point results for Banach-type contraction mappings. This
new generalization was brought to spotlight by Mustafa
and Sims [3]. Subsequently, Mustafa et al. [4] obtained some

engrossing fixed point results for Lipschitzian-type map-
pings on G-metric space. However, Jleli and Samet [5] as
well as Samet et al. [6] noted that most of the fixed point
results in G-metric space are direct consequences of exis-
tence results in corresponding metric space. Jleli and Samet
[5] further observed that if a G-metric is consolidated into
a quasimetric, then the resultant fixed point results become
the known fixed point results in the setting of quasimetric
space. Motivated by the latter observation, many investiga-
tors (see for instance, [7, 8]) have established techniques of
obtaining fixed point results in G-metric space that are not
deducible from their ditto ones in metric space or quasi-
metric space.

Following the existing literature, we realize that hybrid
fixed point results in G-metric space are not adequately
investigated. Hence, motivated by the ideas in [1, 7, 8], we
introduce a new concept of Jaggi-type hybrid (G — ¢)-con-
traction in G-metric space and prove some related fixed
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point theorems. An example is constructed to demonstrate
that our result is valid, an improvement of existing results
and the main ideas obtained herein do not reduce to any
existence result in metric space. Some corollaries are pre-
sented to show that the concept proposed herein is a gener-
alization and improvement of well-known fixed point results
in G-metric space. Finally, one of our obtained corollaries is
applied to establish novel existence conditions for solution
of a class of integral equations.

2. Preliminaries

In this section, we will present some fundamental notations
and results that will be deployed subsequently.
Throughout, every set @ is considered nonempty, N is
the set of natural numbers, and R represents the set of real
numbers and R, the set of nonnegative real numbers.

Definition 1 (see [3]). Let @ be a nonempty set and let G
D xDxP— R, be a function satisfying

(G)) G(r,s,t)=0if r=s=t¢

(G,) 0<G(r,1,s) for all r,s € @ with r#s

(G3) G(r,1,5) <G(r,s,1), for all 1,5, t € O with t #s

(Gy) G(r,s,t)=G(r,t,s)=G(s,1,t) ="+ (symmetry in
all variables)

(Gs) G(r,s,t) <G(r,u, u) + G(u, s, t), for all r,s,t,uec®
(rectangle inequality)

Then, the function G is called a generalized metric or,
more precisely, a G-metric on @, and the pair (®,G) is
called a G-metric space.

Example 2 (see [4]). Let (@, d) be a usual metric space; then,
(@, G) and (@, G,,) are G-metric spaces, where
Gi(r,s,t)=d(r,s) +d(s,t) +d(r, t)Vr,s, t € D,

G, (r,s,t)=max {d(r,s),d(s,t),d(r, t)}Vr,s, t € D.
Definition 3 (see [4]). Let (@, G) be a G-metric space and let
{r,} be a sequence of points of ®@. Then, {r,} is said to be G
-convergent to r if lim, ,_ G(r,7,,7,) = 0; that is, for any

€> 0, there exists n, € N such that G(r,r,,r,,) <& Vn,m>
ny. We refer to r as the limit of the sequence {r,}.

Proposition 4 (see [4]). Let (D, G) be a G-metric space.
Then, the following are equivalent:

(i) {r,} is G-convergent to r
(ii) G(r, 7, 1,,) — 0, as n —> 00
(iii) G(r,,r,r) — 0, as n — o

(iv) G(r,, 7, 1) — 0, as n —> 00

Definition 5 (see [4]). Let (@, G) be a G-metric space. A
sequence {r,} is called G-Cauchy if for any £ >0, we can
find n, € N such that G(r,, r,,,r) <& Vn,m,l>n,, that is,
G(r,, 1, 1)) — 0, as n,m, | —> oo.
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Proposition 6 (see [4]). If (D, G) is a G-metric space, the fol-
lowing statements are equivalent:

(i) The sequence {r,} is G-Cauchy

(ii) For every € >0, there exists n, € N such that G(r,,
Ty T) <& V1, m >,

Definition 7 (see [4]). Let (@, G) and (@', G') be G-metric
spaces and f : (@, G) — (@', G') be a function. Then, f
is G-continuous at a point u € @ if and only if for any € > 0
, there exists §>0 such that r,se®; and G(u,r,s)<d
implies G’ (f(u), f(r),f(s)) <&. A function f is G-continu-
ous on @ if and only if it is G-continuous at all u € ®.

Proposition 8 (see [4]). Let (®, G) and (®', G') be G-metric
spaces. Then, a function f : (@, G) — (@', G') is said to be
G-continuous at a point r € @ if and only if it is G-sequen-
tially continuous at r; that is, whenever {r,} is G-conver-
gent to v, {fr,} is G-convergent to fr.

Definition 9 (see [4]). A G-metric space (@, G) is called sym-
metric G-metric space if

G(r,1,8)=G(s,1,1)Vr, s € D. (2)

Proposition 10 (see [4]). Let (D, G) be a G-metric space.
Then, the function G(r,s,t) is jointly continuous in all
variables.

Proposition 11 (see [4]). Every G-metric space (®, G) defines
a metric space (O, d;) by

dg(r,s) =G(r,s,5) + G(s, 1, r)Vr,s € D. (3)
Note that for a symmetric G-metric space (D, G),
(D,dg) =2G(r, s, 5)Vr,s € D. (4)

On the other hand, if (O, G) is not symmetric, then by the
G-metric properties,

3
EG(r, s,8) <dg(r,5) <3G(r,s,5)Vr,s € D, (5)

and that in general, these inequalities are sharp.

Definition 12 (see [4]). A G-metric space (@, G) is referred to
as G-complete (or complete G-metric) if every G-Cauchy
sequence in (@, G) is G-convergent in (@, G).

Proposition 13 (see [4]). A G-metric space (O,G) is G
-complete if and only if (D, d) is a complete metric space.

Mustafa [2] proved the following result in the framework
of G-metric space.

Theorem 14 (see [2]). Let (D, G) be a complete G-metric
space, and let I : ® — @ be a mapping satisfying the
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following condition:
G(I'r,I's, I't) <kG(r,s, t), (6)

for all 1,s,t € ® where 0<k < I; then, I' has a unique
fixed point (say u, i.e, T'u=u), and I is G-continuous at u.

Definition 15 (see [9]). Let ¥ be the set of all functions ¢
: R, — R, satisfying

(i) ¢ is monotone increasing, that is, t; <t, implies
¢(t;) < (1)

(ii) the series ) ;2 ¢"(t) is convergent for all £ >0

Then, ¢ is called a (c)-comparison function.

Remark 16.If ¢ € ¥, then ¢(¢) < t for any t > 0, ¢(0) =0, and
¢ is continuous at 0.

Karapinar and Fulga [1] gave the following definition of
Jaggi-type hybrid contraction in metric space.

Definition 17 (see [1]). Let (@, d) be a complete metric space.
A self-mapping I' : @ — @ is called a Jaggi-type hybrid
contraction; if there exists ¢ € @ such that

d(I'r,I's) < ¢(M(r,s)), (7)

for all distinct 7, s € @, where

. q 119
[Al (M> +A,d(r, s)q} , forg>0,r,sed,r#s,
M(r,s) = d(r

,5)

d(r, Tr)™ - d(s, Ts)™, forq=0,r,s€ @\ Fix(I).

(8)
AbA,>0with A, +A,=1and Fix(I') ={re®: I'r=r}.
3. Main Results

We begin this section by defining the notion of Jaggi-type
hybrid (G — ¢)-contraction in G-metric space.

M(rn—l’ T Frn) =

3 G(rpys Iry s %1, 1) G(r, Ty I“zrn)
! G(rn—l’ rn’Frn)

G(rn—l > Ty rn+l)

Definition 18. Let (®@,G) be a G-metric space. A self-
mapping I' : ® — O is called a Jaggi-type hybrid (G - ¢)
-contraction, if there exists ¢ € @ such that

G(Fr,Fs, Fzs) <¢(M(r,s,Is)), (9)

for all r,s € @\ Fix(I'), where

1/q

L Ir, I%r) - G(s, T's, I%s)\ !
?L1<G(r nI') GlsIs S)> +A,G(r,5,Is)?| , forq>0,
M(r,s,I's) = G(r,s,Is)
G(r, I, Fzr)A' -G(s,Ts, FZS)AZ, forq=0.

(10)

AbA,>0with A, + A, =1and Fix(I')={re® : I'r=r}.
We now present the following results.

Theorem 19. Let (@, G) be a complete G-metric space and let
I': ®— © be a continuous Jaggi-type hybrid (G — ¢)-con-
traction on (@, G). Then, I' has a fixed point in @ (say c),
and for any c, € D, the sequence {I"cy}, o converges to c.

Proof. Let ry € ® be an arbitrary point and define a sequence
{r,},en In @ by r, =I"r,. If there exists some n € N such
that I'r, =r,,, =r,, then r, is a fixed point of I', and so
the proof is complete. Assume now that r, #r,_, for any n
€N. Since I' is a Jaggi-type hybrid (G — ¢)-contraction,
then we have from (9) that

G(s Tyy1s Tuya) = G(I1,, Ty Fzrn) <P(M(r,_y» 1, I1y)).
(11)

O
We then consider the given cases of (10).

Case 1. For q > 0, we have

q l/q
) +MG(r, Ty Frn)q}

Gy 15 T T2 G(F s Tt ‘ 1
|:)‘1( (rn—l i rn+1) (rn Tl rn+2)> +/\2G(rn—l’rn’rn+1)q:| = [AIG(rn’rn+l’rn+2)q+A2G(rn—l’rn’rn+1)q]1/q'

(12)



Since ¢ is nondecreasing, if we assume that
G(rn—l’rwrnﬂ) < G(rn’rn+1’rn+2)’ (13)

then (11) becomes

(/\l + AZ)I/qG(rn’ Tni1> rn+2)>

(G(rn’ Tpi1s rn+2)) < G(rn’ Tni1s rn+2)’

¢

< ¢ ([/\IG(rn’ Tns1> rn+2)q + /\ZG(rw Tns1> rn+2)q]1/q>
al
¢

(14)
which is a contradiction. Therefore, for every n € IN, we have
G(rn’rn+l’rn+2) < G(rn—l’rn’rnﬂ)’ (15)

so that (11) becomes

G(rn’ Tps1> rn+2) = ¢ (MlG(rn’ The1> rn+2)q + A2G(rn—l’ T rn+1)q]1/q>
< ¢((A1 + AZ)I/qG(rrkl’ P> Thi ))
< ¢(G(rn71’ T rn+1))'
(16)
Continuing inductively, we have
G(rn’rn+l’rn+2) S¢n(G(TO’r1’r2))‘ (17)

Now, since

G(rn’ P> rn+1) < G<rn’ Tnt1> rn+2) < ¢n<G(r0’ T 72))’ (18)

for all n € N with r,,, #71,,,, then for any n,m € N with n
< m and by rectangle inequality, we have

G(rn’ T rm) < G(rn’ Ty> rn+1) + G(rn+1’ Tn+1> rn+2)
+'”+G(rm—1’ T'm-1> rm)
< (@ 9"+ " ") Grg, Ty 1)

m—1

¢'(G(rgr1512)) < Z ¢'(G(ros 15 12))-
(19)

Since ¢ is a (c)-comparison function, then the series
Y09 (G(rg,71,7,)) is convergent, and so denoting by
S, = 229" (G(rg, 71, 12)), we have

=n

G(rn’ Tys rm) < Sm—l - Sn—l' (20)
Hence, as n, m — 00, we see that
G(r,, 1, 1,,) — 0. (21)

Thus, {r,} is a G-Cauchy sequence in (@, G) and so
by the completeness of (®,G), there exists c€® such
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that {r,} is G-convergent to ¢, that is,

lim G(r,,r,,¢)=0. (22)

n—=o00

We will now show that ¢ is a fixed point of I'. By
the assumption that I' is continuous, we have

lim G(¢,¢,I'c)= nl'inooG(rnH, The1> 1€)

n—~oo

= lim G(I'r,,Ir,,Ic) (23)

n—=oo

= lim G(I'r,,Ir,,Ir,)=0,

n——=a0
so we get I'c=c, that is, ¢ is a fixed point of I

Case 2. For q =0, we have

M(r, 1, I1,) = G(r, 5 Ty, 1"21;1,1))‘l G(r, l"rﬂ,l"zrﬂ))‘2

A A
= G("n—p T rn+1) e G(rn’ Tnt1> rn+2) :

(24)

Now, if G(r, 1,7, Tyry) S G(Fy> Tpy1s Then)» then (11)
becomes

G(rn’ Tpi1 rn+2) < G(rn’ Tnt1> rn+2)’ (25)

which is a contradiction. Therefore,

G(rn’ Tpi1 rn+2) < G(rn—l’ T rn+1)' (26)

Hence, by (11) we have

G(rn’ Tht1> rn+2) < ¢(G(rn—l’ T rn+1>> < ¢2(G<rn—1’ Ty> rn+1))
< <PH(G(rgs 15 17))-
(27)

By similar argument as the case of g >0, we can show
that there exists a G-Cauchy sequence {r,} in (O, G) and a
point ¢ in @ such that lim, , r, =c. Similarly, under the
assumption that I' is continuous and by the uniqueness of
limit, we have that I'c =, that is, ¢ is a fixed point of I".

In the next result, we examine the existence of unique
fixed point of I' under the restriction of continuity of some

iterates of I.

Theorem 20. Let (@, G) be a complete G-metric space and let
I': @ — @ be a Jaggi-type hybrid (G — ¢)-contraction. If for
some integer i > 2, we have that I is continuous, then I' has a
unique fixed point in @.

Proof. In Theorem 19, we have established that there exists a
G-Cauchy sequence {r,}, . in (@, G) with r, =Ir,_, such
that r, — c for some c in @. Let {r, } be a subsequence
of {r,}, Where n,=1-iforall ] € N, i> 2 fixed. Notice that
I'° is an identity self-mapping on @ so that ry, =T irnl,i.
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Hence, by the continuity of I, we have ,i—1. Hence, by (9), we have
G(c I'e, T™'c) = lli)ngoG(c, Firn,_i, F"“rnl_oﬂ)) 2
hm G( ) _ G(C, c C) _ O, ( ) G(Fi_jc, Fi_j+lC, I"i—j+26) < (/)(M(Fi_j_lc, Fi_jC, Fi—j+lc))
l—eo e i—j-1 . piej . piejl
<M(I'7 e, I'e, '),
that is, ¢ is a fixed point of I". | (29)
To see that c is a fixed point of I', assume contrary that
I'z#z Then in that case, ["/'z# "z for any j=0, 1, --- Considering Case 1, we obtain
. . . .. 1/q
. G(['e, T (I'1¢), I (I'1¢) ) G(I e, T (I'e), I (I'e) ) \ o y
M(Iﬂ—] 1 Fz ]C Fz ]+1 Al 5 ) i ( C)) ( _ C ( C) ( C)) +AZG(I*I*]*IC’ Ft*jc’l"'(rt*]c))q
G(F”f’lc, I'e, F(F”Jc))
. .. . 1/q
G Fz -1 1—'1—] 1"1—]+1 G(rii )I“I—]+1 ’l—vt—]+2 1 o o .
Al c, C, ) ( -C- C. C) + /\zG(Fl_J_IC, F!—jc, Fz—]+lc)‘1
I'*z j— lC, I—v ]C, Fz—ﬁlc)
- o Y
= [MG(I e T ) 4 MG (T e T e I e
(30)
so that (29) becomes so that (29) becomes
G(I'e, I e, I'*2¢) (1= ) < L,G(I" ¢, T, T ) .
(31) G(l—vi—jc’ i+, Fi—j+2c)(1—/\z> < G(l—vi—j—lc, ri-ie, l—vi—j+1c)/\1
(36)

Since A, +A, =1, then for every j=0,1,---,i—1, we

have
G(I'ie, I e, I'*2¢) < G(I' e, I e, T ). (32)
This clearly implies that for every [=j,j+1,--,i—1,

G( [e, [/, P2 C) < G<1—~i—j—l—l ¢, [-ile, i+ C>.
(33)

In particular, letting j=0 and [=i-1, the above

inequality becomes
G(c, Ic, F’“c) = G(Fic, ', Fi+2c) < G(c, I, cm), (34)

which is a contradiction. Hence, I'c =c.
For Case 2, we have

M(IF7 ¢, THe, 97 ¢) = G(I e, T (I77¢), I (rifj—lc))al
.G(Fi—jc)l«(ri—jc),rz (Fi—jc))/\z
_ G(Fi—j—lc) e, pi*f“c)kl
CG(I' e, I e, 172e) ™,
(35)

implying that

G(I'e, I e, I'™7e) < G(I' e, T'™e, I e). (37)

By similar argument as in Case 1, we obtain a contradic-
tion. Hence, I'c=c.

Example 21. Let ®=[-1,1] and let I' : ® — @ be a self-
mapping on @ defined by

, ifre{-1,1},

. ifre(-1,1),

gl — U =

for all r € @. Define G: ® x ®x O — R, by

G(r,s,I's)=|r—s|+|r—TIs|+|s—Is|Vr,s € D. (39)
Then, (@, G) is a complete G-metric space and I’ is con-
tinuous for all v € @. Define ¢ € ¥ by ¢(x) = x/2 for all x> 0.
To see that I' is a Jaggi-type hybrid (G — ¢)-contraction,
notice that G(I'r,I's,I?s)=0 for all r,s€ (~1,1). Hence,

inequality (9) holds for all r,s € (-1, 1).



Now, for r,s€ {-1,1}, if r=s=1, then G(I'r,Is,I"*s)
=0 for all g>0. If r=s=-1, then letting A, =1,=1/2
and g =1, we obtain

G(I'r, I's, I'’s) = G<_—, —, _> =
5°5°5

Also, for g=0, we have

G(Fr, Ts, 1"25) = g < % <1—52) =¢(M(r,s,Is)). (41)

If r # s, then letting A, = 2/10, A, = 4/5, and q = 3, we obtain

. 111 1 -1 1
G(Fr,Fs,Ts):G — == =G|=, —, =
5°55 5 55
4 8 1/16 1 1
=—-<-=—-(—)==(M|-1,1, =
5 5 2\5 2 5
1 -1
= 5 (M(l,—l, ?>> =¢(M(r,s,Is)).

Also, for g =0, we take A, = A, = 1/2. Then,

-1 11 1 -1 1
G(Fr,Fs,F25)=G — == =Gl=, —, =
555 5 5°5
4 49 1/98 1 1
= < —=—| — | == M —1’ 1) _
5 50 2(50) 2( ( 5>)
1 -1
=3 (M(l,—l, 5)) ¢(M(r,s,I5s)).

Hence, inequality (9) is satisfied for all , s € @. Therefore, I'
is a Jaggi-type hybrid (G — ¢)-contraction. Consequently, all the
assumptions of Theorem 19 are satisfied, and r = 1/5 is the fixed
point of I.

We now demonstrate that our result is independent of
the result of Karapmar and Fulga [1]. Let d : ®x® — R,
be defined by

(43)

d(r,s)=|r—s|Vr,s e ®. (44)

Consider r,s € {1, 1} and take for Case 1, r #s, A; =3/4,
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A, =1/4, and g = 1. Then, inequality (9) becomes
-1 11 1 -11 4 43
G(I'r,Is,I*s)=G(—> =, =) =G|z —» 2 ) =2 < =
5 55 5 5°5 5 50
1 /43 1 1
= —|==(M[-1,1, -
()32 (4(213))
-1
(M(l,—l, 5)) =¢(M(r,s,Is)),

(45)

N = N

while inequality (7) due to Karapmar and Fulga [1] yields

-1 1 1 -1 2 37 1 /37
d(”’m:d(? 5) =d<§’ ?) =57 700 z(%)
(M(-1,1)) = 3 (M(1-1)) = p(M(1,5)).

(46)

N =

Also, Karapmar and Fulga [1] declared in Definition (17)
that  and s are distinct, since M(r, s) is undefined for Case 1
if r = s. However, our result is valid for all r, s € @\ Fix(I').

The above comparison is illustrated graphically for all r
,s € {-1, 1}, using the following Figures 1 and 2.

Therefore, Jaggi-type hybrid (G — ¢)-contraction is not
Jaggi-type hybrid contraction defined by Karapinar and
Fulga [1], and so Theorem 1 due to Karapinar and Fulga
[1] is not applicable to this example.

Corollary 22 (see Theorem 14). Let (D, G) be a complete G
-metric space, and let I : ® — @ be a mapping satisfying
the following condition:

G(I'r, T's, I['t) <kG(r, s, 1), (47)

for all 1,s,t € @ where 0<k < I; then, I has a unique
xed point (say u) and I is G-continuous at u.
p y

Proof. Consider Definition (18) and let I's=t, A, =0, A, =1,
q>0,and ¢(p) =kp for all p >0 and k € [0, 1). Clearly, ¢ € ¥
and I’ is a Jaggi-type hybrid (G - ¢)-contraction. Hence, (9)
coincides with (6) of Theorem 14 due to Mustafa [2]. There-
fore, it is easy to see that we can find a unique point u in @
such that I'u=wu and I is G-continuous at u. O

Corollary 23 (see [10], Theorem 3.1). Let (®,G) be a
complete G-metric space. Suppose the mapping I : © — @
satisfies

G(I'r, I's,IT't) < $(G(1,5, 1)), (48)

forallr,s,t € . Then, I' has a unique fixed point (say u)
and I is G-continuous at u.

Proof. Consider Definition 18 and let I's=t, A, =0, A, =1
and g > 0. Then,

M(r,s,t) = G(r,s,t), (49)
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Ficure 1: [llustration of contractive inequality (9) for all r,s € {-1,1}.
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FiGuRre 2: [llustration of contractive inequality (7) for all ,s € {-1,1}.

for all r, s, t € @. Hence, inequality (9) becomes
G(I'r, I's, IT't) < ¢(G(r, s, 1)), (50)

forall r,s,t € @ and ¢ € ¥. This coincides with Theorem
3.1 due to Shatanawi [10] and so the proof follows in a sim-
ilar manner. U

By specializing the parameters A,(i=1,2) and g, as well
as letting ¢(p) = pp for all p > 0 and for p € (0, 1), the follow-
ing result is also a direct consequence of Theorem 19.
Corollary 24. Let (@, G) be a complete G-metric space. If

there exists y € (0, 1) such that for all r,s € O, the mapping
I': @ — O satisfies

G(I'r,I's, I%s) < uG(r, s, I's), (51)

then I' has a fixed point in O.

4. Applications to Solution of Integral Equation

In this section, Corollary 24 is applied to examine the exis-
tence criteria for a solution to a class of integral equations.
Ideas in this section are motivated by [7, 11, 12].

Consider the integral equation

b
0)= | Zoftere)dsyelab. ()

a

Let ®=C([a,b],R) be the set of all continuous real-
valued functions. Define G: ® x @ x ® — R, by

G(r,s, I's) = max|r(y) = s(y)| + max|r(y) = I's(y)| + max|s(y)I's(y)|
y€[ab] y€[ab] y€[ab]

(53)

Vr,sed,y€|a,b]. (54)

Then, (@, G) is a complete G-metric space.



Define a function I' : @ — @ as follows:

b
Ir(y) :J L x)f (x5, r(x))dx, y € [a,B].  (55)

Then, a point u* is said to be a fixed point of I if and
only if u* is a solution to (52).

Now, we study existence conditions of the integral equa-
tion (52) under the following hypotheses.

Theorem 25. Assume that the following conditions are
satisfied:

(C) & :[a,b] x
are continuous

(C,) For all r,s € @, x € [a, b], we have |f(x,r(x)) - f(x,
s(x))] < [r(x) = s(x)|

(C,) maxye[a)b}jzg(y, x)dx < p for some p< 1

[a,b) — R, and f:[a,b]xR— R

Then, the integral equation (52) has a solution u* in ®.

Proof. Observe that for any r, s € @, using (55) and the above
hypotheses, we obtain

b
|[Tr(y) = T's(y)| = J [Z 0, %)f (6 1(x)) = L (3> 0)f (% 5(x))Jdx
b
< | Z0x0)If (6 r(x)) — f(%5(x))|dx
< bfZ()/,x)|r(x)—s(x)|dx
b
< | #02) maxlr(x) - s(x)
< max|r(y) =s(y)]
(56)
O

Using this in (54), we have

G(Fr,Fs,F2 ) max|Fr—Fs|+max{Tr—T25|
y€[ab] y€lab]

+ maX’Fs—Fzs’ <ymax|r—s|
y€lab] y€[ab]
+;,¢max|r—1"5| +;4max|s—1"s|
y€la,b] y€[ab

y(max|r—s| + max|r—Ts|+ maxs—Fs>
y€la,b] y€la.

=uG(r,s, Is).
(57)

Hence, all the required hypotheses of Corollary 24 are
satisfied, implying that there exists a solution u* in @ of
the integral equation (52).

Conversely, if u* is a solution of (52), then u* is also a
solution of (55) so that I'u* =u*, that is, u* is a fixed
point of I'.
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Remark 26.

(i) We can deduce a number of corollaries by particu-
larizing some of the parameters in Definition 18

(ii) None of the results presented in this work can be
expressed in the form G(r,s,s) or G(r,r,s). Hence,
they cannot be obtained from their corresponding
versions in metric space

5. Conclusion

A generalization of metric space was introduced by Mustafa
and Sims [3], namely, G-metric space and several fixed point
results were studied in that space. However, Jleli and Samet
[5] as well as Samet et al. [6] established that most fixed
point theorems obtained in G-metric space are direct conse-
quences of their analogues in metric space. Contrary to the
above observation, a new family of contractions called
Jaggi-type hybrid (G — ¢)-contraction is introduced in this
manuscript and some fixed point theorems that cannot be
deduced from their corresponding ones in metric space are
proved. The main distinction of this class of contractions is
that its contractive inequality is expressible in a number of
ways with respect to multiple parameters. Consequently,
some corollaries including recently announced results in
the literature are highlighted and analyzed. Nontrivial com-
parative examples are constructed to validate the assump-
tions of our obtained theorems. Furthermore, one of our
obtained corollaries is applied to set up novel existence con-
ditions for solution of a class of integral equations.
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In this paper, we present improved iterative methods for evaluating the numerical solution of an equilibrium problem in a Hilbert
space with a pseudomonotone and a Lipschitz-type bifunction. The method is built around two computing phases of a proximal-
like mapping with inertial terms. Many such simpler step size rules that do not involve line search are examined, allowing the
technique to be enforced more effectively without knowledge of the Lipschitz-type constant of the cost bifunction. When the
control parameter conditions are properly defined, the iterative sequences converge weakly on a particular solution to the
problem. We provide weak convergence theorems without knowing the Lipschitz-type bifunction constants. A few numerical
tests were performed, and the results demonstrated the appropriateness and rapid convergence of the new methods over

traditional ones.

1. Introduction

Let IT stand for a certain Hilbert space and = stand for a
nonempty closed convex subset of IT. The research is about
an iterative technique for solving the equilibrium problem
((1), to make it short). Let I : IT x II — R be a bifunction
with I'(y,,y,) =0, for each y, € Z. An equilibrium problem
for granted bifunction I" on £ is interpreted this way: find
h* € E such that
I'(h*,y,)=0, Vy €& (1)

The numerical evaluation of the equilibrium problem
under the following conditions is the focus of this study.
We will assume that the following conditions have been
satisfied:

For I'l, the solution set of a problem (1) is denoted by
sol(I', ) and it is nonempty.

For I'2, a bifunction I is said to be pseudomonotone [1,
2], i.e.,

TL(y,0,)20=>T(y,5) <0, Vy,y, €5 (2)

For I'3, a bifunction I' is said to be Lipschitz-type contin-
uous [3] on & if there exist two constants ¢, ¢, > 0, such that

T(y1ys) ST (v y,) + T ys) +alln _)’2”2

2 - (3)
+ollyy =yl Wypys€E
For I'4, for any sequence {y,} C Z satisfying y, — y*,
then, the following inequality holds:

lim supl'(y, y,) <T(y" 1), Yy, €. (4)

k—+00
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For (I'5), I'(y,,-) is convex and subdifferentiable on IT
for each fixed y, € IT.

Let us represent a problem’s solution set as sol(I, £),
and we will assume in the following text that this solution
set is not empty. Researchers are interested in the equilib-
rium problem because it connects many mathematical prob-
lems, including fixed point problems, vector and scalar
minimization problems, variational inequalities, comple-
mentarity problems, saddle point problems, Nash equilib-
rium problems in noncooperative games, and inverse
optimization problems (see for further information [2,
4-9]). It also has a variety of applications in economics
[10], the dynamics of offer and demand [11], and it con-
tinues to use the theoretical framework of noncooperative
games and Nash’s equilibrium models [12, 13]. The phrase
“equilibrium problem” was first used in the literature in
1992 by Muu and Oettli [9] and was further investigated
by Blum [2]. More precisely, we consider two applications
for the problem (1). (i) A variational inequality problem
for an operator J, : £ — I1 is stated as follows: find h* €
Z such that

(Sy(A")y, -h") 20, Vy,y,€5. (5)

Let us define a bifunction I as follows:

T(ypyy) =(S101): 72 =2) Vypy, €5 (6)

Then, the equilibrium problem converts into the prob-
lem of variational inequalities defined in (5) and Lipschitz
constants of the mapping J; are L =2¢, =2c,. (ii) Letting
amapping J, : £ — Z is said to x-strict pseudocontraction
[14] if there exists a constant x € (0, 1) such that

Yy, 9, €5

(7)

182y, - S2}’2”2 <|n _}’2H2 +l|(y, = Soy) — (12— 523’2)”2’

A fixed point problem (FPP) for S, : £ — Z is to find
h* € E such that §,(h") =h". Let us define a bifunction I’
as follows:

Fypy,) =01 =Sy =) Yy, €8 (8)

It can be easily seen in [15] that expression (8) satisfies
the conditions (I'1)-(I'5) as well as the values of Lipschitz
constants are ¢, = ¢, = (3 — 2«)/(2 — 2k).

The extragradient method developed by Tran et al. [16]
is one useful approach. Take an arbitrary starting point x,
€ IT; and the next iteration as follows:
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X, €5,

) 1
yp=arg mln{ﬂr(xk,)’) + 3 [|xx —)/|2},

yes (9)

. 1
s =argmin{ s, ) + 3y},
)/E.:

where 0<2<min {(1/2¢,),(1/2¢c,)} and ¢|,c, are two
Lipschitz-type constants.

The main goal is to create an inertial-type technique in
the case of [16] that will be designed to increase the conver-
gence rate of the iterative sequence. Such techniques have
already been established as a result of the oscillator equation
with damping and conservative force restoration. This
second-order dynamical system is known as a “heavy fric-
tion ball,” and it was first proposed by Polyak in [17]. The
important feature of this method is that the next iteration
is built on the previous two iterations. Numerical results
show that inertial terms improve the performance of the
approaches in terms of the number of iterations and elapsed
time in this context. Inertial-type approaches have been
extensively studied in recent years for certain classes of equi-
librium problems [18-26] and others in [27-33].

As a result, the following natural question arises: Is it
possible to develop new inertial-type weakly convergent
extragradient-type methods with monotone and nonmono-
tone step size rules to solve equilibrium problems?

In our study, we provide a positive answer to this ques-
tion, namely, that the gradient approach still generates a
weak convergence sequence when solving equilibrium prob-
lems involving pseudomonotone bifunctions using a novel
monotone and nonmonotone variable step size rule. Moti-
vated by the work of Censor et al. [34] and Tran et al
[16], we will describe new inertial extragradient-type
approaches to solving problem (1) in the context of an
infinite-dimensional real Hilbert space. Our primary contri-
butions to this work are as follows:

(i) We build an inertial subgradient extragradient tech-
nique with a novel monotone variable step size rule
to solve equilibrium problems in a real Hilbert space
and show that the resulting sequence is weakly
convergent

(ii) To solve equilibrium problems, we devise another
inertial subgradient extragradient technique that
leverages a novel variable nonmonotone step size
rule that is independent of the Lipschitz constants

(iii) Some results are investigated in order to address dif-
ferent kinds of equilibrium problems in a real Hil-
bert space

(iv) We offer numerical demonstrations of the suggested
methodologies for the verification of theoretical
conclusions and compare them to earlier results
[22, 35, 36]. Our numerical results indicate that
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the new approaches are useful and outperform the
current ones

The paper is structured as follows: in Section 2, prelimi-
nary results were presented. Section 3 gives all new
approaches and their convergence analysis. Finally, Section
5 gives some numerical results to explain the practical effi-
ciency of the proposed methods.

2. Preliminaries

In this part, we will go over several fundamental identities as
well as crucial lemmas and definitions. A metric projection
P.(y,) of y, €II is defined by

Pg(y,) = argmin{|ly, - y,||: y, € E}. (10)

The following sections outline the key characteristics of
projection mapping.

Lemma 1 (see [37]). Let Pz : I — = be a metric projection.
Then, there are the following features:
lys = P=)II” + [P=(2) = yall” < vy = 22ll”s - y1 €5y, €11,

y3=Pz(y;) (11)

if and only if
— Y3V, — <0, Vy,ekZ,
O1=Y3y2-73) yzﬁ (12)
=Pz <y =yl €5y, €Il

Lemma 2 (see [37]). For any y,,y, € II and £ € R. Then, the
following conditions were met:

1€, + (1= )y, |I” =€y, |I” + (1= ) [1y,]° = (1 = ©)|ly; =y,

>

H)’z"’)’z”ZS||)’1H2+2<)’2’y1+)’2>- (13)

A normal cone of 5 at y, € E is defined by

Ne(y)={ys €Il {y5y, = y,) <OVy, € 5}, (14)
Assume that U : £ — R is a convex function and sub-
differential of U at y, € 5 is defined by

00(y;) =1{y; €I1:0(y,) —O(y;) = (v ¥, —y1):Vy, € E}.
(15)

Lemma 3 (see [38]). Let U : £ — R be a subdifferentiable,
convex, and lower semicontinuous function on E. An element
X € B is a minimizer of a function U if and only if

0€00(x) + Nz(x), (16)

where 00 (x) stands for the subdifferential of U at x € E and
Nz(x) the normal cone of E at x.

Lemma 4 (see [39]). Let E be a nonempty subset of I and
{x,} be a sequence in II satisfying two conditions:

(i) For each x € Elim,__,_ ||x; — x|| exists

(ii) Each sequentially weak cluster point of {x,} belongs
to &

Then, sequence {x, } weakly converges to an element in E.

Lemma 5 (see [40]). Suppose that {a,} and {t,} are two
sequences of nonnegative real numbers satisfying the inequal-

ity

g <ap+ty, forallkeN. (17)

If YKt, < +00, then, lim;__,,  a, exists.

3. Main Results

In this section, we present a numerical iterative method for
accelerating the rate of convergence of an iterative sequence
by combining two strong convex optimization problems
with an inertial term. We propose the techniques listed
below for solving equilibrium problems.

Remark 6. (i) If { = 0 is used in the abovementioned method,
then, it is equivalent to the default extragradient method
[16] with the updated step size rule. (ii) From the expres-
sions in Algorithm 1, we have

+00 +00
Z(kak—xk—lH < ZﬁkIIXk—xk_1|| <+00. (18)
k=1 pst

It further implies that

im Bl — x| =0, (19)
—+00

Lemma 7. A sequence {21, } is converged to 1 and

%(2—\/§—¢>>

_ 2, <1<, 20
max {2¢;, 2c,} 0 0 (20)

min

Proof. Assume that I'(vi, Xiq) = T'(Vio ) = T (¥ Xge1) > 05
such that

(2= V2= 4) (Ive =2l + [ =241)
2T io %) ~ T (Vi ) ~ T ¥
(V20 (el + s =)
- 2[C1||Vk_)’k||2+‘:2”xk+1_)’kHZ]
n 2—\/2—
H(2-v2-9)

T 2max {c, 6}

(21)
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rooRy, < +00.

Moreover, choose {; such that 0 <} <, such that

min {{, (y/[lx, = x4 ()}

Be=

STEP 1: Compute

yeE
space
Compute

yelli
STEP 3: Compute

Tt = I T (Vi X01) = T (Vi yi) = T g K1) > 0,

2, otherwise.

STEP 0: Choose ;> 0,x_, %, € IL{ € (0,1),% € (0, 1), ¢ € (0,2 — v/2) with a sequence {y, } € [0,+00) such that

ika # .xkfl,

e otherwise.

y, = arg min{ 2, I'(vy, y) + 1/2||vj, — y||* Ywwhere v, = x; + i (3, — x5, )-
STEP 2: Given the current iterates x;_;,x;.y,. Firstly choose wy, € 9,I'(vy, y,) satisfying v, — 2 wj — ¥, € Nz(y,) and generate a half-

I ={z€Il: (vi— Dy, -y, 2 - y;) <0}.

gy =arg min{ I (yy) + 172[|vic -y}

min {2y, (2= V2= @)llve = yill* + (2= V2= $)llxicy = il 20 Voo 2041) = T (Vi i) = T3 %))}

STEP 4: If y, = v, then complete the computation. Otherwise, set k ==k + 1 and go back STEP 1.

ALGORITHM 1

Thus, we obtain lim 2, =2 This completes the proof

k—+00

of the lemma. O

Lemma 8. A sequence {2} is converged to 1 and

min

A(2-v2-9) 2,V<a<3, (22

max {2¢;, 2c,} " "

where P=Y[)p,.

Proof. Assume that I'(vi, X1 ) = T'(Vie i) = T (¥ Xps1) > 0
such that

(2= V2= ) (v~ el + 5 = 7el?)
2[0(vio X)) = T (Vio yi) = T (Vo X )]
A2 v2-9) (v P + i =)
- 2[C1||Vk—)’k||2+52||xk+1 _yk”Z}

u(z -V2- <p)

T 2max {c, 6}

(23)

Applying mathematical induction on the concept of 1,
, we have

u(z—x/i—sb)

T Thax {2¢),2¢,}°

<0 <0,+P5. (24)

Suppose that [2,; —2;]" =max {0,2;,, - 2;} and
[Qpir — 2y =max {0,—(3;,; — ;) }. Due to the definition
of {1}, we get

too +00
Z (A — )" = Z max{0, J;,; - J;} <P <+c0. (25)
k=1 k=1

That is, the series Y, (24, — 2;)" is convergent. The

convergence must now be proven of Y ;% (2;,, — 3;)". Let

ol (Qpsy = 24)” =+00. Due to the fact that 3y, — ;=
(g1 = )" = (Tper = 2p) > we could get

k k k

i —Jo = Z(3k+1 - = Z (D =)™ - Z (Teer =)~
k=0 k=0 k=0

(26)

Letting k — +oo in (26), we have 1, — —00 as k
— +00. This is an absurdity. As a result of the series con-
vergence ¥ (30— 3,)" and ¥ o(Ty, -2, taking k
— +00 in expression (26), we obtain . lim 3, =2. This

—>+00

brings the proof to a conclusion. O
Lemma 9. The following useful inequality is derived in Algo-
rithm 3.

Vy € Hk'
(27)

LW y) = UL W Xeer) = (Vi = X Y = X1 )
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STEP 0: Choose ;> 0,x_, %, € IL{ € (0,1),% € (0, 1), ¢ € (0,2 — v/2) with a sequence {y, } € [0,+00) such that
ZiSo ¥ < +oo.
Moreover, choose a non-negative real sequence {p, } such that Y [%p, < +oo and {; such that 0 <} < f3, such that
[ min {G, (wi/llx —x oy D} i # 2
g ¢ otherwise.
STEP 1: Compute

Y =arg 1'Pin{:lkr(vlo}’) + 172]| vy = y|* pwhere vy = x + (% = %)

ye.:
STEP 2: Given the current iterates x;_;,x;,y,. Firstly choose w; € 0,I'(vy, y,) satisfying v, — 2y wj — ¥, € Ng(y,) and generate a half-
space
Iy ={z €Il : (vi = Dy =y, 2= y;;) <0}
Compute

Xy = arg min{ 2, (y ) + 172[|vi - y*}.
yelly
STEP 3: Compute
min {3y + pp (2= V2= )tl|vie = yill* + (2= V2 = )iy = el P20 (Vi Xir) = T (Vi 33) = T X))}
D = § T (Ve X01) = T (Vo i) = T3 X01) > 0,
2y + py» otherwise.
STEP 4: If y, = v, then complete the computation. Otherwise, set k:==k + 1 and go back STEP 1.

ALGORITHM 2

STEP 0: Choose , > 0,x_,x, € IL{ € (0,1),x € (0, 1), ¢ € (0,2 — +/2) with a sequence {y, } € [0,+00) such that
YisoW < +00.
Moreover, choose (. such that 0 <, < 8, such that
_ | min {6 (willlxe = x4 )} if x # x4
, ¢ otherwise.
STEP 1: Compute

¥y = arg min{ 3, (v, y) + 1/2][v, ~ y|*}wwhere v = x, + {0~ ).
}/6.‘:
STEP 2: Compute

S = arg min{ L (o) + 1/20|ve =51}
STEP 3: Compute ’
min {2y, (2= V2= $)llvi = i ll* + (2= V2= $)llxicey = 7l P20 (Vo x611) = T (Vi i) = T (0o %))}
Tier = I TV X01) = T (Vi yi) = TG X01) > 0,
2y, otherwise.
STEP 4: If y, = v, then complete the computation. Otherwise, set k= k + 1 and go back STEP 1.

ALGORITHM 3

Proof. By use of Lemma 3, we have Thus, we have

1 V=X p ¥ = X y) = (0, Yy — X )+ (0 Yy — %1, ), Yy eIl
0682{:kr(yk")+EHVk_'”Z}(xkﬂ)+N17k(xk+1)~ (28) <k k1Y k+1> k< Yy k+1> < Y k+1> y (3(1)()

Thus, for v € 0I'(y;, Xy, ), there exists a vector v € Ny (

Since v € Ny (x,,) implies that (0, y — xy,;) <0 for all
Xiy,) such that

y €I}, thus, we have

U F Xy =V T 0 =0- (29) (Vi = X415V = Xpi1) S A0,y = Xy ), Yy €Il (31)




Since v € 0I'(y;, X, ), we have

TFWey) =T X)) 2 (0,) = Xpq), Yy ell (32)

Combining expressions (31) and (32), we have

Vy € Hk’
(33)

UL Y y) = UL Ve Xr1) = (Vi = Xps1> Y = X1 )»

O

Lemma 10. In Algorithm 3, we also have the following useful
inequality:

VyelZ.
(34)

UL (Ve y) = L (Ve yi) = (Vi = Yo ¥ = Vi)

Proof. The proof is analogous to the proof of Lemma 9. Next,
substituting y = x;,;, we have

T (Vio Xpa1) = T (Vo Vi) } 2 (Ve = Yoo X1 = Vi)~ (35)
O

Theorem 11. Let {x,} be a sequence generated by Algo-
rithm 3, and the conditions (I'1)-(I'5) are satisfied. Then,

the sequence {x,} converges weakly to h*.

Proof. By substituting y = 4" into Lemma 9, we have
UL G h”) = UL (e Xia) 2 (Ve = Xy BT = %) (36)
By the use of condition I'2, we obtain
(Vi = X110 Xy =) 2 L (Yo X511 ) (37)

From the expression in Algorithm 1, we obtain

F(Vio Xie1) = T (Vio yie) = L (Vg X1
(2Rl e ) 39
2:k+1 ’

which after multiplying both sides by 3, > 0 implies that

UL Wi K1) 2 L (Vi X41) = 2L (Vo i)
(2= V2= ) Bue(vic =3l + It = 2el?) - (39)
2:1k+1 .

Combining expressions (37) and (39), we obtain

(Vi = %> X1 =) 2 T (Vip X11) = T (Vio ¥ }
(2= V2= 9)Bor(Ilve =l + s =2l) - (40)
2:1k+1 .
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By using expression (35), we have
L (Vi Xi1) = T (Vo yi) } 2 (Vi =Yoo X = 20)- - (41)
Combining expressions (40) and (41), we have

(Vi = %1 Xper =) 2 (Vi = Yo X1 = Yi)

(2= V2= 9)Box(Ive =yl + Ir =) (42)
2:k+1 .

The following facts are available to us:

2 2
2(Vi = Xy Xy = 1) = [V =77 = [l = Vk||2 = X = B[

200k = Vio Vi — X)) = || Vi —)’k||2 + [ Xt —J’kHZ = [|vk _xk+1||2'
(43)
Thus, we have
2 2
e =B < v =B = vie= vl = %1 = 2l

(2= V2= ¢) 20x(Ilve = 7ell* + %11 =)
+
:lk+1

(44)

Since 3, — 13, thus, there exists a fixed natural number
k, € N such that

2
lim 2=k <1. (45)

k—+c0 g

Thus, we have

2 2
s =117 < v =B = [[vie= 2l = 11 = 2l

46
e (VI8 (Il el

Furthermore, it implies that

s =11 < v =) = (V2= 1) v =y

= (V2= 1) It =3l = S0 =yl + i = 2ilP)-
(47)

From expression (47), we obtain
# (12 # (12

[ =BT < (v =177 Y=y (48)

It is possible to write as an expression for every k >k,

such that

llker = 7] < [l + Cr(og = Xy) = 17| < | = B7[| + Q| — Xy |-

(49)
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Combining expressions (18) and (49) and Lemma 5
implies that

lim |jx,—h"||=1 forsomefinite!> 0. (50)
k—+00

By using the definition of v, we have

Vi =B (1” = [l + G loic = 24a) = 17 = | (14 Gy (e = 1)
= Gl =117 = (14 )l = B = C e
=7+ (14 G v = x| < (14 ) |,
= 1P = Gl = B+ 20l = i |
(51)

By using expressions (50) and (19) in the abovemen-
tioned formula, we may deduce that

lim |jv,-h"|| =1L (52)
k—+00
Thus, we have

%12 %12
e L e (O ) e
(2= V2= 0) Bue(vic =yl + i1 =il
+
3k+1

(53)
By using expressions (51) and (53), we obtain

%12 %12 %112
[ = (1 < (L G |l = 7|7 = Gl — A7 |7 + 28]k

(2— \/f—(/))%lk

—xa|P - 1- Vi =2l

i = %o |1

(54)

2
i = i I” < [l = 7

%2 %2 %2
= n =P+ 8= I = s = 7))
+ 20312 = x|
(55)

By taking the limit as k — +00 in expression (55), we
obtain

klin+1 Vi =yl = lim Iy, = xp,4]| = 0. (56)
—+00 k—+00

Thus, expressions (52) and (56) give that
lim [y =B = (57)
—>+00

By using expressions (50), (52), and (57), so that the
sequences {x;}, {v;}, and {y,} are bounded, therefore {x;
L, {w}, and {y} exist. Thus, lim,__,|x -k
limg_, oo llye =A% limg_, o |lvi — 7 ||>. Following that,
we will show that the sequence {x;} weakly converges to
h*. As a result, all sequences {x;}, {v;}, and {y,} are
bounded. We now demonstrate that each sequential weak
cluster point in the sequence {x,} is in sol(I', £). Consider
that z is a weak cluster point of {x; }, which means that there
is a subsequence of {x,} that is weakly convergent to z.
Then, z€ E,{y, } is also weakly convergent to z.Now let
demonstrate thatz € sol(I', £). We have obtained the follow-
ing by combining Lemma 9 with expressions (39) and (35):

Jk,nF()’km’J’) Z jkmr(ykm’kaH) + <Vkm — Xk, + Y T ka+1>
2, (e, %k,,,) =3, T (”km’ykm>

(2 ~V2- ¢)%:1km

2

- Yk, ~ Vk
e O
(2 - \/E - ¢> %jkm 2
- - X
23km+1 Hykm km+1

+ <Vkm = X110 ) —ka+1> 2 <Vkm =Yk, Xk, +1 —J’km>

(2 -V2- gb)%lkm

2
- 23, Hy kn ™V
(2 -V2- ¢) -y )
- PR H}’km = Xk, 41

+ <Vkm X, 410V T ka+1>’
(58)

where y is any member of IT;. The use of expression (56)
and the boundedness of the sequence {x,} implies that the
right-hand side of the last inequality is convergent to zero.
By using the condition I'4 and y;, — z, we have J; >21>

0 such as

0 <lim sup (ykm,y) <I(zy), Vyell,. (59)

m—>+00

Since £ is a subset of half-space IT,, it follows that I'(z
,¥) > 0,Vy € &. This proves that z € sol(I', £). Thus, Lemma
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STEP 0: Choose , > 0,x_, x, € I1{ € (0,1),% € (0, 1), ¢ € (0,2 — v/2) with a sequence {y, } € [0,+00) such that
353y, < +00.
Moreover, choose a non-negative real sequence {p, } such that Y [%)p, < +0o and {; such that 0 <, < f3, such that
| min {G (/e = x [D} i 2 # 2,
g ¢ otherwise.
STEP 1: Compute

Y =arg rPin{JkF(vk,y) +1/2]lvi = y||*}wwhere vy = x; + (% = xiy)-
yE:
STEP 2: Compute

K = arg min {3,030 7) + 172, ~)
STEP 3: Compute .
min {2 +pp (2= V2= )l = pel* + (2= V2= )l = 7l *72I0 Vo Xie1) = T (Vi i) = T o 01))}
Tirr = § T (Vi X01) = T (Vo yi) = T (o X41) > 0,

1y + py. otherwise.
STEP 4: If y, = v,, then complete the computation. Otherwise, set k:=k + 1 and go back STEP 1.

ALGORITHM 4

4 assures that {v, },{x;}, and {y,} converge weakly to A" as Moreover, choose {; such that 0 <{, < 8, such that
k — +00. O

We now present two iterative methods based on a min {{, L}, if x, # X,
monotone and nonmonotone variable step size rule and B = [1%% = x|l

two strongly convex minimization problems without the Ié
need for subgradient methods. The following is a description
of the second major result.

otherwise.

First, we have to compute
4. Results to Solve the Fixed Point Problem and

Variational Inequalities Vi =2 + (u(% = X 1)»
In this section, we solve fixed point problems and variational Vi =Ps(vi — 031 (vr))-
inequalities using the results from our main results. Expres-
sions (6) and (8) are employed to obtain the following con-
clusions. All the methods are based on our main findings,
which are interpreted as follows.

Having x;_,,x.y; with

Corollary 12. Assume that J, : E— II is a pseudomono-
tone, weakly continuous, and L -Lipschitz continuous opera-
tor and the solution set sol(F,,E)+ Q. Choose 1,>0,

X Xg€ILL€(0,1)x€(0,1),0€(0,2-+/2)  with  a Compute
sequence {y, } C [0,400) such that

X1 =P, (Vie = 81 (0))-

+00
Z Yy < +00. (60)
k=0 Update the step size in the following way:

(2= V2= ¢)ulvi= 2l + (2= V2= ¢ )l = il
min < 3,

= = , (S (v) - S X1 — Vi) >0,
o1 = IENCARETTARESN F0) =510, Fea =2

1, otherwise.

(61)

(62)

Iy ={zeIl : (vi = 4, (Vx) ~ Y2 —yy) S0}, foreachk=>0.

(63)

(64)

(65)
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Then, the sequences {x,} converge weakly to h* € sol(
3., E).

Corollary 13. Assume that §, : E — II is a pseudomono-
tone, weakly continuous, and L -Lipschitz continuous opera-
tor and the solution set sol(F,,E)#+@. Choose 1,>0,
X Xg€ILL€(0,1)x€(0,1),0€(0,2-+/2)  with  a
sequence {y, } C [0,400) such that

Z V) < +00. (66)

k=0

Moreover, choose a non-negative real sequence {p,}
such that Y ;%p, <+00 and {, such that 0<{, <, such
that

=

min {C, ”xv/k}, if x; # x4,
k

=X ||

g, otherwise.

(67)

(2= V2= ¢ )rllvic=3ill + (2= V2= ¢ )l =il

First, we have to compute

Vi =X + G = X))

Vi =Pa(vi — WS (v))-

Having x;_,,x.y; with

I ={zell: (vi— S (vi) =y 2 —y;) <0}, foreachk>0.

Compute
X1 = P, (Vie = 81 (0))-

Update the step size in the following way:

min ¢ 2, +py,

k1= 2(31 (Vi) = B1 k) Xkar = Vi)

2y +p, otherwise.

Then, the sequences {x;} converge weakly to i* € sol(
S, E).

Corollary 14. Assume that 3, : E— II is a pseudomono-
tone, weakly continuous, and L -Lipschitz continuous opera-
tor and the solution set sol(S;,E)#+ Q. Choose 1,> 0,

x_ % €L €(0,1) € (0,1),0€(0,2—+/2)  with a
sequence {y, } C [0,+00) such that

Yy < +oo. (72)
k=0

min o

(2= V2= v =yl + (2= V2= 0l =il

Moreover, choose {; such that 0 <{, < 3, such that

=X |

¢, otherwise.

By =

First, we have to compute

Vi =Xk + G — Xq)s
Vi =Pa(vi = 268 (Vi)

)
Xke1 = Pa(vie = 2651 (0k))-

Update the step size in the following way:

k+1 = 2(S1 (Vi) = SB1()> Xker = Vi)

1, otherwise.

s (S (V) = S 0)> Xk = i) > 05

min {c, ”.xL}, ika :,éxk_l,
k

if (1 (Vi) = S1 (k) X1 = k) > 05

(69)

(70)

(71)

(73)

(74)

(75)



Then, the sequences {x,} converge weakly to h* € sol(
3., E).

Corollary 15. Assume that §, : E — II is a pseudomono-
tone, weakly continuous, and L -Lipschitz continuous opera-
tor and the solution set sol(F,,E)#+@. Choose 1,>0,

X Xg€ILL€(0,1)x€(0,1),0€(0,2-+/2)  with  a
sequence {y, } C [0,400) such that
Z Yy < +00. (76)
k=0

Moreover, choose a non-negative real sequence {p,}
such that Y ;%p, <+oo and {; such that 0<{, <, such

(2= V2= vyl + (2 V2~ 0)rlbxers ~ il

Journal of Function Spaces

that

min {(’ kaL

if x, # x
—xkln}’ 1 e

By = (77)

G otherwise.
First, we have to compute

Vi =X+ G (o = Xp)s
Vi = Pa(vi = 268, (Vi) (78)
X1 = P (Vi = 2681 (7))

Update the step size in the following way:

B min ¢ 2, +pp
k+1 —

2y +p otherwise.

Then, the sequences {x;} converge weakly to i* € sol(
S, E).

Corollary 16. Assume that 3, : & — I is a k-strict pseudo-
contraction, weakly continuous, and L-Lipschitz continuous
operator and the solution set s0l(3,, £) # &. Choose 2, > 0,

x_ %, €I €(0, )€ (0,1),0€(0,2—+/2)  with a
sequence {y, } C [0,400) such that
z Yy < +00. (80)
k=0

Moreover, choose {; such that 0 < {, <3, such that

. [/ } .
min {{, — 54, ifx, #Fx
B, = { [ = %1 | FrTe (81)

¢, otherwise.

2(31 (Vi) = S1(Vk)> X1 = Vi)

s (S (V) = S 0k)> Xk = i) > 05

(79)

Compute

Vi =X+ G (o = Xp)s

Vi = Pe[vie= Ae(vie = S (vi))]-
Having x;_,, x;,;, with

I ={ze€&: (1 - )vi+ B(Vi) =y 2 = yx) <0}
(83)

Compute
Xe1 = Prr, [Vie = 0 = B2 (0))]- (84)

The step size rule for the next iteration is evaluated as
follows:

2{(vi = i) — [B2(vi) =B (i) > Xuer = Yi)

{ (2= V2= ¢ )lvie=3ill + (2= V2= ¢ )l =il
min < J,,
k+1 =

2, otherwise.

}’ if (Vi = i) = [B2(vi) = B2 0> Xier = 2%) > 0

(85)
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Then, the sequence {x,} converges weakly to h" € sol(
3., E).

Corollary 17. Assume that J, : E— II is a « -strict pseu-
docontraction, weakly continuous, and L-Lipschitz continu-
ous operator and the solution set sol(,,E) + &. Choose

2,50, x_;,x,€ITL € (0,1),x€ (0, 1), ¢pe(0,2—+/2) with
a sequence {y, } C [0,+00) such that

Z Yy < +00. (86)

k=0

Moreover, choose a non-negative real sequence {p,}
such that Y ;%p, <+oo and { such that 0<{, <f, such
that

min {C) HxL
k

=X |

¢, otherwise.

}, ika:,éxk_l,

By = (87)

(2= V2= 9) v =il + (2= V2= )l - P

11

Compute

Vi =X+ G = Xq)s

Vi = Pa[vie= DV = B2 (Vi)
Having x;_,, x;,;, with

I ={ze€&: ((1 - )vi+ 1SB(Vi) = Vi 2= yi) <0}
(89)

Compute
= %0k = S200))]- (90)

X1 =Py, [Vi

The step size rule for the next iteration is evaluated as
follows:

k1 =

min {jk + Pjs

Qi+ otherwise.

Then, the sequence {x,} converges weakly to h" € sol(
S, 2).

Corollary 18. Assume that 3, : 5 — I is a k-strict pseudo-
contraction, weakly continuous, and L-Lipschitz continuous
operator and the solution set sol(3,, £) # @. Choose 2, > 0,

x %, €I €(0,1), x€(0,1), ¢e(0,2—-+2) with a
sequence {y, } C [0,400) such that

+00

Yy < +oo. (92)

k=0

2((vi = i) = [B2(vi) = S2(0)]s Xier — i)

}’ i (vie = yx) = [S2(vie) = S2(7)]s X1 = i) > 0,
(91)

Moreover, choose {; such that 0 <{, <3, such that

. [/ } .
min { {, ———— 5, ifx #x_,,
Bi= { 1%k = 2 | ' (93)
¢, otherwise.
Compute

Vi =X+ (= x5 )s
Vi =Pz[vi = (v = B (Wi))]» (94)
X1 = Palvie = (v — B2 (0))]-

2((vi =) — [S2(vie) = B2 > Xaar = k)

| { (2-v2-9) v =yl + (2= V2= ¢ )l il
min { 3,
k+1 =

1, otherwise.

}’ if (Vi = i) = [B2(vie) = B2 (i) Xier = 2i) > 0

(95)
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—— Itr.method 1 -~ Itr.method 3
——— Itr.method2 - Itr.method 4

FiGure 1: All methods are compared computationally while x, = (0, 0,0, 0, O)T

100 4

1072 3

Q
1074 4
10_6 3 T T T T T T
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Elapsed time (sec)
—— Itr.method 1 -~ Itr.method 3
——~ Itr.method2 —  ---- Itr.method 4

Ficure 2: All methods are compared computationally while x, = (0, 0,0,0,0)"
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——— Itr.method2 - Itr.method 4

40
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FiGure 3: All methods are compared computationally while x, = (1,2,1,2,1)".

=
Q

FiGURE 4: All methods are compared computationally while x, = (1,2,1,2,1)

100 3
1072 5
1074 5
1076 5
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—— Itr.method 1 -~ Itr.method 3
——— Itr.method2 - Itr.method 4
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104 3

1076

10-8 T T T T T
0 10 20 30 40 50 60

Number of iterations

—— Itr.method 1 -~ Itr.method 3
~—~ Itr.method2 - Itr.method 4

Ficure 5: All methods are compared computationally while x, = (1, 2, 3,~4, S)T.

102

100 5

102

104 3

1076 3

10-8 T T T
0 0.1 0.2 0.3 0.4 0.5 0.6

Elapsed time (sec)

—— Itr.method 1 --— Itr.method 3
——— Itr.method2 - Itr.method 4

Ficure 6: All methods are compared computationally while x, = (1,2, 3,~4,5)".
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102 3

10_8 ] T T T T T
0 10 20 30 40 50 60
Number of iterations
—— Itr.method 1 -~ Itr.method 3
~—~ Itr.method2 - Itr.method 4

Ficure 7: All methods are compared computationally while x, = (2,-1, 3,4, 5)

T

102 3
100 4
102 5
=
Q
104 5
1076 5
10_8 T T T T T T T T T
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Elapsed time (sec)
—— Itr.method 1 -~ Itr.method 3
——— Itr.method2 - Itr.method 4

Ficure 8: All methods are compared computationally while x, = (2,-1, 3,4, 5)

T
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TaBLE 1: All methods” numerical values for Figures 1-8.

x Number of iterations Execution time in seconds
0 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2
(0,0,0,0, O)T 22 14 0.180260200000000 0.127609500000000
(L,2,1,2, I)T 23 16 0.226162200000000 0.152221400000000
(1,2,3,-4, 5)T 25 16 0.226667900000000 0.154296300000000
(2,-1,3,-4, 5)T 25 16 0.275009100000000 0.144512100000000
TaBLE 2: All methods” numerical values for Figures 1-8.

x Number of iterations

0 Algorithm 1 n [22]

Execution time in seconds
Algorithm 2 in [35]

Algorithm 1 in [22] Algorithm 2 in [35]
(0,0,0,0, O)T 44 33 0.340814700000000 0.312906600000000
(1,2, 1,2, I)T 54 35 0.652377900000000 0.351818000000000
(1,2,3,—4, 5)T 56 35 0.526694900000000 0.332574400000000
(2,-1,3,4, S)T 57 40 0.494837300000000 0.359039600000000
102
100 -
=. i
102 4 : ! |
H \ \
- \
! \
1 \
. \
a 107 A : . \
\ ‘\
1 \
H N \
: ! \
10-6 4 : ‘- |
i | \
1 \
: i
' |
1078 3 i
\
10_10 T T T T
0 5 10 15 20 25
Number of iterations
—— Itr.method 1 --— Itr.method 3
——— Itr.method2 - Itr.method 4

FiGURE 9: All methods are compared computationally while x, = (2,3,2,5,2)".

The step size rule for the next iteration is evaluated as
follows:

Then, the sequence {x,} converges weakly to h" € sol(
I—).

X x, €I €(0,1)x€(0,1), ¢e(0,2-+2) with a
3y E sequence {y, } C [0,+00) such that
Corollary 19. Assume that 3, : & — I is a k-strict pseudo- +00
contraction, weakly continuous, and L-Lipschitz continuous Z Y, < +00. (96)
operator and the solution set sol(3,, £) # @. Choose 3, > 0, k=0
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Elapsed time (sec)
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——— Itr.method2 - Itr.method 4
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FiGure 10: All methods are compared computationally while x, = (2, 3,2,5,2)"

102 3

1078 T T T T T
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—— Itr.method 1 -~ Itr.method 3
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Ficure 11: All methods are compared computationally while x, = (1,3,5,4,7)"
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102
100
102
Q=
104 3
106
10_8 T : T T T T T T T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Elapsed time (sec)
—— Itr.method 1 --— Itr.method 3
——— Itr.method2 - Itr.method 4
Ficure 12: All methods are compared computationally while x, = (1,3,5,4,7)".
102 3
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E : i
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—— Itr.method 1 -~ Itr.method 3
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Ficure 13: All methods are compared computationally while x, = (2,-3, 5, 9,-5)
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102

100

10*2 _

104

1076

10-8 T T T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Elapsed time (sec)

—— Itr.method 1 --— Itr.method 3
——— Itr.method2 - Itr.method 4

FiGure 14: All methods are compared computationally while x, = (2,-3,5,9,-5)".

TaBLE 3: All methods’ numerical values for Figures 9-14.

X Number of iterations Execution time in seconds

0 Algorithm 1 in [22] Algorithm 2 in [35] Algorithm 1 in [22] Algorithm 2 in [35]
(2, 3,2,5, Z)T 22 17 0.9305202000 0.808993700
(1, 3,5,4, 7)T 30 23 1.8477304000 0.945203900
(2,-3,5, 9,—5)T 33 25 1.3113005000 0.816565900

TaBLE 4: All methods’ numerical values for Figures 9-14.

X Number of iterations Execution time in seconds

0 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2
(2, 3,2,5, Z)T 09 05 0.366167800000000 0.202759300000000
(1, 3,5,4, 7)T 12 07 0.446752600000000 0.341142700000000
(2,-3,5, 9,—5)T 13 07 0.445763600000000 0.257909300000000

Moreover, choose a non-negative real sequence {p,} Compute

such that Y ;%p, <+oo and {; such that 0<{, <, such
that

_ v . Vi =X+ G (o = Xp)s
min {C, 7}, if x; # x4 ~
(B (97) Vi =Psvi = 2 (v = S (V)]s (98)

¢, otherwise. X1 = Pe[Vie = 2 = S (00))]-

By =
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The step size rule for the next iteration is evaluated as
follows:

(2= V2= 9) v =l + (2= V2= )l - P

Journal of Function Spaces

k1 =

min {:lk + Pjos

Jy+p;. otherwise.

Then, the sequence {x,} converges weakly to A" € sol(
3, E).

5. Numerical Illustrations

This section describes a number of numerical experiments
conducted to demonstrate the validity of the proposed
methods. Some of these numerical experiments provide a
thorough understanding of how to select effective control
parameters. Some of them demonstrate the advantages of
the proposed methods over existing ones in the literature.
All MATLAB codes were run in MATLAB 9.5 (R2018b)
on an Intel(R) Core(TM) i5-6200 Processor CPU @
2.30 GHz 2.40 GHz, with 8.00 GB RAM.

Example 20. The first sample problem here is drawn from
the Nash-Cournot oligopolistic equilibrium model in [16].
In this example, the bifunction I' can be formulated as hav-
ing

I(x,y)=(Px+Qy+cy—x), (100)
where P, Q, and vector ¢ are defined by
31 2 0 0 0 6 1 0 0 0 1
2 36 0 0 0 1 1.6 0 0 0 -2
P=l 0 0 35 2 0[|Q=[0 o0 15 1 0fc=[-1
0 0 2 330 0 0 1 150 2
0 0 0 0 3 0 0 0 0 2 -1
(101)

The eigenvalues of the matrix Q— P are as follows: —
2.9050, —2.7808, —1.0000,—0.8950,-0.7192. As a result, the
matrices Q — P and Q are symmetrically negative semidefi-
nite and symmetrically positive semidefinite, respectively.
Furthermore, the values for Lipschitz-like parameters are ¢,
=¢,=1/2|P- Q|| = 1.4525. The constraint set 5cRM is
regarded as

E={xeRM:-2<x,<5}. (102)

The beginning points for these numerical investigations
vary, as does the error term Dj = ||x;,; — x;||. Figures 1-8
and Tables 1 and 2 show several results for the error term

2((vie = i) = [S2(vie) = S (7)]s Xierr = k)

}» (Vi =210 = [S2(vie) = B2 ) Xewr =95 > 05

(99)

10~°. Consider the following information regarding control
settings:

(1) For Algorithm 1 in [22] (in short, Itr.Methodl), we
use

¢ =0.45,
1 (103)

B 2¢, + 8¢,

(2) For Algorithm 2 in [41] (in short, Itr.Method2), we
use

{=0.12,
%=0.11, (104)
=1

(3) For Algorithm 1 (in short, Itr.Method3), we use

2, =0.50,
{ =0.50,
%=0.55, (105)
¢ =0.05,
1
Yy = 2
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(4) For Algorithm 2 (in short, Itr.Method4), we use

2,=0.50
{=0.50,
n=0.55,
¢=0.05, (106)
1
Vi = 2
100
P e

Example 21. Consider that the possible set £ c RY is defined
as follows:

E={ueR":Au<b}, (107)

83)]

where matrix A has an order 100 x N. Consider that I':
x Z — R is expressed by

T(u,y)=(ZL(u),y—u), Vu,yek, (108)
where # : RY — RY is an operator evaluated as Z(u) =
Pu+r with re RY and P=QQ" + R+, where Q is an N
x N matrix, R is an N x N skew-symmetric matrix, and S
is an N x N positive definite diagonal matrix. It is simple
to demonstrate that I' is monotone and that the Lipschitz
constants are 2¢; =2¢, = ||M|| (for more information, see
[42, 43]). The beginning points for these numerical investi-
gations vary, as does the error term Dy =||x;,; — x|
Figures 9-14 and Tables 3 and 4 show several results for
the error term 107. Consider the following information
regarding control settings:

(1) For Algorithm 1 in [22] (in short, Itr.Methodl), we
use

¢ =0.45,
1 (109)

- 2¢, + 8¢,

(2) For Algorithm 2 in [41] (in short, Itr.Method2), we
use

{,=0.12,
%=0.11, (110)
=1

(3) For Algorithm 1 (in short, Itr.Method3), we use

21
2, =0.50
{=0.50,
n= 055, (111)
¢ =0.05,
1
Y= 2
(4) For Algorithm 2 (in short, Itr.Method4), we use
2, =0.50,
{=0.50,
% =0.55,
¢=0.05, (112)
1
V= 2
5 100
14k

6. Conclusion

The research proposed four explicit extragradient-like strat-
egies for dealing with an equilibrium problem in a real Hil-
bert space involving a pseudomonotone and a Lipschitz-type
bifunction. A novel step size rule that does not rely on
Lipschitz-type constant information has been proposed.
The convergence theorems and applications of the main
results have been demonstrated. Several experiments are
given to show the numerical behavior of our two algorithms
and to compare them to other well-known algorithms in the
literature.

Data Availability

The numerical data used to support the findings of this
study are included within the article.

Conflicts of Interest

No potential conflict of interest was reported by the authors.

Acknowledgments

The first and second authors would like to thank Phetcha-
bun Rajabhat University. This research was supported by
Chiang Mai University and the NSRF via the program man-
agement unit for human resources & institutional develop-
ment, research and innovation (grant number B05F640183).



22

References

(1]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

M. Bianchi and S. Schaible, “Generalized monotone bifunc-
tions and equilibrium problems,” Journal of Optimization The-
ory and Applications, vol. 90, no. 1, pp. 31-43, 1996.

E. Blum, “From optimization and variational inequalities to
equilibrium problems,” The Mathematics Student, vol. 63,
pp. 123-145, 1994,

G. Mastroeni, “On auxiliary principle for equilibrium prob-
lems,” in Nonconvex Optimization and Its Applications,
pp- 289-298, Springer, 2003.

G. Bigi, M. Castellani M. Pappalardo, and
M. Passacantando, “Existence and solution methods for
equilibria,” European Journal of Operational Research,
vol. 227, no. 1, pp. 1-11, 2013.

F. Facchinei and J.-S. Pang, Finite-Dimensional Variational
Inequalities and Complementarity Problems, Berlin Springer
Science & Business Media, 2002.

S. D. Flam and A. S. Antipin, “Equilibrium programming
using proximal-like algorithms,” Mathematical Programming,
vol. 78, no. 1, pp. 29-41, 1996.

I. Konnov, “Application of the proximal point method to non-
monotone equilibrium problems,” Journal of Optimization
Theory and Applications, vol. 119, no. 2, pp. 317-333, 2003.

I. Konnov, Equilibrium Models and Variational Inequalities,
vol. 210, Elsevier, 2007.

L. Muu and W. Oettli, “Convergence of an adaptive penalty
scheme for finding constrained equilibria,” Nonlinear Analy-
sis: Theory, Methods & Applications, vol. 18, no. 12,
pp. 1159-1166, 1992.

A. A. Cournot, Recherches sur les principes math’ematiques de
la th’eorie des richesses, Hachette, Paris, France, 1838.

K.J. Arrow and G. Debreu, “Existence of an equilibrium for a
competitive economy,” Econometrica, vol. 22, no. 3, p. 265,
1954.

J. Nash, “Non-cooperative games,” Annals of Mathematics,
vol. 54, no. 2, p. 286, 1951.

J. E. Nash Jr., “Equilibrium points in n-person games,” Pro-
ceedings of the National Academy of Sciences, vol. 36, no. 1,
pp- 48-49, 1950.

F. Browder and W. Petryshyn, “Construction of fixed points of
nonlinear mappings in Hilbert space,” Journal of Mathemati-
cal Analysis and Applications, vol. 20, no. 2, pp. 197-228, 1967.

S. Wang, Y. Zhang, P. Ping, Y. Cho, and H. Guo, “New extra-
gradient methods with non-convex combination for pseudo-
monotone equilibrium problems with applications in Hilbert
spaces,” Univerzitet u NiSu, vol. 33, no. 6, pp. 1677-1693, 2019.

D. Q. Tran, M. L. Dung, and V. H. Nguyen, “Extragradient
algorithms extended to equilibrium problems,” Optimization,
vol. 57, no. 6, pp. 749-776, 2008.

B. Polyak, “Some methods of speeding up the convergence of
iteration methods,” USSR Computational Mathematics and
Mathematical Physics, vol. 4, no. 5, pp. 1-17, 1964.

F. A. H. Attouch, “An inertial proximal method for maximal
monotone operators via discretization of a nonlinear oscillator
with damping,” Set-Valued Analysis, vol. 9, no. 3-11, p. 1,
2001.

A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, no. 1, pp. 183-202, 2009.

(20]

(21]

[22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

Journal of Function Spaces

V. Dadashi, O. S. Iyiola, and Y. Shehu, “The subgradient extra-
gradient method for pseudomonotone equilibrium problems,”
Optimization, vol. 69, no. 4, pp. 901-923, 2020.

D. V. Hieu, “An inertial-like proximal algorithm for equilib-
rium problems,” Mathematical Methods of Operations
Research, vol. 88, no. 3, pp. 399-415, 2018.

D. V. Hieu, Y.]. Cho, and Y. Bin Xiao, “Modified extragradient
algorithms for solving equilibrium problems,” Optimization,
vol. 67, no. 11, pp. 2003-2029, 2018.

A.N. Tusem and W. Sosa, “On the proximal point method for
equilibrium problems in Hilbert spaces,” Optimization, vol. 59,
no. 8, pp. 1259-1274, 2010.

T. D. Quoc, P. N. Anh, and L. D. Muu, “Dual extragradient
algorithms extended to equilibrium problems,” Journal of
Global Optimization, vol. 52, no. 1, pp. 139-159, 2011.

H. ur Rehman, P. Kumam, I. K. Argyros, M. Shutaywi, and
Z. Shah, “Optimization based methods for solving the equilib-
rium problems with applications in variational inequality
problems and solution of Nash equilibrium models,” Mathe-
matics, vol. 8, no. 5, p. 822, 2020.

H. ur Rehman, P. Kumam, Y. Je Cho, Y. I. Suleiman, and
W. Kumam, “Modified Popov’s explicit iterative algorithms
for solving pseudomonotone equilibrium problems,” Optimi-
zation Methods and Software, vol. 36, no. 1, pp. 82-113, 2021.
H. U. Rehman, P. Kumam, Q. L. Dong, Y. Peng, and
W. Deebani, “A new Popov’s subgradient extragradient
method for two classes of equilibrium programming in a real
Hilbert space,” Optimization, vol. 70, no. 12, pp. 2675-2710,
2021.

H. ur Rehman, P. Kumam, I. K. Argyros, N. A. Alreshidi,
W. Kumam, and W. Jirakitpuwapat, “A self-adaptive extra-
gradient methods for a family of pseudomonotone equilibrium
programming with application in different classes of varia-
tional inequality problems,” Symmetry, vol. 12, no. 4, p. 523,
2020.

P. Kumam, I. K. Argyros, W. Kumam, and M. Shutaywi, “The
inertial iterative extragradient methods for solving pseudomo-
notone equilibrium programming in Hilbert spaces,” Journal
of Inequalities and Applications, vol. 2022, no. 1, 2022.

H. ur Rehman, P. Kumam, W. Kumam, M. Shutaywi, and
W. Jirakitpuwapat, “The inertial sub-gradient extragradient
method for a class of pseudo-monotone equilibrium prob-
lems,” Symmetry, vol. 12, no. 3, p. 463, 2020.

H. ur Rehman, P. Kumam, M. Shutaywi, N. A. Alreshidi, and
W. Kumam, “Inertial optimization based twostep methods
for solving equilibrium problems with applications in varia-
tional inequality problems and growth control equilibrium
models,” Energies, vol. 13, no. 12, p. 3292, 2020.

J. Yang, “The iterative methods for solving pseudomontone
equilibrium problems,” Journal of Scientific Computing,
vol. 84, no. 3, 2020.

J. Yang and H. Liu, “The subgradient extragradient method
extended to pseudomonotone equilibrium problems and fixed
point problems in hilbert space,” Optimization Letters, vol. 14,
no. 7, pp. 1803-1816, 2019.

Y. Censor, A. Gibali, and S. Reich, “The subgradient extragra-
dient method for solving variational inequalities in Hilbert
space,” Journal of Optimization Theory and Applications,
vol. 148, no. 2, pp. 318-335, 2010.

H. ur Rehman, P. Kumam, A. B. Abubakar, and Y. J. Cho, “The
extragradient algorithm with inertial effects extended to



Journal of Function Spaces

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

equilibrium problems,” Computational and Applied Mathe-
matics, vol. 39, no. 2, p. 3, 2020.

N. T. Vinh and L. D. Muu, “Inertial extragradient algorithms
for solving equilibrium problems,” Acta Mathematica Vietna-
mica, vol. 44, no. 3, pp. 639-663, 2019.

H. H. Bauschke and P. L. Combettes, Convex Analysis and
Monotone Operator Theory in Hilbert Spaces. CMS Books in
Mathematics, Springer International Publishing, 2nd edition,
2017.

J. V. Tiel, Convex Analysis: An Introductory Text, Wiley, New
York, NY, USA, 1984.

Z. Opial, “Weak convergence of the sequence of successive
approximations for nonexpansive mappings,” Bulletin of the
American Mathematical Society, vol. 73, no. 4, pp. 591-597,
1967.

K. Tan and H. Xu, “Approximating fixed points of nonexpan-
sive mappings by the Ishikawa iteration process,” Journal of
Mathematical Analysis and Applications, vol. 178, no. 2,
pp. 301-308, 1993.

H. ur Rehman, P. Kumam, Y. J. Cho, and P. Yordsorn, “Weak
convergence of explicit extragradient algorithms for solving
equilibirum problems,” Journal of Inequalities and Applica-
tions, vol. 2019, no. 1, 2019.

Q. L. Dong, Y. J. Cho, L. L. Zhong, and T. M. Rassias, “Inertial
projection and contraction algorithms for variational inequal-
ities,” Journal of Global Optimization, vol. 70, no. 3, pp. 687-
704, 2017.

M. V. Solodov and B. F. Svaiter, “A new projection method for

variational inequality problems,” SIAM Journal on Control
and Optimization, vol. 37, no. 3, pp. 765-776, 1999.

23



Hindawi

Journal of Function Spaces

Volume 2022, Article ID 2775733, 7 pages
https://doi.org/10.1155/2022/2775733

Research Article

@ Hindawi

Some Fixed-Circle Results with Different Auxiliary Functions

Elif Kaplan ,! Nabil Mlaiki@,> Nihal Tas ,> Salma Haque )2

and Asma Karoui Souayah®”

'Ondokuz Mayis University, Department of Mathematics, Samsun, Turkey

Department of Mathematics and Sciences, Prince Sultan University, Riyadh, Saudi Arabia 11586

*Balikesir University, Department of Mathematics, 10145 Bal kesir, Turkey

*Department of Business Administration, College of Science and Humanities, Dhurma, Shaqra University, Saudi Arabia
*Institut préparatoire Aux études d’ingénieurs de Gafsa, Gafsa University, Tunisia

Correspondence should be addressed to Salma Haque; shaque@psu.edu.sa

Received 15 April 2022; Accepted 19 May 2022; Published 9 June 2022

Academic Editor: Santosh Kumar

Copyright © 2022 Elif Kaplan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As the generalization of the fixed-point theory, the fixed-circle problems are interesting and notable geometric constructions. In
this paper, we prove that some new necessary conditions are investigated for the existence of a fixed circle of a given self-mapping
in G-metric spaces. The well-known Braincari and Chatterjea contractive conditions are generalized for proving the uniqueness of
obtained theorems. Finally, an application to parametric rectified linear unit activation functions are given to show the importance

of studying the fixed-circle problem.

1. Introduction and Preliminaries

Recently, there has been a trend to work fixed-circle problems
in both metric spaces and some generalized metric spaces
[1-17]. For some self mappings, when the fixed point is not
unique, it is an open question about the geometric shape and
in some cases the set of fixed point form a circle. For example,
in establishing some applicable areas such as neural networks,
besides many others. This approach was initiated in [6, 7] to
examine the geometry of the set of fixed-points when the
number of the fixed-points of self-mappings is more than
one on both metric and S-metric spaces. Fixed-circle theorems
were proved and extended with various aspects and were
applied to discontinuous activation functions (for example,
see [18-20] and the references therein), to rectified linear units
activation functions used in the neural networks [21].

In this paper, we establish various fixed-circle theorems
in G-metric spaces. Different examples and application to
parametric rectified linear unit activation functions are con-
sidered to illustrate the usability of our obtained results.

Firstly, we recall the concept of a G-metric space.

Definition 1.1 (see [22]). Consider the set F# & and G : §F
x Fx F—> RU{0} such that, for all £,{, @, 7 € ¥, the fol-
lowing conditions are satisfying:
(G1)G(, ¢, @)=0ifand only if E={=a;
(G2)0<G(&,&,Q) forall &, e Fwith £+
(G3)G(8,E0) <G, @) for all §,{, @ € F with n+ @;
(64)G(6.8.@) = (£ @,0) =6(¢, @,§) = -+, (symmetry
in all three variables);
(65)G(E,¢, @) < G(E, n.17) + G, 4, @) for all £,¢, @, €
&> (rectangle inequality).
Then, the function G is called a G-metric on .

Definition 1.2 (see [22]). A G -metric space (g, G) is called
be symmetric if

G(5,6,6)=G((. &%), (1)

forall &, e .


https://orcid.org/0000-0002-7620-3387
https://orcid.org/0000-0002-7986-886X
https://orcid.org/0000-0002-4535-4019
https://orcid.org/0000-0002-4514-0061
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2775733

In [23], Kaplan and Tas introduced the notion of circle
on a G-metric space. More precisely, let (F G) be a G
-metric space and &, € ¥, r € (0,00). The circle of center &,
and radius r > 0 is defined as

Ce(8orr)={5€ -

Example 1.1. Let & = R and d be a metric space. Let the func-
tion G : X Fx F— [0,00) be defined by

G(&¢, @) =max {d(§,0), d((, @), d(@.§)}  (3)

for all &, {, @ € § [22]. Then, ($, G) be a G-metric space. Let
us consider the function d : x F— R as

G(8p, & 8) =7} (2)

A(&,0) =" - & (4)
for all £, € §. Then, we get
Ce(In2,In4)=In6 (5)
the circle of center In 2 and radius In 4.

They also introduced the notion of fixed circle on a G
-metric space [23]. Let (¥, G) be a G-metric space and Cg(
&y, 1) be a circle. For a self-mapping T : F— &, if TE=¢
for all £ € Cg(&,, r) then, the circle Cg(&,, r) is said to be a
fixed circle of E.

2. Some New Existence Conditions for Fixed
Circles with Auxiliary Functions

Now, we present some new existence theorems for fixed cir-
cles of self-mappings.

Theorem 2.1. Let (¥, G) be a G -metric space and Cg(&,, )
be any circle on . Consider M, : R* U {0} — R as

—-r i 0
Mrm):{z Z:o 6)

for all ne R* U{0}. If the self-mapping T :F—F is a
function such that, for all & € §, the following conditions are

Sulfilled:
(1) G(&), &, TE) =1 forall E€ Cx(&), 1),
(2) G(TE, TE, ) > 1 for all§,{ € Cg(&,, 1) with &+,

(3) G(ZE, TE () < G(§,8,0) - M, (G(TE, TE,E))  for
all§,{ e Cy(&), 7).

Then, the circle Cg(&,, v) is a fixed circle of T.

Proof. Fix &€ Cg(&,, r). By hypothesis (1), we have T €
Cg (&, r) for all & e Cg(&,, r). We claim that & = TE, that is,
& is a fixed point of €. Now, let us suppose that & + TE.
Firstly, using the condition (2), we obtain
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Then, it follows from the inequalities (7) and (8), which
is a contradiction. Hence, it should be & = TE. As a conse-
quence, ¥ fixes the circle Cg(&,, 7). O

Remark 2.1.

(1) Note that, in Theorem 2.1, the center of Cg(&,, 1)
need not to be fixed

(2) Theorem 2.1 generalizes Theorem 3 given in [9].

(3) Since the notion of a G-metric and an S-metric are
independent (see, [24] for more details), then Theo-
rem 2.1 is independent from Theorem 4.1 given
in [1].

Example 2.1. Let & =[0,00) be the interval of nonnegative
real numbers and let G : Fx Fx F — [0,00) be defined by

<s,c,w>={ pemimo )
max {,{,®} otherwise

for all £,{, @ € §. Then, G is a G-metric on .
The circle Cg(1, 3) is obtained as follows:

Co(l,3)= (€ 6(LEE =3} = (3} (10)
T, : & — & is defined by
‘z1£={" ey (1)
3 if§#1

for all £ € § and « # 1, then T, satisfies all the hypotheses of
Theorem 2.1 and the circle Cg(1, 3) is fixed by €. That is,
the self-mapping ¥, has the unique fixed point & = 3. Notice
that the center 1 of the circle Cg(1, 3) is not fixed by the self-
mapping <.

Theorem 2.2. Let (F, G) be a G -metric space, Cg(&,, 1) be
any circle on § and let define ¢ :  — [0,00) by

9(§) =6(5.8. &), (12)
for & € . Suppose that the following conditions hold:

(1) G(§,& FE) < (&) + o(TE) - 2r,
(2) G(TE, TE, &) <,
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forall& e Cg(&,, r) such that T : F— F. Then, Cg(&,, 1) is
a fixed circle of <.

Proof. Let &, € C5(&,,r) be any arbitrary point. Together
with (1), we obtain

G(§, 8 TE) <p(§) + o(TE) —2r
<G(E &8y + G(TE, TE, &) —2r (13)

G
G(ZE, TE, &)

From (2), the point & should lie on or interior of the
circle Cg (&, 1). If G(TE, TE, &) < r, which leads to a con-
tradiction by the inequality (2.5). Therefore, it should be G
(TE, TEE)) =1. If G(TE, TE, &) <1, then by the inequality
(13) we have

G(& &8 TE) <G(TE, TE &) —r=r—-r=0 (14)

and we obtain T& =£. As a consequence, the circle Cg(&,, 1)
is fixed circle of <.

Remark 2.2. Notice that the condition (1) implies that & is
not inside Cg(&,,r) for & € Cg(&,, 7). Similarly, (2) guaran-
tees that T is not outside of the circle Cg (&, r) for & € Cg
(&p> 7). Thus, T& € Cg (&, r) for any & € Cg (&, r) and so we
get T(Co(Ey 1)) < ColEorr).

(1) Theorem 2.2 generalizes Theorem 2.2 given in [7].

(2) Theorem 2.2 is independent from Theorem 3.11
given in [6].

Example 2.2. Let =R and the mapping G: FxFXF
— [0,00) be defined by

GE& L) =E-{|+ -] +|{-a|, (15)

for each &,{, @ € § [25]. Then, (&, G) is a G-metric space.
Let us take the circle Cg(0, 6). If we define &, : § — & by

7E+9V3
V3E+T

T8 =

(16)

for all £ € &, then I, confirms that the conditions (1) and
(2) in Theorem 2.2. Hence, the circle Cg(0, 6) is a fixed circle
of T,.

In the following example, we present an example of a
self-mapping that satisfies the condition (1) and does not
satisty the condition (2).

Example 2.3. Let =R and (¥, G) be the G -metric space
defined in Example 2.2. Let us consider the circle Cg(-2,4
) and define the self-mapping T, : § — F by

5 E=—4
TE=95 &=0 > (17)

10 otherwise

for all £ € §. Then, the self-mapping T, satisfies the condi-
tion (1) in Theorem 2.2 but does not satisfy the condition
(2) in Theorem 2.2. Obviously, ¥; does not fix the circle
Ca(-2,4).

In the next example, we present an example of a self-
mapping that satisfies the condition (2) and does not satisfy
the condition (1).

Example 2.4. Let =R and the mapping G: FxXFXF
—> [0,00) be defined by

G5, ¢ @) =max {|§ ~C, [§ - @, [C - @[}, (18)

for all £, {, @ € § [25]. Then, (F, G) is a G-metric space. Let
us take the circle C(0,1/2). If we define ¥, : §— & by

—5 ifE=-1

T l=(1

4E - le=1 > (19)
2
3 otherwise

for all £ € ¥, then €, confirms that condition (2) in Theorem
2.2 but does not satisty the condition (1) in Theorem 2.2.
Clearly, ¥, does not fix the circle Cg(0,1/2).

Now, we present the following theorem.

Theorem 2.3. Let (F, G) be a G -metric space and Cg(&,, 1)
be any circle on §. Let the mapping ¢ be defined as Theorem
2.1. If the self-mapping T : F— § is a function such that
for all E€ Cg(&),r) and ke |0, 1), the following conditions
are satisfied:

(1) G(&, &, TE) <9(§) - 9(T3),
(2) kG(E) E’ s ) + G((z& zf’ 50) 2 r,

then the circle Cg(&,, 1) is a fixed circle of €.

Proof. Let &€ Cg(&,, 7). Conversely, suppose that &+ Z&.
Then, take into account the conditions (1) and (2), we con-
clude that

G(§,§ TE) <9(§) - 9(ZE)
=G(§§,&) - 6(2E, 2L &)
=1 - G(TE TEE) <kG(EETE)  (20)
+G(TE T8, &) ~ 6(TE, TE, &)
=kG(& &, TE),



which is a contradiction k €0, 1). As a result, we get £ =T¢
and Cg(&,, 7) is a fixed circle of I. O

Remark 2.3. Notice that the condition (1) guarantees that T
is not in the exterior of the circle Cg(&,, 1) for & € Cg (&, 7).
Similarly, the condition (2) guarantees that T can lies on or
exterior or interior of the circle Cg(&,,r) for &€ Cg(&,, 7).
Hence T& should lies on or interior of the circle Cg (&, 7).

(1) Theorem 2.3 generalizes Theorem 2.3 given in [7].

(2) Theorem 2.3 is independent from Theorem 3.2 given
in [8].

Now, we present some examples concerning with self-
mappings which have a fixed circle.

Example 2.5. Let =R and (¥, G) be a G -metric space
defined in Example 2.4. Let us consider the circle Cg(1,3)
=3 and define the self-mapping T : F — F by

sg:{zw 6= (21)

5 otherwise

for all £ € §. Then, the self-mapping ¥ satisfies the condi-
tion (1) and (2) in Theorem 2.3. So, Cg(1, 3) is a fixed circle
of T..

Example 2.6. Let =R and the function G: FxFXF
— [0,00) be defined by

G(E,C,(D)=‘ef—e(’+‘e(—e‘n . (22)

+ ‘ef—e‘b

for all §,{, @ € §. Then, it can be easily checked that (g, G)
is a G-metric space. Let us consider the circle Cg(0,2) = {
In 2} and define the self-mapping ¥, : § — F as

TE =

6 , (23)

In5 otherwise

{E £€Cg(0,2)

for all £ € . So, the self-mapping T provides the condition
(1) and (2) in Theorem 2.3. Hence, Cg(0, 2) is a fixed circle
of Tg.

Next, we give an example of a self-mapping which
provides the condition (1) and does not provide the con-
dition (2).

Example 2.7. Let (§, G) be a G -metric space and Cg(&,, )
be a circle on . If we take T,& =&, as the self-mapping
on &, then we deduce that the self-mapping <, satisfies
the condition (1) in Theorem 2.3 but does not satisty the
condition (2) in Theorem 2.3. So, it can be easily shown that
2, does not fix a circle Cg(&,, 7).
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In the next example, we present an example of a self-
mapping which satisfies the condition (2) and does not sat-
isfy the condition (1).

Example 2.8. Let =R and let the function G : Fx FX F
— [0,00) be defined by

G @) =max {E- ¢, (-} E-al},  (24)

for all &, ¢, @ € & [25]. Let us consider the circle Cg(0, 5) and
define the self-mapping T : § — Fas Ty& =5 forall £ ¢
&- Then, the self-mapping T, provides the condition (2) in
Theorem 2.3 but does not provide the condition (1) in The-
orem 2.3. It can be easily shown that T does not fix the cir-
cle C5(0,5).

Theorem 2.4. Let (¥, G) be a G -metric space and Cg(&,, 1)
be any circle on §. Let the mapping ¢ be defined as Theorem
2.1. If the self-mapping T : §— & is a function such that
for all £ Cg(&p, 1) and ke 0,1), the following conditions
are satisfied:

(1) 6(5 & ) < max {9(§), 9(TE)} - 1,
(2) G(ZE, TE, &) - k6(E, £ TE) <1,

then the circle Cg(&,, 1) is a fixed circle of T.

Proof. Let &€ Cg(&,,r) such that &+ TE We show &=3¢
under the following two cases:
Case 1: Let max {¢(£), (&)} = ¢(&). Then, we get

G(8, 5 TE) < max {p(§), 9(TE) } —r=9(§) ~r=r—-r=0,
(25)

a contradiction. Hence, we get £ = &,
Case 2: Let max {@(),p(T&)} =¢(TE). Then, we
obtain

G(& & TE) < max {p(§), @(TE)} ~ r = p(TE) ~r
- G(TE, TE &) —r<r+kG(EE, TE)  (26)
-r=kG(E, §, Z¥),

a contradiction with k € 0, 1). Therefore, we have £ = IE&.
O

Consequently, the circle Cg(&,, r) is a fixed circle of E.

Remark 2.4. Notice that condition (1) guarantees that & is
not in the interior of the circle Cg(&,, r) for & € Cg(&,, 7).
Similarly, the condition (2) guarantees that £ is not the
exterior of the circle Cg(&,,r) for & e Cg(&),r). Hence T
EeCy(&y 1) for each &e Cy(&y, 1) and so we get T(Cg(
§0:1)) € Ce(&ps 1)

(1) Theorem 2.4 is independent from Theorem 4.2 given
in [1].
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(2) If we consider the self-mapping T :F—F
defined in Example 2.5, then ¥ satisfies the condi-
tions (1) and (2) in Theorem 2.4 and so Cg(1,3) is
a fixed circle of Ts.

Notice that the identity mapping Iy defined as Ig(§) =&

for all & € § satisfies conditions (1) and (2) (resp., (1) and
(2)) in Theorem 2.2 (resp., Theorem 2.3). Therefore, we
need a condition which excludes the identity map in Theo-
rem 2.2 (resp., Theorem 2.3). For this aim, we give in [23]
the following theorem.

Theorem 2.5 (see [23]). Let (§, G) be a G -metric space,
T F— & be a self-mapping having a fixed circle Cg(&,,
r) and the mapping ¢ be defined as 2.2. The self-mapping
< satisfies the condition

(I6)G(& & TE) < h[(5) — $(TS)); (27)

for all § € § and some h € [0, 1/4) if and only if T =Ig.

Now we give the another theorem which excludes the
identity map using the auxiliary function &, defined in (6).

Theorem 2.6. Let (3§, G) be a G -metric space, T : F— F
be a self-mapping having a fixed circle Cg(&,, r) and the map-
ping M, defined in (6). The self-mapping T satisfies the con-
dition

(I6)G(5, 8, FE) <M, (G(S, 6, TE)) + 1 (28)

for all§ € § if and only if T =Ig

Proof. Let £ € & be any point such that &+ IE. Using the
inequality (Ig), we get

G(&E TE) <M, (G(E,E TE)) +7 -
=G( & IE) —r+r=G6(,E 8),

a contradiction. Hence we get £ =Z§ and so T=1Ig. [
The converse statement is clear.

3. Some New Uniqueness Conditions for Fixed
Circles with Integral Type Contractions

In [26], Braincari gave an integral contractive condition
which was a generalization of Banach contraction in a metric
space. By the Braincari type contractive condition, we obtain
a uniqueness theorem as follows.

Theorem 3.1. Let (F, G) be a G -metric space and Cg(&,, )
be any circle on §. Let T : F — & be a self-mapping satisfy-
ing the inequalities of Theorem 2.1 (resp., Theorem 2.2, The-
orem 2.3 and Theorem 2.4). If the contractive condition

G(§£.0)

G(TLIEX)
J w(t)dt (30)

w(t)dt < CJ

0 0

is satisfied for all £ € C(&), 1), { € F— Cg(&y, 1) where ce|
0,1) and w: [0,00) — [0,00) is a Lebesque measurable
map which is summable (that is, with a finite integral) on
each compact subset of [0, 00) such that [ w(t)dt > 0 for each

e> 0, then Cg(&,, 1) is the unique fixed circle of <.

Proof. Suppose that the self-mapping T has two different
fixed circles Cg(&,,7,) and Cg(&,, 7). Let ue Cg(&y, 1)
and v € Cg(&,,r,) be arbitrary points such that u#v. We
show that G(u, u, v) = 0 and hence u = v. By the contractive
condition of ¥, that is, using the inequality (30), we have

G(u,u,v) G(Tu,Tu,Tv) G(u,u,v)
J w(t)dt = J w(t)dt < cJ w(t)dt (31)
0 0 0

which is a contradiction ¢ € [0, 1). Consequently, Cg (&, 7,)
is the unique fixed circle of <. O

Taking into consideration that Chatterjea type contrac-
tion condition [27], we prove the following theorem.

Theorem 3.2. Let (§, G) be a G -metric space and Cg(&,,7,)
be any circle on . Let T : § — & be a self-mapping satisfy-
ing the inequalities of Theorem 2.1 (resp., Theorem 2.2, The-
orem 2.3 and Theorem 2.4). If the contractive condition

G(TETEXT) G(EET0) G(ELTY)
J w(t)dt<n J w(t)dt+J w(t)dt

(32)

is satisfied for all £ € Cg(&,,7),{ € - Cg(&p> 1) and n €0,
1/2) where w : [0,00) — 0,00) is a Lebesque measurable
map which is summable (that is, with a finite integral) on
each compact subset of [0, 00) such that [fw(t)dt > 0 for each

&> 0, then the fixed circle of T is unique.

Proof. Assume that there exist two different fixed-circles
Cgs(&p> 1) and Cg (&, 1)) of the self-mapping T : F— .
Let u € Cg(&,, 1y) and v € Cg(&,, r,) be arbitrary points such
that u #v. Using the inequality (32) and the symmetric
property of G-metric, we obtain

G(u,u,v) G(Tu,Tu,Tv)
J w(t)dt :J w(t)dt

0 0

G(u,u,‘lv) G(v,v,Zu)
S"G w(t)dt+J w(t)dt>

0 0

G(u,u,v) G(v,v,u)
:U(J w(t)dt+J w(t)dt)

0 0

G(u,u,v)
= 211J w(t)dt,
0
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FiGURE 1: The activation function PReLU.

which is a contradiction. Consequently, it should be u=v
and thus Cg(&,, 1) is the unique fixed circle of <. O

Remark 3.1. The choice of used contractive condition in
uniqueness theorem is not unique. Any contractive condi-
tion used to derive the fixed-point theorem can also be
selected.

4. An Application to Parametric ReLU

In this section, we present a new application to “Parametric
Rectified Linear Unit (PReLU)” using the obtained fixed-
circle results. This activation function PReLU was defined
to generalize the traditional rectified unit and it adaptively
learns the parameters of the rectifiers (see [28] for more
details). This activation function is defined by

€ ifE<0

£ ifE20 .

PReLU(E) = {

with parameter c. Let us take &= [0,00) with the G-metric
defined as in Example 2.1 and ¢ =5. Then we have

58 ifE<0

£ if§z0 )

PReLU(&) = {

for all £ € 0,00) (see, Figure 1).

If we choose a circle Cg(0, 1) = {1}, then PReLU satisfies
the conditions of Theorem 2.1 (resp., Theorem 2.2, Theorem
2.3 and Theorem 2.4). Thereby, C5(0, 1) is a fixed circle of
PReLU. On the other hand, this activation function fixes
all circles Cg (0, r) with r > 0, that is, the number of fixed cir-
cles of PReLU is infinite. In this case, it is important because
it increases the learning capacity of the activation function.
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In this paper, we obtain new results which have not been encountered before in the literature, in multivalued quasimetric spaces,
inspired by Proinov type contractions. We use admissible function as proving theorems. We also give an example that supports

our theorems.

1. Introduction and Preliminaries

Fixed point theory has become an important research topic
after the famous mathematician Banach’s definition of the
metric fixed point [1]. Many theoretical and applied studies
have been done on fixed point theory. In the 21st century,
the fixed point is still a popular and dynamic research topic.
The concept of metric space, which forms the basis of the
fixed point theory, is generalized by many researchers and
new spaces (b-metric, quasimetric, partial metric, fuzzy met-
ric, etc.) are introduced. One of the important generaliza-
tions is quasimetric space proved in 1931 as follows.

Definition 1 (see [2-4]). Let ' # &. A function q: I x X
— Rfis a quasimetric on 2 if it satisfies the following:

q(tbu)y=q(u,t)=0t=u, )
q(t,w) <q(t, u) + q(u, w),

for all ¢, u,w € X in this case, the pair (2, q) is a quasi-
metric space.

Let g be a quasimetric on &, and the set B,(t,¢) = {w
€2 :q(t,w) <e}. Thus, the family {B,(t,¢): t € Z,e>0}
forms a base for a T, topology 7, on 2. Moreover, if A is
a subset of ', we denote by cl,(A) the closure of A with
respect to T, topology; we say that the subset A is 7

-closed if it is closed with respect to 7.

A sequence (t,) in a quasimetric space converges to t €
&, (in 7,) if and only if q(t, t,) — 0 as r —> c0. Moreover,
we say that the sequence (¢,) is

q

(1) left-Cauchy if for every e > 0 there exists r, € N such
that q(¢,,t,,) <e, whenever r,<r<m

(2) right-Cauchy if for every e>0 there exists r, € N
such that q(¢,,,t,) <e, whenever r,<r<m

Thereupon, a quasimetric space is called to be left (resp.,
right) complete if every left (resp., right) Cauchy sequence
converges (to respect ‘rq) (see, e.g., [5, 6, 40, 41]).

Nadler [7] is the first who introduced the framework
for multivalued contraction mappings. The author proved
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the important theorem generalized Banach principle using
the Hausdorft metric for multivalued mappings. After the
proof of Nadler theorem, the theory of multivalued con-
traction mappings attracted great attention and is used in
various branches of mathematics. Multivalent mappings
in different spaces are introduced. One of them is multiva-
lued mapping introduced in quasimetric-spaces by Shoaib
[8] (see also [9, 10]).

Let (X, q) be a quasimetric space. We shall denote by
P(X) the set of all nonempty subsets of 2, by €I () the
set of all nonempty closed bounded subsets of 2, and let
H () be the set of all compact subsets of 2.

Definition 2. Let £+ @ and Z : & — P(X) be a multiva-
lued map. A point t € X is said to be a fixed point of Z if ¢
€Z(1).

The set of the fixed point of a mapping Z is denoted by
F(Z).

Lemma 3 is an important condition in the following
main results.

Lemma 3 (see [8]). Let A and B be nonempty closed bounded
subsets of a quasimetric space (X, q) and let § > 1. Then, for
all t € A, there exists u € B such that q(t, u) < 6H,(A, B).

Nadler [7] stated that if A, B € K(2) in the metric spaces
it is also provided for § > 1. With similarly thinking, the fol-
lowing lemma can be written.

Lemma 4. Let A and B be nonempty compact subsets of a
quasimetric space (X, q), and let § > 1. Then, for all t € A,
there exists u € B such that q(t,u) < 6H,(A, B).

Many researchers have stated different studies on well-
known quasimetric spaces, see e.g., [11-13]. In recent years,
Alqgahtani et al. [14] introduced a new generalization in qua-
simetric spaces and defined A-symmetric quasimetric
spaces. This definition is as follows.

Definition 5 (see [14]). Assume that (X, g) is a quasimetric
space. If there exists a positive real number A > 0 such that

q(tu) < A-q(u.t), (2)

for all t, u € Z, then, the pair (2, q) is called a A -symmetric
quasimetric space.

To simplify the notations, in the following, we will mark
by (X, q), a A-symmetric quasimetric space.

It is clear that if A=1, thus (2, q), becomes a metric
space.
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Definition 6 (see [8]). Let (2,q), and A, Be P(X). A func-
tion H, : P(X) x P(X) — [0,00), defined by

H, (A, B) = max {supq(t, B), supq(A, u) }, (3)

teA ueB

where q(t,A) =inf,,q(t,u) and q(A,t)=inf,,q(u, 1)),
satisfies all the axioms of quasimetric and is known as the
Hausdorft quasimetric induced by the quasimetric q.

Example 7. Let (R, d) be a metric space and a function g
: Rx R — R*, where

~ 3d(t, u),
«RW—{d“u%

if t >u,

(4)

otherwise.

Then, (Z, g) is a 3-symmetric quasimetric space, but it is
not a metric space.

In the following, we shall collect some main properties of
a A-symmetric quasimetric space.

Lemma 8 (see [15]). Let (X, q), {t,} be a sequence in X
and t € X. Then,

(i) {t,} is right-Cauchy {t,} is left-Cauchy &{t,} is
Cauchy

(ii) if {u,} is a sequence in X and q(t,, u,) — O then
q(ur’ tr) —0

Recall the notion of a-admissibility introduced in [16,
17].

Definition 9. A map Z : & — X is defined a-admissible if
for every t,u € X, we have

a(t,u)>1= a(Zt, Zu) > 1, (5)
where a : £ x ' — [0,00) is an offered function.

Some authors [18-21] introduced by slightly modifying
this definition.

Definition 10. Let (2,9), and w : X x £ — [0,00). A mul-
tivalued mapping Z : 2 — €1, (Z) is called to be strictly *
-triangular-admissible on 2 if the following conditions are
satisfied:

(w,) for each t,u,veXZ, w(t,u)>1 and w(u,v)>1
implies w(t,v) > 1

(w,) for each t,u € I, w(t, u) > 1 implies w*(Zt, Zu) > 1

where w*(Zt, Zu) = inf {w(x, y): x € Zt, y € Zu}.

Definition 11. Let (Z,q) be a A-symmetric quasimetric
space, and let w : & x £ — [0,00). The space (2, q) is said
to be strictly w* -regular if for any sequence {t,} ¢ Z such
that w(t,, t,,,) >1 for all re N and ¢, — t as r — 00, we
have w(t,, t) > 1 for all r € N.
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In recent years, researchers working on the fixed point
theory seem to focus on introducing new contractions in
known spaces. These new contractions are also accepted by
many researchers and there are important studies, for exam-
ple, F-contraction ([22-26]), 8-contraction [27], and inter-
polation contraction [28].

In 2020, Proinov [29] introduced new and interesting
contractions in metric spaces. Proinov proved that several
fixed point results (Wardowski [22]; Jleli and Samet [27])
observed in recent years are the result of Skof’s fixed point
theorem [30], and he introduced a very general fixed point
theorem containing the main result of Skof.

Theorem 12 (see [29]). Let (X, d) be a complete metric space
and Z : & — X a map which satisfies the contractive type
condition:

y(d(Zt, Zu)) < @(d(t, u)) for allt, u € L with d(Zt, Zu) > 0,
(6)

where v, ¢ : R* — R are two functions such that

(i) o(m) <y(m) for all m>0
(ii) v is nondecreasing

(iii) limsup,, . @(m) <y(e+) for each m> 0

Hence, Z has a unique fixed point we XL and Z'(t,)
—w forall t,e X, as r — oo.

There are several studies using Proinov’s contractions;
some interesting ones are as follows: Alqahtani et al. [31]
proposed the Proinov type mappings by involving certain
rational expression in dislocated b-metrics. Alqahtani et al.
[32] introduced the common fixed point of Proinov type
contraction via simulation function. Rolddn Lépez de Hierro
et al. [33] examined multiparametric contractions in b
-metric spaces, inspired by Proinov results. Alghamdi et al.
[34], on the other hand, introduced a new type of contrac-
tion using admissible mappings, inspired by Proinov and E
-contraction.

Besides these, Karapnar et al. [35] combined contrac-
tions of Proinov [29] and Gérnicki [36] in complete metric
spaces and proved new fixed point theorems using admissi-
ble functions. Later, Ahmed and Fulga [37] generalized the
Gornicki-Proinov type contraction to quasimetric spaces.
Erdal et al. [38] published the notion of (o, 5, y, ¢)-inter-
polative contraction using a combine of interpolative con-
tractions, Proinov type contractions, and ample spectrum
contraction. Rolddn Lépez de Hierro et al. [39] proposed a
new class of contractions in non-Archimedean fuzzy metric
spaces, based on the Proinov fixed point results.

2. Main Results

Let us now give an important lemma that we will use in our
main results.

Lemma 13 (see [37]). Let {t,} be a sequence on (X, q) , such
that lim,__,_q(t,,t,,;) = 0. If the sequence {t,} is not left-
Cauchy sequence thus there exists an e> 0 and two subse-
quences {t,, }, {t, } of {t,} such that

lim g(t,,t,, ) =et. (7)

k—00

lim q(trkn’ tmk+1) =

k—00
Proof. Supposing that the sequence {t,} is not left-Cauchy,

we can find e > 0 and the sequences of positive integers {n;
}, {r;}, with I <r, < n, for every [ >0, such that

q(t,»t,) > 2e. (8)
O

On the other hand, since lim,__,__q(¢,, ,.;) =0, we can
find r, > 1 such that

e
q(tr’ tr+1) < %’ (9)

for every r >r,, where a =max {1, A}. Moreover, since the
space is supposed to be A symmetric,

) (10)

N

q(trﬂ’ tr) < Aq(tr’ tr+1) <
for every r > r,. Therefore,
2e< q(tr,’ tn,) < q(trl’ tr,+1) + q(trl+l’ tnl) < q(trl’ tr,+1)
e
+ Q(t,,IH, tn,+1) + q(thH’ tnl) < 5 + q(tr1+1’ tn,+1)
e
* % <e+t q(trl+1’ tn,+1)’
(11)
for every I > r;. Consequently, we have

q(tr,+1’ tnl+1) >6 (12)

for every > r,. Now, let m; be the smallest positive integer,
greater than 7, such that

q(trlﬂ’ tml+1) > 6 q(trl> tm,) >e. (13)
Thus, we have either
q(typt1) <e (14)

orq(t, .1 t,) <e. (15)

In the case of the first inequality holds,

e< q(trz’ tmz) < q(tfl’ tmz—l) + q(tml—l’ tm:) se+t q(tml—l’ tmz)’

(16)



and letting [ — oo, we get lim,_,,q(¢,,t,, ) =e+. Simi-
larly, in case of the second inequality holds, we can consider

r+1) + q( r+1> ml> < q(trp tr,+1) te
(17)
so, we also obtain lim;_,,q(t,,t,,) = e+. Now, by the tri-

angle inequality, and taking into account the above consider-
ations, we have

e<q( m})Sq(tr

e< Q( r+1> ml+1) q( > r,+1) + Q(tr,ﬂ’ tm1+1)
+ q( m+1° m,) q( ’ r,+1) + q<tr,+l’ tm,+1) (18)
+A'q( mp m,+1)’

and as [ — 00, we get
hm q( r+1 m,+1) e+. (19)

We will give multivalued

mappings.

(w, v, @)-contractive

Definition 14. Let (Z,q),, be a A-symmetric quasimetric
space, a mapping w : & x £ — [0,00) and Z : & —> CB(
) be a multivalued operator. We say that Z is a multivalued
(w, ¥, p)-contractive mapping if there exist two functions
¥, ¢ : (0,00) — R such that

Y (w(t, w)H,(2(1), Z(w)) < p(q(t ), (20)
for every t,u € 2 with w(t,u) > 1 and H,(Z(t), Z(u)) > 0.

Theorem 15. Let (2, q) , be a complete A-symmetric quasi-
metric space, and Z : £ — CB(X) be a multivalued (w, ¢
, @)-contractive mapping. Assume that following conditions
are satisfied:

(K ) Z is strictly x-admissible and there exist t, € X and
t, € Z(t,) such that w(t,,t;) > 1

(K ) if {t,} is a sequence in X such that w(t,,t,,;) > 1
forallr e N and t, — t as r — 00, we have w(t,, t) > 1

(H 3) y is nondecreasing and ¢(v) <y(v) for all v> 0

(#,) limsup,_.,@(v) <y(j+) for all j>0

Therefore, Z has a fixed point in X.

Proof. Let t, be an arbitrary point in 2 and ¢, € & such that
q(ty, Zty) = q(ty, t,) and q(Zt,, t,) = q(t,, t,). Let now t, €
Zt, be such that q(tl,Zt )=q(t,, t,) and gq(Zt,, t;) =q(t,,
t,). Continuing in this way, we can build the sequence {¢,}
of points in 2, such that ¢, € Zt,, with q(¢,, Zt,) = q(¢,,

t,.;) and q(Zt,, tr):q(tm, ) for r € N,. Moreover, by
condition (%), we have that there exist tO € and t; € Z(
t,) such that w(#y,t,) > 1. Supposing that r, #r, if r, € Z
r,, we get that t, is a fixed point of Z. Then, let t, ¢ Zt,. As
Z is a strictly =-admissible map, we have that =(Zt,, Zt,)
> 1. Thus, there exists t, € Z(t;) such that w(t,,t,)>1
which implies *(Zt,, Zt,) > 1. By continuing this process,
we can construct a sequence {t,} in 2 such that ¢,,; € Z(t,

Journal of Function Spaces

) where ¢, #t, for every r >0 (as otherwise, if ¢, € Z(t,),
thus ¢, is a fixed point of Z) and w(t,, t,,;) > 1. Therefore,
H,(Zt, ;,Zt,)>0. From Lemma 3 with w(t,,t,,,) > 1, we

obtain
q(t tr+1) w(tr—l’tr)Hq(Z(tr—l)’Z(tr))’ (21)

for each r > 1. Keeping in mind (%) and (20) and we get

‘//(q(t tr+1)) ll/(w(tr—l’ tr)Hq(Z(trfl)’Z(tr))) < (P(q(tr—h tr))‘
(22)
O

By hypothesis (%), we have

¥(q(te tn)) <94t 1)) <w(q(toty). (23)

Thus, since ¥ is a nondecreasing map, q(t t1) < q(
t,_;»t,) for each r > 1. So, the sequence {q(t,_;,t,)} is posi-
tively decreasmg Then, there exists G>0 such that

hmr—»ooq( r—1» ) G +.
Assuming that G > 0 on account of (23), we get a contra-
diction to supposition (%) as follows:

Y(G+) = lm y(q(t,t..,)) < lim sup ¢(q(t,_1,1,)) < lim sup p(v).

(24)

Therefore, G=0, as a result, lim,___g(¢,_;,t,) =0.

We prove that the sequence {¢,} is left-Cauchy. Let us
suppose by contradiction that the sequence {¢,} is not left-
Cauchy. Thus, by using Lemma 13, there exist e>0 and
two subsequences {t, },{t,, }, (t,, >t, >k) of {t,} such
that (7) is fulfilled. From (7), we conclude that q(t, .,
tm1) >€ and since the mapping Z is strictly triungular
admissible, w(t, ,t,, ) >1 for every k> 1. Substituting ¢ =
t, and u=t, in (7), we obtain for each k> 1,

(@t tmen)) < (W (0 b ) Hy (281, 21,)) <@ (a(tr 1, ))>
(25)

then,

tmk)) <v/(q(trk’tmk))’ (26)

for any k> 1, so that is q(t, ,;, t,, 1) <q(t,,

limg_,,q(t, 41>ty e1) =€+, we obtain limy_q(t, .1, )
= ¢ +. Therefore, we can write

W(q(trker tmk+1)) < ¢(q(trk’

t,,, ) Because of

> tmk)) < lim ()O(Y)’

y—e+

(27)

yle+) = lim y(q(t,0 b)) < lim supgp(q(t,

which contradicts the supposition (#,); then, {¢,} is left-
Cauchy sequence in (Z,q), so that it is Cauchy sequence
using Lemma 8. Therefore, the sequence {t,} is Cauchy in
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the complete A-symmetric quasimetric space and so con-
verges to limit t* € 2. Now, we consider the following cases.

Case 1. If g(t,,,, Z(t*)) =0 for some r € N, so by triangle
inequality of A-symmetric quasimetric space

Q(t*’ Z(t*)) < q<t*’ tr+1) + q(t1’+1’ Z(t*)) < q(t*’ tr+1)’ (28)

and thus, letting r — 00, we conclude that g(¢*, Z(¢t*)) <0,
that is,

q(t™, Z(t7)) =

Case 2. On the contrary, if q(t,,,, Z(t*)) > 0 for every r ¢ N
from (%), we have w(t,, t*) > 1 for all r € N. We claim that
q(t*, Z(t*)) = 0. Supposing, on the contrary, g(¢t*, Z(t*)) > 0
, there exists r € N such that g(t,, Z(t*)) > 0. Therefore, we
obtain

0. As Z(t*) is closed, we obtain t* € Z(t*).

Taking into account the condition (%), we get q(¢,,;,
Z(t*)) < q(t,, t*). Passing to limit as ¥ — oo, we obtain g(
t*,Z(t*)) < 0. Therefore,

q(t*,Z(t*)) =0, as Z(t*) is closed, t* € Z(t*).

Example 16. Let 2 =[0,00) be endowed with the 2-
symmetric quasimetric g : £ x 2 — [0,+00), where

a(t, ) = {Z(t—u), ift>u, (30)

u-—t, otherwise,
and a mapping Z : & — CB(

t
0,— N ift O)l’
Zt= { 8} o (31)
{2.3}

), defined as

otherwise.

We choose two functions y, ¢ : (0,00) — R with v is
nondecreasing, and ¢(m) < y(m) for all m >0 where y(m)
=m and ¢(m) = m/2. Let also

2, ift,ue|0,1],

w(t, u) = { (32)

0, otherwise.

We check that Z is a multivalued (w, y, ¢)-contractive
mapping of (20). Actually, if taking into account the way
the function w is defined, we have consider the case u,t € |
0,1].

Let then, t,u €[0,1], u>t. We get

t
q(0, Zu) = inf {0, g} =0,¢(0, Zt) = inf {0, g} =0, (33)

t t ot
q| =>Zu ) =inf 20——|,2|——E
8 u 8 8 8
=inf{2‘0—3,2
t 8

H,(Zt, Zu) = max {supq(t, Zu), supq(u, Zt)}

teZt ueZu
L |t
=max < sup inf -
tezt U 4

(Bk-2h-3

% }, sup inf (34)

uezu t

4

So, we obtain

=9(q(t, u)).
(35)

Therefore, (20) fulfilled. Further, all other cases are satis-
fying, from w(u, t) = 0. Consequently, by Theorem 15, map
Z has a fixed point, this being ¢ = 0.

Definition 17. Let (X, q),w: L XX — [0,00) and Z: X
—> CB(Z) be a multivalued operator. Z is said to be a mul-
tivalued C'iric’ type (w, v, ¢)-contractive mapping if there
exist two functions v, ¢ : (0,00) — R such that

y (w(t, WH,(Z(1), Z()) < (@t w),  (36)

for every t,u e 2 with w(t,u)>1 and H,(Z(t), Z(u)) >0
where

O(t, u) = max {q(t, u), q(t, Zt), q(u, Zu), (a(t, Zu) ; q(2t, u))}

(37)

Theorem 18. Let (X, q) be a complete A-symmetric quasi-
metric space, w: L x L — R\ {0} and Z : T — K(X)
be a multivalued C'iric’ type (w, v, p)-contractive mapping.
Assume that following conditions are satisfied:

(K ;) Z is strictly *-triangular-admissible and there exists
t, € X and t; € Z(t,) such that w(t,, t;) > 1

(%) if {t,} is a sequence in X such that w(t,,t,,;) > 1
forallreN and t, — t as r — 0o, we have w(t,, t) > 1

(Z 3) v is nondecreasing, and @(v) <y(v) for allv>0

(Z)limsup, . ..@(v)<y(j+) forallj>0

Therefore, Z has a fixed point in X.

Proof. By condition (%), and following the lines of the
proof of the previous theorem, we have that w(t,,t,,) > 1,
for every m>r>1. Moreover, H,(Zt,_;,Zt,) >0 and from

Lemma 3 with w(¢,, t,,;) > 1, we obtain

q(t tr+1) w(tr—l’tr)Hq(Z(tr—l)’Z(tr))’ (38)



for each r > 1. Keeping in mind (%) and (36), we get

V(4q(tp b)) S Y (w(tops 1) H(Z(8,0) Z(1))) S 9(O(t1s £,))-
(39)

As Z(t) is closed for every t € X, we get that ¢, € Z(¢,_,)
SllCh that q(tr—l’ tr) = q(tr—l’ Z(tr—l))’

V/(q(t tr+1)) (P(®(tr—1’ tr)) = (p(max {q<tr—1> tr)’ q

(s 2t (8 Z(8),

(e, 2(0)) + L2500 < max fa(t, 1 (00100
(40)

for every r> 1. |

If max {q<tr—1’ tr)’ q(tr’ tr+1)} = Q<tr’ tr+1> so lll(q(tr’ tr+1
) <o(q(t, t,.,)), from assumption (H,), this is a contra-

diction. Hence, we obtain q(t,_;,t,) > q(t,. t,,,), and

W(q(t tr+1)) q)(‘J(tr—l’tr))' (41)

Similarly, again using (%), we get

¥(q(te t) @@t 1)) <w(q(tity). (42)

But, the function y is nondecreasing map, so that we get
q(t,. t,..,) <q(t,_;,t,) for all r>1. Therefore, the sequence
{q(t,_. t,)} is positively decreasmg, and then, there exists
G=0 such that lim, _q(¢t,_;,t,)=G+. If G>0, from
(42), we obtain

w(G+)= lim y(q(t,
< lim sup o(p),

tr+1)) < rlgnoo sup (P(q(trfl’ tr))

(43)
which contradictions (%, ). Therefore, G = 0 and, as a result,

hm q( 1> t,)=0. (44)

We claim that {t,} is Cauchy sequence. Let us assume by
contradiction that the sequence {t,} is not left-Cauchy.
Then, by Lemma 13, we can find e > 0 and two subsequences
{t. > {tn }> (with my > 7 >k) of {t,} such that (7) holds.
Thereupon, we have that w(t, ,t, )>1 for all m; >r, >k

> 1. Letting t =, and u =1, in (9), we get

ll/(q(t”k“’ t""k“)) < w(w(t”k’ tmk)Hq (thk’ Ztmk)) = (P(®(t’k’ t""k))’
(45)

Journal of Function Spaces

for every k > 1, where

q<tfk’ tmk)’ q(t’k’ Zt’k)’ q(tmk’ Ztmk)’
Oty Ly, ) = max a(t,» Zt,, ) +a(Zt, . t,, )
2

(46)

Keeping in mind the way the sequence {t,} was define,
lett, ., €Zt, and t,, ,, €Zt, . Thus,
k k k k

q(trk’ tmk+l) + q( retl> )
2

q(trk’ tmk)’ q(trk’ trk+1)’ q(tmk’ tmk-H )’
< max Q(trk t .

q(trk’ tmk)’ q(trk’ trk+l)’ q(tmk’ tmkH)
a(t,ty) SO(t,, t,, ) = max

> rk+1) + q(trk-ﬁ-l’ tmk-ﬁ-l) + q(trkﬂ’ trk) + q(trk’ tmk)
2

(47)

Letting k — oo in the above inequality, and taking into
account (44), respectively (7), we get
klinoo(a(trk, t, ) = et. (48)
Moreover, since the function y is nondecreasing, taking
the limit superior when kK — 00 in (45) we get

y(e+)= 11m V(Q(trs1> tr)) <limsupg(O(2,,, 1, )) < limsupg(p),

e k—s00 p—et

(49)

which contradicts the supposition (#,); then, {t,} is left
Cauchy sequence in (Z,q), so that it is Cauchy sequence
using Lemma 8. Therefore, the sequence {¢,} is Cauchy in
the complete A-symmetric quasimetric space and so con-
verges to a point t* € . Now, we consider following cases:

Case 1. If q(t,,,, Z(t*)) =0 for some r € N, so by triangle
inequality of A-symmetric quasimetric space

(", Z(1) < (¢ tran) +q(t, Z(7)) <q(7 11), (50)

and thus, letting r — o0, we conclude that g(t*, Z(t*)) <0,
that is,

q(t*, Z(t")) = 0.As Z(t") is closed, we obtain t* € Z(t™).

(51)

Case 2. If we suppose the contrary, that is, g(t,,;, Z(t*)) =0
for any r, from (#,) we know that w(¢,,t*) > 1 for all r € N.
We assert that q(¢*, Z(¢*)) = 0. Suppose, on the contrary, g
(t*,Z(t*)) > 0. Thus, there exists r € N such that q(¢,, Z(t*
)) > 0 for every r. Using (36), we obtain

Y(q(t, 2(17))) v (w(t, ) Hy(Z(8,), 2(17)))

(52)
S@(O(t, 7)) <y(O(t, 7)),
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where

qt, 1)) q(tn Z(t,)) a(t Z(17)),

q(t, Z(t")) +9(2t,, t"))
2
q(tr’ t* ))’ q(tr’ tr+1))’ q(t*’ Z(t*))’

q(t, Z(t7)) + q(tr1> 1))
2

O(t,, t") = max

= max

(53)

Taking into account the condition (%), we get q(¢,.,;,
Z(t*)) < O(t*, Z(t*)). Passing to limit as r — 0o, we obtain
q(t*, Z(t*)) < q(t*, Z(t*)) a contradiction, then q(t*, Z(t*))
=0. As Z(t*) is compact, t* € Z(t*).

Corollary 19. Let (X, q) be a A-symmetric quasimetric space
and Z : XL — K(X) be a multivalued mapping satisfying
the condition:

v (Hy(2(1), Z(u))) <9(q(t u)), (54)

for every t,ue X, where the functions y,¢ : (0,00) — R
and H,(Z(t), Z(u)) > 0. The map Z admits a fixed point in
I provided that following conditions hold:
(K,) y is nondecreasing, and @(v) <y(v) for all v>0
(Ky) limsup, ,; ¢(v) <y(j+) for all j>0

Letting ¢(a) = dy/(a), in Corollary 19, we obtain the fol-
lowing result.

Corollary 20. Let (X, q) be a A-symmetric quasimetric space
and 7Z : X — K(X') be a multivalued mapping satisfying
the condition:

w(Hy(2(1), Z(u))) < Sy(q(t u)), (55)

for every t,ue I, where the functions v, ¢ : (0,00) — R
and H,(Z(t), Z(u)) > 0. The map Z admits a fixed point in
I provided that following conditions hold:

(K,) y is nondecreasing, and @(v) < y(v) for all v> 0;

(K) limsup, ., ¢(v) <y(j+) for all j> 0.
Corollary 21. Let (X, q) be a A-symmetric quasimetric space

and 7 : X — K(X) be a multivalued mapping satisfying
the condition:

Y (H,(2(1), Z(1))) < 9(©(t,0)), (56)

for every t,ue X and H,(Z(t), Z(u)) > 0, where the func-
tions v, ¢ : (0,00) — R and

O(t, u) = max {q(t, u), q(t, Zt), q(u, Zu), (q(t, Zu) + q(21, u))}

2
(57)

The map Z admits a fixed point in & provided that fol-
lowing conditions:

(K,) v is nondecreasing, and ¢(v) < y(v) for all v>0

(Ky) limsup, .. @(v) <y(j+) forall j>0

Taking ¢(a) = dy(a), in Corollary 21, we get the follow-
ing result.

Corollary 22. Let (2, q) be a A-symmetric quasimetric space

and Z : X — K(X) be a multivalued mapping satisfying
the condition:

¥ (w(t, WH,(Z(0), Z(w))) <Sy(@(t,w)),  (58)

for every t,ue X and H,(Z(t), Z(u)) > 0, where the func-
tions y, ¢ : (0,00) — R and

O(t, u) = max {q(t, u), q(t, Zt), q(u, Zu), (q(t, Zu) + q(21, u))}

2
(59)

The map Z admits a fixed point in & provided that fol-
lowing conditions hold:

(K,) v is nondecreasing, and ¢(v) < y(v) for all v>0

(Ky) lim sup, .. @(v) <y(j+) forall j>0

3. Conclusion

In this paper, we expand the very interesting results of Proi-
nov [29] in several ways: First, we involve a more general
form of the function by considering multivalued mapping.
Secondly, we refine the structure of the considered abstract
space with A-symmetric quasimetric space. Indeed, quasi-
metric space is one of the novel extensions of metric space.
Besides, A-symmetric quasimetric space is more reasonable
to work since almost all quasimetric space form A-sym-
metric quasimetric spaces. There are still rooms for the fixed
point results in the context of A-symmetric quasimetric
spaces.
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In this paper, we introduce the A-quadratic functional equation with three variables and obtain its general solution. The main aim
of this work is to examine the Ulam-Hyers stability of this functional equation in non-Archimedean Banach space by using direct
and fixed point techniques and examine the stability results in non-Archimedean random normed space.

1. Introduction

One of the most important areas of research in mathematics
is the investigation of stability issues for functional equa-
tions, which has its origins in concerns of applied mathe-
matics. The first question about the stability of
homomorphisms was given by Ulam [1] as follows.

Given a group (M, #), a metric group (M',-) with the
metric d, and a function ¢ from B and B’', does there exists
0 > 0 satisfying

d(p(u*v), $(u) - $(v)) <9, (1)

for all u,veB, then there exists a homomorphism h: B
— B’ such that

d(¢(u), h(u)) <&, (2)

for all u € B?

Ulam’s question on Banach spaces was partially
answered affirmatively by Hyers [2]. By assuming an infinite
Cauchy difference, Aoki [3] expanded Hyers” and Rassias’
theorems for additive and linear mappings, respectively.
Using the same method as Rassias [4], Gajda [5] discovered
a positive solution to the question p > 1. Rassias and Semrl
[6], as well as Gajda [5], have proved that a Rassias’ type the-
orem cannot be formed for p = 1.

The functional equation

P(u+v)=¢(u) +(v) (3)

is known as the Cauchy additive equation.
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Since the function ¢(u) =u is the solution of the func-
tional equation (3), every solution of the additive functional
equation (3) is called as an additive function. Every solution
of the functional equation (3), in particular, is called as an
additive function.

The functional equation

P+ v) +d(u—v)=2¢(u) +2¢(v) (4)

is known as the quadratic functional equation.

Since the function ¢(u) = u? is the solution of the func-
tional equation (4), each solution of the functional equation
(4) is called as a quadratic function. Every solution of func-
tional equation (4), in particular, is called as a quadratic
mapping.

Skof [7] established the stability of the quadratic func-
tional equation for the function f between normed space
and complete normed space. The authors [8-14] recently
examined the Ulam-Hyers stability results for the following
a-functional equation

2f (x) = 2f (y) = f (x +y) + & *f(a(x = y)), ()

in non-Archimedean Banach spaces.

The Skof theorem still applies when the relevant domain
B is replaced by an Abelian group, according to Cholewa
[15]. See [15-21] for other functional equations. A survey
of the Ulam-Hyers stability results of functional equations
was conducted by Brillouét-Belluot [22]. Park and Kim
[11] demonstrated the Ulam-Hyers stability of quadratic «
-functional equation.

In this paper, the authors present a new A-quadratic
functional equation with three variables as

2 (@) +2E(9,) :5(@ + 93) FA2 </\ (@ - 93>>,

(6)

where A is a fixed non-Archimedean number with A% # 3,
and its general solution was obtained. The motivation
behind this study is to investigate the Ulam-Hyers stability
results for the above functional equation (6) in non-
Archimedean Banach space by using direct and fixed point
methods and non-Archimedean random normed space.
The following is the structure of this paper: in Section 2,
we recall some fundamental notions and definitions, in Sec-
tion 3, we look at the general solution of the equation (6),
where V and W are two vector spaces. We investigate the
Ulam-Hyers stability in non-Archimedean Banach space
by using fixed point method and direct method in Sections
4 and 5, where V is a non-Archimedean normed space, W
is a non-Archimedean Banach space, and |2|# 1 is a non-
Archimedean Banach space. In Section 6, we recall some
fundamental notions and results and investigate the Ulam-
Hyers stability in non-Archimedean random normed space.
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2. Preliminaries

To reach our major results, we use certain fundamental
notations in [8, 10, 11].

A map |-|: K— [0,00) is a valuation such that zero is
the only one element having the zero valuation, |k k,| = |k,
||k,|, and the inequality of the triangle holds true, that is, |
k, + k| < k| + |k, ], for all k, k, € K.

We call a field K valued if K holds a valuation. Examples
of valuations include the typical absolute values of R and C.

Consider a valuation that satisfies a criterion that is
stronger than the triangle inequality. A |-| is called a non-
Archimedean valuation if the triangle inequality is replaced
by |k, + k,| < max {|k,|, |k,|}, for all k,k, €K, and a field
is called a non-Archimedean field. Evidently, |-1|=1=1|
and |n| are greater than or equal to 1, for all n in N. The
map || takes everything except 0 for 1, and |0| =0 is a basic
example of a non-Archimedean valuation.

Definition 1. LetV be a linear space over K with |-|. A map-
ping ||l V—[0,00) is known as a non-Archimedean
norm if it satisfies

(i) |lv|]| =0 if and only if v=0.

(i) ||rv|| = |r|l|v|l, v € V, and r € K.

(iii) the strong triangle inequality.
v +va| <max {{lvi ] [[va][} vi, v, € V- (7)

Then, (V,|||) is called a non-Archimedean normed
space. Every Cauchy sequence converges in a complete
non-Archimedean normed space, which we call a complete
non-Archimedean normed space.

Definition 2. Let V be a non-Archimedean normed space
and a sequence {v,} in V. Then,

(1) a sequence {Vp};Z , in V is a Cauchy sequence if

o0
{Vpur - VP}p=1 converges to 0.

(2) {v,} is called convergent if, for any & > 0, there is an
integer p >0 in IN and v € V satisfies

v, vl <eforallp> N, (8)

for every p, q > IN. Then, we called as v is a limit of
the sequence {v,} and denoted by lim, v, =v.

—s00Vp

(3) if every Cauchy sequence in a non-Archimedean
normed space V converges, it is called a non-
Archimedean Banach space.

Theorem 3 (alternative fixed point theorem). Let (V, d) be a
generalized complete metric space and a strictly contractive
mapping M : V— V with Lipschitz constant 0<L < I.
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Then, for all v, € V, either
d(M™v,;, M"™1v,) = co,m = m,, 9)
or there exists a positive integer m, such that

(i) d(M™v,, M™1v,) < 0o, m>m,.

(ii) the sequence {M™v,}, . converges to a fixed point
vi of M.

(iii) v} is the unique fixed point of M in V* ={v, € V|d
(M™ov,, v,)<00}.

(iv) d(v,,vy) < (1/1=L)d(Mv,, v,), for all v, € V*.

3. Solution
Lemma 4. If a mapping & : V — W satisfies the functional
equation (6) for all 9,,9,,9;€V, then the function & is

quadratic.

Proof. A mapping & : V — W satisfies the functional equa-
tion (6). Replacing (9;,9,,9;) by (0,0, 0) in (6), we obtain

3(0) = 1 2E(0). (10)

This implies that £(0) = 0. Replacing (9,, 9,,9;) by (9,9,
0) in (6), we obtain

£(9) = AE(A(9)), (11)
and so
E(Av) = A%¢(9), (12)

for all 9 € V. Thus, equation (6) is reduced as

t(1%) ek -5(25 2 e 0 ) v (52 -0,),
(13

for all 9,,9,,9; € V. Now, replacing 9, =9,=9;=9 in
(13), we get

§(29) = 2¢(9), (14)
for all 9 € V. Again, replacing 9 by 29 in (14), we have
£(2%9) =2%¢(9), (15)

for all 9 € V. From equalities (14) and (15), we can con-
clude that for any integer p > 0, we get

£(2P9) = 2P (9), (16)

for all 9 € V. Now, replacing (9;,9,,9;) by (9,,9,,9,) in (13),

we reach (3) for all 9,9, € V. Hence, the function & is qua-
dratic.

For our notational simplicity, we use the following abbrevi-
ation:

AE(9,,9,,9;) =28 (91 ;92) +28(9;) —5(91 ;92 +93>

i)
(17)

4, Stability of (6) in Non-Archimedean Banach
Space: Direct Method

Theorem 5. Let p : V> — [0,00) be a mapping and a map-
ping & : V. — W such that £(0) = 0 and

lim |22'p(279,,2779,,2779;) =0, (18)
J—00
IAE(9,, 95 95)11 < p(9,, 95, 95), (19)

for all 9,,9,,9; € V. Then, there exists a unique quadratic
mapping Q : V— W satisfying

||£(9)—Q<9)||ssup{|22}"Ip@ % %} (20)

jeN 2727
forall9e V.
Proof. Setting 9, =9, =9; =9 in (19), we have
18(29) = 2%8(9)|| < p(9, 9, 9), 9 € V. (21)

Thus, from inequality (21), it implies that

o2 Qees)

for all 9 € V. Replacing 9 by 9/2 in (22), we obtain

e (®) e(2) | (28 2). e
for all 9 € V. Hence,

#(0) 4 (2)
o 1 (2) ) - ()2

< sup |22|jp i 9 i
" jeqliL} Pt gt ) 7
(24)

}




for all m>1>0 and all Y€ V. From inequality (24), the
sequence {22"£(9/2")} is a Cauchy sequence for all 9€ V.
Since W is complete, thus the sequence {22"€(9/2")} is con-
vergent. Now, we can define a mapping Q : V— W by

Q(9) = lim 2%( ) 9eV. (25)

I—00

Taking I =0 and passing the limit m — co in (24), we
obtain (20). From inequalities (18) and (19), we have

1AQ(9,, 95, 95)l
= lim |2°'1A8 (2799, 2779,, 279, )|

(26)
< lim }22|’ (2779,,279,,2779;) =
j—00
From above, we conclude that AQ(9,,9,,9;) =0 for all

9;,9,,9; € V. By using Lemma 4, the function Q is qua-
dratic. Consider another quadratic mapping T: V — W
satistying (20). Then, we have

1Y) - T

- ||22qo<29q> z%( )"
o) S22 )

Ssup{’22|q+jflp( 9 , .i, i)} — 0asg — 0o,

jeN JtL7 jtl 7 ojtl

)

(27)

for all 9 € V. Thus, we can conclude that T(9) = Q(9),9¢€ V.
Hence, the function Q is unique. Thus, the unique quadratic
mapping Q : V — W satisfies (20). Hence, the proof of the
theorem is now completed. O

Theorem 6. Let p : V? —
ping & : V— W such that £(0) =

[0,00) be a mapping and a map-
0 and

lim {_p(zf 19,2719, 2719 )} 0, (28)

j—00 ’22’

and (19) for all 9,,9,,9; € V. Then, there exists a unique
quadratic mapping Q : V — W satisfying

1E(9) = QI sSupjéN{| 21’1 IP(ZJ 19, 2719,, 2719 )}
(29)

forall9eV.
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Proof. Setting 9, =9, =9; =9 in (19), we have

1€(29) - 22€(9)]| < p(9, 9. 9), 9 V. (30)

From inequality (30), we obtain

HE(S) - 2125(29) (8,99, 9¢V.  (31)

12 2|
Replacing 9 by 29 in (31), we get
s

2:(9)

|L p(29,20,29),  (32)

2[?

for all 9 € V. Hence,

2215(2 9) 22"' §@"9)

1 1 1
< max { EE(ZIS) - mf(zl+19> ",'“’HWE(ZWHS) 227”;5(2"‘9) ‘}
1 1 1 I+ 1 pm= m
Smax{ 7 5(29) |22‘"H{;(2 19)HW §2m19) - ,:(z 9) ‘}
i9,,2/9,,2/9
]e{ll+l }{|22 P (29,29, 2 )}
(33)

for all m>1>0 and all € V. From inequality (33), the
sequence {(1/2?")&(2"9)} is a Cauchy sequence for all 9 €
V. Since W is complete, the sequence {(1/2*")&(2"9)} is
convergent. Now, we can define a mapping Q : V— W by

Q(9) = lim —5(2”9) deV. (34)

ﬂ—)OO

The remaining proof is the same as the proof of Theo-
rem 5. U

Corollary 7. Let £ : V. — W be a mapping such that &(9)
=0 and

A, 925 95) I < O, I"+I9, 1" +119511"), (35)
for all 9,,9,,9; €V, where r and 0 are in R* with r<2.

Then, there exists a unique quadratic mapping Q : V —
W satisfying

1£(9) - (9 )|— 27 I|9||’ (36)

forall9eV.

Corollary 8. Let £ : V. — W be a mapping such that &(9)
=0 and

1A 92 9) [ <019, 1" + 190" + [195]7), (37)

for all 9,,9,,9;€V, where r and 0 are in R* with r> 2.
Then, there exists a unique quadratic mapping Q : V —
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W satisfying

H9|| (38)

I59)- Q@) < 731

forall e V.

5. Stability of (6) in Non-Archimedean Banach
Space: Fixed Point Method

Theorem 9. Let p: V? —
there exists L < 1 with

[0,00) be a mapping such that

p(2719,,2719,,2719;) < ﬂ p(2779,,2719,,2719;),  (39)

for all 9,,9,,9;€V. If a mapping &:V — W such that
£(0)=0 and (19) for all 9,,9,,9; €V, then there exists a
unique quadratic mapping Q : V— W satisfying

L

mp(s’ 9,9), (40)

15(9) - Q)] <

for all 9e V.

Proof. Setting 9, =9, =9; =9 in (19), we obtain

1€(29) —48(9)|| < p(9, 9, 9), (41)
for all 9 € V. Consider
S=={q: V— W,q(0) =0}, (42)

and the generalized metric d defined by

d(p.g) =inf {e € R : [|p(9) - g(9) | < ep(5,9, 9)¥9 € V1),

(43)

here, as usual, inf & = +c0. Clearly, (S, q) is complete (see
[23]). Next, consider a mapping J : S — S defined by

Jp(9) =2°p (2) 9eV (44)

For all p, q € S such that d(p, q) = ¢, then

1p(9) = )| < ep(9.9,9), (45)

for all 9 € V. Hence,

) =[2p(279) - 2%4€(279) |
‘22|sp( 1\9,2719,2711/)

17p(9) ~Ja&(9

\zzys p(9.9,9) <

2"

2%|Lep(9, 9, 9),
|2|Lep(9, 9, 9)

(46)
for all 9 € V. Thus,
d(p,q)=e=d(Jp,Jq) < Le. (47)
This concludes that
d(Jp,Jq) <Ld(pq), pq €. (48)
From inequality (41),
£(9)-2% ? <p(2’19 2719 2’19) < Lp(S 9,9), 9evV
)| SPETR 020 3.9, De v
(49)
Therefore,
d(& J§) < L 9eV. (50)

By using Theorem 3, there exists a mapping Q: V—
W satistying the following conditions:

(1) Qs a fixed point of ], i.e.,

Q(9) =2°Q(27'9)v9e V. (51)

In the set below, the function Q is the unique fixed
point J.

M={peS:d(, p)<co}. (52)

This proves that the uniqueness of the function Q sat-
isfies (51) such that there exists ¢ € [0,00) such that

IE(9) - Q)| <&p(9,9,9), D€ V. (53)

(2) d(J'€, Q) tends to 0 as taking the limit / — co. This
implies

llim 4"8(27"9) = Q(9), forall 9 e V. (54)



(3) d(&,Q) < (1/1 - L)d(&, J&), which implies

15(9) - Q(®

L
) = mp(& 9,9),forall9e V.

(55)

From (39) and (51),

1AQ(S1, 2, 9;)ll = lim 22148 (2779,,2779,,2799,)|
< lim [22p(279,,2779,,2779;) =
j—0
(56)
for all 9, 9,,9; € V. Thus,
AQ(9;,9,,93) =0, (57)

for all 9,,9,,9; € V. By using Lemma 4, the function Q is
quadratic. Hence, the proof of the theorem is now com-
pleted. O

Theorem 10. Let p : V? —
there exists L < 1 with

[0,00) be a mapping such that

P9, 9, 95) <L|2*|p(2779,,2719,,2719;), 9,,9,, 95 € V.
(58)
If a mapping & : V. — W such that £(0) = 0 and (19) for

all 9,,9,,9; € V, then there exists a unique quadratic map-
ping Q : V. — W satisfying

15(9) - QE)II < p(9,9,9), (59)

12?|(1-1L)

forall9eV.

Proof. Setting 9; =9, =9; =9 in (19), we have
€29) ~4E(9)]| < p(9,9,9), (60)

for all 9 € V. From the inequality (60), we get

p(9,9,9),9¢eV.  (61)

! 77

The generalized metric space (S,d) is defined in the
proof of Theorem 9. Consider a mapping J : S — S defined
by

Ham——

Tp(9) = 2l2 (29), 9 V. (62)
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From inequality (61),

d@@s@y (63)
Hence,
naw—ewmspﬂé_mpwﬁﬁ»Sev (64)

The remaining proof is the same as in the proof of The-
orem 9. O

Corollary 11. Let £ : V — W be a mapping such that £(0)
=0 and

HAﬂ%ﬁp%w39<Z|&W>) (65)

i=1

forall 9,,9,,9; € V, where r and 0 are in R* with r < 2; then
there exists a unique quadratic mapping Q : V. — W satis-

fring

20]9]"

15(9) = Q)] < 2 (66)

forall 9eV.

Corollary 12. Let £ : V — W be a mapping such that £(0)
=0 and

i=1

[148(91> 95 95) SG(Z |9ill'>) (67)

forall 9,,9,,9; € V, where r and 0 are in R* with r > 2; then
there exists a unique quadratic mapping Q : V. — W satis-

fying

15(9) Q)| < ’22’ ‘H I (68)

forall9eV.

6. Stability of (6) in Non-Archimedean Random
Normed Space

Definition 13 [24]. A random normed space is triple (V, 4,
T), where V is a vector space, T is a continuous ¢ — norm,
and a mapping y : V — D" satisfies

(RN1) py(t) =¢y(t), Vt >0 if and only if 9=0.

(RN2) py9(t) = pg(t/|A]) for all 9e V, A #0.

(RN3) [/‘91+92(t1 +1) 2 T(«“SI (t)), #Sz(tz)) for all 9,9,
€Vandt,t,>0.

Definition 14 [25]. A random normed space (V, y, T) is said
to be non-Archimedean random normed space if it satisfies
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(NARL) py(t) =€,(t) for all t >0 if and only if 9=0.

(NAR2) pto(t) = pg(1/|A]) for all 9e V, > 0,1 #0.

(NAR3) g o (max {t;,1,}) 2 T(pg, (£1), pg, (£5)) for all
9,9, € Vand ty,t, >0.

It is clear that if (NAR3) holds, then so

(RN3)pig 15, (0 +) = T 1 (015, (5)). - (69)

Example 1 [25]. Let a non-Archimedean normed space (V,
I-/l) and we define

t

_—, 70
t+(19] (70)

po(t) =

for all 9¢ V and all ¢ > 0. Then, the triple (V,u, T),) is a
non-Archimedean random normed space.

Definition 15 [25]. Let (V, 4, T) be a non-Archimedean ran-
dom normed space and a sequence {9,} in V. Then, the
sequence {9,} is called as convergent if there exist e V
such that

lim g, o(t) =1, (71)

n—~oo

for all t > 0. In particular, 9 is called the limit of the sequence

{911}'

Here, let V be a vector space over a non-Archimedean field
K and (W, u, T) be a non-Archimedean random Banach
space over K. And consider that 2 #0 in K.

Next, we define a random approximately quadratic func-
tion. Let a distribution mapping v : V x V — [0,00) sat-
isfies ¥(9;,9,,9;,-) which is symmetric and nondecreasing
and

y(A9, A9, A9, 1) 21,/<9 9,9, | AI) (72)

forall 9€ V and all A #0.

Definition 16. A function &: V— W is called as a v
-approximately quadratic if

> y(9y,9,, 95, 1),
(73)

Fo(9,+9,12)42E(9,)—E((9, +9,12)+95)~AZE(A((9,+9,/2)-9,)

for all 9;,9,,9; € Vand ¢t > 0.

Theorem 17. Let a function &: V — W be a y-approxi-
mately quadratic mapping. If for some real number a> 0,
and some integer k, k > 1 with a > |2¥],

w(z-ksl,z-ksz, 2k9,, t) >y(9,9, 9, at),  (74)

7
for all 9,,9,,9;€ V and t >0, and
o olt
i T (9’ |2|k]> = (75)

for all 9 € V and every t > 0; then there exists a unique qua-
dratic mapping Q : V— W such that

He(9)- (76)

where

M(9,t) = (w(s 9,9, £)y(29, 29, 29, 1)+ (zk 19, 2k-19, 219, t))

(77)
for all 9 e V and all t > 0.

Proof. First, we demonstrate by induction on j that for all 9
€V,t>0and j>0,

He(o)-27g(e) (1) = M;(9 1) = T(y (9.9, 9, 1),y (2719,2719, 21719, 1)).
(78)

Setting 9, =9, =9; =9 in (73), we obtain
He20)-2509) (1) 2 ¥(9, 9, 9, 1), (79)

forall 9 € V and all ¢ > 0. This proves that (78) for j = 1. Sup-
pose that (78) holds for some j> 0. Replacing 9 by 2/9 in
(73), we get

He(m19-226(2i9) () 2 (29,279,279, 1), (80)

forall 9€ V and all ¢ > 0. Since [2?| <1,

J+19 ]+1)€

( 2m9)-2(29) (£ )s s 2 (2i9) 2200 (9) (t

(ﬁ))

£(2m9)-2¢(29) (1) P (219) -27g(s) ))
(1;/(219, 219,209, 1), M;(9,1)) = M;,, (9, 1),

for all 9 € V. Thus, condition (78) holds for all j > 0. In par-
ticular,

( 2119)-22¢( 219( //lz 219)-2%(9

Mg (249)-22:¢(9) (1) =M, 1), (82)



for all 9 € V and all t > 0. Replacing 9 by 2-**" 9 in (82) and
using the inequality (74), we have

9
ﬂE(Slzkn)_ZZkE(‘g/zkmk) > M(W’ t) > M(S, o(”ﬂt) sn= 0, 1, 2> R

(83)
for all 9€ V and all ¢ > 0. Then,
9 an+1
‘H(ZZ")"E(S/(Z")")—(ZZ")"“E(9/(2"‘)"“) (t) 2M< 5 (sz)”'t) ;n=0,1,2,--,
(84)
for all 9 € V and all ¢ > 0. Hence,
By s (o)) )
n+p ) ) ) )
> T <”<2k>’e(9/<zk>f><z“>’”s(w<zk>”") “))
J+1 j+1
>TiM[ 9, | =TiEM e
‘ (sz)J‘ (21{)}‘
(85)

T M(9, (/*1|(25))t) = 1 for all 9e V

n—00 ™ j=n
and all t>0, {(2%%)"€(9/(2¥)")},y is a Cauchy sequence
in (W, u, T). Hence, we can define a mapping Q: V—
W such that

Since lim

LBy e(0(2)) -0 () = 1 (86)
for all 9¢ V and all £>0. Now, for all n> 1,
Ho-(2)'s(a(2)") (1)
TR (o)) (o))
2T (ko ys(oey) o o) )

i+1
Ml %1,
2%

for all 9€ V and ¢ > 0. Thus,

(t)

n-1
2Ti,

(87)

He9)-qo) (1) = T(/"5(9)7(22k)”£(9/(zk)”)> V(sz)"E(S/(Z")")—Q(S)(t))

o Oéiﬂt
O !
(88)
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By taking the limit n — oo, we have
o (xi+1t
Hes)-quo) () 2 TEM| 9, W : (89)

This shows that (76) holds. Since T is continuous, by a
well-known result in probabilistic metric space (see, e.g.,
[[26], Chapter 12]), that

nh_{noou(zk)"AE(Z’k”S] ,2”‘”92,2”‘”93) (t> = HaQ(9,,9,,9,) (t), (90)
for all t>0.

On the other hand, replacing (9,,9,,9,) by (27%"9,,
27419, 2_k"93)> respectively, in (73) and using (NAR2) and
(74), we get

—Kn —kn —kn t
M(Zk)nAE(sznel’kangz’z—knss)(t) 2#/(2 ki 91’2 ki 92’2 k 93) 2k|n>
o't
2y | 9,99, — |-
‘//< 1> V2 V3 2k} )
(91)

Since lim, (9,9, 95, a"t/|2[") =1, we can con-
clude that the function Q is quadratic. Consider another
quadratic mapping Q' : V — W such that er(S){(s)(t) >
M(9,t) for all 9€ V and all ¢ > 0; then for all ne N and 9
€Vandall >0,

Ho9)-Q'(9) =T (MQ(s)-(z“k)"é(S/(zk)") () V(sz)"f(S/(z*‘)")-Q’(S) () t) :
(92)

From condition (86), we arrive at the conclusion that
Q=Q". 0
Corollary 18. Let a function &: V. — W be a y-approxi-

mately quadratic. If for some real number a >0 and some
integer k, k > 1, with |2F| < a,

w(z*ksl, 259, 279, t> >y(9,9, 9 at),  (93)

forall 9,,9,,9; € Vand t > 0, then there exists a unique qua-
dratic mapping Q : V. — W satisfying

‘xi+1t
Hes)-qu (1) 2 TEM <9> —> (94)

where

M(9, £) = T(w(9,9, 9, £), (29, 29, 29, £), -+, w(zk*s, 21y ply, t>,
(95)

forall 9 eV and all t > 0.
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Proof. Since

. alt
ERILEOR >

forall9 € Vandall t > 0 and T is of Hadzic type, from Prop-
osition 2.1 in [25], it follows that

j
lim T% M(S “t>, (97)

n—oco J7" ’ W

for all 9 € V and t > 0. Now, we can obtain our needed result
by using Theorem 17 O

Example 2. Let a non-Archimedean random normed space
(V,u, Ty,), in which

10 = T (%)

for all 9€ V and every ¢ >0, and let (W, u, T),) be a com-
plete non-Archimedean random normed space (see Example
1). Now, we can define

t

Y9, 9, 95, 0) = .

(99)

It is obvious that (74) holds for « = 1. Furthermore,

t
1+t

. . m t
nh—r>noo (mh—r>noo TMJ:”M (9’ W

—lim lim [— ) =1
oo i)

M(9,t) = (100)

We obtain

It
lim T;/[O]:nM 19, “—k
n—o00 > |2| J

(101)
forall 9e V and all £ > 0.

7. Conclusion

In this paper, we introduced A-quadratic functional equation
and obtained its general solution. In Section 4 and Section 5,
we investigated Ulam-Hyers stability of equation (6) by using
direct method and fixed point method in non-Archimedean
Banach space, and also in Section 6, we investigated the
Ulam-Hyers stability results in non-Archimedean random
normed space. The direct method requires us to find the Cau-
chy sequence and prove that every Cauchy sequence is con-
vergent, as well as prove the uniqueness of the function;
this method was introduced by Hyers [2], and the fixed point
method requires us to use the Banach contraction principle
and Lipschitz constant L to obtain the stability results of

the functional equation; this method was introduced by Radu
[27]. The fixed point method gives more accurate stability
results when compared with the direct method. Finally, these
stability results generalized the findings of [11].
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In this paper, by using the partial order method and monotone iterative techniques, the existence and uniqueness of fixed points
for a class of superlinear operators are studied, without requiring any compactness or continuity. As corollaries, the new fixed
point theorems for a-convex operators (a > 1), e-convex operators, positive & homogeneous operator (a> 1), generalized e
-convex operator, and convex operators are obtained. The results are applied to nonlinear integral equations and partial

differential equations.

1. Introduction

Linear operators are a kind of operators with good proper-
ties and rich theoretical results, which have formed a classi-
cal branch in functional analysis. However, in order to solve
the fixed point problems involving operators or equations in
practical applications, we need a large number of nonlinear
operators, including two classes of significant operators,
namely, superlinear operators and sublinear operators. Since
some of these operators have concavity or convexity, they
bring convenience to the related research. The concepts of
concave operators and convex operators were proposed in
1960s, which attracted people’s great interest. Many authors
obtained a lot of meaningful results, see [1-27]. Among
them, a-convex operators (a>1) [12, 17], e-convex opera-
tors [13], and generalized e-convex operators [16] are a very
important class of convex operators. It has important appli-
cations in many fields. However, it was difficult to study the
a-convex operators (a > 1) (including positive a-homoge-
neous operators) and e-convex operators because they had
strong superlinear properties [13] and described nonlinear
problems [12]. Until now, the results are still very few and
not very ideal (see [7], P457). Therefore, under what condi-
tions, these operators have a unique fixed point remains a
very important and meaningful problem.

In [7], a fixed point theorem for a class of superlinear
operators was obtained by topological degree method under
the condition that there are inverse upward and downward
solutions. In [17], using some results of §-concave operator,
the author transformed the positive a-homogeneous super-
linear operator into §-concave operator and studied the
existence and uniqueness of the solutions of positive «
-homogeneous superlinear operator equations. In [13], the
existence of fixed points was investigated when the a-con-
vex operators (> 1) was a strict set contraction. In [16],
Zhao and Du obtained the existence of fixed points of gener-
alized e-concave operators and generalized e-convex opera-
tors. As an application, the singular boundary value
problems for second order differential equations were dis-
cussed. In [10], according to the properties of totally ordered
sets, the existence and uniqueness of new positive fixed
points for a class of superlinear homogeneous operators
were studied in abstract spaces. The results were applied to
a class of superlinear Hammerstein-type integral equations.

In this paper, we study a class of superlinear operators
without requiring any compactness or continuity and obtain
some new fixed point theorems for superlinear operators by
using the partial order and the monotone iteration which are
different from those mentioned above in the literature. As
corollaries, new fixed point theorems for a-convex operators
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(a>1), e-convex operators, positive « homogeneous opera-
tor (a > 1), generalized e-convex operator, and convex oper-
ators are obtained. The results are applied to nonlinear
integral equations and partial differential equations.

2. Preliminaries

Let E be a real Banach space and P be a subset of E, 6 denotes
the zero element of E and intP denotes the interior of P. The
subset P is called a cone if:

(i) xePand A >0, then Axe P
(ii) x € P and —x € P, then x = 0.

Given a cone P C E, we define a partial ordering < with
respect to P by x <y if and only if y — x € P. We shall write
x<y if x<y and x #y, while x < y will stand for y—x ¢
int P. A cone P is called normal if there is a number K > 0
such that for all x,y € P,

0 < x < y implies ||x|| < K||y||- (1)

The least positive number satisfying the above inequality
is called the normal constant of P.

Let DCE, A: D— E be an operator. If there exists a
point x € D such that Ax =x, then x is called a fixed point
of A in D. Let u,, v, € E, and u, < v,, then

[thg» Vo] = {x € Eluy < x < vy}, (2)

is said to be an ordering interval. The operator A : D
— E is said to be increasing; if for any x,ye€D, x<y
implies Ax < Ay.

Throughout this paper, we always assume that E is a real
Banach space and < is a partial ordering with respect to P; 0
denotes the null element of E.

Definition 1 (see [19]). Let D CE. D is called a star-shaped
subset of the real Banach space E; if for any x e D and 0 < ¢
<1, it holds that tx € D.

Note that a convex set D in the real Banach space E with
the null element 6 € D is a star-shaped subset of E. Espe-
cially, any cone P in the real Banach space E is a star-shaped
subset of E.

Definition 2 (see [7]). Let D be a star-shaped subset of the
real Banach space E and A : D — D be an operator, then

(1) A is said to be sublinear, if forall xe Dand 0 < t < 1,
A(tx) > tAx;

(2) A is said to be superlinear, if for all x € D and 0 < ¢
<1, A(tx) < tAx.

Definition 3 (see [4, 7]). Let e>0. A: P— Pis called an e
-concave operator, if
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(i) A is e-positive, that is, A(P - {6}) c P,, where
P, ={x € E|thereexist A, u > 0, such that Ae < x < pe}. (3)

(ii) For all x € P, and 0 < ¢ < 1, there exists # =#(t,x) >0
such that

A(tx) = (1 +n)tAx, (4)

where 17 =7(t, x) is called the characteristic function of A.

Similarly, if in the above definition, (ii) is replaced by the
following (ii'):

(ii') For all x€ P, and 0 <t <1, there exists 1 =7(t, x)
> 0 such that

A(tx) < (1 - n)tAx, (5)

where 17=#(t,x) is called the characteristic function of A;
then, A : P — P is called an e-convex operator.

Definition 4 (see [16]). Let e>0. A: P— P is called a
generalized e-concave operator, if
(i) Ae € P,, where

P, ={x ¢ E|thereexist A, u > 0, such that Ae < x < pe}. (6)

(ii) For all x € P, and 0 < ¢ < 1, there exists # =#(t,x) >0
such that

A(tx) = (1 +n)tAx, (7)

where 17 =#(t, x) is called the characteristic function of A.

Similarly, if in the above definition, we replace (ii) by the
following (ii"):

(ii') For all x€ P, and 0 <t <1, there exists 1 =7(t, x)
> 0 such that

A(tx) < ((1+1)t) " Ax, (8)

where 1 =#(t,x) is called the characteristic function of
A; then, A:P— P is called a generalized e-convex
operator.

Definition 5 (see [4, 17]). Let A : P — P be an operator, «
> 0.

(1) Aissaid to be an a-concave operator, if for any x € P
and 0<t< 1, A(tx) > t*Ax

(2) A is said to be an a-convex operator, if for any x € P
and 0<t<1, A(tx) < t*Ax

(3) A is said to be a positive a-homogeneous operator, if
for any x € P and £ > 0, A(tx) = t*Ax.

Remark 6 (see [9]). Any a-convex operator (a > 1) must be
an e-convex operator, where the characteristic function
n(t,x)=1-t*"1
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Remark 7. Clearly, any e -convex operator must be a super-
linear operator. Thus, a -convex operators (a>1) and e
-convex operators are special superlinear operators.

Remark 8. Any generalized e -convex operator A must be a
superlinear operator if #(t, x) > 1/t* for any x € P, and 0 < ¢t
<1 where n=#(t,x) is the characteristic function of A.
Thus, generalized e-convex operators are special superlinear
operators under suitable conditions.

Remark 9. Noting A : P — P is called a convex operator if
A(tx+(1-t)y) <tAx+ (1—t)Ay for all x,yeP and 0<t
< 1; we can easily see that any convex operator A : P— P
satisfying AO = 0 must be a superlinear operator.

3. Main Results

In [18], the author proved that there was no operator which
was decreasing and e-convex, where e> 6. Now, we give
some important theorems of increasing superlinear opera-
tors, which generalize increasing e-convex operators.

Theorem 10. Let P be a normal cone in E and A : P — P be
an increasing superlinear operator. If there exist a € (0, 1)
and uy, vy € P, u,<v, such that u,<Auy Av,<av,, then
the operator A has a unique fixed point x* in [u,y, v,). For
any x, € [uy, v,| and iterated sequence x, = Ax,_;(n=1,2,--),
we have ||x, — x*|| — 0(n—00).

Proof. We firstly prove the existence of the fixed point. Let
u, =Au, ,,v,=Av, . Since A is increasing, we have

UgSuy <<y, < <y, < <Yy <. 9)

n
Take vy =vy, v, =a'Av, (n=1,2,--), then

Uy <v <vo(n=1,2,-), (10)
vnga”v;(nzl,z,---). (11)

Equation (10) can be proved by iteration. Indeed, for n
=1, we get

-1 -1 r_ -1 r_ -1 _
uy<Auy<a Aug<a Avg=a Avy=v,<a avy=v,,
(12)

which means equation (10) holds when #n = 1. Suppose
that equation (10) holds for n =k, that is

Uy < Vi < V. (13)

By the fact that A is increasing, we obtain Au, < Av; <
Av,, then

-1 -1 A e LAy, o)
uy<Auy<a Aug<a Avg<a Avp<a Avy=v <,

(14)

which implies u, < v, <v,. Thus, equation (10) holds

for all n € N. Now, we prove that equation (11) is also true.
Indeed, if n =1, then

v, =Av, = aa ' Avy =aa ' Avy = av], (15)

that is, (11) holds when n = 1. Suppose (11) holds for n
=k, ie.,

v <av. (16)

It follows that Av, <akAv, since A is an increasing
superlinear operator. Hence, we see that

_ k.t kool — k1 -1 I k41,
vk+1—Avk£A<a vk>sa Avi=a""a Avi=a"" v,
(17)

which gives vy, <a**!v,, . So, equation (11) holds for
all neN. |

Combining equations (9), (10), and (11), for any p > 1,
we know

O<v,—u,<a"v,—u,<a"vy—a"uy=a"(vy—u,), (18)

0<u,,

p Uy SV — U, 0<y, =y, <Y, U, (19)

By equations (18) and (19) and the normality of P, we
can check that v, — u, — 0(n—00), which implies that
{u,} and {v,} are Cauchy sequences in E. Then, there exist
u*, v*€luy, vy such that u, — u*, v, — v*(n—00),
and u* =v*. Denote x* =u* =v*. We have u, <u* <v* <
v, by (9). Therefore,

U, =Au, <Au* <AV <Av,=v,,. (20)

Let n—> 0o in (13), then u* <Au* <Av* <v*. This
gives u* = Au* = Av* = v*; that is, the operator A has a fixed
point x* in [ug, V).

Next, we prove the uniqueness of the fixed point. If there
exists X € [uy, v,] such that Ax =X, then u, <X <v,. By the
monotonicity of A, we see Auy < Ax <Av, ie, u; <X<v,.
It is easy to deduce that u, <x<v,, for any n>1. So x =
x* as n— 00.

At last, for any x; € [uy, v,], the sequence x, = Ax,_,
(n=1,2,-) satisfies

U, <x,<v,(n=1,2,-+), (21)

by iteration. Letting n— 00, we know x, — x*
(n — 00).

Similarly, if the superlinear operator has an upward solu-
tion, we have the following result.

Theorem 11. Let P be a normal cone in E and A : P— P be
an increasing superlinear operator. If there exist a€ (0,1)
and uy, vy € P, uy,<v, such that au,<Auy Avy<v,, then
the equation Ax = ax has a unique fixed point x* in [u,, v,).



For any x, € [uy, v,| and the iterated sequence x, = Ax,_,
(n=1,2,-+), we have ||x, - x*|| — 0(n—00).

Proof. Let B=a'A, then

— 41 -1 —
Buy=a""Auy>a  auy = u,

(22)
Bvy=a'Avy<aly,.
For any x € P and 0 <t < 1, we obtain
B(tx)=a'A(tx) <a 'tAx = tBx. (23)
O

Thus, B is a superlinear operator which satisfies all con-
ditions of Theorem 10. The conclusions are true by Theorem
10.

Similar to Theorem 10, we immediately get the following
result.

Theorem 12. Let P be a normal cone in E and A : P — P be
an increasing superlinear operator. If there exists € € (0, 1)
such that AQ >0, A0 <eA’0, then the operator A has a
unique fixed point x* in [AO, A%0]. For any x, € [AO, A%0)
and iterated sequence x, = Ax,_,(n=1,2,--), we have ||x, —
x*|| — 0(n—00).

Proof. We use Theorem 10 to give the proof of Theorem 12.
Set u, = 0,v, = A%6. Then, u, v, € P. Since the operator A is
increasing and A6 >0, we have A% > A6. Obviously, we
have A%0> Af (otherwise if A’0 =A0, then A’0=A%0<¢
A% (0 <e<1), which implies that A*0 =0, so A0 =6. This
is a contradiction since A6 > 6.

Now letting a =€ € (0, 1), we see that

u, = A0 < A*0 = Auy,
(24)
Avy=A’0<eA*0 =av,.

So, all conditions of Theorem 10 are satisfied. By
Theorem 10, we know that the conclusions of Theorem 12
hold true. O

Remark 13. Compared with ([7], Theorem 3.1), in order to
obtain the existence and uniqueness of positive fixed points,
the superlinear operator A : P— P in Theorem 10 and
Theorem 11 does not need any compactness or continuity.
It is quite different from [7] (Theorem 3.1), which required
that A : P— P is a condensing operator.

Remark 14. Since superlinear operators include three classes
of operators: generalized e-convex operators, e-convex
operators, and a-convex operators, Theorem 10 and
Theorem 11 improve or generalize lots of famous results in
(5, 7,9, 12-17].

Corollary 15. Let P be a normal cone in E and A : P — P be
an increasing e-convex operator. If there exist a € (0,1) and
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wy, vy € P, w, <v, such that w, < Aw,y, Av, < av,, then the
operator A has a unique fixed point x* in [w,, v,]. For any
X, € [wy, vy] and iterated sequence x,=Ax, ;(n=1,2,;-),
we have ||x, — x*|| — 0(n—>00).

Corollary 16. Let P be a normal cone in E and A : P— P be
an increasing e-convex operator. If there exist a € (1,00) and
Wy, Vo €P, w,y < v, such that aw, < Aw,, Av,<v,, then the
equation Ax =ax has a unique fixed point x* in [w, v,).
For any x, € [wy, v,] and the iterated sequence x, = Ax,_,
(n=1,2,--+), we have ||x, - x*|| — 0(n—00).

Corollary 17. Let P be a normal cone in E and A : P — P be
an increasing a-convex (a> 1) operator. If there exist a €
(0,1) and uy, v, €P, uy<v, such that uy<Au,, Av, < av,,
then the operator A has a unique fixed point x* in [u,, v,).
For any x, € [uy,v,| and the iterated sequence x, =Ax,_,
(n=1,2,--+), we have ||x, - x*|| — 0(n—00).

Corollary 18. Let P be a normal cone in E and A : P— P
be an increasing a-convex («>1) operator. If there exist a
€(1,00) and u,,vy€P, uy<v, such that au,<Au,, Av,
<v,, then the equation Ax=ax has a unique fixed point
x* in [uy, vo). For any x, € [uy, v,| and the iterated sequence
x,=Ax,_;(n=1,2,-), we have ||x, — x*|| — 0(n—>00).

Corollary 19. Let P be a normal cone in E and A : P— P be
an increasing positive a(a > 1) homogeneous operator. If
there exist a € (0,1) and u,, v, € P, u,<v, such that uy< A
u,, Avy < av,, then the operator A has a unique fixed point

x* in [uy, vo). For any x, € [uy, v,| and the iterated sequence
x,=Ax,_ ;(n=1,2,-), we have ||x, — x*|| — 0(n—00).

Corollary 20. Let P be a normal cone in E and A : P — P be
an increasing positive a(a>1) homogeneous operator. If
there exist a € (1,00) and u,, v, € P, u, < v, such that au, <

Auy, Avy < v, then the equation Ax = ax has a unique fixed
point x* in [u,, vy|. For any x, € [uy, v, and the iterated
sequence x,=Ax, ;(n=1,2,--), we have |x,—x*||— 0
(n—00).

Corollary 21. Let P be a normal cone in E and A : P — P be
an increasing generalized e-convex operator satisfying n(t, x)
> 1/t forany x € P, and 0 < t < 1 where = 1(t, x) is the char-
acteristic function of A. If there exist a € (0, 1) and w,, v, € P,
w, < v, such that w, < Aw,, Av, < av,, then the operator A
has a unique fixed point x* in [wy, v,|. For any x, € [wy, v,
and iterated sequence x, = Ax,_,(n=1,2,---), we have ||x, —
x*|| — 0(n—00).

Corollary 22. Let P be a normal cone in E and A : P — P be
an increasing generalized e-convex operator satisfying 1(t, x)
> 1/t forany x € P,and 0 < t < 1 where =1(t, x) is the char-
acteristic function of A. If there exist a € (1,00) and w,, v, € P,
w, < v, such that aw, < Aw,, Av,<v,, then the equation A
x =ax has a unique fixed point x* in [w,, v,|. For any x, €
[wy, vy] and the iterated sequence x,=Ax, ;(n=1,2,-),
we have ||x, — x*|| — 0(n—00).
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Corollary 23. Let P be a normal cone in E and A : P— P be
an increasing convex operator satisfying AQ = 0. If there exist
a€(0,1) and wy, vy € P, w, < v, such that w, < Aw,, Av, <
av,, then the operator A has a unique fixed point x* in [w,,
v,l|. For any x, € [wy, v,| and iterated sequence x, = Ax,_,
(n=1,2,---), we have ||x, —x*|| — 0(n—>00).

Corollary 24. Let P be a normal cone in E and A : P— P be
an increasing convex operator satisfying AQ = 0. If there exist
a € (1,00) and wy, vy € P, w, < v, such that aw, < Aw,, Av,
<, then the equation Ax = ax has a unique fixed point x*
in [wy, v,|. For any x, € [wy, vy and the iterated sequence
x,=Ax,_ ;(n=1,2,--), we have ||x,, — x*|| — 0(n—>00).
Remark 25. In Corollary 15 and Corollary 16, the existence
and uniqueness of positive fixed points are proved, without
appealing to the monotonicity or any compactness and
continuity of the e-convex operator A : P — P. This is very
different from [9] (Theorem 9), which required that there
existed M(>1) homogeneous increasing functional F: P,
—> (0,+00). In addition, Corollary 15 and Corollary 16 in
the paper are quite different from [14] (Corollary 2.4), which
only obtained the existence of positive fixed points while the
condition required the strong condition of that there existed
g, > 0 such that

Ax > ¢||Ax||e,Vx € PT, tﬁr&ﬂ(x, t)

s {1 AL

N? 7 MN

uniformly for x € C,,

with M = sup {||Ax|| | x € P, ||x|| = 1}.

Remark 26. In Corollary 17 and Corollary 18, the existence
and uniqueness of positive fixed points are proved, without
appealing to the monotonicity of a-convex operator (a > 1)
or any compactness and continuity of the operator A : P
— P. This is very different from [12] (Theorem 9), [8]
(Theorem 2), and [15] (Theorem 1.3), which required that
there existed a linear operator L : E— E which satisfied
certain conditions, and the increasing a-convex operator
(a>1) was completely continuous, respectively.

Remark 27. In Corollary 19 and Corollary 20, the positive
a-homogeneous operator (a>1)A : P— P does not need
to have any compactness or continuity, but Theorem 1 in
[17] requested that the a-homogeneous operator (a>1)
A:P— P can be decomposed into A = FC, where F: P,
— (0,4+00) was an increasing positive 5 functional and
C : P, — P, was an increasing operator in P, (e > 0). There-
fore, the methods and techniques of Corollary 19 and Corol-
lary 20 are different from those of [17] (Theorem 1).

Remark 28. In this paper, we use the partial order and the
monotone iteration to study the fixed point theorems of
superlinear operators in Banach spaces. The methods and
techniques are different from those used in the literature

[7-10, 12, 14, 15, 17], but the existence and uniqueness of
the fixed points and the convergence of the iterative
sequences of superlinear operators are obtained.

4. Applications

Now, we give some examples to show the applications of our
main results in nonlinear integral equations and partial
differential equations.

Example 1. Let a>1. Consider Hammerstein integral
equation

+00

x(t) = (Ax)(t) = J K(t,s)(x(s))"ds. (26)
—00

Conclusion 29. Let K : R x R — R be a nonnegative contin-

uous function. If there exists a constant 0 <c¢<1 and two

continuous functions u = 1, (), v = v, (t) satisfying 0 < u,(¢)

<y (t), —00 < t < +00, and

+00 +00

K(t,5)(vo(s))"ds < cvy(t).

—00

(1)< | (69 o(9)"ds

—00

(27)

Then, equation (26) has a unique solution x*(¢) satisfy-
ing u, <x* <v,. For any x,(¢) which satisfies u,(t) < x,(¢)
<, (t), the iterated sequence

+00

X, (1) = (Ax, ) (1) = j K(t,)(x,-1(5))"ds, (28)

-0
uniformly converges to x*(¢) in (—c0, + 00).

Proof. Let E=Cg(R) be a bounded continuous function
space in R". Define ||x|| = sup|x(t)|, then E is a Banach space.
teR

Let P = Cj(R) denote all nonnegative continuous functions
in E, then P is a normal cone in E. We claim that A : P
— P is a homogeneous operator. In fact, by equation
(26), we have

+00K(t, s)(Ax(s))"ds
. (29)
= A“J K(t,s)(Ax(s))"ds < AAx(t),

—00

()0 = |

which means A : P— P is a homogeneous operator. It
is clear that A satisfies all conditions of Theorem 10. The
conclusion is true. O

Similarly, we also have the following.

Example 2. Let a>1. Consider Hammerstein integral
equation (see the equation (9) in [10])

1

x(t) = (Ax)(t) = J K(t,s)(x(s))"ds. (30)

0



Conclusion 30. Let K : [0, 1] x [0, 1] — [0, 1] be a nonnega-
tive continuous function. If there exists a constant 0 < ¢ < 1
and two continuous functions u = u(t), v =v,(¢) satisfying
0 <uy(t) <vy(t),0<t<1,and

1 1

K(t,5)(uy(s))"ds, J K(t,s)(vy(s))"ds < cvy(t).

Uy (1) SJ i
(31)

0

Then, equation (30) has a unique solution x*(¢) satisfy-
ing u, <x* <v,. For any x,(t) which satisfies u,(t) < x,(¢)
<,(t), the iterated sequence

X, (1) = (Ax,1)(t) =J K(t,5)(x,-1(5))%ds, (32)

0
uniformly converges to x*(¢) in (—oco, + 00).

Remark 31. In Example 2, we obtain the existence of positive
solutions of the integral equation (30), without requiring
that the integral kernel K(t,s) can be decomposed into
K(t,s) =h(t)g(s) (see condition C1 in [10]). The methods
and techniques used in this paper are different from those
in [10].

Example 3. Let Q be a bounded convex domain in R"(n >2)
whose boundary 0Q belongs to C*** for some 0<u<1.
Consider the Dirichlet problem

{Lu =f(x, u),

(33)
Ula0 =0,

where f(x, u) is nonnegative and continuous on x € Q and

u>0and

< *u : ou
Lu=- Z aij(x)m + Zb,-(x)a—xi +eo(x)u,  (34)

ij=1 i=1

i.e., there exists a positive constant y, such that
n
2
Z a;(x)€:€; = pyl€], (35)
ij=1

foranyx € Qand§= (§,,§,,--,&,) €R",and a;(x) = a;;
(x),¢(x) > 0. Here, all functions a;;(x), b;(x), and c(x) belong

1

to C*(Q) (see [3]).
Finding the solution of the above problem is equivalent
to finding the fixed point of the integral operator A:

Q

Au(x) = j Gl ) (s u(y))dy (36)

where G(x, y) is the corresponding Green function, which
satisfies
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K0|x—y|2’”, n>?2

(x,yeQx#y).
n=2

0<G(x,p) < {
Ko|In 2 =y

(37)

Hence (see Guo and Lakshmikantham [4]), the linear
integral operator

Gv(x) =jQG<x,y>v<y>dy, (38)

{is a completely continuous operator from C(Q2) into
C(Q), and therefore, operator A maps P into P and is

completely continuous, where P={u(x) e C(Q)|u(x) =0,

Vx € Q] is a normal cone of space C(Q).

Conclusion 32. Let the function f(x, u(x)) be increasing and
satisfy

fxtu) <tf(x,u),Vu>0,x€Q,0<t<1. (39)

If there exist a € (0,1) and 6 < vy =v(x,) € P, such that
[5G (x0: ¥)f (1, v(y))dy < av(x,) for some x, € O, then the

Dirichlet problem has a unique fixed point x* in [0, v(x,)].

Proof. Firstly, we prove that the operator A is e-convex,
where

e(x) = JQG(x,y)dy,Vx €eQ. (40)

Here, we need to use a conclusion about integral opera-
tor (17), which can be found in Amann [2]: linear integral
operator (17) is e-positive, i.e., for any v >0, there exist «
=a(v)>0 and = B(v) >0 such that ae < Gv < fBe, i.e.,

(xJ G(x, y)dy < J G(x, y)v(y)dy < ﬁJ G(x, y)dy,Vx € Q.

Q Q Q

(41)

Now, let u > 0. Then, there exists an x, € Q such that u
(x1) >0, and it follows from (39) that

0= f(xp, 2u(x)) <2f (%1, u(x,))- (42)

Consequently, fu >0, where f denotes the Nemitskyi
operator:

fu(x) = (% u(x)). (43)

Thus, from (41), we know that there exist « >0 and >0
such that

ae < Au=Gfu< fe, (44)
ie., A satisfies condition (i) of Definition 4.

Next, suppose u € P satisfying aje<u < f e (a, = (u)
>0, 3, =p,(u) >0) and 0 <t<1. Since e(x) >0 for any x
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€ O, we have by (39)
tf (% u(x)) = f(x, tu(x)) > 0,¥x € O, (45)

and hence, by (41), there exists a, > 0 such that

j@G(m){tf(y, u(y) = £ (5 tu(y)) ydy = aye(x).¥x € 0.
(46)

On the other hand, it is clear that

JﬁG(x, V)f (v u(y))dy < Me(x),¥x € 2, (47)

where

M= m%xf(x, u(x)). (48)

It follows therefore from (46) and (47) that

j,G(m)f(y, tu(y))dy
o (49)

<t(1-42) | GeensOnuo)dymxen,

ie., A(tu) <t(1—1n)Au, where n=a,/Mt > 0. Thus, the
operator A satisfies condition (ii) of Definition 4, and there-
fore, A is e-convex.

Take w, =0, then w, < v, and w, < Aw,. Therefore, all
conditions of Corollary 15 are satisfied. By Corollary 15,
we see that the conclusion is true. O
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