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Firstly, the concept of a new triangular α-orbital admissible condition is introduced, and two fixed point theorems for Sehgal-
Guseman-type mappings are investigated in the framework of rectangular b-metric spaces. Secondly, some examples are
presented to illustrate the availability of our results. At the same time, we furnished the existence and uniqueness of solution of
an integral equation.

1. Introduction

In nonlinear analysis, the most famous result is the Banach
contraction principle, which is established by Banach [1] in
1922. After that, there are a large number of excellent results
for fixed point in metric spaces. On recent development on
fixed point theory in metric spaces, one can consult [2] the
related references involved. Branciari [3] introduced a new
concept, that is, the definition of rectangular metric spaces,
and established an analogue of the Banach fixed point theo-
rem in such a space. Then, a lot of fixed point theorems for a
wide range of contractions on rectangular metric spaces had
emerged in a blowout manner. In such type space, Lakzian
and Samet [4] gave some results involving ðψ, ϕÞ weakly
contraction. Furthermore, several common fixed point
results about ðψ, ϕÞ-weakly contractions were obtained by
Bari and Vetro [5]. In [6], George and Rajagopalan consid-
ered common fixed points of a new class of ðψ, ϕÞ contrac-
tions. By use of C-functions, Budhia et al. furnished several
fixed point results in [7].

In [8], Czerwik put forward firstly the definition of b
-metric space, an extension of a metric space. Since then, this
result has been extended in different angles. In a b-metric
space, in [9], Mitrovic provided a new method to prove
Czerwik’s fixed point theorem. By using of increased range

of the Lipschitzian constants, Hussain et al. [10] provided
a proof of the Fisher contraction theorem. Mustafa et al.
[11] gave several fixed point theorems for some new classes
of T-Chatterjea-contraction and T-Kannan-contraction.
Recently, also in this type spaces, Mitrovic et al. [12] pre-
sented some new versions of existing theorems. Savanović
et al. [13] constructed some new results for multivalued qua-
sicontraction. Furthermore, in [14], Aydi et al. obtained the
existence of fixed point for α-βE-Geraghty contractions. In
[15], several fixed point theorems of set valued interpolative
Hardy-Rogers type contractions were studied. In [16],
George et al. put forward the concept of rectangular b-met-
ric mapping. Meanwhile, they gave some fixed point theo-
rems. Lately, Gulyaz-Ozyurt [17], Zheng et al. [18], and
Guan et al. [19] also studied fixed point theory in such
spaces and obtained some excellent results. In 2021, Hussain
[20] presented some fractional symmetric α-η-contractions
and built up some new fixed point theorems for these types
of contractions in F-metric spaces. Recently, Arif et al. [21]
introduced an ordered implicit relation and investigated
the existence of the fixed points of contractive mapping deal-
ing with implicit relation in a cone b-metric space. Lately, in
[22], some fixed point theorems of two new classes of multi-
valued almost contractions in a partial b-metric spaces were
established by Anwar et al.
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On the other hand, in 1969, Sehgal [23] formulated an
inequality that can be considered an extension of the
renowned Banach fixed point theorem in a metric space.
Matkowski [24] generalized some previous results of
Khazanchi [25] and Iseki [26]. In 2012, the definition of α
-admissible mappings was given by Samet et al. [27]. Later,
the notion of triangular α-admissible mappings was intro-
duced by Popescu [28]. Recently, Lang and Guan [29] studied
the common fixed point theory of αi,j-φEM,N

-Geraghty contrac-

tion and αi,j-φEN
-Geraghty contractions in a b-metric space.

In this paper, inspired by [30], we established two fixed
point theorems for Sehgal-Guseman-type mappings in a
rectangular b-metric space. Also, we present two examples
to illustrate the usability of established results.

2. Preliminaries

Definition 1 (see [8]). Suppose G is a nonempty set and
ς : G ×G⟶ ½0,+∞Þ. We call ς a b -metric if

(i) ςðϵ, ϖÞ = 0⇔ ϵ = ϖ, ∀ϵ, ϖ ∈G

(ii) ςðϵ, ϖÞ = ςðϖ, ϵÞ, ∀ϵ, ϖ ∈G

(iii) ςðϵ, ϖÞ ≤ s½ςðϵ, γÞ + ςðγ, ϖÞ�, ∀ϵ, ϖ, γ ∈G
where s ≥ 1 is constant.

It is usual that ðG, ςÞ is called a b-metric space with
parameter s ≥ 1.

Definition 2 (see [3]). Suppose G is a nonempty set and
τ : G ×G⟶ ½0,+∞Þ. We call τ a triangular metric if

(i) τðϵ, ϖÞ = 0⇔ ϵ = ϖ, ∀ϵ, ϖ ∈G

(ii) τðϵ, ϖÞ = τðϖ, ϵÞ, ∀ϵ, ϖ ∈G

(iii) τðϵ, ϖÞ ≤ τðϵ, γÞ + τðγ, ϵÞ + τðϵ, ϖÞ, ∀ϵ, ϖ ∈G, γ, ϵ
∈G − fϵ, ϖg

Usually, ðG, τÞ is called a rectangular metric space.

Definition 3 (see [16]). Suppose G is a nonempty set and
υ : G ×G⟶ ½0, +∞Þ. We call υ a rectangular b -metric if

(i) υðϵ, ϖÞ = 0⇔ ϵ = ϖ, ∀ϵ, ϖ ∈G

(ii) υðϵ, ϖÞ = υðϖ, ϵÞ, ∀ϵ, ϖ ∈G

(iii) υðϵ, ϖÞ ≤ s½υðϵ, γÞ + υðγ, εÞ + υðε, ϖÞ�, ∀ϵ, ϖ ∈G, γ, ε
∈G − fϵ, ϖg

where s ≥ 1 is constant.

In general, ðG, υÞ is called a rectangular b-metric space
with parameter s ≥ 1.

Remark 4. A rectangularmetric space is a rectangular b-metric
space, so is a b -metric space. Moreover, the converse is
not true.

Example 1. Suppose G = A ∪ B, where A = f0, 2/41, 3/61,
4/81g and B = f1/2, 1/3,⋯,1/i,⋯g. For ϵ, ϖ ∈G, define
υ : G ×G⟶ ½0,+∞Þ with υðϵ, ϖÞ = υðϖ, ϵÞ and

υ 0, 2
41

� �
= υ

2
41

, 3
61

� �
= υ

3
61

, 4
81

� �
= 0:05,

υ 0,
3
61

� �
= υ

2
41

,
4
81

� �
= 0:08,

υ 0,
4
81

� �
= 0:3,

υ ϵ, ϖð Þ =max ϵ, ϖf g, otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1Þ

Thus, ðG, υÞ is a rectangular b-metric space with
s = 2. Furthermore, one can obtain the following:

(1) υ is not a b-metric with s = 2, since

υ 0,
4
81

� �
= 0:3 > 0:26 = 2 × 0:13

= 2 × υ 0,
2
41

� �
+ υ

2
41

,
4
81

� �� �
:

ð2Þ

(2) υ is not a rectangular metric, since

υ 0,
4
81

� �
= 0:3 > 0:15 = υ 0,

2
41

� �

+ υ
2
41

,
3
61

� �
+ υ

3
61

,
4
81

� �
:

ð3Þ

(3) υ is not a metric, since

υ 0,
4
81

� �
= 0:3 > 0:13 = υ 0,

2
41

� �
+ υ

2
41

,
4
81

� �
: ð4Þ

Definition 5 (see [16]). Suppose ðG, υÞ is a rectangular b
-metric space with s ≥ 1. Assume that fϖng in G is a
sequence and ϖ ∈G

(i) fϖng is convergent to ϖ iff limn⟶+∞υðϖn, ϖÞ = 0

(ii) fϖng is Cauchy iff υðϖi, ϖjÞ⟶ 0 as i, j⟶ +∞

(iii) ðG, υÞ is complete iff each Cauchy sequence is
convergent

Remark 6. In a rectangular b-metric space, a convergent
sequence does not possess unique limit and a convergent
sequence is not necessarily a Cauchy sequence. However,
one can find that the limit of a Cauchy sequence is unique.
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In fact, suppose the sequence fϖng is Cauchy and converges
to ϖ∗ and ϖ∗∗ with ϖ∗ ≠ ϖ∗∗. It follows that

υ ϖ∗,ϖ∗∗ð Þ ≤ s υ ϖ∗, ϖnð Þ + υ ϖn, ϖn+p
À Á

+ υ ϖn+p,ϖ∗∗À ÁÂ Ã
, ð5Þ

for all p > 0. Let n⟶∞; we get that υðϖ∗,ϖ∗∗Þ = 0: Hence,
ϖ∗ = ϖ∗∗, a contradiction.

Example 2 (see [16]). Let G = A ∪ B, where A = f1/n : n ∈
ℕg and B =ℕ. Define υ : G ×G⟶ ½0,+∞Þ with υðϵ, ϖÞ
= υðϖ, ϵÞ and

υ ϵ, ϖð Þ =

0, if ϵ = ϖ,

2α, if ϵ, ϖ ∈ A,
α

2n
, if ϵ ∈ A andϖ ∈ 2, 3f g,

α, otherwise:

8>>>>><
>>>>>:

ð6Þ

Here, α is a positive number. Thus, υ is a rectangular
b-metric with s = 2. However, we have that f1/ng is con-
vergent to 2 and 3. Moreover, limn⟶∞υð1/n, 1/ðn + pÞÞ
= 2α ≠ 0; therefore, f1/ng is not a Cauchy sequence.

Definition 7 (see [28]). Suppose G is a nonempty set and
T : G⟶G and α : G ×G⟶ℝ are two mappings. We call
Tα-orbital admissible mapping if

∀ϖ ∈G, α ϖ, Tϖð Þ ≥ 1⇒ α Tϖ, T2ϖ
À Á

≥ 1: ð7Þ

Definition 8 (see [28]). Assume that T : G⟶G and α : G
×G⟶ℝ. We call T a triangular α-orbital admissible map-
ping if

(i) αðϵ, ϖÞ ≥ 1 and αðϖ, TϖÞ ≥ 1 imply αðϵ, TϖÞ ≥ 1,
∀ϵ, ϖ ∈G

(ii) T is α-orbital admissible

Lemma 9 (see [24]). Assume Θ : ½0,+∞Þ⟶ ½0,+∞Þ is an
increasing mapping. Then, ∀t > 0, limn⟶∞ΘnðtÞ = 0⇒Θ
ðtÞ < t.

3. Main Results

In this part, two fixed point results of injective mappings will
be presented on rectangular b-metric spaces.

Definition 10. Suppose G is a nonempty set, s ≥ 1 and p > 0
are two constants, and α : G ×G⟶ ½0,+∞Þ, T : G⟶G.
We call Tαsp orbital admissible mapping if

∀ϖ ∈G, α ϖ, Tϖð Þ ≥ sp ⇒ α Tϖ, T2ϖ
À Á

≥ sp: ð8Þ

Definition 11. Suppose G is a nonempty set, s ≥ 1 and p > 0
are two constants, and α : G ×G⟶ ½0,+∞Þ, T : G⟶G.
We call T triangular αsp orbital admissible mapping if

(i) αðϵ, ϖÞ ≥ sp and αðϖ, TϖÞ ≥ sp imply αðϵ, TϖÞ ≥ sp,
∀ϵ, ϖ ∈G

(ii) T is αsp orbital admissible

Lemma 12. Suppose G is a nonempty set and T : G⟶G,
α : G ×G⟶ ½0,+∞Þ are mappings satisfying T which is
triangular αsp orbital admissible, s ≥ 1, p > 0. Suppose there
has a ϖ0 ∈G with αðϖ0, Tϖ0Þ ≥ sp. Define fϖng in G by
ϖ1 = Tnðϖ0Þϖ0,⋯, ϖn+1 = TnðϖnÞϖn,⋯. Then, ∀m ∈ℕ ∪ f0g,
αðϖm, TkϖmÞ ≥ sp, k = 0, 1, 2,⋯:

Proof. Since αðϖ0, Tϖ0Þ ≥ sp and T is triangular αsp orbital
admissible, we have

α ϖ0, Tϖ0ð Þ ≥ sp implies α Tϖ0, T2ϖ0
À Á

≥ sp and α ϖ0, T2ϖ0
À Á

≥ sp:
ð9Þ

Similarly, since αðTϖ0, T2ϖ0Þ ≥ sp, we get

α T2ϖ0, T3ϖ0
À Á

≥ sp, ð10Þ

α ϖ0, T3ϖ0
À Á

≥ sp: ð11Þ

Applying the above argument repeatedly, one can
deduce that αðϖ0, Tkϖ0Þ ≥ sp for all k ∈ℕ ∪ f0g. Since
αðϖ0, Tϖ0Þ ≥ sp implies αðTϖ0, T2ϖ0Þ ≥ sp and αðTϖ0, T2

ϖ0Þ ≥ sp implies αðT2ϖ0, T3ϖ0Þ ≥ sp,⋯, we can obtain
αðTnðϖ0Þϖ0, Tnðϖ0Þ+1ϖ0Þ = αðϖ1, Tϖ1Þ ≥ sp. Based on this
conclusion, we deduce that αðϖ1, Tkϖ1Þ ≥ sp, k = 0, 1, 2,⋯.
Repeatedly using the above discussion, we have αðϖm, Tk

ϖmÞ ≥ sp, k = 0, 1, 2,⋯ for all m ∈ℕ ∪ f0g.

Define Θ = fΦ : ℝ+3 ⟶ℝ+ is increasing and continuous
in each coordinate variableg. That is, if κð1Þ1 , κð1Þ2 , κð2Þ1 , κð2Þ2 ,
κð3Þ1 , κð3Þ2 ∈ℝ+ with κð1Þ1 ≤ κð1Þ2 , κð2Þ1 ≤ κð2Þ2 , κð3Þ1 ≤ κð3Þ2 , we have

Φ κ
1ð Þ
1 , κ 2ð Þ

1 , κ 3ð Þ
1

� �
≤Φ κ

1ð Þ
2 , κ 2ð Þ

1 , κ 3ð Þ
1

� �
,

Φ κ
1ð Þ
1 , κ 2ð Þ

1 , κ 3ð Þ
1

� �
≤Φ κ

1ð Þ
1 , κ 2ð Þ

2 , κ 3ð Þ
1

� �
,

Φ κ
1ð Þ
1 , κ 2ð Þ

1 , κ 3ð Þ
1

� �
≤Φ κ

1ð Þ
1 , κ 2ð Þ

1 , κ 3ð Þ
2

� �
:

ð12Þ

Furthermore, we set Φðϵ, ϵ, ϵÞ = φðϵÞ for ε ∈ℝ+.

Theorem 13. Suppose ðG, υÞ is a complete rectangular b
-metric space with s ≥ 1. Suppose T : G⟶G is a continuous
injectivity, α : G ×G⟶ ½0, +∞Þ and p > 0. Assume that for
any ϵ ∈G, there is a positive number nðϵÞ satisfying
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∀ϖ ∈G, α ϵ, ϖð Þ ≥ sp ⇒ α ϵ, ϖð Þυ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

≤Φ υ ϵ, ϖð Þ, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Tn ϵð Þϖ
� �� �

,
ð13Þ

where Φ ∈Θ and

(1) limϵ⟶∞ðϵ − sφðϵÞÞ =∞

(2) ∀ϵ > 0, limm⟶∞φmðϵÞ = 0

Suppose that

(i) there has a ϵ0 in G such that αðϵ0, Tϵ0Þ ≥ sp

(ii) T is triangular αsp orbital admissible

(iii) if fϖng in G satisfies αðϖn, ϖn+1Þ ≥ spð∀n ∈ℕÞ and
ϖn ⟶ ϖ ∈Gðn⟶∞Þ, then one can choose a sub-
sequence fϖnk

g of fϖng with αðϖnk
, ϖÞ ≥ sp, ∀k ∈ℕ

(iv) ∀ϵ ∈G with TnðϵÞϵ = ϵ, we have αðϵ, ϖÞ ≥ sp for any
ϖ ∈G

Then, T possesses a unique fixed point ϵ∗ ∈G. Further,
for each ϵ ∈G, the iteration fTnϵg converges to ϵ∗

Proof. By condition (i), one can choose an ϵ0 ∈G such that
αðϵ0, Tϵ0Þ ≥ sp. If ϵ0 is a fixed point of T and ϖ0 is the other
one, then ϵ0 = Tϵ0 =⋯ = Tnðϵ0Þϵ0 =⋯ and ϖ0 = Tϖ0 =⋯
= Tnðϵ0Þϖ0 =⋯. From condition (iv), we have αðϵ0, ϖ0Þ ≥
sp. It follows from (13) that

υ ϵ0, ϖ0ð Þ ≤ α ϵ0, ϖ0ð Þυ Tn ϵ0ð Þϵ0, Tn ϵ0ð Þϖ0

� �
≤Φ υ ϵ0, ϖ0ð Þ, υ ϵ0, Tn ϵ0ð Þϵ0

� �
, υ ϵ0, Tn ϵ0ð Þϖ0

� �� �
≤ φ υ ϵ0, ϖ0ð Þð Þ:

ð14Þ

From Lemma 9, we have φðυðϵ0, ϖ0ÞÞ < υðϵ0, ϖ0Þ. Thus,

υ ϵ0, ϖ0ð Þ ≤ φ υ ϵ0, ϖ0ð Þð Þ < υ ϵ0, ϖ0ð Þ, ð15Þ

which is contradiction. From this, we get that ϵ0 is the
unique fixed point. After that, in the subsequent discussion,
we assume that Tϵ0 ≠ ϵ0. Now we define fϵng in G by
ϵ1 = Tnðϵ0Þϵ0,⋯, ϵn+1 = TnðϵnÞϵn.

First, we shall show that the orbit fTiϵ0g∞i=0 is bounded.
For this purpose, we fix an integer ℓ, 0 ≤ ℓ < nðϵ0Þ. Let

uj = υ ϵ0, T jn ϵ0ð Þ+ℓϵ0
� �

, j = 0, 1, 2,⋯, ð16Þ

h =max
n
u0, υ ϵ0, Tn ϵ0ð Þϵ0

� �
, υ ϵ0, T2n ϵ0ð Þϵ0
� �

,

υ Tn ϵ0ð Þϵ0, T2n ϵ0ð Þϵ0
� �o

:
ð17Þ

Since limϵ⟶∞ðϵ − sφðϵÞÞ =∞, there has c > h such that
ϵ − sφðϵÞ > 2sh, ϵ ≥ c. It is obvious that u0 ≤ h < c. Assume
that there has a positive number j0 with uj0

≥ c. Evidently,

one may suppose that ui < c, ∀i < j0. Let ϵ0, T
nðϵ0Þϵ0, T2nðϵ0Þ

ϵ0, T j0nðϵ0Þ+ℓϵ0 be different from each other. Otherwise, we
consider six cases.

Case 1. ϵ0 = Tnðϵ0Þϵ0: One can get that

ϵ0 = Tn ϵ0ð Þϵ0 = T2n ϵ0ð Þϵ0 = T3n ϵ0ð Þϵ0 =⋯: ð18Þ

It follows that uj = υðϵ0, Tℓϵ0Þ is a constant which

implies that fTiϵ0g∞i=0 is bounded.
Case 2. ϵ0 = T2nðϵ0Þϵ0: We deduce that

ϵ0 = T2n ϵ0ð Þϵ0 = T4n ϵ0ð Þϵ0 = T6n ϵ0ð Þϵ0 =⋯, ð19Þ

Tn ϵ0ð Þϵ0 = T3n ϵ0ð Þϵ0 = T5n ϵ0ð Þϵ0 =⋯: ð20Þ

Hence,

uj =
υ ϵ0, Tn ϵ0ð Þ+ℓϵ0
� �

, j is odd,

υ ϵ0, Tℓϵ0
À Á

, j is even:

8<
: : ð21Þ

It follows that fTiϵ0g∞i=0 is bounded.
Case 3. Tnðϵ0Þϵ0 = T2nðϵ0Þϵ0. Obviously,

Tn ϵ0ð Þϵ0 = T2n ϵ0ð Þϵ0 = T3n ϵ0ð Þϵ0 = T4n ϵ0ð Þϵ0 =⋯: ð22Þ

As the argument of Case 1, we get that fTiϵ0g∞i=0 is
bounded.

Case 4. ϵ0 = T j0nðϵ0Þ+ℓϵ0. In this case, we obtain that
uj0

= 0, a contradiction.
Case 5. Tnðϵ0Þϵ0 = T j0nðϵ0Þ+ℓϵ0. It follows that

uj0
= υ ϵ0, T j0n ϵ0ð Þ+ℓϵ0

� �
= υ ϵ0, Tn ϵ0ð Þϵ0

� �
≤ h < c: ð23Þ

It is a contradiction.
Case 6. T2nðϵ0Þϵ0 = T j0nðϵ0Þ+ℓϵ0. It is obvious that

uj0
= υ ϵ0, T j0n ϵ0ð Þ+ℓϵ0

� �
= υ ϵ0, T2n ϵ0ð Þϵ0

� �
≤ h < c, ð24Þ

a contradiction.

4 Journal of Function Spaces



It is easy to get αðϵ0, Tkϵ0Þ ≥ sp, ∀k ∈ℕ from Lemma 12.
By using triangle inequality and (16), we have

υ ϵ0, T j0n ϵ0ð Þ+ℓϵ0
� �
≤ s

h
υ ϵ0, T2n ϵ0ð Þϵ0
� �

+ υ T2n ϵ0ð Þϵ0, Tn ϵ0ð Þϵ0
� �

+ υ Tn ϵ0ð Þϵ0, T j0 ϵ0ð Þ+ℓϵ0
� i

≤ 2sh + sα ϵ0, T j0−1ð Þn ϵ0ð Þ+ℓϵ0
� �

υ Tn ϵ0ð Þϵ0, T j0n ϵ0ð Þ+ℓϵ0
� �

≤ 2sh + sΦ
�
υ ϵ0, T j0−1ð Þn ϵ0ð Þ+ℓϵ0
� �

,

υ ϵ0, Tn ϵ0ð Þϵ0
� �

, υ ϵ0, T j0n ϵ0ð Þ+ℓϵ0
� ��

≤ 2sh + sΦ uj0
, uj0

, uj0

� �
= 2sh + sφ uj0

� �
:

ð25Þ

That is, uj0
− sφðuj0

Þ ≤ 2sh, which is impossible. There-

fore, uj < c for j = 0, 1, 2,⋯. It follows that fTiϵ0g∞i=0 is
bounded.

If there exists some n0 ∈ℕ satisfying ϵn0 = ϵn0+1 =
Tnðϵn0 Þϵn0 , then ϵn0 is a fixed point of Tnðϵn0 Þ. Assume there

is ϖ ∈G such that ϖ = Tnðϵn0 Þϖ and ϖ ≠ ϵn0 , by condition
(iv), we have αðϵn0 , ϖÞ ≥ sp and

υ ϵn0 , ϖ
À Á

≤ α ϵn0 , ϖ
À Á

υ Tn ϵn0ð Þϵn0 , T
n ϵn0ð Þϖ

� �
≤Φ υ ϵn0 , ϖ

À Á
, υ ϵn0 , T

n ϵn0ð Þϵn0
� �

, υ ϵn0 , T
n ϵn0ð Þϖ

� �� �
≤ φ υ ϵn0 , ϖ

À ÁÀ Á
< υ ϵn0 , ϖ

À Á
,

ð26Þ

which is contradiction. From this, Tnðϵn0 Þ possesses the
unique fixed point ϵn0 . Since Tϵn0 = TTnðϵn0 Þϵn0 = Tnðϵn0 ÞT
ϵn0 , we have Tϵn0 = ϵn0 because of the uniqueness of

Tnðϵn0 Þ. Subsequently, we assume that ϵn ≠ ϵn+1, ∀n ∈ℕ.
Next, we show that fϵng is Cauchy. Suppose n and i

are two positive numbers. It is obvious that αðϵn−1, Tk

ϵn−1Þ ≥ sp, ∀k ∈ℕ. Then,

υ ϵn, ϵn+ið Þ ≤ α ϵn−1, Tn ϵn+i−1ð Þ+n ϵn+i−2ð Þ+⋯+n ϵnð Þϵn−1
� �

· υ Tn ϵn−1ð Þϵn−1, Tn ϵn+i−1ð Þ+⋯+n ϵn−1ð Þϵn−1
� �

≤Φ υ ϵn−1, Tn ϵn+i−1ð Þ+n ϵn+i−2ð Þ+⋯+n ϵnð Þϵn−1
� �

,
�

υ ϵn−1, Tn ϵn−1ð Þϵn−1
� �

, υ ϵn−1, Tn ϵn+i−1ð Þ+⋯+n ϵn−1ð Þϵn−1
� ��

≤ φ sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=0
È ÉÀ Á

:

ð27Þ

For each q ∈ fTmϵn−1g∞m=0, we have

υ ϵn−1, qð Þ = υ ϵn−1, Tmϵn−1ð Þ
≤ α ϵn−2, Tmϵn−2ð Þυ Tn ϵn−2ð Þϵn−2, Tm+n ϵn−2ð Þϵn−2

� �
≤Φ υ ϵn−2, Tmϵn−2ð Þ, υ ϵn−2, Tn ϵn−2ð Þϵn−2

� �
,

�
υ ϵn−2, Tn ϵn−2ð Þ+mϵn−2
� ��

≤ φ sup υ ϵn−2, qð Þjq ∈ Tmϵn−2f g∞m=0
È ÉÀ

:

ð28Þ

According to (27) and (28), we deduce

υ ϵn, ϵn+ið Þ ≤ φ sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=0
ÈÀ Á

≤⋯≤ φn sup υ ϵ0, qð Þjq ∈ Tmϵ0f g∞m=0
È ÉÀ Á

⟶ 0  n⟶∞ð Þ:
ð29Þ

That is, fϵng is Cauchy. In light of the completeness of
ðG, υÞ, one can find an ϵ∗ ∈G with limn⟶∞ϵn = ϵ∗. We
might as well let ϵn ≠ ϵ∗ and ϵn ≠ Tnðϵ∗Þϵn. Otherwise, we
have ϵ∗ = Tnðϵ∗Þϵ∗ according to the continuity of T . In
view of triangle inequality, one deduce

υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �
≤ s υ ϵ∗, ϵnð Þ + υ ϵn, Tn ϵ∗ð Þϵn

� �
+ υ Tn ϵ∗ð Þϵn, Tn ϵ∗ð Þϵ∗

� �h i
:

ð30Þ

On the other hand,

υ ϵn, Tn ϵ∗ð Þϵn
� �
≤ α ϵn−1, Tn ϵ∗ð Þϵn−1

� �
υ Tn ϵn−1ð Þϵn−1, Tn ϵ∗ð Þ+n ϵn−1ð Þϵn−1
� �

≤Φ υ ϵn−1, Tn ϵ∗ð Þϵn−1
� �

, υ ϵn−1, Tn ϵn−1ð Þϵn−1
� �

,
�

υ ϵn−1, Tn ϵ∗ð Þ+n ϵn−1ð Þϵn−1
� ��

≤ φ sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=0
È ÉÀ Á

≤⋯≤ φn sup υ ϵ0, qð Þjq ∈ Tmϵ0f g∞m=0
È ÉÀ Á

⟶ 0  n⟶∞ð Þ:
ð31Þ

From the continuity of T , limn⟶∞υðTnðϵ∗Þϵn, Tnðϵ∗Þϵ∗
Þ = 0. Thereupon, by the use of (30) and (31), one can
obtain υðϵ∗, Tnðϵ∗Þϵ∗Þ = 0 as n⟶∞. Assume there exists
ϖ∗ ≠ ϵ∗ satisfying ϖ∗ = Tnðϵ∗Þϖ∗ and we have αðϵ∗, ϖ∗Þ ≥
sp according to the condition (iv). Then,

υ ϵ∗, ϖ∗ð Þ ≤ α ϵ∗, ϖ∗ð Þυ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð Þϖ∗
� �

≤Φ υ ϵ∗, ϖ∗ð Þ, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

, υ ϵ∗, Tn ϵ∗ð Þϖ∗
� �� �

≤ φ υ ϵ∗, ϖ∗ð Þð Þ < υ ϵ∗, ϖ∗ð Þ,
ð32Þ

5Journal of Function Spaces



impossible. After that, Tnðϵ∗Þ has the unique fixed
point ϵ∗. Since Tϵ∗ = TTnðϵ∗Þϵ∗ = Tnðϵ∗ÞTϵ∗, we deduce T
ϵ∗ = ϵ∗. That is, T has a fixed point.

Now we show that if condition (iv) is met. So T possesses
a unique fixed point. Assume ϖ∗ is another one; from condi-
tion (iv), one can obtain αðϵ∗, ϖ∗Þ ≥ sp. In view of (13), we
have

υ ϵ∗, ϖ∗ð Þ ≤ α ϵ∗, ϖ∗ð Þυ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð Þϖ∗
� �

≤Φ υ ϵ∗, ϖ∗ð Þ, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

, υ ϵ∗, Tn ϵ∗ð Þϖ∗
� �� �

≤ φ υ ϵ∗, ϖ∗ð Þð Þ:
ð33Þ

Lemma 9 ensures that φðυðϵ∗, ϖ∗ÞÞ < υðϵ∗, ϖ∗Þ. Thus,

υ ϵ∗, ϖ∗ð Þ ≤ φ υ ϵ∗, ϖ∗ð Þð Þ < υ ϵ∗, ϖ∗ð Þ, ð34Þ

which is impossible. It follows that ϵ∗ is the unique fixed
point of T .

Finally, we prove the last part. To show this statement,
we fix an integer ℓ, 0 ≤ ℓ < nðϵ∗Þ, and let υk = υðϵ∗, Tknðϵ∗Þ+ℓ

ϵÞ, k = 0, 1, 2,⋯ for ϵ ∈G. If there exists k ∈ℕ satisfying
υk = 0, we have

υk+1 = υ ϵ∗, T k+1ð Þn ϵ∗ð Þ+ℓϵ
� �

= υ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð ÞTkn ϵ∗ð Þ+ℓϵ
� �

≤ α ϵ∗, Tkn ϵ∗ð Þ+ℓϵ
� �

υ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð ÞTkn ϵ∗ð Þ+ℓϵ
� �

≤Φ υk, 0, υk+1ð Þ:
ð35Þ

If υk+1 > 0, one can obtain that υk+1 ≤Φðυk+1, υk+1, υk+1Þ
= φðυk+1Þ < υk+1, which is a contradiction. Hence, υk+1 = 0.
It follows that υk+2 = υk+3 =⋯ = 0.

Now we suppose that υk ≠ 0, ∀n ∈ℕ. Therefore, we
obtain

υ ϵ∗, Tkn ϵ∗ð Þ+ℓϵ
� �

≤ α ϵ∗, T k−1ð Þn ϵ∗ð Þ+ℓϵ
� �

υ Tn ϵ∗ð Þϵ∗, Tkn ϵ∗ð Þ+ℓϵ
� �

≤Φ υ ϵ∗, T k−1ð Þn ϵ∗ð Þ+ℓϵ
� �

, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

, υ ϵ∗, Tkn ϵ∗ð Þ+ℓϵ
� �� �

=Φ υk−1, 0, υkð Þ:
ð36Þ

If for some k ∈ℕ, υk ≥ υk−1, we deduce υk ≤Φðυk, υk,
υkÞ = φðυkÞ < υk, which is a contradiction. Hence, we get
υk ≤ φðυk−1Þ ≤⋯ ≤ φkðυ0Þ⟶ 0 ðk⟶∞Þ. That is, for
ℓ, the sequence fTknðϵ∗Þ+ℓϵg converges to ϵ∗ for any ϵ ∈
G. Consequently, one can obtain that the sequences
fTknðϵ∗Þϵg, fTknðϵ∗Þ+1ϵg, fTknðϵ∗Þ+2ϵg,⋯, fTknðϵ∗Þ+nðϵ∗Þ−1ϵg
are convergent to the point ϵ∗. It follows that we get
fTnϵg converges to the point ϵ∗ for ϵ ∈G.

Example 3. Let ðG, υÞ be the same as it is in Example 1.
Define T : G⟶G as

Tϵ =

0, ϵ = 0,
2
41

, ϵ =
1
2
,

3
61

, ϵ =
1
3
,

4
81

, ϵ =
1
4
,

1
22 · 2

, ϵ =
2
41

,

1
22 · 3

, ϵ =
3
61

,

1
22 · 4

, ϵ =
4
81

,

1
22 · χ

, ϵ =
1
χ
, χ ≥ 5:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð37Þ

Define mapping α : G ×G⟶ ½0,+∞Þ by

α ϵ, ϖð Þ =
sp, ϵ, ϖ ∈ 0f g ∪ 1

χ
, χ ≥ 5

� �
,

0, otherwise:

8><
>: ð38Þ

Define Φðκ1, κ2, κ3Þ = ð1/12Þðκ1 + κ2 + κ3Þ for all κi ∈ ½0,
+∞Þði = 1, 2, 3Þ, and it follows that φðtÞ = ð1/4Þt: Let nðϵÞ
= 3 for all ϵ ∈G. For ϵ, ϖ ∈G such that αðϵ, ϖÞ ≥ sp, we get
that ϵ, ϖ ∈ f0g ∪ f1/χ, χ ≥ 5g. It follows that we consider
the following two cases:

(i) ϵ = 0 and ϖ ∈ f1/χ, χ ≥ 5g

α ϵ, ϖð Þυ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

= 4 · υ T3 0ð Þ, T3 1
χ

� �� �
=

1
16χ

,

Φ υ ϵ, ϖð Þ, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Tn ϵð Þϖ
� �� �

=
1
12

·
�
υ 0,

1
χ

� �
+ υ 0, T3 0ð ÞÀ Á

+ υ 0, T3 1
χ

� �� ��

=
1
12

·
1
χ
+

1
64χ

� �
>

1
12χ

:

ð39Þ

That is, αðϵ, ϖÞυðTnðϵÞϵ, TnðϵÞϖÞ ≤Φðυðϵ, ϖÞ, υðϵ,
TnðϵÞϵÞ, υðϵ, TnðϵÞϖÞÞ.
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(ii) ϵ, ϖ ∈ f1/χ, r ≥ 5g. Let ϵ = 1/χ and ϖ = 1/l with l ≥ χ:
One can obtain that

α ϵ, ϖð Þυ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

= 4 · υ T3 1
χ

� �
, T3 1

l

� �� �
=

1
16χ

,

Φ υ ϵ, ϖð Þ, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Tn ϵð Þϖ
� �� �

=
1
12

·
�
υ

1
χ
,
1
l

� �
+ υ

1
χ
, T3 1

χ

� �� �

+ υ
1
χ
, T3 1

l

� �� ��
=

1
4χ

:

ð40Þ

The above inequalities imply that

α ϵ, ϖð Þυ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

≤Φ υ ϵ, ϖð Þ, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Tn ϵð Þϖ
� �� �

:
ð41Þ

Thus, all conditions of Theorem 13 are fulfilled with p
= s = 2. As a result, T possesses a unique fixed point 0.
Meanwhile, for each ϵ ∈G, fTnϵg converges to the point 0.

Remark 14.

(1) Since rectangularmetric spaces can be seen as rectangu-
lar b -metric spaces with parameter s = 1, one can get
the corresponding conclusions of Sehgal-Guseman-
type mappings in rectangular metric spaces

(2) Since b-metric spaces with parameter s can be seen
as rectangular b-metric spaces with parameter s2,
one can obtain the corresponding conclusions of
Sehgal-Guseman-type mappings in b-metric spaces

(3) If αðx, yÞ = sp, one can get the generalized Φ-Sehgal-
Guseman-type contractive mappings in rectangular
b-metric spaces

Theorem 15. Suppose ðG, υÞ is a complete rectangular b
-metric space with s ≥ 1. Suppose T : G⟶G is a continuous
injectivity and ψ : ½0, +∞Þ⟶ ½0, 1/2sÞ satisfying that for
any ϵ ∈G; there is a positive number nðϵÞ satisfying

υ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

≤ ψ M ϵ, ϖð Þð ÞM ϵ, ϖð Þ,∀ϖ ∈G, ð42Þ

where

M ϵ, ϖð Þ =max υ ϵ, ϖð Þ, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Tn ϵð Þϖ
� �n o

:

ð43Þ
Then, T possesses a unique fixed point ϵ∗. Furthermore,

for each ϵ ∈G, the iteration fTnϵg is convergent to ϵ∗.

Proof. Let ϵ0 ∈G. Consider a sequence fϵng in G by ϵ1 =
Tnðϵ0Þϵ0,⋯, ϵn+1 = TnðϵnÞϵn. If ϵn0 = ϵn0+1 = Tnðϵn0 Þϵn0 for an

n0 ∈ℕ, then ϵn0 becomes to a fixed point of Tnðϵn0 Þ. Assume

there exists ϖ ∈G with ϖ = Tnðϵn0 Þϖ and ϖ ≠ ϵn0 ; then,

υ ϵn0 , ϖ
À Á

= υ Tn ϵn0ð Þϵn0 , T
n ϵn0ð Þϖ

� �
≤ ψ M ϵn0 , ϖ

À ÁÀ Á
M ϵn0 , ϖ
À Á

,

ð44Þ

where

M ϵn0 , ϖ
À Á

=max υ ϵn0 , ϖ
À Á

, υ ϵn0 , T
n ϵn0ð Þϵn0

� �
,

n
υ ϵn0 , T

n ϵn0ð Þϖ
� �o

= υ ϵn0 , ϖ
À Á

> 0:
ð45Þ

From this, we get υðϵn0 , ϖÞ < ð1/2sÞυðϵn0 , ϖÞ which is
impossible. Therefore, ϵn0 is the unique fixed point of

Tnðϵn0 Þ. Since Tϵn0 = Tnðϵn0 ÞTϵn0 , we have Tϵn0 = ϵn0 because

of the uniqueness of Tnðϵn0 Þ. Subsequently, we assume that
ϵn ≠ ϵn+1, ∀n ∈ℕ.

For ϵ ∈G, set zðϵÞ =max fυðϵ, TkϵÞ, k = 1, 2,⋯,nðϵÞ, n
ðϵÞ + 1,⋯,2nðϵÞg. We first prove that rðϵÞ = sup υðϵ, TnϵÞ
<∞ for all n ∈ℕ. Assume n > nðϵÞ is a positive number
satisfying n = rnðϵÞ + ℓ, r ≥ 1, 0 ≤ ℓ < nðϵÞ and δrðϵÞ = υðϵ,
TrnðϵÞ+ℓϵÞ, r = 0, 1, 2,⋯. We suppose that ϵ, TnðϵÞϵ, T2nðϵÞ

ϵ, Tðr−1ÞnðϵÞ+ℓϵ are four distinct elements. Otherwise, the
conclusion is true. Thus,

υ ϵ, Tnϵð Þ = υ ϵ, Trn ϵð Þ+ℓϵ
� �

≤ s υ ϵ, T2n ϵð Þϵ
� �

+ υ T2n ϵð Þϵ, Tn ϵð Þϵ
� �h

+ υ Tn ϵð Þϵ, Trn ϵð Þ+ℓϵ
� �i

≤ s z ϵð Þ + ψ M ϵ, Tn ϵð Þϵ
� �� �

M ϵ, Tn ϵð Þϵ
� �h

+ ψ M ϵ, T r−1ð Þn ϵð Þ+ℓϵ
� �� �

M ϵ, T r−1ð Þn ϵð Þ+ℓϵ
� �i

,

ð46Þ

where

M ϵ, Tn ϵð Þϵ
� �
=max υ ϵ, Tn ϵð Þϵ

� �
, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, T2n ϵð Þϵ
� �n o

= z ϵð Þ,
ð47Þ

M ϵ, T r−1ð Þn ϵð Þ+ℓϵ
� �
=max υ ϵ, T r−1ð Þn ϵð Þ+ℓϵ

� �
, υ ϵ, Tn ϵð Þϵ
� �

, υ ϵ, Trn ϵð Þ+ℓϵ
� �n o

≤max δr−1 ϵð Þ, z ϵð Þ, δr ϵð Þf g:
ð48Þ
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By (46), (47), and (48), we deduce

δr ϵð Þ ≤ s z ϵð Þ + 1
2s
z ϵð Þ + 1

2s
max δr−1 ϵð Þ, z ϵð Þ, δr ϵð Þf g

� �
:

ð49Þ

Hence, one can conclude that ð1/ð1 + 2sÞÞδrðϵÞ ≤ zðϵÞ
by induction. Indeed, when r = 1, we have δ1ðϵÞ ≤ ðð1 + 2
sÞ/2ÞzðϵÞ + ð1/2Þ max fzðϵÞ, δ1ðϵÞg. If δ1ðϵÞ ≥ zðϵÞ, we get
δ1ðϵÞ ≤ ð1 + 2sÞzðϵÞ. If δ1ðϵÞ < zðϵÞ, we get δ1ðϵÞ ≤ ð1 + sÞ
zðϵÞ < ð1 + 2sÞzðϵÞ. We assume δrðϵÞ ≤ ð1 + 2sÞzðϵÞ; then,
δr+1ðϵÞ ≤ ðð1 + 2sÞ/2ÞzðϵÞ + ð1/2Þ max fð1 + 2sÞzðϵÞ, zðϵÞ,
δr+1ðϵÞg ≤ ð1 + 2sÞzðϵÞ. Hence, rðϵÞ = sup dðTnϵ, ϵÞ <∞.

Next, we prove that limn⟶∞υðϵn, ϵn+1Þ = 0. By con-
tractive condition (42), we have

υ ϵn, ϵn+1ð Þ = υ Tn ϵn−1ð Þϵn−1, Tn ϵnð Þ+n ϵn−1ð Þϵn−1
� �

≤ ψ M ϵn−1, Tn ϵnð Þϵn−1
� �� �

M ϵn−1, Tn ϵnð Þϵn−1
� �

,

ð50Þ

where

M ϵn−1, Tn ϵnð Þϵn−1
� �
=max υ ϵn−1, Tn ϵnð Þϵn−1

� �
, υ ϵn−1, Tn ϵn−1ð Þϵn−1
� �

,
n

υ ϵn−1, Tn ϵnð Þ+n ϵn−1ð Þϵn−1
� �o

≤ sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=1
È É

:

ð51Þ

It is obvious that Mðϵn−1, TnðϵnÞϵn−1Þ > 0, so

υ ϵn, ϵn+1ð Þ < 1
2s

sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=1
È É

: ð52Þ

For each q ∈ fTmϵn−1g∞m=1, we have

υ ϵn−1, qð Þ = υ ϵn−1, Tmϵn−1ð Þ
= υ Tn ϵn−2ð Þϵn−2, Tm+n ϵn−2ð Þϵn−2

� �
≤ ψ M ϵn−2, Tmϵn−2ð Þð ÞM ϵn−2, Tmϵn−2ð Þ,

ð53Þ

where

M ϵn−2, Tmϵn−2ð Þ
=max υ ϵn−2, Tmϵn−2ð Þ, υ ϵn−2, Tn ϵn−2ð Þϵn−2

� �
,

n
υ ϵn−2, Tm+n ϵn−2ð Þϵn−2
� �o

≤ sup υ ϵn−2, qð Þjq ∈ Tmϵn−2f g∞m=1
È É

> 0:

ð54Þ

It means υðϵn−1, qÞ < ð1/2sÞ sup fυðϵn−2, qÞjq ∈ fTmϵn−2g∞m=1g.
So we deduce

υ ϵn, ϵn+1ð Þ < 1
2s

sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=1
È É

<⋯ <
1
2sð Þn sup υ ϵ0, qð Þjq ∈ Tmϵ0f g∞m=1

È É
⟶ 0  n⟶∞ð Þ:

ð55Þ

That is, limn⟶∞υðϵn, ϵn+1Þ = 0.
For the sequence fϵng, we consider υðϵn, ϵn+pÞ by the

following cases. For the sake of convenience, set r0 = sup
fυðϵ0, qÞjq ∈ fTmϵ0g∞m=1g.

If p is odd, assume p = 2m + 1,

υ ϵn, ϵn+2m+1ð Þ
≤ s υ ϵn, ϵn+1ð Þ + υ ϵn+1, ϵn+2ð Þ + υ ϵn+2, ϵn+2m+1ð Þ½ �

< s
1
2sð Þn r0 +

1
2sð Þn+1 r0

" #
+ s2 υ ϵn+2, ϵn+3ð Þ½

+ υ ϵn+3, ϵn+4ð Þ + υ ϵn+4, ϵn+2m+1ð Þ�
<⋯ < s

1
2sð Þn r0 + s

1
2sð Þn+1 r0 + s2

1
2sð Þn+2 r0

+ s2
1

2sð Þn+3 r0+⋯+sm
1

2sð Þn+2m r0

≤
s
2sð Þn 1 + s

1
2sð Þ2 +⋯

" #
r0 + s

1
2sð Þn+1 1 + s

1
2sð Þ2 +⋯

" #
r0

≤
s
2sð Þn ·

1 + 1/2sð Þ
1 − 1/4sð Þ r0 ⟶ 0  n⟶∞ð Þ:

ð56Þ

If p is even, assume p = 2m,

υ ϵn, ϵn+2mð Þ ≤ s υ ϵn, ϵn+1ð Þ + υ ϵn+1, ϵn+2ð Þ + υ ϵn+2, ϵn+2mð Þ½ �

< s
1
2sð Þn r0 +

1
2sð Þn+1 r0

" #
+ s2

1
2sð Þn+2 r0 +

1
2sð Þn+3 r0

" #

+⋯+sm−1 1
2sð Þn+2m−4 r0 +

1
2sð Þn+2m−3 r0

" #

+ sm−1υ ϵn+2m−2, ϵn+2mð Þ

≤ s
1
2sð Þn 1 + s

1
2sð Þ2 +⋯

" #
r0 + s

1
2sð Þn+1 1 + s

1
2sð Þ2 +⋯

" #
r0

+ sm−1 1
2sð Þn+2m−2 r0

≤ s
1
2sð Þn ·

1
2m

1
2sð Þn−2 r0 ⟶ 0  n⟶∞ð Þ:

ð57Þ

In view of (56) and (57), one can get that fϵng is Cauchy.
By the completeness of ðG, υÞ, one can choose a point ϵ∗ ∈G
with limn⟶∞ϵn = ϵ∗. We might as well let ϵn ≠ ϵ∗ and ϵn
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≠ Tnðϵ∗Þϵn. Otherwise, we have ϵ∗ = Tnðϵ∗Þϵ∗ according to
the continuity of T . And from that, one can deduce

υ ϵn, Tn ϵ∗ð Þϵn
� �

= υ Tϵn−1ϵn−1, Tn ϵ∗ð Þ+n ϵn−1ð Þϵn−1
� �

≤ ψ M ϵn−1, Tn ϵ∗ð Þϵn−1
� �� �

M ϵn−1, Tn ϵ∗ð Þϵn−1
� �

,
ð58Þ

where

M ϵn−1, Tn ϵ∗ð Þϵn−1
� �

=max υ ϵn−1, Tn ϵ∗ð Þϵn−1
� �

,
n

υ ϵn−1, Tn ϵn−1ð Þϵn−1
� �

, υ ϵn−1, Tn ϵ∗ð Þϵn
� �o

> 0:
ð59Þ

It follows that

υ ϵn, Tn ϵ∗ð Þϵn
� �

< 1
2s

sup υ ϵn−1, qð Þjq ∈ Tmϵn−1f g∞m=1
È É

<⋯ <
1
2sð Þn sup υ ϵ0, qð Þjq ∈ Tmϵ0f g∞m=1

È É
⟶ 0  n⟶∞ð Þ:

ð60Þ

Since T is a continuous mapping, limn⟶∞dðTnðϵ∗Þϵ∗,
Tnðϵ∗ÞϵnÞ = 0. Therefore,

υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

≤ s υ ϵ∗, ϵnð Þ + υ ϵn, Tn ϵ∗ð Þϵn
� �h

+ υ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð Þϵn
� �i

⟶ 0 n⟶∞ð Þ:
ð61Þ

This means that ϵ∗ = Tnðϵ∗Þϵ∗ . Now,

υ ϵ∗, Tϵ∗ð Þ = υ Tn ϵ∗ð Þϵ∗, TTn ϵ∗ð Þϵ∗
� �

≤ ψ M ϵ∗, Tϵ∗ð Þð ÞM ϵ∗, Tϵ∗ð Þ,
ð62Þ

where

M ϵ∗, Tϵ∗ð Þ =max υ ϵ∗, Tϵ∗ð Þ, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

,
n

υ ϵ∗, Tn ϵ∗ð ÞTϵ∗
� �o

= υ ϵ∗, Tϵ∗ð Þ:
ð63Þ

Hence, we get υðϵ∗, Tϵ∗Þ ≤ ð1/2sÞυðϵ∗, Tϵ∗Þ, i.e., ϵ∗ = T
ϵ∗. Assume there has a ϖ∗ satisfying ϖ∗ = Tϖ∗ and ϵ∗ ≠ ϖ∗

; then, ϖ∗ = Tϖ∗ =⋯ = Tnðϵ∗Þϖ∗ and

υ ϵ∗, ϖ∗ð Þ = υ Tn ϵ∗ð Þϵ∗, Tn ϵ∗ð Þϖ∗
� �

≤ ψ M ϵ∗, ϖ∗ð Þð ÞM ϵ∗, ϖ∗ð Þ < 1
2s
d ϵ∗, ϖ∗ð Þ,

ð64Þ

which is impossible. So T possesses the unique fixed
point ε∗.

At the end, we prove the last part. To do this, we fix an
integer ℓ, 0 ≤ ℓ < nðϵ∗Þ, and ∀n > nðϵ∗Þ; we put n = inðϵ∗Þ
+ ℓ, i ≥ 1. Then, ∀ϵ ∈G; we have

υ ϵ∗, Tnϵð Þ = υ Tn ϵ∗ð Þϵ∗, T in ϵ∗ð Þ+ℓϵ
� �

≤ ψ M ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �� �

M ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

,

ð65Þ

where

M ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �
=max υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ

� �
, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

, υ ϵ∗, Tnϵð Þ
n o

:

ð66Þ

If υðϵ∗, TnϵÞ ≥ υðϵ∗, Tði−1Þnðϵ∗Þ+ℓϵÞ, then Mðϵ∗,
Tði−1Þnðϵ∗Þ+ℓϵÞ = υðϵ∗, TnϵÞ. According to (65), we have

υ ϵ∗, Tnϵð Þ ≤ 1
2s
υ ϵ∗, Tnϵð Þ, i:e:,ϵ∗ = Tnϵ: ð67Þ

It follows that Tnϵ ⟶ ϵ∗ as n⟶∞: If υðϵ∗, TnϵÞ < υ
ðϵ∗, Tði−1Þnðϵ∗Þ+ℓϵÞ, one can get that

υ ϵ∗, Tnϵð Þ ≤ 1
2s
υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

: ð68Þ

Similarly,

υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

= υ Tn ϵ∗ð Þϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

≤ ψ M ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ
� �� �

M ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ
� �

,
ð69Þ

where

M ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ
� �
=max υ ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ

� �
, υ ϵ∗, Tn ϵ∗ð Þϵ∗
� �

,
n

υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �o

:

ð70Þ

If υðϵ∗, Tði−1Þnðϵ∗Þ+ℓϵÞ ≥ υðϵ∗, Tði−2Þnðϵ∗Þ+ℓϵÞ, then

M ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ
� �

= υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

, ð71Þ

that is,

υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

≤
1
2s
υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

, i:e:,ϵ∗

= T i−1ð Þn ϵ∗ð Þ+ℓϵ:
ð72Þ

Since ϵ∗ is a fixed point of T , one get ϵ∗ = Tnðϵ∗Þϵ∗ =
Tnðϵ∗ÞTði−1Þnðϵ∗Þ+ℓϵ. Consequently, Tnϵ ⟶ ϵ∗ as n⟶∞:
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If υðϵ∗, Tði−1Þnðϵ∗Þ+ℓϵÞ < υðϵ∗, Tði−2Þnðϵ∗Þ+ℓϵÞ, then

υ ϵ∗, T i−1ð Þn ϵ∗ð Þ+ℓϵ
� �

≤
1
2s
υ ϵ∗, T i−2ð Þn ϵ∗ð Þ+ℓϵ
� �

: ð73Þ

We continue to calculate according to this method; if
there exists i0 ≤ i satisfying ϵ∗ = Tði−i0Þnðϵ∗Þ+ℓϵ, then Tnϵ
⟶ ϵ∗ as n⟶∞: Otherwise, one can conclude that

υ ϵ∗, Tnϵð Þ ≤⋯≤
1
2sð Þi

υ ϵ∗, Tℓϵ
À Á

⟶ 0 i⟶∞ð Þ: ð74Þ

Therefore, for each ϵ ∈G, the iteration fTnϵg is conver-
gent to ϵ∗.

Example 4. Let G = ½0,+∞Þ and υðϵ, ϖÞ = ðϵ − ϖÞ2: Obvi-
ously, ðG, υÞ is a complete rectangular b -metric space with
s = 3. Define T : G⟶G with

Tϵ =
ϵ

2
, ϵ ∈ 0,+∞½ Þ: ð75Þ

Define mappings ψðϵÞ = 1/3s and nðϵÞ = 3, ∀ϵ ∈ ½0,+∞Þ.
One has

υ Tn ϵð Þϵ, Tn ϵð Þϖ
� �

= υ T3ϵ, T3ϖ
À Á

=
1
64

ϵ − ϖð Þ2, ð76Þ

ψ M ϵ, ϖð Þð ÞM ϵ, ϖð Þ
= 1
9
max υ ϵ, ϖð Þ, υ ϵ, T3ϵ

À Á
, υ ϵ, T3ϖ
À ÁÈ É

≥
1
9
υ ϵ, ϖð Þ = 1

9
ϵ − ϖð Þ2:

ð77Þ

That is, υðTnðϵÞϵ, TnðϵÞϖÞ ≤ ψðMðϵ, ϖÞÞMðϵ, ϖÞ.

Thus, all hypotheses of Theorem 15 are fulfilled. So T
possesses the unique common fixed point 0. Furthermore,
for each ϵ ∈G, the iteration fTnϵg is convergent to 0.

4. Application

In this part, we will prove the solvability of this initial value
problem:

m
d2ϵ
dε2

+ c
dϵ
dε

−mF ε, ϵ εð Þð Þ = 0,

ϵ 0ð Þ = 0,

ϵ ′ 0ð Þ = 0,

8>>><
>>>:

ð78Þ

where m and c > 0 are constants and F : ½0,H� ×ℝ+

⟶ℝ is a continuous mapping.
Obviously, problem (78) is related to the integral equa-

tion:

ϵ εð Þ =
ðH
0
Y ε, νð ÞF ν, ϵ νð Þð Þdν, ε ∈ 0,H½ �, ð79Þ

where Yðε, rÞ is defined as

Y ε, ρð Þ =
1 − eω ε−νð Þ

ω
, 0 ≤ ϱ ≤ ε ≤H,

0, 0 ≤ ε ≤ ϱ ≤H,

8<
: ð80Þ

where ω = c/m is a constant.
Next, by using Theorem 13 and Theorem 15, we shall

present the solvability of the integral equation:

ϵ εð Þ =
ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ: ð81Þ

Let G = Cð½0,H�Þ. For p ≥ 2, ε, ϖ ∈G, define

υ ϵ, ϖð Þ = sup
ε∈ 0,H½ �

ϵ εð Þ − ϖ εð Þj jp: ð82Þ

Hence, ðG, υÞ is a complete rectangular b-metric space
with s = 3p−1.

In the following, define T : G⟶G by

Tϵ εð Þ =
ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ: ð83Þ

Suppose Ξ : ℝ ×ℝ⟶ℝ is a given function that sat-
isfies the following condition:

Ξ ϵ εð Þ, ϖ εð Þð Þ ≥ 0 andΞ ϖ εð Þ, Tϖ εð Þð Þ
≥ 0 impliesΞ ϵ εð Þ, Tϖ εð Þð Þ
≥ 0,∀ϵ, ϖ ∈G:

ð84Þ

Theorem 16. Assume that

(i) Γ : ½0,H� × ½0,H� ×ℝ⟶ℝ+ is continuous

(ii) there has an ϵ0 ∈G satisfying Ξðϵ0ðεÞ, Tϵ0ðεÞÞ ≥ 0
for all ε ∈ ½0,H�

(iii) ∀ε ∈ ½0,H� and ϵ, y ∈G, ΞðϵðεÞ, ϖðεÞÞ ≥ 0 imply Ξ
ðTϵðεÞ, TϖðεÞÞ ≥ 0

(iv) if fϵng ⊂G satisfies ΞðϵnðεÞ, ϵn+1ðεÞÞ ≥ 0, ∀n ∈ℕ,
and limn⟶∞ϵn = ϵ, then we can choose a subse-
quence fϵnkg of fϵng such that ΞðϵnkðεÞ, ϵðεÞÞ ≥ 0,
∀k ∈ℕ

(v) for each ϵ ∈G with TnðεÞϵ = ϵ, we have ΞðϵðεÞ,
ϖðεÞÞ ≥ 0 for any ϖ ∈G

(vi) there is a continuous mapping Y : ½0,H� × ½0,H�
⟶ℝ+ satisfying

sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þdϱ ≤

ffiffiffiffiffiffiffiffiffi
1

3p2+1
p

r
, ð85Þ
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Γ ε, ϱ, ϵ ϱð Þð Þ − Γ ε, ρ, ϖ ϱð Þð Þj j ≤ Y ε, ϱð Þ ϵ ϱð Þ − ϖ ϱð Þj j:
ð86Þ

Then, (81) possesses a unique solution ϵ ∈G.

Proof. Set α : G ×G⟶ ½0,+∞Þ by

α ϵ, ϖð Þ =
sp, if Ξ ϵ εð Þ, ϖ εð Þð Þ ≥ 0,

0, otherwise:

(
ð87Þ

One can check that T is triangular αsp orbital admissible.
In view of (i)-(vi), for ϵ, ϖ ∈G, we obtain

spυ Tϵ εð Þ, Tϖ εð Þð Þ
= sp sup

ε∈ 0,H½ �
Tϵ εð Þ − Tϖ εð Þj jp

= sp sup
ε∈ 0,H½ �

ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ −

ðH
0
Γ ε, ϱ, ϖ ϱð Þð Þdϱ

����
����
p

≤ sp sup
ε∈ 0,H½ �

ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þ − Γ ε, ϱ, ϖ ϱð Þð Þj jdϱ

� �p

≤ sp sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þ ϵ ϱð Þ − ϖ ϱð Þj jdϱ

� �p

≤ sp sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þdϱ

� �p

sup
ε∈ 0,H½ �

ϵ tð Þ − ϖ εð Þj jp

≤ sp ·
1

3p2+1
sup

ε∈ 0,H½ �
ϵ εð Þ − ϖ εð Þj jp

≤
υ ϵ εð Þ, ϖ εð Þð Þ

3p+1
,

ð88Þ

which implies that

α ϵ εð Þ, ϖ εð Þð Þυ Tn ϵð Þϵ εð Þ, Tn ϵð Þϖ εð Þ
� �

≤Φ υ ϵ εð Þ, ϖ εð Þð Þ, υ ϵ εð Þ, Tn ϵð Þϵ εð Þ
� �

, υ ϵ εð Þ, Tn ϵð Þϖ εð Þ
� �� �

,

ð89Þ

where Φðϵ1, ϵ2, ϵ3Þ = ðϵ1 + ϵ2 + ϵ3Þ/3p+1, s = 3p−1, and
nðϵÞ = 1. After that, all hypotheses of Theorem 13 are ful-
filled. Hence, T has a unique fixed point ϵ ∈G. That is, ϵ is
the unique solution of integral equation (81).

Remark 17. If Γðε, ϱ, ϵðϱÞÞ = Yðε, ϱÞFðϱ, ϵðϱÞÞ, jFðϱ, ϵðϱÞÞ
− Fðϱ, ϖðϱÞÞj ≤ jϵðϱÞ − ϖðϱÞj; then, (78) has a unique solu-
tion by Theorem 16.

Theorem 18. Suppose that

(i) Γ : ½0,H� × ½0,H� ×ℝ⟶ℝ+ is continuous

(ii) there is a continuous mapping Y : ½0,H� × ½0,H�
⟶ℝ+ satisfying

Γ ε, ϱ, ϵ ϱð Þð Þ − Γ ε, ϱ, ϖ ϱð Þð Þj j

≤ Y ε, ϱð Þ ϵ εð Þ + ϖ εð Þ −
ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ +

ðH
0
Γ ε, ϱ, ϖ ϱð Þð Þdϱ

� �����
����,

ð90Þ

sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þdϱ ≤ 1

32
: ð91Þ

Then, (81) possesses a unique solution ϵ ∈G.

Proof. For ϵ, ϖ ∈G, according to the conditions (i)-(ii), one
can get

υ Tϵ εð Þ, Tϖ εð Þð Þ
= sup

ε∈ 0,H½ �
Tϵ εð Þ − Tϖ εð Þj jp

= sup
ε∈ 0,H½ �

ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ −

ðH
0
Γ ε, ϱ, ϖ ϱð Þð Þdϱ

����
����
p

≤ sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þ ϵ εð Þ + ϖ εð Þj

�

−
ðH
0
Γ ε, ϱ, ϵ ϱð Þð Þdϱ +

ðH
0
Γ ε, ϱ, ϖ ϱð Þð Þdϱ

� �����dϱÞ
p

≤ sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þ ϵ εð Þ − Tϖ εð Þj j + ϖ εð Þ − Tϵ εð Þj jð Þdϱ

� �p

≤ sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þ ϵ εð Þ − Tϖ εð Þj j + ϖ εð Þ − ϵ εð Þj j + ϵ εð Þ − Tϵ εð Þj jð Þdϱ

� �p

≤ sup
ε∈ 0,H½ �

ðH
0
Y ε, ϱð Þdϱ

� �p

· sup
ε∈ 0,H½ �

ϵ εð Þ − Tϖ εð Þj j + ϖ εð Þ − ϵ εð Þj j + ϵ εð Þ − Tϵ εð Þj jð Þp

≤
1
32p

· 3p ·
sup
ε∈ 0,H½ �

ϵ εð Þ − Tϖ εð Þj jp + sup
ε∈ 0,H½ �

ϖ εð Þ − ϵ εð Þj jp + sup
ε∈ 0,H½ �

ϵ εð Þ − Tϵ εð Þj jp

3

≤
1
3s
M ϵ, ϖð Þ,

ð92Þ

where Mðε, ϖÞ is the same as in Theorem 15. Thus, all
the hypotheses of Theorem 15 are fulfilled with ψðεÞ = 1/3s
and nðεÞ = 1. It follows that T possesses a unique fixed point
ϵ ∈G, and so is a solution of (81).

5. Conclusions

In rectangular b-metric spaces, we introduced a new triangu-
lar α-orbital admissible condition and established two fixed
point results for mappings with a contractive iterate at a
point. Further, we provided two examples that elaborated
the usability of presented results. At the same time, we
proved the existence and uniqueness of solution of an inte-
gral equation.
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Over the past century, the fixed point theory has emerged as a very useful and efficient tool in the study of nonlinear problems.
This study introduced a progressed genetic algorithm (GA) based on a particular mutation operator applying on a subdivided
search space where integer label and relative coordinates are used. This algorithm eventually categorizes each fixed point as its
solution in appropriate set. Extensive computational experiments are conducted to assess the performance of the proposed
technique with a standard GA for solving some nonlinear numerical functions from the literature.

1. Introduction

The fixed point theory was introduced scientifically in the
20th century. The basis of this theory is the principle of
the Picard-Banach-Caccioppoli, which led to important lines
of research and applications of this theory [1]. Fixed point
theory is used and is important in various theoretical and
practical fields. Theoretical fields such as variable and linear
inequalities, theory of approximation, nonlinear analysis,
equations, integrals, and differential components, theory of
dynamic systems, fractals theory, financial mathematic, and
game theory and applied fields such as biology, chemistry,
management and economics, engineering in various disci-
plines, computer science, physics, geometry, astronomy,
fluid mechanics, and image processing.

Riehl et al. [2] considered fixed points of discrete systems
in large networks and optimized them. In this study, the
equilibrium fixed points of discrete systems in distributed
networks were considered; and by using appropriate parti-
tions, they recursively decompose the main problem into a
set of smaller and simpler problems and combine their solu-
tions to gain a set of fixed points. The results showed the
proposed algorithm with examples in two areas of calculat-
ing the number of fixed points in brain networks and finding

the minimum energy combinations of network-based pro-
tein folding models.

Lael et al. [3] introduced a method for the Caristi-Kirk
fixed point result for single mappings in conical metric
spaces with a simple yet complete argument. The results of
this research showed that the Caristi-Kirk fixed point in con-
ical metric spaces turns into a result similar to traditional
methods in reduced metric spaces. Bakery and Mohamed
[4] proposed a new definition of the variable exponent of
the Cesàro complex function space using the official power
series. In this space, by utilizing s-numbers produced
prequasi-ideal and then presented the topological and geo-
metric structures of this class of ideal.

Metric space developed with the introduction of the
Banach contraction principle and found more applications.
One of the concepts presented in this space was the concept
of F-metric [5]. Asif et al. [6] considered f-metric and create
common fixed point results of Reich-type contraction. The
results of this definition and its development showed that a
unique common fixed point can be obtained if the contrac-
tion conditions are limited to only one closed ball subset of
the total F-metric space. In addition, some significant impli-
cations are exploited from the significant results that charac-
terize the fixed point outcomes for a single mapping. Among
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nonlinear maps, nonexpansion maps are of particular
importance. Expansion maps are maps that have a Lipschitz
constant equal to one. Shukla and Panickar [7] assumed a
nonexpansion map and they gained a number of fixed point
theorems for these maps in geodetic spaces.

When we consider different optimization methods and
compare them with the genetic algorithm, we find that the
genetic algorithm (GA) by simulating the evolutionary process
in organisms can provide an effective solution to find the opti-
mal point inmost cases [8, 9]. Mutation is used for avoiding of
premature convergence and consequently escaping from local

optimal. The GAs have been very successful in handling com-
binatorial optimization problems which are difficult [10].

Tang et al. [11], in order to prevent premature conver-
gence in the GA, utilized the idea of flight behavior in the
bird swarm algorithm to maintain population diversity and
reduce the probability of falling to the local optimal. Muta-
tion and the mutation probability ðpmÞ are important
parameters in GAs. The mutation operator generates a new
string by altering one or more bits of a string. By applying
the mutation operator to a string, muting each bit of the
string independently from the other bits is considered. So,

Start

t = 0; i = 1, 2...5; h1 = 1
a ≤ x1 ≤ b, c ≤ x2 ≤ d

n, k, m nonnegative integer

Subdivide search space
x1 = mhi, x2 = mhi

Coding and initialization; save P (t)
, x2 = c + khix1 = a + nhi

Evaluate f (x1 + x2)

Mutation
(x1 + 𝛼, x2 + 𝛽)
𝛼, 𝛽 ⋲ {0, ±hi+1}

Evaluate fitness of new population

Save best individual as P (t+1)

Calculate l (x)

If 𝛼 = 𝛽 = 0
or

Is there the square with
entire integer label? 

Whether
meets

the
precision

Print fixed points in
appropriate

category 

Stop

N

Y
Y

N

This improved 
algorithm makes 
grid in given 
scope and 
encodes each 
intersection by 
integer while it 
starts from the 
lowest point of 
the domain. 
After calculating 
fitness of each 
point, it 
generates the 
best offspring 
and computes 
integer label of 
the last 
population for 
every square. 
When it found 
the square 
labeled 
completely, 
subdivides them 
in order to seek 
the solution 
closely. As 
following, we 
demonstrate the 
performance of 
the improved 
algorithm by 
different 
examples and 
show how it can 
categorize fixed 
points.

hi+1 =
hi
2

Figure 1: Improvement genetic algorithm flow chart.
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the mutation operator is more likely to significantly disrupt
the allocation of trials to high order schemata than to low
order ones. The efficiency of the mutation operator as a
means of exploring the search space is questionable. A GA
using mutation as the only genetic operator would be a ran-
dom search that is biased toward sampling good hyper
planes rather than poor ones [12].

The relationship between the genetic algorithm and the
fixed points is a two-way relationship. In this sense, in some

studies, fixed point properties have been used to improve the
performance of genetic algorithms [13–18], and in some
studies, updated models of genetic algorithms have been
used to solve fixed point problems [19–22].

The concepts of fixed point and subdivision theory are
used in some researches for improving GA. Gao et al. [13]
introduced a GA based on fixed point algorithm and subdi-
vision theory of continuous self-mapping in Euclidean
space. They used subdivision of searching space and gener-
ate the integer labels and then these labels utilized for oper-
ators in GA. Pop [14] introduced a new developed GA based
on the fixed point theorem and triangulation technique.
Researcher utilized the crossover and mutation and
increased the dimension genetic operators to avoid of pre-
mature convergence. Also, they utilized a custom increase
dimension operator that expressively increases the total
fitness.

Wolfram [23] used GA for controlling fixed point opti-
mization. The researcher considers the floating point and
fixed point display error in the optimization. Since both
methods allow weighing between the theoretical and actual
simulation, error occurred. Due to the script features of the
simulation system, this can be easily automated. Zhang
et al. [15] introduced triangulation theory into GA by the
virtue of the concept of relative coordinate genetic coding
and designed corresponding crossover and mutation opera-
tor. Hayes and Gedeon [17] considered the infinite popula-
tion model for GA where the generation of the algorithm
corresponds to a generation of a map. They showed that
for a typical mixing operator, all the fixed points are
hyperbolic.

Ren et al. [24] introduced the fixed point theory in PSO
optimization and proposed an improved FP-PSO (fixed
point PSO) algorithm. In the FP-PSO algorithm, the objec-
tive function is converted to a set of fixed point equations
and the set of solutions obtained by the simple algorithm
(SA) is used as the initial population of the PSO algorithm.
Therefore, the remaining parameters can be obtained based
on this choice of the classical PSO algorithm. Zhang et al.
[16] introduced a GA that the population of individual is
regarded as the triangulation of the point. They used the ver-
tex label information of the individual simplex of individual
to design selection operator, crossover, and mutation
operators.

Zhang and Shang [25] proposed an improved multiob-
jective genetic algorithm based on Pareto front and fixed
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point theory. In this algorithm, the fixed point theory is
introduced to a multiobjective optimization questions, and
K1 triangulation is carried on to solutions for the weighting
function constructed by all subfunctions, so the optimal
problems are transferred to fixed point problems. Yang
et al. [11] introduced the van der Laan-Talman algorithm
to the GA to design convergence criteria objectively and to
solve the convergence problem in the later period. The par-

allel GA of multibody model vehicle suspension optimiza-
tion implemented through establishing the interface
between ADAMS software and the GA. Wright et al. [26]
developed a dynamical system model of a GA that uses gene
pool crossover, proportional selection, and mutation. They
introduced the concept of bistability for GA and they
showed that it is possible for a GA to have two stable fixed
points on a single-peak fitness landscape. These can corre-
spond to a metastable finite populations.

Gedeon et al. [27] showed that for an arbitrary selection
mechanism and a typical mixing operator, their composition
has finitely many fixed points. Qian et al. [28] proposed a
GA to treat with such constrained integer programming
problem for the sake of efficiency. Then the fixed point
evolved (E)-UTRA PRACH detector presented, which fur-
ther underlines the feasibility and convenience of applying
this methodology to practice. Wright et al. [29] considered
the dynamic system model of Wright and Vose [18] and
showed that with the increase of mutation percentage, the
hyperbolic asymptotic fixed points are directed towards the
simplex, and the hyperbolic unstable asymptotic fixed points
are directed out of the simplex.

Thianwan [30] introduced a new iteration scheme of
mixed type for two asymptotically nonexpansive self-
mappings and two asymptotically nonexpansive non-self-
mappings. After introducing this method, some convergence
theorems based on the proposed iterative scheme in uni-
formly convex Banach spaces have been presented, proved,
and compared with previous results on some problems. A
new mixed type iteration process for approximating a com-
mon fixed point from two asymptotic self-expansion map-
pings and two nonasymptotic self-expansion mappings was
introduced by Thianwan [31]. In the continuation of this
research, a convergence theorem was proposed in a uniform
convex hyperbolic space and using the introduced method,
the presented results showed that the presented model has
better results than the previous models.

This paper investigates the concepts of fixed point and
square labels with a special mutation operator for improving
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performance of the GA. The performance of proposed algo-
rithm on some nonlinear numerical optimization problems
shows this algorithm converge to a reasonable results in a
few numbers of generations.

2. Construing of Optimal Problems as Fixed
Point Problem

In genetic algorithm like other evolutionary algorithm, its
optimal solutions are points that the algorithm improves,
keeps, or returns to them after a certain number of iterations
because these points meet the required criteria of the algo-
rithm. When infinite population is used in GA, the algo-
rithm must converge, and the average population fitness
increase from one generation to the next. The consequence
for a finite population simple genetic algorithm (SGA) is
that the expected population fitness increases from one gen-
eration to the next. Moreover, the only stable fixed point of
the expected next population operator corresponds to the

population consisting entirely of the optimal string. This
result is then extended by way of a perturbation argument
to allow nonzero mutation. Supposing that algorithm is
searching a point x, which can make continuous function
of f to achieve its minimum. The necessary and sufficient
condition of extreme point is that this point gradient is 0,
that is, ∇f ðxÞ = 0.

For self-mapping g : ℝn ⟶ℝn, we say, x ∈ℝn is a
fixed point of g if gðxÞ = x, then we can convert the solution
of zero point problems to fixed point ones of function gðxÞ
= x + ∇ f ðxÞ.

3. Subdivision and Relative Coordinates

Supposing that definition domain of f ðx1, x2Þ is that a ≤ x1
≤ b, c ≤ x2 ≤ d and dividing the domain into many squares
with two groups of straight lines of fx1 =mhig, fx2 =mhig
in which m is a not negative integer and hi is a positive
quantity relating to precision of the problem; as a result,
we can code each point of intersection as x1 = a + nhi, x2 =
c + khi where n, k are not negative integers, so ðn, kÞ is called
the relative coordinates of points. Consequently, by chang-
ing n, k relative coordinates of each point in search space is
determined.

Supposing that x is a vertex of a square that will be
labeled as the following [23]:

l xð Þ =
0, g x1ð Þ − x1 ≥ 0, g x2ð Þ − x2 ≥ 0,
1, g x1ð Þ − x1 < 0, g x2ð Þ − x2 ≥ 0,
2, g x2ð Þ − x2 < 0:

8
>><

>>:

ð1Þ

The square with all different kinds of integer label is
called a completely labeled unite, when hi ⟶ 0 within iter-
ation stages, vertices of that square approximately converge
to one point which is a fixed point.

4. Mutation Operator

For each point coded ðn, kÞ, the GA is trying to improve it to
reach optimal solution by mutation operator searching all
points surrounding it in certain step determined by hi+1:
Thus, mutation probability pm = 1.

For instance, ðn, kÞ in Pð0Þ, initial population, address-
ing ðx1 + nhi, x2 + khiÞ will be changed as ðx1 + α, x2 + βÞ
, α, β ∈ f0,±hi+1g. Subsequently, the algorithm saves the
best-mutated individual among all possible offspring. There-
fore, this operator produces new population located on
intersection of the next grid. Because of this, coming squares
are specified to evaluate and label. Furthermore, the next
generation is producing from the previous one. For instance,
in example 1, we show that the operator mutates (-2, 2) to
(-2, 0), (2, 0), and (0, 0) in the given scope, then (0, 0) is
selected as the best offspring.

5. The Improved Genetic Algorithm

This improved algorithm makes grid in given scope and
encodes each intersection by integer while it starts from
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Figure 10: Second generation of f3.
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the lowest point of the domain. After calculating fitness of
each point, it generates the best offspring and computes inte-
ger label of the last population for every square. When it
found the square labeled completely, it subdivides them in
order to seek the solution closely (the process of this method
is shown in Figure 1). As following, we demonstrate the per-
formance of the improved algorithm by different examples
and show how it can categorize fixed points.

6. Computational Experiments

In this section, we present the computational results of the
proposed algorithm for solving some nonlinear numerical
functions.

6.1. Test Problem 1. This function is a continuous and unim-
odal function taken from [32]. The optimization problem is

min f x1, x2ð Þ = x1
2 + x2 − 0:4ð Þ2 − 2 < xi < 2, i = 1, 2: ð2Þ

The function achieves the minimum when x1 = 0 and
x2 = 0:4: In this example, hi ∈ f4, 2, 1, 0:5, 0:25g, mutation
probability pm = 1. The completely label square obtains
through the iteration, the search scope for both x1 and x2
are (-2, 2), (0, 2), (0, 1), and finally (0, 0.5), respectively (as
show from Figures 2–5). During iterations, squares are con-
tracting to (0, 0.5) gradually, if we started from h1 = 1, we got
closer answer, i.e., (0, 0.4).

6.2. Test Problem 2. The optimization problem considered
here is also a nonlinear function problem taken from [32].
The problem is

min f x1, x2ð Þ = x1
3 + x2

3 − 1 < xi < 1, i = 1, 2: ð3Þ

The best obtained solution is x1 = −1 and x2 = −1 with
f ðx1, x2Þ = −2: In this example, hi ∈ f2, 1, 0:5g mutation
probability pm = 1. The completely label square obtains
through the iteration, the search scope for both x1 and x2
are (-1, 1), (-1, 0), and (-1, -0.5).

During iterations, squares are contracting to (-1, -1)
gradually, which is a boundary point for this increasing
function (as show from Figures 6–8).

6.3. Test Problem 3. In this problem, we choose a nonlinear
optimization problem with two continuous variables. It
was also taken from [32].

min f x1, x2ð Þ = cos π

2 x1 − sin π

2 x2 − 7 < xi < 7, i = 1, 2: ð4Þ

This multimodal function has many local optimal in its
domain. The GA keeps each local and global optimal one
found in squares labeled completely. In this example, for hi
∈ f6, 3, 1:5, 0:75g while mutation probability pm = 1, as
shown in figure 7, these points can be gotten. Three follow-
ing generation have been shown in the first quarter of the
coordinates system (see Figures 9–11).

7. Conclusion

In this paper, we show that labeling technique and the muta-
tion operator producing later generation on the next gridd-
ing points have some advantages. First of all, making
network on search space provides integer-coding system that
simplifies locating of all individuals in the future and present
generation, so we can easily label each vertex of square and
investigate the possibility of finding every optimal solution.
Moreover, the algorithm is capable of starting from a fixed
point located in domain boundary; hence, it overcomes
weakness of man-made initial point. Second, finding square
completely labeled avoids missing local answers because the
algorithm focuses on such squares when it is trying to seek
global minimum inside of not entirely labeled squares or in
other completely ones. Third, this mutation operator works
systematically in order to estimate better solution. In other
words, it does not work so randomly that loses possible fixed
points in an area as it is clear in Figure 3. In addition, the
algorithm moves toward obtaining the best solution among
likely offspring. Consequently, it performs more quickly
and effectively because it eliminates unneeded iterations
and calculations. Finally, it categorizes different fixed points
at the end of its run.
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The aim of the current article is to characterize and to prove the stability of multi-Euler-Lagrange quadratic mappings. In other
words, it reduces a system of equations defining the multi-Euler-Lagrange quadratic mappings to an equation, say, the
multi-Euler-Lagrange quadratic functional equation. Moreover, some results corresponding to known stability (Hyers,
Rassias, and Gӑvruta) outcomes regarding the multi-Euler-Lagrange quadratic functional equation are presented in quasi-
β-normed and Banach spaces by using the fixed point methods. Lastly, an example for the nonstable multi-Euler-
Lagrange quadratic functional equation is indicated.

1. Introduction

The celebrated Ulam challenge [1] arises from this question
that how we can find an exact solution near to an approxi-
mate solution of an equation. This phenomenon of mathe-
matics is called the stability of functional equations which
has many applications in nonlinear analysis. The mentioned
question has been partially solved by Hyers [2], Aoki [3], and
Rassias [4] for the linear, additive, and linear (unbounded
Cauchy difference) mappings, respectively. Next, many
Hyers-Ulam stability problems for miscellaneous functional
equations were studied by authors in the spirit of Rassias
approach (see for instance [5–14] and other resources).

During the last two decades, stability problems for
multivariable mappings were studied and extended by a
number of authors. One of the mappings is the multiquadra-
tic mapping, studied, for example, in [15–17]. Recall that a
multivariable mapping f : Vn ⟶W is said to be multiqua-
dratic [11] if it fulfills the famous quadratic equation

Q u + vð Þ +Q u − vð Þ = 2Q uð Þ + 2Q vð Þ, ð1Þ

in each component. Note that equation (1) is a suitable tool
for obtaining some characterizations in the setting of inner
product spaces and in fact plays a prominent role. In other
words, any square norm on an inner product space fulfills

u + vk k2 + u − vk k2 = 2 uk k2 + vk k2, ð2Þ

which is called the parallelogram equality. However, some
functional equations have been applied to characterize inner
product spaces and are available in [18, 19] and references
therein. In addition, the quadratic functional equation was
used to characterize inner product spaces in [20, 21].

A lot of information about equation (1) and some equa-
tions which are equivalent to it (in particular, about their
solutions and stability) and more applications can be found
for instance in [22–24]. Park was the first author who stud-
ied the stability of multiquadratic in the setting of Banach
algebras [16]. After that, some authors introduced various
versions of multiquadratic mappings and investigated the
Hyers-Ulam stability of such mappings in Banach spaces
and non-Archimedean spaces; these results are available
for instance in [15, 25–29]. As for an unification of the
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multiquadratic mappings, Zhao et al. [17] were the first
authors who described the structure of multiquadratic map-
pings, and in fact, they showed that f : Vn ⟶W is a multi-
quadratic mapping if and only if the equation

〠
t∈ −1,1f gn

f v1 + tv2ð Þ = 2n 〠
i1,⋯,in∈ 1,2f g

f v1i1 ,⋯, vnin
À Á ð3Þ

holds, where vi = ðx1i,⋯, vniÞ ∈ Vn and i ∈ f1, 2g.
Rassias [30] introduced the following notion of a gener-

alized Euler-Lagrange-type quadratic mapping and investi-
gated its generalized stability.

Definition 1. Suppose that V and W are linear spaces. A
nonlinear mapping Q : V ⟶W satisfying the functional
equation

Q au + bvð Þ +Q bu − avð Þ = a2 + b2
À Á

Q uð Þ +Q vð Þ½ � ð4Þ

is called 2-dimensional quadratic, where u, v ∈ V and a, b are
the fixed reals with a2 + b2 > 1.

It is easily seen that the Euler-Lagrange equality

au + bvð Þ2 + bu − avð Þ2 = a2 + b2
À Á

u2 + v2
À Á ð5Þ

is valid for Q, defined in Definition 1 with any fixed reals
a, b, and hence, (4) is also called Euler-Lagrange quadratic
functional equation; we refer to [31] for Euler-Lagrange type
cubic functional equation and its stability. Note that equa-
tion (4) is a general form of (1) in the case that a = b = 1,
and so the function QðvÞ = v2 satisfies (4). Next, Xu [32]
extended the definition above to several variable mappings
and presented the next definition.

Definition 2. Let V and W be vector spaces. A mapping
f : Vn ⟶W is said to be the n -Euler-Lagrange quadratic
or multi-Euler-Lagrange quadratic if the mapping

v↦ f v1,⋯, vi−1, v, vi+1,⋯, vnð Þ ð6Þ

satisfies (4), for all i ∈ f1,⋯, ng and all vi ∈ V .

In this article, we include a characterization of multi-
Euler-Lagrange quadratic mappings and show that every
multi-Euler-Lagrange quadratic mapping can be described
as an equation (namely, the multi-Euler-Lagrange quadratic
equation). Under the quadratic condition (2-power condi-
tion) in each variable, every multivariable mappings satisfy-
ing the mentioned earlier equation is multi-Euler-Lagrange
quadratic (Theorem 5). Furthermore, we bring two Hyers-
Ulam stability results for multi-Euler-Lagrange quadratic
functional equations in quasi-β-normed and Banach spaces
which their proof is based according to some known fixed
point methods; see [33, 34] for more stability results in
quasi-β-Banach spaces setting. Finally, we indicate an exam-
ple to show that the multi-Euler-Lagrange quadratic func-
tional equation is nonstable in the case of singularity.

2. Characterization of Multi-Euler-Lagrange
Quadratic Mappings

Throughout, we consider the following known notations:

(i) ℕ=the set of all natural numbers

(ii) ℤ= the set of all integer numbers

(iii) ℚ= the set of all rational numbers

(iv) ℕ0 ≔ℕ ∪ f0g
(v) ℝ+ ≔ ½0,∞Þ
Let V be a linear space over ℚ. Given n ∈ℕ, p ∈ℕ0,

s = ðs1,⋯, snÞ ∈ℚn, and v = ðv1,⋯, vnÞ ∈ Vn. We write sv≔
ðs1v1,⋯, snvnÞ and pv≔ ðpv1,⋯, pvnÞ which belong to Vn.
Here and subsequently, V is linear space over ℚ and vni =
ðvi1, vi2,⋯, vinÞ ∈ Vn, in which i ∈ f1, 2g. Furthermore, for
given the fixed elements ani = ðai1, ai2,⋯, ainÞ ∈ℤn such that
aij ≠ 0, ±1, where i = 1, 2 and j = 1,⋯, n (here and the rest
of the paper). We will write ani and vni simply ai and vi,
respectively, when no confusion can arise.

For v1, v2 ∈ Vn and a1, a2 ∈ℤn, set

A+1
j = 〠

2

i=1
aijvij,

A−1
j = 〠

2

i=1
−1ð Þi+1a3−i,jvij, j ∈ 1,⋯, nf gð Þ:

ð7Þ

In continuation, we show that the equation

〠
t1,⋯tn∈ −1,+1f g

f At1
1 ,⋯, Atn

n

� �

=
Yn
j=1

a21j + a22j
� �

〠
l1,⋯,ln∈ 1,2f g

f vl11,⋯, vlnn
À Á ð8Þ

is a general form of (4) for the multivariable case. In other
words, we prove that every multi-Euler-Lagrange quadratic
mapping fulfills (1) and vice versa. For doing this, we need
some definitions and the upcoming lemma.

Definition 3. Let V and W be vector spaces over ℚ and
f : Vn ⟶W be a multivariable mapping.

(i) We say f satisfies (has) the 2-power (quadratic) con-
dition in the jth component if

f x1,⋯, xj−1, a∗xj, xj+1,⋯, xn
À Á
= a∗ð Þ2 f x1,⋯, xj−1, xj, xj+1,⋯, xn

À Á
,

ð9Þ

for all x1,⋯, xn ∈ V , where a∗ ∈ fa1j, a2jg for all j ∈
f1,⋯, ng

(ii) If f ðx1,⋯, xnÞ = 0 when the fixed xj is zero, then
we say that f has zero functional equation in the
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jth variable. Moreover, if f ðx1,⋯, xnÞ = 0 for any
ðx1,⋯, xnÞ ∈ Vn with at least one xj is zero, we
say f has zero functional equation

We consider two hypotheses as follows:
(H1) f has the quadratic condition in all variables.
(H2) f has zero functional equation.

Remark 4. It is clear that if a mapping f : Vn ⟶W satisfies
the quadratic condition in the jth variable, then it has zero
functional equation in the same variable. Therefore, if f
fulfills (H1), then it satisfies (H2).

Theorem 5. For a mapping f : Vn ⟶W, the following
assertions are equivalent:

(i) f is multi-Euler-Lagrange quadratic

(ii) f fulfills (8) and H1

Proof. ðiÞ⇒ ðiiÞ In view of [30], one can show that f satisfies
H1. By induction on n, we now proceed the rest of this
implication so that f satisfies equation (8). Obviously, f sat-
isfies equation (4) for n = 1. The induction hypothesis is

〠
t1,⋯tn∈ −1,+1f g

f At1
1 ,⋯, Atn

n

� �

=
Yn
j=1

a21j + a22j
� �

〠
l1,⋯,ln∈ 1,2f g

f vl11,⋯, vlnn
À Á

:

ð10Þ

Then

〠
t1,⋯,tn+1∈ −1,1f g

f At1
1 ,⋯, Atn+1

n+1
� �

= 〠
t1,⋯,tn∈ −1,1f g

f At1
1 ,⋯, A+1

n+1

� �

+ 〠
t1,⋯,tn∈ −1,1f g

f At1
1 ,⋯, A−1

n+1

� �

= a21,n+1 + a22,n+1
À Á

〠
t1,⋯,tn∈ −1,1f g

f At1
1 ,⋯, Atn

n , v1,n+1
� � 

+ 〠
t1,⋯,tn∈ −1,1f g

f At1
1 ,⋯, Atn

n , v2,n+1
� �!

= a21,n+1 + a22,n+1
À ÁYn

j=1
a21j + a22j
� �

Á 〠
l1,⋯,ln∈ 1,2f g

f vl11,⋯, vlnn, v1,n+1
À Á 

+ 〠
l1,⋯,ln∈ 1,2f g

f vl11,⋯, vlnn, v2,n+1
À Á!

=
Yn+1
j=1

a21j + a22j
� �

〠
l1,⋯,ln+1∈ 1,2f g

f vl11,⋯, vln+1,n+1
À Á

:

ð11Þ

(ii) ⇒ (i) Let j ∈ f1,⋯,ng be arbitrary and fixed. Taking
v2k = 0 for all k ∈ f1,⋯, ng \ fjg in (8) and applying Remark
4, the left side will be as follows:

f a11v11,⋯, a1,j−1v1,j−1,A+1
j , a1,j+1v1,j+1,⋯, a1nv1n

� �
+ f a21v11,⋯, a2,j−1v1,j−1,A+1

j , a2,j+1v1,j+1,⋯, a2nv1n
� �

+ f a11v11,⋯, a1,j−1v1,j−1,A−1
j , a1,j+1v1,j+1,⋯, a1nv1n

� �
+ f a21v11,⋯, a2,j−1v1,j−1,A−1

j , a2,j+1v1,j+1,⋯, a2nv1n
� �

= a211a
2
21a

2
12a

2
22 ⋯ a21,j−1a

2
2,j−1a

2
1,j+1a

2
2,j+1 ⋯ a21na

2
2n

Á f v11,⋯, v1,j−1, A+1
j , v1,j+1,⋯, v1n

� �h
+ f v11,⋯, v1,j−1, A−1

j , v1,j+1,⋯, v1n
� �i

:

ð12Þ

Once again, the same replacements convert the right side
of (8) to

Yn−1
k≠j
k=1

a21k + a22k
À Á

a21 j + a22 j
� �

f v11,⋯, v1,j−1, v1j, v1,j+1,⋯, v1n
À ÁÂ

+ f v11,⋯, v1,j−1, v2j, v1,j+1,⋯, v1n
À ÁÃ

:

ð13Þ

It follows from (12) and (13) that f is Euler-Lagrange
ða1j, a2jÞ-quadratic in the jth component, and this com-
pletes the proof.

We should note that Theorem 5 necessitates that
the mapping f : ℝn ⟶ℝ defined through f ðx1,⋯, xnÞ =
C
Qn

j=1x
2
j fulfills equation (8). Hence, this equation can

be called the multi-Euler-Lagrange quadratic functional
equation.

3. Stability and Nonstability Results

The goals of this section are to prove miscellaneous result
stability of multi-Euler-Lagrange quadratic equation (14)
such as Hyers and Găvruta stability. Here, we mention a
special case of equation (8) in which a1 = ða,⋯, aÞ and
a2 = ðb,⋯, bÞ, and so (8) converts to

〠
t1,⋯tn∈ a,bð Þ, b,að Þf g

f At1
1 ,⋯, Atn

n

� �

= a2 + b2
À Án 〠

l1,⋯,ln∈ 1,2f g
f vl11,⋯, vlnn
À Á

,
ð14Þ

in which

A a,bð Þ
j = av1j + bv2j, andA

b,að Þ
j = bv1j − av2j, ð15Þ

3Journal of Function Spaces



and m = a2 + b2 (used here and from now on) for all j ∈
f1,⋯, ng.

For a set E, a function d : E × E⟶ ½0,∞� is said to be a
generalized metric on E provided that d fulfills the state-
ments below, for all u, v,w ∈ E.

(i) dðu, vÞ = 0 if and only if u = v

(ii) dðu, vÞ = dðv, uÞ
(iii) dðu,wÞ ≤ dðu, vÞ + dðv,wÞ
The next theorem from [35] is one of fundamental

results in fixed point theory and useful to achieve our first
purpose in this section.

Theorem 6. Suppose that ðΩ, dÞ is a complete generalized
metric space and J : Ω⟶Ω is a mapping such that its
Lipschitz constant is L < 1. Then, for each element x ∈Ω,
one of following cases can be happen:

(i) dðJ nx, J n+1xÞ =∞for all n ≥ 0 or

(ii) There is an n0 ∈ℕ such that dðJ nx, J n+1xÞ <∞
for all n ≥ n0, and the sequence fJ nxg is conver-
gent to a fixed point x∗ of J which belongs to the
set Λ = fx ∈Ω : dðJ n0x, xÞ<∞g. Moreover, dðx, x∗Þ
≤ ð1/ð1 − LÞÞdðx, J xÞ for all x ∈Λ

In the sequel, for any mapping f : Vn ⟶W, we define
the operator Df : Vn × Vn ⟶W via

Df v1, v2ð Þ≔ 〠
t1 ,⋯tn∈ a,bð Þ, b,að Þf g

f At1
1 ,⋯, Atn

n

� �

−mn 〠
l1 ,⋯,ln∈ 1,2f g

f vl11,⋯, vlnn
À Á

,
ð16Þ

for the fixed nonzero integers a, b where Aða,bÞ
j and Aðb,aÞ

j are
defined in (15) for all j = 1,⋯, n.

In the incoming stability result for equation (14), kDf ðv1,
v2Þk is controlled by a small positive number ε. We recall that
for i = 1, 2, we consider vi = ðvi1,⋯, vinÞ ∈ Vn.

Theorem 7. Given ε > 0. Let V andW be a linear space and a
complete normed space, respectively. Suppose that a mapping
f : Vn ⟶W fulfilling H2 and

Df v1, v2ð Þk k ≤ ε, ð17Þ

for all v1, v2 ∈ Vn. Then, there exists a unique solution
Q : Vn ⟶W of (14) such that

f vð Þ −Q vð Þk k ≤ mn + 1
m2n − 1

ε, ð18Þ

for all v ∈ Vn. In addition,

Q vð Þ = lim
l⟶∞

1
m2n

� �l

f mlv
� �

, ð19Þ

for all v ∈ Vn.

Proof. Putting v2 = 0 in (17) and using the assumption H2,
we have

~f v1ð Þ −mnf v1ð Þ



 


 ≤ ε, ð20Þ

for all v1 ∈ Vn, where

~f v1ð Þ = 〠
al11,⋯,alnn∈ a,bf g

f al11v11,⋯, alnnv1n
À Á

: ð21Þ

Set v1 = v for simply and for the rest of the proof, all the
equations and inequalities are valid for all v ∈ Vn. Once
more, by replacing ðv1, v2Þ instead of ðav1, bv1Þ = ðav, bvÞ
in (17), we get

f mvð Þ −mn~f vð Þ



 


 ≤ ε: ð22Þ

Multiplying both sides of (20) by mn and plugging to
(22), we obtain

f mvð Þ −m2n f vð Þ

 

 ≤ f mvð Þ −mn~f vð Þ



 



+ mn~f vð Þ −m2n f vð Þ



 




≤ mn + 1ð Þε,

ð23Þ

and thus

f mvð Þ −m2n f vð Þ

 

 ≤ mn + 1ð Þε: ð24Þ

Let Ω≔ f f : Vn ⟶Wjf satisfies ðH2Þg. For each f ,
g ∈Ω, we define the function d on Ω as follows:

d g, hð Þ≔ inf C ∈ 0,∞½ �: g vð Þ − h vð Þk kÈ
≤ Cg,hε, for all v ∈ VnÉ: ð25Þ

Similar to the proof of ([36], Theorem 2.2), it is
seen that ðΩ, dÞ is a complete generalized metric space.
Define J : Ω⟶Ω through

J f vð Þ≔ 1
m2n f mvð Þ, ð26Þ

for all v ∈ Vn. Take g, h ∈Ω and Cg,h ∈ ½0,∞� with dðg,
hÞ ≤ Cg,h. Then, kgðvÞ − hðvÞk ≤ Cg,hε, and hence

Jg vð Þ − Jh vð Þk k ≤ 1
m2n g mvð Þ − h mvð Þk k ≤ 1

m2n Cg,hε:

ð27Þ
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Therefore, dðJg, JhÞ ≤ ð1/m2nÞCg,h. This shows that
dðJg, JhÞ ≤ ð1/m2nÞdðg, hÞ and in fact J is a strictly
contractive operator such that its Lipschitz is 1/m2n. It
concludes from (24) that

J f vð Þ − f vð Þk k ≤ 1
m2n f mvð Þ − f vð Þ










 ≤ mn + 1
m2n ε: ð28Þ

Hence,

d J f , fð Þ ≤ mn + 1
m2n <∞: ð29Þ

An application of Theorem 6 for the space ðΩ, dÞ, the
operator J , n0 = 0, and x = f , shows that the sequence
ðJ l f Þl∈ℕ is convergent in ðΩ, dÞ and its limit; Q is a fixed
point of J . Indeed, QðvÞ = liml⟶∞J l f ðvÞ, and

Q vð Þ = 1
m2n Q mvð Þ, v ∈ Vnð Þ: ð30Þ

In other words, by induction on l, it is easily verified that
for each v ∈ Vn, we have

J l f vð Þ≔ 1
m2n

� �l

f mlv
� �

, ð31Þ

and (19) follows. Note that clearly f ∈Λ, and hence, part (iii)
of Theorem 6 and (29) necessitate that

d f ,Qð Þ ≤ 1
1 − 1/m2nð Þ d J f , fð Þ ≤ mn + 1

m2n − 1 , ð32Þ

which proves (18). In addition,

DQ v1, v2ð Þk k = lim
l⟶∞

1
m2n

� �l

Df mlv1,mlv2
� �


 




≤ lim
l⟶∞

1
m2n

� �l

ε = 0,
ð33Þ

for all v1, v2 ∈ Vn. The last relation shows that DQðv1, v2Þ = 0
for all v1, v2 ∈ Vn and means that Q fulfills (14). Let us finally
suppose that Q : Vn ⟶W is another solution of equation
(14) satisfies H2 such that inequality (18) holds. Then, Q
satisfies (30), and so it is a fixed point of J . Furthermore,
by (18), we get

d f ,Qð Þ ≤ mn + 1
m2n − 1 <∞, ð34Þ

and consequently, Q ∈Λ. It now follows from part (ii) of
Theorem 6 that Q =Q. This finishes the proof.

Remark 8. In the proof of Theorem 7, if we put v1 = 0, we
can not reach to (20) unless it is assumed that f is even in

each component. Recall from [33] that f : Vn ⟶W is even
in the kth component if

f x1,⋯, xk−1,−xk, xk+1,⋯, xnð Þ = f x1,⋯, xk−1, xk, xk+1,⋯, xnð Þ:
ð35Þ

In other words, this condition is redundant, and we do
not need it.

Hereafter, we concentrate our mind on the quasi-β-
normed spaces.

Definition 9. Let β be a fix real number with 0 < β < 1 and
K denote either ℝ or ℂ. Suppose that E is a vector space
over K. A quasi-β-norm is a real-valued function on E ful-
filling the next conditions for all x, y ∈ E and t ∈K.

(i) kxk ≥ 0 and moreover kxk = 0⇔ x = 0

(ii) ktxk = jtjβjkxk
(iii) There exists a real number M ≥ 1 such that kx + yk

≤Mðkxk + kykÞ

When β = 1, the norm above is a quasinorm. Recall that
M is the modulus of concavity of the norm k·k. Moreover, if
k·k is a quasi-β-norm on E, the pair ðE, k·kÞ is said to be a
quasi- β -normed space. Similar to normed spaces, a com-
plete quasi-β-normed space is called a quasi-β-Banach
space. For 0 < p ≤ 1, if kx + ykp ≤ kxkp + kykp, for all x, y ∈
E, then the quasi-β-norm k·k is called a ðβ, pÞ-norm. In this
case, every quasi-β-Banach space is said to be a ðβ, pÞ-
Banach space. A result of the Aoki-Rolewicz theorem [37]
shows that every quasinorm can be equivalent to a p-norm,
for some p.

A main tool of this section is the upcoming fixed point
lemma which has been proved in ([38], Lemma 3.1).

Lemma 10. Given the fixed j ∈ f−1, 1g and a, t ∈ℕ with a
≥ 2. Suppose that V is a linear space and W is a ðβ, pÞ-
Banach space with ðβ, pÞ-norm k·kW . If ϕ : V ⟶ ½0,∞Þ is
a function such that there exists an L < 1 with ϕðajvÞ < L
ajtβϕðvÞ for all v ∈ V and g : V ⟶W is a mapping satisfying

g avð Þ − atg vð Þ

 


W
≤ ϕ vð Þ, ð36Þ

for all v ∈ V , then there exists a uniquely determined mapping
G : V ⟶W such that GðavÞ = atGðvÞ and

g vð Þ −G vð Þk kW ≤
1

atβ 1 − Lj
�� �� ϕ vð Þ, v ∈ Vð Þ: ð37Þ

Furthermore, for each v ∈ V , we have GðvÞ = liml⟶∞
ðgðajlvÞ/ajltÞ.

In the next theorem, we prove the Găvruta stability of
(14) in quasi-β-normed spaces.
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Theorem 11. Given j ∈ f−1, 1g. Let V be a vector space over
ℚ and W be a ðβ, pÞ -Banach space. Assume that φ : Vn ×
Vn ⟶ℝ+ is a function such that φðmjv1,mjv2Þ ≤m2njβLφ
ðv1, v2Þ for all v1, v2 ∈ Vn, where 0 < L < 1. If a mapping
f : Vn ⟶W satisfying H2 and

Df v1, v2ð Þk kW ≤ φ v1, v2ð Þ, v1, v2 ∈ Vnð Þ, ð38Þ
then there is a unique solution Q : Vn ⟶W of (14) so that

f vð Þ −Q vð Þk kW ≤
1

1 − Lj
�� �� 1

m2nβ
~φ vð Þ, v ∈ Vnð Þ, ð39Þ

where

~φ vð Þ =M mnβφ v, 0ð Þ + φ av, bvð Þ
h i

, ð40Þ

whereas M is the modulus of concavity of the norm k·kW .

Proof. Setting v2 = 0 in (38) and applying H2, we have

~f vð Þ −mnf vð Þ



 




W
≤ φ v, 0ð Þ, ð41Þ

for all v1 ≔ v ∈ Vn, where ~f ðvÞ = ~f ðv1Þ is defined in (21).
Interchanging ðv1, v2Þ into ðav1, bv1Þ = ðav, bvÞ in (38), we
obtain

f mvð Þ −mn~f vð Þ



 




W
≤ φ av, bvð Þ, ð42Þ

for all v ∈ Vn. Multiplying both sides of (41) by mnβ, we get

mn~f vð Þ −m2n f vð Þ



 




W
≤mnβφ v, 0ð Þ, ð43Þ

for all v ∈ Vn. It follows from (42), (43), and part (iii) of
Definition 9 that

f mvð Þ −m2n f vð Þ

 


W
≤ ~φ vð Þ, ð44Þ

for all v ∈ Vn, where ~φðvÞ is defined in (40). By Lemma 10,
there exists a mapping Q : Vn ⟶W which is unique such
that QðmvÞ =m2nQðvÞ and

f vð Þ −Q vð Þk kW ≤
1

1 − Lj
�� �� 1

m2nβ ~φ vð Þ, v ∈ Vnð Þ: ð45Þ

Lastly, we show that Q fulfilling (14). Note that Lemma
10 implies that for each v ∈ Vn, QðvÞ = liml⟶∞ð f ðmjlvÞ/
m2njlÞ. For each v1, v2 ∈ Vn and l ∈ℕ, by (38), we find

Df mjlv1,mjlv2
À Á

m2njl













W

≤m−2njlβφ mjlv1,mjlv2
� �

≤m−2njlβ m2njβL
� �l

φ v1, v2ð Þ
= Llφ v1, v2ð Þ:

ð46Þ

Taking l⟶∞ in the last relation, we observe
that DQðv1, v2Þ = 0 for all v1, v2 ∈ Vn, and therefore, Q

fulfills (14).

The following corollary is a consequence of Theorem 11
when the norm of kDf ðv1, v2Þk is controlled by sum of
variable norms of v1 and v2 with positive powers.

Corollary 12. Let V be a quasi-α-normed space with quasi-α-
norm k·kV , and W be a ðβ, pÞ-Banach space with ðβ, pÞ-
norm k·kW . Let θ and λ be positive numbers with λ ≠ 2n
ðβ/αÞ. If a mapping f : Vn ⟶W satisfying

Df v1, v2ð Þk kW ≤ θ〠
2

k=1
〠
n

l=1
vklk kλV , ð47Þ

for all v1, v2 ∈ Vn, then there exists a unique solution Q :
Vn ⟶W of (14) such that

f vð Þ −Q vð Þk kW

≤

θΛ

m2nβ −mαλ
〠
n

l=1
v1lk kλV , λ ∈ 0, 2nβ

α

� �
,

mαλΛθ

m2nβ mαλ −m2nβ
À Á〠n

l=1
v1lk kλV , λ ∈ 2n

β

α
,∞

� �
,

8>>>>><
>>>>>:

ð48Þ

for all v = v1 ∈ Vn, where Λ =M½mnβ + jajαλ + jbjαλ�.

Proof. Taking φðv1, v2Þ = θ∑2
k=1∑

n
l=1kvklkλV , the result con-

cludes from Theorem 11.

We bring an elementary lemma without proof as follows.

Lemma 13. If a function g : ℝ⟶ℝ is a continuous and
satisfies (1), then it has the form gðxÞ = cx2, for all x ∈ℝ,
where c = gð1Þ.

It is easily seen that when a = b = 1 in (14), then this
equation and (3) are the same. In the upcoming result, we
extend Lemma 13 for multivariable functions. In fact, we
use it to make a counterexample.

Proposition 14. Suppose that f : ℝn ⟶ℝ is a continuous
which satisfies (3). Then, f has the form

f r1,⋯, rnð Þ = cr21 ⋯ r2n, r1,⋯, rn ∈ℝð Þ, ð49Þ

where c is a constant in ℝ.

Proof. We first recall from Theorem 2 in [17] that f is a n-
quadratic mapping. By induction on n, we proceed the
proof. For n = 1, (49) holds by Lemma 13. Assume that
(49) is valid for a n ∈ℕ, and f : ℝn+1 ⟶ℝ is a continuous
ðn + 1Þ-quadratic function. Fix the variables r1,⋯, rn in ℝ.
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Then, the function r↦ f ðr1,⋯, rn, rÞ is quadratic and con-
tinuous, and hence, by Lemma 13, f has the form

f r1,⋯, rn, rð Þ = cr2, r ∈ℝð Þ, ð50Þ

where c is a constant in ℝ. One should note that c depends
on r1,⋯, rn, and hence

c = c r1,⋯, rnð Þ: ð51Þ

Letting r = 1 in (50) and applying (51), we have

c = c r1,⋯, rnð Þ = f r1,⋯, rn, 1ð Þ: ð52Þ

It is known that f is ðn + 1Þ-quadratic and c is an
n-quadratic function. Therefore, by the induction assump-
tion, there exists a real number c0 so that

c = c r1,⋯, rnð Þ = c0r
2
1 ⋯ r2n: ð53Þ

It now follows from (50) and (53) that (49) holds for n + 1.
Here, we present a nonstable example for the multi-

quadratic mappings on ℝn (see [8]). Indeed, for the case
α = β = a = b = 1, we show that the assumption λ ≠ 2n can
not be eliminated in Corollary 12.

Example 1. Given n ∈ℕ and δ > 0. Set μ≔ ðð22n − 1Þ/24n
ð2n + 4nÞÞδ. The function ψ : ℝn ⟶ℝ is defined via

ψ r1,⋯, rnð Þ =
μ
Yn
j=1

r2j , for all r j with r j
�� �� < 1,

μ, otherwise:

8><
>: ð54Þ

Consider f : ℝn ⟶ℝ as a function defined by

f r1,⋯, rnð Þ = 〠
∞

l=0

ψ 2lr1,⋯, 2lrn
À Á

22nl
, r j ∈ℝ
À Á

: ð55Þ

Obviously, f is a nonnegative function and moreover
is an even function in all components. Additionally, ψ is
bounded by μ and continuous. Since f is a uniformly con-
vergent series of continuous functions, it is continuous
and bounded. In other words, we get f ðr1,⋯, rnÞ ≤ ð22n/
ð22n − 1ÞÞμ for all ðr1,⋯, rnÞ ∈ℝn. For i ∈ f1, 2g, take xi =
ðxi1,⋯, xinÞ. We shall prove that

Df x1, x2ð Þj j ≤ δ〠
2

i=1
〠
n

j=1
x2nij , ð56Þ

for all x1, x2 ∈ℝn. Clearly, (56) holds for x1 = x2 = 0. Let
x1, x2 ∈ℝn with

〠
2

i=1
〠
n

j=1
x2nij < 1

22n : ð57Þ

Inequality (57) necessitates that there is N ∈ℕ such that

1
22n N+1ð Þ < 〠

2

i=1
〠
n

j=1
x2nij < 1

22nN , ð58Þ

and so x2nij <∑2
i=1∑

n
j=1x

2n
ij < 1/22nN . It follows the last relation

that 2N jxijj < 1 for all i = 1, 2 and j = 1,⋯, n. Hence, 2N−1

jxijj < 1. Let y1, y2 ∈ fxijji = 1, 2, j = 1,⋯, ng. Then 2N−1

jy1 ± y2j < 1: It is known that ψ is multiquadratic function
on ð−1, 1Þn, and hence, Dψð2lx1, 2lx2Þ = 0 for all l ∈ f0, 1,
2,⋯,N − 1g. Now, the last equality and relation (58) imply
that

Df 2lx1, 2lx2
À Á�� ��

∑2
i=1∑

n
j=1x

2n
ij

≤ 〠
∞

l=N

Dψ 2lx1, 2lx2
À Á�� ��

22nl∑2
i=1∑

n
j=1x

2n
ij

≤ 〠
∞

l=0

μ 2n + 4nð Þ
22n l+Nð Þ∑2

i=1∑
n
j=1x

2n
ij

≤ μ 2n + 4nð Þ〠
∞

l=0

1
22nl

≤ μ 2n + 4nð Þ22n 22n
22n − 1

= μ 2n + 4nð Þ 24n
22n − 1 = δ,

ð59Þ

for all x1, x2 ∈ℝn. Hence, (56) is valid for case (57). If
∑2

i=1∑
n
j=1x

2n
ij ≥ 1/22n, then

Df 2lx1, 2lx2
À Á�� ��

∑2
i=1∑

n
j=1x

2n
ij

≤ 22n 22n
22n − 1 μ 2n + 4nð Þ = δ: ð60Þ

Therefore, f satisfies in (56) for all x1, x2 ∈ℝn. Assume
that there exists a number b ∈ ½0,∞Þ and a multiquadratic
function Q : ℝn ⟶ℝ for which the inequality j f ðr1,⋯,
rnÞ −Qðr1,⋯, rnÞj < b

Qn
j=1r

2
j is valid for all ðr1,⋯, rnÞ ∈

ℝn. An application of Proposition 14 shows that there is a
constant c ∈ℝ such that Qðr1,⋯, rnÞ = c

Qn
j=1r

2
j , and hence

f r1,⋯, rnð Þ ≤ cj j + bð Þ
Yn
j=1

r2j , r1,⋯, rnð Þ ∈ℝnð Þ: ð61Þ

Furthermore, choose N ∈ℕ such that Nμ > jcj + b.
Take r = ðr1,⋯, rnÞ ∈ℝn in which rj ∈ ð0, 1/2N−1Þ for all j ∈
f1,⋯, ng, then 2lr j ∈ ð0, 1Þ for all l = 0, 1,⋯,N − 1. There-
fore

f r1,⋯, rnð Þ = 〠
∞

l=0

ψ 2lr1,⋯, 2lr2
À Á

22nl
≥ 〠

N−1

l=0

μ22nlQn
j=1r

2
j

22nl

=Nμ
Yn
j=1

r2j > cj j + bð Þ
Yn
j=1

r2j ,
ð62Þ

which is a contradiction with (61).
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We close the paper by an alternative stability result for
equation (14) as follows.

Corollary 15. Let V be a quasi-α-normed space with quasi-α-
norm k·kV andW be a ðβ, pÞ-Banach space with ðβ, pÞ-norm
k·kW . Suppose λil > 0 for i ∈ f1, 2g and l ∈ f1,⋯, ng with
λ = λ∗ + λ• ≠ 2nðβ/αÞ, where λ∗ =∑n

l=1λ1l and λ• =∑n
l=1λ2l.

If a mapping f : Vn ⟶W fulfilling the inequality

Df v1, v2ð Þk kW ≤ θ
Y2
i=1

Yn
l=1

vilk kλilV , ð63Þ

for all v1, v2 ∈ Vn, then there exists a unique solution Q :
Vn ⟶W of (14) so that

f vð Þ −Q vð Þk kW

≤

θΩ

m2nβ −mαλ

Yn
l=1

v1lk k2λ1lV , λ ∈ 0, 2nβ
α

� �
,

mαλΩθ

m2nβ mαλ −m2nβ
À ÁYn

l=1
v1lk k2λ1lV , λ ∈ 2n

β

α
,∞

� �
,

8>>>>><
>>>>>:

ð64Þ

for all v = v1 ∈ Vn, where Ω =Mjajαλ∗ jbjαλ• .

Proof. Setting φðv1, v2Þ = θ
Q2

i=1
Qn

l=1kvilkλilV in Theorem 11,
one can obtain the desired results.

4. Conclusion

In this paper, by using Euler-Lagrange type quadratic func-
tional equations, we have defined the multi-Euler-Lagrange
quadratic mappings and have studied the structure of such
mappings. Indeed, we have described the multi-Euler-
Lagrange quadratic mapping as an equation. In continua-
tion, we have shown that some fixed point theorems can
be applied to prove the Hyers-Ulam stability version of
multi-Euler-Lagrange quadratic functional equations in the
setting of quasi-β-normed and Banach spaces. In the last
part, we have brought an example which shows that such
functional equations can be nonstable in the some cases.

The current work provides guidelines for further
research and proposals for new directions and open prob-
lems with relevant discussions. Here, we give some questions
and information on the connections between the fixed point
theory and the Hyers-Ulam stability.

(1) Which equation can describe the multi-Euler-
Lagrange cubic mappings defined in [31]? Are these
mappings stable on various Banach spaces? Can the
known fixed point methods be useful to prove their
Hyers-Ulam stability?

(2) Definition of the multiadditive-quartic mappings by
using [14] as a system of n functional equations.
The characterization of such mappings and discus-
sion about their stability via a fixed point approach

(3) Applying the functional equations indicated in
[5, 12, 13, 34], we can generalize such mappings
and equations to multiple variables

Data Availability

All results are obtained without any software and found by
manual computations. In other words, the manuscript is in
the pure mathematics (mathematical analysis) category.

Conflicts of Interest

There do not exist any competing interests regarding this
article.

Authors’ Contributions

A.B proposed the topic. H.M and A.M prepared the first
draft. Lastly, A.B edited and finalized the manuscript.

References

[1] S. M. Ulam, Problems in ModernMathematic, Science Editions,
John Wiley & Sons, Inc., New York, 1964.

[2] D. H. Hyers, “On the stability of the linear functional equa-
tion,” Proceedings of the National Academy of Sciences,
vol. 27, no. 4, pp. 222–224, 1941.

[3] T. Aoki, “On the stability of the linear transformation in
Banach spaces,” Journal of the Mathematical Society of Japan,
vol. 2, no. 1-2, pp. 64–66, 1950.

[4] T. M. Rassias, “On the stability of the linear mapping in
Banach spaces,” Proceedings of the American Mathematical
Society, vol. 72, no. 2, pp. 297–300, 1978.

[5] L. Aiemsomboon and W. Sintunavarat, “Hyperstability results
for generalized p-radical functional equations in non-
Archimedean Banach spaces with the secret key in the client-
server environment,” Mathematics in Engineering, Science &
Aerospace (MESA), vol. 11, no. 2, pp. 467–479, 2020.

[6] A. Bodaghi and I. A. Alias, “Approximate ternary quadratic
derivations on ternary Banach algebras and C∗-ternary rings,”
Advances in Difference Equations, vol. 2012, Article ID 11,
2012.

[7] S. Czerwik, “On the stability of the quadratic mapping in
normed spaces,” Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, vol. 62, no. 1, pp. 59–64,
1992.

[8] Z. Gajda, “On stability of additive mappings,” Journal of Math-
ematics and Mathematical Sciences, vol. 14, no. 3, pp. 431–434,
1991.

[9] P. Găvruta, “A generalization of the Hyers-Ulam-Rassias
stability of approximately additive mappings,” International
Journal of Mathematics and Mathematical, vol. 184, pp. 431–
436, 1994.

[10] C. Park and M. T. Rassias, “Additive functional equations and
partial multipliers in C∗-algebras,” Revista de la Real Acade-
mia de Ciencias Exactas, Físicas y Naturales Serie A Matemáti-
cas, vol. 113, pp. 2261–2275, 2019.

[11] F. Skof, “Proprieta locali e approssimazione di operatori,”
Rendiconti del Seminario Matematico e Fisico di Milano,
vol. 53, no. 1, pp. 113–129, 1983.

8 Journal of Function Spaces



[12] W. Suriyacharoen and W. Sintunavarat, “On additive ρ-func-
tional equations arising from Cauchy-Jensen functional equa-
tions and their stability,” Applied Mathematics & Information
Sciences, vol. 11, no. 2, pp. 277–285, 2022.

[13] A. Thanyacharoen and W. Sintunavarat, “On new stability
results for composite functional equations in quasi-β-normed
spaces,” Demonstratio Mathematica, vol. 54, no. 1, pp. 68–84,
2021.

[14] A. Thanyacharoen and W. Sintunavarat, “The stability of an
additive-quartic functional equations in quasi-β-normed
spaces with the fixed point alternative,” Thai Journal of Math-
ematics, vol. 18, no. 2, pp. 577–592, 2020.

[15] K. Ciepliński, “On the generalized Hyers-Ulam stability of
multi-quadratic mappings,” Computers & Mathematcs with
Applications, vol. 62, no. 9, pp. 3418–3426, 2011.

[16] C.-G. Park, “Multi-quadratic mappings in Banach spaces,”
Proceedings of the American Mathematical Society, vol. 131,
pp. 2501–2504, 2003.

[17] X. Zhao, X. Yang, and C.-T. Pang, “Solution and stability of the
multiquadratic functional equation,” Abstract and Applied
Analysis, vol. 2013, Article ID 415053, 8 pages, 2013.

[18] J. Aczel and J. Dhombres, Functional Equations in Several
Variables, Cambridge University Press, Cambridge, 2011.

[19] D. Amir, Characterizations of Inner Product Spaces,
Dirkhiiuser-Verlag, Basel, 1986.

[20] M. M. Day, “Some characterizations of inner-product spaces,”
Transactions of the American Mathematical Society, vol. 62,
no. 2, pp. 320–337, 1947.

[21] P. Kannappan, “Quadratic functional equation and inner
product spaces,” Results in Mathematics, vol. 27, no. 3-4,
pp. 368–372, 1995.

[22] N. J. Daras and T. M. Rassias, Approximation and Computa-
tion in Science and Engineering, Series Springer Optimization
and Its Applications (SOIA), vol. 180, Springer, 2022.

[23] P. Kannappan, Functional Equations and Inequalities with
Applications, Springer, 2009.

[24] P. K. Sahoo and P. Kannappan, Introduction to Functional
Equations, CRC Press, Boca Raton, FL, 2011.

[25] A. Bodaghi, H. Moshtagh, and H. Dutta, “Characterization
and stability analysis of advanced multi-quadratic functional
equations,” Advances in Difference Equations, vol. 2021,
no. 1, Article ID 380, 2021.

[26] A. Bodaghi, C. Park, S. Yun, 1 Department of Mathematics,
Garmsar Branch, Islamic Azad University, Garmsar, Iran, 2
Research Institute for Natural Sciences, Hanyang University,
Seoul 04763, Korea, and 3 Department of Financial Mathe-
matics, Hanshin University, Gyeonggi-do 18101, Korea,
“Almost multi-quadratic mappings in non-Archimedean
spaces,” AIMSMathematics, vol. 5, no. 5, pp. 5230–5239, 2020.

[27] A. Bodaghi, S. Salimi, and G. Abbasi, “Characterization and
stability of multi-quadratic functional equations in non-
Archimedean spaces,” Annals of the University of Craiova-
Mathematics and Computer Science Series, vol. 48, no. 1,
pp. 88–97, 2021.

[28] S. Salimi and A. Bodaghi, “A fixed point application for the sta-
bility and hyperstability of multi-Jensen-quadratic mappings,”
Journal of Fixed Point Theory and Applications, vol. 22, no. 1,
p. 9, 2020.

[29] A. Bodaghi, “Functional inequalities for generalized multi-
quadratic mappings,” Journal of Inequalities and Applications,
vol. 2021, no. 1, Article ID 145, 2021.

[30] J. M. Rassias, “On the stability of the general Euler-Lagrange
functional equation,” Demonstratio Mathematica, vol. 29,
no. 4, pp. 755–766, 1996.

[31] A. Thanyacharoen, W. Sintunavarat, and N. Dung, “Stability
of Euler-Lagrange type cubic functional equations in quasi-
Banach spaces,” Bulletin of the Malaysian Mathematical Sci-
ences Society, vol. 44, no. 1, pp. 251–266, 2021.

[32] T.-Z. Xu, “Approximate multi-Jensen, multi-Euler-Lagrange
additive and quadratic mappings in -Banach spaces,” Abstract
and Applied Analysis, vol. 2013, Article ID 648709, 12 pages,
2013.

[33] A. Bodaghi, “Generalizedmultiquartic mappings, stability, and
nonstability,” Journal of Mathematics, vol. 2022, Article ID
2784111, 9 pages, 2022.

[34] N. V. Dung and W. Sintunavarat, “On positive answer to El-
Fassi’s question related to hyperstability of the general radical
quintic functional equation in quasi-β-Banach spaces,” Revista
de la Real Academia de Ciencias Exactas, Fisicas y Naturales
Serie A Matematicas, vol. 115, article 168, 2021.

[35] J. B. Diaz and B. Margolis, “A fixed point theorem of the
alternative for contractions on a generalized complete metric
space,” Bulletin of the American Mathematical Society,
vol. 74, no. 2, pp. 305–309, 1968.

[36] A. Bodaghi, I. A. Alias, andM. H. Ghahramani, “Ulam stability
of a quartic functional equation,” Applicable Analysis,
vol. 2012, article 232630, 9 pages, 2012.

[37] S. Rolewicz, Metric Linear Spaces, PWN–Polish Scientific
Publishers, D. Reidel Publishing Co., Warsaw; Dordrecht,
2nd edition, 1984.

[38] T.-Z. Xu, J. M. Rassias, M. J. Rassias, and W. X. Xu, “A fixed
point approach to the stability of quintic and sextic functional
equations in quasi-β-normed spaces,” Journal of Inequalities
and Applications, vol. 2010, Article ID 423231, 23 pages, 2010.

9Journal of Function Spaces



Research Article
Generic Stability of the Weakly Pareto-Nash Equilibrium with
Strategy Transformational Barriers

Luping Liu , Wensheng Jia , and Li Zhou

College of Mathematics and Statistics, Guizhou University, 550025 Guiyang, China

Correspondence should be addressed to Wensheng Jia; wsjia@gzu.edu.cn

Received 17 June 2022; Accepted 23 September 2022; Published � October 2022

Academic Editor: Santosh Kumar

Copyright © 2022 Luping Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The object of this paper is to establish a new model with strategy transformational barriers for a class of generalized multileader
multifollower multiple objective games (GMLMFMOG) and further deduce some new results of the weakly Pareto-Nash
equilibrium (WPNE) with strategy transformational barriers for the GMLMFMOG. First, we investigate the existence of the
WPNE with strategy transformational barriers for the GMLMFMOG by using the Kakutani-Fan-Glicksberg fixed point theory.
Next, we study the generic stability of the GMLMFMOG with strategy transformational barriers in Hausdorff space. Finally, we
obtain that the majority of the WPNE with strategy transformational barriers for the GMLMFMOG are essential on the
meaning of Baire’s category. In addition, we demonstrate that there is at least an essential component for the GMLMFMOG
with strategy transformational barriers.

1. Introduction

Barriers, such as market competition [1], the Lévy risk pro-
cess [2, 3], the optimal dividend problem [4], and the mar-
keting ethics of medical schemes [5], are common in the
field of economics. Transformational barriers, an important
aspect of barriers, represent many factors that make the
behaviour of shift strategy more difficult or costly for con-
sumers. Furthermore, the payoff function with the strategy
transformational barriers may be an abstract partial order
rather than a numerical order. Game theory is an important
tool for studying the interactions among the decision-
making behaviours of players in many fields, such as eco-
nomics, political science, psychology, and biology. Glicks-
berg [6] and Mas-Colell [7] provided a maximum element
method to analyze the decision-making behaviours of
players with the strategy transformational barriers. There-
fore, the payoff function with strategy transformational bar-
riers was introduced into game model to further study the
decision-making behaviour of players based on the fact that
there is a cost for players to change their strategies in practi-
cal life.

Fort [8] first presented the essential fixed point in 1950.
Wu and Jiang [9] first provided the concept of essential equi-
librium for a finite game through using fixed point theory
for continuous mapping. Afterwards, Yu and Luo and Yu
[10, 11] extended previous work to the general n-person
noncooperative game, generalized game, or other games by
using entirely different approaches. Recently, Scalzo [12,
13] and Carbonell-Nicolau and Carbonell-Nicolau and
Wohl [14, 15] provided some extensions about discontinu-
ous payoffs and further studied the essential stability of dis-
continuous games. Yang and Zhang [16] proved some
existence and essential stability results of cooperative equi-
librium for population games. We can also refer to [17–20]
for more details on the essential stability. Hence, the essen-
tial stability has become one of the important topics in non-
linear analysis and game theory.

The weakly Pareto-Nash equilibrium (WPNE) of the
multiple objective game was proposed by Shapley and Rigby
[21]. Pang and Fukushima [22] studied the existence of a
type of multileader multifollower multiobjective game by
using quasivariational inequalities. Sherali [23] obtained
the existence and uniqueness results of a WPNE regarding
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the multileader multifollower game. Kulkarni and Shanbhag
[24] considered multileader multifollower game with
shared-constraint approach to obtain local Nash equilibrium
(NE), Nash B-stationary point, and Nash strong-stationary
point. Yu and Wang [25] verified some existence theorems
for 2-leader multifollower game in locally convex topological
space. Yang and Ju [26] obtained some consequences on
existence and stability of solution for multileader multifol-
lower game. Jia et al. [27] provided the existence and stabil-
ity of a WPNE for the generalized multileader multifollower
multiple objective game (GMLMFMOG). Inspired by the
above research work, this paper establishes a new general-
ized multiobjective multileader multifollower model with
strategy transformational barriers by considering the influ-
ence of strategy transformational barriers and analyzes the
strategy selection of the players. The leaders consider multi-
ple objectives when selecting their strategies. The followers
also consider multiple objectives when selecting their strate-
gies with complete knowledge and make optimal responses
to the leaders’ strategies. The goals of all players are to max-
imize their own incomes. Furthermore, the existence of the
WPNE with strategy transformational barriers of a
GMLMFMOG is proved, and the generic stability of the
GMLMFMOG with strategy transformational barriers is
obtained. We prove that the solution set of the
GMLMFMOG with the strategy transformational barriers
is essential and that there is at least one essential component
of the WPNE with the strategy transformational barriers
under the meaning of the Baire’s category.

This paper is outlined as follows. We present necessary
preliminaries and the GMLMFMOG model with strategy
transformational barriers in Section 2. In Section 3, we provide
the existence of the WPNE with the strategy transformational
barriers of the GMLMFMOG. In Section 4, we investigate
some generic stability results of the GMLMFMOG with strat-
egy transformational barriers. In Section 5, we show that the
majority of WPNE with strategy transformational barriers of
the GMLMFMOG are essential, and then there is at least an
essential component. Finally, some brief and concise conclu-
sions are given.

2. Preliminaries and Model

2.1. Preliminaries. In this paragraph, we introduce some sub-
stantial definitions, lemmas, and game models.

Definition 1 (see [28]). Suppose that A is not empty subset
of Hausdorff topological vector space (HTVS) F, L ⊂ F is
not empty convex cone, and a vector-valued correspondence
is denoted by S : A ⟶ F. We define S is L -usc (resp. L
-lsc) at a0 ∈A if, for each open neighbourhood V of the 0
element in F, there exists an open neighbourhood Oða0Þ of
a0 such that SðaÞ ∈ Sða0Þ +V − L (resp. SðaÞ ∈ Sða0Þ + V
+ L), ∀a ∈ Oða0Þ. Furthermore, we say S is L -usc (resp. L
-lsc) on A , if S is L -usc (resp. L -lsc) for all a ∈A . We call
S is L -continuous on A , if S is L -usc and L -lsc on A . S
is closed if GraphðSÞ = fða, f Þ ∈A × Fjf ∈ SðaÞg is closed
on A × F.

Definition 2 (see [29]). Let A and B be two HTVSs, L ⊂B

be a closed convex pointed cone, int L ≠∅, D ⊂A be not
empty convex subset, and S : D⟶B be a vector-valued
correspondence. If, ∀a1, a2 ∈D and θ ∈ ð0, 1Þ, Sðθa1 + ð1 −
θÞa2Þ − ½θSða1Þ + ð1 − θÞSða2Þ� ∉ −int L holds, then S is L-
concave, and −S is L- convex. If, ∀a1, a2 ∈D, b ∈B, and θ
∈ ð0, 1Þ, Sða1Þ ∉ b − int L, Sða2Þ ∉ b − int L such that Sðθ
a1 + ð1 − θÞa2Þ ∉ b − int L, then S is L- quasiconcave-like,
and −S is L- quasiconvex-like.

Remark 3. For B = ð−∞, +∞Þ, L = ½0,+∞Þ, if S is L- qua-
siconcave-like, then S is obviously quasiconcave. However,
D = ½0, 1�, B = ð−∞, +∞Þ × ð−∞, +∞Þ, L = ½0,+∞Þ × ½0,
+∞Þ, and f = ð f1, f2Þ = ða,−aÞ, g = ðg1, g2Þ = ða2, a2Þ. We
know that f is L- concave but not L- quasiconcave-like, and
g is L- quasiconcave-like but not L- concave. Thus, L- quasi-
concave-like and L- concave do not include each other.

Definition 4 (maximal element theorem, see [30]). Let A be
not empty compact convex subset (NECCS) of HTVS F and
S : A ⟶ 2A with the following conditions, where 2A
denotes all nonempty subsets of A :

(1) ∀a ∈A , a ∉ convSðaÞ, where convSðaÞ denotes the
convex hull of SðaÞ

(2) ∀b ∈A , S−1ðbÞ = fa ∈A jb ∈ SðaÞg is open in A

Then, there is a∗ = ða∗1 , a∗2 ,⋯,a∗nÞ ∈A such that Sða∗Þ
=∅.

2.2. Model. A model of the GMLMFMOG with strategy
transformational barrier is denoted by a tuple fℕ,M,A ,B
,V , Pg, where

(i) ℕ = f1,⋯,ng and M = f1,⋯,mg indicate the index
set of leaders and followers, respectively

(ii) ∀i ∈ℕ, ∀j ∈M,A i, andBj denote the strategy set of
the ith leader and the jth follower, separately. The
leaders’ strategy represents a = ðai, a−iÞ ∈A , where
A =Q

i∈ℕA i, A−i =
Q

l∈fℕ\igA l. Meanwhile, the

strategy of the followers denotes b = ðbj, b−jÞ ∈B,
where B =Q

j∈MBj, B−j =
Q

k∈fM\jgBk

(iii) ∀i ∈ℕ,Ui =B,U =Q
i∈ℕUi, andU−i =

Q
k∈fℕ\igUk

. Let Yi = fχi
1,⋯,χi

lg: A i ×A−i ×Ui ⟶ Rl
+ be the

payoff function of the ith leader. Let Ψj = fψj
1,⋯,

ψj
kg: A ×B j ×B−j ⟶ Rk, ∀j ∈M be a payoff func-

tion of the jth follower and Gj : A ×B−j ⟶ 2B j be
a constraint correspondence of the jth follower

(iv) Let V i : A i ×A i ⟶ Rl
+ be the strategy transforma-

tional barrier function of the leader i. ∀i ∈ℕ, there
exists ai ∈A i such that

V i ai, ai′
� �

> 0,∀ai′∈A i, ð1Þ
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where V iðai, a′iÞ denotes the strategy transformational bar-
riers of the leader i changing from strategy ai to strategy a′i.
In particular, V iðai, a′iÞ = 0 denotes that the ith leader has
no transformational strategy

(v) The followers are a generalized constraint multiob-
jective with the strategy parametric game
(PGCMOG) after fixing the strategy a ∈A of the
leaders. Let P : A i ×A−i ⟶ 2B be the solution
mapping of the WPNE with strategy transforma-
tional barriers for the PGCMOG. Particularly, ∀b∗
∈ Pðai, a−iÞ such that there is b∗j ∈Gjða, b∗−jÞ,∀j ∈M,

and we have Ψjða, bj, b∗−jÞ −Ψjða, b∗j , b∗−jÞ ∉ int Rk
+,

∀bj ∈Gjða, b∗−jÞ. Furthermore, if there is u∗i ∈Ui such
that u∗i ∈ Pða∗i , a∗−iÞ,∀i ∈ℕ, satisfying

Yi a′i, a∗−i, ui
� �

− Yi a
∗
−i, a∗−i, u∗ið Þ

−V i a∗−i, a′i
� �

∉ int Rl
+,∀ a′i, ui

� �
∈A i × P a′i, a∗−i

� �
,

ð2Þ

then a∗ = ða∗−i, a∗−iÞ ∈A is called a WPNE with strategy
transformational barriers of the GMLMFMOG, where int
Rl
+ = fða1, a2,⋯,alÞ ∈ Rl : ai > 0, i = 1,⋯,lg, V iða∗−i, a′iÞ

denotes the leader i’s cost changing from strategy a∗−i to
strategy a′i

Let i, a−i, and u−i be elements inℕ, A−i, andU−i, respec-
tively. By Definition 4, then we have the best response of the
ith leader with strategy transformation barriers to the other
players, i.e.,

Bi a−i, u−ið Þ = ai ∈A i, ui ∈ P ai, a−ið ÞjYi ai′, a−i, vi
� �

− Yi ai, a−i, uið Þ
n

−V i ai, ai′
� �

∉ int Rl
+

o
,∀ a′i, vi
� �

∈A i × P a′i, a−i
� �

,

ð3Þ

where Bi is independent of u−i ∈Ui.
Fixing a−i ∈A−i, we know that the player’s set-valued

mapping Bi provides the order relation “≥
a−i
” as follows:

wi, uið Þ≥
a−i

ai, uið Þ⇔ wi, uið Þ ∈ Bi a−i, u−ið Þ: ð4Þ

In general, the order relation is not transitive, and we
give a sufficient condition for the transitivity of the order
relation “≥

a−i
” with the following propositions.

Proposition 5. Let fℕ,M,A ,B,V , Pg be a GMLMFMOG
with strategy transformational barriers, if, for any wi, ai, zi
∈A i, and

V i zi,wið Þ +V i wi, aið Þ ≤V i zi, aið Þ i:e:,V i has negative subadditivityð Þ:
ð5Þ

Then, the order relation “≥
a−i
” has transitivity.

Proof. Setting wi, ai, zi which are three elements in A i and
u−i, vi ∈U−i such that ðzi, uiÞ≥a−iðwi, uiÞ≥a−iðai, uiÞ holds, we

obtain

Yi wi, a−i, við Þ − Yi zi, a−i, uið Þ −V i zi,wið Þ ∉ int Rl
+,

Yi ai, a−i, við Þ − Yi wi, a−i, uið Þ −V i wi, aið Þ ∉ int Rl
+,

ð6Þ

by ðzi, uiÞ ∈ Biða−i, u−iÞ, ðwi, uiÞ ∈ Biða−i, u−iÞ, and the
definition of best response mapping Biða−i, u−iÞ. Then, we
attain

Yi ai, a−i, við Þ − Yi zi, a−i, uið Þ −V i zi,wið Þ −V i wi, aið Þ
− Yi wi, a−i, uið Þ + Yi wi, a−i, við Þ ∉ int Rl

+ ⇒ Yi ai, a−i, við Þ
− Yi zi, a−i, uið Þ − V i zi,wið Þ +V i wi, aið Þð Þ
− Yi wi, a−i, uið Þ − Yi wi, a−i, við Þð Þ ∉ int Rl

+ ⇒ Yi ai, a−i, við Þ
− Yi zi, a−i, uið Þ −V i zi, aið Þ ∉ int Rl

+:

ð7Þ

Since Bi is not dependent on u−i ∈Ui, we can see that
Yiðwi, a−i, uiÞ − Yiðwi, a−i, viÞ is equal to zero element of Rl

+
. Therefore, ðzi, uiÞ ∈ Biða−i, u−iÞ⇔ ðzi, uiÞ≥a−iðai, uiÞ; then,
the order relation “≥

a−i
” has transitivity.

Example 1. Considering the Hotelling model [31], the influ-
ence of the strategy transformational barrier function can be
added. Assume that consumers are evenly distributed on a
street and that businessmen (ℕ = 1, 2) choose their shop
location on the street. Suppose that the street can be
abstracted to a line segment with a length of 1, namely, [0,
1]. Meanwhile, c ∈ ½0, 1� and d ∈ ½0, 1� represent the positions
of the two businessmen. The strategy set of the businessmen
is ½0, 1�, and the payoff functions f1, f2 : ½0, 1�⟶ R are
expressed as

f1 =

c + d
2 , c < d,

1 − c + d
2 , c > d

1
2 , c = d,

,

8>>>>>>><
>>>>>>>:

f2 =

c + d
2 , d < c,

1 − c + d
2 , d > c,

1
2 , d = c:

8>>>>>>><
>>>>>>>:

ð8Þ
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It is a well-known fact that ðc, dÞ = ð1/2, 1/2Þ is the unique
NE point of the Hotelling game [31], which can better explain
the phenomenon of shop centralization. However, it is worth
noting that shops may not be concentrated in the centre
because of the influence of relocation costs and other factors.
In reality, the distribution of shop locations corresponds to a
WPNE with strategy transformational barriers, which means
a state of equilibrium under weaker conditions.

Suppose that the strategy transformational barrier func-
tions are V ðc1, c2Þ and V ðd1, d2Þ, respectively. If V ðc1, c2Þ
and V ðd1, d2Þ are

V c1, c2ð Þ = α1 c1 − c2j j + β1,∀c1, c2 ∈ 0, 1½ �,
V d1, d2ð Þ = α2 d1 − d2j j + β2,∀d1, d2 ∈ 0, 1½ �:

ð9Þ

Setting businessmen 1 taking d = 1/2, c1 = 1/4, c2 = 3/4,
and c3 = 3/8, we have

f1 c1, dð Þ = f1
1
4 ,

1
2

� �
= 3
8 ,

f1 c2, dð Þ = f1
3
4 ,

1
2

� �
= 3
8 ,

f1 c3, dð Þ = f1
3
8 ,

1
2

� �
= 7
16 :

ð10Þ

If α1 = 1/3, β1 = 0, then

f1 c1, dð Þ = 3
8 ≥ f1 c2, dð Þ −V c1, c2ð Þ = 3

8 −
1
3 c1 − c2j j = 5

24 , i:e:,c1≥b c2,

f1 c2, dð Þ = 3
8 ≥ f1 c3, dð Þ −V c2, c3ð Þ = 7

16 −
1
3 c2 − c3j j = 5

16 , i:e:,c2≥b c3,

ð11Þ

but

f1 c1, dð Þ = 3
8 ≤ f1 c3, dð Þ −V c1, c3ð Þ = 7

16 −
1
3 c1 − c3j j = 7

16 −
1
24 = 19

48 :

ð12Þ

Furthermore,

V c1, c2ð Þ = 1
3 c1 − c2j j = 1

3 × 1
4 −

3
4

����
���� = 1

6 ,

V c2, c3ð Þ = 1
3 c2 − c3j j = 1

3 × 3
4 −

3
8

����
���� = 1

8 ,

V c1, c3ð Þ = 1
3 c3 − c1j j = 1

3 × 3
8 −

1
4

����
���� = 1

24 :

ð13Þ

Since V ðc1, c2Þ +V ðc2, c3Þ ≰V ðc1, c3Þ, “c1≥
d
c3” has no

negative subadditivity. Then, “c1≥
d
c3” does not hold; thus,

the order relation “≥” is not satisfied to transitive.

Remark 6. When the strategy transformational barrier func-
tion does not have negative subadditivity, the order relation-
ship “≥

a−i
” does not have transitivity. Furthermore, the game

with a strategy transformational barrier function may not
have a numerical payoff function since the strategy transfor-
mational barrier function often possesses subadditivity
rather than negative subadditivity.

3. Existence

In this paragraph, the existence of the WPNE with the strat-
egy transformational barriers of the GMLMFMOG is
demonstrated.

Lemma 7 (Kakutani-Fan-Glicksberg, see [6]). Assume that
A is a NECCS of locally convex Hausdorff space F, S : A
⟶ 2A is a set-valued mapping, ∀a ∈A , SðaÞ is a non-
empty, convex, compact set, and SðaÞ is usc on A . Then,
there exists a∗ ∈A such that a∗ ∈ Sða∗Þ.

Lemma 8 (see [17]). Assume that A is a nonempty subset of
Hausdorff space F and Y : A ⟶ Rl

+ is a vector value corre-
spondence, where Y = fχ1,⋯,χlg. In that case, Y is Rl

+-con-
tinuous if χið∀i = 1,⋯,lÞ is continuous.

Lemma 9 (see [28]). Suppose that A and B are two Haus-
dorff spaces andB is compact. If a set-valued correspondence
S : A ⟶ 2B is closed, then S is usc.

Lemma 10 (see [29]). Assume that A and B are two
NECCSs of locally convex Hausdorff space F and H, respec-
tively. Y : A ×B⟶ Rl

+ is continuous correspondence; W
: B⟶ 2A is a continuous set-valued correspondence on B

, ∀b ∈B,W ðbÞ is not empty and compact subset of A , as well
as W ðbÞ = fa ∈W ðbÞ: Yða′, bÞ − Yða, bÞ ∉ int Rl

+,∀a′ ∈W ð
bÞg. Then, we obtain that W ðbÞ is a compact, nonempty set
as well as W : B⟶ 2A is usc on B.

Theorem 11 (Fort theorem, see [8]). Suppose that A and B

are Hausdorff and metric spaces, respectively. Given a set-
valued mapping S : A ⟶ 2B is usc on A with nonempty
compact value (briefly, usco), then there is a residual subset
Q in A such that S is lsc on Q.

Remark 12 (see [29]). If A is Baire space, then the residual
set in A is dense.

Theorem 13. Suppose that A iði ∈ℕÞ and Bjðj ∈MÞ are two
NECCSs of locally convex Hausdorff space Fi and Hj, respec-
tively. If fℕ,M,A ,B,V , Pg satisfies the following
conditions.

(1) ∀i ∈ℕ, Yi = fχi
1,⋯,χi

lg: A i ×A−i ×Ui ⟶ Rl
+ is Rl

+
-continuous

(2) ∀i ∈ℕ, V i : A i ×A i ⟶ Rl
+ is Rl

+-continuous, ∀a′i
∈A i, ai ⟶V ðai, ai′Þ is convex
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(3) ∀i ∈ℕ, ∀a−i ∈A−i, ðai, uiÞ⟶ Yiðai, a−i, uiÞ is Rl
+-

quasiconcave-like

(4) ∀i ∈ℕ, P : A i ×A−i ⟶ 2B is continuous, and ∀a
= ðai, a−iÞ ∈A , Pðai, a−iÞ is a nonempty and compact
subset of B

(5) ∀a−i ∈A−i, the set-valued correspondence ai ⟶ Pð
ai, a−iÞ is convex (i.e., ∀θ ∈ ð0, 1Þ, a1i , a2i ∈A i, Pðθa1i
+ ð1 − θÞa2i , a−iÞ ⊂ θPða1i , a−iÞ + ð1 − θÞPða2i , a−iÞ)

Then, the GMLMFMOG with strategy transformational
barriers contains at least a point ða∗−i, a∗−i, u∗i Þ ∈A i ×A−i ×
Ui such that u∗i ∈ Pða∗−i, a∗−iÞ, ∀i ∈ℕ, satisfying

Yi ai, a∗−i, uið Þ − Yi a
∗
−i, a∗−i, u∗ið Þ −V i a

∗
−i, aið Þ ∉ int Rl

+,∀ ai, uið Þ ∈A i × P ai, a∗−ið Þ:
ð14Þ

Proof. ∀i ∈ℕ, the set-valued correspondence T i : A−i ×
U−i ⟶ 2A i×Ui is defined, ∀a−i ∈A−i, u−i ∈U−i, we have

T i a−i, u−ið Þ = ai ∈A i, ui ∈ P ai, a−ið ÞjYi ai′, a−i, vi
� �n

− Yi ai, a−i, uið Þ −V i ai, ai′
� �

∉ int Rl
+

o
,∀ ai′, vi
� �

∈A i

× P ai′, a−i
� �

,

ð15Þ

where T i is independent of ui ∈U−i.
By Lemma 7, we only need to prove that the set-valued

mapping T i is uscmapping with nonempty convex compact
value.

(1) T iða−i, u−iÞ ≠∅. Because A i is compact and P is a
continuous correspondence with compact value, fP
ðwi, a−iÞ: wi ∈A i,∀i ∈ℕg is compact. Y is Rl

+-con-
tinuous from Lemma 8; then, ∀i = 1,⋯, l, Yi is Rl

+
-continuous and V i is also Rl

+-continuous. Thus,
T iða−i, u−iÞ ≠∅ from Lemma 7

(2) T iða−i, u−iÞ is convex. ∀ða1i , u1i Þ ∈T iða−i, u−iÞ, ða2i ,
u2i Þ ∈T iða−i, u−iÞ, i.e., a1i ∈A i, u

1
i ∈ Pða1i , a−iÞ, a2i ∈

A i, u
2
i ∈ Pða2i , a−iÞ, and ∀i ∈ℕ, we obtain

Yi ai′, a−i, νi
� �

− Yi a
1
i , a−i, u1i

À Á
−V i a1i , ai′

� �
∉ int Rl

+,

Yi ai′, a−i, νi
� �

− Yi a
2
i , a−i, u2i

À Á
−V i a2i , ai′

� �
∉ int Rl

+,

∀ ai′, νi
� �

∈A i × P ai′, a−i
� �

,

ð16Þ

i.e., we have

Yi a
1
i , a−i, u1i

À Á
∉ Yi ai′, a−i, νi

� �
−V i a1i , ai′

� �
− int Rl

+,

Yi a
2
i , a−i, u2i

À Á
∉ Yi ai′, a−i, νi

� �
−V i a2i , ai′

� �
− int Rl

+,

∀ ai′, νi
� �

∈A i × P ai′, a−i
� �

ð17Þ

Since A i is convex, θa
1
i + ð1 − θÞa2i ∈A i, ∀θ ∈ ð0, 1Þ, and

∀a−i ∈A−i by Theorem 13 (5), we have θa1i + ð1 − θÞa2i ∈ Pð
θa1i + ð1 − θÞa2i , a−iÞ ⊂ θPða1i , a−iÞ + ð1 − θÞPða2i , a−iÞ.

Since ∀a−i ∈A−i, ðai, uiÞ⟶ Yiðai, a−i, uiÞ is Rl
+- quasi-

concave-like, and ∀a′i ∈A iai ⟶V ðai, a′iÞ is convex, we
obtain

Yi θa
1
i + 1 − θð Þa2i , a−i, θu1i + 1 − θð Þu2i

À Á
∉ Yi ai′, a−i, νi

� �

−V i θa1i + 1 − θð Þa2i , ai′
� �

− int Rl
+,

ð18Þ

i.e.,

Yi ai′, a−i, νi
� �

− Yi θa
1
i + 1 − θð Þa2i , a−i, θu1i + 1 − θð Þu2i

À Á
−V θa1i + 1 − θð Þa2i , ai′

� �
∉ int Rl

+:

ð19Þ

Thus, ðθa1i + ð1 − θÞa2i , a−i, θu1i + ð1 − θÞu2i Þ ∈T iða−i, u−i
Þ, T iða−i, u−iÞ is convex.

(3) T iða−i, u−iÞ is a usc mapping. According to Lemma
9, we just need to verify that GraphðT iÞ is closed.
Thus, we next demonstrate that the set-valued corre-
spondence Cða−iÞ = fðai′, νiÞ ∈A i ×Ui : ai′∈A i, νi ∈
Pðai′, νiÞg is continuous

Suppose that faα−i : α ∈Kg is any net on A i, and aα−i
⟶ a−i, ∀ða′

α
i , ναi Þ ∈ Cðaα−iÞ, ða′

α
i , ναi Þ⟶ ðai′, νiÞ ∈A i ×Ui.

Because P is a usc mapping with compact value and a′αi
⟶ a′i, ναi ∈ Pða′

α, a−iÞ, ναi ⟶ νi from Theorem 16.17 in
[32], we attain νi ∈ Pðai′, a−iÞ. Therefore, ðai′, νiÞ ∈ Cða−iÞ, C
is closed. Since A i ×Ui is compact from Lemma 9, C is usc
on A−i.

Meanwhile, assume that faα−i : α ∈Kg is any net on A i,
aα−i ⟶ a−i, ∀ðai′, νiÞ ∈ Cða−iÞ, then a′i ∈A i, νi ∈ Pða′i, νiÞ.
For any α ∈K , we set a′αi = a′i, since P is continuous, from
Theorem 16.19 in [32] if there is some ναi ∈ Pða′

α
i , aα−iÞ = Pð

ai′, aα−iÞ, ναi ⟶ νi, ðai′, ναi Þ ∈ Cðaα−iÞ, and ðai′, ναi Þ⟶ ðai′, νiÞ
hold. Thus, C is lsc on A−i.

Hence, we have proved that C is continuous with com-
pact values. T iða−i, u−iÞ is compact and T i is a usc mapping
from Lemma 10. On the basis of the above proof, we know
that T i is a usco correspondence.

5Journal of Function Spaces



A set-valued correspondence S : A ×U⟶ 2A×U is
defined, and ∀ða, uÞ ∈ ðA ,UÞ contains Sða, uÞ =T 1ða−1,
u−1Þ ×⋯×T nða−n, u−nÞ ⊂A ×U.

Because A ×U is a NECCS of locally convex Hausdorff
space, S is a usco mapping and Lemma 7, if there is ða∗,
u∗Þ ∈ ðA ,UÞ, then ða∗, u∗Þ ∈ Sða∗, u∗Þ holds. We obtain ð
a∗−i, a∗−i, u∗i Þ ∈T iða∗−i, u∗−iÞ, ∀i ∈ℕ. Consequently, there is ð
a∗−i, a∗−i, u∗i Þ ∈A i ×A−i ×Ui such that ∀i ∈ℕ, u∗i ∈ Pða∗−i, a∗−i
Þ, Yiðai′, a∗−i, uiÞ − Yiða∗−i, a∗−i, u∗i Þ −V iða∗−i, ai′Þ ∉ int Rl

+, ∀ðai′,
uiÞ ∈A i × Pðai′, a∗−iÞ. This concludes the proof.

Remark 14. In this paper, the WPNE with strategy transfor-
mational barriers are more broadly concepts than the
WPNE in literature [27] in practical life, which means that
the player needs to consider the impact of other some fac-
tors, such as the cost of changing strategies. In particular,
if the leaders have no transformational strategy barriers,
then the WPNE can be considered as the WPNE with strat-
egy transformational barriers.

4. Generic Stability

In this paragraph, we prove the generic stability of the
WPNE with the strategy transformational barriers of the
GMLMFMOG.

Let A iði ∈ℕÞ and Bjðj ∈MÞ be two NECCSs of Banach
space F and H, respectively, and Ω = fϕ = Y1,⋯,Yn,V 1,⋯,
V n, Pj for any i ∈ℕ, Yi,V i and P satisfy all conditions pro-
vided in Theorem 13.

For ϕ1 = ðY1
1,⋯,Y1

n,V 1
1,⋯,V 1

n, P1Þ and ϕ2 = ðY2
1,⋯,Y2

n,
V 2

1,⋯,V 2
n, P2Þ ∈Ω, the distance on Ω is defined as follows:

ϖ ϕ1, ϕ2
À Á

= sup
ai ,uið Þ∈A i×Ui

〠
n

i=1
Y1
i ai, a−i, uið Þ − Y2

i ai, a−i, uið Þ

 



+ sup
ai ,ai′ð Þ∈A i×A i

〠
n

i=1
V 1

i ai, ai′
� �

−V 2
i ai, ai′
� �


 




+ sup
ai ,a−ið Þ∈A i×A−i

H P1 ai, a−ið Þ, P2 ai, a−ið ÞÀ Á
,

ð20Þ

where HðP1ðai, a−iÞ, P2ðai, a−iÞÞ is the Hausdorff distance
between P1ðai, a−iÞ and P2ðai, a−iÞ on A .

Theorem 15. ðΩ, ϖÞ is a complete metric space.

Proof. It is easy to see that ðΩ, ϖÞ serves as a metric space.
Then, we just need to check that ðΩ, ϖÞ is complete.

Setting ϕα = ðYα
1 ,⋯,Yα

n,V α
1 ,⋯,V α

n, PαÞ ∈Ω, ðYα
1 ,⋯,Yα

n,
V α

1 ,⋯,V α
n, PαÞ⟶ ðY1,⋯,Yn,V 1,⋯,V n, PÞ, we need to

prove ϕ = ðY1,⋯,Yn,V 1,⋯,V n, PÞ ∈Ω.

(1) Let ϕα = ðYα
1 ,⋯,Yα

n,V α
1 ,⋯,V α

n, PαÞ be any Cauchy
sequence in Ω. ∀ε > 0, there is a positive whole num-
ber NðεÞ such that ϖðϕα, ϕ~αÞ < ε, ∀α, ~α ≥NðεÞ. On
the one hand, ∀i ∈ℕ, ε > 0 and ~α > 0, when ~α > α,

sup
ðai ,uiÞ∈A i×Ui

kYα
i ðai, a−i, uiÞ − Yiðai, a−i, uiÞk < ε/3, thus

sup
ða′i ,uiÞ∈A i×Ui

kY~α
i ðai′, a−i, uiÞ − Yiðai′, a−i, uiÞk < ε/3. We

know that Y~α
i is Rl

+-continuous by means of Theo-
rem 13 (1); then, there is δ > 0, ∀ai, a′i ∈A ; when k
ai − a′ik < δ, we obtain kY~α

i ðai, a−i, uiÞ − Y~α
i ðai′, a−i,

uiÞk < ε/3. Similarly,

Yi ai, a−i, uið Þ − Yi ai′, a−i, ui
� �


 




= Yi ai, a−i, uið Þ − Y~α
i ai, a−i, uið Þ + Y~α

i ai, a−i, uið Þ


− Y~α

i ai′, a−i, ui
� �

+ Y~α
i ai′, a−i, ui
� �

− Yi ai′, a−i, ui
� �




≤ Yi ai, a−i, uið Þ − Y~α
i ai, a−i, uið Þ

 

 + Y~α

i ai, a−i, uið Þ


− Y~α

i ai′, a−i, ui
� �


 + Y~α

i ai′, a−i, ui
� �

− Yi ai′, a−i, ui
� �


 




< ε

3 + ε

3 + ε

3 = ε

ð21Þ

Thus, Yi is R
l
+-continuous on A , ∀ðai, a′iÞ ∈A i ×A i and

V i is also R
l
+-continuous by proving the same method on A .

Meanwhile, ∀i ∈ℕ and ε > 0, there is a positive integer NðεÞ
and ∀α, ~α ≥NðεÞ, we obtain

sup
ai ,a−ið Þ∈A i×A−i

H Pα ai, a−ið Þ, P~α ai, a−ið Þ
� �

< ε: ð22Þ

Then, ∀i ∈ℕ, there is P : A i ×A−i ⟶ 2B such that
lim

~α⟶∞
P~αðai, a−iÞ = Pðai, a−iÞ, and ∀α ≥NðεÞ, we have

sup
ai ,a−ið Þ∈A i×A−i

H Pα ai, a−ið Þ, P ai, a−ið Þð Þ ≤ ε: ð23Þ

Since the set-valued correspondence Pα is continuous on
A , it is easy to know that P is continuous on A .

(2) Since ðai, uiÞ⟶ Yα
i ðai, a−i, uiÞ is Rl

+- quasiconcave-
like, ai ⟶V αðai, a′iÞ is convex, fixing a1i , a2i ∈A i
and u1i , u2i , νi ∈U−i, if ∀θ ∈ ð0, 1Þ, θu1i + ð1 − θÞu2i ∈
Ui holds, then ∀i ∈ℕ, θu1i + ð1 − θÞu2i ∈ Pðθa1i + ð1
− θÞa2i , a−iÞ, we have

Yα
i θa1i + 1 − θð Þa2i , a−i, θu1i + 1 − θð Þu2i
À Á

∉ Yα
i ai′, a−i, νi
� �

−V α
i θa1i + 1 − θð Þa2i , ai′
� �

− int Rl
+

ð24Þ

Since Yα
i ða, uÞ⟶ Yiða, uÞ,V α

i ða, a′Þ⟶V iða, a′Þðα
⟶∞Þ, ∀a ∈A , ∀u ∈U and the strategy space is closed,
we conclude that
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Yi θa
1
i + 1 − θð Þa2i , a−i, θu1i + 1 − θð Þu2i

À Á
∉ Yi ai′, a−i, νi

� �

−V i θa1i + 1 − θð Þa2i , ai′
� �

− int Rl
+:

ð25Þ

This indicates that ∀a−i ∈A−i, ðai, uiÞ⟶ Yiðai, a−i, uiÞ
is Rl

+- quasiconcave-likeand ai ⟶V ðai, a′iÞ is convex

(3) Since ∀a−i ∈A−i, ai ⟶ Pαðai, a−iÞ is convex, ∀a1i , a2i
∈A i, θ ∈ ð0, 1Þ, and ε > 0, we have

Pα θa1i + 1 − θð Þa2i , a−i
À Á

+ ε ⊂ θPα a1i , a−i
À Á

+ 1 − θð ÞPα a2i , a−i
À Á

+ ε
ð26Þ

When α is sufficiently large number, we have

P θa1i + 1 − θð Þa2i , a−i
À Á

⊂ Pα θa1i + 1 − θð Þa2i , a−i
À Á

+ ε,

θPα a1i , a−i
À Á

+ 1 − θð ÞPα a2i , a−i
À Á

+ ε ⊂ θP a1i , a−i
À Á

+ 1 − θð ÞP a2−i, a−i
À Á

+ 2ε:
ð27Þ

Thus,

P θa1i + 1 − θð Þa2i , a−i
À Á

⊂ θP a1i , a−i
À Á

+ 1 − θð ÞP a2i , a−i
À Á

+ 2ε:
ð28Þ

We take ε⟶ 0 because ε is arbitrary, and we can obtain
Pðθa1i + ð1 − θÞa2i , a−iÞ ⊂ θPða1i , a−iÞ + ð1 − θÞPða2i , a−iÞ.
Hence, ∀a−i ∈A−i, ai ⟶ Pðai, a−iÞ is convex on A . In con-
clusion, ϕ = ðY1,⋯,Yn,V 1,⋯,V n, PÞ ∈Ω, and ðΩ, ϖÞ is a
complete metric space.

∀ϕ ∈Ω, we define Γ : Ω⟶ 2A1×U1×⋯×An×Un , where Γð
ϕÞ = fða∗−i, a∗−i, u∗i Þ ∈A i ×A−i ×Ui : ∀i ∈ℕ, u∗i ∈ Pða∗−i, a∗−iÞ,
Yiða′i, a∗−i, uiÞ − Yiða∗−i, a∗−i, u∗i Þ −V iða∗−i, a′iÞ ∉ int Rl

+,∀ða′i,
uiÞ ∈A i × Pða′i, a∗−iÞg. By Theorem 13, there is ða∗−i, a∗−i, u∗i Þ
∈A i ×A−i ×Ui such that ΓðϕÞ ≠∅. Then, Γ is also called
an equilibrium mapping.

Next, we denote to verify the generic stability result of
the WPNE with the strategy transformational barriers of
the GMLMFMOG.

Lemma 16. An equilibrium mapping Γ : Ω⟶
2A1×U1×⋯×An×Un is a usco correspondence.

Proof. By means of the compactness of A and Lemma 9, we
need to demonstrate that the Γ is closed. In other words, if

∀ϕβ = ðYβ
1 ,⋯,Yβ

n ,V β
1 ,⋯,V β

n , PβÞ ∈Ω, ϕβ ⟶ ϕ = ðY1,⋯,Yn

,V 1,⋯,V n, PÞ, ∀ðaβ1 , uβ1 ,⋯,aβn , uβnÞ ∈ ΓðϕβÞ, ðaβ1 , uβ1 ,⋯,aβn ,
uβnÞ⟶ ða∗1 , u∗1 ,⋯,a∗n , u∗nÞ, then we only need to prove

a∗1 , u∗1 ,⋯,a∗n , u∗nð Þ ∈ Γ ϕð Þ: ð29Þ

(1) Since A i is compact, we assume that aβi ⟶ a∗−i ∈A i,

P is continuous, Pðaβi , aβ−iÞ⟶ Pða∗−i, a∗−iÞ, uβi ∈ Pβð
aβi , a

β
−iÞ. Let d be the distance on Ui; since ϕ

β ⟶ ϕ,

Pβ ⟶ P, and uβi ⟶ u∗i , we have dðu∗i , Pða∗−i, a∗−iÞÞ
≤ dðu∗i , uβi Þ + dðuβi , Pβðaβi , aβ−iÞÞ +HðPβðaβi , aβ−iÞ, Pð
aβi , a

β
−iÞÞ +HðPðaβi , aβ−iÞ, Pða∗−i, a∗−iÞÞ⟶ 0. Thus, u∗i

∈ Pða∗−i, a∗−iÞ, ∀i ∈ℕ
(2) We verify that ∀i ∈ℕ, u∗i ∈ Pða∗−i, a∗−iÞ, and we have

Yi ai′, a∗−i, ui
� �

− Yi a
∗
−i, a∗−i, u∗ið Þ

−V i a∗−i, ai′
� �

∉ int Rl
+,∀ ai′, ui

� �
∈A i × P ai′, a∗−i

� � ð30Þ

By contradiction, suppose that formula (30) is not true,
then there is some i ∈ℕ such that ðai′, uiÞ ∈A i × Pðai′, a∗−iÞ,
Yiðai′, a∗−i, uiÞ − Yiða∗−i, a∗−i, u∗i Þ −V iða∗−i, ai′Þ ∈ int Rl

+. There-
fore, there exists some open neighbourhood V of the 0 ele-
ment of Rl

+ satisfying

Yi ai′, a∗−i, ui
� �

− Yi a
∗
−i, a∗−i, u∗ið Þ −V i a∗−i, ai′

� �
+V ⊂ int Rl

+:

ð31Þ

Because Yβ
i ⟶ Yi, there is a positive integer β1 such

that ∀β ≥ β1,

Yβ
i ai, a

β
−i, νi

� �
− Yβ

i aβi , a
β
−i, u

β
i

� �
−V

β
i aβi , ai
� �h i

− Yi ai, a
β
−i, νi

� �
− Yi aβi , a

β
−i, u

β
i

� �
−V

β
i aβi , ai
� �h i

∈
1
2V :

ð32Þ

Furthermore, since ðai′, uiÞ ∈A i × Pðai′, a∗−iÞ, Yiðai′, a∗−i,
uiÞ − Yiða∗−i, a∗−i, u∗i Þ −V ða∗−i, ai′Þ is lsc at ðai, a−i, uiÞ with ð
aβi , a

β
−iÞ⟶ ða∗i , a∗−iÞ, there is a positive integer β2 and β2

≥ β1 such that ∀β ≥ β2,

Yi ai, a
β
−i, ui

� �
− Yi aβi , a

β
−i, u

β
i

� �
−V i aβi , ai

� �
∈ Yi ai, a∗−i, uið Þ

− Yi a
∗
i , a∗−i, u∗ið Þ −V i a

∗
i , aið Þ + 1

2V + Rl
+:

ð33Þ
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Then, ∀β ≥ β2, and we can obtain that

Yβ
i ai, a

β
−i, ui

� �
− Yβ

i aβi , a
β
−i, u

β
i

� �
−V

β
i aβi , ai
� �

= Yβ
i ai, a

β
−i, ui

� �
− Yβ

i aβi , a
β
−i, u

β
i

� �
−V

β
i aβi , ai
� �h i

− Yi ai, a
β
−i, ui

� �
− Yi aβi , a

β
−i, u

β
i

� �
−V i aβi , ai

� �h i

+ Yi ai, a
β
−i, ui

� �
− Yi aβi , a

β
−i, u

β
i

� �
−V i aβi , ai

� �h i
∈
1
2V

+ Yi ai, a∗−i, uið Þ − Yi a
∗
i , a∗−i, u∗ið Þ −V i a

∗
i , aið Þ + 1

2V + Rl
+

= Yi ai, a∗−i, uið Þ − Yi a
∗
i , a∗−i, u∗ið Þ −V i a

∗
i , aið Þ + V

+ Rl
+ ⊂ int Rl

+ + Rl
+ ⊂ int Rl

+:

ð34Þ

It is a contradiction with ðaβ1 , uβ1 ,⋯,aβn , uβnÞ ∈ ΓðϕβÞ.
Thus, we can obtain ða∗1 , u∗1 ,⋯,a∗n , u∗nÞ ∈ ΓðϕÞ; i.e., Γ is a
closed correspondence and Γ is a usco correspondence on
Ω by means of Lemma 9.

Next, we define a set-valued map T : A1 ×U1 ×⋯×An
×Un ⟶A1 ×⋯ ×An, wherein T ða1, u1,⋯,an, unÞ = ða1,
⋯,anÞ ∈A1 ×⋯×An, ∀ða1, u1,⋯,an, unÞ ∈A1 ×U1 ×⋯×
An ×Un. It is obvious that T is continuous on A1 ×U1 ×⋯
×An ×Un.

Finally, we define a set-valued mapping F =T ðΓÞ: Ω
⟶ 2A1×⋯×An , where ∀ϕ ∈Ω, FðϕÞ =T ðΓÞðϕÞ represents
the set of WPNE with strategy transformational barriers
for the GMLMFMOG. According to Theorem 13, ΓðϕÞ ≠
∅, then FðϕÞ =T ðΓðϕÞÞ ≠∅.

Lemma 17. A set-valued mapping F =T ðΓÞ: Ω⟶
2A1×⋯×An is a usco correspondence.

Proof. According to Lemma 16, Γ : Ω⟶ 2A1×U1×⋯×An×Un is
usc onΩ, and ΓðϕÞ is compact ∀ϕ ∈Ω. Since T is continuous
on A1 ×U1 ×⋯×An ×Un, it is obvious to check that F =
T ðΓÞ: Ω⟶ 2A1×⋯×An is also a usco correspondence on Ω.

Definition 18.

(1) An equilibrium point a ∈A of the game ϕ ∈Ω is
referred to essential if for every OðaÞ of a, there is
one OðϕÞ of ϕ such that ∀ϕ′ ∈ OðϕÞ, and there exists
at least an equilibrium point a′ of ϕ′ with a′ ∈ OðaÞ.
If all equilibria points of the game ϕ ∈Ω are essen-
tial, then the game ϕ is an essential game

(2) A set ~mðϕÞ of the game ϕ ∈Ω is referred to essential
set if for each open set O of A is associated with ~m
ðϕÞ ⊂O, and there is an ε > 0 satisfying ∀ϕ′ ∈Ω, ϖð
ϕ, ϕ′Þ < ε, and Fðϕ′Þ ∩O =∅. Given that ~mðϕÞ is
one minimal element in total essential sets of FðϕÞ
which are ordered by inclusion relations, then ~mðϕÞ
is a minimal essential set

(3) ∀ϕ ∈Ω, FðϕÞ is composed of the union of the pair-
ing of disjoint connected subsets [33], i.e.,

F ϕð Þ =
[
κ∈K

Cκ ϕð Þ, ð35Þ

wherein K signifies one index set. Given a component Cκð
ϕÞ of FðϕÞ is essential, then CκðϕÞ is one essential set

Theorem 19. ∀ϕ ∈Ω, there is a dense Q in Ω such that Ω is
essential.

Proof. ðΩ, ϖÞ is complete by using Theorem 15, and F : Ω
⟶ 2A1×⋯×An is a usco correspondence by means of Lemma
17. By Theorem 11 and Remark 12, F serves as lsc on one
dense Q of Ω such that Ω is essential.

Remark 20. By Theorem 19, we proved that most of ϕ ∈Ω
have a stable solution set in the dense Q ofΩ on the meaning
of Baire’s category.

5. Essential Component

In this paragraph, we derive the essential component results
of the WPNE with the strategy transformation barrier solu-
tion sets of the GMLMFMOG.

Theorem 21. FðϕÞ encompasses at least one minimal essen-
tial set ∀ϕ ∈Ω, where F : Ω⟶ 2A1×⋯×An .

Proof. For ϕ ∈Ω, F : Ω⟶ 2A1×⋯×An is usco mapping by
Lemma 17, and then, FðϕÞ is one essential set of itself. Sup-
pose that E is the collections of all essential sets of FðϕÞ,
which is defined by the set inclusion order relation, we
obtain E ≠∅. Assume that any total order subset be feγðϕÞ
: γ ∈Kg on A , where K denote the index set. Let eðϕÞ =T

γ∈KeγðϕÞ, then eðϕÞ serves as compact. If eðϕÞ =∅, then

FðϕÞ =FðϕÞ \ eðϕÞ =S
γ∈K ½FðϕÞ \ eγðϕÞ�. Note that FðϕÞ

\ eγðϕÞ is one open set as well as FðϕÞ is compact, then
there are e1ðϕÞ, e2ðϕÞ,⋯, enðϕÞ such that FðϕÞ =Sn

i=1½Fðϕ
Þ \ eiðϕÞ� by using the open covering theorem. It is obvious
that

Tn
i=1eiðϕÞ =∅ from FðϕÞ =Sn

i=1½FðϕÞ \ eiðϕÞ� =FðϕÞ
\Tn

i=1eiðϕÞ. It means that
Tn

i=1eiðϕÞ =∅ is in contradiction
with

Tn
i=1eiðϕÞ ≠∅. Thus, eðϕÞ ≠∅. Given any open set O

with eðϕÞ ⊂O, if ∀γ ∈K , there exists aγ ∈ eγðϕÞ ⊂FðϕÞ with
aγ ∉O; then, we can assume that aγ ⟶ a ∈FðϕÞ. Because
∀γ ∈K , eγðϕÞ is compact and feγðϕÞgγ∈K is totally order

set, then aγ1 ∈ eγðϕÞ when γ1 > γ and a ∈ eγðϕÞ, ∀γ ∈K .
Hence, a ∈

T
γ∈KeγðϕÞ = eðϕÞ ⊂O, which contradicts with

aγ ⟶ a and aγ ∉O, ∀γ ∈K . Therefore, there exists aγ0 ∈
K such that eγ0ðϕÞ ⊂O. Since eγ0ðϕÞ is an essential set of

FðϕÞ, ∀ε > 0, there is δ > 0 such that ϕ1 ∈Ω with ϖðϕ, ϕ1Þ
< δ, Fða′ÞTO ≠∅ with ka − a′k < ε, ∀a′ ∈Fðϕ1Þ. Thus,
eðϕÞ is essential, and there must be a lower bound of feγðϕ
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Þ: γ ∈Kg in E. According to Zorn’s lemma, there is one
minimal element ~mðϕÞ in E such that FðϕÞ includes at least
one minimal essential set ~mðϕÞ.

Theorem 22. ∀ϕ ∈Ω, each minimal essential set of FðϕÞ is
connected.

Proof. Let ~mðϕÞ be a minimum essential set of FðϕÞ. By con-
tradiction, we assume that ~mðϕÞ is disconnected. There are
two not empty closed sets ~c1ðϕÞ and ~c2ðϕÞ with ~mðϕÞ =~c1ð
ϕÞ ∩~c2ðϕÞ, as well as two disjoint open sets O1 and O2 with
O1 ∩O2 =∅ such that ~c1ðϕÞ ⊂O1 and ~c2ðϕÞ ⊂O2.

Since ~mðϕÞ is the minimum essential set, ~c1ðϕÞ and ~c2ðϕÞ
are not essential set for FðϕÞ. Therefore, there exist two
open sets, namely, D1 and D2, with ~c1ðϕÞ ⊂D1 and ~c2ðϕÞ ⊂
D2 such that ∀δ > 0, ϕ1, ϕ2 ∈Ω; we obtain ϖðϕ, ϕ1Þ < δ and
ϖðϕ, ϕ2Þ < δ, but FðϕÞ ∩D1 =∅, FðϕÞTD2 =∅. Suppose
that U1 =O1 ∩D1 and U2 =O2 ∩D2 are open sets and that
~c1ðϕÞ ⊂U1 and ~c2ðϕÞ ⊂U2. Beacuse ~c1ðϕÞ and ~c2ðϕÞ are com-
pact, there are two open sets, namely, Z1 and Z2, such that
~c1ðϕÞ ⊂ Z1 ⊂ �Z1 ⊂U1 and ~c2ðϕÞ ⊂ Z2 ⊂ �Z2 ⊂U2. Since ~mðϕÞ
is one essential set of FðϕÞ and ~mðϕÞ ⊂ Z1 ∪ Z2, there is δ′
> 0 such that ∀ϕ ∈Ω with ϖðϕ, ϕÞ < δ′, and

F ϕ
À Á

∩ Z1 ∪ Z2ð Þ ≠∅: ð36Þ

Since Z1 ⊂O1 and Z2 ⊂O2, there exist ψ
1 ∈Ω and ψ2 ∈Ω

such that ϖðϕ, ψ1Þ < δ′/2 and ϖðϕ, ψ2Þ < δ′/2 with Fðψ1Þ
∩ Z1 =∅ and Fðψ2Þ ∩ Z2 =∅.

We define a GMLMFMOG with strategy transforma-
tional barrier ψ = ðA3

i , Y3
i ,V 3

i , P3Þi∈ℕ by a linear combina-
tion function between ψ1 = ðA1

i , Y1
i ,V 1

i , P1Þi∈ℕ and
ψ1 = ðA2

i , Y2
i ,V 2

i , P2Þi∈ℕ as follows:

Y3
i a, uð Þ = v að ÞY1

i a, uð Þ + u að ÞY2
i a, uð Þ,

V 3
i ai, ai′
� �

= v að ÞV 1
i ai, ai′
� �

+ u að ÞV 2
i ai, ai′
� �

,

P3 ai, a−ið Þ = v að ÞH P1 ai, a−ið Þ, P2 ai, a−ið ÞÀ Á
+ u að ÞH P2 ai, a−ið Þ, P2 ai, a−ið ÞÀ Á

,

ð37Þ

where

v að Þ = ℏ a, �Z2
À Á

ℏ a, �Z1
À Á

+ ℏ a, �Z2
À Á ,

u að Þ = ℏ a, �Z1
À Á

ℏ a, �Z1
À Á

+ ℏ a, �Z2
À Á ,

ð38Þ

and ℏ represents the distance function on A . Note that vðaÞ
and uðaÞ are continuous and nonnegative; furthermore, vð
aÞ + uðaÞ = 1, ∀a ∈A .

We can check that ψ = ðA3
i , Y3

i ,V 3
i , P3Þi∈ℕ ∈Ω. Noting

that

ϖ ϕ, ψð Þ = sup
a,uið Þ∈A×Ui

〠
n

i=1
Yi a, uið Þ − Y3

i a, uið Þ

 



+ sup
ai ,ai′ð Þ∈A i×A i

〠
n

i=1
V i ai;ai′

� �
−V 3

i ai;ai′
� �


 




+ sup
ai;a−ið Þ∈A i×A−i

H P ai, a−ið Þ;P3 ai;a−ið ÞÀ Á
;

= sup
a;uið Þ∈A×Ui

〠
n

i=1
v að ÞYi a;uið Þk

+ u að ÞYi a;uið Þ − v að ÞY1
i a;uið Þ − u að ÞY2

i a;uið Þ


+ sup

ai;ai′ð Þ∈A i×A i

〠
n

i=1
v að ÞV i ai;ai′

� �
+ u að ÞV i ai, ai′

� �



− v að ÞV 1

i ai, ai′
� �

− u að ÞV 2
i ai, ai′
� �




+ sup
ai ,a−ið Þ∈A i×A−i

v að ÞH P ai, a−ið Þ, P1 ai, a−ið ÞÀ ÁÀ

+ u að ÞH P ai, a−ið Þ, P2 ai, a−ið ÞÀ ÁÁ

≤ ϖ w, ψ1À Á
+ ϖ w, ψ2À Á

< δ′
2 + δ′

2 = δ′,

ð39Þ

we obtain FðψÞ ∩ ðZ1 ∪ Z2Þ ≠∅ since ϖðϕ, ψÞ < δ′. Next,
we assume that FðψÞ ∩ Z1 ≠∅; then there exists a′ ∈FðψÞ
∩ Z1. By a′ ∈ Z1, we attain wða′Þ = 1, uða′Þ = 0, Y3

i ða, uiÞ
= Y1

i ða, uiÞ, V 3
i ðai, a′iÞ =V 1

i ðai, a′iÞ, and P3ðai, a−iÞ = P1ðai
, a−iÞ. Then, we obtain a′ ∈FðψÞ, which implies

Y3
i ai′, a∗−i, ui
� �

− Y3
i a∗−i, a∗−i, u∗ið Þ −V i a∗−i, ai′

� �
∉ int Rl

+,∀ ai′, ui
� �

∈A i × P ai′, a∗−i
� �

:

ð40Þ

Thus, a′ ∈Fðψ1Þ. This contradicts the fact that Fðψ1Þ
∩ Z1 =∅. Then, ~mðϕÞ is connected.

Theorem 23. ∀ϕ ∈Ω, if there exists FðϕÞ = fag (single point
set), then ϕ is essential.

Theorem 24. ∀ϕ ∈Ω, there is at least an essential connected
component of FðϕÞ.

Proof. According to Theorems 21 and 22,FðϕÞ encompasses
at least a minimum essential set ~mðϕÞ and ~mðϕÞ is con-
nected. Aiming at a component CκðϕÞ of FðϕÞ as well as
~mðϕÞ ⊂ CκðϕÞ, we obtain that CκðϕÞ is one essential con-
nected component of FðϕÞ by Definition 18 (3).

6. Summaries

In this paper, we have investigated a new generalized multilea-
der multifollower multiple objective game (GMLMFMOG)
model with strategy transformational barriers and obtained
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some new stability results of the WPNE with the strategy
transformational barriers for the GMLMFMOG. Further-
more, we have proved the existence of the WPNE with the
strategy transformational barriers of the GMLMFMOG and
studied its generic stability. In fact, we have obtained that most
of theWPNEwith the strategy transformational barriers of the
GMLMFMOG serve as essential on the meaning of Baire’s cat-
egory. In addition, we have demonstrated that there is at least
an essential connected component of the GMLMFMOG with
the strategy transformational barriers. These results extend the
corresponding results obtained in reference [27] by introduc-
ing strategy transformational barrier function into the
decision-making behaviour of players.
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In this paper, we study the existence of solutions and their uniqueness and different kinds of Ulam–Hyers stability for a new class
of nonlinear Caputo quantum boundary value problems. Also, we investigate such properties for the relevant generalized coupled
q-system involving fractional quantum operators. By using the Banach contraction principle and Leray-Schauder’s fixed–point
theorem, we prove the existence and uniqueness of solutions for the suggested fractional quantum problems. The Ulam–Hyers
stability of solutions in different forms are studied. Finally, some examples are provided for both q-problem and coupled q
-system to show the validity of the main results.

1. Introduction

Fractional calculus is one of the most important fields in
applied mathematics. In recent years, many researchers
have studied different branches of this theory and con-
ducted numerous analyses analytically and numerically.
Particularly, in recent decades, we can see some papers
on the applications of fixed-point theorems to prove the
existence of solutions of fractional boundary value prob-
lems [1–4]. Because of the quick developments in frac-
tional calculus, many mathematicians discussed on the
theory of q-calculus that is an equivalent of traditional cal-

culus without defining the concept of limit, and also the
parameter q refers to quantum. This theory was originally
developed by Jackson [5, 6], and it includes many practical
aspects in the fields of hypergeometric series, theory of rel-
ativity, particle physics, discrete mathematics, quantum
mechanics, combinatorics, and complex analysis. For a
fundamental introduction of the basic notions of q-calcu-
lus, one can refer to [7–9]. In the early years, for finding
positive solutions of given q-difference equations in the
nonlinear settings, we lead you to study a work published
by both El-Shahed and Al-Askar [10] and also a manu-
script by Graef and Kong [11].
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So later, various mathematical q-difference fractional
models of IVPs and BVPs have been presented in which differ-
ent methods like the lower-upper solutions technique, fixed-
point results, and iterative methods have been implemented.
For instance, we see q-intego-equation on time scales in [12],
q-delay equations in [13], q-integro-equations under the q
-integral conditions in [14], singular q-equations in [15], q
-sequential symmetric BVPs in [16], q-difference equations
having p-Laplacian in [17], four-point q-BVP with different
orders in [18], oscillation on q-difference inclusions in [19], etc.

Here, we apply similar techniques to discuss the exis-
tence property of solutions for given q-integro-sum-differ-
ence FBVPs depending on the quantum operators. This
shows an application of fixed-point theory in relation to q
-difference theory. This specifies the main contribution of
the present reseach.

In 2014, Ahmad et al. [20] studied a q-sequential equa-
tion in the nonlinear case via four-point q-integral condi-
tions given by

C
qD

k1
0+

C
qD

k2
0+ + σ

� �
u rð Þ = G r, u rð Þð Þ, r ∈ 0, 1½ �, q ∈ 0, 1ð Þð Þ,

u 0ð Þ = e1qI
s−1
0+ u b1ð Þ, u 1ð Þ = e2qI

s−1
0+ u b2ð Þ,

8<
:

ð1Þ

so that k1, k2 ∈ ð0, 1Þ, b1, b2 ∈ ð0, 1Þ, s > 2, and σ, e1, e2 ∈ℝ.
As well as, G : ½0, 1� ×ℝ⟶ℝ is continuous, and qI

s−1
0+ indi-

cates the q-RL-integral. These mathematicians extracted dif-
ferent qualitative aspects of solutions for the above q-FBVP
by means of the classical methods which are available in
fixed-point theory.

In 2015, Etemad et al. [21] focused on the new four-
point three-term q-difference FBVP

C
qD

ρ

0+u
� �

rð Þ =G r, u rð Þ, CqD
1
0+u rð Þ

� �
, 0 < q < 1,

c1u 0ð Þ + d1
C
qD

1
0+u 0ð Þ = b1qI

α
0+u k1ð Þ = b1

ðk1
0

k1 − qzð Þ α−1ð Þ

Γq αð Þ u zð Þdqz,

c2u 1ð Þ + d2
C
qD

1
0+u 1ð Þ = b2qI

α
0+u k2ð Þ = b2

ðk2
0

k2 − qzð Þ α−1ð Þ

Γq αð Þ u zð Þdqz,

ð2Þ

where 0 ≤ r ≤ 1, 1 < ρ ≤ 2, α ∈ ð0, 2�, c1, c2, d1, d2, b1, b2 ∈ℝ,
and k1, k2 ∈ ð0, 1Þ with k1 < k2.

In 2019, two mathematicians named Ntouyas and Samei
[22] devoted their attention to investigate the existence
property about the multiterm q-integro-difference FBVP

C
qD

ρ

0+u rð Þ =G r, u rð Þ, ℏ1uð Þ rð Þ, ℏ2uð Þ rð Þ, CqD
ρ1
0+u rð Þ, CqD

ρ2
0+u rð Þ,⋯, CqD

ρm
0+ u rð Þ

� �
,

u 0ð Þ + b1u 1ð Þ = 0, u′ 0ð Þ + b2u′ 1ð Þ = 0

ð3Þ

where r ∈ ½0, 1�, q ∈ ð0, 1Þ, ρ ∈ ð1, 2Þ, ρi ∈ ð0, 1Þ with i = 1, 2,
⋯,m, b1, b2 ≠ −1, ℏj are formulated as

ℏju
� �

rð Þ =
ðr
0
vj r, zð Þu zð Þ dqz, ð4Þ

for j = 1, 2 and G : ½0, 1� ×ℝm+3 ⟶ℝ is continuous with
respect to all variables [22].

In 2020, Phuong et al. [23] formulated a novel extended
configuration of the Caputo q-multi-integro-difference
equation with two nonlinearity under q-multi-order-inte-
grals conditions

mC
qD

ρ

0+ − m + 1ð ÞqIk10+ − m + 2ð ÞqIk20+
� �

u rð Þ
= b1qI

k3
0+G1 r, u rð Þð Þ + b2qI

k4
0+G2 r, u rð Þð Þ,

u 0ð Þ = 0, nqIp10+u 1ð Þ + n + 1ð ÞqIp20+u 1ð Þ + n + 2ð ÞqIp30+u 1ð Þ = 0,
ð5Þ

where r ∈ ½0, 1�, ρ ∈ ð1, 2Þ, k1, k2, k3, k4 ∈ ð0, 1Þ, p1, p2, p3,m,
n > 0, and b1, b2 ∈ℝ≥0.

In this paper, inspired by above q-problems, we analyze
a structure of the nonlinear Caputo quantum difference frac-
tional boundary problem (or q-CFBVP) in the form

C
qD

ς

0+μ rð Þ =G r, μ rð Þ, RqJ
ω

0+μ rð Þ
� �

≔ Gμ rð Þ,  r ∈ O ≔ 0, 1½ �, q ∈ 0, 1ð Þð Þ,

μ 0ð Þ + μ ζð Þ = 〠
k

j=1
αj

R
qJ

σ j

0+μ 1ð Þ,

C
qD

ϱ

0+μ 0ð Þ + C
qD

ϱ

0+μ ζð Þ = 〠
k

j=1
βj

R
qJ

σ j

0+μ 1ð Þ,

C
qD

2
0+μ 0ð Þ + C

qD
2
0+μ ζð Þ = 〠

k

j=1
γj

R
qJ

ϱ

0+
C
qD

2
0+μ 1ð Þ

h i
,

ð6Þ

where ς ∈ ð2, 3Þ, ϱ ∈ ð1, 2Þ, ζ ∈ ð0, 1Þ, αj, βj, γj ∈ℝ>0, ω, σj > 0
for j = 1, 2,⋯, k, and G : O ×ℝ2 ⟶ℝ are continuous. As

the same way, the operators C
qD

ð·Þ
0+ and qI

ð·Þ
0+ denote the

q-Caputo derivative and the q-RL integral, respectively.
In the direction of the above problem, we consider a coupled
system of nonlinear q-CFBVPs with the same q-boundary
conditions. In other words, the mentioned fractional q-sys-
tem is organized as

C
qD

ς1
0+μ rð Þ =G1 r, ϑ rð Þ, RqJ

ω1
0+ ϑ rð Þ

� �
: Uϑ rð Þ,  r ∈ O, q ∈ 0, 1ð Þð Þ,

C
qD

ς2
0+ϑ rð Þ =G2 r, μ rð Þ, RqJ

ω2
0+μ rð Þ

� �
≔V μ rð Þ,

μ 0ð Þ + μ ζð Þ = 〠
k

j=1
αj

R
qJ

σ j

0+μ 1ð Þ,

ϑ 0ð Þ + ϑ ζð Þ = 〠
k

j=1
ϕ j

R
qJ

δ j

0+ϑ 1ð Þ,

C
qD

ϱ

0+μ 0ð Þ + C
qD

ϱ

0+μ ζð Þ = 〠
k

j=1
βj

R
qJ

σ j

0+μ 1ð Þ,
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C
qD

ρ

0+ϑ 0ð Þ + C
qD

ρ

0+ϑ ζð Þ = 〠
k

j=1
φj

R
qJ

δ j

0+ϑ 1ð Þ,

C
qD

2
0+μ 0ð Þ + C

qD
2
0+μ ζð Þ = 〠

k

j=1
γj

R
qJ

σ j

0+
C
qD

2
0+μ 1ð Þ

h i
,

C
qD

2
0+ϑ 0ð Þ + C

qD
2
0+ϑ ζð Þ = 〠

k

j=1
ηj

R
qJ

δ j

0+
C
qD

2
0+ϑ 1ð Þ

h i
, ð7Þ

where ς1, ς2 ∈ ð2, 3Þ, ϱ, ρ ∈ ð1, 2Þ, ζ ∈ ð0, 1Þ, αj, βj, γj, ϕj, φj,
ηj ∈ℝ

>0, ω1, ω2, σj, δj > 0 for j = 1, 2,⋯, k, and G1,G2 : O ×
ℝ2 ⟶ℝ are continuous.

In other words, we extend our q-CFBVP to a coupled
q-difference system and derive the existence and stability
results on such a generalized coupled q-CFBVP system.
In fact, a large number of researchers have devoted their
concentration to the discussion on various categories of
Ulam-Hyers stabilities for standard systems of FDEs (or
refer to [24, 25]), while a few articles can be found in
the literature in which the researchers developed the rele-
vant existence and stability theory in relation to nonlinear
fractional q-difference systems.

The present work is assembled as follows: In Section 2,
we state some basic materials required to prove our theoret-
ical results. In both Section 3 and Section 4, several criteria
and conditions are presented for the desired uniqueness-
existence results, along with different classes of stabilities in
relation to the proposed q-CFBVPs (6) and (7), respectively,
with the help of some known fixed–point theorems. A sim-
ulative example, to represent the consistency of our results,
is given with each suggested q-CFBVP in the relevant sec-
tion. We give Section 6 to the presentation of the conclusion
of this research work.

2. Preliminaries

The basic notions of q-calculus are collected in this section
by assuming q ∈ ð0, 1Þ. The q-analogue of ða1 − a2Þk is
given by

a1 − a2ð Þ 0ð Þ = 1, a1 − a2ð Þ kð Þ =
Yk−1
j=0

a1 − a2q
j� �
, a1, a2 ∈ℝ, k ∈ℕ0 ≔ 0, 1, 2,⋯f gð Þ

ð8Þ

Rajkovic et al. [26]. Now, if k = ς ∈ℝ, then

a1 − a2ð Þ ςð Þ = aς1
Y∞
k=0

1 − a2/a1ð Þqk
1 − a2/a1ð Þqς+k , a1 ≠ 0ð Þ: ð9Þ

On the other side, by taking a2 = 0, we have aðςÞ1 = aς1
[26]. A q-number ½a1�q for a1 ∈ℝ is defined by

a1½ �q =
1 − qa1

1 − q
= qa1−1+⋯+q + 1: ð10Þ

Accordingly, the Gamma function in the quantum set-
tings is defined by

Γq rð Þ = 1 − qð Þ r−1ð Þ

1 − qð Þr−1 , r ∈ℝ \ ℤ− ∪ 0f gð Þð Þ, ð11Þ

and Γqðr + 1Þ = ½r�qΓqðrÞ [5, 26].

Definition 1 (see [27]). The q-difference-derivative of the
given function μ is defined by

qD0+μ
� �

rð Þ = d
dr

� �
q

μ rð Þ = μ rð Þ − μ qrð Þ
1 − qð Þr , ð12Þ

where ðqD0+μÞð0Þ = limr⟶0ðqD0+μÞðrÞ.

Clearly, we have ðqDk
0+μÞðrÞ = qD0+ðqD

k−1
0+ μÞðrÞ for all

k ∈ℕ and ðqD0
0+μÞðrÞ = μðrÞ [27].

Definition 2 (see [27]). The q-integral of the supposed func-
tion μ ∈ Cð½0,m2�,ℝÞ is defined as

qI0+μ
� �

rð Þ =
ðr
0
μ vð Þ dqv = r 1 − qð Þ〠

∞

j=0
μ rqj
� �

qj, ð13Þ

if the series is absolutely convergent.

Similarly, ðqIk
0+μÞðrÞ = qI0+ðqI

k−1
0+ μÞðrÞ for all k ≥ 1 and

ðqI0
0+μÞðrÞ = μðrÞ [27].

Definition 3 (see [27]). By letting a1 ∈ ½0, a2�, the definite q
-integral of the given function μ ∈ Cð½0, a2�,ℝÞ is defined by

ða2
a1

μ vð Þdqv = qI0+μ a2ð Þ − qI0+μ a1ð Þ

=
ða2
0
μ vð Þdqv −

ða1
0
μ vð Þdqv

= 1 − qð Þ〠
∞

j=0
a2μ a2q

j� �
− a1μ a1q

j� �� 	
qj,

ð14Þ

if the series exists.

By considering μ as a continuous function at r = 0, then
ðqI0+qD0+μÞðrÞ = μðrÞ − μð0Þ [27]. Furthermore, ðqD0+qI0+
μÞðrÞ = μðrÞ for all r.
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Definition 4 (see [11, 28]). The ςth-RL-q-integral of μ ∈Cℝ
ð½0,+∞ÞÞ is defined by

R
qI

ς

0+μ rð Þ =
1

Γq ςð Þ
ðr
0
r − qvð Þ ς−1ð Þμ vð Þ dqv, ς > 0,

μ rð Þ, ς = 0,

8><
>:

ð15Þ

if integral exists.

One can simply see that the q-semi-group property sat-
isfies as R

qI
ς1
0+ ðRqI

ς2
0+μÞðrÞ = R

qI
ς1+ς2
0+ μðrÞ for ς1, ς2 ≥ 0 [28].

Also, for ζ > −1, we have

R
qI

ς

0+r
ζ =

Γq ζ + 1ð Þ
Γq ζ + ς + 1ð Þ r

ζ+ς,

R
qI

ς

0+1 rð Þ = 1
Γq ς + 1ð Þ r

ς, r > 0ð Þ:
ð16Þ

Definition 5 (see [11, 28]). Let ℓ − 1 < ς < ℓ, i.e., ℓ = ½ς� + 1.
The ςth-Caputo q-derivative of μ ∈C ðℓÞ

ℝ ð½0,+∞ÞÞ is defined
as

C
qD

ς

0+μ rð Þ = 1
Γq ℓ − ςð Þ

ðr
0
r − qvð Þ ℓ−ς−1ð Þ

qD
ℓ
0+μ vð Þ dqv, ð17Þ

if the integral exists.

Note that for ζ > −1, we have

C
qD

ς

0+r
ι =

Γq ι + 1ð Þ
Γq ι − ς + 1ð Þ r

ι−ς,

C
qD

ς

0+1 rð Þ = 0, r > 0ð Þ:
ð18Þ

Lemma 6 (see [10]). Let ℓ − 1 < ς < ℓ. Then,

C
qI

ς

0+
C
qD

ς

0+
μ

� �
rð Þ = μ rð Þ − 〠

ℓ−1

j=0

rj

Γq j + 1ð Þ qD
j
0+
μ

� �
0ð Þ: ð19Þ

By Lemma 6, the general series solution of q-difference
FDE C

qD
ς

0+μðrÞ = 0 is given as μðrÞ =~c0 +~c1r +~c2r2 +⋯ +
~cℓ−1r

ℓ−1 with ~c0,⋯,~cℓ−1 ∈ℝ and ℓ = ½ς� + 1 [10]. In this case,
we get

R
qI

ς

0+
C
qD

ς

0+μ
� �

rð Þ = μ rð Þ +~c0 +~c1r +~c2r2+⋯+~cℓ−1rℓ−1:

ð20Þ

3. Analysis of the Cap-q-Difference FBVP (6)

Let A =CℝðOÞ be the space of all real-valued continuous
functions on O = ½0, 1�. Clearly, A is a Banach space under
the norm kμkA = Supr∈OjμðrÞj for all members μ ∈A. In
the first step, we provide the following fundamental lemma

which presents a characterization of the structure of solu-
tions for the proposed Cap-q-difference FBVP (6)

Remark 7. For convenience, we consider the following non-
zero constants:

W1 = 2 − 〠
k

j=1

αj

Γq σj + 1
� � ,

W2 = ζ − 〠
k

j=1

αj

Γq σj + 2
� � ,

W3 = ζ2 − 〠
k

j=1

αj 1 + qð Þ
Γq σj + 3
� � ,

ð21Þ

W4 = −〠
k

j=1

βj

Γq σj + 1
� � ,

W5 = −〠
k

j=1

βj

Γq σj + 2
� � ,

W6 =
2ζ2−ρ

Γq 3 − ρð Þ − 〠
k

j=1

βj 1 + qð Þ
Γq σ j + 3
� � ,

ð22Þ

W7 = 2 1 + qð Þ − 〠
k

j=1

γj 1 + qð Þ
Γq σj + 1
� � ,

W8 =W2W4 −W1W5,
W9 =W3W4 −W1W6,

ð23Þ

W10 =W8 −W2W4,
W11 =W3W8 −W2W9:

ð24Þ

Lemma 8. Let ϕ∗ ∈A, ς ∈ ð2, 3Þ, ρ ∈ ð1, 2Þ, ζ ∈ ð0, 1Þ, αj, βj,
γ j ∈ℝ

>0, and σj > 0 for j = 1, 2,⋯, k. The solution of the lin-
ear Cap-q-difference FBVP

C
qD

ς

0+
μ rð Þ = ϕ∗ rð Þ,  r ∈ O, q ∈ 0, 1ð Þð Þ,

μ 0ð Þ + μ ζð Þ = 〠
k

j=1
αj

R
qJ

σ j

0+
μ 1ð Þ,

C
qD

ϱ

0+
μ 0ð Þ + C

qD
ϱ

0+
μ ζð Þ = 〠

k

j=1
βj

R
qJ

σ j

0+
μ 1ð Þ,

C
qD

2

0+
μ 0ð Þ + C

qD
2

0+
μ ζð Þ = 〠

k

j=1
γj

R
qJ

σ j

0+
C
qD

2

0+
μ 1ð Þ

h i
ð25Þ
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is given by

μ rð Þ =
ðr
0

r − qvð Þ ς−1ð Þ

Γq ςð Þ ϕ∗ vð Þ dqv −
Θ1 rð Þ
W1W8

ðζ
0

ζ − qvð Þ ς−1ð Þ

Γq ςð Þ ϕ∗ vð Þ dqv

+ Θ2 rð Þ
W8

ðζ
0

ζ − qvð Þ ς−ρ−1ð Þ

Γq ς − ρð Þ ϕ∗ vð Þ dqv −
Θ3 rð Þ

W1W7W8

�
ðζ
0

ζ − qvð Þ ς−3ð Þ

Γq ς − 2ð Þ ϕ∗ vð Þ dqv +
Θ1 rð Þ
W1W8

�〠
k

j=1
α j

ð1
0

1 − qvð Þ ς+σ j−1ð Þ
Γq ς + σ j

� � ϕ∗ vð Þ dqv −
Θ2 rð Þ
W8

�〠
k

j=1
βj

ð1
0

1 − qvð Þ ς+σ j−1ð Þ
Γq ς + σj

� � ϕ∗ vð Þ dqv +
Θ3 rð Þ

W1W7W8

�〠
k

j=1
γj

ð1
0

1 − qvð Þ ς+σ j−3ð Þ
Γq ς + σj − 2
� � ϕ∗ vð Þ dqv,

ð26Þ

where

Θ1 rð Þ = rW1W4 +W10,
Θ2 rð Þ = rW1 −W2,
Θ3 rð Þ = r2W1W8 − rW1W9 −W11,

ð27Þ

and Wi are defined in (24).

Proof. Let μ satisfies the linear Cap-q-difference FBVP (25).
Then C

qD
ς

0+μðrÞ = ϕ∗ðrÞ. By virtue of ς ∈ ð2, 3Þ and taking

ςth-RL-q-integral, we have

μ rð Þ = 1
Γq ςð Þ

ðr
0
r − qvð Þ ς−1ð Þϕ∗ vð Þ dqv +~c0 +~c1r +~c2r2, ð28Þ

where ~c0,~c1,~c2 ∈ℝ are unknown coefficients that we have to
explore them. It is immediately computed that

C
qD

2
0+μ rð Þ = 1

Γq ς − 2ð Þ
ðr
0
r − qvð Þ ς−3ð Þϕ∗ vð Þ dqv +~c2 1 + qð Þ,

ð29Þ

C
qD

ϱ

0+μ rð Þ = 1
Γq ς − ϱð Þ

ðr
0
r − qvð Þ ς−ϱ−1ð Þϕ∗ vð Þ dqv +~c2

2
Γq 3 − ϱð Þ r

2−ϱ,

ð30Þ

R
qI

σ j

0+μ rð Þ = 1
Γq ς + σj

� � ðr
0
r − qvð Þ ς+σ j−1ð Þϕ∗ vð Þ dqv

+~c0
1

Γq σ j + 1
� � rσ j +~c1

1
Γq σj + 2
� � rσ j+1

+~c2
1 + q

Γq σ j + 3
� � rσ j+2,

ð31Þ

R
qI

σ j

0+
C
qD

2
0+μ rð Þ

h i
= 1
Γq ς + σj − 2
� � ðr

0
r − qvð Þ ς+σ j−3ð Þϕ∗ vð Þ dqv

+~c2
1 + q

Γq σj + 1
� � rσ j :

ð32Þ
By considering the constants W1,⋯,W11 given by (24)

and by virtue the given boundary conditions implemented
on (29)–(32) and by some straightforward computations,
we obtain the following coefficients

~c0 =
W2
W8

〠
k

j=1
βj

ð1
0

1 − qvð Þ ς+σ j−1ð Þ
Γq ς + σj

� � ϕ∗ vð Þ dqv

−
W2
W8

ðζ
0

ζ − qvð Þ ς−ρ−1ð Þ

Γq ς − ρð Þ ϕ∗ vð Þ dqv

+ W10
W1W8

〠
k

j=1
αj

ð1
0

1 − qvð Þ ς+σ j−1ð Þ
Γq ς + σj

� � ϕ∗ vð Þ dqv

−
W10

W1W8

ðζ
0

ζ − qvð Þ ς−1ð Þ

Γq ςð Þ ϕ∗ vð Þ dqv

+ W11
W1W7W8

ðζ
0

ζ − qvð Þ ς−3ð Þ

Γq ς − 2ð Þ ϕ∗ vð Þ dqv

−
W11

W1W7W8
〠
k

j=1
γj

ð1
0

1 − qvð Þ ς+σ j−3ð Þ
Γq ς + σj − 2
� � ϕ∗ vð Þ dqv,

ð33Þ

~c1 =
W4
W8

〠
k

j=1
αj

ð1
0

1 − qvð Þ ς+σ j−1ð Þ
Γq ς + σj

� � ϕ∗ vð Þ dqv

−
W4
W8

ðζ
0

ζ − qvð Þ ς−1ð Þ

Γq ςð Þ ϕ∗ vð Þ dqv

+ W1
W8

ðζ
0

ζ − qvð Þ ς−ρ−1ð Þ

Γq ς − ρð Þ ϕ∗ vð Þ dqv

−
W1
W8

〠
k

j=1
βj

ð1
0

1 − qvð Þ ς+σ j−1ð Þ
Γq ς + σj

� � ϕ∗ vð Þ dqv

+ W9
W7W8

ðζ
0

ζ − qvð Þ ς−3ð Þ

Γq ς − 2ð Þ ϕ∗ vð Þ dqv

−
W9

W7W8
〠
k

j=1
γj

ð1
0

1 − qvð Þ ς+σ j−3ð Þ
Γq ς + σj − 2
� � ϕ∗ vð Þ dqv,

ð34Þ

~c2 =
1
W7

〠
k

j=1
γj

ð1
0

1 − qvð Þ ς+σ j−3ð Þ
Γq ς + σj − 2
� � ϕ∗ vð Þ dqv

−
1
W7

ðζ
0

ζ − qvð Þ ς−3ð Þ

Γq ς − 2ð Þ ϕ∗ vð Þ dqv:
ð35Þ

By inserting (33), (34), and (35) into (28), we derive
equation (26) which is the same desired q-integral solution
of the linear Cap-q-difference FBVP (25). The proof is
completed.
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Now, consider the following estimates:

Supr∈O Θ1 rð Þj j ≤ Supr∈O rW1W4j j + W10j jð Þ
≤ W1W4j j + W10j j≔Θ∗

1 > 0,

Supr∈O Θ2 rð Þj j ≤ Supr∈O rW1j j + W2j jð Þ
≤ W1j j + W2j j≔Θ∗

2 > 0,

Supr∈O Θ3 rð Þj j ≤ Supr∈O r2W1W8


 

 + rW1W9j j + W11j j� �

≤ W1W8j j + W1W9j j + W11j j≔Θ∗
3 > 0:

ð36Þ

In this paper, for convenience in computation, we set

R
qI

ς

0+Gμ vð Þ rð Þ = 1
Γq ςð Þ

ðr
0
r − qvð Þ ς−1ð ÞGμ υð Þ dqv: ð37Þ

According to Lemma 8, we define the operator F : A
⟶A as

Fμð Þ rð Þ = R
qI

ς

0+Gμ vð Þ rð Þ + Θ1 rð Þ
W1W8

� −R
qI

ς

0+Gμ vð Þ ζð Þ + 〠
k

j=1
α j

R
qI

ς+σ j

0+ Gμ vð Þ 1ð Þ
" #

+ Θ2 rð Þ
W8

R
qI

ς−ϱ
0+ Gμ vð Þ ζð Þ − 〠

k

j=1
β j

R
qI

ς+σ j

0+ Gμ vð Þ 1ð Þ
" #

+ Θ3 rð Þ
W1W7W8

−R
qI

ς−2
0+ Gμ vð Þ ζð Þ + 〠

k

j=1
γj

R
qI

ς+σ j−2
0+ Gμ vð Þ 1ð Þ

" #
:

ð38Þ

Notice that the Cap-q-difference FBVP (6) has solutions if
and only if F has fixed points.

To simplify the computations, we set the following nota-
tion and the constants

Λ = 1
Γq ς + 1ð Þ + Θ∗

1
W1W8j j

ζς

Γq ς + 1ð Þ + 〠
k

j=1

αj



 


Γq ς + σj + 1
� �

 !

+ Θ∗
2

W8j j
ζς−ϱ

Γq ς − ρ + 1ð Þ + 〠
k

j=1

βj




 



Γq ς + σj + 1
� �

0
@

1
A

+ Θ∗
3

W1W7W8j j
ζς−2

Γq ς − 1ð Þ + 〠
k

j=1

γj




 



Γq ς + σj − 1
� �

0
@

1
A:

ð39Þ

3.1. Uniqueness Result. The uniqueness result for the Cap-q
-difference FBVP (6) is proved by using the Banach’s fixed-
point theorem.

Theorem 9. Assume that G ∈CðO ×ℝ2,ℝÞ satisfies the fol-
lowing assumptions.

(H 1) There are L1, L2 > 0 such that

G r, u1, v1ð Þ −G r, u2, v2ð Þj j ≤ L1 u1 − u2j j + L2 v1 − v2j j, ð40Þ

for every ui, vi ∈ℝ, i = 1, 2, and r ∈ O.
If

L1 +
L2

Γq ω + 1ð Þ

 !
Λ < 1, ð41Þ

where Λ is given in (39), and then the Cap-q-difference FBVP
(6) has a unique solution μ in A.

Proof. We convert the Cap-q-difference FBVP (6) into μ =
Fμ, where F is defined by (38). By the Banach’s contraction
principle, we shall guarantee that F has exactly one fixed
point.

At first, we define a bounded, closed convex subset BY1
≔ fμ ∈A : kμkA ≤ Y1g ≠∅ with

Y1 ≥
ΛG

1 − L1 + L2/Γq ω + 1ð Þ� �� �
Λ
, ð42Þ

where Λ is defined by (39).
Let supr∈OjGðr, 0, 0Þj≔G <∞. The proof will be com-

pleted in two steps:
Step 1. FBY1

⊂BY1
:

Let μ ∈ BY1
and r ∈ O. Estimate

Fμð Þ rð Þj j ≤ R
qI

ς

0+ Gμ vð Þ

 

 rð Þ + Θ1 rð Þ
W1W8j j

� R
qI

ς

0+ Gμ vð Þ

 

 ζð Þ + 〠
k

j=1
αj



 

R
qI

ς+σ j

0+ Gμ vð Þ

 

 1ð Þ
" #

+ Θ2 rð Þ
W8j j

R
qI

ς−ϱ
0+ Gμ vð Þ

 

 ζð Þ + 〠

k

j=1
βj




 


RqIς+σ j

0+ Gμ vð Þ

 

 1ð Þ
" #

+ Θ3 rð Þ
W1W7W8j j

R
qI

ς−2
0+ Gμ vð Þ

 

 ζð Þ + 〠

k

j=1
γj




 


RqIς+σ j−2
0+ Gμ vð Þ

 

 1ð Þ

" #
:

ð43Þ

By using the property of integral (16), we get

R
qI

ω

0+ μ vð Þj j rð Þ = 1
Γq ωð Þ

ðr
0
r − qvð Þ ω−1ð Þ μ vð Þj jdqv ≤

rω μk kA
Γq ω + 1ð Þ :

ð44Þ

From the assumptions ðH 1Þ and (44), we can estimate

Gμ rð Þ

 

 ≤ g r, μ rð Þ, RqI
ς

0+μ rð Þ
� �

− g r, 0, 0ð Þ



 


 + g r, 0, 0, 0ð Þj j

≤ L1 μ rð Þj j + L2
r
qI

ς

0+μ rð Þ



 


 +G ≤ L1 +

L2
Γq ω + 1ð Þ

 !
μk kA +G:

ð45Þ
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From (45) and by the property of integral (16), we obtain

R
qI

ς

0+ Gμ vð Þ

 

 rð Þ ≤ L1 +
L2

Γq ω + 1ð Þ

 !
μk kA +G

" #
rς

Γq ς + 1ð Þ ,

ð46Þ

R
qI

ς

0+ Gμ vð Þ

 

 ζð Þ ≤ L1 +
L2

Γq ω + 1ð Þ

 !
μk kA +G

" #
ζς

Γq ς + 1ð Þ ,

ð47Þ

R
qI

ς−ϱ
0+ Gμ vð Þ

 

 ζð Þ ≤ L1 +

L2
Γq ω + 1ð Þ

 !
μk kA +G

" #
ζς−ϱ

Γq ς − ϱ + 1ð Þ ,

ð48Þ

R
qI

ς−2
0+ Gμ vð Þ

 

 ζð Þ ≤ L1 +

L2
Γq ω + 1ð Þ

 !
μk kA +G

" #
ζς−2

Γq ς − 1ð Þ ,

ð49Þ

R
qI

ς+σ j

0+ Gμ vð Þ

 

 1ð Þ ≤ L1 +
L2

Γq ω + 1ð Þ

 !
μk kA +G

" #
1

Γq ς + σj + 1
� � ,

ð50Þ

R
qI

ς+σ j−2
0+ Gμ vð Þ

 

 1ð Þ ≤ L1 +

L2
Γq ω + 1ð Þ

 !
μk kA +G

" #
1

Γq ς + σj − 1
� � :

ð51Þ

Substituting (46)–(51) into (43), we obtain

Fμð Þ rð Þj j ≤ L1 +
L2

Γq ω + 1ð Þ

 !
μk kA +G

" #

� rς

Γq ς + 1ð Þ + Θ1 rð Þ
W1W8j j

ζς

Γq ς + 1ð Þ + 〠
k

j=1

αj



 


Γq ς + σj + 1
� �

 !"

+ Θ2 rð Þ
W8j j

ζς−ϱ

Γq ς − ϱ + 1ð Þ + 〠
k

j=1

βj




 



Γq ς + σj + 1
� �

0
@

1
A

+ Θ3 rð Þ
W1W7W8j j

ζς−2

Γq ς − 1ð Þ + 〠
k

j=1

γj




 



Γq ς + σj − 1
� �

0
@

1
A#:

ð52Þ

Then,

Fμð Þ rð Þj j ≤ L1 +
L2

Γq ω + 1ð Þ

 !
μk kA +G

" #
Λ, ð53Þ

which implies that kFμkA ≤ Y1. Thus, FBY1
⊂ BY1

.
Step 2. F : A⟶A is a contraction.

Let μ, ϑ ∈A. For each r ∈ O, we have

Fμð Þ rð Þ − Fϑð Þ rð Þj j ≤ Θ1 rð Þ
W1W8j j

� R
qI

ς

0+ Gμ vð Þ − Gϑ vð Þ

 

 ζð Þ + 〠
k

j=1
αj



 

R
qI

ς+σ j

0+ Gμ vð Þ − Gϑ vð Þ

 

 1ð Þ
" #

+ Θ2 rð Þ
W8j j

R
qI

ς−ϱ
0+ Gϑ vð Þ − Gϑ vð Þj j ζð Þ + 〠

k

j=1
β j




 


RqIς+σ j

0+ Gμ vð Þ −Gϑ vð Þ

 

 1ð Þ
" #

+ Θ3 rð Þ
W1W7W8j j

R
qI

ς−2
0+ Gμ vð Þ −Gϑ vð Þ

 

 ζð Þ + 〠

k

j=1
γj




 


RqIς+σ j−2
0+ Gμ vð Þ − Gϑ vð Þ

 

 1ð Þ

" #

+ R
qI

ς

0+ Gμ vð Þ −Gϑ vð Þ

 

 rð Þ:

ð54Þ

By ðH 1Þ, it follows that

Gμ vð Þ −Gϑ vð Þ

 

 ≤ g r, μ rð Þ, RqI
ς

0+μ rð Þ
� �

− g r, ϑ rð Þ, RqI
ς

0+ϑ rð Þ
� �


 




≤ L1 +
L2

Γq ω + 1ð Þ

 !
μ − ϑk kA:

ð55Þ

Hence, by inserting (55) into (54) and using the property
of integral (16), we get

Fμð Þ rð Þ − Fϑð Þ rð Þj j ≤ L1 +
L2

Γq ω + 1ð Þ

 !
μ − ϑk kA

" #

� rς

Γq ς + 1ð Þ +
Θ1 rð Þ
W1W8j j

ζς

Γq ς + 1ð Þ + 〠
k

j=1

αj



 


Γq ς + σj + 1
� �

 !"

+ Θ2 rð Þ
W8j j

ζς−ϱ

Γq ς − ϱ + 1ð Þ + 〠
k

j=1

βj




 



Γq ς + σj + 1
� �

0
@

1
A

+ Θ3 rð Þ
W1W7W8j j

ζς−2

Γq ς − 1ð Þ + 〠
k

j=1

γj




 



Γq ς + σ j − 1
� �

0
@

1
A#,

ð56Þ

which implies that kFμ −FϑkA ≤ ðL1 + ðL2/Γqðω + 1ÞÞÞΛ
kμ − ϑkA.

In view of (41), ðL1 + ðL2/Γqðω + 1ÞÞÞΛ < 1, and we con-
clude that F is a contraction. Hence, in accordance with the
Banach’s contraction principle, the Cap-q-difference FBVP
(6) has a unique solution μ ∈A.

3.2. Existence Result. The second result is based on the
Leray-Schauder’s nonlinear alternative theorem.

Lemma 10 (Leray-Schauder’s nonlinear alternative theorem
[29]). Let M be a Banach space, C be its closed convex subset,
and X be an open set in C such that 0 ∈ X. Let G : �X⟶ C be
a continuous and compact function. Then either (i) there is μ ∈ �X
such that μ = GðμÞ or (ii) there are μ ∈ ∂X and ϱ ∈ ð0, 1Þ such
that μ = ϱGðμÞ.
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Theorem 11. Let G ∈CðO ×ℝ2,ℝÞ satisfies the following
assumptions:

(H 2) There is continuous nondecreasing functions Y :
ℝ+ ⟶ℝ+, p1, p2 ∈CðJ ,ℝ+Þ such that

G r, u, vð Þj j ≤ p1 rð ÞY uj jð Þ + p2 rð Þ vj j,∀ r, u, vð Þ ∈ O ×ℝ2,
ð57Þ

where �pi = supr∈J fpiðrÞg, i = 1, 2.
(H 3) There is M

∗ > 0 such that

1 − Λ�p2/Γq ω + 1ð Þ� �� �
M∗

Λ1�p1Y M∗ð Þ > 1: ð58Þ

Then the Cap-q-difference FBVP (6) has at least one
solution μ in A.

Proof. Consider F as (38). In the first step, we will prove that
F corresponds bounded sets (balls) to bounded ones in A.
For each positive real constant Y2, BY2

≔ fμ ∈A : kμk ≤ Y2g
is a bounded set (ball) in A. Let μ ∈ BY2

. We have

Fμð Þ rð Þj j ≤ R
qI

ς

0+ Gμ vð Þ

 

 rð Þ + Θ1 rð Þ
W1W8j j

� R
qI

ς

0+ Gμ vð Þ

 

 ζð Þ + 〠
k

j=1
αj



 

R
qI

ς+σ j

0+ Gμ vð Þ

 

 1ð Þ
" #

+ Θ2 rð Þ
W8j j

R
qI

ς−ϱ
0+ Gμ vð Þ

 

 ζð Þ + 〠

k

j=1
βj




 


RqIς+σ j

0+ Gμ vð Þ

 

 1ð Þ
" #

+ Θ3 rð Þ
W1W7W8j j

R
qI

ς−2
0+ Gμ vð Þ

 

 ζð Þ + 〠

k

j=1
γj




 


RqIς+σ j−2
0+ Gμ vð Þ

 

 1ð Þ

" #
:

ð59Þ

From (H 2) and (44) in Theorem 9, we obtain

G r, μ rð Þ, RqI
ς

0+μ rð Þ
� �


 


 ≤ p1 rð ÞY μj jð Þ + p2 rð Þ R

qI
ς

0+μ rð Þ



 




≤ �p1Y Y2ð Þ + �p2Y2
Γq ω + 1ð Þ ≔ �g:

ð60Þ

By the same process in Theorem 9, we can estimate

Fμð Þ rð Þk kA ≤Λ�g: ð61Þ

Further, it will be investigated thatF corresponds bounded
sets to equicontinuous sets of A:

Let r1, r2 ∈ O with r1 < r2 and μ ∈ BY2
, where BY2

is a
bounded set in A. Also, we obtain

Fμð Þ r2ð Þ − Fμð Þ r1ð Þj j ≤ R
qI

ς

0+Gμ vð Þ r2ð Þ − R
qI

ς

0+Gμ vð Þ



 


 r1ð Þ





+ Θ1 r2ð Þ −Θ1 r1ð Þj j

W1W8j j
R
qI

ς

0+ Gμ vð Þ

 

 ζð Þ + 〠
k

j=1
αj



 

R
qI

ς+σ j

0+ Gμ vð Þ

 

 1ð Þ
" #

+ Θ2 r2ð Þ −Θ2 r1ð Þj j
W8j j

R
qI

ς−ϱ
0+ Gμ vð Þ

 

 ζð Þ + 〠

k

j=1
βj




 


RqIς+σ j

0+ Gμ vð Þ

 

 1ð Þ
" #

+ Θ3 r2ð Þ −Θ3 r1ð Þj j
W1W7W8j j

R
qI

ς−2
0+ Gμ vð Þ

 

 ζð Þ + 〠

k

j=1
γj




 


RqIς+σ j−2
0+ Gμ vð Þ

 

 1ð Þ

" #

≤
1

Γq ςð Þ
ðr2
r1

r2 − qvð Þ ς−1ð ÞGμ vð Þdqv













+ 1

Γq ςð Þ
ðr1
0

r2 − qvð Þ ς−1ð Þ − r1 − qvð Þ ς−1ð Þ
h i

Gμ vð Þdqv













+ Θ1 r2ð Þ −Θ1 r1ð Þj j

W1W8j j
R
qI

ς

0+ Gμ vð Þ

 

 ζð Þ + 〠
k

j=1
αj



 

R
qI

ς+σ j

0+ Gμ vð Þ

 

 1ð Þ
" #

+ Θ2 r2ð Þ −Θ2 r1ð Þj j
W8j j

R
qI

ς−ϱ
0+ Gμ vð Þ

 

 ζð Þ + 〠

k

j=1
βj




 


RqIς+σ j

0+ Gμ vð Þ

 

 1ð Þ
" #

+ Θ3 r2ð Þ −Θ3 r1ð Þj j
W1W7W8j j

R
qI

ς−2
0+ Gμ vð Þ

 

 ζð Þ + 〠

k

j=1
γj




 


RqIς+σ j−2
0+ Gμ vð Þ

 

 1ð Þ

" #

≤
�g

Γq ςð Þ
ðr2
r1

r2 − qvð Þ ς−1ð Þdqv












 +

ðr1
0

r2 − qvð Þ ς−1ð Þ − r1 − qvð Þ ς−1ð Þ
h i

dqv











" #

+ Θ1 r2ð Þ −Θ1 r1ð Þj j
W1W8j j

R
qI

ς

0+ Gμ vð Þ

 

 ζð Þ + 〠
k

j=1
αj



 

R
qI

ς+σ j

0+ Gμ vð Þ

 

 1ð Þ
" #

+ Θ2 r2ð Þ −Θ2 r1ð Þj j
W8j j

R
qI

ς−ρ
0+ Gμ vð Þ

 

 ζð Þ + 〠

k

j=1
βj




 


RqIς+σ j

0+ Gμ vð Þ

 

 1ð Þ
" #

+ Θ3 r2ð Þ −Θ3 r1ð Þj j
W1W7W8j j

R
qI

ς−2
0+ Gμ vð Þ

 

 ζð Þ + 〠

k

j=1
γj




 


RqIς+σ j−2
0+ Gμ vð Þ

 

 1ð Þ

" #
:

ð62Þ

Obviously, the above inequality goes to zero as r2 − r1
⟶ 0, independent of μ ∈ BY2

. Hence, by helping the
Arzelá-Ascoli theorem, F : A⟶A is completely
continuous.

Now, we prove that there is an open set D ⊂A such that
μ ≠ κFðμÞ for κ ∈ ð0, 1Þ and xμ ∈ ∂D.

Let μ ∈A satisfies μ = κFμ for each κ ∈ ð0, 1Þ. So, for
r ∈ O, by following the calculations applied in proving
the boundedness of F , we have

μ rð Þj j = κ Fμð Þ rð Þj j ≤Λ �p1 μk kA
� �

+
�p2 μk kA
Γq ω + 1ð Þ

" #
: ð63Þ

It yields that

μk kA ≤ �p1ΛY μk kA
� �

+
�p2Λ μk kA
Γq ω + 1ð Þ : ð64Þ
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Consequently, we obtain

Γq ω + 1ð Þ − �p2Λ
� 	

μk kA
�p1ΛΓq ω + 1ð ÞY μk kA

� � ≤ 1: ð65Þ

From ðH 3Þ, there is M∗ > 0 such that kμkA ≠M∗. Let

D≔ μ ∈A : μk k ≤M∗ + 1f g,
U =D ∪ BY2

:
ð66Þ

Notice that F : �U⟶A is completely continuous.
For the sake of the choice of D, ∄x ∈ ∂D such that μ =
κFμ for some κ ∈ ð0, 1Þ. Therefore, by Lemma 10, we
find out that F has the fixed point μ ∈ �U which implies
that the Cap-q-difference FBVP (6) has at least one solu-
tion on O.

3.3. On the Stability Property for (6). Stability analysis is one
of the most important parts of each research in the field of
existence of solution of fractional boundary value problems.
For instances, we can mention to such a stability analysis in
some newly published works including [24, 25, 30–32]. In
this subsection, we introduce some concepts of stabilities
for the Cap-q-difference FBVP (6). These definitions were
extracted from [33].

Let ϵ > 0, G : O ×ℝ2 ⟶ℝ be continuous and θ : O
⟶ℝ+ be a nondecreasing mapping. Assume that

C
qD

ς

0+μ rð Þ −G r, μ rð Þ, RqI
ω

0+μ rð Þ
� �


 


 ≤ ε, ð67Þ

C
qD

ς

0+μ rð Þ −G r, μ rð Þ, RqI
ω

0+μ rð Þ
� �


 


 ≤ θ rð Þ, ð68Þ

C
qD

ς

0+μ rð Þ − G r, μ rð Þ, RqI
ω

0+μ rð Þ
� �


 


 ≤ εθ rð Þ: ð69Þ

Definition 12. The Cap-q-difference FBVP (6) is called
Ulam-Hyers stable if ∃CG ∈ℝ+ s.t. ∀ε > 0 and every solution
μ ∈U of (67), a solution κ ∈U of (6) exists s.t.

μ rð Þ − κ rð Þj j ≤ CGϵ, r ∈ O: ð70Þ

Definition 13. The Cap-q-difference FBVP (6) is called gen-
eralized Ulam-Hyers stable if ∃P ∈Cðℝ+,ℝ+Þ, Pð0Þ = 0 s.t.
∀μ ∈U fulfilling (67), a solution κ ∈U of (6) exists s.t.

μ rð Þ − κ rð Þj j ≤ P εð Þ, r ∈ O: ð71Þ

Definition 14. The Cap-q-difference FBVP (6) is Ulam-
Hyers-Rassias stable w.r.t. θ if ∃Cθ ∈ℝ+ s.t. ∀ε > 0 and every
solution μ ∈U of (69), ∃ a solution κ ∈U of (6) s.t.

μ rð Þ − κ rð Þj j ≤ Cθθ rð Þε, r ∈ O: ð72Þ

Definition 15. The Cap-q-difference FBVP (6) is termed gen-
eralized Ulam-Hyers-Rassias stable w.r.t. θ if ∃Cθ ∈ℝ+ s.t.

for every solution μ ∈U of (68), ∃ a solution κ ∈U of (6) s.t.

μ rð Þ − κ rð Þj j ≤ Cθθ rð Þ, r ∈ O: ð73Þ

Remark 16. μ ∈U is a solution of (67) if ∃ως ∈U (dependent
on μ) s.t.

b1ð ÞCqD
ς

0+μ rð Þ =G r, μ rð Þ, RqI
ω

0+μ rð Þ
� �

+ ως rð Þ, r ∈ O,

b2ð Þ ως rð Þ

 

 ≤ ε:

ð74Þ

Lemma 17. If μ ∈U satisfies (67), then

μ rð Þ − λ rð Þj j ≤Λε, ð75Þ

where Λ is given as in (39) and λðrÞ is introduced in the
proof.

Proof. Let μ satisfie (67). By (b1) of Remark 16, there is ως

∈U (dependent on μ) such that

C
qD

ς

0+μ rð Þ =G r, μ rð Þ, RqJ
ω

0+μ rð Þ
� �

+ ως rð Þ,  r ∈ O, q ∈ 0, 1ð Þð Þ,

μ 0ð Þ + μ ζð Þ = 〠
k

j=1
αj

R
qJ

σ j

0+μ 1ð Þ,

C
qD

ϱ

0+μ 0ð Þ + C
qD

ϱ

0+μ ζð Þ = 〠
k

j=1
βj

R
qJ

σ j

0+μ 1ð Þ,

C
qD

2
0+μ 0ð Þ + C

qD
2
0+μ ζð Þ = 〠

k

j=1
γj

R
qJ

σ j

0+
C
qD

2
0+μ 1ð Þ

h i
:

ð76Þ

Then, the solution of (76) is given as

μ rð Þ = R
qI

ς

0+Gμ vð Þ rð Þ + Θ1 rð Þ
W1W8

� −R
qI

ς

0+Gμ vð Þ ζð Þ + 〠
k

j=1
αj

R
qI

ς+σ j

0+ Gμ vð Þ 1ð Þ
" #

+ Θ2 rð Þ
W8

R
qI

ς−ϱ
0+ Gμ vð Þ ζð Þ − 〠

k

j=1
βj

R
qI

ς+σ j

0+ Gμ vð Þ 1ð Þ
" #

+ Θ3 rð Þ
W1W7W8

−R
qI

ς−2
0+ Gμ vð Þ ζð Þ + 〠

k

j=1
γj

R
qI

ς+σ j−2
0+ Gμ vð Þ 1ð Þ

" #

+ R
qI

ς

0+ως rð Þ + Θ1 rð Þ
W1W8

R
qI

ς

0+ως ζð Þ + 〠
k

j=1
αj

R
qI

ς+σ j

0+ ως 1ð Þ
" #

+ Θ2 rð Þ
W8

R
qI

ς−ϱ
0+ ως ζð Þ − 〠

k

j=1
βj

R
qI

ς+σ j

0+ ως 1ð Þ
" #

+ Θ3 rð Þ
W1W7W8

−R
qI

ς−2
0+ ως ζð Þ + 〠

k

j=1
γj

R
qI

ς+σ j−2
0+ ως 1ð Þ

" #
:

ð77Þ
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For convenience, consider λðrÞ for the terms that are
independent of ωςðrÞ. That is,

λ rð Þ = R
qI

ς

0+Gμ vð Þ rð Þ + Θ1 rð Þ
W1W8

−R
qI

ς

0+Gμ vð Þ ζð Þ + 〠
k

j=1
αj

R
qI

ς+σ j

0+ Gμ vð Þ 1ð Þ
" #

+ Θ2 rð Þ
W8

R
qI

ς−ϱ
0+ Gμ vð Þ ζð Þ − 〠

k

j=1
βj

R
qI

ς+σ j

0+ Gμ vð Þ 1ð Þ
" #

+ Θ3 rð Þ
W1W7W8

−R
qI

ς−2
0+ Gμ vð Þ ζð Þ + 〠

k

j=1
γj

R
qI

ς+σ j−2
0+ Gμ vð Þ 1ð Þ

" #
:

ð78Þ

Therefore, (77) can be rewritten and by using (b2) of
Remark 16, we have

μ rð Þ − λ rð Þj j ≤ R
qI

ς

0+ ως rð Þ

 

 + Θ1 rð Þ
W1W8j j

� R
qI

ς

0+ ως ζð Þ

 

 + 〠
k

j=1
αj



 

R
qI

ς+σ j

0+ ως 1ð Þ

 

" #

+ Θ2 rð Þ
W8j j

R
qI

ς−ϱ
0+ ως ζð Þ

 

 + 〠

k

j=1
βj




 


RqIς+σ j

0+ ως 1ð Þ

 

" #

+ Θ3 rð Þ
W1W7W8j j

R
qI

ς−2
0+ ως ζð Þ

 

 + 〠

k

j=1
γj




 


RqIς+σ j−2
0+ ως 1ð Þ

 

" #

≤Λε:

ð79Þ

This inequality completes the proof.

Theorem 18. Let ðH 1Þ and

L1 +
L2

Γq ω + 1ð Þ

 !
Λ < 1, ð80Þ

to be held. Then, the Cap-q-difference FBVP (6) is both Ulam-
Hyers and generalized Ulam-Hyers stable.

Proof. Let μ ∈U satisfies (67) and κ fulfills the Cap-q-dif-
ference FBVP (6) given as

C
qD

ς

0+κ rð Þ = G r, κ rð Þ, RqJ
ω

0+κ rð Þ
� �

,  r ∈ O, q ∈ 0, 1ð Þð Þ,

κ 0ð Þ + κ ζð Þ = 〠
k

j=1
αj

R
qJ

σ j

0+κ 1ð Þ,

C
qD

ϱ

0+κ 0ð Þ + C
qD

ϱ

0+κ ζð Þ = 〠
k

j=1
βj

R
qJ

σ j

0+κ 1ð Þ,

C
qD

2
0+κ 0ð Þ + C

qD
2
0+κ ζð Þ = 〠

k

j=1
γj

R
qJ

σ j

0+
C
qD

2
0+κ 1ð Þ

h i
:

ð81Þ

By the previous lemma, let

μ rð Þ − κ rð Þj j ≤ μ rð Þ − λ rð Þj j + λ rð Þ − κ rð Þj j: ð82Þ

By using Lemma 17 in (82), we have

μ rð Þ − κ rð Þj j ≤Λϵ + L1 +
L2

Γq ω + 1ð Þ

 !
Λ μ rð Þ − κ rð Þj j:

ð83Þ

For r ∈ O, we have

μ − κk kU ≤Λϵ + L1 +
L2

Γq ω + 1ð Þ

 !
Λ μ − κk kU: ð84Þ

After simplification, we get

μ − κk kU ≤
Λ

1 − L1 + L2/Γq ω + 1ð Þ� �� �
Λ

 !
ϵ: ð85Þ

Thus

μ rð Þ − κ rð Þj j ≤ CGϵ, ð86Þ

where

CG = Λ

1 − L1 + L2/Γq ω + 1ð Þ� �� �
Λ
: ð87Þ

Thus, the Cap-q-difference FBVP (6) is Ulam-Hyers
stable.

In the sequel, the function PðϵÞ = CGϵ implies that the
Cap-q-difference FBVP (6) is generalized Ulam-Hyers stable
and Pð0Þ = 0.

Now, we add another condition.
(A1) Consider an increasing map πς ∈CðO,ℝ+Þ. Then,

there is ξπς
> 0 such that

R
qI

ς

0+πς rð Þ ≤ ξπς
πς rð Þ: ð88Þ

Remark 19. Under the hypotheses (H 1) and (A1) and (80),
the Cap-q-difference FBVP (6) is the Ulam-Hyers-Rassias
and generalized Ulam-Hyers-Rassias stable.

4. Analysis of the Cap-q-Difference System (7)

Here, we continue to discuss the existence and uniqueness
results for the proposed system (7). In view of the assump-
tions of Section 3 for the Banach space A, the norm consid-
ered on the product space A ×A is
kðμ, ϑÞkA×A = kμkA + kϑkA which implies that ðA ×A,
kðμ, ϑÞkA×AÞ is a Banach space.
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Remark 20. For convenience, and based on the given param-
eters in (7), we have nonzero constants:

�W1 = 2 − 〠
k

j=1

ϕj

Γq δj + 1
� � ,

�W2 = ζ − 〠
k

j=1

ϕj

Γq δj + 2
� � ,

�W3 = ζ2 − 〠
k

j=1

ϕj 1 + qð Þ
Γq δj + 3
� � ,

�W4 = −〠
k

j=1

φj

Γq δj + 1
� � ,

�W5 = −〠
k

j=1

φj

Γq δj + 2
� � ,

�W6 =
2ζ2−ρ

Γq 3 − ρð Þ − 〠
k

j=1

φj 1 + qð Þ
Γq δj + 3
� � ,

�W7 = 2 1 + qð Þ − 〠
k

j=1

ηj 1 + qð Þ
Γq δj + 1
� � ,

�W8 = �W2 �W4 − �W1 �W5,
�W9 = �W3 �W4 − �W1 �W6,
�W10 = �W8 − �W2 �W4,
�W11 = �W3 �W8 − �W2 �W9,

�Θ1 rð Þ = r �W1 �W4 + �W10,
�Θ2 rð Þ = r �W1 − �W2,
�Θ3 rð Þ = r2 �W1 �W8 − r �W1 �W9 − �W11:

ð89Þ

Keeping in mind Lemma 8, consider the operator S

: A ×A⟶A ×A as

S x, yð Þ rð Þ≔ S1 μ, ϑð Þ rð Þ, S2 μ, ϑð Þ rð Þð Þ, ð90Þ

where

S1 μ, ϑð Þ rð Þ = R
qI

ς1
0+Uϑ vð Þ rð Þ + Θ1 rð Þ

W1W8

� −R
qI

ς1
0+Uϑ vð Þ ζð Þ + 〠

k

j=1
αj

R
qI

ς1+σ j

0+ Uϑ vð Þ 1ð Þ
" #

+ Θ2 rð Þ
W8

R
qI

ς1−ϱ
0+ Uϑ vð Þ ζð Þ − 〠

k

j=1
βj

R
qI

ς1+σ j

0+ Uϑ vð Þ 1ð Þ
" #

+ Θ3 rð Þ
W1W7W8

−R
qI

ς1−2
0+ Uϑ vð Þ ζð Þ + 〠

k

j=1
γj

R
qI

ς1+σ j−2
0+ Uϑ vð Þ 1ð Þ

" #
,

S2 μ, ϑð Þ rð Þ = R
qI

ς2
0+V μ vð Þ rð Þ +

�Θ1 rð Þ
�W1 �W8

� −R
qI

ς2
0+V μ vð Þ ζð Þ + 〠

k

j=1
ϕj

R
qI

ς2+δ j

0+ V μ vð Þ 1ð Þ
" #

+
�Θ2 rð Þ
�W8

R
qI

ς2−ρ
0+ V μ vð Þ ζð Þ − 〠

k

j=1
φj

R
qI

ς2+δ j

0+ V μ vð Þ 1ð Þ
" #

+
�Θ3 rð Þ

�W1 �W7 �W8
−R
qI

ς2−2
0+ V μ vð Þ ζð Þ + 〠

k

j=1
ηj

R
qI

ς2+δ j−2
0+ V μ vð Þ 1ð Þ

" #
:

ð91Þ

Before proceeding, consider the following estimates

Supr∈O �Θ1 rð Þ

 

≔ �Θ
∗
1 ,

Supr∈O Θ2 rð Þj j≔ �Θ
∗
2 ,

Supr∈O Θ3 rð Þj j≔ �Θ
∗
3 :

ð92Þ

To simplify, we also set the following notation and the
constants

Λ1 =
1

Γq ς1 + 1ð Þ +
Θ∗

1
W1W8j j

ζς1

Γq ς1 + 1ð Þ + 〠
k

j=1

αj



 


Γq ς1 + σj + 1
� �

 !

+ Θ∗
2

W8j j
ζς1−ϱ

Γq ς1 − ϱ + 1ð Þ + 〠
k

j=1

βj




 



Γq ς1 + σj + 1
� �

0
@

1
A

+ Θ∗
3

W1W7W8j j
ζς1−2

Γq ς1 − 1ð Þ + 〠
k

j=1

γj




 



Γq ς1 + σj − 1
� �

0
@

1
A,

Λ2 =
1

Γq ς2 + 1ð Þ +
�Θ
∗
1

�W1 �W8


 

 ζς2

Γq ς2 + 1ð Þ + 〠
k

j=1

ϕj




 



Γq ς2 + δj + 1
� �

0
@

1
A

+
�Θ
∗
2

�W8


 

 ζς2−ρ

Γq ς2 − ρ + 1ð Þ + 〠
k

j=1

φj




 



Γq ς2 + δj + 1
� �

0
@

1
A

+
�Θ
∗
3

�W1 �W7 �W8


 

 ζς2−2

Γq ς2 − 1ð Þ + 〠
k

j=1

ηj




 



Γq ς2 + δj − 1
� �

0
@

1
A:

ð93Þ

4.1. Uniqueness Result. In this step, we shall establish the
existence of a unique solution to the coupled system of non-
linear q-CFBVPs (7), by the Banach’s contraction principle.

Theorem 21. Let G1, G2 : O ×ℝ2 ⟶ℝ be continuous.
Assume that

(H 4) There exist positive constants L i,K i, i = 1, 2 such
that for each r ∈ ½0, 1� and ui, vi, �ui, �vi ∈ℝ, and for i = 1, 2

G1 r, u1, v1ð Þ − G1 r, u2, v2ð Þj j ≤L1 u1 − u2j j +L2 v1 − v2j j,
G2 r, �u1, �v1ð Þ −G2 r, �u2, �v2ð Þj j ≤K1 �u1 − �u2j j +K2 �v1 − �v2j j:

ð94Þ
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Then the coupled system of nonlinear q-CFBVPs (7) has a
solution on O provided that

Ω≔max L1 +
L2

Γq ω1 + 1ð Þ

 !
Λ1, K1 +

K2

Γq ω2 + 1ð Þ

 !
Λ2

( )
< 1: ð95Þ

Proof. We transform the coupled system of nonlinear q-
CFBVPs (7) into a fixed-point problem ðμ, ϑÞðrÞ = Sðμ, ϑÞ
ðrÞ, where S is an operator as (90).

Let supr∈OjG1ðr, 0, 0Þj≔MU <∞ and supr∈OjG2ðr, 0, 0Þj
≔MV <∞: Next, we set BY3

≔ fðμ, ϑÞ ∈A ×A

: kμ, ϑkA×A ≤ Y3g with

Y3 ≥
MUΛ1 +MVΛ2

1 −Ω
: ð96Þ

Note that BY3
is a bounded convex closed set in A.

Step 1. SBY3
⊂BY3

.
For each ðμ, ϑÞ ∈ BY3

and r ∈ O, and by using the condi-
tion ðH 4Þ and (44), we have

Uϑ rð Þj j ≤ G1 r, ϑ rð Þ,RqIω1
0+ ϑ rð Þ

� �
− G1 r, 0, 0ð Þ




 


 + G1 r, 0, 0ð Þj j
≤L1 ϑ rð Þj j +L2

R
qI

ω1
0+ ϑ rð Þ




 



+MU ≤ L1 +

L2
Γq ω1 + 1ð Þ

 !
ϑk kA +MU ,

V μ rð Þ

 

 ≤ G2 r, μ rð Þ, RqI
ω2
0+μ rð Þ

� �
−G2 r, 0, 0ð Þ




 


 + G2 r, 0, 0ð Þj j

≤ K1 +
K2

Γq ω2 + 1ð Þ

 !
μk kA +MV :

ð97Þ

Then, we get

S1 μ, ϑð Þ rð Þj j ≤ R
qI

ς1
0+ Uϑ vð Þj j rð Þ + Θ1 rð Þj j

W1W8j j

� R
qI

ς1
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
αj



 

R
qI

ς1+σ j

0+ Uϑ vð Þj j 1ð Þ
" #

+ Θ2 rð Þj j
W8j j

R
qI

ς1−ϱ
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
β j




 


RqIς1+σ j

0+ Uϑ vð Þj j 1ð Þ
" #

+ Θ3 rð Þj j
W1W7W8j j

R
qI

ς1−2
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
γj




 


RqIς1+σ j−2
0+ Uϑ vð Þj j 1ð Þ

" #
,

≤
rς1

Γq ς1 + 1ð Þ + Θ∗
1

W1W8j j
ζς1

Γq ς1 + 1ð Þ + 〠
k

j=1

αj



 


Γq ς1 + σj + 1
� �

 !"

+ Θ∗
2

W8j j
ζς1−ϱ

Γq ς1 − ϱ + 1ð Þ + 〠
k

j=1

βj




 



Γq ς1 + σj + 1
� �

2
4

3
5 + Θ∗

3
W1W7W8j j

� ζς1−2

Γq ς1 − 1ð Þ + 〠
k

j=1

γj




 



Γq ς1 + σj − 1
� �

0
@

1
A#

× L1 +
L2

Γq ω1 + 1ð Þ

 !
ϑk kA +MU

" #
:

ð98Þ

Hence

S1 μ, ϑð Þk kA ≤ L1 +
L2

Γq ω1 + 1ð Þ

 !
Λ1 ϑk kA +MUΛ1: ð99Þ

Similarly, we find that

S2 μ, ϑð Þk kA ≤ K1 +
K2

Γq ω2 + 1ð Þ

 !
Λ2 μk kA +MVΛ2:

ð100Þ

Consequently, we have

S μ, ϑð Þk kA×A ≤ L1 +
L2

Γq ω1 + 1ð Þ

 !
Λ1 ϑk kA +MUΛ1

+ K1 +
K2

Γq ω2 + 1ð Þ

 !
Λ2 μk kA +MVΛ2

≤ΩY3 +MUΛ1 +MVΛ2 ≤ Y3,
ð101Þ

which implies that SBY3
⊂ BY3

.
Step 2. We show that S : A ×A⟶A ×A is a

contraction.
Using condition ðH 4Þ, for any ðμ1, ϑ1Þ, ðμ2, ϑ2Þ ∈A ×A

and for each r ∈ O, we have

S1 μ1, ϑ1ð Þ rð Þ − S1 μ2, ϑ2ð Þ rð Þj j

≤
Θ1 rð Þj j
W1W8j j

R
qI

ς1
0+ Uϑ1

vð Þ −Uϑ2
vð Þ

 

 ζð Þ + 〠

k

j=1
αj



 

R
qI

ς1+σ j

0+ Uϑ1
vð Þ −Uϑ2

vð Þ

 

 1ð Þ
" #

+ Θ2 rð Þj j
W8j j

R
qI

ς1−ϱ
0+ Uϑ1

vð Þ −Uϑ2
vð Þ

 

 ζð Þ + 〠

k

j=1
βj




 


RqIς1+σ j

0+ Uϑ1
vð Þ −Uϑ2

vð Þ

 

 1ð Þ
" #

+ Θ3 rð Þj j
W1W7W8j j

R
qI

ς1−2
0+ Uϑ1

vð Þ −Uϑ2
vð Þ

 

 ζð Þ + 〠

k

j=1
γj




 


RqIς1+σ j−2
0+ Uϑ1

vð Þ −Uϑ2
vð Þ

 

 1ð Þ

" #

+ R
qI

ς1
0+ Uϑ1

vð Þ −Uϑ2
vð Þ

 

 rð Þ

≤
rς1

Γq ς1 + 1ð Þ + Θ∗
1

W1W8j j
ζς1

Γq ς1 + 1ð Þ + 〠
k

j=1

αj



 


Γq ς1 + σj + 1
� �

 !"

+ Θ∗
2

W8j j
ζς1−ϱ

Γq ς1 − ϱ + 1ð Þ + 〠
k

j=1

βj




 



Γq ς1 + σj + 1
� �

2
4

3
5

+ Θ∗
3

W1W7W8j j
ζς1−2

Γq ς1 − 1ð Þ + 〠
k

j=1

γj




 



Γq ς1 + σj − 1
� �

0
@

1
A#

× L1 +
L2

Γq ω1 + 1ð Þ

 !
ϑ1 − ϑ2k kA,

ð102Þ

and therefore

S1 μ1, ϑ1ð Þ − S1 μ2, ϑ2ð Þk kA ≤ L1 +
L2

Γq ω1 + 1ð Þ

 !
Λ1 ϑ1 − ϑ2k kA:

ð103Þ
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Similarly, we get

S2 μ1, ϑ1ð Þ − S2 μ2, ϑ2ð Þk kA ≤ K1 +
K2

Γq ω2 + 1ð Þ

 !
Λ2 μ1 − μ2k kA:

ð104Þ

From (103) and (104), it yields

S μ1, ϑ1ð Þ − S μ2, ϑ2ð Þk kA×A ≤Ω ϑ1 − ϑ2k kA + μ1 − μ2k kA
� �

:

ð105Þ

As Ω < 1, by (95), the operator S is a contraction. The
Banach’s contraction principle implies the existence of
unique solution for the coupled system of nonlinear q-
CFBVPs (7) on ½0:1�.
4.2. Existence Result. We get help from Lemma 10 to com-
plete the main result of this subsection.

Theorem 22. Let G1, G2 : O ×ℝ2 ⟶ℝ be continuous.
Assume that

(H 4) There exist nonnegative continuous maps xiðrÞ, yi
ðrÞ ∈ CðO,ℝ+ ∪ f0gÞ, for i = 1, 2, 3 such that

G1 r, u, vð Þj j ≤ x1 rð Þ + x2 rð Þ uj j + x3 rð Þ vj j, r, u, vð Þ ∈ O,ℝ2� �
,

G2 r, �u, �vð Þj j ≤ y1 rð Þ + y2 rð Þ �uj j + y3 rð Þ �vj j, r, �u, �vð Þ ∈ O,ℝ2� �
,

ð106Þ

with x∗i = sup
r∈O

fxiðtÞg and y∗i = sup
r∈O

fyiðtÞg.

Then the coupled system of nonlinear q-CFBVPs (7) has
at least one solution on O.

Proof. Here, the process of the proof will be continued dur-
ing four steps as follows.

Step 1. S is continuous.
Let μn and ϑn be two sequences such that μn ⟶ μ and

ϑn ⟶ ϑ in A . Then for each r ∈ O, we get

S1 μn, ϑnð Þ rð Þ − S1 μ, ϑð Þ rð Þj j ≤ Θ1 rð Þj j
W1W8j j

� R
qI

ς1
0+ Uϑn

vð Þ −Uϑ vð Þ

 

 ζð Þ + 〠
k

j=1
αj



 

R
qI

ς1+σ j

0+ Uϑn
vð Þ −Uϑ vð Þ

 

 1ð Þ

" #

+ Θ2 rð Þj j
W8j j

R
qI

ς1−ϱ
0+ Uϑn

vð Þ −Uϑ vð Þ

 

 ζð Þ + 〠
k

j=1
β j




 


RqIς1+σ j

0+ Uϑn
vð Þ −Uϑ vð Þ

 

 1ð Þ

" #

+ Θ3 rð Þj j
W1W7W8j j

R
qI

ς1−2
0+ Uϑn

vð Þ −Uϑ vð Þ

 

 ζð Þ + 〠
k

j=1
γj




 


RqIς1+σ j−2
0+ Uϑn

vð Þ −Uϑ vð Þ

 

 1ð Þ
" #

,

+R
qI

ς1
0+ Uϑn

vð Þ −Uϑ vð Þ

 

 rð Þ ≤ rς1

Γq ς1 + 1ð Þ + Θ∗
1

W1W8j j
ζς1

Γq ς1 + 1ð Þ + 〠
k

j=1

αj



 


Γq ς1 + σj + 1
� �

 !"

+ Θ∗
2

W8j j
ζς1−ϱ

Γq ς1 − ϱ + 1ð Þ + 〠
k

j=1

β j




 



Γq ς1 + σj + 1
� �

2
4

3
5

+ Θ∗
3

W1W7W8j j
ζς1−2

Γq ς1 − 1ð Þ + 〠
k

j=1

γj




 



Γq ς1 + σj − 1
� �

0
@

1
A� Uϑn

−Uϑ

�� ��
A
,

ð107Þ

and therefore

S1 μn, ϑnð Þ − S1 μ, ϑð Þk kA ≤Λ1 Uϑn
−Uϑ

�� ��
A
: ð108Þ

Similarly, we get

S2 μn, ϑnð Þ − S2 μ, ϑð Þk kA ≤Λ2 V μn
−V μ

��� ���
A
: ð109Þ

From (108) and (109), it yields

S μn, ϑnð Þ − S μ, ϑð Þk kA×A ≤Λ1 Uϑn
−Uϑ

�� ��
A
+Λ2 V μn

−V μ

��� ���
A
:

ð110Þ

Since the continuity of G1 and G2 imply that of Uϑ, V μ,
so we have kUϑn

−UϑkA ⟶ 0 and kV μn
−V μkA ⟶ 0 as

n⟶∞; and S is continuous.
Step 2. S is uniformly bounded.
We prove that for Y4 > 0, there exists N S > 0 such that

for every ðμ, ϑÞ ∈ BY4
, where

BY4
= μ, ϑð Þ ∈A ×A : x, yð Þk kA×A < Y4
� 


, ð111Þ

we get kSðμ, ϑÞkA×A ≤N S .
Using the condition ðH 5Þ and (16), we have

Uϑ rð Þj j = G1 r, ϑ rð Þ,RqIω1
0+ ϑ rð Þ

� �


 


 ≤ x1 tð Þ + x2 tð Þ ϑ rð Þj j

+ x3 tð Þ R
qI

ω1
0+ ϑ rð Þ




 


 ≤ x∗1 + x∗2 +
x∗3

Γq ω1 + 1ð Þ

 !
ϑk kA,

V μ rð Þ

 

 = G2 r, μ rð Þ, RqI
ω2
0+μ rð Þ

� �


 


 ≤ y∗1 + y∗2 +
y∗3

Γq ω2 + 1ð Þ

 !
μk kA:

ð112Þ

Then, we get

S1 μ, ϑð Þ rð Þj j ≤ R
qI

ς1
0+ Uϑ vð Þj j rð Þ + Θ1 rð Þj j

W1W8j j

� R
qI

ς1
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
αj



 

R
qI

ς1+σ j

0+ Uϑ vð Þj j 1ð Þ
" #

+ Θ2 rð Þj j
W8j j

R
qI

ς1−ρ
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
βj




 


RqIς1+σ j

0+ Uϑ vð Þj j 1ð Þ
" #

+ Θ3 rð Þj j
W1W7W8j j

R
qI

ς1−2
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
γj




 


RqIς1+σ j−2
0+ Uϑ vð Þj j 1ð Þ

" #

≤
rς1

Γq ς1 + 1ð Þ + Θ∗
1

W1W8j j
ζς1

Γq ς1 + 1ð Þ + 〠
k

j=1

αj



 


Γq ς1 + σj + 1
� �

 !"

+ Θ∗
2

W8j j
ζς1−ϱ

Γq ς1 − ϱ + 1ð Þ + 〠
k

j=1

βj




 



Γq ς1 + σj + 1
� �

2
4

3
5

+ Θ∗
3

W1W7W8j j
ζς1−2

Γq ς1 − 1ð Þ + 〠
k

j=1

γj




 



Γq ς1 + σj − 1
� �

0
@

1
A#

× x∗1 + x∗2 +
x∗3

Γq ω1 + 1ð Þ

 !
ϑk kA

" #
:

ð113Þ
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Hence

S1 μ, ϑð Þk kA ≤Λ1 x∗1 + x∗2 +
x∗3

Γq ω1 + 1ð Þ

 !
ϑk kA

" #
: ð114Þ

Similarly, we find that

S2 μ, ϑð Þk kA ≤ K1 +
K2

Γq ω2 + 1ð Þ

 !
Λ2 μk kA +MVΛ2:

ð115Þ

Consequently, we have

S μ, ϑð Þk kA×A ≤Λ1 x∗1 + x∗2 +
x∗3

Γq ω1 + 1ð Þ

 !
ϑk kA

" #

+Λ2 y∗1 + y∗2 +
y∗3

Γq ω2 + 1ð Þ

 !
μk kA

" #
≔N S :

ð116Þ

Then, S is uniformly bounded.
Step 3. S maps bounded sets into equi-continuous sets of

A. Let r1, r2 ∈ O such that r1 < r2 and ðμ, ϑÞ ∈ BY4
where BY4

is defined as in Step 2. Then we have

S1 μ, ϑð Þ r2ð Þ − S1 μ, ϑð Þ r1ð Þj j
≤ R

qI
ς1
0+Uϑ vð Þ r2ð Þ − R

qI
ς1
0+Uϑ vð Þ r1ð Þ




 


 + Θ1 r2ð Þ −Θ1 r2ð Þj j
W1W8j j

� R
qI

ς1
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
αj



 

R
qI

ς1+σ j

0+ Uϑ vð Þj j 1ð Þ
" #

+ Θ2 r2ð Þ −Θ2 r1ð Þj j
W8j j

R
qI

ς1−ϱ
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
βj




 


RqIς1+σ j

0+ Uϑ vð Þj j 1ð Þ
" #

+ Θ3 r2ð Þ −Θ3 r1ð Þj j
W1W7W8j j

R
qI

ς1−2
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
γj




 


RqIς1+σ j−2
0+ Uϑ vð Þj j 1ð Þ

" #

≤
1

Γq ς1ð Þ x∗1 + x∗2 +
x∗3

Γq ω1 + 1ð Þ

 !
ϑk kA

" #

�
ðr2
r1

r2 − qvð Þ ς1−1ð Þdqv












 +

ðr1
0

r2 − qvð Þ ς1−1ð Þ − r1 − qvð Þ ς1−1ð Þ
h i

dqv











" #

+ Θ1 r2ð Þ −Θ1 r2ð Þj j
W1W8j j

R
qI

ς1
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
αj



 

R
qI

ς1+σ j

0+ Uϑ vð Þj j 1ð Þ
" #

+ Θ2 r2ð Þ −Θ2 r1ð Þj j
W8j j

R
qI

ς1−ϱ
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
βj




 


RqIς1+σ j

0+ Uϑ vð Þj j 1ð Þ
" #

+ Θ3 r2ð Þ −Θ3 r1ð Þj j
W1W7W8j j

R
qI

ς1−2
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
γj




 


RqIς1+σ j−2
0+ Uϑ vð Þj j 1ð Þ

" #
,

S2 μ, ϑð Þ r2ð Þ − S2 μ, ϑð Þ r1ð Þj j

≤
1

Γq ς2ð Þ y∗1 + y∗2 +
y∗3

Γq ω2 + 1ð Þ

 !
μk kA

" #

�
ðr2
r1

r2 − qvð Þ ς2−1ð Þdqv












 +

ðr1
0

r2 − qvð Þ ς2−1ð Þ − r1 − qvð Þ ς2−1ð Þ
h i

dqv











" #

+
�Θ1 r2ð Þ − �Θ1 r1ð Þ

 



�W1 �W8


 

 R

qI
ς2
0+ V μ vð Þ

 

 ζð Þ + 〠

k

j=1
ϕj




 


RqIς2+δ j

0+ V μ vð Þ

 

 1ð Þ
" #

+
�Θ2 r2ð Þ − �Θ2 r1ð Þ

 



�W8


 

 R

qI
ς2−ρ
0+ V μ



 

 vð Þ ζð Þ + 〠
k

j=1
φj




 


RqIς2+δ j

0+ V μ vð Þ

 

 1ð Þ
" #

+
�Θ3 r2ð Þ − �Θ3 r1ð Þ

 



�W1 �W7 �W8


 

 R

qI
ς2−2
0+ V μ vð Þ

 

 ζð Þ + 〠

k

j=1
ηj




 


RqIς2+δ j−2
0+ V μ vð Þ

 

 1ð Þ

" #
,

ð117Þ

which implies that

S μ, ϑð Þ r2ð Þ − S μ, ϑð Þ r1ð Þj j ≤ 1
Γq ς1ð Þ

� x∗1 + x∗2 +
x∗3

Γq ω1 + 1ð Þ

 !
ϑk kA

" #

�
ðr2
r1

r2 − qvð Þ ς1−1ð Þdqv












 +

ðr1
0

r2 − qvð Þ ς1−1ð Þ − r1 − qvð Þ ς1−1ð Þ
h i

dqv











" #

+ 1
Γq ς2ð Þ y∗1 + y∗2 +

y∗3
Γq ω2 + 1ð Þ

 !
μk kA

" #

�
ðr2
r1

r2 − qvð Þ ς2−1ð Þdqv












 +

ðr1
0

r2 − qvð Þ ς2−1ð Þ − r1 − qvð Þ ς2−1ð Þ
h i

dqv











" #

+ Θ1 r2ð Þ −Θ1 r2ð Þj j
W1W8j j

R
qI

ς1
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
αj



 

R
qI

ς1+σ j

0+ Uϑ vð Þj j 1ð Þ
" #

+
�Θ1 r2ð Þ − �Θ1 r1ð Þ

 



�W1 �W8


 

 R

qI
ς2
0+ V μ vð Þ

 

 ζð Þ + 〠

k

j=1
ϕj




 


RqIς2+δ j

0+ V μ vð Þ

 

 1ð Þ
" #

+ Θ2 r2ð Þ −Θ2 r1ð Þj j
W8j j

R
qI

ς1−ϱ
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
βj




 


RqIς1+σ j

0+ Uϑ vð Þj j 1ð Þ
" #

+
�Θ2 r2ð Þ − �Θ2 r1ð Þ

 



�W8


 

 R

qI
ς2−ρ
0+ V μ



 

 vð Þ ζð Þ + 〠
k

j=1
φj




 


RqIς2+δ j

0+ V μ vð Þ

 

 1ð Þ
" #

+ Θ3 r2ð Þ −Θ3 r1ð Þj j
W1W7W8j j

R
qI

ς1−2
0+ Uϑ vð Þj j ζð Þ + 〠

k

j=1
γj




 


RqIς1+σ j−2
0+ Uϑ vð Þj j 1ð Þ

" #

+
�Θ3 r2ð Þ − �Θ3 r1ð Þ

 



�W1 �W7 �W8


 

 R

qI
ς2−2
0+ V μ vð Þ

 

 ζð Þ + 〠

k

j=1
η j




 


RqIς2+δ j−2
0+ V μ vð Þ

 

 1ð Þ

" #
:

ð118Þ

The right-hand side tends to 0 as r2 ⟶ r1, which is
independent of ðμ, ϑÞ ∈ BY4

. By helping the Arzelá-Ascoli
theorem, S : A⟶A is completely continuous.

Step 4. The set B = fðμ, ϑÞ ∈A ×A : ðμ, ϑÞ = κSðμ, ϑÞ,
κ ∈ ð0, 1�g is bounded.

Let ðμ, ϑÞ ∈B. Then ðμ, ϑÞ = κSðμ, ϑÞ for some κ ∈ ð0, 1�.
Thus, for any r ∈ O, by using the computations of Step 2, we
have

S μ, ϑð Þ rð Þk kA×A ≤N S : ð119Þ

This means thatB is bounded. Consequently, by Lemma
10, S has a fixed point and so a solution to the coupled sys-
tem of nonlinear q-CFBVPs (7).

5. Numerical Examples

In this section, we provide some illustrative examples of the
exactness and applicability of our main results.

Example 1. ðiÞ Consider the Cap-q-difference FBVP of the
form

C
0:8D

2:5
0+ μ rð Þ =G r, μ rð Þ, R0:8J

3:8
0+ μ rð Þ

� �
,  r ∈ O, q ∈ 0, 1ð Þð Þ,

μ 0ð Þ + μ 0:4ð Þ = 〠
2

j=1

12 − 4j
10

� �
R
0:8J

3j/10
0+ μ 1ð Þ,
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C
0:8D

1:2
0+ μ 0ð Þ + C

0:8D
1:2
0+ μ 0:4ð Þ = 〠

2

j=1

2j + 3
10

� �
R
0:8J

3j/10
0+ μ 1ð Þ,

C
0:8D

2
0+μ 0ð Þ + C

0:8D
2
0+μ 0:4ð Þ = 〠

2

j=1

12 − 5j
10

� �
R
0:8J

3j/10
0+

C
0:8D

2
0+μ 1ð Þ

h i
:

ð120Þ

Here ς = 2:5, q = 0:8, ω = 3:8, ζ = 0:4, ϱ = 1:2, αj = ð2j
+ 3Þ/10, βj = ð12 − 5jÞ/10, γj = ð12 − 4jÞ/10, σj = 3j/10,
and j = 1, 2. From the given data, we obtain W1 ≈
0:676686276 ≠ 0, W7 ≈ 1:814092676 ≠ 0, and W8 ≈
1:431872331 ≠ 0. We consider the functions

G r, μ rð Þ, R0:8I
3:8
0+ μ rð Þ

� �
= 4r − 1
re2r + 4 + 9 cos π/3ð Þ

2er + 6 · μ rð Þj j
μ rð Þj j + 3

+ 10 sin π/6ð Þ
2r + 3ð Þ2 + 2e3r

·
R
0:8I

3:8
0+ μ rð Þ




 



R
0:8I

3:8
0+ μ rð Þ




 


 + 2
:

ð121Þ

For ui, vi ∈ℝ, and r ∈ O, we can find that

G r, u1, v1ð Þ −G r, u2, v2ð Þj j ≤ 3
8 u1 − u2j j + 5

11 v1 − v2j j:
ð122Þ

The assumption ðH 1Þ is satisfied under the values L1 = 3/8
and L2 = 5/11. Thus,

L1 +
L2

Γq ω + 1ð Þ

 !
Λ ≈ 0:8324696807 < 1: ð123Þ

All assumptions of Theorem 9 are valid. Then the Cap-q
-difference FBVP (120) has a unique solution on ½0, 1�. More-
over,

CG = Λ

1 − L1 + L2/Γq ω + 1ð Þ� �� �
Λ

≈ 11:85782552 > 0:

ð124Þ

By the conclusions of Theorem 18, the Cap-q-difference
FBVP (120) is both Ulam–Hyers and also generalized Ulam-

Hyers stable on ½0, 1�. (ii) Set Gðr, μðrÞ, R0:8I3:8
0+ μðrÞÞ = rλ.

By using the property of integral (16) and setting λ = 2:8,
the implicit solution of the Cap-q-difference FBVP (120) is
given by

μ rð Þ = Γq λ + 1ð Þ
Γq λ + ς + 1ð Þ r

λ+ς + Θ1 rð Þ
W1W8

� −
Γq λ + 1ð Þ

Γq λ + ς + 1ð Þ ζ
λ+ς + 〠

k

j=1

αjΓq λ + 1ð Þ
Γq λ + ς + σj + 1
� �

" #

+ Θ2 rð Þ
W8

Γq λ + 1ð Þ
Γq λ + ς − ρ + 1ð Þ ζ

λ+ς−ϱ − 〠
k

j=1

βjΓq λ + 1ð Þ
Γq λ + ς + σj + 1
� �

" #

+ Θ3 rð Þ
W1W7W8

−
Γq λ + 1ð Þ

Γq λ + ς − 1ð Þ ζ
λ+ς−2 + 〠

k

j=1

γjΓq λ + 1ð Þ
Γq λ + ς + σj − 1
� �

" #
:

ð125Þ

Figure 1 displays the solution of the Cap-q-difference
FBVP (120) involving various values of ς = 2:78,2:80,⋯,
2:90 and q = 0:56,0:60,⋯, 0:80.

Example 2. Consider the coupled system of nonlinear Cap-q
-difference FBVP under the conditions

C
0:7D

2:8
0+ μ rð Þ =G1 r, ϑ rð Þ, R0:7I

1:7
0+ ϑ rð Þ

� �
,  r ∈ Oð Þ,

C
0:7D

2:9
0+ ϑ rð Þ =G2 r, μ rð Þ, R0:7I

2:3
0+ μ rð Þ

� �
,

μ 0ð Þ + μ 0:3ð Þ = 〠
2

j=1

4j
10

� �
R
0:7I

5j−3/10
0+ μ 1ð Þ,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

𝜇
 (r

)

0.1

0.15

0.2

0.25

r

𝜍 = 2.90 , q = 0.80
𝜍 = 2.88 , q = 0.76
𝜍 = 2.86 , q = 0.72

𝜍 = 2.82 , q = 0.64
𝜍 = 2.80 , q = 0.60
𝜍 = 2.78 , q = 0.56

𝜍 = 2.84 , q = 0.68

Figure 1: The exact solution μðrÞ of (120) for r ∈ ½0, 1�.
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ϑ 0ð Þ + ϑ 0:3ð Þ = 〠
k

j=1

12 − 5j
10

� �
R
0:7I

3j−1/10
0+ ϑ 1ð Þ,

C
0:7D

1:8
0+ μ 0ð Þ + C

0:7D
1:8
0+ μ 0:3ð Þ = 〠

2

j=1

7 − 2j
10

� �
R
0:7I

5j−3/10
0+ μ 1ð Þ,

C
0:7D

1:4
0+ ϑ 0ð Þ + C

0:7D
1:4
0+ ϑ 0:3ð Þ = 〠

2

j=1

10 − 4j
10

� �
R
0:7I

3 j−1/10
0+ ϑ 1ð Þ,

C
0:7D

2
0+μ 0ð Þ + C

0:7D
2
0+μ 0:3ð Þ = 〠

2

j=1

10 − 3j
10

� �
R
0:7I

5j−3/10
0+

C
0:7D

2
0+μ 1ð Þ� 	

,

C
0:7D

2
0+ϑ 0ð Þ + C

0:7D
2
0+ϑ 0:3ð Þ = 〠

2

j=1

8 − 3j
10

� �
R
0:7I

3j−1/10
0+

C
0:7D

2
0+ϑ 1ð Þ� 	

:

ð126Þ

Here ς1 = 2:8, ς2 = 2:9, q = 0:7, ω1 = 1:7, ω2 = 2:3, ζ = 0:3
, ρ = 1:8, ρ = 1:4, αj = 4j/10, βj = ð7 − 2jÞ/10, γj = ð10 − 3jÞ/
10, ϕ j = ð12 − 5jÞ/10, φj = ð10 − 4jÞ/10, ηj = ð8 − 3jÞ/10, σj

= ð5j − 3Þ/10, δj = ð3j − 1Þ/10, and j = 1, 2. From all the
given data, we obtain W1 ≈ 0:705064917 ≠ 0, W7 ≈
1:385967560 ≠ 0, W8 ≈ 1:029770834 ≠ 0, �W1 ≈ 1:026846802
≠ 0, �W7 ≈ 2:110974612 ≠ 0, and �W8 ≈ 1:174518052 ≠ 0.
We consider the functions

G1 r, ϑ rð Þ, R0:7I
1:7
0+ ϑ rð Þ

� �
= 3r2 − 2r + 1 + r + 1

sin2 rð Þ + 6

· ϑ rð Þj j
ϑ rð Þj j + 3 + 2 cos rð Þ

3r + 4ð Þ2

·
R
0:7I

1:7
0+ ϑ rð Þ




 



R
0:7I

1:7
0+ ϑ rð Þ




 


 + 1
,

G2 r, μ rð Þ, R0:7I
2:3
0+ μ rð Þ

� �
= re2r − 3r + 2r + sin rð Þð Þ

3er + 4
· μ rð Þj j
μ rð Þj j + 1 + r

ln 2r + 1ð Þ + 3

·
R
0:7I

2:3
0+ μ rð Þ




 



R
0:7I

2:3
0+ μ rð Þ




 


 + 2
:

ð127Þ

For ui, vi, �ui, �vi ∈ℝ, and r ∈ O, we can find that

G1 r, u1, v1ð Þ −G r, u2, v2ð Þj j ≤ 1
9 u1 − u2j j + 1

8 v1 − v2j j,

G2 r, �u1, �v1ð Þ −G r, �u2, �v2ð Þj j ≤ 3
7 �u1 − �u2j j + 1

3 �v1 − �v2j j:
ð128Þ

The assumption ðH 4Þ is satisfied with L1 = 1/9, L2
= 1/9, K1 = 3/7, and K2 = 1/3. Hence, ðL1 + ðL2/Γqðω1

+ 1ÞÞÞΛ1 ≈ 0:6937912556 < 1 and ðK1 + ðK2/Γqðω2 + 1ÞÞÞ
Λ1 ≈ 0:8947974715 < 1. All assumptions of Theorem 21
are satisfied. Then the coupled system of nonlinear Cap-
q-difference FBVPs (126) has a unique solution on ½0, 1�.

6. Conclusion

In this paper, a new category of nonlinear Caputo quan-
tum boundary problems and its relevant generalized
coupled q-system involving fractional quantum operators
was discussed. We presented new q-difference equations
and system in which we dealt with q-integro-sum-differ-
ence bundary conditions. Some qualitative aspects of solu-
tions such as the existence, uniqueness, and different
classes of stabilities of Ulam-Hyers type were investigated
for both given q-Cap-difference problems. The results were
examined with some examples. As a new idea in the next
papers, we aim to extend our method for similar general-
ized coupled systems under the newly introduced general-
ized ðp, qÞ-operators (postquantum operators).
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The goal of this paper is to extend the concept of complex-valued fuzzy metric space to complex-valued fuzzy b-metric spaces and
to discuss various existence results for fixed points to ensure their existence and uniqueness. To demonstrate the viability of the
proposed strategies, a nontrivial example is used. Finally, applications to integral equations and initial value problems in
mechanical engineering are discussed to demonstrate the superiority of the obtained results.

1. Introduction and Preliminaries

Fixed point theory combines topology, geometry, and analy-
sis in an amazing way. Fixed point theory has emerged as a
powerful tool in the study of nonlinear analysis in recent
years. In fixed point theory and many other mathematical
subjects, multiple separate objects are considered. As a
result, mathematics is not only about numbers and shapes
but also about prepositions, fluid flows, vector connections,
and chemical interactions, among other things. Many
researchers investigated the significance of various features
of symmetry and demonstrated how they might be applied
to many types of mathematical problems [1, 2]. There are
several generalizations of the concept of metric spaces in
the literature. Azam et al. developed the idea of complex-
valued metric space and discovered that the Banach contrac-
tion principle may be applied to complex-valued metric
spaces [3]. They studied its applications to complex integral
equations. After that, fixed point theorems have been stud-
ied by many authors in complex-valued metric spaces [4–8].

The concept of b-metric spaces has been introduced by
Bakhtin and Czerwik [9, 10]. Later on, many authors studied
fixed point theorems for single and multivalued mappings in
b-metric spaces for instance [11, 12]. In [13], the author gen-
eralized the concept of b-metric spaces by introducing the
setting of complex-valued b-metric spaces. Many other

researchers worked on complex-valued b-metric, and they
extended generalized fixed point theorems in the sense of
complex-valued b-metric spaces (see [14, 15] and the refer-
ences therein).

The concept of fuzzy sets was given by Zadeh [2] and
opened the door of new direction in mathematical research.
Pao-Ming and Ying-Ming established the notion of fuzzy
metric spaces [16]. Afterwards, George and Veeramani
improved the settings of fuzzy metric spaces [17]. Heilpern
introduced the concept of fuzzy mapping and obtained fixed
point results for fuzzy mappings [18]. Heilpern’s work was
further extended by many authors, for instance, see
[19–21]. Shukla et al. worked on the neighborhood structure
of fuzzy fixed point [22]. Several other researchers worked
on fuzzy metric spaces and obtained the generalizations of
related results [23, 24].

George and Veeramani generalized the concept of fuzzy
metric to the context of complex-valued fuzzy metric and
obtained the complex-valued fuzzy version of Banach con-
traction mapping result in different forms [17]. Also, they
obtain some related fixed point results with valid examples.

In this paper, we introduce the setting of complex-valued
fuzzy b-metric spaces to generalize the setting of complex-
valued b-metric space and establish the complex-valued
fuzzy version of the Banach contraction principle. We also
provide examples to back up our findings. The paper
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concludes with an application to integral and differential
equation.

All over the manuscript we have symbolized the set of
complex numbers by C. We mark some shortcut representa-
tion used in this manuscript, as tc-norm for a complex-
valued continuous triangular norm, CF b-metric for
complex-valued fuzzy b-metric, and s.t. for such that.

Let P = fðξ, ρÞ: 0 ≤ ξ<∞,0 ≤ ρ<∞g ⊂ C: The elements
ð0, 0Þ, ð1, 1Þ ∈P are denoted by ϑ and ℓ, respectively. The
set P ϑ = fðξ, ρÞ: 0 < ξ<∞,0 < ρ<∞g. Clearly for φ, ξ ∈ C, ξ
⪯φ iff ξ − φ ∈P ϑ: Let the unit closed complex interval be
symbolized by I = fðξ, ρÞ: 0 ≤ ξ ≤ 1, 0 ≤ ρ ≤ 1g and the
open unit complex interval by I 0 = fðξ, ρÞ: 0 ≤ ξ < 1, 0 ≤ ρ
< 1g.

Definition 1 (see [17]). Define an ordered relation ⪯ on C by
ς1⪯ς2 if and only if ς2 − ς1 ∈P . The relations ς1⪯ς2 and ς1
≺ ς2 indicate that Re ðς1Þ ≤ Re ðς2Þ, Im ðς1Þ ≤ Im ðς2Þ and
Re ðς1Þ < Re ðς2Þ, Im ðς1Þ < Im ðς2Þ, respectively.

Let B ⊂ C. If there exists inf B such that it i the lower
bound of B, that is, inf B⪯a∀a ∈ B and v⪯inf B for every
lower bound v of B, then inf B is called the greatest lower
bound of B:

Definition 2 (see [25]). Let X be a nonempty set. A complex
fuzzy set M is characterized by a mapping such that domain
is X and the range in the closed unit complex interval I :

Definition 3 (see [17]). A binary equation ⋆ : I ×I ⟶I

is said to be complex-valued t-norm if the following condi-
tions hold:

(1) ξ1⋆ξ2 = ξ2⋆ξ1
(2) ξ1⋆ξ2⪯ξ3⋆ξ4 whenever ξ1⪯ξ3, ξ2⪯ξ4
(3) ξ1⋆ðξ2⋆ξ3Þ = ðξ1⋆ξ2Þ⋆ξ3
(4) ξ⋆ϑ = ϑ, ξ⋆ℓ = ξ

for all ξ, ξ1, ξ2, ξ3, ξ4 ∈I :

Some fundamental examples of a tc-norm are as follows:

(1) ξ1⋆aξ2 = fe1e2, e3, e4g, for all ξ1 = ðe1, e3Þ, ξ2 = ðe2,
e4Þ ∈I

(2) ξ1⋆bξ2 = fmin fe1, e2g, min fe3, e4gg, for all ξ1 =
ðe1, e3Þ, ξ2 = ðe2, e4Þ ∈I

(3) ξ1⋆cξ2 = fmax fe1 + e2 − 1, 0g, max fe3 + e4 − 1, 0gg,
for all ξ1 = ðe1, e3Þ, ξ2 = ðe2, e4Þ ∈I

Definition 4 (see [17]). Let ðX ,M,⋆Þ be a complex-valued
fuzzy metric space. A sequence fφqg in X is known as a
Cauchy sequence if

lim
q⟶∞

inf
d>q

M φq, φd , t
� �

= ℓ∀t ∈P ϑ: ð1Þ

The complex-valued fuzzy metric space ðX ,M,⋆Þ is
complete if every Cauchy sequence is convergent in X .

Definition 5 (see [17]). A sequence is monotonic with respect
to ⪯ if either ςb⪯ςb+1 or ςb+1⪯ςb∀b ∈N:

Lemma 6 (see [17]). Let ðX ,M,⋆Þ be a complex-valued fuzzy
metric space. If t, t ′ ∈P ϑ and t⪯t ′, then Mðφ, u, tÞ⪯Mðφ, u
, t ′Þ∀φ, u ∈X:

Lemma 7 (see [17]). Let ðX ,M,⋆Þ be complex-valued fuzzy
metric space. A sequence fφqg in X converges to v ∈X iff
limq⟶∞Mðφq, v, tÞ = ℓ holds ∀t ∈P ϑ:

Remark 8 (see [17]). Let φq ∈P ∀n ∈N then:

(a) If the sequence fφqg is monotonic with respect to ⪯

and there exist γ, η ∈P with γ°φq⪯η, ∀q ∈N, then
there exists φ ∈P such that limq⟶∞φq = φ

(b) Although the partial ordering ⪯ is not a linear order
on C, the pair ðC, ⪯Þ is a lattice

(c) If X ⊂ C and there exists γ, η ∈ C with γ⪯s⪯η∀s ∈X ,
then inf X and sup X both exist

Remark 9 (see [17]). Let φq, φ′q, ξ ∈P ,∀q ∈N , then

(a) If φq⪯φ′q⪯ℓ∀q ∈N and limq⟶∞φq = ℓ, then

limb⟶∞φ′q = ℓ

(b) If φq⪯ξ∀q ∈N and limb⟶∞φq = φ, then φ⪯ξ

(c) If ξ⪯φq∀q ∈N and limq⟶∞φq = φ, then ξ⪯φ

Definition 10 (see [15]). Let X be a nonempty set and let b
≥ 1 be a given real number. A function D : X ×X ⟶ C
is called a complex-valued b-metric on X if, for all ξ, φ, v
∈ C, the following conditions are satisfied:

(i) Dðξ, φÞ ⪰ 0
(ii) Dðξ, φÞ = 0 if and only if ξ = φ

(iii) Dðξ, φÞ =Dðφ, ξÞ
(iv) b½Dðξ, vÞ +Dðv, φÞ� ⪰Dðξ, φÞ
The pair ðX ,DÞ is called a complex-valued b-metric

space.

Example 1 (see [15]). Let X = C. Define the mapping D : C
× C⟶ C by Dðξ, φÞ = jξ − φj2 + ijξ − φj2 for all ξ, φ, v ∈ C.
Then, ðC,XÞ is complex-valued b-metric space with b = 2.

Definition 11 (see [17]). Let X be a nonempty set, ⋆ a con-
tinuous complex-valued tC-norm, and M a complex fuzzy
set on X ×X ×P θ ⟶I satisfying conditions:
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(1) 0⪯Mðξ, φ, tÞ
(2) Mðξ, φ, tÞ = ℓ for every t ∈P ϑ if and only if ξ = φ

(3) Mðξ, φ, tÞ =Mðφ, ξ, tÞ
(4) Mðξ, φ, tÞ⋆Mðφ, ρ, t ′Þ⪯Mðξ, ρ, t + t ′Þ
(5) Mðξ, φ,⋆Þ: P ϑ ⟶I is continuous for all ξ, φ, ρ ∈

X and t, t ′ ∈P ϑ

Then, the triplet ðX ,M,⋆Þ is said to be a complex-valued
fuzzy metric space, and M is called a complex-valued fuzzy
metric on X . The functions Mðξ, φ, tÞ denote the degree of
nearness and the degree of nonnearness between ξ and φ
with respect to the complex parameter t, respectively.

Example 2 (see [17]). Let X =ℵ. Define ⋆ by ς′⋆ς′′ = ðs′s′
′, u′u′′Þ for all ς′ = ðs′, u′Þ, ς′′ = ðs′′, u′′Þ ∈I : Define com-
plex fuzzy set M as

M ξ, φ, tð Þ =
ξ

φ
ℓ if ξ ≤ φ,

φ

ξ
ℓ if φ ≤ ξ,

8>><
>>: ð2Þ

for each ξ, φ ∈X , ς ∈P θ: Then, ðX ,M,⋆Þ is complex-valued
fuzzy metric spaces.

2. Fixed Point Results in Complex-Valued
Fuzzy b-Metric Spaces

We start this section with the following definition.

Definition 12. ðX ,M,⋆,bÞ is said a complex-valued fuzzy b
-metric space if X is an arbitrary set, ⋆ is a tC-norm, and
M is a fuzzy set on X ×X ⟶P meeting the points below
for all ξ, φ ∈X , t, s > ϑ and provided a number b ± 1:

(1) 0⪯Mðξ, φ, tÞ
(2) Mðξ, φ, tÞ = ℓ for every t ∈P ϑ if and only if ξ = φ

(3) Mðξ, φ, tÞ =Mðφ, ξ, tÞ
(4) Mðξ, φ, t/bÞ⋆Mðφ, ρ, t ′/bÞ⪯Mðξ, ρ, ðt + t ′ÞÞ
(5) Mðξ, φ,⋆Þ: P ϑ ⟶I is continuous for all ξ, φ, ρ ∈

X and t, t ′ ∈P ϑ

Then, the triplet ðX ,M,⋆Þ is said to be a complex-valued
fuzzy metric space, and M is called a complex-valued fuzzy
metric on X .

Example 3. Let Mðξ, φ, tÞ be a complex-valued fuzzy metric
defined by eð−jφ − ξjr/tÞℓ such that t > 1 be a real number.
Then, M is CF b-matric space with b = 2r−1:

Proof. (1), (2), (3), and (5) are obvious. Here, we prove (4).
For an arbitrary integer b, we have

ξ − ρj j⪯
b t + t ′
� �

t
ξ − φj j +

b t + t ′
� �

t ′
φ − ρj j ξ − ρj j

t + t ′

⪯
b
t
ξ − φj j + b

t ′
φ − ρj j⪯ ξ − φj j

t/b + φ − ρj j
t ′/b

:

ð3Þ

Since eξ is an increasing function for ξ, one can write

e ξ−ρj j/t+t′
⪯e ξ−φj j/t/b + e φ−ρj j/t′/b: ð4Þ

Thus, we have

e− ξ−ρj j/t+t′ℓ ⪰ e− ξ−φj j/t/b + e− φ−ρj j/t ′/bℓ,

M ξ, ρ, t + t ′
� �� �

⪰M ξ, φ, t
b

� �
⋆M φ, ρ, t

′
b

 !
:

ð5Þ

Remark 13. CF b -metric is the generalization of complex-
valued fuzzy metric space. It is obvious from example that
is every CF b -metric is complex-valued fuzzy metric for b
= 1: Similarly, some important results like Lemmas 6 and
7 and definitions of convergence and Cauchy presented in
Section 1 can also be defined in the same manner in CF b
-metric space as mentioned in complex-valued fuzzy metric
space.

Theorem 14. Let ðX ,M,⋆,bÞ be a complete CF b -metric
space and let ς : X ⟶X be mapping enjoying the following
condition:

ℓ
M ςξ, ςρ, tð Þ − ℓ⪯q

ℓ
M ξ, ρ, tð Þ − ℓ
� �

, ð6Þ

for all ξ, ρ ∈X and q ∈ ½0, 1Þ: Then, ς has a unique fixed point
τX , for all τ ∈P ϑ:

Proof. Let φ0 ∈X: Define a sequence fφrg in X by

φr = ςφr−1 for all r ∈N: ð7Þ

If φ0 = φr−1 for some r ∈N . Then clearly, ς has a fixed
point. Suppose φ0=φr−1 for all r ∈N. To show that fφrg is
a Cauchy sequence, let define

Br = M φi, φj, t
� �

: j > i
n o

⊂I : ð8Þ

Since ϑ ≺Mðφi, φj, tÞ, by Remark 8, the inf Br = βr

exists. For j, i ∈N, using (6), we get
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ℓ

M φi+1, φj+1, t
� � − ℓ

= ℓ

M ςφi, ςφj, t
� � − ℓ⪯q

ℓ

M φi, φj, t
� � − ℓ

2
4

3
5

⪯
ℓ

M φi, φj, t
� � − ℓ,

ð9Þ

which implies

ℓ

M φi+1, φj+1, t
� �⪯ ℓ

M φi, φj, t
� � : ð10Þ

Therefore, by definition, we get

ℓ⪯βr⪯βr+1⪯ϑ, for all r ∈N: ð11Þ

Thus, fφrg is monotonic in P . Using Remark 8 and
from (11), there exists ℓ⋆ ∈P , with

lim
r∞

βr = ℓ⋆: ð12Þ

From inequality (9), we have

ℓ

M φi+1, φj+1, t
� �⪯ qℓ

M φi, φj, t
� � + 1 − qð Þℓ, ð13Þ

for all i, j and so ℓ/βi+1⪯qℓ/βi + ð1 − qÞℓ for every i ∈N ,
which yields from (12)

1 − qð Þℓ⪯ 1 − qð Þℓ⋆ℓ⋆: ð14Þ

Since q ∈ ½0, 1Þ and applying Remark 9, we must
obtained ℓ = ℓ⋆: Thus,

lim
r⟶∞

βr = ℓ: ð15Þ

Hence,

lim
r⟶∞

inf
j>i

M φi, φj, t
� �

= ℓ, for all t ∈P ϑ: ð16Þ

Therefore, from (16), we have that fφrg is a Cauchy
sequence. From the completeness of X and Lemma 7, we
get that there exists τ ∈X such that

lim
r⟶∞

M φr , τ, tð Þ = ℓ, for all t ∈P ϑ: ð17Þ

Now for t ∈P ϑ and r ∈ R, it yields from (6) that

ℓ
M ςφr , ςτ, tð Þ − ℓ⪯q

ℓ
M φr , τ, tð Þ − ℓ
� �

, ð18Þ

that is

M ςφr , ςτ, tð Þ ⪰ 1
q/M φr , τ, tð Þð Þ + 1 − qð Þ : ð19Þ

Now, for any t ∈P ϑ,

M τ, ςτ, tð Þ ⪰M τ, φr+1,
t
2b

� �
⋆M φr+1, ςφτ,

t
2b

� �

=M τ, φr+1,
t
2b

� �
⋆M ςφr , ςφτ,

t
2b

� �
:

ð20Þ

Taking r⟶∞ and using (17), (19), and Remark 9, we
get that Mðτ, ςτ, tÞ = ℓ for all t ∈P ϑ; that is, ςτ = τ:

Now, we have to show the uniqueness of fixed point τ of
ς: On contrary, suppose v be another fixed point of ς: Then,
there exists t ∈P ϑ such that Mðτ, v, tÞ < ℓ, than from (6) we
have

ℓ
M τ, v, tð Þ − ℓ = ℓ

M ςτ, ςv, tð Þ − ℓ⪯q
ℓ

M τ, v, tð Þ ℓ
� �

, ð21Þ

which is a contradiction. Therefore, we must obtain Mðτ, v
, tÞ = ℓ for all t ∈P ϑ: Hence, τ = v:

Corollary 15. Let ðX ,M,⋆,bÞ be a complete CF b -metric
space and let ς : X ⟶X be mapping enjoying the following
condition:

ℓ
M ςrξ, ςrρ, tð Þ − ℓ⪯q

ℓ
M ξ, ρ, tð Þ − ℓ
� �

, ð22Þ

for all ξ, ρ ∈X and q ∈ ½0, 1Þ. Then, ς has a unique fixed point
τX , for all t ∈P ϑ:

Proof. By the use of Theorem 14, ςr has a fixed point τ as ςr

observes all conditions. But ςrςτ = ςςrτςτ, implies that ςτ is
another fixed point of ςr: By uniqueness of fixed point, we
have ςτ = τ:As fixed point of ς is also a fixed point ofς: Thus,
ς has a unique fixed point.

Corollary 16. Let ðX ,M,⋆,bÞ be a complete CF b-metric
space and let ς : X ⟶X be mapping enjoying the following
condition:

ℓ
M ςrξ, ςrρ, tð Þ − ℓ⪯q tð Þ ℓ

M ξ, ρ, tð Þ − ℓ
� �

, ð23Þ

for all ξ, ρ ∈X and q : P ϑ ⟶ ½0, 1Þ. Then, ς has a unique
fixed point τX , for all t ∈P ϑ:

Example 4. Let X = ½0,∞Þ and t-norm be defined by c1⋆c2
= c1c2 for all c1 = ða1, a2Þ, c2 = ða1, a2Þ ∈I : Define M as

M ξ, ρ, tð Þ = exp ξ−ρð Þ2/t
h i−1

ℓ for all ξ, ρ ∈X , t ∈P ϑ: ð24Þ
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Then, ðX ,M,⋆Þ is a CF b-metric space. Define ς : X
⟶X as

ς ξð Þ =

0, if ξ =m,
ξ

4 , if ξ ∈ 0,mð Þ,
ξ

8 , if ξ ∈ m,∞ð Þ:

8>>>>><
>>>>>:

ð25Þ

Then, we have the following cases.

Case 1. If ξ, ρ =m, then ςξ, ςρ = 0:

Case 2. If ξ =m and ρ ∈ ð0,mÞ, then ςξ = 0 and ςρ = ρ/4.

Case 3. If ξ =m and ρ ∈ ðm,∞Þ, then ςξ = 0 and ςρ = ρ/8.

Case 4. If ξ ∈ ½0,mÞ and ρ ∈ ðm,∞Þ, then ςξ = ξ/4 and ςρ =
ρ/8.

Case 5. If ξ ∈ ½0,mÞ and ρ ∈ ½0,mÞ, then ςξ = ξ/4 and ςρ = ρ
/4:

Case 6. If ξ ∈ ½0,mÞ and ρ =m, then ςξ = ξ/4 and ςρ = 0.

Case 7. If ξ ∈ ðm,∞Þ and ρ =m, then ςξ = ξ/8 and ςρ = 0.

Case 8. If ξ ∈ ðm,∞Þ and ρ ∈ ðm,∞Þ, then ςξ = ξ/8 and ςρ
= ρ/8.

The above-mentioned cases observe all conditions of
Theorem 14 with q ∈ ½1/2, 1Þ: Thus, the fuzzy contractive
mapping ς has a unique fixed point, which is ð0, 0Þ:

Theorem 17. Let ðX ,M,⋆,bÞ be a complete CF b -metric
space with t⪯t⋆t for t ∈I ϑ: Let ς : X ⟶X be mapping
enjoying the following conditions:

(i) There exists φ0 ∈X and ε ∈I ϑ such that ℓ − ε⪯M
ðφ0, ςφ0, tÞ for all t ∈P ϑ

(ii) There exists q ∈ ½0, 1Þ such that for all ξ, ρ ∈B½φ0,
ε, t�,

ℓ
M ςξ, ςρ, tð Þ − ℓ⪯q

ℓ
M ξ, ρ, tð Þ − ℓ
� �

: ð26Þ

Then, ς has a unique fixed point in B½φ0, ε, t�:

Proof. It is enough to proof that B½φ0, ε, t� is complete and
ςφ ∈B½φ0, ε, t� for all φ ∈B½φ0, ε, t�: Let fφrg be a Cauchy
sequence in B½φ0, ε, t�: Since X is complete thus by the
use of Lemma 7, there exists u ∈X such that

lim
r⟶∞

M φr , u, tð Þ = ℓ, ð27Þ

for all t ∈P ϑ: Now for all i, r ∈N,

M φ0, u, t +
t
i

� �
⪰M φ0, φr ,

t
b

� �
⋆M φ0, φr ,

t
ib

� �
: ð28Þ

Since φr ∈B½φ0, ε, t� for every r ∈N, also limr⟶∞
Mðφr , u, tÞ = ℓ. By using the properties of t-norm and
Remark 9, we obtain

M φ0, u, t +
t
i

� �
⪰ ℓ − rð Þ⋆ℓ = ℓ − r, forever i ∈N: ð29Þ

Taking limi⟶∞ and using Remark 9, we get Mðφ0
, u, tÞ ± ℓ − r: Therefore, u ∈B½φ0, ε, t�:

For every φ ∈B½φ0, ε, t�, it yields from (26)

ℓ
M ςφ0, ςφ, tð Þ − ℓ⪯q

ℓ
M φ0, φ, tð Þ − ℓ
� �

, ð30Þ

that is

M ςφ0, ςφ, tð Þ ⪰ 1
q/M φ0, φ, tð Þð Þ + 1 − qð Þ : ð31Þ

Thus, for all i ∈N, we get

M φ0, ςφ, t +
t
i

� �
±M φ0, ςφ0,

t
ib

� �

⪰M ςφ0, ςφ,
t
b

� �
⪰ ℓ − εð Þ⋆ 1

q/M φ0, φ, t/bð Þð Þ + 1 − qð Þ
� �

⪰ ℓ − εð Þ⋆ 1
q/ ℓ − εð Þð Þ + 1 − qð Þ

� �
⪰ ℓ − εð Þ⋆ ℓ − εð Þ:

ð32Þ

Taking limi⟶∞ and using Remark 9, we have

M φ0, ςφ, tð Þ ⪰ ℓ − εð Þ: ð33Þ

Therefore, ςφ ∈B½φ0, ε, t�:

Theorem 18. Let ðX ,M,⋆,bÞ be a complete CF b -metric
space such that for any sequence ftrg ∈P ϑ with limr⟶∞ftr
g =∞, we get limr⟶∞ infρ∈XMðξ, ρ, ftrgÞ = ℓ, for all ξ ∈
X: Let ς : X ⟶X be a mapping observing that

M ςξ, ςρ, δtð Þ ⪰M ξ, ρ, tð Þ, ð34Þ

for all t ∈P ϑ, where 0 < δ < 1. Then, ς has a unique fixed
point in X:

Proof. Let φ0 ∈X: Define a sequence fφrg in X by

φr = ςφr−1 for all r ∈N: ð35Þ

If φ0 = φr−1ξ for some r ∈N. Then clearly, ς has a fixed
point. Suppose φ0 ≠ for all r ∈N. To show that fφrg is a
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Cauchy sequence, let define

Br = M φr , φs, tð Þ: s > rf g ⊂I : ð36Þ

Since ϑ ≺Mðφr , φs, tÞ, by Remark 8, the inf Br = βr
exists. For s, r ∈N, by the use of (??) and Lemma 6, we get

M φr+1, φs+1, tð Þ ⪰M φr+1, φs+1, δtð Þ ⪰M ςφr , ςφs, δtð Þ
⪰M ςφr , ςφs, tð Þ, ð37Þ

which yields

M ςφr , ςφs, tð Þ⪯M φr+1, φs+1, tð Þ for s > r: ð38Þ

Therefore, by definition, we obtain

ϑ⪯βr⪯βr+1⪯ℓ, for all r ∈N: ð39Þ

Hence, fβrg is monotonic in P , and by the use of
Remark 8 and (39), there exists ℓ⋆ such that

lim
r⟶∞

βr = ℓ⋆: ð40Þ

For t ∈P ϑ, once again from (34), we have

βr+1 = inf
s>r

M φr+1, φs+1, tð Þ ⪰ inf
s>r

M φr , φs,
t
δ

� �

= inf
s>r

M ςφr , ςφs,
t
δ

� �
⪰ inf

s>r
M φr−1, sr−1,

t

δ2

� �

= inf
s>r

M ςφr−2, ςφs−2,
t

δ2

� �
⪰ inf

s>r
M ςφr−2, ςφr−2,

t

δ3

� �

⪰⋯ ⪰ inf
s>r

M φ0, φs−r ,
t

δr+1

� �
,

ð41Þ

for all r ∈N and t ∈P ϑ, we have

βr+1 = inf
s>r

M φr+1, φs+1, tð Þ ⪰ inf
s>r

M φ0, φs−r ,
t

δr+1

� �

⪰ inf
s>r

M φ0, ρ,
t

δr+1

� �
:

ð42Þ

As limr⟶∞t/δr+1 =∞, using (40) and assumption, we
get

ℓ⋆ ± lim
r⟶∞

inf
ρ∈X

M φr , φs, tð Þ ⪰ = ℓ: ð43Þ

From (40) and (43)

lim
r⟶∞

βr = ℓ: ð44Þ

Thus, fφrg is a Cauchy sequence in X: Since X is com-
plete, by Lemma 7, there exists u ∈X such that

lim
r⟶∞

M φr , u, tð Þ = ℓ: ð45Þ

For t ∈P ϑ, (34) yields that

M u, ςu, tð Þ ⪰M u, φr+1,
t
2b

� �
⋆M φr+1, ςu,

t
2b

� �

⪰M u, φr+1,
t
2b

� �
⋆M ςφr , ςu,

t
2b

� �

⪰M u, φr+1,
t
2b

� �
⋆M φr , u,

t
2bδ

� �
:

ð46Þ

Taking limr⟶∞ and by (45) and Remark 9, we have M
ðu, ςu, tÞ = ℓ; that is, ςu = u:

Now to investigate the uniqueness of fixed point, let on
contrary that v ∈X be any other fixed point of ς: So there
exist t ∈P ϑ with Mðu, v, tÞ=ℓ; then, (34) yields

M u, v, tð Þ =M ςu, ςv, tð Þ ⪰M u, v, t
δ

� �
: ð47Þ

Continuing this way, we obtain

M u, v, tð Þ ⪰M u, v, t
δr

� �
⪰ inf

ρ∈X
M u, v, t

δr

� �
: ð48Þ

Using limr⟶∞t/δr =∞, it follows that Mðu, v, tÞ ⪰ ℓ,
which is contradiction. Thus, Mðu, v, tÞ = ℓ ; that is, u = v:

Example 5. Let X = ½0, 1� and t-norm be defined by c1⋆c2
= c1c2 for all c1 = ða1, a2Þ, c2 = ða1, a2Þ ∈I : Define M as

M ξ, ρ, tð Þ = exp− ξ−ρj j/tℓ for all ξ, ρ ∈X , t ∈P ϑ: ð49Þ

Then, ðX , M,⋆Þ is a CF b-metric space. Define ς : X
⟶X as

ς ξð Þ =
0, if ξ ∈ 0, 12

� �
,

ξ

14 , if ξ ∈
1
2 , 1
� �

:

8>>><
>>>:

ð50Þ

For limt⟶∞Mðξ, ρ, tÞ = limt⟶∞ exp−jξ−ρj/tℓ = ℓ, we
obtain that for all values of X we have Mðςξ, ςρ, δtÞ ±Mðς
ξ, ςρ, tÞ, and for only 0, we have limt⟶∞ infρ∈XMðξ, ρ, trÞ
= exp0ℓ = ℓ. Thus, all conditions of Theorem 18 are satisfied
so, ð0, 0Þ is a unique fixed point of ς.

Example 6. Let X =Cð½1, 3�, RÞ, A > 0 and for every ξ, ρ ∈X
let

M ξ, ρ, tð Þ = exp− ξ−ρj j/tℓ: ð51Þ
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Let define ς : X ⟶X by

ς ξ τð Þð Þ = 4 +
ðτ
1
ξ vð Þ + ρ vð Þð Þev−1dv, t ∈ 1, 3½ �: ð52Þ

For every ξ, ρ ∈X

M ςξ, ςρ, tð Þ = exp− ςξ τð Þ−ςρ τð Þj j/tℓ = exp
−
Ð τ

1
max
τ∈ 1,3½ �

ςξ τð Þ−ςρ τð Þj j/t
ℓ

⪰ exp
−
Ð τ

1
max
τ∈ 1,3½ �

ςξ vð Þ−ςρ vð Þj je2/t
ℓ ⪰ 2e2M ξ, ρ, tð Þ:

ð53Þ

Similarly

M ςrξ, ςrρ, tð Þ ⪰ 2r
r!
e2rM ξ, ρ, tð Þ: ð54Þ

Note that

e2r
2r
r!

=

537:9 if r = 3,
5,873:7 if r = 5,
1:31 if r = 37,
0:202 if r = 39:

8>>>>><
>>>>>:

ð55Þ

Thus, all conditions of Corollary 15 are satisfied for q
= 0:202 and r = 39, so ς has a fixed point which is a solution
of the integral equation

ξ τð Þ = 4 +
ðτ
1
ξ vð Þ + ρ vð Þð Þev−1dv, t ∈ 1, 3½ �, ð56Þ

or the differential equation

ξ′ τð Þ = ξ + τ2
� 	

eτ−1τ ∈ 1, 3½ �, ξ 1ð Þ = 4: ð57Þ

3. Application

Integral equations have plenty applications in many scien-
tific fields. It is a ripely rising field in abstract theory. One
of its significant approach in the study of integral equations
is to apply fixed point results to the function defined by the
right-hand side of the equation or to develop homotopy
methods, which are highly considered in fixed point theory
to find the approximate solution. In this section, firstly, we
study application of our main Theorem 14 the existence of
unique solution to Fredholm integral equation.

Theorem 19. Let Ξ =Cð½0,m�, RÞ be the spaces of continuous
real valued functions defined on interval ½0,m�, where m > 0.
The Fredholm integral equation is

z tð Þ =
ðm
0
K t, δ, z δð Þð Þdδ: ð58Þ

Let Ξ =C ½0,m, R� and M : Ξ × Ξ ×I ⟶I be a CF b
-metric defined as follows:

M y, z, cð Þ = c

c + y − zj j2 ℓ, y, z ∈X , c > 0: ð59Þ

If there exists q ∈ ð0, 1Þ with

Θ y, zð Þ tð Þ ⪰ 1
q
Λ y, zð Þ tð Þ, ð60Þ

where

Θ y, zð Þ tð Þ = c

c + Ðm
0 K t, δ, y δð Þð Þdδ − Ðm0 K t, δ, z δð Þð Þdδ

 

2 ℓ,

Λ y, zð Þ tð Þ = c

c + y tð Þ − z tð Þj j2 ℓ,

ð61Þ

holds. Then, (58) has a unique solution in X:

Proof. Let Γ : Ξ⟶ Ξ define as

Γz tð Þ =
ðm
0
K t, δ, z δð Þð Þdδ: ð62Þ

Then

Γy − Γzj j2 =
ðm
0
K t, δ, y δð Þð Þdδ −

ðm
0
K t, δ, z δð Þð Þdδ











2
:

ð63Þ

For all y, z ∈X , we have

ℓ
Θ y, zð Þ tð Þ⪯

qℓ
Λ y, zð Þ tð Þ , ð64Þ

so,

ℓ
Θ y, zð Þ tð Þ − ℓ⪯

qℓ
Λ y, zð Þ tð Þ − ℓ⪯q

ℓ
Λ y, zð Þ tð Þ − ℓ
� �

, ð65Þ

which implies that

ℓ

c/c +
Ðm
0 K t, δ, y δð Þð Þδ − Ðm0 K t, δ, z δð Þð Þdδ

 

2 − ℓ

⪯q
ℓ

c/c + y tð Þ − z tð Þj j2 − ℓ

 !
:

ð66Þ

Therefore,

ℓ
M Γy, Γz, cð Þ − ℓ⪯q

ℓ
M y, z, cð Þ − ℓ
� �

: ð67Þ
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Since all conditions of Theorem 14 are satisfied, thus
(58) has a unique solution in X:

Next, we study the application of Theorem 18, in
mechanical engineering, since the system of auto mobile sus-
pension is an achievable application for the system of spring
mass in the field of engineering. We are going to study the
motion of an auto mobile spring when its motion is upon
a craggy and cleft road, where the forcing term is the craggy
road and bumps noticed provide the absorbing. Tension,
gravity, and earth quick are the possible external forces act-
ing on the system. We express spring mass by κ and the
external force acting on it by Θ. Then the following initial
value problem represents the damped motion of the spring
mass system under the action of external force Θ:

κ
d2�y
dt2

+ π
d�y
dt

=Θ t, �y tð Þð Þ = 0,

�y 0ð Þ = 0,
�y′ 0ð Þ = 0,

8>>><
>>>:

ð68Þ

where π > 0 express the damping constant and Θ : ½0, ϕ� ×
�R+

⟶ �R is a continuous mapping. Clearly, the problem
(68) is equivalent to the following integral equation

�y tð Þ =
ðϕ
0
Λ t, δð ÞΘ δ, �y δð Þð Þdδ, with t, δ ∈ 0, ϕ½ �, ð69Þ

where Λðt, δÞ represents the corresponding Green’s
function and defined as

Λ t, δð Þ =
1 − eρ t−δð Þ

ρ
, for 0 ≤ δ ≤ t ≤ ϕ,

0 for 0 ≤ t ≤ δ,

8><
>: ð70Þ

where ρ = π/κ is a constant ratio. Consider the set of real
valued functions �Y =Cð½0, ϕ�, RÞ. For b > 1, consider CF
b-mertic space defined by

M y, z, cð Þ = e
− sup
n∈ 0,1½ �

�y tð Þ−�z tð Þj j2/c
, ð71Þ

for all y, z ∈ �Y : WE have to show that problem (68) has a
solution iff there exists �y∗ in �Y , a solution of the integral
equation (69).

Theorem 20. Consider problem (68), suppose the following
conditions are satisfied:

(i) jΘðδ, �yðδÞÞ −Θðδ, �zðδÞÞj2 ≤ j�yðδÞ, �zðδÞj2

(ii)
Ð ϕ
0Λðt, δÞ ≤ 1

Then, the integral equation (69) has a unique solution
in �Y :

Proof. Let define an operator Γ : �Y ⟶ �Y

Γ�y tð Þ =
ðϕ
0
Λ t, δð ÞΘ δ, �y δð Þð Þdδ, with t, δ ∈ 0, ϕ½ �: ð72Þ

Now,

e
− sup
n∈ 0,1½ �

Γ�y tð Þ−Γ�z tð Þj j2/λc
≥ e

− sup
n∈ 0,1½ �

Ð ϕ

0
Λ t,δð Þ Θ δ,�y δð Þð −Θ δ,�y δð Þð Þj j2dδÞ/λc

≥ e
− sup
n∈ 0,1½ �

Θ δ,�y δð Þð −Θ δ,�y δð Þð Þj j2dδÞ/λc

≥ e
− sup
n∈ 0,1½ �

�y δð Þ,�z δð Þj j2/λc
,

ð73Þ

this yields that

e
− sup
n∈ 0,1½ �

Γ�y tð Þ−Γ�z tð Þj j2/λc
ℓ ⪰ e

− sup
n∈ 0,1½ �

�y δð Þ,�z δð Þj j2/λc
ℓ: ð74Þ

Consequently, we get

M Γ�y, Γ�z, λcð Þ ⪰M �y, �z, cð Þ: ð75Þ

Thus, by Theorem 18, we obtained the existence of
unique solution to integral equation (69).

4. Conclusion

In this article, we presented the generalization of CF b
-metric space and successfully obtained the generalization
of Banach contraction principle to the new established set-
ting herein. In support of our obtained results, we have con-
structed some examples, and with the help of derived result,
we guaranteed the existence of unique solution to integral
equation, which makes it possible for more integral equa-
tions to be verified in such conditions.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgments

The last author N. Mlaiki would like to thank Prince Sultan
University for paying APC and for the support through the
TAS Research Lab.

References

[1] P. Hilton and J. Pedersen, “Symmetry in mathematics,” Com-
puters & Mathematcs with Applications, vol. 12, no. 1-2,
pp. 315–328, 1986.

[2] L. A. Zadeh, “Fuzzy sets,” Control, vol. 8, no. 3, pp. 338–353,
1965.

8 Journal of Function Spaces



[3] A. Azam, B. Fisher, and M. Khan, “Common fixed point theo-
rems in complex valued metric spaces,” Analysis and Applica-
tions, vol. 32, no. 3, pp. 243–253, 2011.

[4] M. S. Abdullahi and A. Azam, “Multi-valued fixed points
results viarational type contractive conditions in complex val-
ued metric spaces,” Journal of the International Mathematical
Virtual Institute, vol. 7, no. 8, pp. 119–146, 2017.

[5] A. Azam, J. Ahmad, and P. Kumam, “Common fixed point the-
orems for multi-valued mappings in complex-valued metric
spaces,” Journal of Inequalities and Applications, vol. 2013,
no. 1, 2013.

[6] J. Ahmad, C. Klin-Eam, and A. Azam, “Common fixed points
for multivalued mappings in complex valued metric spaces
with applications,” Abstract and Applied Analysis, vol. 2013,
Article ID 854965, 12 pages, 2013.

[7] B. S. Choudhury, N. Metiya, and P. Konar, “A discussion on
best proximity point and coupled best proximity point in par-
tially ordered metric spaces,” Bulletin of International Mathe-
matical Virtual Institute, vol. 2015, no. 1, pp. 73–80, 2015.

[8] C. Klin-eam and C. Suanoom, “Some common fixed-point
theorems for generalized-contractive-type mappings on
complex-valued metric spaces,” Abstract and Applied Analysis,
vol. 2013, Article ID 604215, 6 pages, 2013.

[9] I. A. Bakhtin, “The contraction mapping principle in quasi
metric spaces,” Functional analysis, vol. 30, pp. 26–37, 1989.

[10] S. Czerwik, “Contraction mappings in b-metric spaces,” Acta
Mathematica et Informatica Universitatis Ostraviensis, vol. 1,
pp. 5–11, 1993.

[11] N. Hussain andM. H. Shah, “KKMmappings in cone b-metric
spaces,” Computers & Mathematcs with Applications, vol. 62,
no. 4, pp. 1677–1684, 2011.

[12] Z. Kadelburg, S. Radenovic, and M. Sarwar, “Remarks on the
paper``coupled fixed point theorems for single-valued opera-
tors in b-metric spaces'',” Mathematics Interdisciplinary
Research, vol. 2, pp. 1–8, 2017.

[13] A. K. Dubey, R. Shukla, and R. P. Dubey, “Some fixed point
theorems in complex valued b-metric spaces,” Journal of Com-
plex Systems, vol. 2015, Article ID 832467, 7 pages, 2015.

[14] A. H. Ansari, O. Ege, and S. Radenović, “Some fixed point the-
orem in complex valued Gb metric space,” Revista de la Real
Academia de Ciencias Exactas, Físicas y Naturales. Serie A.
Matemáticas, vol. 112, no. 2, pp. 463–472, 2018.

[15] D. Hasanah, “Fixed point theorems in complex valued B-
metric spaces,” CAUCHY, vol. 4, no. 4, pp. 138–145, 2017.

[16] P. Pao-Ming and L. Ying-Ming, “Fuzzy topology. I. Neighbor-
hood structure of a fuzzy point and Moore-Smith conver-
gence,” Journal of Mathematical Analysis and Applications,
vol. 76, no. 2, pp. 571–599, 1980.

[17] A. George and P. Veeremani, “On some results of analysis for
fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 90, pp. 365–
368, 1997.

[18] S. Heilpern, “Fuzzy mappings and fixed point theorem,” Jour-
nal of Mathematical Analysis and Applications, vol. 83, no. 2,
pp. 566–569, 1981.

[19] S. C. Arora and V. Sharma, “Fixed point theorems for fuzzy
mappings,” Fuzzy Sets System, vol. 110, no. 1, pp. 127–130,
2000.

[20] V. D. Estruch and A. Vidal, “A note on fixed point for fuzzy
mappings,” Rendiconti dell'Istituto di Matematica dell'Univer-
sità di Trieste, vol. 32, pp. 39–45, 2001.

[21] A. Green and J. Pastor, Fixed Point Theorem for Fuzzy Con-
traction Mapping, Rendiconti dell'Istituto di Matematica
dell'Università di Trieste, 1999.

[22] S. Shukla, R. Rodrguez-López, and M. Abbas, “Fixed point
results for contractive mappings in complex valued fuzzy met-
ric spaces,” Fixed Point Theory, vol. 19, pp. 1–22, 2011.

[23] A. Azam and I. Beg, “Common fuzzy fixed points for fuzzy
mappings,” Fixed Point Theory and Applications for Function
Spaces, vol. 2013, no. 1, pp. 1–11, 2013.

[24] T. Došenovic, D. Rakic, B. Caric, and S. Radenovic, “Multiva-
lued generalizations of fixed point results in fuzzy metric
spaces,” Nonlinear Analysis: Modelling and Control, vol. 21,
no. 2, pp. 211–222, 2016.

[25] I. Kramosil and J. Michalek, “Fuzzy metric and statistical met-
ric spaces,” Kybernetica, vol. 11, pp. 336–344, 1975.

9Journal of Function Spaces



Research Article
Existence Results of Fuzzy Delay Impulsive Fractional Differential
Equation by Fixed Point Theory Approach

Aziz Khan ,1 Ramsha Shafqat ,2 and Azmat Ullah Khan Niazi 2

1Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia
2Department of Mathematics and Statistics, University of Lahore, Sargodha, Pakistan

Correspondence should be addressed to Ramsha Shafqat; ramshawarriach@gmail.com

Received 18 May 2022; Accepted 29 July 2022; Published 31 August 2022

Academic Editor: Santosh Kumar

Copyright © 2022 Aziz Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The main aim of this article is to study controllability and existence of solution of fuzzy delay impulsive fractional nonlocal
integro-differential equation in the sense of Caputo operator. The existence and uniqueness of the solution have been carried
out with the help of the Banach fixed point theorem. Moreover, for fuzzy fractional differential equations (FFDEs) driven by
the Liu process, this present work introduced a concept of stability in credibility space. Finally, efficient examples are presented
to demonstrate the main theoretical findings.

1. Introduction

Fractional-order dynamical equations can be used to model a
huge spectrum of physical processes in modern-world obser-
vations [1]. Due to its wide range application in various areas
of sciences such as physics, chemistry, biology, electronics,
thermal systems, electrical engineering, mechanics, signal pro-
cessing, weapon systems, electrohydraulics, population model-
ing, robotics, and control, the concept of fuzzy sets continues
to catch the attention of researchers [2]. As a result, in recent
years, scholars have been increasingly interested in it. As a con-
cept of describing a set with uncertain boundary, the fuzzy set
was developed by Zadeh et al. [3]. The concept of possibility
measure was studied by Zadeh [4] in 1978. Fuzzy set theory
is a very useful technique for simulating uncertain problems.
In fuzzy calculus, therefore, the concept of the fractional deriv-
ative is essential. Although the possibility measure provides the
theoretical basis for the measurement of fuzzy events, it does
not satisfy self-duality. Liu B. and Liu Y. [5] studied the con-
cept of credibility measure in 2002, and a sufficient and neces-
sary condition for credibility measure was derived by Li and
Liu [6] in 2006. Fractional differential equations (FDEs) are
differential equations with fractional derivatives. It is known
from the research on fractional derivatives that they originate
uniformly from major mathematical reasons. Different types

of derivatives exist, such as Caputo and RL [7]. In 1965, Zadeh
used the membership function to propose the concept of fuzzy
sets for the first time. The FFDE is the most fascinating field.
They are useful for understanding phenomena that have an
underlying effect. Kwun et al. [8] and Lee et al. [9] investigated
the solution of uniqueness-existence for FDEs. Controlled pro-
cesses have been explored by several researchers. In the case of
the fuzzy system, Kwun et al. [10] for the impulsive semilinear
FDEs, controllability in n-dimension fuzzy vector space was
demonstrated. Park et al. [11] controllability of semilinear
fuzzy integro-differential equations with nonlocal conditions
was investigated. Park et al. [12] established controllability of
impulsive semilinear fuzzy integro-differential equations. Phu
and Dung [13] studied stability analysis and controllability of
fuzzy control set differential equations. According to Lee
et al. [14], in the n-dimensional fuzzy space EN

n of a nonlinear
fuzzy control system, controllability with nonlocal initial con-
ditions was examined.

Balasubramaniam and Dauer [15] examined the control-
lability of stochastic systems in Hilbert space of quasilinear
stochastic evolution equations, while Feng [16] explored
the controllability of stochastic with control systems associ-
ated with time-variant coefficients. Arapostathis et al. [17]
analyzed the controllability of stochastic differential systems
of equations with linear-controlled diffusion affected by
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Lipschitz nonlinearity that is limited, smooth, and uniform.
Stochastic differential equations given by Brownian motion
are a well-known and well-studied area of modern mathe-
matics. A new type of FDE was created using the Liu tech-
nique [18], which was described as follows:

dXν = f Xν, νð Þdν + g Xν, νð ÞdCν, ð1Þ

where Cν denotes Liu operation and f and g are functions
that have been assigned to it. This class of equations is solved
using a fuzzy technique. For homogeneous FDEs, Chen and
Qin [19] studied solutions of existence-uniqueness of few spe-
cial FDEs. Liu [20] investigated an approximate method for
solving unknown differential equations. Abbas et al. [21, 22]
worked on a partial differential equation. Niazi et al. [23, 24],
Iqbal et al. [25], Shafqat et al. [26], Abuasbeh et al. [27], and
Alnahdi [28] existence-uniqueness of the FFEE were investi-
gated. Arjunan et al. [29–32] worked on the fractional differ-
ential inclusions.

Using conclusions of Liu [20], Jeong et al. [33] focused
on exact controllability in credibility space for FDEs.
Abstract FDEs’ complete controllability in credibility space
is as follows:

dx ν, ϖð Þ = Ax ν, ϖð Þdν + f ν, x ν, ϖð Þð ÞdCν + Bu νð Þ, ν ∈ 0,I½ �,
x 0ð Þ = x0:

ð2Þ

We used the Caputo derivative to prove controllability
for the fuzzy delay impulsive fractional integro-evolution
equation in credibility space with nonlocal condition; as a
result of the above research,

C
0 D

β

νu ν, ζð Þ = gi ν, u νð Þð Þ + Au ν, ζð Þ
+
ðν
0
f ν, u ν, ζð Þð Þ,

ðs
0
k s, u ν, ζð Þð Þ

� �
dCν

+ Bx νð ÞCx νð Þdν, ν ∈ 0, νið �, i = 1, 2,⋯,N ,

u 0ð Þ = u0 + h ν1, ν2,⋯, νi, u :ð Þð Þ, ð3Þ

where Uð⊂ENÞ and Vð⊂ENÞ are two bounded spaces. EN
is denoted for the set of numbers; all upper semicontinu-
ously convex fuzzy on Rm, and ðΘ1, Pm,C rÞ, is the credibil-
ity space.

The fuzzy coefficient is defined by the state function u
: ½0,I� × ðΘ1, Pm,C rÞ⟶U . f : ½0,I� ×U ⟶U is a fuzzy
process. x : ½0,I� × ðΘ1, Pm,C rÞ⟶V is regular fuzzy
function, x : ½0,I� × ðΘ1, Pm,C rÞ⟶V is control function,
and B is linear bounded operator on V to U . The initial
value is u0 ∈ EN, and Cν denotes the Liu process.

The goal of this work is to investigate the existence and
stability of results to FDEs and the exact controllability
driven by the Liu process, in order to deal with a fuzzy pro-
cess. Some scholars discovered FDE results in the literature,
although the vast majority of them were differential equa-
tions of the first order. We discovered the results for Caputo
derivatives of order ð0, 1Þ in our research. Stability, as a part

of differential equation theory, is vital in both theory and
application. As a result, stability is a key subject of study
for researchers, and research papers on stability for FDE
have been published in the last two decades, for example,
essential conditions for solution stability and asymptotic sta-
bility of FDEs. We use fuzzy delay impulsive fractional
integro-evolution equations with the nonlocal condition.
The theory of fuzzy sets continues to gain scholars’ attention
because of its huge range of applications in different fields of
sciences such as engineering, robotics, mechanics, control,
thermal systems, electrical, and signal processing.

In Section 2, we go over some basic notions relating to
Liu’s processes and fuzzy sets. Section 3 demonstrates the exis-
tence of solutions of FDE and shows that FDE is precisely con-
trollable. The concept of credibility stability for FDEs driven
by the Liu process was developed in Section 4. Finally, in Sec-
tion 5, several theorems for FDEs driven by the Liu process
that is stable in credibility space were demonstrated.

2. Preliminary

If MkðRmÞ be the family of all nonempty compact convex
subsets of Rm, then addition and scalar multiplication are
commonly defined as MkðRmÞ. Consider two nonempty
bounded subsets of Rm, A1 and B1. The distance between
A1 and B1 is measured using the Hausdorff metric as

d Ai, Bið Þ =max sup
ai∈Ai

inf
bi∈Bi

ai − bik k, sup
bi∈Bi

inf
ai∈Ai

ai − bik k
( )

, ð4Þ

where k·k indicates the usual Euclidean norm in Rm. It
follows that ðMkðRmÞ, dÞ is a separable and complete metric
space [20]. Satisfy the below condition:

Em = j : Rm ⟶ 0, 1½ � j satisfies að Þ − bð Þbelowjf g, ð5Þ

where

(a) j is normal; there exists an j0 ∈ Rm such that jðj0Þ = 1.
(b) j is fuzzy convex, such that is jðλν + ð1 − λÞsÞ ≥ 1.

(c) j is upper semicontinuous function on Rm, that is, j

ðν0Þ ≥ lim
k⟶∞

�jðνkÞ for any νk ∈ Rmðk = 0, 1, 2,⋯Þ, νk
⟶ ν0.

(d) ½j�0 = clfu ∈ RmjjðνÞ > 0g is compact.

In Rm [34], for 0 < β < 1, denote ½j�β = fν ∈ RmjuðνÞ ≥ βg
and ½u�0 are nonempty compact convex sets. Then from (a) to
(b), it concludes that β-level set ½j�βν ∈MkðRmÞ for all 0 < β
< 1. Using Zadeh’s extension principle, we can have scalar mul-
tiplication and addition in fuzzy number space Em as follows:

j ⊕ ℘½ �β = j½ �β ⊕ ℘½ �β, kj½ �β = k ℘½ �β, ð6Þ

where j, ℘ ∈ Em, k ∈ Rm and 0 < β < 1. Assume EN denotes a set
of all numbers upper semicontinuously convex fuzzy on Rm.

2 Journal of Function Spaces



Definition 1 (see [35]). Given a complete metric DL by

DL j, yð Þ = sup
0<β<1

dL j½ �β, ℘½ �β
n o

= sup
0<β<1

max jβl − ℘β
l

��� ���, jβl − ℘β
r

��� ���n o
,

ð7Þ

for any u, v ∈ EN, which satisfies DLðj + z,℘+zÞ =DLðj,℘Þ for
each z ∈ EN and ½j�α = ½jβl , uβr �, for each β ∈ ðj,℘Þ where χ

β
l ,

uβr ∈ Rm with jβl ≤ uβr .

Definition 2 (see [36]). The fractional derivative of RL is
stated as

aD
λ
ν f νð Þ = d

dν

� �n+1ðν
a
ν − τð Þn−λ f τð Þdτ, where n ≤ λ ≤ n + 1ð Þ:

ð8Þ

Definition 3 (see [37]). The fractional derivatives in the sense
of Caputo C

a D
σ
ν f ðνÞ of order α ∈ Rm+

are described by

C
a D

σ

ν f νð Þ = aD
σ
ν f νð Þ − 〠

n−1

k=0

f kð Þ að Þ
k!

ν − að Þk
 !

, ð9Þ

where n = ½σ� + 1 for σ ∉N0 ; n = σ for σ ∈N0.

Definition 4 (see [37]). The Wright function ψσ is defined by

ψσ ϖð Þ = 〠
∞

n=0

−ϖð Þn
n!Γ −σn + 1 − σð Þ

= 1
π
〠
∞

n=1

−ϖð Þn
n − 1ð Þ!Γ nσð Þ sin nπσð Þ,

ð10Þ

where ϖ ∈ℂ with 0 < σ < 1.

Definition 5 (see [38]). For any j, ℘ ∈Cð½0, T�, ENÞ, metric
H1ðχ, ℘Þ on Cð½0, T�, ENÞ is defined by

H1 j,℘ð Þ = sup
0≤ν≤T

DL j νð Þ,℘ νð Þð Þ: ð11Þ

Consider that Θ1 is a nonempty set and Pm denotes
power set on Θ1. A case is a label given to each element of
Pm. To present an axiomatic credibility, an idea based on
the consideration of Ai will occur. To validate that the num-
ber C rfAig is applied to each Ai event, representing the
probability of Ai happens. We accept the four main axioms
to ensure that the number C rfAig has certain mathematical
features that we predict:

(a) Normality property C rfΘ1g = 1,
(b) Monotonicity property C rfAig ≤C rfBig, whenever

Ai ⊂ Bi,

(c) Self-duality property C rfAig +C rfAc
ig = 1 for any

event Ai,

(d) Maximality property C rf∪iAig = supiC rfAig for any
events fAig with supiC rfAig < 0:5.

Definition 6 (see [39]). TakeΘ be the nonempty set, Pm be the
power set ofΘ1, and C r be the credibility measure. After that,
the triplet ðΘ1, Pm,C rÞ is assigned to the set of real numbers.

Definition 7 (see [39]). A fuzzy variable is a function that is
generated from a set of real numbers ðΘ1, Pm,C rÞ to credi-
bility space ðΘ1, Pm,C rÞ.

Definition 8 (see [39]). If ðΘ1, Pm,C rÞ be credibility space
and ðΘ1, Pm,C rÞ be an index set, a fuzzy process is a func-
tion that takes a set of real numbers and multiplies them
by T × ðΘ1, Pm,C rÞ.

It is a fuzzy method. uðν, ζÞ is a two-variable function in
which uðν, ζ∗Þ represents a fuzzy variable for each ν∗. For
each fixed ζ∗, the function uðν, ζÞ is termed a sample path
of fuzzy process. The fuzzy process uðν, ζÞ is said to be sam-
ple continuous if sample ping is continuous for almost all ζ.
Alternately of uðν, ζÞ, we frequently use the notation uν.

Definition 9 (see [39]). ðΘ1, Pm,C rÞ is the symbol of a cred-
ibility space. The β-level set is applied for the fuzzy random
variable uν in credibility space for each β ∈ ð0, 1Þ.

uν½ �β = uνð Þβl , uνð Þβr
h i

, ð12Þ

is defined by

uνð Þβl = inf uνð Þβ = inf a ∈ Rm ; uν að Þ ≥ βf g,
uνð Þβr = sup uνð Þβ = inf a ∈ Rm ; uν að Þ ≥ βf g,

ð13Þ

where ðuνÞβl , ðuνÞβr ∈ Rm with ðuνÞβl ≤ ðuνÞβr when β ∈ ð0, 1Þ.

Definition 10 (see [5]). Suppose that ϖ is a fuzzy variable and
that r is a real number. Then, ϖ’s expected value is defined:

Eϖ =
ð+∞
0

Cr ϖ ≥ rf gdr−
ð0
−∞

C r ϖ ≤ rf gdr, ð14Þ

if at least one of the integrals is finite.

Lemma 11 (see [5]). If ϖ is a fuzzy vector, then the following
are properties of expected value operator E:

(a) If f ≤ g, E½ f ðϖÞ� ≤ E½gðϖÞ�
(b) E½−f ðϖÞ� = −E½ f ðϖÞ�
(c) If f and g are comonotonic, we have for any nonneg-

ative real numbers ai and bi,
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(a)

E ai f ϖð Þ + big ϖð Þ½ � = a1E f ϖð Þ½ � + b1E g ϖð Þ½ �,
ð15Þ

where f ðϖÞ and gðϖÞ are fuzzy variables, respectively.

Definition 12 (see [5]). A fuzzy process Cν is Liu process, if

(a) C0 = 0,
(b) the Cν has independent and stationary increments,

(c) any increment Cν+s −C s is normally distributed
fuzzy variable with expected value eν and variance
ϕ2ν2, with membership function.

ξ uð Þ = 2 1 + exp π u − eνj jffiffiffi
6

p
ϕν

� �� �−1
, u ∈ Rm ð16Þ

The parameters ϕ and e represent the diffusion and drift
coefficients, respectively. If e = 0 and ϕ = 1, the Liu process is
standard.

Definition 13 (see [40]). Suppose that Cν is a standard Liu
process and uν is a fuzzy process. The mesh is fixed as c =
ν0 <⋯ < νn = d for any partition of the closed interval ½c, d
� with c = ν0 <⋯ < νn = d,

Δ =max
1≤i≤n

νi − νi−1ð Þ: ð17Þ

After that, the fuzzy integral of uν with regard to Cν is
calculated:

ðd
c
uνdCν = lim

Δ⟶0
〠
n

i=1
μ νi−1ð Þ Cνi

−Cνi−1

À Á
, ð18Þ

determined by the limit exists almost positively and is a
fuzzy variable.

Lemma 14 (see [40]). Consider that Cν represent the stan-
dard Liu process with C rfζg > 0, and the direction Cν is
Lipschitz continuous, employing the below inequality:

Cν1
−Cν2

�� �� <K ζð Þ ν1 − ν2j j, ð19Þ

where KðζÞ is Lipschitz, which is a fuzzy variable
described by

K ζð Þ =
sup
0≤s≤ν

Cν −C sj j
ν

− s, C r ζf g > 1,

∞, otherwise,

8><
>: ð20Þ

and E½Kp� <∞ for all p > 1.

Lemma 15 (see [40]). Assume that hðν ; cÞ is a continuously
differentiable function and that Cν is a standard Liu process.
The function is defined as uν = hðν ;CνÞ. Then, there is the
chain rule, which is as follows:

duν =
∂h ν ;Cνð Þ

∂ν
dν + ∂h ν ;Cνð Þ

∂C
dCν: ð21Þ

Lemma 16 (see [40]). The fuzzy integral inequality exists if
f ðnuÞ is a continuous fuzzy process:

ðd
c
f νð ÞdCν

����
���� ≤K

ðd
c
f νð Þj jdν: ð22Þ

In Lemma 14, the term K =KðζÞ is defined.

3. Existence of Solutions

This part applies the symbol uν instead of the lengthy notation
uðν, ζÞ, as defined by Definition 8. The existence-uniqueness
of solutions to FDE 1 ðx ≡ 0Þ has been investigated.

C
0 D

β
νuν = giuν + Auν +

ðν
0
f ν, uνð Þ +

ðs
0
K s, uνð Þ

� �
dCν, β ∈ 0, 1ð Þ,

u 0ð Þ = u0 + h ν1, ν2,⋯, νi, u :ð Þð Þ,  ∈ EN ,

8><
>:

ð23Þ

where uν is state that includes values from the Uð⊂ENÞ set
of values. The set of all upper semicontinuously convex fuzzy
numbers on Rm is called EN, credibility space is ðΘ1, Pm,C rÞ,
fuzzy coefficient is A, and state function u : ½0,I� × ðΘ1, Pm

,C rÞ⟶U is fuzzy process, f : ½0,I� ×U ⟶U is regular
fuzzy function, Cν is standard Liu process, and u0 ∈ EN is ini-
tial value.

Lemma 17. If uðνÞ is the solution of equation (3) for uð0Þ
= u0 + gðν1, ν2,⋯, νp, uð:Þ, then uðνÞ is given by

u νð Þ = νβ−1 u0ð + g ν1, ν2,⋯, νp, u :ð ÞÀ Á
+ 1ffiffiffi

q
p

ðν
0
ν − sð Þβ−1gi s, x sð Þð Þds

�

+
ðν
0
ν − sð Þβ−1 Au s, ζð Þ +

ðν
0
f

�

Á s, u s, ζð Þ,
ðs
0
K s, u s, ζð Þð ÞdC s

� �
+ B sð ÞC sð Þ

��ds,
ð24Þ

holds, and then,

u νð Þ = νβ−1Pβ νð Þ u0ð + g ν1, ν2,⋯, νp, u :ð ÞÀ Á
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, x sð Þð Þds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Au s, ζð Þ½

+
ðν
0
f s, u s, ζð Þ,

ðs
0
K s, u s, ζð Þð ÞdC s

� �
+ B sð ÞC sð Þ

�
ds,

ð25Þ
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where

Pq νð Þ =
ð∞
0
qζMq ζð ÞQ νqζð Þdζ: ð26Þ

Suppose that the statements below are correct:
(J1) For uν, vν ∈Cð½0,I� × ðΘ1, Pm,C rÞ,UÞ, ν ∈ ½0,I�.

There exist positive number m that is

dL f ν, uνð Þ½ �β, f ν, vνð Þ½ �β
� �

≤mdL uν½ �β, vν½ �β
� �

f 0, X 0f g 0ð Þ
� �

≡ 0:
ð27Þ

(J2) 2cmKI ≤ 1. Because of Lemma 17, (23) has the solu-
tion uν. As a result, we establish in Theorem 18 that the solu-
tion to (23) is unique.

Theorem 18. For (u0 + gðν1, ν2,⋯, νp, uð:ÞÞ ∈ EN , if (J1) and
(J2) are hold, (23) has an unique solution uν ∈Cð½0,I�Þ × ð
Θ1, Pm,C rÞ,U).

Proof. For all ϖν ∈Cð½0,I� × ðΘ1, Pm,C rÞ,UÞ, ν ∈ ½0,I�,
define

ϕϖν = νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ ÁÀ
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, ϖsð Þ

�
ds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

Á Aϖs +
ðν
0
f s, ϖs,

ðs
0
K s, ϖsð ÞdC s

� �
+ B sð ÞC sð Þ

� �
ds:

ð28Þ

As a result, the ϕϖ : ½0,I� × ðΘ1, Pm,C rÞ⟶ ð½0,I� ×
ðΘ1, Pm,C rÞ,UÞ can be established as

ϕ : C 0,I½ � × Θ1, Pm,C rð Þ,Uð Þ⟶C 0,I½ � × Θ1, Pm,C rð Þ,Uð Þ:
ð29Þ

For equation (23), ϕ is a fixed point which is likewise an
obvious solution. ϖν, μν ∈Cð½0,I� × ðΘ1, Pm,C rÞ,UÞ,
according to hypothesis (J1) and Lemma 16.

dL ϕϖν½ �β, ϕμν½ �β
� �
= dL

ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, ϖsð Þ +

ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

��

· A s, ϖsð Þ + f s, ϖsð Þ,
ðs
0
K s, ϖsð ÞdC s

� �� ��β
,

·
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, μsð Þ +

ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

�

· Aμs + f s, μsð Þ,
ðs
0
K s, μsð ÞdCs

� �� �β!

≤ cmK

ðν
0
dL θs½ �β, μs½ �β
� �

ds:

ð30Þ

Therefore, we obtain

DL ϕϖν, ϕμνð Þ = sup
β∈ 0,1ð Þ

dL ϕϖν½ �β, ϕμν½ �β
� �

≤ cmK

ðν
0
sup

β∈ 0,1ð Þ
dL ϖν½ �β, μν½ �β
� �

ds

= cmK

ðν
0
DL ϖs, μsð Þds:

ð31Þ

As a result, according to Lemma 11, for a.s. ϖ ∈Θ1,

E H1 ϕϖ, ϕμð Þð Þ = E sup
ν∈ 0,Tð �

DL ϕϖν, ϕμνð Þ
 !

≤ E cmK sup
ν∈ 0,Ið �

ðν
0
DL ϖν, μνð Þ

 !

≤ cmKIE H1 ϖ, μð Þð Þ:

ð32Þ

A contraction mapping is ϕ according to hypothesis (J2).
The Banach fixed point theorem equation (23) has unique
fixed point xν ∈Cð½0,I� × ðΘ1, Pm,C rÞ,UÞ.
3.1. Exact Controllability. In this section, we will study exact
controllability for differential equation in the context of
Caputo operator (3). We investigate a solution for equation
(3) x in Vð⊂ENÞ.

ϕϖν = νβ−1Pβ νð Þ u0 + hð ν1, ν2,⋯, νp, u :ð ÞÀ Á
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, usð ÞÞds +

ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Aus +

ðν
0
f s, us,

ðs
0
K s, usð ÞdC s

� �
+ BusCus

� �
ds,

u 0ð Þ = u0 + h ν1, ν2,⋯, νi, u :ð Þð Þ,

8><
>:

ð33Þ
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where SðνÞ continuous, such that Sð0Þ = I = S′ð0Þ and j
SðνÞj ≤ c, c > 0, ν ∈ ½0,I�. The term of controllability is
defined for Caputo fuzzy differential equations.

Definition 19. Equation (3) is called a controllable on ½0,I�,
if there is control uν ∈ V for every u0 ∈ EN where the solution
u of (3) satisfies the condition uν = u−1 ∈U , a.s. ζ, that is,
½uν�β = ½u1�β.

Given fuzzy ~G : ~PðRmÞ⟶U mapping such that

~G
β
vð Þ =

ðT
0
ν − sð Þβ−1Pβ ν − sð ÞBvsCvsds, ℘⊂�Γj,

0, otherwise,

8><
>:

ð34Þ

where �Γx is closure of support x and a nonempty fuzzy sub-
set ~PðRmÞ of Rm.

After that, there is a ~G
β
i ði =m, nÞ,

~G
β
m ℘mð Þ =

ðT
0
ν − sð Þq−1Pβ

m ν − sð ÞB ℘sð ÞmC ℘sð Þmds, ℘sð Þm ∈ ℘sð Þβm, ℘sð Þ1
h i

,

~G
β
n ℘nð Þ =

ðT
0
ν − sð Þq−1Pβ

n ν − sð ÞB ℘sð ÞnC ℘sð Þnds, ℘sð Þn ∈ ℘sð Þ1, ℘sð Þβn
h i

:

ð35Þ

We assume that ~G
β
m, ~G

β
n are bijective functions. A β-level

set of xs can be presented as below:

xs½ �β = xsð Þβm, xsð Þβn
h i

= ~G
β
m

� �−1
u1
À Áβ

m
− νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Áβ

m

�n�

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgβim s, usð Þ

�
ds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Aus +

ðν
0
f βm s, us,

ðs
0
Kβ

m s, usð ÞdC s

� ��

+ Bβ
m usð ÞCβ

m usð Þds
i
dsg, ~G

β
n

� �−1
Á − u1

À Áβ
n
− νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Áβ

n

�n
−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgβin s, usð Þ

�
ds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

Á Aus +
ðν
0
f βn s, us,

ðs
0
Kβ

n s, usð ÞdC s

� �
+ Bβ

n usð ÞCβ
n usð Þds

� ���:
ð36Þ

This expression is substituted into (33) to get the β-level
of xν.

uν½ �β = νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ ÁÀh
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, usð Þ

�
ds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Aus + f s, us,

ðs
0
K s, usð ÞdC s

� ��
+ BusCus�ds�β

= νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Áβ
m

�h
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgβmi s, usð Þ

�
ds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

Á Aus + f βm s, us,
ðs
0
Kβ

m s, usð ÞdC s

� �� �

+
ðν
0
ν − sð Þβ−1Pβ ν − sð ÞB ~G

β
m

� �−1
Á u1
À Áβ

m
− νβ−1Pβ νð Þ u0 + g ν1, ν2,⋯, νp, u :ð ÞÀ Áβ

m

�n
−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgβmi s, usð Þ

�
ds

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Aus − f βm s, us,

ðs
0
Kβ

m s, usð ÞdC s

� ��

− BusCus�gds, νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Áβ
n

�
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgβni s, usð ÞÞds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Aus + f βn s, us,

ðs
0
Kβ

n s, usð ÞdC s

� �� �

+
ðν
0
ν − sð Þβ−1Pβ ν − sð ÞB ~G

β
n

� �−1
· u1
À Áβ

n
− νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Áβ

n

�n
−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgβni s, usð ÞÞds

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

· Aus − f βn s, us,
ðs
0
Kβ

n s, usð ÞdC s

� �
− BusCus

� �gds�
= νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Áβ

m

�h
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgβmi s, usð ÞÞds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Aus + f βm s, us,

ðs
0
Kβ

m s, usð ÞdC s

� �� �

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ~Gβ

n
~G
β
n

� �−1
· u1
À Áβ

m
− νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Áβ

m

�n
−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgβmi s, usð ÞÞds

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Aus − f βm s, us,

ðs
0
Kβ

m s, usð ÞdC s

� ��
− BusCus�gds, νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Áβ

n

�
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+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgβni s, usð ÞÞds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Aus + f βn s, us,

ðs
0
Kβ

n s, usð ÞdC s

� �� �

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ~Gβ

n
~G
β
n

� �−1

· u1
À Áβ

n
− νβ−1Pβ νð Þ u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Áβ

n

�n

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgβni s, usð ÞÞds

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

· Aus − f βn s, us,
ðs
0
Kβ

n s, usð ÞdC s

� �
BusCus

� �
gds�

= u1
À Áβ

m
, u1
À Áβ

n

h i
= u1
Â Ãα

: ð37Þ

Hence, this control xν satisfies uν = u1, a.s. ζ.
We now set

ψuν = νβ−1Pβ νð Þ
�
u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Á

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, usð Þ

�
ds +

ðν
0
ν − sð Þβ−1

Á Pβ ν − sð Þ Aus + f s, us,
ðs
0
K s, usð ÞdC s

� �� �

+
ðν
0
ν − sð Þβ−1Pβ ν − sð ÞB ~G

� �−1�
u1
À Á

− νβ−1Pβ νð Þ

Á
�
u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Á

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

Á gi s, usð Þ
�
ds −

ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

�
Aus − f

Á s, us,
ðs
0
K s, usð ÞdC s

� �
− BusCus

��
ds:

ð38Þ

Fuzzy mappings ~G
−1

holds the above equation.

dL ψuν½ �β, ψvν½ �β
i� �

= dL

 �
νβ−1Pβ νð Þ

�
u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Á

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, usð Þ

�
ds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Aus + f s, us,

ðs
0
K s, usð ÞdC s

� �� �

+
ðν
0
ν − sð Þβ−1Pβ ν − sð ÞB ~G

� �−1�
u1
À Á

− νβ−1Pβ νð Þ

Á u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ Á
−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, usð Þ

� �
ds

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Aus − f s, us,

ðs
0
K s, usð ÞdC s

� �
− BusCus

� ��
ds
�β
,

νβ−1Pβ νð Þ v0 + h ν1, ν2,⋯, νp, v :ð ÞÀ Á
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, vsð Þ

� �
ds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Avs + f s, vs,

ðs
0
K s, vsð ÞdC s

� �� �

+
ðν
0
ν − sð Þβ−1Pβ ν − sð ÞB~G−1

�
v1
À Á

− νβ−1Pβ νð Þ

Á v0 + h ν1, ν2,⋯, νp, v :ð ÞÀ Á
−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, vsð Þ

� �
ds

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Avs − f s, vs,

ðs
0
K s, vsð ÞdCs

� �
− BvsCvs

� ��
ds

!

≤dL

 �ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, usð Þds +

ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

Á Aus + f s, us,
ðs
0
K s, usð ÞdC s

� �� ��β
,
�ðν

0
ν − sð Þβ−1Pβ ν − sð Þgi s, vsð Þds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Avs + f s, vs,

ðs
0
K s, vsð ÞdCτ sð Þ

� �� ��β!

+dL

 �ðν
0
ν − sð Þβ−1Pβ ν − sð ÞB~G−1 ×

ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, usð Þ

�
ds

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þf s, us,

ðs
0
K s, usð ÞdCτ sð Þds

� �
,

Á
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, vsð Þds +

ðν
0
ν − sð Þβ−1Pβ ν − sð Þ

Á Avs + f s, vs,
ðs
0
K s, vsð ÞdC s

� �� ��β!
+dL

 �ðν
0
ν − sð Þβ−1Pβ ν − sð ÞB~G−1 ×

ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, usð Þ

�
ds

−
ðν
0
ν − sð Þβ−1Pβ ν − sð Þf s, us,

ðs
0
K s, usð ÞdCτ sð Þds

� ��β!

≤ cmK

ðν
0
dL us½ �β, vs½ �β
� �

ds

+dL

 �
~G~G

−1
�ðν

0
ν − sð Þβ−1Pβ ν − sð Þgi s, usð Þds

+
ðν
0
f s, us,

ðs
0
K s, usð ÞdC s

� ���β�
~G~G

−1
�ðν

0
ν − sð Þβ−1

Á Pβ ν − sð Þgi s, vsð Þds +
ðν
0
f s, vs,

ðs
0
K s, vsð ÞdC s

� ���β!

≤cmK

ðν
0
dL us½ �β, vs½ �β
� �

ds + cmK

ðν
0
dL f s, usð Þ½ �β, f s, vsð Þ½ �β
� �

ds

≤ 2cmK

ðν
0
dL us½ �β, vs½ �β
� �

ds: ð39Þ

Theorem 20. If Lemma 16 and hypotheses (J1) and (J2) are
hold, then equation (3) is controllable on ½0,I�.

Proof. From Cð½0,I� × ðΘ1, Pm,UÞ to Cð½0,I�, we can
clearly see that ψ is continuous. We have Lemma 16 and
hypotheses (J1) and (J2) for any given ζ with C rfζg > 0, xν,
℘ν ∈Cð½0,I� × ðΘ1, Pm,C rÞ,UÞ.

Hence, by Lemma 11,

E H1 ψu, ψvð Þð Þ = E sup
ν∈ 0,I½ �

DL ψuν, ψvνð Þ
 !

= E sup
ν∈ 0,I½ �

sup
0<β≤1

DL ψuνj jβ, ψvνj jβ
� �

ds

 !

≤ E sup
ν∈ 0,I½ �

sup
0<β≤1

2cmK

ðν
0
DL us½ �β, vs½ �β
� �

ds

 !

≤ E sup
ν∈ 0,I½ �

2cmK

ðν
0
DL us, vsð Þds

 !
≤ 2cmKIF H1 u, vð Þð Þ:

ð40Þ
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As a consequence, ð2cmKIÞ < 1 is a Ã‚ sufficient I. As
a result, ψ stands for contraction. The Banach fixed point
theorem is now being applied to show that (33) has a single
fixed point. ½0,I� can be used to control (3).

Example 1. We investigate FFDE in credibility space:

where states consider values from Uð⊂ENÞ and space V
ð⊂ENÞ two bounded spaces. The set of all, upper semicon-
tinuously convex, fuzzy numbers on Rm is EN and ðΘ1, Pm

,C rÞ denotes credibility space.

The state function u : ½0,I� × ðΘ1, Pm,C rÞ⟶U is
fuzzy coefficient. Fuzzy process f : ½0,I� ×U ⟶U . x : ½0,

I� × ðΘ1, Pm,C rÞ⟶V is a regular fuzzy function, x : ½0,
I� × ðΘ1, Pm,C rÞ⟶V is a control function, and B is a V
to U linear bounded operator. u0 ∈ EN is an initial value,
and Cν is standard Liu process.

Assume f ðν, uνÞ = ~2νuν, S−1ðνÞ = e−~2ν, defining wν =
S−1ðνÞuν. Then, the equations of balance become

Therefore, Lemma 17 is satisfied.
½2�β = ½β + 1, 3 − β� is the β-level, set of fuzzy, number ~2,

for all β ∈ ð0, 1Þ. β-level set of f ðν, uνÞ is

f ν, uνð Þ½ �β = ν β + 1ð Þ uνð Þβm, 3 − βð Þ uνð Þβm
h i

: ð43Þ

Further, we have

dL f ν, uνð Þ½ �β, f ν, vνð Þ½ �β
� �
= dL ν β + 1ð Þ uνð Þβm, 3 − βð Þ uνð Þβn

h i
, ν

�
· β + 1ð Þβm, 3 − βð Þ vνð Þβn
h i�

= ν max β + 1ð Þ uνð Þβm − vνð Þβm
��� ���,n

· 3 − βð Þ uνð Þβn − vνð Þβn
��� ���o

≤ 3I max uνð Þβm − vνð Þβm
��� ���, uνð Þβn − vνð Þβn

��� ���n o
=mdL uν½ �β, vν½ �β

� �
,

ð44Þ

where m = 3I satisfies an inequality in the (J1) and (J2)
hypotheses. All conditions given in Theorem 18 are fulfilled.
Assume that ~1 is the initial value for u0. The plan set u1 = ~2.
~1 is ½~1� = ½β − 1, 1 − β�, β ∈ ð0, 1Þ is β-level set of fuzzy num-
bers ~1. The xs of (41)’s β-level set is presented.

xs½ � = xsð Þβm, xsð Þβn
h i

= ~G
β
m

� �−1
β + 1ð Þ − Sβm I − sð Þ β − 1ð Þ

n�

−
ðI
0
Sβm I − sð Þs β + 1ð Þ usð ÞβmdC s

�
, ~G

β
n

� �−1
Á 3 − βð Þ − Sβn Ið Þ 3 − βð Þ
n
−
ðI
0
Sβn I − sð Þs 3 − βð Þ usð ÞβndC s

��:

ð45Þ

This expression is then substituted into (42) to get the β
-level of uν:

C
0 D

β
νu ν, ζð Þ = gi ν, u νð Þð Þ + Au ν, ζð Þ +

ðν
0
f ν, u ν, ζð Þð Þ +

ðs
0
k s, u ν, ζð Þð Þ

� �
dCν + Bx νð ÞCx νð Þdν,

u 0ð Þ = u0 + h ν1, ν2,⋯, νi, u :ð Þð Þ,  ∈ EN ,

8><
>: , ð41Þ

uν = νβ−1Pβ νð Þ u0 + hð ν1, ν2,⋯, νp, u :ð ÞÀ Á
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, x sð Þð Þds +

ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Au s, ζð Þ +

ðν
0
f s, u s, ζð Þ,

ðs
0
K s, u s, ζð Þð ÞdC s

� �
+ B sð ÞC sð Þ

� �
ds,

u 0ð Þ = u0 + h ν1, ν2,⋯, νi, uð :ð Þ ∈ EN:

8><
>:

ð42Þ
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uν½ �β = Sβm Ið Þ β − 1ð Þ +
ðI
0
Sβm I − sð Þs β + 1ð Þ usð ÞβmdC s

�

+
ðI
0
Sβm I − sð ÞB ~G

β
m

� �−1
β + 1ð Þ − Sβm Ið Þ β − 1ð Þ

n

−
ðI
0
Sβm I − sð Þs β + 1ð Þ usð ÞβmdC s

�
ds, Sβn Ið Þ 1 − βð Þ

+
ðI
0
Sβn I − sð Þs 1 − βð Þ usð ÞβndC s

+
ðI
0
Sβn I − sð ÞB ~G

β
n

� �−1
3 − βð Þ − Sβr Ið Þ 1 − βð Þ

n

−
ðI
0
Sβn I − sð Þs 3 − βð Þ usð ÞβndC s

�
ds�

= β + 1ð Þ, 3,−βð Þ½ � = ~2
Â Ãβ

:

ð46Þ

Following that, conditions in Theorem 20 have been ful-
filled. As a result, (41) on ½0, T� can be controlled.

4. Definition of Stability in Credibility

We shall provide a concept of credibility stability for FFDEs
driven by the Liu process in this part.

Definition 21. The FDE 1 is said to be stability in credibility if
for, any two, solutions uν and vν corresponding to different
initial values u0 + hðν1, ν2,⋯, νp, uð:Þ and v0 + hðν1, ν2,⋯,
νp, vð:Þ, we have

lim
u0−v0j j⟶0

C r uν − vνj j < εf g = 1, for all ν ≥ 0, ð47Þ

where ε is any given number and ε > 0.

Example 2. Take the FFDE to better understand the concept
of credibility stability.

uν = νβ−1Pβ νð Þ u0 + hð ν1, ν2,⋯, νp, u :ð ÞÀ Á
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, x sð Þð Þds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Au s, ζð Þ½

+
ðν
0
f s, u s, ζð Þ,

ðs
0
K s, u s, ζð Þð ÞdC s

� �
+ B sð ÞC sð Þ

�
ds,

vν = νβ−1Pβ νð Þ v0 + hð ν1, ν2,⋯, νp, v :ð ÞÀ Á
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, x sð Þð Þds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Av s, ζð Þ½

+
ðν
0
f s, v s, ζð Þ,

ðs
0
K s, v s, ζð Þð ÞdC s

� �
+ B sð ÞC sð Þ

�
ds,

ð48Þ

respectively. Then, we have

uν − vνj j = u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ ÁÀ��
− v0 + h ν1, ν2,⋯, νp, v :ð ÞÀ ÁÀ ��: ð49Þ

Deduce to, for any given ε > 0, we always have

As a result, the credibility of FFDE is stable.

Definition 22. The n-dimensional FDE 1 is called stable in
credibility, if for any two solutions uν and vν corresponding
to different initial values u0 + hðν1, ν2,⋯, νp, uð:Þ and v0 +
hðν1, ν2,⋯, νp, vð:Þ, we have

lim
u0+h ν1,ν2,⋯,νp ,u :ð Þð Þð − v0+h ν1,ν2,⋯,νp ,v :ð Þð Þðk k⟶0

C r uν − vνj j < εf g = 1,∀ν ≥ 0:

ð51Þ

Example 3. Take an m-dimensional FFDE:

C
0 D

β

νu ν, ζð Þ = gi ν, u νð Þð Þ + Au ν, ζð Þ
+
ðν
0
f ν, u ν, ζð Þð Þ,

ðs
0
k s, u ν, ζð Þð Þ

� �
dCν

+ Bx νð ÞCx νð Þdν:
ð52Þ

The two solutions corresponding to different initial
values are

lim
u0+h ν1,ν2,⋯,νp ,u :ð Þð Þð − v0+h ν1,ν2,⋯,νp ,v :ð Þð Þðj j⟶0

C r uν − vνj j < εf g

= lim
u0+h ν1,ν2,⋯,νp ,u :ð Þð Þð − v0+h ν1,ν2,⋯,νp ,v :ð Þð Þðj j⟶0

C r u0 + h ν1, ν2,⋯, νp, u :ð ÞÀ ÁÀ
− v0 + h ν1, ν2,⋯, νp, v :ð ÞÀ ÁÀ�� �� < ε

È É
= 1,∀ν ≥ 0:

ð50Þ
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uν = νβ−1Pβ νð Þ u0ð + g ν1, ν2,⋯, νp, u :ð ÞÀ Á
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, x sð Þð Þds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Au s, ζð Þ½

+
ðν
0
f s, u s, ζð Þ,

ðs
0
K s, u s, ζð Þð ÞdC s

� �
+ B sð ÞC sð Þ

�
ds

vν = νβ−1Pβ νð Þ v0ð + h ν1, ν2,⋯, νp, v :ð ÞÀ Á
+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þgi s, x sð Þð Þds

+
ðν
0
ν − sð Þβ−1Pβ ν − sð Þ Av s, ζð Þ½

+
ðν
0
f s, v s, ζð Þ,

ðs
0
K s, v s, ζð Þð ÞdC s

� �
+ B sð ÞC sð Þ�ds, ð53Þ

respectively. Then, we have

uν − vνk k = u0ð + h ν1, ν2,⋯, νp, u :ð ÞÀ Á
− v0ð + h ν1, ν2,⋯, νp, v :ð ÞÀ Á

 

:

ð54Þ

As a result, we always have

Thus, m-dimensional FFDE is stability in credibility.
Note that some fuzzy differential equations driven by the

Liu process are not stable in credibility. It will be demon-
strated in the following example.

5. Theorems of Stability in Credibility

In this part, we will discuss the necessary criteria for a FFDE
driven by the Liu process to achieve credibility stability.

Theorem 23. Assume the FFDE 1 for each initial value has a
unique solution. Then, it is stable in credibility space, if coef-
ficients f ðν, uÞ and gðν, uÞ satisfy strongly Lipschitz condition

D f ν, uð Þ − f ν, vð Þð Þ + g ν, uð Þ + g ν, vð Þð Þ
≤ L νð ÞD u − vð Þ,∀u, v ∈ Rm, ν ≥ 0,

ð56Þ

for some integrable function LðνÞ on ½0, +∞Þ.

Proof. Let uν and vν be two solutions corresponding to dif-
ferential initial values ðu0 + hðν1, ν2,⋯, νp, uð:ÞÞ and ðv0 +
hðν1, ν2,⋯, νp, vð:ÞÞ, respectively. Then, for each ϑ ∈Θ1,

D uν − vνð Þ
=D f ν, utð Þdνð − f ν, vνð Þdν +D g ν, uνð ÞdCν − g ν, vνð ÞdCνð Þ
=D f ν, uνð Þ − f ν, vνð Þð Þdνð +D g ν, uνð Þ − g ν, vνð Þð ÞdCνð Þ
≤D f ν, uνð Þ − f ν, vνð Þð Þdνð Þ +D g ν, uνð Þ − g ν, vνð Þð ÞdCνð Þ
≤ L νð ÞD uν − vνð Þdν +DL tð Þ ut − vνð ÞdCν

≤ L νð ÞD ut − vνð Þdν +DL νð Þ K ϑð Þj j uν − vνð Þdν
= L tð Þ 1 + K ϑð Þj jð ÞD u νð Þ − v νð Þð Þ,

ð57Þ

where KðϑÞ is the Lipschitz constant of the Liu process.
When we take integral on both sides of equation (57),

D uν − vνð Þ ≤D u0ð + h ν1, ν2,⋯, νp, u :ð ÞÀ ÁÀ
− v0 + h ν1, ν2,⋯, νp, v :ð ÞÀ ÁÀ Á

exp

Á 1 + K ϑð Þj j
ðν
0
L sð Þds

� �
:

ð58Þ

For any given ε > 0, we always have

C r uν − vνj j < εf g
≥ u0ð + h ν1, ν2,⋯, νp, u :ð ÞÀ Á��È

− v0ð + h ν1, ν2,⋯, νp, v :ð ÞÀ Á�� exp 1 + K ϑð Þj j
ðν
0
L sð Þds

� �
< εg:

ð59Þ

Since

C r u0ð + h ν1, ν2,⋯, νp, u :ð ÞÀ Á��È
− v0ð + h ν1, ν2,⋯, νp, v :ð ÞÀ Á�� exp
· 1 + K ϑð Þj j

ðν
0
L sð Þds

� �
< ε

�
⟶ 1,

ð60Þ

as ju0 − v0j⟶ 0, we obtain

lim
u0ð +h ν1,ν2,⋯,νp ,u :ð Þð Þ− v0ð +h ν1,ν2,⋯,νp ,v :ð Þð Þj j⟶0

C r uν − vνj j < εf g = 1:

ð61Þ

Hence, the FFDE is stability in credibility. If it is not easy
to determine whether or not f ðν, uÞ and gðν, uÞ satisfy strong

lim
u0ð +h ν1,ν2,⋯,νp ,u :ð Þð Þ− v0ð +h ν1,ν2,⋯,νp ,v :ð Þð Þj⟶0

C r uν − vνj j < εf g

= lim
u0ð +h ν1,ν2,⋯,νp ,u :ð Þð Þ− v0ð +h ν1,ν2,⋯,νp ,v :ð Þð Þj j⟶0

C r u0ð + h ν1, ν2,⋯, νp, u :ð ÞÀ Á
− v0ð + h ν1, ν2,⋯, νp, v :ð ÞÀ Á�� �� < ε

È É
= 1,∀ν ≥ 0:

ð55Þ
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Lipschitz condition, the following corollary can be used to
determine whether the FFDE is stable in credibility space.

Corollary 24. Assume f ðν, uÞ and gðν, uÞ be bounded real
value functions on ½0, +∞Þ. If f ðν, uÞ and gðν, uÞ have deriv-
atives with respect to u and satisfy

f u′ ν, uð Þ�� �� + gu′ ν, uð Þ�� �� ≤ L νð Þ,∀ ≥ 0, ð62Þ

for some integrable function LðνÞ on ½0, +∞Þ, then FFDE
1 is stability in credibility.

Proof. For the bounded real valued functions f ðν, uÞ and g

ðν, uÞ,

f ν, uð Þj j + g ν, uð Þj j <K 1 + uj jð Þ, ð63Þ

where K is constant which satisfy j f ðν, uÞj + jgðν, uÞj
<K . We can derive from the mean value theorem that

f ν, u′
� �

− f ν, u′′
� ���� ��� + g ν, u′

� �
− g ν, u′′
� ���� ���

= f u′ ν, ξð Þ u′ − u′′
�� �� + gu′ ν, ηð Þ u′ − u′′

�� ��
≤ L νð Þ u′ − u′′

�� �� + L νð Þ u′ − u′′
�� �� = 2L νð Þ u′ − u′′

�� ��,
ð64Þ

where ξ, η ∈ ðu′ − uÞ existence-uniqueness theorem
demonstrates that FFDE has a unique solution. We can
deduce from Theorem 23 that FFDE is stable in credibility.
Different from Theorem 23 and Corollary 24, we have below
corollary when FFDE is general linear FFDE driven by the
Liu process.

Corollary 25. Suppose that u1ν, u2ν, v1ν, and v2ν are bounded
functions, with respect to ν on ½0, +∞Þ. If u1ν and v1ν are
integrable, on ½0, +∞Þ, then linear FDE driven by Liu process

duν = u1νuν + u2νð Þdν + v1νuν + v2νð ÞdCν, ð65Þ

is stability in credibility.

Proof. For the linear FFDE 7, we have f ðν, xÞ = u1νx + u2ν
and gðν, xÞ = v1νx + v2ν, since

u1νuν + u2νj j + v1νvν + v2νj j
≤ u1νj j uνj j + u2νj j + v1νj j uνj j + v2νj j
<K uνj j +K +K uνj j +K = 2K uνj j + 1ð Þ,
u1νuν + u2νð Þ − u1νvν + u2νð Þj j + v1νuν + v2νð Þ − v1νvν + v2νð Þj j
= u1ν uν − vνð Þj j + v1ν uν + vνð Þj j
≤ u1νj j uν − vνj j + v1νj j uν + vνj j
= u1νj j + v1νj jð Þ uν − vνð Þj j ≤ 2K uν − vνð Þ,

ð66Þ

where K is a constant which make u1ν <K , u2ν <K ,
v1ν <K , v2ν <K hold. The existence-uniqueness theorem

shows that FDE 7 has a unique solution. Since LðνÞ = ju1νj
+ jv1νj is integrable function on ½0, +∞Þ, from Theorem
23, the credibility of FFDE can be determined.

According to Definition 22, Theorem 23 can be used to n
-dimensional FFDEs driven by the Liu process.

Theorem 26. Assume that each initial value of the n
-dimensional FFDE 1 has a unique solution. If coefficients f
ðν, uÞ and gðν, uÞ satisfy Lipschitz’s strong condition,then it
is stable in credibility space:

f ν, uð Þ − f ν, vð Þk k + g ν, uð Þ − g ν, vð Þk k
≤ L νð Þ u − vk k, for∀u, v ∈ Rm, ν ≥ 0,

ð67Þ

for some integrable function LðνÞ on ½0, +∞Þ.

6. Conclusion

Accurate controllability for FFDEs can be used as a standard
when analyzing controllability for semilinear integro-
differential equations in the credibility space and fuzzy delay
integro-differential equations. Therefore, the research’s the-
oretical conclusions can be applied to construct stochastic
extensions on credibility space. The FFDEs driven by the
Liu process have an important role in both theory and prac-
tice as a technique for dealing with dynamic systems in a
fuzzy environment. There have been some proposed stability
approaches for FFDEs driven by the Liu process up until
now. This is a rewarding field with numerous research pro-
jects that can lead to a variety of applications and theories.
We hope to learn more about fuzzy fractional evolution
problems in future projects. We can discover uniqueness
and existence with uncertainty using the Caputo derivative.
Future work could include expanding on the mission con-
cept, including observability, and generalizing other activi-
ties. This is an interesting area with a lot of study going on
that could lead to a lot of different applications and theories.
This is a path in which we intend to invest significant
resources.
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In this paper, we construct and investigate the space of weighted Gamma matrix of order r in Nakano sequence space of soft
functions. The idealization of the mappings has been achieved through the use of extended s-soft functions and this sequence
space of soft functions. This new space’s topological and geometric properties, the multiplication mappings that stand in on it,
and the mappings’ ideal that correspond to them are discussed. We construct the existence of a fixed point of Kannan
contraction mapping acting on this space and its associated prequasi ideal. Interestingly, several numerical experiments are
presented to illustrate our results. Additionally, some successful applications to the existence of solutions of nonlinear
difference equations of soft functions are introduced.

1. Introduction

Probability theory, fuzzy set theory, soft sets, and rough sets
have all contributed substantially to the study of uncertainty.
But there are drawbacks to these theories that must be
considered. For more information and real-world examples,
please refer to [1–10]. Numerous mathematicians have
investigated potential expansions to the theorem and its
applications in various contexts since the publication of the
book [11] on the Banach fixed point theorem. The Banach
contraction principle is an important part of nonlinear anal-
ysis, which uses it as a powerful tool [12–15]. Kannan [16]
presented a collection of mappings with the same actions
at fixed places as contractions. However, this collection is
discontinuous. In Reference [17], an explanation of Kannan
operators in modular vector spaces was once tried. Only this
one try was ever made as [18–23] show that much attention
has been paid to the s-number mapping ideal and the multi-
plication operator hypothesis in functional analysis. Bakery
and Mohamed [24] offered the idea of a prequasi norm on

the Nakano sequence space with a variable exponent that fell
somewhere in the range ð0, 1�. They talked about the condi-
tions that must be met to generate prequasi Banach and closed
space when it is endowed with a specified prequasi norm and
the Fatou property of various prequasi norms on it. They also
determined a fixed point for Kannan prequasi norm contrac-
tion mappings on it, in addition to the ideal of prequasi
Banach mappings derived from s-numbers in this sequence
space. Both of these ideals were established. In addition, sev-
eral fixed point findings of Kannan nonexpansive mappings
on generalized Cesàro backward difference sequence space of
a nonabsolute type were discovered in [25]. Assume that R
is the set of real numbers andN is the set of nonnegative inte-
gers. We denote the collection of all nonempty bounded sub-
sets ofR byBðRÞ, and E is the set of parameters. ByRðAÞ∗
andRðAÞ, we indicate the set of nonnegative and all soft real
numbers (corresponding to A), where A ⊂ E. The additive
identity and multiplicative identity in RðAÞ are denoted by
~0 and ~1, respectively. For more details on the arithmetic oper-
ations on RðAÞ, see [26]. Let μ : RðAÞ ×RðAÞ⟶RðAÞ∗,
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where μð~f , ~gÞ = j~f − ~gj, for all ~f , ~g ∈RðAÞ. Assume ~ρ : R
ðAÞ ×RðAÞ⟶R+ is defined by

~ρ ~f , ~g
� �

=max
λ∈A

μ ~f , ~g
� �

λð Þ: ð1Þ

Given that the proof of many fixed point theorems in a
given space requires either growing the space itself or expand-
ing the self-mapping that acts on it, both of these options are
viable; we have constructed the space, ðΓS

r ðq, vÞÞτ, which is
the domain of weighted Gamma matrix of order r in Nakano
soft sequence space since it is constructed by the domain of
weighted Gamma matrix of order r defined in ℓSððvlÞÞ, where
the weighted Gamma matrix of order r, WΓr = ðλrlzðqÞÞ, is
defined as

λrlz qð Þ =

r + z − 1
z

" #
qz

r + l

l

" # , 0 ≤ z ≤ l,

0, z > l,

8>>>>>>><>>>>>>>:
ð2Þ

where r is a positive integer, qz ∈ ð0,∞Þ, for all z ∈N and

r + z − 1
z

" #
= r + z − 1ð Þ!

z! r − 1ð Þ! : ð3Þ

In [27], Roopaei and Basar studied the Gamma spaces,
including the spaces of absolutely p-summable, null, conver-
gent, and bounded sequences.

In this article, we have introduced a new general space
called ðΓS

r ðq, vÞÞτ and the mappings’ ideal space of solutions
for many stochastic nonlinear and matrix systems of Kannan
contraction type. We have offered some geometric and topo-
logical structures of the soft function space, ðΓS

r ðq, vÞÞτ, mul-
tiplication operator acting on it, and its operators’ ideal. A
fixed point of the Kannan contraction operator exists in this
space, and its prequasi operator ideal is confirmed. Finally,
we discuss many applications of solutions to nonlinear sto-
chastic dynamical systems and illustrative examples of our
findings.

2. Properties of ðΓS
r ðq, vÞÞτ and Its Operators’

Ideal

Some geometric and topological structures of the soft func-
tion space, ðΓS

r ðq, vÞÞτ, and its operators’ ideals are pre-
sented in this section.

By c0, ℓ∞, and ℓr , we denote the space of null, bounded,
and r-absolutely summable sequences of reals. We indicate
the space of all bounded, finite rank linear mappings from
an infinite-dimensional Banach space G into an infinite-
dimensional Banach space V by DðG ,V Þ and FðG ,V Þ,
and if G =V , we write DðGÞ and FðGÞ. The space of
approximable and compact bounded linear operators from

G into V will be marked by AðG ,V Þ andKðG ,V Þ, respec-
tively. The ideal of bounded, approximable, and compact
mappings between every two infinite-dimensional Banach
spaces will be denoted by D, A , and K , respectively. Sup-
pose ωS is the class of all sequence spaces of soft reals.

Definition 1. If ðvlÞ ∈R+N ,R+N is the space of all sequences
of positive reals. The sequence space ðΓS

r ðq, vÞÞτ with the
function τ is defined by

ΓS
r q, vð Þ

� �
τ
= ~h = fhm� �

∈ ωS : τ δ~h
� �

<∞,for some ε > 0
n o

,

where τ ~h
� �

= 〠
∞

m=0

~ρ ∑m
z=0

z + r − 1

z

" #
qz ehz , ~0

 !
r +m

m

" #
0BBBBB@

1CCCCCA
vm

:

ð4Þ

Lemma 2 (see [28]). If vb > 0 and xb, zb ∈R, for all b ∈N ,
and ℏ =max f1, supbvbg, then

xb + zbj jvb ≤ 2ℏ−1 xbj jvb + zbj jvbð Þ: ð5Þ

Theorem 3. Suppose ðvlÞ ∈ ℓ∞ ∩R+N , then

ΓS
r q, vð Þ

� �
τ
= ~h = ehb� �

∈ ωS : τ δ~h
� �

<∞,for all δ > 0
n o

:

ð6Þ

Proof. Obviously, ðvlÞ is a bounded sequence.

Theorem 4. The space ðΓS
r ðq, vÞÞτ is a nonabsolute type,

whenever ðvlÞ ∈ ½1,∞ÞN ∩ ℓ∞.

Proof. Clearly, since

τ ~1,−~1, ~0, ~0, ~0,⋯
� �

= q0ð Þv0 + q0 − rq1j j
1 + r

� �v1
+ q0 − rq1j j

r + 2

2

" #
0BBBB@

1CCCCA
v2

+⋯≠ q0ð Þv0 + q0 + rq1
1 + r

� �v1 + q0 + rq1
r + 2

2

" #
0BBBB@

1CCCCA
v2

+⋯ = τ ~1, ~1, ~0, ~0, ~0,⋯
� �

:

ð7Þ
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Definition 5. Assume ðvbÞ ∈R+N and vb ≥ 1, for all b ∈N :

ΓS
r

��� ��� q, vð Þ
� �

φ
≔ ~h = ehb� �

∈ ωS : φ δfð Þ<∞, for some δ > 0
n o

,

ð8Þ

where

φ ~h
� �

= 〠
∞

b=0

~ρ ∑b
z=0

z + r − 1
z

" #
qz ehz��� ���, ~0 !

r + b

b

" #
0BBBB@

1CCCCA
vb

: ð9Þ

Theorem 6. Suppose ðvlÞ ∈ ð1,∞ÞN ∩ ℓ∞ with

l + 1

r + l

l

" #
0BBBB@

1CCCCA ∉ ℓ vlð Þ, ð10Þ

hence ðjΓS
r jðq, vÞÞφ ⊊ ðΓS

r ðq, vÞÞτ.

Proof. Assume ~f ∈ ðjΓS
r jðq, vÞÞφ, as

〠
∞

b=0

~ρ ∑b
z=0

z + r − 1

z

" #
qz ef z , ~0

 !
r + b

b

" #
0BBBBB@

1CCCCCA
vb

≤ 〠
∞

b=0

~ρ ∑b
z=0

z + r − 1

z

" #
qz ef z��� ���, ~0 !

r + b

b

" #
0BBBBB@

1CCCCCA
vb

<∞:

ð11Þ

Then ~f ∈ ðΓS
r ðq, vÞÞτ: If we choose

~g = −~1
� �z

z + r − 1
z

" #
qz

0BBBB@
1CCCCA

z∈N

, ð12Þ

one gets ~g ∈ ðΓS
r ðq, vÞÞτ and ~g ∉ ðjΓS

r jðq, vÞÞφ.
Suppose ES is a linear space of sequences of soft

functions, and ½p� describes an integral part of the real
number p.

Definition 7. The space ES is said to be a private sequence
space of soft functions ðpsssfÞ if it satisfies the next setups:

(a1) For all b ∈N , then eeb ∈ES, where eeb = ð~0, ~0,⋯, ~1,
~0, ~0,⋯Þ, while ~1 displays at the bth place

(a2) If ~f = ð ef bÞ ∈ ωS, j~gj = ðj egbjÞ ∈ES and j ef bj ≤ j egbj,
with b ∈N , then j~f j ∈ES

(a3) ðjgh½b/2�jÞ∞b=0 ∈ES, whenever ðj ehbjÞ∞b=0 ∈ES

Definition 8 (see [29]). An s-number is a function s : DðG ,
V Þ⟶R+N that gives all V ∈DðG ,V Þ a ðsdðVÞÞ∞d=0 holds
the following conditions:

(1) kVk = s0ðVÞ ≥ s1ðVÞ ≥ s2ðVÞ ≥⋯≥ 0, for allV ∈Dð
G ,V Þ

(2) sdðVYWÞ ≤ kVksdðYÞkWk, for everyW ∈DðG0, GÞ,
Y ∈DðG ,V Þ and V ∈DðV ,V 0Þ, where G0 and V 0
are arbitrary Banach spaces

(3) sl+d−1ðV1 +V2Þ ≤ slðV1Þ + sdðV2Þ, for every V1, V2
∈DðG ,V Þ and l, d ∈N

(4) Assume V ∈DðG ,V Þ and γ ∈R, then sdðγVÞ = jγj
sdðVÞ

(5) If rank ðVÞ ≤ d, then sdðVÞ = 0, for all V ∈DðG ,V Þ
(6) sl≥aðIaÞ = 0 or sl<aðIaÞ = 1, where Ia indicates the unit

mapping on the a-dimensional Hilbert space ℓa2

Some examples of s-numbers:

(a) The bth approximation number is defined as αbðXÞ
= inf fkX − Yk: Y ∈DðG ,V Þ and rank ðYÞ ≤ bg

(b) The bth Kolmogorov number is defined as dbðXÞ =
infdim  J≤b supk f k≤1 infg∈J kXf − gk

Notation 9 (see [30]).

eDs
ES ≔ eDs

ES G ,Vð Þ
n o

, where eDs
ES G ,Vð Þ

≔ V ∈D G ,Vð Þ: gsj Vð Þ
� �∞

j=0
∈ES

�	 

,

fDα
ES ≔ fDα

ES G ,Vð Þ
n o

, wherefDα
ES G ,Vð Þ

≔ V ∈D G ,Vð Þ: gαj Vð Þ
� �∞

j=0
∈ES

�	 

,

fDd
ES ≔ fDd

ES G ,Vð Þ
n o

, wherefDd
ES G ,Vð Þ

≔ V ∈D G ,Vð Þ: gdj Vð Þ
� �∞

j=0
∈ES

�	 

,
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eDs
ES

� �γ
≔ eDs

ES

� �γ
G ,Vð Þ

n o
, where eDs

ES

� �γ
G ,Vð Þ

≔ V ∈D G ,Vð Þ: gγb Vð Þ
� �∞

b=0
∈ES

�
and

n
� V − ~ρ gγb Vð Þ, ~0

� �
I

��� ��� = 0, for all b ∈N
o
:

ð13Þ

Theorem 10. Assume the linear sequence space ES is a ps

ssf, then fDs
ES is an operator ideal.

Proof.

(i) Assume V ∈ FðG ,V Þ and rank ðVÞ = n with n ∈N ,
as eei ∈ES for all i ∈N and ES is a linear space,

one has ð gsi ðVÞÞ∞i=0 = ð gs0ðVÞ, gs1ðVÞ,⋯, gsn−1ðVÞ, ~0, ~0,
~0,⋯Þ =∑n−1

i=0
gsi ðVÞeei ∈ES, for that V ∈fDs

ESðG ,V Þ
then FðG ,V Þ ⊆fDs

ESðG ,V Þ
(ii) Suppose V1, V2 ∈fDs

ESðG ,V Þ and β1, β2 ∈R then
by Definition 7 condition (iii), one has

ð gs½i /2�ðV1ÞÞ
∞

i=0 ∈E
S and ð gs½i /2�ðV1ÞÞ

∞

i=0 ∈E
S, as i ≥ 2½

i/2�, by the definition of ~s-numbers and gsi ðPÞ is a
decreasing sequence, we have

gsi β1V1 + β2V2ð Þ ≤ gs2 i /2½ � β1V1 + β2V2ð Þ
≤ gs i /2½ � β1V1ð Þ + s i /2½ � β2V2ð Þ = β1j j gs i /2½ � V1ð Þ + β2j j gs i /2½ � V2ð Þ,

ð14Þ

for each i ∈N . In view of Definition 7 condition (ii) and ES

is a linear space, one obtains ð gsi ðβ1V1 + β2V2ÞÞ
∞

i=0 ∈E
S,

then β1V1 + β2V2 ∈fDs
ESðG ,V Þ

(iii) If P ∈DðG0, GÞ, T ∈fDs
ESðG ,V Þ, and R ∈DðV ,

V 0Þ, one has ð gsi ðTÞÞ∞i=0 ∈ES and as gsi ðRTPÞ ≤ kR
k gsi ðTÞkPk, by Definition 7 conditions (i) and (ii),

one gets ð gsi ðRTPÞÞ
∞
i=0 ∈E

S, hence RTP ∈fDs
ESðG0,

V 0Þ

Assume eθ = ð~0, ~0, ~0,⋯Þ and F is the space of finite
sequences of soft numbers.

Definition 11. A subspace of the psssf is called a premodular
psssf, if there is a function τ : ES ⟶ ½0,∞Þ satisfies the
next setups:

(i) If ~h ∈ES, ~h = eθ⇔ τðj~hjÞ = 0, and τð~hÞ ≥ 0

(ii) Assume ~h ∈ES and ε ∈R, one has E0 ≥ 1 so that
τðε~hÞ ≤ jεjE0τð~hÞ

(iii) There are G0 ≥ 1 so that τð~f + ~gÞ ≤G0ðτð~f Þ + τð~gÞÞ,
for all ~f , ~g ∈ES

(iv) Assume j ef bj ≤ j egbj, for all b ∈N , then τðj ef bjÞ ≤ τ
ðj egbjÞ

(v) One getsD0 ≥ 1 such that τðj~f jÞ ≤ τðjff ½·�jÞ ≤D0τðj~f jÞ
(vi) The closure of F =ES

τ

(vii) There are ε > 0 with τð~ν, ~0, ~0, ~0,⋯Þ ≥ εjνjτð~1, ~0, ~0,
~0,⋯Þ

Definition 12. The psssfES
τ is said to be a prequasi normed

psssf, if τ confirms the setups (i)-(iii) of Definition 11. The
space ES

τ is called a prequasi Banach psssf, whenever ES is
complete under τ.

Theorem 13. The space ES
τ is a prequasi normed psssf,

whenever it is premodular psssf. By ↑ and ↓, we denote the
space of all monotonic increasing and decreasing sequences
of positive reals, respectively.

Theorem 14. ðΓS
r ðq, vÞÞτ is a prequasi Banach psssf, if the

next setups are confirmed:

(f1) ðvlÞ ∈ ↑∩ ℓ∞ with v0 > 1/r

(f2) ð b + r − 1

b

" #
qbÞ

∞

b=0

∈ ↓ or ð b + r − 1

b

" #
qbÞ

∞

b=0

∈ ↑∩

ℓ∞ and there exists C ≥ 1 such that

2b + r

2b + 1

" #
q2b+1 ≤ C

b + r − 1

b

" #
qb ð15Þ

Proof. First, we have to show that ðΓS
r ðq, vÞÞτ is a premodu-

lar psss.

(i) Obviously, τðj~hjÞ = 0⇔ ~h = eθ and τð~hÞ ≥ 0

(a1) and (iii) If ~f , ~g ∈ ðΓS
r ðq, vÞÞτ, then

τ ~f + ~g
� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz

ef z + egz

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 2ℏ−1 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

0BBBBB@

+ 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz egz , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl
1CCCCCA = 2ℏ−1 τ ~f

� �
+ τ ~gð Þ

� �
<∞,

ð16Þ

hence ~f + ~g ∈ ðΓS
r ðq, vÞÞτ
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(ii) Next, suppose λ ∈R, ~f ∈ ðΓS
r ðq, vÞÞτ and as ðvlÞ ∈ ↑

∩ ℓ∞, we get

τ λ~f
� �

= 〠
∞

m=0

~ρ ∑m
z=0

z + r − 1

z

" #
qzλef z , ~0

 !
r +m

m

" #
0BBBBB@

1CCCCCA
vm

≤ sup
m

λj jvm 〠
∞

m=0

~ρ ∑m
z=0

z + r − 1

z

" #
qz ef z , ~0

 !
r +m

m

" #
0BBBBB@

1CCCCCA
vm

≤ E0 λj jτ ~f
� �

<∞,

ð17Þ

where E0 = max f1, supljλjvl−1g ≥ 1. So, λ~f ∈ ðΓS
r ðq, vÞÞτ.

As ðvlÞ ∈ ↑∩ ℓ∞ and v0 > 1/r, one obtains

〠
∞

m=0

~ρ ∑m
z=0

z + r − 1

z

" #
qz gebð Þz , ~0

 !
r +m

m

" #
0BBBBB@

1CCCCCA
vm

= 〠
∞

m=b

b + r − 1

b

" #
qb

r +m

m

" #
0BBBBB@

1CCCCCA
vm

≤ sup
m=b

∞ b + r − 1

b

" #
qb

 !vm

〠
∞

m=b

1
r +m

m

" #
0BBBB@

1CCCCA
vm

<∞:

ð18Þ

Therefore, eeb ∈ ðΓS
r ðq, vÞÞτ, for every b ∈N .

(a2) and (iv) If jff mj ≤ jfgmj, for all m ∈N and j~gj ∈
ðΓS

r ðq, vÞÞτ, then

τ ~f
��� ���� �

= 〠
∞

m=0

~ρ ∑m
z=0

z + r − 1

z

" #
qz ef z��� ���, ~0 !

r +m

m

" #
0BBBBB@

1CCCCCA
vm

≤ 〠
∞

m=0

~ρ ∑m
z=0

z + r − 1

z

" #
qz egzj j, ~0

 !
r +m

m

" #
0BBBBB@

1CCCCCA
vm

= τ ~gj jð Þ <∞,

ð19Þ

hence j~f j ∈ ðΓS
r ðq, vÞÞτ

(a3) and (v) Assume ðj ef z jÞ ∈ ðΓS
r ðq, vÞÞτ, with ðvlÞ ∈ ↑

∩ ℓ∞ and

z + r − 1
z

" #
qz

 !∞

z=0

∈ ↓, ð20Þ

we get

τ gf z/2½ �
��� ���� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gf z/2½ �
��� ���, ~0 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 〠
∞

l=0

~ρ ∑2l
z=0

z + r − 1

z

" #
qz gf z/2½ �
��� ���, ~0 !

r + 2l

2l

" #
0BBBBB@

1CCCCCA
v2l

+ 〠
∞

l=0

~ρ ∑2l+1
z=0

z + r − 1

z

" #
qz
gf z/2½ �
��� ���, ~0 !

r + 2l + 1

2l + 1

" #
0BBBBB@

1CCCCCA
v2l+1

≤ 〠
∞

l=0

~ρ ∑2l
z=0

z + r − 1

z

" #
qz
gf z/2½ �
��� ���, ~0 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 〠
∞

l=0

~ρ ∑2l+1
z=0

z + r − 1

z

" #
qz
gf z/2½ �
��� ���, ~0 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 〠
∞

l=0

~ρ
2l + r − 1

2l

" #
q2l ef l��� ��� +∑l

z=0
2z + r − 1

z

" #
q2z +

2z + r

2z + 1

" #
q2z+1

 ! ef z��� ���, ~0 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 〠
∞

l=0

~ρ ∑l
z=0

2z + r − 1

z

" #
q2z +

2z + r

2z + 1

" #
q2z+1

 ! ef z��� ���, ~0 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 2ℏ−1 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z��� ���, ~0 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 〠
∞

l=0

2~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z��� ���, ~0 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

0BBBBB@

1CCCCCA

+ 〠
∞

l=0

2~ρ ∑l
z=0

z + r − 1

z

" #
qz
ef z��� ���, ~0 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤D0τ
~f
��� ���� �

<∞,

ð21Þ

where D0 ≥ ð22ℏ−1 + 2ℏ−1 + 2ℏÞ ≥ 1. Hence, ðjgf ½z/2�jÞ ∈
ðΓS

r ðq, vÞÞτ
(vi) It is clear that the closure of F = ΓS

r ðq, vÞ
(vii)There are 0 < δ ≤ supljλjvl−1 so that τð~λ, ~0, ~0, ~0,⋯Þ

≥ δjλjτð~1, ~0, ~0, ~0,⋯Þ, for all λ ≠ 0 and δ > 0, if λ = 0
By Theorem 13, the space ðΓS

r ðq, vÞÞτ is a prequasi
normed psssf. Second, to prove that ðΓS

r ðq, vÞÞτ is a Banach
space, suppose ehi = ð ehikÞ∞k=0 is a Cauchy sequence in
ðΓS

r ðq, vÞÞτ, hence for every γ ∈ ð0, 1Þ, one has i0 ∈N with
i, j ≥ i0, we have

τ ehi − ehj� �
= 〠

∞

l=0

~ρ ∑l
z=0

z + r − 1
z

" #
qz

ehiz − ef jz� �
, ~0

 !
r + l

l

" #
0BBBB@

1CCCCA
vl

< γℏ:

ð22Þ
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That implies

~ρ 〠
l

z=0

z + r − 1
z

" #
qz

ehiz − ehjz� �
, ~0

 !
< γ: ð23Þ

As ðRðAÞ, ~ρÞ is a complete metric space. Therefore, ð ehjkÞ
is a Cauchy sequence in RðAÞ, for constant k ∈N . So, it is

convergent to eh0k ∈RðAÞ. This implies τðehi − eh0Þ < γℏ, for

every i ≥ i0. Clearly, from condition (iii) that eh0 ∈
ðΓS

r ðq, vÞÞτ.
In view of Theorems 10 and 14, we have the next theo-

rem.

Theorem 15. The space fDs
ΓS
r ðq,vÞ is an operator ideal, if the

conditions of Theorem 14 are verified.

Theorem 16. If s-type ES
τ ≔ f~h = ð gsj ðHÞÞ ∈RN : H ∈DðG ,

V Þ and τð~hÞ<∞g: Assume fDs
Eτ

is an operator ideal, one
has the next setups:

(a) s-type ES
τ ⊃F

(b) Suppose ð gsj ðH1ÞÞ
∞

j=0 ∈ s-type ES
τ and ð gsj ðH2ÞÞ

∞

j=0 ∈ s
-type ES

τ , then ð gsj ðH1 +H2ÞÞ
∞

j=0 ∈ s-type E
S
τ

(c) If ε ∈R and ð gsj ðHÞÞ∞
j=0 ∈ s-type ES

τ , one has jεj
ð gsj ðHÞÞ∞

j=0 ∈ s-type E
S
τ

(d) Suppose ð gsj ðUÞÞ∞
j=0 ∈ s-type ES

τ and gsj ðTÞ ≤ gsj ðUÞ,
for all j ∈N and T ,U ∈DðG ,V Þ, one gets

ð gsj ðTÞÞ∞j=0 ∈ s-type ES
τ , i.e., E

S
τ is a solid space

Proof. IffDs
Eτ

is a mappings’ ideal.

(a)We have FðG ,V Þ ⊂fDs
ES

τ
ðG ,V Þ. Hence, for all X ∈

FðG ,V Þ, we have ð gsr ðXÞÞ∞r=0 ∈F . This gives ð gsr ðXÞÞ∞r=0 ∈ s‐
typeES

τ . Hence, F ⊂ s-type ES
τ

(b) and (c)The space fDs
ES

τ
ðG ,V Þ is linear over R.

Hence, for each λ ∈R and X1, X2 ∈fDs
ES

τ
ðG ,V Þ, we have

X1 + X2 ∈fDs
ES

τ
ðG ,V Þ and λX1 ∈fDs

ES
τ
ðG ,V Þ. That

implies

gsr X1ð Þ
� �∞

r=0
∈ s‐typeES

τ  and  gsr X2ð Þ
� �∞

r=0
∈ s‐typeES

τ ⇒ gsr X1 + X2ð Þ
� �∞

r=0
∈ s‐typeES

τ ,

λ ∈R and  gsr X1ð Þ
� �∞

r=0
∈ s‐typeES

τ ⇒ λj j gsr X1ð Þ
� �∞

r=0
∈ s‐typeES

τ ð24Þ

(d)If A ∈DðG0, GÞ, B ∈fDs
ES

τ
ðG ,V Þ, and D ∈DðV ,V 0Þ,

then DBA ∈fDs
ES

τ
ðG0,V 0Þ. Therefore, since ðgsr ðBÞÞ∞r=0 ∈ s‐

typeES
τ , then ð gsr ðDBAÞÞ

∞
r=0 ∈ s‐typeES

τ . Since
gsr ðDBAÞ ≤ k

Dkgsr ðBÞkAk. By using condition (c), if ðkDkkAkgsr ðBÞÞ∞r=0 ∈
ES

τ , we have ð gsr ðDBAÞÞ
∞
r=0 ∈ s‐typeES

τ . This means s‐type
ES

τ is solid
Some properties of s‐type ðΓS

r ðq, vÞÞτ are presented in
the next theorem according to Theorems 16 and 15.

Theorem 17.

(a) s-type ðΓS
r ðq, vÞÞτ ⊃F

(b) If ð gsnðX1ÞÞ
∞
n=0 ∈ s-type ðΓS

r ðq, vÞÞτ and ð gsnðX2ÞÞ
∞
n=0 ∈

s-type ðΓS
r ðq, vÞÞτ, then ð gsnðX1 + X2ÞÞ

∞
n=0 ∈ s-type

ðΓS
r ðq, vÞÞτ

(c) Assume λ ∈R and ð gsnðXÞÞ∞n=0 ∈ s-type ðΓS
r ðq, vÞÞτ,

hence jλjð gsnðXÞÞ∞n=0 ∈ s-type ðΓS
r ðq, vÞÞτ

(d) s-type ðΓS
r ðq, vÞÞτ is a solid space

Definition 18 (see [31]). A subclass U of D is said to be a
mappings’ ideal, if every UðG ,V Þ =U ∩DðG ,V Þ satisfies
the following setups:

(i) IΓ ∈U, where Γ indicates Banach space of one
dimension

(ii) The space UðG ,V Þ is linear over R
(iii) If W ∈DðG0, GÞ, X ∈UðG ,V Þ, and Y ∈DðV ,V 0Þ,

then YXW ∈UðG ,V 0Þ

Definition 19 (see [32]). A function H ∈ ½0,∞ÞU is said to be
a prequasi norm on the ideal U if the following conditions
hold:

(1) Assume V ∈UðG ,V Þ, HðVÞ ≥ 0 and HðVÞ = 0, if
and only if, V = 0

(2) One has Q ≥ 1 with HðαVÞ ≤DjαjHðVÞ, for all V ∈
UðG ,V Þ and α ∈R

(3) There are P ≥ 1 such that HðV1 + V2Þ ≤ P½HðV1Þ +
HðV2Þ�, for all V1, V2 ∈UðG ,V Þ

(4) There are σ ≥ 1 so that if V ∈DðG0, GÞ, X ∈UðG ,
V Þ, and Y ∈DðV ,V 0Þ, then HðYXVÞ ≤ σkYkHðX
ÞkVk

Theorem 20 (see [32]). Every quasi norm on the ideal U is a
prequasi norm.

We have discussed some properties of the ideal con-
structed by our soft space and extended s-numbers, supposing
that the conditions of Theorem 14 are verified.

Theorem 21. The conditions of Theorem 14 are sufficient

only for fDα
ðΓS

r ðq,vÞÞτðG ,V Þ = the closure of FðG ,V Þ.
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Proof. Clearly, the closure of FðG ,V Þ ⊆fDα
ðΓS

r ðq,vÞÞτðG ,V Þ
from the linearity of the space ðΓS

r ðq, vÞÞτ and eem ∈
ðΓS

r ðq, vÞÞτ, for all m ∈N . Next, to show that fDα
ðΓS

r ðq,vÞÞτ
ðG ,V Þ ⊆ the closure of FðG ,V Þ. If H ∈fDα

ðΓS
r ðq,vÞÞτðG ,V Þ,

one has ð gαl ðHÞÞ∞m=0 ∈ ðΓS
r ðq, vÞÞτ. As τð gαmðHÞÞ∞m=0 <∞,

assume γ ∈ ð0, 1Þ, we have l0 ∈N − f0g so that τð
ð gαmðHÞÞ∞m=l0Þ < γ/2ℏ+3δj, for some j ≥ 1 and

δ =max 1, 〠
∞

l=l0

1
r + l

l

" #
0BBBB@

1CCCCA
vl

8>>>><>>>>:

9>>>>=>>>>;
: ð25Þ

Since gαl ðHÞ ∈IS
↘ , we get

〠
2l0

l=l0+1

~ρ ∑l
z=0

z + r − 1

z

" #
qz gα2l 0 Hð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 〠
2l0

l=l0+1

~ρ ∑l
z=0

z + r − 1

z

" #
qz gαz Hð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 〠
∞

l=l0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gαz Hð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

< γ

2ℏ+3δj
:

ð26Þ

We get U ∈ F2l0ðG ,V Þ with rank ðUÞ ≤ 2l0 and

〠
3l0

l=2l0+1

~ρ ∑l
z=0

z + r − 1

z

" #
qz gH −Uk k, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 〠
2l0

l=l0+1

~ρ ∑l
z=0

z + r − 1

z

" #
qz gH −Uk k, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

< γ

2ℏ+3δj
,

ð27Þ

since ðvlÞ ∈ ↑∩ ℓ∞, we have

sup
l=l0

∞
~ρvl 〠

l0

z=0

z + r − 1
z

" #
qz gH −Uk k, ~0

 !
< γ

22ℏ+2δ
: ð28Þ

Therefore, one has

〠
l0

l=0

~ρ ∑l
z=0

z + r − 1
z

" #
qz gH −Uk k, ~0

 !
r + l

l

" #
0BBBB@

1CCCCA
vl

< γ

2ℏ+3δj
:

ð29Þ

Because of inequalities (5), (26), (27), (28), and (29), one
gets

d H,Uð Þ = τ gαl H −Uð Þ
� �∞

l=0
= 〠

3l0−1

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gαz H −Uð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 〠
∞

l=3l0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gαz H −Uð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA ≤ 〠
3l0

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gH −Uk k, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 〠
∞

l=l0

~ρ ∑l+2l0
z=0

z + r − 1

z

" #
qz gαz H −Uð Þ, ~0

 !
r + l + 2l0
l + 2l0

" #
0BBBBB@

1CCCCCA
vl+2l0 vl

≤ 〠
3l0

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gH −Uk k, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 〠
∞

l=l0

~ρ ∑l+2l0
z=0

z + r − 1

z

" #
qz gαz H −Uð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 3〠
l0

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gH −Uk k, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 〠
∞

l=l0

~ρ ∑2l0−1
z=0

z + r − 1

z

" #
qz gαz H −Uð Þ +∑l+2l0

z=2l0

z + r − 1

z

" #
qz gαz H −Uð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 3〠
l0

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gH −Uk k, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 2ℏ−1 〠
∞

l=l0

~ρ ∑2l0−1
z=0

z + r − 1

z

" #
qz gαz H −Uð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 2ℏ−1 〠
∞

l=l0

~ρ ∑l+2l0
z=2l0

z + r − 1

z

" #
qz gαz H −Uð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 3〠
l0

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gH −Uk k, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 2ℏ−1 〠
∞

l=l0

~ρ ∑2l0−1
z=0

z + r − 1

z

" #
qz gαz Z −Uð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 2ℏ−1 〠
∞

l=l0

~ρ ∑l
z=0

z + 2l0 + r − 1

z + 2l0

" #
qz+2l0

gαz+2l 0 H −Uð Þ, ~0
 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 3〠
l0

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gH −Uk k, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 22ℏ−1 sup
l=l0

∞
~ρvl 〠

l0

z=0

z + r − 1

z

" #
qz gH −Uk k, ~0

 !

� 〠
∞

l=l0

1
r + l

l

" #
0BBBB@

1CCCCA
vl

+ 2ℏ−1 〠
∞

l=l0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gαz Hð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

< γ:

ð30Þ

On the other hand, one has a negative example as I2 ∈fDα
ðΓS

r ðq,vÞÞτðG ,V Þ, where z + r − 1zqz = 1, for all z ∈N and
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v = ð0,−1, 2, 2, 2Þ, but ðvlÞ ∉ ↑. This gives a negative answer to
the Rhoades [33] open problem about the linearity of s-type
ðΓS

r ðq, vÞÞτ spaces.

Theorem 22. The class ðfDs
ðΓS

r ðq,vÞÞτ , ΞÞ is a prequasi Banach

ideal, where ΞðHÞ = τðð gsbðHÞÞ∞b=0Þ.

Proof. Evidently, Ξ is a prequasi norm onfDs
ðΓS

r ðq,vÞÞτ since τ
is a prequasi norm on ðΓS

r ðq, vÞÞτ. Assume ðHmÞm∈N is a

Cauchy sequence in fDs
ðΓS

r ðq,vÞÞτðG ,V Þ. Since DðG ,V Þ ⊇fDs
ðΓS

r ðq,vÞÞτðG ,V Þ, we have

Ξ Hj −Hm

� �
= 〠

∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz

gsz Hj −Hm

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≥ Hj −Hm

�� ��� �v0 ,
ð31Þ

then ðHmÞm∈N is a Cauchy sequence in DðG ,V Þ. As DðG ,
V Þ is a Banach space, one has H ∈DðG ,V Þ so that

limm⟶∞kHm −Hk = 0: As ð gsl ðHmÞÞ
∞
l=0 ∈ ðΓS

r ðq, vÞÞτ, for
all m ∈N . By Definition 11 conditions (ii), (iii), and (v),
we have

Ξ Hð Þ = 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gsz Hð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 2ℏ−1 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gs z/2½ � H −Hmð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 2ℏ−1 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gs z/2½ � Hmð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 2ℏ−1 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gH −Hmk k, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 2ℏ−1D0 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gsz Hmð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

<∞:

ð32Þ

Hence, ð gsbðHÞÞ∞b=0 ∈ ðΓS
r ðq, vÞÞτ, so H ∈fDs

ðΓS
r ðq,vÞÞτðG ,

V Þ.

Theorem 23. If 1 < vð1Þb < vð2Þb , and 0 < qð2Þb ≤ qð1Þb , for every b
∈N , then

fDs
ΓS
r q 1ð Þ

b

� �
, v 1ð Þ

b

� �� �� �
τ

G ,Vð Þ ⫋fDs
ΓS
r q 2ð Þ

b

� �
, v 2ð Þ

b

� �� �� �
τ

G ,Vð Þ ⫋D G ,Vð Þ:

ð33Þ

Proof. Let H ∈fDs
ðΓS

r ððqð1Þb Þ,ðvð1Þb ÞÞÞ
τ

ðG ,V Þ, then ð gsbðHÞÞ ∈
ðΓS

r ððqð1Þb Þ, ðvð1Þb ÞÞÞτ. One obtains

〠
∞

b=0

~ρ ∑b
z=0

z + r − 1

z

" #
q 2ð Þ
z
gsz Hð Þ, ~0

 !
r + b

b

" #
0BBBBB@

1CCCCCA
v 2ð Þ
b

< 〠
∞

b=0

~ρ ∑b
z=0

z + r − 1

z

" #
q 1ð Þ
z
gsz Hð Þ, ~0

 !
r + b

b

" #
0BBBBB@

1CCCCCA
v 1ð Þ
b

<∞,

ð34Þ

then H ∈fDs
ðΓS

r ððqð2Þb Þ,ðvð2Þb ÞÞÞ
τ

ðG ,V Þ. Take ð gsbðHÞÞ∞b=0 with

~ρ 〠
b

z=0

z + r − 1
z

" #
q 1ð Þ
z
gsz Hð Þ, ~0

 !
=

r + b

b

" #
ffiffiffiffiffiffiffiffiffiffi
b + 1vb1

p ,
ð35Þ

we have H ∈DðG ,V Þ with

〠
∞

b=0

~ρ ∑b
z=0

z + r − 1
z

" #
q 1ð Þ
z
gsz Hð Þ, ~0

 !
r + b

b

" #
0BBBB@

1CCCCA
v

1ð Þ
b

= 〠
∞

b=0

1
b + 1 =∞,

〠
∞

b=0

~ρ ∑b
z=0

z + r − 1

z

" #
q 2ð Þ
z
gsz Hð Þ, ~0

 !
r + b

b

" #
0BBBBB@

1CCCCCA
v

2ð Þ
b

≤ 〠
∞

b=0

~ρ ∑b
z=0

z + r − 1

z

" #
q 1ð Þ
z
gsz Hð Þ, ~0

 !
r + b

b

" #
0BBBBB@

1CCCCCA
v 2ð Þ
b

= 〠
∞

b=0

1
b + 1

� �v 2ð Þ
b /v 1ð Þ

b

<∞:

ð36Þ
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Hence, H ∉fDs
ðΓS

r ððqð1Þb Þ,ðvð1Þb ÞÞÞ
τ

ðG ,V Þ and H ∈fDs
ðΓS

r ððqð2Þb Þ,ðvð2Þb ÞÞÞ
τ

ðG ,V Þ.
Clearly, fDs

ðΓS
r ððqð2Þb Þ,ðvð2Þb ÞÞÞ

τ

ðG ,V Þ ⊂DðG ,V Þ. Take

ð gsbðHÞÞ∞b=0 with

~ρ 〠
b

z=0

z + r − 1
z

" #
q 2ð Þ
z
gsz Hð Þ, ~0

 !
=

r + b

b

" #
ffiffiffiffiffiffiffiffiffiffi
b + 1vb2

p :
ð37Þ

Then H ∈DðG ,V Þ and H ∉fDs
ðΓS

r ððqð2Þb Þ,ðvð2Þb ÞÞÞ
τ

ðG ,V Þ.
Recall that if G and V are infinite-dimensional, by

Dvoretzky’s theorem [34], there are G/Y j and Mj ⊆V

operated onto ℓj2 through isomorphisms V j and Xj such that
kV jkkV−1

j k ≤ 2 and kXjkkX−1
j k ≤ 2, for all j ∈N . Assume T j

is the quotient mapping from G onto G/Y j, I j is the identity

operator on ℓj2 and J j is the natural embedding operator
from Mj into V . Assume mj is the Bernstein numbers [18].

Theorem 24. The class fDα
ðΓS

r ðq,vÞÞτ is minimum, whenever

∑l
z=0

z + r − 1

z

" #
qz

r + l

l

" #
0BBBB@

1CCCCA
∞

l=0

∉ ℓ vlð Þð Þ: ð38Þ

Proof. Assume fDα
ΓS
r ðq,vÞðG ,V Þ =DðG ,V Þ, one has γ > 0 so

that ΞðHÞ ≤ γkHk, for all H ∈DðG ,V Þ and

Ξ Hð Þ = 〠
∞

b=0

~ρ ∑b
z=0

z + r − 1
z

" #
qz gαz Hð Þ, ~0

 !
r + b

b

" #
0BBBB@

1CCCCA
vb

:

ð39Þ

We have

1 =mz I j
� �

=mz XjX
−1
j I jV jV

−1
j

� �
≤ Xj

�� ��mz X−1
j I jV j

� �
V−1

j

��� ��� = Xj

�� ��mz J jX
−1
j I jV j

� �
V−1

j

��� ���
≤ Xj

�� ��dz J jX
−1
j I jV j

� �
V−1

j

��� ��� = Xj

�� ��dz J jX
−1
j I jV jT j

� �
� V−1

j

��� ��� ≤ Xj

�� ��αz J jX
−1
j I jV jT j

� �
V−1

j

��� ���:
ð40Þ

Take 0 ≤m ≤ j, one has

〠
m

z=0

z + r − 1

z

" #
qz ≤ ~ρ 〠

m

z=0
Xj

�� �� z + r − 1

z

" #
qz

g
αz J j X

−1
j I j V j T j

� �
V−1

j

��� ���, ~0 !
⇒

�
∑m

z=0
z + r − 1

z

" #
qz

r +m

m

" #
0BBBBB@

1CCCCCA
vm

≤ Xj

�� �� V−1
j

��� ���� �vm

�
~ρ ∑m

z=0
z + r − 1

z

" #
qz

g
αz J j X

−1
j I j V j T j

� �
, ~0

 !
r +m

m

" #
0BBBBB@

1CCCCCA
vm

:

ð41Þ

Therefore, for some λ ≥ 1, we obtain

〠
j

m=0

∑m
z=0

z + r − 1

z

" #
qz

r +m

m

" #
0BBBBB@

1CCCCCA
vm

≤ λ Xj

�� �� V−1
j

��� ��� 〠
j

m=0

�
~ρ ∑m

z=0
z + r − 1

z

" #
qz

g
αz J j X

−1
j I j V j T j

� �
, ~0

 !
r +m

m

" #
0BBBBB@

1CCCCCA
vm

⇒ 〠
j

m=0

�
∑m

z=0
z + r − 1

z

" #
qz

r +m

m

" #
0BBBBB@

1CCCCCA
vm

≤ λ Xj

�� �� V−1
j

��� ���Ξ J jX
−1
j I jV jT j

� �

≤ λγ Xj

�� �� V−1
j

��� ��� J jX
−1
j I jV jT j

��� ��� ≤ 4λγ:

ð42Þ

When j⟶∞, one has a contradiction. So, G and V

both cannot be infinite-dimensional when fDα
ΓS
r ðq,vÞðG ,V Þ

=DðG ,V Þ.

Theorem 25. The class fDd
ΓS
r ðq,vÞ is minimum, whenever

∑l
z=0

z + r − 1

z

" #
qz

r + l

l

" #
0BBBB@

1CCCCA
∞

l=0

∉ ℓ vlð Þð Þ: ð43Þ

Lemma 26 (see [19]). Suppose W ∈DðG ,V Þ and W ∉A
ðG ,V Þ, one has P ∈DðGÞ and A ∈DðV Þ with AWPej = ej,
for every j ∈N .
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Theorem 27 (see [19]). If ES is an infinite-dimensional
Banach space, then

F ES
� �

⫋A ES
� �

⫋K ES
� �

⫋D ES
� �

: ð44Þ

Theorem 28. If 1 < vð1Þl < vð2Þl and 0 < qð2Þl ≤ qð1Þl , for every l
∈N , then

D fDs
ΓS
r q 2ð Þ

l

� �
, v 2ð Þ

l

� �� �� �
τ

G ,Vð Þ,fDs
ΓS
r q 2ð Þ

l

� �
, v 2ð Þ

l

� �� �� �
τ

G ,Vð Þ
� �
=A fDs

ΓS
r q 2ð Þ

l

� �
, v 2ð Þ

l

� �� �� �
τ

G ,Vð Þ,fDs
ΓS
r q 2ð Þ

l

� �
, v 2ð Þ

l

� �� �� �
τ

G ,Vð Þ
� �

:

ð45Þ

Proof. Let X ∈DðfDs
ðΓS

r ððqð2Þl Þ,ðvð2Þl ÞÞÞ
τ

ðG ,V Þ,fDs
ðΓS

r ððqð1Þl Þ,ðvð1Þl ÞÞÞ
τ

ð
G ,V ÞÞ and X ∉AðfDs

ðΓS
r ððqð2Þl Þ,ðvð2Þl ÞÞÞ

τ

ðG ,V Þ,fDs
ðΓS

r ððqð1Þl Þ,ðvð1Þl ÞÞÞ
τ

ðG ,V ÞÞ. In view of Lemma 26, there are Y ∈DðfDs
ðΓS

r ððqð2Þl Þ,ðvð2Þl ÞÞÞ
τ

ðG ,V ÞÞ and Z ∈DðfDs
ðΓS

r ððqð1Þl Þ,ðvð1Þl ÞÞÞ
τ

ðG ,V Þ
Þ with ZXYIb = Ib. Therefore, for every b ∈N , one has

Ibk keDs

ΓSr q
1ð Þ
l

� �
, v

1ð Þ
l

� �� �� �
τ

G ,Vð Þ

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
q 1ð Þ
z
gsz Ibð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
v 1ð Þ
l

≤ ZXYk k Ibk keDs

ΓSr q
2ð Þ
l

� �
, v

2ð Þ
l

� �� �� �
τ

G ,Vð Þ

≤ 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
q 2ð Þ
z
gsz Ibð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
v 2ð Þ
l

:

ð46Þ

This contradicts Theorem 23; hence, X ∈AðfDs
ðΓS

r ððqð2Þl Þ,ðvð2Þl ÞÞÞ
τ

ðG ,V Þ,fDs
ðΓS

r ððqð1Þl Þ,ðvð1Þl ÞÞÞ
τ

ðG ,V ÞÞ.

Corollary 29. Suppose 1 < vð1Þl < vð2Þl , and 0 < qð2Þl ≤ qð1Þl , for
every l ∈N , then

D fDs
ΓS
r q 2ð Þ

l

� �
, v 2ð Þ

l

� �� �� �
τ

G ,Vð Þ,fDs
ΓS
r q 1ð Þ

l

� �
, v 1ð Þ

l

� �� �� �
τ

G ,Vð Þ
� �
=K fDs

ΓS
r q 2ð Þ

l

� �
, v 2ð Þ

l

� �� �� �
τ

G ,Vð Þ,fDs
ΓS
r q 1ð Þ

l

� �
, v 1ð Þ

l

� �� �� �
τ

G ,Vð Þ
� �

:

ð47Þ

Proof. Evidently, as A ⊂K .

Definition 30 (see [19]). A Banach space ES is said to be sim-
ple when DðESÞ has a unique nontrivial closed ideal.

Theorem 31. The class fDs
ðΓS

r ðq,vÞÞτ is simple.

Proof. Let the closed ideal KðfDs
ðΓS

r ðq,vÞÞτðG ,V ÞÞ contain a

mapping H ∉AðfDs
ðΓS

r ðq,vÞÞτðG ,V ÞÞ. By Lemma 26, there

are P, A ∈DðfDs
ðΓS

r ðq,vÞÞτðG ,V ÞÞ so that AHPIj = I j. There-

fore, IeDs
ðΓSr ðq,vÞÞτ

ðG ,V Þ ∈KðfDs
ðΓS

r ðq,vÞÞτðG ,V ÞÞ. Hence, Dð
fDs

ðΓS
r ðq,vÞÞτðG ,V ÞÞ =KðfDs

ðΓS
r ðq,vÞÞτðG ,V ÞÞ. Therefore,fDs

ðΓS
r ðq,vÞÞτ is a simple Banach space.

Theorem 32. Assume

inf l

∑l
z=0

z + r − 1

z

" #
qz

r + l

l

" #
0BBBB@

1CCCCA
vl

> 0, ð48Þ

then ðfDs
ðΓS

r ðq,vÞÞτÞ
γðG ,V Þ =fDs

ðΓS
r ðq,vÞÞτðG ,V Þ:

Proof. Let H ∈ ðfDs
ðΓS

r ðq,vÞÞτÞ
γðG ,V Þ, then ð gγmðHÞÞ∞m=0 ∈

ðΓS
r ðq, vÞÞτ and kH − ~ρð gγmðHÞ, ~0ÞIk = 0, for every m ∈N .

One has H = ~ρð gγmðHÞ, ~0ÞI, for all m ∈N , then

~ρ gsm Hð Þ, ~0
� �

= ~ρ sm ~ρð ggγm Hð Þ,
�

~0
�
IÞ, ~0

� �
= ~ρ gγm Hð Þ, ~0
� �

,

ð49Þ

for all m ∈N . Hence ð gsmðHÞÞ∞m=0 ∈ ðΓS
r ðq, vÞÞτ, so H ∈fDs

ðΓS
r ðq,vÞÞτðG ,V Þ.
Next, assume H ∈fDs

ðΓS
r ðq,vÞÞτðG ,V Þ. Hence, ð gsmðHÞÞ∞m=0

∈ ðΓS
r ðq, vÞÞτ. Therefore, one has

〠
∞

m=0

~ρ ∑m
z=0

z + r − 1

z

" #
qz gsz Hð Þ, ~0

 !
r +m

m

" #
0BBBBB@

1CCCCCA
vm

≥ inf
m

∑m
z=0

z + r − 1

z

" #
qz

r +m

m

" #
0BBBBB@

1CCCCCA
vm

〠
∞

m=0
~ρ gsm Hð Þ, ~0
� �h ivm

:

ð50Þ

Hence, limm⟶∞
gsmðHÞ = ~0: If kH − ~ρð gsmðHÞ, ~0ÞIk−1

10 Journal of Function Spaces



exists, for all m ∈N . Then kH − ~ρð gsmðHÞ, ~0ÞIk−1 exists and

bounded, for all m ∈N . So, limm⟶∞kH − ~ρð gsmðHÞ, ~0ÞIk−1

= kHk−1 exists and bounded. Since ðfDs
ðΓS

r ðq,vÞÞτ , ΞÞ is a pre-
quasi ideal, one obtains

I =HH−1 ∈fDs
ΓS
r q,vð Þð Þ

τ

G ,Vð Þ⇒ gsm Ið Þ
� �∞

m=0
∈ ΓS

r q, vð Þ
⇒ lim

m⟶∞
gsm Ið Þ = ~0:

ð51Þ

One has a contradiction, as limm⟶∞
gsmðIÞ = ~1. Then,

kH − ~ρð gsmðHÞ, ~0ÞIk = 0, for all m ∈N . So, kH − ~ρð gγmðHÞ,
~0ÞIk = 0, for all m ∈N . Therefore, H ∈ ðfDs

ðΓS
r ðq,vÞÞτÞ

γðG ,V Þ.

3. Multiplication Mappings on ðΓS
r ðq, vÞÞτ

Under the conditions of Theorem 14, we have presented in
this section some properties of the multiplication mapping
acting on ðΓS

r ðq, vÞÞτ.
Let ðRangeðVÞÞc indicate the complement of RangeðVÞ.

Let I be the space of all sets with a finite number of ele-
ments. Assume ℓS∞ is the space of bounded sequences of soft
functions.

Definition 33. Suppose ES
τ is a prequasi normed psssf and

λ = ðλkÞ ∈RN . The mapping Hλ : E
S
τ ⟶ES

τ is said to be

a multiplication mapping on ES
τ , if Hλ

~f = ðλb ef bÞ ∈ES
τ , for

all f ∈ES
τ . The multiplication mapping is called constructed

by λ, if Hλ ∈DðES
τ Þ.

Definition 34 (see [35]). A mapping V ∈DðEÞ is said to be
Fredholm if dim ðRangeðVÞÞc <∞, RangeðVÞ is closed and
dim ðkerðVÞÞ <∞.

Theorem 35.

(1) λ ∈ ℓ∞ ⇔Hλ ∈DððΓS
r ðq, vÞÞτÞ

(2) jλaj = 1, for every a ∈N , if and only if, Hλ is an
isometry

(3) Hλ ∈AððΓS
r ðq, vÞÞτÞ⇔ ðλaÞ∞a=0 ∈ c0

(4) Hλ ∈KððΓS
r ðq, vÞÞτÞ⇔ ðλbÞ∞b=0 ∈ c0

(5) KððΓS
r ðq, vÞÞτÞ ⫋DððΓS

r ðq, vÞÞτÞ
(6) 0 < α < jλaj < η, for every a ∈ ðkerðλÞÞc, if and only if,

RangeðHλÞ is closed
(7) 0 < α < jλaj < η, for all a ∈N , if and only if, Hλ ∈

DððΓS
r ðq, vÞÞτÞ is invertible

(8) Hλ is Fredholm operator, if and only if (g1) kerðλÞ
⫋N ∩I and (g2) jλaj ≥ ρ, for all a ∈ ðkerðλÞÞc

Proof.

(1) Suppose λ ∈ ℓ∞, one has ν > 0 with jλaj ≤ ν, for all
a ∈N . If ~f ∈ ðΓS

r ðq, vÞÞτ, we have

τ Hλ
~f

� �
= τ λ~f
� �

= 〠
∞

l=0

~ρ ∑l
z=0λz

z + r − 1

z

" #
qz ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ sup
l
νvl 〠

∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= sup
l
νvlτ ~f

� �
:

ð52Þ

Therefore, Hλ ∈DððΓS
r ðq, vÞÞτÞ.

Next, ifHλ ∈DððΓS
r ðq, vÞÞτÞ and λ ∉ ℓ∞. One has xb ∈N ,

for every b ∈N with λxb > b. Then,

τ Hλfexb� �
= τ λfexb� �

= 〠
∞

l=0

~ρ ∑l
z=0λz

z + r − 1

z

" #
qz
gexb� �

z
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 〠
∞

l=xb

λ xbð Þ
xb + r − 1

xb

" #
qxb

r + l

l

" #
0BBBBB@

1CCCCCA
vl

> 〠
∞

l=xb

b
xb + r − 1

xb

" #
qxb

r + l

l

" #
0BBBBB@

1CCCCCA
vl

> bv0τ fexb� �
:

ð53Þ

Hence, Hλ ∉DððΓS
r ðq, vÞÞτÞ. So, λ ∈ ℓ∞.

(2) Let ~f ∈ ðΓS
r ðq, vÞÞτ and jλbj = 1, for every b ∈N . One

obtains

τ Hλ
~f

� �
= τ λ~f
� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qzλz ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= τ ~f
� �

,

ð54Þ

then Hλ is an isometry.
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Next, if for some b = b0 that jλbj < 1, one has

τ Hλfeb0� �
= τ λfeb0� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qzλz

geb0� �
z
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 〠
∞

l=b0

λb0
�� �� b0 + r − 1

b0

" #
qb0

r + l

l

" #
0BBBBB@

1CCCCCA
vl

< 〠
∞

l=b0

b0 + r − 1

b0

" #
qb0

r + l

l

" #
0BBBBB@

1CCCCCA
vl

= τ feb0� �
:

ð55Þ

When jλb0 j > 1, so τðHλfeb0Þ > τðfeb0Þ. Hence, jλaj = 1, for
every a ∈N .

(3) Assume Hλ ∈AððΓS
r ðq, vÞÞτÞ, so Hλ ∈Kð

ðΓS
r ðq, vÞÞτÞ. If limb⟶∞λb ≠ 0. One has ρ > 0 with

Kϱ = fa ∈N : jλaj ≥ ρg ⫋I. Let fαaga∈N ⊂ Kρ. We

have ffeαa : αa ∈ Kϱg ∈ ℓS∞ be an infinite set in

ðΓS
r ðq, vÞÞτ. For all αa, αb ∈ Kρ, one gets

τ Hλfeαa −Hλfeαb� �
= τ λfeαa − λfeαb� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qzλz

geαa� �
z
− geαb� �

z

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≥ 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qzρ

geαa� �
z
− geαb� �

z

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≥ inf
l
ρvlτ feαa −feαb� �

:

ð56Þ

Hence, ffeαb : αb ∈ Kρg ∈ ℓS∞ has not a convergent subse-

quence under Hλ. So, Hλ ∉KððΓS
r ðq, vÞÞτÞ. Therefore, Hλ

∉AððΓS
r ðq, vÞÞτÞ; this is a contradiction. So, limb⟶∞λb =

0. Next, let lima⟶∞λa = 0. Hence, for every ρ > 0, we have
Kρ = fb ∈N : jλbj ≥ ρg ⊂I. Therefore, for all ρ > 0, one

gets dim ðððΓS
r ðq, vÞÞτÞKρ

Þ = dim ðRKρÞ <∞. So, Hλ ∈ Fð
ððΓS

r ðq, vÞÞτÞKρ
Þ. If λa ∈RN , for all a ∈N , where

λað Þb =
λb, b ∈ K1/a+1,
0, otherwise:

8>><>>: ð57Þ

Obviously, Hλa
∈ FðððΓS

r ðq, vÞÞτÞK1/a+1
Þ, since dim ð

ððΓS
r ðq, vÞÞτÞK1/a+1

Þ <∞, for all a ∈N . According to ðvlÞ

∈ ↑∩ ℓ∞ with v0 > 1/r, we have

τ Hλ −Hλa

� �~f� �
= τ λb − λað Þb

� � ef b� �∞
b=0

� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz λz − λað Þz
� � ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 〠
∞

l=0,l∈K1/a+1

~ρ ∑l
z=0

z + r − 1

z

" #
qz λz − λað Þz
� � ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 〠
∞

l=0,l∉K1/a+1

~ρ ∑l
z=0

z + r − 1

z

" #
qz λz − λað Þz
� � ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 〠
∞

l=0,l∉K1/a+1

~ρ ∑l
z=0

z + r − 1

z

" #
qzλz ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤
1

a + 1ð Þv0 〠
∞

l=0,l∉K1/a+1

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

< 1
a + 1ð Þv0 〠

∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 1
a + 1ð Þv0 τ

~f
� �

:

ð58Þ

Therefore, kHλ −Hλa
k ≤ 1/ða + 1Þv0 . This implies Hλ is

a limit of finite rank mappings.

(4) As AððΓS
r ðq, vÞÞτÞ ⫋KððΓS

r ðq, vÞÞτÞ, the proof
follows

(5) Since I = Iλ, where λ = ð1, 1,Þ, one has I ∉Kð
ðΓS

r ðq, vÞÞτÞ and I ∈DððΓS
r ðq, vÞÞτÞ

(6) Let the sufficient setups be verified. One has ρ > 0
with jλaj ≥ ρ, for every a ∈ ðkerðλÞÞc. We have to
show that RangeðHλÞ is closed; let ~g be a limit point

of RangeðHλÞ. One has Hλ
ef b ∈ ðΓS

r ðq, vÞÞτ, for all b
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∈N with limb⟶∞Hλ
ef b = ~g. Clearly, Hλ

ef b is a Cau-
chy sequence. Since ðvlÞ ∈ ↑∩ ℓ∞, we have

τ Hλ
ef a −Hλ

ef b� �
= 〠

∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz λz

gf að Þz − λz
gf bð Þz

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 〠
∞

l=0,l∈ ker λð Þð Þc

~ρ ∑l
z=0

z + r − 1

z

" #
qz λz

gf að Þz − λz
gf bð Þz

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 〠
∞

l=0,l∉ ker λð Þð Þc

~ρ ∑l
z=0

z + r − 1

z

" #
qz λz

gf að Þz − λz
gf bð Þz

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≥ 〠
∞

l=0,l∈ ker λð Þð Þc

~ρ ∑l
z=0

z + r − 1

z

" #
qz λz

gf að Þz − λz
gf bð Þz

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz λz guað Þz − λz gubð Þz
� �

, ~0
 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

> 〠
∞

l=0

~ρ ρ∑l
z=0

z + r − 1

z

" #
qz guað Þz − gubð Þz
� �

, ~0
 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

≥ inf
l
ρvlτ eua − eubð Þ,

ð59Þ

where

guað Þk =
gf að Þk, k ∈ ker λð Þð Þc,
0, k ∉ ker λð Þð Þc:

(
ð60Þ

Therefore, f euag is a Cauchy sequence in ðΓS
r ðq, vÞÞτ.

Since ðΓS
r ðq, vÞÞτ is complete. One has ~f ∈ ðΓS

r ðq, vÞÞτ with
limb⟶∞ eub = ~f . As Hλ ∈DððΓS

r ðq, vÞÞτÞ, we have limb⟶∞

Hλ eub =Hλ
~f . As limb⟶∞Hλ eub = limb⟶∞Hλ

ef b = ~g. So, Hλ
~f = ~g. Then, ~g ∈ RangeðHλÞ, i.e., RangeðHλÞ is closed. Next,
suppose the necessary condition is satisfied. One has ρ > 0
with τðHλ

~f Þ ≥ ρτð~f Þ and ~f ∈ ððΓS
r ðq, vÞÞτÞðkerðλÞÞc . Let K =

fb ∈ ðkerðλÞÞc : jλbj < ρg ≠∅, then for a0 ∈ K , we have

τ Hλfea0� �
= τ λb

gea0� �
b

� �� �∞
b=0

�

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qzλz fea0� �

z
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

< 〠
∞

l=0

~ρ ρ∑l
z=0

z + r − 1

z

" #
qz
gea0� �

z
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ sup
l
ρvlτ fea0� �

,

ð61Þ

which introduces a contradiction. So K = ϕ, we have jλaj
≥ ρ, for all a ∈ ðkerðλÞÞc.

(7) First, assume κ ∈RN so that κa = 1/λa. By Theorem
35 part (1), we have Hλ,Hκ ∈DððΓS

r ðq, vÞÞτÞ. One
has Hλ ·Hκ =Hκ ·Hλ = I. So, Hκ =H−1

λ . Second, if
Hλ is invertible. Then RangeðHλÞ = ððΓS

r ðq, vÞÞτÞN .
Therefore,RangeðHλÞ is closed. FromTheorem 35 part
(5), one has α > 0 with jλaj ≥ α, for all a ∈ ðkerðλÞÞc.
Then, kerðλÞ =∅, when λa0 = 0, where a0 ∈N ; this
implies ea0 ∈ kerðHλÞ, which is a contradiction, since
kerðHλÞ is trivial. Then, jλaj ≥ α, for all a ∈N . As Hλ
∈ ℓ∞. From Theorem 35 part (1), one has η > 0 with
jλaj ≤ η, for all a ∈N . So α ≤ jλaj ≤ η, for all a ∈N

(8) First, if kerðλÞ ⫋N and kerðλÞ ∉I, one has eea ∈ ker
ðHλÞ, for all a ∈ kerðλÞ. As eea’s are linearly indepen-
dent, we have dim ðkerðHλÞÞ =∞; this is a contradic-
tion. Therefore, kerðλÞ ⫋N ∈I. The condition (g2)
comes from Theorem 35 part (6). Next, assume the
setups (g1) and (g2) are satisfied. According to Theo-
rem 35 part (6), the setup (g2) gives that RangeðHλÞ
is closed. The condition (g1) implies that dim ð
ðRangeðHλÞÞcÞ <∞ and dim ðkerðHλÞÞ <∞. There-
fore, Hλ is Fredholm

4. Fixed Points of Kannan Contraction Type

In this section, we offer the existence of a fixed point of Kan-
nan contraction mapping acting on this new space under the
conditions of Theorem 14 and its associated prequasi ideal.
Interestingly, several numerical experiments are presented
to illustrate our results.

Definition 36. A prequasi normed psssfτ on ES confirms

the Fatou property, if for every sequence f ehbg ⊆ES
τ so that

limb⟶∞τð ehb − ~hÞ = ~0 and every ~g ∈ES
τ , one has τð~g − ~hÞ

≤ supp inf b≥pτð~g − ehbÞ:
Throughout the next part of this article, we will use the

two functions τ1 and τ2 as

τ1 ~f
� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

,

τ2
~f
� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1
z

" #
qz ef z , ~0

 !
r + l

l

" #
0BBBB@

1CCCCA
vl

, ð62Þ

for all ~f ∈ ΓS
r ðq, vÞ.
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Theorem 37. The function τ1 satisfies the Fatou property.

Proof. Assume f egbg ⊆ ðΓS
r ðq, vÞÞτ1 so that limb⟶∞τ1ð egb −

~gÞ = 0: Clearly, ~g ∈ ðΓS
r ðq, vÞÞτ1 . For every ~f ∈ ðΓS

r ðq, vÞÞτ1 ,
one has

τ1 ~f − ~g
� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z − egz� �

, ~0
 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

≤ 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z − egbz� �

, ~0
 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

+ 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz

egbz − egz� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

≤ sup
j

inf
b≥j

τ1 ~f − egb
� �

:

ð63Þ

Theorem 38. Suppose v0 > 1, then τ2 does not verify the
Fatou property.

Proof. If f egbg ⊆ ðΓS
r ðq, vÞÞτ2 so that limb⟶∞τ2ð egb − ~gÞ = 0:

Clearly, ~g ∈ ðΓS
r ðq, vÞÞτ2 . For every ~f ∈ ðΓS

r ðq, vÞÞτ2 , one has

τ2 ~f − ~g
� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z − egz

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 2ℏ−1 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz ef z − egb

z

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

+ 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz

egb
z − egz

� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl
3777775

≤ 2ℏ−1 sup
j

inf
b≥ j

τ2 ~f − egb
� �

:

ð64Þ

Hence, τ2 does not satisfy the Fatou property.

Definition 39 (see [30]). A mapping G : ES
τ ⟶ES

τ is called
a Kannan τ-contraction, if one has ζ ∈ ½0, 1/2Þ, with τðG~g
−G~hÞ ≤ ζðτðG~g − ~gÞ + τðG~h − ~hÞÞ, for all ~g, ~h ∈ES

τ . When
Gð~gÞ = ~g, then ~g ∈ES

τ is called a fixed point of G.

Theorem 40. Suppose G : ðΓS
r ðq, vÞÞτ1 ⟶ ðΓS

r ðq, vÞÞτ1 is

Kannan τ1-contraction operator, then G has a unique fixed
point.

Proof. If ~h ∈ ΓS
r ðq, vÞ, one has Gm~h ∈ ΓS

r ðq, vÞ. As G is a
Kannan τ1-contraction, one has

τ1 Gm+1~h −Gm~h
� �

≤ ζ τ1 Gm+1~h −Gm~h
� �

+ τ1 Gm~h −Gm−1~h
� �� �

⇒ τ1 Gm+1~h −Gm~h
� �

≤
ζ

1 − ζ
τ1 Gm~h −Gm−1~h
� �

≤
ζ

1 − ζ

� �2
τ1 Gm−1~h −Gm−2~h
� �

≤ ≤
ζ

1 − ζ

� �m

τ1 G~h − ~h
� �

:

ð65Þ

We get for all m, n ∈N so that n >m that

τ1 Gm~h − Gn~h
� �

≤ ζ τ1 Gm~h −Gm−1~h
� �

+ τ1 Gn~h −Gn−1~h
� �� �

≤ ζ
ζ

1 − ζ

� �m−1
+ ζ

1 − ζ

� �n−1 !
τ1 G~h − ~h
� �

:

ð66Þ

Therefore, fGm~hg is a Cauchy sequence in ðΓS
r ðq, vÞÞτ1 .

As ðΓS
r ðq, vÞÞτ1 is prequasi Banach space. One has ~J ∈

ðΓS
r ðq, vÞÞτ1 with limm⟶∞Gm~h = ~J . To show that Gð~JÞ = ~J .

Since τ1 satisfies the Fatou property, one can see

τ1 G~J − ~J
� �

≤ sup
i

inf
m≥i

τ1 Gm+1~h −Gm~h
� �

≤ sup
i

inf
m≥i

ζ

1 − ζ

� �m

τ1 G~h − ~h
� �

= 0,
ð67Þ

then Gð~JÞ = ~J . Therefore, ~J is a fixed point of G. To indicate
the uniqueness of the fixed point. Let us have two different
fixed points ~f , ~J ∈ ðΓS

r ðq, vÞÞτ1 of G. We have

τ1
~f − ~J
� �

≤ τ1 G~f −G~J
� �

≤ ζ τ1 G~f − ~f
� �

+ τ1 G~J − ~J
� �� �

= 0:

ð68Þ

Therefore, ~f = ~J:

14 Journal of Function Spaces



Corollary 41. If G : ðΓS
r ðq, vÞÞτ1 ⟶ ðΓS

r ðq, vÞÞτ1 is Kannan
τ1-contraction, then G has a unique fixed point ~J so that τ1
ðGm~h − ~JÞ ≤ ζðζ/1 − ζÞm−1τ1ðG~h − ~hÞ:

Proof. By Theorem 40, one has a unique fixed point ~J of G.
Hence,

τ1 Gm~h − ~J
� �

= τ1 Gm~h −G~J
� �

≤ ζ τ1 Gm~h −Gm−1~h
� �

+ τ1 G~J − ~J
� �� �

= ζ
ζ

1 − ζ

� �m−1
τ1 G~h − ~h
� �

:

ð69Þ

Definition 42. If ES
τ is a prequasi normed psssf, G : ES

τ

⟶ES
τ and ~j ∈ES

τ : The mapping G is called τ-sequen-
tially continuous at ~j, if and only if, when limi⟶∞τð egi −~jÞ
= 0, then limi⟶∞τðG egi −G~jÞ = 0.

Theorem 43. If v0 > 1, and G : ðΓS
r ðq, vÞÞτ2 ⟶ ðΓS

r ðq, vÞÞτ2
. The element ~h ∈ ðΓS

r ðq, vÞÞτ2 is the unique fixed point of G,
when the following conditions are confirmed:

(i) G is Kannan τ2-contraction

(ii) G is τ2-sequentially continuous at ~h ∈ ðΓS
r ðq, vÞÞτ2

(iii) One has~j ∈ ðΓS
r ðq, vÞÞτ2 with fG

m~jg has fGmi~jg con-
verges to ~h

Proof. Assume ~h is not a fixed point of G, one has G~h ≠ ~h.
According to conditions (ii) and (iii), we have

lim
mi⟶∞

τ2 Gmi~j − ~h
� �

= 0,

lim
mi⟶∞

τ2 Gmi+1~j −G~h
� �

= 0:
ð70Þ

As G is Kannan τ2-contraction, one has

0 < τ2 G~h − ~h
� �

= τ2 G~h −Gmi+1~j
� �

+ Gmi~j − ~h
� ��

+ Gmi+1~j −Gmi~j
� ��

≤ 22ℏ−2τ2
� Gmi+1~j −G~h
� �

+ 22ℏ−2τ2 Gmi~j − ~h
� �

+ 2ℏ−1ζ ζ

1 − ζ

� �mi−1
τ2 G~j −~j
� �

:

ð71Þ

Take mi ⟶∞, one obtains a contradiction. Therefore,
~h is a fixed point of G. To explain the uniqueness of ~h.
Suppose we have two different fixed points ~h, ~g ∈

ðΓS
r ðq, vÞÞτ2 of G. Then

τ2 ~h − ~g
� �

≤ τ2 G~h −G~g
� �

≤ ζ τ2 G~h − ~h
� �

+ τ2 G~g − ~gð Þ
� �

= 0:

ð72Þ

So ~h = ~g:

Example 44. If T : ðΓS
r ðð1/ðl + 5Þl + r − 1lÞ∞l=0,

ð2l + 3/l + 2Þ∞l=0ÞÞτ1 ⟶ ðΓS
r ðð1/ðl + 5Þl + r − 1lÞ∞l=0, ð2l + 3/l

+ 2Þ∞l=0ÞÞτ1 and

T ~f
� �

=

~f
4 , τ1

~f
� �

∈ 0, 1½ Þ,
~f
5 , τ1

~f
� �

∈ 1,∞½ Þ:

8>>><>>>: ð73Þ

For all ~f , ~g ∈ ðΓS
r ðð1/ðl + 5Þl + r − 1lÞ∞l=0, ð2l + 3/l + 2Þ∞l=0Þ

Þτ1 . Ifτ1ð~f Þ, τ1ð~gÞ ∈ ½0, 1Þ,wehave

τ1 T~f − T~g
� �

= τ1
~f
4 −

~g
4

 !
≤

1ffiffiffiffiffi
274

p τ1
3~f
4

 !
+ τ1

3~g
4

� � !

= 1ffiffiffiffiffi
274

p τ1 T~f − ~f
� �

+ τ1 T~g − ~gð Þ
� �

:

ð74Þ

Foreveryτ1ð~f Þ, τ1ð~gÞ ∈ ½1,∞Þ,wehave

τ1 T~f − T~g
� �

= τ1
~f
5 −

~g
5

 !
≤

1ffiffiffiffiffi
644

p τ1
4~f
5

 !
+ τ1

4~g
5

� � !

= 1ffiffiffiffiffi
644

p τ1 T~f − ~f
� �

+ τ1 T~g − ~gð Þ
� �

:

ð75Þ

Foreveryτ1ð~f Þ ∈ ½0, 1Þandτ1ð~gÞ ∈ ½1,∞Þ,onehas

τ1 T~f − T~g
� �

= τ1
~f
4 −

~g
5

 !
≤

1ffiffiffiffiffi
274

p τ1
3~f
4

 !
+ 1ffiffiffiffiffi

644
p τ1

� 4~g
5

� �
≤

1ffiffiffiffiffi
274

p τ1
3~f
4

 !
+ τ1

4~g
5

� � !

= 1ffiffiffiffiffi
274

p τ1 T~f − ~f
� �

+ τ1 T~g − ~gð Þ
� �

:

ð76Þ

Hence,T isKannanτ1-contraction, asτ1 satisfies theFatou

property.ByTheorem40,T hasauniquefixedpointeθ:Assume
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fh kð Þ
	 


⊆ ΓS
r

1

l + 5ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBB@
1CCCCA

0BBBB@
1CCCCA

τ1

,

ð77Þ

sothat limk⟶∞τ1ðfhðkÞ −ghð0ÞÞ = 0,where

gh 0ð Þ ∈ ΓS
r

1

l + 5ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBB@
1CCCCA

0BBBB@
1CCCCA

τ1

,

ð78Þ

suchthatτ1ðghð0ÞÞ = 1.Asτ1 iscontinuous,onehas

lim
k⟶∞

τ1 Tfh kð Þ − Tgh 0ð Þ
� �

= lim
k⟶∞

τ1

fh kð Þ

4 −
gh 0ð Þ

5

0@ 1A
= τ1

gh 0ð Þ

20

0@ 1A > 0:

ð79Þ

SoT isnotτ1-sequentiallycontinuousat
ghð0Þ.ThisimpliesT

isnotcontinuousatghð0Þ.
For every ~f , ~g ∈ ðΓS

r ðð1/ðl + 5Þl + r − 1lÞ∞l=0, ð2l + 3/l + 2
Þ∞l=0ÞÞτ2 . If τ2ð~f Þ, τ2ð~gÞ ∈ ½0, 1Þ, one has

τ2 T~f − T~g
� �

= τ2
~f
4 −

~g
4

 !
≤

2ffiffiffiffiffi
27

p τ2
3~f
4

 !
+ τ2

3~g
4

� � !

= 2ffiffiffiffiffi
27

p τ2 T~f − ~f
� �

+ τ2 T~g − ~gð Þ
� �

:

ð80Þ

Let τ2ð~f Þ, τ2ð~gÞ ∈ ½1,∞Þ, one has

τ2 T~f − T~g
� �

= τ2
~f
5 −

~g
5

 !
≤
1
4 τ2

4~f
5

 !
+ τ2

4~g
5

� � !

= 1
4 τ2 T~f − ~f

� �
+ τ2 T~g − ~gð Þ

� �
:

ð81Þ

For every τ2ð~f Þ ∈ ½0, 1Þ and τ2ð~gÞ ∈ ½1,∞Þ, one has

τ2 T~f − T~g
� �

= τ2
~f
4 −

~g
5

 !
≤

2ffiffiffiffiffi
27

p τ2
3~f
4

 !
+ 1
4 τ2

4~g
5

� �

≤
2ffiffiffiffiffi
27

p τ2
3~f
4

 !
+ τ2

4~g
5

� � !

= 2ffiffiffiffiffi
27

p τ2 T~f − ~f
� �

+ τ2 T~g − ~gð Þ
� �

:

ð82Þ

Hence, T is Kannan τ2-contraction and

Tm ~f
� �

=

~f
4m , τ2 ~f

� �
∈ 0, 1½ Þ,

~f
5m , τ2

~f
� �

∈ 1,∞½ Þ:

8>>><>>>: ð83Þ

Evidently, T is τ2-sequentially continuous at eθ and f
Tm~f g has a subsequence fTmj~f g converges to eθ. According
to Theorem 43, the element eθ is the only fixed point of T .

Example 45. Let T : ðΓS
r ðð1/ðl + 5Þl + r − 1lÞ∞l=0, ð2l + 3/l + 2

Þ∞l=0ÞÞτ2 ⟶ ðΓS
r ðð1/ðl + 5Þl + r − 1lÞ∞l=0, ð2l + 3/l + 2Þ∞l=0ÞÞτ2

and

T ~f
� �

=

1
4 ee1 + ~f
� �

, ef0 tð Þ ∈ 0, 13


 �
,

1
3 ee1, ef0 tð Þ = 1

3 ,

1
4 ee1, ef0 tð Þ ∈ 1

3 , 1
� �

:

8>>>>>>>><>>>>>>>>:
ð84Þ

As ef0ðtÞ, eg0ðtÞ ∈ ½0, 1/3Þ, we get

τ2 T~f − T~g
� �

= τ2
1
4
ef0 − eg0, ef1 − eg1, ef2 − eg2,⋯
� �� �

≤
2ffiffiffiffiffi
27

p τ2
3~f
4

 !
+ τ2

3~g
4

� � !

≤
2ffiffiffiffiffi
27

p τ2 T~f − ~f
� �

+ τ2 T~g − ~gð Þ
� �

:

ð85Þ

For all ef0ðtÞ, eg0ðtÞ ∈ ð1/3, 1�, hence for all ε > 0, we have

τ2 T~f − T~g
� �

= 0 ≤ ε τ2 T~f − ~f
� �

+ τ2 T~g − ~gð Þ
� �

: ð86Þ
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For all ef0ðtÞ ∈ ½0, 1/3Þ and eg0ðtÞ ∈ ð1/3, 1�, one has
τ2 T~f − T~g
� �

= τ2
~f
4

 !
≤

1ffiffiffiffiffi
27

p τ2
3~f
4

 !
= 1ffiffiffiffiffi

27
p τ2 T~f − ~f

� �
≤

1ffiffiffiffiffi
27

p τ2 T~f − ~f
� �

+ τ2 T~g − ~gð Þ
� �

:

ð87Þ

Hence, T is Kannan τ2-contraction. Obviously, T is τ2
-sequentially continuous at 1/3ee1, and there is ~f ∈
ðΓS

r ðð1/ðl + 5Þl + r − 1lÞ∞l=0, ð2l + 3/l + 2Þ∞l=0ÞÞτ2 with ef0ðtÞ ∈ ½
0, 1/3Þ such that the sequence of iterates fTm~f g = f∑m

a=11/
4aee1 + 1/4m~f g includes a subsequence fTmj~f g = f∑mj

a=11/4aee1 + 1/4mj~f g converges to 1/3ee1. In view of Theorem 43,
the operator T has one fixed point 1/3ee1. Note that T is
not continuous at 1/3ee1.

For all ~f , ~g ∈ ðΓS
r ðð1/ðl + 5Þl + r − 1lÞ∞l=0, ð2l + 3/l + 2Þ∞l=0

ÞÞτ1 . If ef0ðtÞ, eg0ðtÞ ∈ ½0, 1/3Þ, we have
τ1 T~f − T~g
� �

= τ1
1
4
ef0 − eg0, ef1 − eg1, ef2 − eg2,⋯� �� �

≤
1ffiffiffiffiffi
274

p τ1
3~f
4

 !
+ τ1

3~g
4

� � !

≤
1ffiffiffiffiffi
274

p τ1 T~f − ~f
� �

+ τ1 T~g − ~gð Þ
� �

:

ð88Þ

For all ef0ðtÞ, eg0ðtÞ ∈ ð1/3, 1�, hence for all ε > 0, one has

τ1 T~f − T~g
� �

= 0 ≤ ε τ1 T~f − ~f
� �

+ τ1 T~g − ~gð Þ
� �

: ð89Þ

For all ef0ðtÞ ∈ ½0, 1/3Þ and eg0ðtÞ ∈ ð1/3, 1�, we have
τ1 T~f − T~g
� �

= τ1
~f
4

 !
≤

1ffiffiffiffiffi
274

p τ1
3~f
4

 !
= 1ffiffiffiffiffi

274
p τ1 T~f − ~f

� �
≤

1ffiffiffiffiffi
274

p τ1 T~f − ~f
� �

+ τ1 T~g − ~gð Þ
� �

:

ð90Þ

Therefore, the operator T is Kannan τ1-contraction.
Since τ1 confirms the Fatou property. By Theorem 40, the
operator T has a unique fixed point 1/3ee1.

In this part, we will use

Ξ Vð Þ = τ gsb Vð Þ
� �∞

b=0

� �
= 〠

∞

l=0

~ρ ∑l
z=0

z + r − 1
z

" #
qz gsz Vð Þ, ~0

 !
r + l

l

" #
0BBBB@

1CCCCA
vl266664
377775
1/ℏ

,

ð91Þ

for every V ∈fDs
ðΓS

r ðq,vÞÞτðG ,V Þ.

Definition 46. A function Ξ onfDs
ES satisfies the Fatou prop-

erty if for all fVbgb∈N ⊆fDs
ESðZ,MÞ so that limb⟶∞ΞðVb

−VÞ = 0 and all T ∈fDs
ESðZ,MÞ, one has ΞðT −VÞ ≤ supb

inf j≥bΞðT −V jÞ:

Theorem 47. The function Ξ does not verify the Fatou
property.

Proof. Assume fWmgm∈N ⊆fDs
ðΓS

r ðq,vÞÞτðG ,V Þ so that

limm⟶∞ΞðWm −WÞ = 0: Clearly, W ∈fDs
ðΓS

r ðq,vÞÞτðG ,V Þ.
Hence, for every V ∈fDs

ðΓS
r ðq,vÞÞτðG ,V Þ, we have

Ξ V −Wð Þ = 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gsz V −Wð Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

≤ 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gs z/2½ � V −Wið Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

+ 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gs z/2½ � W −Wið Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

≤ 22ℏ−1 + 2ℏ−1 + 2ℏ
� �1/ℏ

sup
m

inf
i≥m

� 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gsz V −Wið Þ, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

:

ð92Þ

Therefore, Ξ does not satisfy the Fatou property.

Definition 48 (see [30]). A mapping W :fDs
ESðZ,MÞ⟶fDs

ESðZ,MÞ is said to be a Kannan Ξ-contraction, assume
there is ζ ∈ ½0, 1/2Þ with ΞðWV −WTÞ ≤ ζðΞðWV − VÞ + Ξ

ðWT − TÞÞ, for all V , T ∈fDs
ESðZ,MÞ.

Definition 49. Assume G :fDs
ESðZ,MÞ⟶fDs

ESðZ,MÞ and
B ∈fDs

ESðZ,MÞ: The mapping G is called Ξ-sequentially
continuous at B, if and only if, when limm⟶∞ΞðWm − BÞ
= 0, one has limm⟶∞ΞðGWm −GBÞ = 0.

Theorem 50. If G :fDs
ðΓS

r ðq,vÞÞτðG ,V Þ⟶fDs
ðΓS

r ðq,vÞÞτðG ,V Þ.
The operator A ∈fDs

ðΓS
r ðq,vÞÞτðG ,V Þ is the only fixed point of

G, when the following conditions are confirmed:
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(i) G is Kannan Ξ-contraction

(ii) G is Ξ-sequentially continuous at A ∈fDs
ðΓS

r ðq,vÞÞτðG ,
V Þ

(iii) One has B ∈fDs
ðΓS

r ðq,vÞÞτðG ,V Þ with fGmBg has f
GmiBg converges to A

Proof. Suppose A is not a fixed point of G, then GA ≠ A. By
conditions (ii) and (iii), one has

lim
mi⟶∞

Ξ GmiB − Að Þ = 0,

lim
mi⟶∞

Ξ Gmi+1B −GA
� �

= 0:
ð93Þ

As G is Kannan Ξ-contraction operator, we get

0 < Ξ GA − Að Þ = Ξ GA −Gmi+1B
� �

+ GmiB − Að Þ + Gmi+1B −GmiB
� �� �

≤ 22ℏ−1 + 2ℏ−1 + 2ℏ
� �1/ℏ

Ξ Gmi+1B −GA
� �

+ 22ℏ−1 + 2ℏ−1 + 2ℏ
� �2/ℏ

Ξ GmiB − Að Þ

+ 22ℏ−1 + 2ℏ−1 + 2ℏ
� �2/ℏ

ζ
ζ

1 − ζ

� �mi−1
Ξ GB − Bð Þ:

ð94Þ

By mi ⟶∞, we have a contradiction. Then, A is a fixed
point of G. To show the uniqueness of the fixed point A. If

one has two different fixed points A,D ∈fDs
ðΓS

r ðq,vÞÞτðG ,V Þ
of G. So

Ξ A −Dð Þ ≤ Ξ GA − GDð Þ ≤ ζ Ξ GA − Að Þ + Ξ GD −Dð Þð Þ = 0:
ð95Þ

Therefore, A =D:

Example 51. Assume

M : S

ΓS
r 1/ l+4ð Þ

l+r−1

l

" # !∞

l=0

, 2l+3/l+2ð Þ∞l=0

 ! !
τ

G ,Vð Þ⟶ S

ΓS
r 1/ l+4ð Þ

l+r−1

l

" # !∞

l=0

, 2l+3/l+2ð Þ∞l=0

 ! !
τ

G ,Vð Þ,

ð96Þ

M Hð Þ =
H
6 , Ξ Hð Þ ∈ 0, 1½ Þ,
H
7 , Ξ Hð Þ ∈ 1,∞½ Þ:

8>><>>: ð97Þ

For all

H1,H2 ∈ S
ΓS
r 1/ l+4ð Þ

l+r−1
l

" # !∞

l=0

, 2l+3/l+2ð Þ∞l=0

 ! !
τ

:

ð98Þ

If ΞðH1Þ, ΞðH2Þ ∈ ½0, 1Þ, we have

Ξ MH1 −MH2ð Þ = Ξ
H1
6 −

H2
6

� �
≤

ffiffiffi
2

pffiffiffiffiffiffiffi
1254

p Ξ
5H1
6

� �
+ Ξ

5H2
6

� �� �
=

ffiffiffi
2

pffiffiffiffiffiffiffi
1254

p Ξ MH1 −H1ð Þ + Ξ MH2 −H2ð Þð Þ:

ð99Þ

Suppose ΞðH1Þ, ΞðH2Þ ∈ ½1,∞Þ, one has

Ξ MH1 −MH2ð Þ = Ξ
H1
7 −

H2
7

� �
≤

ffiffiffi
2

pffiffiffiffiffiffiffi
2164

p Ξ
6H1
7

� �
+ Ξ

6H2
7

� �� �
=

ffiffiffi
2

pffiffiffiffiffiffiffi
2164

p Ξ MH1 −H1ð Þ + Ξ MH2 −H2ð Þð Þ:

ð100Þ

Assume ΞðH1Þ ∈ ½0, 1Þ and ΞðH2Þ ∈ ½1,∞Þ, one gets

Ξ MH1 −MH2ð Þ = Ξ
H1
6 −

H2
7

� �
≤

ffiffiffi
2

pffiffiffiffiffiffiffi
1254

p Ξ
5H1
6

� �
+

ffiffiffi
2

pffiffiffiffiffiffiffi
2164

p Ξ
6H2
7

� �
≤

ffiffiffi
2

pffiffiffiffiffiffiffi
1254

p

� Ξ MH1 −H1ð Þ + Ξ MH2 −H2ð Þð Þ:
ð101Þ

Hence, M is Kannan Ξ-contraction and

Mm Hð Þ =
H
6m , Ξ Hð Þ ∈ 0, 1½ Þ,
H
7m , Ξ Hð Þ ∈ 1,∞½ Þ:

8>><>>: ð102Þ

Evidently, M is Ξ-sequentially continuous at the zero
operator Θ and fMmHg has a subsequence fMmjHg con-
verges to Θ. According to Theorem 50, the zero operator is
the only fixed point of M.

If

H að Þ
n o

⊆ S
ΓS
r 1/ l+4ð Þ

l+r−1
l

" # !∞

l=0

, 2l+3/l+2ð Þ∞l=0

 ! !
τ

,

ð103Þ
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with lima⟶∞ΞðHðaÞ −Hð0ÞÞ = 0, where

H 0ð Þ ∈ S
ΓS
r 1/ l+4ð Þ

l+r−1
l

" # !∞

l=0

, 2l+3/l+2ð Þ∞l=0

 ! !
τ

,

ð104Þ

so that ΞðHð0ÞÞ = 1. As Ξ is continuous, one has

lim
a⟶∞

Ξ MH að Þ −MH 0ð Þ
� �

= lim
a⟶∞

Ξ
H 0ð Þ

6 −
H 0ð Þ

7

� �
= Ξ

H 0ð Þ

42

� �
> 0:

ð105Þ

Therefore, M is not Ξ-sequentially continuous at Hð0Þ.
This implies M is not continuous at Hð0Þ.

5. Applications on Stochastic Nonlinear
Dynamical System

We investigate in this section a solution in ðΓS
r ðq, vÞÞτ1 to

stochastic nonlinear dynamical system (106) under the con-
ditions of Theorem 14. For every ~f ∈ ΓS

r ðq, vÞ.
Consider the stochastic nonlinear dynamical system

[36]:

ef z = eyz + 〠
∞

m=0
Π z,mð Þg m,ff m� �

, ð106Þ

and assume W : ðΓS
r ðq, vÞÞτ1 ⟶ ðΓS

r ðq, vÞÞτ1 is con-

structed by

W ef z� �
z∈N

= eyz + 〠
∞

m=0
Π z,mð Þg m,ff m� � !

z∈N

: ð107Þ

Theorem 52. The stochastic nonlinear dynamical system
(106) has one and only one solution in ðΓS

r ðq, vÞÞτ1 , if Π
: N 2 ⟶R,g : N ×RðAÞ⟶RðAÞ,~f : N ⟶RðAÞ,
~y : N ⟶RðAÞ,~η : N ⟶RðAÞ, one has λ ∈R with supl
jλjvl/ℏ ∈ ½0, 1/2Þ and for every l ∈N , one obtains

〠
l

z=0
〠
m∈N

Π z,mð Þ g m,ff m� �
− g m,fηmð Þ

h i !
z + r−1

z

" #
qz

�����
�����

≤~ λj j 〠
l

z=0
eyz − ef z + 〠

∞

m=0
Π z,mð Þg m,ff m� � !

z + r − 1

z

" #
qz

�����
�����

+ λj j 〠
l

z=0
eyz − eηz + 〠

∞

m=0
Π z,mð Þg m,fηmð Þ

 !
z + r − 1

z

" #
qz

�����
�����:

ð108Þ

Proof. Let the conditions be established. Assume the map-
ping W : ðΓS

r ðq, vÞÞτ1 ⟶ ðΓS
r ðq, vÞÞτ1 is defined by equa-

tion (11). Hence,

τ1 W~f −W~η
� �

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz W ef z −W eηz� �

, ~0
 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

= 〠
∞

l=0

~ρ ∑l
z=0 ∑m∈NΠ z,mð Þ g m,ff m� �

− g m,fηmð Þ
h i� � z + r − 1

z

" #
qz , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

≤ sup
l

λj jvl/ℏ 〠
∞

l=0

~ρ ∑l
z=0 eyz − ef z +∑∞

m=0Π z,mð Þg m,ff m� �� � z + r − 1

z

" #
qz , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

+ sup
l

λj jvl/ℏ 〠
∞

l=0

~ρ ∑l
z=0 eyz − eηz +∑∞

m=0Π z,mð Þg m,fηmð Þð Þ
z + r − 1

z

" #
qz , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

= sup
l

λj jvl/ℏ τ1 W~f − ~f
� �

+ τ1 W~η − ~ηð Þ
� �

:

ð109Þ

From Theorem 40, one has one and only one solution of
(106) in ðΓS

r ðq, vÞÞτ1 :

Example 53. Consider

ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBB@
1CCCCA

0BBBB@
1CCCCA

τ1

:

ð110Þ

Suppose the stochastic nonlinear dynamical system:

ef z = ge− 3z+6ð Þ + 〠
∞

m=0
−1ð Þz+m

gf bz−2gf dz−1 + gm2 + 1
, ð111Þ

with b, d, ff −2ðtÞ, ff −1ðtÞ > 0, for all t ∈ A and suppose

W : ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBBB@

1CCCCCA

0BBBBB@

1CCCCCA
τ1

⟶ ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBBB@

1CCCCCA

0BBBBB@

1CCCCCA
τ1

ð112Þ
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is defined by

W ef z� �∞
z=0

= ge− 3z+6ð Þ + 〠
∞

m=0
−1ð Þz+m

gf bz−2gf dz−1 + gm2 + 1

0@ 1A∞

z=0

:

ð113Þ

Evidently, one has λ ∈R with supljλj2l+3/2l+4 ∈ ½0, 1/2Þ
and for every l ∈N , we have

〠
l

z=0
〠
∞

m=0
−1ð Þz

gf bz−2gf dz−1 + gm2 + 1
−1ð Þm − −1ð Þmð Þ

0@ 1A z + r−1

z

" #
qz

������
������

≤~ λj j 〠
l

z=0

ge− 3z+6ð Þ − f z + 〠
∞

m=0
−1ð Þz+m

gf bz−2gf dz−1 + gm2 + 1

0@ 1A z + r − 1

z

" #
qz

������
������

+ λj j 〠
l

z=0

ge− 3z+6ð Þ − eηz + 〠
∞

m=0
−1ð Þz+m

gηbz−2gηdz−1 + gm2 + 1

 !
z + r − 1

z

" #
qz

�����
�����:

ð114Þ

From Theorem 52, system (111) has one and only one
solution in

ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBB@
1CCCCA

0BBBB@
1CCCCA

τ1

: ð115Þ

Example 54. Suppose the sequence space

ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBB@
1CCCCA

0BBBB@
1CCCCA

τ1

: ð116Þ

Assume the stochastic nonlinear dynamical system:

ef z = eyz + 〠
∞

m=0
ez+m

gf bz−2gf dz−1 +gf bz−1 + ~2
, ð117Þ

with b, d, ff −2ðtÞ, ff −1ðtÞ > 0, for all t ∈ A and suppose

W : ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBBB@

1CCCCCA

0BBBBB@

1CCCCCA
τ1

⟶ ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBBB@

1CCCCCA

0BBBBB@

1CCCCCA
τ1

ð118Þ

is defined by

W ef z� �∞
z=0

= eyz + 〠
∞

m=0
ez+m

gf bz−2gf dz−1 +gf bz−1 + ~2

0@ 1A∞

z=0

: ð119Þ

Evidently, there is λ ∈R such that supljλj2l+3/2l+4 ∈ ½0,
1/2Þ and for every l ∈N , we have

〠
l

z=0
〠
∞

m=0
ez

gf bz−2gf dz−1 +gf bz−1 + ~2
em − emð Þ

0@ 1A z + r−1

z

" #
qz

������
������

≤~ λj j 〠
l

z=0
eyz − f z + 〠

∞

m=0
ez+m

gf bz−2gf dz−1 +gf bz−1 + ~2

0@ 1A z + r − 1

z

" #
qz

������
������

+ λj j 〠
l

z=0
eyz − eηz + 〠

∞

m=0
ez+m

gηbz−2gηdz−1 +gηbz−1 + ~2

 !
z + r − 1

z

" #
qz

�����
�����:

ð120Þ

According to Theorem 52, the stochastic nonlinear
dynamical system (14) contains a unique solution in

ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBB@
1CCCCA

0BBBB@
1CCCCA

τ1

:

ð121Þ

Theorem 55. If W : ðΓS
r ðq, vÞÞτ2 ⟶ ðΓS

r ðq, vÞÞτ2 is

defined by (11) and v0 > 1. The stochastic nonlinear
dynamical system (106) has a unique solution ~Z ∈
ðΓS

r ðq, vÞÞτ2 , when the following conditions are satisfied:

(1) If Π : N 2 ⟶R,g : N ×RðAÞ⟶RðAÞ,
~f : N ⟶RðAÞ,~y : N ⟶RðAÞ,~η : N ⟶RðAÞ,
assume there is λ ∈R so that 2ℏ−1 supljλjvl ∈ ½0, 1/2Þ
and for every l ∈N , one has

〠
l

z=0
〠
m∈N

Π z,mð Þ g m,ff m� �
− g m,fηmð Þ

h i !
z + r−1

z

" #
qz

�����
�����

≤~ λj j 〠
l

z=0
eyz − ef z + 〠

∞

m=0
Π z,mð Þg m,ff m� � !

z + r − 1

z

" #
qz

�����
�����

+ λj j 〠
l

z=0
eyz − eηz + 〠

∞

m=0
Π z,mð Þg m,fηmð Þ

 !
z + r − 1

z

" #
qz

�����
�����

ð122Þ

(2) W is τ2-sequentially continuous at ~Z ∈ ðΓS
r ðq, vÞÞτ2
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(3) There is ~Y ∈ ðΓS
r ðq, vÞÞτ2 with fWm~Yg has fWmj ~Yg

converging to ~Z

Proof. One has

τ2 W~f −W~η
� �

= 〠
∞

l=0

~ρ ∑l
z=0

r + z − 1

z

" #
qz W ef z −W eηz� �

, ~0
 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 〠
∞

l=0

~ρ ∑l
z=0 ∑m∈NΠ z,mð Þ g m,ff m� �

− g m,fηmð Þ
h i� � z + r − 1

z

" #
qz , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

≤ 2ℏ−1 sup
l

λj jvl 〠
∞

l=0

~ρ ∑l
z=0 eyz − ef z +∑∞

m=0Π z,mð Þg m,ff m� �� � z + r − 1

z

" #
qz , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

+ 2ℏ−1 sup
l

λj jvl 〠
∞

l=0

~ρ ∑l
z=0 eyz − eηz +∑∞

m=0Π z,mð Þg m,fηmð Þð Þ
z + r − 1

z

" #
qz , ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

= 2ℏ−1 sup
l

λj jvl τ2 W~f − ~f
� �

+ τ2 W~η − ~ηð Þ
� �

:

ð123Þ

By Theorem 43, one gets a unique solution ~Z ∈
ðΓS

r ðq, vÞÞτ2 of equation (106).

Example 56. Suppose the sequence space

ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBB@
1CCCCA

0BBBB@
1CCCCA

τ2

:

ð124Þ

Consider the summable equation (111):
Let

W : ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBBB@

1CCCCCA

0BBBBB@

1CCCCCA
τ2

⟶ ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBBB@

1CCCCCA

0BBBBB@

1CCCCCA
τ2

ð125Þ

defined by (13). Assume W is τ2-sequentially continuous at

~Z ∈ ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBB@
1CCCCA

0BBBB@
1CCCCA

τ2

,

ð126Þ

and there is

~Y ∈ ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBB@
1CCCCA

0BBBB@
1CCCCA

τ2

ð127Þ

with fWm~Yg has fWmj ~Yg converging to ~Z. Evidently, there
is λ ∈R such that 2ℏ−1 supljλj2l+3/l+2 ∈ ½0, 1/2Þ and for all l
∈N , one has

〠
l

z=0
〠
∞

m=0
−1ð Þz

gf bz−2gf dz−1 + gm2 + 1
−1ð Þm − −1ð Þmð Þ

0@ 1A z + r−1

z

" #
qz

������
������

≤~ λj j 〠
l

z=0

ge− 3z+6ð Þ − f z + 〠
∞

m=0
−1ð Þz+m

gf bz−2gf dz−1 + gm2 + 1

0@ 1A z + r − 1

z

" #
qz

������
������

+ λj j 〠
l

z=0

ge− 3z+6ð Þ − eηz + 〠
∞

m=0
−1ð Þz+m

gηbz−2gηdz−1 + gm2 + 1

 !
z + r − 1

z

" #
qz

�����
�����:

ð128Þ

By Theorem 57, the stochastic nonlinear dynamical
system (111) has one and only one solution

~Z ∈ ΓS
r

1

l + 1ð Þ
l + r − 1

l

" #
0BBBB@

1CCCCA
∞

l=0

, 2l + 3
l + 2

� �∞

l=0

0BBBB@
1CCCCA

0BBBB@
1CCCCA

τ2

:

ð129Þ

In this part, we search for a solution to nonlinear matrix

equation (131) at D ∈fDs
ðΓS

r ðq,vÞÞτðG ,V Þ, the conditions of
Theorem 14 are satisfied, and

Ξ Gð Þ = 〠
∞

l=0

~ρ ∑l
z=0

r + z − 1
z

" #
qz gsz Gð Þ, ~0

 !
r + l

l

" #
0BBBB@

1CCCCA
vl266664
377775
1/ℏ

,

ð130Þ

for every G ∈fDs
ðΓS

r ðq,vÞÞτðG ,V Þ. Consider the stochastic
nonlinear dynamical system:
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gsz Gð Þ = gsz Pð Þ + 〠
∞

m=0
Π z,mð Þf m, gsm Gð Þ

� �
, ð131Þ

and suppose W :fDs
ðΓS

r ðq,vÞÞτðG ,V Þ⟶fDs
ðΓS

r ðq,vÞÞτðG ,V Þ is
defined by

W Gð Þ = gsz Pð Þ + 〠
∞

m=0
Π z,mð Þf m, gsm Gð Þ

� � !
I: ð132Þ

Theorem 57. The stochastic nonlinear dynamical system

(131) has one and only one solution D ∈fDs
ðΓS

r ðq,vÞÞτðG ,V Þ,
if the following conditions are satisfied:

(1) Π : N 2 ⟶R,f : N ×RðAÞ⟶RðAÞ, P ∈DðG ,
V Þ,T ∈DðG ,V Þ, and for every z ∈N , there is a pos-
itive real number κ so that supzκtz /ℏ ∈ ½0; 0:5Þ, with

〠
m∈N

Π z,mð Þ f m, gsm Gð Þ
� �

− f m, sm Tð Þ~ÞÞ
�����

  �����
≤~κ gsz Pð Þ − gsz Gð Þ + 〠

m∈N
A a,mð Þf m, gsm Gð Þ

� ������
�����

"

+ gsz Pð Þ − gsz Tð Þ + 〠
m∈N

Π z,mð Þf m, gsm Tð Þ
� ������

�����
# ð133Þ

(2) W is Ξ-sequentially continuous at a point D ∈fDs
ðΓS

r ðq,vÞÞτðG ,V Þ

(3) There is B ∈fDs
ðΓS

r ðq,vÞÞτðG ,V Þ so that the sequence of
iterates fWaBg has a subsequence fWaiBg converg-
ing to D

Proof. Suppose the settings are verified. Consider the map-

ping W :fDs
ðΓS

r ðq,vÞÞτðG ,V Þ⟶fDs
ðΓS

r ðq,vÞÞτðG ,V Þ defined
by (132). We have

Ξ WG −WTð Þ = 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gsz Gð Þ − gsz Tð Þ
� �

, ~0
 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

= 〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz∑m∈NA a,mð Þ f m, gsm Gð Þ

� �
− f m, gsm Tð Þ
� �� �

, ~0
 !

r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

≤ sup
z
κtz/ℏ 〠

∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gsz Pð Þ − gsz Gð Þ +∑m∈NΠ z,mð Þf m, gsm Gð Þ

� �� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

+ sup
z
κtz/ℏ 〠

∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gsz Tð Þ − gsz Gð Þ +∑m∈NΠ z,mð Þf m, gsm Tð Þ

� �� �
, ~0

 !
r + l

l

" #
0BBBBB@

1CCCCCA
vl

2666664

3777775
1/ℏ

= sup
z
κtz/ℏ Ξ WG −Gð Þ + Ξ WT − Tð Þð Þ:

ð134Þ

In view of Theorem 50, one obtains a unique solution of

equation (131) at D ∈fDs
ðΓS

r ðq,vÞÞτðG ,V Þ.

Example 58. Assume the class fDs
ðΓS

r ðð1/l!Þ,ð2l+3/l+2ÞÞÞτðG ,V Þ,
where

Ξ Gð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
∞

l=0

~ρ ∑l
z=0

z + r − 1

z

" #
qz gsz Gð Þ, ~0

 !

l!∑l
z=0

z + r − 1

z

" #
qz

0BBBBB@

1CCCCCA
2l+3/l+2

vuuuuuuuut ,

for allG ∈fDs
ΓS
r 1/l!ð Þ, 2l+3/l+2ð Þð Þð Þ

τ

G ,Vð Þ::
ð135Þ

Consider the stochastic nonlinear dynamical system:

gsz Gð Þ = ge− 2z+3ð Þ + 〠
∞

m=0

tan 2m + 1ð Þ cosh 3m − zð Þ cosb gsz−2 Gð Þ
��� ���

sinhd gsz−1 Gð Þ
��� ��� + gsin mz + ~1

,

ð136Þ

where z ≥ 2 and b, d > 0 and let W :fDs
ðΓS

r ðð1/l!Þ,ð2l+3/l+2ÞÞÞτ
ðG ,V Þ⟶fDs

ðΓS
r ðð1/l!Þ,ð2l+3/l+2ÞÞÞτðG ,V Þ be defined as

W Gð Þ = ge− 2z+3ð Þ + 〠
∞

m=0

tan 2m + 1ð Þ cosh 3m − zð Þ cosb gsz−2 Gð Þ
��� ���

sinhd gsz−1 Gð Þ
��� ��� + gsin mz + ~1

0B@
1CAI:

ð137Þ

Suppose W is Ξ-sequentially continuous at a point

D ∈fDs
ðΓS

r ðð1/l!Þ,ð2l+3/l+2ÞÞÞτðG ,V Þ, and there is B ∈fDs
ðΓS

r ðð1/l!Þ,ð2l+3/l+2ÞÞÞτðG ,V Þ so that the sequence of iter-
ates fWaBg has a subsequence fWaiBg converging to
D. It is easy to see that

〠
∞

m=0

cosh 3m − zð Þ cosb gsz−2 Gð Þ
��� ���

sinhd gsz−1 Gð Þ
��� ��� + gsin mz + ~1

tan 2m + 1ð Þ − tan 2m+1ð Þð Þ
������

������
≤~ 1

25
ge− 2z+3ð Þ − gsz Gð Þ + 〠

∞

m=0

tan 2m + 1ð Þ cosh 3m − zð Þ cosb gsz−2 Gð Þ
��� ���

sinhd gsz−1 Gð Þ
��� ��� + gsin mz + ~1

������
������

+ 1
25

ge− 2z+3ð Þ − gsz Tð Þ + 〠
∞

m=0

tan 2m + 1ð Þ cosh 3m − zð Þ cosb gsz−2 Tð Þ
��� ���

sinhd gsz−1 Tð Þ
��� ��� + gsin mz + ~1

������
������:

ð138Þ

By Theorem 57, the stochastic nonlinear dynamical
system (18) has one solution D.
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6. Conclusion

In this article, we introduced a new general space called
ðΓS

r ðq, vÞÞτ and the mappings’ ideal space of solutions for
many stochastic nonlinear and matrix systems of Kannan
contraction type. We have presented some topological and
geometric properties of it, of the multiplication operators
acting on it, of the mappings’ ideal, and of the spectrum of
its mappings’ ideal. The existence of a fixed point in the
Kannan contraction mapping on these spaces is explored.
To put our findings to the test, we introduced several
numerical experiments. In addition, various effective imple-
mentations of the stochastic nonlinear dynamical and
matrix system are discussed. The ideal spectrum of map-
pings, multiplication operators, and the fixed points of any
contraction mappings in this new soft functions space are
investigated.
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In general, we have constructed the operator ideal generated by extended s-fuzzy numbers and a certain space of sequences of
fuzzy numbers. An investigation into the conditions sufficient for variable exponent Cesàro sequence space of fuzzy functions
furnished with the definite function to create pre-quasi-Banach and closed is carried out. The ðRÞ and the normal structural
properties of this space are shown. Fixed points for Kannan contraction and nonexpansive mapping have been introduced.
Lastly, we explore whether the Kannan contraction mapping has a fixed point in its associated pre-quasioperator ideal. The
existence of solutions to nonlinear difference equations is illustrated with a few real-world examples and applications.

1. Introduction

Probability theory, fuzzy set theory, soft sets, and rough sets
have contributed substantially to the study of uncertainty.
But there are drawbacks to these theories that must be con-
sidered. After Zadeh [1] established the concept of fuzzy sets
and fuzzy set operations, many researchers adopted the con-
cept of fuzziness in cybernetics and artificial intelligence as
well as in expert systems and fuzzy control. For more infor-
mation and real-world examples, some comparable fixed
point results were discussed by Javed et al. [2] to ensure that
a fixed point exists and is unique in R-fuzzy b-metric spaces.
The viability of the proposed methodologies was demon-
strated through a challenging case study. There was no
doubt about the superiority of the findings delivered. For
the first type of Fredholm-type integral equation, an applica-
tion was described. In [3], Al-Masarwah and Ahmad defined
and investigated the m-Polar ðα, βÞ-Fuzzy Ideals in BCK/
BCI-Algebras and explored some pertinent properties. There
are many other orthogonal fuzzy metric spaces; however,
Javed et al. [4] expanded the orthogonal image fuzzy metric
space concept. In the context of the newly specified struc-

ture, they displayed some fixed point outcomes. Fuzzy
sequence spaces were introduced, and their various features
were studied by many workers on sequence spaces and sum-
mability theory. Nuray and Savas [5] defined and studied the
Nakano sequences of fuzzy numbers, ℓFðτÞ equipped with
the function h. The operator ideal is very important in fixed
point theory, Banach space geometry, normal series theory,
approximation theory, and ideal transformations. See [6–8]
for further proof. Pre-quasioperator ideals are more exten-
sive than quasioperator ideals, according to Faried and Bak-
ery [9]. The learning about the variable exponent Lebesgue
spaces obtained impetus from the mathematical description
of the hydrodynamics of non-Newtonian fluids (see [10,
11]). There are numerous uses for electrorheological fluids,
which include military science, civil engineering, and ortho-
pedic. There have been many developments in mathematics
since the Banach fixed point theorem [12] was first pub-
lished. While contractions have fixed point actions, Kannan
[13] cited an example of a type of mapping that is not con-
tinuous. In Reference [14], the only attempt was made to
explain Kannan operators in modular vector spaces. For
more details on Kannan’s fixed point theorems, see
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[15–20]. Given that the proof of many fixed point theorems
in a given space requires either growing the space itself or
expanding the self-mapping that acts on it, both options
are viable. Hence, we have constructed the Cesàro sequence
spaces of fuzzy functions and have presented the solutions of
a fuzzy nonlinear dynamical system in this newly created
space. This work is aimed at introducing the certain space
of sequences of fuzzy numbers, in short (cssf), under a cer-
tain function to be pre-quasi (cssf). This space and s-num-
bers have been used to describe the structure of the ideal
operators. We explain the sufficient conditions of variable
exponent Cesàro sequence space of fuzzy functions, which
is denoted by CF

τð:Þ, equipped with the definite function h
to be pre-quasi-Banach and closed (cssf). The ðRÞ and the
normal structure property of this space are shown. Fixed
points for Kannan contraction and nonexpansive mapping
have been introduced. Lastly, we explore whether the Kan-
nan contraction mapping has a fixed point in its associated
pre-quasioperator ideal. The existence of solutions to non-
linear difference equations is illustrated with a few real-
world examples and applications.

2. Definitions and Preliminaries

As a reminder, Matloka [21] presented the notion of ordinary
convergence of sequences of fuzzy numbers, where he intro-
duced bounded and convergent fuzzy numbers, explored
some of their features, and proved that any convergent fuzzy
number sequence is bounded. Nanda [22] studied the
sequences of fuzzy numbers and showed the set of all conver-
gent sequences of fuzzy numbers from a complete metric
space. Kumar et al. [23] investigated the notion of limit points
and cluster points of sequences of fuzzy numbers. AssumeΩ is
the set of all closed and bounded intervals on the real line R.
For f = ½ f1, f2� and g = ½g1, g2� in Ω, suppose

f ≤ g, if and only if f1 ≤ g1 and f2 ≤ g2: ð1Þ

Define a metric ρ on Ω by

ρ f , gð Þ =max f1 − g1j j, f2 − g2j jf g: ð2Þ

Matloka [21] showed that ρ is a metric onΩ and ðΩ, ρÞ is
a complete metric space. Also, the relation ≤ is a partial order
on Ω.

Definition 1. A fuzzy number g is a fuzzy subset of R, i.e., a
mapping g : R⟶ ½0, 1� which verifies the following four
settings:

(a) g is fuzzy convex, i.e., for x, y ∈R and α ∈ ½0, 1�,
gðαx + ð1 − αÞyÞ ≥min fgðxÞ, gðyÞg

(b) g is normal, i.e., there is y0 ∈R such that gðy0Þ = 1

(c) g is an upper semicontinuous, i.e., for all α > 0, g−1

ð½0, x+αÞÞ for all x ∈ ½0, 1� is open in the usual topol-
ogy of R

(d) the closure of g0 ≔ fy ∈R : gðyÞ > 0g is compact

The β-level set of a fuzzy real number g, 0 < β < 1, indi-
cated by gβ is defined as

gβ = y ∈R : g yð Þ ≥ βf g: ð3Þ

The set of every upper semicontinuous, normal, convex
fuzzy number, and gβ is compact is denoted by Rð½0, 1�Þ.
The set R can be embedded in Rð½0, 1�Þ, if we define r ∈R
ð½0, 1�Þ by

�r tð Þ =
1, t = r,
0, t ≠ r:

(
ð4Þ

The additive identity and multiplicative identity in
R½0, 1� are denoted by �0 and �1, respectively.

The arithmetic operations onR½0, 1� are defined as follows:

f ⊕ gð Þ yð Þ = sup
y∈R

min f xð Þ, g y − xð Þf g,

f !gð Þ yð Þ = sup
y∈R

min f xð Þ, g x − yð Þf g,

f ⊗ gð Þ yð Þ = sup
y∈R

min f xð Þ, g y
x

� �n o
,

f
g

� �
yð Þ = sup

y∈R
min f xyð Þ, g xð Þf g,

xf yð Þ = f x−1y
� �

, x ≠ 0,
0, x = 0:

(

ð5Þ

The absolute value j f j of f ∈R½0, 1� is defined by

fj j yð Þ =
max f yð Þ, f −yð Þf g, if y ≥ 0,
0, if y < 0:

(
ð6Þ

Suppose f , g ∈R½0, 1� and the β-level sets are ½ f �β = ½ f β1 ,
f β2 �, ½g�β = ½gβ1 , gβ2 �, and β ∈ ½0, 1�. A partial ordering for any
f , g ∈R½0, 1� as follows: f °g, if and only if f β ≤ gβ, for all
β ∈ ½0, 1�. Then, the above operations can be defined in terms
of β-level sets as follows:

f ⊕ g½ �β = f β1 + gβ1 , f
β
2 + gβ2

h i
,

f !g½ �β = f β1 − gβ2 , f
β
2 − gβ1

h i
,

f ⊗ g½ �β = min
j∈ 1,2f g

f βj g
β
j , max

j∈ 1,2f g
f βj g

β
j

� 	
,

f −1

 �β = f β2

� �−1
, f β1
� �−1� 	

, f βj > 0, for every β ∈ 0, 1ð �,

xf½ �β =
xf β1 , xf

β
2

h i
, x ≥ 0,

xf β2 , xf
β
1

h i
, x < 0:

8><
>:

ð7Þ
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Assume �ρ : R½0, 1� ×R½0, 1�⟶R+ ∪ f0g is defined by
�ρð f , gÞ = sup0≤β≤1ρð f β, gβÞ:

Recall that

(1) ðR½0, 1�, �ρÞ is a complete metric space

(2) �ρð f + k, g + kÞ = �ρð f , gÞ for all f , g, k ∈R½0, 1�
(3) �ρð f + k, g + lÞ ≤ �ρð f , gÞ + �ρðk, lÞ.
(4) �ρðξf , ξgÞ = jξj�ρð f , gÞ, for all ξ ∈R:

Definition 2. A sequence f = ð f jÞ of fuzzy numbers is said to be

(a) bounded if the set f f j : j ∈N g of fuzzy numbers is
bounded, i.e., if a sequence ð f jÞ is bounded, then
there are two fuzzy numbers g, l such that g ≤ f j ≤ l

(b) convergent to a fuzzy real number f0 if for every ε > 0,
there exists n0 ∈N such that �ρð f j, f0Þ < ε, for all j ≥ j0

Lemma 3 (see [24]). Suppose τa ≥ 1 and va, ta ∈R, for every
a ∈N , then jva + tajτa ≤ 2K−1ðjvajτa + jtajτaÞ, where K =max
f1, supaτag.

3. Main Results

3.1. Some Properties of CF
τð:Þ. In this section, we have intro-

duced the certain space of sequences of fuzzy numbers or
in short (cssf), under the definite function to form pre-
quasi (cssf). We explain the sufficient setting of CF

τð:Þ
equipped with the definite function h to construct pre-
quasi-Banach and closed (cssf). The Fatou property of vari-
ous pre-quasinorms h on CF

τð:Þ has been investigated. We
have presented this space’s k-nearly uniformly convex, the
property ðRÞ, and the h-normal structure-property, which
are connected with the fixed point theorem.

By ℓ∞ and ℓr , we denote the spaces of bounded and r
-absolutely summable sequences of real numbers, respec-
tively. Let ωðFÞ denote the classes of all sequence spaces of
fuzzy real numbers. Suppose τ = ðτaÞ ∈R+N , where R+N

is the space of positive real sequences. The variable exponent
Cesàro sequence space of fuzzy functions is denoted by the
following: CF

τð:Þ = fv = ðvaÞ ∈ ωðFÞ: hðμvÞ<∞,for some μ > 0g,
when hðvÞ =∑∞

a=0ð∑a
k=0�ρðvk, �0Þ/a + 1Þτa : If ðτaÞ ∈ ℓ∞, then

CF
τ :ð Þ = v = vað Þ ∈ ω Fð Þ: h μvð Þ<∞,for some μ > 0f g

= v = vað Þ ∈ ω Fð Þ: inf
a

μj jτa 〠
∞

a=0

∑a
k=0�ρ vk, �0ð Þ
a + 1

� �τa
(

≤ 〠
∞

a=0

∑a
k=0�ρ μvk, �0ð Þ

a + 1

� �τa

<∞,for some μ > 0
)

= v = vað Þ ∈ ω Fð Þ: 〠
∞

a=0

∑a
k=0�ρ vk, �0ð Þ
a + 1

� �τa

<∞
( )

= v = vað Þ ∈ ω Fð Þ: h μvð Þ<∞,for any μ > 0f g:

ð8Þ

Definition 4 (see [25]). The linear space U is said to be a certain
space of sequences of fuzzy numbers (cssf), if

(1) f�bqgq∈N ⊆U, where �bq = f�0, �0,⋯, �1, �0, �0,⋯g, while
�1 displays at the qth place

(2) suppose Y = ðYqÞ ∈ ωðFÞ, Z = ðZqÞ ∈U and jYqj ≤ j
Zqj, for all q ∈N , then Y ∈U

(3) ðY ½q/2�Þ∞q=0 ∈U, where ½q/2� marks the integral part of

q/2, if ðYqÞ∞q=0 ∈U

Definition 5 (see [25]). A subclass Uh of U is called a pre-
modular (cssf), if there is h ∈ ½0,∞ÞU satisfies the next
settings:

(i) If Y ∈U, Y = �ϑ⇔ hðYÞ = 0 with hðYÞ ≥ 0, where �ϑ
= ð�0, �0, �0,Þ

(ii) There is Q ≥ 1, and the inequality hðαYÞ ≤Qjαjh
ðYÞ holds, for every Y ∈U and α ∈R

(iii) There is P ≥ 1, and the inequality hðY + ZÞ ≤ Pðh
ðYÞ + hðZÞÞ holds, for every Y , Z ∈U

(iv) If jYqj ≤ jZqj, for every q ∈N , one has hððYqÞÞ ≤ h
ððZqÞÞ

(v) The inequality hððYqÞÞ ≤ hððY ½q/2�ÞÞ ≤ P0hððYqÞÞ
holds, for some P0 ≥ 1

(vi) Let E be the space of finite sequences of fuzzy num-
bers; then, the closure of E =Uh

(vii) There is σ > 0 with hð�α, �0, �0, �0,⋯Þ ≥ σjαjhð�1, �0, �0,
�0,⋯Þ, where

�α yð Þ =
1, y = α,
0, y ≠ α:

(
ð9Þ

Definition 6 (see [25]). Suppose U is a (cssf). The function
h ∈ ½0,∞ÞU is called a pre-quasinorm on U , if it satisfies
the following conditions:

(i) If Y ∈U, Y = �ϑ⇔ hðYÞ = 0 with hðYÞ ≥ 0, where �ϑ
= ð�0, �0, �0,Þ

(ii) There is Q ≥ 1, and the inequality hðαYÞ ≤QjαjhðYÞ
satisfies, for every Y ∈U and α ∈R

(iii) There is P ≥ 1, and the inequality hðY + ZÞ ≤ Pðh
ðYÞ + hðZÞÞ holds, for each Y , Z ∈U

Clearly, from the last two definitions, we conclude the
following two theorems:

Theorem 7 (see [25]). If U is a premodular (cssf), then it is
pre-quasinormed (cssf).
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Theorem 8 (see [25]). U is a pre-quasinormed (cssf) if it is
quasinormed (cssf).

Definition 9.

(a) The function h on CF
τð:Þ is named h-convex, if

h αY + 1 − αð ÞZð Þ ≤ αh Yð Þ + 1 − αð Þh Zð Þ, ð10Þ

for every α ∈ ½0, 1� and Y , Z ∈ CF
τð:Þ.

(b) fYqgq∈N ⊆ ðCF
τð:ÞÞh is h-convergent to Y ∈ ðCF

τð:ÞÞh, if
and only if limq⟶∞hðYq − YÞ = 0: When the h-limit
exists, then it is unique

(c) fYqgq∈N ⊆ ðCF
τð:ÞÞh is h-Cauchy, if limq,r⟶∞hðYq −

YrÞ = 0

(d) Γ ⊂ ðCF
τð:ÞÞh is h-closed, when for all h-converges

fYqga∈N ⊂ Γ to Y , then Y ∈ Γ

(e) Γ ⊂ ðCF
τð:ÞÞh is h-bounded, if δhðΓÞ = sup fhðY − ZÞ

: Y , Z ∈ Γg <∞

(f) The h-ball of radius ε ≥ 0 and center Y , for every Y

∈ ðCF
τð:ÞÞh, is described as follows:

Bh Y , εð Þ = Z ∈ CF
τ :ð Þ

� �
h
: h Y − Zð Þ ≤ ε

n o
: ð11Þ

(g) A pre-quasinorm h on CF
τð:Þ satisfies the Fatou prop-

erty, if for every sequence fZqg ⊆ ðCF
τð:ÞÞh under

limq⟶∞hðZq − ZÞ = 0 and all Y ∈ ðCF
τð:ÞÞh, one has

hðY − ZÞ ≤ supr inf q≥rhðY − ZqÞ

Note that the Fatou property implies the h-closed of the
h-balls. We will denote the space of all increasing sequences
of real numbers by I.

Theorem 10. ðCF
τð:ÞÞh, where hðYÞ = ½∑∞

q=0ð∑q
p=0�ρðYp, �0Þ/q

+ 1Þτq �1/K , for all Y ∈ CF
τð:Þ, is a premodular (cssf), when

ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1.

Proof. (i) Evidently, hðYÞ ≥ 0 and hðYÞ = 0⇔ Y = �ϑ
(1-i) Let Y , Z ∈ CF

τð:Þ. One has

h Y + Zð Þ = 〠
∞

q=0

∑q
p=0�ρ Yp + Zp, �0

� �
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

+ 〠
∞

q=0

∑q
p=0�ρ Zp, �0

� �
q + 1

 !τq
" #1/K

= h Yð Þ + h Zð Þ <∞,

ð12Þ

and then, Y + Z ∈ CF
τð:Þ.

(iii) One gets P ≥ 1 with hðY + ZÞ ≤ PðhðYÞ + hðZÞÞ, for
all Y , Z ∈ CF

τð:Þ
(1-ii) Assume α ∈R and Y ∈ CF

τð:Þ, and we obtain

h αYð Þ = 〠
∞

q=0

∑q
p=0�ρ αYp, �0

� �
q + 1

 !τq
" #1/K

≤ sup
q

αj jτq/K

� 〠
∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

≤Q αj jh Yð Þ <∞:

ð13Þ

As αY ∈ CF
τð:Þ. Hence, from conditions (1-i) and (1-ii),

one has CF
τð:Þ is linear. Also, �br ∈ C

F
τð:Þ, for all r ∈N , since h

ð�brÞ = ½∑∞
q=0ð∑q

p=0�ρð�br , �0Þ/q + 1Þτq �1/K ≤ ½∑∞
q=0ð1/q + 1Þτ0 �1/K

<∞:

(ii) There is Q =max f1, supqjαjτq/K−1g ≥ 1 with hðαYÞ
≤QjαjhðYÞ, for all Y ∈ CF

τð:Þ and α ∈R
(2) Assume jYqj ≤ jZqj, for all q ∈N and Z ∈ CF

τð:Þ. One
finds

h Yð Þ = 〠
∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0�ρ Zp, �0

� �
q + 1

 !τq
" #1/K

= h Zð Þ <∞,

ð14Þ

and then, Y ∈ CF
τð:Þ.

(iv) Obviously, from (2)
(3) Let ðYqÞ ∈ CF

τð:Þ, and we get

h Y q/2½ �
� �� �

= 〠
∞

q=0

∑q
p=0�ρ Y p/2½ �, �0

� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

= 〠
∞

q=0

∑2q
p=0�ρ Y p/2½ �, �0

� �
2q + 1

0
@

1
A

τ2q2
4

+ 〠
∞

q=0

∑2q+1
p=0 �ρ Y p/2½ �, �0

� �
2q + 2

0
@

1
A

τ2q+135
1/K

≤ 21/K 〠
∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

�ρ Yq, �0
� �

+ 2∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq

+ 〠
∞

q=0

2∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

≤ 21/K 〠
∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

3∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
"

+ 〠
∞

q=0

2∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
#1/K

≤ 3K + 2K
� �1/K 〠

∞

q=0

∑q
p=0�ρ Yp, �0

� �
q + 1

 !τq
" #1/K

= 3K + 2K
� �1/K

h Yq

� �� �
,

ð15Þ

and then, ðY ½p/2�Þ ∈ CF
τð:Þ.

(v) From (4), we obtain P0 = ð3K + 2KÞ1/K ≥ 1
(vi) Evidently the closure of E = CF

τð:Þ
(vii) There is 0 < σ ≤ supqjαjτq/K−1, for α ≠ 0 or σ > 0, for

α = 0 with hð�α, �0, �0, �0,⋯Þ ≥ σjαjhð�1, �0, �0, �0,⋯Þ
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Theorem 11. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then ðCF
τð:ÞÞh is

a pre-quasi-Banach (cssf), where hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/
q + 1Þτq �1/K , for every Y ∈ CF

τð:Þ.

Proof. In view of Theorem 10 and Theorem 7, the space
ðCF

τð:ÞÞh is a pre-quasinormed (cssf). Assume Yl = ðYl
qÞ

∞
q=0 is

a Cauchy sequence in ðCF
τð:ÞÞh. Hence, for every ε ∈ ð0, 1Þ,

one has l0 ∈N such that for all l,m ≥ l0, one gets

h Yl − Ym
� �

= 〠
∞

q=0

∑q
p=0�ρ Yl

p − Ym
p , �0

� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

< ε:

ð16Þ

That implies �ρðYl
q − Ym

q , �0Þ < ε: As ðR½0, 1�, �ρÞ is a com-
plete metric space. Then, ðYm

q Þ is a Cauchy sequence in R½
0, 1�, for fixed q ∈N , which implies limm⟶∞Ym

q = Y0
q, for

constant q ∈N . Hence, hðYl − Y0Þ < ε, for every l ≥ l0, since
hðY0Þ = hðY0 − Yl + YlÞ ≤ hðYl − Y0Þ + hðYlÞ <∞: So Y0 ∈
CF
τð:Þ.

Theorem 12. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then

ðCF
τð:ÞÞh is a pre-quasiclosed (cssf), where hðYÞ = ½∑∞

q=0
ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq �1/K , for every Y ∈ CF
τð:Þ.

Proof. In view of Theorem 10 and Theorem 7, the space
ðCF

τð:ÞÞh is a pre-quasinormed (cssf). Assume Yl = ðYl
qÞ

∞
q=0 ∈

ðCF
τð:ÞÞh and liml⟶∞hðYl − Y0Þ = 0; then, for all ε ∈ ð0, 1Þ,

there is l0 ∈N such that for all l ≥ l0, we obtain

ε > h Yl − Y0
� �

= 〠
∞

q=0

∑q
p=0�ρ Yl

p − Y0
p, �0

� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

, ð17Þ

which implies �ρðYl
q − Y0

q, �0Þ < ε: As ðR½0, 1�, �ρÞ is a com-

plete metric space, therefore, ðYl
qÞ is a convergent sequence in

R½0, 1�, for fixed q ∈N . So, liml⟶∞Yl
q = Y0

q, for fixed q ∈N .

Since hðY0Þ = hðY0 − Yl + YlÞ ≤ hðYl − Y0Þ + hðYlÞ <∞, one
has Y0 ∈ CF

τð:Þ.

Theorem 13. The function hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q +
1Þτq �1/K verifies the Fatou property, when ðτqÞq∈N ∈ ℓ∞ ∩ I

with τ0 > 1, for all Y ∈ CF
τð:Þ.

Proof. Let fZrg ⊆ ðCF
τð:ÞÞh such that limr⟶∞hðZr − ZÞ = 0:

Since ðCF
τð:ÞÞh is a pre-quasiclosed space, one has Z ∈

ðCF
τð:ÞÞh. For all Y ∈ ðCF

τð:ÞÞh, one gets

h Y − Zð Þ = 〠
∞

q=0

∑q
p=0�ρ Yp − Zp, �0

� �
q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0�ρ Yp − Zr

p, �0
� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

+ 〠
∞

q=0

∑q
p=0�ρ Zr

p − Zp, �0
� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

≤ sup
m

inf
r≥m

h Y − Zrð Þ:

ð18Þ

Theorem 14. The function hðYÞ =∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq
does not satisfy the Fatou property, for all Y ∈ CF

τð:Þ, when ðτqÞ
∈ ℓ∞ and τq > 1, for all q ∈N .

Proof. Let fZrg ⊆ ðCF
τð:ÞÞh so that limr⟶∞hðZr − ZÞ = 0:

Since ðCF
τð:ÞÞh is a pre-quasiclosed space, one gets Z ∈

ðCF
τð:ÞÞh. For every Z ∈ ðCF

τð:ÞÞh, we obtain

h Y − Zð Þ = 〠
∞

q=0

∑q
p=0�ρ Yp − Zp, �0

� �
q + 1

 !τq

≤ 2K−1 〠
∞

q=0

∑q
p=0�ρ Yp − Zr

p, �0
� �
q + 1

0
@

1
A

τq0
@

+ 〠
∞

q=0

∑q
p=0�ρ Zr

p − Zp, �0
� �
q + 1

0
@

1
A

τq1A
≤ 2K−1 sup

m
inf
r≥m

h Y − Zrð Þ:

ð19Þ

Example 1. For ðτqÞ ∈ ½1,∞ÞN , the function hðYÞ = inf fα
> 0 : ∑q∈N ð∑q

p=0�ρðYp/α, �0Þ/q + 1Þτq ≤ 1g is a norm on CF
τð:Þ.

Example 2. The function hðYÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ð∑q

p=0�ρðYp, �0Þ/q + 1Þ3q+2/q+13
q

is a pre-quasinorm (not a norm) on CFðð3q + 2/q + 1Þ∞q=0Þ.

Example 3. The function hðYÞ =∑q∈N ð∑q
p=0�ρðYp, �0Þ/q +

1Þ3q+2/q+1 is a pre-quasinorm (not a quasinorm)
on CFðð3q + 2/q + 1Þ∞q=0Þ.

Example 4. The function hðYÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N ð∑q

p=0�ρðYp, �0Þ/q + 1Þdd
q

is a pre-quasinorm, quasinorm, and not a norm on CF
d , for

0 < d < 1.
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In the next part of this section, we will use the func-

tion h as hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq �1/K , for every

Y ∈ CF
τð:Þ.

Definition 15 [26]. The function h is said to be strictly
convex, (SC), if for all Y , Z ∈Uh such that hðYÞ = hðZÞ and
hðY + Z/2Þ = hðYÞ + hðZÞ/2, we get Y = Z:

Definition 16 [27]. A sequence fYpg ⊆U is said to be ε

-separated sequence for some ε > 0, if

sep Yp

� �
= inf h Yp − Yq

� �
: p ≠ q


 �
> ε: ð20Þ

Definition 17 (see [27]). Let k ≥ 2 be an integer, and a Banach
space U is called k-nearly uniformly convex (k-NUC), if for
any ε > 0, there exists δ ∈ ð0, 1Þ such that for any sequence
fYpg ⊆ Bhð0, 1Þ, with sepðYpÞ ≥ ε, there are p1, p2, p3,⋯, pk
∈N , such that

h
Yp1

+ Yp2
+ Yp3

+⋯+Ypk

k

� �
< 1 − δ: ð21Þ

Definition 18 (see [28]). A function h is said to satisfy the δ2
-condition (h ∈ δ2), if for any ε > 0, there exists a constant
k ≥ 2 and a > 0 such that hð2uÞ ≤ khðuÞ + ε, for each u ∈ Xh,
with hðuÞ ≤ a:

If h satisfies the δ2-condition for any a > 0 with k ≥ 2
depending on a, we say that h satisfies the strong δ2-condi-
tion (ρ ∈ δs2).

The following known results are very important for our
consideration.

Theorem 19 (see [28], Lemma 2.1). If h ∈ δs2, then for any
L > 0 and ε > 0, there exists δ > 0 such that jhðx + yÞ − hðxÞj
< ε, where x, y ∈ Xh, with hðxÞ ≤ L and hðyÞ ≤ δ.

Theorem 20. Pick an ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1; then, for

any L > 0 and ε > 0, there exists δ > 0 such that jhðx + yÞ −
hðxÞj < ε, for all x, y ∈ ðCF

τð:ÞÞh, with hðxÞ ≤ L and hðyÞ ≤ δ.

Proof. Since ðτqÞ is bounded, it is easy to see that h ∈ δs2.
Hence, the proposition is obtained directly from Theorem
19.

Theorem 21. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1; then,

ðCF
τð:ÞÞh is k-NUC, for any integer k ≥ 2.

Proof. Let ε ∈ ð0, 1Þ and fxng ⊆ Bhð0, 1Þ with sepðxnÞ ≥ ε, for
each m ∈N , and let xmn = ð0, 0, 0,⋯, xnðmÞ, xnðm + 1Þ,⋯Þ.
Since for each i ∈N , ðxnðiÞÞ∞n=0 is bounded, and by using
the diagonal method, we can find a subsequence ðxnj

Þ of

ðxnÞ such that ðxnj
ðiÞÞ converges for each i ∈N , 0 ≤ i ≤m.

Therefore, there exists an increasing sequence of positive
integers ðtmÞ such that sepððxmnj

Þ
j>tm

Þ ≥ ε. Hence, there is a

sequence of positive integers ðrmÞ∞m=0 with r0 < r1 < r2 <⋯,
such that

hK xmrm

� �
≥
ε

2 , ð22Þ

for each m ∈N . For fixed integer k ≥ 2, let ε1 = ðkp0−1 −
1/ðk − 1Þkp0Þðε/4Þ; then, by Theorem 20, there exists δ > 0
such that

hK x + yð Þ − hK xð Þ�� �� < ε1, ð23Þ

whenever hKðxÞ ≤ 1 and hKðyÞ ≤ δ. Since hKðxnÞ ≤ 1, for
any n ∈N , then there exist positive integers miði = 0, 1, 2,
⋯, k − 2Þ with m0 <m1 <m2 <⋯<mk−2 such that hKðxmi

i Þ
≤ δ. Define mk−1 =mk−2 + 1. By inequality (1), we have hð
xmk
rmk

Þ ≥ ε/2. Let si = i for 0 ≤ i ≤ k − 2 and sk−1 = rmk−1
. Then,

in virtue of inequality (1), inequality (2), and convexity of
the function f nðuÞ = jujτn for any n ∈N , we have

hK
xs0 + xs1 + xs2+:⋯ +xsk−1

k

� �

= 〠
∞

n=0

∑n
i=0�ρ xs0 ið Þ + xs1 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

= 〠
m1−1

n=0

∑n
i=0�ρ xs0 ið Þ + xs1 ið Þ++xsk−1 ið Þ/n + 1, �0
� �

n + 1

 !τn

+ 〠
∞

n=m1

∑n
i=0�ρ xs0 ið Þ + xs1 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

≤ 〠
m1−1

n=0

∑n
i=0�ρ xs0 ið Þ + xs1 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

+ 〠
∞

n=m1

∑n
i=0�ρ xs1 ið Þ + xs2 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

+ ε1 ≤ 〠
m1−1

n=0

1
k
〠
k−1

j=0

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

+ 〠
m2−1

n=m1

∑n
i=0�ρ xs1 ið Þ + xs2 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

+ 〠
∞

n=m2

∑n
i=0�ρ xs1 ið Þ + xs2 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

+ ε1 ≤ 〠
m1−1

n=0

1
k
〠
k−1

j=0

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

+ 〠
m2−1

n=m1

∑n
i=0�ρ xs1 ið Þ + xs2 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn
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+ 〠
∞

n=m2

∑n
i=0�ρ xs2 ið Þ + xs3 ið Þ++xsk−1 ið Þ/k, �0� �

n + 1

 !τn

+ 2ε1

≤ 〠
m1−1

n=0

1
k
〠
k−1

j=0

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

+ 〠
m2−1

n=m1

1
k
〠
k−1

j=1

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

+ 〠
m3−1

n=m2

1
k
〠
k−1

j=2

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

++ 〠
mk−1

n=mk−1

1
k
〠
k−1

j=k−2

∑n
i=0�ρ xsj ið Þ, �0
� �
n + 1

0
@

1
A

τn

+ 〠
∞

n=mk

∑n
i=0�ρ xsk ið Þ/k, �0� �

n + 1

 !τn

+ k − 1ð Þε1

≤
hK xs0 + xs1 + xs2+:⋯ +xsk−2
� �

k

+ 1
k
〠
mk−1

n=0

∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn

+ 〠
∞

n=mk

∑n
i=0�ρ xsk ið Þ/k, �0� �

n + 1

 !τn

+ k − 1ð Þε1 ≤
k − 1
k

+ 1
k
〠
mk−1

n=0

∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn

+ 1
kp0

〠
∞

n=mk

∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn

+ k − 1ð Þε1 ≤ 1 − 1
k

+ 1
k

1 − 〠
∞

n=mk

∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn
 !

+ 1
kp0

〠
∞

n=mk

� ∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn

+ k − 1ð Þε1 = 1 + k − 1ð Þε1

−
kp0−1 − 1

kp0

 !
〠
∞

n=mk

∑n
i=0�ρ xsk ið Þ, �0� �

n + 1

 !τn

≤ 1 + k − 1ð Þε1 −
kp0−1 − 1

kp0

 !
ε

2 = 1 − kp0−1 − 1
kp0

 !
ε

4 :

ð24Þ

Therefore, ðCF
τð:ÞÞh is k-NUC.

Recall that k-NUC implies reflexivity.

Definition 22. The space Uh satisfies the property ðRÞ, if and
only if, for all decreasing sequence fΓjgj∈N of h-closed

and h-convex nonempty subsets of Uh with supj∈NKhðY ,
ΓjÞ <∞, for some Y ∈Uh, one has

T
j∈N Γj ≠∅:

By fixing Γ a nonempty h-closed and h-convex subset of
ðCF

τð:ÞÞh.

Theorem 23. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, one has the

following:

(i) Suppose Y ∈ ðCF
τð:ÞÞh with KhðY , ΓÞ = inf fhðY − ZÞ

: Z ∈ Γg <∞: There is a unique λ ∈ Γ so that KhðY
, ΓÞ = hðY − λÞ

(ii) ðCF
τð:ÞÞh verifies the property ðRÞ.

Proof. To prove (i), assume Y ∉ Γ as Γ is h-closed. One has
C ≔KhðY , ΓÞ > 0. Hence, for all r ∈N , one has Zr ∈ Γ with
hðY − ZrÞ < Cð1 + 1/rÞ. If fZr/2g is not h-Cauchy, one gets
a subsequence fZgðrÞ/2g and l0 > 0 with hðZgðrÞ − ZgðjÞ/2Þ ≥
l0, for every r > j ≥ 0, since

max h Y − Zg rð Þ
� �

, h Y − Zg jð Þ
� �� �

≤ C 1 + 1
g jð Þ

� �
,

h
Zg rð Þ − Zg jð Þ

2

� �
≥ l0 ≥ C 1 + 1

g jð Þ
� �

l0
2C ,

ð25Þ

for every r > j ≥ 0. Since ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1,
then the function f nðuÞ = jujτn is strictly convex, for any n
∈N . Therefore, the space ðCF

τð:ÞÞh is strictly convex; hence,

h Y −
Zg rð Þ + Zg jð Þ

2

� �
< C 1 + 1

g jð Þ
� �

: ð26Þ

Then,

C =Kh Y , Γð Þ < C 1 + 1
g jð Þ

� �
, ð27Þ

for all j ∈N . By putting j⟶∞, one has a contradic-
tion. So fZr/2g is h-Cauchy. As ðCF

τð:ÞÞh is h-complete, then

fZr/2gh-converges to some Z. For all j ∈N , one gets fZr

+ Zj/2gh-converges to Z + Zj/2. Since Γ is h-closed and h
-convex, then Z + Zj/2 ∈ Γ: Since Z + Zj/2h-converges to 2
Z, then 2Z ∈ Γ: Let λ = 2z, and from Theorem 13, since h
satisfies the Fatou property, one has

Kh Y , Γð Þ ≤ h Y − λð Þ ≤ sup
i

inf
j≥i

h Y − Z +
Zj

2

� �� �

≤ sup
i

inf
j≥i

sup
i

inf
r≥i

h Y −
Zr + Zj

2

� �

≤
1
2 sup

i
inf
r≥i

sup
i

inf
r≥i

h Y − Zrð Þ + h Y − Zj

� �
 �
=Kh Y , Γð Þ:

ð28Þ
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Then hðY − λÞ =KhðY , ΓÞ: Since h is (SC), this implies
the uniqueness of λ. To prove (ii), assume Y ∉ Γr0

, for some
r0 ∈N : Since ðKhðY , ΓrÞÞr∈N ∈ ℓ∞ is increasing, put
limr⟶∞KhðY , ΓrÞ = C, when C > 0. Otherwise, Y ∈ Γr , for
all r ∈N . According to (i), there is one point Zr ∈ Γr with
KhðY , ΓrÞ = hðY − ZrÞ, for every r ∈N . A similar proof will
prove that fZr/2gh-converges to some Z ∈ ðCF

τð:ÞÞh. As fΓrg
is h-convex, decreasing, and h-closed, one has 2Z ∈ ∩ r∈N
Γr:

Definition 24. The space Uh verifies the h-normal structure-
property, if and only if, for all nonempty h-bounded, h
-convex and h-closed subset Γ of Uh not decreased to one
point, and one has Y ∈ Γ with

sup
Z∈Γ

h Y − Zð Þ < δh Γð Þ≔ sup h Y − Zð Þ: Y , Z ∈ Γf g <∞:

ð29Þ

Definition 25 (see [29]). Uh is a real Banach space, and SðUhÞ
is the unit sphere of Uh. The weakly convergent sequence
coefficient of Uh, denoted by WCSðUhÞ, is defined as fol-
lows:

WCS Uhð Þ = inf A xnf gð Þ: xnf g∞n=1 ⊂ S Uhð Þ, A xnf gð Þ

= A1 xnf gð Þ, xnw ⟶ 0g,

ð30Þ

where

A xnf gð Þ = limsup
n⟶∞

xi − xj
�� ��: i, j ≥ n, i ≠ j

 �

,

A1 xnf gð Þ = liminf
n⟶∞

xi − xj
�� ��: i, j ≥ n, i ≠ j

 �

:
ð31Þ

Theorem 26 (see [30]). A reflexive Banach space Uh with
WCSðUhÞ > 1 has normal structure-property.

Theorem 27. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then ðCF
τð:ÞÞh

holds the h-normal structure-property.

Proof. Take any ε > 0 and an asymptotic equidistant
sequence fxng ⊂ SððCF

τð:ÞÞhÞ with xn
w ⟶ 0 and put v1 = x1.

There exists i1 ∈N such that hð∑∞
i=i1+1v1ðiÞ�biÞ < ε: Since xn

⟶ 0 coordinate-wise, there exists n2 ∈N such that hð
∑i1

i=1xnðiÞ�biÞ < ε, whenever n ≥ n2. Take v2 = xn2 ; then, there
is i2 > i1 such that hð∑∞

i=i2+1v1ðiÞ�biÞ < ε: Since xnðiÞ⟶ 0
coordinate-wise, there exists n3 ∈N such that hð∑i2

i=1xnðiÞ
�biÞ < ε, whenever n ≥ n3. Continuing this process in such a
way by induction, we get a subsequence fvng of fxng such
that

h 〠
∞

i=in+1
vn ið Þ�bi

 !
< ε,

h 〠
in

i=1
vn+1 ið Þ�bi

 !
< ε:

ð32Þ

Put zn =∑in
i=in−1+1vnðiÞ�bi, for n = 2, 3,⋯ Then,

1 ≥ h znð Þ = h 〠
∞

i=1
vn ið Þ�bi − 〠

in−1

i=1
vn ið Þ�bi − 〠

∞

i=in+1
vn ið Þ�bi

 !

≥ h 〠
∞

i=1
vn ið Þ�bi

 !
− h 〠

in−1

i=1
vn ið Þ�bi

 !

− h 〠
∞

i=in+1
vn ið Þ�bi

 !
> 1 − 2ε:

ð33Þ

Moreover, for any n,m ∈N with n ≠m, we have

h vn − vmð Þ = h 〠
∞

i=1
vn ið Þ�bi − 〠

∞

i=1
vm ið Þ�bi

 !

≥ h 〠
in

i=in−1+1
vn ið Þ�bi − 〠

im

i=im−1+1
vm ið Þ�bi

 !

− h 〠
in−1

i=1
vn ið Þ�bi

 !
− h 〠

∞

i=in+1
vn ið Þ�bi

 !

− h 〠
im−1

i=1
vm ið Þ�bi

 !
− h 〠

∞

i=im+1
vm ið Þ�bi

 !

≥ h zn − zmð Þ − 4ε:

ð34Þ

This means that AðfxngÞ = AðfvngÞ ≥ AðfzngÞ − 4ε: Put
un = zn/kznk, for n = 2, 3,⋯ Then,

un ∈ S CF
τ :ð Þ

� �
h

� �
, ð35Þ

A xnf gð Þ ≥ 1 − εA unf gð Þ − 4ε: ð36Þ
On the other hand,

h vn − vmð Þ ≤ h zn − zmð Þ + 4ε ≤ h un − umð Þ + 4ε, ð37Þ

for any n,m ∈N with n ≠m. Therefore,

A unf gð Þ ≥ A xnf gð Þ − 4ε: ð38Þ

By the arbitrariness of ε > 0, we have from the relations
(35), (36), and (38) that

WCS CF
τ :ð Þ

� �
h

� �
= inf A unf gð Þf g, ð39Þ
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such that

un = 〠
in

i=in−1+1
un ið Þ�bi ∈ S CF

τ :ð Þ
� �

h

� �
, 0 = i0 < i1

<⋯,unw ⟶ 0 and unf g is asymptotic equidistant:
ð40Þ

Take m ∈N large enough such that ∑∞
k=im−1+1ðb/kÞ

τk < ε,

where b≔∑in
i=in−1+1junðiÞj: We have for n <m that

hK un − umð Þ = 〠
im−1

k=in−1+1

1
k
〠
k

i=1
�ρ un ið Þ, �0ð Þ

 !τk

+ 〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
�ρ um ið Þ, �0ð Þ

 ! !τk

≥ 〠
im−1

k=in−1+1

1
k
〠
k

i=1
�ρ un ið Þ, �0ð Þ

 !τk

+ 〠
∞

k=im−1+1

1
k
〠
k

i=1
�ρ um ið Þ, �0ð Þ

 !τk

= 〠
∞

k=in−1+1

1
k
〠
k

i=1
�ρ un ið Þ, �0ð Þ

 !τk

− 〠
∞

k=im−1+1

b
k

� �τk

+ 〠
∞

k=im−1+1

1
k
〠
k

i=1
�ρ um ið Þ, �0ð Þ

 !τk

> 1 − ε + 1 = 2 − ε,
ð41Þ

that is, AnðfungÞ ≥ ð2 − εÞ1/K . Note that

〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
�ρ um ið Þ, �0ð Þ

 ! !τk
" #1/K

≤ 〠
∞

k=im−1+1

b
k

� �τk
" #1/K

+ 〠
∞

k=im−1+1

1
k
〠
k

i=1
�ρ um ið Þ, �0ð Þ

 !τk
" #1/K

< ε1/K + 1:

ð42Þ

Therefore,

hK un − umð Þ = 〠
im−1

k=in−1+1

1
k
〠
k

i=1
�ρ um ið Þ, �0ð Þ

 !τk

+ 〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
�ρ um ið Þ, �0ð Þ

 ! !τk

≤ 〠
∞

k=in−1+1

1
k
〠
k

i=1
�ρ um ið Þ, �0ð Þ

 !τk

+ 〠
∞

k=im−1+1

1
k

b + 〠
k

i=1
�ρ um ið Þ, �0ð Þ

 ! !τk

≤ 1 + 1 + ε1/K
� �K ,

ð43Þ

for any n,m ∈N with n ≠m. Therefore, AnðfungÞ ≤
ð1 + ð1 + ε1/KÞKÞ1/K , and by the arbitrariness of ε > 0, we
obtain WCSððCF

τð:ÞÞhÞ = 21/K . From Theorem 21 and Theo-

rem 26, the sequence space ðCF
τð:ÞÞh has the h-normal struc-

ture-property.

4. Kannan Contraction Mapping on CF
τð:Þ

In this section, we look at how to configure ðCF
τð:ÞÞh with dif-

ferent h so that there is only one fixed point of Kannan con-
traction mapping.

Definition 28. An operator V : Uh ⟶Uh is said to be a
Kannan h-contraction, if one gets α ∈ ½0, 1/2Þ with hðVY −
VZÞ ≤ αðhðVY − YÞ + hðVZ − ZÞÞ, for all Y , Z ∈Uh. The
operator V is called Kannan h-nonexpansive, when α = 1/2.

An element Y ∈Uh is called a fixed point of V when V
ðYÞ = Y :

Theorem 29. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, and V

: ðCF
τð:ÞÞh ⟶ ðCF

τð:ÞÞh is Kannan h-contraction mapping,

where hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq �1/K , for all Y ∈
CF
τð:Þ, then V has a unique fixed point.

Proof. If Y ∈ CF
τð:Þ, one has V

pY ∈ CF
τð:Þ. As V is a Kannan h

-contraction mapping, one gets

h Vl+1Y − VlY
� �

≤ α h Vl+1Y −VlY
� �

+ h VlY − Vl−1Y
� �� �

⇒ h Vl+1Y −VlY
� �

≤
α

1 − α
h VlY −Vl−1Y
� �

≤
α

1 − α

� �2
h Vl−1Y − Vl−2Y
� �

≤ ≤
α

1 − α

� �l
h VY − Yð Þ:

ð44Þ

So for all l,m ∈N with m > l, one gets

h VlY − VmY
� �

≤ α h VlY − Vl−1Y
� �

+ h VmY − Vm−1Y
� �� �

≤ α
α

1 − α

� �l−1
+ α

1 − α

� �m−1� �
h VY − Yð Þ:

ð45Þ

Then, fVlYg is a Cauchy sequence in ðCF
τð:ÞÞh. As the

space ðCF
τð:ÞÞh is pre-quasi-Banach space, one has Z ∈

ðCF
τð:ÞÞh with liml⟶∞VlY = Z. To prove that VZ = Z, since

h has the Fatou property, one obtains

h VZ − Zð Þ ≤ sup
i

inf
l≥i

h Vl+1Y −VlY
� �

≤ sup
i

inf
l≥i

α

1 − α

� �l
h VY − Yð Þ = 0,

ð46Þ
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and then, VZ = Z. So Z is a fixed point of V . To show the
uniqueness. Let Y , Z ∈ ðCF

τð:ÞÞh be two not equal fixed points

of V . One has

h Y − Zð Þ ≤ h VY −VZð Þ ≤ α h VY − Yð Þ + h VZ − Zð Þð Þ = 0:
ð47Þ

So, Y = Z:

Corollary 30. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, and V

: ðCF
τð:ÞÞh ⟶ ðCF

τð:ÞÞh is Kannan h-contraction mapping,

where hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq �1/K , for all Y ∈
CF
τð:Þ, one has V has unique fixed point Z so that hðVlY − ZÞ
≤ αða/1 − αÞl−1hðVY − YÞ:

Proof. In view of Theorem 29, one has a unique fixed point Z
of V . So

h VlY − Z
� �

= h VlY −VZ
� �

≤ α h VlY − Vl−1Y
� �

+ h VZ − Zð Þ
� �

= α
α

1 − α

� �l−1
h VY − Yð Þ:

ð48Þ

Example 5. Assume V : ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh ⟶
ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh, where hðgÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑∞
q=0ð∑q

p=0�ρðgp, �0Þ/q + 1Þ2q+3/q+2
q

, for every g ∈ CFð
ð2q + 3/q + 2Þ∞q=0Þ and

V gð Þ =
g
4 , h gð Þ ∈ 0, 1½ Þ,
g
5 , h gð Þ ∈ 1,∞½ Þ:

8><
>: ð49Þ

As for each g1, g2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh with hðg1Þ,
hðg2Þ ∈ ½0, 1Þ, one has

h Vg1 −Vg2ð Þ = h
g1
4 −

g2
4

� �
≤

1ffiffiffiffiffi
274

p h
3g1
4

� �
+ h

3g2
4

� �� �

= 1ffiffiffiffiffi
274

p h Vg1 − g1ð Þ + h Vg2 − g2ð Þð Þ:

ð50Þ

For all g1, g2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh with hðg1Þ, h
ðg2Þ ∈ ½1,∞Þ, one has

h Vg1 −Vg2ð Þ = h
g1
5 −

g2
5

� �
≤

1ffiffiffiffiffi
644

p h
4g1
5

� �
+ h

4g2
5

� �� �

= 1ffiffiffiffiffi
644

p h Vg1 − g1ð Þ + h Vg2 − g2ð Þð Þ:

ð51Þ

For all g1, g2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh with hðg1Þ ∈
½0, 1Þ and hðg2Þ ∈ ½1,∞Þ, we get

h Vg1 − Vg2ð Þ = h
g1
4 −

g2
5

� �
≤

1ffiffiffiffiffi
274

p h
3g1
4

� �
+ 1ffiffiffiffiffi

644
p h

4g2
5

� �

≤
1ffiffiffiffiffi
274

p h
3g1
4

� �
+ h

4g2
5

� �� �

= 1ffiffiffiffiffi
274

p h Vg1 − g1ð Þ + h Vg2 − g2ð Þð Þ:

ð52Þ

Hence,V is Kannan h-contraction. As h satisfies the Fatou
property, from Theorem 29, one has V holds one fixed point
�ϑ ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh:

Definition 31. Pick up Uh be a pre-quasinormed (cssf), V
: Uh ⟶Uh, and Z ∈Uh: The operator V is called h
-sequentially continuous at Z, if and only if when limq⟶∞
hðYq − ZÞ = 0, then limq⟶∞hðVYq −VZÞ = 0.

Example 6. Suppose V : ðCFððq + 1/2q + 4Þ∞q=0ÞÞh ⟶
ðCFððq + 1/2q + 4Þ∞q=0ÞÞh, where hðZÞ = ½∑∞

q=0ð∑q
p=0�ρðZp, �0Þ/

q + 1Þq+1/2q+4�4, for every Z ∈ CFððq + 1/2q + 4Þ∞q=0Þ and

V Zð Þ =

1
18

�b0 + Z
� �

, Z0 yð Þ ∈ 0, 1
17

� �
,

1
17

�b0, Z0 yð Þ = 1
17 ,

1
18

�b0, Z0 yð Þ ∈ 1
17 , 1
� 	

:

8>>>>>>>><
>>>>>>>>:

ð53Þ

V is clearly both h-sequentially continuous and discon-
tinuous at 1/17�b0 ∈ ðCFððq + 1/2q + 4Þ∞q=0ÞÞh.

Example 7. Assume V is defined as in Example 5. Suppose
fZðnÞg ⊆ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh such that limn⟶∞hðZðnÞ

− Zð0ÞÞ = 0, where Zð0Þ ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh with hð
Zð0ÞÞ = 1.

As the pre-quasinorm h is continuous, we have

lim
n⟶∞

h VZ nð Þ − VZ 0ð Þ
� �

= lim
n⟶∞

h
Z nð Þ

4 −
Z 0ð Þ

5

 !
= h

Z 0ð Þ

20

 !
> 0:

ð54Þ

Therefore, V is not h-sequentially continuous at Zð0Þ.
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Theorem 32. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, V : ðCF
τð:ÞÞh

⟶ ðCF
τð:ÞÞh, where hðYÞ =∑∞

q=0ð∑q
p=0�ρðYp, �0Þ/q + 1Þτq , for

all Y ∈ CF
τð:Þ. Suppose

(1) V is Kannan h-contraction mapping

(2) V is h-sequentially continuous at Z ∈ ðCF
τð:ÞÞh

(3) there is Y ∈ ðCF
τð:ÞÞh with fVlYg has fVljYg converg-

ing to Z

Then, Z ∈ ðCF
τð:ÞÞh is the only fixed point of V :

Proof. Assume Z is not a fixed point of V , and one has VZ
≠ Z. From parts (2) and (4), we get

lim
l j⟶∞

h VljY − Z
� �

= 0,

lim
l j⟶∞

h Vlj+1Y −VZ
� �

= 0:
ð55Þ

As V is Kannan h-contraction, one obtains

0 < h VZ − Zð Þ = h VZ − Vlj+1Y
� �

+ VljY − Z
� ��

+ Vlj+1Y − VljY
� ��

≤ 2
2 sup

i
τi−2

� h Vlj+1Y −VZ
� �

+ 2
2 sup

i
τi−2

h VljY − Z
� �

+ 2
sup
i

τi−1
α

α

1 − α

� �l j−1
h VY − Yð Þ:

ð56Þ

As l j ⟶∞, one has a contradiction. Then, Z is a fixed

point of V . To show the uniqueness, let Z, Y ∈ ðCF
τð:ÞÞh be

two not equal fixed points of V . One obtains

h Z − Yð Þ ≤ h VZ −VYð Þ ≤ α h VZ − Zð Þ + h VY − Yð Þð Þ = 0:
ð57Þ

Hence, Z = Y :

Example 8. Assume V is defined as in Example 5. Let hðYÞ
=∑q∈N ð∑q

p=0�ρðYp, �0Þ/q + 1Þ2q+3/q+2, for all v ∈ CFðð2q + 3/
q + 2Þ∞q=0Þ. Since for all Y1, Y2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh
with hðY1Þ, hðY2Þ ∈ ½0, 1Þ, one gets hðVY1 −VY2Þ = hðY1/4
− Y2/4Þ ≤ 2/

ffiffiffiffiffi
27

p ðhð3Y1/4Þ + hð3Y2/4ÞÞ = 2/
ffiffiffiffiffi
27

p ðhðVY1 −
Y1Þ + hðVY2 − Y2ÞÞ: For all Y1, Y2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0
ÞÞh with hðY1Þ, hðY2Þ ∈ ½1,∞Þ, one gets

h VY1 −VY2ð Þ = h
Y1
5 −

Y2
5

� �
≤
1
4 h

4Y1
5

� �
+ h

4Y2
5

� �� �

= 1
4 h VY1 − Y1ð Þ + h VY2 − Y2ð Þð Þ:

ð58Þ

For all Y1, Y2 ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh with hðY1Þ ∈ ½
0, 1Þ and hðY2Þ ∈ ½1,∞Þ, one gets

h VY1 − VY2ð Þ = h
Y1
4 −

Y2
5

� �
≤

2ffiffiffiffiffi
27

p h
3Y1
4

� �
+ 1
4 h

4Y2
5

� �

≤
2ffiffiffiffiffi
27

p h
3Y1
4

� �
+ h

4Y2
5

� �� �

= 2ffiffiffiffiffi
27

p h VY1 − Y1ð Þ + h VY2 − Y2ð Þð Þ:

ð59Þ

So V is Kannan h-contraction and VpðYÞ =

Y/4p, hðYÞ ∈ ½0, 1Þ,
Y/5p, hðYÞ ∈ ½1,∞Þ:

(

Obviously, V is h-sequentially continuous at �ϑ ∈
ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh, and fV

pYg holds fVljYg converges
to �ϑ. By Theorem 32, the point �ϑ ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh is
the only fixed point of V .

5. Kannan Nonexpansive Mapping on ðCF
τð:ÞÞh

We introduce the sufficient conditions of ðCF
τð:ÞÞh, where

hðgÞ = ½∑∞
m=0�ρðgm, �0Þτm �1/K , for every g ∈ CF

τð:Þ, such that
the Kannan nonexpansive mapping on it has a fixed point,
by fixing Γ a nonempty h-bounded, h-convex, and h
-closed subset of ðCF

τð:ÞÞh.

Lemma 33. If ðCF
τð:ÞÞh verifies the ðRÞ property and the h

-quasinormal property. Assume V : Γ⟶ Γ is a Kannan
h-nonexpansive mapping. For t > 0, let Gt = fY ∈ Γ : hðY
−VðYÞÞ ≤ tg ≠∅. Put

Γt =
\

Bh r, jð Þ: V Gtð Þ ⊂ Bh r, jð Þf g ∩ Γ: ð60Þ

Then, Γt ≠∅, h-convex, h-closed subset of Γ, and V
ðΓtÞ ⊂ Γt ⊂Gt and δhðΓtÞ ≤ t:

Proof. Since VðGtÞ ⊂ Γt , then Γt ≠∅. As the h-balls are h
-convex and h-closed, then Γt is a h-closed and h-convex
subset of Γ. To show that Γt ⊂Gt , assume Y ∈ Γt: When
hðY −VðYÞÞ = 0, one has Y ∈Gt: Else, assume hðY −VðYÞÞ
> 0: Put

r = sup h V Zð Þ −V Yð Þð Þ: Z ∈ Gtf g: ð61Þ

From the definition of r, one gets VðGtÞ ⊂ BhðVðYÞ, rÞ:
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Therefore, Γt ⊂ BhðVðYÞ, rÞ, then hðY − VðYÞÞ ≤ r: Let l > 0:
One has Z ∈Gt with r − l ≤ hðVðZÞ −VðYÞÞ. So

h Y −V Yð Þð Þ − l ≤ r − l ≤ h V Zð Þ −V Yð Þð Þ
≤
1
2 h Y − V Yð Þð Þ + h Z −V Zð Þð Þð Þ

≤
1
2 h Y − V Yð Þð Þ + tð Þ:

ð62Þ

As l is an arbitrary positive, one obtains hðY −VðYÞÞ ≤ t;
then, Y ∈Gt . Since VðGtÞ ⊂ Γt , one gets VðΓtÞ ⊂VðGtÞ ⊂ Γt ,
so Γt is V-invariant, to show that δhðΓtÞ ≤ t, since

h V Yð Þ −V Zð Þð Þ ≤ 1
2 h Y −V Yð Þð Þð Þ + h Z −V Zð Þð ÞÞ, ð63Þ

for all Y , Z ∈ Gt: Let Y ∈Gt: Then, VðGtÞ ⊂ BhðVðYÞ, tÞ:
The definition of Γt gives Γt ⊂ BhðVðYÞ, tÞ: Therefore, VðYÞ
∈
T

t∈Γt
BhðZ, tÞ: One has hðZ − YÞ ≤ t, for all Z, Y ∈ Γt , so

δhðΓtÞ ≤ t:

Theorem 34. If ðCF
τð:ÞÞh satisfies the h-quasinormal property

and the ðRÞ property, let V : Γ⟶ Γ be a Kannan h-non-
expansive mapping. Then, V has a fixed point.

Proof. Let t0 = inf fhðY − VðYÞÞ: Y ∈ Γg and tr = t0 + 1/r,
for every r ≥ 1: By the definition of t0, one gets Gtr

= fY ∈
Γ : hðY −VðYÞÞ ≤ trg ≠∅, for every r ≥ 1: Assume Γtr

is
defined as in Lemma 33. Clearly, fΓtr

g is a decreasing
sequence of nonempty h-bounded, h-closed, and h-convex
subsets of Γ. The property ðRÞ investigates that Γ∞ =Tr≥1
Γtr

≠∅: Let Y ∈ Γ∞, and one has hðY −VðYÞÞ ≤ tr , for all
r ≥ 1: Suppose r⟶∞; then, hðY − VðYÞÞ ≤ t0, so hðY −
VðYÞÞ = t0: Therefore, Gt0

≠∅: Then, t0 = 0. Else, t0 > 0;
then, V fails to have a fixed point. Let Γt0

be defined in
Lemma 33. As V fails to have a fixed point and Γt0

is V
-invariant, then Γt0

has more than one point, so δhðΓt0
Þ >

0. By the h-quasinormal property, one has Y ∈ Γt0
with

h Y − Zð Þ < δh Γt0

� �
≤ t0, ð64Þ

for all Z ∈ Γt0
: From Lemma 33, we get Γt0

⊂Gt0
: From

definition of Γt0
, VðYÞ ∈Gt0

⊂ Γt0
: Then,

h Y −V Yð Þð Þ < δh Γt0

� �
≤ t0, ð65Þ

which contradicts the definition of t0. Then, t0 = 0 which
gives that any point in Gt0

is a fixed point of V .

According to Theorems 23, 27, and 34, we conclude the
following:

Corollary 35. Assume ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, and V

: Γ⟶ Γ is a Kannan h-nonexpansive mapping. Then, V
has a fixed point.

Example 9. Assume V : Γ⟶ Γ with VðYÞ =

Y/4, hðYÞ ∈ ½0, 1Þ,
Y/5, hðYÞ ∈ ½1,∞Þ,

(
where Γ = fY ∈ ðCFðð2q + 3/q + 2

Þ∞q=0ÞÞh : Y0 = Y1 = �0g and hðYÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑q∈N �ρðYq, �0Þ2q+3/q+2

q
,

for every Y ∈ ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh. By using Example 8,

V is Kannan h-contraction. So it is Kannan h-nonexpan-
sive. By Corollary 35, V has a fixed point �ϑ in Γ.

6. Kannan Contraction and Structure of
Operator Ideal

The structure of the operator ideal by ðCF
τð:ÞÞh equipped with

the definite function h, where hðgÞ = ½∑∞
q=0ð∑q

p=0�ρðgp, �0Þ/q +
1Þτq �1/K , for every g ∈ CF

τð:Þ, and s-numbers has been
explained. Finally, we examine the idea of Kannan contrac-
tion mapping in its associated pre-quasioperator ideal. As
well, the existence of a fixed point of Kannan contraction
mapping has been introduced. We indicate the space of all
bounded, finite rank linear operators from a Banach space
Δ into a Banach space Λ by LðΔ,ΛÞ, and FðΔ,ΛÞ, and if
Δ =Λ, we inscribe LðΔÞ and FðΔÞ.

Definition 36 (see [31]). An s-number function is s : LðΔ,
ΛÞ⟶R+N which sorts every V ∈LðΔ,ΛÞ a ðsdðVÞÞ∞d=0
verifies the following settings:

(a) kVk = s0ðVÞ ≥ s1ðVÞ ≥ s2ðVÞ ≥⋯≥0, for allV ∈LðΔ
,ΛÞ

(b) sl+d−1ðV1 +V2Þ ≤ slðV1Þ + sdðV2Þ, for all V1, V2 ∈L
ðΔ,ΛÞ and l, d ∈N

(c) sdðVYWÞ ≤ kVksdðYÞkWk, for all W ∈LðΔ0, ΔÞ,
Y ∈LðΔ,ΛÞ, and V ∈LðΛ,Λ0Þ, where Δ0 and Λ0
are arbitrary Banach spaces

(d) If V ∈LðΔ,ΛÞ and γ ∈R, then sdðγVÞ = jγjsdðVÞ
(e) Suppose rank ðVÞ ≤ d, and then, sdðVÞ = 0, for each

V ∈LðΔ,ΛÞ
(f) sl≥aðIaÞ = 0 or sl<aðIaÞ = 1, where Ia denotes the unit

map on the a-dimensional Hilbert space ℓa2

Definition 37 (see [8]).

(i) L is the class of all bounded linear operators within
any two arbitrary Banach spaces. A subclass U ofL
is said to be an operator ideal, if all UðΔ,ΛÞ =U

∩LðΔ,ΛÞ verifies the following conditions: IΓ ∈
U, where Γ denotes Banach space of one dimension

(ii) The space UðΔ,ΛÞ is linear over R
(iii) Assume W ∈LðΔ0, ΔÞ, X ∈UðΔ,ΛÞ, and Y ∈L

ðΛ,Λ0Þ, then YXW ∈UðΔ0,Λ0Þ
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Notation 38.

�✠U ≔ �✠U Δ,Λð Þf g ð66Þ

,where

�✠U Δ,Λð Þ≔ V ∈L Δ,Λð Þ: �sd Vð Þ� �∞
d=0

�
∈U

n o
, ð67Þ

where

�sd Vð Þ xð Þ =
1, x = sd Vð Þ,
0, x ≠ sd Vð Þ:

(
ð68Þ

Theorem 39. Suppose U is a (cssf); then, �✠U is an operator
ideal.

Proof.

(i) Assume V ∈FðΔ,ΛÞ and rank ðVÞ = n for all n ∈N ;
as �bi ∈U for all i ∈N and U is a linear space, one has

ðsiðVÞ ¯Þ∞i=0 = ð �s0ðVÞ, �s1ðVÞ,⋯, �sn1ðVÞ, �0, �0, �0,⋯Þ =∑n−1
i=0

�siðVÞ�bi ∈U; for that V ∈ �✠UðΔ,ΛÞ then FðΔ,ΛÞ ⊆ �✠EðΔ,ΛÞ.

(ii) Suppose V1, V2 ∈ �✠UðΔ,ΛÞ and β1, β2 ∈R, then by
Definition 4 condition (33), one has ð �s½i/2�ðV1ÞÞ

∞
i=0

∈U and ð �s½i/2�ðV1ÞÞ
∞
i=0 ∈U, as i ≥ 2½i/2�; by the defi-

nition of s-numbers and siðPÞ is a decreasing
sequence, one gets �siðβ1V1 + β2V2Þ ≤ �s2½i/2�ðβ1V1
+ β2V2Þ ≤ �s½i/2�ðβ1V1Þ + s½i/2�ðβ2V2Þ = jβ1j �s½i/2�ðV1Þ
+ jβ2j �s½i/2�ðV2Þ, for each i ∈N . In view of Definition
4 condition (23) and U is a linear space, one obtains
ð �siðβ1V1 + β2V2ÞÞ

∞
i=0 ∈U; hence, β1V1 + β2V2 ∈ �✠U

ðΔ,ΛÞ.
(iii) Suppose P ∈LðΔ0, ΔÞ, T ∈ �✠UðΔ,ΛÞ, and R ∈L

ðΛ,Λ0Þ, one has ð �siðTÞÞ
∞
i=0 ∈U, and as �siðRTPÞ ≤

kRk �siðTÞkPk, by Definition 4 conditions (22) and
(23), one gets

ð �siðRTPÞÞ
∞
i=0 ∈U, and then, RTP ∈ �✠UðΔ0,Λ0Þ.

According to Theorems 10 and 39, one concludes the
following theorem.

Theorem 40. Let ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, and one has

�✠ðCF
τð:ÞÞh

is an operator ideal.

Definition 41 (see [9]). A function H ∈ ½0,∞ÞU is called a
pre-quasinorm on the ideal U if the next conditions hold:

(1) Let V ∈UðΔ,ΛÞ, HðVÞ ≥ 0, and HðVÞ = 0, if and
only if V = 0

(2) We have Q ≥ 1 so as to HðαVÞ ≤DjαjHðVÞ, for
every V ∈UðΔ,ΛÞ and α ∈R

(3) We have P ≥ 1 so that HðV1 +V2Þ ≤ P½HðV1Þ +Hð
V2Þ�, for each V1, V2 ∈UðΔ,ΛÞ

(4) We have σ ≥ 1 for V ∈LðΔ0, ΔÞ, X ∈UðΔ,ΛÞ, and
Y ∈LðΛ,Λ0Þ; then, HðYXVÞ ≤ σkYkHðXÞkVk.

Theorem 42 (see [9]). H is a pre-quasinorm on the ideal U if
H is a quasinorm on the ideal U.

Theorem 43. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then the func-

tion H is a pre-quasinorm on �✠ðCF
τð:ÞÞh

, with HðZÞ = h

ð �sqðZÞÞ
∞
q=0, for all Z ∈ �✠ðCF

τð:ÞÞh
ðΔ,ΛÞ.

Proof.

(1) When X ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ, HðXÞ = hð �sqðXÞÞ
∞
q=0 ≥ 0

and HðXÞ = hð �sqðXÞÞ
∞
q=0 = 0, if and only if �sqðXÞ = �0,

for all q ∈N , if and only if X = 0

(2) There is Q ≥ 1 with HðαXÞ = hð �sqðαXÞÞ
∞
q=0 ≤QjαjHð

XÞ, for all X ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ and α ∈R

(3) One has PP0 ≥ 1 so that for X1, X2 ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ,
one can see

H X1 + X2ð Þ = h �sq X1 + X2ð Þ� �∞
q=0

≤ P h �s q/2½ � X1ð Þ
� �∞

q=0
+ h �s q/2½ � X2ð Þ
� �∞

q=0

� �

≤ PP0 h �sq X1ð Þ� �∞
q=0 + h �sq X2ð Þ� �∞

q=0

� �
ð69Þ

(4) We have ρ ≥ 1, ifX ∈LðΔ0, ΔÞ,Y ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ, and
Z ∈LðΛ,Λ0Þ, and then, HðZYXÞ = hð �sqðZYXÞÞ

∞
q=0

≤ hðkXkkZk �sqðYÞÞ
∞
q=0 ≤ ρkXkHðYÞkZk.

In the next theorems, we will use the notation ð�✠ðCF
τð:ÞÞh

,
HÞ, where HðVÞ = hðð �sqðVÞÞ

∞
q=0Þ, for all V ∈ �✠ðCF

τð:ÞÞh
.

Theorem 44. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, and one

has ð�✠ðCF
τð:ÞÞh

,HÞ is a pre-quasi-Banach operator ideal.
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Proof. Suppose ðVaÞa∈N is a Cauchy sequence in �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ. As LðΔ,ΛÞ ⊇ SðCF
τð:ÞÞh

ðΔ,ΛÞ, one has

H Vr −Vað Þ = h �sq VrVað Þ� �∞
q=0

� �
≥ h �s0 VrVað Þ, �0, �0, �0,⋯� �

≥ inf
q

Vr −Vak kτq/K 〠
∞

q=0

1
q + 1

� �τq
" #1/K

:

ð70Þ

Hence, ðVaÞa∈N is a Cauchy sequence in LðΔ,ΛÞ.
LðΔ,ΛÞ is a Banach space, so there exists V ∈LðΔ,ΛÞ so
that lima⟶∞kVa −Vk = 0 and since ð �sqðVaÞÞ

∞
q=0 ∈ ðCF

τð:ÞÞh,
for all a ∈N , and ðCF

τð:ÞÞh is a premodular (cssf). Hence, one

can see

H Vð Þ = h �sq Vð Þ� �∞
q=0

� �
≤ h �s q/2½ � VVað Þ

� �∞
q=0

� �

+ h �s q/2½ � Vað Þ∞q=0
� �� �

≤ h Va − Vk k�1ð Þ∞q=0
� �

+ 3K + 2K
� �1/K

h �sq Vað Þ� �∞
q=0

� �
< ε:

ð71Þ

We obtain ð �sqðVÞÞ∞
q=0 ∈ ðCF

τð:ÞÞh, and hence, V ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ.

Theorem45. If ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, one has ð�✠ðCF
τð:ÞÞh

,
HÞ is a pre-quasiclosed operator ideal.

Proof. Suppose Va ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ, for all a ∈N and

lima⟶∞HðVa −VÞ = 0. As LðΔ,ΛÞ ⊇ SðCF
τð:ÞÞh

ðΔ,ΛÞ, one

has

H Va −Vð Þ = h �sq VaVð Þ� �∞
q=0

� �
≥ h �s0 VaVð Þ, �0, �0, �0,⋯� �

≥ inf
q

Va −Vk kτq/K 〠
∞

q=0

1
q + 1

� �τq
" #1/K

:

ð72Þ

So ðVaÞa∈N is convergent in LðΔ,ΛÞ. i.e., lima⟶∞kVa

−Vk = 0, and since ð �sqðVaÞÞ
∞
q=0 ∈ ðCF

τð:ÞÞh, for all q ∈N and

ðCF
τð:ÞÞh is a premodular (cssf). Hence, one can see

H Vð Þ = h �sq Vð Þ� �∞
q=0

� �
≤ h �s q/2½ � VVað Þ

� �∞
q=0

� �

+ h �s q/2½ � Vað Þ∞q=0
� �� �

≤ h Va −Vk k�1ð Þ∞q=0
� �

+ 3K + 2K
� �1/K

h �sq Vað Þ� �∞
q=0

� �
< ε:

ð73Þ

We obtain ð �sqðVÞÞ
∞
q=0 ∈ ðCF

τð:ÞÞh, and hence, V ∈ �✠ðCF
τð:ÞÞh

ðΔ,
ΛÞ.

Definition 46. A pre-quasinorm H on the ideal �✠Uh
verifies

the Fatou property if for every fTqgq∈N ⊆ �✠Uh
ðΔ,ΛÞ so that

limq⟶∞HðTq − TÞ = 0 and M ∈ �✠Uh
ðΔ,ΛÞ, one gets

H M − Tð Þ ≤ sup
q

inf
j≥q

H M − T j

� �
: ð74Þ

Theorem 47. Suppose ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1, then

ð�✠ðCF
τð:ÞÞh

,HÞ does not satisfy the Fatou property.

Proof. Assume fTqgq∈N ⊆ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ with limq⟶∞HðTq

− TÞ = 0: Since �✠ðCF
τð:ÞÞh

is a pre-quasiclosed ideal, then T ∈
�✠ðCF

τð:ÞÞh
ðΔ,ΛÞ. So for every M ∈ �✠ðCF

τð:ÞÞh
ðΔ,ΛÞ, one has

H M − Tð Þ = 〠
∞

q=0

∑q
p=0�ρ �sp MTð Þ, �0� �

q + 1

 !τq
" #1/K

≤ 〠
∞

q=0

∑q
p=0�ρ

�s p/2½ � MTj

� �
, �0

� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

+ 〠
∞

q=0

∑q
p=0�ρ

�s p/2½ � T jT
� �

, �0
� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

≤ 3K + 2K
� �1/K sup

r
inf
j≥r

〠
∞

q=0

∑q
p=0�ρ

�sp MT j

� �
, �0

� �
q + 1

0
@

1
A

τq2
4

3
5
1/K

:

ð75Þ

Definition 48. An operator V : �✠Uh
ðΔ,ΛÞ⟶ �✠Uh

ðΔ,ΛÞ is
said to be a Kannan H-contraction, if one has α ∈ ½0, 1/2Þ
with HðVT −VMÞ ≤ αðHðVT − TÞ +HðVM −MÞÞ, for all
T ,M ∈ �✠Uh

ðΔ,ΛÞ.

Definition 49. An operator V : �✠Uh
ðΔ,ΛÞ⟶ �✠Uh

ðΔ,ΛÞ is
said to be H-sequentially continuous at M, where M ∈
�✠Uh

ðΔ,ΛÞ, if and only if limr⟶∞HðTr −MÞ = 0⇒
limr⟶∞HðVTr −VMÞ = 0.

Example 10. V : �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞhðΔ,ΛÞ⟶
�✠ðCFðð2q+3/q+2Þ∞q=0ÞÞhðΔ,ΛÞ,

where HðTÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

q=0ð∑q
p=0�ρð �spðTÞ, �0Þ/q + 1Þ2q+3/q+2

q
, for

every T ∈ �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞhðΔ,ΛÞ and

V Tð Þ =
T
6 , H Tð Þ ∈ 0, 1½ Þ,
T
7 , H Tð Þ ∈ 1,∞½ Þ:

8>><
>>: ð76Þ

Evidently, V is H-sequentially continuous at the zero
operator Θ ∈ �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh . Let fTðjÞg ⊆
�✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh be such that limj⟶∞HðTðjÞ − Tð0ÞÞ = 0,
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where Tð0Þ ∈ �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh with HðTð0ÞÞ = 1. Since the

pre-quasinorm H is continuous, one gets

lim
j⟶∞

H VT jð Þ −VT 0ð Þ
� �

= lim
j⟶∞

H
T 0ð Þ

6 −
T 0ð Þ

7

 !

=H
T 0ð Þ

42

 !
> 0:

ð77Þ

Therefore, V is not H-sequentially continuous at Tð0Þ.

Theorem 50. Pick up ðτqÞq∈N ∈ ℓ∞ ∩ I with τ0 > 1 and V

: �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ⟶ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ. Assume

(i) V is Kannan H-contraction mapping

(ii) V is H-sequentially continuous at an element A ∈
�✠ðCF

τð:ÞÞh
ðΔ,ΛÞ

(iii) there are G ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ such that the sequence of

iterates fVrGg has a fVrmGg converging to M

Then, M ∈ �✠ðCF
τð:ÞÞh

ðΔ,ΛÞ is the unique fixed point of V .

Proof. Let M be not a fixed point of V ; hence, VM ≠M. By
using parts (ii) and (iii), we get

lim
rm⟶∞

H VrmG −Mð Þ = 0,

lim
rm⟶∞

H Vrm+1G −VM
� �

= 0:
ð78Þ

Since V is Kannan H-contraction, one obtains

0 <H VM −Mð Þ =H VM −Vrm+1G
� �

+ VrmGminus;Mð Þ�
+ Vrm+1G −VrmG
� ��

≤ 3K + 2K
� �1/K

H Vrm+1G −VM
� �

+ 3K + 2K
� �2/K

H VrmG −Mð Þ
+ 3K + 2K
� �2/K

α
α

1 − α

� �rm−1
H VG −Gð Þ:

ð79Þ

As rm ⟶∞, there is a contradiction. Hence, M is a
fixed point of V . To prove the uniqueness of the fixed point
M, suppose one has two not equal fixed points M, J ∈
�✠ðCF

τð:ÞÞh
ðΔ,ΛÞ of V . So, one gets HðM − JÞ ≤HðVM −VJÞ

≤ αðHðVM −MÞ +HðVJ − JÞÞ = 0: Then, M = J:

Example 11. Given Example 10, since for all T1, T2 ∈
�✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh with HðT1Þ,HðT2Þ ∈ ½0, 1Þ, we have

H VT1 −VT2ð Þ =H
T1
6 −

T2
6

� �

≤
ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p H
5T1
6

� �
+H

5T2
6

� �� �

=
ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p H VT1 − T1ð Þ +H VT2 − T2ð Þð Þ:

ð80Þ

For all T1, T2 ∈ �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh with HðT1Þ,HðT2Þ
∈ ½1,∞Þ, we have

H VT1 −VT2ð Þ =H
T1
7 −

T2
7

� �

≤
ffiffiffi
2

p
ffiffiffiffiffiffiffi
2164

p H
6T1
7

� �
+H

6T2
7

� �� �

=
ffiffiffi
2

p
ffiffiffiffiffiffiffi
2164

p H VT1 − T1ð Þ +H VT2 − T2ð Þð Þ:

ð81Þ

For all T1, T2 ∈ �✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh with HðT1Þ ∈ ½0, 1Þ
and HðT2Þ ∈ ½1,∞Þ, we have

H VT1 −VT2ð Þ =H
T1
6 −

T2
7

� �
≤

ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p H
5T1
6

� �

+
ffiffiffi
2

p
ffiffiffiffiffiffiffi
2164

p H
6T2
7

� �
≤

ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p H VT1 − T1ð Þð

+H VT2 − T2ð ÞÞ:
ð82Þ

Hence, V is Kannan H-contraction and VrðTÞ =

T/6r , HðTÞ ∈ ½0, 1Þ,
T/7r , HðTÞ ∈ ½1,∞Þ:

(

Obviously, V is H-sequentially continuous at Θ ∈
�✠ðCFðð2q+3/q+2Þ∞q=0ÞÞh , and fVrTg has a subsequence fVrmTg
converges to Θ. By Theorem 50, Θ is the only fixed point
of G.

7. Applications

Theorem 51. Consider the summable equation

Yp = Rp + 〠
∞

r=0
D p, rð Þm r, Yrð Þ, ð83Þ

which presented by many authors [32, 33, 34], and
assume V : ðCF

τð:ÞÞh ⟶ ðCF
τð:ÞÞh, where ðτqÞq∈N ∈ ℓ∞ ∩ I with
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τ0 > 1 and hðYÞ = ½∑∞
q=0ð∑q

p=0�ρðYp, �0Þ/q + 1Þτq �1/K , for all Y

∈ CF
τð:Þ, is defined by

V Yp

� �
p∈N

= Rp + 〠
∞

r=0
D p, rð Þm r, Yrð Þ

 !
p∈N

: ð84Þ

The summable equation (83) has a unique solution in
ðCF

τð:ÞÞh, if D : N 2 ⟶R, m : N ×R½0, 1�⟶R½0, 1�, R

: N ⟶R½0, 1�, and Z : N ⟶R½0, 1�; assume there is δ ∈
R such that supqjδjτq/K ∈ ½0; 0:5Þ, and for all q ∈N , let

〠
q

p=0
〠
∞

r=0
D p, rð Þ m r, Yrð Þ −m r, Zrð Þð Þ

" #

≤ δj j 〠
q

p=0
Rp − Yp + 〠

∞

r=0
D p, rð Þm r, Yrð Þ

 !"

+ 〠
q

p=0
Rp − Zp + 〠

∞

r=0
D p, rð Þm r, Zrð Þ

 !#
:

ð85Þ

Proof. One has

h VY − VZð Þ = 〠
∞

q=0

∑q
p=0�ρ VYp − VZp, �0

� �
q + 1

 !τq
" #1/K

= 〠
∞

q=0

∑q
p=0�ρ ∑∞

r=0D p, rð Þ m r, Yrð Þ −m r, Zrð Þ½ �, �0ð Þ
q + 1

 !τq
" #1/K

≤ sup
q

δj jτq/K 〠
∞

q=0

∑q
p=0�ρ Rp − Yp +∑∞

r=0D p, rð Þm r, Yrð Þ, �0� �
q + 1

 !τq
" #1/K

+ sup
q

δj jτq/K 〠
∞

q=0

∑q
p=0�ρ Rp − Zp +∑∞

r=0D p, rð Þm r, Zrð Þ, �0� �
q + 1

 !τq
" #1/K

= sup
q

δj jτq/K h VY − Yð Þ + h VZ − Zð Þð Þ:

ð86Þ

By Theorem 29, one gets a unique solution of equation
(83) in ðCF

τð:ÞÞh:

Example 12. Suppose ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh, where hðYÞ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

q=0ð∑q
p=0�ρðYp, �0Þ/q + 1Þ2q+3/q+2

q
, for all Y ∈ CFð

ð2q + 3/q + 2Þ∞q=0Þ. Consider the summable equation

Yp = Rp + 〠
∞

r=0
−1ð Þp+r Yp

p2 + r2 + 1

� �t

, ð87Þ

with p ≥ 2 and t > 0. Suppose Γ = fY ∈
ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh : Y0 = Y1 = �0g. Indeed, Γ is a non-

empty, h-convex, h-closed, and h-bounded subset of
ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh. Let V : Γ⟶ Γ be defined by

V Yp

� �
p≥2 = Rp + 〠

∞

r=0
−1ð Þp+r Yp

p2 + r2 + 1

� �t
 !

p≥2

: ð88Þ

Obviously,

〠
q

p=0
〠
∞

r=0
−1ð Þp Yp

p2 + r2 + 1

� �t

−1ð Þr − −1ð Þrð Þ

≤
1ffiffiffi
2

p 〠
q

p=0
Rp − Yp + 〠

∞

r=0
−1ð Þp+r Yp

p2 + r2 + 1

� �t
 !"

+ 〠
q

p=0
Rp − Zp + 〠

∞

r=0
−1ð Þp+r Zp

p2 + r2 + 1

� �t
 !#

:

ð89Þ

By Corollary 35 and Theorem 51, the summable equa-
tion (87) has a solution in Γ.

Example 13. Suppose ðCFðð2q + 3/q + 2Þ∞q=0ÞÞh, where hðYÞ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

q=0ð∑q
p=0�ρðYp, �0Þ/q + 1Þ2q+3/q+2

q
, for every Y ∈ CFð

ð2q + 3/q + 2Þ∞q=0Þ. Consider the following nonlinear differ-
ence equation:

Yp = Rp + 〠
∞

l=0
−1ð Þp+l Yr

p−2

Yp
p−1 + l2 + 1

, ð90Þ

with r, p > 0, Y−2ðxÞ, Y−1ðxÞ > 0, for all x ∈R, and
assume V : CFðð2q + 3/q + 2Þ∞q=0Þ⟶ CFðð2q + 3/q + 2Þ∞q=0Þ
is defined by

V Yp

� �∞
p=0 = Rp + 〠

∞

l=0
−1ð Þp+l Yr

p−2

Yp
p−1 + l2 + 1

 !∞

p=0

: ð91Þ

Evidently,

〠
q

p=0
〠
∞

l=0
−1ð Þp Yr

p−2

Yp
p−1 + l2 + 1

−1ð Þl − −1ð Þl
� �

≤
1ffiffiffi
2

p 〠
q

p=0
Rp − Yp + 〠

∞

l=0
−1ð Þp+l Yr

p−2

Yp
p−1 + l2 + 1

 !"

+ 〠
q

p=0
Rp − Zp + 〠

∞

l=0
−1ð Þp+l Zr

p−2

Zp
p−1 + l2 + 1

 !#
:

ð92Þ

By Theorem 51, the nonlinear difference equation (90)
has a unique solution in CFðð2q + 3/q + 2Þ∞q=0Þ.

8. Conclusion

Rather than simply referring to a “quasi-normed” place, we
used the term “prequasi-normed.” It is the concept of a fixed
point of the Kannan pre-quasinorm contraction mapping in
the pre-quasi-Banach variable exponent Cesàro sequence
spaces of fuzzy functions (cssf). Pre-quasinormal structure
and ðRÞ are supported. The Kannan nonexpansive map-
ping’s presence of a fixed point was investigated. The
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presence of a fixed point of Kannan contraction mapping in
the pre-quasi-Banach operator ideal produced by variable
exponent Cesàro sequence spaces of fuzzy functions (cssf)
and s-fuzzy numbers has also been examined. To put our
findings to the test, we introduce several numerical experi-
ments. In addition, various effective implementations of
the stochastic nonlinear dynamical system are discussed.
The fixed points of any Kannan contraction and nonexpansive
mappings on this new fuzzy functions space, its associated
pre-quasi-ideal, and a new general space of solutions for many
stochastic nonlinear dynamical systems are investigated.
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We examine in this paper some new problems on coincidence point and fixed point theorems for multivalued mappings in metric
space. By applying the characterizations of a modified gMT -function, under the name D-function, a few novel fixed point results
different from the existing fixed point theorems are launched. It is well-known that differential equation of either integer or
fractional order is not sufficient to capture ambiguity, since the derivative of a solution to any differential equation inherits all
the regularity properties of the mapping involved and of the solution itself. This does not hold in the case of differential
inclusions. In particular, fractional-order differential inclusion models are more suitable for describing epidemics. Thus, as a
generalization of a newly launched existence result for fractional-order model for COVID-19, using Banach and Shauder fixed
point theorems, we investigate solvability criteria of a novel Caputo-type fractional-order differential inclusion model for
COVID-19 by applying a standard fixed point theorem of multivalued contraction. Stability analysis of the proposed model in
the framework of Ulam-Hyers is also discussed. Nontrivial comparative illustrations are constructed to show that our ideas
herein complement, unify and, extend a significant number of existing results in the corresponding literature.

1. Introduction and Preliminaries

Numerous challenges in practical world defined by non-
linear functional equations can be simplified by reconfi-
guring them to their equivalent fixed point problems.
Fixed point theory yields relevant tools for solving prob-
lems emanating in various arms of sciences. The fixed
point theorem, commonly named as the Banach fixed
point theorem (see [1]), came up in clear form in
Banach thesis in 1922, where it was availed to study
the existence of a solution to an integral equation. Since
then, because of its importance, it has gained a number
of refinements by many authors. In some modifications
of the principle, the inequality is weakened, see, for
example [2, 3], and in others, the topology of the ambi-
ent space is relaxed, see [4–7] and the references
therein. Along the lane, three prominent improvements
of the Banach fixed point theorem was presented by
Ciric [2], Reich [8], and Rus [9].

Nadler [10] launched a multivalued improvement of the
Banach contraction mapping principle. Nadler’s contraction
mapping principle opened up the concept of metric fixed
point theory of multivalued contraction in nonlinear analy-
sis. In line with [10], a number of refinements of fixed point
theorems of multivalued contractions have been presented,
famously, by Berinde-Berinde [11], Du [12, 13], Mizoguchi
and Takahashi [14], Pathak [15], and Reich [16, 17], to cite
a few. Fixed point theorems for multivalued mappings are
highly advantageous in optimal control theory and have
been commonly used to solve several problems in eco-
nomics, game theory, biomathematics, qualitative physics,
viability theory, and many more.

Differential inclusions are found to be of great usefulness
in studying dynamical systems and stochastic processes. A
few examples include sweeping process, granular systems,
nonlinear dynamics of wheeled vehicles, and control prob-
lems. In particular, fractional differential inclusions arise in
several problems in mathematical physics, biomathematics,
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control theory, critical point theory for non-smooth energy
functionals, differential variational inequalities, fuzzy set
arithmetic, traffic theory, etc. Usually, the first most con-
cerned problem in the study of differential inclusion is the
conditions for existence of its solutions. In this direction,
several authors have applied different fixed point approaches
and topological methods to obtain existence results of differ-
ential inclusions in abstract spaces. In the current literature,
we can find many works on fractional-order models propos-
ing different measures for curbing the novel corona virus
(COVID-19) (see, for example, Ali et al. [18], Yu et al.
[19], Xu et al. [20], Shaikh et al. [21], and the references
therein). Recently, Ahmed et al. [22] constructed a Caputo-
type fractional-order model and studied the significance
and effect of the lockdown in curbing COVID-19. They
([22]) investigated the existence and uniqueness of solutions
of the fractional-order corona virus model by applying the
Banach and Schauder fixed point theorems. One of the
pioneer results of fixed point theory using fractional-
order model was presented by Boccaletti et al. [23]. For
some recent results and applications of fraction calculus,
we refer [24–26].

Following the above developments, we consider in this
paper some problems on coincidence point and fixed point
theorems for multivalued mappings. By applying the charac-
terizations of D-function, a few new fixed point results
different from the fixed point theorems due to Berinde-
Berinde [11], Du [13], Mizoguchi-Takahashi [14], Nadler
[10], Reich [17], and Rus [27] are launched. It is a common
knowledge that differential equation of either integer or
fractional order is not sufficient to capture ambiguity, since
the derivative j′ð:Þ of a solution jð:Þ to the differential equa-
tion j′ðtÞ = gðt, jðtÞÞ inherits the regularity properties of the
mapping g and of the function jð:Þ. This is no longer the
case with differential inclusions. In particular, fractional-
order differential inclusions models are more suitable for
describing epidemics (see, e.g., [28]). Differential inclusions
are not only models for handling dynamic processes but also
provide powerful analytic tools to prove existence theorems
such as in control theory, to derive sufficient conditions of
optimality, play a significant role in the theory of control
conditions under uncertainty. Thus, as a generalization of
the existence theorem presented by Ahmed et al. [22], in
the sequel, we investigate solvability conditions of a new
Caputo-type fractional differential inclusions model for
COVID-19 by applying a fixed point theorem of multivalued
contraction. Stability analysis of the proposed model in the
context of Ulam-Hyers is also obtained. Our results herein
complement, unify, and extend the above-mentioned articles
and a few others in the comparable literature. A few nontriv-
ial comparative illustrations are constructed to indicate that
our obtained ideas properly advanced corresponding results
in the literature.

In what follows, we recall some preliminary concepts
that are useful to our main results. Throughout this paper,
the set ℝ, ℝ+ and ℕ represent the set of real numbers, non-
negative real numbers, and the set of natural numbers,
respectively. Let ð℧, μÞ be a metric space. Denote by N ð℧Þ,

CBð℧Þ, and Kð℧Þ, the family of nonempty subsets of ℧,
the collection of all nonempty closed and bounded subsets
of ℧, and the class of all nonempty compact subsets of ℧,
respectively. For A, B ∈ CBð℧Þ, the mapping ~H : CBð℧Þ ×
CBð℧Þ⟶ℝ is given by

~H A, Bð Þ =max sup
j∈B

μ j,Að Þ, sup
ℓ∈A

μ ℓ, Bð Þ
( )

, ð1Þ

where μðj, AÞ = inf ℓ∈Aμðj, ℓÞ is named the Hausdorff-
Pompeiu metric induced by the metric μ. For example, if
we consider the set of real numbers endowed with the
standard metric, then for any two closed intervals ½a, b�
and ½c, d�, we have ~Hð½a, b�, ½c, d�Þ =max fja − cj, jb − djg.

Let Δ,Θ,Λ : ℧⟶℧ be point-valued mappings and
Y : ℧⟶N ð℧Þ be a multivalued mapping. A point u in
℧ is a coincidence point of Δ,Θ,Λ and Y if Δu =Θu =
Λu ∈ Yu. If Δ =Θ =Λ = I℧ is the identity mapping on ℧,
then u = Δu =Θu =Λu ∈ Yu is named a fixed point of Y .
We denote the set of fixed points of Y and the set of coin-
cidence point of Δ,Θ,Λ and Y by F ixðYÞ and COP ðΔ,
Θ,Λ, YÞ, respectively.

Let g be a real-valued function. For t ∈ℝ, we recall that

lim sup
r⟶t

g rð Þ = inf
ε>0

sup
0< r−tj j<ε

g rð Þandlim sup
r⟶t+

g rð Þ = inf
ε>0

sup
0<r−t<ε

g rð Þ:

ð2Þ

Definition 1. (see [12]). ψfMT
: ð0,∞Þ⟶ ½0, 1Þ is named angMT -function if it obeys the Mizoguchi-Takahashi’s condi-

tion, that is, lim supr⟶t+ψfMT
ðrÞ < 1, for each t ∈ℝ+ =

½0,∞Þ.

Remark 2. (see [12]).

(i) If ψfMT
: ℝ+ ⟶ ½0, 1Þ is given as ψfMT

ðtÞ = α ∈ ½0,
1Þ, then ψfMT

is an gMT -function

(ii) If the function ψfMT
: ℝ+ ⟶ ½0, 1Þ is either increas-

ing or decreasing, then ψfMT
is an gMT -function

Definition 3. ψ : ℝ+ ⟶ ½0, ð1/kÞÞ is named a D-function if
it obeys the condition: For each t ∈ℝ+, we can find k ∈
ð1,∞Þ such that lim supr⟶t+ψðrÞ < 1/k:

Definition 4. (see [12]). A function ψ : ℝ+ ⟶ ½0, 1Þ is
named a function of contractive factor, if for any strictly
decreasing sequence fjngn≥1 in ℝ+, we have 0 ≤ supn∈ℕ
ψðjnÞ < 1.

Definition 5. A function ψ : ℝ+ ⟶ ½0, ð1/kÞÞ is named a
function of 1/k-contractive factor, if for any sequence
fjngn≥1 in ℝ+ from and after some fixed terms, it is
strictly nonincreasing and 0 ≤ supn∈ℕψðjnÞ < 1/k, for some
k ∈ ð1,∞Þ.
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The following example recognizes the existence of
D-function and function of 1/k-contractive factor.

Example 6.
Let fjngn≥1 be a sequence in ℝ+ given by

jn =
32n − 1, if n ≤ 7

3 + 1
2n , if n > 7:

8<: ð3Þ

Define ψ : ℝ+ ⟶ ½0, ð1/kÞÞ by

ψ t̂
� �

=

1
17 + t̂2

, if 0 ≤ t̂ < 2

1
3 −

t̂

37 , if 2 ≤ t̂ < 50

0 otherwise:

8>>>>><>>>>>:
ð4Þ

Then, it is clear that ψ is a D-function, fjngn≥1 is a
strictly decreasing sequence from and after the eight term
and 0 ≤ supn∈ℕψðjnÞ = 727/2187 < 1/k for some k ∈ ð1,∞Þ.
Whence, ψ is also a function of 1/k-contractive factor. An
example which is not a D-function is provided hereunder.

Example 7.
Let ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be given by

ψ t̂
� �

=

sin t̂

t̂
, if t̂ ∈ 0, π2

� i
1

t̂ + k2
, elsewhere:

8>><>>: ð5Þ

Since lim supr⟶0+ψðrÞ = 1, then ψ is not a D-function.

Remark 8.

(i) Note that if ψfMT
= kψð̂tÞ for all t̂ ∈ℝ+ and for some

k ∈ ð1,∞Þ, then ψfMT
becomes an gMT -function,

provided ψ is a D-function

(ii) If we define ψ : ℝ+ ⟶ ½0, ð1/kÞÞ as ψð̂tÞ = 1/kn for
all n ≥ 2 and k ∈ ð1,∞Þ, then ψ is a D-function

The following Lemma is in consistent with [16,
Lemma 18].

Lemma 9.
Let ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a D-function. Then ρ :

ℝ+ ⟶ ½0, ð1/kÞÞ given by ρðb̂t Þ = ðψðb̂t Þ + ð1/kÞÞ/2 is also

a D-function for each b̂t ∈ℝ+ and some k ∈ ð1,∞Þ.

Proof. Obviously, ψð̂tÞ < ρð̂tÞ and 0 < ρð̂tÞ < ð1/kÞ. Let t̂ ∈ℝ+
be fixed. Since ψ : ℝ+ ⟶ ½0, ð1/kÞÞ is a D-function, we can
find σt̂ ∈ ½0, ð1/kÞÞ and δt̂ > 0 such that ψðsÞ ≤ σt̂ for all s ∈

½̂t, t̂ + δt̂Þ. Assume that ηt̂ ≔ ðσt̂ + ð1/kÞÞ/2 ∈ ½0, ð1/kÞÞ. Then,
ρðsÞ ≤ ηt̂ for all s ∈ ½̂t, t̂ + δt̂Þ. Thus, ρ is a D-function.

The following result due to Nadler [26] is the first metric
fixed point theorem for multivalued contractions.

Theorem 10. (see [10]). Let ð℧, μÞ be a complete metric space
and Y : ℧⟶ CBð℧Þ be a multivalued λ-contraction, that
is, we can find λ ∈ ð0, 1Þ such that

~H Yj, Yℓð Þ ≤ λμ j, ℓð Þ, ð6Þ

for all j, ℓ ∈℧. Then, F ixðYÞ ≠∅.

In 2007, Berinde-Berinde [11] presented the following
notable fixed point Theorem.

Theorem 11. (see [11]). Let ð℧, μÞ be a complete metric
space, Y : ℧⟶ CBð℧Þ be a multivalued mapping, and

ψfMT
: ℝ+ ⟶ ½0, 1Þ be an gMT -function. Assume that we

can find L ≥ 0 such that

~H Yj, Yℓð Þ ≤ ψfMT
μ j, ℓð Þð Þμ j, ℓð Þ + Lμ ℓ, Y jð Þ, ð7Þ

for all j, ℓ ∈℧ with j ≠ ℓ. Then, F ixðYÞ ≠∅.

Observe that if we take L = 0 in Theorem 11, we realize
the Mizoguchi-Takahashi fixed point theorem [14] which
partially answered the problem posed in Reich [8].

Theorem 12. (see [8]). Let ð℧, μÞ be a complete metric
space, Y : ℧⟶Kð℧Þ be a multivalued mapping, and

ψfMT
: ℝ+ ⟶ ½0, 1Þ be an gMT -function. Suppose that

~H Yj, Yℓð Þ ≤ ψfMT
μ j, ℓð Þð Þμ j, ℓð Þ, ð8Þ

for all j, ℓ ∈℧ with j ≠ ℓ. Then, F ixðYÞ ≠∅.

In [8], Reich raised the question whether Theorem 12 is
also valid when Kð℧Þ is replaced with CBð℧Þ. In 1989,
Mizoguch-Takahashi [14] responded to this puzzle in affir-
mative via the following result.

Theorem 13. (see [14]). Let ð℧, μÞ be a complete metric
space, Y : ℧⟶ CBð℧Þ be a multivalued mapping, and

ψfMT
: ℝ+ ⟶ ½0, 1Þ be an gMT -function. Suppose that

~H Yj, Yℓð Þ ≤ ψfMT
μ j, ℓð Þð Þμ j, ℓð Þ, ð9Þ

for all j, ℓ ∈℧. Then, F ixðYÞ ≠∅.

Let A be a nonempty subset of ℧ and Y : ℧⟶℧ be a
mapping. We recall that the set A is Y-invariant if YðAÞ ⊆
A. Not long ago, Du [13] obtained the following important
fixed point and coincidence point result.
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Theorem 14. (see [13]). Let ð℧, μÞ be a complete metric
space, Y : ℧⟶ CBð℧Þ be a multivalued mapping, g :
℧⟶℧ be a continuous point-valued mapping, and

ψfMT
: ℝ+ ⟶ ½0, 1Þ be an gMT -function. Assume that the

following conditions hold:
ðDu1Þ Y j is g-invariant for each j ∈℧;
ðDu2Þ we can find a function h : ℧⟶ℝ+ such that

~H Yj, Yℓð Þ ≤ ψfMT
μ j, ℓð Þð Þμ j, ℓð Þ + h gℓð Þμ gℓ, Y jð Þ, ð10Þ

for all j, ℓ ∈℧. Then, COP ðg, YÞ ∩F ixðYÞ ≠∅.

Notice that Mizoguchi-Takahashi fixed point theorem
(13) is an extension of Nadler’s fixed point theorem (10),
but its original proof is not friendly. Alternative proof
presented in [29] is also difficult.

Definition 15. (see [9]). Let ð℧, μÞ be a metric space. A
single-valued mapping Y : ℧⟶℧ is named:

Rus contraction if we can find a, b ∈ℝ+ with a + b < 1
such that for all j, ℓ ∈℧,

μ Y j, Yℓð Þ ≤ aμ j, ℓð Þ + bμ ℓ, Yℓð Þ: ð11Þ

Ciric-Reich-Rus contraction if we can find a, b, c ∈ℝ+
with a + b + c < 1 such that for all j, ℓ ∈℧,

μ Y j, Yℓð Þ ≤ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ: ð12Þ

In [9], it was proved that every Rus and Ciric-Reich-Rus
contraction has a unique fixed point. These results have been
extended to multivalued mappings in the following manner.

Theorem 16. (see [27]). Let ð℧, μÞ be a complete metric space
and Y : ℧⟶ CBð℧Þ be a multivalued mapping. Assume
that we can find a, b ∈ℝ+ with a + b < 1 such that for all j,
ℓ ∈℧:

~H Yj, Yℓð Þ ≤ aμ j, ℓð Þ + bμ ℓ, Yℓð Þ: ð13Þ

Then, F ixðYÞ ≠∅.

Theorem 17. (see [17]). Let ð℧, μÞ be a complete metric space
and Y : ℧⟶ CBð℧Þ be a multivalued mapping. Assume
that we can find a, b ∈ℝ+ with a + b + c < 1 such that for all
j, ℓ ∈℧:

~H Yj, Yℓð Þ ≤ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ: ð14Þ

Then, F ixðYÞ ≠∅.

For more variants of fixed point results of multivalued
contractions, the interested reader may consult [30–33]
and the references therein.

2. Main Results

In line with the characterizations of gMT -function, we
begin this section by launching a few characterizations of
D-function in Lemma 18. Its proof is a slight adaption
of [17, Theorem 2.1].

Lemma 18.
Let ψ : ℝ+ ⟶ ½0, ð1/kÞÞ, k ∈ ð1,∞Þ. Then, the following

statements are equivalent:

(i) ψ is a D-function

(ii) For each t̂ ∈ℝ+, we can find σð1Þt̂ ∈ ½0, ð1/kÞÞ and

δð1Þ
t̂

> 0 such that ψðsÞ ≤ σð1Þ
t̂

for all s ∈ ð̂t, t̂ + δð1Þ
t̂
Þ

(iii) For each t̂ ∈ℝ+, we can find σð2Þ
t̂

∈ ½0, ð1/kÞÞ and

δð2Þt̂ > 0 such that ψðsÞ ≤ σð2Þt̂ for all s ∈ ½̂t, t̂ + δð2Þt̂ �

(iv) For each t̂ ∈ℝ+, we can find σð3Þ
t̂

∈ ½0, ð1/kÞÞ and

δð3Þt̂ > 0 such that ψðsÞ ≤ σð3Þt̂ for all s ∈ ð̂t, t̂ + δð3Þt̂ �

(v) For each t̂ ∈ℝ+, we can find σð4Þt̂ ∈ ½0, ð1/kÞÞ and

δð4Þ
t̂

> 0 such that ψðsÞ ≤ σð4Þ
t̂

for all s ∈ ½̂t, t̂ + δð4Þ
t̂
�

(vi) For any sequence fjngn≥1 in ℝ+, from and after
some fixed term, it is nonincreasing and 0 ≤ supn∈ℕ
ψðjnÞ < ð1/kÞ

(vii) ψ is a function of 1/k-contractive factor, that is, for
any sequence fjngn≥1 in ℝ+, from and after some
fixed term, it is strictly decreasing and 0 ≤ supn∈ℕψ
ðjnÞ < ð1/kÞ

The following existence theorem for coincidence point
and fixed point is one of the main results of this paper.

Theorem 19.
Let ð℧, μÞ be a complete metric space, Y : ℧⟶ CBð℧Þ

be a multivalued mapping, Δ,Θ,Λ : ℧⟶℧ be continuous
point-valued mappings, and ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a D-
function. Suppose that the following conditions are obeyed:

ðax1Þ for each j ∈℧, fΔℓ =Θℓ =Λℓ : ℓ ∈ Y jg ⊆ Y j;
ðax2Þ we can find three mappings f , g, h : ℧⟶ℝ+ such

that

~H Yj, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
+ f Δℓð Þμ Δℓ, Y jð Þ + g Θℓð Þμ Θℓ, Y jð Þ
+ h Λℓð Þμ Λℓ, Y jð Þ,

ð15Þ

for all j, ℓ ∈℧, where a, b, c ∈ℝ+ with a + b + c < 1.

Then, COP ðΔ,Θ,Λ, YÞ ∩F ixðYÞ ≠∅.
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Proof. By ðax1Þ, we note that for each j ∈℧, μðΔℓ, Y jÞ =
μðΘℓ, Y jÞ = μðΛℓ, Y jÞ = 0 for all ℓ ∈ Y j. So for each j ∈℧,
it follows from ðax2Þ that for all ℓ ∈ Y j,

~H Yj, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �:
ð16Þ

Further, for each ℓ ∈ Y j, μðℓ, YℓÞ ≤ ~HðYj, YℓÞ. Whence,
for each j ∈℧, (16) gives

μ ℓ, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
≤
ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Yjð Þ½ �

1 − cψ μ j, ℓð Þð Þ
≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ½ �:

ð17Þ

Let j0 ∈℧ and choose j1 ∈ Y j0. If μðj0, j1Þ = 0, then j0 =
j1 ∈ Y j0, that is, j0 ∈F ixðYÞ, and the proof is finished. Other-
wise, if μðj0, j1Þ > 0, then consider a function ρ : ℝ+ ⟶
½0, ð1/kÞÞ given by ρðtÞ = ðð1/kÞ + ψðtÞÞ/2. By Lemma 9,
ρ is a D-function and 0 ≤ ψðtÞ < ρðtÞ < ð1/kÞ for all t ∈ℝ+.
From (2.2), it follows that

μ j1, Y j1ð Þ ≤ ψ μ j0, j1ð Þð Þ aμ j0, j1ð Þ + bμ j0, Y j0ð Þ½ �
< ρ μ j0, j1ð Þð Þ aμ j0, j1ð Þ + bμ j0, j1ð Þ½ �
= ρ μ j0, j1ð Þð Þ a + bð Þμ j0, j1ð Þ½ �:

ð18Þ

Since a + b + c < 1, then we can find η ∈ ð0, 1Þ such that
a + b < η = 1 − c < 1. Thus, (18) can be written as

μ j1, Y j1ð Þ < ηρ μ j0, j1ð Þð Þμ j0, j1ð Þ < ρ μ j0, j1ð Þð Þμ j0, j1ð Þ:
ð19Þ

From (19), we claim that we can find j2 ∈ Y j1 such that

μ j1, j2ð Þ < ρ μ j0, j1ð Þð Þμ j0, j1ð Þ: ð20Þ

Assume that this claim is not true, that is, μðj1, j2Þ ≥
ρðμðj0, j1ÞÞμðj0, j1Þ. Then, we get

μ j1, j2ð Þ ≥ inf
γ∈Y j1

μ j1, γð Þ ≥ ρ μ j0, j1ð Þð Þμ j0, j1ð Þ, ð21Þ

that is, μðj1, Y j1Þ ≥ ρðμðj0, j1ÞÞμðj0, j1Þ, contradicting (19).
Now, if μðj1, j2Þ = 0, then j1 = j2 ∈ Y j1 and so j1 ∈F ixðYÞ.
Otherwise, we can find j3 ∈ Y j2 such that

μ j2, j3ð Þ < ρ μ j1, j2ð Þð Þμ j1, j2ð Þ: ð22Þ

Let τn = μðjn−1, jnÞ for each n ∈ℕ. Proceeding on sim-
ilar steps as above, we can construct a sequence fjngn∈ℕ in
℧ with jn ∈ Y jn−1 for each n ∈ℕ and

τn+1 < ρ τnð Þτn: ð23Þ

Given that ψ is a D-function, then by Lemma 18:

0 ≤ sup
n∈ℕ

ψ τnð Þ < sup
n∈ℕ

ρ τnð Þ < 1
k
: ð24Þ

Whence,

0 < sup
n∈ℕ

ρ τnð Þ = 1/kð Þ + ψ τnð Þ
2 : n ∈ℕ, k ∈ 1,∞ð Þ

� �
< 1
k
< 1:

ð25Þ
Take ξ≔ supn∈ℕρðτnÞ, then 0 < ξ < 1. Since ρðtÞ < ð1/kÞ

< 1 for all t ∈ℝ+, then by (23), fτngn∈ℕ is a strictly decreas-
ing sequence of positive real numbers. Therefore, for each
n ∈ℕ, we have

τn+1 < ρ τnð Þ ≤ ξτn: ð26Þ
Whence, it follows from (26) that

μ jn, jn+1ð Þ = τn+1 ≤ ξτn ≤⋯≤ ξnτ1 = ξnd j0, j1ð Þ: ð27Þ
For any m, n, n0 ∈ℕ with m > n > n0, by (27), we get

μ jm, jnð Þ ≤ 〠
m−1

j=n
μ jj, jj+1
� �

≤ 〠
m−1

j=n
ξjμ j0, j1ð Þ ≤ 〠

∞

j=n
ξjμ j0, j1ð Þ

≤
ξn

1 − ξ
μ j0, j1ð Þ⟶ 0 asn⟶∞ð Þ:

ð28Þ
Thus, limsupn⟶∞fμðjm, jnÞ: m > ng = 0. This proves

that fjngn∈ℕ is a Cauchy sequence in ℧. The completeness
of ℧ implies that we can find u ∈℧ such that jn ⟶ u as
n⟶∞. Since jn ∈ Y jn−1 for each n ∈ℕ, it follows from
condition ðax1Þ that for each n ∈ℕ,

Δjn =Θjn =Λjn ∈ Y jn−1: ð29Þ
Using the continuity of the functions Δ,Θ and Λ, we

have

u = lim
n⟶∞

Δjn = lim
n⟶∞

Θjn = lim
n⟶∞

Λjn = lim
n⟶∞

Δu

= lim
n⟶∞

Θu = lim
n⟶∞

Λu:
ð30Þ

We claim that u ∈ Yu. Assume contrary so that μðu,
YuÞ > 0. Since the function j↦ μðj, YuÞ is continuous,
then from condition ðax2Þ, we realize

μ u, Yuð Þ = lim
n⟶∞

μ jn, Yuð Þ ≤ lim
n⟶∞

~H Yjn−1, Yuð Þ
≤ lim

n⟶∞
ψ μ jn−1, uð Þð Þ aμ jn−1, uð Þ + bμ jn−1, Y jn−1ð Þ½f

+ cμ u, Yuð Þ� + f Δuð Þμ Δu, Y jn−1ð Þ
+ g Θuð Þμ Θu, Yjn−1ð Þ + h Λuð Þμ Λu, Yjn−1ð Þg

< lim
n⟶∞

ρ μ jn−1, uð Þð Þ aμ jn−1, uð Þ + bμ jn−1, jnð Þ½f
+ cμ u, Yuð Þ� + f Δuð Þμ Δu, jnð Þ
+ g Θuð Þμ Θu, jnð Þ + h Λuð Þμ Λu, jnð Þg

< c
k

μ u, Yuð Þð Þ < μ u, Yuð Þ,
ð31Þ
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a contradiction. Whence, μðu, YuÞ = 0. Since Yu is closed,
we have u ∈ Yu. By condition ðax1Þ, Δu =Θu =Λu ∈ Yu.
Consequently, u ∈COP ðΔ,Θ,Λ, YÞ ∩F ixðYÞ.

The following example shows the generality of our
Theorem 19 over Theorems 10, 11, 17, and 16 due to Nadler,
Berinde-Berinde, Reich, and Rus, respectively.

Example 20.
Let ℧ = f0, ð1/5Þ, 2g and μðj, ℓÞ = jj − ℓj for all j, ℓ ∈℧.

Let Y : ℧⟶ CBð℧Þ be a multivalued mapping and Δ,Θ,
Λ : ℧⟶℧ be mappings given by

Y j =

0f g, if j = 0

0, 15

� �
, if j = 1

5
0, 2f g, if j = 2,

8>>>><>>>>:
ð32Þ

and Δ =Θ =Λ = I℧, the identity mapping on ℧. Define the
function ψ : ℝ+ ⟶ ½0, ð1/kÞÞ by ψðtÞ = 1/k2 for all t ∈ℝ+
and some k ∈ ð1,∞Þ. Also, define the mappings f , g, h :
℧⟶ℝ+ by f ðjÞ = gðjÞ = hðjÞ = 1/3 for all j ∈℧. Then, we
realize the following:

(i) for each j ∈℧, fΔℓ =Θℓ =Λℓ : ℓ ∈ Y jg ⊆ Yj;

(ii) COP ðΔ,Θ,Λ, YÞ ∩F ixðYÞ = f0, ð1/5Þ, 2g;
(iii) Δ,Θ and Λ are continuous

Clearly, lim sups⟶t+ψðsÞ = ð1/k2Þ < ð1/kÞ for all t ∈ℝ+
and some k ∈ ð1,∞Þ. Whence, ψ is a D-function. Further-
more, it is a routine to verify that condition ðax2Þ holds for
all j, ℓ ∈℧.

Now, notice that the mapping Y does not obey the
hypotheses of Theorem 10 due to Nadler. To see this, let
j = 0 and ℓ = 2, then

~H Y0, Y2ð Þ = ~H 0f g, 0, 2f gð Þ = 2 > λμ 0, 2ð Þ, ð33Þ

for all λ ∈ ð0, 1Þ. Moreover, to see that Theorem 11 due
to Berinde-Berinde fails in this instance, let L = 1/9 and
ψfMT

ðtÞ = kψðtÞ for all t ∈ℝ+, k ∈ ð1,∞Þ. Then, for all

λ ∈ ð0, 1Þ,

~H Y0, Y2ð Þ = 2 > λμ 0, 2ð Þ + 1
9 μ 2, Y0ð Þ: ð34Þ

Moreover, to see that Theorems 17 and 16 of Reich and
Rus are also not applicable to this example, again take j = 0
and ℓ = 2. Then, by setting b = c = 0 and a = 0 in Theorems
1.17 and 1.16, respectively, we have

~H Y0, Y2ð Þ = 2 > aμ 0, 2ð Þ for all a ∈ 0, 1ð Þ,
~H Y0, Y2ð Þ = 2 > bμ 2, Y2ð Þ for all b ∈ 0, 1ð Þ:

ð35Þ

A slight modification of Example A of Du [13] provided
below shows the generality of our Theorem 19 over
Mizoguch-Takahash’s [14] and Du’s [13] fixed point
theorems.

Example 21.
Let l∞ be the Banach space of all bounded real sequences

endowed with the uniform norm k:k∞, and let feng be the
canonical basis of l∞. Let fτngn∈ℕ be a sequence of positive
real numbers obeying τ1 = τ2 and τ2n−1 < τn for all n ≥ 2 (for
example, take τ1 = 1/9 and τn = 1/3n, n ≥ 2). It follows that
fτngn∈ℕ is convergent. Set vn = τnen for all n ∈ℕ, and let
℧ = fvngn∈ℕ be a bounded and complete subset of l∞. Then,
ð℧, k:k∞Þ is a complete metric space and kvn − vmk∞ = τn if
m> n.

Let Y : ℧⟶ CBð℧Þ be a multivalued mapping and Δ,
Θ,Λ : ℧⟶℧ be three mappings, respectively, given by

Yvn =
v1, v2, v3f g, if n ∈ 1, 2, 3f g
vn+1f g, if n > 3,

(

Δvn =Θvn =Λvn =
v2, if n ∈ 1, 2, 3f g
vn+1, if n > 3:

( ð36Þ

Then, we notice that the following results hold:

ax1ð Þfor each j ∈℧, Δℓ =Θℓ =Λℓ ∈ Y jf g ⊆ Yj,
ax1ð ÞCOP Δ,Θ,Λ, Yð Þ ∩F ix Yð Þ = v1, v2, v3f g:

ð37Þ

To show that Δ,Θ and Λ are continuous, it is suffices to
prove that Δ,Θ and Λ are nonexpansive. So we consider the
following six possibilities:

(i) kΔv1 − Δv2k∞ = 0 < τ1 = kv1 − v2k∞
(ii) kΔv1 − Δv3k∞ = 0 < τ1 = kv1 − v3k∞
(iii) kΔv1 − Δvmk∞ = τ2 = τ1 = kv1 − vmk∞ for anym > 3
(iv) kΔv2 − Δvmk∞ = τ2 = kv2 − vmk∞ for any m > 3
(v) kΔv3 − Δvmk∞ = τ2 = kv3 − vmk∞ for any m > 3
(vi) kΔvn − Δvmk∞ = τn+1 < τn = kvn − vmk∞ for any

m > 3 and m > n

Consequently, Δ is nonexpansive, and, since Δ =Θ =Λ,
then Δ,Θ and Λ are continuous.

Next, define the function ψ : ℝ+ ⟶ ½0, ð1/kÞÞ by

ψ tð Þ =
τn+2
τn

, if t = τn for some n ∈ℕ

0, elsewhere:

8<: ð38Þ
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Also, define the mappings f , g, h : ℧⟶℧ by

f vnð Þ = g vnð Þ = h vnð Þ =
0, if n ∈ 1, 2, 3f g
τ1n, if n > 3:

(
ð39Þ

Then, we observe that lim sups⟶t+ψðsÞ = 0 < ð1/kÞ for
all t ∈ℝ+ and some k ∈ ð1,∞Þ. It follows that ψ is a D-
function. Moreover, we claim that

~H∞ Y j, Yℓð Þ ≤ ψ j − ℓk k∞
� �

a j − ℓk k∞ + b j − Y jk k∞
�

+ c ℓ − Yℓk k∞� + f Δℓð Þ Δℓ − Y jk k∞
+ g Θℓð Þ Θℓ − Y jk k∞ + h Λℓð Þ Λℓ − Y jk k∞,

ð40Þ

for all j, ℓ ∈℧ and a, b, c ∈ℝ+ with a + b + c < 1, where ~H∞
is the Hausdorff metric induced by the norm k:k∞.

To see (40), we consider the following cases:

Case 1. For n = 1,m = 2 and a = 1/2, b = c = 0, we have

ψ v1 − v2k k∞
� �

a v1 − v2k k∞ + b v1 − Yv1k k∞
�

+ c v2 − Yv2k k∞Þ + f Δv2ð Þ Δv2 − Yv1k k∞
+ g Θv2ð Þ Θv2 − Yv1k k∞ + h Λv2ð Þ Λv2 − Yv1k k∞

= τ3
2 > 0 = ~H∞ Yv1, Yv2ð Þ:

ð41Þ

Case 2. For n = 1,m = 3 and a = 1/4, b = c = 0, we have

ψ v1 − v3k k∞
� �

a v1 − v3k k∞ + b v1 − Yv1k k∞ + c v3 − Yv3k k∞
� �

+ f Δv3ð Þ Δv3 − Yv1k k∞ + g Θv3ð Þ Θv3 − Yv1k k∞
+ h Λv3ð Þ Λv3 − Yv1k k∞

= τ3
4 > 0 = ~H∞ Yv1, Yv3ð Þ:

ð42Þ

Case 3. For n = 1,m > 3 and a = 1/2, b = c = 0, we have

ψ v1 − vmk k∞
� �

a v1 − vmk k∞ + b v1 − Yv1k k∞ + c vm − Yvmk k∞
� �

+ f Δvmð Þ Δvm − Yv1k k∞ + g Θvmð Þ Θvm − Yv1k k∞
+ h Λvmð Þ Λvm − Yv1k k∞

= τ3
2 1 + 6τ1 m + 1ð Þð Þ > τ1 = ~H∞ Yv1, Yvmð Þ:

ð43Þ

Case 4. For n = 2,m > 3 and a = 1/4, b = c = 0, we have

ψ v2 − vmk k∞
� �

a v2 − vmk k∞ + b v2 − Yv2k k∞ + c vm − Yvmk k∞
� �

+ f Δvmð Þ Δvm − Yv2k k∞ + g Θvmð Þ Θvm − Yv2k k∞
+ h Λvmð Þ Λvm − Yv2k k∞

= τ4
4 1 + 12τ1

τ4
m + 1ð Þτ3

	 

> τ1 = ~H∞ Yv2, Yvmð Þ:

ð44Þ

Case 5. For n = 3,m > 3 and a = 1/3 = b, c = 0, we have

ψ v3 − vmk k∞
� �

a v3 − vmk k∞ + b v3 − Yv3k k∞ + c vm − Yvmk k∞
� �

+ f Δvmð Þ Δvm − Yv3k k∞ + g Θvmð Þ Θvm − Yv3k k∞
+ h Λvmð Þ Λvm − Yv3k k∞

= τ5
3 1 + 9τ1 m + 1ð Þτ3ð Þ > τ1 = ~H∞ Yv3, Yvmð Þ:

ð45Þ

Case 6. For n > 3,m > n and a = 1/2, b = c = 0, we have

ψ vn − vmk k∞
� �

a vn − vmk k∞ + b vn − Yvnk k∞ + c vm − Yvmk k∞
� �

+ f Δvmð Þ Δvm − Yvnk k∞ + g Θvmð Þ Θvm − Yvnk k∞
+ h Λvmð Þ Λvm − Yvnk k∞

= τn+2
2 + 3 m + 1ð Þτn+1 > τn+1 = ~H∞ Yvn, Yvmð Þ:

ð46Þ

Therefore, from Cases (1)–(6), we have shown that
Condition (40) is obeyed. Consequently, all the assertions
of Theorem 19 are obeyed. It follows that COP ðΔ,Θ,Λ, YÞ
∩F ixðYÞ ≠∅.

Now, observe that if we take the sequence fτngn∈ℕ as
earlier given, that is, τ1 = τ2, τ2n−1 < τn, where τn = 1/3n for
all n ≥ 2 and let ψfMT

ðtÞ = 2ψðtÞði:e:k = 2 ∈ ð1,∞ÞÞ for all

t ∈ℝ+, then ψfMT
is an gMT -function, provided ψ is a

D-function. Thus,

(a) for n = 1 and any m > 3, we have

~H∞ Yv1, Yvmð Þ = τ1 > 2τ3
= ψfMT

v1 − vmk k∞
� �

v1 − vmk k∞:

ð47Þ

Whence, Mizoguch-Takahashi’s Theorem 13 does not
hold in this case.

(b) Let the function f : ℧⟶℧ be given by

f vnð Þ =
0, if n ∈ 1, 2, 3f g
τ1
kτn

, if n > 3, k ∈ 1,∞ð Þ,

8<: ð48Þ
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and g and h be as given in the above Example. Then,
for n = 1 and m > 3 with a = 1/2, b = c = 0, the above
Case 3 becomes

Case 3′:

ψfMT
v1 − vmk k∞

� �
a v1 − vmk k∞
� �

+ f Δvmð Þ Δvm − Yv1k k∞
+ g Θvmð Þ Θvm − Yv1k k∞ + h Λvmð Þ Λvm − Yv1k k∞

= τ3 +
τ1

kτm+1
+ 2τ1 m + 1ð Þτ3 > τ1 = ~H∞ Yv1, Yvmð Þ,

ð49Þ

that is, Case 3 also hold. On the other hand, notice that

~H∞ Yv1, Yvmð Þ = τ1 > τ3 +
τ1

kτm+1
= ψfMT

v1 − vmk k∞
� �

v1 − vmk k∞
+ f Δvmð Þ v1 − vmk k∞,

ð50Þ

that is, the main result of Du [17, Theorem 19] is not
applicable here.

3. Consequences

In this section, we deduce some significant consequences of
Theorem 19.

Corollary 2.
Let ð℧, μÞ be a complete metric space, Y : ℧⟶ CBð℧Þ

be a multivalued mapping, Δ : ℧⟶℧ be a continuous
point-valued mapping, and ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a D-
function. Suppose that

(i) Y j is Δ-invariant (i.e. ΔðY jÞ ⊆ Y j) for each j ∈℧
(ii) we can find a mapping f : ℧⟶ℝ+ such that

~H Yj, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
+ f Δℓð Þμ Δℓ, Y jð Þ,

ð51Þ

for all j, ℓ ∈℧ and a, b, c ∈ℝ+ with a + b + c < 1.

Then, COP ðΔ, YÞ ∩F ixðYÞ ≠∅.

Proof. Take g, h : ℧⟶ℝ+ as gðjÞ = hðjÞ = 0 for all j ∈℧ in
Theorem 19.

The following result is a direct consequence of
Corollary 2.

Corollary 23.
Let ð℧, μÞ be a complete metric space, Y : ℧⟶ CBð℧Þ

be a multivalued mapping, Δ : ℧⟶℧ be a continuous
point-valued mapping, and ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a D-
function. Suppose that

(i) Y j is Δ-invariant (i.e., ΔðY jÞ ⊆ Y j) for each j ∈℧

(ii) we can find ξ ≥ 0 and a mapping f̂ : ℧⟶ ½0, ξ� such
that

~H Yj, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
+ f̂ Δℓð Þμ Δℓ, Y jð Þ,

ð52Þ

for all j, ℓ ∈℧ and a, b, c ∈ℝ+ with a + b + c < 1.

Then, COP ðΔ, YÞ ∩F ixðYÞ ≠∅.

Corollary 24.
Let ð℧, μÞ be a complete metric space, Y : ℧⟶ CBð℧Þ

be a multivalued mapping, Δ : ℧⟶℧ be a continuous
point-valued mapping, and ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a D-
function. Suppose that

(i) Y j is Δ-invariant (i.e. ΔðY jÞ ⊆ Y j) for each j ∈℧
(ii) we can find ξ ≥ 0 such that

~H Yj, Yyð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
+ ξμ Δℓ, Y jð Þ,

ð53Þ

for all j, ℓ ∈℧ and a, b, c ∈ℝ+ with a + b + c < 1.

Then, COP ðΔ, YÞ ∩F ixðYÞ ≠∅.

Proof. Define f̂ : ℧⟶ ½0, ξ� as f̂ ðjÞ = ξ for all j ∈℧ in
Corollary 23.

By applying Corollary 2, we deduce a generalized version
of the primitive Ciric-Reich-Rus fixed point theorem for
multivalued mapping as follows.

Corollary 25.
Let ð℧, μÞ be a complete metric space, Y : ℧⟶ CBð℧Þ

be a multivalued mapping, and ψ : ℝ+ ⟶ ½0, ð1/kÞÞ be a
D-function. Suppose that we can find a mapping f : ℧⟶
ℝ+ such that

~H Yj, Yℓð Þ ≤ ψ μ j, ℓð Þð Þ aμ j, ℓð Þ + bμ j, Y jð Þ + cμ ℓ, Yℓð Þ½ �
+ f ℓð Þμ ℓ, Y jð Þ,

ð54Þ

for all j, ℓ ∈℧ and a, b, c ∈ℝ+ with a + b + c < 1.
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Then, F ixðYÞ ≠∅.

Proof. Take Δ≔ I℧, the identity mapping on ℧ in Cor-
ollary 2.

Remark 26.

(i) If we take ψfMT
ðtÞ = akψðtÞ, where a ∈ ð0, 1Þ, k ∈ ð1,

∞Þ, ψ is aD-function, and set b = c = 0, then Corol-
lary 25 reduces to Theorem 13 due to Mizoguchi-
Takahashi [14].

(ii) If ψ is a monotonic increasing function such that
0 ≤ ψðtÞ < ð1/kÞ for each t ∈ℝ+ and k ∈ ð1,∞Þ, then
by setting ψfMT

ðtÞ = akψðtÞ, where a ∈ ð0, 1Þ, k ∈
ð1,∞Þ and b = c = 0, Corollary 24 generalizes [14,
Corollary 2.2]. Also, Corollary 24 includes Theorem
1.2 in [29] as a special case, by extending the range of
Y from the family of bounded proximal subsets of℧
to CBð℧Þ.

(iii) If we take f ðjÞ = 0 and ψðtÞ = aμðj, ℓÞ/k2½aμðj, ℓÞ +
bμðj, Y jÞ + cμðℓ, YℓÞ� for all j, ℓ ∈℧ and k ∈ ð1,∞Þ,
where not all of a, b and c are identically zeros, then
Corollary 25 reduces to Theorem 1.10

(iv) If we put ψfMT
ðtÞ = akψðtÞ, where a ∈ ð0, 1Þ, k ∈

ð1,∞Þ, ψ is a D-function, take Δ≔ I℧, the identity
mapping on ℧, and set b = c = 0, then Corollary
24 reduces to Theorem 11 due to Berinde-
Berinde [11].

(v) If we define the multivalued mapping Y : ℧⟶
CBð℧Þ as Y j = fϕjg for all j ∈℧, where ϕ is a
single-valued mapping on ℧, then all the results
presented herein can be reduced to their single-
valued counterparts

(vi) It is clear that more consequences of our main result
can be deduced, but we skip them due to the length
of the paper

4. Applications to Caputo-Type Fractional
Differential Inclusions Model for COVID-19

Very recently, Ahmed et al. [22] investigated the significance
of lockdown in curbing the spread of COVID-19 via the
following fractional-order epidemic model:

CDv
0+ ~G t̂
� �

=Λv − βv ~GI − λ1~GL − �μv ~G + γv1I + γv2IL + θv1~GL,
CDv

0+ ~GL t̂
� �

= λv1~GL − �μv ~GL − θv1~GL,
CDv

0+I t̂
� �

= βv ~GI − γv1 − αv1 − �μvI + λv2IL + θv2IL,
CDv

0+IL t̂
� �

= λv2IL − �μvIL − θv2 − γv2 − αv2IL,
CDv

0+L t̂
� �

= μvI − ϕvL,

8>>>>>>>>><>>>>>>>>>:
ð55Þ

where the total population under study, N ð̂tÞ is divided into
four components, namely susceptible population that are
not under lockdown ~Gð̂tÞ, susceptible population that are
under lock-down ~GLð̂tÞ, infective population that are not
under lockdown Ið̂tÞ, infective population that are under
lock-down ILð̂tÞ, and cumulative density of the lockdown
program Lð̂tÞ. For the meaning of the rest parameters and
numerical simulations of (55), we refer the reader to [22].
The above model (55) is simplified as follows:

CDv
0+ ~G t̂
� �

=Θ1 t̂, ~G, ~G, ~GL, I, IL, L
� �

,

CDv
0+ ~GL t̂

� �
=Θ2 t̂, ~G, ~GL, I, IL, L

� �
,

CDv
0+I t̂
� �

=Θ3 t̂, ~G, ~GL, I, IL, L
� �

,

CDv
0+IL t̂
� �

=Θ4 t̂, ~G, ~GL, I, IL, L
� �

,

CDv
0+L t̂
� �

=Θ5 t̂, ~G, ~GL, I, IL, L
� �

,

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð56Þ

where

Θ1 t̂, ~G, ~G, ~GL, I, IL, L
� �

=Λv − βv ~GI − λ1~GL − �μv ~G + γv1I + γv2IL + θv1~GL,

Θ2 t̂, ~G, ~GL, I, IL, L
� �

= λv1~GL − �μv ~GL − θv1~GL,

Θ3 t̂, ~G, ~GL, I, IL, L
� �

= βv ~GI − γv1 − αv1 − �μvI + λv2IL + θv2IL,

Θ4 t̂, ~G, ~GL, I, IL, L
� �

= λv2IL − �μvIL − θv2 − γv2 − αv2IL,

Θ5 t̂, ~G, ~GL, I, IL, L
� �

= μvI − ϕvL:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð57Þ
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Consequently, the model (55) takes the form:

CDv
0 j t̂
� �

= g t̂, j t̂
� �� �

, t̂ ∈Ω = 0:b½ �, 0 < v < 1
j 0ð Þ = j0 ≥ 0,

(
ð58Þ

with the condition:

j t̂
� �

= ~G, ~GL, I, IL, L
� �tr

,

j 0ð Þ = ~G0, ~GL0
, I0, IL0 , L0

� �tr
,

g t̂, j t̂
� �� �

= Θi t̂, ~G, ~GL, I, IL, L
� �� �tr

, i = 1,⋯, 5,

8>>>>>><>>>>>>:
ð59Þ

where ð:Þtr denotes the transpose operation.
In this section, we extend problem (55) to its multiva-

lued analogue given by

CDv
0 j t̂
� �

∈M t̂, j t̂
� �� �

, t̂ ∈Ω = 0, δð Þ
j 0ð Þ = j0 ≥ 0,

(
ð60Þ

where M : Ω ×ℝ⟶ PðℝÞ is a multivalued mapping (PðℝÞ
is the power set of ℝ). We launch existence criteria for solu-
tions of the inclusion problem (60) for which the right hand
side is nonconvex with the aid of standard fixed point theo-
rem for multivalued contraction mapping. First, we outline
some preliminary concepts of fractional calculus and multi-
valued analysis as follows.

Definition 27. (see [34]). Let v > 0 and f ∈ L′ð½0, δ�,ℝÞ. Then,
the Riemann-Liouville fractional integral order v for a func-
tion f is given as

Iv0+ f t̂
� �

= 1
Γ vð Þ

ð t̂
0
t̂ − τ
� �v−1

μτ, t̂ > 0, ð61Þ

where Γð:Þ is the gamma function given by ΓðvÞ = Ð∞0 τv−1

e−τμτ.

Definition 28. (see [34]). Let n − 1 < v < n, n ∈ℕ, and f ∈
Cnð0, δÞ. Then, the Caputo fractional derivative of order v
for a function f is given as

CDv
0+ f t̂
� �

= 1
Γ n − vð Þ

ð t̂
0
t̂ − τ
� �n−v−1 f n τð Þμτ, t̂ > 0: ð62Þ

Lemma 29. (see [34]). Let RðvÞ > 0, n = ½RðvÞ� + 1, and f
∈ ACnð0, δÞ. Then,

Iv0+
CDv

0+ f
� �

t̂
� �

= f t̂
� �

−
∑m

k=1 Dk
0+ f

� �
0+ð Þ

k!
: ð63Þ

In particular, if 0 < v ≤ 1, then ðIv0+CDv
0+ f Þð̂tÞ = f ð̂tÞ − f ð0Þ.

In view of Lemma 29, the integral reformulation of prob-
lem 16 which is equivalent to the model 13 is given by

j t̂
� �

= j0 + Iv0+g t̂, j t̂
� �� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1g τ, j τð Þð Þμτ:

ð64Þ

Let ℧ = CðΩ,ℝÞ denotes the Banach space of all con-
tinuous functions j from Ω to ℝ equipped with the norm
given by

jk k = sup j t̂
� ��� ��: t̂ ∈Ω = 0, δ½ �� 


, ð65Þ

where

j t̂
� ��� �� = ~G t̂

� ��� �� + ~GL t̂
� ��� �� + I t̂

� ��� �� + IL t̂
� ��� �� + L t̂

� ��� ��, ð66Þ

and ~G, ~GL, I, IL, L ∈℧.

Definition 30.
Let ℧ be a nonempty set. A single-valued mapping

f : ℧⟶℧ is named a selection of a multivalued map-
ping M : ℧⟶ Pð℧Þ, if fðjÞ ∈MðjÞ for each j ∈℧.

For each j ∈℧, we define the set of all selections of a
multi-valued mapping M by

~GM,j = f ∈ L′ Ω,ℝð Þ: f t̂
� �

∈M t̂, j t̂
� �� �

for a:e:̂t ∈Ω
n o

:

ð67Þ

Definition 31. A function j ∈ C′ðΩ,ℝÞ is a solution of
problem (60) if there is a function φ ∈ L′ðΩ,ℝÞ with
φð̂tÞ ∈Mð̂t, jð̂tÞÞa:e: on Ω such that

j t̂
� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1

φ τð Þμτ ð68Þ

and jð0Þ = j0 ≥ 0.

Definition 32. A multivalued mapping M : Ω⟶ PðℝÞ with
nonempty compact convex values is said to be measurable, if
for every ϖ ∈ℝ, the function t̂↦ μðϖ, Mð̂tÞÞ = inf fjϖ − ζj:
ζ ∈Mð̂tÞg is measurable.

The following is the main result of this section.

Theorem 33. Assume that the following conditions are
obeyed:

(N1) M : Ω ×ℝ⟶KðℝÞ is such that Mð:,jÞ: Ω⟶
KðℝÞ is measurable for each j ∈ℝ

(N2) We can find a continuous function h : Ω⟶ℝ+
such that for all j, ℓ ∈ℝ,

~H M t̂, j
� �

,M t̂, ℓ
� �� �

≤ h t̂
� �

j − ℓj j, ð69Þ

for almost all t̂ ∈Ω and μð0,Mð̂t, 0ÞÞ ≤ hð̂tÞ for almost all
t̂ ∈Ω.
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Then, the differential inclusion problem (60) has at least
one solution on Ω, provided that Φkhk < 1, where Φ = bv/
ðΓðv + 1ÞÞ.

Proof. First, we convert the differential inclusions (60) into a
fixed point problem. For this, let ℧ = CðΩ,ℝÞ and consider
the multivalued mapping Y : ℧⟶ Pð℧Þ given by

Y jð Þ =
∇∈℧ :

∇ t̂
� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ τð Þμτ, φ ∈ ~GM,j

8><>:
9>=>;:

ð70Þ

Clearly, the fixed points of Y are solutions of problem
(60). Now, we prove that Y obeys all the conditions of
Theorem 10 under the following cases.

Case 1. YðjÞ is nonempty and closed for every φ ∈ ~GM,j. Since
the multi-valued mapping Mð:,jð:ÞÞ is measurable, by the
measurable selection theorem (see, e.g. [35], Theorem III.
6), it admits a measurable selection φ : Ω⟶ℝ. Further-
more, by condition ðN2Þ, we get jφð̂tÞj ≤ hð̂tÞ + hð̂tÞjjð̂tÞj,
that is, φ ∈ L′ðΩ,ℝÞ, and hence M is integrably bounded.
Thus, ~GM,j is nonempty. Now, we show that YðjÞ is closed
for each j ∈℧. Let fςngn∈ℕ ∈ YðjÞ be such that ςn ⟶ u
ðn⟶∞Þ in ℧. Then, u ∈℧, and we can find φn ∈
~GM,jn such that for each t̂ ∈Ω,

ςn t̂
� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φn τð Þμτ: ð71Þ

Since M has compact values, we pass onto a subse-
quence to obtain that φn converges to u ∈ L′ðΩ,ℝÞ.
Therefore, u ∈ ~GM,j and for each t̂ ∈Ω, we have

ςn t̂
� �

⟶ u t̂
� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ τð Þμτ: ð72Þ

Thus, u ∈ YðjÞ.

Case 2. Next, we prove that we can find a ∈ ð0, 1Þða =ΦkhkÞ
such that ~HðYðjÞ, YðℓÞÞ ≤ akj − ℓk for each j, ℓ ∈℧. Let j,
ℓ ∈℧ and ∇1 ∈ YðjÞ. Then, we can find φ1ð̂tÞ ∈Mð̂t, jð̂tÞÞ
such that for each t̂ ∈Ω,

∇1 t̂
� �

= j0 +
1

Γ vð Þ +
ð t̂
0
t̂ − τ
� �v−1φ1 τð Þμτ: ð73Þ

By ðN2Þ, ~HðMð̂t, jÞ,Mð̂t, ℓÞÞ ≤ hð̂tÞkj − ℓk. Whence, we
can find ρ ∈Mð̂t, ℓð̂tÞÞ such that

∇1 t̂
� �

− ρ t̂
� ��� �� ≤ h t̂

� �
j t̂
� �

− ℓ t̂
� ��� ��, t̂ ∈Ω: ð74Þ

Define Ξ : Ω⟶ PðℝÞ by

Ξ t̂
� �

= t̂ ∈ℝ : ∇1 t̂
� �

− ρ t̂
� ��� �� ≤ h t̂

� �
j t̂
� �

− ℓ t̂
� ��� ��� 


: ð75Þ

Since the multivalued mapping Ξð̂tÞ ∩Mð̂t, ℓð̂tÞÞ is
measurable (see ([35], Proposition III.4)), we can find a
function φ2 which is a measurable selection of Ξ. Thus,
φ2ð̂tÞ ∈Mð̂t, ℓð̂tÞÞ, and for each t̂ ∈Ω, we have jφ1ð̂tÞ −
φ2ð̂tÞj ≤ hð̂tÞjjð̂tÞ − ℓð̂tÞj. For each t̂ ∈Ω, take

∇2 t̂
� �

= j0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1

φ2 τð Þμτ: ð76Þ

Then, from (73) and (76), we realize

∇1 t̂
� �

− ∇2 t̂
� ��� �� ≤ 1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1 φ1 τð Þ − φ2 τð Þj j½ �μτ

≤
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1 h t̂

� �
j t̂
� �

− ℓ t̂
� ��� ����� �

μτ

≤
bv

Γ v + 1ð Þ hk k j − ℓk k =Φ hk k j − ℓk k:

ð77Þ

Therefore, k∇1 − ∇2k ≤Φkhkkj − ℓk. On similar steps,
interchanging the roles of j and ℓ, we have

~H Y jð Þ, Y ℓð Þð Þ ≤Φ hk k j − ℓk k = a j − ℓk k: ð78Þ

Note that if we take f ðjÞ = 0 and ψð̂tÞ = ðΦkhkkj − ℓkÞ/
ðk2½Φkhkkj − ℓk + bkj − Y jk + ckℓ − Yℓk�Þ for all j, ℓ ∈℧
and k ∈ ð1,∞Þ, then (54) coincides with (78). Whence, Corol-
lary 25 can be applied to conclude that the mapping Y has at
least one fixed point in ℧ which corresponds to the solutions
of Problem 4.6.

Example 34. Consider the Caputo-type fractional differential
inclusion problem given by

CD3/5
0 j t̂
� �

∈M t̂, j t̂
� �� �

, t̂ ∈Ω = 0, 1½ �,
j 0ð Þ = 0,

(
ð79Þ

where the multivalued mapping M : ½0, 1� ×ℝ⟶ PðℝÞ is
given as

M t̂, j t̂
� �� �

= 1
50 ,

1
9 + 10t̂

sin2 j t̂
� �

2 − sin j t̂
� ��� ��

 !
+ 1
30

" #
: ð80Þ

Obviously, the mapping j↦ ½1/50, ð1/9 + 10t̂Þðsin2 jð̂tÞ/
2 − sin jjð̂tÞjÞ + 1/30� is measurable for each j ∈ℝ. In this
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case, we can take hð̂tÞ = 1/ð9 + 10t̂Þ for all t̂ ∈ ½0, 1�, and thus,
μð0,Mð̂t, 0ÞÞ = 1/30 ≤ hð̂tÞ for almost all t̂ ∈ ½0, 1�. Note that
for each j, ℓ ∈ℝ, we have

~H M t̂, j t̂
� �� �

,M t̂, ℓ t̂
� �� �� �

= 1
50 ,

1
9 + 10t̂

sin2 j t̂
� �

2 − sin j t̂
� ��� ��

 !
+ 1
30

" #
,

 

� 1
50 ,

1
9 + 10t̂

sin2ℓ t̂
� �

2 − sin ℓ t̂
� ��� ��

 !
+ 1
30

" #!

≤
1

9 + 10t̂ j t̂
� �

− ℓ t̂
� ��� �� = h t̂

� �
j t̂
� �

− ℓ t̂
� ��� ��:

ð81Þ

Moreover, khk = 1/9. Whence, Φkhk ≈ 0:124355 < 1.
Consequently, by Theorem 38, Problem (68) has at least
one solution on ½0, 1�:

5. Stability Results

Investigated as a type of data dependence, the concept of
Ulam stability was initiated by Ulam [36] and developed
by Hyers [37], Rassias [38], and later on by many authors.
In this section, we study an Ulam-Hyers type stability of
the proposed fractional-order model 4.6. In [22], the stability
result of the model 4.4 has been obtained in the framework
of single-valued mappings. But, it is a known fact that multi-
valued mappings often have more fixed points than their
corresponding single-valued mappings. Whence, the set of
fixed points of set-valued mappings becomes more interest-
ing for the study of stability. First, we give some needed
definitions as follows.

Let ε > 0 and consider the following inequality:

CDv
0+ j

∗ t̂
� �

− j∗ t̂
� ��� �� ≤ ε, t̂ ∈Ωa:e: ð82Þ

Definition 35. The proposed problem (60) is Ulam-Hyers
stable if we can find a real number ς∗ > 0 such that for every
ε > 0 and for each solution j∗ ∈ CðΩ,ℝÞ of the inequality
(82), we can find a solution j ∈ CðΩ,ℝÞ of problem (60)
and two functions φ∗, φ ∈ L′ðΩ,ℝÞ with φ∗ð̂tÞ ∈Mð̂t, j∗ð̂tÞÞ
and φð̂tÞ ∈Mð̂t, jð̂tÞÞ a:e: on Ω such that

j∗ t̂
� �

− j t̂
� ��� �� ≤ ς∗ε, ð83Þ

for almost all t̂ ∈Ω, where kjk = sup fjjð̂tÞj: t̂ ∈Ωa:e:g.

Remark 36. A function j∗ ∈ CðΩ,ℝÞ is a solution of the
inequality (82) if and only if we can find a continuous func-
tion m : Ω⟶ℝ and φ∗ ∈ L′ðΩ,ℝÞ with φ∗ð̂tÞ ∈Mð̂t, j∗ð̂tÞÞ
a:e: on Ω such that the following properties hold:

(i) jmð̂tÞj ≤ ε,m =max ðmjÞtr , t̂ ∈Ωa:e:

(ii) CDv
0+ j

∗ð̂tÞ = j∗ð̂tÞ +mð̂tÞ, t̂ ∈Ω a:e:

Lemma 37. Suppose that j∗ ∈ CðΩ,ℝÞ obeys the inequality
(82), then we can find a function φ∗ ∈ L′ðΩ,ℝÞ with φ∗ð̂tÞ
∈Mð̂t, j∗ð̂tÞÞa:e: on Ω such that

j∗ t̂
� �

− j∗0 −
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ∗ τð Þμτ

�����
����� ≤Φε: ð84Þ

Proof. From ðiiÞ of Remark 36, we have CDv
0+ j

∗ð̂tÞ = j∗ð̂tÞ +
mð̂tÞ, and by Lemma 29, we get

j∗ t̂
� �

= j∗0 +
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ∗ τð Þμτ

+ 1
Γ vð Þ

ð t̂
0
t̂ − τ
� �v−1m τð Þμτ:

ð85Þ

Therefore, from ðiÞ of Remark 36, we realize

j∗ t̂
� �

− j∗0 −
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ∗ τð Þμτ

�����
�����

≤
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1 m τð Þj jμτ ≤Φε:

ð86Þ

Now, we present the main result of this section as
follows.

Theorem 38. Assume that the following conditions are
obeyed:

(i) the multivalued mapping Mð:,jÞ: Ω⟶Kð℧Þ is
measurable for each j ∈ℝ

(ii) for all j, ℓ ∈ℝ, we can find φð̂tÞ ∈Mð̂t, jð̂tÞÞ, φ∗ð̂tÞ
∈Mð̂t, ℓð̂tÞÞ a:e: on Ω and a continuous function
h : Ω⟶ℝ+ such that for almost all t̂ ∈Ω,

φ t̂
� �

− φ∗ t̂
� ��� �� ≤ h t̂

� �
j t̂
� �

− ℓ t̂
� ��� ��: ð87Þ

(iii) khk < 1/Φ, where Φ = bv/ðΓðv + 1ÞÞ.
Then the fractional-order inclusion model (60) is Ulam-

Hyers stable.

Proof.
Let j, j∗ ∈ CðΩ,ℝÞ, where j obeys (82) and j is a solution

of problem (60). Then, we can find two functions φ∗, φ ∈
L′ðΩ,ℝÞ with φ∗ð̂tÞ ∈Mð̂t, j∗ð̂tÞÞ and φð̂tÞ ∈Mð̂t, jð̂tÞÞa:e:
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on Ω such that for every ε > 0, Lemma 37 can be applied
to have

j∗ t̂
� �

− j t̂
� ��� �� = j∗ t̂

� �
− j∗0 −

1
Γ vð Þ

ð t̂
0
t̂ − τ
� �v−1

φ τð Þμτ
�����

�����
= j∗ t̂

� �
− j∗0 −

1
Γ vð Þ

ð t̂
0
t̂ − τ
� �v−1�����

� φ τð Þ − φ∗ τð Þ + φ∗ τð Þ½ �μτ
�����

≤ j∗ t̂
� �

− j∗0 −
1

Γ vð Þ
ð t̂
0
t̂ − τ
� �v−1φ∗ τð Þμτ

�����
�����

+ 1
Γ vð Þ

ð t̂
0
v − τð Þv−1 φ τð Þ − φ∗ τð Þj jμτ

≤Φε + bv

Γ v + 1ð Þ hk k j∗ − jk k

=Φε +Φ hk k j∗ − jk k,
ð88Þ

that is, kj∗ − jk ≤ ς∗ε, where ς∗ =Φ/ð1 −ΦkhkÞ. Conse-
quently, the proposed problem (60) is Ulam-Hyers stable.

6. Conclusions

A new coincidence and fixed point theorem of multivalued
mapping defined on a complete metric space has been pre-
sented in this work by using the characterizations of a mod-

ified gMT -function, named D-function. It has been noted
herein that our result is a generalization of the fixed point
theorems due Berinde-Berinde [11], Du [13], Mizoguchi-
Takahashi [14], Nadler [10], Reich [17], Rus [27], and a
few others in the corresponding literature. Though the con-
jecture raised by Reich [17] has now been proven valid in an
almost complete form in [11, 13, 14], however, our main
result (Theorem 19) provided a more general affirmative
response to this problem. Moreover, from application per-
spective, we launched an existence theorem for nonlinear
fractional-order differential inclusions model for COVID-
19 via a standard fixed point theorem of multivalued map-
ping. Ulam-Hyers stability analysis of the considered model
was also discussed. It is interesting to note that more useful
analysis and results may be obtained if the metric on the
ground set in this context is either quasi or pseudo metric.
For better management of uncertainty, and since every fixed
point theorem of contractive multivalued mapping has its
fuzzy set-valued analogue, the result of this paper can as well
be discussed in the framework of fuzzy fixed point theory
and related hybrid models of fuzzy mathematics. Further-
more, in order to obtain effective measures for curbing
Covid-19, other than observing the significance of lockdown,
numerical simulations and better analytic tools of the
proposed fractional-order differential inclusions model are
another future directions.
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In this article, we prove some coincidence and common fixed point theorems under the relation-theoretic Meir-Keeler
contractions in a metric space endowed with a locally finitely T-transitive binary relation. Our newly proved results generalize,
extend, and sharpen some existing coincidence point as well as fixed point theorems existing in the literature. Moreover, we
give some examples to affirm the efficacy of our results.

1. Introduction

Banach [1], a Polish mathematician, established the most
successful result in fixed point theory, the Banach contrac-
tion principle (in short, BCP), in 1922, which says that a
contraction mapping on a complete metric space has a
unique fixed point. One of the noted generalizations of
BCP comprising the concept of coincidence point (in short,
CP) and common fixed point (in short, CFP) theorems was
established by Jungck [2] in 1976. In succeeding years, many
researchers introduced relatively weaker version of commut-
ing mappings and developed exciting CFP results, see [3, 4].

On the other hand, generalizations of the underlying
space have been trending since some decades. One of such
important generalizations was initiated by Turinici [5, 6] in
1986, where he proved fixed point results in a partial ordered
set. In this continuation, Alam and Imdad [7] generalized
the BCP using a binary relation. Since then, many relation-
theoretic fixed point theorems are being studied regularly,
see [8, 9] and references therein.

Several researchers reported numerous fixed point
results employing relatively more generalized contractions.

One of such vital contractions was due to Meir and Keeler
[10] in 1969, which was further extended by Rao and Rao
[11]. In 2013, Patel et al. [12] established some CFP theo-
rems for three and four self-mappings satisfying generalized
Meir-Keeler α-contraction in metric spaces. Some general-
izations of Meir-Keeler contraction in the framework of
different types of spaces have also been reported, see
[13–16]. Recently, Sk et al. [17] introduced the Meir-Keeler
contraction in relation-theoretic sense and extended
relation-theoretic contraction principle to relation-theoretic
Meir-Keeler contraction principle.

In this paper, we prove some coincidence and common
fixed point theorems using the relation-theoretic Meir-
Keeler contraction in a metric space endowed with a locally
finitely T-transitive binary relation. We also equip several
examples to exhibit the significance of these new findings.

2. Preliminaries

We will go over some basic definitions in this section that
will help us to prove our primary results. Throughout the
paper, we pertain to ℕ ∪ f0g as K0, and empty set as ∅.
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Definition 1 (see [18]). Let X ≠∅ be a set. A “binary rela-
tion” is a subset R of X2. The subsets X2 and ∅ of X2

are called the “universal relation” and “empty relation,”
respectively.

Definition 2 (see [7]). Let X ≠∅ be a set with a binary rela-
tion R. If either ðϱ, σÞ ∈R or ðσ, ϱÞ ∈R for ϱ, σ ∈X , then ϱ
and σ are called as “R-comparative.” ½ϱ, σ� ∈R is the notion
for it.

Definition 3 (see [18–23]). Let X ≠∅ be a set with a binary
relation R. Then, the relation R is called

(a) “amorphous” if R has no precise attribute

(b) “reflexive” if ðϱ, ϱÞ ∈R∀ϱ ∈X

(c) “symmetric” if ðϱ, σÞ ∈Rðσ, ϱÞ ∈R
(d) “anti-symmetric” if ðϱ, σÞ ∈R and ðσ, ϱÞ ∈Rϱ = σ

(e) “transitive” if ðϱ, σÞ ∈R and ðσ, wÞ ∈Rðϱ, wÞ ∈R
(f) “complete”, “connected” or “dichotomous” if ½ϱ, σ�∈

R∀ϱ, σ∈X

(g) “partial order” if R is “reflexive”, “anti-symmetric”
and “transitive”

Definition 4 (see [18]). Let R be a binary relation on a set
X ≠∅. Then,

R−1 = ϱ, σð Þ ∈X2 : σ, ϱð Þ ∈R� �
andRs =R ∪R−1, ð1Þ

are called inverse relation and symmetric closure of R,
respectively.

Proposition 5 (see [7]). Let X ≠∅ be a set with a binary
relation R. Then, for ϱ, σ ∈X ,

ϱ, σð Þ ∈Rs ⟹ ϱ, σ½ � ∈R: ð2Þ

Definition 6 (see [24]). Let X ≠∅ be a set with a binary rela-
tion R and S ⊆X . Then, the set RjS =R ∩ S2 is defined as
the restriction of R to S .

Definition 7 (see [7]). Let X ≠∅ be a set with a binary rela-
tion R. A sequence fϱkg ⊂X is called R-preserving if

ϱk, ϱk+1ð Þ ∈R ∀k ∈K0: ð3Þ

Definition 8 (see [7, 25]). Let T and H be two self-mappings
on a set X ≠∅ and R a binary relation on X . Then,

(a) R is said to be T-closed if

∀ϱ, σ ∈X , ðρ, σÞ ∈R⟹ ðTðϱÞ, TðσÞÞ ∈R

(b) R is said to be ðT ,HÞ-closed if

∀ϱ, σ ∈X , H ϱð Þ,H σð Þð Þ ∈R⟹ T ϱð Þ, T σð Þð Þ ∈R ð4Þ

Remark 9. Under H = I, the identity mapping on X , the
notion of ðT ,HÞ-closedness coincides with the notion of T
-closedness of R.

Definition 10 (see [25]). Let X ≠∅ be a set with a metric
d together with a binary relation R. If every R-preserv-
ing Cauchy sequence in X converges, we say ðX , dÞ is
R-complete.

Definition 11 (see [25]). Let X ≠∅ be a set with a metric d
together with a binary relation R and T a self-mapping on
X . If for any R-preserving sequence fϱkg ⊂X converging

to an element ϱ ∈X , we have TðϱkÞ⟶
d

TðϱÞ, then the
mapping T is said to be R-continuous.

Definition 12 (see [2]). Let X ≠∅ be a set with a metric d
together with a binary relation R and T ,H two self-
mappings on X . Let fϱkg ⊂X be a sequence satisfying
lim

k⟶∞
HðϱkÞ = lim

k⟶∞
TðϱkÞ. Then, the mappings T and H

are compatible if lim
k⟶∞

dðHTðϱkÞ, THðϱkÞÞ = 0:

Definition 13 (see [25]). Let X ≠∅ be a set with a metric d
together with a binary relation R and T ,H two self-
mappings on X . Let fϱkg ⊂X be a sequence such that
fTðϱkÞg and fHðϱkÞg are R-preserving sequence satisfy-
ing lim

k⟶∞
HðϱkÞ = lim

k⟶∞
TðϱkÞ. Then, the mappings T and

H are “R-compatible” if lim
k⟶∞

dðHTðϱkÞ, THðϱkÞÞ = 0:

Remark 14 (see [25]). Let X ≠∅ be a set with a metric d
together with a binary relation R. Then, the following
relation holds:

}commutativity⟹ compatibility⟹R − compatibility
⟹weak compatibility}:

ð5Þ

Definition 15 (see [7, 25]). Let X ≠∅ be a set with a
metric d together with a binary relation R and T ,H two
self-mappings on X . Consider the R-preserving sequence

fϱkg ⊂X such that ϱk ⟶
d

ϱ. Then,

(a) R is called “d-self-closed” if there exists a subse-
quence fϱkpg of fϱkg with ½ϱkp , ϱ� ∈R∀p ∈K0

(b) R is called “ðH − dÞ-self-closed” if there exists a
subsequence fϱkpg of fϱkg with ½HðϱkpÞ,HðϱÞ� ∈R
∀p ∈K0

Definition 16 (see [26–29]). Let X ≠∅ be set with a binary
relation R and T a self-mapping on X
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(a) If for any ϱ, σ, ς ∈X , ðTðϱÞ, TðσÞÞ ∈R and ðTðσÞ, T
ðςÞÞ ∈R⟹ ðTðϱÞ, TðςÞÞ ∈R, then R is called
“T-transitive”

(b) If for any ϱ0, ϱ1,⋯, ϱK ∈X where K is a natural
number ≥2, we have

ϱℓ−1, ϱℓð Þ ∈R for each ℓ 1 ≤ ℓ ≤Kð Þ⟹ ϱ0, ϱKð Þ ∈R, ð6Þ

then R is called K-transitive

(c) If for each denumerable subset S of X , there exists
K =KðSÞ ≥ 2, such that RjS is K-transitive, then
R is called “locally finitely transitive”

(d) If for each denumerable subset S of TðXÞ, there
exists K =KðSÞ ≥ 2, such that RjS is K-transi-
tive, then R is called “locally finitely T-transitive”

Proposition 17 (see [29]). Let X be a nonempty set, R a
binary relation on X and T a self-mapping on X . Then,

(a) R is “T-transitive” ⟺RjTX is “transitive”

(b) R is “locally finitely T-transitive”⟺RjTX is “locally
finitely transitive”

(c) R is “transitive”⟹R is “finitely transitive”⟹R is
“locally finitely transitive” ⟹R is “locally finitely
T-transitive”

(d) R is “transitive” ⟹R is “T-transitive” ⟹R is
“locally finitely T-transitive”

Definition 18 (see [23]). Let X be a nonempty set and R a
binary relation on X . A subset S of X is called R-directed
if for each ϱ, σ ∈ S , there exists ς ∈X such that ðϱ, ςÞ ∈R
and ðσ, ςÞ ∈R.

Definition 19 (see [24]). Let R be a binary relation defined
on a nonempty set X . Then, for ϱ, σ ∈X , a finite sequence
fϱ0, ϱ1,⋯, ϱpg⊂X satisfying the following conditions:

ϱℓ, ϱℓ+1ð Þ ∈R for each ℓ 0 ≤ ℓ ≤ p − 1ð Þ,
ϱ0 = ϱ and ϱp = σ,

ð7Þ

is said to be a path of length p in R from ϱ to σ.

Definition 20 (see [7]). Let R be a binary relation on a non-
empty set X , and Y a subset of X . If there exists a path inR

from ρ to σ for each ϱ, σ ∈ Y , then Y is called R-connected.

Lemma 21 (see [28]). Let R be a binary relation on a non-
empty set X , and fϱkg ⊂X a sequence satisfying ðϱk, ϱk+1Þ
∈R. Now, if for some natural number K ≥ 2, R is K

-transitive on the set L = fϱk : k ∈K0g, then

ϱk, ϱk+1+r K−1ð Þ
� �

∈R for all k, r ∈K0: ð8Þ

3. Main Results

The first result in this section is on the existence of CP for
two mapping T and H. For a nonempty set X and two
self-mappings T and H on X , the notations we use herein
are as follows:

Θ T ,Hð Þ = ρ ∈X : T ϱð Þ =H ϱð Þf g,
�Θ T ,Hð Þ = �ϱ ∈X : �ϱ = T ϱð Þ =H ϱð Þ, ϱ ∈Xf g:

ð9Þ

Theorem 22. Let X be a nonempty set together with a metric
d, R a binary relation on X and T ,H two self-mappings on
X . Suppose the following conditions hold:

(a) TðXÞ ⊂HðXÞ
(b) ðX , dÞ is R-complete

(c) there exists ϱ0 ∈X such that ðHðϱ0Þ, Tðϱ0ÞÞ ∈R
(d) R is ðT ,HÞ-closed and locally finitely T-transitive

(e) T and H are R-compatible

(f) H is R-continuous

(g) T is R-continuous or R is ðH − dÞ-self-closed
(h) for every ε > 0 and ϱ, σ ∈X , there exists δ > 0 such

that

H ρð Þ,H σð Þð Þ ∈R and ε ≤ d H ϱð Þ,H σð Þð Þ < ε + δ⟹ d T ϱð Þ, T σð Þð Þ < ε

ð10Þ

Then, T and H have a CP.

Proof. Assumption ðcÞ confirms the existence of ϱ0 ∈X such
that ðHðϱ0Þ, Tðϱ0ÞÞ ∈R. Now, if Hðϱ0Þ = Tðϱ0Þ then noth-
ing is left to be proved. Otherwise, by assumption ðaÞ, we
can pick ϱ1 ∈X such that Tðϱ0Þ =Hðϱ1Þ. Again, there will
be ϱ2 ∈X such that Hðϱ2Þ = Tðϱ1Þ. In this way, we construct
a sequence fϱkg ⊂X such that

H ϱk+1ð Þ = T ϱkð Þ ∀k ∈K0: ð11Þ

Now, we assert that fHðϱkÞg is R-preserving, i.e.,

H ϱkð Þ,H ϱk+1ð Þð Þ ∈R ∀k ∈K0: ð12Þ

We will adopt the induction method to prove this fact. In
view of assumption ðcÞ, equation (12) holds for k = 0, i.e.,

H ϱ0ð Þ,H ϱ1ð Þð Þ ∈R: ð13Þ

Now, suppose that equation (12) holds for k = p > 0, i.e.,

H ϱp
� �

,H ϱp+1
� �� �

∈R: ð14Þ
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Then, we have to show that

H ϱp+1
� �

,H ϱp+2
� �� �

∈R: ð15Þ

In view of the fact that R is ðT ,HÞ-closed, it is clear that

H ϱp
� �

,H ϱp+1
� �� �

∈R T ϱp
� �

, T ϱp+1
� �� �

∈R, ð16Þ

implying thereby

H ϱp+1
� �

,H ϱp+2
� �� �

∈R, ð17Þ

which guarantees the fact that equation (2) holds for k = p
+ 1. Therefore, fHðϱkÞg is R-preserving sequence. Notice
that fTðϱkÞg is also a R-preserving sequence due to equa-
tion (1), i.e.,

T ϱkð Þ,H ϱk+1ð Þð Þ ∈R: ð18Þ

Now, if there exists n0 ∈K such that Hðϱn0Þ =Hðϱn0+1Þ,
then, in view of equation (1), ϱn0 turns out to be a CP of T
and H. As an alternative, consider that HðϱkÞ ≠Hðϱk+1Þ
for all k ∈K0, i.e., dðHðϱkÞ,Hðϱk+1ÞÞ ≠ 0.

Denote μk ≔ dðHðϱkÞ,Hðϱk+1ÞÞ. Now, in view of
assumption ðhÞ, we get

μk+1 = d H ϱk+1ð Þ,Hϱk+2ð Þ = d T ϱkð Þ, T ϱk+1ð Þð Þ < d H ϱkð Þ,H ϱk+1ð Þð Þ = μk,

ð19Þ

which gives

μk+1 < μk: ð20Þ

Therefore, the sequence fμkg is decreasing. As fμkg is
also bounded below by 0 (as a lower bound), we can find r
≥ 0 satisfying

lim
k⟶∞

μk = r = inf
k∈K0

μk: ð21Þ

Now, let us assume that r > 0. So, there will always be a
δðrÞ > 0 such that

H ϱð Þ,H σð Þð Þ ∈R,

r ≤ d H ϱð Þ,H σð Þð Þ < r + δ rð Þ⟹ d T ϱð Þ, T σð Þð Þ < r:

ð22Þ

Since fμkg is decreasing sequence converging to r, there
exists p ∈K such that

r ≤ d H ϱp
� �

,H ϱp+1
� �� �

< r + δ rð Þ: ð23Þ

Thus, in view of assumption ðhÞ, we have

μp+1 = d H ϱp+1
� �

,Hϱp+2
� �

< r, ð24Þ

which contradicts the fact that r = inf
k⟶K0

μk. Hence, we

conclude that

lim
k⟶∞

d H ϱkð Þ,H ϱk+1ð Þð Þ = 0: ð25Þ

Now, we establish that the sequence fHðϱkÞg is Cauchy.
Utilizing equation (1), since fHðϱkÞg ⊂ TðXÞ, we get that
the range S = fHðϱkÞ: k ∈K0g is a denumerable subset of
TðXÞ. Hence, in view of assumption ðdÞ, there exist K =
KðSÞ ≥ 2, such that RjS is K-transitive. Let ε > 0 be an
arbitrary and fixed real number and let δ > 0 corresponds
to ε verifying the assumption ðhÞ. WLOG, we may consider
that δ < ε: In view of (2), there exists n0ðδÞ ∈ℕ satisfying

d H ϱkð Þ,H ϱk+1ð Þð Þ < δ

4K
∀k ≥ n0 δð Þ: ð26Þ

For all k ≥ n0ðδÞ and for all pð1 ≤ p ≤KÞ, using triangu-
lar inequality, we get

d H ϱkð Þ,H ϱk+ϱ
� �� �

≤ d H ϱkð Þ,H ϱk+1ð Þð Þ
+ d H ϱk+1ð Þ,Hϱk+2ð Þ⋯ +d Hϱk+p−1,Hϱk+p

� �

≤
δ

4K
+

δ

4K
+⋯+

δ

4K
=

pδ
4K

:

ð27Þ

Now, we claim that

d H ϱkð Þ,Hϱk+p
� �

< ε +
δ

2
∀k ≥ n0 δð Þ and∀p ∈K : ð28Þ

This is demonstrated herein using the mathematical
induction method. From (27), it is clear that (28) holds for
all p ∈ f1, 2, 3,⋯,Kg. Suppose that the conclusion holds
for all p ∈ f1, 2, 3,⋯,mg, where m ≥K . We have to show
that (28) holds for k =m + 1 also. As m ≥K , so m − 1 ≥K

− 1 > 0. By division algorithm, there exists unique integers
μ and ηð0 ≤ η ≤K − 1Þ such that

m − 1 = K − 1ð Þμ + η

m = 1 + K − 1ð Þμ + η:
ð29Þ

Denoting q≕ 1 + ðK − 1Þμ, the above equation reduces to

m = q + η, ð30Þ

so that

2 ≤K ≤ q ≤m = q + η: ð31Þ

Now, using (27), we get

d H ϱk+q+1
� �

,H ϱk+m+1ð Þ� �
= d H ϱk+q+1

� �
,H ϱk+q+η+1

� �� �
≤

ηδ

4K
:

ð32Þ
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Now, using Lemma 21, we get

H ϱkð Þ,H ϱk+q
� �� �

∈R: ð33Þ

As q ∈ fK ,K + 1,:⋯ ,mg, using inductive hypothesis,
we get

0 < d H ϱkð Þ,H ϱk+q
� �� �

< ε +
δ

2
< ε + δ: ð34Þ

Using (33) and (34) and applying contractive condition
ðhÞ, we get

d H ϱk+1ð Þ,H ϱk+q+1
� �� �

= d T ϱkð Þ, T ϱk+q
� �� �

< ε: ð35Þ

Now, using triangular inequality, (25), (32), and (35),
we get

d H ρkð Þ,Hρk+m+1ð Þ ≤ d H ϱkð Þ,H ϱk+1ð Þð Þ + d H ϱk+1ð Þ,H ϱk+q+1
� �� �

+ d H ϱk+q+1
� �

,H ϱk+m+1ð Þ� �

<
δ

4K
+ ε + ηδ

4K
< δ

4K
+ ε + δ

4K
K − 1ð Þ asK

≥ 2 and η <K − 1 = ε +
δ

4
< ε +

δ

2
:

ð36Þ

Thus, by induction, (28) is verified. From (28), it
embraces that the sequence fHðϱkÞg is Cauchy. Now, the
R-completeness property of X and R-preserving property
of fHðϱkÞg confirm the availability of an element ς ∈X
such that

lim
k⟶∞

H ϱkð Þ = ς: ð37Þ

Also, from (11),

lim
k⟶∞

T ϱkð Þ = ς: ð38Þ

Now, by dint of the R-continuity of H, we acquire

lim
k⟶∞

H H ϱkð Þð Þ =H lim
k⟶∞

H ϱkð Þ
� �

=H ςð Þ: ð39Þ

Utilizing (38) and R-continuity of H,

lim
k⟶∞

H T ϱkð Þð Þ =H lim
k⟶∞

T ϱkð Þ
� �

=H ςð Þ: ð40Þ

Since fTðϱkÞg and fHðϱkÞg are R-preserving and

lim
k⟶∞

T ϱkð Þ = lim
k⟶∞

H ϱkð Þ = ς, ð41Þ

by assumption ðeÞ,

lim
k⟶∞

d HT ϱkð Þ, TH ϱkð Þð Þ = 0: ð42Þ

The next step is to establish that ς ∈ΘðT ,HÞ. From
assumption ðgÞ, we first consider that T is “R-continu-
ous.” Using (12), (37), and R-continuity of T,

lim
k⟶∞

T H ϱkð Þð Þ = T lim
k⟶∞

H ϱkð Þ
� �

= T ςð Þ: ð43Þ

Applying (40) and (42), we get

d H ςð Þ, T ςð Þð Þ = d lim
k⟶∞

HT ϱkð Þ, lim
k⟶∞

TH ϱkð Þ
� �

= lim
k⟶∞

d HT ϱkð Þ, TH ϱkð Þð Þ = 0,
ð44Þ

yielding thereby HðςÞ = TðςÞ, which establishes our claim.
Instead of R-continuity of T , we now suppose that R is

ðH, dÞ-self-closed, based on assumption ðgÞ. Then, fHðϱkÞg
being R-preserving sequence guarantees the existence of a
subsequence fHϱkpg such that ½Hϱkp , ς� ∈R. If Hϱkk0

= ς

for some k0 ∈K , then using (11) and by the R-preserving
property of fHðϱkÞg, we get Hðϱkk0 Þ ∈ΘðT ,HÞ. Otherwise,
suppose Hϱnp ≠ ς, i.e., dðHϱnp , ςÞ ≠ 0 for all p ∈K . In this

case, in view of assumption ðhÞ, assuming ε = dðHϱkp , ςÞ
and using assumption ðhÞ, we get

d T Hϱnp

� �
, T ςð Þ

� �
< ε: ð45Þ

Using triangle inequality, we get

d H ςð Þ, T ςð Þð Þ ≤ d H ςð Þ,HTϱkp

� �

+ d HTϱkp , THϱkp

� �

+ d THϱkp , T ςð Þ
� �

:

ð46Þ

Now, using (40), (42), and (45) in the previous equation,
we obtain

d H ςð Þ, T ςð Þð Þ = 0, ð47Þ

which establishes that TðςÞ =HðςÞ.

It is clear that Theorem 22 solely considers the existence
of a CP of T and H. As a result, we must add extra condi-
tions to the hypothesis of Theorem 22 to obtain the unique-
ness of point of coincidence, CP and CFPs. This is the
purpose of our next theorems.

Theorem 23. Assume that all of the criteria of Theorem 22
are met. Let the following condition holds additionally:

(i) TðXÞ is Rs
HðXÞ-connected

then T and H have a unique point of coincidence.
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Proof. From Theorem 22, we get thatΘðT ,HÞ ≠∅. Consider
that ϱ, σ ∈ΘðT ,HÞ. Then, there exist �σ, �σ ∈X such that

T ϱð Þ =H ϱð Þ = �ϱ andT σð Þ =H σð Þ = �σ: ð48Þ

It is now our goal to prove that �ϱ = �σ. Since TðϱÞ, TðσÞ
∈ TðXÞ ⊆HðXÞ, by assumption ðiÞ, there exists a path fH
ðς0Þ,Hðς1Þ,Hðς2Þ,⋯,HðςpÞg of some finite length p in
Rs

HðXÞ from TðρÞ to TðσÞ. Now, in view of (48), WLOG
we can choose ς0 = ϱ and ςp = σ. Thus, we have

H ςℓð Þ,H ςℓ+1ð Þ½ � ∈RH Xð Þ for each ℓ 0 ≤ ℓ ≤ p − 1ð Þ: ð49Þ

Define the constant sequences ς0k = ρ and ςpk, then in view
of equation (48), we have Hðς0k+1Þ = Tðς0kÞ = �ϱ and Hðςpk+1Þ
= TðςpkÞ = �σ for all k ∈K0. Put ς10 = ς1, ς20 = ς2, ς30 = ς3,⋯,
ςp−10 = ςp−1: Now, since TðXÞ ⊂HðXÞ, we can define

sequences fς1kg, fς2kg, ..., fςp−1k g such that Hðς1k+1Þ = Tðς1kÞ,
Hðς2k+1Þ = Tðς2kÞ, ..., Hðςp−1k+1Þ = Tðςp−1k Þ for all k ∈K0. Hence,
we have

H ςℓk+1
� �

= T ςℓk
� �

∀k ∈K0 and for each ℓ 0 ≤ ℓ ≤ pð Þ: ð50Þ

Now, we claim that

H ςℓk
� �

,H ςℓ+1k

� �� 	
∈R∀k ∈K0 and for each ℓ 0 ≤ ℓ ≤ p − 1ð Þ:

ð51Þ

This is demonstrated herein using the mathematical
induction method. equation (51) holds for k = 0 as a result
of (49). Assume that equation (51) is true for k = r, i.e.,

H ςℓr
� �

,H ςℓ+1r

� �� 	
∈R: ð52Þ

As R is ðT ,HÞ-closed, we obtain

T ςℓr
� �

, T ςℓ+1r

� �� 	
∈R, ð53Þ

which on using (51) gives us that

H ςℓr+1
� �

,H ςℓ+1r+2
� �� 	

∈R k ∈K0 and for each ℓ 0 ≤ ℓ ≤ p − 1ð Þ:
ð54Þ

Therefore, equation (51) holds. Now, for each k ∈K0
and for each ð0 ≤ ℓ ≤ p − 1Þ, define

tℓk = d H ςℓk
� �

,H ςℓ+1k

� �� �
: ð55Þ

We show that

lim
k⟶∞

tℓk = 0: ð56Þ

Now, we look at two scenarios in which ℓ is fixed. Firstly,
suppose that

tℓn0 = d H ςℓn0

� �
,H ςℓ+1n0

� �� �
= 0 for some n0 ∈K0, ð57Þ

which gives rise to Hðςℓn0Þ =Hðςℓ+1n0
Þ. Now applying (11),

we have tℓn0+1 = 0. Continuing this process, we get

ςℓk = 0∀k ≥ n0, ð58Þ

which establishes that lim
k⟶∞

ςℓk = 0.

Alternatively, assume that ςℓk > 0∀k ∈K0. For any ε > 0,
assume tℓk = dðHðςℓkÞ,Hðςℓ+1k ÞÞ = ε. Then,

tℓk+1 = d H ςℓk+1
� �

,H ςℓ+1k+1
� �� �

= d T ςℓk
� �

, T ςℓ+1k

� �� �
< ε = tℓk,

ð59Þ

which gives

tℓk+1 < tℓk: ð60Þ

As a result, the sequence ftℓkg is decreasing. As ftℓkg is
also bounded below by 0 (as a lower bound), there exists r
≥ 0 such that

lim
k⟶∞

tℓk = r = inf
k∈K0

tℓk: ð61Þ

Now, we prove that r = 0. Assume, on the other hand
that r > 0. So, there will always be a δðrÞ > 0 such that

H ϱð Þ,H σð Þð Þ ∈R and r ≤ d H ϱð Þ,H σð Þð Þ < r + δ rð Þd T ϱð Þ, T σð Þð Þ < r:

ð62Þ

Since ftℓkg is decreasing sequence converging to r, there
exists p ∈K such that

r ≤ d H ςℓp

� �
,H ςℓ+1p

� �� �
< r + δ rð Þ: ð63Þ

Thus, in view of assumption ðhÞ, we have

tℓp+1 = d H ςℓp+1

� �
,H ςℓ+1p+1

� �� �
< r, ð64Þ

which contradicts the fact that r = inf
k⟶∞

tℓk. Hence, we

conclude that

lim
k⟶∞

tℓk = 0: ð65Þ

Thus, equation (56) holds ∀ℓð0 ≤ ℓ ≤ p − 1Þ. Now, in
light of equation (56) and triangle inequality, we get

d �ϱ, �σð Þ ≤ t0k + t1k+⋯+tp−1k ⟶ 0 as k⟶∞: ð66Þ

Therefore, �ϱ = �σ, which ends the proof.
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Theorem 24. Assume that all of the criteria of Theorem 22
are met. Let the following condition holds additionally:

(i) T and H are “weakly compatible”

then T and H have a unique CFP.

Proof. Assume ρ ∈X such that ϱ ∈ΘðT ,HÞ. Therefore, there
exists �ρ ∈X such that

H ϱð Þ = T ϱð Þ = �ϱ: ð67Þ

In light of the Remark 14, the concept R-compatibility
coincides with the weak compatibility. Hence, �ϱ ∈ΘðT ,HÞ.
Utilizing ς = �ϱ in Theorem 23, we obtain HðϱÞ =Hð�ϱÞ
yielding thereby

�ϱ =H �ϱð Þ = T �ϱð Þ: ð68Þ

Hence, �ϱ is a CFP of T and H.
Now, we assume that ϱ′ is another CFP of T and H in

order to assert the uniqueness. Applying Theorem 23, we get

ϱ′ =H ϱ′
� �

=H �ϱð Þ = �ϱ, ð69Þ

which finishes the proof.

Theorem 25. Assume that all of the criteria of Theorem 22
are met. Suppose either of the mappings T and H is one-to-
one. Then, T and H have a unique CP.

Proof. From Theorem 22, it is evident that ΘðT ,HÞ ≠∅. Let,
ϱ, σ ∈ΘðT ,HÞ. Then, Theorem 23 permits us to write

T ϱð Þ =H ϱð Þ = T σð Þ =H σð Þ: ð70Þ

Now, since T or H is one-to-one, we have, ϱ = σ which
finishes the proof.

Theorem 22 has the following implication when we
apply Proposition 17.

Corollary 26. If either of the below conditions:

(a) R is “transitive”

(b) R is “T-transitive”

(c) R is “finitely transitive”

(d) R is “locally finitely transitive”

is utilized in Theorem 22 instead of the locally finitely T
-transitivity condition; then, the validity of Theorem 22
remains the same.

Corollary 27. If either of the below conditions:
(i′). TðXÞ is Rs-directed
(i′}). RjTðXÞ is complete

holds in place of condition ðiÞ of Theorem 23, then the
validity of Theorem 23 remains the same.

Proof. If condition ði′Þ is satisfied, then, for each ϱ, σ ∈ T
ðXÞ, we get ς ∈X satisfying ½ρ, ς� ∈R and ½σ, ς� ∈R.
Notice that the sequence fϱ, ς, σg works as a path of
length 2 in Rs from ρ to σ, which establishes the fact that
TðXÞ is Rs-connected. Now, applying Theorem 23, we
obtain the uniqueness of point of coincidence.

Alternately, from assumption ði′′Þ, we get ½ϱ, σ� ∈R∀ϱ,
σ ∈ TðXÞ, which assents that fρ, σg constitutes a path of
length 1 in Rs. As a result, TðXÞ is Rs-connected, which
wrap up the proof when Theorem 23 is applied.

Under H = I, the identity map, we obtain the following
result which is proved by Sk et al. [17].

Corollary 28 (see [17]). Let ðX , dÞ be a R-complete metric
space endowed with a binary relation R on X and T a self-
mapping on X . Suppose that the following conditions hold:

(a) there exists ϱ0 ∈X such that ðϱ0, Tϱ0Þ ∈R,

(b) R is T-closed and locally finitely T-transitive

(c) either T is R-continuous or R is d-self-closed

(d) for every ε > 0 there exists δ > 0 such that

ϱ, σð Þ ∈R and ε ≤ d ϱ, σð Þ < ε + δ⟹ d T ϱð Þ, T σð Þð Þ < ε

ð71Þ

Then, T has a fixed point. Further, if we impose an addi-
tional hypothesis:

(e) TðXÞ is Rs-connected

then T has a unique fixed point.

Remark 29. Under the universal relation R and H = I, the
identity map, Theorem 22, and Theorem 23 reduce to the
classical fixed point theorem of Meir and Keeler [10].

Remark 30. Under partial order the relation ℝ = °, and H = I,
the identity map, Theorem 22, and Theorem 23 reduces to
fixed point theorem of Harjani et al. [30].

4. Examples

Now, we equip two examples to show how important our
results are in comparison to other results in the literature.

Example 1. LetX = fð0, 1Þ, ð1, 0Þ, ð1, 1Þ, ð0, 0Þg ⊂ℝ2 together
with the usual Euclidean metric d. Consider the following
relation endowed with X:

R = 1, 1ð Þ, 0, 0ð Þð Þf g: ð72Þ
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Then, ðX , dÞ is a R-complete metric space. Now con-
sider that T ,H : X ⟶X are two mappings defined by

T 1, 0ð Þ = 0, 1ð Þ ; T 0, 1ð Þ = 1, 0ð Þ ; T 1, 1ð Þ = 1, 1ð Þ ; T 0, 0ð Þ = 0, 0ð Þ,
H 0, 1ð Þ = 1, 0ð Þ ;H 0, 0ð Þ = 0, 1ð Þ ;H 1, 1ð Þ = 1, 1ð Þ ;H 1, 0ð Þ = 0, 0ð Þ:

ð73Þ

Notice that for ε = dðð0, 1Þ, ð1, 0ÞÞ = ffiffiffi
2

p
, we have

d T 0, 1ð Þ, T 1, 0ð Þð Þ = d 1, 0ð Þ, 0, 1ð Þð Þ =
ffiffiffi
2

p
< ε, ð74Þ

which is absurd. Further, ðð1, 1Þ, ð0, 0ÞÞ ∈R and dðð1, 1Þ,
ð0, 0ÞÞ = ffiffiffi

2
p

but the inequality

d T 1, 1ð Þ, T 0, 0ð Þð Þ = d 1, 1,ð Þ, 0, 0ð Þð Þ =
ffiffiffi
2

p
< ε, ð75Þ

does not hold. Hence, the existing theorems cannot be applied
for this example. Now, assume that ε = dðHð1, 1Þ,Hð1, 0ÞÞ
= dðð1, 1Þ, ð0, 0ÞÞ = ffiffiffi

2
p

. Then, the inequality

d T 1, 1ð Þ, T 1, 0ð Þð Þ = d 1, 1ð Þ, 0, 1ð Þð Þ = 1 < ε, ð76Þ

holds. As a result, assumption ðhÞ of Theorem 22 holds. It can
also be seen that all of the conditions of Theorem 22 are met
using regular calculation. Therefore, T and H have a CP,
namely, ð1, 1Þ:

Although it does not satisfy Theorem 23, the CP of T
and H in Example 1 is unique, proving that condition ðiÞ
of Theorem 23 is not a necessary condition for the unique-
ness of CPs.

Example 2. Let X = fð0, 1Þ, ð1, 0Þ, ð1, 1Þ, ð0, 0Þg ⊂ℝ2

together with the usual Euclidean metric d. Consider the
following relation endowed with X ,

R = ϱ, σð Þ: ϱ, σ ∈ 0, 1ð Þ, 1, 1ð Þf gf g: ð77Þ

Then, ðX , dÞ is a R-complete metric space. Now con-
sider that T ,H : X ⟶X are two mappings defined by

T 1, 0ð Þ = 1, 0ð Þ ; T 0, 1ð Þ = 0, 1ð Þ ; T 1, 1ð Þ = 1, 0ð Þ ; T 0, 0ð Þ = 0, 1ð Þ,
H 1, 0ð Þ = 1, 0ð Þ ;H 0, 1ð Þ = 0, 1ð Þ ;H 1, 1ð Þ = 0, 1ð Þ,H 0, 0ð Þ = 1, 1ð Þ:

ð78Þ

Now, for ε = dðHð0, 1Þ,Hð0, 0ÞÞ = 1, we have

d T 0, 1ð Þ, T 0, 0ð Þð Þ = d 0, 1ð Þ, 0, 1ð Þð Þ = 0 < ε, ð79Þ

holds. As a result, assumption ðhÞ of Theorem 22 holds. It
can also be seen that all of the conditions of Theorem 22
are met using regular calculation. Therefore, T and H have
CPs, namely, ð0, 1Þ, ð1, 0Þ. The availability of more than
one fixed point certifies the eminence of Theorem 23.

Notice that for ε = dðð0, 1Þ, ð1, 0ÞÞ = ffiffiffi
2

p
, we have

d T 0, 1ð Þ, T 1, 0ð Þð Þ = d 1, 0ð Þ, 0, 1ð Þð Þ =
ffiffiffi
2

p
< ε, ð80Þ

which is absurd. Further, ðð0, 1Þ, ð1, 1ÞÞ ∈R and dðð0, 1Þ,
ð1, 1ÞÞ = 1 but the inequality

d T 0, 1ð Þ, T 1, 1ð Þð Þ = d 0, 1,ð Þ, 1, 0ð Þð Þ =
ffiffiffi
2

p
< ε, ð81Þ

does not hold. Hence, the existing theorems cannot be
applied for this example.

5. Conclusion

In this paper, we have established some coincidence point
theorems for two mappings employing the relation-theoretic
Meir-Keeler contractions in a metric space endowed with a
class of transitive binary relation. Our findings have also led
to the deduction of certain related fixed point results. Further-
more, some examples are given to demonstrate the significant
progress made in this area.
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In this manuscript, a new family of contractions called Jaggi-type hybrid ðG − ϕÞ-contraction is introduced and some fixed point
results in generalized metric space that are not deducible from their akin in metric space are obtained. The preeminence of this
class of contractions is that its contractive inequality can be extended in a variety of manners, depending on the given
parameters. Consequently, several corollaries that reduce our result to other well-known results in the literature are highlighted
and analyzed. Substantial examples are constructed to validate the assumptions of our obtained theorems and to show their
distinction from corresponding results. Additionally, one of our obtained corollaries is applied to set up unprecedented
existence conditions for the solution of a family of integral equations.

1. Introduction

The prominent Banach contraction in metric space has laid
a solid foundation for fixed point theory in metric space. The
applications of fixed point range across inequalities, approx-
imation theory, optimization, and so on. Researchers in this
area have introduced several new concepts in metric space
and obtained a great deal of fixed point results for linear
and nonlinear contractions. Recently, Karapınar and Fulga
[1] introduced a new notion of hybrid contraction which is
a unification of some existing linear and nonlinear contrac-
tions in metric space.

On the other hand, Mustafa [2] pioneered an extension
of a metric space by the name, generalized metric space (or
more precisely, G-metric space), and proved some fixed
point results for Banach-type contraction mappings. This
new generalization was brought to spotlight by Mustafa
and Sims [3]. Subsequently, Mustafa et al. [4] obtained some

engrossing fixed point results for Lipschitzian-type map-
pings on G-metric space. However, Jleli and Samet [5] as
well as Samet et al. [6] noted that most of the fixed point
results in G-metric space are direct consequences of exis-
tence results in corresponding metric space. Jleli and Samet
[5] further observed that if a G-metric is consolidated into
a quasimetric, then the resultant fixed point results become
the known fixed point results in the setting of quasimetric
space. Motivated by the latter observation, many investiga-
tors (see for instance, [7, 8]) have established techniques of
obtaining fixed point results in G-metric space that are not
deducible from their ditto ones in metric space or quasi-
metric space.

Following the existing literature, we realize that hybrid
fixed point results in G-metric space are not adequately
investigated. Hence, motivated by the ideas in [1, 7, 8], we
introduce a new concept of Jaggi-type hybrid ðG − ϕÞ-con-
traction in G-metric space and prove some related fixed
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point theorems. An example is constructed to demonstrate
that our result is valid, an improvement of existing results
and the main ideas obtained herein do not reduce to any
existence result in metric space. Some corollaries are pre-
sented to show that the concept proposed herein is a gener-
alization and improvement of well-known fixed point results
in G-metric space. Finally, one of our obtained corollaries is
applied to establish novel existence conditions for solution
of a class of integral equations.

2. Preliminaries

In this section, we will present some fundamental notations
and results that will be deployed subsequently.

Throughout, every set Φ is considered nonempty, ℕ is
the set of natural numbers, and ℝ represents the set of real
numbers and ℝ+ the set of nonnegative real numbers.

Definition 1 (see [3]). Let Φ be a nonempty set and let G
: Φ ×Φ ×Φ⟶ℝ+ be a function satisfying

(G1) Gðr, s, tÞ = 0 if r = s = t
(G2) 0 <Gðr, r, sÞ for all r, s ∈Φ with r ≠ s
(G3) Gðr, r, sÞ ≤ Gðr, s, tÞ, for all r, s, t ∈Φ with t ≠ s
(G4) Gðr, s, tÞ = Gðr, t, sÞ =Gðs, r, tÞ =⋯ (symmetry in

all variables)
(G5) Gðr, s, tÞ ≤Gðr, u, uÞ +Gðu, s, tÞ, for all r, s, t, u ∈Φ

(rectangle inequality)

Then, the function G is called a generalized metric or,
more precisely, a G-metric on Φ, and the pair ðΦ,GÞ is
called a G-metric space.

Example 2 (see [4]). Let ðΦ, dÞ be a usual metric space; then,
ðΦ,GkÞ and ðΦ,GmÞ are G-metric spaces, where

Gk r, s, tð Þ = d r, sð Þ + d s, tð Þ + d r, tð Þ∀r, s, t ∈Φ,
Gm r, s, tð Þ =max d r, sð Þ, d s, tð Þ, d r, tð Þf g∀r, s, t ∈Φ:

ð1Þ

Definition 3 (see [4]). Let ðΦ,GÞ be a G-metric space and let
frng be a sequence of points of Φ. Then, frng is said to be G
-convergent to r if limn,m⟶∞Gðr, rn, rmÞ = 0; that is, for any
ε > 0, there exists n0 ∈ℕ such that Gðr, rn, rmÞ < ε, ∀n,m ≥
n0. We refer to r as the limit of the sequence frng.

Proposition 4 (see [4]). Let ðΦ,GÞ be a G-metric space.
Then, the following are equivalent:

(i) frng is G-convergent to r

(ii) Gðr, rn, rmÞ⟶ 0, as n⟶∞

(iii) Gðrn, r, rÞ⟶ 0, as n⟶∞

(iv) Gðrn, rn, rÞ⟶ 0, as n⟶∞

Definition 5 (see [4]). Let ðΦ,GÞ be a G-metric space. A
sequence frng is called G-Cauchy if for any ε > 0, we can
find n0 ∈ℕ such that Gðrn, rm, rlÞ < ε, ∀n,m, l ≥ n0, that is,
Gðrn, rm, rlÞ⟶ 0, as n,m, l⟶∞.

Proposition 6 (see [4]). If ðΦ,GÞ is a G-metric space, the fol-
lowing statements are equivalent:

(i) The sequence frng is G-Cauchy

(ii) For every ε > 0, there exists n0 ∈ℕ such that Gðrn,
rm, rmÞ < ε, ∀n,m ≥ n0

Definition 7 (see [4]). Let ðΦ,GÞ and ðΦ′,G′Þ be G-metric
spaces and f : ðΦ,GÞ⟶ ðΦ′,G′Þ be a function. Then, f
is G-continuous at a point u ∈Φ if and only if for any ε > 0
, there exists δ > 0 such that r, s ∈Φ; and Gðu, r, sÞ < δ
implies G′ð f ðuÞ, f ðrÞ, f ðsÞÞ < ε. A function f is G-continu-
ous on Φ if and only if it is G-continuous at all u ∈Φ.

Proposition 8 (see [4]). Let ðΦ,GÞ and ðΦ′,G′Þ be G-metric
spaces. Then, a function f : ðΦ,GÞ⟶ ðΦ′,G′Þ is said to be
G-continuous at a point r ∈Φ if and only if it is G-sequen-
tially continuous at r; that is, whenever frng is G-conver-
gent to r, f f rng is G-convergent to f r.

Definition 9 (see [4]). A G-metric space ðΦ,GÞ is called sym-
metric G-metric space if

G r, r, sð Þ =G s, r, rð Þ∀r, s ∈Φ: ð2Þ

Proposition 10 (see [4]). Let ðΦ,GÞ be a G-metric space.
Then, the function Gðr, s, tÞ is jointly continuous in all
variables.

Proposition 11 (see [4]). Every G-metric space ðΦ,GÞ defines
a metric space ðΦ, dGÞ by

dG r, sð Þ = G r, s, sð Þ +G s, r, rð Þ∀r, s ∈Φ: ð3Þ

Note that for a symmetric G-metric space ðΦ,GÞ,

Φ, dGð Þ = 2G r, s, sð Þ∀r, s ∈Φ: ð4Þ

On the other hand, if ðΦ,GÞ is not symmetric, then by the
G-metric properties,

3
2
G r, s, sð Þ ≤ dG r, sð Þ ≤ 3G r, s, sð Þ∀r, s ∈Φ, ð5Þ

and that in general, these inequalities are sharp.

Definition 12 (see [4]). A G-metric space ðΦ,GÞ is referred to
as G-complete (or complete G-metric) if every G-Cauchy
sequence in ðΦ,GÞ is G-convergent in ðΦ,GÞ.

Proposition 13 (see [4]). A G-metric space ðΦ,GÞ is G
-complete if and only if ðΦ, dGÞ is a complete metric space.

Mustafa [2] proved the following result in the framework
of G-metric space.

Theorem 14 (see [2]). Let ðΦ,GÞ be a complete G-metric
space, and let Γ : Φ⟶Φ be a mapping satisfying the
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following condition:

G Γr, Γs, Γtð Þ ≤ kG r, s, tð Þ, ð6Þ

for all r, s, t ∈Φ where 0 ≤ k < 1; then, Γ has a unique
fixed point (say u, i.e., Γu = u), and Γ is G-continuous at u.

Definition 15 (see [9]). Let Ψ be the set of all functions ϕ
: ℝ+ ⟶ℝ+ satisfying

(i) ϕ is monotone increasing, that is, t1 ≤ t2 implies
ϕðt1Þ ≤ ϕðt2Þ

(ii) the series ∑∞
n=0ϕ

nðtÞ is convergent for all t > 0

Then, ϕ is called a ðcÞ-comparison function.

Remark 16. If ϕ ∈Ψ, then ϕðtÞ < t for any t > 0, ϕð0Þ = 0, and
ϕ is continuous at 0.

Karapınar and Fulga [1] gave the following definition of
Jaggi-type hybrid contraction in metric space.

Definition 17 (see [1]). Let ðΦ, dÞ be a complete metric space.
A self-mapping Γ : Φ⟶Φ is called a Jaggi-type hybrid
contraction; if there exists ϕ ∈Φ such that

d Γr, Γsð Þ ≤ ϕ M r, sð Þð Þ, ð7Þ

for all distinct r, s ∈Φ, where

M r, sð Þ =
λ1

d r, Γrð Þ · d s, Γsð Þ
d r, sð Þ

� �q

+ λ2d r, sð Þq
� �1/q

, for q > 0, r, s ∈Φ, r ≠ s,

d r, Γrð Þλ1 · d s, Γsð Þλ2 , for q = 0, r, s ∈Φ \ Fix Γð Þ:

8><
>:

ð8Þ

λ1, λ2 ≥ 0 with λ1 + λ2 = 1 and FixðΓÞ = fr ∈Φ : Γr = rg.

3. Main Results

We begin this section by defining the notion of Jaggi-type
hybrid ðG − ϕÞ-contraction in G-metric space.

Definition 18. Let ðΦ,GÞ be a G-metric space. A self-
mapping Γ : Φ⟶Φ is called a Jaggi-type hybrid ðG − ϕÞ
-contraction, if there exists ϕ ∈Φ such that

G Γr, Γs, Γ2s
� �

≤ ϕ M r, s, Γsð Þð Þ, ð9Þ

for all r, s ∈Φ \ FixðΓÞ, where

M r, s, Γsð Þ =
λ1

G r, Γr, Γ2r
� �

·G s, Γs, Γ2s
� �

G r, s, Γsð Þ
� �q

+ λ2G r, s, Γsð Þq
" #1/q

, for q > 0,

G r, Γr, Γ2r
� �λ1 ·G s, Γs, Γ2s

� �λ2 , for q = 0:

8>>><
>>>:

ð10Þ

λ1, λ2 ≥ 0 with λ1 + λ2 = 1 and FixðΓÞ = fr ∈Φ : Γr = rg.

We now present the following results.

Theorem 19. Let ðΦ,GÞ be a complete G-metric space and let
Γ : Φ⟶Φ be a continuous Jaggi-type hybrid ðG − ϕÞ-con-
traction on ðΦ,GÞ. Then, Γ has a fixed point in Φ (say c),
and for any c0 ∈Φ, the sequence fΓnc0gn∈ℕ converges to c.

Proof. Let r0 ∈Φ be an arbitrary point and define a sequence
frngn∈ℕ in Φ by rn = Γnr0. If there exists some n ∈ℕ such
that Γrn = rn+1 = rn, then rn is a fixed point of Γ, and so
the proof is complete. Assume now that rn ≠ rn−1 for any n
∈ℕ. Since Γ is a Jaggi-type hybrid ðG − ϕÞ-contraction,
then we have from (9) that

G rn, rn+1, rn+2ð Þ =G Γrn−1, Γrn, Γ2rn
� �

≤ ϕ M rn−1, rn, Γrnð Þð Þ:
ð11Þ

We then consider the given cases of (10).

Case 1. For q > 0, we have

M rn−1, rn, Γrnð Þ = λ1
G rn−1, Γrn−1, Γ2rn−1
� �

G rn, Γrn, Γ2rn
� �

G rn−1, rn, Γrnð Þ
� �q

+ λ2G rn−1, rn, Γrnð Þq
" #1/q

= λ1
G rn−1, rn, rn+1ð ÞG rn, rn+1, rn+2ð Þ

G rn−1, rn, rn+1ð Þ
� �q

+ λ2G rn−1, rn, rn+1ð Þq
� �1/q

= λ1G rn, rn+1, rn+2ð Þq + λ2G rn−1, rn, rn+1ð Þq½ �1/q:

ð12Þ
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Since ϕ is nondecreasing, if we assume that

G rn−1, rn, rn+1ð Þ ≤G rn, rn+1, rn+2ð Þ, ð13Þ

then (11) becomes

G rn, rn+1, rn+2ð Þ ≤ ϕ λ1G rn, rn+1, rn+2ð Þq + λ2G rn−1, rn, rn+1ð Þq½ �1/q
� 	

≤ ϕ λ1G rn, rn+1, rn+2ð Þq + λ2G rn, rn+1, rn+2ð Þq½ �1/q
� 	

= ϕ λ1 + λ2ð Þ1/qG rn, rn+1, rn+2ð Þ
� 	

= ϕ G rn, rn+1, rn+2ð Þð Þ <G rn, rn+1, rn+2ð Þ,
ð14Þ

which is a contradiction. Therefore, for every n ∈ℕ, we have

G rn, rn+1, rn+2ð Þ <G rn−1, rn, rn+1ð Þ, ð15Þ

so that (11) becomes

G rn, rn+1, rn+2ð Þ ≤ ϕ λ1G rn, rn+1, rn+2ð Þq + λ2G rn−1, rn, rn+1ð Þq½ �1/q
� 	

≤ ϕ λ1 + λ2ð Þ1/qG rn−1, rn, rn+1ð Þ� �
≤ ϕ G rn−1, rn, rn+1ð Þð Þ:

ð16Þ

Continuing inductively, we have

G rn, rn+1, rn+2ð Þ ≤ ϕn G r0, r1, r2ð Þð Þ: ð17Þ

Now, since

G rn, rn, rn+1ð Þ ≤ G rn, rn+1, rn+2ð Þ ≤ ϕn G r0, r1, r2ð Þð Þ, ð18Þ

for all n ∈ℕ with rn+1 ≠ rn+2, then for any n,m ∈ℕ with n
<m and by rectangle inequality, we have

G rn, rn, rmð Þ ≤G rn, rn, rn+1ð Þ +G rn+1, rn+1, rn+2ð Þ
+⋯+G rm−1, rm−1, rmð Þ

≤ ϕn + ϕn+1 + ϕn+2+⋯+ϕm−1� �
G r0, r1, r2ð Þ

= 〠
m−1

i=n
ϕi G r0, r1, r2ð Þð Þ ≤ 〠

∞

i=n
ϕi G r0, r1, r2ð Þð Þ:

ð19Þ

Since ϕ is a ðcÞ-comparison function, then the series
∑∞

i=0ϕ
iðGðr0, r1, r2ÞÞ is convergent, and so denoting by

Sp =∑∞
i=0ϕ

iðGðr0, r1, r2ÞÞ, we have

G rn, rn, rmð Þ ≤ Sm−1 − Sn−1: ð20Þ

Hence, as n,m⟶∞, we see that

G rn, rn, rmð Þ⟶ 0: ð21Þ

Thus, frng is a G-Cauchy sequence in ðΦ,GÞ and so
by the completeness of ðΦ,GÞ, there exists c ∈Φ such

that frng is G-convergent to c, that is,

lim
n⟶∞

G rn, rn, cð Þ = 0: ð22Þ

We will now show that c is a fixed point of Γ. By
the assumption that Γ is continuous, we have

lim
n⟶∞

G c, c, Γcð Þ = lim
n⟶∞

G rn+1, rn+1, Γcð Þ
= lim

n⟶∞
G Γrn, Γrn, Γcð Þ

= lim
n⟶∞

G Γrn, Γrn, Γrnð Þ = 0,
ð23Þ

so we get Γc = c, that is, c is a fixed point of Γ.

Case 2. For q = 0, we have

M rn−1, rn, Γrnð Þ =G rn−1, Γrn−1, Γ2rn−1
� �λ1 ·G rn, Γrn, Γ2rn

� �λ2
=G rn−1, rn, rn+1ð Þλ1 ·G rn, rn+1, rn+2ð Þλ2 :

ð24Þ

Now, if Gðrn−1, rn, rn+1Þ ≤Gðrn, rn+1, rn+2Þ, then (11)
becomes

G rn, rn+1, rn+2ð Þ <G rn, rn+1, rn+2ð Þ, ð25Þ

which is a contradiction. Therefore,

G rn, rn+1, rn+2ð Þ < G rn−1, rn, rn+1ð Þ: ð26Þ

Hence, by (11) we have

G rn, rn+1, rn+2ð Þ < ϕ G rn−1, rn, rn+1ð Þð Þ < ϕ2 G rn−1, rn, rn+1ð Þð Þ
<⋯ < ϕn G r0, r1, r2ð Þð Þ:

ð27Þ

By similar argument as the case of q > 0, we can show
that there exists a G-Cauchy sequence frng in ðΦ,GÞ and a
point c in Φ such that limn⟶∞rn = c. Similarly, under the
assumption that Γ is continuous and by the uniqueness of
limit, we have that Γc = c, that is, c is a fixed point of Γ.

In the next result, we examine the existence of unique
fixed point of Γ under the restriction of continuity of some
iterates of Γ.

Theorem 20. Let ðΦ,GÞ be a complete G-metric space and let
Γ : Φ⟶Φ be a Jaggi-type hybrid ðG − ϕÞ-contraction. If for
some integer i > 2, we have that Γi is continuous, then Γ has a
unique fixed point in Φ.

Proof. In Theorem 19, we have established that there exists a
G-Cauchy sequence frngn∈ℕ in ðΦ,GÞ with rn = Γrn−1 such
that rn ⟶ c for some c in Φ. Let frnlg be a subsequence
of frngn∈ℕ where nl = l · i for all l ∈ℕ, i > 2 fixed. Notice that
Γ0 is an identity self-mapping on Φ so that rnl = Γirnl−i.
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Hence, by the continuity of Γi, we have

G c, Γic, Γi+1c
� �

= lim
l⟶∞

G c, Γirnl−i, Γ
i+1rnl− i+1ð Þ

� 	
= lim

l⟶∞
G c, rnl , rnl
� �

=G c, c, cð Þ = 0,
ð28Þ

that is, c is a fixed point of Γi.

To see that c is a fixed point of Γ, assume contrary that
Γz ≠ z. Then in that case, Γi−j−1z ≠ Γi−jz for any j = 0, 1,⋯

, i − 1. Hence, by (9), we have

G Γi−jc, Γi−j+1c, Γi−j+2c
� �

≤ ϕ M Γi−j−1c, Γi−jc, Γi−j+1c
� �� �

<M Γi−j−1c, Γi−jc, Γi−j+1c
� �

:

ð29Þ

Considering Case 1, we obtain

so that (29) becomes

G Γi−jc, Γi−j+1c, Γi−j+2c
� �q 1 − λ1ð Þ < λ2G Γi−j−1c, Γi−jc, Γi−j+1c

� �q
:

ð31Þ

Since λ1 + λ2 = 1, then for every j = 0, 1,⋯, i − 1, we
have

G Γi−jc, Γi−j+1c, Γi−j+2c
� �

< G Γi−j−1c, Γi−jc, Γi−j+1c
� �

: ð32Þ

This clearly implies that for every l = j, j + 1,⋯, i − 1,

G Γi−jc, Γi−j+1c, Γi−j+2c
� �

<G Γi−j−l−1c, Γi−j−lc, Γi−j−l+1c
� 	

:

ð33Þ

In particular, letting j = 0 and l = i − 1, the above
inequality becomes

G c, Γic, Γi+1c
� �

= G Γic, Γi+1c, Γi+2c
� �

< G c, Γc, Γ2c
� �

, ð34Þ

which is a contradiction. Hence, Γc = c.
For Case 2, we have

M Γi−j−1c, Γi−jc, Γi−j+1c
� �

= G Γi−j−1c, Γ Γi−j−1c
� �

, Γ2 Γi−j−1c
� �� �λ1

· G Γi−jc, Γ Γi−jc
� �

, Γ2 Γi−jc
� �� �λ2

= G Γi−j−1c, Γi−jc, Γi−j+1c
� �λ1
· G Γi−jc, Γi−j+1c, Γi−j+2c
� �λ2 ,

ð35Þ

so that (29) becomes

G Γi−jc, Γi−j+1c, Γi−j+2c
� � 1−λ2ð Þ < G Γi−j−1c, Γi−jc, Γi−j+1c

� �λ1 ,
ð36Þ

implying that

G Γi−jc, Γi−j+1c, Γi−j+2c
� �

<G Γi−j−1c, Γi−jc, Γi−j+1c
� �

: ð37Þ

By similar argument as in Case 1, we obtain a contradic-
tion. Hence, Γc = c.

Example 21. Let Φ = ½−1, 1� and let Γ : Φ⟶Φ be a self-
mapping on Φ defined by

Γr =

r
5 , if r ∈ −1, 1f g,
1
5 , if r ∈ −1, 1ð Þ,

8><
>: ð38Þ

for all r ∈Φ. Define G : Φ ×Φ ×Φ⟶ℝ+ by

G r, s, Γsð Þ = r − sj j + r − Γsj j + s − Γsj j∀r, s ∈Φ: ð39Þ

Then, ðΦ,GÞ is a complete G-metric space and Γ is con-
tinuous for all r ∈Φ. Define ϕ ∈Ψ by ϕðxÞ = x/2 for all x ≥ 0.

To see that Γ is a Jaggi-type hybrid ðG − ϕÞ-contraction,
notice that GðΓr, Γs, Γ2sÞ = 0 for all r, s ∈ ð−1, 1Þ. Hence,
inequality (9) holds for all r, s ∈ ð−1, 1Þ.

M Γi−j−1c, Γi−jc, Γi−j+1c
� �

= λ1
G Γi−j−1c, Γ Γi−j−1c

� �
, Γ2 Γi−j−1c
� �� �

G Γi− jc, Γ Γi−jc
� �

, Γ2 Γi−jc
� �� �

G Γi−j−1c, Γi− jc, Γ Γi−jc
� �� �

 !q

+ λ2G Γi−j−1c, Γi−jc, Γ Γi−jc
� �� �q" #1/q

= λ1
G Γi−j−1c, Γi−jc, Γi−j+1c
� �

G Γi− jc, Γi− j+1c, Γi− j+2c
� �

G Γi−j−1c, Γi−jc, Γi−j+1c
� �

 !q

+ λ2G Γi−j−1c, Γi− jc, Γi− j+1c
� �q" #1/q

= λ1G Γi− jc, Γi− j+1c, Γi− j+2c
� �q + λ2G Γi−j−1c, Γi−jc, Γi−j+1c

� �qh i1/q
,

ð30Þ
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Now, for r, s ∈ f−1, 1g, if r = s = 1, then GðΓr, Γs, Γ2sÞ
= 0 for all q ≥ 0. If r = s = −1, then letting λ1 = λ2 = 1/2
and q = 1, we obtain

G Γr, Γs, Γ2s
� �

=G
−1
5 , −15 , 15

� �
= 4
5 < 13

10 = 1
2

13
5

� �

= 1
2 M −1,−1, −15

� �� �
= ϕ M r, s, Γsð Þð Þ:

ð40Þ

Also, for q = 0, we have

G Γr, Γs, Γ2s
� �

= 4
5 < 1

2
12
5

� �
= ϕ M r, s, Γsð Þð Þ: ð41Þ

If r ≠ s, then letting λ1 = 2/10, λ2 = 4/5, and q = 3, we obtain

G Γr, Γs, Γ2s
� �

= G
−1
5 , 15 ,

1
5

� �
=G

1
5 ,

−1
5 , 15

� �

= 4
5 < 8

5 = 1
2

16
5

� �
= 1
2 M −1, 1, 15

� �� �

= 1
2 M 1,−1, −15

� �� �
= ϕ M r, s, Γsð Þð Þ:

ð42Þ

Also, for q = 0, we take λ1 = λ2 = 1/2. Then,

G Γr, Γs, Γ2s
� �

=G
−1
5 , 15 ,

1
5

� �
=G

1
5 ,

−1
5 , 15

� �

= 4
5 < 49

50 = 1
2

98
50

� �
= 1
2 M −1, 1, 15

� �� �

= 1
2 M 1,−1, −15

� �� �
= ϕ M r, s, Γsð Þð Þ:

ð43Þ

Hence, inequality (9) is satisfied for all r, s ∈Φ. Therefore, Γ
is a Jaggi-type hybrid ðG − ϕÞ-contraction. Consequently, all the
assumptions of Theorem 19 are satisfied, and r = 1/5 is the fixed
point of Γ.

We now demonstrate that our result is independent of
the result of Karapınar and Fulga [1]. Let d : Φ ×Φ⟶ℝ+
be defined by

d r, sð Þ = r − sj j∀r, s ∈Φ: ð44Þ

Consider r, s ∈ f−1, 1g and take for Case 1, r ≠ s, λ1 = 3/4,

λ2 = 1/4, and q = 1. Then, inequality (9) becomes

G Γr, Γs, Γ2s
� �

=G
−1
5 , 15 ,

1
5

� �
=G

1
5 ,

−1
5 , 15

� �
= 4
5 < 43

50

= 1
2

43
25

� �
= 1
2 M −1, 1, 15

� �� �

= 1
2 M 1,−1, −15

� �� �
= ϕ M r, s, Γsð Þð Þ,

ð45Þ

while inequality (7) due to Karapınar and Fulga [1] yields

d Γr, Γsð Þ = d
−1
5 , 15

� �
= d

1
5 ,

−1
5

� �
= 2
5 > 37

100 = 1
2

37
50

� �

= 1
2 M −1, 1ð Þð Þ = 1

2 M 1,−1ð Þð Þ = ϕ M r, sð Þð Þ:
ð46Þ

Also, Karapınar and Fulga [1] declared in Definition (17)
that r and s are distinct, since Mðr, sÞ is undefined for Case 1
if r = s. However, our result is valid for all r, s ∈Φ \ FixðΓÞ.

The above comparison is illustrated graphically for all r
, s ∈ f−1, 1g, using the following Figures 1 and 2.

Therefore, Jaggi-type hybrid ðG − ϕÞ-contraction is not
Jaggi-type hybrid contraction defined by Karapınar and
Fulga [1], and so Theorem 1 due to Karapınar and Fulga
[1] is not applicable to this example.

Corollary 22 (see Theorem 14). Let ðΦ,GÞ be a complete G
-metric space, and let Γ : Φ⟶Φ be a mapping satisfying
the following condition:

G Γr, Γs, Γtð Þ ≤ kG r, s, tð Þ, ð47Þ

for all r, s, t ∈Φ where 0 ≤ k < 1; then, Γ has a unique
fixed point (say u) and Γ is G-continuous at u.

Proof. Consider Definition (18) and let Γs = t, λ1 = 0, λ2 = 1,
q > 0, and ϕðpÞ = kp for all p ≥ 0 and k ∈ ½0, 1Þ. Clearly, ϕ ∈Ψ
and Γ is a Jaggi-type hybrid ðG − ϕÞ-contraction. Hence, (9)
coincides with (6) of Theorem 14 due to Mustafa [2]. There-
fore, it is easy to see that we can find a unique point u in Φ
such that Γu = u and Γ is G-continuous at u.

Corollary 23 (see [10], Theorem 3.1). Let ðΦ,GÞ be a
complete G-metric space. Suppose the mapping Γ : Φ⟶Φ
satisfies

G Γr, Γs, Γtð Þ ≤ ϕ G r, s, tð Þð Þ, ð48Þ

for all r, s, t ∈Φ. Then, Γ has a unique fixed point (say u)
and Γ is G-continuous at u.

Proof. Consider Definition 18 and let Γs = t, λ1 = 0, λ2 = 1
and q > 0. Then,

M r, s, tð Þ =G r, s, tð Þ, ð49Þ
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for all r, s, t ∈Φ. Hence, inequality (9) becomes

G Γr, Γs, Γtð Þ ≤ ϕ G r, s, tð Þð Þ, ð50Þ

for all r, s, t ∈Φ and ϕ ∈Ψ. This coincides with Theorem
3.1 due to Shatanawi [10] and so the proof follows in a sim-
ilar manner.

By specializing the parameters λiði = 1, 2Þ and q, as well
as letting ϕðpÞ = μp for all p ≥ 0 and for μ ∈ ð0, 1Þ, the follow-
ing result is also a direct consequence of Theorem 19.

Corollary 24. Let ðΦ,GÞ be a complete G-metric space. If
there exists μ ∈ ð0, 1Þ such that for all r, s ∈Φ, the mapping
Γ : Φ⟶Φ satisfies

G Γr, Γs, Γ2s
� �

≤ μG r, s, Γsð Þ, ð51Þ

then Γ has a fixed point in Φ.

4. Applications to Solution of Integral Equation

In this section, Corollary 24 is applied to examine the exis-
tence criteria for a solution to a class of integral equations.
Ideas in this section are motivated by [7, 11, 12].

Consider the integral equation

r yð Þ =
ðb
a
L y, xð Þf x, r xð Þð Þdx, y ∈ a, b½ �: ð52Þ

Let Φ = Cð½a, b�,ℝÞ be the set of all continuous real-
valued functions. Define G : Φ ×Φ ×Φ⟶ℝ+ by

G r, s, Γsð Þ = max
y∈ a,b½ �

r yð Þ − s yð Þj j + max
y∈ a,b½ �

r yð Þ − Γs yð Þj j + max
y∈ a,b½ �

s yð ÞΓs yð Þj j,

ð53Þ

∀r, s ∈Φ, y ∈ a, b½ �: ð54Þ

Then, ðΦ,GÞ is a complete G-metric space.

1

2.5

2

1.5

1

0.5

0
2 3 4

ϕ (M(r,s,Γs))

G (Γr,Γs,Γ2s)

Figure 1: Illustration of contractive inequality (9) for all r, s ∈ f−1, 1g.

ϕ (M(r,s))

d (Γr,Γs)

1

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0
2 3 4

Figure 2: Illustration of contractive inequality (7) for all r, s ∈ f−1, 1g.
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Define a function Γ : Φ⟶Φ as follows:

Γr yð Þ =
ðb
a
L y, xð Þf x, r xð Þð Þdx, y ∈ a, b½ �: ð55Þ

Then, a point u∗ is said to be a fixed point of Γ if and
only if u∗ is a solution to (52).

Now, we study existence conditions of the integral equa-
tion (52) under the following hypotheses.

Theorem 25. Assume that the following conditions are
satisfied:

(C1) L : ½a, b� × ½a, b�⟶ℝ+ and f : ½a, b� ×ℝ⟶ℝ
are continuous

(C2) For all r, s ∈Φ, x ∈ ½a, b�, we have j f ðx, rðxÞÞ − f ðx,
sðxÞÞj ≤ jrðxÞ − sðxÞj

(C3) maxy∈½a,b�
Ð b
aLðy, xÞdx ≤ μ for some μ < 1

Then, the integral equation (52) has a solution u∗ in Φ.

Proof. Observe that for any r, s ∈Φ, using (55) and the above
hypotheses, we obtain

Γr yð Þ − Γs yð Þj j =
ðb
a
L y, xð Þf x, r xð Þð Þ −L y, xð Þf x, s xð Þð Þ½ �dx












≤
ðb
a
L y, xð Þ f x, r xð Þð Þ − f x, s xð Þð Þj jdx

≤
ðb
a
L y, xð Þ r xð Þ − s xð Þj jdx

≤
ðb
a
L y, xð Þ max

x∈ a,b½ �
r xð Þ − s xð Þj jdx

≤ μ max
y∈ a,b½ �

r yð Þ − s yð Þj j:

ð56Þ

Using this in (54), we have

G Γr, Γs, Γ2s
� �

= max
y∈ a,b½ �

Γr − Γsj j + max
y∈ a,b½ �

Γr − Γ2s


 



+ max
y∈ a,b½ �

Γs − Γ2s


 

 ≤ μ max

y∈ a,b½ �
r − sj j

+ μ max
y∈ a,b½ �

r − Γsj j + μ max
y∈ a,b½ �

s − Γsj j

= μ max
y∈ a,b½ �

r − sj j + max
y∈ a,b½ �

r − Γsj j + max
y∈ a,b½ �

s − Γsj j
� �

= μG r, s, Γsð Þ:
ð57Þ

Hence, all the required hypotheses of Corollary 24 are
satisfied, implying that there exists a solution u∗ in Φ of
the integral equation (52).

Conversely, if u∗ is a solution of (52), then u∗ is also a
solution of (55) so that Γu∗ = u∗, that is, u∗ is a fixed
point of Γ.

Remark 26.

(i) We can deduce a number of corollaries by particu-
larizing some of the parameters in Definition 18

(ii) None of the results presented in this work can be
expressed in the form Gðr, s, sÞ or Gðr, r, sÞ. Hence,
they cannot be obtained from their corresponding
versions in metric space

5. Conclusion

A generalization of metric space was introduced by Mustafa
and Sims [3], namely, G-metric space and several fixed point
results were studied in that space. However, Jleli and Samet
[5] as well as Samet et al. [6] established that most fixed
point theorems obtained in G-metric space are direct conse-
quences of their analogues in metric space. Contrary to the
above observation, a new family of contractions called
Jaggi-type hybrid ðG − ϕÞ-contraction is introduced in this
manuscript and some fixed point theorems that cannot be
deduced from their corresponding ones in metric space are
proved. The main distinction of this class of contractions is
that its contractive inequality is expressible in a number of
ways with respect to multiple parameters. Consequently,
some corollaries including recently announced results in
the literature are highlighted and analyzed. Nontrivial com-
parative examples are constructed to validate the assump-
tions of our obtained theorems. Furthermore, one of our
obtained corollaries is applied to set up novel existence con-
ditions for solution of a class of integral equations.
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In this paper, we present improved iterative methods for evaluating the numerical solution of an equilibrium problem in a Hilbert
space with a pseudomonotone and a Lipschitz-type bifunction. The method is built around two computing phases of a proximal-
like mapping with inertial terms. Many such simpler step size rules that do not involve line search are examined, allowing the
technique to be enforced more effectively without knowledge of the Lipschitz-type constant of the cost bifunction. When the
control parameter conditions are properly defined, the iterative sequences converge weakly on a particular solution to the
problem. We provide weak convergence theorems without knowing the Lipschitz-type bifunction constants. A few numerical
tests were performed, and the results demonstrated the appropriateness and rapid convergence of the new methods over
traditional ones.

1. Introduction

Let Π stand for a certain Hilbert space and Ξ stand for a
nonempty closed convex subset of Π: The research is about
an iterative technique for solving the equilibrium problem
((1), to make it short). Let Γ : Π ×Π⟶ℝ be a bifunction
with Γðy1, y1Þ = 0, for each y1 ∈ Ξ: An equilibrium problem
for granted bifunction Γ on Ξ is interpreted this way: find
ℏ∗ ∈ Ξ such that

Γ ℏ∗, y1ð Þ ≥ 0, ∀y1 ∈ Ξ: ð1Þ

The numerical evaluation of the equilibrium problem
under the following conditions is the focus of this study.
We will assume that the following conditions have been
satisfied:

For Γ1, the solution set of a problem (1) is denoted by
solðΓ, ΞÞ and it is nonempty.

For Γ2, a bifunction Γ is said to be pseudomonotone [1,
2], i.e.,

Γ y1, y2ð Þ ≥ 0⇒ Γ y2, y1ð Þ ≤ 0, ∀y1, y2 ∈ Ξ: ð2Þ

For Γ3, a bifunction Γ is said to be Lipschitz-type contin-
uous [3] on Ξ if there exist two constants c1, c2 > 0, such that

Γ y1, y3ð Þ ≤ Γ y1, y2ð Þ + Γ y2, y3ð Þ + c1 y1 − y2k k2
+ c2 y2 − y3k k2, ∀y1, y2, y3 ∈ Ξ:

ð3Þ

For Γ4, for any sequence fykg ⊂ Ξ satisfying yk ⇀ y∗,
then, the following inequality holds:

lim sup
k⟶+∞

Γ yk, y1ð Þ ≤ Γ y∗, y1ð Þ, ∀y1 ∈ Ξ: ð4Þ

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 1934975, 23 pages
https://doi.org/10.1155/2022/1934975

https://orcid.org/0000-0003-3556-2591
https://orcid.org/0000-0002-0224-4661
https://orcid.org/0000-0002-0531-8523
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1934975


For (Γ5), Γðy1, ·Þ is convex and subdifferentiable on Π
for each fixed y1 ∈Π:

Let us represent a problem’s solution set as solðΓ, ΞÞ,
and we will assume in the following text that this solution
set is not empty. Researchers are interested in the equilib-
rium problem because it connects many mathematical prob-
lems, including fixed point problems, vector and scalar
minimization problems, variational inequalities, comple-
mentarity problems, saddle point problems, Nash equilib-
rium problems in noncooperative games, and inverse
optimization problems (see for further information [2,
4–9]). It also has a variety of applications in economics
[10], the dynamics of offer and demand [11], and it con-
tinues to use the theoretical framework of noncooperative
games and Nash’s equilibrium models [12, 13]. The phrase
“equilibrium problem” was first used in the literature in
1992 by Muu and Oettli [9] and was further investigated
by Blum [2]. More precisely, we consider two applications
for the problem (1). (i) A variational inequality problem
for an operator I1 : Ξ⟶Π is stated as follows: find ℏ∗ ∈
Ξ such that

I1 ℏ∗ð Þy1 − ℏ∗h i ≥ 0, ∀y1, y2 ∈ Ξ: ð5Þ

Let us define a bifunction Γ as follows:

Γ y1, y2ð Þ≔ I1 y1ð Þ, y2 − y1h i, ∀y1, y2 ∈ Ξ: ð6Þ

Then, the equilibrium problem converts into the prob-
lem of variational inequalities defined in (5) and Lipschitz
constants of the mapping I1 are L = 2c1 = 2c2: (ii) Letting
a mappingI2 : Ξ⟶ Ξ is said to κ-strict pseudocontraction
[14] if there exists a constant κ ∈ ð0, 1Þ such that

I2y1 −I2y2k k2 ≤ y1 − y2k k2 + κ y1 −I2y1ð Þ − y2 −I2y2ð Þk k2, ∀y1, y2 ∈ Ξ:

ð7Þ

A fixed point problem (FPP) for I2 : Ξ⟶ Ξ is to find
ℏ∗ ∈ Ξ such that I2ðℏ∗Þ = ℏ∗. Let us define a bifunction Γ
as follows:

Γ y1, y2ð Þ = y1 −I2y1, y2 − y1h i, ∀y1, y2 ∈ Ξ: ð8Þ

It can be easily seen in [15] that expression (8) satisfies
the conditions (Γ1)–(Γ5) as well as the values of Lipschitz
constants are c1 = c2 = ð3 − 2κÞ/ð2 − 2κÞ.

The extragradient method developed by Tran et al. [16]
is one useful approach. Take an arbitrary starting point x0
∈Π ; and the next iteration as follows:

x0 ∈ Ξ,

yk = arg min
y∈Ξ

ℶΓ xk, yð Þ + 1
2 xk − yk k2

� �
,

xk+1 = arg min
y∈Ξ

ℶΓ yk, yð Þ + 1
2 xk − yk k2

� �
,

ð9Þ

where 0 <ℶ <min fð1/2c1Þ, ð1/2c2Þg and c1, c2 are two
Lipschitz-type constants.

The main goal is to create an inertial-type technique in
the case of [16] that will be designed to increase the conver-
gence rate of the iterative sequence. Such techniques have
already been established as a result of the oscillator equation
with damping and conservative force restoration. This
second-order dynamical system is known as a “heavy fric-
tion ball,” and it was first proposed by Polyak in [17]. The
important feature of this method is that the next iteration
is built on the previous two iterations. Numerical results
show that inertial terms improve the performance of the
approaches in terms of the number of iterations and elapsed
time in this context. Inertial-type approaches have been
extensively studied in recent years for certain classes of equi-
librium problems [18–26] and others in [27–33].

As a result, the following natural question arises: Is it
possible to develop new inertial-type weakly convergent
extragradient-type methods with monotone and nonmono-
tone step size rules to solve equilibrium problems?

In our study, we provide a positive answer to this ques-
tion, namely, that the gradient approach still generates a
weak convergence sequence when solving equilibrium prob-
lems involving pseudomonotone bifunctions using a novel
monotone and nonmonotone variable step size rule. Moti-
vated by the work of Censor et al. [34] and Tran et al.
[16], we will describe new inertial extragradient-type
approaches to solving problem (1) in the context of an
infinite-dimensional real Hilbert space. Our primary contri-
butions to this work are as follows:

(i) We build an inertial subgradient extragradient tech-
nique with a novel monotone variable step size rule
to solve equilibrium problems in a real Hilbert space
and show that the resulting sequence is weakly
convergent

(ii) To solve equilibrium problems, we devise another
inertial subgradient extragradient technique that
leverages a novel variable nonmonotone step size
rule that is independent of the Lipschitz constants

(iii) Some results are investigated in order to address dif-
ferent kinds of equilibrium problems in a real Hil-
bert space

(iv) We offer numerical demonstrations of the suggested
methodologies for the verification of theoretical
conclusions and compare them to earlier results
[22, 35, 36]. Our numerical results indicate that

2 Journal of Function Spaces



the new approaches are useful and outperform the
current ones

The paper is structured as follows: in Section 2, prelimi-
nary results were presented. Section 3 gives all new
approaches and their convergence analysis. Finally, Section
5 gives some numerical results to explain the practical effi-
ciency of the proposed methods.

2. Preliminaries

In this part, we will go over several fundamental identities as
well as crucial lemmas and definitions. A metric projection
PΞðy1Þ of y1 ∈Π is defined by

PΞ y1ð Þ = argmin y1 − y2k k: y2 ∈ Ξf g: ð10Þ

The following sections outline the key characteristics of
projection mapping.

Lemma 1 (see [37]). Let PΞ : Π⟶ Ξ be a metric projection.
Then, there are the following features:

y1 − PΞ y2ð Þk k2 + PΞ y2ð Þ − y2k k2 ≤ y1 − y2k k2, y1 ∈ Ξ, y2 ∈Π,

y3 = PΞ y1ð Þ, ð11Þ

if and only if

y1 − y3, y2 − y3h i ≤ 0, ∀y2 ∈ Ξ,
y1 − PΞ y1ð Þk k ≤ y1 − y2k k, y2 ∈ Ξ, y1 ∈Π:

ð12Þ

Lemma 2 (see [37]). For any y1, y2 ∈Π and ℓ ∈ℝ. Then, the
following conditions were met:

ℓy1 + 1 − ℓð Þy2k k2 = ℓ y1k k2 + 1 − ℓð Þ y2k k2 − ℓ 1 − ℓð Þ y1 − y2k k2,

y1 + y2k k2 ≤ y1k k2 + 2 y2, y1 + y2h i: ð13Þ

A normal cone of Ξ at y1 ∈ Ξ is defined by

NΞ y1ð Þ = y3 ∈Π : y3, y2 − y1h i ≤ 0,∀y2 ∈ Ξf g: ð14Þ

Assume that ℧ : Ξ⟶ℝ is a convex function and sub-
differential of ℧ at y1 ∈ Ξ is defined by

∂℧ y1ð Þ = y3 ∈Π : ℧ y2ð Þ −℧ y1ð Þ ≥ y3, y2 − y1h i,∀y2 ∈ Ξf g:
ð15Þ

Lemma 3 (see [38]). Let ℧ : Ξ⟶ℝ be a subdifferentiable,
convex, and lower semicontinuous function on Ξ. An element
x ∈ Ξ is a minimizer of a function ℧ if and only if

0 ∈ ∂℧ xð Þ +NΞ xð Þ, ð16Þ

where ∂℧ðxÞ stands for the subdifferential of ℧ at x ∈ Ξ and
NΞðxÞ the normal cone of Ξ at x:

Lemma 4 (see [39]). Let Ξ be a nonempty subset of Π and
fxkg be a sequence in Π satisfying two conditions:

(i) For each x ∈ Ξ,limk⟶+∞kxk − xk exists

(ii) Each sequentially weak cluster point of fxkg belongs
to Ξ

Then, sequence fxkg weakly converges to an element in Ξ.

Lemma 5 (see [40]). Suppose that fakg and ftkg are two
sequences of nonnegative real numbers satisfying the inequal-
ity

ak+1 ≤ ak + tk, for all k ∈ℕ: ð17Þ

If ∑‍tk < +∞, then, limk⟶+∞ak exists.

3. Main Results

In this section, we present a numerical iterative method for
accelerating the rate of convergence of an iterative sequence
by combining two strong convex optimization problems
with an inertial term. We propose the techniques listed
below for solving equilibrium problems.

Remark 6. (i) If ζ = 0 is used in the abovementioned method,
then, it is equivalent to the default extragradient method
[16] with the updated step size rule. (ii) From the expres-
sions in Algorithm 1, we have

〠
+∞

k=1
ζk xk − xk−1k k ≤ 〠

+∞

k=1
βk xk − xk−1k k < +∞: ð18Þ

It further implies that

lim
k⟶+∞

βk xk − xk−1k k = 0: ð19Þ

Lemma 7. A sequence fℶkg is converged to ℶ and

min
ϰ 2 −

ffiffiffi
2

p
− ϕ

� �
max 2c1, 2c2f g ,ℶ0

8<
:

9=
; ≤ℶ ≤ℶ0: ð20Þ

Proof. Assume that Γðνk, xk+1Þ − Γðνk, ykÞ − Γðyk, xk+1Þ > 0,
such that

ϰ 2 −
ffiffiffi
2

p
− ϕ

� �
νk − ykk k2 + xk+1 − ykk k2� �

2 Γ νk, xk+1ð Þ − Γ νk, ykð Þ − Γ yk, xk+1ð Þ½ �

≥
ϰ 2 −

ffiffiffi
2

p
− ϕ

� �
νk − ykk k2 + xk+1 − ykk k2� �

2 c1 νk − ykk k2 + c2 xk+1 − ykk k2	 

≥
ϰ 2 −

ffiffiffi
2

p
− ϕ

� �
2 max c1, c2f g :

ð21Þ
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Thus, we obtain lim
k⟶+∞

ℶk =ℶ This completes the proof

of the lemma.

Lemma 8. A sequence fℶkg is converged to ℶ and

min
ϰ 2 −

ffiffiffi
2

p
− ϕ

� �
max 2c1, 2c2f g ,ℶ0

8<
:

9=
; ≤ℶ ≤ℶ0, ð22Þ

where P =∑+∞
k=1pk.

Proof. Assume that Γðνk, xk+1Þ − Γðνk, ykÞ − Γðyk, xk+1Þ > 0
such that

ϰ 2 −
ffiffiffi
2

p
− ϕ

� �
νk − ykk k2 + xk+1 − ykk k2� �

2 Γ νk, xk+1ð Þ − Γ νk, ykð Þ − Γ yk, xk+1ð Þ½ �

≥
ϰ 2 −

ffiffiffi
2

p
− ϕ

� �
νk − ykk k2 + xk+1 − ykk k2� �

2 c1 νk − ykk k2 + c2 xk+1 − ykk k2	 

≥
ϰ 2 −

ffiffiffi
2

p
− ϕ

� �
2 max c1, c2f g :

ð23Þ

Applying mathematical induction on the concept of ℶk+1
, we have

min
ϰ 2 −

ffiffiffi
2

p
− ϕ

� �
max 2c1, 2c2f g ,≤ℶk ≤ℶ0 + P

8<
:

9=
;: ð24Þ

Suppose that ½ℶk+1 −ℶk�+ = max f0,ℶk+1 −ℶkg and
½ℶk+1 −ℶk�− =max f0,−ðℶk+1 −ℶkÞg. Due to the definition
of fℶkg, we get

〠
+∞

k=1
ℶk+1 −ℶkð Þ+ = 〠

+∞

k=1
max 0,ℶk+1 −ℶkf g ≤ P < +∞: ð25Þ

That is, the series ∑+∞
k=1ðℶk+1 −ℶkÞ+ is convergent. The

convergence must now be proven of ∑+∞
k=1ðℶk+1 −ℶkÞ−. Let

∑+∞
k=1ðℶk+1 −ℶkÞ− = +∞. Due to the fact that ℶk+1 −ℶk =

ðℶk+1 −ℶkÞ+ − ðℶk+1 −ℶkÞ−, we could get

ℶk+1 −ℶ0 = 〠
k

k=0
ℶk+1 −ℶkð Þ = 〠

k

k=0
ℶk+1 −ℶkð Þ+ − 〠

k

k=0
ℶk+1 −ℶkð Þ−:

ð26Þ

Letting k⟶ +∞ in (26), we have ℶk ⟶ −∞ as k
⟶ +∞. This is an absurdity. As a result of the series con-
vergence ∑k

k=0ðℶk+1 −ℶkÞ+ and ∑k
k=0ðℶk+1 −ℶkÞ− taking k

⟶ +∞ in expression (26), we obtain lim
k⟶+∞

ℶk =ℶ. This
brings the proof to a conclusion.

Lemma 9. The following useful inequality is derived in Algo-
rithm 3.

ℶkΓ yk, yð Þ −ℶkΓ yk, xk+1ð Þ ≥ νk − xk+1, y − xk+1h i, ∀y ∈Πk:

ð27Þ

STEP 0: Choose 0 > 0,x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ, ϕ ∈ ð0, 2 − ffiffiffi
2

p Þ with a sequence fψkg ⊂ ½0,+∞Þ such that
∑+∞

k=0‍ψk < +∞:
Moreover, choose ζk such that 0 ≤ ζk ≤ βk such that

βk =
min fζ, ðψk/kxk − xk−1kÞg if xk ≠ xk−1,
ζ otherwise:

(

STEP 1: Compute
yk = arg min

y∈Ξ
fℶkΓðνk, yÞ + 1/2kνk − yk2gwwhere νk = xk + ζkðxk − xk−1Þ:

STEP 2: Given the current iterates xk−1,xk,yk: Firstly choose ωk ∈ ∂2Γðνk, ykÞ satisfying νk −ℶkωk − yk ∈NΞðykÞ and generate a half-
space

Πk = fz ∈Π : hνk −ℶkωk − yk, z − yki ≤ 0g:
Compute

xk+1 = arg min
y∈Πk

fℶkΓðyk, yÞ + 1/2kνk − yk2g:
STEP 3: Compute

ℶk+1 =
min fℶk, ðð2 −

ffiffiffi
2

p
− ϕÞϰkνk − ykk2 + ð2 − ffiffiffi

2
p

− ϕÞϰkxk+1 − ykk2/2½Γðνk, xk+1Þ − Γðνk, ykÞ − Γðyk, xk+1Þ�Þg
if Γðνk, xk+1Þ − Γðνk, ykÞ − Γðyk, xk+1Þ > 0,
ℶk, otherwise:

8>><
>>:

STEP 4: If yk = νk, then complete the computation. Otherwise, set k≔ k + 1 and go back STEP 1.

Algorithm 1
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Proof. By use of Lemma 3, we have

0 ∈ ∂2 ℶkΓ yk, ·ð Þ + 1
2 νk − ·k k2

� �
xk+1ð Þ +NΠk

xk+1ð Þ: ð28Þ

Thus, for υ ∈ ∂Γðyk, xk+1Þ, there exists a vector �υ ∈NΠk
ð

xk+1Þ such that

ℶkυ + xk+1 − νk + �υ = 0: ð29Þ

Thus, we have

νk − xk+1, y − xk+1h i =ℶk υ, y − xk+1h i + �υ, y − xk+1h i, ∀y ∈Πk:

ð30Þ

Since �υ ∈NΠk
ðxk+1Þ implies that h�υ, y − xk+1i ≤ 0 for all

y ∈Πk, thus, we have

νk − xk+1, y − xk+1h i ≤ℶk υ, y − xk+1h i, ∀y ∈Πk: ð31Þ

STEP 0: Choose 0 > 0,x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ, ϕ ∈ ð0, 2 − ffiffiffi
2

p Þ with a sequence fψkg ⊂ ½0,+∞Þ such that
∑+∞

k=0ψk < +∞:

Moreover, choose a non-negative real sequence fpkg such that ∑+∞
k=1pk < +∞ and ζk such that 0 ≤ ζk ≤ βk such that

βk =
min fζ, ðψk/kxk − xk−1kÞg if xk ≠ xk−1,
ζ otherwise:

(

STEP 1: Compute
yk = arg min

y∈Ξ
fℶkΓðνk, yÞ + 1/2kνk − yk2gwhere νk = xk + ζkðxk − xk−1Þ:

STEP 2: Given the current iterates xk−1,xk,yk: Firstly choose ωk ∈ ∂2Γðνk, ykÞ satisfying νk −ℶkωk − yk ∈NΞðykÞ and generate a half-
space

Πk = fz ∈Π : hνk −ℶkωk − yk, z − yki ≤ 0g:
Compute

xk+1 = arg min
y∈Πk

fℶkΓðyk, yÞ + 1/2kνk − yk2g:
STEP 3: Compute

ℶk+1 =
min fℶk + pk, ðð2 −

ffiffiffi
2

p
− ϕÞϰkνk − ykk2 + ð2 − ffiffiffi

2
p

− ϕÞϰkxk+1 − ykk2/2½Γðνk, xk+1Þ − Γðνk, ykÞ − Γðyk, xk+1Þ�Þg
if Γðνk, xk+1Þ − Γðνk, ykÞ − Γðyk, xk+1Þ > 0,
ℶk + pk, otherwise:

8>><
>>:

STEP 4: If yk = νk, then complete the computation. Otherwise, set k≔ k + 1 and go back STEP 1.

Algorithm 2

STEP 0: Choose 0 > 0,x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ, ϕ ∈ ð0, 2 − ffiffiffi
2

p Þ with a sequence fψkg ⊂ ½0,+∞Þ such that
∑+∞

k=0ψk < +∞:
Moreover, choose ζk such that 0 ≤ ζk ≤ βk such that

βk =
min fζ, ðψk/kxk − xk−1kÞg if xk ≠ xk−1,
ζ otherwise:

(

STEP 1: Compute
yk = arg min

y∈Ξ
fℶkΓðνk, yÞ + 1/2kνk − yk2g,wwhere νk = xk + ζkðxk − xk−1Þ:

STEP 2: Compute
xk+1 = arg min

y∈Ξ
fℶkΓðyk, yÞ + 1/2kνk − yk2g:

STEP 3: Compute

ℶk+1 =
min fℶk, ðð2 −

ffiffiffi
2

p
− ϕÞϰkνk − ykk2 + ð2 − ffiffiffi

2
p

− ϕÞϰkxk+1 − ykk2/2½Γðνk, xk+1Þ − Γðνk, ykÞ − Γðyk, xk+1Þ�Þg
if Γðνk, xk+1Þ − Γðνk, ykÞ − Γðyk, xk+1Þ > 0,
ℶk, otherwise:

8>><
>>:

STEP 4: If yk = νk, then complete the computation. Otherwise, set k≔ k + 1 and go back STEP 1.

Algorithm 3
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Since υ ∈ ∂Γðyk, xk+1Þ, we have

Γ yk, yð Þ − Γ yk, xk+1ð Þ ≥ υ, y − xk+1h i, ∀y ∈Π: ð32Þ

Combining expressions (31) and (32), we have

ℶkΓ yk, yð Þ −ℶkΓ yk, xk+1ð Þ ≥ νk − xk+1, y − xk+1h i, ∀y ∈Πk:

ð33Þ

Lemma 10. In Algorithm 3, we also have the following useful
inequality:

ℶkΓ νk, yð Þ −ℶkΓ νk, ykð Þ ≥ νk − yk, y − ykh i, ∀y ∈ Ξ:
ð34Þ

Proof. The proof is analogous to the proof of Lemma 9. Next,
substituting y = xk+1, we have

ℶk Γ νk, xk+1ð Þ − Γ νk, ykð Þf g ≥ νk − yk, xk+1 − ykh i: ð35Þ

Theorem 11. Let fxkg be a sequence generated by Algo-
rithm 3, and the conditions (Γ1)–(Γ5) are satisfied. Then,
the sequence fxkg converges weakly to ℏ∗.

Proof. By substituting y = ℏ∗ into Lemma 9, we have

ℶkΓ yk, ℏ∗ð Þ −ℶkΓ yk, xk+1ð Þ ≥ νk − xk+1, ℏ∗ − xk+1h i: ð36Þ

By the use of condition Γ2, we obtain

νk − xk+1, xk+1 − ℏ∗h i ≥ℶkΓ yk, xk+1ð Þ: ð37Þ

From the expression in Algorithm 1, we obtain

Γ νk, xk+1ð Þ − Γ νk, ykð Þ − Γ yk, xk+1ð Þ

≤
2 −

ffiffiffi
2

p
− ϕ

� �
ϰ νk − ykk k2 + xk+1 − ykk k2� �

2ℶk+1
,

ð38Þ

which after multiplying both sides by ℶk > 0 implies that

ℶkΓ yk, xk+1ð Þ ≥ℶkΓ νk, xk+1ð Þ −ℶkΓ νk, ykð Þ

−
2 −

ffiffiffi
2

p
− ϕ

� �
ℶkϰ νk − ykk k2 + xk+1 − ykk k2� �

2ℶk+1
:

ð39Þ

Combining expressions (37) and (39), we obtain

νk − xk+1, xk+1 − ℏ∗h i ≥ℶk Γ νk, xk+1ð Þ − Γ νk, ykð Þf g

−
2 −

ffiffiffi
2

p
− ϕ

� �
ℶkϰ νk − ykk k2 + xk+1 − ykk k2� �

2ℶk+1
:

ð40Þ

By using expression (35), we have

ℶk Γ vk, xk+1ð Þ − Γ vk, ykð Þf g ≥ vk − yk, xk+1 − ykh i: ð41Þ

Combining expressions (40) and (41), we have

νk − xk+1, xk+1 − ℏ∗h i ≥ νk − yk, xk+1 − ykh i

−
2 −

ffiffiffi
2

p
− ϕ

� �
ℶkϰ νk − ykk k2 + xk+1 − ykk k2� �

2ℶk+1
:

ð42Þ

The following facts are available to us:

2 vk − xk+1, xk+1 − ℏ∗h i = vk − ℏ∗k k2 − xk+1 − vkk k2 − xk+1 − ℏ∗k k2,

2 yk − νk, yk − xk+1h i = νk − ykk k2 + xk+1 − ykk k2 − νk − xk+1k k2:
ð43Þ

Thus, we have

xk+1 − ℏ∗k k2 ≤ νk − ℏ∗k k2 − νk − ykk k2 − xk+1 − ykk k2

+
2 −

ffiffiffi
2

p
− ϕ

� �
ℶkϰ νk − ykk k2 + xk+1 − ykk k2� �

ℶk+1
:

ð44Þ

Since ℶk ⟶ℶ, thus, there exists a fixed natural number
k1 ∈ℕ such that

lim
k⟶+∞

ϰℶk

ℶk+1
≤ 1: ð45Þ

Thus, we have

xk+1 − ℏ∗k k2 ≤ vk − ℏ∗k k2 − vk − ykk k2 − xk+1 − ykk k2

+ 2 −
ffiffiffi
2

p
− ϕ

� �
vk − ykk k2 + xk+1 − ykk k2� �

:
ð46Þ

Furthermore, it implies that

xk+1 − ℏ∗k k2 ≤ vk − ℏ∗k k2 −
ffiffiffi
2

p
− 1

� �
vk − ykk k2

−
ffiffiffi
2

p
− 1

� �
xk+1 − ykk k2 − ϕ vk − ykk k2 + xk+1 − ykk k2� �

:

ð47Þ

From expression (47), we obtain

xk+1 − ℏ∗k k2 ≤ vk − ℏ∗k k2, ∀k ≥ k1: ð48Þ

It is possible to write as an expression for every k ≥ k1
such that

xk+1 − ℏ∗k k ≤ xk + ζk xk − xk−1ð Þ − ℏ∗k k ≤ xk − ℏ∗k k + ζk xk − xk−1k k:
ð49Þ
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Combining expressions (18) and (49) and Lemma 5
implies that

lim
k⟶+∞

xk − ℏ∗k k = l, for some finite l ≥ 0: ð50Þ

By using the definition of νk, we have

vk − ℏ∗k k2 = xk + ζk xk − xk−1ð Þ − ℏ∗k k2 = 1 + ζkð Þ xk − ℏ∗ð Þk
− ζk xk−1 − ℏ∗ð Þk2 = 1 + ζkð Þ xk − ℏ∗k k2 − ζk xk−1k
− ℏ∗k2 + ζk 1 + ζkð Þ xk − xk−1k k2 ≤ 1 + ζkð Þ xkk
− ℏ∗k2 − ζk xk−1 − ℏ∗k k2 + 2ζk xk − xk−1k k2:

ð51Þ

By using expressions (50) and (19) in the abovemen-
tioned formula, we may deduce that

lim
k⟶+∞

vk − ℏ∗k k = l: ð52Þ

Thus, we have

xk+1 − ℏ∗k k2 ≤ νk − ℏ∗k k2 − νk − ykk k2 − xk+1 − ykk k2

+
2 −

ffiffiffi
2

p
− ϕ

� �
ℶkϰ νk − ykk k2 + xk+1 − ykk k2� �

ℶk+1
:

ð53Þ

By using expressions (51) and (53), we obtain

xk+1 − ℏ∗k k2 ≤ 1 + ζkð Þ xk − ℏ∗k k2 − ζk xk−1 − ℏ∗k k2 + 2ζk xkk

− xk−1k2 − 1 −
2 −

ffiffiffi
2

p
− ϕ

� �
ϰℶk

ℶk+1

0
@

1
A νk − ykk k2

− 1 −
2 −

ffiffiffi
2

p
− ϕ

� �
ϰℶk

ℶk+1

0
@

1
A yk − xk+1k k2:

ð54Þ

Consequently, this implies that

1 −
2 −

ffiffiffi
2

p
− ϕ

� �
ϰℶk

ℶk+1

0
@

1
A νk − ykk k2

+ 1 −
2 −

ffiffiffi
2

p
− ϕ

� �
ϰℶk

ℶk+1

0
@

1
A yk − xk+1k k2 ≤ xk − ℏ∗k k2

− xk+1 − ℏ∗k k2 + ζk xk − ℏ∗k k2 − xk−1 − ℏ∗k k2
� �

+ 2ζk xk − xk−1k k2:
ð55Þ

By taking the limit as k⟶ +∞ in expression (55), we
obtain

lim
k⟶+∞

νk − ykk k = lim
k⟶+∞

yk − xk+1k k = 0: ð56Þ

Thus, expressions (52) and (56) give that

lim
k⟶+∞

yk − ℏ∗k k = l: ð57Þ

By using expressions (50), (52), and (57), so that the
sequences fxkg, fνkg, and fykg are bounded, therefore fxk
g, fνkg, and fykg exist. Thus, limk⟶+∞kxk − ℏ∗k2,
limk⟶+∞kyk − ℏ∗k2, limk⟶+∞kvk − ℏ∗k2. Following that,
we will show that the sequence fxkg weakly converges to
ℏ∗. As a result, all sequences fxkg, fνkg, and fykg are
bounded. We now demonstrate that each sequential weak
cluster point in the sequence fxkg is in solðΓ, ΞÞ: Consider
that z is a weak cluster point of fxkg, which means that there
is a subsequence of fxkg that is weakly convergent to z:
Then, z ∈ Ξ,fykmg is also weakly convergent to z:Now let
demonstrate thatz ∈ solðΓ, ΞÞ: We have obtained the follow-
ing by combining Lemma 9 with expressions (39) and (35):

ℶkm
Γ ykm , y
� �

≥ℶkm
Γ ykm , xkm+1
� �

+ νkm − xkm+1, y − xkm+1
� �

≥ℶkm
Γ νkm , xkm+1

� �
−ℶkm

Γ νkm , ykm
� �

−
2 −

ffiffiffi
2

p
− ϕ

� �
ϰℶkm

2ℶkm+1
ykm − νkm




 


2

−
2 −

ffiffiffi
2

p
− ϕ

� �
ϰℶkm

2ℶkm+1
ykm − xkm+1




 


2
+ νkm − xkm+1, y − xkm+1
� �

≥ νkm − ykm , xkm+1 − ykm

D E

−
2 −

ffiffiffi
2

p
− ϕ

� �
ϰℶkm

2ℶkm+1
ykm − νkm




 


2

−
2 −

ffiffiffi
2

p
− ϕ

� �
ϰℶkm

2ℶkm+1
ykm − xkm+1




 


2
+ νkm − xkm+1, y − xkm+1
� �

,
ð58Þ

where y is any member of Πk: The use of expression (56)
and the boundedness of the sequence fxkg implies that the
right-hand side of the last inequality is convergent to zero.
By using the condition Γ4 and ykm ⇀ z, we have ℶkm

≥ℶ >
0 such as

0 ≤ lim sup
m⟶+∞

ykm , y
� �

≤ Γ z, yð Þ, ∀y ∈Πk: ð59Þ

Since Ξ is a subset of half-space Πk, it follows that Γðz
, yÞ ≥ 0, ∀y ∈ Ξ: This proves that z ∈ solðΓ, ΞÞ: Thus, Lemma
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4 assures that fνkg,fxkg, and fykg converge weakly to ℏ∗ as
k⟶ +∞:

We now present two iterative methods based on a
monotone and nonmonotone variable step size rule and
two strongly convex minimization problems without the
need for subgradient methods. The following is a description
of the second major result.

4. Results to Solve the Fixed Point Problem and
Variational Inequalities

In this section, we solve fixed point problems and variational
inequalities using the results from our main results. Expres-
sions (6) and (8) are employed to obtain the following con-
clusions. All the methods are based on our main findings,
which are interpreted as follows.

Corollary 12. Assume that I1 : Ξ⟶Π is a pseudomono-
tone, weakly continuous, and L -Lipschitz continuous opera-
tor and the solution set solðI1, ΞÞ ≠∅: Choose ℶ0 > 0,
x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ,ϕ ∈ ð0, 2 − ffiffiffi

2
p Þ with a

sequence fψkg ⊂ ½0,+∞Þ such that

〠
+∞

k=0
ψk < +∞: ð60Þ

Moreover, choose ζk such that 0 ≤ ζk ≤ βk such that

βk =
min ζ, ψk

xk − xk−1k k
� �

, if xk ≠ xk−1,

ζ, otherwise:

8><
>: ð61Þ

First, we have to compute

νk = xk + ζk xk − xk−1ð Þ,
yk = PΞ νk − ûkI1 νkð Þð Þ:

ð62Þ

Having xk−1,xk,yk with

Πk = z ∈Π : νk −ℶkI1 νkð Þ − yk, z − ykh i ≤ 0f g, for each k ≥ 0:
ð63Þ

Compute

xk+1 = PΠk
νk −ℶkI1 ykð Þð Þ: ð64Þ

Update the step size in the following way:

STEP 0: Choose 0 > 0,x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ, ϕ ∈ ð0, 2 − ffiffiffi
2

p Þ with a sequence fψkg ⊂ ½0,+∞Þ such that
∑+∞

k=0‍ψk < +∞:

Moreover, choose a non-negative real sequence fpkg such that ∑+∞
k=1pk < +∞ and ζk such that 0 ≤ ζk ≤ βk such that

βk =
min fζ, ðψk/kxk − xk−1kÞg if xk ≠ xk−1,
ζ otherwise:

(

STEP 1: Compute
yk = arg min

y∈Ξ
fℶkΓðνk, yÞ + 1/2kνk − yk2g,wwhere νk = xk + ζkðxk − xk−1Þ:

STEP 2: Compute
xk+1 = arg min

y∈Ξ
fℶkΓðyk, yÞ + 1/2kνk − yk2g:

STEP 3: Compute

ℶk+1 =
min fℶk + pk, ðð2 −

ffiffiffi
2

p
− ϕÞϰkνk − ykk2 + ð2 − ffiffiffi

2
p

− ϕÞϰkxk+1 − ykk2/2½Γðνk, xk+1Þ − Γðνk, ykÞ − Γðyk, xk+1Þ�Þg
if Γðνk, xk+1Þ − Γðνk, ykÞ − Γðyk, xk+1Þ > 0,
ℶk + pk, otherwise:

8>><
>>:

STEP 4: If yk = νk, then complete the computation. Otherwise, set k≔ k + 1 and go back STEP 1.

Algorithm 4

k+1 =
min ℶk,

2 −
ffiffiffi
2

p
− ϕ

� �
ϰ νk − ykk k2 + 2 −

ffiffiffi
2

p
− ϕ

� �
ϰ xk+1 − ykk k2

2 I1 νkð Þ −I1 ykð Þ, xk+1 − ykh i

8<
:

9=
;, if I1 νkð Þ −I1 ykð Þ, xk+1 − ykh i > 0,

ℶk, otherwise:

8>>><
>>>:

ð65Þ
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Then, the sequences fxkg converge weakly to ℏ∗ ∈ solð
I1, ΞÞ.

Corollary 13. Assume that I1 : Ξ⟶Π is a pseudomono-
tone, weakly continuous, and L -Lipschitz continuous opera-
tor and the solution set solðI1, ΞÞ ≠∅: Choose ℶ0 > 0,
x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ,ϕ ∈ ð0, 2 − ffiffiffi

2
p Þ with a

sequence fψkg ⊂ ½0,+∞Þ such that

〠
+∞

k=0
ψk < +∞: ð66Þ

Moreover, choose a non-negative real sequence fpkg
such that ∑+∞

k=1pk < +∞ and ζk such that 0 ≤ ζk ≤ βk such
that

βk =
min ζ, ψk

xk − xk−1k k
� �

, if xk ≠ xk−1,

ζ, otherwise:

8><
>: ð67Þ

First, we have to compute

νk = xk + ζk xk − xk−1ð Þ,
yk = PΞ νk − ûkI1 νkð Þð Þ:

ð68Þ

Having xk−1,xk,yk with

Πk = z ∈Π : νk −ℶkI1 νkð Þ − yk, z − ykh i ≤ 0f g, for each k ≥ 0:
ð69Þ

Compute

xk+1 = PΠk
νk −ℶkI1 ykð Þð Þ: ð70Þ

Update the step size in the following way:

Then, the sequences fxkg converge weakly to ℏ∗ ∈ solð
I1, ΞÞ.

Corollary 14. Assume that I1 : Ξ⟶Π is a pseudomono-
tone, weakly continuous, and L -Lipschitz continuous opera-
tor and the solution set solðI1, ΞÞ ≠∅: Choose ℶ0 > 0,
x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ,ϕ ∈ ð0, 2 − ffiffiffi

2
p Þ with a

sequence fψkg ⊂ ½0,+∞Þ such that

〠
+∞

k=0
ψk < +∞: ð72Þ

Moreover, choose ζk such that 0 ≤ ζk ≤ βk such that

βk =
min ζ, ψk

xk − xk−1k k
� �

, if xk ≠ xk−1,

ζ, otherwise:

8><
>: ð73Þ

First, we have to compute

νk = xk + ζk xk − xk−1ð Þ,
yk = PΞ νk −ℶkI1 νkð Þð Þ,
xk+1 = PΞ νk −ℶkI1 ykð Þð Þ:

ð74Þ

Update the step size in the following way:

k+1 =
min ℶk + pk,

2 −
ffiffiffi
2

p
− ϕ

� �
ϰ νk − ykk k2 + 2 −

ffiffiffi
2

p
− ϕ

� �
ϰ xk+1 − ykk k2

2 I1 νkð Þ −I1 ykð Þ, xk+1 − ykh i

8<
:

9=
;, if I1 νkð Þ −I1 ykð Þ, xk+1 − ykh i > 0,

ℶk + pk, otherwise:

8>>><
>>>:

ð71Þ

k+1 =
min ℶk,

2 −
ffiffiffi
2

p
− ϕ

� �
ϰ νk − ykk k2 + 2 −

ffiffiffi
2

p
− ϕ

� �
ϰ xk+1 − ykk k2

2 I1 νkð Þ −I1 ykð Þ, xk+1 − ykh i

8<
:

9=
;, if I1 νkð Þ −I1 ykð Þ, xk+1 − ykh i > 0,

ℶk, otherwise:

8>>><
>>>:

ð75Þ
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Then, the sequences fxkg converge weakly to ℏ∗ ∈ solð
I1, ΞÞ.

Corollary 15. Assume that I1 : Ξ⟶Π is a pseudomono-
tone, weakly continuous, and L -Lipschitz continuous opera-
tor and the solution set solðI1, ΞÞ ≠∅: Choose ℶ0 > 0,
x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ,ϕ ∈ ð0, 2 − ffiffiffi

2
p Þ with a

sequence fψkg ⊂ ½0,+∞Þ such that

〠
+∞

k=0
ψk < +∞: ð76Þ

Moreover, choose a non-negative real sequence fpkg
such that ∑+∞

k=1pk < +∞ and ζk such that 0 ≤ ζk ≤ βk such

that

βk =
min ζ, ψk

xk − xk−1k k
� �

, if xk ≠ xk−1,

ζ, otherwise:

8><
>: ð77Þ

First, we have to compute

νk = xk + ζk xk − xk−1ð Þ,
yk = PΞ νk −ℶkI1 νkð Þð Þ,
xk+1 = PΞ νk −ℶkI1 ykð Þð Þ:

ð78Þ

Update the step size in the following way:

Then, the sequences fxkg converge weakly to ℏ∗ ∈ solð
I1, ΞÞ.

Corollary 16. Assume that I2 : Ξ⟶Π is a κ-strict pseudo-
contraction, weakly continuous, and L-Lipschitz continuous
operator and the solution set solðI2, ΞÞ ≠∅: Choose ℶ0 > 0,
x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ,ϕ ∈ ð0, 2 − ffiffiffi

2
p Þ with a

sequence fψkg ⊂ ½0,+∞Þ such that

〠
+∞

k=0
ψk < +∞: ð80Þ

Moreover, choose ζk such that 0 ≤ ζk ≤ βk such that

βk =
min ζ, ψk

xk − xk−1k k
� �

, if xk ≠ xk−1,

ζ, otherwise:

8><
>: ð81Þ

Compute

νk = xk + ζk xk − xk−1ð Þ,
yk = PΞ νk −ℶk νk −I2 νkð Þð Þ½ �:

ð82Þ

Having xk−1, xk,yk, with

Πk = z ∈E : 1 −ℶkð Þνk +ℶkI2 νkð Þ − yk, z − ykh i ≤ 0f g:
ð83Þ

Compute

xk+1 = PΠk
νk −ℶk yk −I2 ykð Þð Þ½ �: ð84Þ

The step size rule for the next iteration is evaluated as
follows:

k+1 =
min ℶk + pk,

2 −
ffiffiffi
2

p
− ϕ

� �
ϰ νk − ykk k2 + 2 −

ffiffiffi
2

p
− ϕ

� �
ϰ xk+1 − ykk k2

2 I1 νkð Þ −I1 ykð Þ, xk+1 − ykh i

8<
:

9=
;, if I1 νkð Þ −I1 ykð Þ, xk+1 − ykh i > 0,

ℶk + pk, otherwise:

8>>><
>>>:

ð79Þ

k+1 =
min ℶk,

2 −
ffiffiffi
2

p
− ϕ

� �
ϰ νk − ykk k2 + 2 −

ffiffiffi
2

p
− ϕ

� �
ϰ xk+1 − ykk k2

2 νk − ykð Þ − I2 νkð Þ −I2 ykð Þ½ �, xk+1 − ykh i

8<
:

9=
;, if νk − ykð Þ − I2 νkð Þ −I2 ykð Þ½ �, xk+1 − ykh i > 0,

ℶk, otherwise:

8>>><
>>>:

ð85Þ
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Then, the sequence fxkg converges weakly to ℏ∗ ∈ solð
I1, ΞÞ.

Corollary 17. Assume that I2 : Ξ⟶Π is a κ -strict pseu-
docontraction, weakly continuous, and L-Lipschitz continu-
ous operator and the solution set solðI2, ΞÞ ≠∅: Choose
ℶ0 > 0, x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ, ϕ ∈ ð0, 2 − ffiffiffi

2
p Þ with

a sequence fψkg ⊂ ½0,+∞Þ such that

〠
+∞

k=0
ψk < +∞: ð86Þ

Moreover, choose a non-negative real sequence fpkg
such that ∑+∞

k=1pk < +∞ and ζk such that 0 ≤ ζk ≤ βk such
that

βk =
min ζ, ψk

xk − xk−1k k
� �

, if xk ≠ xk−1,

ζ, otherwise:

8><
>: ð87Þ

Compute

νk = xk + ζk xk − xk−1ð Þ,
yk = PΞ νk −ℶk νk −I2 νkð Þð Þ½ �:

ð88Þ

Having xk−1, xk,yk, with

Πk = z ∈E : 1 −ℶkð Þνk +ℶkI2 νkð Þ − yk, z − ykh i ≤ 0f g:
ð89Þ

Compute

xk+1 = PΠk
νk −ℶk yk −I2 ykð Þð Þ½ �: ð90Þ

The step size rule for the next iteration is evaluated as
follows:

Then, the sequence fxkg converges weakly to ℏ∗ ∈ solð
I2, ΞÞ.

Corollary 18. Assume that I2 : Ξ⟶Π is a κ-strict pseudo-
contraction, weakly continuous, and L-Lipschitz continuous
operator and the solution set solðI2, ΞÞ ≠∅: Choose ℶ0 > 0,
x−1, x0 ∈Π,ζ ∈ ð0, 1Þ, ϰ ∈ ð0, 1Þ, ϕ ∈ ð0, 2 − ffiffiffi

2
p Þ with a

sequence fψkg ⊂ ½0,+∞Þ such that

〠
+∞

k=0
ψk < +∞: ð92Þ

Moreover, choose ζk such that 0 ≤ ζk ≤ βk such that

βk =
min ζ, ψk

xk − xk−1k k
� �

, if xk ≠ xk−1,

ζ, otherwise:

8><
>: ð93Þ

Compute

νk = xk + ζk xk − xk−1ð Þ,
yk = PΞ νk −ℶk νk −I2 νkð Þð Þ½ �,
xk+1 = PΞ νk −ℶk yk −I2 ykð Þð Þ½ �:

ð94Þ

k+1 =
min ℶk + pk,

2 −
ffiffiffi
2

p
− ϕ

� �
ϰ νk − ykk k2 + 2 −

ffiffiffi
2

p
− ϕ

� �
ϰ xk+1 − ykk k2

2 νk − ykð Þ − I2 νkð Þ −I2 ykð Þ½ �, xk+1 − ykh i

8<
:

9=
;, if νk − ykð Þ − I2 νkð Þ −I2 ykð Þ½ �, xk+1 − ykh i > 0,

ℶk + pk, otherwise:

8>>><
>>>:

ð91Þ

k+1 =
min ℶk,

2 −
ffiffiffi
2

p
− ϕ

� �
ϰ νk − ykk k2 + 2 −

ffiffiffi
2

p
− ϕ

� �
ϰ xk+1 − ykk k2

2 νk − ykð Þ − I2 νkð Þ −I2 ykð Þ½ �, xk+1 − ykh i

8<
:

9=
;, if νk − ykð Þ − I2 νkð Þ −I2 ykð Þ½ �, xk+1 − ykh i > 0,

ℶk, otherwise:

8>>><
>>>:

ð95Þ
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Figure 1: All methods are compared computationally while x0 = ð0, 0, 0, 0, 0ÞT :
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Figure 2: All methods are compared computationally while x0 = ð0, 0, 0, 0, 0ÞT :

12 Journal of Function Spaces



Itr.method 1
Itr.method 2

Itr.method 3
Itr.method 4

10−8

10−6

10−4

10−2

100

D
n

0 10 20 30 40 50 60
Number of iterations

Figure 3: All methods are compared computationally while x0 = ð1, 2, 1, 2, 1ÞT :
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Figure 4: All methods are compared computationally while x0 = ð1, 2, 1, 2, 1ÞT :
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Figure 5: All methods are compared computationally while x0 = ð1, 2, 3,−4, 5ÞT :
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Figure 6: All methods are compared computationally while x0 = ð1, 2, 3,−4, 5ÞT :
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Figure 7: All methods are compared computationally while x0 = ð2,−1, 3,−4, 5ÞT :
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Figure 8: All methods are compared computationally while x0 = ð2,−1, 3,−4, 5ÞT :
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The step size rule for the next iteration is evaluated as
follows:

Then, the sequence fxkg converges weakly to ℏ∗ ∈ solð
I2, ΞÞ.

Corollary 19. Assume that I2 : Ξ⟶Π is a κ-strict pseudo-
contraction, weakly continuous, and L-Lipschitz continuous
operator and the solution set solðI2, ΞÞ ≠∅: Choose ℶ0 > 0,

x−1, x0 ∈Π,ζ ∈ ð0, 1Þ,ϰ ∈ ð0, 1Þ, ϕ ∈ ð0, 2 − ffiffiffi
2

p Þ with a
sequence fψkg ⊂ ½0,+∞Þ such that

〠
+∞

k=0
ψk < +∞: ð96Þ

Table 1: All methods’ numerical values for Figures 1–8.

x0
Number of iterations Execution time in seconds

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

0, 0, 0, 0, 0ð ÞT 22 14 0.180260200000000 0.127609500000000

1, 2, 1, 2, 1ð ÞT 23 16 0.226162200000000 0.152221400000000

1, 2, 3,−4, 5ð ÞT 25 16 0.226667900000000 0.154296300000000

2,−1, 3,−4, 5ð ÞT 25 16 0.275009100000000 0.144512100000000

Table 2: All methods’ numerical values for Figures 1–8.

x0
Number of iterations Execution time in seconds

Algorithm 1 n [22] Algorithm 2 in [35] Algorithm 1 in [22] Algorithm 2 in [35]

0, 0, 0, 0, 0ð ÞT 44 33 0.340814700000000 0.312906600000000

1, 2, 1, 2, 1ð ÞT 54 35 0.652377900000000 0.351818000000000

1, 2, 3,−4, 5ð ÞT 56 35 0.526694900000000 0.332574400000000

2,−1, 3,−4, 5ð ÞT 57 40 0.494837300000000 0.359039600000000
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Figure 9: All methods are compared computationally while x0 = ð2, 3, 2, 5, 2ÞT :
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Figure 10: All methods are compared computationally while x0 = ð2, 3, 2, 5, 2ÞT :
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Figure 11: All methods are compared computationally while x0 = ð1, 3, 5, 4, 7ÞT :
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Figure 12: All methods are compared computationally while x0 = ð1, 3, 5, 4, 7ÞT :
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Figure 13: All methods are compared computationally while x0 = ð2,−3, 5, 9,−5ÞT :
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Moreover, choose a non-negative real sequence fpkg
such that ∑+∞

k=1pk < +∞ and ζk such that 0 ≤ ζk ≤ βk such
that

βk =
min ζ, ψk

xk − xk−1k k
� �

, if xk ≠ xk−1,

ζ, otherwise:

8><
>: ð97Þ

Compute

νk = xk + ζk xk − xk−1ð Þ,
yk = PΞ νk −ℶk νk −I2 νkð Þð Þ½ �,
xk+1 = PΞ νk −ℶk yk −I2 ykð Þð Þ½ �:

ð98Þ

Itr.method 1
Itr.method 2

Itr.method 3
Itr.method 4
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Elapsed time (sec)
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10−2

100

102

D
n

Figure 14: All methods are compared computationally while x0 = ð2,−3, 5, 9,−5ÞT :

Table 3: All methods’ numerical values for Figures 9–14.

x0
Number of iterations Execution time in seconds

Algorithm 1 in [22] Algorithm 2 in [35] Algorithm 1 in [22] Algorithm 2 in [35]

2, 3, 2, 5, 2ð ÞT 22 17 0.9305202000 0.808993700

1, 3, 5, 4, 7ð ÞT 30 23 1.8477304000 0.945203900

2,−3, 5, 9,−5ð ÞT 33 25 1.3113005000 0.816565900

Table 4: All methods’ numerical values for Figures 9–14.

x0
Number of iterations Execution time in seconds

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

2, 3, 2, 5, 2ð ÞT 09 05 0.366167800000000 0.202759300000000

1, 3, 5, 4, 7ð ÞT 12 07 0.446752600000000 0.341142700000000

2,−3, 5, 9,−5ð ÞT 13 07 0.445763600000000 0.257909300000000
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The step size rule for the next iteration is evaluated as
follows:

Then, the sequence fxkg converges weakly to ℏ∗ ∈ solð
I2, ΞÞ.

5. Numerical Illustrations

This section describes a number of numerical experiments
conducted to demonstrate the validity of the proposed
methods. Some of these numerical experiments provide a
thorough understanding of how to select effective control
parameters. Some of them demonstrate the advantages of
the proposed methods over existing ones in the literature.
All MATLAB codes were run in MATLAB 9.5 (R2018b)
on an Intel(R) Core(TM) i5-6200 Processor CPU @
2.30GHz 2.40GHz, with 8.00GB RAM.

Example 20. The first sample problem here is drawn from
the Nash-Cournot oligopolistic equilibrium model in [16].
In this example, the bifunction Γ can be formulated as hav-
ing

Γ x, yð Þ = Px +Qy + c, y − xh i, ð100Þ

where P,Q, and vector c are defined by

P =

3:1 2 0 0 0
2 3:6 0 0 0
0 0 3:5 2 0
0 0 2 3:3 0
0 0 0 0 3

0
BBBBBBBB@

1
CCCCCCCCA
,Q =

1:6 1 0 0 0
1 1:6 0 0 0
0 0 1:5 1 0
0 0 1 1:5 0
0 0 0 0 2

0
BBBBBBBB@

1
CCCCCCCCA
,c =

1
−2
−1
2
−1

0
BBBBBBBB@

1
CCCCCCCCA
:

ð101Þ

The eigenvalues of the matrix Q − P are as follows: −
2:9050, −2:7808, −1:0000,−0:8950,−0:7192: As a result, the
matrices Q − P and Q are symmetrically negative semidefi-
nite and symmetrically positive semidefinite, respectively.
Furthermore, the values for Lipschitz-like parameters are c1
= c2 = 1/2kP −Qk = 1:4525: The constraint set Ξ ⊂ℝM is
regarded as

Ξ≔ x ∈ℝM : −2 ≤ xi ≤ 5
� �

: ð102Þ

The beginning points for these numerical investigations
vary, as does the error term Dk = kxk+1 − xkk: Figures 1–8
and Tables 1 and 2 show several results for the error term

10−5: Consider the following information regarding control
settings:

(1) For Algorithm 1 in [22] (in short, Itr.Method1), we
use

ϕ = 0:45,

ℶ = 1
2c2 + 8c1

ð103Þ

(2) For Algorithm 2 in [41] (in short, Itr.Method2), we
use

ζk = 0:12,
ϰ = 0:11,
ℶ0 = 1

ð104Þ

(3) For Algorithm 1 (in short, Itr.Method3), we use

ℶ0 = 0:50,
ζ = 0:50,
ϰ = 0:55,
ϕ = 0:05,

ψk =
1
k2

ð105Þ

k+1 =
min ℶk + pk,

2 −
ffiffiffi
2

p
− ϕ

� �
ϰ νk − ykk k2 + 2 −

ffiffiffi
2

p
− ϕ

� �
ϰ xk+1 − ykk k2

2 νk − ykð Þ − I2 νkð Þ −I2 ykð Þ½ �, xk+1 − ykh i

8<
:

9=
;, if νk − ykð Þ − I2 νkð Þ −I2 ykð Þ½ �, xk+1 − ykh i > 0,

ℶk + pk, otherwise:

8>>><
>>>:

ð99Þ
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(4) For Algorithm 2 (in short, Itr.Method4), we use

ℶ0 = 0:50,
ζ = 0:50,
ϰ = 0:55,
ϕ = 0:05,

ψk =
1
k2

,

pk =
100
1 + kð Þ2 :

ð106Þ

Example 21. Consider that the possible set Ξ ⊂ℝN is defined
as follows:

Ξ = u ∈ℝN : Au ≤ b
� �

, ð107Þ

where matrix A has an order 100 ×N: Consider that Γ : Ξ
× Ξ⟶ℝ is expressed by

Γ u, yð Þ = L uð Þ, y − uh i, ∀u, y ∈ Ξ, ð108Þ

where L : ℝN ⟶ℝN is an operator evaluated as LðuÞ =
Pu + r with r ∈ℝN and P =QQT + R + S, where Q is an N
×N matrix, R is an N ×N skew-symmetric matrix, and S
is an N ×N positive definite diagonal matrix. It is simple
to demonstrate that Γ is monotone and that the Lipschitz
constants are 2c1 = 2c2 = kMk (for more information, see
[42, 43]). The beginning points for these numerical investi-
gations vary, as does the error term Dk = kxk+1 − xkk:
Figures 9–14 and Tables 3 and 4 show several results for
the error term 10−5: Consider the following information
regarding control settings:

(1) For Algorithm 1 in [22] (in short, Itr.Method1), we
use

ϕ = 0:45,

ℶ = 1
2c2 + 8c1

ð109Þ

(2) For Algorithm 2 in [41] (in short, Itr.Method2), we
use

ζk = 0:12,
ϰ = 0:11,
ℶ0 = 1

ð110Þ

(3) For Algorithm 1 (in short, Itr.Method3), we use

ℶ0 = 0:50,
ζ = 0:50,
ϰ = 0:55,
ϕ = 0:05,

ψk =
1
k2

ð111Þ

(4) For Algorithm 2 (in short, Itr.Method4), we use

ℶ0 = 0:50,
ζ = 0:50,
ϰ = 0:55,
ϕ = 0:05,

ψk =
1
k2

,

pk =
100
1 + kð Þ2

ð112Þ

6. Conclusion

The research proposed four explicit extragradient-like strat-
egies for dealing with an equilibrium problem in a real Hil-
bert space involving a pseudomonotone and a Lipschitz-type
bifunction. A novel step size rule that does not rely on
Lipschitz-type constant information has been proposed.
The convergence theorems and applications of the main
results have been demonstrated. Several experiments are
given to show the numerical behavior of our two algorithms
and to compare them to other well-known algorithms in the
literature.
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As the generalization of the fixed-point theory, the fixed-circle problems are interesting and notable geometric constructions. In
this paper, we prove that some new necessary conditions are investigated for the existence of a fixed circle of a given self-mapping
in G-metric spaces. The well-known Braincari and Chatterjea contractive conditions are generalized for proving the uniqueness of
obtained theorems. Finally, an application to parametric rectified linear unit activation functions are given to show the importance
of studying the fixed-circle problem.

1. Introduction and Preliminaries

Recently, there has been a trend to work fixed-circle problems
in both metric spaces and some generalized metric spaces
[1–17]. For some self mappings, when the fixed point is not
unique, it is an open question about the geometric shape and
in some cases the set of fixed point form a circle. For example,
in establishing some applicable areas such as neural networks,
besides many others. This approach was initiated in [6, 7] to
examine the geometry of the set of fixed-points when the
number of the fixed-points of self-mappings is more than
one on both metric and S-metric spaces. Fixed-circle theorems
were proved and extended with various aspects and were
applied to discontinuous activation functions (for example,
see [18–20] and the references therein), to rectified linear units
activation functions used in the neural networks [21].

In this paper, we establish various fixed-circle theorems
in G-metric spaces. Different examples and application to
parametric rectified linear unit activation functions are con-
sidered to illustrate the usability of our obtained results.

Firstly, we recall the concept of a G-metric space.

Definition 1.1 (see [22]). Consider the set F≠∅ and G : F
×F×F⟶ℝ ∪ f0g such that, for all ξ, ζ, ϖ, η ∈F, the fol-
lowing conditions are satisfying:

ðG1ÞGðξ, ζ, ϖÞ = 0 if and only if ξ = ζ = ϖ ;
ðG2Þ0 <Gðξ, ξ, ζÞ for all ξ, ζ ∈F with ξ ≠ ζ ;
ðG3ÞGðξ, ξ, ζÞ ≤Gðξ, ζ, ϖÞ for all ξ, ζ, ϖ ∈F with η ≠ ϖ ;
ðG4ÞGðξ, ζ, ϖÞ =Gðξ, ϖ, ζÞ =Gðζ, ϖ, ξÞ =⋯, (symmetry

in all three variables);
ðG5ÞGðξ, ζ, ϖÞ ≤Gðξ, η, ηÞ +Gðη, ζ, ϖÞ for all ξ, ζ, ϖ, η ∈

F, (rectangle inequality).
Then, the function G is called a G-metric on F:

Definition 1.2 (see [22]). A G -metric space ðF,GÞ is called
be symmetric if

G ξ, ζ, ζð Þ =G ζ, ξ, ξð Þ, ð1Þ

for all ξ, ζ ∈F:
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In [23], Kaplan and Tas introduced the notion of circle
on a G-metric space. More precisely, let ðF,GÞ be a G

-metric space and ξ0 ∈F, r ∈ ð0,∞Þ: The circle of center ξ0
and radius r > 0 is defined as

CG ξ0, rð Þ = ξ ∈F : G ξ0, ξ, ξð Þ = rf g: ð2Þ

Example 1.1. LetF=ℝ and d be a metric space. Let the func-
tion G : F×F×F⟶ ½0,∞Þ be defined by

G ξ, ζ, ϖð Þ =max d ξ, ζð Þ, d ζ, ϖð Þ, d ϖ, ξð Þf g ð3Þ

for all ξ, ζ, ϖ ∈F [22]. Then, ðF,GÞ be a G-metric space. Let
us consider the function d : F×F⟶ℝ as

d ξ, ζð Þ = eξ − eζ
��� ��� ð4Þ

for all ξ, ζ ∈F: Then, we get

CG ln 2, ln 4ð Þ = ln 6 ð5Þ

the circle of center ln 2 and radius ln 4:

They also introduced the notion of fixed circle on a G

-metric space [23]. Let ðF,GÞ be a G-metric space and CGð
ξ0, rÞ be a circle. For a self-mapping T : F⟶F, if Tξ = ξ
for all ξ ∈ CGðξ0, rÞ then, the circle CGðξ0, rÞ is said to be a
fixed circle of T:

2. Some New Existence Conditions for Fixed
Circles with Auxiliary Functions

Now, we present some new existence theorems for fixed cir-
cles of self-mappings.

Theorem 2.1. Let ðF,GÞ be a G -metric space and CGðξ0, rÞ
be any circle on F: Consider Mr : ℝ

+ ∪ f0g⟶ℝ as

Mr ηð Þ =
η − r if η > 0

0 if η = 0
,

(
ð6Þ

for all η ∈ℝ+ ∪ f0g: If the self-mapping T : F⟶F is a
function such that, for all ξ ∈F, the following conditions are
fulfilled:

(1) Gðξ0,Tξ,TξÞ = r for all ξ ∈ CGðξ0, rÞ,
(2) GðTξ,Tξ,TζÞ > r for all ξ, ζ ∈ CGðξ0, rÞ with ξ ≠ ζ,

(3) GðTξ,Tξ,TζÞ ≤Gðξ, ξ, ζÞ −MrðGðTξ,Tξ, ξÞÞ for
all ξ, ζ ∈ CGðξ0, rÞ.

Then, the circle CGðξ0, rÞ is a fixed circle of T:

Proof. Fix ξ ∈ CGðξ0, rÞ. By hypothesis (1), we have Tξ ∈
CGðξ0, rÞ for all ξ ∈ CGðξ0, rÞ: We claim that ξ =Tξ, that is,
ξ is a fixed point of T: Now, let us suppose that ξ ≠Tξ:
Firstly, using the condition (2), we obtain

G T2ξ,T2ξ,Tξ
� �

> r: ð7Þ

Using the condition (3), we have

G T2ξ,T2ξ,Tξ
� �

≤G Tξ,Tξ, ξð Þ −Mr G Tξ,Tξ, ξð Þð Þ
=G Tξ,Tξ, ξð Þ −G Tξ,Tξ, ξð Þ + r = r:

ð8Þ

Then, it follows from the inequalities (7) and (8), which
is a contradiction. Hence, it should be ξ =Tξ: As a conse-
quence, T fixes the circle CGðξ0, rÞ:

Remark 2.1.

(1) Note that, in Theorem 2.1, the center of CGðξ0, rÞ
need not to be fixed

(2) Theorem 2.1 generalizes Theorem 3 given in [9].

(3) Since the notion of a G-metric and an S-metric are
independent (see, [24] for more details), then Theo-
rem 2.1 is independent from Theorem 4.1 given
in [1].

Example 2.1. Let F= ½0,∞Þ be the interval of nonnegative
real numbers and let G : F×F×F⟶ ½0,∞Þ be defined by

G ξ, ζ, ϖð Þ =
0 if ξ = ζ = ϖ

max ξ, ζ, ϖf g otherwise

(
ð9Þ

for all ξ, ζ, ϖ ∈F: Then, G is a G-metric on F:
The circle CGð1, 3Þ is obtained as follows:

CG 1, 3ð Þ = ξ ∈F : G 1, ξ, ξð Þ = 3f g = 3f g: ð10Þ

If T1 : F⟶F is defined by

T1ξ =
κ if ξ = 1
3 if ξ ≠ 1

(
, ð11Þ

for all ξ ∈F and κ ≠ 1, then T1 satisfies all the hypotheses of
Theorem 2.1 and the circle CGð1, 3Þ is fixed by T1: That is,
the self-mapping T1 has the unique fixed point ξ = 3: Notice
that the center 1 of the circle CGð1, 3Þ is not fixed by the self-
mapping T1.

Theorem 2.2. Let ðF,GÞ be a G -metric space, CGðξ0, rÞ be
any circle on F and let define φ : F⟶ ½0,∞Þ by

φ ξð Þ =G ξ, ξ, ξ0ð Þ, ð12Þ

for ξ ∈F: Suppose that the following conditions hold:

(1) Gðξ, ξ,TξÞ ≤ φðξÞ + φðTξÞ − 2r,

(2) GðTξ,Tξ, ξ0Þ ≤ r,

2 Journal of Function Spaces



for all ξ ∈ CGðξ0, rÞ such that T : F⟶F: Then, CGðξ0, rÞ is
a fixed circle of T:

Proof. Let ξ0 ∈ CGðξ0, rÞ be any arbitrary point. Together
with (1), we obtain

G ξ, ξ,Tξð Þ ≤ φ ξð Þ + φ Tξð Þ − 2r
≤G ξ, ξ, ξ0ð Þ +G Tξ,Tξ, ξ0ð Þ − 2r
=G Tξ,Tξ, ξ0ð Þ:

ð13Þ

From (2), the point Tξ should lie on or interior of the
circle CGðξ0, rÞ: If GðTξ,Tξ, ξ0Þ < r, which leads to a con-
tradiction by the inequality (2.5). Therefore, it should be G
ðTξ,Tξ, ξ0Þ = r: If GðTξ,Tξ, ξ0Þ < r, then by the inequality
(13) we have

G ξ, ξ,Tξð Þ ≤G Tξ,Tξ, ξ0ð Þ − r = r − r = 0 ð14Þ

and we obtain Tξ = ξ: As a consequence, the circle CGðξ0, rÞ
is fixed circle of T:

Remark 2.2. Notice that the condition (1) implies that Tξ is
not inside CGðξ0, rÞ for ξ ∈ CGðξ0, rÞ. Similarly, (2) guaran-
tees that Tξ is not outside of the circle CGðξ0, rÞ for ξ ∈ CG

ðξ0, rÞ. Thus, Tξ ∈ CGðξ0, rÞ for any ξ ∈ CGðξ0, rÞ and so we
get TðCGðξ0, rÞÞ ⊂ CGðξ0, rÞ:

(1) Theorem 2.2 generalizes Theorem 2.2 given in [7].

(2) Theorem 2.2 is independent from Theorem 3.11
given in [6].

Example 2.2. Let F=ℝ and the mapping G : F×F×F

⟶ ½0,∞Þ be defined by

G ξ, ζ, ϖð Þ = ξ − ζj j + ξ − ϖj j + ζ − ϖj j, ð15Þ

for each ξ, ζ, ϖ ∈F [25]. Then, ðF,GÞ is a G-metric space.
Let us take the circle CGð0, 6Þ: If we define T2 : F⟶F by

T2ξ =
7ξ + 9

ffiffiffi
3

p
ffiffiffi
3

p
ξ + 7

, ð16Þ

for all ξ ∈F, then T2 confirms that the conditions (1) and
(2) in Theorem 2.2. Hence, the circle CGð0, 6Þ is a fixed circle
of T2.

In the following example, we present an example of a
self-mapping that satisfies the condition (1) and does not
satisfy the condition (2).

Example 2.3. Let F=ℝ and ðF,GÞ be the G -metric space
defined in Example 2.2. Let us consider the circle CGð−2, 4
Þ and define the self-mapping T3 : F⟶F by

T3ξ =
−5 ξ = −4
5 ξ = 0
10 otherwise

8>><
>>: , ð17Þ

for all ξ ∈F: Then, the self-mapping T3 satisfies the condi-
tion (1) in Theorem 2.2 but does not satisfy the condition
(2) in Theorem 2.2. Obviously, T3 does not fix the circle
CGð−2, 4Þ:

In the next example, we present an example of a self-
mapping that satisfies the condition (2) and does not satisfy
the condition (1).

Example 2.4. Let F=ℝ and the mapping G : F×F×F

⟶ ½0,∞Þ be defined by

G ξ, ζ, ϖð Þ =max ξ − ζj j, ξ − ϖj j, ζ − ϖj jf g, ð18Þ

for all ξ, ζ, ϖ ∈F [25]. Then, ðF,GÞ is a G-metric space. Let
us take the circle CGð0, 1/2Þ: If we define T4 : F⟶F by

T4ξ =

−
1
2 if ξ = −1

1
2 if ξ = 1

3 otherwise

8>>>>><
>>>>>:

, ð19Þ

for all ξ ∈F, thenT4 confirms that condition (2) in Theorem
2.2 but does not satisfy the condition (1) in Theorem 2.2.
Clearly, T4 does not fix the circle CGð0, 1/2Þ:

Now, we present the following theorem.

Theorem 2.3. Let ðF,GÞ be a G -metric space and CGðξ0, rÞ
be any circle on F: Let the mapping φ be defined as Theorem
2.1. If the self-mapping T : F⟶F is a function such that
for all ξ ∈ CGðξ0, rÞ and k ∈ ½0, 1Þ, the following conditions
are satisfied:

(1) Gðξ, ξ,TξÞ ≤ φðξÞ − φðTξÞ,
(2) kGðξ, ξ,TξÞ +GðTξ,Tξ, ξ0Þ ≥ r,

then the circle CGðξ0, rÞ is a fixed circle of T.

Proof. Let ξ ∈ CGðξ0, rÞ: Conversely, suppose that ξ ≠Tξ:
Then, take into account the conditions (1) and (2), we con-
clude that

G ξ, ξ,Tξð Þ ≤ φ ξð Þ − φ Tξð Þ
=G ξ, ξ, ξ0ð Þ −G Tξ,Tξ, ξ0ð Þ
= r −G Tξ,Tξ, ξ0ð Þ ≤ kG ξ, ξ,Tξð Þ

+G Tξ,Tξ, ξ0ð Þ −G Tξ,Tξ, ξ0ð Þ
= kG ξ, ξ,Tξð Þ,

ð20Þ
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which is a contradiction k ∈ 0, 1Þ. As a result, we get ξ =Tξ
and CGðξ0, rÞ is a fixed circle of T:

Remark 2.3. Notice that the condition (1) guarantees that Tξ
is not in the exterior of the circle CGðξ0, rÞ for ξ ∈ CGðξ0, rÞ.
Similarly, the condition (2) guarantees that Tξ can lies on or
exterior or interior of the circle CGðξ0, rÞ for ξ ∈ CGðξ0, rÞ.
Hence Tξ should lies on or interior of the circle CGðξ0, rÞ.

(1) Theorem 2.3 generalizes Theorem 2.3 given in [7].

(2) Theorem 2.3 is independent from Theorem 3.2 given
in [8].

Now, we present some examples concerning with self-
mappings which have a fixed circle.

Example 2.5. Let F=ℝ and ðF,GÞ be a G -metric space
defined in Example 2.4. Let us consider the circle CGð1, 3Þ
= 3 and define the self-mapping T5 : F⟶F by

T5ξ =
2ξ − 3 ξ = 3
5 otherwise

(
, ð21Þ

for all ξ ∈F. Then, the self-mapping T5 satisfies the condi-
tion (1) and (2) in Theorem 2.3. So, CGð1, 3Þ is a fixed circle
of T5.

Example 2.6. Let F=ℝ and the function G : F×F×F

⟶ ½0,∞Þ be defined by

G ξ, ζ, ϖð Þ = eξ − eζ
��� ��� + eζ − eϖ

��� ��� + eξ − eϖ
��� ���, ð22Þ

for all ξ, ζ, ϖ ∈F: Then, it can be easily checked that ðF,GÞ
is a G-metric space. Let us consider the circle CGð0, 2Þ = f
ln 2g and define the self-mapping T6 : F⟶F as

T6ξ =
ξ ξ ∈ CG 0, 2ð Þ
ln 5 otherwise

(
, ð23Þ

for all ξ ∈F. So, the self-mapping T6 provides the condition
(1) and (2) in Theorem 2.3. Hence, CGð0, 2Þ is a fixed circle
of T6.

Next, we give an example of a self-mapping which
provides the condition (1) and does not provide the con-
dition (2).

Example 2.7. Let ðF,GÞ be a G -metric space and CGðξ0, rÞ
be a circle on F: If we take T7ξ = ξ0 as the self-mapping
on F, then we deduce that the self-mapping T7 satisfies
the condition (1) in Theorem 2.3 but does not satisfy the
condition (2) in Theorem 2.3. So, it can be easily shown that
T7 does not fix a circle CGðξ0, rÞ:

In the next example, we present an example of a self-
mapping which satisfies the condition (2) and does not sat-
isfy the condition (1).

Example 2.8. Let F=ℝ and let the function G : F×F×F

⟶ ½0,∞Þ be defined by

G ξ, ζ, ϖð Þ =max ξ − ζj j, ζ − ϖj j, ξ − ϖj jf g, ð24Þ

for all ξ, ζ, ϖ ∈F [25]. Let us consider the circle CGð0, 5Þ and
define the self-mapping T8 : F⟶F as T8ξ = 5 for all ξ ∈
F: Then, the self-mapping T8 provides the condition (2) in
Theorem 2.3 but does not provide the condition (1) in The-
orem 2.3. It can be easily shown that T8 does not fix the cir-
cle CGð0, 5Þ:

Theorem 2.4. Let ðF,GÞ be a G -metric space and CGðξ0, rÞ
be any circle on F: Let the mapping φ be defined as Theorem
2.1. If the self-mapping T : F⟶F is a function such that
for all ξ ∈ CGðξ0, rÞ and k ∈ ½0, 1Þ, the following conditions
are satisfied:

(1) Gðξ, ξ,TξÞ ≤max fφðξÞ, φðTξÞg − r,

(2) GðTξ,Tξ, ξ0Þ − kGðξ, ξ,TξÞ ≤ r,

then the circle CGðξ0, rÞ is a fixed circle of T.

Proof. Let ξ ∈ CGðξ0, rÞ such that ξ ≠Tξ. We show ξ =Tξ
under the following two cases:

Case 1: Let max fφðξÞ, φðTξÞg = φðξÞ. Then, we get

G ξ, ξ,Tξð Þ ≤max φ ξð Þ, φ Tξð Þf g − r = φ ξð Þ − r = r − r = 0,
ð25Þ

a contradiction. Hence, we get ξ =Tξ.
Case 2: Let max fφðξÞ, φðTξÞg = φðTξÞ. Then, we

obtain

G ξ, ξ,Tξð Þ ≤max φ ξð Þ, φ Tξð Þf g − r = φ Tξð Þ − r

=G Tξ,Tξ, ξ0ð Þ − r ≤ r + kG ξ, ξ,Tξð Þ
− r = kG ξ, ξ,Tξð Þ,

ð26Þ

a contradiction with k ∈ 0, 1Þ. Therefore, we have ξ =Tξ.

Consequently, the circle CGðξ0, rÞ is a fixed circle of T.

Remark 2.4. Notice that condition (1) guarantees that Tξ is
not in the interior of the circle CGðξ0, rÞ for ξ ∈ CGðξ0, rÞ.
Similarly, the condition (2) guarantees that Tξ is not the
exterior of the circle CGðξ0, rÞ for ξ ∈ CGðξ0, rÞ. Hence T

ξ ∈ CGðξ0, rÞ for each ξ ∈ CGðξ0, rÞ and so we get TðCGð
ξ0, rÞÞ ⊂ CGðξ0, rÞ:

(1) Theorem 2.4 is independent from Theorem 4.2 given
in [1].
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(2) If we consider the self-mapping T5 : F⟶F

defined in Example 2.5, then T5 satisfies the condi-
tions (1) and (2) in Theorem 2.4 and so CGð1, 3Þ is
a fixed circle of T5.

Notice that the identity mapping IF defined as IFðξÞ = ξ
for all ξ ∈F satisfies conditions (1) and (2) (resp., (1) and
(2)) in Theorem 2.2 (resp., Theorem 2.3). Therefore, we
need a condition which excludes the identity map in Theo-
rem 2.2 (resp., Theorem 2.3). For this aim, we give in [23]
the following theorem.

Theorem 2.5 (see [23]). Let ðF,GÞ be a G -metric space,
T : F⟶F be a self-mapping having a fixed circle CGðξ0,
rÞ and the mapping φ be defined as 2.2. The self-mapping
T satisfies the condition

IGð ÞG ξ, ξ,Tξð Þ ≤ h ϕ ξð Þ − ϕ Tξð Þ½ �, ð27Þ

for all ξ ∈F and some h ∈ ½0, 1/4Þ if and only if T = IF.

Now we give the another theorem which excludes the
identity map using the auxiliary function ξr defined in (6).

Theorem 2.6. Let ðF,GÞ be a G -metric space, T : F⟶F

be a self-mapping having a fixed circle CGðξ0, rÞ and the map-
ping Mr defined in (6). The self-mapping T satisfies the con-
dition

I∗Gð ÞG ξ, ξ,Tξð Þ <Mr G ξ, ξ,Tξð Þð Þ + r, ð28Þ

for all ξ ∈F if and only if T = IF.

Proof. Let ξ ∈F be any point such that ξ ≠Tξ. Using the
inequality ðI∗GÞ, we get

G ξ, ξ,Tξð Þ <Mr G ξ, ξ,Tξð Þð Þ + r

=G ξ, ξ,Tξð Þ − r + r =G ξ, ξ,Tξð Þ, ð29Þ

a contradiction. Hence we get ξ =Tξ and so T = IF.

The converse statement is clear.

3. Some New Uniqueness Conditions for Fixed
Circles with Integral Type Contractions

In [26], Braincari gave an integral contractive condition
which was a generalization of Banach contraction in a metric
space. By the Braincari type contractive condition, we obtain
a uniqueness theorem as follows.

Theorem 3.1. Let ðF,GÞ be a G -metric space and CGðξ0, rÞ
be any circle on F: Let T : F⟶F be a self-mapping satisfy-
ing the inequalities of Theorem 2.1 (resp., Theorem 2.2, The-
orem 2.3 and Theorem 2.4). If the contractive condition

ðG Tξ,Tξ,Tζð Þ

0
ω tð Þdt ≤ c

ðG ξ,ξ,ζð Þ

0
ω tð Þdt ð30Þ

is satisfied for all ξ ∈ CGðξ0, rÞ, ζ ∈F− CGðξ0, rÞ where c ∈ ½
0, 1Þ and ω : ½0,∞Þ⟶ ½0,∞Þ is a Lebesque measurable
map which is summable (that is, with a finite integral) on
each compact subset of ½0,∞Þ such that

Ð ε
0ωðtÞdt > 0 for each

ε > 0, then CGðξ0, r0Þ is the unique fixed circle of T:

Proof. Suppose that the self-mapping T has two different
fixed circles CGðξ0, r0Þ and CGðξ1, r1Þ: Let u ∈ CGðξ0, r0Þ
and v ∈ CGðξ1, r1Þ be arbitrary points such that u ≠ v: We
show that Gðu, u, vÞ = 0 and hence u = v: By the contractive
condition of T, that is, using the inequality (30), we have

ðG u,u,vð Þ

0
ω tð Þdt =

ðG Tu,Tu,Tvð Þ

0
ω tð Þdt ≤ c

ðG u,u,vð Þ

0
ω tð Þdt ð31Þ

which is a contradiction c ∈ ½0, 1Þ: Consequently, CGðξ0, r0Þ
is the unique fixed circle of T:

Taking into consideration that Chatterjea type contrac-
tion condition [27], we prove the following theorem.

Theorem 3.2. Let ðF,GÞ be a G -metric space and CGðξ0, r0Þ
be any circle on F: Let T : F⟶F be a self-mapping satisfy-
ing the inequalities of Theorem 2.1 (resp., Theorem 2.2, The-
orem 2.3 and Theorem 2.4). If the contractive condition

ðG Tξ,Tξ,Tζð Þ

0
ω tð Þdt ≤ η

ðG ξ,ξ,Tζð Þ

0
ω tð Þdt +

ðG ζ,ζ,Tξð Þ

0
ω tð Þdt

 !

ð32Þ

is satisfied for all ξ ∈ CGðξ0, rÞ, ζ ∈F− CGðξ0, rÞ and η ∈ ½0,
1/2Þ where ω : ½0,∞Þ⟶ 0,∞Þ is a Lebesque measurable
map which is summable (that is, with a finite integral) on
each compact subset of ½0,∞Þ such that Ð ε0ωðtÞdt > 0 for each
ε > 0, then the fixed circle of T is unique.

Proof. Assume that there exist two different fixed-circles
CGðξ0, r0Þ and CGðξ1, r1Þ of the self-mapping T : F⟶F:
Let u ∈ CGðξ0, r0Þ and v ∈ CGðξ1, r1Þ be arbitrary points such
that u ≠ v: Using the inequality (32) and the symmetric
property of G-metric, we obtain

ðG u,u,vð Þ

0
ω tð Þdt =

ðG Tu,Tu,Tvð Þ

0
ω tð Þdt

≤ η
ðG u,u,Tvð Þ

0
ω tð Þdt +

ðG v,v,Tuð Þ

0
ω tð Þdt

� �

= η
ðG u,u,vð Þ

0
ω tð Þdt +

ðG v,v,uð Þ

0
ω tð Þdt

� �

= 2η
ðG u,u,vð Þ

0
ω tð Þdt,

ð33Þ
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which is a contradiction. Consequently, it should be u = v
and thus CGðξ0, r0Þ is the unique fixed circle of T.

Remark 3.1. The choice of used contractive condition in
uniqueness theorem is not unique. Any contractive condi-
tion used to derive the fixed-point theorem can also be
selected.

4. An Application to Parametric ReLU

In this section, we present a new application to “Parametric
Rectified Linear Unit (PReLU)” using the obtained fixed-
circle results. This activation function PReLU was defined
to generalize the traditional rectified unit and it adaptively
learns the parameters of the rectifiers (see [28] for more
details). This activation function is defined by

P Re LU ξð Þ =
cξ if ξ < 0
ξ if ξ ≥ 0

(
, ð34Þ

with parameter c. Let us take F= ½0,∞Þ with the G-metric
defined as in Example 2.1 and c = 5. Then we have

P Re LU ξð Þ =
5ξ if ξ < 0
ξ if ξ ≥ 0

(
, ð35Þ

for all ξ ∈ 0,∞Þ (see, Figure 1).
If we choose a circle CGð0, 1Þ = f1g, then PReLU satisfies

the conditions of Theorem 2.1 (resp., Theorem 2.2, Theorem
2.3 and Theorem 2.4). Thereby, CGð0, 1Þ is a fixed circle of
PReLU . On the other hand, this activation function fixes
all circles CGð0, rÞ with r > 0, that is, the number of fixed cir-
cles of PReLU is infinite. In this case, it is important because
it increases the learning capacity of the activation function.
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In this paper, we obtain new results which have not been encountered before in the literature, in multivalued quasimetric spaces,
inspired by Proinov type contractions. We use admissible function as proving theorems. We also give an example that supports
our theorems.

1. Introduction and Preliminaries

Fixed point theory has become an important research topic
after the famous mathematician Banach’s definition of the
metric fixed point [1]. Many theoretical and applied studies
have been done on fixed point theory. In the 21st century,
the fixed point is still a popular and dynamic research topic.
The concept of metric space, which forms the basis of the
fixed point theory, is generalized by many researchers and
new spaces (b-metric, quasimetric, partial metric, fuzzy met-
ric, etc.) are introduced. One of the important generaliza-
tions is quasimetric space proved in 1931 as follows.

Definition 1 (see [2–4]). Let X ≠∅. A function q : X ×X

⟶ℝ+
0 is a quasimetric on X if it satisfies the following:

q t, uð Þ = q u, tð Þ = 0⇔ t = u,
q t,wð Þ ≤ q t, uð Þ + q u,wð Þ,

ð1Þ

for all t, u,w ∈X in this case, the pair ðX , qÞ is a quasi-
metric space.

Let q be a quasimetric on X , and the set Bqðt, eÞ = fw
∈X : qðt,wÞ < eg. Thus, the family fBqðt, eÞ: t ∈X , e > 0g
forms a base for a T0 topology τq on X . Moreover, if A is
a subset of X , we denote by clqðAÞ the closure of A with
respect to T0 topology; we say that the subset A is τq
-closed if it is closed with respect to τq.

A sequence ðtrÞ in a quasimetric space converges to t ∈
X , (in τq) if and only if qðt, trÞ⟶ 0 as r⟶∞. Moreover,
we say that the sequence ðtrÞ is

(1) left-Cauchy if for every e > 0 there exists re ∈ℕ such
that qðtr , tmÞ < e, whenever re ≤ r ≤m

(2) right-Cauchy if for every e > 0 there exists re ∈ℕ
such that qðtm, trÞ < e, whenever re ≤ r ≤m

Thereupon, a quasimetric space is called to be left (resp.,
right) complete if every left (resp., right) Cauchy sequence
converges (to respect τq) (see, e.g., [5, 6, 40, 41]).

Nadler [7] is the first who introduced the framework
for multivalued contraction mappings. The author proved
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the important theorem generalized Banach principle using
the Hausdorff metric for multivalued mappings. After the
proof of Nadler theorem, the theory of multivalued con-
traction mappings attracted great attention and is used in
various branches of mathematics. Multivalent mappings
in different spaces are introduced. One of them is multiva-
lued mapping introduced in quasimetric-spaces by Shoaib
[8] (see also [9, 10]).

Let ðX , qÞ be a quasimetric space. We shall denote by
P ðXÞ the set of all nonempty subsets of X , by C lqðXÞ the
set of all nonempty closed bounded subsets of X , and let
KqðXÞ be the set of all compact subsets of X .

Definition 2. Let X ≠∅ and Z : X ⟶P ðXÞ be a multiva-
lued map. A point t ∈X is said to be a fixed point of Z if t
∈ ZðtÞ.

The set of the fixed point of a mapping Z is denoted by
FðZÞ:

Lemma 3 is an important condition in the following
main results.

Lemma 3 (see [8]). Let A and B be nonempty closed bounded
subsets of a quasimetric space ðX , qÞ and let δ > 1. Then, for
all t ∈ A, there exists u ∈ B such that qðt, uÞ ≤ δHqðA, BÞ.

Nadler [7] stated that if A, B ∈ KðXÞ in the metric spaces
it is also provided for δ ≥ 1: With similarly thinking, the fol-
lowing lemma can be written.

Lemma 4. Let A and B be nonempty compact subsets of a
quasimetric space ðX , qÞ, and let δ ≥ 1: Then, for all t ∈ A,
there exists u ∈ B such that qðt, uÞ ≤ δHqðA, BÞ.

Many researchers have stated different studies on well-
known quasimetric spaces, see e.g., [11–13]. In recent years,
Alqahtani et al. [14] introduced a new generalization in qua-
simetric spaces and defined Δ-symmetric quasimetric
spaces. This definition is as follows.

Definition 5 (see [14]). Assume that ðX , qÞ is a quasimetric
space. If there exists a positive real number Δ > 0 such that

q t, uð Þ ≤ Δ · q u, tð Þ, ð2Þ

for all t, u ∈X , then, the pair ðX , qÞ is called a Δ -symmetric
quasimetric space.

To simplify the notations, in the following, we will mark
by ðX , qÞΔ a Δ-symmetric quasimetric space.

It is clear that if Δ = 1, thus ðX , qÞ1 becomes a metric
space.

Definition 6 (see [8]). Let ðX , qÞΔ and A, B ∈P ðXÞ. A func-
tion Hq : P ðXÞ ×P ðXÞ⟶ ½0,∞Þ, defined by

Hq A, Bð Þ =max sup
t∈A

q t, Bð Þ, sup
u∈B

q A, uð Þ
� �

, ð3Þ

where qðt, AÞ = infu∈Aqðt, uÞ and qðA, tÞ = infu∈Aqðu, tÞ),
satisfies all the axioms of quasimetric and is known as the
Hausdorff quasimetric induced by the quasimetric q.

Example 7. Let ðℝ, dÞ be a metric space and a function q
: ℝ ×ℝ⟶ℝ+, where

q t, uð Þ =
3d t, uð Þ, if t ≥ u,
d t, uð Þ, otherwise:

(
: ð4Þ

Then, ðX , qÞ is a 3-symmetric quasimetric space, but it is
not a metric space.

In the following, we shall collect some main properties of
a Δ-symmetric quasimetric space.

Lemma 8 (see [15]). Let ðX , qÞΔ, ftrg be a sequence in X

and t ∈X . Then,

(i) ftrg is right-Cauchy ⇔ftrg is left-Cauchy ⇔ftrg is
Cauchy

(ii) if furg is a sequence in X and qðtr , urÞ⟶ 0 then
qður , trÞ⟶ 0

Recall the notion of α-admissibility introduced in [16,
17].

Definition 9. A map Z : X ⟶X is defined α-admissible if
for every t, u ∈X , we have

α t, uð Þ ≥ 1⇒ α Zt, Zuð Þ ≥ 1, ð5Þ

where α : X ×X ⟶ ½0,∞Þ is an offered function.

Some authors [18–21] introduced by slightly modifying
this definition.

Definition 10. Let ðX , qÞΔ and w : X ×X ⟶ ½0,∞Þ. A mul-
tivalued mapping Z : X ⟶C lqðXÞ is called to be strictly ∗
-triangular-admissible on X if the following conditions are
satisfied:

(wt) for each t, u, v ∈X , wðt, uÞ > 1 and wðu, vÞ > 1
implies wðt, vÞ > 1

(wa) for each t, u ∈X , wðt, uÞ > 1 implies w∗ðZt, ZuÞ > 1
where w∗ðZt, ZuÞ = inf fwðx, yÞ: x ∈ Zt, y ∈ Zug.

Definition 11. Let ðX , qÞ be a Δ-symmetric quasimetric
space, and let w : X ×X ⟶ ½0,∞Þ. The space ðX , qÞ is said
to be strictly w∗ -regular if for any sequence ftrg ⊂X such
that wðtr , tr+1Þ > 1 for all r ∈ℕ and tr ⟶ t as r⟶∞, we
have wðtr , tÞ > 1 for all r ∈ℕ.
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In recent years, researchers working on the fixed point
theory seem to focus on introducing new contractions in
known spaces. These new contractions are also accepted by
many researchers and there are important studies, for exam-
ple, F-contraction ([22–26]), θ-contraction [27], and inter-
polation contraction [28].

In 2020, Proinov [29] introduced new and interesting
contractions in metric spaces. Proinov proved that several
fixed point results (Wardowski [22]; Jleli and Samet [27])
observed in recent years are the result of Skof’s fixed point
theorem [30], and he introduced a very general fixed point
theorem containing the main result of Skof.

Theorem 12 (see [29]). Let ðX , dÞ be a complete metric space
and Z : X ⟶X a map which satisfies the contractive type
condition:

ψ d Zt, Zuð Þð Þ ≤ φ d t, uð Þð Þ for all t, u ∈X with d Zt, Zuð Þ > 0,
ð6Þ

where ψ, φ : ℝ+ ⟶ℝ are two functions such that

(i) φðmÞ < ψðmÞ for all m > 0

(ii) ψ is nondecreasing

(iii) limsupm⟶ε+φðmÞ < ψðε + Þ for each m > 0

Hence, Z has a unique fixed point w ∈X and Zrðt0Þ
⟶w for all t0 ∈X , as r⟶∞.

There are several studies using Proinov’s contractions;
some interesting ones are as follows: Alqahtani et al. [31]
proposed the Proinov type mappings by involving certain
rational expression in dislocated b-metrics. Alqahtani et al.
[32] introduced the common fixed point of Proinov type
contraction via simulation function. Roldán López de Hierro
et al. [33] examined multiparametric contractions in b
-metric spaces, inspired by Proinov results. Alghamdi et al.
[34], on the other hand, introduced a new type of contrac-
tion using admissible mappings, inspired by Proinov and E
-contraction.

Besides these, Karapnar et al. [35] combined contrac-
tions of Proinov [29] and Górnicki [36] in complete metric
spaces and proved new fixed point theorems using admissi-
ble functions. Later, Ahmed and Fulga [37] generalized the
Górnicki-Proinov type contraction to quasimetric spaces.
Erdal et al. [38] published the notion of ðα, β, ψ, ϕÞ-inter-
polative contraction using a combine of interpolative con-
tractions, Proinov type contractions, and ample spectrum
contraction. Roldán López de Hierro et al. [39] proposed a
new class of contractions in non-Archimedean fuzzy metric
spaces, based on the Proinov fixed point results.

2. Main Results

Let us now give an important lemma that we will use in our
main results.

Lemma 13 (see [37]). Let ftrg be a sequence on ðX , qÞΔ such
that limr⟶∞qðtr , tr+1Þ = 0: If the sequence ftrg is not left-
Cauchy sequence thus there exists an e > 0 and two subse-
quences ftml

g, ftrlg of ftrg such that

lim
k⟶∞

q trk+1 , tmk+1

� �
= lim

k⟶∞
q trk , tmk

� �
= e+: ð7Þ

Proof. Supposing that the sequence ftrg is not left-Cauchy,
we can find e > 0 and the sequences of positive integers fnl
g, frlg, with l ≤ rl < nl for every l ≥ 0, such that

q trl , tnl
� �

> 2e: ð8Þ

On the other hand, since limr⟶∞qðtr , tr+1Þ = 0, we can
find r0 ≥ 1 such that

q tr , tr+1ð Þ < e
2a , ð9Þ

for every r ≥ r0, where a =max f1, Δg. Moreover, since the
space is supposed to be Δ symmetric,

q tr+1, trð Þ ≤ Δq tr , tr+1ð Þ < e
2 , ð10Þ

for every r ≥ r0. Therefore,

2e < q trl , tnl
� �

≤ q trl , trl+1
� �

+ q trl+1, tnl
� �

≤ q trl , trl+1
� �

+ q trl+1, tnl+1
� �

+ q tnl+1, tnl
� �

< e
2 + q trl+1, tnl+1

� �
+ e
2a ≤ e + q trl+1, tnl+1

� �
,

ð11Þ

for every l ≥ r0. Consequently, we have

q trl+1, tnl+1
� �

> e, ð12Þ

for every l ≥ r0. Now, let ml be the smallest positive integer,
greater than nl, such that

q trl+1, tml+1
� �

> e, q trl , tml

� �
> e: ð13Þ

Thus, we have either

q trl , tml−1
� �

≤ e, ð14Þ

or q trl+1, tml

� �
≤ e: ð15Þ

In the case of the first inequality holds,

e < q trl , tml

� �
≤ q trl , tml−1

� �
+ q tml−1, tml

� �
≤ e + q tml−1, tml

� �
,

ð16Þ
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and letting l⟶∞, we get liml⟶∞qðtrl , tml
Þ = e + . Simi-

larly, in case of the second inequality holds, we can consider

e < q trl , tml

� �
≤ q trl , trl+1

� �
+ q trl+1, tml

� �
≤ q trl , trl+1

� �
+ e,
ð17Þ

so, we also obtain liml⟶∞qðtrl , tml
Þ = e + . Now, by the tri-

angle inequality, and taking into account the above consider-
ations, we have

e < q trl+1, tml+1
� �

≤ q trl , trl+1
� �

+ q trl+1, tml+1
� �

+ q tml+1, tml

� �
≤ q trl , trl+1

� �
+ q trl+1, tml+1

� �
+ Δ · q tml

, tml+1
� �

,
ð18Þ

and as l⟶∞, we get

lim
l⟶∞

q trl+1, tml+1
� �

= e+: ð19Þ

We will give multivalued ðw, ψ, φÞ-contractive
mappings.

Definition 14. Let ðX , qÞΔ, be a Δ-symmetric quasimetric
space, a mapping w : X ×X ⟶ ½0,∞Þ and Z : X ⟶ CBð
XÞ be a multivalued operator. We say that Z is a multivalued
ðw, ψ, φÞ-contractive mapping if there exist two functions
ψ, φ : ð0,∞Þ⟶ℝ such that

ψ w t, uð ÞHq Z tð Þ, Z uð Þð Þ� �
≤ φ q t, uð Þð Þ, ð20Þ

for every t, u ∈X with wðt, uÞ > 1 and HqðZðtÞ, ZðuÞÞ > 0:

Theorem 15. Let ðX , qÞΔ be a complete Δ-symmetric quasi-
metric space, and Z : X ⟶ CBðXÞ be a multivalued ðw, ψ
, φÞ-contractive mapping. Assume that following conditions
are satisfied:

(K1) Z is strictly ∗-admissible and there exist t0 ∈X and
t1 ∈ Zðt0Þ such that wðt0, t1Þ > 1

(K2) if ftrg is a sequence in X such that wðtr , tr+1Þ > 1
for all r ∈ℕ and tr ⟶ t as r⟶∞, we have wðtr , tÞ > 1

(K3) ψ is nondecreasing and φðvÞ < ψðvÞ for all v > 0
(K4) lim supv⟶j+φðvÞ < ψðj + Þ for all j > 0
Therefore, Z has a fixed point in X .

Proof. Let t0 be an arbitrary point in X and t1 ∈X such that
qðt0, Zt0Þ = qðt0, t1Þ and qðZt0, t0Þ = qðt1, t0Þ. Let now t2 ∈
Zt1 be such that qðt1, Zt1Þ = qðt1, t2Þ and qðZt1, t1Þ = qðt2,
t1Þ. Continuing in this way, we can build the sequence ftrg
of points in X , such that tr+1 ∈ Ztr , with qðtr , ZtrÞ = qðtr ,
tr+1Þ and qðZtr , trÞ = qðtr+1, trÞ, for r ∈ℕ0: Moreover, by
condition ðK1Þ, we have that there exist t0 ∈X and t1 ∈ Zð
t0Þ such that wðt0, t1Þ > 1. Supposing that r0 ≠ r1, if r1 ∈ Z
r1, we get that t1 is a fixed point of Z. Then, let t1 ∉ Zt1. As
Z is a strictly ∗-admissible map, we have that ∗ðZt0, Zt1Þ
> 1. Thus, there exists t2 ∈ Zðt1Þ such that wðt1, t2Þ > 1
which implies ∗ðZt1, Zt2Þ > 1. By continuing this process,
we can construct a sequence ftrg in X such that tr+1 ∈ Zðtr

Þ where tr+1 ≠ tr for every r ≥ 0 (as otherwise, if tr ∈ ZðtrÞ,
thus tr is a fixed point of Z) and wðtr , tr+1Þ > 1. Therefore,
HqðZtr−1, ZtrÞ > 0. From Lemma 3 with wðtr , tr+1Þ > 1, we
obtain

q tr , tr+1ð Þ ≤w tr−1, trð ÞHq Z tr−1ð Þ, Z trð Þð Þ, ð21Þ

for each r ≥ 1. Keeping in mind ðK3Þ and (20) and we get

ψ q tr , tr+1ð Þð Þ ≤ ψ w tr−1, trð ÞHq Z tr−1ð Þ, Z trð Þð Þ� �
≤ φ q tr−1, trð Þð Þ:

ð22Þ

By hypothesis ðK3Þ, we have

ψ q tr , tr+1ð Þð Þ ≤ φ q tr−1, trð Þð Þ < ψ q tr−1, trð Þð Þ: ð23Þ

Thus, since ψ is a nondecreasing map, qðtr , tr+1Þ < qð
tr−1, trÞ for each r ≥ 1. So, the sequence fqðtr−1, trÞg is posi-
tively decreasing. Then, there exists G ≥ 0 such that
limr⟶∞qðtr−1, trÞ =G + :

Assuming that G > 0 on account of (23), we get a contra-
diction to supposition ðK4Þ as follows:

ψ G +ð Þ = lim
r⟶∞

ψ q tr , tr+1ð Þð Þ ≤ lim
r⟶∞

sup φ q tr−1, trð Þð Þ ≤ lim
v⟶G+

sup φ vð Þ:

ð24Þ

Therefore, G = 0, as a result, limr⟶∞qðtr−1, trÞ = 0.
We prove that the sequence ftrg is left-Cauchy. Let us

suppose by contradiction that the sequence ftrg is not left-
Cauchy. Thus, by using Lemma 13, there exist e > 0 and
two subsequences ftrkg, ftmk

g, (tmk
> trk ≥ k,) of ftrg such

that (7) is fulfilled. From (7), we conclude that qðtrk+1,
tmk+1Þ > ε and since the mapping Z is strictly triungular
admissible, wðtrk , tmk

Þ > 1 for every k ≥ 1. Substituting t =
trk and u = tmk

in (7), we obtain for each k ≥ 1,

ψ q trk+1, tmk+1
� �� �

≤ ψ w trk , tmk

� �
Hq Ztrk , Ztmk

� �� �
≤ φ q trk , tmk

� �� �
,

ð25Þ

then,

ψ q trk+1, tmk+1
� �� �

≤ φ q trk , tmk

� �� �
< ψ q trk , tmk

� �� �
, ð26Þ

for any k ≥ 1, so that is qðtrk+1, tmk+1Þ < qðtrk , tmk
Þ Because of

limk⟶∞qðtrk+1, tmk+1Þ = ε + , we obtain limk⟶∞qðtrk , tmk
Þ

= ε + . Therefore, we can write

ψ ε +ð Þ = lim
k⟶∞

ψ q trk+1, tmk+1
� �� �

≤ lim
k⟶∞

supφ q trk , tmk

� �� �
≤ lim

γ⟶ε+
φ γð Þ,

ð27Þ

which contradicts the supposition ðK4Þ; then, ftrg is left-
Cauchy sequence in ðX , qÞ, so that it is Cauchy sequence
using Lemma 8. Therefore, the sequence ftrg is Cauchy in
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the complete Δ-symmetric quasimetric space and so con-
verges to limit t∗ ∈X . Now, we consider the following cases.

Case 1. If qðtr+1, Zðt∗ÞÞ = 0 for some r ∈ℕ, so by triangle
inequality of Δ-symmetric quasimetric space

q t∗, Z t∗ð Þð Þ ≤ q t∗, tr+1ð Þ + q tr+1, Z t∗ð Þð Þ < q t∗, tr+1ð Þ, ð28Þ

and thus, letting r⟶∞, we conclude that qðt∗, Zðt∗ÞÞ ≤ 0,
that is,

qðt∗, Zðt∗ÞÞ = 0: As Zðt∗Þ is closed, we obtain t∗ ∈ Zðt∗Þ:

Case 2. On the contrary, if qðtr+1, Zðt∗ÞÞ > 0 for every r ∈ℕ
from ðK2Þ, we have wðtr, t∗Þ > 1 for all r ∈ℕ. We claim that
qðt∗, Zðt∗ÞÞ = 0: Supposing, on the contrary, qðt∗, Zðt∗ÞÞ > 0
, there exists r ∈ℕ such that qðtr , Zðt∗ÞÞ > 0. Therefore, we
obtain

ψ q tr+1, Z t∗ð Þð Þð Þ ≤ ψ w tr , t∗ð ÞHq Z trð Þ, Z t∗ð Þð Þ� �
≤ φ q tr , t∗ð Þð Þ < ψ q tr , t∗ð Þð Þ:

ð29Þ

Taking into account the condition ðK3Þ, we get qðtr+1,
Zðt∗ÞÞ < qðtr , t∗Þ. Passing to limit as r⟶∞, we obtain qð
t∗, Zðt∗ÞÞ < 0. Therefore,

qðt∗, Zðt∗ÞÞ = 0, as Zðt∗Þ is closed, t∗ ∈ Zðt∗Þ:

Example 16. Let X = ½0,∞Þ be endowed with the 2-
symmetric quasimetric q : X ×X ⟶ ½0,+∞Þ, where

q t, uð Þ =
2 t − uð Þ, if t ≥ u,
u − t, otherwise,

(
ð30Þ

and a mapping Z : X ⟶ CBðXÞ, defined as

Zt =
0, t8

� �
, if t ∈ 0, 1½ �,

2, 3f g, otherwise:

8>><
>>:

ð31Þ

We choose two functions ψ, φ : ð0,∞Þ⟶ℝ with ψ is
nondecreasing, and φðmÞ < ψðmÞ for all m > 0 where ψðmÞ
=m and φðmÞ =m/2: Let also

w t, uð Þ =
2, if t, u ∈ 0, 1½ �,
0, otherwise:

(
ð32Þ

We check that Z is a multivalued ðw, ψ, φÞ-contractive
mapping of (20). Actually, if taking into account the way
the function w is defined, we have consider the case u, t ∈ ½
0, 1�.

Let then, t, u ∈ ½0, 1�, u ≥ t. We get

q 0, Zuð Þ = inf 0, u8
n o

= 0, q 0, Ztð Þ = inf 0, t8

� �
= 0, ð33Þ

q
t
8 , Zu

� �
= inf

u
2 0 − t

8 , 2j j t8 −
u
8

����
����

� �
, q u

8 , Zt
	 


= inf
t

2 0 − u
8

��� ���, 2 t
8 −

u
8

����
����

� �
,

Hq Zt, Zuð Þ =max sup
t∈Zt

q t, Zuð Þ, sup
u∈Zu

q u, Ztð Þ
� �

=max sup
t∈Zt

inf
u

t
4

����
����, t

4 −
u
4

����
����

� �
, sup
u∈Zu

inf
t

�

� u
4
��� ���, u4 −

t
4

����
����

� ��
= t

4 −
u
4

����
����:

ð34Þ

So, we obtain

ψ w t, uð ÞHq Z tð Þ, Z uð Þð Þ� �
= 2 t

4 −
u
4

����
���� = t

2 −
u
2

����
���� ≤ t − uj j = φ q t, uð Þð Þ:

ð35Þ

Therefore, (20) fulfilled. Further, all other cases are satis-
fying, from wðu, tÞ = 0. Consequently, by Theorem 15, map
Z has a fixed point, this being t = 0.

Definition 17. Let ðX , qÞΔw : X ×X ⟶ ½0,∞Þ and Z : X
⟶ CBðXÞ be a multivalued operator. Z is said to be a mul-
tivalued C′iric′ type ðw, ψ, φÞ-contractive mapping if there
exist two functions ψ, φ : ð0,∞Þ⟶ℝ such that

ψ w t, uð ÞHq Z tð Þ, Z uð Þð Þ� �
≤ φ Θ t, uð Þð Þ, ð36Þ

for every t, u ∈X with wðt, uÞ > 1 and HqðZðtÞ, ZðuÞÞ > 0
where

Θ t, uð Þ =max q t, uð Þ, q t, Ztð Þ, q u, Zuð Þ, q t, Zuð Þ + q Zt, uð Þð Þ
2

� �
:

ð37Þ

Theorem 18. Let ðX , qÞ be a complete Δ-symmetric quasi-
metric space, w : X ×X ⟶ℝ+ \ f0g and Z : X ⟶ KðXÞ
be a multivalued C′iric′ type ðw, ψ, φÞ-contractive mapping.
Assume that following conditions are satisfied:

(K1) Z is strictly ∗-triangular-admissible and there exists
t0 ∈X and t1 ∈ Zðt0Þ such that wðt0, t1Þ > 1

(K2) if ftrg is a sequence in X such that wðtr , tr+1Þ > 1
for all r ∈ℕ and tr ⟶ t as r⟶∞, we have wðtr , tÞ > 1

(K3) ψ is nondecreasing, and φðvÞ < ψðvÞ for all v > 0
(K4) lim supv⟶j+φðvÞ < ψðj + Þ for all j > 0
Therefore, Z has a fixed point in X .

Proof. By condition ðK1Þ, and following the lines of the
proof of the previous theorem, we have that wðtr , tmÞ > 1,
for every m > r ≥ 1. Moreover, HqðZtr−1, ZtrÞ > 0 and from
Lemma 3 with wðtr, tr+1Þ > 1, we obtain

q tr , tr+1ð Þ ≤w tr−1, trð ÞHq Z tr−1ð Þ, Z trð Þð Þ, ð38Þ
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for each r ≥ 1. Keeping in mind ðK3Þ and (36), we get

ψ q tr , tr+1ð Þð Þ ≤ ψ w tr−1, trð ÞHq Z tr−1ð Þ, Z trð Þð Þ� �
≤ φ Θ tr−1, trð Þð Þ:

ð39Þ

As ZðtÞ is closed for every t ∈X , we get that tr ∈ Zðtr−1Þ
such that qðtr−1, trÞ = qðtr−1, Zðtr−1ÞÞ,

ψ q tr , tr+1ð Þð Þ ≤ φ Θ tr−1, trð Þð Þ = φ max q tr−1, trð Þ, qfð
� tr−1, Z tr−1ð Þð Þ, q tr , Z trð Þð Þ,

q tr−1, Z trð Þð Þ + q Ztr−1, trð Þ
2

�
= φ max q tr−1, trð Þ, q tr , tr+1ð Þf gð Þ,

ð40Þ

for every r ≥ 1.

If max fqðtr−1, trÞ, qðtr , tr+1Þg = qðtr , tr+1Þ so ψðqðtr , tr+1
ÞÞ ≤ φðqðtr , tr+1ÞÞ, from assumption ðK3Þ, this is a contra-
diction. Hence, we obtain qðtr−1, trÞ > qðtr , tr+1Þ, and

ψ q tr , tr+1ð Þð Þ ≤ φ q tr−1, trð Þð Þ: ð41Þ

Similarly, again using ðK3Þ, we get

ψ q tr , tr+1ð Þð Þ ≤ φ q tr−1, trð Þð Þ < ψ q tr−1, trð Þð Þ: ð42Þ

But, the function ψ is nondecreasing map, so that we get
qðtr , tr+1Þ < qðtr−1, trÞ for all r ≥ 1: Therefore, the sequence
fqðtr−1, trÞg is positively decreasing, and then, there exists
G ≥ 0 such that limr⟶∞qðtr−1, trÞ =G + . If G > 0, from
(42), we obtain

ψ G +ð Þ = lim
r⟶∞

ψ q tr , tr+1ð Þð Þ ≤ lim
r⟶∞

sup φ q tr−1, trð Þð Þ
≤ lim

ρ⟶G+
sup φ ρð Þ,

ð43Þ

which contradictions ðK4Þ. Therefore, G = 0 and, as a result,

lim
r⟶∞

q tr−1, trð Þ = 0: ð44Þ

We claim that ftrg is Cauchy sequence. Let us assume by
contradiction that the sequence ftrg is not left-Cauchy.
Then, by Lemma 13, we can find e > 0 and two subsequences
ftrkg, ftmk

g, (with mk > rk ≥ k) of ftrg such that (7) holds.
Thereupon, we have that wðtrk , tmk

Þ > 1 for all mk > rk > k
≥ 1. Letting t = trk and u = tmk

in (9), we get

ψ q trk+1, tmk+1
� �� �

≤ ψ w trk , tmk

� �
Hq Ztrk , Ztmk

� �� �
≤ φ Θ trk , tmk

� �� �
,

ð45Þ

for every k ≥ 1, where

Θ trk , tmk

� �
=max

q trk , tmk

� �
, q trk , Ztrk
� �

, q tmk
, Ztmk

� �
,

q trk , Ztmk

� �
+ q Ztrk , tmk

� �
2

8><
>:

9>=
>;:

ð46Þ

Keeping in mind the way the sequence ftrg was define,
let trk+1 ∈ Ztrk and tmk+1 ∈ Ztmk

. Thus,

q trk , tmk

� �
≤Θ trk , tmk

� �
=max

q trk , tmk

� �
, q trk , trk+1
� �

, q tmk
, tmk+1

� �
q trk , tmk+1
� �

+ q trk+1, tmk

� �
2

8><
>:

9>=
>;

≤max
q trk , tmk

� �
, q trk , trk+1
� �

, q tmk
, tmk+1

� �
,

q trk , trk+1
� �

+ q trk+1, tmk+1
� �

+ q trk+1, trk
� �

+ q trk , tmk

� �
2

8><
>:

9>=
>;:

ð47Þ

Letting k⟶∞ in the above inequality, and taking into
account (44), respectively (7), we get

lim
k⟶∞

Θ trk , tmk

� �
= e+: ð48Þ

Moreover, since the function ψ is nondecreasing, taking
the limit superior when k⟶∞ in (45) we get

ψ ε +ð Þ = lim
k⟶∞

ψ q trk+1, tmk+1
� �� �

≤ limsup
k⟶∞

φ Θ trk , tmk

� �� �
≤ limsup

ρ⟶ε+
φ ρð Þ,

ð49Þ

which contradicts the supposition ðK4Þ; then, ftrg is left
Cauchy sequence in ðX , qÞ, so that it is Cauchy sequence
using Lemma 8. Therefore, the sequence ftrg is Cauchy in
the complete Δ-symmetric quasimetric space and so con-
verges to a point t∗ ∈X . Now, we consider following cases:

Case 1. If qðtr+1, Zðt∗ÞÞ = 0 for some r ∈ℕ, so by triangle
inequality of Δ-symmetric quasimetric space

q t∗, Z t∗ð Þð Þ ≤ q t∗, tr+1ð Þ + q tr+1, Z t∗ð Þð Þ < q t∗, tr+1ð Þ, ð50Þ

and thus, letting r⟶∞, we conclude that qðt∗, Zðt∗ÞÞ ≤ 0,
that is,

q t∗, Z t∗ð Þð Þ = 0:As Z t∗ð Þ is closed, we obtain t∗ ∈ Z t∗ð Þ:
ð51Þ

Case 2. If we suppose the contrary, that is, qðtr+1, Zðt∗ÞÞ = 0
for any r, from ðK2Þ we know that wðtr , t∗Þ > 1 for all r ∈ℕ.
We assert that qðt∗, Zðt∗ÞÞ = 0: Suppose, on the contrary, q
ðt∗, Zðt∗ÞÞ > 0. Thus, there exists r ∈ℕ such that qðtr , Zðt∗
ÞÞ > 0 for every r: Using (36), we obtain

ψ q tr+1, Z t∗ð Þð Þð Þ ≤ ψ w tr , t∗ð ÞHq Z trð Þ, Z t∗ð Þð Þ� �
≤ φ Θ tr , t∗ð Þð Þ < ψ Θ tr , t∗ð Þð Þ,

ð52Þ
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where

Θ tr, t∗ð Þ =max
q tr , t∗Þð Þ, q tr , Z trð Þð Þ, q t∗, Z t∗ð Þð Þ,

q tr , Z t∗ð Þð Þ + q Ztr , t∗Þð Þ
2

8><
>:

9>=
>;

=max
q tr , t∗Þð Þ, q tr , tr+1Þð Þ, q t∗, Z t∗ð Þð Þ,

q tr , Z t∗ð Þð Þ + q tr+1, t∗Þð Þ
2

8><
>:

9>=
>;:

ð53Þ

Taking into account the condition ðK3Þ, we get qðtr+1,
Zðt∗ÞÞ <Θðt∗, Zðt∗ÞÞ. Passing to limit as r⟶∞, we obtain
qðt∗, Zðt∗ÞÞ < qðt∗, Zðt∗ÞÞ a contradiction, then qðt∗, Zðt∗ÞÞ
= 0: As Zðt∗Þ is compact, t∗ ∈ Zðt∗Þ:

Corollary 19. Let ðX , qÞ be a Δ-symmetric quasimetric space
and Z : X ⟶ KðXÞ be a multivalued mapping satisfying
the condition:

ψ Hq Z tð Þ, Z uð Þð Þ� �
< φ q t, uð Þð Þ, ð54Þ

for every t, u ∈X , where the functions ψ, φ : ð0,∞Þ⟶ℝ
and HqðZðtÞ, ZðuÞÞ > 0: The map Z admits a fixed point in
X provided that following conditions hold:

(K1) ψ is nondecreasing, and φðvÞ < ψðvÞ for all v > 0
(K2) lim supv⟶j+φðvÞ < ψðj + Þ for all j > 0

Letting φðaÞ = δψðaÞ, in Corollary 19, we obtain the fol-
lowing result.

Corollary 20. Let ðX , qÞ be a Δ-symmetric quasimetric space
and Z : X ⟶ KðXÞ be a multivalued mapping satisfying
the condition:

ψ Hq Z tð Þ, Z uð Þð Þ� �
< δψ q t, uð Þð Þ, ð55Þ

for every t, u ∈X , where the functions ψ, φ : ð0,∞Þ⟶ℝ
and HqðZðtÞ, ZðuÞÞ > 0: The map Z admits a fixed point in
X provided that following conditions hold:

(K1) ψ is nondecreasing, and φðvÞ < ψðvÞ for all v > 0;
(K2) lim supv⟶j+φðvÞ < ψðj + Þ for all j > 0.

Corollary 21. Let ðX , qÞ be a Δ-symmetric quasimetric space
and Z : X ⟶ KðXÞ be a multivalued mapping satisfying
the condition:

ψ Hq Z tð Þ, Z uð Þð Þ� �
< φ Θ t, uð Þð Þ, ð56Þ

for every t, u ∈X and HqðZðtÞ, ZðuÞÞ > 0, where the func-
tions ψ, φ : ð0,∞Þ⟶ℝ and

Θ t, uð Þ =max q t, uð Þ, q t, Ztð Þ, q u, Zuð Þ, q t, Zuð Þ + q Zt, uð Þð Þ
2

� �
:

ð57Þ

The map Z admits a fixed point in X provided that fol-
lowing conditions:

(K1) ψ is nondecreasing, and φðvÞ < ψðvÞ for all v > 0
(K2) lim supv⟶j+φðvÞ < ψðj + Þ for all j > 0
Taking φðaÞ = δψðaÞ, in Corollary 21, we get the follow-

ing result.

Corollary 22. Let ðX , qÞ be a Δ-symmetric quasimetric space
and Z : X ⟶ KðXÞ be a multivalued mapping satisfying
the condition:

ψ w t, uð ÞHq Z tð Þ, Z uð Þð Þ� �
≤ δψ Θ t, uð Þð Þ, ð58Þ

for every t, u ∈X and HqðZðtÞ, ZðuÞÞ > 0, where the func-
tions ψ, φ : ð0,∞Þ⟶ℝ and

Θ t, uð Þ =max q t, uð Þ, q t, Ztð Þ, q u, Zuð Þ, q t, Zuð Þ + q Zt, uð Þð Þ
2

� �
:

ð59Þ

The map Z admits a fixed point in X provided that fol-
lowing conditions hold:

(K1) ψ is nondecreasing, and φðvÞ < ψðvÞ for all v > 0
(K2) lim supv⟶j+φðvÞ < ψðj + Þ for all j > 0

3. Conclusion

In this paper, we expand the very interesting results of Proi-
nov [29] in several ways: First, we involve a more general
form of the function by considering multivalued mapping.
Secondly, we refine the structure of the considered abstract
space with Δ-symmetric quasimetric space. Indeed, quasi-
metric space is one of the novel extensions of metric space.
Besides, Δ-symmetric quasimetric space is more reasonable
to work since almost all quasimetric space form Δ-sym-
metric quasimetric spaces. There are still rooms for the fixed
point results in the context of Δ-symmetric quasimetric
spaces.
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In this paper, we introduce the λ-quadratic functional equation with three variables and obtain its general solution. The main aim
of this work is to examine the Ulam-Hyers stability of this functional equation in non-Archimedean Banach space by using direct
and fixed point techniques and examine the stability results in non-Archimedean random normed space.

1. Introduction

One of the most important areas of research in mathematics
is the investigation of stability issues for functional equa-
tions, which has its origins in concerns of applied mathe-
matics. The first question about the stability of
homomorphisms was given by Ulam [1] as follows.

Given a group ðM, ∗Þ, a metric group ðM ′, ·Þ with the
metric d, and a function ϕ from B and B′, does there exists
δ > 0 satisfying

d ϕ u ∗ vð Þ, ϕ uð Þ · ϕ vð Þð Þ ≤ δ, ð1Þ

for all u, v ∈ B, then there exists a homomorphism h : B
⟶ B′ such that

d ϕ uð Þ, h uð Þð Þ ≤ ε, ð2Þ

for all u ∈ B?
Ulam’s question on Banach spaces was partially

answered affirmatively by Hyers [2]. By assuming an infinite
Cauchy difference, Aoki [3] expanded Hyers’ and Rassias’
theorems for additive and linear mappings, respectively.
Using the same method as Rassias [4], Gajda [5] discovered
a positive solution to the question p > 1. Rassias and Šemrl
[6], as well as Gajda [5], have proved that a Rassias’ type the-
orem cannot be formed for p = 1.

The functional equation

ϕ u + vð Þ = ϕ uð Þ + ϕ vð Þ ð3Þ

is known as the Cauchy additive equation.
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Since the function ϕðuÞ = u is the solution of the func-
tional equation (3), every solution of the additive functional
equation (3) is called as an additive function. Every solution
of the functional equation (3), in particular, is called as an
additive function.

The functional equation

ϕ u + vð Þ + ϕ u − vð Þ = 2ϕ uð Þ + 2ϕ vð Þ ð4Þ

is known as the quadratic functional equation.
Since the function ϕðuÞ = u2 is the solution of the func-

tional equation (4), each solution of the functional equation
(4) is called as a quadratic function. Every solution of func-
tional equation (4), in particular, is called as a quadratic
mapping.

Skof [7] established the stability of the quadratic func-
tional equation for the function f between normed space
and complete normed space. The authors [8–14] recently
examined the Ulam-Hyers stability results for the following
α-functional equation

2f xð Þ − 2f yð Þ = f x + yð Þ + α−2 f α x − yð Þð Þ, ð5Þ

in non-Archimedean Banach spaces.
The Skof theorem still applies when the relevant domain

B is replaced by an Abelian group, according to Cholewa
[15]. See [15–21] for other functional equations. A survey
of the Ulam-Hyers stability results of functional equations
was conducted by Brillouët-Belluot [22]. Park and Kim
[11] demonstrated the Ulam-Hyers stability of quadratic α
-functional equation.

In this paper, the authors present a new λ-quadratic
functional equation with three variables as

2ξ ϑ1 + ϑ2
2

� �
+ 2ξ ϑ3ð Þ = ξ

ϑ1 + ϑ2
2 + ϑ3

� �
+ λ−2ξ λ

ϑ1 + ϑ2
2 − ϑ3

� �� �
,

ð6Þ

where λ is a fixed non-Archimedean number with λ−2 ≠ 3,
and its general solution was obtained. The motivation
behind this study is to investigate the Ulam-Hyers stability
results for the above functional equation (6) in non-
Archimedean Banach space by using direct and fixed point
methods and non-Archimedean random normed space.

The following is the structure of this paper: in Section 2,
we recall some fundamental notions and definitions, in Sec-
tion 3, we look at the general solution of the equation (6),
where V and W are two vector spaces. We investigate the
Ulam-Hyers stability in non-Archimedean Banach space
by using fixed point method and direct method in Sections
4 and 5, where V is a non-Archimedean normed space, W
is a non-Archimedean Banach space, and j2j ≠ 1 is a non-
Archimedean Banach space. In Section 6, we recall some
fundamental notions and results and investigate the Ulam-
Hyers stability in non-Archimedean random normed space.

2. Preliminaries

To reach our major results, we use certain fundamental
notations in [8, 10, 11].

A map j·j: K⟶ ½0,∞Þ is a valuation such that zero is
the only one element having the zero valuation, jk1k2j = jk1
jjk2j, and the inequality of the triangle holds true, that is, j
k1 + k2j ≤ jk1j + jk2j, for all k1, k2 ∈K.

We call a field K valued if K holds a valuation. Examples
of valuations include the typical absolute values of ℝ and ℂ.

Consider a valuation that satisfies a criterion that is
stronger than the triangle inequality. A j·j is called a non-
Archimedean valuation if the triangle inequality is replaced
by jk1 + k2j ≤max fjk1j, jk2jg, for all k1, k2 ∈K, and a field
is called a non-Archimedean field. Evidently, j−1j = 1 = j1j
and jnj are greater than or equal to 1, for all n in ℕ. The
map j·j takes everything except 0 for 1, and j0j = 0 is a basic
example of a non-Archimedean valuation.

Definition 1. LetV be a linear space over K with j·j. A map-
ping k·k: V ⟶ ½0,∞Þ is known as a non-Archimedean
norm if it satisfies

(i) kvk = 0 if and only if v = 0.
(ii) krvk = jrjkvk, v ∈ V , and r ∈K.

(iii) the strong triangle inequality.

v1 + v2k k ≤max v1k k, v2k kf g, v1, v2 ∈ V : ð7Þ

Then, ðV , k·kÞ is called a non-Archimedean normed
space. Every Cauchy sequence converges in a complete
non-Archimedean normed space, which we call a complete
non-Archimedean normed space.

Definition 2. Let V be a non-Archimedean normed space
and a sequence fvpg in V . Then,

(1) a sequence fvpg∞p=1 in V is a Cauchy sequence if

fvp+1 − vpg∞p=1 converges to 0.

(2) fvpg is called convergent if, for any ε > 0, there is an
integer p > 0 in ℕ and v ∈ V satisfies

∥vp − v∥ ≤ ε for all p ≥ℕ, ð8Þ

for every p, q ≥ℕ. Then, we called as v is a limit of
the sequence fvpg and denoted by limp⟶∞vp = v:

(3) if every Cauchy sequence in a non-Archimedean
normed space V converges, it is called a non-
Archimedean Banach space.

Theorem 3 (alternative fixed point theorem). Let ðV , dÞ be a
generalized complete metric space and a strictly contractive
mapping M : V ⟶V with Lipschitz constant 0 < L < 1.
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Then, for all v1 ∈ V , either

d Mmv1,Mm+1v1
� �

=∞,m ≥m0, ð9Þ

or there exists a positive integer m0 such that

(i) dðMmv1,Mm+1v1Þ <∞,m ≥m0.

(ii) the sequence fMmv1gm∈ℕ converges to a fixed point
v∗1 of M.

(iii) v∗1 is the unique fixed point of M in V∗ = fv2 ∈ V jd
ðMm0v1, v2Þ<∞g.

(iv) dðv2, v∗1 Þ ≤ ð1/1 − LÞdðMv2, v2Þ, for all v2 ∈ V∗.

3. Solution

Lemma 4. If a mapping ξ : V ⟶W satisfies the functional
equation (6) for all ϑ1, ϑ2, ϑ3 ∈ V , then the function ξ is
quadratic.

Proof. A mapping ξ : V ⟶W satisfies the functional equa-
tion (6). Replacing ðϑ1, ϑ2, ϑ3Þ by ð0, 0, 0Þ in (6), we obtain

3ξ 0ð Þ = λ−2ξ 0ð Þ: ð10Þ

This implies that ξð0Þ = 0. Replacing ðϑ1, ϑ2, ϑ3Þ by ðϑ, ϑ,
0Þ in (6), we obtain

ξ ϑð Þ = λ−2ξ λ ϑð Þð Þ, ð11Þ

and so

ξ λvð Þ = λ2ξ ϑð Þ, ð12Þ

for all ϑ ∈ V . Thus, equation (6) is reduced as

2ξ ϑ1 + ϑ2
2

� �
+ 2ξ ϑ3ð Þ = ξ

ϑ1 + ϑ2
2 + ϑ3

� �
+ ξ

ϑ1 + ϑ2
2 − ϑ3

� �
,

ð13Þ

for all ϑ1, ϑ2, ϑ3 ∈ V . Now, replacing ϑ1 = ϑ2 = ϑ3 = ϑ in
(13), we get

ξ 2ϑð Þ = 22ξ ϑð Þ, ð14Þ

for all ϑ ∈ V . Again, replacing ϑ by 2ϑ in (14), we have

ξ 22ϑ
� �

= 24ξ ϑð Þ, ð15Þ

for all ϑ ∈ V . From equalities (14) and (15), we can con-
clude that for any integer p > 0, we get

ξ 2pϑð Þ = 22pξ ϑð Þ, ð16Þ

for all ϑ ∈ V . Now, replacing ðϑ1, ϑ2, ϑ3Þ by ðϑ1, ϑ1, ϑ2Þ in (13),

we reach (3) for all ϑ1, ϑ2 ∈ V . Hence, the function ξ is qua-
dratic.

For our notational simplicity, we use the following abbrevi-
ation:

Δξ ϑ1, ϑ2, ϑ3ð Þ = 2ξ ϑ1 + ϑ2
2

� �
+ 2ξ ϑ3ð Þ − ξ

ϑ1 + ϑ2
2 + ϑ3

� �

− λ−2ξ λ
ϑ1 + ϑ2

2 − ϑ3

� �� �
:

ð17Þ

4. Stability of (6) in Non-Archimedean Banach
Space: Direct Method

Theorem 5. Let ρ : V3 ⟶ ½0,∞Þ be a mapping and a map-
ping ξ : V ⟶W such that ξð0Þ = 0 and

lim
j⟶∞

22
�� ��jρ 2−jϑ1, 2−jϑ2, 2−jϑ3

� �
= 0, ð18Þ

∥Δξ ϑ1, ϑ2, ϑ3ð Þ∥ ≤ ρ ϑ1, ϑ2, ϑ3ð Þ, ð19Þ
for all ϑ1, ϑ2, ϑ3 ∈ V . Then, there exists a unique quadratic
mapping Q : V ⟶W satisfying

∥ξ ϑð Þ −Q ϑð Þ∥ ≤ sup
j∈ℕ

22
�� ��j−1ρ ϑ1

2j
, ϑ2
2j
, ϑ3
2j

� �� �
, ð20Þ

for all ϑ ∈ V .

Proof. Setting ϑ1 = ϑ2 = ϑ3 = ϑ in (19), we have

ξ 2ϑð Þ − 22ξ ϑð Þ		 		 ≤ ρ ϑ, ϑ, ϑð Þ, ϑ ∈ V : ð21Þ

Thus, from inequality (21), it implies that

ξ ϑð Þ − 22ξ ϑ

2

� �				
				 ≤ ρ

ϑ

2 ,
ϑ

2 ,
ϑ

2

� �
, ð22Þ

for all ϑ ∈ V . Replacing ϑ by ϑ/2 in (22), we obtain

22ξ ϑ

2

� �
− 24ξ ϑ

22
� �				

				 ≤ 22
�� ��ρ ϑ

22 ,
ϑ

22 ,
ϑ

22
� �

, ð23Þ

for all ϑ ∈ V . Hence,

22lξ ϑ

2
l

 !
− 22mξ ϑ

2m
� �					

					
≤max 22lξ ϑ

2l
v

� �
− 22 l+1ð Þξ

ϑ

2l+1
� �

∥,⋯,∥22 m−1ð Þξ
ϑ

2m−1

� �
− 22mξ ϑ

2m
� �				

				
� �

≤max 22
�� ��l∥ξ ϑ

2l
� �

− 22ξ ϑ

2l+1
� �

,⋯, 22
�� ��m−1			 			ξ ϑ

2m−1

� �
− 22ξ ϑ

2m
� �

∥
� �

≤ sup
j∈ l,l+1,⋯f g

22
�� ��jρ ϑ

2j+1 ,
ϑ

2j+1 ,
ϑ

2j+1
� �� �

,

ð24Þ
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for all m > l > 0 and all ϑ ∈ V . From inequality (24), the
sequence f22nξðϑ/2nÞg is a Cauchy sequence for all ϑ ∈ V .
Since W is complete, thus the sequence f22nξðϑ/2nÞg is con-
vergent. Now, we can define a mapping Q : V ⟶W by

Q ϑð Þ≔ lim
l⟶∞

22lξ ϑ

2l
� �

, ϑ ∈ V : ð25Þ

Taking l = 0 and passing the limit m⟶∞ in (24), we
obtain (20). From inequalities (18) and (19), we have

∥ΔQ ϑ1, ϑ2, ϑ3ð Þ∥
= lim

j⟶∞
22
�� ��j∥Δξ 2−jϑ1, 2−jϑ2, 2−jϑ3

� �
∥

≤ lim
j⟶∞

22
�� ��jρ 2−jϑ1, 2−jϑ2, 2−jϑ3

� �
= 0:

ð26Þ

From above, we conclude that ΔQðϑ1, ϑ2, ϑ3Þ = 0 for all
ϑ1, ϑ2, ϑ3 ∈ V . By using Lemma 4, the function Q is qua-
dratic. Consider another quadratic mapping T : V ⟶W
satisfying (20). Then, we have

∥Q ϑð Þ − T ϑð Þ∥
= ∥22qQ ϑ

2q
� �

− 22qT ϑ

2q
� �

∥

≤max 22qQ ϑ

2q
� �

− 22qξ ϑ

2q
� �

∥,∥22qT ϑ

2q
� �

− 22qξ ϑ

2q
� �				

				
� �

≤ sup
j∈ℕ

22
�� ��q+j−1ρ ϑ

2j+1 ,
ϑ

2j+1 ,
ϑ

2j+1
� �� �

⟶ 0 as q⟶∞,

ð27Þ

for all ϑ ∈ V . Thus, we can conclude that TðϑÞ =QðϑÞ, ϑ ∈ V .
Hence, the function Q is unique. Thus, the unique quadratic
mapping Q : V ⟶W satisfies (20). Hence, the proof of the
theorem is now completed.

Theorem 6. Let ρ : V3 ⟶ ½0,∞Þ be a mapping and a map-
ping ξ : V ⟶W such that ξð0Þ = 0 and

lim
j⟶∞

1

22
�� ��j ρ 2j−1ϑ1, 2j−1ϑ2, 2j−1ϑ3

� �( )
= 0, ð28Þ

and (19) for all ϑ1, ϑ2, ϑ3 ∈ V . Then, there exists a unique
quadratic mapping Q : V ⟶W satisfying

∥ξ ϑð Þ −Q ϑð Þ∥ ≤ Supj∈ℕ
1

22
�� ��j−1 ρ 2j−1ϑ1, 2j−1ϑ2, 2j−1ϑ3

� �( )
,

ð29Þ

for all ϑ ∈ V .

Proof. Setting ϑ1 = ϑ2 = ϑ3 = ϑ in (19), we have

ξ 2ϑð Þ − 22ξ ϑð Þ		 		 ≤ ρ ϑ, ϑ, ϑð Þ, ϑ ∈ V : ð30Þ

From inequality (30), we obtain

ξ ϑð Þ − 1
22 ξ 2ϑð Þ

				
				 ≤ 1

22
�� �� ρ ϑ, ϑ, ϑð Þ, ϑ ∈ V : ð31Þ

Replacing ϑ by 2ϑ in (31), we get

ξ 2ϑð Þ
22 −

1
24 ξ 22ϑ
� �				

				 ≤ 1
22
�� ��2 ρ 2ϑ, 2ϑ, 2ϑð Þ, ð32Þ

for all ϑ ∈ V . Hence,

1
22l

ξ 2lϑ

 �

−
1
22m ξ 2mϑð Þ

				
				

≤max 1
22l

ξ 2lϑ

 �

−
1

22 l+1ð Þ ξ 2l+1ϑ

 �

∥,⋯,∥ 1
22 m−1ð Þ ξ 2m−1ϑ

� �
−

1
22m ξ 2mϑð Þ

				
				

� �

≤max 1
22
�� ��l ξ 2lϑ


 �
−

1
22
�� ��m−1 ξ 2l+1ϑ


 �					
					,⋯, 1

22
�� ��m−1 ξ 2m−1ϑ

� �
−

1
22 ξ 2mϑð Þ

				
				

( )

≤ sup
j∈ l,l+1,⋯f g

1
22
�� ��j+1 ρ 2jϑ1, 2jϑ2, 2jϑ3

� �( )
,

ð33Þ

for all m > l > 0 and all ϑ ∈ V . From inequality (33), the
sequence fð1/22nÞξð2nϑÞg is a Cauchy sequence for all ϑ ∈
V . Since W is complete, the sequence fð1/22nÞξð2nϑÞg is
convergent. Now, we can define a mapping Q : V ⟶W by

Q ϑð Þ≔ lim
n⟶∞

1
22n ξ 2nϑð Þ, ϑ ∈ V : ð34Þ

The remaining proof is the same as the proof of Theo-
rem 5.

Corollary 7. Let ξ : V ⟶W be a mapping such that ξðϑÞ
= 0 and

∥Δ ϑ1, ϑ2, ϑ3ð Þ∥ ≤ θ ∥ϑ1∥
r+∥ϑ2∥r+∥ϑ3∥rð Þ, ð35Þ

for all ϑ1, ϑ2, ϑ3 ∈ V , where r and θ are in ℝ+ with r < 2.
Then, there exists a unique quadratic mapping Q : V ⟶
W satisfying

∥ξ ϑð Þ −Q ϑð Þ∥ ≤ 3θ
2j jr ∥ϑ∥

r , ð36Þ

for all ϑ ∈ V .

Corollary 8. Let ξ : V ⟶W be a mapping such that ξðϑÞ
= 0 and

Δ ϑ1, ϑ2, ϑ3ð Þk k ≤ θ ϑ1k kr + ϑ2k kr + ϑ3k krð Þ, ð37Þ

for all ϑ1, ϑ2, ϑ3 ∈ V , where r and θ are in ℝ+ with r > 2.
Then, there exists a unique quadratic mapping Q : V ⟶
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W satisfying

ξ ϑð Þ −Q ϑð Þk k ≤ 3θ

22
�� �� ϑk kr , ð38Þ

for all ϑ ∈ V .

5. Stability of (6) in Non-Archimedean Banach
Space: Fixed Point Method

Theorem 9. Let ρ : V3 ⟶ ½0,∞Þ be a mapping such that
there exists L < 1 with

ρ 2−1ϑ1, 2−1ϑ2, 2−1ϑ3
� �

≤
L
4j j ρ 2−1ϑ1, 2−1ϑ2, 2−1ϑ3
� �

, ð39Þ

for all ϑ1, ϑ2, ϑ3 ∈ V . If a mapping ξ : V ⟶W such that
ξð0Þ = 0 and (19) for all ϑ1, ϑ2, ϑ3 ∈ V , then there exists a
unique quadratic mapping Q : V ⟶W satisfying

ξ ϑð Þ −Q ϑð Þk k ≤ L

22
�� �� 1 − Lð Þ ρ ϑ, ϑ, ϑð Þ, ð40Þ

for all ϑ ∈ V .

Proof. Setting ϑ1 = ϑ2 = ϑ3 = ϑ in (19), we obtain

ξ 2ϑð Þ − 4ξ ϑð Þk k ≤ ρ ϑ, ϑ, ϑð Þ, ð41Þ

for all ϑ ∈ V . Consider

S≔ q : V ⟶W, q 0ð Þ = 0f g, ð42Þ

and the generalized metric d defined by

d p, qð Þ≔ inf ε ∈ℝ : p ϑð Þ − q ϑð Þk k ≤ ερ ϑ, ϑ, ϑð Þ,∀ϑ ∈ Vf g,
ð43Þ

here, as usual, inf ξ = +∞. Clearly, ðS, qÞ is complete (see
[23]). Next, consider a mapping J : S⟶ S defined by

Jp ϑð Þ≔ 22p ϑ

2

� �
, ϑ ∈ V ð44Þ

For all p, q ∈ S such that dðp, qÞ = ε, then

p ϑð Þ − q ϑð Þk k ≤ ερ ϑ, ϑ, ϑð Þ, ð45Þ

for all ϑ ∈ V . Hence,

Jp ϑð Þ − Jqξ ϑð Þk k = 22p 2−1ϑ
� �

− 22qξ 2−1ϑ
� �		 		

≤ 22
�� ��ερ 2−1ϑ, 2−1ϑ, 2−1v

� �
≤ 22
�� ��ε L

22
�� �� ρ ϑ, ϑ, ϑð Þ ≤ 22

�� ��Lερ ϑ, ϑ, ϑð Þ,

ð46Þ

for all ϑ ∈ V . Thus,

d p, qð Þ = ε⇒ d Jp, Jqð Þ ≤ Lε: ð47Þ

This concludes that

d Jp, Jqð Þ ≤ Ld p, qð Þ, p, q ∈ S: ð48Þ

From inequality (41),

ξ ϑð Þ − 22ξ ϑ

2

� �				
				 ≤ ρ 2−1ϑ, 2−1ϑ, 2−1ϑ

� �
≤

L

22
�� �� ρ ϑ, ϑ, ϑð Þ, ϑ ∈ V:

ð49Þ

Therefore,

d ξ, Jξð Þ ≤ 1
22
����
����L, ϑ ∈ V : ð50Þ

By using Theorem 3, there exists a mapping Q : V ⟶
W satisfying the following conditions:

(1) Q is a fixed point of J , i.e.,

Q ϑð Þ = 22Q 2−1ϑ
� �

∀ϑ ∈ V : ð51Þ

In the set below, the function Q is the unique fixed
point J .

M = p ∈ S : d ξ, pð Þ<∞f g: ð52Þ

This proves that the uniqueness of the function Q sat-
isfies (51) such that there exists ε ∈ ½0,∞Þ such that

ξ ϑð Þ −Q ϑð Þk k ≤ ερ ϑ, ϑ, ϑð Þ, ϑ ∈ V : ð53Þ

(2) dðJ lξ,QÞ tends to 0 as taking the limit l⟶∞. This
implies

lim
l⟶∞

4nξ 2−nϑð Þ =Q ϑð Þ, for all ϑ ∈ V : ð54Þ
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(3) dðξ,QÞ ≤ ð1/1 − LÞdðξ, JξÞ, which implies

ξ ϑð Þ −Q ϑð Þk k ≤ L

22
�� �� 1 − Lð Þ ρ ϑ, ϑ, ϑð Þ, for all ϑ ∈ V :

ð55Þ

From (39) and (51),

∥ΔQ ϑ1, ϑ2, ϑ3ð Þ∥ = lim
j⟶∞

22
�� ��j∥Δξ 2−jϑ1, 2−jϑ2, 2−jϑ3

� �
∥

≤ lim
j⟶∞

22
�� ��jρ 2−jϑ1, 2−jϑ2, 2−jϑ3

� �
= 0,

ð56Þ

for all ϑ1, ϑ2, ϑ3 ∈ V . Thus,

ΔQ ϑ1, ϑ2, ϑ3ð Þ = 0, ð57Þ

for all ϑ1, ϑ2, ϑ3 ∈ V . By using Lemma 4, the function Q is
quadratic. Hence, the proof of the theorem is now com-
pleted.

Theorem 10. Let ρ : V3 ⟶ ½0,∞Þ be a mapping such that
there exists L < 1 with

ρ ϑ1, ϑ2, ϑ3ð Þ ≤ L 22
�� ��ρ 2−1ϑ1, 2−1ϑ2, 2−1ϑ3

� �
, ϑ1, ϑ2, ϑ3 ∈ V :

ð58Þ

If a mapping ξ : V ⟶W such that ξð0Þ = 0 and (19) for
all ϑ1, ϑ2, ϑ3 ∈ V , then there exists a unique quadratic map-
ping Q : V ⟶W satisfying

ξ ϑð Þ −Q ϑð Þk k ≤ 1

22
�� �� 1 − Lð Þ ρ ϑ, ϑ, ϑð Þ, ð59Þ

for all ϑ ∈ V .

Proof. Setting ϑ1 = ϑ2 = ϑ3 = ϑ in (19), we have

ξ 2ϑð Þ − 4ξ ϑð Þk k ≤ ρ ϑ, ϑ, ϑð Þ, ð60Þ

for all ϑ ∈ V . From the inequality (60), we get

ξ ϑð Þ − 1
22 ξ ϑð Þ

				
				 ≤ 1

22
�� �� ρ ϑ, ϑ, ϑð Þ, ϑ ∈ V : ð61Þ

The generalized metric space ðS, dÞ is defined in the
proof of Theorem 9. Consider a mapping J : S⟶ S defined
by

Jp ϑð Þ≔ 1
22 p 2ϑð Þ, ϑ ∈ V : ð62Þ

From inequality (61),

d ξ, Jξð Þ ≤ 1
22
�� �� : ð63Þ

Hence,

ξ ϑð Þ −Q ϑð Þk k ≤ 1
22
�� �� 1 − Lð Þ ρ ϑ, ϑ, ϑð Þ, ϑ ∈ V : ð64Þ

The remaining proof is the same as in the proof of The-
orem 9.

Corollary 11. Let ξ : V ⟶W be a mapping such that ξð0Þ
= 0 and

Δξ ϑ1, ϑ2, ϑ3ð Þk k ≤ θ 〠
3

i=1
ϑik kr

 !
, ð65Þ

for all ϑ1, ϑ2, ϑ3 ∈ V , where r and θ are in ℝ+ with r < 2; then
there exists a unique quadratic mapping Q : V ⟶W satis-
fying

ξ ϑð Þ −Q ϑð Þk k ≤ 2θ ϑk kr
2j jr − 22

�� �� , ð66Þ

for all ϑ ∈ V .

Corollary 12. Let ξ : V ⟶W be a mapping such that ξð0Þ
= 0 and

Δξ ϑ1, ϑ2, ϑ3ð Þk k ≤ θ 〠
3

i=1
ϑik kr

 !
, ð67Þ

for all ϑ1, ϑ2, ϑ3 ∈ V , where r and θ are in ℝ+ with r > 2; then
there exists a unique quadratic mapping Q : V ⟶W satis-
fying

ξ ϑð Þ −Q ϑð Þk k ≤ 2θ

22
�� ��r − 2j j ϑk kr , ð68Þ

for all ϑ ∈ V .

6. Stability of (6) in Non-Archimedean Random
Normed Space

Definition 13 [24]. A random normed space is triple ðV , μ,
TÞ, where V is a vector space, T is a continuous t − norm,
and a mapping μ : V ⟶D+ satisfies

(RN1) μϑðtÞ = ε0ðtÞ, ∀t > 0 if and only if ϑ = 0.
(RN2) μλϑðtÞ = μϑðt/jλjÞ for all ϑ ∈ V , λ ≠ 0.
(RN3) μϑ1+ϑ2ðt1 + t2Þ ≥ Tðμϑ1ðt1Þ, μϑ2ðt2ÞÞ for all ϑ1, ϑ2

∈ V and t1, t2 ≥ 0.

Definition 14 [25]. A random normed space ðV , μ, TÞ is said
to be non-Archimedean random normed space if it satisfies
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(NAR1) μϑðtÞ = ε0ðtÞ for all t > 0 if and only if ϑ = 0.
(NAR2) μλϑðtÞ = μϑð1/jλjÞ for all ϑ ∈ V , t > 0, λ ≠ 0.
(NAR3) μϑ1+ϑ2ðmax ft1, t2gÞ ≥ Tðμϑ1ðt1Þ, μϑ2ðt2ÞÞ for all

ϑ1, ϑ2 ∈ V and t1, t2 ≥ 0.
It is clear that if (NAR3) holds, then so

RN3ð Þμϑ1+ϑ2 t + sð Þ ≥ T μϑ1 tð Þ, μϑ2 sð Þ

 �

: ð69Þ

Example 1 [25]. Let a non-Archimedean normed space ðV ,
k·kÞ and we define

μϑ tð Þ = t
t+∥ϑ∥ , ð70Þ

for all ϑ ∈ V and all t > 0. Then, the triple ðV , μ, TMÞ is a
non-Archimedean random normed space.

Definition 15 [25]. Let ðV , μ, TÞ be a non-Archimedean ran-
dom normed space and a sequence fϑng in V . Then, the
sequence fϑng is called as convergent if there exist ϑ ∈ V
such that

lim
n⟶∞

μn−ϑ tð Þ = 1, ð71Þ

for all t > 0. In particular, ϑ is called the limit of the sequence
fϑng.

Here, let V be a vector space over a non-Archimedean field
K and ðW, μ, TÞ be a non-Archimedean random Banach
space over K. And consider that 2 ≠ 0 in K.

Next, we define a random approximately quadratic func-
tion. Let a distribution mapping ψ : V ×V ⟶ ½0,∞Þ sat-
isfies ψðϑ1, ϑ2, ϑ3, ·Þ which is symmetric and nondecreasing
and

ψ λϑ, λϑ, λϑ, tð Þ ≥ ψ ϑ, ϑ, ϑ, t
λj j

� �
, ð72Þ

for all ϑ ∈ V and all λ ≠ 0.

Definition 16. A function ξ : V ⟶W is called as a ψ
-approximately quadratic if

μ2ξ ϑ1+ϑ2/2ð Þ+2ξ ϑ3ð Þ−ξ ϑ1+ϑ2/2ð Þ+ϑ3ð Þ−λ−2ξ λ ϑ1+ϑ2/2ð Þ−ϑ3ð Þð Þ ≥ ψ ϑ1, ϑ2, ϑ3, tð Þ,
ð73Þ

for all ϑ1, ϑ2, ϑ3 ∈ V and t > 0.

Theorem 17. Let a function ξ : V ⟶W be a ψ-approxi-
mately quadratic mapping. If for some real number α > 0,
and some integer k, k > 1 with α > j2kj,

ψ 2−kϑ1, 2−kϑ2, 2−kϑ3, t

 �

≥ ψ ϑ1, ϑ2, ϑ3, αtð Þ, ð74Þ

for all ϑ1, ϑ2, ϑ3 ∈ V and t > 0, and

lim
n⟶∞

T∞
j=nM ϑ, αjt

2j jkj
 !

= 1, ð75Þ

for all ϑ ∈ V and every t > 0; then there exists a unique qua-
dratic mapping Q : V ⟶W such that

μξ ϑð Þ−Q ϑð Þ tð Þ ≥ T∞
i=1M ϑ, α

i+1t

2j jki
 !

, ð76Þ

where

M ϑ, tð Þ≔ T ψ ϑ, ϑ, ϑ, tð Þψ 2ϑ, 2ϑ, 2ϑ, tð Þ,⋯,ψ 2k−1ϑ, 2k−1ϑ, 2k−1ϑ, t

 �
 �

,

ð77Þ

for all ϑ ∈ V and all t > 0.

Proof. First, we demonstrate by induction on j that for all ϑ
∈ V , t > 0 and j > 0,

μ
ξ 2 jϑð Þ−22 j ξ ϑð Þ tð Þ ≥Mj ϑ, tð Þ≔ T ψ ϑ, ϑ, ϑ, tð Þ,⋯,ψ 2 j−1ϑ, 2j−1ϑ, 2j−1ϑ, t

� �� �
:

ð78Þ

Setting ϑ1 = ϑ2 = ϑ3 = ϑ in (73), we obtain

μξ 2ϑð Þ−22ξ ϑð Þ tð Þ ≥ ψ ϑ, ϑ, ϑ, tð Þ, ð79Þ

for all ϑ ∈ V and all t > 0. This proves that (78) for j = 1. Sup-
pose that (78) holds for some j > 0. Replacing ϑ by 2 jϑ in
(73), we get

μξ 2 j+1ϑ−22ξ 2 jϑð Þð tð Þ ≥ ψ 2jϑ, 2jϑ, 2jϑ, t
� �

, ð80Þ

for all ϑ ∈ V and all t > 0. Since j22j ≤ 1,

μξ 2 j+1ϑð Þ−22 j+1ð Þξ ϑð Þ tð Þ
≥ T μξ 2 j+1ϑð Þ−22ξ 2 jϑð Þ tð Þ, μ22ξ 2 jϑð Þ−22 j+1ð Þξ ϑð Þ tð Þ

 �

= T μξ 2 j+1ϑð Þ−22ξ 2 jϑð Þ tð Þ, μξ 2 jϑð Þ−22 jξ ϑð Þ
t

22
�� ��

 ! !
T

· μξ 2 j+1ϑð Þ−22ξ 2 jϑð Þ tð Þ, μξ 2 jϑð Þ−22 jξ ϑð Þ tð Þ

 �

≥ T ψ 2jϑ, 2jϑ, 2jϑ, t
� �

,Mj ϑ, tð Þ� �
=Mj+1 ϑ, tð Þ,

ð81Þ

for all ϑ ∈ V . Thus, condition (78) holds for all j > 0. In par-
ticular,

μξ 2kϑð Þ−22kξ ϑð Þ tð Þ ≥M ϑ, tð Þ, ð82Þ
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for all ϑ ∈ V and all t > 0. Replacing ϑ by 2−ðk+knÞϑ in (82) and
using the inequality (74), we have

μξ ϑ/2knð Þ−22kξ ϑ/2kn+kð Þ ≥M
ϑ

2kn+k
, t

� �
≥M ϑ, αn+1t

� �
; n = 0, 1, 2,⋯,

ð83Þ

for all ϑ ∈ V and all t > 0. Then,

μ 22kð Þnξ ϑ/ 2kð Þnð Þ− 22kð Þn+1ξ ϑ/ 2kð Þn+1
� � tð Þ ≥M ϑ, αn+1

22k
� �n�� �� t

 !
; n = 0, 1, 2,⋯,

ð84Þ

for all ϑ ∈ V and all t > 0. Hence,

μ 2kð Þnξ ϑ/ 2kð Þnð Þ− 22kð Þn+pξ ϑ/ 2kð Þn+pð Þ tð Þ

≥ Tn+p
j=n μ 2kð Þ jξ ϑ/ 2kð Þ j

� �
− 22kð Þ j+pξ ϑ/ 2kð Þ j+p

� � tð Þ
� �

≥ Tn+p
j=nM ϑ, αj+1

22k
� �j��� ��� t

0
B@

1
CA ≥ Tn+p

j=nM ϑ, αj+1

2k
� �j��� ��� t

0
B@

1
CA:

ð85Þ

Since limn⟶∞T∞
j=nMðϑ, ðαj+1/jð2kÞjjÞtÞ = 1 for all ϑ ∈ V

and all t > 0, fð22kÞnξðϑ/ð2kÞnÞgn∈N is a Cauchy sequence
in ðW, μ, TÞ. Hence, we can define a mapping Q : V ⟶
W such that

lim
n⟶∞

μ 22kð Þnξ ϑ/ 2kð Þnð Þ−Q ϑð Þ tð Þ = 1, ð86Þ

for all ϑ ∈ V and all t > 0. Now, for all n ≥ 1,

μξ ϑð Þ− 22kð Þnξ ϑ/ 2kð Þnð Þ tð Þ
= μ

〠
n−1

i=0
22k

 �i

ξ ϑ/ 2k

 �i� �

− 22k

 �i+1

ξ ϑ/ 2k

 �i+1� � tð Þ

≥ Tn−1
i=0 μ 22kð Þiξ ϑ/ 2kð Þi

� �
− 22kð Þi+1ξ ϑ/ 2kð Þi+1

� � tð Þ
� �

≥ Tn−1
i=0 M ϑ, α

i+1t

22k
�� ��i

 !
,

ð87Þ

for all ϑ ∈ V and t > 0. Thus,

μξ ϑð Þ−Q ϑð Þ tð Þ ≥ T μξ ϑð Þ− 22kð Þnξ ϑ/ 2kð Þnð Þ, μ 22kð Þnξ ϑ/ 2kð Þnð Þ−Q ϑð Þ tð Þ

 �

≥ T Tn−1
i=0 M ϑ, α

i+1t

22k
�� ��i

 !
, μ 22kð Þnξ ϑ/ 2kð Þnð Þ−Q ϑð Þ tð Þ

 !
:

ð88Þ

By taking the limit n⟶∞, we have

μξ ϑð Þ−Q ϑð Þ tð Þ ≥ T∞
i=1M ϑ, α

i+1t

2k
�� ��i

 !
: ð89Þ

This shows that (76) holds. Since T is continuous, by a
well-known result in probabilistic metric space (see, e.g.,
[[26], Chapter 12]), that

lim
n⟶∞

μ 2kð ÞnΔξ 2−knϑ1,2−knϑ2,2−knϑ3ð Þ tð Þ = μΔQ ϑ1,ϑ2,ϑ3ð Þ tð Þ, ð90Þ

for all t > 0.
On the other hand, replacing ðϑ1, ϑ2, ϑ3Þ by ð2−knϑ1,

2−knϑ2, 2−knϑ3Þ, respectively, in (73) and using (NAR2) and
(74), we get

μ 2kð ÞnΔξ 2−knϑ1,2−knϑ2,2−knϑ3ð Þ tð Þ ≥ ψ 2−knϑ1, 2−knϑ2, 2−knϑ3,
t

2k
�� ��n

 !

≥ ψ ϑ1, ϑ2, ϑ3,
αnt

2k
�� ��n

 !
:

ð91Þ

Since limn⟶∞ψðϑ1, ϑ2, ϑ3, αnt/j2kjnÞ = 1, we can con-
clude that the function Q is quadratic. Consider another
quadratic mapping Q′ : V ⟶W such that μQ′ðϑÞ−ξðϑÞðtÞ ≥
Mðϑ, tÞ for all ϑ ∈ V and all t > 0; then for all n ∈N and ϑ
∈ V and all t > 0,

μQ ϑð Þ−Q′ ϑð Þ tð Þ ≥ T μQ ϑð Þ− 24kð Þnξ ϑ/ 2kð Þnð Þ tð Þ, μ 22kð Þnξ ϑ/ 2kð Þnð Þ−Q′ ϑð Þ tð Þ, t

 �

:

ð92Þ

From condition (86), we arrive at the conclusion that
Q =Q′.

Corollary 18. Let a function ξ : V ⟶W be a ψ-approxi-
mately quadratic. If for some real number α > 0 and some
integer k, k > 1, with j2kj < α,

ψ 2−kϑ1, 2−kϑ2, 2−kϑ3, t

 �

≥ ψ ϑ1, ϑ2, ϑ3, αtð Þ, ð93Þ

for all ϑ1, ϑ2, ϑ3 ∈ V and t > 0, then there exists a unique qua-
dratic mapping Q : V ⟶W satisfying

μξ ϑð Þ−Q ϑð Þ tð Þ ≥ T∞
i=1M ϑ, α

i+1t

2j jki
 !

, ð94Þ

where

M ϑ, tð Þ≔ T ψ ϑ, ϑ, ϑ, tð Þ, ψ 2ϑ, 2ϑ, 2ϑ, tð Þð ,⋯, ψ 2k−1ϑ, 2k−1ϑ, 2k−1ϑ, t

 �

,

ð95Þ

for all ϑ ∈ V and all t > 0.
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Proof. Since

lim
n⟶∞

M ϑ, αjt

2j jkj
 !

= 1, ð96Þ

for all ϑ ∈ V and all t > 0 and T is of Hadzic type, from Prop-
osition 2.1 in [25], it follows that

lim
n⟶∞

T∞
j=nM ϑ, αjt

2j jkj
 !

, ð97Þ

for all ϑ ∈ V and t > 0. Now, we can obtain our needed result
by using Theorem 17

Example 2. Let a non-Archimedean random normed space
ðV , μ, TMÞ, in which

μϑ tð Þ = t
t+∥ϑ∥ , ð98Þ

for all ϑ ∈ V and every t > 0, and let ðW, μ, TMÞ be a com-
plete non-Archimedean random normed space (see Example
1). Now, we can define

ψ ϑ1, ϑ2, ϑ3, tð Þ = t
1 + t

: ð99Þ

It is obvious that (74) holds for α = 1. Furthermore,

M ϑ, tð Þ = t
1 + t

: ð100Þ

We obtain

lim
n⟶∞

T∞
M, j=nM ϑ, αjt

2j jkj
 !

= lim
n⟶∞

lim
m⟶∞

Tm
M,j=nM ϑ, t

2j jkj
 ! !

= lim
n⟶∞

lim
m⟶∞

t

t + 2k
�� ��n

 !
= 1,

ð101Þ

for all ϑ ∈ V and all t > 0.

7. Conclusion

In this paper, we introduced λ-quadratic functional equation
and obtained its general solution. In Section 4 and Section 5,
we investigated Ulam-Hyers stability of equation (6) by using
direct method and fixed point method in non-Archimedean
Banach space, and also in Section 6, we investigated the
Ulam-Hyers stability results in non-Archimedean random
normed space. The direct method requires us to find the Cau-
chy sequence and prove that every Cauchy sequence is con-
vergent, as well as prove the uniqueness of the function;
this method was introduced by Hyers [2], and the fixed point
method requires us to use the Banach contraction principle
and Lipschitz constant L to obtain the stability results of

the functional equation; this method was introduced by Radu
[27]. The fixed point method gives more accurate stability
results when compared with the direct method. Finally, these
stability results generalized the findings of [11].
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In this paper, by using the partial order method and monotone iterative techniques, the existence and uniqueness of fixed points
for a class of superlinear operators are studied, without requiring any compactness or continuity. As corollaries, the new fixed
point theorems for α-convex operators ðα > 1Þ, e-convex operators, positive α homogeneous operator ðα > 1Þ, generalized e
-convex operator, and convex operators are obtained. The results are applied to nonlinear integral equations and partial
differential equations.

1. Introduction

Linear operators are a kind of operators with good proper-
ties and rich theoretical results, which have formed a classi-
cal branch in functional analysis. However, in order to solve
the fixed point problems involving operators or equations in
practical applications, we need a large number of nonlinear
operators, including two classes of significant operators,
namely, superlinear operators and sublinear operators. Since
some of these operators have concavity or convexity, they
bring convenience to the related research. The concepts of
concave operators and convex operators were proposed in
1960s, which attracted people’s great interest. Many authors
obtained a lot of meaningful results, see [1–27]. Among
them, α-convex operators ðα > 1Þ [12, 17], e-convex opera-
tors [13], and generalized e-convex operators [16] are a very
important class of convex operators. It has important appli-
cations in many fields. However, it was difficult to study the
α-convex operators ðα > 1Þ (including positive α-homoge-
neous operators) and e-convex operators because they had
strong superlinear properties [13] and described nonlinear
problems [12]. Until now, the results are still very few and
not very ideal (see [7], P457). Therefore, under what condi-
tions, these operators have a unique fixed point remains a
very important and meaningful problem.

In [7], a fixed point theorem for a class of superlinear
operators was obtained by topological degree method under
the condition that there are inverse upward and downward
solutions. In [17], using some results of δ-concave operator,
the author transformed the positive α-homogeneous super-
linear operator into δ-concave operator and studied the
existence and uniqueness of the solutions of positive α
-homogeneous superlinear operator equations. In [13], the
existence of fixed points was investigated when the α-con-
vex operators ðα > 1Þ was a strict set contraction. In [16],
Zhao and Du obtained the existence of fixed points of gener-
alized e-concave operators and generalized e-convex opera-
tors. As an application, the singular boundary value
problems for second order differential equations were dis-
cussed. In [10], according to the properties of totally ordered
sets, the existence and uniqueness of new positive fixed
points for a class of superlinear homogeneous operators
were studied in abstract spaces. The results were applied to
a class of superlinear Hammerstein-type integral equations.

In this paper, we study a class of superlinear operators
without requiring any compactness or continuity and obtain
some new fixed point theorems for superlinear operators by
using the partial order and the monotone iteration which are
different from those mentioned above in the literature. As
corollaries, new fixed point theorems for α-convex operators
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ðα > 1Þ, e-convex operators, positive α homogeneous opera-
tor ðα > 1Þ, generalized e-convex operator, and convex oper-
ators are obtained. The results are applied to nonlinear
integral equations and partial differential equations.

2. Preliminaries

Let E be a real Banach space and P be a subset of E, θ denotes
the zero element of E and intP denotes the interior of P. The
subset P is called a cone if:

(i) x ∈ P and λ ≥ 0, then λx ∈ P

(ii) x ∈ P and −x ∈ P, then x = θ.

Given a cone P ⊂ E, we define a partial ordering ≤ with
respect to P by x ≤ y if and only if y − x ∈ P. We shall write
x < y if x < y and x ≠ y, while x≪ y will stand for y − x ∈
int P. A cone P is called normal if there is a number K > 0
such that for all x, y ∈ P,

θ ≤ x ≤ y implies xk k ≤ K yk k: ð1Þ

The least positive number satisfying the above inequality
is called the normal constant of P.

Let D ⊂ E, A : D⟶ E be an operator. If there exists a
point x ∈D such that Ax = x, then x is called a fixed point
of A in D. Let u0, v0 ∈ E, and u0 ≤ v0, then

u0, v0½ � = x ∈ E ∣ u0 ≤ x ≤ v0f g, ð2Þ

is said to be an ordering interval. The operator A : D
⟶ E is said to be increasing; if for any x, y ∈D, x ≤ y
implies Ax ≤ Ay.

Throughout this paper, we always assume that E is a real
Banach space and ≤ is a partial ordering with respect to P; θ
denotes the null element of E.

Definition 1 (see [19]). Let D ⊂ E. D is called a star-shaped
subset of the real Banach space E; if for any x ∈D and 0 < t
< 1, it holds that tx ∈D.

Note that a convex set D in the real Banach space E with
the null element θ ∈D is a star-shaped subset of E. Espe-
cially, any cone P in the real Banach space E is a star-shaped
subset of E.

Definition 2 (see [7]). Let D be a star-shaped subset of the
real Banach space E and A : D⟶D be an operator, then

(1) A is said to be sublinear, if for all x ∈D and 0 < t < 1,
AðtxÞ ≥ tAx;

(2) A is said to be superlinear, if for all x ∈D and 0 < t
< 1, AðtxÞ ≤ tAx.

Definition 3 (see [4, 7]). Let e > θ. A : P⟶ P is called an e
-concave operator, if

(i) A is e-positive, that is, AðP − fθgÞ ⊂ Pe, where

Pe = x ∈ Ejthere exist λ, μ > 0, such that λe ≤ x ≤ μef g: ð3Þ

(ii) For all x ∈ Pe and 0 < t < 1, there exists η = ηðt, xÞ > 0
such that

A txð Þ ≥ 1 + ηð ÞtAx, ð4Þ

where η = ηðt, xÞ is called the characteristic function of A.
Similarly, if in the above definition, (ii) is replaced by the

following (ii′):
(ii′) For all x ∈ Pe and 0 < t < 1, there exists η = ηðt, xÞ

> 0 such that

A txð Þ ≤ 1 − ηð ÞtAx, ð5Þ

where η = ηðt, xÞ is called the characteristic function of A;
then, A : P⟶ P is called an e-convex operator.

Definition 4 (see [16]). Let e > θ. A : P⟶ P is called a
generalized e-concave operator, if

(i) Ae ∈ Pe, where

Pe = x ∈ Ejthere exist λ, μ > 0, such that λe ≤ x ≤ μef g: ð6Þ

(ii) For all x ∈ Pe and 0 < t < 1, there exists η = ηðt, xÞ > 0
such that

A txð Þ ≥ 1 + ηð ÞtAx, ð7Þ

where η = ηðt, xÞ is called the characteristic function of A.
Similarly, if in the above definition, we replace (ii) by the

following (ii′):
(ii′) For all x ∈ Pe and 0 < t < 1, there exists η = ηðt, xÞ

> 0 such that

A txð Þ ≤ 1 + ηð Þtð Þ−1Ax, ð8Þ

where η = ηðt, xÞ is called the characteristic function of
A; then, A : P⟶ P is called a generalized e-convex
operator.

Definition 5 (see [4, 17]). Let A : P⟶ P be an operator, α
> 0.

(1) A is said to be an α-concave operator, if for any x ∈ P
and 0 < t < 1, AðtxÞ ≥ tαAx

(2) A is said to be an α-convex operator, if for any x ∈ P
and 0 < t < 1, AðtxÞ ≤ tαAx

(3) A is said to be a positive α-homogeneous operator, if
for any x ∈ P and t > 0, AðtxÞ = tαAx.

Remark 6 (see [9]). Any α-convex operator ðα > 1Þ must be
an e-convex operator, where the characteristic function
ηðt, xÞ = 1 − tα−1.
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Remark 7. Clearly, any e -convex operator must be a super-
linear operator. Thus, α -convex operators ðα > 1Þ and e
-convex operators are special superlinear operators.

Remark 8. Any generalized e -convex operator A must be a
superlinear operator if ηðt, xÞ ≥ 1/t2 for any x ∈ Pe and 0 < t
< 1 where η = ηðt, xÞ is the characteristic function of A.
Thus, generalized e-convex operators are special superlinear
operators under suitable conditions.

Remark 9. Noting A : P⟶ P is called a convex operator if
Aðtx + ð1 − tÞyÞ ≤ tAx + ð1 − tÞAy for all x, y ∈ P and 0 < t
< 1; we can easily see that any convex operator A : P⟶ P
satisfying Aθ = θ must be a superlinear operator.

3. Main Results

In [18], the author proved that there was no operator which
was decreasing and e-convex, where e > θ. Now, we give
some important theorems of increasing superlinear opera-
tors, which generalize increasing e-convex operators.

Theorem 10. Let P be a normal cone in E and A : P⟶ P be
an increasing superlinear operator. If there exist a ∈ ð0, 1Þ
and u0, v0 ∈ P, u0 < v0 such that u0 ≤ Au0, Av0 ≤ av0, then
the operator A has a unique fixed point x∗ in ½u0, v0�. For
any x0 ∈ ½u0, v0� and iterated sequence xn = Axn−1ðn = 1, 2,⋯Þ,
we have kxn − x∗k⟶ 0ðn⟶∞Þ.

Proof. We firstly prove the existence of the fixed point. Let
un = Aun−1, vn = Avn−1. Since A is increasing, we have

u0 ≤ u1 ≤⋯ ≤ un ≤⋯≤ vn ≤⋯≤ v1 ≤ v0: ð9Þ

Take v0′ = v0, vn′ = a−1Avn−1′ ðn = 1, 2,⋯Þ, then

u0 ≤ vn′ ≤ v0 n = 1, 2,⋯ð Þ, ð10Þ

vn ≤ anvn′ n = 1, 2,⋯ð Þ: ð11Þ
Equation (10) can be proved by iteration. Indeed, for n

= 1, we get

u0 ≤ Au0 ≤ a−1Au0 ≤ a−1Av0′ = a−1Av0′ = v1′ ≤ a−1av0 = v0,
ð12Þ

which means equation (10) holds when n = 1. Suppose
that equation (10) holds for n = k, that is

u0 ≤ vk′ ≤ v0: ð13Þ

By the fact that A is increasing, we obtain Au0 ≤ Avk′ ≤
Av0, then

u0 ≤ Au0 ≤ a−1Au0 ≤ a−1Av0 ≤ a−1Avk′ ≤ a−1Av0 = v1′ ≤ v0,
ð14Þ

which implies u0 ≤ vk+1′ ≤ v0. Thus, equation (10) holds

for all n ∈ℕ. Now, we prove that equation (11) is also true.
Indeed, if n = 1, then

v1 = Av0 = aa−1Av0 = aa−1Av0′ = av1′ , ð15Þ

that is, (11) holds when n = 1. Suppose (11) holds for n
= k, i.e.,

vk ≤ akvk′: ð16Þ

It follows that Avk ≤ akAvk′ since A is an increasing
superlinear operator. Hence, we see that

vk+1 = Avk ≤ A akvk′
� �

≤ akAvk′ = ak+1a−1Avk′ = ak+1vk+1′ ,

ð17Þ

which gives vk+1 ≤ ak+1vk+1′ . So, equation (11) holds for
all n ∈ℕ.

Combining equations (9), (10), and (11), for any p ≥ 1,
we know

θ ≤ vn − un ≤ anvn′ − un ≤ anv0 − anu0 = an v0 − u0ð Þ, ð18Þ

θ ≤ un+p − un ≤ vn − un, θ ≤ vn − vn+p ≤ vn − un: ð19Þ
By equations (18) and (19) and the normality of P, we

can check that vn − un ⟶ 0ðn⟶∞Þ, which implies that
{un} and {vn} are Cauchy sequences in E. Then, there exist
u∗, v∗∈½u0, v0� such that un ⟶ u∗, vn ⟶ v∗ðn⟶∞Þ,
and u∗ = v∗. Denote x∗ = u∗ = v∗. We have un ≤ u∗ ≤ v∗ ≤
vn by (9). Therefore,

un+1 = Aun ≤ Au∗ ≤ Av∗ ≤ Avn = vn+1: ð20Þ

Let n⟶∞ in (13), then u∗ ≤ Au∗ ≤ Av∗ ≤ v∗. This
gives u∗ = Au∗ = Av∗ = v∗; that is, the operator A has a fixed
point x∗ in ½u0, v0�.

Next, we prove the uniqueness of the fixed point. If there
exists �x ∈ [u0, v0] such that A�x = �x, then u0 ≤ �x ≤ v0. By the
monotonicity of A, we see Au0 ≤ A�x ≤ Av0, i.e., u1 ≤ �x ≤ v1.
It is easy to deduce that un ≤ �x ≤ vn, for any n ≥ 1. So �x =
x∗ as n⟶∞.

At last, for any x0 ∈ [u0, v0], the sequence xn = Axn−1
ðn = 1, 2,⋯Þ satisfies

un ≤ xn ≤ vn n = 1, 2,⋯ð Þ, ð21Þ

by iteration. Letting n⟶∞, we know xn ⟶ x∗

(n⟶∞).
Similarly, if the superlinear operator has an upward solu-

tion, we have the following result.

Theorem 11. Let P be a normal cone in E and A : P⟶ P be
an increasing superlinear operator. If there exist a ∈ ð0, 1Þ
and u0, v0 ∈ P, u0 < v0 such that au0 ≤ Au0, Av0 ≤ v0, then
the equation Ax = ax has a unique fixed point x∗ in ½u0, v0�.
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For any x0 ∈ ½u0, v0� and the iterated sequence xn = Axn−1
ðn = 1, 2,⋯Þ, we have kxn − x∗k⟶ 0ðn⟶∞Þ.

Proof. Let B = a−1A, then

Bu0 = a−1Au0 ≥ a−1au0 = u0,
Bv0 = a−1Av0 ≤ a−1v0:

ð22Þ

For any x ∈ P and 0 < t < 1, we obtain

B txð Þ = a−1A txð Þ ≤ a−1tAx = tBx: ð23Þ

Thus, B is a superlinear operator which satisfies all con-
ditions of Theorem 10. The conclusions are true by Theorem
10.

Similar to Theorem 10, we immediately get the following
result.

Theorem 12. Let P be a normal cone in E and A : P⟶ P be
an increasing superlinear operator. If there exists ε ∈ ð0, 1Þ
such that Aθ > θ, A3θ ≤ εA2θ, then the operator A has a
unique fixed point x∗ in ½Aθ, A2θ�. For any x0 ∈ ½Aθ, A2θ�
and iterated sequence xn = Axn−1ðn = 1, 2,⋯Þ, we have kxn −
x∗k⟶ 0ðn⟶∞Þ.

Proof. We use Theorem 10 to give the proof of Theorem 12.
Set u0 = θ,v0 = A2θ. Then, u0, v0 ∈ P. Since the operator A is
increasing and Aθ > θ, we have A2θ ≥ Aθ. Obviously, we
have A2θ > Aθ (otherwise if A2θ = Aθ, then A3θ = A2θ ≤ ε
A2θ ð0 < ε < 1Þ, which implies that A2θ = θ, so Aθ = θ. This
is a contradiction since Aθ > θ.

Now letting a = ε ∈ ð0, 1Þ, we see that

u0 = Aθ ≤ A2θ = Au0,
Av0 = A3θ ≤ εA2θ = av0:

ð24Þ

So, all conditions of Theorem 10 are satisfied. By
Theorem 10, we know that the conclusions of Theorem 12
hold true.

Remark 13. Compared with ([7], Theorem 3.1), in order to
obtain the existence and uniqueness of positive fixed points,
the superlinear operator A : P⟶ P in Theorem 10 and
Theorem 11 does not need any compactness or continuity.
It is quite different from [7] (Theorem 3.1), which required
that A : P⟶ P is a condensing operator.

Remark 14. Since superlinear operators include three classes
of operators: generalized e-convex operators, e-convex
operators, and α-convex operators, Theorem 10 and
Theorem 11 improve or generalize lots of famous results in
[5, 7, 9, 12–17].

Corollary 15. Let P be a normal cone in E and A : P⟶ P be
an increasing e-convex operator. If there exist a ∈ ð0, 1Þ and

w0, v0 ∈ P, w0 < v0 such that w0 ≤ Aw0, Av0 ≤ av0, then the
operator A has a unique fixed point x∗ in ½w0, v0�. For any
x0 ∈ ½w0, v0� and iterated sequence xn = Axn−1ðn = 1, 2,⋯Þ,
we have kxn − x∗k⟶ 0ðn⟶∞Þ.

Corollary 16. Let P be a normal cone in E and A : P⟶ P be
an increasing e-convex operator. If there exist a ∈ ð1,∞Þ and
w0, v0 ∈ P, w0 < v0 such that aw0 ≤ Aw0, Av0 ≤ v0, then the
equation Ax = ax has a unique fixed point x∗ in ½w0, v0�.
For any x0 ∈ ½w0, v0� and the iterated sequence xn = Axn−1
ðn = 1, 2,⋯Þ, we have kxn − x∗k⟶ 0ðn⟶∞Þ.

Corollary 17. Let P be a normal cone in E and A : P⟶ P be
an increasing α-convex (α > 1) operator. If there exist a ∈
ð0, 1Þ and u0, v0 ∈ P, u0 < v0 such that u0 ≤ Au0, Av0 ≤ av0,
then the operator A has a unique fixed point x∗ in ½u0, v0�.
For any x0 ∈ ½u0, v0� and the iterated sequence xn = Axn−1
ðn = 1, 2,⋯Þ, we have kxn − x∗k⟶ 0ðn⟶∞Þ.

Corollary 18. Let P be a normal cone in E and A : P⟶ P
be an increasing α-convex (α > 1) operator. If there exist a
∈ ð1,∞Þ and u0, v0 ∈ P, u0 < v0 such that au0 ≤ Au0, Av0
≤ v0, then the equation Ax = ax has a unique fixed point
x∗ in ½u0, v0�. For any x0 ∈ ½u0, v0� and the iterated sequence
xn = Axn−1ðn = 1, 2,⋯Þ, we have kxn − x∗k⟶ 0ðn⟶∞Þ.

Corollary 19. Let P be a normal cone in E and A : P⟶ P be
an increasing positive αðα > 1Þ homogeneous operator. If
there exist a ∈ ð0, 1Þ and u0, v0 ∈ P, u0 < v0 such that u0 ≤ A
u0, Av0 ≤ av0, then the operator A has a unique fixed point
x∗ in ½u0, v0�. For any x0 ∈ ½u0, v0� and the iterated sequence
xn = Axn−1ðn = 1, 2,⋯Þ, we have kxn − x∗k⟶ 0ðn⟶∞Þ.

Corollary 20. Let P be a normal cone in E and A : P⟶ P be
an increasing positive αðα > 1Þ homogeneous operator. If
there exist a ∈ ð1,∞Þ and u0, v0 ∈ P, u0 < v0 such that au0 ≤
Au0, Av0 ≤ v0, then the equation Ax = ax has a unique fixed
point x∗ in ½u0, v0�. For any x0 ∈ ½u0, v0� and the iterated
sequence xn = Axn−1ðn = 1, 2,⋯Þ, we have kxn − x∗k⟶ 0
ðn⟶∞Þ.

Corollary 21. Let P be a normal cone in E and A : P⟶ P be
an increasing generalized e-convex operator satisfying ηðt, xÞ
≥ 1/t2 for any x ∈ Pe and 0 < t < 1where η = ηðt, xÞ is the char-
acteristic function of A. If there exist a ∈ ð0, 1Þ and w0, v0 ∈ P,
w0 < v0 such that w0 ≤ Aw0, Av0 ≤ av0, then the operator A
has a unique fixed point x∗ in ½w0, v0�. For any x0 ∈ ½w0, v0�
and iterated sequence xn = Axn−1ðn = 1, 2,⋯Þ, we have kxn −
x∗k⟶ 0ðn⟶∞Þ.

Corollary 22. Let P be a normal cone in E and A : P⟶ P be
an increasing generalized e-convex operator satisfying ηðt, xÞ
≥ 1/t2 for any x ∈ Pe and 0 < t < 1where η = ηðt, xÞ is the char-
acteristic function of A. If there exist a ∈ ð1,∞Þ and w0, v0 ∈ P,
w0 < v0 such that aw0 ≤ Aw0, Av0 ≤ v0, then the equation A
x = ax has a unique fixed point x∗ in ½w0, v0�. For any x0 ∈
½w0, v0� and the iterated sequence xn = Axn−1ðn = 1, 2,⋯Þ,
we have kxn − x∗k⟶ 0ðn⟶∞Þ.
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Corollary 23. Let P be a normal cone in E and A : P⟶ P be
an increasing convex operator satisfying Aθ = θ. If there exist
a ∈ ð0, 1Þ and w0, v0 ∈ P, w0 < v0 such that w0 ≤ Aw0, Av0 ≤
av0, then the operator A has a unique fixed point x∗ in ½w0,
v0�. For any x0 ∈ ½w0, v0� and iterated sequence xn = Axn−1
ðn = 1, 2,⋯Þ, we have kxn − x∗k⟶ 0ðn⟶∞Þ.

Corollary 24. Let P be a normal cone in E and A : P⟶ P be
an increasing convex operator satisfying Aθ = θ. If there exist
a ∈ ð1,∞Þ and w0, v0 ∈ P, w0 < v0 such that aw0 ≤ Aw0,Av0
≤ v0, then the equation Ax = ax has a unique fixed point x∗

in ½w0, v0�. For any x0 ∈ ½w0, v0� and the iterated sequence
xn = Axn−1ðn = 1, 2,⋯Þ, we have kxn − x∗k⟶ 0ðn⟶∞Þ.

Remark 25. In Corollary 15 and Corollary 16, the existence
and uniqueness of positive fixed points are proved, without
appealing to the monotonicity or any compactness and
continuity of the e-convex operator A : P⟶ P. This is very
different from [9] (Theorem 9), which required that there
existed Mð>1Þ homogeneous increasing functional F : Pe
⟶ ð0,+∞Þ. In addition, Corollary 15 and Corollary 16 in
the paper are quite different from [14] (Corollary 2.4), which
only obtained the existence of positive fixed points while the
condition required the strong condition of that there existed
ε0 > 0 such that

Ax ≥ ε0 Axk ke,∀x ∈ P+, �lim
t⟶0+

η x, tð Þ

>max 1 − ε0 A ε0eð Þk k ek k
N2 , 1 − 1

MN

� �
,

uniformly for x ∈ Ce,

ð25Þ

with M = sup fkAxk ∣ x ∈ P, kxk = 1g.

Remark 26. In Corollary 17 and Corollary 18, the existence
and uniqueness of positive fixed points are proved, without
appealing to the monotonicity of α-convex operator ðα > 1Þ
or any compactness and continuity of the operator A : P
⟶ P. This is very different from [12] (Theorem 9), [8]
(Theorem 2), and [15] (Theorem 1.3), which required that
there existed a linear operator L : E⟶ E which satisfied
certain conditions, and the increasing α-convex operator
(α > 1) was completely continuous, respectively.

Remark 27. In Corollary 19 and Corollary 20, the positive
α-homogeneous operator ðα > 1ÞA : P⟶ P does not need
to have any compactness or continuity, but Theorem 1 in
[17] requested that the α-homogeneous operator ðα > 1Þ
A : P⟶ P can be decomposed into A = FC, where F : Pe
⟶ ð0,+∞Þ was an increasing positive β functional and
C : Pe ⟶ Pe was an increasing operator in Pe ðe > θÞ. There-
fore, the methods and techniques of Corollary 19 and Corol-
lary 20 are different from those of [17] (Theorem 1).

Remark 28. In this paper, we use the partial order and the
monotone iteration to study the fixed point theorems of
superlinear operators in Banach spaces. The methods and
techniques are different from those used in the literature

[7–10, 12, 14, 15, 17], but the existence and uniqueness of
the fixed points and the convergence of the iterative
sequences of superlinear operators are obtained.

4. Applications

Now, we give some examples to show the applications of our
main results in nonlinear integral equations and partial
differential equations.

Example 1. Let α > 1. Consider Hammerstein integral
equation

x tð Þ = Axð Þ tð Þ =
ð+∞
−∞

K t, sð Þ x sð Þð Þαds: ð26Þ

Conclusion 29. Let K : R × R⟶ R be a nonnegative contin-
uous function. If there exists a constant 0 < c < 1 and two
continuous functions u = u0ðtÞ, v = v0ðtÞ satisfying 0 < u0ðtÞ
≤ v0ðtÞ, −∞ < t < +∞, and

u0 tð Þ ≤
ð+∞
−∞

K t, sð Þ u0 sð Þð Þαds,
ð+∞
−∞

K t, sð Þ v0 sð Þð Þαds ≤ cv0 tð Þ:

ð27Þ

Then, equation (26) has a unique solution x∗ðtÞ satisfy-
ing u0 ≤ x∗ ≤ v0. For any x0ðtÞ which satisfies u0ðtÞ ≤ x0ðtÞ
≤ v0ðtÞ, the iterated sequence

xn tð Þ = Axn−1ð Þ tð Þ =
ð+∞
−∞

K t, sð Þ xn−1 sð Þð Þαds, ð28Þ

uniformly converges to x∗ðtÞ in ð−∞, +∞Þ.

Proof. Let E = CBðRÞ be a bounded continuous function
space in Rn. Define kxk = sup

t∈R
jxðtÞj, then E is a Banach space.

Let P = C+
BðRÞ denote all nonnegative continuous functions

in E, then P is a normal cone in E. We claim that A : P
⟶ P is a homogeneous operator. In fact, by equation
(26), we have

Aλxð Þ tð Þ =
ð+∞
−∞

K t, sð Þ λx sð Þð Þαds

= λα
ð+∞
−∞

K t, sð Þ λx sð Þð Þαds ≤ λAx tð Þ,
ð29Þ

which means A : P⟶ P is a homogeneous operator. It
is clear that A satisfies all conditions of Theorem 10. The
conclusion is true.

Similarly, we also have the following.

Example 2. Let α > 1. Consider Hammerstein integral
equation (see the equation (9) in [10])

x tð Þ = Axð Þ tð Þ =
ð1
0
K t, sð Þ x sð Þð Þαds: ð30Þ
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Conclusion 30. Let K : ½0, 1� × ½0, 1�⟶ ½0, 1� be a nonnega-
tive continuous function. If there exists a constant 0 < c < 1
and two continuous functions u = u0ðtÞ, v = v0ðtÞ satisfying
0 < u0ðtÞ ≤ v0ðtÞ, 0 < t < 1, and

u0 tð Þ ≤
ð1
0
K t, sð Þ u0 sð Þð Þαds,

ð1
0
K t, sð Þ v0 sð Þð Þαds ≤ cv0 tð Þ:

ð31Þ

Then, equation (30) has a unique solution x∗ðtÞ satisfy-
ing u0 ≤ x∗ ≤ v0. For any x0ðtÞ which satisfies u0ðtÞ ≤ x0ðtÞ
≤ v0ðtÞ, the iterated sequence

xn tð Þ = Axn−1ð Þ tð Þ =
ð1
0
K t, sð Þ xn−1 sð Þð Þαds, ð32Þ

uniformly converges to x∗ðtÞ in ð−∞, +∞Þ.

Remark 31. In Example 2, we obtain the existence of positive
solutions of the integral equation (30), without requiring
that the integral kernel Kðt, sÞ can be decomposed into
Kðt, sÞ = hðtÞgðsÞ (see condition C1 in [10]). The methods
and techniques used in this paper are different from those
in [10].

Example 3. Let Ω be a bounded convex domain in Rnðn ≥ 2Þ
whose boundary ∂Ω belongs to C2+μ for some 0 < μ < 1.
Consider the Dirichlet problem

Lu = f x, uð Þ,
uj∂Ω = 0,

(
ð33Þ

where f ðx, uÞ is nonnegative and continuous on x ∈ �Ω and
u ≥ 0 and

Lu = − 〠
n

i,j=1
aij xð Þ ∂2u

∂xi∂xj
+ 〠

n

i=1
bi xð Þ ∂u∂xi

+ c xð Þu, ð34Þ

i.e., there exists a positive constant μ0 such that

〠
n

i,j=1
aij xð Þξiξj ≥ μ0 ξj j2, ð35Þ

for any x ∈ �Ω and ξ = ðξ1, ξ2,⋯, ξnÞ ∈ Rn, and aijðxÞ = aji
ðxÞ,cðxÞ ≥ 0: Here, all functions aijðxÞ, biðxÞ, and cðxÞ belong
to Cμð�ΩÞ (see [3]).

Finding the solution of the above problem is equivalent
to finding the fixed point of the integral operator A:

Au xð Þ =
ð
�Ω

G x, yð Þf y, u yð Þð Þdy, ð36Þ

where Gðx, yÞ is the corresponding Green function, which
satisfies

0 <G x, yð Þ <
K0 x − yj j2−n, n > 2
K0 ln x − yj jj j, n = 2

(
x, y ∈Ω, x ≠ yð Þ:

ð37Þ

Hence (see Guo and Lakshmikantham [4]), the linear
integral operator

Gv xð Þ =
ð
Ω

G x, yð Þv yð Þdy, ð38Þ

is a completely continuous operator from Cð�ΩÞ into
Cð�ΩÞ, and therefore, operator A maps P into P and is
completely continuous, where P = fuðxÞ ∈ Cð�ΩÞ ∣ uðxÞ ≥ 0,
∀x ∈ �Ω� is a normal cone of space Cð�ΩÞ.

Conclusion 32. Let the function f ðx, uðxÞÞ be increasing and
satisfy

f x, tuð Þ < t f x, uð Þ,∀u > 0, x ∈Ω, 0 < t < 1: ð39Þ

If there exist a ∈ ð0, 1Þ and θ < v0 = vðx0Þ ∈ P, such thatÐ
�Ω
Gðx0, yÞf ðy, vðyÞÞdy ≤ avðx0Þ for some x0 ∈Ω, then the

Dirichlet problem has a unique fixed point x∗ in ½θ, vðx0Þ�.

Proof. Firstly, we prove that the operator A is e-convex,
where

e xð Þ =
ð
�Ω

G x, yð Þdy,∀x ∈ �Ω: ð40Þ

Here, we need to use a conclusion about integral opera-
tor (17), which can be found in Amann [2]: linear integral
operator (17) is e-positive, i.e., for any v > θ, there exist α
= αðvÞ>0 and β = βðvÞ > 0 such that αe ≤Gv ≤ βe, i.e.,

α
ð
�Ω

G x, yð Þdy ≤
ð
�Ω

G x, yð Þv yð Þdy ≤ β
ð
�Ω

G x, yð Þdy,∀x ∈ �Ω:

ð41Þ

Now, let u > θ. Then, there exists an x1 ∈Ω such that u
ðx1Þ > 0, and it follows from (39) that

0 ≤ f x1, 2u x1ð Þð Þ < 2f x1, u x1ð Þð Þ: ð42Þ

Consequently, f u > θ, where f denotes the Nemitskyi
operator:

f u xð Þ = f x, u xð Þð Þ: ð43Þ

Thus, from (41), we know that there exist α > 0 and β > 0
such that

αe ≤ Au =Gf u ≤ βe, ð44Þ

i.e., A satisfies condition (i) of Definition 4.
Next, suppose u ∈ P satisfying α1e ≤ u ≤ β1e ðα1 = α1ðuÞ

> 0, β1 = β1ðuÞ > 0Þ and 0 < t < 1. Since eðxÞ > 0 for any x
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∈Ω, we have by (39)

t f x, u xð Þð Þ − f x, tu xð Þð Þ > 0,∀x ∈Ω, ð45Þ

and hence, by (41), there exists α2 > 0 such thatð
�Ω

G x, yð Þ t f yð , u yð Þ − f y, tu yð Þð Þf gdy ≥ α2e xð Þ,∀x ∈ �Ω:

ð46Þ

On the other hand, it is clear thatð
�Ω

G x, yð Þf y, u yð Þð Þdy ≤Me xð Þ,∀x ∈ �Ω, ð47Þ

where

M =max
x∈�Ω

f x, u xð Þð Þ: ð48Þ

It follows therefore from (46) and (47) thatð
�Ω

G x, yð Þf y, tu yð Þð Þdy

≤ t 1 − α2
Mt

� �ð
�Ω

G x, yð Þf y, u yð Þð Þdy,∀x ∈ �Ω,
ð49Þ

i.e., AðtuÞ ≤ tð1 − ηÞAu, where η = α2/Mt > 0. Thus, the
operator A satisfies condition (ii) of Definition 4, and there-
fore, A is e-convex.

Take w0 = θ, then w0 < v0 and w0 ≤ Aw0. Therefore, all
conditions of Corollary 15 are satisfied. By Corollary 15,
we see that the conclusion is true.
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